
A Calculus of Mobility and

Communication for Ubiquitous

Computing

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Nosheen Gul

Department of Computer Science

University of Leicester

May 2015

A Calculus of Mobility and Communication

for Ubiquitous Computing

Nosheen Gul

Abstract

Ubiquitous computing makes various computing devices available throughout the

physical setting. Ubiquitous computing devices are distributed and could be mobile,

and interactions among them are concurrent and often depend on the location of

the devices. Process calculi are formal models of concurrent and mobile systems.

The work in this thesis is inspired by the calculus of Mobile Ambients and other

process calculi such as Calculus of Communicating Systems which have proved to

be successful in the modelling of mobility, communication and structure of systems.

We start by developing operational semantics for the calculus of Mobile Ambients

and Push and Pull Ambient Calculus, and prove that the semantics are sound and

complete with respect to the corresponding underlying reduction semantics. This

thesis proposes a Calculus of Communication and Mobility, denoted by CMCPCA,

for the modelling of mobility, communication and context awareness in the setting

of ubiquitous computing. CMCPCA is an ambient calculus with the in and out

capabilities of Cardelli and Gordon as well the push and pull capabilities of Phillips

and Vigliotti. CMCPCA has a new form of global communication similar to that in

Milner’s CCS. We define a new notion of behavioural equivalence for our calculus

in terms of an observation predicate and action transitions. Thus, we define barbed

bisimulation and congruence, and capability barbed bisimulation and congruence.

We then prove that capability barbed congruence coincides with barbed congruence.

We also include in the calculus a new form of context awareness mechanism that

allows ambients to query their current location and surrounding. We then propose

reduction semantics and operational semantics for the context awareness primitives,

and show that the semantics coincide. Several case studies and a variety of small

examples show the expressiveness and usefulness of our calculus.

· · · my loving mother and the sweet memories of my father

Acknowledgement

I would like to thank my supervisor Dr Irek Ulidowski for his guidance and in-

valuable support during my research. I believe that without his guidance none of

this research would have been possible. Thank you very much Irek for showing

tremendous patience in reading and evaluating my work.

I would also like to thank Prof Reiko Heckel, my second supervisor for his time

to time valuable suggestions. A special thanks to Dr Emilio Tuosto, as being an

expert in process calculi his suggestions have always been of great help.

I owe a great debt of thanks to Prof Thomas Erlebach for his dedication and

guidance in resolving my professional and personal issues.

I cannot find words to express my gratitude to my dearest friends for their

loving support throughout this journey. Thank you Ayesha for staying awake with

me at nights during my migraines. Thank you very much Sab for your super-special

support.

My very special thanks are due to my family, especially to my sweet parents,

brothers and my lovely sister Seemrose, who have always been close to my heart

throughout my stay in the UK, and they have never made me realise that I am

away from my family. Very special thanks to my dear father (may his soul rest in

peace) for his unconditional love and support throughout my life. I would also like

to give special thanks to my dear uncle M. T. Abbasi for all his encouragement and

guidance during my studies.

............

I am particularly thankful to my two examiners Prof Maciej Koutny and Dr

Emilio Tuosto for their useful suggestions and comments during and after the viva.

Contents

1 Introduction 1

1.1 Contributions . 6

1.2 Thesis Outline . 9

2 Background and Related Work 11

2.1 Process Algebra . 11

2.1.1 Structural Operational Semantics and Transition Rules for CCS 12

2.1.2 Mobile Ambients . 15

2.1.3 Boxed Ambients . 16

2.1.4 Channel Ambient Calculus . 17

2.1.5 Push and Pull Ambient Calculus 17

2.2 Context Awareness . 18

2.3 Location Modelling . 19

2.4 Other Related Work . 20

3 Towards a Calculus of Mobility 23

3.1 The Syntax of Calculus of Mobility 24

3.1.1 Structural Congruence . 25

3.1.2 Reduction Semantics for CM 26

3.2 Labelled Transition System Semantics for CM 28

3.3 Soundness of Operational Semantics 39

3.4 On Completeness of Operational Semantics 42

3.5 Conclusion . 46

4 An LTS Based Operational Semantics of a Calculus of Mobility 49

4.1 The Syntax and SOS Rules of CM . 50

4.2 Correspondence of Transition Semantics and Reduction Semantics . . 55

4.2.1 Soundness . 55

4.2.2 Completeness . 59

4.3 Conclusion . 70

iv

5 The Calculus of Mobility and Communication 71

5.1 The Syntax of CMC . 73

5.1.1 Reduction Semantics of CMC 75

5.2 Transition Semantics for CMC . 76

5.3 Applications of CMC . 78

5.3.1 Calculating Path Between Two Locations 79

5.3.2 Services Follow Doctor . 81

5.4 Behavioural Semantics . 89

5.5 Conclusion . 96

6 Operational Semantics for Push and Pull Ambient Calculus 98

6.1 The Syntax of CMCP . 99

6.2 Reduction Semantics of CMCP . 100

6.3 Transition Semantics for Push and Pull 101

6.3.1 Applications of Push and Pull Capabilities 103

6.4 Correspondence of Semantics . 107

6.4.1 Soundness . 107

6.4.2 Completeness . 112

6.5 Conclusion . 121

7 Context-Awareness: Location and Surrounding 122

7.1 Context Awareness Primitives . 124

7.2 Reduction Semantics for CMCPCA . 125

7.3 Transition Semantics for Ploc and Sloc 126

7.3.1 Applications of Ploc and Sloc 130

7.4 Correspondence of Transition Semantics and Reduction Semantics . . 133

7.5 Applications of CMCPCA . 134

7.5.1 Interactive Shopping Mall . 134

7.5.2 Devices Automatically Switching Mode 136

7.6 Conclusion . 138

8 Conclusion and Furture Work 139

8.1 Thesis Summary . 139

8.2 Evaluation . 140

8.3 Future Work . 143

Appendix A 146

A.1 Operations . 146

A.2 Examples . 147

v

Bibliography 152

vi

List of Figures

2.1 Inference tree . 15

3.1 Inference tree for enter capability . 33

3.2 Inference tree for enter capability using restriction 35

3.3 Inference tree for exit capability . 36

3.4 Inference tree for exit capability using restriction 37

3.5 Inference tree for exit capability using restriction example 2 38

3.6 Inference tree for τ -Out transition . 41

3.7 Inference tree for τ -In transition . 42

3.8 Inference tree for Example 3.1 . 45

3.9 Inference tree for Example 3.2 . 45

3.10 Inference tree for Example 3.3 . 47

4.1 Inference tree for enter capability . 54

4.2 Inference tree for exit capability . 55

4.3 Inference tree for τ -Out transition . 57

4.4 Inference tree for τ -In transition . 59

5.1 Path: source tree . 79

5.2 Path: target tree . 81

5.3 Hospital setting: services follow doctor 82

5.4 Services follow doctor: transition diagram 88

5.5 Transition graphs . 92

6.1 Global communication, active and passive mobility 104

6.2 Resulting system: global communication, active and passive mobility 107

6.3 Inference tree for τ -Push transition 111

6.4 Inference tree for τ -Pull transition . 111

7.1 Sibling awareness . 132

7.2 Interactive Shopping Mall settings . 135

7.3 Devices switching ON/OFF modes automatically 137

vii

A.1 Function returning a path from a node to the root of a tree 147

A.2 Tree structure . 148

A.3 Tree representing source and target nodes 148

A.4 Function returning first common nodes of the two given lists 149

A.5 First common node of the two lists 150

A.6 Joining two lists . 150

A.7 Prefixing in and out moves . 151

viii

List of Tables

3.1 Syntax of CM . 24

3.2 Free names . 25

3.3 Structural congruence . 26

3.4 Reduction rules and axioms . 27

3.5 Prefixes and labels for CM . 29

3.6 Transition rules for CM capabilities 30

3.7 Transition rules for other operators of CM 31

3.8 Statements to ensure completeness 44

4.1 Prefixes, labels, outcomes and concretions 52

4.2 Transition rules for mobility . 52

4.3 Transition rules for other operators of CM 53

5.1 Syntax of CMC . 73

5.2 Prefixes, labels, concretions and outcomes 74

5.3 Free names . 75

5.5 Reduction rules . 76

5.4 Structural Congruence . 77

5.6 Transition rules for communication 78

5.8 Transition rules for other operators of CMC 78

5.7 Transition rules for mobility . 79

5.9 CCS expressions for doctor, server and screens 87

6.1 Prefixes, labels, concretions and outcomes 100

6.2 Reduction axioms for push and pull 100

6.3 SOS rules for pull . 102

6.4 SOS rules for push . 103

7.1 Syntax of CMCPCA . 124

7.2 Prefixes, labels, concretions and outcomes 125

7.3 Reduction axioms for ploc and sloc 125

ix

7.4 SOS rules for ploc . 127

7.5 SOS rules for sloc . 129

x

Chapter 1

Introduction

Ubiquitous computing [79, 78] provides various computing devices available through-

out the physical setting, and humans interact with networks of devices (dynamic,

invisible and embedded in everyday objects). The idea behind ubiquitous comput-

ing is to surround ourselves with computing devices that are carefully adjusted to

offer us hidden assistance as we navigate through our daily activities. In ubiquitous

and mobile computing environment computing devices are distributed and could

be mobile, and interactions among them are concurrent and often depend on the

location of the devices. The idea of mobile computing deals with the computations

carried out in mobile devices that are moved by the users, and communication in

such setting could be global, which means that agents may interact with subagents

inside other agents. Moreover, the notion of context aware computing [78, 56] is

introduced as an emerging trait of ubiquitous computing where devices adapt ac-

cording to the changing surroundings. Therefore, the aim of such setting is not to

support global ubiquity; which is to connect all systems to form a general service

domain, but rather to support context-based ubiquity.

We consider a scenario where a client intends to move from her current location

to some target location inside a building. She picks up her digital device PDA, and

sends a request to a server to provide a path between the two locations. The request

contains the names of the two locations, and the server sends a path between these

locations to the client via her PDA.

This scenario describes the main features of the ubiquitous computing setting

that we aim to model in this thesis, namely

• physical mobility, both active and passive

• global communication, and

• location modelling.

Chapter 1. Introduction 2

Since the client moves around holding her digital device, we shall use two forms

of mobility, namely mobility using the in and out capabilities as in [11] and mobility

modelled by the push and pull primitives as in [54]. Moreover, the server and the

client communicate globally and, hence, we introduce a new form of global com-

munication similar to that in [43]. Location modelling has become an important

aspect of the ubiquitous computing setting, where location awareness is considered

an important feature that provide communication among various ubiquitous com-

puting devices. We describe below in more detail how these features of ubiquitous

computing will be modelled.

Process algebras are used to model formally concurrent systems, and provide

specification for communication, interaction and synchronisation between collections

of independent agents [43]. Structural Operational Semantics, SOS for short, [55,

51, 73, 71, 72] is used to define the behaviour of a system in terms of the behaviour of

its parts. It is a standard approach of defining the semantics of a system by means of

transition rules [42, 55]. Several process calculi were developed to model concurrency,

communication and distributed systems, most notably CSP [29, 30], CCS [43, 42]

and ACP [4]. These process calculi have no primitives to describe certain aspects

of behaviours of discussed above scenario, for example mobility and locations. The

idea of mobile code has been formalised by Milner in π-calculus [44, 49, 50]. π-

calculus can model a changing connectivity of interactive systems. The calculus is

an extension of CCS, and has been developed for modelling concurrent systems that

pass around resources that can be reused later.

The aforementioned process calculi do not represent directly physical mobility of

devices and their locations or surroundings. In the ubiquitous computing setting it

is beneficial to model interactions among mobile agents that communicate globally.

Communication in such settings could be global, which means that agents may

interact with subagents inside other agents. Moreover, the structures in such settings

may be active (that could move on their own) or passive (may only move when active

structures carry them), and may need to have knowledge of their current location

and surrounding.

This thesis continues research on Mobile Ambients [11, 10], MA for short, and

process calculi which have proved to be useful in the modelling of mobility, commu-

nication and structure of systems. We develop a Calculus of Mobility and Commu-

nication, CMCPCA for short. In our calculus mobility, global communication and

location awareness are considered as first class entities. Therefore, we model loca-

tions and mobility as in Mobile Ambients. According to [11] MA was proposed to

model mobility and locations that could not be modelled directly by other tradi-

Chapter 1. Introduction 3

tional calculi like CCS. The two aspects of mobility that MA models are; mobile

computing (that deals with physical mobility of computing devices), and mobile

computation (that deals with logical mobility of code between devices). In MA the

communication between ambients is modelled by the open capability in combination

with in and out capabilities. In our calculus, we drop the open capability since we

introduce a new mechanism of direct and global communication.

We start by presenting a new calculus, Calculus of Mobility (CM for short),

that inherits its mobility primitives from MA. Recently, a number of operational

semantics have been developed for Mobile Ambients and its variants as, for example,

in [16, 36, 37, 40, 38, 34, 8]. We develop an operational semantics for CM which

is inspired by [36, 37]. Our SOS rules use concretions νm̃〈P 〉Q as introduced by

Milner [44] and later used in [36, 37, 40]. We show that the operational semantics

of CM coincides with the standard reduction semantics.

In past few years, several variants of MA have been introduced [6, 53, 54, 41,

35, 36]. To the best of our knowledge, these ambient calculi do not support a direct

communication of an agent with a subagent inside another agent. Communication

may only happen between the two adjacent agents, namely communication between

parent and child or between siblings. Therefore, we extend CM by adding a direct

and global form of communication as in Milner’s CCS [43], and hence we obtain

Calculus of Mobility and Communication(CMC). CMC introduces A to ambient

structure which shall be useful for the global communication between agents. We

change ambient name m in CM to mA where A is the set of ports that the ambient

communicates on. In order to illustrate how our global communication works, we

consider process

(a.0 | b.0) | mA[nB[a.0] | kC [b.0]], for a, b ∈ A a, b ∈ B and b 6∈ C.

Here, ambient nB communicates globally via port a since a ∈ A,B, whereas kC

cannot communicate via b since b 6∈ C. We obtain these intuitive transitions

(a.0 | b.0) | mA[nB[a.0] | kC [b.0]]
τ
−→ (0 | b.0) | mA[nB[0] | kC[b.0]]

(a.0 | b.0) | mA[nB[a.0] | kC [b.0]]
τ
9 (a.0 | 0) | mA[nB[a.0] | kC [0]].

Phillips and Vigliotti introduced the Push and Pull Ambient Calculus [54], PAC for

short, that allows modelling of certain security issues. The calculus models mobil-

ity in a different way, namely ambients can push away or pull in other ambients

by the pushm n and pullm n capabilities. In our setting we also aim at modelling

Chapter 1. Introduction 4

the behaviour of passive mobile structures as in [54]. We extend CMC by adding

additional mobility primitives to CMC and obtain CMCP. We add push(mA) nB

and pull(mA) nB capabilities to move passive ambients around. The capability

push(mA) nB allows an ambient mA to move nB out of its boundary, whereas

pull(mA) nB allows mA to pull nB inside its body. The calculus now models both

forms of active and passive mobile structures which may communicate globally.

Consider

a.0 | kC [clientA[pull(clientA) deviceB.a.0] | deviceB[0]], for a ∈ A,B,C.

Here, clientA may only communicate globally via a if he picks up deviceB. The

ambient clientA therefore pulls deviceB inside its scope by pull(clientA) deviceB

capability. This is shown by the following transition

a.0 | kC [clientA[pull(clientA) deviceB.a.0] | deviceB[0]]
τ
−→

a.0 | kC [clientA[a.0 | deviceB[0]]]

Now communication may take place as shown below:

a.0 | kC [clientA[a.0 | deviceB[0]]
τ
−→ 0 | kC [clientA[0 | deviceB[0]]

Furthermore, technologies have made it possible to detect a user’s presence or

a position or other attributes concerning the user. Therefore, context-awareness

and location-awareness have become important features of ubiquitous computing

environments. The idea of context aware computing has originated in [78]. It

enables an application to adapt to the changes in its environment and location.

In smart indoor settings, location is considered an important entity for providing

communication among various portable and static structures.

We consider location as one of the most typical forms of context. Context aware

applications basically use location of people and computing devices as their main

source of contextual information so that the personalised services are executed ac-

cordingly. We further proceed to extend our calculus to also include some of the basic

mechanism of context awareness. We add ploc(x).P and sloc(x).P to CMCP and

obtain CMCPCA. The construct ploc(x) enquires the parent’s name, whereas sloc(x)

enquires the sibling’s name. These primitives enable agents to acquire the name of

their parent and sibling, and pass it as x to P . We develop operational semantics for

the extended calculus, and show that the operational semantics corresponds to the

reduction semantics. The context features of CMCPCA empower ambients to start

interaction in some scenarios, and adapt to the changes as required. For example,

Chapter 1. Introduction 5

consider
server[Ps] | building[r1[clientA[Pc] | devB[Pd]] | r2[Pr]]

Pc
def
= pull(clientA) devB.ploc(x).a(x, r2).c(z1).0

Pd
def
= a(x1, y1).b(x1, y1).d(z).c(z).0

Ps
def
= b(x2, y2).d(path(T, x2, y2)).0

Pr is the agent running inside r2

A graphical representation of this setting is given below.

building

server
r1 r2

clientA devB

a

b

d

In this setting, server delivers services to clientA based on its current location.

We assume a, b, c, d ∈ A and a, b, c, d ∈ B. We write m[P] instead of mA[P] when-

ever ambients allow communication on all visible ports, so server, building, r1, r2

may communicate on any ports. The ambient clientA first pulls the device by

pull(clientA) devB capability. Then next clientA acquires its parent’s name r1 by

its ploc(x) capability and sends it (r1) and the target location r2 to server via

devB. Based on the two locations server calculates the path out r1.in r2 using

path(T, x2, y2), where T represents the tree structure of our setting, and delivers it

to clientA via devB. This enables clientA to move from r1 to r2 by following the

appropriate sequence of capabilities. This example models the scenario that we have

presented at the beginning of this chapter.

In this thesis several case studies and a variety of small examples are given that

show the expressiveness and usefulness of our calculi. For example, the intelligent

hospital setting case study, where services follow mobile ambients uses global com-

munication and the in and out capabilities, and the interactive shopping mall case

study illustrates the usefulness of global communication, push and pull, and ploc(x)

and sloc(x) features of CMCPCA.

Chapter 1. Introduction 6

1.1 Contributions

The first contribution is the Calculus of Mobility (CM) which models the mobile

structures in the setting of ubiquitous computing. The thesis builds on recent re-

search in the area of Mobile Ambients and other process calculi that have proved

useful in the modelling of mobility, communication and structure of systems. The

calculus CM inherits its syntax and reduction semantics from Mobile Ambients [10].

An operational semantics for CM is developed and is proved sound and complete

with respect to the standard reduction semantics.

We then add a new form of global communication similar to that in Milner’s

CCS [43] to CM. This gives us a Calculus of Mobility and Communication (CMC).

In CMC we modify m[P] to mA[P] by adding a set of ports A to it that allows

agents executing inside ambients to communicate on. The calculus is developed

with real-world applications in mind and its usefulness is illustrated in case studies

and small examples. A new notion of behavioural equivalence for CMC is intro-

duced in terms of α-transitions (
α
−→) and observation predicate. We define barbed

bisimulation congruence and capability barbed bisimulation congruence, and show

that the congruence relations of the two forms of barbs imply each other.

We proceed to extend CMC with additional mobility primitives, namely the push

and pull capabilities, and thus obtain CMCP. Intuitively the extended calculus

models passive and active mobile structures in the setting of ubiquitous computing.

We develop a new operational semantics, and the first such operational semantics

as far as we know, for CMCP and prove that the semantics is sound and complete

with respect to the standard reduction semantics.

We finally extend CMCP to a new calculus CMCPCA by adding context awareness

primitives. We add basic forms of context awareness mechanism, namely location

awareness, that gives the parent name of an ambient and sibling awareness, that gives

the name of a sibling ambient. We develop reduction and operational semantics for

the additional features of our calculus. We show that the operational semantics is

sound with respect to the reduction semantics.

The expressiveness and usefulness of the calculus is exemplified by several case

studies where the relevant constructs are used to model various features of the cal-

culus. For example, in our Path case study in Section 5.3.1, server calculates path

as a sequence of in and out capabilities between two locations inside a building

and delivers it to the mobile agents to move from one location to another whenever

required. Furthermore, the intelligent hospital case study in Section 5.3.2 models

that services follow doctor while he moves around the building and deals with the

patients. Server communicates with doctor globally via fixed or mobile computing

Chapter 1. Introduction 7

devices that are distributed around the building, and delivers services to the appro-

priate device provided that the doctor is in the same room as the device. We also

consider scenarios to show the requirement of passive mobile structures in the set-

ting of ubiquitous and mobile computing, namely a mobile device sends a message

to its user and the user cannot view the message unless he picks up the device. This

is modelled by the pull capability and ambients tagged with an appropriate set of

communication actions. We also provide an interactive shopping mall case study

in Section 7.5.1 that illustrates the usefulness of global communication, push and

pull, and ploc(x) and sloc(x) features of CMCPCA. The mall consists of a number of

retail outlets, clients and computing devices. There is a server that delivers services

to clients on requests via devices which are distributed inside the mall. Moreover,

we device a small case study in Section 7.5.2 where smart devices automatically

switch their ON and OFF modes depending on their location and the users who

are using them. The constructs push, pull and ploc(x) are considered more relevant

in combination with global communication.

This thesis presents a number of case studies that illustrate expressiveness of

the calculus. The systematic addition of new primitives smoothly increases the

usefulness of the calculus. Summarising, due to the expressiveness power of CMC,

the calculus could be used to model a variety of features that could be illustrated

in the settings ubiquitous computing. These features are agents’ mobility, system

changing structures, location, global communication between agents and context

awareness. The final calculus CMCPCA is saturated with a number of primitives

which makes the calculus more powerful, that is, CMCPCA is useful to model other

scenarios in general.

For example, A Firewall Access scenario, taken from [11], represents an access

authorisation of a mobile ambient by means of pilot and wrapper ambients. The

ambient firewall keeps its name secret, and uses a pilot ambient to share its name

with the target agent. The setting where a single target agent gets access across the

firewall is defined as follows:

Firewall
def
= (νw)w[k[out w.in k′.in w] | open k′.open k′′.P])

Agent
def
= k′[open k.k′′[Q]]

In this example an agent Agent crosses a firewall w, and after a number of reductions

the agent gains access to the firewall contents. It is not guaranteed which particular

agent may enter the firewall but the access authorisation is granted by the firewall

by sharing its name with the intended agent. These agents may be composed in

Chapter 1. Introduction 8

parallel as follows:

Agent | Firewall ≡ (νw)k′[open k.k′′[Q]] | w[k[out w.in k′.in w] | open k′.open k′′.P])

where fn(P) ∪ fn(Q) ∩ {k, k′, k′′} = φ and w 6∈ fn(Q).

In this setting, k, k′, k′′ are passwords that are previously agreed between the two

interacting agents, where k and k′ act as pilot and wrapper ambients, and k′′ encloses

the agent Q. The open capabilities dissolve the ambients k, k′, k′′, hence finally, we

obtain (νw)w[Q | P].

Such a scenario can be rewritten in CMCPCA as follows:

Network
def
= ν(a, b)(netA[wB[ploc(x).a(x) | b.P ′] | P ′′]), for a, b ∈ B, a ∈ A, b 6∈ A

Agent
def
= ν(a, b)(mC [a(y).in y | b.Q′]), for {a, b} ∈ C

Network | Agent ≡ ν(a, b)(netA[wB[ploc(x).a(x) | b.P ′] | P ′′] | mC [a(y).in y | b.Q′])

In this example, initially mobile ambient mC and firewall wB cannot communicate

globally via b, since b 6∈ A. The network allows only the authorised agents to

interact with the enclosing contents. The access authorisation is assigned by the

firewall which controls the incoming agents based on previously set agreement. The

primitive ploc(x) allows the firewall to have the name of its parent (netA in this

case). It then shares the network name netA with the target agent. The ambient

mC after receiving the value via a becomes able to enter the network by its in netA

capability.

Now communication between mC and the firewall wB may take place as shown

below:

ν(a, b)(netA[wB[ploc(x).a(x) | b.P ′] | P ′′] | mC [a(y).in y | b.Q′])
τ
−→

ν(a, b)(netA[wB[a(netA) | b.P ′] | P ′′] | mC [a(y).in y | b.Q′])
τ
−→

ν(a, b)(netA[wB[b.P
′] | P ′′] | mC [in netA | b.Q′])

τ
−→

ν(a, b)(netA[mC [b.Q
′] | wB[b.P

′] | P ′′]).

This example shows the usefulness of CMCPCA primitives in translating such sce-

narios. The communication ports can conveniently be used for global communication

between ambients. This may also place a restriction at the level of ambients where

the communication is not intended. Similarly, the other constructs of CMCPCA are

suitable in modelling and translating such scenarios if applied appropriately.

Chapter 1. Introduction 9

1.2 Thesis Outline

The rest of the thesis has been organised as follows:

2. Background and Related Work

This chapter describes background information and related work.

3. Towards a Calculus of Mobility

In this chapter we discuss the syntax and semantics of MA. We modify the

definition of ambient and write mA[P], for some set of actions A, instead of

m[P] and call it as, a Calculus of Mobility (CM). We develop operational

semantics for CM and prove that the semantics is sound with respect to the

standard reduction semantics. We show by presenting three examples that the

proposed operational semantics is not complete with respect to the standard

reduction semantics.

4. Operational Semantics of a Calculus of Mobility

We develop a new better operational semantics for CM. The SOS rules use

concretions νm̃〈P 〉Q [36, 37, 40]. We prove that the operational semantics is

sound and complete with respect to the standard reduction semantics.

5. The Calculus of Mobility and Communication

We add global communication to CM, and obtain thus a Calculus of Mobility

and Communication (CMC). We develop an operational semantics for CMC

which include new SOS rule for global communication. The usefulness of

CMC is illustrated in two bigger case studies. We also define a new notion of

behavioural equivalence for CMC, in terms of observation predicate and action

transitions.

6. Operational Semantics for Push and Pull Ambient Calculus

In this chapter CMC is extended with additional passive mobility primitives

to give CMCP. We introduce the push and pull primitives, and develop a new

operational semantics for our calculus. The operational semantics is proved

sound and complete with respect to the standard reduction semantics. A

number of small examples show the usefulness of the extended calculus.

7. Context-Awareness: Location and Surrounding

In this chapter we introduce a basic form of context awareness. We extend

CMCP by adding the ploc and sloc primitives that help ambients to gain a

Chapter 1. Introduction 10

knowledge of their parent’s and sibling’s identity. We develop an operational

semantics for the final calculus CMCPCA which is sound with respect to the

standard reduction semantics. The usefulness of CMCPCA is shown by several

examples.

8. Conclusion and Future Work

The last chapter summarises our results and gives an evaluation of the work

done. We then give several directions to future work.

Chapter 2

Background and Related Work

This chapter presents the background information that is needed to understand the

formal specification and behaviour of mobile and communicating agents.

2.1 Process Algebra

Process algebras are used to formally model concurrent systems, and provides for-

malisms for specifying communications, interactions, and synchronizations between

collections of independent agents. Structural Operational Semantics (SOS for short)

[55, 51, 73] is used to define the behaviour of a system in terms of the behaviour

of its parts. In particular, SOS specification defines the behaviour of a program in

terms of a (set of) transition relation(s). Practical introduction to the formal speci-

fication of concurrent systems is given by Robin Milner in his book Communication

and Concurrency [43]. The precise notion of communicating systems is given by

providing operational meanings to the syntactic constructions. Theoretical aspects

of the concurrency are illustrated by a variety of examples in [43, 42, 15]. This helps

the readers to combine both aspects (practical and theoretical) according to their

particular tastes and requirements. Robin Milner has given an excellent introduc-

tion to the mobile communicating systems with more emphasis on applications and

less upon the behavioural theory in his book “Communicating and Mobile Systems:

The π-calculus” [44]. He clearly describes the applications of mobile systems with

practical examples. π-calculus is presented as a model of the changing connectivity

of the interactive systems.

Chapter 2. Background and Related Work 12

2.1.1 Structural Operational Semantics and Transition Rules

for CCS

In this section we shall consider the Calculus of Communicating Systems, its syntax,

and then the transition rules for CCS operators. We shall also present some expres-

sions and inference trees showing the application of CCS transition rules. CCS shall

be used in Chapter 5, therefore we assume that the reader is familiar with CCS and

the description will be brief.

Process algebra is used to formally model concurrent systems. Operational se-

mantics allow us to describe communication, interaction and synchronisation be-

tween a collection of independent agents or processes [43]. Concurrent systems can

be best described as networks of agents or processes. Several process calculi have

been developed to model concurrent interactions among distributed agents. Since

concurrency and interactions are considered the basic features that we intend to

model, CCS is a suitable formalism. The calculus was introduced by Robin Mil-

ner [43, 42] in the early 1980s with the aim of modelling concurrent behaviour of

communicating systems.

The Syntax of CCS

The Calculus of Communicating Systems focuses on a very simple paradigm of

synchronous handshakes. Two processes on.P and on.Q, when composed in parallel

on.P | on.Q may execute by synchronising via port on and after the execution

proceed as P and Q respectively, as shown by the transition on.P | on.Q
τ
→ P | Q.

The syntax of CCS as in [43, 70] is as follows: We assume that A is an infinite

set of names, which is ranged over by a, b,c,. . . . The set of co-names is denoted by

A, and is ranged over by a, b, c, We set L = A∪A, where L is the set of labels,

ranged over by l, l′. We extend complementation to the whole of L, so that a = a.

We shall need one more special action, namely the internal, silent action τ , which is

not a member of L. An infinite set Act comprises all possible actions that an agent

can perform and α, β range over it. Act also includes τ , which is a single completed

action of composite agents. So Act = L ∪ {τ}. In the basic calculus, labels have no

value parameters. We further assume

• X – set of agent variables, ranged over by X, Y, . . . ,

• K – set of agent constants, ranged over by A,B, . . . ,

• We use I or J for indexing sets , for example {Ei : i ∈ I} is a family of

expressions indexed by I.

Chapter 2. Background and Related Work 13

The set E of agent expressions is the smallest set which includes X and K and

contains the following expressions, where E, Ei are already in E :

1. α.E, a Prefix (α ∈ Act)

2.
∑

i∈I Ei, a Summation (I an indexing set)

3. E1|E2, a Composition

4. E\L, a Restriction (L ⊆ L)

5. E[f], a Relabelling (f is a relabelling function)

Example 2.1. Consider a simple vending machine originally proposed by Hoare

[30]. We consider a big chocolate costs 2p, little chocolate costs 1p, and only these

coins are accepted. One way of defining the behaviour of vending machine V is in

terms of its interaction with external environment.

V
def
= 2p.big.collect.V + 1p.little.collect.V

This expression shows the behaviour of vending machine in terms of interaction with

environment using ports 1p, 2p, collect, big and little. The behaviour of the system

is quite restricted, for example, to get big chocolate one cannot insert two 1p coins,

or machine will not give little chocolate if 2p coin is inserted.

Labelled Transition Semantics of CCS

Operational semantics is a formal way of defining the meaning of various agent ex-

pressions in terms of all their possible transitions [28, 70, 80]. Structural Operational

Semantics is used to define the behaviour of a system in terms of the behaviour of

its parts [55]. The behaviour of an agent is represented in terms of a graph or tree

or, more formally, by a Label Transition System (LTS) [43]. Formally, an LTS is a

tuple (S, T, {
t
→ : t ∈ T}) where S is a set of states, T is a set of transition labels,

and
t
→⊆ S × S, for t ∈ T , is a family of transition relations. The transition rules,

or SOS rules, for CCS operators are given below:

Chapter 2. Background and Related Work 14

(Act)
α.E

α
→ E

(Sumj)
Ej

α
→ E ′

j
∑

i∈I Ei
α
→ E ′

j

(j ∈ I)

(Com1)
E

α
→ E ′

E|F
α
→ E ′|F

(Com2)
F

α
→ F ′

E|F
α
→ E|F ′

(Com3)
E

l
→ E ′ F

l
→ F ′

E|F
τ
→ E ′|F ′

(Res)
E

α
→ E ′

E\L
α
→ E ′\L

(α, α 6∈ L)

(Rel)
E

α
→ E ′

E[f]
f(α)
→ E ′[f]

(Con)
P

α
→ P ′

A
α
→ P ′

(A
def
= P)

(Act) - α.E shows that it has a transition from the initial state α.E to state E

without any hypotheses (contain several transitions of the components).

(Sumj) -
∑

i∈I Ei has an action α if any one summand Ej (where j ∈ I) has an

action α. For I = ∅, there is no rule so we define 0 as
∑

i∈φ Ei. This means

that 0 does not have any transitions.

(Com1, Com2) - In expression E|F or F |E the components E and F can act

concurrently with, and independently of, each other.

(Com3) - It represents that components E and F of E|F may communicate with

each other through complementary actions (ports).

(Res) - When a port l (∈ L) is restricted in an agent expression E, there will be

no interaction between E through port l with any other agent outside E.

Thus, E cannot perform a restricted action l.

(Con) - Finally, if A
def
= a.A′, then, by using transition rule Con, we can infer

A
a
→ A′ from a.A′ a

→ A′.

Inference Trees

Transition rules are used to justify the validity of transitions. For example, the

transition ((a.E + b.0) | a.F) a
τ
−→ (E | F)\a is derived as follows:

Inference trees demonstrate the relationship between transition semantics and

the transition graphs. The SOS rules are used to prove or disprove the validity of

transitions of agent expressions. We consider the agent expression

((a.0 + b.c.0) | (a.b.0 + c.d.0)[d/a][b/d])\b

Chapter 2. Background and Related Work 15

Act
a.E

α
−→ E Sum1

a.E + b.0
α
−→ E

Act
a.F

α
−→ F

Com3
(a.E + b.0) | a.F

τ
−→ E | F

Res
((a.E + b.0) | a.F)\a

τ
−→ (E | F)\a

and construct the inference tree that proves valid τ -transition of the expression. The

inference tree is given in Figure 2.1.

Act
b.c.0

b
→ c.0 Sum2

a.0 + b.c.0
b
→ c.0

Act
a.b.0

a
→ b.0 Sum1

a.b.0 + c.d.0
a
→ b.0

Rel
(a.b.0 + c.d.0)[d/a]

d
→ b.0[d/a]

Rel
(a.b.0 + c.d.0)[d/a][b/d]

b
→ b.0[d/a][b/d]

Com3
(a.0 + b.c.0) | (a.b.0 + c.d.0)[d/a][b/d]

τ
→ (c.0 | b.0[d/a][b/d]

Res
((a.0 + b.c.0) | (a.b.0 + c.d.0)[d/a][b/d])\b

τ
→ (c.0 | b.0[d/a][b/d])\b

Figure 2.1: Inference tree

2.1.2 Mobile Ambients

The Calculus of Mobile Ambients, MA for short, has been introduced by Cardelli

and Gordon as a model for mobile computations that are distributed [12, 11]. Mo-

bile Ambients is a concurrent process calculus, where the notion of ambient is used

to model various structures that are distributed and mobile. According to [11], MA

was developed to model two different aspects of mobility, namely mobile computing;

concerning computation that is carried out in mobile devices, and mobile computa-

tion; concerning mobile code that moves between computing devices. An ambient

is a bounded place in which computations occur [12, 11, 10], it has a tree structure

possibly containing sub-ambients. Furthermore, MA aims at describing all these

aspects of mobility within a single uniform framework consisting of mobile agents,

interactions among them, and ambients’ mobility. The authors describe in [11] that

the inspiration for the MA comes from the potential for mobile computation over

the World-Wide Web and the main difficulty with mobile computation on the Web

is the handling of administrative domains. Therefore, at the most fundamental level

MA captures notions of locations, of mobility and of authorization to move [11, 12].

Ambients are named terms of the form n[P] where n is a name and P a process. Am-

bients may enter or exit named ambients by their in n and out n capabilities. The

ambient’s open capability dissolves its boundary so that the communication may

Chapter 2. Background and Related Work 16

take place. Processes can be composed in parallel as in P | Q, represent restricted

names as in (vm)P , exercise a capability as in C.P or do nothing as in 0.

In our calculus mobility, locations and global communication are considered as

first class entities, so in order to model locations and mobility, Mobile Ambients is

a suitable formalism. Therefore, we review Mobile Ambients, including its syntax

and reduction semantics, in Chapter 3.

2.1.3 Boxed Ambients

The Calculus of Boxed Ambients, BA for short, [6] is a variant of Mobile Ambients

that inherits mobility primitives, namely in and out capabilities, from MA and drops

open capability to avoid certain risks. For example, open action completely dissolves

the boundary of an ambient, merging the processes executing inside the ambient

with outer environment. According to [6], Boxed Ambients proposes a new com-

munication mechanism where the additional communication primitives complement

the existing constructs of MA in an effective manner. For example, communication

between ambients can be local as in MA, the new constructs allow direct communi-

cation between a parent and a child, which is across the ambients boundaries. The

additional syntax given in [6] for the Boxed Ambient is given below:

Pattern input (x)ηP

Synchronous output 〈M〉η P

Input from child ambient n (x)nP

Output to the parent ambient 〈M〉↑P

For mobility, reduction rules are inherited from Mobile Ambients [10], while commu-

nication may be local as in Mobile Ambient, namely (x)P | 〈M〉Q→ P {x := M} |Q.

Furthermore, BA allows an ambient to pull an input from a child n via ((x)n). A

child can also pull an input via ((x)↑) from a parent, and correspondingly with in-

put/output swapped. This is represented by the following reductions.

(input n) (x)n P |n [〈M〉Q|R]→ P {x := M} |n [Q|R]

(input ↑) 〈M〉P |n
[

(x)↑Q|R
]

→ P |n [Q {x := M} |R]

(output n) 〈M〉n P |n [(x)Q|R]→ P |n [Q {x := M} |R]

(output ↑) (x)P |n
[

〈M〉↑Q|R
]

→ P {x := M} |n [Q|R]

Several extensions of BA have been introduced [53, 41, 7, 8]. In particular, Safe

Boxed Ambients in [41] uses ambients co-capabilities that help in controlling ambi-

ents access across the boundaries. Channel Ambient Calculus in [53] uses channels

Chapter 2. Background and Related Work 17

as first class entities. It allows ambients to move in and out over the channels.

2.1.4 Channel Ambient Calculus

Channel Ambient Calculus [53] is a variant of Boxed Ambients in which channels

are defined as first class entities. It allows ambients to move in and out over the

channels and interact using named channels. The constructs of Channel Ambients

are explained in the following example taken from [53]:

Network | client C | νlogin(server.request 〈client, login〉 | in login.P)

| server S |!out logout |!request↑(c, x).service out logout.inc.x.Q

Here, client creates a new login channel (νlogin) and sends its name and login

to server on request channel. At the same time client allows an ambient to enter

through login channel (in login). In parallel server is ready to receive request, it

creates new service ambient that leaves server through logout channel and enters

client through login channel. Processes P of client and Q of service start execution

once service enters client. Additionally, in parallel Network can contain multiple

clients, and server can handle multiple requests simultaneously.

