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Development of a prefactored high-order compact scheme for

low-speed aeroacoustics

Ivan Spisso

A new class of cost-optimized prefactored high-order compact schemes is developed for shock-

free error-bounded aeroacoustic applications. The cost-optimization theory ofPirozzoli(2007),

based on the minimization of the computational cost for a given level of error, is applied to a

class of prefactored compact sixth-order schemes. They areextended to obtain a new class of

time-explicit cost-optimized schemes.

Appropriate high-order prefactored boundary closures arecoupled with the new interior schemes.

Their effect on the stability and accuracy of the interior schemes andtheir wave propagation

characteristics in Fourier space are investigated. More conventional non-reflecting boundary

conditions are shown to display an impedance mis-match, reducing the order of accuracy of

the overall scheme. An 11-point stencil with double precision accuracy is used as the prefac-

tored interior boundary stencil. It shows a better performance in spectral sense compared to

the equivalent ones available in literature. An eigenvalueanalysis is performed, to verify the

stability of the prefactored cost-optimized schemes coupled with the boundary closures. Char-

acteristics based boundary conditions and absorbing layers are evaluated.

A parallelization strategy, based on a finite-sized overlapping interface, is presented and weak

scalability tests results are shown.

The theoretical roll-off error of the new schemes agree well with the computed norm error

roll-off between the analytical prediction and the numerical experiments, for a monochromatic

sinusoidal test-case. There is a good agreement between thepredicted percentage cost-saving

of the one-dimensional cost function and the savings in computational time from the numerical

tests. A 22% computational cost-saving at the design level of error is achieved.

Sample applications to broadband and two-dimensional space benchmark problems demon-

strate the low error-bounded and high-order accuracy characteristics of the baseline scheme for

aeroacoustic applications.
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Chapter 1

Introduction

1.1 Context

The field of Computational AeroAcoustics (CAA) has grown rapidly during the last decade

due to a renaissance of interest in aeroacoustic phenomena driven by a more stringent aircraft

noise legislation (ACARE, 2009; UK, 2003) and the related growing demand by aerospace,

automotive and other industries for accurate and reliable noise prediction models.

CAA concerns with the accurate numerical prediction of aerodynamically generated noise as

well as its propagation and far-field characteristics. The numerical algorithms used in CAA are

used not only as noise prediction tools, but also to evaluatenew approaches for noise reduction

and control. Different aeroacoustic problems often exhibit different flow physics. As a result,

there is no single algorithm that can be used to simulate all problems with adequate resolution

and accuracy.

The major computational challenges facing CAA are (Colonius & Lele, 2004; Tam, 2004):

• Aeroacoustics problems are inherently unsteady by definition.

• Aeroacoustics problems typically involve frequencies range that spreads over a wide

bandwidth. Numerical methods able to resolve the high frequency waves with extremely

short wavelength are needed.

• Acoustic waves usually have small amplitudes. They are verysmall compared to the

mean flow. Often times, the sound intensity is five to six orders smaller. To compute

sound waves accurately, a numerical scheme has to reproducethe wave propagation

phenomena ensuring a tolerable level of numerical error.
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1. INTRODUCTION 1.1 Context

• In most aeroacoustics problems, interest is in the sound waves radiated to the far field.

This requires a solution that is uniformly valid from the source region all the way to the

measurement point at many acoustic wavelengths away. Because of the long propagation

distance, computational aeroacoustics schemes must have minimal numerical dispersion

and dissipation. Also, they should propagate the waves at the correct wave speeds and

isotropic irrespective of the orientation of the computational mesh.

• Acoustic waves decay very slowly when they reach the computational domain bound-

aries. Appropriate non-reflecting boundary conditions have to be imposed, to avoid the

reflection of the outgoing acoustic waves back into the computational domain boundary.

The imposition of stable and accurate boundary conditions is of utmost importance in

CAA.

An elucidate example of the challenges of modelling problems of sound radiation and propa-

gation is given by the trailing edge noise at low speed (Colonius & Lele, 2004; Wang & Moin,

2000). In such a case, there is an extreme spatial contrast between the hydrodynamic and

acoustic length scales. It is extremely hard to directly capture both scales in a low Mach num-

ber unsteady flow. To be able to tackle with Direct Noise Computation such class of problems

very demanding computational resources are needed. The dramatic growth in computational

resources in the last two decades has enabled the CFD practitioners to model such problems.

Any investigator developing a new CAA algorithm or applyingan existing method must en-

sure that the method adequately addresses the aforementioned challenges. Several CAA meth-

ods have emerged in last two decades (Colonius & Lele, 2004; Kurbatskii & Mankbadi, 2004;

Rocket al., 2004) and the progress on the state of art is documented in the fourproceedings of

the CAA workshops on benchmark problems (Hardin & Tam, 1996; Hardinet al., 1995, 2000).

In practice, these stringent requirements have dictated the use of high-order accurate numerical

methods, and in particular compact and optimized finite-difference scheme for the spatial dis-

cretization (Lele, 1992) and Runge-Kutta (RK) time marching schemes (Hirsch, 2007). These

schemes have, in same manner, been optimized for wave propagation to reduce the required

number of grid points per wavelength while still ensuring tolerable levels of numerical errors.

Hixon (2000) has introduced a prefactorization method to reduce the non-dissipative central-

difference stencil of the compact schemes to two lower-order biased stencils which have easily

solved reduced matrices. The advantages of these schemes over traditional compact schemes
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arise from their reduced stencil size and the independent nature of the resultant factored matri-

ces. By reducing the stencil size of the compact schemes, theprefactorization method reduces

the required number of boundary stencils, thereby simplifying boundary specification (Hixon,

1996).

Ashcroft & Zhang(2003) has extended the factorization concept to a broader class of compact

schemes using a more general derivation strategy, which combines Fourier analysis with the

notation of a numerical wavenumber. This class of optimizedprefactored schemes enhances

the wave propagation characteristics of the schemes. The proposed schemes exhibits better

wave propagation characteristics than the standard prefactored compact ones.

The rapid development of many CAA codes has drawn the attention to the need for careful

validation of the codes and comparisons of not only the accuracy of different schemes, but also

the computational speed comparison for identical problems. The issue of computational effi-

ciency of finite-difference schemes has been investigated in details byColonius & Lele(2004),

and later on bySpisso & Rona(2007). Those authors have considered the behaviour of several

types of spatial discretizations, implicitly assuming exact time integration. The error associated

with approximate time integration is usually considered separately from the spatial error.

Pirozzoli (2007) has developed a general strategy for the analysis of finite-difference schemes

for wave propagation problems, trying to involve time integration in the analysis in a natural

way. The analysis of the global discretization error has shown the occurrence of two approx-

imately independent sources of error, associated with the space and time discretizations. The

improvement of the performance of the global scheme can be achieved by trying to separately

minimize the two contributions. The analysis leads to rational and simple criteria for deriving

optimized space- and time-discretization schemes, based on the concepts of spatial and tempo-

ral resolving efficiency. A careful design of the space- and time-discretization schemes, as well

as an appropriate choice of the grid spacing and of the time step, can yield substantial computer

time savings.

1.2 Aims and objectives

The aim of the present work is to develop a novel algorithm based on the prefactoriztion of

Hixon (2000) to reduce the computational cost for a given level of error.The ideal field of ap-

plication of the newly developed code is sought to be low Machnumber error-bounded aeroa-

coustic applications.
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The objectives that has been achieved to get this aim are:

• A new prefactored cost-optimized scheme is developed to minimize the computational

cost for a given level of error. This work extends the theory of Pirozzoli (2007) to the

prefactored compact high-order schemes ofHixon (2000).

• Theoretical prediction for spatial and temporal error bounds are determined and com-

pared against benchmark classical schemes. The performance of popular schemes for

CAA applications and the cost-optimized schemes are compared in terms of computa-

tional efficiency.

• High-order boundary closures, which are accurate and stable within a given Fourier space

envelope, are coupled with the interior prefactored schemes. The stability of the pref-

actored cost-optimized schemes coupled with these boundary closures is verified by an

eigenvalue analysis.

• To aid parallelization, an appropriate interior boundary stencil is developed, which is an

improvement over the equivalent one ofHixon (2000) andAshcroft & Zhang(2003).

• The scheme has shown a good scalability, for execution onHPC (High Performance

Computing) clusters, up to 128 processors.

• A monochromatic sinusoidal test-case has verified the theoretical roll-off error against

the computedL2 norm error, indicating that the cost-optimized schemes perform accord-

ing to the design high-order accuracy characteristics for this class of problems.

• Numerical experiments have verified that the design cost-optimization of the schemes is

achieved. A 22% computational cost-saving at the design level of error is recorded. The

percentage cost-saving is envisaged to be higher for a levelof error one decade lower

than the design level of error and even more in a multi-dimensional space.

• Sample applications to broad-band and multi-dimensional space benchmark problems

(Hardinet al., 1995) have shown the low error-bounded and high-order accuracy charac-

teristics of the baseline scheme.
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1.3 Thesis outline

This thesis is divided into six chapters and it is organized as follows.

Chapter1 introduces the context (Sec.1.1), aims and objectives of this work, and the expected

outcomes (Sec.1.2).

Chapter2 reviews the numerical background that will be used onwards.Specifically, the con-

cepts of finite-difference approximation and the related concepts of numericalwavenumber are

summarized in Sec.2.1, and the time marching schemes for CAA are considered in Sec.2.2.

The theory of the cost-optimization ofPirozzoli (2007), based on the optimization of the com-

putational cost for a given error level, is reviewed in Secs.2.3and2.4. The decoupling of the

spatial and temporal error is discussed in Sec.2.5.

Chapter3 describes the numerical method used in the present work. Thegoverning equations

that will be solved in the present study, that are the Linearized Advection Equation (LAE)

and the Linearized Euler Equations (LEE), are presented. The derivation of the LEE in non-

dimensional and in characteristic form starting for the Euler equations is reported in Sec.3.1.

Section3.2 presents the interior baseline spatial discretization method used, that is a class

of tridiagonal compact schemes. The most common finite-difference schemes used in CAA

are reviewed and compared in term of computational efficiency. The spatial cost-optimization

technique, based on the maximization of the spatial resolving efficiency is presented, and it is

extend to the class of sixth-order prefactored compact scheme of Hixon (2000). Section3.3

analyses the impact on the computational cost of using different time integration schemes. The

temporal cost-optimization technique, based on the maximization of the temporal resolving

efficiency, is presented. A temporal stability and accuracy analysis of the cost-optimized is

shown. Section3.4 shows the predicted performance of the combined space and time cost-

optimization schemes for the same level of error, predicting a computational advantage at their

design level of error. Section3.5 shows the effect of the perimetrical scheme on the interior

scheme. Two methods of treating near-boundary points are presented and compared against

the equivalent boundary treatments available in literature. The first approach is a prefactored

sixth-order explicit one-sided finite-difference scheme that uses a seven-point stencil, the sec-

ond is a prefactored explicit central scheme with an 11-point stencil. The wave propagation

characteristics of these boundary closures is examined. Aneigenvalue analysis is performed

to verify the stability of the new developed cost-optimizedprefactored schemes coupled with

the selected boundary closures. Section3.6 details the artificial boundary conditions used in
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the present study. Three implementation of boundary conditions are shown: the subsonic in-

flow, the subsonic outflow and the inviscid wall. Two type of absorbing layer technique are

discussed.

Chapter4 presents the parellization strategy adopted for the serialcode, based on MPI single

domain decomposition and finite-sized overlap region. Weakscalability tests on the state-of-art

HPC cluster are presented.

Chapter5 shows the verification and validation of the numerical method against simple bench-

marks problems. Section5.1 presents the one-dimensional test-cases analysed, that are the

the monochromatic sinusoidal wave and the broadband Gaussian pulse. The performance of

the new 11-point boundary stencil in double precision accuracy is evaluated. The effect of the

boundary closure on theL2 norm error is studied using the monochromatic sinusoidal wave.

The theoretical findings of the theory of the cost-optimization are compared against numerical

tests, by measuring the effective computed elapsed time during the numerical tests using the

classical and the cost-optimized schemes. Section5.2 presents the two-dimensional test-case

analysed.

Finally, Chapter6 summarizes the numerical findings, reports the conclusionsand the main

limitations.
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Chapter 2

Numerical background

This chapter reviews the numerical background that will be used onwards. Specifically, the

concepts of finite-difference approximation and the related concepts of numericalwavenumber

are introduced in Sec.2.1, the time marching schemes for CAA are reviewed in Sec.2.2, and

the theory of the cost-optimization ofPirozzoli (2007) is summarized. The concepts of opti-

mization of the computational cost for a given error level, of the ‘spatial resolving efficiency’

and of the ‘temporal resolving efficiency’ are introduced in Sec.2.3and Sec.2.4.

2.1 Spatial discretization

Splitting the discussion of spatial and temporal discretization into two parts assumes to use the

method-of-lines, with a two-stages discretization. Stageone gives a ‘semi-discrete’ formula-

tion of the governing equations that are discrete in space and continuous in time.

In this section, the basic concepts of finite-difference approximation and the related definitions

of numerical wavenumber and group velocity are summarized.Consider the values of a func-

tion f (x) on a set ofN nodes indexed byi, with an uniformly spaced mesh along the streamwise

lengthL, as shown in Fig.2.1. The independent variable at the nodes isxi = (i − 1)h, where

h = L/(N − 1) is the uniform grid spacing, for 1≤ i ≤ N.

The finite difference approximationf ′i to the first derivative
∂ f (xi)
∂x

at nodei, using a (R+S+1)

point stencil, depends on the function values at the nodes near i (Lele, 1992) and is given by:

Q∑

j=−P

α j f ′i+ j =
1
h

S∑

j=−R

a j fi+ j +O(hn), (2.1)
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x1 x2 xi−2 xi−1 xi xi+1 xi+2 xN−1 xN

◦——–◦·················◦——–◦——–•——–◦——–◦···············◦——–◦
← h→

← − − − − − − − − − − − − − − −L − − − − − − − − − − − − − − →
f1 f2 fi−2 fi−1 fi fi+1 fi+2 fN−1 fN
◦——–◦·················◦——–◦——–•——–◦——–◦···············◦——–◦

Figure 2.1: Variation of discrete functionfi = f (xi) along uniformly discretised streamwise
lengthL.

with (S + R) ≥ 1 to be able to determine the relations among the coefficientsa j , Q ≤ S and

P ≤ R. If P = Q = 0, then the scheme is explicit. Implicit schemes, also namedPadè or

compact, have (P∨ Q) , 0, and the solution of a simultaneous system of equations is required

to determine the approximation to the derivative of all nodes 1 ≤ i ≤ N. The coefficientsα j,

a j that appear in eq. (2.1) are typically chosen to give the largest possible order of accuracy

denoted by the exponentn, for given stencil width, thus minimizing the truncation error. By

Taylor series expansion of eq. (2.1), the maximum possible exponentnmax is given by

nmax= P+ Q+ R+ S, (2.2)

provided that|R+ S| ≥ 1. Of particular interest in CAA is the measure of error in thewave

propagation characteristics of a single Fourier componentof f (x) (Colonius & Lele, 2004;

Spisso & Rona, 2007).

The finite difference equation (2.1) is a special case of the following equation with respect to

the continuous variablex:

Q∑

j=−P

α j f ′(x+ j h) =
1
h

S∑

j=−R

a j f (x+ j h) +O(hn), (2.3)

which discretizes into eq. (2.1) by settingx = xi. The Fourier transform of the functionf (x) is:

f̃ (k) =
∫ ∞

−∞
f (x) e−i k xdx, (2.4)

where i=
√
−1, k is the wavenumber, and the tilde “˜” represents the transformed function.

Given a monochromatic wave of wavelengthλ, resolved withNλ number of points per wave-

length, the equation

Nλ =
λ

h
=

2π
κ
, (2.5)
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2. NUMERICAL BACKGROUND 2.1 Spatial discretization

is used to relate the scaled wavenumber

κ = k h (2.6)

to the wavelengthλ.

According to the Nyquist-Shannon sampling theorem, the spectrum of wavelengths repre-

sentable on the discretised domain varies from

λmin = 2h, (2.7)

to

λmax= 2L. (2.8)

Equation (2.5) gives the minimum wavenumberkmin = π/L, which is related to the maximum

wavelength 2L, and the maximum wavenumberkmax = π/h, corresponding to the minimum

wavelength 2h and toNλ = 2, the so called odd-even oscillation. In the case of a broadband

signal, if the highest significant frequency component of the original signal is resolved accord-

ing to eq. (2.7), then the lower wavenumber components will be resolved down tokmin.

Taking the Fourier transform of both sides of eq. (2.3) gives:

κ̄ (κ) = k̄ (k) h =
1
i

∑S
j=−R a jei j κ

∑Q
j=−P α jei j κ

, (2.9)

where κ̄ = k̄ h is the scaled pseudo-wavenumber. The scaled wavenumber andthe scaled

pseudo-wavenumber are both non-dimensional values,κ ∈ R, 0 < |κ| ≤ π, and generally ¯κ ∈ C,

with real and imaginary partℜ[κ̄] andℑ[κ̄]. It is desirable to make ¯κ equal toκ. However, it

is impossible to build up a perfect match between ¯κ andκ over the entire wavenumber range

due to the limitation of numerical discretization. In practice, the scaled pseudo-wavenumber ¯κ

implies a certain deviation from the true scaled wavenumberκ, which increases asκ → π (for

κ = π, κ̄ = 0, see Fig.3.1). This deviation results in spatial numerical error:

e0(κ) =
∣∣∣∣∣
κ̄(κ) − κ
κ

∣∣∣∣∣ , (2.10)

where the real part represents the dispersive error

εR(κ) =

∣∣∣∣∣∣
ℜ [κ̄(κ)] − κ

κ

∣∣∣∣∣∣ , (2.11)
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and the imaginary part the dissipative error

εI (κ) =

∣∣∣∣∣∣
ℑ [κ̄(κ)]
κ

∣∣∣∣∣∣ . (2.12)

It is possible to optimize the coefficientsa j , α j of eq. (2.1) to reduce such errors, rather than

maximizing the formal order of accuracyn (Bogey & Bailly, 2004; Lele, 1992; Tam & Web,

1993). When centered difference schemes (R = S) approximate an hyperbolic system of first-

order Partial Differential Equation (PDE), it will be shown in Sec.3.2 that they disperse but do

not dissipate the Fourier components of the solution. This is an important advantage in tur-

bulence and aeroacoustic computations, wherein the phase and amplitude of the propagating

disturbances, spreading over a wide wavenumbers range, arerequired to propagate over long

distances with minimal numerical dispersion and dissipation.

The dispersion and dissipation of the Fourier components depends on the choice of the partic-

ular PDE to be modelled. The LAE

∂u
∂t
+ c
∂u
∂x
= 0, u(x, 0) = u0(x), (2.13)

which models the advection of the scalar quantityu, at constant speed of soundc, is a simple

and explicative example to elucidate the dispersive natureof the numerical approximation.

Assuming the sinusoidal monochromatic initial condition

u0(x) = û0eikx, (2.14)

the solution is determined by the method of characteristics. In fact, on infinite or periodic

domain, eq. (2.13) admits solutions of the form (Vichnevetsky, 1987):

u(x, t) = û0ei(−ωt+kx) , (2.15)

when the angular frequencyω and the wavenumberk are related by the dispersion relation

ω = c k. (2.16)

Equation (2.16) states that all Fourier components of the solution of theLAE equation travel

with the same constant phase speed
ω

k
= c. Waveforms comprised of a superposition of

modes (broadband signals) retain their shape as they propagate, and are therefore called non-

10
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dispersive (Whitham, 1974). When the spatial derivative in eq. (2.13) is approximated using

one of the finite difference schemes given in eq. (2.1), the semi-discrete approximation of the

LAE becomes
∂ui

∂t
+

c
h

S∑

j=−R

a j ui+ j = 0. (2.17)

The Fourier transform of eq. (2.17) is:

∂ũi

∂t
+ i ck̄(k) ũi = 0, (2.18)

and the dispersion relation given by eq. (2.16) in semi-discrete form becomes:

ω h
c
= κ̄(κ). (2.19)

In equation (2.17), the phase speedcp of the disturbances is now given by:

cp

c
=
ω

ck
=
κ̄(κ)
κ
, (2.20)

and therefore different Fourier components travel at different phase speeds. Such a system

is said to be dispersive, as waveforms comprised of a linear superposition of modes do not

retain their identity as they propagate. The discretized equations behave mathematically like

a dispersive wave system, even though the waves supported bythe original system ofPDEs

are non-dispersive (Tam & Web, 1993; Vichnevetsky & Bowles, 1982). The group velocitycg

is the velocity at which sinusoidal waves propagate energy in a dispersive medium (Lighthill ,

1978; Vichnevetsky, 1987). The group velocity in eq. (2.17) is given by:

cg

c
=
∂κ̄(κ)
∂κ
=

1
c
∂ω

∂k
. (2.21)

Tam (1995) showed that, when the group velocity is equal to 1, the scheme has the same

group velocity as the original system ofPDEs and the modelled waves, the so-called smooth

waves, propagate with the correct wave speed. The numericalscheme becomes dispersive in the

wavenumber range where the group velocity is not equal to 1. These waves are usually referred

in literature as spurious waves (Colonius & Lele, 2004; Tam & Web, 1993; Vichnevetsky, 1987).

A detailed analysis of the wave propagation characteristics of the centered finite difference

schemes will be presented in Sec.3.2.

11



2. NUMERICAL BACKGROUND 2.2 Time-marching schemes for CAA

2.2 Time-marching schemes for CAA

Section2.1 has considered the spatial discretization of the governingequations, by which the

PDEs are reduced to a semi-discrete system ofODEs that are continuous in time. An ap-

proximate method for the time integration is now considered. Two types of the most popular

time-marching schemes in the CAA community are the single-step Runge-Kutta methods and

multi-step Adams-Bashforth schemes. Other time-integration approaches include leap-frog

schemes and coupled space-time discretization algorithms. Runge-Kutta schemes are consid-

ered as time advancing schemes in the present work.

The time evolution equation of a general non-autonomous system of ODEs is written as:

dU
dt

= F(U(t), t), (2.22a)

U(to) = U(0), (2.22b)

whereU represents the vector containing the solution values at spatial mesh nodes and the

operatorF contains the discretization of the spatial derivatives.

An explicit p-stage, single-step, two-level, low-storage RK scheme advances the solution from

the time levelt = tn to tn + ∆t as:

U(0) = Un,

U(l) = Un + αl ∆t F
(
U(l−1)

)
for l = 1, . . . , p,

Un+1 = U(p),

(2.23)

whereαl are the coefficients of the algorithm and∆t is the time step.

If F is linear, so thatF (U) = AU, eq. (2.23) can be rewritten as:

Un+1 = Un +

p∑

j=1

γ j ∆t j ∂
jUn

∂t j
, (2.24)

where

γ j =

p∏

l=p− j+1

αl for j = 1, . . . , p. (2.25)

12



2. NUMERICAL BACKGROUND 2.2 Time-marching schemes for CAA

In the case ofp = 4, eq. (2.24) becomes:

Un+1 = Un+ α4︸︷︷︸
γ1

∆t
∂Un

∂t
+ α4α3︸︷︷︸

γ2

∆t2
∂2Un

∂t2
+α4α3α2︸  ︷︷  ︸

γ3

∆t3
∂3Un

∂t3
+α4α3α2α1︸      ︷︷      ︸

γ4

∆t4
∂4Un

∂t4
. (2.26)

The classical way to define the coefficients of an explicitp-stage RK scheme ofpth-order is

by matching the corresponding coefficients of the Taylor Series expansion ofU (tn + ∆t). This

gives:

γm =
1

m!
, m= 1, · · · , p. (2.27)

Equation (2.27) gives the maximum order of accuracy, or the minimum truncation error, which

can be obtained with apth-stage RK scheme.

Applying a temporal Fourier transform to eq. (2.24), as in AppendixA.1, the amplification

factor of the algorithm is obtained as (Hirsch, 2007):

r (κ, σ) =
Ũn+1

Ũn
= 1+

p∑

j=1

γ j

(
−i ck̄(k)∆t

) j
= 1+

p∑

j=1

γ j

(
−i σ κ̄ (κ)

) j
, (2.28)

whereσ is the Courant number:

σ =
c∆t
h
. (2.29)

The amplification factor in the case of null spatial error, for which κ̄ = κ in eq. (2.9), is:

rt

(
z, γ j

)
= 1+

p∑

j=1

γ j

(
−i σ κ

) j
= 1+

p∑

j=1

γ j

(
−i z

) j
(2.30)

with z= σκ. The stability limitzs is given by the following condition:

zs = max
{
z, |rt(z, γ j)|≤ 1

}
. (2.31)

The stability footprints are the locus of points in the complex z plane where the amplification

factor in case of null spatial error of eq. (2.30) is equal to unity, i.e.|rt = 1|. On the other

hand, the amplification factor of the exact time integrationre for the LAE is obtained in a fully

discretized domain (see eq. (2.36) in Sec.2.3) as:

re =
un+1

i

un
i

= e−i ck̄(k)∆t = e−i σ κ̄(κ). (2.32)

13



2. NUMERICAL BACKGROUND 2.3 Performance analysis of finite-difference schemes

Equation (2.28) clearly shows that the amplification factor of the finite-difference scheme is a

Maclaurin series expansion of exponential function given by eq. (2.32).

To compare the numerical and exact amplification factor, thefollowing ratio is used:

r
re
= |r |e−iδ, (2.33)

where|r | andδ are, respectively, the amplification rate and the difference in phase of the RK

scheme. The following quantities

Ed = 1− |r | (2.34)

and

Eδ =
δ

π
(2.35)

are, respectively, a measure of the temporal dissipation and dispersion (or phase) error, as

reported byBerlandet al. (2006).

Rather than using eq. (2.27), the coefficientsγm of eq. (2.25) may be chosen to minimize the

dissipation and phase error (Bogey & Bailly, 2004; Hu et al., 1996). A detailed analysis of the

stability and accuracy of the explicit RK schemes will be discussed in Sec.3.3.

Implicit RK methods are an alternative way of integrating the governing equations in CAA;

they can use large time steps, resulting in savings of computational resources. These schemes

are useful for modelling problems at a low Mach number with acoustic waves of low frequency,

such as acoustic combustion instabilities. However, they can exhibit stability problems due

to the stiffness associated with high-frequency acoustic waves that require the addition of a

small amount of numerical dissipation (Wall et al., 2002). Collis & Colonius(1997) have also

noted problems related to the stiffness associated with geometric and/or coordinate system

singularities.

2.3 Performance analysis of finite-difference schemes

The linearised advection equation (2.13) offers a good platform for testing the performance of

finite-difference schemes. The exact solution to theLAEequation given by eq. (2.15), in a fully

discretized domain at timeT = n∆t, reads as:

un
i = u(x,T) = û0 eikxe−inσκ. (2.36)

14



2. NUMERICAL BACKGROUND 2.3 Performance analysis of finite-difference schemes

The linear finite difference approximation of eq. (2.13) has the approximate solution

(Vichnevetsky & Bowles, 1982):

v(x,T) = û0 eikxrn. (2.37)

Following the work ofPirozzoli(2007), the solution error is defined as the distance inL2 norm

of the approximate solution from the exact solution at timeT:

|v(· ,T)−u(· ,T)|2=
(
1
λ

∫ x0+λ

x0

|v(x,T) − u(x,T)|2dx

)1/2

= |rn−e−inσκ| |û0|. = |rn−e−inσκ| |u0(· )|2.
(2.38)

Let δr ≡ r −e−iσκ be the difference between the approximate and the exact amplification factor;

rn can be expressed as:

rn =
(
e−iσκ + δr

)n
= e−inσκ

(
1+ δr eiσκ

)n ≈ e−inσκ
(
1+ nδreiσκ

)
, (2.39)

under the hypothesis that|δr |≪ 1; which is true for any reasonably accurate scheme and will

be checked a posteriori. So it is possible to rewrite:

rn − e−inσκ ≈ nδre−i(n−1)σκ (2.40)

and finally, remembering that by definition|e−iσκ|= 1,

|rn − e−inσκ|≈ n· |r (κ, σ) − e−iσκ|. (2.41)

Let E be the relativeL2 error norm at timeT:

E =
|v(· ,T) − u(· ,T)|2

|u0(· )|2
= (ckT) · |r (κ, σ) − e−iσκ|

σκ
, (2.42)

wheren = (ckT) / (σκ) from eqs. (2.16) and (2.6).

The computational costC of solving numerically eq. (2.37) is assumed to be proportional

to (Colonius & Lele, 2004):

• the total number of points,L/h;

• the number of operations per nodeNop required by the spatial discretization;

• the number of RK stages,p;

• the number of time stepsn = T/∆t;

15



2. NUMERICAL BACKGROUND 2.4 Cost-performance trade-off for CAA algorithms

this gives:

C ∝ pNopTL
1
∆t h
= pNop · (ckT) · (kL) · 1

σκ2
. (2.43)

In equations (2.42) and (2.43), the non-dimensional groupsckT andkL are, respectively, the

number of wavelengths travelled by a wave of phase speed in a time intervalT and the number

of wavelengths contained in the computational domain. Their values are defined by the initial

flow condition of eq. (2.14) and by the extent of the computational domain and are independent

from the space and time discretization. The space and time discretization affectsE andC

throughp, Nop, andr (κ, σ). The analysis of the performance of finite-difference schemes for

a given physical problem (i.e. for given values of the non-dimensional groupsckT, kL) can be

performed in terms of normalized errore(κ, σ) and one-dimensional cost functionsc1(κ, σ):

e(κ, σ) ≡ E
(ckT)

=
|r (κ, σ) − e−iσκ|

σκ
, (2.44a)

c1(κ, σ) ≡ C
(ckT) · (kL)

= pNop
1

σκ2
. (2.44b)

2.4 Cost-performance trade-off for CAA algorithms

Optimizing the performance of a given scheme (i.e. for givenvalues ofp, Nop), for a given

problem (i.e. for a given value ofckT, kL) amounts to requiring that the computational cost is

minimum for a given error level. This can be done by specifying a target level for the relative

error, sayǫ, which implies

e(κ, σ) =
ǫ

ckT
≡ ǫ̃, (2.45)

and finding a pair of values(κ∗(ǫ̃), σ∗(ǫ̃)) that minimize the cost metric and that satisfy both

the stability limitation|r(κ, σ)|≤ 1, ∀κ and the limitation on the maximum value of Courant

numberσ ≤ σmax:

σmax=
zs

max
κ∈(0,π)

κ̄ (κ)
, (2.46)

which depends upon both the spatial and temporal discretizations.

The interpretation of the optimization problem is made particularly simple by inspection of

the iso-lines of the normalized errore(κ, σ) and the normalized cost functionc(κ, σ) in the

(κ, σ) plane, as done in Fig.2.2for a sixth-order compact spatial discretization scheme coupled
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Figure 2.2: Iso-contours of normalized ‘local’ error function e(κ, σ) (solid lines) and normal-
ized one-dimensional cost function 1/(σκ2) (dashed lines), forC1122/RK4 scheme.

with a four-stage, fourth-order time integration, labelled asC1122/RK4. In this example, the

upper boundary corresponds toσmax = 1.422. For any specified value of ˜ǫ, a pair of values

(κ∗(ǫ̃), σ∗(ǫ̃)) is sought to minimize
1

σκ2
and which corresponds to the tangency point of the

two families of curves (iso-error and iso-cost). The corresponding normalized one-dimensional

‘optimal’ cost is given by:

c̃1(ǫ̃) = c1
(
κ∗(ǫ̃), σ∗(ǫ̃)

)
= pNop

1

σ∗κ∗2
. (2.47)

For theC1122/RK4 scheme, Fig.2.2shows the ‘optimal’ working condition, with a black dot,

relative to ˜ǫ = 10−4, given by the pair of values (κ∗(ǫ̃), σ∗(ǫ̃)) = (0.653, 0.449). The associated

‘optimal’ normalized cost is ˜c1(ǫ̃) = 187.77.

From equations (2.44a) and (2.44b), the normalized cost function is concave and the normal-

ized error function is (almost always) convex in the [κ, σ] plane. In addition, since the iso-cost

lines are steeper than the iso-error lines at largeσ, it follows that for any iso-error curve there

is a unique point in which a curve of the iso-cost family is tangent to it (Bernardini & Pirozzoli,

2009).

Dealing with nonlinear propagation problems of broadband signals requires to resolving a

wavenumber spectrum of finite width, say|κ|≤ κ̌ and propagation velocities|c|≤ č, which
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2. NUMERICAL BACKGROUND 2.4 Cost-performance trade-off for CAA algorithms

implies κ̌ = ǩhandσ̌ = č∆t/h. The formulas for the error and cost metric in this case read as:

E =
(
čǩT

)
· |r (κ, σ) − e−iσκ|

σ̌κ̌
, (2.48)

C ∼
(
čǩT

)
·
(
ǩL

)
· č1 (κ̌, σ̌) ; (2.49)

with

č1(κ̌, σ̌) = pNop
1

σ̌κ̌2
, (2.50)

beingn = (čǩT)/(ǩL).

The accuracy requirement enforced in this case dictates that the relative errorE is less than the

target level ˜ǫ used as a threshold∀ (κ, σ):

E ≤ ǫ̃ = ǫ

čǩT
, ∀ (κ, σ) ∈ [0, κ̌] × [0, σ̌] . (2.51)

The normalized error reads as:

ě(κ̌, σ̌) ≡ 1(
čǩT

) · max
(κ,σ)∈[0,κ̌]×[0,σ̌]

E (2.52)

and substituting eq. (2.48) in eq. (2.52) follows:

ě(κ̌, σ̌) =
1
σ̌κ̌
· max

(κ,σ)∈[0,κ̌]×[0,σ̌]
|r (κ, σ) − e−iσκ|≤ ǫ̃. (2.53)

The only change with respect to the monochromatic wave propagation problem of Sec.2.3 is

the replacement of the normalized error functione(κ, σ) of eq. (2.45) with ě(κ̌, σ̌), as defined in

eq. (2.53), which represents the maximum of the normalized errore in the entire range of rele-

vant wavenumbers and Courant numbers. The iso-contour lines of the normalized ‘local’ error

functione(κ, σ) and ‘global’ error function ˇe(κ̌, σ̌) for C1122/RK4 are reported in Fig.2.3. The

‘global’ error (dotted lines) differs from the ‘local’ one (dashed lines) only near the points of

local extrema of ˇe(κ̌, σ̌). The interpretation of Fig.2.3goes along the same lines as for Fig.2.2.

The accuracy requirement of eq. (2.51) implicitly assumes the same importance for all flow

scales. In some situations, however, such as for the numerical simulation of tonal noise aeroa-

coustic problems of turbulent flows, one may wish to accurately compute the energy containing

scales responsible for the tonal noise generation and relaxthe targeted error of smaller, less en-

ergetic length scales.Pirozzoli (2007) suggested that this might be achieved by introducing an

appropriate weighing function in the wavenumber space in the definition of the error, similarly
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Figure 2.3: Iso-contours of normalized ‘local’ error function e(κ, σ) (dashed lines) and ‘global’
error functioně(κ̌, σ̌) (dotted lines), forC1122/RK4 scheme.

to what was done in past byTam & Web(1993) and Bogey & Bailly (2004) to minimize the

dispersion error in wavenumber space.

The effect of the number of spatial dimensions can be partially accounted for in the analysis by

assuming again theLAE as the working model for a monochromatic plane wave propagating

in an nD space. Lele (1992) has shown that the discrete anisotropic propagation properties

depend on the alignment of the wavefront with the numerical grid and on the spatial resolution

(or number of points per wavelengthNλ). The well resolved waves are essentially isotropic,

whereas short waves are anisotropic with the greatest erroralong±45◦ diagonals to the mesh

lines, as reported in the polar plot of anisotropy byColonius & Lele(2004). By assuming: (i)

an uniform regular Cartesian mesh and (ii) wave propagationalong the grid lines, it is possible

to follow the same one-dimensional analysis from eqs. (2.49) to (2.53) with a new definition of

the cost function that takes in account the total number of points, which is nowV/hnD , where

V is the volume of the computational domain andnD is the number of spatial dimensions. This

gives:

C ∼ (čǩT)· (ǩnDV)· čnD(κ̌, σ̌) (2.54)
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2. NUMERICAL BACKGROUND 2.5 Spatial and temporal error anal ysis

where the normalized cost function for annD dimensional problem is given by:

čnD(κ̌, σ̌) = pNop
1

σ̌κ̌nD+1
, (2.55)

in place of eqs. (2.49) and (2.50). Figure2.4 shows that the optimal values ofκ andσ for a

given normalized error level ˜ǫ, (κ∗(ǫ̃), σ∗(ǫ̃)) do not significantly differs from those found in the

one-dimensional analysis. The ‘optimal’ value relative tothe normalized two-dimensional iso-

cost function for a target error ˜ǫ = 10−4 is reported with a blue dot located at (κ∗(ǫ̃), σ∗(ǫ̃)) =

(0.694, 0.388). The associated ‘optimal’ normalized cost is ˜c2(ǫ̃) = 276.75. This location,

shown in the detailed enlargement of Fig.2.4(a) in Fig.2.4(b), is very close to that of the opti-

mal pair (κ∗(ǫ̃), σ∗(ǫ̃)) = (0.653, 0.449) obtained in one-dimensional case, reported with a black

dot, which corresponds to ˜c1(ǫ̃) = 187.77. As consequence, schemes capable of operating at

higher values of reduced wavenumberκ are more advantageous for multi-dimensional simula-

tions, because of the increased importance ofκ in the cost metric of eq. (2.55). Accordingly,

high-order and optimized schemes are expected to yield a lower computational cost over low-

order ones for a target level of error. The validity of these arguments will be further discussed

in Sec.3.2.2, where the effect of the number of spatial dimensions is analysed.

2.5 Spatial and temporal error analysis

The ‘local’ normalized error functione(κ, σ) defined in eq. (2.44a) can be readily related to the

error definitions reported byLele (1992) andHu et al. (1996). Specifically, forσ → 0, it is

possible to rewrite:

r(κ, σ) = 1− iσκ̄(κ) +O(σ2), (2.56a)

e−iσκ = 1− iσκ +O(σ2). (2.56b)

Substituting equations (2.56a) and (2.56b) in eq. (2.44a), this becomes eq. (2.10). Therefore,

e(κ, σ)
σ→0

≡ e0(κ), (2.57)

which is the definition of the relative error in wavenumber space used byLele(1992) assuming

zero time integration error.Lele (1992) considered in his analysis only centered schemes, for

which κ ∈ R, while the present definition equally applies to upwind/backwind schemes, for
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Figure 2.4: Fig.2.4(a), Iso-contour level ˜ǫ = 10−4 of normalized ‘local’ error function (blue
continuous line) versus normalized cost function in one (black long dashed lines) and two
(black dotted lines) dimensions for theC1122/RK4 scheme. Fig.2.4(b), Zoom of the rectan-
gular area reported in Fig.2.4(a).
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which κ ∈ C.

On the other hand, by setting ¯κ = κ, as reported in eq. (2.30) by assuming zero spatial error, the

definition of time discretization error used byHu et al. (1996) is obtained:

e(κ, σ)
κ̄=κ

≡ et(z) =

∣∣∣∣
∑p

j=0 (−i z) j − e−iz
∣∣∣∣

z
=

∣∣∣∣rt

(
z, γ j

)
− e−iz

∣∣∣∣
z

, (2.58)

Hu et al. (1996) then proceed to squaring the numerator of eq. (2.58) and adjusting the last RK

coefficient by minimizing it as a function ofz.

Figure2.6(a) shows the error functions from eqs. (2.44a), (2.57), and (2.58) on the [κ, σ] plane.

The error functions are derived from the same C1122/RK4 scheme as in Figs.2.2and2.3. For

small Courant numbers, at whichσ → 0, the error from eq. (2.57) in Fig. 2.6(a)(black dotted

lines) overlaps that given by eq. (2.57) (long-dashed dark blue lines). Therefore, atσ→ 0, the

error is uniquely function of the scaled wavenumberκ. Asσ increases, the dotted black curves

start to bend, eventually becoming equilateral hyperbolas, and the error becomes function of

z= σκ, as given in eq. (2.58) (long-dashed light blue lines). Figure2.6(a)shows that, to a good

approximation

e(κ, σ) ≈ max(e0(κ), et(z)). (2.59)

In a similar way, the ‘global’ normalized error function ˇe(κ̌, σ̌) defined in eq. (2.53) approxi-

mates to

ě(κ̌, σ̌) ≈ max(ě0(κ̌), ět(ž)), (2.60)

where the ‘global’ spatial error ˇe0(κ̌) is given by

ě0(κ̌) ≡ ě(κ̌, σ̌)
σ→0

≡ 1
κ̌

max
0≤κ≤κ̌

|κ̄(κ) − κ| , (2.61)

and the ‘global’ temporal error ˇet(ž) is given by

ět(ž) ≡ ě(κ̌, σ̌)
κ̄=κ

≡ 1
ž

max
0≤z≤ž

∣∣∣∣
p∑

j=0

(−i z) j − e−iz
∣∣∣∣, (2.62)

wherež = σ̌κ̌. Figure2.6(b) shows that eq. (2.60) is a good approximation of the global error

from eqs. (2.61) and (2.62), following the same arguments as in Fig.2.6(a).

The condition of optimal scheme performance for a given error level ǫ̃ implies the condi-

tion of tangency of the associated iso-error curve with the normalized iso-cost curves ˇcnD ∼
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Figure 2.5: Iso-contour of normalized ‘local’ error function ǫ̃ = 10−4 (solid black lines) and
normalized one-dimensional cost function 1/(σκ2) (red solid lines), forC1122/RK4 scheme.
The long-dash dark and light blue lines represent the corresponding approximation given re-
spectively by eq. (2.57) and (2.58).

1/(σ̌κ̌nD+1), which occurs near the bend of ˇe(κ̌, σ̌) = ǫ̃ curve, which, according to the approxi-

mation (2.60), is realized when

ě0(κ̌) = ět(ž) = ǫ̃. (2.63)

Figure2.5 clearly shows the concepts aforementioned. Figure2.5 highlights the iso-contour

of the normalized ‘local’ error ˜ǫ = 10−4 by black solid line and the corresponding normalized

one-dimensional cost function 1/(σκ2) with the red solid lines, for theC1122/RK4 scheme.

The ‘exact’ cost-optimal condition is obtained as the tangency point between the two curves,

and it is reported by the black circle. The long-dashed dark and light blue lines represent the

corresponding approximation given respectively by eqs. (2.57) and (2.58). The condition of

tangency of the iso-error and iso-cost curves for the normalized error level ˜ǫ = 10−4 under the

spatial and temporal approximation is shown by the light blue circle, and it is realized when

e0(κ) = et(z) = ǫ̃. (2.64)
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2. NUMERICAL BACKGROUND 2.5 Spatial and temporal error anal ysis

Figure2.5 shows, by visual inspection, that the approximation of eq. (2.59) is valid, due the

proximity of the black and blue circle.

2.5.1 Spatial and temporal resolving efficiency

The problem of determining the optimal performance of a given scheme can be approximately

decoupled into two sub-problems, by considering the influence of space and time discretization

separately, by: (i) computing the optimal reduced wavenumber according to

κ̌∗(ǫ̃) ≡ ě−1
0 (ǫ̃) (2.65)

and (ii) computing the optimal Courant number by:

σ̌∗(ǫ̃) = ž∗(ǫ̃)/κ̌∗(ǫ̃); ž∗(ǫ̃) ≡ ě−1
t (ǫ̃); (2.66)

The quantities ˇκ∗(ǫ̃) and ž∗(ǫ̃) will be denoted, respectively, as ‘spatial resolving efficiency’

and ‘temporal resolving efficiency’ for a given value of normalized error ˜ǫ. The associated

‘optimal’ normalized cost is

c̃(ǫ̃) = cnD(κ̌∗(ǫ̃), ž∗(ǫ̃)) = pNop
1

σ̌∗κ̌∗nD+1
. (2.67)

Equations (2.59) and (2.63) allow to consider the spatial and temporal discretizationseparately

in the present analysis to develop cost-optimized schemes.Specifically, cost-optimized finite-

difference schemes for a specific target level ˜ǫ can be designed by trying to maximize ˇκ∗(ǫ̃) and

ž∗(ǫ̃) in eq. (2.67), which amounts to optimize separately the spatial and temporal discretization

for the same target error level. The ‘spatial resolving efficiency’ and the ‘temporal resolving

efficiency’ are equivalent in case of single and multi-scale problem, as shown in Fig.2.6. In

fact, the ‘local’ error functione(κ, σ) differs from the ‘global’ one ˇe(κ̌, σ̌) only near the points

of local extrema of ˇe(κ̌, σ̌), which does not affect the approximate decoupling of space and time

discretization. These arguments will be used in Secs.3.2.3and3.3.3to separately optimize re-

spectively spatial and temporal scheme for a specific targeterror level ˜ǫ.
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Figure 2.6: Fig.2.6(a), Iso-contours of normalized ‘local’ error functione(κ, σ) (black dotted
lines); long-dashed dark and light blue lines represent thecorresponding approximation given
respectively by eq. (2.57) and (2.58) for C1122/RK4 scheme; filled black dots indicates the
‘optimal’ working condition. Fig.2.6(b), Iso-contours of normalized ‘global’ error function
ě(κ̌, σ̌); long-dashed light and dark blue lines represent the corresponding approximation given
respectively by eq. (2.61) and (2.62) for C1122/RK4 scheme.
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Chapter 3

Numerical Method

This chapter presents the numerical method used in the present work.

