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Development of a prefactored high-order compact scheme for
low-speed aeroacoustics

Ivan Spisso

A new class of cost-optimized prefactored high-order carhpehemes is developed for shock-
free error-bounded aeroacoustic applications. The qu#taation theory oPirozzoli(2007),
based on the minimization of the computational cost for amgikevel of error, is applied to a
class of prefactored compact sixth-order schemes. Thegxaeeded to obtain a new class of
time-explicit cost-optimized schemes.

Appropriate high-order prefactored boundary closuresaunpled with the new interior schemes.
Their dfect on the stability and accuracy of the interior schemestheid wave propagation
characteristics in Fourier space are investigated. Mongergional non-reflecting boundary
conditions are shown to display an impedance mis-matchicied the order of accuracy of
the overall scheme. An 11-point stencil with double precisaccuracy is used as the prefac-
tored interior boundary stencil. It shows a better perfarogain spectral sense compared to
the equivalent ones available in literature. An eigenvanelysis is performed, to verify the
stability of the prefactored cost-optimized schemes aadiplith the boundary closures. Char-
acteristics based boundary conditions and absorbingdayrerevaluated.

A parallelization strategy, based on a finite-sized oveilag interface, is presented and weak
scalability tests results are shown.

The theoretical roll-i error of the new schemes agree well with the computed noror err
roll-off between the analytical prediction and the numerical erpants, for a monochromatic
sinusoidal test-case. There is a good agreement betwegnettieted percentage cost-saving
of the one-dimensional cost function and the savings in egatjpnal time from the numerical
tests. A 22% computational cost-saving at the design ldvetror is achieved.

Sample applications to broadband and two-dimensionalespanochmark problems demon-
strate the low error-bounded and high-order accuracy cterstics of the baseline scheme for
aeroacoustic applications.
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Chapter 1

Introduction

1.1 Context

The field of Computational AeroAcoustics (CAA) has grownidip during the last decade
due to a renaissance of interest in aeroacoustic phenonnigea 8y a more stringent aircraft
noise legislation ACARE, 2009 UK, 2003 and the related growing demand by aerospace,
automotive and other industries for accurate and reliabiserprediction models.

CAA concerns with the accurate numerical prediction of dgnamically generated noise as
well as its propagation and far-field characteristics. Tin@erical algorithms used in CAA are
used not only as noise prediction tools, but also to evaluateapproaches for noise reduction
and control. Diferent aeroacoustic problems often exhibifatient flow physics. As a result,
there is no single algorithm that can be used to simulateraliipms with adequate resolution
and accuracy.

The major computational challenges facing CAA &elpnius & Lele 2004 Tam, 2004):

e Aeroacoustics problems are inherently unsteady by defmiti

e Aeroacoustics problems typically involve frequenciesgeaithat spreads over a wide
bandwidth. Numerical methods able to resolve the high feaqy waves with extremely
short wavelength are needed.

e Acoustic waves usually have small amplitudes. They are sergll compared to the
mean flow. Often times, the sound intensity is five to six adanaller. To compute
sound waves accurately, a numerical scheme has to reprddeceave propagation
phenomena ensuring a tolerable level of numerical error.
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e In most aeroacoustics problems, interest is in the souneésveadiated to the far field.
This requires a solution that is uniformly valid from the smiregion all the way to the
measurement point at many acoustic wavelengths away. Becdthe long propagation
distance, computational aeroacoustics schemes must haveahnumerical dispersion
and dissipation. Also, they should propagate the waveseatdirect wave speeds and
isotropic irrespective of the orientation of the computasil mesh.

e Acoustic waves decay very slowly when they reach the contiput domain bound-
aries. Appropriate non-reflecting boundary conditionsehtavbe imposed, to avoid the
reflection of the outgoing acoustic waves back into the cdatfmnal domain boundary.
The imposition of stable and accurate boundary conditisraf utmost importance in
CAA.

An elucidate example of the challenges of modelling prolsl@fsound radiation and propa-
gation is given by the trailing edge noise at low speediénius & Lele 2004 Wang & Main,
2000. In such a case, there is an extreme spatial contrast bettheechydrodynamic and
acoustic length scales. It is extremely hard to directlytwagpboth scales in a low Mach num-
ber unsteady flow. To be able to tackle with Direct Noise Cotafpen such class of problems
very demanding computational resources are needed. Thwaticagrowth in computational
resources in the last two decades has enabled the CFD jorzat#t to model such problems.
Any investigator developing a new CAA algorithm or applyiag existing method must en-
sure that the method adequately addresses the aforeneshtiballenges. Several CAA meth-
ods have emerged in last two decadgslénius & Lele 2004 Kurbatskii & Mankbadj 2004
Rocket al., 2004 and the progress on the state of art is documented in theofoueedings of
the CAA workshops on benchmark problerikafdin & Tam 1996 Hardinet al,, 1995 2000.

In practice, these stringent requirements have dictatedgh of high-order accurate numerical
methods, and in particular compact and optimized finifeedénce scheme for the spatial dis-
cretization Lele, 1992 and Runge-Kutta (RK) time marching schemiEggch, 2007). These
schemes have, in same manner, been optimized for wave @tigado reduce the required
number of grid points per wavelength while still ensurintgtable levels of numerical errors.
Hixon (2000 has introduced a prefactorization method to reduce thedissipative central-
difference stencil of the compact schemes to two lower-ordsedtiatencils which have easily
solved reduced matrices. The advantages of these schemresanitional compact schemes
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arise from their reduced stencil size and the independdntanaf the resultant factored matri-
ces. By reducing the stencil size of the compact schemegydfi@ctorization method reduces
the required number of boundary stencils, thereby simplifyooundary specificatiorHixon,
1996.

Ashcroft & Zhang(2003 has extended the factorization concept to a broader cfassmpact
schemes using a more general derivation strategy, whictbio@® Fourier analysis with the
notation of a numerical wavenumber. This class of optimigeafactored schemes enhances
the wave propagation characteristics of the schemes. Tomoged schemes exhibits better
wave propagation characteristics than the standard poeéatccompact ones.

The rapid development of many CAA codes has drawn the atterd the need for careful
validation of the codes and comparisons of not only the aoyuof diferent schemes, but also
the computational speed comparison for identical problefe issue of computationaffe
ciency of finite-diference schemes has been investigated in deta{@olpnius & Lele(2004),
and later on byspisso & Rongd2007). Those authors have considered the behaviour of several
types of spatial discretizations, implicitly assuming&xane integration. The error associated
with approximate time integration is usually considerepesately from the spatial error.
Pirozzoli (2007 has developed a general strategy for the analysis of filifference schemes
for wave propagation problems, trying to involve time irmeg@n in the analysis in a natural
way. The analysis of the global discretization error haswshthe occurrence of two approx-
imately independent sources of error, associated withpgheesand time discretizations. The
improvement of the performance of the global scheme can thie\ad by trying to separately
minimize the two contributions. The analysis leads to ratland simple criteria for deriving
optimized space- and time-discretization schemes, bas#dteaconcepts of spatial and tempo-
ral resolving #iciency. A careful design of the space- and time-discretimetchemes, as well
as an appropriate choice of the grid spacing and of the tiepe san yield substantial computer
time savings.

1.2 Aims and objectives

The aim of the present work is to develop a novel algorithmetlasn the prefactoriztion of
Hixon (2000 to reduce the computational cost for a given level of erftwe ideal field of ap-
plication of the newly developed code is sought to be low Magimber error-bounded aeroa-
coustic applications.
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The objectives that has been achieved to get this aim are:

e A new prefactored cost-optimized scheme is developed tanmiEe the computational
cost for a given level of error. This work extends the thedrymozzoli (2007) to the
prefactored compact high-order schemesiidon (2000.

e Theoretical prediction for spatial and temporal error lisiare determined and com-
pared against benchmark classical schemes. The perfoentdimpopular schemes for
CAA applications and the cost-optimized schemes are compareatms of computa-
tional dficiency.

e High-order boundary closures, which are accurate andesteitihin a given Fourier space
envelope, are coupled with the interior prefactored sclsenid@e stability of the pref-
actored cost-optimized schemes coupled with these boymidtzsures is verified by an
eigenvalue analysis.

e To aid parallelization, an appropriate interior boundagnsil is developed, which is an
improvement over the equivalent onekdikon (2000 andAshcroft & Zhang(2003).

e The scheme has shown a good scalability, for executiot B (High Performance
Computing) clusters, up to 128 processors.

e A monochromatic sinusoidal test-case has verified the ¢hieal roll-of error against
the computed., norm error, indicating that the cost-optimized schemefparaccord-
ing to the design high-order accuracy characteristicshigralass of problems.

e Numerical experiments have verified that the design costaigation of the schemes is
achieved. A 22% computational cost-saving at the desigsl teverror is recorded. The
percentage cost-saving is envisaged to be higher for a ¢téveiror one decade lower
than the design level of error and even more in a multi-diroeras space.

e Sample applications to broad-band and multi-dimensiopats benchmark problems
(Hardinet al,, 1995 have shown the low error-bounded and high-order accuraasac-
teristics of the baseline scheme.
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1.3 Thesis outline

This thesis is divided into six chapters and it is organizefbHows.

Chapterl introduces the context (Set.1), aims and objectives of this work, and the expected
outcomes (Sed..2).

Chapter2 reviews the numerical background that will be used onwa$gecifically, the con-
cepts of finite-diference approximation and the related concepts of numeveanumber are
summarized in Se.1, and the time marching schemes for CAA are considered in S2c.
The theory of the cost-optimization Bfirozzoli(2007), based on the optimization of the com-
putational cost for a given error level, is reviewed in S&8and2.4 The decoupling of the
spatial and temporal error is discussed in Sek&.

Chapter3 describes the numerical method used in the present workgdVerning equations
that will be solved in the present study, that are the LizeariAdvection Equation (LAE)
and the Linearized Euler Equations (LEE), are presente@ dEnivation of the LEE in non-
dimensional and in characteristic form starting for thedt@quations is reported in Set1
Section3.2 presents the interior baseline spatial discretizationhotktused, that is a class
of tridiagonal compact schemes. The most common finiier@ince schemes used in CAA
are reviewed and compared in term of computatiofiatiency. The spatial cost-optimization
technique, based on the maximization of the spatial resgleficiency is presented, and it is
extend to the class of sixth-order prefactored compactmnsehaf Hixon (2000. Section3.3
analyses the impact on the computational cost of usifigrént time integration schemes. The
temporal cost-optimization technique, based on the masiticin of the temporal resolving
efficiency, is presented. A temporal stability and accuracyyaisaof the cost-optimized is
shown. Sectior8.4 shows the predicted performance of the combined space @edcibst-
optimization schemes for the same level of error, predijciitomputational advantage at their
design level of error. SectioB.5 shows the fect of the perimetrical scheme on the interior
scheme. Two methods of treating near-boundary points &septed and compared against
the equivalent boundary treatments available in litemtdrhe first approach is a prefactored
sixth-order explicit one-sided finite{fierence scheme that uses a seven-point stencil, the sec-
ond is a prefactored explicit central scheme with an 114pstiencil. The wave propagation
characteristics of these boundary closures is examinedeigenvalue analysis is performed
to verify the stability of the new developed cost-optimizaefactored schemes coupled with
the selected boundary closures. SecBofidetails the artificial boundary conditions used in
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the present study. Three implementation of boundary ciomditare shown: the subsonic in-
flow, the subsonic outflow and the inviscid wall. Two type ofatbing layer technique are
discussed.

Chapter4 presents the parellization strategy adopted for the sevidd, based on MPI single
domain decomposition and finite-sized overlap region. Véealkability tests on the state-of-art
HPC cluster are presented.

Chapters shows the verification and validation of the numerical mdtagainst simple bench-
marks problems. Sectiob.1 presents the one-dimensional test-cases analysed, th#ear
the monochromatic sinusoidal wave and the broadband Gawupsise. The performance of
the new 11-point boundary stencil in double precision aacyis evaluated. Theffect of the
boundary closure on thie, norm error is studied using the monochromatic sinusoidalewa
The theoretical findings of the theory of the cost-optimaaiare compared against numerical
tests, by measuring thedfective computed elapsed time during the numerical testgyuhie
classical and the cost-optimized schemes. Se&i@presents the two-dimensional test-case
analysed.

Finally, Chapter6 summarizes the numerical findings, reports the conclusimasthe main

limitations.



Chapter 2

Numerical background

This chapter reviews the numerical background that will beduonwards. Specifically, the
concepts of finite-dference approximation and the related concepts of numevaeatnumber
are introduced in Se@.1, the time marching schemes for CAA are reviewed in 2¢2.and
the theory of the cost-optimization &irozzoli (2007) is summarized. The concepts of opti-
mization of the computational cost for a given error levélthe ‘spatial resolving #iciency’
and of the ‘temporal resolvingféciency’ are introduced in Se2.3and Sec2.4.

2.1 Spatial discretization

Splitting the discussion of spatial and temporal disceditin into two parts assumes to use the
method-of-lines, with a two-stages discretization. Stage gives a ‘semi-discrete’ formula-
tion of the governing equations that are discrete in spadecantinuous in time.
In this section, the basic concepts of finitékeiience approximation and the related definitions
of numerical wavenumber and group velocity are summarigahsider the values of a func-
tion f(x) on a set oN nodes indexed by with an uniformly spaced mesh along the streamwise
lengthL, as shown in Fig2.1 The independent variable at the nodesg;is- (i — 1)h, where
h=L/(N - 1) is the uniform grid spacing, for4 i < N. 5104)

X

The finite diference approximatiofy’ to the first derivativea—x atnodd, usingaR+S+1)

point stencil, depends on the function values at the nodas ng.ele, 1992 and is given by:

Q 1 S
DL aifly=5 > af+ O, (2.2)
j=—P j=-R
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Figure 2.1: Variation of discrete functiofy = f(x;) along uniformly discretised streamwise
lengthL.

with (S + R) > 1 to be able to determine the relations among thefwbentsa;, Q < S and
P <R If P=Q = 0, then the scheme is explicit. Implicit schemes, also naRexk or
compact, haveR v Q) # 0, and the solution of a simultaneous system of equatiorexjisinred
to determine the approximation to the derivative of all reodle< i < N. The codicientse;j,

a;j that appear in eq2(1) are typically chosen to give the largest possible ordercofieacy
denoted by the exponent for given stencil width, thus minimizing the truncatiorrar By
Taylor series expansion of e@.1), the maximum possible exponemjaxis given by

provided thatR+ S| > 1. Of particular interest in CAA is the measure of error in theve
propagation characteristics of a single Fourier compoiwént(x) (Colonius & Lele 2004
Spisso & Rona2007).

