
OPTIMIZATION TECHNIQUES
AND THEIR APPLICATION

J.T. He n d e r s o n

THESIS SUBMITTED FOR THE DEGREE OF DOCTOR

OF Ph il o s o p h y i n t h e Un i v e r s i t y o f Le i c e s t e r

APRIL 1978

UMI Number: U435546

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Disscrrlation Publishing

UMI U435546
Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

For my wife and children

ABSTRACT

The problem of optimizing a nonlinear function of one or more variables,

in the sense of locating the values of the variables which give the greatest

or least value of the function, is considered from two points of view.

First, the development of two new and improved techniques for optimization

is described. Second, the ways in which the available techniques can be

applied are discussed with reference to case studies of practical

significance.

The two new techniques are for unconstrained optimization problems of a

type which frequently occur in curve-fitting and modelling applications and

also in the solution of sets of nonlinear equations. The first of these is a

new two-part algorithm for minimizing a sum of squares objective function;

it uses a new descent method in combination with a modified Gauss-Newton

search to give an algorithm which has proved extremely reliable even when

applied to difficult problems. The second technique is a hybrid algorithm

for minimizing a sum of moduli objective function; it makes novel use of the

methods of parametric linear programming.

Ten case studies of the application of optimization techniques are

described, ranging from problems involving a single variable up to a problem

with several hundred variables. The areas from which the applications are

drawn include biochemistry, engineering, statistics and theoretical physics;

the problems themselves are mainly concerned with curve-fitting or the

solution of nonlinear equations.

Ac k n o w l e d g e m e n t s

The Author is indebted to his supervisor,
Dr. O.P.D. Cutteridge, for his advice and
encouragement; to Mr. M.A. Wolfe for his
interest and helpful discussions; to his
many colleagues at the Universities of
Leicester and St Andrews for providing him
with interesting optimization problems; and
lastly to Seonaid for her skilled work in
typing this thesis.

C O N T E N T S

1. INTRODUCTION 1

1.1 Minimizing a function of one variable 4
1.2 Minimizing a function of more than one variable 6

1.2.1 Methods using function values only 6
1.2.2 Methods requiring derivatives 7

1.3 Methods for least squares problems 10
1.4 Methods for global optimization 12

2. A TWO-PART ALGORITHM FOR MINIMIZING SUMS OF SQUARES OF NONLINEAR
FUNCTIONS 14

2.1 Background to the research 14
2.2 An improved descent algorithm 17

2.2.1 Initial investigations 18
2.2.2 The multimodal search 23

2.3 The modified Gauss-Newton algorithm 36

2.3.1 The search for a 36m
2.3.2 The criteria used to terminate the Gauss-Newton search 40

2.4 The restart facility 42
2.5 The final form of the algorithm 44
2.6 Numerical experience with the algorithm 46

2.6.1 Performance on the difficult test problem 47
2.6.2 A modification which does not need second

derivatives 51
2.6.3 The use of numerical estimates of the derivatives 54
2.6.4 Some statistics concerning the program 58
2.6.5 Comparisons with other algorithms 59

3. A HYBRID ALGORITHM FOR SOLVING SETS OF NONLINEAR EQUATIONS 65

3.1 Newton’s method for solving nonlinear equations 65
3.2 A modification of Newton’s method 68
3.3 Evaluation of the corrections 74

3.3.1 Linear programming techniques 74
3.3.2 Parametric solution of problem P2 79

3.4 Proof of the equivalence of problems PI and P2 83
3.5 The hybrid property of the corrections 88
3.6 Implementation of the algorithm 90

3.6.1 Computational aspects of solving problem P5 90
3.6.2 Convergence criterion 96
3.6.3 Method used to choose 3 ’ 100

3.7 Extension to overdetermined sets of equations 102
3.8 Numerical experience with the algorithm 103
3.9 Some related algorithms 107

4. CASE STUDIES OF THE APPLICATION OF OPTIMIZATION TECHNIQUES 110

4.1 Introduction 110
4.2 Problems with one variable 112

4.2.1 Radiative heat transfer in dielectrics 113
4.2.2 Creep rupture of a cylindrical structure 119
4.2.3 A model of void growth in metals 123
4.2.4 Discontinuities in the slope of a multimodal function 126

4.3 Problems with two variables 137

4.3.1 A modification to a finite-element method 138
4.3.2 Stability of an electrical machine 144
4.3.3 The Michaelis-Menten equation 150

4.4 Problems with more than two variables 156

4.4.1 An algorithm for cluster analysis 157
4.4.2 Quantum theory of phase transitions 172
4.4.3 Waveguide design 178

5. ASSESSMENT OF THE RESEARCH 183

APPENDIX - TEST PROBLEMS

BIBLIOGRAPHY

1. INTRODUCTION

Optimization in the sense of trying to find the maximum or minimum

value of a function of one or more variables has been a topic of

interest to mathematicians from the first. Perhaps the earliest

optimization problems were solved by Euclid who showed [1] for example

that of all parallelograms of a given perimeter the square is the one

with maximum area. Coming closer to the present day, problems arising

from studies such as kinematics and dynamics were solved using the methods

of calculus and calculus of variations developed during the seventeenth

and eighteenth centuries. At this time also the technique of Lagrange

multipliers [2] was introduced to handle explicit constraints which the

variables were required to satisfy.

While aids to computation have been available [3] since pre-Christian

days, and numeric methods of solving, optimization problems could thereby

be attempted in the absence of analytical solutions, with the advent of

the programmable digital computer within the last thirty years it has

become computationally-feasible to apply numeric methods to problems of a

complexity far in excess of previously-attempted problems. At the same

time, the acceleration in the growth of both the scale and the inter­

relationships of human activities has led man to seek ways of controlling

his activities in an optimum fashion. One useful approach is to create

mathematical models of real situations; the variables of the model

represent factors under human control, the constraint equations represent

physical limitations on the values these variables can adopt and the

objective function represents the measure of cost or benefit which it is

sought to optimize appropriately. A classical example of such a model

is the transportation problem of Hitchcock [A] ; although the objective

function and the constraints are all linearly-dependent upon the variables

in Hitchcock’s model, the scale of the problem necessitates a computer-

aided solution in most cases.

Dantzig [5] formulated the Simplex method for solving such problems

which he termed "linear programming" problems; by programming he was

referring to the planning process which was to be optimized on the basis

of these models. The Simplex method and its variants have been, and

continue to be, used with beneficial results. However, a linear

representation of a real situation is inadequate in many areas of interest

and so the more general mathematical programming problem has to be

considered. This takes the form

Minimize f (]c)

Subject to g^(x) ̂ 0 i=l, .. p

hj(x) = 0 j=l, .. q

The term mathematical programming is credited to Dorfman by

Himmelblau [6] . The variables are denoted by the vector x^ = (x^, ... x^);

the objective function by f (x) and the constraints are subdivided into p

inequality constraints and q equality constraints. Note that this form

is completely general since the maximization of f(2c) can be carried out by

minimizing -f(x). Similarly, an inequality constraint of the type g^(2c)^0

can be expressed as “g^Cx) ^ 0 .

Many special cases of the mathematical programming problem have been

identified, such as the integer and quadratic programming problems as well

as the linear programming problem already discussed. In this thesis, the

concern is with the nonlinear programming problem, obtained when at

least one of the terms f(x), g.(x) and h.(x) is nonlinear. Some of the— 1 — J —
early fundamental theory on the nonlinear problem was done by Kuhn and

Tucker [7] who derived the necessary and sufficient conditions for x* to

be a local minimum when f(x*) is a convex function. By a local minimum

is meant that for any value within a small but finite distance of x*,

measured according to some suitable.norm, the relation f(x)>f(x*) holds.

A global minimum will have been reached at x* if this relation holds for

any point x in n-dimensional Euclidean space.

As indicated by its title, this thesis is concerned with not only

optimization techniques but also their application to problems of practical

importance. Chapters 2 and 3 describe two new iterative methods for

unconstrained optimization, the first of which was developed by the author

in collaboration with his supervisor. Dr.O.P.D. Cutteridge, and the second

of which was developed solely by the author. The restriction to unconstrained

problems is not so limiting as might appear. Many methods for solving the

constrained problem make use of methods for unconstrained optimization, for

example the Sequential Unconstrained Minimization Technique described by

Fiacco and McCormick [8] . Also, it is often found that a constrained

problem can be simplified to an unconstrained problem by an appropriate

transformation of the variables, as described for example by Kowalik and

Osborne [9] .

In developing these two new methods, the emphasis was laid on the

effective implementation of ideas, derived mainly from intuitive reasoning,

by following a course dictated by the results of numerical experiments.

Many methods have been successfully used long before the underlying

mathematical theory was complete; they would not have been available for

use before that time if their implementation had been delayed until their

performance could be theoretically predicted. In addition, it will always

be the case that as far as optimization methods are concerned the proof of

the pudding is in the eating; no matter how much theory is given about them,

most new methods are published with numerical details of their performance

on test problems and comparisons with existing methods.

Chapter 4 is concerned with the application of optimization methods.

There can be no hard and fast rules for determining which is the best

method for a particular application. There will always be a test problem,

not necessarily of pathological interest, which will defeat a given method.

The author’s belief is that optimization techniques are like any other

branch of numerical analysis, the problem must first be formulated in the

most effective way before considering the choice of optimization method.

It is the author’s experience that in many instances the selection of

method becomes of secondary importance. The case studies given in Chapter

4 illustrate these points.

1.1 Minimizing a function of one variable

The problem of minimizing a function of one variable is often

encountered in practice and is of interest in its own right. However, many

optimization methods for problems of more than one variable make use of

line-searches in which the minimum of the objective function is sought along

a line in n-dimensional Euclidean space. Consequently special attention

has been devoted to these methods.

A class of simple methods described by Swann [10] are of use when the

minimimum is known to be located between lower and upper bounds on the

independent variable. Within these bounds, a set of trial points can then

be generated either with some random distribution or to form a regular grid.

The function is then evaluated at each point and the lowest value of

the function so found is taken as the minimum. Alternatively, new

bounds with a smaller range could be deduced and the process repeated

until the position of the minimum is known to within a required accuracy.

Such methods have the advantages of being simple to implement and make

no assumptions about the way in which the function varies. However they

are expensive in terms of function evaluations.

If it can be safely-assumed, as often is the case, that the function

is unimodal within given bounds about the minimum, then a more systematic

and efficient method can be adopted. Suppose that the four points

a < b < c < d are found such that the minimum is at x* where a < x* < d.

Then by a comparison of the function values at each point it is possible

to reduce the bounds to a < x* < c or b < x* < d . It is then only necessary

to compute one more function value, at some point within the new bounds,

to be able to repeat the process. The most efficient method of generating

the trial points, in the sense that for a fixed number of function

evaluations it gives the greatest reduction in the initial range, is based

on the Fibonacci numbers as shown by Kiefer [11]. A directly-related method

is the Golden Section search, described by Kowalik and Osborne [9] . At

worst, the Golden Section search will require one more function evaluation

than the Fibonacci search for the same interval reduction; but the Golden

Section search is easier to implement and is therefore preferred.

While these last two methods are a great improvement on a random or

grid search, they still do not utilise all the available information since

they simply compare function values. The actual values of the function

can be employed to derive an approximate function which roughly follows the

behaviour of the original function but whose minimum can be predicted

analytically to give an estimate of the minimum x* of the original

function. Normally a quadratic or cubic polynomial is used for the

approximating function. Davies, Swann and Campey [12] use a method

which first locates three points a < b < c, where b = (a + c)/2 , such

that f (a) > f (b) < f(c). A single quadratic interpolation gives a new

estimate of the minimum. This forms the starting point for the next search

for a bracket followed by an interpolation, and so on with the bracket on

the minimum being progressively reduced. Powell [13] described a method

in which the bracket is found once and then reduced by the results of

repeated quadratic interpolations. A cubic function was used by Fletcher

and Reeves [14], based on the function and its derivative at two points.

Some further suggestions for univariate searches are given by Bard [15].

I.2 Minimizing a function of more than one variable

Many books have been published on iterative methods for unconstrained

optimization, including those by Kowalik and Osborne [9] , Murray [16] and

Himmelblau [6]. Some of the more commonly-met methods will now be outlined.

These can be split into those which require function values only and those

which require in addition first, and possibly second, partial derivatives

of f (]{) with respect to the variables.

1.2.1 Methods using function values only

Most of the methods in this category can be termed direct search

methods; they use a systematic series of trials, based on function comparisons,

which is intended to lead ultimately to the minimum. They have the

advantages of being simple and do not make any assumption on f (x) other than

it is continuous. However, they have a slow final rate of convergence when

they get close to the minimum.

A simple, but not very effective, strategy is the alternating

variable method described by Swann [10]; a univariate search is used on

one variable at a time to locate the minimum of f(2ç) with respect to that

variable. The Fibonacci search has been extended to the n-dimensional

case by Krolak and Cooper [17]. In the pattern search of Hooke and Jeeves

[18], the basic operation is a series of exploratory moves followed by a

pattern move, which is predicted by the exploratory moves to be a profitable

direction of search as regards reducing f (x). Exploratory moves are also

a feature of the method of Rosenbrock [19]; he used a set of n orthogonal
Tdirections v. (i=l, .. n) where v. v. = 0 (i^j) and adjusted these— 1 — 1 — j

directions as the search progressed. The razor search of Handler and

MacDonald [20] adjusts the length of each move to allow for sharp peaks and

troughs in the objective function. The Simplex method of Nelder and Mead

[21] uses a set of n+1 points to form the vertices of a regular polyhedron

(the Simplex) in n-dimensional Euclidean space. On the basis of comparisons

of the function values at the vertices, the Simplex is then expanded,

contracted or reflected about a vertex. The process is repeated until a

minimum is located.

1.2,2 Methods requiring derivatives

If first derivatives of f(x) are available in the form of the gradient
Tvector g (x) = (3f(x)/8x,, ... 3f(x)/9x) then it is possible to ensure that — - — I — n

at each iteration of a search the corrections Ax to be made to the current

estimate of the minimum are downhill by finding a Ax such that ^ A x <0
k k . . .This test applies at x and as we move away from x in the direction of Ax

it will not normally remain downhill. Consequently many methods use a line

• • lesearch to find the scalar a which minimizes f (+ aAx) and then set

= x^ + aAx. In some cases, all that is required is that an a is

found to give a sufficient reduction in f ()[) , as discussed by Fletcher

[22].

An early derivative method is that of steepest descent due to
kCauchy [23]; the corrections at any iteration are given by Ax = -^(x).

This method will always converge to a stationary point, although not

necessarily a minimum, but the final rate of convergence can be very slow.

Consequently, the method is not often used in practice.

The classical Newton method for solving nonlinear equations can be

extended to the minimization of f () and is the basis of a large number

of methods. At a minimum we will have g^(x*)=0 (i=l, .. n) . We can
Ic 1/' Ic Icapproximate ^(x) about the point x by ̂ (x + Ax) - ̂ (x) + G(x) Asc,

k . . . 2 kwhere G(x) is the Hessian matrix G.. = 9 f(x)/9x.9x. evaluated at x .— ij — 1 1 . —
The corrections required on the basis of this approximation to reduce the

gradient to zero are then given by the solution of the system of linear
k kequations G(x) Ax = -gCx). For a positive definite quadratic function,

the method will terminate in one iteration; this property is of relevance

since in the vicinity of it is often the case that f(x) can be

approximated by a positive-definite quadratic form.

Two drawbacks to Newton’s method are that it requires second

derivatives, which can be expensive to compute, and it involves the solution

of linear equations. The main drawback is that G is not necessarily
- 1positive-definite and so the corrections -G g may not be downhill.

Greenstadt [24] overcomes this difficulty by using an eigenvalue and eigen­

vector analysis of G. He sets to a small positive value all negative

eigenvalues and eigenvalues close to zero. Then he computes G ̂ using the

modified eigenvalues and the eigenvectors. Murray [25] believes that it

is more efficient to assume G is positive-definite and use a Cholesky

factorisation as described by Wilkinson [26] to compute G ^. Only if

the factorisation fails, because G is not positive-definite, need

Greenstadt’s approach be used. In general, it will be necessary to carry

out a line search to ensure that a reduction in f (jç) is obtained; Gill,

Murray and Picken [27] give one such implementation of Newton’s method.

Davidon [28] originally proposed the class of variable metric or

quasi-Newton methods. He proposed that an initial estimate of G * be

made and then updated as the search progressed using first derivatives

only. It can be ensured, theoretically at least, that the estimate of the

matrix G ̂ remains positive-definite. Fletcher and Powell [29] gave a

more exhaustive treatment of the method. Broyden [30] later developed a

related family of rank one methods, so called because the matrix used to
— 1 . . .update the estimate of G at each iteration is of rank one (the Davidson-

Fletcher-Powell matrix is of rank two). Gill and Murray [31] proposed that
— 1 • .the estimate of G be stored in factored form to ensure that numerical

difficulties do not cause the matrix to become negative-definite; they also

give some consideration to the use of numeric estimates of the derivatives.

A final class of methods is based on the use of conjugate directions;

the set of n vectors v_^(i=l, .. n) are conjugate with respect to G if
T . .G Vj = 0 (i^j). These methods have the property of quadratic termination

in that if f(x) is a positive definite quadratic they will terminate in

a finite number of steps. This property depends upon exact line searches

being used, which is not practicable. Two well-known methods of this type

are the conjugate gradient method of Fletcher and Reeves [14] and the

method of Powell [13] which does not in fact require derivatives.

10

1.3 Methods for least squares problems

Methods have been developed to handle the special case of the least

squares problem when the objective function to be minimised is in the

form of a sum of squares Z f. (x). Such problems frequently arise in
i= l ^

curve-fitting and modelling where some physical quantity Y is assumed
Tor known to depend on one or more variable quantities X = (Xj, ... X^)

according to a given functional relation Y = F(X, x). The vector

X = (Xj, ... x^) represents fixed parameters appearing in the function F .

A set of experimental measurements is taken to give the observed value

Y^ of Y at each of m points X^; it is then desired to find the parameters

X which give closest agreement between the observed and predicted values

of Y.

At each measured point, the difference between the observed and

predicted value can be denoted by the residual f.(x) = Y.-F(X,, x). A1 — 1 — 1 —

common measure of fit is the sum of the squares of the residuals, (the

12-norm) which is minimized to give the best fit according to this criterion.

Other norms can be used; thus Barrodale and Roberts [32] give a method

for minimizing the sum of the absolute values of the residuals (the Ij-

norm) and Osborne and Watson [33] give a method for minimizing the maximum

magnitude residual (the 1̂ -norm).

Least squares methods also have an important use in the solution of

systems of nonlinear equations. Given the system f .(x) = 0 (i=l, .. n)
^ 2 . . . !" then if the sum of the squares Z f . (x) is minimized and the minimum

i=l ^
found to be zero the vector x* at the minimum will be a solution of the

equations. Sometimes a nonzero minimum will be found; in this case further

investigations are necessary to determine if this is in fact the global

minimum, and hence the nearest approach to a solution, or if the optimization

method is failing to locate the global minimum.

1!

Reviews of the methods available for least squares problems have

been given by Lill [34] and Dennis [35] , Most of the methods derive from

a modification of Newton’s method first proposed by Gauss [36] and

hereafter referred to as the Gauss-Newton method. As shown earlier, for

a general objective function the Newton corrections are -G ĝ_. For a

sum of squares objective function differentiation gives

"(air 3T + iTaF:)K=1 1 3 1 3

from which it will be seen that the Hessian is made up of two terms, one

of which does not involve second derivatives. If the residuals f^ are

small, or they are varying slowly with x, then we may approximate G^j

by ignoring the terms involving second derivatives. This approximation is

likely to get better as a minimum of the sum of squares is approached. If

we denote the Jacobian matrix by J such that = 9f^V9Xj, then the
THessian approximation can be written as 2J J and the gradient vector is

Tgiven exactly by 2J The Gauss-Newton corrections then become
T V — 1 T(J J) J f , where the factors of 2 have been cancelled.

Provided that J is nonsingular, the Gauss-Newton corrections will

always be downhill. However, unless f(x*)=0, the final rate of convergence

of the Gauss-Newton method is of first order as compared with the second

order rate of convergence of Newton’s method. In most problems, an

iterative search using the Gauss-Newton corrections as they stand would

diverge; Hartley [37] used a line search to ensure that the sum of

squares decreases at every iteration.

The difficulty met when J becomes singular has been considered by

Levenberg [38] and later Marquardt [39] . They proposed the corrections

12

T — I T= -(J J + XW) J f_ where W is a positive-definite matrix and X is

a parameter whose value is to be chosen at each iteration to give a

reduction in the sum of squares. A suitable choice for W, suggested by

Marquardt, is I, the unit diagonal matrix. The corrections can be seen

to be hybrid since when X is increased from zero, the corrections

initially equal the Gauss-Newton corrections and change to the direction

of the steepest descent corrections. Many methods have been subsequently

derived using the Levenberg-Marquardt corrections including those of

Goldfeld , Quandt and Trotter [40], Fletcher [41], Meyer and Roth [42]

and Nash [43] . A similar hybrid approach was used by Powell [44] and

Jones [45] .

A recent comparison of some least squares methods was given by Wolfe

[46]. Bard [15] carried out a set of comparisons, on least squares

problems, of special-purpose methods and variable metric methods; he

concluded that the former were to be preferred. However, McKeown [47] has

shown that for some least squares problems it may be better to use one

of the standard unconstrained optimization methods.

1.4 Methods for global optimization

Before progressing to the next chapter, it is relevant to outline

some of the methods available for global optimization, since the algorithm

described in Chapter 2 and two of the case studies of Chapter 4 consider

this problem. A review of methods for global optimization was given by

Dixon, Gomulka and Hersom [48] . A probabilistic approach is often used.

In the multistart method, a number of minimizations are carried out,

each starting from a different point chosen in some random fashion. The

13

lowest minimum (often the same minimum is found every time) is taken as

the global minimum. A second technique is to generate a large number of

trial points at random in n-dimensional Euclidean space. Price [49]

recently gave one such method.

Other methods are available which do not use a probabilistic approach,

The descent from a minimum method of Goldstein and Price [50] works well

for polynomial functions. The trajectory approach of Branin [51] uses a

closed curve obtained by integrating the equation ĝ (x) = ”^(2̂) and which,

it is hoped, will pass through all the stationary points of the objective

function.

16

2. A TWO-PART ALGORITHM FOR MINIMIZING SUMS OF
SQUARES OF NONLINEAR FUNCTIONS

This chapter describes the development of a two-part algorithm and

corresponding computer program for the minimization of sums of squares of

nonlinear functions through iteration. The work was done by the author in

conjunction with Cutteridge. The letter’s contributions to the research

are acknowledged in the text where appropriate; otherwise the work described

and the views expressed are the author’s own.

2.1 Background to the research

The synthesis of lumped linear electrical networks of arbitrary structure

has for long been a research topic of interest to Cutteridge; a particular

area of his concern has been the synthesis of networks which do not have a

series-parallel equivalent [52]. For a given network topology, one practical

method of quantifying the discrepancy between the desired characteristics of

the network and its actual characteristics is that of coefficient matching.

This method, described by Calahan [53], measures the discrepancy by a set of

nonlinear functions of the values of the elements making up the network. At

an exact match, all these functions are zero and the element values can be

varied in an attempt to achieve this situation. In general, it may be

necessary to alter the network topology to obtain a match; this aspect of

the problem is discussed by Cutteridge and di Mambro [54].

The process of searching for the element values to give the best match

is equivalent to the solution of m nonlinear equations (the functions) in

n variables (the element values). The approach used by Cutteridge was to

minimize the sum of the squares of the functions (or residuals of the

equations) using standard techniques for optimization. While normally m=n

1 c:

for Cutteridge’s problems, it was found by Cutteridge and Kfzeczkowski [55]

that the optimization could be assisted by introducing excess functions,

chosen suitably and which are zero at a solution of the original system.

Also, although a solution may not exist for the current topology an

approximate solution will always be obtained which minimizes the sum of

squares. Thus the algorithm described in this chapter is directed towards

the minimization of sums of squares; it should be borne in mind that it could

equally be applied to solving nonlinear equations.

Cutteridge found from experience that for some of his problems

existing methods of optimization were not sufficiently reliable; it was

important in the synthesis process to know, in the event of failing to

reach a solution, whether this failure was due to deficiencies in the

opimization or indicated the need to change the network topology. Thus

Cutteridge developed a reliable two-part algorithm [55] of his own. The

concept of a two-part algorithm can in fact be traced back to 1847 when

Cauchy [23] presented a paper which is best-known today as the first exposition

of the method of steepest descent. At the time, Cauchy wished to solve sets

of nonlinear equations which he encountered in his calculations on planetary

orbits. To do this he used Newton’s method which he found did not always

converge. This failure was caused by starting the Newton iterations from

variable values which are too far removed from the solution. To overcome

this difficulty, Cauchy proposed that several iterations of his method of

steepest descent should be first carried out until the variables are close

to the solution as indicated by the residuals of the equations becoming small.

Newton’s method would then locate the solution values accurately and

rapidly if started from the values at the end of the steepest descent search.

Two-part algorithms are just one instance of the polyalgorithm approach

to optimization. This method has not found great favour with many researchers,

possibly due to the fact that a theoretical treatment of polyalgorithms is

16

made difficult by the presence of empirical switching criteria determining

when to change from one algorithm to another during the search. Published

work on polyalgorithms is thus biased towards a practical, rather than

theoretical, treatment; for example Phillips [.57] , Chien [58] and the work

of Cutteridge cited earlier. The underlying aim of polyalgorithms, namely

the combination of the best features of two or more algorithms, has not been

neglected since the concept of hybrid algorithms has received a lot of

attention. The essential difference in a hybrid algorithm is that, at

each iteration, the change in the variables is given by an interpolation

between the two correction vectors produced by two different algorithms.

The interpolation process usually depends upon parameter values some of

which must be set by the user of the algorithm; this dependence upon

parameter values is one disadvantage of the method. The most common hybrid

algorithms are those which interpolate between the steepest descent

corrections and the Newton (or Gauss-Newton) corrections. The original work

on such algorithms was by Levenberg [38] and Marquardt [39] and has been

followed up by many others including Powell [44], Fletcher [40], Jones [45]

Goldfeld, Quandt and Trotter [41], Meyer and Roth [42] and Hash [43].

Returning to the two-part algorithm, Cutteridge used for this two

algorithms combined in the end-on manner of Cauchy. However, Cutteridge

introduced an additional facility such that, if the second part of the

algorithm fails to converge, then control is passed back to the first part

with the variables reset to their values on entry to the second part;

further progress is then made in reducing the sum of squares before the

second part is re-entered. In the first part, Cutteridge used a reliable

descent algorithm; he tried, among others, the conjugate gradient method of

Fletcher and Reeves [14] and his own modification [59] of the Levenberg-

Marquardt hybrid algorithm. In the second part, since he was dealing with

sums of squares, he used a modified Gauss-Newton search similar to that

described by Hartley [37]. He improved the efficiency of the method by using

17

empirical criteria to anticipate, as fat in advance as possible, the onset

of failure in the Gauss-Newton search if this should happen. In this way,

he was able to return to the first part before failure actually took place

and save on wasted Gauss-Newton iterations.

Cutteridge applied his two-part algorithm to solve many problems of

interest. When used in network synthesis, it is not always possible to

supply close estimates of the solution values. Consequently, Cutteridge

was interested in developing an algorithm which would be efficient yet

converge to a solution from a wide range of starting points and for

difficult problems. This task he gave to the author whose work in improving

the two-part algorithm will now be described. During the development, a

single test problem was used; this was a set of eight nonlinear equations

involving exponentials, formulated by Skwirzynski [60] and shown in the

Appendix. Prior to this work, Cutteridge had been able to solve this problem

only from a few starting-points close to the solution.

2,2 An improved descent algorithm

Cutteridge suggested that, for the first part of his algorithm, an

improved descent algorithm could be developed if second derivatives of the

functions were used in addition to first derivatives. He proposed that a

correction vector Ax be obtained by following a "curve of steepest descent"

given for iteration k by the expression

Ax = - a + G^ Ax) C2.1)

Here g^ is the gradient vector the sum of squares objective function
® 2 k . . kF = Z f . (x) and G is the Hessian matrix of F, both evaluated at x , the

i= l ^
value of X at iteration k. The locus of the curve is formed by variation of

the positive scalar a,.noting that at a = 0 the correction vector is

zero. At each iteration, a was to be chosen so as to minimize the function

18

F (a) = F(%k +

2.2.1 Initial investigations

The author pointed out that equation (2.1) is not the true curve of

steepest descent because, for this to be so, the direction dx/da (or dAx/da

since x = x^ + Ax) must be in the same direction as -g (x) at any point along

the curve. It should also be noted that the definition of "steepest"

depends upon the norm used to define distance, as discussed by Murray [25] .

It will be seen that Cauchy's method of steepest descent can be derived by
k kapproximating ^(x) by its value ^ at x . If the differential equation

dAx/da = -g^ is solved, subject to Ax = 0 at a = 0, then the steepest descent
kcorrections Ax = -ag are obtained. If the Hessian is available, a better

k kapproximation is given by g(x) = g + G Ax to give

d ta = _ (gk + G* Ax) (2.2)
da - -

W1ith the same boundary conditions of Ax=0 at a=0. Differential equations

have been used by other workers such as Branin [51] and Ramsay [61] in

optimization algorithms.

A program was written using corrections defined by equation (2.2) since

it was believed that this gave a better approximation to the curve of

steepest descent than equation (2.1). For a given value of a, the corrections

Ax were calculated using a Runge-Kutta [62] numerical integration. It was

found that the computation time required by the integration was much greater
k kthan that required to evaluate F, ^ and G . This time could ha,ve been

reduced by using a less accurate integration and also, when searching for a

to minimize F(a), by using intermediate results for Ax obtained at values of

a covered by previous integrations. However, it was believed that even with

these economies an efficient algorithm would not be obtained and equation

(2.1) was re-considered.

19

In passing, it should be observed that g.n analytic solution of

equation (2,2) is possible given that the eigenvalues of are first
kcalculated numerically. In the simplest case, when G possesses n distinct,

non-zero eigenvalues (j)j> (i=1 , .. n) the solution is

Ax = -(G^) ̂ g^ diag (I - exp[-&^ a]) (2.3)

where diag (a^) denotes a diagonal matrix such that the diagonal element on

row i is a^ and all off-diagonal elements are zero. Complications arise when

there are repeated or zero eigenvalues. The general analytical solution

of first order, linear differential equations is discussed by Braun [63] .

Some trials were made at a later date using equation (2.3); these were

encouraging but, for reasons of time, have not been followed up for the

present work.

While equation (2.1) is not the true path of the steepest descent, use

of it may be justified from other considerations. One way is to consider the

approximate solution to equation (2.2) given by assuming the right-hand side

is a constant quantity; in this case equation (2.1) is obtained. The

assumption will be roughly valid for small a, when g will outweigh G Ax.

Better approximate solutions could be obtained with different assumptions.

However, the most convincing reason for using equation (2.1) is that it has

a parallel with the expression used by Levenberg and Marquardt, as will now

be shown.

Since a is an arbitrary scalar parameter, whose value is to be determined

by a line search, then the algorithm is not affected if we replace a in

equation (2,1) by 1/x, where X is another parameter. Rearrangement then

gives

(G^ + XI) Ax - (2.4)

where I is the unit diagonal matrix. The expression used by Levenberg

20

and Marquardt can be written

CJ^J + A ’W) AX = (2.5)

where J is the Jacobian matrix of the residuals f and W is a pre-determined

diagonal matrix. One choice for W suggested by Marquardt is the unit matrix.

The scalar parameter X* is chosen at each iteration by a search on

F(x + Ax). Taking W=I and replacing X ’ by X"/2, multiplication of both

sides of equation (2.5) by 2 gives

(2J^J + X"I) Ax = -2jTf (2.6)

Now for a sum of squares objective function, the gradient vector ^ is given
Tby 2J furthermore, the Hessian matrix G can be replaced by its Gauss-

T .Newton approximation 2J J. Thus equations (2.4) and (2.6) are equivalent

except that the former uses the exact Hessian. Other workers for example

Bard [15] have used equation (2.4) as the basis for an optimization algorithm,

Inspection of equation (2.4) gives

lim Ax = -(G^) ' ^ (2.7a)

X =v 0

lim Ax = /X (2.7b)

X 00

while similarily equation (2 .6) yields

lim Ax = “ (J^J) ̂ (2.8a)

X" + 0

Jim Ax ^ -2J^^/x" (2.8b)

X" -► 00

These results shown that, for small values of the parameters X and X", the

values of Ax tend to the Newton and Gauss-Newton corrections respectively.

21

Further, in both cases, when the values of the parameters tend to large,

positive values then the corrections become small and in the direction of

steepest descent. Thus, by taking a sufficiently large value for X or X"

it should always be possible to generate a correction Ax for which
k kF(x + Ax) < F(x), except of course if a local minimum has been reached. The

validity of this argument is also dependent upon round-off error not having

a dominant effect on the calculation, which can be the case in some instances.

A program was written, using the original expression for the corrections

as given by equation (2.1); a was chosen to minimise F (a). Note that in this

case Ax tends to the steepest descent direction as a tends to zero. A single

iteration of the algorithm consisted of the following steps.