Section3.1reports the governing equations that will be solved in the present study, that are the

LAE and the LEE. The derivation of the LEE in non-dimensionaland in characteristic form

starting from the 2-D strong conservative form of the Euler equations is reported.

Section3.2introduces the spatial discretization method used. The most common finite-difference

schemes used in CAA are reviewed and compared in term of computational efficiency. The

effect of the spatial discretization and the number of physicaldimensions on the computa-

tional cost is analysed. The spatial cost-optimization technique, based on the maximization of

the spatial resolving efficiency κ̌∗ for a given value of normalized error ˜ǫ, is presented. The

cost-optimized schemes are extended to the class of sixth-order prefactored compact schemes

of Hixon (2000).

Section3.3 analyses the impact on the computational cost of using different time integration

schemes for a two dimensional problem for various spatial discretization schemes. The tempo-

ral cost-optimization technique, based on the maximization of the temporal resolving efficiency

ž∗ for a given value of normalized error ˜ǫ, is presented.

Section3.4shows the predicted performance of the combined space and time cost-optimization

for the same level of error. A computational advantage is predicted by using cost-optimized

scheme to model wave propagation problems at their design operational point.

Section3.5discusses the effect of the perimetrical scheme on the interior scheme. Two methods

of treating near-boundary points are presented and compared against the boundary treatments

of Hixon (2000) andAshcroft & Zhang(2003). The first approach is a prefactored sixth-order

explicit one-sided finite-difference scheme that uses a seven-point stencil, the second isa pref-
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actored explicit central scheme with an 11-point stencil. The wave propagation characteristics

of these boundary closures are examined. An new 11-point stencil with double precision ac-

curacy is derived. It shows a better performance in spectralsense compared to the equivalent

ones ofHixon (2000) andAshcroft & Zhang(2003).

An eigenvalue analysis is performed to verify under which conditions the prefactored cost-

optimized schemes coupled with the selected boundary closures generate a numerically stable

algorithm.

Section3.6 details the artificial boundary conditions used in the present study. Three imple-

mentations are shown: the subsonic inflow, the subsonic outflow and the inviscid wall. Two

type of absorbing layer technique are discussed. The first one is the absorbing layer technique

by Richardset al. (2004), that directly forces the solution to a target flow state within the ab-

sorbing layer. The second one is a zonal characteristic based boundary condition proposed

by Sandberg & Sandham(2006).

Section5.3summarizes the work presented and highlights the main achievements of this chap-

ter.

The code for the computational efficiency comparison used in Secs.3.2.2and3.3.1has been

written by the author usingMatlab®. The serial finite-difference code has been written, from

scratch, by the author inFortan 90. The parallel version of the code, reported in Ch.4, has

been written together with Dr. P. Ghillani (I. Spisso & Rona, 2009).
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3. NUMERICAL METHOD 3.1 Governing Equations

3.1 Governing Equations

This work concerns with the application of high-order finite-differences to compressible aeroa-

coustic problems. Specifically, numerical predictions aresought of sound generated aerody-

namically by flow interaction with solid boundaries. This class of problems is governed by the

Linearised Euler Equations (LEE). The LEE are first-order coupled partial differential equa-

tions in space and time. This system of hyperbolic equations, are a multi-variable version of

the LAE. Therefore, the numerical method is first tested against benchmark solutions of the

LAE of eq. (2.13) and then further tested against problems governed by the LEE.

The following Secs.3.1.1and3.1.2report the derivation of the the LEE in non-dimensional

and characteristic form starting from the Euler equations.

3.1.1 Derivation of the quasi-linear Euler Equations

The inviscid Euler equations are derived by the applicationof the principles of conservation of

mass, momentum, and energy to an arbitrary volume of inviscid fluid. They derives from the

Navier-Stokes equations for a calorically perfect gas withzero viscosity and heat conduction

terms (Andersonet al., 1984). The 2-D Euler equations are commonly recast instrong or

vectorconservative form suitable for numerical computation as

∂Q
∂t
+
∂E
∂x
+
∂F
∂y
= 0, (3.1)

whereQ, E andF

Q =



ρ

ρu

ρv

ρet



, E =



ρu

ρu2 + p

ρvu

ρ (et + p) u



, F =



ρv

ρuv

ρv2 + p

ρ (et + p) v



(3.2)

are, respectively, the vector of conservative variables and the vectors of the inviscid fluxes,

et = p/[(γ − 1)ρ] + (u2+ v2)/2 is the total energy per unit mass andγ is the ratio of the specific

heats.

The Euler equations have several important mathematical properties that are illustrated in

the classical fluid dynamics textbook (Hirsch, 2007). The hyperbolicity allows to re-cast the

system of equations (3.1) in characteristic form, meaning that the projection of theequations
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in any spatial direction gives rise to a system of coupled wave-like equations. This property

will be used to re-write the system of equations (3.1) as a multi-variable version of theLAE as

reported in following Sec.3.1.2.2.

The system of equations (3.1) can be written in the so-calledquasi-linearform, where the spa-

tial derivatives of the flow variables are pre-multiplied bythe Jacobian matrices as follow

∂U
∂t
+ A
∂U
∂x
+ B
∂U
∂y
= 0, (3.3)

whereU, A andB

U =



ρ

u

v

p



, A =



u ρ 0 0

0 u 0 1/ρ

0 0 u 0

0 ρc2 0 u



, B =



v 0 ρ 0

0 v 0 0

0 0 v 1/ρ

0 0 ρc2 v



(3.4)

are, respectively, the vector of primitive variables and the Jacobian matrices.

The system of equations (3.3) lead to results equivalent to the ones from the system of equa-

tions (3.1) when the flow field does not contain strong variations in the flow state (i.e. smooth

flows), and has the computational advantage of requiring thedifferentiation with respect to the

various space directions on the same vector of primitive variablesU, instead of computing the

derivatives sequentially on the vectorsE andF. The quasi-linear forms of the Euler equations

allow for the definition of thelinearizedformulation that is often used in CAA.

3.1.2 Linearized Euler Equations

The system of equations (3.3) is linearized with respect to a reference state given by theuni-

form mean densityρ0, pressurep0, x-velocity u0 and y-velocityv0, so that the flow state is

given by the sum of the reference state plus its small perturbation()′ about the mean:
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3. NUMERICAL METHOD 3.1 Governing Equations



ρ = ρ0 + ρ
′

u = u0 + u′

v = v0 + v′

p = p0 + p′.

(3.5)

The governing equations can be written in dimensional non-conservative form as

∂U
∂t
+ A0

∂U
∂x
+ B0

∂U
∂y
= 0 (3.6)

where the constant-coefficient matricesA0 andB0 are

A0 =



u0 ρ0 0 0

0 u0 0 1/ρ0

0 0 u0 0

0 ρ0c2
0 0 u0



, B0 =



v0 0 ρ0 0

0 v0 0 0

0 0 v0 1/ρ0

0 0 ρ0c2
0 v0



. (3.7)

In this case, the Jacobian matricesA0, B0 do not depend on the actual state of the flow but

on the reference state that is considered constant throughout the computation at any point of

the field. This particular form of the equations has the computational advantage of avoiding to

update the Jacobian matrices at each time step. They can be computed and stored in memory

once and for all at the beginning of simulation.

This linearised form of the Euler equations suits only certain classes of problems in which the

perturbations are of small amplitude so that the non-lineareffect can be considered negligible

and the mean value of the flow variables does not vary in time. This is the class of problems

typically involved in CAA.
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3.1.2.1 Non-dimensional form

By using the following length scales:

∆x = ∆y = length scale

c0 (ambient sound speed)= velocity scale

ρ0 = density scale

(3.8)

and assuming a calorically perfect gas, for which

c2
0 =
γp0

ρ0
, (3.9)

it is possible to define the following non-dimensional variables:

ρ∗ =
ρ′

ρ0
x∗ =

x
∆x

y∗ =
y
∆x

t∗ = t
c0

∆x
u∗ =

u′

c0
v∗ =

v′

c0
Mx =

u0

c0
My =

v0

c0
p∗ =

p′

ρ0c2
0

,(3.10)

whereMx andMy are, respectively, the constant mean flow Mach number components in thex

andy directions. Consistently with the normalized length scales in (3.8), pressure is normalized

by ρ0c2
0 and time by∆x/c0.

Equation (3.6) can be recast in the non-dimensional form

∂U∗

∂t∗
+ A∗0

∂U∗

∂x∗
+ B∗0

∂U∗

∂y∗
= 0, (3.11)

where the vectorU∗, and the matricesA∗0 andB∗0 are given by:

U∗ =



ρ∗

u∗

v∗

p∗



, A∗0 =



Mx 1 0 0

0 Mx 0 1

0 0 Mx 0

0 1 0 Mx



, B∗0 =



My 0 1 0

0 My 0 0

0 0 My 1

0 0 1 My



. (3.12)
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3.1.2.2 Characteristic form

Consider the boundaries located atx1 andxN as shown in Fig.2.1. The governing equations of

eq. (3.11) can be re-cast as

∂U∗

∂t∗
+ A0

∗ ∂U
∗

∂x∗
+ C = 0 C = B∗0

∂U∗

∂y∗
, (3.13)

where theC vector contains no partial derivative in eitherx∗ or t∗.

TheA∗0 matrix can be decomposed by Principal Component Analysis solving the characteristic

equationdet(A∗0 − λi I ) = 0. This givesA∗0 = SΛS−1, whereΛ is a diagonal matrix with

elements:

λ1 = Mx − 1, λ2 = λ3 = Mx, λ4 = Mx + 1, (3.14)

andS and its inverseS−1 are, respectively, the right and left eigenvector matrices, as shown

later.

The system of equation (3.11) is hyperbolic, since the eigenvalues ofA∗0 andB∗0 (see Sec.A.2)

are real and ordered so thatλ1 ≤ λ2 ≤ . . . λm (Thompson, 1990). The eigenvaluesλ1 and

λ4 are the non-dimensional velocities of sound waves moving inthe negative and positivex

directions;λ2 is the convection velocity (the speed at which entropy wavestravel), whileλ3

is the velocity at which thev-velocity is advected along they-direction by a vorticity wave.

The characteristic velocities are constant because they derive from the linearized matrixA0,

which is a constant-element matrix. The algebraic multiplicity, that is the multiplicity of the

eigenvalue as a root of the characteristic equation, of the eigenvaluesλ1 andλ4 is equal to 1;

the algebraic multiplicity of the double eigenvalueλ2 = λ3 is equal to 2.

The corresponding left eigenvectorslTi are derived by solving the linear system of coupled

equationslTi · (A0 − λi I ) = 0, for i = 1, . . . , 4. This gives

lT1 = (0,−1, 0, 1) (3.15a)

lT2 = (1, 0, 0,−1) (3.15b)

lT3 = (0, 0, 1, 0) (3.15c)

lT4 = (0, 1, 0, 1). (3.15d)

The third relation (3.15c) is derived by settinglT3 ·(A0 − λ3I )2 = 0, with the exponent of the term

(A0 − λ3I ) set to 2, to take into account for the algebraic multiplicityof the double eigenvalue
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λ2 = λ3.

The amplitude of the characteristic wavesLi ’s, associated with each characteristic velocityλi,

are

Li = λi l
T
i
∂U∗

∂x∗
. (3.16)

Substituting forlTi in eq. (3.16) gives

L =



L1

L2

L3

L4



=



λ1

(
∂p∗

∂x∗
− ∂u

∗

∂x∗

)

λ2

(
∂ρ∗

∂x∗
− ∂p

∗

∂x∗

)

λ3
∂v∗

∂x∗

λ4

(
∂p∗

∂x∗
+
∂u∗

∂x∗

)



, (3.17)

whereL1 andL4 are, respectively, the left and right going acoustic wave amplitudes,L2 is the

entropy wave amplitude, andL3 is the shear wave amplitude.

The system of linear equations (3.17) can be solved for
∂U∗

∂x∗
to give thex-derivatives of the

primitive variables:

∂ρ∗

∂x∗
=

L2

λ2
+

1
2

(
L4

λ4
+

L1

λ1

)
(3.18a)

∂u∗

∂x∗
=

1
2

(
L4

λ4
− L1

λ1

)
(3.18b)

∂v∗

∂x∗
=

L3

λ3
(3.18c)

∂p∗

∂x∗
=

1
2

(
L4

λ4
+

L1

λ1

)
. (3.18d)

TheSmatrix and its inverse are given by:

S−1 =



lT1

lT2

lT3

lT4



=



0 −1 0 1

1 0 0 −1

0 0 1 0

0 1 0 1



, (3.19)
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S =
(

r1 r2 r3 r4

)
=



1
2

1 0
1
2

−1
2

0 0
1
2

0 0 1 0
1
2

0 0
1
2



, (3.20)

with S−1S = I , andlTi · r j = δi j , wherer j is the j-th right eigenvector andδi j is the Kronecker

delta function.

Thed vector is given by:

d =



d1

d2

d3

d4



= S · L =



1
2

1 0
1
2

−1
2

0 0
1
2

0 0 1 0
1
2

0 0
1
2





L1

L2

L3

L4



=



L2 +
1
2

(L1 + L4)

1
2

(L4 − L1)

L3

1
2

(L4 + L1)



. (3.21)

The non-dimensional governing equation (3.11) can be now re-written as

∂U∗

∂t∗
+ d + B∗0

∂U∗

∂y∗
= 0, (3.22)

or in extended form:

∂ρ∗

∂t∗
+

[
L2 +

1
2

(L1 + L4)

]
+My
∂ρ∗

∂y∗
+
∂v∗

∂y∗
= 0 (3.23a)

∂u∗

∂t∗
+

[
1
2

(L4 − L1)

]
+My

∂u∗

∂y∗
= 0 (3.23b)

∂v∗

∂t∗
+ L3 +My

∂v∗

∂y∗
+
∂p∗

∂y∗
= 0 (3.23c)

∂p∗

∂t∗
+

[
1
2

(L4 + L1)

]
+My
∂p∗

∂y∗
+
∂v∗

∂y∗
= 0 (3.23d)

The system of equations (3.23) is an uncoupled system of linearized equations alongy-constant

lines, which can be solved asODEs at thex boundaries. The resulting equations allow to in-

terpret the changes in flow state as a linear combination of one-dimensional waves normal to

the x boundary, by considering the flow locally (i.e. at boundaries nodes) as inviscid and one-

dimensional. The relations obtained by this method are not ‘physical’ conditions but should

be viewed as compatibility relations between the choices made for the physical boundary con-
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3. NUMERICAL METHOD 3.1 Governing Equations

ditions and the amplitudes of waves crossing the boundary. This development has implicitly

assumed that the waves that are arriving at the boundary are 1-D waves with no curvature

and that these waves are arriving normal to the boundary. In realistic flows, the waves are

multi-dimensional, with an unknown curvature. Thus, whilethis approximation gives a clear

guideline as to which physical quantities must be specified by the CFD practitioner along the

computational domain boundaries, the actual form of these waves (the eigenvectors) is not gen-

erally accurate (Colonius, 2004). The formulation of eq. (3.23) will be used in Sec.3.6.1to

formulate approximate 1-D boundary closures. Section3.6 will present the absorbing layer

technique that will be used in the present work together withthe characteristic formulation of

eq. (3.23).

Alternative approaches to infer the flow state at the computational boundaries are the Asymp-

totic Expansion Method (Tam & Web, 1993) and Perfectly Matched Layer (Hu, 1996). An

extensive review of the the artificial boundary condition for the simulation of inflow, outflow

and far-field problems for compressible flow is given byColonius(2004).
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3. NUMERICAL METHOD 3.2 Spatial Discretization

3.2 Spatial Discretization

3.2.1 Interior scheme

A class of tridiagonal compact schemes with five point stencils C1122 is obtained by setting

(P = Q = 1, R= S = 2) in eq. (2.1). This gives:

α1 f ′i−1 + f ′i + α1 f ′i+1 =
1
h

(a−2 fi−2 + a−1 fi−1 + a1 fi+1 + a2 fi+2) +O(h4), (3.24)

where the coefficients are given by:



a2 = −a−2 =
1
12

(4α1 − 1)

a1 = −a−1 =
1
3

(α1 + 2)
(3.25)

The leading term of truncation errorO(h4) in eq. (3.24) is given by 4
5! (3α1 − 1) h4 f (5), where

f (5) is
d5 fi
dh5

.

Asα1→ 0, this family merges into the well-known fourth-order explicit central finite-difference

C0011 scheme. Similarly, forα1 = 1/4, the classical PadèC1111 scheme is recovered. By

setting

α1 = 1/3, a1 = 7/9, a2 = 1/36, (3.26)

the leading term of the truncation error order vanishes and the scheme is formally sixth-order

accurate, with a truncation error of4
7!h

6 f (7) (Lele, 1992).

Figure3.1shows the dispersive characteristics of a selection of centred classical and optimized

finite-difference schemes, the coefficients for which are reported in Tabs.3.1and 3.2. Because

these schemes are centred,S = R in eq. (2.1). Taking P = Q in eq. (2.1), equation (2.9)

becomes

κ̄ (κ) =

∑S
j=1 2a j sin(jκ)

1+
∑Q

j=1 2α j cos(jκ)
, (3.27)

so that ¯κ (κ) ∈ R and the spatial error is purely dispersive, i.e.e0(κ) ≡ εR(κ).

The range of wavenumbers over which the scaled pseudo-wavenumberκ̄ approximates the ex-

act differentiation within a specified error tolerance defines the set of well-resolvedwaves, also

named smooth, physical or‘p’ waves; the remaining right-hand side of the spectrum in Fig.3.1

is populated bypoorly-resolved, spurious, numerical or‘q’ waves. It is evident from Fig.3.1

that the high-order schemes (fourth order and higher) have abetter spectral resolution com-
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Figure 3.1: Pseudo-wavenumber diagram for the centred finite-difference schemes reported in
Tabs.3.1and3.2.
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Figure 3.2: Dispersive error for the centred finite-difference schemes reported in Tabs.3.1
and3.2. Lines and symbols as in Fig.3.1.
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Figure 3.3: Fig.3.3(a), group velocity for the centred finite-difference schemes reported in
Tabs.3.1 and3.2. Lines and symbols as in Fig.3.1. Fig.3.3(b), enlarged view of Fig.3.3(a)
(0.41π ≤ κ ≤ 0.86π).
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3. NUMERICAL METHOD 3.2 Spatial Discretization

C0011 C0033 TamDRP
α1 0 0 0
α2 0 0 0
a1 0.5 3/4 0.799266426974156
a2 0 -3/20 -0.189413141579325
a3 0 1/60 0.026519952061497
κ̄max 0.99 1.58 1.72

stencil size 3 7 7
Nop 2 8 8

Order (n) 2 6 4

Table 3.1: Coefficients for explicit centred finite-difference schemesCPQRSin Fig. 3.1. P =
Q = 0, R = S, α0 = 1, a0 = 0, a− j = a j in eq. (2.1). The number of algebraic operation per
nodeNop has been taken fromColonius & Lele(2004).

C1122 C2233 LuiLele Kim
α1 1/3 1/2 0.5381301488732363 0.5862704032801503
α2 0 1/20 0.0666331901238811 0.09549533555017055
a1 7/9 17/24 0.683788862199635 0.6431406736919156
a2 1/36 101/60 0.20585704252707 0.2586011023495066
a3 0 1/600 0.00308679724778108 0.007140953479797375
κ̄max 1.99 2.32 2.47 2.7

stencil size 5 7 7 7
Nop 9 17 17 17

Order (n) 6 10 6 4

Table 3.2: Coefficients for implicit centred finite-difference schemesCPQRSin Fig. 3.1. P =
Q , 0, R = S, α0 = 1, a0 = 0, a− j = a j in eq. (2.1). The number of algebraic operation per
nodeNop has been taken fromColonius & Lele(2004).
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3. NUMERICAL METHOD 3.2 Spatial Discretization

pared with their low-order counterpart, as indicated also by the maximum value of the scaled

pseudo-wavenumber ¯κmax in Tabs.3.1and3.2. The drawback of the use of a high order scheme

is given by the longer stencil in this type of schemes.

For a given level of accuracy, explicit schemes employ a large computational stencil, while

compact schemes use a smaller stencil. For example, to obtain sixth-order accuracy, the C0033

scheme employs a seven point stencil, while the C1122 needs asmaller five point stencil. On

the other hand, the compact schemes have two disadvantages:first, a matrix has to be inverted

to obtain the spatial derivative at each grid point, although this multi-diagonal matrix inver-

sion can be done efficiently using the Thomas algorithm (Press & Firm, 1996). Secondly, the

boundary stencils have a large effect on the stability and accuracy of the scheme, as reported

in Secs.3.5, by Carpenteret al. (1993b) andTam & Dong(1993). Figures3.1and3.2 indicate

that the optimized schemes have a better wave resolution performance compared with the clas-

sical equivalent stencil size (see. TamDRP versus C0033), and a one to two order of magnitude

lower error in the region ofpoorly-resolvedwaves, but they degrade their performance in the

region ofwell-resolvedwaves.

A common feature of all centred schemes is that, for a given frequency, there are two solu-

tions to the dispersion relation given in eq. (3.27), one for thewell-resolvedand the other for

the poorly-resolvedwaves (Vichnevetsky & Bowles, 1982). For thewell-resolvedwaves, the

group velocity is positive and these waves approach the solution of the original PDE as the

grid is refined. Thepoorly-resolvedwaves have a negative group velocity and they are not a

physical solution of eq. (2.13). For the C0011 classical explicit second order scheme, thespeed

of propagation of the grid-to-grid oscillation wave (κ/π = 1) is equal and opposite to physical

wave speedc of eq. (2.13). As the order of the scheme is increased, the speed of propagation of

thepoorly-resolvedwaves assumes an higher negative supersonic speed (c < −1). Figure3.3

shows that the compact schemes propagate with the correct phase speed for a wider spectrum

of wavenumbers compared to the explicit schemes, but the very poorly-resolvedwaves, near

to the grid-to-grid oscillation, travel with an unphysicalsupersonic speed greater than the one

of the explicit schemes. Finally, the compact optimized schemes of Lui&Lele and Kim have

a maximum value of group velocitycg/c slightingly bigger than 1, respectively atκ/pi = 0.5

andκ/π = 0.78.
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3. NUMERICAL METHOD 3.2 Spatial Discretization

3.2.2 Computational efficiency

In order to compare the performance of different schemes, it is sufficient to analyse the nor-

malized error versus cost relation, accounting for the operation count estimate reported by

Colonius & Lele (2004). As discussed in Sec.2.4, the problem is formulated in terms of

obtaining a computational result with the same error from different schemes and identifying

which scheme produces such result at the lowest computational cost. In general, the cost of the

computation is a function of the acceptable level of error ˜ǫ, the spatial discretization scheme

CPQRS, the number of spatial dimensions of the problemnD, and the time integration scheme

t. Therefore

c∗ = f (ǫ̃,CPQRS, nD, t) . (3.28)

The efficiency comparison formally consist of finding the minima in the manifold of eq. (3.28)

in its four-dimensional space(ǫ̃,CPQRS, nD, t). As the present work aims at identifying an

efficient numerical scheme for CAA applications, the parameterspace is constrained to the

spatial discretization schemes of Tabs.3.1and 3.2, two physical spatial dimensions (nD = 1, 2),

and two time integration schemes (t = RK3,RK4). Furthermore, from eq. (2.55), the effects of

the independent variables(CPQRS, nD, t) are shown to be linear factors of the cost.

Effect of space discretization

The effect of the spatial discretization schemes on the computational cost is considered for

one-dimensional time-dependent simulations (nD = 1), time-advanced by a fourth-stage fourth-

order RK time integration scheme (t = RK4). The results of the analysis are shown in Fig.3.4

and Fig.3.5 for the centred spatial discretizations listed in Fig.3.1. Figures3.4 and3.5 show

the ‘local’ and the ‘global’ error functions, respectively.

Figures3.4(a) and3.5(a) show the effects of changing the spatial discretization scheme on the

cost-error functions. For a normalized error of ˜ǫ ≈ 10−1, all the schemes collapse in same cost

region between 6≤ c∗1 ≤ 15. This is the region encircled in Figure3.4(a), the so-called knuckle

region discussed byColonius & Lele(2004), in which all the schemes have a comparable com-

putational cost. However, when a normalized error lower that 10−1 is required, high-order and

optimized schemes reveal their superiority. For example, for a given normalized ‘local’ error

ǫ̃ = 1.24×10−4, the optimized scheme by Lui&Lele offers a cost saving over the corresponding

compact tenth-order equivalent stencil-size C2233 schemeof approximately 50%, as detailed

in Fig. 3.4(b), which shows an enlargement of the area in the dashed rectangle of Fig.3.4(a).
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Figure 3.4: Optimal ‘local’ error (a, b), reduced wavenumber (c) and Courant number (d) as a
function of cost for the centred spatial discretizations listed in Fig.3.1coupled with RK4 time
integration in one space dimension.
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Figure 3.5: Optimal ‘global’ error (a), reduced wavenumber(b) and Courant number (c) as a
function of cost for the centred spatial discretizations listed in Fig.3.1coupled with RK4 time
integration in one space dimension.
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In Fig. 3.4(b), the intercept of the ˜ǫ = 1.24× 10−4 dashed horizontal line with the C2233 line

determines a cost ofc∗1 = 162.46, as compared with the intercept of the same line with the

Lui&Lele line which determines a costc∗1 = 78.50. The same trend is observed for the ‘global’

error reported in Fig.3.5(a).

Figure 3.4(c) shows which wavenumber is best modelled by the schemes inTabs.3.1 and

3.2 when each scheme is operated at its most effective cost-error condition. Thec∗1 = 102

long dashed vertical line can be taken as representative of afixed amount of computational

resources available to the CFD practitioner. The interceptof this line with the C0011 curve

at κ∗ = 0.15 indicates that this low-order scheme is best used for modelling wave propagating

problems resolved with more thanNλ = 40 points per wavelength (see eq. (2.5)). The C0011,

as a low-order scheme, is known to be able to resolve waves with 12-15 points per wavelength,

but this operational point is not cost-optimal. For the samecomputational resourcesc∗1 = 102,

the C1122 scheme resolves best the propagation of waves withκ∗ = 0.84, corresponding to

Nλ = 7, and it is therefore more appropriate for a coarser mesh representation when working

at its cost-optimal point. A similar behaviour is displayedin Fig. 3.5(b) where the cost of the

schemes is expressed by the ‘global’ error ˇǫ of eq. (2.53).

Figures3.6(a) and3.6(b) show the iso-contours of the normalized ‘local’ error function of

eq. (2.44a) and the normalized one-dimensional cost function of eq. (2.44b) for the C1122

and TamDRP schemes in the non-dimensional wavenumber-frequency plane (κ, σ). The filled

black circles mark the tangency condition between the two families of curves. This location

represents the Courant numberσ∗ at which the numerical scheme should be time-marched for

representing the propagation of a wavenumberκ at the lowest computational cost. Figure3.6(a)

shows that, over the wavenumber range 0.5 < κ < 0.8 over which the C1122 scheme resolves

waves of at least six points per wavelength, the computationcan be time-marched at a Courant

number approaching 0.5. Forκ < 0.5, where the model resolves physical waves with greater

spatial accuracy by increasing the number of points per wavelength, the computation must be

time-marched at a lower Courant number. Figure3.6(b) shows that, for the same wavenumber

range 0.5 < κ < 0.8, the optimal Courant number with the TamDRP scheme is closeto 1.

For κ < 0.5, the computation can be time-marched at a higher value of the Courant number,

which reduces the overall computational time. AppendixA.5 shows that this trend is a com-

mon feature among the high-order schemes with optimized stencil coefficients (see Figs.A.6

andA.10).

Figure3.6(a) shows that the Courant number increases monotonically with wavenumber when
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the C1122 scheme is operating at its ’optimal’ cost-error working point. With the TamDRP

scheme that uses optimized spatial stencil coefficients, Figure3.6(b) reveals that the ‘opti-

mal’ Courant number for this scheme is not monotonic and it isdecreasing with increasing

wavenumber over the well-resolved portion of the wavenumber spectrum. This trend is sum-

marized for the different spatial discretization schemes in Figures3.4(d) and3.5(c), respec-

tively, for ‘local’ and ‘global’ errors. The optimal working points in the (κ, σ) plane for the

schemes listed Tabs.3.1 and3.2 are plotted in Figure3.4(d). The vertical long dashed line at

thec∗1 = 102 defines the same availability of computational resources asin Fig. 3.4(c). To the

right of this line, high-order schemes achieve the steep design roll-off error as in Fig.3.4(b), and

is therefore the operational space of interest for CAA applications. Using the C2233 scheme

in an application wherec∗1 > 102 requires a reduction in the Courant number with increasing

computational cost. The reverse trend is shown by the spatial stencil-optimized schemes Tam-

DRP and Kim. Fig.3.5(c) displays the same analysis based on the global cost for which the

same trends are shown as in Fig.3.4(d).

Effect of number of space dimensions

Figures3.7(a) and3.8(a) show the relations between the computational cost and the operational

condition of the schemes when applied to a two-dimensional problem for whichnD = 2. The

global trend does not differ too much from the one-dimensional curves reported in Figs. 3.4(a)

and3.5(a) as already noted in Sec.2.4. In fact, eq. (2.55) states that the only change in the

contours of one and two-dimensional iso-cost is given by a 1/κ shift in the (κ, σ) plane. This

behaviour can be observed in Fig.3.9, where the ‘optimal’ working points for the ‘local’ error

function of the C1122 scheme are compared between a one dimensional and a two dimen-

sional computation. The ‘optimal’ working conditions for each of the two computations are

represented respectively by non-filled and filled circles. Over the well resolved wavenumber

rangeκ < 0.8 corresponding to wave resolved over more thanNλ = 7, the optimal Courant

number at which a two dimensional computation is time-marched is slightly higher than the

optimal Courant for time marching a one dimensional computation. The difference in the opti-

mal Courant number increases monotonically with increasing κ. This indicates that increasing

the number of dimensions gives a best operating point for theC1122 scheme involving a time-

step that is slightly higher but substantially far from the stability limit which is indicated by

the horizontal dashed line in Fig.3.9. This result is encouraging for the application of cost-

optimized schemes to three-dimensional real engineering applications.
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Figure 3.6: Contours of normalized ‘local’ error functione(κ, σ) (solid black lines) and corre-
sponding normalized one-dimensional cost functionc1(κ, σ) (long dashed-dotted black lines)
for the C1122 (a) and the TamDRP (b) scheme. The filled black circles represent the ‘optimal’
working condition; the black dashed line corresponds to thestability limit σmax.
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3. NUMERICAL METHOD 3.2 Spatial Discretization

Figures3.7(b,c) and3.8(b,c) show the effect of changing the spatial discretization scheme on

the reduced wavenumber and Courant number in two space dimensions. The schemes doc-

umented in Figures3.7(b,c) and3.8 (b,c) are those of Tabs.3.1 and3.2, coupled with RK4

time integration. Figures3.7(b) and3.8(b) indicate, forc∗2 ≤ 2 × 102, an higher operational

wavenumber for the optimized Lui&Lele scheme with respect to the non-optimized C2233

scheme. Figures3.7(c) and3.8(c) show an increment in the optimal operational Courant num-

ber over thesec∗2 region for the Lui&Lele scheme. As in the one-dimensional analysis of

Fig. 3.4 and3.5 the two-dimensional scheme performance analysis of Figures 3.7 and3.8 in-

dicates that the space-optimized Lui&Lele and Kim schemes are best run at higher Courant

number with respect to their non-optimal counter-parts, inapplications where the demands on

resolution and therefore computational cost are significant, i.e. c∗2 ≥ 102.

3.2.3 Optimization of the finite-difference scheme

On the basis of the discussion reported at the end of Sec.2.5, optimized finite-difference

schemes can be tailored to a specific target normalized errorlevel ǫ̃. This dictates the most

cost-effective Courant and wavenumber that the model resolves, which corresponds to a spe-

cific spatial discretization for these schemes. The author has adopted as baseline spatial scheme

the tridiagonal compact schemes with five point stencilC1122 of eq. (3.24) with



a2 = −a−2 =
1
12

(4α1 − 1)

a1 = −a−1 =
1
3

(α1 + 2)
(3.29)

whereα1 is a free-parameter. The specific choice ofα1 = 1/3 yields the C1122 sixth-order

scheme. The author has attempted to find the C1122 scheme thatmaximizes the resolving

efficiency κ̌∗ as a function of the normalized error level ˜ǫ. This new class of schemes will be

labelled asC1122epsmn, wheren represents the exponent in the target ˜ǫ = 10−n normalized

error level. The optimal value of the coefficientα1 is reported in tabular form for representative

values of ˜ǫ in Table 3.3 and plotted in Fig.3.10, that reports also the data on the spatial

resolving efficiency of the non-optimized C1122 scheme. Figure3.10 shows that optimized

space discretization schemes use higher values of the spatial coefficientsα1 and κ̌∗ than the

non-optimized ones. The wavenumber ˇκ∗ that is resolved most cost-effectively is also higher

than the non-optimized one. Cost-optimized spatial discretizations tailored to a specific error

level can outperform a C1122 sixth-order scheme, yielding 40 ÷ 50% increase in the spatial
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Figure 3.7: Optimal ‘local’ error (a), reduced wavenumber (b) and Courant number (c) as a
function of cost for the centred spatial discretizations selected in Fig.3.1 coupled with the
RK4 time integration in two space dimensions.
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Figure 3.8: Optimal ‘global’ error (a), reduced wavenumber(b) and Courant number (c) as a
function of cost for the centred spatial discretizations selected in Fig.3.1coupled with the RK4
time integration in two space dimensions.
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0.5 1 1.5 2 2.5 3

0.5

1

1.5

κ

σ

Figure 3.9: Contours of normalized ‘local’ error functione(κ, σ) (dashed black lines) for C1122
scheme, normalized one-dimensional cost functionc1(κ, σ) (long dashed blue lines), and nor-
malized two-dimensional cost functionc2(κ, σ) (dashed-dotted red lines). The corresponding
non-filled and filled circles represent the ‘optimal’ working conditions respectively for the one
and two dimensional cost function; the black dashed horizontal line corresponds to the stability
limit σmax.
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Figure 3.10: Optimal values of coefficientsα1 (solid line), non-optimal (dashed-line) and op-
timal (dash-dotted line) ‘spatial resolving efficiency’ κ̌∗ for the tridiagonal compact scheme
C1122 of eq. (3.29).

Table 3.3: Spatial discretization coefficients of classical and optimized schemes.
scheme α1 ± 10−6 κ̌∗(ǫ̃)opt κ̌∗(ǫ̃)nonopt κ̄max κ̄c (ǫ) (Lele, 1992) e1 (ǫ)
C1122 0.33333 1.99 1.1043 0.3515

C1122epsm5 0.33750 0.7461 0.5223 2.01 1.1813 0.3760
C1122epsm4 0.34240 1.0901 0.7621 2.03 1.2878 0.4099
C1122epsm3 0.3532 1.5554 1.1042 2.08 1.5556 0.4952

resolving efficiency. Figure3.11 compares the dispersive and dissipative properties of the

C1122epsm5, C12epsm4, andC12epsm3 with the ones ofC1122 scheme. Table3.3 reports

κ̄max and κ̄c, which are respectively, the maximum value and the maximum resolvable scaled

pseudo-wavenumber. The maximum resolvable wavenumber ¯κc is calculated using the criterion

of Lele (1992):

e0 (κ) ≤ ǫ, (3.30)

e1 (ǫ) = κ̄c/π, (3.31)

wheree1 (ǫ) is the resolving efficiency of the scheme, and the threshold has been set toǫ =

10−3. Figure3.11(a) and Tab.3.3 show that the maximum value of ¯κ(κ)/π does not vary sig-
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Figure 3.11: Dispersive (a) and dissipative (b) errors for the C1122 and cost-optimized
C12epsm5, C12epsm4, C12epsm3 schemes.

nificantly in the cost-optimized schemes, showing that the error-based spatial discretization

does not give significant advantages in the dispersion properties. However, the dissipative error

in Fig. 3.11(b) can be reduced by almost two orders of magnitude for selected wavenumbers.

This provides an optimization methodology that is most applicable to linear wave propagation

problems where the wave amplitude or theS PLare the critical parameters.

3.2.4 Prefactorization

To obtain the finite difference approximationf
′
i from equation (3.24), a tridiagonal linear sys-

tem of the formAx = b has to be solved. An alternative approach to the inversion ofthe

A matrix has been proposed byHixon (2000), consisting in a prefactorization that splits the

derivative operatorf
′
i in a backward componentf ′Bi and a forward componentf ′Fi , so that

f ′i =
1
2

(
f ′Fi + f ′Bi

)
. (3.32)

This way, the inversion of the matrix is replaced by two independent matrix operations that

involve bi-diagonal matrices, as follows

αF f ′Fi+1 + βF f ′Fi =
1
h

[
bF fi+1 + cF fi + dF fi−1

]
(3.33)

βB f ′Bi + γB f ′Bi−1 =
1
h

[
bB fi+1 + cB fi + dB fi−1

]
, (3.34)
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3. NUMERICAL METHOD 3.2 Spatial Discretization

where the coefficients must be chosen such that when the two biased stencils are added, the

original central compact scheme of eq. (3.24) is recovered.Hixon & Turkel (2000) reported

that to obtain the C1122 scheme with sixth-order accuracy, that isα1 = 1/3 in eq. (3.25), the

following relation among the coefficients hold:

αF = γB =
1
2
− 1

2
√

5
, βF = βB = 1−αF , bF = −dB = 1− 1

30αF
, cB = −cF = 2bF−1, bB = −dF = 1−bF .

(3.35)

This class of prefactored schemes has been optimized byAshcroft & Zhang(2003) to enhance

the wavenumber resolution characteristics, and recently by Ronaet al. (2009) to minimize the

computational cost for a given level of error.

To derive the cost-optimized prefactored compact schemes,the author follows from previous

work of Hixon (2000) andAshcroft & Zhang(2003). Compact schemes have the form of a

MacCormack scheme. In a MacCormack scheme, the real (dispersive) components of the

scaled pseudo-wavenumbers of the forward and backward stencils are equal and identical to the

scaled pseudo-wavenumber of the original central scheme, whilst the imaginary (dissipative)

components of the scaled pseudo-wavenumbers are equal and opposite. Let the original central

scheme be in the form of eq. (3.24), and multiply eq. (3.24) by the constant factor 1
1+2α (as

in eq. (A.81) of AppendixA.3). From eqs.(3.25) and (3.27), the modified wavenumber of the

generic compact C1122 scheme is given by:

κ̄(κ) =

2(α1+2)
3(1+2α1) sin (κ) + (4α1−1)

6(1+2α1) sin (2κ)

1
(1+2α1) +

2α1
(1+2α1) cos (κ)

. (3.36)

The scaled pseudo-wavenumber of the generic forward and backward operators may be deter-

mined in a similar manner from eqs. (3.33) and (3.34), using the Fourier analysis. The real and

imaginary components of the scaled pseudo-wavenumber for the generic forward stencil are,

respectively, given by:

Re
(
κ̄F(κ)

)
=

(bFβF − cFαF − dFβF) sin(κ) − dFαF sin(2κ)

α2
F + β

2
F + 2αFβF cos(κ)

(3.37a)

Im
(
κ̄F(κ)

)
=
− (bFαF + cFβF) − (bFβF + cFαF + dFβF) cos(κ) − dFαF cos(2κ)

α2
F + β

2
F + 2αFβF cos(κ)

, (3.37b)
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and for the backward stencil:

Re
(
κ̄B(κ)

)
=

(bBβB + cBγB − dBβB) sin(κ) + bBγB sin(2κ)

β2
B + γ

2
B + 2γBβB cos(κ)

(3.38a)

Im
(
κ̄B(κ)

)
=
− (cBβB + dBγB) − (bBβB + cBγB + dBβB) cos(κ) − bBγB cos(2κ)

β2
B + γ

2
B + 2γBβB cos(κ)

. (3.38b)

In equations (3.37) and (3.38), by imposing the following restrictions on the coefficients of

the backward stencil, it is ensured that the imaginary components of forward and backward

operators are equal and opposite, and that the real components of the forward and backward

operators are equal:

βB = βF , γB = αF , bB = −dF , cB = −cF , dB = −bF . (3.39)

To ensure that in the regions of zero gradient the derivatives vanish, the following additional

relation is introduced

bF + cF + dF = 0. (3.40)

Finally, by matching the various terms of eq. (3.37a) with the corresponding ones of eq. (3.36),

the following system of equations is obtained



bFβF − cFαF − dFβF =
2(α1 + 2)
3(1+ 2α1)

−dFαF =
4α1 − 1

6(1+ 2α1)

α2
F + β

2
F =

1
(1+ 2α1)

2αFβF =
2α1

(1+ 2α1)

bF + cF + dF =0

(3.41)

Due to the quadratic term in the third element of eq. (3.41), the system of equations has two

solutions. The lower value solution forαF, as shown in of AppendixA.3, is selected to min-

imize the ratio
αF

βF
, so that the influence of errors at the boundaries on the interior scheme is

minimized. The new prefactored optimized coefficients are given in Tab.3.4 and reported in

eq. (A.83) of AppendixA.3.

Figure3.12reports the dispersive characteristics of the prefactoredclassicalC1122 and cost-

optimizedC12epsm5, C12epsm4, andC12epsm3 schemes. Figure3.12(a)shows the real
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Table 3.4: Prefactored spatial discretization coefficients of the classical and optimized schemes.

C1122 C12epsm5 C12epsm4 C12epsm3
αF 0.276393202250021 0.279757059259305 0.283735092978311 0.292621799121854
βF 0.723606797749979 0.720242940740695 0.716264907021689 0.707378200878146
bF 0.87939886704167 0.875512058643197 0.871137465089563 0.862185198591157
cF -0.758797734083341 -0.751024117286394 -0.742274930179126 -0.724370397182313
dF -0.12060113295833 -0.124487941356803 -0.128862534910437 -0.137814801408843

component of the prefactored forward stencil from eq. (3.37a), which is equal to the real

component of the prefactored backward stencil from eq. (3.38a), and to the scaled pseudo-

wavenumber of the original central compact scheme reportedin Fig.3.11(a). The scaled pseudo-

wavenumber for the prefactored cost-optimizedC1122 schemes is consistently above that of

the classicalC1122 scheme for all three level of cost-optimization. Fig.3.12(b)shows the

imaginary component of the prefactored forward and backward stencils, respectively from

eq.(3.37b) and (3.38b). An enlarged view of the imaginary component of the forwardsten-

cil is shown in Fig.3.12(c)and the imaginary component of the backward stencil is shownin

Fig. 3.12(d). These two components are equal in magnitude and opposite insign. Averaging

together the real part of the backward and forward components gives the pseudo-wavenumber

of the centredC1122 scheme. Averaging the imaginary forward and backward components

results in an imaginary pseudo-wavenumber contribution ofzero.
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Figure 3.12: Dispersive characteristics of the prefactored classicalC1122 and cost-optimized
C12epsm5, C12epsm4, C12epsm3 schemes. (a) Real component of the prefactored forward
stencil from eq. (3.37a). (b) Imaginary components of the prefactored forward and backward
stencil, respectively from eq.(3.37b) and (3.38b). (c) Positive imaginary portion from (b). (d)
Negative imaginary portion from (b).
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3.3 Temporal Integration

The overall cost of the simulation is a function of the spatial discretization scheme, the number

of spatial dimensions, and the time integration scheme as reported in Sec.3.2.2. This section

analyses the impact on the computational cost of using different time integration schemes for

a two dimensional problem for various spatial discretization schemes. The analysis ofHu et al.

(1996), Bogey & Bailly (2004), Berlandet al.(2006), Bernardini & Pirozzoli(2009), andGhillani

(2012) points towards the RK3 and RK4 schemes as a good starting choice for the present work.

This section identifies the appropriate number of RK steps and RK coefficients for a prescribed

targeted level of error.

3.3.1 Effect of time integration

The effect of the time integration on the computational cost is considered for two-dimensional

time-dependent simulations (nD = 2), time-advanced by a third-stage third-order (t = RK3) and

a fourth-stage fourth-order (t = RK4) RK time integration scheme in the manifold of eq. (3.28).

The results of the analysis forRK4 has been shown in Figs.3.7and3.8. Figures3.13and3.15

report, respectively, the ‘local’ and the ‘global’ efficiency analysis for the same spatial dis-

cretization scheme as in Figs.3.7and3.8, with a third-stage third-order (t = RK3).

Figures3.13(a)and3.15(a)show the effect of changing the spatial discretization on the cost-

error functions. As already reported byPirozzoli (2007) andHu et al. (1996), increasing the

accuracy more than outweighs the increased computational cost, and all the spatial discretiza-

tion schemes coupled with RK4 time integration are found to outperform the RK3 ones. This

is confirmed in Figs.3.13(b) and 3.15(b), which report a selection of spatial discretization

schemes coupled with RK3 and RK4 time integration. Figure3.13(b)shows the ‘local’ and

Fig. 3.15(b)the ‘global’ error as a function of the computational cost for the different schemes.

