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ABSTRACT

The probability of an event occurring or the proportion of patients experiencing
an event, such as death or disease, is often of interest in medical research. It is a
measure that is intuitively appealing to many consumers of statistics and yet the
estimation is not always clearly understood or straightforward. Many researchers
will take the complement of the survival function, obtained using the Kaplan-Meier
estimator. However, in situations where patients are also at risk of competing events,
the interpretation of such estimates may not be meaningful.

Competing risks are present in almost all areas of medical research. They occur
when patients are at risk of more than one mutually exclusive event, such as death
from different causes. Although methods for the analysis of survival data in the
presence of competing risks have been around since the 1760s there is increasing
evidence that these methods are being underused.

The primary aim of this thesis is to develop and apply new and accessible meth-
ods for analysing competing risks in order to enable better communication of the
estimates obtained from such analyses. These developments will primarily involve
the use of the recently established flexible parametric survival model. Several ap-
plications of the methods will be considered in various areas of medical research to
demonstrate the necessity of competing risks theory. As there is still a great amount
of misunderstanding amongst clinical researchers about when these methods should
be applied, considerations are made as to how to best present results. Finally,
key concepts and assumptions of the methods will be assessed through sensitivity
analyses and implications of data quality will be investigated through the use of a
simulation study.
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TABLE OF KEY TERMINOLOGY

Term Description

Cause-specific hazard The instantaneous rate of death from cause k at time t
given that the patient has not died from cause k or any of
the other K − 1 causes.

Cumulative incidence function The proportion of patients that have experienced a partic-
ular event by a certain time t in the follow-up period.

Excess hazard The difference between the all-cause hazard rate and the
expected or background hazard rate for a relevant compar-
ative population (usually the general population).

Independence assumption Assume that the event of interest, for example death from
a particular cause, is mutually independent of any other
possible cause of death (conditional on covariates).

Markov assumption Assume that the future of a process depends only on the
current state and not on the history of the process up to
that point.

Net survival The proportion of patients that have survived t years since
diagnosis in the hypothetical world where patients can only
die from the cause of interest.

Non-informative censoring Censored patients have the same survival probability, con-
ditional on covariates, as those that remain in the risk set
at the time point at which they are censored.

Proportional hazards assumption The hazard ratio between two groups of patients is assumed
to be constant over follow-up time and so can be reported
as a single number.

Relative contribution to total mortality The probability of having died from cause k given the pa-
tient has died by time t.

Relative contribution to overall hazard The probability of having died from cause k given the pa-
tient has died at time t.

Relative survival The ratio of the all-cause observed survival in the patient
group to the expected (or background) survival in a com-
parable external group, usually the general population.

State occupation probability In a multi-state model this is the probability that a patient
is in state j at time t.

Subdistribution hazard The instantaneous rate of death from cause k at time t
given that the patient has not died from cause k.

Transition probability In a multi-state model this is the probability that a ran-
domly selected patient is in stage j at time t, conditional
on being in state i at time s.



1. INTRODUCTION

1.1 Aims of the thesis

Although competing risks theory has been around since the 1760s [?] there is in-

creasing evidence that these methods are being underused. This is illustrated by the

number of recent tutorial publications [???]. However, many of these publications

are quite theoretical and consequently there is still a great amount of misunder-

standing amongst non-statistical researchers, such as clinicians, about when these

methods should be applied.

The primary aim of this thesis is to develop new and accessible methods for

analysing competing risks in order to enable better communication of the estimates

obtained from such analyses. These developments will primarily involve the use of

the recently established flexible parametric survival model [?]. Several applications

of the methods will be considered in various areas of medical research to demon-

strate the necessity of competing risks theory. As there is still a great amount of

misunderstanding amongst clinical researchers about when these methods should be

applied, considerations are made as to how to best present results. Finally, key con-

cepts and assumptions of the methods will be assessed through sensitivity analyses

and implications of data quality will be investigated through the use of a simulation

study.

1.2 Competing risks

Competing risks are present in almost all areas of medical research [?]. They occur

when patients are at risk of more than one mutually exclusive event, such as death

from different causes [?]. The earliest record of competing risks theory dates back
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to 1760 when Daniel Bernoulli read his memoir on mortality due to smallpox and

the advantage of inoculation (see Figure 1.1) before the French Academy of Science

[??]. Constant debates and discussions took place throughout the 18th century over

the benefits of inoculation for smallpox as deaths were still occurring amongst those

that had been inoculated. Bernoulli began to consider previous work by the famous

astronomer, Edmund Halley, who in 1693 developed life tables based on data that

reported age at death from records of the city of Breslow in Germany [?]. Using this

life table approach Bernoulli set out to illustrate what would happen if smallpox

were eliminated as a cause of death [?]. In doing this he recognised that a key

assumption was the independence between deaths due to smallpox and deaths due

to other causes [?].

In epidemiological studies the two main measures of interest are the risk of an

event occurring and the rate at which it occurs [?]. The event, for example, could

be the onset of disease or death from a particular cause. The rate of disease onset or

death from a specific cause is estimated through the cause-specific hazard function

and the risk of these events occurring is described through the cumulative incidence

function [?]. Both of these measures will be discussed in detail in Chapter 3.

There are two main approaches to modelling competing risks [?]. The first is to

model the cause-specific hazards and transform these to the cumulative incidence

function. The second is to model the cumulative incidence function directly through

a transformation of the subdistribution hazards [?]. The first approach is encour-

aged in this thesis as both the cause-specific hazards and the cumulative incidence

function can provide important information. Estimating both can help in better

understanding risk factors and their effect on the population as a whole [?]. The

cause-specific hazards can inform us about the impact of risk factors on rates of

disease or mortality. Additionally, the cumulative incidence function provides an

absolute measure with which to base prognosis and clinical decisions on [?].
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Figure 1.1 – First page of Bernoulli’s memoir on his theory of competing risks.

1.3 Layout of thesis

Chapter 2 will introduce the main concepts of survival analysis, including both

cause-specific and relative survival approaches. The methods and theory introduced

in this chapter will feature heavily throughout the thesis, particularly in Chapter

3 where competing risks are first introduced. In Chapter 3 the Surveillance, Epi-

demiology and End Results (SEER) Program public use data set on the survival of

breast cancer patients [?] will be used to highlight the key concepts of competing

risks analyses and how they differ with standard survival analyses. This discussion

of key concepts formed the basis of a tutorial paper that is soon to be submitted

to Cancer and is given in Appendix I. The same illustrative example is also used

to demonstrate several approaches for obtaining cause-specific cumulative incidence

functions. Both non-parametric and semi-parametric (Cox regression model) meth-
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ods are compared to the flexible parametric modelling approach that has been newly

developed as part of this PhD. This new method has been published in BMC Medi-

cal Research Methodology [?], the paper for which is given in Appendix II. In order

to disseminate the new methodology, a user-written package has been developed [?]

for the statistical software Stata [?]. The corresponding Stata Journal article for

this software is given in Appendix III.

Two applications of the newly developed flexible parametric modelling approach

for obtaining cause-specific cumulative incidence functions are considered in Chap-

ter 4. The first investigates the risk and cause of death in patients diagnosed with

myeloproliferative neoplasms in Sweden between 1973 and 2005. This was a col-

laborative project with the Division of Hematology at the Karolinska University

Hospital in Stockholm and resulted in a paper that is soon to be submitted to the

Journal of Clinical Oncology. A draft of this is given in Appendix IV. The second

application was carried out in collaboration with The Infant Mortality and Morbid-

ity Studies group in Leicester and involved assessing the length of stay for pre-term

babies in a neonatal critical care unit in the UK. Interest was primarily in the time

to discharge from the unit but death before discharge was considered as a competing

event. The work has since been published in Paediatric and Perinatal Epidemiology

and is given in Appendix V. The estimates obtained from both of these analyses

provide important information for both patients and clinicians, further emphasising

the need for methodological developments such as those shown in this thesis.

The majority of the analyses carried out in this thesis rely on the use of cause of

death information taken from death certificates which is often lacking in accuracy

and completeness. Chapter 5 documents a simulation study carried out to inves-

tigate the impact of under and over-recording of cancer on death certificates in a

competing risks analysis. Using realistic estimates for misclassification of cause of

death information, the study showed that caution should be taken, as with most

analyses, when making conclusive remarks about the older ages. These results em-

phasise that strenuous efforts need to be made to make sure that cause of death
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information on death certificates is as accurate as possible. The work from this

chapter has been published in Cancer Epidemiology [?] and is given in Appendix

VI.

In Chapter 6, a move away from cause-specific analyses to subdistribution anal-

yses is undertaken. This alternative approach to analysing competing risks data

was proposed by Fine and Gray in 1999. The method is contrasted to those shown

in Chapter 3 in order to demonstrate the advantages and disadvantages of both

cause-specific and subdistribution hazards in competing risks analyses.

Chapter 7 takes a further step forward and demonstrates the use of multi-state

models, more specifically illness-death models. Multi-state models are essentially a

process whereby individuals can move between a finite number of states and both

the competing risks models described in Chapters 3 and 6 can be treated as special

cases of a multi-state model. The flexible parametric model is further extended for

illness-death models in this chapter. This work involved the development of two

new user-written packages in Stata [?] the Stata Journal article for which is given

in Appendix VII.

Chapter 8 moves away from the use of cause of death information and considers

relative survival analyses. In a competing risk analysis, several cause-specific hazard

functions are estimated. In this sense, relative survival can be thought of as a special

type of competing risks analysis as it attempts to estimate excess morality which is

made up of two components - the observed all-cause hazard and the expected haz-

ard. However, the expected hazard is usually obtainable from population mortality

tables and determining a comparable group for this can often be an issue. Chapter 8

discusses some of the possible differences that could be introduced into relative sur-

vival estimates through the choice of the external group and demonstrates potential

biases in the estimates through sensitivity analyses. The data used to investigate

these biases come from the Finnish Cancer Registry [?] and the Human Mortality

Database [?]. The work in this chapter resulted in the publication of two research

papers, one in Cancer Epidemiology [?] which is given in Appendix VIII and one in
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the British Journal of Cancer [?] which is given in Appendix IX.

Finally, the thesis is concluded in Chapter 9 with a general overview of the work,

and a discussion of potential future work in the area.



2. SURVIVAL ANALYSIS

2.1 Chapter outline

This chapter introduces the key concepts in survival analysis. Both cause-specific

and relative survival approaches will be discussed as these will be used in later

chapters.

2.2 Introduction

Survival analysis is a concept used to describe the analysis of time-to-event data.

The occurrence of the event of interest is usually described as a ‘failure’. The term

‘survival time’ depicts the time taken for the failure to occur. Survival analysis is

applicable in many areas of medical research. The time origin could, for example,

refer to the time a patient began treatment or the time that they were diagnosed

with a particular disease. Similarly, the failure event could refer to the recurrence of

symptoms or the death of a patient [?]. There are two main features of time-to-event

data that standard analyses can not account for. Firstly, interest lies in the rate of

an event at different points in time and how this differs between groups of subjects.

Secondly, not every patient will experience the event of interest before the end of

the follow-up period. These are known as censored observations and it is not known

whether they will go on to experience the event in the future.

2.3 Censoring

It is typical in survival analysis that not all of the patients will experience the

event of interest. It could be that the patient has simply not experienced the event
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before the end of the follow-up period. This is known as administrative censoring.

Alternatively, the patient could be lost to follow-up, for example if they were to

emigrate. Both of these situations are referred to as right-censoring.

There are other forms of censoring such as left-censoring and interval censoring.

Left-censoring refers to the situation where it is known that the event of interest

occurred prior to the time of observation but it is not known exactly when. For

example, if a study was monitoring the progression to AIDS in HIV patients and a

patient was found to already have AIDS at the start of the study. Interval censoring

occurs when the failure time is not known precisely but instead is known to fall

into a particular interval. This is a common scenario in clinical examinations where

patients are monitored periodically [?]. Left-censoring and interval censoring have

been introduced here for completeness but are not present in any of the examples

used in this thesis.

A key assumption in survival analysis is that there is non-informative censor-

ing. That is, censored patients have the same survival probability, conditional on

covariates, as those that remain in the risk set at the time point just before they

are censored. Consider the scenario where death due to all causes amongst a cohort

of cancer patients is the event of interest. If a patient leaves the country in which

the study is taking place then no more information is available for that patient and

as such they are censored. It is assumed that there is no fundamental difference

between this patient and those with similar covariate patterns that remain at risk

of death [?]. However, the patient could have returned home to their country of

birth to be with their family as they have been told that they are going to die soon.

In this case, the censored patient most likely has a lower survival probability than

those that remain in the risk set and, therefore, the assumption of non-informative

censoring does not hold.

If the assumption of non-informative censoring is unreasonable then, unless the

mechanism behind this can be adjusted for with additional covariate information,

both the rate of the event (hazard rate) and the survival probability can not be
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interpreted in the way that was intended. The risk set in the example given above

does not give a true reflection of events as those that are most likely to die are

censored when they emigrate. Whilst the assumption of non-informative censoring

is usually considered valid for administrative censoring, it is argued that censoring

due to loss of follow up, as with the emigration example above, may not satisfy

this assumption [?]. In most data sets the proportion of censored observations

through loss to follow-up is relatively small and so will not actually have too great

an impact on estimates of hazard rates or survival probabilities. However, it is still

important to consider situations in which informative censoring will severely bias

the estimates. For example, in a study of cancer patients, those with severe disease

may be transferred to a palliative care unit or a hospice and in the process some or

all of their details are lost. Censoring these patients would be indirectly reflecting

a poor outcome as these are likely to be the sickest patients, therefore the resulting

analysis would be biased.

2.4 All-cause and cause-specific survival

When evaluating the prognosis of a disease one option would be to examine the

all-cause survival within a cohort of patients with the disease. If the outcome of

interest is, for example, mortality, then in an all-cause analysis a death from any

cause would be considered an event. However, interest often lies specifically with

mortality from a particular cause. In this case cause-specific survival would be

estimated and only deaths attributed to that particular cause would be considered

as the event of interest, whilst all other deaths are treated as censored observations.

One limitation of cause-specific survival analyses are that they require reliably coded

cause of death information. This information is usually taken from death certificates

and, whilst guidelines are in place, it is not always easy for physicians to ensure that

the cause of death on death certificates is accurately recorded. In Chapter 5 a

simulation study will be used to investigate the issues surrounding inaccurate cause

of death information. If there is concern about the reliability of cause of death



2. Survival Analysis 11

information then a relative survival analysis can be considered. This approach will

be discussed in more detail in Section 2.14.

2.5 Independence assumption

In addition to the assumption of non-informative censoring as described in Section

2.3, when estimating cause-specific survival it is also necessary to assume that the

event of interest, in this case death from a particular cause, is mutually independent

of any other possible cause of death (conditional on covariates). This essentially

assumes that if one cause of death were to be eradicated then the risk of death from

other causes would remain the same. In most medical studies this independence

assumption is unlikely to be fully satisfied. For example, many women with breast

cancer are treated with radiation therapy or chemotherapy that has previously been

reported to be cardiotoxic [????]. This treatment may go some way to preventing

deaths due to breast cancer but it subsequently increases deaths due to cardiovas-

cular disease. It is not possible to test for independence but if it is believed that

the assumption does not hold then, whilst it is still possible to interpret the cause-

specific hazard rates in a real world where competing events occur, the cause-specific

survival probability is not interpretable. This assumption becomes particularly im-

portant in elderly patients as they have a high risk of dying from many causes.

When the independence assumption does hold then the cause-specific survival esti-

mates are interpreted as net survival which will be introduced in the next section.

Researchers are often willing to make this assumption in cancer studies [?] but it

may not be so sensible when studying cardiovascular mortality, for example, due to

this being closely linked with many other disease processes.

2.6 Net survival

Figure 2.1 gives a graphical representation of cause-specific survival in a cohort of

breast cancer patients. If cause of death information is believed to be correct then
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Figure 2.1 – Visualising a cause-specific survival analysis in a cohort of breast cancer
patients. The red “C’s” represent patients that have breast cancer
recorded as their cause of death, the blue “O’s” represent patients that
have another cause of death recorded and the green “A’s” represent
patients that have left the study alive either through loss to follow up
or as administrative censoring.

the red “C’s” represent patients that have died from breast cancer and the blue

“O’s” represent patients that have died from another cause. When estimating the

cause-specific survival for breast cancer, any deaths due to other causes are censored.

Some patients will leave the cohort alive either due to loss to follow up or because

they have not experienced any event by the end of the observation period. These

patients, represented by green “A’s” in Figure 2.1, will be censored in the same way

as patients that die from causes other than breast cancer. If patients that leave the

analysis alive and patients that leave due to a death from another cause are treated

the same way, then effectively an analysis has been carried out where patients can

only die from their breast cancer.

Under the assumption of independence, as discussed in Section 2.5, both cause-

specific survival (see Section 2.4) and relative survival (see Section 2.14) attempt

to estimate net survival. This is a theoretical measure that can never actually

be observed. In statistical literature, net survival is defined as the proportion of

patients that have survived t years since diagnosis in the hypothetical world where

patients can only die from the cause of interest [?]. In reality, each patient is at

risk of dying from one of countless causes of death. Deaths from causes other than

the cause of interest are referred to as competing risks and are introduced in detail
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in Chapter 3. Whilst working in this hypothetical world might seem nonsensical,

it is often the case that interest lies in the risk of death from a particular cause

regardless of the effect of other causes of death. For example, net survival allows for

the comparison of cancer mortality between different populations where mortality

due to other causes varies. Therefore, net survival is the probability of surviving if

all competing risks were eliminated.

2.7 Survival function and hazard function

The two main functions of interest in a survival analysis are the survival function

and the hazard function. Let the variable T be a continuous non-negative random

variable denoting the time of occurrences for the event of interest. T therefore has a

probability distribution with an underlying probability density function, f(t). The

distribution function of T can be written as

F (t) = P (T < t) =

t∫
0

f(u)du (2.1)

The survival function, S(t), represents the probability that a patient survives to

time t (has not had an event), and is given by

S(t) = P (T ≥ t) = 1− F (t) (2.2)

There are several classes of statistical methods for survival analysis. When

distributional assumptions are made about the probability density function then

the method is parametric. The Weibull and exponential models are examples of

parametric methods and are described in more detail in Section 2.11. If no such

assumptions are made then the method is classed as non-parametric. The Kaplan-

Meier estimator, described in Section 2.8, is a classic example of a non-parametric

approach. Finally, the third class of methods are semi-parametric models. No

assumption is made about the probability density function and thus it is treated

non-parametrically. The most commonly used semi-parametric model is the Cox
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proportional hazards model [?] which will be described in detail in Section 2.12.

The rate at which the survival function declines will vary according to the risk

of experiencing the event at time t. The hazard function, h(t), can be described as

the instantaneous rate of failing at time t given that the individual has survived up

to time t. This can be written as

h(t) = lim
δt→0

{
P (t ≤ T < t+ δt | T ≥ t

δt

}
(2.3)

The hazard function describes the rate of failing amongst those that have sur-

vived up to time t. There is a direct relationship between the survival function and

the hazard function meaning that a higher value for h(t) implies a lower value for

S(t) and vice-versa. Manipulating Equations (2.1), (2.2) and (2.3) we can write

h(t) = f(t)
S(t)

or

h(t) =
−S ′(t)
S(t)

=
−d
dt

log(S(t)) S(t) = exp

− t∫
0

h(u)du

 (2.4)

Another related quantity is the cumulative hazard function. This is defined as

H(t) =

t∫
0

h(u)du (2.5)

It can also be written as a transformation of the survival function

H(t) = − log(S(t)) (2.6)

The cumulative hazard function is the cumulation of the instantaneous hazards

up to time t. The flexible parametric survival model, which is considered in later

chapters, is modelled on the log cumulative hazards scale rather than, the more

standard, log hazard scale.
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2.8 Non-parametric estimates

Survival analyses are usually carried out to estimate the proportion of patients

alive at a certain time point. A simple method used to obtain these estimates is

the Product-Limit estimate, more commonly known as the Kaplan-Meier estimate

[?]. The estimator is a step function obtained by constructing a number of time

intervals defined by the event times [?]. If tj is the survival time for the jth patient

then the probability that a patient survives the interval (j − 1, j) given that they

have survived up to time (j − 1) is

pj =
Number of patients who survived time interval (j−1,j)

Number of patients at risk at time j−1

This can be written as

pj =
nj − dj
nj

= 1− dj
nj

(2.7)

where nj is the number of patients alive at the start of the jth interval and dj

is the number of deaths within the jth interval. It should be noted that pj = 1

at times when there are no deaths. Hence, the survival probability only changes

at times when there is at least one death. Censored observations only contribute

to the denominator in Equation (2.7) and never the numerator. This approach is

based on the premise that censoring is non-informative as discussed in Section 2.3.

The Kaplan-Meier estimate of the survival function is then just a product of all the

intervals

Ŝ(t) =
J∏
j=1

(
nj − dj
nj

)
(2.8)

The survival function will only reach zero if the final patient dies. If the final

patient is censored then the curve will reach a plateau at the last event time. When

there are tied censored and death times, the death is assumed to occur just before

the censored observation.
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We can also obtain a Kaplan-Meier estimator for censoring, Ŝc(t), by considering

the censored observations as failures

Ŝc(t) =
J∏
j=1

(
nj − cj
nj

)
(2.9)

where cj is the number of censored observations within the jth interval [?]. This

formula will be utilised in Chapter 6.

The Kaplan-Meier type estimator for the hazard function takes the ratio of the

number of deaths to the number at risk at a given death time. Assuming the hazard

function is constant between successive death times, it is possible to calculate the

hazard per unit time [?]. The hazard function in the interval (j − 1, j) can be

estimated by

ĥj(t) =
dj
njτj

(2.10)

where τj = tj − tj−1. It is not possible to calculate the hazard function in this

way for the last interval as it is open-ended. As ĥj(t) is the hazard per unit time in

the jth interval, the probability of death in that interval is ĥj(t)τj =
dj
nj

. It follows

that the survival probability in the jth interval is 1− dj
nj

as given in Equation (2.7).

By obtaining the hazard function in this way the estimates will often be erratic,

obscuring any underlying patterns. Therefore, it is usual to smooth the hazard func-

tion to give a weighted average of ĥ(t). Several smoothing techniques are available,

most of which involve specifying a kernel function in order to calculate a weighted

kernel-density estimate [?]. Alternatively, the hazard can be estimated parametri-

cally through the exponential or Weibull models which are introduced in Section

2.11 or the flexible parametric survival model in Section 2.13.

2.9 Proportional hazards assumptions

Comparing survival patterns amongst different groups is one of the main interests

in survival analysis [?]. The quantity most used to compare groups is the hazard
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ratio. This gives a measure of how much higher or lower the hazard rate is in one

group compared to another at a given time. When comparing two treatment groups

A and B, the hazard ratio can be written as

hr(t) = hA(t)
hB(t)

where hA(t) is the hazard for treatment group A and hB(t) is the hazard for

treatment group B. The hazard ratio is assumed to be constant over follow-up time

and so can be reported as a single number. This is known as the proportional

hazards assumption and will be further discussed in Section 2.12.

2.10 Estimation (model fitting)

Parametric models, used throughout this thesis, are traditionally estimated through

maximum likelihood. The log-likelihood contribution of the ith individual for a

parametric survival model, given the parameters of interest, can be written as

lnLi = di ln[h(ti)] + ln[S(ti)] (2.11)

where di is the event indicator. In the above equation it is assumed that every

individual becomes at risk at time 0. However, is some examples it may be necessary

to consider late or delayed entry whereby individuals become at risk some time after

time 0. This can be incorporated through a simple modification of Equation 2.11 as

follows:

lnLi = di ln[h(ti)] + ln[S(ti)]− ln[S(t0i)] (2.12)

where S(t0i) accommodates the delayed entry at t0i. Delayed entry will become

very important in the subdistribution analyses that will be discussed in Chapter 6.

As parametric models are fit using maximum likelihood, it is always possible to

obtain a value for the Akaikes Information Criteria (AIC) and Bayesian Information

Criteria (BIC). The AIC and BIC are both useful model selection criteria for com-

paring parametric models. Both criteria attempt to assess the information gained by
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adding additional parameters against the increase in the complexity of the model.

One of the differences between the AIC and the BIC is that the BIC has a stronger

penalisation for additional parameters in the model. It can also be said that the BIC

is consistent unlike the AIC [??]. These differences between the criteria, along with

others not mentioned here, explain why the two approaches don’t always agree on

model selection. These criteria will be used as guide for model selection in Section

3.9.4.

2.11 Exponential model and Weibull model

By making different parametric assumptions about the baseline hazard function it

is possible to fit different types of proportional hazards models. The most simple of

these is the exponential model which assumes that the hazard is constant over time.

So,

h(t) = λ

Transforming this we can obtain the survival function and the probability density

function

S(t) = exp(−λt)

f(t) = λ exp(−λt)

By assuming that the hazard is constant the survival times are given an expo-

nential distribution.

A more flexible way of modelling the hazard function is to use the following

increasing/decreasing function of time

h(t) = λγtγ−1 (2.13)

Transforming this to the survival function and the probability density function

S(t) = exp(−λtγ) (2.14)
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f(t) = λγtγ−1 exp(−λtγ) (2.15)

By assuming that the hazard is the monotonic function shown in Equation 2.13,

the survival times are given a Weibull distribution. It should be noted that when

γ = 1 the Weibull model reverts to the exponential model. Other parametric models

exist, such as the Gompertz model, but these are not considered in this thesis.

Both the exponential and Weibull model, along with other parametric models,

make the assumption of proportional hazards as discussed in Section 2.9. The

presence of non-proportional hazards is common in the analysis of time to event

data, particularly in registry data where follow-up time is often over many years [?].

Time-dependent effects can be incorporated into parametric modelling frameworks,

in order to relax the assumption of proportional hazards, by allowing for interactions

between covariates and some function of time. This will be discussed further in

Section 2.13.

One criticism of parametric models is that they are not flexible enough to capture

the underlying shape of the hazard in many cases. The flexible parametric model,

introduced in Section 2.13, is an extension to the Weibull model and allows the data

to inform the shape of the underlying hazard.

2.12 Cox proportional hazards model

The Cox proportional hazards model [?] is the most commonly used method in

survival analysis. Unlike the exponential and Weibull models, the Cox model makes

no assumptions about the shape of baseline hazard function as it does not actually

estimate it. The hazard function can be written as:

h(t | x) = h0(t) exp(βTx) (2.16)

where β is a vector of regression coefficients and h0(t) is the baseline hazard,

the hazard rate when all covariates, x, are equal to zero. Using the transformations
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given in Equations (2.5) and (2.4) respectively, the cumulative hazard function and

the survival function for the Cox proportional hazards model are as follows

H(t | x) = H0(t) exp(βTx) (2.17)

S(t | x) = S0(t)exp(βTx) (2.18)

where S0(t) = exp(−H0(t)) is the baseline survival function and H0(t) is the

cumulative baseline hazard which can be obtained through Breslow’s estimator.

This will be derived in Equation (2.20).

One of the key assumptions of the Cox model is proportional hazards, as dis-

cussed in Section 2.9. This means that the hazard ratio is assumed to be constant

over follow-up time and so can be reported as a single number. Due to the pro-

portional hazards assumption an increase or reduction between any of the groups is

constant for all of time t. To demonstrate this, let x be a dummy variable used to

identify two groups zero and one. The hazard function is then:

h(t) =

 h0(t) if x = 0

h0(t) exp(β) if x = 1

It follows from this that the hazard ratio is

hr = h0(t) exp(β)
h0(t)

The baseline hazard, h0(t), cancels out leaving hr = exp(β). Therefore, β is the

log hazard ratio.

In large population based data sets, such as those used in many of the examples

in this thesis, the assumption of proportional hazards often does not hold. There

are formal ways of testing this assumption after fitting a Cox model. It is also

possible to examine whether the assumption holds using graphical techniques such

as plotting the Schoenfeld residuals against time [?]. Many suggestions have been

made for relaxing the proportional hazards assumption, whereby an interaction term
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is included between a covariate and a pre-specified function of time, including by Sir

David Cox himself [??]. Some of these suggestions include splitting the time scale to

create a step-function model [?] or using regression splines or fractional polynomials

to model the time scale [???]. There is, however, no concordance as to the practical

usefulness of the methods currently available to incorporate time-dependent effects

into the Cox model and many can be time consuming with large data sets [?].

The main advantage of the Cox model is that there is no need to specify a

functional form for the baseline hazard. However, in many situations this also

proves to be the main disadvantage of the model. It is desirable to have a good

estimate of the underlying baseline hazard as it can help in better understanding of

the disease process. This is particularly the case in the competing risks framework

as will be discussed in Chapter 3.

As the Cox model makes no assumptions about the baseline hazard, h0(t), the

partial likelihood is used to estimate the model parameters [?]. In a proportional

hazards model for one particular cause (see Equation (3.6)), assuming there are no

tied failure times, the partial likelihood can be written as

d∏
v=1

exp(βTx(v))∑
i∈R(t(v))

exp(βxi)
(2.19)

where i represents individuals that are still at risk of event v, t(v) are the times

of failure for the event of interest, x(v) is the vector of covariates for an individual

failing at time t(v) and R(t(v)) is the corresponding risk set just prior to time t(v)

[??].

It is possible to derive an estimator for the cumulative baseline hazard, H0(t) =
t∫

0

h0(u)du, for a Cox regression model. Since β in Equation (2.16) is unknown, the

estimate β̂ is used in Breslow’s estimate of the cumulative baseline hazard as follows:

Ĥ0(t) =
∑
j:tj≤t

1∑
lεRj

exp(β̂
T
xl)

(2.20)

where Rj denotes the risk set at event time tj and l represents the individuals at
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risk [?]. Note that the suggested estimator is essentially a step function with jump

points at the event times {t1, ..., tj}.

The next section introduces a parametric modelling framework that can estimate

the baseline hazard and easily incorporate time-dependent effects, whilst having the

flexibility to model complex hazard functions.

2.13 Flexible parametric survival model

Although the Weibull model could be considered as a parametric alternative to the

Cox model, it is often criticised for the lack of flexibility in the shape of the baseline

hazard function [?]. In 2002, Royston and Parmar proposed a range of flexible

parametric models on different scales for use with time-to-event data [?]. One of

their suggestions was to extend the Weibull model using restricted cubic splines. As

shown in Section 2.11, the Weibull survival function can be written as

S(t) = exp(−λtγ) (2.21)

Transforming this to the log cumulative hazard scale gives

lnH(t) = ln(λ) + γ ln(t) (2.22)

Incorporating covariates the equation becomes

lnH(t | x) = ln(λ) + γ ln(t) + βTx (2.23)

On the log cumulative hazard scale we now have a linear function of log-time.

Rather than assuming linearity with ln(t), Royston and Parmar proposed using

restricted cubic splines [?]. The log cumulative hazard function is used as opposed

to the hazard function as the “end artefacts” in the fitted spline functions at the

extremes of the time scale are more severe for the hazard function. Furthermore,

implementing on the log time scale means that the fitted function is typically gently
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curved or nearly linear, and is usually very smooth. It also allows for an easy

interpretation of covariate effects as hazard ratios under the proportional hazards

assumption. Finally, modelling on this scale means it is easy to transform to the

survival and hazard functions.

Splines are piecewise polynomial functions that are forced to join at predefined

points on the x-axis known as knots. In order to obtain a smooth function the splines

are forced to have continuous 0th, 1st and 2nd derivatives. A further restriction for

restricted cubic splines forces the splines to be linear before the first knot and after

the last knot. The number and location of these knots is usually specified by the user.

This subjectiveness could be a potential criticism. However, numerous sensitivity

analyses have been carried out in various applications of these methods and on

the whole have shown that as long, as a sensible number of knots are chosen, the

methods are fairly robust to the knot location [???].

A restricted cubic spline function of ln(t), denoted s(ln(t) | γ,n), with N knots

and a vector of knot locations n can be written as

s(ln(t)) = γ0 + γ1z1 + . . .+ γN−1zN−1

where γ0 = ln(γ). The derived variables z1, . . . , zN−1 are calculated as follows:

z1 = ln(t)

zj = (ln(t)− nj)3
+ − φj(ln(t)− n1)3

+ − (1− φj)(ln(t)− nN)3
+, j = 2, . . . , N − 1

where

φj =
nN−nj

nN−n1

and (u)+ = u if u > 0 and 0 if u ≤ 0. Thus, a model with N knots for the

baseline cumulative hazard uses N − 1 degrees of freedom [?].

The restricted cubic splines are incorporated into the log baseline cumulative

hazard. Thus, the log cumulative hazard is now

ln[H(t | x)] = s(ln(t) | γ0,n0) + βTx (2.24)
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where γ is the vector of parameters associated with the spline variables, and the

additive effect of covariates, βTx. The 0 subscript is used with γ and n to show

that these are baseline spline variables in contrast to those that will be used once

time-dependent effects are introduced. The survival and hazard functions can be

obtained through a transformation of the model parameters

S(t | x) = exp(− exp(ln[H(t | x)])) (2.25)

h(t | x) =
ds(ln(t) | γ0,n0)

dt
exp(ln[H(t | x)]) (2.26)

As can be seen in Equation (2.26) the hazard function involves the derivatives

of the restricted cubic splines functions. The derivative of a restricted cubic spline

function, s(ln(t)), is calculated using

s′(ln(t)) = γ0 + γ1z
′
1 + ...+ γN−1z

′
N−1

where

z′1 = 1
t

z′j = 3
t
(ln(t)− nj)2

+ −
3φj
t

(ln(t)− n1)2
+ −

3(1−φj)

t
(ln(t)− nN)2

+

One of the main advantages of the flexible parametric approach is the ease with

which time-dependent effects can be incorporated [?]. Time-dependent effects can

be included in the model by forming interactions between the derived variables and

restricted cubic splines for ln(t). If there are D time-dependent effects, then we can

extend Equation (2.24) as follows:

ln[H(t | x)] = s(ln(t) | γ0,n0) + βTx +
D∑
j=1

s(ln(t) | γj ,nj)xj (2.27)

Here j is a separate index only applicable for covariates that are time-dependent.

The knot locations, n, for the time-dependent effects may differ to those for the

baseline, and so the subscript j is used to denote this. For each time-dependent
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effect, there is an interaction between the covariate and the spline variables and

hence γ has a j subscript [?]. Note that it is possible to use a different degrees of

freedom (i.e. number of knots) for the baseline and the time-dependent effects.

The flexible parametric model will be extended for competing risk analyses in

Section 3.9 and for illness death models in Section 7.5.

2.14 Relative survival

Relative survival is an extensively used method in population based cancer studies

as, unlike cause-specific survival, it does not require accurate cause of death informa-

tion [?]. In a cohort of cancer patients it is assumed that patients would experience

the same mortality as the general population if they did not have cancer and so any

excess mortality found in the patient group is deemed to be due to cancer-related

deaths [?]. Relative survival provides a measure of survival based on estimating this

excess mortality.

Relative survival, R(t), is the ratio of the observed survival in the patient group

to the expected (or background) survival in a comparable disease-free cohort [?]. It

can be written as:

R(t) =
S(t)

S∗(t)
(2.28)

where S(t) is the observed survival, S∗(t) is the expected survival and t is the time

from diagnosis. As it is quite difficult to obtain a cohort of disease-free individuals,

expected survival is usually estimated from population life tables stratified by age,

sex and calendar time. The cohort from the general population is usually defined

by matching on age, sex, and calendar period with the patient cohort [?]. Several

methods have been developed to estimate expected survival, the three most common

of these being the Ederer I and II [??] and the Hakulinen method [?]. The three

methods differ in the length that they consider each matched individual from the

population cohort to be ‘at risk’.
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The Ederer I method allows the matched individuals to be at risk indefinitely

and so the time at which a patient dies or is censored does not impact the expected

survival. The Hakulinen method is similar to the Ederer I method as it allows

individuals matched to patients that die to be at risk until the end of the follow-up

period. However, if a patient is censored then the survival time of the matched

individual is also censored. With the Ederer II method, matched individuals are

only considered at risk until the corresponding patient dies or is censored.

In practice there is very little difference between the three methods. However, it

has recently been suggested that the Ederer II method is the most optimal of the

three [??]. The Ederer II method is described in more detail in Section 8.3.

When estimating relative survival it is usual to convert to the hazard scale. The

excess mortality rate, λ(t), is the difference between the observed all-cause mortality

rate, h(t), within the study cohort and the expected or background mortality rate,

h∗(t), for a relevant comparative population (usually the general population) and

can be written as

λ(t) = h(t)− h∗(t) (2.29)

Transforming the excess mortality to relative survival therefore provides an es-

timate of net survival in the absence of reliable cause of death information through

a direct comparison of the study cohort with the general population.

2.15 Period analysis

In a standard survival or relative survival analysis the so-called complete approach,

whereby there is no restriction on the potential follow-up time, is usually adopted to

obtain survival estimates where all available information on the survival experience

of patients with a specific disease is included. More specifically, in order to estimate

10 year survival there will be patients included that were diagnosed recently but also

patients that were diagnosed more than 10 years ago. Therefore, the estimates are
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essentially reflecting the survival experience of patients that were diagnosed many

years ago and hence are often severely outdated [?].