Ic Ic IcStep 1 Compute F(3C), ^ and G

Set aj=0, Fj = F(x^)

Set is a given value

Step 2 Compute Ax from equation (2.1) fora=o^;
kset F2=F(x + Ax)

Step 3 If F2 > Fj then set and return to

Step 2. Otherwise

Step 4 Set a^=2a 2> compute Ajç for a=ag and set

Fg=F(x^ + Ax).

Step 5 If Fg < F2 then set 0̂ = 02 »

Fj=F2» F2=Fg and return to Step 4. Otherwise

kStep 6 The minimum of F (a) = F(x +Ax) is at a— — m
where a, < a < a_; use a Golden Section 1 m J
search to locate a more precisely, m

A similar doubling-process to bracket a minimum was used by Davies,

Swann and Campey [12].

It quickly became apparent that the behaviour of the search was

significantly affected by the choice of at step 1. Assuming that

F(a) is unimodal, changing Uq will alter the values of and when the

minimum is bracketed at step 6; this in turn will, in general, cause the

final value of to be slightly different. It is well-known, for example

Dixon [64] > that changing the accuracy of a line-search can greatly affect

the overall behaviour of an optimization algorithm. However this, was not

the main reason for the differences found here. Detailed printout of the

calculations showed that completely different minima of F(a) were often

found at the same iteration by choosing differently. Tabulation of F (a)

over a wide range of values of a showed that it was in fact highly non-

unimodal with many sharp peaks and troughs. This behaviour is not so

marked in the Levenberg-Marquardt algorithm for the following reasons.

T .The Gauss-Newton approximation 2J J in equation (2.6) is always

positive semidefinite, and most likely is positive definite, since for any

vector y_ we have y^ (2J^J)y = 2 (Jy)^(Jy) ^ 0. Thus the matrix (2J^J+X"I)

will be positive definite for any X" > 0 and Ax will be downhill with
krespect to F(x). Furthermore, the modified matrix cannot be singular for

• • Icany positive X". Thus it is likely that F(x +Ax) will be unimodal, or

nearly so, in the range X" > 0. In the case of equation (2.4) these
karguments do not apply. There is no guarantee that the true Hessian G ,

even when augmented by the addition of a positive value X to its diagonal,

will be positive definite. Thus Ax need not be downhill and if X equals
k . k . .-({)£, where (})̂ is an eigenvalue of G , then the matrix G + XI is singular

and the corrections become infinite. . .

23

In view of the multimodal nature pf F (a), the author decided to use

a search which would look for the global minimum of this function. To

draw a parallel with the Levenberg-Marquardt algorithm it was also decided

to use equation (2.4) to evaluate the corrections and search over X,

rather than a. This change of itself does not affect the results since

there is a one-to-one correspondence between the corrections at X=a and

those at a=l/a. Some minor differences will be introduced by the effects

of roundoff error and the fact that the global minimum cannot be located

exactly. For the sake of completeness, it was further decided to search

over all real values of X, rather than restrict the search to positive

values only.

2.2.2 The multimodal search

The search for the global minimum of F(X) could be considered as a

special case of the more general problem of global optimization of a

function of n variables. Most existing algorithms for this problem, such

as the descent from a minimum method of Goldstein and Price [50] assume

that the function and its first (and sometimes higher) order derivatives

are continuous; this is not the case with F(X). It was decided to develop

a special-purpose search, which could to its advantage take note of the

known properties of F(X).

A simple strategy was adopted, similar to a method which was used by

Handler and MacDonald [2q] . The range of X is covered by a grid of trial

values X^; it will be assumed that X^ > X^_^. The first grid-point is

sufficiently large and negative, and the final grid-point similarily large

and positive, so that the corrections at the ends of the grid are close to

zero. The values F^=F(x^) are evaluated; if three successive grid-points

show that F. , > F. < F. then a local minimum must exist at X._ where 1— 1 1 1+1 m

24

A < A . These bounds on A Are then reduced to an acceptablei-J m x+1 m
size using a standard method for finding the minimum of a unimodal

function. The global minimum is then taken as the lowest of all the

local minima detected. The strategy depends for its success on a

judicious choice of grid; a balance must be struck such that the grid

is sufficiently fine to sieve out the local minima but not so fine as to

lead to an excessive amount of computation.

The first grid tried contained 2N+1 grid-points defined as follows:

^J+i+1 ^ ^ ^ + i ... N (2.9a)

%N+] = 0 (2.9b)

^i “ ” ^2N+2-i » .•• N (2.9c)

It will be seen that the grid is symmetrical about the midpoint A^^^=0.

There are many ways in which the grid could be specified. It was decided

to first fix the smallest and largest positive grid-points, A^^^ and

^2N+1 respectively, and then fix either N or r. As will be seen, N and r
N— 1are related by ^2n + 1 ^ ^ \+2* as will be shown, Â _̂ ̂ and ^2N+1

were chosen for individual multimodal searches, the values of N or r were

constants specified by the user of the two-part algorithm. Experiments

showed that if r was used to fix the grid, this could often result in an

excessively fine or too coarse a grid. By using N to fix the grid, these

problems were less frequently met, there being no risk of extreme values of N

being generated as can happen when r is used to fix the grid.

When fixing A^^^, it is desirable that the corrections are close
k -1 kto the Newton corrections - (G) g at A=0 but not so close that grid-

points will be wasted in covering a region of little variation in F(A).

An initial trial value for Â .^^ is calculated, which is predicted to

25

• T -\give a J% difference in the values of A% Ax ac A=A^ and A=0, By

differentiating equation (2.4) we get

~ Ax = -(G^ + AI)‘ ̂ ÙX (2.10)

A small change 6A in A will give, to a first approximation, the change
• k “ 16ÙX in Ax where, from equation (2.10), (5Ax~ -(G + A I) AxôA . The change
Tin A3Ç Ax is then given by

5 (Ax'^Ax) = - 2Ax^(G^+AI)"^Ax 6A (2.11)

Setting A=0 and 6A=A , the required prediction is
P

T,_k\-1A^ = Ax Ax / 100|2 Ax ^(G^)“ Ax | (2.12)

where Ax is evaluated at A=0. The corrections are then evaluated at A=A .— PT
If it is found that the variation in Ax Ax is not more than 2% then A— — N+2
is set to A . Otherwise, A is halved until this requirement is met, which

P P
it eventually must be.

At ^~^2N+1’ corrections must be small and close to the steepest

descent direction; however, ^2n+i ™^st not be so large that it leads to

wasted grid-points. Again, an initial value A is predicted, this time to
kgive F(Ap) = 0.99 F(«>), where the value F(°°) equals F(2c). From equation

(2.7b) it will be seen that for large A the corrections are approximately
ki • • • • « k ./A; by a linear approximation the corresponding reduction in F(x) will

k T kbe (g) ^ /A. For the required 1% reduction

X y 100 gk/F(xk) (2.13)

If on evaluation of F (A) it is found that the reduction is not more than
P

2% then Ar,.... is set to A . Otherwise, A is doubled until this condition zN+J p p
is satisfied.

26

This grid was used in conjunction, with a Golden Section search to

refine the bounds on the minima; encouraging results were obtained. An

important feature of the computer implementation was that, following the

approach previously-adopted by Cutteridge, a step limit was set such that

no component of the vector x was allowed to change by more than this limit

from one iteration to the next. This aspect of the algorithm will be

described more fully later.

It was apparent that the algorithm could be improved in several areas.

The corrections were found from equation (2.4) using a method [65] based

on Grout factorisation; if the matrix G^ + AI is singular, or nearly-so,

then this method fails. The more accurate method of Choleski decomposit-
• • Ic • •-ion could not be used since it requires that G + At is always positive

definite. At a singularity, although is infinite, the step limit would

ensure that the corrections are finite provided that the direction of Ax

could be found. The program logic has to have safeguards built in to

cope with the Grout factorisation method failing, either when fixing X^+2

and ^2n+i when evaluating F(A^); this cannot be done in a wholly

satisfactory manner. The calculation of Ax for any \ is time-consuming

and, as Gutteridge pointed out, could be speeded up by a technique described

by Jones [45] . This technique uses the eigenvalues and eigenvectors of G^

which can be found numerically by standard methods. The eigenvalues would

have a second important use in that they specify the positions of the

singularities in the grid search.

• m • kThe method of Jones can be explained as follows. Since the matrix G

is both real and symmetric then it will have n real eigenvalues; for

example, Wilkinson [26] gives a proof of this property. Let these eigen­

values be denoted by (i=l, ,, n) where Further, let the

eigenvector corresponding to each eigenvalue be the vector v^ which,
Twithout loss of generality, can be taken as a unit vector. Because v^

27

for i 5̂ j (the eigenvectors form an orthogonal basis) for any value of

Ax there will exist n real scalars (x. such that

n
Ax = 2 a. y\ (2.14)

i=l ̂ 1

Substituting Ax from equation (2.14) into equation (2.4) we obtain

and since, by definition, G ^ . ~ i— i this last expression simplifies to

^ k ’Z «.((}). + X) V. = -g (2.15)
i=l ̂ ^ -1 -

TIf both sides of equation (2.15) are pre-multiplied by it follows from

the orthogonality of the eigenvectors that

a. ((j). +X) = (2.16)1 '1 — 1 —

Tnoting that v^ v^ = 1. If from equation (2.16) is substituted into

equation (2.14) we obtain

Ax = -.Z, j : k 1=1 1

Thus for any value of X, the corresponding correction vector can be

found directly from equation (2.17). A further saving in processor time

is made by programming the expression for Ax as

Ax = Z w (2.18a)

Z = [^j, £ 2» ••• (2.18b)

z. = V. (2.18c)— 1 — 1 — 1 —

1w.i *^+X

Thus if Z is evaluated once at the start of the nonunimodal search, the

corrections are thereafter given by a single matrix-vector multiplication.

28

Before describing how the eigenvalues were used to specify the grid,

it is necessary to discuss the effect on the search of the limitation on

the size of the corrections as mentioned earlier. Cutteridge had found

from past experience that it was beneficial to limit the magnitude of the

components of Ax; this he found improved the global convergence properties

of the algorithms he used and prevented numerical difficulties which

could often be caused by one iteration taking a large step in the variables

from which subsequent iterations tried to recover. He used one of two

basic methods. The first was a simple "cut-off" such that if |Ax^]>p.

then Ax^ is set to p^ multiplied by the sign of Ax^. The parameter p^

is a pre-set value; it will be assumed that the same value p will be us^d

for all the p^ values but some further comments on the possibility of

using differing p^ values will be made later. The second method of

limitation is by "scaling-down" in which Ax is multiplied by the scalar

s < 1 where

s = min (I, 1 ^ 1 1 ^ 1) (2.19)

It will be seen that s is defined such that if the maximum absolute

correction component does not exceed p then s=l and Ax is unchanged;

otherwise Ax is reduced to make this maximum correction exactly equal to

p in magnitude. Both methods of limitation were tried in the present

algorithm; scaling-down was more consistently successful and was therefore

used in the final version of the program. One possible explanation for

the greater success of the scaling-down method is that in the multimodal

search there are many regions in which scaling applies. The cut-off

method changes both direction and length, whereas the scaling down method

changes the length only. Consequently if a downhill direction is
k Tgenerated i.e. (^) Ax < 0 the cut-off method could make this into an

uphill direction.

29

It will be noted from equations (2.18d) that w^ becomes infinite

when X = corresponding to a singularity of + XI. Thus in equation

(2.18a) the i^^ column of the matrix Z will be dominant, all other

columns being multiplied by finite values of w. The corrections Ajç will

therefore have the same direction as £^. Scaling-down will be in effect

and so at such a singularity

s = min (|7 ^ | , ÿ^,) (2 .20a)
l^lil l^nil

Ax = + s (2.20b)

The sign chosen in equation (2.20b) will depend upon the direction from

which the singularity is approached. If X tends to -<p̂ from values greater

than then the sign will be positive; otherwise the sign will be

negative. Thus although the corrections are finite at X=-#^, they still

exhibit a discontinuity in their values.

The scaling-down can itself introduce discontinuities to the slope of

the corrections. We may write

I x (®Ax) = s Ax + Ax I I (2.21)

It will be apparent from equation (2.17) that dA£/dX is continuous in the

range -(p̂ < X < assuming that (j)̂ > (i=2, .. n). However in this

range the value of ds/dX can be discontinuous as seen from equation (2.19).

In a region where scaling-down is not in effect, s=l and ds/dX=0; when

scaling-down is in effect, then s=p/lAx. i where I Ax. I=max(I Ax,I,.. ® > r I imax ' ' imax ' ' 1 '
|Ax ^|) and ds/dX^O. At the junction of two such regions, ds/dX is therefore

discontinuous. Similarly, a discontinuity occurs at the boundary of two

regions in which scaling-down is in effect but the index imax changes.

Dowson [66] observed that the discontinuities in ds/dX could have a very

30

kmarked effect on the form of F(x + Ax) and developed an improved grid

search to take account of this fact. Some further work done by the

author on this aspect of the multimodal search is discussed in section

4.2.4.

One further point that must be borne in mind when choosing the grid

is that, in general, the eigenvalues of may not all be distinct. In

the event of repeated eigenvalues, then equations (2.18a) - (2.18d) must

be slightly modified by reducing the number of columns of Z, by adding

eigenvectors which correspond to equal eigenvalues, and at the same time

reducing the length of the vector w. The effect of rounding errors must

always be allowed for in testing for equality of eigenvalues. Hence two

eigenvalues were assumed to be equal if 6 . ^ e. where e. is the1 1— 1 (j) (p
maximum likely rounding error. The choice of a suitable value for

is difficult. Since the effect of small values of X on the corrections
• • • Ic •depends upon their effect on the diagonal of the matrix G , as used in

the program was taken, somewhat arbitrarily, as

e = 10 ^ max(10 ^,|g^|,..|G ^|)<p '11' ' nn

The grid was set up as shown in Figure 2.1; the description which

follows needs to be slightly modified if repeated eigenvalues are present.

There are n-1 interior regions, bounded by the discontinuities in Ax at

the points X=-(J)̂ . In addition there are two end-regions, the descent region

in which X>-(j)j and the ascent region in which X<-^^. Each region is

considered in isolation from the others by the multimodal search. The

interior regions are each subdivided into N equal intervals of X by the

grid points X^ (j=l, .. N+1) where

Xj = + (j-1) (<J)£-({)£_j)/N (2 .22)

ro
M

CNJ-e-

32

It should be noted that Xj and X^^^ coincide with the values -<j>£ and

respectively and so the corrections must be evaluated from equations (2.20a)

and (2.20b) in this instance. The end regions use a different grid; for the

descent region this is defined as X^ (i=l, ... M) where

Xj = (2.23a)

%2 = A] + (*2-*i)/N (2.23b)

X. = X. , + 10(X. ,-X. ry) i=3, .. M (2.23c)1 1-1 1-1 1-2

k kThe grid is terminated at the first value X=X^ for which 0.95F(x)<F(_x +A2c)
k . . .<F(x). A similar scheme is used for the ascent region. If there is only

one distinct eigenvalue then equation (2.23b) will be replaced by

+ 10 min (1,|G^j|, .. |C^^) in the program.

Two situations exist when looking for minima of F(X). First, a true

minimum is found if on three successive grid points F^_^ > F^ > F^^^% in this

event the minimum is located precisely using the safeguarded quadratic inter­

polation method described below. Second, a quasi-minimum is assumed to exist

if Fj < F2 or, for interior regions only, F^^^ < F^; in these cases the program
kassumes that dF(x +Ax)/dX > 0 at X=-X or X=X^^, and accepts these as minima.

— — 1 N + 1

Dowson [66] found that occasionally this assumption was erroneous and that in

fact a true minimum did exist between the singularity and the adjacent grid

point.

A safeguarded quadratic interpolation illustrated in Figure 2.2a was used

in preference to a Golden Section or Fibonacci search because it would make full

use of the three values making up the bracket on each minimum found. If the

initial bracket is represented by the points (Xj,F^), (X2»F2) and (X^,F^)''(where

the subscripts now indicate adjacent points in the grid) then we can fit a

33

AF

AX

X*

Figure 2.2a Quadratic Interpolation

F(X)

F*

X* XX X

Figure 2.2b Detection of Nonunimodality

34

quadratic through these points by the expression

AF = A AX+ Ba X^ (2.24)

where AF=F-F2 and AX=X-X2* The constants A and B are readily found by solving

the two linear equations given by the requirement that the curve passes

through the points (Xj,Fj) and (X^,F^). Since AF=0 and AX=0 at (X2>F2^» there

is no constant term in equation (2.24). By differentiating AF with respect to

AX and equating to zero, the minimum of AF must lie at AX=AX* where AX*=-A/2B.

Substituting the values for A and B, and writing AF^=F^-F2 , AX^=X^-X2» we

obtain
AF.AXo^ ” AF_ AX^

 ̂ AFjAX3 - AF^ AXj" (2.25a)

Simple algebraic manipulation of equation (2.25a) gives

AX. AF. AXq(AXg-AX.)
Ai* = - 2T + AF| A X 3 - A F 3 A X , (Z-ZSt)

and also
AXq AF_AX.(AXg-AX.)

Ai* = -1 ^ ^ A F Y M 3- - AF3AI,

Initially, it is known that AXj < 0 and AFj > 0, AF^ > 0 and AX^ > 0; as

will be shown, these relations are maintained throughout the quadratic inter­

polation. Thus, from equations (2.25b) and (2.25c) it follows that

AX AX.
< AX* < - ^ (2.26)

showing that predicted minimum will never be more than halfway from the middle

point to either of the outer points. If AX* is close to zero then the

35

new trial value of X* = A2 + AX* would be too close to X2 to provide useful

additional information. To safeguard against this, AX* was restricted so that

if AXj/10 < AX* < 0 then AX* is set to AXj/10 and if AX3/IO > AX* > 0 then AX*

is set to AX3/IO.

Having obtained X*, the value F* = F(X*) is calculated and the three

points in the bracket adjusted as follows. If X* < X2 then the new bracket is

formed by (X*, X^) if F* ^ F2 and by (Xj,X*, \^) if F* < F2 . Similarly, if

X* > X2 then the bracket is changed to (Xj, X*) if F* ^ F2 and to

(X2, X*, X3) if F* < F2 . In all cases, one of the two outer points is discarded

and the bound on the minimum is thereby reduced. The whole process is

repeated until the bound is acceptably small, as given by ^11^2 ̂ and

X3 - X2 < GjIX2 I. A second convergence criterion was provided such that the

interpolation terminated if F^-F2 ^̂ 2̂^2 ^3 ” ^2 ^2^2 * This was only

used if F2 was greater than the lowest minimum so far found by the multimodal

search on the current descent iteration, on the assumption that the minimum

bracketed is unlikely to be the global minimum. A fail-safe limit of 50

iterations was imposed. Also, a further safeguard to ensure that the bound

steadily decreased was included whereby if, on three successive interpolations,

one outer point remained the same then the next value of X* was taken as midway

between this outer point and the middle point X2 . It should be observed that

if F(X) is in fact not unimodal in the range of the bracket X̂ to X3 , then the

search will still converge to a minimum, although not necessarily the lowest

minimum if there are should be two or more within the bracket. Nonunimodality

is detected when X* < X2 and F* > F^ or when X* > X2 and F* > F3 , as illustrated

in Figure 2.2b; such a situation certainly indicates a maximum, but not

necessarily a further minimum.

36

2.3 The modified Gauss-Newton algorithm

For the second part of his two-part algorithm, Cutteridge used a

modified Gauss-Newton search. The classical Gauss-Newton method takes the
T -1 T . .corrections Ax = -(J J) J ^ at iteration k where ^ is the vector of

functions and J is the Jacobian of both evaluated at If the

number of functions m equals the number of variables n then the corrections

are identical to those of the classical Newton (or Newton-Raphson) iterative

method for solving sets of nonlinear equations. In the latter case, the

corrections have the simpler form of Ax = -J In the modified Gauss-

Newton method, the iteration x^^^ = x^ + a Ax is performed where a is— — ra — m
found from a line search to minimize the function F (a) = FCx^+aAx^); this

modification was used earlier by Hartley [37] to improve the global

convergence of the Gauss-Newton method.

This section describes the particular implementation of the modified

Gauss-Newton search which was developed by the author. The two main aspects

of interest are the line-search used to locate a and the criteria used tom
terminate the Gauss-Newton search.

2.3.1 The search for a m

IF F (a) is expanded by a Taylor series and differentiated it is found
k T k .that dF(a)/da = (g) Ax at a = 0; as before ĝ is the gradient vector of
k T kFCjc) evaluated at x . Now J ^ ^ and from the definition of Ax we have

T T k T .J JE = -J Jàx, We can therefore replace g by -J JAîc and obtain
T TdF(a)/da = -(J JAx) Ax. Some manipulation finally gives for a = 0

~ (a) = - Ax^J^J Ax (2.27)

Equation (2.27) shows that the Gauss-Newton corrections are downhill and
k+1 k . Tthat there will exist an > 0 for which F(x) < F(x) provided that J J

is not singular.

37

TUnfortunately, it is often found in practice that J J does become

singular. Since round-off error will always be present in the

calculations, this situation is manifested by Ax becoming very large with

the corresponding value of becoming very small; ultimately, break­

down will occur of the numerical method for solving linear simultaneous

equations which must be used to compute àx. The program used a method

[65] based on the Grout factorisation of J J; a much more accurate method

is that due to Golub [67] . The author is not convinced that it is

preferable to use a more accurate method. It often happens that the Gauss-
TNewton search will converge even when started from a point at which J J is

almost singular; in such cases, a less accurate method might fail at the
T .outset to compute Ax because J J is effectively singular within the

accuracy of the method. On the other hand, a more common occurrence is
Tfor the Gauss-Newton search to fail to converge and the matrix J J to

progressively get closer to singularity as the search continues; in this

case a more accurate method will simple prolong the onset of failure and

result in wasted computation.

As with the descent algorithm, the change in any value x^ at an

iteration of the Gauss-Newton search was restricted to a set limit of p.

This was accounted for by the line-search used to locate a . The searchm
is illustrated in Figure 2,3 and consisted of a preliminary search to

bracket followed by a quadratic interpolation to locate to greater

accuracy. The preliminary search is confined to the range 0 3 a <

where = p/max(]Ax^|, .. |Ax^|). Starting with a given value a^, values

of a are calculated from the Fibonacci series a , 2a , 3a , 5a , ... witho o o o
a cut-off at a^. The values of F (a) are computed and inspected to see

whether three successive values of a bracket a minimum; note that the value

of F (a) at a = 0 is known and included. There is no significance in the use

of a Fibonacci series other than it is a convenient way of generating values

38

Extend
Range

Initial Range
of search f Search

2a a.a Loo
Trial Points 1

1. Initial Guess
2. Second term in Fibonacci series
3. Largest correction at limit
4. Second largest correction at limit

Figure 2.3 Search for the minimum of F (a)

39

of a at reasonable spacing. Also, the line-search aims at choosing an

a which is close to a ; if this aim is achieved then the bracket on ao m m
is likely to be given by the three equally-spaced a values (o,a^, 2a^)

or (a , 2a , 3a). o o o

Should the cut-off point be reached without obtaining a bracket on

a , then up to n-1 further trial values of a are used. These further m
values correspond to the remaining corrections in turn reaching the limit

of + p. There will be less than n-1 values if any correction is zero or

if there should be identical corrections. In this extended range, aAjc

changes direction in a discontinuous fashion at each trial value of a; as

a result, F (a) is often nonunimodal. Although no special provision was

made to cope with nonunimodality, the extended range often gave a worth­

while reduction in F(a) below its value at a^.

The safeguarded quadratic interpolation algorithm that was used to

locate a^ more accurately, given a bracket, was the same as that described

in section 2.2.2 for the descent algorithm. It should be noted that

sometimes it was found that F (a) decreased up to the maximum possible value

of a = p/min (|AXj |, ... |Ax^|) at which all the modified corrections equal

+ p; no interpolation is needed in this event.

The choice of a^ is based on simple considerations. At the first

iteration of a Gauss-Newton search, is taken as the lower of the two

values 0.4 and 0.4p/lAx. I . The first value will be used when ̂ ' imax'
I Ax. I < p; since a will usually be less than unity, a minimum is ' imax ' m
likely to be bracketed by the values of a of (0, 0.4, 0.8). When the

second value is used, the Fibonacci series will be terminated at the third

term. On the second and subsequent Gauss-Newton iterations, a^ is set to

the lowest of the three values 0.4, 0.4p/lAx. 1 and 2a /3, where a is' imax' m m
the value of a obtained at the previous iteration. Since a does not m • m

4 0

change greatly from one iteration to the next, the third option can,

if used, be expected to bracket the minimum by the points (0, 2a^/3,

4a^/3) .

Having chosen in the way described, if F(ot^) < F(3ç̂) then the

value of is accepted; otherwise is divided by 10, and this division
krepeated if necessary, until either F(a^) < F(x) or the modified

corrections a^Ax become negligibly small. In the latter case, the search
Tfor fails; however, since this situation normally occurs when J J is

nearly singular the Gauss-Newton search itself would fail.

2.3.2 The criteria used to terminate the Gauss-Newton search

The Gauss-Newton search can be terminated in two ways. Either it

converges, and a solution to the problem will have been obtained, or it

fails, in which case control is passed back to the descent algorithm

after the variables have been reset to the values they had on entry to

the Gauss-Newton search. It is crucial that reliable criteria are used

to detect the occurrence of either event. Also, in the case of failure,

it improves the efficiency of the two-part algorithm if the onset of

failure can be predicted in advance. The criteria incorporated into the

program were evolved by numerical experiment; they fall into four

categories.

First, convergence to a minimum of F(x) is assumed when |Ax^|< e

(i=l, .* n), This is a simple-to-apply criterion but depends upon the

value specified for e being attainable within the accuracy of the

computations. A relative, rather than absolute, criterion could be used

such that convergence is assumed when |Ax^|<c|x^| (i=l, .. n); this is to

be preferred if the variables differ greatly in size when a single value

would not be appropriate. Provided that the variables are roughly the

41

same size, the first criterion is adequate. In the tests on the

difficult problem, the variables used in the search were the natural

logarithms of the problem variables; this was to ensure that the

solution values would all be positive. With such a transformation,

when IAx^I < e then the change in the problem variable corresponding

to the change |Ax^| in the search variable will be less than (exp(+e)-l)

times the problem variable; the sign of e will depend upon the sign of

Ax^. If E is small, then the change will be approximately +e times the

problem variable and so the convergence criterion is, in this case, a

relative one.

The second category consists of three criteria to determine immediate

failure. The Gauss-Newton search is entered prior to each iteration of

the descent algorithm. If less than N^ descent iterations have been

performed, if the objective function is greater than F^, or if the Gauss-

Newton correction of maximum magnitude |Ax^^^^| exceeds A^, then immediate

failure is assumed and control passes back to the descent algorithm. The

first two criteria are consistent with the philosophy of two-part algorithms

in that several iterations are performed in the first part before the

second part is entered. Since it cannot be known in advance when the

descent part will be sufficiently close to a solution for the Gauss-Newton

search to converge, these two criteria were not used for the tests; they

were left in the program as a means whereby a user could ensure that a

minimum amount of progress is made in the descent algorithm if he so

desired. The third of these criteria was not as useful as first thought.

Trials showed that convergence to a solution was attained in some cases

where the value on entry was as high as 10^. Consequently, this

criterion too was not used in the tests, although it was retained as an

option in the program. The attitude adopted by the author was that the

4 2

more times the Gauss-Newton search is attempted, the more likely it is

that a solution of a difficult problem will be obtained; if the problem

is an easy one, then an early attempt will be successful anyway and so

no computation will be wasted.

The third category consists of two criteria for forced failure. If
T . .J J is singular, as evinced by a failure of the numerical method of

solution for the corrections, or if the search on a cannot find a suchm o
that F(a) < F(x) then forced failure has occurred. The second mode of o —

Tfailure is caused by the matrix J J approaching singularity. The effect

of round-off in the calculations determines which mode of failure occurs

first.

The fourth and final category contains three criteria for the

prediction of ultimate failure. The first of these is a straightforward

limit Ng on the number of iterations allowed in a single Gauss-Newton

search. The other two criteria are prediction criteria in a truer sense;

both were used by Cutteridge in previous algorithms. If I^^imax'

increases to 100 times, or more, its value on entry, or if I Ax. I' * y > I imax '
increases on ten successive iterations and the increase gets larger at

each successive iteration, then it is assumed that J J will eventually

become singular and that the search will fail. Note that the second of

these two criteria indicates an acceleration in the rate of increase of

 ̂̂ ^imax I ‘

2.4 The restart facility

Using the descent algorithm and modified Gauss-Newton algorithm

described in the preceding sections, the two-part program obtained solutions

to Skwirzynski's problem from a wide range of starting values. However,

the program was not completely reliable and in some cases reached a local

4 3

minimum of F(x) in the descent part without converging to the global

minimum of zero in the Gauss-Newton part. The author and Cutteridge

jointly came to the conclusion that a facility for the automatic restart

of the descent algorithm at a different starting value of 3̂ would improve

the reliability. The restart approach has been used by other workers,

see for example Dixon [48] ; commonly the new starting value is generated

in some random manner. The restart facility developed by Cutteridge and

the author does not formally use a random process, although it still has

an element of randomness to it.

It will be recalled that the descent algorithm at each iteration,

chooses the value of X corresponding to the global minimum of F(X). As

a by-product of the multimodal search, one or more other values of X are

normally found corresponding to local minima which are greater than the

global minimum. The corrections obtaining at these local minima can often

be far removed in direction and magnitude from those at the global minimum.

The new restart facility uses only those local minima which, if used in

place of the global minimum would still give a reduction, albeit smaller,

in the objective function. By restarting from the value k corresponding

to a local minimum, the subsequent path followed by the descent algorithm

will diverge from the originally-obtained path.

This facility is implemented in the program as follows. On the original

descent path, a list of potential restarts is built up by adding to the

list at each descent iteration the values of x corresponding to local

minima as just discussed. The list is kept in ascending order of descent

iteration and, for the local minima at a given iteration, in ascending

order of size of objective function. Should the algorithm fail, as

evinced by F(x) changing by less than 1% on three successive descent

iterations, then it is restarted from the first point on the list. Further .

restarts are made as necessary until either convergence is achieved or else

the list is exhausted.

4 4

2.5 The final form of the algorithm

Before proceeding to the next section, which discusses the results

obtained with the program, it is worthwhile to summarise the main steps

of the two-part algorithm, as in its final form. These steps are:

Step 1 Initial entry; set k=0 and x° to a given estimate

of the solution variables x*

Step 2 Calculate the functions Jacobian J and the
• • • Icsecond derivatives at the current point x . Form

Ic Icthe Hessian G and gradient vector g of F(x).

Step 3 Enter the Gauss-Newton search. If any of the

immediate ejection criteria are satisfied, then
• • s Iccontinue from step 10; otherwise, store x =x ,

k^=k and continue with the Gauss-Newton search at

step 4.

T . .Step 4 If J J is singular, continue from step 9; otherwise
T — I Tcompute the Gauss-Newton corrections Ax=-(J J) J f

Step 5 If max(|AXj|, ... |Ax^|)<e then convergence to a
• • Ic ♦solution is assumed, set x* = x and terminate the

optimization.

Step 6 If any of the predicted failure criteria are satisfied,

continue from Step 9.

kStep 7 Find the value of a to minimize F(x +aAx), allowing

for the effect of the limit p on the corrections Ax.
k kIf F(x + a Ax) t F(x) then continue from Step 9.— m — —

45

Step 8 Set = x^ + a Ax and k=k+l. Compute f and
— — m — —

Ic •J at X and continue the Gauss-Newton search at

Step 4.

Step 9 Failure exit from the Gauss-Newton search; set
1 - s , k s k=k and x =x .

Step 10 Perform a single iteration of the descent algorithm.

Calculating the corrections by Ax = -(G^+XI) if

necessary scaled down to ensure that no correction

IAx^I exceeds the step limit p, use the multimodal
• • • Icsearch on X to find the global minimum of F(x +Ax).

If the descent algorithm has not yet been restarted, add

to the list of restart points using any suitable

local minima found by the multimodal search.

k+1 kStep 11 Set X = 3C + Ax where àx corresponds to the global

minimum found at Step 9.

Step 12 If progress in the descent algorithm is tailing off,

then either restart the algorithm and continue from

Step 2 or, if no more restarts are available,

terminate the optimization. Otherwise, if the descent

algorithm is still making good progress, continue from
kStep 2 with the current values for x ,

The program has default values for the various parameters it employs;

these can, if desired, be changed by the user. To date, the only parameter

which it has been necessary to alter is the convergence parameter £, which

has a default of 10 The step limit p is set to 0.5 for both the descent

and Gauss-Newton corrections. In the multimodal search, the number of

4 6

intervals N used to subdivide the interior ranges is set to 3; this value

can be increased, as Dowson [66] did, to increase the probability that

the multimodal search will locate all the minima. The convergence

criteria in the quadratic interpolation use the values Ej and 02* For the
“ 3 -2descent algorithm, these are set to 10 and 10 respectively, for the

-2Gauss-Newton algorithm they are set to 10 and 0. Note that the effect

of setting either parameter to zero is to ensure that the test for

convergence using that parameter will not be operative

2.6 Numerical experience with the algorithm

Originally the algorithm was developed as an ALGOL 60 program on an

ICL (Elliot) 4130 computer. The final version was later translated into

FORTRAN IV on the same computer and has, more recently, been transferred

to an IBM 360/44. Unless stated to the contrary, the results given in

this section were obtained using the IBM 360/44 version. Note that double

precision floating-point arithmetic was employed; for this the IBM uses a

56-bit mantissa which enables real numbers to be stored to approximately

14 significant decimal digits of accuracy.