In Fig. 3.13(b)each blue line identifying a spatial discretization schemecoupled witht = RK4

is below the corresponding black line identifying the same spatial discretization scheme cou-

pled witht = RK3. In Fig.3.15(b)a similar trend is shown except for the ‘global’ optimal cost-

error of the Lui&Lele scheme for a low level of computationalcost, over the range 3≤ č∗2 ≤ 70.

Figure3.14shows the contours of the ‘normalized’ local error functione(κ, σ) for theC1122

spatial discretization scheme coupled with the RK3 and RK4 time integration schemes for a

two-dimensional problem. This figure confirms that RK4 has a better ‘optimal’ performance

compared to the RK3 time integration scheme over the whole wavenumber range. Forκ < 0.8,

57



3. NUMERICAL METHOD 3.3 Temporal Integration

in the region of thewell-resolvedwavenumber spectrum, the RK4 time integration gives an in-

crement in the optimal Courant number between 100% and 400%,as shown by the blue circles

being above the black circles. Forσ → 0, where the assumption of zero time integration is

valid from eq. (2.57), thet = RK3 andt = RK4 contours overlap.

Figures3.13(c), 3.15(c)and3.13(d), 3.15(d)show the effect of changing the spatial discretiza-

tion scheme on the ‘optimal’ reduced wavenumber and Courantnumber in a two dimensional

CAA computation, that usest = RK3. This figures display the same trends as Figs.3.7(b), 3.8(b)

and3.7(c), 3.8(c)for t = RK4 as discussed in Sec.3.2.2. The wiggles present on the right-hand

side of Figs.3.13(c)and3.15(c)for C2233 scheme are due to the limitation in theκ − σ space

resolution of this analysis. An increased resolution in theκ − σ plane is likely to reduce these

discretization effects. The optimal ‘local’ and ‘global’ Courant number for the C0011/RK3

scheme in 2D reported in Figs.3.13(d)and3.15(d)is drawn by an horizontal line because the

‘optimal’ condition for the ‘local’ and ‘global’C0011/RK3 in 2D are beyond the stability limit

σmax as shown by the black dash-dotted line in Figs.A.18(a)andA.18(b).

3.3.2 Baseline temporal solver

On the basis on the discussion reported at the end of the previous section, the four-stage, fourth-

order (t = RK4) RK scheme has been adopted as baseline temporal solver. The stability foot-

prints, the dissipation rate|r | and the phase errorδ from eqs. (2.31) and (2.33) for the classical

RK3 and RK4 time integration schemes are reported in Fig.A.21 of AppendixA.6. These re-

sults, well-documented in the literature (Butcher, 1987; Hirsch, 2007), are used as benchmark

for the cost-optimized temporal solver analysis of Sec.3.3.3.

The maps corresponding to RK5 and RK6 are not reported, sincethese schemes are uncondi-

tionally unstable, as stated byBernardini & Pirozzoli(2009).

3.3.3 Cost-optimized temporal solver

A numerical optimization procedure has been performed to determine the coefficientsγm which

maximize the temporal resolving efficiencyž∗(ǫ̃) for a given value of the normalized error ˜ǫ:

ž∗opt(ǫ̃) = max{ž : ět(ž, γm) ≤ ǫ̃} (3.42)
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Figure 3.13: Optimal ‘local’ error (a, b), reduced wavenumber (c) and Courant number (d) as
a function of cost for the centred spatial discretizations selected in Fig.3.1 coupled with the
RK3 time integration in two space dimensions. In subfigure (b), black and blue lines represent,
respectively, spatial discretizations scheme coupled with RK3 and RK4.
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Figure 3.14: Contours of normalized ‘local’ error functione(κ, σ) for C1122 scheme coupled
with RK3 (black solid line) and RK4 (long dashed blue line) time integration scheme. Constant
ratio e(κ, σ) contour spacing of 0.7037 between 10−8 and 0.3. The corresponding symbols
represent the ‘optimal’ working conditions for two dimensional cost function.

under the following stability constraint

ζž∗opt(ǫ̃) ≤ zs (3.43)

wherezs is the stability limit defined in eq. (2.31). The factorζ has been introduced to guar-

antee an extra stability margin beyond the range of well resolved angular frequenciesz. The

author has considered as representative example a four-stage, second-order RK scheme, i.e. set

γ1 = 1, γ2 = 1/2, and left two free parametersγ3, γ4. A standard ordered search has been

conducted in a sufficiently large neighbourhood of the baseline values 1/m! for γ3 andγ4, for

different levels of target error ˜ǫ. For the selected second-order, four-stageRK time integration

scheme,ζ = 1.1 provides a good balance between performance and stability. The results of

the analysis are plotted in Fig.3.16and reported in tabular form in Table3.5, which lists the

coefficients for the classical and optimized RK schemes and the corresponding performances.

Figure3.16shows that the cost-optimized time integration schemes have smaller values of the

coefficientsγ3 andγ4 than the classical non-optimized RK scheme, for whichγ3 = 1/3! and

γ4 = 1/4!, depicted with black arrows. The cost-optimized coefficients tend asymptotically to

the value of the classical non-optimized schemes as the level of normalized error ˜ǫ decreases.

Using the cost-optimized coefficients increases the temporal resolving efficiency ž∗(ǫ̃) from
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Figure 3.15: Optimal ‘global’ error (a), reduced wavenumber (b) and Courant number (c) as
a function of cost for the centred spatial discretizations selected in Fig.3.1 coupled with the
RK3 time integration in two space dimensions. In subfigure (b), black and blue lines represent,
respectively, spatial discretizations scheme coupled with RK3 and RK4.
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13% up to 46% over the range 10−6 ≤ ǫ̃ ≤ 10−1, indicating a gain in temporal resolving effi-

ciency from the cost-optimized temporal optimization.

Figure3.17indicates that the stability foot-prints of the cost-optimized schemes does not dif-

fer too much from the classical RK4 scheme, as the optimized schemes has a slightly larger

footprint than the classical one. Figures3.18and3.19show the temporal dissipation and dis-

persion properties of the cost-optimized RK schemes compared with the classical RK scheme.

The amplification rates|r | and the differences in phaseδ are plotted, respectively, in Fig.3.18(a)

and3.18(b); the temporal dissipationEd of eq. (2.34) and the phase errorEδ of eq. (2.35) are

represented in logarithmic scale, respectively in Fig.3.19(a)and3.19(b)for the classical and

optimized schemes. The cost-optimized algorithms are slightly less dissipative and less dis-

persive than the standard RK4 because their amplification rates |r | are close to 1 and their

differences in phaseδ are close to 0 over the range of angular frequencies 0.5 ≤ z ≤ 1.78, as

highlighted in Fig.3.19(a)and3.19(b). The stability of the optimized algorithms, dictated by

zs and reported in Table3.5, appears marginally lower than that of the classical RK4 algorithm.

Figure3.19(a)shows that the trend of the optimized schemes follows the trend of the classical

one, whereas Fig.3.19(b)indicates that the cost-optimized schemes has different local minima

at specific values of angular frequenciesz, instead of the classical RK4 scheme which has a

single minimum at atz= 1.87.

Table3.5lists the accuracy limits for the dissipationzd and the phase errorzδ using the criteria,

respectively,Ed ≤ 10−3 andEδ ≤ 10−3, similarly toBerlandet al. (2006). The cost-optimized

schemes have a slightly higher value ofz for which Ed = 10−3 andEδ = 10−3 than the classi-

cal RK4 scheme. This confirms that the cost-optimization gives a small advantage in terms of

temporal dissipation and dispersion properties of the resulting schemes. A further comparison

of the temporal cost-optimized schemes with the optimized RK schemes available in literature

is given inBernardini & Pirozzoli(2009).
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Table 3.5: Runge-Kutta coefficients and performance for the classical and optimized timeintegration schemes; ˇz∗(ǫ̃)nonopt is relative to
the classical RK4 time integration scheme. For all schemesγ1 = 1, γ2 = 1/2.

scheme γ∗3 γ∗4 zs ž∗(ǫ̃)opt ž∗(ǫ̃)nonopt zd : Ed = 10−3 zδ : Eδ = 10−3

RK3 1/3! 1.73
RK4 1/3! 1/4! 2.83 0.7323 0.873
epsm5 0.166106296875 0.041111875 2.828 0.272 0.186 0.7414 0.911
epsm4 0.1652420703125 0.0402486328125 2.826 0.436 0.331 0.7476 0.973
epsm3 0.1636332734375 0.038639453125 2.819 0.709 0.589 0.7526 1.187
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Figure 3.17: (a) Stability foot-prints for the classical (black solid line) and cost-optimized RK4
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integration schemes. (b) Zoom of the rectangular area reported in (a).
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Figure 3.18: (a) Amplification rate|r | and (b) difference in phaseδ for the classical and cost-
optimized RK4 time integration schemes. Lines pattern as inFig. 3.17.
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Figure 3.19: (a) Temporal dissipationEd and phase errorEδ in logarithmic scale for the classi-
cal and cost-optimized RK4 time integration schemes. Linespattern as in Fig.3.17.
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3.4 Predicted performance of the cost-optimized schemes

To demonstrate the potential benefit of cost-optimization,finite-difference schemes that com-

bine space and time cost-optimization for the same level of error have been developed. Fig-

ure 3.20(a)shows the contours of the normalized ‘local’ error functione(κ, σ) for the cost-

optimizedepsm5 (solid line) and the corresponding non-optimized baseline solverC1122/RK4

(long dashed line). Figure3.20(a)shows a spike-shaped iso-error contour labelled 10−5 in the

region 0.6 ≤ κ ≤ 0.8 for the optimized scheme. This spike changes the shape of the other

iso-error contours (solid lines) with respect to the baseline solver (long dashed lines). Fig-

ure3.20(b)reports a similar trend for the cost-optimizedepsm3 scheme. The location of the

spike on theκ − σ plane shifts towards the right of theκ axis as the design target level of

error increases. Figure3.21(a)shows the contours for the normalized ‘local’ error function

e(κ, σ) of the cost-optimizedepsm4 scheme by solid lines and of the baseline non-optimized

C1122/RK4 scheme by long dashed lines. The corresponding optimal values of the wavenum-

ber and Courant number pair (κ∗(ǫ̃), σ∗(ǫ̃)) are shown for the two-dimensional cost-function of

eq. (2.67) for both schemes by symbols (• , ⋄). Figure 3.21(a) clearly shows how the spike

influences the (κ∗(ǫ̃), σ∗(ǫ̃)) pair for theepsm4 scheme near the design level of error ˜ǫ = 10−4,

in that the ‘optimal’ valuesκ∗(ǫ̃) andσ∗(ǫ̃) for the cost-optimizedepsm4 scheme, in theκ − σ
plane, lie below the corresponding values for the baseline classicalC1122/RK4 scheme. Fig-

ure 3.21(b) gives an enlarged view of theκ−σ plane near the design level of error ˜ǫ = 10−4 for

the cost-optimizedepsm4 scheme. Figure 3.22 reports the corresponding map for theepsm5

schemes, where a similar behaviour is observed near the design level of error ˜ǫ = 10−5. The

effect of the spike onκ∗(ǫ̃) andσ∗(ǫ̃) is to pull the (κ∗(ǫ̃), σ∗(ǫ̃)) pair towards theσ = 0 axis.

This shows that the cost-optimized schemes can be run at lower Courant number for the same

computational cost of the non-optimized scheme to resolve atarget wavenumberκ.

The computational performance of the cost-optimized schemes is illustrated in Fig. 3.23 and

summarized in Tab. 3.6. Figure 3.23(a) shows the effect of the scheme cost-optimization on

the ‘optimal’ error versus cost curve. The cost-optimized schemesepsmn (with n = 3,4,5),

when working at their design level of error ˜ǫ = 10−n, offer a substantial cost saving over the

baselineC1122/RK4 scheme. For instance, the solid arrow in Figure 3.23(a) shows that the

computational cost of running the baselineC1122/RK4 scheme to obtain an error ˜ǫ of 10−4

is 2.8 × 102. The dotted line arrow shows that the computational cost of running theepsm4
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scheme for the same level of error ˜ǫ = 10−4 is 7.2 × 101. The distance between the two ar-

rows on the abscissa indicates the computational gain of theepsm4 scheme with respect to

the C1122/RK4 scheme. Figure 3.23(a) indicates an useful region of ‘optimal’ cost where

the space and time cost-optimized schemes offer a computational cost saving over the non-

optimizedC1122/RK4 scheme. For instance, theepsm4 scheme outperforms the baseline

scheme over the range 70≤ c∗2 ≤ 1300. Similarly, theepsm5 scheme outperforms the base-

line solver over the range 250≤ c∗2 ≤ 8000. Figure 3.23(b) and 3.23(c) show the variation of

‘optimal’ reduced wavenumberκ∗ and Courant numberσ∗ versus computational cost. These

plots show where the cost-optimized schemes outperform thebaseline schemes in terms of

κ∗ andσ∗. Consider, for instance, theepsm4 scheme working at its cost-optimal condition.

Theepsm4 scheme offers a computational saving over the baselineC1122/RK4 scheme when

the available computational resources for a given monochromatic (‘local’) two-dimensional

problem isc∗2 ≤ 1300, in a wavenumber range of approximately 1.03 ≤ κ∗ ≤ 1.07, corre-

sponding to an ‘optimal’ Courant numberσ∗ ≤ 0.4. A plateau region in the case ofepsm4

scheme occurs in the range 1.2 × 102 ≤ c∗2 ≤ 1.1 × 104, corresponding to an error level of

5.5 × 10−6 ≤ ǫ̃ ≤ 10−5, and a wavenumber region of 1.07 ≤ κ∗ ≤ 0.27. The error level range

5.5× 10−6 ≤ ǫ̃ ≤ 10−5 is below the design level of error ˜ǫ = 10−4, for whichc∗2 = 72.78× 102,

κ∗ = 1.083, andσ∗ = 0.389, as indicated by the dotted arrows in Fig. 3.23. As a consequence,

a given value of error level in this ˜ǫ plateau corresponds to an ’optimal’ computational cost

c∗2 which varies by two decades. The presence of the plateau on the ǫ̃ versusc∗2 curve from

the cost-optimized schemes is the consequence of the spike which modifies the contours of the

error functione(κ, σ) and consequently, the ‘optimal’ working condition (κ∗(ǫ̃), σ∗(ǫ̃)), as high-

lighted in Fig. 3.21(b) for theepsm4 scheme. This ˜ǫ plateau intercepts theC1122/RK4 line

in Fig. 3.23(a) at a computational cost ofc∗2 ≈ 1300. The plateau to the right of the intercept

is the region in which it is best not to use the optimized scheme epsm4. The suggestion is to

use the cost-optimized schemes at their design level of error and not beyond the intercept with

their classical counterpart scheme.

Table 3.6 reports the 2D percent cost reduction∆C2 of the cost-optimized schemes over the

non-optimizedC1122/RK4 scheme when working at their design level of error. A cost reduc-

tion of about 70%− 80% can be achieved in problems involving well-defined tonalspectra.

Figure 3.24 reports the iso-level of the normalized ‘local’error functione(κ, σ) for the cost-

optimizedepsm4 scheme (solid line) and of the two-dimensional cost function of eq. (2.67)

(dash-dotted line). The two curves are tangent to one other at the (κ, σ) location shown by
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Table 3.6: Performance of cost-optimized schemes for different target errors in two dimensional
space.

scheme ǫ̃ c∗2 c∗2 (C1122/RK4) ∆C2(%)
epsm5 10−5 247.75 1052.87 76.47
epsm4 10−4 72.78 276.837 73.70
epsm3 10−3 73.166

Table 3.7: Approximate optimal operating points of cost-optimized schemes for different target
errors in two dimensional space.

scheme ǫ̃ σ∗(ǫ̃) z∗(ǫ̃) ∆z∗(%) κ∗(ǫ̃) ∆κ∗(%)
epsm5 10−5 0.348 0.260 (0.272) 4.4 0.747 (0.7461) 0.12
epsm4 10−4 0.389 0.421 (0.436) 3.44 1.083(1.0901) 0.65
epsm3 10−3 (0.3532)

a filled solid circle. This location represents the optimal operating point of theepsm4 at its

design level of error.

The dashed line represents the locus of the(κ, σ) points for which the spatial differentiation

error is ǫ̃ = 10−4 as determined from eq. (2.57). The dotted line represents the locus of(κ, σ)

points for which the temporal integration error is ˜ǫ = 10−4 as determined from eq. (2.58).

The intercept between these two lines is indicated by an opencircle. This point represents an

approximation to the solid circle. Specifically, the approximation is obtained by considering

the spatial differentiation error separately from the temporal integration error as discussed re-

spectively in Secs. 3.2.3 and 3.3.3. Figure 3.24 shows that the(κ, σ) operating condition that

satisfies eqs. (2.57) and (2.58), reported by the open solid circle, is very close to the ‘optimal’

working condition of the filled solid circle. The distance between these two points is quantified

in Table 3.7. Table 3.7 reports the approximate coordinatesof the optimal operating points of

the cost-optimized schemes for different target errors in two-dimensional space. The values in

brackets in the columnsz∗(ǫ̃) = σ∗(ǫ̃)κ∗(ǫ̃) andκ∗(ǫ̃) are taken from Tabs. 3.3 and 3.5, for com-

parison purposes. These correspond to the coordinates of the open circle of Fig. 3.24. Thez∗(ǫ̃)

andκ∗(ǫ̃) in plain text in Tab. 3.7 correspond to the coordinates of the filled circle in Fig. 3.24.

∆z∗ is the absolute percent difference inz∗(ǫ̃) between thez∗ values reported in plain text and in

brackets. Similarly,∆κ∗ is the absolute percent difference inκ∗. These percent differences are

below 5%. Therefore, the values of optimal cost, reduced wavenumber and Courant number

reported in Tabs. 3.3 and 3.5 by separately optimizing the space and time schemes agree well
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Figure 3.20: Contours of normalized ‘local’ error functione(κ, σ) for the cost-optimized
schemes (solid black line) and the non-optimized baseline solver C1122/RK4 (long-dashed
black line). (a)epsm5; (b) epsm3.

with the ones reported in Tab. 3.7, obtained by a combined cost minimization procedure for

the cost-optimized scheme. This shows that, by optimizing separately the spatial and temporal

components, a scheme is obtained, the performance of which is very close to the one obtained

by a combined space and time optimization at the design levelof error. This implies that the

space and time optimized schemes can give a substantial saving in term of computational cost,

of the order of 70%− 80% in a decade around their design error level, compared to the corre-

sponding non-optimizedC1122/RK4 benchmark. The cost-optimized schemes also decrease

the optimal Courant numberσ∗ with respect to the baseline non-optimized scheme, as shownin

Fig. 3.23(c). This makes the cost-optimized schemes very suitable for computational problems

of narrow-band or tonal waves, such as cavity noise in aeroacoustics.

In conclusion, there is a computational advantage in prediction accuracy and computational

cost by using cost-optimized schemes to model wave propagation problems at their design

operational point
(
κ∗(ǫ̃), σ∗(ǫ̃), c∗nD

(ǫ̃)
)
.
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Figure 3.21: (a) Contours of normalized ‘local’ error function e(κ, σ) for the cost-optimized
epsm4 scheme (solid line) and for the corresponding non-optimal baselineC1122/RK4
scheme (long-dashed line). Constant ratioe(κ, σ) contour spacing of 0.7037 between 10−8

and 0.3. The filled circles and the diamonds represent the corresponding ‘optimal’ working
conditions of the respective schemes for the two dimensional cost function of eq. (2.67). (b)
Enlarged view of the region near the design level of error ˜ǫ = 10−4 for the cost-optimized
epsm4 scheme.
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Figure 3.22: (a) Contours of normalized ‘local’ error function e(κ, σ) for the cost-optimized
epsm5 (long dashed blue line) and for the corresponding non-optimal baselineC1122/RK4
scheme (long dashed black line). The black and red diamonds represent the corresponding
‘optimal’ working conditions of the respective schemes forthe two dimensional cost function
of eq. (2.67). (b) Enlarged view of the region near the design level of error ǫ̃ = 10−5 for the
cost-optimizedepsm5 scheme.
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Figure 3.23: (a) Optimal ‘local’ error, (b) reduced wavenumber and (c) Courant number as
a function of the two-dimensional cost for the baselineC1122/RK4 scheme and the cost-
optimizedepsm5, epsm4, epsm3 schemes. Line patterns as in Fig.3.17.
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3.5 Perimetrical scheme

3.5.1 Spatial Differentiation

In areas near the boundaries, the interior scheme cannot be applied because the stencil extends

outside the computational domain, therefore a perimetrical scheme has to be used to close the

discretized set of algebraic equations. This section starts by discussing the effect of the perimet-

rical scheme on the interior scheme. Then, two methods of treating near-boundary points are

presented and compared against the boundary treatments of Hixon (2000) and Ashcroft & Zhang

(2003). The first approach is to use a prefactored sixth-order explicit one-sided finite-difference

scheme that uses a seven-point stencil, the second is to use aprefactored explicit central scheme

with an 11-point stencil. Finally, the wave propagation characteristics of these boundary clo-

sures are examined.

Effect of perimetrical scheme on interior scheme

The boundary closure for a compact scheme has a much larger effect on the stability and accu-

racy of the scheme than the boundary closure for the equivalent explicit scheme (Carpenteret al.,

1993b, 1994; Hixon, 2000). The reason for this is that the error from the boundary stencil

derivative can propagate many points into the computational domain. Following Hixon & Turkel

(2000), a sixth-order scheme is used to study this boundary closure effect. Letǫ0 be a boundary

error or perturbation at the beginning of the backward sweep:

ǫ0 =
{
f ′B0

}
interior

−
{
f ′B0

}
boundary

, (3.44)

where the subscript ”interior” refers to the spatial derivative that the interior scheme would

have obtained and the subscript ”boundary” refers to the derivative calculated by the bound-

ary stencil. Substituting eq. (3.44) in eq. (3.34), as shownin Appendix A.7, the error in the

computed derivativei grid points away from the boundary is:

{
f ′Bi

}
interior

=
{
f ′Bi

}
boundary

+

(
− αF

1− αF

)i

ǫ0, (3.45)

or

ǫi =

(
− αF

1− αF

)i

ǫ0. (3.46)
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It is evident that the error propagates inwards from the boundary. For values ofαF < 0.3 as

stated in Table 3.4, the errorǫi decays exponentially withi. The error due to the boundary

stencil used at the start of the forward or backward sweep hasa much greater effect on the

solution than the error of the boundary stencil used at the end of the sweep. Figure 3.25

illustrates the propagation of the boundary stencil error in the computational domain interior

for the classical fourth-orderC1111 and sixth-orderC1122 compact schemes, and the cost-

optimizedC11122epsm5, C11122epsm4, C11122epsm3 compact schemes. The family of the

C1122 schemes are more sensitive to the boundary stencil error than theC1111 scheme, due to

their larger stencil. The cost-optimized schemes have a slightly lower performance compared

to the baselineC1122 scheme in terms of reducing the boundary closure error with increasing

distance from the boundary. The lower roll-off rate of the optimized schemes is due to the

higher value ofαF compared to the baselineC1122 scheme, as reported in Table 3.4. These

values are produced by the cost-optimization process of Sec. 3.2.3.

Equations (3.45) and (3.46) are valid for the fourth and sixth order compact schemes, but not

for the eighth-order scheme. For such a scheme, a tridiagonal matrix is present on the L.H.S of

eqs. (3.33) and (3.34) and, in this case, the stencil used at the start of the forward or backward

sweep has a symmetric effect on the interior scheme, therefore the boundary error propagates

hyperbolically in the computational domain interior.

Prefactored one-sided boundary stencil

To compute the state variables at the computational domain boundaries and wall points, explicit

sixth-order one-sided derivative stencils are defined for the sixth-order compact scheme. To ac-

complish this, the Taylor series for the forward and backward interior derivatives was matched

to the sixth order in Appendix A.8.2. The resulting boundarystencils for the backward sweep

are:

f ′B1 =
1
h

7∑

j=1

sj f j , (3.47a)

f ′BN =
1
h

N∑

j=N−6

ej f j , (3.47b)
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Figure 3.25: Boundary closure error propagation inside thecomputational domain.

and for the forward sweep:

f ′F1 =
1
h

7∑

j=1

−eN+1− j f j , (3.48a)

f ′FN =
1
h

N∑

j=N−6

−sN+1− j f j , (3.48b)
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where:

s1 = −545+ 353
√

5

150
(
1+
√

5
) = −2.74887508613328

s2 =
1515+ 823

√
5

150
(
1+
√

5
) = 6.91226506738317

s3 = −405+ 191
√

5

30
(
1+
√

5
) = −8.57098789320814

s4 =
35+ 16

√
5

3
(
1+
√

5
) = 7.29044096437489

s5 = − 95+ 43
√

5

15
(
1+
√

5
) = −3.93792558049996

s6 =
295+ 133

√
5

150
(
1+
√

5
) = 1.22040502059166

s7 = − 20+ 9
√

5

75
(
1+
√

5
) = −0.165322492508333,

(3.49)
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and

eN =
95+ 191

√
5

75
(
1+
√

5
) = 2.15112491386675

eN−1 = −285+ 977
√

5

150
(
1+
√

5
) = −5.08773493261699

eN−2 =
45+ 259

√
5

30
(
1+
√

5
) = 6.42901210679221

eN−3 = − 5+ 24
√

5

3
(
1+
√

5
) = −6.04289236895886

eN−4 =
35+ 139

√
5

30
(
1+
√

5
) = 3.56207441950031

eN−5 = − 65+ 227
√

5

150
(
1+
√

5
) = −1.17959497940844

eN−6 =
5+ 16

√
5

75
(
1+
√

5
) = 0.168010840825015.

(3.50)

The rational form of the coefficients given in eqs. (3.49) and (3.50) enable the reader to compute

sj andej with an arbitrarily high precision, to match the computer hardware available.

Prefactored interior boundary stencils

In typical engineering CFD applications, computational boundaries exist where the flow state

is known on both sides of the boundaries (periodic, symmetry, inter-block boundaries), so an

appropriate spatial differencing scheme across these boundaries is required. An explicit central

boundary stencil is used for this purpose. This stencil mimics the spectral characteristics of

the prefactored compact interior scheme over the resolved range of wavenumbers. An 11-point

explicit stencil is used that matches the Taylor series expansion of the interior stencil up to the

eleventh order as shown in Appendix A.8.2, for shortness.

Figure 3.26 represents an interior boundary connection ati = 1 andi = N. The physical domain

to the left of central pointi = N is connected to the physical domain to the right of the central

point i = 1. The computational domain to the left isi ≤ N, and to the right it isi ≥ 1. The left

and right domains share one overlap pointi = 1 ≡ N. When the interior prefactored forward
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fN−4 fN−3 fN−2 fN−1 f1 = fN f2 f3 f4 f5
◦——–◦·················◦——–◦——–•——–◦——–◦···············◦——–◦

Figure 3.26: Sketch of the backward and forward sweeps at theinterior boundaryi = 1 ≡ N.

sweep of eq. (3.33) has reached thei = N − 1 point, it requires an estimate of the internal

boundary derivativef ′FN = f ′F1 . Similarly, when the prefactored interior backward sweep of

eq. (3.34) has reached thei = 2 point, it requires an estimate of the internal boundary derivative

f ′B1 = f ′BN .

These interior boundary stencils are given by:

f ′Fi =
1
h

5∑

j=−5

b j fi+ j , (3.51a)

f ′Bi =
1
h

5∑

j=−5

−b− j fi+ j , (3.51b)

where

b−5 = −0.00048892760612052

b−4 = 0.00538269106033271

b−3 = −0.0264320102799523

b−2 = 0.0777993608366292

b−1 = −0.321981330625385

b0 = −0.759829408040846

b1 = 1.34468533604127

b2 = −0.398391115353838

b3 = 0.092615608767661

b4 = −0.0144585787809353

b5 = 0.00109837398118083.

(3.52)

These coefficients, given in double precision, are broadly similar to the ones for the 11-point

boundary stencil given by Hixon (2000). The Hixon (2000) coefficients are given in single
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precision and match the Taylor series expansion of the interior stencil up to the ninth order,

with the last coefficient used to more closely match the spectral performance ofthe boundary

stencil with that of the interior scheme. The coefficients of eq. (3.52) match the Taylor series

expansion of the interior stencil up to the eleventh order. Therefore, the two sets of coefficients

are numerically different from the third decimal digit.

Wave propagation characteristics of the boundary closures

By taking the Fourier transform of eq. (3.47a), the realℜ
(
f̃ ′B1

)
and imaginaryℑ

(
f̃ ′B1

)
com-

ponents of the prefactored backward one-sided boundary stencil on the first nodei = 1 are

obtained as:

ℜ
(
f̃ ′B1

)
= [s2 sin(κ) + s3 sin(2κ) + s4 sin(3κ) + s5 sin(4κ) + s6 sin(5κ) + s7 sin(6κ)] , (3.53a)

ℑ
(
f̃ ′B1

)
= − [s1 + s2 cos(κ) + s3 cos(2κ) + s4 cos(3κ) + s5 cos(4κ) + s6 cos(5κ) + s7 cos(6κ)] .

(3.53b)

Similarly, from eq. (3.48a), the realℜ
(
f̃ ′F1

)
and imaginaryℑ

(
f̃ ′F1

)
components of the prefac-

tored forward one-sided boundary stencil on the first nodei = 1 are:

ℜ
(
f̃ ′F1

)
= − [eN−1 sin(κ) + eN−2 sin(2κ) + eN−3 sin(3κ) + eN−4 sin(4κ) + eN−5 sin(5κ) + eN−6 sin(6κ)] ,

(3.54a)

ℑ
(
f̃ ′F1

)
= [eN + eN−1 cos(κ) + eN−2 cos(2κ) + eN−3 cos(3κ) + eN−4 cos(4κ) + eN−5 cos(5κ) + eN−6 cos(6κ)] .

(3.54b)

Appendix A.8.3 reports the corresponding Fourier transform of the prefactored backward and

forward one-sided boundary stencils at the last nodei = N. These are related to eq. (3.53)

and (3.54) by:

ℜ
(
f̃ ′B1

)
= ℜ

(
f̃ ′FN

)
, ℑ

(
f̃ ′B1

)
= −ℑ

(
f̃ ′FN

)
. (3.55)

Equation (3.55) is due to the permutation of the coefficients sj between the two differential

operatorsf ′B1 of eq. (3.47a) andf ′FN of eq. (3.48b) that results in matched spectra in wavenum-

ber space. Similarly, the real and imaginary Fourier components of the prefactored forward

one-sided boundary stencil ati = 1 of eqs. (3.54a) and (3.54b) are related to the corresponding
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backward one-sided boundary stencil components of eqs. (A.199) and (A.200) by:

ℜ
(
f̃ ′F1

)
= ℜ

(
f̃ ′BN

)
, ℑ

(
f̃ ′F1

)
= −ℑ

(
f̃ ′BN

)
. (3.56)

The above relations are given by the permutation of the coefficientsej between the two differ-

ential operatorsf ′F1 of eq. (3.48a) andf ′BN of eq. (3.47b).

Figure 3.27 shows the dispersive characteristics of the prefactored one-sided boundary stencils

of eq. (3.47a) and eq. (3.48a) from Hixon (2000), compared against the interiorC1122 sixth-

order scheme of eq. (3.36) and the prefactored one-sided boundary formulations of Ashcroft & Zhang

(2003). Figure 3.27(a) shows that the one-sided boundary stencils of eq. (3.47a) and eq. (3.48a),

represented by the dashed lines, introduce a large dispersion error over the range 0.27≤ κ/π ≤
1. This error, which mainly affects thepoorly-resolvedwaves, is due to biased nature of the

forward/backward stencil. Figure 3.27(a) also shows, by the dashed-dotted lines, the disper-

sive characteristics of the 6/4 one-sided boundary stencils of Ashcroft & Zhang (2003). These

stencils introduce a lower dispersive error with respect toeqs. (3.47a) and (3.48a) and their

dispersion characteristics are qualitatively more similar to the interior scheme. A common

feature of the one-sided prefactored boundary stencils is the different spectral characteristics

of their forward and backward components, as shown by the lines with and without symbols

not overlapping one another in Fig. 3.27(a). This is unlike the spectral characteristics of the

interior scheme, shown by the continuos line, that follows the MacCormack properties re-

ported in eq. (3.39). Specifically, the derivation of the coefficients of eqs. (3.47a) and (3.48a)

does not satisfy the relationsj = −eN+1− j for 2 ≤ j ≤ 7, because they have been con-

structed by matching the Taylor series expansion of the forward and backward prefactored

operators up to sixth and third-order, respectively, by Hixon (2000) and Ashcroft & Zhang

(2003). This process does not impose identical dispersive characteristics for the forward and

backward components. Figure 3.27(b) is an enlarged view of Fig 3.27(a). It shows that the

prefactored one-sided boundary stencils of eq. (3.47a) andeq. (3.48a) have a non-monotonic

behaviour in the range 0.27 ≤ κ/π ≤ 0.5, where they have a relative minimum. When prop-

agating waves in this wavenumber range with the prefactoredone-sided boundary stencils of

eq. (3.48a), the numerical solution is affected by the introduction of spurious numerical waves

that have to be removed. This non-monotonic behaviour is notpresent in the one-sided bound-

ary stencils of Ashcroft & Zhang (2003). Figure 3.27(c) shows the dissipative characteristics

of the prefactared one-sided boundary stencils fori = 1. The one-sided boundary stencils of
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Figure 3.27: Dispersive characteristics of the prefactored one-sided boundary stencils fori = 1.
(a,b) Real and (c) imaginary components of the Fourier transform. (d) Dispersive error from
eq. (2.11). (e) Dissipative error from eq. (2.12).
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eq. (3.47a) and eq. (3.48a) from Hixon (2000) introduce a large error in the range of thepoorly-

resolvedwaves, whereas the prefactored one-sided boundary stencils of Ashcroft & Zhang

(2003) mimic the behaviour of the interior scheme and start to deviate from it in the range of

thepoorly-resolvedwaves. The dissipative characteristics of the prefactaredone-sided bound-

ary stencils fori = N are equal and opposite to the dissipative characteristics of the prefactared

one-sided boundary stencils fori = 1 of Fig. 3.27(c), as reported in eqs. (3.55) and (3.56). The

net effect is that the dissipation resulting from the forward boundary stencil compensates the

one generated by the backward boundary stencil.

Figure 3.27(d) reports the relative dispersive error from eq. (2.11) for the prefactored one-

sided boundary stencils compared against the dispersive error of the interior sixth-orderC1122

scheme. Figure 3.27(d) shows a difference in the error magnitude between the correspond-

ing forward and backward components of the prefactored one-sided boundary stencils, due to

their non-matched spectral characteristics. The prefactored one-sided boundary stencils have

a greater relative error with respect to the interior scheme, except over the range 2≤ Nλ ≤ 3,

which representspoorly-resolvedwaves. The prefactored one-sided boundary stencils of Hixon

(2000) have a lower dispersive error compared to the ones by Ashcroft & Zhang (2003), due

to their higher order of accuracy. The prefactored one-sided boundary stencils of eq. (3.47a)

and eq. (3.48a) present, as already reported by Hixon (2000), three troughs at different val-

ues ofNλ, two of which are in the region ofpoorly-resolvedwavenumbers and the last one is

in the well-resolvedwavenumber range. At these troughs, the relative error is comparable to

that of the interior scheme. A similar behaviour is shown by the relative error of the prefac-

tored one-sided boundary stencils of Ashcroft & Zhang (2003), but with a single trough close

to Nλ = 2. Figure 3.27(e) shows the dissipative error from eq. (2.12) for the prefactored one-

sided boundary stencils compared against the corresponding error of the interior sixth-order

C1122 scheme, in which the forward and backward stencils havethe same error value, given

by eq. (2.12). The relative error of the prefactored one-sided boundary stencils of eq. (3.47a)

and eq. (3.48a) from Hixon (2000) shows two troughs over thepoorly-resolvedwavenumber

range 2≤ Nλ ≤ 4.5. The prefactored one-sided boundary stencils of Ashcroft& Zhang (2003)

show two troughs atNλ = 4.3 andNλ = 7.4. At these troughs, the prefactored one-sided

boundary stencils have individually a relative error lowerthan that of the interior scheme. For

higher values ofNλ, that is forwell-resolvedwaves, the prefactored one-sided boundary sten-

cils follow the trend of the prefactored interior sixth-order C1122 scheme.

In conclusion, the effect of the real and imaginary errors are seen not so much on thewaves that
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propagate through the computation domain boundaries, as these are regions of one computa-

tional point thickness, but rather on the generation of reflections due to the boundary numerical

impedance mis-match, which can be reduced by the application of Artificial Boundary Condi-

tions of Sec. 3.6.2.

Kim (2007) derived a set of boundary closures, that maintainfourth-order accuracy by optimiz-

ing the boundary schemes in the spectral domain. These boundary closures achieve the best

wavenumber resolution characteristics within a constraint for dispersion and dissipation errors

appropriate for CAA.

Applying the Fourier transform to the eq. (3.51a), the realℜ
(
f̃ ′Fi

)
and imaginaryℑ

(
f̃ ′Fi

)
com-

ponents of the prefactored forward interior 11-point stencil on the i-th node are obtained as:

ℜ
(
f̃ ′Fi

)
= [(−b−5 + b5) sin(5κ) + (−b−4 + b4) sin(4κ) + (−b−3 + b3) sin(3κ) + (−b−2 + b2) sin(2κ)+

+ (−b−1 + b1) sin(κ)] , (3.57a)

ℑ
(
f̃ ′Fi

)
= − [(b−5 + b5) cos(5κ) + (b−4 + b4) cos(4κ) + (b−3 + b3) cos(3κ) + (b−2 + b2) cos(2κ)+

+ (b−1 + b1) cos(κ) + b0] . (3.57b)

The real and imaginary Fourier components of the prefactored backward interior 11-points

stencil for thei-th node of eq. (3.51b) are related to eqs. (3.57a) and (3.57b) by:

ℜ
(
f̃ ′Bi

)
= ℜ

(
f̃ ′Fi

)
, ℑ

(
f̃ ′Bi

)
= −ℑ

(
f̃ ′Fi

)
, (3.58)

due the permutation of the coefficientsb j between the two finite-difference approximationsf ′Fi

of eq. (3.51a) andf ′Bi of eq. (3.51b). Hence, the prefactored backward and forwardinterior

11-point stencils follow the same properties of the MacCormack schemes of eq. (3.39).

Figure 3.28 shows the dispersive characteristics of the forward prefactored interior 11-point

stencil of eq. (3.51a) compared against the interior sixth-orderC1122 scheme of eq. (3.36),

the fourth-order three-point stencil prefactored compactscheme of Ashcroft & Zhang (2003),

and the prefactored interior 11-point formulations of Hixon (2000) and of Ashcroft & Zhang

(2003). The prefactored interior 11-point stencils of Ashcroft & Zhang (2003) match the Taylor

series expansions of the forward and backward interior stencils to fourth-order accuracy and use

the remaining free coefficients to more closely match the spectral characteristics of these sten-
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cils with those of the interior scheme. Figure 3.28(a) showsthe dispersive characteristics of the

three interior schemes. The prefactored interior 11-pointforward stencil of eq. (3.51a), shown

by the(– –▽– –) line, has essentially the same dispersive properties of theHixon (2000) scheme,

shown by the dashed line(– –). Both schemes underestimate the scaled pseudo-wavenumberof

the interior sixth-orderC1122 scheme as shown by the maxima of the dashed lines being below

the continuous line. This difference is marginally amplified by the cost-optimization process

of Sec. 3.2.3, as shown by Fig. 3.11(a). The prefactored 11-point stencil of Ashcroft & Zhang

(2003), shown by the(− · ·−) line, has a closer match to the exact analytical solution ¯κ(κ) = κ

compared to the prefactored 11-point stencil of eq. (3.51a)and of Hixon (2000), shown by the

dashed lines.

Figure 3.28(b) shows the dissipative characteristics of the prefactored forward interior 11-

point stencil schemes. The continuous lines represent the dissipative characteristics of the

interior sixth-orderC1122 compact scheme of eq. (3.36) and of the fourth-order three-point

prefactored compact scheme of Ashcroft & Zhang (2003). The prefactored 11-point stencil

of eq. (3.51a) has essentially the same dissipative properties of the prefactored 11-point sten-

cil scheme of Hixon (2000), as shown by the dashed lines overlapping in Fig. 3.28(b), with

both schemes following the continuous line of the interiorC1122 scheme in thewell-resolved

wavenumber range 0≤ κ/π ≤ 0.55. The prefactored interior 11-point stencil of Ashcroft &Zhang

(2003), which is optimized to minimize the dissipation across the wavenumber range, is the

closest to the abscissa of Fig. 3.28(b) among the three prefactored interior 11-point stencils.

Figure 3.28(c) reports the relative error from eq. (2.11) for the three prefactored interior 11-

point stencil schemes. The continuous lines represent the dispersive error of the interior sixth-

order C1122 compact scheme of eq. (3.36) and of the fourth-order three-point prefactored

compact scheme of Ashcroft & Zhang (2003). The dispersive error of the prefactored interior

11-point stencil of Hixon (2000), shown by the(– –) line, follows that of the interior sixth-

orderC1122 compact scheme up to the error level 10−7, where the dispersive error becomes

constant due to the single precision of the coefficients in Hixon (2000). The prefactored in-

terior 11-point stencil of Ashcroft & Zhang (2003), shown bythe (− · ·−) line, has a trough

at Nλ = 4.3, which is very close to the corresponding trough of the interior compact scheme

of Ashcroft & Zhang (2003) denoted by(—�—). For Nλ ≥ 4.3, the prefactored interior 11-

point stencil of Ashcroft & Zhang (2003) follows the fourth-order dispersive error roll-off of

its corresponding interior scheme. The dispersive error ofthe prefactored 11-point stencil of

eq. (3.51a) follows the dispersive error of the prefactoredinterior 11-point stencil of Hixon
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Figure 3.28: Dispersive characteristics of the forward prefactored interior 11-point stencils for
i-th node. (a) Real and (b) imaginary components of the Fourier transform. (c) Dispersive error
from eq. (2.11). (d) Dissipative error from eq. (2.12).
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(2000) in the range ofpoorly-resolvedwavenumbers up toNλ = 4. ForNλ > 4, the scheme

of eq. (3.51a) has the lowest dispersive error among the prefactored interior 11-point sten-

cil schemes. This is due to the eleventh formal order of accuracy of eq. (3.51a), which is

higher than the ninth and fourth-order closures used by Hixon (2000) and by Ashcroft & Zhang

(2003). The optimization of the prefactored interior 11-point stencil followed by Hixon (2000)

and Ashcroft & Zhang (2003) aims to match the dispersive error of the prefactored interior

11-point stencil with the corresponding interior scheme. The cost-optimization process of

Sec. 3.2.3 modifies the dispersive error of the interior cost-optimized schemes, as shown in

Fig. 3.11(b), with a single trough at different values ofNλ that are function of theepsmn level

of error (withn = 3,4,5). Therefore, it was elected to couple the cost-optimized scheme with a

prefactored interior 11-point stencil scheme that has the lowest dispersive error for this stencil

across thewell-resolvedwavenumber range.

Figure 3.28(d) shows the dissipative error from eq. (2.12) for the three prefactored interior

11-point stencil scheme, showed by the dashed and dashed-dotted lines. The continuous lines

display the dissipative error of the interior sixth-orderC1122 compact scheme of eq. (3.36)

and of the fourth-order three-point prefactored compact scheme of Ashcroft & Zhang (2003).

The dissipative error of the prefactored interior 11-pointstencil of eq. (3.51a) is essentially the

same as the one from the prefactored interior 11-point stencil of Hixon (2000), as shown by

dashed lines overlapping in Fig. 3.28(d). Both schemes follow the dissipation error of the in-

terior sixth-orderC1122 scheme forNλ ≥ 4. The prefactored interior 11-point stencil scheme

of Ashcroft & Zhang (2003) shows the lowest dissipative error across the whole wavenumber

range. It follows the dissipation error of the corresponding interior scheme forwell-resolved

waves. Figures 3.28(c) and 3.28(d) show that the prefactored interior 11-point stencil of

eq. (3.51a) has reduced the dispersive error in thewell-resolvedwavenumber range with respect

to same stencil-size schemes in the literature, without introducing any appreciable additional

dissipation.

Whereas the current formulation is satisfactory for the purpose of modelling the flow and noise

in the test cases of Chapter 5, there is scope for further workto improve the spectral match

between the interior implicit scheme of eq. (3.36) and the prefactored forward interior eleven-

point stencil of eq. (3.57a) and (3.57b). The Fourier seriesof eq. (3.57a) and (3.57b) can be

Padè transformed into rational functions, to match the rational function form of eq. (3.36).