Some of the additional primitives given by Channel Ambient Calculus in [53] are:

in a.x Entering an ambient through channel x

out x Leaving an ambient through channel x

in x Accepting an ambient through channel x

out x Releasing an ambient through channel x

Another syntactical difference is that !α.P has been for replicated actions instead

of general replication !P .

2.1.5 Push and Pull Ambient Calculus

Push and Pull Ambient Calculus (PAC) has been developed by Phillips and Vigliotti

[54, 77]. The basic idea of PAC relies on the pushm n and pullm n capabilities instead

of the in m and out m capabilities of Cardelli and Gordon’s Mobile Ambients.

Unlike in Mobile Ambients, in PAC, it is not possible for any ambient to enter or

leave other, but an ambient has the control to pull in or push away other ambients.

More specifically, PAC is defined with the intention to allow better modelling of

Chapter 2. Background and Related Work 18

certain security issues. The usefulness of PAC as discussed in [54] is illustrated by

the following example:

Client EnterServer | Server Program

reduces to:

Server Client EnterServer | Program

In the above settings the client enters the server and the server cannot avoid the

client if it is a malicious agent. This scenario is rewritten in [54] as follows:

Client Program′ | Server PullClient | Program

reduces to:

Server Client Program′ | PulledClient | Program

Now the host ambient decides to pull in or push away ambients whenever re-

quired. The reduction relations for pushm n and pullm n capabilities given in [54, 77]

are as follows:

m[pullm n.P | Q] | n[R]→ m[P | Q | n[R]],

where ambient m pulls n inside its boundary, and

m[pushm n.P | n[Q] | R]→ m[P | R] | n[Q],

where ambient m pushes n out of its boundary.

2.2 Context Awareness

Context awareness is an emerging feature in the setting of ubiquitous and mo-

bile computing. The idea of context aware computing has been originated from

Weiser’s vision of ubiquitous computing [78]. There are various types of contexts

[31] that may be used in ubiquitous computing setting, namely physical contexts (lo-

cation, space), environmental contexts (temperature, light), human contexts (mood,

health), system contexts (network traffic) and many more. In [31] context-based in-

frastructure has been proposed that allow applications to specify different behaviours

in different contexts easily.

Poslad in his book Ubiquitous Computing: smart devices, environments and in-

teraction [56] addressed number of theoretical concepts in the context of ubiquitous

Chapter 2. Background and Related Work 19

computing. The design aspect of context-awareness is about how to know the users

state and surrounding and how to modify behaviour of the system according to the

users’ requirements. The aim of ubiquitous computing is to support context-based

ubiquity. Context-based ubiquity includes many benefits, namely to limit the re-

sources needed to deliver the ubiquitous services, limiting the choice of access from

all possible services to only useful services, avoiding overburdening the user with too

much information. A key design issue for context-aware system is to balance the

degree of user control and awareness of their environments. Contexts may exhibit a

range of spatial characteristics, alternative representations, generate huge volumes

of data and reduce the users privacy.

Pervasive computing settings allow computing devices to disappear in the back-

ground and perform computations. These computations could be mobile and context-

aware [17, 18, 52, 58, 57]. The applications executing in pervasive computing setting

need to be context sensitive so that they behave rapidly according to the changing

environment. The context aware model in [58] has been developed for ubiquitous

computing setting using first order logic. The model allows complex rules involv-

ing contexts to be written such that the applications behave rapidly in different

contexts. Siewe, Cau and Zedan proposed a Calculus of Context Aware Ambients

(CCA) [17] which is based on the Calculus of Boxed Ambients [6]. The CCA de-

scribes the context-awareness requirements of the mobile systems. It introduces the

notion of context expression that constraints the ambient capability. The context

guarded capability has the form k?M , where k is a context expression and M is

a capability. This capability can only be performed if the environment satisfies its

guard. The rest of the syntax of the CCA is similar to that of Boxed Ambients.

2.3 Location Modelling

This section describes the applications of location awareness in the setting of ubiq-

uitous and mobile computing. Location is one of the most typical forms of con-

text. Context aware applications basically use location of people and computing

devices as their main source of contextual information so that the personalised ser-

vices are executed accordingly. Satoh has researched spatial organisation of systems

[63, 62, 64, 65] and concluded that technological advancements have enabled comput-

ing devices to become aware of their surroundings. Location awareness has turned

out to be useful in many applications, in particular, in determining position, nav-

igation, routing, tracking, monitoring of ubiquitous computing devices, and many

more. In [64], a general location based model is provided which is independent of

Chapter 2. Background and Related Work 20

application-specific services and particular sensors. The modelling is done in such

a way that existing services have been constructed in an ad-hoc manner; they have

been designed for particular sensing systems, namely GPSs and RFID-tags. Fur-

thermore, the main focus is on application-specific services, e.g., user navigation for

visualizing locations on maps and the information relevant to the users current loca-

tion. So far, such models have been studied and developed by many researchers but

most of the existing models cannot be used in ubiquitous computing environments

because these often need to be maintained in database systems, and ubiquitous com-

puting environments must be managed at run-time in an ad-hoc manner and cannot

always use static database systems. According to [63, 62, 64] the proposed model

can be used in ubiquitous computing environments, and the framework provides

the modelling of both physical entities and space among them. For example, when

a person enters a place, personalized services should be provided from his or her

portable terminal.

Leonhardt [33] proposed a taxonomy of location models and distinguished them

into two major categories, namely geometric and symbolic models. In geometric

models locations are represented as coordinates systems, whereas symbolic location

models use the notion of place and rely on abstract symbols, namely naming the

entities or labelling the locations. In this dissertation we use the notion of place to

model location, and represent the structure of our system by a hierarchical space

tree. The nodes represent the places, objects or computing devices, whereas the

edges represent the containment relations between objects. Each node or object is

represented by a named ambient, which may contain nested ambients.

2.4 Other Related Work

Graphs provide a simple and powerful framework for the modelling of many com-

puter science problems [26, 27]. Many visual notations have been developed, in-

cluding State Diagrams, Structural Analysis, Control Flow Graphs, Architectural

Description Languages, and UML family of languages. By using these notations,

models are created that can easily be seen as graphs and thus graph transformations

are involved. Rules are defined for graphical interpretations, and implementation

techniques are done accordingly.

The notion of bigraph has been introduced by Milner in [48] with the idea of

presenting two independent structures on the same set of nodes. A bigraph is a

mathematical structure consisting of a place graph and a link graph with common

nodes. Place graph is limited to the tree structure while link graph can be hy-

Chapter 2. Background and Related Work 21

pergraph. The theory of bigraphical reactive systems [45] is based on a graphical

model of mobile computation that emphasizes both locality and connectivity. Ob-

ject locations and connections can be represented simultaneously by combing the

two graphs. A bigraphical reactive system in [46] is presented as a mobile compu-

tation model in which both location and connectivity are considered as first class

entities. The model presents a fully graphical view that involves that how bigraphs

compose (nesting of nodes that represents the locality), and location independent

nodes connectivity. Process calculi and behavioural equivalences have led to an ap-

proach in bigraph theory somewhat different from the well-known tradition of graph

rewriting [47].

Petri net [14] is a modelling approach used to model dynamic and distributed

systems. Petri nets due to their graphical nature and expressiveness power could

be used to model many of ubiquitous computing features, namely process mobil-

ity, dynamic structures, location, interactions between components, and context-

awareness. Recently, some Petri nets models have been introduced that could be

applied to model ubiquitous computing features, namely, Elementary Object Sys-

tems are considered in [74]. They represent process mobility by means of transitions.

In recent years several models based on Petri nets have been proposed for the

modelling of ubiquitous computing features [13, 61, 75, 60]. In [13], a simple two-

level model called Ubiquitous nets is presented for the modelling of ubiquitous sys-

tems. The model is based on traditional Petri nets, and is defined in terms of

processors that supply services, processes that request services, and the mobility of

processes. Similarly, [60] presents a dynamically amendable Petri net based model

for ubiquitous computing. The model captures both locality and mobility of soft-

ware components at different locations in a well synchronised manner. The devices

and software components are modelled as coloured Petri nets, and local communi-

cation is formalised by means of token firing from one net to another. Authors, in

[22], have modelled communication in ubiquitous computing systems based on Al-

gebraic Higher Order Nets with Individual Token [32], a special type of Petri nets.

The model has formalised both synchronous and asynchronous communication be-

tween components via shared channels and publish/subscribe scheme respectively.

Furthermore, while considering context awareness as a key feature of ubiquitous

computing, [25] discussed a number of Petri net based context modelling method-

ologies that could be applied in the setting of ubiquitous computing. These models

are [59, 5, 24].

Frank Stajano in [67] addressed some of the risks associated with the ubiquitous

computing settings. Security is crucial for most of the computer science applications.

Chapter 2. Background and Related Work 22

However, a lot of research in recent years has been directed at solving the unique

security problems raised by distributed systems. In ubiquitous computing setting

computing is omnipresent and devices that do not look like computers are endowed

with computing capabilities. However, the more difficult problem of protecting the

security of the ubiquitous-computing (like, modelling securely and possible authentic

interactions among components and with the environment) remains an open research

topic.

Some modelling ideas have been discussed in [23] to create basic infrastructure

of spatial model for location and context aware services in the setting of ubiquitous

computing. The model describes the components, their functionalities, and mobility

and interactions of the components with each other and with their environments.

It follows the hierarchical tree pattern, containment relationships, and components

migration. A comprehensive set of mathematical definitions is provided for moving

from the notion of graph to the possible tree structure. Aura is defined for each

component of the spatial model showing ranges of the corresponding entities, as

inspired by [63], and possible interactions are based on the Aura of the components.

Different notations are used to show objects and their relationships. Several trans-

formation rules are defined and conditions to the rules are given in mathematical

way. Based on these rules graph transformation is shown by describing different

scenarios against ubiquitous computing health setting (proposed case-study).

Chapter 3

Towards a Calculus of Mobility

In this chapter we review the calculus of Mobile Ambients, MA for short, [11] in-

cluding its syntax and reduction semantics. We shall reuse only the mobility part

of MA and hence call the calculus, a Calculus of Mobility (CM). We present a new

operational semantics for CM and prove that the semantics is sound with respect

to the standard reduction semantics. We then analyse the completeness of our op-

erational semantics. Completeness ensures that for every valid τ -transition of a CM

term there is a valid reduction of the term, and the targets of the τ -transitions and

the reductions are the same. We show with the help of some examples that the

operational semantics is not complete in general. These examples help us to develop

a new complete operational semantics in Chapter 4.

The calculus of Mobile Ambients has been introduced by Cardelli and Gordon,

[11] as a concurrent process calculus where the notion of ambient is used to model

various structures that are distributed and mobile. MA describes two aspects of

mobility, namely (a) mobile computing that concerns physical mobility of computing

devices, and (b) mobile computation that concerns with logical mobility where code

moves between devices. Ambients are named terms of the form n[P] where n is a

name and P a process. Ambients may enter or exit named ambients by their in n

and out n capabilities. The ambient’s open capability dissolves its boundary so that

the communication may take place. Recently, a number of variants of MA have

been introduced, most notably Boxed Ambients [6], Safe Boxed Ambients [41] and

Channel Ambients [53]. These calculi inherit their primitives from MA with some

modifications. CM inherits mobility primitives, namely in and out capabilities from

MA. We drop open capability as CM proposes a new form of global communication

in Chapter 5.

Our labelled transition semantics is inspired by that in [36, 37], where ambients

co-capabilities are used which are exercised by the target computation space and

Chapter 3. Towards a Calculus of Mobility 24

Names : m,n, k... ∈ N

Processes : P,Q ::= 0 | C.P | m[P]

| P | Q | (νm)P

Capabilities : C ::= in n | out n

Table 3.1: Syntax of CM

they help in controlling ambients mobility across the boundaries. Also [36, 37]

use concretions of the form νm̃〈P 〉Q in their operational semantics, where P is the

migrating agent, Q the residual code and m̃ is the set of shared names. Our semantics

does not have the co-capabilities, hence preserving the standard MA semantics, and

as the first attempt we have developed our transition rules without using concretions;

(see Section 4.1 and [37] for the definition of concretions).

The chapter is organised as follows: We introduce CM in Section 3.1 where

its syntax, structural congruence and reduction semantics are given. Section 3.2

includes the structural operational semantics for CM. In Section 3.3 we show that our

operational semantics is sound w.r.t reduction semantics. We analyse completeness

of the semantics in Section 3.4, and then conclude the chapter.

3.1 The Syntax of Calculus of Mobility

The syntax of CM consists of ambient names, for example, m,n, k ∈ N , processes

P,Q, and capabilities C as presented in Table 3.1. The syntax is the same as in [11].

The deadlock agent 0 is the agent that does nothing. In C.P , the process P cannot

start execution until the prefix capability C is performed. The term m[P] represents

an ambient, where m is the ambient name and P an executing process. Parallel

composition is given in terms of a binary operator, P | Q. An ambient restriction

(νm)P executes process P with a private ambient named m. The capability in n

tries to move the surrounding ambients into a sibling ambient with the name n,

whereas out n moves the surrounding ambient out of its parent ambient with the

name n.

Definition 3.1. We denote the set of all names occurring free in process P by fn(P).

We define free names for CM in Table 3.2.

Chapter 3. Towards a Calculus of Mobility 25

fn(0)
def
= φ

fn(C.P)
def
= fn(C) ∪ fn(P)

fn(m[P])
def
= {m} ∪ fn(P)

fn(P | Q)
def
= fn(P) ∪ fn(Q)

fn(νm(P))
def
= fn(P)− {m}

fn(in n)
def
= {n}

fn(out n)
def
= {n}

Table 3.2: Free names

3.1.1 Structural Congruence

Structural Congruence relation, denoted as ≡, rearranges the term P to yield Q.

Relation ≡ between the two agents represents that they are equal.

Definition 3.2. Structural Congruence, ≡, over CM processes is the smallest con-

gruence relation that satisfies the axioms:

P | Q ≡ Q | P (Struct Par Comm)

(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)

P | 0 ≡ P (Struct Zero Par)

(νn)(νm)P ≡ (νm)(νn)P (Struct Res Res)

(νn)0 ≡ 0 (Struct Zero Res)

(νn)(P | Q) ≡ P | (νn)Q if n /∈ fn(P) (Struct Res Par)

(νn)(m[P]) ≡ m[(νn)P] if n 6= m (Struct Res Amb)

By this definition we get the axioms and the rules for ≡ in Table 3.3. We briefly

explain them as follows:

(1-3) An agent is structurally congruent to itself. The two structurally congruent

agents possess the equivalence property of symmetry and transitivity.

(4-7) Congruence equations.

(8-9) Agents P and Q are structurally congruent up-to re-ordering of parallel

compositions. The parallel composition of the two agents are commutative

and associative.

(10) The null agent can be composed in parallel with a given agent P .

Chapter 3. Towards a Calculus of Mobility 26

P ≡ P (Struct Refl) (1)
P ≡ Q⇒ Q ≡ P (Struct Symm) (2)
P ≡ Q,Q ≡ R⇒ P ≡ R (Struct Trans) (3)

P ≡ Q⇒ (νn)P ≡ (νn)Q (Struct Res) (4)
P ≡ Q⇒ P | R ≡ Q | R (Struct Par) (5)
P ≡ Q⇒ n[P] ≡ n[Q] (Struct Amb) (6)
P ≡ Q⇒ C.P ≡ C.Q (Struct Capability) (7)

P | Q ≡ Q | P (Struct Par Comm) (8)
(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc) (9)

P | 0 ≡ P (Struct Zero Par) (10)

(νn)(νm)P ≡ (νm)(νn)P (Struct Res Res) (11)
(νn)0 ≡ 0 (Struct Zero Res) (12)

(νn)(P | Q) ≡ P | (νn)Q if n /∈ fn(P) (Struct Res Par) (13)
(νn)(m[P]) ≡ m[(νn)P] if n 6= m (Struct Res Amb) (14)

Table 3.3: Structural congruence

(11-12) The reordering of restricted names does not effect the agents congruence.

The successive restricted names can be re-ordered. The null agent with

restricted name is equal to the null agent.

(13-14) The scope of a name n restricted over two parallel agents P and Q can

be lowered to the agent Q providing that n is not a free name in P . The

scope of a name n restricted inside an ambient m can be extended outside

the ambient if the ambient name is different from the restricted name.

3.1.2 Reduction Semantics for CM

The reduction P → Q says that P may evolve in one computation step to yield Q.

Definition 3.3. Reduction relation, →, over CM processes is the smallest relation

that satisfies the rules and axioms in Table 3.4.

Chapter 3. Towards a Calculus of Mobility 27

m[in n.P | Q] | n[R]→ n[m[P | Q] | R] (Red In)

n[m[out n.P | Q] | R]→ m[P | Q] | n[R] (Red Out)

P ≡ Q, Q→ Q′, Q′ ≡ P ′ ⇒ P → P ′ (Red ≡)

P → Q ⇒ (νn)P → (νn)Q (Red Res)

P → Q ⇒ n[P]→ n[Q] (Red Amb)

P → Q ⇒ P | R→ Q | R (Red Par)

Table 3.4: Reduction rules and axioms

We now give some examples to show reductions of simple ambients. Initially, we

assume that our agent is of the form,

m[in n.P] | n[R] | S, for some P, R and S.

In this setting the ambient m intends to enter a sibling ambient with the name n.

The successful reduction transforms m the sibling of ambient n into a child of n.

By Red In in Table 3.4, the term m[in n.P] | n[R] reduces to n[m[P] | R]. Now, by

Red Par we get

m[in n.P] | n[R] | S → n[m[P] | R] | S

Hence the above reductions transform m the sibling of n into a child of n, while the

process S is still executing in parallel.

Similarly, to exercise the out capability we consider a system

n[m[out n.P] | R] | S

In this setting, the prefix outn instructs the ambient m to exit its parent ambient n.

Agent R is running in parallel with ambient m, and agent S is running in parallel

with the ambient n. After a successful reduction m becomes a sibling of n. By Red

Out, the term n[m[out n.P] | R] reduces to m[P] | n[R]. Thus, by Red Par we get,

n[m[out n.P] | R] | S → m[P] | n[R] | S

The above given relation shows that the code inside m is also moved out of the

surrounding ambient n. Now the three agents m, n and S are siblings and exist at

the same level.

Chapter 3. Towards a Calculus of Mobility 28

Finally, we consider a system

n[(νk)(m[in k.0 | out n.0]) | P] | Q.

In this setting, we restrict the scope of private name k to agent m, and the process

P executes in parallel with m inside n. The two capabilities inside the ambient m

enable m to either leave parent ambient n or enter sibling ambient k. Since k is

restricted we assume m leaves n by out n and we get

n[(νk)(m[in k.0 | out n.0]) | P] | Q

≡ n[νk(m[in k.0 | out n.0] | P)] | Q, if k 6∈ fn(P) Struct Res Par

≡ νk(n[m[in k.0 | out n.0] | P]) | Q, if k 6= n Struct Res Amb

Since by Red Out we get

n[m[in k.0 | out n.0] | P] −→ m[in k.0 | 0] | n[P]

thus, by Red Res, we obtain

νk(n[m[in k.0 | out n.0] | P]) −→ νk(m[in k.0 | 0] | n[P]).

Finally, by Red Par, we obtain

νk(n[m[in k.0 | out n.0] | P]) | Q −→ νk(m[in k.0 | 0] | n[P]) | Q.

Here, after reductions, the scope of k is extended to outsidem if k 6= n and k 6∈ fn(P).

3.2 Labelled Transition System Semantics for CM

In this section we present an operational semantics for CM.

Definition 3.4. A Labelled Transition System (LTS) is a tuple (S, L, {
ℓ
−→ : ℓ ∈ L})

which consists of

• a set S of states (or nodes),

• a set L of (transition) labels, and

• a family of transition relations:
ℓ
−→⊆ S × L× S, for ℓ ∈ L.

The LTS for CM is as follows: the set of processes of CM is the set of states,

the set of labels ℓ as in Table 3.5 is the set of transition labels, and the transition

Chapter 3. Towards a Calculus of Mobility 29

Ambient Prefixes : µ ::= in n | out n

Labels : ℓ ::= µ | τ

| enter1 n | move1 n | exit1 n

| enter2 n | move2 n | exit2 n

Table 3.5: Prefixes and labels for CM

relations
ℓ
−→ are defined by Plotkin’s SOS [55] rules in Tables 3.6 and 3.7. In our

semantics P
τ
−→ Q represents mobility of ambients by means of their in n and

out n capabilities. In order to model mobility by τ -transitions additional labels

are used in Table 3.5. These labels are: enter1 n, enter2 n, exit1 n, exit2 n,

move1 n and move2 n. Our labelled transition semantics is inspired by that in

[36, 37, 40]. The main difference is that we do not use the co-capabilities, hence

preserving the standard Mobile Ambients semantics. Also, in [36, 37, 40] concretions

of the form νm̃〈P 〉Q are used in the LTS, whereas we have developed our transition

rules without using concretions to keep them simple.

Now we explain the transition rules in Tables 3.6 and 3.7. Each transition is of

the form P
ℓ
−→ P ′ where a process P evolves to a process P ′ by performing an action

labelled ℓ.

Act - µ.P performs the action µ, and then executes as process P . The ac-

tion represents ambients’ migration, namely in n and out n. These prefixes

enables ambients to move around, for example, the prefix in n induces a

capability in ambient to migrate into n.

Enter1 - An ambient m[P] has an action enter1 n if the process P exhibits a

capability in n. This rule allows the ambient m to enter the ambient with

the name n. After the transition the moving ambient m[P] evolves to a new

state m[P ′]. The resultant state m[P ′] is surrounded by the parent ambient

with the name n. Here, the term m[P ′] is the migrated agent.

Enter2 - The ambient m[P] has the action enter2 n, if the process P evolves to P ′

after exercising the capability inn. Here, the term 0 represents the residual

code. When ambient m[P] migrates into ambient n, there is nothing left

behind.

Co-Enter1 - The ambient n has a transition action move1 n, and evolves to the

state P from n[P] without having any hypothesis. The process P represents

Chapter 3. Towards a Calculus of Mobility 30

(Act)
µ.P

µ
−→ P

(Enter1)
P

in n
−→ P ′

m[P]
enter1 n
−→ m[P ′]

(Enter2)
P

in n
−→ P ′

m[P]
enter2 n
−→ 0

(Co-Enter1)
n[P]

move1 n
−→ P

(Co-Enter2)
n[P]

move2 n
−→ 0

Q
move1 n
−→ (νq̃)Q′ Q

move2 n
−→ (νq̃)Q′′

(τ -In)
P

enter1 n
−→ (νp̃)P ′ P

enter2 n
−→ (νp̃)P ′′

P | Q
τ
−→ (νp̃)(νq̃)(n[P ′ | Q′] | P ′′ | Q′′)

(∗)

(Exit1)
P

out n
−→ P ′

m[P]
exit1 n
−→ 0

(Exit2)
P

out n
−→ P ′

m[P]
exit2 n
−→ m[P ′]

(τ -Out)
P

exit1 n
−→ (νm̃)P ′ P

exit2 n
−→ (νm̃)P ′′

n[P]
τ
−→ (νm̃)(n[P ′] | P ′′)

(∗∗)

(∗)(fn(P ′) ∪ fn(P ′′)) ∩ q̃ = (fn(Q′) ∪ fn(Q′′)) ∩ p̃ = φ

(∗∗)(fn(P ′) ∪ fn(P ′′)) ∩ m̃ = φ

Table 3.6: Transition rules for CM capabilities

what must stay inside the ambient n. By this rule, the ambient n allows

other ambients to migrate in.

Co-Enter2 - An ambient n allows other ambient to move in, and involves no

hypothesis. The 0 at the right side of the conclusion represents that there

exists nothing outside the ambient n.

τ -In - Agent P wishes to enter agent Q by performing inn, and agent Q contains

an ambient n. We chose p̃ and q̃ as sets of ambient names that are private

in processes P and Q respectively. If there are no private names in the

given agents, then these sets are assumed to be empty. We intuitively split

the process P into two parts, one is P ′ and other is P ′′. The process P ′

represents the agent that moves in, whereas the process P ′′ represents the

residual agent. Here νp̃ represents that after emigration the name p̃ is

private in the two sub-agents P ′ and P ′′. Similarly, We split the process Q

into two parts, one is Q′ and other is Q′′. The process Q′ is the receiving

agent, whereas the process Q′′ represents what is left outside once Q receives

Chapter 3. Towards a Calculus of Mobility 31

P
ℓ
−→ P ′

(Res-Amb) (u /∈ fn(ℓ))
(νu)P

ℓ
−→ (νu)P ′

(Par)
P

ℓ
−→ P ′

P | Q
ℓ
−→ P ′ | Q

(∗)

(Par-Enter1)
P

enter1 n
−→ P ′

P | Q
enter1 n
−→ P ′

(Par-Enter2)
P

enter2 n
−→ P ′

P | Q
enter2 n
−→ P ′ | Q

(Par-Move1)
P

move1 n
−→ P ′

P | Q
move1 n
−→ P ′

(Par-Move2)
P

move2 n
−→ P ′

P | Q
move2 n
−→ P ′ | Q

(Par-Exit1)
P

exit1 n
−→ (νm̃)P ′

P | Q
exit1 n
−→ (νm̃)(P ′ | Q)

(Par-Exit2)
P

exit2 n
−→ (νm̃)P ′

P | Q
exit2 n
−→ (νm̃)P ′

P ≡ Q Q
ℓ
−→ Q′ Q′ ≡ P ′

(Struct)
P

ℓ
−→ P ′

(τ -Amb)
P

τ
−→ P ′

n[P]
τ
−→ n[P ′]

(∗) ℓ 6∈ {exit1, exit2, enter1, enter2, move1, move2}

Table 3.7: Transition rules for other operators of CM

the sibling ambient. Here, νq̃ represents that after emigration the names q̃

are private in the two sub-agents Q′ and Q′′.

More specifically, the agent P | Q performs a τ transition, if the process P

performs the actions enter1n and enter2 n and transforms to the states P ′

and P ′′ respectively, and the process Q transforms to the states Q′ and Q′′

by exercising move1 n and move2 n actions respectively.

Exit1 - The ambient m[P] has the action exit1 n if the process P evolves to P ′

after exercising the capability outn. Here, the term 0 represents the residual

code, when ambient m[P] migrates out of an ambient n, there is nothing

left behind.

Exit2 - An ambient m[P] has an action exit2 n if the process P contains a

capability out n. This rule allows the ambient m to leave the ambient with

the name n. After the transition the moving ambient m[P] evolves to a new

state m[P ′]. We assume that the resultant state m[P ′] becomes the sibling

of an ambient with the name n. The term m[P ′] represents that what must

move out of an ambient n.

τ -Out - An agent n[P] performs a τ transition, if the process P performs the

actions exit1n and exit2 n to evolve the states P ′ and P ′′ respectively. More

Chapter 3. Towards a Calculus of Mobility 32

generally, the agent P wishes to leave the agent n by performing out n. We

chose m̃ as the set of ambient names that is private in process P . If there

are no private names in P , then m̃ is assumed to be empty. Furthermore, we

split the process P into P ′ and P ′′. The process P ′ represents the residual

agent after exercising the out capability, whereas P ′′ represents the agent

that moves out. Here, νm̃ represents that after emigration the names m̃ are

private in the two sub-agents P ′ and P ′′.

Res-Amb - (νu)P represents that the name u is private in P . This agent can

perform a transition if the agent P evolves to P ′ by performing the same

transition providing that u 6∈ fn(ℓ).

We now show some examples that illustrate how to use the SOS rules discussed

above. Initially we consider a system

m[in n.P] | Q

The ambient m has the capability to enter an ambient with the name n, where

ambient n must exist in parallel with the moving ambient. So to exercise this

capability agent Q must have the form n[Q′] | Q′′, for some processes R and S. If

there is no such sibling ambient n, then m cannot move. To exercise this capability

of m, τ -In in Table 3.6 is used. We assume that there are no private names in agent

P,Q,R and S. The resulting transition is as follows:

m[in n.P] | n[Q′] | Q′′ τ
−→ n[m[P ′] | Q′] | Q′′

The inference tree that proves the validity of this transition is given in Figure 3.1.

Next, we consider a situation where agents share private names. For example,

we assume

(νk)(m[in n.0 | in k.0] | k[P]) | n[R]

where ambients m and k execute in parallel and they share a private name k. The

ambient m has the capabilities to either enter k or n. We consider the ability of m

to enter n which is running in parallel with m, where the two agents share no private

names. To exercise this capability of agent m, we included constructs (νp̃) and (νq̃)

in τ -In rule. These constructs maintain privacy and sharing of the restricted names

in the agents after they move around. The application of the τ -In rule specifies

how this capability of m is achieved. The resulting transition is as follows, where

C
h
a
p
ter

3
.
T
o
w
a
rd
s
a
C
a
lcu

lu
s
o
f
M
o
bility

33

(Act)
in n.P

in n
−→ P

(Act)
in n.P

in n
−→ P

(Enter1)
m[in n.P]

enter1 n
−→ m[P]

(Enter2)
m[in n.P]

enter2 n
−→ 0

(Co-Enter1)
n[Q′]

move1 n
−→ Q′

(Co-Enter2)
n[Q′]

move2 n
−→ 0

(τ -In)
m[in n.P] | n[Q′]

τ
−→ n[m[P] | Q′] | 0

(Par)
m[in n.P] | n[Q′] | Q′′ τ

−→ n[m[P] | Q′] | 0 | Q′′ ≡ n[m[P] | Q′] | Q′′

(Struct)
m[in n.P] | n[Q′] | Q′′ τ

−→ n[m[P] | Q′] | Q′′

Figure 3.1: Inference tree for enter capability

Chapter 3. Towards a Calculus of Mobility 34

k 6∈ fn(R):

(νk)(m[in n.0 | in k.0] | k[P]) | n[R]
τ
−→ (νk)(νq̃)(n[m[in k.0] | R] | k[P])

The inference tree that proves the validity of this transition is given in Figure 3.2.

If there exists a set of ambient names private in an agent, we avoid using another

level of restriction with a name that is already private in the agent, as given in the

inference tree for ambients’ enter capability using restriction in Figure 3.2. We show

this in Lemma 3.1 as follows:

Lemma 3.1. (νk)(νk(P)) ≡ νk(P)

Proof.

(νk)(νk(P)) ≡ (νk)(νk(P) | 0) Struct Zero Par

≡ νk(P) | νk(0) k 6∈ fn((νk)P) Struct Res Par

≡ νk(P) | 0 Struct Zero Res

≡ νk(P) Struct Zero Par

Next, to exercise the out capability we propose a set of exit rules in Table 3.6.

For the application of exit rules we consider a system,

m[out n.P | Q]

Here, the prefix out n instructs the ambient m to exit its parent ambient with the

name n. P and Q are the two agents running in parallel inside m. To exercise this

capability the ambient m must be a child of the ambient n. If the parent named n

does not exist then the ambient m cannot move out. Furthermore, we assume the

agents R, S run in parallel with the ambients m and n respectively, so our system

is of the form:

n[m[out n.P | Q] | R] | S

In this example, we assume that there are no private names in P,Q,R and S. The

exit transition transforms m the child of n to a sibling of n. When this capability is

exercised, the processes inside m will also move out of the surrounding ambient n.

Now the three agents m, n and S exist at the same level. The application of τ -Out

specifies how this capability of m is achieved. The resulting transition is:

n[m[out n.P | Q] | R] | S
τ
−→ m[P | Q] | n[R] | S

The inference tree that proves the validity of the above given transition is in Fig-

C
h
a
p
ter

3
.
T
o
w
a
rd
s
a
C
a
lcu

lu
s
o
f
M
o
bility

35

(Act)
in n.0

in n
−→ 0

(Act)
in n.0

in n
−→ 0

(Par)
in n.0 | in k.0

in n
−→ 0 | in k.0

(Par)
in n.0 | in k.0

in n
−→ 0 | in k.0

(Enter1)
m[in n.0 | in k.0]

enter1 n
−→ m[0 | in k.0]

(Enter2)
m[in n.0 | in k.0]

enter2 n
−→ 0

(Par-Enter1)
m[in n.0 | in k.0] | k[P]

enter1 n
−→ m[0 | in k.0]

(Par-Enter2)
m[in n.0 | in k.0] | k[P]

enter2 n
−→ 0 | k[P]

(Co-Enter1)
n[R]

move1 n
−→ R

(Co-Enter2)
n[R]

move2 n
−→ 0

(Res-Amb)
(νk)(m[in n.0 | in k.0] | k[P])

enter1 n
−→ (νk)(m[0 | in k.0])

(Res-Amb)
(νk)(m[in n.0 | in k.0] | k[P])

enter2 n
−→ (νk)(0 | k[P])

(τ -In)
(νk)(m[in n.0 | in k.0] | k[P]) | n[R]

τ
−→ (νk)(νq̃)(n[m[0 | in k.0] | R] | 0 | k[P]) ≡ (νk)(νq̃)(n[m[in k.0] | R] | k[P])

(Struct)
(νk)(m[in n.0 | in k.0] | k[P]) | n[R]

τ
−→ (νk)(νq̃)(n[m[in k.0] | R] | k[P])

Figure 3.2: Inference tree for enter capability using restriction

Chapter 3. Towards a Calculus of Mobility 36

ure 3.3.

(Act)
out n.P

out n
−→ P

(Act)
out n.P

out n
−→ P

(Par)
out n.P | Q

out n
−→ P | Q

(Par)
out n.P | Q

out n
−→ P | Q

(Exit1)
m[out n.P | Q]

exit1 n
−→ 0

(Exit2)
m[out n.P | Q]

exit2 n
−→ m[P | Q]

(Par-Exit1)
m[out n.P | Q] | R

exit1 n
−→ 0 | R

(Par-Exit2)
m[out n.P | Q] | R

exit2 n
−→ m[P | Q]

(τ -Out)
n[m[out n.P | Q] | R]

τ
−→ n[0 | R] | m[P | Q]

(Par)
n[m[out n.P | Q] | R] | S

τ
−→ n[0 | R] | m[P | Q] | S (n[0 | R] | m[P | Q] | S ≡ n[R] | m[P | Q] | S)

(Struct)
n[m[out n.P | Q] | R] | S

τ
−→ n[R] | m[P | Q] | S

Figure 3.3: Inference tree for exit capability

Similarly, in order to exercise the out capability we consider a setting where ambients

share private names:

(νk)(n[m[in k.0 | out n.0] | k[P]])

In this example the name k is private and shared in the agents n,m and k. In

principle, there could be other shared and private names in agent P , but we assume

that there is no shared name that is private in the agent P . There are two capabilities

executing inside m. These capabilities instruct m to either leave parent ambient n,

or enter sibling ambient k. We assume that exit capability of m occurs. We added

νm̃ to our τ -Out rule as discussed earlier in this section. The rule τ -Out specifies

how this capability of the agent is achieved. The resulting transition is:

(νk)(n[m[in k.0 | out n.0] | k[P]])
τ
−→ (νk)(n[k[P]] | m[in k.0])

Furthermore, we consider a system,

n[(νk)(m[in k.0 | out n.0]) | P] | Q

In this example we restrict the scope of private name k to agent m. The ambient

m and an agent P executes in parallel inside ambient n, but the name k is private

C
h
a
p
ter

3
.
T
o
w
a
rd
s
a
C
a
lcu

lu
s
o
f
M
o
bility

37

(Act)
out n.0

out n
−→ 0

(Act)
out n.0

out n
−→ 0

(Par)
in k.0 | out n.0

out n
−→ int k.0 | 0

(Par)
in k.0 | out n.0

out n
−→ int k.0 | 0

(Exit1)
m[in k.0 | out n.0]

exit1 n
−→ 0

(Exit2)
m[in k.0 | out n.0]

exit2 n
−→ m[in k.0 | 0]

(Par-Exit1)
m[in k.0 | out n.0] | k[P]

exit1 n
−→ 0 | k[P]

(Par-Exit2)
m[in k.0 | out n.0] | k[P]

exit2 n
−→ m[in k.0 | 0]

(Res-Amb)
(νk)(m[in k.0 | out n.0] | k[P])

exit1 n
−→ (νk)(0 | k[P])

(Res-Amb)
(νk)(m[in k.0 | out n.0] | k[P])

exit2 n
−→ (νk)(m[in k.0 | 0])

(τ -Out)
(νk)(n[m[in k.0 | out n.0] | k[P]])

τ
−→ (νk)(n[0 | k[P]] | m[in k.0 | 0]) (νk)(n[0 | k[P]] | m[in k.0 | 0]) ≡ (νk)(n[k[P]] | m[in k.0])

(Struct)
(νk)(n[m[in k.0 | out n.0] | k[P]])

τ
−→ (νk)(n[k[P]] | m[in k.0])

Figure 3.4: Inference tree for exit capability using restriction

C
h
a
p
ter

3
.
T
o
w
a
rd
s
a
C
a
lcu

lu
s
o
f
M
o
bility

38

(Act)
out n.0

out n
−→ 0

(Act)
out n.0

out n
−→ 0

(Par)
in k.0 | out n.0

out n
−→ int k.0 | 0

(Par)
in k.0 | out n.0

out n
−→ in k.0 | 0

(Exit1)
m[in k.0 | out n.0]

exit1 n
−→ 0

(Exit2)
m[in k.0 | out n.0]

exit2 n
−→ m[in k.0 | 0]

(Res-Amb)
νk(m[in k.0 | out n.0])

exit1 n
−→ νk(0)

(Res-Amb)
νk(m[in k.0 | out n.0])

exit2 n
−→ νk(m[in k.0 | 0])

(Par-Exit1)
νk(m[in k.0 | out n.0]) | P

exit1 n
−→ νk((0) | P)

(Par-Exit2)
νk(m[in k.0 | out n.0]) | P

exit2 n
−→ νk(m[in k.0 | 0])

(τ -Out)
n[νk(m[in k.0 | out n.0]) | P]

τ
−→ νk(n[0 | P] | m[in k.0 | 0])

(Par)
n[νk(m[in k.0 | out n.0]) | P] | Q

τ
−→ (νk(n[0 | P] | m[in k.0 | 0]) ≡ νk(n[P] | m[in k.0]) | Q)

(Struct)
n[νk(m[in k.0 | out n.0]) | P] | Q

τ
−→ νk(n[νk(P)] | νk(m[in k.0])) | Q

Figure 3.5: Inference tree for exit capability using restriction example 2

Chapter 3. Towards a Calculus of Mobility 39

only in agent m. We assume that there are no private names in agents P and Q,

and k 6∈ fn(P). The application of τ -Out rule specifies how the out capability of the

agent is achieved. The resulting transition is:

n[(νk)(m[in k.0 | out n.0]) | P] | Q
τ
−→ (νk)(n[P] | m[in k.0]) | Q

The τ -transition shows that m which is a child of n, becomes after the transition

a sibling of n. The scope of k is extended to also include P since k 6∈ fn(P). If

k ∈ fn(P) then the above scope extrusion becomes invalid.

