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ABSTRACT

The problem of optimizing a nonlinear function of one or more variables, 

in the sense of locating the values of the variables which give the greatest 

or least value of the function, is considered from two points of view.

First, the development of two new and improved techniques for optimization 

is described. Second, the ways in which the available techniques can be 

applied are discussed with reference to case studies of practical 

significance.

The two new techniques are for unconstrained optimization problems of a 

type which frequently occur in curve-fitting and modelling applications and 

also in the solution of sets of nonlinear equations. The first of these is a 

new two-part algorithm for minimizing a sum of squares objective function; 

it uses a new descent method in combination with a modified Gauss-Newton 

search to give an algorithm which has proved extremely reliable even when 

applied to difficult problems. The second technique is a hybrid algorithm 

for minimizing a sum of moduli objective function; it makes novel use of the 

methods of parametric linear programming.

Ten case studies of the application of optimization techniques are 

described, ranging from problems involving a single variable up to a problem 

with several hundred variables. The areas from which the applications are 

drawn include biochemistry, engineering, statistics and theoretical physics; 

the problems themselves are mainly concerned with curve-fitting or the 

solution of nonlinear equations.
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1. INTRODUCTION

Optimization in the sense of trying to find the maximum or minimum 

value of a function of one or more variables has been a topic of 

interest to mathematicians from the first. Perhaps the earliest 

optimization problems were solved by Euclid who showed [1] for example 

that of all parallelograms of a given perimeter the square is the one 

with maximum area. Coming closer to the present day, problems arising 

from studies such as kinematics and dynamics were solved using the methods 

of calculus and calculus of variations developed during the seventeenth 

and eighteenth centuries. At this time also the technique of Lagrange 

multipliers [2] was introduced to handle explicit constraints which the 

variables were required to satisfy.

While aids to computation have been available [3] since pre-Christian 

days, and numeric methods of solving, optimization problems could thereby 

be attempted in the absence of analytical solutions, with the advent of 

the programmable digital computer within the last thirty years it has 

become computationally-feasible to apply numeric methods to problems of a 

complexity far in excess of previously-attempted problems. At the same 

time, the acceleration in the growth of both the scale and the inter

relationships of human activities has led man to seek ways of controlling 

his activities in an optimum fashion. One useful approach is to create 

mathematical models of real situations; the variables of the model 

represent factors under human control, the constraint equations represent 

physical limitations on the values these variables can adopt and the 

objective function represents the measure of cost or benefit which it is



sought to optimize appropriately. A classical example of such a model 

is the transportation problem of Hitchcock [A] ; although the objective 

function and the constraints are all linearly-dependent upon the variables 

in Hitchcock’s model, the scale of the problem necessitates a computer- 

aided solution in most cases.

Dantzig [ 5] formulated the Simplex method for solving such problems 

which he termed "linear programming" problems; by programming he was 

referring to the planning process which was to be optimized on the basis 

of these models. The Simplex method and its variants have been, and 

continue to be, used with beneficial results. However, a linear 

representation of a real situation is inadequate in many areas of interest 

and so the more general mathematical programming problem has to be 

considered. This takes the form

Minimize f (]c)

Subject to g^(x) ̂  0 i=l, .. p

hj(x) = 0 j=l, .. q

The term mathematical programming is credited to Dorfman by 

Himmelblau [6] . The variables are denoted by the vector x^ = (x^, ... x^); 

the objective function by f (x) and the constraints are subdivided into p 

inequality constraints and q equality constraints. Note that this form 

is completely general since the maximization of f(2c) can be carried out by 

minimizing -f(x). Similarly, an inequality constraint of the type g^(2c)^0 

can be expressed as “g^Cx) ^ 0 .

Many special cases of the mathematical programming problem have been 

identified, such as the integer and quadratic programming problems as well 

as the linear programming problem already discussed. In this thesis, the



concern is with the nonlinear programming problem, obtained when at

least one of the terms f(x), g.(x) and h.(x) is nonlinear. Some of the—  1 —  J —
early fundamental theory on the nonlinear problem was done by Kuhn and 

Tucker [ 7] who derived the necessary and sufficient conditions for x* to 

be a local minimum when f(x*) is a convex function. By a local minimum 

is meant that for any value within a small but finite distance of x*, 

measured according to some suitable.norm, the relation f(x)>f(x*) holds.

A global minimum will have been reached at x* if this relation holds for 

any point x in n-dimensional Euclidean space.

As indicated by its title, this thesis is concerned with not only 

optimization techniques but also their application to problems of practical 

importance. Chapters 2 and 3 describe two new iterative methods for 

unconstrained optimization, the first of which was developed by the author 

in collaboration with his supervisor. Dr.O.P.D. Cutteridge, and the second 

of which was developed solely by the author. The restriction to unconstrained 

problems is not so limiting as might appear. Many methods for solving the 

constrained problem make use of methods for unconstrained optimization, for 

example the Sequential Unconstrained Minimization Technique described by 

Fiacco and McCormick [ 8] . Also, it is often found that a constrained 

problem can be simplified to an unconstrained problem by an appropriate 

transformation of the variables, as described for example by Kowalik and 

Osborne [ 9] .

In developing these two new methods, the emphasis was laid on the 

effective implementation of ideas, derived mainly from intuitive reasoning, 

by following a course dictated by the results of numerical experiments.

Many methods have been successfully used long before the underlying 

mathematical theory was complete; they would not have been available for 

use before that time if their implementation had been delayed until their



performance could be theoretically predicted. In addition, it will always 

be the case that as far as optimization methods are concerned the proof of 

the pudding is in the eating; no matter how much theory is given about them, 

most new methods are published with numerical details of their performance 

on test problems and comparisons with existing methods.

Chapter 4 is concerned with the application of optimization methods. 

There can be no hard and fast rules for determining which is the best 

method for a particular application. There will always be a test problem, 

not necessarily of pathological interest, which will defeat a given method. 

The author’s belief is that optimization techniques are like any other 

branch of numerical analysis, the problem must first be formulated in the 

most effective way before considering the choice of optimization method.

It is the author’s experience that in many instances the selection of 

method becomes of secondary importance. The case studies given in Chapter 

4 illustrate these points.

1.1 Minimizing a function of one variable

The problem of minimizing a function of one variable is often 

encountered in practice and is of interest in its own right. However, many 

optimization methods for problems of more than one variable make use of 

line-searches in which the minimum of the objective function is sought along 

a line in n-dimensional Euclidean space. Consequently special attention 

has been devoted to these methods.

A class of simple methods described by Swann [ 10] are of use when the 

minimimum is known to be located between lower and upper bounds on the 

independent variable. Within these bounds, a set of trial points can then 

be generated either with some random distribution or to form a regular grid.



The function is then evaluated at each point and the lowest value of 

the function so found is taken as the minimum. Alternatively, new 

bounds with a smaller range could be deduced and the process repeated 

until the position of the minimum is known to within a required accuracy. 

Such methods have the advantages of being simple to implement and make 

no assumptions about the way in which the function varies. However they 

are expensive in terms of function evaluations.

If it can be safely-assumed, as often is the case, that the function 

is unimodal within given bounds about the minimum, then a more systematic 

and efficient method can be adopted. Suppose that the four points 

a < b < c < d are found such that the minimum is at x* where a < x* < d.

Then by a comparison of the function values at each point it is possible 

to reduce the bounds to a < x* < c or b < x* < d . It is then only necessary 

to compute one more function value, at some point within the new bounds, 

to be able to repeat the process. The most efficient method of generating 

the trial points, in the sense that for a fixed number of function 

evaluations it gives the greatest reduction in the initial range, is based 

on the Fibonacci numbers as shown by Kiefer [11]. A directly-related method 

is the Golden Section search, described by Kowalik and Osborne [ 9] . At 

worst, the Golden Section search will require one more function evaluation 

than the Fibonacci search for the same interval reduction; but the Golden 

Section search is easier to implement and is therefore preferred.

While these last two methods are a great improvement on a random or 

grid search, they still do not utilise all the available information since 

they simply compare function values. The actual values of the function 

can be employed to derive an approximate function which roughly follows the 

behaviour of the original function but whose minimum can be predicted



analytically to give an estimate of the minimum x* of the original 

function. Normally a quadratic or cubic polynomial is used for the 

approximating function. Davies, Swann and Campey [ 12] use a method 

which first locates three points a < b < c, where b = (a + c)/2 , such 

that f (a) > f (b) < f(c). A single quadratic interpolation gives a new 

estimate of the minimum. This forms the starting point for the next search 

for a bracket followed by an interpolation, and so on with the bracket on 

the minimum being progressively reduced. Powell [13] described a method 

in which the bracket is found once and then reduced by the results of 

repeated quadratic interpolations. A cubic function was used by Fletcher 

and Reeves [14], based on the function and its derivative at two points.

Some further suggestions for univariate searches are given by Bard [15].

I.2 Minimizing a function of more than one variable

Many books have been published on iterative methods for unconstrained 

optimization, including those by Kowalik and Osborne [9] , Murray [ 16] and 

Himmelblau [6]. Some of the more commonly-met methods will now be outlined. 

These can be split into those which require function values only and those 

which require in addition first, and possibly second, partial derivatives 

of f (]{) with respect to the variables.

1.2.1 Methods using function values only

Most of the methods in this category can be termed direct search 

methods; they use a systematic series of trials, based on function comparisons, 

which is intended to lead ultimately to the minimum. They have the 

advantages of being simple and do not make any assumption on f (x) other than 

it is continuous. However, they have a slow final rate of convergence when 

they get close to the minimum.



A simple, but not very effective, strategy is the alternating

variable method described by Swann [10]; a univariate search is used on

one variable at a time to locate the minimum of f(2ç) with respect to that

variable. The Fibonacci search has been extended to the n-dimensional

case by Krolak and Cooper [17]. In the pattern search of Hooke and Jeeves

[18], the basic operation is a series of exploratory moves followed by a

pattern move, which is predicted by the exploratory moves to be a profitable

direction of search as regards reducing f (x). Exploratory moves are also

a feature of the method of Rosenbrock [19]; he used a set of n orthogonal
Tdirections v. (i=l, .. n) where v. v. = 0 (i^j) and adjusted these— 1 — 1 — j

directions as the search progressed. The razor search of Handler and 

MacDonald [20] adjusts the length of each move to allow for sharp peaks and 

troughs in the objective function. The Simplex method of Nelder and Mead

[21] uses a set of n+1 points to form the vertices of a regular polyhedron 

(the Simplex) in n-dimensional Euclidean space. On the basis of comparisons 

of the function values at the vertices, the Simplex is then expanded, 

contracted or reflected about a vertex. The process is repeated until a 

minimum is located.

1.2,2 Methods requiring derivatives

If first derivatives of f(x) are available in the form of the gradient 
Tvector g (x) = (3f(x)/8x,, ... 3f(x)/9x ) then it is possible to ensure that —  - — I — n

at each iteration of a search the corrections Ax to be made to the current

estimate of the minimum are downhill by finding a Ax such that ^ A x  <0
k k . . .This test applies at x and as we move away from x in the direction of Ax

it will not normally remain downhill. Consequently many methods use a line



• • lesearch to find the scalar a which minimizes f ( +  aAx) and then set 

= x^ + aAx. In some cases, all that is required is that an a is 

found to give a sufficient reduction in f ()[) , as discussed by Fletcher

[22].

An early derivative method is that of steepest descent due to
kCauchy [23]; the corrections at any iteration are given by Ax = -^(x ).

This method will always converge to a stationary point, although not 

necessarily a minimum, but the final rate of convergence can be very slow. 

Consequently, the method is not often used in practice.

The classical Newton method for solving nonlinear equations can be 

extended to the minimization of f ( )  and is the basis of a large number

of methods. At a minimum we will have g^(x*)=0 (i=l, .. n) . We can
Ic 1/' Ic Icapproximate ^(x) about the point x by ̂ (x + Ax) - ̂ (x ) + G(x ) Asc,

k . . . 2 kwhere G(x ) is the Hessian matrix G.. = 9 f(x)/9x.9x. evaluated at x .—  ij —  1 1 . —
The corrections required on the basis of this approximation to reduce the

gradient to zero are then given by the solution of the system of linear 
k kequations G(x ) Ax = -gCx ). For a positive definite quadratic function, 

the method will terminate in one iteration; this property is of relevance 

since in the vicinity of it is often the case that f(x) can be 

approximated by a positive-definite quadratic form.

Two drawbacks to Newton’s method are that it requires second

derivatives, which can be expensive to compute, and it involves the solution

of linear equations. The main drawback is that G is not necessarily
- 1positive-definite and so the corrections -G g may not be downhill. 

Greenstadt [24] overcomes this difficulty by using an eigenvalue and eigen

vector analysis of G. He sets to a small positive value all negative 

eigenvalues and eigenvalues close to zero. Then he computes G  ̂ using the



modified eigenvalues and the eigenvectors. Murray [ 25] believes that it 

is more efficient to assume G is positive-definite and use a Cholesky 

factorisation as described by Wilkinson [ 26] to compute G ^. Only if 

the factorisation fails, because G is not positive-definite, need 

Greenstadt’s approach be used. In general, it will be necessary to carry 

out a line search to ensure that a reduction in f (jç) is obtained; Gill, 

Murray and Picken [27] give one such implementation of Newton’s method.

Davidon [28] originally proposed the class of variable metric or 

quasi-Newton methods. He proposed that an initial estimate of G * be 

made and then updated as the search progressed using first derivatives 

only. It can be ensured, theoretically at least, that the estimate of the 

matrix G  ̂ remains positive-definite. Fletcher and Powell [ 29] gave a 

more exhaustive treatment of the method. Broyden [30] later developed a

related family of rank one methods, so called because the matrix used to
— 1 . . .update the estimate of G at each iteration is of rank one (the Davidson-

Fletcher-Powell matrix is of rank two). Gill and Murray [31] proposed that 
—  1 • .the estimate of G be stored in factored form to ensure that numerical 

difficulties do not cause the matrix to become negative-definite; they also 

give some consideration to the use of numeric estimates of the derivatives.

A final class of methods is based on the use of conjugate directions;

the set of n vectors v_^(i=l, .. n) are conjugate with respect to G if 
T . .G Vj = 0 (i^j). These methods have the property of quadratic termination 

in that if f(x) is a positive definite quadratic they will terminate in 

a finite number of steps. This property depends upon exact line searches 

being used, which is not practicable. Two well-known methods of this type 

are the conjugate gradient method of Fletcher and Reeves [ 14] and the 

method of Powell [ 13] which does not in fact require derivatives.
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1.3 Methods for least squares problems

Methods have been developed to handle the special case of the least

squares problem when the objective function to be minimised is in the

form of a sum of squares Z f. (x). Such problems frequently arise in
i= l  ^

curve-fitting and modelling where some physical quantity Y is assumed
Tor known to depend on one or more variable quantities X = (Xj, ... X^) 

according to a given functional relation Y = F(X, x). The vector 

X = (Xj, ... x^) represents fixed parameters appearing in the function F . 

A set of experimental measurements is taken to give the observed value 

Y^ of Y at each of m points X^; it is then desired to find the parameters 

X which give closest agreement between the observed and predicted values 

of Y.

At each measured point, the difference between the observed and

predicted value can be denoted by the residual f.(x) = Y.-F(X,, x). A1 —  1 — 1 —

common measure of fit is the sum of the squares of the residuals, (the 

12-norm) which is minimized to give the best fit according to this criterion. 

Other norms can be used; thus Barrodale and Roberts [ 32] give a method 

for minimizing the sum of the absolute values of the residuals (the Ij- 

norm) and Osborne and Watson [ 33] give a method for minimizing the maximum 

magnitude residual (the 1̂ -norm).

Least squares methods also have an important use in the solution of

systems of nonlinear equations. Given the system f .(x) = 0 (i=l, .. n)
^ 2  . . .  !" then if the sum of the squares Z f . (x) is minimized and the minimum

i=l ^
found to be zero the vector x* at the minimum will be a solution of the 

equations. Sometimes a nonzero minimum will be found; in this case further 

investigations are necessary to determine if this is in fact the global 

minimum, and hence the nearest approach to a solution, or if the optimization 

method is failing to locate the global minimum.
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Reviews of the methods available for least squares problems have 

been given by Lill [ 34] and Dennis [ 35] , Most of the methods derive from 

a modification of Newton’s method first proposed by Gauss [36] and 

hereafter referred to as the Gauss-Newton method. As shown earlier, for 

a general objective function the Newton corrections are -G ĝ_. For a 

sum of squares objective function differentiation gives

"(air 3T + iTaF:)K=1 1 3 1 3

from which it will be seen that the Hessian is made up of two terms, one

of which does not involve second derivatives. If the residuals f^ are

small, or they are varying slowly with x, then we may approximate G^j

by ignoring the terms involving second derivatives. This approximation is

likely to get better as a minimum of the sum of squares is approached. If

we denote the Jacobian matrix by J such that = 9f^V9Xj, then the
THessian approximation can be written as 2J J and the gradient vector is

Tgiven exactly by 2J The Gauss-Newton corrections then become 
T V — 1 T(J J) J f , where the factors of 2 have been cancelled.

Provided that J is nonsingular, the Gauss-Newton corrections will 

always be downhill. However, unless f(x*)=0, the final rate of convergence 

of the Gauss-Newton method is of first order as compared with the second 

order rate of convergence of Newton’s method. In most problems, an 

iterative search using the Gauss-Newton corrections as they stand would 

diverge; Hartley [ 37] used a line search to ensure that the sum of 

squares decreases at every iteration.

The difficulty met when J becomes singular has been considered by 

Levenberg [ 38] and later Marquardt [ 39] . They proposed the corrections
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T — I T= -(J J + XW) J f_ where W is a positive-definite matrix and X is 

a parameter whose value is to be chosen at each iteration to give a 

reduction in the sum of squares. A suitable choice for W, suggested by 

Marquardt, is I, the unit diagonal matrix. The corrections can be seen 

to be hybrid since when X is increased from zero, the corrections 

initially equal the Gauss-Newton corrections and change to the direction 

of the steepest descent corrections. Many methods have been subsequently 

derived using the Levenberg-Marquardt corrections including those of 

Goldfeld , Quandt and Trotter [40], Fletcher [41], Meyer and Roth [42] 

and Nash [ 43] . A similar hybrid approach was used by Powell [ 44] and 

Jones [ 45] .

A recent comparison of some least squares methods was given by Wolfe 

[46]. Bard [15] carried out a set of comparisons, on least squares 

problems, of special-purpose methods and variable metric methods; he 

concluded that the former were to be preferred. However, McKeown [47] has 

shown that for some least squares problems it may be better to use one 

of the standard unconstrained optimization methods.

1.4 Methods for global optimization

Before progressing to the next chapter, it is relevant to outline 

some of the methods available for global optimization, since the algorithm 

described in Chapter 2 and two of the case studies of Chapter 4 consider 

this problem. A review of methods for global optimization was given by 

Dixon, Gomulka and Hersom [ 48] . A probabilistic approach is often used.

In the multistart method, a number of minimizations are carried out, 

each starting from a different point chosen in some random fashion. The
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lowest minimum (often the same minimum is found every time) is taken as 

the global minimum. A second technique is to generate a large number of 

trial points at random in n-dimensional Euclidean space. Price [49] 

recently gave one such method.

Other methods are available which do not use a probabilistic approach, 

The descent from a minimum method of Goldstein and Price [ 50] works well 

for polynomial functions. The trajectory approach of Branin [51] uses a 

closed curve obtained by integrating the equation ĝ (x) = ”^(2̂ ) and which, 

it is hoped, will pass through all the stationary points of the objective 

function.
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2. A TWO-PART ALGORITHM FOR MINIMIZING SUMS OF 
SQUARES OF NONLINEAR FUNCTIONS

This chapter describes the development of a two-part algorithm and 

corresponding computer program for the minimization of sums of squares of 

nonlinear functions through iteration. The work was done by the author in 

conjunction with Cutteridge. The letter’s contributions to the research 

are acknowledged in the text where appropriate; otherwise the work described 

and the views expressed are the author’s own.

2.1 Background to the research

The synthesis of lumped linear electrical networks of arbitrary structure 

has for long been a research topic of interest to Cutteridge; a particular 

area of his concern has been the synthesis of networks which do not have a 

series-parallel equivalent [52]. For a given network topology, one practical 

method of quantifying the discrepancy between the desired characteristics of 

the network and its actual characteristics is that of coefficient matching. 

This method, described by Calahan [ 53], measures the discrepancy by a set of 

nonlinear functions of the values of the elements making up the network. At 

an exact match, all these functions are zero and the element values can be 

varied in an attempt to achieve this situation. In general, it may be 

necessary to alter the network topology to obtain a match; this aspect of 

the problem is discussed by Cutteridge and di Mambro [54].

The process of searching for the element values to give the best match 

is equivalent to the solution of m nonlinear equations (the functions) in 

n variables (the element values). The approach used by Cutteridge was to 

minimize the sum of the squares of the functions (or residuals of the 

equations) using standard techniques for optimization. While normally m=n



1 c:

for Cutteridge’s problems, it was found by Cutteridge and Kfzeczkowski [55] 

that the optimization could be assisted by introducing excess functions, 

chosen suitably and which are zero at a solution of the original system.

Also, although a solution may not exist for the current topology an 

approximate solution will always be obtained which minimizes the sum of 

squares. Thus the algorithm described in this chapter is directed towards 

the minimization of sums of squares; it should be borne in mind that it could 

equally be applied to solving nonlinear equations.

Cutteridge found from experience that for some of his problems 

existing methods of optimization were not sufficiently reliable; it was 

important in the synthesis process to know, in the event of failing to 

reach a solution, whether this failure was due to deficiencies in the 

opimization or indicated the need to change the network topology. Thus 

Cutteridge developed a reliable two-part algorithm [ 55] of his own. The 

concept of a two-part algorithm can in fact be traced back to 1847 when 

Cauchy [ 23] presented a paper which is best-known today as the first exposition 

of the method of steepest descent. At the time, Cauchy wished to solve sets 

of nonlinear equations which he encountered in his calculations on planetary 

orbits. To do this he used Newton’s method which he found did not always 

converge. This failure was caused by starting the Newton iterations from 

variable values which are too far removed from the solution. To overcome 

this difficulty, Cauchy proposed that several iterations of his method of 

steepest descent should be first carried out until the variables are close 

to the solution as indicated by the residuals of the equations becoming small. 

Newton’s method would then locate the solution values accurately and 

rapidly if started from the values at the end of the steepest descent search.

Two-part algorithms are just one instance of the polyalgorithm approach 

to optimization. This method has not found great favour with many researchers, 

possibly due to the fact that a theoretical treatment of polyalgorithms is
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made difficult by the presence of empirical switching criteria determining 

when to change from one algorithm to another during the search. Published 

work on polyalgorithms is thus biased towards a practical, rather than 

theoretical, treatment; for example Phillips [.57] , Chien [ 58] and the work 

of Cutteridge cited earlier. The underlying aim of polyalgorithms, namely 

the combination of the best features of two or more algorithms, has not been 

neglected since the concept of hybrid algorithms has received a lot of 

attention. The essential difference in a hybrid algorithm is that, at 

each iteration, the change in the variables is given by an interpolation 

between the two correction vectors produced by two different algorithms.

The interpolation process usually depends upon parameter values some of 

which must be set by the user of the algorithm; this dependence upon 

parameter values is one disadvantage of the method. The most common hybrid 

algorithms are those which interpolate between the steepest descent 

corrections and the Newton (or Gauss-Newton) corrections. The original work 

on such algorithms was by Levenberg [38] and Marquardt [39] and has been 

followed up by many others including Powell [44], Fletcher [40], Jones [45] 

Goldfeld, Quandt and Trotter [41], Meyer and Roth [42] and Hash [43].

Returning to the two-part algorithm, Cutteridge used for this two 

algorithms combined in the end-on manner of Cauchy. However, Cutteridge 

introduced an additional facility such that, if the second part of the 

algorithm fails to converge, then control is passed back to the first part 

with the variables reset to their values on entry to the second part; 

further progress is then made in reducing the sum of squares before the 

second part is re-entered. In the first part, Cutteridge used a reliable 

descent algorithm; he tried, among others, the conjugate gradient method of 

Fletcher and Reeves [14] and his own modification [59] of the Levenberg- 

Marquardt hybrid algorithm. In the second part, since he was dealing with 

sums of squares, he used a modified Gauss-Newton search similar to that 

described by Hartley [37]. He improved the efficiency of the method by using
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empirical criteria to anticipate, as fat in advance as possible, the onset 

of failure in the Gauss-Newton search if this should happen. In this way, 

he was able to return to the first part before failure actually took place 

and save on wasted Gauss-Newton iterations.

Cutteridge applied his two-part algorithm to solve many problems of 

interest. When used in network synthesis, it is not always possible to 

supply close estimates of the solution values. Consequently, Cutteridge 

was interested in developing an algorithm which would be efficient yet 

converge to a solution from a wide range of starting points and for 

difficult problems. This task he gave to the author whose work in improving 

the two-part algorithm will now be described. During the development, a 

single test problem was used; this was a set of eight nonlinear equations 

involving exponentials, formulated by Skwirzynski [ 60] and shown in the 

Appendix. Prior to this work, Cutteridge had been able to solve this problem 

only from a few starting-points close to the solution.

2,2 An improved descent algorithm

Cutteridge suggested that, for the first part of his algorithm, an 

improved descent algorithm could be developed if second derivatives of the 

functions were used in addition to first derivatives. He proposed that a 

correction vector Ax be obtained by following a "curve of steepest descent" 

given for iteration k by the expression

Ax = - a + G^ Ax) C2.1)

Here g^ is the gradient vector the sum of squares objective function
® 2 k . . kF = Z f . (x) and G is the Hessian matrix of F, both evaluated at x , the

i= l  ^
value of X at iteration k. The locus of the curve is formed by variation of

the positive scalar a,.noting that at a = 0 the correction vector is

zero. At each iteration, a was to be chosen so as to minimize the function
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F (a ) = F(%k +

2.2.1 Initial investigations

The author pointed out that equation (2.1) is not the true curve of

steepest descent because, for this to be so, the direction dx/da (or dAx/da

since x = x^ + Ax) must be in the same direction as -g (x) at any point along

the curve. It should also be noted that the definition of "steepest"

depends upon the norm used to define distance, as discussed by Murray [ 25] .

It will be seen that Cauchy's method of steepest descent can be derived by
k kapproximating ^(x) by its value ^  at x . If the differential equation

dAx/da = -g^ is solved, subject to Ax = 0 at a = 0, then the steepest descent
kcorrections Ax = -ag are obtained. If the Hessian is available, a better

k kapproximation is given by g(x) = g + G Ax to give

d ta = _ (gk + G* Ax) (2.2)
da -  -

W1ith the same boundary conditions of Ax=0 at a=0. Differential equations 

have been used by other workers such as Branin [51] and Ramsay [61] in 

optimization algorithms.

A program was written using corrections defined by equation (2.2) since

it was believed that this gave a better approximation to the curve of

steepest descent than equation (2.1). For a given value of a, the corrections

Ax were calculated using a Runge-Kutta [62] numerical integration. It was

found that the computation time required by the integration was much greater
k kthan that required to evaluate F, ^  and G . This time could ha,ve been 

reduced by using a less accurate integration and also, when searching for a 

to minimize F(a), by using intermediate results for Ax obtained at values of 

a covered by previous integrations. However, it was believed that even with 

these economies an efficient algorithm would not be obtained and equation 

(2.1) was re-considered.
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In passing, it should be observed that g.n analytic solution of

equation (2,2) is possible given that the eigenvalues of are first
kcalculated numerically. In the simplest case, when G possesses n distinct,

non-zero eigenvalues (j)j> (i=1 , .. n) the solution is

Ax = -(G^)  ̂ g^ diag (I - exp[-&^ a]) (2.3)

where diag (a^) denotes a diagonal matrix such that the diagonal element on 

row i is a^ and all off-diagonal elements are zero. Complications arise when 

there are repeated or zero eigenvalues. The general analytical solution 

of first order, linear differential equations is discussed by Braun [ 63] .

Some trials were made at a later date using equation (2.3); these were 

encouraging but, for reasons of time, have not been followed up for the 

present work.

While equation (2.1) is not the true path of the steepest descent, use 

of it may be justified from other considerations. One way is to consider the 

approximate solution to equation (2.2) given by assuming the right-hand side 

is a constant quantity; in this case equation (2.1) is obtained. The 

assumption will be roughly valid for small a, when g will outweigh G Ax. 

Better approximate solutions could be obtained with different assumptions. 

However, the most convincing reason for using equation (2.1) is that it has 

a parallel with the expression used by Levenberg and Marquardt, as will now 

be shown.

Since a is an arbitrary scalar parameter, whose value is to be determined 

by a line search, then the algorithm is not affected if we replace a in 

equation (2,1) by 1/x, where X is another parameter. Rearrangement then 

gives

(G^ + XI) Ax - (2.4)

where I is the unit diagonal matrix. The expression used by Levenberg
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and Marquardt can be written

CJ^J + A ’W) AX = (2.5)

where J is the Jacobian matrix of the residuals f and W is a pre-determined 

diagonal matrix. One choice for W suggested by Marquardt is the unit matrix. 