Prior to the application to the test-cases of Chapter 5, the numerical stability of the cost-

optimized schemes combined with the boundary closures is analysed in Sec 3.5.2.
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3.5.2 Eigenvalue analysis

An eigenvalue analysis has been performed to verify under which conditions the prefactored

cost-optimized schemes of Sec. 3.2.4 coupled with the boundary closures of Sec. 3.5.1 generate

a numerically stable algorithm. This work follows the analysis by Lele (1992) as extended to

prefactored schemes by Ashcroft & Zhang (2003). Firstly, the eigenvalue analysis is performed

on the classical and the cost-optimizedC1122 interior schemes of eq. (3.24), with the boundary

closure of eq. (A.88). This analysis is reported in AppendixA.4. Then, the eigenvalue analysis

is carried out on the prefactored counterpart schemes of eqs. (3.33) and (3.34) coupled with the

boundary closure of eqs. (3.47) and (3.48). This stability analysis of the semi-discrete form of

eq. (2.13) is based on the method of lines (Hirsch, 2007).

Consider theLAE of eq. (2.13) over the domain 0≤ x ≤ 1 with a prescribed inflow boundary

conditionu(0, t) = g(t). For the purpose of this stability analysis,g(t) can be set to zero without

loss of generality (Carpenteret al., 1993a). The domain is discretised intoN uniform intervals

(N + 1 nodes) of width∆x = 1/N. Imposing the boundary condition at thei = 0 node leads

to N unknowns to be found (i = 1, · · · ,N). The spatial derivative
∂u
∂x

of eq. (2.13) is evaluated

by the prefactored finite difference approximation of eq. (3.32). This linear operator may be

formally written in matrix form as

AF u′F =
1
h

BF u, (3.59a)

AB u′B =
1
h

BB u, (3.59b)

whereu, u′F andu′B areN-dimensional vectors representing, respectively, the values of the

function and its prefactored finite difference approximation at the nodesxi = i/N

u = (u1, u2, · · · , uN−1, uN)T , u′F =
(
u′F1 , u

′F
2 , · · · , u′FN−1, u

′F
N

)T
, u′B =

(
u′B1 , u

′B
2 , · · · , u′BN−1, u

′B
N

)T

(3.60)

andAF, AB, BF, BB areN × N squared matrices. The system of equations (3.59) is appliedat

nodesi = 1 to N.

Substituting eq. (3.59a) and (3.59b) to eq. (2.13) yields toa system ofODEswhich may be

written as
du
dt
= −c

h
M u , (3.61)
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whereM is anN × N matrix, which is determined from linear algebra.

Specifically, through the application of the boundary condition g(t) = 0, the forward matrices

AF andBF are re-written as

AF =



βF αF 0 · · · 0 0

0 βF αF 0 · · · 0
...
. . .

. . .
. . .

...
...

0 · · · 0 βF αF 0

0 0 · · · 0 βF αF

0 0 0 · · · 0 1



, BF =



cF bF 0 0 · · · · · · 0

dF cF bF 0 · · · · · · 0
...
. . .

. . .
. . .

. . .
... 0

...
. . .

. . .
. . .

. . .
... 0

0 · · · 0 dF cF bF 0

0 0 · · · 0 dF cF bF

0 · · · −s7 · · · −s3 −s2 −s1



.

(3.62)

Similarly, the backward matricesAB andBB are

AB =



βB 0 0 · · · 0 0

γB βB 0 0 · · · 0

0
. . .

. . .
. . .

...
...

0 0 γB βB 0 0

0 0 · · · γB βB 0

0 0 0 · · · 0 1



, BB =



s∗2 s∗3 · · · s∗7 · · · · · · 0

dB cB bB 0 · · · · · · 0

0
. . .

. . .
. . .

. . .
... 0

0
. . .

. . .
. . .

. . .
... 0

0 0 0 dB cB bB 0

0 · · · 0 0 dB cB bB

0 · · · eN−6 · · · eN−2 eN−1 eN


(3.63)

where the coefficientss∗i are

s∗2 = −γB (s2 + cB) ; s∗3 = −γB (s3 + bB) ; s∗4 = −γBs4; s∗5 = −γBs5; s∗6 = −γBs6; s∗7 = −γBs7.

(3.64)

The top row of theBB matrix has been rearranged to eliminateu′B0 , which is defined by the

boundary condition onu0, g(t) = 0 as detailed in Appendix A.4.

Using Eq. (3.32),u′ may be expressed as:

u′ =
1
2

(
u′F + u′B

)
=

1
2h

((
AF

)−1
BF +

(
AB

)−1
BB

)
u, (3.65)
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from which

M =
1
2

((
AF

)−1
BF +

(
AB

)−1
BB

)
. (3.66)

Since eq. (3.61) is a system of ODE’s in time with constant coefficients, it admits as solution

ortho-normal modesu = estũ, with a constants representing the rate of decay or amplification

of the modes. Substitutingu = estũ into eq. (3.61) leads to an eigenvalue problem

ũ = −s∗M ũ, (3.67)

wheres∗ =
c
s h

is the dimensionless eigenvalue andũ becomes the corresponding eigenvec-

tor. The eigenvalues is in general complex and it depends on the sizeN of the matrixM , the

interior scheme, and the boundary closures. The matrixM is, in general, non-symmetric. To

numerically determine its eigenvalues, a balancing procedure is firstly applied to reduce the

norm of M . Then, the matrixM is converted into its Hessenberg form, suitable for theQR

transformation that gives the complex eigenvalues (Press &Firm, 1996).

The real parts of the eigenvalues are required to be equal or less than zero to guarantee the

numerical stability of the interior scheme coupled with theboundary closure, i.e.|est| ≤ 1.

Figure 3.29 plots the Laplace plane or eigenvalue spectrums∗, which is the root-locus of the

combined scheme. The effect of the boundary closures on the eigenvalue spectrums∗ for the

classical PadèC1111 interior scheme, that isα1 = 1/4 in eq. (3.24), is reported. Figure 3.29

reproduces the results of Lele (1992).

Figure 3.30 presents the plot in the Laplace plane forC1122 classical sixth-order scheme

and the cost-optimizedC1122epsm5, C1122epsm4, C1122epsm3 schemes. They are cou-

pled with a fourth-order non-centered compactC4 boundary closure at thei = 1 andi = N

mesh nodes, and a fifth-order non-centered compactC5 boundary scheme at thei = 2 and

i = N − 1 mesh nodes, as detailed in eq. (A.88). The combined schemesare asymptotically

stable (Carpenteret al., 1993a), that isℜ (s∗) ≤ 0 for all the value ofN considered.

Figure 3.31 shows the eigenvalue spectrums∗ for the fourth-order prefactored compactC1122

scheme of Ashcroft & Zhang (2003) coupled with a three-point, fourth-order boundary stencil.

Figure 3.31 shows that the combined is asymptotically stable. This plot matches the results

of Ashcroft & Zhang (2003).

Figure 3.33(a) shows the eigenvalue spectrums∗ of the classicalC1122 prefactored compact

scheme of eqs. (3.33) and (3.34) coupled with the prefactored one-sided boundary stencils of

eqs. (3.47) and (3.48). It is shown that the most of the eigenvalues are located in the left half
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Figure 3.29: Effect of boundary closures of eq. (A.88) on the eigenvalue spectrums∗ for the
classical PadèC1111 scheme (α1 = 1/4 in eq. (3.24)). N = 49. (a) First-order explicit scheme
E1 at the boundaries. (b) Second-order explicit schemeE2 at the boundaries. (c) Second-order
compact schemeC2 at the boundaries (α12 = 1). (d) Third-order compact schemeC3 at the
boundaries (α12 = 2).
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Figure 3.30: Eigenvalue spectrum for the classicalC1122 scheme and the cost-optimized
C12epsmn schemes, withn = 5, 4, 3. (△) N = 21, (◦) N = 41, (⋄) N = 81, (▽) N = 201,
(�) N = 401 (a)C1122 (Carpenteret al., 1993a). (b) C1122epsm5. (c) C1122epsm4. (d)
C1122epsm3.
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of the complex plane. However, some of them marginally crossthe y-axis on the positive side.

In particular, an eigenvalues pair acts as poles at the position s∗1,2 ≃ (0.157,±1.4). A similar

behaviour is reported by Figs. 3.33(b), 3.33(c) and 3.33(d), which show the eigenvalue spec-

trum for the cost-optimizedC1122epsmn (with n = 5, 4, 3) interior schemes, coupled with the

same prefactored one-sided boundary stencils of eqs. (3.47) and (3.48). Table 3.8 reports the

real parts of the first two pairs of positive eigenvaluess∗1,2 and s∗3,4 from eq. (3.67), obtained

by varying the number of nodesN for the classical prefactoredC1122 and the cost-optimized

C1122epsm5, C1122epsm4 andC1122epsm3 interior schemes. It is shown that the orders of

magnitude of the real parts of the eigenvalue pairs∗3,4 are relatively small and they tend to zero

as the number of nodesN increases. As the number of nodesN becomes larger, the real parts

of the eigenvalue pairss∗1,2 asymptotes to the constant value. It turns out that those components

with real part are neutrally stable in practice and they do not cause any instabilities in the ac-

tual computations (Kim, 2007), as reported in Chapters 5. For reference, Fig. 3.32 shows the

classicalC1122 prefactored scheme coupled with the four points, third-order one-sided bound-

ary stencils of Ashcroft & Zhang (2003). With such boundary stencils, the combined scheme

results to be asymptotically stable.

This eigenvalue analysis has shown that the cost-optimizedprefactored compact scheme cou-

pled with the selected boundary closures are conditionallystable. These schemes, in coinci-

dence with their application to the selected aeroacoustic problems, are reported in Chapters 5.
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Figure 3.31: Eigenvalue spectrum for the fourth-order prefactored compactC1122 scheme
of Ashcroft & Zhang(2003) coupled with third-order boundary closure:(•) N = 26; (X) N =
51; (+) N = 101.
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Figure 3.32: Eigenvalue spectrum for the prefactored classical C1122 scheme coupled with the
four points, third-order one-sided boundary stencils ofAshcroft & Zhang(2003): (△) N = 21,
(◦) N = 41, (⋄) N = 81, (▽) N = 201,(�) N = 401.
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Figure 3.33: Eigenvalue spectrum for the prefactored classical C1122 scheme and the cost-
optimizedC12epsmn schemes withn = 5, 4, 3. (△) N = 21, (◦) N = 41, (⋄) N = 81, (▽)
N = 201,(�) N = 401. (a)C1122, (b)C1122epsm5, (c)C1122epsm4, (d)C1122epsm3.
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C1122 (α1 = 1/3) N ℜ
(
s∗1,2

)
ℜ

(
s∗3,4

)

21 0.153812 0.0279661
41 0.157185 0.0104212
81 0.157096 0.00467175
201 0.157096 0.00179513
401 0.157096 0.000881983

C1122epsm5 (α1 = 0.33750)
21 0.165735 0.0232195
41 0.16442 0.0091237
81 0.164442 0.00452301
201 0.164442 0.00168956
401 0.164442 0.000831262

C1122epsm4 (α1 = 0.34240)
21 0.176703 0.00185276
41 0.172182 0.00869214
81 0.172233 0.00408224
201 0.172233 0.0015743
401 0.172233 0.000771996

C1122epsm3 (α1 = 0.3532)
21 0.184775 0.0010779
41 0.183112 0.00732721
81 0.183141 0.00347811
201 0.183141 0.00131947
401 0.183141 0.000648061

Table 3.8: Real part of the first two positive eigenvalue pairs s∗1,2 and s∗3,4 from eq. (3.67)
for different number of nodesN. Classical prefactoredC1122, cost-optimizedC1122epsm5,
C1122epsm4 andC1122epsm3 interior schemes.
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3.6 Artificial Boundary Conditions

3.6.1 Characteristic based boundary conditions

The behaviour of a multi-dimensional prefactored compact finite difference method at the com-

putational domain boundaries can be assessed in the contextof the simpler problem of the one-

dimensional advection dominated flow, in characteristic form. Recall the characteristic form

of the governing LEE of eqs. (3.22) and (3.23) in Sec. 3.1.2.2. Under the one-dimensional

x-direction flow approximation, at an orthonormal computational boundary
∂U∗

∂y∗
= 0, the

system of eqs. (3.23) simplifies into a set of Local One-Dimensional Inviscid (LODI) equa-

tions (Poinsot & Lele, 1992)

∂ρ∗

∂t∗
+

[
L2 +

1
2

(L1 + L4)

]
= 0 (3.68a)

∂u∗

∂t∗
+

[
1
2

(L4 − L1)

]
= 0 (3.68b)

∂v∗

∂t∗
+ L3 = 0 (3.68c)

∂p∗

∂t∗
+

[
1
2

(L4 + L1)

]
= 0. (3.68d)

Equation (3.68) states the LODI system in thex-direction. Appendix A states the LODI system

in the y-direction, where the termB∗0
∂U∗

∂y∗
in the system of eq. (3.11) is replaced by the char-

acteristic wave amplitude variationsLi estimated for they-direction. Comparing the LEE of

eq. (3.68) with the system of equations reported by Colonius(2004), the two set of equations

coincide under the assumption that the characteristic waveL2 is set to zero.

The treatment of corners in a two-dimensional domain requires an extension of the LODI pro-

cedure. Like any other formulation, the LODI approach for corners in a two-dimensional

domain and edges in a three-dimensional domain requires some compatibility conditions to be

satisfied at these locations. A general definition for all thepossible combinations of boundary

conditions at corners and edges is not available and appearsto be even more difficult than the

usual studies of well-posedness, as reported by Colonius (2004).

The LODI system of eqs. (3.68) is used to close the system of algebraic equations at the com-

putational domain boundaries. At the computational domainboundaries, the LODI system of

eqs. (3.68) is solved with the interior scheme of the system of eqs. (3.23) to predict the flow.

The LODI relations of eqs. (3.17) are first used to estimate the wave amplitude variationsLi.
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Then, the value of the flow state at the boundaries as well as atthe computational domain inte-

rior is time-advanced by integrating the system of eqs. (3.22), starting from a known flow state

at t = 0 (Thompson, 1987, 1990).

Most physical boundary conditions have a counterpart LODI relation. This is obtained by set-

ting the amplitude of the characteristics wavesLi in the system of eqs. (3.22) according to the

following condition. If the characteristic velocityλi points out the computational domain, the

correspondingLi is computed from the definition of eqs. (3.17), using one-sided derivative ap-

proximations of eqs. (3.47) and (3.48). Else, ifλi points into the computational domain,Li is

specified from the boundary conditions.

The following Secs 3.6.1.1, 3.6.1.2, 3.6.1.3 report three examples of LODI implementation,

respectively: subsonic inflow, subsonic outflow and inviscid wall. These boundary closures are

used in the test-cases of Chapter 5. The LODI implementationfor supersonic case is reported

by Lele (1992).

3.6.1.1 Subsonic inflow

Figure 3.34 sketches a computational domain bounded bya andb, a ≤ x ≤ b, with a prescribed

subsonic inflow boundary condition at the computational domain boundariesx = a and x =

b. This computational domain, having only inflow boundaries,is not intended to represent

a physical flow but only to support the current description ofthe subsonic inflow boundary

condition. In these domain, the corresponding directions of the characteristic velocitiesλi are

shown in Fig. 3.34 and their values are

x = a 0 < Mx < 1 λ1 = Mx − 1 < 0 λ2 = λ3 = Mx > 0 λ4 = Mx + 1 > 0, (3.69a)

x = b −1 < Mx < 0 λ1 = Mx − 1 < 0 λ2 = λ3 = Mx < 0 λ4 = Mx + 1 > 0. (3.69b)

At the computational domain boundaryx = a, the characteristic velocityλ1 and the corre-

sponding left going acoustic waveL1 points out the computational domain.L1 is anoutgoing

waveand it is computed by the one-sided derivative approximation of eqs. (3.47) and (3.48).

The characteristic velocitiesλ2, λ3 andλ4 are pointing into the computational domain and the

correspondingL′i sareincoming waves. Their amplitude is set to zero, that isL2 = L3 = L4 = 0.

At the computational domain boundaryx = b, the characteristic velocitiesλ1, λ2, λ3 and the

corresponding characteristics wavesL′i spoint into the computational domain. They areincom-

ing wavesand their amplitude is set to zero,L1 = L2 = L3 = 0. The characteristic velocity
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x=bx=a

x direction

Mx

incoming waves

outgoing
wave

outgoing
wave

incoming waves

λ2,3

Mx

λ1

λ4

λ1

λ2,3

λ4

Figure 3.34: Characteristic velocitiesλi for subsonic inflow atx = a andx = b.

λ4 and the corresponding right going acoustic waveL4 is pointing out the domain.L4 is an

outgoing waveand it is computed by the one-sided derivative approximation of eqs. (3.47)

and (3.48).

3.6.1.2 Subsonic outflow

Figure 3.35 sketches a computational domain bounded bya andb, a ≤ x ≤ b, with a prescribed

subsonic outflow boundary condition at the computational domain boundariesx = a andx = b.

This computational domain, having only outflow boundaries,is not intended to represent a

physical flow but only to support the current description of the subsonic outflow boundary

condition. In these domain, the corresponding directions of the characteristic velocitiesλi are

shown in Fig. 3.35 and their values are

x = a −1 < Mx < 0 λ1 = Mx − 1 < 0 λ2 = λ3 = Mx < 0 λ4 = Mx + 1 > 0, (3.70a)

x = b 0 < Mx < 1 λ1 = Mx − 1 < 0 λ2 = λ3 = Mx > 0 λ4 = Mx + 1 > 0. (3.70b)

At the computational domain boundaryx = a, the characteristic velocityλ1, λ2 andλ3 and

the corresponding characteristics wavesL′i spoint out the computational domain. They areout-

going wavesand they are computed by the one-sided derivative approximations of eqs. (3.47)
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Figure 3.35: Characteristic velocitiesλi for subsonic outflow atx = a andx = b.

and (3.48). The characteristic velocityλ4 and the corresponding right going acoustic waveL4

is pointing into the computational domain.L4 is an incoming waveand its amplitude is set to

zero,L4 = 0.

At the computational domain boundaryx = b, the characteristic velocityλ1 and the corre-

sponding left going acoustic waveL1 point into the computational domain.L1 is anincoming

waveand its amplitude is set to zero,L1 = 0. The characteristic velocitiesλ2, λ3 andλ4 and the

corresponding characteristic wavesL′i spoint out the computational domain. They areoutgoing

wavesand are computed by the one-sided derivative approximations of eqs. (3.47) and (3.48).

3.6.1.3 Inviscid wall

Figure 3.36 shows a computational domain bounded bya andb, a ≤ x ≤ b, with a subsonic

inflow boundary condition atx = a computational boundary, and an inviscid wall atx = b.

Inside the domain the flow is quiescent. The values of the characteristics velocitiesλi at the

computational boundaryx = b are

x = b Mx = 0 λ1 = −1 < 0 λ2 = λ3 = 0 λ4 = 1 > 0. (3.71a)

Therefore, the characteristic velocitiesλ2, λ3 and the corresponding amplitude of the charac-

teristic wavesL2 and L3 are set to zero. The characteristic velocityλ4 is equal to the non-
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Figure 3.36: Characteristic velocitiesλi for a subsonic inflow atx = a and an inviscid wall at
x = b.

dimensional speed of sound and the corresponding right going acoustic waveL4 points out the

computational domain.L4 is anoutgoing waveand it is computed by the one-sided deriva-

tive approximation of eqs. (3.47) and (3.48). The characteristic velocity λ1 is equal to the

non-dimensional speed of sound too and it points into the computational domain. Its value is

specified by the no-slip wall boundary condition, i.e.u∗ = v∗ = 0 and
∂u∗

∂t∗
= 0. By substituting

these constraints in eq. (3.68b)

L1 = L4. (3.72)

Equation (3.72) states that the amplitude of the left going acoustic incoming wave L1 is set

equal to the amplitude of the right going acousticoutgoing wave L4. This means, physically,

that the incoming wave is reflected back by the no-slip wall with the same amplitude.

Inviscid moving walls are useful boundary conditions in some computations. They are charac-

terized by only one inviscid wall condition. In the case of non-zero wall normal velocity, the

condition from eq. (3.68b) is

L1 = L4 + 2
∂u∗

∂t∗
. (3.73)

Lodatoet al.(2008) have extended the Navier-Stokes Characteristic Boundary Condition (NSCBC)

to account for convection and pressure gradients in boundary planes, resulting in the 3D-

NSCBC approach. This technique has shown significant reduction of flow distortion and

101

Chapter2/fig/inviscid_wall.eps


3. NUMERICAL METHOD 3.6 Artificial Boundary Conditions

boundary reflection even when the configuration is characterized by high tridimensionality of

the flow field, accompanied by obliquely propagating waves. This is the case of high-speed jet

or shear flows, whereas the LODI relations make serious reflections without proper treatments

or appropriate absorbing layers (Poinsot & Lele, 1992).

3.6.2 Absorbing layers

The present numerical scheme is designed to provide low dispersion and dissipation errors.

Therefore, any inconsistency due to the numerical treatment at the computational boundaries

will introduce errors or spurious wave reflections in the computation, which will eventually

degrade the solution. To overcome this problem, an absorbing layer is introduced in the nu-

merical model to enhance the efficacy of the Artificial Boundary Conditions. In this region,

the governing equations are modified approaching the computational boundaries. These re-

gions are referred in the literature as absorbing layers, fringe regions, or buffer zone. The

absorbing layer concept was introduced by Israeli & Orszag (1981) in the context of modelling

linear wave propagation problems. At that time, the technique they developed was motivated

by difficulties in formulating a local non-reflecting boundary condition for the linearized wave

propagation problem. Recent advancements of finite-thickness boundary treatments with non-

reflecting properties are reported by Colonius (2004). Someof this development make use of

absorbing layers for both linear and non-linear unsteady computations.

Absorbing layer treatments typically damp disturbances before the interact with an Artificial

Boundary Condition. A simple way to do this is either by introducing artificial dissipation

by upwinding (Lockardet al., 1995; Zhuang & Chen, 1998), or by increasing the value of the

fluid viscosity, or by adding an eddy viscosity (Tamet al., 1993), or by adding a linear friction

coefficient to the governing equations (Richardset al., 2004).

The absorbing layer technique is relatively easy to implement in a computational scheme, but

the inclusion of artificial damping within the absorbing layer means that the solution is locally

non-physical. The absorbing layer is itself reflective and,without further modification, the only

way to obtain a satisfactory result is to gradually increasethe damping over a relatively long

distance. This results in thick, computationally inefficient layers (Colonius, 2004). Alternative

techniques to the absorbing layer are Asymptotic ExpansionMethod (Tam & Web, 1993) and

Perfectly Matched Layer (Hu, 1996).

In the present work, two absorbing layer variants are analysed. The first one, referred asTypeI
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AL (Absorbing Layer), is a technique by Richardset al. (2004) that directly forces the solution

to a target flow state within the absorbing layer. The second one, labelled asTypeII AL, is a

zonal characteristic based boundary condition proposed bySandberg & Sandham (2006).

3.6.2.1 Type I Absorbing layer

In theTypeI AL, the absorbing layer is a computational domain enclosing the physical domain

in which damping is directly applied to the numerical solution vectorU after each time step

Un+1 = Un+1 − g(x)
(
Un+1 − Utarget

)
, (3.74)

whereUn+1 is the numerical solution vector after each time step andUtarget is a given reference

flow state. The damping coefficientg(x) is defined as

g(x) = α2

∣∣∣∣∣1−
w− x

w

∣∣∣∣∣
β1

, (3.75)

wherex is the distance from the inner boundary of the absorbing layer andw is the absorbing

layer width, as sketched in Fig. 3.37. Parametersα2 andβ1 are used to determine the shape

of the damping coefficientg(x). The damping coefficientg(x) is set to zero atx = 0, which is

the interface between the absorbing layer and the computational domain interior. Full damping

is applied atx = w, at the outer edge of the buffer zone to damp the target solution. Within

the absorbing layer, the damping coefficient g(x) is varied smoothly to minimize possible re-

flections. In this way, the numerical solution vectorUn+1 is gradually changed towards the set

target valueUtarget at the outer edge of buffer zone, atx = w. At an outflow computational

domain boundaryUtarget is set to the mean flow value.

Setting a target value for the numerical solution vectorUn+1 is the non-reflecting criterion upon

which absorbing layer boundary conditions work. This type of absorbing layer approach gen-

erally involves coefficients that are flow-dependent and assume prior knowledge ofthe size of

the flow structure to be damped.

3.6.2.2 Type II Absorbing layer

Sandberg & Sandham (2006) proposed to extend the LODI sytem of Sec. 3.1.2.2 from a bound-

ary plane to a zone of finite thickness. The characteristic velocitiesλi and the corresponding
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amplitudes of the characteristic wavesL′i s are computed within a specific absorbing layer. If

Li is anoutgoing wave, its amplitude is computed by the one-sided derivative approximations

of eqs. (3.47) and (3.48), and it is left unchanged within this region. Else, ifLi is anincoming

wave, its amplitude is gradually ramped to zero at the outer edge of the buffer zone according

to

L̃i = s(x) · Li , s(x) = 0.5
[
1+ cos

(
π x
w

)]
. (3.76)

Figure 3.37 sketches an outflow absorbing layer at the computational domain boundaryx = b.

The characteristic velocitiesλi and the corresponding characteristic wavesL′i s are reported in

eq. (3.70b). At the computational domain boundaryx = b, the characteristic velocityλ1 of

the corresponding left going acoustic waveL1 points into the computational domain.L1 is an

incoming waveand its amplitude is ramped to zero according to eq. (3.76) within the absorbing

layer. The characteristic velocitiesλ2, λ3 andλ4 of the corresponding characteristic wavesL1,

L2 and L3 point out the computational domain.L1, L2 and L3 are outgoing wavesand are

computed by the one-sided derivative approximations of eqs. (3.47) and (3.48) and they are left

unchanged within this region. The technique is extended to the inflow boundary condition by

multiplying the amplitudesL′i sof the incoming wavesby a ramping function within a zone, as

described forL1 in the case of an outflow boundary condition.

In contrast to most other zonal approaches, this method is free of coefficients that require

calibration. The only parameter to be set is the width of the buffer zonew.
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Figure 3.37: Sketch of the outflow absorbing layer at the computational domain boundary
x = b.
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3.7 Chapter summary and achievements

This chapter has presented the numerical method used in the present work.

Section 3.1 has reported the governing equations solved in the present study, that are the LAE

and the LEE. The derivation of the LEE in non-dimensional andin characteristic form starting

from the 2-D strong conservative form of the Euler equationshas been reported.

Section 3.2 has introduced the spatial discretization method used. The most common finite-

difference schemes used in CAA have been reviewed and compared interm of computational

efficiency. The effect of the spatial discretization and the number of physicaldimensions on

the computational cost has been analysed. The spatial cost-optimization technique, based on

the maximization of the spatial resolving efficiency κ̌∗ for a given value of normalized error ˜ǫ,

has been presented. The cost-optimized schemes has been extended to the class of sixth-order

prefactored compact schemes of Hixon (2000) and a new class of cost-optimized prefactored

high-order compact scheme has been developed.

Section 3.3 has analysed the impact on the computational cost of using different time integra-

tion schemes for a two dimensional problem for various spatial discretization schemes. The

temporal cost-optimization technique, based on the maximization of the temporal resolving ef-

ficiencyž∗ for a given value of normalized error ˜ǫ, has been presented. A temporal stability and

accuracy analysis has confirmed that the cost-optimizationgives a small advantage in terms of

temporal dissipation and dispersion properties of the resulting schemes.

Section 3.4 has shown the predicted performance of the combined space and time cost-optimization

schemes for the same level of error. A computational advantage is predicted by using cost-

optimized schemes to model wave propagation problems at their design operational point.

Section 3.5 has shown the effect of the perimetrical scheme on the interior scheme. Two

methods of treating near-boundary points are presented andcompared against the boundary

treatments of Hixon (2000) and Ashcroft & Zhang (2003). The first approach is a prefactored

sixth-order explicit one-sided finite-difference scheme that uses a seven-point stencil, the sec-

ond is a prefactored explicit central scheme with an 11-point stencil. The wave propagation

characteristics of these boundary closures have been examined. An new 11-point stencil with

double precision accuracy has been derived, which has reduced the dispersive error in the

well-resolvedwavenumber range with respect to the same stencil-size schemes available in the

literature, without introducing any appreciable additional dissipation.
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An eigenvalue analysis has been performed and it has shown that the cost-optimized prefac-

tored schemes coupled with the selected boundary closures are conditionally stable.

Section 3.6 details the artificial boundary conditions usedin the present study. Three imple-

mentation of the LODI technique are shown: the subsonic inflow, the subsonic outflow and

the inviscid wall. Two type of absorbing layer technique arediscussed. The first one is the

absorbing layer technique by Richardset al. (2004), that directly forces the solution to a target

flow state within the absorbing layer. The second one is a zonal characteristic based boundary

condition proposed by Sandberg & Sandham (2006).

The main achievements of this Chapter 3 are:

• The development of a new class of cost-optimized prefactored high-order compact schemes.

• The temporal stability and accuracy analysis has confirmed that the cost-optimization

gives a small advantage in terms of temporal dissipation anddispersion properties of the

resulting cost-optimized schemes.

• A computational advantage is predicted by using cost-optimized schemes to model wave

propagation problems at their design operational point.

• The derivation of a prefactored interior 11-point stencil with double precision accuracy

that has shown a better performance in spectral sense compared to the equivalent ones

available in the literature.

• An eigenvalue analysis has been performed and it has shown that the cost-optimized

prefactored schemes coupled with the selected boundary closures are conditionally sta-

ble.
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Chapter 4

MPI single domain decomposition

4.1 Parallelization strategy

The compact finite-difference approximation of the spatial derivatives makes their paralleliza-

tion challenging and non-trivial. The parallelization is achieved by domain decomposition, as

shown in Fig. 4.1 for a two-dimensional Cartesian domain. The x an y axes are divided, re-

spectively, inm andn segments, to obtain a total ofm× n blocks. This multi-block parallel

computation uses one processor per block and the method of communication between adjacent

blocks is by finite-sized overlaps. At every time step, the solution is computed independently

in each block with individual interior and boundary formulae as in single-block computations.

The number of points in the interface overlap region is driven by the specific choice of the

finite-difference approximation of the spatial derivative along the inter-block boundaries. This

is estimated by the 11-point explicit prefactored interiorboundary stencil of eq. (3.51), which

gives a finite-sized overlap region of five points, as sketched in Fig. 4.1. The scheme has been

tested to be stable and accurate on general curvilinear meshes and viscous flows (Ghillani,

2012).

The LEE in a two-dimensional Cartesian co-ordinate system of Sec. 3.1.2 are time-advanced

using the explicit fourth-order RK time-marching schemes of Sec. 3.3. Datas are exchanged

between adjacent blocks at the end of every RK stage. The structured mesh of the finite-sized

overlap region gives an envelope of communication of constant size. This enables to use the

MPI persistent calls, to speed up the communication (Message Passing Interface Forum, 2009).
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Figure 4.1: Domain decomposition and communication schemewith 4 blocks (m= n = 2).

4.2 Weak scalability tests

Weak scalability tests, that are the variation of the computational solution time with the number

of processorsp for a fixed problem size, have been carried out by using the propagation of an

acoustic pulse in a two-dimensional unbounded domain of Sec. 5.2.1.

The classicalC1122 scheme of eqs. (3.33) and (3.34) is used as interior prefactored scheme

combined with the outflow LODI of Sec. 3.6.1 at the computational numerical boundaries.

The classicalRK4 scheme is used to time advance the numerical solution. Figure 4.2(a) shows

the L2 norm error of the non-dimensional density perturbation between the analytical and the

numerical solutions of a two-dimensional acoustic pulse propagating in an unbounded do-
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main (Hardinet al., 1995), on progressively refined computational meshes (I. Spisso & Rona,

2009). The same results were obtained using the multi-blockcode with 4 and 16 blocks. The

rate of the numerical error roll-off is parallel to the−6 log(N) black dashed line, showing that

the code preserves its design sixth-order accuracy with theinter-block boundaries.

The speed-up=
Tre f

Tp
, shown in Fig. 4.2(b), is defined as the ratio betweenTre f the total time

of execution (total wall clock time) using the minimum number of processors as referencere f ,

andTp the time obtained using a greater numberp of processors (or compute nodes). The

speed-up varies among 0 andp. A value ofp indicates an ideal value (linear scaling).

Figure 4.2(a) shows the computational speed-up versus the number of processors on the IBM

S P6 cluster, with a number of processors as referencere f = 4, measured by instrumenting the

code with system clock calls and SCALASCA (doc, Jülich SuperComputing Centre). The IBM

SP6 cluster was in production in CINECA from September 2009 up to May 2012. The IBM

SP6 cluster consisted of 168 Power6 575 compute nodes. Each node contained 32 cores with

128 GB of memory, with a peak performance of just over 100 Tflops (sp6, CINECA). The com-

piler used was the nativexlf compiler of IBM with aggressive optimization using the following

flagsFCFLAGS= -O3 -g -qarch=pwr6 -qtune=pwr6 -qmaxmem=-1 -qcache=auto -qhot=vector

-qhot=simd -qenablevmx.

The speed-up, shown in Fig. 4.2(a), indicates that the wall-clock time decreases almost linearly

with the number of processors used, that is up top = 128. This is possible because the MPI

time per time step is a small fraction of the computational time and because the communication

network of the SP6 used an Infiniband low latency high bandwidth network.

4.3 Further work

The MPI single domain decomposition described in the previous Sec. 4.1 has been imple-

mented by finite-sized overlap. In the mesh point at the interface between two adjacent blocks,

the approximation to the first derivative is evaluated with the 11-point explicit prefactored in-

terior boundary stencil of eq. (3.51a) and (3.51b). In the interior points of the blocks, the

compact prefactored classicalC1122 and cost-optimizedC1122epsmn schemes of eqs. (3.33)

and (3.34) are used. By comparing the pseudo-wavenumber of the compact interior scheme

of eq. (3.36) with the one of the 11-point explicit prefactored interior boundary stencil of

eq. (3.57), a spectral mis-match is evident, due the approximation of a rational function in
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Figure 4.2: Solution to test-case of Sec.5.2.1with the MPI domain decomposition.

eq. (3.36) with the Fourier series of eq. (3.57). The consequence of that mis-match is the in-

troduction of an error on this parallelization strategy, which has not been revealed in the tests

reported in Sec. 4.2.

An alternative approach to the use of the finite-sized overlap is the slab decomposition. Fig-

ure 4.3 shows that, with this parallelization strategy, theslice division is done for a given

direction of parallelization. The solution is time-advanced in the single slices (or slabs) by

using the boundary and interior formulation as in a serial job (Colonius, 2011). In this case,

no error or approximation is introduced by the parallelization strategy. When the derivative

in next direction has to be computed the data are transposed by using the theMPI AlltoAll

directives to transpose the data (Message Passing Interface Forum, 2009). For the extension to

three dimensional space in HPC clusters, the parallel performance of the code can take advan-

tage of the new 2D pencil domain decomposition already implemented in the 2DECOMP&FFT

library, a software framework in Fortran to build large-scale parallel applications. It is designed

for applications using three-dimensional structured meshand spatially implicit numerical algo-

rithms. This library is optimised for supercomputers and scales well to hundreds of thousands

of cores (Guarrasiet al., 2013; Li & Laizet, 2010).
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Figure 4.3: Domain decomposition and communication schemewith slab decomposition: (a)
decomposition inY direction; (b) decomposition inX direction.

4.4 Chapter summary and achievements

This chapter has presented the parellization strategy adopted for the serial code.

Section 4.1 has reported the parallelization strategy implemented in the actual code, based on

MPI single domain decomposition and finite-sized overlap region.

Section 4.2 has shown the weak scalability tests on the state-of-art HPC cluster. Good scala-

bility results are shown up top = 128 number of processors.

Section 4.3 has described the further work on the parallelization strategy based on the slab

decomposition.

The main achievements of this Chapter 4 are:

• A parallelization strategy based on MPI single domain decomposition and finite-sized

overlap region has been implemented and tested on HPC cluster.

• The parallel version of the code has shown a good scalability, for execution on HPC

clusters, up to 128 processors.
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Chapter 5

Verification and Validation

5.1 One-Dimensional Test-Cases

5.1.1 Monochromatic sinusoidal wave

Description of the test case

To verify the order of accuracy of the method of Chapter 3 and demonstrate his stability char-

acteristics, the classicalC1122 and the cost-optimizedC1122epsmn (with n = 5, 4, 3) interior

prefactored compact schemes of eqs. (3.33) and (3.34) are coupled with the prefactored interior

boundary stencils of eqs. (3.51a) and (3.51b). Consider thenon-dimensional form of the LAE

of eq. (2.13)
∂u
∂t
+
∂u
∂x
= 0, (5.1)

with the following initial condition

u (x, 0) = sin(2πx) , (5.2)

where the superscript∗, which represents the non-dimensional form, has been removed for

shortness.

Computational Set-up

Equation (5.2) is solved numerically over the domain 0≤ x ≤ 1, on a progressively refined

uniform mesh. The interior prefactored scheme of eqs. (3.33) and (3.34) is combined with

the prefactored interior boundary stencils of eqs. (3.51a)and (3.51b) atx = 0 and x = 1
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Table 5.1: Stability and accuracy limits for the classicalC1122 and the cost-optimized
C1122epsmn (with n = 5, 4, 3) schemes. StandardRK4 is used for the time integration
(zs = 2.83,zd = 0.7323).

scheme σmax from eq. (2.46) σc from eq. (5.3)
C1122/RK4 1.422 0.6631

C1122epsm5/RK4 1.407 0.6199
C1122epsm4/RK4 1.394 0.5686
C1122epsm3/RK4 1.360 0.4708

computational boundaries. The fourth-order, four-stage RK time integration scheme is used to

time-march the semi-discreteLAE equation up tot = 10 (that is 10 periods), to check asymp-

totic stability. The Courant number is kept under the accuracy limit σc, which is calculated

as

σc =
zd

κ̄c (κ)
, (5.3)

where the temporal dissipation accuracy limitzd and the spatial accuracy limit ¯κc are taken,

respectively, from Tabs. 3.5 and 3.3. Table 5.1 summarizes the stabilityσmax and accuracyσc

limits for the classicalC1122 and the cost-optimizedC1122epsmn (with n = 5, 4, 3) schemes.

The exact solution to the initial condition of eq. (5.2) is

uex(x, t) = sin(2π(x− t)) , (5.4)

and theL2 norm of the difference between the analytical and the numerical predictionis calcu-

lated as

L2 =

√∑N−1
i=1 (ui − uex)2

N − 1
(5.5)

whereN is the number of grid points. TheL2 norm of eq. (5.5) has been calculated omitting

the last nodei = N because, in the case of periodic boundary conditions, the last nodei = N is

coincident with the first pointi = 1.

Results and discussion

Figure 5.1(a) shows the comparison between the numerical prediction and the analytical solu-

tion of theLAE after one period (t = 1), using 51 uniformly spaced grid points. Figure 5.1(a)

clearly shows that the numerical scheme is able to reproducethe advection of the passive scalar
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u, within a tolerance that depends on the spatial mesh refinement and on integration time. Fig-

ure 5.1(b) shows theL2 norm for the various levels of mesh refinement at the non-dimensional

computational timest = 0.1, t = 1, andt = 10. The Courant number has been set at a very

low level ofσ = 0.01, to explore the error due to the spatial discretization. The L2 norm for

the classicalC1122/RK4 scheme decreases exponentially with a sixth power roll-off for all

three non-dimensional computational times. TheC1122/RK4 scheme maintains a sixth-order

accuracy with the prefactored interior boundary stencils of eqs. (3.51a) and (3.51b) up to a

value of L2 ≈ 10−15, close to the machine error, for the non-dimensional timet = 0.1, as

shown by the black diamonds(♦) in Fig. 5.1(b). TheL2 norm at the non-dimensional com-

putational timest = 1 andt = 10, shown, respectively, by the triangle(△) and the circle(◦),
indicates the same sixth-order roll-off error by displaying an higher cumulative error due to

the temporal integration by theRK algorithm. The double precision accuracy of the scheme is

reached thanks to the coefficients of the prefactored interior boundary stencils of eqs. (3.51a)

and (3.51b) calculated in double precision (i.e. 15 digits). TheC1122/RK4 scheme coupled

with the 11-point boundary stencil of Hixon (2000), shown bythe continuous line with squared

symbols(—�—), maintains the sixth-order accuracy up toL2 ≈ 10−9 due to the single preci-

sion of its coefficients (i.e. 8 digits). Table A.5 in Appendix A.9 reports thespatial resolution

used for the numerical tests reported in Fig. 5.1(b).

Figure 5.2(a) represents the monochromatic sinusoidal wave of eq. (5.2) over the extended

domain−2 ≤ x ≤ 3, discretized with 10 grid points per wavelengths,Nλ = 10, corresponding

to 11 points per period,Np = 11. The extended domain over five periods has been analysed

to study how the boundary closure error affects theL2 error norm. Figure 5.2(b) shows theL2

error norm calculated over the overall domain,−2 ≤ x ≤ 3, using the classicalC1122 and the

cost-optimizedC1122epsmn interior prefactored compact schemes coupled with the 11-point

prefactored interior boundary stencil of eqs. (3.51a) and (3.51b). The numerical solution is

time-marched up to the non-dimensional computational timet = 0.1, using the classicalRK4

time integration scheme. The Courant number used isσ = 0.1. The classicalC1122 scheme,

shown by the black diamond(♦), has a straight sixth-order roll-off, up toL2 ≈ 10−13, whereas

the cost-optimizedC1122epsmn schemes, withn = 5, 4, 3, have a roll-off lower than fourth-

order. For a given number of grid pointsN, the classicalC1122 scheme has an absolute level

of error lower than the optimized schemes, due to its higher formal order of accuracy. The ab-

solute level of error of the cost-optimizedC1122epsmn schemes is decreasing when the level

of optimizationn increases. Figure 5.2(c) shows theL2 error norm calculated over the central
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Figure 5.1: Solution toLAE equation with monochromatic sinusoidal wave of eq. (5.2).

domain 0≤ x ≤ 1. Again, the classicalC1122 scheme has a sixth-order roll-off. Now, the

cost-optimizedC1122epsmn schemes have a fourth-order straight line accuracy in the region

of the well-resolved wavenumber spectrum (Np ≥ 15). The difference on the roll-off error of

the cost-optimized schemes between Fig. 5.2(b) and Fig. 5.2(c) is due to the boundary error

contribution, which in Fig. 5.2(c) is lower due to the boundaries being further away from the

central domain. Figure 5.2(d) shows theL2 norm error for the cost-optimizedC1122epsm5

scheme, over the central domain 0≤ x ≤ 1, at the non-dimensional computational times

t = 0.1, t = 1, andt = 10 time marched with the classicalRK4 scheme, at the same Courant

numberσ = 0.1. TheL2 norm error at the non-dimensional computational timet = 0.1, shown

by the plain black triangle(▽), has a roll-off parallel to the fourth-order line in the region of

the well-resolved wavenumber spectrum (Np ≥ 15). TheL2 norm at the non-dimensional com-

putational timest = 1 andt = 10, shown respectively by the filled black(H) and the filled

blue (H) triangles have a roll-off lower than fourth-order. This is due to theRK time integra-

tion scheme that propagates the boundary error into the computational domain. Figure A.22 in

Appendix A.9.1 shows a similar trend for the cost-optimizedC1122epsm4 andC1122epsm3

schemes. Table A.6 in Appendix A.9.1 reports the spatial resolution used for the numerical

tests reported in Fig. 5.2.
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Figures 5.2(c) and 5.2(d) display a cusp at number of points per periodNp ≤ 15. This feature

is discussed in the context of the following Fig. 5.3.

Figure 5.3 highlights Fig. 5.2(c) over the region 2≤ Nλ ≤ 80. The computedL2 norms in

Fig. 5.2(c) has been normalized by the respective values of theL2 norm atNλ = 2, and plotted

against the theoretical dispersive errore0 of eq. (2.57). Figure 5.3 shows these comparison for

the classicalC1122 and the cost-optimizedC1122epsmn schemes.e0 is definition of the rela-

tive error in wavenumber space assuming zero time integration error. A low Courant number of

σ = 0.1 is used to limit the contribution of theRK4 time integration scheme. Figure 5.3 shows

that the normalized computedL2 norm error, computed for the discrete values of numbers of

points per wavelengthNλ, follows the theoretical trende0 both for the classical and the cost-

optimized schemes, matching the respecting sixth-order and fourth-order roll-off in the region

of the well-resolved spectra (Nλ ≥ 15). The optimized schemes also confirm the ability to

resolve short wavenumbers waves around their error level ofoptimization with an error lower

that the classicalC1122, as discussed in the context of Fig. 3.11(b).

Figure 5.5 shows the comparison between the theoretical andthe computed iso-contours of the

normalized ‘local’ error functione(κ, σ) for the monochromatic sinusoidal wave of eq. (5.2).

The computed iso-contours of the normalized ‘local’ error function in Fig. 5.5(a) have been

calculated using the baseline sixth-orderC1122 scheme for the spatial discretization and the

baselineRK4 scheme for time integration. The computed iso-contours ofnormalized ‘local’

error function shown in Figs. 5.5(b), 5.5(c) and 5.5(d) havebeen obtained using the cost-

optimizedC1122epsmn (with n = 5, 4, 3) interior prefactored compact schemes of Tab. 3.4

as the spatial discretization schemes, and the cost-optimizedRK temporal solverepsmn (with

n = 5, 4, 3) of Tab. 3.5 for the time integration. In all the cases, the spatial schemes are cou-

pled with the 11-point prefactored interior boundary stencils of eqs. (3.51a) and (3.51b) as

periodic boundary condition. The simulations have been computed over the extended domain

−2 ≤ x ≤ 3 of Fig. 5.2(a). The simulations are advanced to a non-dimensional timeT = 1.