In 1996 Hermann Brenner and Olaf Gefeller proposed a method of obtaining

more up-to-date survival estimates which at the time was named period monitoring

[?]. In 1997 it was renamed as period analysis [?]. The proposed method excludes

patients with short term survival that were diagnosed very early on, considering only

the survival experience of patients in a defined time period. This is done through left

truncation of the data at the beginning of the defined period and right censoring at

the end [?]. This method is now used routinely in population-based cancer studies

[???].

There are two main approaches for period analysis [?]. The first is based on

the use of lifetables. The second considers delayed entry models, where patients

do not contribute to the model until the start of the period of interest. Patients

are therefore not followed from time zero but from the time at which the period of

interest begins. A period analysis approach is adopted in Chapter 8 when some of

the assumptions behind relative survival are investigated.

2.16 Discussion

This chapter has introduced the key concepts involved and the main approaches

available for survival analysis. Methods for estimating both cause-specific survival

and relative survival have been discussed in preparation for future chapters. Two

of the assumptions behind relative survival analyses will be addressed in Chapter

8. Both cause-specific survival and relative survival, under certain assumptions,

attempt to estimate net survival. As illustrated in this chapter, net survival is a

hypothetical quantity that provides an estimate of the probability of surviving a par-

ticular cause in a world where it is impossible to die from anything else. Competing

risks theory allows for the estimation of “real world” probabilities where patients

are at risk of multiple causes of death. The concept of competing risks will be intro-

duced in Chapter 3. Section 2.13 of this chapter introduced the flexible parametric
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model as an alternative to the more commonly used Cox model. The advantages of

the flexible parametric model will be discussed in Chapter 3 and will be exploited

throughout the rest of this thesis.



3. COMPETING RISKS ANALYSIS - CAUSE-SPECIFIC

HAZARDS

3.1 Chapter outline

This chapter will introduce the concept of competing risks and discuss the methodol-

ogy used to carry out these types of analyses. An extension of the flexible parametric

model for competing risks is proposed as an alternative to the Cox model and an ex-

ample is used to demonstrate the benefits of this approach in comparison to existing

methods.

3.2 Introduction

Competing risks arise when patients are at risk of several mutually exclusive events,

such as death from different causes. The occurrence of any one of these events will

prevent the others from ever happening. Figure 3.1 gives a graphical interpretation

of competing risks. The plot considers three patients all followed up for a period

of 10 years. Figure 3.1 illustrates the hypothetical scenario where both the time

at which a patient died from breast cancer and then the time at which, had they

not died from breast cancer, they would have died from another cause are observed.

Patient 1 is at risk of dying from both breast cancer (denoted cancer) and other

causes (denoted other) for the full 10 year follow-up period. The patient does not

die from either cause by the end of the follow-up period and so is censored. Patient

2 died from a cause other than breast cancer at 4 years. Had they not died from

this cause, they would have died from breast cancer at 8 years. Patient 3 died from

breast cancer at 2 years and had they not died from breast cancer would have died
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from another cause at 6 years. In reality this information will never be available.

Once patient 2 has died from some other cause, it will never be known whether they

would have even gone on to die from breast cancer and if they had, at what time.

Cancer

Cancer

Other

Other

Patient 1

Patient 2

Patient 3

0 2 4 6 8 10
Time since diagnosis (years)

Figure 3.1 – Graphical interpretation of competing risks.

Under the assumptions of both non-informative censoring (see Section 2.3) and

independence (see Section 2.5), standard cause-specific survival analysis methods

attempt to estimate net survival. As discussed in Section 2.6, net survival is a hy-

pothetical quantity that estimates the probability of surviving a particular cause in

a world where it is impossible to die from anything else. Competing risks theory

allows “real world” probabilities to be estimated where a patient is not only at risk

of dying from breast cancer but also from any other cause of death. There are

two main measures of interest in a competing risks analysis. These are the cause-

specific hazard and the cumulative incidence function. This chapter will focus on

situations where the competing events are deaths from different causes. Therefore,

the cause-specific hazard will give the cause-specific mortality rate and the cumu-

lative incidence function will give the proportion of patients that have died from a

particular cause as a function of follow-up time.

There are two main approaches to modelling competing risks [?]. The first is to
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model the cause-specific hazards and transform these to the cumulative incidence

function. The second is to model the cumulative incidence function directly through

a transformation of the subdistribution hazards [?]. The subdistribution hazard

is the instantaneous rate of death from a particular cause conditional only on not

having died from that same cause. This means that a patient may still be considered

at risk even though they have died from another cause. This concept is discussed

further in Chapter 6. This chapter will demonstrate the first approach and extend

for flexible parametric models using the SEER public use data set on survival of

breast cancer patients [?]. The second approach is introduced and extended in

Chapter 6.

3.3 Cause-specific hazards

If a patient is at risk of K mutually exclusive causes, then the cause-specific hazard,

hk(t), is the rate of failure from cause k at time t given that the patient has not

experienced a failure from cause k or any of the other K − 1 causes [?]. This can be

written as

hk(t) = lim
∆t→0

P (t≤T<t+∆t,K=k|T≥t)
∆t

where T is the time to failure from any event. The cause-specific hazard is

conditional in nature. For example, to be at risk of death from a particular cause a

patient can not have died from that cause or any other cause. Once the cause-specific

hazards have been estimated, the cumulative incidence function can be obtained

through a transformation of all K cause-specific hazards as discussed in the next

section.

3.4 Cumulative incidence function

The cumulative incidence function, Ck(t), is the proportion of patients that have

experienced a particular event by a certain time t in the follow-up period. It can be

derived from the cause-specific hazards through the equation
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Ck(t | xk) =

t∫
0

hk(u | xk)S(t | x)du (3.1)

where xk) is a vector of covariates. The subscript k is used here as the explana-

tory variables are allowed to differ for each of the k causes. The overall survival

funcion, S(t | x), is the product of all K cause-specific survival functions (see Equa-

tion (2.2)) as follows

S(t | x) = S1(t | x1)× ...× Sk(t | xk)

= exp

− t∫
0

K∑
k=1

hk(u | xk)du

 (3.2)

The cause-specific hazards are estimable from the data through the survival

analysis methods introduced in Chapter 2. Therefore, any method that is able to

estimate the cause-specific hazards can be used to obtain the cumulative incidence

function.

The cumulative incidence function is not only a function of the cause-specific

hazard for the event of interest but also incorporates the cause-specific hazard for

the competing events through the overall survival function. This means that there

is no longer a one-to-one correspondence between the cause-specific hazard and the

probability of death for that cause. This property motivated models that directly

link the cumulative incidence function and the hazard function [?]. These models

will be discussed in detail in Chapter 6.

3.5 Illustrative example

One research area that is increasingly making use of competing risks methodology

is population based cancer studies [????]. In this chapter, data obtained from

the SEER public use dataset [?] on survival of breast cancer patients is used for

illustration purposes. The patients analysed are all white females aged between

18 and 104 and were diagnosed between the years 1992 and 2007. Patients that
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were diagnosed at death or autopsy (n = 755) or had an unknown cause of death

(n = 846) are excluded from the analyses. Only patients with a first primary

malignant indicator are included (n = 25, 853 excluded). If the stage of breast

cancer is unknown then the patient is also excluded (n = 1675). This leaves a total

of 60,012 patients to be analysed.

Cause of death is categorised into breast cancer, other cancers, diseases of the

heart and other causes. Patients are also grouped into the categories 18-59, 60-69,

70-79 and 80+ for age at diagnosis. It should be noted that age group is defined

purely by age at diagnosis and that some women may actually change age group

during follow-up as their attained age increases. The risks of certain events will

obviously change not only as patients’ begin to age but also as the period since

their cancer diagnosis increases. This could affect the estimates for the mortality

rates and probabilities of death. However, for simplicity in the illustration of these

methods only age at diagnosis is considered in this example. Staging of the cancer is

classified as localised, regional or distant. Follow-up is restricted to 10 years. Table

3.1 gives the number of patients within each age group and stage of cancer.

Variables Number (%)
Age Group

18-59 29,523 (49.20)
60-69 13,030 (21.71)
70-79 11,166 (18.61)
80+ 6,293 (10.49)

Stage
Localised 36,734 (61.21)
Regional 19,649 (32.74)
Distant 3,629 (6.05)

Table 3.1 – Number (%) of patients in each age group and within each stage at breast
cancer diagnosis.

Using this example four approaches to obtaining the cumulative incidence func-

tion will now be demonstrated including the newly developed flexible parametric

modelling approach. The results presented are given for those aged 18-59 and 80+

only. However, additional results for those aged 60-69 are presented in the research
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paper in Appendix II.

3.6 Calculation by hand when no censoring

In most time-to-event data there will be some censoring, for example due to loss of

follow-up. However, if censoring were not to occur then it would actually be possible

to obtain the cumulative incidence function or the probability of death from each

cause through a simple calculation. Table 3.2 gives the number of patients that have

died from each of the four causes and the number of patients that remain alive at 5

and 10 years since diagnosis. The probability of death for breast cancer at 5 years

since diagnosis can be calculated by dividing the number of patients that have died

from breast cancer by 5 years by the total number of patients in the data. This gives

5, 852÷ 60, 012 = 0.098. Similarly, the same probability at 10 years since diagnosis

can be calculated as 7, 917 ÷ 60, 012 = 0.14. The same calculation can be made at

any time point in the follow-up period as long as there is no censoring present in the

data. If the probability of death was required for separate age groups, for example,

then the numbers that have died from each cause in each age group at a particular

time point can be applied to the same calculation as above.

5 Years 10 Years
Alive 50,366 45,088

Breast Cancer 5,852 7,917
Other Cancer 317 497
Heart Disease 1,477 2,697
Other Causes 2,000 3,813

Total 60,012 60,012

Table 3.2 – Number of patients that have died from each of the four causes at 5 and
10 years since diagnosis.

This section highlights that, in the absence of censoring, estimation of the proba-

bility of death as a function of time (i.e. the cumulative incidence function) is much

simpler. However, in most time-to-event data there will be some censoring and so

for this reason three other approaches that can take censoring into account are now
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considered.

3.7 Non-parametric approach

A common confusion when competing risks are present is to think that the cumu-

lative incidence function can be obtained by taking the complement of the Kaplan-

Meier estimate (1-KM) [?]. Under this misconception, to estimate the cumulative

incidence function for breast cancer in the presence of the three other causes of

death, the Kaplan-Meier estimate for survival from breast cancer is estimated and

the cumulative incidence function is taken as 1-survival [?]. However, in doing this,

deaths from the three competing causes are treated as censored and the resulting

estimates can only be interpreted as net probabilities under the assumption of inde-

pendence as discussed in Section 2.5. That is, the probability of dying from breast

cancer in the hypothetical world where all other causes of death are eliminated (see

Section 2.6). Therefore, even under the strong assumption of independence, the es-

timates obtained are not “real world” probabilities of death. The term “real world”

will be used throughout this thesis and refers to estimates being made in the world

where competing risks can occur rather than considering virtual absolute risks as

described above [??].

The “real world” estimate of the probability of death can be estimated by consid-

ering a non-parametric version of Equation (3.1). The non-parametric cumulative

incidence function, Ck(tj)nonp, often thought of as the competing risks analogue of

the Kaplan-Meier estimator, can be estimated for the jth interval as follows:

Ĉk(tj)nonp =
∑
j|tj≤t

Ŝ(tj−1)
dkj
nj

(3.3)

where Ŝ(tj−1) is the Kaplan-Meier estimate of the overall survival at time tj−1

and
dkj
nj

is an estimate of the hazard for cause k as shown in Section 2.8 [?]. There

exist two other non-parametric estimators for competing risks. However, Geskus

recently showed that all three estimators were mathematically equivalent [?] and so
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these are not shown here.

Figure 3.2 shows the complement of the Kaplan-Meier estimate and the cumu-

lative incidence function for breast cancer, other cancer, heart disease and other

causes for the age group 80+. As this is an age group where competing causes of

death play an important role it is clear to see that the complement of the Kaplan-

Meier estimate is over-estimating the true probability of death for each of the four

causes. In fact, the sum of the probabilities of death from the complement of the

Kaplan-Meier estimate for each cause at 10 years is actually 1.19.

If instead a younger age group is considered where competing causes of death

are less important then the complement of the Kaplan-Meier estimate should not

actually be that different to the cumulative incidence function. Figure 3.3 shows

the complement of the Kaplan-Meier estimate and the cumulative incidence function

for breast cancer, other cancer, heart disease and other causes for the age group 18-

59. As expected the two curves almost overlap. Although these patients have been

diagnosed with breast cancer, as they are still young there are very few dying from

anything other than their breast cancer.
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Figure 3.2 – Comparison of the cumulative incidence functions estimated using the
non-parametric approach and the complements of the Kaplan-Meier
estimate for ages 80+ only.
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Figure 3.3 – Comparison of the cumulative incidence functions estimated using the
non-parametric approach and the complements of the Kaplan-Meier
estimate for ages 18-59 only.

The variance estimator for the non-parametric cumulative incidence function,

Ck(tj)nonp, at time tj can be estimated as follows:

V [Ĉk(tj)nonp] =

j∑
l=1

[(
Ĉk(tj)nonp − Ĉk(tl)nonp

)2 dl
nl(nl − dl)

]

+

j∑
l=1

(Ŝ(tl−1))2

(
nl − dkl
nl

)(
dkl
n2
l

)

−2

j∑
l=1

(
Ĉk(tj)nonp − Ĉk(tl)nonpŜ(tl−1)

)(dkl
n2
l

)
(3.4)

where tl ≤ tj, dj =
K∑
k=1

dkj and K is the number of causes of failure in the jth

interval [?].

Once the variance estimator is obtained then approximate 95% confidence limits

can be computed [?] through the formula:

exp

log(Ĉk(t)nonp)±

√
V [Ĉk(t)nonp]

Ĉk(t)nonp

 (3.5)

Figure 3.4 shows the cumulative incidence function for breast cancer for ages 80+
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along with confidence intervals. As the data set is reasonably large the confidence

intervals are fairly narrow. They become wider towards the end of the follow-up

period as more patients die from the four causes and the number of patients at risk

becomes lower.
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Figure 3.4 – Estimated non-parametric cumulative incidence function and confi-
dence intervals for breast cancer patients aged 80+.

The approach discussed above makes no assumptions about the shape of the

baseline hazard as it is a non-parametric approach. However, this means that the

only way to examine covariates, such as age, is to categorise them and estimate the

cumulative incidence function for each age group separately. A better approach in

this case may be to use a regression model. The next two sections introduce the use

of the Cox proportional hazards model and extend the flexible parametric model for

competing risks.

3.8 Cox proportional hazards approach

Assuming proportional hazards, the cause-specific hazard rate for cause k for a

patient with covariate vector xk can be specified using the equation
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hk(t | xk) = hk,0(t) exp(βTk xk) (3.6)

or on the log scale

ln(hk(t | xk)) = ln(hk,0(t)) + βTk xk (3.7)

where hk,0(t) is the baseline cause-specific hazard for cause k and βk is the vector

of covariate effects on cause k. Cox regression can be used to fit a cause-specific

hazards model as shown in Equation (3.6). However, as discussed in Section 2.12, the

Cox model does not directly estimate the baseline hazard function, hk,0(t), therefore,

if the cause-specific hazard rates are required then the baseline hazards need to be

estimated through post-estimation using a technique known as kernel smoothing [?].

ID Age Time Cause
1 50 10 Alive
2 70 6.5 Heart Disease

Table 3.3 – Covariate values for two patients from the SEER breast cancer dataset.

Table 3.3 gives the age at diagnosis, survival time and cause of death for two

patients within the SEER breast cancer data. Patient 1, aged 50, is followed for

a 10 year period and does not die from anything so is censored. Patient 2, aged

70, dies after 6.5 years from heart disease. Using this information for all patients

in the SEER data it is possible to fit a separate Cox proportional hazards model

for each cause to obtain the cause-specific hazard functions for breast cancer, other

cancer, heart disease and other causes. For example, to estimate the cause-specific

hazard for breast cancer, all breast cancer deaths would be considered an event and

any other death would be censored. However, there may be some shared covariate

effects across all four causes of death and fitting separate models does not allow for

this.

In order to fit a model for all four causes simultaneously the data needs to be

stacked so that each individual patient has four rows of data [?]. Table 3.4 illustrates

how the data should look once it has been stacked. Each patient has the opportunity
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to fail from one of four causes. Patient 1 is at risk from all four causes for 10 years

but does not experience any of them and so is censored. Patient 2 is at risk from

all four causes for 6.5 years but then dies from heart disease and so is no longer at

risk from any of the four causes. It should be noted that the covariate patterns, for

example age, are simply repeated over all four rows. Now that the data is in the

stacked or long format one model can be fitted for all four causes simultaneously.

ID Age Time Cause Status
1 50 10 Breast Cancer 0
1 50 10 Other Cancer 0
1 50 10 Heart Disease 0
1 50 10 Other Causes 0
2 70 6.5 Breast Cancer 0
2 70 6.5 Other Cancer 0
2 70 6.5 Heart Disease 1
2 70 6.5 Other Causes 0

Table 3.4 – Expanding the dataset

A Cox proportional hazards model can be fitted for all four causes simultaneously

by stratifying by cause of death as follows:

ln(hk(t | x)) = ln(h0,k(t)) + βTk xk + βTx (3.8)

where ln(h0,k(t)) is the log baseline hazard function for death due to cause k. If

there were any shared parameters across all four causes in the model this would be

represented by βTx. The interaction term, βTk xk, between each cause and the co-

variates allows the covariate effects to vary for each of the four causes. For example,

it may not be sensible to assume that the effect of age is the same for breast cancer,

other cancer, heart disease and other causes. It also allows for different covariates to

be considered for each of the different causes. A stratified Cox proportional hazards

model will be fitted to the four causes of death including age group and stage at

diagnosis as prognostic factors for the probability of death from each cause. The

effect of age group and stage can not be assumed constant for the four causes and

therefore interaction terms are included between each of these covariates and cause
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of death.

Table 3.5 gives the cause-specific hazard ratios for age group and stage at diagno-

sis for each of the four causes of death obtained using the stratified Cox proportional

hazards model. It is well known that the risk of death increases with age and this is

evident for all four causes of death in this case. The results also show that the risk

of death for all four causes increases with severity of breast cancer staging. This is

to be expected for breast cancer deaths as distant stage breast cancer has the worst

prognosis. However, distant stage breast cancer also increases the risk of death from

all three of the other causes.

Research has shown that the overall risk of developing a secondary cancer in-

creases with increasing time since breast cancer diagnosis. It has also been demon-

strated that due to the differing treatment regimens for the different stages of breast

cancer, the type of secondary cancer that the patient develops varies [?]. This could

explain the increased risk of death from other cancers with increasing severity of

breast cancer staging, although these are usually longer term risks. Another expla-

nation could of course be misclassification of cause of death on the patients death

certificate [??]. This issue will be addressed in Chapter 5.

The increased risk of heart disease with increasing stage severity could also be due

to treatment related side effects. Previous studies have shown a relationship between

radiation therapy and cardiovascular mortality [???] and a similar relationship for

chemotherapy [?]. The likelihood of receiving either radiotherapy or chemotherapy

as a treatment for breast cancer increases with the severity of the staging. This could

again explain the increased risk of death from disease of the heart with increasing

severity of breast cancer staging.
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Covariates Breast Cancer Other Cancer Heart Disease Other Causes

Ages 18-59 1.00 (.) 1.00 (.) 1.00 (.) 1.00 (.)
Ages 60-69 0.90 (0.82, 0.98) 2.20 (1.56, 3.09) 4.85 (3.61, 6.53) 3.41 (2.82, 4.12)
Ages 70-79 1.30 (1.20, 1.42) 2.88 (2.05, 4.06) 17.53 (13.48, 22.78) 9.88 (8.38, 11.65)
Ages 80+ 2.32 (2.11, 2.54) 6.78 (4.82, 9.54) 73.52 (56.94, 94.91) 30.71 (22.15, 40.91)

Localised 1.00 (.) 1.00 (.) 1.00 (.) 1.00 (.)
Regional 4.31 (3.98, 4.67) 2.53 (1.85, 3.46) 1.48 (1.30, 1.67) 1.14 (1.02, 1.26)
Distant 35.78 (32.87, 38.94) 30.10 (22.15, 40.91) 2.62 (2.01, 3.40) 2.28 (1.83, 2.83)

Table 3.5 – Cause-specific hazard ratios and 95% confidence intervals estimated from
Cox proportional hazards model for age group and stage for all four
causes of death: breast cancer, other cancer, heart disease and other
causes.

As shown in Equation (3.1), the cause-specific cumulative incidence function is

derived from all of the cause-specific hazards. The cause-specific hazard requires

an estimate of the baseline cause-specific hazard (see Equation (3.6)) which is not

directly obtained from the Cox proportional hazards model. In order to resolve

this, the cumulative incidence function can instead be written in terms of the cause-

specific cumulative hazard as follows:

Ĉk(t | x) = Ĥk(t | x) exp

(
K∑
k=1

Ĥk(t | x)

)
(3.9)

where

Ĥk(t | x) = Ĥ0(t) exp(β̂
T
x) (3.10)

and

Ĥ0(t) =
∑
j:tj≤t

1∑
lεRj

exp(β̂
T
xl)

(3.11)

is the Breslow estimator for the cause-specific cumulative baseline hazard as

introduced in Section 2.12. As the Breslow estimator is essentially a step function

the cumulative incidence function can be obtained through a summation as shown.

However, when there are few events in the data this approach will not provide a
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very smooth function for the cumulative incidence.

Figure 3.5 shows the cumulative incidence functions obtained from the four sep-

arate Cox proportional hazards models stacked one on top of the other. The whole

of the coloured area represents the total probability of death from any cause as a

function of time. This means that at 10 years since diagnosis the total probability

of death from all causes for patients aged 80+ with localised stage breast cancer is

0.72, with regional stage breast cancer is 0.87 and with distant stage breast cancer

is 0.99. The graph also breaks down the total probability of death into the four

causes. Each colour represents a different cause. So for example, at 10 years since

diagnosis the probability of death from breast cancer for patients aged 80+ with

localised stage breast cancer is 0.09, with regional stage breast cancer is 0.29 and

with distant stage breast cancer is 0.67. Stacking the cumulative incidence functions

provides a visual tool with which to see how stage at diagnosis impacts on each cause

of death. Breast cancer deaths occur more with later stage breast cancer. However,

as these patients are fairly old, the total probability of death is still high even for

localised stage breast cancer.

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

Localised

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

Regional

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

Distant

P
ro

ba
bi

lit
y 

of
 d

ea
th

Time since diagnosis (years)

Ages 80+

Breast Cancer Other Cancers

Heart Disease Other Causes

Figure 3.5 – Stacked cumulative incidence functions for ages 80+ for all four causes
estimated using stratified Cox model.
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The main assumption of the above stratified Cox model is proportional hazards.

This means that for each of the cause-specific hazards the effect of age and stage

at diagnosis is assumed constant across the follow-up period. If this assumption

is reasonable then the cumulative incidence functions will be very similar to those

obtained through the non-parametric approach as discussed in Section 3.7. Figure

3.6 gives a comparison of the cumulative incidence functions obtained from a non-

parametric approach and a Cox model for ages 80+. As the two sets of curves do not

overlay, the graph shows that there could possibly be non-proportional effects for all

four of the causes. It could also, however, be due to the lack of an interaction term

between age and stage at diagnosis in the Cox proportional hazards model. Note

that the non-parametric approach only estimates the cumulative incidence function

at each event time and so some of the resulting curves do not cover the whole of

the follow-up period. For example, for distant stage cancer in the breast cancer plot

the non-parametric curve stops after approximately 3 years. This is because all of

the patients aged 80+ with distant stage cancer have died and as such there is no

data after this time point. This means that any model fitted to the data will borrow

information from localised and regional stage for the distant stage curve after the 3

year time point. This may not be a sensible approach and therefore caution should

be taken in interpreting any estimate for the distant stage patients over the age of

80.
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Figure 3.6 – Comparison of estimated cumulative incidence functions obtained from
non-parametric approach and stratified Cox model for ages 80+.

As discussed previously, whilst it is possible to incorporate time-dependent effects

into the Cox model, it can become very computationally intensive and standard

software restricts to either piecewise or linear functions of (log) time. For this reason

the use of the flexible parametric model introduced in Section 2.13 is advocated as

an alternative. One of the main advantages of the flexible parametric approach is

the ease with which time-dependent effects can be incorporated [?]. Furthermore,

not only does the model estimate the baseline hazard function directly, it also allows

for flexibility in the shape of the baseline hazard function meaning that it is easier

to capture complex shapes. The next section will extend the flexible parametric

model to a competing risks framework.

3.9 Flexible parametric model approach

As discussed in Section 2.13 the flexible parametric model is a relatively new model

and as such has not yet been considered in a competing risks framework. This section

extends the model for use in competing risks analyses. The work has been written

into a paper that has been published in BMC Medical Research Methodology and
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is given in Appendix II. The methodology has also been implemented in Stata in

the form of a user friendly command. The Stata Journal article for this command

is given in Appendix III.

Rather than estimating the cause-specific hazard functions using a stratified

Cox proportional hazards model, a joint proportional hazards flexible parametric

model can be applied to obtain these. Unlike with the stacked Cox model shown in

Equation (3.8), the flexible parametric model can easily incorporate time-dependent

effects that allow the shape of baseline hazards for each of the four causes to differ

over the whole of the follow-up period. Expanding the data set in the same way as

shown in Section 3.8, a joint flexible parametric proportional hazards model for the

four causes of death can be expressed as follows

ln[Hk(t | x)] = s(ln(t) | γ0,k,n0,k) + βTk xk + βTx (3.12)

where s(ln(t) | γ0,k,n0,k) is the log cumulative baseline hazard function for cause

k. If there were any shared parameters across all four causes in the model this

would be represented by βTx. However, shared parameters are not considered in any

analyses in this thesis. The interaction effects between each cause and the covariates

(age and stage) are represented by βTk xk. These allow the effect of the covariates

to differ for each of the four causes and also allow for different covariates to be

considered for each cause. The model can be made more complex by incorporating

time-dependent covariate effects as will be discussed in Section 3.9.2.

As discussed in Section 3.4, once the cause-specific hazard functions have been

estimated for each of the four causes using the flexible parametric model, the corre-

sponding cumulative incidence functions can be obtained through the transformation

given in Equation (3.1). However, the integrand is analytically intractable and so

needs to be evaluated through numerical integration. Similar methods have been

proposed by Carstensen [?] and Lambert et al. [?]. The integration is performed

through the following steps:

1. The time scale is split into a large number, m, of small intervals. For example,
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1000 intervals between 0 and 10 years since diagnosis.

2. The estimated integrand of the cumulative incidence function, f̂(tm | x0) =

hk(tm | x0k)S(tm | x0), is predicted for a particular covariate vector, x0 at

each of the m time intervals, tm. The cause-specific hazard for cause k is

dependent only on the covariates modelled for that cause, hence x0k. However,

the predictions depend on everything that is modelled whether it is for cause

k or not, therefore, the subscript k is removed from the covariate vector x.

3. The variance-covariance matrix for the integrand f̂(tm | x0), is obtained at

each time interval using the delta method. The Stata command predictnl

estimates the observation-specific derivatives for each parameter in the model

at each time point where a prediction is required. Let G be the m× p matrix

of observation-specific derivatives then the variance-covariance matrix can be

estimated using the equation

V (f̂(tm)) = GV̂G′

where V̂ is the estimated variance matrix for the p model parameters.

4. The cumulative incidence function can then be estimated by summing the

values of the integrand for them time intervals. In order to do this, a triangular

matrix L needs to be created. For example, for five intervals this looks like

Ĉk(t) = l ×



1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1





f̂(t1)

f̂(t2)

f̂(t3)

f̂(t4)

f̂(t5)


= L



f̂(t1)

f̂(t2)

f̂(t3)

f̂(t4)

f̂(t5)



where l is the interval length. In reality around 1000 intervals would usually

be chosen.
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5. The variance-covariance matrix for the cumulative incidence function is then

estimated using

V (Ĉk(t)) = LGV̂G′L′

Confidence intervals for the cumulative incidence function can be estimated using

the variance-covariance matrix above. These have been incorporated into the user

written package that was developed as an extension of the flexible parametric model.

As the delta method described here is only an approximation, in Section 3.9.3 the

confidence intervals obtained using this approach will be compared to those obtained

using bootstrapping [?].

3.9.1 Comparison with the Cox model

As discussed briefly in Section 3.9, the use of the flexible parametric model is ad-

vocated over the Cox model here for two reasons. The flexible parametric model

directly estimates the baseline hazard which is needed to obtain the cause-specific

hazards as shown in Equation (3.6). The cause-specific hazards are of interest in

their own right and can help in understanding differences in the cumulative inci-

dence functions. Secondly, time-dependent covariate effects can be easily incorpo-

rated which is often needed when using population based data as the proportional

hazards assumption usually does not hold. This second motivation will be discussed

further in Section 3.9.2.

Although it is evident that there are some time-dependent covariate effects

present, a proportional hazards model will be fitted initially in order to make a com-

parison of the Cox-proportional hazards model and the flexible parametric model

in terms of the cumulative incidence function. For the flexible parametric model

the baseline knots were positioned differently for each of the four causes. The knot

locations were chosen by fitting each of the causes individually and taking the first

and last event times along with the 25th, 50th and 75th centiles of the event times.

The flexible parametric model may be criticised as the number and location of the
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knots are subjective. For this reason a sensitivity analysis is carried out in Section

3.9.4 to investigate the effect of varying numbers of knots.

Table 3.6 gives the cause-specific hazard ratios for age group and stage at di-

agnosis for each of the four causes of death obtained using the flexible parametric

model. Comparing these to the hazard ratios obtained from the Cox model, as given

in Table 3.5, it is clear to see that there is great similarity between the hazard ratios

and their confidence intervals for both models. The two models are estimating the

same measures therefore it is expected that these should be similar. The largest

difference between the two model estimates is 0.17 for the distant stage hazard ratio

for breast cancer (i.e. a hazard ratio of 35.78 for the Cox model compared to 35.95

for the flexible parametric model). However, as discussed previously in Section 3.8

there is sparse data for distant stage cancer as most of these patients die in the first

three years after diagnosis.

Covariates Breast Cancer Other Cancer Heart Disease Other Causes

Ages 18-59 1.00 (.) 1.00 (.) 1.00 (.) 1.00 (.)
Ages 60-69 0.90 (0.82, 0.98) 2.20 (1.56, 3.09) 4.86 (3.61, 6.53) 3.41 (2.82, 4.12)
Ages 70-79 1.31 (1.20, 1.42) 2.90 (2.05, 4.09) 17.53 (13.49, 22.79) 9.88 (8.38, 11.66)
Ages 80+ 2.33 (2.12, 2.55) 6.85 (4.87, 9.64) 73.64 (57.04, 95.08) 30.78 (26.17, 36.20)

Localised 1.00 (.) 1.00 (.) 1.00 (.) 1.00 (.)
Regional 4.31 (3.98, 4.67) 2.54 (1.86, 3.47) 1.48 (1.30, 1.67) 1.14 (1.02, 1.26)
Distant 35.95 (33.03, 39.12) 30.23 (22.26, 41.12) 2.64 (2.03, 3.43) 2.29 (1.84, 2.85)

Table 3.6 – Cause-specific hazard ratios and 95% confidence intervals estimated from
flexible parametric model for age group and stage for all four causes of
death: breast cancer, other cancer, heart disease and other causes.
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Figure 3.7 – Comparison of estimated cumulative incidence function from stratified
Cox proportional hazards model and flexible parametric proportional
hazards model for ages 80+. It is difficult to see a difference between
the two sets of curves as they are overlayed.

Figure 3.7 shows the cumulative incidence functions taken from the Cox model

and from the flexible parametric survival model for each of the four causes of death

broken down by stage at diagnosis for patients aged 80+. The estimates taken from

the Cox model and the flexible parametric survival model are so similar that the

two sets of curves overlay each other which is not surprising given previous work

with the flexible parametric model [??].

The stacked cumulative incidence function plots from the flexible parametric

model for those aged 18-59 and 80+ are given in Figures 3.8 and 3.9. As has already

been deduced, the Cox model and the flexible parametric model estimate similar

values in terms of the cumulative incidence function and so the stacked plot for

those aged 80+ is almost exactly the same as the one obtained from the Cox model

in Figure 3.5.

Comparing the two plots for those aged 18-59 (Figure 3.8) and those aged 80+

(Figure 3.9), the total probabilities of death from all causes for patients with localised

stage breast cancer are 0.096 and 0.72 respectively, for patients with regional stage
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breast cancer are 0.29 and 0.87 and for patients with distant stage breast cancer are

0.90 and 0.99. The total probabilities of death for those aged 18-59 and 80+ are

very different for localised and regional stage breast cancer. However, for distant

stage cancer there is only a difference of 9 percentage units between the two age

groups. The stacked plots show that for the younger ages the majority of the deaths

amongst the distant stage patients are due to breast cancer whereas for the 80+ age

group 32% of the deaths are actually from causes other than breast cancer.
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Figure 3.8 – Stacked cumulative incidence functions for ages 18-59 for all four causes
estimated using flexible parametric model.
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Figure 3.9 – Stacked cumulative incidence functions for ages 80+ for all four causes
estimated using flexible parametric model.

3.9.2 Time-dependent effects

In large population based data sets, such as those used in many of the examples in

this thesis, the assumption of proportional hazards often does not hold. As men-

tioned previously, one motivation for the use of the flexible parametric survival model

over the Cox model is the ease in which time-dependent effects can be incorporated.

The methodology behind this is given in Section 2.13. Using an expanded data set

for all four causes as before, a joint flexible parametric model for the four causes of

death included time-dependent covariate effects can be expressed as an extension of

Equation (3.12) as follows:

ln[Hk(t | x)] = s(ln(t) | γ0,k,n0,k) + βkxk

+βx +

Dk∑
j=1

s(ln(t) | γj,k,nj,k)xj)
(3.13)

where Dk is the number of time-dependent covariate effects for cause k and

s(ln(t) | γj,k,nj,k)xj) is the spline function for the jth time-dependent effect for

cause k.
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For the remaining analyses a non-proportional hazards model is fitted to account

for the time-dependent effects of age and stage. This model includes time-dependent

effects for age groups 60-69, 70-79 and 80+ for breast cancer and other causes

and also for regional and distant stages for breast cancer, other cancer and other

causes. These are selected using likelihood ratio tests (p-value≤0.05). All the time-

dependent effects are fitted using 4 degrees of freedom with knot locations at the

first and last event times along with the 25th, 50th and 75th centiles of the event

times specific to each cause. The sensitivity to the number of knots is addressed in

Section 3.9.4.

Figure 3.10 shows the estimated cumulative incidence function and the cause-

specific hazard functions for both breast cancer and other cancer. Separate curves

are given for each of the three stages; localised, regional and distant. The graph

shows results for those aged 80+ only. It compares estimates from the proportional

and non-proportional flexible parametric models. It is evident from the cause-specific

hazard function that incorporating time dependent effects allows for more flexibility

within the hazards over time and that the proportional hazards assumption is not

reasonable. The differences between the proportional and non-proportional hazards

models in terms of the cumulative incidence function are also fairly apparent. For

example, reading from the graph, the probability of death from breast cancer at

1 year post diagnosis in those patients that have distant stage breast cancer is

approximately 0.4 in the proportional hazards model and approximately 0.3 in the

non-proportional hazards model - a difference of 0.1.
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Figure 3.10 – Comparison of cumulative incidence functions and cause-specific haz-
ards for patients aged 80+ with breast cancer and other cancers esti-
mated by a proportional hazards flexible parametric model (PH) and
a flexible parametric model with time-dependent effects (TD).

3.9.3 Confidence intervals

As discussed in Section 3.9, an approximation of the 95% confidence intervals for the

cumulative incidence functions can be obtained using the delta method. However,

the delta method is only an approximation and so the purpose of this section is to

show that the confidence intervals obtained through this approach are similar to

those obtained through the more computationally intensive method of bootstrap-

ping. Figure 3.11 shows the estimated cumulative incidence functions and corre-

sponding 95% confidence intervals for breast cancer, other cancers, heart disease

and other causes for those aged 80+ with distant stage cancer. The confidence in-

tervals are estimated using the delta method as described in Section 3.9.1 and also

by using bootstrapping with 1000 replications. The bias-corrected method is used

to estimate the bootstrapped confidence intervals [??]. This method requires more

time to compute the confidence intervals than a standard bootstrap but provides a

considerable improvement in accuracy [?]. In order to speed up the bootstrap pro-

cess, the estimations are carried out on a subset of the data where only patients in
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the age group 80+ are considered. The figure clearly indicates that the two methods

show good agreement in both the upper and lower bounds of the confidence interval.

The bootstrapped confidence intervals take a considerably longer amount of time

to estimate than those obtained through the delta method (just over one hour for

the bootstrapping as opposed to just over one second for the delta method). The

bootstrapping takes much longer on a full data set. Further assessment of these

confidence intervals may be needed in small data sets. However, the advantages of

using the flexible parametric model are more prominent in large population-based

studies anyway.
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Figure 3.11 – Comparison of estimated 95% confidence intervals for the cumulative
incidence function for those aged 80+ using the delta method (dashed
lines) and bootstrapping (shaded area). Note that breast cancer re-
sults are on a different scale.

