OPTIMUM SHAPE PROBLEMS FOR DISTRIBUTED PARAMETER SYSTEMS

A Thesis submitted by

J.M. EDWARDS

for the Degree of

DOCTOR OF PHILOSOPHY
in the

FACULTY OF SCIENCE
of the

UNIVERSITY OF LEICESTER

Department: of Mathematics
1977.

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U431116
Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

STATEMENT

This thesis is based on work conducted by the author in the Department of Mathematics of the University of Leicester mainly during the period between October 1973 and November 1976.

A11 the work recorded in this thesis is original unless otherwise acknowledged in the text or references. None of the work has been submitted for another degree in this or any other university.

J.M.Edenards

J.M. Edwards.

$$
\begin{aligned}
& 1+2315 \\
& 24556 \\
& 143.78
\end{aligned}
$$

ACKNOWLEDGEMENTS

I wish to express my most sincere thanks to my supervisor, Professor T.V. Davies, for his constant help and guidance during the past four years.

My thanks are due to Miss. C.E. Pick for her patience in typing this thesis.

I would like to thank my husband, Dr. C.A.G. Brooks, for his support and encouragement throughout.

A Science Research Council Grant is gratefully acknowledged.

SUMMARY

In this thesis the variation of a functional defined on a variable domain has been studied and applied to the problem of finding the optimum shape of the domain in which some performance criterion has an extremum. The method most frequently used is one due to Gelfand and Fomin. It is applied to problems governed by first and second order partial differential equations, unsteady one dimensionsal gas movements and the problem of minimum drag on a body with axial symmetry in Stokes' flow.

INTRODUCTION.	
CHAPTER ONE.	Variation of a Functional Defined on a Variable Domain.
CHAPTER TWO.	A First Order Hyperbolic Partial Differential Equation Example of the Use of the Gelfand - Fomin Theorem.
CHAPTER THREE.	A Second Order Hyperbolic Partial Differential Equation Example of the Use of the Gelfand - Fomin Theorem.
CHAPTER FOUR.	A Boundary Control Problem in Unsteady One Dimensional Gas Movements.
CHAPTER FIVE.	The Application of the Gelfand - Fomin Theorem in the Unsteady One Dimensional Gas Problem.
CHAPTER SIX.	The Problem of Minimum Drag on a Body with Axial Symmetry in Stokes' Flow.
CHAPTER SEVEN.	A Study near the Leading Point of the Shape of the Axially Symmetric Body of Minimum Drag in Stokes' Flow.
CHAPTER EIGHT.	Singularilty Solutions of the Stream Function and Lagrange Multipliers.
REFERENCES.	

INTRODUCTION

Distributed parameter system theory refers to those systems whose governing equations are partial differential equations, defined over a domain S, and whose controls are either distributed over S or on parts of the boundary of S. The study of distributed parameter systems was initiated by Butkovskii and Lerner ${ }^{1^{-4}}$. In this thesis the definition of distributed parameter systems has been extended to include continuum problems where the shape of the boundary is control since there are problems in which the shape of the domain is unknown and needs to be determined in order to minimise or maximise some performance criterion. For example the problem of designing the most efficient body for extracting the energy from incident sea waves has recently been discussed by Salter ${ }^{5}$. . This problem may be interpreted as the problem of finding the optimum shape of a floating body which minimises the reflection and transmission of the incident wave. Some problems have the boundary of the domain depending on time. Such a problem in which the system is governed by a parabolic equation of the heat conduction type has been considered by Degtyarev ${ }^{6}$ and its necessary conditions for opimality obtained.

The earliest reference to variable domain problems appears to be in Forsyth's "Calculus of Variations,"7 (Chapters ix, x and $x i$). In their text book "Calculus of Variations" 8 (Chapter 7) Gelfand and Fomin discuss the theory of the first variation of a functional, $J[u]=\int \underset{R}{\ldots} \int F\left(x_{1}, \ldots, x_{n}, u, u_{x_{1}}, \ldots, u_{x_{n}}\right) d x_{1}, \ldots, d x_{n}$, where the independent variables x_{1}, \ldots, x_{n}, and hence the domain, vary as well as the function u and its derivatives. Neither Forsyth nor Gelfand-

Fomin gives examples of their theory.

In Chapter One the Gelfand - Fomin theorem is extended to m unknown functions and at the end of the chapter two simple examples are given to illustrate the Gelfand - Fomin theorem. In Chapters Two and Three first and second order hyperbolic partial differential equation examples of the extension of the Galfand - Fomin theorem are discussed. In Chapter Four a boundary control problem from unsteady onedimensional gas movements, in which a semi - infinite gas domain is bounded at one end by a moving piston, is discussed using standard characteristic theory. Various problems arise in which the piston movement may be regarded as a control and the one considered is that of determining the piston curve in order to minimise a given functional. In Chapter Five the same problem is resolved using the Gelfand Fomin theorem, with identical results.

In Chapter Six the Gelfand - Fomin theorem is applied to the problem of minimum drag on a body with axial symmetry in Stokes' flow. Three papers by Pironneau ${ }^{9-11}$ have already appeared on this problem but Pironneau's method is not the same as that considered. in this thesis. In Chapters Seven and Eight the equations determined in Chapter Six for finding the body of minimum drag in Stokes' flow are discussed firstly by considering the shape near the end point and secondly by a singularity solution.

Variation of a Functional Defined on a Variable Domain.

In Section 37 of their book "Calculus of Variations" Gelfand and Fomin derive the first variation of an r-tuple integral where not only the dependent variable and its derivatives vary but also the independent variables, and hence the region of integration, vary. In this chapter this method is extended to m dependent variables, since the theorem is required later in this extended form.

Consider the system
$J\left(z_{1}, z_{2}, \ldots, z_{m}\right)=\int \underset{R}{\ldots} \int F\left(x_{1}, x_{2}, \ldots, x_{n}, z_{i}, z_{2} \ldots, z_{m}, z_{1_{x_{1}}}, \ldots z_{1_{x_{n}}}\right.$,

$$
\begin{equation*}
\left.\ldots, z_{m_{i}}, \ldots ., z_{m_{x_{n}}}\right) d x_{1}, \ldots d x_{n} \tag{1.1}
\end{equation*}
$$

where R is the simply connected domain of the independent variables $x_{1}, x_{2}, \ldots x_{n}$, and $z_{1}, z_{2}, \ldots, z_{m}$ are functions of $x_{1}, x_{2}, \ldots, x_{n}$, defined and continuous, with continuous first and second derivatives, in R. The integral F is assumed to have continuous first and second derivatives with respect to all its arguments in R.

For simplicity vector notation is used with

$$
\begin{aligned}
& \underline{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad ; \quad \underline{z}=\left(z_{1}, z_{2}, \ldots, z_{m}\right) ; \\
& \underline{d x}=\left(d x_{1}, d x_{2}, \ldots, d x_{n}\right) \quad ; \quad \nabla \underline{z}=\left(\partial z_{j}, \ldots, \partial z_{z}, \cdots, \partial z_{m}, \ldots, \partial z_{m}\right) .
\end{aligned}
$$

So equation (1.1) can conveniently be written in the form

$$
\begin{equation*}
J[\underline{x}(\underline{z})]=\int_{R} F(\underline{x}, \underline{z}, \underline{\nabla} \underline{z}) d \underline{x} \tag{1.2}
\end{equation*}
$$

Consider the family of continuous transformations

$$
\left.\begin{array}{l}
x_{s}^{*}=\Phi_{S}\left(x, z, \nabla_{z}, \varepsilon_{1}, \varepsilon_{z}, \ldots, \varepsilon_{m}\right) \quad s=1,2, \ldots, n ; \tag{1.3}\\
z_{k}^{*}=\Psi_{k}\left(\underline{x}, \underline{z}, \nabla_{z}, \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{m}\right) \quad, \quad k=1,2, \ldots, m ;
\end{array}\right\}
$$

depending on m parameters $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{m}$, where Φ_{s} and Ψ_{k} are differentiable with respect to $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{m}$ and the values $\varepsilon_{1}=0, \varepsilon_{2}=0, \ldots, \varepsilon_{m}=0$ correspond to the identity transformations so that

$$
\left.\begin{array}{l}
x_{s} \equiv \Phi_{s}(\underline{x}, \underline{z}, \nabla \underline{z}, 0, \ldots, 0) \quad, \quad s=1,2, \ldots, n ; \tag{1.4}\\
z_{k} \equiv \Psi_{k}(\underline{x}, \underline{z}, \nabla \underline{z}, 0, \ldots, 0) \quad, \quad k=1,2, \ldots, m ;
\end{array}\right\}
$$

Now $z_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=C_{k}=$ constant, $k=1,2, \ldots, m$,
may be thought of as a surface σ_{k} in the $n+1$ space E_{n+1} with respect to the coordinates $x_{1}, x_{2}, \ldots, x_{n}, z_{k}$, and the transformations (1.3) $\operatorname{map} \sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}$ into $\sigma_{1} *, \sigma_{2} *, \ldots, \sigma_{m}^{*}$ in the new space E_{n+1}^{*} with the coordinates $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}, z_{k}^{*}$. Similarly the functional $J[\underline{z}(\underline{x})]$ in (1.2) transforms into

$$
\begin{equation*}
J\left[\underline{z}^{*}\left(\underline{x}^{*}\right)\right]=\int_{R^{*}} F\left(\underline{x}^{*}, \underline{z}^{*}, \nabla * \underline{z}^{*}\right) d \underline{x}^{*} \tag{1.5}
\end{equation*}
$$

where $\nabla^{*} \underline{z}^{*}=\left(\frac{\partial z_{i}^{*}}{\partial x^{*}}, \ldots, \frac{\partial z^{*}}{\partial x_{k}^{*}}, \ldots, \frac{\partial z_{m}^{*}}{\partial x_{m}^{*}}, \ldots, \frac{\partial x_{m}^{*}}{\partial x_{m}^{*}}\right) \quad$ and R^{*} is the new
transformed domain.

The object now is to calculate the terms of order $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{m}\right)$ (that is the principal linear part, δJ, relative to ε) of the difference

$$
\begin{equation*}
\Delta J=J\left[\underline{z}^{*}\left(\underline{x}^{\dot{k}}\right)\right]-J[\underline{z}(\underline{x})] \tag{1.6}
\end{equation*}
$$

$\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{m}$ being regarded as infinitesimal quantities. Because of the identity relations (1.4) coupled with the continuity of the transformations (1.3) it follows by Taylor's theorem that when $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{m}$ are sufficiently small

$$
\begin{aligned}
& s=1,2, \ldots, n \\
& z_{k}^{*}=z_{k}+\left.\frac{\varepsilon_{1} \partial \psi_{k}^{*}\left(\underline{x}, \underline{z}, \nabla_{\underline{z}}, \underline{\varepsilon}\right)}{\partial \varepsilon_{1}}\right|_{\underline{\varepsilon}=0}+\ldots+\left.\varepsilon_{m} \frac{\partial \psi_{k}^{*}(\underline{x}, \underline{z}, \nabla \underline{z}, \underline{\varepsilon})}{\partial \varepsilon_{m}}\right|_{\underline{\varepsilon}=0}+0\left(\underline{\varepsilon}^{2}\right) \\
& k=1,2, \ldots \mathrm{~m} \text {. }
\end{aligned}
$$

These transformations can be written more simply in the form

$$
\left.\begin{array}{l}
x_{s}^{*}=x_{s}+\sum_{Z=1}^{m} \varepsilon_{Z} \emptyset_{s}^{(Z)}(\underline{x}, \underline{z}, \nabla \underline{z})+0\left(\underline{\varepsilon}^{2}\right), s=1,2, \ldots, n, \tag{1.7}\\
z_{\cdot k}^{*}=z_{k}+\sum_{Z=1}^{m} \varepsilon_{Z} \psi_{k}^{(Z}(\underline{x}, \underline{z}, \nabla \underline{z})+0\left(\underline{\varepsilon}^{2}\right), k=1,2, \ldots, m,
\end{array}\right\}
$$

where $\emptyset_{s}^{(Z)}(\underline{x}, \underline{z}, \nabla \underline{z})=\left.\frac{\partial \Phi_{s}(\underline{x}, \underline{z}, \nabla \underline{z}, \underline{\varepsilon})}{\partial \varepsilon_{Z}}\right|_{\underline{\varepsilon}=0} ; i=1,2, \ldots, m ;$

$$
\dot{\psi}_{k}^{(\tau)}(\underline{x}, \underline{z}, \nabla \underline{z})=\left.\frac{\partial \Psi{ }_{k}(\underline{x}, \underline{z}, \nabla \underline{z}, \underline{\varepsilon})}{\partial \varepsilon_{q}}\right|_{\varepsilon=0} ; \tau=1,2 \ldots, m
$$

For a given surface $\dot{\sigma}_{k},(k=1,2, \ldots, m)$,
with equation $C_{k}=z_{k}(\underline{x})$, (1.7) leads to the increments

$$
\begin{align*}
\Delta x_{s}=x_{s}^{*}-x_{s} & =\sum_{\eta=1}^{m} \varepsilon_{Z} \emptyset_{s}^{(\underline{(x)}}+0\left(\underline{\varepsilon}^{2}\right) \tag{1.8}\\
& =\delta x_{s}+0\left(\underline{\varepsilon}^{2}\right), s=1,2, \ldots, n ;
\end{align*}
$$

$\Delta z_{k}=z_{k}^{*}(\underline{x} *)-z_{k}(\underline{x})=\sum_{Z=1}^{m} \varepsilon_{i}\left(\underline{q}(\underline{x})+0\left(\underline{\varepsilon}^{2}\right)\right.$

$$
=\delta z_{k}+0\left(\underline{\varepsilon}^{2}\right) \quad, k=1,2, \ldots, m ;(1.9)
$$

where the arguments \underline{z} and $\nabla \underline{z}$ have been replaced by $\underline{z}(\underline{x})$ and $\nabla_{z}(\underline{x})$. Thus (1.9) gives the change in value of z_{k} in going from a point $\left[\underline{x}, z_{1}(\underline{x}), \ldots, z_{k-1}(\underline{x}), z_{k}(\underline{x}), z_{k+1}(\underline{x}), \ldots, z_{m}(\underline{x})\right]$ to a point $\left.\left[\underline{x}^{*}, z_{1}^{*}\left(\underline{x}^{*}\right), \ldots, z_{k-1}\left(\underline{x}^{*}\right), z_{k}^{*}\left(\underline{x}^{*}\right), z_{k+1} \underline{x}^{*}\right), \ldots, z_{m}\left(x^{*}\right)\right]$, $s=1,2, \ldots, n$. The variations δx_{s} and δz_{k} corresponding to (1.7) are defined as the principal linear parts (relative to $\underline{\varepsilon}$) of the increments in the right hand sides of equations (1.8) and (1.9), that is

$$
\begin{align*}
& \delta x_{s}=\sum_{\eta=1}^{m} \varepsilon_{Z} \phi_{s}^{(\underline{(\underline{x}})}, s=1,2, \ldots, n \tag{1.10}\\
& \delta z_{k}=\sum_{Z=1}^{m} \varepsilon_{Z_{k}}{ }^{(Z)}(\underline{(x)}, k=1,2, \ldots, m \tag{1.11}
\end{align*}
$$

Consider the increment

$$
\overline{\Delta z} \bar{z}_{k}=z_{k}^{*}(\underline{x})-z_{k}(\underline{x}), k=1,2, \ldots, m,
$$

that is the change in z_{k} in going from the point $\left[\underline{x}, z_{1}(\underline{x}), \ldots, z_{k-1}(\underline{x}), z_{k}(\underline{x}), z_{k+1}(\underline{x}), \ldots, z_{m}(\underline{x})\right]$ on the surface σ_{k} to the point $\left[\underline{x}, z_{1}(\underline{x}), \ldots, z_{k-1}(\underline{x}), z_{k}^{*}(\underline{x}), z_{k+1}(x), \ldots, z_{m}(\underline{x})\right]$ on the surface σ_{k}^{*} with the same \underline{x}-coordinate.

The notation

$$
\begin{align*}
\overline{\Delta z_{k}} & =z_{k}^{k}(\underline{x})-z_{k}(x) \\
& =\sum_{\eta=1}^{m} \varepsilon_{Z} \bar{\psi}+0\left(\underline{\varepsilon}^{2}\right) \tag{1.12}\\
& =\bar{\delta}_{k}+0\left(\underline{\varepsilon}^{2}\right) \quad, k=1,2, \ldots, m
\end{align*}
$$

is used to find the relationship between $\delta \bar{z}_{k}$ and δz_{k}. Now

$$
\begin{aligned}
\Delta z_{k} & =z_{k}^{*}\left(\underline{x^{*}}\right)-z_{k}(\underline{x}) \\
& =\left[z_{k}^{\star}\left(\underline{x^{*}}\right)-z_{k}^{*}(\underline{x})\right]+\left[z_{k}^{*}(\underline{x})-z_{k}(\underline{x})\right] \\
& =\left\{\sum_{s=1}^{n} \frac{\partial z_{k}^{\star}}{\partial x_{s}^{*}}\left(x_{s}^{*}-x_{s}\right)+0\left(\underline{\varepsilon^{2}}\right)\right\}+\left[\delta z_{k}+0\left(\underline{\varepsilon}^{2}\right)\right]
\end{aligned}
$$

$$
=\sum_{s=1}^{n} \frac{\partial z_{k}^{*}}{\partial x_{s}^{*}} \delta x_{s}+\delta \bar{z}_{k}+0\left(\underline{\varepsilon}^{2}\right), \quad k=1,2, \ldots, m
$$

Since $\frac{\partial z_{k}^{*}}{\partial x_{s}}$ and $\frac{\partial z_{k}}{\partial x_{s}}$ differ only by a quantity of order $\underline{\varepsilon}$ this
equation may be written as

$$
\delta z_{k}=\sum_{s=1}^{n} \frac{\partial z_{k}}{\partial x_{s}} \delta x_{s}+\overline{\delta z_{k}} \quad, k=1,2, \ldots, m,(1.13)
$$

where δz_{k} is the principal linear part of Δz_{k} (relative to ε).
An alternative form of (1.13) is, using (1.10), (1.11) and (1.12),

$$
\sum_{Z=1}^{m} \varepsilon_{Z \psi_{k}}^{(Z)}(x)=\sum_{s=1 Z=1}^{n} \sum_{i=1}^{m} \frac{\partial z_{k}^{k} \varepsilon_{Z} \emptyset_{s}^{(Z)}(x)}{\partial x_{s}}+\sum_{Z=1}^{m} \varepsilon_{Z} \bar{\psi}_{k}^{(Z)}(x), \quad(1,14)
$$

Consider the expression for the increment, $\frac{\partial}{\partial x_{8}}\left(\Delta z_{k}\right)$, of the gradient $\nabla \underline{z}$, that is, $\frac{\partial\left(\Delta z_{k}\right)}{\partial x_{s}}=\frac{\partial z^{*}\left(x^{*}\right)}{\partial x_{s}^{*}}-\frac{\partial z_{k}(x)}{\partial x_{s}}$, or mure precisely its

$k=1,2, \ldots m . \quad$ It can be derived from (1.7) that $\frac{\partial x_{t}^{*}}{\partial x_{s}}=\delta_{s i}+\sum_{Z=1}^{m} \varepsilon \frac{\partial \varnothing_{i}^{(\eta)}(x)}{\partial x_{s}}+0\left(\underline{\varepsilon}^{2}\right), \quad i, s=1,2, \ldots n ;$ where $\delta_{s i}{ }^{i s}$ the Kronecker delta. It now follows from the chain rule that

$$
\begin{aligned}
\frac{\partial}{\partial x_{s}} & =\sum_{i=1}^{n} \frac{\partial x_{i}^{*}}{\partial x_{s}} \frac{\partial}{\partial x_{i}^{*}} \\
& =\sum_{i=1}^{n}\left\{\delta_{s i}+\sum_{Z=1}^{m} \varepsilon_{q} \frac{\partial \not \emptyset_{i}(\eta)(x)}{\partial x_{s}}+0\left(\varepsilon^{2}\right)\right\} \frac{\partial}{\partial x_{i}^{*}} \\
& =\frac{\partial}{\partial x_{s}^{*}}+\sum_{i=1 \eta=1}^{n} \sum_{q}^{m} \frac{\partial \emptyset_{i}(\underline{x})}{\partial x_{s}} \frac{\partial}{\partial x_{i}^{*}}+0\left(\underline{\varepsilon}^{2}\right),
\end{aligned}
$$

hence,

$$
\begin{align*}
& \frac{\partial}{\partial x_{s}}-\frac{\partial}{\partial x_{s}^{*}}=\sum_{i=1 Z=1}^{n} \sum_{i=1}^{m} \frac{\partial \phi_{i}(\underline{x})}{\partial x_{s}} \frac{\partial}{\partial x_{i}^{*}}+0\left(\varepsilon^{2}\right) . \tag{1.16}\\
& \text { The increment in } \frac{\partial z_{k} i s \text { given by }}{\partial x_{s}} \\
& \begin{aligned}
\Delta\left(\frac{\partial z_{k}}{\partial x_{s}}\right. & =\frac{\partial z_{k}^{*}\left(x_{k}^{*}\right)}{\partial x_{s}^{*}}-\frac{\partial z_{k}\left(x_{n}\right)}{\partial x_{s}} \\
& =\frac{\partial}{\partial x_{s}^{*}}\left\{z_{k}^{*}\left(\underline{x}^{*}\right)-z_{k}\left(x^{*}\right)\right\}+\frac{\partial}{\partial x_{s}}\left\{z_{k}\left(x^{*}\right)-z_{k}(x)\right\}
\end{aligned}
\end{align*}
$$

$$
+\left(\frac{\partial}{\partial x_{s}^{*}}-\frac{\partial}{\partial x_{s}}\right) z_{k}\left(\underline{x}^{*}\right), k=1,2, \ldots, m(1.17)
$$

Analysing the three terms on the right hand side of equation (1.17) separately gives (a) from (1.12).

$$
z_{k}^{*}(\underline{x})-z_{k}(\underline{x})=\sum_{\eta=1}^{m} \varepsilon_{\eta} \bar{\psi}_{k}^{(\eta)}(\underline{x})+0\left(\underline{\varepsilon}^{2}\right), \quad k=1,2, \ldots m
$$

hence, using (1.16)

$$
\begin{aligned}
& \frac{\partial}{\partial x_{s}^{*}}\left\{z_{k}^{*}\left(\underline{x}^{*}\right)-z_{k}\left(\underline{x}^{*}\right)\right\}=\left\{\frac{\partial}{\partial x_{s m}}-\sum_{i=1}^{n} \sum_{i=1}^{m} \varepsilon_{i} \frac{\partial \phi_{i}^{(l)}(x)}{\partial x_{s}} \frac{\partial}{\partial x_{i}^{*}}+0\left(\underline{\varepsilon}^{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{m} \varepsilon_{i} \frac{\partial \bar{\psi} \underset{k}{(\eta)\left(x^{*}\right)}}{\partial x_{s}}+0\left(\underline{\varepsilon}^{2}\right), \quad k=1,2, \ldots m,(1.18)
\end{aligned}
$$

(b) $\frac{\partial}{\partial x_{s}}\left\{z_{k}\left(\underline{x}^{*}\right)-z_{k}(\underline{x})\right\}=\frac{\partial}{\partial x_{8}}\left\{\sum_{i=1}^{n} \frac{\partial z_{k}(x)}{\partial x_{i}}\left(x_{i}^{*}-x_{i}\right)+0\left(\underline{\varepsilon}^{2}\right)\right\}$
and using (1.8) this equation becomes

$$
\frac{\partial}{\partial x_{s}}\left\{z_{k}\left(\underline{x}^{*}\right)-z_{k}(\underline{x})\right\}=\sum_{i=1}^{m} \sum_{i=1}^{n} \begin{aligned}
& \varepsilon_{Z} \frac{\partial_{z_{k}}(x)}{\partial x_{j}} \emptyset_{i}^{(Z)}(\underline{x})+0\left(\underline{\varepsilon}^{2}\right), \text { (1.19) } \\
& k=1,2, \ldots, m ;
\end{aligned}
$$

(c) for the final term on the right hand side of equation (1.17)

$$
\left(\frac{\partial}{\partial x_{s}^{*}}-\frac{\partial}{\partial x_{s}}\right) z_{k}\left(\underline{x}^{*}\right)=\left(\frac{\partial}{\partial x_{s}^{*}}-\frac{\partial}{\partial x_{s}}\right) z_{k}(\underline{x})+0\left(\underline{\varepsilon}^{2}\right), \quad k=1,2, \ldots m
$$ and applying (1.16)

$$
\begin{aligned}
\left(\frac{\partial}{\partial x_{s}^{*}}-\frac{\partial}{\partial x_{s}}\right)_{k} z_{k}^{\left(\underline{x}^{*}\right)} & =-\sum_{l=1}^{m} \sum_{i=1}^{n} \varepsilon_{i} \frac{\partial \emptyset_{i}^{(l)}}{\partial x} \frac{\partial z_{k}}{\partial x_{i}^{*}}+0\left(\underline{\varepsilon}^{2}\right) \\
& =-\sum_{l=1}^{m} \sum_{i=1}^{n} \frac{\varepsilon_{i} \partial \emptyset_{i}^{(l)}(\underline{x})}{\partial x_{s}} \frac{\partial z_{k}}{\partial x_{i}}(\underline{x}), k=1,2, \ldots m,(1,20)
\end{aligned}
$$

since $\frac{\partial}{\partial x_{i}}$ and $\frac{\partial}{\partial x_{i}^{*}}$ differ by a term of order .c. Adding together
equations (1.18), (1.19) and (1.20) and using (1.17) gives

$$
\left.-\sum_{i=1}^{n} \frac{\partial \emptyset_{i}^{(l)}(\underline{x})}{\partial x_{s}^{s}} \frac{\partial z_{k}(\underline{x})}{\partial x_{i}}\right\}+0\left(\underline{\varepsilon}^{2}\right)
$$

$=\sum_{i=1}^{m} \varepsilon\left\{\left\{\frac{\partial \bar{\psi}_{k}^{(l)}(\underline{x})}{\partial x_{s}}+\sum_{i=1}^{n} \frac{\partial^{2} z_{k}(x)}{\partial x_{s}} \partial x_{i} \emptyset_{i}^{(l)}(\underline{x})\right\}+0\left(\underline{\varepsilon}^{2}\right)\right.$,

$$
k=1,2, \ldots m
$$

Finally using the defininition of $\bar{\psi}(x)$ in (1.12) and ϕ_{i} in (1.8) gives
$\Delta\left(\frac{\partial z_{k}}{\partial x_{s}}\right)=\bar{\delta}_{k_{x_{s}}}+\sum_{i=1}^{n} \frac{\partial^{2} z_{k}(x)}{\partial x_{s} \partial x_{i}} \delta x_{i}+0\left(\underline{\varepsilon}^{2}\right), \quad k=1,2, \ldots m,(1.22)$
and the principal linear part, $\delta z_{k_{x}}$, of $\frac{\Delta\left(\delta z_{k}\right)}{\delta x_{s}}$ is given by
$\delta z_{k_{x_{s}}}=\delta z_{k_{x_{s}}}+\sum_{i=1}^{n} \frac{\partial^{2} z_{j k}(x)}{\partial x_{s} \partial x_{i}} \delta x_{i} \quad, \quad k=1,2, \ldots, m \quad$ (1.23)
Consider now the increment ΔJ defined in (1.6). The following result
will be established:
where $\bar{\psi}^{(2)}$ is given in terms of ψ in (1.14).
The proof of equation (1.24) is as follows: by definition (1.6)

$$
\begin{align*}
& \Delta J=\int_{R^{*}} F\left(\underline{x}^{*}, \underline{z}^{*}, \nabla * \underline{x}^{*}\right) \quad \underline{d x^{*}}-\int_{R} F(\underline{x}, \underline{z}, \nabla \underline{z}) d \underline{x} \\
& \left.=\int_{R}^{R *}\left\{F\left(\underline{x}^{*}, \underline{z}^{*}, \nabla^{*} \underline{z}^{*}\right) \frac{\partial\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}-\underline{x}, \underline{z}, \nabla_{\underline{z}}\right)\right\} d \underline{x} \tag{1.25}
\end{align*}
$$

From the definition of a Jacobian, and (1.8),

$$
\begin{aligned}
& +0\left(\underline{\varepsilon}^{2}\right) \\
& =1+\sum_{Z=1}^{m} \sum_{s=1}^{n} \varepsilon_{Z} \frac{\partial \emptyset_{s}^{(}}{s}{ }_{s}^{(Z)}+0\left(\underline{\varepsilon}^{2}\right)
\end{aligned}
$$

Thus from (1.25)

$$
\begin{align*}
& \Delta J=\int_{\mathbb{R}}\left\{F\left(\underline{x}^{*}, \underline{z}^{*}, \nabla \underline{z}^{*}\right)\left[1+\sum_{Z=1}^{m} \sum_{s=1}^{n} \varepsilon \sum_{i \neq}^{\partial x_{s}}(\tau) 0\left(\underline{\varepsilon}^{2}\right)\right]-\right. \\
& -F(\underline{x}, \underline{z}, \nabla \underline{z})\} d \underline{x} \text {. } \tag{1.26}
\end{align*}
$$

Taylor's theorem is now used to expand the first term in the integrand of (1.26) remembering the notation

$$
\begin{aligned}
& x_{s}^{*}=x_{s}+\delta x_{s}, z_{k}^{*}=z_{k}+\delta z_{k}, \frac{\partial z_{k}^{*}}{\partial x_{k}^{*}}=\frac{\partial z_{k}}{\partial x_{s}}+\frac{\partial}{\partial x}\left(\delta z_{k}\right) ;
\end{aligned}
$$

$$
\begin{aligned}
& \left.x\left[1+\sum_{\eta=1}^{m} \sum_{s=1}^{n} \varepsilon_{l} \frac{\partial \emptyset_{s}^{(l)}}{\partial x_{s}}\right]-\mathrm{F}(\underline{x}, \underline{z}, \nabla \underline{z})\right\} \mathrm{d} x
\end{aligned}
$$

Equation (1.8) is used to replace $\sum_{l=1}^{m} \varepsilon_{l} \phi_{s}\left(Z_{b y} \delta x_{s}^{s}\right.$ in the final term of the integrand of (1.27) and using (1.13) and (1.22) this
gives, correct to the first order ${ }^{\text {in }} \underline{\varepsilon}$,

$$
\begin{align*}
\delta J= & \int_{R} \sum_{s=1}^{n} \sum_{x_{s}}^{n} \delta x_{s}+\sum_{k=1}^{m}\left(\delta z_{k}+\sum_{s=1}^{n} \frac{\partial z_{k}}{\partial x_{s}} \delta x_{s}\right) F_{z_{k}} \\
& +\sum_{s=1}^{m}\left(\bar{\delta} z_{k=1}+\sum_{x_{s}}^{n} \frac{\partial^{2} z_{k}}{\partial x_{s} \partial x_{i}}\right) F_{z_{k_{x s}}} \\
& +F\left(\underline{x, z, \nabla \underline{z})} \sum_{s=1}^{n} \frac{\partial\left(\delta x_{s}\right)}{\partial x_{s}}\right\} \quad d x, \tag{1.28}
\end{align*}
$$

where $Q J$-is the prinicpal linear part of ΔJ, relative to ε. This is now expressed in the form $G(\underline{x}) \overline{\delta z}+\operatorname{div}(\ldots)$

$$
{\overline{\delta z_{k}}}_{\mathrm{k}_{\mathbf{x}_{s}}} \mathrm{~F}_{\mathbf{z}_{\mathbf{k}_{\mathbf{s}}}}=\frac{\partial}{\partial \mathbf{x}_{s}}\left\{{\overline{\delta z_{k}}}_{\mathrm{F}_{\mathbf{z}_{s}}}\right\}-\delta \bar{z}_{k} \frac{\partial}{\partial \mathbf{x}_{s}} \mathrm{~F}_{\mathbf{z}_{\mathbf{k}_{\mathbf{s}}}}
$$

and thus equation (1.28) can be rearranged into the form

$$
\begin{aligned}
\delta J= & \int_{R} \sum_{k=1}^{m} \overline{\delta z}_{k}\left\{F_{z_{k}}-\sum_{s=1}^{n} \frac{\partial}{\partial x_{s}} F_{z_{k_{x_{s}}}}\right\} d \underline{d x} \\
& +\int_{R}\left\{\sum_{s=1}^{n} F_{x_{s}} \delta x_{s}+F_{\frac{\partial}{\partial x_{s}}}\left(\delta x_{s}\right)+\sum_{k=1}^{m} F_{z_{k}} \frac{\partial z_{k}}{\partial x_{s}} \delta x_{s}+\right.
\end{aligned}
$$

hence

$$
\begin{align*}
\delta J= & \int_{R} \sum_{k=1}^{m} \delta_{z_{k}}\left\{F_{z_{k}}-\sum_{s=1}^{n} \frac{\partial}{\partial x_{s}} F_{z_{k x_{s}}}\right\} d \underline{d x} \\
& +\int_{R} \sum_{s=1}^{n} \sum_{k=1}^{m} \frac{\partial}{\partial x_{s}}\left\{F \delta x_{s}+\delta z_{k} F z_{k_{x_{s}}}\right\} d x \tag{1.29}
\end{align*}
$$

This expression is the same as that quoted in (1.24) since
$\delta z_{k}=\sum_{Z=1}^{m} \varepsilon_{\eta} \bar{\psi}_{k}^{(\eta} \underline{k}_{\underline{x})} \quad k=1,2, \ldots, m \quad$ and
$\delta x_{s}=\sum_{\eta=1}^{m} \varepsilon_{q} \emptyset_{s}^{(\eta)_{\underline{x}}} \quad, s=1,2, \ldots, n$.
Two simple examples will now be discussed to illustrate the GelfandFo min theorem.