Table A.6 reports the spatial and temporal resolutions usedfor the numerical tests. Figure 5.4

in Appendix A.9.1 shows the numerical grid used to produce the iso-maps of Fig. 5.5, that is

[σ × κ] = [55× 146]. Table 5.2 shows the stability limitsσmax for the classicalC1122 and

the cost-optimizedC1122epsmn schemes. TheL2 norm computed over the central domain

0 ≤ x ≤ 1 has been normalized, according to eq. (2.42), by the initial amplitude of the sinu-
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(b) L2 norm error over the entire domain,−2 ≤ x ≤ 3.
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(c) L2 norm error over the central domain, 0≤ x ≤ 1.
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(d) L2 norm error over the central domain, 0≤ x ≤ 1;
plain symbolst = 0.1, filled black symbolst = 1, filled
blue symbolst = 10.

Figure 5.2: Solution toLAEequation with monochromatic sinusoidal wave of eq. (5.2), over the
domain−2 ≤ x ≤ 3: (−−) sixth-order logarithmic scale,(−) fourth-order logatithmic scale,(⋄)
C1122,(− · −▽ − ·−) C1122epsm5, (− · − ◦ − · −) C1122epsm4, (− · −� − ·−) C1122epsm3.
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Figure 5.3: Comparison of the theoretical dissipative error e0 from Fig.3.11(b)with the com-
puted normalizedL2 norm error for the monochromatic sinusoidal wave;e0 (−), L2 symbols as
in Fig. 5.2: (a)C1122/RK4, (b)C1122epsm5, (c)C1122epsm4, (d)C1122epsm3.

Table 5.2: Stability limits for the classicalC1122 and the cost-optimizedepsmn (with n =
5, 4, 3) schemes.

scheme σmax from eq. (2.46)
C1122/RK4 1.422

epsm5 1.407
epsm4 1.392
epsm3 1.355
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soidal monochromatic wave of (5.2) as

E =

√√√√√√∑N−1
i=1

(
ui − uex

i

)2

∑N−1
i=1

(
u0

i

)2
. (5.6)

The computed iso-contours of the normalized ‘local’ error function reported in Figure 5.5 were

calculated according to eq. (2.45), that ise(κ, σ) =
ǫ

ckT
≡ ǫ̃, by taking into account, that for

the present problem, the propagating speed of soundc = 1, the wavenumberk = 2π, and the

final timeT = 1.

For each iso-map, a total of 55× 146 = 8, 030 runs were computed. This parametric study

was run using Dakota. This is an open-source multilevel parallel object-oriented framework

for design optimization, parameter estimation, uncertainty quantification, and sensitivity anal-

ysis (Eldredet al., 2013). The total wall-clock time to produce an iso-map is around 4 hours.

The simulations have been performed in the DataPlex ClusterPLX cluster at CINECA. The

PLX cluster consists of 274 IBMX360M2 12-way compute nodes. Each node contains 2

Intel(r) Xeon(r) Westmere six-coreE5645 processors, with a clock of 2.40GHz. The com-

pute nodes have 48GB of memory (plx, CINECA). The simulations have been performed by

reserving the full compute node. No interference with otherrunning jobs were present during

the runs in measuring the computational execution time of these simulations.

Figure 5.5(a) shows that the computed error maps for the baseline C1122/RK4 scheme are in

good agreement with the theoretical ones in the well-resolved wavelength rangeκ ≤ 1.4. The

discrepancy between the error maps over the poorly resolvedwavenumber rangeκ > 1.4 is a

numerical artefact in the wavenumber range 1.4 ≤ κ ≤ π, generated by having a coarsely spaced

numerical grid over this wavenumber range, as shown by Fig. 5.4. This affects the placement

of the contours of the computed errors in Fig. 5.5(a). Since an integer number of points per

wavelengthNλ is required in these tests, this prevents the use of a refined computational mesh

over this range.

Figures 5.5(b), 5.5(c) and 5.5(d) show that there is a good agreement between the iso-contours

of the normalized ‘local’ error functione(κ, σ) of the cost-optimizedC1122epsmn schemes

and the corresponding theoretical estimates from Sec. 3 in the top left hand quadrant of each

Figure(κ ≤ 1.4, σ ≥ 0.8). On the bottom left quadrant, over the range(κ ≤ 1.4, σ ≤ 0.8), the

theoretical iso-error lines are able to capture the trend ofcomputed cost-optimized schemes.

Specifically, the iso-error lines are shown to the left with respect to the corresponding iso-error
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Figure 5.4: Numerical grid used for the computed iso-maps reported in Fig5.5.

lines of Fig. 5.5(a), for all contour levels lower than the target level of error 10−n. Conversely,

the contour lines are shown to the right with respect to the corresponding iso-error lines of

Fig. 5.5(a) for all contour levels greater than the target level of error 10−n. At these very low

Courant numberσ → 0, the iso-error lines of the cost-optimized schemes do not follow the

straight vertical trend of the corresponding baseline iso-error lines of Fig. 5.5(a). At very low

Courant numberσ→ 0, the error is mainly a spatial type of error as reported in eq. (2.57). This

gives a straight line as shown in Fig. 2.6(a) for the classical C1122/RK4 scheme. Conversely,

the cost-optimized schemes show a non-straight line due to the presence of the spike in such a

region.

The effect of the cost-optimization at the target level of error is better appreciated from Fig. A.23

in Appendix A.9.1 that shows an enlarged view of the computedcontours of the normalized

’local’ error functione(κ, σ) in the region 0≤ κ ≤ 2, with fifty constant logarithmically spaced

iso-contour levels of errors between 10−8 and 10−1. These figures highlight that the numeri-

cal epsmn κ-σ iso-contours of the cost-optimized schemes are able to follow the trend of the

corresponding theoretical ones with the exception of the spike region and the region immedi-

ately on its left-hand side. This region corresponds to the plateau in the optimal ’local’ error

versus cost analysis previously shown in Fig. 3.23, for a two-dimensional cost-analysis trade-

off. Specifically, in the region on the left-hand side of the spike region, the computed iso-error

lines, shown by the dashed(−−) lines, are shown to the left with respect to the corresponding
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theoretical ones, shown by the continuous(−) line. The spike represents a locus of low error

in the cost-optimization. This local reduction in the numerical implementation is not achieved

as it is masked by the temporal integration error from the numerical implementation of the

algorithm.

Figure 5.6 shows the theoretical and numerical contours of the ‘local’ error functione(κ, σ),

respectively with solid(−) and dashed(−−) lines, in conjunction with the one-dimensional

normalized costc1 = 1/(σκ2), represented by the continuous coloured lines, for the monochro-

matic sinusoidal wave test-case. The baselineC1122/RK4 scheme is shown in Fig. 5.6(a)

and the cost-optimizedepsm5 in Fig. 5.6(b). Figures A.24(a) and A.24(b) in Appendix A.9.1

show the corresponding iso-maps for the the cost-optimizedepsm4 andepsm3 schemes. Fig-

ure 5.6 shows the tangency condition between the iso-contours of the normalized ’local’ error

function and the normalized one-dimensional cost function, and reports the optimal cost-error

operational points
(
κ∗(ǫ̃), σ∗(ǫ̃), c∗1(ǫ̃)

)
with the corresponding coloured symbols. Figure 5.6(a)

shows a good agreement between the theoretical and the numerical optimal cost-error opera-

tional points for the baselineC1122/RK4 scheme. The discrepancy increases where the level

of error increases, due to the coarsely spaced numerical grid in Fig. 5.6(b) used to generate

theκ − σ iso-map over the poorly resolved wavenumber range. Figure 5.6(b) shows the com-

parison between the theoretical and the numerical optimal cost-error operational points for the

cost-optimizedepsm5 scheme. The theoretical and numerical optimal cost-erroroperational

points are relatively further with respect to the path for the baselineC1122/RK4 scheme, and

their proximity decreases with increasingκ, similarly to Fig. 5.6(a). It is interesting to no-

tice that the Courant number associated to the cost-optimalcomputation at the design level of

error ǫ̃ = 10−5 is higher that other target levels of error. The theoreticaland the numerical

cost-optimal operational points at the design error level ˜ǫ = 10−5 are located respectively at

(κ∗, σ∗) = (0.39, 0.67) and (κ∗, σ∗) = (0.33, 0.82), as reported respectively by the red and blue

diamond in Fig. 5.6(b). A spike in the optimization region, [0.6 ≤ κ ≤ 0.8, σ ≤ 0.45], is

only present in the theoretical error forecast. This error minimum, together with its optimal

cost-error operation point, is not achieved in the numerical implementation.

Table 5.3 reports the absolute percentage difference∆c∗1 between the theoretical and the nu-

merical computational cost at the cost-optimal operational points for the eight levels of error

ǫ̃ shown in Figs. 5.6 and A.24 for the baselineC1122/RK4 and the cost-optimizedepsmn

schemes. For the classicalC1122/RK4 scheme, these percent differences are below 6% except

for the error level ˜ǫ = 10−1. A substantial percentage difference at ˜ǫ ≤ 10−7 is noticed for the
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Figure 5.5: Comparison between the theoretical and the computed iso-contours of normalized
‘local’ error function e(κ, σ) for the monochromatic sinusoidal wave. Continuous line(−)
theoretical, dashed line(−−) computed: (a)C1122/RK4; (b) epsm5, (c)epsm4, (d)epsm3.
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Figure 5.6: Theoretical (black solid lines) and numerical (black dashed lines) contours of opti-
mal ‘local’ error functione(κ, σ) as a function of the one-dimensional costc1 = 1/(σκ2) (con-
tinuous coloured lines) for the monochromatic sinusoidal wave. (a)C1122/RK4 (b) epsm5.
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Table 5.3: Absolute percentage difference∆c∗1 between theoretical and numerical cost-optimal
operating points as function of the one-dimensional cost for the monochromatic sinusoidal
wave. The brackets report, respectively, theoretical and numerical cost-optimal values. The
bold values are used in following Tab.5.5.

ǫ̃\scheme C1122/RK4 epsm5 epsm4 epsm3
10−8 0.4 (242.14, 243.15) 41.19 (4847.74, 6844.58) 47.47 (9480.87, 13982.07) 90.98 (16551.3825, 31611.26)
10−7 1.2 (92.36, 93.52) 24.23 (848.37, 1053.96) 152.02 (848.37, 2138.07) 45.32 (2931.408, 4260.07)
10−6 1.9 (35.40, 36.09) 12.53 (147.70, 166.22) 127.51 (147.70, 336.06) 19.31 (519.103, 619.37)
10−5 2.6 (13.58,13.94) 13.8 (9.51,10.83) 473.44 (9.51, 54.57) 9.56 (91.632, 100.39)
10−4 3.6 (5.21,5.40) 5.60 (3.41, 3.6) 45.67 (3.4165,4.977) 6.00 (15.73, 16.68)
10−3 4.8 (2.00,2.09) 4.38 (1.69, 1.77) 14.74 (1.6985, 1.448) 6.54 (1.74,1.855)
10−2 5.7 (0.76, 0.8) 7.43 (0.71, 0.76) 2.24 (0.7125, 0.6965) 2.12 (0.54, 0.5515)
10−1 19.0 (0.25, 0.20) 18.05 (0.24, 0.20) 20.89 (0.2465, 0.195) 13.06 (0.21, 0.183)

cost-optimizedepsm5 scheme. In such region, which is the bottom left quadrant ofFig. 5.6,

the mismatch is due to the effect of the time integration at very low Courant numbersσ → 0,

which has been discussed in the context of Fig. 5.5(b). A similar trend is observed for the

cost-optimizedepsm4 scheme for ˜ǫ ≤ 10−5 and for theepsm3 scheme for ˜ǫ ≤ 10−7.

Figure 5.7 shows the computed optimal cost-error operational points compared against the

theoretical ones, represented respectively by symbols andlines. The same algorithm used to

calculate the theoretical cost-optimal operational point
(
κ∗(ǫ̃), σ∗(ǫ̃), c∗nD

(ǫ̃)
)

has been used to

calculate the computed ones, to verify if the analytical findings of Sec. 3 are verified by this

simple benchmark problem. Overall, there is satisfactory match between computed and theo-

retical cost-optimal points, as shown in Fig. 5.6 and in Tab.5.3.

Figure 5.7(a) shows that at the design level of error ˜ǫ = 10−n, the computational costc∗1 for the

cost-optimized schemes is lower than the corresponding computational costc∗1 for the classical

C1122/RK4 scheme. A cost-saving is therefore achieved in computations that allow an error

within the range 10−5 ≤ ǫ̃ ≤ 10−2 for the cost-optimizedepsm5 scheme, 10−4 ≤ ǫ̃ ≤ 10−2 for

the epsm4 scheme, and 10−3 ≤ ǫ̃ ≤ 10−1 for the epsm3 scheme. Instead, for computations

requiring an error level lower than the target level of errorǫ̃ = 10−n, the computational cost of

the cost-optimizedepsmn scheme is higher than the baseline non-optimized scheme.

Figure 5.7(b) shows the optimal reduced wavenumber for the classicalC1122/RK4 and the

cost-optimizedepsmn schemes. The cost-optimizedepsmn schemes show a lower value of

optimal wavenumber at their design level of error ˜ǫ = 10−n with respect to the baseline non-

optimizedC1122/RK4 scheme. This disagrees with the theoretical findings of Fig. 3.23(b), in

which the optimal wavenumber at the design level of error forthe cost-optimized scheme is
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shown to be higher compared to the baseline non-optimized scheme. This is due to the numer-

ical position of the cost-optimal operational points at thedesign level of error ˜ǫ = 10−n, which

is not located in the spike region, as discussed in the context of Fig. 5.6(b).

Figure 5.7(c) shows the optimal Courant number for the classical C1122/RK4 and the cost-

optimizedepsmn schemes. The optimal operational point at the design level of error ǫ̃ = 10−n

is higher with respect to the corresponding values for the baseline scheme. This, again, dis-

agrees with the theoretical findings of Fig. 3.23(c), which predicts a lower value of Courant

number at the design level of error ˜ǫ = 10−n. This is a consequence, as in Fig. 3.23(b), of

the actual numerical position of the cost-optimal operational points at the design level of error

ǫ̃ = 10−n, as seen in Fig. 5.6(b).

In order to verify the computational cost saving of the optimized schemes in the real computa-

tions, the code has been instrumented to measure the effective computed elapsed time during

the numerical tests. This enables the comparison of the theoretical cost forecastc1 = 1/(σκ2)

with the effective computed elapsed time recorded from the instrumented code. Moreover, it

is possible to compare the percentage gain of the cost-optimized schemes with respect to the

classical scheme in the case of the theoretical cost forecast c1 = 1/(σκ2) and the effective

computed elapsed time. To obtain a precise measure of the elapsed computational time, the

runs have been carried out with a full compute node allocatedto the execution of the job, to

avoid any interference with other running jobs. The elapsedcomputational time during the

calculations has been determined using the intrinsic FORTRAN systemcall, which measures

the elapsed real time, and the intrinsic FORTRANcpu time, which measures the cpu-time.

As the compute node was reserved, there is no appreciable difference between the measured

elapsed real-time and the measured cpu-time. Different evaluations have been done for every

operational point, taking an average of the significant values, not affected by the undesirable

presence of the computational perturbations. The measuredtimes take into account only the

number crunching section of the code, excluding the part relative to the initialization, allocation

of the variables, data writing and deallocation of the variables. The code has been preliminary

profiled withgprof, to identify the most-called and time-consuming subroutines. The profiler

indicates that the number crunching section takes around 85% of the total job execution time,

for a typical run of ˜ǫ = 10−5 with a number of time iterations of about a hundred.

Table 5.4 reports the measured computational elapsedtime in seconds and the computed nor-

malizedL2 norm error for the classicalC1122 and the cost-optimizedepsmn schemes at the

computed optimal cost-error operational points at the finaltime T = 1 for the monochromatic
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Figure 5.7: Comparison of the theoretical (lines) and numerical (symbols) optimal ‘local’ error
versus cost (a), reduced wavenumber (b) and Courant number (c) as a function of the one-
dimensional cost for the monochromatic sinusoidal wave.(−, ⋄) C1122,(−−,▽) C1122epsm5,
(− · −, ◦) C1122epsm4, (− · ·−,�) C1122epsm3.
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Figure 5.8: Theoretical (lines) and numerical (symbols) optimal ‘local’ error versus cost as a
function of the one-dimensional cost function (a), and measured elapsed time versus the nor-
malized computedL2 norm error (b) for the monochromatic sinusoidal wave.(−, ⋄) C1122,
(−−,▽) C1122epsm5, (− · −, ◦) C1122epsm4, (− · ·−,�) C1122epsm3. (c) Zoom of the rect-
angular area reported in (b).
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Table 5.4: Measured computational elapsedtime in secs. and computed normalizedL2 norm
error for the classicalC1122 and the cost-optimized schemesepsmn at the computed optimal
cost-error operational points. Final non-dimensional time T = 1.
ǫ̃ C1122/RK4 epsm5 epsm4 epsm3

time L2 time L2 time L2 time L2

10−8 4.4E-02 1.0330E-08 0.866 1.0754E-08 1.765 1.0731E-08 4.6 1.0889E-08
10−7 2.0E-02 9.7255E-08 0.163 9.1660E-08 0.297 1.0133E-07 0.6 1.0122E-07
10−6 1.2E-02 9.8504E-07 3.1E-02 1.0158E-06 6.0E-02 9.0841E-07 9.2E-02 1.0214E-06
10−5 6.0E-03 1.0024E-05 5.5E-03 1.0458E-05 1.4E-02 9.8967E-06 2.0E-02 1.0095E-05
10−4 4.0E-03 1.0253E-04 3.0E-03 9.8729E-05 3.7E-03 1.0143E-04 6.8E-03 1.0132E-04
10−3 2.6E-03 1.0019E-03 2.3E-03 9.5922E-04 2.3E-03 8.4095E-04 2.5E-03 1.0034E-03
10−2 2.0E-03 8.6665E-03 1.9E-03 6.9636E-03 1.7E-03 1.3702E-02 1.9E-03 1.0122E-02
10−1 1.5E-03 9.8487E-02 1.4E-03 9.5154E-02 1.4E-03 9.0776E-02 1.4E-03 1.0079E-01

sinusoidal wave.

Figure 5.8 compares the theoretical cost of the computationfor a given target level of error ˜ǫ

with the measured cost, expressed in the form of measured elapsed time, at the correspond-

ing numerical error. Figure 5.8(a) is a copy of Fig. 5.7(a). Figures 5.8(b) and 5.8(c) are

the graphical representations of Table 5.4. There is a matchbetween the trends reported in

Fig. 5.8(a) and the corresponding ones of Fig. 5.8(b) both for the classical and the optimized

schemes. Figure 5.8(a) shows a straight line representing the cost-optimal trend of the clas-

sicalC1122/RK4 scheme, whereas a non-straight line is reported in Fig. 5.8(b) for the same

scheme. This is partially due to the short computational final T = 1, which is slightly to affect

the measurement of the computed elapsed time due to the presence of some jitter in the code

execution time. Figure 5.8(c) shows an enlarged view of Fig.5.8(b) in the cost-optimal region

1.5×10−3 ≤ time≤ 1.2×10−2, 8×10−6 ≤ L2 ≤ 1.1×10−1, highlighted by the dashed rectangle

in Fig. 5.8(b). This enlargement shows the effective computational cost saving in computations

that allow an error within the range 10−5 ≤ L2 ≤ 10−2 for the cost-optimizedepsm5 scheme,

10−4 ≤ L2 ≤ 10−2 for theepsm4 scheme, and 10−3 ≤ L2 ≤ 10−1 for theepsm3 scheme, com-

pared to the computational cost of the classical baselineC112/RK4 scheme. This comparison

is analogous to the cost-error functionc1 = 1/(σκ2) shown in Fig. 5.8(a).

To have a better estimation of the computed elapsed time, thenumerical tests for the clas-

sical and the optimized schemes have been registered up to the non-dimensional final times

T = 1, 10, 100 and 500 at the nominal optimal design level of error ˜ǫ = 10−n, with n = 5, 4, 3.

Table 5.5 reports the aforementioned measured computational elapsedtime in seconds and the

correspondingL2 norm error for the classicalC1122 and the cost-optimizedepsmn schemes.
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Table 5.5: Measured computational elapsedtime in secs. and computed normalizedL2 norm
error for the classicalC1122 and the cost-optimized schemesepsmn at the computed optimal
cost-error operational points. Final non-dimensional time T = 1, 10, 100, 500.

T = 1 C1122/RK4 epsm5 epsm4 epsm3
ǫ̃ time L2 time L2 time L2 time L2

10−5 6.2E-03 1.0024E-05 5.5E-03 1.0458E-05 - - -
10−4 4.0E-03 1.0254E-05 - - 3.7E-03 1.0143E-04 -
10−3 2.6E-03 1.0019E-03 - - - - 2.49E-03 1.0034E-03
T = 10 C1122/RK4 epsm5 epsm4 epsm3
ǫ̃ time L2 time L2 time L2 time L2

10−5 2.8E-02 1.0110E-05 2.2E-02 1.0317E-05 - - - -
10−4 1.5E-02 1.0255E-04 - - 1.37E-02 1.0783E-04 - -
10−3 7.6E-03 1.0089E-03 - - - - 2.5E-03 1.043E-03
T = 100 C1122/RK4 epsm5 epsm4 epsm3
ǫ̃ time L2 time L2 time L2 time L2

10−5 0.226 1.0013E-05 0.173 1.0306E-05 - - - -
10−4 9.3E-02 1.02047E-04 - - 8.4E-02 1.0530E-04 - -
10−3 4.3E-02 9.0347E-04 - - - - 3.75E-03 8.21E-04
T = 500 C1122/RK4 epsm5 epsm4 epsm3
ǫ̃ time L2 time L2 time L2 time L2

10−5 1.09 1.0002E-05 0.832 1.0177E-05 - - - -
10−4 0.443 9.9264E-05 - - 0.396 9.4586E-05 - -
10−3 0.195 4.4199E-04 - - - - 0.163 3.28E-04

It is observed that the measured computational time for the cost-optimizedepsmn schemes at

their design level of error ˜ǫ = 10−n is consistently lower than the measured computational time

for the classical scheme. The value of the computed normalized L2 norm error is very close

to the nominal design level of error ˜ǫ, except at the final timesT = 100 andT = 500 for the

epsm3 scheme, for which it is higher that the design level of errorǫ̃ due to the propagation of

the boundary error at these final times.

Finally, Table 5.6 reports the comparison of the percentagecost saving∆c̃∗1 and the measured

elapsed time saving∆t% of the cost optimizedepsmn schemes with respect to the classical

baseline scheme, at the nominal optimal design levels of error ǫ̃. The percentage cost-saving

∆c̃∗1 is taken from the numerical cost-optimal values as a function of the one-dimensional cost

c1 of Tab. 5.3 (in bold). The percentage difference in the measured computational times∆t%

are recorded by the code running at the different non-dimensional final times as tabulated in

Tab. 5.5. There is a good agreement between the theoretical percentage cost-saving∆c̃∗1 with

the measured percentage elapsed time saving∆t% at all the four final times reported. The dis-

crepancy at the final timeT = 1 is given by the jitter in the execution time of the same segment
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Table 5.6: Comparison of the percentage cost-saving∆c̃∗1 and measured elapsed time-saving
∆t% of the cost optimized schemes with respect to the classicalbaseline scheme, at the nominal
optimal design levels of error ˜ǫ. ∆c̃∗1 from Tab.5.3, and∆t% from Tab.5.5.

ǫ̃ epsm5
∆c̃∗1% ∆t%T=1 ∆t%T=10 ∆t%T=100 ∆t%T=500

10−5 22.3 11.29 21.42 23.45 23.66
ǫ̃ epsm4

∆c̃∗1% ∆t%T=1 ∆t%T=10 ∆t%T=100 ∆t%T=500

10−4 7.83 7.5 8.6 9.67 10.6
ǫ̃ epsm3

∆c̃∗1% ∆t%T=1 ∆t%T=10 ∆t%T=100 ∆t%T=500

10−3 11.24 4.23 10.52 12.79 16.41

between successive runs. As far as the final timeT increases, the match between∆c̃∗1 and∆t%

improves to within 5 percentage points.

According to Tab. 5.3 and Fig. 5.8(c), a bigger cost-saving is predicted when moving a decade

below the design level of error ˜ǫ = 10−n for the cost-optimizedepsmn schemes. The above

confirms that the theoretical cost-saving predicted in Sec.3 are realizable from the numerical

implementation of the cost-optimized algorithm applied tothe advection of a monochromatic

sinusoidal wave.
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5.1.2 Gaussian pulse

Description of the test case

The initial condition for eq. (2.13) is given by the Gaussianprofile:

u(x, 0) = h exp

[
− (ln 2)

( x
b

)2
]
. (5.7)

Figure 5.10(a) shows the initial profile, withh = 0.5 andb = 9, discretized on a grid using

N = 101 grid points, over the domain of non-dimensional lengthD = 130 with−65 ≤ x ≤
65, using 15 points to resolve the half-widthb of the Gaussian pulse (Poinsot & Lele, 1992).

This initial Gaussian distribution specified here differs from the initial profile specified in the

First Workshops on Benchmark problems for CAA (Hardinet al., 1995). The distribution of

eq. (5.7) presents a wider half-widthb than the initial Gaussian profile of Hardinet al. (1995),

whereasb = 3.

The exact solution to the initial condition of eq. (5.7) is:

uex(x, t) = h exp

[
− (ln 2)

( x− t
b

)2
]
. (5.8)

Modelling strategy

Some preliminary consideration on the discretized Gaussian pulse. The energy of eq. (5.7) may

be expressed in Fourier space by the appropriate form of the Parseval’s relation

Eκ =
∫ π

0
|(û(κ))|2dκ, (5.9)

whereû(κ) is the discretex-Fourier transform of the setu j . The discrete energy, or square of

theL2 norm from eq. (5.5), calculated on theN number of points, can be equivalent expressed

in the physical domain as

ED = h
∑

j

|(u j )|2. (5.10)

The above relation is usually given for function defined on infinite interval [−∞,∞], as reported

by Vichnevetsky (1986).

Firstly, it has be checked that the discrete energy of eq. (5.10) which lies outside of the finite

domainD is zero within the accuracy of the calculation, that is double precision accuracy (i.e.
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15 digits). Secondly, the energy of the Fourier transform ofthe initial Gaussian

ũ(κ, 0) =
(
π

ln 2

)1/2
hbexp

[
− (κb)2

4 ln 2

]
, (5.11)

which lies outside thep band (see Sec. 3.2.1), has been verified to be less than 10−15 times the

total energy ∫ α=π

α=p
ũ(α, 0)dα < 10−15

∫ α=π

α=0
ũ(α, 0)dα. (5.12)

The classicalC1122 scheme of eqs. (3.33) and (3.34) is used as interior prefactored scheme.

The LODI inflow and outflow conditions of Sec. 3.6.1 are used atthe computational domain

boundaries. The advection of a passive scalar in eq. (2.13) is modelled by a flow which is

inviscid and one-dimensional, therefore the LODI approximation in the case of the LAE of

eq. (2.13) are exact conditions. The classicalRK4 scheme is used to time advance the numerical

solution, using different Courant numbersσ. The solution is time-advanced up to the non-

dimensional final timeT = 100, when the pulse has left the computational domain.

Numerical results and discussion

The sixth-order roll-off error is maintained when the number of grid point is increased, and

similar results to Fig. 5.1(b) have been obtained.

The transmission of one-dimensional acoustic waves through a non-reflecting boundary is a

well-known test to characterize the performance of the outlet boundary treatments for time-

dependent flows.

The two types of waves, physical“p” and numerical“q” waves introduced in Sec. 3.2.1, are

uncoupled in the interior but are usually coupled by the boundary conditions, when an in-

let/outlet boundary closure is present. In fact, when“q” waves reach another boundary, for

example an outlet boundary, they are reflected in the form of physical waves which are con-

vected downstream again, as sketched in Fig. 5.9(a). As a result “q” waves create a feedback

between inlet and outlet which is entirely numerical (Vichnevetsky & Bowles, 1982).

Although this result has been obtained for theLAE equation it can be extended to the acoustic

theory (LEE equation). There is, however, an additional complexity for the Euler equations:

acoustic waves can be reflected by boundaries into physical domains, as shown in Fig. 5.9(b).

In a subsonic flow, an acoustic wave propagating at the speedu+c and reaching a reflecting

outlet boundary, will generate two reflected waves: the firstwill be a physical wave of type
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Figure 5.9: Numerical and physical reflected waves at outletboundary: Fig.5.9(a) LAE;
Fig. 5.9(b)LEE.

“p” propagating upstream at the speedu-c. This wave is the physically meaningful part of

the reflected wave. A“q” wave will be also reflected and propagate upstream at the speed

ug = kg (u+ c). In a supersonic flow, no reflected“p” wave will be created, but the“q” wave

will still be generated. It will travel upstream atug, reach the inlet of the computational domain,

and induce non-physical pertubations.

The strength of this numerical feedback is determined by theamplitude of the reflected numer-

ical “q” wave. This amplitude is mainly fixed by the quality of the outflow boundary condition

treatment. Poinsot & Lele (1992) suggested that, given the amplitude of the incident physical
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101 mesh points.
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Figure 5.10: Solution toLAE equation with initial Gaussian profile.

waveA1, two reflection coefficients must be used to characterize a given boundary condition

treatment: the reflection coefficient of the physical wavesAp/A1 and the reflection coefficient of

the numerical wavesAq/A1. In all cases, an adequate boundary condition treatment requires the

amplitude of the numerical reflected waves to be smallAq/A1 ≪ 1. An adequatenon-reflecting

boundary condition treatment also requires small physicalreflected waves (Ap/A1 ≪ 1).

The maximum value of the amplitude of the physical reflected wavesAp/A1 for the given Gaus-

sian pulse is reported in Fig. 5.10(b), and the level of errorafter the Gaussian pulse has left the

domain is below 10−6 as reported by Poinsot & Lele (1992). Different tests have been done

at three different Courant numbersσ = 0.05, 0.25 and 0.4, which have proved the invariance

theorem of Vichnevetsky (1986) related to the reflection at the numerical boundaries. That is,

the energy reflected at the boundaries is independent of the value of the time step, as shown in

Fig. 5.10(b) for different values ofσ below the stability limitσmax= 1.422.
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5.2 Two-Dimensional Test-Cases

5.2.1 Propagation of an acoustic wave in unbounded domain

Description of the test case

The linearized two-dimensional Euler equations on a uniform flow of eq. (3.11) are solved

given an initial acoustic wave propagating in an unbounded domain

p = exp

[
−(ln 2)

(
x2 + y2

9

)]

ρ = exp

[
−(ln 2)

(
x2 + y2

9

)]

u = v = 0.

The computational domain extent is−100≤ x ≤ 100,−100≤ y ≤ 100. scheme.

The numerical predictions are compared against the non-dimensional analytical values given

by Tam & Web (1993) and Hardinet al. (1995):

p = ρ =
1

2α1

∫ ∞

0
e−ξ

2/4α1 cos(ξt) J0 (ξη) ξdξ, (5.13)

whereα1 = [(ln 2)/9], η =
[(

x2 + y2
)]1/2

andJ0() is the zeroth-order Bessel function of the first

kind.

Modelling strategy

The evaluation of the integral in eq. (5.13) has been done numerically by using the The Fortran

interface to the GNU Scientific Library (FGSL), using the QAGI adaptive integration on semi-

infinite intervals with the 15-point Gauss-Kronrod. An absolute error of 0.2e− 14 has been

reached (Bader, 2007).

Boundary conditions are the LODI outflow at top, bottom, leftand right, and the classical

sixth-orderC1122 prefactored scheme with 4th orderRK time advancement is employed. The

Courant number has been set to a low level ofσ = 0.05, to explore the error due to the spatial

discretization.

A two-dimensional version of theL2 norm of eq. (5.5) is used to measure the numerical error,
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Run N = Nx = Ny h Nx × Ny n. of iter. L2 norm from eq. (5.14)
serial1 51 4 2,601 150 0.02065480432795613
serial2 101 2 10,201 300 0.002327223066439975
serial3 201 1 40,401 600 3.874124288267828e-05
serial4 401 0.5 160,801 1200 5.409684508640224e-07
serial5 801 0.25 641,601 2400 8.240016161063194e-09
serial6 1601 0.125 2,563,201 4800 1.285551852175826e-10
serial7 3201 0.0625 10,246,401 9600 2.04502766168723e-12

Table 5.7: Numerical set-up for Fig.5.11(c) with aggressive optimization.

which is

L2 =

√√∑N
i=1

∑N
j=1

(
ui, j − uexact

i, j

)2

N2
. (5.14)

Numerical results and discussion

Figures 5.11(a,b) show the comparison between the numerical and the analytical solution of

the two-dimensional propagation of the acoustic pulse on the unbounded domain, at the non-

dimensional computational timet = 30, using a uniform grid spacing both in thex- andy

direction, equal toh = 0.25 in a quiescent flow, that isMx = My = 0. There is no appre-

ciable azimuthal distortion of the wave, showing that the numerical solution does not suffer

from any appreciable degradation, and the isotropy of the numerical scheme is preserved in a

two dimensional space. Figure 5.11(c) and Table 5.7 show theL2 norm at various levels of

mesh refinement at the same non-dimensional time. It is evident that sixth-order accuracy is

maintained with a good approximation up toL2 ≈ 1.0e− 12.

In order to test the ability of the non-reflecting boundary conditions to accurately predict the

exit from the computational domain of the acoustically active flow, further work has to take

into account a plug flow ofMx = 0.5 in thex-direction.
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(a) Contours of non-dimensional density perturbation,
contour levels: -0.02, 0.01, 0.02, 0.04.
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(c) Dashed line(−−) sixth-order logarithmic scale, black dia-
mond(♦) L2 norm error from eq.5.14.

Figure 5.11: Propagation of a two-dimensional acoustic pulse on an unbounded domain at non-
dimensionalt = 30, fixedσ = 0.05; dotted line(· · · ) numerical prediction, dashed line(−−)
analytical solution.
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5.3 Chapter summary and achievements

This chapter has presented the numerical tests used for the verification and validation of the

numerical scheme.

Section 5.1 has presented the one-dimensional test-cases analysed. Section 5.1.1 has validated

the numerical scheme against the monochromatic sinusoidalwave.

The classicalC1122/RK4 scheme coupled with the 11-point boundary stencil of eqs. (3.51a)

and (3.51b) has shown anL2 norm error parallel to the sixth-order roll-off in double precision

accuracy, whereas the classicalC1122/RK4 scheme coupled with the 11-point boundary sten-

cil of Hixon (2000) maintains the sixth-order roll-off in single precision.

The effect of the boundary closure on theL2 norm error has been studied using the monochro-

matic sinusoidal wave over an extended domain, using the classical RK4 as time integra-

tion scheme. The classical C1122 scheme, coupled with the 11-point boundary stencil of

eqs. (3.51a) and (3.51b), maintains a straight sixth-orderroll-off in double precision accuracy

both on the extended and central domain. The cost-optimizedC1122epsmn schemes present

a roll-off lower than the formal fourth-order in the extended domain, whereas in the central

domain they display a fourth-order straight line accuracy in double precision accuracy in the

region of the well-resolved wavenumber spectrum. This difference in roll-off accuracy is given

by the boundary error contribution.

The normalized computedL2 norm error, computed for the discrete values of numbers of points

per wavelengthNλ, follows the theoretical trende0 both for the classical and the cost-optimized

schemes, matching the respecting sixth- and fourth-order roll-off in the region of the well-

resolved spectra.

A comparison between the theoretical and the computed iso-contours of the ‘local’ error func-

tion for the monochromatic sinusoidal wave have been shown using the classicalC1122/RK4

scheme and the combined cost-optimizedepsmn ones. The computed error maps for the base-

line C1122/RK4 scheme are shown in good agreement with the theoretical ones in the well-

resolved wavenumber range. The computed error maps for the cost-optimizedepsmn schemes

are in good agreement with the theoretical estimates on the top left hand quadrant of Figs 5.5.

The discrepancy of the computed cost-optimized schemes with respect to the theoretical ones,

shown on the bottom left quadrant of Figs 5.5, is given by the presence of the spike. The spike

region and the region immediately on its left-hand side is not achieved in the numerical tests

and it is masked by the temporal integration error from the numerical implementation of the
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algorithm.

A good agreement between the theoretical and the numerical optimal cost-error operational

points for the baselineC1122/RK4 and the cost-optimizedepsmn schemes has been achieved.

A cost-saving is predicted for the cost-optimizedepsmn schemes, in computations running at

the design level of error ˜ǫ = 10−n or a decade below.

In order to verify the computational theoretical cost saving of the optimized schemes in the real

computations, the code has been instrumented to measure theeffective computed elapsed time

during the numerical tests. The measured elapsed time versus the normalizedL2 norm error

follows a similar trend to the theoretical cost-error relation. The measured computational time

for the cost-optimizedepsmn schemes at their design level of error ˜ǫ = 10−n is consistently

lower than the measured computational time for the classical scheme.

There is a good agreement between the theoretical percentage cost-saving∆c̃∗1 with the mea-

sured percentage elapsed time saving∆t% for the simulations reported. Specifically, a mea-

sured percentage elapsed time saving up to a 22%, at the design level of error, has been recorded

for the cost-optimizedepsm5 scheme. This computational time saving is envisaged to be

higher for a level of error one decade below the design level of error.

Section 5.1.2 has validated the baselineC1122/RK4 numerical scheme against the broadband

Gaussian pulse. The ability to model broadband signal with sixth-order accuracy is confirmed

by numerical tests. The maximum value of the amplitude of thephysical reflected wavesAp/A1

is satisfactory for an adequate non-reflecting outlet boundary condition. Different tests at dif-

ferent Courant numbersσ have proved the invariance theorem related to the reflectionat the

numerical boundaries.

Section 5.2 has presented the two-dimensional test-cases analysed. Section 5.2.1 has validated

the baselineC1122/RK4 numerical scheme against the propagation of an acoustic wave in un-

bounded domain. The isotropy of the scheme is preserved in a two dimensional space. TheL2

norm roll-off error maintains the sixth-order accuracy up toL2 ≈ 1.0e− 12.

The main achievements of this Chapter 5 are:

• The baseline scheme coupled with the new prefactored interior 11-point boundary sten-

cil has shown anL2 norm error parallel to the sixth-order roll-off in double precision

accuracy, whereas the equivalent stencil available in literature Hixon (2000) maintains

the sixth-order roll-off in single precision.
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• The normalized computedL2 norm error, computed for the discrete values of numbers

of points per wavelengthNλ, follows the theoretical trende0 both for the classical and

the cost-optimized schemes.

• A good agreement between the theoretical and the numerical optimal cost-error opera-

tional points for the baseline and the cost-optimized schemes has been achieved.

• There is a good agreement between the theoretical percentage cost-saving∆c̃∗1 with the

measured percentage elapsed time saving∆t% for the simulations reported.

• A measured percentage elapsed time saving up to a 22%, at the design level of error, has

been recorded for the cost-optimizedepsm5 scheme. This computational time saving is

envisaged to be higher for a level of error one decade below the design level of error.

• Sample applications to broad-band, that is the Gaussian pulse, and multi-dimensional

space benchmark problems, that is the propagation of an acoustic wave in unbounded

domain, have shown the low error-bounded and high-order accuracy characteristics of

the baseline scheme.
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Chapter 6

Conclusion

The major achievements that has been accomplished during this work are:

• A new class of prefactored cost-optimized schemes has been developed for low-speed

error-bounded aeroacoustic applications. This work has extended Pirozzoli (2007)’s the-

ory to the prefactored compact high-order scheme of Hixon (2000).

• Theoretical prediction for spatial and temporal error bounds were determined and com-

pared against benchmark classical schemes. The performance of popular schemes for

CAAapplications and the cost-optimized schemes have been compared in terms of com-

putational efficiency.

• High-order boundary closures, which are accurate and stable within a given Fourier space

envelope, are coupled with the interior prefactored schemes. An eigenvalue analysis

has verified the stability of the prefactored cost-optimized schemes coupled with these

boundary closures.

• To aid parallelization, an appropriate interior boundary stencil was developed that was

shown to be an improvement over the equivalent one of Hixon (2000) and Ashcroft & Zhang

(2003).

• The scheme was shown to be scalable for execution onHPC clusters with a good scala-

bility up to 128 processors.

• A monochromatic sinusoidal test-case verified the theoretical roll-off error against the

computedL2 norm error, indicating that the cost-optimized schemes perform according

to the design high-order accuracy characteristics for thisclass of problems.
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• The design cost-optimization of the schemes was achieved, as verified by numerical

experiments. A 22% computational cost-saving at the designlevel of error was recorded.

The percentage cost-saving is envisaged to be higher for a level of error one decade below

than the design level of error and even more in a multi-dimensional space.

• Sample applications to broad-band and multi-dimensional space benchmark problems

(Hardinet al., 1995) have shown the low error-bounded and high-order accuracy charac-

teristics of the baseline scheme.

The ideal field of application of the newly developed schemesis in the Direct Noise Com-

putation over large domains by solving theLEE, such in the case of low-speed aeroacoustic

problems, or to predict the far-field sound radiation from a near-field solution over a closed

boundary (Lighthill, 1978).

These newly developed cost-optimized schemes are not suitable for problems involving sharp

changes of state variables. Such discontinuities are not modelled well by these high-order cen-

tred schemes, just like in Essentially Non-Oscillatory (ENO) schemes.

The main limitation of the cost-optimization analysis is that it does not strictly apply to prob-

lems where the selection of the grid spacing is dictated by physical constraints, such as in the

computational set-up for boundary layers and in computational grids with severe stretching.

The use of appropriate boundary closures that mimic the behaviour of the interior schemes in

the spectral sense have to be addressed in further work.
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Appendix

A.1 Derivation of the amplification factor for the time integration

This is the derivation of the amplification factor presentedin sec. 2.2.

The temporal Fourier transform is obtained by replacing in (2.4)k with t, andκ with ω:

f̃ (ω) =
∫ ∞

0?
f (t) e−i ω tdt, (A.1)

Applying a temporal Fourier transform to eq. (2.24):

Ũn+1 = Ũn +

p∑

j=1

γ j ∆t j ∂
jŨn

∂t j
using (2.18) (A.2a)

Ũn+1 = Ũn


1+

p∑

j=1

γ j

(
−i ck̄(k)∆t

) j


(A.2b)

r (κ,Co) =
Ũn+1

Ũn
= 1+

p∑

j=1

γ j

(
−i κ̄(κ) Co

) j
= 1+

p∑

j=1

γ j

(
−iz̄

) j
= |r∗ (ω∆t) |eiω∗∆t (A.2c)

A.2 LODI system along y axis

The following is a replication of section 3.1.2.2, where theboundaries are now located on the

y axis.

Let consider the boundaries located aty = 0 andy = L. The governing equation (3.6) can be

re-cast as:
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∂U∗

∂t∗
+ B0

∂U∗

∂y∗
+C = 0 C = A0

∂U∗

∂x∗
(A.3)

Where theC vector contains all remaining terms which do not involve elements of
∂U∗

∂y∗
Let’s apply the characteristic decomposition to theB0 matrix

det(B0 − λi I ) = 0 (A.4)

λ1 = My − 1, λ2 = λ3 = My, λ4 = My + 1.

Eigenvaluesλ1 andλ4 are the velocities of sound waves moving in the negative and positivey

direction. λ2 is the convection velocity (the speed at which entropy waveswill travel), while

λ3 is the velocity at which theu-velocity is advected along they-direction. Note that the

characteristic velocities are constant because they derive from the linearized matrix (B0 is a

costant-element matrix).