3.3 Soundness of Operational Semantics

Soundness ensures that for every reduction P → P ′ of a CM term P , for some P ′,

there is a valid τ -transition of P , namely P
τ
→ Q, for some Q in CM, and the target

of the τ -transition is congruent to the target of the reduction, namely Q ≡ P ′.

Theorem 3.1. ∀P,R ∈ CM. P → R =⇒ ∃ Q ∈ CM. P
τ
−→ Q ≡ R.

Proof. We prove Theorem 3.1 by using induction on the structure of P .

1. Base case: (Constant)

We show that our statement holds when we choose the simplest term of CM,

namely the deadlocked agent 0:

0→ R =⇒ 0
τ
−→ R

There is no rule defined to show the reduction of 0, so 0 → R is false, and

hence, the implication above is true.

2. Induction Hypothesis:

We assume that our theorem holds for all the sub-processes P ′ of P , such that

if P ′ → R =⇒ P ′ τ
→ R, for all R.

3. Induction Step:

(a) P = (νm)P ′, an ambient name m private in P ′.

In this case we show

(νm)P ′ → R =⇒ (νm)P ′ τ
−→ R (3.1)

We assume (νm)P ′ → R.

Chapter 3. Towards a Calculus of Mobility 40

The only reduction rule that can be used to derive a reduction relation

of (νm)P ′ is Red-Res in Table 3.4.

Since the term (νm)P ′ reduces to some process R, by the reduction rule

Red-Res, so we deduce that the reduction P ′ → Q is also valid for some

Q, such that (νm)Q = R. Since P ′ → Q is valid, so by the inductive

hypothesis we get P ′ τ
−→ Q.

Since P ′ τ
−→ Q is a valid transition, by transition rule Res-Amb in

Table 3.6, we deduce that the transition (νm)P ′ τ
−→ (νm)Q is valid (as

m /∈ fn(τ)).

Now using the structural congruence rule Struct in Table 3.7, we obtain

(νm)P ′ τ
−→ (νm)Q and (νm)Q ≡ R, as equality is the subset of our

congruence (=⊂≡). Hence, the conclusion of the rule is valid, that is:

(νm)P ′ τ
−→ R as required.

(b) P = n[P ′], an ambient with name n for some P ′.

In this case we show

n[P ′] −→ R =⇒ n[P ′]
τ
−→ R (3.2)

To prove statement 3.2, we assume n[P ′] → R, for some R. There are

two reduction rules Red-Amb and Red-Out in Table 3.4, that can be

used to derive a reduction of n[P ′]. So, to apply each rule separately, we

divide this case into two sub-cases.

i. Red-Amb:

Since using Red-Amb, n[P ′] → R is a valid reduction, so P ′ → Q is

also valid for some Q. By this rule the agent R is of the form n[Q],

such as, R = n[Q]. As P ′ → Q is valid, so by inductive hypothesis

we get P ′ τ
−→ Q.

Since P ′ τ
−→ Q is a valid transition, so by transition rule τ -Amb, we

deduce that the conclusion of the rule is also valid, that is n[P ′]
τ
−→

n[Q].

Now by Struct, n[P ′]
τ
−→ n[Q], and n[Q] ≡ R. Hence, we obtain

n[P ′]
τ
−→ R as required.

ii. Red-Out:

By using the rule Red-Out, we deduce that P is of the formm[out n.P1 |

P2] | Q for some P1, P2 and Q. Hence, the reduction n[m[out n.P1 |

P2] | Q]→ R is valid by Red-Out, where R = m[P1 | P2] | n[Q].

We derive the
τ
−→ of agent n[m[out n.P1 | P2] | Q] by constructing

Chapter 3. Towards a Calculus of Mobility 41

the inference tree in Figure 3.6. Hence, by applying the transition

rule τ -Out in Table 3.6 we obtain the resulting transition

n[m[out n.P1 | P2] | Q]
τ
−→ m[P1 | P2] | n[Q]

(Act)
out n.P1

out n
−→ P1

(Act)
out n.P1

out n
−→ P1

(Par)
out n.P1 | P2

out n
−→ P1 | P2

(Par)
out n.P1 | P2

out n
−→ P1 | P2

(Exit1)
m[out n.P1 | P2]

exit1 n
−→ 0

(Exit2)
m[out n.P1 | P2]

exit2 n
−→ m[P1 | P2]

(Par-Exit1)
m[out n.P1 | P2] | Q

exit1 n
−→ 0 | Q

(Par1-Exit2)
m[out n.P1 | P2] | Q

exit2 n
−→ m[P1 | P2]

(τ -Out)
n[m[out n.P1 | P2] | Q]

τ
−→ n[0 | Q] | m[P1 | P2] (n[0 | Q] | m[P1 | P2] ≡ n[Q] | m[P1 | P2])

(Struct)
n[m[out n.P1 | P2] | Q]

τ
−→ n[Q] | m[P1 | P2]

Figure 3.6: Inference tree for τ -Out transition

Now by Struct, n[m[out n.P1 | P2] | Q]
τ
−→ m[P1 | P2] | n[Q] and

m[P1 | P2] | n[Q] ≡ R. Hence, we obtain n[m[out n.P1 | P2] | Q]
τ
−→

R as required.

(c) P = P ′ | Q, parallel composition of the processes.

In this case we show

P ′ | Q −→ R =⇒ P ′ | Q
τ
−→ R (3.3)

Assume P ′ | Q→ R for some R.

There are two reduction rules Red-In and Red-Par in Table 3.4, that can

be used to deduce this reduction. To apply each rule separately, we divide

this case into two sub-cases.

i. Red-Par:

Since P ′ | Q→ R is valid by Red-Par, we deduce that the reduction

P ′ → S is valid, for some S, such that S | Q = R. Since P ′ → S is

valid, so by inductive hypothesis P ′ τ
−→ S is valid.

Since P ′ τ
−→ S is valid, by the transition rule Par in Table 3.7,

we deduce that the conclusion of the rule is also valid, namely P ′ |

Q
τ
−→ S | Q.

Chapter 3. Towards a Calculus of Mobility 42

By Struct we have P ′ | Q
τ
−→ S | Q and S | Q ≡ R, hence we get

P ′ | Q
τ
−→ R as required.

ii. Red-In:

Assume that P ′ and Q are of the form m[in n.P1 | P2] and n[Q1]

respectively. By parallel composition of the two agents we obtain by

the reduction rule Red-In

m[in n.P1 | P2] | n[Q1]→ R

We further deduce that R = n[m[P1 | P2] | Q1].

Now we derive the
τ
−→ of agent m[in n.P1 | P2] | n[Q1] by apply-

ing the SOS rule τ -In given in Table 3.6. This is supported by the

inference tree in Figure 3.7. Hence, the resulting transition is

m[in n.P1 | P2] | n[Q1]
τ
−→ n[m[P1 | P2] | Q1]

(Act)
in n.P1

in n
−→ P1

(Act)
in n.P1

in n
−→ P1

(Par)
in n.P1 | P2

in n
−→ P1 | P2

(Par)
in n.P1 | P2

in n
−→ P1 | P2

(Co-Enter2)
n[Q1]

move2 n
−→ 0

(Enter1)
m[in n.P1 | P2]

enter1 n
−→ m[P1 | P2]

(Enter2)
m[in n.P1 | P2]

enter2 n
−→ 0

(Co-Enter1)
n[Q1]

move1 n
−→ Q1

(τ -In)
m[in n.P1 | P2] | n[Q1]

τ
−→ n[m[P1 | P2] | Q1] | 0 ≡ n[m[P1 | P2] | Q1]

(Struct)
m[in n.P1 | P2] | n[Q1]

τ
−→ n[m[P1 | P2] | Q1]

Figure 3.7: Inference tree for τ -In transition

Now by Struct, m[in n.P1 | P2] | n[Q1]
τ
−→ n[m[P1 | P2] | Q1] and

n[m[P1 | P2] | Q1] ≡ R. Hence, we obtain m[inn.P1 | P2] | n[Q1]
τ
−→

R as required.

3.4 On Completeness of Operational Semantics

Completeness ensures that transition semantics of CM can correctly match all pos-

sible reductions, namely for every valid τ -transition of a CM term there is a valid

reduction of the term, and the targets of the τ -transitions and the reductions are

Chapter 3. Towards a Calculus of Mobility 43

the same. The statement ∀P, P ′ ∈ CM. P
τ
−→ P ′ =⇒ P → P ′ states that the

operational semantics of CM is consistent with the reduction semantics given in

Section 3.1.2. But this statement does not hold for some elaborate examples. For

example, consider a setting (building), where two ambients (rooms) have the same

name. Our SOS rules allow us to derive a τ -transition between two ambients such

that there is no reduction between the ambients. This is because the SOS rules do

not have the ability to distinguish between the two occurrences of the same ambient

name. In practice, this is quite unusual for the two rooms with the same name, but

to ensure completeness we consider all possible transitions.

We list four statements in Table 3.8 that need to be true to ensure completeness.

These statements do not hold in general for our current operational semantics of

CM. The following counter examples show why they do not hold.

Example 3.1. Consider the process

(m[in n.S] | m[in n.Q]) | (n[R])

In this example two ambients with the same name m want to enter ambient n by

exercising the capability in n. To exercise this capability of m, the τ -In rule in

Table 3.6 is applied. The resulting transition is as follows:

(m[in n.S] | m[in n.Q]) | (n[R])
τ
−→ n[m[S] | R] | m[in n.S]

The inference tree that proves the validity of the above given transition is in Fig-

ure 3.8. There exists no reduction relation that matches this τ -transition. We show

this case as follows.

Let P = m[in n.S] | m[in n.Q] is the agent that performs in n capability, where

P ′ = m[S] is the part of P that is moved in and the agent P ′′ = m[in n.S] | 0 is

the part of P which is left behind, after the τ -In rule is applied. Since P
enter1 n
−−−−→

νp̃ (P ′) and P
enter2 n
−−−−→ νp̃ (P ′′), so we need to check if the structure of P, P ′, P ′′

obtained from these transitions agrees with the structure stated in statement 2 in

Table 3.8. We have P = νp̃(m[in n.S] | m[in n.Q]), where P1 = S, P2 = m[in n.Q]

and P3 = 0, where p̃ is the empty set of names. So, P ′ = m[S] and P ′′ = m[in n.S].

We now have P ′′ = m[in n.Q] by statement 2 in Table 3.8, and we also obtain

P ′′ = m[in n.S] by the given example. The structures of the two agents do not

match, so the result of statement 2 in Table 3.8 is not true.

Chapter 3. Towards a Calculus of Mobility 44

1. ∀P, P ′ ∈ CM. P
µ
−→ P ′, where µ ∈ {in n, out n} =⇒ ∃ p̃, P1, P2with n 6∈ p̃

such that P ≡ νp̃ (µ.P1 | P2) and P ′ ≡ νp̃ (P1 | P2), where p̃ is the set of amb-
ient names private in P.

2. ∀P, P ′, P ′′, p̃ ∈ CM. P
enter1 n
−−−−→ νp̃ (P ′) and P

enter2 n
−−−−→ νp̃ (P ′′) =⇒ ∃ P1, P2,

P3, m, n with n,m 6∈ p̃ such that P ≡ νp̃ (m[in n.P1 | P3] | P2),
P ′ ≡ m[P1 | P3] and P ′′ ≡ P2, where p̃ is the set of ambient names private in
P.

3. ∀Q,Q′, Q′′ ∈ CM. Q
move1 n
−−−−→ νq̃(Q′) and Q

move2 n
−−−−→ νq̃(Q′′) =⇒ ∃Q1, Q2, Q3,

n with n 6∈ q̃ such that Q ≡ νq̃ (n[Q1 | Q3] | Q2), Q
′ ≡ Q1 | Q3 and

Q′′ ≡ Q2, where q̃ is the set of ambient names private in Q.

4. ∀P, P ′, P ′′ ∈ CM. P
exit1 n
−→ νm̃(P ′) and P

exit2 n
−→ νm̃(P ′′) =⇒ ∃ P1, P2, P3,

k with n, k 6∈ m̃, such that P ≡ νm̃ (k[out n.P1 | P2] | P3), P
′ ≡ P3 and

P ′′ ≡ k[P1 | P2],where m̃ is the set of ambient names private in P.

Table 3.8: Statements to ensure completeness

Example 3.2. Consider

(m[in n.P]) | (n[S] | n[R])

In this example the ambient m has the capability to enter the ambient n, and there

exist two ambients with the same name n in parallel with the moving ambient. To

exercise this capability τ -In rule in Table 3.6 is applied. The resulting transition is

as follows:

(m[in n.P]) | (n[S] | n[R])
τ
−→ n[m[P] | S] | n[S]

The inference tree that proves the validity of this τ -transition is given in Figure 3.9.

There exists no reduction relation that could match this τ -transition. We show this

case as follows:

In this example we have, Q = (n[S] | n[R]) is an agent that allows any ambient

to enter n, Q′ = S is the part of agent that stays inside the host ambient n and

Q′′ = n[S] | 0, stays outside the host ambient, after the τ -In rule is applied. Since

Q
move1 n
−−−−→ νq̃(Q′) and Q

move2 n
−−−−→ νq̃(Q′′), so we want to check if the structure of

Q,Q′, Q′′ obtained from these transitions agrees with the structure stated in state-

ment 2 in Table 3.8. We have Q = νq̃(n[S] | n[R]), where Q1 | Q3 = S, Q2 = n[R]

and q̃ is the empty set of names. So, Q′ = S and Q′′ = n[S]. We now have Q′′ = n[R]

by statement 3 in Table 3.8, and we also obtain Q′′ = n[S] from this example. Since

the two agents do not match, so there is no reduction relation matching the tran-

sition (m[in n.P]) | (n[S] | n[R])
τ
−→ n[m[P] | S] | n[P]. Hence, the result of

C
h
a
p
ter

3
.
T
o
w
a
rd
s
a
C
a
lcu

lu
s
o
f
M
o
bility

45

(Act)
in n.S

in n
−→ S

(Act)
in n.Q

in n
−→ Q

(Enter1)
m[enter1 n.S]

in n
−→ S

(Enter2)
m[enter2 n.Q]

in n
−→ 0

(Co-Enter2)
n[R]

move2 n
−→ 0

(Par-Enter1)
m[in n.S] | m[in n.Q]

enter1 n
−→ m[S]

(Par-Enter2)
m[in n.S] | m[in n.Q]

enter2 n
−→ m[in n.S] | 0

(Co-Enter1)
n[R]

move1 n
−→ R

(τ -In)
(m[in n.S] | m[in n.Q]) | (n[R])

τ
−→ n[m[S] | R] | m[in n.S] | 0 | 0 ≡ n[m[S] | R] | m[in n.S]

(Struct)
(m[in n.S] | m[in n.Q]) | (n[R])

τ
−→ n[m[S] | R] | m[in n.S]

Figure 3.8: Inference tree for Example 3.1

(Act)
in n.P

in n
−→ P

(Act)
in n.P

in n
−→ P

(Co-Enter1)
n[S]

move1 n
−→ S

(Co-Enter2)
n[R]

move2 n
−→ 0

(Enter1)
m[in n.P]

enter1 n
−→ m[P]

(Enter2)
m[in n.P]

enter2 n
−→ 0

(Par-Move1)
(n[S] | n[R])

move1 n
−→ S

(Par-Move2)
(n[S] | n[R])

move2 n
−→ n[S] | 0

(τ -In)
(m[in n.P]) | (n[S] | n[R])

τ
−→ n[m[P] | S] | 0 | n[S] | 0 ≡ n[m[P] | S] | n[S]

(Struct)
(m[in n.P]) | (n[S] | n[R])

τ
−→ n[m[P] | S] | n[S]

Figure 3.9: Inference tree for Example 3.2

Chapter 3. Towards a Calculus of Mobility 46

statement 3 in Table 3.8 is not always true.

Example 3.3. Consider

n[m[out n.S] | m[out n.T]]

In this example two sibling ambients with same name m want to exit the ambient

n by exercising the capability out n. To exercise this capability, τ -Out rule given in

Table 3.6 is applied. The resulting transition is as follows:

n[m[out n.S] | m[out n.T]]
τ
−→ n[m[out n.T]] | m[T]

The inference tree given in Figure 3.10 proves the validity of this τ -transition. There

exists no reduction relation that matches this τ -transition. We show this case as

follows:

Let P = m[out n.S] | m[out n.T] is the agent that performs out n capability,

where P ′′ = m[T] is the part of P that is moved out, and P ′ = 0 | m[out n.T] is

the part of P which is left behind. By applying the τ -Out rule. Since P
exit1 n
−→

νm̃(P ′) and P
exit2 n
−→ νm̃(P ′′), so we want to check if the structure of P, P ′, P ′′

obtained from these transitions agrees with the structure stated in statement 2 in

Table 3.8. We have P = m[outn.S] | m[outn.T], where S = P1 | P2, P3 = m[outn.T]

and p̃ is the empty set of names. So, P ′ = m[outn.T] and P ′′ = m[T]. We now have

P ′′ = m[S] by statement 4 in Table 3.8, and we also obtain P ′′ = m[T] from this

example. Since the two agents do not match, so there is no reduction relation There

is no reduction relation matching the valid transition n[m[outn.S] | m[outn.T]]
τ
−→

n[m[out n.T]] | m[T]. Hence, the result of statement 4 in Table 3.8 is not always

true.

We finish this section by stating that a new complete operational semantics for

CM will be proposed in the next chapter.

3.5 Conclusion

In this chapter we have reviewed the syntax and reduction semantics of Mobile Am-

bients [11]. We have reused only the mobility part of MA and developed a new and

simple operational semantics for CM. Therefore, we have called the calculus as, a

Calculus of Mobility (CM). We have proved that the semantics is sound with respect

to the standard reduction semantics. Our labelled transition semantics has been in-

spired by that in [36, 37]. To preserve the standard MA semantics, we have not used

C
h
a
p
ter

3
.
T
o
w
a
rd
s
a
C
a
lcu

lu
s
o
f
M
o
bility

47

(Act)
out n.S

out n
−→ S

(Act)
out n.T

out n
−→ T

(Exit1)
m[out n.S]

exit1 n
−→ 0

(Exit2)
m[out n.T]

exit2 n
−→ m[T]

(Par-Exit1)
m[out n.S] | m[out n.T]

exit1 n
−→ 0 | m[out n.T]

(Par1-Exit2)
m[out n.S] | m[out n.T]

exit2 n
−→ m[T]

(τ -Out)
n[m[out n.S] | m[out n.T]]

τ
−→ n[0 | m[out n.T]] | m[T] ≡ n[m[out n.T]] | m[T]

(Struct)
n[m[out n.S] | m[out n.T]]

τ
−→ n[m[out n.T]] | m[T]

Figure 3.10: Inference tree for Example 3.3

Chapter 3. Towards a Calculus of Mobility 48

the co-capabilities and concretions in our operational semantics as used in [36, 37].

We have proceeded to analyse the completeness of our operational semantics, and

discovered that the semantics is not complete for some unusual examples. We have

given three examples where the transition rules allowed us to derive τ -transitions for

which we have not found any corresponding reductions. These examples will help

us to develop a new operational semantics in the next chapter.

Chapter 4

An LTS Based Operational

Semantics of a Calculus of

Mobility

In this chapter we propose a new complete operational semantics for CM. The

operational semantics given in Chapter 3 is not complete for certain unusual cases

which are possibly not very useful from a practical point of view. For example, if

two ambients with the same name which intend to perform in or out capabilities.

Then the transition rules from previous chapter allow us to derive a τ -transition

that does not have the corresponding reduction. Consider a setting

m[in n.P] | m[in n.Q] | n[R]

where two ambients named m intend to enter an ambient n. The transition

m[in n.P] | m[in n.Q] | n[R]
τ
→ n[m[P] | R] | m[in n.P])

could be derived using the operational semantics from Chapter 3. We note that Q

has “disappeared” from the target of the transition. The possible reductions of the

given term are

m[in n.P] | m[in n.Q] | n[R] → n[m[P] | R] | m[in n.Q]

and

m[in n.P] | m[in n.Q] | n[R] → n[m[Q] | R] | m[in n.P]

There exists no such reduction matching the right hand term of the above τ -

transition. This problem is because the SOS rules for Chapter 3 do not have the

Chapter 4. An LTS Based Operational Semantics of a Calculus of Mobility 50

ability to distinguish between the ambients with same name and identical capabili-

ties. To resolve such problems, we now use concretions of the form νm̃〈P 〉Q in our

new SOS rules, as inspired by [36, 37, 39, 40]. In a transition rule, concretion may

split an agent into two distinguished subagents and keep them together in a single

premise. Our SOS rules are similar to those in [36, 37] but with few differences,

namely we do not use the co-capabilities and passwords in our semantics, hence

preserving the standard MA semantics. Completeness ensures that the operational

semantics of the calculus is consistent with the standard reduction semantics. We

prove that our new operational semantics coincides with the standard reduction

semantics.

The following section includes the syntax and new operational structural oper-

ational semantics for CM. In Section 4.2 we show that the structural operational

semantics of CM coincides with the standard reduction semantics. Section 4.3 con-

cludes the chapter.

4.1 The Syntax and SOS Rules of CM

The syntax of CM processes is the same as in Chapter 3. The SOS rules are presented

in Tables 4.2 and 4.3, and use auxiliary actions, namely enter n, move n and exit n

which are defined in Table 4.1.

In our new labelled transition semantics P
τ
→ Q represents ambients’ mobility

by means of their in n and out n capabilities. In order to model mobility by

τ -transitions additional labels and auxiliary terms are used, namely labels λ and

concretions K in Table 4.1. So we will need auxiliary transitions P
λ
→ O, where P

is a process, λ is a label and O represents an outcome in Table 4.1, which is either a

process or concretion of the form (νm̃)〈P 〉Q as introduced by Milner [44] and used

by Merro and Hennessy [36, 37]. We adopt the following convention after [37]. IfK is

the concretion νm̃〈P 〉Q, then νuK stands for νm̃〈P 〉νu(Q), if u 6∈ fn(P), otherwise

ν(um̃)〈P 〉Q. A similar convention is followed for λ-Par in Table 4.3. We define

K | P ′ as the concretion νm̃〈P 〉(Q | P ′) where, using α-conversion if necessary, m̃

is selected in such a way that fn(P ′) ∩ m̃ = ∅.

Transitions P
λ
→ O are not first class transitions; they are only helpful in SOS

rules that define τ -transitions of processes corresponding to the movement by the

in n and out n capabilities.

We consider some examples to show some reductions and, at the same time,

explain how auxiliary labels in Table 4.1 and transition rules in Tables 4.2 and 4.3

Chapter 4. An LTS Based Operational Semantics of a Calculus of Mobility 51

are used in defining mobility transitions. We assume

m[in n.P] | Q) | n[R] for some P, Q, R.

The ambient m has the capability to enter the ambient n. By Red In axiom in

Table 3.4 we have

m[in n.P] | Q | n[R] −→ n[m[P] | R] | Q

We now derive the τ -transition of m[in n.P] | Q | n[R] by τ -In rule in Table 4.2.

For simplicity, we assume that there are no private names in Q and R. We have

in n.P
in n
−→ P . When the migration occurs, we must identify the moving ambient

m, and the agent that is left behind. To model these two agents we use concretion

νm̃〈P 〉Q, where P is the agent that moves, while Q is the agent that stays behind,

and m̃ is the set of private names shared by P and Q. We introduce a new action

enter n and have

m[in n.P]
enter n
−→ 〈m[P]〉0

By λ-Par in Table 4.3 we obtain

m[in n.P] | Q
enter n
−→ 〈m[P]〉Q

Next, to achieve the τ -transition there must exist a sibling ambient n. We define a

new action move n for n to complete this interaction. By τ -In we get

m[in n.P] | Q | n[R]
τ
−→ n[m[P] | R] | Q

After the transition the ambient m, becomes a child of n.

Next, we explain emigration capability by considering m[n[out m.P] | Q], for

some P and Q where Q has no private names. The ambient n may emigrate from

m by its out m capability. By Red Out we have

m[n[out m.P] | Q] → n[P] | m[Q]

We derive the τ -transition of m[n[out m.P] | Q] by τ -Out. We define a new action

exit m, and by Exit in Table 4.2 we get

n[out m.P]
exit m
−→ 〈n[P]〉0

Chapter 4. An LTS Based Operational Semantics of a Calculus of Mobility 52

Ambient Prefixes : µ ::= in n | out n

Ambient Actions : λ ::= enter n | move n | exit n | µ

Labels : ℓ ::= µ | λ | τ

Outcomes : O ::= P | K

Concretions : K ::= (νm̃)〈P 〉Q

Table 4.1: Prefixes, labels, outcomes and concretions

(Act)
µ.P

µ
→ P

(Enter)
P

in n
→ P ′

m[P]
enter n
→ 〈m[P ′]〉0

(Co-Enter)
n[P]

move n
→ 〈P 〉0

(τ -In)
P

enter n
→ (νp̃)〈P ′〉P ′′ Q

move n
→ (νq̃)〈Q′〉Q′′

P | Q
τ
→ (νp̃)(νq̃)(n[P ′ | Q′] | P ′′ | Q′′)

(∗)

(Exit)
P

out n
→ P ′

m[P]
exit n
→ 〈m[P ′]〉0

(τ -Out)
P

exit n
→ (νm̃)〈P ′〉P ′′

n[P]
τ
→ (νm̃)(P ′ | n[P ′′])

(∗∗)

(∗)(fn(P ′) ∪ fn(P ′′)) ∩ q̃ = (fn(Q′) ∪ fn(Q′′)) ∩ p̃ = ∅

(∗∗)(fn(P ′) ∪ fn(P ′′)) ∩ m̃ = ∅

Table 4.2: Transition rules for mobility

By λ-Par we get

n[out m.P] | Q
exit m
−→ 〈n[P]〉Q,

which shows that when this capability is exercised n[P] moves out, while the process

Q remains inside m. By τ -Out we have

m[n[out m.P] | Q]
τ
−→ n[P] | m[Q]

After the transition the ambient n, becomes a sibling of m.

Next, we consider examples where agents share private names and show that

ambients mobility extends the scope of its restricted names beyond their boundaries.

We assume

(νk)(m[in n.0 | in k.0] | k[P]) | (n[Q] | R),

where ambients m and k execute in parallel and they share a private name k. The

ambient m has the capabilities to either enter k or n. We consider the ability of m

to enter n which is running in parallel sharing no private names with the moving

Chapter 4. An LTS Based Operational Semantics of a Calculus of Mobility 53

P
λ
→ O(λ-Par) (∗)

P | Q
λ
→ O | Q

P
λ
→ O(λ-Res) (u /∈ fn(λ)) (∗)

(νu)P
λ
→ (νu)O

P
τ
→ P ′

(τ -Amb)
n[P]

τ
→ n[P ′]

P ≡ Q Q
l
→ Q′ Q′ ≡ P ′

(Struct)
P

l
→ P ′

(∗∗)The definition of λ is extended to include also a τ

Table 4.3: Transition rules for other operators of CM

ambient. To exercise this capability of agent m, we use (νp̃) and (νq̃) in τ -In rule.

These constructs maintain privacy and sharing of the restricted names in the agents

after they move around. We also assume that there are no private names in agents

Q and R, and k 6∈ fn(Q,R).

The application of the τ -In rule specifies how this capability of the agent m is

achieved. The resulting transition is:

(νk)(m[in n.0 | in k.0] | k[P]) | (n[Q] | R)
τ
→ (νk)(νq̃)(k[P] | n[m[in k.0] | Q] | R)

In this transition we observe that scope of k is extended to outsidem, since k 6∈ fn(Q)

or fn(R). The inference tree that shows the validity of above given transition is given

in Figure 4.1.

Similarly, we consider a system

n[νk(m[in k.0 | out n.0]) | P]

In this example we restrict the scope of private name k to agent m, and process P

executes in parallel with m inside n. We assume that there is no private names in

P , and k 6∈ fn(P). The application of τ -Out gives the resulting transition as follows:

n[νk(m[in k.0 | out n.0]) | P]
τ
−→ νk(m[in k.0] | n[P])

Here, after exercising the out capability, the scope of k is extended to include P

since k 6∈ fn(P), and m which is a child of n, becomes a sibling of n. If k ∈ fn(P)

then the above scope extrusion is not valid. The inference tree for the above given

transition is in Figure 4.2.

C
h
a
p
ter

4
.
A
n
L
T
S
B
a
sed

O
pera

tio
n
a
l
S
em

a
n
tics

o
f
a
C
a
lcu

lu
s
o
f
M
o
bility

54

(Act)
in n.0

in n
−→ 0

(Par)
in n.0 | in k.0

in n
→ 0 | in k.0

(Enter)
m[in n.0 | in k.0]

enter n
−→ 〈m[0 | in k.0]〉0

(λ-Par)
m[in n.0 | in k.0] | k[P]

enter n
−→ 〈m[0 | in k.0]〉0 | k[P]

(Co-Enter)
n[Q]

move n
−→ 〈Q〉0

(Par) (q 6∈ fn(R))
n[Q] | R

move n
−→ (νq̃)(〈Q〉0 | R) ≡ (νq̃)(〈Q〉(0 | R))

(Res-Amb) (k 6∈ fn(P))
(νk)(m[in n.0 | in k.0] | k[P])

enter n
→ (νk)〈m[0 | in k.0]〉0 | k[P] ≡ (νk)〈m[0 | in k.0]〉0 | k[P]

(τ -In)
(νk)(m[in n.0 | in k.0] | k[P]) | (n[Q] | R)

τ
→ (νk)(νq̃)(n[m[0 | in k.0] | Q] | k[P] | (0 | R)) ≡ (νk)(νq̃)(n[m[in k.0] | Q] | k[P] | R)

(Struct)
(νk)(m[in n.0 | in k.0] | k[P]) | (n[Q] | R)

τ
→ (νk)(νq̃)(n[m[in k.0] | Q] | k[P] | R)

Figure 4.1: Inference tree for enter capability

Chapter 4. An LTS Based Operational Semantics of a Calculus of Mobility 55

(Act)
out n.0

out n
−→ 0

(λ-Par)
in k.0 | out n.0

out n
→ in k.0 | 0

(Exit)
m[in k.0 | out n.0]

exit n
−→ 〈m[in k.0 | 0]〉0

(Res-Amb)
νk(m[in k.0 | out n.0])

exit n
−→ νk(〈m[in k.0 | 0]〉0)

(λ-Par) (k 6∈ fn(P))
νk(m[in k.0 | out n.0]) | P

exit n
−→ νk(〈m[in k.0 | 0]〉0) | P ≡ νk(〈m[in k.0 | 0]〉(0 | P)))

(τ -Out)
n[νk(m[in k.0 | out n.0]) | P]

τ
−→ νk(m[in k.0 | 0] | n[0 | P]) ≡ νk(m[in k.0] | n[P])

(Struct)
n[νk(m[in k.0 | out n.0]) | P]

τ
−→ νk(m[in k.0] | n[P])

Figure 4.2: Inference tree for exit capability

4.2 Correspondence of Transition Semantics and

Reduction Semantics

In this section we show that our transition semantics coincides with the reduction

semantics of CM. There are “soundness” and “completeness” parts of this result.

4.2.1 Soundness

Soundness ensures that for every reduction of a term of CM there is a valid τ -

transition of the term, and the target of the τ -transition is congruent to the target

of the reduction.

Theorem 4.1. ∀P,R ∈ CM. P → R =⇒ ∃ Q ∈CM. P
τ
→ Q ≡ R.

Proof. We prove Theorem 4.1 by structural induction where we consider cases of

reductions of P depending on the structure of P .

1. Base case: (Constant)

We show that our statement holds when we choose the simplest term of CM,

namely the deadlocked agent 0:

0→ R =⇒ 0
τ
→ R

There is no rule defined to show the reduction of 0, so 0 → R is false, and

hence, the implication above is true.

Chapter 4. An LTS Based Operational Semantics of a Calculus of Mobility 56

2. Induction Hypothesis:

We assume that our theorem holds for all the sub-processes P ′ of P , such that

if P ′ → R =⇒ P ′ τ
→ R, for all R.

3. Induction Step:

(a) P = (νm)P ′ for some P ′. In this case we show

(νm)P ′ → R =⇒ (νm)P ′ τ
→ R (4.1)

We assume (νm)P ′ → R.

The only reduction rule that can be used to derive a reduction relation

of (νm)P ′ is Red Res in Table 3.4. Since the term (νm)P ′ reduces to

some process R, by the reduction rule Red Res, so we deduce that the

reduction P ′ → Q is also valid for some Q, such that (νm)Q = R. Since

P ′ → Q is valid, so by the inductive hypothesis we get P ′ τ
→ Q.

Since P ′ τ
→ Q is valid, so by transition rule λ-Res in Table 4.3, we deduce

that the transition (νm)P ′ τ
→ (νm)Q is valid. Since m /∈ fn(τ)(= ∅).

Now using the structural congruence rule Struct in Table 4.3, we ob-

tain (νm)P ′ τ
→ (νm)Q and (νm)Q ≡ R. Hence,we obtain (νm)P ′ τ

→ R

as required.

(b) P = n[P ′] for some P ′ and n.

In this case we show

n[P ′] → R =⇒ n[P ′]
τ
→ R (4.2)

To prove statement 4.2, we assume n[P ′] → R, for some R. There are

two reduction rules Red Amb and Red Out in Table 3.4, that can be

used to derive a reduction of n[P ′]. So, to apply each rule separately, we

divide this case into two sub-cases.

i. Red Amb:

Since using Red Amb, n[P ′] → R is a valid reduction, so P ′ → Q is

also valid for some Q. By this rule the agent R is of the form n[Q],

namely R = n[Q]. As P ′ → Q is a valid reduction, so by inductive

hypothesis we get P ′ τ
→ Q. Since P ′ τ

→ Q is a valid transition so,

Chapter 4. An LTS Based Operational Semantics of a Calculus of Mobility 57

(Act)
out n.P1

out n
−→ P1

(λ-Par)
out n.P1 | P2

out n
→ P1 | P2

(Exit)
m[out n.P1 | P2]

exit n
−→ 〈m[P1 | P2]〉0

(λ-Par)
m[out n.P1 | P2] | Q

exit n
−→ 〈m[P1 | P2]〉0 | Q ≡ 〈m[P1 | P2]〉(0 | Q)

(τ -Out)
n[m[out n.P1 | P2] | Q]

τ
−→ m[P1 | P2] | n[0 | Q] ≡ m[P1 | P2] | n[Q]

Figure 4.3: Inference tree for τ -Out transition

by transition rule τ -Amb in Table 3.4, we deduce that the conclusion

of the rule is also valid, that is n[P ′]
τ
→ n[Q].

Now by Struct rule, n[P ′]
τ
→ n[Q] and n[Q] ≡ R. Hence, n[P ′]

τ
→ R

as required.

ii. Red Out:

By using the rule Red Out, we derive that P ′ is of the formm[out n.P1 |

P2] | Q for some P1, P2 and Q. Hence, the reduction n[m[out n.P1 |

P2] | Q]→ R is valid by Red Out, where R = m[P1 | P2] | n[Q].

In principle there could be private names in agents P1, P2 and Q.

However, using α-conversion if necessary, we can assume without

loss of generality (wlog) that there are no private names. We derive

the
τ
→ of agent n[m[out n.P1 | P2] | Q] by applying the transition

rule τ -Out in Table 4.2 (with the empty set of private names). This

is supported by inference tree in Figure 4.3. Hence, the resulting

transition is

n[m[out n.P1 | P2] | Q]
τ
→ m[P1 | P2] | n[Q]

Now using Struct in Table 4.3, we obtain n[m[out n.P1 | P2] | Q]
τ
→

m[P1 | P2] | n[Q] and m[P1 | P2] | n[Q] ≡ R, as equality is the subset

of our congruence (=⊂≡). Hence, n[m[out n.P1 | P2] | Q]
τ
→ R as

required.

(c) P = P ′ | Q, parallel composition of the processes.

In this case we show

Chapter 4. An LTS Based Operational Semantics of a Calculus of Mobility 58

P ′ | Q → R =⇒ P ′ | Q
τ
→ R (4.3)

Assume P ′ | Q→ R for some R.

There are two reduction rules Red In and Red Par in Table 3.4, that

can be used to deduce this reduction. To apply each rule separately, we

divide this case into two sub-cases.

i. Red Par:

Since P ′ | Q→ R is valid by Red Par, we deduce that the reduction

P ′ → S is valid, for some S, such that S | Q = R. Since P ′ → S is

valid, so by inductive hypothesis P ′ τ
→ S is valid.

Since P ′ τ
→ S is valid, by the transition rule λ-Par in Table 4.3,

we deduce that P ′ | Q
τ
→ S | Q is valid. Since R ≡ S | Q, we get

P ′ | Q
τ
→ R as required.

ii. Red In :

Assume that P ′ and Q are of the form m[in n.P1 | P2] and n[Q1]

respectively. In principle there could be shared and private names in

agents P1, P2 and Q1. However, using α-conversion if necessary, we

assume wlog that there are no shared and private names. By parallel

composition of the two agents we obtain by reduction rule Red In

m[in n.P1 | P2] | n[Q1]→ R

We further deduce that R = n[m[P1 | P2] | Q1]. Now we derive the
τ
→ of agent m[in n.P1 | P2] | n[Q1] by applying the SOS rule τ -In in

Table 4.2. This is supported by inference tree in Figure 4.4. Hence,

the resulting transition is

m[in n.P1 | P2] | n[Q1]
τ
→ n[m[P1 | P2] | Q1]

Now using the congruence rule Struct, we obtain m[in n.P1 | P2] |

n[Q1]
τ
→ n[m[P1 | P2] | Q1] and n[m[P1 | P2] | Q1] ≡ R. Hence,

m[in n.P1 | P2] | n[Q1]
τ
→ R as required.

Chapter 4. An LTS Based Operational Semantics of a Calculus of Mobility 59

(Act)
in n.P1

in n
−→ P1

(λ-Par)
in n.P1 | P2

in n
→ P1 | P2

(Enter)
m[in n.P1 | P2]

enter n
−→ 〈m[P1 | P2]〉0

(Co-Enter)
n[Q]

move n
−→ 〈Q〉0

(λ-Par)
m[in n.P1 | P2] | S

enter n
−→ 〈m[P1 | P2]〉(0 | S)

(λ-Par)
n[Q] | T

move n
−→ 〈Q〉(0 | T)

τ -In
m[in n.P1 | P2] | S | n[Q] | T

τ
−→ n[m[P1 | P2] | Q] | 0 | S | 0 | T ≡ n[m[P1 | P2] | Q]

Figure 4.4: Inference tree for τ -In transition

4.2.2 Completeness

Completeness ensures that for every valid τ -transition of a CM term there is a valid

reduction of the term, and the targets of the τ -transitions and the reductions are

the same.