Case 1. $m=1, n=1$.

Figure 1.1

The problem is to find the shape of the curve connecting the fixed point A and the curve $z=c(x)$ which minimises
$J(z)=\int_{a}^{b} F\left(x, z(x), z^{\prime}(x)\right) d x$
where the point $(a, z(a))$ is fixed but the value of b may vary.
From equation (1.29)

$$
\begin{aligned}
& \delta J=\int_{a}^{b} \delta z\left\{F_{z}-\frac{\partial}{\partial x_{s}} F_{z_{x}}\right\} d x+\int_{a}^{b} \frac{d}{d x}\left\{F \delta x+\overline{\delta z} F_{z_{x}}\right\} d x, \\
& \delta J=\int_{a}^{b} \delta z\left\{F_{z}-\frac{\partial}{\partial x_{s}} F_{z_{x}}\right\} d x+\left[F \delta x+\delta \bar{z} F_{z_{x}}\right]_{a}^{b}
\end{aligned}
$$

From equation (1.13)

$$
\overline{\delta z}=\delta z-\frac{d z}{d x} \delta x
$$

At the end B since $z=c(x)$, and $\delta z=c^{\prime}(x) \delta x, \overline{\delta z}=c^{\prime}(x)-\frac{d z}{d x}$, at $x=b$.
At $x=a, \delta x$ and δz are zero since A is a fixed point so,

$$
\delta J=\int_{a}^{b} \overline{z z}\left\{F_{z}-\frac{\partial}{\partial x} F_{z_{x}}\right\} d x+\delta x\left\{F+\left[c^{\prime}(x)-z^{\prime}(x)\right] E_{z_{x}}\right\}_{x=b}
$$

For a minimum $\delta \mathrm{J}$ is zero, so as $\overline{\delta z}$ and $\delta \mathrm{x}$ are arbitary variations

$$
\begin{align*}
& F_{z}-\frac{a}{\partial x} F_{z_{X}}=0, \quad(x, z) \in z=c(x) \\
& F+\left[c^{\prime}(x)-z^{\prime}(x)\right] F_{z_{X}}=0 \quad \text { at } x=b \tag{1.31}
\end{align*}
$$

Equations (1.30) and (1.31) are the same as those that are derived when this problem is solved by the Euler Variational method.
is the well-known transversality condition.

Case II . $n=2$

In this example the performance index
$J=\iint_{S} F\left(x, y, z, z_{x}, z_{y}\right) d x d y$
is minimised over the domain S as the position of the curve C which bounds S varies. z is required to take prescribed values on C so that on C there is the condition

Figure 1.2

From equation (1.29)

$$
\begin{aligned}
\delta J= & \iint_{S} \delta z\left\{F_{z}-\frac{\partial}{\partial x} F_{z_{x}}-\frac{\partial}{\partial y} F_{y}\right\} d x d y \\
& +\int_{S} \int\left\{\frac{\partial}{\partial x}\left[F \delta x+\delta \bar{\delta} F_{z_{x}}\right]+\frac{\partial}{\partial y}\left[F \delta y+\overline{\delta z} F_{z}\right]\right\} d x d y
\end{aligned}
$$

Applying Stokes' theorem in two dimensions to the second integrand, $\delta \mathrm{J}$ becomes

$$
\begin{align*}
& \delta J=\iint_{S} \overline{\delta z}\left\{F_{z}-\frac{\left.\partial F_{z_{x}}-\frac{\partial}{\partial x} F_{y}\right\}}{}\right\} d x d y \\
&+\oint_{c}\left\{\left[F \delta x+\frac{\delta z}{} \frac{\partial F}{\partial z}\right] d y-\left[F \delta y+\overline{\delta z} \frac{\partial F}{\partial z}\right] d x\right\} . \tag{1.33}
\end{align*}
$$

From the equation (1.31)

$$
\begin{aligned}
& \overline{\delta z}=\delta z-\frac{\partial z}{\partial x} \delta x-\frac{\partial z}{\partial y} \delta y \\
& \text { As } z=g(x, y) \quad, \delta z=\frac{\partial g}{\partial x} \delta x+\frac{\partial g}{\partial y} \delta y \\
& \delta z=\delta x\left(\frac{\partial g}{\partial x}-\frac{\partial z}{\partial x}\right) \quad+\delta y\left(\frac{\partial g}{\partial y}-\frac{\partial z}{\partial y}\right)
\end{aligned}
$$

and (1.33) may be written as

$$
\begin{aligned}
\delta J= & \iint_{S} \delta z\left\{F_{z}-\frac{\partial}{\partial x} F_{z}-\frac{\partial}{\partial y} F_{z}\right\} d x d y \\
& +\oint_{c}\left\{\delta x\left[F d y+\left(g_{x}-z_{x}\right) \frac{\partial}{\partial z_{x}} F d y-\left(g_{x}-z_{x}\right) \frac{\partial F}{\partial z_{y}} d x\right]+\right. \\
& \left.+\delta y\left[\left(g_{y}-z_{y}\right) \frac{\partial F}{\partial z_{x}} d y-F d x-\left(g_{y}-z_{y}\right) \frac{\partial F}{\partial z_{y}} d x\right]\right\}
\end{aligned}
$$

For a minimum of J in (1.32) $\delta \mathrm{J}$ must be zero. Since $\overline{\delta z}, \delta \mathrm{x}$ and $\delta \mathrm{y}$ are arbitrary variations

$$
\begin{align*}
& F_{z}-\frac{\partial}{\partial x} F_{z_{x}}-\frac{\partial}{\partial y} F_{z_{y}}=0 \tag{1.34}\\
& F_{y}^{\prime}(x)+\left(g_{x}-z_{x}\right) \frac{\partial F}{\partial z_{x}} y^{\prime}(x)-\left(g_{x}-z_{x}\right) \frac{\partial F}{\partial z_{y}}=0 \quad \text {,on } C \text { (1.35) } \\
& \left(g_{y}-z_{y}\right) \frac{\partial F}{\partial z_{x}} y^{\prime}(x)-F-\left(g_{y}-z_{y}\right) \frac{\partial F}{\partial z_{y}}=0 \quad \text {,on } C \text { (1.36) } \tag{1.36}\\
& \text { The conditions (1.35) and (1.36) are not independent since if } \\
& (1.36) \text { is multiplied by } y^{\prime}(x) \text { and added to (1.35) then } \\
& y^{\prime}(x) \frac{\partial F}{\partial z_{x}}\left\{\left(g_{x}-z_{x}\right)+\left(g_{y}-z_{y}\right) y^{\prime}(x)\right\}-\frac{\partial F}{\partial z_{y}}\left\{\left(g_{x}-z_{x}\right)+\left(g_{y}-z_{y}\right) y^{\prime}(x)\right\}=0
\end{align*}
$$

The term

$$
\left\{g_{x}-z_{x}+\left(g_{y}-z_{y}\right) y^{\prime}(x)\right\}
$$

is the differential along the curve C of the function $g-z$, therefore since $z=g$ on C this vanishes. Hence one and only one transversality condition remains.

```
of the Use of the Gelfand Fomin Theorem.
```

In order to acquire experience in the handing of the Gelfand-Fomin Theorem the following simple hyperbolic partial differential equation problem is considered.

Let S be the domain in the (x, t) plane indicated in the diagram; S is bounded by the closed curve OARL and the various parts of the boundary need to be discussed.

Figure 2.1
In the first place $O A$ is a portion of $t=0,0$ being the origin of coordinates and A a given fixed point; $L R$ is a portion of the line $t=T$. It is convenient to label the four portions of the boundary as $\Gamma_{1}, \Gamma_{2}, \Gamma_{3} \Gamma_{4}$, as shown in figure 2.1. In particular it is assumed that the equation of the curve $O L$ is expressed in the form

$$
\begin{equation*}
x=\alpha(\tau), \quad t=\tau \quad 0 \leqslant \tau \leqslant T \tag{2.1}
\end{equation*}
$$

τ being a time parameter, with $\alpha(0)=0$.

It is assumed that a function $\emptyset(x, t)$ is defined for all $(x, t) \in S$
and \emptyset satisfies in S the quasi-linear partial differential equation

$$
\begin{equation*}
\frac{\partial \emptyset}{\partial t}=g\left(x, t, \phi, \emptyset_{x}\right) \equiv-A(x, t, \phi) \emptyset_{x}+B(x, t, \emptyset),(x, t) \in S, \tag{2.2}
\end{equation*}
$$

where A and B are functions of x, t and \emptyset. The ordinary differential equation of the family of characteristics for equation (2.2) is

$$
\begin{equation*}
\frac{d x}{d t}=A(x, t, \emptyset) \tag{2.3}
\end{equation*}
$$

and certain restrictions will be placed on A as follows. In the first place it is postulated that

$$
\begin{equation*}
A(x, t, \phi)>0 \quad \text { for all } \quad(x, t) \in S, \tag{2.4}
\end{equation*}
$$

further, it is assumed that the funtion A is such that, travelling along the characteristics with x increasing, each characteristic commencing at any point of OA or OL will travel into the domain S and will eventually meet either $L R$ or $A R$ in a single point. This implies that the slope of $O L$ at the point τ must be greater than the slope of the characteristic at τ, that is

$$
\begin{equation*}
A\left\{\alpha(\tau), \tau,\left.\emptyset\right|_{\tau}\right\}>\alpha^{\prime}(\tau), \quad 0<\tau<T \tag{2.5}
\end{equation*}
$$

It is assumed that the particular characteristic of the family (2.3) which commences at 0 ultimately intersects the line $t=T$ at the point R, thus all the characteristics commencing along ol will meet LR and the characteristics commencing along OA will meet AR. The characteristic $O R$ divides S into two parts S_{1} and S_{2}. Also it is assumed that the boundary conditions upon \emptyset on the portions Γ_{1} and Γ_{2} are as follows:

$$
\begin{align*}
& M(x, t, \emptyset) \equiv 0,(x, t) \in \Gamma_{1}, \tag{2.6}\\
& N(x, \emptyset) \equiv 0,(x, t) \in \Gamma_{2} . \tag{2.7}
\end{align*}
$$

The control problem can now be stated. It is postulated that the position of the curve ol has to be found, subject to (2.5) being
satisfied, in order to minimise the performance criterion I defined by

$$
I=\iint_{S_{1}} P\left(x, t, \phi, \emptyset_{x}\right) d x d t+\int_{L R} Q(x, T, \phi) d x+\int_{\tau=0}^{\tau=T} f\left(\tau, \alpha \alpha^{\prime}, \alpha^{\prime \prime}\right) d \tau,(2.8)
$$

the functions P, Q and f being prescribed; in other words the function $\alpha(\tau)$ which was introduced in (2.1) must be determined. It is clear from characteristic theory that any variations in the position of the curve $O L$, such that $\alpha(0)=0$, will influence the value of \emptyset in S_{1} only, the value of \varnothing in S_{2} being unaffected by such variations. It is for this reason that the double integral in (2.8) is taken over the domain S_{1} only and not over the whole domain S.

Consider now in place of I a new functional J given by

$$
\begin{equation*}
J=\int_{S_{1}} \int_{\{ }\{P+\lambda(g-\emptyset)\} d x d t+\int_{L R} Q d x+\int_{\tau=0}^{T} f d \tau ; \tag{2.9}
\end{equation*}
$$

where λ is a Lagrange multiplier depending on x and t. By introducing a Hamiltonian H defined by

$$
\begin{equation*}
H=P\left(x, t, \emptyset, \emptyset_{x}\right)+\lambda g\left(x, t, \emptyset, \emptyset_{x}\right), \tag{2.10}
\end{equation*}
$$

J in (2.9) can be written in the form

$$
\begin{equation*}
J=\iint_{S_{1}}\left(H-\lambda \emptyset_{t}\right) d x d t+\int_{\operatorname{arcLR}} Q d x+\int_{\tau=0}^{T} f d \tau \quad . \tag{2.11}
\end{equation*}
$$

The value of the increment, δJ, in J when a variation occurs in the location of OL is now investigated. The variation in the position of OL can be done by adding to $\alpha(\tau)$ and increment $\delta \alpha(\tau)$ at the same time τ.

Figure 2.2

The curve ol i.e. $x=\alpha(\tau), t=\tau$,
will be regarded as the curve which provides the minimum of I in. (2.8) and the varied curve is OL', namely

$$
\begin{equation*}
x=\alpha(\tau)+\delta \alpha(\tau) \quad, t=\tau, \quad 0<\tau<T \tag{2.13}
\end{equation*}
$$

$\alpha(\tau)$ and $\delta \alpha(\tau)$ are assumed to be continuous functions satisfying

$$
\begin{equation*}
\alpha(0)=0, \quad \delta \alpha(0)=0 \tag{2.14}
\end{equation*}
$$

The postulate (2.14) implies that no variation occurs at the origin so that the characteristic $O R$ is unaltered in position. The new value of \emptyset on $0 L$ ' will follow from the boundary condition (2.6) but the value of \emptyset on Γ_{2}, see (2.7), remains unchanged in the variation and likewise on the characteristic $O R$

$$
\begin{equation*}
\delta \emptyset=0, \quad(x, t) \in \quad \text { characteristic } 0 R \tag{2.15}
\end{equation*}
$$

Specialising the Gelfand - Fomin result to the two dimensional space S_{1} in the (x, t) plane this result can be stated as follows : with

$$
\begin{align*}
& x_{1}(\emptyset)=\int_{S_{1}} \int F\left(x, t, \emptyset, \emptyset_{x}, \emptyset_{t}\right) d x d t \tag{2.16}\\
& F\left(x, t, \emptyset, \emptyset_{x}, \emptyset_{t}\right)=\left(H-\lambda \emptyset_{t}\right) \tag{2.17}
\end{align*}
$$

the increment δX_{1} is given, from (1.29), by

$$
\begin{aligned}
& \delta X_{1}=\int_{S_{1}} \int_{\delta \emptyset}\left\{F_{\phi}-\frac{\partial}{\partial x} F_{\phi_{x}}-\frac{\partial}{\partial t} F_{\phi_{t}}\right\} d x d t \\
& \quad+\int_{S_{i}} \int\left\{\frac{\partial}{\partial x}\left(F \delta x+\overline{\delta \emptyset} F_{\phi_{x}}\right)+\frac{\partial}{\partial t}\left(F \delta t+\overline{\delta \emptyset} F_{\phi_{t}}\right)\right\} d x d t \text { (2.18) }
\end{aligned}
$$

where $\delta \varnothing$, from (1.13), the increment in the function ϕ, is related to $\overline{\delta \varnothing}$ by

$$
\begin{equation*}
\delta \emptyset=\overline{\delta \phi}+\frac{\partial \phi}{\partial x} \delta x+\frac{\partial \phi}{\partial t} \delta t \tag{2.19}
\end{equation*}
$$

and δx, δt are the increments in x and t arising from the variation in the domain S_{1}.

Using Stokes' Theorem in [2], (2.18) can be written in the form

The variation of the line integral

$$
\begin{equation*}
x_{2}=\int_{L R} Q(x, T, \emptyset) d x \tag{2.21}
\end{equation*}
$$

can also be discussed using the Gelfand - Formin result. Thus using (1.29) gives

$$
\delta X_{2}=\int_{L R} \overline{\delta \phi}\left\{Q_{\phi}-\frac{\partial}{\partial x} Q_{\phi_{x}}\right\} d x+\int_{L R} \frac{\partial}{\partial x}\left\{Q \delta x+\overline{\delta \phi}_{\phi_{x}}\right\} d x .
$$

$Q_{\phi_{X}}$ is zero since Q is independent of \emptyset_{x}, hence

$$
\begin{aligned}
\delta x_{2} & =\int_{L R} \frac{x^{\prime}}{} Q_{\phi} d x+\int_{L R} \frac{\theta}{\partial x}(Q \delta x) d x \\
& =\int_{L R} \overline{\delta \varnothing} Q_{\phi} d x+[Q \delta x]_{x=x_{L}}^{x=x_{R}}
\end{aligned}
$$

$$
\begin{align*}
& \text { At } x=x_{R}, \delta x=0, \text { so finally } \\
& \delta x_{2}=\int_{L R} \delta \phi Q_{\phi} d x-\left.Q\left(x_{L}, T, \emptyset_{L}\right) \delta x\right|_{x=x_{L}} \tag{2.22}
\end{align*}
$$

δJ in (2.11) can now be calculated using (2.20) and (2.22). Thus

$$
\begin{aligned}
& \delta J=\iint_{S_{1}} \delta \varnothing\left\{F_{\phi}-\frac{\partial}{\partial x} F_{\phi_{X}}-\frac{\partial}{\partial t} F_{\phi_{t}}\right\} d x d t+\int_{O R+R L+L O}\left\{\left(F \delta x+\delta \emptyset F_{\phi_{X}}\right) d t-\right. \\
& \left.-\left(F \delta t+\bar{\phi} F_{\phi_{t}}\right) d x\right\}
\end{aligned}
$$

At any point on $O R x, t$ and \emptyset remain unaltered by a variation of the position of the curve $O L$ and so δx, δt and $\delta \varnothing$ are zero at such a point, which means, from (2.19), that $\overline{\delta \varnothing}$ is zero on OR. Therefore there is no contribution to δJ from the integral along $O R$. On RL $t=T$ therefore $d t$ and δt are zero. τ is unchanged by the variation of ol so on OL $\delta \tau=\delta t=0$. So

$$
\begin{align*}
& \delta J=\iint_{S_{2}} \delta \overline{\delta \phi}\left\{F_{\phi}-\frac{\partial}{\partial x} F_{\phi_{x}}-\frac{\partial}{\partial t} F_{\phi_{t}}\right\} d x d t+\int_{R L}-\overline{\delta \varnothing} F_{\phi_{t}} d x+\int_{L R} \delta \varnothing Q_{\phi} d x \\
& +\int_{L 0}\left\{\left(F \delta x+\delta \overline{F_{\phi_{x}}}\right) d t-\overline{\delta \phi} F_{\phi_{t}}{ }^{R L}\right\}-\left.Q\left(x_{L}, T, Q_{L}\right) \delta x\right|_{x=x_{L}} \\
& +\int_{\tau=0}^{T}\left\{f_{\alpha^{\prime}} \delta \alpha+f_{\alpha^{\prime}}, \delta \alpha^{\prime}+f_{\alpha^{\prime \prime}} \delta \alpha^{\prime \prime}\right\} \mathrm{d}_{\tau} \quad \text {. } \\
& \delta J=\int_{S_{1}} \int_{\tau \phi}^{\tau=0}\left\{F_{\phi}-\frac{\partial F_{x}}{\partial x} \phi_{x}-\frac{\partial}{\partial t} F_{\phi_{t}}\right\} \quad d x d t+\int_{\operatorname{arc}} \delta \operatorname{LR} \delta\left(Q_{\phi}+F_{\phi_{t}}\right) d x \\
& -\int_{\operatorname{arc}}\left\{\left(F \delta x+\delta \bar{\phi} F_{\phi_{X}}\right) d t-\delta \bar{\phi} F_{\phi_{t}} d x\right\}-\left.Q\left(x_{L}, T, \phi_{L}\right) \delta x\right|_{x=x_{L}} \\
& +\int_{\tau=0}^{T}\left\{f_{\alpha} \delta \alpha+f_{\alpha^{\prime}} \delta \alpha^{\prime}+f_{\alpha^{\prime \prime}} \delta \alpha^{\prime \prime}\right\}^{\prime} d \tau . \tag{2.25}
\end{align*}
$$

On OL the boundary condition must be satisfied, and so

$$
M(\alpha(\tau), \tau, \emptyset)=0 \quad, \quad(x, t) \in \quad \text { oL ; }
$$

and in the varied state the boundary condition to be satisfied is

$$
\begin{equation*}
M(\alpha(\tau)+\delta \alpha(\tau), \tau, \emptyset+\delta \emptyset)=0 \quad,(x, t) e 0 L! \tag{2.26}
\end{equation*}
$$

Expanding (2.27) by Taylor's theorem
$M(\alpha(\tau), \tau, \emptyset)+\frac{\partial M}{\partial \alpha} \delta \alpha+\frac{\partial M}{\partial \emptyset} \delta \emptyset+\ldots \ldots .=0,(x, t) \in O L^{\prime}$,
where $\frac{\partial M}{\partial \alpha}=\left.\frac{\partial M}{\partial x}\right|_{x=\alpha}$
OL is the curve that minimises 3 and so for a minimum

$$
\begin{equation*}
\frac{\partial M}{\partial \alpha} \delta \alpha+\frac{\partial M}{\partial \emptyset} \delta \varnothing=0 \quad, \quad(x, t) \quad \in \quad O L ; \tag{2.27}
\end{equation*}
$$

and so

$$
\begin{array}{ll}
\delta \emptyset=-\delta \alpha M_{\alpha} & \text {, and } \\
\overline{\delta \varnothing}=-\frac{M_{\rho}}{M_{\phi}}+\frac{\partial \phi}{\partial x} & \delta \alpha \quad,(x, t) \quad \epsilon \quad \text { oL } ; \tag{2.28}
\end{array}
$$

thus

$$
\begin{aligned}
& \delta J=\iint_{S 1} \overline{\delta \varnothing}\left\{F_{\phi}-\frac{\partial}{\partial x} F_{\phi_{x}}-\frac{\partial}{\partial t} F_{\phi_{t}}\right\} \mathrm{dx} d t+\int_{L R} \overline{\delta \varnothing}\left(\phi_{\phi}+F_{\phi_{t}}\right) d x \\
& \left.-\int_{\mathrm{OL}}^{\mathrm{S}} \delta \alpha\left\{F-F_{\phi_{x}}\left(\frac{M_{\alpha}}{M_{\phi}}+\emptyset_{\mathrm{x}}\right) d t+\mathrm{F}_{\phi_{t}} \frac{\left(M_{\alpha}\right.}{M_{\phi}}+\emptyset_{\mathrm{x}}\right) \mathrm{dx}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& -\left.Q\left(x_{L}, T, Q_{L}\right) \delta x\right|_{x-x_{L}}+\int_{\tau=0}^{T}\left\{f_{\alpha} \delta \alpha+f_{\alpha^{\prime}} \delta \alpha^{\prime}+f_{\alpha^{\prime \prime}} \delta \alpha^{\prime \prime}\right\} d_{\tau}(2.29) \\
& \delta J=\int_{S_{1}} \int_{T} \delta \bar{\phi}\left\{F_{\phi}-\frac{\partial}{\partial x} F_{\phi_{x}}-\frac{\partial}{\partial t} F_{\phi_{t}}^{\tau=0}\right\} d x d t+\int_{L R} \overline{\delta \emptyset}\left(Q_{\phi}+F_{\phi_{t}}\right) d x \\
& -\int_{\tau=0}^{T} \delta \alpha\left\{F-F_{\phi_{x}}\left(\frac{M_{\alpha}}{M_{\phi}}+\emptyset_{\dot{x}}\right)+F_{\phi_{t}}\left(\frac{M_{\alpha}}{M_{\phi}}+\phi_{x}\right) \frac{d \alpha(\tau)}{d_{\tau}}\right\} d_{\tau} \\
& -\left.Q\left(x_{L}, T, \emptyset_{L}\right) \delta x\right|_{x=x_{L}}+\int_{\tau=0}\left\{f_{\alpha} \delta \alpha+f_{\alpha^{\prime}} \delta \alpha+f_{\alpha^{\prime \prime}} \delta \alpha^{\prime \prime}\right\} d_{\tau} \text { (2.30) }
\end{aligned}
$$

since on the arc $O L x=\alpha(\tau), t=\tau$, and $d x$ has been replaced by $\alpha^{\prime}(\tau) \mathrm{d} \tau$.

Now integrating $f_{\alpha}, \delta \alpha^{\prime}$ and $f_{\alpha^{\prime \prime}} \delta \alpha^{\prime \prime}$ by parts gives

$$
\begin{align*}
\int_{\tau=0}^{T} f_{\alpha^{\prime}} \delta \alpha^{\prime} d \tau & =\delta \alpha \int_{\tau=0}^{T} f_{\alpha^{\prime}}-\int_{\tau=0}^{T} \delta \alpha \frac{\partial f}{\partial \tau} \alpha^{\prime d \tau}, \tag{2.31}\\
\int_{\tau=0}^{T} f_{\alpha^{\prime \prime}} \delta \alpha^{\prime \prime} d \tau & =\delta \alpha^{\prime} \int_{\tau=0}^{T} f_{\alpha^{\prime \prime}}-\int_{\tau=0}^{T} \delta \alpha^{\prime} \frac{\partial F}{\partial \tau} \alpha^{\prime \prime} d_{\tau} \\
& =\delta \alpha^{\prime} \prod_{\tau=0}^{T} f_{\alpha^{\prime \prime}}-\delta \alpha \int_{\tau=0}^{T} \frac{\partial f^{\prime}}{\partial \tau} \alpha^{\prime \prime}+\int_{\tau=0}^{T} \delta \alpha \frac{\partial^{2} f^{\prime} \alpha^{\prime \prime} d \tau}{\partial \tau^{2}} . \tag{2.32}
\end{align*}
$$

Since there is no variation in the curve OL at the origin $\delta \alpha$ is zero at $\tau=0$, and so $\delta \mathrm{J}$ may now be written as

$$
\begin{align*}
\delta J= & \int_{S_{I_{T}}} \int \overline{\delta \varnothing}\left\{F_{\phi}-\frac{\partial}{\partial x} F_{\phi_{x}}-\frac{\partial}{\partial t} F_{\phi_{t}}\right\} d x d t+\int_{\operatorname{arcLR}} \overline{\delta \varnothing}\left(Q_{\phi}+F_{\phi_{t}}\right) d x \\
& +\int_{\tau=0} \delta \alpha\left\{f-\frac{\partial f_{\alpha}}{\partial \tau}+\frac{\partial^{2} f_{\alpha}}{\partial \tau^{2}}-F+\left[F_{\phi_{x}}-F_{\phi_{t}} \alpha^{\prime}(\tau)\right]\left[\frac{M_{\alpha}}{M_{\phi}}+\emptyset_{x}\right]\right\} d \tau \\
& +\left[\delta \alpha\left(F_{\alpha}-\frac{\partial f_{\alpha^{\prime \prime}}}{\partial \tau}-Q(x, T, \phi)\right)\right]+\left[\delta \alpha^{\prime} f_{\alpha^{\prime \prime}}^{\tau=T}\right]_{\tau=0} . \tag{2.33}
\end{align*}
$$

As $\delta \bar{\varnothing}$ and $\delta \alpha$ are arbitary variations it follows that for I to be a minimum $\delta \mathrm{J}$ is zero so

$$
\begin{align*}
& F_{\phi}-\frac{\partial}{\partial x} F_{\phi_{x}}-\frac{\partial}{\partial t} F_{\phi_{t}}=0, \quad(x, t) \in S_{1}, \tag{2,34}\\
& Q_{\phi}+F_{\phi_{t}}=0 \quad, \quad(x, t) \in L R \quad, \tag{2.35}\\
& f-\frac{\partial f_{\alpha^{\prime}}}{\partial \tau}+\frac{\partial^{2} f_{\alpha^{\prime \prime}}}{\partial \tau^{2}}-F_{:}+\left[F_{\phi_{x}}-F_{\phi_{t}} \alpha^{\prime}(\tau)\right]\left[\frac{M_{\alpha}}{M_{\phi}}+\phi_{x}\right]=0,
\end{align*}
$$

Since $\delta \alpha(\neq 0)$ and $\delta \alpha^{\prime}(\neq 0)$ are independent variations at $\tau=T$
$\left.\begin{array}{c}f_{\alpha}-\frac{\partial f}{\partial \tau} \alpha^{\prime \prime}-Q(x, T, \phi)=0, \quad \text { at } \tau=T \\ f_{\alpha^{\prime \prime}}=0 \\ \text { At } \tau=0 \text { either } \alpha^{\prime}(0) \text { is given or } f_{\alpha^{\prime \prime}}=0 .\end{array}\right\} \begin{gathered}(2.37) \\ (2.37 \mathrm{a}) \\ (2.37 \mathrm{~b})\end{gathered}$
From (2.17) $F\left(x, t, \emptyset_{x}, \emptyset_{t}\right)=H\left(x, t, \phi, \emptyset_{x}\right)-\lambda \emptyset_{t}$
and from (2.10) $H\left(x, t, \emptyset_{x}\right)=P\left(x, t, \phi_{x}\right)+\lambda g\left(x, t, \phi_{x} \phi_{x}\right)$ and so

$$
\begin{aligned}
& F_{\phi}=P_{\phi}+\lambda g_{\phi}, \\
& F_{\phi_{x}}=P_{\phi_{x}}+\lambda g_{\phi_{x}}, \\
& F_{\phi_{t}}=-\lambda \\
& \text { Using the above (2.34), (2.35) and }(2.37) \text { can be rewritten as: }
\end{aligned}
$$

$$
\begin{align*}
& P_{\phi}-\lambda g_{\phi}-\frac{\partial}{\partial x}\left[P_{\phi_{x}}+\lambda g_{\phi_{x}}\right]+\frac{\partial \lambda}{\partial t}=0,(x, t) \in G_{1} \text {, (2.38) } \\
& g_{\phi}-\lambda=0, \quad(x, t) \in L R \quad, \tag{2.39}\\
& f_{\alpha}-\frac{\partial f}{\partial \tau} \alpha^{\prime}+\frac{\partial^{2} f_{\alpha}}{\partial \tau^{2}} \alpha^{\prime \prime}-P-\lambda\left(g-\phi_{t}\right)+\left[P_{\phi_{x}}+\lambda g_{\phi_{x}}+\lambda \alpha^{\prime}(\tau)\right]\left[\frac{M_{\alpha}^{\alpha}}{\bar{M}_{\phi}}+\phi_{x}\right]=0, \\
& (x, t) \in O L \text {. }
\end{align*}
$$

Equation (2.40) is the transversality condition and from it the value of $\alpha(\tau)$ which minimises J may be found. Equation (2.38) is the costate equation.