The corresponding eigenvectors are given by:

lT1 = (0, 0, −1, 1) =⇒ lT1 · (A0 − λ1I ) = 0 (A.5)

lT2 = (1, 0, 0, −1) =⇒ lT2 · (A0 − λ2I ) = 0

lT3 = (0, 1, 0, 0) =⇒ lT3 · (A0 − λ3I )2 = 0

lT4 = (0, 0, 1, 1) =⇒ lT4 · (A0 − λ4I ) = 0

The Li ’s represent the amplitude of characteristic waves associated with each characteristic

velocityλi

Li = λi l
T
i
∂U∗

∂x∗
(A.6)
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L1 = λ1lT1
∂U∗

∂y∗
= λ1(0, 0, −1, 1)

∂

∂y∗



ρ∗

u∗

v∗

p∗



= λ1

(
∂p∗

∂y∗
− ∂v

∗

∂y∗

)
(A.7)

L2 = λ2lT2
∂U∗

∂y
= λ2(1, 0, 0, −1)

∂

∂y∗



ρ∗

u∗

v∗

p∗



= λ2

(
∂ρ∗

∂y∗
− ∂p

∗

∂y∗

)
(A.8)

L3 = λ3lT3
∂U∗

∂y∗
= λ3(0, 1, 0, 0)

∂

∂y∗



ρ∗

u∗

v∗

p∗



= λ3
∂u∗

∂y∗
(A.9)

L4 = λ4lT4
∂U∗

∂y∗
= λ4(0, 0, 1, 1)

∂

∂y∗



ρ∗

u∗

v∗

p∗



= λ4

(
∂p∗

∂y∗
+
∂v∗

∂y∗

)
(A.10)

or

L =



L1

L2

L3

L4



=



λ1

(
∂p∗

∂y∗
− ∂v

∗

∂y∗

)

λ2

(
∂ρ

∂y∗
− ∂p

∗

∂y∗

)

λ3
∂u∗

∂y∗

λ4

(
∂p∗

∂y∗
+
∂v∗

∂y∗

)



(A.11)

By using the prefactored scheme, for a givenf fow state variable, we have that the OSD (One-

Sided Difference Approximation) at the first and last node along they-axis are given by:
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∂ f1
∂y
=

1
2


∂ f B

1

∂y
+
∂ f F

1

∂y


∂ f B

1

∂y
=

1
∆y

∑7
i=1 si fi

∂ f F
1

∂y
=

1
∆y

7∑

i=1

−eN+1−i fi (A.12)

∂ fN
∂y
=

1
2


∂ f B

N

∂y
+
∂ f F

N

∂y


∂ f B

N

∂y
=

1
∆y

∑N
i=N−6 ei fi

∂ f F
N

∂y
=

1
∆y

N∑

i=N−6

−sN+1−i fi (A.13)

The corresponding equation for theLi ’s become

L1 =
1
2

(
LB

1 + LF
1

)

L2 =
1
2

(
LB

2 + LF
2

)

L3 =
1
2

(
LB

3 + LF
3

)

L4 =
1
2

(
LB

4 + LF
4

)

LB
1 = λ1

(
∂pB

∂y
− ρ0c0

∂vB

∂y

)

LF
1 = λ1

(
∂pF

∂y
− ρ0c0

∂vF

∂y

)

LB
2 = λ2

(
c2

0

∂ρB

∂y
− ∂p

B

∂y

)

LF
2 = λ2

(
c2

0

∂ρF

∂y
− ∂p

F

∂y

)

LB
3 = λ3

∂uB

∂y

LF
3 = λ3

∂uF

∂y

LB
4 = λ4

(
∂pB

∂y
+ ρ0c0

∂vB

∂y

)

LF
4 = λ4

(
∂pF

∂y
+ ρ0c0

∂vF

∂y

)

(A.14)

147



A. APPENDIX A.2 LODI system along y axis

Eq. A.11 can be inverted to give they-derivatives of the primitives variables:

∂ρ∗

∂y∗
=

L2

λ2
+

1
2

(
L4

λ4
+

L1

λ1

)
(A.15)

∂u∗

∂y∗
=

L3

λ3
(A.16)

∂v∗

∂y∗
=

1
2

(
L4

λ4
− L1

λ1

)
(A.17)

∂p∗

∂y∗
=

1
2

(
L4

λ4
+

L1

λ1

)
(A.18)

(A.19)

In the code, we need the prefactored OSD spatial derivatives, which can be obtained as:

∂ρB

∂y
=

1

c2
0


LB

2

u0
+

1
2


LB

4

u0 + c0
+

LB
1

u0 − c0


 (A.20)

∂ρF

∂y
=

1

c2
0


LF

2

u0
+

1
2


LF

4

u0 + c0
+

LF
1

u0 − c0


 (A.21)

∂uB

∂y
=

LB
3

v0
(A.22)

∂uF

∂y
=

LF
3

v0
(A.23)

∂vB

∂y
=

1
2ρ0c0


LB

4

v0 + c0
−

LB
1

v0 − c0

 (A.24)

∂vF

∂y
=

1
2ρ0c0


LF

4

v0 + c0
−

LF
1

v0 − c0

 (A.25)

∂pB

∂y
=

1
2


LB

4

v0 + c0
+

LB
1

v0 − c0

 (A.26)

∂pF

∂y
=

1
2


LF

4

v0 + c0
+

LF
1

v0 − c0

 (A.27)

(A.28)

TheS matrix and its inversion are given by:
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S−1 =



lT1

lT2

lT3

lT4



=



0 0 −ρ0c0 1

c2
0 0 0 −1

0 1 0 0

0 0 ρ0c0 1



(A.29)

S =
(

r1 r2 r3 r4

)
=



1

2c2
0

1

c2
0

0
1

2c2
0

0 0 1 0
−1

2ρ0c0
0 0

1
2ρ0c0

1
2

0 0
1
2



(A.30)

Please note thatS−1S = I , andlTi · r j = δi j , whereδi j is the Kroneker’s delta.

Thed vector is given by:

d =



d1

d2

d3

d4



= S · L =



1

2c2
0

1

c2
0

0
1

2c2
0

0 0 1 0
−1

2ρ0c0
0 0

1
2ρ0c0

1
2

0 0
1
2





L1

L2

L3

L4



=



1

c2
0

(
L2 +

1
2

(L1 + L4)

)

L3

1
2ρ0c0

(L4 − L1)

1
2

(L4 + L1)



(A.31)

The initial govering equation (3.6) can be now re-written inthe desired form:

∂U∗

∂t∗
+ d + A0

∂U
∂x
= 0 (A.32)
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or in extended form:

∂ρ

∂t
+

1

c2
0

(
L2 +

1
2

(L1 + L4)

)
+u0
∂ρ

∂x
+ ρ0
∂u
∂x

= 0

∂u
∂t
+

1
2ρ0c0

(L4 − L1) +u0
∂u
∂x

= 0

∂v
∂t
+ L3 +u0

∂v
∂x

= 0

∂p
∂t
+

1
2

(L4 + L1) +u0
∂u
∂x
+ ρ0c2

0

∂u
∂x

= 0

(A.33)

The LODI system in terms of primitive variables for the 2-D Linerized Euler equation along

they direction is formally identical to eq. (3.23); the only difference if given by the different

equation for theL′i salong thex andy direction, given, respectively, by eq. (3.17) and (A.11).
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A.3 Coefficients for FD schemes

Classical centered explicit schemes

For the algebraic calculation of eq (2.1) and (2.9), recall the Taylor series expansion of the

function fi±ℓ(x), at the (i ± ℓ)th mesh point around the mesh pointi:

fi+ℓ = fi +
∞∑

n=1

(ℓ h)n

n!
∂n fi
∂xn (A.34)

fi−ℓ = fi +
∞∑

n=1

[
± (ℓ h)n

n!

]
∂n fi
∂xn

( + for evenn, - for oddn ) (A.35)

and the Euler relation:

e±iℓκ = cos(ℓκ) ± i sin(ℓκ) (A.36)

The first unmatched coefficient determines the formal truncation error of eq. (2.1),(Lele, 1992):

2
q∑

ℓ=1

ℓaℓ = 1 (second order) (A.37)

2
q∑

ℓ=1

ℓ3aℓ = 0 (fourth order) (A.38)

2
q∑

ℓ=1

ℓ5aℓ = 0 (sixth order) (A.39)

2
q∑

ℓ=1

ℓ7aℓ = 0 (eighth order) (A.40)

2
q∑

ℓ=1

ℓ9aℓ = 0 (tenth order) (A.41)

2
q∑

ℓ=1

ℓ11aℓ = 0 (twelfth order) (A.42)

So, it is possible to enumerate the following schemes, with the relatives coefficients given in

Tab. A.1:

• C0011, Q = P = 0, S = R = 1. Classical explicit second order scheme, three point

151



A. APPENDIX A.3 Coefficients for FD schemes

stencil

f ′i ≃ a1
( fi+1 − fi−1)

h
(A.43)

κ̄(κ) = 2a1 sin(κ) (A.44)

∂κ̄(κ)
∂κ
= 2a1 cos(κ) (A.45)

• C0022,Q = P = 0, S = R= 2. Classical explicit fourth order scheme, five point stencil

f ′i ≃ a2
( fi+2 − fi−2)

h
+ a1

( fi+1 − fi−1)
h

(A.46)

κ̄(κ) = 2 [a1 sin(κ) + a2 sin(2κ)] (A.47)

∂κ̄(κ)
∂κ
= 2 [a1 cos(κ) + 2a2 cos(2κ)] (A.48)

• C0033,Q = P = 0, S = R= 3. Classical explicit sixth order scheme, seven point stencil

f ′i ≃ a3
( fi+3 − fi−3)

h
+ a2

( fi+2 − fi−2)
h

+ a1
( fi+1 − fi−1)

h
(A.49)

κ̄(κ) = 2 [a1 sin(κ) + a2 sin(2κ) + a3 sin(3κ)] (A.50)

∂κ̄(κ)
∂κ
= 2 [a1 cos(κ) + 2a2 cos(2κ) + 3a3 cos(3κ)] (A.51)

• C0044,Q = P = 0, S = R= 4. Classical explicit eighth order scheme, nine point stencil

f ′i ≃ a4
( fi+4 − fi−4)

h
+ a3

( fi+3 − fi−3)
h

+ a2
( fi+2 − fi−2)

h
+ a1

( fi+1 − fi−1)
h

(A.52)

κ̄(κ) = 2 [a1 sin(κ) + a2 sin(2κ) + a3 sin(3κ) + a4 sin(4κ)] (A.53)

∂κ̄(κ)
∂κ
= 2 [a1 cos(κ) + 2a2 cos(2κ) + 3a3 cos(3κ) + 4a4 cos(4κ)] (A.54)

• C0055, Q = P = 0, S = R = 5. Classical explicit tenth order scheme, eleven point

stencil

f ′i ≃ a5
( fi+5 − fi−5)

h
+a4

( fi+4 − fi−4)
h

+a3
( fi+3 − fi−3)

h
+a2

( fi+2 − fi−2)
h

+a1
( fi+1 − fi−1)

h
(A.55)

κ̄(κ) = 2 [a1 sin(κ) + a2 sin(2κ) + a3 sin(3κ) + a4 sin(4κ) + a5 sin(5κ)] (A.56)

∂κ̄(κ)
∂κ
= 2 [a1 cos(κ) + 2a2 cos(2κ) + 3a3 cos(3κ) + 4a4 cos(4κ) + 5a5 cos(5κ)] (A.57)
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Scheme C0011 C0022 C0033 C0044 C0055 C0066
a1 0.5 2/3 3/4 4/5 5/6 6/7
a2 -1/12 -3/20 -1/5 -5/21 -15/56
a3 1/60 4/105 5/84 5/63
a4 -1/280 -5/504 -1/56
a5 1/1260 3/1155
a6 -1/5544
κ̄max 0.99 1.37 1.58 1.73 1.83 1.92

stencil size 3 5 7 9 11 13
Order (n) 2 4 6 8 10 12

Table A.1: Coefficients of the classical centred explicitCPQRSschemes,P = Q = 0, R = S,
α0 = 1, a0 = 0, a− j = a j .

• C0066,Q = P = 0, S = R = 6. Classical explicit twelfth order scheme, thirteen point

stencil

f ′i � a6
( fi+6 − fi−6)

h
+a5

( fi+5 − fi−5)
h

+a4
( fi+4 − fi−4)

h
+a3

( fi+3 − fi−3)
h

+a2
( fi+2 − fi−2)

h
+a1

( fi+1 − fi−1)
h

(A.58)

κ̄(κ) = 2 [a1 sin(κ) + a2 sin(2κ) + a3 sin(3κ) + a4 sin(4κ) + a5 sin(5κ) + a6 sin(6κ)]

(A.59)
∂κ̄(κ)
∂κ
= 2 [a1 cos(κ) + 2a2 cos(2κ) + 3a3 cos(3κ) + 4a4 cos(4κ) + 5a5 cos(5κ) + 6a6 cos(6κ)]

(A.60)

Optimized centered explicit schemes

Tam & Web (1993) constructed a 7-point, 4th order central difference scheme based on a mini-

malisation of the dispersion error of eq. (2.11). They have chosen the coefficientsa2 anda3 to

obtain a 4th-order accurate scheme, so the first two constrains (A.37), (A.38) are imposed; to

assure a minimal dispersion, the coefficienta1 in eq. (A.49) have been chosen to minimizeE:

∂E
∂a1
= 0, (A.61)

where the integral errorE is the squared difference between the scaled pseudo-wavenumber ¯κ

and the scaled wavenumberκ:

E =
∫ π/2

0
|κ̄(κ) − κ|2dκ. (A.62)
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Scheme TamDRP7p BBo9p BBo11p BBo13p
a1 0.799266426974156 0.841570125482 0.872756993962 0.907646591371
a2 -0.189413141579325 -0.244678631765 -0.286511173973 -0.337048393268
a3 0.0265199520614978 0.059463584768 0.090320001280 0.132442885327
a4 -0.007650904064 -0.020779405824 -0.045246480208
a5 0.002484594688 0.011169294114
a6 -0.001456501759
κ̄max 1.72 1.87 1.98 2.13

stencil size 7 9 11 13
Order (n) 4 4 6 8

Table A.2: Coefficients of the optimized centered explicit schemes,Q = R= 0, α0 = 1, q = r,
a0 = 0, a− j = a j .

The different coefficients, for the optimized scheme, denoted thereafter asTamDRP7p are

given in Tab. A.2.

Rocket al. (2004), in their overview, have reported the following different coefficients for the

TamDRP7p scheme:

a1 = 0.77088238051822552

a2 = 0.166705904414580469

a3 = 0.02084314277031176,

(A.63)

where the integral error has been minimized in the range [0, 1.1].

Bogey & Bailly (2004), using the same theory as Tam and Webb, do not minimize the absolute

difference between ¯κ andκ, but the relative difference, optimizing the classical explicit eight

order scheme, 9-point stencilC0044 (see eq A.52), the tenth order scheme, 11-point stencil

C0055 (see eq A.55), and the twelfth order scheme, 13-point stencil C0066 (see eq A.58).

These optimized schemes will be denoted respectively asBBo9p, BBo11p andBBo13p.

The integrated error E then becomes:

E =
∫ κh

κl

|κ̄(κ) − κ|
κ

dκ =
∫ ln (κh)

ln (κl )
|κ̄(κ) − κ|d (ln κ) (A.64)

This schemes are developed so that the dispersion error is small for a large range of wavenum-

bers up toκ = π/2. Two coefficients are chosen with the Taylor Series truncation method to
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Figure A.1: Scaled pseudo-wavenumber diagram for a selection of explicit centered finite-
difference schemes.

obtain a 4th order accurate scheme, and the remaining coefficientsa j are defined to minimize

the integral error E of eq. (A.64), where the wavenumbers limits areκl = π/16, andκh = π/2

for the BBo9p andBBo11p, andκl = π/16, andκh = 3π/5 for theBBop13. The optimized

coefficients are given in table A.2.

The relation between the scaled pseudo-wavenumber and the scaled wavenumber for the ex-

plicit classical and optimized schemes is shown in Fig. A.1.The DRP schemes are low disper-

sive as long as there is a good superposition with the line of exact differentiation. Increasing

the number of points, fromNλ = 3 to 6, allows to decrease the dispersion error for short waves.

It is adequate note that the grid-to-grid waves withκ = π are never resolved.

The dispersive error is represented in logarithmic scales in Fig. A.2 for the standard and the op-

timized explicit schemes. The optimized schemes are clearly less dispersive than the standard

equivalent stencil-size ones for short waves withκ > π/4, (i.e. Nλ < 8). The reduction of the

error is particularly important for the wavenumbers nearκ ≈ π/2, (i.e.Nλ ≈ 4) with at least one

order of magnitude between the optimized and the standard schemes. The optimized schemes

are also more dispersive for long waves,Nλ > 8− 10 compared the their calssical counterpart,

because of their lower formal order, but the dispersion error is then very small, about or less
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Figure A.2: Dispersive error for a selection of explicit centered finite-difference schemes.

than 10−4/10−5.

Classical centred implicit schemes

The compact, (also implicit or Pade´), schemes are obtainedwhenP = Q , 0 in eq (2.1), and

a matrix has to be inverted to determine the unknown values ofthe approximation of the first

derivatives, (L.H.S. of eq. 2.1). In the case ofQ = R = 1 andQ = R = 2, a tridiagonal and

a pentadiagonal system, respectively, has to be solved for every grid point. Equations (2.1)

and (2.9) will be re-written as:

f ′i +
Q∑

j=1

[
α j

(
f ′i+ j + f ′i− j

)]
=

1
h

S∑

j=1

[
a j

(
fi+ j − fi− j

)]
+O(hn), (A.65)

κ̄ (κ) =

∑S
j=1 2a j sin(jκ)

1+
∑Q

j=1 2α j cos(jκ)
, (A.66)
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The group velocity is:

cg

c
=
∂κ̄(κ)
∂κ
= 2

[∑S
j=1 ja j cos(jκ)

]
·
[
1+

∑Q
j=1 2α j cos(jκ)

]
+

[∑S
j=1 a j sin(jκ)

]
·
[∑Q

j=1 2 jα j sin(jκ)
]

[
1+

∑Q
j=1 2α j cos(jκ)

]2
,

(A.67)

The relations of order become:

2
S∑

j=1

ja j = 1+ 2
Q∑

j=1

α j (second order) (A.68)

2
S∑

j=1

j3a j = 2
3!
2!

α1 +

Q∑

j=2

2 jα j

 (fourth order) (A.69)

2
S∑

j=1

j5a j = 2
5!
4!

α1 +

Q∑

j=2

22 jα j

 (sixth order) (A.70)

2
S∑

j=1

j7a j = 2
7!
6!

α1 +

Q∑

j=2

23 jα j

 (eighth order) (A.71)

2
q∑

j=1

j9a j = 2
9!
8!

α1 +

Q∑

j=2

24 jα j

 (tenth order) (A.72)

2
q∑

j=1

j11a j = 2
11!
10!

α1 +

Q∑

j=2

25 jα j

 (twelfth order) (A.73)

Tridiagonal classical and optimized schemes

Let’s consider a family of tridiagonal schemes with five point stencil. This are generated in

eq. (A.65) by settingQ = 1 andS = 2:

α1 f ′i−1 + f ′i + α1 f ′i+1 � a2
( fi+2 − fi−2)

h
+ a1

( fi+1 − fi−1)
h

(A.74)

κ̄ (κ) =
2 [a1 sin(κ) + a2 sin(2κ)]

1+ 2α1 cos(κ)
, (A.75)

∂κ̄(κ)
∂κ
= 2

[a1 cos(κ) + 2a2 cos(2κ)] [1 + 2α1 cos(κ)] + [a1 sin(κ) + a2 sin(2κ)] [2α1 sin(κ)]

[1 + 2α1 cos(κ)]2

(A.76)

157



A. APPENDIX A.3 Coefficients for FD schemes

By imposing fourth-order accuracy (using the eq. A.68 and A.69) the following relations are

obtained: 

a2 = −a−2 =
1
12

(4α1 − 1)

a1 = −a−1 =
1
3

(α1 + 2)
(A.77)

whereα is a free parameter:

• As α→ 0, the classical explicit fourth order schemeC0022 of eq (A.46) is obtained.

• Forα = 1/4, the classical fourth-order Pade’, 3 point stencilC1111 scheme is obtained.

• Forα = 1/3, the sixth order accurate, 5 point stencilC1122 scheme is obtained .

Hixon’s notation and prefactorization

Hixon (2000) in his notation has re-written eq. (3.24) in thefollowing form:

γ
(
f ′i+2 + f ′i−2

)
+ β

(
f ′i+1 + f ′i−1

)
+ (1− γ − 2β) f ′i =

1
h

[
ϕ ( fi+2 − fi−2) + η ( fi+1 − fi−1)

]
, (A.78)

for sixth-order accuracy

γ = 0, β = 1/5, ϕ = 1/60, η = 7/15. (A.79)

By substituting the above in eq. (A.78):

1
5

(
f ′i+1 + f ′i−1

)
+

3
5

f ′i =
1
h

[
1
60

( fi+2 − fi−2) +
7
15

( fi+1 − fi−1)

]
, (A.80)

Pre-multiplying eq. (3.24) by the factor11+2α , we get:

α1

1+ 2α1
f ′i−1+

1
1+ 2α1

f ′i +
α1

1+ 2α1
f ′i+1 =

1
h

(
a−2

1+ 2α1
fi−2+

a−1

1+ 2α1
fi−1+

a1

1+ 2α1
fi+1+

a2

1+ 2α1
fi+2)+O(h4),

(A.81)

in the case of sixth-order accuracy, i.e.α1 = 1/3, eq. (A.81) is equivalent to eq. (A.80). In this

case the relation for the scaled pseudo-wavenumber of eq.(3.27) becomes

κ̄ (κ) =

∑S
j=1

2aj

1+2α1
sin(jκ)

1
1+2α1

+
∑Q

j=1
2α1

1+2α1
cos(jκ)

, (A.82)
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The solution to the system of equations (3.41) is:



αF =

√√√
1±

√
1− 4α2

1

2(1+ 2α1)

βF =
α1

αF(1+ 2α1)

dF =
1− 4α1

6αF(1+ 2α1)

bF =
βF − αF

βF + αF
dF +

2(α1 + 2)
3(βF + αF)(1+ 2α1)

cF = − (dF + bF)

(A.83)

Pentadiagonal classical and optimized schemes

Now, let’s focus on a family of pentadiagonal schemes with seven point stencil. This are

generated in eq. (A.65) by settingQ = 2 andS = 3:

α2 f ′i−2+α1 f ′i−1+ f ′i +α1 f ′i+1+α2 f ′i+2 � a3
( fi+3 − fi−3)

h
+a2

( fi+2 − fi−2)
h

+a1
( fi+1 − fi−1)

h
(A.84)

κ̄ (κ) =
2 [a1 sin(κ) + a2 sin(2κ) + a3 sin(3κ)]

1+ 2α1 cos(κ) + 2α2 cos(2κ)
, (A.85)

∂κ̄(κ)
∂κ

= 2

{
[a1 cos(κ) + 2a2 cos(2κ) + 3a3 cos(3κ)] [1 + 2α1 cos(κ) + 2α2 cos(2κ)] +

[1 + 2α1 cos(κ) + 2α2 cos(2κ)]2
(A.86)

+ [a1 sin(κ) + a2 sin(2κ) + a3 sin(3κ)] [2α1 sin(κ) + 4α2 sin(2κ)]

[1 + 2α1 cos(κ) + 2α2 cos(2κ)]2

}

By imposing sixth-order accuracy (using the eq. A.68, A.69,A.70) the following relations are

obtained: 

a3 = −a−3 =
1
60
+

1
5
α2 −

1
20
α1

a2 = −a−2 = −
3
20
+

31
30
α2 +

8
15
α1

a1 = −a−1 =
3
4
− 5

3
α2 +

1
12
α1

(A.87)

whereα1 andα2 are two free parameter.

The specific choice ofα1 = 1/2 andα2 = 1/20 yields to the only tenth-order schemeC2233 in

the family (see Tab 3.2).

Recently, Lui and Lele Lui & Lele (2001) employed the compactpentadiagonal scheme of
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E4 α12 α21 α23 bi1 bi2 bi3 bi4 bi5

i = 1 0 0 0 -25/12 4 -3 4/3 -1/4
i = 2 0 0 0 -1/4 -5/6 3/2 -1/2 1/12
C4
i = 1 3 0 0 -17/6 3/2 3/2 -1/6 0
i = 2 0 1/4 1/4 -3/4 0 3/4 0 0
C3 (Lele, 1992)
i = 1 2 0 0 -7/6 2 1/2 0 0
C5 (Carpenteret al., 1993a)
i = 2 1/6 1/2 -5/9 -1/2 1 1/18 0

Table A.3: Coefficients for the boundary formulas ati-th point from eq. (A.88).

eq (A.84), imposing sixth order accuracy and interpolatingexact differentiation atϕ1 = 1.67

andϕ2 = 2.10 (corresponding, respectively, toNλ1 = 3.76 andNλ2 = 2.99 ), for the compu-

tation of spatial developing compressible, turbulent mixing layers. The specific values ofα1

andα2 for the optimized scheme, labeledLui&Lele thereafter, are reported in Tab. 3.2. Insert

specs. of Kim

Non-centered boundary closures

i = 1 f ′1 + α12 f ′2 �
1
h

n∑

m=1

b1m fm, (A.88a)

i = 2 α21 f ′1 + f ′2 + α23 f ′3 �
1
h

n∑

m=1

b2m fm, (A.88b)

i = N − 1 α23 f ′N−2 + f ′N−1 + α21 f ′N �
1
h

n∑

m=1

−b2m fN−m+1, (A.88c)

i = N α12 f ′N−1 + f ′N �
1
h

n∑

m=1

−b1m fN−m+1 (A.88d)

Table A.3 reports the coefficients for the boundary formulas ati-th point according to eqs. (A.88)

for fourth-order explicit (E4) and compact (C4) non-centered boundary closures. These coeffi-

cients for varying orders of accuracy can be obtained through the Taylor series term-matching

procedure.
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A. APPENDIX A.4 Eigenvalue spectrum

A.4 Eigenvalue spectrum

Consider the class of tridiagonal compact schemes with five point stencilsC1122 of eq. (3.24)

coupled with a generic boundary closure reported in eq. (A.88) of Sec. A.3. The matricesA

andB of eq. (A.93), for this combination of interior scheme and boundary closures, are

A =



1 α12 0 · · · 0 0 0 0 0

α21 1 α23 0 · · · 0 0 0 0

0 α1 1 α1 0 · · · 0 0 0

0 0 α1 1 α1 0 · · · 0 0
...
. . .

. . .
. . .
. . .

. . .
. . .

...
...

0 0 · · · 0 α1 1 α1 0 0

0 0 0 · · · 0 α1 1 α1 0

0 0 0 0 · · · 0 α23 1 α21

0 0 0 0 0 · · · 0 α12 1



(A.89)

B =



b11 b12 b13 · · · b1n 0 0 · · · 0

b21 b22 b23 · · · b2n 0 0 · · · 0

−a2 −a1 0 a1 a2 0 0 · · · 0

0 −a2 −a1 0 a1 a2 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0 · · · 0 −a2 −a1 0 a1 a2 0

0 0 · · · 0 −b2n · · · −b23 −b22 −b21

0 0 0 · · · −b1n · · · −b13 −b12 −b11



(A.90)

Pre-multiplying byA the spatially discretized form ofLAE of eq. (2.13) and substituting the

non-prefactored version of eq. (3.59) yields

A
du
dt
= −c

h
B u, (A.91)
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where
du
dt

is aN-dimensional vector of the time derivative of the nodal values

du
dt
=

(
du1

dt
,
du2

dt
, · · · , duN−1

dt
,
duN

dt

)T

. (A.92)

By inverting theA matrix in eq. (A.91), the problem can be re-cast as

du
dt
= −c

h
A−1B u, (A.93)

since eq. (3.61) is a system of ODE’s in time with constant coefficients, it admits as solution

orthonormal modesu = estũ, with a constants representing the rate of decay or amplification

of the modes. Substitutingu = estũ into eq. (3.61) leads to an eigenvalue problem

ũ = −s∗M ũ, (A.94)

whereM = A−1B ands∗ =
c
s h

is the dimensionless eigenvalue andũ becomes the correspond-

ing eigenvector. The eigenvalues is in general complex and it depends on the sizeN of the

matricesA and B, the interior scheme and the boundary closures. The matrixM is, in gen-

eral, non-symmetric. To numerically determine its eigenvalues, firstly a balancing procedure

is applied to reduce the norm ofM. After, the matrixM is converted into an Hessenberg form,

suitable for theQRtransformation that gives the complex eigenvalues (Press &Firm, 1996).

The real parts of the eigenvalues are required to be equal or less than zero to guarantee the

numerical stability of the interior scheme coupled with theboundary closure, i.e.|est| ≤ 1.

Section 3.5.2 shows the plot of the eigenvalue spectrum of the classicalC1122 sixth-order

scheme and the cost-optimizedC1122epsm5, C1122epsm4, C1122epsm3 schemes coupled

with the non-centered boundary closures of eq. (A.88). Figure 3.29 reports the effect of the

boundary closures on the eigenvalue spectrums∗ for the classical PadèC1111 interior scheme

(α1 = 1/4 in eq. (3.24)). For reference Fig.10 of Lele (1992).

Figure 3.30 shows the eigenvalue spectrums∗ from eq.(3.67) for the classicalC1122 and the

cost-optimizedC12epsmn (with n = 5, 4, 3) interior scheme, coupled with a fourth-order com-

pact C4 boundary scheme ati = 1 and i = N mesh nodes, and a fifth-order compactC5

boundary scheme ati = 2 andi = N − 1 mesh nodes.

Table A.4 and Fig. A.3 show the corresponding maximum real part of the eigenvalues from

eq.(3.67) varying the number of nodesN. The classicalC1122 internal scheme and the cost-
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C1122 (α1 = 1/3) N max
(ℜ (s∗)

)

21 -0.00452508
41 -0.000538793
81 -6.58263e-05
201 -4.15745e-06
401 -5.17428e-07

C1122epsm5 (α1 = 0.33750)
21 -0.00464136
41 -0.000553133
81 -6.75728e-05
201 -4.26683e-06
401 -5.30988e-07

C1122epsm4 (α1 = 0.34240)
21 -0.00479122
41 -0.000571708
81 -6.98404e-05
201 -4.40903e-06
401 -5.48624e-07

C1122epsm3 (α1 = 0.3532)
21 -0.00517974
41 -0.000620296
81 -7.5794e-05
201 -4.78311e-06
401 -5.95049e-07

Table A.4: Maximum real parts of the eigenvalues from eq. (3.67) varying the number of nodes
N for the classicalC1122 and the cost-optimizedC12epsm5, C12epsm4 andC12epsm3 in-
terior schemes.

optimizedC1122epsm5, C1122epsm4, C1122epsm3 schemes with such boundary closures

are asymptotic stable (Carpenteret al., 1993a), that isℜ (s∗) ≤ 0 for the values ofN reported.

Figure A.3 shows the absolute maximum real part of the eigenvalues|maxℜ (ω∗) |, varying

the number of nodesN for the classicalC1122 scheme. It follows the roll-off of the third-

order logarithmic scale. A similar trend has been observed for the cost-optimizedC12epsmn

schemes.

Determination of M for the prefactored schemes

Consider the class of prefactored scheme of eq. (3.33) and eq. (3.34) coupled with the prefac-

tored one-sided boundary stencils of eq. (3.47) and eq. (3.48). The forward matricesAF and
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Figure A.3: Absolute maximum real parts of the eigenvalues of eq. (3.67) varying the number
of nodes.(�) C1122,(−−) third-order logarithmic scale.

BF are

AF =



1 0 0 · · · 0 0 0

0 βF αF 0 · · · 0 0

0 0 βF αF 0 · · · 0
...
. . .

. . .
. . .

. . .
...

...

0 0 · · · 0 βF αF 0

0 0 0 · · · 0 βF αF

0 0 0 0 · · · 0 1



,BF =



−eN −eN−1 −eN−2 · · · −eN−6 0 · · · 0

dF cF bF 0 0 · · · · · · 0

0 dF cF bF 0 · · · · · · 0
...

. . .
. . .

. . .
. . .

. . .
... 0

...
. . .

. . .
. . .

. . .
. . .

... 0

0 · · · 0 0 dF cF bF 0

0 0 · · · 0 0 dF cF bF

0 · · · 0 −s7 · · · −s3 −s2 −s1


(A.95)
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Similarly, the backward matricesAB andBB are

AB =



1 0 0 · · · 0 0 0

γB βB 0 0 · · · 0 0

0 γB βB 0 0 · · · 0
...
. . .
. . .

. . .
. . .

...
...

0 · · · 0 γB βB 0 0

0 0 0 · · · γB βB 0

0 0 0 0 · · · 0 1



, BB =



s1 s2 s3 · · · s7 0 · · · 0

dB cB bB 0 0 · · · · · · 0

0 dB cB bB 0 · · · · · · 0
...
. . .
. . .

. . .
. . .

. . .
... 0

...
. . .
. . .

. . .
. . .

. . .
... 0

0 · · · 0 0 dB cB bB 0

0 0 · · · 0 0 dB cB bB

0 · · · 0 eN−6 · · · eN−2 eN−1 eN


(A.96)

They are rearranged to eliminate thef ′B0 and f ′F0 from eq. (3.59). The finite difference approx-

imations f ′B0 and f ′F0 , according to eq. (3.47) and eq. (3.48), are re-written for the i = 0 nodes

as

f ′B0 =
1
h

6∑

j=0

sj+1 f j

f ′F0 =
1
h

6∑

j=0

−eN− j f j (A.97)

.For the backward loop, eq. (3.34) is rewritten fori = 1 node as

βB f ′B1 + γB f ′B0 =
1
h

[
bB f2 + cB f1 + dB f0

]
, (A.98)

By substituting the first of eq. (A.97) in the backward loop ofeq. (A.98) and re-arranging

( f0 = 0 due to boundary condition)

βB f ′B1 +
γB

h

6∑

j=0

sj+1 f j =
1
h

[
bB f2 + cB f1

]
(A.99)

βB f ′B1 = −
γB

h

6∑

j=0

sj+1 f j +
1
h

[
bB f2 + cB f1

]
(A.100)
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βB f ′B1 =
1
h

[
(−γBs2 + cB) f1 + (−γBs3 + bB) f2 − γBs4 f3 − γBs5 f4 − γBs6 f5 − γBs7 f6

]

(A.101)

βB f ′B1 =
1
h

[
s∗2 f1 + s∗3 f2 + s∗4 f3 + s∗5 f4 + s∗6 f5 + s∗7 f6

]
(A.102)

where the coefficientss∗i are

s∗2 = (−γBs2 + cB) ; s∗3 = (−γBs3 + bB) ; s∗4 = −γBs4; s∗5 = −γBs5; s∗6 = −γBs6; s∗7 = −γBs7.

(A.103)

MatricesAB andBB are re-written as a(N + 1× N + 1) matrix

AB =



1 0 0 0 · · · 0 0

γB βB 0 0 · · · 0 0

0 γB βB 0 0 · · · 0
...
. . .
. . .

. . .
...

...
...

0 · · · 0 γB βB 0 0

0 0 0 · · · γB βB 0

0 0 0 0 · · · 0 1



, BB =



0 0 0 · · · 0 · · · · · · 0

s∗1 s∗2 s∗3 · · · s∗7 · · · · · · 0

0 dB cB bB 0 · · · · · · 0

0
. . .

. . .
. . .

. . .
. . .

... 0

0
. . .

. . .
. . .

. . .
. . .

... 0

0 · · · 0 0 dB cB bB 0

0 0 · · · 0 0 dB cB bB

0 · · · 0 eN−6 · · · eN−2 eN−1 eN


(A.104)

where the first row ofBB has been set to zero due to the initial boundary condition. For the

forward loop, eq. (3.33) ati = 1 node is

αF f ′F2 + βF f ′F1 =
1
h

[
bF f2 + cF f1 + dF f0

]
, (A.105)
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which does not involvef ′F0 ( f0 = 0). MatricesAF andBF are re-written as aN + 1 × N + 1

matrix

AF =



1 0 0 0 · · · 0 0

0 βF αF 0 · · · 0 0

0 0 βF αF 0 · · · 0
...
. . .

. . .
. . .

. . .
...

...

0 0 · · · 0 βF αF 0

0 0 0 · · · 0 βF αF

0 0 0 0 · · · 0 1



, BF =



0 0 0 · · · 0 · · · · · · 0

dF cF bF 0 0 · · · · · · 0

0 dF cF bF 0 · · · · · · 0
...
. . .

. . .
. . .

. . .
. . .

... 0
...
. . .

. . .
. . .

. . .
. . .

... 0

0 · · · 0 0 dF cF bF 0

0 0 · · · 0 0 dF cF bF

0 · · · 0 −s7 · · · −s3 −s2 −s1


(A.106)

where the first row ofBF has been set to zero due to the initial boundary condition.

These matrices are used to construct theM of eq.(3.66). The eigenvalues are calculated by

eliminating the first row and the first column, due to the initial boundary condition at thei = 0

node.
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Figure A.4: Iso-contours of normalized ‘local’(a) and ‘global’(b) error functione(κ, σ) (black
dashed lines)C0011/RK4, and normalized one-dimensional cost functionc1(κ, σ) (solid green
line). The blue squared symbols represent the ‘optimal’ working condition, the black dash-
dotted line(— · · —) corresponds to the stability limitσmax.
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Figure A.5: Iso-contours of normalized ‘local’(a) and ‘global’(b) error functione(κ, σ) (black
dashed lines)C0033/RK4, and normalized one-dimensional cost functionc1(κ, σ) (solid green
line). The blue squared symbols represent the ‘optimal’ working condition; the black dash-
dotted line(— · · —) corresponds to the stability limitσmax.
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Figure A.6: Iso-contours of normalized ‘local’(a) and ‘global’(b) error functione(κ, σ) (black
dashed lines)TamDRP/RK4, and normalized one-dimensional cost functionc1(κ, σ) (solid
green line). The blue squared symbols represent the ‘optimal’ working condition; the black
dash-dotted line(— · · —) corresponds to the stability limitσmax.
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Figure A.7: Iso-contours of normalized ‘local’(a) and ‘global’(b) error functione(κ, σ) (black
dashed lines)C1122/RK4, and normalized one-dimensional cost functionc1(κ, σ) (solid green
line). The blue squared symbols represent the ‘optimal’ working condition; the black dash-
dotted line(— · · —) corresponds to the stability limitσmax.
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Figure A.8: Iso-contours of normalized ‘local’(a) and ‘global’(b) error functione(κ, σ) (black
dashed lines)C2233/RK4, and normalized one-dimensional cost functionc1(κ, σ) (solid green
line). The blue squared symbols represent the ‘optimal’ working condition; the black dash-
dotted line(— · · —) corresponds to the stability limitσmax.
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Figure A.9: Iso-contours of normalized ‘local’(a) and ‘global’(b) error functione(κ, σ) (black
dashed lines)Lui&Lele/RK4, and normalized one-dimensional cost functionc1(κ, σ) (solid
green line). The blue circles represent the ‘optimal’ working condition; the black dash-dotted
line (— · · —) corresponds to the stability limitσmax.
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Figure A.10: Iso-contours of normalized ‘local’(a) and ‘global’(b) error functione(κ, σ) (black
dashed lines)Kim/RK4, and normalized one-dimensional cost functionc1(κ, σ) (solid green
line). The blue circles represent the ‘optimal’ working condition; the black dash-dotted line
(— · · —) corresponds to the stability limitσmax.
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Figure A.11: Iso-contours of normalized ‘local’(a) and ‘global’(b) error functione(κ, σ) (black
dashed lines)C0011/RK4, and normalized two-dimensional cost functionc2(κ, σ) (solid purple
line). The blue squared symbols represent the ‘optimal’ working condition, the black dash-
dotted line(— · · —) corresponds to the stability limitσmax.
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Figure A.12: Iso-contours of normalized ‘local’(a) and ‘global’(b) error functione(κ, σ) (black
dashed lines)C0033/RK4, and normalized two-dimensional cost functionc2(κ, σ) (solid purple
line). The blue squared symbols represent the ‘optimal’ working condition, the black dash-
dotted line(— · · —) corresponds to the stability limitσmax.
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Figure A.13: Iso-contours of normalized ‘local’(a) and ‘global’(b) error functione(κ, σ) (black
dashed lines)Tam/RK4, and normalized two-dimensional cost functionc2(κ, σ) (solid purple
line). The blue squared symbols represent the ‘optimal’ working condition, the black dash-
dotted line(— · · —) corresponds to the stability limitσmax.
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Figure A.14: Iso-contours of normalized ‘local’(a) and ‘global’(b) error functione(κ, σ) (black
dashed lines)C12/RK4, and normalized two-dimensional cost functionc2(κ, σ) (solid purple
line). The blue squared symbols represent the ‘optimal’ working condition, the black dash-
dotted line(— · · —) corresponds to the stability limitσmax.
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Figure A.15: Iso-contours of normalized ‘local’(a) and ‘global’(b) error functione(κ, σ) (black
dashed lines)C2233/RK4, and normalized two-dimensional cost functionc2(κ, σ) (solid red
line). The blue squared symbols represent the ‘optimal’ working condition; the black dash-
dotted line(— · · —) corresponds to the stability limitσmax.
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Figure A.16: Iso-contours of normalized ‘local’(a) and ‘global’(b) error functione(κ, σ) (black
dashed lines)Lui&Lele, and normalized two-dimensional cost functionc2(κ, σ) (solid red line).
The blue squared symbols represent the ‘optimal’ working condition; the black dash-dotted line
(— · · —) corresponds to the stability limitσmax.

180

Appendix1/fig/local2DLuiRK4.eps
Appendix1/fig/global2DLuiRK4.eps


A. APPENDIX A.5 Efficiency comparison

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

κ

σ

(a)

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

κ̌

σ̌

(b)

Figure A.17: Iso-contours of normalized ‘local’(a) and ‘global’(b) error functione(κ, σ) (black
dashed lines)Kim/RK4, and normalized one-dimensional cost functionc1(κ, σ) (solid green
line). The blue circles represent the ‘optimal’ working condition; the black dash-dotted line
(— · · —) corresponds to the stability limitσmax.
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Figure A.18: Iso-contours of normalized ‘local’(a) and ‘global’(b) error functione(κ, σ) (black
dashed lines)C0011/RK3, and normalized two-dimensional cost functionc2(κ, σ) (solid purple
line). The blue squared symbols represent the ‘optimal’ working condition, the black dash-
dotted line(— · · —) corresponds to the stability limitσmax.
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Figure A.19: Iso-contours of normalized ‘local’(a) and ‘global’(b) error functione(κ, σ) (black
dashed lines)C0033/RK3, and normalized two-dimensional cost functionc2(κ, σ) (solid purple
line). The blue squared symbols represent the ‘optimal’ working condition, the black dash-
dotted line(— · · —) corresponds to the stability limitσmax.
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Figure A.20: Iso-contours of normalized ‘local’(a) and ‘global’(b) error functione(κ, σ) (black
dashed lines)Tam/RK3, and normalized two-dimensional cost functionc2(κ, σ) (solid purple
line). The blue squared symbols represent the ‘optimal’ working condition, the black dash-
dotted line(— · · —) corresponds to the stability limitσmax.
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A. APPENDIX A.6 Time Integration

A.6 Time Integration

The following figures report the stability foot-prints, dissipation rate|r | and phase error for the

third-order RK3 (black dashed line) and fourth-order RK4 (black solid line) time integration

schemes.
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Figure A.21: (a) Stability foot-prints and (b) dissipationrate |r | and (c) phase errorδ for the
third-order RK3 (black dashed line) and fourth-order RK4 (black solid line) time integration
schemes.
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A. APPENDIX A.7 Boundaries error

A.7 Boundaries error

Eq. (3.34) can be rewritten, forC1122 scheme as:

(1− αF)
{
f ′Bi

}
+ αF

{
f ′Bi−1

}
=

1
h

[
bB fi+1 + cB fi + dB fi−1

]
= q(i+1,i,i−1) (A.107)

This equation is valid for every point, included ifi − 1 is on the boundary. To calculate the

value on thei = 1 point

(1− αF)
{
f ′B1

}
boundary

+ αF

{
f ′B0

}
boundary

=
1
h

[
bB f2 + cB f1 + dB f0

]
= q(2,1,0) (A.108)

{
f ′B1

}
boundary

=

(
− αF

1− αF

) {
f ′B0

}
boundary

+ q(2,1,0) (A.109)

If the interior scheme should have been applied to obtain thespatial derivative at the boundary:

(1− αF)
{
f ′B1

}
interior

+ αF

{
f ′B0

}
interior

=
1
h

[
bB f2 + cB f1 + dB f0

]
= q(2,1,0) (A.110)

{
f ′B1

}
interior

=

(
− αF

1− αF

) {
f ′B0

}
interior

+ q(2,1,0) (A.111)

by using eq (3.44) applied to thei = 0 node:

{
f ′B1

}
interior

=

(
− αF

1− αF

) [
ǫ0 +

{
f ′B0

}
boundary

]
+q(2,1,0) =

(
− αF

1− αF

)
ǫ0+

(
− αF

1− αF

) {
f ′B0

}
boundary

+q(2,1,0)

(A.112)

that is: {
f ′B1

}
interior

=
{
f ′B1

}
boundary

+

(
− αF

1− αF

)
ǫ0 (A.113)

Similarly, for the pointi = 2:

{
f ′B2

}
boundary

=

(
− αF

1− αF

) {
f ′B1

}
boundary

+ q(3,2,1) = (A.114)

=

(
− αF

1− αF

) [(
− αF

1− αF

) {
f ′B0

}
boundary

+ q(2,1,0)

]
+ q(3,2,1) =

=

(
− αF

1− αF

)2 {
f ′B0

}
boundary

+

(
− αF

1− αF

)
q(2,1,0) + q(3,2,1)
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{
f ′B2

}
interior

=

(
− αF

1− αF

) {
f ′B1

}
interior

+ q(3,2,1) = (A.115)

=

(
− αF

1− αF

) [(
− αF

1− αF

)
ǫ0 +

(
− αF

1− αF

) {
f ′B0

}
boundary

+ q(2,1,0)

]
+ q(3,2,1) =

(
− αF

1− αF

)2

ǫ0 +

(
− αF

1− αF

)2 {
f ′B0

}
boundary

+

(
− αF

1− αF

)
q(2,1,0) + q(3,2,1) =

=

(
− αF

1− αF

)2

ǫ0 +
{
f ′B2

}
boundary

so:
{
f ′B2

}
interior

=

(
− αF

1− αF

)2

ǫ0 +
{
f ′B2

}
boundary

(A.116)

and for a derivativei grid points away from the boundary

{
f ′Bi

}
interior

=
{
f ′Bi

}
boundary

+

(
− αF

1− αF

)i

ǫ0 (A.117)

or

ǫi =

(
− αF

1− αF

)i

ǫ0, (A.118)

.
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A.8 Wavenumber performance of the FD schemes with closures

A.8.1 Derivation of the coefficients for the prefactored operators for higher-
order accuracy

The prefactored forward and backward operators of eq.(3.32) in Section 3.2.4 has been derived

up to sixth order accuracy. The Taylor series expansion up tothe eleventh-order for the forward

and backward operator can be written as (pg.526, Hixon (2000)), (Hixon & Turkel, 2000).