The scalar parameter X* is chosen at each iteration by a search on 

F(x + Ax). Taking W=I and replacing X ’ by X"/2, multiplication of both 

sides of equation (2.5) by 2 gives

(2J^J + X"I) Ax = -2jTf (2.6)

Now for a sum of squares objective function, the gradient vector ^  is given 
Tby 2J furthermore, the Hessian matrix G can be replaced by its Gauss-

T .Newton approximation 2J J. Thus equations (2.4) and (2.6) are equivalent 

except that the former uses the exact Hessian. Other workers for example 

Bard [ 15] have used equation (2.4) as the basis for an optimization algorithm,

Inspection of equation (2.4) gives

lim Ax = -(G^) ' ^  (2.7a)

X =v 0

lim Ax = /X (2.7b)

X 00

while similarily equation (2 .6) yields

lim Ax = “ (J^J)  ̂ (2.8a)

X" + 0

Jim Ax ^ -2J^^/x" (2.8b)

X" -► 00

These results shown that, for small values of the parameters X and X", the 

values of Ax tend to the Newton and Gauss-Newton corrections respectively.
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Further, in both cases, when the values of the parameters tend to large,

positive values then the corrections become small and in the direction of

steepest descent. Thus, by taking a sufficiently large value for X or X"

it should always be possible to generate a correction Ax for which 
k kF(x + Ax) < F(x ), except of course if a local minimum has been reached. The 

validity of this argument is also dependent upon round-off error not having 

a dominant effect on the calculation, which can be the case in some instances.

A program was written, using the original expression for the corrections 

as given by equation (2.1); a was chosen to minimise F (a). Note that in this 

case Ax tends to the steepest descent direction as a tends to zero. A single 

iteration of the algorithm consisted of the following steps.

Ic Ic IcStep 1 Compute F(3C ), ^  and G

Set aj=0, Fj = F(x^)

Set is a given value

Step 2 Compute Ax from equation (2.1) fora=o^;
kset F2=F(x + Ax)

Step 3 If F2 > Fj then set and return to

Step 2. Otherwise ....

Step 4 Set a^=2a 2> compute Ajç for a=ag and set

Fg=F(x^ + Ax).

Step 5 If Fg < F2 then set 0̂ = 02 »

Fj=F2» F2=Fg and return to Step 4. Otherwise ....

kStep 6 The minimum of F (a) = F(x +Ax) is at a—  —  m
where a, < a < a_; use a Golden Section 1 m J
search to locate a more precisely, m

A similar doubling-process to bracket a minimum was used by Davies,



Swann and Campey [12].

It quickly became apparent that the behaviour of the search was 

significantly affected by the choice of at step 1. Assuming that

F(a) is unimodal, changing Uq will alter the values of and when the 

minimum is bracketed at step 6; this in turn will, in general, cause the 

final value of to be slightly different. It is well-known, for example 

Dixon [64] > that changing the accuracy of a line-search can greatly affect 

the overall behaviour of an optimization algorithm. However this, was not 

the main reason for the differences found here. Detailed printout of the 

calculations showed that completely different minima of F(a) were often 

found at the same iteration by choosing differently. Tabulation of F (a)

over a wide range of values of a showed that it was in fact highly non- 

unimodal with many sharp peaks and troughs. This behaviour is not so 

marked in the Levenberg-Marquardt algorithm for the following reasons.

T .The Gauss-Newton approximation 2J J in equation (2.6) is always

positive semidefinite, and most likely is positive definite, since for any

vector y_ we have y^ (2J^J)y = 2 (Jy)^(Jy) ^ 0. Thus the matrix (2J^J+X"I)

will be positive definite for any X" > 0 and Ax will be downhill with 
krespect to F(x ). Furthermore, the modified matrix cannot be singular for

• • Icany positive X". Thus it is likely that F(x +Ax) will be unimodal, or

nearly so, in the range X" > 0. In the case of equation (2.4) these
karguments do not apply. There is no guarantee that the true Hessian G , 

even when augmented by the addition of a positive value X to its diagonal,

will be positive definite. Thus Ax need not be downhill and if X equals
k . k . .-({)£, where (})̂ is an eigenvalue of G , then the matrix G + XI is singular

and the corrections become infinite. . .
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In view of the multimodal nature pf F (a), the author decided to use 

a search which would look for the global minimum of this function. To 

draw a parallel with the Levenberg-Marquardt algorithm it was also decided 

to use equation (2.4) to evaluate the corrections and search over X, 

rather than a. This change of itself does not affect the results since 

there is a one-to-one correspondence between the corrections at X=a and 

those at a=l/a. Some minor differences will be introduced by the effects 

of roundoff error and the fact that the global minimum cannot be located 

exactly. For the sake of completeness, it was further decided to search 

over all real values of X, rather than restrict the search to positive 

values only.

2.2.2 The multimodal search

The search for the global minimum of F(X) could be considered as a 

special case of the more general problem of global optimization of a 

function of n variables. Most existing algorithms for this problem, such 

as the descent from a minimum method of Goldstein and Price [50] assume 

that the function and its first (and sometimes higher) order derivatives 

are continuous; this is not the case with F(X). It was decided to develop 

a special-purpose search, which could to its advantage take note of the 

known properties of F(X).

A simple strategy was adopted, similar to a method which was used by 

Handler and MacDonald [ 2q] . The range of X is covered by a grid of trial 

values X^; it will be assumed that X^ > X^_^. The first grid-point is 

sufficiently large and negative, and the final grid-point similarily large 

and positive, so that the corrections at the ends of the grid are close to 

zero. The values F^=F(x^) are evaluated; if three successive grid-points

show that F. , > F. < F. then a local minimum must exist at X._ where 1— 1 1 1+1 m
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A < A . These bounds on A Are then reduced to an acceptablei-J m x+1 m
size using a standard method for finding the minimum of a unimodal 

function. The global minimum is then taken as the lowest of all the 

local minima detected. The strategy depends for its success on a 

judicious choice of grid; a balance must be struck such that the grid 

is sufficiently fine to sieve out the local minima but not so fine as to 

lead to an excessive amount of computation.

The first grid tried contained 2N+1 grid-points defined as follows: 

^J+i+1 ^ ^ ^ + i  ... N (2.9a)

%N+] = 0 (2.9b)

^i “ ” ^2N+2-i » .•• N (2.9c)

It will be seen that the grid is symmetrical about the midpoint A^^^=0.

There are many ways in which the grid could be specified. It was decided

to first fix the smallest and largest positive grid-points, A^^^ and

^2N+1 respectively, and then fix either N or r. As will be seen, N and r
N— 1are related by ^2n + 1 ^ ^ \+2* as will be shown, Â _̂  ̂ and ^2N+1

were chosen for individual multimodal searches, the values of N or r were 

constants specified by the user of the two-part algorithm. Experiments 

showed that if r was used to fix the grid, this could often result in an

excessively fine or too coarse a grid. By using N to fix the grid, these

problems were less frequently met, there being no risk of extreme values of N 

being generated as can happen when r is used to fix the grid.

When fixing A^^^, it is desirable that the corrections are close
k -1 kto the Newton corrections - ( G )  g at A=0 but not so close that grid-

points will be wasted in covering a region of little variation in F(A).

An initial trial value for Â .^^ is calculated, which is predicted to
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• T -\give a J% difference in the values of A% Ax ac A=A^ and A=0, By

differentiating equation (2.4) we get

~  Ax = -(G^ + AI)‘  ̂ ÙX (2.10)

A small change 6A in A will give, to a first approximation, the change
• k  “  16ÙX in Ax where, from equation (2.10), (5Ax~ -(G + A I) AxôA . The change
Tin A3Ç Ax is then given by

5 (Ax'^Ax) = - 2Ax^(G^+AI)"^Ax 6A (2.11)

Setting A=0 and 6A=A , the required prediction is
P

T,_k\-1A^ = Ax Ax / 100|2 Ax ^(G^)“ Ax | (2.12)

where Ax is evaluated at A=0. The corrections are then evaluated at A=A .—  PT
If it is found that the variation in Ax Ax is not more than 2% then A—  —  N+2
is set to A . Otherwise, A is halved until this requirement is met, which 

P P
it eventually must be.

At ^~^2N+1’ corrections must be small and close to the steepest

descent direction; however, ^2n+i ™^st not be so large that it leads to

wasted grid-points. Again, an initial value A is predicted, this time to
kgive F(Ap) = 0.99 F(«>), where the value F(°°) equals F(2c ). From equation

(2.7b) it will be seen that for large A the corrections are approximately
ki • • •  • « k ./A; by a linear approximation the corresponding reduction in F(x ) will

k T kbe (g ) ^  /A. For the required 1% reduction

X y  100 gk/F(xk) (2.13)

If on evaluation of F (A ) it is found that the reduction is not more than
P

2% then Ar,.... is set to A . Otherwise, A is doubled until this condition zN+J p p
is satisfied.
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This grid was used in conjunction, with a Golden Section search to 

refine the bounds on the minima; encouraging results were obtained. An 

important feature of the computer implementation was that, following the 

approach previously-adopted by Cutteridge, a step limit was set such that 

no component of the vector x was allowed to change by more than this limit 

from one iteration to the next. This aspect of the algorithm will be 

described more fully later.

It was apparent that the algorithm could be improved in several areas. 

The corrections were found from equation (2.4) using a method [ 65] based 

on Grout factorisation; if the matrix G^ + AI is singular, or nearly-so,

then this method fails. The more accurate method of Choleski decomposit-
• • Ic • •-ion could not be used since it requires that G + At is always positive

definite. At a singularity, although is infinite, the step limit would

ensure that the corrections are finite provided that the direction of Ax

could be found. The program logic has to have safeguards built in to

cope with the Grout factorisation method failing, either when fixing X^+2

and ^2n+i when evaluating F(A^); this cannot be done in a wholly

satisfactory manner. The calculation of Ax for any \ is time-consuming

and, as Gutteridge pointed out, could be speeded up by a technique described

by Jones [ 45] . This technique uses the eigenvalues and eigenvectors of G^

which can be found numerically by standard methods. The eigenvalues would

have a second important use in that they specify the positions of the

singularities in the grid search.

• m • kThe method of Jones can be explained as follows. Since the matrix G 

is both real and symmetric then it will have n real eigenvalues; for 

example, Wilkinson [ 26] gives a proof of this property. Let these eigen

values be denoted by (i=l, ,, n) where Further, let the

eigenvector corresponding to each eigenvalue be the vector v^ which,
Twithout loss of generality, can be taken as a unit vector. Because v^
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for i 5̂ j (the eigenvectors form an orthogonal basis) for any value of 

Ax there will exist n real scalars (x. such that

n
Ax = 2 a. y\ (2.14)

i=l  ̂ 1

Substituting Ax from equation (2.14) into equation (2.4) we obtain

and since, by definition, G ^ .  ~ i— i this last expression simplifies to

^ k ’Z «.((}). + X) V. = -g (2.15)
i=l  ̂ ^ -1 -

TIf both sides of equation (2.15) are pre-multiplied by it follows from 

the orthogonality of the eigenvectors that

a. ((j). +X) = (2.16)1 '1 — 1 —

Tnoting that v^ v^ = 1. If from equation (2.16) is substituted into 

equation (2.14) we obtain

Ax = -.Z, j : k  1=1 1

Thus for any value of X, the corresponding correction vector can be 

found directly from equation (2.17). A further saving in processor time 

is made by programming the expression for Ax as

Ax = Z w (2.18a)

Z = [^j, £ 2» ••• (2.18b)

z. = V. (2.18c)— 1 — 1 — 1 —

1w.i *^+X

Thus if Z is evaluated once at the start of the nonunimodal search, the 

corrections are thereafter given by a single matrix-vector multiplication.
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Before describing how the eigenvalues were used to specify the grid, 

it is necessary to discuss the effect on the search of the limitation on 

the size of the corrections as mentioned earlier. Cutteridge had found 

from past experience that it was beneficial to limit the magnitude of the 

components of Ax; this he found improved the global convergence properties 

of the algorithms he used and prevented numerical difficulties which 

could often be caused by one iteration taking a large step in the variables 

from which subsequent iterations tried to recover. He used one of two 

basic methods. The first was a simple "cut-off" such that if |Ax^]>p. 

then Ax^ is set to p^ multiplied by the sign of Ax^. The parameter p^ 

is a pre-set value; it will be assumed that the same value p will be us^d 

for all the p^ values but some further comments on the possibility of 

using differing p^ values will be made later. The second method of 

limitation is by "scaling-down" in which Ax is multiplied by the scalar 

s < 1 where

s = min (I, 1 ^ 1  . ... 1 ^ 1  ) (2.19)

It will be seen that s is defined such that if the maximum absolute

correction component does not exceed p then s=l and Ax is unchanged;

otherwise Ax is reduced to make this maximum correction exactly equal to

p in magnitude. Both methods of limitation were tried in the present

algorithm; scaling-down was more consistently successful and was therefore

used in the final version of the program. One possible explanation for

the greater success of the scaling-down method is that in the multimodal

search there are many regions in which scaling applies. The cut-off

method changes both direction and length, whereas the scaling down method

changes the length only. Consequently if a downhill direction is 
k Tgenerated i.e. (^ ) Ax < 0 the cut-off method could make this into an 

uphill direction.
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It will be noted from equations (2.18d) that w^ becomes infinite 

when X = corresponding to a singularity of + XI. Thus in equation 

(2.18a) the i^^ column of the matrix Z will be dominant, all other 

columns being multiplied by finite values of w. The corrections Ajç will 

therefore have the same direction as £^. Scaling-down will be in effect 

and so at such a singularity

s = min (|7 ^ | ,  ... .ÿ^,) (2 .20a)
l^lil l^nil

Ax = + s (2.20b)

The sign chosen in equation (2.20b) will depend upon the direction from 

which the singularity is approached. If X tends to -<p̂  from values greater 

than then the sign will be positive; otherwise the sign will be

negative. Thus although the corrections are finite at X=-#^, they still 

exhibit a discontinuity in their values.

The scaling-down can itself introduce discontinuities to the slope of 

the corrections. We may write

I x  (®Ax) = s Ax + Ax I I  (2.21)

It will be apparent from equation (2.17) that dA£/dX is continuous in the

range -(p̂  < X < assuming that (j)̂ > (i=2, .. n). However in this

range the value of ds/dX can be discontinuous as seen from equation (2.19).

In a region where scaling-down is not in effect, s=l and ds/dX=0; when

scaling-down is in effect, then s=p/lAx. i where I Ax. I=max(I Ax,I,.. ® > r I imax ' ' imax ' ' 1 '
|Ax ^|) and ds/dX^O. At the junction of two such regions, ds/dX is therefore 

discontinuous. Similarly, a discontinuity occurs at the boundary of two 

regions in which scaling-down is in effect but the index imax changes.

Dowson [66] observed that the discontinuities in ds/dX could have a very
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kmarked effect on the form of F(x + Ax) and developed an improved grid 

search to take account of this fact. Some further work done by the 

author on this aspect of the multimodal search is discussed in section 

4.2.4.

One further point that must be borne in mind when choosing the grid 

is that, in general, the eigenvalues of may not all be distinct. In 

the event of repeated eigenvalues, then equations (2.18a) - (2.18d) must 

be slightly modified by reducing the number of columns of Z, by adding 

eigenvectors which correspond to equal eigenvalues, and at the same time 

reducing the length of the vector w. The effect of rounding errors must 

always be allowed for in testing for equality of eigenvalues. Hence two 

eigenvalues were assumed to be equal if 6 . ^ e. where e. is the1 1— 1 (j) (p
maximum likely rounding error. The choice of a suitable value for

is difficult. Since the effect of small values of X on the corrections
• • • Ic •depends upon their effect on the diagonal of the matrix G , as used in

the program was taken, somewhat arbitrarily, as

e = 10 ^ max(10 ^,|g^|,..|G ^|)<p '11' ' nn

The grid was set up as shown in Figure 2.1; the description which 

follows needs to be slightly modified if repeated eigenvalues are present. 

There are n-1 interior regions, bounded by the discontinuities in Ax at 

the points X=-(J)̂ . In addition there are two end-regions, the descent region 

in which X>-(j)j and the ascent region in which X<-^^. Each region is 

considered in isolation from the others by the multimodal search. The 

interior regions are each subdivided into N equal intervals of X by the 

grid points X^ (j=l, .. N+1) where

Xj = + (j-1) (<J)£-({)£_j)/N (2 .22)
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It should be noted that Xj and X^^^ coincide with the values -<j>£ and

respectively and so the corrections must be evaluated from equations (2.20a)

and (2.20b) in this instance. The end regions use a different grid; for the

descent region this is defined as X^ (i=l, ... M) where

Xj = (2.23a)

%2 = A] + (*2-*i)/N (2.23b)

X. = X. , + 10(X. ,-X. ry) i=3, .. M (2.23c)1 1-1 1-1 1-2

k kThe grid is terminated at the first value X=X^ for which 0.95F(x )<F(_x +A2c)
k . . .<F(x ). A similar scheme is used for the ascent region. If there is only

one distinct eigenvalue then equation (2.23b) will be replaced by 

+ 10 min (1,|G^j|, .. |C^^) in the program.

Two situations exist when looking for minima of F(X). First, a true 

minimum is found if on three successive grid points F^_^ > F^ > F^^^% in this 

event the minimum is located precisely using the safeguarded quadratic inter

polation method described below. Second, a quasi-minimum is assumed to exist

if Fj < F2 or, for interior regions only, F^^^ < F^; in these cases the program 
kassumes that dF(x +Ax)/dX > 0 at X=-X or X=X^^, and accepts these as minima.

—  —  1 N + 1

Dowson [ 66] found that occasionally this assumption was erroneous and that in 

fact a true minimum did exist between the singularity and the adjacent grid 

point.

A safeguarded quadratic interpolation illustrated in Figure 2.2a was used 

in preference to a Golden Section or Fibonacci search because it would make full 

use of the three values making up the bracket on each minimum found. If the 

initial bracket is represented by the points (Xj,F^), (X2»F2) and (X^,F^)''(where 

the subscripts now indicate adjacent points in the grid) then we can fit a
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Figure 2.2a Quadratic Interpolation
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Figure 2.2b Detection of Nonunimodality
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quadratic through these points by the expression

AF = A AX+ Ba X^ (2.24)

where AF=F-F2 and AX=X-X2* The constants A and B are readily found by solving 

the two linear equations given by the requirement that the curve passes 

through the points (Xj,Fj) and (X^,F^). Since AF=0 and AX=0 at (X2>F2^» there 

is no constant term in equation (2.24). By differentiating AF with respect to 

AX and equating to zero, the minimum of AF must lie at AX=AX* where AX*=-A/2B. 

Substituting the values for A and B, and writing AF^=F^-F2 , AX^=X^-X2» we

obtain
AF.AXo^ ” AF_ AX^

 ̂ AFjAX3 - AF^ AXj" (2.25a)

Simple algebraic manipulation of equation (2.25a) gives

AX. AF. AXq(AXg-AX.)
Ai* = - 2T  + AF| A X 3 - A F 3 A X ,  (Z-ZSt)

and also
AXq AF_AX.(AXg-AX.)

Ai* = -1 ^ ^ A F Y M 3- - AF3AI,

Initially, it is known that AXj < 0 and AFj > 0, AF^ > 0 and AX^ > 0; as 

will be shown, these relations are maintained throughout the quadratic inter

polation. Thus, from equations (2.25b) and (2.25c) it follows that

AX AX.
< AX* < - ^  (2.26)

showing that predicted minimum will never be more than halfway from the middle 

point to either of the outer points. If AX* is close to zero then the
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new trial value of X* = A2 + AX* would be too close to X2 to provide useful 

additional information. To safeguard against this, AX* was restricted so that 

if AXj/10 < AX* < 0 then AX* is set to AXj/10 and if AX3/IO > AX* > 0 then AX* 

is set to AX3/IO.

Having obtained X*, the value F* = F(X*) is calculated and the three

points in the bracket adjusted as follows. If X* < X2 then the new bracket is

formed by (X*, X^) if F* ^ F2 and by (Xj,X*, \^) if F* < F2 . Similarly, if

X* > X2 then the bracket is changed to (Xj, X*) if F* ^ F2 and to

(X2, X*, X3) if F* < F2 . In all cases, one of the two outer points is discarded

and the bound on the minimum is thereby reduced. The whole process is

repeated until the bound is acceptably small, as given by ^11^2  ̂ and

X3 - X2 < GjIX2 I. A second convergence criterion was provided such that the

interpolation terminated if F^-F2 ^̂ 2̂^2 ^3 ” ^2 ^2^2 * This was only

used if F2 was greater than the lowest minimum so far found by the multimodal

search on the current descent iteration, on the assumption that the minimum 

bracketed is unlikely to be the global minimum. A fail-safe limit of 50 

iterations was imposed. Also, a further safeguard to ensure that the bound 

steadily decreased was included whereby if, on three successive interpolations, 

one outer point remained the same then the next value of X* was taken as midway 

between this outer point and the middle point X2 . It should be observed that 

if F(X) is in fact not unimodal in the range of the bracket X̂  to X3 , then the 

search will still converge to a minimum, although not necessarily the lowest 

minimum if there are should be two or more within the bracket. Nonunimodality 

is detected when X* < X2 and F* > F^ or when X* > X2 and F* > F3 , as illustrated 

in Figure 2.2b; such a situation certainly indicates a maximum, but not 

necessarily a further minimum.
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2.3 The modified Gauss-Newton algorithm

For the second part of his two-part algorithm, Cutteridge used a

modified Gauss-Newton search. The classical Gauss-Newton method takes the
T -1 T . .corrections Ax = -(J J) J ^  at iteration k where ^  is the vector of

functions and J is the Jacobian of both evaluated at If the

number of functions m equals the number of variables n then the corrections

are identical to those of the classical Newton (or Newton-Raphson) iterative

method for solving sets of nonlinear equations. In the latter case, the

corrections have the simpler form of Ax = -J In the modified Gauss-

Newton method, the iteration x^^^ = x^ + a Ax is performed where a is—  —  ra —  m
found from a line search to minimize the function F (a) = FCx^+aAx^); this 

modification was used earlier by Hartley [ 37] to improve the global 

convergence of the Gauss-Newton method.

This section describes the particular implementation of the modified

Gauss-Newton search which was developed by the author. The two main aspects

of interest are the line-search used to locate a and the criteria used tom
terminate the Gauss-Newton search.

2.3.1 The search for a   m

IF F (a) is expanded by a Taylor series and differentiated it is found
k T k .that dF(a)/da = (g ) Ax at a = 0; as before ĝ is the gradient vector of
k T kFCjc) evaluated at x . Now J ^  ^  and from the definition of Ax we have

T T k T .J JE = -J Jàx, We can therefore replace g by -J JAîc and obtain
T TdF(a)/da = -(J JAx) Ax. Some manipulation finally gives for a = 0

~  (a) = - Ax^J^J Ax (2.27)

Equation (2.27) shows that the Gauss-Newton corrections are downhill and
k+1 k . Tthat there will exist an > 0 for which F(x ) < F(x ) provided that J J

is not singular.
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TUnfortunately, it is often found in practice that J J does become 

singular. Since round-off error will always be present in the 

calculations, this situation is manifested by Ax becoming very large with 

the corresponding value of becoming very small; ultimately, break

down will occur of the numerical method for solving linear simultaneous 

equations which must be used to compute àx. The program used a method 

[ 65] based on the Grout factorisation of J J; a much more accurate method 

is that due to Golub [ 67] . The author is not convinced that it is

preferable to use a more accurate method. It often happens that the Gauss-
TNewton search will converge even when started from a point at which J J is

almost singular; in such cases, a less accurate method might fail at the
T .outset to compute Ax because J J is effectively singular within the

accuracy of the method. On the other hand, a more common occurrence is
Tfor the Gauss-Newton search to fail to converge and the matrix J J to 

progressively get closer to singularity as the search continues; in this 

case a more accurate method will simple prolong the onset of failure and 

result in wasted computation.

As with the descent algorithm, the change in any value x^ at an

iteration of the Gauss-Newton search was restricted to a set limit of p.

This was accounted for by the line-search used to locate a . The searchm
is illustrated in Figure 2,3 and consisted of a preliminary search to

bracket followed by a quadratic interpolation to locate to greater

accuracy. The preliminary search is confined to the range 0 3 a <

where = p/max(]Ax^|, .. |Ax^|). Starting with a given value a^, values

of a are calculated from the Fibonacci series a , 2a , 3a , 5a , ... witho o o o
a cut-off at a^. The values of F (a) are computed and inspected to see 

whether three successive values of a bracket a minimum; note that the value 

of F (a) at a = 0 is known and included. There is no significance in the use 

of a Fibonacci series other than it is a convenient way of generating values
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Figure 2.3 Search for the minimum of F (a)
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of a at reasonable spacing. Also, the line-search aims at choosing an

a which is close to a ; if this aim is achieved then the bracket on ao m m
is likely to be given by the three equally-spaced a values (o,a^, 2a^)

or (a , 2a , 3a ). o o o

Should the cut-off point be reached without obtaining a bracket on

a , then up to n-1 further trial values of a are used. These further m
values correspond to the remaining corrections in turn reaching the limit 

of + p. There will be less than n-1 values if any correction is zero or 

if there should be identical corrections. In this extended range, aAjc 

changes direction in a discontinuous fashion at each trial value of a; as 

a result, F (a) is often nonunimodal. Although no special provision was 

made to cope with nonunimodality, the extended range often gave a worth

while reduction in F(a) below its value at a^.

The safeguarded quadratic interpolation algorithm that was used to 

locate a^ more accurately, given a bracket, was the same as that described 

in section 2.2.2 for the descent algorithm. It should be noted that 

sometimes it was found that F (a) decreased up to the maximum possible value 

of a = p/min (|AXj |, ... |Ax^|) at which all the modified corrections equal 

+ p; no interpolation is needed in this event.

The choice of a^ is based on simple considerations. At the first

iteration of a Gauss-Newton search, is taken as the lower of the two

values 0.4 and 0.4p/lAx. I .  The first value will be used when ̂ ' imax'
I Ax. I < p; since a will usually be less than unity, a minimum is ' imax ' m
likely to be bracketed by the values of a of (0, 0.4, 0.8). When the

second value is used, the Fibonacci series will be terminated at the third

term. On the second and subsequent Gauss-Newton iterations, a^ is set to

the lowest of the three values 0.4, 0.4p/lAx. 1 and 2a /3, where a is' imax' m m
the value of a obtained at the previous iteration. Since a does not m • m
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change greatly from one iteration to the next, the third option can, 

if used, be expected to bracket the minimum by the points (0, 2a^/3, 

4a^/3) .

Having chosen in the way described, if F(ot^) < F(3ç̂ ) then the

value of is accepted; otherwise is divided by 10, and this division
krepeated if necessary, until either F(a^) < F(x ) or the modified

corrections a^Ax become negligibly small. In the latter case, the search
Tfor fails; however, since this situation normally occurs when J J is 

nearly singular the Gauss-Newton search itself would fail.

2.3.2 The criteria used to terminate the Gauss-Newton search

The Gauss-Newton search can be terminated in two ways. Either it 

converges, and a solution to the problem will have been obtained, or it 

fails, in which case control is passed back to the descent algorithm 

after the variables have been reset to the values they had on entry to 

the Gauss-Newton search. It is crucial that reliable criteria are used 

to detect the occurrence of either event. Also, in the case of failure, 

it improves the efficiency of the two-part algorithm if the onset of 

failure can be predicted in advance. The criteria incorporated into the 

program were evolved by numerical experiment; they fall into four 

categories.

First, convergence to a minimum of F(x) is assumed when |Ax^|< e 

(i=l, .* n), This is a simple-to-apply criterion but depends upon the 

value specified for e being attainable within the accuracy of the 

computations. A relative, rather than absolute, criterion could be used 

such that convergence is assumed when |Ax^|<c|x^| (i=l, .. n); this is to

be preferred if the variables differ greatly in size when a single value 

would not be appropriate. Provided that the variables are roughly the
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same size, the first criterion is adequate. In the tests on the 

difficult problem, the variables used in the search were the natural 

logarithms of the problem variables; this was to ensure that the 

solution values would all be positive. With such a transformation, 

when IAx^I < e then the change in the problem variable corresponding 

to the change |Ax^| in the search variable will be less than (exp(+e)-l) 

times the problem variable; the sign of e will depend upon the sign of 

Ax^. If E is small, then the change will be approximately +e times the 

problem variable and so the convergence criterion is, in this case, a 

relative one.

The second category consists of three criteria to determine immediate 

failure. The Gauss-Newton search is entered prior to each iteration of 

the descent algorithm. If less than N^ descent iterations have been 

performed, if the objective function is greater than F^, or if the Gauss- 

Newton correction of maximum magnitude |Ax^^^^| exceeds A^, then immediate 

failure is assumed and control passes back to the descent algorithm. The 

first two criteria are consistent with the philosophy of two-part algorithms 

in that several iterations are performed in the first part before the 

second part is entered. Since it cannot be known in advance when the 

descent part will be sufficiently close to a solution for the Gauss-Newton 

search to converge, these two criteria were not used for the tests; they 

were left in the program as a means whereby a user could ensure that a 

minimum amount of progress is made in the descent algorithm if he so 

desired. The third of these criteria was not as useful as first thought. 

Trials showed that convergence to a solution was attained in some cases 

where the value on entry was as high as 10^. Consequently, this

criterion too was not used in the tests, although it was retained as an 

option in the program. The attitude adopted by the author was that the
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more times the Gauss-Newton search is attempted, the more likely it is 

that a solution of a difficult problem will be obtained; if the problem 

is an easy one, then an early attempt will be successful anyway and so 

no computation will be wasted.

The third category consists of two criteria for forced failure. If 
T . .J J is singular, as evinced by a failure of the numerical method of

solution for the corrections, or if the search on a cannot find a suchm o
that F(a ) < F(x ) then forced failure has occurred. The second mode of o —

Tfailure is caused by the matrix J J approaching singularity. The effect 

of round-off in the calculations determines which mode of failure occurs 

first.