A simple example of the above theory will now be discussed. In this example the state, equation is given by

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}+a \frac{\partial \emptyset}{\partial x}=0, \quad a>0 \tag{2.41}\\
& \text { i.e. } g\left(x, t, \phi, \emptyset_{x}\right)=-a \frac{\partial \emptyset}{\partial x} \tag{2.42}
\end{align*}
$$

$$
\begin{align*}
& I=\int_{S_{1}} \int_{\frac{1}{2} \phi^{2} d x d t+\int_{\tau=0}^{T}\left(\frac{1}{2} \alpha^{2}+\frac{1}{2} \alpha^{\prime 2}\right) d \tau}^{\text {i.e. } P\left(x, t, \phi, \phi_{x}\right)=\frac{1}{2} \phi^{2}} \begin{array}{l}
Q(x, T, \phi)=0 \\
f\left(\alpha, \alpha^{\prime}, \alpha^{\prime \prime}, \tau\right)=\frac{1}{2} \alpha^{2}+\frac{1}{2} \alpha^{\prime 2} \\
J=\int_{S_{1}} \int_{2}\left\{\phi^{2}-\lambda\left(a \phi_{x}+\emptyset_{t}\right) d x\right\} d t+\int_{\tau=0}^{T}\left(\frac{1}{2} \alpha^{2}+\frac{1}{2} \alpha^{\prime 2}\right) d \tau \cdot(2.47)
\end{array}, l
\end{align*}
$$

The boundary condition on 0 L is

$$
\begin{equation*}
M(x, \phi, t)=\emptyset(x, t)-\emptyset_{0}(x, t)=0 \quad x=\alpha(\tau), \quad t=\tau \tag{2.48}
\end{equation*}
$$

The ordinary differential equations of the family of characteristics of equation (2.41) are

$$
\frac{d x}{d t}=a \quad \text { and } \quad \frac{d \phi}{d t}=0
$$

which imply

$$
\begin{align*}
& x-a t=\text { constant and } \varnothing=\text { constant, on the characteristics and so } \\
& \emptyset(x, t)=x(x-a t) \tag{2.49}
\end{align*}
$$

where X is an arbitary function.
At $x=\alpha(\tau), t=\tau, \quad \emptyset(x, t)=\emptyset_{0}(x, t)$ so
$x(\alpha(\tau)-a \tau)=\emptyset_{0}(\alpha(\tau), \tau)$.
From equations (2.38), (2.41) and (2.44)

$$
\phi(x, t)-\frac{\partial}{\partial x}(-a \lambda)+\frac{\partial \lambda}{\partial t}=0
$$

and using (2.49),

$$
\begin{equation*}
a \frac{\partial \lambda}{\partial x}+\frac{\partial \lambda}{\partial t}=-x(x-a t) \tag{2.51}
\end{equation*}
$$

To solve equation (2.51) put

```
\xi=x-at, n=t
```

then

$$
\begin{aligned}
& \frac{\partial}{\partial x}=\frac{\partial \xi}{\partial x} \frac{\partial}{\partial \xi}=\frac{\partial}{\partial \xi} \\
& \frac{\partial}{\partial t}=\frac{\partial \xi}{\partial t} \frac{\partial}{\partial \xi}+\frac{\partial \eta}{\partial t} \frac{\partial}{\partial \eta}=-\frac{a \partial}{\partial \xi}+\frac{\partial}{\partial \eta}
\end{aligned}
$$

and so (2.51) becomes
$\frac{a \partial \lambda}{\partial \xi}-\frac{a \partial \lambda}{\partial \xi}+\frac{\partial \lambda}{\partial \eta}=-\chi(\xi)$
$\frac{\partial \lambda}{\partial \eta}=-\chi(\xi)$
so $\lambda=-n \chi(\xi)+X_{1}(n)$
where X_{i} is an arbitary function. Therefore

$$
\lambda=-t x(x-a t)+X_{1}(x-a t) .
$$

From (2.39) λ is zero at $t=T$ since Q is zero so
$T X(x-a T)=X_{1}(x-a T)$
and
$\lambda=(T-t) X(x-a t)$.
M_{α} and M_{ϕ} can be found from (2.48)
$M_{\alpha}=\left.\frac{\partial M}{\partial x}\right|_{x=\alpha} \quad$, and
$\frac{\partial M}{\partial x}=-\frac{\partial \phi_{0}}{\partial x} \quad$,so
$M_{\alpha}=-$
$M_{\phi}=1$,
and so in this problem equation (2.40);becomes:

$$
\left.\left.\alpha(\tau)-\alpha^{\prime \prime}(\tau)-\frac{1}{2} \phi^{2}(x, t)+\lambda\left\{\frac{\partial \phi}{\partial x}-\frac{\partial \phi_{0}}{\partial x}\right\}\right\}_{\substack{x=\alpha(\tau) \\ t=\tau}}^{\{ }(\tau)-a\right\}=0, x=\alpha(\tau), t=\tau
$$

From (2.49) $\varnothing(x, t)=X(x-a t)$
therefore $\frac{\partial \phi}{\partial x}=X^{\prime}(x-a t)$

$$
\begin{equation*}
\left.\frac{\partial \emptyset}{\partial x}\right|_{\substack{x=\alpha \\ t=\tau}}(\tau) \quad=x^{\prime}(\alpha(\tau)-a \tau) \tag{2.56}
\end{equation*}
$$

Put $\alpha(\tau)-a \tau=w(\tau)$, then

$$
x\{w(\tau)\}=\emptyset_{0}(\alpha(\tau), \tau) \quad \text { from }(2.50)
$$

so differentiating with respect to τ,

$$
x^{\prime}\{w(\tau)\} \frac{d w}{d \tau}=\left.\frac{\partial \emptyset_{0}}{\partial x}\right|_{\substack{x=\alpha \\ \tau}} \underset{\alpha}{\alpha^{\prime}(\tau)}+\frac{\partial \emptyset_{0}}{\partial \tau}
$$

or

$$
\begin{equation*}
\left[\alpha^{\prime}(\tau)-a\right] x^{\prime}(\alpha(\tau)-a \tau)=\left.\frac{\partial \emptyset_{0}}{\partial x}\right|_{\substack{\chi=\alpha \\ \tau}} \alpha^{\prime}(\tau)+\frac{\partial \emptyset_{0}}{\partial \tau} \tag{2.57}
\end{equation*}
$$

Using (2.57), (2.56) can be written as

$$
\left.\frac{\partial \emptyset}{\partial x}\right|_{\substack{x=\alpha \\=1}}(\tau) \frac{\sum_{\substack{x \\ \partial x \\ \chi=\tau}}(\tau)^{\alpha^{\prime}(\tau)+\frac{\partial \emptyset}{\partial \tau}}}{\alpha^{\prime}(\tau)-a}
$$

so

From (2.54) $\lambda=(T \div t) x(\alpha(\tau)-a \tau)$ on OL and as

$$
\emptyset_{0}(\alpha(\tau), \tau)=x(\alpha(\tau)-a \tau)
$$

$$
\begin{equation*}
\lambda=(T-\tau) \emptyset_{0}(\alpha(\tau), \tau), \quad \text { on } 0 L \tag{2.59}
\end{equation*}
$$

$\frac{1}{2} \phi^{2}(x, t)$ becomes $\frac{1}{2} \phi_{0}^{2}(\alpha(\tau), \tau)$ on $O L$ and so using this, (2.59) and (2.58), (2.57) can be written as
$\alpha(\tau)-\alpha^{\prime \prime}(\tau)-\frac{1}{2} \emptyset_{0}^{2}(\alpha(\tau), \tau)+(T-\tau) \emptyset_{0}(\alpha(\tau), \tau) \frac{\left\{\frac{\partial \emptyset_{0}}{\partial \tau}+\left.\frac{a \partial \emptyset_{0}}{\partial x}\right|_{X=\tau} ^{\bar{E} \alpha}(\tau)\right.}{\alpha^{\prime}(\tau)-a} \times$

$$
\begin{aligned}
& \left\{\frac{\partial \emptyset}{\partial x}-\frac{\partial \phi_{0}}{\partial x}\right\}_{\substack{x=\alpha \\
\tau}}(\tau)
\end{aligned}
$$

$$
\begin{align*}
& ={\frac{\partial \emptyset_{0}}{\partial \tau}}+\left.a \frac{\partial \emptyset}{\partial x}_{0}\right|_{\substack{x=\alpha \\
=}} \quad . \tag{2.58}\\
& \alpha^{\prime}(\tau)-a
\end{align*}
$$

$$
\left.\begin{array}{c}
x(\tau)-\alpha^{\prime \prime}(\tau)-\frac{1}{2} \phi_{0}^{2}(\alpha(\tau), \tau)+(T-\tau) \phi_{0}^{\prime}(\alpha(\tau), \tau)\left\{\frac{\partial \phi_{0}}{\partial \tau}+\underset{\substack{a \partial \phi_{0} \\
\partial x \\
(2.60)}}{ }=0\right. \\
\left.\left.\begin{array}{c}
\tau=\alpha \\
\tau
\end{array}\right)\right\}
\end{array}\right\}=0
$$

The solution for $\alpha(\tau)$ which minimises I may be found from equation (2.60), together with the boundary conditions (2.14) and (2.37).

Take the particular case where $\emptyset_{0}(x, t)=x^{\frac{3}{2}}$. Here
$\phi_{0}(\alpha(\tau), \tau)=\alpha^{\frac{3}{2}}(\tau)$, so (2.60) becomes
$\alpha(\tau)-\alpha^{\prime \prime}(\tau)-\frac{1}{2} \alpha(\tau)+\left(T-\tau \alpha^{\frac{3}{2}}(\tau) \cdot \frac{1}{2} a \alpha^{-\frac{1}{2}}(\tau)=0\right.$
$\alpha^{\prime \prime}(\tau)-\frac{1}{2}\{\alpha(\tau)+a(T-\tau)\}=0$
Putting $\psi(\tau)=\alpha(\tau)+a(T-\tau)$
then $\psi^{\prime \prime}(\tau)=\alpha^{\prime \prime}(\tau)$
and (2.61) becomes

$$
\begin{equation*}
\psi^{\prime \prime}(\tau)-\frac{1}{2} \psi(\tau)=0 \tag{2.63}
\end{equation*}
$$

The boundary conditions on (2.63) are:
from (2.16),

$$
\alpha(0)=0 \text {, i.e. } \psi=a T \quad, \tau=0 \text {; }
$$

from (2.37),

$$
\alpha^{\prime}(T)=0, \text { i.e. } \psi^{\prime}(T)=-a \quad, \tau=T
$$

Using these conditions (2.63) may be solved for $\psi(\tau)$ and hence the value of $\alpha(\tau)$ which minimises I may be found from (2.61).

CHAPTER THREE

A Second Order Hyperbolic Partial Differential Equation Example of

 the Use of the Gelfand-Fomin Theorem.Let S be the domain in the (x, t) plane indicated in figure (3.1); S is bounded by the closed curve OARL with $A R$ being a portion of the line $x=2$ and LR a portion of the line $t=T$. It is assumed that the equation of $O L$ may be expressed in the form

$$
\begin{equation*}
x=\alpha(\tau) \quad, t=\tau \quad, 0 \leqslant \tau \leqslant T, \tag{3.1}
\end{equation*}
$$

τ being a time parameter, with $\alpha(0)=0$.

Figure 3.1
The shape of the curve $O L$ is unknown initially, that is $\alpha(\tau)$ is an unknown function of τ, and later it is attempted to find the curve OL in order to minimise a particular performance criterion. With $\alpha(0)=0$ the curve $O L$ always passes through the origin.

A function $\emptyset(x, t)$ is defined for all $(x, t) \in S$ and $\emptyset(x, t)$ satisfies in S the second order partial differential equation

$$
\begin{equation*}
\frac{\partial^{2} \emptyset}{\partial t^{2}}=c^{2} \frac{\partial^{2} \emptyset}{\partial x^{2}} \tag{3.2}
\end{equation*}
$$

where c is a constant.

Putting	$\frac{\partial \emptyset}{\partial t}$	$\begin{equation*} =\frac{c \partial \psi}{\partial x} \tag{3.3} \end{equation*}$
then	$\begin{equation*} \frac{c \partial \emptyset}{\partial x} \tag{3.4} \end{equation*}$	$=\frac{\partial \psi}{\partial t}$

The boundary conditions on OA are

$$
\begin{equation*}
\emptyset(x, 0)=\emptyset_{0}(x) \quad, \quad \psi(x, 0)=\psi_{0}(x) ; \tag{3.5}
\end{equation*}
$$

on AR,

$$
\begin{equation*}
\emptyset(Z, t)=0 \tag{3.6}
\end{equation*}
$$

and on OL,

$$
\begin{equation*}
M\left(\emptyset, \psi, \alpha(\tau), \alpha^{\prime}(\tau), \tau\right)=0 \tag{3.7}
\end{equation*}
$$

The ordinary differential equations for the families of characteristics for equation (3.2) are:

$$
\begin{array}{ll}
C+: d x-c d t=0 & \text { i.e. } x-c t=\text { constant }=\xi \\
c-: d x+c d t=0 & \text { i.e. } x+c t=\text { constant }=n .8) \tag{3.9}\\
\text { (3. (3.9) }
\end{array}
$$

It is assumed that a moving point on a $C+$ characteristic commencing at any point on $O L$ or $O A$ will travel with increasing time into the domain S and will eventually meet either $L R$ or $A R$ in a single point. This implies that the slope of 0 L at the point $t=\tau$ must be greater than the slope of the characteristic at that point, that is,

$$
\begin{equation*}
c>\alpha^{\prime}(\tau) \quad, \quad 0<\tau \leqslant T \tag{3.10}
\end{equation*}
$$

It is also assumed that each C - characteristic commencing at any point on $O A$ or $A R$ will travel (with dt> 0) into the domain S and will eventually meet either $O L$ or $L R$ in a single point.

From (3.8) and (3.9)

$$
\frac{\partial}{\partial x}=\frac{\partial}{\partial \xi}+\frac{\partial}{\partial \eta} \quad, \quad \frac{\partial}{\partial t}=-\frac{c \partial}{\partial \xi}+\frac{c \partial}{\partial \eta}
$$

and equations (3.3) and (3.4) become

$$
c\left(\frac{-\partial \emptyset}{\partial \xi}+\frac{\partial \emptyset}{\partial \eta}\right)=c\left(\frac{\partial \psi}{\partial \xi}+\frac{\partial \psi}{\partial \eta}\right)
$$

and

$$
{ }^{c}\left(\frac{\partial \phi}{\partial \xi}+\frac{\partial \phi}{\partial \eta}\right)=c^{c}\left(\frac{\partial \psi}{\partial \xi}+\frac{\partial \psi}{\partial \eta}\right)
$$

giving on addition and subtraction

$$
2 \frac{\partial \emptyset}{\partial \eta}=2 \frac{2 \partial}{\partial \eta} \quad, \quad 2 \frac{\partial \emptyset}{\partial \xi}=-\frac{2 \partial \psi}{\partial \xi}
$$

It follows from the above equations that

$$
\frac{\partial}{\partial \eta}(\phi-\psi)=0, \quad \frac{\partial}{\partial \xi}(\phi+\psi)=0,
$$

hence
(a) $\varnothing-\psi$ is constant along the $\xi=$ constant characteristic ;
(b) $\varnothing+\psi$ is constant along the $\eta=$ constant characteristic.

Figure 3.2
Accordingly if $P Q$ is a C- characteristic then
$\varnothing_{Q}+\psi_{Q}=\emptyset_{p}+\psi_{P}$
where $\emptyset_{Q} \psi_{Q}, \emptyset_{p}$ and ψ_{p} denote the values of \emptyset and ψ at the points P and Q_{8} (see Figure (3.2) and this equation can be written in the form

$$
\begin{equation*}
\emptyset(\alpha(\tau), \tau)+\psi(\alpha(\tau), \tau)=\emptyset_{0}(x)+\psi_{0}(x) \tag{3.11}
\end{equation*}
$$

where $(x, 0)$ are the coordinates of the point P. Since $x+c t$ is constant along the C - characteristics this becomes

$$
\emptyset(\alpha(\tau), \tau)+\psi(\alpha(\tau), \tau)=\emptyset_{0}(\alpha(\tau)+c \tau)+\psi_{0}(\alpha(\tau)+c \tau)
$$

hence

$$
N \equiv \emptyset(\alpha(\tau), \tau)+\psi(\alpha(\tau), \tau)-\emptyset_{0}(\alpha(\tau)+c \tau)-\psi_{0}\left(\alpha(\tau)+c_{\tau}\right)=0
$$

is true for all τ in the range $0<\tau<T$ and is valid on $O L$. Accordingly there are two conditions to be satisfied on OL, namely (3.7) and (3.12).

The controllable area of the domain S must now be determined when the curve OL varies in position. Consider first the case where the C+ characteristic through the origin meets the line AR in a point H. The C+ characteristic through any point Q in the triangle OAH will originate on the line $O A$ and the C - characteristic through this point will originate on either OA or AR and so the values of \varnothing and ψ at Q will not be affected by any variation of the position of the curve OL.

Figure 3.3
Hence the domain OAH is uncontrollable. At any point, B, in the domain OHRL the C+ characterisitic will originate on OL and so the values of \emptyset and ψ at B will alter with a variation of OL. Hence the domain OHRL will be regarded as controllable.

Consider next the case where the $C+$ characteristic through the origin meets the line $L R$ in a point K. It can be shown by a similar

Figure 3.4
argument that the domain OARK is uncontrollable and that the domain OKL is controllable.

The latter case will now be discussed more fully, The position of the line AR will be taken to be such that the C - characteristic through K originates on $O A$ and not $A R$. The control problem is to minimise a performance index I given by

$$
\begin{equation*}
I=\iint_{S_{1}} P(\not, \psi, x, t) d x d t+\int_{L K} Q(\phi, \psi, x, T) d x+\int_{\tau=0}^{T} f\left(\alpha, \alpha^{\prime}, \alpha^{\prime \prime}, \tau\right) d \tau, \tag{3.13}
\end{equation*}
$$

where S_{1} is the domain $O K L$, as the position of the curve OL varies.

Figure 3.5

In physical terms this can be interpreted as a string of length \mathcal{Z} bing fixed at one end, A. The string is moved, with the free end O describing the curve $O L$ after time T. The control problem will determine the optimum path for 0 to follow to minimise a given performance criterion. If $\emptyset(x, t)$ represents the position of the string at a point x at time t, then, if the string is to be as

Figure 3.6
close as possible to some prescribed shape $\Phi(x)$ at time T, the performance index will be $P \equiv 0, Q \equiv\{\varnothing(x, T)-\Phi(x)\}^{2}$. ψ is related to the velocity by $\frac{c \partial \emptyset}{\partial x}=\frac{\partial \psi}{\partial t}$ and so for the velocity also to be as near as possible to a prescribed velocity $\Psi(x)$ at time T, Q becomes

$$
Q \equiv\{\emptyset(x, t)-\Phi(x)\}^{2}+\{\psi(x, t)-\Psi(x)\}^{2}
$$

Consider now instead of I given in (3.13) the new functional J given by

$$
\begin{align*}
& J=\iint_{S_{1}}\left\{P+\lambda\left(\phi_{t}-c \psi_{x}\right)+\mu\left(\psi_{t}-c \emptyset_{x}\right)\right\} d x d t \\
&+\int_{L K} Q(\phi, \psi, x, T) d x+\int_{0}^{T} f\left(\alpha, \alpha^{\prime}, \alpha^{\prime \prime}, \tau\right) d \tau \tag{3.14}
\end{align*}
$$

where λ and μ are Lagrange multipliers depending on x and t. The increment, δJ, in J as the position of the curve $O L$ varies must now be found. The variation of position may be achieved by adding to $\alpha(\tau)$ the increment $\delta \alpha(\tau)$ at the same time τ. The curve 0 i.e. $x=\alpha(\tau), t=\tau,(0<\tau * T)$, will be regarded as the curve which provides the minimum for I in (3.13) and the varied curve will be OL', namely

Figure 3.7

$$
x=\alpha(\tau)+\delta \alpha(\tau), \quad t=\tau, \quad(0<\tau<T)
$$

The functions $\alpha(\tau)$ and $\delta \alpha(\tau)$ are assumed continuous and satisfying

$$
\begin{equation*}
\alpha(0)=0, \quad \delta \alpha(0)=0 . \tag{3.15}
\end{equation*}
$$

The extension of the Gelfand--Fomin result may now be used to find $\delta \mathrm{J}$.

Let

$$
\begin{equation*}
F\left(\emptyset_{\mathrm{F}}, \psi, \emptyset_{\mathrm{x}}, \psi_{\mathrm{x}}, \emptyset_{\mathrm{t}}, \psi_{\mathrm{t}}, \mathrm{x}, \mathrm{t}\right)=\mathrm{P}+\lambda\left(\emptyset_{\mathrm{t}}-\mathrm{c} \psi_{\mathrm{x}}\right)+\mu\left(\psi_{\mathrm{t}}-\mathrm{c} \emptyset_{\mathrm{x}}\right), \tag{3.16}
\end{equation*}
$$

and $x_{1}=\iint_{S} F d x d t$, then

$$
\begin{aligned}
& \delta x_{1}=\int_{S} \int_{1}^{1}\left\{\overline{\delta \varnothing}\left[F_{\phi}-\frac{\partial}{\partial x} F_{\phi_{x}}-\frac{\partial}{\partial t} F_{\phi_{t}}\right]+\overline{\delta \psi}\left[F_{\psi}-\frac{\partial}{\partial x} F_{\psi_{x}}-\frac{\partial}{\partial t} F_{\psi_{t}}\right]\right\} \mathrm{d} x \mathrm{~d} t
\end{aligned}
$$

where $\delta \varnothing$ and $\delta \psi$, the increments in \emptyset and ψ, are related to $\overline{\delta \varnothing}$ and $\overline{\delta \psi}$ by

$$
\begin{align*}
& \delta \emptyset=\overline{\delta \emptyset}+\frac{\partial \emptyset}{\partial x} \delta x+\frac{\partial \emptyset}{\partial t} \delta t \tag{3.18}\\
& \delta \psi=\overline{\delta \psi}+\frac{\partial \psi}{\partial x} \delta x+\frac{\partial \psi}{\partial t} \delta t \tag{3.19}
\end{align*}
$$

Applying Stoke's theorem in [2] to the second integral in (3.17) gives
$\delta X_{1}=\int_{S I} \int\left\{\overline{\delta \emptyset}\left[F_{\phi}-\frac{\partial}{\partial x} F_{\phi_{x}}-\frac{\partial}{\partial t} F_{\phi_{t}}\right]+\overline{\delta \psi}\left[F_{\psi}-\frac{\partial}{\partial x} F_{\psi_{x}}-\frac{\partial}{\partial t} F_{\psi_{t}}\right]\right\} d x d t$

Let $\quad x_{2}=\int_{L K} Q(\varnothing, \psi, x, T) d x \quad$, then

$$
\begin{aligned}
\delta X_{2}= & \int_{L K}\left\{\overline{\delta \phi}\left[Q_{\phi}-\frac{\partial}{\partial x} Q_{\phi_{x}}\right]+\left[\overline{\delta \psi} Q_{\psi}-\frac{\partial}{\partial x} Q_{\psi_{x}}\right]\right\} \mathrm{dx} \\
& +\int_{L K} \frac{\partial}{\partial x}\left[Q^{\delta} x+\overline{\delta \phi} Q_{\phi_{x}}+\overline{\delta \psi} Q_{\psi_{x}}\right] d x
\end{aligned}
$$

Q is independent of \emptyset_{x} and ψ_{X} so

$$
\delta X_{2}=\int_{L K}\left\{\overline{\delta \varnothing} Q_{\phi}+\overline{\delta \psi} Q_{\psi}\right\} \mathrm{dx}+\left.Q \delta x\right|_{x=x_{L}} ^{x=x_{R}}
$$

and since δx is zero at the point K

$$
\begin{equation*}
\delta X_{2}=\int_{L K}\left\{\delta \varnothing Q_{\phi}+\delta \psi Q_{\psi}\right\} d x+\left.Q \delta x\right|_{x=x_{L}} \tag{3.21}
\end{equation*}
$$

$\delta \mathrm{J}$ may now be written down from equations (3.20),(3.21) and the variation in $f\left(\alpha, \alpha^{\prime}, \alpha^{\prime \prime}, \tau\right)$.

$$
\begin{aligned}
& \delta J=\iint_{S_{1}}\left\{\delta \overline{\delta \phi}\left[F_{\phi}-\frac{\partial F_{x}}{\partial x} \phi_{x}-\frac{\partial}{\partial t} F_{\phi_{t}}\right]+\left[\begin{array}{ll}
\bar{\delta} \psi & \left.\left.F_{\psi}-\frac{\partial}{\partial x} F_{\psi_{x}}-\frac{\partial}{\partial t} F_{t}\right]\right\} d x d t
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{align*}
& +\int_{\mathrm{LK}}\left\{\overline{\delta \varnothing} Q_{\phi}+\overline{\delta \psi} Q_{\psi}\right\} d x+\left.Q \delta x\right|_{x=x_{L}} \\
& +\int_{0}^{T}\left\{f_{\alpha} \delta \alpha+f_{\alpha^{\prime}}, \delta \alpha^{\prime}+f_{\alpha}\left\{\alpha^{\prime \prime}\right\} d_{\tau} .\right. \tag{3.22}
\end{align*}
$$

At any point on OK x, t, \emptyset and ψ remain unaltered by a variation of the position of curve $O L$ and so $\delta x, \delta t, \delta \emptyset$ and $\delta \psi$ are zero at such a point, which means, from (3.18) and (3.19), that $\bar{\delta}$ and $\bar{\delta}$ are zero on $O K$. Therefore there is no contribution to $\delta \mathrm{J}$ from the integral along OK . On OL $x=\alpha(\tau), t=\tau$ and as τ is unaltered $\delta t=\delta \tau=0$. Since $t=T$ on $L K$, dit and δt are zero on LK. δJ can therefore be written as

$$
\begin{align*}
& \delta J=\int_{S_{1}}\left\{\delta \delta \bar{\delta}\left[F_{\phi}-\frac{\partial}{\partial x} F_{x}-\frac{\partial}{\partial t} F_{t}\right]+\delta \bar{\psi}\left[F_{\psi}-\frac{\partial}{\partial x} F_{\psi_{x}}-\frac{\partial}{\partial t} F_{t}\right]\right\} d x d t \\
& +\int_{L_{0}}\left\{\left[\mathrm{~F} \delta \alpha+\overline{\delta \phi \mathrm{F}_{\phi_{\mathrm{x}}}}+\overline{\delta \psi} \mathrm{F}_{\psi_{\mathrm{x}}}\right] \mathrm{d} \tau-\left[\overline{\delta \varnothing \mathrm{F}_{\phi_{\mathrm{t}}}}+\overline{\delta \psi} \mathrm{F}_{\psi_{t}}\right] \mathrm{d} \alpha\right\} \\
& +\int_{\operatorname{LK}}\left\{\delta \varnothing\left[Q_{\phi}+F_{\phi_{t}}\right]+\overline{\delta \psi}\left[Q_{\psi_{t}}+F_{\psi_{t}}\right]\right\} d x+\left.Q \delta x\right|_{x=x_{L}} \\
& +\int_{0}\left\{f_{\alpha} \delta \alpha+f_{\alpha^{\prime}} \delta \alpha^{\prime}+f_{\alpha^{\prime} \delta \alpha^{\prime \prime}}\right\} d_{\tau} \text { - } \tag{3.23}
\end{align*}
$$

On OL the boundary condition $M \equiv 0$ must be satisfied so

$$
M\left(\emptyset, \psi, \alpha(\tau), \alpha^{\prime}(\tau), \tau\right)=0
$$

On OL', i.e. $x=\alpha(\tau)+\delta \alpha(\tau), t=\tau$,
$\mathrm{M} \equiv \mathrm{O}$ must also be satisfied so

$$
M\left(\emptyset+\delta \emptyset, \psi+\delta \psi, \alpha(\tau)+\delta \alpha(\tau), \alpha^{\prime}(\tau)+\delta \alpha^{\prime}(\tau), \tau\right)=0 .
$$

Expanding this by Taylor's theorem gives

$$
M\left(\emptyset, \psi, \alpha(\tau), \alpha^{\prime}(\tau), \tau\right)+\delta \emptyset M_{\phi}+\delta \psi M_{\psi}+\delta \alpha M_{\alpha}+\delta \alpha^{\prime} M_{\alpha},=0
$$

where $M=M\left(\emptyset, \psi, \alpha(\tau), \alpha^{\prime}(\tau), \tau\right) \quad$.
It follows from the two equations $M\left(\phi, \psi, \alpha(\tau), \alpha^{\prime \prime}(\tau), \tau\right)=0$
and $M\left(\phi+\delta \emptyset, \psi+\delta \psi, \alpha+\delta \alpha, \alpha^{\prime}+\delta \alpha^{\prime}, \tau\right)=0$ that

$$
\begin{equation*}
\delta \emptyset M_{\phi}+\delta \psi M_{\phi}+\delta \alpha M_{\alpha}+\delta \alpha^{\prime} M_{\alpha}=0, \quad \text { on } 0 L . \tag{3.24}
\end{equation*}
$$

Equation (3.12) gives a second relationship between \emptyset and ψ for all values of τ on $O L$ and in a similar way it follows that

$$
\begin{equation*}
\delta \phi \mathrm{N}_{\phi}+\delta \psi \mathrm{N}_{\psi}+\delta \alpha \mathrm{N}_{\alpha}=0, \quad \text { on } \mathrm{OL} \tag{3.25}
\end{equation*}
$$

Eliminating first $\delta \psi$ and then $\delta \emptyset$ from (3.24) and (3.25) gives

$$
\begin{aligned}
\delta \varnothing & =\frac{\delta \alpha\left(M_{\alpha} N_{\psi}-N_{\alpha} M_{\psi}\right)+\delta \alpha^{\prime} M_{\alpha}, N_{\psi}}{M_{\phi} N_{\psi}-N_{0}, M_{\psi}} \\
\delta \psi & =\frac{\delta \alpha\left(M_{\alpha} N_{\phi}-N_{\alpha} M_{\phi}\right)+\delta \alpha^{\prime} M_{\alpha^{\prime}} N_{\phi}}{M_{\psi} N_{\phi}-N_{\psi} M_{\phi}}
\end{aligned}
$$

For convenience let

$$
\begin{align*}
& \frac{M_{\alpha} N_{\psi}-N_{\alpha} M_{\psi}}{M_{\phi} N_{\psi}-N_{\phi} M_{\psi}}=A_{1} \\
& \frac{M_{\alpha} N_{\psi}}{M_{\phi^{N}}{ }_{\psi}-N_{\phi} M_{\psi}}=B_{1}
\end{align*}
$$

;

$\frac{M_{\alpha \phi}-N_{\alpha} M_{\phi}}{M_{\psi} N_{\phi}-N_{\psi} M_{\phi}}=A_{2} ;$
$\underline{M_{\alpha}, N_{\phi}} \quad=B_{2}$;
$M_{\psi} N_{\phi}-N_{\psi} M_{\phi}$
then

$$
\delta \emptyset=\delta \alpha A_{1}+\delta \alpha^{\prime} B_{1} \quad ; \quad \delta \psi=\delta \alpha A_{2}+\delta \alpha^{\prime} B_{2} ;
$$

and from (3.18) and (3.19)

$$
\begin{align*}
& \overline{\delta \emptyset}=\delta \alpha A_{1}+\delta \alpha^{\prime} B_{1}-\frac{\partial \emptyset}{\partial x} \delta x-\frac{\partial \emptyset}{\partial t} \delta t \tag{3.27}\\
& \bar{\delta} \psi=\delta \alpha A_{2}+\delta \alpha^{\prime} B_{2}-\frac{\partial \psi}{\partial x} \delta x-\frac{\partial \psi}{\partial t} \delta t \tag{3.28}
\end{align*}
$$

Since $x=\alpha(\tau)$ and $t=\tau$ on $O L \delta x=\delta \alpha$ and $\delta t=\delta \tau$ and since τ is uncharged by any variation in $O L$ (i.e. $\delta \tau$ is zero), then

$$
\begin{array}{ll}
\overline{\delta \emptyset}=\delta \alpha\left\{\mathrm{A}_{1}-\frac{\partial \emptyset}{\partial \alpha}\right\}+\delta \alpha^{\prime} \mathrm{B}_{1} & , \text { on } \mathrm{OL} ; \\
\overline{\delta \psi}=\delta \alpha\left\{\mathrm{A}_{2}-\frac{\partial \psi}{\partial \alpha}\right\}+\delta \alpha^{\prime} \mathrm{B}_{2} & , \text { on } \mathrm{OL} ;
\end{array}
$$

where

$$
\frac{\partial \emptyset}{\partial \alpha}=\left.\frac{\partial \emptyset}{\partial x}\right|_{x=\alpha(\tau)} \quad, \quad \frac{\partial \psi}{\partial \alpha}=\left.\frac{\partial \psi}{\partial x}\right|_{x=\alpha(\tau)}
$$

Using integration by parts in the final integral of (3.23) and writing $\mathrm{d} \alpha$ as $\alpha^{\prime}(\tau) \mathrm{d} \tau$, δJ may now be written as

$$
\begin{aligned}
& \delta J=\iint_{T_{T}}\left\{\overline{\delta \phi}\left[F_{\phi}-\frac{\partial}{\partial x} F_{\phi_{x}}-\frac{\partial}{\partial t} F_{\phi_{t}}\right]+\overline{\delta \psi}\left[F_{\psi}-\frac{\partial}{\partial x} F_{\psi_{x}}-\frac{\partial}{\partial t} F_{\psi_{t}}\right]\right\} d x d t \\
& +\int_{0}^{1}\left\{\delta \alpha \left[f_{\alpha}-\frac{d f}{d \tau} \alpha^{\prime}+\frac{d^{2} f^{2}}{d \tau} \alpha^{\prime \prime}-F-F_{\phi_{x}}\left(A_{1}-\frac{\partial \emptyset}{\partial \alpha}\right)-F_{\psi_{x}}\left(A_{2}-\frac{\partial \psi}{\partial \alpha}+\right.\right.\right. \\
& \left.+\quad F_{\phi_{t}}\left(A_{1}-\frac{\partial \emptyset}{\partial \alpha}\right) \alpha^{\prime}(\tau)+F_{\psi_{t}}\left(A_{2}-\frac{\partial \psi}{\partial \alpha}\right) \alpha^{\prime}(\tau)\right]- \\
& \left.-\theta \alpha^{\prime}\left[F_{\phi_{X}} B_{1}+F_{\psi_{x}} B_{2}-\left(F_{\phi_{t}} B_{1}+F_{\psi_{t}} B_{2}\right) \alpha^{\prime}(\mp)\right]\right\} d \tau
\end{aligned}
$$