3.9.4 Sensitivity of knots

The non-proportional hazard analyses carried out above with the flexible parametric

model use 4 degrees of freedom for both the baseline effects and the time-dependent

effects. As a sensitivity analysis, five further models are fitted that compared the

number and locations of the knots for the baseline effects and the time-dependent

effects of age group and stage. Table 3.7 describes the models used in the sensitivity
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analysis. Model 1 refers to the non-proportional hazards model used throughout the

above analysis. Model 2 describes a model with 5 degrees of freedom for both the

baseline effects and the time-dependent effects; model 3 is a model with 5 degrees

of freedom for the baseline effects and 3 degrees of freedom for the time-dependent

effects; model 4 has 7 degrees of freedom for the baseline effects and 3 degrees of

freedom for the time-dependent effects; model 5 has 7 degrees of freedom for the

baseline effects and 4 degrees of freedom for the time-dependent effects and finally

model 6 has 3 degrees of freedom for both the baseline effects and the time-dependent

effects.

The Akaikes Information Criteria (AIC) and Bayesian Information Criteria (BIC)

are both model selection criteria and were defined in Section 2.10. In terms of the

AIC, model 1 is the best fitting model but in terms of the BIC, model 4 is the

best fitting model. Whilst the AIC and BIC have not provided a conclusive answer

here in terms of model selection, Figures 3.12 and 3.13 both demonstrate that, with

exception to model 6, the overall shape of the cause-specific hazard function is very

much the same and the choice of model has little impact on the cumulative incidence

function. Model 6 only considers 3 degrees of freedom for both the baseline effects

and the time-dependent effects and so is most likely not able to fully capture the

shapes of the underlying baseline hazards for the 4 causes.

Baseline Time-dependent
dfb dft AIC BIC

Model 1 4 4 61841.19 62459.84
Model 2 5 5 61945.39 62606.23
Model 3 5 3 61963.30 62483.53
Model 4 7 3 61947.53 61783.53
Model 5 7 4 61938.33 62585.10
Model 6 3 3 61962.75 62426.74

Table 3.7 – Models with varying degrees of freedom for the baseline time-dependent
effects, df b and the additional time-dependent effects, df t. For 3 df knots
are placed at centiles (0, 33, 67, 100), for 4 df at centiles (0, 25, 50, 75,
100), for 5 df at centiles (0, 20, 40, 60, 80, 100) and for 7 df at centiles
(0, 14, 29, 43, 57, 71, 86, 100). These are placed on the distribution of
uncensored event times for each event time.
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Figure 3.12 – Comparison of cumulative incidence functions and cause-specific haz-
ards for distant stage patients aged 18-59 with breast cancer and other
cancers estimated using flexible parametric models with varying num-
bers of knots.
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Figure 3.13 – Comparison of cumulative incidence functions and cause-specific haz-
ards for distant stage patients aged 80+ with breast cancer and other
cancers estimated using flexible parametric models with varying num-
bers of knots.
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3.10 Examining differences between two groups

A question that is frequently asked by clinicians in medical research is whether

there is a significant difference in survival between two groups of patients. In a

standard survival analysis (see Chapter 2), if the two groups being compared have

proportional hazards over the follow-up period then, as there is a one-to-one cor-

respondence between the hazard and survival function, examining the hazard ratio

and its confidence interval for the two groups will determine whether there is a

significant difference in survival. If the proportional hazard assumption does not

hold for the two groups then it is not possible to say that one group is uniformly

superior to the other. Plotting the time-dependent hazard ratio and its confidence

interval for the two groups will highlight whether there is a significant difference

in survival. Figure 3.14 shows the time-dependent hazard ratio comparing breast

cancer mortality for both localised and regional stage breast cancer. The plot shows

that the breast cancer mortality rate is significantly higher for those with regional

stage breast cancer compared to those with localised cancer across the whole 10 year

follow-up period. In the first few months after diagnosis the breast cancer mortality

rate for those with regional stage cancer is almost 8 times higher than that for lo-

calised stage cancer. The hazard ratio then begins to decrease as time goes on and

starts to plateau at around 4 years.
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Figure 3.14 – Time-dependent hazard ratio and 95% confidence interval estimated
from flexible parametric model comparing breast cancer mortality for
both localised and regional stage breast cancer.

In a competing risks analysis the cumulative incidence function provides an es-

timate of the probability of death for a particular cause. However, as shown in

Equation (3.1), the cumulative incidence is a function of multiple cause-specific haz-

ard rates meaning that there is no longer a one-to-one correspondence between the

cause-specific hazard and the probability of death for that cause. Therefore, deter-

mining whether there is a significant difference in the probability of death from a

particular cause between two groups of patients is not as straightforward as examin-

ing the hazard ratio for those two groups. The cumulative incidence functions need

to first be estimated using one of the methods described in this chapter. Obtain-

ing the difference in the probability of death between two groups is just a simple

subtraction as follows:

Ĉk(t | regionalk)− Ĉk(t | localisedk) (3.14)

where Ĉk(t | regionalk) is the cumulative incidence function for cause k at time

t predicted for those with regional stage cancer in the baseline age group, 18-59,
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and Ĉk(t | localisedk) is the cumulative incidence function predicted for those with

localised stage cancer in the baseline age group, 18-59. Both of these estimates can

be obtained from the same model as that described in Section 3.9.2. Obtaining

confidence intervals for this difference will very much depend on the original ap-

proach use to estimate the cumulative incidence functions. As discussed in Section

3.9.1, the Cox model does not directly estimate the baseline hazard function and

therefore the cumulative incidence function is written in terms of the cumulative

cause-specific cumulative hazard. This cumulative hazard is not directly estimated

in the original Cox model and so is obtained using the Breslow estimator. By not

estimating everything that is needed in the same model it means that the covariance

between certain parameters is not accounted for. This makes is very difficult to use

the delta-method to obtain confidence intervals for estimates from the Cox model.

Therefore, in order to obtain confidence intervals for the difference in the probability

of death between two groups it is most likely that a bootstrap approach will need to

be used. As demonstrated in Section 3.9.3 this is a very computationally intensive

approach, even more so when using large population-based data sets.

The advantage of the flexible parametric modelling approach introduced in Sec-

tion 3.9 is that everything is estimated within one model therefore accounting for

any covariance that there may be between parameters. This means that the delta-

method can be used to obtain confidence intervals for the difference in the probability

of death between two groups. The procedure for this is very similar to that described

in Section 3.9. The approach will be utilised in Chapter 4 to examine whether the

differences in the probabilities of death from six causes between the two calendar

periods are significantly different.

3.11 Conditional cumulative incidence

Whilst it is important to understand the probabilities of death from different causes

after a diagnosis of a particular disease, many clinicians also feel it is clinically rel-

evant to have knowledge on the probability of death after an initial period of high
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risk, for example after surgery. Another estimate of interest is therefore the condi-

tional cumulative incidence function. That is the probability of an event occurring

given that a patient has survived a particular length of time. For example, the prob-

ability of dying from breast cancer given that the patient survives to two years after

diagnosis. Figure 3.15 shows the total cumulative incidence or the total probability

of death for patients aged 80+ with regional stage breast cancer. As highlighted

by the red dashed lines, the total probability of death from all causes by 2 years

after diagnosis is 0.263 and by 10 years after diagnosis is 0.871. This means that

after 2 years there are 73.7% of the breast cancer patients still alive. The region

of the graph shaded in violet represents the proportion of deaths from all causes

that occurred between 2 and 10 years after diagnosis. The conditional cumulative

incidence function is the proportion of patients that have died from any cause at

any time point between 2 and 10 years but only amongst the 73.7% of breast cancer

patients that are still alive at 2 years.
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Figure 3.15 – Total estimated probability of death from all causes for those aged 80+
with regional stage cancer. Example of how to estimate conditional
cumulative incidence.

To estimate the total cumulative incidence function conditional on having sur-

vived to two years after breast cancer diagnosis a manipulation of Bayes’ theorem



3. Competing Risks Analysis - Cause-specific Hazards 62

can be used.

P (A | B) =
P (A ∩B)

P (B)
(3.15)

Let A be the total probability of dying from any cause, Ĉtot(t) at a particular

time, t, in the 10 year follow-up period. That is, the sum of all the cause-specific

cumulative incidence functions Ĉk(t) at time t. Let B = 1−Ĉtot(2) be the probability

of surviving the first two years after a diagnosis from breast cancer. This means

that A ∩ B is the total probability of dying from any cause between 2 years and

time t (the region shaded in violet in Figure 3.15). The total probability of death at

time t given that the patient has survived the first two years, Ĉtot(t|2), is therefore

Ĉtot(t|2) =
Ĉtot(t)− Ĉtot(2)

1− Ĉtot(2)
(3.16)

where Ĉtot(2) is the total probability of dying from any cause 2 years after diag-

nosis. In the example illustrated below, the total cumulative incidence function at

both time t, Ĉtot(t), and at 2 years after diagnosis, Ĉtot(2), are estimated using the

same model as shown in Section 3.9.2.

This now gives the probability of dying from any cause at time t given that the

patient survives to two years after diagnosis. As shown in Figure 3.15, the total

probability of dying from any cause by 2 years is 0.263 and by 10 years is 0.871.

Therefore, the total probability of dying from any cause at 10 years given that the

patient has survived to 2 years is 0.871−0.263
1−0.263

= 0.824. The probability is lower as it

is now conditional on having survived the first two years after a diagnosis of breast

cancer. The cumulative incidence can be estimated conditional on surviving to any

time in the follow-up period by simply replacing the 2 in Ĉtot(2) in the above formula.

Table 3.8 gives the probability of dying from any cause 10 years after diagnosis given

that the patient survives to 1, 2 and 5 years after diagnosis. The estimates are shown

for each age group and stage at diagnosis. Increasing the period that the cumulative

incidence is conditioned on, decreases the conditional probability of dying from any
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cause 10 years after diagnosis.

Age group Stage
Conditional on surviving
1 year 2 year 5 year

18-59
Localised 0.097 0.088 0.054
Regional 0.281 0.249 0.146
Distant 0.744 0.671 0.374

60-69
Localised 0.175 0.163 0.113
Regional 0.357 0.326 0.214
Distant 0.799 0.744 0.495

70-79
Localised 0.352 0.331 0.248
Regional 0.531 0.493 0.351
Distant 0.885 0.843 0.613

80+
Localised 0.706 0.678 0.545
Regional 0.846 0.815 0.661
Distant 0.983 0.968 0.814

Table 3.8 – The estimated probability of dying from any cause 10 years after diag-
nosis given that the patient survives to 1, 2 and 5 years after diagnosis.

To estimate the cause-specific conditional probabilities a very similar approach

can be used. Figure 3.16 shows the area that was previously shaded in violet par-

titioned into the four causes of death. The probabilities of dying by 2 years for

breast cancer, other cancer, heart disease and other causes are 0.107, 0.008, 0.076

and 0.072 respectively. The same probabilities by 10 years after diagnosis are 0.295,

0.022, 0.279 and 0.274. These values can be used to estimate, through the following

equation, the probability of dying from breast cancer at 10 years given that the

patient survives to two years after diagnosis, Ĉbreast(t | 2).

Ĉbreast(t|2) =
Ĉbreast(t)− Ĉbreast(2)

1− Ĉtot(2)
(3.17)

Equation (3.17) gives the formulae for estimating the conditional cumulative

incidence for breast cancer. The only difference between Equations (3.16) and (3.17)

is the numerator. Previously, the numerator incorporated the total probabilities of

death from all causes at t years and 2 years. For the cause-specific conditional

probability the numerator consists of the probabilities of death from breast cancer

at t years and 2 years.
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Equation (3.17) gives the probability of dying from breast cancer at 10 years

given that the patient survives to two years after diagnosis is 0.295−0.107
1−0.263

= 0.255.

The conditional probabilities for other cancer, heart disease and other causes can

be estimated by substituting the cause-specific probabilities of death at t years and

2 years into the numerator in Equation (3.17). The conditional probability for

other cancer is 0.022−0.008
1−0.263

= 0.019, for heart disease is 0.279−0.076
1−0.263

= 0.275 and for

other causes is 0.274−0.072
1−0.263

= 0.274. The sum of these four cause-specific conditional

probabilities gives the same value as the conditional probability of death from all

causes. The relationship between the cause-specific and the all-cause conditional

probabilities is as follows:

Ĉtot(t|2) = (Ĉbreast(t)+Ĉcancer(t)+Ĉheart(t)+Ĉother(t))−(Ĉbreast(2)+Ĉcancer(2)+Ĉheart(2)+Ĉother(2))

1−Ĉtot(2)

(3.18)

The methodology presented here for obtaining the conditional cumulative inci-

dence function will be used in an application of competing risks methods in Section

4.3.
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Figure 3.16 – Estimated probability of death from four causes for those aged 80+
with regional stage cancer. Example of how to estimate cause-specific
conditional cumulative incidence.
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3.12 Other measures

Once the cause-specific hazards and the cumulative incidence function have been

estimated it is possible to obtain other useful measures through simple manipula-

tions of the estimates. Both the cause-specific hazard function and the cumulative

incidence function only examine a single cause of death. Clinicians may actually be

interested in the relative contribution of multiple causes to the overall failure [?].

For example, a clinician may want to know given that the patient dies by time t,

what is the probability that it was from cause k? This is known as the relative

contribution to the total mortality and can be derived as:

Ĉk(t)
K∑
k=1

Ĉk(t)

(3.19)

Figures 3.17 and 3.18 show the contribution to the total mortality for the 18-59

and 80+ age groups respectively. For both age groups there is a clear peak at around

3 years in the probability of dying from breast cancer amongst those with localised

stage cancer. Focussing on regional stage cancer on both plots, by 6 years after

diagnosis from breast cancer, if a patient aged 18-59 (aged 80+) is going to die by 6

years then the probability it will be from breast cancer is 0.91 (0.35), the probability

that it will be from another cancer is 0.02 (0.025), the probability that it will be

from diseases of the heart is 0.02 (0.3) and the probability that it will be from other

causes is about 0.05 (0.325). Breast cancer is therefore the primary cause of death

in those aged 18-59 whereas all causes of death play a substantial role in the 80+

age group.
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Figure 3.17 – Estimated relative contribution to the total mortality for ages 18-59.
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Figure 3.18 – Estimated relative contribution to the total mortality for ages 80+.

Alternatively, a clinician may want to understand given that the patient dies

at time t, what is the probability that it was from cause k? This is known as the

relative contribution to the overall hazard and can be derived as:
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ĥk(t)
K∑
k=1

ĥk(t)

(3.20)

Figures 3.19 and 3.20 show the contribution to the overall hazard for those aged

18-59 and 80+ respectively. Focussing on regional stage cancer again, at 6 years

after diagnosis from breast cancer, if a patient 18-59 (aged 80+) is going to die at 6

years then the probability it will be from breast cancer is 0.87 (0.3), the probability

that it will be from a different cancer is 0.02 (0.025), the probability that is will be

from diseases of the heart is 0.03 (0.325) and the probability that it will be from

other causes is 0.08 (0.35).
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Figure 3.19 – Estimated relative contribution to the overall hazard for ages 18-59.



3. Competing Risks Analysis - Cause-specific Hazards 68

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

Localised

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

Regional

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

Distant

R
el

at
iv

e 
co

nt
rib

ut
io

n
to

 th
e 

ov
er

al
l h

az
ar

d

Time since diagnosis (years)

Ages 80+

Breast Cancer Other Cancer

Heart Disease Other Causes

Figure 3.20 – Estimated relative contribution to the overall hazard for ages 80+.

Both of the above measures are available as options within the user-written Stata

program (stpm2cif) for the extension of the flexible parametric model. The option

for the relative contribution to the total mortality is utilised in Section 4.2 when

investigating the proportion of deaths due to a particular cause amongst myelopro-

liferative neoplasm patients that have died by a particular time after diagnosis.

3.13 Discussion

This chapter has discussed the approach for analysing competing risks data that

involves estimating the cause-specific mortality rates and transforming these to the

cumulative incidence function. The flexible parametric survival model was extended

to a competing risks setting as a method for obtaining smooth estimates of both of

these measures and can easily incorporate time-dependent effects for one or more of

the competing events.

The flexible parametric proportional hazards model produces very similar esti-

mates to the Cox proportional hazards model in terms of both the cause-specific

hazard ratios and the cumulative incidence functions. The confidence intervals for

the flexible parametric model estimates obtained through the delta method have
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been shown to be very similar to those obtained through bootstrapping but have

the added advantage of taking considerably less time to compute.

The assumption of proportional hazards is often unreasonable in epidemiological

studies. It is important to understand the changing effect of a covariate over the time

period rather than just assuming a constant hazard ratio. For example, a treatment

may have a large impact on mortality early on in the follow-up period but this effect

could diminish as time goes on [?]. It is, therefore, important to consider methods,

such as those described in this chapter, that can account for time-dependent effects.

This chapter also illustrated alternative measures that can be obtained through

transformations of the estimates from a cause-specific competing risks analysis. The

conditional cumulative incidence is a very useful measure for understanding the

probability of death after an initial period of high risk. This measure proved to be

particularly valuable in the analysis of pre-term babies in a neonatal care unit, as will

be shown in Chapter 4. Additionally, the relative contribution to the total mortality

proved to be a very useful tool in determining the proportion of myleoproliferative

neoplasm patients that died from a particular cause amongst those patients that

had died by a certain time after diagnosis. This is also shown in Chapter 4.

For methodology to be used in practice it is essential that statistical software

exists. The Stata command, stpm2cif, developed as part of this thesis enables

users to obtain cause-specific cumulative incidence functions through the flexible

parametric model. It also allows for the estimation of additional measures such as

the relative contribution to the total mortality and the relative contribution to the

overall hazard. Therefore, it is hoped that this accessible software will help push

these methods into practice.

The flexible parametric model may be criticized as the number and location of

the knots are subjective. However, the sensitivity analysis demonstrates that the

knot location has very little impact in terms of the cumulative incidence function.

Similar results have been reported elsewhere in relation to the sensitivity of the

knots [????].
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Unlike measures of net survival, the cumulative incidence function allows for

the presentation of “real world” probabilities where a patient is not only at risk of

dying from their cancer but also from any other cause of death. These “real world”

probabilities can also be estimated using relative survival [?]. The advantage of

the cause-specific approach is that more causes of death can be examined but this

is at the expense of having to rely on cause of death information. The impact of

misclassified cause of death information in a competing risks analysis is investigated

in Chapter 5.

As mentioned briefly in Chapter 1, there are two main approaches to modelling

competing risks [?]. This chapter has demonstrated the first approach whereby the

cause-specific hazards are estimated and transformed to obtain the cumulative inci-

dence function. The second approach is to model the cumulative incidence function

directly [?]. This will be described in more detail in Chapter 6.



4. APPLICATIONS OF CAUSE-SPECIFIC COMPETING RISKS

METHODOLOGY

4.1 Chapter outline

This chapter will show two applications of the newly developed flexible parametric

modelling approach for obtaining cause-specific cumulative incidence functions. The

first investigates the risk and cause of death in patients diagnosed with myelopro-

liferative neoplasms in Sweden between 1973 and 2005. This was a collaborative

project with the Division of Hematology at the Karolinska University Hospital in

Stockholm and resulted in a paper that is soon to be submitted to the Journal of

Clinical Oncology, a draft of which is given in Appendix IV. The second application

was carried out in collaboration with The Infant Mortality and Morbidity Studies

group in Leicester and involved assessing the length of stay for pre-term babies in a

neonatal critical care unit in the UK. Interest was primarily in the time to discharge

from the unit but death before discharge was considered as a competing event. The

work has since been published in Paediatric and Perinatal Epidemiology and is given

in Appendix V.

4.2 Myeloproliferative neoplasms (MPNs)

4.2.1 Introduction

Myeloproliferative neoplasms (MPNs) are a group of diseases of the blood and bone

marrow. The bone marrow becomes over-active and begins to produce too many

blood cells. MPN can affect any of the three essential types of blood cells: red

blood cells, white blood cells and platelets. The onset of MPN is gradual with
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many patients experiencing very mild or even no symptoms. Diagnosis is usually

obtained by chance whilst having blood tests for other conditions. MPN is usually

incurable but several treatment options are available to manage the disease such

as phlebotomy, cell-reducing medications and chemotherapy. Treatment will also

depend on the type of MPN that the patient has. There are four main myeloprolif-

erative diseases. These are polycythemia vera (PV), essential thrombocytosis (ET)

and primary myelofibrosis (PMF) and MPN not otherwise specified (MPN-NOS).

In Sweden in 2009 the reported incidence rates per 100,000 person-years in all ages

combined for each of the subtypes were 1.71, 1.59, 0.79 and 0.69 respectively. MPN

is therefore a relatively rare chronic disease and as such there is still a lot of uncer-

tainty surrounding the disease.

A recent large population-based study showed that patients with myeloprolif-

erative neoplasms (MPNs) have an excess mortality compared with the general

population [?]. The study examined myeloproliferative neoplasms as a whole but

also looked at the specific diseases polycythemia vera (PV), essential thrombocy-

tosis (ET) and primary myelofibrosis (PMF). In all MPN subgroups the patients

had worse all-cause survival than the general population. Several studies have sug-

gested that cardiovascular deaths and deaths due to transformation to acute myeloid

leukemia could explain this excess mortality [???]. However, there is still very little

known about what actually causes this excess mortality.

To elucidate the underlying reasons of this excess mortality, the causes of death

were assessed in both MPN patients and population controls using competing risks

methodology.

4.2.2 Patients and Methods

Central registries

Sweden provides universal medical care for the entire population, currently approx-

imately 9.5 million people. Information regarding patients diagnosed with a ma-

lignant disorder in Sweden is reported by law to the population-based nationwide
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Swedish Cancer Register which was established in 1958. It is mandatory for every

physician to report each MPN patient to the registry and in 1984 the double report-

ing system (both clinicians and pathologist/cytologist) was introduced for MPNs

increasing the registry’s completeness [?]. Each individual in Sweden receives a

unique national registration number allowing data sources to be merged and every

death date is recorded in the Cause of Death Register.

Patient cohort

All living incident patients diagnosed from 1973 to 2005 with a MPN from the

nationwide Swedish Cancer Registry were identified. In addition, information was

retrieved on all living incident MPN patients through the Swedish national MPN

network (the Swedish Myeloproliferative Neoplasm Study Group), which included

all major haematology/oncology centres in Sweden. By taking this approach, a na-

tionwide MPN cohort was established, which was used to identify and add MPN

patients who were not reported to the Swedish Cancer Registry. For each MPN

patient, four population-based controls matched by sex, year of birth, and county

of residence were selected randomly from the Swedish Register of Total Population

database. All controls had to be alive at the time of MPN diagnosis for the corre-

sponding case and free of cancer at the date of the corresponding case’s diagnosis.

Patients and controls were followed from the date of diagnosis until death, em-

igration, or end of follow-up (December 31st 2007), whichever occurred first. By

linking the registration number to the Causes of Death Registry, data on cause and

date of death was collected from January 1, 1973 to December 31, 2007.

Cause of death was categorised into infection, haematological malignancy, solid

tumour, cardiovascular disease, cerebrovascular disease and other causes. The cate-

gory haematological malignancy included patients that transformed to acute myeloid

leukemia (AML) and myelodysplastic syndrome (MDS), and patients with MPN

where no other underlying cause of death than the MPN was specified as well as

patients that died from any other haematological malignancy. Patients were not



4. Applications of Cause-specific Competing Risks Methodology 74

classified as having died from MPN unless this was the only cause of death speci-

fied.

Statistical analyses

A flexible parametric model that jointly modelled all six causes (as shown in Section

3.9) was used to analyse the data. Exploratory analysis showed that 4 knots captured

the shape of the underlying hazards fairly well, although the sensitivity analysis is

Section 3.9.4 demonstrated that the number of knots has relatively little impact

on the cumulative incidence function anyway. The knot locations for the splines in

the flexible parametric model were selected separately for each of the six causes of

death using the first and last death times along with the 33rd and 66th centiles of the

death times to allow the underlying shape of the hazard function to vary between the

different causes. The main analysis considered all subtypes combined, and results

are presented as all MPN subtypes together, if not specified otherwise. Age was

categorized into the groups 18-49, 50-59, 60-69, 70-79 and 80 years and above. The

first age group is fairly wide as MPN is relatively rare in the younger population.

Calendar period of diagnosis was categorized into 1973-1982, 1983-1992, 1993-2000,

and 2001-2005. Whilst the variables in the model were pre-specified by the clinicians,

likelihood ratio tests were used to determine whether any interaction terms of time-

dependent effects needed to be included in the model. The final model included

the variables case status (MPN patient or matched control), age group, period of

diagnosis and gender. The 60-69 age group, the 1973-1982 period of diagnosis and

males were chosen as the reference groups for age, period and gender respectively.

Interaction terms between case status and age group were also included in the final

models. No time-dependent covariate effects were found to be significant and so the

proportional hazards assumption was assumed to be reasonable for all six causes of

death. The cumulative incidence function for each cause was then estimated through

the transformation shown in Equation (3.1) with corresponding confidence intervals

obtained as shown in Section 3.9.3.
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The original analysis for this study was carried out before the extension of the

flexible parametric model for competing risks had been developed or programmed.

For that reason Cox regression was used initially to model the cause-specific hazards

for each of the six causes of death as shown in Section 3.8. After a discussion with the

clinicians involved in the study it was decided that one of the main interests was the

differences in the probabilities of death from each cause between the first (1973-1982)

and the last (1993-2000) calendar periods. In order to see if these differences were

significant, confidence intervals were needed. As discussed in Section 3.10, obtaining

confidence intervals for the difference in cumulative incidence functions between

two groups of patients using estimates from the Cox model is not straightforward

and usually involves bootstrapping. This is very computationally intensive and the

methodology is not yet routinely built into statistical software. For this reason,

once the methods had been developed, the joint flexible parametric model described

above was used to re-analyse the data. This allowed for the use of the delta-method

to obtain the required confidence intervals.

Just as was shown in Chapter 3, the flexible parametric analysis yielded similar

results in terms of both the hazard ratios (HRs) and the cumulative incidence func-

tions (CIFs) as the previous Cox regression (approximately ±0.2 between the HRs

and ±0.03 between the CIFs). However, as the flexible parametric model directly

estimates the cause-specific hazards it is possible to utilise the delta method in a

similar way to that shown in Section 3.9 to estimate pointwise 95% confidence in-

tervals for the difference in the cumulative incidence functions for the first and last

calendar periods.

Previous studies have shown that transformation to acute myeloid leukemia or

myelodysplastic syndrome is a common occurrence amongst MPN patients [????].

Deaths due to acute myeloid leukemia and myelodysplastic syndrome are categorised

as haematological maligancies in this analysis. Therefore, it was of interest to inves-

tigate the probability of death from haematological malignancy amongst both MPN

patients and population controls that have died. This is the relative contribution to
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the mortality as described in Section 3.12.

4.2.3 Results

Table 4.1 gives the numbers of patients in each period, age group and gender. A

total of 9,674 MPN patients were identified and 37,643 population controls. Forty

seven percent were males and the median age at diagnosis was 70.

1973-1982 1983-1992 1993-2000 2001-2005 Total
MPN Population MPN Population MPN Population MPN Population MPN Population
Cases Controls Cases Controls Cases Controls Cases Controls Cases Control

Total 1,730 6,838 2,656 10,376 3,376 12,876 1,901 7,553 9,563 37,643
Age

18-49 128 512 249 995 442 1,767 212 848 1,031 4,122
50-59 243 972 301 1,198 457 1,824 310 1,239 1,311 5,233
60-69 484 1,912 662 2,605 703 2,794 408 1,631 2,257 8,942
70-79 611 2,403 992 3,824 1,042 4,067 531 2,108 3,176 12,402
80+ 264 1,039 452 1,754 632 2,424 440 1727 1,788 6,944

Median age 70 70 71 71 70 70 70 70 70 70
Gender
Males 872 3,466 1,258 4,942 1,502 5,945 900 3,578 4,532 17,931

Females 858 3,372 1,398 5,434 1,774 6,931 1,001 3,975 5,031 19,712

Table 4.1 – Distribution of MPN patients and population controls in relation to pe-
riod, age group and gender.

Table 4.2 gives the cause-specific hazard ratios for case status, age group, gender

and period of diagnosis. The hazard ratios show that patients with MPN have a

higher mortality rate than population controls for all 6 causes after controlling for

age, gender and period. The mortality rate decreases with period of diagnosis for

both the MPN cases and the population controls for all 6 causes. The mortality

rate for all 6 causes is lower for females compared to males.

The MPN case age interaction represents the cause-specific hazard for MPN

cases compared to population controls in each of the age groups. This interaction

term relaxes the assumption that the effect of case status (MPN case or population

control) is constant across all ages. In relative terms the hazard for MPN cases

compared to population controls is highest in the youngest age group. However,

this is because in absolute terms there are few population controls dying in the

youngest age group. Therefore, even a small increase in the number of deaths for

MPN cases within this age group will lead to a large relative effect. As expected,
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the mortality rate for all 6 causes increases with age for both the MPN cases and

the population controls. An interaction term was not included for infection or

haematological malignancy as there were very few controls that died from these

causes. Haematological malignancies are strongly related to MPN and so it was

mainly the MPN cases that had these registered as their cause of death.

Variables Infection Solid Tumour Haematological Malignancy

Case*Ages 18-49

2.71 (2.38, 3.10)

2.51 (1.33, 4.74)

92.81 (70.00, 123.05)
Case*Ages 50-59 1.34 (0.94, 1.93)
Case*Ages 60-69 1.15 (0.94, 1.41)
Case*Ages 70-79 1.15 (0.99, 1.33)
Case*Ages 80+ 0.97 (0.78, 1.21)

Ages 18-49 0.18 (0.10, 0.34) 0.11 (0.07, 0.16) 0.36 (0.26, 0.49)
Ages 50-59 0.27 (0.17, 0.43) 0.43 (0.36, 0.52) 0.58 (0.46, 0.73)
Ages 60-69 1.00 (.) 1.00 (.) 1.00 (.)
Ages 70-79 3.08 (2.51, 3.76) 1.90 (1.71, 2.11) 1.30 (1.11, 1.52)
Ages 80+ 12.15 (9.92, 14.87) 2.94 (2.60, 3.32) 1.93 (1.60, 2.33)

Male 1.00 (.) 1.00 (.) 1.00 (.)
Female 0.63 (0.56, 0.71) 0.62 (0.57, 0.67) 0.66 (0.58, 0.75)

1973-1982 1.00 (.) 1.00 (.) 1.00 (.)
1983-1992 0.85 (0.73, 1.01) 0.92 (0.83, 1.02) 0.73 (0.62, 0.87)
1993-2000 0.52 (0.44, 0.62) 0.81 (0.73, 0.90) 0.64 (0.54, 0.76)
2001-2008 0.48 (0.36, 0.58)) 0.78 (0.68, 0.90) 0.64 (0.52, 0.80)

Variables Cardiovascular Disease Cerebrovascular Disease Other Causes

Case*Ages 18-49 8.89 (3.99, 19.78) 8.82 (0.90, 97.27) 5.18 (3.11, 8.65)
Case*Ages 50-59 2.21 (1.56, 3.13) 4.71 (2.61, 8.51) 4.29 (3.22, 5.72)
Case*Ages 60-69 1.81 (1.53, 2.15) 2.78 (2.11, 3.67) 3.73 (3.20, 4.35)
Case*Ages 70-79 1.54 (1.39, 1.70) 1.51 (1.27, 1.79) 2.33 (2.13, 2.55)
Case*Ages 80+ 1.61 (1.43, 1.81) 1.43 (1.19, 1.73) 1.80 (1.64, 1.98)

Ages 18-49 0.04(0.02, 0.07) 0.01 (0.002, 0.11) 0.14 (0.10, 0.21)
Ages 50-59 0.33 (0.26, 0.40) 0.26 (0.16, 0.40) 0.41 (0.33, 0.51)
Ages 60-69 1.00 (.) 1.00 (.) 1.00 (.)
Ages 70-79 3.01 (2.73, 3.32) 3.89 (3.25, 4.66) 3.48 (3.11, 3.89)
Ages 80+ 7.55 (6.82, 8.36) 11.20 (9.32, 13.47) 12.36 (11.05, 13.77)

Male 1.00 (.) 1.00 (.) 1.00 (.)
Female 0.60 (0.57, 0.64) 0.83 (0.76, 0.91) 0.73 (0.69, 0.77)

1973-1982 1.00 (.) 1.00 (.) 1.00 (.)
1983-1992 0.66 (0.61, 0.71) 0.75 (0.66, 0.85) 1.00 (0.93, 1.08)
1993-2000 0.46 (0.43, 0.50) 0.57 (0.51, 0.65) 0.82 (0.76, 0.89)
2001-2008 0.36 (0.32, 0.40) 0.55 (0.46, 0.65) 0.85 (0.78, 0.94)

Table 4.2 – Hazard ratios (95% confidence intervals) of cause-specific mortality for
MPN patients compared to controls.

Figures 4.1, 4.2, 4.3, 4.4 and 4.5 give the stacked cumulative incidence plots by

case status and gender for the 1993-2000 period for ages 18-49, 50-59, 60-69, 70-79

and 80+ respectively. The cumulative incidence functions are plotted in terms of the

percentage dead from each cause as a function of time. Each plot is broken down by
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gender and by case status. The total percentage dead is given by the whole of the

coloured area as a function of time. The 6 different colours represent the percentage

dead from each of the 6 causes.

The plots show that the total probability of death increases with age in both the

MPN cases and the population controls. The total probability of death is higher

for MPN cases in all five age groups. Haematological malignancies accounted for a

large percentage of the total number of deaths for MPN patients in each of the age

groups. The overall probability of death was lower in females than in males for both

MPN cases and population controls.

Focussing on males aged 70-79 given in Figure 4.4, the overall probability of dying

was 75% in the MPN cases compared to 49% in the population controls 10 years

after diagnosis. Breaking this down by the 6 causes of death the probability of death

from infection by 10 years for MPN patients (95% CI) was 4.48% (3.73%, 5.23%)

compared to 2.30% (1.94%, 2.66%) in the population controls. For solid tumours the

corresponding figures were 9.73% (8.42%, 11.04%) and 11.47% (10.53%, 12.40%);

for haematological malignancy 13.67% (11.84%, 15.50%) and 0.19% (0.13%, 0.24%);

for cardiovascular disease 16.75% (15.17%, 18.33%) and 15.02% (14.04%, 16.00%);

for cerebrovascular disease 5.52% (4.59%, 6.44%) and 5.10% (4.52%, 5.68%) and for

other disorders 24.89% (22.98%, 26.80%) and 14.92% (13.98%, 15.86%). In female

patients, the breakdown of causes of death was similar but the overall probability of

death was lower; 61% for MPN patients and 36% for population controls 10 years

after diagnosis. The percentages dead from each cause at 10 years are given for all

age groups, genders and periods in Tables 4.3, 4.4, 4.5 and 4.6 at the end of this

section.

Table 4.2 showed that the cause-specific hazard ratio for the case age interaction

for those aged 70-79 within solid tumours was 1.90 (95% CI: 1.71 to 2.11). This

suggests that the mortality rate for solid tumours is higher in MPN cases aged 70-79

compared to population controls aged 70-79. However, looking at the proportion of

deaths from solid tumours, there was actually a higher proportion of deaths from
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solid tumours amongst the population controls than there were amongst the MPN

cases. Although the relative effect suggests that this group of MPN patients are

at a higher rate of death from solid tumours, when the 5 other causes of death

are accounted for then in absolute terms there was a lower proportion of deaths

from solid tumours than in the population controls. Patients are dying from other

causes before they have the chance to die from solid tumours. This demonstrates

the property that was mentioned briefly in Section 3.4. The cumulative incidence

function for solid tumours is not only a function of the cause-specific hazard for

solid tumours but also incorporates the cause-specific hazard for the 5 competing

events through the overall survival function. This means that there is no longer a

one-to-one correspondence between the cause-specific hazard and the probability of

death for solid tumours and so the covariate effects (case status in this scenario) are

not associated with the two measures in the same way.
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Figure 4.1 – Estimated cumulative incidence for 6 causes of death for ages 18-49 in
the period 1993-2000.
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Figure 4.2 – Estimated cumulative incidence for 6 causes of death for ages 50-59 in
the period 1993-2000.
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Figure 4.3 – Estimated cumulative incidence for 6 causes of death for ages 60-69 in
the period 1993-2000.
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Figure 4.4 – Estimated cumulative incidence for 6 causes of death for ages 70-79 in
the period 1993-2000.
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Figure 4.5 – Estimated cumulative incidence for 6 causes of death for ages 80+ in
the period 1993-2000.