The fourth and final category contains three criteria for the 

prediction of ultimate failure. The first of these is a straightforward 

limit Ng on the number of iterations allowed in a single Gauss-Newton 

search. The other two criteria are prediction criteria in a truer sense; 

both were used by Cutteridge in previous algorithms. If I^^imax' 

increases to 100 times, or more, its value on entry, or if I Ax. I' * y > I imax '
increases on ten successive iterations and the increase gets larger at 

each successive iteration, then it is assumed that J J will eventually 

become singular and that the search will fail. Note that the second of 

these two criteria indicates an acceleration in the rate of increase of

 ̂̂ ^imax I ‘

2.4 The restart facility

Using the descent algorithm and modified Gauss-Newton algorithm 

described in the preceding sections, the two-part program obtained solutions 

to Skwirzynski's problem from a wide range of starting values. However, 

the program was not completely reliable and in some cases reached a local
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minimum of F(x) in the descent part without converging to the global 

minimum of zero in the Gauss-Newton part. The author and Cutteridge 

jointly came to the conclusion that a facility for the automatic restart 

of the descent algorithm at a different starting value of 3̂  would improve 

the reliability. The restart approach has been used by other workers, 

see for example Dixon [ 48] ; commonly the new starting value is generated 

in some random manner. The restart facility developed by Cutteridge and 

the author does not formally use a random process, although it still has 

an element of randomness to it.

It will be recalled that the descent algorithm at each iteration, 

chooses the value of X corresponding to the global minimum of F(X). As 

a by-product of the multimodal search, one or more other values of X are 

normally found corresponding to local minima which are greater than the 

global minimum. The corrections obtaining at these local minima can often 

be far removed in direction and magnitude from those at the global minimum. 

The new restart facility uses only those local minima which, if used in 

place of the global minimum would still give a reduction, albeit smaller, 

in the objective function. By restarting from the value k corresponding 

to a local minimum, the subsequent path followed by the descent algorithm 

will diverge from the originally-obtained path.

This facility is implemented in the program as follows. On the original 

descent path, a list of potential restarts is built up by adding to the 

list at each descent iteration the values of x corresponding to local 

minima as just discussed. The list is kept in ascending order of descent 

iteration and, for the local minima at a given iteration, in ascending 

order of size of objective function. Should the algorithm fail, as 

evinced by F(x) changing by less than 1% on three successive descent 

iterations, then it is restarted from the first point on the list. Further . 

restarts are made as necessary until either convergence is achieved or else 

the list is exhausted.
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2.5 The final form of the algorithm

Before proceeding to the next section, which discusses the results 

obtained with the program, it is worthwhile to summarise the main steps 

of the two-part algorithm, as in its final form. These steps are:

Step 1 Initial entry; set k=0 and x° to a given estimate 

of the solution variables x*

Step 2 Calculate the functions Jacobian J and the
• • • Icsecond derivatives at the current point x . Form

Ic Icthe Hessian G and gradient vector g of F(x).

Step 3 Enter the Gauss-Newton search. If any of the

immediate ejection criteria are satisfied, then
• • s Iccontinue from step 10; otherwise, store x =x ,

k^=k and continue with the Gauss-Newton search at

step 4.

T . .Step 4 If J J is singular, continue from step 9; otherwise
T — I Tcompute the Gauss-Newton corrections Ax=-(J J) J f

Step 5 If max(|AXj|, ... |Ax^|)<e then convergence to a
• • Ic ♦solution is assumed, set x* = x and terminate the

optimization.

Step 6 If any of the predicted failure criteria are satisfied, 

continue from Step 9.

kStep 7 Find the value of a to minimize F(x +aAx), allowing

for the effect of the limit p on the corrections Ax.
k kIf F(x + a Ax) t F(x ) then continue from Step 9.—  m —  —
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Step 8 Set = x^ + a Ax and k=k+l. Compute f and
—  —  m  —  —

Ic •J at X and continue the Gauss-Newton search at 

Step 4.

Step 9 Failure exit from the Gauss-Newton search; set
1 - s , k s k=k and x =x .

Step 10 Perform a single iteration of the descent algorithm.

Calculating the corrections by Ax = -(G^+XI) if

necessary scaled down to ensure that no correction

IAx^I exceeds the step limit p, use the multimodal
• • • Icsearch on X to find the global minimum of F(x +Ax).

If the descent algorithm has not yet been restarted, add

to the list of restart points using any suitable

local minima found by the multimodal search.

k+1 kStep 11 Set X = 3C + Ax where àx corresponds to the global 

minimum found at Step 9.

Step 12 If progress in the descent algorithm is tailing off,

then either restart the algorithm and continue from

Step 2 or, if no more restarts are available,

terminate the optimization. Otherwise, if the descent

algorithm is still making good progress, continue from
kStep 2 with the current values for x ,

The program has default values for the various parameters it employs; 

these can, if desired, be changed by the user. To date, the only parameter 

which it has been necessary to alter is the convergence parameter £, which 

has a default of 10 The step limit p is set to 0.5 for both the descent 

and Gauss-Newton corrections. In the multimodal search, the number of
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intervals N used to subdivide the interior ranges is set to 3; this value

can be increased, as Dowson [66] did, to increase the probability that

the multimodal search will locate all the minima. The convergence

criteria in the quadratic interpolation use the values Ej and 02* For the
“ 3 -2descent algorithm, these are set to 10 and 10 respectively, for the

-2Gauss-Newton algorithm they are set to 10 and 0. Note that the effect 

of setting either parameter to zero is to ensure that the test for 

convergence using that parameter will not be operative

2.6 Numerical experience with the algorithm

Originally the algorithm was developed as an ALGOL 60 program on an 

ICL (Elliot) 4130 computer. The final version was later translated into 

FORTRAN IV on the same computer and has, more recently, been transferred 

to an IBM 360/44. Unless stated to the contrary, the results given in 

this section were obtained using the IBM 360/44 version. Note that double 

precision floating-point arithmetic was employed; for this the IBM uses a 

56-bit mantissa which enables real numbers to be stored to approximately 

14 significant decimal digits of accuracy.

This section first discusses the performance of the program on the 

difficult test problem. Then a modified form of the descent algorithm is 

discussed which does not require second derivatives. The effect of using 

numerical approximations of the derivatives rather than analytical 

expressions is described. Some statistics are given which summarise the 

behaviour of the important internal features of the two-part algorithm. 

Lastly, some comparisons are made with other algorithms, using the difficult 

test problem together with a further eight test problems.
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2.6.1 Performance on the difficult test problem

The difficult test problem due to Skwirzynski was used as the 

touchstone by which to gauge the reliability achieved by the two-part 

algorithm. Details of this problem are given in the Appendix, where it 

is referred to as Problem 1. As can be seen, the problem is one of eight 

nonlinear equations involving eight variables and has an exact solution. 

There is a pronounced nonlinearity in the equations due to the presence 

of exponential terms. With some algebraic manipulation the problem could 

be simplified so that fewer variables are present; this was not done since 

it was desired to preserve the difficulty of the problem.

The equations arise from the use of the Ebers-Moll[ 68] model of 

transistor junctions and, from physical considerations, the variables 

cannot be negative. The problem is thus one of minimizing a sum of squares 

subject to non-negativity constraints on the variables. However, it can 

be transformed to an unconstrained problem by using new search variables 

= log^ x^; this technique is discussed further in [ 9, p.82]. It will 

be seen that the original variables x will always be non-negative whatever 

the values adopted by x ’ during the optimization.

From the programming viewpoint, the author believes that all such 

transformations should always be kept separate from both the optimization 

algorithm and the subroutine, supplied by the user, to compute function 

values and derivatives. Earlier programs used by Cutteridge had the 

logarithmic transformation embedded in the relevant places in the algorithm; 

the general usefulness of the program was thereby reduced. The present 

program used a FORTRAN subroutine to act as an interface between the 

algorithm and user-supplied subroutine. The optimization algorithm calls
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this interface subroutine as necessary and supplies it with the current 

values of the search variables x', together with an integer to specify 

whether the function values only are required or whether first and/or 

second derivatives are required as well. The interface subroutine then 

carries out the reverse transformation x^ = exp(xL ) to obtain the 

values of the problem variables corresponding to the current search 

variables. Then the user-supplied subroutine is called and supplied with 

the values of x with which to calculate the required function and 

derivative information. The interface subroutine then, as appropriate, 

transforms the derivative information to apply to the variables x ’, before 

returning the function and derivative values to the optimization algorithm.

This approach may appear cumbersome; however it is relatively easy to 

incorporate different transformations by simply changing the interface 

routine. Other facilities, such as checking of the consistency of the 

function and derivative calculations in the user-supplied routine or the 

option to use numeric estimates of the derivatives, can also be included 

as user-options in the interface routine. Note the modular structure 

of FORTRAN IV is suited to the programming of optimization algorithms, 

since only the user-supplied subroutine need be compiled at run-time 

provided that the subroutines making up the algorithm are kept in compiled 

form on disk and loaded with the user-subroutine.

It should be noted that for the logarithmic transformation the 

derivatives with respect to the variables x'^ are calculated from the

expressions

= Ü Ü3x' . ^i 3x.1 1
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^ , f k
9x'^3x'j 3x_3Xj 3x^

where 6. • = 0 if i j and 6. . = 1. ij 11

Using the standard version of the program summarised in section 2.5, 

the results shown in Table 2.1 were obtained. Fifteen different starting 

values were tried; for each starting value the initial estimate x^° of 

each variable was kept the same for each variable. It will be seen that

values of x^° in the range 0.1 to 10 were used. At the top end of this

range, the function values become very large and although solutions were 

obtained with x^° = 11 and x^° = 12 the algorithm breaks down at higher 

values of x^° because of numerical overflows. However, such high values 

would not be realistic starting values anyway. At the bottom end, 

solutions were obtained for values of x^° less than 0.1 but only with

difficulty and the use of many restarts. In Table 2.1, the number of

descent iterations shown is the number of steps taken by the descent algorithm 

from the initial guess on x to the point at which the Gauss-Newton search 

converges; if there are any restarts, then only the descent path which 

leads to convergence is considered.

The computational effort n^ is defined by n^=n^+ n x n^+nfn+l) x n^^/2 

where n^, n^ and n^^ are the total numbers of function, first-derivative 

and second-derivative evaluations respectively. These figures exclude any 

failed descent paths. This definition tacitly assumes that the same 

computational effort is required to calculate the value of a function as 

is required for a derivative. Patently this is not so; for example, common 

expressions can be stored from a function evaluation for use in a subsequent 

derivative calculation; also some derivatives may be constant or zero.

Murray [25, p.70] uses a measure involving processor time; as Himmelblau



50

*4-1O CO ■M
<U td.
'B ^a CO
B 0) a  Pi

C N I O O  —  o o o o o  o o  o

3o•H +j
cd o4-1 IH ;) «4-1
ru

a (u 
»  «
w  &cd œ  Ci•H <4-1 pL, O

co COV+-I 4-1 cO o0) •H
U g 4J
<S) 1 cd
JP CO MCO 0)s 4-4g cd Mo

CO oQ> 4J cJ-l oCd u 4Js 0) 3CT* «4-4 04CO CO
c 1«4-4 cd COO V4 (04-1 scdCi odo o

«4-1 COO 4-) cc o
U (U •H<U o 4-4CO cd0) uA 04g 4JH

g CO0)C/î ucd1-4 SO Cd D*•H W  •4J pti •H «4-1C O

0)4J

w

CM on CM CM CM CO vO o GO o liO _lO vO CM o VO in m vO <d" m r- vO o CM00 o CM CM O CM 00 CM o vO CM<r -d" CM CO CM CM CM m CO Mf 00 vO as

vO CO m vO vO -d" vO vO <r CM mCM1 1 CM1 1 CM1 1 CM1 CM1 CM1 CM1 1 1 1 CM1 1
o o o o o o o o o o o o o o o

00 in vO 00 as O CT» CO O O CM 00
m crv CM CM — CM m CM so

00 \0 fO CM O  O  O  Cs| ' CO fO CN 1-̂ oCM CTiCM 0> CMo\ O  O  vO vO as

CM CM CM CM CM —— CM CM — m-, —1
o o o o o o o o O o o O o o o
as Os CJV as r~- as CO O 00 00 vO
— vO — 1 •—< CO vO CO <r vO CO

CO vo sD \0 in m-' GT\ oCM m  vo CM ^  — I CM

in >d- Mt CO CO m m vO 00 crv sf vD
o o o o o o o o o o o O o O' o

in Mf CM CO CO 00 CM m 00 CO CO v£>
vO CO CO CM m CM as m

CO in r». as O O o O O o o O o o
O o o O o CM CO m vO 00 as o

CO(U>•H4J
>•HV4oo
a•H

I

<us
uH

§rHrOo
uP4
C4o

sCO

CM
<u1—4
■§H



51

[ 6] points out this can be suspect since there are many imponderables

e.g. compiler efficiency and multiprogramming which can markedly effect 

such measures. Bard [ 15] observed that computational effort should also 

take into account other major calculations such as the solution of 

linear equations and eigenvalue analysis. Wolfe [46] introduced an index 

of computational efficiency log^(rp)/n^ where r^ is the ratio of initial 

to final sum of squares; when the final sum of squares is zero this index 

is infinite and when there is no reduction the index is zero. Many sum of 

squares problems do not have a zero minimum; consequently this index could 

class a search, which did not reach a solution but go some way towards 

doing so with modest computation, as being more efficient than a search 

which reached the solution but with a greater amount of computation.

It will be observed that a solution was obtained from all fifteen 

starting-points and that only in two cases were restarts necessary. Thus 

it can be justifiably claimed that the results show that the original aim 

of developing a reliable algorithm with good global convergence properties 

was achieved. Note that by global convergence is meant the ability to 

reach a single solution from a wide range of starting points rather than 

the ability to locate the global minimum of a function with several minima.

2.6.2 A modification which does not need second derivatives

In view of the parallel which was drawn between the Levenberg-Marquardt 

algorithm and the descent algorithm, it was decided to investigate the effect 

of using equation (2.6) in place of equation (2.4) when evaluating the 

descent corrections. This is equivalent to replacing the Hessian in 

equation (2.4) by its Gauss-Newton approximation 2J J. The major benefit 

is that second derivatives are thereby no longer needed.
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One point of note arose in connection with the logarithmic trans

formation of the variables. For the untransformed variables the elements 

of the approximate Hessian are

-2 m 9f, 3f
= Z 2 ^  (2.28)3x.9x. 1 , 9x. 9x.1 J k= 1 1 J

For the transformed variables, the Hessian becomes

2 m 3f 3f m  3f 3f
& W :  = 2 3P -. 3?^. = 3ÏÏ7 3 ^  (2 .29)1 J k= 1 1 J k= 1 1 J

However, one could start from the exact relation

é r ? ? T  = iSsïïT + «ij =̂ i f . (2.30)

where 5^j=0 if i/j and 5^^=1. If the first term on the right-hand side

of Aquation (2.30) is replaced by its approximation as given by equation
2(2.28) then a different expression for 9 F/9x ’^9x V  from that given by 

equation (2.29) is obtained. Although this alternative form could have 

some merit, the author used the form of equation (2.29) since this is 

consistent with the assumptions of the Gauss-Newton approximation.

The results for Problem 1 using the approximate Hessian are shown in 

Table 2.2. Comparison with the earlier results using the exact Hessian 

shows that the approximate method results in an overall increase in 

computational effort and a greater use of the restart facility. However, 

the modified algorithm is still very reliable and has the advantage of not 

requiring second derivatives.
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2.6.3 The use of numerical estimates of the derivatives

A number of different formulae could be used to estimate the

derivatives numerically; Gill and Murray [ 31] discuss this subject more

fully. In the present program, a forward difference formula was tried

as follows. Let it be desired to find an estimate of 9h(x)/9x. for the
—  1

k . . k .function h(x) at 3(=x . First h(x) is evaluated at x , then a displacement

vector ÔX is defined where ôx.^0 and 6x .=0 (i^j) and h(x) evaluated at
—  1 J —

k . . .X + 6x. The required estimate is then

(x^) - h(x^ + 6x) - h(x^) 
° 1 —  —  —  —

6x^

To estimate the Jacobian matrix will require n evaluations of
kf(x + ^ ) , one for each variable x., in addition to the evaluation of
Ic • • •^(x ). This latter quantity will normally be required anyway by the

algorithm at the time the Jacobian is required. Curtis, Powell and Reid

[ 69] show how the computation can be reduced when the Jacobian is known

to be sparse.

A similar process is used for estimation of the second derivative 

terms, provided that analytic first derivatives are available (it is not 

possible to estimate second derivatives accurately from function values 

only). Note that since the matrix of second derivatives for a given 

function f is symmetric, the truncation error in the approximation can 

be reduced by averaging two independent estimates using the formula

9^f (x^) _ , ^  (x^+fix^) - (x^) ^ 2 Ê (x^+fix^)- (x^)
9x.9x. 9x. 9x. 9x. ^j

1 J 1 __________  1 J _________________

where ôx j and 6x^^ are the only non-zero components of 6x^ and 6x^.
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The major difficulty is choosing a suitably small value for the 

nonzero component of the displacement vectors. Gill and Murray [31] 

recommend that a suitable choice is 2 where t is the number of bits 

in the mantissa, provided that the components of x are of order unity 

and the function is well-behaved. Intuitively, this strikes a balance 

between reducing truncation error without increasing roundoff error.

In the two-part program, ôx^ was taken as 10  ̂ (1 + |x^|) following 

Gill and Murray's reasoning but also allowing for the possibility of 

large values of |x^|. Two sets of results were obtained. The first is 

shown in Table 2.3 and corresponds to the use of numerical estimates of 

the second derivatives and should be compared with Table 2.1. The second 

set in Table 2.4 was obtained with numerical estimates of the first 

derivatives and using the approximation of the Hessian in the descent 

algorithm; it should be compared with Table 2.2. It will be seen that 

there is little difference in the results obtained using the exact Hessian, 

with and without numerical second derivatives. However, there are major 

differences between the two cases using the approximate Hessian. Logically 

this could be expected. If numeric estimates of the second derivatives

are used only the descent algorithm is affected; the effect may be slight
k . . Tif G is dominated by the term 2J J. On the other hand, when the modified

descent algorithm is used in conjunction with numeric estimates of the

first derivatives, both the descent algorithm and the Gauss-Newton
Talgorithm are affected since they both depend upon the value 2J J. The

Teffect of errors in the numeric estimates will be more marked if 2J J is 

nearly singular; this explains why the differences between Tables 2.2 

and 2.4 are more marked for low starting-values of x^° (it was found that 

2J^J is singular for x^° = 1).
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2.6.4 Some statistics concerning the program

During the early stages of development, various statistics were 

output by the program to monitor its performance. These statistics were 

not included in the final FORTRAN version. However, some of the more 

interesting statistics produced using the ALGOL version with the exact 

Hessian for Problem 1 will now be given. The values quoted are averaged 

over the fifteen starting-points.

In the descent algorithm, on average 9-10 minima were found at each 

application of the multimodal search; the largest and smallest numbers of 

minima found were 14 and 8 respectively. Of the minima, about 30% were 

quasi-minima. If the grid search is examined, it will be apparent that 

there must always be at least one minimum or quasi-minimum for each of 

the n-1 interior ranges. Also, there must be a minimum in the descent region, 

Thus there will always be an absolute lower bound of n minima per multimodal 

search, which agrees with the value of 8 just quoted. Taking account of 

both the grid search and the quadratic interpolation, approximately 12 

evaluations of F(X) were required per minimum found. If a Golden Section 

search had been used, statistics showed that to get the same accuracy as 

obtained by the quadratic interpolation a further 4 evaluations of F(X) 

per minimum would be required. In about 5% of the quadratic interpolations, 

nonunimodality of F(X) was detected.

In the Gauss-Newton algorithm, on average 25 iterations per search 

(including failed searches) were performed. The line-search at each 

iteration required on average 10 evaluations of F (a); of these 3 evaluations 

were needed to bracket the minimum. This latter figure indicates the 

suitability of the choice of since at least 2 evaluations of F (a), in 

addition to the known value at a=0, will always be necessary. Roughly one
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third of the quadratic interpolations detected nonunimodality in F (a);

this high figure could be expected since no special provision for

nonunimodality is made in the bracketing process, as is done for the

descent algorithm. Of all the Gauss-Newton searches, 7% resulted in
Tconvergence; 2% failed because the matrix J J became singular; 1% failed 

because of failure in the search on F(a); 3% because the upper limit of 

200 iterations was reached; 52% because the rate of increase of the 

maximum magnitude correction increased 10 times; and 35% because this same 

correction became 100 times greater than its value on entry to the search. 

These last two figures show the benefits of using predicted failure criteria; 

of those searches that converged, the largest number of increases in the 

rate of increase of the MMC was 4 and the greatest increase in its value 

was 22 times its value on entry; the corresponding figures used of 10 and 100 

thus have a good margin for error.

2,6.5 Comparisons with other algorithms

In order to assess the worth of the two-part algorithm in relation to 

existing algorithms, some comparative tests were carried out against three 

other algorithms in common use. The chosen algorithms were the methods of 

Powell [44], Fletcher [4l] and Gill, Murray and Picken [27], as implemented 

in the widely-distributed NAG [ 70] Library. The first two methods are 

hybrid algorithms specifically for sum of squares objective functions; 

Powell's method uses function values only and computes numerical estimates 

of the first derivatives while Fletcher's method requires that first 

derivatives be supplied. The third method, that of Gill et ai, is an 

implementation of Newton's method for the solution of a general objective 

function; it requires both the first and second derivatives of the function,
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To make the comparisons, Problem 1 was used together with an 

additional eight test problems, given as Problems 2-9 in the Appendix.

These additional problems were cited by Meyer and Roth [42] as being 

good tests of the performance of a sum of squares minimization algorithm.

Nash [43] has recently published results obtained with Meyer and Roth’s 

problems using his own implementation of Marquardt’s method.

Before progressing to describe the results of the comparisons it is 

necessary to say a little about the way in which the test runs were 

performed. In the case of Problem 1, a logarithmic transformation of the 

variables was used, as before, to ensure that the non-negativity constraints 

were satisfied; for the remaining eight problems, which were not subject to 

such constraints, a linear transformation to variables x'. = x./s. was used.I l l
The value of s. for each variable is set at the start so that x'.=l when 1 1

x.=x.°; this requires that s.=x.°. Provision is made by the transformation 1 1  ^ 1 1
for the case of x^°=l; in this event, s^ is set to 1 and the initial value 

oc’ to 0. Both transformations ensure that the same step limit p can be 

used for all the variables in the two-part algorithm. The maximum change 

of j-p in any transformed variable x'^ at one iteration of the optimization 

will produce a corresponding change in value x. of the problem variable of 

(exp (+p)-l) x^ or +p s^, for the logarithmic and linear transformations 

respectively. The choice of p=0.5 will thus be a reasonable one. A 

similar argument applies to the methods of Powell and Gill et al which both 

require that an upper limit on the length of any correction Ax be specified. 

The value of 0.5 was used for both these algorithms for the tests; in the 

absence of the transformations, different step limits would have been 

required for each problem according to the magnitude of the problem variables

Powell's method requires the specification of a step size for use in
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-7the numerical estimation of first derivatives. The value of 10 was

used, in line with the comments in section 2.3.3. Fletcher's method uses
T — I Tthe Marquardt-type correction vector Ax = -(J J + XW) J ^  where W is a

specified matrix; two separate tests were made one with W=I, the unit
Tdiagonal matrix, and the other with W=J J. No changes were made to the

two-part algorithm other than to relax the convergence criterion for

Problems 2-9 by increasing e from its default of 10 ^ to the less stringent 
-5value of 10

The performance of all four algorithms on Problem 1 is summarised

in Table 2.5. Of the two entries shown for the two-part algorithm, the

first refers to the use of the true Hessian and the second to the use of
Tthe approximation 2J Jin place of the Hessian (they therefore correspond

to Tables 2.1 and 2.2 respectively). For Fletcher's algorithm, the first
Tentry is for W=I and the second for W=J J. Table 2.5 is intended to compare 

the abilities of the four algorithms to solve a difficult problem; in all 

but one instance, the NAG algorithms fail to dc so. The manner in which 

each test ended is indicated by the symbols G for the global minimum 

(which is zero and corresponds to the solution), L for a local minimum 

and D for a dead-end in which the variables are wildly-removed from the 

solution and no further progress can be made. In the case of x^°=3 when 

Powell's algorithm reached the global solution, the required computational 

effort n^ was 192. To check on the effect of the step limit on the 

performance of the methods of Powell and Gill et al, a further survey was 

made using values for this step limit of 0.1, 0.2, 0.5, 1.0, 2.0, 5.0 

and 10.0. The results indicated that no significant improvement in 

reliability from that shown could have been achieved by changing the step 

limit for these two methods. It should be noted that all algorithms could 

easily find the solution to Problem 1 containing negative x^ values when
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Starting
Value Two-part

algorithm
Powell
algorithm

Fletcher
algorithm

Gill, Murray 
and Picken 
algorithm

0.1 

0.3 
0.5 
0.7 
0.9 
1.0 

2.0
3.0
4.0
5.0
6.0
7.0
8.0 
9.0

10.0

G*/G*
G/G*
G/G
G*/G
G/G*
G/G
G/G*
G/G
G/G
G/G
G/G
G/G
G/G
G/G
G/G

L
L
L
L
L
L
L
G
L
L
L
L
L
L
L

D/D
D/D
D/D
D/D
D/D
D/D
D/D
D/D
D/D
D/D
D/D
D/D
D/D
D/D
D/D

G Global Minimum Located (solution)

L Local Minimum Located

D Dead-end from which no further

progress can be made

* Denotes use of restart facility

Table 2.5 Comparisons of the four algorithms using Problem 1
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the logarithmic transformation was removed. The results obtained with 

Problems 2-9 are shown in Table 2.6. The figures given are the values 

of computational effort n^ defined in Section 2.6.1. The pairs of figures, 

given for both the two-part algorithm and the Fletcher algorithm, have the 

same significance as for Table 2.5. Problems 2-9 are much less difficult 

than Problem 1; however note that Powell's method failed on Problem 7 

and the method of Gill et al failed on Problems 7 and 8 .

It will be apparent from these results that the two-part algorithm 

is superior in reliability to the other three algorithms. Even if the 

restart feature were to be removed, since it could be argued that this 

gives the two-part algorithm an unfair advantage, then the success rate 

would still be 80% on Problem 1 as compared with, at best, 7% for the other 

three algorithms on the same problem. This reliability is not achieved at 

too great a cost in efficiency since, for Problems 2-9 the two-^art 

algorithm requires a similar amount of computational effort to the other 

algorithms. It should be noted that, for Problems 2, 3, 4, 5 and 9 and the 

Gauss-Newton search in the two-part algorithm converged from the initial 

starting point. Also, similar results were obtained when numerical 

approximations were used for the derivatives by the two-part algorithm.

Of the other three algorithms, Powell's method performed best overall 

in terms of reliability and efficiency. It consistently located the local 

minimum of Problem 1 apart from the one instance when it found the global 

minimum and so it could justifiably be claimed that it always achieved 

its aim of minimizing the sum of squares. Fletcher's method is very 

efficient when it is successful but it performed poorly on Problem 1. The 

comparison is slightly unfair to the method of Gill et al in that it is 

designed for a general objective function; on the other hand it does have 

the benefit of an exact Hessian matrix of the objective function.
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Problem Two-part algorithm Powell
algorithm

Fletcher
algorithm

Gill, Murray 
ana Picken 
algorithm

59/59 

162/162 

]66/166 

88/88 

405/294 

250/244 

233/227 

76/76

31

29 

25

30 

37

failed

282

65

30/49

46/46

49/50

25/217

29/247

276/269

267/255

243/569

216

147

147

110

220

failed

failed

2168

N.B. The figures given for each algorithm are 

of the computational effort n

Table 2.6 Comparisons of the four algorithms using Problems 2-9
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3. A HYBRID ALGORITHM FOR SOLVING 

SETS OF NONLINEAR EQUATIONS

This chapter describes work carried out by the author with the aim 

of developing a new hybrid algorithm for solving sets of nonlinear 

equations involving n variables. As shown in the previous chapter, 

considerable success was achieved by using a two-part algorithm to solve 

such problems. The major source of inefficiency in the two-part 

algorithm is wasted computational effort expended when the second part 

is entered prematurely. To avoid this, the author sought a new method 

which would, in a single algorithm, combine the robustness of a descent 

algorithm with the fast rate of convergence of Newton’s method for 

solving nonlinear equations. The method which was developed was later 

extended to handle overdetermined systems of equations, for which case 

the optimal solution defined by the new method is that which minimizes 

the sum of the absolute values of the residuals, rather than the sum of 

squares.

3.1 Newton's method for solving nonlinear equations

In the early stages of development of the two-part algorithm, the 

author was concerned with solving sets of nonlinear equations. Thus the 

Newton (or Newton-Raphson) corrections were originally used in the 

second part of the algorithm. At a later stage the Newton corrections were 

replaced by the more general Gauss-Newton corrections; this final form
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of the two-part algorithm is the one described in the previous chapter. 

However, for this historical reason, the original ideas of the author 

for the hybrid algorithm developed from a consideration of the causes 

of the breakdown of the Newton method, which will now be described.

Given the set of n nonlinear equations with residuals f
T(i=l, ... n) for the values of the variables x = (Xj, ... x^), it is 

required to find the value 2c* at which f_(x*)=0. Suppose that at

iteration k the current estimate of x* is x^. The functions ^(x) at the
• Ic •point + Ajc are approximately given by a Taylor series expansion as

f_(x^ + Ax) = ^(x^) + J Ax (3.1)

where J is the Jacobian matrix J.. = 9f./3x. evaluated at x^. Thisij 1 J -
expansion ignores terms involving second and higher-order derivatives 

of JE (]() . On the basis of this linear approximation, the Newton 

corrections Ax are obtained by setting the left-hand side of equation 

(3.1) to zero to give

Ax = -J * f(x^) (3.2)

Since this prediction is not, in general, exact it is normally necessary 

to set x^  ̂ Ax and repeat the process until convergence is

achieved; the final rate of convergence can be shown to be quadratic.

In practice, Newton’s method often diverges. To cope with this, one 

can set

x^^^ = x^ + aAx (3.3)

and choose a such that a "sufficient" reduction is obtained in the
2objective function F(x) = Z f. (x) from one iteration to the next.

i=l ^ “
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It will usually be possible to find an a such that F(x^^^) < F(x^)

since the correction vector is downhill. This follows from the
k Tobservation that dF(x )/da = ^  Ax where ^  is the gradient vector of

k . T -1 .F(x) at X . Since ^=2J ^  and Ax=~J JE, direct substitution of these
k Tvalues leads to dF(x )/da = “2^ demonstrating that Ax is downhill.