Lemma 4.1.

1. ∀P ∈ CM. P
µ
→ O, where µ ∈ {in n, out n} =⇒ ∃ p̃, P1, P2 with n 6∈ p̃

such that P ≡ νp̃ (µ.P1 | P2) and O ≡ νp̃ (P1 | P2), where p̃ is a set of private

ambient names in P .

2. ∀P, P ′, P ′′ ∈ CM. P
enter n
→ νp̃ 〈P ′〉P ′′ =⇒ ∃ P1, P2, P3, k with n 6∈ p̃ such

that P ≡ νp̃ (k[in n.P1 | P2] | P3), P
′ ≡ k[P1 | P2] and P ′′ ≡ P3, where p̃

is a set of private ambient names in P .

3. ∀Q, Q′, Q′′ ∈ CM. Q
move n
→ νq̃ 〈Q′〉Q′′ =⇒ ∃ Q1, Q2, with n 6∈ q̃ such that

Q ≡ νq̃ (n[Q1] | Q2), Q
′ ≡ Q1 and Q′′ ≡ Q2, where q̃ is a set of private ambi-

ent names in Q.

4. ∀P, P ′, P ′′ ∈ CM. P
exit n
→ νm̃ 〈P ′〉P ′′ =⇒ ∃ P1, P2, P3, k with n 6∈ m̃ such

that P ≡ νm̃ (k[out n.P1 | P2] | P3), P
′ ≡ k[P1 | P2] and P ′′ ≡ P3, where

m̃ is a set of private ambient names in P .

Proof. By transition induction.

1. There are three transition rules, namely Act in Table 4.2, and λ-Res and λ-Par

in Table 4.3, that can be used to prove part 1 of Lemma 4.1. So, we consider

three cases. Let µ = in n.

(a) Act

In this case P is of the form in n.R. Since in n.R
in n
→ R is a valid

transition by Act. Therefore, P
in n
→ O is a valid transition, where P =

Chapter 4. An LTS Based Operational Semantics of a Calculus of Mobility 60

in n.R. Hence, P ≡ νp̃(µ.P1 | P2), where p̃ is the empty set of names,

and P1 = R and P2 = 0. Similarly, O = R and hence, O ≡ νp̃(P1 | P2),

where P2 = 0 and p̃ is the empty set of ambient names in P .

(b) λ-Par

In this case we assume that P is of the form R | S, for some R and S.

So, for µ = in n, the transition R | S
in n
→ O | S is valid by λ-Par, hence,

the premise R
in n
→ O of the rule is also valid.

Since R
in n
→ O is a valid transition, so by inductive hypothesis R ≡

νr̃ (µ.R1 | R2) and O ≡ νr̃ (R1 | R2), for some R1, R2 and r̃, where r̃ is

the set of private names. By α-conversion, if necessary, we can select r̃

in such a way that fn(S) ∩ r̃ = ∅. So, we get

R | S ≡ νr̃(µ.R1 | R2) | S

≡ νr̃((µ.R1 | R2) | S) (Struct Res Par)

≡ νr̃(µ.R1 | (R2 | S)) (Struct Par Assoc)

Similarly, by the rule λ-Par, O | S is of the form νr̃(R1 | R2) | S. We

obtain

O | S ≡ νr̃(R1 | R2) | S

≡ νr̃((R1 | R2) | S) (Struct Res Par)

≡ νr̃(R1 | (R2 | S)) (Struct Par Assoc),

Hence, we obtain P ≡ νp̃(µ.P1 | P2), and O ≡ p̃(P1 | P2), where

p̃ = r̃, P1 = R1 and P2 = R2 | S as required.

(c) λ-Res

In this case we assume that P ≡ (νu)R, for some R. We get the transition

(νu)R
in n
→ (νu)O, where O is an outcome and u 6= n. As this is a valid

transition by rule λ-Res in Table 4.3, hence, the premises R
in n
→ O of the

rule is also valid.

As R
in n
→ O is a valid transition, so by inductive hypothesis R ≡

νp̃ (µ.R1 | R2) and O ≡ νp̃ (R1 | R2), for some R1, R2 and p̃, where,

p̃ is a set of private names in R . So, we get νu(R) ≡ νu(νp̃(µ.R1 |

R2)), and νu(O) ≡ νu(νp̃(R1 | R2)). The new restriction is νp̃′ = ν(up̃);

Chapter 4. An LTS Based Operational Semantics of a Calculus of Mobility 61

and u is added to the set of existing restricted names νp̃. Now we get

νu(R) ≡ νu(νp̃(µ.R1 | R2))

≡ (νu)(νp̃)(µ.R1 | R2)

≡ ν(up̃)(µ.R1 | R2)

≡ νp̃′(µ.R1 | R2)

Similarly,

νu(O) ≡ νu(νp̃(R1 | R2))

≡ (νu)(νp̃)(R1 | R2)

≡ ν(up̃)(R1 | R2)

≡ νp̃′(R1 | R2)

Hence, we obtain P ≡ νp̃′(µ.P1 | P2) and O ≡ νp̃′(P1 | P2), where P1 =

R1, P2 = R2 and p̃′ is the set of private ambient names in P .

The proof for the three cases for µ = out n is very similar to the proof for

µ = in n, so it is omitted.

2. There are three transition rules namely Enter in Table 4.2, and λ-Par and

λ-Res in Table 4.3, that can be used to prove this lemma. Depending on the

structure of agent P , we consider three cases.

(a) Enter

In this case we assume that P ≡ m[R], for some R.

Since m[R]
enter n
−→ 〈m[R′]〉0 is valid by Enter in Table 4.2, so the premise

of the rule R
in n
−→ R′, for some R′ is also valid. By part 1 of Lemma 4.1,

R has the form νr̃(in n.R1 | R2), for some R1, R2 and r̃.

Consider m[R] and assume wlog that m 6∈ r̃. We have

m[νr̃(in n.R1 | R2)] ≡ (νr̃)m[in n.R1 | R2] if m 6∈ r̃

≡ (νr̃)(m[in n.R1 | R2] | 0)

Since by Enter rule, m[in n.R1 | R2] | 0
enter n
−→ 〈m[R1 | R2]〉0, so by

Struct rule we get

(νr̃)(m[in n.R1 | R2] | 0)
enter n
−→ νr̃(〈m[R1 | R2]〉0 | 0)

≡ νr̃〈m[R1 | R2]〉0

Hence, we obtain P ≡ νr̃(m[in n.R1 | R2] | 0), P ′ ≡ m[R1 | R2], P
′′ ≡ 0.

Chapter 4. An LTS Based Operational Semantics of a Calculus of Mobility 62

(b) λ-Par

In this case we assume that P ≡ R | Q. So we get the transition of the

form R | Q
enter n
−→ O | Q, for some O.

Since R | Q
enter n
−→ O | Q is a valid transition by rule λ-Par in Table 4.3,

the premise of the rule, namely R
enter n
−→ O, is also valid.

Since R
enter n
−→ O is valid, so by inductive hypothesis R ≡ νr̃(m[in n.R1 |

R2] | R3), R
′ ≡ m[R1 | R2], R

′′ ≡ R3 and r̃ is a set of private names in R,

for some R1, R2 and R3. Here, O = νr̃〈m[R1 | R2]〉R3. By α-conversion,

if necessary, we can select r̃ in such a way that fn(Q)∩ r̃ = ∅. So, we get

R | Q ≡ νr̃(m[in n.R1 | R2] | R3) | Q

≡ νr̃(m[in n.R1 | R2] | R3 | Q)

Similarly by λ-Par, O | Q is defined as concretion of the form νr̃〈m[R1 |

R2]〉R3 | Q, and we get

O | Q ≡ νr̃〈m[R1 | R2]〉R3 | Q

≡ νr̃〈m[R1 | R2]〉(R3 | Q)

Hence, we obtain P ≡ νr̃(m[in n.R1 | R2] | R3 | Q), P ′ ≡ m[R1 | R2],

P ′′ ≡ R3 | Q and r̃ is the set of private names in P as required.

(c) λ-Res

In this case we assume that P ≡ (νu)R. So we get the transition of the

form, (νu)R
enter n
−→ (νu)O, for some O. Since (νu)R

enter n
−→ (νu)O is valid

by λ-Res in Table 4.3, the premise of the rule, namely R
enter n
−→ O, is also

valid.

Since R
enter n
−→ O is valid, so by inductive hypothesis R ≡ νp̃(m[in n.R1 |

R2] | R3), R
′ ≡ m[R1 | R2] and R′′ = R3, for some p̃, m,R1, R2 and R3.

Now, we get νu(R) ≡ νu(νp̃ (m[in n.R1 | R2] | R3)). The new restriction

is νp̃′ = ν(up̃); and u is added to the set of existing restricted names νp̃.

We obtain

(νu)R ≡ νu(νp̃(m[in n.R1 | R2] | R3))

≡ (νu)(νp̃)(m[in n.R1 | R2] | R3)

≡ ν(up̃)(m[in n.R1 | R2] | R3)

≡ (νp̃′)(m[in n.R1 | R2] | R3)

Next, the outcome O ≡ νp̃〈m[R1 | R2]〉R3, and hence (νu)O ≡ νp̃〈m[R1 |

R2]〉νuR3 if u 6∈ fn(R1 | R2), else we get the concretion of the form

Chapter 4. An LTS Based Operational Semantics of a Calculus of Mobility 63

ν(up̃)〈m[R1 | R2]〉R3. In the second case we have

(νu)O ≡ ν(up̃)〈m[R1 | R2]〉R3

≡ (νu)(νp̃)〈m[R1 | R2]〉R3)

≡ ν(up̃)(〈m[R1 | R2]〉R3)

≡ (νp̃′)(〈m[R1 | R2]〉R3)

For this case we obtain P ≡ νp̃′ (m[in n.R1 | R2] | R3), P
′ ≡ m[R1 | R2]

and P ′′ ≡ R3, and p̃′ is the set of private ambient names.

In the first case, i-e. if u 6∈ fn(R1 | R2), we get

(νu)R ≡ νu(νp̃(m[in n.R1 | R2] | R3))

≡ (νp̃)(νu)(m[in n.R1 | R2] | R3)

≡ (νp̃)(m[in n.R1 | R2] | (νu)R3)

Similarly,

(νu)O ≡ νu(νp̃〈m[R1 | R2]〉R3)

≡ νp̃〈m[R1 | R2]〉(νu)R3, u 6∈ fn(R1 | R2)

Overall we obtain P ≡ νp̃(m[in n.R1 | R2] | (νu)R3), P
′ ≡ m[R1 | R2]

and P ′′ ≡ (νu)R3, and p̃ is the set of private ambient names.

3. The proof for the Lemma 4.1 part 3 is very similar to the proof for part 2, so

it is omitted.

4. There are three transition rules, namely Exit, λ-Par, λ-Res given in Tables 4.2

and 4.3, that can be used to prove this lemma. Depending on the structure of

agent P , we consider three cases.

(a) Exit

In this case we assume that P ≡ m[R], for some R, and hence we get

the transition of the form m[R]
exit n
−→ 〈m[R′]〉0, for some R′. Since

m[R]
exit n
−→ 〈m[R′]〉0 is valid by Exit in Table 4.2, so the premise of

the rule, namely R
out n
→ R′ is also valid. By part 1 of Lemma 4.1, R has

the form νr̃(out n.R1 | R2), for some R1, R2 and r̃ where n 6∈ r̃.

Consider m[R] and assume wlog that m 6∈ r̃. We have

Chapter 4. An LTS Based Operational Semantics of a Calculus of Mobility 64

m[νr̃(out n.R1 | R2)] ≡ (νr̃)m[out n.R1 | R2] if m 6∈ r̃

≡ (νr̃)(m[out n.R1 | R2] | 0)

Since by Exit rule, m[out n.R1 | R2] | 0
exit n
−→ 〈m[R1 | R2]〉0, so by Struct

rule we get

(νr̃)(m[out n.R1 | R2] | 0)
exit n
−→ νr̃(〈m[R1 | R2]〉0 | 0)

≡ νr̃〈m[R1 | R2]〉0

Hence, we obtain P ≡ νr̃(m[out n.R1 | R2] | 0), P ′ ≡ m[R1 | R2], P
′′ ≡ 0

and p̃ ≡ r̃ is the set of private names in P .

(b) λ-Par

In this case we assume that P ≡ R | Q. So we get the transition of the

form R | Q
exit n
→ O | Q, for some O. Since R | Q

exit n
→ O | Q is a

valid transition by λ-Par in Table 4.2, the premise of the rule, namely

R
exit n
→ O, is also valid.

Since R
exit n
→ O is valid, so by inductive hypothesis R ≡ νr̃(m[out n.R1 |

R2] | R3), R
′ ≡ m[R1 | R2], R

′′ ≡ R3 and r̃ is a set of private names in R,

for some R1, R2 and R3. Here, O = νr̃〈m[R1 | R2]〉R3. By α-conversion,

if necessary, we can select r̃ in such a way that fn(Q)∩ r̃ = ∅. So, we get

R | Q ≡ νr̃(m[out n.R1 | R2] | R3) | Q

≡ νr̃(m[out n.R1 | R2] | R3 | Q)

Similarly by λ-Par, O | Q is defined as concretion of the form νr̃〈m[R1 |

R2]〉R3 | Q, and we get

O | Q ≡ νr̃〈m[R1 | R2]〉R3 | Q

≡ νr̃〈m[R1 | R2]〉(R3 | Q)

Hence, we obtain P ≡ νr̃(m[out n.R1 | R2] | R3 | Q), P ′ ≡ m[R1 | R2],

P ′′ ≡ R3 | Q and r̃ is the set of private names in P as required.

(c) λ-Res

In this case we assume that P ≡ (νu)R. So we get the transition of the

form, (νu)R
exit n
−→ (νu)O, for some O. Since (νu)R

exit n
−→ (νu)O is valid

by λ-Res in Table 4.3, the premise of the rule, namely R
exit n
−→ O, is also

valid.

Chapter 4. An LTS Based Operational Semantics of a Calculus of Mobility 65

Since R
exit n
−→ O is valid, so by inductive hypothesis R ≡ νp̃(m[out n.R1 |

R2] | R3), R
′ ≡ m[R1 | R2] and R′′ = R3, for some p̃, m,R1, R2 and

R3. Now, we get νu(R) ≡ νu(νp̃ (m[out n.R1 | R2] | R3)). The new

restriction is νp̃′ = ν(up̃); and u is added to the set of existing restricted

names νp̃. We obtain

(νu)R ≡ νu(νp̃(m[out n.R1 | R2] | R3))

≡ (νu)(νp̃)(m[out n.R1 | R2] | R3)

≡ ν(up̃)(m[out n.R1 | R2] | R3)

≡ (νp̃′)(m[out n.R1 | R2] | R3)

Next, the outcome O ≡ νp̃〈m[R1 | R2]〉R3, and hence (νu)O ≡ νp̃〈m[R1 |

R2]〉νuR3 if u 6∈ fn(R1 | R2), else we get the concretion of the form

ν(up̃)〈m[R1 | R2]〉R3. In the second case we have

(νu)O ≡ (νu)(νp̃〈m[R1 | R2]〉R3)

≡ (νu)(νp̃)〈R1 | R2〉R3)

≡ ν(up̃)(〈m[R1 | R2]〉R3)

≡ (νp̃′)〈m[R1 | R2]〉R3

For this case we obtain P ≡ νp̃′ (m[out n.R1 | R2] | R3), P
′ ≡ m[R1 | R2]

and P ′′ ≡ R3, and p̃′ is the set of private ambient names in P .

In the first case, i-e. if u 6∈ fn(R1 | R2), we get

(νu)R ≡ νu(νp̃(m[out n.R1 | R2] | R3))

≡ (νp̃)(νu)(m[out n.R1 | R2] | R3)

≡ (νp̃)(m[out n.R1 | R2] | (νu)R3)

Similarly,

(νu)O ≡ νu(νp̃〈m[R1 | R2]〉R3)

≡ νp̃〈m[R1 | R2]〉(νu)R3, u 6∈ fn(R1 | R2)

Overall we obtain P ≡ νp̃(m[out n.R1 | R2] | (νu)R3), P
′ ≡ m[R1 | R2]

and P ′′ ≡ (νu)R3, and p̃ is the set of private ambient names.

This completes the proof of Lemma 4.1.

Chapter 4. An LTS Based Operational Semantics of a Calculus of Mobility 66

Finally, we are ready to prove the completeness result.

Theorem 4.2. ∀S,R ∈CM. S
τ
→ R =⇒ S → R.

Proof. By transition induction where we consider cases of transitions of S depending

on the structure of the term.

1. Base case: (Constant)

We show that our statement holds when we choose the simplest term of CM,

namely the deadlocked agent 0:

0
τ
→ R =⇒ 0 → R

There is no rule defined to show the transition of 0, so the τ -transition for 0

is not possible. Thus, the transition 0
τ
→ R is false, hence, the implication

above is true.

2. Induction Hypothesis:

In this step we assume that our Theorem holds for all the sub-processes P of

S, such that if P
τ
→ R then P → R, for all R.

3. Induction Step:

(a) S = C.P for some P , where the prefix C is an ambient capability, namely

in n and out n with an ambient name n.

We consider the ambient’s entering capability, and show that

in n.P
τ
→ R =⇒ in n.P → R

The only transition for in n.P is in n.P
in n
→ P by applying the rule Act

in Table 4.2. Since there is no other rule defined that could be applied

to derive the transition, the τ -transition for in n.P is not possible. Thus,

the transition in n.P
τ
→ R is not valid and, hence, the implication above

is true.

The proof for out n capability is very similar to the proof for in n capa-

bility, so its is omitted.

(b) S = n[P], for some P and n.

In this case we show that

n[P]
τ
→ R =⇒ n[P] → R (4.4)

Chapter 4. An LTS Based Operational Semantics of a Calculus of Mobility 67

We assume n[P]
τ
→ R for some R.

There are two transition rules τ -Out and τ -Amb in Tables 4.2 and 4.3,

that can be used to derive a τ -transition of n[P]. So, to apply each rule

separately, we divide this case into two sub-cases.

i. τ -Out

Since n[P]
τ
→ R is valid by the transition rule τ -Out in Table 4.2, so

we deduce that the premise of the rule, namely P
exit n
→ νm̃〈P ′〉P ′′,

for some P ′ and P ′′, is also valid. Here, m̃ is the set of private

ambient names in process P , and ((fn(P ′) ∪ fn(P ′′)) ∩ {m̃}) = ∅.

Since by τ -Out, the process R is of the form (νm̃)(n[P ′′] | P ′), namely

R = (νm̃)(n[P ′] | P ′′). Hence, we obtain

n[P]
τ
→ (νm̃)(n[P ′′] | P ′)

Now using part 4 of Lemma 4.1, we get P ≡ νm̃ (k[out n.P1 | P2] |

P3), P ′ ≡ k[P1 | P2] and P ′′ ≡ P3, for some P1, P2, P3 and k, where

n 6∈ m̃. Hence, we deduce that,

n[P] ≡ n[νm̃ (k[out n.P1 | P2] | P3)]

≡ νm̃ (n[k[out n.P1 | P2] | P3]) (Struct Res Amb)

(where it is assumed wlog that n 6∈ m̃)

By Red Out n[k[out n.P1 | P2] | P3]→ n[P3] | k[P1 | P2],

so νm̃ (n[k[out n.P1 | P2] | P3]) rewrites as follows:

→ νm̃ (n[P3] | k[P1 | P2]) (Red Res)

≡ νm̃ (n[P ′′] | k[P1 | P2]) (Struct Amb)

≡ νm̃ (n[P ′′] | P ′) (Struct Amb)

Now using rule Red≡ in Table 3.4, we obtain n[P]→ νm̃ (n[P ′′] | P ′)

and νm̃ (n[P ′′] | P ′) ≡ R, as equality is the subset of our congruence

(=⊂≡). Hence, the conclusion of the rule is valid, that is: n[P]→ R

as required.

ii. τ -Amb

Since n[P]
τ
→ R, for some process R is valid by the transition rule

τ -Amb in Table 4.3, we deduce that the premise P
τ
→ P ′ is valid for

some P ′. By τ -Amb the agent R = n[P ′]. Since P
τ
→ P ′ is valid,

so by the inductive hypothesis we get P → P ′. Since the reduction

Chapter 4. An LTS Based Operational Semantics of a Calculus of Mobility 68

P → P ′ is valid, so by reduction rule Red Amb in Table 3.4, we get

n[P]→ n[P ′]. Since R ≡ n[P ′] we obtain n[P]→ R as required.

(c) S = (νm)P , an ambient name m private in P .

In this case we show that

(νm)P
τ
→ R =⇒ (νm)P → R (4.5)

We assume (νm)P
τ
→ R.

The only transition rule that can be used to derive a transition of (νm)P

is λ-Res in Table 4.3. Since (νm)P
τ
→ R, for some process R is valid

by the transition rule λ-Res, we deduce that the premise P
τ
→ P ′ is

valid for some P ′. By λ-Res the agent R is of the form (νm)P ′, that is

R = (νm)P ′. Since P
τ
→ P ′ is valid, so by the inductive hypothesis we

get P → P ′. Since the reduction P → P ′ is valid, so by reduction rule

Red Res in Table 3.4, we get νmP → νmP ′. Since R ≡ νmP ′ we obtain

νmP → R as required.

(d) S = P | Q, parallel composition of the processes.

In this case we show

P | Q
τ
→ R =⇒ P | Q → R (4.6)

We assume P | Q
τ
→ R for some R.

There are only two transition rules λ-Par and τ -In in Tables 4.3 and 4.2,

that can be used to derive a τ -transition of P | Q. So, to apply each rule

separately, we divide this case into two sub-cases.

i. λ-Par

Since P | Q
τ
→ R is valid by λ-Par, we deduce that the premise of

the rule, namely P
τ
→ P ′ is valid for some P ′. By λ-Par, the agent

R is of the form P ′ | Q, namely R = P ′ | Q.

Since P
τ
→ P ′ is valid, so by inductive hypothesis we obtain P →

P ′.

Since the reduction P → P ′ is valid, so by reduction rule Red Par in

Table 3.4, we get P | Q→ P ′ | Q, where Q is given in the beginning

of this case. Since R = P ′ | Q we get P | Q→ R as required.

ii. τ -In

Since P | Q
τ
→ R is valid by τ -In rule, we deduce that the premises

of the rule are also valid. These premises are P
enter n
→ νp̃〈P ′〉P ′′, for

Chapter 4. An LTS Based Operational Semantics of a Calculus of Mobility 69

some P ′ and P ′′, and Q
move n
→ νq̃〈Q′〉Q′′, for some Q′ and Q′′. Here p̃

and q̃ are the sets of private ambient names in P and Q respectively,

and (fn(P ′) ∪ fn(P ′′)) ∩ {q̃} = (fn(Q′) ∪ fn(Q′′)) ∩ {p̃} = ∅. By τ -In

the agent R is of the form (νp̃)(νq̃)(n[P ′ | Q′] | P ′′ | Q′′), namely

R = (νp̃)(νq̃)(n[P ′ | Q′] | P ′′ | Q′′). Hence, the resulting transition is

P | Q
τ
→ (νp̃)(νq̃)(n[P ′ | Q′] | P ′′ | Q′′)

Now, by using Lemma 4.1 part 2, we obtain

P ≡ νp̃ (m[in n.P1 | P3] | P2), P
′ ≡ m[P1 | P3] and P ′′ ≡ P2

We further obtain by part 3 of Lemma 4.1

Q ≡ νq̃ (n[Q1 | Q3] | Q2), Q′ ≡ Q1 | Q3 and Q′′ ≡ Q2 Hence, we

deduce that

P | Q ≡ νp̃ (m[in n.P1 | P3] | P2) | νq̃ (n[Q1 | Q3] | Q2)

Since members of q̃ are not free names in νp̃ (m[in n.P1 | P3] | P2),

and members of p̃ are not free names in (n[Q1 | Q3] | Q2), we obtain

P | Q ≡ νq̃(νp̃ (m[in n.P1 | P3] | P2) | (n[Q1] | Q2)) (Struct Res Par)

≡ νq̃((n[Q1] | Q2) | νp̃ (m[in n.P1 | P3] | P2)) (Struct Par Comm)

≡ νq̃(νp̃(n[Q1] | Q2 | m[in n.P1 | P3] | P2)) (Struct Res Par)

≡ νq̃(νp̃(n[Q1] | m[in n.P1 | P3] | Q2 | P2)) (Struct Res Par)

≡ νq̃(νp̃(n[Q1] | m[in n.P1 | P3] | P2 | Q2)) (Struct Res Par)

≡ νq̃(νp̃(m[in n.P1 | P3] | n[Q1] | P2 | Q2)) (Struct Res Par)

→ νp̃ νq̃ (n[m[P1 | P3] | Q1] | P2 | Q2) (Red In)

≡ νp̃ νq̃ (n[P ′ | Q′] | P ′′ | Q′′)

Now using the structural congruence rule Red≡ in Table 3.4, we obtain

P | Q→ νp̃ νq̃ (n[P ′ | Q′] | P ′′ | Q′′)

and R ≡ νp̃ νq̃ (n[P ′ | Q′] | P ′′ | Q′′), as equality is the subset of our

congruence (=⊂≡). Hence, P | Q→ R as required.

Chapter 4. An LTS Based Operational Semantics of a Calculus of Mobility 70

4.3 Conclusion

In this chapter we have presented a new transition semantics for the Calculus of Mo-

bility defined in the previous chapter. The operational semantics given in Chapter 3

is not complete for certain unusual cases where ambients with the same name intend

to perform in or out capabilities. SOS rules developed in previous chapter do not

have the ability to distinguish between the ambients with same name performing

the identical capabilities. Such problems have been resolved in this chapter by using

concretions νm̃〈P 〉Q in our SOS rules. We then have showed that the transition

semantics of CM is sound and complete with respect to the standard reduction se-

mantics. In the next chapter we will add a new form of global communication to

CM.

Chapter 5

The Calculus of Mobility and

Communication

In this chapter we introduce the Calculus of Mobility and Communication (CMC)

for the modelling of mobile agents that may communicate globally in the setting of

ubiquitous and mobile computing. The mobility feature of the calculus is modelled

using in and out capabilities of Cardelli and Gordon’s MA [11, 10]. We introduce

a new form of global communication in CMC inspired by Milner’s CCS [43]. The

usefulness of the calculus is illustrated by two case studies and a number of small

examples. The first case study illustrates the usefulness of the calculus by calculating

a path between two locations, and allowing the mobile ambient to navigate from

one location to another inside a building. The second case study enables services

to follow ambients in an intelligent hospital setting. A new notion of behavioural

equivalence is introduced by defining two forms of barbs; one for ambients and

another for ambients’ capabilities. We prove that the congruence relations of the

two forms of barbs agree.

The inspiration for this work comes from several mobile ambient and process

calculi based on MA that have proved useful in the modelling of mobility, communi-

cation and concurrent systems. The calculus of Mobile Ambients and its variants do

not support a direct interaction of an agent with a subagent inside another agent.

Communication can only happen between the two adjacent agents, namely commu-

nication between parent and child or between siblings.

In ubiquitous computing settings it is beneficial to model interactions among

agents that communicate globally. Communication in such settings could be global,

which means that agents may interact with subagents inside other agents. For ex-

ample, consider an agent server that instructs a mobile ambient client to move from

location m to n inside a building. We assume that client receives information from

Chapter 5. The Calculus of Mobility and Communication 72

server via a mobile device dev. Such a setting is represented as follows:

server Ps | building m client dev Pd | Pc | Pm | n Pn

Then after receiving a message from server, client physically moves from m to

n holding dev. The new setting is

server Ps | building m Pm | n client dev Pd | Pc | Pn

Mobility, locations and global communication are the main features in such exam-

ples. Therefore, in order to model locations and mobility, MA is a suitable calculus.

MA helps in modelling both mobile physical mobility of devices as well as logical

mobility where code moves between devices. Ambients’ open capability in combi-

nation with in and out capabilities models local communication between agents. In

CMC we introduce a new form of direct and global communication so we drop the

open capability. Recently, a number of variants of MA have been introduced. In

particular Boxed Ambients, BA for short, [6] inherits mobility primitives, namely

in and out capabilities from MA and drops open capability to avoid certain risks.

BA proposes a new communication mechanism where the additional communica-

tion primitives complement the existing constructs of MA in an effective manner.

Several variants of BA have been introduced in order to improve the existing cal-

culus. For example, Safe Boxed Ambients [41] uses ambients co-capabilities that

help in controlling ambients access across the boundaries. Channel Ambients [53] is

an extension of BA where ambients are allowed to move in and out over channels.

Our definition of ambient is different from the ambients calculi discussed above. We

extend the syntax of CM by introducing a new set of ports/channels A to ambient

structure which shall be useful for the new form of global communication among

agents. The ambients calculi discussed above do not support a direct interaction of

an agent with a subagent inside another agent. Communication can only happen

between the two adjacent agents, namely communication between parent and child

or between siblings. We introduce a direct method of communication in CMC, as

in Milner’s CCS. To achieve this we extend the syntax of MA by introducing a new

set of port names A to ambient structure. We define ambients mA[P], where m is

the name of the ambient, A is the set of ports that m is allowed to communicate

on, and P is an executing agent.

In past few years, several operational semantics have been developed for Mo-

bile Ambients and its variants as, for example, in [36, 37, 40, 38]. The authors

Chapter 5. The Calculus of Mobility and Communication 73

Names : mA, nB, kC ... ∈ N
Actions : α, β, ... ∈ Act = A∪A ∪ {τ}
V ariables : x, y, ... ∈ X

Processes : P,Q ::= D | C.P | a(z).P | a(x).P

| mA[P] | P +Q | P | Q | (νmA)P

| (νl)P | P [f]

Capabilities : C ::= x | µ | ǫ | C.C ′

Table 5.1: Syntax of CMC

in [36, 37] introduce a label transition system based operational semantics, and a

labelled bisimulation equivalence which is proved to coincide with reduction barbed

congruence. We also develop a new notion of behavioural equivalence for CMC,

and formulate the equivalence in terms of α-transitions and observation predicate,

inspired by [11, 36, 37].

The chapter is organised as follows. We introduce CMC in Section 5.1. A labelled

transition semantics for CMC is given in Section 5.2. Section 5.3 presents two case

studies that illustrate the usefulness of CMC. In Section 5.4 we develop behavioural

semantics for CMC and Section 5.5 contains conclusions.

5.1 The Syntax of CMC

The syntax of CMC is given in Tables 5.1 and 5.2. In CMC we use the syntax of

both CM as discussed in Chapters 3 and 4, and the syntax of Milner’s CCS [43].

We assume that A is an infinite set of port names, which is ranged over by a, b, c,

and the set of co-names, denoted by A is ranged over by a, b, c. We set L = A ∪A

and we let A,B,C range over it. An infinite set Act comprises all possible actions

that an agent can perform and α, β range over it. Act also includes τ , which is a

single completed action of composite agents. So Act = L ∪ {τ}, and the typical

subsets of α are A,B. The set of agent constants K is ranged over by D and E, and

the deadlocked agent 0 is a member of K. In our syntax the variable z in a(z).P and

in a(z).P can be replaced by a value from a set V, which may contain the capabilities

as defined in Table 5.1.

We further assume an infinite set of ambient names N that is ranged over by

mA, nB and kC , where A,B,C ⊆ A∪A. Ambients are terms mA[P], where m is the

name of the ambient, A is the set of ports that ambient m is allowed to communicate

Chapter 5. The Calculus of Mobility and Communication 74

Ambient Prefixes : µ ::= in nB | out nB

Action Prefixes : α ::= a(z) | b(z) | τ

Ambient Action : λ ::= enter nB | move nB

| exit nB | µ

Labels : ℓ ::= µ | α
| λ | τ

Outcomes : O ::= P | K
Concretions : K ::= (νm̃)〈P 〉Q

Table 5.2: Prefixes, labels, concretions and outcomes

on, and P is an executing agent. When ambients allow communication on all visible

ports then we shall write m[P] instead of mA[P]. Other ambient constructs that

are inherited from MA are (νmA)P , C.P and C.C ′. An ambient restriction (νmA)P

executes process P with a private ambient named mA. In C.P , the process P cannot

start execution until the prefix capability C is performed. The capability µ in Tables

5.1 and 5.2 allows ambients to perform certain actions, namely in nB and out nB,

for some B, whereas C.C ′ represents a sequence of capabilities (path) when input

variable represents one or more of these capabilities. The empty path is represented

by ǫ.

We further borrow the constructs for agent constants, action prefixing, parallel

composition, summation and action restriction from Milner’s CCS or the π-calculus

[43, 44]. The agent constant D has a unique equation of the form D
def
= P where

P is an agent that may contain agent constants. The agent constants can also be

defined in terms of each other. a(x) and a(z).P sends or receives a message on port

a and a respectively, and then execute P . The received message can be any value

v ∈ V , and is bound to the variable z in P . Parallel composition is given in terms

of a binary operator, P | Q, and summation is given by the choice operator P + Q

that allows either process P or process Q to execute. In (νl)P the port labels l or

l are restricted in P , where l ∈ L. In a relabelling P [f], P is a process with the

relabelling function f applied to its action labels. Finally, we have the set of terms

T (Σ, V), where V is the set of process variables, and T (Σ), the set of closed terms

(agents or processes) ranged over by P,Q.

Free names (revisions and additions)

The addition of communication mechanism changes the ambient definition tomA[P],

where we tag ambient m with a set of ports A. We also add new communication

primitives, and therefore revise the definition of free names as given in Table 5.3.

Chapter 5. The Calculus of Mobility and Communication 75

fn(0)
def
= ∅

fn(C.P)
def
= fn(C) ∪ fn(P)

fn(a(z).P)
def
= fn(P) ∪ {a}

fn(b(z).P)
def
= fn(P) ∪ {b}

fn(mA[P])
def
= {m} ∪A ∪ fn(P)

fn(P | Q)
def
= fn(P) ∪ fn(Q)

fn((νl(P)))
def
= fn(P)− fn{l} (l ∈ L)

fn(νmA(P))
def
= fn(P)− ({m} ∪ A)

fn(P [f])
def
= f(fn(P))

fn(x)
def
= ∅

fn(in nB)
def
= {n} ∪ B

fn(out nB)
def
= {n} ∪ B

fn(ǫ)
def
= ∅

fn(C.C ′)
def
= fn(C) ∪ fn(C ′)

Table 5.3: Free names

5.1.1 Reduction Semantics of CMC

The reduction semantics is formalised by two concepts: the structural congruence

relation, ≡, and the reduction relation →. We follow the definitions in [37].

Definition 5.1. A relation R over processes in a process calculus is contextual if it

is preserved by all the operators in the process calculus.

Definition 5.2. A relation R over processes in a process calculus is partially con-

textual, or p-contextual, w.r.t a set of operators Op if it is preserved by all the

operators in the set Op.

The relation ≡, in Definition 3.2, is contextual for CM since it satisfies axioms

4, 5, 7, 8 in Table 5.4 for the four of its operators. However, ≡ is not contextual for

CMC since it doesn’t satisfy the axiom P ≡ Q infer P + R ≡ Q + R. So, we need

to define when only some operators of a process calculus preserve a relation R.

Definition 5.3. Structural Congruence, ≡, over CMC processes is the least p-

contextual equivalence relation w.r.t the set of operatorsOp1 = {ν, |, [f], nA[], C., α.}

Chapter 5. The Calculus of Mobility and Communication 76

that satisfies the axioms:

P | Q ≡ Q | P (Struct Par Comm)

(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)

P | 0 ≡ P (Struct Zero Par)

P +Q ≡ Q+ P (Struct Sum Comm)

(P +Q) +R ≡ P + (Q+R) (Struct Sum Assoc)

P + 0 ≡ P (Struct Zero Identity)

(νn)(P | Q) ≡ P | (νn)Q if n /∈ fn(P) (Struct Res Par)

(νnB)(mA[P]) ≡ mA[(νnB)P] if n 6= m (Struct Res Amb)

(νn)(νm)P ≡ (νm)(νn)P (Struct Res Res)

(νn)0 ≡ 0 (Struct Zero Res)

A ≡ P if A
def
= P (Struct Const)

ǫ.P ≡ P (Epsilon)

By this definition we get the axioms and the rules for ≡ in Table 5.4.

Definition 5.4. Reduction relation,→, over CMC processes is the least p-contextual

relation w.r.t the set of operators Op2 = {ν, |, nA[]} that satisfies the rule and ax-

ioms in Table 5.5.

mA[in nB.P | Q] | nB[R]→ nB[mA[P | Q] | R] (Red In)

nB[mA[out nB.P | Q] | R]→ mA[P | Q] | nB[R] (Red Out)

P ≡ Q, Q→ Q′, Q′ ≡ P ′ ⇒ P → P ′ (Red ≡)

Table 5.5: Reduction rules

By this definition we get the axioms and rules for →, same as in Table 3.4.

5.2 Transition Semantics for CMC

The labelled transition system for CMC is given as follows: The set of CMC processes

is the set of states, the set of labels α as in Table 5.2 is the set of transition labels,

and the transition relations
α
→ are defined by Plotkin’s SOS [55] rules in Tables

5.7 and 5.8. These rules are the same as in Chapter 4. In our semantics P
τ
→ Q

represents not only binary communication of processes as in CCS but also mobility

of ambients by means of their in nB and out nB capabilities. In order to model

Chapter 5. The Calculus of Mobility and Communication 77

P ≡ P (Struct Refl) (1)
P ≡ Q⇒ Q ≡ P (Struct Symm) (2)
P ≡ Q,Q ≡ R⇒ P ≡ R (Struct Trans) (3)

P ≡ Q⇒ (νn)P ≡ (νn)Q (Struct Res) (4)
P ≡ Q⇒ P | R ≡ Q | R (Struct Par) (5)
P ≡ Q⇒ P [f] ≡ Q[f] (Struct Rel) (6)
P ≡ Q⇒ nA[P] ≡ nA[Q] (Struct Amb) (7)
P ≡ Q⇒ C.P ≡ C.Q (Struct Capability) (8)
P ≡ Q⇒ α.P ≡ α.Q (Struct Action) (9)

P | Q ≡ Q | P (Struct Par Comm) (10)
P +Q ≡ Q+ P (Struct Sum Comm) (11)
(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc) (12)
(P +Q) +R ≡ P + (Q+R) (Struct Sum Assoc) (13)

P + 0 ≡ P (Struct Zero Identity) (14)
P | 0 ≡ P (Struct Zero Par) (15)

(νn)(νm)P ≡ (νm)(νn)P (Struct Res Res) (16)
(νn)0 ≡ 0 (Struct Zero Res) (17)

(νn)(P | Q) ≡ P | (νn)Q if n /∈ fn(P) (Struct Res Par) (18)
(νnB)(mA[P]) ≡ mA[(νnB)P] if n 6= m (Struct Res Amb) (19)

A ≡ P if A
def
= P (Struct Const def) (20)

ǫ.P ≡ P (Epsilon) (21)

Table 5.4: Structural Congruence

mobility by τ -transitions additional labels and auxiliary terms are used, namely

labels λ and concretions K as discussed in Section 4.1.