This section first discusses the performance of the program on the

difficult test problem. Then a modified form of the descent algorithm is

discussed which does not require second derivatives. The effect of using

numerical approximations of the derivatives rather than analytical

expressions is described. Some statistics are given which summarise the

behaviour of the important internal features of the two-part algorithm.

Lastly, some comparisons are made with other algorithms, using the difficult

test problem together with a further eight test problems.

47

2.6.1 Performance on the difficult test problem

The difficult test problem due to Skwirzynski was used as the

touchstone by which to gauge the reliability achieved by the two-part

algorithm. Details of this problem are given in the Appendix, where it

is referred to as Problem 1. As can be seen, the problem is one of eight

nonlinear equations involving eight variables and has an exact solution.

There is a pronounced nonlinearity in the equations due to the presence

of exponential terms. With some algebraic manipulation the problem could

be simplified so that fewer variables are present; this was not done since

it was desired to preserve the difficulty of the problem.

The equations arise from the use of the Ebers-Moll[68] model of

transistor junctions and, from physical considerations, the variables

cannot be negative. The problem is thus one of minimizing a sum of squares

subject to non-negativity constraints on the variables. However, it can

be transformed to an unconstrained problem by using new search variables

= log^ x^; this technique is discussed further in [9, p.82]. It will

be seen that the original variables x will always be non-negative whatever

the values adopted by x ’ during the optimization.

From the programming viewpoint, the author believes that all such

transformations should always be kept separate from both the optimization

algorithm and the subroutine, supplied by the user, to compute function

values and derivatives. Earlier programs used by Cutteridge had the

logarithmic transformation embedded in the relevant places in the algorithm;

the general usefulness of the program was thereby reduced. The present

program used a FORTRAN subroutine to act as an interface between the

algorithm and user-supplied subroutine. The optimization algorithm calls

4 8

this interface subroutine as necessary and supplies it with the current

values of the search variables x', together with an integer to specify

whether the function values only are required or whether first and/or

second derivatives are required as well. The interface subroutine then

carries out the reverse transformation x^ = exp(xL) to obtain the

values of the problem variables corresponding to the current search

variables. Then the user-supplied subroutine is called and supplied with

the values of x with which to calculate the required function and

derivative information. The interface subroutine then, as appropriate,

transforms the derivative information to apply to the variables x ’, before

returning the function and derivative values to the optimization algorithm.

This approach may appear cumbersome; however it is relatively easy to

incorporate different transformations by simply changing the interface

routine. Other facilities, such as checking of the consistency of the

function and derivative calculations in the user-supplied routine or the

option to use numeric estimates of the derivatives, can also be included

as user-options in the interface routine. Note the modular structure

of FORTRAN IV is suited to the programming of optimization algorithms,

since only the user-supplied subroutine need be compiled at run-time

provided that the subroutines making up the algorithm are kept in compiled

form on disk and loaded with the user-subroutine.

It should be noted that for the logarithmic transformation the

derivatives with respect to the variables x'^ are calculated from the

expressions

= Ü Ü3x' . ^i 3x.1 1

49

^ , f k
9x'^3x'j 3x_3Xj 3x^

where 6. • = 0 if i j and 6. . = 1. ij 11

Using the standard version of the program summarised in section 2.5,

the results shown in Table 2.1 were obtained. Fifteen different starting

values were tried; for each starting value the initial estimate x^° of

each variable was kept the same for each variable. It will be seen that

values of x^° in the range 0.1 to 10 were used. At the top end of this

range, the function values become very large and although solutions were

obtained with x^° = 11 and x^° = 12 the algorithm breaks down at higher

values of x^° because of numerical overflows. However, such high values

would not be realistic starting values anyway. At the bottom end,

solutions were obtained for values of x^° less than 0.1 but only with

difficulty and the use of many restarts. In Table 2.1, the number of

descent iterations shown is the number of steps taken by the descent algorithm

from the initial guess on x to the point at which the Gauss-Newton search

converges; if there are any restarts, then only the descent path which

leads to convergence is considered.

The computational effort n^ is defined by n^=n^+ n x n^+nfn+l) x n^^/2

where n^, n^ and n^^ are the total numbers of function, first-derivative

and second-derivative evaluations respectively. These figures exclude any

failed descent paths. This definition tacitly assumes that the same

computational effort is required to calculate the value of a function as

is required for a derivative. Patently this is not so; for example, common

expressions can be stored from a function evaluation for use in a subsequent

derivative calculation; also some derivatives may be constant or zero.

Murray [25, p.70] uses a measure involving processor time; as Himmelblau

50

*4-1O CO ■M
<U td.
'B ^a CO
B 0) a Pi

C N I O O — o o o o o o o o

3o•H +j
cd o4-1 IH ;) «4-1
ru

a (u
» «
w &cd œ Ci•H <4-1 pL, O

co COV+-I 4-1 cO o0) •H
U g 4J
<S) 1 cd
JP CO MCO 0)s 4-4g cd Mo

CO oQ> 4J cJ-l oCd u 4Js 0) 3CT* «4-4 04CO CO
c 1«4-4 cd COO V4 (04-1 scdCi odo o

«4-1 COO 4-) cc o
U (U •H<U o 4-4CO cd0) uA 04g 4JH

g CO0)C/î ucd1-4 SO Cd D*•H W •4J pti •H «4-1C O

0)4J

w

CM on CM CM CM CO vO o GO o liO _lO vO CM o VO in m vO <d" m r- vO o CM00 o CM CM O CM 00 CM o vO CM<r -d" CM CO CM CM CM m CO Mf 00 vO as

vO CO m vO vO -d" vO vO <r CM mCM1 1 CM1 1 CM1 1 CM1 CM1 CM1 CM1 1 1 1 CM1 1
o o o o o o o o o o o o o o o

00 in vO 00 as O CT» CO O O CM 00
m crv CM CM — CM m CM so

00 \0 fO CM O O O Cs| ' CO fO CN 1-̂ oCM CTiCM 0> CMo\ O O vO vO as

CM CM CM CM CM —— CM CM — m-, —1
o o o o o o o o O o o O o o o
as Os CJV as r~- as CO O 00 00 vO
— vO — 1 •—< CO vO CO <r vO CO

CO vo sD \0 in m-' GT\ oCM m vo CM ^ — I CM

in >d- Mt CO CO m m vO 00 crv sf vD
o o o o o o o o o o o O o O' o

in Mf CM CO CO 00 CM m 00 CO CO v£>
vO CO CO CM m CM as m

CO in r». as O O o O O o o O o o
O o o O o CM CO m vO 00 as o

CO(U>•H4J
>•HV4oo
a•H

I

<us
uH

§rHrOo
uP4
C4o

sCO

CM
<u1—4
■§H

51

[6] points out this can be suspect since there are many imponderables

e.g. compiler efficiency and multiprogramming which can markedly effect

such measures. Bard [15] observed that computational effort should also

take into account other major calculations such as the solution of

linear equations and eigenvalue analysis. Wolfe [46] introduced an index

of computational efficiency log^(rp)/n^ where r^ is the ratio of initial

to final sum of squares; when the final sum of squares is zero this index

is infinite and when there is no reduction the index is zero. Many sum of

squares problems do not have a zero minimum; consequently this index could

class a search, which did not reach a solution but go some way towards

doing so with modest computation, as being more efficient than a search

which reached the solution but with a greater amount of computation.

It will be observed that a solution was obtained from all fifteen

starting-points and that only in two cases were restarts necessary. Thus

it can be justifiably claimed that the results show that the original aim

of developing a reliable algorithm with good global convergence properties

was achieved. Note that by global convergence is meant the ability to

reach a single solution from a wide range of starting points rather than

the ability to locate the global minimum of a function with several minima.

2.6.2 A modification which does not need second derivatives

In view of the parallel which was drawn between the Levenberg-Marquardt

algorithm and the descent algorithm, it was decided to investigate the effect

of using equation (2.6) in place of equation (2.4) when evaluating the

descent corrections. This is equivalent to replacing the Hessian in

equation (2.4) by its Gauss-Newton approximation 2J J. The major benefit

is that second derivatives are thereby no longer needed.

5 2

One point of note arose in connection with the logarithmic trans­

formation of the variables. For the untransformed variables the elements

of the approximate Hessian are

-2 m 9f, 3f
= Z 2 ^ (2.28)3x.9x. 1 , 9x. 9x.1 J k= 1 1 J

For the transformed variables, the Hessian becomes

2 m 3f 3f m 3f 3f
& W : = 2 3P -. 3?^. = 3ÏÏ7 3 ^ (2 .29)1 J k= 1 1 J k= 1 1 J

However, one could start from the exact relation

é r ? ? T = iSsïïT + «ij =̂ i f . (2.30)

where 5^j=0 if i/j and 5^^=1. If the first term on the right-hand side

of Aquation (2.30) is replaced by its approximation as given by equation
2(2.28) then a different expression for 9 F/9x ’^9x V from that given by

equation (2.29) is obtained. Although this alternative form could have

some merit, the author used the form of equation (2.29) since this is

consistent with the assumptions of the Gauss-Newton approximation.

The results for Problem 1 using the approximate Hessian are shown in

Table 2.2. Comparison with the earlier results using the exact Hessian

shows that the approximate method results in an overall increase in

computational effort and a greater use of the restart facility. However,

the modified algorithm is still very reliable and has the advantage of not

requiring second derivatives.

53

M-tO W4J
0)
a CO3 <y% P2l

m m CM

4-1 m 0 C4-4
ru

COa 0) 3 MCO q)
w g-CÜ CO
•H «4-1 k O

«4-1
Co4-1 COO 3 C04 Ou % •H0) 1 4-1,o CO (0CO >-l=1 3 0)iz: cO 4-1Ü M

CO O04 4J CU oCd U 4-1:3 04 >Cr «4-4 04CO COc 1«4-4 cd COO L4 CO4-1 a8 cdPJ C OCO O

«4-4 COO 4-1 CC oM 0)•H04 Ü 4-1.Û CO Cd8 04 4-4s P 0);a 4J4-4
g CO04CO UCd1—4 3Cd C7" O•f-lCO4J•H «4-4 PC OM

1—4 0)Cd 4J•1-4 Cd4-1 8 o•r4•1-4a 4-1M CO

o CM O CM •d" -d" CM CO 1̂ CO OV •d" uoro -d" CO vO O as CO 4̂ <• 00 r- CM CM1̂ CM VO CM ~d- uo uo m CM -d" CTv CM -d" CMm CO CM CO COCO -d" CM CM vD r~-

CO 'O vO CO uo CO vO uo CO CM ov 00 vO 00
I 1 CM1 1 1 CM1 1 CM1 CM1 1 CM1 CM

o o o o o o o o o
vD CO CO -d" 00 -d" -d" CM -O' uo VÛ •d" CTi uo

rO mJ- — CO CO 00 as — CO — CM CO — CM

o o 00 m r~.— o\ t—t —— #— 00 CO 'Zl-vO — — — CO mCM lO lO 'd‘ 00m

— CM CM CM CM CM 1—• —• m-. —
o o o o O o o o o o O O o o

00 CTi o\ C3V as CTi as CO -d" 00 o vO —
uo — — — — — •d- CTv 00 -d- CO "d- P- uo

CMCM m CO CO vO CM 00 as CO

uo ■d" "d" -d" CO CO uo UO vO 1̂ 00 cr>
-d- vO

o o o o o o o o o o o o o o o
— uo •d" CM CO CO 00 CM uo 00 CO CO vO

vO CO CO CM uo CM o \ r-. m

CO uo OV O o O O O o o o o o
O o o o O CM CO -d- uo vO 00 as o

CO0)
•S4JCO>•H
uCUP
Ü•H4->PorHCj

§•HCOCO04K
044J

12

IrH
■gV4P
V4
o«4-1
CO 4-1 T—I3CO
(S

CM
CM
04
I— I

gH

W

54

2.6.3 The use of numerical estimates of the derivatives

A number of different formulae could be used to estimate the

derivatives numerically; Gill and Murray [31] discuss this subject more

fully. In the present program, a forward difference formula was tried

as follows. Let it be desired to find an estimate of 9h(x)/9x. for the
— 1

k . . k .function h(x) at 3(=x . First h(x) is evaluated at x , then a displacement

vector ÔX is defined where ôx.^0 and 6x .=0 (i^j) and h(x) evaluated at
— 1 J —

k . . .X + 6x. The required estimate is then

(x^) - h(x^ + 6x) - h(x^)
° 1 — — — —

6x^

To estimate the Jacobian matrix will require n evaluations of
kf(x + ^) , one for each variable x., in addition to the evaluation of
Ic • • •^(x). This latter quantity will normally be required anyway by the

algorithm at the time the Jacobian is required. Curtis, Powell and Reid

[69] show how the computation can be reduced when the Jacobian is known

to be sparse.

A similar process is used for estimation of the second derivative

terms, provided that analytic first derivatives are available (it is not

possible to estimate second derivatives accurately from function values

only). Note that since the matrix of second derivatives for a given

function f is symmetric, the truncation error in the approximation can

be reduced by averaging two independent estimates using the formula

9^f (x^) _ , ^ (x^+fix^) - (x^) ^ 2 Ê (x^+fix^)- (x^)
9x.9x. 9x. 9x. 9x. ^j

1 J 1 __________ 1 J _________________

where ôx j and 6x^^ are the only non-zero components of 6x^ and 6x^.

55

The major difficulty is choosing a suitably small value for the

nonzero component of the displacement vectors. Gill and Murray [31]

recommend that a suitable choice is 2 where t is the number of bits

in the mantissa, provided that the components of x are of order unity

and the function is well-behaved. Intuitively, this strikes a balance

between reducing truncation error without increasing roundoff error.

In the two-part program, ôx^ was taken as 10 ̂ (1 + |x^|) following

Gill and Murray's reasoning but also allowing for the possibility of

large values of |x^|. Two sets of results were obtained. The first is

shown in Table 2.3 and corresponds to the use of numerical estimates of

the second derivatives and should be compared with Table 2.1. The second

set in Table 2.4 was obtained with numerical estimates of the first

derivatives and using the approximation of the Hessian in the descent

algorithm; it should be compared with Table 2.2. It will be seen that

there is little difference in the results obtained using the exact Hessian,

with and without numerical second derivatives. However, there are major

differences between the two cases using the approximate Hessian. Logically

this could be expected. If numeric estimates of the second derivatives

are used only the descent algorithm is affected; the effect may be slight
k . . Tif G is dominated by the term 2J J. On the other hand, when the modified

descent algorithm is used in conjunction with numeric estimates of the

first derivatives, both the descent algorithm and the Gauss-Newton
Talgorithm are affected since they both depend upon the value 2J J. The

Teffect of errors in the numeric estimates will be more marked if 2J J is

nearly singular; this explains why the differences between Tables 2.2

and 2.4 are more marked for low starting-values of x^° (it was found that

2J^J is singular for x^° = 1).

56

o to
4J

U M
(U qj rû 4->s to 3 <u g Pi

CM O —

qjCO
•H 4J
P p _ ■ o en CM vO VO _ 1 00 CM CM m o-
qJ O r>. CM o VO m vO <)- m f'- CM vO o CM
P «4-1 O o CM CM o CM 00 CM O VO CM
d <P
P h Piq

m 'd" CM n CM CM CM m en %Z 00 vO OS

OO

C
•HPu O

04 m <r en m vO vO <)- <r -̂4 VO Mf <- CM 00
P CM CM CM CM CM CM CM
qJ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
d o o O o o o O oo*

en 00 CM m 00 o o en CM 00 o m

«4-1 — — Os CM CM r- en <r en CM m - - 1^ — m

0o
«W 4Jg
S f.Q

(0 C O
'H
4-1
qJ

to J-l
to 0)
2 ^ qJ MO

vO
CM

O O O
CM .—' '—' en en

CM — — i
o
CM

os
CM CM O O

cr> cjv vo vo
os

to
04•S4J
qJ•SM
C4A
CO
U
04en
o

• H
V4
04

%

to o04 4-> d
u o qJ M -Pd 0) Dcr* <4-1 04to to 13d I <4-1 qJ to0 M to

P d1en o
<w to O p d d o
p 04 *H
04 U P

.Q (0 qJ

I S SS

CM CM CM CM — CM CM CM — t — — •
® O O ® ® ® ® o O o o ® ® o ®

Os C3V as OS Ov en o 00 _ 00 vO vO
— —« — > <—« vO — i— — en VO en vO en

00 vO vO VD LT) — CTi o
CM

m VD CM
<— • —— CM

0)
dPH

IrH.oo
p
CM
P
tS
top

r—4dto
tS

en

to
045

-3 g.
■iH enp
■H tp d O

i-H 04
qJ PJ

P
toPd

PM
to -d" en en lO lO vO r~- 00 OS

>d- vO

o o o o o o o- o o o ® o o o o
m- rs lO 'd‘ CM en en 00 CM to 00 en en VO

vO en en CM to CM os to

en lO 1^ CTv o o o o O O o O O o
o o o o o — CM en -d" to vO 00 CJv o

en
CM

041—4gH

57

o top M P 0) cd o u 8 to
B tu 2 M

CM en

Ipcddo•p pp ptd op tpd tpd. w8oo

to0)pen cddip trcd COd•p tp
PC4 o

d otp p
° g
S frQ to
I 3 Sa « M

to o
(U p d
P o
cd P pd 0) Der tp 0)
to tod ?tp cd too P top d8 cdd d oen o

CTv O as CJV en un CM un CM en en 00 vO 00
OV in en 00 vO <d" 00 00 CM CM

as en en un en CM en o- o
en CM en en en 'd- CM CM CM <r en en

CM en-d" •—• en1—I CM — < en m in o<r 00o

CM CM CM CM CM CM — — — -- *—* — — • — —
o O O O O O o o o o o o o o o

en en en en en 00 O en 'd- r-̂ 00 O vD —
— i — — — 1 — 00 en en 00 en un

toeu
>•ppcd>•HP(U

00 •d- vO CM O" un un en en en 00 ~d" r'. 00 UP

1 1 T CM1 T CM1 CM1 T CM1 CM1 1 T CM1 CM1 1 pen
o o o o o o O o o O o o P

•pCM vO un o 00 en vD vd en en CM P4
CM -d- CM <d" O" un 'd' vD en — CM O

g•Htoto
CD

<DPI
X0 P01

tp to O P d d op W'P d) u P .û to cd
I S S
^ ü

vO un en en LO vo en 00 as en
gPPh
POtp
top

en
ip cdd un •d- -d’ •d- en en un un vO 00 en •d- uO
cd o* o , o o o o o o o o o o o o o o•p CO X <-p r>. un CM en en 00 CM un 00 en en vO•p tp pu CMdtp o vO en en CM un CM en un

(U

r-l (Ucd p •p cd
^ § •p »Pd p H to M

— en un en o o O o O O o O O O
o o o o o CM en 'd- un vd 00 en o

gH

58

2.6.4 Some statistics concerning the program

During the early stages of development, various statistics were

output by the program to monitor its performance. These statistics were

not included in the final FORTRAN version. However, some of the more

interesting statistics produced using the ALGOL version with the exact

Hessian for Problem 1 will now be given. The values quoted are averaged

over the fifteen starting-points.

In the descent algorithm, on average 9-10 minima were found at each

application of the multimodal search; the largest and smallest numbers of

minima found were 14 and 8 respectively. Of the minima, about 30% were

quasi-minima. If the grid search is examined, it will be apparent that

there must always be at least one minimum or quasi-minimum for each of

the n-1 interior ranges. Also, there must be a minimum in the descent region,

Thus there will always be an absolute lower bound of n minima per multimodal

search, which agrees with the value of 8 just quoted. Taking account of

both the grid search and the quadratic interpolation, approximately 12

evaluations of F(X) were required per minimum found. If a Golden Section

search had been used, statistics showed that to get the same accuracy as

obtained by the quadratic interpolation a further 4 evaluations of F(X)

per minimum would be required. In about 5% of the quadratic interpolations,

nonunimodality of F(X) was detected.

In the Gauss-Newton algorithm, on average 25 iterations per search

(including failed searches) were performed. The line-search at each

iteration required on average 10 evaluations of F (a); of these 3 evaluations

were needed to bracket the minimum. This latter figure indicates the

suitability of the choice of since at least 2 evaluations of F (a), in

addition to the known value at a=0, will always be necessary. Roughly one

59

third of the quadratic interpolations detected nonunimodality in F (a);

this high figure could be expected since no special provision for

nonunimodality is made in the bracketing process, as is done for the

descent algorithm. Of all the Gauss-Newton searches, 7% resulted in
Tconvergence; 2% failed because the matrix J J became singular; 1% failed

because of failure in the search on F(a); 3% because the upper limit of

200 iterations was reached; 52% because the rate of increase of the

maximum magnitude correction increased 10 times; and 35% because this same

correction became 100 times greater than its value on entry to the search.

These last two figures show the benefits of using predicted failure criteria;

of those searches that converged, the largest number of increases in the

rate of increase of the MMC was 4 and the greatest increase in its value

was 22 times its value on entry; the corresponding figures used of 10 and 100

thus have a good margin for error.

2,6.5 Comparisons with other algorithms

In order to assess the worth of the two-part algorithm in relation to

existing algorithms, some comparative tests were carried out against three

other algorithms in common use. The chosen algorithms were the methods of

Powell [44], Fletcher [4l] and Gill, Murray and Picken [27], as implemented

in the widely-distributed NAG [70] Library. The first two methods are

hybrid algorithms specifically for sum of squares objective functions;

Powell's method uses function values only and computes numerical estimates

of the first derivatives while Fletcher's method requires that first

derivatives be supplied. The third method, that of Gill et ai, is an

implementation of Newton's method for the solution of a general objective

function; it requires both the first and second derivatives of the function,

60

To make the comparisons, Problem 1 was used together with an

additional eight test problems, given as Problems 2-9 in the Appendix.

These additional problems were cited by Meyer and Roth [42] as being

good tests of the performance of a sum of squares minimization algorithm.

Nash [43] has recently published results obtained with Meyer and Roth’s

problems using his own implementation of Marquardt’s method.

Before progressing to describe the results of the comparisons it is

necessary to say a little about the way in which the test runs were

performed. In the case of Problem 1, a logarithmic transformation of the

variables was used, as before, to ensure that the non-negativity constraints

were satisfied; for the remaining eight problems, which were not subject to

such constraints, a linear transformation to variables x'. = x./s. was used.I l l
The value of s. for each variable is set at the start so that x'.=l when 1 1

x.=x.°; this requires that s.=x.°. Provision is made by the transformation 1 1 ^ 1 1
for the case of x^°=l; in this event, s^ is set to 1 and the initial value

oc’ to 0. Both transformations ensure that the same step limit p can be

used for all the variables in the two-part algorithm. The maximum change

of j-p in any transformed variable x'^ at one iteration of the optimization

will produce a corresponding change in value x. of the problem variable of

(exp (+p)-l) x^ or +p s^, for the logarithmic and linear transformations

respectively. The choice of p=0.5 will thus be a reasonable one. A

similar argument applies to the methods of Powell and Gill et al which both

require that an upper limit on the length of any correction Ax be specified.

The value of 0.5 was used for both these algorithms for the tests; in the

absence of the transformations, different step limits would have been

required for each problem according to the magnitude of the problem variables

Powell's method requires the specification of a step size for use in

61

-7the numerical estimation of first derivatives. The value of 10 was

used, in line with the comments in section 2.3.3. Fletcher's method uses
T — I Tthe Marquardt-type correction vector Ax = -(J J + XW) J ^ where W is a

specified matrix; two separate tests were made one with W=I, the unit
Tdiagonal matrix, and the other with W=J J. No changes were made to the

two-part algorithm other than to relax the convergence criterion for

Problems 2-9 by increasing e from its default of 10 ^ to the less stringent
-5value of 10

The performance of all four algorithms on Problem 1 is summarised

in Table 2.5. Of the two entries shown for the two-part algorithm, the

first refers to the use of the true Hessian and the second to the use of
Tthe approximation 2J Jin place of the Hessian (they therefore correspond

to Tables 2.1 and 2.2 respectively). For Fletcher's algorithm, the first
Tentry is for W=I and the second for W=J J. Table 2.5 is intended to compare

the abilities of the four algorithms to solve a difficult problem; in all

but one instance, the NAG algorithms fail to dc so. The manner in which

each test ended is indicated by the symbols G for the global minimum

(which is zero and corresponds to the solution), L for a local minimum

and D for a dead-end in which the variables are wildly-removed from the

solution and no further progress can be made. In the case of x^°=3 when

Powell's algorithm reached the global solution, the required computational

effort n^ was 192. To check on the effect of the step limit on the

performance of the methods of Powell and Gill et al, a further survey was

made using values for this step limit of 0.1, 0.2, 0.5, 1.0, 2.0, 5.0

and 10.0. The results indicated that no significant improvement in

reliability from that shown could have been achieved by changing the step

limit for these two methods. It should be noted that all algorithms could

easily find the solution to Problem 1 containing negative x^ values when

6 2

Starting
Value Two-part

algorithm
Powell
algorithm

Fletcher
algorithm

Gill, Murray
and Picken
algorithm

0.1

0.3
0.5
0.7
0.9
1.0

2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

G*/G*
G/G*
G/G
G*/G
G/G*
G/G
G/G*
G/G
G/G
G/G
G/G
G/G
G/G
G/G
G/G

L
L
L
L
L
L
L
G
L
L
L
L
L
L
L

D/D
D/D
D/D
D/D
D/D
D/D
D/D
D/D
D/D
D/D
D/D
D/D
D/D
D/D
D/D

G Global Minimum Located (solution)

L Local Minimum Located

D Dead-end from which no further

progress can be made

* Denotes use of restart facility

Table 2.5 Comparisons of the four algorithms using Problem 1

63

the logarithmic transformation was removed. The results obtained with

Problems 2-9 are shown in Table 2.6. The figures given are the values

of computational effort n^ defined in Section 2.6.1. The pairs of figures,

given for both the two-part algorithm and the Fletcher algorithm, have the

same significance as for Table 2.5. Problems 2-9 are much less difficult

than Problem 1; however note that Powell's method failed on Problem 7

and the method of Gill et al failed on Problems 7 and 8 .

It will be apparent from these results that the two-part algorithm

is superior in reliability to the other three algorithms. Even if the

restart feature were to be removed, since it could be argued that this

gives the two-part algorithm an unfair advantage, then the success rate

would still be 80% on Problem 1 as compared with, at best, 7% for the other

three algorithms on the same problem. This reliability is not achieved at

too great a cost in efficiency since, for Problems 2-9 the two-^art

algorithm requires a similar amount of computational effort to the other

algorithms. It should be noted that, for Problems 2, 3, 4, 5 and 9 and the

Gauss-Newton search in the two-part algorithm converged from the initial

starting point. Also, similar results were obtained when numerical

approximations were used for the derivatives by the two-part algorithm.

Of the other three algorithms, Powell's method performed best overall

in terms of reliability and efficiency. It consistently located the local

minimum of Problem 1 apart from the one instance when it found the global

minimum and so it could justifiably be claimed that it always achieved

its aim of minimizing the sum of squares. Fletcher's method is very

efficient when it is successful but it performed poorly on Problem 1. The

comparison is slightly unfair to the method of Gill et al in that it is

designed for a general objective function; on the other hand it does have

the benefit of an exact Hessian matrix of the objective function.

64

Problem Two-part algorithm Powell
algorithm

Fletcher
algorithm

Gill, Murray
ana Picken
algorithm

59/59

162/162

]66/166

88/88

405/294

250/244

233/227

76/76

31

29

25

30

37

failed

282

65

30/49

46/46

49/50

25/217

29/247

276/269

267/255

243/569

216

147

147

110

220

failed

failed

2168

N.B. The figures given for each algorithm are

of the computational effort n

Table 2.6 Comparisons of the four algorithms using Problems 2-9

65

3. A HYBRID ALGORITHM FOR SOLVING

SETS OF NONLINEAR EQUATIONS

This chapter describes work carried out by the author with the aim

of developing a new hybrid algorithm for solving sets of nonlinear

equations involving n variables. As shown in the previous chapter,

considerable success was achieved by using a two-part algorithm to solve

such problems. The major source of inefficiency in the two-part

algorithm is wasted computational effort expended when the second part

is entered prematurely. To avoid this, the author sought a new method

which would, in a single algorithm, combine the robustness of a descent

algorithm with the fast rate of convergence of Newton’s method for

solving nonlinear equations. The method which was developed was later

extended to handle overdetermined systems of equations, for which case

the optimal solution defined by the new method is that which minimizes

the sum of the absolute values of the residuals, rather than the sum of

squares.

3.1 Newton's method for solving nonlinear equations

In the early stages of development of the two-part algorithm, the

author was concerned with solving sets of nonlinear equations. Thus the

Newton (or Newton-Raphson) corrections were originally used in the

second part of the algorithm. At a later stage the Newton corrections were

replaced by the more general Gauss-Newton corrections; this final form

66

of the two-part algorithm is the one described in the previous chapter.

However, for this historical reason, the original ideas of the author

for the hybrid algorithm developed from a consideration of the causes

of the breakdown of the Newton method, which will now be described.

Given the set of n nonlinear equations with residuals f
T(i=l, ... n) for the values of the variables x = (Xj, ... x^), it is

required to find the value 2c* at which f_(x*)=0. Suppose that at

iteration k the current estimate of x* is x^. The functions ^(x) at the
• Ic •point + Ajc are approximately given by a Taylor series expansion as

f_(x^ + Ax) = ^(x^) + J Ax (3.1)

where J is the Jacobian matrix J.. = 9f./3x. evaluated at x^. Thisij 1 J -
expansion ignores terms involving second and higher-order derivatives

of JE (]() . On the basis of this linear approximation, the Newton

corrections Ax are obtained by setting the left-hand side of equation

(3.1) to zero to give

Ax = -J * f(x^) (3.2)

Since this prediction is not, in general, exact it is normally necessary

to set x^ ̂ Ax and repeat the process until convergence is

achieved; the final rate of convergence can be shown to be quadratic.

In practice, Newton’s method often diverges. To cope with this, one

can set

x^^^ = x^ + aAx (3.3)

and choose a such that a "sufficient" reduction is obtained in the
2objective function F(x) = Z f. (x) from one iteration to the next.

i=l ^ “

67

It will usually be possible to find an a such that F(x^^^) < F(x^)

since the correction vector is downhill. This follows from the
k Tobservation that dF(x)/da = ^ Ax where ^ is the gradient vector of

k . T -1 .F(x) at X . Since ^=2J ^ and Ax=~J JE, direct substitution of these
k Tvalues leads to dF(x)/da = “2^ demonstrating that Ax is downhill.

Various methods e.g. [37] have been proposed for the choice of a.

Although the modification prevents divergence to extreme values of x,

the method can still fail due to the Jacobian J becoming singular, when

the corrections given by equation (3.2) will be infinite. Sometimes the

method will fail because a value of a cannot be found which gives

F(x^^S < F(x^). Such a breakdown is a symptom of the Jacobian tending

to singularity. The effect of roundoff error in the calculations

determines which of the two forms of breakdown occurs first. This topic

was discussed in the previous chapter in connection with the Gauss-Newton

search.

Some means of circumventing the difficulties caused by a singular

Jacobian was sought so that continued reduction in F (_x) could be ensured,

thus producing a robust algorithm. Consider the situations in which the

Jacobian becomes singular. At a stationary point of F(2c) the gradient
Tvector £(x) will be zero. Since ^(x) = J f_(x) it follows that if

F(3c) > 0 at the stationary point, then at least one value f^(_x) will be
Tnonzero and consequently J (and hence J) must be singular. If a local

minimum has been reached, it will not be possible to generate a downhill

direction; this should be possible however, if the stationary point is

a saddle-point. When F (x) = 0, the stationary point corresponding to

the solution, no similar inferences on the Jacobian can be drawn. Also

it will be possible for the Jacobian to become singular away from a

stationary point. In view of these observations, the more limited goal

was adopted of developing a Newton-type algorithm which would locate a

68

minimum of F(x) (not necessarily the solution of f(3c)=0) and which

would not fail if the Jacobian becomes singular.

3.2 A modification of Newton’s method

kAt any iteration k of the Newton method, provided that k is not

a stationary point of F(x), there will be an infinite number of possible

downhill directions. The Newton corrections Ax specify that downhill

direction along which, on the basis of a linear approximation, the

residuals ^(x) will decrease in the same proportion. Consider the

modified Newton corrections aAx. A Taylor-series expansion about f(x^)

gives

f(x^ + aAx) = f(x^) + aJAx (3.4)

_ I
Substitution of the Newton corrections -J f(x) for Ax on the right-hand

side of equation (3.4) gives

f(x^ + aAx) - (1-a) f(x^) (3.5)

« l e •The parameter a defines a point on the line _x + aA)(. From equation

(3.5) for each residual f^ we have

k kf.(x + aAx)/f.(x) = 1-a (3.6)1 — — 1 —

Thus, on the basis of the linear approximation, each residual is

reduced by the proportional amount 1-a; for a=0 , corresponding to no
Ic • • • *departure from x , there is no reduction in the residuals; for a=l,

corresponding to the full Newton corrections, the residuals will all be

zero.