The finite diference equatior2(l) is a special case of the following equation with respect to

the continuous variablg:

Q S
3 (x+ jh) = % 3 a fx+ jh) + O, 2.3)
j=P =R
which discretizes into eq2(1) by settingx = x;. The Fourier transform of the functioi{x) is:
f(k) = f f(x) e KXdx, (2.4)

where i= V-1, kis the wavenumber, and the tilde “” represents the transéor function.
Given a monochromatic wave of wavelengthresolved withN, number of points per wave-
length, the equation

Ny ===, (2.5)

S~
|
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is used to relate the scaled wavenumber
k=kh (2.6)

to the wavelengthl.
According to the Nyquist-Shannon sampling theorem, thectsppe of wavelengths repre-
sentable on the discretised domain varies from

to

Equation 2.5) gives the minimum wavenumbé&,i, = 7/L, which is related to the maximum
wavelength 2, and the maximum wavenumbk¥.x = 7/h, corresponding to the minimum
wavelength B and toN, = 2, the so called odd-even oscillation. In the case of a braadb
signal, if the highest significant frequency component efdhiginal signal is resolved accord-
ing to eq. @.7), then the lower wavenumber components will be resolvedndmdmin.
Taking the Fourier transform of both sides of €2}.3 gives:

1 ZjS:_R ajei j&

K(K)=k(Kh==

—, (2.9)
| Z?Z_Pa,jeljk

wherex = khis the scaled pseudo-wavenumber. The scaled wavenumbeharstaled
pseudo-wavenumber are both non-dimensional valueR, 0 < || < &, and generallk € C,
with real and imaginary pafR[«] and 3[«]. Itis desirable to make equal tok. However, it

is impossible to build up a perfect match betwaesnd« over the entire wavenumber range
due to the limitation of numerical discretization. In pieet the scaled pseudo-wavenumbker
implies a certain deviation from the true scaled wavenumbwehich increases as— x (for
k =, k = 0, see Fig3.1). This deviation results in spatial numerical error:

eo(x) = K(K)K_ 4, (2.10)
where the real part represents the dispersive error
er(K) = ‘—% W] - x| (2.11)
K
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and the imaginary part the dissipative error

I [x()]

e1(k) = ‘ : (2.12)

It is possible to optimize the ciicientsa;, «; of eq. €.1) to reduce such errors, rather than
maximizing the formal order of accuracy(Bogey & Bailly, 2004 Lele, 1992 Tam & Weh
1993. When centered ffierence schemef(= S) approximate an hyperbolic system of first-
order Partial Diferential Equation (PDE), it will be shown in S8 that they disperse but do
not dissipate the Fourier components of the solution. T$hi&n important advantage in tur-
bulence and aeroacoustic computations, wherein the plmasanaplitude of the propagating
disturbances, spreading over a wide wavenumbers ranges@uied to propagate over long
distances with minimal numerical dispersion and dissipati

The dispersion and dissipation of the Fourier componentemtts on the choice of the partic-
ular PDE to be modelled. The LAE

ou ou

y + Ca_x =0, u(x, 0) = up(x), (2.13)

which models the advection of the scalar quantityt constant speed of soundis a simple
and explicative example to elucidate the dispersive natfidtne numerical approximation.
Assuming the sinusoidal monochromatic initial condition

Ug(X) = g™, (2.14)

the solution is determined by the method of characteristicsfact, on infinite or periodic
domain, eq.Z2.13 admits solutions of the formMchnevetsky 1987):

u(x, t) = e+, (2.15)
when the angular frequeneyand the wavenumbdeare related by the dispersion relation
w=ck (2.16)

Equation 2.16) states that all Fourier components of the solution ofltA& equation travel
with the same constant phase speaéd: c. Waveforms comprised of a superposition of

K
modes (broadband signals) retain their shape as they @atmsaand are therefore called non-

10
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dispersive YWhitham 1974). When the spatial derivative in eq.(3 is approximated using
one of the finite dference schemes given in eg.k), the semi-discrete approximation of the

LAE becomes

5Ui

S

Cc

E + H Z aj ui+j =0. (217)
=R

The Fourier transform of eq2(17) is:
% +ick(K) T =0, (2.18)

and the dispersion relation given by e.16 in semi-discrete form becomes:

wh _

k(k). (2.19)
c
In equation 2.17), the phase speeg) of the disturbances is now given by:

Co_ o _ @ (2.20)

and therefore dierent Fourier components travel affdrent phase speeds. Such a system
is said to be dispersive, as waveforms comprised of a lingaerposition of modes do not
retain their identity as they propagate. The discretizathgns behave mathematically like
a dispersive wave system, even though the waves supportéte yriginal system oPDEs

are non-dispersiveTam & Weh 1993 Vichnevetsky & Bowles1982). The group velocitycy

is the velocity at which sinusoidal waves propagate enargy dispersive mediunitighthill
1978 Vichnevetsky 1987. The group velocity in eq2(17) is given by:

Cg I  low

C ok cok’

(2.21)

Tam (1995 showed that, when the group velocity is equal to 1, the sehbas the same
group velocity as the original system BDEs and the modelled waves, the so-called smooth
waves, propagate with the correct wave speed. The numedicame becomes dispersive in the
wavenumber range where the group velocity is not equal td&s& waves are usually referred
in literature as spurious wavesd@lonius & Lele 2004 Tam & Weh 1993 Vichnevetsky 1987).

A detailed analysis of the wave propagation charactesisticthe centered finite fierence
schemes will be presented in S8

11
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2.2 Time-marching schemes for CAA

Section2.1 has considered the spatial discretization of the goveramgtions, by which the
PDEs are reduced to a semi-discrete systen©8fEs that are continuous in time. An ap-
proximate method for the time integration is now considergao types of the most popular
time-marching schemes in the CAA community are the sintgp-Runge-Kutta methods and
multi-step Adams-Bashforth schemes. Other time-intégraapproaches include leap-frog
schemes and coupled space-time discretization algoritfituage-Kutta schemes are consid-
ered as time advancing schemes in the present work.

The time evolution equation of a general non-autonomoutesysf ODEs is written as:

du
o = FUO.b. (2.22a)
U(ty) = UO), (2.22b)

whereU represents the vector containing the solution values ata$paesh nodes and the
operatorF contains the discretization of the spatial derivatives.

An explicit p-stage, single-step, two-level, low-storage RK schemauacks the solution from
the time levek = t, to t, + At as:

u© =un,
UO = U™+ o At F (UGD) for 1=1,....p, (2.23)
U™t = U(p)’

whereq, are the cofficients of the algorithm andt is the time step.
If Fis linear, so thaF (U) = AU, eq. .23 can be rewritten as:
y™l = yn p j " 224
= + i AV ———, .
,Z; v At = (2:24)
where

Yj = 1_[ a for j=1,...,p. (2.25)
l=p—j+1

12
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In the case op = 4, eq. .24 becomes:

1 n 2(92un 363Un 4 4un

n+1 _ n il

U =U"+ a4 At ot + aqa3 At o2 +aqa3a2 At o +aqa3a201 At ot . (226)
pa! Y2 73 Y4

The classical way to define the dheients of an explicifp-stage RK scheme gdth-order is
by matching the corresponding d¢beients of the Taylor Series expansionlft, + At). This
gives:

ymzi, m=1---,p. (2.27)
Equation 2.27) gives the maximum order of accuracy, or the minimum truocagrror, which
can be obtained with pth-stage RK scheme.
Applying a temporal Fourier transform to e@.24), as in AppendixA.1, the amplification
factor of the algorithm is obtained adifsch, 2007):

0n+1 P p

rk,o)=——=1+ Zyj (—i CE(k)At)j =1+ Zyj (—i 0'/7(/())], (2.28)

n
U = i1

whereo is the Courant number:

o= CTM. (2.29)

The amplification factor in the case of null spatial error,Mdiichk = « in eq. .9), is:

p : p

r(zy) =1+ Y yi(-ion) =14 >y (-i2) (2.30)

j=1 j=1

with z = ox. The stability limitzs is given by the following condition:
25 = max{z Ir(z yj)I< 1. (2.31)

The stability footprints are the locus of points in the coexa plane where the amplification
factor in case of null spatial error of e.80) is equal to unity, i.e.|r; = 1. On the other

hand, the amplification factor of the exact time integratigfor the LAE is obtained in a fully

discretized domain (see e@.86) in Sec.2.3) as:

n+1
Ui

fo= —— = e—icE(k)At — @ TR (2.32)

n
Ui

13
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Equation 2.28 clearly shows that the amplification factor of the finitéfelience scheme is a
Maclaurin series expansion of exponential function givered. 2.32).
To compare the numerical and exact amplification factorfahewing ratio is used:

r_ Ir|e?, (2.33)

e

wherelr| andé are, respectively, the amplification rate and th@edéence in phase of the RK
scheme. The following quantities
Eq=1-1r| (2.34)

and

Es= - (2.35)
T

are, respectively, a measure of the temporal dissipati@hdispersion (or phase) error, as
reported byBerlandet al. (2006).

Rather than using eq227), the codicientsy,, of eq. .25 may be chosen to minimize the
dissipation and phase err@dgey & Bailly, 2004 Hu et al., 1996). A detailed analysis of the
stability and accuracy of the explicit RK schemes will becdssed in Se@.3.

Implicit RK methods are an alternative way of integrating tipverning equations in CAA;
they can use large time steps, resulting in savings of caatipnl resources. These schemes
are useful for modelling problems at a low Mach number witbustic waves of low frequency,
such as acoustic combustion instabilities. However, thay exhibit stability problems due
to the stifhess associated with high-frequency acoustic waves thatreethe addition of a
small amount of numerical dissipatiowéll et al, 2002. Collis & Colonius(1997 have also
noted problems related to the fitiess associated with geometric grdcoordinate system
singularities.

2.3 Performance analysis of finite-dference schemes

The linearised advection equatidh 13 offers a good platform for testing the performance of
finite-difference schemes. The exact solution tolth& equation given by eq2(15), in a fully
discretized domain at timé = nAt, reads as:

Ul = u(x, T) = G €k ™*, (2.36)

14
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The linear finite diference approximation of e2.(L3 has the approximate solution
(Vichnevetsky & Bowles1982):
v(x, T) = 0o €. (2.37)

Following the work ofPirozzoli(2007), the solution error is defined as the distancéimorm

of the approximate solution from the exact solution at time

1 (Xotd 1/2 . .
IV(-, T)=u(, T)l2= (3 fxo IV(X, T) = u(x, T)Ide) = Ir"—e""|[Gg|. = Ir"—e™"|ug(- )2
(2.38)
Letsr = r—e 7% be the diference between the approximate and the exact amplificataorf
r" can be expressed as:

M= (e +or)" = €™ (1+ 6r %)~ &M% (14 norel ), (2.39)

under the hypothesis thilr|< 1; which is true for any reasonably accurate scheme and will
be checked a posteriori. So it is possible to rewrite:

rn_ e—incrk ~ n6re—i(n—l)o-x (240)
and finally, remembering that by definiti¢er'¥|= 1,
" — e~ ner (k, o) — €717%). (2.41)

Let E be the relativd_, error norm at timeTl:

_ V(-, T) —u(-, Tl = (ckT)- M, (2.42)

[Uo(-)l2 oK

wheren = (ckT) / (o) from eqgs. 2.16) and @.6).
The computational cost of solving numerically eq.2.37) is assumed to be proportional
to (Colonius & Lele 2004):

¢ the total number of pointg,/h;
¢ the number of operations per noblg, required by the spatial discretization;
e the number of RK stageg;

e the number of time steps= T/At;

15
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this gives:

1 1
C o PNopT Lt = PNop- (eKT) - (kL) - —. (2.43)

In equations 2.42 and @.43), the non-dimensional groupkT andkL are, respectively, the
number of wavelengths travelled by a wave of phase speedrirearitervalT and the number
of wavelengths contained in the computational domain. fredues are defined by the initial
flow condition of eq. 2.14) and by the extent of the computational domain and are inuigre
from the space and time discretization. The space and tiseratdization #ectsE andC
throughp, Nop, andr (x, o). The analysis of the performance of finitefdrence schemes for
a given physical problem (i.e. for given values of the nomelisional groupskT, kL) can be
performed in terms of normalized errelk, o) and one-dimensional cost functioog, o):

__E _Irko)-e'm
ek, o) = ol - , (2.44a)
——C = —l 2.44b
Cl(K’ O—) =(Ck-|—) . (kL) - pNOp 0_K2 . ( . )

2.4 Cost-performance trade-df for CAA algorithms

Optimizing the performance of a given scheme (i.e. for givalues ofp, Nop), for a given
problem (i.e. for a given value @kT, kL) amounts to requiring that the computational cost is
minimum for a given error level. This can be done by specgyantarget level for the relative

error, saye, which implies
€

ckT
and finding a pair of value&*(€), o*(€)) that minimize the cost metric and that satisfy both

&k, 0) = S = =¢€ (2.45)

the stability limitation|r(x,o)|< 1, Y« and the limitation on the maximum value of Courant

numbero < o max
Zs

maxx ()’
KE(O,n)K (K)

(2.46)

Omax =

which depends upon both the spatial and temporal disctietiza

The interpretation of the optimization problem is made ipakarly simple by inspection of
the iso-lines of the normalized errefx, o) and the normalized cost functiarx, o) in the
(x, o) plane, as done in Fi@.2for a sixth-order compact spatial discretization schempizal

16
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Figure 2.2: Iso-contours of normalized ‘local’ error fuioct &k, o) (solid lines) and normal-
ized one-dimensional cost functiori(ir«?) (dashed lines), fo€1122/RK4 scheme.

with a four-stage, fourth-order time integration, labelkesC1122/RK4. In this example, the
upper boundary correspondsdgax = 1.422. For any specified value ef & pair of values
(x*(€), o*(€)) is sought to minimizeﬁ and which corresponds to the tangency point of the
two families of curves (iso-error and iso-cost). The cquaesling normalized one-dimensional
‘optimal’ cost is given by:

64(8) = €1 (81, 0" (B) = PNop ——. 247
For theC1122/RK4 scheme, Fig2.2shows the ‘optimal’ working condition, with a black dot,
relative to€ = 1074, given by the pair of values{((€), o*(¢)) = (0.653 0.449). The associated
‘optimal’ normalized cost i€1(€) = 187.77.
From equations2.448 and @.44h, the normalized cost function is concave and the normal-
ized error function is (almost always) convex in tkedf] plane. In addition, since the iso-cost
lines are steeper than the iso-error lines at largi follows that for any iso-error curve there
is a unique point in which a curve of the iso-cost family isgent to it Bernardini & Pirozzolj
2009.
Dealing with nonlinear propagation problems of broadbaighads requires to resolving a

w

wavenumber spectrum of finite width, s&y< k and propagation velocitiefg|< €, which
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2. NUMERICAL BACKGROUND 2.4 Cost-performance trade-off for CAA algorithms

impliesk = khandd = &At/h. The formulas for the error and cost metric in this case read a

' Ir (x, o) — gioK|

E = (&kT) — : (2.48)
C ~ (&kT)- (kL) - & (k. &) ; (2.49)

with
Gk, &) = pNop%, (2.50)

beingn = (&kT)/(KL).
The accuracy requirement enforced in this case dictat¢shibaelative errok is less than the
target levek'used as a threshold(x, o):

E<é=—1 V(o)e[0,ix[0,5]. (2.51)
kT

The normalized error reads as:

&k,0) = ——- max E 2.52
&k, ) (ékT) (k,0)€[0,K]X[0,] ( )
and substituting eq2(48) in eq. .52 follows:
2 1 —lok| >
&k, 0) = — max _|r(x,o) —€e'7“|< & (2.53)

TR ()el0AX[0.5]

The only change with respect to the monochromatic wave gatpn problem of Se@.3is
the replacement of the normalized error functédn o) of eq. .45 with &k, 5), as defined in
eq. .53, which represents the maximum of the normalized egiiarthe entire range of rele-
vant wavenumbers and Courant numbers. The iso-contow difthe normalized ‘local’ error
functione(k, o) and ‘global’ error functiore(k, o) for C1122/RK4 are reported in Fi2.3. The
‘global’ error (dotted lines) dfers from the ‘local’ one (dashed lines) only near the poiriits o
local extrema o0&k, ). The interpretation of FigR.3goes along the same lines as for R
The accuracy requirement of e@.%1) implicitly assumes the same importance for all flow
scales. In some situations, however, such as for the nuaheroulation of tonal noise aeroa-
coustic problems of turbulent flows, one may wish to acclyai@mpute the energy containing
scales responsible for the tonal noise generation and tiedetargeted error of smaller, less en-
ergetic length scalefirozzoli (2007 suggested that this might be achieved by introducing an
appropriate weighing function in the wavenumber spaceerdtfinition of the error, similarly
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Figure 2.3: Iso-contours of normalized ‘local’ error fuiecte(k, o) (dashed lines) and ‘global’
error functiong(k, o) (dotted lines), folC1122/RK4 scheme.