Integrating $\delta \alpha^{\prime}\left[F_{\phi_{x}} B_{1}+F_{\psi_{x}} B_{2}-\left(F_{\phi_{t}} B_{1}+F_{\psi_{t}} B_{2}\right) \alpha^{\prime}(\tau)\right]$ by parts gives

$$
\begin{aligned}
& \left.\delta \alpha\left\{\left(F_{\phi_{x}}-F_{\phi_{t}} \alpha^{\prime}(\tau)\right) B_{1}+\left(F_{\psi_{x}}-F_{\psi_{t}} \alpha^{\prime}(\tau)\right) B_{2}\right\}\right|_{\tau=0} ^{T} \\
& -\int_{0}^{\mathrm{T}} \delta \alpha\left\{\frac{d}{d \tau}\left[\left(F_{\phi_{x}}-F_{\phi_{t}} \alpha^{\prime}(\tau)\right) B_{1}+\left(F_{\psi_{x}}-F_{\psi_{t}} \alpha^{\prime}(\tau)\right) B_{2}\right]\right\} d \tau,
\end{aligned}
$$

and from (3.15) $\delta \alpha(0)=0$. Accordingly

$$
\begin{align*}
& \int_{0} \delta \alpha\left\{f_{\alpha}-\frac{d f_{\alpha}}{d \tau}{ }^{\prime}+\frac{d^{2} f^{\prime}}{d \tau^{2}} \alpha^{\prime \prime}-F-\left(F_{\phi_{x}}-F_{\phi_{t}} \alpha^{\prime}(\tau)\right)\left(A_{1}-\frac{\partial \phi}{\partial \alpha}\right)-\right. \\
& -\left(F_{\psi_{x}}-F_{\psi_{t}} \alpha^{\prime}(\tau)\right)\left(A_{2}-\frac{\partial \psi}{\partial \alpha}\right)+ \\
& \left.\left.+\frac{d}{d \tau}\left[{ }^{\left(F_{\phi_{x}}\right.}-F_{\phi_{t}} \alpha^{\prime}(\tau)\right) B_{1}+\left(F_{\psi_{x}}-F_{\psi_{t}} \alpha^{\prime}(\tau)\right) B_{2}\right]\right\} d \tau \\
& +\int_{K L}\left\{\overline{\delta \emptyset}\left(Q_{\phi}+F_{\phi_{t}}\right)+\overline{\delta \psi}\left(Q_{\psi}+F_{\psi_{t}}\right)\right\} d x+\left.Q \delta x\right|_{x=x_{L}} \\
& +\delta \alpha\left\{f_{\alpha^{\prime}}-\frac{d f_{\alpha}}{d \tau}-\left(F_{\phi_{x}}-F_{\phi_{t}} \alpha^{\prime}(\tau)\right) B_{1}-\left(F_{\psi_{x}}-F_{\psi_{t}} \alpha^{\prime}(\tau)\right) B_{2}\right\} \\
& +\delta \alpha^{\prime} f_{\alpha^{\prime \prime}}{ }_{\tau=0}^{T} \tag{3.30}
\end{align*}
$$

Substituting for F from (3.16) gives

$$
\begin{align*}
& \delta J=\iiint_{S_{1}}\left\{\overline{\delta \phi}\left[P_{\phi}+\frac{c \partial \mu}{\partial x}-\frac{\partial \lambda}{\partial t}\right]+\overline{\delta \psi}\left[P_{\psi}+\frac{\partial \lambda}{\partial x}-\frac{\partial \mu}{\partial t}\right]\right\} d x d t \\
& +\int_{0}^{T} \delta \alpha\left\{f_{\alpha}-\frac{d f_{\alpha}}{d \tau}{ }^{\prime}+\frac{d^{2} f^{\prime}}{d \tau} \alpha^{\prime \prime}-P-\lambda\left[\frac{\partial \phi}{\partial t}-c \frac{\partial \psi}{\partial x}\right]-\mu\left[\frac{\partial \psi}{\partial t}-\frac{c \partial \phi}{\partial x}\right]+\right. \\
& +\left(c \mu+\lambda \alpha^{\prime}(\tau)\right)\left(A_{1}-\frac{\partial \emptyset}{\partial \alpha}\right)+\left(c \lambda+\mu \alpha^{\prime}(\tau)\right)\left(A_{2}-\frac{\partial \mu}{\partial \alpha}\right)- \\
& \left.-\frac{d}{d \tau}\left[\left(\mathrm{c} \mu+\lambda \alpha^{\prime}(\tau)\right) \mathrm{B}_{1}+\left(\mathrm{c} \lambda+\mu \alpha^{\prime}(\tau)\right) \mathrm{B}_{2}\right]\right\} \cdot \mathrm{d} \tau \\
& +\int_{L K}\left\{\overline{\delta \emptyset}\left(O_{\phi}+\lambda\right)+\overline{\delta \psi}\left(Q_{\psi}+\mu\right)\right\} d x \\
& +\left.\delta \alpha\left\{\mathrm{f}_{\alpha^{\prime}}-\frac{\mathrm{d} \mathrm{f}_{\alpha} \prime \prime}{\mathrm{d} \mathrm{\tau}}+\left(\mathrm{c} \mu+\lambda \alpha^{\prime}(\tau)\right) \mathrm{B}_{1}+\left(\mathrm{c} \lambda+\mu \alpha^{\prime}(\tau)\right) \mathrm{B}_{2}+\mathrm{Q}\right\}\right|_{\tau=T} \\
& +\left.\delta \alpha^{\prime} f \alpha^{\prime \prime}\right|_{\tau=0} ^{T} \tag{3.31}
\end{align*}
$$

For a minimum of I in (3.13) δJ must be zero. Since $\overline{\delta \varnothing}$ and $\bar{\phi}$ are non zero and unrelated in S_{1} and on LK and since $\delta \alpha$ and $\delta \alpha^{\prime}$
are arbitary variations then when $\delta \mathrm{J}$ is zero

$$
\begin{align*}
& \frac{\partial P}{\partial \emptyset}+\frac{c \partial \mu}{\partial x}-\frac{\partial \lambda}{\partial t}=0, \quad(x, t) \epsilon S_{1}, \tag{3.32}\\
& \frac{\partial P}{\partial \psi}+\frac{c \partial \lambda}{\partial x}-\frac{\partial \mu}{\partial t}=0, \quad(x, t) \in S_{1}, \tag{3.33}\\
& f_{\alpha}-\frac{d f^{\prime}}{d \tau}+\frac{d^{2} f}{d \tau^{2}} \alpha^{\prime \prime}-P+\left(c \mu+\lambda \alpha^{\prime}(\tau)\right)\left(A_{1}-\frac{\partial \emptyset}{\partial \alpha}+\left(c \lambda+\mu \alpha^{\prime}(\tau)\right)\left(A_{2}-\frac{\partial \psi}{\partial \alpha}\right)-\right. \\
& -\frac{d}{d \tau}\left[\left(c \mu+\lambda \alpha^{\prime}(\tau)\right) B_{1}+\left(c \lambda+\mu \alpha^{\prime}(\tau)\right) B_{2}\right]=0,(x, t) \in O L,(3.34) \\
& \oint_{\phi}+\lambda=0, \quad(x, t) \in L K \text {, } \tag{3.35}\\
& Q_{\psi}+\mu=0, \quad(x, t) e L K, \tag{3.36}\\
& f_{\alpha^{\prime}}-\frac{d f_{\alpha^{\prime}}}{d \tau}+P+\left(c \mu+\lambda \alpha^{\prime}(\tau)\right) B_{1}+\left(c \lambda+\mu \alpha^{\prime}(\tau)\right) B_{2}+Q=0, \tau=T \text { (3.37) } \\
& \mathrm{f}_{\alpha}{ }^{\prime \prime}=0 \quad, \quad \tau=\mathrm{T} \text {, } \tag{3.38}\\
& \text { at } \tau=0 \text { either } \alpha^{\prime}(0) \text { is given or } f_{\alpha \prime}=0 \text {. } \tag{3.39}
\end{align*}
$$

As an example to illustrate the above theory the case, described earlier, of the string being required to be as close as possible to a prescribed shape $\Phi(x)$ at time T will now be discussed. Here

$$
P \equiv 0 \quad, \quad Q \equiv\{\emptyset(x, T)-\Phi(x)\}^{2}
$$

and f will be taken to be

$$
f \equiv \frac{1}{2} \alpha^{2}(\tau)+\frac{1}{2} \alpha^{\prime 2}(\tau)
$$

and the initial and boundary conditions are

$$
\begin{array}{ll}
\emptyset_{0} \equiv 0, & \psi_{0} \equiv 0 \\
M \equiv \emptyset-\alpha(\tau)=0, & \emptyset(z, t) \equiv 0
\end{array}
$$

Figure 3.8
It is assumed also that the line $A R$ (see Figure (3.8)) is such that the C- characteristic through K meets the x - axis in a point E such that $x_{E}<x_{A}$.

The state equations are the same as (3.3) and (3.4) namely
$\frac{\partial \emptyset}{\partial t}=\frac{\partial \psi}{\partial x}$,
c $\frac{\partial \emptyset}{\partial x}=\frac{\partial \psi}{\partial t}$
Equations (3.32) and (3.33) become
c $\frac{\partial \mu}{\partial x}-\frac{\partial \lambda}{\partial t}=0 \quad$,
c $\frac{\partial \lambda}{\partial x}-\frac{\partial \mu}{\partial t}=0$

Differentiating (3.40) with respect to t and (3.41) with respect to x gives
c $\frac{\partial^{2} \mu}{\partial x \partial t}-\frac{\partial^{2} \lambda}{\partial t^{2}}=0$,
c $\frac{\partial^{2} \lambda}{\partial x^{2}}-\frac{\partial^{2} \mu}{\partial t \partial x}=0$,
and so
$c^{2} \frac{\partial^{2} \lambda}{\partial x^{2}}-\frac{\partial^{2} \lambda}{\partial t^{2}}=0$.

The solution to (3.42) is

$$
\begin{equation*}
\lambda(x, t)=A(x-c t)+B(x+c t) \tag{3.43}
\end{equation*}
$$

where A and B are arbitrary functions.

From (3.40)

$$
\frac{\partial \lambda}{\partial t}=c \frac{\partial \mu}{\partial x}
$$

so
$c \frac{\partial \mu}{\partial x}=-c A^{\prime}(x-c t)+c B^{\prime}(x+c t)$
hence

$$
\begin{equation*}
\mu(x, t)=-A(x-c t)+B(x+c t) \tag{3.44}
\end{equation*}
$$

From equation (3.26) it can be seen that, since Q is independent of ψ in this case, μ is zero on $O K$, that is when $t=T$, so

$$
\mu(x, T)=-A(x-c T)+B(x+c T)=0
$$

therefore

$$
A(x-c T) \equiv B(x+c T) \quad \text { for all } x
$$

Put $x+c T=\xi$, then

$$
\begin{align*}
& A(\xi-2 c T) \equiv B(\xi) \quad \text { for all } \xi, \quad \text { and so } \\
& \lambda(x, t)=A(x-c t)+A(x+c t-2 c T), \tag{3.45}\\
& \mu(x, t)=-A(x-c t)+A(x+c t-2 c T) \tag{3.46}
\end{align*}
$$

Equation (3.35) gives, with $Q=\emptyset(x . T)-\Phi(x)^{2}$,

$$
\begin{equation*}
\lambda=-2\{\varnothing(x, T)-\Phi(x)\} \quad, \quad(x, t) \epsilon^{\prime} L K \tag{3.47}
\end{equation*}
$$

It has already been seen that $\emptyset-\psi$ is constant along the $C+$ characteristics so

$$
\begin{equation*}
\emptyset(x, t)-\psi(x, t)=\emptyset(\alpha(\tau), \tau)-\psi(\alpha(\tau), \tau) . \tag{3.48}
\end{equation*}
$$

$\emptyset+\psi$ is constant along the C- characteristics, so,from (3.12),

$$
\begin{equation*}
\phi(\alpha(\tau), \tau)+\psi(\alpha(\tau), \tau)=\emptyset_{0}(\alpha(\tau)+c \tau)+\psi_{0}(\alpha(\tau)+c \tau) \tag{3.49}
\end{equation*}
$$

Since the boundary condition on OL is $\emptyset-\alpha(\tau)=0$, (3.49) may be written as

$$
\psi(\alpha(\tau), \tau)=\emptyset_{0}(\alpha(\tau)+c \tau)+\psi_{0}(\alpha(\tau)+c \tau)-\alpha(\tau)
$$

and using this and the boundary condition (3.48) may be written as

$$
\phi(x, t)-\psi(x, t)=2 \alpha(\tau)-\emptyset_{0}\left(\alpha(\tau)+c_{\tau}\right)-\psi_{0}\left(\alpha(\tau)+c_{\tau}\right)
$$

hence

$$
\begin{equation*}
\emptyset(x, t)-\psi(x, t)=2 \alpha(\tau), \tag{3.50}
\end{equation*}
$$

since ϕ_{0} and ψ_{0} are assumed to vanish identically on OA. Proceeding along the C - characteristic through (x, t), which characteristic intersects the x-axis at the point $\left(x_{0}, 0\right)$, then

$$
\phi(x, t)+\psi(x, t)=\emptyset_{0}\left(x_{0}\right)+\psi_{0}\left(x_{0}\right)
$$

hence

$$
\begin{equation*}
\phi(x, t)+\psi(x, t)=0 . \tag{3.51}
\end{equation*}
$$

Adding (3.50) and (3.51) gives

$$
\begin{equation*}
2 \emptyset(x, t)=2 \alpha(\tau), \tag{3.52}
\end{equation*}
$$

for all (x, t) in OKL, and so using (3.47),

$$
\begin{equation*}
-\lambda(x, T)+2 \Phi(x)=2 \alpha(\tau), \tag{3.53}
\end{equation*}
$$

where τ is defined by $\alpha(\tau)-c \tau=x-c T$.
From (3.45) $\lambda(x, T)=2 A(x-c T)$, so
$-2 \mathrm{~A}(\mathrm{x}-\mathrm{cT})+2 \Phi(\mathrm{x})=2 \alpha(\tau), \quad \alpha(\tau)-\mathrm{c} \mathrm{\tau}=\mathrm{x}-\mathrm{cT}$,
$A\{\alpha(\tau)-c \tau\} \equiv-\alpha(\tau)+\Phi\{\alpha(\tau)-c \tau+c T\}$, for all τ. (3.54)

From (3.12) a condition on OL is
$N \equiv \emptyset(\alpha(\tau), \tau)+\psi(\alpha(\tau), \tau)-\emptyset_{0}(\alpha(\tau)+c \tau)-\psi_{0}(\alpha(\tau)+c \tau)=0$
and since \emptyset_{0} and ψ_{0} are assumed to be zero OA
$N \equiv \emptyset(\alpha(\tau), \tau)+\psi(\alpha(\tau), \tau)=0$.

The other condition on OL is

$$
M \equiv \emptyset-\alpha(\tau)=0
$$

Using the defininitions in (3.26)

$$
\begin{aligned}
& A_{1}=-1 \\
& B_{1}=0 \\
& A_{2}=1 \\
& B_{2}=0
\end{aligned}
$$

$\frac{\partial \emptyset}{\partial \alpha}$ and $\frac{\partial \psi}{\partial \alpha}$ in equation (3.34) must now be determined. From (3.52)
$\phi(x, t)=\alpha(\tau)$, and $\alpha(\tau)-c \tau=x-c T$.

80
$\frac{\partial \phi}{\partial x}=\alpha^{\prime}(\tau) \frac{\partial \tau}{\partial x}$, and $\left[\alpha^{\prime}(\tau)-c\right] \frac{\partial \tau}{\partial x}=1$,
$\frac{\partial \emptyset}{\partial x}=\frac{\alpha^{\prime}(\tau)}{\alpha^{\prime}(\tau)-c}$.
$\frac{\partial \emptyset}{\partial \alpha}=\left.\frac{\partial \emptyset}{\partial x}\right|_{x=\alpha(\tau)}=\frac{\alpha^{\prime}(\tau)}{\alpha^{\prime}(\tau)-c}$
From (3.51)
$\psi(x, t)=-\alpha(\tau) \quad$ and $\quad \alpha(\tau)-c \tau=x-c T$,
so
$\frac{\partial \psi}{\partial x}=-\alpha^{\prime}(\tau) \frac{\partial \tau}{\partial x} \quad$ and $\left[\alpha^{\prime}(\tau)-c\right] \frac{\partial \tau}{\partial x}=1$,
hence

$$
\frac{\partial \psi}{\partial \alpha}=\frac{-\alpha^{\prime}(\tau)}{\alpha^{\prime}(\tau)-c}
$$

Since $f=\frac{1}{2} \alpha^{2}(\tau)+\frac{1}{2} \alpha^{\prime 2}(\tau)$
$f_{\alpha}=\alpha \quad, \frac{d f_{\alpha}}{d \tau}=\alpha^{\prime \prime} \quad, \frac{d^{2} f^{\prime \prime}}{d \tau^{2}} \alpha^{\prime \prime}=0$.

The transversality condition (3.34) can now be written as

$$
\begin{align*}
& \alpha(\tau)-\alpha^{\prime \prime}(\tau)+\left[c \mu+\lambda \alpha^{\prime}(\tau)\right]\left\{-1-\frac{\alpha^{\prime}(\tau)}{\alpha^{\prime}(\tau)-c}\right\}+ \\
& +\left[c \lambda+\mu \alpha^{\prime}(\tau)\right]\left\{1+\frac{\alpha^{\prime}(\tau)}{\alpha^{\prime}(\tau)-c}\right\}=0, \\
& {\left[\alpha(\tau)-\alpha^{\prime \prime}(\tau)\right]\left[\alpha^{\prime}(\tau)-c\right]-\left[c \mu+\lambda \alpha^{\prime}(\tau)-c \lambda-\mu \alpha^{\prime}(\tau)\right]\left[2 \alpha^{\prime}(\tau)+c\right]=0} \tag{3.55}
\end{align*}
$$

From (3.45), (3.46) and (3.54)

$$
\begin{aligned}
\lambda(\alpha(\tau), \tau) & =A\{\alpha(\tau)-c \tau\}+A\{\alpha(\tau)+c \tau-2 c T\} \\
& =-\alpha(\tau)+\Phi\{\alpha(\tau)-c \tau+c T\}+A\{\alpha(\tau)+c \tau-2 c T\} ; \\
\mu(\alpha(\tau), \tau) & =-A\{\alpha(\tau)-c \tau\}+A\{\alpha(\tau)+c \tau-2 c T\} \\
& =\alpha(\tau)-\Phi\{\alpha(\tau)-c \tau+c T\}+A\{\alpha(\tau)+c \tau-2 c T\} \quad
\end{aligned}
$$

Thus replacing λ and μ in (3.55) gives

$$
\begin{gather*}
{\left[\alpha(\tau)-\alpha^{\prime \prime}(\tau)\right]\left[\alpha^{\prime}(\tau)-c\right]-\left[\alpha^{\prime}(\tau)-c\right]\left[-2 \alpha(\tau)+2 \Phi\{\alpha(\tau)-c \tau+c T\}\left[2 \alpha^{\prime}(\tau)-c\right]\right.} \\
\alpha^{\prime \prime}(\tau)-\alpha(\tau)-4 \alpha^{\prime}(\tau) \alpha(\tau)+4 \Phi\{\alpha(\tau)-c \tau+c T\} \alpha^{\prime}(\tau)+2 c \alpha(\tau)- \\
-2 c \Phi\{\alpha(\tau)-c \tau+c T\}=0 \\
\alpha^{\prime \prime}(\tau)+4 \alpha^{\prime}(\tau)[\Phi\{\alpha(\tau)-c \tau+c T\}-\alpha(\tau)]+2 c \alpha(\tau)-2 c \Phi\{\alpha(\tau)-c \tau+c T\}=0
\end{gather*}
$$

$\alpha(\tau)$ may be determined from equation (3.56) together with the boundary condition at $\tau=T$ obtained from equation (3.37).

CHAPTER FOUR

CHAPTER FOUR

A Boundary Control Problem in Unsteady One Dimensional Gas Movements.

This chapter is concerned with the one dimensional movement of a gas in a semi-infinite tube of uniform section, the gas being bounded by a moving piston. At time $t=0$ the piston is at the origin $x=0$ and the gas in $x>0$ is in a state of rest with uniform density ρ_{0} and uniform sound speed $c_{0} \quad\left(c_{0}^{2}=k \gamma \rho_{0}^{\gamma-1}\right)$. For $t>0$ the piston is moved away from the gas so that at the time $t=\tau$ its displacement is $x=\alpha(\tau), \alpha(0)=0, \alpha(\tau)>0$,
where τ is a time parameter. A wave of tarefaction is formed at $t=0$ and this travels in the direction $x>0$ so that the leading edge of the rarefaction wave is at $x>c_{0} t$ at time t.

Figure 4.1
For $x>c_{0} t$ (Region I, see figure 4.1) the gas remains undisturbed.
In Region II the gas moves in the x direction with speed $\mathrm{u}(\mathrm{x}, \mathrm{t})$, density $\rho(x, t)$ and pressure $p(x, t)$ and the governing equations are
$\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial t}=-\frac{1}{\rho} \frac{\partial p}{\partial x}$,

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{\partial(\rho u)}{\partial x}=0 \tag{4.3}
\end{equation*}
$$

It is assumed that the adiabatic condition

$$
\begin{equation*}
p=k \rho^{\gamma} \tag{4.4}
\end{equation*}
$$

is satisfied with $\gamma=c_{p} / c_{v}$. Equations (4.2) and (4.3) can be rewritten in the form

$$
\begin{align*}
& \frac{\partial u}{\partial t}+\frac{u \partial u}{\partial x}+\frac{2}{\gamma-1} c \frac{\partial c}{\partial x}=0 \tag{4.5}\\
& \frac{2}{\gamma-1} \frac{\partial c}{\partial t}+\frac{2}{\gamma-1} u \frac{\partial c}{\partial x}+c \frac{\partial u}{\partial x}=0 \tag{4.6}
\end{align*}
$$

where c, the local velocity of sound, is defined by

$$
\begin{equation*}
c^{2}=k \gamma \rho^{\gamma-1} \tag{4.7}
\end{equation*}
$$

In the problem the piston movement will be looked upon as the control, and the piston movement must be determined such that, for example,

$$
\begin{align*}
I=\frac{1}{2} \int_{x=-\alpha(\tau)}^{x=c} T & {\left[\emptyset(x)\left\{u(x, T)-u^{*}(x)\right\}^{2}+\psi(x)\{c(x, T)-c *(x)\}^{2}\right] d x } \\
& +\frac{1}{2} \int_{\tau=0}^{T}\left\{a \alpha^{2}(\tau)+b \alpha^{\prime 2}(\tau)+c \alpha^{\prime 2}(\tau)\right\} d \tau \tag{4.8}
\end{align*}
$$

with $\emptyset>0, \psi>0 \quad \forall \mathrm{x}$, is a minimum, in other words the piston control is found so that $u(x, T)$ is as close as possible to a prescribed function $u^{*}(x)$ and $c(x, T)$ is as close as possible to a prescribed function $c^{*}(x)$, with the minimum expenditure of control energy. In general however the problem is taken to be that of minimising a general function of the form:

$$
\begin{equation*}
\left.\left.\left.I=\int_{x=-\alpha(\tau)}^{x=c_{0} T} f x, u(x, T), c(x, T)\right\} d x+\int_{\tau=0}^{T} F\left\{\alpha(\tau), \alpha^{\prime} G\right), \alpha^{\prime \prime} G\right)\right\} d \tau \tag{4.9}
\end{equation*}
$$

where f and F are prescribed functions.
The method of handling this problem is as follows: From (4.4) and (4.5)

$$
\begin{align*}
& \left\{\frac{\partial}{\partial t}+(u+c) \frac{\partial}{\partial x}\right\}\left(u+\frac{2}{\gamma-1} c\right)=0 \tag{4.10}\\
& \left\{\frac{\partial}{\partial t}+(u-c) \frac{\partial}{\partial x}\right\}\left(u-\frac{2}{\gamma-1}^{c}\right)=0 \tag{4.11}
\end{align*}
$$

hence

$$
\begin{align*}
& \left(u+\frac{2}{\gamma-1} c \text {) remains constant along the } C+\right.\text { characteristics given by } \\
& \frac{d x}{d t}=u+c, \tag{4.12}\\
& \left(u-\frac{2}{\gamma-1} c \text {) remains constant along the } C-\right.\text { characteristics given by } \\
& \frac{d x}{d t}=u-c . \tag{4.13}
\end{align*}
$$

The different regions in the (x, t) space will be distinguished as follows. In Region I, namely $x>c_{0} t, t>0$ the gas is at rest with $u=0, \rho=\rho_{0}, c=c_{0}$, thus in Region I the $C+$ and the C - characteristics are families of straight lines $x \pm c_{0} t=$ constant and Region I will be

Figure 4.2.
The Region II is on the other side of the Iine $x=c_{o} t$ from Region I. Region II called a Simple Wave Region (Courant and Friedrichs ${ }^{12}$) and in this Region it can be proved that the $C+$ characteristics are straight lines. For if P and Q are any two points in II lying on the same $C+$ curve which starts at A thus from (4.12)

$$
\begin{align*}
& u_{p}-\frac{2}{\gamma-1} c_{p}=-\frac{2}{\gamma-1} c_{0} \tag{4.15}\\
& u_{Q}-\frac{2}{\gamma-1} c_{Q}=-\frac{2}{\gamma-1} c_{0} \tag{4.16}
\end{align*}
$$

From (4.15) and (4.16) it is deduced that $u_{p}=u_{Q}, c_{p}=c_{Q}$; hence the slope of the $C+$ characteristics at P, namely $\frac{1}{\left(u_{p}+c_{p}\right)}$
the slope of the $C+$ characteristic at Q, namely $\frac{1}{\left(u_{Q}+c_{Q}\right)}$, hence the $\mathrm{C}+$ characteristic is a straight line. The C - characteristics in Region II remain as general curves satisfying (4.13). Continuing with the theory it is deduced that if $\mathrm{A}\{-\alpha(\tau), \tau\} \quad$ lies on the piston displacement curve then from the above theory

$$
\begin{equation*}
c_{p}=c_{A} \quad, \quad u_{p}=u_{A} \tag{4.17}
\end{equation*}
$$

Travelling on the C- characteristic through A back to Region I

$$
u_{A}-\frac{2}{\gamma-1} c_{A}=-\frac{2}{\gamma-1} c_{0}
$$

or

$$
\begin{equation*}
c_{A}=c_{0}+\frac{\gamma-1}{2} u_{A} \tag{4.18}
\end{equation*}
$$

Thus the slope of the C+ characteristics through A will be

$$
\begin{equation*}
\frac{1}{u_{A}+c_{A}}=\frac{1}{c_{0}+\frac{\gamma+1}{2}{ }^{u} A}=\frac{1}{c_{0}-\frac{\gamma+1 \alpha^{\prime}(\tau)}{2}}, \tag{4.19}
\end{equation*}
$$

where $\alpha^{\prime}(\tau)=\frac{\mathrm{d} \alpha}{\mathrm{d} \tau}$. The equation of the straight line $\mathrm{C}+$ characteristic through A will be

$$
\begin{equation*}
t-\tau=\frac{1}{c_{0}-\frac{\gamma+1}{2} \alpha^{\prime}(\tau)}(x+\alpha(\tau)) \tag{4.20}
\end{equation*}
$$

Figure 4.3

Suppose the C+ characteristic (4.20) meets $t=T$ at the point B whose co-ordinates are (X, T), then from (4.20), X will be given by

$$
\begin{equation*}
X=-\alpha(\tau)+(T-\tau)\left[c_{0}-\frac{\gamma+1}{2} \alpha^{\prime}(\tau)\right] \tag{4.21}
\end{equation*}
$$

Furthermore, using (4.17), the values of u_{B} and c_{B} are as follows:

$$
\begin{align*}
& u(X, T)=u_{B}=u_{A}=-\alpha^{\prime}(\tau) \tag{4.22}\\
& c(X, T)=c_{B}=c_{A}=c_{0}-\frac{\gamma-1}{2} \alpha^{\prime}(\tau)
\end{align*}
$$

using (4.18). The above theory relating to Region II is valid providing the speed of the piston does not become excessive and this limitation is discussed as follows. Equation (4.18) can be written in the form

$$
c_{A}=\dot{c}_{0}-\frac{\gamma-1}{2} \alpha^{\prime}(\tau)
$$

noting that $c_{A}=0$ if $\alpha^{\prime}(\tau)=\frac{2 c_{0}}{\gamma-1}$; the vanishing of c implies the vanishing of the density ρ, thus if the piston speed becomes equal to $\frac{2 c_{0}}{\gamma-1}$, the density of the gas in contact with the piston will be zero. If the piston speed now exceeds $\frac{2 c_{o}}{\gamma-1}$ the piston will lose contact with the gas and a vacuum will form between the piston and the gas. In this event clearly no control of the gas movement is possible. Thus in the above problem it will be assumed that $0<\alpha^{\prime}(\tau)<\frac{2 c}{\gamma-1}$.
The substitution $(4.21)^{13}$ is now used to change from the variable X into the new variable τ. Now from (4.21)

$$
\begin{align*}
d X & =\left\{-\alpha^{\prime}(\tau)-c_{0}+\frac{\gamma+1}{2} \alpha^{\prime}(\tau)+(T-\tau)\left(-\frac{\gamma+1}{2} \alpha^{\prime \prime}(\tau)\right)\right\} d \tau \\
& =-\left\{c_{0}-\frac{\gamma-1}{2} \alpha^{\prime}(\tau)+\frac{\gamma+1}{2}(T-\tau) \alpha^{\prime \prime}(\tau)\right\} d \tau \tag{4.24}
\end{align*}
$$

It is deduced from (4.21) that $X=c_{0} T$ will correspond to $\tau=0$ provided that $\alpha^{\prime}(0)=0$ and $X=-\alpha(T)$ will correspond to $\tau=T$. Hence (4.9) can be written in the form

$$
\begin{align*}
I= & \int_{\tau=0}^{\tau=T} f\left\{-\alpha(\tau)+(T-\tau)\left[c_{0}-\frac{\gamma+1}{2} \alpha^{\prime}(\tau)\right],-\alpha^{\prime}(\tau), c_{0}-\frac{\gamma-1}{2} \alpha^{\prime}(\tau)\right\} x \\
& \times\left\{c_{0}-\frac{\gamma-1}{2} \alpha^{\prime}(\tau)+\frac{\gamma+1}{2}(T-\tau) \alpha^{\prime \prime}(\tau)\right\} d \tau+ \\
& +\int_{\tau=0}^{T} F\left\{\alpha(\tau), \alpha^{\prime}(\tau), \alpha^{\prime \prime}(\tau)\right\} d \tau \quad . \tag{4.25}
\end{align*}
$$

or

$$
\begin{equation*}
I=\int_{\tau=0}^{T} g\left\{\tau, \alpha(\tau), \alpha^{\prime}(\tau), \alpha^{\prime \prime}(\tau)\right\} \quad d \tau \tag{4.26}
\end{equation*}
$$

where

$$
\begin{align*}
& g\left(\tau, \alpha(\tau), \alpha^{\prime}(\tau), \alpha^{\prime \prime}(\tau)\right)=\left\{c_{0}-\frac{\gamma-1}{2} \alpha^{\prime}(\tau)+\frac{\gamma+1}{2}(T-\tau) \alpha^{\prime \prime}(\tau)\right\} \times \\
& \times f\left\{-\alpha(\tau)+(T-\tau)\left[c_{0}-\frac{(\gamma+1)}{2} \alpha^{\prime}(\tau)\right],-\alpha^{\prime}(\tau), c_{0}-\frac{(\gamma-1)}{2} \alpha^{\prime}(\tau)\right\} \\
&+F\left\{\alpha(\tau), \alpha^{\prime}(\tau), \alpha^{\prime \prime}(\tau)\right\} \tag{4.27}
\end{align*}
$$

Thus the original problem has been transformed into one of finding the function $\alpha(\tau)$ which will provide the minimum of the funcitonal I in (4.26) which is the classical Euler problem in the calculus of variations In order to study the boundary conditions the problem is tackled as follows:

Consider the function

$$
J(\varepsilon)=\int_{0}^{T} g\left\{\tau, \alpha(\tau)+\varepsilon \eta(\tau), \alpha^{\prime}(\tau)+\varepsilon \eta^{\prime}(\tau), \alpha^{\prime \prime}(\tau)+\varepsilon \eta^{\prime \prime}(\tau)\right\} d \tau
$$

where $y=\alpha(\tau)$ is the function which gives the minimum of I in (4.26)

Figure 4.4

$$
\begin{aligned}
& J^{\prime}(0)=\int_{T^{S}}^{T}\left\{\eta(\tau) g_{\alpha}+\eta^{\prime}(\tau) g_{\alpha},+\eta^{\prime \prime}(\tau) g_{\alpha^{\prime}}\right\} d \tau \\
& =\int_{T}^{T}\left[n(\tau) g_{\alpha}+n^{\prime}(\tau)\left\{g_{\alpha^{\prime}}-\frac{d}{d \tau} g_{\alpha^{\prime \prime}}\right\}\right] d \tau+\left[n^{\prime}(\tau) g_{\alpha^{\prime \prime}}\right]_{0}^{T} \\
& =\int_{0}^{T} \eta(\tau)\left\{g_{\alpha}-\frac{d}{d \tau}\left[g_{\alpha^{\prime}}-\frac{d}{d \tau} g_{\alpha^{\prime \prime}}\right]\right\} d \tau+\left[\eta^{\prime}(\tau) g_{\alpha^{\prime \prime}}+\eta(\tau)\left\{g_{\alpha^{\prime}}-\frac{d}{d \tau} g_{\alpha \prime}\right\}\right]_{0}^{T} .
\end{aligned}
$$

Thus the necessary conditions for $J^{\prime}(0)=0$ with arbitrary $n(\tau)$ are

$$
\begin{equation*}
g_{\alpha}-\frac{d}{d \tau} g_{\alpha},+\frac{d^{2}}{d \tau^{2}} g_{\alpha \prime}=0 \tag{4.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[n^{\prime}(\tau) g_{\alpha^{\prime \prime}}+\eta(\tau)\left\{g_{\alpha^{\prime}}-\frac{d}{d \tau} g_{\alpha^{\prime \prime}}\right\}\right]_{0}^{T}=0 \tag{4.29}
\end{equation*}
$$

Consider first the differential equation (4.28).
Writing

$$
\begin{array}{r}
x\left(\tau, \alpha(\tau), \alpha^{\prime}(\tau)\right) \equiv f\left\{-\alpha(\tau)+(T-\tau)\left[c_{0}-\frac{(\gamma+1)}{2} \alpha^{\prime}(\tau)\right],-\alpha^{\prime}(\tau),\right. \\
\left.c_{0}-\frac{(\gamma-1)}{2} \alpha^{\prime}(\tau)\right\},(4.30)
\end{array}
$$

then (4.27) can be written in the form

$$
\begin{align*}
g\left(\tau, \alpha, \alpha^{\prime}, \alpha^{\prime \prime}\right)= & \left\{c_{0}-\frac{(\gamma-1)}{2} \alpha^{\prime}(\tau)+\frac{(\gamma+1)}{2}(T-\tau) \alpha^{\prime \prime}(\tau)\right\} \times\left(\tau, \alpha(\tau), \alpha^{\prime \prime}(\tau)\right) \\
& +F\left(\alpha(\tau), \alpha^{\prime}(\tau), \alpha^{\prime \prime}(\tau)\right) \tag{4.31}
\end{align*}
$$

From (4.31) it is deduced that

$$
\begin{align*}
& g_{\alpha^{\prime}}=-\frac{(\gamma-1)}{2} x+\left\{c_{0}-\frac{(\gamma-1)}{2} \alpha^{\prime}(\tau)+\frac{(\gamma+1)}{2}(T-\tau) \alpha^{\prime \prime}(\tau)\right\} \quad x_{\alpha^{\prime}}^{\prime}+F_{\alpha^{\prime}},(4.32) \\
& g_{\alpha^{\prime \prime}}=\frac{(\gamma+1)}{2}(T-\tau) \times\left(\tau, \alpha(\tau), \alpha^{\prime}(\tau)\right)+F_{\alpha^{\prime \prime}} \quad \text {, } \tag{4.33}\\
& g_{\alpha}=\left\{c_{0}-\frac{(\gamma-1)}{2} \alpha^{\prime}(\tau)+\frac{(\alpha+1)}{2}(T-\tau) \alpha^{\prime \prime}(\tau)\right\} X_{\alpha}+F_{\alpha} \text {; } \tag{4.34}
\end{align*}
$$

thus equation (4.28) can be written as follows:

$$
\begin{aligned}
& \frac{d^{2}}{d \tau^{2}}\left\{\frac{(\gamma+1)}{2}(T-\tau) x\left(\tau, \alpha(\tau), \alpha^{\prime}(\tau)\right)+F_{\alpha^{\prime \prime}}\right\} \\
& +\frac{d}{d \tau}\left\{\frac{(\gamma-1)}{2} x-\left[c_{0}-\frac{\left.\left.(\gamma-1) \alpha^{\prime}(\tau)+\frac{(\gamma+1)}{2}(T-\tau) \alpha^{\prime \prime}(\tau)\right] x_{\alpha},-F_{\alpha^{\prime}}\right\}}{+\left\{c_{0}-\frac{\left.(\gamma-1) \alpha^{\prime}(\tau)+\frac{(\gamma+1)}{2}(T-\tau) \alpha^{\prime \prime}(\tau)\right\} \quad x_{\alpha}+F_{\alpha}=0 .}{}\right.} \begin{array}{l}
\text { (4.35) }
\end{array}, l\right.\right.
\end{aligned}
$$

Consider now the boundary conditions for the problem. Two of the boundary conditions upon $\alpha(\tau)$ have already been noted and these are as follows:

$$
\begin{equation*}
\alpha(0)=0 \quad, \alpha^{\prime}(0)=0 \tag{4.36}
\end{equation*}
$$

The conditions (4.36) imply that $\eta(0)=0$ and $\eta^{\prime}(0)=0$ and thus (4.29) can now be written in the form

$$
\begin{equation*}
\left.\eta^{\prime}(T) g_{\alpha^{\prime \prime}}\right|_{\tau=T}+\eta(T)\left\{g_{\alpha^{\prime}}-\frac{d}{d \tau} g_{\alpha^{\prime \prime}}\right\}_{\tau=T}=0 \tag{4.37}
\end{equation*}
$$

Since $\eta(\tau)$ is an arbitary variation it follows that the coefficients of $\eta(\tau)$ and $\eta^{\prime}(\tau)$ in (4.37) must both be zero, hence

$$
\begin{equation*}
g_{\alpha^{\prime \prime}}=0 \quad, \quad \tau=T \tag{4.38}
\end{equation*}
$$

$$
\begin{equation*}
g_{\alpha},-\frac{d}{d \tau} \quad g_{\alpha \prime}=0, \quad \tau=T \tag{4.39}
\end{equation*}
$$

These conditions allied with the two conditions upon $\alpha(\tau)$ in (4.36) provide the appropriate conditions for the unique solution of $\alpha(\tau)$ in the problem.