69

Even if the Jacobian becomes singular, a downhill direction will

still exist provided that a local minimum has not been reached. A

similar analysis will now be used to that of section 2.2.2 in the

derivation of equation (2.17). Consider the matrix J*J; since it is

real and symmetric, it will have n real eigenvalues cp̂ and the corres­

ponding n eigenvectors v^ will form an orthonormal set. The Newton

corrections can then be expressed as

n
AX = Z 3* V. (3.7)

i=l ̂ ^

where the scalar values 3 ̂ (i=l, .. n) are to be determined.

Noting that Jax = by definition of the Newton corrections, it

follows that J^J Ax = -J^f. If we replace a x by the expression given

by equation (3.7) we obtain

J^J Z 3. V. = -J^f (3.8)
i=l ̂ 1

Since by definition J^J equation (3.8) simplifies to

n rp
Z 3 . (f). V. = -J f (3.9)

i=l 1 1 1

If both sides of equation (3.9) are pre-multiplied by v.^, the

orthonormality of the eigenvectors gives

3j_ <\>i = 1 (3.10)

Substitution of the values of 3. given by equation (3.10) into equation

(3.7) gives finally

^ T TAx = - Z V. (J f) V./ (J). (3.11)— . , — 1 — — 1 1
1=1

70

When any value <J>̂ tends to zero in equation (3.11), the corrections

àx will be dominated by the i^^ term of the summation. If 4^=0, the
I T Tcorrections are infinite; however their direction is known to be v. J f v..

This direction will be downhill but in practice is not likely to be a

worthwhile search direction since the linear approximation used predicts

that an infinite displacement is required to reduce the residuals to zero.

Greenstadt [24] considered Newton’s method as it applies to a general
— 1objective function; in this case the corrections are Ax = -G g, where G

and ^ are respectively the Hessian and gradient of the function. He used

a similar expression to equation (3.11) to evaluate Ax but, before doing

so, set = max(1 (j)̂ I , e) for i=l, .. n. By setting e to a suitable small

value, he ensured that the corrections were always downhill.

The author took a different approach and investigated the possibility

of relaxing, in some way to be defined, the criterion used to define the

Newton corrections, with the aim of avoiding the problem of J becoming

singular. It was shown by equation (3.6) that, on the basis of a linear

approximation, the residuals decrease in the same proportion 1-a along
k . -1the path x + aAx^ where Ax equals the Newton corrections -J The

k 2 kpredicted decrease in the sum of squares will be F(x +aAx)=(l-a) F(x);

however the true sum.of squares will depart from this prediction, although

in a finite range 0 ^ a ^ a^ the true sum of squares will decrease as a

is increased.

The relaxed form of the Newton corrections will be denoted by Ax(a);

when a is varied from 0 up to 1 the predicted residuals will decrease, in

some manner, along the .path x^+ Ax(a). The requirement that all the

predicted residuals decrease by the same proportional amount 1-a was

removed; if it would be beneficial, a residual would even be allowed to

increase along part of the path. As will become apparent, the chosen

71

form for Ax(a) would involve nonlinear algebra if the sum of squares

F(x) was used to measure the proximity of the residuals to the solution.
n

Thus the measure S(x) = Z | f . (jc) | was adoptbd; as is the case with
i=l ^

F(x), the global minimum of S(x) will be zero if a solution to f (3c) = 0

exists and S(x) ̂ 0 for all x The relaxed corrections were chosen to
k k . .be such that S(2c + Ax(a)) = (1-a) S(x), on the basis of a linear

approximation to f(x); this gives

n , n n
Z |f.(x) + Z J . . Ax.(a)I = (1-a) Z |f.(x)| (3.12)

i=l ̂- j = l J i=I 1 -

The desired condition that Ax(a) = 0 at a=0 is satisfied by equation

(3.12). At a=l, the only possible value for Ax(a) will be the Newton
- 1corrections. Note that the modified Newton corrections -aJ f would

satisfy equation (3.12) over the complete range 0 ^ a ^1. There are an

infinite number of possible solutions of equation (3.12); the relaxed

Newton corrections were taken as that solution Ax(a) which minimizes
n
Z)Ax.(a)|. The reasoning for this is that, for a given a, the smaller

i-1
the size of the corrections the smaller will be the error introduced by

the linear approximation.

At this stage, the effect of using a step limit p^ on individual

corrections was incorporated. In Chapter 2 it was described how such a

limit often improved the global convergence of the descent and Gauss-

Newton. algorithms. For these earlier algorithms, the step limit was

applied posthumously. In other words the correction vector Ax was first

calculated, without taking the limit into consideration and only after­

wards was Ax reduced, if necessary, so as not to exceed the limit. In

the present case, posthumous application of the limit to the calculated

Ax(a) could result in a smaller predicted reduction in S(x) than could

72

have been obtained if the limit was taken into account by the process

used to evaluate Ax(a). With the step limit incorporated, the

corrections Ax(a) are obtained as the solution Ax of the problem

n
PI: Minimize E I Ax. I

i=i "

n n n
Subject to E | f . + E J . .Ax.|=(l-a) E I f . I

i=i " j=i J i=i "

Ax^ I p^ (i=l, . . n)

The residuals f^ and the Jacobian elements J^^ are those applying
Ic • • •at X . No saving in computational labour would be achieved by

introducing the restriction that the value of p̂ ̂must be the same for

each correction; therefore the facility to use different values of p^

was retained. Solutions of problem PI will exist in the range

0 ^ CL ^ a where a 1 ; solutions with a < 0 also exist but are ofmax max
no interest since they correspond to an increase in the residuals.

Early trials with an algorithm using the corrections Ax(,a.) and

choosing a at each iteration so as to minimize S(x^ + Ax(a)) gave

encouraging results. Consideration was therefore given to other ways in

which the corrections might be defined. This led to the alternative

corrections Ax(3) which are defined as the solution for given 3 of the

problem
n n

P2: Minimize E |f. + E J..Ax.|
i=i ^ j=i "J J

n
Subject to E I Ax.I = 3

i=l ^

Ax^I ^ p^ (i=l, .. n)

73

It will be seen that the point corresponding to 3 on the path

Ax(3) is such that 3 specifies the displacement of the point from
Ic • •X as measured by the sum of the magnitudes of the corrections. The step

n
limits p. set an upper limit 3 = Z p. such that no solution tomax . ,

1=1
problem P2 can exist for 3 > 3 . Within the range 0 ^ 3 ^ 3 the^ max ° max
corrections Ax are specified uniquely by the requirement that they

minimize S(x^ + Ax) as represented by the linear approximation used in

the objective function of problem P2.

This new formulation when tried was immediately found to give

corrections equivalent, in the following sense, to those obtained using

problem PI. Suppose that the optimal solution to problem PI for a = a
n

is given by the vector Ax and the objective function Z |Ax.| equals 3 .
i=l

Then the same vector Ax̂ is the optimal solution of problem P2 when 3 = 3
n n

and the objective function Z If. + Z J. . Ax.I will have the value
n i=l ^ j=l ̂ ^

(1-a) Z |f |.
i=l

With hindsight, such an equivalence might have been intuitively

deduced by comparison of both problems; a formal proof is given later in

Section 3.4. It will also be shown that the converse does not apply in

that the existence of a solution to problem P2 does not necessarily imply

the existence of a solution to problem PI. Because of the greater scope

of the corrections Ax(3) they were adopted in place of Ax(a) and used as

the basis of a hybrid algorithm.

3.3 Evaluation of the corrections

The corrections ^(3) corresponding to any given value of 3 are

obtained by solving the minimization problem P2 which, as will be shown,

can be formulated in the form of the linear programming problem.

Standard methods, mainly based on the Simplex method of Dantzig [5] ,

exist for the solution of the linear programming problem. At each

iteration, it will be necessary to solve problem P2 for one or more

values of 3, depending upon the manner of choosing the corrections to be
k+1 kused to set x = x + A2ç(3)* Rather than solve P2 afresh for each

value, it is more efficient to use the techniques of parametric linear

programming. Also, advantage can be taken of the known features of P2 to

make improvements on the standard method for solving parametric problems.

First a brief outline must be given of linear programming techniques

before an explanation can be given of the way in which these techniques

are applied to the solution of problem P2.

3.3.1 Linear programming techniques

The treatment given here is based on that given by Beale [71] ;

however it should be noted that Beale considered the maximization, rather

than minimization, of the objective function. A more rigorous theoretical

treatment is given by Gass [72] . The linear programming problem can be

written as
n

P3 Minimize Z C. x.
i=l ^ ^

n
Subject to Z A . . x. = B. (i=l, .. m)

j = l J 1

x^ 2 0 (i=l, .. n)

75

The objective function is a linear function of n independent variables

x^; a constant term is omitted from the objective function since the

solution variables x will be the same whether or not a constant term is

present. The variables are subject to m equality constraints; in addition,

as with all linear programming problems, the variables are constrainted to

be non-negative. The coefficients A^j, and are supplied constants

for any given problem.

A feasible solution to P3 is a value of x which satisfies both the

equality and non-negativity constraints. Usually a feasible solution can

exist only when m < n; when m = n there will be at most one feasible

solution, unless there is degeneracy; when m < n there will be an infinite

number of feasible solutions. Linear programming theory proves that the

minimum feasible solution, which will be the required solution of P3,

must be a basic feasible solution which is defined as a feasible solution

in which at most m values of x^ are greater than zero. The values of

any chosen set of m basic variables are given uniquely by solving the

constraint equations, with the remaining m - n nonbasic variables each

set to zero. The total number of basic feasible solutions equals the

number of ways in which m basic variables can be chosen from a population

of n variables, which equals n!/((n-m)! m!). For many problems, it will

not be computationally-feasible to enumerate all the basic feasible

solutions in order to find that which gives the minimum value for the

objective function; the computation can be dramatically reduced by using

the Simplex algorithm as follows.

The algorithm starts by finding a basic feasible solution. Then an

iterative procedure is performed in which, at each iteration, one of the

nonbasic variables is exchanged with a basic variable, the choice of these

76

variables being made so as to give a reduction in the objective function

When no further reduction is possible, the minimum solution will have

been attained. In addition to reducing the number of basic feasible

solutions which have to be considered, the calculations can be arranged

so that it is not necessary to completely solve the constraint equations

for each new basic feasible solution. Instead a tableau of values is

maintained containing information on the current solution, and this

tableau is updated at each iteration by a set of row operations. Various

forms of the Simplex method exist according to the organization of the

tableau and the calculations.

The parametric form of the linear programming problem which will be

used in the present case is given by
n

P4: Minimize E C. x.

n
Subject to Z A . . X. = B. + 6B'. (i=l, .. m)

j.| 1: J 1

x^ % 0 (i=l, .. n)

It is assumed that solutions are required for values of the parameter 6

in the range 0 ^ 8 ^ 8 ; the upper limit 0 may be infinite. These^ max’ max ^

solutions are found as follows.

First, the minimum feasible solution to P4 is found for 6=0; this

can be done in the manner described previously for the non-parametric
Tproblem. Denote the basic variables by X = (X^, ... X^) and the nonbasic

Tvariables by Y = (Y^, Using this notation we can express the

equality constraints as

n-m
X. = Z a.. (-Y.) + b. + 8b'. (3.13)1 J 1 1

(i=l, ... m)

77

and the objective function by z which, in terms of the nonbasic variables,

is given as

n-m
z = Z c.(-Y.) + c + 0c’ (3.14)

i=, 1 1

The values of coefficients appearing in the last two equations are

obtained from the basic feasible solution at 0=0 and are stored in the

tableau. Note that additional information has to be stored in order to

keep track of which variables are represented by X and _Y. Following the

convention adopted by Beale, a minus sign is used in conjunction with Y

in equations (3.13) and (3.14).

Since the solution at 0=0 is optimal, then we must have c%$0 for

i=l, .. n-m; otherwise if any c^ were positive, the objective function

could be further reduced by introducing the corresponding variable into

the basis. Furthermore, as 0 is increased from zero the solution will

remain optimal as long as the values for X remain feasible. However, if

one or more values b ’ ̂ are negative, then the corresponding variables

will eventually become negative and the solution will no longer be

feasible. An upper limit is set at 0=0j where

b.
0j = min (-) (3.15)

i

i, b ’. < 0 1

If no value b ’ ̂ is negative then the current solution given by equations

(3.13) and (3.14) will remain feasible and optimal for all 0 > 0.

Assume that a finite limit 0, = -b /b ’ exists; the basic variable1 p p

X^ is thus zero at 0 = 0j and will need to be replaced by a non-basic

variable in order that the solution will continue to be feasible for

0 > 0j. The rule for choosing a nonbasic variable Y to enter the basis

78

such that the solution remains optimal for 6 > 0j is

c_ . c.
= min (---) (3.16)a a .

i. a . < 0 P" pi

If there is no i such that a . < 0 then no feasible solutions exist forpi
0 > 0j; otherwise the variables and are exchanged and the tableau

updated by a set of row operations which use the elements a^^ as a pivot

These operations can be summarised in algorithmic form as:

Step 1 Set r = 1/a
pq

Step 2 For row p of the tableau

Set a . = ra . j 96 qPI PI

^pq ” ^

Step 3 For each of the remaining rows

Set a. . = a. . - a. a . i 9̂ q ij iJ iq PJ

^iq ^ ^iq

The coefficients b. and b'. are stored in the two last columns of1 1
the tableau and the coefficients c..c and c’ are stored in the last row;1* o o
the row operations are carried out on these elements of the tableau as

well.

Having updated the tableau in this way, the upper limit 02 of the

second range 0 ̂ ^ 0 ^ 0g is found and the process repeated until the

complete set of solutions in the range 0 ^ 0 ^ 0 has been obtained.° max

79

3.3.2 Parametric solution of problem P2

Before problem P2 can be expressed in the form of the parametric

linear programming problem P4, it is first necessary to remove the

modulus terms. One widely-used method [73] is to replace any modulus

expression such as |y| by two new variables y and y . As long as it is

ensured that y^ and y can never be in the basis simultaneously, then we

can write y = y^ - y and |y| = y* + y . For problem P2 new variables

were introduced in this way such that

|Ax |̂ = Ax^* + Axĵ (i=l, .. n) (3.17a)

n .
If. + E J.. Ax.I = f. + f. (i=l, .. n) (3.17b)

1 I J l ' 1 1

Problem P2 can then be expressed as the following parametric linear

programming problem

. . . "̂ + -P5: Minimize E f. + f.
i=i ^

n ^
Subject to E Ax. + Ax. = 3

i=i ^
^ — g

Ax^ + Ax^ + Ax^ = p^ (i=l, .. n)

f.^ - f. - E J..(Ax.* - Ax.) = f.° (i=l, .. n)
1 1 j = j i J J J 1

" S ^Ax^ , Ax^ , Ax^ , f\ , f^ ̂ 0 (i=l, .. n)

The inequality constraints |Ax |̂ p^ have been transformed to

equality constraints by the well-known technique of introducing slack

variables. Also, further equality constraints have been added to define

the relationship between f^ and f . It will be seen that the problem

has 5n variables and 2n+l constraints and it is parametric with respect

to 3.

80

Note that the value f .° has been used in place of f. where

f = |f^J. If at it happens that any residual f^ is negative, then

the corresponding row i of the Jacobian is multiplied by -1 to be

consistent with this definition of f.°. The corrections Ax(3) are not1 —

affected since this is equivalent to replacing equation f^(2ç)=0 by

-f^(3£)=0 in the set of equations being solved.

To find the minimum basic feasible solution of P5 at 3=0, it would

normally be necessary to solve the corresponding non-parametric linear

programming problem obtained by setting 3=0. However, the solution can

be found very much more quickly as follows. Since for 3=0 it is known

that A2ç=0 , it follows from the constraint equations that the variables

Ax^^, f^^ (i=l, .. n) must be included in the basis. The tableau shown

in Figure 3.1 can then be set up. The coefficients refer to the quantities

shown at the head of each column and the basic variables are shown down

the left hand side. The first 2n+l rows correspond to the equality

constraints in the form given by equation (3.13); the last row corresponds

to the expression for the objective function given by equation (3.14). The

equality constraints appear in the same order in the tableau as they do

in problem P5. Note that the minus sign associated with the nonbasic

variables in equations (3.13) and (3.14) is not shown.

It will be seen from the first row of the tableau that one more

variable must be chosen to complete the basis. Since Ax ^ 0 for 3 > 0,

it follows that the chosen variable must be one of the 2n variables Ax^*

and Ax^ . The chosen variable must be that which gives the greatest rate

of reduction in z as 3 increases; it will therefore correspond to the

maximum coefficient c. of the coefficients c. stored in the bottomimax 1
row of the tableau. Note that c^^^=-c^ (i=l, .. n) and that therefore

COi
g
u
M

g
ë

o oo o o oca

o

CNJo o o oo o

o o oo o o

o o o o oo

c oo CN<

<N CN
CMOO<

O CD CN

OO<

+ CM CM CMCNOO

CMO<

OIIca

B
UeuO
MO4-t
S(U
rH,û
Eh

(UM3&0
•HPu

co «- X <]
W CMX<

w (d X <]
+ ' CM CM

+ a
CM

saiaviHVA oisva MoixomaaAixoarao

82

c. ^0. If c. = 0 then a stationary value of S(x) has been imax imax —
kreached at x ; this situation will be discussed further in section

3.6.2. The usual situation will be that c. > 0; in this case, ifimax
imax. ^ n then the variable Axt^^^ is chosen to enter the basis and if

imax > n then variable Ax. is chosen. Note that imax 2n sinceimax-n '
the remaining coefficients, corresponding to the variables f^ are all

negative.

Once the last basic variable has been chosen, it is entered into the

basis and the tableau adjusted using a similar process to that already

described. Lastly, the tableau is contracted in order to remove the

column previously occupied by the variable which entered the basis. The

tableau of 2n+2 rows and 2n+l columns will then be obtained, corresponding

to the optimal solution of problem P5 at 3=0.

The method described in the previous section can then be applied to

generate the complete set of optimal solutions in the range 0 ^ 3 ^ ^max*

The corrections Ax(3) are derived using the values of Ax^ and Ax from

the tableaux to give expressions of the form

Ax(3) = + 3V^ (1= 1, . .1) (3.18)— — — max

In each range 3i , ^ 3 ^ the vectors and are constant; these
1— I i--------------------- -

vectors, together with the values 3^, are stored and completely define

the solutions; note that 3 =0. The number of ranges 1 must be finiteo ® maxn
since the step limit,constraints require that 3 = E p . .^ max . , 11 = 1

83

3.4 Proof of the equivalence of problems PI and P2

It will now be shown that if at ot=a^ there exists an optimal

solution to problem PI such that the variables are ùx and the corres-
n

ponding objective function E |Ax.| equals 3 , then the optimal
i=l °

solution to problem P2 for 3=3 is given by the same variables and will
n n n

have an objective function E If. + E J . . Ax.| equal to (1-a) E jf.j
i=, 1 j.i 1] : ° i=i ^

In a similar way to that used in section 3.3.2 for problem P2, we

can express PI as the parametric linear programming problem

P 6: Minimize E Ax. + Ax.
i=i "
" + - " oSubject to E f. + f. = (1-a) E f.
i=l ^ ̂ i=l ^

Ax^ + Ax^ + Ax^ = p^ (i=l, .. n)

f.* - f. - E J..(Ax*. - Ax .) = f.° (i=l, .. n)1 1 J J 1

Ax^^, Ax^ , Ax^^, f^*, f^ % 0 (i=l. .. n)

The corrections A2£(a) will therefore have the same piecewise-

linear form shown by equation (3.18) for Ax(3). In each range

Uf-i ^ a 3 a^ the gradient d3^/da of the optimal objective function is

constant; there will be a discontinuity in d3^/da at the end a^ of a

range corresponding to the change in the basic variables. It will first

be necessary to prove that d3 /da ^ 0 over the range 0 ^ a a in whicho max
feasible solutions of problem P6 exist.

In figure 3.2 , the variation of 3^ with a in the range a^_j^a$a^

is shown by the line EB; it will be assumed that d3^/da > 0. Either

84

o

b

aa aca 1+111-1

Figure 3,2 Geometric proof that dB/da 0

85

a, = a in which case no feasible solutions exist for a>a, or a 1 max 1
further range ^ a ^ ^l+l feasible solutions can be obtained by a

change in the basic variables. Assume that the latter case applies and

that in the new range dg^/da < 0; since then the angle DBF

must be acute. There must therefore exist two points A and C given by

the intersection of the line B =b with the lines EB and BD at a=a ando
a=c, and such that b is less than the value of 3^ at b. Now consider

the two vectors Ax(a) and Ax(c) corresponding to the optimal solutions

at A and C respectively. By linear interpolation we can obtain new

corrections

Ax* (a) = Ax(a) + (A3c(c) - Ax (a)) (a-a)
(c-a)

These corrections Ax' must be a feasible solution of P6 provided

that a ^ a ^ c; note that this is not necessarily so for values of a

outside this range. Similarily, by linear interpolation the value of

the objective function corresponding to Ax'(a) must be constant at

B^=b; this is less than the optimal solution which, by definition, is given

by the lines AB and BC in the range a ^ a ^ c. Consequently we cannot

have dB^/da < 0 for the range ^ a ^ ‘̂l+l * argument can be

suitably modified to show that if dB^/da = 0 in this last range, and

possibly further ranges, then at the next range for which dB^/da ^ 0 we

must have dB^/da > 0 .

Now in the first range 0 3 a < it is known that dB^/da > 0 unless

no feasible solutions exist for a > 0. Thus in the second range, and by

induction all succeeding ranges up to a , we must have dB /da ^ 0.

Return now to the original proposition concerning the equivalence of

Problems PI and P2. Comparison of their respective parametric formulations

86

P6 and P5 shows that they use the same set of variables and the two

sets of equality constraints differ only with respect to the first

constraint. It will then be seen if for given a the basic feasible
n

solution _X gives the objective function Z |Ax.| = g for P6 , then for
i=l

3=3 the same vector X is also a basic feasible solution of P5 and the
n

objective function will be (1-a) Z f. . It remains to be shown that
i=l ^

if X is the optimal solution of P6 then it is also the optimal solution

of P5.

Assume that in the range ^ a 3 a^ for P6 and the range

$1-1 ^ 3 < #2 P5 that both problems have the same optimal solution

vector X; this is shown in Figure 3.3 by the line AB. The graph can be

thought of as showing the variation either of the objective function (3)
11

with a for problem P6 or of objective function ((1-a) Z f .) with 3
i=l ^

for problem P5. At B one of the basic variables X leaves the solution;

there will be a finite number of choices of nonbasic variable which can

enter the basis; corresponding to each choice the objective functions

would follow lines such as BD. The optimal choice for both problems will

be that which minimizes the angle FBD made with the a-axis. Three

situations can occur.

First, there may be no feasible solutions, so that B then corresponds

to the upper limits a and 3 of the range of feasible solutions for P6 ^ ̂ max max ®
and P5 respectively. Second, one or more feasible solutions exist of which

the minimum angle, shown as FBC, is less than a right angle; in this case

the same solution remains optimal for both problems for a further range.

Note that FBC cannot be less than zero from the earlier proof. Third, one

or more feasible solutions exist of which the minimum angle, shown as FEE, is

greater than a right angle; in this case a further range of optimal solutions

exists for P5 but not P6 . Note that in this last event, the objective

function of P5 will attain its minimum possible value at B and further

87

3

1-1

aa 11-1

Figure 3.3 Geometric demonstration that P5 and P6 make

the same change in the basis

88

increase of 3 will produce an increase in the optimal value of the objective

function of P5.

Consider now the optimal solutions at a=0 and 3=0 for the two problems.

The basic set of variables must contain the variables , f^^ (i=l, ... n)

in both cases, leaving one more variable to be chosen. From the arguments

of the preceding paragraph, the same variable will be chosen in both cases.

By induction, at subsequent changes in the basis the same variables will be

exchanged to preserve optimality. Thus the equivalence of the two formulations

is proved.

3.5 The hybrid property of the corrections

The hybrid corrections discussed in Chapter 2 were obtained by an inter­

polation between a descent direction and a Newton, or Gauss-Newton direction.

The classical steepest descent corrections for a continuous function F(x) with

continuous derivatives can be defined as the solution of the problem

». . . * 9F AMinimize Z Ax.
i=i ^

" 2Subject to Z Ax. = y
i=l ^

Murray [25J discusses this further. For any length y of corrections, using
n 2

the distance norm |]Axl| = Z Ax. , the steepest descent corrections are
i=l ^

uniquely specified as those that minimize the increase (or maximize the

decrease) in F(x) as approximated by the linear objective function used in the

definition. It will be seen that the definition of the corrections A]c(3)

using problem P2 has an exact parallel in that, in the absence of the step
n

limits p., the corrections of length 3 using the norm ||A x || = Z |Ax .| are
^ i=l ^

chosen to minimize the function S(x). Thus the corrections Ax(3) are also

steepest descent corrections. \

89

Furthermore, when 3 is increased from zero upwards the corrections tend

towards the Newton corrections. They will ultimately equal the Newton

corrections at 3=3^^^ provided that J is nonsingular and the step limits

are not exceeded. The parameter 3 therefore effects an interpolation between

a steepest descent direction and the Newton corrections.

Finally, to emphasise the hybrid nature of the corrections, consider

the Marquardt [39] hybrid corrections for least squares problems defined as

the solution of

n n 2
Minimize ̂ (i; "*■ ̂ : Ax.)i=i ̂ j=i J

" 2Subject to Z Ax. = y
i=l 1

Using the method of Lagrange multipliers [z] the Marquardt corrections are
T — 1 T-(J J + XI) J _f where the value X ^ 0 must be determined to satisfy the

length y. Apart from the step-limits, the definition of corrections using

Problem P2 differs only in the norm used to measure distance, both for the

length of the corrections and the departure of the residuals from zero.

A major disadvantage of the Marquardt corrections is that it is not

computationally practical to specify a value for y and then obtain the

corrections; instead one or more values of X may have to be tried before

corrections of a suitable length are obtained. On the other hand, the

corrections Ax(3) can be directly computed for any specified length 3;

further the step limits can be incorporated into the calculation of Ax(3) to

produce the most beneficial effect.

9 0

3 .6 Implementation of the algorithm

An algorithm based on the corrections A3ç(3) was developed and has

the following structure:

Step 1 Set k=0; to a supplied starting value

Specify appropriate step lengths p^ (i=l, .. n)

Step 2 Evaluate f, J at x

Step 3 Solve problem P5 and obtain all the sets of

corrections Ax(3) within the range 0 ^ 3 ^ ^max

Step 4 If a stationary point of S(3c) has been

reached at x then halt

Step 5 Choose a value 3* which must give

S(x^ + Ax(3')) < S(x^)

k+1 kStep 6 Set x = + Ax(3’); k=k+l

Return to Step 2

The important features of the implementation of this algorithm will now

be discussed.

3.6.1 Computational aspects of solving problem P5

Some aspects of the computations involved in the solution of problem

P5 will now be discussed with reference to a worked example. The data used

is for the starting-point of Problem 3 in the Appendix^ this well-known

test problem has two equations in two variables. Step limits of

Pj=P2=0.5 were used.

91

Figure 3.4 illustrates the generation of the optimal solution at

3=0. Since the first equation has a negative residual, the first row of

the Jacobian was multiplied by -1 before being used to set up tableau A

as shown; this tableau should be compared with its general form in

Figure 3.1. The final variable to enter the basis is AXj^ since this has

the maximum coefficient c^ on the bottom row. The tableau is then modified

by row operations and contracted to remove the column originally occupied

by the coefficients of AXj^; this gives tableau B which shows the optimal

solution at 3=0 .

This solution remains optimal until 3=0.18, when the basic variable

fJ becomes zero, and is exchanged with variable Ax^ to give tableau C

in Figure 3.5. The next change of basis is required at 3=0.89 where

Ax2^=0 , corresponding to the constraint jAx^j ^ P2 becoming active; Ax^^

is exchanged with f^ to give tableau D. The solution then remains

optimal up to 3= 1.00, when Ax^^=0; both corrections are then at their

limits and no further solutions exist as this is confirmed by the fact that

there is no negative value of a2j (j=l, .. 5) in tableau D.

If the criterion of equation (3.16) was used as it stands, at 3=0.89

the variable chosen to enter the basis would be AXj . Since Ax^* is

already in the basis, this would invalidate the assumption made when

formulating P5 that the variables AXj^ and AXj (and other similar pairs)

are never in the basis at the same time. Thus a safeguard is necessary to

ensure that the choice of nonbasic variable to enter the basis is

restricted to only those variables which would not lead to such a conflict;

thus in the example f^ is chosen instead of AXj . Note that if AXj was

permitted to enter the basis, in the range 0.89 < 3 < 1.00 the value of
• + — ^Ax J given by AXj - Ax-j would remain constant at -0,40 while its

y- —modulus AXj + Ax^ would equal -0.50 + 3 and would therefore increase with

92

AX]
Ax,

AX]
AX]
Ax,

A x i ^
^ 2"

A x i “ A X , - ^ 2'
1 3

1 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 1 . 0 0

1 . 0 0 0 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 5 0 0 . 0 0

0 . 0 0 1 . 0 0 0 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 0 . 5 0 0 . 0 0

2 4 . 0 0 1 0 . 0 0 ■ 2 4 . 0 0 - 1 0 . 0 0 - 1 . 0 0 0 . 0 0 4 . 4 0 0 . 0 0

1 . 0 0 0 . 0 0 - 1 . 0 0 0 . 0 0 0 . 0 0 - 1 . 0 0 2 . 2 0 0 . 0 0

2 5 . 0 0 1 0 . 0 0 ■ 2 5 . 0 0 - 1 0 . 0 0 - 2 . 0 0 - 2 . 0 0 6 . 6 0 0 . 0 0

A: Tableau before inclusion of AXj in basis

Ax 2 ^ A X , - AXg f l " * 2”
■ 1 3

1 . 0 0 1 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 1 . 0 0

- 1 . 0 0 0 . 0 0 - 1 . 0 0 0 . 0 0 0 . 0 0 0 . 5 0 - 1 . 0 0

1 . 0 0 0 . 0 0 1 . 0 0 0 . 0 0 0 , 0 0 0 . 5 0 0 . 0 0

- 1 4 . 0 0 - 4 8 . 0 0 - 3 4 . 0 0 - 1 . 0 0 0 . 0 0 4 . 4 0 - 2 4 . 0 0

- 1 . 0 0 - 2 . 0 0 - 1 . 0 0 0 . 0 0 - 1 . 0 0 2 . 2 0 - 1 . 0 0

- 1 5 . 0 0 - 5 0 . 0 0 - 3 5 . 0 0 - 2 . 0 0 - 2 . 0 0 6 . 6 0 - 2 5 . 0 0

B: Tableau after inclusion of AXj in basis and contraction

Data: Starting point of Problem 3 in the Appendix

X =
•1 . 2 0

1.00
f =

4.40

2.20
J =

-24.00 -10.00

- 1.00 0.00

Step limits : pj = Pg = 0.5

Figure 3.4 Generation of the initial tableau at 3=0

93

AX]
AXj
Ax,
Ax,

Ax,
Ax,

Ax,

AXg* AXi“ f2~ 1

0.59 -0.41 0.03 -0.03 0.00 0.13 0.29
-0.59 1.41 -0.03 0.03 0.00 0.37 -0.29
0.59 -1.41 0.03 -0.03 0.00 0.63 -0.71
0.41 1.41 -0.03 0.03 0.00 -0.13 0.71

-0.59 -0.59 -0.03 0.03 - 1.00 2.07 -0.29
-0.59 -0.59 -1.03 -0.97 - 2.00 2.07 -0.29

: Tableau after exchange of f^^ and Ax,̂ at 3=0.18

AXg* AX,- Ax2® ^2" 1 6

0.00 1.00 0.00 - 1.00 0.00 -0.50 1.00
0.00 0.00 0.00 1.00 0.00 1.00 - 1.00

-20.00 48.00 - 1.00 -34.00 0.00 -21.40 24.00
1.00 0.00 0.00 1.00 0.00 0.50 0.00
0.00 -2.00 0.00 1.00 - 1.00 2.70 - 1.00

-20.00 46.00 -2.00 -33.00 -2.00 -18.70 23.50

Tableau after exchange of Ax^^ and fj at 3=0.89

Data As given in Figure 3.4

Figure 3.5 Updated tableaux at changes in basis

94

Figure 3,6 shows the variation with 3 of the corrections

Ax.(3) = Ax. - Ax. ; the predicted residuals f. - f . and the 1 1 1 ^ 1 1 n + _
predicted value Z f. + f. of S(x) using the results in the tableaux

i=l ^ ̂ k
of Figures 3.4 and 3.5. The computed values + A2c(3)) and

S(x^ + Ax(3)) are shown by way of comparison. Note that the change in
kbasis at 3=0.89 makes S(x + Ax(3)) nonunimodal. As would be expected

from problem 3, the second residual is predicted exactly. The example

shown is not typical in so far as the global minimum of S(x^ + Ax(3))

occurs at a greater value of 3 than the predicted minimum.