to what was done in past blham & Web (1993 and Bogey & Bailly (2004 to minimize the
dispersion error in wavenumber space.
The dfect of the number of spatial dimensions can be partially @actEa for in the analysis by
assuming again theAE as the working model for a monochromatic plane wave projpagat
in annp space. Lele (1992 has shown that the discrete anisotropic propagation piiepe
depend on the alignment of the wavefront with the numeriddl@nd on the spatial resolution
(or number of points per wavelenghly). The well resolved waves are essentially isotropic,
whereas short waves are anisotropic with the greatest @long+45° diagonals to the mesh
lines, as reported in the polar plot of anisotropy®glonius & Lele(2004). By assuming: (i)
an uniform regular Cartesian mesh and (ii) wave propagaiong the grid lines, it is possible
to follow the same one-dimensional analysis from e2gl9) to (2.53 with a new definition of
the cost function that takes in account the total number oftpowhich is nowv/h™, where
V is the volume of the computational domain amglis the number of spatial dimensions. This
gives:

C ~ (&kT): (k™ V)- &, (k. &) (2.54)
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2. NUMERICAL BACKGROUND 2.5 Spatial and temporal error anal ysis

where the normalized cost function for ag dimensional problem is given by:
e 1
Cno (K, 7) = PNop =27 (2.55)

in place of eqs.2.49 and @.50. Figure2.4 shows that the optimal values efand o for a
given normalized error level T«*(€), o*(€)) do not significantly dfers from those found in the
one-dimensional analysis. The ‘optimal’ value relativétie normalized two-dimensional iso-
cost function for a target errer = 10 is reported with a blue dot located at (€), o*(€)) =
(0.694,0.388). The associated ‘optimal’ normalized costj¢e) = 27675. This location,
shown in the detailed enlargement of F2g4(a) in Fig.2.4(b), is very close to that of the opti-
mal pair *(€), o (€)) = (0.653 0.449) obtained in one-dimensional case, reported with &blac
dot, which corresponds toy (€) = 187.77. As consequence, schemes capable of operating at
higher values of reduced wavenumheare more advantageous for multi-dimensional simula-
tions, because of the increased importance iof the cost metric of eq.2(55. Accordingly,
high-order and optimized schemes are expected to yield erloemputational cost over low-
order ones for a target level of error. The validity of thesguenents will be further discussed
in Sec.3.2.2 where the fect of the number of spatial dimensions is analysed.

2.5 Spatial and temporal error analysis

The ‘local’ normalized error functios(x, o) defined in eq.Z.449 can be readily related to the
error definitions reported blyele (1992 andHu et al. (1996. Specifically, forc — 0, it is
possible to rewrite:

r(k,o) = 1 - iok(k) + O(c?), (2.56a)

e = 1—iok + O(c?). (2.56b)
Substituting equation2(569 and @.56h in eq. .443, this becomes eq2(10). Therefore,
e(k, g) = ep(x), (2.57)

which is the definition of the relative error in wavenumbeaapused byele (1992 assuming
zero time integration errotele (1992 considered in his analysis only centered schemes, for
which k € R, while the present definition equally applies to upwbatkwind schemes, for
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Figure 2.4: Fig2.4(a) Iso-contour levek™= 10~ of normalized ‘local’ error function (blue
continuous line) versus normalized cost function in onadbllong dashed lines) and two
(black dotted lines) dimensions for tig1122/RK4 scheme. Fig2.4(b), Zoom of the rectan-
gular area reported in Fig@.4(a)
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2. NUMERICAL BACKGROUND 2.5 Spatial and temporal error anal ysis

whichk € C.
On the other hand, by settirg= «, as reported in eq2(30 by assuming zero spatial error, the
definition of time discretization error used bl et al. (1996 is obtained:

P (Lipi_ iz N\ _ Az
ek, 0) =& = Zio | 'ZZ) i |rt(z’y’z) i (2.58)

Hu et al. (1996 then proceed to squaring the numerator of 2¢p§ and adjusting the last RK
codficient by minimizing it as a function of
Figure2.6(a) shows the error functions from eg8.449, (2.57), and .58 on the k, o] plane.
The error functions are derived from the same CIRE2 scheme as in Fig&.2and2.3. For
small Courant numbers, at which— 0, the error from eq.2.57) in Fig. 2.6(a)(black dotted
lines) overlaps that given by e®.67) (long-dashed dark blue lines). Thereforegat> 0, the
error is uniquely function of the scaled wavenumbeAs o increases, the dotted black curves
start to bend, eventually becoming equilateral hyperhaasd the error becomes function of
Z= ok, as given in eq.4.58 (long-dashed light blue lines). Figue6(a)shows that, to a good
approximation

ek, o) ~ max(e(x), &(2). (2.59)

~

In a similar way, the ‘global’ normalized error functi@i, ) defined in eq.Z.53 approxi-
mates to
&k, 7) ~ max(€o(k). &(2). (2.60)

where the ‘global’ spatial errag(k) is given by
PSP | _
& (k) = &k, 0) = < max|k(x) — «|, (2.61)
o—0 K O<k<k
and the ‘global’ temporal errag (Z2) is given by
p . .
max " (-i2) - e, (2.62)

whereZ = k. Figure2.6(b) shows that eq2(60) is a good approximation of the global error
from eqgs. 2.61) and @.62), following the same arguments as in F6(a).

The condition of optimal scheme performance for a givenrelgeel € implies the condi-
tion of tangency of the associated iso-error curve with themnalized iso-cost curves,, ~
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0.2

Figure 2.5: Iso-contour of normalized ‘local’ error furatié = 10~* (solid black lines) and

normalized one-dimensional cost functiondx?) (red solid lines), folC1122/RK4 scheme.

The long-dash dark and light blue lines represent the qooreting approximation given re-
spectively by eq.4.57) and @.58).

1/(gk"™*1), which occurs near the bend efi; &) = € curve, which, according to the approxi-
mation @.60), is realized when
&K =& =¢ (2.63)

Figure 2.5 clearly shows the concepts aforementioned. Figugehighlights the iso-contour
of the normalized ‘local’ erroe = 10~* by black solid line and the corresponding normalized
one-dimensional cost functiory(b«x?) with the red solid lines, for th€1122/RK4 scheme.
The ‘exact’ cost-optimal condition is obtained as the tamgepoint between the two curves,
and it is reported by the black circle. The long-dashed dadkl@ght blue lines represent the
corresponding approximation given respectively by egb7 and .58. The condition of
tangency of the iso-error and iso-cost curves for the namedlerror levek™ 10~ under the
spatial and temporal approximation is shown by the ligheldiicle, and it is realized when

ek) =a(2 =€ (2.64)
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2. NUMERICAL BACKGROUND 2.5 Spatial and temporal error anal ysis

Figure 2.5 shows, by visual inspection, that the approximation of @p9 is valid, due the
proximity of the black and blue circle.

2.5.1 Spatial and temporal resolving fficiency

The problem of determining the optimal performance of amiseheme can be approximately
decoupled into two sub-problems, by considering the infteasf space and time discretization
separately, by: (i) computing the optimal reduced waveramalocording to

@) =&NE) (2.65)
and (ii) computing the optimal Courant number by:
&) =2 @K@, Z() =& @) (2.66)

The quantitiesc*(€) and Z*(¢) will be denoted, respectively, as ‘spatial resolvin§ogency’
and ‘temporal resolvingfgciency’ for a given value of normalized errer The associated
‘optimal’ normalized cost is

58) = oo (1. 7/(8) = Phop 5o (267)
Equations 2.59 and .63 allow to consider the spatial and temporal discretizatieparately
in the present analysis to develop cost-optimized scheByescifically, cost-optimized finite-
difference schemes for a specific target levei be designed by trying to maximizg€) and
Z'(€) in eq. R.67), which amounts to optimize separately the spatial and ¢eahliscretization
for the same target error level. The ‘spatial resolviffigceency’ and the ‘temporal resolving
efficiency’ are equivalent in case of single and multi-scalébjam, as shown in Fig2.6. In
fact, the ‘local’ error functiore(x, o) differs from the ‘global’ one(x, o) only near the points
of local extrema o&(k, o), which does notfiiect the approximate decoupling of space and time
discretization. These arguments will be used in S&&3and3.3.3to separately optimize re-
spectively spatial and temporal scheme for a specific tanget levele.
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Figure 2.6: Fig2.6(a) Iso-contours of normalized ‘local’ error functiak, o) (black dotted
lines); long-dashed dark and light blue lines representtiieesponding approximation given
respectively by eq.2.57) and .58 for C1122/RK4 scheme; filled black dots indicates the
‘optimal’ working condition. Fig.2.6(b), Iso-contours of normalized ‘global’ error function
&(k, 0); long-dashed light and dark blue lines represent the spaieding approximation given
respectively by eq.2.61) and .62 for C1122/RK4 scheme.

25


Chapter1/fig/approx_c12rk4.eps
Chapter1/fig/approx_globalc12rk4.eps

Chapter 3

Numerical Method

This chapter presents the numerical method used in therpiresek.

Section3.1reports the governing equations that will be solved in tlesent study, that are the
LAE and the LEE. The derivation of the LEE in non-dimensioaatl in characteristic form
starting from the 2-D strong conservative form of the Eutpragions is reported.
Section3.2introduces the spatial discretization method used. Thé comsmon finite-diference
schemes used in CAA are reviewed and compared in term of datigmal dficiency. The
effect of the spatial discretization and the number of physdimdensions on the computa-
tional cost is analysed. The spatial cost-optimizatiommégue, based on the maximization of
the spatial resolvingf@ciency «* for a given value of normalized erret is presented. The
cost-optimized schemes are extended to the class of sigtr-prefactored compact schemes
of Hixon (2000.

Section3.3 analyses the impact on the computational cost of usifigrént time integration
schemes for a two dimensional problem for various spatsdrdiization schemes. The tempo-
ral cost-optimization technique, based on the maximipaticthe temporal resolvingféciency

Z" for a given value of normalized errer is presented.

Section3.4shows the predicted performance of the combined spacerardtist-optimization
for the same level of error. A computational advantage islipted by using cost-optimized
scheme to model wave propagation problems at their desigratipnal point.
Section3.5discusses thefkact of the perimetrical scheme on the interior scheme. Twiboaks

of treating near-boundary points are presented and comhp@ainst the boundary treatments
of Hixon (2000 andAshcroft & Zhang(2003. The first approach is a prefactored sixth-order
explicit one-sided finite-dierence scheme that uses a seven-point stencil, the secapdat
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actored explicit central scheme with an 11-point stendile Wave propagation characteristics
of these boundary closures are examined. An new 11-pointisigith double precision ac-
curacy is derived. It shows a better performance in spestnatée compared to the equivalent
ones ofHixon (2000 andAshcroft & Zhang(2003.

An eigenvalue analysis is performed to verify under whichditions the prefactored cost-
optimized schemes coupled with the selected boundaryreegienerate a numerically stable
algorithm.

Section3.6 details the artificial boundary conditions used in the pmestudy. Three imple-
mentations are shown: the subsonic inflow, the subsonicosutihd the inviscid wall. Two
type of absorbing layer technique are discussed. The fiestsotine absorbing layer technique
by Richardset al. (2004), that directly forces the solution to a target flow statehwitthe ab-
sorbing layer. The second one is a zonal characteristicdbasendary condition proposed
by Sandberg & Sandhaif2006).

Sections.3summarizes the work presented and highlights the main\aaients of this chap-
ter.

The code for the computationaffieiency comparison used in Se8s2.2and3.3.1has been
written by the author usingatlab®. The serial finite-diference code has been written, from
scratch, by the author iRortan 90. The parallel version of the code, reported in €hhas
been written together with Dr. P. Ghillarli Spisso & Rona2009).
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3. NUMERICAL METHOD 3.1 Governing Equations

3.1 Governing Equations

This work concerns with the application of high-order firii@erences to compressible aeroa-
coustic problems. Specifically, numerical predictions ssaght of sound generated aerody-
namically by flow interaction with solid boundaries. Thiass$ of problems is governed by the
Linearised Euler Equations (LEE). The LEE are first-ordeupted partial diferential equa-
tions in space and time. This system of hyperbolic equatiaresa multi-variable version of
the LAE. Therefore, the numerical method is first tested againstihaark solutions of the
LAE of eq. .13 and then further tested against problems governed by tite LE

The following Secs3.1.1and3.1.2report the derivation of the the LEE in non-dimensional
and characteristic form starting from the Euler equations.

3.1.1 Derivation of the quasi-linear Euler Equations

The inviscid Euler equations are derived by the applicatibtine principles of conservation of
mass, momentum, and energy to an arbitrary volume of inVi8gid. They derives from the
Navier-Stokes equations for a calorically perfect gas wé@ho viscosity and heat conduction
terms @Andersonet al,, 1984). The 2-D Euler equations are commonly recasstiong or
vectorconservative form suitable for numerical computation as

0Q OE oF
<y, - A
ot Tox Tay T (3.1)
whereQ, E andF

P pu pv

u u + uv
o=| ™| | TP el f (3.2)

PV pVU PV +p
| e |  pla+pu | | p(&+p)V |

are, respectively, the vector of conservative variablas the vectors of the inviscid fluxes,
& = p/[(y - 1)po] + (U +V?)/2 is the total energy per unit mass anis the ratio of the specific
heats.

The Euler equations have several important mathematioglepties that are illustrated in
the classical fluid dynamics textbooKi¢sch, 2007). The hyperbolicity allows to re-cast the
system of equations3(1) in characteristic form, meaning that the projection of ¢ogiations
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3. NUMERICAL METHOD 3.1 Governing Equations

in any spatial direction gives rise to a system of coupledenlike equations. This property

will be used to re-write the system of equatio3sl) as a multi-variable version of tHeAE as

reported in following Sec3.1.2.2

The system of equation8.Q) can be written in the so-callegliasi-linearform, where the spa-

tial derivatives of the flow variables are pre-multipliedthg Jacobian matrices as follow
%+A2—2+8% =0, (3.3)

whereU, A andB

Je, u p 0 O v 0 p 0
u 0O u 0 1/)p Ov O 0
U = 5 A = 5 B = (3'4)
Y 0O 0 u O 00 v 1/
| p | 0 pc2 0 u 0 0 pc® v

are, respectively, the vector of primitive variables arel Xacobian matrices.

The system of equation8.Q) lead to results equivalent to the ones from the system d-equ
tions 3.1) when the flow field does not contain strong variations in tbe #tate (i.e. smooth
flows), and has the computational advantage of requiringlitfierentiation with respect to the
various space directions on the same vector of primitivealséasU, instead of computing the
derivatives sequentially on the vect@&sandF. The quasi-linear forms of the Euler equations
allow for the definition of thdinearizedformulation that is often used in CAA.