Communication in CMC is defined as in CCS, so in addition to the SOS rules in

Tables 5.7 and 5.8, we have the SOS rules for the communication part of CMC in

Table 5.6, as discussed in Section 2.1.1.

Chapter 5. The Calculus of Mobility and Communication 78

(Input) (v ∈ V)
a(z).P

a(v)
→ P{v/z}

(Output)
a(x).P

a(x)
→ P

P
α
→ P ′

(Res-Act) (a /∈ fn(α))
(νa)P

α
→ (νa)P ′

(Sum)
P

α
→ P ′

P +Q
α
→ P ′

P
a(x)
→ P ′ Q

a(x)
→ Q′

(Par-Com)
P | Q

τ
→ P ′ | Q′

(Par-Act)
P

α
→ P ′

P | Q
α
→ P ′ | Q

(Rel)
P

α
→ P ′

P [f]
f(α)
→ P ′[f]

(Const)
P

α
→ P ′

A
α
→ P ′

(A
def
= P)

P ≡ Q Q
l
→ Q′ Q′ ≡ P ′

(Struct)
P

l
→ P ′

P
α
→ P ′

(Global-Com) (if (α = a(x) or α = a(x)) then a ∈ A)
mA[P]

α
→ mA[P

′]

Table 5.6: Transition rules for communication

The SOS rules in Table 5.6 are similar to those in [43], except that we have an

additional Global-Com rule that allows ambients to communicate globally only on

ports a ∈ A. Recall that when ambients allow communication on all visible channels

then we write m[P] instead of mA[P].

P
λ
→ O(λ-Par) (∗)

P | Q
λ
→ O | Q

P
λ
→ O(λ-Res) (u /∈ fn(λ)) (∗)

(νu)P
λ
→ (νu)O

P
τ
→ P ′

(τ -Amb)
nA[P]

τ
→ nA[P

′]

P ≡ Q Q
ℓ
→ Q′ Q′ ≡ P ′

(Struct)
P

ℓ
→ P ′

The definition of λ is extended to include also a τ .

Table 5.8: Transition rules for other operators of CMC

5.3 Applications of CMC

In this section we present two case studies that illustrate the usefulness of CMC. In

the first case study, a system calculates a path between two locations which is later

Chapter 5. The Calculus of Mobility and Communication 79

(Act)
µ.P

µ
→ P

(Enter)
P

in nB→ P ′

mA[P]
enter nB→ 〈mA[P ′]〉0

(Co-Enter)
nB[P]

move nB→ 〈P 〉0

(τ -In)
P

enter nB→ (νp̃)〈P ′〉P ′′ Q
move nB→ (νq̃)〈Q′〉Q′′

P | Q
τ
→ (νp̃)(νq̃)(nB[P ′ | Q′] | P ′′ | Q′′)

(∗)

(Exit)
P

out nB→ P ′

mA[P]
exit nB→ 〈mA[P ′]〉0

(τ -Out)
P

exit nB→ (νm̃)〈P ′〉P ′′

nB[P]
τ
→ (νm̃)(P ′ | nB[P ′′])

(∗∗)

(∗)(fn(P ′) ∪ fn(P ′′)) ∩ q̃ = (fn(Q′) ∪ fn(Q′′)) ∩ p̃ = ∅.

(∗∗)(fn(P ′) ∪ fn(P ′′)) ∩ m̃ = ∅.

Table 5.7: Transition rules for mobility

sent to a mobile agent to relocate from a source location to some target location. The

second case study shows that services follow a mobile ambient, namely we consider

an intelligent hospital setting where a doctor moves around a building and receives

services on the appropriate screens located in the building.

5.3.1 Calculating Path Between Two Locations

We assume a system sys that takes the source and target locations, and calculates a

path between the two locations. Next, the system outputs the path as a message to

the moving ambient. The path is a sequence of capabilities which allow the ambient

to move from the source location to the destination location. We assume a setting

ν abc (sys[a(n).b(x, y).c(path(T, x, y))] | k[m1[mA[a(u).b(m1, u).c(z).z.0]] | n1[n[0]]])

The graphical representation of the above expression is given in Figure 5.1.

sys

mA n

n1

k

m1

Figure 5.1: Path: source tree

Chapter 5. The Calculus of Mobility and Communication 80

In this figure, ambient k is a building with three rooms m1, n1 and n, where n

is inside n1, and a, b, c ∈ A. The ambient mA for some A, is a moving agent. We

assume an independent system sys that informs mA to move from its current loca-

tion m1 to n. The above given expression shows the sequence of actions between the

system sys and the moving ambient mA. The interaction steps between the agents

are:

• a(n): The system sys sends the target location n on a.

• a(u): The moving agent mA is ready to receive a value on port a, in this case

it receives the target location n.

• b(m1, u): mA sends the source and target locations on b.

• b(x, y): The system sys is ready to receive the two values, in this case m1 and

n as source and target locations respectively.

• path(T, x, y) is a function that calculates a path between the source node x

and the target node y in a given tree T .

• c(path(T, x, y)): Using path(T, x, y) the system calculates a path between the

source and the target values received and delivers it to mA on c.

• c(z).z.0: The agent mA receives a value on port c and binds it to variable

z. In this particular case the value received is the sequence of capabilities

representing the path between the source and the target ambients.

We have defined several functions (as given in Appendix A) that are used to

calculate a path between two locations. The general expression to calculate a path

from a source location s to a target location t in a tree T is as follows:

path(T, s, t)
def
=

Sequence(Moves(Join(Path(s, T), Path(t, T), Index(Path(s, T), Path(t, T)))))

In this example the path from m1 to n is out m1.in n1.in n. The sequence of tran-

sitions that completes the communication between the two agents is:

νabc(sys[a(n).b(x, y).c(path(T, x, y))] | k[m1[mA[a(u).b(m1, u).c(y).y.0]] | n1[n[0]]])
τ
→

νabc(sys[b(x, y).c(path(T, x, y))] | k[m1[mA[b(m1, n).c(y).y.0]] | n1[n[0]]])
τ
→

νabc(sys[c(path(T,m1, n))] | k[m1[mA[c(y).y.0]] | n1[n[0]]])
τ
→

νabc(sys[0] | k[m1[mA[out m1.in n1.in n.0]] | n1[n[0]]]).

Chapter 5. The Calculus of Mobility and Communication 81

The last expression contains a sequence of ambient capabilities. The ambient mA

moves from m1 to n by out m1.in n1.in n as shown by the following transitions:

νabc(sys[0] | k[m1[mA[out m1.in n1.in n.0]] | n1[n[0]]])
τ
→

νabc(sys[0] | k[m1[0] | mA[in n1.in n.0] | n1[n[0]]])
τ
→

νabc(sys[0] | k[m1[0] | n1[mA[in n.0] | n[0]]])
τ
→

νabc(sys[0] | k[m1[0] | n1[n[mA[0] | 0]]]).

The final setting is given in Figure 5.2.

sys

mA

n

n1

k

m1

Figure 5.2: Path: target tree

5.3.2 Services Follow Doctor

This section presents a scenario where services follow a doctor. We consider a

hospital setting, where doctor moves around the building and deals with patients.

While dealing with patients, he may need to use information displayed on the screens

that are fixed around the building. The doctor can only read the information on an

appropriate screen. We assume that an independent server communicates globally

with the doctor and with the screens around the building. The server supplies the

services to a screen provided that the doctor is in the same room as the screen.

In this scenario an ambient k represents the building. The ambient k contains

ambients drK and wL which represent the doctor’s room and the ward respectively.

K and L are sets of communication ports, where b, c1 ∈ K and b, c2 ∈ L. This

means that the ambient drK can communicate at least on ports a and c1 and the

ambient wL can communicate at least on ports a and c2. Furthermore, there are

two fixed screens scrA1 and scrA2 in drK and wL respectively. A1 and A2 are the

sets of communication ports, where c1 ∈ A1 and c2 ∈ A2, but c1 6∈ A2 and c2 6∈ A1.

Finally, the doctor is represented as an ambient dB for some B with a, b ∈ B.

Initially, the ambient dB is in the doctor’s room drK and is using services on the

Chapter 5. The Calculus of Mobility and Communication 82

screen scrA1 . He then moves to the ward wL and continues using the previously left

services on the screen scrA2 in wL. The graphical representation of our setting is

given in Figure 5.3. The ambients are represented by boxes, whereas dashed lines

represent the communication channels.

k

s
drK wL

d scrA1
scrA2

c1

c2

a

b

Figure 5.3: Hospital setting: services follow doctor

Next, we show communication among the four agents, namely the doctor, the

two screens, and the server. The agents are defined as follows:

Agents Server and S are as follows, where l is a finite sequence of values

v1, v2, ..., vk for some k:

Server(v : l)
def
= b(x). if (x = drK then c1(v).Server(l)

else if x = wL then c2(v).Server(l) else Server(v : l))

Server(ǫ)
def
= 0 S

def
= s[Server(l)]

Agents Screenm and Scrm for m ∈ {1, 2}, are defined as follows:

Screenm
def
= cm(x).a(x).Screenm Scrm

def
= scrAm

[Screenm]

The agent ScrAm
receives an input x from the server on cm and outputs x on a.

Since a ∈ B, the agent Doc, defined below, is able to view x via port a.

Finally, we define agents Doctor and Doc as follows:

Chapter 5. The Calculus of Mobility and Communication 83

Doctor(p, l)
def
= b(p).a(x1).Doctor(p, x1 : l)

Doctor(p, x1 : l)
def
= b(p).a(x2).Doctor(p, x2 : x1 : l)

+ out p.b(k).in r.b(r).a(x2).Doctor(r, x2 : x1 : l)

if (p, r ∈ {drK , wL} and r 6= p)

Doc
def
= dB[Doctor(drK , ǫ)]

We use p to represent the initial location of Doc, here p = drK . He receives the first

piece of information via port a in drK . Now there are two possibilities, either to

receive the second piece of information or move out of drK and view the remaining

information on scrA2 in wL. When Doc leaves p by performing out p capability,

his new location becomes k. He now may enter r by in r, and send his location to

Server. In this particular situation, r = wL since r 6= p and p = drK .

The hospital setting is represented by the parallel composition of the server and

the building, which contains doctor’s room, ward, the doctor and two screens as

follows:

S | k[drK [Doc | Scr1] | wL[Scr2]]

For simplicity we assume that the server S sends two values, namely l = v2 : v1 : ǫ

for some v1, v2. Initially Doc is in drK and S wants to send the values v1 and v2 to

Doc via either Scr1 or Scr2. There are two possible sequences of execution of this

setting.

(i)
τb(dr)
−→

τc1(v1)−→
τa(v1)−→

τb(dr)
−→

τc1(v2)−→
τa(v2)−→

(ii)
τb(dr)
−→

τc1(v1)−→
τa(v1)−→

τout−→
τb(k)
−→

τin−→
τb(w)
−→

τc2(v2)−→
τa(v2)−→

In the first sequence, Doc sends its location drK to S on port b, the server in

response sends v1 to Scr1 on port c1, and then Doc views v1 via port a. He then waits

for v2 via the same port after sending his current location to S. These interactions

are indicated by appropriate labels that annotate the τs of this sequence.

In the second case Doc sends its location drK to S on port b, the server in

response sends v1 to Scr1 on port c1, after viewing v1 via port a Doc leaves the

drK and enters the ward by its out drK and in wL capabilities. It sends its current

location to S on port b after executing every move capability. The server in response

sends v2 to the Scr2 on port c2, and then the screen displays v2 to Doc on port a.

The possible interaction steps among the above given agents are as follows:

b(p): The agent Doc sends p as its current location to the server s via b. In this

Chapter 5. The Calculus of Mobility and Communication 84

particular case, p = drK .

b(x): Server S is ready to receive a value at port b.

c1(v).Servern(l): The server S outputs a value v to a screen. Since we assumed

p = drK , so S sends the value to Scr1 via c1, whereas c1(x1) shows that

Scr1 is ready to receive the value on c1.

a(x1): Now Scr1 displays the value at port a, and a(x1) shows that Doc is ready

to view it at the same port.

Once Doc receives v, there are two possible sequences of execution of this set-

ting. The choice operator “+” allows the agent Doc to either read the remaining

information on the same screen or to leave drK by its capability out drK . As we have

assumed earlier thatDoc moves to the ward wL and reads the remaining information

on the screen there, so the interaction steps are:

out p.b(k): The ambient dB leaves the doctor room drK by out p, where p = drK ,

and sends its new location k to S.

in r.b(w): Now dB enters the ward wL by its capability in r, where r = wL since

r 6= p and p = drK , and sends its new location wL to S.

c2(v).Servern(l): Once the server receives wL, it sends a value at c2, whereas,

c2(x2).a(x2) shows that Scr2 is ready to receive the value from S at c2, and

display via a.

a(x2): Finally, Doc reads the information via a.

Chapter 5. The Calculus of Mobility and Communication 85

The sequence (ii) of τ -transitions is as follows:

νabc1c2(s[b(x). if (x = drK then c1(v1).Server(v2 : ǫ) else if x = wL then c2(v2).

Server(ǫ) else Server(v1 : v2 : ǫ))] | k[drK [dB[b(drK).a(x1).(b(drK).a(x2).

Doctor(x2 : x1 : ǫ) + out drK .b(k).in wL.b(wL).a(x3).Doctor(x3 : x1 : ǫ))] |

scrA1[c1(x1).a(x1).Screen1]] | wL[scrA2 [c2(x2).a(x2).Screen2]]])
τ
→

νabc1c2(s[if (drK = drK then c1(v1).Server(v2 : ǫ) else if drK = wL then c2(v2).

Server(ǫ) else Server(v1 : v2 : ǫ))] | k[drK [dB[a(x1).(b(drK).a(x2).

Doctor(x2 : x1 : ǫ) + out drK .b(k).in wL.b(wL).a(x3).Doctor(x3 : x1 : ǫ))] |

scrA1[c1(x1).a(x1).Screen1]] | wL[scrA2 [c2(x2).a(x2).Screen2]]])
τ
→≡

νabc1c2(s[b(x). if (x = drK then c1(v2).Server(ǫ) else if x = wL then c2(v2).

Server(ǫ) else Server(v2 : ǫ))] | k[drK [dB[a(x1).(b(drK).a(x2).Doctor(x2 : x1 : ǫ)

+ out drK .b(k).in wL.b(wL).a(x3).Doctor(x3 : x1 : ǫ))] | scrA1[a(v1).Screen1]] |

wL[scrA2[c2(x2).a(x2).Screen2]]])
τ
→

νabc1c2(s[b(x). if (x = drK then c1(v2).Server(ǫ) else if x = wL then c2(v2).

Server(ǫ) else Server(v2 : ǫ))] | k[drK [dB[(b(drK).a(x2).Doctor(x2 : v1 : ǫ)

+ out drK .b(k).in wL.b(wL).a(x3).Doctor(x3 : v1 : ǫ))] | scrA1[Screen1]] |

wL[scrA2[c2(x2).a(x2).Screen2]]])

Here, Doc has received v1, he then next leaves drK by out drK and enters wL by

in wL and receives v2 via Scr2 there. We show all possible transitions in Figure

5.4 and define agents’ states in Table 5.9 in terms of CCS expressions. We show

the resulting transitions where Doc moves towards wL and continues reading the

Chapter 5. The Calculus of Mobility and Communication 86

remaining information as follows:

νabc1c2(s[b(x). if (x = drK then c1(v2).Server(ǫ) else if x = wL then c2(v2).

Server(ǫ) else Server(v2 : ǫ))] | k[drK [dB[(b(drK).a(x2).Doctor(x2 : v1 : ǫ)

+ out drK .b(k).in wL.b(wL).a(x3).Doctor(x3 : v1 : ǫ))] | scrA1[Screen1]] |

wL[scrA2 [c2(x2).a(x2).Screen2]]])
τ
→

νabc1c2(s[b(x). if (x = drK then c1(v2).Server(ǫ) else if x = wL then c2(v2).

Server(ǫ) else Server(v2 : ǫ))] | k[drK [scrA1[Screen1]] | dB[b(k).in wL.

b(wL).a(x3).Doctor(x3 : v1 : ǫ))] | wL[scrA2[c2(x2).a(x2).Screen2]]])
τ
→

νabc1c2(s[if (k = drK then c1(v2).Server(ǫ) else if k = wL then c2(v2).Server(ǫ)

else Server(v2 : ǫ))] | k[drK [scrA1 [Screen1]] | dB[in wL.b(wL).a(x3).

Doctor(x3 : v1 : ǫ))] | wL[scrA2 [c2(x2).a(x2).Screen2]]])
τ
→≡

νabc1c2(s[b(x). if (x = drK then c1(v2).Server(ǫ) else if x = wL then c2(v2).

Server(ǫ) else Server(v2 : ǫ))] | k[drK [scrA1[Screen1]] | wL[dB[b(wL).a(x3).

Doctor(x3 : v1 : ǫ))] | scrA2 [c2(x2).a(x2).Screen2]]])
τ
→

νabc1c2(s[if (wL = drK then c1(v2).Server(ǫ) else if wL = wL then c2(v2).Server(ǫ)

else Server(v2 : ǫ))] | k[drK [scrA1 [Screen1]] | wL[dB[a(x3).Doctor(x3 : v1 : ǫ))]

| scrA2[c2(x2).a(x2).Screen2]]])
τ
→

νabc1c2(s[Server(ǫ)] | k[drK [scrA1 [Screen1]] | wL[dB[a(x3).Doctor(x3 : v1 : ǫ))]

| scrA2[a(v2).Screen2]]])
τ
→

νabc1c2(s[Server(ǫ)] | k[drK [scrA1 [Screen1]] | wL[dB[Doctor(v2 : v1 : ǫ))]

| scrA2[Screen2]]]).

The CCS expressions representing various states of the four agents, the doctor,

the server and the two screens, are defined in Table 5.9.

Chapter 5. The Calculus of Mobility and Communication 87

Doctor(ǫ)
def
= b(dr).Doctor1(ǫ)

Doctor1(ǫ)
def
= a(v1).Doctor2(v1 : ǫ)

Doctor2(v1 : ǫ)
def
= b(dr).Doctor8(v1 : ǫ) + out dr.Doctor3(v1 : ǫ)

Doctor8(v1 : ǫ)
def
= a(v2).Doctor7′(v2 : v1 : ǫ)

Doctor3(v1 : ǫ)
def
= b(k).Doctor4(v1 : ǫ)

Doctor4(v1 : ǫ)
def
= in w.Doctor5(v1 : ǫ)

Doctor5(v1 : ǫ)
def
= b(w).Doctor6(v1 : ǫ)

Doctor6(v1 : ǫ)
def
= a(v2).Doctor7(v2 : v1 : ǫ)

Screen1
def
= c1(x).Screen

′
1

Screen′
1

def
= a(x).Screen1

Screen2
def
= c2(x).Screen

′
2

Screen′
2

def
= a(x).Screen2

S(v1 : v2 : ǫ)
def
= b(dr).S1(v1 : v2 : ǫ)

S1(v1 : v2 : ǫ)
def
= c1(v1).S2(v2 : ǫ)

S2(v2 : ǫ)
def
= b(dr).S3(v2 : ǫ) + b(k).S3′(v2 : ǫ)

S3(v2 : ǫ)
def
= c1(v2).S4(ǫ)

S3′(v2 : ǫ)
def
= b(w).S3′′(v2 : ǫ)

S3′′(v2 : ǫ)
def
= c2(v2).S4

′(ǫ)

Table 5.9: CCS expressions for doctor, server and screens

Chapter 5. The Calculus of Mobility and Communication 88

(ν abc1c2)(S | k[drK [dB[Doctor] | Scr1] | wL[Scr2]])

(ν abc1c2)(S1 | k[drK [dB[Doctor1] | Scr1] | wL[Scr2]])

τb(dr)

(ν abc1c2)(S2 | k[drK [dB[Doctor1] | Scr′1] | wL[Scr2]])

τc1(v1)

(ν abc1c2)(S2 | k[drK [dB[Doctor2] | Scr1] | wL[Scr2]])

τa(v1)

(ν abc1c2)(S3 | k[drK [

dB[Doctor8] | Scr1] | wL[Scr2]])

(ν abc1c2)(S2 | k[drK [Scr1]

| dB[Doctor3] | wL[Scr2]])

τout

(ν abc1c2)(S3
′ | k[drK [Scr1]

| wL[dB[Doctor5] | Scr2]])

τin

(ν abc1c2)(S3
′ | k[drK [Scr1]

| dB[Doctor4] | wL[Scr2]])

(ν abc1c2)(S3
′′ | k[drK [Scr1]

| wL[dB[Doctor6] | Scr2]])

(ν abc1c2)(S4
′ | k[drK [Scr1]

| wL[dB[Doctor6] | Scr′2]])

(ν abc1c2)(S4
′ | k[drK [Scr1]

| wL[dB[Doctor7] | Scr2]])

τb(dr)

(ν abc1c2)(S4 | k[drK [dB[Doctor8]
| Scr′1] | wL[Scr2]])

τc1(v2)

(ν abc1c2)(S4 | k[drK [dB[Doctor7′]

| Scr1] | wL[Scr2]])

τa(v2)

τb(k)

τb(w)

τc2(v2)
τa(v2)

Figure 5.4: Services follow doctor: transition diagram

This case study clearly illustrates the expressiveness of the calculus in the given

problem domain, where the primitives for mobility and communication are quite

relevant. Agents’ mobility and global communication features are modelled in a

scenario where services follow mobile ambients, and server supplies services globally

Chapter 5. The Calculus of Mobility and Communication 89

to appropriate device provided that the receiving ambient is at the same location as

the device.

Initially, the agent Doc globally communicates with S and then S interacts glob-

ally with Scr1 at location drK . The agent Doc receives one part of the information

via a in the doctor room drK on screen scrA1. Here, we intuitively move Doc from

drK to the ward wL to show the continuation of the services from the point it was

left previously. Now S sends the remaining part of information to Doc on Scr2

which is inside wL. The transition system representing the above scenario is given

in Figure 5.4.

5.4 Behavioural Semantics

In this section we develop an appropriate notion of behavioural equivalence for

CMC. All processes and context mentioned in this section are from our calcu-

lus CMC. We formulate the equivalence in terms of α-transitions (
α
−→), for α ∈

a(z), b(z), in mA, out mA, τ , as usual, for all a, b,m,A, and observation predicate as

in [11, 37]. In MA observation predicate is used to detect the presence of top-level

ambient. We write P ↓nA
to denote the presence of ambient nA at the top level,

in the other words process P may interact with the environment via nA. We write

P ⇓nA
, if after some number of τ -transitions, the process P exhibits nA at the top

level. The two predicates are defined as follows:

P ↓ nA

def
= P ≡ νm̃(nA[P1] | P2), where nA 6∈ m̃ for someP1, P2

P ⇓ nA

def
= P

τ̂
⇒ Q and Q ↓nA

for some Q

A relation R over process P,Q is barb preserving if it is preserved by observation

predicates, namely if P may interact with environment via ambient nA then Q

may also interact via the ambient nA after a number of τ -transitions. Observation

predicates of the two process P,Q are invariant under any contexts C[·].

Definition 5.5. (Barb Preserving)

A relation R over processes is said to be barb preserving if P R Q and P ↓nA
implies

Q ⇓nA
.

Definition 5.6. (Context)

A context C[·] is a process with zero or more holes [·]. A hole [·] in a context C

is replaced by at most one occurrence of a process. A context C[·] with a hole [·]

replaced by a process P is denoted by C[P].

Chapter 5. The Calculus of Mobility and Communication 90

Definition 5.7. (Contextual Equivalence)

Processes P , Q are contextual equivalent, denoted by P ≃ Q, if for all contexts C[·]

and ambient names nA, C[P] ↓nA
implies C[Q] ⇓nA

.

Since we are considering weak equivalence we provide the notion of weak actions

as follows. We write α ∈ Act (recall that τ ∈ Act). We write ⇒ for the reflexive

and transitive closure of
τ
→, where

τ
→ specifies exactly the τ -transition.

τ
⇒ specifies

at least a τ transition. α̂ is a sequence obtained by deleting all occurrences of τ

actions, note that τ̂ = ǫ. Furthermore,
τ̂
⇒ is

ǫ
⇒, an empty sequence of τ -transitions,

and
α̂
⇒ is

α
⇒, for α 6= τ .

We define two forms of barbs; one at ambient level whereas another for ambients

capabilities. They give rise to (a) barbed bisimulation and congruence, and (b)

capability barbed bisimulation and congruence. We then show that the respective

congruence relations imply each other. Two processes are barbed congruent if when

they are placed into any context then the context processes are barbed bisimilar.

Definition 5.8. (Barbed Bisimulation and Congruence)

A relation S is a barbed bisimulation, if it is symmetric and if (P,Q) ∈ S then for

all α ∈ {a(z), b(z), in mA, out mA},

- if P
α
→ P ′ then Q

α̂
⇒ Q′ and (P ′, Q′) ∈ S;

- if P ↓nA
then Q ⇓nA

.

Processes P and Q are barbed bisimilar, P ≈ Q, if (P,Q) ∈ S for some barbed

bisimulation S. P and Q are barbed congruent, P ∼= Q, if for all contexts C[·],

C[P] ≈ C[Q].

We now show a barbed bisimulation relation between CMC processes. Consider, for

example two agents

P
def
= mA[nB[out mA.0 | in kC .0]] | kC [0]

Q
def
= mA[nB[out mA.in kC .0] | 0] | kC [0]

We show that the agents are equivalent according to barbed bisimulation. We will

construct a barbed bisimulation S by checking Definition 5.8. There is only one

possible sequence of transitions for each agent:

mA[nB[out mA.0 | in kC .0]] | kC [0]
τ
−→ mA[0] | nB[in kC .0] | kC [0]

τ
−→

mA[0] | kC [nB[0] | 0].

mA[nB[out mA.in kC .0] | 0] | kC [0]
τ
−→ mA[0] | nB[in kC .0] | kC [0]

τ
−→

Chapter 5. The Calculus of Mobility and Communication 91

mA[0] | kC [nB[0] | 0].

The first τ -transitions of both P and Q arise for the capability out mA. This is

the only transition that P can start with, whereas Q can start with the same tran-

sition. This is followed by the τ -transitions that that arise for the capability in kC .

Since the sequence of transitions of P and Q matches each other, therefore it is

verified that the two agents are equivalent. We obtain S as follows:

S = {(mA[nB[out mA.0 | in kC .0]] | kC [0], mA[nB[out mA.in kC.0] | 0] | kC [0]), (mA[0] |

nB[in kC .0] | kC [0], mA[0] | nB[in kC.0] | kC [0]), (mA[0] | kC [nB[0] | 0], mA[0] |

kC [nB[0] | 0])}

which shows that the two agents P and Q are barbed bisimilar. At various stages

of checking barbed bisimulation, we observe that the barbs also match.

We now show the equivalence between two mobile agents that may communicate

globally. Consider, agents P and Q defined below.

P
def
= νa(mA[nB[out mA.0 | a.0 | in kC .0]] | kC [a.0]), where a ∈ A,B,C.

Q
def
= νa(mA[nB[out mA.in kC .0] | a.0] | kC [a.0]), for a ∈ A,B,C.

To help the reader, we also present transition graphs for P and Q in Figure 5.5.

The transition graphs show that whatever transitions the agent P performs the

corresponding transitions of agent Q match them, and correspondingly if the agents

are swapped. Similarly, at various stages of checking, the barbs also match.

Chapter 5. The Calculus of Mobility and Communication 92

P
def
= νa(mA[nB[out mA.0 | a.0 | in kC.0]] | kC[a.0]), where a ∈ A,B,C

νa(mA[nB[out mA.0 | a.0 | in kC .0]] | kC [a.0])

νa(nB [a.0 | in kC .0] | mA[0] | kC [a.0])

νa(mA[0] | νa(nB [in kC .0]

νa(mA[0] | kC [nB[0] | 0])

τoutmA

τaτin kC

τin kCτa

νa(mA[nB[out mA.0 | in kC .0]] | kC [0])

νa(nB [in kC .0] | mA[0] | kC [0])

τa

τoutmA

τin kC

kC [nB[a.0] | a.0]) | mA[0] | kC [0])

Q
def
= νa(mA[nB[out mA.in kC .0] | a.0] | kC [a.0]), where a ∈ A,B,C.

τoutmA

τaτin kC

τin kCτa

τa

τoutmA

τin kC

νa(mA[nB[out mA.in kC .0]] | kC [0])

νa(nB [in kC .0] | mA[0] | kC [0])

νa(mA[0] | kC [nB[0] | 0])

νa(mA[nB[out mA.in kC.0] | a.0] | kC [a.0])

νa(nB[in kC .0] | mA[a.0] | kC [a.0])

νa(mA[a.0] | νa(nB[in kC .0] |
kC [nB[0] | a.0]) mA[0] | kC [0])

Figure 5.5: Transition graphs

Furthermore, we consider two agents

a(mA[nB[out mA.0 | a.0 | in kC .0]] | kC [a.0]), for a ∈ B,C and a 6∈ A, and

νa(mA[nB[out mA.in kC .0] | a.0] | kC [a.0]), for a ∈ B,C and a 6∈ A

and show that they are not equivalent. The first possible τ -transitions of both P

and Q are

a(mA[nB[out mA.0 | a.0 | in kC .0]] | kC [a.0])
τ
−→ νa(nB[a.0 | in kC.0] | mA[0] | kC [a.0]),

νa(mA[nB[out mA.in kC .0] | a.0] | kC [a.0])
τ
−→ νa(nB [in kC .0] | mA[a.0] | kC [a.0])

Chapter 5. The Calculus of Mobility and Communication 93

where τ -actions arise for the capability out mA.

Then next, the resulting term νa(nB [a.0 | in kC .0] | mA[0] | kC [a.0]) of the first

agent may execute as follows.

νa(nB[a.0 | in kC .0] | mA[0] | kC [a.0])
τa−→ νa(nB [in kC .0] | mA[0] | kC [0])

where τa action corresponds to communication between nB and kC via a. The

resulting term νa(nB[in kC .0] | mA[a.0] | kC [a.0]) of the second agent can not

match this transition, since a 6∈ A which does not allow mA of the second agent to

communicate via a. This is shown as below:

νa(nB [in kC .0] | mA[a.0] | kC [a.0]) 6
τa−→ .

Definition 5.9. We write P ↓β if P
β
−→ P ′ for some P ′, where β ∈ {in nA, out nA,

enter nA, move nA, exit nA}. We write P ⇓β if P
τ∗

−→ P ′ β
−→ P ′′ for some P ′ and P ′′.

We now define β-barb bisimulation, where barb congruence between two process

remains invariant when they are placed into any context.

Definition 5.10. (Capability Barbed Bisimulation)

Let L = {in nA, out nA, enter nA, move nA, exit nA}, and let β ∈ L. A relation

R is a β-barbed bisimulation, if R is symmetric and if (P,Q) ∈ R then for all

α ∈ {a(z), b(z), in nA, out nA}:

- if P
α
→ P ′ then Q

α̂
⇒ Q′ and (P ′, Q′) ∈ R;

- if P ↓β then Q ⇓β.

P and Q are β-barbed bisimilar, P ≈β Q, if (P,Q) ∈ R for some β-barbed bisimula-

tion R. P andQ are barbed congruent, P ∼=β Q, if for all contexts C[·], C[P] ≈β C[Q].

A well-known result that comes from [37] is given in Lemma 5.1.

Lemma 5.1. If P ∼=β Q then

1. P ⇓nA
iff Q ⇓nA

2. P
τ̂
⇒ P ′ implies that there is Q such that Q

τ̂
⇒ Q′ and P ′ ∼=β Q′.

In preparation for the main result given in Theorem 5.1, Lemmas 5.2 and 5.3

are required.

Lemma 5.2. For mA and kC fresh in an agent R, R ⇓move nB
iff C1[R] ⇓mA

.

Chapter 5. The Calculus of Mobility and Communication 94

Proof. We prove the left to right implication first:

R ⇓move nB
implies C1[R] ⇓mA

By Definition 5.9, R ⇓move nB
iff R

τ∗

→ R′ move nB−−−−−→ R′′ for some R′, R′′. Since

R ⇓move nB
is valid, we obtain R

τ∗
−→ R′ move nB−−−−−→ R′′.

We now consider R′ move nB−−−−−→ R′′. By part 3 of Lemma 4.1, if R′ move nB−−−−−→

νr̃〈Q′〉Q′′ then R′ ≡ νr̃(nB[R1] | R2) and R′′ ≡ νr̃〈Q′〉Q′′, where Q′ ≡ R1 and Q′′ ≡

R2. We now have,

C1[R′] ≡ C1[νr̃(nB[R1] | R2)] ≡

νmA(νr̃(nB[R1] | R2)) | νa(kC [in nB.out nB.a.0] | a.mA[P])

Since by (∗) in τ -In, the members of r̃ are not free names in νa(kC [in nB.out nB.a.0] |

a.mA[P]), and a 6∈ fn(νmA(νr̃(nB[R1] | R2))), the process C1[νr̃(nB[R1] | R2)] exe-

cutes as follows

τ
−→ νaνr̃(νmA(nB[kC [out nB.a.0] | R1] | R2) | a.mA[P]),

(kC 6= mA and kC 6∈ r̃) and (a 6∈ fn(R2) and r̃ ∩ fn(P) = ∅) (τ -In)
τ
−→ νaνr̃(νmA(nB[R1] | R2 | kC[a.0]) | a.mA[P]) (τ -Out)
τ
−→ νaνr̃(νmA(nB[R1] | R2 | kC[0]) | mA[P]) (Global-Com)

We need to show C1[R] ⇓mA
which by our predicate definition, means C1[R]

τ∗

−→

C1[R′] ↓mA
, and C1[R′] ↓mA

means C1[R′] ≡ νm̃(mA[P1] | P2) for some P1, P2, m̃.

When P2 ≡ νmA(nB[R1] | R2 | kC [0]), mA[P1] ≡ mA[P] and m̃ ≡ νaνr̃, then we

obtain C1[R′] ≡ νaνr̃(νmA(nB[R1] | R2 | kC[0]) | mA[P]), which implies C1[R′] ↓mA
.

Since R
τ∗

−→ R′ we obtain C1[R]
τ∗

−→ C1[R
′]. Since C1[R]

τ∗

−→ C1[R
′] and C1[R

′]↓mA
, we

obtain C1[R] ⇓mA
as required.

We now show the right to left implication of Lemma 5.2, namely

C1[R] ⇓mA
implies R ⇓move nB

Since C1[R] ⇓mA
means C1[R]

τ∗

−→ C1[R′] ↓mA
for some R′, we have

C1[R] ≡ νmA(R) | νa(kC [in nB.out nB.a.0] | a.mA[P])

Here, C1[R] may interact with the environment via the ambient mA only if, after

some τ -transitions, mA exists at the top level. To bring mA at the top level the

Chapter 5. The Calculus of Mobility and Communication 95

process R must contain nB, so R
τ∗
−→ R′ ↓nB

and we obtain

νmA(R
′) | νa(kC [in nB.out nB.a.0] | a.mA[P])

Since we define predicate (R′ ↓nB
) asR′ ↓nB

def
= R′ ≡ νq̃(nB[Q1] | Q2) for some Q1, Q2,

and nB 6∈ q̃, we obtain

νmA(R
′) | νa(kC [in nB.out nB.a.0] | a.mA[P])

τ
−→

τ
−→

νmA(R
′) | νa(kC [a.0] | a.mA[P])

τ
−→

νmA(R
′) | νa(kC [0] | mA[P]).

Since after a number of τ -transitions we have mA at the top level of context C1, so

C1[R′] may interact with environment via mA and we obtain C1[R′] ↓mA
.

Since C1[R]
τ∗

−→ C1[R′] and C1[R′] ↓mA
, we obtain C1[R] ⇓mA

.

Since we have R′ ≡ νq̃(nB[Q1] | Q2), we show
move nB−−−−−→ as follows:

Co-Enter
nB[Q1]

move nB−→ 〈nB[Q1]〉0
λ-Par

nB[Q1] | Q2
move nB−→ 〈nB[Q1]〉(0 | Q2)

λ-Res fn(Q) 6∈ q̃
νq̃(nB[Q1] | Q2)

move nB−→ νq̃〈nB[Q1]〉(0 | Q2) ≡ νq̃〈nB[Q1]〉Q2
Struct

νq̃(nB[Q1] | Q2)
move nB−→ νq̃〈nB[Q1]〉Q2

Lemma 5.3. For kC and nB fresh in an agent R, R ⇓mA
iff C1[R] ⇓move nB

.

Proof. Since the proof is very similar to the proof of Lemma 5.2 it is omitted.

We now prove that two congruence relations, namely barbed bisimulation con-

gruence and capability barbed bisimulation congruence for β = move nB, imply each

other. Our definition of barbed bisimulation and congruence remains unchanged for

β-barb.

Theorem 5.1. Let P,Q ∈ CMC. Then, P ∼= Q iff P ∼=move nB
Q for all nB.

Proof. The only difference between the two forms of the barbs is the level at which

each barb is defined, namely the definition at ambient level and the definition at the

capability level. We show that the two forms of barbs imply each other.

Firstly, we show that P ∼= Q implies P ∼=move nB
Q for all P,Q and nB.

Assume that P ∼= Q and P ⇓move nB
, and we will show Q ⇓move nB

.

We define a context C1[·] as follows:

C1[·]
def
= νmA([·]) | νa(kC [in nB.out nB.a.0] | a.mA[P]), with a 6∈ B and a ∈ C

Chapter 5. The Calculus of Mobility and Communication 96

This context allows the ambient mA to interact with the environment after the

communication on a has happened. Also, kC may execute its in nB and out nB

capabilities only if nB exists in parallel with kC . Therefore, any process replacing

the context hole [·] must contain nB. Then kC , after executing its capabilities, may

communicate on a, which enables the context C1 [·] to interact with the environment

via mA.

Global communication is very useful in the definition of context C1[·]. It acts

as a guard and the context may interact with the environment via corresponding

guarded ambient if the guard is satisfied.

Since P ⇓move nB
we get, by Lemma 5.2, C1[P] ⇓mA

. Since P ∼= Q, we obtain

C1[P] ∼= C1[Q], for context C1[·]. Then since C1[P] ∼= C1[Q], C1[P] ⇓mA
gives us

C1[Q] ⇓mA
. Finally, by Lemma 5.2, C1[Q] ⇓mA

implies Q ⇓move nB
as required.

Next, we show the right to left implication, namely

P ∼=move nB
Q⇒ P ∼= Q for all P,Q.

Assume that P ∼=move nB
Q and P ↓mA

, and we will show Q ⇓mA
.

We define the context C2[·] as follows:

C2[·]
def
= νnB([·]) | νa(kC [in mA.out mA.a.0] | a.nB[P]), with a 6∈ A and a ∈ C.