∂ fi
∂x

F

=
∂ fi
∂x
+A h

∂2 fi
∂x2
−B h3∂

4 fi
∂x4
+K h5∂

6 fi
∂x6
+D h6∂

7 fi
∂x7
+E h7∂

8 fi
∂x8
+F h8∂

9 fi
∂x9
+G h9∂

10 fi
∂x10

+O(h11)

(A.119)

∂ fi
∂x

B

=
∂ fi
∂x
−A h

∂2 fi
∂x2
+B h3∂

4 fi
∂x4
−K h5∂

6 fi
∂x6
+D h6∂

7 fi
∂x7
−E h7∂

8 fi
∂x8
+F h8∂

9 fi
∂x9
−G h9∂

10 fi
∂x10

+O(h11)

(A.120)

According to Hixon the even derivatives (∂
2 fi
∂x2 ,

∂4 fi
∂x4 ,

∂6 fi
∂x6

∂8 fi
∂x8 ,

∂10 fi
∂x10 ) are equal and opposite be-

tween the two operators, and cancel when the two operators are added. The odd derivatives

(∂
7 fi
∂x7 ,

∂9 fi
∂x9 ) are equal and remain when the two operators are added.

By setting to zero the coefficientsD andF, i.e. D = F = 0, the accuracy of the Taylor series

expansion is extended up to the eleventh-order, that is:

∂ fi
∂x

F

=
∂ fi
∂x
+ A h

∂2 fi
∂x2
− B h3∂

4 fi
∂x4
+ K h5∂

6 fi
∂x6
+ E h7∂

8 fi
∂x8
+G h9∂

10 fi
∂x10

+O(h11) (A.121)

∂ fi
∂x

B

=
∂ fi
∂x
− A h

∂2 fi
∂x2
+ B h3∂

4 fi
∂x4
− K h5∂

6 fi
∂x6
− E h7∂

8 fi
∂x8
−G h9∂

10 fi
∂x10

+O(h11) (A.122)

By rewriting the prefactored algorithm for backward sweep:(Hixon, 2000; Rona & Spisso,

2007)

(1− a)
∂ fi
∂x

B

+ a
∂ f B

i−1

∂x
=

1
h

[
(1− b) fi+1 + (2b− 1) fi − b fi−1

]
(A.123)
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Our aim is to substitute the eq. (A.120) in eq. (A.123) and by matching the coefficients find the values forA, B, K andD, E, F, G.
Remembering that:

∂ f B
i−1

∂x
=
∂ fi−1

∂x
− A h

∂2 fi−1

∂x2
+ B h3 ∂

4 fi−1

∂x4
− K h5∂

6 fi−1

∂x6
+ D h6∂

7 fi−1

∂x7
− E h7 ∂

8 fi−1

∂x8
+ F h8∂

9 fi−1

∂x9
−G h9∂

10 fi−1

∂x10
+O(h11) (A.124)

fi+1 = fi + (h)
∂ fi
∂x
+

(h)2

2!
∂2 fi
∂x2
+

(h)3

3!
∂3 fi
∂x3
+

(h)4

4!
∂4 fi
∂x4
+

(h)5

5!
∂5 fi
∂x5
+

(h)6

6!
∂6 fi
∂x6
+

(h)7

7!
∂7 fi
∂x7
+

(h)8

8!
∂8 fi
∂x8
+

(h)9

9!
∂9 fi
∂x9
+

(h)10

10!
∂10 fi
∂x10

+O(h11) (A.125)

fi−1 = fi − (h)
∂ fi
∂x
+

(h)2

2!
∂2 fi
∂x2
− (h)3

3!
∂3 fi
∂x3
+

(h)4

4!
∂4 fi
∂x4
− (h)5

5!
∂5 fi
∂x5
+

(h)6

6!
∂6 fi
∂x6
− (h)7

7!
∂7 fi
∂x7
+

(h)8

8!
∂8 fi
∂x8
− (h)9

9!
∂9 fi
∂x9
+

(h)10

10!
∂10 fi
∂x10

+O(h11) (A.126)

∂ fi−1

∂x
=
∂ fi
∂x
− (h)

∂2 fi
∂x2
+

(h)2

2!
∂3 fi
∂x3
− (h)3

3!
∂4 fi
∂x4
+

(h)4

4!
∂5 fi
∂x5
− (h)5

5!
∂6 fi
∂x6
+

(h)6

6!
∂7 fi
∂x7
− (h)7

7!
∂8 fi
∂x8
+

(h)8

8!
∂9 fi
∂x9
− (h)9

9!
∂10 fi
∂x10

+
(h)10

10!
∂11 fi
∂x11

+O(h11) (A.127)

∂2 fi−1

∂x2
=
∂2 fi
∂x2
− (h)

∂3 fi
∂x3
+

(h)2

2!
∂4 fi
∂x4
− (h)3

3!
∂5 fi
∂x5
+

(h)4

4!
∂6 fi
∂x6
− (h)5

5!
∂7 fi
∂x7
+

(h)6

6!
∂8 fi
∂x8
− (h)7

7!
∂9 fi
∂x9
+

(h)8

8!
∂10 fi
∂x10

+ − (h)9

9!
∂11 fi
∂x11

+
(h)10

10!
∂12 fi
∂x12

+O(h11) (A.128)

∂3 fi−1

∂x3
=
∂3 fi
∂x3
− (h)

∂4 fi
∂x4
+

(h)2

2!
∂5 fi
∂x5
− (h)3

3!
∂6 fi
∂x6
+

(h)4

4!
∂7 fi
∂x7
− (h)5

5!
∂8 fi
∂x8
+

(h)6

6!
∂9 fi
∂x9
− (h)7

7!
∂10 fi
∂x10

+
(h)8

8!
∂11 fi
∂x11

+ − (h)9

9!
∂12 fi
∂x12

+
(h)10

10!
∂13 fi
∂x13

+O(h11) (A.129)

∂4 fi−1

∂x4
=
∂4 fi
∂x4
− (h)

∂5 fi
∂x5
+

(h)2

2!
∂6 fi
∂x6
− (h)3

3!
∂7 fi
∂x7
+

(h)4

4!
∂8 fi
∂x8
− (h)5

5!
∂9 fi
∂x9
+

(h)6

6!
∂10 fi
∂x10

− (h)7

7!
∂11 fi
∂x11

+
(h)8

8!
∂12 fi
∂x12

+ − (h)9

9!
∂13 fi
∂x13

+
(h)10

10!
∂14 fi
∂x14

+ O(h11) (A.130)

∂6 fi−1

∂x6
=
∂6 fi
∂x6
− (h)

∂7 fi
∂x7
+

(h)2

2!
∂8 fi
∂x8
− (h)3

3!
∂9 fi
∂x9
+

(h)4

4!
∂10 fi
∂x10

− (h)5

5!
∂11 fi
∂x11

+
(h)6

6!
∂12 fi
∂x12

− (h)7

7!
∂13 fi
∂x13

+
(h)8

8!
∂14 fi
∂x14

+ − (h)9

9!
∂15 fi
∂x15

+
(h)10

10!
∂16 fi
∂x16

+O(h11) (A.131)

∂7 fi−1

∂x7
=
∂7 fi
∂x7
− (h)

∂8 fi
∂x8
+

(h)2

2!
∂9 fi
∂x9
− (h)3

3!
∂10 fi
∂x10

+
(h)4

4!
∂11 fi
∂x11

− (h)5

5!
∂12 fi
∂x12

+
(h)6

6!
∂13 fi
∂x13

− (h)7

7!
∂14 fi
∂x14

+
(h)8

8!
∂15 fi
∂x15

+ − (h)9

9!
∂16 fi
∂x16

+
(h)10

10!
∂17 fi
∂x17

+O(h11) (A.132)

∂8 fi−1

∂x8
=
∂8 fi
∂x8
− (h)

∂9 fi
∂x9
+

(h)2

2!
∂10 fi
∂x10

− (h)3

3!
∂11 fi
∂x11

+
(h)4

4!
∂12 fi
∂x12

− (h)5

5!
∂13 fi
∂x13

+
(h)6

6!
∂14 fi
∂x14

− (h)7

7!
∂15 fi
∂x15

+
(h)8

8!
∂16 fi
∂x16

− (h)9

9!
∂17 fi
∂x17

+
(h)10

10!
∂18 fi
∂x18

+O(h11) (A.133)

∂9 fi−1

∂x9
=
∂9 fi
∂x9
− (h)

∂10 fi
∂x10

+
(h)2

2!
∂11 fi
∂x11

− (h)3

3!
∂12 fi
∂x12

+
(h)4

4!
∂13 fi
∂x13

− (h)5

5!
∂14 fi
∂x14

+
(h)6

6!
∂15 fi
∂x15

− (h)7

7!
∂16 fi
∂x16

+
(h)8

8!
∂17 fi
∂x17

+ − (h)9

9!
∂18 fi
∂x18

+
(h)10

10!
∂19 fi
∂x19

+O(h11) (A.134)

∂10 fi−1

∂x10
=
∂10 fi
∂x10

− (h)
∂11 fi
∂x11

+
(h)2

2!
∂12 fi
∂x12

− (h)3

3!
∂13 fi
∂x13

+
(h)4

4!
∂14 fi
∂x14

− (h)5

5!
∂15 fi
∂x15

+
(h)6

6!
∂16 fi
∂x16

− (h)7

7!
∂17 fi
∂x17

+
(h)8

8!
∂18 fi
∂x18

+ − (h)9

9!
∂19 fi
∂x19

+
(h)10

10!
∂20 fi
∂x20

+O(h11) (A.135)
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By Substituting in the
∂ f B

i−1
∂x the higher-order derivatives, and neglecting the term ofO(h11) and higher:

∂ f B
i−1

∂x
=
∂ fi−1

∂x
− A h

∂2 fi−1

∂x2
+ B h3∂

4 fi−1

∂x4
− K h5∂

6 fi−1

∂x6
+ D h6 ∂

7 fi−1

∂x7
− E h7∂

8 fi−1

∂x8
+ F h8∂

9 fi−1

∂x9
−G h9 ∂

10 fi−1

∂x10
+O(h11) (A.136)

∂ f B
i−1

∂x
=
∂ fi
∂x
+

−h
∂2 fi
∂x2
+

h2

2!
∂3 fi
∂x3
− h3

3!
∂4 fi
∂x4
+

h4

4!
∂5 fi
∂x5
− h5

5!
∂6 fi
∂x6
+

h6

6!
∂7 fi
∂x7
− h7

7!
∂8 fi
∂x8
+

h8

8!
∂9 fi
∂x9
− h9

9!
∂10 fi
∂x10

+
h10

10!
∂11 fi
∂x11
+

−Ah

[
∂2 fi
∂x2

− h
∂3 fi
∂x3
+

h2

2!
∂4 fi
∂x4
− h3

3!
∂5 fi
∂x5
+

h4

4!
∂6 fi
∂x6
− h5

5!
∂7 fi
∂x7
+

h6

6!
∂8 fi
∂x8
− h7

7!
∂9 fi
∂x9
+

h8

8!
∂10 fi
∂x10

− h9

9!
∂11 fi
∂x11

+ ...

]
+

+Bh3

[
∂4 fi
∂x4

− h
∂5 fi
∂x5
+

h2

2!
∂6 fi
∂x6
− h3

3!
∂7 fi
∂x7
+

h4

4!
∂8 fi
∂x8
− h5

5!
∂9 fi
∂x9
+

h6

6!
∂10 fi
∂x10

− h7

7!
∂11 fi
∂x11

+ ...

]
+

−Kh5

[
∂6 fi
∂x6

− h
∂7 fi
∂x7
+

h2

2!
∂8 fi
∂x8
− h3

3!
∂9 fi
∂x9
+

h4

4!
∂10 fi
∂x10

− h5

5!
∂11 fi
∂x11

+ ...

]

+Dh6

[
∂7 fi
∂x7

− h
∂8 fi
∂x8
+

h2

2!
∂9 fi
∂x9
− h3

3!
∂10 fi
∂x10

+
h4

4!
∂11 fi
∂x11

+ ...

]
+

−Eh7

[
∂8 fi
∂x8

− h
∂9 fi
∂x9
+

h2

2!
∂10 fi
∂x10

− h3

3!
∂11 fi
∂x11

+ ...

]
+

+Fh8

[
∂9 fi
∂x9

− h
∂10 fi
∂x10

+
h2

2!
∂11 fi
∂x11
...

]
+

−Gh9

[
∂10 fi
∂x10

− h
∂11 fi
∂x11

+ ...

]

(A.137)
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∂ f B
i−1

∂x
=
∂ fi
∂x
+

+

[
−h
∂2 fi
∂x2
+

h2

2!
∂3 fi
∂x3
− h3

3!
∂4 fi
∂x4
+

h4

4!
∂5 fi
∂x5
− h5

5!
∂6 fi
∂x6
+

h6

6!
∂7 fi
∂x7
− h7

7!
∂8 fi
∂x8
+

h8

8!
∂9 fi
∂x9
− h9

9!
∂10 fi
∂x10

+
h10

10!
∂11 fi
∂x11

]
+

−A

[
h
∂2 fi
∂x2

− h2∂
3 fi
∂x3
+

h3

2!
∂4 fi
∂x4
− h4

3!
∂5 fi
∂x5
+

h5

4!
∂6 fi
∂x6
− h6

5!
∂7 fi
∂x7
+

h7

6!
∂8 fi
∂x8
− h8

7!
∂9 fi
∂x9
+

h9

8!
∂10 fi
∂x10

− h10

9!
∂11 fi
∂x11

]
+

+B

[
0
∂2 fi
∂x2
+ 0
∂3 fi
∂x3
+ h3∂

4 fi
∂x4
− h4∂

5 fi
∂x5
+

h5

2!
∂6 fi
∂x6
− h6

3!
∂7 fi
∂x7
+

h7

4!
∂8 fi
∂x8
− h8

5!
∂9 fi
∂x9
+

h9

6!
∂10 fi
∂x10

− h10

7!
∂11 fi
∂x11

]
+

−K

[
0
∂2 fi
∂x2
+ 0
∂3 fi
∂x3
+ 0

∂4 fi
∂x4
+ 0

∂5 fi
∂x5
+ h5 ∂

6 fi
∂x6
− h6∂

7 fi
∂x7
+

h7

2!
∂8 fi
∂x8
− h8

3!
∂9 fi
∂x9
+

h9

4!
∂10 fi
∂x10

− h10

5!
∂11 fi
∂x11

]
+

+D

[
0
∂2 fi
∂x2
+ 0
∂3 fi
∂x3
+ 0

∂4 fi
∂x4
+ 0

∂5 fi
∂x5
+ 0

∂6 fi
∂x6
+ h6 ∂

7 fi
∂x7
− h7∂

8 fi
∂x8
+

h8

2!
∂9 fi
∂x9
− h9

3!
∂10 fi
∂x10

+
h10

4!
∂11 fi
∂x11

]
+

−E

[
0
∂2 fi
∂x2
+ 0
∂3 fi
∂x3
+ 0

∂4 fi
∂x4
+ 0

∂5 fi
∂x5
+ 0

∂6 fi
∂x6
+ 0
∂7 fi
∂x7
+ h7 ∂

8 fi
∂x8
− h8∂

9 fi
∂x9
+

h9

2!
∂10 fi
∂x10

− h10

3!
∂11 fi
∂x11

]
+

+F

[
0
∂2 fi
∂x2
+ 0
∂3 fi
∂x3
+ 0

∂4 fi
∂x4
+ 0

∂5 fi
∂x5
+ 0

∂6 fi
∂x6
+ 0
∂7 fi
∂x7
+ 0
∂8 fi
∂x8
+ h8 ∂

9 fi
∂x9
− h9∂

10 fi
∂x10

+
h10

2!
∂11 fi
∂x11

]
+

−G

[
0
∂2 fi
∂x2
+ 0
∂3 fi
∂x3
+ 0

∂4 fi
∂x4
+ 0

∂5 fi
∂x5
+ 0

∂6 fi
∂x6
+ 0
∂7 fi
∂x7
+ 0
∂8 fi
∂x8
+ 0

∂9 fi
∂x9
+ h9 ∂

10 fi
∂x10

− h10∂
11 fi
∂x11

]

(A.138)

∂ f B
i−1

∂x
=
∂ fi
∂x
− (1+ A) h

∂2 fi
∂x2
+

(
1
2!
+ A

)
h2∂

3 fi
∂x3
−

(
1
3!
+

A
2!
− B

)
h3∂

4 fi
∂x4
+ (A.139)

+

(
1
4!
+

A
3!
− B

)
h4∂

5 fi
∂x5
−

(
1
5!
+

A
4!
− B

2!
+ K

)
h5∂

6 fi
∂x6
+

+

(
1
6!
+

A
5!
− B

3!
+ K + D

)
h6 ∂

7 fi
∂x7
+

(
− 1

7!
− A

6!
+

B
4!
− K

2!
− D − E

)
h7∂

8 fi
∂x8
+

+

(
1
8!
+

A
7!
− B

5!
+

K
3!
+

D
2!
− E + F

)
h8∂

9 fi
∂x9
+

(
− 1

9!
− A

8!
+

B
6!
− K

4!
− D

3!
+

E
2!
− F +G

)
h9∂

10 fi
∂x10

+

(
1

10!
+

A
9!
− B

7!
+

K
5!
+

D
4!
− E

3!
+

F
2!
−G

)
h10∂

11 fi
∂x11

By substituting eq A.139 and A.120 in eq A.123
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(1− a)
∂ fi
∂x

B

+ a
∂ f B

i−1

∂x
=

1
h

[
(1− b) fi+1 + (2b− 1) fi − b fi−1

]

(1− a)

[
∂ fi
∂x
− A h

∂2 fi
∂x2
+ B h3 ∂

4 fi
∂x4
− K h5∂

6 fi
∂x6
+ D h6∂

7 fi
∂x7
− E h7∂

8 fi
∂x8
+ F h8 ∂

9 fi
∂x9
−G h9 ∂

10 fi
∂x10

]
+

a

[
∂ fi
∂x
− (1+ A) h

∂2 fi
∂x2
+

(
1
2!
+ A

)
h2 ∂

3 fi
∂x3
−

(
1
3!
+

A
2!
− B

)
h3∂

4 fi
∂x4
+

(
1
4!
+

A
3!
− B

)
h4∂

5 fi
∂x5
+

−
(

1
5!
+

A
4!
− B

2!
+ K

)
h5 ∂

6 fi
∂x6
+

(
1
6!
+

A
5!
− B

3!
+ K + D

)
h6 ∂

7 fi
∂x7
+

(
− 1

7!
− A

6!
+

B
4!
− K

2!
− D − E

)
h7∂

8 fi
∂x8
+

+

(
1
8!
+

A
7!
− B

5!
+

K
3!
+

D
2!
− E + F

)
h8 ∂

9 fi
∂x9
+

(
− 1

9!
− A

8!
+

B
6!
− K

4!
− D

3!
+

E
2!
− F +G

)
h9∂

10 fi
∂x10

+

+

(
1

10!
+

A
9!
− B

7!
+

K
5!
+

D
4!
− E

3!
+

F
2!
−G

)
h10∂

11 fi
∂x11

]

=
1
h

[
(1− b)

(
fi + (h)

∂ fi
∂x
+

(h)2

2!
∂2 fi
∂x2
+

(h)3

3!
∂3 fi
∂x3
+

(h)4

4!
∂4 fi
∂x4
+

(h)5

5!
∂5 fi
∂x5
+

(h)6

6!
∂6 fi
∂x6
+

(h)7

7!
∂7 fi
∂x7
+

(h)8

8!
∂8 fi
∂x8
+

+
(h)9

9!
∂9 fi
∂x9
+

(h)10

10!
∂10 fi
∂x10

)
+

+ (2b− 1) ( fi) +

− b

(
fi − (h)

∂ fi
∂x
+

(h)2

2!
∂2 fi
∂x2
− (h)3

3!
∂3 fi
∂x3
+

(h)4

4!
∂4 fi
∂x4
− (h)5

5!
∂5 fi
∂x5
+

(h)6

6!
∂6 fi
∂x6
− (h)7

7!
∂7 fi
∂x7
+

(h)8

8!
∂8 fi
∂x8
+

− (h)9

9!
∂9 fi
∂x9
+

(h)10

10!
∂10 fi
∂x10

)

(1− a+ a)
∂ fi
∂x
+ [− (1− a) A− a (1+ A)] h

∂2 fi
∂x2
+

(
1
2!
+ A

)
ah2∂

3 fi
∂x3
+

[
(1− a) B− a

(
1
3!
+

A
2!
− B

)]
h3 ∂

4 fi
∂x4
+

+ a

(
1
4!
+

A
3!
− B

)
h4 ∂

5 fi
∂x5
+

[
− (1− a) K − a

(
1
5!
+

A
4!
− B

2!
+ K

)]
h5∂

6 fi
∂x6
+

+

[
(1− a) D + a

(
1
6!
+

A
5!
− B

3!
+ K + D

)]
h6 ∂

7 fi
∂x7
+

[
− (1− a) E + a

(
− 1

7!
− A

6!
+

B
4!
− K

2!
− D − E

)]
h7∂

8 fi
∂x8
=

=
1
h

(1− b+ 2b− 1− b) fi + (1− b+ b)
∂ fi
∂x
+

(
1
2

(1− b) − b
2

)
h
∂2 fi
∂x2
+

(
1
3!

(1− b) +
b
3!

)
h2∂

3 fi
∂x3

+

(
1
4!

(1− b) − b
4!

)
h3∂

4 fi
∂x4
+

(
1
5!

(1− b) +
b
5!

)
h4 ∂

5 fi
∂x5
+

(
1
6!

(1− b) − b
6!

)
h5∂

6 fi
∂x6
+

(
1
7!

(1− b) +
b
7!

)
h6∂

7 fi
∂x7

At the end, we got:

∂ fi
∂x
+ [−A− a] h

∂2 fi
∂x2
+

(
1
2
+ A

)
ah2 ∂

3 fi
∂x3
+

[
B− a

6
− aA

2

]
h3 ∂

4 fi
∂x4
+

( a
24
+

aA
6
− aB

)
h4∂

5 fi
∂x5
+ (A.140)

+

(
−K − a

120
− aA

24
+

aB
2

)
h5 ∂

6 fi
∂x6
+

[ a
6!
+

aA
5!
− aB

3!
+ aK + D

]
h6∂

7 fi
∂x7
+

(
− 1

7!
− A

6!
+

B
4!
− K

2!
− D + E

)
=

=
∂ fi
∂x
+

(
1
2
− b

)
h
∂2 fi
∂x2
+

(
1
6

)
h2∂

3 fi
∂x3
+

(
1
24
− b

12

)
h3∂

4 fi
∂x4
+

(
1

120

)
h4 ∂

5 fi
∂x5
+

(
1

720
− b

360

)
h5∂

6 fi
∂x6

+

(
1

5040

)
h6∂

7 fi
∂x7
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By comparing member by member the last two equations:

h
∂2 fi
∂x2

⇒ −A− a =
1
2
− b A= −a+ b− 1

2
(A.141)

h2∂
3 fi
∂x3

⇒ 1
2

a+ aA=
1
6

A =
1
6a
− 1

2
(A.142)

h3∂
4 fi
∂x4

⇒ B− a
6
− aA

2
=

1
24
− b

12
B =

aA
2
+

a
6
+

1− 2b
24

(A.143)

h4∂
5 fi
∂x5

⇒ a
24
+

aA
6
− aB=

1
120

B =
A
6
+

1
24
− 1

120a
(A.144)

h5∂
6 fi
∂x6

⇒ K = − 1
720
+

b
360
− a

120
− aA

24
+

aB
2

(A.145)

h6∂
7 fi
∂x7

⇒ D =
1
7!
− a

6!
− aA

5!
+

aB
3!
− aK (A.146)

h7∂
8 fi
∂x8

⇒ −E − a
7!
− Aa

6!
+

Ba
4!
− Ka

2!
− aD =

1
8!
− b

4× 7!

E = − 1
8!
+

b
4× 7!

− a
7!
− Aa

6!
+

Ba
4!
− Ka

2!
− aD (A.147)

h8∂
9 fi
∂x9

⇒ F +
a
8!
+

aA
7!
− aB

5!
+

aK
3!
+

aD
2!
+ aE =

1
9!

F =
1
9!
− a

(
1
8!
+

A
7!
− B

5!
+

K
3!
+

D
2!
+ E

)
(A.148)

h9∂
10 fi
∂x10

⇒ −G+ a

(
− 1

9!
− A

8!
+

B
6!
− K

4!
− D

3!
− E

2!
− F

)
=

(
1

10!
− b

5× 9!

)

G = − 1
10!
+

b
5× 9!

+ a

(
− 1

9!
− A

8!
+

B
6!
− K

4!
− D

3!
− E

2!
− F

)
(A.149)

And so:

A =
1

3+ 3
√

5
=

√
5− 1
12

from eq. (A.141) and (A.142)

B =
5+ 7

√
5

720
from eq. (A.143)and (A.144)

K =
−5+ 17

√
5

21600
from eq. (A.145)

D =
1

2100
from eq. (A.146)

E =
−25− 227

√
5

6048000
from eq. (A.147)

F =
−277

4536000
from eq. (A.148)

G =
1475− 839

√
5

544320000
from eq. (A.149)
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A.8.2 Boundary stencils

A.8.3 Prefactored one-sided boundary stencil

By rewriting the prefactored one-sided backward boundary stencil of eqs.(3.47):

∂ f B
1

∂x
=

1
h

7∑

j=1

sj f j

∂ f B
jmax

∂x
=

1
h

jmax∑

j= jmax−6

ej f j (A.150)

and for the forward sweep, the (3.48):

∂ f F
1

∂x
=

1
h

7∑

j=1

−ejmax+1− j f j

∂ f F
jmax

∂x
=

1
h

jmax∑

j= jmax−6

−sjmax+1− j f j (A.151)

A.8.3.1 Derivation of the coefficients

Prefactored one-sided boundary stencils

Calculate the coefficients on double precision for one-sided boundary stencilDB
1 . By rewriting

it in extended form:

∂ f B
1

∂x
=

1
h

7∑

j=1

sj f j =
1
h

[
s1 f1 + s2 f2 + s3 f3 + s4 f4 + s5 f5 + s6 f6 + s7 f7

]
(A.152)

And for the last node
∂ f B

jmax

∂x
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∂ f B
jmax

∂x
=

1
h

jmax∑

j= jmax−6

ej f j =
1
h

[
ejmax−6 f jmax−6 + ejmax−5 f jmax−5 + ejmax−4 f jmax−4 + ejmax−3 f jmax−3+

+ ejmax−2 f jmax−2 + ejmax−1 f jmax−1 + ejmax f jmax

]
(A.153)

Let us recall the Taylor series expansion of the functionfi+1(x), at the mesh pointi + 1 around

the mesh pointi.

fi+1 = fi +
∞∑

n=1

(h)n

n!
∂n f
∂xn = fi + (h)

∂ f
∂x
+

(h)2

2!
∂2 f

∂x2
+

(h)3

3!
∂3 f

∂x3
+ .... (A.154)

And similarly for fi−1(x)

fi−1 = fi+
∞∑

n=1

[
± (h)n

n!

]
∂n f
∂xn
= fi−h

∂ f
∂x
+

h2

2!
∂2 f

∂x2
−h3

3!
∂3 f

∂x3
+.. (+ for evenn, - for odd n) (A.155)

Consider the Taylor series expansion of the the functionf2(x) = f1+1(x), at the mesh pointi = 2

around the mesh pointi = 1 up to the sixth order, with an interval equal toh

f2 = f1+1 ≃ f1+
6∑

n=1

(h)n

n!
∂n f1
∂xn = f1+(h)

∂ f1
∂x
+

(h)2

2!
∂2 f1
∂x2
+

(h)3

3!
∂3 f1
∂x3
+

(h)4

4!
∂4 f1
∂x4
+

(h)5

5!
∂5 f1
∂x6
+

(h)6

6!
∂6 f1
∂x6
+O(h)7

(A.156)

In a similar way consider the Taylor series expansion of the the function f3(x) = f1+2(x), at the

mesh pointi = 3 around the mesh pointi = 1 up to the sixth order, with an interval equal to 2h

and so on up tof7 = f1+6

f3 = f1+2 ≃ f1+
6∑

n=1

(2h)n

n!
∂n f
∂xn
= f1+(2h)

∂ f
∂x
+

(2h)2

2!
∂2 f

∂x2
+

(2h)3

3!
∂3 f

∂x3
+

(2h)4

4!
∂4 f

∂x4
+

(2h)5

5!
∂5 f

∂x6
+

(2h)6

6!
∂6 f

∂x6
+O(2h)7

(A.157)
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f4 = f1+3 ≃ f1 + (3h)
∂ f
∂x
+

(3h)2

2!
∂2 f

∂x2
+

(3h)3

3!
∂3 f

∂x3
+

(3h)4

4!
∂4 f

∂x4
+

(3h)5

5!
∂5 f

∂x6
+

(3h)6

6!
∂6 f

∂x6
+O(3h)7

f5 = f1+4 ≃ f1 + (4h)
∂ f
∂x
+

(4h)2

2!
∂2 f

∂x2
+

(4h)3

3!
∂3 f

∂x3
+

(4h)4

4!
∂4 f

∂x4
+

(4h)5

5!
∂5 f

∂x6
+

(4h)6

6!
∂6 f

∂x6
+O(4h)7

f6 = f1+5 ≃ f1 + (5h)
∂ f
∂x
+

(5h)2

2!
∂2 f

∂x2
+

(5h)3

3!
∂3 f

∂x3
+

(5h)4

4!
∂4 f

∂x4
+

(5h)5

5!
∂5 f

∂x6
+

(5h)6

6!
∂6 f

∂x6
+O(5h)7

f7 = f1+6 ≃ f1 + (6h)
∂ f
∂x
+

(6h)2

2!
∂2 f

∂x2
+

(6h)3

3!
∂3 f

∂x3
+

(6h)4

4!
∂4 f

∂x4
+

(6h)5

5!
∂5 f

∂x6
+

(6h)6

6!
∂6 f

∂x6
+O(6h)7

(A.158)

And similarly for f jmax−1, consider the Taylor series expansion of the the functionf jmax−1(x),

at the mesh pointj = jmax− 1 around the mesh pointj = jmaxup to the sixth order, with an

interval equal toh

f jmax−1 ≃ f jmax+

6∑

n=1

± (h)n

n!

∂n f jmax

∂xn = f jmax− (h)
∂ f jmax

∂x
+

(h)2

2!

∂2 f jmax

∂x2
− (h)3

3!

∂3 f jmax

∂x3
+

(h)4

4!

∂4 f jmax

∂x4
+

− (h)5

5!

∂5 f jmax

∂x6
+

(h)6

6!

∂6 f jmax

∂x6
+O(h)7 (A.159)

And so on up tof jmax−6
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f jmax−2 = f jmax− (2h)
∂ f jmax

∂x
+

(2h)2

2!

∂2 f jmax

∂x2
− (2h)3

3!

∂3 f jmax

∂x3
+

(2h)4

4!

∂4 f jmax

∂x4
− (2h)5

5!

∂5 f jmax

∂x6
+

+
(2h)6

6!

∂6 f jmax

∂x6
+O(2h)7

f jmax−3 = f jmax− (3h)
∂ f jmax

∂x
+

(3h)2

2!

∂2 f jmax

∂x2
− (3h)3

3!

∂3 f jmax

∂x3
+

(3h)4

4!

∂4 f jmax

∂x4
− (3h)5

5!

∂5 f jmax

∂x6

+
(3h)6

6!

∂6 f jmax

∂x6
+O(3h)7

f jmax−4 = f jmax− (4h)
∂ f jmax

∂x
+

(4h)2

2!

∂2 f jmax

∂x2
− (4h)3

3!

∂3 f jmax

∂x3
+

(4h)4

4!

∂4 f jmax

∂x4
− (4h)5

5!

∂5 f jmax

∂x6

+
(4h)6

6!

∂6 f jmax

∂x6
+O(4h)7

f jmax−5 = f jmax− (5h)
∂ f jmax

∂x
+

(5h)2

2!

∂2 f jmax

∂x2
− (5h)3

3!

∂3 f jmax

∂x3
+

(5h)4

4!

∂4 f jmax

∂x4
− (5h)5

5!

∂5 f jmax

∂x6

+
(5h)6

6!

∂6 f jmax

∂x6
+O(5h)7

f jmax−6 = f jmax− (6h)
∂ f jmax

∂x
+

(6h)2

2!

∂2 f jmax

∂x2
− (6h)3

3!

∂3 f jmax

∂x3
+

(6h)4

4!

∂4 f jmax

∂x4
− (6h)5

5!

∂5 f jmax

∂x6

+
(6h)6

6!

∂6 f jmax

∂x6
+O(6h)7

By substituting the previous values in equation A.152 for the first node
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∂ f B
1

∂x
=

1
h

s1 f1+

+ s2

(
f1 + (h)

∂ f1
∂x
+

(h)2

2!
∂2 f1
∂x2
+

(h)3

3!
∂3 f1
∂x3
+

(h)4

4!
∂4 f1
∂x4
+

(h)5

5!
∂5 f1
∂x6
+

(h)6

6!
∂6 f1
∂x6

)

+ s3

(
f1 + (2h)

∂ f1
∂x
+

(2h)2

2!
∂2 f1
∂x2
+

(2h)3

3!
∂3 f1
∂x3
+

(2h)4

4!
∂4 f1
∂x4
+

(2h)5

5!
∂5 f1
∂x6
+

(2h)6

6!
∂6 f1
∂x6

)

+ s4

(
f1 + (3h)

∂ f1
∂x
+

(3h)2

2!
∂2 f1
∂x2
+

(3h)3

3!
∂3 f1
∂x3
+

(3h)4

4!
∂4 f1
∂x4
+

(3h)5

5!
∂5 f1
∂x6
+

(3h)6

6!
∂6 f1
∂x6

)

+ s5

(
f1 + (4h)

∂ f1
∂x
+

(4h)2

2!
∂2 f1
∂x2
+

(4h)3

3!
∂3 f1
∂x3
+

(4h)4

4!
∂4 f1
∂x4
+

(4h)5

5!
∂5 f1
∂x6
+

(4h)6

6!
∂6 f1
∂x6

)

+ s6

(
f1 + (5h)

∂ f1
∂x
+

(5h)2

2!
∂2 f1
∂x2
+

(5h)3

3!
∂3 f1
∂x3
+

(5h)4

4!
∂4 f1
∂x4
+

(5h)5

5!
∂5 f1
∂x6
+

(5h)6

6!
∂6 f1
∂x6

)

+ s7

(
f1 + (6h)

∂ f1
∂x
+

(6h)2

2!
∂2 f1
∂x2
+

(6h)3

3!
∂3 f1
∂x3
+

(6h)4

4!
∂4 f1
∂x4
+

(6h)5

5!
∂5 f1
∂x6
+

(6h)6

6!
∂6 f

∂x6

)

∂ f1
∂x

B

=
1
h

 (s1 + s2 + s3 + s4 + s5 + s6 + s7) f1+

+ (s2 + 2s3 + 3s4 + 4s5 + 5s6 + 6s7) h
∂ f1
∂x
+ (A.160)

+

(
12

2!
s2 +

22

2!
s3 +

32

2!
s4 +

42

2!
s5 +

52

2!
s6 +

62

2!
s7

)
h2∂

2 fi
∂x2
+

+

(
13

3!
s2 +

23

3!
s3 +

33

3!
s4 +

43

3!
s5 +

53

3!
s6 +

63

3!
s7

)
h3∂

3 fi
∂x3
+

+

(
14

4!
s2 +

24

4!
s3 +

34

4!
s4 +

44

4!
s5 +

54

4!
s6 +

64

4!
s7

)
h4∂

4 fi
∂x4
+

+

(
15

5!
s2 +

25

5!
s3 +

35

5!
s4 +

45

5!
s5 +

55

5!
s6 +

65

5!
s7

)
h5∂

5 fi
∂x5
+

+

(
16

6!
s2 +

26

6!
s3 +

36

6!
s4 +

46

6!
s5 +

56

6!
s6 +

66

6!
s7

)
h6∂

6 fi
∂x6
+

And similarly for the last node, substituting in eq A.191
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∂ f B
jmax

∂x
=

1
h



ejmax−6

 f jmax− (6h)
∂ f jmax

∂x
+

(6h)2

2!

∂2 f jmax

∂x2
− (6h)3

3!

∂3 f jmax

∂x3
+

(6h)4

4!

∂4 f jmax

∂x4
− (6h)5

5!

∂5 f jmax

∂x6
+

(6h)6

6!

∂6 f jmax

∂x6

+

+ejmax−5

 f jmax− (5h)
∂ f jmax

∂x
+

(5h)2

2!

∂2 f jmax

∂x2
− (5h)3

3!

∂3 f jmax

∂x3
+

(5h)4

4!

∂4 f jmax

∂x4
− (5h)5

5!

∂5 f jmax

∂x6
+

(5h)6

6!

∂6 f jmax

∂x6

+

+ejmax−4

 f jmax− (4h)
∂ f jmax

∂x
+

(4h)2

2!

∂2 f jmax

∂x2
− (4h)3

3!

∂3 f jmax

∂x3
+

(4h)4

4!

∂4 f jmax

∂x4
− (4h)5

5!

∂5 f jmax

∂x6
+

(4h)6

6!

∂6 f jmax

∂x6

+

+ejmax−3

 f jmax− (3h)
∂ f jmax

∂x
+

(3h)2

2!

∂2 f jmax

∂x2
− (3h)3

3!

∂3 f jmax

∂x3
+

(3h)4

4!

∂4 f jmax

∂x4
− (3h)5

5!

∂5 f jmax

∂x6
+

(3h)6

6!

∂6 f jmax

∂x6

+

+ejmax−2

 f jmax− (2h)
∂ f jmax

∂x
+

(2h)2

2!

∂2 f jmax

∂x2
− (2h)3

3!

∂3 f jmax

∂x3
+

(2h)4

4!

∂4 f jmax

∂x4
− (2h)5

5!

∂5 f jmax

∂x6
+

(2h)6

6!

∂6 f jmax

∂x6

+

+ejmax−1

 f jmax− (h)
∂ f jmax

∂x
+

(h)2

2!

∂2 f jmax

∂x2
− (h)3

3!

∂3 f jmax

∂x3
+

(h)4

4!

∂4 f jmax

∂x4
− (h)5

5!

∂5 f jmax

∂x6
+

(h)6

6!

∂6 f jmax

∂x6

+

+ejmax f jmax


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∂ f B
jmax

∂x
=

1
h

 (A.161)

(
ejmax+ ejmax−1 + ejmax−2 + ejmax−3 + ejmax−4 + ejmax−5 + ejmax−6

)
f jmax+

−
(
ejmax−1 + 2ejmax−2 + 3ejmax−3 + 4ejmax−4 + 5ejmax−5 + 6 ejmax−6

)
h
∂ f jmax

∂x
+

+

(
12

2!
ejmax−1 +

22

2!
ejmax−2 +

32

2!
ejmax−3 +

42

2!
ejmax−4 +

52

2!
ejmax−5 +

62

2!
ejmax−6

)
h2∂

2 fi
∂x2
+

−
(
13

3!
ejmax−1 +

23

3!
ejmax−2 +

33

3!
ejmax−3 +

43

3!
ejmax−4 +

53

3!
ejmax−5 +

63

3!
ejmax−6

)
h3∂

3 fi
∂x3
+

+

(
14

4!
ejmax−1 +

24

4!
ejmax−2 +

34

4!
ejmax−3 +

44

4!
ejmax−4 +

54

4!
ejmax−5 +

64

4!
ejmax−6

)
h4∂

4 fi
∂x4
+

−
(
15

5!
ejmax−1 +

25

5!
ejmax−2 +

35

5!
ejmax−3 +

45

5!
ejmax−4 +

55

5!
ejmax−5 +

65

5!
ejmax6

)
h5∂

5 fi
∂x5
+

+

(
16

6!
ejmax−1 +

26

6!
ejmax−2 +

36

6!
ejmax−3 +

46

6!
ejmax−4 +

56

6!
ejmax−5 +

66

6!
ejmax−6

)
h6∂

6 fi
∂x6

]
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A. APPENDIX A.8 Wavenumber performance of the FD schemes with closures

Now, given the values of A B and K in eq A.150, by equating the second member of equation

A.160 and A.120 up to sixth-order accuracy:



1 1 1 1 1 1 1

0 1 2 3 4 5 6

0
1
2

22

2
32

2
42

2
52

2
62

2

0
1
6

23

6
33

6
43

6
53

6
63

6

0
1
24

24

24
34

24
44

24
54

24
64

24

0
1

120
25

120
35

120
45

120
55

120
65

120

0
1

720
26

720
36

720
46

720
56

720
66

720





s1

s2

s3

s4

s5

s6

s7



=



0 ⇒ fi line

1 ⇒ ∂ fi
∂x line

−A ⇒ h∂
2 fi
∂x2 line

0 ⇒ h2 ∂3 fi
∂x3 line

B ⇒ h3 ∂4 fi
∂x4 line

0 ⇒ h4 ∂5 fi
∂x5 line

−K ⇒ h5 ∂6 fi
∂x6 line



(A.162)

By inverting the matrix and the L.H.S. and solving the systemwith matlab:

Ans so the coefficients are:

s1 = −545+ 353
√

5

150
(
1+
√

5
) = −545+ 353

√
5

150
(
1+
√

5
) = −2.74887508613328

s2 =
1515+ 823

√
5

150
(
1+
√

5
) = 1515+ 823

√
5

150
(
1+
√

5
) = 6.91226506738317

s3 = −405+ 191
√

5

30
(
1+
√

5
) = −2025+ 955

√
5

150
(
1+
√

5
) = −8.57098789320814

s4 =
35+ 16

√
5

3
(
1+
√

5
) = 1750+ 800

√
5

150
(
1+
√

5
) = 7.29044096437489

s5 = − 95+ 43
√

5

15
(
1+
√

5
) = −950+ 430

√
5

150
(
1+
√

5
) = −3.93792558049996

s6 =
295+ 133

√
5

150
(
1+
√

5
) = 295+ 133

√
5

150
(
1+
√

5
) = 1.22040502059166

s7 = − 20+ 9
√

5

75
(
1+
√

5
) = − 40+ 18

√
5

150
(
1+
√

5
) = −0.165322492508333

(A.163)
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A. APPENDIX A.8 Wavenumber performance of the FD schemes with closures

For theej coefficients by equating the second member of A.161 and A.120



1 1 1 1 1 1 1

0 −1 −2 −3 −4 −5 −6

0
1
2

22

2
32

2
42

2
52

2
62

2

0 −1
6

−23

6
−33

6
−43

6
−53

6
−63

6

0
1
24

24

24
34

24
44

24
54

24
64

24

0 − 1
120

− 25

120
− 35

120
− 45

120
− 55

120
− 65

120

0
1

720
26

720
36

720
46

720
56

720
66

720





ejmax

ejmax−1

ejmax−2

ejmax−3

ejmax−4

ejmax−5

ejmax−6



=



0 ⇒ fi line

1 ⇒ ∂ fi
∂x line

−A ⇒ h∂
2 fi
∂x2 line

0 ⇒ h2 ∂3 fi
∂x3 line

B ⇒ h3 ∂4 fi
∂x4 line

0 ⇒ h4 ∂5 fi
∂x5 line

−K ⇒ h5 ∂6 fi
∂x6 line



(A.164)

By inverting the matrix and the l.h.s and solving the system with matlab

Ans so theej coefficients are:

ejmax =
95+ 191

√
5

75
(
1+
√

5
) = 190+ 382

√
5

150
(
1+
√

5
) = 2.15112491386675

ejmax−1 = −285+ 977
√

5

150
(
1+
√

5
) = −285+ 997

√
5

150
(
1+
√

5
) = −5.08773493261699

ejmax−2 =
45+ 259

√
5

30
(
1+
√

5
) = 225+ 1295

√
5

150
(
1+
√

5
) = 6.42901210679221

ejmax−3 = − 5+ 24
√

5

3
(
1+
√

5
) = −250+ 1200

√
5

150
(
1+
√

5
) = −6.04289236895886

ejmax−4 =
35+ 139

√
5

30
(
1+
√

5
) = 175+ 695

√
5

150
(
1+
√

5
) = 3.56207441950031

ejmax−5 = − 65+ 227
√

5

150
(
1+
√

5
) = − 65+ 227

√
5

150
(
1+
√

5
) = −1.17959497940844

ejmax−6 =
5+ 16

√
5

75
(
1+
√

5
) = 10+ 32

√
5

150
(
1+
√

5
) = 0.168010840825015
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A. APPENDIX A.8 Wavenumber performance of the FD schemes with closures

Prefactored interior boundary stencil

The interior boundary stencils are given by eq. (3.51a) and (3.51b).