3.1.2 Linearized Euler Equations

The system of equation8.Q) is linearized with respect to a reference state given bytiie
form mean densityg, pressurepg, x-velocity up and y-velocityvp, so that the flow state is
given by the sum of the reference state plus its small peatiob()” about the mean:
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3. NUMERICAL METHOD 3.1 Governing Equations

p=po+p
u=ug+u
(3.5)
V=Vg+V
P=po+p.
The governing equations can be written in dimensional rarservative form as
ou oU oU
— +Ap— +Bp— =0 3.6
ot 9% 0 ay (3.6)
where the constant-cficient matricedA g andBg are
U po O O Vo 0 po 0
0 Uo 0 1/po 0 v 0 0
Ao = POl By = . 3.7)
0 0 Uo 0 0 O Vo 1/p()
| 0 pocj O Uy | | 0 0 pocf Vo

In this case, the Jacobian matricks, By do not depend on the actual state of the flow but
on the reference state that is considered constant thratighe computation at any point of
the field. This particular form of the equations has the caamnal advantage of avoiding to
update the Jacobian matrices at each time step. They carmputad and stored in memory
once and for all at the beginning of simulation.

This linearised form of the Euler equations suits only dertdasses of problems in which the
perturbations are of small amplitude so that the non-lief@ct can be considered negligible
and the mean value of the flow variables does not vary in tinfés i6 the class of problems
typically involved in CAA.
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3.1.2.1 Non-dimensional form

By using the following length scales:

AXx = Ay = length scale
co (ambient sound speed)velocity scale (3.8)

po = density scale

and assuming a calorically perfect gas, for which

2= (3.9)
po

it is possible to define the following non-dimensional vhlés:

o x y © . U oV o p
fo— X'z — =— t'=t— U=— Vi=— My=— My=— = 3.10
P Y = Ax AX Co o XT Mg P pocg( )

whereM, andMy are, respectively, the constant mean flow Mach number coemtsm thex
andy directions. Consistently with the normalized length se#&g3.8), pressure is normalized
by poc? and time byAx;/co.
Equation 8.6) can be recast in the non-dimensional form

ouU* L oU* ou*

W + OW + OW = O, (311)

where the vectoU*, and the matriced; andB; are given by:

o' My 1 0 O My 0 1 0
u 0 My 0 1 O M 0 O
u* = A= , By= . (312)
% 0 0 My O 0 0 M 1
P | 0 1 0 M| 0 0 1 M|
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3.1.2.2 Characteristic form

Consider the boundaries locatedxatandxy as shown in Fig2.1 The governing equations of
eg. 3.11) can be re-cast as

oU* oU* oU*
AvS— +c=0 c=B",
ot P0G T 05y

(3.13)

where theC vector contains no partial derivative in eithéror t*.
TheAj matrix can be decomposed by Principal Component Analysisngothe characteristic
equationdet(A; — 4jl) = 0. This givesAy = SAS™L, whereA is a diagonal matrix with
elements:

A1 = |V|X -1, A = A3 = MX, Ag = MX +1, (3.14)

andS and its inverseés are, respectively, the right and left eigenvector matriessshown
later.

The system of equatior8(1]) is hyperbolic, since the eigenvaluesAff andB; (see SecA.2)
are real and ordered so théf < A2 < ... Ay, (Thompson 1990. The eigenvalued; and
A4 are the non-dimensional velocities of sound waves movintpénnegative and positive
directions; A, is the convection velocity (the speed at which entropy wakesel), while A3
is the velocity at which the-velocity is advected along thedirection by a vorticity wave.
The characteristic velocities are constant because theyedeom the linearized matridq,
which is a constant-element matrix. The algebraic muttifylj that is the multiplicity of the
eigenvalue as a root of the characteristic equation, of idenealuest; and 1, is equal to 1;
the algebraic multiplicity of the double eigenvalag= A3 is equal to 2.

The corresponding left eigenvectdli% are derived by solving the linear system of coupled
equationd| - (Ag— Ail) =0, fori = 1,...,4. This gives

I] =(0,-1,0,1) (3.15a)
17 =(1,0,0,-1) (3.15b)
I3 =(0,0,1,0) (3.15c¢)
17 =(0,1,0,1). (3.15d)

The third relation 8.159 is derived by settindjsr (Ao — 131)? = 0, with the exponent of the term
(Ao — 13l) set to 2, to take into account for the algebraic multipli@gfythe double eigenvalue
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Ao = A3.
The amplitude of the characteristic waug$s, associated with each characteristic veloadity
are
oU*
Li = /liIiTW. (3.16)
Substituting forl” in eq. @.16) gives
I 1 ap* B ou™\ 1
Ly Hox ~ ax
dp* ap*)
o ||l
L=| 2 |= % Nax , (3.17)
L3 Az——
ap*  ou
L4 A
] 4(8x* " ax*) |

wherelL; andL4 are, respectively, the left and right going acoustic wavelaades, L, is the
entropy wave amplitude, arig; is the shear wave amplitude.

: . oU* : o
The system of linear equation8.17) can be solved for? to give thex-derivatives of the

9
primitive variables:

L 5—2 + %(;—;‘ " ;—i) (3.18a)
©1(Ly L

Z;’(* =3 (7: - A—i) (3.18b)

Z\; = ;—z (3.18c¢)

?95: - %(;—;‘ + ;—i) (3.18d)

The Smatrix and its inverse are given by:

17 0 -1 0 1
1] 1 00 -1
sti=| 2 |= , (3.19)
13 0 01 0
;) |0 10 1
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3.1 Governing Equations

5=(r1 rp I3 r4)
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with S'S=1, andI! - rj = &jj, wherer;j is thej-th right eigenvector andi; is the Kronecker

delta function.

Thed vector is given by:

dq
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The non-dimensional governing equati@l(l) can be now re-written as

or in extended form:

ou*
ot

*

dp
ot
ou*
ot
ov*
ot
op*
ot

,1 ]
—(Lg-L
+72( 4 1)_

+L3

” ]
— (L L
+_2( 4+ 1)_

+d+ B

[ 1
+ L2+§(L1+L4)

ouU*
ay*

=0,

L2+ %(L1+ L4)

(3.21)

(3.22)

(3.23a)
(3.23b)
(3.23¢c)

(3.23d)

The system of equation8.23) is an uncoupled system of linearized equations ajpognstant

lines, which can be solved &DEs at thex boundaries. The resulting equations allow to in-

terpret the changes in flow state as a linear combination efdimensional waves normal to

the x boundary, by considering the flow locally (i.e. at boundarniedes) as inviscid and one-

dimensional. The relations obtained by this method are mpiogsical’ conditions but should

be viewed as compatibility relations between the choicedenfier the physical boundary con-
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3. NUMERICAL METHOD 3.1 Governing Equations

ditions and the amplitudes of waves crossing the boundahnys development has implicitly
assumed that the waves that are arriving at the boundary-Bravaves with no curvature
and that these waves are arriving normal to the boundary.edhstic flows, the waves are
multi-dimensional, with an unknown curvature. Thus, whiiés approximation gives a clear
guideline as to which physical quantities must be specifiethb CFD practitioner along the
computational domain boundaries, the actual form of theseew/(the eigenvectors) is not gen-
erally accurate@olonius 2004). The formulation of eq.3.23 will be used in Sec3.6.1to
formulate approximate 1-D boundary closures. SecBdhwill present the absorbing layer
technique that will be used in the present work together thiéhcharacteristic formulation of
eq. 3.23.

Alternative approaches to infer the flow state at the comjoutal boundaries are the Asymp-
totic Expansion MethodTam & Wely 1993 and Perfectly Matched LayeH(@, 1996. An
extensive review of the the artificial boundary condition tiee simulation of inflow, outflow
and far-field problems for compressible flow is given@glonius(2004).
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3. NUMERICAL METHOD 3.2 Spatial Discretization

3.2 Spatial Discretization

3.2.1 Interior scheme

A class of tridiagonal compact schemes with five point steri€i122 is obtained by setting
(P=Q=1,R=S=2)ineq. @.1). This gives:

1
arfly + ff +aafl; = n (aafip+a 1fig + & fiys + apfisz) + O(hY), (3.24)
where the coficients are given by:

1
dp = —adp= 1—2(4(1’1 - 1)
(3.25)
1
a;=-—-a = :—%(al + 2)

The leading term of truncation err@(h?) in eq. @.24) is given by (3a1 — 1) h*f®), where
d®f;

O is —.
dk°

Asa; — 0, this family merges into the well-known fourth-order égjtlcentral finite-diference

C0011 scheme. Similarly, far; = 1/4, the classical Padé1111 scheme is recovered. By

setting

a1 =1/3, ay=7/9, ay=1/36, (326)

the leading term of the truncation error order vanishes badgtheme is formally sixth-order
accurate, with a truncation error &% (Lele, 1992.

Figure3.1shows the dispersive characteristics of a selection ofegmiassical and optimized
finite-difference schemes, the ¢eients for which are reported in Tatsland 3.2 Because
these schemes are centr&l,= Rin eq. @.1). TakingP = Q in eq. @.1), equation 2.9

becomes S o
PRRLY sin(j«)

K (k) = :
1+ 2?:1 2aj cOs(jK)

(3.27)

so thatk (k) € R and the spatial error is purely dispersive, eg«) = sr(«).

The range of wavenumbers over which the scaled pseudo-wanlmaT« approximates the ex-
act diferentiation within a specified error tolerance defines thefsgell-resolvedwaves, also
named smooth, physical o' waves; the remaining right-hand side of the spectrum inFiy.
is populated bypoorly-resolved spurious, numerical dg’ waves. It is evident from Fig3.1
that the high-order schemes (fourth order and higher) havettar spectral resolution com-
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Figure 3.1: Pseudo-wavenumber diagram for the centre@ititierence schemes reported in
Tabs.3.1and3.2
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Figure 3.2: Dispersive error for the centred finitéfelience schemes reported in TaBsl
and3.2 Lines and symbols as in Fig.1
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3. NUMERICAL METHOD 3.2 Spatial Discretization
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Figure 3.3: Fig3.3(a) group velocity for the centred finiteffierence schemes reported in
Tabs.3.1and3.2 Lines and symbols as in Fi§.1 Fig.3.3(b), enlarged view of Fig.3(a)
(0417 < k < 0.86m).
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3. NUMERICAL METHOD 3.2 Spatial Discretization

C0011 C0033 TamDRP
a1 0 0 0
as 0 0 0
a 0.5 34  0.799266426974156
a 0 -320 -0.189413141579325
az 0 1/60 0.026519952061497
Kmax 0.99 1.58 1.72
stencil size 3 7 7
Nop 2 8 8
Order (n) 2 6 4

Table 3.1: Cofficients for explicit centred finite-ffierence scheme&3PQRSin Fig.3.1 P =
Q=0,R=S,a0=1a =0,a; = ajineq. .1). The number of algebraic operation per
nodeNyp has been taken fro@olonius & Lele(2004).

Cl1122 C2233 LuiLele Kim
a1 1/3 2  0.5381301488732363 0.5862704032801503
a2 0 /20  0.0666331901238811  0.09549533555017055

a 7/9 1724 0.683788862199635 0.6431406736919156
a 1/36 10160 0.20585704252707 0.2586011023495066

az 0 1/600 0.00308679724778108 0.007140953479797375
Kmax 1.99 2.32 2.47 2.7
stencil size 5 7 7 7
Nop 9 17 17 17
Order (n) 6 10 6 4

Table 3.2: Cofficients for implicit centred finite-éierence schemd&SPQRSin Fig. 3.1 P =
Q#0,R=S,a0=1a =0,a; = ajineq. .1). The number of algebraic operation per
nodeNyp has been taken fro@olonius & Lele(2004).
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3. NUMERICAL METHOD 3.2 Spatial Discretization

pared with their low-order counterpart, as indicated algdhle maximum value of the scaled
pseudo-wavenumbef,axin Tabs.3.1and3.2 The drawback of the use of a high order scheme
is given by the longer stencil in this type of schemes.

For a given level of accuracy, explicit schemes employ aelamgmputational stencil, while
compact schemes use a smaller stencil. For example, ton@ix#in-order accuracy, the C0033
scheme employs a seven point stencil, while the C1122 nesagber five point stencil. On
the other hand, the compact schemes have two disadvanfages matrix has to be inverted
to obtain the spatial derivative at each grid point, althotigs multi-diagonal matrix inver-
sion can be donefigciently using the Thomas algorithrPess & Firm 1996. Secondly, the
boundary stencils have a largffext on the stability and accuracy of the scheme, as reported
in Secs3.5, by Carpenteeet al. (1993h andTam & Dong(1993. Figures3.1and3.2indicate
that the optimized schemes have a better wave resolutidorpemce compared with the clas-
sical equivalent stencil size (see. TamDRP versus C008d)aane to two order of magnitude
lower error in the region opoorly-resolvedwaves, but they degrade their performance in the
region ofwell-resolvedwaves.

A common feature of all centred schemes is that, for a givequency, there are two solu-
tions to the dispersion relation given in e8.27), one for thewell-resolvedand the other for
the poorly-resolvedwaves Yichnevetsky & Bowles1982. For thewell-resolvedwaves, the
group velocity is positive and these waves approach theisolof the original PDE as the
grid is refined. Thepoorly-resolvedwaves have a negative group velocity and they are not a
physical solution of eq2.13. For the C0011 classical explicit second order schemespgbed

of propagation of the grid-to-grid oscillation wave/£ = 1) is equal and opposite to physical
wave speed of eq. .13. As the order of the scheme is increased, the speed of patpagmf

the poorly-resolvedwaves assumes an higher negative supersonic speed-1). Figure3.3
shows that the compact schemes propagate with the corrasé [g@peed for a wider spectrum
of wavenumbers compared to the explicit schemes, but thepaorly-resolvedwaves, near

to the grid-to-grid oscillation, travel with an unphysiclpersonic speed greater than the one
of the explicit schemes. Finally, the compact optimizedesaebs of Lui&Lele and Kim have

a maximum value of group velocityy/c slightingly bigger than 1, respectively atpi = 0.5
andx/m = 0.78.
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3. NUMERICAL METHOD 3.2 Spatial Discretization

3.2.2 Computational dficiency

In order to compare the performance offelient schemes, it is fiicient to analyse the nor-

malized error versus cost relation, accounting for the atimm count estimate reported by
Colonius & Lele (2004). As discussed in Se@.4, the problem is formulated in terms of
obtaining a computational result with the same error froffedent schemes and identifying
which scheme produces such result at the lowest compughtiost. In general, the cost of the
computation is a function of the acceptable level of eerahé spatial discretization scheme
CPQRS, the number of spatial dimensions of the probigpand the time integration scheme
t. Therefore

c" = f (€, CPQRSNp,1). (3.28)

The dficiency comparison formally consist of finding the minimatie tanifold of eq.3.28

in its four-dimensional spac&, CPQRSnNp,t). As the present work aims at identifying an
efficient numerical scheme for CAA applications, the paramsperce is constrained to the
spatial discretization schemes of TaBd.and 3.2, two physical spatial dimensionsg = 1, 2),
and two time integration schemds=( RK3, RK4). Furthermore, from eq2(55), the dfects of
the independent variablé€PQRSnp, t) are shown to be linear factors of the cost.