Since P ⇓mA
Lemma 5.3 gives us C2[P] ⇓move nB

. Since P ∼=move nB
Q, we

obtain C2[P] ∼=move nB
C2[Q] for context C2[·]. Next, since C2[P] ∼=move nB

C2[Q],

C2[P] ⇓move nB
gives us C2[Q] ⇓move nB

. Hence, by Lemma 5.3, C2[Q] ⇓move nB
implies

Q ⇓mA
as required.

Conjecture 5.1. We conjecture that Theorem 5.1 will hold for the other capabili-

ties, namely enter nB and exit nB of CMC.

The notion of behavioural equivalence and the proof method for establishing the

equivalence is inspired by that in [36, 37]. The authors in [36, 37], use co-actions

and passwords that help them in proving their results, whereas the use of global

communication is fundamental in proving the above results.

5.5 Conclusion

We have presented CMC for the modelling of mobility and communication in the

setting of ubiquitous computing. The notion of ambients mobility has been modelled

in CMC by the in nB and out nB capabilities [11]. A new form of global commu-

nication has been introduced in CMC which is similar to that in Milner’s CCS.

Ambient’s name has been tagged with the set of ports which are functioning as a

Chapter 5. The Calculus of Mobility and Communication 97

restriction on global communication, specified at the level of ambients. A labelled

transition system semantics has been developed for CMC, where P
τ
→ Q represents

not only a binary communication of processes as in CCS but also the ambients’ mo-

bility steps by means of their in nB and out nB capabilities. This has been achieved

by additional labels and specialised transitions from processes to the so-called out-

comes which are either processes or concretions. We have illustrated the usefulness

of the calculus by presenting path between two locations and intelligent hospital case

studies. New forms of behavioural equivalences for CMC has been introduced. We

have defined barbed bisimulation and congruence, and capability barbed bisimula-

tion and congruence and have showed that the respective congruence relations of the

two forms of barbs coincide. In the following two chapters we extend our calculus

by adding passive mobility features and context-awareness mechanism.

Chapter 6

Operational Semantics for Push

and Pull Ambient Calculus

In this chapter we extend CMC by introducing passive mobility feature to it. We add

additional mobility primitives, namely the push and pull capabilities of Push and

Pull Ambient Calculus (PAC), by Phillips and Vigliotti [54, 77]. The basic idea of

PAC relies on ambients’ pushm n and pullm n capabilities instead of the in and out

capabilities of Cardelli and Gordon’s Mobile Ambients. We define a new transition

operational semantics, and the first such operational semantics to the best of our

knowledge, for the push and pull capabilities. We prove that the new operational

semantics coincides with the standard reduction semantics. The usefulness of the

extended calculus is illustrated by modelling example scenarios.

In the ubiquitous computing setting it is beneficial to consider both active and

passive mobile structures. Active mobile structures are those that could move on

their own, while passive mobile structures may only move around when active struc-

tures carry them. In this chapter we aim at modelling both active and passive mobile

structures.

We now show the usefulness of passive mobility primitives with the help of an

example. Consider a setting, where a 6∈ A for some A,

userA[a(x).P
′
u | P

′′
u] | device[a(v).Pd]

ambient device wants to send a value to ambient userA via port a. Ambient userA

is unable to receive the value on a since a 6∈ A. In this case userA can communicate

with device if device is inside the scope of userA. The behaviour of passive mobile

structures is easily expressed in PAC. By PAC syntax an agent can easily push a

non-useful child out from its scope. Similarly, an agent can pull any other sibling

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 99

inside whenever needed. We use push(mA) nB and pull(mA) nB capabilities, where

A,B ⊆ L, to move passive ambients around. The capability push(mA) nB allows

an ambient mA to push an ambient nB out of its boundary, whereas pull(mA) nB

allows mA to pull in nB into its scope. Therefore, to make communication possible

we modify our setting as follows:

userA[a(x).P
′
u | pull(userA) device.P

′′
u] | device[a(v).Pd]

Now, the capability pull(userA) device enables the user to pull the device into its

scope and a communication may take place.

This chapter is organised as follows: We introduce the extended calculus in Sec-

tion 6.1, where we add new mobility primitives to model passive mobile structures.

In Section 6.2 reduction semantics for push and pull is given, which is followed by

their operational semantics. We then show usefulness of the calculus with small

examples in Section 6.3. In Section 6.4 we show the correspondence between the

two semantics and Section 6.5 contains conclusions.

6.1 The Syntax of CMCP

In Chapter 5 the operational semantics of CMC has been defined in terms of ambi-

ents entering or exiting other ambients, whereas we now aim to use the capabilities

of PAC to formulate the behaviour of passive mobile structures. We extend CMC

with the push and pull capabilities to obtain the calculus CMCP.

The syntax of CMCP processes is similar to that in Table 5.1, except that we

extend the definition of µ in Table 6.1 to also include push(mA) nB and pull(mA) nB

for all A and B. Furthermore, the definition of λ in Table 6.1 is extended to also

include ambient auxiliary actions pushed(mA) nB, pulled(mA) nB and move(mA) nB

for allm,n and A and B (note that move(mA) nB actions are different frommove nB

actions of CMC). The capabilities pull(mA) nB and push(mA) nB are used to move

passive ambients around, push(mA) nB allows an ambient mA to push an ambient

nB out of its boundary, whereas pull(mA) nB allows mA to pull in nB into its scope.

Since most of the syntax is identical to the syntax in Chapter 5, we omit the detailed

explanation.

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 100

Ambient Prefixes : µ ::= in nB | out nB

| push(mA) nB | pull(mA) nB

Action Prefixes : α ::= a(z) | b(z) | τ

Ambient Action : λ ::= enter nB | exit nB | move nB

| pulled(mA) nB | pushed(mA) nB | move(mA) nB

| µ

Labels : ℓ ::= µ | α

| λ | τ

Outcomes : O ::= P | K

Concretions : K ::= (νm̃)〈P 〉Q

Table 6.1: Prefixes, labels, concretions and outcomes

6.2 Reduction Semantics of CMCP

The reduction semantics of CMCP is given in terms of structural congruence, ≡,

and the reduction relation, →. The additional reduction rules for the push and pull

capabilities are given in Table 6.2.

mA[push(mA) nB.P | Q | nB[R]]→ mA[P | Q] | nB[R] (Red Push)

mA[pull(mA) nB.P | Q] | nB[R]→ mA[P | Q | nB[R]] (Red Pull)

Table 6.2: Reduction axioms for push and pull

Structural congruence, ≡, for CMCP processes is as in Definition 3.2 where

capabilities C include additionally push(mA) nB and pull(mA) nB for all A and B.

The reduction relation, →, for CMCP processes is as in Definition 3.3 except that

it satisfies additionally the reductions in Table 6.2.

The reductions in Table 6.2 do not allow any ambient to enter or exit other

ambient, rather being pulled inside or being pushed away by another ambient, as is

illustrated by an example inspired by [54].

Example 6.1. We consider an ambient client that controls its mobility and can

freely enter or leave an ambient named server by exercising its in server and

out server capabilities, namely

client[in server.P] | server[Q], reduces to server[client[P] | Q] and

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 101

server[client[out serverP] | Q], reduces to client[P] | server[Q].

Here, server cannot avoid client to enter even if it knows that client is an harmful

agent. We rewrite the same scenario using push and pull capabilities as follows:

client[P] | server[pull(server) client.Q]→ server[client[P] | Q] and

server[push(server) client.Q | client[P]]→ client[P] | server[Q]

Now, server controls clients ’s mobility across its boundary and can pull it in when-

ever needed and push away the unwanted client by its pull(server) client and

push(server) client capabilities.

6.3 Transition Semantics for Push and Pull

The SOS rules for the push and pull capabilities are given in Tables 6.3, 6.4, and we

also use SOS rules in Table 4.3. As before, we use concretions νm̃〈P 〉Q in our rules.

In order to illustrate reductions and transitions associated with the pull capability,

consider the agent

mA[pull(mA) nB.P1] | nB[P2]

for some P1 and P2, where P2 has no private names. The ambient mA runs in parallel

with the ambient nB; mA pulls ambient nB in by its pull(mA) nB capability. By

Red Pull in Table 6.2 we obtain

mA[pull(mA) nB.P1] | nB[P2] −→ mA[P1 | nB[P2]]

Next, we derive the τ -transition of mA[pull(mA)nB.P1] | nB[P2] that corresponds

to the reduction above by using τ -Pull rule in Table 6.3.

We have pull(mA) nB.P1
pull(mA) nB
−−−−−−−→ P1. When the actual movement happens, we

must identify the agent that is pulled in, and the agents that remain behind. To

model this, we use concretions of the form νñ〈P 〉Q, where P represents the agent

which is pulled in, while Q stays behind and ñ is the set of private names shared by

P and Q. We introduce a new action pulled(mA) nB and by the rule Pull we obtain

mA[pull(mA) nB.P1]
pulled(mA) nB
−−−−−−−−→ 〈P1〉0

This shows that when pull(mA) nB is exercised the agent P1 remains inside the

pulling ambient mA. Then next to achieve the τ -transition there must exist a sib-

ling ambient nB. We define a new action move(mA) nB for nB to complete this

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 102

(Act-Pull)
pull(mA) nB.P

pull(mA) nB
−−−−−−−→ P

P
pull(mA) nB
−−−−−−−→ P ′

(Pull)
mA[P]

pulled(mA) nB
−−−−−−−−→ 〈P ′〉0

(Move)
nB[P]

move(mA) nB
−−−−−−−−→ 〈nB[P]〉0

P
pull(mA) nB
−−−−−−−→ P ′

(Res-Pull) (u 6= nB)
(νu)P

pull(mA) nB
−−−−−−−→ (νu)P ′

P
pull(mA) nB
−−−−−−−→ P ′

(Par-Pull)
P | Q

pull(mA) nB
−−−−−−−→ P ′ | Q

P
pulled(mA) nB
−−−−−−−−→ (νp̃)〈P ′〉P ′′ Q

move(mA) nB
−−−−−−−−→ (νq̃)〈Q′〉Q′′

(τ -Pull) (∗)

P | Q
τ
→ νp̃νq̃(mA[P

′ | Q′] | P ′′ | Q′′)

(∗)(fn(P ′) ∪ fn(P ′′)) ∩ q̃ = (fn(Q′) ∪ fn(Q′′)) ∩ p̃ = ∅

Table 6.3: SOS rules for pull

interaction, by the rule Move we obtain

nB[P2]
move(mA) nB
−−−−−−−−→ 〈nB[P2]〉0

Now τ -Pull gives us

mA[pull(mA) nB.P1] | nB[P2]
τ
−→ mA[P1 | nB[P2]]

The τ -transition shows that nB, the sibling of mA, becomes after the transition a

child of mA.

Next, we illustrate the use of τ -Push in Table 6.4 by considering the agent

mA[push(mA) nB.P | Q | nB[R]]

for some P , Q and R, where mA has the capability to push out its child ambient

nB. For simplicity, we assume that Q and R have no private names. By the axiom

Red Push in Table 6.2 we obtain

mA[push(mA) nB.P | Q | nB[R]] → mA[P | Q] | nB[R]

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 103

(Act-Push)
push(mA) nB.P

push(mA) nB
−−−−−−−−→ P

(Pushed)
nB[P]

pushed(mA) nB
−−−−−−−−−→ 〈nB[P]〉0

P
push(mA) nB
−−−−−−−−→ P ′

(Res-Push) (u 6= nB)
(νu)P

push(mA) nB
−−−−−−−−→ (νu)P ′

P
push(mA) nB
−−−−−−−−→ P ′

(Par-Push)
P | Q

push(mA) nB
−−−−−−−−→ P ′ | Q

P
pushed(mA) nB
−−−−−−−−−→ νp̃〈P ′〉P ′′′ P ′′′ push(mA) nB

−−−−−−−−→ P ′′

(τ -Push) (∗∗)

mA[P]
τ
→ νp̃(mA[P

′′] | P ′)

(∗∗)(fn(P ′) ∪ fn(P ′′′)) ∩ m̃ = ∅

Table 6.4: SOS rules for push

The application of τ -Push for the agent gives the following transition

mA[push(mA) nB.P | Q | nB[R]]
τ
−→ mA[P | Q] | nB[R]

The τ -Push rule uses the notion of lookahead as, for example, in [68, 69]. In order

to derive a τ -transition of mA[P] we need to ensure that P contains an nB ambient.

This is achieved by P
pushed(mA) nB
−−−−−−−−−→ νp̃〈P ′〉P ′′′ where P ′ is this nB ambient. The

remaining ambient P ′′′ must then be able to perform the pushing: P ′′′ push(mA) nB
−−−−−−−−→

P ′′. Hence P ′′′ is used both on the right-hand side and on the left-hand side of the

premises in τ -Push, so τ -Push has a lookahead.

6.3.1 Applications of Push and Pull Capabilities

We consider scenarios where both active and passive mobile structures interact with

each other and communicate globally.

Example 6.2. We consider a setting where a mobile device Personal Digital Assis-

tant (PDA) sends a message to its user. The user cannot view the message unless

he picks up the device. The system is

userA[pull(userA) pda.Pu | a(x).P
′
u] | pda[a(v).Ppda]

where the ambient userA, with a 6∈ A, runs in parallel with the PDA which is repre-

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 104

sented by the ambient pda. The ambient pda sends a value v on port a. Inside the

ambient userA, a communication on a and the pull capability are concurrent. The

userA may pull pda by its pull(userA) pda capability, but it cannot receive input on

a since a 6∈ A. The τ -transition for the pull capability is as follows:

νa(pda[a(v).Ppda] | userA[pull(userA) pda.Pu | a(x).P ′
u])

τ
→

νa(userA[Pu | a(x).P ′
u | pda[a(v).Ppda)]]

It makes the pda, which is initially the sibling of userA, a child of userA. Now

communication on a can take place:

νa(userA[Pu | a(x).P
′
u | pda[a(v).Ppda)]]

τ
→ νa(userA[Pu | P

′
u{v/x} | pda[Ppda)]]

Example 6.3. We consider a setting where a server serv communicates globally

with an active mobile agent mA, for some A, via a device devB for some B. Here,

devB is a passive mobile agent. The server serv sends services to the appropriate

device provided that an authorised user is holding it, in this case ambient mA. Also,

only mA may turn on devB to activate services. serv instructs the mobile agent to

move from its current location to room n, and the agent mA views the instructions

from server on the device devB. The graphical representation of the above given

setting is given in Figure 6.1.

mA

k

serv n1

n

m1

devB

on

a

d

c

b

Figure 6.1: Global communication, active and passive mobility

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 105

We define formally the component processes of our setting as follows:

MobileAmb
def
= pull(mA) devB.on.a(u).d(m1, u).a(z).z.0

MA
def
= mA[MobileAmb]

Device
def
= on.c1(x).a(x).d(y, x).b(y, x).c1(z).a(z).0

D
def
= devB[Device]

Server
def
= c1(n).b(y, x).c1(path(T, y, x)).0

S
def
= serv[Server]

The system is the parallel composition of the component processes with appropriate

channels of communication restricted:

ν(on abcd)(S | MA | D) ≡ ν(on abcd)(serv[c1(n).b(y, x).c1(path(T, y, x)).0]

| mA[pull(mA) devB.on.a(u).d(m1, u).a(z).z.0]

| devB[on.c1(x).a(x).d(y, x).b(y, x).c1(z).a(z).0])

The interaction steps among the three agents are :

• pull(mA) devB: The active mobile agentmA initiates the interaction by picking

up the device devB by its pull capability and switching the device on via port

on. The device is now ready to be interacted by the main server serv.

• c1(n), c1(x): The server serv sends the target location n on c1 to devB, whereas

c1(x) allows devB to receive the value n.

• a(x), a(u): The device then sends the target location n to mA via a.

• d(m1, u), d(y, x): After receiving a value on a, mA sends its source(m1) and

target locations on d to devB.

• b(y, x), b(y, x): The device then sends the two values received from mA to the

server. The server is ready to receive the two values, in this case m1 and n as

source and target locations respectively.

• c(path(T, y, x)): The server sends the path on port c to the device, which is

calculated by using the function path(T, y, x).

• a(z), a(z).z.0: The device displays the path to the ambient mA on port a, and

ambient mA binds it to z. In this case the value received is the sequence of

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 106

capabilities representing the path between the source and the target ambients.

In this particular case the path sent by server is out m1.in n1.in n.0, which

followed by mA to move from m1 to n.

The only possible sequence of execution of ν(on abcd)(S | MA | D) is

τpull
−−→

τon−−→
τc1−→

τa−→
τd−→

τb−→
τc1−→

τa−→
τout m1−−−−→

τin n1−−−→
τin n−−→ S ′, for some S ′.

We list the individual transition of this execution below:

ν(on abc)(serv[c1(n).b(y, x).c1(path(T, y, x)).0] | k[m1[mA[pull(mA) devB.on.a(u).

d(m1, u).a(z).z.0]] | n1[n[0]]] | devB[on.c1(x).a(x).d(y, x).b(y, x).c1(z).a(z).0])
τ
→

ν(on abc)(serv[c1(n).b(y, x).c1(path(T, y, x)).0] | k[m1[mA[on.a(u).d(m1, u).a(z).z.0

| devB[on.c1(x).a(x).d(y, x).b(y, x).c1(z).a(z).0]]] | n1[n[0]]])
τ
→

ν(on abc)(serv[c1(n).b(y, x).c1(path(T, y, x)).0] | k[m1[mA[a(u).d(m1, u).a(z).z.0 |

devB[c1(x).a(x).d(y, x).b(y, x).c1(z).a(z).0]]] | n1[n[0]]])
τ
→

ν(on abc)(serv[b(y, x).c1(path(T, y, x)).0] | k[m1[mA[a(u).d(m1, u).a(z).z.0 |

devB[a(n).d(y, x).b(y, x).c1(z).a(z).0]]] | n1[n[0]]])
τ
→

ν(on abc)(serv[b(y, x).c1(path(T, y, x)).0] | k[m1[mA[d(m1, n).a(z).z.0 |

devB[d(y, x).b(y, x).c1(z).a(z).0]]] | n1[n[0]]])
τ
→

ν(on abc)(serv[b(y, x).c1(path(T, y, x)).0] | k[m1[mA[a(z).z.0 |

devB[b(m1, n).c1(z).a(z).0]]] | n1[n[0]]])
τ
→

ν(on abc)(serv[c1(path(T,m1, n)).0] | k[m1[mA[a(z).z.0 | devB[c1(z).a(z).0]]]

| n1[n[0]]])
τ
→

ν(on abc)(serv[0] | k[m1[mA[a(z).z.0 | devB[a(out m1.in n1.in n).0]]] | n1[n[0]]])
τ
→

ν(on abc)(serv[0] | k[m1[mA[out m1.in n1.in n.0 | devB[0]]] | n1[n[0]]]).

In this example we show that serv starts communicating mA via devB when mA

switches on devB. Following the sequence of capabilities shared by serv, mA hold-

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 107

ing devB moves from m1 to n. Thus the system evolves to

serv[0] | k[m1[0] | n1[n[mA[devB[0]]]]],

which is represented graphically in Figure 6.2 below.

mA

k

serv n1

n

m1

devB

Figure 6.2: Resulting system: global communication, active and passive mobility

6.4 Correspondence of Semantics

In this section we show the correspondence of the reduction semantics and the tran-

sition semantics for CMCP. Let T ′ be a sub-calculus of CMCP that consists of

all operators of CMCP apart from the prefixing with actions (including τ) opera-

tors, the choice operator and the relabelling operator. There are “soundness” and

“completeness” parts of this correspondence.

6.4.1 Soundness

Soundness ensures that for every reduction of a T ′ term there is a valid τ -transition

of the term, and the target of the τ -transition is congruent to the target of the

reduction. We easily have the soundness part of this correspondence between the

two semantics:

Theorem 6.1. ∀P, R ∈ T ′. P → R =⇒ ∃ Q ∈ T ′. P
τ
→ Q ≡ R.

Proof. By structural induction where we consider cases of reductions of P depending

on the structure of P .

1. Base case: (Constant)

We show that our statement holds when we choose the simplest term of T ′,

namely the deadlocked agent 0:

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 108

0→ R =⇒ 0
τ
→ R

There is no rule defined to show the reduction of 0, so the reduction 0→ R is

false, and hence, the implication above is true.

2. Induction Hypothesis:

We assume that our statement holds for all the sub-processes P ′ of P , namely

if P ′ → R then P ′ τ
→ R, for all R.

3. Induction Step:

(a) P = (νm)P ′, for some P ′.

In this case we show that

(νm)P ′ → R =⇒ (νm)P ′ τ
→ R (6.1)

We assume, (νm)P ′ → R.

The reduction of (νm)P ′ can be derived by using the Red Res given in

Table 3.4.

Since the term (νm)P ′ reduces to some process R, by the reduction rule

Red Res, so we deduce that the reduction P ′ → Q is also valid for some

Q, such that (νm)Q = R. Since P ′ → Q is proved valid, so by the

inductive hypothesis we obtain P ′ τ
→ Q.

Since P ′ τ
→ Q is valid, so by the rule λ-Res in Table 4.3, (νm)P ′ τ

→

(νm)Q is a valid transition.

Next, by Struct in Table 4.3, (νm)P
τ
→ (νm)Q and (νm)Q ≡ R. Hence,

we obtain (νm)P
τ
→ R as required.

(b) P = nA[P
′], for some P ′ and nA.

In this case we show that

nA[P
′] → R =⇒ nA[P

′]
τ
→ R (6.2)

To prove statement 6.2, we assume nA[P
′]→ R, for some R.

There are three reduction rules, namely Red Amb and Red Out in Ta-

ble 3.4, and Red Push in Table 6.2, that can be used to derive a reduction

transition of nA[P
′]. Since the proofs for Red Amb and Red Out are iden-

tical to the proofs of the corresponding cases given in Subsection 4.2.1,

they are omitted.

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 109

i. Red Push:

By using the rule Red Push, we deduce that P ′ is of the form

push(nA) mB.P1 | P2 | mB[Q] for some P1, P2 and Q. Hence, the

reduction nA[push(nA) mB.P1 | P2 | mB[Q]] → R is valid by Red

Push, where R is of the form nA[P1 | P2] | mB[Q], that is R =

nA[P1 | P2] | mB[Q].

In principle there could be shared and private names in agents P1,

P2 and Q. However, using α-conversion if necessary, we can as-

sume without loss of generality that there are no shared and private

names among P1, P2 and Q. We derive the τ transition of agent

nA[push(nA) mB.P1 | P2 | mB[Q]] by applying τ -Push in Table 6.4.

This is supported by inference tree in Figure 6.3. Hence, the resulting

transition is as follows:

nA[push(nA) mB.P1 | P2 | mB[Q]]
τ
→ nA[P1 | P2] | mB[Q]

Now by Struct, since

nA[push(nA) mB.P1 | P2 | mB[Q]]
τ
→ nA[P1 | P2] | mB[Q] and

R ≡ nA[P1 | P2] | mB[Q]. Hence, we obtain nA[push(nA) mB.P1 |

P2 | mB[Q]]
τ
→ R as required.

(c) P = P ′ | Q, parallel composition of P ′ and Q.

In this case we show that

P ′ | Q → R =⇒ P ′ | Q
τ
→ R (6.3)

Assume P ′ | Q→ R for some R.

There are three reduction rules, namely Red Par and Red In in Table 3.4,

and Red Pull in Table 6.2, that can be used to derive a reduction of

P ′ | Q. The proofs for Red In and Red Par are identical to the proof of

the corresponding cases given in Subsection 4.2.1, they are omitted.

i. Red Pull

We assume that P ′ and Q are of the form mA[pull(mA) nB.P1 | P2]

and nB[Q1] respectively for some P1, P2 and Q1. By the reduction

rule Red Pull, we obtain

mA[pull(mA) nB.P1 | P2] | nB[Q1]→ R

We deduce that the agent R is of the form mA[P1 | P2 | nB[Q1]],

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 110

namely R = mA[P1 | P2 | nB[Q1]]. In principle there could be

shared and private names in agents P1, P2 and Q1. However, using

α-conversion if necessary, we assume wlog that there are no shared

and private names in P1, P2 and Q1.

Now we derive the τ transition of mA[pull(mA) nB.P1 | P2] | nB[Q1]

by applying τ -Pull in Table 6.3. This is supported by inference tree

in Figure 6.4. Hence, the resulting transition is as follows:

mA[pull(mA) nB.P1 | P2] | nB[Q1]
τ
→ mA[P1 | P2 | nB[Q1]]

Now by Struct,

mA[pull(mA) nB.P1 | P2] | nB[Q1]
τ
→ mA[P1 | P2 | nB[Q1]] and

R ≡ mA[P1 | P2 | nB[Q1]]. Hence, we obtain mA[pull(mA) nB.P1 |

P2] | nB[Q1]
τ
→ R as required.

C
h
a
p
ter

6
.
O
pera

tio
n
a
l
S
em

a
n
tics

fo
r
P
u
sh

a
n
d
P
u
ll
A
m
bien

t
C
a
lcu

lu
s

111

(Act)
push(nA) mB.P1

push(nA) mB
−→ P1

(Pushed)
mB[Q]

pushed(nA) mB
−→ 〈mB[Q]〉0

(Par-Push)
push(nA) mB.P1 | P2 | mB[Q]

push(nA) mB
−→ P1 | P2 | mB[Q]

(λ-Par)
P1 | P2 | mB[Q]

pushed(nA) mB
−→ 〈mB[Q]〉0 | P1 | P2

τ -Push
nA[push(nA) mB.P1 | P2 | mB[Q]]

τ
−→ nA[P1 | P2 | 0] | mB[Q] ≡ nA[P1 | P2] | mB[Q]

Figure 6.3: Inference tree for τ -Push transition

(Act-Pull)
pull(nA) mB.P1

pull(nA) mB
−→ P1

(Par-Pull)
pull(nA) mB.P1 | P2

pull(nA) mB
−→ P1 | P2

(Pull)
nA[pull(nA) mB.P1 | P2]

pulled(nA) mB
−→ 〈P1 | P2〉0

(Move)
mB[Q]

move nB−→ 〈mB[Q]〉0

τ -Pull
nA[pull(nA) mB.P1 | P2] | mB[Q]

τ
−→ nA[P1 | P2 | mB[Q]]

Figure 6.4: Inference tree for τ -Pull transition

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 112

6.4.2 Completeness

Completeness ensures that for every valid τ -transition of a T ′ term there is a valid

reduction of the term, and the targets of the τ -transitions and the reductions are

the same.

Lemma 6.1.

1. ∀P.P
π
−→ O, where π ∈ {pull(mA) nB, push(mA) nB} =⇒ ∃ p̃, P1, P2, with

mA, nB 6∈ p̃ such that P ≡ νp̃ (π.P1 | P2) and O ≡ νp̃ (P1 | P2), where p̃ is a

set of ambient names private in P .

2. ∀P, P ′, P ′′.P
pulled(mA) nB
−→ (νp̃)〈P ′〉P ′′ =⇒ ∃ P1, P2, P3, with mA, nB 6∈ p̃ such

that P ≡ νp̃ (mA[pull(mA) nB.P1 | P2] | P3), P ′ ≡ P1 | P2 and P ′′ ≡ P3,

where p̃ is a set of ambient names private in P .

3. ∀Q,Q′, Q′′.Q
move(mA) nB
−→ ν(q̃) 〈Q′〉Q′′ =⇒ ∃ Q1, Q2 with mA, nB 6∈ q̃ such that

Q ≡ νq̃ (nB[Q1] | Q2), Q
′ ≡ nB[Q1] and Q′′ ≡ Q2, where q̃ is a set of ambient

names private in Q.

4. ∀P, P ′, P ′′, P ′′′. P
pushed(mA) nB
−→ (νp̃) 〈P ′〉P ′′′ and P ′′′ push(mA) nB

−→ P ′′ =⇒

∃ P1, P2, P3, with mA, nB 6∈ p̃, such that P ≡ νp̃ (push(mA) nB.P1 | P2 |

nB[P3]), P ′ ≡ nB[P3], P
′′′ ≡ push(mA) nB.P1 | P2 and P ′′ ≡ P1 | P2, where p̃

is a set of ambient names private in P .

Proof. By transition induction.

The proofs of Parts 1, 2 and 3 of Lemma 6.1 are very similar to the proofs

of the corresponding parts of Lemma 4.1. For example, enter nB action part 2 of

Lemma 4.1 states that if P
enter nB→ νp̃ 〈P ′〉P ′′ then P has the form νp̃ (kA[in nB.P1 |

P2] | P3) for some P1, P2, P3, kA with nB 6∈ p̃. Similarly, for pulled(mA) nB action,

part 2 of Lemma 6.1 states that if P
pulled(mA) nB
−→ (νp̃)〈P ′〉P ′′ then P has the form

νp̃ (mA[pull(mA) nB.P1 | P2] | P3) for some P1, P2, P3, with mA, nB 6∈ p̃. The only

difference between the two statements is that in the first case the capability is

exercised by the moving ambient, whereas in the second case the target ambient

exercises the pull capability to move an ambient in. The difference is clearly stated

by the SOS rules Enter and Pulled in Tables 4.2 and 6.4 for the corresponding

actions.

Due to the close similarities between Lemma 6.1 and Lemma 4.1, the proofs for

the first three parts of Lemma 6.1 are omitted.

The proof for the part 4 is as follows:

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 113

Assume P
pushed(mA) nB
−−−−−−−−−→ (νp̃) 〈P ′〉P ′′′ and P ′′′ push(mA) nB

−−−−−−−−→ P ′′ for some P, P ′,

P ′′, P ′′′. There are three cases (a)− (c) below for P
pushed(mA) nB
−−−−−−−−−→ (νp̃) 〈P ′〉P ′′′

depending on the structure of P . Since the transitions of this part of the

lemma use lookahead each case consists of a number of nested sub-cases:

(a) Pushed (P ≡ kC [R])

(b) λ-Par (P ≡ R | Q)

(c) λ-Res (P ≡ νuE (R))

(a) Pushed

In this case we assume P ≡ kc[R] for some kC and R. Hence we get

the transition kC [R]
pushed(mA) nB
−−−−−−−−−→ 〈kC[R]〉0 if kC = nB. Since there is

no SOS rule for transitions of 0, so 0
push(mA) nB
−−−−−−−−→ R′′ is false for all R′′.

Hence kC [R]
pushed(mA) nB
−−−−−−−−−→ 〈kC [R]〉0 and 0

push(mA) nB
−−−−−−−−→ R′′ is false, so the

implication of part 4 is true.

(b) λ-Par

In this case we assume that P ≡ R | Q. So we get the transition of the

form R | Q
pushed(mA) nB
−→ O | Q for some O. Since R | Q

pushed(mA) nB
−→

O | Q is a valid transition by λ-Par in Table 4.3, the premise of the rule,

namely R
pushed(mA) nB
−→ O, is also valid where O ≡ νr̃〈R′〉R′′′ for some

r̃, R′, R′′′ and mA, nB 6∈ r̃. So we have

R
pushed(mA) nB
−→ νr̃〈R′〉R′′′

Now by α-conversion, if necessary, r̃ is selected in such a way that fn(Q)∩

r̃ = ∅, so we now have

R | Q
pushed(mA) nB
−→ νr̃〈R′〉(R′′′ | Q)

Next we consider three sub-cases for R′′′ push(mA) nB
−−−−−−−−→ R′′ depending on

the structure of R′′′ in R′′′ | Q.

i. R′′′ ≡ push(mA) nB.S, for some S, mA, nB.

ii. R′′′ ≡ S1 | S2, for some S1, S2

iii. R′′′νs(S), for some s and S

i. In this case R′′′ has the form push(mA) nB.S.

The transition push(mA) nB.S
push(mA) nB
−→ S is valid by Act-Push,

where R′′′ ≡ push(mA) nB.S and R′′ ≡ S.

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 114

Since R
pushed(mA) nB
−→ νr̃〈R′〉R′′′ and R′′′ push(mA) nB

−→ S, so by in-

ductive hypothesis R ≡ νr̃(push(mA) nB.R1 | R2 | nB[R3]), R
′ ≡

nB[R3], R
′′′ ≡ push(mA) nB.R1 | R2, R

′′ ≡ R1 | R2 and r̃ is a set

of private names in R, for some R1, R2 and R3. By α-conversion, if

necessary, we can select r̃ in such a way that fn(Q) ∩ r̃ = ∅. So, we

get

R | Q ≡ νr̃(push(mA) nB.R1 | R2 | nB[R3]) | Q

≡ νr̃(push(mA) nB.R1 | R2 | nB[R3] | Q)

Similarly,

O | Q ≡ νr̃〈nB[R3]〉(push(mA) nB.R1 | R2) | Q

≡ νr̃〈nB[R3]〉(push(mA) nB.R1 | R2 | Q)

Hence, we obtain P ≡ νr̃(push(mA) nB.R1 | nB[R3] | R2 | Q),

P ′ ≡ nB[R3], P
′′′ ≡ push(mA) nB.R1 | R2 | Q, P ′′ ≡ R1 | R2 | Q and

r̃ is the set of private names in P as required.

ii. In this case R′′′ has the form S1 | S2, namely R′′′ ≡ S1 | S2. By Par-

Push S1 | S2
push(mA) nB
−→ S ′

1 | S2 for some S ′
1 is valid. The premise

S1
push(mA) nB
−→ S ′

1 is also valid.

Since R
pushed(mA) nB
−→ νr̃〈R′〉R′′′ and R′′′ push(mA) nB

−→ S ′
1 | S2 are valid,

by inductive hypothesis there exist R1, R2, R3 such that,

R ≡ νr̃(push(mA) nB.R1 | R2 | nB[R3]),

R′ ≡ nB[R3], R′′′ ≡ push(mA) nB.R1 | R2 and R′′ ≡ R1 | R2. So,

S1 ≡ push(mA) nB.R1, S2 ≡ R2 and R′ ≡ nB[R3].

Now by α-conversion, if necessary, r̃ is selected in such a way that

fn(Q) ∩ r̃ = ∅, and we get

R | Q ≡ νr̃(S1 | S2 | nB[R3]) | Q

≡ νr̃(S1 | S2 | nB[R3] | Q)

Similarly,

O | Q ≡ νr̃〈nB[R3]〉(S1 | S2) | Q

≡ νr̃〈nB[R3]〉(S1 | S2 | Q)

Hence, we obtain P ≡ νr̃(S1 | S2 | nB[R3] | Q), P ′ ≡ nB[R3],

P ′′′ ≡ S1 | S2 | Q, P ′′ ≡ S ′
1 | S2 | Q and r̃ is the set of private names

in P as required.

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 115

iii. In this case R′′′ has the form νs(S) for some name s private in S.

The transition νs(S)
push(mA) nB
−→ νs(S ′), where s 6= nB, is valid by

Res-Push. The premise of the rule, S
push(mA) nB
−→ S ′, is also valid.

Since R
pushed(mA) nB
−→ νr̃〈R′〉R′′′ and R′′′ push(mA) nB

−→ νs(S ′) are valid,

where νs(S ′) ≡ R′′, by inductive hypothesis there exist R1, R2, R3

such that

R ≡ νr̃(push(mA) nB.R1 | R2 | nB[R3]), R
′ ≡ nB[R3],

R′′′ ≡ push(mA) nB.R1 | R2 and R′′ ≡ R1 | R2. We now have,

νs(S) ≡ push(mA) nB.R1 and νs(S ′) ≡ R1, R2 ≡ 0 since we have

assumed R′′′ ≡ νs(S) at the beginning of this case, and R′ ≡ nB[R3].

Now,

R | Q ≡ νr̃(νs(S) | R2 | nB[R3]) | Q

≡ νr̃(νs(S | R2 | nB[R3])) | Q s 6∈ fn(R3)

≡ ν(s, r̃)(S | R2 | nB[R3] | Q) fn(Q) ∩ (s, r̃) = ∅

Similarly,

O | Q ≡ νr̃〈nB[R3]〉(νs(S) | R2) | Q

≡ νr̃〈nB[R3]〉νs(S | R2 | Q)

(s 6∈ fn(R3) and fn(Q) ∩ (s, r̃) = ∅)

≡ ν(s, r̃)〈nB[R3]〉(S | R2 | Q) s ∈ fn(R3)

Hence we obtain, P ≡ ν(s, r̃)(S | R2 | nB[R3] | Q), where R1 ≡

S,R2 ≡ 0 and R3 is in nB[R3], P
′ ≡ nB[R3]P

′′′ ≡ νs(S) and P ′′ ≡

νs(S ′).

(c) λ-Res

In this case we assume that P ≡ νu(R), where name u is private in R.

So we get the transition of the form νu(R)
pushed(mA) nB
−→ νu(O), for some

O. Since νu(R)
pushed(mA) nB
−→ νu(O) for u 6= nB, is a valid transition by

λ-Res in Table 4.3, the premise of the rule, namely R
pushed(mA) nB
−→ O is

also valid, where O ≡ νr̃〈R′〉R′′′ for some r̃, R′, R′′′ and mA, nB 6∈ r̃. So

we have

R
pushed(mA) nB
−−−−−−−−−→ νr̃〈R′〉R′′′

Next we consider three sub-cases for R′′′ push(mA) nB
−−−−−−−−→ R′′ for some R′′

depending on the structure of R′′′.

i. R′′′ ≡ push(mA) nB.S, for some S

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 116

ii. R′′′ ≡ S1 | S2, for some S1, S2

iii. R′′′νs(S), for ambient name s private in S

i. In this case R′′′ has the form push(mA) nB.S. By Act-Push in Ta-

ble 6.4, push(mA) nB.S
push(mA) nB
−→ S is valid, where

R′′′ ≡ push(mA) nB.S and R′′ ≡ S.

Since R
pushed(mA) nB
−→ νr̃〈R′〉R′′′ and R′′′ push(mA) nB

−→ S, so by in-

ductive hypothesis R ≡ νr̃(push(mA) nB.R1 | R2 | nB[R3]), R
′ ≡

nB[R3], R
′′′ ≡ push(mA) nB.R1 | R2, R

′′ ≡ R1 | R2 and r̃ is a set

of private names in R, for some R1, R2 and R3. So S ≡ R1, R2 ≡ 0,

since we assumed R′′′ ≡ push(mA) nB.S at the beginning of this

case. So we have

νu(R) ≡ νu(νr̃(push(mA) nB.S | 0 | nB[R3]))

≡ νu(νr̃(push(mA) nB.S | nB[R3])) (Struct Zero Par)

≡ ν(u, r̃)(push(mA) nB.S | nB[R3]) u 6∈ fn(R3)

Similarly,

O | Q ≡ νu(νr̃〈nB[R3]〉push(mA) nB.S | R2)

≡ νr̃〈nB[R3]〉νu(push(mA) nB.R1 | R2) if u 6∈ fn(S)

≡ ν(u, r̃)〈nB[R3]〉push(mA) nB.R1 | R2) if u ∈ fn(S)

Hence, we obtain P ≡ ν(u, r̃)(push(mA) nB.S | R2 | nB[R3]), P
′ ≡

nB[R3], P ′′′ ≡ push(mA) nB.S and P ′′ ≡ S, where S ≡ R1 and

R2 ≡ 0, and ν(u, r̃) the private names in P as required.

ii. In this case R′′′ has the form S1 | S2, namely R′′′ ≡ S1 | S2 for some

S1, S2. By Par-Push S1 | S2
push(mA) nB
−→ S ′

1 | S2 for some S ′
1 is valid.