CHAPTER FIVE

The Application of the Gelfand - Fomin Theorem in the Unsteady One Dimensional Gas Problem.

The unsteady one dimensional gas problem is now discussed using the Gelfand - Fomin theorem. The notation is the same as that used in Chapter Four.

The governing equations of the gas are

$$
\begin{align*}
& \frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\frac{2}{\gamma-1} c \frac{\partial c}{\partial x}=0 \tag{5.1}\\
& \frac{2}{\gamma-1} \frac{\partial c}{\partial t}+\frac{2}{\gamma-1} u \frac{\partial c}{\partial x}+c \frac{\partial u}{\partial x}=0 \tag{5.2}
\end{align*}
$$

Figure 5.1

As before the performance index I to be minimised is given by

$$
\begin{equation*}
I=\int_{L R} f\{x, u(x, T), c(x, T)\} d x+\int_{\tau=0}^{T} F\left\{\alpha(\tau), \alpha^{\prime}(\tau) \alpha^{\prime \prime}(\tau), \tau\right\} d \tau \tag{5.3}
\end{equation*}
$$

Consider instead of I the new functional J where

$$
\begin{align*}
J= & \int_{S_{1}} \int_{\{ }\left\{(x, t)\left[u_{t}+u u_{x}+\frac{2}{\gamma-1} c c_{x}\right]+n(x, t)\left[\frac{2}{\gamma-1} c_{t}+\frac{2 u c_{x}}{\gamma-1}+c u_{x}\right]\right\} d x d t \\
& +\int_{L R} f\{x, u, c\} d x+\int_{\tau=0}^{T} F\left\{\alpha(\tau), \alpha^{\prime}(\tau), \alpha^{\prime \prime}(\tau), \tau\right\} d \tau, \tag{5.4}
\end{align*}
$$

ξ and η being Lagrange multipliers depending on x and t. Let
$\Phi=\xi(x, t)\left[u_{t}+u u_{x}+\frac{2}{\gamma-1} c c_{x}\right]+\eta(x, t)\left[\frac{2}{\gamma-1} c t+\frac{2}{\gamma-1} u c_{x}+c u_{x}\right],(5.5)$
and

$$
\begin{equation*}
J_{1}=\iint_{1} \Phi d x d t \tag{5.6}
\end{equation*}
$$

Applying the Gelfand - Fomin theorem to J_{1} the variation in J_{1}, that is δJ_{1}, is given by

$$
\begin{aligned}
\delta J_{1}= & \left.\iint_{S}\left\{\overline{\delta u}\left[\Phi_{u}-\frac{\partial}{\partial x} \Phi_{u_{x}}-\frac{\partial}{\partial t} \Phi_{u_{t}}\right]+\overline{\delta c} \Phi_{c}-\frac{\partial}{\partial x} \Phi_{c_{x}}-\frac{\partial}{\partial t} \Phi_{c_{t}}\right]\right\} d x d t \\
& +\int_{S_{1}}^{1} \int_{t}^{1}\left\{\frac{\partial}{\partial x}\left[\Phi \delta x+\overline{\delta u} \Phi_{u_{x}}+\overline{\delta c} \Phi_{c_{x}}\right]+\frac{\partial}{\partial t}\left[\Phi \delta t+\overline{\delta u} \Phi_{u_{t}}+\overline{\delta c} \Phi_{c_{t}}{ }_{t}\right\} d x d t\right.
\end{aligned}
$$

and using Stokes' theorem on the second integral this becomes

$$
\begin{align*}
\delta J_{1} & \left.=\iint_{S_{1}} \int \delta \delta \bar{u}\left[\Phi_{u}-\frac{\partial}{\partial t} \Phi_{u_{x}}-\frac{\partial}{\partial t} \Phi_{u_{t}}\right]+\overline{\delta c}\left[\Phi_{c}-\frac{\partial}{\partial x} \Phi_{c_{x}}-\frac{\partial}{\partial t} \Phi_{c_{t}}\right]\right\} d x d t \\
& +\int_{O R+R L+L O}\left\{\left[\Phi \delta x+\overline{\delta u} \Phi_{\dot{u}_{x}}+\overline{\delta c} \Phi_{c_{x}}\right] d t-\left[\Phi \delta t+\overline{\delta u} \Phi_{u_{t}}+\overline{\delta c} \Phi_{c_{t}}\right] d x\right\} \tag{5.7}
\end{align*}
$$

It is known from the characteristic theory that $x ; c, t$ and u remain unaltered on $O R$ and so there is no contribution to δJ from the integral along $O R$. $O_{n} L R$, that is $t=T$, δt and $d t$ are zero so the integration along RL becomes

$$
\begin{equation*}
\int_{\mathrm{LR}}\left\{\overline{\delta u} \Phi_{u_{t}}+\overline{\delta c} \Phi_{c_{t}}\right\} \mathrm{dx} \tag{5.8}
\end{equation*}
$$

On LO $x=-\alpha(\tau), t=\tau$ and the value of τ at a point on $L O$ is
unaltered by the variation of position of LO so $\delta t=0$ and $\delta x=-\delta \alpha(\tau)$.
$\overline{\delta u}$ and $\overline{\delta c}$ are defined by

$$
\begin{aligned}
& \overline{\delta u}=\delta u-\frac{\partial u}{\partial x} \delta x-\frac{\partial u}{\partial t} \delta t \\
& \overline{\delta c}=\delta c-\frac{\partial c}{\partial x} \delta x-\frac{\partial c}{\partial t} \delta t
\end{aligned}
$$

On LO these become

$$
\overline{\delta u}=\delta u+\frac{\partial u}{\partial \alpha} \partial \alpha \quad, \quad \overline{\delta c}=\delta c+\frac{\partial c}{\partial \alpha} \delta \alpha
$$

where $\frac{\partial u}{\partial \alpha}=\left.\frac{\partial u}{\partial x}\right|_{x=-\alpha(\tau)},\left.\quad \frac{\partial c}{\partial \alpha} \quad \frac{\partial c}{\partial x}\right|_{x=-\alpha(\tau)}$
From equation (4.24) the boundary condition on OL is

$$
u(x, \tau)+\alpha^{\prime}(\tau)=0, \quad x=-\alpha(\tau) ;
$$

and the varied conditions are
$\delta \tau=0, \quad \delta x=-\delta \alpha, \quad \delta u=-\delta \alpha^{\prime}$
and on OL

$$
c(x, \tau)=c_{0}-\frac{(\gamma-1)}{2} \alpha^{\prime}(\tau)
$$

so $\delta c=-\frac{(y-1)}{2} \delta \alpha^{\prime}(\tau)$.
Therefore on OL $\overline{\delta u}$ and $\overline{\delta c}$ may be written as

$$
\begin{aligned}
& \overline{\delta u}=-\delta \alpha^{\prime}+\frac{\partial u}{\partial \alpha} \delta \alpha \\
& \overline{\delta c}=-\frac{(\gamma-1)}{2} \delta \alpha^{\prime}+\frac{\partial c}{\partial \alpha} \delta \alpha
\end{aligned}
$$

and the integration along $L 0$ may be written as

$$
\begin{aligned}
& -\int_{L O}\left\{\left[\Phi \delta \alpha+\left(\delta \alpha^{\prime}-\frac{\partial u}{\partial \alpha} \delta \alpha\right)_{u_{x}}+\left(\frac{(\gamma-1)}{2} \delta \alpha^{\prime}-\frac{\partial c}{\partial \alpha} \delta \alpha\right) \Phi_{c_{x}}\right] d \underline{x}\right. \\
& +\left[\left(\delta \alpha^{\prime}-\frac{\partial u \delta \alpha) \Phi_{u_{t}}}{\partial \alpha}+\left(\frac{(r-1)}{2} \delta \alpha^{\prime}-\frac{\partial c}{\partial \alpha} \delta \alpha\right) \Phi_{c_{t}}\right] \quad \mathrm{d} \alpha\right\} \\
& \text { or } \int_{\text {On }}\left\{\Phi \delta \alpha+\left(\delta \alpha^{\prime}-\frac{\partial u}{\partial \alpha} \delta \alpha\right) \Phi_{u_{x}}+\left(\frac{(\gamma-1)}{2} \delta \alpha^{\prime}-\frac{\partial c}{\partial \alpha} \delta \alpha\right) \phi_{c_{x}}+\right. \\
& \left.+\left(\delta \alpha^{\prime}-\frac{\partial u}{\partial \alpha} \delta \alpha\right) \phi_{u_{t}} \alpha^{\prime}(\underline{r})+\left(\frac{(\underline{-1})}{2} \delta \alpha^{\prime}-\frac{\partial c}{\partial \alpha} \delta \alpha\right)_{c_{t}} \alpha^{\prime}(\tau)\right\} d \tau \\
& =\int_{\mathrm{OL}}\left\{\delta \alpha\left[\Phi-\frac{\partial u}{\partial \alpha}\left(\Phi_{u_{x}}+\Phi_{u_{t}} \alpha^{\prime}(\tau)\right)-\frac{\partial c}{\partial \alpha}\left(\Phi_{c_{x}}+\Phi_{c_{t}} \quad \alpha^{\prime}(\tau)\right)\right]\right. \\
& \left.+\delta \alpha^{\prime}\left[\Phi_{u_{x}}+\Phi_{u_{t}} \alpha^{\prime}(\tau)+\frac{(\gamma-1)}{2}\left(\Phi_{c_{x}}+\Phi_{c_{t}} \alpha^{\prime}(\tau)\right)\right]\right\} d \tau . \text { (5.9) } \\
& \text { Integrating } \int_{0 L} \delta \alpha^{\prime}\left[\Phi_{u_{x}}+\Phi_{u_{t}} \alpha^{\prime}(\tau)+\frac{(\gamma-1)}{2}\left(\Phi_{c_{x}}+\Phi_{c_{t}} \alpha^{\prime}(\tau)\right)\right] d \tau
\end{aligned}
$$

by parts gives

$$
\begin{aligned}
& \left.\delta \alpha\left[\Phi_{u_{x}}+\Phi_{u_{t}} \alpha^{\prime}(\tau)+\frac{(\gamma-1)\left(\Phi_{c_{x}}\right.}{2}+\Phi_{c_{t}} \alpha^{\prime}(\tau)\right)\right]_{\tau=0}^{\tau=T} \\
& -\int_{O L} \frac{\delta \alpha \partial}{\partial \tau}\left\{\Phi_{u_{x}}+\Phi_{u_{t}} \alpha^{\prime}(\tau)+\frac{(\gamma-1)}{2}\left(_{c_{x}}+\Phi_{c_{t}} \alpha^{\prime}(\tau)\right)\right\} d \tau
\end{aligned}
$$

and (5.9) may be written as

$$
\int_{O L} \delta \alpha\left\{\Phi-\frac{\partial u}{\partial \alpha}\left(\Phi_{u_{x}}+\Phi_{u_{t}} \alpha^{\prime}(\tau)\right)-\frac{\partial c}{\partial \alpha}\left(\Phi_{c_{x}}+\Phi_{c_{t}} \alpha^{\prime}(\tau)\right)\right.
$$

$$
\left.-\frac{\partial}{\partial \tau}\left[\Phi_{u_{x}}+\Phi_{u_{t}} \alpha^{\prime}(\tau)+\frac{(\gamma-1)}{2}\left(\Phi_{c_{x}}+\Phi_{c_{t}} \alpha^{\prime}(\tau)\right)\right]\right\} d \tau
$$

$$
\begin{equation*}
+\delta \alpha\left[\Phi_{u_{x}}+\Phi_{u_{t}} \alpha^{\prime}(\tau)+\frac{(\gamma-1)}{2}\left(\Phi_{c_{x}}+\Phi_{c_{t}} \alpha^{\prime}(\tau)\right)\right]_{\tau=T} \tag{5.10}
\end{equation*}
$$

since $\delta \alpha=0$ at $\tau=0$.
(5.7) may now be written as

Let $\int_{L R} f\{x, u, c\}$ be J_{2}, then by the Gelfand - Fomin theorem

$$
\begin{aligned}
\delta J_{2} & =\int_{L R}\left\{\overline{\delta u}\left[f_{u}-\frac{\partial}{\partial x} f_{u_{x}}\right]+\overline{\delta c}\left[f_{c}-\frac{\partial}{\partial x} f_{c_{x}}\right]\right\} d x \\
& +\int_{L R} \frac{\partial}{\partial x}\left(f \delta x+\overline{\delta u}_{u_{x}}+\overline{\delta c} f_{c_{x}}\right) d x
\end{aligned}
$$

and since f is independent of u_{x} and c_{x}

$$
\begin{align*}
\delta J_{2} & =\int_{L R}\left\{\delta \bar{u} f_{u}+\overline{\delta c} f_{c}\right\} d x+\int_{L R} \frac{\partial}{\partial x}(f \delta x) d x \\
& =\int_{L R}\left\{\delta \bar{u} f_{u}+\overline{\delta c} f_{c}\right\} d x-\left.f \delta x\right|_{x=x_{L}} ^{x=x_{R}} \tag{5.12}
\end{align*}
$$

and at $x=x_{R} \quad \delta x$ is zero.

$$
\begin{aligned}
\text { If } J_{3} & =\int_{\tau=0}^{T} F\left\{\alpha(\tau), \alpha^{\prime}(\tau), \alpha^{\prime \prime}(\tau), \tau\right\} d \tau \text {, then } \\
\delta J_{3} & =\int_{\tau=0}^{T}\left\{F_{\alpha} \delta \alpha+F_{\alpha^{\prime}} \delta \alpha^{\prime}+F_{\alpha^{\prime \prime}} \delta \alpha^{\prime \prime}\right\} d \tau
\end{aligned}
$$

and integrating $F_{\alpha^{\prime}}{ }^{\delta \alpha^{\prime}}$ and $F_{\alpha^{\prime \prime}} \delta \alpha^{\prime \prime}$ by parts this becomes, as in previous examples,
$\delta J_{3}=\int_{0}^{T} \delta \alpha\left\{F_{\alpha}-\frac{d F_{2}}{d \tau},^{\prime}+\frac{d^{2} F_{\alpha}}{d \tau^{2}} \alpha^{\prime \prime}\right\} d \tau+\delta \alpha\left[F_{\alpha},-\frac{d F_{\alpha}}{d \tau}\right]_{\tau=T}+\left.F_{\alpha \prime \prime} \quad \delta \alpha^{\prime}\right|_{\tau=T} \quad$.

$$
\begin{align*}
& \delta J_{1}=\iint_{S_{1}}\left\{\overline{\delta u}\left[\Phi_{u}-\frac{\partial}{\partial x} \Phi_{x}-\frac{\partial \Phi}{\partial t} u_{t}\right]+\delta \overline{\delta c}\left[\Phi_{c}-\frac{\partial}{\partial x} \Phi_{x}-\frac{\partial \Phi_{c}}{\partial t} c_{t}\right]\right\} d x d t \\
& +\int_{L R} \overline{\delta u}\left\{\Phi_{u_{t}}+\overline{\delta c} \Phi_{c_{t}}\right\} d x \\
& +\int_{0}^{\top} \delta \alpha\left\{\Phi-\frac{\partial u}{\partial \alpha}\left(\Phi_{u_{x}}+\Phi_{u_{t}} \alpha^{\prime}(\tau)\right)-\frac{\partial c}{\partial \alpha}\left(\Phi_{c_{x}}+\Phi_{c_{t}} \alpha^{\prime}(\tau)\right)-\right. \\
& \left.-\frac{\partial}{\partial \tau}\left[\Phi_{u_{x}}+\Phi_{u_{t}} \alpha^{\prime}(\tau)+\frac{(\gamma-1)}{2}\left(\Phi_{c_{x}}+\Phi_{c_{t}} \alpha^{\prime}(\tau)\right)\right]\right\} d \tau \\
& +\delta \alpha\left[\Phi_{u_{x}}+\Phi_{u_{t}} \alpha^{\prime}(\tau)+\frac{(\gamma-1)}{2}\left(\Phi_{c_{x}}+\Phi_{c_{t}} \alpha^{\prime}(\tau)\right)\right]_{\tau=T} . \tag{5.11}
\end{align*}
$$

$\delta \mathrm{J}$, the total variation of J , is the sum of (5.11), (5.12) and (5.13), so

$$
\begin{align*}
& \delta J=\iint_{S_{1}}\left\{\delta \overline{\delta u}\left[\Phi_{u}-\frac{\partial}{\partial x} \Phi_{u_{x}}-\frac{\partial}{\partial t} \Phi_{u}\right]+\overline{\delta c}\left[\Phi_{c}-\frac{\partial}{\partial x} \Phi_{c}-\frac{\partial}{\partial t} \Phi_{t}\right]\right\} d x d t \\
& +\int_{L R}\left\{\overline{\delta u}\left(\Phi_{u_{t}}+f_{u}\right)+\overline{\delta c}\left(\Phi_{c_{t}}+f_{c}\right)\right\} d x \\
& +\int_{0}^{T} \delta \alpha\left\{F_{\alpha}-\frac{d F_{\alpha}}{d \tau}+\frac{d^{2} F_{\alpha}}{d \tau^{2}}{ }^{\prime \prime}+\phi-\frac{\partial u}{\partial \alpha}\left(\Phi_{u_{x}}+\Phi_{u_{t}} \alpha^{\prime}(\tau)\right)-\right. \\
& \left.-\frac{\partial c}{\partial \alpha}\left(\Phi_{c_{x}}+\Phi_{c_{t}} \alpha^{\prime}(\tau)\right)-\frac{\partial}{\partial \tau}\left[\Phi_{u_{x}}+\Phi_{u_{t}} \alpha^{\prime}(\tau)+\frac{(\gamma-1)}{2} \cdot\left(\Phi_{c_{x}}+\Phi_{c_{t}} \alpha^{\prime}(\tau)\right)\right]\right\} d \tau \\
& +\delta \alpha\left[F_{\alpha^{\prime}}-\frac{d F_{\alpha^{\prime}}}{d \tau}+\Phi_{u_{x}}+\Phi_{u_{t}} \alpha^{\prime}(\tau)+\frac{(\gamma-1)}{2}\left(\Phi_{c_{x}}+\Phi_{c_{t}} \alpha^{\prime}(\tau)\right)-f\right]_{\tau=T} \\
& +\left.F \alpha^{\prime \prime} \delta \alpha^{\prime}\right|_{\tau=T} ^{d \tau} \tag{5.14}
\end{align*}
$$

For a minimum of I in (5.3) δJ must be zero and since $\overline{\delta u}, \delta \bar{c}, \delta \alpha$ and $\delta \alpha^{\prime}$ are independent arbitary variations this implies that

$$
\begin{align*}
& \Phi_{u}-\frac{\partial}{\partial x} \Phi_{x}-\frac{\partial}{\partial t} \Phi_{t}=0, \quad(x, t) \in S_{1} \quad, \tag{5.15}\\
& \Phi_{c}-\frac{\partial}{\partial x} \Phi_{x}-\frac{\partial}{\partial t} \Phi_{t}=0, \quad(x, t) \in S_{1} \quad, \tag{5.16}\\
& \Phi_{u_{t}}+f_{u}=0 \quad, \quad(x, t) \in L R \text {. , } \tag{5.17}\\
& \Phi_{c_{t}}+f_{c}=0 \quad, \quad(x, t) \in L R \quad, \tag{5.18}\\
& F_{\alpha}-\frac{d F_{\alpha}}{d \tau}+\frac{d^{2} F_{\alpha}^{\prime \prime}}{d \tau^{2}}+\Phi-\frac{\partial u}{\partial \alpha}\left(\Phi_{u_{x}}+\Phi_{u_{t}} \alpha^{\prime}(\tau)\right)-\frac{\partial c}{\partial \alpha}\left(\Phi_{c_{x}}+\Phi_{c_{t}} \alpha^{\prime}(\tau)\right) \\
& -\frac{\partial}{\partial \tau}\left\{\Phi_{u_{x}}+\Phi_{u_{t}} \alpha^{\prime}(\tau)+\frac{(\gamma-1)}{2}\left(\Phi_{c_{x}}+\Phi_{c_{t}} \alpha^{\prime}(\tau)\right)\right\}=0 \text {, } \\
& (x, t) \in \text { OL , } \tag{5.19}\\
& F_{\alpha^{\prime}}-\frac{d F_{\alpha \prime \prime}}{d \tau}+f+\Phi_{u_{x}}+\Phi_{u_{t}} \alpha^{\prime}(\tau)+\frac{(\gamma-1)}{2}\left(\Phi_{c_{x}}+\Phi_{c_{t}} \alpha^{\prime}(\tau)\right)=0, \tau=T,(5.20) \\
& \mathrm{F}_{\alpha^{\prime \prime}} \delta \alpha^{\prime}=0 \quad, \quad \tau=\mathrm{T} \text {. } \tag{5.21}
\end{align*}
$$

Substituting the value for Φ from (5.5) into (5.15) and (5.16) gives
$\frac{3-\gamma}{\gamma-1} \eta \frac{\partial c}{\partial x}-u \frac{\partial \xi}{\partial x}-c \frac{\partial \eta}{\partial x}-\frac{\partial \xi}{\partial t}=0$,
and $\frac{\gamma^{-3}}{\gamma-1}{ }^{n} \frac{\partial u}{\partial x}-\frac{2}{\gamma-1} c \frac{\partial \xi}{\partial x}-\frac{2}{\gamma-1} u \frac{\partial \eta}{\partial x}-\frac{2}{\gamma-1} \frac{\partial \eta}{\partial t}=0 ;$
and these may be written as

$$
\begin{equation*}
-\frac{(3-\gamma)}{\gamma-1} \frac{\eta \partial c}{\partial x}+u \frac{\partial \xi}{\partial x}+c \frac{\partial \eta}{\partial x}+\frac{\partial \xi}{\partial t}=0 \text {; } \tag{5.22}
\end{equation*}
$$

$$
\begin{aligned}
& \frac{3-\gamma}{2} \frac{\eta \partial u}{\partial x}+c \frac{\partial \xi}{\partial x}+u \frac{\partial \eta}{\partial x}+\frac{\partial \eta}{\partial t}=0 \\
& \text { Adding (5.22) and (5.23) gives }
\end{aligned}
$$

$$
\begin{equation*}
(u+c) \frac{\partial}{\partial x}(\xi+\eta)+\frac{\partial}{\partial t}(\xi+\eta)=\frac{(\gamma-3)}{2} \eta \frac{\partial}{\partial x}\left\{u-\frac{2}{\gamma-1}\right\}, \tag{5.24}
\end{equation*}
$$

and subtracting (5.23) from (5.22) gives

$$
(u-c) \frac{\partial}{\partial x}(\xi-\eta)+\frac{\partial}{\partial t}(\xi-\eta)=\frac{3-\gamma}{2} \eta \frac{\partial}{\partial x}\left\{u+\frac{2}{\gamma-1} c\right\}
$$

It is known from the characteristic theory of equations (5.1) and (5.2), $[(4.13)]$, that
$u-\frac{2}{\gamma-1} c=-\frac{2}{\gamma-1} c_{0} \quad$ for all $\quad(x, t) \in S_{1}$
hence (5.24) becomes
$\left\{(u+c) \frac{\partial}{\partial x}+\frac{\partial}{\partial t}\right\}(\xi+n)=0$
and this can be interpreted as $(\xi+\eta)$ is constant along $\frac{d x}{d t}=u+c$, the C+ characteristic.

Substituting for Φ in (5.17) and (5.18) gives

$$
\begin{align*}
& f_{u}+\xi=0 \quad, \quad(x, t) \in \quad L R \tag{5.27}\\
& f_{c}+\frac{2}{\gamma-1} \eta=0, \quad(x, t) \in \quad L R \tag{5.28}
\end{align*}
$$

Since $(\xi+\eta)$ is constant along the C+ characteristic

Figure 5.2

$$
\begin{aligned}
\xi(x, t)+\eta(x, t) & =\xi(-\alpha(\tau), \tau)+\eta(-\alpha(\tau), \tau) \\
& =\xi(X, T)+\eta(X, T),
\end{aligned}
$$

and from (5.27) and (5.28)

$$
\begin{equation*}
\xi(X, T)+\eta(X, T)=-\left\{f_{u}+\frac{\gamma-1}{2} f_{c}\right\}_{\frac{c=T}{x=\frac{X}{X}}} \tag{5.29}
\end{equation*}
$$

so $\xi(x, t)+\eta(x, t)=\xi(-\alpha(\tau), \tau)+\eta(-\alpha(\tau), \tau)=-\left\{f_{u}+\frac{\gamma-1}{2} f_{c}\right\}$.
Substituting for Φ from (5.5) in (5.19) gives

$$
\begin{array}{r}
\left.F_{\alpha}-\frac{d F_{\alpha^{\prime}}^{\prime}}{d \tau}+\frac{d^{2} F_{\alpha^{\prime}}}{d \tau}-\frac{\partial u}{\partial \alpha}\left(\xi u+n c+\xi \alpha^{\prime}(\tau)\right)-\frac{\partial c}{\partial \alpha} \frac{2}{\gamma-1} \xi c+\frac{2}{\gamma-1} \eta u+\frac{2}{\gamma-1} n \alpha^{\prime}(\tau)\right) \\
-\frac{\partial}{\partial \tau}\left\{\xi u+n c+\frac{(\gamma-1)}{2}\left(\frac{2}{\gamma-1} \xi c+\frac{2}{\gamma-1} n u\right)+\alpha^{\prime}(\tau)\left(\xi+\frac{(\gamma-1)}{2} \cdot \frac{2}{(\gamma-1)} n\right)\right\}=0 \\
(x, t) \in \text { OL, }(5.30) \tag{5.30}
\end{array}
$$

and $u+\alpha^{\prime}(\tau)=0$ on OL so (5.30) becomes

$$
F_{\alpha}-\frac{d F_{\alpha^{\prime}}}{d \tau}+\frac{d^{2} F_{\alpha}}{d \tau}-\frac{\partial u}{\partial \alpha} n c-\frac{\partial c}{\partial \alpha} \cdot \frac{2}{\gamma-1} \xi c-\frac{\partial}{\partial \tau}\{(\eta+\xi) c\}=0
$$

$\frac{\partial u}{\partial \alpha}$ and $\frac{\partial c}{\partial \alpha}$ must now be determined.
Since $u(x, t)=-\alpha^{\prime}(\tau)$ and , from (4.18),
$c(x, t)=c_{0}-\frac{(y-1)}{2} \alpha^{\prime}(\tau)$ then
$\frac{\partial u}{\partial x}=-\alpha^{\prime \prime}(\tau) \frac{\partial \tau}{\partial x}$ and $\frac{\partial c}{\partial x}=c_{0}-\frac{(\gamma-1)}{2} \alpha^{\prime \prime}(\tau) \frac{\partial \tau}{\partial x}$.
From (4.20) τ is related to x by the equation

$$
x=-\alpha(\tau)+(t-\tau)\left\{c_{0}-\frac{(\gamma+1)}{2} \alpha^{\prime}(\tau)\right\}
$$

so $\frac{\partial x}{\partial \tau}=-\alpha^{\prime}(\tau)-\left\{c_{0}-\frac{(\gamma+1)}{2} \alpha^{\prime}(\tau)\right\}-\frac{(\gamma+1)}{2} \alpha^{\prime \prime}(\tau)(t-\tau)$
and since $t=\tau$ on $O L, \frac{\partial x}{\partial \tau}$ on $O L$ becomes
$\frac{\partial x}{\partial \tau}=-\alpha^{\prime}(\tau)-c_{0}+\frac{(\gamma+1)}{2} \alpha^{\prime}(\tau) \quad, \quad(x, t) \in 0 L$
and $\frac{\partial \tau}{\partial x}=\frac{1}{\frac{(\gamma-1) \alpha^{\top}(\tau)-c_{0}}{}}$ on OL.

$$
\begin{aligned}
& \frac{\partial u}{\partial \alpha}=\left.\frac{\partial u}{\partial x}\right|_{x=-\alpha(\tau)} \quad \frac{\partial u}{\partial c}=\left.\frac{\partial u}{\partial x}\right|^{x=\tau=-\alpha \tau} \tau \\
& \text { so } \frac{\partial u}{\partial \alpha}=\frac{-\alpha^{\prime \prime}(\tau)}{\frac{(\gamma-1) \alpha^{\prime}(\tau)-c_{0}}{2}}, \frac{\partial c}{\partial \alpha}=\frac{-\frac{(\gamma-1)}{2}}{\frac{(\gamma-1) \alpha^{\prime}(\tau)-c_{0}^{\prime}(\tau)}{2}} \quad \text {. on od }
\end{aligned}
$$

(5.31) may now be written as

$$
\mathrm{F}_{\alpha}-\frac{\mathrm{d} \mathrm{~F}_{\alpha}}{\mathrm{d} \tau}+\frac{\mathrm{d}^{2} \mathrm{~F}_{\alpha^{\prime \prime}}+\frac{\eta c \alpha^{\prime \prime}(\tau)}{\mathrm{d} \tau^{2}} \frac{\left(\gamma^{-1)} \alpha^{\prime}(\tau)-c_{0}\right.}{\frac{\xi}{2} \alpha^{\prime}(\tau)-c}}{\frac{\left(\gamma-1 \alpha^{\prime \prime}(\tau)\right.}{\partial \tau}}-\frac{\partial}{\partial}\{(\xi+\eta)\}=0
$$

$$
\text { and since } c=c_{0}-\frac{(\gamma-1)}{2} \alpha^{\prime}(\tau) \text { and }(\xi+\eta)=-\left\{f_{u}+\frac{(\gamma-1)}{2}\right\}_{\substack{t=T \\ x=X}}
$$

$$
+\left(c_{o}-\frac{(\gamma-1)}{2} \alpha^{\prime}(\tau)\right) \frac{\partial}{\partial \tau}\left\{f_{u}+\frac{(\gamma-1)}{2} f_{c}\right\}_{\substack{t=T \\ x=X}}=0
$$

$$
\begin{aligned}
& F_{\alpha}-\frac{d F_{\alpha}}{d \tau}+\frac{d^{2} F_{1}}{d \tau^{2}} \alpha^{\prime \prime}=\frac{(\gamma-3)}{2} \alpha^{\prime \prime}\left\{f_{u}+\frac{(\gamma-1)}{2} f_{c}\right\}_{\substack{t=T}}^{x=X}=\left\{c_{0}-\frac{(\gamma-1)}{2} \alpha^{\prime}(\tau)\right\} \quad x \\
& \times \frac{\partial}{\partial \tau}\left\{f_{u}+\frac{(\gamma-1)}{2} f_{c}\right\}_{\substack{t=T}}=0 .
\end{aligned}
$$

where $X=-\alpha(\tau)+(T-\tau)\left\{c_{0}-\frac{(\gamma+1)}{2} \alpha^{\prime}(\tau)\right\}$
When the value for Φ from (5.5) is substituted in the boundary
condition (5.20) that becomes

$$
F_{\alpha^{\prime}}^{\prime}-\frac{d F_{\alpha^{\prime \prime}}^{\prime \prime}}{d \tau}+f-\left(c_{0}-\frac{(\gamma-1) \alpha^{\prime}}{2}(\tau)\right)\left(f_{u}+\frac{(\gamma-1) f_{c}}{2}\right)_{\substack{t=1 \\ x=X}}=0 \quad \tau=T .(5.33)
$$

Equation (5.32) is the transversality condition corresponding to equation (4.35) in the previous chapter. It will now be shown that these two equations are identical.