Effect of space discretization

The dfect of the spatial discretization schemes on the computicost is considered for
one-dimensional time-dependent simulatiams € 1), time-advanced by a fourth-stage fourth-
order RK time integration scheme=£ RK4). The results of the analysis are shown in Bigh
and Fig.3.5for the centred spatial discretizations listed in RBdl. Figures3.4and3.5show

the ‘local’ and the ‘global’ error functions, respectively

Figures3.4(a) and3.5a) show the ffects of changing the spatial discretization scheme on the
cost-error functions. For a normalized erroreof 1071, all the schemes collapse in same cost
region between & c; < 15. This is the region encircled in Figu8e4(a), the so-called knuckle
region discussed bgolonius & Lele(2004), in which all the schemes have a comparable com-
putational cost. However, when a normalized error lower 1a! is required, high-order and
optimized schemes reveal their superiority. For exampleafgiven normalized ‘local’ error

€ = 1.24x107%, the optimized scheme by Lui&Leldfers a cost saving over the corresponding
compact tenth-order equivalent stencil-size C2233 schafrapproximately 50%, as detailed
in Fig. 3.4(b), which shows an enlargement of the area in the dasheahgdetof Fig.3.4(a).
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Figure 3.4: Optimal ‘local’ error (a, b), reduced wavenumfm® and Courant number (d) as a
function of cost for the centred spatial discretizatiosselil in Fig.3.1 coupled with RK4 time
integration in one space dimension.
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Figure 3.5: Optimal ‘global’ error (a), reduced wavenum{i@rand Courant number (c) as a
function of cost for the centred spatial discretizatiosselil in Fig.3.1 coupled with RK4 time
integration in one space dimension.
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3. NUMERICAL METHOD 3.2 Spatial Discretization

In Fig. 3.4(b), the intercept of the = 1.24 x 10~* dashed horizontal line with the C2233 line
determines a cost af; = 16246, as compared with the intercept of the same line with the
Lui&Lele line which determines a cos} = 7850. The same trend is observed for the ‘global’
error reported in Fig3.5(a).

Figure 3.4(c) shows which wavenumber is best modelled by the schem@abs.3.1 and
3.2when each scheme is operated at its md&ctive cost-error condition. The = 107
long dashed vertical line can be taken as representativefiséé amount of computational
resources available to the CFD practitioner. The interogphis line with the C0O011 curve
at«* = 0.15 indicates that this low-order scheme is best used for Hnoglevave propagating
problems resolved with more thasy = 40 points per wavelength (see e.§). The C0011,
as a low-order scheme, is known to be able to resolve wavesl®itl5 points per wavelength,
but this operational point is not cost-optimal. For the samm@putational resources = 107,
the C1122 scheme resolves best the propagation of wavescwith0.84, corresponding to
N, = 7, and it is therefore more appropriate for a coarser megieseptation when working
at its cost-optimal point. A similar behaviour is displayiad-ig. 3.5b) where the cost of the
schemes is expressed by the ‘global’ eraf €q. 2.53.

Figures3.6(@) and3.6(b) show the iso-contours of the normalized ‘local’ errondtion of
eg. €.443 and the normalized one-dimensional cost function of 84 for the C1122
and TamDRP schemes in the non-dimensional wavenumbaereiney plane«, o). The filled
black circles mark the tangency condition between the twailfes of curves. This location
represents the Courant numiagrat which the numerical scheme should be time-marched for
representing the propagation of a wavenunaegrthe lowest computational cost. Figu&&(a)
shows that, over the wavenumber range © « < 0.8 over which the C1122 scheme resolves
waves of at least six points per wavelength, the computatorbe time-marched at a Courant
number approaching.®. Fork < 0.5, where the model resolves physical waves with greater
spatial accuracy by increasing the number of points per leagéh, the computation must be
time-marched at a lower Courant number. FigBu&b) shows that, for the same wavenumber
range 056 < « < 0.8, the optimal Courant number with the TamDRP scheme is dioge
Forx < 0.5, the computation can be time-marched at a higher valueeo€thurant number,
which reduces the overall computational time. Appendli% shows that this trend is a com-
mon feature among the high-order schemes with optimizattiteodticients (see FigsA.6
andA.10).

Figure3.6(a) shows that the Courant number increases monotonicilywavenumber when
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the C1122 scheme is operating at its 'optimal’ cost-errorking point. With the TamDRP
scheme that uses optimized spatial stencilffoccients, Figure3.6(b) reveals that the ‘opti-
mal’ Courant number for this scheme is not monotonic and deereasing with increasing
wavenumber over the well-resolved portion of the wavenurnspectrum. This trend is sum-
marized for the dferent spatial discretization schemes in Figude%d) and3.5(c), respec-
tively, for ‘local’ and ‘global’ errors. The optimal worki points in the £, o) plane for the
schemes listed Tab8.1and 3.2 are plotted in Figur&.4(d). The vertical long dashed line at
thec] = 107 defines the same availability of computational resources Bgj. 3.4(c). To the
right of this line, high-order schemes achieve the steejgdesll-off error as in Fig3.4(b), and

is therefore the operational space of interest for CAA aapibns. Using the C2233 scheme
in an application where; > 107 requires a reduction in the Courant number with increasing
computational cost. The reverse trend is shown by the $gétiacil-optimized schemes Tam-
DRP and Kim. Fig.3.5c) displays the same analysis based on the global cost fihvithe
same trends are shown as in F3g4(d).

Effect of number of space dimensions

Figures3.7(a) and3.8(a) show the relations between the computational cost andgérational
condition of the schemes when applied to a two-dimensioralpm for whichnp = 2. The
global trend does not fier too much from the one-dimensional curves reported in. Bid&)
and 3.5a) as already noted in Se2.4. In fact, eq. .59 states that the only change in the
contours of one and two-dimensional iso-cost is given bysashift in the , o) plane. This
behaviour can be observed in F&)9, where the ‘optimal’ working points for the ‘local’ error
function of the C1122 scheme are compared between a one sionahand a two dimen-
sional computation. The ‘optimal’ working conditions foaah of the two computations are
represented respectively by non-filled and filled circleseiGhe well resolved wavenumber
rangex < 0.8 corresponding to wave resolved over more than= 7, the optimal Courant
number at which a two dimensional computation is time-mexdcis slightly higher than the
optimal Courant for time marching a one dimensional compria The diference in the opti-
mal Courant number increases monotonically with incregagin his indicates that increasing
the number of dimensions gives a best operating point fo€thE22 scheme involving a time-
step that is slightly higher but substantially far from thabdity limit which is indicated by
the horizontal dashed line in Fig.9. This result is encouraging for the application of cost-
optimized schemes to three-dimensional real engineepptcations.
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(b) TamDRP, constant ratig(x, o) contour spacing of 8466 between 8 x 10~ and 022.

Figure 3.6: Contours of normalized ‘local’ error functiefx, o) (solid black lines) and corre-
sponding normalized one-dimensional cost functigfx, o) (long dashed-dotted black lines)
for the C1122 (a) and the TamDRP (b) scheme. The filled blackesi represent the ‘optimal’

working condition; the black dashed line corresponds tcsthbility limit o max.
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3. NUMERICAL METHOD 3.2 Spatial Discretization

Figures3.7(b,c) and3.8(b,c) show the fiect of changing the spatial discretization scheme on
the reduced wavenumber and Courant number in two space siiomsn The schemes doc-
umented in Figure8.7(b,c) and3.8 (b,c) are those of Tab8.1 and 3.2, coupled with RK4
time integration. Figure8.7(b) and3.8(b) indicate, forc, < 2 x 1%, an higher operational
wavenumber for the optimized Lui&Lele scheme with respecthe non-optimized C2233
scheme. Figure8.7(c) and3.8(c) show an increment in the optimal operational Courant-num
ber over these, region for the Lui&Lele scheme. As in the one-dimensionadlgsis of
Fig. 3.4 and 3.5 the two-dimensional scheme performance analysis of Faiieand 3.8 in-
dicates that the space-optimized Lui&Lele and Kim schenmesbast run at higher Courant
number with respect to their non-optimal counter-part@gplications where the demands on
resolution and therefore computational cost are signifjéan c;, > 107,

3.2.3 Optimization of the finite-difference scheme

On the basis of the discussion reported at the end of &&c.optimized finite-diference
schemes can be tailored to a specific target normalized kewrere. This dictates the most
cost-dfective Courant and wavenumber that the model resolves vduiresponds to a spe-
cific spatial discretization for these schemes. The auths@aldopted as baseline spatial scheme
the tridiagonal compact schemes with five point ste@&il22 of eq. 8.24) with

1
ap=-apy= 1—2(4011 -1)
(3.29)
1
a;=-a1= 5(“1 +2)

wherea; is a free-parameter. The specific choicengf= 1/3 yields the C1122 sixth-order
scheme. The author has attempted to find the C1122 schemméxanizes the resolving
efficiency«™ as a function of the normalized error lexel This new class of schemes will be
labelled asC112Z2psmn, wheren represents the exponent in the target 10" normalized
error level. The optimal value of the déieienta; is reported in tabular form for representative
values ofe”in Table 3.3 and plotted in Fig.3.10 that reports also the data on the spatial
resolving dficiency of the non-optimized C1122 scheme. Fig8r&0 shows that optimized
space discretization schemes use higher values of thelspa#ficientsa; and«* than the
non-optimized ones. The wavenumbérthiat is resolved most costfectively is also higher
than the non-optimized one. Cost-optimized spatial diszatons tailored to a specific error
level can outperform a C1122 sixth-order scheme, yieldidg $0% increase in the spatial
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Figure 3.7: Optimal ‘local’ error (a), reduced wavenumbar &énd Courant number (c) as a
function of cost for the centred spatial discretizationkeced in Fig.3.1 coupled with the
RK4 time integration in two space dimensions.
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Figure 3.8: Optimal ‘global’ error (a), reduced wavenum{i@rand Courant number (c) as a
function of cost for the centred spatial discretizatiorlected in Fig.3.1coupled with the RK4
time integration in two space dimensions.
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non-filled and filled circles represent the ‘optimal’ worginonditions respectively for the one
and two dimensional cost function; the black dashed hot&dime corresponds to the stability
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Figure 3.10: Optimal values of cfiientsa (solid line), non-optimal (dashed-line) and op-
timal (dash-dotted line) ‘spatial resolvindfieiency’ * for the tridiagonal compact scheme
C1122 of eq. 8.29.

Table 3.3: Spatial discretization d@eients of classical and optimized schemes.

scheme a1 +10° | & (€)opt | K*(E)nonopt | kmax | kc (€) (Lele, 1992) | ey (e)

Cl1122 0.33333 1.99 1.1043 0.3515
C112Zpsm5 | 0.33750 | 0.7461 0.5223 | 2.01 1.1813 0.3760
C112Zpsm4 | 0.34240 | 1.0901 0.7621 | 2.03 1.2878 0.4099
C112Z2psm3 | 0.3532 | 1.5554| 1.1042 | 2.08 1.5556 0.4952

resolving éficiency. Figure3.11 compares the dispersive and dissipative properties of the
C112Zpsmb5, C1l2epsm4, andC1l2epsm3 with the ones 01122 scheme. Tabl& 3 reports
Kmax @nd k¢, which are respectively, the maximum value and the maximesolvable scaled
pseudo-wavenumber. The maximum resolvable wavenurgliiecalculated using the criterion

of Lele (1992:

€ (k) <, (3.30)
e (€) = e/, (3.31)

whereg (¢€) is the resolving fiiciency of the scheme, and the threshold has been setto
10°3. Figure3.11(a) and Tab3.3 show that the maximum value e{«)/x does not vary sig-
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Figure 3.11: Dispersive (a) and dissipative (b) errors fue €1122 and cost-optimized
C12epsmb, C12epsm4, C12epsm3 schemes.

nificantly in the cost-optimized schemes, showing that therdbased spatial discretization
does not give significant advantages in the dispersion ptiepeHowever, the dissipative error
in Fig. 3.11(b) can be reduced by almost two orders of magnitude for melewavenumbers.

This provides an optimization methodology that is most @pple to linear wave propagation
problems where the wave amplitude or ®i@Lare the critical parameters.

3.2.4 Prefactorization

To obtain the finite dierence approximatiovq' from equation 8.24), a tridiagonal linear sys-
tem of the formAx = b has to be solved. An alternative approach to the inversiothef
A matrix has been proposed bilixon (2000, consisting in a prefactorization that splits the
derivative operatoff, in a backward componerft® and a forward componeritF, so that

f/ = %(fi’F + /8). (3.32)

This way, the inversion of the matrix is replaced by two ingleglent matrix operations that
involve bi-diagonal matrices, as follows

1

apff + e f/T = - [br fis1 + ce fi + de fig] (3.33)
/B /B 1
Pefi” +yefly = ¢ [befiva +cafi + dpfi-a]., (3.34)
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where the cofficients must be chosen such that when the two biased steneibdded, the
original central compact scheme of e8.24) is recovered.Hixon & Turkel (2000 reported

that to obtain the C1122 scheme with sixth-order accuréay,isa; = 1/3 in eq. 8.25, the

following relation among the cdiécients hold:

11 1
aF =YB = 5—2—\/6, ﬁF :ﬁB = 1—a|:, bF = —dB = 1_m’

cg = —Cg = 2bg—-1, bg=-dr = 1-bf.
(3.35)
This class of prefactored schemes has been optimizésgshgroft & Zhang(2003 to enhance
the wavenumber resolution characteristics, and recegytRrdnaet al. (2009 to minimize the
computational cost for a given level of error.
To derive the cost-optimized prefactored compact schethesauthor follows from previous
work of Hixon (2000 and Ashcroft & Zhang(2003. Compact schemes have the form of a
MacCormack scheme. In a MacCormack scheme, the real (digpercomponents of the
scaled pseudo-wavenumbers of the forward and backwardistare equal and identical to the
scaled pseudo-wavenumber of the original central schermitstwhe imaginary (dissipative)
components of the scaled pseudo-wavenumbers are equgbposite. Let the original central
scheme be in the form of e3.@4), and multiply eq. 8.24) by the constant factoLLzQ (as
in eq. A.81) of AppendixA.3). From egs.3.25 and @.27), the modified wavenumber of the
generic compact C1122 scheme is given by:

21+2) o bai-1)

o 3((f+12+a1)) sin () + 6((1:2&1)) sin ()

<) = 1 42U cos )
(l+20/1) (l+20/1)

(3.36)

The scaled pseudo-wavenumber of the generic forward aridvaad operators may be deter-
mined in a similar manner from eq®f.83 and @.34), using the Fourier analysis. The real and
imaginary components of the scaled pseudo-wavenumbehdogeneric forward stencil are,

respectively, given by:

b - -d i -d in(2

Re(k" () = — CZC;Z ,BZFf FZLSFI,ZS)COS@F)QF e (3:372)
F+hE

— (braF + CrBF) — (bFBF + Crar + drBr) COSk) — draF COS(X)

a2 + B2 + 2agfF COSE)

Im (k¥ () =

., (3.37b)
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and for the backward stencil:

b -d [ b in(2
Re(x®(x)) = (bes + Czéi yngBz)yS;;éKl;sgyB sin() (3.38a)
_Z (CBﬁB + dByB) - (bBﬁB + CryB + dBﬁB) COS(() - bByB COS(Z() .

B3 +¥3 + 2ysBs COSk)

(3.38h)

Im(kB(x))

In equations 3.37) and 3.38), by imposing the following restrictions on the ¢beients of
the backward stencil, it is ensured that the imaginary corapts of forward and backward
operators are equal and opposite, and that the real comisookthe forward and backward
operators are equal:

Be =PF, ¥8 = @F, bg = —dg, Cg = —C¢, dg = —bF. (3.39)

To ensure that in the regions of zero gradient the derivatiamish, the following additional
relation is introduced
br +ce +dp = 0. (340)

Finally, by matching the various terms of e§.379 with the corresponding ones of €§.86),
the following system of equations is obtained

_ 2(CL’1 + 2)
brBF — Crar — drfBF ~3(L+ 20))
deqe =0 -1
PP TB(1+ 207)
1
2 p2 _ 3.41
PR S 0 20y (3.42)
2(1’1
afr =
CFPE =T 2ay)
br + cg +de =0

Due to the quadratic term in the third element of 340, the system of equations has two
solutions. The lower value solution faf=, as shown in of AppendiA.3, is selected to min-
.. . QFf . . .. .
imize the ratio—, so that the influence of errors at the boundaries on theiontecheme is

F
minimized. The new prefactored optimized fiadents are given in TalB.4 and reported in
eq. A.83) of AppendixA.3.
Figure3.12reports the dispersive characteristics of the prefactotassicalC1122 and cost-
optimizedC12epsm5, C12epsm4, andC12epsm3 schemes. Figurd.12(a)shows the real
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Table 3.4: Prefactored spatial discretizationfioents of the classical and optimized schemes.