The stacked cumulative incidence plots shown above only show the results for

the period 1993-2000. As there were four periods in total it was necessary to see how

the probability of death changed over time. Figures 4.6, 4.7, 4.8, 4.9 and 4.10 show

the percentage of male MPN cases and population controls that have died from each
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of the 6 causes by 10 years after diagnosis for each of the four calendar periods. For

all five age groups the ten year probability of dying from haematological malignancy

in MPN patients decreased after the first calendar period (1973-1982) and thereafter

remained relatively stable during the three most recent calendar periods. For ex-

ample, in male patients aged 70-79, by 10 years after diagnosis 17.23% died from

haematological malignancy during the first calendar period compared to 14.13%,

13.67%, and 14.06% during calendar period two, three, and four, respectively. By

10 years after diagnosis a significant difference of -3.25 (95% CI: -6.33, -0.17) in

the proportion of deaths due to haematological malignancy in MPN patients aged

70-79 was therefore seen between the first calendar period (1973-1982) and the most

recent calendar period (2001-2008). Similar results were found for both males and

females in all other age groups as shown in Table 4.7.

The largest difference in the proportion of deaths by 10 years after diagnosis

between the first and last calendar periods amongst MPN patients in all age groups

was seen for cardiovascular disease. However, Figures 4.6, 4.7, 4.8, 4.9 and 4.10 high-

light that this improvement was also seen for population controls for all age groups

except those aged 18-49 where the proportion of cardiovascular deaths remained

fairly constant over the four calendar periods. For example, for male MPN patients

aged 70-79 there was a significant difference of -13.51 (95% CI: -15.58, -11.44) in

the proportion of deaths due to cardiovascular disease by 10 years after diagnosis.

A similar result was also observed for population controls with a difference of -15.47

(95% CI: -17.21, -13.73).
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Figure 4.6 – Estimated percentage males aged 18-49 that has died by 10 years after
diagnosis.
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Figure 4.7 – Estimated percentage males aged 50-59 that has died by 10 years after
diagnosis.
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Figure 4.8 – Estimated percentage males aged 60-69 that has died by 10 years after
diagnosis.
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Figure 4.9 – Estimated percentage males aged 70-79 that has died by 10 years after
diagnosis.
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Figure 4.10 – Estimated percentage males aged 80+ that has died by 10 years after
diagnosis.

As discussed previously in Section 4.2.2, several concerns have been raised previ-

ously with regards to the number of MPN patients that suffer from transformations

to acute myeloid leukemia or myelodysplastic syndrome. It was, therefore, impor-

tant to try and understand whether a large proportion of deaths amongst MPN

patients could potentially be due to these additional haematological malignancies.

Figures 4.11, 4.12, 4.13, 4.14 and 4.15 show the relative contribution to the to-

tal mortality for both male and female MPN patients and population controls in

each of the five age groups respectively. In both male and female MPN patients

aged 18-49, 50-59 and 60-69, as suspected, a large proportion of deaths were due to

haematological malignancies. These proportions are highest in the first two years

after diagnosis and then begin to decrease as time goes on. For example, for male

MPN patients aged 50-59, in the first year after diagnosis 53% of the deaths were

due to haematological malignancies compared to 32% by 10 years after diagnosis.

This is because as time goes on other causes of death begin to play larger roles. For

the two oldest age groups, 70-79 and 80+, whilst haematological malignancies still

contribute a substantial proportion to the total mortality in MPN patients, deaths
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due to cardiovascular disease and other causes contribute similar amounts to the

total mortality. For example, for male MPN patients aged 70-79 the total mortality

in the first year after diagnosis can be broken down into 6.3% of deaths were due to

infections, 8.7% were due to solid tumours, 32.1% were due to haematological malig-

nancies, 26% were due to cardiovascular disease, 6.7% were due to cerebrovascular

disease and 20.2% were due to other causes. For the population controls the largest

contribution to the total mortality in the first year was deaths due to solid tumours

for those aged 18-49 (35%) and deaths due to cardiovascular disease for those aged

50-59 (35%), 60-69 (39%), 70-79 (42%) and 80+ (40%). However, these are relative

measures and, as shown in Figure 4.1, the proportion of population controls dying

in the youngest age group is actually very small.
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Figure 4.11 – Estimated probability of death from each cause amongst those aged
18-49 diagnosed in the period 1993-2000 that have died (relative con-
tribution to the total mortality).
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Figure 4.12 – Estimated probability of death from each cause amongst those aged
50-59 diagnosed in the period 1993-2000 that have died (relative con-
tribution to the total mortality).
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Figure 4.13 – Estimated probability of death from each cause amongst those aged
60-69 diagnosed in the period 1993-2000 that have died (relative con-
tribution to the total mortality).
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Figure 4.14 – Estimated probability of death from each cause amongst those aged
70-79 diagnosed in the period 1993-2000 that have died (relative con-
tribution to the total mortality).
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Figure 4.15 – Estimated probability of death from each cause amongst those aged
80+ diagnosed in the period 1993-2000 that have died (relative con-
tribution to the total mortality).
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4.2.4 Conclusion

The results showed that MPN patients have a higher mortality for all 6 causes of

death compared to population controls. Women had a lower mortality than men for

all causes of death. In terms of the percentages of deaths from each cause, haemato-

logical malignancies accounted for a large proportion of the deaths for MPN patients

in all age groups and in all periods. Haematological malignancy is therefore likely

to be one of the main contributing factors to the excess mortality seen previously

when comparing MPN patients to the general population.

It was previously thought that an improvement in cardiovascular mortality was

the main contributing factor to the improvement in survival for MPN patients.

However, similar improvements in cardiovascular mortality were observed in both

the MPN cases and the population controls. This suggests that the improvement in

survival is multi-factorial and not just due to specific treatment of MPN itself.

One of the limitations of this study is the quality of the Cause of Death Registry

which is dependent on the judgement of the individual doctor who writes the death

certificate. The proportion of autopsies in Sweden has decreased since the 1970s

when the around 50% of deceased underwent autopsies, compared to below 20%

during the 2000s. The number of performed autopsies is higher amongst younger age

groups and therefore, there may be a greater accuracy of cause of death information

in younger patients compared to older patients who often have several concomitant

diseases.

The initial analysis for this study used a Cox regression approach as shown in

Section 3.8. However, for reasons discussed in Section 3.10, this method proved

to be problematic in obtaining confidence intervals for the difference in cumulative

incidence functions. The newly extended flexible parametric approach allowed for

the use of the delta-method to obtain these confidence intervals. The Stata package,

stpm2cif, developed for the new methodology incorporates an option that estimates

the relative contribution to the total mortality. This proved to be very valuable in

this study in examining whether a large proportion of deaths amongst MPN patients
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were due to haematological malignancies.

The matching variables age and gender were accounted for in the analysis un-

like country of residence. Unlike case-control studies, the matching variables in a

matched cohort can often be excluded from the model as the confounding factor is

eliminated through the matching process [???]. For this reason the effect of county of

residence would have to be relatively large to cause any bias in the results presented

here.
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4.3 Discharge from a neonatal unit

4.3.1 Introduction

In countries where the length of stay in hospital is routinely linked to the cost of

care there has been a lot of focus on the length of stay for infants in neonatal care

units (NICU) [?????]. There is now a growing interest in the costs related to length

of stay for infants in acute neonatal care in the UK. Work carried out to date has

shown that length of stay for extremely pre-term infants is more than 6 times longer

than for late pre-term infants [??].

Survival for very pre-term babies have improved over the last 20 years [????],

but in-unit mortality remains high for babies born extremely pre-term. Babies

who die will often do so within a few days of admission, whilst those who survive to

discharge are likely to spend a long time in hospital. Previous work has only focussed

on infants that survive to discharge from the neonatal unit, excluding those that

die [???]. However, when studying resource use within neonatal care it is important

to incorporate information on both those who die on the unit and those who are

eventually discharged alive. An analysis of only one of these outcomes does not

provide a full picture of the care provided by the neonatal unit. For this reason, a

competing risks analysis using the newly extended flexible parametric survival model

introduced in Section 3.9 was used to estimate the probability of leaving neonatal

care partitioned into the probability of death and the probability of discharge alive.

4.3.2 Patients and methods

Patient cohort

Data on all infants born between 1st January 2006 and 31st December 2010 to a

mother living within the study region with a gestational age of 24 weeks +0 days

to 28 weeks +6 days and admitted to a neonatal unit were extracted from The

Neonatal Survey (TNS). TNS is an ongoing study of neonatal care activity in the

East Midlands and Yorkshire regions of the UK. The inclusion criteria for data to
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be collected for TNS include all infants born with a gestational age less than or

equal to 32 weeks. Gestational age was defined according to current clinical practice

using the following hierarchy: earliest dating scan (most reliable); mother certain of

dates; post-natal examination (least reliable).

Statistical analysis

Gestational age was categorised into the groups 24 weeks (24 weeks + 0 days to 24

weeks + 6 days), 25 weeks (25 weeks + 0 days to 25 weeks + 6 days), 26 weeks (26

weeks + 0 days to 26 weeks + 6 days), 27 weeks (27 weeks + 0 days to 27 weeks + 6

days) and 28 weeks (28 weeks + 0 days to 28 weeks + 6 days). It is well recognised

that birth weight is a predictor for neonatal and infant mortality [?]. Initially birth

weight was included in the model as a continuous variable. The effect was non-linear

and so restricted cubic splines were used to model birth weight. However, as birth

weight and gestational age are highly correlated, the restricted cubic splines for birth

weight had to be generated separately for each gestational age category. This proved

problematic when making predictions as the number of infants in each subgroup

was fairly small. As a result, a strategy that relied on z-scores of birth weight was

adopted [?]. The z-scores are derived through the LMS method [?] which essentially

involves normalising the data at each gestational age and gender using a Box-Cox

power transformation. The method used smoothed values of L (the skewness or

the Box-Cox power needed to make the distribution normal), M (the median birth

weight) and S (the coefficient of variation) to transform the observed distribution of

birth weights to a standard normal distribution [?]. Pre-specified values of L, M and

S based on gestational age, birth weight and gender were obtained from the British

national reference centile curves [?]. These values are given in Table 4.8. The three

quantities were then used to obtain z-scores (Z) using the following formula:

Z =

(
X
M

)L − 1

L× S
, L 6= 0 (4.1)

or
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Z =
ln
(
X
M

)
L× S

, L = 0 (4.2)

where X is the physical measurement, for example birth weight, head circum-

ference or calculated BMI value. For example, using the equations given above and

the L, M and S values given in Table 4.8, the z-score for a male baby born at 27

weeks gestation with a birth weight of 1.157kgs would be

Z =

(
1.157
1.0419

)1.099 − 1

1.099× 0.16497
= 0.674 (4.3)

This z-score corresponds to the 85th centile. The corresponding z-scores for the

3rd, 5th, 10th, 25th, 50th, 75th, 90th, 95th, and 97th centiles are -1.881, -1.645, -1.282,

-0.674, 0, 1.036, 1.282, 1.645, and 1.881 respectively. Centile charts of birth weight

for gestational age obtained in this way are usually used to identify low birth weight

babies. In this application the z-scores (Z) were used to model birth weight in order

to circumvent the issue described previously.
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Gender Gestational Age LMS

Males

24
L=1.161
M=0.695

S=0.17035

25
L=1.14

M=0.8067
S=0.16859

26
L=1.12

M=0.9216
S=0.1668

27
L=1.099

M=1.0419
S=0.16497

28
L=1.078

M=1.1705
S=0.16309

Females

24
L=1.079

M=0.6428
S=0.1792

25
L=1.056

M=0.7522
S=0.17673

26
L=1.034
M=0.864

S=0.17422

27
L=1.011

M=0.9805
S=0.17167

28
L=0.987

M=1.1045
S=0.16905

Table 4.8 – Estimated values of L, M and S based on gestational age, birth weight
and gender.

The newly extended flexible parametric survival model (see Section 3.9) was

used to jointly estimate the cause-specific hazards for discharge and death. The

knot locations were chosen by taking the first and last event times along with the

25th, 50th and 75th centiles of the event times separately for each cause. Birth weight,

gestational age and gender were chosen as the exposures of interest as these have been

shown to be good predictors of survival [?]. Drug administration and physiologic

or pharmacologic tests are also thought to be exposure variables; however, these

are not always routinely performed on babies resulting in a lot of missing data. An

indicator of whether the baby was born from a single or multiple birth may also be

a prognostic factor amongst premature babies. Whilst some twins are recorded in

the dataset described here, the numbers are very small making it difficult to adjust

for.
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Likelihood ratio tests were used to determine whether any interaction terms of

time-dependent effects needed to be included in the model. The z-scores were found

to have a non-linear effect and so restricted cubic splines with 3 degrees of freedom

were used to model this variable. Gender was found to have a non-proportional

effect for both death and discharge and so time-dependent effects with 4 degrees

of freedom and the same knot locations as above were incorporated into the model

to account for this. The probabilities of death and discharge as a function of time

were estimated using a competing risks analogue of the flexible parametric model

as discussed in Section 3.9. Predictions for the cumulative incidence functions were

made for each gender and gestational age and at the 10th (z-score=-1.2816), 50th (z-

score=0) and 90th (z-score=1.2816) centiles for birth weight. It was also considered

clinically relevant to investigate the probability of death and discharge conditional

on remaining in the neonatal unit 7 days after birth. This was calculated using the

methods described in Section 3.11. The 7 day cut-off was chosen as it is known that

many deaths occur in the early days of admission to the neonatal care units (NICU).

The resulting estimates could potentially be presented to parents to communicate

the probability of survival for their baby after the initial 7 day period of high risk.

4.3.3 Results

There were 2,751 infants born between 24+0 to 28+6 weeks gestational age and

admitted to the neonatal unit. Infants were excluded if their date of discharge was

missing (n = 4), if they had missing or ambiguous gender (n = 10), if they were

missing a birth weight (n = 2) or had an implausible birth weight more than 3

standard deviations from the median for their gender and gestational age (n = 12).

This left a total of 2,723 infants for analysis. Of the 2,723 infants included, 2,109

survived to discharge from the neonatal intensive care unit (NICU), 567 died and 47

infants were lost to follow up before their NICU care was likely to have completed

(i.e. transferred to a hospital outside of the study region).

Figures 4.16, 4.17, 4.18, 4.19 and 4.20 show the rates of death and discharge for
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each gender, gestational age and birth weight centile estimated from the model. The

three curves on each plot represent the death and discharge rates for the 10th, 50th

and 90th birth weight centiles. The figures show two very different shaped curves

for death and discharge for both genders and all gestational ages. Nearly all of the

deaths occur in the first 50 days after birth where as there are very few babies being

discharged before the 50 day mark. As expected, the mortality rate was highest in

the 24 week gestation category with estimates reaching 165, 110 and 99 per 1000

person year for males in the 10th, 50th and 90th birth weight centiles respectively.

The rate of discharge was highest for those in the oldest gestational age category

(28 weeks) with estimates of 63, 105 and 153 per 1000 person years for males in the

10th, 50th and 90th birth weight centiles respectively.
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Figure 4.16 – Estimated rate of death/discharge for babies born at 24 weeks ges-
tational age. The centiles for birth weight are based on z-scores of
-1.2816 for the 10th centile, 0 for the 50th centile and 1.2816 for the
90th centile.
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Figure 4.17 – Estimated rate of death/discharge for babies born at 25 weeks ges-
tational age. The centiles for birth weight are based on z-scores of
-1.2816 for the 10th centile, 0 for the 50th centile and 1.2816 for the
90th centile.
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Figure 4.18 – Estimated rate of death/discharge for babies born at 26 weeks ges-
tational age. The centiles for birth weight are based on z-scores of
-1.2816 for the 10th centile, 0 for the 50th centile and 1.2816 for the
90th centile.
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Figure 4.19 – Estimated rate of death/discharge for babies born at 27 weeks ges-
tational age. The centiles for birth weight are based on z-scores of
-1.2816 for the 10th centile, 0 for the 50th centile and 1.2816 for the
90th centile.
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Figure 4.20 – Estimated rate of death/discharge for babies born at 28 weeks ges-
tational age. The centiles for birth weight are based on z-scores of
-1.2816 for the 10th centile, 0 for the 50th centile and 1.2816 for the
90th centile.

Figures 4.21 and 4.22 give the stacked cumulative incidence plots for males and

females respectively. The plots are shown for each gestational age category and for

the 10th, 50th and 90th centiles for birth weight. The area shaded in red represents

infants that have died, the area shaded in orange represents infants that have been
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discharged and the area in blue represents infants that still remain in the neonatal

intensive care unit (NICU). The results are displayed in terms of percentages. The

results show that a lower percentage of females die in all gestational age categories.

For example, by 200 days after birth 50% of males born at 24 weeks gestation in

the 50th birth weight centile died compared to 44% of females born at the same

gestation and in the same birth weight centile. Similarly, of those babies born at 26

weeks gestation in the 50th birth weight centile, 18% of males died by 200 days after

birth compared to 15% of females. The probability of surviving to discharge from

the NICU increases and the time spent in the NICU decreases with both gestational

age and birth weight. Tables 4.9, 4.10 and 4.11 give the percentages (95% confidence

intervals) of infants that have died, been discharged or still remain in the NICU at 30

days, 90 days and 150 days respectively. The results in the three tables corroborate

the patterns observed in Figures 4.21 and 4.22.

As can be seen in Figures 4.21 and 4.22 the majority of the deaths occur in the

first week or so. For this reason the probability of death and discharge conditional

on remaining in the neonatal unit 7 days after birth was also investigated. Figures

4.23 and 4.24 show the stacked conditional cumulative incidence plots for males and

females. The percentages of infant deaths in all the plots are lower than in Figures

4.21 and 4.22. If the infant survives to 7 days then their chances of surviving

to discharge from the NICU are increased. For example, of the male babies that

survive the first 7 days in the 50th birth weight centile, by 200 days after birth 25%

in the 24 week gestational age category have been discharged, 35% in the 25 week

gestational age category, 47% in the 26 week gestational age category, 55% in the

27 week gestational age category and 62% in the 28 week gestational age category.

Comparing these proportions to the standard cumulative incidence estimates shown

in Figures 4.21 and 4.22, by 200 days after birth 18% in the 24 week gestational age

category have been discharged, 30% in the 25 week gestational age category, 43% in

the 26 week gestational age category, 51% in the 27 week gestational age category

and 60% in the 28 week gestational age category. As the gestational age increases
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the probability of death in the first 7 days after birth decreases and therefore the

cumulative incidence estimates conditional on surviving the first 7 days are not

actually much different to the standard cumulative incidence estimates.

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

40 80 1200 200160

10th Centile

0 40 80 120 160 200

50th Centile

0 40 80 120 160 200

90th Centile

24

25

26

27

28

P
er

ce
nt

ag
e 

de
ad

/d
is

ch
ar

ge
d

Time since birth (days)

Males

Hospital Discharged Dead

Figure 4.21 – Estimated percentage of male infants that have died, been discharged
or still remain in the NICU. The numbers on the left hand side “24,
25, 26, 27, 28” represent the gestational age categories. The centiles
for birth weight are based on z-scores of -1.2816 for the 10th centile, 0
for the 50th centile and 1.2816 for the 90th centile.
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Figure 4.22 – Estimated percentage of female infants that have died, been discharged
or still remain in the NICU. The numbers on the left hand side “24,
25, 26, 27, 28” represent the gestational age categories. The centiles
for birth weight are based on z-scores of -1.2816 for the 10th centile, 0
for the 50th centile and 1.2816 for the 90th centile.
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Figure 4.23 – Estimated percentage of male infants that have died, been discharged
or still remain in the NICU conditional on still remaining in the NICU
7 days after birth. The numbers on the left hand side “24, 25, 26,
27, 28” represent the gestational age categories. The centiles for birth
weight are based on z-scores of -1.2816 for the 10th centile, 0 for the
50th centile and 1.2816 for the 90th centile.
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Figure 4.24 – Estimated percentage of female infants that have died, been discharged
or still remain in the NICU conditional on still remaining in the NICU
7 days after birth. The numbers on the left hand side “24, 25, 26,
27, 28” represent the gestational age categories. The centiles for birth
weight are based on z-scores of -1.2816 for the 10th centile, 0 for the
50th centile and 1.2816 for the 90th centile.
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4.3.4 Conclusion

The modelling of survival and length of stay has increasingly become an important

topic in neonatal medicine [????]. As survival of extremely pre-term babies has

increased, the amount of time that extremely pre-term babies spend in hospital has

also increased both individually for babies and in total.

Previous work investigating length of stay in neonatal care has predominantly

focussed on modelling the stay of those babies who survived to discharge. While this

group of babies is important in understanding length of stay, as these babies usually

spend a long time in hospital, where there is a significant proportion of deaths

modelling survivors alone will provide an incomplete picture of the total neonatal

care provided.

Although competing risks methods have been used previously in adult intensive

care studies to model mortality [?], the use of time to event (survival) statistical

models has been questioned in this setting as prolonged survival is unlikely to benefit

the patient [?]. It is argued here that the use of competing risks models to analyse

length of stay can be appropriate as it is the time to the event that is of primary

importance.

The newly developed extension of the flexible parametric survival model for com-

peting risks frameworks provided several advantages in this analysis. The model

directly estimates the baseline cause-specific hazard function and therefore the cu-

mulative incidence function can be directly obtained from the hazard estimates for

each cause. This is not the case with the Cox model as it does not estimate the base-

line hazards and therefore additional estimation procedures are required in the form

of the Breslow estimator as shown in Section 3.8. The effect of gender was found

to be time-dependent for both death and discharge in this analysis. A further ad-

vantage of the flexible parametric model is the ease in which time-dependent effects

can be incorporated as discussed in Section 3.9.2. Finally, the cause-specific hazard

functions for death and discharge in this analysis had two very unique shapes. The

flexible parametric model offers an advantage over other parametric models, such as
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the Weibull or exponential models (see Section 2.11) as it can assume almost any

shape for the baseline hazard due to its flexibility.

The measure of conditional cumulative incidence proved to be very valuable in

this study. Many pre-term babies will die within the first week of life and therefore

estimates of the probability of discharge conditional on surviving this first week

are vital in communicating the likelihood of a positive outcome to parents. This

measure could also be useful in other similar medical scenarios. For example, what

is the probability of surviving a diagnosis of cancer if the patient makes it through

the first year?

A potential limitation of the analysis presented in this section is that the babies

with an unknown date of death or discharge (e.g. transferred to a hospital which

did not contribute information to TNS) were treated as right-censored observations.

In reality it is unlikely that this approach satisfied the required assumption of non-

informative censoring as discussed in Section 2.3. However, it is also unlikely that

reliable model estimates could have been obtained for this outcome as the percentage

of babies for whom the outcome was unknown was small (1.7%).
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4.4 Discussion

This chapter has shown two applications of cause-specific competing risks methodol-

ogy using the extended flexible parametric approach that was developed in Chapter

3. The first study examined cause of death amongst both MPN patients and popula-

tion controls. Whilst Cox regression was chosen initially for the analysis of this data,

it soon became apparent that the flexible parametric model offered many advantages

when carrying out more sophisticated calculations such as obtaining confidence in-

tervals for the difference between two cumulative incidence functions. The second

study examined the length of stay to death and discharge for pre-term babies within

a neonatal critical care unit. The flexible parametric model was chosen again for

this study as the analysis required the use of splines to model certain variables and

the incorporation of time-dependent effects. Estimates of the cumulative incidence

conditional on surviving the first week of life were also required which are easily

obtainable using predictions from the flexible parametric model as shown in Section

3.11. The Stata package, stpm2cif, written in order to make the flexible parametric

approach developed in Chapter 3 accessible was utilised in both of these analyses

which demonstrates the ease in which these methods can now be applied by other

researchers.

Had interest been simply on the impact of one specific cause of death regardless

of the effect of any other cause for the MPN study, then a cause-specific survival

analysis as discussed in Chapter 2 could have been carried out to the obtain net

probabilities (see Section 2.6). However, as discussed in Section 2.5, such an analysis

would make the strong assumption that each of the six causes of death were mutually

independent. This assumption is unlikely to hold as the treatment for MPN could

in fact influence many of these causes of death. Even if this strong assumption of

independence were reasonable, the net probabilities obtained from such an analysis

would not only represent a quantity in the hypothetical world where patients could

only die from the cause of interest, but it is likely that the probabilities for each cause

would have summed to greater than one in the older age groups as shown previously
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in Section 3.7. This would have been of little use as the primary aim of the study

was to further understand why MPN patients had excess mortality compared to

an MPN-free population which required partitioning the all-cause probability of

death into the six separate cause of death categories. Similarly in the neonatal care

study, it is unlikely that the two outcomes of death and discharge are mutually

independent. Even if this assumption did hold and babies that died were simply

censored, then any estimates obtained would represent the probability of discharge

in a hypothetical world where babies can not die. These would therefore be of little

use to parents and clinicians. Using competing risks methodology in both studies

meant that “real world” estimates could be obtained for the probability of each

competing event.

The results from both studies have been presented graphically although, of

course, other methods of presentation also exist. The graphical representation of

the absolute probabilities for the competing outcomes against time could be helpful

in the communication of risk to both patients and treating clinicians.

As discussed above, one limitation of the MPN study is the accuracy of the cause

of death information obtained for the analysis. Chapter 5 details a simulation study

carried out to examine the effect that incorrect cause of death information has on

both hazard ratios and cumulative incidence functions.



5. THE IMPACT OF INCORRECT CAUSE OF DEATH IN A

COMPETING RISKS ANALYSIS

5.1 Chapter outline

As the majority of the work in this thesis uses cause of death information it is

important to understand the impact that unreliable cause of death information could

have on the results from competing risks analyses. In this chapter a simulation study

is carried out to assess the impact of under and over-recording of cancer on death

certificates on both the cause-specific hazard ratios and the cumulative incidence

functions. This work has been published in Cancer Epidemiology and is given in

Appendix VI.

5.2 Introduction

It is well documented that cause of death information taken from death certificates is

often lacking in accuracy and completeness [????]. According to recommendations

by the World Health Organisation, the underlying cause of death should be recorded

as “the disease or injury which initiated the train of morbid events leading directly

to death, or the circumstances of the accident or violence which produced the fatal

injury” in line with the rules of the International Classification of Diseases (ICD) [?].

Whilst guidelines are in place, it is not always easy for a physician to ensure that

this information is accurately recorded. Diagnostic and coding errors often occur

and the complexity of multiple disease processes can hide the true underlying cause

of death [?]. For example, elderly patients are likely to have several co-morbidities

and determining which one of these led to their death is not straight-forward. As
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competing risks analyses rely on the use of cause of death data it is important, in

terms of the validity of these studies, to have accurate cause of death information

[?].

This chapter examines the effect of under and over-reporting of cancer on death

certificates in a competing risks analysis consisting of three competing causes of

death: cancer, heart disease and other causes. The cause-specific hazard, as defined

in Section 3.3, can only be estimated using cause of death information. If cancer

was under-recorded on death certificates then it is expected that the cause-specific

hazard for cancer would be downwardly biased and the cause-specific hazards for

heart disease and other causes would be upwardly biased. In contrast, if cancer was

over-recorded on death certificates then the cause-specific hazard for cancer would

be upwardly biased and the cause-specific hazards for heart disease and other causes

would be downwardly biased. As discussed in Section 3.4, the cumulative incidence

function can be obtained through a transformation of the cause-specific hazards

meaning that this too depends indirectly on reliable cause of death information. If

cancer was under-recorded on death certificates then the proportion of patients dying

from cancer would be under-estimated and the proportions of patients dying from

heart disease and other causes would be over-estimated. If cancer was over-recorded

on death certificates then it is likely that the effect would be reversed.

Without reliable information on the level of misclassification for cause of death,

it would be difficult to examine the effect of under and over-recording of cancer on

death certificates using a real data set. Simulation studies are useful for assessing

problems with data quality and the issues that surround this as we can set the level

of misclassification in the simulated population. Therefore, a simulation study was

used to assess varying levels of misclassification of cause of death under different

scenarios.
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5.3 Simulation

A simulation study was carried out to examine the impact that over and under-

recording of cancer on death certificates has on both the cause-specific hazard ratio

and the cumulative incidence function. Three causes of death were modelled, these

being cancer, heart disease and other causes. Two cancer sites were simulated sepa-

rately, one with a reasonably “good” prognosis, for example breast cancer, and one

with a very “poor” prognosis, for example lung cancer. The hazard rates for cancer,

heart disease and other causes were based on estimates from the SEER public use

data set [?]. Mortality rates were varied by age by using pre-specified hazard ratios

for the age-groups 0-44, 45-59, 60-74, 75-84, 85+, with the 60-74 age-group as the

reference. These are shown in Table 5.1. In addition to differential misclassifica-

tion by age, it is also reasonable to expect that levels of misclassification will vary

between different groups of patients for other reasons. Therefore, a further binary

covariate was also simulated in order to understand the effect of other differential

misclassification. This covariate could, for example, represent treatment exposure

or the country in which patients were diagnosed. The simulation strategy used to

simulate competing risks data was taken from a paper by Beyersmann et al. [?] and

is described below.

1. The cause-specific hazard was specified as a Weibull function of time for cancer,

h1(t), heart disease, h2(t), and other causes, h3(t). These also depended on

age and the binary covariate. Proportional hazards were assumed for both

covariates.

2. Age was simulated from a normal distribution with mean 60 and a standard

deviation 15. The effect of age was simulated using pre-defined hazard ratios

for the age groups 0-44, 45-59, 60-74, 75-84 and 85+ with the 60-74 age group

as the reference (see Table 5.1). The binary covariate was generated using a

pre-defined hazard ratio of 0.8.

3. Time of death for all causes was generated using the all-cause hazard h1(t) +
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h2(t) + h3(t) [?]. Each cause of death was given a different shape for the

underlying hazard by altering the λ and γ parameter values of the Weibull

distribution as shown in Table 5.2. The shape of each of the baseline cause-

specific hazards are shown in Figure 5.1. For both the “good” and “poor”

cancer sites the mortality rate is initially high after diagnosis and then reduces

as time since diagnosis increases. In comparison, the mortality rates for heart

disease and other causes start low and increase with time.

4. A multinomial experiment was run for a simulated survival time to decide

which cause of death occurred. This was done with probability h1(t)
h1(t)+h2(t)+h3(t)

for cancer, h2(t)
h1(t)+h2(t)+h3(t)

for heart disease and h3(t)
h1(t)+h2(t)+h3(t)

for other causes.

5. Any survival times that exceeded 10 years were censored.

Table 5.3 shows the 24 scenarios used in the simulation. Misclassification was

either kept constant across the five age groups or made to increase with age. For

example, the first row of the table shows that in each age group it was assumed

that 5% of cancer deaths were misclassified as heart disease or other causes (i.e.

under-recording of cancer) and so death status was redistributed accordingly at

random. The final column indicates whether or not there was any other differential

misclassification, aside from age differential misclassification, within the additional

binary covariate. “None” indicates that misclassification was of equal levels in each

of the two groups where as “1.5” indicates that the probability of misclassification

was 50% higher in group 2 compared to group 1 for the covariate. For each scenario

100 simulations were run for a sample size of 5000. This number of simulations was

chosen as the process was very computationally intensive and increasing the number

of simulations did not change the conclusions made in this chapter. The results are

presented for each scenario in terms of the mean of the 100 simulations.
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Cause of Death
Cancer Prognosis
Good Poor

Cancer
Ages 0-44 0.96 0.62
Ages 45-59 0.91 0.84
Ages 60-74 1 1
Ages 75-84 1.28 1.28
Ages 85+ 1.82 1.69

Heart
Ages 0-44 0.06 0.06
Ages 45-59 0.22 0.22
Ages 60-74 1 1
Ages 75-84 3.00 3.00
Ages 85+ 8.17 8.17

Other
Ages 0-44 0.11 0.11
Ages 45-59 0.30 0.30
Ages 60-74 1 1
Ages 75-84 2.66 2.66
Ages 85+ 5.47 5.47

Table 5.1 – Age effect hazard ratios used in the simulation strategy - ages 60-74
reference group

Good Prognosis Poor Prognosis
λ γ λ γ

Cancer 0.05 0.8 0.6 0.65
Heart 0.005 1.4 0.005 1.4
Other 0.008 1.4 0.008 1.4

Table 5.2 – Chosen λ and γ parameter values of the Weibull distribution for the
cause-specific hazards in the simulation strategy.
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Figure 5.1 – Simulated baseline cause-specific hazards from chosen Weibull distribu-
tions (see Table 5.2) for cancer, heart disease and other causes for the
good and poor prognosis scenarios.
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Scenario Prognosis Under/Over Misclassification Age (%)a Misclassification Otherb

1 Good Under 5, 5, 5, 5, 5 None
2 Good Under 5, 5, 5, 5, 5 1.5

3 Good Over 5, 5, 5, 5, 5 None
4 Good Over 5, 5, 5, 5, 5 1.5

5 Good Under 10, 10, 10, 10, 10 None
6 Good Under 10, 10, 10, 10, 10 1.5

7 Good Over 10, 10, 10, 10, 10 None
8 Good Over 10, 10, 10, 10, 10 1.5

9 Good Under 1, 2, 3, 4, 5 None
10 Good Under 1, 2, 3, 4, 5 1.5

11 Good Over 1, 2, 3, 4, 5 None
12 Good Over 1, 2, 3, 4, 5 1.5

13 Poor Under 5, 5, 5, 5, 5 None
14 Poor Under 5, 5, 5, 5, 5 1.5

15 Poor Over 5, 5, 5, 5, 5 None
16 Poor Over 5, 5, 5, 5, 5 1.5

17 Poor Under 10, 10, 10, 10, 10 None
18 Poor Under 10, 10, 10, 10, 10 1.5

19 Poor Over 10, 10, 10, 10, 10 None
20 Poor Over 10, 10, 10, 10, 10 1.5

21 Poor Under 1, 2, 3, 4, 5 None
22 Poor Under 1, 2, 3, 4, 5 1.5

23 Poor Over 1, 2, 3, 4, 5 None
24 Poor Over 1, 2, 3, 4, 5 1.5

Table 5.3 – Simulation scenarios

a Level of misclassification in each of the five age groups. For example, “5, 5, 5, 5, 5”
shows that the level of misclassification was 5% in each of the five age groups.

b The differential misclassification introduced through the binary covariate in addition to
age differential misclassification was either not present (none) or the level of misclassification
was 1.5 times higher in group 1 compared to the references group for the binary covariate.

5.4 Results

It is possible to obtain the true cause-specific hazard functions and cause-specific

survival functions for cancer, heart disease and other causes by substituting the λ

and γ values from Table 5.2 and the age effect hazard ratios from Table 5.1 into
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Equations (2.13) and (2.14). Numerical integration is then used to obtain estimates

of the true cumulative incidence functions through Equation (3.1). Tables 5.4 and

5.5 give the true cumulative incidence function estimates for the good and poor

cancer prognosis scenarios. The estimates highlight the increasing probability of

death with age. For example, amongst those aged 0-44 in the “binary 0” group the

10 year probability of death from cancer is 0.2577, from heart disease is 0.0062 and

from other causes is 0.0182. This gives 0.2821 for the total probability of death. In

comparison, for those aged 85+ in the “binary 0” group the 10 year probability of

death from cancer is 0.2595, from heart disease is 0.3238 and from other causes is

0.3472. This gives 0.9305 for the total probability of death.

CIF Values at Time Since Diagnosis
1 Year 5 Year 10 Year

Cancer Heart Other Cancer Heart Other Cancer Heart Other

Binary 0
Ages 0-44 0.0455 0.0003 0.0009 0.1579 0.0026 0.0075 0.2577 0.0062 0.0182
Ages 45-59 0.0433 0.0011 0.0023 0.1497 0.0094 0.0203 0.2420 0.0224 0.0484
Ages 60-74 0.0471 0.0048 0.0077 0.1576 0.0400 0.0640 0.2422 0.0886 0.1417
Ages 75-84 0.0515 0.0142 0.0201 0.1604 0.1071 0.1519 0.2230 0.2035 0.2888
Ages 85+ 0.0820 0.0368 0.0394 0.2180 0.2212 0.2372 0.2595 0.3238 0.3472
Binary 1
Ages 0-44 0.0367 0.0003 0.0009 0.1289 0.0026 0.0077 0.2128 0.0065 0.0188
Ages 45-59 0.0349 0.0011 0.0023 0.1221 0.0096 0.0207 0.1995 0.0232 0.0501
Ages 60-74 0.0380 0.0048 0.0077 0.1287 0.0409 0.0654 0.1999 0.0919 0.1471
Ages 75-84 0.0416 0.0143 0.0202 0.1311 0.1096 0.1556 0.1840 0.2114 0.3000
Ages 85+ 0.0664 0.0372 0.0399 0.1798 0.2294 0.2461 0.2160 0.3411 0.3658

Table 5.4 – Good Prognosis: True values for cancer, heart disease and other causes
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CIF Values at Time Since Diagnosis
1 Year 5 Year 10 Year

Cancer Heart Other Cancer Heart Other Cancer Heart Other
Binary 0
Ages 0-44 0.2910 0.0002 0.0007 0.6323 0.0014 0.0042 0.7865 0.0026 0.0077
Ages 45-59 0.3711 0.0008 0.0017 0.7330 0.0041 0.0090 0.8584 0.0067 0.0145
Ages 60-74 0.4192 0.0033 0.0053 0.7704 0.0153 0.0245 0.8628 0.0224 0.0358
Ages 75-84 0.4936 0.0088 0.0125 0.8044 0.0326 0.0463 0.8509 0.0407 0.0578
Ages 85+ 0.5761 0.0201 0.0216 0.8126 0.0546 0.0586 0.8262 0.0593 0.0636
Binary 1
Ages 0-44 0.2422 0.0002 0.0007 0.5554 0.0016 0.0048 0.7163 0.0032 0.0093
Ages 45-59 0.3127 0.0008 0.0018 0.6601 0.0049 0.0106 0.8036 0.0086 0.0186
Ages 60-74 0.3562 0.0036 0.0057 0.7032 0.0187 0.0299 0.8156 0.0295 0.0472
Ages 75-84 0.4254 0.0097 0.0138 0.7480 0.0413 0.0586 0.8110 0.0551 0.0782
Ages 85+ 0.5061 0.0228 0.0245 0.7675 0.0719 0.0771 0.7888 0.0811 0.0870

Table 5.5 – Poor Prognosis: True values for cancer, heart disease and other causes

Figure 5.2 shows the bias in the cumulative incidence function at 10 years for

the 5% misclassification scenarios. The black symbols give the bias when the binary

covariate is 0 and the grey symbols give the bias when the binary covariate is 1. The

circles and the crosses show the bias from under-reporting scenarios and the squares

and triangles show the bias from over-reporting scenarios. Within the legend on

the plot “age & other diff” represents differential misclassification by both age and

the binary covariate and “age diff” represents differential misclassification by age

only. The biases reported are the true cumulative incidence function value minus the

estimated cumulative incidence from the similated values. The biases are therefore

on the probability scale of 0 to 1.