Equation (4.35) is given by

$$
\begin{align*}
\frac{d^{2}}{d \tau^{2}} & \left\{\frac{(\gamma+1)}{2}(T-\tau) x\left(\tau, \alpha(\tau), \alpha^{\prime}(\tau)\right)+F_{\alpha^{\prime \prime}}\right\} \\
& +\frac{d}{d \tau}\left\{\frac{(\gamma-1)}{2} x-\left[c_{0}-\frac{\left.\left.(\gamma-1) \alpha^{\prime}(\tau)+\frac{(\gamma+1)}{2}(T-\tau) \alpha^{\prime \prime}(\tau)\right] x_{\alpha^{\prime}}-F_{\alpha^{\prime}}\right\}}{}\right.\right. \\
& +\left\{c_{0}-\frac{\left.(\gamma-1) \alpha^{\prime}(\tau)+\frac{(\gamma+1)}{2}(T-\tau) \alpha^{\prime \prime}(\tau)\right\} X_{\alpha}+F_{\alpha}=0 .}{}\right. \tag{5.34}
\end{align*}
$$

From (4.30)

$$
X \equiv f\left\{-\alpha(\tau)+(T-\tau)\left[c_{0}-\frac{(\gamma+1)}{2} \alpha^{\prime}(\tau)\right],-\alpha^{\prime}(\tau), c_{0}-\frac{(\gamma-1)}{2} \alpha^{\prime}(\tau)\right\} .
$$

so

$$
\begin{aligned}
\frac{d}{d \tau}\left\{\frac{(\gamma+1)}{2}(T-\tau) x\right\}= & -\frac{(\gamma+1)}{2} x+\frac{(\gamma+1)}{2}(T-\tau)\left\{\left[-\alpha^{\prime}(\tau)-c_{0}+\frac{(\gamma+1)}{2} \alpha^{\prime}(\tau)\right.\right. \\
& \left.\left.-(T-\tau) \frac{(\gamma+1)}{2} \alpha^{\prime \prime}(\tau)\right] f_{x}-\alpha^{\prime \prime}\left[f_{u}+\frac{(\gamma-1)}{2} f_{c}\right]\right\}
\end{aligned}
$$

and
$\frac{d}{d \tau}\left\{\frac{(\gamma-1)}{2} x\right\}=\frac{(\gamma-1)}{2}\left\{\left[\frac{(\gamma-1)}{2} \alpha^{\prime}(\tau)-c_{0}-(T-\tau) \frac{(\gamma+1)}{2} \alpha^{\prime \prime}(\tau)\right] f_{x}\right.$

$$
\begin{equation*}
\left.-\alpha^{\prime \prime}(\tau)\left[f_{u}+\frac{(\gamma-1)}{2} f_{c}\right]\right\} \tag{5.36}
\end{equation*}
$$

$x_{\alpha^{\prime}}=-\frac{(\gamma+1)}{2}(T-\tau) f_{x}-f_{u}-\frac{(\gamma-1)}{2} f_{c}$
so

Using (5.35), (5.36), (5.37), (5.38) and (5.59), (5.34) may be written as

$$
\begin{aligned}
& -(\gamma+1)\left\{\left[\frac{(\gamma-1)}{2} \alpha^{\prime}-c_{0}-(T-\tau) \frac{(\gamma+1)}{2} \alpha^{\prime \prime}\right] f_{x}-\alpha^{\prime \prime}\left[f_{u}+\frac{(\gamma-1)}{2} f_{c}\right]\right\} \\
& +\frac{(\gamma+1)}{2}(T-\tau)\left\{\left[\frac{(\gamma-1)}{2} \alpha^{\prime \prime}+\frac{(\gamma+1)}{2} \alpha^{\prime \prime}-(T-\tau) \frac{(\gamma+1)}{2} \alpha^{\prime \prime}\right] f_{x}-\alpha^{\prime \prime} \prime\left[f_{u}+\frac{(\gamma-1)}{2} f_{c}\right]+\right. \\
& \left.+\left[\frac{(\gamma-1)}{2} \alpha^{\prime}-c_{0}-(T-\tau) \frac{(\gamma+1)}{2} \alpha^{\prime \prime}\right] \frac{\partial f_{x}}{\partial \tau}-\alpha^{\prime \prime} \frac{\partial}{\partial \tau}\left[f_{u}+\frac{(\gamma-1)}{2} f_{c}\right]\right\}
\end{aligned}
$$

$$
\begin{align*}
& \frac{d}{d \tau}\left\{\left[c_{0}-\frac{(\gamma-1)}{2} \alpha^{\prime}(\tau)+\frac{(\gamma+1)}{2} \alpha^{\prime \prime}(\tau)\right]{\alpha^{\prime}}^{\prime}\right\}= \\
& \frac{d}{d \tau}\left\{\left[c_{0}-\frac{(\gamma-1)}{2} \alpha^{\prime}(\tau)+\frac{(\gamma+1)}{2} \alpha^{\prime \prime}(\tau)\right]\left[-\frac{(\gamma+1)}{2}(T-\tau) f_{x}-f_{u}-\frac{(\gamma-1)}{2} f_{c}\right]\right\} \\
& =\left\{-\frac{(\gamma-1)}{2} a^{\prime \prime}(\tau)-\frac{(\gamma+1)}{2} a^{\prime \prime}(\tau)+\frac{(\gamma+1)}{2}(T-\tau) a^{\prime \prime}{ }^{\prime \prime}(\tau)\right\}\left\{\frac{(\gamma+1)}{2}(T-\tau) f_{x}-f_{u}-\frac{(\gamma-1)}{2} f_{c}\right\} \\
& +\left\{c_{0}-\frac{(\gamma-1)}{2} \alpha^{\prime}(\tau)+\frac{(\gamma+1)}{2}(T+\tau) \alpha^{\prime \prime}(\tau)\right\}\left\{\frac{(\gamma+1)}{2} f_{x}-\frac{(\gamma+1)}{2}(T-\tau) \frac{\partial f}{\partial \tau} x^{-}\right. \\
& \left.-\frac{\partial}{\partial \tau}\left[\mathrm{f}_{u}+\frac{(\gamma-1)}{2} \mathrm{f}_{\mathrm{c}}\right]\right\} \cdot(5.38) \\
& x_{\alpha}=-f_{x} . \tag{5.39}
\end{align*}
$$

$$
\begin{align*}
& \frac{d^{2}}{d \tau^{2}}\left\{\frac{(\gamma+1)}{2}(T-\tau) x\right\}=-(\gamma+1)\left\{\left[\frac{(\gamma-1)}{2} \alpha^{\prime}(\tau)-c_{0}-(T-\tau) \frac{(\gamma+1)}{2} \alpha^{\prime \prime}(\tau)\right] f_{x}\right. \\
& \left.-\alpha^{\prime \prime}(\tau)\left[\frac{f}{u}+\frac{(\underline{x}-1)}{2} c\right]\right\} \\
& +\frac{(\gamma+1)}{2}(T-\tau)\left\{\left[\frac{(\gamma-1)}{2} \alpha^{\prime \prime}(\tau)+\frac{(\gamma+1)}{2} \alpha^{\prime \prime}(\tau)-(T-\tau) \frac{(\gamma+1)}{2} \alpha^{\prime \prime}(\tau)\right] f_{x}\right. \\
& -\alpha^{\prime \prime \prime}(\tau)\left[\frac{f}{u}+\frac{(x-1)}{2} f_{c}\right]+\left[\frac{(x-1) \alpha^{\prime}(\tau)-c_{0}-(T-\tau)\left(\frac{\gamma+1)}{2} \alpha^{\prime}(\tau)\right] \frac{\partial F_{*}}{\partial \tau}, ~(x)}{}\right. \\
& \left.-\alpha^{\prime \prime}(\tau) \frac{\partial}{\partial \tau}\left[f_{u}+\frac{(\gamma-1)}{2} f_{c}\right]\right\} \tag{5.35}
\end{align*}
$$

$$
\begin{aligned}
& +\frac{(\gamma-1)}{2}\left\{\left[\frac{(\gamma-1)}{2} \alpha^{\prime}-c_{0}-(T-\tau) \frac{(\gamma+1)}{2} \alpha^{\prime \prime}\right] f_{x}-\alpha^{\prime \prime}\left[f_{u}+\frac{(\gamma-1)}{2} c\right]\right\} \\
& \left.-\left\{c_{0}-\frac{(\gamma-1)}{2} \alpha^{\prime}+\frac{(\gamma+1)}{2}(T-\tau) \alpha^{\prime \prime}\right\}\left\{\frac{(\gamma+1)}{2} f_{x}-\frac{(\gamma+1)}{2}(T-\tau) \frac{\partial f^{\prime}}{\partial \tau}-\frac{\partial}{\partial \tau} f_{u}+\frac{(\gamma-1)}{2} f_{c}\right]\right\} \\
& -\left\{c_{0}-\frac{(\gamma-1)}{2} \alpha^{\prime}+\frac{(\gamma+1)}{2}(T-\tau) \alpha^{\prime \prime}\right\} f_{x}+\frac{d^{2} F^{\prime \prime}}{d \tau^{2}}-\frac{d F_{\alpha, \prime}}{d \tau}+F_{\alpha}=0
\end{aligned}
$$

which simplifies to

$$
\begin{aligned}
& f_{x}\left[\frac{(\gamma-1)}{2} \alpha^{\prime}-c_{0}-(T-\tau) \frac{(\gamma+1)}{2} \alpha^{\prime \prime}\right]\left[-\gamma-1+\frac{(\gamma-1)}{2}+\frac{(\gamma+1)}{2}+1\right] \\
& +f_{x}\left[\frac{(\gamma-1)}{2} \alpha^{\prime \prime}+\frac{(\gamma+1)}{2} \alpha^{\prime \prime}-(T-\tau) \frac{(\gamma+1)}{2} \alpha^{\prime \prime}\right]\left[\frac{(\gamma+1)}{2}(T-\tau)-\frac{(\gamma+1)}{2}(T-\tau)\right] \\
& +\frac{\partial f_{X}}{\partial \tau}\left[\frac{(\gamma-1)}{2} \alpha^{\prime}-c_{0}-(T-\tau) \frac{(\gamma+1)}{2} \alpha^{\prime \prime}\right]\left[\frac{(\gamma+1)}{2}(T-\tau)-\frac{(\gamma+1)}{2}(T-\tau)\right] \\
& +\left[f_{u}+\frac{(\gamma-1)}{2} f_{c}\right]\left[-\frac{(\gamma-1)}{2} \alpha^{\prime \prime}-\frac{(\gamma+1)}{2} \alpha^{\prime \prime}+\frac{(\gamma+1)}{2}(T-\tau) \alpha^{\prime \prime}!+(\gamma+1) \alpha^{\prime \prime}\right. \\
& \left.-\frac{(\gamma+1)}{2}(T-\tau) \alpha^{\prime \prime}-\frac{(\gamma-1)}{2} \alpha^{\prime \prime}\right] \\
& +\frac{\partial}{\partial \tau}\left[f_{u}+\frac{(\gamma-1)}{2} f_{c}\right]\left[-\frac{(\gamma+1)}{2}(T-\tau) \alpha^{\prime \prime}+c_{0}-\frac{(\gamma-1)}{2} \alpha^{\prime}+\frac{(\gamma+1)}{2}(T-\tau) \alpha^{\prime \prime}\right] \\
& +\frac{d^{2} F_{\alpha^{\prime \prime}}^{\prime \prime}}{d \tau^{2}}-\frac{d F_{\alpha^{\prime}}^{\prime}}{d \tau}+F_{\alpha}=0
\end{aligned}
$$

or

$$
\begin{aligned}
& {\left[f_{u}+\frac{(\gamma-1) f_{c}}{2}\right] \alpha\left[1 " \gamma+1-\frac{(\gamma-1)}{2}-\frac{(\gamma+1)}{2}-\frac{(\gamma-1)}{2}\right]+\frac{\partial}{\partial \tau}\left[f_{u}+\frac{(\gamma-1) f_{c}}{2}\right] \times} \\
& +\frac{d^{2} F^{2}}{d \tau^{2}} \alpha^{\prime \prime}-\frac{d F_{\alpha}}{d \tau}+F_{\alpha}=0 \\
& {\left[f_{u}+\frac{(\gamma-1)}{2} f_{c}\right]\left[\frac{(3-\gamma)}{2} \alpha^{\prime \prime}\right]+\left[c_{0}-\frac{(\gamma-1)}{2} \alpha^{\prime \prime}\right] \frac{\partial}{\partial \tau}\left[f_{u}+\frac{(\gamma-1)}{2} f_{c}\right]} \\
& +\frac{\mathrm{d}^{2} \mathrm{~F}^{2}}{\mathrm{~d} \underline{\tau}^{2}} \alpha^{\prime \prime} \frac{\mathrm{dF} \mathrm{~F}^{\prime}}{\mathrm{d} \mathrm{\tau}}+\mathrm{F}_{\alpha}=0 .
\end{aligned}
$$

Finally this becomes

$$
\frac{d^{2} F^{\prime}}{d \tau^{2}} \alpha^{\prime} r \frac{d F_{\alpha}}{d \tau}+F_{\alpha}=\frac{(\gamma-3)}{2} \alpha^{\prime \prime}\left[f_{u}+\frac{(\gamma-1) f_{c}}{2}\right]-\left[c_{0}-\frac{(\gamma-1)}{2} \alpha^{\prime \prime}\right] \frac{\partial}{\partial \tau}\left[f_{u}+\frac{(\gamma-1) f_{c}}{2}\right]
$$

which is identical to (5.32)

The boundary conditions in Chapter Four are

$$
\begin{array}{ll}
g_{\alpha^{\prime \prime}}=0 & \quad, \quad \tau=T \\
g_{\alpha^{\prime}}-\frac{d}{d \tau} g_{\alpha^{\prime \prime}}=0 \tag{5.41}
\end{array}
$$

From equation (4.31)

$$
\begin{aligned}
g\left(\tau, \alpha(\tau), \alpha^{\prime}(\tau) \alpha^{\prime \prime}(\tau)\right)= & \left\{c_{0}-\frac{(\gamma-1)}{2} \alpha^{\prime}(\tau)+\frac{(\gamma+1)}{2}(T-\tau) \alpha^{\prime \prime}(\tau)\right\} \times\left(\tau, \alpha(\tau), \alpha^{\prime}(\tau)\right) \\
& +F\left(\alpha(\tau), \alpha^{\prime}(\tau), \alpha^{\prime \prime}(\tau)\right)
\end{aligned}
$$

and, from (4.30),

$$
\begin{align*}
& x \equiv f\left\{-\alpha(\tau)+(T-\tau)\left[c_{0}-\frac{(\gamma+1) \alpha^{\prime}}{2}\right],-\alpha^{\prime}(\tau), c_{0}-\frac{(\gamma-1)}{2} \alpha^{\prime}(\tau)\right\} . \\
& g_{\alpha^{\prime}}=-\frac{(\gamma-1)}{2} f+\left\{c_{0}-\frac{(\gamma-1)}{2} \alpha^{\prime}+\frac{(\gamma+1)}{2}(T-\tau) \alpha^{\prime \prime}\right\} f_{\alpha^{\prime}}+F_{\alpha^{\prime}} \tag{5.42}\\
& f_{\alpha^{\prime}}=\left\{-\frac{(\gamma+1)}{2}(T-\tau) f_{x}-f_{u}-\frac{(\gamma-1)}{2} c\right\} \tag{5.43}\\
& g_{\alpha^{\prime \prime}}=\frac{(\gamma+1)}{2}(T-\tau) f+F_{\alpha^{\prime \prime}} \\
& \frac{d}{d \tau} g_{\alpha^{\prime \prime}}=-\frac{(\gamma+1) f}{2}+\frac{(\gamma+1)}{2}(T-\tau) f_{\alpha^{\prime}}+\frac{d}{d \tau} F_{\alpha^{\prime \prime}} . \tag{5.44}
\end{align*}
$$

The left hand side of (5.41) may be written down from (5.42), (5.43)
and (5.44)

$$
\begin{aligned}
g_{\alpha^{\prime}}-\frac{d}{d \tau} g_{\alpha^{\prime \prime}}= & \left\{c_{0}-\frac{(\gamma-1) \alpha^{\prime}}{2}+\frac{(\gamma+1)}{2}(T-\tau) \alpha^{\prime \prime}\right\}\left\{-\frac{(\gamma+1)}{2}(T-\tau) f_{x}-f_{u} \frac{(\gamma-1)}{2} f_{c}\right\}+ \\
& +F \alpha^{\prime}+f-\frac{(\gamma+1)}{2}(T-\tau) \times \\
& \times\left\{\left[-c_{0}+\frac{(\gamma-1)}{2} \alpha^{\prime}-(T-\tau) \frac{(\gamma+1)}{2} \alpha^{\prime \prime}\right] f_{x}-\alpha^{\prime \prime} f_{u}-\frac{(\gamma-1)}{2} \alpha^{\prime \prime} f_{c}\right\} \\
& -\frac{d F}{d \tau} \alpha^{\prime \prime}, \\
& =F_{\alpha^{\prime}}-\frac{d}{d \tau} F_{\alpha^{\prime \prime}}-\left(c_{0}-\frac{(\gamma-1) \alpha^{\prime}(\tau)}{2}\right)\left(f_{u}+\frac{(\gamma-1)}{2} f_{c}\right)+f, \tau=T
\end{aligned}
$$

which is the same as the boundary condition (5.33).

The Problem of Minimum Drag on a Body with Axial Symmetry in Stokes' Flow.

Figure 6.1
Consider an axially symmetric body with its axis of symmetry in the z direction immersed in a stream of viscous liquid in which the flow at infinity is of magnitude W and in the direction Oz . The liquid is assumed to be moving sufficiently slowly at infinity so that Stokes' approximation is valid and the equations of motion are

$$
\begin{align*}
& -\frac{1}{\rho} \frac{\partial \mathrm{p}}{\partial \mathrm{x}}+\nu \nabla^{2} \mathrm{U}=0 \tag{6.1}\\
& -\frac{1}{\rho} \frac{\partial \mathrm{p}}{\partial \mathrm{y}}+v \nabla^{2} \mathrm{~V}=0, \tag{6.2}\\
& -\frac{1}{\rho} \frac{\partial \mathrm{p}}{\partial z}+v \nabla^{2} \mathrm{w}=0, \tag{6.3}
\end{align*}
$$

and the equation of continuity is

$$
\begin{equation*}
\frac{\partial U}{\partial x}+\frac{\partial V}{\partial y}+\frac{\partial w}{\partial z}=0 . \tag{6.4}
\end{equation*}
$$

The problem posed is that of finding the shape of the axially symmetric body of either given internal volume or given surface area which provides the minimum resistance or drag. It is convenient to use cylindrical
polar coordinates, writing $x=r \cos \theta, y=r \sin \theta$ with $u(r, z)$ as the radial velocity. The equations of motion can then be written in the form,

$$
\begin{align*}
& -\frac{1}{\rho} \frac{\partial p}{\partial r}+v\left(\frac{\partial^{2} u}{\partial z^{2}}+\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}-\frac{u}{r^{2}}\right)=0 \tag{6.4}\\
& -\frac{1}{\rho} \frac{\partial p}{\partial z}+v\left(\frac{\partial^{2} w}{\partial z^{2}}+\frac{\partial^{2} w}{\partial z^{2}}+\frac{1}{r} \frac{\partial w}{\partial r}\right)=0 \tag{6.5}
\end{align*}
$$

and the equation of continuity as

$$
\begin{equation*}
\frac{\partial}{\partial z}(r w)+\frac{\partial}{\partial r}(r u)=0 \text {. } \tag{6.6}
\end{equation*}
$$

The vorticity vector η is given by $\eta=\nabla \times \underline{V}$, where \underline{V} is the velocity vector.

$$
\begin{align*}
\eta & =\left|\begin{array}{ccc}
\hat{r} & \hat{\theta} & \hat{z} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\
u & 0 & w
\end{array}\right| \\
& =\hat{\theta}\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial r}\right) \tag{6.7}
\end{align*}
$$

Using (6.7) in (6.4) gives

$$
\begin{aligned}
& -\frac{1}{\rho} \frac{\partial p}{\partial r}+v\left\{\frac{\partial}{\partial z}\left(\eta+\frac{\partial w}{\partial r}\right)+\frac{\partial^{2} u}{\partial r^{2}}+\frac{\partial}{\partial r}\left(\frac{u}{r}\right)\right\}=0 \\
& -\frac{1}{\rho} \frac{\partial p}{\partial r}+v\left\{\frac{\partial \eta}{\partial z}+\frac{\partial^{2} w}{\partial z^{2} r}+\frac{\partial}{\partial r}\left(\frac{\partial u}{\partial r}+\frac{u}{r}\right)\right\}=0 \\
& -\frac{1}{\rho} \frac{\partial p}{\partial r}+v\left\{\frac{\partial \eta}{\partial z}+\frac{\partial}{\partial r}\left(\frac{\partial w}{\partial z}+\frac{1}{r} \frac{\partial}{\partial r}(u r)\right)\right\}=0 \\
& -\frac{1}{\rho} \frac{\partial p}{\partial r}+v\left\{\frac{\partial \eta}{\partial z}+\frac{\partial}{\partial r}\left(\frac{1}{r} \frac{\partial}{\partial z}(w r)+\frac{1}{r} \frac{\partial}{\partial r}(u r)\right)\right\}=0
\end{aligned}
$$

and using the equation of continuity this becomes

$$
\begin{equation*}
-\frac{1}{\rho} \frac{\partial p}{\partial r}+\frac{v \partial \eta}{\partial z}=0 . \tag{6.8}
\end{equation*}
$$

Similarly using (6.7) in (6.5), and the equation of continuity, gives

$$
\begin{equation*}
\frac{1}{\rho} \frac{\partial p}{\partial z}+\frac{v \partial \eta}{\partial r}+v \frac{\eta}{r}=0 \tag{6.9}
\end{equation*}
$$

To minimise the drag on the body consider the minimisation of the rate of dissipation of energy, I, within the liquid, where

$$
I=v \iint_{D} \int\left\{2 U_{x}^{2}+2 V_{y}^{2}+2 w_{z}^{2}+\left(w_{y}+V_{z}\right)^{2}+\left(V_{z}+w_{x}\right)^{2}+\left(V_{x}+U_{y}\right)^{2}\right\} d x d y d z
$$ Subtracting from this the expression $2 v \iint_{D} \int\left\{U_{x}+V_{y}+w_{z}\right\}^{2} d x d y d z$, which is zero when there is no variation in density, gives

$$
\begin{aligned}
I= & v \iint_{D} \int\left\{\left(w_{y}-V_{z}\right)^{2}+\left(U_{z}-w_{x}\right)^{2}+\left(V_{x}-U_{y}\right)^{2}\right\} d x d y d z \\
& -4 v \iint_{D} \int\left\{V_{y} w_{z}-V_{z} w_{y}+w_{z} U_{x}+w_{x} U_{z}+U_{x} V_{y}-U_{y} V_{x}\right\} d x d y d z
\end{aligned}
$$

The first term is the square of the components of the vorticity function

$$
\eta=\quad\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
U & V & w
\end{array}\right|
$$

and after partial integration the second term becomes

$$
\begin{aligned}
-4 v \iint_{D} \int & \left\{\frac{\partial}{\partial y}\left(V_{z}\right)-\frac{\partial}{\partial z}\left(V w_{y}\right)+\frac{\partial}{\partial x}\left(U w_{z}\right)-\frac{\partial}{\partial z}\left(U w_{x}\right)\right. \\
& \left.+\frac{\partial}{\partial x}\left(U V_{y}\right)-\frac{\partial}{\partial y}\left(U V_{x}\right)\right\} d x d y d z
\end{aligned}
$$

which when the divergence theorem is applied is zero as U and V are zero on the body and at infinity. I may therefore be written as

$$
\begin{equation*}
I=\iint_{S} u \eta^{2} r d z d r \tag{6.10}
\end{equation*}
$$

where S is the domain in the (z, r) plane exterior to the body and the problem is then the determination of C_{1} so that I is minimised, where C_{1} is the curve of the body in the (r, z) plane.

Figure 6.2.
Γ is the boundary at infinity and C_{2} is the line, exterior to the body, $x=0$.

It is assumed that the end point at -a and a are fixed. To ensure that the problem is not trivial an additional constraint is postulated. This constraint is that either the internal volume of the axially symmetric body or the are length of the body is prescribed. If the shape of the body is given by

$$
\begin{equation*}
z=\sigma \quad, r=\alpha(\sigma) \tag{6.11}
\end{equation*}
$$

then the volume of the body is

$$
\pi \int_{-a}^{a} \alpha^{2}(\sigma) d \sigma
$$

and the arc length is

$$
\int_{-a}^{a}\left\{1+\alpha^{\prime 2}(\sigma)\right\}^{1 / 2} d \sigma
$$

The following performance criterion is now set up:

$$
\begin{align*}
J= & \iint_{S}\left\{v r \eta^{2}+\lambda_{1} \frac{(1}{\rho} p_{r}-v n_{z}^{\prime}\right)+\lambda_{2} \frac{(1}{\rho} p_{z}+v n_{r}+v \frac{\eta}{r} \\
& \left.+\lambda_{3}\left(\eta-u_{z}+w_{r}\right)+\lambda_{4}\left(u_{r}+\frac{u}{r}+w_{z}\right)\right\} d z d r \\
& +\int_{-\alpha}^{a} f\left(\alpha, \alpha^{\prime}, \sigma\right) d \sigma . \tag{6.12}
\end{align*}
$$

where $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and λ_{4} are Lagrange multipliers depending on r and z and contain the r contribution to the volume element rdzdr. Put

$$
\begin{align*}
x & \left.=v r \eta^{2}+\lambda_{1}\left(\frac{1}{\rho} p_{r}-v \eta_{z}\right)+\lambda_{2} \frac{\left(1 p_{z}\right.}{\rho}+v \eta_{r}+v \frac{n}{r}\right) \\
& +\lambda_{3}\left(\eta-u_{z}+w_{r}\right)+\lambda_{4}\left(u_{r}+\frac{u}{r}+w_{z}\right) . \tag{6.13}
\end{align*}
$$

then,

$$
\begin{equation*}
J=\int_{S} \int x(z, r, u, w, \eta, p) d z d r+\int_{-a}^{a} f\left(\alpha, \alpha^{\prime}, \sigma\right) d \sigma \tag{6.14}
\end{equation*}
$$

The minimisation of J is now considered. The Gelfand - Fomin theorem is used to find δJ, that is the variation in J caused by a variation in the position of the curve C_{1}.

$$
\begin{align*}
\delta J= & \iint_{S}\left\{\delta \bar{u}\left[x_{u}-\frac{\partial}{\partial z} x_{u_{z}}-\frac{\partial}{\partial r} x_{u_{r}}\right]+\overline{\delta w}\left[x_{w}-\frac{\partial x_{w}}{\partial w_{z}}-\frac{\partial}{\partial r} x_{w_{r}}\right]\right. \\
& \left.+\overline{\delta p}\left[x_{p}-\frac{\partial}{\partial z} x_{p_{z}}-\frac{\partial}{\partial r} x_{p_{r}}\right]+\delta \delta n\left[x_{n}-\frac{\partial}{\partial z} x_{n_{z}}-\frac{\partial}{\partial r} x_{n_{r}}\right]\right\} d z d r \\
& +\iint_{S}\left\{\frac{\partial}{\partial z}\left[x \delta z+\overline{\delta u} x_{u_{z}}+\overline{\delta w} x_{w_{z}}+\overline{\delta p} x_{p_{z}}+\overline{\delta n} x_{n_{z}}\right]\right. \\
& \left.+\frac{\partial}{\partial r}\left[x \delta r+\overline{\delta u} x_{u_{r}}+\overline{\delta w x_{w_{r}}}+\overline{\delta p} x_{p_{r}}+\overline{\delta n x_{n_{r}}}\right]\right\} d z d r \\
& +\int_{-a}^{a}\left\{f_{\alpha} \delta \alpha+f_{\alpha^{\prime}} \delta \alpha^{\prime}\right\} d \sigma, \tag{6.15}
\end{align*}
$$

where $\delta u, \delta w, \delta p$ and $\delta \eta$, the increments in u, w, p and η are related to $\overline{\delta u}, \overline{\delta w}, \overline{\delta p}$ and $\overline{\delta \eta}$ by

$$
\begin{array}{ll}
\delta u=\overline{\delta u}+\frac{\partial u}{\partial z} \delta z+\frac{\partial u}{\partial r} \delta r & , \delta w=\overline{\delta w}+\frac{\partial w}{\partial z} \delta z+\frac{\partial w}{\partial r} \delta r, \tag{6.16}\\
\delta p=\overline{\delta p}+\frac{\partial p}{\partial z} \delta z+\frac{\partial p}{\partial r} \delta r, \quad \delta \eta=\overline{\delta \eta}+\frac{\partial \eta}{\partial z} \delta z+\frac{\partial \eta}{\partial r} \delta r .
\end{array}
$$

Using Stokes' theorem in two dimensions on the second term of the right hand side of (6.15) gives

$$
\begin{align*}
& \delta J=\iint_{S}\left\{\overline{\delta u}\left[X_{u}-\frac{\partial}{\partial z} X_{u_{z}}-\frac{\partial}{\partial r} X_{u_{r}}\right]+\overline{\delta w}\left[X_{w}-\frac{\partial}{\partial z} X_{w_{z}}-\frac{\partial}{\partial r} X_{w_{r}}\right]\right. \\
& \left.+\overline{\delta p}\left[x_{p}-\frac{\partial}{\partial z} x_{z}-\frac{\partial}{\partial r} x_{p_{r}}\right]+\overline{\delta n}\left[x_{n}-\frac{\partial x}{\partial z} n_{z}-\frac{\partial}{\partial r} x_{n_{r}}\right]\right\} d z d r \\
& +\int_{\text {ruc } 10 c_{2}}\left\{\left[x z+\overline{\delta u} x_{u_{z}}+\overline{\delta w} X_{w_{z}}+\overline{\delta p} x_{p_{z}}+\overline{\delta n} x_{n_{z}}\right] d r+\right. \\
& +\left[x \delta r+\delta u x_{u_{r}}+\delta \bar{w} X_{w_{r}}+\delta \overline{p p}_{p_{r}}+\delta \delta_{\left.\left.\eta_{r} X_{n_{r}}\right]\right\} d z}\right. \\
& +\int_{-a}^{a}\left\{f_{\alpha} \delta \alpha+f_{\alpha^{\prime}} \delta \alpha^{\prime}\right\} d \sigma \text {. } \tag{6.17}
\end{align*}
$$

Figure 6.3

On $\mathrm{C}_{1} \quad \delta \mathrm{r}=\delta \alpha(\sigma), \delta z=\delta \sigma$ and $\delta \sigma=0 . \quad \mathrm{u}$ and w are zero on the body at all times and so δu and δw are also zero.