Various methods e.g. [37] have been proposed for the choice of a.

Although the modification prevents divergence to extreme values of x,

the method can still fail due to the Jacobian J becoming singular, when

the corrections given by equation (3.2) will be infinite. Sometimes the 

method will fail because a value of a cannot be found which gives 

F(x^^S < F(x^). Such a breakdown is a symptom of the Jacobian tending 

to singularity. The effect of roundoff error in the calculations 

determines which of the two forms of breakdown occurs first. This topic 

was discussed in the previous chapter in connection with the Gauss-Newton 

search.

Some means of circumventing the difficulties caused by a singular

Jacobian was sought so that continued reduction in F (_x) could be ensured,

thus producing a robust algorithm. Consider the situations in which the

Jacobian becomes singular. At a stationary point of F(2c) the gradient
Tvector £(x) will be zero. Since ^(x) = J f_(x) it follows that if

F(3c) > 0 at the stationary point, then at least one value f^(_x) will be
Tnonzero and consequently J (and hence J) must be singular. If a local

minimum has been reached, it will not be possible to generate a downhill

direction; this should be possible however, if the stationary point is 

a saddle-point. When F (x) = 0, the stationary point corresponding to 

the solution, no similar inferences on the Jacobian can be drawn. Also 

it will be possible for the Jacobian to become singular away from a 

stationary point. In view of these observations, the more limited goal 

was adopted of developing a Newton-type algorithm which would locate a
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minimum of F(x) (not necessarily the solution of f(3c)=0) and which 

would not fail if the Jacobian becomes singular.

3.2 A modification of Newton’s method

kAt any iteration k of the Newton method, provided that k  is not 

a stationary point of F(x), there will be an infinite number of possible 

downhill directions. The Newton corrections Ax specify that downhill 

direction along which, on the basis of a linear approximation, the 

residuals ^(x) will decrease in the same proportion. Consider the 

modified Newton corrections aAx. A Taylor-series expansion about f(x^)

gives

f(x^ + aAx) = f(x^) + aJAx (3.4)

_ I
Substitution of the Newton corrections -J f(x) for Ax on the right-hand 

side of equation (3.4) gives

f(x^ + aAx) - (1-a) f(x^) (3.5)

« l e  •The parameter a defines a point on the line _x + aA)(. From equation

(3.5) for each residual f^ we have

k kf.(x + aAx)/f.(x ) = 1-a (3.6)1 —  —  1 —

Thus, on the basis of the linear approximation, each residual is

reduced by the proportional amount 1-a; for a=0 , corresponding to no
Ic • • • *departure from x , there is no reduction in the residuals; for a=l,

corresponding to the full Newton corrections, the residuals will all be 

zero.
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Even if the Jacobian becomes singular, a downhill direction will 

still exist provided that a local minimum has not been reached. A 

similar analysis will now be used to that of section 2.2.2 in the 

derivation of equation (2.17). Consider the matrix J*J; since it is 

real and symmetric, it will have n real eigenvalues cp̂  and the corres

ponding n eigenvectors v^ will form an orthonormal set. The Newton 

corrections can then be expressed as

n
AX = Z 3* V. (3.7)

i=l  ̂ ^

where the scalar values 3  ̂ (i=l, .. n) are to be determined.

Noting that Jax = by definition of the Newton corrections, it 

follows that J^J Ax = -J^f. If we replace a x by the expression given

by equation (3.7) we obtain

J^J Z 3. V. = -J^f (3.8)
i=l  ̂ 1

Since by definition J^J equation (3.8) simplifies to

n rp
Z 3 . (f). V. = -J f (3.9)

i=l 1 1 1

If both sides of equation (3.9) are pre-multiplied by v.^, the 

orthonormality of the eigenvectors gives

3j_ <\>i = 1  (3.10)

Substitution of the values of 3. given by equation (3.10) into equation 

(3.7) gives finally

^ T TAx  = - Z V. (J f) V./ (J). (3.11)—  . , — 1 —  — 1 1
1=1
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When any value <J>̂ tends to zero in equation (3.11), the corrections

àx will be dominated by the i^^ term of the summation. If 4^=0, the
I T Tcorrections are infinite; however their direction is known to be v. J f v..

This direction will be downhill but in practice is not likely to be a

worthwhile search direction since the linear approximation used predicts

that an infinite displacement is required to reduce the residuals to zero.

Greenstadt [ 24] considered Newton’s method as it applies to a general
—  1objective function; in this case the corrections are Ax = -G g, where G 

and ^  are respectively the Hessian and gradient of the function. He used 

a similar expression to equation (3.11) to evaluate Ax but, before doing 

so, set = max( 1 (j)̂ I , e) for i=l, .. n. By setting e to a suitable small 

value, he ensured that the corrections were always downhill.

The author took a different approach and investigated the possibility 

of relaxing, in some way to be defined, the criterion used to define the 

Newton corrections, with the aim of avoiding the problem of J becoming 

singular. It was shown by equation (3.6) that, on the basis of a linear

approximation, the residuals decrease in the same proportion 1-a along
k . -1the path x + aAx^ where Ax equals the Newton corrections -J The

k 2 kpredicted decrease in the sum of squares will be F(x +aAx)=(l-a) F(x ); 

however the true sum.of squares will depart from this prediction, although 

in a finite range 0 ^ a ^ a^ the true sum of squares will decrease as a 

is increased.

The relaxed form of the Newton corrections will be denoted by Ax(a); 

when a is varied from 0 up to 1 the predicted residuals will decrease, in 

some manner, along the .path x^+ Ax(a). The requirement that all the 

predicted residuals decrease by the same proportional amount 1-a was 

removed; if it would be beneficial, a residual would even be allowed to 

increase along part of the path. As will become apparent, the chosen
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form for Ax(a) would involve nonlinear algebra if the sum of squares

F(x) was used to measure the proximity of the residuals to the solution.
n

Thus the measure S(x) = Z | f . (jc) | was adoptbd; as is the case with
i=l ^

F(x), the global minimum of S(x) will be zero if a solution to f (3c) = 0

exists and S(x)  ̂ 0 for all x The relaxed corrections were chosen to
k k . .be such that S(2c + Ax(a)) = (1-a) S(x ), on the basis of a linear

approximation to f(x); this gives

n , n n
Z |f.(x ) + Z J . . Ax.(a)I = (1-a) Z |f.(x )| (3.12)

i=l  ̂-  j = l J i=I 1 -

The desired condition that Ax(a) = 0 at a=0 is satisfied by equation

(3.12). At a=l, the only possible value for Ax(a) will be the Newton
- 1corrections. Note that the modified Newton corrections -aJ f would

satisfy equation (3.12) over the complete range 0 ^ a ^1. There are an

infinite number of possible solutions of equation (3.12); the relaxed

Newton corrections were taken as that solution Ax(a) which minimizes 
n
Z )Ax.(a)|. The reasoning for this is that, for a given a, the smaller

i-1
the size of the corrections the smaller will be the error introduced by 

the linear approximation.

At this stage, the effect of using a step limit p^ on individual 

corrections was incorporated. In Chapter 2 it was described how such a 

limit often improved the global convergence of the descent and Gauss- 

Newton. algorithms. For these earlier algorithms, the step limit was 

applied posthumously. In other words the correction vector Ax was first 

calculated, without taking the limit into consideration and only after

wards was Ax reduced, if necessary, so as not to exceed the limit. In 

the present case, posthumous application of the limit to the calculated 

Ax(a) could result in a smaller predicted reduction in S(x) than could
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have been obtained if the limit was taken into account by the process 

used to evaluate Ax(a). With the step limit incorporated, the 

corrections Ax(a) are obtained as the solution Ax of the problem

n
PI: Minimize E I Ax. I

i=i "

n n n
Subject to E | f . +  E J . .Ax.|=(l-a) E I f . I  

i=i " j=i J i=i "

Ax^ I p^ (i=l, . . n)

The residuals f^ and the Jacobian elements J^^ are those applying
Ic • • •at X . No saving in computational labour would be achieved by

introducing the restriction that the value of p̂  ̂must be the same for

each correction; therefore the facility to use different values of p^

was retained. Solutions of problem PI will exist in the range

0 ^ CL ^ a where a 1 ; solutions with a < 0 also exist but are ofmax max
no interest since they correspond to an increase in the residuals.

Early trials with an algorithm using the corrections Ax(,a.) and 

choosing a at each iteration so as to minimize S(x^ + Ax(a)) gave 

encouraging results. Consideration was therefore given to other ways in 

which the corrections might be defined. This led to the alternative 

corrections Ax(3) which are defined as the solution for given 3 of the 

problem
n n

P2: Minimize E |f. + E J..Ax.|
i=i ^  j=i "J J

n
Subject to E I Ax.I = 3 

i=l ^

Ax^I ^ p^ (i=l, .. n)
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It will be seen that the point corresponding to 3 on the path

Ax(3) is such that 3 specifies the displacement of the point from
Ic • •X as measured by the sum of the magnitudes of the corrections. The step

n
limits p. set an upper limit 3 = Z p. such that no solution tomax . ,

1=1
problem P2 can exist for 3 > 3 . Within the range 0 ^ 3 ^ 3 the^ max ° max
corrections Ax are specified uniquely by the requirement that they 

minimize S(x^ + Ax) as represented by the linear approximation used in 

the objective function of problem P2.

This new formulation when tried was immediately found to give

corrections equivalent, in the following sense, to those obtained using

problem PI. Suppose that the optimal solution to problem PI for a = a
n

is given by the vector Ax and the objective function Z |Ax.| equals 3 .
i=l

Then the same vector Ax̂  is the optimal solution of problem P2 when 3 = 3
n n

and the objective function Z If. + Z J. . Ax.I will have the value 
n i=l ^ j=l  ̂ ^

(1-a ) Z |f |. 
i=l

With hindsight, such an equivalence might have been intuitively 

deduced by comparison of both problems; a formal proof is given later in 

Section 3.4. It will also be shown that the converse does not apply in 

that the existence of a solution to problem P2 does not necessarily imply 

the existence of a solution to problem PI. Because of the greater scope 

of the corrections Ax(3) they were adopted in place of Ax(a) and used as 

the basis of a hybrid algorithm.



3.3 Evaluation of the corrections

The corrections ^(3) corresponding to any given value of 3 are

obtained by solving the minimization problem P2 which, as will be shown,

can be formulated in the form of the linear programming problem.

Standard methods, mainly based on the Simplex method of Dantzig [5] ,

exist for the solution of the linear programming problem. At each

iteration, it will be necessary to solve problem P2 for one or more

values of 3, depending upon the manner of choosing the corrections to be 
k+1 kused to set x = x + A2ç(3)* Rather than solve P2 afresh for each 

value, it is more efficient to use the techniques of parametric linear 

programming. Also, advantage can be taken of the known features of P2 to 

make improvements on the standard method for solving parametric problems. 

First a brief outline must be given of linear programming techniques 

before an explanation can be given of the way in which these techniques 

are applied to the solution of problem P2.

3.3.1 Linear programming techniques

The treatment given here is based on that given by Beale [ 71] ; 

however it should be noted that Beale considered the maximization, rather 

than minimization, of the objective function. A more rigorous theoretical

treatment is given by Gass [72] . The linear programming problem can be 

written as
n

P3 Minimize Z C. x.
i=l ^ ^

n
Subject to Z A . . x. = B. (i=l, .. m)

j = l J 1

x^ 2 0 (i=l, .. n)
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The objective function is a linear function of n independent variables 

x^; a constant term is omitted from the objective function since the 

solution variables x will be the same whether or not a constant term is 

present. The variables are subject to m equality constraints; in addition, 

as with all linear programming problems, the variables are constrainted to 

be non-negative. The coefficients A^j, and are supplied constants 

for any given problem.

A feasible solution to P3 is a value of x which satisfies both the 

equality and non-negativity constraints. Usually a feasible solution can 

exist only when m < n; when m = n there will be at most one feasible 

solution, unless there is degeneracy; when m < n there will be an infinite 

number of feasible solutions. Linear programming theory proves that the 

minimum feasible solution, which will be the required solution of P3, 

must be a basic feasible solution which is defined as a feasible solution 

in which at most m values of x^ are greater than zero. The values of 

any chosen set of m basic variables are given uniquely by solving the 

constraint equations, with the remaining m  - n nonbasic variables each 

set to zero. The total number of basic feasible solutions equals the 

number of ways in which m basic variables can be chosen from a population 

of n variables, which equals n!/((n-m)! m!). For many problems, it will 

not be computationally-feasible to enumerate all the basic feasible 

solutions in order to find that which gives the minimum value for the 

objective function; the computation can be dramatically reduced by using 

the Simplex algorithm as follows.

The algorithm starts by finding a basic feasible solution. Then an 

iterative procedure is performed in which, at each iteration, one of the 

nonbasic variables is exchanged with a basic variable, the choice of these
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variables being made so as to give a reduction in the objective function 

When no further reduction is possible, the minimum solution will have

been attained. In addition to reducing the number of basic feasible

solutions which have to be considered, the calculations can be arranged 

so that it is not necessary to completely solve the constraint equations 

for each new basic feasible solution. Instead a tableau of values is 

maintained containing information on the current solution, and this

tableau is updated at each iteration by a set of row operations. Various

forms of the Simplex method exist according to the organization of the 

tableau and the calculations.

The parametric form of the linear programming problem which will be

used in the present case is given by
n

P4: Minimize E C. x.

n
Subject to Z A . . X. = B. + 6B'. (i=l, .. m)

j.| 1: J 1

x^ % 0 (i=l, .. n)

It is assumed that solutions are required for values of the parameter 6

in the range 0 ^ 8 ^ 8  ; the upper limit 0 may be infinite. These^ max’ max ^

solutions are found as follows.

First, the minimum feasible solution to P4 is found for 6=0; this

can be done in the manner described previously for the non-parametric
Tproblem. Denote the basic variables by X = (X^, ... X^) and the nonbasic 

Tvariables by Y = (Y^, ... . Using this notation we can express the

equality constraints as

n-m
X. = Z a.. (-Y.) + b. + 8b'. (3.13)1 J 1 1

(i=l, ... m)
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and the objective function by z which, in terms of the nonbasic variables, 

is given as

n-m
z = Z c.(-Y.) + c + 0c’ (3.14)

i=, 1 1

The values of coefficients appearing in the last two equations are 

obtained from the basic feasible solution at 0=0 and are stored in the 

tableau. Note that additional information has to be stored in order to 

keep track of which variables are represented by X and _Y. Following the 

convention adopted by Beale, a minus sign is used in conjunction with Y 

in equations (3.13) and (3.14).

Since the solution at 0=0 is optimal, then we must have c%$0 for 

i=l, .. n-m; otherwise if any c^ were positive, the objective function 

could be further reduced by introducing the corresponding variable into 

the basis. Furthermore, as 0 is increased from zero the solution will 

remain optimal as long as the values for X remain feasible. However, if 

one or more values b ’  ̂ are negative, then the corresponding variables 

will eventually become negative and the solution will no longer be 

feasible. An upper limit is set at 0=0j where

b.
0j = min (- ) (3.15)

i

i, b ’. < 0 1

If no value b ’  ̂ is negative then the current solution given by equations

(3.13) and (3.14) will remain feasible and optimal for all 0 > 0.

Assume that a finite limit 0, = -b /b ’ exists; the basic variable1 p p

X^ is thus zero at 0 = 0j and will need to be replaced by a non-basic 

variable in order that the solution will continue to be feasible for

0 > 0j. The rule for choosing a nonbasic variable Y to enter the basis
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such that the solution remains optimal for 6 > 0j is

c_ . c.
= min (--- ) (3.16)a a .

i. a . < 0 P" pi

If there is no i such that a . < 0 then no feasible solutions exist forpi
0 > 0j; otherwise the variables and are exchanged and the tableau 

updated by a set of row operations which use the elements a^^ as a pivot 

These operations can be summarised in algorithmic form as:

Step 1 Set r = 1/a
pq

Step 2 For row p of the tableau

Set a . = ra . j 96 qPI PI

^pq ” ^

Step 3 For each of the remaining rows

Set a. . = a. . - a. a . i 9̂ q ij iJ iq PJ

^iq ^ ^iq

The coefficients b. and b'. are stored in the two last columns of1 1
the tableau and the coefficients c..c and c’ are stored in the last row;1* o o
the row operations are carried out on these elements of the tableau as 

well.

Having updated the tableau in this way, the upper limit 02 of the

second range 0  ̂ ^ 0 ^ 0g is found and the process repeated until the

complete set of solutions in the range 0 ^ 0 ^ 0 has been obtained.° max
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3.3.2 Parametric solution of problem P2

Before problem P2 can be expressed in the form of the parametric 

linear programming problem P4, it is first necessary to remove the 

modulus terms. One widely-used method [ 73] is to replace any modulus 

expression such as |y| by two new variables y and y . As long as it is 

ensured that y^ and y can never be in the basis simultaneously, then we 

can write y = y^ - y and |y| = y* + y . For problem P2 new variables 

were introduced in this way such that

|Ax |̂ = Ax^* + Axĵ  (i=l, .. n) (3.17a)

n .
If. + E J.. Ax.I = f. + f. (i=l, .. n) (3.17b)

1  I J  l '  1  1

Problem P2 can then be expressed as the following parametric linear 

programming problem

. . . "̂ + -P5: Minimize E f. + f.
i=i ^

n ^
Subject to E Ax. + Ax. = 3

i=i ^
^ — g

Ax^ + Ax^ + Ax^ = p^ (i=l, .. n)

f.^ - f. - E J..(Ax.* - Ax. ) = f.° (i=l, .. n)
1 1  j = j  i J  J J 1

" S ^Ax^ , Ax^ , Ax^ , f\ , f^  ̂ 0 (i=l, .. n)

The inequality constraints |Ax |̂ p^ have been transformed to 

equality constraints by the well-known technique of introducing slack 

variables. Also, further equality constraints have been added to define 

the relationship between f^ and f . It will be seen that the problem 

has 5n variables and 2n+l constraints and it is parametric with respect 

to 3.
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Note that the value f .° has been used in place of f. where

f = |f^J. If at it happens that any residual f^ is negative, then

the corresponding row i of the Jacobian is multiplied by -1 to be

consistent with this definition of f.°. The corrections Ax(3) are not1 —

affected since this is equivalent to replacing equation f^(2ç)=0 by 

-f^(3£)=0 in the set of equations being solved.

To find the minimum basic feasible solution of P5 at 3=0, it would 

normally be necessary to solve the corresponding non-parametric linear 

programming problem obtained by setting 3=0. However, the solution can 

be found very much more quickly as follows. Since for 3=0 it is known 

that A2ç=0 , it follows from the constraint equations that the variables 

Ax^^, f^^ (i=l, .. n) must be included in the basis. The tableau shown 

in Figure 3.1 can then be set up. The coefficients refer to the quantities 

shown at the head of each column and the basic variables are shown down 

the left hand side. The first 2n+l rows correspond to the equality 

constraints in the form given by equation (3.13); the last row corresponds 

to the expression for the objective function given by equation (3.14). The 

equality constraints appear in the same order in the tableau as they do 

in problem P5. Note that the minus sign associated with the nonbasic 

variables in equations (3.13) and (3.14) is not shown.

It will be seen from the first row of the tableau that one more

variable must be chosen to complete the basis. Since Ax ^ 0 for 3 > 0,

it follows that the chosen variable must be one of the 2n variables Ax^*

and Ax^ . The chosen variable must be that which gives the greatest rate

of reduction in z as 3 increases; it will therefore correspond to the

maximum coefficient c. of the coefficients c. stored in the bottomimax 1
row of the tableau. Note that c^^^=-c^ (i=l, .. n) and that therefore



COi
g
u
M

g
ë

o oo o o oca

o

CNJo o o oo o

o o oo o o

o o o o oo

c oo CN<

<N CN
CMOO<

O CD CN

OO<

+  CM CM CMCNOO

CMO<

OIIca

B
UeuO
MO4-t
S(U
rH,û
Eh

(UM3&0
•HPu

co «- X <]
W  CMX<

w (d X <]
+ ' CM CM

+ a
CM

saiaviHVA oisva MoixomaaAixoarao



82

c. ^0. If c. = 0  then a stationary value of S(x) has been imax imax —
k . . . .reached at x ; this situation will be discussed further in section

3.6.2. The usual situation will be that c. > 0; in this case, ifimax
imax. ^ n then the variable Axt^^^ is chosen to enter the basis and if

imax > n then variable Ax. is chosen. Note that imax 2n sinceimax-n '
the remaining coefficients, corresponding to the variables f^ are all 

negative.

Once the last basic variable has been chosen, it is entered into the 

basis and the tableau adjusted using a similar process to that already 

described. Lastly, the tableau is contracted in order to remove the 

column previously occupied by the variable which entered the basis. The 

tableau of 2n+2 rows and 2n+l columns will then be obtained, corresponding 

to the optimal solution of problem P5 at 3=0.

The method described in the previous section can then be applied to

generate the complete set of optimal solutions in the range 0 ^ 3 ^  ^max*

The corrections Ax(3) are derived using the values of Ax^ and Ax from

the tableaux to give expressions of the form

Ax(3) = + 3V^ (1= 1, . .1 ) (3.18)—  —  —  max

In each range 3i , ^ 3 ^ the vectors and are constant; these
1—  I i--------------------- -

vectors, together with the values 3^, are stored and completely define

the solutions; note that 3 =0. The number of ranges 1 must be finiteo ® maxn
since the step limit,constraints require that 3 = E p . .^ max . , 11 =  1
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3.4 Proof of the equivalence of problems PI and P2

It will now be shown that if at ot=a^ there exists an optimal

solution to problem PI such that the variables are ùx and the corres-
n

ponding objective function E |Ax.| equals 3 , then the optimal
i=l °

solution to problem P2 for 3=3 is given by the same variables and will
n n n

have an objective function E If. + E J . . Ax.| equal to (1-a ) E jf.j
i=, 1 j.i 1] : ° i=i ^

In a similar way to that used in section 3.3.2 for problem P2, we

can express PI as the parametric linear programming problem

P 6: Minimize E Ax. + Ax.
i=i "
" + - " oSubject to E f. + f. = (1-a) E f.
i=l ^  ̂ i=l ^

Ax^ + Ax^ + Ax^ = p^ (i=l, .. n)

f.* - f. - E J..(Ax*. - Ax .) = f.° (i=l, .. n)1 1 J J 1

Ax^^, Ax^ , Ax^^, f^*, f^ % 0 (i=l. .. n)

The corrections A2£(a) will therefore have the same piecewise-

linear form shown by equation (3.18) for Ax(3). In each range

Uf-i ^ a 3 a^ the gradient d3^/da of the optimal objective function is

constant; there will be a discontinuity in d3^/da at the end a^ of a

range corresponding to the change in the basic variables. It will first

be necessary to prove that d3 /da ^ 0 over the range 0 ^ a a in whicho max
feasible solutions of problem P6 exist.

In figure 3.2 , the variation of 3^ with a in the range a^_j^a$a^ 

is shown by the line EB; it will be assumed that d3^/da > 0. Either
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o

b

aa aca 1+111-1

Figure 3,2 Geometric proof that dB/da 0
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a, = a in which case no feasible solutions exist for a>a, or a 1 max 1
further range ^ a ^ ^l+l feasible solutions can be obtained by a

change in the basic variables. Assume that the latter case applies and

that in the new range dg^/da < 0; since then the angle DBF

must be acute. There must therefore exist two points A and C given by

the intersection of the line B =b with the lines EB and BD at a=a ando
a=c, and such that b is less than the value of 3^ at b. Now consider 

the two vectors Ax(a) and Ax(c) corresponding to the optimal solutions 

at A and C respectively. By linear interpolation we can obtain new 

corrections

Ax* (a) = Ax(a) + (A3c(c) - Ax (a) ) (a-a)
(c-a)

These corrections Ax' must be a feasible solution of P6 provided 

that a ^ a ^ c; note that this is not necessarily so for values of a 

outside this range. Similarily, by linear interpolation the value of 

the objective function corresponding to Ax'(a) must be constant at 

B^=b; this is less than the optimal solution which, by definition, is given 

by the lines AB and BC in the range a ^ a ^ c. Consequently we cannot 

have dB^/da < 0 for the range ^ a ^ ‘̂l+l * argument can be

suitably modified to show that if dB^/da = 0 in this last range, and 

possibly further ranges, then at the next range for which dB^/da ^ 0 we 

must have dB^/da > 0 .

Now in the first range 0 3 a < it is known that dB^/da > 0 unless 

no feasible solutions exist for a > 0. Thus in the second range, and by 

induction all succeeding ranges up to a , we must have dB /da ^ 0.

Return now to the original proposition concerning the equivalence of 

Problems PI and P2. Comparison of their respective parametric formulations
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P6 and P5 shows that they use the same set of variables and the two

sets of equality constraints differ only with respect to the first

constraint. It will then be seen if for given a the basic feasible
n

solution _X gives the objective function Z |Ax.| = g for P6 , then for
i=l

3=3 the same vector X is also a basic feasible solution of P5 and the
n

objective function will be (1-a) Z f. . It remains to be shown that
i=l ^

if X is the optimal solution of P6 then it is also the optimal solution 

of P5.

Assume that in the range ^ a 3 a^ for P6 and the range

$1-1 ^ 3 < #2 P5 that both problems have the same optimal solution

vector X; this is shown in Figure 3.3 by the line AB. The graph can be

thought of as showing the variation either of the objective function (3)
11

with a for problem P6 or of objective function ((1-a) Z f . ) with 3
i=l ^

for problem P5. At B one of the basic variables X leaves the solution; 

there will be a finite number of choices of nonbasic variable which can 

enter the basis; corresponding to each choice the objective functions 

would follow lines such as BD. The optimal choice for both problems will 

be that which minimizes the angle FBD made with the a-axis. Three 

situations can occur.

First, there may be no feasible solutions, so that B then corresponds

to the upper limits a and 3 of the range of feasible solutions for P6 ^ ̂ max max ®
and P5 respectively. Second, one or more feasible solutions exist of which 

the minimum angle, shown as FBC, is less than a right angle; in this case 

the same solution remains optimal for both problems for a further range.

Note that FBC cannot be less than zero from the earlier proof. Third, one 

or more feasible solutions exist of which the minimum angle, shown as FEE, is 

greater than a right angle; in this case a further range of optimal solutions 

exists for P5 but not P6 . Note that in this last event, the objective 

function of P5 will attain its minimum possible value at B and further
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3

1-1

aa 11-1

Figure 3.3 Geometric demonstration that P5 and P6 make 

the same change in the basis
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increase of 3 will produce an increase in the optimal value of the objective 

function of P5.

Consider now the optimal solutions at a=0 and 3=0 for the two problems.

The basic set of variables must contain the variables , f^^ (i=l, ... n) 

in both cases, leaving one more variable to be chosen. From the arguments 

of the preceding paragraph, the same variable will be chosen in both cases.

By induction, at subsequent changes in the basis the same variables will be 

exchanged to preserve optimality. Thus the equivalence of the two formulations 

is proved.

3.5 The hybrid property of the corrections

The hybrid corrections discussed in Chapter 2 were obtained by an inter

polation between a descent direction and a Newton, or Gauss-Newton direction. 

The classical steepest descent corrections for a continuous function F(x) with 

continuous derivatives can be defined as the solution of the problem

». . . * 9F AMinimize Z Ax.
i=i ^

" 2Subject to Z Ax. = y 
i=l ^

Murray [ 25J discusses this further. For any length y of corrections, using
n 2

the distance norm |]Axl| = Z Ax. , the steepest descent corrections are
i=l ^

uniquely specified as those that minimize the increase (or maximize the

decrease) in F(x) as approximated by the linear objective function used in the

definition. It will be seen that the definition of the corrections A]c(3)

using problem P2 has an exact parallel in that, in the absence of the step
n

limits p., the corrections of length 3 using the norm ||A x || = Z |Ax .| are 
^ i=l ^

chosen to minimize the function S(x). Thus the corrections Ax(3) are also

steepest descent corrections. \
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Furthermore, when 3 is increased from zero upwards the corrections tend 

towards the Newton corrections. They will ultimately equal the Newton 

corrections at 3=3^^^ provided that J is nonsingular and the step limits 

are not exceeded. The parameter 3 therefore effects an interpolation between 

a steepest descent direction and the Newton corrections.

Finally, to emphasise the hybrid nature of the corrections, consider 

the Marquardt [39] hybrid corrections for least squares problems defined as 

the solution of

n n 2
Minimize  ̂ (i; "*■  ̂ : Ax.)i=i  ̂ j=i J

" 2Subject to Z Ax. = y 
i=l 1

Using the method of Lagrange multipliers [z] the Marquardt corrections are 
T — 1 T-(J J + XI) J _f where the value X ^ 0 must be determined to satisfy the

length y. Apart from the step-limits, the definition of corrections using

Problem P2 differs only in the norm used to measure distance, both for the 

length of the corrections and the departure of the residuals from zero.

A major disadvantage of the Marquardt corrections is that it is not 

computationally practical to specify a value for y and then obtain the 

corrections; instead one or more values of X may have to be tried before 

corrections of a suitable length are obtained. On the other hand, the 

corrections Ax(3) can be directly computed for any specified length 3; 

further the step limits can be incorporated into the calculation of Ax(3) to

produce the most beneficial effect.
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3 .6 Implementation of the algorithm

An algorithm based on the corrections A3ç(3) was developed and has 

the following structure:

Step 1 Set k=0; to a supplied starting value

Specify appropriate step lengths p^ (i=l, .. n)

Step 2 Evaluate f, J at x

Step 3 Solve problem P5 and obtain all the sets of

corrections Ax(3) within the range 0 ^ 3 ^ ^max

Step 4 If a stationary point of S(3c) has been

reached at x then halt

Step 5 Choose a value 3* which must give

S(x^ + Ax(3')) < S(x^)

k+1 kStep 6 Set x = + Ax(3’); k=k+l

Return to Step 2

The important features of the implementation of this algorithm will now 

be discussed.