Focussing on the cumulative incidence function for cancer only, the results for

the good cancer prognosis show that over-reporting is more of a problem than under-

reporting in the youngest age group. The largest bias in the youngest age group is

0.015 (1.5 percentage units) for the cancer cumulative incidence function and is in

the over-recording scenario with additional differential misclassification aside from

that introduced with age. Over-recording of cancer on death certificates is bound to

be more of a problem than under-recording in the younger ages due to the approach

that was used to re-assign misclassified deaths. If in the simulation scenario cancer
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was thought to be under-recorded then a proportion of deaths due to heart disease

and other causes were reclassified as cancer in order to examine the bias. For the

younger patients, the occurrence of deaths due to both heart disease and other

causes is low; therefore, reclassifying a proportion of these patients to having died

from cancer was unlikely to have a big impact on the cumulative incidence functions.

If in the simulation scenario cancer was over-recorded then a proportion of cancer

deaths was reassigned to deaths from heart disease and other causes. Due to the

cancer diagnosis, there is likely to be a higher occurrence of cancer deaths amongst

the young patients. This means that for the scenario of over-recording, a larger

number of patients were reclassified to the other causes of death and therefore had

a larger impact overall.

Again focussing on the cumulative incidence function for cancer only, in the old-

est age group the results for the good cancer prognosis show that under-reporting is

more of a problem then over-reporting. The largest bias in the oldest age group is

-0.026 (-2.6 percentage units) and is in the under-recording scenario with additional

differential misclassification. The explanation for this result is essentially the op-

posite of the above. Deaths from heart disease and other causes are more common

than cancer deaths in the oldest age group. If cancer was under-recorded in the sim-

ulation scenario, then in order to examine the bias resulting from this, a proportion

of deaths due to heart disease and other causes was reclassified as cancer deaths. As

there are likely to be a large number of deaths due to heart disease and other causes

in the older ages, a larger number of deaths was reclassified as cancer deaths.

Again in terms of the cumulative incidence function for cancer, the results for the

poor cancer prognosis show that over-reporting is more of a problem than under-

reporting in all age groups. The bias reaches 0.041 (4.1 percentage units) in the

youngest age group and 0.043 (4.3 percentage units) in the oldest age group. As

these patients have a poor cancer prognosis they will most likely die from their

cancer meaning that deaths from heart disease and other causes will very rarely

occur. This explains why over-reporting results is larger biases than under-reporting
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in this scenario. The probability of death due to cancer is higher in these scenarios

due to the poor prognosis and so it was expected that the misclassification would

have a larger impact here.
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Figure 5.2 – Bias in the cumulative incidence function (CIF) at 10 years (true value
minus simulated value). Under and over-reporting scenarios with 5%
misclassification in all age groups. “Diff” represents differential mis-
classification by additional covariate group and “No diff” represents
no differential misclassification. Black shows the bias when the binary
covariate is 0 and grey shows the bias when the binary covariate is 1.

The bias in the cumulative incidence function at 10 years for the 10% misclas-

sification scenarios is shown in Figure 5.3. The results show a similar pattern to

those for the 5% misclassification scenarios in Figure 5.2. In terms of the good

prognosis results, the largest bias in the youngest age group is 0.03 (3 percentage

units) in the over-recording scenario with differential misclassification in addition

to that introduced with age. The largest bias in the oldest age group is -0.05 (-5

percentage units) in the under-recording scenario with additional differential mis-

classification. The results for the poor prognosis show that the largest biases in

both the youngest and oldest age groups occur in the over-reporting scenario and

are 0.065 (6.5 percentage units) and 0.097 (9.7 percentage units) respectively.
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Figure 5.3 – Bias in the cumulative incidence function (CIF) at 10 years (true value
minus simulated value). Under and over-reporting scenarios with 10%
misclassification in all age groups. “Diff” represents differential mis-
classification by additional covariate group and “No diff” represents no
differential misclassification. Black represents the scenario where the
binary covariate is 0 and grey represents the scenario where the binary
covariate is 1.

The bias in the cumulative incidence function at 10 years for the scenarios where

misclassification increases from 1% to 5% with age is shown in Figure 5.4. Looking

at the results for the good prognosis, the bias in the youngest age group is very small

(largest bias 0.001) which is not surprising given that the level of misclassification

is only 1% in this age group. However, when compared to the results for the poor

prognosis it is evident that even a level of misclassification as small as 1% has

introduced a noticeable bias of up to 0.01 (1 percentage unit) in the youngest age

group. As these patients have a very poor cancer prognosis there will be a large

number of deaths from cancer. The biases in the oldest age group reach -0.025 (-2.5

percentage units) for the good prognosis and 0.045 (4.5 percentage units) for the

poor prognosis. When just 1% of these deaths are redistributed to heart disease

and other causes, in absolute terms there will be a fairly large number of deaths re-

allocated. This would explain why the bias is more noticeable in the poor prognosis

scenario than in the good prognosis scenario for all age groups.
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The bias in the cumulative incidence functions at 1, 5 and 10 years for all 24

scenarios are given in Tables 5.8, 5.9, 5.10, 5.11, 5.12 and 5.13 at the end of this

chapter.
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Figure 5.4 – Bias in the cumulative incidence function (CIF) at 10 years (true value
minus simulated value). Under and over-reporting scenarios with mis-
classification increasing from 1% to 5% with age. “Diff” represents dif-
ferential misclassification by additional covariate group and “No diff”
represents no differential misclassification. Black represents the sce-
nario where the binary covariate is 0 and grey represents the scenario
where the binary covariate is 1.

Tables 5.6 and 5.7 give the bias in the log hazard ratios for age and the binary

covariate. As the results are reported in terms of the bias in the log hazard ratio, a

positive number shows that the hazard ratio was lower than the true hazard ratio and

a negative number shows that the hazard ratio was higher than the true hazard ratio.

For example, for ages 0-44 in the under-recording scenario with 5% misclassification

but no additional differential misclassification with the binary covariate, the bias

in the log hazard ratio for cancer is 0.0233. This means that in this scenario the

hazard ratio was 0.938 as opposed to the true hazard ratio of 0.96 from Table

5.1. As expected the bias in the hazard ratios increases with increasing levels of

misclassification.

In the under-recording scenario, cancer is thought to be under-reported on death
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certificates and so deaths from heart disease and other causes are re-allocated to

cancer. In the youngest age group there are fewer deaths due to other causes and so

the re-allocation makes little difference to the underlying hazard function. However,

in the oldest age group the probability of death due to other causes is high and so

many more deaths have been re-allocated to cancer. This means that the hazard

ratios converge towards the reference age group of 60-74. In the over-recording

scenario, cancer is over-reported on death certificates and so deaths from cancer are

re-allocated to heart disease and other causes. This has the opposite effect meaning

that the hazard ratios diverge away from the reference age group of 60-74.

In the under-recording scenario, the differential misclassification introduced through

the binary covariate reduces the protective effect of the hazard ratio for the binary

covariate. For example, with 10% misclassification the hazard ratio for the binary

covariate when there is no additional differential misclassification is 0.809 compared

to the true hazard ratio of 0.8. When further differential misclassification (aside

from the age differential misclassification) is introduced this hazard ratio becomes

0.836. In the over-recording scenario, the additional differential misclassification

increases the protective effect. Considering the same scenario, the hazard ratio with

no additional differential misclassification introduced is 0.795 as opposed to 0.758

when it is present.



5. The Impact of Incorrect Cause of Death in a Competing Risks Analysis 128

Good Prognosis
Under-recording Over-recording

No Diff Diff No Diff Diff
Cancer Heart Other Cancer Heart Other Cancer Heart Other Cancer Heart Other

5%

Ages 0-44 0.0233 0.2187 0.0402 0.0335 0.2863 0.0252 0.0044 -0.5976 -0.2309 -0.0023 -0.6092 -0.2645
Ages 45-59 0.0196 -0.0151 0.0236 0.0315 0.0031 -0.0116 0.0034 -0.1810 -0.0639 -0.0073 -0.1926 -0.0699
Ages 75-84 -0.0284 -0.0090 -0.0081 -0.0426 -0.0044 -0.0068 0.0015 0.0348 0.0300 0.0279 0.0413 0.0288
Ages 85+ -0.0075 0.0144 0.0150 -0.0698 -0.0149 -0.0188 0.0112 0.0649 0.0262 -0.0257 0.0695 0.0582
Covariate -0.0051 -0.0130 -0.0091 -0.0231 0.0068 -0.0034 -0.0027 0.0071 0.0002 0.0242 -0.0277 -0.0210

10%

Ages 0-44 0.0528 0.0760 0.0376 0.0494 0.2435 0.0453 -0.0052 -0.8956 -0.4058 -0.0028 -1.0323 -0.4884
Ages 45-59 0.0254 0.0047 0.0056 0.0398 -0.0081 0.0195 -0.0065 -0.2951 -0.1191 0.0042 -0.3437 -0.1812
Ages 75-84 -0.0687 0.0025 -0.0040 -0.0720 0.0011 0.0032 -0.0032 0.0703 0.0344 0.0159 0.1106 0.0715
Ages 85+ -0.1025 0.0261 -0.0049 -0.1334 0.0010 -0.0119 0.0157 0.1000 0.0577 0.0260 0.1573 0.0802
Covariate -0.0123 0.0048 0.0061 -0.0442 0.0123 0.0354 0.0068 0.0405 0.0197 0.0544 -0.0337 -0.0224

1%-5%

Ages 0-44 0.0158 0.3432 -0.0059 0.0273 0.2557 0.0229 -0.0315 -0.0915 -0.0475 -0.0327 -0.1234 -0.0307
Ages 45-59 0.0083 0.0289 -0.0001 0.0098 -0.0029 0.0216 -0.0211 -0.0809 -0.0222 -0.0111 -0.0777 -0.0289
Ages 75-84 -0.0163 0.0097 0.0036 -0.0301 -0.0024 0.0182 0.0350 0.0270 0.0010 0.0218 0.0579 0.0073
Ages 85+ -0.0494 0.0322 0.0080 -0.0878 0.0165 -0.0155 0.0486 0.0346 -0.0062 0.0218 0.0479 0.0131
Covariate -0.0012 0.0160 0.0049 -0.0111 0.0129 -0.0080 -0.0007 -0.0085 0.0015 0.0065 -0.0014 -0.0066

Table 5.6 – Bias in log HR’s for age groups and binary covariate for good prognosis
scenarios (true value minus estimate based on simulated values)

Poor Prognosis
Under-recording Over-recording

No Diff Diff No Diff Diff
Cancer Heart Other Cancer Heart Other Cancer Heart Other Cancer Heart Other

5%

Ages 0-44 0.0049 1.1184 0.0619 0.0046 1.3547 0.0901 -0.0037 -1.5134 -0.8604 -0.0000 -1.6435 -0.9472
Ages 45-59 -0.0013 0.0214 0.0207 -0.0003 0.0154 -0.0129 -0.0118 -0.7780 -0.4526 0.0029 -0.8511 -0.5154
Ages 75-84 -0.0044 0.0138 -0.0289 -0.0052 -0.0339 0.0069 -0.0122 0.3935 0.2379 0.0001 0.4222 0.2969
Ages 85+ -0.0136 -0.0093 0.0294 -0.0221 0.0166 -0.0204 -0.0017 0.6846 0.3898 -0.0073 0.7609 0.5011
Covariate -0.0062 -0.0007 -0.0114 -0.0044 -0.0022 0.0120 0.0014 0.1223 0.0931 0.0224 -0.0934 -0.0842

10%

Ages 0-44 0.0096 1.5852 0.1150 0.0111 1.4628 0.1587 -0.0030 -1.8649 -1.1471 -0.0013 -1.9635 -1.1816
Ages 45-59 0.0002 0.0034 -0.0469 0.0053 0.0274 0.0154 0.0006 -0.9938 -0.6521 -0.0071 -1.0566 -0.6838
Ages 75-84 -0.0058 -0.0318 -0.0298 -0.0091 -0.0130 -0.0188 -0.0073 0.4938 0.3870 -0.0023 0.5504 0.3970
Ages 85+ -0.0173 -0.0121 0.0180 -0.0095 0.0082 0.0415 -0.0075 0.9656 0.6052 0.0058 1.0044 0.6809
Covariate -0.0026 0.0326 0.0044 -0.0090 0.0527 0.0375 -0.0039 0.1204 0.1224 0.0623 -0.1391 -0.1198

1%-5%

Ages 0-44 -0.0024 1.2458 0.1461 0.0017 1.0438 0.1058 -0.0190 -0.3598 -0.1188 -0.0222 -0.5114 -0.1893
Ages 45-59 -0.0032 -0.0164 -0.0561 -0.0009 0.0090 0.0091 -0.0194 -0.3754 -0.1378 -0.0136 -0.4550 -0.2203
Ages 75-84 -0.0153 0.0099 -0.0121 -0.0062 0.0353 0.0051 0.0046 0.1696 0.1019 0.0082 0.1865 0.1245
Ages 85+ -0.0122 0.0400 0.0514 0.0009 -0.0197 0.0551 0.0218 0.3700 0.2077 0.0207 0.3975 0.2042
Covariate 0.0005 0.0254 -0.0158 -0.0076 0.0363 0.0052 -0.0028 0.0682 0.0393 0.0096 -0.0760 -0.0792

Table 5.7 – Bias in log HR’s for age groups and binary covariate for poor prognosis
scenarios (true value minus estimate based on simulated values)
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5.5 Discussion

This simulation study has shown, using realistic estimates for misclassification of

cause of death information, that caution should be taken, as with most analyses,

when making conclusive remarks about the older ages. It is within these age groups

that misclassification occurs most frequently and can have the greatest impact on

the probability of death. Although the bias in the relative effects (hazard ratios) was

not as concerning, the bias in the absolute effects (cumulative incidence functions)

for the oldest age group reached values as high as 0.026 (2.6 percentage units) for the

good cancer prognosis and 0.097 (9.7 percentage units) for the poor cancer prognosis.

Although bias was present in the youngest age group, reaching 0.015 (1.5 percentage

units) for the good cancer prognosis and 0.065 (6.5 percentage units) for the poor

prognosis, the levels of misclassification are in reality likely to be much lower than

those simulated here.

The bias resulting from the chosen levels of misclassification in this study ac-

centuate concerns that unreliable cause of death information may be providing mis-

leading results. The use of linked databases for studying important public health

issues is being increasingly encouraged as a means of enforcing policy decisions [?].

A bias as large as 9 percentage units could greatly influence whether a policy is

pushed through or not. Similarly, treatment decisions are often largely based on

published estimates for prognosis which could also be biased by inaccurate cause of

death information.

The results from this simulation emphasise that strenuous efforts need to be made

to make sure that cause of death information on death certificates is as accurate

as possible. The validity of any estimates based on cause of death information

relies upon this information being correct. The results have shown that this is

more so when survival is poor. It is, therefore, important that those who fill in

death certificates are aware of how the information goes on to be utilised. A recent

study investigated the use of a new cause-specific death classification variable for use

with data from the Surveillance, Epidemiology, and End Results Program (SEER)
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[?]. The variable was defined by taking into account cause of death in conjunction

with sequence of tumour occurrence, site of the original cancer diagnosis, and co-

morbidities. The aim was to capture deaths that were related to a specific cancer

but were not coded as such in order to provide guidance as to which deaths should

be classed as “attributable” to a specific cancer diagnosis. The study showed that

estimates of survival using cause of death information were very similar to those

obtained through relative survival analyses as introduced in Section 2.14. If such

records are available then a similar cause-specific death classification variable could

be developed for other data sets.

The levels of misclassification were based on what little evidence could be found

[??]. The levels are likely to vary between diseases and different settings [??]. An

empirical investigation into the levels of misclassification on death certificates is im-

perative. It is possible to make some form of adjustment for misclassified cause of

death within an analysis [?]. However, this will depend heavily on whether reliable

estimates are available for the levels of misclassification in the data set. An alterna-

tive approach could be to use a sensitivity analysis to assess the impact that various

levels of misclassification would have on a particular real data set.

The simulation conclusions raise slight concerns with the results from the MPN

study in Chapter 4 as the analysis was based on cause of death information. This

suggests that the estimates, particularly in the two oldest age groups (70-79 and

80+), may be biased. However, without knowing the levels of misclassification that

could have occurred and without access to any additional information regarding

tumour occurrence, site of the original cancer diagnosis or co-morbidities it is not

possible to make any form of adjustment for this. The length of stay study presented

in Section 4.3 does not really pose a problem in terms of misclassification as it is

not difficult to distinguish between a baby that has died and a baby that has been

discharged. If there is concern about the reliability of cause of death information

and the analysis does not require partitioning the mortality into multiple causes

of death then a relative survival analysis can be considered. This approach was
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introduced in Section 2.14 and will be discussed in more detail in Chapter 8.

There are a few limitations to the simulation study. Firstly, only a proportional

hazards model was considered. In many large epidemiological studies there is often

some non-proportional effect and so time-dependent effects could be incorporated

to account for this. The misclassification was assumed to be constant across the

whole follow-up period which may not be the case in reality. Age was modelled as

a categorical variable and then levels of misclassification were assigned to each age

group. It may have been more appropriate to consider continuous age and define

some function for increasing levels of misclassification with increasing age. Finally,

the misclassification in the simulation was based on age at diagnosis rather than

attained age. Levels of misclassification may increase as the time since diagnosis

increases. This is because the greater the period since cancer diagnosis the less

likely it is that cancer will be considered as the cause of death. Additionally, the

older the patient becomes the more likely they will be suffering from co-morbidities

and therefore be at risk of multiple causes of death.
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6. COMPETING RISKS ANALYSIS - SUBDISTRIBUTION

HAZARDS

6.1 Chapter outline

This chapter will introduce subdistribution hazards and discuss their role in com-

peting risks methodology. The advantages and disadvantages of this approach will

be considered in a comparison with the cause-specific approach that was introduced

in Chapter 3.

6.2 Introduction

In Chapter 3 the cause-specific cumulative incidence function was introduced and

several approaches for estimating it were discussed. The two modelling approaches

(Cox and flexible parametric) involved estimating the cause-specific hazard functions

and transforming these to the cumulative incidence function through Equation (3.1).

As was highlighted in Section 3.4, the cause-specific cumulative incidence function

is not only a function of the cause-specific hazard for the cause of interest but also

incorporates the cause-specific hazards for the competing causes through the all-

cause survival function. This chapter will introduce models that regress directly

on a transformation of the cumulative incidence function using the SEER public

use data set on survival of breast cancer patients as introduced in Section 3.5 [?].

In 2011 Geskus demonstrated that any standard survival analysis package for the

Kaplan-Meier estimator or the Cox proportional hazards model, provided it could

incorporate weights, could be applied to in this setting to obtain estimates of the

cumulative incidence function [?]. The flexible parametric model will, therefore, be
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applied in a similar approach.

6.3 Motivation for these models

Chapter 3 introduced an approach for handling competing risks data that involved

estimating the cause-specific hazards and transforming these to the cumulative in-

cidence functions. There are, however, several limitations to this approach. The

cumulative incidence is a function of all the cause-specific hazard functions (see

Equation (3.1)). This means that, even if interest only lies in the probability of

death from one particular cause, the hazard functions for all of the causes still have

to be modelled correctly. Further to this, as there is not a one-to-one correspondence

between the cause-specific hazard and the probability of death from that cause, it

means that there is no simple effect measure, such as a hazard ratio, that can be

used to summarise differences in the cumulative incidence functions. The lack of a

one-to-one correspondence means that covariate effects may not be associated with

the cumulative incidence function in the same way that they associate with the

cause-specific hazard. This was demonstrated in the myeloproliferative neoplasms

application in Section 4.2.3 where the relative effect for MPN patients aged 70-79

suggested a higher rate of death from solid tumours but in absolute terms there was

actually a higher proportion of deaths from solid tumours amongst the population

controls than there were amongst the MPN cases. This was due to the fact that

MPN patients were dying from other causes before they had the chance to die from

solid tumours. This property motivated models that directly link the cumulative

incidence function to covariates [?].

6.4 Subdistribution hazards

The subdistribution hazard, hk(t)sub, is the instantaneous risk of dying from a par-

ticular cause k given that the subject has not died from cause k [???] and can be

written as
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hk(t)sub = lim
δt→0

{
P (t ≤ T < t+ δt,K = k | T > t or (T ≤ t & K 6= k)

δt

}
(6.1)

In terms of the breast cancer example, this means that the subdistribution hazard

at any particular time in the follow-up period is the instantaneous risk of dying from

breast cancer given that the patient has not died from breast cancer. This is not

to say that the patient has not already died from other cancer, heart disease or

other causes. The relationship between the subdistribution hazard, hk(t)sub and the

subdistribution cumulative incidence function, Ck(t)sub is as follows

hk(t)sub = −d log(1− Ck(t)sub)
dt

Ck(t) = exp

− t∫
0

hk(u)subdu

 (6.2)

The key difference between the cause-specific hazard and the subdistribution

hazard is the risk set. In the simple scenario when there is no censoring present

in the data, for example censoring due to loss to follow up, the risk set for the

cause-specific hazard decreases each time there is a death from a competing cause.

With the subdistribution hazard, subjects that die from a competing cause remain

in the risk set and are given the last potential date of follow-up (i.e. the time-point

at which follow-up ends) [?]. Figures 6.1 and 6.2 show the risk sets for the cause-

specific hazard and subdistribution hazard for breast cancer in their simplest form

when there is no censoring present in the data. The two figures show 10 patients

followed up for 10 years after a diagnosis of breast cancer. In both figures, patients

2, 5 and 8 are still alive at the end of the 10 year follow up period and so are right

censored (administrative censoring).

In the cause-specific hazard risk set (Figure 6.1), at 6 years since diagnosis patient

1 has died from their breast cancer and so this patient is removed from the risk set.

Patient 9 has died from heart disease and patients 4 and 7 have died from other

causes and so these patients are also removed from the risk set. This means that at
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6 years since diagnosis there are 6 patients remaining in the risk set.

In the subdistribution hazard risk set (Figure 6.2), at 6 years since diagnosis

patient 1 has died from their breast cancer and so this patient is removed from the

risk set. Patient 9 has died from heart disease and patients 4 and 7 have died from

other causes. However, as these patients have not died from breast cancer, they

remain in the risk set and are given their administrative censoring time (10 years).

This means that at 6 years since diagnosis there are now 9 patients remaining in

the risk set. Although 3 patients have died due to causes other than breast cancer,

they remain eternally at risk of dying from breast cancer.

Breast

Breast

Breast

Heart

Heart

Other

Other

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

Patient 6

Patient 7

Patient 8

Patient 9

Patient 10

0 2 4 6 8 10
Time since diagnosis (years)

Figure 6.1 – Risk set for breast cancer when estimating cause-specific hazard.



6. Competing Risks Analysis - Subdistribution Hazards 142
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Figure 6.2 – Risk set for breast cancer when estimating subdistribution hazard.

In a competing risks analysis with no censoring (for example, censoring due to

loss to follow-up) the cumulative incidence function could be estimated by allowing

any patient that died from a competing event to still be at risk until the end of

the follow-up period and then applying standard survival analysis methods such as

those shown in Chapter 2. However, in most time-to-event data there will be some

censoring present and so the methods have to be able to deal with this.

In a standard survival analysis a patient is given the minimum of their event

and censoring times. For example, if the patient was lost to follow-up before they

experienced the event of interest then they would be given their censoring time.

When estimating the subdistribution hazard some patients remain in the risk set

even though they may have experienced an alternative event and it is not possible

to know what their potential future censoring time might have been.

6.5 Expressing the Kaplan-Meier estimator as a function of

subhazards

The standard Kaplan-Meier estimate, S(t), can be written as
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Ŝ(tj) =
J∏
j=1

(
1− dj

nj

)
(6.3)

where
dj
nj

is an estimate of the probability of death at time tj. As discussed

in Section 3.7, the complement of the Kaplan-Meier function does not give a true

estimate of the probability of death from breast cancer if there are non-independent

competing events. The complement of the Kaplan-Meier function could be utilised

to obtain an estimate of the actual probability of death from breast cancer by

simply basing the estimation on the subdistribution function. An estimate of the

subdistribution hazard can be obtained by replacing the actual number at risk, nj,

by the virtual number at risk, n∗j. The virtual number at risk, n∗j, at time t(v) can

be written as

n ∗j (t(v)) = nj(t(v)) +
∑

wj(t(v)) (6.4)

where t(v) is the time point at which the risk set is defined, v = 1, . . . d are the

unique times of failure and wj(t(v)) are weights for the censoring distribution within

the data. The weights,wj(t(v)), are given by

• wj(t(v)) = 1 if the individual is still at risk of the event of interest at time t(v).

• wj(t(v)) =
Sc(t(v))

Sc(tdj )
, j ∈ R(t(v)) if the individual had a competing event before

time t(v).

• 0 if the individual was censored before time t(v).

where Sc(t) is the Kaplan-Meier estimator for censoring as given in Equation

(2.9), R(t(v)) is the corresponding risk set just prior to time t(v) and tdj is the failure

time of any event type [?]. In the case of ties the event time comes first. The weights

for those that experience a competing event represent the conditional probability of

being censored at the time point of interest given a competing event has occurred.

As time goes on these weights start to decrease. This is because the probability of

being censored increases, therefore decreasing the probability that these individuals
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would have contributed to the risk set had they not experienced the competing event.

Incorporating these weights provides a solution to the problem when estimating the

subdistribution hazard some patients remain in the risk set even though they may

have experienced an alternative event and it is not possible to know what their

potential future censoring time might have been.

In order to incorporate these weights the dataset needs to be set up differently.

Individuals that experience a competing event now contribute to the risk set with

a time-dependent weight [?]. For example, if the event of interest is deaths due to

breast cancer then any individuals that die due to other cancers, heart disease or

other causes will be given weights dependent on the censoring distribution in the

data. The split points for the weights are usually evaluated at every event time for

the event of interest, in this example death due to breast cancer, meaning that the

data set can become very large. An alternative approach for deciding on the split

points will be discussed in Section 6.7.

Table 6.1 shows seven example patients with different end points from the SEER

breast cancer data set. The first and third patients are censored after 1.67 and 4.28

years respectively. The second and seventh patients both die from breast cancer

after 2.87 and 5.24 years respectively. Patient 4 dies from a cancer other than

breast cancer after 2.12 years. Patient 5 dies from heart disease after 2.71 and

finally patient 6 dies from other causes after 3.11 years.

In an analysis where death due to breast cancer is the event of interest then

all other causes of death are competing events and as such require weights for the

censoring distribution. In the re-weighted data the first and third patients do not

change as they are censored observations. As the second and seventh patients both

die from breast cancer which is the event of interest they also remain the same.

However, patients 4, 5 and 6 have died from a cause other than breast cancer and so

their contribution is now spread over multiple rows. Patient 4 dies at 2.12 years and

yet their censoring weights remain at 1 until 5.24 years which is the next event time

for breast cancer (the event of interest). The weight then becomes 0.5 to reflect the
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censoring distribution in the data; there are two censored patients in the data and at

this time point only one of these remains in the risk set, hence there is a probability

of 1/2=0.5 of being censored. Similarly, for patients 5 and 6, their weights remain

at 1 until they are re-evaluated after the death of patient 7 from breast cancer (i.e.

the event time for the event of interest). The data can then be collapsed over rows

that have the same weights for an individual. So, for example, patient 4 has two

rows with weights of 1. These rows could be merged to leave a total of two rows

for patient 4 instead of the three shown here. The example illustrated here is very

simplistic as most datasets will have a much larger sample size with many more

censored observations, making the calculation of the censoring distribution slightly

more complicated.

ID Age Group Start Stop Cause Weight
Original data:

1 70-79 0 1.67 Censored -
2 60-69 0 2.87 Breast Cancer -
3 18-59 0 4.28 Censored -
4 18-59 0 2.12 Other Cancer -
5 80+ 0 2.71 Heart Disease -
6 70-79 0 3.11 Other Causes -
7 60-69 0 5.24 Breast Cancer -

Data with weights:
1 70-79 0 1.67 Censored 1
2 60-69 0 2.87 Breast Cancer 1
3 18-59 0 4.28 Censored 1
4 18-59 0 2.12 Other Cancer 1
4 18-59 2.12 2.87 Other Cancer 1
4 18-59 2.87 5.24 Other Cancer 0.5
5 80+ 0 2.71 Heart Disease 1
5 80+ 2.71 2.87 Heart Disease 1
5 80+ 2.87 5.24 Heart Disease 0.5
6 70-79 0 3.11 Other Causes 1
6 70-79 3.11 5.24 Other Causes 0.5
7 60-69 0 5.24 Breast Cancer 1

Table 6.1 – Comparison of seven patients in original breast cancer dataset and the
same seven patients in the dataset including censoring weights for com-
peting events when the event of interest is breast cancer.

The Kaplan-Meier estimator incorporating the weights for the censoring distri-

bution can now be applied to obtain a “real world” estimate of the probability of
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death from breast cancer. Figure 6.3 shows the weighted Kaplan-Meier estimate, as

described above, along with the non-parametric estimate of the cumulative incidence

function (Section 3.7) for breast cancer, other cancer, heart disease and other causes

for the age group 80+. The plot shows that the two approaches to estimating the

cumulative incidence functions produce the same results.

Geskus also derived two equivalent representations of the non-parametric esti-

mator for the cumulative incidence function [?]. These were the weighted empirical

cumulative distribution function and a product-limit estimator. However, these

three forms were shown to be mathematically equivalent and so are not considered

in this thesis.
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Figure 6.3 – Comparison of cumulative incidence function for weighted Kaplan-
Meier estimator and non-parametric approach from Section 3.7 for ages
80+.

Whilst non-parametric approaches are good for describing the data, there are

many advantages for the use of modelling techniques in observational studies when

there are a number of covariates that need to be adjusted for. The next two sections

will, therefore, describe two alternative modelling approaches based on subdistribu-

tion hazards.
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6.6 Fine and Gray weighted Cox model

In 1999 Fine and Gray demonstrated that, by defining the new risk set illustrated

in Figure 6.2, a standard Cox proportional hazard model, as described in Section

2.12, could be applied to obtain estimates of the cumulative incidence function for a

particular cause. They addressed the issue of censoring by using inverse probability

of censoring weighting techniques [??].

Estimation of the covariate coefficients in a proportional subdistribution hazards

model follows the partial likelihood approach used in the standard Cox model as

shown in Section 2.12 [?]. As discussed in the last section, in an analysis based on the

subdistribution hazards, if a patient fails from a competing event they will remain in

the risk set. If censoring is present then patients that experience competing events

could actually have had a chance of being censored before the end of the follow-up

period had they not experienced the competing event. It is not possible to know

what their potential future censoring time might have been. However, the censoring

distribution needs to somehow be accounted for in the data in order to obtain an

unbiased estimate of the cumulative incidence function.

Fine and Gray addressed this issue by proposing the use of a weighted score

function in the partial likelihood. By incorporating an inverse probability of censor-

ing weight, the partial likelihood for the proportional subdistribution hazards model

(see Equation (6.6)) can be written as follows

d∏
v=1

exp(βTsubx(v))∑
i∈R(t(v))

wi(t(v)) exp(βT
sub

xi)
(6.5)

where wi are the time-dependent weights calculated for individuals remaining in

the risk set. These weights vary as a function of follow-up time and can be calculated

using the Kaplan-Meier estimator for censoring as shown in Section 6.5.

Using this redefined risk set Fine and Gray demonstrated that, with a partial

likelihood that incorporated weights for the censoring distribution, a Cox type pro-

portional hazard model (Section 2.12) could be applied to obtain estimates of the
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cumulative incidence function for a particular cause. Under the assumption of pro-

portional subhazards the subdistribution hazard rate for a patient with covariate

vector xk can be modelled using the equation

h(t | x)sub = h0(t)sub exp(βTsubx) (6.6)

where h0(t)sub is the baseline subdistribution hazard and βsub is the vector of

covariate effects (log subhazard ratios). As with the standard Cox regression de-

scribed in Section 2.12, the baseline subdistribution hazard is not estimated in the

model. The covariate effects, βsub, can not be interpreted as a standard log hazard

ratio as the risk set contains patients that may have already died from a competing

cause. This is better illustrated through the example below.

A Fine and Gray weighted Cox proportional hazards model will now be con-

sidered using the SEER breast cancer data with age group and stage at diagnosis

as prognostic covariates for the probability of death from each of the four causes.

Separate models can be fitted for each of the four causes as the cumulative incidence

function for a particular cause is only a function of the subdistribution function for

that cause, as shown in Equation (6.2). Therefore, if the event of interest is breast

cancer and a patient dies from a competing cause, it is irrelevant as to what this

competing cause was as the weighted approach shown above does not distinguish

between the competing events.

Table 6.2 gives the subdistribution hazard ratios for age group and stage at

diagnosis for each of the four causes of death obtained using the Fine and Gray

model. When the subdistribution hazard ratio is greater than 1, this implies a con-

stant relative increase of the subdistribution hazard function over follow-up time

and therefore a higher predicted cumulative incidence function at every time point.

Similarly, when the subdistribution hazard ratio is less than 1, this implies a con-

stant relative decrease of the subdistribution hazard function and therefore a lower

predicted cumulative incidence function at every time point [?]. It is not easy, how-

ever, to quantify the relative effect as the risk set includes patients that may have
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already died from a competing cause [?].

Aside from the interpretation, there are some notable differences between the

cause-specific hazard ratios presented in Table 3.5 and the subdistribution hazard

ratios shown in Table 6.2. The cause-specific hazard ratios suggest that the mortality

rate for all four causes of death increases with severity of breast cancer staging

at diagnosis. However, the subdistribution hazard ratios show that, whilst the

mortality rates for breast cancer and other cancers increase with severity of staging

at diagnosis, the mortality rates for heart disease and other causes actually decrease.

This is because if patients with distant stage cancer are dying from breast cancer

or other cancer then they do not have the opportunity per se to die from heart

disease or other causes. The subdistribution hazard ratios reflect the alteration of

the risk set as shown previously. For this reason the subdistribution hazard ratios

are directly interpretable as a measure of association for the cumulative incidence

function.

Covariates Breast Cancer Other Cancer Heart Disease Other Causes

Ages 18-59 1.00 (.) 1.00 (.) 1.00 (.) 1.00 (.)
Ages 60-69 0.92 (0.87, 0.98) 2.24 (1.73, 2.90) 5.42 (4.40, 6.69) 3.76 (3.21, 4.26)
Ages 70-79 1.05 (0.99, 1.12) 2.78 (2.16, 3.57) 16.50 (13.65, 19.94) 9.66 (8.53, 10.95)
Ages 80+ 1.28 (1.18, 1.38) 4.11 (3.15, 5.35) 50.59 (42.04, 60.88) 21.81 (19.26, 24.70)

Localised 1.00 (.) 1.00 (.) 1.00 (.) 1.00 (.)
Regional 4.10 (3.87, 4.34) 1.58 (1.27, 1.97) 1.10 (1.00, 1.20) 0.94 (0.87, 1.02)
Distant 25.15 (23.54, 26.86) 8.01 (6.42, 9.98) 0.69 (0.57, 0.84) 0.58 (0.48, 0.69)

Table 6.2 – Subdistribution hazard ratios (95% CIs) from Fine and Gray’s weighted
Cox proportional hazards model for age group and stage for all four
causes of death: breast cancer, other cancer, heart disease and other
causes.

It is relatively straightforward to estimate the subdistribution cumulative inci-

dence function after fitting a Fine and Gray model as follows

Ĉk(t | x) = 1− exp[Ĥ0ksub(t | x) exp(β̂
T

ksub
xk)] (6.7)

where Ĥ0ksub(t | x) is the baseline cumulative subdistribution hazard obtained

using a Breslow type estimator similar to that given in Equation (2.20) [?]. Using
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this approach the cumulative incidence is only a function of one subdistribution

hazard unlike in the cause-specific approach whereby the cumulative incidence is a

function of all the cause-specific hazards. This means that if interest only lies in one

particular cause then only that cause needs to be modelled.