Since R
pushed(mA) nB
−→ νr̃〈R′〉R′′′ and R′′′ push(mA) nB

−→ S ′
1 | S2 are valid,

by inductive hypothesis there exists R1, R2, R3 such that

R ≡ νr̃(push(mA) nB.R1 | R2 | nB[R3]), R
′ ≡ nB[R3],

R′′′ ≡ push(mA) nB.R1 | R2 and R′′ ≡ R1 | R2. So we now have

S1 ≡ push(mA) nB.R1. S2 ≡ R2 and R′ ≡ nB[R3]. We now have

νu(R) ≡ νu(νr̃(S1 | S2 | nB[R3]))

≡ νr̃(S1 | S2 | nB[R3] | Q) fn(Q) ∩ r̃ = ∅,

where new restriction is νr̃′ = ν(u, r̃), so we get

νu(R) ≡ νr̃′(S1 | S2 | nB[R3])

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 117

Similarly,

νu(O) ≡ νu(νr̃〈nB[R3]〉S1 | S2)

≡ ν(u, νr̃)〈nB[R3]〉(S1 | S2)

≡ νr̃〈nB[R3]〉(νu)(S1 | S2)

(u 6∈ fn(R3) and fn(S2) ∩ (u, r̃) = ∅)

Hence, we obtain P ≡ νr̃(S1 | S2 | nB[R3] | Q), P ′ ≡ nB[R3],

P ′′′ ≡ S1 | S2 | Q, P ′′ ≡ S ′
1 | S2 | Q and r̃ is the set of private names

in P as required.

iii. In this case R′′′ has the form νs(S), where name s is private in S.

The transition νs(S)
push(mA) nB
−→ νs(S ′), where s 6= nB is valid by

Res-Push.

Since R
pushed(mA) nB
−→ νr̃〈R′〉R′′′ and R′′′ push(mA) nB

−→ νs(S ′) are valid

for s 6∈ r̃, where νs(S ′) ≡ R′′, by inductive hypothesis

R ≡ νr̃(push(mA) nB.R1 | R2 | nB[R3]), R
′ ≡ nB[R3],

R′′′ ≡ push(mA) nB.R1 | R2 and R′′ ≡ R1 | R2 for some R1, R2, R3.

So we have νs(S) ≡ push(mA) nB.R1 and νs(S ′) ≡ R1, R2 ≡ 0 and

R′ ≡ nB[R3].

Now,

νu(R) ≡ νu(νr̃(νs(S) | R2 | nB[R3]))

≡ νu(νr̃(νs(S | R2 | nB[R3]))) s 6= nB

≡ ν(u, s, r̃)(S | R2 | nB[R3]),

here, new restriction νr̃′′ = ν(u, s, r̃) and we obtain

νu(R) ≡ νr̃′′(S | R2 | nB[R3])

Similarly,

νu(O) ≡ νu(νr̃〈nB[R3]〉(νs(S) | R2))

≡ νu(νr̃〈nB[R3]〉νs(S | R2))

(s 6∈ fn(R3) and fn(R2) ∩ (s, r̃) = ∅)

≡ ν(u, r̃)〈nB[R3]〉νs(S | R2)

≡ ν(u, s, r̃)〈nB[R3]〉(S | R2) s ∈ fn(R3)

≡ ν(r̃′′)〈nB[R3]〉(S | R2)

Hence we obtain, P ≡ ν(r̃′′)(S | R2 | nB[R3]), where R1 ≡ S,R2 ≡ 0

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 118

and R3 is in nB[R3], P
′ ≡ nB[R3], P

′′′ ≡ νs(S) and P ′′ ≡ νs(S ′).

Theorem 6.2. ∀S,R ∈ T ′. S
τ
−→ R =⇒ S → R.

The proof of Theorem 6.2 relies on several auxiliary statements given in Lemma 6.1.

For example, for τ -Push rule, we require that

if S
pushed(mA) nB
−→ νp̃〈P ′〉P ′′′ then

(a) P ′ has the form nB[Q] for some Q, and

(b) if P ′′′ push(mA) nB
−→ P ′′ then P ′′′ has a sub-term push(mA)nB.Q

′ for some Q′

possibly nested within a parallel and restriction context.

Proof. By transition induction where we consider the most significant cases of tran-

sitions of T ′ terms. We have omitted the proofs of cases which are identical to the

proofs of the corresponding cases of Theorem 4.2.

1. S = C.P , where the prefix C is an ambient capability, namely in nB, out nB,

pull(mA) nB and push(mA) nB.

We consider the ambient’s pull capability, and show that

pull(mA) nB.P
τ
−→ R =⇒ pull(mA) nB.P −→ R

The only transition for pull(mA) nB.P is pull(mA) nB.P
pull(mA) nB
−−−−−−−→ P by

applying the rule Act-Pull in Table 6.3. Since there is no other rule defined that

could be applied to derive the transition, the τ -transition for pull(mA) nB.P

is not possible. Thus, the transition pull(mA) nB.P
τ
−→ R is not valid, and

hence, the implication above is true.

The proofs for in nB, out nB, and push(mA) nB capabilities are very similar

to the proof for pull(mA) nB, they are omitted.

2. S = mA[P], an ambient with name mA and body P .

In this case we show that

mA[P]
τ
−→ R =⇒ mA[P] −→ R (6.4)

We assume mA[P]
τ
−→ R, for some R.

There are three transition rules τ -Out, τ -Amb and τ -Push in Tables 4.2, 4.3,

and 6.4 respectively, that can be used to derive a τ -transition of mA[P]. Since

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 119

the proofs for τ -Out and τ -Amb are identical to the proofs of the corresponding

cases of Theorem 4.2, they are omitted.

(a) τ -Push

Since mA[P]
τ
−→ R is valid by τ -Push in Table 6.4, so we deduce that the

premises of the rule, namely P
pushed(mA) nB
−→ νm̃〈Q〉S ′′ and S ′′ push(mA) nB

−→

S ′, for some m̃, S ′, S ′′, Q are also valid.

Here, m̃ is the set of private ambient names in process P , and ((fn(Q′)∪

fn(S ′′)) ∩ {m̃}) = ∅. Since by τ -Push, R = (νm̃)(mA[S
′] | Q), hence we

have

mA[P]
τ
−→ (νm̃)(mA[S

′] | Q)

Now using part 4 of Lemma 6.1, we have

P ≡ νm̃(push(mA) nB.P1 | nB[P3] | P2),

Q ≡ nB[P3], S
′′ ≡ push(mA) nB.P1 | P2, S

′ ≡ P1 | P2, for some P1, P2,

and P3 where mA 6∈ m̃, we now have

mA[P] ≡ mA[νm̃(push(mA) nB.P1 | P2 | nB[P3])]

≡ νm̃(mA[push(mA) nB.P1 | P2 | nB[P3]]) (Struct Res Amb)

(where it is assumed wlog that mA 6∈ m̃)

By Red Push mA[push(mA) nB.P1 | P2 | nB[P3]]→ mA[P1 | P2] | nB[P3],

so νm̃ (mA[push(mA) nB.P1 | P2 | nB[P3]]) rewrites as follows:

→ νm̃ (mA[P1 | P2] | nB[P3]) (Red Res)

≡ νm̃ (mA[S
′] | nB[P3]) (Struct Amb)

≡ νm̃ (mA[S
′] | Q) (Struct Amb)

Now using the structural congruence rule Red ≡ in Table 3.4, we have

mA[P]→ νm̃ (mA[S
′] | Q), since νm̃ (mA[S

′] | Q) ≡ R, hence we obtain

mA[S]→ R as required.

3. S = (νmA)P , an ambient name mA private in P .

In this case we show that

(νm)P
τ
−→ R =⇒ (νm)P −→ R (6.5)

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 120

We assume (νm)P
τ
−→ R.

Since (νm)P
τ
−→ R, for some process R is valid by the transition rule λ-Res in

Table 4.3, so we deduce that the premises namely P
τ
−→ P ′ of the transition

rule is valid for some P ′. By the rule Res-Amb the agent R is of the form

(νm)P ′, that is R = (νm)P ′. Since P
τ
−→ P ′ is valid, so by the inductive

hypothesis we get P → P ′.

Since the reduction P −→ P ′ is valid, so by reduction rule Red Res in Ta-

ble 3.4, we obtain (νm)P → (νm)P ′.

Now using the structural congruence rule (Red ≡) in Table 3.4, we have

νmP → νmP ′, since R ≡ νmP ′, hence we obtain νmP → R as required.

4. S = P | Q, parallel composition of P and Q.

In this case we show

P | Q
τ
−→ R =⇒ P | Q −→ R (6.6)

We assume P | Q
τ
−→ R for some R.

There are three transition rules τ -In, λ-Par and τ -Pull in Tables 4.3 and 6.3,

that can be used to derive a τ -transition of P | Q. So, to apply each rule

separately, we divide this case into two sub-cases.

There are three transition rules τ -In, λ-Par and τ -Pull in Tables 4.2, 4.3 and 6.3

respectively, that can be used to derive P | Q
τ
−→ R. Since the proofs for τ -In

and λ-Par are identical to the proofs of the corresponding cases of Theorem 4.2,

they are omitted.

(a) τ -Pull

Since P | Q
τ
−→ R is valid by τ -Pull rule, so we deduce that the premises

of the rule are also valid. These premises are P
pulled(mA) nB
−→ νp̃〈P ′〉P ′′

for some P ′ and P ′′, and Q
move(mA) nB
−→ νq̃〈Q′〉Q′′ for some Q′ and Q′′,

where p̃ and q̃ are the sets of ambient names that are private in P and Q

respectively. Here, condition (∗) holds, which says that (fn(P ′)∪fn(P ′′))∩

q̃ = (fn(Q′)∪fn(Q′′))∩p̃ = ∅. We usemA and nB for some ambient names.

The agent R is of the form (νp̃)(νq̃)(mA[P
′ | Q′] | P ′′ | Q′′), hence the

resulting transition is

P | Q
τ
−→ (νp̃)(νq̃)(mA[P

′ | Q′] | P ′′ | Q′′)

Chapter 6. Operational Semantics for Push and Pull Ambient Calculus 121

Now, by part 2 of Lemma 6.1 there exists P1, P2, P3, such that

P ≡ νp̃ (mA[pull(mA) nB.P1 | P2] | P3), P
′ ≡ P1 | P2 and P ′′ ≡ P3

Furthermore, by part 3 of Lemma 6.1 there exists Q1, Q2, and we have

Q ≡ νq̃ (nB[Q1] | Q2), Q
′ ≡ nB[Q1] and Q′′ ≡ Q2.

Hence, we deduce that

P | Q ≡ νp̃ (mA[pull(mA) nB.P1 | P2] | P3) | νq̃ (nB[Q1] | Q2)

Since by (∗), members of q̃ are not free names in νp̃ (mA[pull(mA) nB.P1 |

P2] | P3), and members of p̃ are not free names in (nB[Q1] | Q2), by Struct

Res Par we obtain

P | Q ≡ (νp̃)(νq̃) (mA[pull(mA) nB.P1 | P2] | P3 | nB[Q1] | Q2)

→ νp̃ νq̃ (mA[P1 | P2 | nB[Q1]] | P3 | Q2) (Red In)

≡ νp̃ νq̃ (mA[P
′ | Q′] | P ′′ | Q′′)

Now by Red ≡ in Table 3.4, we obtain P | Q→ νp̃ νq̃ (nB[P
′ | Q′] | P ′′ |

Q′′) and νp̃ νq̃ (nB[P
′ | Q′] | P ′′ | Q′′) ≡ R, hence P | Q→ R as required.

6.5 Conclusion

In this chapter CMC has been extended with additional mobility primitives, namely

push and pull capabilities are introduced to model passive and active mobile struc-

tures in the setting of ubiquitous computing, giving us CMCP. We have proposed

transition operational semantics for CMCP and proved that the semantics is sound

and complete with respect to the standard reduction semantics. The operational

semantics has used the notion of lookahead in the SOS rules. The usefulness of

CMCP has been exemplified by presenting case studies and examples.

Chapter 7

Context-Awareness: Location and

Surrounding

In this chapter we add a context-awareness mechanism to CMCP. We address very

basic aspects of context-awareness, where agents are aware of their current locations

and surroundings. This is done by adding two operators to the existing syntax of

CMCP thus obtaining CMCPCA. These operators are (a) ploc(x) for parent location

that queries the name of the parent of an ambient, and (b) sloc(x) for sibling location

that queries the sibling’s name of an ambient.

In smart indoor settings, location is considered an important entity for provid-

ing communication among various portable and static structures. We consider a

scenario where an agent server instructs a mobile ambient client to move from its

current location to some other location. The agent server takes source and target

locations to calculate a path between the two locations, and outputs the path as a

message to client. Such a setting is represented as follows:

server a(nB).b(x, y).c(path(T, x, y)).Ps |

kC mA client a(u).b(mA, u).c(z).z.Pc | Pm | nB Pn

where server instructs client to move from mA to nB, inside a building kC . Here,

the moving agent client sends the parent’s name mA to server whenever requested.

The server in response calculates a path between the two locations. If client moves

around the structure, its location may not be known. So, we need an operator to

find out the current location of an ambient. We rewrite the same scenario by using

the construct ploc(x), which queries its parent’s name as follows:

Chapter 7. Context-Awareness: Location and Surrounding 123

server a(nB).b(x, y).c(path(T, x, y)).Ps |

kC mA client a(u).ploc(x).b(x, u).c(z).z.Pc | Pm | nB Pn

Now, client obtains the name of its parent by using ploc(x). A more detailed

explanation of how ploc and sloc operators work, is presented by example scenarios

in Section 7.3.1.

We now review the related work. The inspiration for the work presented in

this chapter comes initially from [62, 63, 64], where Satoh has researched spatial

organisation of systems and concluded that technological advancements have enabled

computing devices to become aware of their surroundings. Location awareness has

turned out to be useful in many applications, in particular, in determining position,

navigation, tracking, and monitoring of ubiquitous computing devices.

Leonhardt [33] classified location models into two major categories, namely ge-

ometric and symbolic models. In geometric models locations are represented as

coordinates systems, whereas symbolic location models use the notion of place and

labelling the locations. We use the notion of place to model location, and represent

the structure of our system by a hierarchical space tree. The nodes represent the

places, objects or computing devices, whereas the edges represent the containment

relations between objects. Each node or object is represented by named ambient,

which may contain nested ambients inside [10].

The Calculus of Context Aware Ambients (CCA) [18] describes the context-

awareness requirements of the mobile systems. It introduces the notion of context

expression that constraints the capabilities. This makes the computations context

dependent. It introduces the notion of context expression that constraints the am-

bient capability. The context guarded capability has the form k?M , where k is a

context expression and M is a capability. This capability can only be performed if

the environment satisfies its guard k?. We also add basic forms of context awareness

mechanism to our calculus. The new capabilities ploc(x).P and sloc(x).P allow an

ambient to acquire the name of its parent and sibling respectively, and pass it as x

to P .

Conversation Calculus [76, 9] is a process calculus designed for expressing and

analysing service based systems. It proposes a spatial communication topology

where conversation contexts are used as message exchange patterns. The coordi-

nating participants may join or leave a conversation dynamically. In our CMC we

do not have any such contextual communication but the agents communicate glob-

ally using ports as in CCS [76]. The construct here(x) that allows access to the

Chapter 7. Context-Awareness: Location and Surrounding 124

conversation medium in Conversation Calculus is similar to the ploc(x) and sloc(x)

constructs of our calculus. The capabilities ploc(x) and sloc(x) enable ambients to

be aware of their current locations and surroundings respectively, these are not pre-

cisely used for only communication, whereas in Conversation Calculus conversation

contexts are proposed as communication medium that controls information sharing

among processes.

This chapter is organised as follows. We give the extended calculus CMCPCA in

Section 7.1, where two new location awareness constructs are introduced. In Section

7.2 reduction semantics for ploc and sloc is given, which is followed by their transition

semantics. The usefulness of the extended calculus is illustrated with small examples

in Section 7.3. Section 7.4 we conjecture that the transition semantics is sound

and complete with respect to the standard reduction semantics. The application of

CMCPCA is presented by in two case studies of interactive shopping mall and devices

automatically switching their modes in Section 7.5. Finally, Section 7.6 concludes

the chapter.

7.1 Context Awareness Primitives

We start by presenting the existing syntax of CMCP in Table 7.1, in addition we in-

troduce new constructs, namely ploc(x) for parent location that queries the parent’s

name of an ambient, as well as sloc(x) for sibling’s location that queries the sibling

name of an ambient. We extend the definition of µ in Table 7.2 to include further

ploc(x) and sloc(x). Also, the definition of λ in Table 7.2 is extended to include

further auxiliary labels ploc1(x), sloc1(x) and amb nB. CMCP extended with the

ploc(x) and sloc(x) primitives becomes the calculus CMCPCA.

Names : mA, nB, kC ... ∈ N
Actions : α, β, ... ∈ Act
V ariables : x, y, ... ∈ X

Processes : P,Q ::= D | C.P | a(z).P | a(x).P

| mA[P] | P +Q | P | Q | (νmA)P

| (νl)P | P [f]

Capabilities : C ::= x | µ | ǫ | C.C ′

Table 7.1: Syntax of CMCPCA

Chapter 7. Context-Awareness: Location and Surrounding 125

Ambient Prefixes : µ ::= in nB | out nB

| push(mA) nB | pull(mA) nB

| ploc(x) | sloc(x)

Action Prefixes : α ::= a(z) | b(z) | τ

Ambient Action : λ ::= enter nB | exit nB | move nB

| pulled(mA) nB | pushed(mA) nB | move(mA) nB

| ploc1(x) | sloc1(x) | µ

Labels : ℓ ::= µ | α

| λ | τ

Outcomes : O ::= P | K

Concretions : K ::= (νm̃)〈P 〉Q

Table 7.2: Prefixes, labels, concretions and outcomes

7.2 Reduction Semantics for CMCPCA

The reduction semantics of CMCPCA is given in terms of structural congruence, ≡,

and the reduction relation, →. The reductions for ploc(x) and sloc(x) are given in

Table 7.3.

mA[nB[ploc(x).P | Q] | R]→ mA[nB[P{x← mA} | Q] | R] (Red Ploc)

mA[P] | nB[sloc(y).Q | S]→ mA[P] | nB[Q{y ← mA} | S] (Red Sloc)

Table 7.3: Reduction axioms for ploc and sloc

Structural congruence, ≡, for CMCPCA processes is as in Section 6.2 where ca-

pabilities C include additionally ploc(x) and sloc(x). The reduction relation, →, for

CMCPCA processes is as in Section 6.2 except that it satisfies the additional axioms

in Table 7.3. To show some basic reduction computations, assume that our agent is

of the form

nB[mA[ploc(x).P | Q] | R]

In this setting ambient mA is the child of ambient nB. The construct ploc(x) enables

mA to gain the knowledge of its parent’s name. ploc(x) acts as an action guarding

P . By the reduction rule Red Ploc, the term nB[mA[ploc(x).P | Q] | R] reduces

to nB[mA[P{x ← nB} | Q] | R], where P{x ← nB} denotes process P with all

occurrences of variable x replaced by ambient nB.

Chapter 7. Context-Awareness: Location and Surrounding 126

Next, assume that our agent is of the form

mA[sloc(y).P | Q] | nB[R]

In this setting two ambients mA and nB exists in parallel. The construct sloc(y)

enables the ambient mA to find out its sibling’s name. sloc(y) acts as an action

guarding P . By the reduction rule Red Sloc, the term mA[sloc(y).P | Q] | nB[R]

reduces to mA[P{y ← nB} | Q] | nB[R], where P{y ← nB} denotes process P with

all occurrences of variable y replaced by ambient nB.

7.3 Transition Semantics for Ploc and Sloc

We develop an operational semantics for the ploc and sloc primitives of CMCPCA.

The SOS rules for the extended calculus are presented in Tables 7.4, 7.5, and we also

use SOS rules in Table 4.3. This extension allows ambients (i) to have a knowledge

of their location (parent ambient name) by the virtue of ploc(x) construct, and (ii)

to have a knowledge of their surroundings (sibling ambient name) by the virtue of

sloc(x) construct. In τ -Ploc and τ -Sloc rules we have used look-ahead terms as in

[68, 69] and concretions of the form νp̃〈P ′〉P ′′ as in [44, 36, 37].

We consider some examples showing the usefulness of ploc(x) and sloc(x) con-

structs and, at the same time explain the SOS rules for them given in Tables 7.4,

7.5, and 4.3.

Firstly, we explain the use of τ -Ploc by considering the agent

νp̃(mA[nB[ploc(x).P1 | P2] | Q])

In this example an ambient nB executes in parallel with an agentQ inside an ambient

mA, and p̃ is the set of private ambient names. Processes P1 and P2 are executing in

parallel inside ambient nB. The ambient nB queries parent’s name by the virtue of

its ploc(x) capability. Since by Red Ploc in Table 7.3 the agent mA[nB[ploc(x).P1 |

P2] | Q] reduces to mA[nB[P1{x← mA} | P2] | Q], so by Red Res we obtain

νp̃(mA[nB[ploc(x).P1 | P2] | Q]) −→ νp̃(mA[nB[P1{x← mA} | P2] | Q]) (7.1)

Now, we show the corresponding τ -transition of νp̃(mA[nB[ploc(x).P1 | P2] | Q])

which can be derived by τ -Ploc in Table 7.4. In τ -Ploc, lookahead terms are used

that help in replacing all the occurrences of variable x by the parent ambient name

mA. For actual substitution of mA to occur we must consider two parts of our

Chapter 7. Context-Awareness: Location and Surrounding 127

(Act-Ploc) (z doesn’t appear in P)
ploc(x).P

ploc(z)
−→ P{x← z}

P
ploc1(z)
−→ νp̃〈P ′〉Q P ′ ploc(z)

−→ P ′′

(τ -Ploc)
mA[P]

τ
→ (νp̃)mA[P

′′{z ← mA} | Q])

(Ploc1)
mA[P]

ploc1(z)
−→ 〈mA[P]〉0

P
ploc(z)
−→ P ′

(Amb-Ploc)
nB[P]

ploc(z)
−→ nB[P

′]

P
ploc(z)
−→ P ′

(Par-Ploc) (z 6∈ fn(Q))
P | Q

ploc(z)
−→ P ′ | Q

P
ploc(z)
−→ P ′

(Res-Ploc) (u 6= z)
(νu)P

ploc(z)
−→ (νu)P ′

P
ploc1(z)
−→ O(Par-Ploc1) (z 6∈ fn(Q))

P | Q
ploc1(z)
−→ O | Q

P
ploc1(z)
−→ O(Res-Ploc1) (u 6= z)

(νu)P
ploc1(z)
−→ (νu)O

Table 7.4: SOS rules for ploc

ambient, namely the sub-agent where parent’s name substitutes the variable x, and

the sub-agent that remains unchanged. To model these two possibilities, we use

concretions of the form P
def
= νp̃〈P ′〉P ′′. Here, P ′ represents the agent where mA

substitutes all the occurrences of variable x, P ′′ is the unchanged agent, and p̃ is the

set of private ambient names in P . Now, we introduce a new action ploc1(z) and

by rule Ploc1 in Table 7.4, we obtain

nB[ploc(x).P1 | P2]
ploc1(z)
−→ 〈nB[ploc(x).P1 | P2]〉0

By using the Par-Ploc1 we have

nB[ploc(x).P1 | P2] | Q
ploc1(z)
−→ 〈nB[ploc(x).P1 | P2]〉(0 | Q) (A)

where z 6∈ fn(Q). The transition A corresponds to the first premise of τ -Ploc. By

this transition the agent nB[ploc(x).P1 | P2] enquires the name of its parent.

The simplest transition performed by ambient nB in nB[ploc(x).P1 | P2] is

Chapter 7. Context-Awareness: Location and Surrounding 128

ploc(x).P1
ploc(z)
−→ P1{x← z}. By Act-Ploc in Table 7.4, z is a fresh variable that does

not appear in process P1, and P1{x ← z} replaces all occurrences of variable x by

z in process P1. By using Par-Ploc, we have ploc(x).P1 | P2
ploc(z)
−→ P1{x← z} | P2,

where z 6∈ fn(P2). By τ -Amb, we obtain

nB[ploc(x).P1 | P2]
ploc(z)
−→ nB[P1{x← z} | P2] (B)

The transition B corresponds to the second premise of τ -Ploc.

Since we have derived A and B, we obtain by the application of τ -Ploc the following:

νp̃(mA[nB[ploc(x).P1 | P2] | Q])
τ
−→ νp̃(mA[nB[P1{x← z} | P2]{z ← mA} | Q])

Since z does not appear free in P2 by rules for substitution, the target of this

transition becomes

νp̃(mA[nB[ploc(x).P1 | P2] | Q])
τ
−→ νp̃(mA[nB[P1{x← mA} | P2] | Q])

Next, we explain how ambients enquire names of their siblings with the sloc(x)

operator. Consider the process

νp̃(mA[sloc(x).P1 | P2] | P3) | nB[R]

The ambient mA is running in parallel with the ambient nB with R executing

inside. P1 and P2 are executing in parallel inside ambient mA and P3 executes in

parallel with mA, and p̃ is the set of private ambient names. The ambient mA queries

its sibling’s name by the sloc(x) capability.

By the axiom (Red Sloc) in Table 7.3 we obtain the following reduction for our

process

νp̃(mA[sloc(x).P1 | P2] | P3) | nB[R] −→ νp̃(mA[P1{x← nB} | P2] | P3) | nB[R]

We show the corresponding τ -transition of νp̃(mA[sloc(x).P1 | P2] | P3) by τ -Sloc

in Table 7.5. Lookahead terms are used in τ -Sloc to successfully replace all the

occurrences of variable x in P1 by the sibling’s ambient name. When this substitution

occurs we must consider two parts of our ambient, namely the sub-agent where

sibling ambient name substitutes all the occurrences of variable x, and the part of

agent that remains unchanged. To model these two situations we use concretions of

the form P
def
= νp̃〈P ′〉P ′′. Here, P ′ represents the agent where variable x is replaced

by the sibling ambient name, P ′′ is the unchanged agent and p̃ is the set of private

Chapter 7. Context-Awareness: Location and Surrounding 129

(Act-Sloc) (z doesn’t appear in P)
sloc(x).P

sloc(z)
−→ P{x← z}

(Sloc1)
mA[P]

sloc1(z)
−→ 〈mA[P]〉0

P
sloc(z)
−→ P ′

(Amb-Sloc)
mA[P]

sloc(z)
−→ mA[P

′]

P
sloc(z)
−→ P ′

(Par-Sloc) (z 6∈ fn(Q))
P | Q

sloc(z)
−→ P ′ | Q

P
sloc(z)
−→ P ′

(Res-Sloc) (u 6= z)
(νu)P

sloc(z)
−→ (νu)P ′

P
sloc1(z)
−→ O(Par-Sloc1) (z 6∈ fn(Q))

P | Q
sloc1(z)
−→ O | Q

P
sloc1(z)
−→ O(Res-Sloc1) (u 6= z)

(νu)P
sloc1(z)
−→ (νu)O

(Sib-Amb)
nB[P]

amb nB−→ P

P
amb nB−→ P ′

(Par-Amb)
P | Q

amb nB−→ P ′

P
amb nB−→ P ′

(Res-Amb) (nB 6= u)
(νu)P

amb nB−→ P ′

P
sloc1(z)
−→ νp̃〈P ′〉P ′′′ P ′ sloc(z)

−→ P ′′ Q
amb nB→ Q′

(τ -Sloc)
P | Q

τ
→ νp̃(P ′′{z ← nB} | P ′′′) | Q

Table 7.5: SOS rules for sloc

ambient names in P . We introduce a new action sloc1(z), and by rule Sloc1 in

Table 7.5, we obtain

mA[sloc(x).P1 | P2]
sloc1(z)
−→ 〈mA[P1 | P2]〉0

We getmA[sloc(x).P1 | P2] | P3
sloc1(z)
−→ 〈mA[P1 | P2]〉(0 | P3) by Par-Sloc1, where z 6∈

fn(P3), and by Res-Sloc1 we obtain

νp̃(mA[sloc(x).P1 | P2] | P3)
sloc1(z)
−→ νp̃〈mA[P1 | P2]〉(0 | P3), where z 6∈ p̃ (C)

Chapter 7. Context-Awareness: Location and Surrounding 130

The transition C corresponds to the first premise of τ -Sloc. By this transition the

agent mA[sloc(x).P1 | P2] enquires the name of its sibling.

By Act-Sloc, the term sloc(x).P1 performs an action sloc(z). By this rule z is a

fresh variable that doesn’t appear in P1, and all occurrences of variable x in P1 are

replaced by z. Now, using Act-Sloc the simplest transition of sloc(z) action induced

by mA in mA[sloc(x).P1 | P2] is sloc(x).P1
sloc(z)
−→ P1{x← z}. By using Par-Sloc we

have

sloc(x).P1 | P2
sloc(z)
−→ P1{x← z} | P2, where z 6∈ fn(P2) (D)

The transition D corresponds to the second premise of τ -Sloc. This transition shows

that when sloc(z) action is performed, all the occurrences of variable x in process

P1 are replaced by z and the process P2 remains unchanged because z 6∈ fn(P2).

Moreover, to achieve a τ - transition of νp̃(mA[sloc(x).P1 | P2] | P3) | nB[R], we

define a new action amb nB for the ambient nB[R], and by Sib-Amb we obtain

nB[R]
amb nB−→ R (E)

Transition E corresponds to the premise of τ -Sloc.

Since we have derived C, D and E, by the application of τ -Sloc we obtain finally

νp̃(mA[sloc(x).P1 | P2] | P3) | nB[R]
τ
→

νp̃(mA[P1{x← z} | P2]{z ← nB} | P3) | nB[R].

Since z does not appear free in P2 by rules for substitution, the target of this

transition becomes

νp̃(mA[sloc(x).P1 | P2] | P3) | nB[R]
τ
→ νp̃(mA[P1{x← nB} | P2] | P3) | nB[R]

7.3.1 Applications of Ploc and Sloc

In smart indoor settings location is considered as an important entity for providing

communication among various portable and static structures as, for example, in our

Path example given in Section 5.3.1, where a system instructs an agent to move

from its current location to some other location. The system takes the source and

target locations, and calculates a path between the two locations. In that case the

system expects to receive the source name from the moving agent. The moving agent

presumably keeps the parent’s name. We explain the usefulness of parent-awareness

and sibling-awareness features with two examples.

Example 7.1. Parent-awareness

Chapter 7. Context-Awareness: Location and Surrounding 131

We illustrate the parent-awareness feature of our calculus. We extend the example

given in Section 5.3.1 by introducing a new construct ploc(x), that queries the

parent’s name of an ambient. Now, our new system is of the form:

νabc (sys[a(n).b(x, y).c(path(T, x, y))] | k[m1[mA[a(u).ploc(x).b(x, u).c(y).y.0]]

| n1[n[0]]])

The structure of our system is similar to the structure given in Section 5.3.1, where,

we consider ambient k as a building with three rooms m1, n1 and n which is inside

n1, and the agent mA, where a, b, c ∈ A, is a moving ambient. Furthermore, there

exists an independent system in parallel with agent k. The system sys instructs

the agent mA to move from its current location to the ambient n. The above given

expression shows the sequence of actions between the system sys and the moving

ambient mA. The interaction steps between the agents are: Initially, the output

system sys sends the target location n on port/channel a to the moving agent mA.

Next, the agent mA gets the name of its parent and sends it back to the server. In

this specific case, the construct ploc(x) enquires the parent’s name m1 of ambient

mA. Finally, by using the function path(T, x, y) calculates the path between the

source and target values received, and sends it to the moving ambient mA. Here, T

represents the tree structure of the setting.

As discussed earlier the system calculates the path from the source to target

locations. To do so, we wrote several functions which are given in Appendix A. The

general expression for the path from source location s to the target location t in a

tree T is calculated by using functions given in Appendix A, and is as follows:

path(T, s, t)
def
= Sequence(Moves(Join(Path(s, T), Path(t, T), Index(Path(s, T),

Path(t, T)))))

In this particular example, by using the above given expression the path calculated

by the system from the source location m1 to the target location n is

out m1.in n1.in n.

The sequence of transitions that completes the communication between the two

agents is:

ν abc (sys[a(n).b(x, y).c(path(T, x, y))] | k[m1[mA[a(u).ploc(x).b(x, u).c(y).y.0]] |

n1[n[0]]])
τ
−→

ν abc (sys[b(x, y).c(path(T, x, y))] | k[m1[mA[ploc(x).b(x, n).c(y).y.0]] | n1[n[0]]])
τ
→

Chapter 7. Context-Awareness: Location and Surrounding 132

ν abc (sys[b(x, y).c(path(T, x, y))] | k[m1[mA[b(m1, n).c(y).y.0]] | n1[n[0]]])
τ
→

ν abc (sys[c(path(T,m1, n))] | k[m1[mA[c(y).y.0]] | n1[n[0]]])
τ
→

ν abc (sys[0] | k[m1[mA[out m1.in n1.in n.0]] | n1[n[0]]]).

The resulting transition gives the expression with ambient capabilities. The path

out m1.in n1.in n instructs the ambient mA to move from current location to the

target location. The transitions that show all possible ambient moves are as follows:

ν abc (sys[0] | k[m1[mA[out m1.in n1.in n.0]] | n1[n[0]]])
τ
→

ν abc (sys[0] | k[m1[0] | mA[in n1.in n.0] | n1[n[0]]])
τ
→

ν abc (sys[0] | k[m1[0] | n1[mA[in n.0] | n[0]]])
τ
→

ν abc (sys[0] | k[m1[0] | n1[n[mA[0] | 0]]]).

Now, after successful transitions, mA has moved from m1 to n.

Example 7.2. Sibling-awareness

In this example we present a scenario where a moving agent is aware of its surround-

ing. In our setting mobile ambient inside a building expects to receive a target lo-

cation name from an independent system running outside the building. The system

is ready to transmit the required information but it needs to know the device id

or name on which the requesting ambient could view the information sent by the

server. In this particular case, ambient n is the target location that mA wants to

receive from sys via devB. To model this scenario, we extend the example given in

Section 5.3.1 by introducing a construct sloc(x), that finds out the sibling’s name.

Now, our system is of the form:

ν abc (sys[a(x).b(n).0] | k[m1[mA[sloc(x).a(x).c(y).P] | dev[b(z).c(z).0]] | n1[n[0]]]),

sys

mA n

n1

k

m1

devB

Figure 7.1: Sibling awareness

Chapter 7. Context-Awareness: Location and Surrounding 133

where a, b, c ∈ A and a, b, c ∈ B. The structure of our system shares similarities

with the structure given in Section 5.3.1. However, certain differences exist between

the two. Firstly, an ambient devB exists in parallel with the mobile ambient mA.

Secondly, mA sends its sibling’s name to the system sys. Finally, the system further

directs the requested information to devB.

The sequence of τ -transitions among three agents is:

νabc (sys[a(x).b(n).0] | k[m1[mA[sloc(x).a(x).c(y).P] | dev[b(z).c(z).0]] |

n1[n[0]]])
τ
→

νabc (sys[a(x).b(n).0] | k[m1[mA[a(dev).c(y).P] | dev[b(z).c(z).0]] | n1[n[0]]])
τ
→

νabc (sys[b(n).0] | k[m1[mA[c(y).P] | dev[b(z).c(z).0]] | n1[n[0]]])
τ
→

νabc (sys[0] | k[m1[mA[c(y).P] | dev[c(n).0]] | n1[n[0]]])
τ
→

νabc (sys[0] | k[m1[mA[P] | dev[0]] | n1[n[0]]]).

Here, using sloc(x), mA has successfully received the required information from sys

via dev.

7.4 Correspondence of Transition Semantics and

Reduction Semantics

In this section we explore if the transition semantics of CMCPCA coincides with the

reduction semantics. We consider, as in Section 4.2, a sub-calculus T ′′ of CMCPCA

that consists of all operators of CMCPCA apart from the prefixing with actions

(including τ) operators, the choice operator and the relabelling operator. There are

“soundness” and “completeness” parts of this correspondence.

We easily have the soundness part of this correspondence between the two se-

mantics:

Theorem 7.1. ∀P, P ′ ∈ T ′′. P → P ′ =⇒ ∃ Q ∈ T ′′. P
τ
→ Q ≡ P ′.

Proof. By induction where we consider cases of reductions of terms depending on

the structure of the terms.

We conjecture that the completeness part of the correspondence between the

transition semantics and reduction semantics is also valid:

Conjecture 7.1. ∀P,R ∈ T ′′. P
τ
−→ R =⇒ P → R.

The proof of Theorem 7.1 is similar to the proof of Theorem 6.2, and it relies on

several auxiliary statements given in the lemma below.

Chapter 7. Context-Awareness: Location and Surrounding 134

Lemma 7.1.

1. ∀P, P ′.P
ploc(z)
−→ P ′, (where variable z does not appear in P) =⇒ ∃ p̃, P1, P2

such that P ≡ νp̃ (ploc(x).P1 | P2) and P ′ ≡ νp̃ (P1{x ← z} | P2), where

z 6∈ fn(P2) and p̃ is a set of ambient names private in P .

2. ∀P, P ′, P ′′, P ′′′. P
ploc1(z)
−→ (νp̃) 〈P ′〉P ′′′ and P ′ ploc(z)

−→ P ′′ =⇒ ∃ P1, P2, P3, nB

with nB 6∈ p̃ such that P ≡ νp̃(nB[ploc(x).P1 | P2] | P3), P
′ ≡ nB[ploc(x).P1 |

P2], P
′′′ ≡ P3 and P ′′ ≡ nB[P1{x← z} | P2], where z 6∈ fn(P2) and p̃ is a set

of ambient names private in P .

3. ∀P, P ′, P ′′, P ′′′, Q,Q′. P
sloc1(z)
−→ (νp̃) 〈P ′〉P ′′′ and P ′ sloc(z)

−→ P ′′ and Q
amb nB−→

Q′ =⇒ ∃ P1, P2, P3, mA, nB with (mA, nB) 6∈ p̃ such that P ≡ νp̃(mA[sloc(x).P1 |

P2] | P3), P
′ ≡ mA[sloc(x).P1 | P2], P

′′ ≡ mA[P1{x ← z} | P2], P
′′′ ≡ P3,

where z 6∈ fn(P2), Q ≡ nB[Q
′]and p̃ is a set of ambient names private in P .