C1122

Cl2epsmb

C12%epsm4

Cl12epsm3

0.27639320225002]
0.72360679774997¢
0.87939886704167
-0.75879773408334]
-0.12060113295837

| 0.279757059259307
) 0.720242940740695
[ 0.87551205864319]
| -0.751024117286394
3 -0.124487941356807

b 0.28373509297831]
b 0.71626490702168¢
[ 0.871137465089561
1 -0.74227493017912¢
3 -0.12886253491043]

| 0.292621799121854

) 0.707378200878146

3 0.86218519859115]
5 -0.724370397182313
[ -0.13781480140884]

O —<O0—=

component of the prefactored forward stencil from €379, which is equal to the real

component of the prefactored backward stencil from 8383, and to the scaled pseudo-

wavenumber of the original central compact scheme reporteig).3.11(a) The scaled pseudo-

wavenumber for the prefactored cost-optimizetil22 schemes is consistently above that of

the classicalC1122 scheme for all three level of cost-optimization. Fdl2(b)shows the

imaginary component of the prefactored forward and bac#tiv&encils, respectively from

eq.@.37h and (3.389. An enlarged view of the imaginary component of the forwateh-

cil is shown in Fig.3.12(c)and the imaginary component of the backward stencil is shiawn

Fig. 3.12(d) These two components are equal in magnitude and oppossigrin Averaging

together the real part of the backward and forward compargines the pseudo-wavenumber

of the centredC1122 scheme. Averaging the imaginary forward and backwandponents

results in an imaginary pseudo-wavenumber contributiaread.
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Figure 3.12: Dispersive characteristics of the prefactalassicalC1122 and cost-optimized
C12epsmb, Cl2epsm4, C12epsm3 schemes. (a) Real component of the prefactored forward
stencil from eq. 8.379. (b) Imaginary components of the prefactored forward aackivard
stencil, respectively from e®(370 and @.38H. (c) Positive imaginary portion from (b). (d)
Negative imaginary portion from (b).
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3.3 Temporal Integration

The overall cost of the simulation is a function of the spatiscretization scheme, the number
of spatial dimensions, and the time integration scheme@wted in Sec3.2.2 This section
analyses the impact on the computational cost of usiffgrént time integration schemes for
a two dimensional problem for various spatial discretmaschemes. The analysiskdf et al.
(1996, Bogey & Bailly (2004), Berlandet al. (2006, Bernardini & Pirozzoli(2009, andGhillani
(2012 points towards the RK3 and RK4 schemes as a good startingectoo the present work.
This section identifies the appropriate number of RK stepsRi codficients for a prescribed
targeted level of error.

3.3.1 Hfect of time integration

The dfect of the time integration on the computational cost is ictared for two-dimensional
time-dependent simulationsq = 2), time-advanced by a third-stage third-ordet (RK3) and

a fourth-stage fourth-ordet £ RK4) RK time integration scheme in the manifold of €8}28).
The results of the analysis f&K4 has been shown in Fig3.7and3.8. Figures3.13and3.15
report, respectively, the ‘local’ and the ‘globaltfieiency analysis for the same spatial dis-
cretization scheme as in Figs.7 and 3.8, with a third-stage third-ordet € RK3).
Figures3.13(a)and 3.15(a)show the &ect of changing the spatial discretization on the cost-
error functions. As already reported Byrozzoli (2007 andHu et al. (1996), increasing the
accuracy more than outweighs the increased computatiossland all the spatial discretiza-
tion schemes coupled with RK4 time integration are founduiperform the RK3 ones. This
is confirmed in Figs3.13(b) and 3.15(b) which report a selection of spatial discretization
schemes coupled with RK3 and RK4 time integration. FigRii3(b)shows the ‘local’ and
Fig. 3.15(b)the ‘global’ error as a function of the computational costtfe diferent schemes.
In Fig. 3.13(b)each blue line identifying a spatial discretization schemegpled witht = RK4

is below the corresponding black line identifying the sampatisl discretization scheme cou-
pled witht = RK3. In Fig.3.15(b)a similar trend is shown except for the ‘global’ optimal cost
error of the Lui&Lele scheme for a low level of computatiorakt, over the range 8 ¢; < 70.
Figure3.14shows the contours of the ‘normalized’ local error functéi o) for the C1122
spatial discretization scheme coupled with the RK3 and RiK# integration schemes for a
two-dimensional problem. This figure confirms that RK4 hastidb ‘optimal’ performance
compared to the RK3 time integration scheme over the wholemamber range. Far< 0.8,
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in the region of thevell-resolvedwvavenumber spectrum, the RK4 time integration gives an in-
crement in the optimal Courant number between 100% and 488%hown by the blue circles
being above the black circles. For — 0, where the assumption of zero time integration is
valid from eq. £.57), thet = RK3 andt = RK4 contours overlap.

Figures3.13(c) 3.15(c)and3.13(d) 3.15(d)show the &ect of changing the spatial discretiza-
tion scheme on the ‘optimal’ reduced wavenumber and Coumamiber in a two dimensional
CAA computation, that usés= RK3. This figures display the same trends as RBg&b), 3.8(b)
and3.7(c), 3.8(c)fort = RK4 as discussed in Se2.2.2 The wiggles present on the right-hand
side of Figs.3.13(c)and3.15(c)for C2233 scheme are due to the limitation in the o space
resolution of this analysis. An increased resolution ingheo plane is likely to reduce these
discretization ffects. The optimal ‘local’ and ‘global’ Courant number foetG0011/RK3
scheme in 2D reported in Fig3.13(d)and3.15(d)is drawn by an horizontal line because the
‘optimal’ condition for the ‘local’ and ‘globalC0011/RK3 in 2D are beyond the stability limit
omax as shown by the black dash-dotted line in Figsl8(a)andA.18(b).

3.3.2 Baseline temporal solver

On the basis on the discussion reported at the end of theopiesiction, the four-stage, fourth-
order ¢ = RK4) RK scheme has been adopted as baseline temporal sohestdlility foot-
prints, the dissipation rate| and the phase errérfrom egs. 2.31) and @.33 for the classical
RK3 and RK4 time integration schemes are reported in A&ig1 of AppendixA.6. These re-
sults, well-documented in the literatuutcher 1987 Hirsch 2007), are used as benchmark
for the cost-optimized temporal solver analysis of $8.3

The maps corresponding to RK5 and RK6 are not reported, #irese schemes are uncondi-
tionally unstable, as stated Bernardini & Pirozzoli(2009.

3.3.3 Cost-optimized temporal solver

A numerical optimization procedure has been performedterdene the coicientsy,, which
maximize the temporal resolvindteiencyZ* (€) for a given value of the normalized errar ~

Zopi(€) = maxX(z: &(Z ym) < €) (3.42)
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Figure 3.13: Optimal ‘local’ error (a, b), reduced waven@m{c) and Courant number (d) as
a function of cost for the centred spatial discretizatioeleced in Fig3.1 coupled with the
RK3 time integration in two space dimensions. In subfigujelflack and blue lines represent,
respectively, spatial discretizations scheme coupled RK3 and RKA4.
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Figure 3.14: Contours of normalized ‘local’ error functiefx, o) for C1122 scheme coupled

with RK3 (black solid line) and RK4 (long dashed blue line)d integration scheme. Constant
ratio e(x, o) contour spacing of 0.7037 between-8@nd 03. The corresponding symbols
represent the ‘optimal’ working conditions for two dimemsal cost function.

under the following stability constraint

{Zo(€) < 25 (3.43)
wherezs is the stability limit defined in eq.2(31). The factor{ has been introduced to guar-
antee an extra stability margin beyond the range of welllvesoangular frequencies The
author has considered as representative example a fga;siecond-order RK scheme, i.e. set
v1 = 1, y2 = 1/2, and left two free parametess, y4. A standard ordered search has been
conducted in a dficiently large neighbourhood of the baseline valugs!iXor y3; andy;,, for
different levels of target errat For the selected second-order, four-stRjetime integration
scheme/ = 1.1 provides a good balance between performance and stafility results of
the analysis are plotted in Fi§.16and reported in tabular form in Tab&5, which lists the
codficients for the classical and optimized RK schemes and thresmonding performances.
Figure3.16shows that the cost-optimized time integration schemes bmaller values of the
codficientsys andy, than the classical non-optimized RK scheme, for whigh= 1/3! and
v4 = 1/41, depicted with black arrows. The cost-optimized ffiogents tend asymptotically to
the value of the classical non-optimized schemes as thedévwermalized errok decreases.
Using the cost-optimized céieients increases the temporal resolvirficeency Z*(€) from
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Figure 3.15: Optimal ‘global’ error (a), reduced wavenum{i® and Courant number (c) as
a function of cost for the centred spatial discretizatioeleced in Fig3.1 coupled with the
RK3 time integration in two space dimensions. In subfigujelflack and blue lines represent,
respectively, spatial discretizations scheme coupled RK3 and RKA4.
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13% up to 46% over the range f0< & < 1072, indicating a gain in temporal resolvingfie
ciency from the cost-optimized temporal optimization.

Figure3.17indicates that the stability foot-prints of the cost-optied schemes does not dif-
fer too much from the classical RK4 scheme, as the optimizbdraes has a slightly larger
footprint than the classical one. Figurgd8and3.19show the temporal dissipation and dis-
persion properties of the cost-optimized RK schemes coedpaith the classical RK scheme.
The amplification ratels| and the diferences in phaskare plotted, respectively, in Fi§.18(a)
and3.18(b) the temporal dissipatiokqy of eq. .34 and the phase errdts of eq. .35 are
represented in logarithmic scale, respectively in Big9(a)and 3.19(b)for the classical and
optimized schemes. The cost-optimized algorithms ardtyjidess dissipative and less dis-
persive than the standard RK4 because their amplificatites jrd are close to 1 and their
differences in phasgare close to 0 over the range of angular frequencis<(z < 1.78, as
highlighted in Fig.3.19(a)and3.19(b) The stability of the optimized algorithms, dictated by
Zs and reported in Tablg.5, appears marginally lower than that of the classical RKrdtigm.
Figure3.19(a)shows that the trend of the optimized schemes follows thaltod the classical
one, whereas Fi@.19(b)indicates that the cost-optimized schemes hfisrdint local minima
at specific values of angular frequencigsnstead of the classical RK4 scheme which has a
single minimum at az = 1.87.

Table3.5lists the accuracy limits for the dissipatiggnand the phase errag using the criteria,
respectivelyEq < 1072 andEs < 1073, similarly to Berlandet al. (2006). The cost-optimized
schemes have a slightly higher valuezdbr which Eq = 10°3 andEs = 1073 than the classi-
cal RK4 scheme. This confirms that the cost-optimizatiorgi& small advantage in terms of
temporal dissipation and dispersion properties of theltiaguischemes. A further comparison
of the temporal cost-optimized schemes with the optimizEdsBhemes available in literature
is given inBernardini & Pirozzoli(2009.
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Table 3.5: Runge-Kutta cfigcients and performance for the classical and optimized integration schemes; (€)nonopt IS relative to

the classical RK4 time integration scheme. For all scheypes1, v, = 1/2.

scheme]| v A Zs Z(&opt | Z Enonopt | Za: Eq =103 | z5: E; = 1073
RK3 1/3! 1.73

RK4 1/3! 1/4! 2.83 0.7323 0.873
epsm5 | 0.166106296875 | 0.041111875 2.828] 0.272 0.186 0.7414 0.911
epsm4 | 0.1652420703125 0.0402486328125 2.826 | 0.436 0.331 0.7476 0.973
epsm3 | 0.1636332734375 0.038639453125| 2.819| 0.709 0.589 0.7526 1.187
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Figure 3.16: Optimal values of temporal resolvirfj@enciesz’(€) (black solid line with dia-
mond symbols)ys (black dash-dotted line with diamond symbols) andblack dashed lines
with diamond symbols) for second order, four stage optichiR& time integration scheme.
The black lines and arrows without symbols indicate theesponding cacients for the
classical RK4 scheme.

7] 27

Figure 3.17: (a) Stability foot-prints for the classicdigk solid line) and cost-optimized RK4
(epsmb5 black long-dashed linepsm4 black dotted lineepsm3 black dash-dotted line) time
integration schemes. (b) Zoom of the rectangular area teghar (a).
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3. NUMERICAL METHOD 3.3 Temporal Integration
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Figure 3.18: (a) Amplification ratg| and (b) diterence in phasé for the classical and cost-
optimized RK4 time integration schemes. Lines pattern &3gn3.17.
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Figure 3.19: (a) Temporal dissipati@y and phase errdg;s in logarithmic scale for the classi-
cal and cost-optimized RK4 time integration schemes. Lpstern as in Fig3.17.
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3.4 Predicted performance of the cost-optimized schemes

To demonstrate the potential benefit of cost-optimizatfonite-difference schemes that com-
bine space and time cost-optimization for the same levelof dnave been developed. Fig-
ure 3.20(a)shows the contours of the normalized ‘local’ error functigfr, o) for the cost-
optimizedepsmb5 (solid line) and the corresponding non-optimized basedwlverC1122/RK4
(long dashed line). Figurg.20(a)shows a spike-shaped iso-error contour labelle® ithe
region 06 < « < 0.8 for the optimized scheme. This spike changes the shapesatttier
iso-error contours (solid lines) with respect to the basebolver (long dashed lines). Fig-
ure 3.20(b)reports a similar trend for the cost-optimizedsm3 scheme. The location of the
spike on thex — o plane shifts towards the right of theaxis as the design target level of
error increases. Figurg.21(a)shows the contours for the normalized ‘local’ error funatio
e(k, o) of the cost-optimize@dpsm4 scheme by solid lines and of the baseline non-optimized
C1122/RK4 scheme by long dashed lines. The corresponding optimagsaif the wavenum-
ber and Courant number pai*(€), o*(€)) are shown for the two-dimensional cost-function of
eg. .67 for both schemes by symbols ( ¢). Figure 3.21(a) clearly shows how the spike
influences thex (€), o*(€)) pair for theepsm4 scheme near the design level of er¢er 1074,

in that the ‘optimal’ valueg*(€) ando™*(€) for the cost-optimize@psm4 scheme, in the — o
plane, lie below the corresponding values for the baselassicalC1122/RK4 scheme. Fig-
ure 3.21(b) gives an enlarged view of the o plane near the design level of ereoe"10"* for
the cost-optimize@&psm4 scheme. Figure 3.22 reports the corresponding map faepba5
schemes, where a similar behaviour is observed near thgndiesiel of errore™= 10°°. The
effect of the spike or*(€) ando*(€) is to pull the &*(€), o*(€)) pair towards ther = 0 axis.
This shows that the cost-optimized schemes can be run at Rwgrant number for the same
computational cost of the non-optimized scheme to resoteeget wavenumbex.