One last feature of note in the computation of Ax(3) concerns the

assumption that the initial tableau, when generated in the way previously

described, gives the optimal solution at 3=0. Consider the situation

when one of the residuals, say f^, is zero. The initial tableau could

be generated in two ways, both valid, such that in one the elements of

J are used unaltered and in the other row i of J is first multiplied by

-1. The choice of correction to complete the initial set of basic

variables can thereby be affected, so that the two tableaux will then be

different and cannot both be optimal.

This inconsistency is automatically resolved by the parametric linear

programming method. It will be found in one or other case (perhaps both)

that the basic variable f^ decreases with 3 and therefore the first

change of basis will be at 3|=0* One or more changes of basis may be

necessary before a finite range 0 ^ 3 ^ 3 ̂ is obtained within which the

solution remains optimal. For both cases, this solution will be the same

although the series of changes in the basic variables will be different.

A related situation occurs when at least one of the residuals is

zero. It has been assumed that the optimal solution at 3=0 contains only

95

(a) Hybrid corrections

f .1
(predicted)

f (predicted and actual)

f (actual)

(b) Predicted and actual residuals

S(x)

Actual

Predicted

63 1 2
(c) Predicted and actual values of S(x)

Figure 3.6 Predicted and actual effects of the hybrid correction

96

one correction. It can happen, as will be discussed in the next

section, that a downhill direction cannot be generated with a single

nonzero component of Ax(3) while a downhill direction can be generated

with two or more nonzero components. In this event, the initial

tableau is not optimal and exchanges are made at g=0 to introduce

additional corrections so that, if possible, a downhill direction is

attained.

Both of the situations just described are illustrated in Figure

3.7. The two cases correspond to different choices of sign for the

first row of the Jacobian; the correction chosen to complete the initial

basis is Ax^^ for case A and AXj for case B. Neither of the solutions

are feasible for g>0 since fj^ = -203; in both cases f̂ ̂ is exchanged

with AX2 . The solution for case B is then optimal and feasible in the

range 0 ^ 3 ^ 0.75. However, in case A we have AXj^ = -3 and this

variable is exchanged with Ax^ ; the solution is then identical to that

for case B.

3.6.2 Convergence criterion

For a function F (2c) with continuous first and second derivatives,
• ■ Ic • Icthe well-known conditions for x to be a local minimum are that x

must be a stationary point and that the Hessian matrix of F(x) is

positive definite. The objective function S(x) used in this hybrid

algorithm has discontinuous derivatives at points where at least one

of the residuals is zero. Thus different criteria are required to

determine when a local minimum has been reached.

Ic •Assume that at x the residuals are all non-negative; this can

always be ensured by changing any equation f^(3£)=0 having a negative

residual to the equivalent equation -f^(x) = 0. Now for a small change

97

Initial Basis Basis at 3j=0 Basis at 32=0

AXj"^ = 3 AXj^ = -3 AXj = 3/3
sAXj Î - 3 sAXj = \ + 3 AXi" = 2 - 3/3
s

2 ^ 2 sAx^ = \ - 23 AXg^ = \ - 23/3

-203 Ax^ = 23 Ax^ = 23/3

2 + 3 ^2 = 2 - 3 ^2' = 2 - 3/3

Case A - First row of J unchanged

Initial Basis Basis at 3|=0

Ax,

AX|S

Ax„®

-203

2 - {

Ax, = 3/3

Ax,

Ax,

Ax,

I - 3/3

I - 23/3

23/3

2 - 3/3

Case B - First row of J multiplied by -1

Data: Problem 3 in the Appendix at x = (-1, 1)

Linear transformation of variables is used

Step Limits h = ?2 = 2
0 -20 10

JE = J =
2 1 0

Figure 3.7 Generation of the tableau at 3=0
when one of the residuals is zero

98

kôx in the variables at x the corresponding change ÔS in S(x) will be

given to a first-order approximation by

n n
ÔS - Z Z J.. Ô X . + Z 1 Z J.. Ô X . I (3.19)

i,f^>0 j=l ̂ i,f^=0 j=l ^

kFor X to be a stationary-point, it will be seen that we must have

for each change ôx^ (j=l, .. n)

Z = 0 (3.20a)
i,f^>0

3' ' Ï 0 for all i such that f.=0 (3.20b)1

If these conditions hold, then the second derivatives of f(2c) must be
k . . .considered to determine whether x is a minimum. Note that the linear

programming solution for A2c(3) would fail in the generation of the initial

tableau if these conditions hold.

In practice, it is found that minima of S(2c) do not occur at a

stationary point. In this event, it will be seen from equation (3.19)

when a vector 6x with a single nonzero component ôXj is considered,
• • Ic •that a necessary condition for x to be a local minimum is that 6S > 0

for ÔX or - Ô X and so

Z J., I < Z I J,: I (j=l, .. n) (3.21)
i,f.>o i,f.=o1 1

Note that this requires that at least one zero residual exists. However,

this condition is not sufficient, since a vector 6x may exist with two

or more nonzero components for which 6S < 0; this situation was in fact

the case in the example shown in Figure 3.7, where two corrections in

99

the initial basis produced a downhill direction while one correction

could not.

Although the sufficient conditions are complicated, the linear
kprogramming method itself determines the optimal direction at x ;

consequently if the objective function Z f^^ + f^ of P5 is increasing

with 3 at 3=0, then a local minimum has been reached. Suppose that

is the value of the objective function at 3=3^! the lowest value of the

objective function must occur at one such point, say 3=3^^^^' If

S. . > S(x) a local minimum will have been attained. Roundoff errorImin —
will be significant near a local minimum. It was stated that at least

one residual must be zero (unless at a stationary point) and in practice

an exact zero is unlikely. Consequently near to a local minimum the
kusual situation is for to be less than S(x) by a very small

amount and for 3-, • to be small also.Imin

The convergence criterion adopted therefore was that a local minimum
Ic • Ic Icwas reached at x when either 3i . < e, or S(x) - S, . < £« S(x).— Imin 1 — Imin 2 —

These two criteria proved to be adequate for the test problems used.

Other workers such as Wolfe [46] carry out a final grid search about

the assumed minimum; the objective function is evaluated at 2n points

obtained by perturbing each variable in turn by a small amount both above

and below its value at the minimum. If no further decrease in the

objective function is found, then it can be confidently assumed that a

local minimum has indeed been located. Such a check is of most use in

checking that a stationary point is not a saddle-point; since S(x) is

unlikely to have any stationary points, this additional check was not

used for the hybrid algorithm.

100

3.6.3 Method used to choose g'

At each iteration of the hybrid algorithms, a value 3=3’ is

required such that the corrections Ax(3’) give a reduction in S(2c).

The first method to be tried was that 3' should correspond to the

global minimum of the nonunimodal function S(x^ + A_x(3))« A multimodal

search similar to that for the descent algorithm described in the

previous chapter was used; the grid was made up of the series of values

.. ^^1-1 3]̂ ... (1=1, •• l^ax^' computational labour

required by the search was high; it was found that when a coarser search

for 3’ was used the reliability of the algorithm was not impaired. Thus

the adopted method of choosing 3' was as follows.

NStep 1 Set 3’=3i • /2 where N is set to zeroimin
prior to the first search for 3’

Step 2 If S(x^ + Ax(3’)) < S(x^) then set

N=max(0, N-1) and continue to the next

iteration of the hybrid algorithm.

Step 3 If 3' < tj then the search for 3 ’ has

failed and the hybrid algorithm is

terminated.

Step 4 Set 3*=3*/2; N=N+1;

Return to Step 2.

At each search, the first choice for 3’ is 3]̂ ^̂ ^̂ , the position of

the predicted minimum, divided by 2^ where N is set at the previous

iteration. It is assumed that at successive iterations, the chosen

values for 3 ’ will be roughly the same in proportion to the corresponding

values for 3, • . It will be seen that if 3'=3- . /2̂ k at iteration k Imin Imin

101

of the hybrid algorithm, then a realistic estimate of 3’ at the next

iteration will be 3’=3-, • ̂ when N, > 1 and 3̂ . when N, < 1 , asImin k . Imin k ^
used by the search algorithm. Note that the estimate errs on the high

side since 3’ cannot be increased above its initial estimate during

each search.

The choice of 3’ is restricted to the range 0 ^ 3’ ^ ^Imin so

there is no point in extending the parametric solutions beyond in

this case, although as seen in Figure 3.6 the global minimum of
kS(x + Ax(3)) may lie in this region. At step 3, if failure occurs then

it is likely that a local minimum of S(x*^) has been reached but not

detected because the convergence criteria are too strict; note that Cj is

the same parameter used in the convergence criterion based on
k+1Lastly, it will be seen that the residuals at x will be available

at the end of the search on 3' (this is not necessarily the case on

exit from a quadratic interpolation or other more refined search) and

only the Jacobian needs to be evaluated before continuing with the next

iteration of the hybrid algorithm.

102

3.7 Extension to overdetermined sets of equations

In its final form, the hybrid algorithm was modified to cope with

overdetermined sets of m nonlinear equations in n variables. Barrodale

and Roberts [32] give an algorithm which obtains the optimum solution of

an overdetermined set of linear equations using the 1^-norm (sum of

moduli) criterion. The main application of their algorithm is to linear

regression. Often a fit obtained using the 1^-norm will be better than one

obtained using the l^-norm (sum of squares) criterion; this is especially

likely when one or more rogue points occur in the data. Barrodale and

Roberts believe that the reason why experimenters do not make better use

of the Ij-norm is that few statistical measures of goodness-of-fit are

available as compared with those for fits obtained using the l2“norm.

The hybrid algorithm, when modified to cope with m equations, can thus

be considered as complementary to the Barrodale and Roberts algorithm in

that it handles nonlinear equations. Barrodale and Roberts, used a non-

parametric linear programming method of solution but took advantage of the

specialised nature of the problem to reduce the size of the tableau and also

save on the computations; possibly some of their ideas could also apply to

the parametric solution used by the hybrid algorithm. The required

modification to the algorithm is straightforward; the objective function of
m n

problem P2 must be changed to Z I f . + Z J.. Ax. I . The equivalent
i=i 1 J

parametric problem P5 then has 2m + 3n variables and m + n + 1 constraints

and the tableau must therefore be adjusted suitably. In all other respects,

the logic remains the same.

103

3.8 Numerical experience with the algorithm

The final version of the algorithm was implemented as a FORTRAN IV

program, using double-precision arithmetic, on an IBM 360/44. In addition

to the normal diagnostic printout of intermediate results during the

development of the program, two independent checks on the correctness of

the program were conveniently available.

First, it will be noted that if m=n and suitably large step limits

p^ are used, then the minimum value of the objective function of P5 will

be at and the corrections 2̂E(̂]̂ Ynin̂ will be identical to the Newton

corrections, provided that these exist. The hybrid algorithm war therefore

used in this way to generate the Newton corrections for Problem 1, at

x?=5.0, and at the starting point of Problem 2; these estimates were found

to be in agreement with the Newton corrections found by direction solution

of the equations JAx = -^.

Second, a linear test problem of 7 equations in 2 variables with known

solution was solved using the hybrid algorithm. The problem is due to

Spyropoulos, Kiountouzis and Young [74] who state that it is a good test

of an algorithm’s ability to cope with degeneracies arising in the linear

programming tableau. The problem is to find the best straight line y=a+bx

to fit, in the Ij-norm, the set of points (Y^, X^), i=l, .. 7 where

X '= (I,2,3,4,5,6,7) and Y = (1,12,3,4,5,12,7); the solution is

a=l and b=l. When the hybrid algorithm was applied to this problem, with

Xj=a and X2=b, it converged at the correct solution in one iteration as

would be expected.

Once it had been confirmed that the hybrid algorithm had been

implemented successfully, it was tested on the nonlinear problems in the

104

Appendix. The tests were conducted under similar conditions to those used

for the two-part algorithm, namely a logarithmic transformation of the

variables for Problem 1 and a linear transformation for the remaining

problems; in every case, the step limit p. was set at 0.5 for each variable.
-5The parameters Gj and used in the tests for convergence were set at 10

-3and 10 respectively.

The results obtained with Problems 2-9 are shown in Table 3.1. Problems

2, 6, 8 and 9 do not have an exact solution and so the optimum solution

obtained is that which minimizes the sum of the moduli of the residuals.

As would be expected, the solutions are very similar to those obtained using

a least squares approach. Note that the final sum of moduli for the other

problems were exactly zero showing how the algorithm can make fine adjust­

ments near a solution. The computational effort n^ is defined as n^ + n x n^

where n^ and n^ are the number of evaluations of the residuals and first

derivatives respectively. Two figures are shown for the number of iterations

and the computational effort. The first is for the algorithm in its form

described. The second is for tests carried out in which 3 ’ was set to

3, • at each iteration and no check was made that the residuals were Imin
reduced. In fact, in the majority of cases S (:() did decrease at each

iteration, although occasionally it did increase; in every case the search

converged to the solution shown. The net effect of this change was to reduce

the number of iterations required and thus the computational effort. The

results shown compare favourably, both in terms of reliability and efficiency,

with those obtained for the other four algorithms shown in Table 2.6.

The performance on Problem 1, the difficult system of eight equations,

was disappointing. Convergence was achieved only when the hybrid algorithm

was started from points slightly perturbed from the solution itself, such as

when all the variables are set to 0.5 above their values at the solution.

105

0o• H
4-»RJ
N•HJ
4-1PL
O
M
(U
4-1
mrt

nJg•H
4-1Cj
4-13 u-i PL L-l
g "U

g.H
CO r-lPJ
r - l

S ê•H

L-l W O C O •HV4<yIg
gc/3

CNlvOen
00

es

\o
m

03lO

m03oo

00
es

I —

ooo
ooo

o vDo en
O o es eso O O
o o O O
es es

en

en 30
O m O <03
O 00 O CT3
m es 00 O
— — o vo

~3-
es

<r

— es
es m
es

O
o

O
o

r-.

es
00
00

O
O

es
0 3

o
es

00 0 3
en

O

o
es

'd-

03
(U
M&•H
«4-1

1—1 .Û o o un i30 o o o o o 00 o r—1•H 00 o o en o m o .oPi X onj
>

es -d- 30en m m o PiPL

P! •H
O Pi

•H O
4J 00O 00 o eü I— 100 30 'd Pi eu01

en O en 4-1 nom un <03 •1-4 •Hes es en Pi>3
Pi >30) .C>0) <U
4J 4-1
eû

Æ0 4-1r~ •H •H
e ><r r—1o en QÛ. 'O0)o O 30 n ces •Heu

<30. 4-1
X>

M OC
•H (A
(A 4-1
3 1—1

P)
T) 0303 30 <U 0)

0 3 P<5
•H

es r~. eOun un 4-1
rOO en

r—1no /-3 es un oeu O O , es O 'd' o o o [5•H S X O o 3 0 3 0 C73 4-14-1 es 3 0 00 en 00•H vw en û un en «4-4
C O O 3 0 un 00 00 <r 'd’ en oM sf •d"

e k,01 03IIP-i

en m 00 0 3

■§oej
(U

c/3

106

When started from any of the fifteen points used in the previous tests,

the algorithm terminated at a local minimum. Although in a sense the

algorithm had, in these situations, achieved its aim of finding a minimum

of S(x), the minima obtained were well-removed from the global minimum of

zero.

The most commonly-encountered local minimum was at S(2c) = 27.37.

This was achieved by any vector x for which x^ = 0.9044 and x^ = 1.1057;

this minimum is independent of the values of the remaining six variables.

Examination of the equations in the Appendix showed that, since in this case

x^Xg=l and the exponential terms include the multiplying factor l-x^x^, this

minimum corresponded to the minimization of

S(x) Z x^ Y^^I + I Y^^ %1
1 = 1

subject to the constraint XjX2=l. It is interesting to note that a similar

argument explains why, with the two-part algorithm, the descent algorithm

made slow progress when x^X2 ~ 1 and F(x) - 190.

The lowest minimum found was at

TX = (0.9010, 0.8938, 3.755, 5.387, 10.97, 0.0, 1.103, 0.6729);

at this point f^ = 0.2737 and all the remaining residuals are zero. This

has a close similarity to the local minimum of F(x) as shown in the Appendix.

If the logarithmic constraints were removed, the alternative solution, with

some variables negative, was readily found by the hybrid algorithm. For

example, starting from x^° = 5 (i=l, .. 8) this solution was found in 15

iterations at a computational effort of 144.

107

3.9 Some related algorithms

The hybrid algorithm can be modified to minimize in the l2”norm

(sum of squares) by choosing Ax(3) as the solution of the quadratic

programming problem
m n 2

P7: Minimize Z (f.(x) + Z J.. Ax.)
i=l > j=l j

n
Subject to Z I Ax.I = 3

i=l ^

IAx^I ^ p^ (i=l, .. n)

This is very similar to the definition of the Marquardt corrections given

in section 3.5. Some experiments were carried out using this formulation.

An algorithm due to Beale [75] was available in the NAG library for the

solution of the quadratic programming problem with a convex objective

function so this was used. Unfortunately, a parametric version was not

available and so the quadratic programming problem had to be solved for

every trial value of 3*

The results from the tests with the hybrid algorithm showed that, at

most iterations, the corrections at 3=6^^^^ corresponding to the lowest

value of the objective function produced a reduction in S(x). Consequently,
n

the first constraint of P7 was changed to Z |Ax.| ^ 3 and at each iteration
n i= 1

P7 was solved with 3= Z p.. The resulting corrections will correspond to
i= 1 ^

the value of as defined previously but this time for the quadratic

objective function. If these corrections do not reduce ?()[) then the next

trial value of 3 is set to 3 . /2 where 3 . is found from the summationmin minn
Z I Ax.I using the corrections just obtained.

i=l ^

108

The results were inconclusive; least squares solutions of some

of the problems in the Appendix were obtained, but at the cost of

considerably more computational labour than for the hybrid algorithm. A

fair comparison would require the development of a parametric version of

Beale’s algorithm, making use of the known optimal solution at 3=0 and

incorporating a safeguard to prevent the inclusion together in the basis

of variables of the form and y . Some linear approximations of the

sum of squares objective function were also tried using the parametric .

method of the hybrid algorithm; again, some fuller investigations are

necessary before firm conclusions can be drawn on the worth of this approach

Finally, it should be observed that a similar way of defining

corrections has been used by Madsen [76] following earlier work by Osborne

and Watson [33]. Madsen used the 1^ or minimax norm and solved the

problem

, k ^ 1Minimize max f .(x) + Z J.. Ax.i j=i J
*

Subject to max | Ax. j p
i

A major difficulty which Madsen did not circumvent was the effect of

scaling; as can be seen if a large change in one variable produces a

similar change in the residuals to that produced by a small change in

another variable, then the single value p used in this constraint cannot

be chosen appropriately for both variables. Since the hybrid algorithm

limits each correction individually it does not suffer from this difficulty

since each limit can be set to a suitable value. The linear transformation

of the variables if incorporated into Madsen’s algorithm might enable it

to cope with badly-scaled problems. At each iteration, Madsen tried one or

more values for p and had to solve the linear programming problem ab initio

109

every time; a parametric approach as used by the hybrid algorithm could

well prove beneficial.

Recently, Anderson and Osborne [77] have given an algorithm which

generalises Madsen’s method to other norms. This new algorithm could be

used with the 1 ̂ norm, like the hybrid algorithm of the author; however

unlike the author’s algorithm it does not include the facility to limit

individual components of the corrections and it does not employ the

parametric programming technique.

The author believes that similar techniques to those described in

this Chapter could usefully be applied to the method of approximation

programming for constrained problems. As described by Griffith and

Stewart [78] this method solves a series of linear programming problems,

each of which approximates the nonlinear programming problem within a

small range, and which it is hoped will eventually lead to the solution

of the nonlinear problem.

110

4. CASE STUDIES OF THE APPLICATION OF OPTIMIZATION TECHNIQUES

4.1 Introduction

This chapter consists of a number of case studies illustrating the

varied ways in which the author has applied the techniques of optimization

to problems of practical relevance. It is not claimed that the cases are

a representative cross-section of the many different areas in which

optimization techniques are currently being used. The main source from which

they are dra\<m is the field of engineering, as also is the case with the

conference proceedings edited by Dixon [79] ; other sources are the fields

of biochemistry, theoretical physics and statistics, in spite of this

somewhat limited range, the author believes that many of the experiences

described have relevance to other areas of application.

In choosing an optimization algorithm, the major considerations must

be reliability and efficiency; the relative importance of these two

criteria will depend upon the particular problem* There are no hard and

fast rules which will determine the choice. Statistical measures of the

relative merits of differing algorithms are not feasible since to obtain

such measures the algorithms in question would have to be tested on a

sample of problems drawn at random from the total population of all problems.

In practice, comparisons given in the literature are usually on the basis

of a small sample of standard test cases; further there is usually a bias

in these test cases in that they are often of an artificial nature chosen

to illustrate some particular difficulty. For example, the banana-like

valley of Rosenbrock [19] is a good test of an algorithm’s ability to cope

with an objective function with contours forming a steep-sided valley, but

the problem itself would, if met by a researcher, be solved by inspection.

Although more recently there has been a tendency to include larger numbers

of test cases in published work, the problem of sample bias will always

remain.

Ill

The results of the comparison of two algorithms on the same problem

can themselves be suspect. For example, Dixon [64] showed that differences

in behaviour of a class of updating formulae for rank-one methods were due

solely to inaccuracies in the line searches, Nash [43] found that Meyer

and Roth [42] had unjustly compared Marquardt*s algorithm unfavourably with

an algorithm of their own, Nash found that with a slightly different

implementation of Marquardt*s algorithm it converged where previously it

had failed on Meyer and Roth’s test problems; furthermore Meyer and Roth

only obtained convergence with their algorithm in all cases by variation of

parameters in their program.

Much attention is quite rightly devoted to the efficiency of an

algorithm, usually in terms of computational effort but often also in terms

of the computer storage. When an algorithm is widely-used then obviously

small increases in efficiency are multiplied many times. However, there are

many other sources of inefficiency, such as human error, poor formulation of

the problem and failure of the chosen algorithm to locate a solution. All

of these causes can result in waste of computer resources on a scale far in

excess of that due to choosing an algorithm which is less efficient than

another.

A pragmatic choice of algorithm is thus often made on the basis of other

considerations, such as whether the objective function is a sum of squares

function, the availability of derivative information, the relative cost of

processor time and memory and the degree of accuracy required in the solution.

The author believes that too much emphasis is placed on the choice of method

and too little on the savings that can be made in formulating the problem in

the best possible way. Problems are often a lot simpler than they seem at

first sight, and this is illustrated by some of the case studies where the

choice of algorithm for the optimization is often of secondary importance.

112

4.2 Problems with one variable

Optimization problems involving a nonlinear function of a single

variable are of special interest for several reasons. First, certain methods

have been developed specifically for such problems. Second, line searches

to find a minimum of a function are an important feature of many algorithms

for the optimization of problems with several variables. Third, as will

be shown for example in sections 4,3,3 and 4,4,3, it is often possible to

reduce problems of more than one variable to a form involving a search on

a single variable.

The most well-known methods of locating the minimum of a single-

variable function are the Golden Section and Fibonacci searches, described

by Kowalik and Osborne [9] , These methods use function values only; more

sophisticated techniques often requiring derivative information have been

developed using quadratic [13l or cubic [14] interpolating functions,

usually with safeguards to ensure convergence. The related problem of

searching for a zero of a function can be done using the well-known Newton

method, the method of false position or a dichotomous search. The

solution of a single nonlinear equation would normally be done in

one of these ways, whilst a set of equations is often solved by

minimizing a sum of squares objective function.

The first three case studies which follow are essentially the solution

of single nonlinear equations; the fourth example is of a complicated line

search used in an optimization algorithm.

113

4.2.1 Radiative heat transfer in dielectrics

This case study arises from work Maxwell [80] undertook on a chemical

process engineering problem involving heat transfer through layers of

glass. Maxwell sought the author’s assistance with the solution of a set

of equations involving 2n + 1 unknoi^ms , which governed the transfer of

the energy of electromagnetic radiation in dielectric media. The equations

can be written as

(W + yM) X = 0 (4.1)

Twhere the unknowns are the scalar y and the vector X = (X^, ... Xg^).

The square matrices W and M are of order 2n and whose elements are given,

for any row i, by the expressions

w.
= - - p + dij j = 1, n

^ 1-nW. . ---- — + ê . . j = n+1, .. 2nij 2 ij

Mhj = 0 j f i

= Pi j = i ^ n

M . . = -y . j = i > nij i-n

where g .. is the Kronecker delta symbol and the constants w. and u .ij 1 1
satisfy

n
Z w. = 1 (4.2a)
i=l 1

w ^ > 0 i = 1, .. n (4.2b)

Pi > p£_j > 0 i = 2, .. n (4.2c)

Non-zero solutions for X can only occur at values of y for which W + yM

is singular. To find these values of y, we can first premultiply equation

(4.1) by the inverse of M to give the equivalent set of equations

114

-1(M W + y l) X = 0 where I is the unit diagonal matrix. The eigenvalues

and the corresponding eigenvectors v^ of the unsymmetric matrix

M can then be found by any suitable numerical procedure, to give the

required solutions to equation (4.1) in the form y = "X^ and X =

where a is an arbitrary constant. Such an approach using an eigenvalue/

eigenvector analysis could be costly in terms of computer resources and

also susceptible to rounding-error problems. The author felt that a

further examination of the equations might lead to a simpler method of

solution.

Referring to Figure 4.1(a) which shows the equations in a fuller

manner, if we start with the last equation and work backwards to the second

equation, at each stage subtracting the preceding equation from the current

equation, we find that the equations reduce to the simpler form shown in

Figure 4.1(b). Non zero solutions for X will, as stated before, occur at

values of y for which the matrix of coefficients is singular, corresponding

to a zero determinant. By multiplying out, the determinant A is given by

A = (1 - Y % , ?) 0-y\h . . . (1 - Y \ h (l - Z " i) (4.3)
 ̂ 1-Y Wi

Further examination of Figure 4.1(b) shows that the second and subsequent

equations yield the relationships

(1 + YP^yx^ = (1 + i = 2, .. n (4.4a)

(1 - YPj)X^^j = (1 + YP^)X^ (4.4b)

(1 - YU£>X^^£ = (1 - i = 2, ... n (4.4c)

Given a value y = y^ for which A = 0, then the first equation in Figure

4.1(b) will be a linear combination of the others since these form an

independent set as seen by equations (4.4a) - (4.4b). The solution X^

115

o
II

X (SI
X X X

hCMX
cCMX

I I
IcM IcM
I I I

s“ LI
>-
I

s " U

,=lCM

> 'es
I

OlcM

3 'CM
I

' c3-
r

ICM

>-
I

3*LM
I

• 1 — ■
1 1 CM 1 CM 1

CM C CM . C 1
> c ^p-

I

CM

(cm 3 i(si
I I

s'^U S ^ U
I I

0)CO•H
4J
0 (U
}-l4J
1co
gV4
(U)4
OIW0)
co
cO•H
4Jtu
(U
1-1<y
«4-1co
§
u
4-1

&
s
c
M

l^lcM
I

sT’Icm
•cm;3.
r

CM > IcM CM > IcM
I

l^lcM
I

sTlcM
I

(U

5•HpL

> ICM
I

>-+
> l<N

I
^ ICM

I
> ICM

I
> IcM

I
> 'CM

I

116

1 ^ -M 1
+ c cCM c c CM CM

1 ^ X X X X ^ 1

r — " 1
G

PO O o o >-> CM 1
1

11 CM 1 P-
. c c P co> O o o • P- >- C

>- 1 o1 1 •H
4J1 OeuJ-i
4-1X»
P(0
>o
M

M(U
4J

p ♦ m
— o o î ^ O O eu

> CM 1 co
1 C

O
•H
4-1eu
3cr(U
u
0)

c • «w
c p co

> CM o p >- o o C>- + eu1 + M
4-1

' XbûPieuCW

rû

CM| CM g
> CM p. o o o o O1 + MPL

— 1
> CM

P-1 >-+— . •—■ o o • o op-
>■
+

117

corresponding to can then be expressed, by taking as an unknown, in

the form

V T = V n
-i I ' ' + Y i l ^ ' ’ '-YiP, ' ■■ > - Y j %

or in the simpler form

^ T _ / 1 1 1 1 1 3 // C3
-i - « (,+YiP, ' l+YiMz ’ '^i^n ’

where ^ is some arbitrary constant. All that now remains is to find some

means of computing the roots of the polynomial equation A = 0.

2If we take Z = y , then ^ is a polynomial of degree n in Z; each solution

%£ to 6 = 0 will give two values of y = ± Z^^. If we put Z = 0 in equation
n

(4.3) then it will be seen that A = 1 - z by equation (4.2a) this is
i=l ^

zero and hence y = 0 is a repeated root. Consider now the sign of the

determinant in the range — -- < Z < — I— . From equation (4.3) it will be
k+1 kseen that

A = - w (I - z p ^) . . . (l - z p ^ _) (l - z p ^) . . . (l - z ^ p 2) a t Z = ^

1 " " ^ k - l ' " " ^ k + l ' " ' ' " ' ^ n / p 2k

2 2 2 2 2 1 and A = (1"ZP,) . ,.(l-zp.)(l-zp,^_)...(l-z p)at Z =k+1' ’̂l ̂ ^ k ^^k+2''''' ^n " 2
%k+l

Therefore, by virtue of equations (4.2b) and (4.2c) it follows that there

will be a change in sign of the determinant as Z increases from -4--- to
, ^ k+1

— 0̂ . Since the determinant is a continuous function, there will
U k
therefore be a root in this range; since there are n-1 such ranges, these

account for the remaining roots. A simple dichotomous search for the roots

can be performed using the following algorithm for each range.

Step 1 Set Z = — — Z_ = ^
1 . p 2 “ 2 y 2

k+1 k

Step 2 Set Z = (Z^ + Z)/2

118

Step 3 If Zg-Z^ < E then take Z as the root and terminate
this search; otherwise ...

n 2
Step 4 Compute f = 1 - Z w./(l-Zy.)

i=l ^ ^

Step 5 If f < 0 then set Z^ = Z else set Z^ = Z, and
continue from Step 2.

It will be seen from equation (4.3) that within any range the sign of

the determinant changes as the sign of the quantity f changes. Further,

as Z tends to — from above then f tends to minus infinity and as Z
1 *tends to — ^ from below then f tends to plus infinity. Consequently the

y^k
test at Step 5 is a valid one for determining which of the two values Z.

and Z^ currently bracketing the solution is to be replaced by Z. The major

effect of rounding error is in the calculation of f; since it is only

necessary to determine the sign of f then this should cause no problems even

for small values of e, the accuracy required in the solution. The algorithm

'will always terminate in a finite number of steps and so there is no need for

a Ipop count. It will be seen that this algorithm has considerable advantages

over the original eigenvalue/eigenvector approach; the only storage necessary

is for the data vectors w and y plus the solutions y. and X. themselves.
— — 1 — 1

119

4.2.2 Creep Rupture of a Cylindrical Stucture

Materials subjected to stress exhibit the phenomenon of creep, whereby

internal damage to the material increases with time, produces a

redistribution of the internal stresses and ultimately results in rupture.

An accurate estimate of the time to rupture under a given history of loading

is essential for the safe design of structures. One technique is to use

a finite element [81] model to predict accurately the creep behaviour;

this can be expensive in terms of computer time and storage even for simple

structures and so less costly methods are sought for use in the early stages

of design. One such approach is to derive expressions for the upper and

lower bounds of rupture life; these expressions involve integral terms which

still require computer evaluation but at significantly less cost in terms of

computer resources than the finite element method. Wojewodski, who has

reported earlier work with Leckie [82], sought the author's assistance with

the computational aspects of applying bounding methods to a cyclically-

loaded structure, in which the solution of a nonlinear equation was

required.

The relevant features of the model are shown in Figure 4.2. The

structure in question was a thick, hollow cylinder of internal radius a and

external radius b subjected to an internal pressure p(t) which varied

cyclically as a two-level step function of time t. The temperature 0 in

the cylinder was constant with time, but varied linearly with radius r from

6^ at the inner surface to 0^ at the outer surface. Assuming axial

symmetry, the damage tjj due to creep varies with radius and time only. Given

the damage distribution at time t, the corresponding distribution of the

radial stress component is given by integration of the differential

equation

^ 7 = # " (4.G)
nr

120

Internal Pressure
p(t)

r=a,

p(t) A

At

Figure 4.2 Thick Cylinder Subject to Cyclic Loading

121

subject to the boundary conditions c)̂ (a) = -p(t) and a^(b) = 0. The

material properties K and n vary nonlinearly with 0 and the constant C

must be determined so as to satisfy the boundary conditions. Once the

stress distribution is known, the rate of change of i(j with respect to t

can be computed and \p integrated numerically over a time-step ^t and the

whole process can be repeated. The present interest is in the evaluation

of C.

The integration of equation (4.6) was carried out using the

method of Euler with a constant step-size Ar = (b-a)/m, where ra is the

number of steps selected. The radial distribution of is then given at

the discrete values r = a + k Ar (k = 0, .. m) where

k-, ^
a ^ (r .) = a (a) + Z c " i y . A r

i=0 ^
and

' J_ . 1n . n .