3.6.1 Computational aspects of solving problem P5

Some aspects of the computations involved in the solution of problem 

P5 will now be discussed with reference to a worked example. The data used 

is for the starting-point of Problem 3 in the Appendix^ this well-known 

test problem has two equations in two variables. Step limits of 

Pj=P2=0.5 were used.
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Figure 3.4 illustrates the generation of the optimal solution at 

3=0. Since the first equation has a negative residual, the first row of 

the Jacobian was multiplied by -1 before being used to set up tableau A

as shown; this tableau should be compared with its general form in

Figure 3.1. The final variable to enter the basis is AXj^ since this has

the maximum coefficient c^ on the bottom row. The tableau is then modified

by row operations and contracted to remove the column originally occupied 

by the coefficients of AXj^; this gives tableau B which shows the optimal 

solution at 3=0 .

This solution remains optimal until 3=0.18, when the basic variable 

fJ becomes zero, and is exchanged with variable Ax^ to give tableau C 

in Figure 3.5. The next change of basis is required at 3=0.89 where 

Ax2^=0 , corresponding to the constraint jAx^j ^ P2 becoming active; Ax^^ 

is exchanged with f^ to give tableau D. The solution then remains 

optimal up to 3= 1.00, when Ax^^=0; both corrections are then at their 

limits and no further solutions exist as this is confirmed by the fact that 

there is no negative value of a2j (j=l, .. 5) in tableau D.

If the criterion of equation (3.16) was used as it stands, at 3=0.89 

the variable chosen to enter the basis would be AXj . Since Ax^* is 

already in the basis, this would invalidate the assumption made when 

formulating P5 that the variables AXj^ and AXj (and other similar pairs) 

are never in the basis at the same time. Thus a safeguard is necessary to 

ensure that the choice of nonbasic variable to enter the basis is 

restricted to only those variables which would not lead to such a conflict; 

thus in the example f^ is chosen instead of AXj . Note that if AXj was

permitted to enter the basis, in the range 0.89 < 3 < 1.00 the value of
• + — ^Ax J given by AXj - Ax-j would remain constant at -0,40 while its

y- —modulus AXj + Ax^ would equal -0.50 + 3 and would therefore increase with
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AX]
Ax,

AX]
AX]
Ax,

A x i ^
^ 2"

A x i “ A X , - ^ 2'
1 3

1 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 1 . 0 0

1 . 0 0 0 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 5 0 0 . 0 0

0 . 0 0 1 . 0 0 0 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 0 . 5 0 0 . 0 0

2 4 . 0 0 1 0 . 0 0 ■ 2 4 . 0 0 - 1 0 . 0 0 - 1 . 0 0 0 . 0 0 4 . 4 0 0 . 0 0

1 . 0 0 0 . 0 0 - 1  . 0 0 0 . 0 0 0 . 0 0 - 1 . 0 0 2 . 2 0 0 . 0 0

2 5 . 0 0 1 0 . 0 0 ■ 2 5 . 0 0 - 1 0 . 0 0 - 2 . 0 0 - 2 . 0 0 6 . 6 0 0 . 0 0

A: Tableau before inclusion of AXj in basis

Ax 2 ^ A X , - AXg f l " * 2”
■ 1 3

1 . 0 0 1 . 0 0 1 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 1 . 0 0

- 1 . 0 0 0 . 0 0 - 1 . 0 0 0 . 0 0 0 . 0 0 0 . 5 0 - 1 . 0 0

1 . 0 0 0 . 0 0 1 . 0 0 0 . 0 0 0 , 0 0 0 . 5 0 0 . 0 0

- 1 4 . 0 0 - 4 8 . 0 0 - 3 4 . 0 0 - 1 . 0 0 0 . 0 0 4 . 4 0 - 2 4 . 0 0

- 1 . 0 0 - 2 . 0 0 - 1 . 0 0 0 . 0 0 - 1 . 0 0 2 . 2 0 - 1  . 0 0

- 1 5 . 0 0 - 5 0 . 0 0 - 3 5 . 0 0 - 2 . 0 0 - 2 . 0 0 6 . 6 0 - 2 5 . 0 0

B: Tableau after inclusion of AXj in basis and contraction

Data: Starting point of Problem 3 in the Appendix

X  =
•1 . 2 0  

1.00
f =

4.40

2.20
J =

-24.00 -10.00

- 1.00 0.00

Step limits : pj = Pg = 0.5

Figure 3.4 Generation of the initial tableau at 3=0
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AX]
AXj
Ax,
Ax,

Ax,
Ax,

Ax,

AXg* AXi“ f2~ 1

0.59 -0.41 0.03 -0.03 0.00 0.13 0.29
-0.59 1.41 -0.03 0.03 0.00 0.37 -0.29
0.59 -1.41 0.03 -0.03 0.00 0.63 -0.71
0.41 1.41 -0.03 0.03 0.00 -0.13 0.71

-0.59 -0.59 -0.03 0.03 - 1.00 2.07 -0.29
-0.59 -0.59 -1.03 -0.97 - 2.00 2.07 -0.29

: Tableau after exchange of f^^ and Ax,̂ at 3=0.18

AXg* AX,- Ax2® ^2" 1 6

0.00 1.00 0.00 - 1.00 0.00 -0.50 1.00
0.00 0.00 0.00 1.00 0.00 1.00 - 1.00

-20.00 48.00 - 1.00 -34.00 0.00 -21.40 24.00
1.00 0.00 0.00 1.00 0.00 0.50 0.00
0.00 -2.00 0.00 1.00 - 1.00 2.70 - 1.00

-20.00 46.00 -2.00 -33.00 -2.00 -18.70 23.50

Tableau after exchange of Ax^^ and fj at 3=0.89

Data As given in Figure 3.4

Figure 3.5 Updated tableaux at changes in basis
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Figure 3,6 shows the variation with 3 of the corrections

Ax.(3) = Ax. - Ax. ; the predicted residuals f. - f . and the 1 1  1 ^ 1 1  n + _
predicted value Z f. + f. of S(x) using the results in the tableaux

i=l ^  ̂ k
of Figures 3.4 and 3.5. The computed values + A2c(3)) and

S(x^ + Ax(3)) are shown by way of comparison. Note that the change in
kbasis at 3=0.89 makes S(x + Ax(3)) nonunimodal. As would be expected

from problem 3, the second residual is predicted exactly. The example 

shown is not typical in so far as the global minimum of S(x^ + Ax(3)) 

occurs at a greater value of 3 than the predicted minimum.

One last feature of note in the computation of Ax(3) concerns the 

assumption that the initial tableau, when generated in the way previously 

described, gives the optimal solution at 3=0. Consider the situation 

when one of the residuals, say f^, is zero. The initial tableau could 

be generated in two ways, both valid, such that in one the elements of 

J are used unaltered and in the other row i of J is first multiplied by 

-1. The choice of correction to complete the initial set of basic 

variables can thereby be affected, so that the two tableaux will then be 

different and cannot both be optimal.

This inconsistency is automatically resolved by the parametric linear 

programming method. It will be found in one or other case (perhaps both) 

that the basic variable f^ decreases with 3 and therefore the first 

change of basis will be at 3|=0* One or more changes of basis may be 

necessary before a finite range 0 ^ 3 ^ 3  ̂ is obtained within which the 

solution remains optimal. For both cases, this solution will be the same 

although the series of changes in the basic variables will be different.

A related situation occurs when at least one of the residuals is 

zero. It has been assumed that the optimal solution at 3=0 contains only
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(a) Hybrid corrections

f .1
(predicted)

f (predicted and actual)

f (actual)

(b) Predicted and actual residuals

S(x)

Actual

Predicted

63 1 2
(c) Predicted and actual values of S(x)

Figure 3.6 Predicted and actual effects of the hybrid correction
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one correction. It can happen, as will be discussed in the next 

section, that a downhill direction cannot be generated with a single 

nonzero component of Ax(3) while a downhill direction can be generated 

with two or more nonzero components. In this event, the initial 

tableau is not optimal and exchanges are made at g=0 to introduce 

additional corrections so that, if possible, a downhill direction is 

attained.

Both of the situations just described are illustrated in Figure 

3.7. The two cases correspond to different choices of sign for the 

first row of the Jacobian; the correction chosen to complete the initial 

basis is Ax^^ for case A and AXj for case B. Neither of the solutions 

are feasible for g>0 since fj^ = -203; in both cases f̂  ̂  is exchanged 

with AX2 . The solution for case B is then optimal and feasible in the 

range 0 ^ 3 ^ 0.75. However, in case A we have AXj^ = -3 and this 

variable is exchanged with Ax^ ; the solution is then identical to that 

for case B.

3.6.2 Convergence criterion

For a function F (2c) with continuous first and second derivatives,
• ■ Ic • Icthe well-known conditions for x to be a local minimum are that x

must be a stationary point and that the Hessian matrix of F(x) is

positive definite. The objective function S(x) used in this hybrid

algorithm has discontinuous derivatives at points where at least one

of the residuals is zero. Thus different criteria are required to

determine when a local minimum has been reached.

Ic •Assume that at x the residuals are all non-negative; this can 

always be ensured by changing any equation f^(3£)=0 having a negative 

residual to the equivalent equation -f^(x) = 0. Now for a small change
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Initial Basis Basis at 3j=0 Basis at 32=0

AXj"^ = 3 AXj^ = -3 AXj = 3/3
sAXj Î - 3 sAXj = \ + 3 AXi" = 2 - 3/3
s

2 ^ 2 sAx^ = \ - 23 AXg^ = \ - 23/3

-203 Ax^ = 23 Ax^ = 23/3

2 + 3 ^2 = 2 - 3 ^2' = 2 - 3/3

Case A - First row of J unchanged

Initial Basis Basis at 3|=0

Ax,

AX|S

Ax„®

-203 

2 - {

Ax, = 3/3

Ax,

Ax,

Ax,

I - 3/3

I - 23/3

23/3 

2 - 3/3

Case B - First row of J multiplied by -1

Data: Problem 3 in the Appendix at x = (-1, 1)

Linear transformation of variables is used

Step Limits h = ?2 = 2
0 -20 10

JE = J =
2 1 0

Figure 3.7 Generation of the tableau at 3=0 
when one of the residuals is zero



98

kôx in the variables at x the corresponding change ÔS in S(x) will be

given to a first-order approximation by

n n
ÔS - Z Z J.. Ô X . + Z 1 Z J.. Ô X . I (3.19)

i,f^>0 j=l  ̂ i,f^=0 j=l ^

kFor X to be a stationary-point, it will be seen that we must have 

for each change ôx^ (j=l, .. n)

Z = 0 (3.20a)
i,f^>0

3' ' Ï 0 for all i such that f.=0 (3.20b)1

If these conditions hold, then the second derivatives of f(2c) must be
k . . .considered to determine whether x is a minimum. Note that the linear 

programming solution for A2c(3) would fail in the generation of the initial 

tableau if these conditions hold.

In practice, it is found that minima of S(2c) do not occur at a 

stationary point. In this event, it will be seen from equation (3.19)

when a vector 6x with a single nonzero component ôXj is considered,
• • Ic •that a necessary condition for x to be a local minimum is that 6S > 0

for ÔX or - Ô X  and so

Z J., I < Z I J,: I (j=l, .. n) (3.21)
i,f.>o i,f.=o1 1

Note that this requires that at least one zero residual exists. However, 

this condition is not sufficient, since a vector 6x may exist with two 

or more nonzero components for which 6S < 0; this situation was in fact 

the case in the example shown in Figure 3.7, where two corrections in
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the initial basis produced a downhill direction while one correction 

could not.

Although the sufficient conditions are complicated, the linear
kprogramming method itself determines the optimal direction at x ;

consequently if the objective function Z f^^ + f^ of P5 is increasing

with 3 at 3=0, then a local minimum has been reached. Suppose that

is the value of the objective function at 3=3^! the lowest value of the

objective function must occur at one such point, say 3=3^^^^' If

S. . > S(x ) a local minimum will have been attained. Roundoff errorImin —
will be significant near a local minimum. It was stated that at least

one residual must be zero (unless at a stationary point) and in practice

an exact zero is unlikely. Consequently near to a local minimum the
kusual situation is for to be less than S(x ) by a very small

amount and for 3-, • to be small also.Imin

The convergence criterion adopted therefore was that a local minimum
Ic • Ic Icwas reached at x when either 3i . < e, or S(x ) - S, . < £« S(x ).—  Imin 1 —  Imin 2 —

These two criteria proved to be adequate for the test problems used.

Other workers such as Wolfe [ 46] carry out a final grid search about 

the assumed minimum; the objective function is evaluated at 2n points 

obtained by perturbing each variable in turn by a small amount both above 

and below its value at the minimum. If no further decrease in the 

objective function is found, then it can be confidently assumed that a 

local minimum has indeed been located. Such a check is of most use in 

checking that a stationary point is not a saddle-point; since S(x) is 

unlikely to have any stationary points, this additional check was not 

used for the hybrid algorithm.
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3.6.3 Method used to choose g'

At each iteration of the hybrid algorithms, a value 3=3’ is 

required such that the corrections Ax(3’) give a reduction in S(2c).

The first method to be tried was that 3' should correspond to the 

global minimum of the nonunimodal function S(x^ + A_x(3))« A multimodal 

search similar to that for the descent algorithm described in the 

previous chapter was used; the grid was made up of the series of values 

.. ^^1-1 3]̂ ... (1=1, •• l^ax^' computational labour

required by the search was high; it was found that when a coarser search 

for 3’ was used the reliability of the algorithm was not impaired. Thus 

the adopted method of choosing 3' was as follows.

NStep 1 Set 3’=3i • /2 where N is set to zeroimin
prior to the first search for 3’

Step 2 If S(x^ + Ax(3’)) < S(x^) then set

N=max(0, N-1) and continue to the next 

iteration of the hybrid algorithm.

Step 3 If 3' < tj then the search for 3 ’ has

failed and the hybrid algorithm is 

terminated.

Step 4 Set 3*=3*/2; N=N+1;

Return to Step 2.

At each search, the first choice for 3’ is 3]̂ ^̂ ^̂ , the position of

the predicted minimum, divided by 2^ where N is set at the previous

iteration. It is assumed that at successive iterations, the chosen

values for 3 ’ will be roughly the same in proportion to the corresponding

values for 3, • . It will be seen that if 3'=3- . /2̂ k at iteration k Imin Imin
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of the hybrid algorithm, then a realistic estimate of 3’ at the next

iteration will be 3’=3-, •  ̂ when N, > 1 and 3̂  . when N, < 1 ,  asImin k . Imin k ^
used by the search algorithm. Note that the estimate errs on the high 

side since 3’ cannot be increased above its initial estimate during 

each search.

The choice of 3’ is restricted to the range 0 ^ 3’ ^ ^Imin so

there is no point in extending the parametric solutions beyond in

this case, although as seen in Figure 3.6 the global minimum of 
kS(x + Ax(3)) may lie in this region. At step 3, if failure occurs then

it is likely that a local minimum of S(x*^) has been reached but not

detected because the convergence criteria are too strict; note that Cj is

the same parameter used in the convergence criterion based on
k+1Lastly, it will be seen that the residuals at x will be available 

at the end of the search on 3' (this is not necessarily the case on 

exit from a quadratic interpolation or other more refined search) and 

only the Jacobian needs to be evaluated before continuing with the next 

iteration of the hybrid algorithm.
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3.7 Extension to overdetermined sets of equations

In its final form, the hybrid algorithm was modified to cope with 

overdetermined sets of m nonlinear equations in n variables. Barrodale 

and Roberts [ 32] give an algorithm which obtains the optimum solution of 

an overdetermined set of linear equations using the 1^-norm (sum of 

moduli) criterion. The main application of their algorithm is to linear 

regression. Often a fit obtained using the 1^-norm will be better than one 

obtained using the l^-norm (sum of squares) criterion; this is especially 

likely when one or more rogue points occur in the data. Barrodale and 

Roberts believe that the reason why experimenters do not make better use 

of the Ij-norm is that few statistical measures of goodness-of-fit are 

available as compared with those for fits obtained using the l2“norm.

The hybrid algorithm, when modified to cope with m equations, can thus

be considered as complementary to the Barrodale and Roberts algorithm in

that it handles nonlinear equations. Barrodale and Roberts, used a non-

parametric linear programming method of solution but took advantage of the

specialised nature of the problem to reduce the size of the tableau and also

save on the computations; possibly some of their ideas could also apply to

the parametric solution used by the hybrid algorithm. The required

modification to the algorithm is straightforward; the objective function of
m n

problem P2 must be changed to Z I f . + Z J.. Ax. I .  The equivalent
i=i 1 J

parametric problem P5 then has 2m + 3n variables and m + n + 1 constraints 

and the tableau must therefore be adjusted suitably. In all other respects, 

the logic remains the same.
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3.8 Numerical experience with the algorithm

The final version of the algorithm was implemented as a FORTRAN IV 

program, using double-precision arithmetic, on an IBM 360/44. In addition 

to the normal diagnostic printout of intermediate results during the 

development of the program, two independent checks on the correctness of 

the program were conveniently available.

First, it will be noted that if m=n and suitably large step limits 

p^ are used, then the minimum value of the objective function of P5 will 

be at and the corrections 2̂E(̂ ]̂ Ynin̂  will be identical to the Newton

corrections, provided that these exist. The hybrid algorithm war therefore 

used in this way to generate the Newton corrections for Problem 1, at 

x?=5.0, and at the starting point of Problem 2; these estimates were found 

to be in agreement with the Newton corrections found by direction solution 

of the equations JAx = -^.

Second, a linear test problem of 7 equations in 2 variables with known 

solution was solved using the hybrid algorithm. The problem is due to 

Spyropoulos, Kiountouzis and Young [74] who state that it is a good test 

of an algorithm’s ability to cope with degeneracies arising in the linear 

programming tableau. The problem is to find the best straight line y=a+bx 

to fit, in the Ij-norm, the set of points (Y^, X^), i=l, .. 7 where 

X '= (I,2,3,4,5,6,7) and Y = (1,12,3,4,5,12,7); the solution is 

a=l and b=l. When the hybrid algorithm was applied to this problem, with 

Xj=a and X2=b, it converged at the correct solution in one iteration as 

would be expected.

Once it had been confirmed that the hybrid algorithm had been 

implemented successfully, it was tested on the nonlinear problems in the
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Appendix. The tests were conducted under similar conditions to those used 

for the two-part algorithm, namely a logarithmic transformation of the 

variables for Problem 1 and a linear transformation for the remaining 

problems; in every case, the step limit p. was set at 0.5 for each variable.
-5The parameters Gj and used in the tests for convergence were set at 10 

-3and 10 respectively.

The results obtained with Problems 2-9 are shown in Table 3.1. Problems

2, 6, 8 and 9 do not have an exact solution and so the optimum solution 

obtained is that which minimizes the sum of the moduli of the residuals.

As would be expected, the solutions are very similar to those obtained using 

a least squares approach. Note that the final sum of moduli for the other 

problems were exactly zero showing how the algorithm can make fine adjust

ments near a solution. The computational effort n^ is defined as n^ + n x n^ 

where n^ and n^ are the number of evaluations of the residuals and first 

derivatives respectively. Two figures are shown for the number of iterations 

and the computational effort. The first is for the algorithm in its form 

described. The second is for tests carried out in which 3 ’ was set to

3, • at each iteration and no check was made that the residuals were Imin
reduced. In fact, in the majority of cases S (:() did decrease at each 

iteration, although occasionally it did increase; in every case the search 

converged to the solution shown. The net effect of this change was to reduce 

the number of iterations required and thus the computational effort. The 

results shown compare favourably, both in terms of reliability and efficiency, 

with those obtained for the other four algorithms shown in Table 2.6.

The performance on Problem 1, the difficult system of eight equations, 

was disappointing. Convergence was achieved only when the hybrid algorithm 

was started from points slightly perturbed from the solution itself, such as 

when all the variables are set to 0.5 above their values at the solution.
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C O O 3 0 un 00 00 <r 'd’ en oM sf •d"

e k,01 03IIP-i

en m 00 0 3

■§oej
(U

c/3



106

When started from any of the fifteen points used in the previous tests, 

the algorithm terminated at a local minimum. Although in a sense the 

algorithm had, in these situations, achieved its aim of finding a minimum 

of S(x), the minima obtained were well-removed from the global minimum of 

zero.

The most commonly-encountered local minimum was at S(2c) = 27.37.

This was achieved by any vector x for which x^ = 0.9044 and x^ = 1.1057; 

this minimum is independent of the values of the remaining six variables. 

Examination of the equations in the Appendix showed that, since in this case 

x^Xg=l and the exponential terms include the multiplying factor l-x^x^, this 

minimum corresponded to the minimization of

S(x) Z x^ Y^^I + I Y^^ %1
1 = 1

subject to the constraint XjX2=l. It is interesting to note that a similar 

argument explains why, with the two-part algorithm, the descent algorithm 

made slow progress when x^X2 ~ 1 and F(x) - 190.

The lowest minimum found was at

TX = (0.9010, 0.8938, 3.755, 5.387, 10.97, 0.0, 1.103, 0.6729);

at this point f^ = 0.2737 and all the remaining residuals are zero. This 

has a close similarity to the local minimum of F(x) as shown in the Appendix. 

If the logarithmic constraints were removed, the alternative solution, with 

some variables negative, was readily found by the hybrid algorithm. For 

example, starting from x^° = 5 (i=l, .. 8) this solution was found in 15 

iterations at a computational effort of 144.
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3.9 Some related algorithms

The hybrid algorithm can be modified to minimize in the l2”norm 

(sum of squares) by choosing Ax(3) as the solution of the quadratic 

programming problem
m n 2

P7: Minimize Z (f.(x ) + Z J.. Ax.)
i=l >  j=l j

n
Subject to Z I Ax.I = 3 

i=l ^

IAx^I ^ p^ (i=l, .. n)

This is very similar to the definition of the Marquardt corrections given 

in section 3.5. Some experiments were carried out using this formulation.

An algorithm due to Beale [ 75] was available in the NAG library for the 

solution of the quadratic programming problem with a convex objective 

function so this was used. Unfortunately, a parametric version was not 

available and so the quadratic programming problem had to be solved for 

every trial value of 3*

The results from the tests with the hybrid algorithm showed that, at

most iterations, the corrections at 3=6^^^^ corresponding to the lowest

value of the objective function produced a reduction in S(x). Consequently,
n

the first constraint of P7 was changed to Z |Ax.| ^ 3 and at each iteration
n i= 1

P7 was solved with 3= Z p.. The resulting corrections will correspond to
i= 1 ^

the value of as defined previously but this time for the quadratic

objective function. If these corrections do not reduce ?()[) then the next

trial value of 3 is set to 3 . /2 where 3 . is found from the summationmin minn
Z I Ax.I using the corrections just obtained. 

i=l ^
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The results were inconclusive; least squares solutions of some 

of the problems in the Appendix were obtained, but at the cost of 

considerably more computational labour than for the hybrid algorithm. A 

fair comparison would require the development of a parametric version of 

Beale’s algorithm, making use of the known optimal solution at 3=0 and 

incorporating a safeguard to prevent the inclusion together in the basis 

of variables of the form and y . Some linear approximations of the 

sum of squares objective function were also tried using the parametric . 

method of the hybrid algorithm; again, some fuller investigations are 

necessary before firm conclusions can be drawn on the worth of this approach

Finally, it should be observed that a similar way of defining 

corrections has been used by Madsen [76] following earlier work by Osborne 

and Watson [33]. Madsen used the 1^ or minimax norm and solved the 

problem

, k ^ 1Minimize max f .(x ) + Z J.. Ax.i j=i J
*

Subject to max | Ax. j p
i

A major difficulty which Madsen did not circumvent was the effect of 

scaling; as can be seen if a large change in one variable produces a 

similar change in the residuals to that produced by a small change in 

another variable, then the single value p used in this constraint cannot 

be chosen appropriately for both variables. Since the hybrid algorithm 

limits each correction individually it does not suffer from this difficulty 

since each limit can be set to a suitable value. The linear transformation 

of the variables if incorporated into Madsen’s algorithm might enable it 

to cope with badly-scaled problems. At each iteration, Madsen tried one or 

more values for p and had to solve the linear programming problem ab initio



109

every time; a parametric approach as used by the hybrid algorithm could 

well prove beneficial.

Recently, Anderson and Osborne [ 77] have given an algorithm which 

generalises Madsen’s method to other norms. This new algorithm could be 

used with the 1  ̂ norm, like the hybrid algorithm of the author; however 

unlike the author’s algorithm it does not include the facility to limit 

individual components of the corrections and it does not employ the 

parametric programming technique.

The author believes that similar techniques to those described in 

this Chapter could usefully be applied to the method of approximation 

programming for constrained problems. As described by Griffith and 

Stewart [78] this method solves a series of linear programming problems, 

each of which approximates the nonlinear programming problem within a 

small range, and which it is hoped will eventually lead to the solution 

of the nonlinear problem.
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4. CASE STUDIES OF THE APPLICATION OF OPTIMIZATION TECHNIQUES

4.1 Introduction

This chapter consists of a number of case studies illustrating the 

varied ways in which the author has applied the techniques of optimization 

to problems of practical relevance. It is not claimed that the cases are 

a representative cross-section of the many different areas in which 

optimization techniques are currently being used. The main source from which 

they are dra\<m is the field of engineering, as also is the case with the 

conference proceedings edited by Dixon [ 79] ; other sources are the fields 

of biochemistry, theoretical physics and statistics, in spite of this 

somewhat limited range, the author believes that many of the experiences 

described have relevance to other areas of application.

In choosing an optimization algorithm, the major considerations must 

be reliability and efficiency; the relative importance of these two 

criteria will depend upon the particular problem* There are no hard and 

fast rules which will determine the choice. Statistical measures of the 

relative merits of differing algorithms are not feasible since to obtain 

such measures the algorithms in question would have to be tested on a 

sample of problems drawn at random from the total population of all problems. 

In practice, comparisons given in the literature are usually on the basis 

of a small sample of standard test cases; further there is usually a bias 

in these test cases in that they are often of an artificial nature chosen 

to illustrate some particular difficulty. For example, the banana-like 

valley of Rosenbrock [19] is a good test of an algorithm’s ability to cope 

with an objective function with contours forming a steep-sided valley, but 

the problem itself would, if met by a researcher, be solved by inspection. 

Although more recently there has been a tendency to include larger numbers 

of test cases in published work, the problem of sample bias will always 

remain.
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The results of the comparison of two algorithms on the same problem 

can themselves be suspect. For example, Dixon [ 64] showed that differences 

in behaviour of a class of updating formulae for rank-one methods were due 

solely to inaccuracies in the line searches, Nash [43] found that Meyer 

and Roth [42] had unjustly compared Marquardt*s algorithm unfavourably with 

an algorithm of their own, Nash found that with a slightly different 

implementation of Marquardt*s algorithm it converged where previously it 

had failed on Meyer and Roth’s test problems; furthermore Meyer and Roth 

only obtained convergence with their algorithm in all cases by variation of 

parameters in their program.

Much attention is quite rightly devoted to the efficiency of an 

algorithm, usually in terms of computational effort but often also in terms 

of the computer storage. When an algorithm is widely-used then obviously 

small increases in efficiency are multiplied many times. However, there are 

many other sources of inefficiency, such as human error, poor formulation of 

the problem and failure of the chosen algorithm to locate a solution. All 

of these causes can result in waste of computer resources on a scale far in 

excess of that due to choosing an algorithm which is less efficient than 

another.

A pragmatic choice of algorithm is thus often made on the basis of other 

considerations, such as whether the objective function is a sum of squares 

function, the availability of derivative information, the relative cost of 

processor time and memory and the degree of accuracy required in the solution. 

The author believes that too much emphasis is placed on the choice of method 

and too little on the savings that can be made in formulating the problem in 

the best possible way. Problems are often a lot simpler than they seem at 

first sight, and this is illustrated by some of the case studies where the 

choice of algorithm for the optimization is often of secondary importance.
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4.2 Problems with one variable

Optimization problems involving a nonlinear function of a single 

variable are of special interest for several reasons. First, certain methods 

have been developed specifically for such problems. Second, line searches 

to find a minimum of a function are an important feature of many algorithms 

for the optimization of problems with several variables. Third, as will 

be shown for example in sections 4,3,3 and 4,4,3, it is often possible to 

reduce problems of more than one variable to a form involving a search on 

a single variable.

The most well-known methods of locating the minimum of a single- 

variable function are the Golden Section and Fibonacci searches, described 

by Kowalik and Osborne [ 9 ] , These methods use function values only; more 

sophisticated techniques often requiring derivative information have been 

developed using quadratic [ 13l or cubic [ 14] interpolating functions, 

usually with safeguards to ensure convergence. The related problem of 

searching for a zero of a function can be done using the well-known Newton 

method, the method of false position or a dichotomous search. The 

solution of a single nonlinear equation would normally be done in 

one of these ways, whilst a set of equations is often solved by 

minimizing a sum of squares objective function.

The first three case studies which follow are essentially the solution 

of single nonlinear equations; the fourth example is of a complicated line 

search used in an optimization algorithm.
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4.2.1 Radiative heat transfer in dielectrics

This case study arises from work Maxwell [ 80] undertook on a chemical 

process engineering problem involving heat transfer through layers of 

glass. Maxwell sought the author’s assistance with the solution of a set 

of equations involving 2n + 1 unknoi^ms , which governed the transfer of 

the energy of electromagnetic radiation in dielectric media. The equations 

can be written as

(W + yM) X = 0 (4.1)

Twhere the unknowns are the scalar y and the vector X = (X^, ... Xg^).