Figures 6.4 and 6.5 shows the stacked cumulative incidence functions from the

four separate Fine and Gray weighted Cox proportional hazards models (one for

each of the four causes) for those aged 18-59 and 80+ respectively. As before, the

whole of the coloured area represents the total probability of death from all causes

as a function of time. At 10 years since diagnosis the total probability of death

from all causes for patients with localised stage breast cancer is 0.09 for those aged

18-59 and 0.72 for those aged 80+, with regional stage breast cancer is 0.26 for those

aged 18-59 and 0.96 for those aged 80+ and with distant stage breast cancer is 0.86

for those aged 18-59 and 1.43 for those aged 80+. As was seen in Chapter 3, the

youngest age group have a very low probability of dying from anything other than

breast cancer in all three stages at diagnosis. For the oldest age group, however, the

probabilities of dying from either heart disease or other causes sum to more than

the probability of dying of breast cancer in both the localised and regional stages

at diagnosis. Notice that the total probability of death from all causes for those

aged 80+ with distant stage cancer is actually above 1. Within each of the separate

models for the four causes of death, the probability of death (cumulative incidence

function) can not go above one. However, as the probabilities of death for each of

the four causes are estimated in separate models, then, unlike in the cause-specific

hazard approach, there is no boundary condition to prevent the sum of these four

probabilities from going above one. This usually indicates that one or more of the

separate models are not fitting the data well enough. It could, therefore, be due

to the assumption of proportional subdistribution hazards within each of the four

models which will be investigated further in Section 6.7.
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Figure 6.4 – Stacked estimated cumulative incidence functions for ages 18-59 for
all four causes using the Fine and Gray weighted Cox proportional
subhazards model.
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Figure 6.5 – Stacked estimated cumulative incidence functions for ages 80+ for all
four causes using the Fine and Gray weighted Cox proportional sub-
hazards model.

Specialist statistical software has been written to implement the Fine and Gray

model both in Stata (stcrreg) and in R (cmprsk). However, in 2011 Geskus demon-

strated that any standard survival analysis package for the Kaplan-Meier estimator
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or the Cox proportional hazards model, provided it could incorporate weights, could

be applied to the virtual risk set described above to obtain estimates of the cumula-

tive incidence function. The next section will describes how a similar approach can

be adopted for the flexible parametric model.

6.7 Weighted flexible parametric model

By incorporating an inverse probability of censoring weight, we can write a weighted

log-likelihood proportional subdistribution hazards flexible parametric model with

delayed entry as follows:

lnLi = d1i ln[h1(ti)] + (1− d2i) ln[S(ti)]+

d2i

J∑
j=1

wij(ln[S(tij)]− ln[S(ti(j−1))])
(6.8)

where ti is the time at which the event of interest occurs and d2i = 1 when

d1i = 0. For individuals who have a competing event the number of rows in the data

will depend on the number of intervals j. Delayed entry is needed for this weighted

approach as individuals that experience a competing event will have multiple rows

of data as shown in Table 6.1 and only one of these rows will start at the time origin.

When a patient dies from the event of interest, indicated by d1i, or is censored then

they will contribute to the first line of the likelihood. When a patient dies from

any competing event, indicated by d2i, then regardless of what the competing event

is they will contribute to the second line of the likelihood. The weights, wij for

individual i at event time tij for the event of interest can be calculated using the

Kaplan-Meier estimator for censoring as shown in Section 6.5. Alternatively, we can

fit a flexible parametric model to the censoring distribution within the data such that

the censoring distribution is a continuous function of time and use this to generate

weights. This means deciding where to evaluate the censoring distribution and,

therefore, choosing a number of split points. Rather than evaluating the censoring

weights at every event time for the event of interest, work is currently being carried
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out by Lambert, Hinchliffe and Crowther to assess whether the split points could

instead just be evaluated at a set number of intervals. For example, at every 6

months within a 10 year follow-up period [?]. Preliminary work in the form of a

simulation study shows that reducing the number of split points for the censoring

weights has very little impact on the estimates of the subdistribution hazard ratios

and the cumulative incidence function and yet a huge impact on computational time

as the data set does not become as large. These methods are used to obtain the

results presented here with split points specified at every 6 months.

In the same way that a weighted Cox model can be used to fit a Fine and

Gray model, a weighted flexible parametric model can be used to directly model the

cumulative incidence function. Under the assumption of proportional subhazards,

the log cumulative subdistribution hazard rate for a patient with covariate vector x

can be calculated using the equation

ln[Hsub(t | x)] = s(ln(t) | γ,n)sub + βTsubx (6.9)

where s(ln(t) | γ,n)sub is a restricted cubic spline function of ln(t) to be es-

timated from the new dataset including censoring weights and βsub is the vector

of covariate effects. This is essentially the same formula as shown in Section 2.13

but by incorporating weights in the likelihood the formula now estimates the log

cumulative subdistribution hazard rate instead of the the log cumulative hazard

rate.

Table 6.3 gives the subdistribution hazard ratios for age group and stage at di-

agnosis for each of the four causes of death obtained using four separate weighted

flexible parametric models as described above. Comparing these to the hazard ratios

obtained from the separate Fine and Gray’s weighted Cox models, as given in Table

6.2, there is great similarity between the subhazard ratios and their confidence in-

tervals for both models. The two models are estimating the same measures therefore

it is expected that these should be similar. The largest difference between the two

model estimates is for the age 80+ subhazard ratio for heart disease with a value
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of 50.59 for the weighted Cox model compared to a value of 51.24 for the weighted

flexible parametric model. However, just as before it is difficult to interpret these

subdistribution hazards ratios and quantify the relative effect as the risk set includes

patients that may have already died from a competing cause.

Covariates Breast Cancer Other Cancer Heart Disease Other Causes

Ages 18-59 1.00 (.) 1.00 (.) 1.00 (.) 1.00 (.)
Ages 60-69 0.92 (0.87, 0.98) 2.24 (1.73, 2.90) 5.43 (4.39, 6.69) 3.70 (3.21, 4.26)
Ages 70-79 1.05 (0.98, 1.12) 2.79 (2.16, 3.59) 16.57 (13.71, 20.04) 9.70 (8.56, 10.99)
Ages 80+ 1.28 (1.19, 1.37) 4.13 (3.17, 5.38) 51.24 (42.57, 61.68) 22.11 (19.53, 25.02)

Localised 1.00 (.) 1.00 (.) 1.00 (.) 1.00 (.)
Regional 4.10 (3.88, 4.34) 1.59 (1.27, 1.98) 1.10 (1.01, 1.21) 0.94 (0.87, 1.02)
Distant 25.16 (23.63, 26.78) 8.01 (6.43, 9.99) 0.69 (0.57, 0.83) 0.57 (0.48, 0.68)

Table 6.3 – Subdistribution hazard ratios from weighted flexible parametric propor-
tional hazards model for age group and stage for all four causes of death:
breast cancer, other cancer, heart disease and other causes.

Once again it is relatively straightforward to obtain the cumulative incidence

functions as this is now just a function of the log cumulative subdistribution hazard

rate, ln[Hsub(t | x)], (Equation (6.9)) as follows:

Ck(t | x) = 1− exp(− exp(ln[Hsub(t | x)])) (6.10)

Figure 6.6 shows the cumulative incidence functions from both the Fine and

Gray weighted Cox proportional hazards model and the weighted flexible parametric

proportional hazards model for those aged 80+. Just as was shown in the cause-

specific approach in Section 3.9.1, the Cox proportional hazards model and the

flexible parametric proportional hazards model provide almost identical estimates.

However, due to the lack of a boundary condition there is still the issue that the

cumulative incidence functions for distant stage breast cancer sum to more than

one.
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Figure 6.6 – Comparison of cumulative incidence function estimated by Fine and
Grays weighted Cox model and weighted flexible parametric propor-
tional hazards model (FPM) for ages 80+.

To assess whether this is due to the assumption of proportional subhazards, time-

dependent effects can be incorporated into the weighted flexible parametric model

by forming interactions between the derived variables and restricted cubic splines

for ln(t) as follows:

ln[Hsub(t | x)] = s(ln(t) | γ,n)sub + βTsubx +
D∑
j=1

s(ln(t) | γj ,nj)subxj (6.11)

The cumulative incidence functions from the model including time-dependent

effects can be obtained again using Equation (6.10). Figures 6.7 and 6.8 show the

stacked cumulative incidence functions for those aged 18-59 and 80+ resulting from

a weighted model including time-dependent effects for age groups 60-69, 70-79 and

80+ for breast cancer and other causes and also for regional and distant stages for

breast cancer, other cancer and other causes. Plotted over the top of these estimates

are the cause-specific cumulative incidence functions obtained from the analysis in

Section 3.9.2. Whilst each of the approaches (cause-specific and subdistribution)
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make very different assumptions, if the data are modelled well then the estimates

from the two approaches should be very similar. Figure 6.7 shows that the estimates

are fairly similar for patients aged 18-59 with some discrepancy in those with distant

stage at diagnosis. For the 80+ age group, the two sets of estimates are again very

similar for the four causes of death for localised and regional stage breast cancer.

However, for distant stage breast cancer the sum of the four cumulative incidence

functions still exceeds one.
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Figure 6.7 – Stacked estimated cumulative incidence functions for ages 18-59 for
all four causes using weighted flexible parametric model with time-
dependent effects. Overlayed are the cumulative incidence function es-
timates obtained from the cause-specific flexible parametric modelling
approach as described in Section 3.9.2
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Figure 6.8 – Stacked estimated cumulative incidence functions for ages 80+ for
all four causes using weighted flexible parametric model with time-
dependent effects. Overlayed are the cumulative incidence function es-
timates obtained from the cause-specific flexible parametric modelling
approach as described in Section 3.9.2

Unlike the cause-specific cumulative incidence function, Fine and Gray’s direct

regression model for the cumulative incidence function is not a function of the haz-

ards for all four of the causes but only of the subdistribution hazard for the one

corresponding cause. Each of the cumulative incidence functions is estimated is a

separate model. This means that there is no restriction to prevent the sum of the

cumulative incidence functions from exceeding 1 [?]. When the sum does exceed 1 it

is usually due to the choice of model. In this example, it is likely that there may be

some interaction terms or covariate effects that have not been taken into account.

With appropriate modelling this should not be too much of a problem. However,

in some cases these effects could be due to something that is not measured in the

dataset.

The model will now be fitted again with no covariates and just on the data for

those patients aged 80+ with distant stage cancer. This is essentially the same

as fitting a non-parametric approach as no covariates are considered in the model.

Figure 6.9 shows the stacked plot resulting from this new analysis. At 10 years since
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diagnosis the total probability of death from all causes for patients aged 80+ with

distant stage cancer is now 0.99.
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Figure 6.9 – Stacked estimated cumulative incidence functions for those aged 80+
with distant stage cancer. Weighted flexible parametric model has been
fitted with no covariates and only on the data for those aged 80+ with
distant stage cancer.

6.8 Discussion

The two main approaches for carrying out a competing risks analysis have now been

introduced - the cause-specific hazards approach (Chapter 3) and the subdistribu-

tion hazards approach (Chapter 6). Both approaches can give estimates for the

cumulative incidence function, providing “real world” probabilities of death [?].

The cause-specific hazards approach provides an interpretable relative measure in

the form of cause-specific hazard ratios. However, with this approach the cumulative

incidence is a function of all the cause-specific hazard functions and so there is a lack

of a one-to-one correspondence between the cause-specific hazard and the probability

of death for that cause meaning that the cause-specific hazard ratios can not be used

to summarize differences in the cumulative incidence function between covariate

groups.



6. Competing Risks Analysis - Subdistribution Hazards 159

With the subdistribution hazard approach the cumulative incidence is only a

function of one subdistribution hazard function therefore restoring the one-to-one

correspondence between the subhazard and the probability of death. This means

that the subhazard ratios immediately translate to the cumulative incidence function

for the purpose of quantifying difference between covariate groups. However, the

subdistribution hazard function bears no resemblance to an epidemiological rate as

individuals that die from competing causes remain in the risk set [?] and is not

directly comparable to a cause-specific hazard ratio.

As the cumulative incidence function is only a function of one subdistribution

hazard function it means that, unlike with the cause-specific hazard approach in

Chapter 3, if interest only lies in one particular cause of death then only that cause

needs to be modelled. However, if all of the competing causes of death are of

interest or if interest lies in partitioning the total mortality then, as illustrated in

this chapter, the subdistribution hazard modelling approaches often require a very

good fitting model otherwise the total probability of death may sum to more than

one due to the lack of a boundary condition in direct regression models [?].

This chapter documented the use of a weighted flexible parametric model as an

alternative to Fine and Gray’s weighted Cox model and showed good agreement in

terms of both the subhazard ratios and the cumulative incidence functions. However,

there has been work examining the use of other parametric model in this setting,

for example using a Gompertz distribution [?] or a parametric mixture model [??].

In 2001 Fine presented an alternative model based on the cumulative incidence

function that assumed an arbitary link function [?]. In 2003 Andersen et. al.

proposed yet another alternative based on pseudovalues that allowed for different

link functions [?]. One possible link function is the logit link which, when specified,

means that the covariate effects can be interpreted as odds ratios. This approach

may become more desirable to that considered in this chapter as odds ratios are

simpler to interpret than subdistribution hazard ratios. The flexible parametric

model allows for different link functions, such as the logit link, and so could be used
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for obtaining such estimates in this setting [?].

To conclude, the cause-specific hazards approach is advocated over the subdis-

tribution hazard approach when interest lies in all of the competing events as both

the cause-specific hazard rates and the cumulative incidence functions can provide

important information [?]. The cause-specific hazards can inform us about the eti-

ology of a disease. Additionally, the total probability of death broken down into the

different competing causes is a useful absolute measure with which to base prognosis

and clinical decisions on [?].



7. MULTI-STATE MODELS

7.1 Chapter outline

This chapter introduces multi-state models and discusses their use. An application

of breast cancer using data from the tumour bank at Rotterdam, The Netherlands,

is considered to illustrate a special case of multi-state models known as illness-death

models. An extension of the flexible parametric model is proposed as an alternative

to the Cox model in this setting. The new methodology has been implemented in

a Stata command available for download from the Statistical Software Components

(SSC) archive [?]. The Stata Journal article for this is given in Appendix VII.

7.2 Introduction

The term multi-state model can be used to describe a wide range of analyses for lon-

gitudinal time-to-event data. Multi-state models are essentially a process whereby

individuals can move between a finite number of states [?]. Multi-state models were

first proposed for use in a medical context in 1951 [?]. In medicine, examples of

states could be healthy, diseased or dead. A change of state, such as developing a

disease, is known as a transition [?]. A state that has transitions emerging from it

is known as transient, otherwise it is known as an absorbing state [?]. This means

that the state is final, for example when a patient dies. The state structure within

these models describes the states and the possible transitions from state to state.

The complexity of this structure will depend largely on the number of states and

possible transitions.

The two main measures of interest for analyses of this type are the transition

hazards and the probability of being in each state as a function of time (state
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occupation probabilities). The transition hazards can inform us about the impact

of risk factors on rates of illness/disease or mortality in the same way as the hazards

in a standard survival analysis. Additionally, the probabilities of being in each state

provide an absolute measure with which to base prognosis and clinical decisions on

[?]. For example, a clinician may want to know the probability of graft recovery at

a particular time after a bone marrow transplant.

A simple survival analysis model can be thought of as a multi-state model with

two states and one transition. For example, the mortality model where patients

move from alive (initial state) to dead, where dead is considered to be an absorbing

state. The competing risks models described in Chapters 3 and 6 can also be treated

as special cases of a multi-state model [?] where there is some initial state and each

competing event leads to an absorbing state. Other state structures include the

illness death model, which will be discussed in Section 7.5, the progressive model,

the bivariate model and the alternating model, all three of which will be touched on

in Section 7.6.

The majority of analyses carried out using multi-state models tend to be built

around the Cox model [??]. This is most likely because this method is more readily

available in statistical software packages [????] and the Aalen-Johansen estimator,

as will be discussed in Section 7.6, makes estimation of the probabilities fairly simple.

Whilst some work had been carried out using parametric models in a multi-state

framework [??] applications of these tend to be relatively simplistic using distribu-

tions such as the Weibull [???] or exponential [???] which are often not flexible

enough to adequately capture the underlying shape of the baseline transition rates.

This chapter will document the extension of the flexible parametric survival model

for use with multi-state models. The methodology has been implemented in Stata

in the form of a user friendly command. The Stata Journal article for this command

is given in Appendix VII.
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7.3 Illustrative example

In this chapter, breast cancer data obtained from records included in the tumour

bank at Rotterdam, The Netherlands, is used for illustration purposes. The data is

taken from the book “Flexible Parametric Survival Analysis Using Stata: Beyond

the Cox Model” by [?]. It contains information on 2,982 patients with primary

breast cancer aged from 24 to 90 years (mean age 55). Follow-up ranges from 1 to

232 months and both the time to relapse and the time to death are recorded. Table

7.1 shows the number (%) of patients that are alive with or without relapse and that

died before or after relapse. Approximately 43% of the patients have died by the

end of the follow-up period. Of those patients that have not had a relapse, 86% are

alive and 13% are dead compared to 29% and 71% respectively for those patients

that have had a relapse.

Relapse Status
Survival Status

Alive Dead Total
No relapse 1,269 (86.68) 195 (13.32) 1,464 (100)

Relapse 441 (29.05) 1,077 (70.95) 1,518 (100)
Total 1,710 (57.34) 1,272 (42.66) 2,982 (100)

Table 7.1 – Number (%) of patients that are alive with or without relapse and that
died before or after relapse by the end of the follow-up period.

7.4 Markov assumption

When modelling stochastic (random) processes, such as those described in this chap-

ter, it is advantageous in terms of simplicity to assume a Markov process. A Markov

model essentially assumes that the future of a process depends only on the current

state and not on the history of the process up to that point [?]. A slight exten-

sion of these models is the semi-Markov model in which the future of a process

depends not on the current time but the duration of time spent in the current state

[?]. Semi-Markov models are often called “clock-reset” models as the time is reset

to zero each time a patient enters a new state [?]. The choice between a Markov

and semi-Markov model will largely depend on the most important time scale for
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the specific application - the time since the process began or the time spent in the

current state [?].

The Markov assumption is convenient as dependence on complex disease history

would make calculations difficult. However, in some situations this assumption is

likely to be unreasonable [?]. For example, the risk of death for someone who has

recovered from illness is likely to differ from someone who has remained healthy all

their lives and yet both individuals would be considered only in terms of their current

state of healthiness. In such cases, either an additional state could be built into the

state structure for healthy after illness or alternative (non-Markov) estimators could

be considered. Several estimation approaches have been suggested for non-Markov

models [????]. For use with illness-death models, Pepe suggested a non-parametric

estimator for obtaining the state occupation probabilities based on differences be-

tween Kaplan-Meier estimators. Strauss et al. extended the Kaplan-Meier estimator

to estimate transition probabilities by partitioning the survival probability in pro-

portion to the number of alive and uncensored patients in each of the states. Both

Aalen et al. and Datta et al. demonstrated the consistency of Aalen-Johansen esti-

mators under non-informative censoring for obtaining state occupation probabilities

in non-Markov situations. These methods will not be discussed in detail here as

only Markov models are considered in this thesis.

7.5 Illness death models

Illness-death models are one example of multi-state models, where individuals start

out healthy and then may become ill and/or go on to die. In theory, it is possible

that some patients may recover from an illness and become healthy again [?]. This

is known as a bi-directional illness-death model. However, only the uni-directional

model is considered here as illustrated in Figure 7.1. The states are represented with

a box and are given a number from one to four. The transitions are represented by

arrows going from one state to another. There are three transitions in total labelled

from one to three. A transition from state i to j is represented by ij, therefore, the
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transition hazards are denoted on the diagram as h13(t), h12(t) and h24(t) (?). The

illness-death model is more commonly represented as a 3-state model where death is

considered as one combined state. However, in order to make the calculations more

transparent in this chapter, the illness-death model will be considered as having four

states with death partitioned into death before and after illness.

Alive and well 
State 1 

Ill 
State 2 

Dead 
State 3 

Dead 
State 4 

Transition 2  
 

)(12 th

Transition 1  
 

)(13 th Transition 3  
 

)(24 th

Figure 7.1 – Uni-directional illness-death model

7.5.1 Transition hazard (intensity)

If T denotes the time of reaching state j from state i, under the Markov assumption

the hazard rate (transition intensity) of the i→ j transition is denoted by

hij(t) = lim
∆t→0

Pij(t ≤ T < t+ ∆t | T ≥ t)

∆t
(7.1)

As with the cause-specific hazards described in Chapter 3, the transition hazards

can be obtained through various approaches. As discussed previously, the majority

of multi-state models currently tend to be built around the Cox model [?]. Using a

Cox proportional hazards model the hazard for transition i to j for a subject with
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covariate vector x is given by

hij(t | x) = hij,0(t) exp(βTijx) (7.2)

where hij,0(t) is the baseline hazard of transition i to j and βij is the vector

of regression coefficients that describe the effect of x on transition i to j [?]. The

covariates used to model each transition may vary as well as the covariate effects.

One disadvantage of this approach is that the Cox model does not directly estimate

the baseline hazard function, therefore, a Breslow-type estimator, similar to that

shown in Section 2.12, is required to obtain the cumulative baseline hazard function.

A further disadvantage, as discussed in Section 2.12, is that current methods to

incorporate time-dependent effects into the Cox model are computational intensive

and standard software restricts to either piecewise or linear functions of (log) time.

One of the main advantages of the flexible parametric approach is the ease with

which time-dependent effects can be incorporated [?]. Furthermore, not only does

the model estimate the baseline hazard function directly, it also allows for flexibility

in the shape of the baseline hazard function meaning that it is easier to capture

complex shapes. For these reasons the flexible parametric model is advocated for

estimating the transition hazards as an alternative to the Cox model. Using a flexible

parametric proportional hazards model the log cumulative hazard for transition i to

j, ln[Hij(t | x)] can be written as

ln[Hij(t | x)] = s(ln(t) | γij,nij) + βTijx (7.3)

where γij is the vector of parameters associated with the spline variables for

transition i to j, nij is the vector of knot locations for transition i to j and βij is

the vector of regression coefficients that describe the effect of x on transition i to j.

Through a transformation of the model parameters the hazard for transition i to j

can be written as
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hij(t | x) =
ds(ln(t) | γij,nij)

dt
exp(ln[Hij(t | x)]) (7.4)

The transition hazard rates can be obtained by fitting separate models for each

of the three transitions in the illness death model but, as discussed before in Chapter

3, this would not allow for potentially shared parameters. It is possible to fit one

model for all three transitions simultaneously by stacking the data so that each

individual patient has up to three rows of data, dependent on how many transitions

each patient is at risk of. In this way all the parameters are estimated in one

model which makes predictions and confidence intervals easier to calculate as will

be discussed in Section 7.5.2.

Table 7.2 shows 4 cancer patients of varying ages that are all at risk of both

relapse of their cancer and death. Relapse can be thought of as an intermediary

event whereas death is final and so is an absorbing state. Patient 1, aged 44, is at

risk of both relapse and death for 2.4 years until they have a relapse and subsequently

goes on to die after 7.6 years. Patient 2, aged 68, is at risk of both relapse and death

for 9 years until they die and are consequently no longer at risk of relapse. Patient

3, aged 52, is at risk of both relapse and death until they are censored at 6.1 years.

Finally, patient 4 is at risk of both relapse and death for 4.6 years until then have

a relapse and is subsequently at risk of death until they are censored at 13.8 years.

ID Age Relapse Time Relapse Indicator Survival Time Death Indicator
1 44 2.4 1 7.6 1
2 68 9.0 0 9.0 1
3 52 6.1 0 6.1 0
4 38 4.6 1 13.8 0

Table 7.2 – Standard dataset with relapse and survival times (years) for 4 patients.

In order to model all three transitions simultaneously the data needs to be set

up as shown in Table 7.3. The data have been expanded so that each patient has

up to 3 rows of data. As shown in Figure 7.1, transition 1 goes from alive to dead,

transition 2 goes from alive to ill and transition 3 goes from ill to dead. Patient

1 is at risk of both relapse (state 2) and death (state 1) for 2.4 years when they
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have a relapse. They are then at risk of death with relapse (state 3) from 2.4 years

to 7.6 years when they subsequently die. Patient 2 is at risk of both relapse (state

2) and death (state 1) for 9 years until they die and are consequently no longer at

risk of relapse. As patient 2 never experienced a relapse they are never at risk of

experiencing state 3. Therefore, in the expanded data they only have 2 rows of data.

Patient 3 is at risk of both relapse (state 2) and death (state 1) for 6.1 years when

they are censored from the study. Again as patient 3 never experienced a relapse

they are never at risk of experiencing transition 3 and as a result only have 2 rows

of data. Finally, patient 4 is at risk of both relapse (state 2) and death (state 3)

for 4.6 years when they have a relapse. They are then at risk of death with relapse

(state 4) from 4.6 years to 13.8 years when they are censored.

ID Age Trans 1 Trans 2 Trans 3 Status Start Stop
1 44 1 0 0 0 0 2.4
1 44 0 1 0 1 0 2.4
1 44 0 0 1 1 2.4 7.6
2 68 1 0 0 1 0 9.0
2 68 0 1 0 0 0 9.0
3 52 1 0 0 0 0 6.1
3 52 0 1 0 0 0 6.1
4 38 1 0 0 0 0 4.6
4 38 0 1 0 1 0 4.6
4 38 0 0 1 0 4.6 13.8

Table 7.3 – Expanded dataset with transition indicators and start and stop times
(years) for 4 patients.

When the data are set up in this format, any model that is used will be making a

Markov assumption as discussed in Section 7.4. The time scale is the time since the

patient entered the initial state and so the clock carries on moving forwards even

when the patient experiences an intermediary event. If a semi-Markov model was

desired for the application then the clock would reset after each intermediary event.

So for example, when patient 1 in Table 7.3 has a relapse after 2.4 years the start

time for the subsequent transition to death (third row) would begin at 0. All the

examples shown in this chapter consider Markov models and hence the data is set

up as illustrated above.

Now that the data is in the stacked or long format a joint flexible parametric
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proportional hazards model for the three transitions can be expressed as follows

ln[Hij(t | x)] = s(ln(t) | γ0,ij,n0,ij) + βTijxij + βTx (7.5)

where s(ln(t) | γ0,ij,n0,ij) is the log cumulative baseline hazard function for

transition i to j. If there were any shared parameters across all three transitions

in the model this would be represented by βx. The interaction effects between

each cause and the covariates are represented by βijxij. These allow the effect of

the covariates to differ for each of the three transitions. In a similar way to that

shown in Section 3.9, the model can be made more complex by incorporating time-

dependent covariate effects as will be discussed later in this section.

A flexible parametric proportional hazards Markov model is fitted initially in-

cluding only continuous age at breast cancer diagnosis, assuming a linear effect of

age. By creating interactions between each transition and age, the effect of age is

allowed to vary across all three transitions. Without the interactions the effect of

age would be assumed constant for the three transitions: alive to dead, alive to

relapse and relapse to dead. The baseline knots are positioned differently for each

of the three transitions as the shape of the hazards for each of the transitions are

likely to be different. For example, for a patient aged 65, relapse is most likely to

occur within the first few years after the initial diagnosis, unlike death before relapse

for which the rate is most likely to start low and increase with time since diagnosis

(see Figure 7.2). The knot locations are chosen by fitting each of the transitions

individually and taking the first and last event times along with the 33rd and 66th

centiles of the event times. Therefore, a flexible parametric model with 3 degrees

of freedom is used. Table 7.4 gives the hazard ratio (95% confidence intervals) for

age for each of the transitions. The transition rate from alive to dead is 1.14 times

higher with every increase of one year in age. The transition rates from alive to

relapse and relapse to dead appear to be almost unaffected by a linear increase in

age.



7. Multi-state Models 170

Alive to dead Alive to relapse Relapse to dead
Age 1.14 (1.12, 1.16) 1.00 (0.99, 1.01) 1.01 (1.00, 1.02)

Table 7.4 – Hazard ratios (95% confidence intervals) for age for each transition.

The above model assumes that the effect of age is linear and treats age zero as

the baseline. As age is most likely going to have a non-linear effect it will now be

modelled using restricted cubic splines with 3 degrees of freedom. It is also unlikely

that the effect of age is proportional over time. Using an expanded data set for all

three transitions as before, a joint flexible parametric model for the three transi-

tions included time-dependent covariate effects can be expressed as an extension of

Equation (7.5) as follows:

ln[Hij(t | x)] = s(ln(t) | γ0,ij,n0,ij) + βTijxij

+βTx +

Dij∑
l=1

s(ln(t) | γ l,ij,nl,ij)xl)
(7.6)

where Dij is the number of time-dependent covariate effects for transition i to j

and s(ln(t) | γ l,ij,nl,ij)xl) is the spline function for the lth time-dependent effect for

transition i to j. The restricted cubic splines for age are now included in the model

as time-dependent effects. These are modelled with 1 degree of freedom (as opposed

to 3 degrees of freedom for the baseline).

As age is modelled continuously in this analysis, ages 65 and 85 are selected

to obtain predictions for. Figures 7.2 and 7.3 show the rates for each of the three

transitions from two flexible parametric models including age modelled using re-

stricted cubic splines; one where the effect of age is assumed to be proportional

and one where the age splines are included as time-dependent effects with 1 degree

of freedom. There is clearly a non-proportional effect at age 65 for the relapse to

dead transition. There are also evident non-proportional effects at age 85 for both

the alive to dead and relapse to dead transitions. Aside from demonstrating the

non-proportional effect of age, Figures 7.2 and 7.3 show that the rate of transition

from alive to dead is higher in the older age as would be expected. They also show
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that the transition rate to relapse is highest at around 3 years after breast cancer

diagnosis for both those aged 65 and 85 which corresponds with the peak in deaths

after relapse at 3 years in the third transition plots.
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Figure 7.2 – Transition hazard rates for each of the three transitions at age 65 from
both the proportional and non-proportional hazard models.
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Figure 7.3 – Transition hazard rates for each of the three transitions at age 85 from
both the proportional and non-proportional hazard models.
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7.5.2 State occupation probabilities

The state occupation probabilities or the probability of being in each of the four

states can be obtained through a transformation of the transition hazard rates which

builds on methods for competing risks as shown in Chapter 3. The probability of

being alive and well (state 1) is conditional on both the transition rate from alive

to dead (h13(t)) and the transition rate from alive to relapse (h12(t)). An individual

needs to have survived both death (state 3) and illness (state 2) to remain in the

state representing alive and well. Therefore, the probability of being alive and well

(state 1) at time t when starting in state 1 at time 0 is given by:

P (alive and well at time t) = exp(−
t∫

0

h13(u) + h12(u)du) (7.7)

The probability of being alive with illness (state 2) is expressed in terms of

the (conditional) probabilities of going from alive and well (state 1) to ill (state

2) before or at time s and of remaining alive with the illness until time t. It is,

therefore, neccessary to consider both the probability of becoming ill but also the

probability of remaining alive with the illness (i.e. not moving to state 4). Both of

these probabilities can be directly expressed in terms of the transition hazards as

follows:

P (alive with illness at time t) = P (ill at time s)

×P (survive with illness from s to t)ds

= (

t∫
0

h12(s) exp(−
s∫

0

h13(u) + h12(u)du)× exp(−
t∫

s

h24(u)du)ds) (7.8)

Depending on what state 2 represents, it can actually be thought of as a measure

of prevalence. For example, it may be of interest to estimate the prevalence of breast

cancer amongst a cohort of childhood cancer survivors. In this case state 1 would

represent the proportion of childhood cancer survivors that remain alive without

breast cancer as a function of time, and state 2 would estimate the proportion that
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have been diagnosed with breast cancer but remain alive.

The probability of dying without illness has a similar formula to those shown

in the competing risks analyses in Chapters 3 and 4. It is conditional on having

remained in state 1 until time s and not moving to state 2. The probability of dying

without illness can therefore be expressed in terms of the transition hazard from

alive (state 1) to dead (state 3) and the probability of being alive and well from

Equation (7.7).

P (dead without illness at time t) =

t∫
0

h13(s) exp(−
s∫

0

h13(u) + h12(u)du)ds (7.9)

Finally, the probability of dying with illness can be estimated by subtracting the

probability of being in each of the other three states from 1.

P (dead with illness at time t) = 1− P (alive and well at time t)

− P (ill at time t)− P (dead without illness at time t) (7.10)

To obtain the overall probability of death at time t we simply add together the

P (dead without illness at time t) and the P (dead with illness at time t). In order

to obtain confidence intervals for the above probabilities the delta method can be

applied in a similar way to that described in Section 3.9. The time scale is split into

a large number of small intervals and then the variance-covariance matrix for the

probabilities, P , is calculated using

V (P̂ ) = LGV̂G′L′

where G is the m × p matrix of observation-specific derivatives, V̂ is the esti-

mated covariance matrix for the model parameters and L is a triangular matrix [??].

Confidence intervals can be estimated using this approach within the user friendly
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command in Stata, stpm2illd, that has been written to implement the extension

of the flexible parametric model for illness-death models as shown here. The delta

method is an approximation and since the above equations are complex it is im-

portant to assess the performance of this method for obtaining confidence intervals.

Therefore, the confidence intervals for the state occupation probabilities obtained

using the delta method will now be compared to those obtained using bootstrapping

[?].

Figures 7.4 and 7.5 show the probabilities of being in each of the four states as

a function of time along with corresponding 95% confidence intervals for those aged

65 and 85. The confidence intervals are calculated using the delta method and also

by using bootstrapping with 500 replications. The bias-corrected method is used to

calculate the bootstrapped confidence intervals [??]. The probability of remaining

alive and well is significantly lower for those aged 85 compared to those aged 65. By

15 years the proportion of patients that are still alive and well is 0 for those aged 85

compared to approximately 20% for those aged 65. The probability of dying before

relapse is higher for those aged 85, with values reaching approximately 0.63 by 15

years compared to 0.18 for those aged 65. The probability of being alive with relapse

peaks at about 3 years for both those aged 65 and 85 with values reaching 0.2 and

0.15 respectively. This corresponds with the transition hazard plots in Figures 7.2

and 7.3. Finally, the probability of death for those that suffer a relapse is higher

at age 65 (approximately 0.58) than at age 85 (approximately 0.34). This is due to

the high number of deaths before relapse in those aged 85 which is reflected in the

wider confidence intervals.

Figures 7.4 and 7.5 also clearly indicate that the two methods for obtaining

confidence intervals show good agreement in both the upper and lower bounds of

the confidence interval. The bootstrapped confidence intervals take a considerably

longer amount of time to estimate than those obtained through the delta method

(30 minutes for the bootstrapping as opposed to just over one second for the delta

method).
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Figure 7.4 – Estimated probability of being alive and well, being alive with relapse,
dying before relapse or dying after relapse as a function of time since
diagnosis (years) for those aged 65. The 95% confidence for the four
probabilities are estimates using the delta method (dashed lines) and
bootstrapping(shaded area).
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Figure 7.5 – Estimated probability of being alive and well, being alive with relapse,
dying before relapse or dying after relapse as a function of time since
diagnosis (years) for those aged 85. The 95% confidence for the four
probabilities are estimates using the delta method (dashed lines) and
bootstrapping(shaded area).
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Rather than graphing the probabilities of being in each state as separate line

plots, another way to display them is to stack the probabilities on top of each other

as was shown in Chapters 3, 4 and 6. The stacked plot for those aged 85 is shown in

Figure 7.6. The plot allows for easier visualisation of the proportion of patients in

each of the four states as a function of time. It re-emphasises that the majority of

the patients aged 85 at breast cancer diagnosis will die before they have a relapse.
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Figure 7.6 – Stacked estimated probabilities of being alive and well, having a relapse,
dying before relapse or dying after relapse as a function of time since
diagnosis (years) for those aged 85.

As age at diagnosis has been modelled continuously using restricted cubic splines

it is now easy to predict the probability of being in each state for every age. An

alternative way to present the information from this type of analysis is shown in

Figures 7.7 and 7.8. These show the probability of being in each of the four states

at 5 and 10 years respectively as a function of age at diagnosis along with corre-

sponding pointwise 95% confidence intervals. At both 5 (Figure 7.7) and 10 years

(Figure 7.8) after breast cancer diagnosis, the probability of being alive and well

is highest amongst those aged around 50 at diagnosis (0.62 and 0.54 respectively).

The probability of death before relapse at both 5 and 10 years is near to zero until

approximately age 60 when it begins to increase almost exponentially with age. The
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probability of being alive with relapse is highest in the younger ages. However, the

wide confidence intervals reflect the small number of patients within these ages. As

already discussed, elderly patients have the highest probability of dying before re-

lapse and so the probability of being alive with relapse is naturally going to be low

for these ages. The plots shown in Figures 7.7 and 7.8 further illustrate the strong

links between each of the four states presented here.
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Figure 7.7 – Estimated probability of being alive and well, being alive with relapse,
dying before relapse or dying after relapse as a function of age at diagno-
sis at 5 years after breast cancer diagnosis with corresponding pointwise
95% confidence intervals.
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Figure 7.8 – Estimated probability of being alive and well, being alive with relapse,
dying before relapse or dying after relapse as a function of age at di-
agnosis at 10 years after breast cancer diagnosis with corresponding
pointwise 95% confidence intervals.