The computational performance of the cost-optimized sdsemmillustrated in Fig. 3.23 and
summarized in Tab. 3.6. Figure 3.23(a) shows tiiect of the scheme cost-optimization on
the ‘optimal’ error versus cost curve. The cost-optimizedesnespsmn (with n = 3,4,5),
when working at their design level of errer=" 10", offer a substantial cost saving over the
baselineC1122/RK4 scheme. For instance, the solid arrow in Figure 3.23(ayshbat the
computational cost of running the baseli@&122/RK4 scheme to obtain an errerof 107*

is 28 x 10%. The dotted line arrow shows that the computational costiohing theepsm4
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scheme for the same level of errer="10"* is 7.2 x 10'. The distance between the two ar-
rows on the abscissa indicates the computational gain oépthm4 scheme with respect to
the C1122/RK4 scheme. Figure 3.23(a) indicates an useful region of rimgdti cost where
the space and time cost-optimized schemi@era computational cost saving over the non-
optimizedC1122/RK4 scheme. For instance, tlepsm4 scheme outperforms the baseline
scheme over the range &c;, < 1300. Similarly, theepsm5 scheme outperforms the base-
line solver over the range 250 c;, < 8000. Figure 3.23(b) and 3.23(c) show the variation of
‘optimal’ reduced wavenumbes and Courant number* versus computational cost. These
plots show where the cost-optimized schemes outperfornbaiseline schemes in terms of
k* ando*. Consider, for instance, thepsm4 scheme working at its cost-optimal condition.
Theepsm4 scheme fiers a computational saving over the basedid 22/RK4 scheme when
the available computational resources for a given monagatic (‘local’) two-dimensional
problem isc; < 1300, in a wavenumber range of approximatel§3l< «* < 1.07, corre-
sponding to an ‘optimal’ Courant number* < 0.4. A plateau region in the case epsm4
scheme occurs in the range2k 10? < c, < 11x 10*, corresponding to an error level of
55x 10 < € < 10°°, and a wavenumber region ofd¥ < «* < 0.27. The error level range
55x 107 < & < 107 is below the design level of errer= 1074, for whichc;, = 7278 x 10?,
k= 1083, andr* = 0.389, as indicated by the dotted arrows in Fig. 3.23. As a auresece,

a given value of error level in this flateau corresponds to an 'optimal’ computational cost
c; which varies by two decades. The presence of the plateauecéivtersusc; curve from
the cost-optimized schemes is the consequence of the shikb wodifies the contours of the
error functione(k, o) and consequently, the ‘optimal’ working conditioti (€), o (€)), as high-
lighted in Fig. 3.21(b) for thepsm4 scheme. Thig plateau intercepts the1122/RK4 line

in Fig. 3.23(a) at a computational cost@f~ 1300. The plateau to the right of the intercept
is the region in which it is best not to use the optimized sahepsm4. The suggestion is to
use the cost-optimized schemes at their design level of and not beyond the intercept with
their classical counterpart scheme.

Table 3.6 reports thel2 percent cost reductionC, of the cost-optimized schemes over the
non-optimizedC1122/RK4 scheme when working at their design level of error. A cogtice
tion of about 70%- 80% can be achieved in problems involving well-defined t@paictra.
Figure 3.24 reports the iso-level of the normalized ‘loaafor functione(k, o) for the cost-
optimizedepsm4 scheme (solid line) and of the two-dimensional cost fumctf eq. (2.67)
(dash-dotted line). The two curves are tangent to one othéredk, o) location shown by
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Table 3.6: Performance of cost-optimized schemes féemint target errors in two dimensional
space.

scheme| € c, Co c1122rKa) | AC2(%)
epsm5 | 107 | 247.75] 1052.87 76.47
epsm4 | 10% | 72.78 | 276.837 73.70
epsm3 | 1072 73.166

Table 3.7: Approximate optimal operating points of costitojzed schemes for ffierent target
errors in two dimensional space.

scheme| € o (€) | Z(&) AZ (%) | «*(€) Ax* (%)
epsm5 | 10 | 0.348] 0.260 (0.272)| 4.4 0.747 (0.7461) 0.12
epsm4 | 1074 | 0.389 | 0.421 (0.436)| 3.44 1.083(1.0901) | 0.65
epsm3 | 1073 (0.3532)

a filled solid circle. This location represents the optimpérating point of theepsm4 at its
design level of error.

The dashed line represents the locus of (the-) points for which the spatial ffierentiation
error is€ = 10~* as determined from eq. (2.57). The dotted line represestitius of(k, o)
points for which the temporal integration errords="10"* as determined from eq. (2.58).
The intercept between these two lines is indicated by an opele. This point represents an
approximation to the solid circle. Specifically, the appneation is obtained by considering
the spatial dierentiation error separately from the temporal integratioor as discussed re-
spectively in Secs. 3.2.3 and 3.3.3. Figure 3.24 shows liedkto) operating condition that
satisfies egs. (2.57) and (2.58), reported by the open soti cis very close to the ‘optimal’
working condition of the filled solid circle. The distanceilveen these two points is quantified
in Table 3.7. Table 3.7 reports the approximate coordinattéise optimal operating points of
the cost-optimized schemes fofféirent target errors in two-dimensional space. The values in
brackets in the columri (€) = o*(€)x*(€) and«*(€) are taken from Tabs. 3.3 and 3.5, for com-
parison purposes. These correspond to the coordinates op#n circle of Fig. 3.24. Th&(e)
and«*(€) in plain text in Tab. 3.7 correspond to the coordinates effithed circle in Fig. 3.24.
AZ' is the absolute percentftiérence irg*(€) between the* values reported in plain text and in
brackets. SimilarlyA«* is the absolute percentftirence irk*. These percent fierences are
below 5%. Therefore, the values of optimal cost, reducedewamber and Courant number
reported in Tabs. 3.3 and 3.5 by separately optimizing tlaeejpnd time schemes agree well
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Figure 3.20: Contours of normalized ‘local’ error functiex, o) for the cost-optimized
schemes (solid black line) and the non-optimized baselieesC1122/RK4 (long-dashed
black line). (a)epsmb5; (b) epsm3.

with the ones reported in Tab. 3.7, obtained by a combinetimosmization procedure for
the cost-optimized scheme. This shows that, by optimizegasately the spatial and temporal
components, a scheme is obtained, the performance of whiary close to the one obtained
by a combined space and time optimization at the design tdvetror. This implies that the
space and time optimized schemes can give a substantiabsavierm of computational cost,
of the order of 70%- 80% in a decade around their design error level, comparedtketodrre-
sponding non-optimize@€1122/RK4 benchmark. The cost-optimized schemes also decrease
the optimal Courant number* with respect to the baseline non-optimized scheme, as simown
Fig. 3.23(c). This makes the cost-optimized schemes vétgide for computational problems
of narrow-band or tonal waves, such as cavity noise in aersics.

In conclusion, there is a computational advantage in ptiedicaccuracy and computational
cost by using cost-optimized schemes to model wave projpaigptoblems at their design
operational poinfx*(€), o*(8), G, (8))-

69


Chapter2/fig/localC12RK4epsm5Comp2.eps
Chapter2/fig/localC12RK4epsm3Comp2.eps

3. NUMERICAL METHOD 3.4 Predicted performance of the cost-gptimized schemes

(b)

Figure 3.21: (a) Contours of normalized ‘local’ error funate(k, o) for the cost-optimized
epsm4 scheme (solid line) and for the corresponding non-optimedebne C1122/RK4
scheme (long-dashed line). Constant radia o) contour spacing of 0.7037 between %0
and 03. The filled circles and the diamonds represent the correbpg ‘optimal’ working
conditions of the respective schemes for the two dimenkioost function of eq.2.67). (b)
Enlarged view of the region near the design level of eeros 10~ for the cost-optimized
epsm4 scheme.
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Figure 3.22: (a) Contours of normalized ‘local’ error fuoate(k, o) for the cost-optimized
epsm5 (long dashed blue line) and for the corresponding non-adtimaselineC1122/RK4
scheme (long dashed black line). The black and red diamaputesent the corresponding
‘optimal’ working conditions of the respective schemestfor two dimensional cost function

of eq. €.67). (b) Enlarged view of the region near the design level obre#r= 10 for the
cost-optimizecepsm5 scheme.
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Figure 3.23: (a) Optimal ‘local’ error, (b) reduced waverngnand (c) Courant number as
a function of the two-dimensional cost for the basel®®122/RK4 scheme and the cost-
optimizedepsmb, epsm4, epsm3 schemes. Line patterns as in F&l17.
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Figure 3.24: Iso-level of the normalized ‘local’ error fuin ek, o) for the cost-optimized
epsm4 scheme (solid line) and of the cost function in two dimenal@pace (dash-dotted line).
‘Optimal’ (filled solid circle) and approximate working cdition (open circle) at the design
level of error€’= 107, The dashed and dotted lines represent, respectivelyppireximations
to the dash-dotted line given by eq.57) and @.58).
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3.5 Perimetrical scheme

3.5.1 Spatial Diferentiation

In areas near the boundaries, the interior scheme canngipiecbecause the stencil extends
outside the computational domain, therefore a perimétsicldeme has to be used to close the
discretized set of algebraic equations. This sectionsstgrdiscussing thefieect of the perimet-
rical scheme on the interior scheme. Then, two methods afitige near-boundary points are
presented and compared against the boundary treatmenitsoof (2000) and Ashcroft & Zhang
(2003). The first approach is to use a prefactored sixthr@xiglicit one-sided finite-dierence
scheme that uses a seven-point stencil, the second is tquosfaetored explicit central scheme
with an 11-point stencil. Finally, the wave propagationreleteristics of these boundary clo-
sures are examined.

Effect of perimetrical scheme on interior scheme

The boundary closure for a compact scheme has a much ldfget en the stability and accu-
racy of the scheme than the boundary closure for the equivakplicit scheme (Carpentet al.,,
1993b, 1994; Hixon, 2000). The reason for this is that thereénom the boundary stencil
derivative can propagate many points into the computaktioraain. Following Hixon & Turkel
(2000), a sixth-order scheme is used to study this boundasyie d€fect. Letey be a boundary
error or perturbation at the beginning of the backward sweep

f’B /B

€ = { 0 }interior B {fo }boundary’ (3'44)

where the subscript "interior” refers to the spatial ddrixathat the interior scheme would
have obtained and the subscript "boundary” refers to thivatere calculated by the bound-
ary stencil. Substituting eq. (3.44) in eq. (3.34), as showAppendix A.7, the error in the
computed derivativé grid points away from the boundary is:

i
/B _[+/B __aF
{fi }interior - {fi }boundary+( 1-— a’F) €0 (3.45)
or i
G = (_ ar ) . (3.46)
1- aF
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It is evident that the error propagates inwards from the daon For values o < 0.3 as
stated in Table 3.4, the errer decays exponentially with The error due to the boundary
stencil used at the start of the forward or backward sweepmhasich greaterféect on the
solution than the error of the boundary stencil used at thk adrthe sweep. Figure 3.25
illustrates the propagation of the boundary stencil emathe computational domain interior
for the classical fourth-orde€1111 and sixth-orde€1122 compact schemes, and the cost-
optimizedC1112Zpsnd, C11122psm, C11122psn3 compact schemes. The family of the
C1122 schemes are more sensitive to the boundary stendittearmtheC1111 scheme, due to
their larger stencil. The cost-optimized schemes havegatglilower performance compared
to the baselin€€1122 scheme in terms of reducing the boundary closure eithrimcreasing
distance from the boundary. The lower roff-oate of the optimized schemes is due to the
higher value ofar compared to the baselir@1122 scheme, as reported in Table 3.4. These
values are produced by the cost-optimization process of S28.

Equations (3.45) and (3.46) are valid for the fourth andhsodder compact schemes, but not
for the eighth-order scheme. For such a scheme, a trididguatax is present on the L.H.S of
egs. (3.33) and (3.34) and, in this case, the stencil usda atart of the forward or backward
sweep has a symmetri¢fect on the interior scheme, therefore the boundary errqrguates
hyperbolically in the computational domain interior.

Prefactored one-sided boundary stencil

To compute the state variables at the computational donmaindaries and wall points, explicit
sixth-order one-sided derivative stencils are definedfeisixth-order compact scheme. To ac-
complish this, the Taylor series for the forward and backlaterior derivatives was matched
to the sixth order in Appendix A.8.2. The resulting boundstgncils for the backward sweep
are:

7
1
8=+ D st (3.47a)

=1

N
L (3.47b)
=N-
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Figure 3.25: Boundary closure error propagation insidectimputational domain.

and for the forward sweep:

7
£ 1
fF = ,Z‘ —ens1jfs (3.48a)
1 N
= j:zN‘iG_sNﬂ_j fi, (3.48D)
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where:
o= _2%+353V5 . ee7508613328
150(1+ V5)
1515+ 82
oo 1OI5+823VE o 06506738317
150(1 + V5)
o _A05+19IVS o s008780320814
30(1+ V5)
u=  BFI6VE 0044006437489
3(1 + \/5)
95+ 43v5
S = _95+43V5 _ 3 43702558049996
15(1+ V5)
o= 25+133V5 040502059166
150(1 + V5)
= —2049V5 1600049250833
75(1+ V5)

(3.49)
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and
en = 95+191V5 _ 1115401386675
75(1+ V5)
285+ 977
ent = _285+97TV5 o 073403261699
150(1+ V5)
45+ 2
enp = 45+250V5 _ o 0001910679221
30(1+ V5)
24
ens = _5+24V5 o 4289236895886
3(1 + \/3)
1
N = 35+130V5 _ 4 007441050031
30(1+ V5)
227
_ _85+2271V6 _ . on0ug7040844
150(1+ V5)
51165
N = 5+16V5 _ 1 68010840825015
75(1+ V5)

(3.50)

The rational form of the cdicients given in egs. (3.49) and (3.50) enable the readempuate
sj ande; with an arbitrarily high precision, to match the computerdweaare available.

Prefactored interior boundary stencils

In typical engineering CFD applications, computationalifidaries exist where the flow state
is known on both sides of the boundaries (periodic, symmattgr-block boundaries), so an
appropriate spatial ffierencing scheme across these boundaries is required. Acitsgntral
boundary stencil is used for this purpose. This stencil rentihe spectral characteristics of
the prefactored compact interior scheme over the resobgkrof wavenumbers. An 11-point
explicit stencil is used that matches the Taylor series msipa of the interior stencil up to the
eleventh order as shown in Appendix A.8.2, for shortness.

Figure 3.26 represents an interior boundary connectiogdtandi = N. The physical domain
to the left of central point = N is connected to the physical domain to the right of the céntra
pointi = 1. The computational domain to the leftiis N, and to the right it is > 1. The left
and right domains share one overlap poiat 1 = N. When the interior prefactored forward
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Figure 3.26: Sketch of the backward and forward sweeps anbtbgor boundary = 1 = N.

sweep of eq. (3.33) has reached the N — 1 point, it requires an estimate of the internal
boundary derivative‘l\]F = fl’F. Similarly, when the prefactored interior backward sweép o
eqg. (3.34) has reached the 2 point, it requires an estimate of the internal boundarywdéve
f/B = 2.

These interior boundary stencils are given by:

5
Z ifivis (3.51a)

:TIH

i |+J, (3.51b)

:TIH

where

b_s = -0.00048892760612052
b_, = 0.00538269106033271
b_z= -0.0264320102799523
b= 0.0777993608366292

b.i= -0.321981330625385
bo = —0.759829408040846
b; = 1.34468533604127
b, = -0.398391115353838

bs=  0.092615608767661
bs= —-0.0144585787809353
bs = 0.00109837398118083

(3.52)

These cofficients, given in double precision, are broadly similar t® gmes for the 11-point
boundary stencil given by Hixon (2000). The Hixon (2000)ffie@ents are given in single
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precision and match the Taylor series expansion of theidamtetencil up to the ninth order,
with the last cofficient used to more closely match the spectral performantieedboundary
stencil with that of the interior scheme. The fiogents of eq. (3.52) match the Taylor series
expansion of the interior stencil up to the eleventh ordeer&fore, the two sets of cfieients
are numerically dterent from the third decimal digit.