The suffix i denotes evaluation at r = a + iAr. It therefore follows from

the boundary conditions that C must satisfy the nonlinear equation

m-1 n.
-p(t) + I C 1 y. Ar=0 (4.7)

i=0 ^

The time-step At was taken as T/12 where T is the period of the cyclic

loading; since several thousand cycles could be required to cause rupture,

then a fast, but reliable, method for solution of equation (4.7) was

essential. Fortunately, the fact that At was small compared with the rupture

life meant that a good initial estimate of C was always available from the

value last calculated at the appropriate stress-level. For the first

evaluations of C in the first cycle, initial estimates of C had to be

specified. Since in the range of interest n varied monotonically with 0,

122

then it followed that C must always lie between the two values obtained

by assuming a constant temperature of 6̂ or 6^. Taking the average of

these two gives

m-1 n(e) m-1 n(&.)
C 2 i[(p(t) / E y. Ar') ^ + (p(t) / E y. Ar)]

i=0 ^ i=0

Given that the estimates are good, then Newton's method for nonlinear

equations can be used with confidence, and will result in fast

convergence. The following algorithm was used for the search on C.

Step 1 Set C = C where C is the initial estimate aso o
described above; set k = 1

__1_
m-1 n.

Step 2 Compute a (r) = -p(t) + E C ^ y. Ar
“ i=0 ^

m-1 n.
Step 3 Compute 3 = -a (r) / E C ^ y. Ar

^ “ i=0------ 1---
"i

where 3C is the correction to C predicted by Newton's

method to reduce o^(r^) to zero.

Step 4 If 13] < 10 ^ then accept the current estimate of

C and terminate the search.

Step 5 If k = 30 then terminate the search with an appropriate

error indicator set^

Step 6 If 3< then set 3 = else

if 3 > 1 then set 3 = 1

Step 7 Set C = C + 3C; k = k + 1

Return to Step 2

For the cases studied, the error exit at Step 5 and the limitation

to the corrections at Step 6 were never invoked. Apart from the first

evaluation of C at each stress-level, thereafter the algorithm invariably

converged in one iteration.

123

4.2.3 A model of void growth in metals.

A mathematical model of the creep rupture by the growth of voids at

grain boundaries in polycrystalline metals subject to stress was proposed

by Kelly [83] . This case study is taken from the work done by the author

on the numerical and computational aspects involved in the computer

implementation of the model.

Kelly took a simple two-dimensional representation of the metal, with

an assumed regular octagonal grain structure, and he only considered systems

of biaxial loading. These assumptions introduce a measure of symmetry to

the model and consequently only three different sets of conditions can

exist on the separate faces of the grains. On face i of three chosen

representative faces, the voids are assumed to be spheres of radius r^ (at

time t) and to be regularly-spaced at a distance 1^ between centres. The

effect of the voids on a face is measured by a damage parameter
2 2o)£ = Trr̂ /41^ ; the model always ensures that 0 < < 1 . The normal stress

on face i is given by the effective stress, taking note of damage, is

then S^/(l-o3̂). Given the values of and making assumptions about the

effect of shear stress, the values of can be found by solving three

linear simultaneous equations, the first two of which are obtained from

equilibrium of forces and the third from compatibility of displacements.

The growth rate of the voids is then given by the differential equation

do). S. B.

where A^ and are independent of time but are functions of the void

spacing 1^ and material properties. Given the void spacing and the initial

damage at time t=0 , the model integrates the three equations (4 .8) to

obtain the variation of damage and stress with time. The integration

normally terminates when two faces have ruptured, due to the damage or

124

effective stress becoming too high, when a cleavage path through the

material will exist.

The integration, which has to be done numerically, is done using a

fourth-order Runge-Kutta method due to Merson and described by Fox and

Mayers [62] . The major difficulty lies in handling discontinuities in

the differential equations introduced either by rupture of a face or by

equation (4.8) breaking down as ŵ. tends to zero. In the first case,

rupture of a face is assumed when either S^y(l-w^) > or is

a material property while is set to a value close to unity, say 0.99.

In the second case, if then it is assumed that dwu/dt = 0; is

taken as 0.1% of the initial damage on the appropriate face. To maintain

accuracy in the numerical integration, it is necessary to precisely locate

the value of t at which these discontinuities occur. This problem was

considered by O'Regan [84]; his method of solution varies according to the

Runge-Kutta method being used. In the current instance, a simple line

search was used to locate the position of the discontinuities using

the well-known method of false position. At the end of any time-

step, when an integration will have been performed from t to t + At say,

the damage and stress values are inspected to determine whether a discontinuity

occurs within the range of integration. If so, then an objective function

f is defined by w - m . ̂ w .- w or cr - S./(l-w.) as appropriate; note that
1 1 t i i t 1 1

f changes from a positive to negative value when a time-step crosses a

discontinuity. The following algorithm was used to successfully locate the

value t^ such that the discontinuity occurs at t+t^.

Step 1 Set t^=0; t^=At; f^=f(t+t^); f^-f(t+t^). Set

the count k=0 .

Step 2 If f^-f^ < e set t^=t^and exit; the value of

E is chosen according to the accuracy required.

Step 3 If k = 50 set t^=t^and exit; this is a

fail-safe limit on the number of iterations.

125

Step 4 Set At=f^(t^-t^)y(f^-f^) which is given by a

linear interpolation between t^ and t^ to predict

f(t+t^+At) = 0

Step 5 If At < 0,1 (t^-t^) then set At=0.1 (t^-t^)

If At > 0.9 (t^-t^) then set At=0.9 (t^-t^)

These tests ensure that a guaranteed minimum rate

of convergence is obtained.

Step 6 Evaluate f=f(t+t^+At) by integrating from t to t+t^+At

Adjust the bounds on the discontinuity by setting

t^=t^+At and if f > 0 or by setting t^=t^+At and

fy=f if f ^ 0 , Return to Step 2,

126

4.2.4 Discontinuities in thé slope of a multimodal function

This case study is taken from work the author carried out on the two-

part algorithm discussed in Chapter 2. It is included here, rather than in

the earlier chapter, because the length of description required outweighs

its importance with regard to the two-part algorithm and it is of more

interest as an example of what can be achieved by using a complicated

special-purpose search on a particular nonlinear function of a single

variable.

It was described in section 2.2.2 how the descent part of the two-part

algorithm sets x^^^ = x^ + s^x where

^x = Z w (4.9a)

= (— — , ... — —) (4.9b)
<|) + X 4) + X1 n

s = min (1, --- — , ... — -—) (4.9c)
I Ax,I |Ax^l

The matrix Z depends upon the gradient vector and Hessian matrix of the sum

of squares objective function F(x) evaluated at x = x^; the values

(i = 1, .. n) are the eigenvalues of the Hessian matrix ordered such that

^i ^ ^i-1’ P is a constant which specifies the maximum permitted change

- Ax^^l in the variables at an iteration and X is a parameter which

is chosen at each iteration to give the global minimum of the function
kF(X) = F(x + sAx). It was shown that F(X) is a multimodal function with

finite discontinuities at each value X = In addition, there are

discontinuities in slope due to the manner in which s is calculated. It

will be seen from above that, for a given X,s adopts the minimum of n+1

discrete values; as X is varied, the position of this minimum value can

shift when a discontinuity in ds/dX will result. If we define

127

I/5C. 1= raax(/x,, .. Ax) then such shifts will occur at values of X where' m a x ' ^ 1 n
I Ax. l=p or where inax changes when Ax. > p.I m a x ' m a x

In the original algorithm developed by the author, the search for the

global minimum of F(X) was carried out by considering in turn the regions of

X in which F(X) is continuous; thus the first region is the

second < X <-(() , and so on. A grid search was employed to bracketn n-1
minima within each region and then the position of any minimum was located

more accurately by an interpolation. Dowson [66] improved the reliability of

the grid searches by doing a further preliminary subdivision into regions in

which both F(X) and dF(X)/dX are continuous. This entailed using a numerical

search to locate values of X corresponding to "changes of state" of the

corrections; Dowson used this expression lo describe the situations producing

a discontinuity in ds/dX just described. The state of the corrections can be

quantified by the integer ^ where ^ = 1 if I ^^i^nax ̂ ^ P and tp = imax + 1

otherwise; note that ip then corresponds to the position of the minimum in

the right-hand side of equation (4.9c). Dowson's search for the positions of

the changes of state can then be explained, as follows, for all regions

-(J)̂ c X ” ^i-l .. n)

Step 1 Set AX = (4>£~4>̂ _j)/4; X̂ = Xg = X̂ + AX

Step 2 Set equal to ^ at X = X̂

Step 3 Set equal to ^ at X = X2

Step 4 If ^2 = 4̂1 then continue from step 8

Step 5 Using a dichotomous search, find to within a

prescribed tolerance the values X^ and ^

at X = X^ such that X^ < X^ < X^; ip ~

for X <X ; and \p ^ ip, c c 1

128

Step 6 If ip ̂ = ip 2 then continue from step 8, having

recorded the position of a discontinuity at

X = X . Otherwise ... c

Step 7 Set X ̂ = X^^ Return to Step 4.

Step 8 If Xg < then set

X^ = min ^2) and return to Step 3.

Otherwise, the search in the current region for

discontinuities has been completed.

A similar scheme is used in the two end-regions where X ^ and

X ^ -4) j, Dowson acknowledged that this search does not give a guarantee

of finding all the slope discontinuities. Consequently, the author decided

to try to develop a method with this guarantee to find what improvements

(if any) could then be obtained in the grid search. It will be seen from

equations (4.9a) and (4.9b) that each correction Ax^ can be expressed as a

rational polynomial in X of the form

k-1Ax. = E A., X*̂
 ̂ k=l Ik

(4.10)
“e' B xk-l k=l k

The coefficients are the same for each correction and are obtained from

the product (c}> j + X)(^g +X) ... (<j>̂ +X); the coefficients Â ^^ vary between
n

corrections and are obtained from the summations E Z.. (<p. +X)(^_ +X),,,j = 1
+X)(^j^| +X) .. ((|)̂ +X). The new method was based on this rational

polynomial form of the corrections; it was able to guarantee that all

discontinuities in ds/dX were located by using the fact that the number of

roots of a general polynomial equation is known to equal the degree of the

polynomial. It will be noted that, in general, the values of the roots can

129

only be found numerically.

In the first stage of the calculation, the range of real X is

divided into N+1 adjacent regions such that within each region the index

imax of I Ax. I remains constant; it will be apparent that N is initially ' imax I »
unknown. Let the kth such region be given by in which imax = I^;

assume that = -00 and = +». It will be noted that if two or more

corrections are equal over a finite range, then the columns of Z correspond­

ing to each correction must necessarily be equal. The method which is to

be described could be modified to account for equal corrections by testing

for these at the outset and thereafter only considering one representative

correction from each group of equal corrections. The values of and I^

are found by comparing the relative magnitudes of all possible pairs of

corrections in the range of real X as follows.

Consider any two corrections Ax. and Ax. Since the denominators of
' 1 J*

the appropriate rational polynomials given by equation (4.10) will be the

same, only the numerators need be considered when comparing the magnitudes

of Ax. and Ax.; the fact that the denominator becomes zero at X = - 6. does 1 J 1
not invalidate this argument. For the end-regions, when X tends to plus

or minus infinity, the greater of the two corrections will correspond to

the greater of the two values |A^^| and |Aj^|, since these are the

coefficients of the dominant terms in the numerator. If A. = A. = 0in jn
then lower-order terms in the numerator need to be considered. At any

values of X for which |Ax^| = |AXj | then the relative magnitudes of the

two corrections will change; in this event the range of real X will divide

up into a number (always odd) of regions such that throughout each region

one correction remaiîis greater than the other. Such values of X are

found from the complete solution of

• ^ k-1Z (A., - A..) AT = 0 (4.11a)
k=l ^

130

^ k-JZ (A . . + A . ,) x - Q (A.iJb)k=] ̂ J

Each of the two equations has n-1 roots; complex roots must be discarded.

If n is even, there is a guarantee of at least one real root to each

equation.

Assume that in total there are M real and distinct roots

r^(l = 1 , .. M) to the equations; assume also that r^ ^ * Further,

define r^ = -» and r ^ ^ = +», noting that equation (4.10) shows that both

corrections are zero at X = r and X = r , ,. We then have M + 1 regions ofo M+1
the form r^ < X < r^^^ (1 = 0, .. M) ; within each region the continuity of

the numerators ensures that whichever is the greater correction (whose index

is denoted by J^) at the start of the region remains the greater throughout

the region. It has just been shown how can be evaluated at r^ and r^^^.

For inner regions r^ < x < r^^^ (1 = 1 , .. M-1) can be calculated by

considering the relative magnitudes of d|Ax^]/dX and d|AXj |/dX at X = r^.

Note that d |Ax ̂|/dX = -dAx^/dX when Ax^ < 0; d|Ax^| /dX = | dAx^/dX j when

Ax^ = 0; and d|Ax^|/dX = dAx^/dX when Ax^ > 0. Also, for comparison purposes,

the denominator of equation (4.10) can be taken as unity giving dAx./dX =
u lc*"2I (k-1) A., r_ at X = r, . Then J., is set to i if d|Ax.|/dX > d|Ax.]/dX; k=2 ^ i i i 1 J

otherwise is set to j. An alternative, and much simpler method of

determining (which occurred to the author at a later date) would be to

compare the relative magnitudes of the corrections evaluated at an interior

point of the region, say at X = (r^ + r^^j)/2.

The accumulation of the results of all the comparisons between pairs of

corrections is simple in principle, albeit complicated in practice. The

steps can be summarised as follows.

Step 1 Set i = 1

Step 2 Set j = i + 1

Step 3 Compare [Ax Î and |AXj| to obtain M, r^ and (1=0, .. M)

131

as already discussed

Step 4 If i =1 and j = 2 then initialize cumulative

information by setting N=M, = r^ and I^=J^

(1 = 0 , .. M) and continue from step 6 . Otherwise

Step 5 add results of comparison to cumulative total. For

each 1 for which J^=j check whether the region

r^ < X < r^^j overlaps with any region < X <

in which I^=i. In the event of an overlap, since it

is known that > Iax^] in region 1 then in the

overlap the a^, I^ information must be amended in one

of the four ways shown in Figure 4.3.

Step 6 If j < n then set j = j + 1 and continue from step 3

Step 7 If i < n-1 then set i = i+1 and continue from step 2;

otherwise the process is complete.

There are a total of n(n-l)/2 combinations of two corrections; the

loop structure of the above algorithm is such that each combination is

considered once only. At step 5, it will be noticed that only those regions

1 for which = j (i.e. |A Xj| > | A x̂ |) are considered for incorporation

into the running total. On completion of step 5, for each region k it will

be seen that

|Axj I ^ |Ax^| (1= 1, ... i) if I^ i

|Axj I ^ l ^ x ^ l (1=1, ... j) if I^ > i

On completion of the last execution of step 5, when we have i = n-1 and j=n

then it will follow that for all the regions

|Ax I ÿ I Ax.I (1=1, ... n)
k

Jl-j

•>

132

..
r. r 1+1

^ Vj Ik+]=i
o

“k “k+1 “k “k+1 *k+2

(a)

Jl=j

^1 ^1+1

' ^i,=i Iv.ui=j
-•— 4

“k “k+l “k “k+l “k+2 “k+3
(b)

 .
^1 ^1+1

Ik-i _ \=" Ik+,=i
“k “k+l “k “k+l “k+2

(c)

^1 ^1+1

o
\ ' “k+l “k *k+l

(d)

Figure 4.3 Updating cumulative information on maximum

magnitude corrections

133

The way in which this accumulation operates is illustrated in Figure 4.4.

for a hypothetical case when n=4. There are twelve distinct values of X

at which two corrections are equal in magnitude; these values are numbered

across the top of the figure and, for convenience, are shown equally-spaced.

Of the six comparisons, only three (steps 2, 4 and 8 in the figure) affect

the accumulated information. Note how at step 8 the range < X < is

extended.

In the second stage of the method, information is added to that obtained

in the first stage specifying the regions in which |Ax | < p and

| A x . _ I % p. This, in general, will require a further subdivision and a
k

corresponding increase in N. It is only necessary to consider those

corrections which, for at least part of the range of real X, are greatest in

magnitude; thus in the example of Figure 4.4 correction 4 would not be

considered. The values of X at which |Ax^| = p are given as the roots of

the equations

k-1 k-1Z A., X*̂ = p Z B. X* (4.12a)
k=l ^ k=l

n . , n+1
Z A.-X = -p Z B. X (4.12b)
k=l k=l

Each equation has n roots; complex roots must be discarded. If n is odd

then there is at least one real root to each equation. Assume that in total

there are M real distinct roots r^(l=l, .. M) and ordered such that r^ > r^ ^

In the region r^ < X < r^^^ (1=0, .. M) it follows that |Ax^| will either be

above or below p throughout the whole of the region; it is assumed that

r = -*» and r,, , = +« . The test for whether a correction is above or below o Mfl
p between consecutive roots is based on considerations of the slope of |Ax^I

at the lower root; it could equally-well be done by evaluating |Ax^| at some

134

î

CM

00

vO

m

ro

es

§■

w

es M ■

es
II

>-i • -

es O '

(S
II

es.,J-i

en
II

IIenM

en

en
II
es

M

esO

es
II

M

4*
<r
II
en•“5
en

II

en

p ((

en
II

es

es
O

es
II

M

es
es•n
es
U

es
II

es
II

en

en

en
II

es
II

M

es

e s j.H

II

es
II

en
M

en

en
II
es

M

esa

es
II

en
II

en

en
S

en
"es

es
II

a

T c
M

O si­ t-4 en 1—4 si­ 1—4 si­ rH
4J en 1—4 03 03 03 03

03 ll 4-1 II 4-4 ll 4-1 ll 4-1
O) II 4-1 O O O O

II N O •r-, 4J •'“1 4-4 4J •1”) 4-4
•H 'r~l 4-1
1—4 O O O o
03 O 4-1 es 4J es 4-1 en 4-4
• H 4-1
4J II X) II X II X il X
•H II nO XI X X

II C XI •H < •iH < •H < •H <
•H M •H C

es en m vO r>. 00 a\ o F— • es

0)co•H
■U
O
<U

M
O
u
eu
rC

<4-1
O
V)
<u

-a
a
4_)•Ha
B
g•H
4-1
eüI—1(U
M
eo

g•H
+JEo
<4-4
C•H

03
4-1
O

<44
O

C
O•H4J
(Ü

U

<

O-
O)u
a

■fi

135

point between the roots. Using this information, the requisite amendments

can be made to the regions o^< \ < in which I^=i; an additional

integer value 7̂ is stored which is set to 1 if | | < p and to 2 if

|Ax |̂ ^ p. Note that a region can be subdivided into two or more regions

with different values of

The third and final stage is the addition of the points X = -<J>.1
(i=l, .. n) at which discontinuities in F(X) occur. Such points will

correspond to singularities in the corrections and must always be in regions

for which = 2; the information is incorporated by introducing a further

n values of with = i + 2. The final regions are then summarised by

the integer N and the set of values a^, I^, ir̂ (k=0, .. N) where, for each

k, we have a region < X < in which the correction of maximum

magnitude is I Ax | and
k

|Ax ^ I < P if = 1
k

|Ax I ^ p if n. % 2

and there is a singularity in F(X) at X = if > 2.

The method was successfully implemented as a computer program. The

major programming difficulty was the complex data structure caused by the

need to insert new regions or merge existing regions. This was done using

a system of pointers using FORTRAN; other languages would be more convenient,

for example ALGOL W which has a suitable data structure. With the

pointer system, the values of a^, and were stored in arrays while a

fourth array held pointers giving the order in which the a and ir

values were stored in their arrays^ being not necessarily in ascending

order. The solution of the polynomial equations was carried out using a

standard NAG [70] Library routine using the method of Grant and Hitchins

[85]• A major difficulty was allowing for rounding error when distinguishing

136

real from imaginary roots; the NAG routine returns roots in the form (a,b)

where a and b are the real and imaginary parts. A root was taken as real

if IbI < 10 ^ (1 + |a|). To prevent overflows in the evaluation of the

coefficients A^^ and the matrix Z and the eigenvalues were both

divided by the value of the maximum magnitude eigenvalue. Since rounding

errors could be introduced both in the evaluation of the coefficients and

in the solution of the equations, a check was made: when values of X were

calculated for which |Ax^| = jAx^l, the corrections were evaluated by

using the original equation (4,9a); if they did not agree to within a given

relative tolerance of 10 ^ then Newton's method was invoked to adjust X

suitably. A similar process was applied when finding X such that |a x |̂ = p.

Tests were carried out using data for Rosenbrock's function and the

eight exponential equations shown in the Appendix. A third test was done

on a problem of six equations with randomly-generated Z and values. In

all cases, it was never found necessary to use Newton's method to refine the

roots; this indicated that rounding-errors were not a problem (double­

precision arithmetic was being used). Further, the results were compared

with those obtained using Dowson's method. Apart from minor differences in

values due to rounding-errors, the results obtained by both methods were

identical. In addition to confirming that the new method had been programmed

correctly, this showed that, for the test cases and most probably for other

problems with a moderate number of variables, Dowson's search is extremely

reliable in locating the discontinuities in slope. Since it requires an

order of magnitude less processor time, and considerably-less storage for

code, then there was considered to be no advantage in using the new method.

137

4.3 Problems with two variables

Optimization problems involving two variables are a special case in

so far as it is possible, on a two-dimensional graph, to plot the contours

of the objective function. Many computer installations have packages

available to do this. Consequently, if an attempt at optimizing a

function fails, then all that is usually necessary is to plot the contours

of the function in the region of interest. If there are any constraints,

these too can be shown on the plot. An inspection of the contours will

then yield a sufficiently-close estimate of the position of the minimum

for the optimization method to converge when started from this estimate.

Thus in most instances, the main concern with two-dimensional problems

will be with the efficiency rather than the reliability of the method

used for their solution. It will often be possible to develop fast ad hoc

methods of solution. The following three case studies illustrate these

points. The first and last cases are of problems requiring solution many

times, with different sets of data, in a single computer run. The second

case describes an algorithm for finding to a high resolution the region

of stability of an electrical machine.

138

4.3.1 A modification to a finite-eXement method

The following nonlinear least squares problem is taken from work

Hayhurst and Henderson [86] carried out in which the finite element method

was used to predict the effect of stress redistribution due to creep in a

notched cylindrical bar. In order that the nature of the problem can be

explained it is necessary to use some of the concepts involved in the

finite element method; these are introduced without further explanation, a

good text on the subject being that by Zienkiewicz [8l].

The model is shown in Figure 4.5; axial symmetry could be assumed

because the bar was of circular cross-section, the notch was cut circum-

ferentially and the load was applied axially. Further, since the two

halves of the bar obtained by cutting through the notch were symmetric,

the analysis was restricted to one half only. A triangular finite element,

described in Chapter 4 of Zienkiewicz*s book [81] was used and the half

bar subdivided by a mesh made up of these elements. Note that each element

represents a solid of revolution about the axis.

Considering a single element, the nodes are numbered i, j and m in anti­

clockwise order. For node i, the radial and axial coordinates are denoted

by r^ and z^ respectively; the applied nodal forces are given by and Y^;

and the resulting elastic displacements are u^ and v^. Similar terms for

the other nodes are obtained by changing the subscripts. The nodal

displacements are related to the applied forces by the equation

F = k 6 (4.13)

T Twhere F = (X., Y., X.,Y., X , Y), ô = (u., v. , u., v . , u , v) and k is — 1 * i’ J J m m 1 1 J] m' m
a 6 X 6 symmetric matrix known as the element stiffness matrix. The values

for k are obtained from the double-integral expression

k = 2tt ffB^ D B r dr dz (4.14)

— ---

Load

Figure 4.5 Axisyiranetrie Finite Element and Notched Bar

140

The 4 x 4 matrix D is the elasticity matrix and depends upon the material

properties; the 4 x 6 matrix B depends solely upon the element geometry.

If B is partitioned into three submatrices such that B =

then we can write

B. =
1

0
b.1

^i z— + b . + ^ . — r 1 1 r
c.1

c.1
0
0

b.1

(4.15)

Similarwith a. = r z - r z.,b. = z . - z and c. = r - r..1 j m m j ’ i J m i m j
expression for B^ and B^ can be derived by cyclic rotation of the subscripts.

When all the equations (4.13) for each element are aggregated over the

mesh, then a single set of equations is obtained relating the externally-

applied nodal forces to the nodal displacements (the internal nodal forces

sum to zero). For each node, either the applied force or the node

displacement is given by boundary conditions and so the equations can be

solved to give the unknown forces and displacements. Once the displacements

are known for all the nodes of an element, the elastic strains and stresses

can be derived. The rate of increase of strain due to creep is then

derived from a supplied constitutive relationship between strain rate and

stress. By numerically integrating the strain over a time-step, the effect

of creep on the elastic strain distribution, and hence stress, can be found.

The integration is then repeated until rupture of the bar occurs.

Initial computer runs showed that as the integration progressed the

original equilibrium between applied load and internal stresses was not

maintained. It was thought that one cause for this might be the use of a

representative stress for each element in the strain rate calculation. The

four stress components a in an element are related to the nodal displacements

by the relation q = DBf. It will be seen from equation (4.15) that B, and

141

hence _a, varies with r and z. The representative stress used was that of

the centroid of the element (r, z). Hayhurst suggested that a better

choice might be the point (r*, z*) chosen so that if B is evaluated at

(r*; z*) to give B*, then the value k* for k, obtained by replacing B

by B* in the double-integral of equation (4.14), is not far removed from

the true value of k. A least squares objective function can then be

defined by

6 6 2
f(r*, z*) = I Z (k*..-k..)^ (4.16)

i=l j=i '•J ’■J

Since k is symmetric, the summation is only taken over the upper triangle;

strictly speaking a weight factor of two could be applied to the off-

diagonal terms. Although there are 21 residuals, six values of k^j are

independent of the (r,z) terms in the B matrix expression given in equation

(4.15); consequently the problem reduces to one of 15 residuals and 2

independent variables. It then remains to find optimum values for (r*, z*).

The Gauss-Newton method was used for the optimization, including a

line search similar to that used in the Gauss-Newton section of the two-

part algorithm described in Chapter 2. The initial guess for the variables

was taken as (r, z), the centroid. At each iteration, the maximum permitted

changes in the variables were + 0.5r* and + 0.5z*. Note that since only two

variables were present, the evaluation of the Gauss-Newton corrections, which

requires the solution of linear simultaneous equations, was readily done

algebraically. The search was programmed in FORTRAN IV on a DEC PDP-11/20

minicomputer and, when tested, transferred to an IBM 370/195 for incorporation

in the main finite element program.

The effect on k* of optimizing (r*, z*) is shown in Table 4.1. The

actual values of k^^ are shown together with the k*^j values obtained using

the centroid and the optimum points. The six values of k^j which are

independent of the terms in equation (4.15) for B involving r and z are

142

k. .ij
(exact) (centroid)

>̂ *ii
(optimum)

44.3
0.00

- 2 1 . 2

6.04
1.01

-6.04
8.06

-8.06
57.7

-26.2
2.69
18.1
2.01

17.5
6.04

23.2
0.00

- 2 1 . 2

6.04
1.01

-6.04
8.06

-8.06
55.4

-26.2
5.04
18.1
2.01

15.1
6.04

27.2
0.00

- 1 2 . 8

2.26
5.30
-2.26
8.06

-8.06
55.9

-26.3
4.90
18.3
2.14
14.8
5.91

N.B. Nodal coordinates of element are (0,0), (10,0) and (10,10)

At centroid, (6.667, 3.333), objective function = 464

At optimum (5.514, 2.699), objective function = 424

Table 4.1 Optimization of (r*, z*) for one finite element

143

omitted. It will be seen that a slight improvement in the objective

function of equation (4.16) is obtained. However, this is unusually large;

most of the elements in the finite element meshes used show a less marked

reduction on optimization. Consequently, no significant changes in the

results of the creep integration were found when the optimum, rather than

centroid, points were used to calculate representative stresses. Eventually,

the numerical difficulty was surmounted by using an improved mesh, with

finer elements in the vicinity of the notch.

144

4.3.2. Stability of an electrical machine

This two-dimensional search is part of a contouring program developed by

the author. The program produces, on a digital plotter, a graph showing the

region of stability of a reluctance-synchronous machine over a range of

operating conditions. The mathematical basis of the program is due to Lipo

and Krause [87] who used small displacement theory to apply Nyquist's criterion

to small perturbations about a steady-state operating point. Only the results

of the analysis done by Lipo and Krause which affect the program are given here,

and then without further explanation.

The design of a particular machine is specified by the values of a set

of machine parameters. Given the voltage and frequency, a steady-state

operating-point can be specified uniquely by two values - the slip f and

the torque T. The search strategy assumes that the region of stability in

the plane is bounded by a closed, convex curve such as that shown in

Figure 4.6. The dotted lines in the figure are the maximum and minimum

steady-state torques which, for any given value of f„, are obtained by a

straight forward calculation. Using Nyquist’s criterion, it can be shown

that the operating point (f^^ T) will lie on the bounding curve of the region

of stability if the locus of the complex function G(jv) passes through (-1, 0).

This locus is obtained by varying the scalar v, where j denotes the complex
. 2 .operator j = -1. For any given v, G(jv) is a function of f_ and T, as well

as the fixed machine parameters.

If we write G(jv) = a(v) + jb(v) then the analysis shows that

a(-v) = a(v) and b (-v) = -b(v). Consequently, in any search on v for given

fĵ and T to locate a point (if any) for which G(jv) = (-1, 0) it is only

necessary to consider positive values of v. If v* is the value of v for

which a(v*) = -1, then the value b(v*) indicates how close to the bounding

curve the values of f^ and T are. The program approximates the bounding

curve by locating a finite number of points (fL, T) around the curve, at

1A5

T
Maximum
Torque

Boundary of region
of stability

Minimum
Torque

Figure 4.6 Search for the boundary of the region of stability

146

roughly-equal spacings. This Is done hy searching along lines (such as

CE in Figure 4.6) whose origin is at a point near to the middle of the

region of stability and finding their points of intersection with the

bounding curve. If r is the distance along such a line, the intersection

will be at r = r* for which the corresponding value b(v*) is zero. Thus the

search is two-dimensional with variables v and r. Two nested one-dimensional

searches were used since, in addition to being reliable, they could readily

cope with the physical constraints on v and r .

The inner search is on v to locate v*, given f and T. It is assumed

that as V increases from zero a(v) increases from values below -1 to values

above -1; this assumption has not been invalidated by any of the cases so far

studied (if it was, the search would terminate with an error message).

A starting value for v is taken as the value for v* last found (or unity if

this is the very first search on v). If a(v) is greater than -1, v is

multiplied by 0.1 repeatedly until a(v) < -1. Then v is doubled repeatedly

until a(v) ^ -1; it is then known that v/2 < v* ^ v This bracket is reduced

using a dichotomous search until at the midpoint of the bracket |l+a(v)| < £j

is satisfied; is the required accuracy of value 10 ^ in the present case.

A fail-safe exit is taken if the bracket is reduced to a very small amount

without the accuracy criterion being satisfied; this would happen if rounding-

error effects are larger than the chosen value of . Similar fail-safe

criteria are built into the other searches described later. On exit from

the search, v* is taken as the midpoint of the range; b(v*) is evaluated for

use in the outer search.

A preliminary calculation is carried out to set up a system of lines

whose intersections with the bounding curve are located by the outer search.

First, the two intersections of the curve with the f^-axis, A and B in

Figure 4.6, are found. Starting with f^=0.01, the value of f^ is

incremented in steps of 0.01 and b(u*) calculated corresponding to f^ with

147

T=0. If the signs of b(v*) on two successive f^ values are opposite, then

a bracket has been obtained enclosing one of the points A and B. This bracket

is reduced by a dichotomous search until |b(v*)| < £2» where the required
-5accuracy ^2 was taken as 10 in the present case. A polar coordinate system

(r, 0) is then set up with its origin at C, the midpoint of the line AB.

Lines are generated by taking values of 0 at intervals of one degree in.the

range 0 to 360 degrees. For each value of 0, the corresponding line is given

by the following parametric functions of r:

fR = ; (4.17a)

T = i (TMAX - TMIN) r sin 0 (4.17b)

In these expressions f^ and f^ are the values of f^ at A and B, while TMAX

and TMIN are the maximum and minimum torques for the value of slip f^ at C.

This choice of scale is made so that equal intervals of 9 will correspond,

roughly, to equal distances along the arc of the curve between successive

intersections. It also ensures that the values of r* are in the order of

unity.

Full details of the search for r* will not be given here since the

process is straight forward. An initial estimate of r* is taken as 0.8

times the value of r* found for the previous 9; note that r*=l when 0 = 0

180. This estimate is multiplied by 1.5 repeatedly until either the

sign of b(v*) changes, when the intersection D with the bounding curve will

be bracketed, or else the upper limit of r is reached at E (which is itself

located by a further search) without a change of sign. In the latter event,

the search returns to the original estimate of r* and halves it repeatedly

until b(v*) changes sign. A dichotomous search, identical to that used to

locate A and B, is employed to locate the intersection accurately.