7.5 Applications of CMCPCA

This section illustrates the expressiveness and usefulness of CMCPCA by presenting

two case studies of interactive shopping mall and devices automatically switching

their ON and OFF modes depending on their location and the users who are using

them.

7.5.1 Interactive Shopping Mall

This case study illustrates the usefulness of global communication, push and pull,

and ploc(x) features of CMCPCA. The shopping mall consists of a number of retail

outlets, clients and devices such as PDAs. To offer clients a high level of services,

there is a server that delivers services to clients on requests via PDAs which are

distributed inside the mall. The tree representation of the shopping mall is given

in Figure 7.2, where the initial setting is given on the left-hand side and the final

setting is on the right hand side. In this figure, the ambient sm is the shopping mall

with two retail outlets m and n. For simplicity we have only one client and one

PDA, represented by the ambients client and pda respectively, which are inside m.

Scenario: The client wishes to move from her current locationm to a target location

n inside the mall. She picks up a pda and sends the two locations to the server and

requests for a path from m to n. The server generates this path as a sequence of

capabilities and delivers it to the client via pda.

Chapter 7. Context-Awareness: Location and Surrounding 135

sm

server m n

client pda

a

b

c

sm

server m n

clientpda

Figure 7.2: Interactive Shopping Mall settings

We define our setting as follows where, C ′, P ′ and S ′ are some processes:

νabc (sm[m[client[pull(client) pda.ploc(x).a(x, n).a(u).u.C ′] |

pda[a(y1, y2).b(y1, y2).c(z).a(z).P
′]] | n[]] | server[b(x1, x2).c(path(T, x1, x2)).S

′])

The ambient client initiates an interaction with the PDA by its pull(client) pda

capability. Here, T is the tree representation of the setting as in Figure 7.2. After

the resulting τ -transition, pda, the sibling of client, becomes a child of client, namely

νabc (sm[m[client[ploc(x).a(x, n).a(u).u.C ′ | pda[a(y1, y2).b(y1, y2).c(z).a(z).P
′]]]

| n[]] | server[b(x1, x2).c(path(T, x1, x2)).S
′])

The only possible execution sequence from this state is
τploc
−→

τa−→
τb−→

τc−→
τa−→

S ′′, for some S ′′. In this sequence client acquires parent’s name by ploc(x) and sends

her source and the target locations to server via a. The server in response calculates

the path(T,m,n) between the two locations and delivers it back to the client. In this

particular case, the path calculated from m to n is out m.in n. Now the system has

the form

S ′′ ≡ νabc (sm[m[client[out m.in n.C ′ | pda[P ′]]] | n[]] | server[S ′]).

After executing out m.in n the final state of the system becomes

νabc (sm[m[] | n[client[C ′ | pda[P ′]]]] | server[S ′]),

and is represented on the right hand side of Figure 7.2.

Chapter 7. Context-Awareness: Location and Surrounding 136

7.5.2 Devices Automatically Switching Mode

In this example we consider a smart PDA that automatically switches its ON and

OFF mode depending on its location and the user who is using it. For example, the

PDA is in ON mode if the owner is holding it, and it switches to OFF mode if the

owner puts it down, or if any unknown user picks it up. Assume that agent Bob is

an authorised user of the device PDA. The device switches to ON mode when Bob

is holding it, and goes to OFF state otherwise.

We model the smart PDA as an ambient named pda as follows

PDA
def
= pda[Ppda],

where Ppda is a process specifying the behaviour of the device PDA, namely,

Ppda
def
= ploc(x).(if (x = bob) then on.Ppda else off .Ppda)

Ambient pda enquires for its parent ambient name by the virtue of its ploc(x) capa-

bility. We start specifying the behaviour of agent Bob as follows:

Pbob
def
= pull(bob) pda.P ′

bob

P ′
bob

def
= push(bob) pda.Pbob

Processes Pbob and P ′
bob specify the behaviour of agent Bob w.r.t its pick and drop

capabilities. The agent Bob represented as an ambient bob with its pull capability

is modelled as follows:

Bob
def
= bob[Pbob]

≡ bob[pull(bob) pda.P ′
bob]

Now we define Bob′ to specify the behaviour of the agent Bob along with the PDA

he is carrying with him, namely

Bob′
def
= bob[P ′

bob | pda[Ppda]]

≡ bob[push(bob) pda.Pbob | pda[Ppda]]

Here ambient bob may push out the ambient pda by the virtue of its push(bob) pda

capability.

Similarly, we define agent Nina as follows:

Chapter 7. Context-Awareness: Location and Surrounding 137

Pnina
def
= pull(nina) pda.P ′

nina

P ′
nina

def
= push(nina) pda.Pnina

Here Pnina and P ′
nina are process specifying the pull and push capabilities of

agent Nina. The agent Nina represented as an ambient nina with its pull capability

is modelled as follows:

Nina
def
= nina[Pnina]

≡ nina[pull(nina) pda.P ′
nina]

Next we define Nina’ to show the behaviour of Nina while holding the PDA.

Nina′
def
= nina[P ′

nina | pda[Ppda]]

≡ nina[push(nina) pda.Pnina | pda[Ppda]]

The ambient nina may push out the ambient pda by the virtue of its push(nina) pda

capability.

Overall we model the three corresponding ambients bob, nina and pda by composing

them in parallel.

Bob | PDA | Nina ≡ bob[pull(bob) pda.P ′
bob] | pda[Ppda] | nina[pull(nina) pda.P ′

nina]

The ambients bob and nina may pick the device pda by the virtue of their pull

capabilities. The device automatically switches its ON and OFF modes depending

on the user holding it. The ambient pda by the virtue of its ploc(x) capability

identifies its owner and changes its modes automatically. The transition graph

representing the parallel composition of the three agents is given in Figure 7.3.

(Bob | PDA | Nina)

(Bob | Nina
′)(Bob

′ | Nina)

on

off

off

ττ
ττ

Figure 7.3: Devices switching ON/OFF modes automatically

Chapter 7. Context-Awareness: Location and Surrounding 138

7.6 Conclusion

In this chapter we have extended further CMCP by including a basic mechanism of

context awareness via primitives that bind the name of parent or sibling ambient in

a process. We have also proposed operational semantics using the notions of concre-

tions and lookahead in the SOS rules. The operational semantics has been proved

sound with respect to the standard semantics. We conjecture that the operational

semantics is complete with respect to the standard reductions semantics. The fi-

nal calculus CMCPCA combines Mobile Ambients, Push and Pull ambient Calculus,

Context Aware Ambients and CCS. The usefulness of CMCPCA has been illustrated

in a number of small case studies.

Chapter 8

Conclusion and Furture Work

This chapter summarises the work done in this thesis, which is followed by a short

evaluation of the work and some directions for future research.

8.1 Thesis Summary

This thesis presents a process calculus for specifying behaviour of mobile commu-

nicating agents. We have developed a Calculus of Communication and Mobility

(CMCPCA), for the modelling of mobility, communication and context awareness in

the setting of ubiquitous computing. The calculus contains a new form of direct and

global communication similar to that in Milner’s CCS. We have defined the notion

of equivalence for CMC in terms of observation predicate and action transitions,

and have defined two forms of barbs. We have showed that the equivalence relations

defined with the two forms of barbs imply each other. The calculus also contains

a basic form of context awareness mechanism that allows ambients to query their

location. We present reduction semantics and labelled transition system semantics

of CMC and argue that the semantics coincide. The usefulness of the calculus is

illustrated by two case studies. The main contributions of each chapter are discussed

briefly below.

In Chapter 3 we have revised the syntax and semantics of the calculus of Mobile

Ambients (MA), and reused only the mobility part of MA and called the calculus, a

Calculus of Mobility (CM). We have developed an operational semantics for CM and

have showed that the operational semantics is sound with respect to the standard

reduction semantics. We have shown in examples that the proposed operational se-

mantics are not complete with respect to the standard reduction semantics for some

unusual cases. These examples have helped us to develop a complete operational

semantics in Chapter 4, where the SOS rules use concretions νm̃〈P 〉Q as introduced

Chapter 8. Conclusion and Furture Work 140

by Milner and used by [36, 37, 40]. The correspondence of the operational semantics

and the reduction semantics for CM has been shown.

In Chapter 5 we have introduced a direct and global style of communication in

CM, and have presented the Calculus of Mobility and Communication (CMC). The

extended calculus comprises of the in and out capabilities of MA [11] and global

communication like in Milner’s CCS [43]. We have combined the communication

primitives and SOS rules from CCS with CM. Also, we have modified the definition

of ambient as mA[P], where m is the name of the ambient, A is the set of actions

that m is allowed to communicate on, and P is an executing agent. We have

developed a labelled transition system semantics for CMC, which inherits the SOS

rules and communication primitives from [43] with an additional SOS rule for global

communication between ambients. The usefulness of CMC is exemplified by a case

study of intelligent hospital setting where services follow doctor while he moves

around the building and deals with patients, and a number of small examples. A

new form of behavioural equivalence for CMC has been defined where we show that

the congruence relations of barbed bisimulation and capability barb bisimulation

imply each other.

In Chapter 6 we have extended CMC by adding further mobility primitives to also

model passive mobile structures in the ubiquitous computing setting. We have added

the capabilities push and pull of Phillips and Vigliotti’s Push and Push Ambient

Calculus [54] (PAC) and thus we have obtained CMCP. A new and first operational

semantics has been developed for PAC which is proved sound and complete with

respect to the standard reduction semantics. The usefulness of CMCP is shown by

a number of small examples.

In Chapter 7 we further have extended CMCP by introducing a new form of

context awareness mechanism, thus obtaining CMCPCA. We have added ploc and

sloc primitives that help ambients to have a knowledge of their parent and sib-

lings respectively. An operational semantics for the extended calculus CMCPCA has

been developed which is sound, and we conjecture that the operational semantics

is complete with respect to the reduction semantics. The usefulness of the calculus

has been illustrated by the case studies of interactive shopping mall, and devices

automatically switching their mode.

8.2 Evaluation

This section discusses the strengths of our thesis as well as some of the issues that

arose during the research. The work in this thesis is of theoretical, and we have

Chapter 8. Conclusion and Furture Work 141

started this work with the following research statements.

1. To develop a process calculus based on Mobile Ambients, its variants and other

process calculi for the modelling of ubiquitous computing features, namely

(a) physical mobility (active and passive),

(b) global communication,

(c) location or structure of systems,

(d) context awareness.

2. To develop operational semantics for the proposed calculus and deriving prov-

able results based on the operational semantics of the calculus, and to show

the expressiveness of the calculus.

3. To define appropriate notions of behavioural equivalences for the calculi and

to prove properties of these equivalences.

We draw the following conclusions based on the contributions of this thesis and

relate them to the research statements discussed above.

1. A Calculus of Mobility and Communication

2. Operational Semantics and Corresponding Results

(a) Operational Semantics for CM

(b) Operational Semantics for CMC

(c) Operational Semantics for Push and Pull

(d) Operational Semantics for Ploc and Sloc

3. Behavioural equivalences for CMC

4. Expressiveness and usefulness of CMCPCA.

The above mentioned achievements are discussed as follows.

1. A Calculus of Mobility and Communication

We have developed a Calculus of Mobility and Communication (CMCPCA),

based on ambient calculi and CCS for the modelling of mobility, global com-

munication and context awareness in the setting of ubiquitous computing. In

our calculus we have modelled the structure of system and physical mobility of

active and passive mobile structures by Mobile Ambients (MA) [11] and Push

Chapter 8. Conclusion and Furture Work 142

and Pull Ambient Calculus (PAC) [54] after some modifications as discussed

in Section 8.1. The global communication has been achieved by adding Mil-

ner’s CCS style communication in CM. Finally, we have added a new form of

context awareness feature in our calculus, inspired by [17, 18].

2. Operational Semantics and Corresponding Results

(a) We have developed a new and simple operational semantics for CM which

is inspired by that in [36, 37] except that they have used concretions in

their operational semantics and we have developed our transition rules

without using concretions. Our operational semantics is simple, and

sound with respect to the standard reduction semantics. We have discov-

ered that the semantics is not complete for certain unusual cases where

ambients with the same name intend to perform in or out capabilities.

The SOS rules have no ability to distinguish between the ambients with

identical name and matching capabilities. This limitation has been over-

come by developing a new operational semantics for CM using concretions

as in [36, 37]. The new operational semantics has been proved sound and

complete with respect to the standard reduction semantics.

(b) We have also developed operational semantics for CMC, where we have

added an additional Global-Com rule. This extension allows our ambients

to communicate globally with ambients nested inside other ambients.

(c) We have continued developing a new operational semantics for PAC that

has been used for the modelling of passive mobile structures in our cal-

culus. To the best of our knowledge this is the new and first operational

semantics that has been developed for PAC. We have also discovered that

using concretions are not enough to develop the SOS rules, therefore we

have also used the notion of lookahead. We have proved that our new

operational semantics is sound and complete with respect to the standard

reduction semantics.

(d) We have proposed a reduction semantics as well as an operational se-

mantics for the context awareness feature of our calculus. In context

awareness, we have used ploc and sloc primitives that help ambients to

have knowledge of their parent and siblings respectively. In literature, we

have not found an operational semantics for the modelling of ambients’

location and surrounding. Our context awareness constructs ploc(x) and

sloc(x) bear similarity with the Conversation Calculus construct here(x)

[76, 9] that allows a process running inside a given context to access its

Chapter 8. Conclusion and Furture Work 143

identity. In in Conversation Calculus conversation contexts are proposed

as communication medium that controls information sharing among pro-

cesses, whereas our constructs are not precisely used for only communica-

tion. Based on the information about parent or sibling name, an ambient

may communicate globally or move from one location to another in an

indoor setting.

3. Behavioural equivalences for CMC

A new form of behavioural equivalence has been introduced for CMC, where

observable behaviour of two processes are considered, this is inspired by [36,

37]. We have defined barbed bisimulation and congruence, and capability

barbed bisimulation and congruence. In order to prove successfully that the

respective congruence relations of the two forms of barbs agree, the global

communication primitives are used. We have not used co-capabilities in our

calculus as in [37], and hence conclude that such results could be proved with-

out the help of co-capabilities.

4. The calculus CMCPCA has been proposed with real-world applications in mind

and its expressiveness and usefulness has been illustrated in several case studies

and small examples, where various features (active and passive mobility, global

communication and location awareness) of our calculus have been modelled

using relevant constructs.

8.3 Future Work

Research is a never ending journey, it starts with a problem and solution to the

problem unlocks a new question. The work in this thesis was started with the

aim of investigating different formalisms for the modelling of ubiquitous and mobile

computing where computing devices are available throughout the physical setting.

These devices are distributed and could be mobile, and interactions among them

are concurrent and often depend on the location of the devices. The work presented

in this thesis is what has been produced within the given time constraints, where

various features of the proposed problem domain have been formalised systemati-

cally. The initially calculus CM is extended uniformly by including push, pull, ploc

and sloc to obtain the final calculus CMCPCA. We now discuss several directions in

which CMCPCA can be further extended.

Chapter 8. Conclusion and Furture Work 144

A. Major directions

(a) In Chapter 5 we have formalised the notion of equivalence for CMC in

terms of observation predicate and action transitions (
α
−→). We have de-

fined barbed bisimulation and capability barbed bisimulation and proved

that the congruence relations of barbed bisimulation and capability barbed

bisimulation for move nB coincide. We conjecture that the congruence

relations of the two forms of barbs for the other capabilities of CMC

agree. This needs a proof. The characterisation of barbed bisimilarity

may be achieved by defining a version of early bisimulation as in [36, 37].

(b) To investigate a suitable methodology to integrate ubiquitous data with

CMCPCA. In general, databases are fixed and static, but in the ubiq-

uitous computing settings devices are distributed, and interactions are

concurrent and dynamic. Therefore, data is generated continuously and

there is live data streaming [20, 19, 21]. It is a challenging task to in-

vestigate a suitable formalism for modelling ubiquitous data streaming,

and combining them with the traditional Relational Database modelling

formalisms.

(c) Some events of the ubiquitous computing systems are time sensitive and

expect responses without delay. The behaviour of such systems depends

on the instance of time at which an event is generated or input is re-

ceived from an external environment. Timed versions of various process

calculi have been presented [81, 66, 3] in order to deal with time depen-

dent behaviour of systems in different ways. For example, as in Timed

CCS, TCCS for short, a real time system has been modelled by adding

time to CCS [81]. The syntax of TCCS is the same as CCS except that

the action prefix of CCS has been modified to µ@t.P where t is a time

variable. Timed version of Mobile Ambients have been presented in [1, 2]

to model efficient resource allocation and immediate responses to time

critical events. Therefore, we also envision that adding time to CMCPCA

could make the calculus more realistic. It could also lead to timed versions

of behavioural equivalences.

(d) Security is also an interesting area for future work in the setting of ubiq-

uitous computing. Some of the risks associated with the ubiquitous com-

puting settings are addressed in [67]. Security is crucial for most of the

computer science applications. However, a lot of research in recent years

has been directed at solving security problems raised by distributed sys-

Chapter 8. Conclusion and Furture Work 145

tems and in ambient calculi, as in [53]. Ubiquitous computing is an

omnipresent and devices that do not look like computers are endowed

with computing capabilities. The challenge to protect the security of the

ubiquitous computing devices is still an open research topic.

B. Minor directions

(a) In Chapter 7 there is a conjecture that the operational semantics de-

veloped for context awareness is complete with respect to the standard

reduction semantics. This result needs a proof.

(b) Chapter 5 presents CMC, where ambients mobility is modelled by the

in nB and out nB capabilities of MA, and communication is similar to

that in Milner’s CCS. We present an LTS for CMC and show that the

operational semantics of the mobility part of the calculus is sound and

complete with respect to the standard reduction semantics. Likewise, we

conjecture that CMC not only extends MA but also CCS, namely if we

take a CMC term and assume that there are no ambients used in the

term, then the term works like a CCS agent.

(c) In past few years, extensive theoretical discoveries on the ambient cal-

culi have been made, however there has been relatively smaller amount

of research carried out in developing real mobile applications based on

ambient calculi. We believe that the implementation of these theoreti-

cal aspects could be an interesting research direction, for example, as in

[53] a distributed abstract machine for boxed ambient calculus has been

implemented.

Appendix A

A.1 Operations

In this section we present various useful operations on trees, that could be used to

calculate a path between two given nodes, such as, a path from a source node to a

target node in a given tree.

1. Parent(n, T):

This function returns parent of node n in tree T . If n is the root node then it

returns null node which indicates that we are navigating off the tree.

2. Root(T):

This function returns the root node in a given tree T .

3. Append(n, list):

This function appends an element n to the left of a list list.

4. Path(n, T): list :

This function returns the path from a current node n to the root in a given

tree T . The current node can be a source node or a target node.

5. Index(l1, l2):

This function takes the two lists that is output from the function Path(n, T),

and returns a list of two elements. The two elements point to the index of the

first common elements of the first and the second list respectively.

6. Join(list1, list2, list3):

This function takes three lists list1, list2 and list3 as arguments from the

functions Path(source, T), Path(target, T) and Index(l1, l2) respectively, and

returns a complete path (list of nodes from the source node to the target node)

after joining the two lists using the index points.

Appendix A 147

7. Moves(list):

This function takes a list as an argument from the Join function and returns

the list of nodes with appropriate in and out prefixes.

8. Sequence(list):

Takes a list of nodes as an argument from the Move function and returns a

sequence of nodes with a dot (.) between the two consecutive nodes.

A.2 Examples

Next, we present set of functions designed in terms of above given operations.

We write a function to take a tree and list the labels of all the nodes (path) from a

node n to the root of a tree T . This function is given in figure A.1.

function Path(n, T) : list

{

Bool rootFound = False;

list[];

list = Append(n, list);

While(! rootFound)

{

n = Parent(n, T);

if (n == root(T))

{

rootFound = True;

}

list = Append(n, list);

}

reverse(list);

return list;

}

Figure A.1: Function returning a path from a node to the root of a tree

To show that how this works, we consider a tree structure given in figure A.2.

Appendix A 148

1

2

3

4

5

6 7

Figure A.2: Tree structure

To find the path between two nodes of a tree structure we assume node (4) and node

(6) as source and target nodes respectively.

1

2

3

4

5

6 7

Figure A.3: Tree representing source and target nodes

The blue edges shows the path from source node (4) to the root node (1) of the

given tree, while the red edges shows the path from target node (6) to the root node

(1) of the given tree, and this is given as below:

list1 = [4, 3, 2, 1] and list2 = [6, 5, 2, 1].

Appendix A 149

function Index(list1, list2) : list

{

Bool match = False;

int index1 = 0;

int index2 = 0;

list[];

for(int i = 0; i < list1.length− 1; i++)

{

for(int j = 0; j < list2.length− 1; j ++)

{

if (lis1[i] == list2[j])

{

index1 = i;

index2 = j;

match = True;

}

if (match);

{

break;

}

list = Append(index1, Append(index2, list));

}

return list;

}

Figure A.4: Function returning first common nodes of the two given lists

The function given in figure A.4 returns a list of two elements representing the

indices of first common elements of the two lists. In our case indices of the first

common nodes are 2,2. The green color node with a label 2 shown in figure A.5 is

the first common node of the two lists.

Appendix A 150

1

2

3

4

5

6 7

Figure A.5: First common node of the two lists

In Figure A.6 we write a function that joins the two lists in such a way that it lists

the labels of all the nodes from the source (4) to the target node (6) of the given

tree T .

function Join(list1, list2, list3) : list

{

int index1 = head(list3);

int index2 = head(tail(list));

path[]; //empty list

for(int i = 0; i < index2; i++)

{

path = Append(list2[i], path);

}

for(int j = index1 − 1; j > 0; j −−)

{

path = Append(list1[j], path);

}

return list;

}

Figure A.6: Joining two lists

In Figure A.7, we give a function that takes a list and returns the same list with

nodes prefixed by appropriate in or out moves (capabilities).

Appendix A 151

function Moves(list) : list

{

move[];

for(int i = 0; i < list.length− 1; i++)

{

if (list[i+ 1] == Parent(Head(list), T))

{

move = Append(out list[i], move);

}

else if (Head(list) == Parent(list[i + 1], T))

{

move = Append(in list[i+ 1], move);

}

list = Tail(list)

}

reverse list;

return list;

}

Figure A.7: Prefixing in and out moves

Bibliography

[1] Aman, B. and Ciobanu, G. Timers and proximities for mobile ambients. In

Computer Science - Theory and Applications, volume 4649 of Lecture Notes in

Computer Science, pages 33–43. Springer-Verlag, 2007.

[2] Aman, B. and Ciobanu, G. Timed mobile ambients for network protocols.

In Formal Techniques for Networked and Distributed Systems, volume 5048 of

Lecture Notes in Computer Science, pages 234–250. Springer-Verlag, 2008.

[3] Baeten, J. C. M and Middelburg, C. A. Process Algebra with Timing. Mono-

graphs in Theoretical Computer Science. An EATCS Series. Springer-Verlag,

2002.

[4] Bergstra, J. A., and Klop, J. W. Process algebra for synchronous communica-

tion. Information and Control, 60(1-3):109–137, 1984.

[5] Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ran-

ganathan, A and Riboni, D. A survey of context modelling and reasoning

techniques. Pervasive and Mobile Computing, 6(2):161–180, 2010.

[6] Bugliesi, M., Castagna, G. and Crafa, S. Boxed ambients. In Theoretical

Aspects of Computer Software, Lecture Notes in Computer Science, pages 38–

63. Springer-Verlag, 2001.

[7] Bugliesi, M., Crafa, S., Merro, M. and Sassone, V. Communication interference

in mobile boxed ambients. In Foundations of Software Technology and Theo-

retical Computer Science, volume 2556 of Lecture Notes in Computer Science,

pages 71–84. Springer-Verlag, 2002.

[8] Bugliesi, M., Crafa, S., Merro, M. and Sassone, V. Communication and mobility

control in boxed ambients. Information and Computation, 202(1):39–86, 2005.

[9] Caires, L. and Vieira, H. T. Analysis of service oriented software systems with

the conversation calculus. Lecture Notes in Computer Science, pages 6–33.

Springer-Verlag, 2010.

Bibliography 153

[10] Cardelli, L. and Gordon, A. D. Mobile ambients. In M. Nivat, editor, Proceed-

ings of Foundations of Software Science and Computation Structures, volume

1378 of Lecture Notes in Computer Science, pages 140–155. Springer-Verlag,

1998.

[11] Cardelli, L., and Gordon, A. D. Mobile ambients. Theoretical Computer Sci-

ence, 240:177–213, 2000.

[12] Cardelli, L., Ghelli, G. and Gordon, A. D. Types for the ambient calculus.

Information and Computation, 177:160–194, 2002.

[13] de Frutos-Escrig, D. and Alonso, O. M. and Rosa-Velardo, F. Ubiquitous

systems and petri nets. In Computational Science and Its Applications -

ICCSA 2005, International Conference, Singapore, May 9-12, 2005, Proceed-

ings, Part II, volume 3481 of Lecture Notes in Computer Science, pages 1156–

1166. Springer-Verlag, 2005.

[14] Desel, J. and Reisig, W. Place or Transition Petri Nets. In Lectures on Petri

Nets I: Basic Models, Advances in Petri Nets, the volumes are based on the

Advanced Course on Petri Nets, held in Dagstuhl, September 1996, volume

1491 of Lecture Notes in Computer Science, pages 122–173. Springer-Verlag,

1996.

[15] Fencott, C. Formal Methods for Concurrency. International Thomson, 1996.

[16] Ferrari, G. L., Montanari, U. and Tuosto, E. An LTS semantics of ambients via

graph synchronization with mobility. In ICTCS, volume 2202 of Lecture Notes

in Computer Science, pages 1–16. Springer-Verlag, 2001.

[17] François S., Cau, A. and Zedan, H. CCA: A calculus of context-aware ambients.

In AINA Workshops, pages 972–977. IEEE Computer Society, 2009.

[18] François S., Cau, A. and Zedan, H. The calculus of context-aware ambients.

Journal of Computer and System Sciences, 77(4):597–620, 2011.

[19] Franklin, M. J. Challenges in ubiquitous data management. In Informatics -

10 Years Back. 10 Years Ahead., volume 2000 of Lecture Notes in Computer

Science, pages 24–33. Springer-Verlag, 2001.

[20] Gaber, M. M., Gama, J., Krishnaswamy, S., Gomes, J. and Stahl, F. Data

stream mining in ubiquitous environments: state-of-the-art and current direc-

tions. Wiley Interdisc. Rew.: Data Mining and Knowledge Discovery, 4(2):116–

138, 2014.

Bibliography 154

[21] Gaber, M. M., Zaslavsky, A. and Krishnaswamy, S. Mining data streams: A

review. SIGMOD Rec., 34(2):18–26, June 2005.

[22] Gottmann, S. and Nachtigall, N. and Hoffmann, K. On modelling commu-

nication in ubiquitous computing systems using algebraic higher order nets.

ECEASST, 51, 2012.

[23] Gul, N. Modelling Ubiquitous Computing. Master’s thesis, University of Leices-

ter, 2010.

[24] Han, S. and Youn, H. Y. Modeling and analysis of time-critical context-aware

service using extended interval timed colored petri nets. IEEE Transactions on

Systems, Man, and Cybernetics, Part A, 42(3):630–640, 2012.

[25] Han, S. and Youn, H. Y. Petri net-based context modeling for context-aware

systems. Artificial Intelligence Review, 37(1):43–67, 2012.

[26] Heckel, R. Graph transformation in a nutshell. Electronic Notes in Theoretical

Computer Science 148, page 187198, 2006.

[27] Heckel, R. Tutorial introduction to graph transformation. In Graph Transfor-

mations, 4th International Conference, ICGT 2008, Leicester, United Kingdom,

September 7-13, 2008. Proceedings, volume 5214 of Lecture Notes in Computer

Science, pages 458–459. Springer-Verlag, 2008.

[28] Hennessy, M. The Semantics of Programming Languages. Wiley, 1993.

[29] Hoare, C. A. R. Communicating sequential processes. Communications of

ACM, 21(8):666–677, 1978.

[30] Hoare, C. A. R. Communicating Sequential Processes. Prentice-Hall, 1985.

[31] Hoareau, C. and Satoh. I. Modeling and processing information for context-

aware computing: A survey. New Generation Computation, 27(3):177–196,

2009.

[32] Hoffmann, K. and Mossakowski, T. Algebraic higher-order nets: Graphs and

petri nets as tokens. In Recent Trends in Algebraic Development Techniques,

16th International Workshop, WADT, volume 2755 of Lecture Notes in Com-

puter Science, pages 253–267. Springer-Verlag, 2002.

[33] Leonhardt, U. Supporting Location-Awareness in Open Distributed Systems.

PhD thesis, Imperial College London, 1998.

Bibliography 155

[34] F. Levi and D. Sangiorgi. Controlling interference in ambients. In Principles

of Programming Languages, pages 352–364. ACM, 2000.

[35] Levi, F. and Sangiorgi, D. Mobile safe ambients. ACM Transactions on Pro-

gramming Languages and Systems, 25(1):1–69, 2003.

[36] Merro, M. and Hennessy, M. Bisimulation congruences in safe ambients. In

Principles of Programming Languages, pages 71–80. ACM, 2002.

[37] Merro, M. and Hennessy, M. A bisimulation-based semantic theory of safe am-

bients. ACM Transactions on Programming Languages and Systems, 28(2):290–

330, 2006.

[38] Merro, M. and Nardelli, F. Z. Bisimulation proof methods for mobile ambients.

In ICALP, Lecture Notes in Computer Science, pages 584–598. Springer-Verlag,

2003.

[39] Merro, M. and Nardelli, F. Z. Behavioural theory for mobile ambients. In IFIP

TCS, pages 549–562, 2004.

[40] Merro, M. and Nardelli, F. Z. Behavioral theory for mobile ambients. Journal

of ACM, 52(6):961–1023, 2005.

[41] Merro, M. and Sassone, V. Typing and subtyping mobility in boxed ambients.

In CONCUR, volume 2421 of Lecture Notes in Computer Science, pages 304–

320. Springer-Verlag, 2002.

[42] Milner, R. A Calculus of Communicating Systems, volume 92 of Lecture Notes

in Computer Science. Springer-Verlag, 1980.

[43] Milner, R. Communication and Concurrency. Prentice Hall Europe, 1989.

[44] Milner, R. Communicating and Mobile Systems: The π-calculus. Cambridge

University Press, 1999.

[45] Milner, R. Bigraphical reactive systems. volume 2154 of Lecture Notes in

Computer Science, pages 16–35. Springer-Verlag, 2001.

[46] Milner, R. Bigraphs as a model for mobile interaction. Lecture Notes in Com-

puter Science, pages 8–13. Springer-Verlag Berlin Heidelberg, 2002.

[47] Milner, R. Bigraphs and their algebra. Electronic Notes Theoratical Computer

Science, 209:5–19, 2008.

Bibliography 156

[48] Milner, R. The Space and Motion of Communicating Agents. Cambridge Uni-

versity Press, 2009.

[49] Milner, R., Parrow, J., and Walker, D. A calculus of mobile processes, part I.

Information and Computation, 100(1):1–40, 1992.

[50] Milner, R., Parrow, J., and Walker, D. A calculus of mobile processes, part II.

Information and Computation, 100(1):41–77, 1992.

[51] Mousavi, M. R., Phillips, I. C. C., Reniers, M. A and Ulidowski, I. Semantics

and expressiveness of Ordered SOS. Information and Computation, 207(2):85–

119, 2009.

[52] Olaru, A. and Gratie, C. Agent-based, context-aware information sharing for

ambient intelligence. International Journal on Artificial Intelligence Tools,

20(6):985–1000, 2011.

[53] Phillips, A., Yoshida, N. and Eisenbach, S. A distributed abstract machine for

boxed ambient calculi. In ESOP, pages 155–170, 2004.

[54] Phillips, I. C. C. and Vigliotti, M. G. On reduction semantics for the push and

pull ambitent calculus. In IFIP TCS, pages 550–562. Kluwer, 2002.

[55] Plotkin, G. D. A structural approach to operational semantics. Journal of

Logic and Algebraic Programming, 60-61:17–139, 2004.

[56] Poslad, S. Ubiquitous Computing: Smart Devices, Environments and Interac-

tions. Wiley, 2009.

[57] A. Ranganathan and A. H. Campbell. An infrastructure for context-awareness

based on first order logic. Personal and Ubiquitous Computing, 7(6):353–364,

2003.

[58] Ranganathan, A. and Campbell, R. H. An infrastructure for context-awareness

based on first order logic. Personal and Ubiquitous Computing, 7(6):353–364,

2003.

[59] Riboni, D. and Bettini, C. Context-aware activity recognition through a com-

bination of ontological and statistical reasoning. In Ubiquitous Intelligence and

Computing, 6th International Conference, UIC 2009, Brisbane, Australia, July

7-9, 2009. Proceedings, volume 5585 of Lecture Notes in Computer Science,

pages 39–53. Springer-Verlag, 2009.

Bibliography 157

[60] Rosa-Velardo, F. and Alonso, O. M. and de Frutos-Escrig, D. Mobile syn-

chronizing petri nets: A choreographic approach for coordination in ubiquitous

systems. Electr. Notes Theor. Comput. Sci., 150(1):103–126, 2006.

[61] Rosa-Velardo, F. and de Frutos-Escrig, D. and Alonso, O. M. Replicated ubiq-

uitous nets. In Computational Science and Its Applications - ICCSA 2006, In-

ternational Conference, Glasgow, UK, May 8-11, 2006, Proceedings, Part IV,

volume 3983 of Lecture Notes in Computer Science, pages 158–168. Springer-

Verlag, 2006.

[62] Satoh, I. Location-based services in ubiquitous computing environments.

Service-Oriented Computing - ICSOC 2003, pages 527–542, 2003.

[63] Satoh, I. A location model for pervasive computing environments. In Pervasive

Computing and Communications, IEEE International Conference on, pages

215–224. IEEE Computer Society, 2005.

[64] Satoh, I. A spatial model for ubiquitous computing services. In IEICE Trans-

actions on Communications, volume E88-B, pages 923–931, 2005.

[65] Satoh, I. A location model for smart environments. Pervasive and Mobile

Computing, 3(2):158–179, 2007.

[66] Schneider, S. Concurrent and Real Time Systems: The CSP Approach. John

Wiley & Sons, Inc., New York, USA, 1st edition, 1999.

[67] Stajano, F. Security for Ubiquitous Computing. John Wiley and Sons, 2002.

[68] Ulidowski, I. Equivalences on observable processes. In Proceedings of the Sev-

enth Annual Symposium on Logic in Computer Science, Santa Cruz, California,

USA, June 22-25, 1992, pages 148–159. IEEE Computer Society, 1992.

[69] Ulidowski, I. Local Testing and Implementable Concurrent Processes. PhD

thesis, Imperial College London, 1994.

[70] Ulidowski, I. Communication and concurrency. Lecture Notes, University of

Leicester, 2014.

[71] Ulidowski, I. and Phillips, I. C. C. Formats of ordered SOS rules with silent

actions. In TAPSOFT, Lecture Notes in Computer Science, pages 297–308.

Springer-Verlag, 1997.

[72] Ulidowski, I. and Phillips, I. C. C. Ordered SOS process languages for branching

and eager bisimulations. Information and Computation, 178(1):180–213, 2002.

Bibliography 158

[73] Ulidowski, I. and Yuen, S. Process languages with discrete relative time based

on the ordered SOS format and rooted eager bisimulation. Journal of Logic and

Algebraic Programming, 60-61:401–460, 2004.

[74] Valk, R. Concurrency in communicating object petri nets. In Concurrent

Object-Oriented Programming and Petri Nets, Advances in Petri Nets, volume

2001 of Lecture Notes in Computer Science, pages 164–195. Springer-Verlag,

2001.

[75] Velardo, F. R. and de Frutos-Escrig, D. Symbolic semantics for the verifica-

tion of security properties of mobile petri nets. In Automated Technology for

Verification and Analysis, 4th International Symposium, ATVA 2006, Beijing,

China, October 23-26, 2006, volume 4218 of Lecture Notes in Computer Sci-

ence, pages 461–476. Springer-Verlag.

[76] Vieira, H. T., Caires, L. and Seco, J. C. The conversation calculus: A model

of service-oriented computation. volume 4960 of Lecture Notes in Computer

Science, pages 269–283. Springer-Verlag, 2008.

[77] Vigliotti, M. G. Reduction Semantics for Ambient Calculi. PhD thesis, Imperial

College London, 2004.

[78] Weiser, M. The computer for the 21st century. Scientific American, February

1991.

[79] Weiser, M. Some Computer Science Issues in Ubiquitous Computing. In Com-

munications of the ACM, volume 36, pages 75–84, 1993.

[80] Winskel, G. The Formal Semantics of Programming Languages: An Introduc-

tion. MIT Press, Cambridge, MA, 1993.

[81] Yi, W. CCS + Time = an interleaving model for real time systems.

In Automata, Languages and Programming, 18th International Colloquium,

ICALP91, Madrid, Spain, July 8-12, 1991, Proceedings, volume 510 of Lec-

ture Notes in Computer Science, pages 217–228. Springer-Verlag, 1991.

	Introduction
	Contributions
	Thesis Outline

	Background and Related Work
	Process Algebra
	Structural Operational Semantics and Transition Rules for CCS
	Mobile Ambients
	Boxed Ambients
	Channel Ambient Calculus
	Push and Pull Ambient Calculus

	Context Awareness
	Location Modelling
	Other Related Work

	Towards a Calculus of Mobility
	The Syntax of Calculus of Mobility
	Structural Congruence
	Reduction Semantics for CM

	Labelled Transition System Semantics for CM
	Soundness of Operational Semantics
	On Completeness of Operational Semantics
	Conclusion

	An LTS Based Operational Semantics of a Calculus of Mobility
	The Syntax and SOS Rules of CM
	Correspondence of Transition Semantics and Reduction Semantics
	Soundness
	Completeness

	Conclusion

	The Calculus of Mobility and Communication
	The Syntax of CMC
	Reduction Semantics of CMC

	Transition Semantics for CMC
	Applications of CMC
	Calculating Path Between Two Locations
	Services Follow Doctor

	Behavioural Semantics
	Conclusion

	Operational Semantics for Push and Pull Ambient Calculus
	The Syntax of CMCP
	Reduction Semantics of CMCP
	Transition Semantics for Push and Pull
	Applications of Push and Pull Capabilities

	Correspondence of Semantics
	Soundness
	Completeness

	Conclusion

	Context-Awareness: Location and Surrounding
	Context Awareness Primitives
	Reduction Semantics for CMCPCA
	Transition Semantics for Ploc and Sloc
	Applications of Ploc and Sloc

	Correspondence of Transition Semantics and Reduction Semantics
	Applications of CMCPCA
	Interactive Shopping Mall
	Devices Automatically Switching Mode

	Conclusion

	Conclusion and Furture Work
	Thesis Summary
	Evaluation
	Future Work

	Appendix
	Operations
	Examples

	Bibliography