The square matrices W and M are of order 2n and whose elements are given, 

for any row i, by the expressions 

w.
= - - p +  dij j = 1, n

^ 1-nW. .  ---- —  + ê . . j = n+1, .. 2nij 2 ij

Mhj = 0 j f i

= Pi j = i ^ n

M . . = -y . j = i > nij i-n

where g .. is the Kronecker delta symbol and the constants w. and u .ij 1 1
satisfy

n
Z w. = 1 (4.2a)
i=l 1

w ^ >  0 i = 1, .. n (4.2b)

Pi > p£_j > 0 i = 2, .. n (4.2c)

Non-zero solutions for X can only occur at values of y for which W + yM

is singular. To find these values of y, we can first premultiply equation 

(4.1) by the inverse of M to give the equivalent set of equations
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-1(M W + y l ) X  = 0 where I is the unit diagonal matrix. The eigenvalues 

and the corresponding eigenvectors v^ of the unsymmetric matrix 

M can then be found by any suitable numerical procedure, to give the 

required solutions to equation (4.1) in the form y = "X^ and X = 

where a is an arbitrary constant. Such an approach using an eigenvalue/ 

eigenvector analysis could be costly in terms of computer resources and 

also susceptible to rounding-error problems. The author felt that a 

further examination of the equations might lead to a simpler method of 

solution.

Referring to Figure 4.1(a) which shows the equations in a fuller 

manner, if we start with the last equation and work backwards to the second 

equation, at each stage subtracting the preceding equation from the current 

equation, we find that the equations reduce to the simpler form shown in 

Figure 4.1(b). Non zero solutions for X will, as stated before, occur at 

values of y for which the matrix of coefficients is singular, corresponding 

to a zero determinant. By multiplying out, the determinant A is given by

A =  ( 1 - Y % , ? )  0-y\h . . .  ( 1 - Y \ h ( l -  Z  " i  )  (4.3)
 ̂ 1-Y Wi

Further examination of Figure 4.1(b) shows that the second and subsequent 

equations yield the relationships

(1 + YP^yx^ = (1 + i = 2, .. n (4.4a)

(1 - YPj)X^^j = (1 + YP^)X^ (4.4b)

(1 - YU£>X^^£ = (1 - i = 2, ... n (4.4c)

Given a value y = y^ for which A = 0, then the first equation in Figure 

4.1(b) will be a linear combination of the others since these form an 

independent set as seen by equations (4.4a) - (4.4b). The solution X^
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corresponding to can then be expressed, by taking as an unknown, in 

the form

V  T = V  n
-i I ' ' + Y i l ^  ' ’ '-YiP, ' ■■ > - Y j %

or in the simpler form

^ T _ / 1 1 1 1 1 3 // C3
-i - « (,+YiP, ' l+YiMz ’ '^i^n ’

where ^ is some arbitrary constant. All that now remains is to find some 

means of computing the roots of the polynomial equation A = 0.

2If we take Z = y , then ^ is a polynomial of degree n in Z; each solution

%£ to 6 = 0 will give two values of y  =  ±  Z^^. If we put Z = 0 in equation
n

(4.3) then it will be seen that A = 1 - z by equation (4.2a) this is
i=l ^

zero and hence y = 0 is a repeated root. Consider now the sign of the

determinant in the range — --  < Z < — I—  . From equation (4.3) it will be
k+1 kseen that

A  =  - w  ( I - z p  ^ )  . . . ( l - z p ^ _  ) ( l - z p ^  ) . . . ( l - z ^ p  2 )  a t  Z  =  ^

1 "  " ^ k - l ' "  " ^ k + l ' " ' ' " '  ^ n  /  p 2k

2 2 2 2 2 1 and A = (1"ZP, ) . ,.(l-zp. )(l-zp,^_)...(l-z p )at Z =k+1' ’̂l  ̂ ^ k  ^^k+2''''' ^n " 2
%k+l

Therefore, by virtue of equations (4.2b) and (4.2c) it follows that there

will be a change in sign of the determinant as Z increases from -4---  to
, ^ k+1

— 0̂ . Since the determinant is a continuous function, there will 
U k
therefore be a root in this range; since there are n-1 such ranges, these 

account for the remaining roots. A simple dichotomous search for the roots 

can be performed using the following algorithm for each range.

Step 1 Set Z = — —  Z_ = ^
1 . p 2  “ 2  y 2

k+1 k

Step 2 Set Z = (Z^ + Z )/2
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Step 3 If Zg-Z^ < E then take Z as the root and terminate 
this search; otherwise ...

n 2
Step 4 Compute f = 1 - Z w./(l-Zy. )

i=l ^ ^

Step 5 If f < 0 then set Z^ = Z else set Z^ = Z, and
continue from Step 2.

It will be seen from equation (4.3) that within any range the sign of

the determinant changes as the sign of the quantity f changes. Further,

as Z tends to —  from above then f tends to minus infinity and as Z
1 *tends to — ^  from below then f tends to plus infinity. Consequently the

y^k
test at Step 5 is a valid one for determining which of the two values Z.

and Z^ currently bracketing the solution is to be replaced by Z. The major

effect of rounding error is in the calculation of f; since it is only

necessary to determine the sign of f then this should cause no problems even

for small values of e, the accuracy required in the solution. The algorithm

'will always terminate in a finite number of steps and so there is no need for

a Ipop count. It will be seen that this algorithm has considerable advantages

over the original eigenvalue/eigenvector approach; the only storage necessary

is for the data vectors w and y plus the solutions y. and X. themselves.
—  —  1 — 1
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4.2.2 Creep Rupture of a Cylindrical Stucture

Materials subjected to stress exhibit the phenomenon of creep, whereby 

internal damage to the material increases with time, produces a 

redistribution of the internal stresses and ultimately results in rupture.

An accurate estimate of the time to rupture under a given history of loading

is essential for the safe design of structures. One technique is to use

a finite element [81] model to predict accurately the creep behaviour; 

this can be expensive in terms of computer time and storage even for simple 

structures and so less costly methods are sought for use in the early stages 

of design. One such approach is to derive expressions for the upper and

lower bounds of rupture life; these expressions involve integral terms which

still require computer evaluation but at significantly less cost in terms of 

computer resources than the finite element method. Wojewodski, who has 

reported earlier work with Leckie [82], sought the author's assistance with 

the computational aspects of applying bounding methods to a cyclically- 

loaded structure, in which the solution of a nonlinear equation was 

required.

The relevant features of the model are shown in Figure 4.2. The 

structure in question was a thick, hollow cylinder of internal radius a and 

external radius b subjected to an internal pressure p(t) which varied 

cyclically as a two-level step function of time t. The temperature 0 in 

the cylinder was constant with time, but varied linearly with radius r from 

6^ at the inner surface to 0^ at the outer surface. Assuming axial 

symmetry, the damage tjj due to creep varies with radius and time only. Given 

the damage distribution at time t, the corresponding distribution of the 

radial stress component is given by integration of the differential 

equation

^ 7 = # "  (4.G)
nr



120

Internal Pressure
p(t)

r=a,

p(t) A

At

Figure 4.2 Thick Cylinder Subject to Cyclic Loading
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subject to the boundary conditions c)̂ (a) = -p(t) and a^(b) = 0. The 

material properties K and n vary nonlinearly with 0 and the constant C 

must be determined so as to satisfy the boundary conditions. Once the 

stress distribution is known, the rate of change of i(j with respect to t 

can be computed and \p integrated numerically over a time-step ^t and the 

whole process can be repeated. The present interest is in the evaluation 

of C.

The integration of equation (4.6) was carried out using the 

method of Euler with a constant step-size Ar = (b-a)/m, where ra is the 

number of steps selected. The radial distribution of is then given at

the discrete values r = a + k Ar (k = 0, .. m) where

k-, ^
a ^ ( r . )  =  a  ( a )  +  Z c " i  y .  A r

i=0 ^
and

' J_ . 1n . n .

The suffix i denotes evaluation at r = a + iAr. It therefore follows from 

the boundary conditions that C must satisfy the nonlinear equation

m-1 n.
-p(t) + I C 1 y. Ar=0 (4.7)

i=0 ^

The time-step At was taken as T/12 where T is the period of the cyclic

loading; since several thousand cycles could be required to cause rupture,

then a fast, but reliable, method for solution of equation (4.7) was 

essential. Fortunately, the fact that At was small compared with the rupture 

life meant that a good initial estimate of C was always available from the 

value last calculated at the appropriate stress-level. For the first 

evaluations of C in the first cycle, initial estimates of C had to be 

specified. Since in the range of interest n varied monotonically with 0,
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then it followed that C must always lie between the two values obtained 

by assuming a constant temperature of 6̂  or 6^. Taking the average of 

these two gives

m-1 n(e ) m-1 n(&.)
C 2 i[( p(t) / E y. Ar') ^ + ( p(t) / E y. Ar) ]

i=0 ^ i=0

Given that the estimates are good, then Newton's method for nonlinear 

equations can be used with confidence, and will result in fast 

convergence. The following algorithm was used for the search on C.

Step 1 Set C = C where C is the initial estimate aso o
described above; set k = 1

__1_
m-1 n.

Step 2 Compute a (r ) = -p(t) + E C ^ y. Ar
“ i=0 ^

m-1 n.
Step 3 Compute 3 = -a (r ) / E C ^ y. Ar

^ “ i=0------ 1---
"i

where 3C is the correction to C predicted by Newton's 

method to reduce o^(r^) to zero.

Step 4 If 13 ] < 10 ^ then accept the current estimate of 

C and terminate the search.

Step 5 If k = 30 then terminate the search with an appropriate 

error indicator set^

Step 6 If 3< then set 3 = else

if 3 > 1 then set 3 = 1

Step 7 Set C = C + 3C; k = k + 1

Return to Step 2

For the cases studied, the error exit at Step 5 and the limitation 

to the corrections at Step 6 were never invoked. Apart from the first 

evaluation of C at each stress-level, thereafter the algorithm invariably 

converged in one iteration.
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4.2.3 A model of void growth in metals.

A mathematical model of the creep rupture by the growth of voids at 

grain boundaries in polycrystalline metals subject to stress was proposed 

by Kelly [ 83] . This case study is taken from the work done by the author 

on the numerical and computational aspects involved in the computer 

implementation of the model.

Kelly took a simple two-dimensional representation of the metal, with

an assumed regular octagonal grain structure, and he only considered systems

of biaxial loading. These assumptions introduce a measure of symmetry to

the model and consequently only three different sets of conditions can

exist on the separate faces of the grains. On face i of three chosen

representative faces, the voids are assumed to be spheres of radius r^ (at

time t) and to be regularly-spaced at a distance 1^ between centres. The

effect of the voids on a face is measured by a damage parameter 
2 2o)£ = Trr̂  /41^ ; the model always ensures that 0 < < 1 . The normal stress

on face i is given by the effective stress, taking note of damage, is 

then S^/(l-o3̂ ). Given the values of and making assumptions about the 

effect of shear stress, the values of can be found by solving three 

linear simultaneous equations, the first two of which are obtained from 

equilibrium of forces and the third from compatibility of displacements.

The growth rate of the voids is then given by the differential equation

do). S. B.

where A^ and are independent of time but are functions of the void 

spacing 1^ and material properties. Given the void spacing and the initial 

damage at time t=0 , the model integrates the three equations (4 .8) to 

obtain the variation of damage and stress with time. The integration 

normally terminates when two faces have ruptured, due to the damage or
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effective stress becoming too high, when a cleavage path through the 

material will exist.

The integration, which has to be done numerically, is done using a 

fourth-order Runge-Kutta method due to Merson and described by Fox and 

Mayers [ 62] . The major difficulty lies in handling discontinuities in 

the differential equations introduced either by rupture of a face or by 

equation (4.8) breaking down as ŵ. tends to zero. In the first case, 

rupture of a face is assumed when either S^y(l-w^) > or is

a material property while is set to a value close to unity, say 0.99.

In the second case, if then it is assumed that dwu/dt = 0; is

taken as 0.1% of the initial damage on the appropriate face. To maintain 

accuracy in the numerical integration, it is necessary to precisely locate 

the value of t at which these discontinuities occur. This problem was 

considered by O'Regan [ 84]; his method of solution varies according to the 

Runge-Kutta method being used. In the current instance, a simple line 

search was used to locate the position of the discontinuities using 

the well-known method of false position. At the end of any time- 

step, when an integration will have been performed from t to t + At say, 

the damage and stress values are inspected to determine whether a discontinuity 

occurs within the range of integration. If so, then an objective function

f is defined by w - m .  ̂ w .- w or cr - S./(l-w.) as appropriate; note that
1  1  t i  i t  1  1

f changes from a positive to negative value when a time-step crosses a 

discontinuity. The following algorithm was used to successfully locate the 

value t^ such that the discontinuity occurs at t+t^.

Step 1 Set t^=0; t^=At; f^=f(t+t^); f^-f(t+t^). Set 

the count k=0 .

Step 2 If f^-f^ < e set t^=t^and exit; the value of

E is chosen according to the accuracy required.

Step 3 If k = 50 set t^=t^and exit; this is a

fail-safe limit on the number of iterations.
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Step 4 Set At=f^(t^-t^)y(f^-f^) which is given by a

linear interpolation between t^ and t^ to predict 

f(t+t^+At) = 0

Step 5 If At < 0,1 (t^-t^) then set At=0.1 (t^-t^)

If At > 0.9 (t^-t^) then set At=0.9 (t^-t^)

These tests ensure that a guaranteed minimum rate 

of convergence is obtained.

Step 6 Evaluate f=f(t+t^+At) by integrating from t to t+t^+At

Adjust the bounds on the discontinuity by setting

t^=t^+At and if f > 0 or by setting t^=t^+At and

fy=f if f ^ 0 , Return to Step 2,
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4.2.4 Discontinuities in thé slope of a multimodal function

This case study is taken from work the author carried out on the two- 

part algorithm discussed in Chapter 2. It is included here, rather than in 

the earlier chapter, because the length of description required outweighs 

its importance with regard to the two-part algorithm and it is of more 

interest as an example of what can be achieved by using a complicated 

special-purpose search on a particular nonlinear function of a single 

variable.

It was described in section 2.2.2 how the descent part of the two-part 

algorithm sets x^^^ = x^ + s^x where

^x = Z w (4.9a)

= (— —  , ... — —  ) (4.9b)
<|) + X 4) + X1 n

s = min (1,  --- —  , ... — -—  ) (4.9c)
I Ax,I |Ax^l

The matrix Z depends upon the gradient vector and Hessian matrix of the sum

of squares objective function F(x) evaluated at x = x^; the values

(i = 1, .. n) are the eigenvalues of the Hessian matrix ordered such that

^i ^ ^i-1’ P is a constant which specifies the maximum permitted change

- Ax^^l in the variables at an iteration and X is a parameter which

is chosen at each iteration to give the global minimum of the function 
kF(X) = F(x + sAx). It was shown that F(X) is a multimodal function with 

finite discontinuities at each value X = In addition, there are

discontinuities in slope due to the manner in which s is calculated. It 

will be seen from above that, for a given X,s adopts the minimum of n+1 

discrete values; as X is varied, the position of this minimum value can 

shift when a discontinuity in ds/dX will result. If we define
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I/5C. 1= raax(/x,, .. Ax ) then such shifts will occur at values of X where' m a x  ' ^ 1 n
I Ax. l=p or where inax changes when Ax. > p.I m a x  ' m a x

In the original algorithm developed by the author, the search for the

global minimum of F(X) was carried out by considering in turn the regions of

X in which F(X) is continuous; thus the first region is the

second < X <-(() , and so on. A grid search was employed to bracketn n-1
minima within each region and then the position of any minimum was located 

more accurately by an interpolation. Dowson [ 66] improved the reliability of 

the grid searches by doing a further preliminary subdivision into regions in 

which both F(X) and dF(X)/dX are continuous. This entailed using a numerical 

search to locate values of X corresponding to "changes of state" of the 

corrections; Dowson used this expression lo describe the situations producing 

a discontinuity in ds/dX just described. The state of the corrections can be 

quantified by the integer ^ where ^ = 1 if I ^^i^nax ̂ ^ P and tp = imax + 1 

otherwise; note that ip then corresponds to the position of the minimum in 

the right-hand side of equation (4.9c). Dowson's search for the positions of 

the changes of state can then be explained, as follows, for all regions 

-(J)̂  c X ” ^i-l .. n)

Step 1 Set AX = (4>£~4>̂ _j )/4; X̂  = Xg = X̂  + AX

Step 2 Set equal to ^ at X = X̂

Step 3 Set equal to ^ at X = X2

Step 4 If ^2 = 4̂1 then continue from step 8

Step 5 Using a dichotomous search, find to within a

prescribed tolerance the values X^ and ^

at X = X^ such that X^ < X^ < X^; ip ~

for X <X ; and \p ^ ip, c c 1



128

Step 6 If ip ̂  = ip 2 then continue from step 8, having

recorded the position of a discontinuity at

X = X . Otherwise ... c

Step 7 Set X ̂ = X^^ Return to Step 4.

Step 8 If Xg < then set

X^ = min ^2 ) and return to Step 3.

Otherwise, the search in the current region for 

discontinuities has been completed.

A similar scheme is used in the two end-regions where X ^ and

X ^ -4) j, Dowson acknowledged that this search does not give a guarantee 

of finding all the slope discontinuities. Consequently, the author decided 

to try to develop a method with this guarantee to find what improvements 

(if any) could then be obtained in the grid search. It will be seen from 

equations (4.9a) and (4.9b) that each correction Ax^ can be expressed as a 

rational polynomial in X of the form

k-1Ax. = E A., X*̂
 ̂ k=l Ik

(4.10)
“e' B xk-l k=l k

The coefficients are the same for each correction and are obtained from

the product (c}> j + X)(^g +X) ... (<j>̂ +X); the coefficients Â ^^ vary between
n

corrections and are obtained from the summations E Z.. (<p. +X)(^_ +X),,,j = 1
+X)(^j^| +X) .. ((|)̂ +X). The new method was based on this rational 

polynomial form of the corrections; it was able to guarantee that all 

discontinuities in ds/dX were located by using the fact that the number of 

roots of a general polynomial equation is known to equal the degree of the 

polynomial. It will be noted that, in general, the values of the roots can
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only be found numerically.

In the first stage of the calculation, the range of real X is

divided into N+1 adjacent regions such that within each region the index

imax of I Ax. I remains constant; it will be apparent that N is initially ' imax I »
unknown. Let the kth such region be given by in which imax = I^;

assume that = -00 and = +». It will be noted that if two or more

corrections are equal over a finite range, then the columns of Z correspond

ing to each correction must necessarily be equal. The method which is to 

be described could be modified to account for equal corrections by testing 

for these at the outset and thereafter only considering one representative 

correction from each group of equal corrections. The values of and I^ 

are found by comparing the relative magnitudes of all possible pairs of 

corrections in the range of real X as follows.

Consider any two corrections Ax. and Ax. Since the denominators of
' 1 J*

the appropriate rational polynomials given by equation (4.10) will be the

same, only the numerators need be considered when comparing the magnitudes

of Ax. and Ax.; the fact that the denominator becomes zero at X = - 6. does 1 J 1
not invalidate this argument. For the end-regions, when X tends to plus

or minus infinity, the greater of the two corrections will correspond to

the greater of the two values |A^^| and |Aj^|, since these are the

coefficients of the dominant terms in the numerator. If A. = A. = 0in jn
then lower-order terms in the numerator need to be considered. At any

values of X for which |Ax^| = |AXj | then the relative magnitudes of the

two corrections will change; in this event the range of real X will divide

up into a number (always odd) of regions such that throughout each region

one correction remaiîis greater than the other. Such values of X are

found from the complete solution of

• ^  k-1Z (A., - A..) AT = 0 (4.11a)
k=l ^
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^ k-JZ ( A . .  + A . , ) x  - Q  (A.iJb)k=]  ̂ J

Each of the two equations has n-1 roots; complex roots must be discarded.

If n is even, there is a guarantee of at least one real root to each 

equation.

Assume that in total there are M real and distinct roots

r^(l = 1 ,  .. M) to the equations; assume also that r^ ^ * Further,

define r^ = -» and r ^ ^  = +», noting that equation (4.10) shows that both

corrections are zero at X = r and X = r , ,. We then have M + 1 regions ofo M+1
the form r^ < X < r^^^ (1 = 0, .. M) ; within each region the continuity of

the numerators ensures that whichever is the greater correction (whose index

is denoted by J^) at the start of the region remains the greater throughout

the region. It has just been shown how can be evaluated at r^ and r^^^.

For inner regions r^ < x < r^^^ ( 1 = 1 ,  .. M-1) can be calculated by

considering the relative magnitudes of d|Ax^]/dX and d|AXj |/dX at X = r^.

Note that d |Ax  ̂|/dX = -dAx^/dX when Ax^ < 0; d|Ax^| /dX = | dAx^/dX j when

Ax^ = 0; and d|Ax^|/dX = dAx^/dX when Ax^ > 0. Also, for comparison purposes,

the denominator of equation (4.10) can be taken as unity giving dAx./dX = 
u lc*"2I (k-1) A., r_ at X = r, . Then J., is set to i if d|Ax.|/dX > d|Ax.]/dX; k=2 ^ i i i 1 J

otherwise is set to j. An alternative, and much simpler method of 

determining (which occurred to the author at a later date) would be to

compare the relative magnitudes of the corrections evaluated at an interior 

point of the region, say at X = (r^ + r^^j)/2.

The accumulation of the results of all the comparisons between pairs of 

corrections is simple in principle, albeit complicated in practice. The 

steps can be summarised as follows.

Step 1 Set i = 1

Step 2 Set j = i + 1

Step 3 Compare [Ax Î and |AXj| to obtain M, r^ and (1=0, .. M)
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as already discussed 

Step 4 If i =1 and j = 2 then initialize cumulative

information by setting N=M, = r^ and I^=J^

(1 = 0 ,  .. M) and continue from step 6 . Otherwise 

Step 5 add results of comparison to cumulative total. For

each 1 for which J^=j check whether the region 

r^ < X < r^^j overlaps with any region < X <

in which I^=i. In the event of an overlap, since it

is known that > Iax^] in region 1 then in the

overlap the a^, I^ information must be amended in one 

of the four ways shown in Figure 4.3.

Step 6 If j < n then set j = j + 1 and continue from step 3

Step 7 If i < n-1 then set i = i+1 and continue from step 2;

otherwise the process is complete.

There are a total of n(n-l)/2 combinations of two corrections; the

loop structure of the above algorithm is such that each combination is

considered once only. At step 5, it will be noticed that only those regions 

1 for which = j (i.e. |A Xj| > | A x̂ | ) are considered for incorporation

into the running total. On completion of step 5, for each region k it will

be seen that

|Axj I ^ |Ax^| (1= 1, ... i) if I^ i

|Axj I ^ l ^ x ^ l  (1=1, ... j) if I^ >  i

On completion of the last execution of step 5, when we have i = n-1 and j=n

then it will follow that for all the regions

|Ax I ÿ I Ax.I (1=1, ... n)
k
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Figure 4.3 Updating cumulative information on maximum 

magnitude corrections
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The way in which this accumulation operates is illustrated in Figure 4.4. 

for a hypothetical case when n=4. There are twelve distinct values of X 

at which two corrections are equal in magnitude; these values are numbered 

across the top of the figure and, for convenience, are shown equally-spaced. 

Of the six comparisons, only three (steps 2, 4 and 8 in the figure) affect 

the accumulated information. Note how at step 8 the range < X < is 

extended.

In the second stage of the method, information is added to that obtained

in the first stage specifying the regions in which |Ax | < p and

| A x . _  I % p. This, in general, will require a further subdivision and a 
k

corresponding increase in N. It is only necessary to consider those 

corrections which, for at least part of the range of real X, are greatest in 

magnitude; thus in the example of Figure 4.4 correction 4 would not be 

considered. The values of X at which |Ax^| = p are given as the roots of

the equations

k-1 k-1Z A., X*̂  = p Z B. X* (4.12a)
k=l ^ k=l

n . , n+1
Z A.-X = -p Z B. X (4.12b)
k=l k=l

Each equation has n roots; complex roots must be discarded. If n is odd

then there is at least one real root to each equation. Assume that in total

there are M real distinct roots r^(l=l, .. M) and ordered such that r^ > r^ ^

In the region r^ < X < r^^^ (1=0, .. M) it follows that |Ax^| will either be

above or below p throughout the whole of the region; it is assumed that

r = -*» and r,, , = +« . The test for whether a correction is above or below o Mfl
p between consecutive roots is based on considerations of the slope of |Ax^I 

at the lower root; it could equally-well be done by evaluating |Ax^| at some
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point between the roots. Using this information, the requisite amendments 

can be made to the regions o^< \ < in which I^=i; an additional

integer value 7̂  is stored which is set to 1 if | | < p and to 2 if

|Ax |̂ ^ p. Note that a region can be subdivided into two or more regions 

with different values of

The third and final stage is the addition of the points X = -<J>.1
(i=l, .. n) at which discontinuities in F(X) occur. Such points will

correspond to singularities in the corrections and must always be in regions

for which = 2; the information is incorporated by introducing a further

n values of with = i + 2. The final regions are then summarised by

the integer N and the set of values a^, I^, ir̂  (k=0, .. N) where, for each

k, we have a region < X < in which the correction of maximum

magnitude is I Ax | and 
k

|Ax ^ I <  P if = 1
k

|Ax I ^ p if n. % 2

and there is a singularity in F(X) at X = if > 2.

The method was successfully implemented as a computer program. The 

major programming difficulty was the complex data structure caused by the 

need to insert new regions or merge existing regions. This was done using 

a system of pointers using FORTRAN; other languages would be more convenient, 

for example ALGOL W which has a suitable data structure. With the

pointer system, the values of a^, and were stored in arrays while a 

fourth array held pointers giving the order in which the a and ir

values were stored in their arrays^ being not necessarily in ascending 

order. The solution of the polynomial equations was carried out using a 

standard NAG [ 70] Library routine using the method of Grant and Hitchins 

[85]• A major difficulty was allowing for rounding error when distinguishing
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real from imaginary roots; the NAG routine returns roots in the form (a,b) 

where a and b are the real and imaginary parts. A root was taken as real 

if IbI < 10 ^ (1 + |a|). To prevent overflows in the evaluation of the 

coefficients A^^ and the matrix Z and the eigenvalues were both

divided by the value of the maximum magnitude eigenvalue. Since rounding 

errors could be introduced both in the evaluation of the coefficients and 

in the solution of the equations, a check was made: when values of X were 

calculated for which |Ax^| = jAx^l, the corrections were evaluated by 

using the original equation (4,9a); if they did not agree to within a given

relative tolerance of 10 ^ then Newton's method was invoked to adjust X

suitably. A similar process was applied when finding X such that |a x |̂ = p.

Tests were carried out using data for Rosenbrock's function and the 

eight exponential equations shown in the Appendix. A third test was done 

on a problem of six equations with randomly-generated Z and values. In 

all cases, it was never found necessary to use Newton's method to refine the 

roots; this indicated that rounding-errors were not a problem (double

precision arithmetic was being used). Further, the results were compared 

with those obtained using Dowson's method. Apart from minor differences in 

values due to rounding-errors, the results obtained by both methods were 

identical. In addition to confirming that the new method had been programmed 

correctly, this showed that, for the test cases and most probably for other 

problems with a moderate number of variables, Dowson's search is extremely 

reliable in locating the discontinuities in slope. Since it requires an

order of magnitude less processor time, and considerably-less storage for

code, then there was considered to be no advantage in using the new method.
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4.3 Problems with two variables

Optimization problems involving two variables are a special case in 

so far as it is possible, on a two-dimensional graph, to plot the contours 

of the objective function. Many computer installations have packages 

available to do this. Consequently, if an attempt at optimizing a 

function fails, then all that is usually necessary is to plot the contours 

of the function in the region of interest. If there are any constraints, 

these too can be shown on the plot. An inspection of the contours will 

then yield a sufficiently-close estimate of the position of the minimum 

for the optimization method to converge when started from this estimate.

Thus in most instances, the main concern with two-dimensional problems 

will be with the efficiency rather than the reliability of the method 

used for their solution. It will often be possible to develop fast ad hoc 

methods of solution. The following three case studies illustrate these 

points. The first and last cases are of problems requiring solution many 

times, with different sets of data, in a single computer run. The second 

case describes an algorithm for finding to a high resolution the region 

of stability of an electrical machine.
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4.3.1 A modification to a finite-eXement method

The following nonlinear least squares problem is taken from work 

Hayhurst and Henderson [ 86] carried out in which the finite element method 

was used to predict the effect of stress redistribution due to creep in a 

notched cylindrical bar. In order that the nature of the problem can be 

explained it is necessary to use some of the concepts involved in the 

finite element method; these are introduced without further explanation, a 

good text on the subject being that by Zienkiewicz [ 8l].

The model is shown in Figure 4.5; axial symmetry could be assumed 

because the bar was of circular cross-section, the notch was cut circum- 

ferentially and the load was applied axially. Further, since the two 

halves of the bar obtained by cutting through the notch were symmetric, 

the analysis was restricted to one half only. A triangular finite element, 

described in Chapter 4 of Zienkiewicz*s book [ 81] was used and the half 

bar subdivided by a mesh made up of these elements. Note that each element 

represents a solid of revolution about the axis.

Considering a single element, the nodes are numbered i, j and m in anti

clockwise order. For node i, the radial and axial coordinates are denoted 

by r^ and z^ respectively; the applied nodal forces are given by and Y^; 

and the resulting elastic displacements are u^ and v^. Similar terms for 

the other nodes are obtained by changing the subscripts. The nodal 

displacements are related to the applied forces by the equation

F = k 6 (4.13)

T Twhere F = (X., Y., X.,Y., X , Y ), ô = (u., v. , u., v . , u , v ) and k is —  1 * i’ J J m  m 1 1 J ] m' m
a 6 X 6 symmetric matrix known as the element stiffness matrix. The values 

for k are obtained from the double-integral expression

k = 2tt ffB^ D B r dr dz (4.14)
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Figure 4.5 Axisyiranetrie Finite Element and Notched Bar
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The 4 x 4  matrix D is the elasticity matrix and depends upon the material 

properties; the 4 x 6  matrix B depends solely upon the element geometry.