Hence, using (6.16)

$$
\begin{equation*}
\overline{\delta u}=-\frac{\partial u}{\partial \alpha} \delta \alpha \quad, \quad \overline{\delta w}=-\frac{\partial w}{\partial \alpha} \delta \alpha \quad . \tag{6.18}
\end{equation*}
$$

Integrating $\mathrm{f}_{\alpha^{\prime}} \delta \alpha^{\prime}$ by parts gives

$$
\begin{equation*}
f_{\alpha},\left.\delta \alpha\right|_{-a} ^{a}-\int_{-a}^{a} \frac{\delta \alpha d}{d \sigma} f_{\alpha}, d \sigma, \tag{6.19}
\end{equation*}
$$

and the first term disappears since $\delta \alpha$ is zero at -a and a. So
the total integral over C_{1} may be written as

$$
\begin{aligned}
& \int_{-a}^{a}\left\{\left[-u_{\alpha} \delta \alpha x_{u_{z}}-w_{\alpha} \delta \alpha x_{w_{z}}+\delta{\overline{\delta p} x_{p_{z}}}+\overline{\delta n} x_{n_{z}}\right] \quad \mathrm{d} \alpha\right. \\
& \left.-\left[-f_{\alpha} \delta \alpha+\delta \frac{d f_{\alpha}}{d \sigma},+x \delta \alpha-u_{\alpha} \delta \alpha x_{u_{r}}-w_{\alpha} \delta \alpha x_{w_{r}}+\underset{(6.20)}{ }+\overline{p p}_{p_{r}}+\delta \overline{\delta n} x_{n_{r}}\right] d \sigma\right\}
\end{aligned}
$$

On C_{2}, which is the line $r=0, d r$ and δr are zero and the condition. $u=0$ must be satisfied so δu is zero. The contribution to δJ from the integration along C_{2} becomes

On Γ, which lies at infinity, the conditions are $u=0$, $w=W$, hence δu and δw are zero and at infinity δr and δz may be taken to be zero
so the integration along Γ becomes

$$
\begin{equation*}
\int_{\Gamma}-\left\{\left[\delta p_{p_{z}}+\delta n x_{n_{z}}\right] d r-\left[\delta p x_{p_{r}}+\delta n x_{n_{r}}\right]\right\} d z \tag{6.22}
\end{equation*}
$$

Using (6.19) to (6.22) $\delta \mathrm{J}$ may be written as

$$
\begin{aligned}
& \delta J=\iint_{S}\left\{\delta \overline{\delta u}\left[x_{u}-\frac{\partial}{\partial z} x_{u_{z}}-\frac{\partial}{\partial r} x_{u} u_{r}\right]+\overline{\delta w}\left[x_{w}-\frac{\partial}{\partial z} x_{w_{z}}-\frac{\partial x_{1}}{\partial r} w_{r}\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{-a}^{a}\left\{-\delta \alpha\left(u_{\alpha} x_{u_{z}}+w_{\alpha} x_{w_{z}}\right) d \alpha\right. \\
& \left.+\left(-f_{\alpha}+\frac{d f_{\alpha}}{d \sigma}-X+u_{\alpha} X_{u_{r}}+w_{\alpha} X_{w_{r}}\right) d \sigma\right] \\
& \left.+\overline{\delta p}\left[x_{p_{z}} d \alpha-x_{p_{r}} d \sigma\right]+\frac{r}{\delta \eta}\left[x_{\eta_{z}}{ }^{d \alpha}-x_{\eta_{r}} d \sigma\right]\right\}
\end{aligned}
$$

$$
\begin{align*}
& -\int_{c_{2}}\left\{\overline{\delta u x_{u_{r}}}+\overline{\delta w} x_{w_{r}}+\overline{\delta p} x_{p_{r}}+\overline{\delta \bar{n} x_{n_{r}}}\right\} \quad d z \\
& -\int_{\Gamma}\left\{\delta p\left[x_{p_{z}} d r-x_{p_{r}} d z\right]+\delta \eta\left[x_{\eta_{z}} d r-x_{\eta_{r}} d z\right]\right\} . \tag{6.23}
\end{align*}
$$

The performance criterion J is minimised when δJ is zero and so for a minimum:

$$
\begin{align*}
& X_{u}-\frac{\partial}{\partial z} x_{u_{z}}-\frac{\partial}{\partial r} x_{r}=0 \quad, \quad(z, r) \in S \text {, } \tag{6.24}\\
& x_{w}-\frac{\partial}{\partial z} X_{w_{z}}-\frac{\partial X^{2}}{\partial r} w_{r}=0 \quad, \quad(z, r) \in S \text {, } \tag{6.25}\\
& x_{p}-\frac{\partial}{\partial z} x_{p_{z}}-\frac{\partial x}{\partial r} p_{r}=0 \quad, \quad(z, r) \in S \text {, } \tag{6.26}\\
& x_{n}-\frac{\partial}{\partial z} X_{n_{z}}-\frac{\partial X_{r}}{\partial r} n_{r}=0, \quad(z, r) \in S \text {, } \tag{6.27}\\
& {\left[u_{\alpha} X_{u_{z}}+w_{\alpha} X_{w_{z}}\right] d \alpha+\left[X-u_{\alpha} X_{u_{r}}-w_{\alpha} X_{w_{r}}+f_{\alpha}-\frac{d f}{d \sigma}{ }_{\alpha}\right] d \sigma=0,(z, r) \varepsilon c_{1}} \\
& x_{p_{z}} d \alpha-x_{p_{r}} d \sigma=0 \quad, \quad(z, r) \in c_{1} \text {, } \tag{6.29}\\
& x_{n_{z}} d \alpha-x_{n_{r}} d \sigma=0 \quad, \quad(z, r) \in C_{1} \text {, } \tag{6.30}\\
& x_{u_{r}}=0 \quad, \quad(z, r) \in c_{2} \text {, } \tag{6.31}\\
& x_{w_{r}}=0 \quad, \quad(z, r) \in c_{2} \text {, } \tag{6.32}\\
& X_{p_{r}}=0 \quad, \quad(z, r) \in \quad C_{2}, \tag{6.33}\\
& x_{\eta_{r}}=0 \quad, \quad(z, r) \in c_{2}, \tag{6.34}\\
& X_{p_{r}} d r-X_{p_{r}} d z=0 \quad, \quad(z, r) \in \Gamma \text {, } \tag{6.35}\\
& X_{n_{z}} d r \quad X_{\eta_{r}} d z=0 \quad, \quad(z, r) \in \quad r \text {. } \tag{6.36}
\end{align*}
$$

Substituting for X from (6.13) become:

$$
\begin{align*}
& \frac{\partial \lambda_{3}}{\partial z}-\frac{\partial \lambda_{H}}{\partial r}+\frac{\lambda_{4}}{r}=0 \quad, \quad(z, r) \in S \text {, } \tag{6.37}\\
& \frac{\partial \lambda_{4}}{\partial z}+\frac{\partial \lambda_{3}}{\partial r}=0 \quad, \quad(z, r) \in S \text {, } \tag{6.38}\\
& \frac{\partial \lambda_{2}}{\partial z}+\frac{\partial \lambda_{1}}{\partial r}=0 \quad, \quad(z, r) \in S \text {, } \tag{6.39}\\
& 2 v r n+\lambda_{3}+v\left(\frac{\partial \lambda_{1}}{\partial z}-\frac{\partial \lambda_{2}}{\partial r}+\frac{\lambda_{2}}{r}\right)=0,(z, r) \in S \text {, } \tag{6.40}\\
& {\left[-\lambda_{3} u_{\alpha}+\lambda_{4} w_{\alpha}\right] \alpha^{\prime}(\sigma)+v m^{2}-\lambda_{4} u_{\alpha}-\lambda_{3} w_{\alpha}+f_{\alpha}-\frac{d}{d} f^{\prime}{ }^{\prime}=0,(z, r) \in C_{1} \text {, }} \tag{6.41}
\end{align*}
$$

where $\mathrm{d} \alpha$ has been replaced by $\frac{\mathrm{d} \alpha \mathrm{d} \sigma}{\mathrm{d} \sigma}$ and the equation has been divided through by do ;

$$
\begin{align*}
& \lambda_{2} \mathrm{dr}-\lambda_{1} \mathrm{~d} z=0 \quad, \quad(z, r) \in \mathrm{C}_{1}, \Gamma \text {, } \tag{6.42}\\
& \lambda_{1} \mathrm{dr}-\lambda_{2} \mathrm{~d} z=0 \quad, \quad(z, r) \in C_{1}, \Gamma \text {, } \tag{6.43}\\
& \lambda_{4}=0 \quad, \quad(z, r) \quad \in \quad C_{2} \text {, } \tag{6.44}\\
& \lambda_{3}=0 \quad, \quad(z, r) \quad \in \quad C_{2} \text {, } \tag{6.45}\\
& \lambda_{1}=0 \quad, \quad(z, r) \quad \in \quad C_{2} \text {, } \tag{6.46}\\
& \lambda_{2}=0 \quad, \quad(z, r) \quad \in \quad C_{2} \text {, } \tag{6.47}
\end{align*}
$$

One method of resolving the above problem is as follows. The known stream function ψ, where ψ is defined, from (6.6), by

$$
\frac{\partial \psi}{\partial r}=-w r \quad, \frac{\partial \psi}{\partial z}=u r
$$

and vorticity function η for the flow past a sphere can be used to calculate $u_{\alpha}, w_{\alpha}, \lambda_{3}$ and λ_{4}. (The methods for these calculations are the same as those used in Chapter 7 for different values of ψ and η (7.21) to (7.31) .) When these are substituted into the transversality condition (6.41) the resulting differential equation $\alpha(\sigma)$ could be solved numerically and the subsequent value for $\alpha(\sigma)$ used as the initial value in the next step on an iteration method. This has not been successfully pursued.

A Study near the Leading Point of the Shape of the Axially Symmetric Body of Minimum Drag in Stokes' Flow.

The equations of the system are:
$\frac{1}{\rho} \frac{\partial p}{\partial r}-\frac{v \partial \eta}{\partial z}=0$,
$\frac{1}{\rho} \frac{\partial p}{\partial z}+\frac{v \partial \eta}{\partial r}+\frac{v \eta}{r}=0$,
$\eta-\frac{\partial u}{\partial z}+\frac{\partial w}{\partial r}=0$,
$\frac{\partial u}{\partial r}+\frac{u}{r}+\frac{\partial w}{\partial z}=0 \quad$.
The elimination of p from (7.1) and (7.2) leads to
$\frac{\partial^{2} \eta}{\partial z^{2}}+\frac{\partial^{2} \eta}{\partial r^{2}}+\frac{\partial}{\partial r}\left(\frac{\eta}{r}\right)=0 \quad$.
It can be seen from (7.4) that the Stokes' stream function, ψ, can
be defined by
$\mathrm{wr}=-\frac{\partial \psi}{\partial r} \quad, \quad u r=\frac{\partial \psi}{\partial z}$
and so equation (7.3) can be written as

$$
\begin{equation*}
n=\frac{1}{r} \frac{\partial^{2} \psi}{\partial z^{2}}+\frac{1}{r} \frac{\partial^{2} \psi}{\partial r^{2}}-\frac{1}{r^{2}} \frac{\partial \psi}{\partial r} \tag{7.7}
\end{equation*}
$$

Consider first the leading point of the body, $z=-a, r=0$.

Figure 7.1

It will be assumed that in the neighbourhood of $z=-a, r=0$ the body has a conical shape with a semi-angle θ_{0} The coordinates are transformed with

$$
\begin{equation*}
z+a=R \cos \theta \quad, r=R \sin \theta \tag{7.8}
\end{equation*}
$$

so equation (7.7) becomes
$n=\frac{1}{R \sin \theta}\left\{\frac{\partial^{2} \psi}{\partial R^{2}}+\frac{1}{R^{2}} \frac{\partial^{2} \psi}{\partial \theta^{2}}-\frac{\cot \theta}{R} \frac{\partial \psi}{\partial \theta}\right\}$,
and equation (7.5) becomes
$\frac{\partial^{2} \eta}{\partial R^{2}}+\frac{1}{R} \frac{\partial \eta}{\partial R}+\frac{1}{R^{2}} \frac{\partial^{2} \eta}{\partial \theta^{2}}+\left(\sin \theta \frac{\partial}{\partial R}+\frac{\cos \theta}{R} \frac{\partial}{\partial \theta}\right) \frac{\eta}{R \sin \theta}=0$. (7.10)
The flow in the conical region must satisfy

Figure 7.2

and in addition since the radial and transverse components of velocity are

$$
W_{R}=\frac{-1}{R^{2} \sin \theta} \frac{\partial \psi}{\partial \theta} \quad, \quad W_{\theta}=\frac{1}{R \sin \theta} \frac{\partial \psi}{\partial \theta}
$$

it follows that the viscous conditions

$$
W_{R}=0, \quad W_{\theta}=0 \quad \text { on } \theta=\theta_{0}
$$

lead to

$$
\begin{equation*}
\psi=0, \quad \frac{\partial \psi}{\partial \theta}=0, \quad \theta=\theta_{0} \tag{7.12}
\end{equation*}
$$

where $\theta=\theta_{0}$ is the angle of the conical body near A. Solutions for (7.9) and (7.10) must now be determined, satisfying conditions (7.11) and (7.12) for sufficiently small R.

A solution for η of (7.10) is sought which depends on θ only, and for small R the function $\eta=\eta(\theta)$ will satisfy

$$
\begin{align*}
& \frac{d^{2} n}{d \theta^{2}}+\cot \theta \frac{d n}{d \theta}-n \operatorname{cosec} 2 \theta=0 \\
& \frac{d}{d \theta}\left\{\frac{d \eta}{d \theta}+n \cot \theta\right\}=0, \\
& \frac{d \eta}{d \theta}+n \cot \theta=-C, \\
& \frac{d}{d \theta}\{\eta \sin \theta\}=-C \sin \theta, \\
& \eta(\theta)=\frac{C \cos \theta+D}{\sin \theta}, \tag{7.13}
\end{align*}
$$

where C and D are arbitrary constants. It is clear from (7.9) and (7.13) that $\psi \quad$ will be of the form

$$
\psi=R^{3} f(\theta)
$$

and $f(\theta)$ will satisfy

$$
\begin{equation*}
\frac{d^{2} f}{d \theta^{2}}-\cot \theta \frac{d f}{d \theta}+6 f=C \cos \theta+D \tag{7.14}
\end{equation*}
$$

A particular integral for f is $\frac{1}{6} C \cos \theta+\frac{1}{6} D$. To find the complementary function put $f(\theta)=\sin \theta F(\theta)$, then (7.14) becomes

$$
F^{\prime \prime}(\theta)+\cot \theta F^{\prime}(\theta)+F(\theta)\left\{6-\frac{1}{\sin ^{2} \theta}\right\}=0 .
$$

This is the differential equation satisfied by the Associated Legendre polynomial $\mathrm{P}_{2}^{1}(\cos \theta)$, hence
$F(\theta)=3 \sin \theta \cos \theta$
$f(\theta)=3 \sin ^{2} \theta \cos \theta$
the second solution possessing a log singularity at $\theta=\pi$. The
complete solution for (7.14) is thus
$f(\theta)=\frac{1}{6}\{C \cos \theta+D\}+A \sin ^{2} \theta \cos \theta \quad$,
where A is an arbitrary constant. ψ therefore may be written as

$$
\psi=R^{3}\left\{\frac{1}{6}[C \cos \theta+D]+A \sin ^{2} \theta \cos \theta\right\} .
$$

To satisfy $\psi=0$ on $\theta=\pi \quad D$ must equal C so

$$
\psi=R^{3}\left\{\frac{1}{6} C(1+\cos \theta)+A \sin ^{2} \theta \cos \theta\right\} .
$$

For ψ to satisfy conditions (7.12)

$$
\begin{aligned}
& \frac{1}{6} C\left(1+\cos \theta_{0}\right)+A \sin ^{2} \theta_{0} \cos \theta_{0}=0 \\
& \frac{1}{6} C\left(1-\sin \theta_{0}\right)+A\left(-\sin ^{3} \theta_{0}+2 \cos ^{2} \theta_{0} \sin \theta_{0}\right)=0
\end{aligned}
$$

and these conditions imply that

$$
\begin{aligned}
& \left(1+\cos \theta_{0}\right)\left(-\sin ^{3} \theta_{0}+2 \cos ^{2} \theta_{0} \sin \theta_{0}\right)+\cos \theta_{0} \sin ^{3} \theta_{0}=0, \\
& \sin \theta_{0}\left(1+\cos \theta_{0}\right)\left\{-\sin ^{2} \theta_{0}+2 \cos ^{2} \theta_{0}+\cos \theta_{0}\left(1-\cos \theta_{0}\right)\right\}=0, \\
& \sin \theta_{0}\left(1+\cos \theta_{0}\right)\left\{2 \cos ^{2} \theta_{0}+\cos \theta_{0}-1\right\}=0, \\
& \sin \theta_{0}\left(1+\cos \theta_{0}\right)\left(2 \cos \theta_{0}-1\right)\left(\cos \theta_{0}+1\right)=0 .
\end{aligned}
$$

The solutions $\sin \theta_{0}=0$ and $\cos \theta_{0}=-1$ are clearly not acceptable and the required solution is

$$
\cos \theta_{0}=\frac{1}{2}, \text { or } \theta_{0}=\pi / 3 .
$$

Thus the cone at A has a semi-vertical angle of 60°. This agrees with a result of Sir James Lighthill quoted, without reference, by Pironneau ${ }^{9}$. Using this value for θ_{0} in conditions (7.12) gives a value for A of $-\frac{2}{3} C$, hence

$$
\begin{align*}
\psi & =\frac{1}{6} C R^{3}\left\{(1+\cos \theta)-4 \sin ^{2} \theta \cos \theta\right\} \\
& =\frac{1}{6} C R^{3}(1+\cos \theta)\{1-4 \cos \theta(1-\cos \theta)\} \\
& =\frac{1}{6} C R^{3}(1+\cos \theta)(1-2 \cos \theta)^{2} \quad, \pi / 3 \leqslant \theta \leqslant \pi . \tag{7.15}
\end{align*}
$$

As C is equal to D from (7.13) η may be written as

$$
\begin{equation*}
n=c \frac{1+\cos \theta}{\sin \theta} \quad, \quad \pi / 3 \leqslant \theta \leqslant \pi \tag{7.16}
\end{equation*}
$$

and it is noted that $\eta \rightarrow 0$ as $\theta \rightarrow \pi$.
A similar study will now be made of the Lagrange multipliers near the leading point. The equations governing the Lagrange multipliers are (6.37) to (6.40), namely,
$\frac{\partial \lambda_{3}}{\partial z}-\frac{\partial \lambda_{4}}{\partial r}+\frac{\lambda_{4}}{r}=0$,
$\frac{\partial \lambda_{4}}{\partial z}+\frac{\partial \lambda_{3}}{\partial r}=0$,
$\frac{\partial \lambda_{2}}{\partial z}+\frac{\partial \lambda_{1}}{\partial r}=0$,
$2 v r n+\lambda_{3}+v\left(\frac{\partial \lambda_{1}}{\partial z}-\frac{\partial \lambda_{2}}{\partial r}+\frac{\lambda_{2}}{r}\right)=0$.
It will now be established that for the present problem $\lambda_{1}=0$,
$\lambda_{2}=0$. In the first place it is noted that when λ_{1} and λ_{2} vanish equation (7.20) gives
$\lambda_{3}=-2 \nu r \eta \quad$.
Eliminating λ_{4} between equations (7.17) and (7.18) gives
$\frac{\partial^{2} \lambda_{3}}{\partial z^{2}}+\frac{\partial^{2} \lambda^{2}}{\partial r^{2}} \frac{1}{r} \frac{\partial \lambda_{3}}{\partial r}=0$
and when $-2 v r n$ is substituted for λ_{3} in (7.22) the resulting equation is
$\frac{\partial^{2} \eta}{\partial z^{2}}+\frac{\partial^{2} \eta}{\partial r^{2}}+\frac{1}{r} \frac{\partial \eta}{\partial r}-\frac{\eta}{r^{2}}=0$
which is exactly the same equation in η as that found from the state equations $[(7.5)]$. This proves (7.21) coupled with $\lambda_{1}=0$, $\lambda_{2}=0$ is a consistent solution. Since λ_{1} and λ_{2} are zero on the boundaries, [equations (6.42), (6.43), (6.46), (6.47)], this solution is also consistent with the boundary conditions. When $\lambda_{3}=-2 v r n$, equation (7.20) becomes
$\frac{\partial \lambda_{1}}{\partial z}-\frac{\partial \lambda_{2}}{\partial r}+\frac{\lambda_{2}}{r}=0$.

In order to establish the uniqueness of the solution for λ_{3} consider

$$
\begin{aligned}
& \frac{\partial \lambda_{2}}{\partial z}+\frac{\partial \lambda_{1}}{\partial r}=0 \\
& \frac{\partial \lambda_{1}}{\partial z}-\frac{\partial \lambda_{2}}{\partial r}+\frac{\lambda_{2}}{r}=0
\end{aligned}
$$

From the first may be written

$$
\begin{equation*}
\lambda_{1}=\frac{\partial m}{\partial z}, \quad \lambda_{2}=-\frac{\partial m}{\partial r} \quad ; \tag{7.23}
\end{equation*}
$$

and substituting these into the second gives

$$
\begin{equation*}
\frac{\partial^{2} m}{\partial z^{2}}+\frac{\partial^{2} m}{\partial r^{2}}-\frac{1}{r} \frac{\partial m}{\partial r}=0 \tag{7.24}
\end{equation*}
$$

Since λ_{1} and λ_{2} are zero on the boundaries, m is a constant on the boundaries and this constant may be taken to be zero without any loss of generality to the value of m.

Figure 7.3
If $\underline{R}, \underline{\varnothing}$ and $\underline{\Psi}$ are continuous functions defined in E_{3} with $\underline{\mathrm{R}}=\underline{\varnothing} \nabla \underline{\Psi}$, then
$\iiint_{D} \operatorname{div} \underline{R} d x d y d z=\iint_{\Sigma} \underline{R} d \Sigma$
so $\iiint_{D}\left\{\underline{\emptyset} \nabla^{2} \underline{\Psi}+(\nabla \underline{\emptyset} \underline{\Psi})\right\} \mathrm{dx} \mathrm{dy} \mathrm{d} z=\iint_{\Sigma} \underline{\emptyset} \frac{\partial \Psi}{\partial \mathrm{n}} \mathrm{d} \Sigma$

$$
\iint_{D} \int_{\{ }\left\{\underline{\varnothing}^{2} \underline{\Psi}^{2}+\underline{\emptyset}_{x}-\frac{\Psi}{x}+\underline{\emptyset}_{y} \underline{\Psi}_{y}+\underline{\emptyset}_{z} \underline{\Psi}_{z}\right\} \mathrm{dx} \mathrm{dy} \mathrm{~d} z=\iint_{\Sigma} \underline{\emptyset} \frac{\partial \Psi}{\partial \mathrm{n}} \mathrm{~d} \Sigma .
$$

Putting $\underline{\varnothing}=\underline{\Psi}$ this becomes

Since this is true for any functions, $\underline{Q}^{\text {, }}$ in E_{3} m satisfies

$$
\begin{equation*}
\iiint_{D}\left\{m^{2} m+m_{x}^{2}+m_{y}^{2}+m_{z}^{2}\right\} d x d y d z=\iint_{\Sigma} m \frac{\partial m}{\partial n} d \Sigma \tag{7.25}
\end{equation*}
$$

The right hand side of (7.25) is zero since m is zero on the boundaries. When the left hand side is transformed to cylindrical polar coordinates (7.25) may be written as

$$
\iint_{S}\left\{m\left(m_{r r}+\frac{1 m_{r}}{r}+m_{z z}\right)+m_{r}^{2}+m_{z}^{2}\right\} r d z d r=0
$$

and using (7.24) this becomes
$\int_{S} \int\left\{m \frac{2}{r} m_{r}+m_{r}^{2}+m_{z}^{2}\right\} r d z d r=0$
$\iint_{S}\left\{\frac{1}{r}{ }^{\left(m^{2}\right)_{r}}+m_{r}^{2}+m_{z}^{2}\right\} r d z d r=0$.
From this it can be seen that

$$
m_{r} \equiv 0, \quad m_{z} \equiv 0
$$

which means that m is a constant and since m is zero on the boundaries $m \equiv 0$ everywhere. From (7.23) λ_{1} and λ_{2} are zero everywhere and so $\lambda_{3}=-2 v m$ is the unique solution for λ_{3}.

From (7.16) it is known that near the leading point

$$
n=\frac{c(1+\cos \theta)}{\sin \theta}=c\left\{\frac{\left[(z+a)^{2}+r^{2}\right]^{1 / 2}+(z+a)}{r}\right\}
$$

and so writing $z=z+a$ the value for λ_{3} near the leading point is given by

$$
\begin{equation*}
\lambda_{3}=-2 v C\left[z+\left(z^{2}+r^{2}\right)^{\mu_{2}}\right] \tag{7.26}
\end{equation*}
$$

The value for λ_{4} near the leading point may now be found using equations (7.17) and (7.18). From (7.18) it can be seen that

$$
\frac{\partial \lambda_{4}^{\prime}}{\partial z}=2 \nu C \frac{\partial}{\partial r}\left[z+\left(z^{2}+r^{2}\right)^{1 / 2}\right]
$$

$$
\begin{aligned}
& =\frac{2 v C r}{\left(x^{2}+r^{2}\right)^{1 / 2}} \\
\lambda_{4} & =2 v C r \log \left[z+\left(z^{2}+r^{2}\right)^{1 / 2}\right]+h(r),
\end{aligned}
$$

where $h(r)$ is an arbitrary function of r. From (7.17)

$$
\begin{align*}
& \frac{\partial \lambda_{3}=}{\partial z}{ }^{\frac{\partial}{\partial r}\left\{2 \nu C r \log \left[z+\left(z^{2}+r^{2}\right)^{1 / 2}\right]+h(r)\right\}-2 \nu C i o g\left[z+\left(\varepsilon^{2}+r^{2}\right)^{1 / 2}\right] \frac{h(r)}{r}} \\
& \frac{\partial \lambda_{3}}{\partial z}=\frac{2 \nu C r^{2}}{\left(\varepsilon^{2}+r^{2}\right)^{1 / 2}\left[z+\left(z^{2}+r^{2}\right)^{1 / 2}\right]}+h^{\prime}(r)-\frac{h(r),}{r}, \tag{7.27}
\end{align*}
$$

and since, from (7.26),

$$
\frac{\partial \lambda_{3}}{\partial z}=-2 v C\left\{1+\frac{z}{\left(\tau^{2}+r^{2}\right)^{1 / 2}}\right\}
$$

(7.27) may be written as

$$
\begin{aligned}
& h^{\prime}(r)-\frac{h(r)}{r}+2 \nu C\left\{\frac{r^{2}+\left(z^{2}+r^{2}\right)^{1 / 2}\left[z+\left(z^{2}+r^{2}\right)^{1 / 2}\right]+z^{2}+z\left(z^{2}+r^{2}\right)^{1 / 2}}{\left(z^{2}+r^{2}\right)^{1 / 2}\left[z+\left(\varepsilon^{2}+r^{2}\right)^{1 / 2}\right]}\right\}=0 \\
& h^{\prime}(r)-\frac{h(r)}{r}+2 \nu C\left\{\frac{2\left(z^{2}+r^{2}\right)^{1 / 2}\left[z+\left(z^{2}+r^{2}\right)^{1 / 2}\right]}{\left(z^{2}+r^{2}\right)^{1 / 2}\left[\varepsilon+\left(z^{2}+r^{2}\right)^{1 / 2}\right]}\right\}=0 \\
& h^{\prime}(r)-\frac{h(r)}{r}+4 \nu C=0 \\
& h(r)=-4 \nu C r \log r
\end{aligned}
$$

and so

$$
\begin{equation*}
\lambda_{4}=2 v \operatorname{Cr} \log \left\{\frac{z+\left(z^{2}+r^{2}\right)^{1 / 2}}{r^{2}}\right\} \tag{7.28}
\end{equation*}
$$

The shape of the body, $\alpha(\sigma)$, near the leading point may be found from the transversality condition, that is equation (6.41):

$$
\begin{gathered}
\alpha^{\prime}(\sigma)\left[-\lambda_{3} u_{\alpha}+\lambda_{4} w_{\alpha}\right]-\left[\lambda_{4} u_{\alpha}+\lambda_{3} w_{\alpha}\right]+v r \eta^{2}+f_{\alpha}-\frac{d f}{d \sigma} \alpha^{\prime}=0 \\
(z, r) \in C_{1} .
\end{gathered}
$$

To find the solution for $\alpha(\sigma)$ the values of $\lambda_{3}, \lambda_{4}, u_{\alpha}, w_{\alpha}$ and η must be known as functions of r and z. Values for $\lambda \hat{3}, \lambda 4$ and η have already been determined in the neighbourhood of the end point and values for u_{α} and w_{α} will now be found so that the shape of the body near the end point may be investigated.