148

The program was written in FORTRAN IV for a CDC Cyber 72; the digital

plotting was done with the aid of a standard package. Figure 4.7 shows

the typical output of the program. Rough estimates show that if a standard

method of contouring were used, in which values of a function are obtained

by interpolation between values at specified points on a grid, then

considerably more computation would be necessary. A similar technique for

producing contours, using an (r, 0) coordinate system, was provided by the

author for Dinibutiin and Corbett [88] who used it successfully to calculate

contours for two control variables corresponding to small, specified

departures from an optimum operating point. In this case however, the

plotting was done by hand using the coordinates of the Contours as output

from the program used by Dinibutiin and Corbett.

149

NUMBER 4 MACHINE

c rL UCL.

L U
CZ)
C CC D

C D

Figure 4.7 Sample output: from the contouring program

150

4.3.3 The Michaelis-Menten Equation

In biochemistry, the velocity|y of a chemical reaction catalyzed by an

enzyme, present in concentration x, is given by the Michaelis-Menten equation

which states that [89]

y = ^ (4.18)

The constant V is the maximum velocity, which y will approach as x tends to

infinity; K is the Michaelis constant and is equal to that concentration

giving half the maximum velocity. To determine the values of V and K for a

specified reaction, experiments are first carried out in which the velocities

y^ are measured at different values of concentration x^ (i=l,..m). The

best estimate of V and K is then taken as that which gives the closest

agreement, in a defined manner, between the measured values of y^ and those

predicted by equation (4.18) at the m experimental points. A least squares

measure requires that the minimum be found of the function

- Z i 2S, (V.K) = (y. -)2 (4.19)
1=1 1

The standard statistical technique of linear regression unfortunately

cannot be used since the residuals in equation (4.19) are nonlinear functions

of K. To avoid the need to use a nonlinear iterative minimization, other

measures of fit have been proposed. The most widely-used is the Lineweaver-

Burk plot which fits a straight line to the points (1/x^, l/y%). If equation

(4.18) is re-arranged we can write

— = a + — where a = — , b = — (4.20)y X V V

The values of a and b which minimize

82(3 ,b) = T (— - a - ■—) (4.21)
i=l ^i ^i

are found, in the standard manner for linear regression, by solving the two

linear equations corresponding to oS^/Ba = 0 and oS^/Sb = 0. The

151

corresponding values for V ^nd K at the minimum are then found directly

from V = J/a and K = b/a.

If the observations fit the Michaelis-Menten equation exactly, then

the nonlinear minimization of equation (4il9) will yield the same values

for V and K as that those using the linear formulation of equation (4.21).

In practice, there will be experimental errors in the measurements of ŷ ̂

and (and possibly inaccuracies due to the model itself). The effect of

these errors will not be the same for the two methods and so different values

of V and K will be obtained. Cormack and Lamb [90] wished to investigate

the effect of these experimental errors for the y^ values; comparisons were

required of the results produced by the nonlinear least squares fit, the

Lineweaver-Burk plot, a further three linear methods and a second nonlinear

least squares method using the measure

83(7 ,K) = I (log^y. - log (4.22)
1=1 1

The approach of Colquoun [91] was followed in which a set of experiments'

was simulated using a computer. For each experiment, it was assumed that

the true values were V =30 and K=6; the choice of values is unimportant since

they are effectively scaling-factors with a linear effect on all the results

obtained. In each experiment m values of x^ are specified and experimental

values of y^ are simulated by taking y^=Vx\/(K+x^)+E^ where is an error

in y^ chosen at random from a given population. Three experiments were

considered, with m=3, 5 and 6; six different possible error distributions

were used. For each of the eighteen possible combinations of experiment

and error distribution, 500 sets of values for y^ were to be generated and

the corresponding estimates of V and K obtained. The author carried

out the computer simulation; that part of the work concerned with the

nonlinear minimization of the functions Sj and in equations (4.19) and (4.22)

will now be described.

152

It was evident that a robust and efficient minimization method was

needed since Sj and had each to be minimized 9000 times. Colquoun

used a pattern search based on that of Bell and Pike [92] ; he found that this

converged within 220 function evaluations for most cases, although he does

not state with what accuracy. The author felt that a more efficient search

using derivatives was possible since the evaluation of the derivatives was

straight forward. A Gauss-Newton algorithm, embodying a line search on the

corrections, was used with success and converged within ten iterations to a

relative accuracy of 10 ^ in V and K. From physical considerations, V and

K cannot be negative and so the search was carried out using the transformed

variables log^V and log^K. Two difficulties were occasionally encountered,

caused by the generation of experimental data unlikely to be met in practice;

either K tended to zero (in the absence of constraints on K it would go

negative) or else both V and K became large. Further examination of the

expressions for Sj and showed that a simple univariate search on K could

be employed ard which would cope with these difficulties.

Partial differentiation of equation (4.19) gives

3 S. m X . Vx.
(V.K) =-2 Z ^ (y. - ^) (4.23)

1=1 1 1

For a given value of K, a stationary value of Sj will be at V = V* such that

9S|(V*,K)/3V=0; from equation (4.23) it follows that

m y . x . m x
V* = I -JLJ: / Z ^

2

i=l i=i (K+x^)2 (4.24)

This stationary value is a minimum with respect to V since further differentiatio

of equation (4.23) shows that

3 ^ S . m X .
(V.K) _ (y,K) = 2 2 (:;t̂)) 0 for all V

i=l

The function Sj(V*,K) is a function of the single variable K since V* is a

153

function of K. A direct search method to locate the minimum of Sj(V*,K)

could be used; however since the derivatives are available at little extra

cost of computation, they were used in the search. If Sj(V*,K) is

partially-differentiated with respect to K we obtain

9S m V*x. X. V-̂ x.
A m , K) = 2 r (y, - 7 --Ï. ^) (4.25)9K- * . , i K+x. 9K K+x. . X 21=1 1 1 (K+x^)

It is found by straight-forward algebraic manipulation that those terms in

equation (4.25) involving 9y*/dK sum to zero thus giving

m X. V*x.
— (V*,K) = 2V* Z i— 2 (y. - ^) (4.26)

i=l (K+x^)^ K+x.

A simple bracketing procedure, followed by a dichotomous search, was used to

locate a zero of 9Sj(V*,K)/9K. It was assumed that S^(V*,K) is unimodal for

the range of positive K; this was borne out by experience. The steps in

the search are summarised as follows:

Step 1 Set K=0; Compute V*, 9Sj(V*,K)/9K using equations

(4.24) and (4.26)

Step 2 If 9Sj(V*,K)/9K > 0 then K, if unconstrained, would

tend to negative values as shown in Figure 4.8a; in

this case set K=0, V=V* as the best estimate and

terminate the search. Otherwise, set KS=K, K=1,

and L=l; continue from step 3.

Step 3 Compute V*, 9S (V*,K)/3K

Step 4 If 9S, (v*,K)/9K > 0 then a zero of 9S,fV*,K)/9K,and

hence a minimum for Sj, lies in the range KS to K as

shown in Figure 4.8b; use a dichotomous search to

locate the position of the zero to a relative accuracy

G on K and terminate the search. Otherwise

154

K

(a) Constrained minimum

K

(b) Unconstrained minimum

K

(c) Minimum when K,V tend to infinity

Figure 4.8 Possible contours of sum of squares when fitting

Michaelis-Menten hyperbola

155

Step 5 If L-JQ then it assumed that V and K ate

tending to large values as shown in Figure 4.8c;

terminate the search with a suitable error indicator

set. Otherwise

Step 6 Set KS=K, K=2xK, L=L+1 and continue from step 3.

A similar analysis was applied to and the same search algorithm was

used. Without going into any details, it can be shown that for

. m (K+x.)
V* = e x p [- _E loge(y. - ^ ^ }]

1=1 1

9S^ m (K+x.) , m .
— (V*,K) = 2 E log^ {y^ — > [k +x 7 " m .% K+x7 11=1 1 1 j=l J

The algorithm was programmed in FORTRAN IV on an IBM 360/44. With
“6E = 10 as the required accuracy in the search on K, most searches

terminated within 30 iterations, comparing favourably with the method of

Bell and Pike even when allowing for the additional computation in the

present method. Faster algorithms could be obtained by better utilization

of the derivatives; for example, Newton's method. Since the method was

robust and acceptably fast (typically 3500 complete searches in 5 minutes

processor time) a further investigation was not necessary. It is not

appropriate here to describe the results of the simulation other than to

state that the estimates of V and K produced by the Lineweaver-Burke plot

were very poor in comparison with those produced by the nonlinear fits.

156

4.4 Problems with more than two variables

The following three case studies are optimization problems, involving

more than two variables, which the author has solved using the techniques

discussed previously. In all three instances, examination of the

formulation of the problems led to a simpler method of solution. This

is not always possible, especially in the design situation where there

can be a large number of variables and no underlying simpler form (the

author successfully applied the two-part algorithm of Chapter 2 to à

least squares problem arising in the design of a zoom-lens; in this case

he was supplied [93] with a "black-box" set of FORTRAN subroutines which

calculated the functions and first derivatives).

The first of the three case studies describes the development of a

global optimization method for a least squares problem with many local

minima arising in cluster analysis. The second concerns the solution of

nonlinear equations arising from the quantum theory of phase transitions;

the problem was greatly simplified by reformulation. The third case is

from the design of waveguides for microwaves; the problem involved five

variables and was in fact reduced to a single variable problem.

157

4.4.1 An algorithm for cluster analysis

The process of classification [94] is of importance in many diverse

areas of study such as archaeology, botany and linguistics. A classification

of a given set of objects places each object into one of several initially-

undefined classes; this can be contrasted with the related process of

assignment in which a single object is placed in one of a number of previously-

defined classes. An important statistical approach to classification is that

of cluster analysis in which a quantitative measure of similarity between

objects is defined and then the set of objects is partitioned into groups,

in some optional fashion, such that objects in the same group are similar.

Many algorithms exist [95] for cluster analysis; that to be described here

uses a Euclidean measure of similarity as follows.

Suppose that there are n objects and it is required to partition them

into g groups; note that the most suitable choice of g will usually be found

by experimenting with different values. Each object can be described in

terms of certain of its measurable properties; if the investigator chooses

p such properties then an object can be represented by the point in p-

dimensional Euclidean space given by the measurements on that object. For

any given partition of the objects into disjoint groups, the variability of

the objects within a group is defined as the sum of the squared distances

of each point (object) from the centroidal value of all the points making

up the group. The optimum partition is taken as that which minimizes the

total of these within-group sum of squared distances. The following notation

is used to express this mathematically; the n x p matrix X contains in

X.. the jth measurement for object i; the g x p matrix Z holds in Z, .

the centroidal value of the jth measurement for group k; and the n x g

matrix Y is used to define the partition by having = 1 if object i

belongs to group k and Ŷ ^^ = 0 if otherwise. The total within-group sum of

158

squared distances is represented by S where

g n P 2
S = Z Z y. Z (X. . - Z .) (4.27)

k=l i=l j=l “-J ‘'J

n
Z. . = I Y., X. . kj ik ij

n k=l,...g (4.28)
Z Y.,

i=i

It is readily-shown [94, p.334] that a complete ennumeration of all

possible partitions is not computationally-feasible for other than small

values of n. As a result, various approximating algorithms have been

developed which use iterative schemes to compute what is hoped to be a good

estimate to the optimum partition. These methods fall into the following

three classes, for each of which one typical algorithm is instanced. First,

agglomerative algorithms [96] start with an initial partition of the objects

into n groups so that each group contains a single object. At each iteration,

two groups are merged so that after n-g iterations there are just g groups;

thé choice of which groups to merge is made so as to minimize the increase

in S for that iteration. Second, divisive algorithms [97] commence with a

single group containing all n objects. At each iteration one group is

divided into two smaller groups so that after g-1 iterations there are g

groups; this time the choice of group and the manner of its division are

chosen to maximise the reduction in S at that iteration. Third, relocation

algorithms [98] start from an initial partition into g groups, usually

chosen in some random fashion. At each iteration, a set of possible movements

of one or more objects between groups is considered, according to pre­

defined rules; the move giving the greatest reduction in S is chosen. The

iterations are continued until none of the allowable moves will produce a

further reduction in S.

159

Fisher [99] proposed that the ennumeration problem could be reformulated

as the following nonlinear programming problem;

Minimize S
g

Subject to E Y . , = 1 i = l , . . n
k=i

Y^^ ^ 0 i = l , , . n ; k = l , . . g

The objective function S is defined as previously; however this time

the values of the elements Y^^ are treated as continuous independent variables

within the range 0 to 1. Each value Y^^ now represents the proportion of

object i that is allocated to group k. At a minimum of S, the value of Ŷ ĵ

could be interpreted as the probability that object i belongs to group k;

this information could be more useful than the disjoint partition produced

by the algorithms described earlier, Fisher did not suggest a method for

solving his formulation of the problem; Gordon [100]was interested in

developing a suitable algorithm and gave this task to the author.

An examination of the constrained optimization problem revealed that,

as will be demonstrated, a local minimum of S can only occur at points where

the values of the elements of Y are 0/1 as before. Taking partial derivatives

of S and Z, . with respect to any element Y gives Rj Im

■ I - ' - i ' ' - ' j , “ ‘ i ■ “- i ’ %

9%. »
- Y = 0 if k ^ m (4o29b)
^^Im

if k = m91-. n
^9 Z Y.

i=l

160

In the expression for 9 S / i t will be seen that, in the summation

over values of k, the only non-zero value of 9Z, ./9Y\ is for k = m; thuskj Ira
by substituting the corresponding expression for and (without

altering the result) reversing the order of summation we obtain

n
E Y.. , im

1=1

n
By the definition of Z . it follows that E Y . (X.. - Z .) = 0; hence themj im ij mj
second term in the preceding expression for 3S/8Y^^ is zero and so

- 1 . j!, - '.j'

Now suppose that a local minimum can exist with at least one row 1 of Y

not made up of 0/1 values. Consider two elements Yj^ and Y^^, both greater

than zero and less than unity. If Y^^ is increased by 6Y and Y^^ reduced

by the same amount, then the corresponding change 6S in S is given by

6S = aY(3S/9Y^ - 9S/9Y^p) (4.31)

If q and r are chosen such that 9S/9Y^^ < 9S/9Y^^, a reduction in S can

always be obtained (except for pathological cases in which the derivatives

are equal). Gordon added the observation that, from the previous analysis,

95/9Y^^ equals the distance of object 1 from the mth group centroid.

Consequently if, for given Y, one object is moved to its nearest group

centroid say q, it will at the same time get further away from the other

group centroids; consequently 9S/9Y^^ will remain the least of all the

derivatives for that object and 5 will continuously decrease right up to

161

Although a solution of the constrained optimization problem would

still yield a disjoint partition, it was believed that an effective algorithm

could be developed based on methods of constrained optimization. The

current problem is characterised by three main features. First, it has a

sum of squares objective function; second the number of variables ng and

the number of constraints (n+l)g are large for typical cases of interest

(for example, n=37 and g=5 in the example cited later); third, and most

unusually, the global minimum of S which is sought belongs to the set of

already-known disjoint partitions. The most common methods for least

squares problems use the Gauss approximation to the Hessian; for example

Marquardt [39], Hartley [37]; the computer resources for the storage and

manipulation of matrices would be costly. Similarily, methods for handling

the constraints e.g. Rosen [1 Oil would also be costly in matrix storage and

manipulation. Methods for global optimization, such as the trajectory

approach of Branin [51] are primarily intended for problems with a moderate

number of stationary points, where the problem lies in locating the loc^l

minima, rather than ennumerating them as in the present case. The simplest

and, according to Dixon, Gomulka and Hersom [48], most-used method of global

optimization was adopted, namely the multistart algorithm. This consists of

carrying out local minimizations from a set of different initial values of

the variables; the best minimum thereby found is then accepted as a good

estimate to the global minimum. Obviously, the more minimizations that can

be carried out, the greater the reliability of this method. Consequently

the simple method of steepest descent [23] was chosen for the local minim­

ization; this requires a modest amount of storage, no matrix manipulation

and was found in practice to locate a minimum in a few iterations. The

constraints were removed by a transformation of the variables Y . . so thatij
unconstrained minimization could be performed on the transformed variables.

First, the equality constaints were removed by using variables w^^

such that

162

Although it would be possible to reduce storage by treating one value,

say, as fixed and allowing the other g-1 values for that object to vary,

this scheme was not implemented since it would imply an unequal treatment

of the variables ('could not become zero in its own right, only by

values (j / j ’) becoming large). Second, the non-negativity constraints

on Y . . were preserved by a further transformation of w .. to v..; of variousij ij *
possible methods [9 p.82] a logarithmic transformation was taken to give

8
Y . . = exp(v..) / E exp (v) (4.33)iJ ij

It can be easily verified that

n.. ■ >« <f,. - V i . w, >ij ij k=l ik

and it will be noted that the derivatives 9S/9Y.. are obtained as a by-ij
product during the computation of S. This expression for 3S/9v^^ is there­

fore the most practical to use since, for any values of v^j, the correspond­

ing Y^j's must be computed before obtaining the value of S.

At each iteration of the algorithm, the steepest descent corrections

Av:j are computed by

Av^j = -X 9S/9v^j (4.35)

where the scalar parameter A > 0 is chosen to give a reduction in S and for

which purpose the following simple univariate search on X was employed.

First an initial trial value of X is taken, and reduced if necessary, to

give a decrease in S; then this value is doubled until S increases when a

minimum of S will be bracketed by the last three trial points. A simple

Golden Section is then used to locate the position of the minimum more

accurately. It was soon found by experience that it was desirable to impose

163

an upper bound X on X such that IAv. . I < Av. where Av, is a pre-setm ' ij ' L L
value which determines X^ for any iteration. When Av^ < 1, then the

search usually progresses slowly to a local minimum close to the starting-

point; intuitively the curve of steepest descent is then being followed

fairly closely to a nearby minimum. Further, when Av^ > 5 then the search

terminates rapidly in a few iterations but again at a local minimum close

to the starting-point; probably this is because the search has insufficient

opportunity to change direction advantageously. Values of A v^ 2 3 were

found to give a suitable balance and produce the best minima. It will be

noted that the recommended value Av^ = 3 does not depend in any way upon the

data matrix X and is therefore universally-applicable to all problems. It

was observed that, almost invariably, the chosen value of X at each iteration

equalled its maximum value Xm for that iteration. The minimization was

thus greatly-accelerated by taking X = X^ as the initial trial value in the

univariate search. If it produces a reduction in S then it is accepted,

tacitly assuming that a minimum of S does not exist at X < X^; otherwise the

search on X is continued as previously described by trying smaller values

of X. Note that, at the cost of some further computation, the assumption

could be verified by computing 9S/3X at X = X^ since the derivatives

3S/9Y.. will be available from the calculation for S at X = X ; the ij m
possibility of the assumption being in error did not warrant this

additional effort. The iterations are terminated when, for each object i

there is some k such that Y^^ ^ 0.999 and the sign of the steepest descent

corrections is such that Y., would increase at the next iteration.ik
Occasionally rounding errors produce a failure in the search on X to reduce

S before this criterion is satisfied, but a local minimum of S will still

usually have been effectively attained. A fail-safe limit of 100 iterations

was imposed; this has not yet been invoked for the cases studied and

usually the search terminates in 10 - 20 iterations.

164

The new algorithm was compared by Gordon and Henderson [102] against

the agglomerative and divisive algorithms available in the GLUSTAN Ù03]

package and a specially-written relocation algorithm. The test data used

was a set of 37 surface pollen samples taken by Birks [104^ who wished to

ascertain whether the samples fell naturally into groups according to the

proportions of pollen grains in each sample belonging to each of 48

species; thus in this case n=37 and p=48. Values of g=3, 4 and 5 were used

in the runs cited. The new algorithm, named EUCLID, was also tested in

combination with the relocation algorithm (RELOC) so that the final groups

produced by EUCLID are used as starting values for RELOC; this combined

algorithm is referred to as HYBRID. By their nature, the agglomerative

and divisive algorithms can only be tried once on the same data since their

starting partition is fixed; however, the EUCLID, RELOC and HYBRID

algorithms start from a random partition and were each run 20 times for

comparison purposes. The initial values of Y for EUCLID and HYBRID were

generated from the set of numbers uniformly distributed in the range 1 to
8

3 and scaled so that I Y = 1 for each object i; this ensured that all
k=i

values were reasonably close to 1/g. The results of the comparison are

shown in Tables 4.2 and 4.3; there is no result shown for the divisive

algorithm when g=5 since this required an excessive amount of computation.

Table 4.2 shows the ranking of the runs for each value of g; all runs

enclosed in brackets produced the same final partition. Thus, for g=3,

the best partition was produced by 18 EUCLID (E) runs, 19 HYBRID (H) runs

and 20 RELOC (R) runs; the next best partitions in order were produced by

the agglomerative (A) algorithm, the divisive algorithm (D) and EUCLID,

and finally EUCLID and HYBRID. Table 4.3 shows the partitions obtained

when g=5, together with the sum of squares S. It is believed by Gordon and

Henderson that the results, together with the other unpublished test cases,

demonstrate that the algorithm is a useful practical tool; the algorithm is

165

Number of Groups Algorithms ranked in order of

g increasing sum of squares of the

final partition

3 (18E, 19H, 20R), A, (D, E) , (E, H)

4 (E, 9H), E, A, 2E, (D, E, 6H, 13R),

6E, (3H, 4R), 5E, 3R, 2E, 2H, 2E

3 (2E, 12H, 2R), E, A, 2E, (3H, R), 2E,

H, 2E, (3H, 8R), 2E, (H, 7R), 7E, 2R,

2E

Key A = Agglomerative

D = Divisive

E = EUCLID

H = HYBRID

R = Relocation

Table 4.2 Comparison of five clustering algorithms

166

Sum of Squares Algorithm

1.101 (2E, 12H, 2R)

1.145

1.147

1.186

1.229

1.254

1.320

1 .329

1.335

1.373

1.377

1.384

>1.384

E

(3H,R)

E

E

H

(3H,8R)

HE, H, 9R

Partition

1.2.4-6), (3,7,9,10), (8,11,15-26)
12.13), (14,27-37)

1.2.4.5), (3,6,7,9,10),
8.11.15-26), (12,13), (14,27-37)

1-6), (7,9,10), (8,11,15-25),
12.13), (14,26-37)

1.2.4.5), (3,6-10), (11,15-26)
12.13), (14,27-37)

1.5), (2-4,6-10), (11,15-26),
12.13), (14,27-37)

1.2.4-6), (3,7,9,10),
8,11-13,17-19), (14,27-37),
15.16.20-26)

1-6), (7,9,10), (8,11,19),
12.15-18,20-26), (13,14,27-37)

1.2.4-6), (3,7,9,10), (8,11,17-19),
12.13.15.16.20-26), (14,27-37)

1.2.4-6), (3,7,9,10), (8,11,12,15-26
13.27-29,32), (14,30,31,33-37)

1-7,9,10), (8,11), (12,13),
14.27-37), (15-26)

1-5), (6-11), (12,13,17-19),
14.27-37), (15,16,20-26)

1-7,9,10), (8,11,17-19,24), (12,13)
14.27-37), (15,16,20-23,25,26)

Key A = Agglomerative
E = EUCLID
H = HYBRID
R = Relocation

Table 4.3 Partitions of Birks* samples into five groups

167

both fast (the 60 runs summarised in Table 4oZ took only 41 seconds of CPU

time on an IBM 370/165) and compact, since the storage requirement is

proportional to n for any given p and go The algorithm is now incorporated

in GLUSTAN and it is hoped to receive reports on its efffectiveness from

other researchers 0

Following this work, further consideration has been given recently to

the application of a standard method for constrained optimizationo It has

been found that, by taking advantage of the special nature of the constraints

which permit some algebraic analysis to be used in place of numerical

procedures, it is possible to modify Rosen's method of gradient projection

in order that it can be used, at acceptable computational cost, on the

cluster analysis problem Presumably similar conclusions could be obtained

with other existing methods such as those described by Zoutendijk B05],

Rosen's method must first be outlined; this will be done as it applies to

problems with linear constraints of the type

Minimize f (2c)
Subject to B]c = jb

Cx ^ £

Here the r x n matrix B and corresponding vector ^ define r equality

constraints and the s x n matrix C and vector £ define s inequality
Tconstraints on the independent variables x = (x^,,,, x^). Rosen's method

starts with an initial feasible vector x° and generates a sequence of

further feasible vectors converging to a local minimum of f(x); the

following steps are performed at each iteration;

Step 1 The direction of steepest descent for unconstrained

minimization is computed as

^ = -(af/9X|,... 9f/9x^>

where the derivatives are evaluated at the current
kvector X .

168

Step 2 The matrix A is composed of the rows of B and C

corresponding to active constraints; the equality

constraints are always active while the inequality

constraints are only active for rows i for which
n
Z C. . X . = Oo This matrix A is used to define

j=l, ̂ , k
a linear manifold in which any correction hx to x

must continue to satisfy the current active

constraints by ensuring that A Ax = Oo The search

direction ^ is orthogonally projected onto this

manifold to give a new search direction Ax such that

Ax =

p = [i - a '̂ (a a '̂)'"*a

Step 3 If Ax ̂ 0 then a line search is used to find X =
Ic • * •such that f(x^ + X Ax) is a minimum in the range

0 < X < X*o The upper bound X* is determined by the

first of the non-active inequality constraints to be

satisfied as an equality. Then x^^^ is set to
kX ^ — and the process continued from Step 1 ; if

\n = X* then a further constraint will be added to the

active set,

T -1Step 4 If Ax = 0, then the vector ja = -(AA) A ^ is

calculated. If all u^ ^ 0, then the Làgrangian conditions

[8, pi9] are satisfied, a local minimum has been

reached and the search is terminated. Otherwise

if some u^ < Q then further progress can be made if

the corresponding active constraint is released by

deleting the ith row of A and returning to Step I ;

usually the row corresponding to the most negative u^ would be chosen.

Originally, Rosen’s method was discarded because the computation and

storage of P would require excessive computer resources. However exam­

ination of the constraint set shows that it may be divided into independent

sets within which only those values for a given object i appear. Thus

it is admissible to consider the constraints on each row of Y in turn and

compute the corresponding projection matrix P^, The matrix for object i

will be typically given by

1 I 1
1 0 0
0 1 0

0 0 0

(4.36)

8
The first row corresponds to the equality constraint E Y.,=l; the second

k=l
and subsequent rows correspond to m^ active inequality constraints for

which Y i^^=0. For simplicity, the active inequalities are shown as applying

to variables Y^^ (k=l, .. m^) although the argument which follows is not

affected by this assumption other than in the group numbering. It is found,

by some straightforward but tedious matrix algebra that

P. = 1

0 . . 0 0 0 . . 0

• • • . •
0 . . 0 0 0 . . 0

0 . . . 0 1- 1 -1 . . -1
(4.37)

g-m£ 8-m^ g-mu

0 . . 0 -1 -1 1 -1
8-mu g-m£ g-mu

£ rows contain zeroes and the last g-m^ rows contain

columns ^1+1 through to column g. At the same time, it

is found also that

170

T -1 (A.À£) ‘A£ =

0 0 0 . . . 0 0 1 . 1

1 0 0 . . . 0 0
g-mu
-1 . g-m£

-1

0 1 0 . . . 0 0
g-mu
-1 , g-m£

-1
g-m£ g-ni£

0 0 0 . . . 0 1 -1 . -1
g-m£ g-m£

(4.38)

Using these algebraic results, the method of Rosen resolves to the following

simple form:

Step 1 Compute ^ = -(9S/3Yjp 8S/9Yj2> ••• 9S/9Y^^)

Step 2 Set

AY.^=0 if = 0

- g L 3Y.^^ ""ik " °

where the summation over k is taken only for those values

of k for which Y.. > 0.ik

Step 3 If one, or more, AY^^ f 0 then find X = Xm to minimize S

as for the standard method of Rosen;

Set Y.. = Y.. + X a Y., (i=l,..n;k=l,..g) and return to ik ik m ik '
step 1,

Step _4 If all AY£^=0 then it follows that each row of Y has g-1

zero elements and one element of unity. For row i, the

values of u are given by

", = 'S/ 3Y.^' where Y. * = 1 ik

for Y., = 0ik

It was shown earlier that SS/SY^^ ^ 0 and so the

Lagrangian condition is satisfied if, for each object i.

171

we have 9S/9Y., , < 9S/9Y. (k ^ k') and a local minimum of S will ik' ik
be reached. Otherwise, the values i and k are found for which

9S/9Y^^- 9S/9Y.^^ is most negative. By increasing Y^^ to unity

and reducing Y^^’ to zero, then a guaranteed reduction in S will

be obtained since this corresponds to relocating object i from

group k ’ to group k. This relocation procedure is then repeated

until the Lagrangian condition is satisfied.

It is interesting to note that a hybrid algorithm results from Rosen's

method. However, the reposition movements permitted at Step 4 are only a

subset of those allowed by the RELOC part of HYBRID; since RELOC considers

all possible repositionments of all objects then it can progress from a

local minimum of S while Rosen's method cannot. The algorithm was implemented

as a computer program; an immediate difficulty encountered was in catering

for round-off errors when discriminating between 0/1 values of Y and values

close to these limits. This problem was circumvented by using tests of the
I j "4 I I "" A • •form lY^^ I <10 and jl-Y^^ | <10 at the expense of additional

computation. The major problem met was that it is known initially there

are no active inequality constraints and at a solution there are n(g-l)

active equality constraints. Since the method only permits one additional

constraint to become active at each iteration, then a minimum of n(g-l)

iterations are required. In trials with the data of Birks exactly n(g-l)

iterations were taken (148 for g=5). Although processor time per iteration

of Rosen's method was comparable with that of EUCLID, the fact that each

iteration was restricted to taking small steps in Y meant that, as with

EUCLID for small Av^, minima close to the starting point were found. It

would be possible to modify the new method such that a step was taken, with

maximum component Av^ at each iteration; this would require the re-evaluation

of the correction vector as X is increased whenever a new inequality

constraint became active. The additional programming complication does not

at this time seem justified, in view of the success of EUCLID.

172

4.4.2 Quantum theory of phase transition?

This problem is by MacLeod [106] who wished to solve a set of fifteen

nonlinear equations which he had derived when studying the quantum theory of

phase transitions. The following description is of the equations, as they

were given to the author by Macleod, and the method adopted by the author to

solve them. No explanation of the physical significance of the equations can

be given since this is the substance of MacLeod's thesis which has not yet

been completed.

The fifteen independent variables comprise the thirteen variables

through to Kj^ and the two variables Pj and p^ . The variables are subjected

to a transformation, involving pj and p^, to give new variables K^'; it is

required to find a fixed-point of the transformation such that K| = K^,

thereby generating thirteen equations. Two additional equations, specifying

required conditions on pj and P2» make up the fifteen. The steps in the

transformation are as follows:

Step 1 For i=l, .. 13 set
13 .

u. = 2 cosh (p,+p, X.„) exp (3 E X. . K.)
1 1 Z I Z j _ I J

Step 2 For i=l, .. 4 set
13 13 , ,

^ » Z • Z X. . u, where X — X
j = i k= i k

1 3 3
Step 3 Set w^ = ^ log^ ^^1^2 ^3 ^4^ ^ ^ log^Z

*3 = i (*l*4/*2*3)
1 1 / 3 , 3 ,

”4 = 8 (*1*3 /*2 *4^
Step 4 For i=l, ...13 set

X. - i log^ cosh (3w2 + X^2 + y^)

+ log^ cosh C3w2 + w^ X^2 + z^)

Step 5 For i=l, ... 13 set

'i “ ^ii + \i<3wj+logg2) + 6.2W2+«i3W3/2
j = l

K'

173

where 6. . = 1 and ô. . = 0 , i 9̂ jrj

As shown in Figure 4.9 , the elements of the matrix X and the vectors

y and ^ are constant while the elements of the matrix A depend upon p^. A

Jacobian matrix J is defined so that from both physical
Tand mathematical considerations it can be shown that its transpose J

always has an eigenvalue of 9. The conditions required on pj and P2 are
Tthat, at a fixed-point of the transformation, the eigenvector v of J

corresponding to the eigenvalue of 9 must satisfy the equations

13 3KÎ
Z — — V. = 0 (4.39a)

i=l 3Pl *

13 3k :
r _ i V . = 0 (4.39b) ,

i=l 3̂ 2 ^

At first sight, the problem lends itself to a nested search in which

fixed values of Pj and P2 could be taken and values of K. satisfying the

equations K'^-K^ = 0 found; the p^ and P2 values could then be varied to

satisfy equations (4.39a) and (4.39b). An immediate difficulty was

apparent in that, at step 3 of the transformation, the arguments in the

logarithmic terms could become negative. To prevent this occurring,

constraints could be placed on the values but it is evident that an

explicit form for these constraints is not readily available. However,

consideration of this difficulty led to a far simpler formulation of the

original problem.

The original search for a fixed-point using thirteen independent

variables was replaced by an equivalent search using four variables bj

to b^ which are not subject to any constraints. The values of b^ are

sought to give zero values of the four residual terms f^ obtained by the

following steps.