If B is partitioned into three submatrices such that B = 

then we can write

B. = 
1

0
b.1

^i z—  + b . + ^ . —  r 1 1 r
c.1

c.1
0
0

b.1

(4.15)

Similarwith a. = r z - r z.,b. = z .  - z  and c. = r - r..1 j m m j ’ i J m  i m  j
expression for B^ and B^ can be derived by cyclic rotation of the subscripts.

When all the equations (4.13) for each element are aggregated over the 

mesh, then a single set of equations is obtained relating the externally- 

applied nodal forces to the nodal displacements (the internal nodal forces 

sum to zero). For each node, either the applied force or the node 

displacement is given by boundary conditions and so the equations can be 

solved to give the unknown forces and displacements. Once the displacements 

are known for all the nodes of an element, the elastic strains and stresses 

can be derived. The rate of increase of strain due to creep is then 

derived from a supplied constitutive relationship between strain rate and 

stress. By numerically integrating the strain over a time-step, the effect 

of creep on the elastic strain distribution, and hence stress, can be found. 

The integration is then repeated until rupture of the bar occurs.

Initial computer runs showed that as the integration progressed the 

original equilibrium between applied load and internal stresses was not 

maintained. It was thought that one cause for this might be the use of a 

representative stress for each element in the strain rate calculation. The 

four stress components a in an element are related to the nodal displacements 

by the relation q = DBf. It will be seen from equation (4.15) that B, and
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hence _a, varies with r and z. The representative stress used was that of 

the centroid of the element (r, z). Hayhurst suggested that a better 

choice might be the point (r*, z*) chosen so that if B is evaluated at 

(r*; z*) to give B*, then the value k* for k, obtained by replacing B 

by B* in the double-integral of equation (4.14), is not far removed from 

the true value of k. A least squares objective function can then be 

defined by

6 6 2
f(r*, z*) = I Z (k*..-k..)^ (4.16)

i=l j=i '•J ’■J

Since k is symmetric, the summation is only taken over the upper triangle; 

strictly speaking a weight factor of two could be applied to the off- 

diagonal terms. Although there are 21 residuals, six values of k^j are 

independent of the (r,z) terms in the B matrix expression given in equation 

(4.15); consequently the problem reduces to one of 15 residuals and 2 

independent variables. It then remains to find optimum values for (r*, z*).

The Gauss-Newton method was used for the optimization, including a 

line search similar to that used in the Gauss-Newton section of the two- 

part algorithm described in Chapter 2. The initial guess for the variables 

was taken as (r, z), the centroid. At each iteration, the maximum permitted 

changes in the variables were + 0.5r* and + 0.5z*. Note that since only two 

variables were present, the evaluation of the Gauss-Newton corrections, which 

requires the solution of linear simultaneous equations, was readily done 

algebraically. The search was programmed in FORTRAN IV on a DEC PDP-11/20 

minicomputer and, when tested, transferred to an IBM 370/195 for incorporation 

in the main finite element program.

The effect on k* of optimizing (r*, z*) is shown in Table 4.1. The 

actual values of k^^ are shown together with the k*^j values obtained using 

the centroid and the optimum points. The six values of k^j which are 

independent of the terms in equation (4.15) for B involving r and z are
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k. .ij
(exact) (centroid)

>̂ *ii
(optimum)

44.3
0.00

- 2 1 . 2

6.04 
1.01

-6.04
8.06

-8.06
57.7

-26.2
2.69
18.1
2.01

17.5
6.04

23.2
0.00

- 2 1 . 2

6.04 
1.01

-6.04
8.06

-8.06
55.4 

-26.2
5.04 
18.1 
2.01 

15.1
6.04

27.2 
0.00

- 1 2 . 8

2.26
5.30
-2.26
8.06

-8.06
55.9

-26.3
4.90
18.3 
2.14 
14.8
5.91

N.B. Nodal coordinates of element are (0,0), (10,0) and (10,10)

At centroid, (6.667, 3.333), objective function = 464

At optimum (5.514, 2.699), objective function = 424

Table 4.1 Optimization of (r*, z*) for one finite element
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omitted. It will be seen that a slight improvement in the objective 

function of equation (4.16) is obtained. However, this is unusually large; 

most of the elements in the finite element meshes used show a less marked 

reduction on optimization. Consequently, no significant changes in the 

results of the creep integration were found when the optimum, rather than 

centroid, points were used to calculate representative stresses. Eventually, 

the numerical difficulty was surmounted by using an improved mesh, with 

finer elements in the vicinity of the notch.
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4.3.2. Stability of an electrical machine

This two-dimensional search is part of a contouring program developed by 

the author. The program produces, on a digital plotter, a graph showing the 

region of stability of a reluctance-synchronous machine over a range of 

operating conditions. The mathematical basis of the program is due to Lipo 

and Krause [ 87] who used small displacement theory to apply Nyquist's criterion 

to small perturbations about a steady-state operating point. Only the results 

of the analysis done by Lipo and Krause which affect the program are given here, 

and then without further explanation.

The design of a particular machine is specified by the values of a set 

of machine parameters. Given the voltage and frequency, a steady-state 

operating-point can be specified uniquely by two values - the slip f and 

the torque T. The search strategy assumes that the region of stability in 

the plane is bounded by a closed, convex curve such as that shown in

Figure 4.6. The dotted lines in the figure are the maximum and minimum 

steady-state torques which, for any given value of f„, are obtained by a 

straight forward calculation. Using Nyquist’s criterion, it can be shown 

that the operating point (f^^ T) will lie on the bounding curve of the region 

of stability if the locus of the complex function G(jv) passes through (-1, 0).

This locus is obtained by varying the scalar v, where j denotes the complex
. 2 .operator j = -1. For any given v, G(jv) is a function of f_ and T, as well

as the fixed machine parameters.

If we write G(jv) = a(v) + jb(v) then the analysis shows that 

a(-v) = a(v) and b (-v) = -b(v). Consequently, in any search on v for given 

fĵ  and T to locate a point (if any) for which G(jv) = (-1, 0) it is only 

necessary to consider positive values of v. If v* is the value of v for 

which a(v*) = -1, then the value b(v*) indicates how close to the bounding 

curve the values of f^ and T are. The program approximates the bounding 

curve by locating a finite number of points (fL, T) around the curve, at
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Figure 4.6 Search for the boundary of the region of stability
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roughly-equal spacings. This Is done hy searching along lines (such as 

CE in Figure 4.6) whose origin is at a point near to the middle of the 

region of stability and finding their points of intersection with the 

bounding curve. If r is the distance along such a line, the intersection 

will be at r = r* for which the corresponding value b(v*) is zero. Thus the 

search is two-dimensional with variables v and r. Two nested one-dimensional 

searches were used since, in addition to being reliable, they could readily 

cope with the physical constraints on v and r .

The inner search is on v to locate v*, given f and T. It is assumed 

that as V increases from zero a(v) increases from values below -1 to values 

above -1; this assumption has not been invalidated by any of the cases so far 

studied (if it was, the search would terminate with an error message).

A starting value for v is taken as the value for v* last found (or unity if 

this is the very first search on v ). If a(v) is greater than -1, v is 

multiplied by 0.1 repeatedly until a(v) < -1. Then v is doubled repeatedly 

until a(v) ^ -1; it is then known that v/2 < v* ^ v  This bracket is reduced 

using a dichotomous search until at the midpoint of the bracket |l+a(v)| < £j 

is satisfied; is the required accuracy of value 10 ^ in the present case.

A fail-safe exit is taken if the bracket is reduced to a very small amount 

without the accuracy criterion being satisfied; this would happen if rounding- 

error effects are larger than the chosen value of . Similar fail-safe 

criteria are built into the other searches described later. On exit from 

the search, v* is taken as the midpoint of the range; b(v*) is evaluated for 

use in the outer search.

A preliminary calculation is carried out to set up a system of lines 

whose intersections with the bounding curve are located by the outer search. 

First, the two intersections of the curve with the f^-axis, A and B in 

Figure 4.6, are found. Starting with f^=0.01, the value of f^ is 

incremented in steps of 0.01 and b(u*) calculated corresponding to f^ with
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T=0. If the signs of b(v*) on two successive f^ values are opposite, then

a bracket has been obtained enclosing one of the points A and B. This bracket

is reduced by a dichotomous search until |b(v*)| < £2» where the required
-5accuracy ^2 was taken as 10 in the present case. A polar coordinate system 

(r, 0) is then set up with its origin at C, the midpoint of the line AB.

Lines are generated by taking values of 0 at intervals of one degree in.the 

range 0 to 360 degrees. For each value of 0, the corresponding line is given 

by the following parametric functions of r:

fR = ; (4.17a)

T = i (TMAX - TMIN) r sin 0 (4.17b)

In these expressions f^ and f^ are the values of f^ at A and B, while TMAX 

and TMIN are the maximum and minimum torques for the value of slip f^ at C. 

This choice of scale is made so that equal intervals of 9 will correspond, 

roughly, to equal distances along the arc of the curve between successive 

intersections. It also ensures that the values of r* are in the order of 

unity.

Full details of the search for r* will not be given here since the 

process is straight forward. An initial estimate of r* is taken as 0.8 

times the value of r* found for the previous 9; note that r*=l when 0 = 0  

180. This estimate is multiplied by 1.5 repeatedly until either the 

sign of b(v*) changes, when the intersection D with the bounding curve will 

be bracketed, or else the upper limit of r is reached at E (which is itself 

located by a further search) without a change of sign. In the latter event, 

the search returns to the original estimate of r* and halves it repeatedly 

until b(v*) changes sign. A dichotomous search, identical to that used to 

locate A and B, is employed to locate the intersection accurately.
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The program was written in FORTRAN IV for a CDC Cyber 72; the digital 

plotting was done with the aid of a standard package. Figure 4.7 shows 

the typical output of the program. Rough estimates show that if a standard 

method of contouring were used, in which values of a function are obtained 

by interpolation between values at specified points on a grid, then 

considerably more computation would be necessary. A similar technique for 

producing contours, using an (r, 0) coordinate system, was provided by the 

author for Dinibutiin and Corbett [ 88] who used it successfully to calculate 

contours for two control variables corresponding to small, specified 

departures from an optimum operating point. In this case however, the 

plotting was done by hand using the coordinates of the Contours as output 

from the program used by Dinibutiin and Corbett.
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NUMBER 4 MACHINE

c rL UCL.

L U
CZ)
C CC D

C D

Figure 4.7 Sample output: from the contouring program
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4.3.3 The Michaelis-Menten Equation

In biochemistry, the velocity|y of a chemical reaction catalyzed by an 

enzyme, present in concentration x, is given by the Michaelis-Menten equation 

which states that [ 89]

y = ^  (4.18)

The constant V is the maximum velocity, which y will approach as x tends to 

infinity; K is the Michaelis constant and is equal to that concentration

giving half the maximum velocity. To determine the values of V and K for a

specified reaction, experiments are first carried out in which the velocities 

y^ are measured at different values of concentration x^ (i=l,..m). The 

best estimate of V and K is then taken as that which gives the closest 

agreement, in a defined manner, between the measured values of y^ and those 

predicted by equation (4.18) at the m experimental points. A least squares

measure requires that the minimum be found of the function

- Z i  2S, (V.K) = (y. - )2 (4.19)
1=1 1

The standard statistical technique of linear regression unfortunately 

cannot be used since the residuals in equation (4.19) are nonlinear functions 

of K. To avoid the need to use a nonlinear iterative minimization, other 

measures of fit have been proposed. The most widely-used is the Lineweaver- 

Burk plot which fits a straight line to the points (1/x^, l/y%). If equation 

(4.18) is re-arranged we can write

—  = a + —  where a = —  , b = —  (4.20)y  X  V V

The values of a and b which minimize

82(3 ,b) = T (—  - a - ■—  ) (4.21)
i=l ^i ^i

are found, in the standard manner for linear regression, by solving the two 

linear equations corresponding to oS^/Ba = 0 and oS^/Sb = 0. The
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corresponding values for V ^nd K at the minimum are then found directly 

from V = J/a and K = b/a.

If the observations fit the Michaelis-Menten equation exactly, then 

the nonlinear minimization of equation (4il9) will yield the same values 

for V and K as that those using the linear formulation of equation (4.21).

In practice, there will be experimental errors in the measurements of ŷ  ̂

and (and possibly inaccuracies due to the model itself). The effect of 

these errors will not be the same for the two methods and so different values 

of V and K will be obtained. Cormack and Lamb [ 90] wished to investigate 

the effect of these experimental errors for the y^ values; comparisons were 

required of the results produced by the nonlinear least squares fit, the 

Lineweaver-Burk plot, a further three linear methods and a second nonlinear 

least squares method using the measure

83(7 ,K) = I  (log^y. - log (4.22)
1=1 1

The approach of Colquoun [ 91] was followed in which a set of experiments' 

was simulated using a computer. For each experiment, it was assumed that 

the true values were V =30 and K=6; the choice of values is unimportant since 

they are effectively scaling-factors with a linear effect on all the results 

obtained. In each experiment m values of x^ are specified and experimental 

values of y^ are simulated by taking y^=Vx\/(K+x^)+E^ where is an error 

in y^ chosen at random from a given population. Three experiments were 

considered, with m=3, 5 and 6; six different possible error distributions 

were used. For each of the eighteen possible combinations of experiment 

and error distribution, 500 sets of values for y^ were to be generated and 

the corresponding estimates of V and K obtained. The author carried 

out the computer simulation; that part of the work concerned with the 

nonlinear minimization of the functions Sj and in equations (4.19) and (4.22) 

will now be described.



152

It was evident that a robust and efficient minimization method was 

needed since Sj and had each to be minimized 9000 times. Colquoun 

used a pattern search based on that of Bell and Pike [ 92] ; he found that this 

converged within 220 function evaluations for most cases, although he does 

not state with what accuracy. The author felt that a more efficient search 

using derivatives was possible since the evaluation of the derivatives was 

straight forward. A Gauss-Newton algorithm, embodying a line search on the 

corrections, was used with success and converged within ten iterations to a 

relative accuracy of 10 ^ in V and K. From physical considerations, V and 

K cannot be negative and so the search was carried out using the transformed 

variables log^V and log^K. Two difficulties were occasionally encountered, 

caused by the generation of experimental data unlikely to be met in practice;

either K tended to zero (in the absence of constraints on K it would go

negative) or else both V and K became large. Further examination of the 

expressions for Sj and showed that a simple univariate search on K could

be employed ard which would cope with these difficulties.

Partial differentiation of equation (4.19) gives

3 S. m  X . Vx.
(V.K) =-2 Z ^  (y. - ^ )  (4.23)

1=1 1 1

For a given value of K, a stationary value of Sj will be at V = V* such that 

9S|(V*,K)/3V=0; from equation (4.23) it follows that

m y . x .  m x  
V* = I -JLJ: / Z ^

2

i=l i=i (K+x^)2 (4.24)

This stationary value is a minimum with respect to V since further differentiatio 

of equation (4.23) shows that

3 ^ S .  m X .
(V.K) _  (y,K) = 2 2  (:;t̂ )  ) 0 for all V

i=l

The function Sj(V*,K) is a function of the single variable K since V* is a
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function of K. A direct search method to locate the minimum of Sj(V*,K) 

could be used; however since the derivatives are available at little extra 

cost of computation, they were used in the search. If Sj(V*,K) is 

partially-differentiated with respect to K we obtain

9S m V*x. X. V-̂ x.
A  m , K )  = 2 r (y, - 7 --Ï. ^  ) (4.25)9K- * . , i K+x. 9K K+x. . X 21=1 1 1 (K+x^)

It is found by straight-forward algebraic manipulation that those terms in 

equation (4.25) involving 9y*/dK sum to zero thus giving

m X. V*x.
—  (V*,K) = 2V* Z  i— 2 (y. - ^  ) (4.26)

i=l (K+x^)^ K+x.

A simple bracketing procedure, followed by a dichotomous search, was used to

locate a zero of 9Sj(V*,K)/9K. It was assumed that S^(V*,K) is unimodal for 

the range of positive K; this was borne out by experience. The steps in 

the search are summarised as follows:

Step 1 Set K=0; Compute V*, 9Sj(V*,K)/9K using equations

(4.24) and (4.26)

Step 2 If 9Sj(V*,K)/9K > 0 then K, if unconstrained, would

tend to negative values as shown in Figure 4.8a; in

this case set K=0, V=V* as the best estimate and

terminate the search. Otherwise, set KS=K, K=1, 

and L=l; continue from step 3.

Step 3 Compute V*, 9S (V*,K)/3K

Step 4 If 9S, (v*,K)/9K > 0 then a zero of 9S,fV*,K)/9K,and

hence a minimum for Sj, lies in the range KS to K as 

shown in Figure 4.8b; use a dichotomous search to 

locate the position of the zero to a relative accuracy 

G on K and terminate the search. Otherwise ....
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K

(a) Constrained minimum

K

(b) Unconstrained minimum

K

(c) Minimum when K,V tend to infinity

Figure 4.8 Possible contours of sum of squares when fitting 

Michaelis-Menten hyperbola
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Step 5 If L-JQ then it assumed that V and K ate

tending to large values as shown in Figure 4.8c; 

terminate the search with a suitable error indicator 

set. Otherwise ....

Step 6 Set KS=K, K=2xK, L=L+1 and continue from step 3.

A similar analysis was applied to and the same search algorithm was 

used. Without going into any details, it can be shown that for

. m  (K+x.)
V* = e x p [ -  _E loge(y. - ^ ^ } ]

1=1 1

9S^ m (K+x.) , m  .
—  (V*,K) = 2 E log^ {y^ —  > [ k +x 7 " m .% K+x7 11=1 1 1 j=l J

The algorithm was programmed in FORTRAN IV on an IBM 360/44. With 
“6E = 10 as the required accuracy in the search on K, most searches 

terminated within 30 iterations, comparing favourably with the method of 

Bell and Pike even when allowing for the additional computation in the 

present method. Faster algorithms could be obtained by better utilization 

of the derivatives; for example, Newton's method. Since the method was 

robust and acceptably fast (typically 3500 complete searches in 5 minutes 

processor time) a further investigation was not necessary. It is not 

appropriate here to describe the results of the simulation other than to 

state that the estimates of V and K produced by the Lineweaver-Burke plot 

were very poor in comparison with those produced by the nonlinear fits.
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4.4 Problems with more than two variables

The following three case studies are optimization problems, involving 

more than two variables, which the author has solved using the techniques 

discussed previously. In all three instances, examination of the 

formulation of the problems led to a simpler method of solution. This 

is not always possible, especially in the design situation where there 

can be a large number of variables and no underlying simpler form (the 

author successfully applied the two-part algorithm of Chapter 2 to à 

least squares problem arising in the design of a zoom-lens; in this case 

he was supplied [ 93] with a "black-box" set of FORTRAN subroutines which 

calculated the functions and first derivatives).

The first of the three case studies describes the development of a 

global optimization method for a least squares problem with many local 

minima arising in cluster analysis. The second concerns the solution of 

nonlinear equations arising from the quantum theory of phase transitions; 

the problem was greatly simplified by reformulation. The third case is 

from the design of waveguides for microwaves; the problem involved five 

variables and was in fact reduced to a single variable problem.
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4.4.1 An algorithm for cluster analysis

The process of classification [94] is of importance in many diverse 

areas of study such as archaeology, botany and linguistics. A classification 

of a given set of objects places each object into one of several initially- 

undefined classes; this can be contrasted with the related process of 

assignment in which a single object is placed in one of a number of previously- 

defined classes. An important statistical approach to classification is that 

of cluster analysis in which a quantitative measure of similarity between 

objects is defined and then the set of objects is partitioned into groups, 

in some optional fashion, such that objects in the same group are similar.

Many algorithms exist [95] for cluster analysis; that to be described here 

uses a Euclidean measure of similarity as follows.

Suppose that there are n objects and it is required to partition them 

into g groups; note that the most suitable choice of g will usually be found 

by experimenting with different values. Each object can be described in 

terms of certain of its measurable properties; if the investigator chooses 

p such properties then an object can be represented by the point in p- 

dimensional Euclidean space given by the measurements on that object. For 

any given partition of the objects into disjoint groups, the variability of 

the objects within a group is defined as the sum of the squared distances 

of each point (object) from the centroidal value of all the points making 

up the group. The optimum partition is taken as that which minimizes the 

total of these within-group sum of squared distances. The following notation 

is used to express this mathematically; the n x p matrix X contains in 

X.. the jth measurement for object i; the g x p matrix Z holds in Z, . 

the centroidal value of the jth measurement for group k; and the n x g 

matrix Y is used to define the partition by having = 1 if object i 

belongs to group k and Ŷ ^^ = 0 if otherwise. The total within-group sum of
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squared distances is represented by S where

g n P 2
S = Z Z y. Z (X. . - Z .) (4.27)

k=l i=l j=l “-J ‘'J

n
Z. . = I Y., X. . kj ik ij

n k=l,...g (4.28)
Z Y., 

i=i

It is readily-shown [94, p.334] that a complete ennumeration of all 

possible partitions is not computationally-feasible for other than small 

values of n. As a result, various approximating algorithms have been 

developed which use iterative schemes to compute what is hoped to be a good 

estimate to the optimum partition. These methods fall into the following 

three classes, for each of which one typical algorithm is instanced. First, 

agglomerative algorithms [ 96] start with an initial partition of the objects 

into n groups so that each group contains a single object. At each iteration, 

two groups are merged so that after n-g iterations there are just g groups; 

thé choice of which groups to merge is made so as to minimize the increase 

in S for that iteration. Second, divisive algorithms [ 97] commence with a 

single group containing all n objects. At each iteration one group is 

divided into two smaller groups so that after g-1 iterations there are g 

groups; this time the choice of group and the manner of its division are 

chosen to maximise the reduction in S at that iteration. Third, relocation 

algorithms [ 98] start from an initial partition into g groups, usually 

chosen in some random fashion. At each iteration, a set of possible movements 

of one or more objects between groups is considered, according to pre

defined rules; the move giving the greatest reduction in S is chosen. The 

iterations are continued until none of the allowable moves will produce a 

further reduction in S.
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Fisher [ 99] proposed that the ennumeration problem could be reformulated 

as the following nonlinear programming problem;

Minimize S
g

Subject to E Y . , = 1  i = l , . . n
k=i

Y^^ ^ 0  i = l , , . n ; k = l , . . g

The objective function S is defined as previously; however this time 

the values of the elements Y^^ are treated as continuous independent variables 

within the range 0 to 1. Each value Y^^ now represents the proportion of

object i that is allocated to group k. At a minimum of S, the value of Ŷ ĵ

could be interpreted as the probability that object i belongs to group k; 

this information could be more useful than the disjoint partition produced 

by the algorithms described earlier, Fisher did not suggest a method for 

solving his formulation of the problem; Gordon [ 100]was interested in 

developing a suitable algorithm and gave this task to the author.

An examination of the constrained optimization problem revealed that,

as will be demonstrated, a local minimum of S can only occur at points where

the values of the elements of Y are 0/1 as before. Taking partial derivatives

of S and Z, . with respect to any element Y gives Rj Im

■ I  -  ' - i ' '  -  ' j ,  “ ‘ i ■ “- i ’ %

9%. »
- Y  = 0 if k ^ m (4o29b)
^^Im

if k = m91-. n
^9 Z Y.

i=l
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In the expression for 9 S / i t  will be seen that, in the summation

over values of k, the only non-zero value of 9Z, ./9Y\ is for k = m; thuskj Ira
by substituting the corresponding expression for and (without

altering the result) reversing the order of summation we obtain

n
E Y.. , im 

1=1

n
By the definition of Z . it follows that E Y . (X.. - Z .) = 0; hence themj im ij mj
second term in the preceding expression for 3S/8Y^^ is zero and so

- 1 .  j!, - '.j'

Now suppose that a local minimum can exist with at least one row 1 of Y 

not made up of 0/1 values. Consider two elements Yj^ and Y^^, both greater 

than zero and less than unity. If Y^^ is increased by 6Y and Y^^ reduced 

by the same amount, then the corresponding change 6S in S is given by

6S = aY(3S/9Y^ - 9S/9Y^p) (4.31)

If q and r are chosen such that 9S/9Y^^ < 9S/9Y^^, a reduction in S can 

always be obtained (except for pathological cases in which the derivatives 

are equal). Gordon added the observation that, from the previous analysis, 

95/9Y^^ equals the distance of object 1 from the mth group centroid. 

Consequently if, for given Y, one object is moved to its nearest group 

centroid say q, it will at the same time get further away from the other 

group centroids; consequently 9S/9Y^^ will remain the least of all the 

derivatives for that object and 5 will continuously decrease right up to
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Although a solution of the constrained optimization problem would 

still yield a disjoint partition, it was believed that an effective algorithm 

could be developed based on methods of constrained optimization. The 

current problem is characterised by three main features. First, it has a 

sum of squares objective function; second the number of variables ng and 

the number of constraints (n+l)g are large for typical cases of interest 

(for example, n=37 and g=5 in the example cited later); third, and most 

unusually, the global minimum of S which is sought belongs to the set of 

already-known disjoint partitions. The most common methods for least 

squares problems use the Gauss approximation to the Hessian; for example 

Marquardt [ 39], Hartley [ 37]; the computer resources for the storage and 

manipulation of matrices would be costly. Similarily, methods for handling 

the constraints e.g. Rosen [ 1 Oil would also be costly in matrix storage and 

manipulation. Methods for global optimization, such as the trajectory 

approach of Branin [ 51] are primarily intended for problems with a moderate 

number of stationary points, where the problem lies in locating the loc^l 

minima, rather than ennumerating them as in the present case. The simplest 

and, according to Dixon, Gomulka and Hersom [ 48], most-used method of global 

optimization was adopted, namely the multistart algorithm. This consists of 

carrying out local minimizations from a set of different initial values of 

the variables; the best minimum thereby found is then accepted as a good 

estimate to the global minimum. Obviously, the more minimizations that can 

be carried out, the greater the reliability of this method. Consequently 

the simple method of steepest descent [ 23] was chosen for the local minim

ization; this requires a modest amount of storage, no matrix manipulation 

and was found in practice to locate a minimum in a few iterations. The

constraints were removed by a transformation of the variables Y . . so thatij
unconstrained minimization could be performed on the transformed variables.

First, the equality constaints were removed by using variables w^^ 

such that
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Although it would be possible to reduce storage by treating one value,

say, as fixed and allowing the other g-1 values for that object to vary,

this scheme was not implemented since it would imply an unequal treatment

of the variables ( 'could not become zero in its own right, only by

values (j / j ’) becoming large). Second, the non-negativity constraints

on Y . . were preserved by a further transformation of w .. to v..; of variousij ij *
possible methods [ 9 p.82] a logarithmic transformation was taken to give

8
Y . . = exp(v..) / E exp (v ) (4.33)iJ ij

It can be easily verified that

n.. ■ >« <f,. - V i .  w, >ij ij k=l ik

and it will be noted that the derivatives 9S/9Y.. are obtained as a by-ij
product during the computation of S. This expression for 3S/9v^^ is there

fore the most practical to use since, for any values of v^j, the correspond

ing Y^j's must be computed before obtaining the value of S.

At each iteration of the algorithm, the steepest descent corrections

Av:j are computed by

Av^j = -X 9S/9v^j (4.35)

where the scalar parameter A > 0 is chosen to give a reduction in S and for 

which purpose the following simple univariate search on X was employed.

First an initial trial value of X is taken, and reduced if necessary, to 

give a decrease in S; then this value is doubled until S increases when a 

minimum of S will be bracketed by the last three trial points. A  simple 

Golden Section is then used to locate the position of the minimum more 

accurately. It was soon found by experience that it was desirable to impose
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an upper bound X on X such that IAv. . I < Av. where Av, is a pre-setm ' ij ' L L
value which determines X^ for any iteration. When Av^ < 1, then the

search usually progresses slowly to a local minimum close to the starting-

point; intuitively the curve of steepest descent is then being followed

fairly closely to a nearby minimum. Further, when Av^ > 5 then the search

terminates rapidly in a few iterations but again at a local minimum close

to the starting-point; probably this is because the search has insufficient

opportunity to change direction advantageously. Values of A v^ 2  3 were

found to give a suitable balance and produce the best minima. It will be

noted that the recommended value Av^ = 3 does not depend in any way upon the

data matrix X and is therefore universally-applicable to all problems. It

was observed that, almost invariably, the chosen value of X at each iteration

equalled its maximum value Xm for that iteration. The minimization was

thus greatly-accelerated by taking X = X^ as the initial trial value in the

univariate search. If it produces a reduction in S then it is accepted,

tacitly assuming that a minimum of S does not exist at X < X^; otherwise the

search on X is continued as previously described by trying smaller values

of X. Note that, at the cost of some further computation, the assumption

could be verified by computing 9S/3X at X = X^ since the derivatives

3S/9Y.. will be available from the calculation for S at X = X ; the ij m
possibility of the assumption being in error did not warrant this

additional effort. The iterations are terminated when, for each object i

there is some k such that Y^^ ^ 0.999 and the sign of the steepest descent

corrections is such that Y., would increase at the next iteration.ik
Occasionally rounding errors produce a failure in the search on X to reduce 

S before this criterion is satisfied, but a local minimum of S will still 

usually have been effectively attained. A fail-safe limit of 100 iterations 

was imposed; this has not yet been invoked for the cases studied and 

usually the search terminates in 10 - 20 iterations.
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The new algorithm was compared by Gordon and Henderson [ 102] against

the agglomerative and divisive algorithms available in the GLUSTAN Ù03]

package and a specially-written relocation algorithm. The test data used

was a set of 37 surface pollen samples taken by Birks [ 104^ who wished to

ascertain whether the samples fell naturally into groups according to the

proportions of pollen grains in each sample belonging to each of 48

species; thus in this case n=37 and p=48. Values of g=3, 4 and 5 were used

in the runs cited. The new algorithm, named EUCLID, was also tested in

combination with the relocation algorithm (RELOC) so that the final groups

produced by EUCLID are used as starting values for RELOC; this combined

algorithm is referred to as HYBRID. By their nature, the agglomerative

and divisive algorithms can only be tried once on the same data since their

starting partition is fixed; however, the EUCLID, RELOC and HYBRID

algorithms start from a random partition and were each run 20 times for

comparison purposes. The initial values of Y for EUCLID and HYBRID were

generated from the set of numbers uniformly distributed in the range 1 to
8

3 and scaled so that I Y = 1  for each object i; this ensured that all
k=i

values were reasonably close to 1/g. The results of the comparison are 

shown in Tables 4.2 and 4.3; there is no result shown for the divisive 

algorithm when g=5 since this required an excessive amount of computation. 