By rewriting the first of eq. (3.51a) in extended form:

f ′Fi =
1
h

[
b−5 f j−5 + b−4 f j−4 + b−3 f j−3 + b−2 f j−2 + b−1 f j−1 + b0 f j+ (A.165)

+ b1 f j+1 + b2 f j+2 + b3 f j+3 + b4 f j+4 + b5 f j+5

]
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A. APPENDIX A.8 Wavenumber performance of the FD schemes with closures

And expanding up to the 11th order the Taylor series expansions:

fi+1 = fi +
∞∑

n=1

(h)n

n!
∂n f
∂xn =

= fi + (h)
∂ f
∂x
+

(h)2

2!
∂2 f

∂x2
+

(h)3

3!
∂3 f

∂x3
+

(h)4

4!
∂4 f

∂x4
+

(h)5

5!
∂5 f

∂x5
+

(h)6

6!
∂6 f

∂x6
+

(h)7

7!
∂7 f

∂x7
+

+
(h)8

8!
∂8 f

∂x8
+

(h)9

9!
∂9 f

∂x9
+

(h)10

10!
∂10 f

∂x10
+O(h11)

fi−1 = fi − (h)
∂ f
∂x
+

(h)2

2!
∂2 f

∂x2
− (h)3

3!
∂3 f

∂x3
+

(h)4

4!
∂4 f

∂x4
− (h)5

5!
∂5 f

∂x5
+

(h)6

6!
∂6 f

∂x6
− (h)7

7!
∂7 f

∂x7
+

+
(h)8

8!
∂8 f

∂x8
− (2h)9

9!
∂9 f

∂x9
+

(h)10

10!
∂10 f

∂x10
+O(h11)

fi+2 = fi + (2h)
∂ f
∂x
+

(2h)2

2!
∂2 f

∂x2
+

(2h)3

3!
∂3 f

∂x3
+

(2h)4

4!
∂4 f

∂x4
+

(2h)5

5!
∂5 f

∂x5
+

(2h)6

6!
∂6 f

∂x6
+

(2h)7

7!
∂7 f

∂x7
+

+
(2h)8

8!
∂8 f

∂x8
+

(2h)9

9!
∂9 f

∂x9
+

(2h)10

10!
∂10 f

∂x10
+O(2h11)

fi−2 = fi − (2h)
∂ f
∂x
+

(2h)2

2!
∂2 f

∂x2
− (2h)3

3!
∂3 f

∂x3
+

(2h)4

4!
∂4 f

∂x4
− (2h)5

5!
∂5 f

∂x5
+

(2h)6

6!
∂6 f

∂x6
− (2h)7

7!
∂7 f

∂x7
+

+
(2h)8

8!
∂8 f

∂x8
− (2h)9

9!
∂9 f

∂x9
+

(2h)10

10!
∂10 f

∂x10
+O(2h11)

fi+3 = fi + (3h)
∂ f
∂x
+

(3h)2

2!
∂2 f

∂x2
+

(3h)3

3!
∂3 f

∂x3
+

(3h)4

4!
∂4 f

∂x4
+

(3h)5

5!
∂5 f

∂x5
+

(3h)6

6!
∂6 f

∂x6
+

(3h)7

7!
∂7 f

∂x7
+

+
(3h)8

8!
∂8 f

∂x8
+

(3h)9

9!
∂9 f

∂x9
+

(3h)10

10!
∂10 f

∂x10
+O(3h11)

fi−3 = fi − (3h)
∂ f
∂x
+

(3h)2

2!
∂2 f

∂x2
− (3h)3

3!
∂3 f

∂x3
+

(3h)4

4!
∂4 f

∂x4
− (3h)5

5!
∂5 f

∂x5
+

(3h)6

6!
∂6 f

∂x6
− (3h)7

7!
∂7 f

∂x7
+

+
(3h)8

8!
∂8 f

∂x8
− (3h)9

9!
∂9 f

∂x9
+

(3h)10

10!
∂10 f

∂x10
+O(3h11)

fi+4 = fi + (4h)
∂ f
∂x
+

(4h)2

2!
∂2 f

∂x2
+

(4h)3

3!
∂3 f

∂x3
+

(4h)4

4!
∂4 f

∂x4
+

(4h)5

5!
∂5 f

∂x5
+

(4h)6

6!
∂6 f

∂x6
+

(4h)7

7!
∂7 f

∂x7
+

+
(4h)8

8!
∂8 f

∂x8
+

(4h)9

9!
∂9 f

∂x9
+

(4h)10

10!
∂10 f

∂x10
+O(4h11)

fi−4 = fi − (4h)
∂ f
∂x
+

(4h)2

2!
∂2 f

∂x2
− (4h)3

3!
∂3 f

∂x3
+

(4h)4

4!
∂4 f

∂x4
− (4h)5

5!
∂5 f

∂x5
+

(4h)6

6!
∂6 f

∂x6
− (4h)7

7!
∂7 f

∂x7
+

+
(4h)8

8!
∂8 f

∂x8
− (4h)9

9!
∂9 f

∂x9
+

(4h)10

10!
∂10 f

∂x10
+O(4h11)

fi+5 = fi + (5h)
∂ f
∂x
+

(5h)2

2!
∂2 f

∂x2
+

(5h)3

3!
∂3 f

∂x3
+

(5h)4

4!
∂4 f

∂x4
+

(5h)5

5!
∂5 f

∂x5
+

(5h)6

6!
∂6 f

∂x6
+

(5h)7

7!
∂7 f

∂x7
+

+
(5h)8

8!
∂8 f

∂x8
+

(5h)9

9!
∂9 f

∂x9
+

(5h)10

10!
∂10 f

∂x10
+O(5h11)

fi−5 = fi − (5h)
∂ f
∂x
+

(5h)2

2!
∂2 f

∂x2
− (5h)3

3!
∂3 f

∂x3
+

(5h)4

4!
∂4 f

∂x4
− (5h)5

5!
∂5 f

∂x5
+

(5h)6

6!
∂6 f

∂x6
− (5h)7

7!
∂7 f

∂x7
+

+
(5h)8

8!
∂8 f

∂x8
− (5h)9

9!
∂9 f

∂x9
+

(5h)10

10!
∂10 f

∂x10
+O(5h11)
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By substituting in eq. (A.165):

∂ f F
i

∂x
=

1
h



b−5

(
fi − (5h)

∂ f
∂x
+

(5h)2

2!
∂2 f
∂x2
− (5h)3

3!
∂3 f
∂x3
+

(5h)4

4!
∂4 f
∂x4
− (5h)5

5!
∂5 f
∂x5
+

(5h)6

6!
∂6 f
∂x6
− (5h)7

7!
∂7 f
∂x7
+

+
(5h)8

8!
∂8 f
∂x8
− (5h)9

9!
∂9 f
∂x9
+

(5h)10

10!
∂10 f
∂x10

+O(5h11)

)

+ b−4

(
fi − (4h)

∂ f
∂x
+

(4h)2

2!
∂2 f
∂x2
− (4h)3

3!
∂3 f
∂x3
+

(4h)4

4!
∂4 f
∂x4
− (4h)5

5!
∂5 f
∂x5
+

(4h)6

6!
∂6 f
∂x6
− (4h)7

7!
∂7 f
∂x7
+

+
(4h)8

8!
∂8 f
∂x8
− (4h)9

9!
∂9 f
∂x9
+

(4h)10

10!
∂10 f
∂x10

+O(4h11)

)

+ b−3

(
fi − (3h)

∂ f
∂x
+

(3h)2

2!
∂2 f
∂x2
− (3h)3

3!
∂3 f
∂x3
+

(3h)4

4!
∂4 f
∂x4
− (3h)5

5!
∂5 f
∂x5
+

(3h)6

6!
∂6 f
∂x6
− (3h)7

7!
∂7 f
∂x7
+

+
(3h)8

8!
∂8 f
∂x8
− (3h)9

9!
∂9 f
∂x9
+

(3h)10

10!
∂10 f
∂x10

+O(3h11)

)

+ b−2

(
fi − (2h)

∂ f
∂x
+

(2h)2

2!
∂2 f
∂x2
− (2h)3

3!
∂3 f
∂x3
+

(2h)4

4!
∂4 f
∂x4
− (2h)5

5!
∂5 f
∂x5
+

(2h)6

6!
∂6 f
∂x6
− (2h)7

7!
∂7 f
∂x7
+

+
(2h)8

8!
∂8 f
∂x8
+

(2h)9

9!
∂9 f
∂x9
+

(2h)10

10!
∂10 f
∂x10

+O(2h11)

)

+ b−1

(
fi − (h)

∂ f
∂x
+

(h)2

2!
∂2 f
∂x2
− (h)3

3!
∂3 f
∂x3
+

(h)4

4!
∂4 f
∂x4
− (h)5

5!
∂5 f
∂x5
+

(h)6

6!
∂6 f
∂x6
− (h)7

7!
∂7 f
∂x7
+

+
(h)8

8!
∂8 f
∂x8
− (h)9

9!
∂9 f
∂x9
+

(h)10

10!
∂10 f
∂x10

+O(h11)

)
+ b0 ( fi) +

+ b1

(
fi + (h)

∂ f
∂x
+

(h)2

2!
∂2 f
∂x2
+

(h)3

3!
∂3 f
∂x3
+

(h)4

4!
∂4 f
∂x4
+

(h)5

5!
∂5 f
∂x5
+

(h)6

6!
∂6 f
∂x6
+

(h)7

7!
∂7 f
∂x7
+

(h)8

8!
∂8 f
∂x8
+

+
(h)9

9!
∂9 f
∂x9
+

(h)10

10!
∂10 f
∂x10

+O(h11)

)

+ b2

(
fi + (2h)

∂ f
∂x
+

(2h)2

2!
∂2 f
∂x2
+

(2h)3

3!
∂3 f
∂x3
+

(2h)4

4!
∂4 f
∂x4
+

(2h)5

5!
∂5 f
∂x5
+

(2h)6

6!
∂6 f
∂x6
+

(2h)7

7!
∂7 f
∂x7
+

+
(2h)8

8!
∂8 f
∂x8
+

(2h)9

9!
∂9 f
∂x9
+

(2h)10

10!
∂10 f
∂x10

+O(2h11)

)

+ b3

(
fi + (3h)

∂ f
∂x
+

(3h)2

2!
∂2 f
∂x2
+

(3h)3

3!
∂3 f
∂x3
+

(3h)4

4!
∂4 f
∂x4
+

(3h)5

5!
∂5 f
∂x5
+

(3h)6

6!
∂6 f
∂x6
+

(3h)7

7!
∂7 f
∂x7
+

+
(3h)8

8!
∂8 f
∂x8
+

(3h)9

9!
∂9 f
∂x9
+

(3h)10

10!
∂10 f
∂x10

+O(3h11)

)

+ b4

(
fi + (4h)

∂ f
∂x
+

(4h)2

2!
∂2 f
∂x2
+

(4h)3

3!
∂3 f
∂x3
+

(4h)4

4!
∂4 f
∂x4
+

(4h)5

5!
∂5 f
∂x5
+

(4h)6

6!
∂6 f
∂x6
+

(4h)7

7!
∂7 f
∂x7
+

+
(4h)8

8!
∂8 f
∂x8
+

(4h)9

9!
∂9 f
∂x9
+

(4h)10

10!
∂10 f
∂x10

+O(4h11)

)

+ b5

(
fi + (5h)

∂ f
∂x
+

(5h)2

2!
∂2 f
∂x2
+

(5h)3

3!
∂3 f
∂x3
+

(5h)4

4!
∂4 f
∂x4
+

(5h)5

5!
∂5 f
∂x5
+

(5h)6

6!
∂6 f
∂x6
+

(5h)7

7!
∂7 f
∂x7
+

+
(5h)8

8!
∂8 f
∂x8
+

(5h)9

9!
∂9 f
∂x9
+

(5h)10

10!
∂10 f
∂x10

+O(5h11)

)]
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A
.A

P
P

E
N

D
IX

A
.8

W
avenum

ber
perform

ance
ofthe

F
D

schem
es

w
ithclosures

∂ f1
∂x

F

=
1
h

 (b−5 + b−4 + b−3 + b−2 + b−1 + b0 + b1 + b2 + b3 + b4 + b5) fi+ (A.166)

+ (−5b−5 − 4b−4 − 3b−3 − 2b−2 − b−1 + b1 + 2b2 + 3b3 + 4b4 + 5b5) h
∂ fi
∂x
+

+

(
52

2!
b−5 +

42

2!
b−4 +

32

2!
b−3 +

22

2!
b−2 +

12

2!
b−1 +

12

2!
b1 +

22

2!
b2 +

32

2!
b3 +

42

2!
b4 +

52

2!
b5

)
h2∂

2 fi
∂x2
+

+

(
−53

3!
b−5 −

43

3!
b−4 −

33

3!
b−3 −

23

3!
b−2 −

13

3!
b−1 +

13

3!
b1 +

23

3!
b2 +

33

3!
b3 +

43

3!
b4 +

53

3!
b5

)
h3∂

3 fi
∂x3
+

+

(
54

4!
b−5 +

44

4!
b−4 +

34

4!
b−3 +

24

4!
b−2 +

14

4!
b−1 +

14

4!
b1 +

24

4!
b2 +

34

4!
b3 +

44

4!
b4 +

54

4!
b5

)
h4∂

4 fi
∂x4
+

+

(
−55

5!
b−5 −

45

5!
b−4 −

35

5!
b−3 −

25

5!
b−2 −

15

5!
b−1 +

15

5!
b1 +

25

5!
b2 +

35

5!
b3 +

45

5!
b4 +

55

5!
b5

)
h5∂

5 fi
∂x5
+

+

(
56

6!
b−5 +

46

6!
b−4 +

36

6!
b−3 +

26

6!
b−2 +

16

6!
b−1 +

16

6!
b1 +

26

6!
b2 +

36

6!
b3 +

46

6!
b4 +

56

6!
b5

)
h6∂

6 fi
∂x6
+

+

(
−57

7!
b−5 −

47

7!
b−4 −

37

7!
b−3 −

27

7!
b−2 −

17

7!
b−1 +

17

7!
b1 +

27

7!
b2 +

37

7!
b3 +

47

7!
b4 +

57

7!
b5

)
h7∂

7 fi
∂x7
+

+

(
58

8!
b−5 +

48

8!
b−4 +

38

8!
b−3 +

28

8!
b−2 +

18

8!
b−1 +

18

8!
b1 +

28

8!
b2 +

38

8!
b3 +

48

8!
b4 +

58

8!
b5

)
h8∂

8 fi
∂x8
+

+

(
−59

9!
b−5 −

49

9!
b−4 −

39

9!
b−3 −

29

9!
b−2 −

19

9!
b−1 +

19

9!
b1 +

29

9!
b2 +

39

9!
b3 +

49

9!
b4 +

59

9!
b5

)
h9∂

9 fi
∂x9
+

+

(
510

10!
b−5 +

410

10!
b−4 +

310

10!
b−3 +

210

10!
b−2 +

110

10!
b−1 +

110

10!
b1 +

210

10!
b2 +

310

10!
b3 +

410

10!
b4 +

510

10!
b5

)
h10∂

10 fi
∂x10

]

By comparing eq. A.121 and eq A.166, finally we get:
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

1 1 1 1 1 1 1 1 1 1 1

−5 −4 −3 −2 −1 0 1 2 3 4 5

52

2
42

2
32

2
22

2
12

2
0

12

2
22

2
32

2
42

2
52

2

−53

3!
−43

3!
−33

3!
−23

3!
−13

3!
0

13

3!
23

3!
33

3!
43

3!
53

3!
54

4!
44

4!
34

4!
24

4!
14

4!
0

14

4!
24

4!
34

4!
44

4!
54

4!

−55

5!
−45

5!
−35

5!
−25

5!
−15

5!
0

15

5!
25

5!
35

5!
45

5!
55

5!
56

6!
46

6!
36

6!
26

6!
16

6!
0

16

6!
26

6!
36

6!
46

6!
56

6!

−57

7!
−47

7!
−37

7!
−27

7!
−17

7!
0

17

7!
27

7!
37

7!
47

7!
57

7!
58

8!
48

8!
38

8!
28

8!
18

8!
0

18

8!
28

8!
38

8!
48

8!
58

8!

−59

9!
−49

9!
−39

9!
−29

9!
−19

9!
0

19

9!
29

9!
39

9!
49

9!
59

9!
510

10!
410

10!
310

10!
210

10!
110

10!
0

110

10!
210

10!
310

10!
410

10!
510

10!





b−5

b−4

b−3

b−2

b−1

b0

b1

b2

b3

b4

b5



=



0 ⇒ fi line

1 ⇒ ∂ fi
∂x line

A ⇒ h∂
2 fi
∂x2 line

0 ⇒ h2 ∂3 fi
∂x3 line

−B ⇒ h3 ∂4 fi
∂x4 line

0 ⇒ h4 ∂5 fi
∂x5 line

K ⇒ h5 ∂6 fi
∂x6 line

0 ⇒ h6 ∂7 fi
∂x7 line

E ⇒ h7 ∂8 fi
∂x8 line

0 ⇒ h8 ∂9 fi
∂x9 line

G ⇒ h9 ∂10 fi
∂x10 line



By inverting the matrix and the L.H.S. and solving the systemwith matlab file, the coefficients

given in eq. (3.51a) and (3.51b) are obtained.

A.8.3.2 Wave propagation characteristics

Prefactored backward one-sided boundary stencil first nodei = 1

Rewriting the backward prefactored derivative of eq. (3.47a) for i = 1 node:

f ′B1 =
1
h

7∑

j=1

sj f j

(A.167)

or in extended form:

f ′B1 =
1
h

[
s1 f1 + s2 f2 + s3 f3 + s4 f4 + s5 f5 + s6 f6 + s7 f7

]
(A.168)

By taking the DFT of eq. A.168
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i k̄ j f̂ j(κ) =
1
h

[
s1 f̂ j(κ) + s2eiκ f̂ j(κ) + s3e2iκ f̂ j(κ) + s4e3iκ f̂ j(κ) + s5e4iκ f̂ j(κ) + s6e5iκ f̂ j(κ) + s7e6iκ f̂ j(κ)

]

(A.169)

or:

i κ̄(κ) f̂ j (κ) =
[
s1 f̂ j(κ) + s2eiκ f̂ j(κ) + s3e2iκ f̂ j(κ) + s4e3iκ f̂ j(κ) + s5e4iκ f̂ j(κ) + s6e5iκ f̂ j(κ) + s7e6iκ f̂ j(κ)

]

(A.170)

dividing by f̂ j(κ)

i κ̄(κ) =
[
s1 + s2eiκ + s3e2iκ + s4e3iκ + s5e4iκ + s6e5iκ + s7e6iκ

]
(A.171)

Applying the Euler relations:

i κ̄(κ) = s1 + s2 (cos(κ) + i sin(κ)) + s3 (cos(2κ) + i sin(2κ)) + (A.172)

+ s4 (cos(3κ) + i sin(3κ)) + s5 (cos(4κ) + i sin(4κ)) + s6 (cos(5κ) + i sin(5κ)) + s7 (cos(6κ) + i sin(6κ))

By splitting Real and Im component on the R.H.S of previous equation:

i κ̄(κ) = [s1 + s2 cos(κ) + s3 cos(2κ) + s4 cos(3κ) + s5 cos(4κ) + s6 cos(5κ) + s7 cos(6κ)] +

+ i [s2 sin(κ) + s3 sin(2κ) + s4 sin(3κ) + s5 sin(4κ) + s6 sin(5κ) + s7 sin(6κ)] (A.173)

Dividing by i

κ̄(κ) = −i [s1 + s2 cos(κ) + s3 cos(2κ) + s4 cos(3κ) + s5 cos(4κ) + s6 cos(5κ) + s7 cos(6κ)] +

+ [s2 sin(κ) + s3 sin(2κ) + s4 sin(3κ) + s5 sin(4κ) + s6 sin(5κ) + s7 sin(6κ)] (A.174)
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or:

κ̄(κ) = [s2 sin(κ) + s3 sin(2κ) + s4 sin(3κ) + s5 sin(4κ) + s6 sin(5κ) + s7 cos(6κ)] + (A.175)

− i [s1 + s2 cos(κ) + s3 cos(2κ) + s4 cos(3κ) + s5 cos(4κ) + s6 cos(5κ) + s7 sin(6κ)]

The real part of of themodified wavenumberℜ
(
f̃ B
1

)
is given by:

ℜ
(
f̃ B
1

)
= [s2 sin(κ) + s3 sin(2κ) + s4 sin(3κ) + s5 sin(4κ) + s6 sin(5κ) + s7 sin(6κ)] (A.176)

The imaginary part of of themodified wavenumberℑ
(
f̃ B
1

)
is given by:

ℑ
(
f̃ B
1

)
= − [s1 + s2 cos(κ) + s3 cos(2κ) + s4 cos(3κ) + s5 cos(4κ) + s6 cos(5κ) + s7 cos(6κ)]

(A.177)

The group velocity is equal to:

cg

c
=
∂κ̄(κ)
∂κ
= (A.178)

= [s2 cos(κ) + s3 cos(2κ) + s4 cos(3κ) + s5 cos(4κ) + s6 cos(5κ) + s7 cos(6κ)] +

+ i [s1 + s2 sin(κ) + s3 sin(2κ) + s4 sin(3κ) + s5 sin(4κ) + s6 sin(5κ) + s7 sin(6κ)]

Prefactored forward one-sided boundary stencil last nodei = N

Rewriting the forward prefactored derivative of eq. (3.48b) for the i = N mesh point:

∂ f F
jmax

∂x
=

1
h

jmax∑

j= jmax−6

−sjmax+1− j f j (A.179)

or in extended form:

∂ f F
jmax

∂x
=

1
h

jmax∑

j= jmax−6

sjmax+1− j f j =
1
h

[
−s7 f jmax−6 − s6 f jmax−5 − s5 f jmax−4 − s4 f jmax−3+

−s3 f jmax−2 − s2 f jmax−1 + s1 f jmax

]
(A.180)
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By taking the DFT of eq. A.191

i k̃ j f̂ F
jmax(κ) =

1
h

[
−s7e−6iκ f̂ jmax(κ) − s6e−5iκ f̂ jmax(κ) − s5e−4iκ f̂ jmax(κ) − s4e−3iκ f̂ jmax(κ) − s3e−2iκ f̂ jmax(κ)+

−s2e−iκ f̂ jmax− s1 f̂ jmax

]
(A.181)

or:

i κ̄(κ)F f̂ F
jmax(κ) =

[
−s7e−6iκ f̂ jmax(κ) − s6e−5iκ f̂ jmax(κ) − s5e−4iκ f̂ jmax(κ) − s4e−3iκ f̂ jmax(κ) − s3e−2iκ f̂ jmax(κ)+

−s2e−iκ f̂ jmax− s1 f̂ jmax

]
(A.182)

dividing by f̂ jmax(κ)

i κ̄F (κ) = −
[
s7e−6iκ + s6e−5iκ + s5e−4iκ + s4e−3iκ + s3e−2iκ + s2e−iκ + s1

]

(A.183)

Applying the Euler relations:

i κ̄(κ) = −s7 (cos(6κ) − i sin(6κ)) − s6 (cos(5κ) − i sin(5κ)) − s5 (cos(4κ) − i sin(4κ)) +

−s4 (cos(3κ) − i sin(3κ)) − s3 (cos(2κ) − i sin(2κ)) − s2 (cos(κ) − i sin(κ)) − s1

(A.184)

By splitting Real and Im component on the R.H.S. of previous equation:

i κ̄(κ) = − [s7 cos(6κ) + s6 cos(5κ) + s5 cos(4κ) + s4 cos(3κ) + s3 cos(2κ)+

+ s2 cos(κ) + s1] + i [s7 sin(6κ) + s6 sin(5κ) + s5 sin(4κ) + s4 sin(3κ)+

+ s3 sin(2κ) + s2 sin(κ)] (A.185)

Dividing by i:
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κ̄(κ) = i [s7 cos(6κ) + s6 cos(5κ) + s5 cos(4κ) + s4 cos(3κ) + s3 cos(2κ)+

+ s2 cos(κ) + s1] + [s7 sin(6κ) + s6 sin(5κ) + s5 sin(4κ) + s4 sin(3κ)+

s3 sin(2κ) + s2 sin(κ)] (A.186)

Or:

κ̄(κ) = [s7 sin(6κ) + s6 sin(5κ) + s5 sin(4κ) + s4 sin(3κ) + s3 sin(2κ) + s2 sin(κ)]

+i [s7 cos(6κ) + s6 cos(5κ) + s5 cos(4κ) + s4 cos(3κ) + s3 cos(2κ) + s2 cos(κ) + s1]

(A.187)

The real part of of themodified wavenumber Re

(
∂̃ f F

jmax

∂x

)
is given by:

Re


˜∂ f F

jmax

∂x

 = [s7 sin(6κ) + s6 sin(5κ) + s5 sin(4κ) + s4 sin(3κ) + s3 sin(2κ) + s2 sin(κ)]

(A.188)

The imaginary part of of themodified wavenumber Im

(
∂̃ f F

jmax

∂x

)
is given by:

Im


˜∂ f F

jmax

∂x

 = [s7 cos(6κ) + s6 cos(5κ) + s5 cos(4κ) + s4 cos(3κ) + s3 cos(2κ) + s2 cos(κ) + s1]

(A.189)

Prefactored backward one-sided boundary stencil last nodei = N

Rewriting the backward prefactored derivative of eq. (3.47b) for thei = N mesh point:

∂ f B
jmax

∂x
=

1
h

jmax∑

j= jmax−6

ej f j

(A.190)
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or in extended form:

∂ f B
jmax

∂x
=

1
h

jmax∑

j= jmax−6

ej f j =
1
h

[
ejmax−6 f jmax−6 + ejmax−5 f jmax−5 + ejmax−4 f jmax−4 + ejmax−3 f jmax−3+

+ ejmax−2 f jmax−2 + ejmax−1 f jmax−1 + ejmax f jmax

]
(A.191)

By taking the DFT of eq. A.191

i k̃ j f̂ B
jmax(κ) =

1
h

[
ejmax−6e−6iκ f̂ jmax(κ) + ejmax−5e−5iκ f̂ jmax(κ) + ejmax−4e−4iκ f̂ jmax(κ) + ejmax−3e−3iκ f̂ jmax(κ)+

+ ejmax−2e−2iκ f̂ jmax(κ) + ejmax−1e−iκ f̂ jmax(κ) + ejmax f̂ jmax(κ)
]

(A.192)

or:

i κ̄(κ) f̂ B
jmax(κ) =

[
ejmax−6e−6iκ f̂ jmax(κ) + ejmax−5e−5iκ f̂ jmax(κ) + ejmax−4e−4iκ f̂ jmax(κ) + ejmax−3e−3iκ f̂ jmax(κ)+

+ ejmax−2e−2iκ f̂ jmax(κ) + ejmax−1e−iκ f̂ jmax(κ) + ejmax f̂ jmax(κ)
]

(A.193)

dividing by f̂ jmax(κ)

i κ̄(κ) =
[
ejmax−6e−6iκ + ejmax−5e−5iκ + ejmax−4e−4iκ + ejmax−3e−3iκ + ejmax−2e−2iκ + ejmax−1e−iκ + ejmax

]

(A.194)

Applying the Euler relations:

i κ̄(κ) = ejmax−6 (cos(6κ) − i sin(6κ)) + ejmax−5 (cos(5κ) − i sin(5κ)) + ejmax−4 (cos(4κ) − i sin(4κ)) +

+ ejmax−3 (cos(3κ) − i sin(3κ)) + ejmax−2 (cos(2κ) − i sin(2κ)) +

+ ejmax−1 (cos(κ) − i sin(κ)) + ejmax (A.195)

By splitting Real and Im component on the R.H.S. of previous equation:
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i κ̄(κ) =
[
ejmax−6 cos(6κ) + ejmax−5 cos(5κ) + ejmax−4 cos(4κ) + ejmax−3 cos(3κ) + ejmax−2 cos(2κ)+

+ ejmax−1 cos(κ) + ejmax

]
− i

[
ejmax−6 sin(6κ) + ejmax−5 sin(5κ) + ejmax−4 sin(4κ) + ejmax−3 sin(3κ)+

+ ejmax−2 sin(2κ) + ejmax−1 sin(κ)
]

(A.196)

Dividing by i:

κ̄(κ) = −i
[
ejmax−6 cos(6κ) + ejmax−5 cos(5κ) + ejmax−4 cos(4κ) + ejmax−3 cos(3κ) + ejmax−2 cos(2κ)+

+ ejmax−1 cos(κ) + ejmax

]
−

[
ejmax−6 sin(6κ) + ejmax−5 sin(5κ) + ejmax−4 sin(4κ) + ejmax−3 sin(3κ)+

+ ejmax−2 sin(2κ) + ejmax−1 sin(κ)
]

(A.197)

or:

κ̄(κ) = −
[
ejmax−6 sin(6κ) + ejmax−5 sin(5κ) + ejmax−4 sin(4κ) + ejmax−3 sin(3κ) + ejmax−2 sin(2κ)

+ ejmax−1 sin(κ)
]
− i

[
ejmax−6 cos(6κ) + ejmax−5 cos(5κ) + ejmax−4 cos(4κ) + ejmax−3 cos(3κ)+

+ +ejmax−2 cos(2κ) + ejmax−1 cos(κ) + ejmax

]
(A.198)

The real part of of themodified wavenumber Re

(
∂̃ f B

jmax

∂x

)
is given by

Re


∂̃ f B

jmax

∂x

 = −
[
ejmax−6 sin(6κ) + ejmax−5 sin(5κ) + ejmax−4 sin(4κ) + ejmax−3 sin(3κ) + ejmax−2 sin(2κ) + ejmax−1 sin(κ)

]

(A.199)

The imaginary part of of themodified wavenumber Im

(
∂̃ f B

jmax

∂x

)
is given by:

Im


∂̃ f B

jmax

∂x

 = −
[
ejmax−6 cos(6κ) + ejmax−5 cos(5κ) + ejmax−4 cos(4κ) + ejmax−3 cos(3κ)+

+ ejmax−2 cos(2κ) + ejmax−1 cos(κ) + ejmax

]
(A.200)
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Prefactored forward one-sided boundary stencil first nodei = 1

Rewriting the forward prefactored derivative of eq. (3.48a) for the i = 1 node:

∂ f F
1

∂x
=

1
h

7∑

j=1

−ejmax+1− j f j

(A.201)

or in extended form:

∂ f F
1

∂x
=

1
h

7∑

j=1

−ejmax+1− j f j =
1
h

[
−ejmaxf1 − ejmax−1 f2 − ejmax−2 f3 − ejmax−3 f4+

− ejmax−4 f5 − ejmax−5 f6 − ejmax−6 f7
]

(A.202)

By taking the DFT ati = 1 node of eq. A.191

i k̃ j f̂ F
1 (κ) =

1
h

[
−ejmax f̂1(κ) − ejmax−1eiκ f̂1(κ) − ejmax−2e2iκ f̂1(κ) − ejmax−3e3iκ f̂1(κ)+

−ejmax−4e4iκ f̂1(κ) − ejmax−5e5iκ f̂1(κ) − ejmax−6e6iκ f̂1(κ)
]

(A.203)

or:

i κ̄(κ) f̂ F
1 (κ) =

[
−ejmax f̂1(κ) − ejmax−1eiκ f̂1(κ) − ejmax−2e2iκ f̂1(κ) − ejmax−3e3iκ f̂1(κ)+

−ejmax−4e4iκ f̂1(κ) − ejmax−5e5iκ f̂1(κ) − ejmax−6e6iκ f̂1(κ)
]

(A.204)

dividing by f̂ F
1 (κ)

i κ̄(κ) =
[
−ejmax− ejmax−1eiκ − ejmax−2e2iκ − ejmax−3e3iκ+

−ejmax−4e4iκ − ejmax−5e5iκ − ejmax−6e6iκ
]

(A.205)

Applying the Euler relations:
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i κ̄(κ) = −ejmax− ejmax−1 (cos(κ) + i sin(κ)) − ejmax−2 (cos(2κ) + i sin(2κ)) − ejmax−3 (cos(3κ) + i sin(3κ)) +

−ejmax−4 (cos(4κ) + i sin(4κ)) − ejmax−5 (cos(5κ) + i sin(5κ)) − ejmax−6 (cos(6κ) + i sin(6κ))

(A.206)

By splitting Real and Im component on the R.H.S. of previous equation:

i κ̄(κ) = −
[
ejmax+ ejmax−1 cos(κ) + ejmax−2 cos(2κ) + ejmax−3 cos(3κ) + ejmax−4 cos(4κ) + ejmax−5 cos(5κ) +

+ejmax−6 cos(6κ)
]
− i

[
ejmax−1 sin(κ) + ejmax−2 sin(2κ) + ejmax−3 sin(3κ) + ejmax−4 sin(4κ)+ (A.207)

+ ejmax−5 sin(5κ) + ejmax−6 sin(6κ)
]

Dividing by i:

κ̄(κ) = i
[
ejmax+ ejmax−1 cos(κ) + ejmax−2 cos(2κ) + ejmax−3 cos(3κ) + ejmax−4 cos(4κ) + ejmax−5 cos(5κ) +

+ejmax−6 cos(6κ)
]
−

[
ejmax−1 sin(κ) + ejmax−2 sin(2κ) + ejmax−3 sin(3κ) + ejmax−4 sin(4κ)+ (A.208)

+ ejmax−5 sin(5κ) + ejmax−6 sin(6κ)
]

Or:

κ̄(κ) = −
[
ejmax−1 sin(κ) + ejmax−2 sin(2κ) + ejmax−3 sin(3κ) + ejmax−4 sin(4κ) + ejmax−5 sin(5κ) + ejmax−6 sin(6κ)

]
+

+i
[
ejmax+ ejmax−1 cos(κ) + ejmax−2 cos(2κ) + ejmax−3 cos(3κ) + ejmax−4 cos(4κ) + ejmax−5 cos(5κ)+

+ejmax−6 cos(6κ)
]

(A.209)

The real part of themodified wavenumber Re

(
∂̃ f F

1
∂x

)
is given by:

Re


∂̃ f F

1

∂x

 = −
[
ejmax−1 sin(κ) + ejmax−2 sin(2κ) + ejmax−3 sin(3κ) + ejmax−4 sin(4κ) + ejmax−5 sin(5κ) + ejmax−6 sin(6κ)

]

(A.210)

The imaginary part of themodified wavenumber Im

(
∂̃ f F

1
∂x

)
is given by:

Im


∂̃ f F

1

∂x

 =
[
ejmax+ ejmax−1 cos(κ) + ejmax−2 cos(2κ) + ejmax−3 cos(3κ) + ejmax−4 cos(4κ) + ejmax−5 cos(5κ) + ejmax−6 cos(6κ)

]

(A.211)
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Prefactored Forward interior boundaries stencil

Rewriting eq. (3.51a) for the generici-th mesh point:

f ′Fi =
1
h

5∑

j=−5

b j fi+ j , (A.212)

or in extended form:

f ′Fi =
1
h

(b−5 fi−5 + b−4 fi−4 + b−3 fi−3 + b−2 fi−2 + b−1 fi−1 + (A.213)

+ b0 fi + b1 fi+1 + b2 fi+2 + b3 fi+3 + b4 fi+4 + b5 fi+5)

By taking the DFT of eq. A.213:

i k̄ j f̂ j(κ) =
1
h

[b−5e−5iκ f̂ j(κ) + b−4e−4iκ f̂ j(κ) + b−3e−3iκ f̂ j(κ) + b−2e−2iκ f̂ j(κ) + b−1e−1iκ f̂ j(κ) +

+ b0 f̂ j(κ) + b1eiκ f̂ j(κ) + b2e2iκ f̂ j(κ) + b3e3iκ f̂ j(κ) + b4e4iκ f̂ j(κ) + b5e5iκ f̂ j(κ)] (A.214)

i κ̄(κ) = [b−5e−5iκ + b−4e−4iκ + b−3e−3iκ + b−2e−2iκ + b−1e−1iκ +

+ b0 + b1eiκ + b2e2iκ + b3e3iκ + b4e4iκ + b5e5iκ] (A.215)

i κ̄(κ) = [b−5 (cos(5κ) − i sin(5κ)) + b−4 (cos(4κ) − i sin(4κ)) + b−3 (cos(3κ) − i sin(3κ)) + (A.216)

+ b−2 (cos(2κ) − i sin(2κ)) + b−1 (cos(κ) − i sin(κ)) + b0 + b1 (cos(κ) + i sin(κ)) +

+ b2 (cos(2κ) + i sin(2κ)) + b3 (cos(3κ) + i sin(3κ)) + b4 (cos(4κ) + i sin(4κ)) + b5 (cos(5κ) + i sin(5κ))]
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Table A.5: Spatial and temporal resolution for the numerical tests reported in Fig.5.1(b).
test-cases N h Nλ κ σ n

N1 6 0.2 5 2π/5 0.01 x
N2 11 0.1 10 π/5 0.01 x
N3 21 0.05 20 π/10 0.01 x
N4 31 0.033 30 π/15 0.01 x
N5 51 0.02 50 π/25 0.01 x
N6 101 0.01 100 π/50 0.01 x
N7 201 0.005 200 π/100 0.01
N8 401 0.0025 400 π/200 0.01
N9 601 0.0016 600 π/400 0.01

i κ̄(κ) = [(b−5 + b5) cos(5κ) + (b−4 + b4) cos(4κ) + (b−3 + b3) cos(3κ) + (A.217)

+ (b−2 + b2) cos(2κ) + (b−1 + b1) cos(κ) + b0] +

+ i [(−b−5 + b5) sin(5κ) + (−b−4 + b4) sin(4κ) + (−b−3 + b3) sin(3κ) +

+ (−b−2 + b2) sin(2κ) + (−b−1 + b1) sin(κ)]

κ̄(κ) = −i [(b−5 + b5) cos(5κ) + (b−4 + b4) cos(4κ) + (b−3 + b3) cos(3κ) + (b−2 + b2) cos(2κ) + (b−1 + b1) cos(κ) + b0]

+ [(−b−5 + b5) sin(5κ) + (−b−4 + b4) sin(4κ) + (−b−3 + b3) sin(3κ) + (−b−2 + b2) sin(2κ) + (−b−1 + b1) sin(κ)]

Re(κ̄(κ)) = [(−b−5 + b5) sin(5κ) + (−b−4 + b4) sin(4κ) + (−b−3 + b3) sin(3κ) + (−b−2 + b2) sin(2κ) + (−b−1 + b1) sin(κ)]

(A.218)

Im(κ̄(κ)) = − [(b−5 + b5) cos(5κ) + (b−4 + b4) cos(4κ) + (b−3 + b3) cos(3κ) + (b−2 + b2) cos(2κ) + (b−1 + b1) cos(κ) + b0]

(A.219)

A.9 Validation results

A.9.1 Monochromatic sinusoidal wave
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Table A.6: Spatial resolution for the numerical tests reported in iso-maps of Fig.5.5, k = 2π.
Np is the number of point per period. Final timet = 1. σmin = 0.01. σmax = 1.422, see
eq. (5.2).

test-cases N Np h Nλ κ σmin ≤ σ ≤ σmax n
N1 11 3 1/2 10 π ≃ 3.14= κmax 0.1 2
N2 16 4 1/3 25 2π/3 ≃ 2.09 0.1 4
N3 21 5 1/4 20 π/2 ≃ 1.57 0.1 4
N4 26 6 1/5 25 2π/5 ≃ 1.25 0.1 4
N5 31 7 1/6 30 π/3 ≃ 1.04 0.1 6
N6 36 8 1/7 35 2π/7 ≃ 0.89 0.1 6
N7 41 9 1/8 40 π/4 ≃ 0.78 0.1 8
N8 46 10 1/9 45 2π/9 ≃ 0.69 0.1 8
N9 51 11 1/10 50 π/5 ≃ 0.62 0.1 10
N10 56 12 1/11 55 1π/11≃ 0.57 0.1 10
N11 61 13 1/12 60 π/6 ≃ 0.52 0.1 12
N12 66 14 1/13 65 2π/13≃ 0.48 0.1 12
N13 71 15 1/14 70 π/7 ≃ 0.44 0.1 15
N14 76 16 1/15 75 2π/15≃ 0.41 0.1 15
N15 81 17 1/16 80 π/8 ≃ 0.39 0.1 16
N16 86 18 1/17 85 2π/17≃ 0.36 0.1 16
N17 91 19 1/18 90 π/9 ≃ 0.34 0.1 18
N18 96 20 1/19 95 2π/19≃ 0.33 0.1 18
N19 101 21 1/20 100 π/10≃ 0.31 0.1 20
N20 106 22 1/21 105 2π/21≃ 0.29 0.1 20
N21 111 23 1/22 110 π/11≃ 0.285 0.1 20
N22 116 24 1/23 115 2π/23≃ 0.273 0.1 20
N23 121 25 1/24 120 π/12≃ 0.261 0.1 20
N24 126 26 1/25 110 2π/25≃ 0.251 0.1 20
N25 131 23 1/22 110 π/11≃ 0.285 0.1 20
N26 136 28 1/27 135 2π/27≃ 0.232 0.1 20
N27 141 29 1/28 140 π/14≃ 0.224 0.1 20
N28 146 30 1/29 145 2π/29≃ 0.216 0.1 20
N29 151 31 1/30 150 π/15≃ 0.20 0.1 20
N30 156 32 1/31 155 2π/31≃ 0.202 0.1 20
N31 161 33 1/32 160 π/16≃ 0.196 0.1 20
N32 166 34 1/33 165 2π/33≃ 0.19 0.1 20
N33 171 35 1/34 170 π/17≃ 0.184 0.1 20
N34 176 36 1/35 175 2π/35≃ 0.17 0.1 20
N35 181 37 1/36 180 π/18≃ 0.174 0.1 20
N36 186 38 1/37 185 2π/37≃ 0.169 0.1 20
N37 191 39 1/38 190 π/19≃ 0.165 0.1 20
N38 196 40 1/39 195 2π/39≃ 0.161 0.1 20
N39 201 41 1/40 200 π/20≃ 0.15 0.1 40
N40 211 43 1/42 210 π/21≃ 0.149 0.1 40
N41 221 45 1/44 220 π/22≃ 0.142 0.1 40
N42 231 47 1/46 230 π/23≃ 0.136 0.1 40
N43 241 49 1/48 240 π/24≃ 0.130 0.1 40
N44 251 51 1/50 250 π/25≃ 0.12 0.1 60
N45 301 61 1/60 300 π/30≃ 0.10 0.1 60
N46 351 71 1/70 300 π/35≃ 0.089 0.1 60
N47 401 81 1/80 400 π/40≃ 0.07 0.1 80
N48 451 91 1/90 450 π/45≃ 0.069 0.1 80
N49 501 101 1/100 500 π/50≃ 0.06 0.1 100
N50 751 151 1/150 750 π/75≃ 0.04 0.1 100
N51 1001 201 1/200 1000 π/100≃ 0.03 0.1 200
N52 2001 401 1/400 2000 π/200≃ 0.015 0.1 400
N53 3001 601 1/600 3000 π/300≃ 0.010 0.1 600
N54 4001 801 1/800 4000 π/400≃ 0.007 0.1 800
N55 5001 1001 1/1000 5000 π/500≃ 0.006 0.1 1000
N56 10001 2001 1/2000 10000 π/1000≃ 0.003= κmin 0.1 1000
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Figure A.22: Solution toLAE equation with monochromatic sinusoidal wave of eq. (5.2), over
the central domain 0≤ x ≤ 1: (−) fourth-order logarithmic scale,(− · − ◦ − · −) C1122epsm4,
(− · −� − ·−) C1122epsm3; plain symbolst = 0.1, filled black symbolst = 1, filled blue
symbolst = 10. ClassicalRK4 is used for time integration.
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Figure A.23: Enlarged view of the comparison between the theoretical and the computed ’local’
error functione(κ, σ) for the monochromatic sinusoidal wave. Fifty constant logarithmically
spaced iso-contours errors between 10−8 and 10−1. Continuous line(−) theoretical, dashed line
(−−) computed.
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Figure A.24: Theoretical (black solid lines) and numerical(black dashed lines) contours of
optimal ‘local’ error error functione(κ, σ) as a function of the one-dimensional costc1 =

1/(σκ2) (continuous coloured lines) for the monochromatic sinusoidal wave. (a)epsm4 (b)
epsm3.

221

Chapter4/fig/isomap_comparisonEpsm4_teorvsNum_T=1.eps
Chapter4/fig/isomap_comparisonEpsm3_teorvsNum_T=1.eps


References

(CINECA). IBM PLX User Guide. www.hpc.cineca.it/content/ibm-plx-gpu-user-guide-0

last access 19.09.2013.

(CINECA). IBM SP6 User Guide. http://hpc-dev.cineca.it/content/ibm-sp6-user-guide

last access 20.09.2013.
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