The stream function ψ in the neighbourhood of the leading point is known, $[(7.15)]$, to be

$$
\psi=\frac{1}{6} C R^{3}\left\{(1+\cos \theta)-4 \sin ^{2} \theta \cos \theta\right\}
$$

and $\quad u$ and w are related to ψ by (7.6), that is

$$
w r=-\frac{\partial \psi}{\partial r} \quad, \quad u r=\frac{\partial \psi}{\partial z}
$$

Since $R \cos \theta=z+a=z$ and $R \sin \theta=r$

$$
\begin{aligned}
& \psi=\frac{C}{6}\left[z^{2}+r^{2}\right]^{9 / 2}\left\{1+\frac{z}{\left(\varepsilon^{2}+r^{2}\right)^{1 / 2}}-\frac{4 \hat{r}^{2} z}{\left(\varepsilon^{2}+r^{2}\right)\left(z^{2}+r^{2}\right)^{1 / 2}}\right\} \\
& =\frac{C}{6}\left(z^{2}+r^{2}\right)\left\{\left(z^{2}+r^{2}\right)^{1 / 2}+z-\frac{4 r^{2} z}{z^{2}+r^{2}}\right\} \text { (7.29) } \\
& \frac{\partial \psi}{\partial r}=\frac{C r}{3}\left\{\left(z^{2}+r^{2}\right)^{1 / 2}+z-\frac{4 r^{2} z}{z^{2}+r^{2}}\right\}+\frac{c}{6}\left(z^{2}+r^{2}\right)\left\{\frac{r}{\left(z^{2}+r^{2}\right)^{1 / 2}}-\frac{8 r z}{z^{2}+r^{2}}+\frac{8 r^{3} z}{\left(z^{2}+r^{2}\right)^{2}}\right\} \\
& \text { so } w=-\frac{c}{3}\left\{\left(z^{2}+r^{2}\right)^{1 / 2}+z-\frac{4 r^{2} z}{z^{2}+r^{2}}\right\}-\frac{e}{6}\left(z^{2}+r^{2}\right)\left\{\frac{1}{\left(z^{2}+r^{2}\right)^{1 / 2}}-\frac{8 z}{z^{2}+r^{2}}+\frac{8 r^{2} z}{\left(z^{2}+r^{2}\right)^{2}}\right\} \\
& =-\frac{c}{6}\left\{3\left(z^{2}+r^{2}\right)^{1 / 2}-6 z\right\} \text {. } \\
& \frac{\partial w}{\partial r}=-\frac{c}{6}\left\{\frac{3 r}{\left(\varepsilon^{2}+r^{2}\right)^{\frac{2}{2}}}\right\} \\
& \text { and, since } \quad w_{\alpha}=\left.\frac{\partial w}{\partial r}\right|_{\frac{r}{2} \equiv \alpha(\sigma)} \text {, } \\
& w_{\alpha}=-\frac{c}{6}\left\{\frac{3 \alpha(\sigma)}{\left[(\sigma+a)^{2}+\alpha^{2}(\sigma)\right]^{1 / 2}}\right\} \\
& \frac{2}{\partial z}=\frac{C z}{3}\left\{\left(z^{2}+r^{2}\right)^{1 / 2}+z-\frac{4 r^{2} z}{z^{2}+r^{2}}\right\}+\frac{C}{6}\left(z^{2}+r^{2}\right)\left\{\frac{z}{\left(x^{2}+r^{2}\right)^{1 / 2}}+1-\frac{4 r^{2}}{\varepsilon^{2}+r^{2}}+\frac{8 r^{2} z^{2}}{\left(\varepsilon^{2}+r^{2}\right)}\right\} \\
& \text { so } u=\frac{C z}{3 r}\left\{\left(z^{2}+r^{2}\right)^{1 / 2}+z-\frac{4 r^{2} z}{z^{2}+r^{2}}\right\}+\frac{C}{6 r}\left\{z\left(z^{2}+r^{2}\right)^{1 / 2}+\left(\tau^{2}+r^{2}\right)-4 r^{2}+\frac{8 r^{2} z}{z^{2}+r^{2}}\right\} \\
& =\frac{C}{2}\left\{\frac{z\left(z^{2}+r^{2}\right)^{1 / 2}+z^{2}-r^{2}}{r}\right\} \\
& \frac{\partial u}{\partial r}=-\frac{c}{2}\left\{\frac{z\left(z^{2}+r^{2}\right)^{1 / 2}+z^{2}-r^{2}}{r^{2}}\right\}+\frac{c}{2}\left\{\frac{z r}{\left(z^{2}+r^{2}\right)^{1 / 2 r}} \quad-2\right\} \\
& =-\frac{C}{2 r^{2}}\left\{z\left(z^{2}+r^{2}\right)+z^{2}-r^{2} \frac{2 r^{2}}{\left(\varepsilon^{2}+r^{2}\right)^{1 / 2}}+2 r^{2}\right\} \\
& =-\frac{C}{2 r^{2}}\left\{\mathrm{r}^{2}+\mathrm{r}^{2}+\frac{\mathrm{z}}{\left(\mathrm{E}^{2}+\mathrm{r}^{2}\right)^{1 / 2}}\left(\mathrm{~s}^{2}+\mathrm{r}^{2}-\mathrm{r}^{2}\right)\right\} \\
& =-\frac{C}{2 r^{2}}\left\{z^{2}+r^{2}+\frac{z^{3}}{\left(z^{2}+r^{2}\right)^{1 / 2}}\right\} . \\
& \text { Since } u_{\alpha}=\left.\frac{\partial u}{\partial r}\right|_{\substack{r=\alpha \\
\mathbf{z}=\sigma}}(\sigma)
\end{aligned}
$$

$$
\begin{equation*}
u_{\alpha}=-\frac{c}{2 \alpha^{2}(\sigma)}\left\{\left[(\sigma+a)^{2}+\alpha^{2}(\sigma)\right]+\frac{(\sigma+a)^{3}}{\left[(\sigma+a)^{2}+\alpha^{2}(\sigma)\right]^{/ 2}}\right\} \tag{7.31}
\end{equation*}
$$

The values for λ_{3}, λ_{4} and η near the leading point are:

$$
\begin{aligned}
\lambda_{3} & =-2 \nu C\left[\left(z^{2}+r^{2}\right)^{1 / 2}+z\right] \\
& =-2 \nu C\left[\left[(\sigma+a)^{2}+\alpha^{2}(\sigma)\right]^{1 / 2}+(\sigma+a)\right] ; \\
\lambda_{4} & =2 \nu C r \log \left\{\frac{z+\left(z^{2}+r^{2}\right)^{1 / 2}}{r^{2}}\right\} \\
& =2 \nu C \alpha(\sigma) \log \left\{\frac{(\sigma+a)+\left[(\sigma+a)^{2}+\alpha^{2}(\sigma)\right]^{1 / 2}}{\alpha^{2}(\sigma)}\right\} ; \\
\eta & =\frac{C(1+\cos \theta)}{\sin \theta} \\
& =\frac{C}{r}\left[z+\left(x^{2}+r^{2}\right)^{1 / 2}\right] \\
& =\frac{C}{\alpha(\sigma)}\left[(\sigma+a)+\left[(\sigma+a)^{2}+\alpha^{2}(\sigma)\right]^{1 / 2}\right]
\end{aligned}
$$

The postulated constraint on the system will be taken to be that of constant are length and so $f\left(\alpha(\sigma), \alpha^{\prime}(\sigma), \sigma\right)$ in this case is $f\left(\alpha(\sigma), \alpha^{\prime}(\sigma), \sigma\right)=\mu\left[1+\alpha^{\prime 2}(\sigma)\right]^{1 / 2}$,
where μ is a constant. In this case
$f_{\alpha}=0 \quad ; \quad f_{\alpha},=\frac{\mu \alpha^{\prime}(\sigma)}{\left[1+\alpha^{\prime 2}(\sigma)\right]^{1 / 2}} \quad ; \frac{d f}{d \sigma} \alpha^{\prime}=\frac{\mu \alpha^{\prime \prime}(\sigma)}{\left[1+\alpha^{12}(\sigma)\right]^{3 / 2}}$
The transversality condition may now be written down as

$$
\begin{align*}
& \begin{aligned}
\frac{\mu a^{\prime \prime}(\sigma)}{\left[1+\alpha^{12}(\sigma)\right]^{3 / 2}}+\alpha^{\prime}(\sigma)\left\{\frac{\nu C^{2}}{\alpha^{2}(\sigma)}[\right. & {\left[(\sigma+a)^{2}+\alpha^{2}(\sigma)\right]^{3 / 2}+(\sigma+a)^{3}+(\sigma+a)\left[(\sigma+a)^{2}+\alpha^{2}(\alpha)\right] } \\
& \left.+\frac{(\sigma+a)^{4}}{\left[(\sigma+a)^{2}+\alpha^{2}(\sigma)\right]^{1 / 2}}\right]+ \\
+ & \left.\frac{v C^{2} \alpha^{2}(\sigma)}{\left[(\sigma+a)^{2}+\alpha^{2}(\sigma)\right]^{2 / 2}} \log \left\{\frac{(\sigma+a)+\left[(\sigma+a)^{2}+\sigma^{2}(\sigma)\right]^{1 / 2}}{\alpha^{2}(\sigma)}\right\}\right\}
\end{aligned} \\
& -\frac{v C^{2}}{\alpha(\sigma)}\left\{(\sigma+a)^{2}+\alpha^{2}(\sigma)+\frac{(\sigma+a)^{3}}{\left[(\sigma+a)^{2}+\alpha^{2}(\sigma)\right]^{1 / 2}}\right\} \log \left\{\frac{\left.(\sigma+a)+\left[(\sigma+a)^{2}+\sigma^{2}(\sigma)\right]^{1 / 2}\right\}}{\alpha^{2}(\sigma)}\right\} \\
& +\frac{\nu C^{2} \alpha(\sigma):\left\{\frac{\left[(\sigma+a)^{2}+\alpha^{2}(\sigma)\right]^{1 / 2}+(\sigma+a)}{\left[(\sigma+a)^{2}+\alpha^{2}(\sigma)\right]^{1 / 2}}\right\}}{-\frac{v C^{2}}{\alpha(\sigma)}\left\{2(\sigma+a)^{2}+\alpha^{2}(\sigma)+2\left[(\sigma+a)^{2}+\alpha^{2}(\sigma)\right]^{1 / 2}(\sigma+a)\right\}=0,} \\
& \text { which simplifies to }
\end{align*}
$$

$$
\begin{align*}
& \frac{\mu \alpha^{\prime \prime}(\sigma)}{\left[1+\alpha^{\prime 2}(\sigma)\right]^{3 / 2}}+\nu C^{2}\left\{\frac{\alpha^{\prime}(\sigma) \alpha^{3}(\sigma)-(\sigma+a)^{\beta}-\left[(\sigma+a)^{2}+\alpha^{2}(\sigma)\right]^{3 / 2}}{\alpha(\sigma)\left[(\sigma+a)^{2}+\alpha^{2}(\sigma)\right]^{/ 2}}\right\} x \\
& \times \log \left\{\frac{(\sigma+a)+\left[(\sigma+a)^{2}+\alpha^{2}(\sigma)\right]^{1 / 2}}{\alpha^{2}(\sigma)}\right\} \\
& +\frac{v C^{2}}{\left[(\sigma+a)^{2}+\alpha^{2}(\sigma)\right]^{2 / 2}}\left\{[(\sigma + a) + [(\sigma + a) ^ { 2 } + \alpha ^ { 2 } (\sigma)] ^ { 1 / 2 }] \left[\frac { \alpha ^ { \prime } (\sigma) } { \alpha ^ { 2 } (\sigma) } \left[\left[(\sigma+a)^{2}+a^{2}(\sigma)\right]^{1 / 2}-\right.\right.\right. \\
& \left.+(\sigma+a)^{3}\right] \\
& \left.\left.-\frac{2(\sigma+a)}{\alpha(\sigma)}\left[(\sigma+a)^{2}+\alpha^{2}(\sigma)\right]^{1 / 2}\right]+\alpha(\sigma)(\sigma+a)\right\}=0 . \tag{7.32}
\end{align*}
$$

The solution for $\alpha(\sigma)$ from (7.32) gives the shape, near the leading point, of the body of minimum drag. It is likely that this equation can be resolved numerically but this has not been pursued and instead a method to obtain an approximate solution for $\alpha(\sigma)$ has been studied as follows.

It has already been shown that at the leading point there is a semivertical angle of 60°, that is $\alpha^{\prime}(\sigma)=\sqrt{3}$ at the point ($-\mathrm{a}, 0$) and so $\alpha(\sigma)=\sqrt{3}(\sigma+a)$. The substitution $(\sigma+a)=\frac{\alpha(\sigma)}{\sqrt{3}}$ is made in equation (7.32) to get an approximate form of the transversality condition, namely:

$$
\begin{equation*}
\frac{\mu \alpha^{\prime \prime}(\sigma)}{\left[1+\alpha^{\prime 2}(\sigma)\right]^{3 / 2}}+\frac{\sqrt{3}}{2} \nu C^{2} \alpha(\sigma)\left\{\left[\sqrt{3}-\alpha^{\prime}(\sigma)\right] \log \left[\frac{\sqrt{3} \alpha(\sigma)}{3}\right]+3 \alpha^{\prime}(\sigma)-\sqrt{3}\right\}=0 \tag{7.33}
\end{equation*}
$$

An iteration method is now used taking the known value of $\alpha^{\prime}(\sigma)$ at the leading point, that is $\alpha^{\prime}(\sigma)=\sqrt{3}$, as the initial value for $\alpha^{\prime}(\sigma)$. Equation (7.33) then becomes;

$$
\begin{align*}
& \frac{\mu \alpha^{\prime \prime}(\sigma)}{[1+3]^{3 / 2}}+\frac{\sqrt{3}}{2} v C^{2} \alpha(\sigma) \quad-2 \sqrt{3}=0 \\
& \alpha^{\prime \prime}(\sigma)+\frac{24 v C^{2} \alpha(\sigma)}{\mu}=0 \tag{7.34}
\end{align*}
$$

Let $\frac{24 v C^{2}}{\mu}=\mathrm{m}^{2}$, then the solution to (7.34) is

$$
\alpha(\sigma)=A \cos m(\sigma+a)+B \sin m(\sigma+a)
$$

```
\(\alpha(\sigma)\) tends to zero as \(\sigma\) tends to - a therefore \(A=0\) and
    \(\alpha(\sigma)=B \sin m(\sigma+a)\).
    \(\alpha^{\prime}(\sigma)=m B \cos (\sigma+a)\)
    \(\alpha^{\prime}(\sigma)=\sqrt{3} \quad\) at \(\quad \sigma=-a\), so
    \(\sqrt{3}=m B\)
    \(\alpha(\sigma)=\frac{\sqrt{3}}{m} \sin m(\sigma+a)\).
```

The symmetry condition $\alpha^{\prime}(0)=0$ can be satisfied by an appropriate
choice of m as follows:
$\dot{\alpha}^{\prime}(\sigma)=0$ at $\sigma=0$, so
$\cos m a=0$,
$\mathrm{ma}=\frac{\pi}{2} \quad$.
$\alpha(\sigma)=\frac{2 \sqrt{3}}{\pi} a \sin \frac{\pi}{2 a}(\sigma+a)$.

This value for $\alpha(\sigma)$ gives an approximation to the shape of minimum drag between $\sigma=-\mathrm{a}$ and $\sigma=0$.

CHAPTER EIGHT

Singularity Solutions of the Stream Function and Lagrange Multipliers.

The governing equations of the system are

$\frac{1}{\rho} \frac{\partial p}{\partial r}-\frac{v \partial \eta}{\partial z}=0$,
$\frac{1}{\rho} \frac{\partial p}{\partial z}+\frac{v \partial \eta}{\partial r}+\frac{v \eta}{r}=0$	
$\eta-\frac{\partial u}{\partial z}+\frac{\partial w}{\partial r}=0$,
$\frac{\partial u}{\partial r}+\frac{u}{r}+\frac{\partial w}{\partial z}=0$,
$\frac{\partial \lambda_{3}}{\partial z}-\frac{\partial \lambda_{4}}{\partial r}+\frac{\lambda_{4}}{r}=0$	(8.1)
$\frac{\partial \lambda_{4}}{\partial z}+\frac{\partial \lambda_{3}}{\partial r}=0$	(8.2)
$\lambda_{3}-2 \nu r \eta=0$,

Eliminating p between (8.1) and (8.2) gives
$\frac{\partial^{2} \eta}{\partial z^{2}}+\frac{\partial^{2} \eta}{\partial r^{2}}+\frac{1}{r} \frac{\partial \eta}{\partial r}-\frac{\eta}{r^{2}}=0$
Substituting (8.7) in (8.5) gives
$\frac{\partial}{\partial r}\left(\frac{\lambda_{4}}{r}\right)=\frac{1}{r} \frac{\partial}{\partial z}(-2 v i n)$
and using (8.1) this becomes
$\frac{\partial}{\partial r}\left(\frac{\lambda_{4}}{r}\right)=-\frac{2}{\rho} \frac{\partial p}{\partial r}$
Substituting (8.7) in (8.6) gives
$\frac{\partial \lambda_{4}}{\partial z}=2 \frac{v \partial}{\partial r}(\mathrm{r})$
and using (8.2) this may be written as
$\frac{\partial \lambda_{4}}{\partial z_{4}}=-\frac{\partial}{\partial z}\left(\frac{2 r p}{\rho}\right)$
Therefore

$$
\frac{\partial}{\partial r}\left(\frac{\lambda_{4}}{r}+\frac{2 p}{\rho}\right)=0, \quad \frac{\partial}{\partial z}\left(\lambda_{4}+\frac{2 r p}{\rho}\right)=0
$$

hence $\frac{\lambda_{4}}{r}+\frac{2 p}{\rho}=A$.
where A is an arbitrary constant.

If a function X is introduced such that

$$
\begin{equation*}
\eta=\frac{\partial x}{\partial r} \tag{8.10}
\end{equation*}
$$

then (8.8) becomes
$\frac{\partial^{3} \chi}{\partial r \partial z^{2}}+\frac{\partial^{3} \chi}{\partial r^{3}}+\frac{1}{r} \frac{\partial^{2} \chi}{\partial r^{2}}-\frac{1}{r^{2}} \frac{\partial \chi}{\partial r}=0$
that is $\frac{\partial}{\partial r}\left\{\frac{\partial^{2} \chi}{\partial z^{2}}+\frac{\partial^{2} \chi}{\partial r^{2}}+\frac{1}{r} \frac{\partial X}{\partial r}\right\}=0$
therefore $\frac{\partial^{2} \chi}{\partial z^{2}}+\frac{\partial^{2} \chi}{\partial r^{2}}+\frac{1}{r} \frac{\partial X}{\partial r}=0$.
This is Laplace's Equation in cylindrical coordinates and it has a basic solution
$X=\frac{1}{\widetilde{\omega}} \quad, \tilde{\omega}^{2}=(z-\xi)^{2}+r^{2}$
corresponding to a source singularity at $(\xi, 0)$.

Figure 8.1
From (8.12) it follows that a more general solution for X can be constructed by distributing source singularities along the z-axis
from the leading point of the body (chosen to be the origin) to the tail of the body ($z=$) this solution being of the form

$$
\begin{align*}
x(z, r) & =\int_{0}^{Z_{0}} \frac{a(\xi) d \xi}{\widetilde{\omega}} \\
& =\int_{0}^{l_{0}} \frac{a(\xi) d \xi}{\sqrt{r^{2}+(z-\xi)^{2}}} \tag{8.13}
\end{align*}
$$

where $a(\xi)$ is an unknown source density and is a function of ξ only. It now follows from (8.10) and (8.13) that the vorticity η is given in terms of a by the equation

$$
\begin{equation*}
\eta=\int_{0}^{\tau} a(\xi) \frac{\partial}{\partial r}\left(\frac{1}{\widetilde{\omega}}\right)^{d \xi} \tag{8.14}
\end{equation*}
$$

The singularities $\frac{\partial}{\partial r}\left(\frac{1}{\sqrt{3}}\right)$ are dipoles pointing in the r direction. Next the expression for the pressure p in terms of a is considered. Equation (8.1) together with solution (8.14) gives

$$
\begin{equation*}
\frac{1}{\rho} \frac{\partial p}{\partial r}=v \int_{0}^{\tau_{0}} a(\xi) \frac{\partial^{2}}{\partial z \partial r}\left(\frac{1}{\tilde{\omega}}\right)^{d \xi} \tag{8.15}
\end{equation*}
$$

and from (8.2)

$$
\begin{aligned}
\frac{1}{\rho} \frac{\partial p}{\partial z} & =-\frac{v}{r} \frac{\partial}{\partial r}\left\{r \quad \int_{0}^{l} a(\xi) \frac{\partial}{\partial r}\left(\frac{1}{\tilde{\omega}}\right) d \xi\right\} \\
& =-\frac{v}{r} \int_{l_{0}^{0}} a(\xi) \frac{\partial}{\partial r}\left\{r \frac{\partial}{\partial r}\left(\frac{1}{\tilde{\omega}}\right)\right\} d \xi \\
& =-\frac{v}{r} \int_{0}^{2} a(\xi)\left\{r \frac{\partial^{2}}{\partial r^{2}}+\frac{\partial}{\partial r}\right\}\left(\frac{1}{\widetilde{\omega}}\right) d \xi \\
& =-v \int_{0}^{0} a(\xi)\left\{\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}\right\}\left(\frac{1}{\widetilde{\omega}}\right) d \xi
\end{aligned}
$$

and since $\frac{1}{\tilde{\omega}}$ satisfies Laplace's equation

$$
\begin{equation*}
\frac{1}{\rho} \frac{\partial p}{\partial z}=v \int_{0}^{Z_{0}} a(\xi) \frac{\partial^{2}}{\partial z^{2}}\left(\frac{1}{\tilde{\omega}}\right)^{d \xi} \tag{8.16}
\end{equation*}
$$

It can be deduced from (8.15) and (8.16) that, apart from an arbitrary constant, l_{r}

$$
\begin{equation*}
\frac{p}{\rho}=v \int_{0} a(\xi) \frac{\partial}{\partial z}\left(\frac{1}{\tilde{\omega}}\right)^{d \xi} \tag{8.17}
\end{equation*}
$$

It now follows from (8.7) and (8.14) that

$$
\begin{equation*}
\lambda_{3}=-2 v r \int_{0}^{\tau_{0}} a(\xi) \frac{\partial}{\partial r}\left(\frac{1}{\tilde{\omega}}\right) d \xi \tag{8.18}
\end{equation*}
$$

and from (8.9) that

$$
\begin{equation*}
\lambda_{4}=A r-2 v r \int_{0}^{\tau_{0}} a(\xi) \frac{\partial}{\partial z}\left(\frac{1}{\widetilde{\omega}}\right) d \xi \quad . \tag{8.19}
\end{equation*}
$$

It is now necessary to deduce from (8.14) the stream function ψ.
It has already been seen that equation (8.4) gives

$$
\begin{equation*}
r u=\frac{\partial \psi}{\partial z} \quad, \quad r w=-\frac{\partial \psi}{\partial r} \tag{8.20}
\end{equation*}
$$

so that from (8.3)

$$
\begin{equation*}
r n=\frac{\partial^{2} \psi}{\partial z^{2}}+\frac{\partial^{2} \psi}{\partial r^{2}}-\frac{1}{r} \frac{\partial \psi}{\partial r} \tag{8.21}
\end{equation*}
$$

Putting $\psi=r \Psi \quad$,
then

$$
\begin{equation*}
\eta=\frac{\partial^{2} \psi}{\partial z^{2}}+\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Psi}{\partial r}-\frac{1}{r^{2}} \Psi \tag{8.23}
\end{equation*}
$$

and writing

$$
\begin{equation*}
\psi=\frac{\partial \Phi}{\partial r} \tag{8.24}
\end{equation*}
$$

together with (8.10) gives

$$
\begin{equation*}
\frac{\partial X}{\partial r}=\frac{\partial^{3} \Phi}{\partial z^{2} \partial r}+\frac{\partial^{3} \Phi}{\partial r^{3}}+\frac{1}{r} \frac{\partial^{2} \Phi}{\partial r^{2}}-\frac{1}{r^{2}} \frac{\partial \Phi}{\partial r} \tag{8.25}
\end{equation*}
$$

so that

$$
\begin{equation*}
X=\frac{\partial^{2} \Phi}{\partial z^{2}}+\frac{\partial^{2} \Phi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \Phi}{\partial r} \equiv \nabla^{2} \Phi \tag{8.26}
\end{equation*}
$$

where ∇^{2} is the three dimensional Laplacian. A solution must now be
found for Φ from

$$
\begin{equation*}
\nabla^{2} \Phi=\int_{0}^{l} \frac{a(\xi) d \xi}{\tilde{\omega}} \quad, \tilde{\omega}^{2}=(z-\xi)^{2}+r^{2} \tag{8.27}
\end{equation*}
$$

Consider the function

$$
\Phi=\int_{0}^{\tau} a(\xi) d \xi\left\{\alpha \tilde{\omega}+\beta \log \tilde{\omega}+\frac{\gamma}{\tilde{\omega}}\right\} d \xi,
$$

where α, β, γ are constants; it is easily shown that

$$
\begin{aligned}
& \nabla^{2} \tilde{\omega}=\frac{2}{\tilde{\omega}}, \\
& \nabla^{2} \log \tilde{\omega}=\frac{1}{\widetilde{\tilde{\omega}}^{2}},
\end{aligned}
$$

$$
\nabla^{2} \frac{1}{\widetilde{\omega}}=0
$$

Thus the particular solution Φ_{1} for Φ from (8.27) corresponds $\alpha=\frac{1}{2}, \beta=0, \gamma=0$ and hence

$$
\begin{equation*}
\Phi_{1}=\frac{1}{2} \int_{0}^{\tau_{0}} \tilde{\omega} a(\xi) d \xi \tag{8,28}
\end{equation*}
$$

and to this particular solution a complementary function of the form

$$
\begin{equation*}
\Phi_{2}=\int_{0} \frac{b(\xi)}{\widetilde{\omega}} d \xi \tag{8.29}
\end{equation*}
$$

can be added, where $b(\xi)$ is an arbitrary function of ξ, since $\nabla^{2} \Phi$
vanishes. This gives a solution for Φ of the form

$$
\begin{equation*}
\Phi=\frac{1}{2} \int_{0}^{\tau_{p}} \tilde{\omega} a(\xi) d \xi+\int_{0}^{\tau_{0}} \frac{b(\xi)}{\tilde{\omega}} d \xi \tag{8.30}
\end{equation*}
$$

The function Ψ defined in (8.24) is then

$$
\begin{align*}
\Psi & =\frac{1}{2} \int_{Z_{0}^{0}}^{Z_{1}} a(\xi) \frac{\partial \tilde{\omega}}{\partial r} d \xi+\int_{Z_{0}^{0}}^{Z_{0}} b(\xi) \frac{\partial}{\partial r}\left(\frac{1}{\tilde{\omega}}\right) d \xi \tag{8.31}\\
& =\frac{1}{2} \int_{0} r \frac{a(\xi)}{\tilde{\omega}} d \xi+\int_{0} b(\xi) \frac{\partial}{\partial r}\left(\frac{1}{\tilde{\omega}}\right) d \xi
\end{align*}
$$

and the stream function ψ in (8.22) becomes
$\psi=\frac{1}{2} r^{2} \int_{0}^{Z_{n}} \frac{a(\xi) d \xi}{\tilde{\omega}}+r \int_{0}^{Z_{n}} b(\xi) \frac{\partial}{\partial r}\left(\frac{1}{\tilde{\omega}}\right) d \xi \quad$.
In (8.32) $a(\xi)$ and $b(\xi)$ are two arbitrary functions of ξ, the former having entered originally in (8.13).

The complete stream function can now be constructed. Corresponding to the uniform stream at infinity

$$
\mathbf{u}=u_{0}=0, \quad w=w_{0}=W
$$

there is a stream function ψ_{0} such that

$$
\frac{\partial \psi_{0}}{\partial z}=0 \quad, \quad \frac{\partial \psi_{0}}{\partial r}=-r W
$$

hence

$$
\begin{equation*}
\psi_{0}=-\frac{1}{2} r^{2} W \tag{8.33}
\end{equation*}
$$

Thus the total stream function ψ^{*} will be

$$
\begin{equation*}
\psi^{*}=-\frac{1}{2} r^{2} \mathrm{~W}+\psi, \tag{8.34}
\end{equation*}
$$

where ψ is given in (8.32). For large values of r the first integral in (8.32) gives $\psi \simeq C_{0} r$ where C_{0} is a constant and thus the conditions at infinity, namely u tends to zero and w tends to W will be satisfied by ψ^{*}.

The boundary conditions on the surface of the body are that the total velocity is zero, in other words

$$
\begin{equation*}
u=0, w=0 \quad, \quad \text { on the bady } \tag{8.35}
\end{equation*}
$$

and in terms of the stream function ψ^{*} this can be written as

$$
\begin{equation*}
\psi^{*}=0, \quad \frac{\partial \psi^{*}}{\partial n}=0, \quad \text { on the body }, \tag{8.36}
\end{equation*}
$$

where $\hat{\mathrm{n}}$ is the normal derivative. Alternatively the boundary conditions may be used in the more convenient form

$$
\begin{equation*}
\psi *=0, \frac{\partial \psi^{*}}{\partial r}=0 \quad \text {, on the body } \tag{8.37}
\end{equation*}
$$

and using (8.34) it follows that

$$
\begin{array}{ll}
\psi=\frac{1}{2} W r^{2}, & \text { on the body } r=\alpha(\sigma) \\
\frac{\partial \psi}{\partial r}=W r \quad, \tag{8.39}
\end{array}
$$

(8.32) may be written in the form

$$
\begin{equation*}
\psi=\frac{1}{2} r^{2} \int_{0}^{z} \frac{a(\xi)}{\widetilde{\omega}} d \dot{\xi}-r^{2} \int_{0}^{\tau} \frac{b(\xi) d \xi}{\tilde{\omega}^{3}} \tag{8.40}
\end{equation*}
$$

hence (8.38) becomes

$$
\frac{1}{2} \int_{0}^{Z_{0}} \frac{a(\xi) \mathrm{d} \xi}{\left\{\alpha^{2}(\sigma)+(\sigma-\xi)^{2}\right\}^{/ / 2}}-\int_{0}^{\tau_{0}} \frac{\mathrm{~b}(\xi) \mathrm{d} \xi}{\left\{\alpha^{2}(\sigma)+(\sigma-\xi)^{2}\right\}^{3 / 2}}=\frac{1}{2} \mathrm{~W} . \text { (8.41) }
$$

Likewise

$$
\frac{\partial \psi}{\partial r}=r \int_{0}^{\tau} a(\xi)\left(\frac{1}{\widetilde{\omega}}-\frac{1}{2} r^{2}\right) d \xi-r \int_{0}^{\widetilde{\omega}^{3}} b(\xi)\left\{\frac{2}{\tilde{\omega}^{3}}-\frac{3 r^{2}}{\tilde{\omega}^{5}}\right\} d \xi
$$

and thus (8.39) becomes

$$
\int_{0}^{Z_{n}} \frac{\left\{\frac{1}{2} \alpha^{2}(\sigma)+(\sigma-\xi)^{2}\right\}}{\left\{\alpha^{2}(\sigma)+(\sigma-\xi)^{2}\right\}^{3 / 2}} \mathrm{a}(\xi) \mathrm{d} \xi-\int_{0}^{Z_{1}} \frac{\left\{2(\sigma-\xi)^{2}-\alpha^{2}(\sigma)\right\}}{\left\{\alpha^{2}(\sigma)+(\sigma-\xi)^{2}\right\}^{5 / 2}} \mathrm{~b}(\xi) \mathrm{d} \xi=\mathrm{W} . \text { (8.42) }
$$

Equations (8.41) and (8.42) provide two coupled integral equations between the unknowns $\alpha(\sigma), a(\xi)$ and $b(\xi)$ and the third relation between these three functions is the transversality condition, namely,

$$
\begin{gather*}
\frac{\mu \alpha^{\prime \prime}(\sigma)}{\left[1+\alpha^{\prime 2}(\sigma)\right]^{3 / 2}}+\alpha^{\prime}(\sigma)\left[\lambda_{3} u_{\alpha}-\lambda_{4} w_{\alpha}\right]+\left[\lambda_{4} u_{\alpha}+\lambda_{3} w_{\alpha}\right]-v r \eta^{2}=0, \\
\text { on } r=\alpha(\sigma) \quad, \tag{8.43}
\end{gather*}
$$

A certain degree of simplification can be effected in (8.42) because when W is eliminated on the right hand side of (8.41) and (8.42) this gives

$$
\begin{aligned}
& \int_{0} \frac{\frac{1}{2} \alpha^{2}(\sigma)+\frac{1}{2}(\sigma-\xi)^{2}-\frac{1}{2} \alpha^{2}(\sigma)-\frac{1}{2}(\sigma-\xi)^{2}}{\tilde{\omega}^{3}} a(\xi) d \xi \\
& -\int_{0}^{2} \frac{(\sigma-\xi)^{2}-\frac{1}{2} \alpha^{2}(\sigma)-(\sigma-\xi)^{2}-\alpha^{2}(\sigma)}{\tilde{\omega}^{5}} b(\xi) d \xi=0
\end{aligned}
$$

hence
$\int_{0}^{2}-\frac{1 \alpha^{2}(\sigma) a(\xi) d \xi}{\tilde{\omega}^{3}}+\int_{0}^{\frac{3}{2} a^{2}(\sigma) b(\xi) d \xi} \tilde{\omega}^{5}=0 \quad$.
Since $\alpha(\sigma) \neq 0$ it follows that

$$
\begin{equation*}
\int_{0} \frac{a(\xi) d \xi}{\tilde{\omega}^{3}}-6 \int_{0}^{Z} \frac{b(\xi) d \xi}{\tilde{\omega}^{5}}=0 . \tag{8.44}
\end{equation*}
$$

This equation can replace (8.42) and (8.41) can be written in the form $\int_{0} \frac{a(\xi) d \xi}{\tilde{\omega}}-2 \int_{0}^{\tau} \frac{b(\xi) d \xi}{\tilde{\omega}^{3}}=W$,
where in (8.44) and (8.45)

$$
\begin{equation*}
\tilde{\omega}^{2}=\alpha^{2}(\sigma)+(\sigma-\xi)^{2} \text {. } \tag{8.46}
\end{equation*}
$$

The resolution of the solution by this method of distributed singularities has not been completed analytically due to the complexity of the problem (although it is possible that the methods described by Landweber ${ }^{14}$ and Hocking ${ }^{15}$ can be used in getting approximate solutions) but it is likely that the problem from this point onwards can be resolved numerically.

REFERENCES

1. Butkovskii, A.G., and Lerner, A. Ya., "Optimal Control of Systems with Distributed Parameters," Automation and Remote Control, Vol. 21, 1960, p.p. 682 - 691.
2. Butkóvskii, A.G., and Lerner, A. Ya., "Optimal Control Systems with Distributed Parameters, " Soviet Physics - DokZady, Vol. 134, 1960, p.p. 778 - 781.
3. Butkovskii, A.G., "Optimum Processes in Systems with Distributed Paramters," Automation and Remote Control, Vol. 22, 1961, p.p. 17 - 26.
4. Butkovskii, A.G., "The Maximum Principle for Optimum Systems with Distributed Parameters," Automation and Remote Control, Vol. 22, 1961, p.p. 1,288-1,301.
5. Salter, S.M., "Wave Power," Nature, Vol. 249, No. 5459, 1974, p.p. 720 - 724.
6. Degtyarev, G.L.," Optimal Control of Distributed Processes with a Moving Boundary," Automation and Remote Control, Vol. 33, 1972, p.p. 1,600-1,605.
7. Forsyth A.R., "Calculus of Variations," Cambridge University Press, 1972.
8. Gelfand, I.M., and Fomin, S.V., "Calculus of Variations", Prentice Hall, 1963.
9. Pironneau, 0., "On Optimum Profiles in Stokes' Flow," Journal of Fluid Mechanics, Vol. 59-I,1973, p.p. 117 - 128.
10. Pironneau, 0., "On Optimum Design in Fluid Mechanics," JournaZ of Fluid Mechanics, Vol. 64-I, 1974, p.p. 97 - 110.
11. Glowinski, R.; and Pironneau, 0., "On the Numerical Computation of the Minimum - Drag Profile of Laminar Flow," Journal of Fluid Mechanics, Vol. 72-II, 1975, p.p. 385-389.
12. Courant, R., and Friedricks, K.O., "Supersonic Flow and Shock Waves," p. 60, Interscience 1948.
13. Davies, T.V., "A Review of Distributed Parameter System Theory," Bulletin of the Institute of Mathematics and its Application, Vol. 12, No. 5, May 1976, p.p. 132 - 138.
14. Landweber, L., "Axially Symmetric Potential Flow about Elongated Bodies of Revolution, " Navy Department, D.W. Taylor Model Basin, Report 761, M 5715084, August, 1951.
15. Hocking, L.M., "The Oseen Flow past a Circular Disk," Quarterly Journal of Mechanics and Applied Mathematics, Vol. 12, 1959, p.p. 464-475.

SUMMARY

In this thesis the variation of a functional defined on a variable domain has been studied and applied to the problem of finding the optimum shape of the domain in which some performance criterion has an extremum. The method most frequently used is one due to Celfand and Fomin. It is applied to problems governed by first and second order partial differential equations, unsteady one dimensionsal gas movements and the problem of minimum drag on a body with axial symetry in Stokes' flow.