Table 4.2 shows the ranking of the runs for each value of g; all runs 

enclosed in brackets produced the same final partition. Thus, for g=3, 

the best partition was produced by 18 EUCLID (E) runs, 19 HYBRID (H) runs 

and 20 RELOC (R) runs; the next best partitions in order were produced by 

the agglomerative (A) algorithm, the divisive algorithm (D) and EUCLID, 

and finally EUCLID and HYBRID. Table 4.3 shows the partitions obtained 

when g=5, together with the sum of squares S. It is believed by Gordon and 

Henderson that the results, together with the other unpublished test cases, 

demonstrate that the algorithm is a useful practical tool; the algorithm is
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Number of Groups Algorithms ranked in order of

g increasing sum of squares of the

final partition

3 (18E, 19H, 20R), A, (D, E ) , (E, H)

4 (E, 9H), E, A, 2E, (D, E, 6H, 13R),

6E, (3H, 4R), 5E, 3R, 2E, 2H, 2E

3 (2E, 12H, 2R), E, A, 2E, (3H, R), 2E,

H, 2E, (3H, 8R), 2E, (H, 7R), 7E, 2R, 

2E

Key A = Agglomerative

D = Divisive 

E = EUCLID 

H = HYBRID 

R = Relocation

Table 4.2 Comparison of five clustering algorithms
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Sum of Squares Algorithm

1.101 (2E, 12H, 2R)

1.145

1.147

1.186

1.229

1.254

1.320

1 .329

1.335

1.373

1.377

1.384

>1.384

E

(3H,R)

E

E

H

(3H,8R) 

HE, H, 9R

Partition

1.2.4-6), (3,7,9,10), (8,11,15-26)
12.13), (14,27-37)

1.2.4.5), (3,6,7,9,10),
8.11.15-26), (12,13), (14,27-37)

1-6), (7,9,10), (8,11,15-25),
12.13), (14,26-37)

1.2.4.5), (3,6-10), (11,15-26)
12.13), (14,27-37)

1.5), (2-4,6-10), (11,15-26),
12.13), (14,27-37)

1.2.4-6), (3,7,9,10),
8,11-13,17-19), (14,27-37),
15.16.20-26)

1-6), (7,9,10), (8,11,19),
12.15-18,20-26), (13,14,27-37)

1.2.4-6), (3,7,9,10), (8,11,17-19),
12.13.15.16.20-26), (14,27-37)

1.2.4-6), (3,7,9,10), (8,11,12,15-26
13.27-29,32), (14,30,31,33-37)

1-7,9,10), (8,11), (12,13),
14.27-37), (15-26)

1-5), (6-11), (12,13,17-19),
14.27-37), (15,16,20-26)

1-7,9,10), (8,11,17-19,24), (12,13)
14.27-37), (15,16,20-23,25,26)

Key A = Agglomerative 
E = EUCLID 
H = HYBRID 
R = Relocation

Table 4.3 Partitions of Birks* samples into five groups
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both fast (the 60 runs summarised in Table 4oZ took only 41 seconds of CPU

time on an IBM 370/165) and compact, since the storage requirement is

proportional to n for any given p and go The algorithm is now incorporated 

in GLUSTAN and it is hoped to receive reports on its efffectiveness from 

other researchers 0

Following this work, further consideration has been given recently to 

the application of a standard method for constrained optimizationo It has 

been found that, by taking advantage of the special nature of the constraints 

which permit some algebraic analysis to be used in place of numerical

procedures, it is possible to modify Rosen's method of gradient projection

in order that it can be used, at acceptable computational cost, on the 

cluster analysis problem Presumably similar conclusions could be obtained 

with other existing methods such as those described by Zoutendijk B05], 

Rosen's method must first be outlined; this will be done as it applies to 

problems with linear constraints of the type

Minimize f (2c)
Subject to B]c = jb 

Cx ^ £

Here the r x n matrix B and corresponding vector ^  define r equality

constraints and the s x n matrix C and vector £  define s inequality
Tconstraints on the independent variables x = (x^,,,, x^). Rosen's method 

starts with an initial feasible vector x° and generates a sequence of 

further feasible vectors converging to a local minimum of f(x); the 

following steps are performed at each iteration;

Step 1 The direction of steepest descent for unconstrained 

minimization is computed as

^  = -(af/9X|,... 9f/9x^>

where the derivatives are evaluated at the current 
kvector X .
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Step 2 The matrix A is composed of the rows of B and C

corresponding to active constraints; the equality

constraints are always active while the inequality

constraints are only active for rows i for which 
n
Z C. . X .  = Oo This matrix A is used to define

j=l,  ̂ , k
a linear manifold in which any correction hx to x 

must continue to satisfy the current active 

constraints by ensuring that A Ax = Oo The search 

direction ^  is orthogonally projected onto this 

manifold to give a new search direction Ax such that

Ax =

p = [i - a '̂ (a a '̂ )'"*a

Step 3 If Ax ̂  0 then a line search is used to find X =
Ic • * •such that f(x^ + X Ax) is a minimum in the range

0 < X < X*o The upper bound X* is determined by the

first of the non-active inequality constraints to be

satisfied as an equality. Then x^^^ is set to 
kX ^ —  and the process continued from Step 1 ; if

\n = X* then a further constraint will be added to the 

active set,

T -1Step 4 If Ax = 0, then the vector ja = -(AA ) A ^  is

calculated. If all u^ ^ 0, then the Làgrangian conditions 

[8, pi9] are satisfied, a local minimum has been 

reached and the search is terminated. Otherwise 

if some u^ < Q then further progress can be made if 

the corresponding active constraint is released by 

deleting the ith row of A and returning to Step I ;



usually the row corresponding to the most negative u^ would be chosen.

Originally, Rosen’s method was discarded because the computation and 

storage of P would require excessive computer resources. However exam

ination of the constraint set shows that it may be divided into independent 

sets within which only those values for a given object i appear. Thus 

it is admissible to consider the constraints on each row of Y in turn and 

compute the corresponding projection matrix P^, The matrix for object i 

will be typically given by

1 I 1
1 0 0
0 1 0

0 0 0

(4.36)

8
The first row corresponds to the equality constraint E Y.,=l; the second

k=l
and subsequent rows correspond to m^ active inequality constraints for 

which Y i^^=0. For simplicity, the active inequalities are shown as applying 

to variables Y^^ (k=l, .. m^) although the argument which follows is not 

affected by this assumption other than in the group numbering. It is found, 

by some straightforward but tedious matrix algebra that

P. = 1

0 . . 0 0 0 . . 0

• • • . •
0 . . 0 0 0 . . 0

0 . . . 0 1- 1 -1 . . -1
(4.37)

g-m£ 8-m^ g-mu

0 . . 0 -1 -1 1 -1
8-mu g-m£ g-mu

£ rows contain zeroes and the last g-m^ rows contain

columns ^1+1 through to column g. At the same time, it

is found also that
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T -1 (A.À£ ) ‘A£ =

0 0 0 . . . 0 0 1 . 1

1 0 0 . . . 0 0
g-mu
-1 . g-m£

-1

0 1 0 . . . 0 0
g-mu
-1 , g-m£

-1
g-m£ g-ni£

0 0 0 . . . 0 1 -1 . -1
g-m£ g-m£

(4.38)

Using these algebraic results, the method of Rosen resolves to the following 

simple form:

Step 1 Compute ^  = -(9S/3Yjp 8S/9Yj2> ••• 9S/9Y^^)

Step 2 Set

AY.^=0 if = 0

-  g L  3Y.^^ ""ik " °

where the summation over k is taken only for those values

of k for which Y.. > 0.ik

Step 3 If one, or more, AY^^ f 0 then find X = Xm to minimize S

as for the standard method of Rosen;

Set Y.. = Y.. + X a Y., (i=l,..n;k=l,..g) and return to ik ik m ik '
step 1,

Step _4 If all AY£^=0 then it follows that each row of Y has g-1

zero elements and one element of unity. For row i, the 

values of u are given by

", = 'S/ 3Y.^' where Y. * = 1 ik

for Y., = 0ik

It was shown earlier that SS/SY^^ ^ 0 and so the 

Lagrangian condition is satisfied if, for each object i.
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we have 9S/9Y., , < 9S/9Y. (k ^ k') and a local minimum of S will ik' ik
be reached. Otherwise, the values i and k are found for which 

9S/9Y^^- 9S/9Y.^^ is most negative. By increasing Y^^ to unity 

and reducing Y^^’ to zero, then a guaranteed reduction in S will 

be obtained since this corresponds to relocating object i from 

group k ’ to group k. This relocation procedure is then repeated 

until the Lagrangian condition is satisfied.

It is interesting to note that a hybrid algorithm results from Rosen's 

method. However, the reposition movements permitted at Step 4 are only a 

subset of those allowed by the RELOC part of HYBRID; since RELOC considers 

all possible repositionments of all objects then it can progress from a 

local minimum of S while Rosen's method cannot. The algorithm was implemented 

as a computer program; an immediate difficulty encountered was in catering 

for round-off errors when discriminating between 0/1 values of Y and values 

close to these limits. This problem was circumvented by using tests of the
I j "4 I I "" A • •form lY^^ I <10 and jl-Y^^ | <10 at the expense of additional 

computation. The major problem met was that it is known initially there 

are no active inequality constraints and at a solution there are n(g-l) 

active equality constraints. Since the method only permits one additional 

constraint to become active at each iteration, then a minimum of n(g-l) 

iterations are required. In trials with the data of Birks exactly n(g-l) 

iterations were taken (148 for g=5). Although processor time per iteration 

of Rosen's method was comparable with that of EUCLID, the fact that each 

iteration was restricted to taking small steps in Y meant that, as with 

EUCLID for small Av^, minima close to the starting point were found. It 

would be possible to modify the new method such that a step was taken, with 

maximum component Av^ at each iteration; this would require the re-evaluation 

of the correction vector as X is increased whenever a new inequality 

constraint became active. The additional programming complication does not 

at this time seem justified, in view of the success of EUCLID.
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4.4.2 Quantum theory of phase transition?

This problem is by MacLeod [ 106] who wished to solve a set of fifteen

nonlinear equations which he had derived when studying the quantum theory of 

phase transitions. The following description is of the equations, as they 

were given to the author by Macleod, and the method adopted by the author to

solve them. No explanation of the physical significance of the equations can

be given since this is the substance of MacLeod's thesis which has not yet 

been completed.

The fifteen independent variables comprise the thirteen variables 

through to Kj^ and the two variables Pj and p^ . The variables are subjected 

to a transformation, involving pj and p^, to give new variables K^'; it is 

required to find a fixed-point of the transformation such that K| = K^, 

thereby generating thirteen equations. Two additional equations, specifying 

required conditions on pj and P2» make up the fifteen. The steps in the 

transformation are as follows:

Step 1 For i=l, .. 13 set
13 .

u. = 2 cosh (p,+p, X.„) exp (3 E X. . K.)
1 1 Z I Z  j _ I J

Step 2 For i=l, .. 4 set
13 13 , ,

^ » Z • Z X. . u, where X — X
j = i  k= i k

1 3 3
Step 3 Set w^ = ^ log^ ^^1^2 ^3 ^4^ ^ ^ log^Z

*3 = i  (*l*4/*2*3)
1 1 / 3 , 3 ,

”4 = 8  (*1*3 /*2 *4^
Step 4 For i=l, ...13 set

X. - i log^ cosh (3w2 + X^2 + y^)

+ log^ cosh C3w2 + w^ X^2 + z^)

Step 5 For i=l, ... 13 set

'i “ ^ii + \i<3wj+logg2) + 6.2W2+«i3W3/2
j = l

K'
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where 6. . = 1 and ô. . = 0 , i 9̂ jrj

As shown in Figure 4.9 , the elements of the matrix X and the vectors

y and ^  are constant while the elements of the matrix A depend upon p^. A

Jacobian matrix J is defined so that from both physical
Tand mathematical considerations it can be shown that its transpose J

always has an eigenvalue of 9. The conditions required on pj and P2 are
Tthat, at a fixed-point of the transformation, the eigenvector v of J 

corresponding to the eigenvalue of 9 must satisfy the equations

13 3KÎ
Z — — V. = 0 (4.39a)

i=l 3Pl *

13 3k :
r  _ i  V .  = 0  (4.39b) ,

i=l 3̂ 2 ^

At first sight, the problem lends itself to a nested search in which 

fixed values of Pj and P2 could be taken and values of K. satisfying the 

equations K'^-K^ = 0 found; the p^ and P2 values could then be varied to 

satisfy equations (4.39a) and (4.39b). An immediate difficulty was 

apparent in that, at step 3 of the transformation, the arguments in the 

logarithmic terms could become negative. To prevent this occurring, 

constraints could be placed on the values but it is evident that an 

explicit form for these constraints is not readily available. However, 

consideration of this difficulty led to a far simpler formulation of the 

original problem.

The original search for a fixed-point using thirteen independent 

variables was replaced by an equivalent search using four variables bj 

to b^ which are not subject to any constraints. The values of b^ are 

sought to give zero values of the four residual terms f^ obtained by the 

following steps.
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Step 1 Replace the logarithmic terms in step 3 of

the transformation by the b. values such that1
Wj = bj/8 + 61og^2 

= bg/S + pj/3 

«3 = bg/S 

W 4 =

Step 2 Compute i=l, .. 13 using steps 4 and 5

of the transformation

Step 3 Set i=l, ..13

Step 4 Compute a^, i=l, .. 4 using steps 1 and 2 of

the transformation

Step 5 Compute the residuals

f, = b, - loggCaiag^ag^a^)

fg = - log^(a,a_/a.a,)

fa = ba - loggCa,*4 /3233)

^4 = ^4 - loggCa,33^/33^ 4)

It will be noted that when the residuals are zero then a fixed-point

of the transformation will have been found and step 3, which assumes that

K^=K^*, will be valid.. The fact that it is invalid for other values of b^

not giving a fixed-point is of no consequence. The residuals as defined

by step 5 above could still give problems with the logarithmic terms and so

an alternative formulation was tried so that
3 3fj = a^ a^ - exp(bj)

^2 ^ ^ 1^2 ~ ^3^4 (bg)
fg = a^a^ - a^a^ exp (by)

^4 = *1*3^ ~ ^2%  (^4)

Practical experience showed that this form could lead to apparent, but 

erroneous, solutions in which the b^ values tended to large, negative value.
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with correspondingly small a^ values. In this case although the residuals 

became small in absolute magnitude, the two terms comprising the residual 

were still unequal and tests for equality were susceptible to rounding 

error. To ensure that the residuals were composed of two terms of order 

unity they were then reformulated as

3 3fj = exp (-bj) a^ag a^ - 1 

f g  =  G x p  ( - b y )  ( a ^ a ^ / a ^ a ^ )  - 1

f^ = exp (-bg) -1

f^ = exp (-b^) { a ^ a ^ / a ^ a ^  - 1

Using this form, a fixed point for any given values of Pj and P 2 was found 

readily using Newton’s method for nonlinear equations, with a line search 

to ensure that the sum of squares of the residuals was reduced at each 

iteration.

It was decided, for reasons of efficiency, that it would be better to

search for Pj and p^ simultaneously with the search for a fixed-point,

rather than in an outer loop as first proposed. The problem thus became one

of six equations in the six unknowns b^, b^, b^, b^, Pj and p^. The Jacobian

J was evaluated on the assumption that for the given variable values, a

fixed-point had been reached; that this assumption only holds true at a

solution of the equations does not affect the results. Thus to compute the

Jacobian, the values of K. are first set to the K ' . values derived from the1 1
current variables (steps 1 and 2 of the revised formulation of the problem).

Then steps 1 to 5 of the original transformation are followed, only this

time computing the partial derivatives 3u./3K., 9a./9K., 9w./9K., 9x./9K.1 J 1 J 1 J 1 J
and ultimately 9K'^/9K^. At the same time the values 9K’^/9pj and 9K’^/9p2

required by equations (4.39 a) and (4.39 b) are found. It should be noted

that there is no problem with the logarithmic terms when evaluating the

derivatives 3w./9K..1 J
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A major saving in computational effort was made by avoiding the need
Tfor an eigenvalue/eigenvector analysis. Assuming that J has an eigenvalue 

of 9, then the eigenvector V must satisfy (J - 91) V = 0. This gives 13 

equations but it is known that (J^-9I) is of rank 12 and there are 12 

independent equations. Taking as unity and considering equations 2 

through to.13 gives

2.3

2,13

3,2

'3.3-'

3,13

13,2

13,3

^ 13,if^

“ -

^2 ^1.2

’3 ^1.3

V,3 •^1,13

Any standard library procedure for solving sets of linear equations with a 

real, unsymmetric matrix of coefficients can be used to calculate the values 

of to Vj2 *

The problem was programmed on an IBM 360/44 in FORTRAN IV and a solution 

successfully obtained for which pj=2.6413; P2=0; Kj=-2.7790; K2=0.44021 and 

the remaining values of are zero. Unfortunately, this solution was of 

pathological interest to MacLeod. Trials with the program starting from a 

wide range of initial estimates of the variables always produced this same 

solution, tending to support the belief that it was the only solution. 

Subsequent work by MacLeod, and similar experiences by other workers in the 

same area of quantum theory research, have led him to reconsider the 

theoretical basis of the equations.
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4.4.3 Waveguide design

This case study comes from work by Croydon[ 107] on the design of wave

guides for the transmission of microwaves, following earlier work by 

Baden Fuller[ 108]. First, the problem as presented to the author will be 

described; then the manner in which the author applied the techniques of 

optimization to solve the problem will be discussed.

Croydon had written a computer program which solved a set of eight

ordinary, simultaneous differential equations by numerical integration. The

dependent variables will be denoted by Yj to Yg and the variable of
Tintegration by r. Croydon sought values of four parameters K =(Kj,K2,Kg,K^), 

which appeared in the differential equations, such that at K=K* the four 

equations Y^=0 (i=5, .. 8) were all satisfied at some point r=r* during the 

integration. He used a coarse pattern search whereby each was varied 

over a set of ten discrete values; integrations were carried out for all 

10^ possible combinations of values for K. The output from these 

integrations was inspected to see if good estimates of K* and r* could be 

found. A further complication was that, having located a solution, Croydon 

then wished to vary a fifth parameter 3 , also appearing in the equations, 

to find a value 3= 3 * such that r*=b, where b is a specified constant.

Obviously Croydon’s scheme was costly in terms of both human and computer 

resources; a method of automating the search for K* and 3* was developed as 

follows by the author.

First, further information was obtained about Croydon’s program. The 

equations were derived from Maxwell’s classical equations for electromagnetic 

radiation. The variable r denotes the radial distance from the longitudinal 

axis of a cylindrical waveguide, consisting of a central air gap at r<a and 

an annular ferrite core, from r=a to r=b, encased in a copper sleeve. The 

dependent variables are the magnetic field strengths H q and H^and the electric
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field strength and E^; the suffices ç and z refer to the tangential 

and axial components respectively. These quantities are represented by the 

complex values

He = Y, + j ?2 Eg = ?5 + j
«Z = ?3 + j ?4 = Y, + j Ï8

where j ̂ =-1.

The differential equations can be expressed in the form

Ir “  “ -

in which the 8 x 8 matrix A depends upon 3 and r; it is the dependence upon 

r which makes a numerical integration necessary. The values of K specify 

eight boundary conditions

Y = B K at r=a

in which the 8 x 4  matrix B is a function of 3 . A further four boundary

conditions are given by the requirement that at r=b the electric field strength

be zero i.e. Y.=0 for i=5 to 8 . The search on K and g is carried out to 1 —  ^
satisfy these last four conditions.

Since the differential equations are linear in Y, it follows that the 

solution for IT is of the form

Y = C ( r , 3)K

where, as indicated, the elements of the 8 x 4  matrix depend upon r and B. 

Although C cannot be expressed analytically, the value of C at given r and for 

specified 3 can be found by carrying out integrations for four linearly- 

independent trial vectors for K. If for the 1th trial, the vector is and 

the values of Y at the required radius are Y^ then for each row i of C we 

have ,
1 1Z K. C , . = Y. (1=1, .. 4)

j=i j 1
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These equations can be solved simultaneously to give the values of C on 

each row. Note that while this is an exact relationship, the values of 

are subject to errors incurred by the numerical integration process 

If the last four rows of C are represented by the 4 x 4  matrix D(r,3) 

then the problem can be stated as find g* and K* such that

D(b,3*) = 0

The trivial solution K* = 0 is of no interest since this would imply 

zero electric and magnetic fields throughout the waveguide. Nontrivial 

solutions can exist only if D is singluar, which could be achieved by 

varying 3. In this event, K* = aV where V is the eigenvector corresponding 

to a zero eigenvalue of D and a is an arbitrary constant. An equivalent, 

but easier-to-program, approach was taken in preference to this eigenvalue- 

eigenvector method.

Without loss of generality we can fix one component of K; was 

chosen and taken as unity. We then define residuals 

3
f. = Z D . . (b,3)K. + D.,(b,3) (i=l, .. 4)
^ j=l J

and search for 3, Kj, and to reduce these residuals to zero. Since

the residuals are linear in the K j ’s, then a standard linear least squares

solution gives the values of Kj, and which, for the current 3 , 

correspond to the minimum sum of squares of the residuals, which will be

denoted by f(3). A simple line search can then be used to locate values

of 3* (if any) for which f(3*) = 0 .

A FORTRAN IV program to do the search was written and successfully

run. The evaluation, for given 3 , of the elements of C (and hence of D)

was done in a different way from that described. To reduce the effect of 

errors in the integration, the partial derivatives 9Y^/9Kj were integrated 

in parallel with the integration of the Y^ values. It will be observed
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that C^j=9Y^/9Kj, The relevant differential equations are, letting

Z . . rn 9Y » / 9K.
^2 1 J

dZ. . 8

Z. . = B . . at r=a 1] ij

A simple grid search was used in which f(3) was evaluated at a series of 

equally-spaced values of 3 in the range of interest. If a minimum of f(3) 

was bracketed by three successive 3 values, then the position of this 

minimum was located accurately by a Golden Section search. The typical 

variation of f(3) with 3 is shown in Figure 4.10, where it will be observed 

that there are two solutions for 3*. The discontinuity at 3=1 is due to the 

presence of terms involving division by 3*-l in the matrices A and B.



Figure 4.10 Typical form of f(3)
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5. ASSESSMENT OF THE RESEARCH

The author believes that the research has proved worthwhile in 

several areas. First, the two-part algorithm described in Chapter 2 

is a new and powerful tool for solving difficult nonlinear least squares 

problems and systems of nonlinear equations. Second, the hybrid algorithm 

discussed in Chapter 3 embodies some novel features, including the use of 

parametric linear programming methods. It is a reliable and accurate 

method for solving sets of nonlinear equations of the type and difficulty 

used by most researchers to test new algorithms, although it was not so 

successful as the two-part algorithm on the extremely difficult Problem 1 

of the Appendix. Third, the case studies highlight a number of aspects 

of the application of optimization techniques to practical problems; the 

author believes that the main observation from this part of the research 

is that it is beneficial to consider alternative formulations of a problem 

before carrying out the optimization. Fourth, a new and extremely-useful 

algorithm for cluster analysis was developed.



APPENDIX TEST PROBLEMS

The following nine test problems have the objective function 
m 2

F(x) = E f. (x) where m>n. The starting point is denoted by x and
i=i 1 -

the solution by x* .

Problem 1 Skwirzynski [ 60]

m=8; n=8

f^(x) = x^(l-XjX2)(exp [a^]-l) - X2

= ('-*1=2)(exp [ 8j^]-l) - Y^^Xj + ?4i

a.1 = X4(?,i - h i X, X 10 ^ - Yr.x^ X 10 6 5i 7

= Xg(Y,. - Y2- - Y_. X, X 10”^ + Y , . 3i 6 4i Xg X 10

i = 1. 2. 3. 4

The constants Y^j (i=l, •• 5; j=l, .. 4) are given by the table

below, where element Y . . is ij in row i and column j •

0.485 0.752 0.869 0.982

0.369 U254 0.703 1.455

5.2095 10.0677 22.9274 20.2153

23.3037 101.779 111.461 191.267

28.5132 111.8467 134.3884 211.4823

x °  = (a, a, a, a, a. Ta, a, a) a = 0.1 (0.2) 0.9, 1(1) 10

X *  = (0.9000, 0.4500, 1.000, 8.000, 8.000, 5.000, 1.000, 2.000)^



F(x°) is shown for each of the fifteen starting points 

in Tables 2.1 - 2,4

F(x*) = 0

A solution with negative values of x exists at x* = (0.8985, 0.9740,

11.65, 3.251, 6.711, -8.763, 1.251, -0.5251)^

This alternative solution is of no interest since it has no physical 

realisation. A logarithmic transformation of the variables was used in 

the optimization to ensure that only positive solution values could be 

found. This transformation introduces the local minimum of F(x) = 0.0548 

at

x =  (0.9014, 0.8910, 3.882, 5.3240, 10.65, 0.0, 1.089, 0.7033)^

Problem 2 Meyer and Roth [42]

m=5; n=3

f^(x) = a^XjXg/(l + a^ x^ + b^ Xg) "

a = (1.0, 2.0, 1.0, 2.0, 0.1)T

b = (1.0, 1.0, 2.0, 2.0, 0.0)T

y = (0.126, 0.219, 0.076, 0.126, 0.186)^

x° = (10.39, 48.83, 0 .74)^; F(x°) = 0.0365

X *  = (3.13, 15.16, 0.78)T ; F(x*) =



Problem 3 Rosenbrock [ 19]

m=2 n=2

fJ(x) = 10(X2 - Xj^) 

f2 W  = 1 - Xj

x° = (-1.2, 1.0)^ F(x°) = 24.2

X* = (1.0, 1.0)T F(x*) = 0.0

Problem 4 Rosenbrock [ 19]

Identical to Problem 3 except that

x'̂  = (-0.86, 1.14)^\ F(x°) = 19.5

Problem 5 Meyer and Roth [42]

m=23; n=3

f^(x) = Xg(exp [-a^x^] + exp [-h^x^] ) - y^

a = (0, 0.6, 0.6, 1.4, 2.6, 3.2, 0.8, 1.6, 2.6, 4.0, 1.2, 2.0, 4.6, 

3.2, 1.6, 4.2, 2.0, 3.2, 2.8, 4.2, 5.4, 5.6, 3.2)^

b = (0, 0.4, 1.0, 1.4, 1.4, 1.6, 2.0, 2.2, 2.2, 2.2, 2.6, 2.6, 2.8, 

3.0, 3.2, 3.4, 3.8, 3.8, 4.2, 4.2, 4.4, 4.8, 5.0)^

= Xg* (exp [-a^ Xj*] + exp [-b^ x^*] )

x° = (12.0, 1.0, 25.0)^ ; F(x°) = 216.0

X* = (14.3, 1.5, 20.1)T ; F(x*) = 0.0

Note that the values of y^ are set to give a minimum sum of squares of zero



Problem 6 Meyer and Roth [ 42]

Identical to problem 5 except that the values of y^ are rounded off to

1 or 2 significant figures to give

y = (4 0, 1 0, 5, 2.5, 2.5, 2.0, 1.0, 0.7, 0.8, 0.7, 0.4, 0.4, 0.3, 

0.22, 0.2, 0.1, 0.05, 0.07, 0.03, 0.03, 0.03, 0.02, 0.01)^

The solution then becomes

x*= (31.5, 1.51, 19.9)^; F(x*) =1.25

This solution is that quoted by Meyer and Roth. In fact, the value of 

F(x*) is insensitive to changes in Xj* and so this variable is not exactly 

determined by the optimization.

Problem 7 Meyer and Roth [42]

m=l0; n=3

f^(x) = Xj + ^2 exp [ a^ Xg] -y^

a = (1, 5, 10, 15, 20, 25, 30, 35, 40, 50)^

yi = Xj* + X2* exp [ a^ Xg*]

x° = (20.0, 2.0, 0.5)^; F(x°) = 2.1j^22

X *  = (15.5, 1.2, 0.02); F(x*) = 0.0

Note that the values of y^ are set to give a minimum sum of squares of zero

Problem 8 Meyer and Roth [ 42]

Identical to Problem 7 except that the values of y^ are rounded off to 3

significant figures to give



y = (16.7, 16.8, 16.9, 17.1, 17.2, 17.4, 17.6, 17.9, 18.1, 18.7)^

The solution then becomes

X* = (15.67, 0.999, 0.022); F(x*) = 0.006

Problem 9 Meyer and Roth [42]

m = 16 ; n=3

f^(x) = X| + exp [x2/(a^ + Xg)] - y^

a = (50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 

120, 125)^

y = (34780, 28610, 23650, 19630, 16370, 13720, 11540, 9744, 

8261, 7030, 6005, 5147, 4427, 3820, 3307, 2872)^

x° = (0.02, 4000, 250)T; F(x°) = 1-7j q9

X *  = (0.0056, 6181 .4, 345.2)*^; F(x*) = 88
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