Figures 7.7 and 7.8 only present the state occupation probabilities as a function

of age for a set point in the follow-up time. A further alternative way to present all

of the available information from this type of analysis is shown in Figure 7.9. The

contour plots show the probability of being alive and well, being alive with relapse,

dying before relapse and dying after relapse as a function of both time since diagnosis

and age at diagnosis. The patterns on each plot allow for easier visualisation of the

trends over age and time. For example, middle aged patients (40 to 60) have the

best outcome as by 15 years after diagnosis they still have a probability of 0.5 of

being alive and well. This probability is lower in younger ages as these patients are

more likely to relapse in the first 10 years after diagnosis. The probability of being

alive and well is lower in the older ages compared to middle aged patients as they

have the highest probability of dying before relapse (0.6 to 0.8). A perhaps obvious

point is that at the start of the study everyone has to be alive and well and so the

probability in the first few months is 1 across all ages.
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Figure 7.9 – Contour plots for the estimated probability of being alive and well,
being alive with relapse, dying before relapse or dying after relapse as
a function of age at diagnosis and time since diagnosis.

7.6 Other possible state structures

Although there are numerous possibilities for state structures, there are six special

cases in particular that stand out as multi-state models. The mortality model is a

two state survival analysis model as described in Chapter 2. The competing risks

model is also discussed in detail in Chapters 3 and 6. The uni-directional illness-

death model was illustrated in the last section and is relevant for irreversible disease

processes.

Three other models that have not yet been introduced are the progressive model,

the bivariate model and the alternating model. The progressive model, as shown in

Figure 7.10, is used for recurrent events, for example, the reproductive life history

of a woman. [?] recently applied a progressive multi-state model to model the nat-

ural history of breast cancer through three successive states: no detectable cancer,

preclinical cancer and clinical cancer. Figure 7.11 shows the bivariate model which

is used for bivariate parallel data. One example of its use is to describe the survival

of twins. In 1999, Young et al. evaluated the use of bivariate models for making
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predictions on the likely future progression of rheumatoid arthritis [?]. Whilst the

study provided useful clinical conclusions the authors did state that the bivariate

model proved difficult to fit. Finally, as the name suggests, the alternating model

is relevant for processes where individuals move back and forth between states (see

Figure 7.12). Reversible diseases or pregnancy-birth processes can be modelled in

this way.

State 1 State 2 State K . . . .  

Figure 7.10 – Progressive multi-state model

Both alive 
State 1 

Person 1 
dead 

State 2 

Person 2 
dead 

State 3 

Both dead 
State 4 

Figure 7.11 – Bivariate multi-state model
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Healthy 
State 1 

Ill 
State 2 

Figure 7.12 – Alternating multi-state model

Under the Markov assumption, Equation (7.1) is applicable when estimating the

transition hazards for any possible state structure. However, the probability of being

in a particular state is obviously very dependent on both the number of states and

the possible transitions between the states. Therefore, Equations (7.7), (7.8), (7.9)

and (7.10) are only applicable when estimating the probabilities of being in each of

the four states in a uni-directional illness-death model.

A multi-state model is a (continuous time) stochastic process, denoted (X(t), t ∈

T ), with a finite number of states S = {1, · · · , K} [?]. In a competing risks analysis

K = 2 and in an illness death model K = 3 or 4 depending on whether death

before and after illness is grouped together. If pj(t) = P (X(t) = j), jεS denotes the

state occupation probabilities and the initial state distribution for state j is pj(0) =

P (X(0) = j), jεS, then the state occupation probabilities (i.e. the probability of

being in state j at time t) can be estimated as

p̂j(t) =
∑
iεS

p̂i(0)p̂ij(0, t) (7.11)

where p̂ij(0, t) is the i, jth element of the transition probability matrix P̂ (0, t).

The transition probability is the probability that a randomly selected person is in

stage j at time t, conditional on being in state i at time s and can be written as

Pij(s, t) = P (X(t) = j | X(s) = i), i, jεS, s ≤ t (7.12)

The transition probabilities are then gathered into the S × S matrix P (s, t) =
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{Pij(s, t)}. A reasonable estimator of P (s, t) with initial condition P (s, s) = I is

given by

P̂ (s, t) =
∏
(s,t]

(I + dÂ(u)) (7.13)

where Â(u) = {Âij(u)} is a matrix with all estimated transition hazards (as

shown in Equation (7.4)) and on the diagonal Âii(u) = −
∑
j 6=i

Âij(u). This is called

the Aalen-Johansen estimator [?]. Further work is needed to try and generalise

multi-state models to a parametric setting.

7.7 Discussion

This chapter has introduced multi-state models, focussing primarily on the illness-

death model. The flexible parametric model was extended for use with illness-death

Markov models providing advantages over the more commonly used Cox propor-

tional hazards model as it provides a smooth function for both the transition haz-

ards and the state occupation probabilities, it is also possible to easily incorporate

time-dependent covariate effects for one or more of the transitions and confidence

intervals obtained through the delta method have been shown to be very similar to

those obtained through bootstrapping but have the added advantage of taking con-

siderably less time to compute. This corresponds with the findings in Chapter 3 for

the use of flexible parametric models in the cause-specific competing risks setting.

It is often the case in time-to-event data that more than one type of outcome

can be distinguished. For example, a breast cancer patient may go on to survive

cancer free for many years, they may develop a recurrence of the breast cancer, they

may develop a new primary tumour or they may die. All of these outcomes may be

equally as important in understanding the prognosis of a patient. When patients are

at risk of multiple outcomes these events can either be mutually exclusive, such as

death from different causes as illstrated in Chapters 3 and 6 in which case competing

risks analyses can be applied, or the events can occur sequentially, such as those



7. Multi-state Models 183

illustrated in this chapter, in which case multi-state models are extremely useful.

Whilst the extension has only been considered for illness-death Markov models,

with further work the flexible parametric model could be used with more complex

state structures and potentially in semi-Markov or non-Markov frameworks. One

important methodological issue that has been raised, particularly in relation to

assessing the risks of subsequent diseases in survivors of cancer, is that of attained

age. Whilst it may appear that incidence of certain diseases are increasing over time

in cancer survivors, in the general population the incidence of these diseases will also

be increasing with age [?]. Many researchers will use standardised incidence ratios

for age to take into account the natural rise of disease incidence with age. However,

this does not adjust for other risk factors. Another standard approach is to use

Cox regression with time since cancer as the time-scale. However, this no longer

accounts for the natural rise of disease incidence with age. Age could be included as

a time-dependent covariate but this makes additional assumptions in the analysis

that may be inappropriate [?]. Using the flexible parametric approach it is possible

to model age specific incidence rates of disease using both time since cancer and

attained age as time-scales [?]. Using multiple time-scales will enhance the ability

to detect differences that may be missed if the approaches described above were

to be used. With some further methodological developments these multiple time-

scales could be incorporated into both competing risk (Chapter 3) and multi-state

modelling approaches.



8. ASSESSING ASSUMPTIONS IN RELATIVE SURVIVAL

8.1 Chapter outline

This chapter will address some of the issues with the assumptions made in relative

survival analyses. It is the only chapter in the thesis that will focus on relative

survival.

8.2 Introduction

As discussed in Section 2.14 relative survival is an extensively used method in pop-

ulation based cancer studies as, unlike cause-specific survival, it does not require

accurate cause of death information [?]. Relative survival provides a measure of

survival based on estimating the excess mortality within a cohort of diseased indi-

viduals. Excess mortality is the difference between the observed (all-cause) mortality

in the diseased cohort and the expected mortality (see Equation (2.29)). In doing

this, relative survival attempts to separate mortality from the disease of interest

from mortality resulting from all other causes.

The excess hazard function (excess mortality) is, therefore, made up of two

components; the observed all-cause hazard and the expected hazard. In this respect,

relative survival can be thought of as a special type of competing risks analysis.

The observed all-cause hazard needs to be estimated from the cohort of patients.

However, the expected hazard is usually obtainable from population mortality tables.

Relative survival is then just the survival analogue of the excess mortality. The

relative survival ratio is defined as the observed all-cause survival in the patient

group divided by the expected survival of a comparable group from the general

population.
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Determining this comparable group can often be an issue. This chapter discusses

some of the potential differences introduced into relative survival estimates through

the choice of the external group. The first assumption addressed is that the pro-

portion of deaths due to a particular disease is negligible in comparison to the total

mortality and therefore will not impact on the estimate of excess mortality for that

disease. The second assumption that will be investigated is whether the general

population is a comparable group for lung cancer patients due to the high number

of smokers within this patient cohort. Other assumptions made in relative survival,

such as that of independence between the mortality associated with the disease of

interest and the mortality associated with other causes, are not investigated here

and hence are presumed to be reasonable.

Relative survival approaches are frequently used in international comparisons in

order to measure the effectiveness of health-care systems in terms of cancer survival.

A recent example of this is the “The CONCORD study” which is the first worldwide

analysis of cancer survival [??]. If such studies of great impact are to adopt relative

survival approaches in their analysis then it is important to investigate any potential

biases in the methods.

The data used to investigate these biases come from the Finnish Cancer Reg-

istry and the Human Mortality Database. The Finnish Cancer Registry routinely

collects data on all cases of cancer in Finland. This registry maintains a nationwide

database which records all cancer cases in Finland since 1953 with compulsory reg-

istration since 1961. It is required that physicians, hospitals and laboratories report

all suspected or confirmed cases of cancer.

8.3 Ederer II method

This chapter moves away from modelling to lifetable estimation. All relative survival

analyses considered make use of the Ederer II method which was introduced briefly

in Section 2.14. The Ederer II method [?] is argued to be the preferred life-table

approach for estimating relative survival since it allows for different length of follow-
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up times [??]. This is because matched individuals from the background population

are only considered at risk until the corresponding patient dies or is censored.

Under the Ederer II approach, the cumulative expected survival proportion from

the date of diagnosis to the end of the ith yearly interval is given by:

p∗i =
i∏

j=1

p∗j (8.1)

where

p∗j =

lj∑
h=1

p∗j(h)

lj
(8.2)

is the average of the annual expected survival probabilities, p∗j(h), and lj is the

total number of patients alive at the start of jth interval. The relative survival

probability for the jth interval is then given by

Rj =
pj
p∗j

(8.3)

where pj is the observed all-cause survival proportion for the jth interval ob-

tained using either the Kaplan-Meier estimator or the actuarial method. As shown

in Equation 8.1, the cumulative expected survival proportion, p∗i , is obtained by

multiplying the interval specific estimates up until a given time point, for example

5 years. The cumulative observed all-cause survival, pi, can be obtained in a similar

way to then give the cumulative relative survival as follows:

Ri =
pi
p∗i

(8.4)

Table 8.1 gives an example of a life-table for a relative survival calculation for

the Ederer II estimate. The table shows the gender, age at diagnosis, year at diag-

nosis and survival time for 10 randomly selected patients over the age of 75 from the

Finnish Cancer Registry data on the survival of colon cancer patients. The expected

survival estimates given in the table are taken from Finnish population statistics ob-
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tained from the Human Mortality Database [?]. The table gives a simple example of

the Ederer II method where covariates are not considered. Each patient contributes

to the same number of intervals as years survived. Once a person has died their

expected survival is no longer considered. The interval-specific survival is estimated

by taking the average of the expected probabilities for all patients contributing to

that interval. So for example, in year 3 there are three patients contributing so the

interval-specific survival can be calculated as 0.9769+0.8414+0.7306
3

= 0.8496. Notice

that the individual probabilities decrease as age and calendar year increase meaning

that the interval-specific survival probabilities also decrease. The five-year expected

survival can then be calculated by taking the product of the interval-specific sur-

vival estimates: 0.9086× 0.8878× 0.8496× 0.7732× 0.7107 = 0.3766. As all of the

patients in this example are elderly they will most likely die from causes other than

their colon cancer which is reflected in the five year cumulative expected survival

estimates.

Sex Age at Year of Survival time
Expected probability of surviving the interval

diagnosis diagnosis (years) Year 1 Year 2 Year 3 Year 4 Year 5
Female 83 1984 0 0.9013
Female 83 1984 0 0.9013
Female 83 1985 0 0.9019
Female 76 1978 0 0.9489
Female 75 1977 0 0.9532
Female 77 1977 1 0.9412 0.9381
Female 80 1983 1 0.9280 0.9194
Female 65 1967 2 0.9804 0.9773 0.9769
Female 86 1987 4 0.8694 0.8561 0.8414 0.8288 0.8113
Male 91 1994 5 0.7607 0.7479 0.7306 0.7175 0.6100

Ederer II interval-specific survival rate 0.9086 0.8878 0.8496 0.7732 0.7107
Ederer II expected survival rate (cumulative) 0.9086 0.8067 0.6853 0.5299 0.3766

Table 8.1 – Ten patients selected randomly from the Finnish Cancer Registry data on
the survival of colon cancer patients. Expected survival values are taken
from Finnish population statistics obtained from the Human Mortality
database.

The population mortality files will usually be stratified by age, sex and calendar

year. In some cases they may be stratified further by covariates such as deprivation

or ethnicity [?]. It is important to consider population mortality files that are

stratified by known risk factors for the disease of interest.
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8.4 Cancer deaths in the external population

8.4.1 Why is there thought to be a bias?

The work in this section led to a paper that has been published in Cancer Epidemi-

ology [?] and is given in Appendix VIII.

When carrying out a relative survival analysis, it is quite common to use the gen-

eral population within a country or state as the external group in order to estimate

expected survival. Mortality estimates can be obtained for the general population

through national mortality tables that are stratified by age, sex, calendar year and,

where applicable, race or ethnicity. When comparing this external group to a co-

hort of cancer patients, it is assumed that the mortality estimates taken from these

population tables are the mortality rates for the cancer patients if they did not have

cancer. Therefore, any excess mortality found in the cancer cohort is deemed to

be due to cancer-related deaths [?]. This means that it is assumed that the only

difference between the cancer group and the external group is a diagnosis of can-

cer. However, in reality there will also be people within the general population that

have had a diagnosis of cancer and therefore the mortality estimates taken from the

population tables will also contain some cancer deaths.

In 1961, Ederer et al. discussed that it was reasonable to assume that the

proportion of deaths due to a particular disease within the general population was

negligible in comparison to the total mortality [?]. This assumption is questionable

for common cancers, particularly in the older age groups. If a high proportion of

deaths due to a specific cancer were present in the external group, then the excess

mortality in the cancer cohort would be underestimated leading to an overestimate

of the relative survival.

In order to quantify the percentages of deaths for a particular year that are

due to breast cancer, colon cancer, prostate cancer and all cancer sites across each

age group, the number of deaths due to the cancer of interest (obtained from the

Finnish cancer registry) was divided by the total number of deaths for that age group
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(obtained from the Human Mortality Database [?]). The approximate percentages

are given in Table 8.2. These percentages were calculated using cause of death

information and so will not be exact, but they provide a useful starting point.

For colon cancer, prostate cancer and all cancer sites the highest proportions

of deaths due to cancer are in the 60-74 age group. For breast cancer, the highest

proportion is in the 18-44 age group. Although the total number of deaths increases

with age, the proportions of deaths due to cancer decrease in the older age groups

due to competing causes of death.

Age Breast Colon Prostate All Sites
18-44 13.3 0.4 0.1 15.9
45-59 12.4 1.7 1.5 29.2
60-74 4.8 2.0 4.3 32.9
75-84 1.5 1.3 3.3 18.0
85+ 0.4 0.7 2.2 7.9

Table 8.2 – Percentages of deaths in Finland in the year 2000 due to specific cancers

In the next section, a sensitivity analysis is performed to assess the impact that

deaths from specific cancers in the external group have on the estimate of relative

survival.

8.4.2 Sensitivity analysis

Data were obtained from the Finnish Cancer Registry for patients diagnosed in the

years 1995 to 2007 inclusive. Population mortality data were obtained from the

Human Mortality Database [?]. Sensitivity analyses were carried out using data on

breast cancer (ICD-O-3: C500-C509), colon cancer (ICD-O-3: C180-C189, C260),

prostate cancer (ICD-O-3: C619) and all cancer sites combined (ICD-O-3: C000-

C809). Patients under the age of 18 and anyone diagnosed through autopsy were

excluded from the analyses. Age was categorised into the groups 18-44, 45-59, 60-74,

75-84 and 85+.

In order to obtain up-to-date estimates of 10 year relative survival a period

analysis was considered using the delayed entry approach as discussed in Section

2.15. This approach was adopted here with the relative survival estimates being
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derived from data on the survival experience of patients in the 2005-2007 period [?].

This is now a fairly standard approach in this type of analysis [???].

Before any adjustments were made to the population mortality data an initial

relative survival analysis was conducted so that the estimates could be compared

to the adjusted estimates. This was done in order to provide reference estimates

of relative survival. The population mortality data were adjusted in accordance to

three different scenarios. Denoting the probability of dying in the external group

as q, the probability of dying from the cancer of interest in the external group as qc

and the probability of dying from other causes in the external group as qo then it

follows that

q = qo + qc (8.5)

The probabilities q, qo and qc are yearly probabilities and will vary by age, sex

and calendar year. It is usually assumed that qc is a very small proportion of q and

so there will be little bias in the relative survival estimates if q is used to represent

the mortality in the external group. The purpose of this sensitivity analysis is to

use the actual probability of dying from other causes (qo) rather than the total

probability of dying from either cancer or other causes in the external group (q) in

order to see what influence the proportion of deaths due to the cancer of interest

has on the relative survival estimates. If α = qc/q denotes the proportion of deaths

in the external group due to the cancer of interest then qo can be written as

qo = q(1− α) (8.6)

This adjustment was applied assuming that 2%, 5% or 10% of the deaths in

the external group were due to the cancer of interest (i.e. α=0.02, 0.05 and 0.1).

Writing this adjustment in terms of the expected survival, p∗ = 1− q, the adjusted

expected survival, p∗o, can be written as
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p∗o = α + p∗(1− α) (8.7)

When the proportion of deaths in the external group due to the cancer of interest,

α, is small then p∗o ∼ p∗.

The above sensitivity analysis was carried out separately for each age group using

data on breast, colon and prostate cancer. Analyses were carried out on females for

breast cancer, males for prostate cancer and both males and females combined for

colon cancer. Relative survival is often used for analysing all cancer sites combined

[????] in order to obtain a single summary measure showing overall trends of cancer

survival over time. These estimates are often used as a “surveillance tool” in policy

making [?]. For this reason, a sensitivity analysis was also carried out on all cancer

sites combined, for which additional adjustments of 20% and 30% were made (i.e.

α=0.2 and 0.3).

8.4.3 Results

The expected survival estimates over a five year follow-up period for males aged

60 and 80 in the year 2000 in Finland are given in Table 8.3. The unadjusted

expected survival, denoted p∗, gives the relative survival estimates obtained before

any adjustments were made to the population mortality data. The adjusted expected

survival estimates, denoted p∗2, p∗5 and p∗10, give the expected survival adjusted for

2%, 5% and 10% of deaths due to cancer respectively.

Looking down the columns in the table, as time goes on the two men are getting

older and the expected survival estimates are decreasing. The increased risk of

dying with age is clearly illustrated by the 5 year expected survival estimates. The

5 year expected survival for a 64 year old man is 0.9274 compared to 0.5758 for an

84 year old man. These values are obtained by multiplying the yearly age-specific

probabilities for the five year period.

Looking across the rows in the table, the expected survival increases with in-

creasing proportions of cancer deaths. Although within each age group the absolute
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differences are fairly small, relative survival is a cumulative measure and so these

differences accumulate over time. This is evident in the 5 year expected survival

estimates. For example, for a patient aged 80 at diagnosis, the 5 year unadjusted

expected survival is 0.5758 but when adjusted for 10% of deaths due to cancer the

5 year expected survival is 0.6092.

ID FU Year Age p∗ p∗2 p∗5 p∗10

1 1 2000 60 0.9873 0.9876 0.9879 0.9886
1 2 2001 61 0.9869 0.9872 0.9876 0.9882
1 3 2002 62 0.9850 0.9853 0.9857 0.9865
1 4 2003 63 0.9834 0.9837 0.9842 0.9850
1 5 2004 64 0.9826 0.9829 0.9834 0.9843
1 5 Year Expected Survival 0.9274 0.9288 0.9308 0.9344
2 1 2000 80 0.9161 0.9161 0.9187 0.9230
2 2 2001 81 0.9053 0.9072 0.9100 0.9148
2 3 2002 82 0.8962 0.8983 0.9014 0.9066
2 4 2003 83 0.8857 0.8880 0.8914 0.8971
2 5 2004 84 0.8746 0.8771 0.8808 0.8871
2 5 Year Expected Survival 0.5758 0.5815 0.5917 0.6092

Table 8.3 – Unadjusted and adjusted expected survival for males aged 60 and 80 at
diagnosis in the year 2000.

Relative survival curves are plotted for breast cancer, colon cancer, prostate

cancer and all cancer sites combined in Figures 8.1, 8.2, 8.3 and 8.4 respectively.

All four figures show that high proportions of deaths due to cancer in the external

group make little difference to the relative survival estimates in the 18-44 and 45-49

age groups. Given that the total probability of dying in these age groups is low this

is not surprising. The relative survival curve for prostate cancer actually goes above

1 in the 18-44 age group suggesting that this group has a better survival than the

general population.

The sensitivity analysis has highlighted some more noticeable differences in the

older age groups, particularly the 85+ age group. However, the proportions used in

the sensitivity analysis for the specific cancer sites are much higher than the true

proportions in Table 8.2 in most cases. In the 85+ age group, where most of the

extreme differences are found in the graphs, the closest proportion to the ones used

to adjust the expected survival is the 2.2% of prostate cancer deaths. The differences
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for all cancer sites combined are however more believable given the proportions in

Table 8.2.
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Figure 8.1 – Relative survival curves adjusted for varying proportions of breast can-
cer deaths in the general population.
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Figure 8.2 – Relative survival curves adjusted for varying proportions of colon cancer
deaths in the general population.
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Figure 8.3 – Relative survival curves adjusted for varying proportions of prostate
cancer deaths in the general population.
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Figure 8.4 – Relative survival curves adjusted for varying proportions of all cancer
deaths in the general population.
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Site Age 2% 5% 10% 20% 30% Estimated α

Breast

18-44 0.02 0.06 0.12 - - 0.16
45-59 0.08 0.19 0.39 - - 0.36
60-74 0.27 0.67 1.34 - - 0.43
75-84 1.09 2.70 5.28 - - 0.49
85+ 2.44 5.86 10.97 - - 0.50

Colon

18-44 0.02 0.06 0.12 - - 0.01
45-59 0.09 0.22 0.44 - - 0.08
60-74 0.34 0.85 1.69 - - 0.28
75-84 0.96 2.36 4.59 - - 0.47
85+ 2.85 6.84 12.80 - - 1.01

Prostate

18-44 0.09 0.22 0.44 - - 0.05
45-59 0.23 0.57 1.14 - - 0.39
60-74 0.65 1.60 3.17 - - 1.21
75-84 1.73 4.26 8.26 - - 2.41
85+ 4.01 9.54 17.63 - - 4.39

All

18-44 0.03 0.06 0.13 0.25 0.38 0.29
45-59 0.10 0.25 0.51 1.01 1.51 1.56
60-74 0.38 0.96 1.90 3.73 5.52 4.65
75-84 1.12 2.76 5.38 10.21 14.57 6.78
85+ 2.88 6.89 12.84 22.47 29.76 10.44

Table 8.4 – Percentage unit differences in 10 year relative survival estimates between
values with no adjustment (i.e. 0%) and adjusted values (i.e. 2%, 5%,
10%, 20%, 30% and estimated α from Table 8.2).

The estimated differences associated with using unadjusted population tables are

clearer to see in Table 8.4. The table gives the percentage unit differences between

the 10 year unadjusted relative survival estimates (i.e. the estimates obtained be-

fore the population mortality data were adjusted) and the 10 year relative survival

estimates adjusted for 2%, 5%, 10%, 20% and 30% of deaths due to cancer. The

additional column titled “estimated α” gives the percentage unit differences between

the 10 year unadjusted relative survival estimates and the 10 year relative survival

estimates adjusted for the approximated proportions of deaths due to cancer, (α),

in Table 8.2.

For the youngest age group, where breast cancer comprises more than 10% of

deaths in the population, the background mortality is so low that even if we were

to make no adjustment for these deaths, the resulting difference on the relative

survival estimates would be relatively minor (0.16 percentage units). For the oldest
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age group, on the other hand, breast cancer comprises such a small proportion of the

total number of deaths (0.4%, Table 8.2) that the resulting difference on the relative

survival estimates is also relatively minor (0.5 percentage units). This result can

also be seen for colon cancer. Prostate cancer has a similar result in the younger

age groups. However, in the older age groups (75+) the difference in the relative

survival estimates is a potential cause for concern. In the oldest age group, where

prostate cancer comprises 2.2% of all deaths in the population, the difference in the

relative survival estimates is over 4 percentage units.

Both Figure 8.4 and the results in Table 8.7 highlight a major limitation in using

relative survival analysis with all cancer sites combined when population tables have

not been adjusted for the high proportions of cancer deaths. These differences are

evident in all age groups but more predominantly in those over the age of 60. In the

85+ age group, a proportion of 7.9% of deaths in the population are estimated to

be due to all cancers which leads to a difference of over 10 percentage units in the

relative survival estimates.

8.4.4 Conclusion

A simple method has been developed to assess the potential impact of using pop-

ulation tables unadjusted for cancer deaths. Equation (8.7) gives a quick way of

adjusting population mortality data sets in future analyses if it is believed that the

proportion of deaths from the disease of interest is high.

The assumption made by Ederer et al. in 1961 has proved to be reasonable for

breast cancer and colon cancer. The proportions of deaths due to these specific

cancers are small in comparison to the total mortality. These proportions are of

little importance in the younger age groups anyway as the probability of dying is

low. In the older age groups the proportions of deaths due to the specific cancers

would need to reach at least 2% before any noticeable differences occur. The same

assumption made by Ederer et al. is questionable for prostate cancer in the older

age groups as the difference reaches over 4 percentage units. This would be deemed
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as a reasonably large difference when comparing countries. Therefore, it remains to

be decided what should be perceived as an unacceptable level of bias.

For all cancer sites combined, the sensitivity analysis illustrates a major limita-

tion of using unadjusted population tables in relative survival analyses. The propor-

tions of deaths due to all cancer sites combined are high in all age groups but have

the biggest impact in the older age groups where the the relative survival estimate

was over-estimated by as much as 9 percentage units. Many cancer registries are

required to present relative survival estimates for all cancer sites combined, there-

fore, it is advised that an adjustment be made to the probability of dying in the

external group as demonstrated in Section 8.4.2. Is it, however, ill-advised to carry

out this type of analysis with a classification of diseases as wide as all cancer sites

as, although carrying out such analyses may be fairly straightforward, interpreting

the estimates is near impossible.

The percentages in Table 8.2 were estimated using cause of death information

and so therefore may be unreliable, particularly for the older age groups. The

percentages are most likely to be over-estimates as it is believed that in the elderly

population cancer is usually certified as the cause of death if it thought to have been

present before death even if it is not actually the cause of death [?].

Whilst working on this study, a group in Sweden had also begun work to inves-

tigate the impact that cancer deaths in the population have on estimates of relative

survival [?]. They were fortunate enough to have access to the entire population

records for Sweden. This meant that they could investigate the impact by actually

removing all the cancer deaths from the population before developing their own pop-

ulation mortality tables and subsequently obtaining estimates of relative survival.

The results from this approach were very much in line with those presented here

using the formula given for adjusting population tables (see Equation (8.7)). It is

unrealistic for everyone to have access to population records for this purpose but,

given the similarity of the results, the formula provided in this study may prove to

be a very useful tool for assessing the impact in future studies outside of cancer.
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The key question that comes as a result of this study is should we always adjust

for specific deaths in the general population now that we know we can? Firstly, this

very much depends on the disease in question. As shown above, the proportions of

deaths due to specific cancers are reasonably low. However, if a relative survival

analysis were considered for a cardiac event, for example, where the proportions

in the general population are a lot higher, then an adjustment should be seriously

considered. Secondly, it will also depend on the purpose of the work. If the estimates

obtained were to play a role in policy making or in decisions about treatment protocol

then a bias as large as 4 percentage units as shown above could be substantial enough

to sway the decision.

8.5 Lung cancer patients and smoking

8.5.1 Why is there thought to be a bias?

The work in this section resulted in a paper that has been published in the British

Journal of Cancer [?] and is given in Appendix IX.

It is well known that lung cancer is a disease that has strong associations with

smoking. In Finland in the year 2000, over 80% of lung cancer cases in males and

over 50% in females were deemed to be smoking-related [?]. However, smoking is

not only associated with lung cancer. It also increases the risk of dying from many

other diseases including cardiovascular disease and other forms of cancer.

As described in the Section 2.14, when using relative survival, it is assumed that

if the patient did not have lung cancer then their mortality rate would be comparable

to the mortality rate in the external group or general population. Most lung cancer

patients are or were smokers and therefore carry a higher risk of mortality from

various diseases. As most of the general population are likely to be non-smokers it

is argued that the two groups are not comparable [?].

In the next section, a sensitivity analysis is performed to assess the impact that

this non-comparability has on the estimates of relative survival.
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8.5.2 Sensitivity analysis

Data were obtained from the Finnish Cancer Registry for patients diagnosed with

lung cancer (ICD-O-3: C340-C349) in the years 1975 to 2007 inclusive. Population

mortality data were obtained from the Human Mortality Database [?]. Patients

under the age of 18 and anyone diagnosed through autopsy were excluded from the

analyses. Age was categorised into the groups 18-44, 45-59, 60-74, 75-84 and 85+.

As before, in order to obtain up-to-date estimates of 10 year relative survival a period

analysis approach was adopted as this is now the standard method of analysis in

population-based cancer studies. The relative survival estimates were derived from

data on the survival experience of patients in the 2005-2007 period [?].

Initially, a relative survival analysis was carried out using the unadjusted life

tables from the population mortality data. The population mortality data was then

modified to represent the scenario where 100% of the general population are assumed

to be smokers. This was considered to be more comparable to the cohort of lung

cancer patients where the large majority are also smokers. The modifications were

based on the odds ratio, θ, for increased/decreased odds of all-cause mortality for

smokers compared to non-smokers in a given year. Although, initially the modifica-

tions were going to be based on risk ratios, it was found that the lack of a boundary

condition meant that the probabilities of death often reached values greater than 1.

Considering an inverse logit transformation from the odds ratio, θ, to probabili-

ties, if an individual is a smoker then their probability of all-cause mortality, ps, can

be written as a function of the probability of all-cause mortality for a non-smoker,

pn as follows

ps =
( pn

1−pn )θ

( pn
1−pn )θ + 1

(8.8)

The actual all-cause probability of death, pt, for both smokers and non-smokers

combined is already known, as this is just the observed value in the population

mortality table. All three probabilities of death, pt, ps and pn are yearly probabilities

that will vary by age, sex, calendar year and any other information contained in the
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population mortality tables.

The total probability of death, pt, can be partitioned into the probability of

death for smokers, ps, and the probability of death for non-smokers, pn, as follows:

pt = (1− α)pn + aps (8.9)

where α is the proportion of smokers in the general population. By substitut-

ing Equation (8.8) into Equation (8.9), the total probability of death can now be

expressed as follows:

pt = (1− α)pn +
αθpn

(1− pn)( θpn
1−pn + 1)

(8.10)

This can be simplified as follows:

pt = pn − αpn +
αθpn

θpn + 1− pn
(8.11)

pt =
θp2

n − αθp2
n + pn − apn − p2

n + ap2
n + αθpn

θpn + 1− pn
(8.12)

θp2
n − αθp2

n + pn − apn − p2
n + ap2

n + αθpn − θptpn − pt + ptpn = 0 (8.13)

p2
n((1− θ)(α− 1)) + pn(1 + (pt − α)(1− θ))− pt = 0 (8.14)

This formula needs to be expressed as a function of pn in order to calculate a

baseline probability to be used when adjusting for the prevalence of smoking. This

can be done by applying the quadratic formula:

pn =
−(1 + (pt − α)(1− θ)) +

√
(1 + (pt − α)(1− θ))2 + 4pt((1− θ)(α− 1))

2((1− θ)(α− 1))

(8.15)
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As information on the exact number of smokers was not available in the popu-

lation mortality data file, it was assumed that the prevalence of smokers, α, was as

shown in Table 8.5. Unfortunately, yearly estimates for the prevalence of smokers

were not available and so the same value had to be considered across several years

of diagnosis as shown in the Table. For example, for a male diagnosed in 1976 the

prevalence, α, was taken to be 35%, as was the prevalence for a male diagnosed in

1980. These estimates were taken from a report on the “Health in Finland” [?]. The

odds ratio, θ, was set to 2, 3, 4 and 5 to demonstrate increasing levels of risk in

all-cause mortality for smokers in comparison to non-smokers. This information was

then substituted into Equation (8.15) to obtain the probability of all-cause mortality

for non-smokers, pn. This value was subsequently used to estimate the probability

of dying from any cause if you are a smoker, ps, through Equation (8.8).

Description Year Percentage

Male

1975-1980 35
1981-1985 33
1986-1990 33
1991-1995 30
1996-2000 27
2001-2008 26

Female

1975-1980 17
1981-1985 16
1986-1990 19
1991-1995 19
1996-2000 21
2001-2008 18

Table 8.5 – Smoking prevalence in adults by gender (%) [?].

The only difference between the four scenarios was the odds ratio, θ, used in

calculating the probability of all-cause mortality for smokers, ps. A comparison was

made between the relative survival estimates obtained before any adjustments were

made and the relative survival estimates modified using each of the four odds ratios.
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8.5.3 Results

Table 8.6 gives the proportion of adult deaths due to specific diseases in Finland

that are believed to be attributed to smoking. Not only are a large proportion of

lung cancer deaths deemed to be smoking related, it is also evident that many other

deaths from various causes are thought to be due to smoking.

Description Year Percentage

Lung Cancer (Male)
1990 94
2000 86

Lung Cancer (Female)
1990 50
2000 60

Other Cancer (Male)
1990 14
2000 13

Other Cancer (Female)
1990 0
2000 0

Cardiovascular Disease (Male)
1990 18
2000 12

Cardiovascular Disease (Female)
1990 3.1
2000 3.6

Other Causes (Male)
1990 6.3
2000 6.1

Other Causes (Female)
1990 1.8
2000 1.5

All Causes (Male)
1990 21
2000 17

All Causes (Female)
1990 3
2000 4

Table 8.6 – Proportion of adult deaths attributed to smoking by gender (%) [?].

Figures 8.5, 8.6, 8.7 and 8.8 show relative survival curves that have been adjusted

using odds ratios of 2, 3, 4 and 5 respectively. Each of the figures compares the

relative survival curve obtained using the unadjusted population mortality files and

the relative survival curve that has been adjusted assuming that everyone in both

the lung cancer cohort and the population mortality file is a smoker. It is clear from

these figures that adjusting for a higher probability of death in smokers makes very

little difference in the younger age groups. This is due to the total probability of

death being low in these group anyway. However, there is also very little difference

between the two curves for the other age groups. Even in the unlikely situation



8. Assessing Assumptions in Relative Survival 203

where the odds of dying from any cause is 5 times higher for smokers compared to

non-smokers, the difference between the curves is still negligible.
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Figure 8.5 – Comparison of relative survival curves with no adjustment made to the
external population with relative survival curves, assuming external
population consists of 100% smokers and that the odds of all-cause
mortality is twice as high for smokers as compared with non-smokers.
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Figure 8.6 – Comparison of relative survival curves with no adjustment made to the
external population with relative survival curves, assuming external
population consists of 100% smokers and that the odds of all-cause
mortality is three times as high for smokers as compared with non-
smokers.
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Figure 8.7 – Comparison of relative survival curves with no adjustment made to
the external population with relative survival curves, assuming external
population consists of 100% smokers and that the odds of all-cause mor-
tality is four times as high for smokers as compared with non-smokers.
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Figure 8.8 – Comparison of relative survival curves with no adjustment made to
the external population with relative survival curves, assuming external
population consists of 100% smokers and that the odds of all-cause mor-
tality is five times as high for smokers as compared with non-smokers.

A review was carried out to investigate the work that had already been carried

out on the associations of smoking and all-cause mortality. Risk ratios between 0.9

and 2.8 were reported for varying subgroups of patients in three papers [???]. Only

one paper was found that reported an odds ratio. They found that the odds of all-

cause mortality were 1.6 times higher (95% CI: 1.3 to 2.1) for light and intermittent

male smokers compared to male non-smokers [?]. In order to get a clearer indication

of the difference present in the relative survival estimates when making adjustments

using a more realistic odds ratio, the value 1.6 was taken as the “estimated” value

for θ for both genders and all age groups.