174

CO CO ro ^
I I I I I I I

CO
I

CO CO CO — ^
I I I

II
N| I4-i

II
4-»

II

V O V O O C N C V J < J - C N C V J C ^ C M

CO CO CO CO CO

V O v D \ O C N < N (N C N C \ | C N C N C N C \ I C \ |

V D V O V O C N C M C N I C M C N C S J C N J C M C M C M

<N CN O O O O O

C M C M O C M C M O e M C M O C N l C M O O

v O v O O v O v ^ J C ^ C N C N O C N C M O O

CO CO CO CO CO

v O v D v D C N C N e N C N J C S C S l C S C S C S I C N)

v O v D v û < M C N J C N C ' 4 (N C M C M e M C M C N |

vO vO O CN CM CM CM O CM CM O

CO CO
4J

CO CO

CMVÛ \D

CMCO

CM CMCO

CO
CM CMVO

CO

CM

CM

•U CMVO

COCO•H
4-»cd3cr
<u
co
•H
4-1
•H
CO
g
u
4->

0)
COCOrCPU
oVH
cO
4-1cO
Q

ov
vj-
(U
3
W)•H

II
X

II
< 3

175

Step 1 Replace the logarithmic terms in step 3 of

the transformation by the b. values such that1
Wj = bj/8 + 61og^2

= bg/S + pj/3

«3 = bg/S

W 4 =

Step 2 Compute i=l, .. 13 using steps 4 and 5

of the transformation

Step 3 Set i=l, ..13

Step 4 Compute a^, i=l, .. 4 using steps 1 and 2 of

the transformation

Step 5 Compute the residuals

f, = b, - loggCaiag^ag^a^)

fg = - log^(a,a_/a.a,)

fa = ba - loggCa,*4 /3233)

^4 = ^4 - loggCa,33^/33^ 4)

It will be noted that when the residuals are zero then a fixed-point

of the transformation will have been found and step 3, which assumes that

K^=K^*, will be valid.. The fact that it is invalid for other values of b^

not giving a fixed-point is of no consequence. The residuals as defined

by step 5 above could still give problems with the logarithmic terms and so

an alternative formulation was tried so that
3 3fj = a^ a^ - exp(bj)

^2 ^ ^ 1^2 ~ ^3^4 (bg)
fg = a^a^ - a^a^ exp (by)

^4 = *1*3^ ~ ^2% (^4)

Practical experience showed that this form could lead to apparent, but

erroneous, solutions in which the b^ values tended to large, negative value.

176

with correspondingly small a^ values. In this case although the residuals

became small in absolute magnitude, the two terms comprising the residual

were still unequal and tests for equality were susceptible to rounding

error. To ensure that the residuals were composed of two terms of order

unity they were then reformulated as

3 3fj = exp (-bj) a^ag a^ - 1

f g = G x p (- b y) (a ^ a ^ / a ^ a ^) - 1

f^ = exp (-bg) -1

f^ = exp (-b^) { a ^ a ^ / a ^ a ^ - 1

Using this form, a fixed point for any given values of Pj and P 2 was found

readily using Newton’s method for nonlinear equations, with a line search

to ensure that the sum of squares of the residuals was reduced at each

iteration.

It was decided, for reasons of efficiency, that it would be better to

search for Pj and p^ simultaneously with the search for a fixed-point,

rather than in an outer loop as first proposed. The problem thus became one

of six equations in the six unknowns b^, b^, b^, b^, Pj and p^. The Jacobian

J was evaluated on the assumption that for the given variable values, a

fixed-point had been reached; that this assumption only holds true at a

solution of the equations does not affect the results. Thus to compute the

Jacobian, the values of K. are first set to the K ' . values derived from the1 1
current variables (steps 1 and 2 of the revised formulation of the problem).

Then steps 1 to 5 of the original transformation are followed, only this

time computing the partial derivatives 3u./3K., 9a./9K., 9w./9K., 9x./9K.1 J 1 J 1 J 1 J
and ultimately 9K'^/9K^. At the same time the values 9K’^/9pj and 9K’^/9p2

required by equations (4.39 a) and (4.39 b) are found. It should be noted

that there is no problem with the logarithmic terms when evaluating the

derivatives 3w./9K..1 J

177

A major saving in computational effort was made by avoiding the need
Tfor an eigenvalue/eigenvector analysis. Assuming that J has an eigenvalue

of 9, then the eigenvector V must satisfy (J - 91) V = 0. This gives 13

equations but it is known that (J^-9I) is of rank 12 and there are 12

independent equations. Taking as unity and considering equations 2

through to.13 gives

2.3

2,13

3,2

'3.3-'

3,13

13,2

13,3

^ 13,if^

“ -

^2 ^1.2

’3 ^1.3

V,3 •^1,13

Any standard library procedure for solving sets of linear equations with a

real, unsymmetric matrix of coefficients can be used to calculate the values

of to Vj2 *

The problem was programmed on an IBM 360/44 in FORTRAN IV and a solution

successfully obtained for which pj=2.6413; P2=0; Kj=-2.7790; K2=0.44021 and

the remaining values of are zero. Unfortunately, this solution was of

pathological interest to MacLeod. Trials with the program starting from a

wide range of initial estimates of the variables always produced this same

solution, tending to support the belief that it was the only solution.

Subsequent work by MacLeod, and similar experiences by other workers in the

same area of quantum theory research, have led him to reconsider the

theoretical basis of the equations.

178

4.4.3 Waveguide design

This case study comes from work by Croydon[107] on the design of wave­

guides for the transmission of microwaves, following earlier work by

Baden Fuller[108]. First, the problem as presented to the author will be

described; then the manner in which the author applied the techniques of

optimization to solve the problem will be discussed.

Croydon had written a computer program which solved a set of eight

ordinary, simultaneous differential equations by numerical integration. The

dependent variables will be denoted by Yj to Yg and the variable of
Tintegration by r. Croydon sought values of four parameters K =(Kj,K2,Kg,K^),

which appeared in the differential equations, such that at K=K* the four

equations Y^=0 (i=5, .. 8) were all satisfied at some point r=r* during the

integration. He used a coarse pattern search whereby each was varied

over a set of ten discrete values; integrations were carried out for all

10^ possible combinations of values for K. The output from these

integrations was inspected to see if good estimates of K* and r* could be

found. A further complication was that, having located a solution, Croydon

then wished to vary a fifth parameter 3 , also appearing in the equations,

to find a value 3= 3 * such that r*=b, where b is a specified constant.

Obviously Croydon’s scheme was costly in terms of both human and computer

resources; a method of automating the search for K* and 3* was developed as

follows by the author.

First, further information was obtained about Croydon’s program. The

equations were derived from Maxwell’s classical equations for electromagnetic

radiation. The variable r denotes the radial distance from the longitudinal

axis of a cylindrical waveguide, consisting of a central air gap at r<a and

an annular ferrite core, from r=a to r=b, encased in a copper sleeve. The

dependent variables are the magnetic field strengths H q and H^and the electric

179

field strength and E^; the suffices ç and z refer to the tangential

and axial components respectively. These quantities are represented by the

complex values

He = Y, + j ?2 Eg = ?5 + j
«Z = ?3 + j ?4 = Y, + j Ï8

where j ̂ =-1.

The differential equations can be expressed in the form

Ir “ “ -

in which the 8 x 8 matrix A depends upon 3 and r; it is the dependence upon

r which makes a numerical integration necessary. The values of K specify

eight boundary conditions

Y = B K at r=a

in which the 8 x 4 matrix B is a function of 3 . A further four boundary

conditions are given by the requirement that at r=b the electric field strength

be zero i.e. Y.=0 for i=5 to 8 . The search on K and g is carried out to 1 — ^
satisfy these last four conditions.

Since the differential equations are linear in Y, it follows that the

solution for IT is of the form

Y = C (r , 3)K

where, as indicated, the elements of the 8 x 4 matrix depend upon r and B.

Although C cannot be expressed analytically, the value of C at given r and for

specified 3 can be found by carrying out integrations for four linearly-

independent trial vectors for K. If for the 1th trial, the vector is and

the values of Y at the required radius are Y^ then for each row i of C we

have ,
1 1Z K. C , . = Y. (1=1, .. 4)

j=i j 1

180

These equations can be solved simultaneously to give the values of C on

each row. Note that while this is an exact relationship, the values of

are subject to errors incurred by the numerical integration process

If the last four rows of C are represented by the 4 x 4 matrix D(r,3)

then the problem can be stated as find g* and K* such that

D(b,3*) = 0

The trivial solution K* = 0 is of no interest since this would imply

zero electric and magnetic fields throughout the waveguide. Nontrivial

solutions can exist only if D is singluar, which could be achieved by

varying 3. In this event, K* = aV where V is the eigenvector corresponding

to a zero eigenvalue of D and a is an arbitrary constant. An equivalent,

but easier-to-program, approach was taken in preference to this eigenvalue-

eigenvector method.

Without loss of generality we can fix one component of K; was

chosen and taken as unity. We then define residuals

3
f. = Z D . . (b,3)K. + D.,(b,3) (i=l, .. 4)
^ j=l J

and search for 3, Kj, and to reduce these residuals to zero. Since

the residuals are linear in the K j ’s, then a standard linear least squares

solution gives the values of Kj, and which, for the current 3 ,

correspond to the minimum sum of squares of the residuals, which will be

denoted by f(3). A simple line search can then be used to locate values

of 3* (if any) for which f(3*) = 0 .

A FORTRAN IV program to do the search was written and successfully

run. The evaluation, for given 3 , of the elements of C (and hence of D)

was done in a different way from that described. To reduce the effect of

errors in the integration, the partial derivatives 9Y^/9Kj were integrated

in parallel with the integration of the Y^ values. It will be observed

181

that C^j=9Y^/9Kj, The relevant differential equations are, letting

Z . . rn 9Y » / 9K.
^2 1 J

dZ. . 8

Z. . = B . . at r=a 1] ij

A simple grid search was used in which f(3) was evaluated at a series of

equally-spaced values of 3 in the range of interest. If a minimum of f(3)

was bracketed by three successive 3 values, then the position of this

minimum was located accurately by a Golden Section search. The typical

variation of f(3) with 3 is shown in Figure 4.10, where it will be observed

that there are two solutions for 3*. The discontinuity at 3=1 is due to the

presence of terms involving division by 3*-l in the matrices A and B.

Figure 4.10 Typical form of f(3)

83

5. ASSESSMENT OF THE RESEARCH

The author believes that the research has proved worthwhile in

several areas. First, the two-part algorithm described in Chapter 2

is a new and powerful tool for solving difficult nonlinear least squares

problems and systems of nonlinear equations. Second, the hybrid algorithm

discussed in Chapter 3 embodies some novel features, including the use of

parametric linear programming methods. It is a reliable and accurate

method for solving sets of nonlinear equations of the type and difficulty

used by most researchers to test new algorithms, although it was not so

successful as the two-part algorithm on the extremely difficult Problem 1

of the Appendix. Third, the case studies highlight a number of aspects

of the application of optimization techniques to practical problems; the

author believes that the main observation from this part of the research

is that it is beneficial to consider alternative formulations of a problem

before carrying out the optimization. Fourth, a new and extremely-useful

algorithm for cluster analysis was developed.

APPENDIX TEST PROBLEMS

The following nine test problems have the objective function
m 2

F(x) = E f. (x) where m>n. The starting point is denoted by x and
i=i 1 -

the solution by x* .

Problem 1 Skwirzynski [60]

m=8; n=8

f^(x) = x^(l-XjX2)(exp [a^]-l) - X2

= ('-*1=2)(exp [8j^]-l) - Y^^Xj + ?4i

a.1 = X4(?,i - h i X, X 10 ^ - Yr.x^ X 10 6 5i 7

= Xg(Y,. - Y2- - Y_. X, X 10”^ + Y , . 3i 6 4i Xg X 10

i = 1. 2. 3. 4

The constants Y^j (i=l, •• 5; j=l, .. 4) are given by the table

below, where element Y . . is ij in row i and column j •

0.485 0.752 0.869 0.982

0.369 U254 0.703 1.455

5.2095 10.0677 22.9274 20.2153

23.3037 101.779 111.461 191.267

28.5132 111.8467 134.3884 211.4823

x ° = (a, a, a, a, a. Ta, a, a) a = 0.1 (0.2) 0.9, 1(1) 10

X * = (0.9000, 0.4500, 1.000, 8.000, 8.000, 5.000, 1.000, 2.000)^

F(x°) is shown for each of the fifteen starting points

in Tables 2.1 - 2,4

F(x*) = 0

A solution with negative values of x exists at x* = (0.8985, 0.9740,

11.65, 3.251, 6.711, -8.763, 1.251, -0.5251)^

This alternative solution is of no interest since it has no physical

realisation. A logarithmic transformation of the variables was used in

the optimization to ensure that only positive solution values could be

found. This transformation introduces the local minimum of F(x) = 0.0548

at

x = (0.9014, 0.8910, 3.882, 5.3240, 10.65, 0.0, 1.089, 0.7033)^

Problem 2 Meyer and Roth [42]

m=5; n=3

f^(x) = a^XjXg/(l + a^ x^ + b^ Xg) "

a = (1.0, 2.0, 1.0, 2.0, 0.1)T

b = (1.0, 1.0, 2.0, 2.0, 0.0)T

y = (0.126, 0.219, 0.076, 0.126, 0.186)^

x° = (10.39, 48.83, 0 .74)^; F(x°) = 0.0365

X * = (3.13, 15.16, 0.78)T ; F(x*) =

Problem 3 Rosenbrock [19]

m=2 n=2

fJ(x) = 10(X2 - Xj^)

f2 W = 1 - Xj

x° = (-1.2, 1.0)^ F(x°) = 24.2

X* = (1.0, 1.0)T F(x*) = 0.0

Problem 4 Rosenbrock [19]

Identical to Problem 3 except that

x'̂ = (-0.86, 1.14)^\ F(x°) = 19.5

Problem 5 Meyer and Roth [42]

m=23; n=3

f^(x) = Xg(exp [-a^x^] + exp [-h^x^]) - y^

a = (0, 0.6, 0.6, 1.4, 2.6, 3.2, 0.8, 1.6, 2.6, 4.0, 1.2, 2.0, 4.6,

3.2, 1.6, 4.2, 2.0, 3.2, 2.8, 4.2, 5.4, 5.6, 3.2)^

b = (0, 0.4, 1.0, 1.4, 1.4, 1.6, 2.0, 2.2, 2.2, 2.2, 2.6, 2.6, 2.8,

3.0, 3.2, 3.4, 3.8, 3.8, 4.2, 4.2, 4.4, 4.8, 5.0)^

= Xg* (exp [-a^ Xj*] + exp [-b^ x^*])

x° = (12.0, 1.0, 25.0)^ ; F(x°) = 216.0

X* = (14.3, 1.5, 20.1)T ; F(x*) = 0.0

Note that the values of y^ are set to give a minimum sum of squares of zero

Problem 6 Meyer and Roth [42]

Identical to problem 5 except that the values of y^ are rounded off to

1 or 2 significant figures to give

y = (4 0, 1 0, 5, 2.5, 2.5, 2.0, 1.0, 0.7, 0.8, 0.7, 0.4, 0.4, 0.3,

0.22, 0.2, 0.1, 0.05, 0.07, 0.03, 0.03, 0.03, 0.02, 0.01)^

The solution then becomes

x*= (31.5, 1.51, 19.9)^; F(x*) =1.25

This solution is that quoted by Meyer and Roth. In fact, the value of

F(x*) is insensitive to changes in Xj* and so this variable is not exactly

determined by the optimization.

Problem 7 Meyer and Roth [42]

m=l0; n=3

f^(x) = Xj + ^2 exp [a^ Xg] -y^

a = (1, 5, 10, 15, 20, 25, 30, 35, 40, 50)^

yi = Xj* + X2* exp [a^ Xg*]

x° = (20.0, 2.0, 0.5)^; F(x°) = 2.1j^22

X * = (15.5, 1.2, 0.02); F(x*) = 0.0

Note that the values of y^ are set to give a minimum sum of squares of zero

Problem 8 Meyer and Roth [42]

Identical to Problem 7 except that the values of y^ are rounded off to 3

significant figures to give

y = (16.7, 16.8, 16.9, 17.1, 17.2, 17.4, 17.6, 17.9, 18.1, 18.7)^

The solution then becomes

X* = (15.67, 0.999, 0.022); F(x*) = 0.006

Problem 9 Meyer and Roth [42]

m = 16 ; n=3

f^(x) = X| + exp [x2/(a^ + Xg)] - y^

a = (50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115,

120, 125)^

y = (34780, 28610, 23650, 19630, 16370, 13720, 11540, 9744,

8261, 7030, 6005, 5147, 4427, 3820, 3307, 2872)^

x° = (0.02, 4000, 250)T; F(x°) = 1-7j q9

X * = (0.0056, 6181 .4, 345.2)*^; F(x*) = 88

BIBLIOGRAPHY

[1] Euclid (-), Book IV.

[2] Widder, D.V. (1947) "Advanced Calculus", Prentice-Hall, New York,
pp. 113-117.

[3] Huskey, D.H. (1976) "Chronology of Computing Devices", IEEE Trans,
Computers, C-25, pp. 1190-1199

[4] Hitchcock, F.L. (1941) "The Distribution of a Product from Several
Sources to Numerous Localities", J. Maths. Physics, 20, pp. 224-230.

[5] Dantzig, G.B. (1951) "Maximization of a Linear Function of Variables
Subject to Linear Equalities", in "Activity Analysis of Production
and Allocation," ed. Koopmans, T.C., Wiley, New York.

[6] Himmelblau, D.M. (1972), "Applied Nonlinear Programming", McGraw-Hill,
New York.

[7] Kuhn, H.W. and Tucker, A.W. (1951) "Nonlinear Programming" in
"Proceedings of the Second Berkeley Symposium on Mathematical
Statistics and Probability", ed. Neyman, J., University of California
Press, Berkeley, pp. 481-493.

[8] Fiacco, A.V. and McCormick, G.P. (1968) "Nonlinear Programming ;
Sequential Unconstrained Minimization Techniques", Wiley, New York.

[9] Kowalik, J. and Osborne, M.R. (1968) "Methods for Unconstrained
Optimization Problems", Elsevier, New York.

[10] Swann, W.H. (1972) "Direct Search Methods" in "Numerical Methods for
Unconstrained Optimization", ed. Murray, W. , Academic Press, London.

[11] Kiefer, J. (1957) "Optimal Sequential Search and Approximation Methods
under Minimum Regularity Conditions", SIAM J. Appl. Maths^ 5, pp. 105-
136.

[12] Davies, D. , Swann, W.H. and Campey (1964) "Report on the Development
of a New Direct Search Method of Optimization", ICI Note 64/3.

[13] Powell, M.J.D. (1965) "A Method for Minimizing a Sum of Squares of
Nonlinear Functions Without Calculating Derivatives", Computer J.
7, pp. 155-162.

[14] Fletcher, R., and Reeves., C.M. (1964) "Function Minimization by
Conjugate Gradients", Computer J. 7, pp 149-154.

[15] Bard, Y. (1970) "Comparison of Gradient Methods for the Solution of
Nonlinear Parameter Estimation Problems", SIAM J. Numer Anal., 7,
pp. 157-186.

[16] Murray, W., ed. (1972) "Numerical Methods for Unconstrained
Optimization", Academic Press, London.

[17] Krolak, P. and Cooper, L. (1963) "An Extension of Fibonaccian
Search to Several Variables," CACM, 6, pp. 639-641

[18] Hooke, R. and Jeeves, T.A. (1961) "Direct Search Solution of
Numerical and Statistical Problems", JACM, 8, pp. 212-229.

[19] Rosenbrock, H.H. (1960), "An Automatic Method for Finding the
Greatest or Least Value of a Function", Computer J., 3, pp 175-
184

[20] Bandler, J.W. and MacDonald (1969) "Optimization of Microwave
Networks by Razor Search", IEEE Trans. Microwave Theory and
Techniques, MTT-17, pp. 552-562.

[21] Nelder, J.A. and Mead, R. (1965) "A Simplex Method for Function
Minimization", Computer J, 7, pp. 308-313.

[22] Fletcher, R. (1970) "A New Approach to Variable Metric Algorithms",
Computer J, 13, pp. 317-322.

[23] Cauchy, M.A. (1847) "Methode Générale pour la Resolution des
Systèmes D'equations Simultanées", Comptes Rendus de L'académie
des Sciences, 25, pp. 536-538.

[24] Greenstadt, J.L. (1970) "Variations of Variable Metric Methods",
Maths. Comp., 24, pp. 1-22.

[25] Murray, W. (1972) "Second Derivative Methods" in "Numerical Methods
for Unconstrained Optimization", ed. Murray, W. , Academic Press,
London.

[26] Wilkinson, J.H. (1965) "The Algebraic Eigenvalue Problem", Oxford
University Press, London.

[27] Gill, P.E., Murray, W. and Picken, S.M. (1972) "The Implementation
of Two Modified Newton Algorithms for Unconstrained Optimization",
NPL Report, NAG 24.

[28] Davidon , W.C. (1959) "Variable Metric Method for Minimization",
AEC Research and Development Report, ANL-5990.

[29] Fletcher, R. and Powell, M.J.D. (1963) "A Rapidly Convergent Descent
Method for Minimization", Computer J,, 6, pp. 163-168.

[30] Broyden, C.G. (1965), "A Class of Methods for Solving Non-Linear
Simultaneous Equations", Maths. Comput., 19, pp. 577-593.

[31] Gill, P.E. and Murray W. (1972) "Quasi-Newton Methods for Unconstrained
Optimization", JIMA, 9, pp. 91-108.

[32] Barrodale, I. and Roberts F.D.K. (1974) "Solution of an Overdetermined
System of Equations in the 1^ Norm", CACM, 17, pp. 319-320.

[33] Osborne, M.R. and Watson, G.A. (1969) "An Algorithm for
Minimax Approximation in the Nonlinear Case", Computer J.,
12, pp. 63-68.

[34] Lill, S.A. (1976) "A Survey of Methods for Minimizing Sums of
Squares of Nonlinear Functions", in "Optimization in Action",
ed. Dixon, L.C.W., Academic Press, London.

[35] Dennis, Jr., J.E. (1973) "Some Computational Techniques for
the Nonlinear Least Squares Problem", in "Numerical Solution of
Systems of Nonlinear Algebraic Equations", eds. Byrne, G.D. and
Hall, C.A., Academic Press, New York.

[36] Gauss, K.F. (1809) "Theoria motus corporum coelestiam", Werke,
7, pp. 240-254.

[37] Hartley, H.O. (1961) "The Modified Gauss-Newton Method for the
Fitting of Nonlinear Regression Functions by Least Squares",
Technometrics, 3, pp. 269-280.

[38] Levenberg, K. (1944), "A Method for the solution of Certain Non-
Linear Problems in Least Squares", Quart. Appl. Maths., 2,
pp. 164-168.

[39] Marquardt, D.W. (1963), "An Algorithm for Least Squares Estimation
of Nonlinear Parameters," SIAM J. Numer. Anal., 11, pp. 431-441

[40] Goldfeldp S.M., Quandt, R.E. and Trotter H.F. (1966) "Maximisation
by Quadratic Hill-Climbing", Econometrica 34, pp. 541-551

[41] Fletcher, R. (1971) "A Modified Marquardt Subroutine for Nonlinear
Least Squares", UKAEA Report AERE-R6799, HMSO

[42] Meyer, R.R. and Roth, P.M. (1972) "Modified Damped Least Squares :
An Algorithm for Non-Linear Estimation", JIMA, 9, pp. 218-233.

[43] Nash, J.C. (1977), "Minimizing a Non-Linear Sum of Squares Function
on a Small Computer", JIMA, 19, pp. 231-237.

[44] Powell, M.J.D. (1968) "A FORTRAN subroutine for Solving Systems of
Non-Linear Algebraic Equations", UKAEA Report AERE-R5947, HMSO

[45] Jones, A. (1970) "Spiral - A New Algorithm for Non-Linear Parameter
Estimation Using Least Squares," Computer J., 13, pp. 301-308.

[46] Wolfe, M.A. (1976) "Some Methods for Least Squares Estimation",
JIMA, 18, pp. 219-236.

[47] McKeown, J.J. (1975) "Specialised Versus General-Purpose Algorithms
for Minimising Functions That Are. Sums of Squared Terms", Math. Prog.,
9, pp. 57-68.

[48] Dixon, L.C.W., Gomulka, J. and Hersom, S.E. (1976) "Reflections on
the Global Optimization Problem", in "Optimization in Action", ed.
Dixon, L.C.W., Academic Press, London.

[49] Price, W.L. (1977) "A Controlled Random Search Procedure for Global
Optimisation", Computer J., 20, pp. 367-370.

[50] Goldstein, A.A. and Price, J.F. (1971) "On Descent from Local Minima",
Maths, Comp,, 25, pp. 569-574.

[51] Branin, Jr., F.H. (1972) "Widely Convergent Method for Finding
Multiple Solutions of Simultaneous Nonlinear Equations", IBM J. Res,
Develop., 16, pp. 504-522.

[52] Cutteridge, O.P.D. (1973) "Electrical Network and General System
Synthesis Using Optimisation Techniques", in "Optimisation and
Design", eds. Avriel, M . , Rijckaert, M. and Wilde, D.J., Prentice-Hall,
London.

[53] Calahan, D.A. (1965) "Computer Design of Linear Frequency Selective
Networks", Proa. IEEE, 53, pp. 1701-1706.

[54] Cutteridge, O.P.D. and Di Mambro, P.H. (1974) "Some Examples
Demonstrating Feasibility of Evolutionary Approach to Linear Network
Synthesis", Electronics Letters, 10, pp. 30-31.

[55] Cutteridge, O.P.D. and Krzeczkowski, A.J. (1975) "Improved Methods of
Synthesizing Linear Networks by Coefficient Matching", IEEE Trans.
Circuits and Systems, CAS-22, pp. 486-489.

[56] Cutteridge, O.P.D. (1971) "Numerical Experience with Some Two-part
Programmes for the Solution of Non-linear Simultaneous Equations",
University of Leicester Engineering Department Report 72-20.

[57] Phillips, D.A. (1974) "A Preliminary Investigation of Function
Optimization by a Combination of Methods", Computer J., 17, pp. 75-79

[58] Chien, H.H.Y (1972) "A Multiphase Algorithm for Single Variable
Equation Solving", JIMA, 9, pp. 290-298.

[59] Cutteridge, O.P.D. and Dowson M. (1973) "Methods for the Solution of
Nonlinear Simultaneious Equations Incorporating Some Variations of
Levenberg’s Technique", University of Leicester Engineering Department
Report 73-13.

[60] Skwirzynski, J.K. (1970) Private communication to O.P.D. Cutteridge

[61] Ramsay, J.O. (1970) "A Family of Gradient Methods for Optimization",
Computer J., 13, pp. 413-417.

[62] Fox, L. and Mayers, D.F. (1968) "Computing Methods for Scientists
and Engineers", Clarendon Press, Oxford.

[63] Braun, M. (1975) "Differential Equations and Their Applications",
Springer-Verlag, New York.

[64] Dixon, L.C.W. (1972) "Quasi-Newton Algorithms Generate Identical
Points", Math. Prog., 2, pp. 383-387.

[65] Bowdler, H.J., Martin R.S., Peters, G. and Wilkinson, J.H. (1966)
"Solution of Real and Complex Systems of Equations", Num. Math., 8,
pp. 217-234

66] Dowson, M. (1976) "Multimodal Univariate Search Techniques and
Their Application to Optimization Problems", M. Phil. Thesis,
University of Leicester.

67] Golub, G. (1965) "Numerical Methods for Solving Linear Least
Squares Problems", Num, Math., 7, pp. 206-216

68] Ebers, J.J. and Moll J.L. (1954) "Large Signal Behaviour of Junction
Transistors", Proc. IRE, pp. 1761-1772.

69] Curtis, A.R., Powell, M.J.D. and Reid, J.K. (1974) "On the
Estimation of Sparse Jacobian Matrices", JIMA, 13, pp. 117-119.

70] Numerical Algorithms Group Program Library, IBM 360/370 Mark V
Implementation, NAG Central Office, Oxford.

71] Beale, E.M.L. (1968) "Mathematical Programming in Practice",
Pitman, London.

72] Gass, S.I. (1958) "Linear Programming", McGraw-Hill, New York.

73] Hill, T.W. and Ravindran, A. (1975) "On Programming with Absolute-
Value Functions", JOTA, 17, pp. 181-183.

74] Spyropoulos, K., Kiountouzis, E. and Young, A. (1973) "Discrete
Approximation in the Lj Norm", Computer J . , 16, pp. 180-186.

75] Beale, E.M.L. (1959) "On Quadratic Programming", Naval Research
Logistics Quarterly, 6, pp. 227-243.

76] Madsen, K. (1975) "An Algorithm for Minimax Solution of Overdetermined
Systems of Non-linear Equations", JIMA, 16, pp. 321-328.

77] Anderson, D.H. and Osborne, M.R. (1977) "Discrete Nonlinear
Approximation Problems in Polyhedral Norms : A Levenberg-like
Algorithm", Num. Math., 28, pp. 157-170.

78] Griffith, R.E. and Stewart, R.A. (1961) "A Non-Linear Programming
Technique for the Optimization of Continuous Processing Systems",
Management Science, 7, pp. 379-392.

79] Dixon, L.C.W., ed. (1976) "Optimization in Action", Academic Press,
London.

80] Maxwell, R.W. (1974) Private communication to the author.

81] Zienkiewicz, O.C. (1967) "The Finite Element Method", McGraw-Hill,
London.

82] Leckie, F.A. and Wojewddski, W. (1976) "Estimates of the Rupture
Life of Structural Components Subjected to Proportional Cyclic
Loading", J. Mech. Phys. Solids, 24, pp. 239-250.

83] Kelly, D.A. (1976) "A Two-dimensional Model of Creep Cavitation
Failure in Copper Subject to Biaxial Stress Systems at 250°C",
Metal Science, 10, pp. 57-62.

[84] O ’Regan, P.G. (1970) "Step Size Adjustment at Discontinuities
for Fourth Order Runge-Kutta Methods", Computer J, 13, pp. 401-404

[85] Grant, J.A. and Hitchins, G.D. (1971) "An Always Convergent
Minimization Technique for the Solution of Polynomial Equations",
JIMA, 8, pp. 122-129

[86] Hayhurst, D.R. and Henderson J.T. (1977) "Creep Stress
Redistribution in Notched Bars", Int. J. mech. Sci., 19, pp. 133-146

[87] Lipo, T.A. and Krause, P.C. (1967) "Stability Analysis of a
Reluctance-Synchronous Machine", IEEE Trans. Power Apparatus
and Systemsf PAS-86, pp. 825-834.

[88] Dinibutun, A.T. and Corbett, A.C. (1974) "Report of Work Done at
Leicester University on a Collaborative Control Engineering
Project with ICI", University of Leicester Engineering Department
Report 74-17.

[89] Colquhoun, D. (1971) "Lectures on Biostatistics", Clarendon Press,
Oxford.

[90] Cormack, R.M. and Lamb, J.F. (1977) Private communication to the
author.

[91] Colquhoun, D. (1969) "A Comparison of Estimators for a Two-
Parameter Hyperbola", J. Royal Stat. Soc., Series C, 18, pp. 130-
140.

[92] Bell, M. and Pike, M.C. (1966) "Remark on Algorithm 178,
Direct Search," CACM, 9, pp. 684-685

[93] Clayton, A.J. (1973). Private communication to the author.

[94] Cormack, R.M. (1971) "A Review of Classification", J. Royal
Stat. Soc, .Series A, 134, pp. 321-367.

[95] Hartigan, J.A. (1975) "Clustering Algorithms", Wiley, New York.

[96] Wishart, D (1969) "An Algorithm for Hierarchical Classifications",
Biometrics, 25, pp. 165-170.

[97] Edwards, A.W.F. and Cavalli-Sforza, L.L. (1965) "A Method for
Cluster Analysis", Biometrics, 21, pp. 362-375.

[98] Forgy, E.W. (1965) "Cluster Analysis of Multivariate Data :
Efficiency Versus Interpretability of Classifications",
Biometrics, 21, pp. 768-769.

[99] Fisher, W.D. (1958) "On Grouping for Maximumi Homogeneity",
J. Amer. Stat. Ass. 62, pp. 1159-1178.

[100] Cordon, A.D. (1975) Private communication to the author.

101] Rosen, J.B. (1960) "The Gradient Projection Method for Nonlinear
Programming, Part I, Linear Constraints", J.SIAM, 8, pp. 181-217

102] Cordon, A.D. and Henderson J.T. (1977) "An Algorithm for
Euclidean Sum of Squares Classification", Biometrics, 33, pp. 355-362

103] CLUSTAN, 16 Kingsburgh Road, Murrayfield, Edinburgh EH 12 6DZ

104] Birks, H.J.B. (1973) "The Past and Present Vegetation of the Isle
of Skye - a Palaeoecological Study", Cambridge University Press,
London.

105] Zoutendijk, C. (1966) "Nonlinear Programming ; A Numerical
Survey", J. SIAM Control, 4, pp. 194-210.

106] MacLeod, A. (1976) Private communication to the author.

107] Croydon, R. (1974) Private Communication to the author.

108] Baden Fuller, A.J. (1961) "Waveguide Devices Containing Ferrites",
AEI Report ER.4162.