Age
Odds Ratio θ

2 3 4 5 “Estimated”
1 Year 5 Year 1 Year 5 Year 1 Year 5 Year 1 Year 5 Year 1 Year 5 Year

18-44 0.06 0.20 0.10 0.30 0.20 0.60 0.15 0.40 0.0004 0.10
45-59 0.17 0.30 0.29 0.50 0.59 1.10 0.44 0.80 0.11 0.20
60-74 0.42 0.70 0.70 1.10 1.45 2.40 1.07 1.80 0.27 0.40
75-84 0.77 0.70 1.32 1.30 2.72 3.20 2.06 2.30 0.50 0.50
85+ 0.84 0.10 1.48 0.30 3.12 1.00 2.20 0.60 0.54 0.08

Table 8.7 – Percentage unit difference in 1 year and 5 year relative survival estimates
between values with no adjustment and 2, 3, 4, 5 and “Estimated” θ (1.6)
adjustments.
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Table 8.7 shows the percentage unit differences between the 1 and 5 year rela-

tive survival estimates obtained using the unadjusted population mortality data and

the 1 and 5 year relative survival estimates adjusted assuming 100% smokers using

odds ratios of θ=2, 3, 4 and 5. A column is also given to show the percentage unit

difference when adjusting for the “estimated” θ. The relative survival estimates are

slightly underestimated when the unadjusted population mortality data is used com-

pared to the estimates adjusted for smokers. However, looking at the “estimated” θ

column, having adjusted for a more realistic odds ratio of 1.6 it is evident that the

difference is minimal.

8.5.4 Conclusion

A sensitivity analysis was used to show that when analysing lung cancer survival,

although the assumption of comparability may not hold, the difference caused by

this assumption is not of great concern as the resulting bias is very small.

The adjustments made to the younger age groups are minimal as the overall

probability of death is low in these age groups. It therefore follows that there will

be little difference introduced into the relative survival estimates. There is, however,

another explanation for the small difference in all the age groups. Lung cancer is a

disease with a very poor prognosis in all ages, with most patients dying within the

first two years. If the majority of lung cancer patients are dying quickly from lung

cancer related deaths, then the fact that these patients are also at an increased risk

of death from other diseases will have little impact on the relative survival estimates.

The performed sensitivity analysis attempted to create a more comparable group

to the lung cancer patient population by adjusting the population mortality data

to represent a scenario where 100% of the comparison population were smokers. In

reality, the true smoking figures in the lung cancer population will not be 100%.

This means that the adjustment presented above was an extreme case. However, it

has been shown that the difference is relatively small regardless and a more realistic

proportion will only decrease this difference.
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Unfortunately, information was not available on smoking status within the popu-

lation mortality file. As a result, external information was used to obtain appropriate

estimates for this (Table 1) [?]. If smoking status had been available then it would be

preferable to create separate population tables for smokers and non-smokers. How-

ever, difficulty lies in making a strict definition of a “smoker”. People’s smoking

status varies over time, as does the level of cigarette consumption. Both of these

factors are likely to have an impact on general health status and prognosis from lung

cancer and so would also ideally be incorporated into the population table.

The chosen value of θ for the ”estimated” odds ratio was taken from a systematic

review that was carried out to identify studies on the health outcomes associated

with light and intermittent smoking. The value of 1.6 was calculated using data

on males only but we used this value to represent all ages and both genders in our

sensitivity analysis. Although this value may be over or under estimated for some

subgroups of patients, given that, even with an odds ratio of 5 the difference between

the curves is still reasonably small, it can be concluded that in practice there doesn’t

need to be too much concern about the level of bias that may be introduced into

the relative survival estimates by the assumption addressed in this study.

Although only lung cancer is considered in this study, it is acknowledged that

there are other cancer sites, such as bladder cancer, and cancer of the oral cavity and

pharynx, that have also been shown to be smoking-related. To carry out a similar

sensitivity analysis for these cancer sites, an estimate of the prevalence of smoking

within each cohort of cancer patients would be required. It would be unreasonable

to assume that the proportion of smokers is anywhere near 100% in bladder and oral

cancer cohorts. As these cancers have a better survival than lung cancer, it is likely

that the lack of comparability of the population mortality tables may have a larger

impact on the relative survival estimates for these sites. A recent study carried out

in New Zealand examined the same bias using population mortality files stratified

by smoking status [?]. They examined both lung cancer and bladder cancer and

found that the relative survival estimates were under-estimated by 10-20% when
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not using smoking-specific population mortality tables.

8.6 Discussion

The sensitivity analyses presented in this chapter highlight the importance of ques-

tioning the assumptions made by different analysis approaches. Whilst the first

sensitivity analysis concluded that the proportion of deaths due to a specific cancer

is small in comparison to the total mortality and therefore results in little difference,

if relative survival were to be applied to data on cardiovascular mortality, for exam-

ple, then the resulting difference would probably be of greater concern. The second

sensitivity analysis also showed little difference resulting from comparing a cohort

of lung cancer patients who are likely to be smokers to the general population. This

is a result of lung cancer survival being very poor. If we were to examine another

smoking related cancer that has a higher survival, such as bladder cancer, then again

we might have to consider whether the comparability assumption holds true.



9. DISCUSSION

9.1 Chapter outline

This chapter concludes the thesis with a general discussion of the work presented in

previous chapters and of possible future work in the area. Limitations of the work

are also considered.

9.2 Summary of research

The probability of an event or the proportion of patients experiencing an event, such

as death or disease, is often of interest in medical research. It is a measure that is

intuitively appealing to many consumers of statistics and yet the estimation is not

always clearly understood or straightforward [?]. Many researchers will simply take

the complement of the survival function, estimated using the Kaplan-Meier estima-

tor. However, in situations where patients are also at risk of multiple and potentially

competing events, the interpretation of such estimates may not be meaningful.

It is often the case in time-to-event data that more than one type of outcome can

be distinguished. All of these outcomes may be equally as important in understand-

ing the prognosis of a patient. When patients are at risk of multiple outcomes these

events can either be mutually exclusive or can occur sequentially. Multiple outcomes

that are considered to be mutually exclusive, such as death from different causes, are

known as competing risks and are present in almost all areas of medical research [?].

In terms of the field of oncology, the importance of acknowledging competing risks

was first highlighted when it became evidence that as cancer treatment improved

so too did the survival of cancer patients [??]. It consequently became necessary

to consider, for example, the long-term effects of the treatment on mortality from
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causes other than the underlying disease.

Multiple outcomes experienced by a patient are not always mutually exclusive

and may occur sequentially. For example, a breast cancer patient may go on to

survive cancer free for many years, they may develop a recurrence of the breast

cancer, they may develop a new primary tumour or they may die. Multi-state

Markov models in continuous time are often used to model the course of diseases.

These models form an extension to that of competing risks models whereby patients

can move between a finite number of states and have the potential to answer a wide

range of clinically meaningful questions for both researchers and patients that can

not be answered by classical survival models. However, they are still not frequently

applied as, until recently, there has been a lack of available statistical software and

models are complex both to understand and fit.

Although competing risks theory has been around since the 1760s [?] there is

increasing evidence that these methods are being underused. This is illustrated by

a number of recent tutorial publications [???]. However, many of these publications

are quite theoretical and may have limited value amongst clinical researchers. The

primary aim of this thesis was to develop new and accessible methods for analysing

multiple outcomes in order to enable better communication of the estimates ob-

tained from such analyses. These developments primarily involved the use of the

recently established flexible parametric survival model [?]. The methodology was

also implemented in Stata in the form of two user friendly commands so that the

methods are accessible to all who wish to use them.

9.3 Discussion and limitations of this work

9.3.1 Hypothetical vs. real world

Under the assumption of independence, as discussed in Section 2.5, both cause-

specific survival (see Section 2.4) and relative survival (see Section 2.14) attempt

to estimate net survival. This is a theoretical measure that can never actually be

observed. In statistical literature, net survival is defined as the proportion of patients
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that have survived a particular number of years since diagnosis in the hypothetical

world where patients can only die from the cause of interest [?]. In reality, each

patient is at risk of dying from one of countless causes of death (i.e. competing

risks). Whilst working in this hypothetical world might seem nonsensical, it is often

the case that interest lies in the risk of death from a particular cause regardless

of the effect of other causes of death. For example, net survival allows for the

comparison of cancer mortality between different populations where mortality due

to other causes varies. Net survival is, therefore, still a sensible measure to use

in many population-based cancer studies. However, it may not always be possible

to obtain interpretable estimates in this hypothetical world if the assumption of

independence does not hold. Researchers are often willing to make this assumption

in cancer studies [?] but it may not be so sensible when studying cardiovascular

mortality, for example, due to this being closely linked with many other disease

processes such as diabetes. Whilst net survival relies on the strong assumption of

independence in order to obtain interpretable estimates, the cumulative incidence

function can still be estimated whether this assumption is reasonable or not.

If the aim of a study is to quantify the probability of a specific event in the “real

world” where patients are not only at risk of that specific event but also from many

other mutually exclusive events, such as death from different causes, then competing

risks theory should be applied. For example, estimates of the probability of death

from breast cancer in the hypothetical world described above are of little use to

patients making decisions in the “real world” where deaths due to other causes play

a large role. Therefore, if the purpose of the study is to obtain estimates that can

be communicated to patients, then competing risks methodology is required. There

are several approaches for applying competing risks theory. Chapter 3 demonstrated

various methods for obtaining cause-specific cumulative incidence functions includ-

ing the newly extended flexible parametric modelling approach. Chapter 4 presented

two applications of the newly developed flexible parametric modelling approach for

obtaining cause-specific cumulative incidence functions with emphasis on highlight-
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ing the different measures that can be estimated from such an analysis. Chapter

6 introduced an alternative approach to analysing competing risks data that was

proposed by Fine and Gray in 1999 [?] and extended the approach for parametric

models. This approach is based on the relationship between the hazard function

and the survival function and requires altering the risk set and defining the subdis-

tribution hazard.

9.3.2 Cause-specific vs. subdistribution hazards

There are two main approaches to modelling competing risks [?]. The first is to

model the cause-specific hazards and transform these to the cumulative incidence

function. The second is to model the cumulative incidence function directly through

a transformation of the subdistribution hazards [?]. The cause-specific hazards ap-

proach provides an interpretable relative measure in the form of cause-specific hazard

ratios. However, with this approach the cumulative incidence is a function of all the

cause-specific hazard functions and so there is a lack of a one-to-one correspondence

between the cause-specific hazard and the probability of death for that cause, mean-

ing that the cause-specific hazard ratios can not be used to summarize differences

in the cumulative incidence function between covariate groups.

With the subdistribution hazard approach the cumulative incidence is only a

function of one subdistribution hazard function therefore restoring the one-to-one

correspondence between the subhazard and the probability of death. This means

that the subhazard ratios immediately translate to the cumulative incidence function

for the purpose of quantifying differences between covariate groups. However, the

subdistribution hazard function bears no resemblance to an epidemiological rate as

individuals that die from competing causes remain in the risk set [?]. The subhazard

ratios are often interpreted in the same way as cause-specific hazard ratios but should

not be for the above reason.

As the cumulative incidence function is only a function of one subdistribution

hazard function, it means that, unlike with the cause-specific hazard approach in
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Chapter 3, if interest only lies in one particular cause of death then only that cause

needs to be modelled. However, if all of the competing causes of death are of interest

then, as illustrated in this chapter, the subdistribution hazard modelling approaches

often require a very good fitting model for every cause otherwise the total probability

of death may sum to more than one due to the lack of a boundary condition in direct

regression models [?].

The cause-specific approach is, therefore, encouraged in this thesis as both the

cause-specific hazards and the cumulative incidence function can provide important

information and estimating both can help towards better understand of risk fac-

tors and their effect on the population as a whole [?]. The cause-specific hazards

can inform us about the impact of risk factors on rates of disease or mortality.

Additionally, the cumulative incidence function provides an absolute measure with

which to base prognosis and clinical decisions on [?]. The cause-specific approach

was preferable for both of the applications discussed in Chapter 4 as interest lied

in partitioning the total probability and the cause-specific hazard rates provided a

clearer insight into the underlying processes in each of the studies.

9.3.3 Flexible parametric model

The most commonly used model in time-to-event data is the Cox proportional haz-

ards model [?]. The main advantage of the Cox model is that there is no need

to specify a functional form for the baseline hazard. However, in many situations

this also proves to be the main disadvantage of the model. It is desirable to have

a good estimate of the underlying baseline hazard as it is useful for making fur-

ther predictions and can help in better understanding of the disease process. This

is particularly the case in the competing risks framework as discussed in Chapter

3. The Cox model also assumes proportional hazards meaning that the hazard

ratio is assumed to be constant over follow-up time and so can be reported as a

single number. In large population based data sets, such as those used in many

of the examples in this thesis, the assumption of proportional hazards often does
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not hold. Many suggestions have been made for relaxing the proportional hazards

assumption, whereby an interaction term is included between a covariate and a

pre-specified function of time, including by Sir David Cox himself [??]. There is,

however, no concordance as to the practical usefulness of the methods currently

available to incorporate time-dependent effects into the Cox model and many can

be time consuming with large data sets [?]. In 1992, Hjort stated that “the success

of Cox regression has perhaps had the unintended side-effect that practitioners too

seldomly invest efforts in studying the baseline hazard...A parametric version [of

the Cox model],...if found to be adequate, would lead to more precise estimation

of survival probabilities and...concurrently contribute to a better understanding of

the phenomenon under study” [?]. In fact in an interview with Sir David Cox he

himself stated that “in the light of further results one knows since, I think I would

normally want to tackle the problem parametrically [?].”

Parametric models in general offer several advantages over the Cox model, par-

ticularly when the hazard functions themselves are of primary interest. They can

provide insight into the shape of the baseline hazard and baseline survival by pro-

viding smooth estimates of both for any combination of covariates. Estimating the

model parameters parametrically also means that they can be transformed to ex-

press differences between groups in various ways. For example, it is possible to

quantify survival differences or estimate differences in mortality between two pa-

tient groups [?]. These absolute differences are achievable as the baseline hazard

function is directly estimated in the model. Whilst it is still possible to obtain such

estimates with the Cox model, it is much more difficult. The main criticism of stan-

dard parametric models, however, is that there can be some difficulty in selecting an

appropriate distribution to model the baseline hazard as many are not sufficiently

flexible to represent real data adequately. For example, the Weibull proportional

hazards model produces a hazard function that increases, decreases or remains con-

stant across the follow-up period but always goes in the same direction. In many

data sets the hazard will peak at some point after diagnosis and then begin to de-
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crease. Even if there is no turning point, the shape of the monotonic function may

still not be fully captured by the Weibull model, for example when there is a very

high initial mortality rate.

The flexible parametric survival model [?], through the use of restricted cubic

splines, is more flexible than standard parametric models. One of the main ad-

vantages of the flexible parametric approach is the ease with which time-dependent

effects can be incorporated [?]. In Chapter 3 the flexible parametric survival model

was extended to a competing risks setting as a method for obtaining smooth es-

timates of both the cause-specific hazard and the cumulative incidence function.

Time-dependent effects can be easily incorporated in this setting for one or more

of the competing events. Both the cause-specific hazard and the cumulative in-

cidence function can be obtained using Cox regression. In fact the estimates of

both the cause-specific hazard ratios and the cumulative incidence functions ob-

tained from the flexible parametric survival model approach are incredibly similar

to those obtained from a Cox model. However, as illustrated throughout this the-

sis, the methodology and application can be much more complex when using Cox

regression.

The extension of the flexible parametric model for a competing risks framework

also allowed for the use of the delta method to obtain confidence intervals for the

cumulative incidence function. These confidence intervals have been shown to be

very similar to those obtained through bootstrapping but have the added advantage

of taking considerably less time to compute [??]. Chapter 3 also demonstrated sev-

eral additional measures that can be obtained through a transformation of the the

estimates from a cause-specific competing risks analysis, such as the relative contri-

bution to the total mortality and the relative contribution to the overall hazard. The

confidence intervals for the cumulative incidence function and these additional mea-

sures are all available as options within the stpm2cif command in Stata that was

written to implement the extension of the flexible parametric model for competing

risks. The command has been downloaded from the Statistical Software Compo-
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nents (SSC) archive [?] over 200 times in the three months from November 2012 to

January 2013 highlighting the demand for accessible competing risks methodology.

Work is currently ongoing to evaluate the use of the flexible parametric model

in the subdistribution hazard setting as described in Chapter 6. This chapter doc-

umented the use of a weighted flexible parametric model as an alternative to Fine

and Gray’s weighted Cox model and showed good agreement in terms of both the

subhazard ratios and the cumulative incidence functions. The possibility of incorpo-

rating other link function, for example the logit link, such that the covariate effects

could be interpreted as odds ratios means that the flexible parametric model may

prove to be a very useful tool in competing risks analyses of this type.

Chapter 7 also documented the extension of the flexible parametric model for

use with illness-death Markov models. This approach provides several advantages

over the more commonly used Cox proportional hazards model. It provides a smooth

function for both the transition hazards and the state occupation probabilities, it can

easily incorporate time-dependent covariate effects for one or more of the transitions

and confidence intervals obtained through the delta method have been shown to be

very similar to those obtained through bootstrapping but have the added advantage

of taking considerably less time to compute. The methodology is available in the

form of a user-written command, stpm2illd [?]. Whilst the command has only been

available on the Statistical Software Components (SSC) archive for just over a month

(since December 2012), it has also been downloaded over 20 times, again showing

the demand for accessible methods in this field. The flexible parametric model in

general is growing in popularity and has been used in several recent research studies

[??????].

The flexible parametric model may be criticized as the number and location

of the knots are subjective. The user has to decide on both the number and the

placement of the knots. However, this criticism may not be important in practice

provided that common sense is applied when placing the knots. The sensitivity

analysis shown in Chapter 3 demonstrated that the knot location had very little



9. Discussion 217

impact in terms of the cumulative incidence function and the overall shape of the

cause-specific hazard function was very much the same with the exception of one

model which did not have a sufficient number of knots to fully capture the shapes of

the underlying cause-specific baseline hazards. Similar results have been reported

elsewhere in relation to the sensitivity of the knots [????].

9.3.4 Using cause of death information

The majority of the analyses carried out in this thesis rely on the use of cause of death

information taken from death certificates which is often lacking in accuracy and

completeness. It was therefore important to understand the impact that unreliable

cause of death information could have on the results from competing risks analyses.

Chapter 5 documented a simulation study carried out to investigate the impact

of under and over-recording of cancer on death certificates in a competing risks

analysis. The study showed, using realistic estimates for misclassification of cause

of death information, that caution should be taken, as with most analyses, when

making conclusive remarks about the older ages. It is within these age groups that

misclassification occurs most frequently and can have the greatest impact on the

probability of death [?].

The results from the simulation emphasise that strenuous efforts need to be made

to make sure that cause of death information on death certificates is as accurate as

possible. The validity of any estimates based on cause of death information relies

upon this information being correct. The use of linked databases for studying im-

portant public health issues is being increasingly encouraged as a means of enforcing

policy decisions [?]. A bias as large as 9 percentage units, as found in Chapter 5,

could greatly influence whether a policy is pushed through or not. Similarly, treat-

ment decisions are often largely based on published estimates for prognosis which

could also be biased by inaccurate cause of death information. Therefore, it is im-

portant that those who fill in death certificates are aware of how the information

goes on to be utilised. Whilst it is possible to make some form of adjustment for mis-
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classified cause of death within an analysis [?], this will depend heavily on whether

reliable estimates are available for the levels of misclassification in the data set. An

alternative approach could be to use a sensitivity analysis to assess the impact that

various levels of misclassification would have on a particular real data set.

If there is concern about the reliability of cause of death information and the

analysis does not require partitioning the mortality into multiple causes of death then

a relative survival analysis can be considered. As discussed in Section 2.14, relative

survival is an extensively used method in population based cancer studies as, unlike

cause-specific survival, it does not require accurate cause of death information [?]. It

does this by providing a measure of survival based on estimating the excess mortality

within a cohort of diseased individuals. Excess mortality is obtained by taking the

difference between the observed (all-cause) mortality in the diseased cohort and the

expected mortality of a comparable group from the general population.

However, determining this comparable group can often be an issue. Chapter 8

discussed some of the potential differences introduced into relative survival estimates

through the choice of the external group and demonstrated potential biases in the

estimates through sensitivity analyses. The first assumption addressed was that the

proportion of deaths due to a particular disease is negligible in comparison to the

total mortality and therefore will not impact on the estimate of excess mortality

for that disease [?]. The second assumption that was investigated was whether the

general population is a comparable group for lung cancer patients due to the high

number of smokers within this patient cohort [?].

The results of the sensitivity analyses highlighted the importance of questioning

the assumptions made by different analysis approaches. Whilst the first sensitivity

analysis concluded that the proportion of deaths due to a specific cancer is small in

comparison to the total mortality and therefore results in little difference, if relative

survival were to be applied to data on cardiovascular mortality, for example, then

the resulting difference would probably be of greater concern. The second sensitivity

analysis also showed little difference resulting from comparing a cohort of lung cancer
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patients who are likely to be smokers to the general population. This is as a result

of lung cancer survival being very poor. If we were to examine another smoking

related cancer that has a higher survival, such as bladder cancer, then again we

might have to consider whether the comparability assumption holds true [?].

9.4 Future work

As discussed above, work is ongoing to evaluate the use of the flexible parametric

model in the subdistribution hazard setting as described in Chapter 6. Standard

software for the subdistribution hazard approach currently evaluates the censor-

ing weights at every event time for the event of interest. Lambert, Hinchliffe and

Crowther are exploring whether the split points could instead just be evaluated

at a set number of intervals. For example, at every 6 months within a 10 year

follow-up period [?]. Preliminary work in the form of a simulation study shows that

reducing the number of split points for the censoring weights has very little impact

on the estimates of the subdistribution hazard ratios and the cumulative incidence

function and yet a huge impact on computational time as the data set does not

become as large. Further work with the flexible parametric model in this setting

could investigate the use of different link functions which could provide alternative

interpretations of the covariate effects as opposed to subdistribution hazard ratios.

Whilst the extension of the flexible parametric model has only been considered for

illness-death Markov models, with further work the model could be used with more

complex state structures and potentially in semi-Markov or non-Markov frameworks.

With some further methodological developments, multiple time-scales could also

be incorporated into both competing risk (Chapter 3) and multi-state modelling

approaches. The issue of attained age could be addressed using multiple time scales

where both attained age and time since diagnosis of a disease feed into the underlying

mortality rate.

Cure models are used when it is believed that a proportion of patients will never

experience the event of interest. For example, when investigating the time to graft vs
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host disease after a bone marrow transplant, some patients will never develop graft

vs host disease and so will be considered “cured”. The cure proportion or the cure

fraction can be obtained from cure models and attempt to estimate the proportion

of patients that have been “cured”. After the time point at which “cure” occurs,

the cause-specific hazard rate should be zero. If the hazard rate is zero then the

survival curve will no longer decrease and instead will reach a plateau. Extending

cure models to a competing risks framework would allow for estimation of measures

such as the proportion of patients that will never experience graft vs host disease

accounting for death as a competing event.

9.5 Final conclusions

High quality cancer data are in demand to monitor practice, inform patient choice

and improve outcomes. There is, therefore, an increasing drive to improve the infor-

mation collected about cancer patients through the linkage of several data sources.

It is important that researchers exploit this information to provide new insights into

cancer care. However, producing robust intelligence from routine cancer data is

statistically challenging. As a result, statistical methods are becoming increasingly

complex and sophisticated to address these challenges. Understanding both the risk

of developing diseases and the risk of death is often confusing for both the patient

and the treating clinician. Therefore, as methods become increasingly complex, it is

the responsibility of statisticians and researchers to make methodology more trans-

parent and present results in ways that are comprehensible to patients, clinicians

and decision makers. It is hoped that the methods developed as part of this thesis

will contribute to this process.
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Appendix I contains a draft paper titled “Competing risks - what are they and when

should we consider them? A guide to key concepts?”.
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ABSTRACT 

BACKGROUND: Competing risks are present in almost all areas of medical research and, 

whilst competing risks theory has been around since the 1760s, there is increasing evidence 

that these methods are being underused. This is most likely because it is not always obvious 

as to when these methods are needed. 

METHODS: We use an illustrative example to describe and discuss the key concepts of 

cause-specific survival analyses and explain the role that competing risks play in these.  

RESULTS: 

CONCLUSION:  

 

Keywords: competing risks; cancer survival; key concepts 
  



INTRODUCTION 

The probability of an event or the proportion of patients experiencing an event, such as death 

or disease, is often of interest in medical research. It is a measure that is intuitively appealing 

to many consumers of statistics and yet the estimation is not always clearly understood or 

straightforward [13]. Many researchers will take the complement of the survival function 

estimated using the Kaplan-Meier estimator. However, in situations where patients are also at 

risk of competing events, the interpretation of such estimates may not be meaningful. 

Competing risks are present in almost all areas of medical research [8]. They occur when 

patients are at risk of more than one mutually exclusive event, for example death from 

different causes [2]. In terms of the field of oncology, the importance of acknowledging 

competing risks was first highlighted [12, 3] because as cancer treatment improved so too did 

the survival of cancer patients. It consequently became necessary to consider, for example, 

the long-term effects of the treatment on mortality from causes other than the underlying 

disease. 

Although competing risks theory has been around since the 1760s there is increasing 

evidence that these methods are being underused or misunderstood. This is illustrated by a 

number of recent tutorial publications [1, 7, 14]. However, many of these publications are 

quite theoretical and may have limited value amongst clinical researchers. It is, therefore, not 

always obvious as to when these methods are needed. 

The aim of this paper is to describe and discuss the key concepts of cause-specific survival 

analyses and explain the role that competing risks play in these. We will discuss situations in 

which standard survival analysis approaches are needed and situations in which competing 

risks theory needs to be considered. For demonstrative purposes, we make use of real world 

example of breast cancer survival [17]. 



ILLUSTRATIVE EXAMPLE 

One research area that is increasingly making use of competing risks methodology is 

population-based cancer studies . For the purpose of demonstration, this paper makes use of 

data obtained from the SEER public use dataset [17] on survival of breast cancer patients. 

The patients analysed were all white females aged between 18 and 104 and were diagnosed 

between the years 1992 and 2007. Patients that were diagnosed at death or autopsy (n=509) 

or had an unknown cause of death (n=546) were excluded from the analyses. Only patients 

with a first primary malignant indicator were included (n=18,434 excluded). This left a total 

of 56,556 patients to be analysed.  

Cause of death was categorised into breast cancer and other causes. Patients were also 

grouped into the age categories 18-59, 60-84 and 85+. The selected age groups are quite wide 

and would usually be broken down into smaller groups. However, for simplicity and 

demonstrative purposes we only consider these three age groups. Finally the year of diagnosis 

was categorised into three periods of diagnosis. These were 1992-1996, 1997-2001 and 2002-

2007. The maximum length of follow-up was restricted to 5 years. 

WHAT ARE COMPETING RISKS? 

It is typical in survival data that not all of the patients will experience the event of interest. It 

could be that the follow-up is not sufficiently long for all patients to experience the event. 

The patient could also be lost to follow-up due to for example emigration. Another reason 

could be that the patient experiences an alternative event which prevents the event of interest 

from occurring. Such an alternative event is known as a competing event. 

Competing risks arise when patients are at risk of several mutually exclusive events, such as 

death from different causes. The occurrence of any one of these events may prevent the 



others from ever happening. Figure 1 gives a graphical interpretation of competing risks. The 

plot considers the hypothetical histories of three women with breast cancer, all followed up 

for a period of 5 years. If we could observe the time at which a patient died from breast 

cancer and then the time at which, had they not died from breast cancer, they would have 

died from another cause then we could have the scenario as illustrated in Figure 1. Patient 1 is 

at risk of dying from both breast cancer and other causes for the full 5 year follow-up period. 

Here, she has not died from either cause by the end of the follow-up period and so is 

censored. Patient 2 died from a cause other than breast cancer at 2 years, but would otherwise 

have died from breast cancer at 4 years. Patient 3 died from breast cancer at 1 year, but would 

otherwise have died from another cause at 3 years. In reality we will, of course, never have 

this information. Once patient 2 has died from some other cause, we will never know whether 

he or she would have ever gone on to die from breast cancer and if they had, at what time. 

 

Figure 1: Graphical interpretation of competing risks. 
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CAUSE-SPECIFIC SURVIVAL AND IT´S INTERPRETATION 

In a standard cause-specific survival analysis for cancer, deaths from causes other than the 

cancer of interest are typically censored under the assumption that mortality due to other 

causes is mutually independent from the cancer mortality. Similarly, when estimating cause-

specific survival for other causes, deaths from the cancer of interest are typically censored 

again under the assumption that cancer mortality is mutually independent from the mortality 

due to other causes. This essentially assumes that if one cause of death were to be eradicated 

then the risk of death from other causes would remain the same. In most medical studies this 

independence assumption is unlikely to be fully satisfied. For example, many women with 

breast cancer are treated with radiation therapy or chemotherapy that has previously been 

reported to be cardiotoxic [4, 16, 11, 18]. This treatment may go some way to preventing 

deaths due to breast cancer but it subsequently increases deaths due to cardiovascular disease. 

This independence assumption is conditional on any covariates that we adjust for in the 

analysis, therefore if all factors related to the competing event could be adjusted for then the 

assumption may become more reasonable. 

Under the assumption that the censoring mechanism is independent with respect to the risk of 

observing the outcome of interest, the estimates can be interpreted as the probability of 

surviving the event of interest if all competing events were eliminated, i.e. the probability of 

surviving the event of interest in the absence of any competing risks. If the cause-specific 

survival for breast cancer is of interest this refers to the probability of surviving in a world 

where death due to breast cancer is the only possible cause of death. This hypothetical 

construct is often referred to in the statistical literature as marginal survival [19] or net 

survival [5, 15]. The proportion of deaths from a particular cause can then be calculated by 

taking 1 minus the marginal (cause-specific) survival.  



Whilst working in this hypothetical world might seem nonsensical, it is often the case that we 

are only interested in the risk of death from one cause regardless of the effect of other causes 

of death. For example, we might be interested in comparing breast cancer mortality across 

different deprivation groups and don’t want the comparison to be distorted by the fact that 

other cause mortality also differs between groups. 

WHEN MUST WE WORRY ABOUT COMPETING RISKS? 

When estimating marginal or net survival, patients who experienced a competing event 

instead of the event of interest are treated no differently from patients who were censored for 

e.g., administrative purposes. The fact that a competing event occurred, that precludes the 

patient from ever experiencing the event of interest, is thereby essentially ignored. However, 

there are some situations when it is necessary to account for competing events in our analysis. 

Firstly, if censoring of the competing events is suspected to be informative (i.e., not 

independent on the risk of getting the outcome as explained previously) then we cannot 

estimate the marginal survival distribution. Secondly, if interest lies in obtaining estimates in 

the presence of competing risks, for example if we want estimates that can be communicated 

to patients, then we must take estimation from the hypothetical world to the real world in 

which patients actually live. Competing risks methodology allows us to do this and thus 

provides estimates of the “real world” probabilities of death where a patient is not only at risk 

of dying from e.g., breast cancer but also from other causes of death.  

Estimates of survival that account for the fact that some patients experience a competing 

event before they experience the outcome of interest are sometimes referred to as cause-

specific cumulative incidence. Just like the marginal estimates discussed previously, the 

cause-specific cumulative incidence is often presented as probabilities of death (as opposed to 

survival probabilities). Because the cause-specific cumulative incidence are “adjusted” for 



the fact that some patients did not survive long enough to experience a cancer death the 

estimates are useful for answering questions like “What proportion of all cancer patients will 

die from their disease?” and “What proportion of the patients will die from other causes than 

the cancer?”  Answers to questions like these might be important to take into consideration 

when, for example, weighing the relative benefits of treatment versus the cost for the patient 

in terms of side effects. 

ANSWERING TWO DIFFERENT RESEARCH QUESTIONS 

Has mortality due to breast cancer improved over recent periods? (Hypothetical world) 

If we wish to assess whether breast cancer survival has improved over recent periods then we 

would usually estimate net probabilities in the hypothetical world where deaths due to other 

causes are eliminated. The reason for this is that we want to be sure that any changes we see 

in survival are actually due to improvements in the treatment of breast cancer and are not 

affected by general improvements in survival of other causes. 

Figure 2 shows the proportion of breast cancer deaths by age group and calendar period at 

diagnosis in the hypothetical world where patients can only die from breast cancer, i.e. in 

absence of competing risks. As expected the proportion of deaths from breast cancer is 

highest in the oldest age group. The estimates for ages 18-59 and 60-84 are fairly similar. It is 

clear to see, however, that breast cancer survival has improved over recent periods as the 

proportion of deaths from breast cancer has decreased with calendar period at diagnosis for 

all three age groups. For example, for those aged 85+ by 5 years after diagnosis 30% had died 

in the 1992-1996 period, 23% in the 1997-2001 period and 21% in the 2002-2007 period. 



 

Figure 2: Proportion of breast cancer deaths by age group and calendar period at diagnosis 

in the absence of competing risks (deaths due to other causes)(net probability). 

 

What is the probability of surviving a diagnosis breast cancer? (Real world) 

If we wish to be able to communicate to a patient diagnosed in a given age group and 

calendar period the probability of survival from breast cancer then estimates in a hypothetical 

world where deaths from other causes are eliminated are of little use as in the “real world” 

other causes of death play a big role particularly in the elderly. This means that we need to 

consider competing risks theory. 

Figure 3 shows the proportion of breast cancer deaths by age group and calendar period of 

diagnosis in the real world where deaths due to other causes are taken into account. Once 

again the proportion of deaths is highest in the oldest age group with similar estimates for the 

18-59 and 60-84 age groups. The “real world” survival from breast cancer has also improved 
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in recent periods for all age groups. For example, for those aged 85+ by 5 years after 

diagnosis 22% had died in the 1992-1996 period, 17.5% in the 1997-2001 period and 17% in 

the 2002-2007 period. Notice that the proportion of deaths given here for those aged 85+ are 

lower than those shown in Figure 2. This is due to the fact that we are now working in the 

real world where other causes of death are taken into account and the elderly are the most 

susceptible to these. 

  

Figure 3: Proportion of breast cancer deaths by age group and calendar period at diagnosis in the 

presence of competing risks ( deaths due to other causes) (crude probability or cumulative incidence 

function). 

 

DISCUSSION 

It is often the case that interest lies in the risk of death from a particular cause regardless of 

the effect of other causes of death. For example, net survival allows for the comparison of 
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cancer mortality between different populations where mortality due to other causes varies. 

Therefore, net survival is the probability of surviving if all competing risks were eliminated. 

If the aim of a study is to quantify the probability of a specific event in the “real world” 

where patients are not only at risk of that specific event but also from many other mutually 

exclusive events, such as death from different causes, then competing risks theory should be 

applied.  

 

Taken together, estimates of the cause-specific cumulative incidence are closely linked to 

prognostic research questions. This is in contrast to estimates of the marginal survival which 

typically attempts to answer questions that are related to underlying biological mechanisms of 

the disease, or questions that help us to identify factors that may describe the disease 

aetiology. 

 

There are limitations to any analysis that relies upon cause of death information. This 

information is usually taken from death certificates and, whilst guidelines are in place, it is 

not always easy for physicians to ensure that the cause of death on death certificates is 

accurately recorded. If there is concern about the reliability of cause of death information 

then a relative survival analysis can be considered. Relative survival is an extensively used 

method in population based cancer studies as, unlike cause-specific survival, it does not 

require accurate cause of death information [6]. We have not discussed the relative survival 

framework within this paper but further information can be found in papers by Dickman et al. 

[6], Rutherford et al. [20], Hakulinen et al. [9, 10], Sarfati et al. [21] and many others.  
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APPENDIX II

The paper “Flexible parametric modelling of cause-specific hazards to estimate cu-

mulative incidence functions” has been published in BMC Medical Research Method-

ology and can be found through the following link:

http://www.biomedcentral.com/1471-2288/13/13/abstract



APPENDIX III

The paper “Extending the flexible parametric survival model for competing risks”

has been published in the Stata Journal and can be found through the following

link:

http://www.stata-journal.com/article.html?article=st0298



APPENDIX IV

A paper titled “Risk and cause of death in 9,563 patients diagnosed with myelopro-

liferative neoplasms in Sweden between 1973 and 2005” is soon to be submitted to

the Journal of Clinical Oncology.



APPENDIX V

The paper “Modelling discharge from a neonatal unit: an application of competing

risks” has been published in Paediatric and Perinatal Epidemiology and can be

found through the following link:

http://www.ncbi.nlm.nih.gov/pubmed/23772944



APPENDIX VI

The paper “The impact of under and over-recording of cancer on death certificates

in a competing risks analysis: a simulation study” has been published in Cancer

Epidemiology and can be found through the following link:

http://www.sciencedirect.com/science/article/pii/S1877782112001282



APPENDIX VII

The paper “Flexible parametric illness death models” has been accepted for publi-

cation in the Stata Journal and will soon be available to access online.



APPENDIX VIII

The paper “Adjusting for the proportion of cancer deaths in the general population

when using relative survival: a sensitivity analysis” has been published in Cancer

Epidemiology and can be found through the following link:

http://www.sciencedirect.com/science/article/pii/S1877782111001482



APPENDIX IX

The paper “Should relative survival be used with lung cancer data?” has been

published in the British Journal of Cancer and can be found through the following

link:

http://www.nature.com/bjc/journal/v106/n11/full/bjc2012182a.html
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