Wave propagation characteristics of the boundary closures

By taking the Fourier transform of eq. (3.47a), the rﬁ\a(fzé) and imaginaryJ (?175) com-
ponents of the prefactored backward one-sided boundangikten the first nodeé = 1 are
obtained as:
R (?F) — [ Sin(Q) + S3.SIN(2) + 848IN(30) + S5 SiN(40) + S SiN(5) + s7s8in(6)],  (3.53a)
3 (?Zg) = —[S1 + S COSk) + S3COS(X) + 4 €0S(X) + S5c0S(4) + S5 c0S(5) + S7cos(&)] .

(3.53b)

Similarly, from eq. (3.48a), the re& (’fZE) and imaginaryJ (}ZE) components of the prefac-
tored forward one-sided boundary stencil on the first riogd are:

R (?f) — —[en1 SiN() + en_2 SIN(24) + en_3 SiN(3) + en_a SiN(4) + en_s SIN(54) + en_p SIN(BJ]
(3.54a)
N (?ZE) = [en + en_1COSk) + en_2 COS(X) + en_3C0S(X) + en_4q C0S(4) + en_s5CoS(%) + en_g COS(&)] .

(3.54b)

Appendix A.8.3 reports the corresponding Fourier tramafof the prefactored backward and
forward one-sided boundary stencils at the last nodeN. These are related to eq. (3.53)
and (3.54) by:

®(1F) =% (F). 9(®)=-3(F). (3.55)
Equation (3.55) is due to the permutation of thefioentss; between the two dierential
operatorsfl’B of eq. (3.47a) and,(lF of eq. (3.48b) that results in matched spectra in wavenum-
ber space. Similarly, the real and imaginary Fourier corepts of the prefactored forward
one-sided boundary stenciliat 1 of egs. (3.54a) and (3.54b) are related to the correspgndin
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backward one-sided boundary stencil components of eqs9¢h.and (A.200) by:
®((F)=®r(KF). 9(1F)=-3(rF). (3.56)

The above relations are given by the permutation of théficoentse; between the two dlier-
ential operators‘l’F of eq. (3.48a) and,(lB of eq. (3.47b).

Figure 3.27 shows the dispersive characteristics of thagiered one-sided boundary stencils
of eq. (3.47a) and eq. (3.48a) from Hixon (2000), comparednag the interioklC1122 sixth-
order scheme of eq. (3.36) and the prefactored one-sidadlbopformulations of Ashcroft & Zhang
(2003). Figure 3.27(a) shows that the one-sided boundangits of eq. (3.47a) and eq. (3.48a),
represented by the dashed lines, introduce a large dispegsior over the range®¥ < «/x <

1. This error, which mainly féects thepoorly-resolvedwaves, is due to biased nature of the
forwardbackward stencil. Figure 3.27(a) also shows, by the dadb#dd lines, the disper-
sive characteristics of the/8 one-sided boundary stencils of Ashcroft & Zhang (2003)esEn
stencils introduce a lower dispersive error with respeatds. (3.47a) and (3.48a) and their
dispersion characteristics are qualitatively more simitathe interior scheme. A common
feature of the one-sided prefactored boundary stencilseigifferent spectral characteristics
of their forward and backward components, as shown by thes Mith and without symbols
not overlapping one another in Fig. 3.27(a). This is unlike $pectral characteristics of the
interior scheme, shown by the continuos line, that follows MacCormack properties re-
ported in eq. (3.39). Specifically, the derivation of thefGo&nts of egs. (3.47a) and (3.48a)
does not satisfy the relatiog; = —en,1-j for 2 < j < 7, because they have been con-
structed by matching the Taylor series expansion of the daitvand backward prefactored
operators up to sixth and third-order, respectively, byddiX2000) and Ashcroft & Zhang
(2003). This process does not impose identical dispersiagacteristics for the forward and
backward components. Figure 3.27(b) is an enlarged viewioBR27(a). It shows that the
prefactored one-sided boundary stencils of eq. (3.47aegn¢3.48a) have a non-monotonic
behaviour in the range.®7 < «/n < 0.5, where they have a relative minimum. When prop-
agating waves in this wavenumber range with the prefactoredsided boundary stencils of
eg. (3.48a), the numerical solution i§ected by the introduction of spurious numerical waves
that have to be removed. This non-monotonic behaviour iprestent in the one-sided bound-
ary stencils of Ashcroft & Zhang (2003). Figure 3.27(c) sbawe dissipative characteristics
of the prefactared one-sided boundary stencils ferl. The one-sided boundary stencils of
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Figure 3.27: Dispersive characteristics of the prefactome-sided boundary stencils fot 1.
(a,b) Real and (c) imaginary components of the Fourier toams (d) Dispersive error from
eg. .11). (e) Dissipative error from eg2(12).
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3. NUMERICAL METHOD 3.5 Perimetrical scheme

eg. (3.47a) and eg. (3.48a) from Hixon (2000) introducegelarror in the range of th@orly-
resolvedwaves, whereas the prefactored one-sided boundary stesfciAshcroft & Zhang
(2003) mimic the behaviour of the interior scheme and stadeviate from it in the range of
the poorly-resolvedwvaves. The dissipative characteristics of the prefactaredsided bound-
ary stencils foii = N are equal and opposite to the dissipative characteristite@refactared
one-sided boundary stencils fioe 1 of Fig. 3.27(c), as reported in egs. (3.55) and (3.56). The
net dfect is that the dissipation resulting from the forward bamdstencil compensates the
one generated by the backward boundary stencil.

Figure 3.27(d) reports the relative dispersive error fram (@.11) for the prefactored one-
sided boundary stencils compared against the dispersiweddithe interior sixth-orde€1122
scheme. Figure 3.27(d) shows dfdience in the error magnitude between the correspond-
ing forward and backward components of the prefactoredsiaed boundary stencils, due to
their non-matched spectral characteristics. The prafedtone-sided boundary stencils have
a greater relative error with respect to the interior schezreept over the range2 N, < 3,
which representpoorly-resolvedvaves. The prefactored one-sided boundary stencils ofrHixo
(2000) have a lower dispersive error compared to the onesdhgraft & Zhang (2003), due
to their higher order of accuracy. The prefactored oneeshlimundary stencils of eq. (3.47a)
and eq. (3.48a) present, as already reported by Hixon (200@e troughs at ffierent val-
ues ofN,, two of which are in the region gioorly-resolvedvavenumbers and the last one is
in the well-resolvedwavenumber range. At these troughs, the relative errorrigpanable to
that of the interior scheme. A similar behaviour is shown ly telative error of the prefac-
tored one-sided boundary stencils of Ashcroft & Zhang (2088t with a single trough close
to N, = 2. Figure 3.27(e) shows the dissipative error from eq. (2fd2the prefactored one-
sided boundary stencils compared against the correspprdior of the interior sixth-order
C1122 scheme, in which the forward and backward stencils tteseame error value, given
by eq. (2.12). The relative error of the prefactored onesgidoundary stencils of eq. (3.47a)
and eq. (3.48a) from Hixon (2000) shows two troughs overpiberly-resolvedwavenumber
range 2< N, < 4.5. The prefactored one-sided boundary stencils of Ash&ahang (2003)
show two troughs aN, = 4.3 andN, = 7.4. At these troughs, the prefactored one-sided
boundary stencils have individually a relative error lowrean that of the interior scheme. For
higher values oN,, that is forwell-resolvedwaves, the prefactored one-sided boundary sten-
cils follow the trend of the prefactored interior sixth-er€C1122 scheme.

In conclusion, theféect of the real and imaginary errors are seen not so much ava¥es that
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propagate through the computation domain boundaries,es® thre regions of one computa-
tional point thickness, but rather on the generation of céfias due to the boundary numerical
impedance mis-match, which can be reduced by the applicafiértificial Boundary Condi-
tions of Sec. 3.6.2.

Kim (2007) derived a set of boundary closures, that mairftairth-order accuracy by optimiz-
ing the boundary schemes in the spectral domain. These bountbsures achieve the best
wavenumber resolution characteristics within a constfaindispersion and dissipation errors
appropriate for CAA.

Applying the Fourier transform to the eq. (3.51a), the m{ﬁ) and imaginarnyd (’fl"E) com-
ponents of the prefactored forward interior 11-point silemic the i-th node are obtained as:

R (EI"E) = [(=b_5 + bs) sin(5) + (—b_4 + bs) sin(4k) + (—b_3 + b3) sin(Z) + (—b_o + by) sin(2)+
+(=b_g +by) sin)], (3.57a)
N (E’VF) = —[(b_s + bs) cos(%) + (b_4 + bg) cos(4) + (b_3 + bg) cos(Z) + (b_» + by) cos(X)+

+(b_1 + by) cos) + bo] . (3.57b)

The real and imaginary Fourier components of the prefadttwackward interior 11-points
stencil for thei-th node of eq. (3.51b) are related to egs. (3.57a) and (BB7b
‘R(F’E) - %(ETF), g (?‘E) - _3 (TF) (3.58)

due the permutation of the ceientsb; between the two finite-lierence approximationfs’™

of eq. (3.51a) ano‘i’B of eq. (3.51b). Hence, the prefactored backward and forivaedior
11-point stencils follow the same properties of the MacGarkschemes of eq. (3.39).

Figure 3.28 shows the dispersive characteristics of theduat prefactored interior 11-point
stencil of eq. (3.51a) compared against the interior sixtter C1122 scheme of eq. (3.36),
the fourth-order three-point stencil prefactored compatieme of Ashcroft & Zhang (2003),
and the prefactored interior 11-point formulations of Hix@000) and of Ashcroft & Zhang
(2003). The prefactored interior 11-point stencils of Aslfic& Zhang (2003) match the Taylor
series expansions of the forward and backward interiocgssto fourth-order accuracy and use
the remaining free cdicients to more closely match the spectral characterisfitsese sten-
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cils with those of the interior scheme. Figure 3.28(a) shihveslispersive characteristics of the
three interior schemes. The prefactored interior 11-plointard stencil of eq. (3.51a), shown
by the(~—v—-) line, has essentially the same dispersive properties ¢fitkan (2000) scheme,
shown by the dashed lile -). Both schemes underestimate the scaled pseudo-wavenomber
the interior sixth-orde€1122 scheme as shown by the maxima of the dashed lines bdavg be
the continuous line. This fference is marginally amplified by the cost-optimizationgess
of Sec. 3.2.3, as shown by Fig. 3.11(a). The prefactoredolrit-ptencil of Ashcroft & Zhang
(2003), shown by th¢- - --) line, has a closer match to the exact analytical solutiah = «
compared to the prefactored 11-point stencil of eq. (3.abd)of Hixon (2000), shown by the
dashed lines.

Figure 3.28(b) shows the dissipative characteristics efptefactored forward interior 11-
point stencil schemes. The continuous lines represent isipdtive characteristics of the
interior sixth-orderC1122 compact scheme of eq. (3.36) and of the fourth-ordeetpoint
prefactored compact scheme of Ashcroft & Zhang (2003). Tieéaptored 11-point stencil
of eq. (3.51a) has essentially the same dissipative piepest the prefactored 11-point sten-
cil scheme of Hixon (2000), as shown by the dashed lines appithg in Fig. 3.28(b), with
both schemes following the continuous line of the inte@dr22 scheme in theell-resolved
wavenumber range 8 x/n < 0.55. The prefactored interior 11-point stencil of AshcrofZkang
(2003), which is optimized to minimize the dissipation as¢he wavenumber range, is the
closest to the abscissa of Fig. 3.28(b) among the threeqboedal interior 11-point stencils.
Figure 3.28(c) reports the relative error from eq. (2.1X)tfe three prefactored interior 11-
point stencil schemes. The continuous lines representisperdive error of the interior sixth-
order C1122 compact scheme of eq. (3.36) and of the fourth-orderetpoint prefactored
compact scheme of Ashcroft & Zhang (2003). The dispersiver @f the prefactored interior
11-point stencil of Hixon (2000), shown by tlie-) line, follows that of the interior sixth-
orderC1122 compact scheme up to the error levet’1@vhere the dispersive error becomes
constant due to the single precision of thefieents in Hixon (2000). The prefactored in-
terior 11-point stencil of Ashcroft & Zhang (2003), shown the (- - --) line, has a trough
atN, = 4.3, which is very close to the corresponding trough of theriaotecompact scheme
of Ashcroft & Zhang (2003) denoted Ky—o—). ForN, > 4.3, the prefactored interior 11-
point stencil of Ashcroft & Zhang (2003) follows the fourtinder dispersive error rollb of

its corresponding interior scheme. The dispersive errdhefprefactored 11-point stencil of
eg. (3.51a) follows the dispersive error of the prefactdradrior 11-point stencil of Hixon
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Figure 3.28: Dispersive characteristics of the forwardamered interior 11-point stencils for
i-th node. (a) Real and (b) imaginary components of the Foaasform. (c) Dispersive error
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(2000) in the range gboorly-resolvedwavenumbers up td; = 4. ForN, > 4, the scheme
of eq. (3.51a) has the lowest dispersive error among thexqgiwed interior 11-point sten-
cil schemes. This is due to the eleventh formal order of amyupf eq. (3.51a), which is
higher than the ninth and fourth-order closures used by i{000) and by Ashcroft & Zhang
(2003). The optimization of the prefactored interior 1ifpatencil followed by Hixon (2000)
and Ashcroft & Zhang (2003) aims to match the dispersiveresfadhe prefactored interior
11-point stencil with the corresponding interior schemehe Tost-optimization process of
Sec. 3.2.3 modifies the dispersive error of the interior-opsimized schemes, as shown in
Fig. 3.11(b), with a single trough atfi#rent values oN, that are function of thepsmn level

of error (withn = 3,4,5). Therefore, it was elected to couple the cost-optimizéeeste with a
prefactored interior 11-point stencil scheme that hasdivest dispersive error for this stencil
across thavell-resolvedwvavenumber range.

Figure 3.28(d) shows the dissipative error from eq. (2.12)tfie three prefactored interior
11-point stencil scheme, showed by the dashed and dashied-dines. The continuous lines
display the dissipative error of the interior sixth-ordgt122 compact scheme of eq. (3.36)
and of the fourth-order three-point prefactored compalseste of Ashcroft & Zhang (2003).
The dissipative error of the prefactored interior 11-pasieincil of eq. (3.51a) is essentially the
same as the one from the prefactored interior 11-point #teh&lixon (2000), as shown by
dashed lines overlapping in Fig. 3.28(d). Both schemeswvothe dissipation error of the in-
terior sixth-orderC1122 scheme foN, > 4. The prefactored interior 11-point stencil scheme
of Ashcroft & Zhang (2003) shows the lowest dissipative eacross the whole wavenumber
range. It follows the dissipation error of the correspogdinterior scheme fowell-resolved
waves. Figures 3.28(c) and 3.28(d) show that the prefattorerior 11-point stencil of
eq. (3.51a) has reduced the dispersive error imiléresolvedvavenumber range with respect
to same stencil-size schemes in the literature, withoubdhicing any appreciable additional
dissipation.

Whereas the current formulation is satisfactory for theoppae of modelling the flow and noise
in the test cases of Chapter 5, there is scope for further woikprove the spectral match
between the interior implicit scheme of eq. (3.36) and tlefgmtored forward interior eleven-
point stencil of eq. (3.57a) and (3.57b). The Fourier sesfesg. (3.57a) and (3.57b) can be
Padé transformed into rational functions, to match themat function form of eq. (3.36).
Prior to the application to the test-cases of Chapter 5, thraemical stability of the cost-
optimized schemes combined with the boundary closuresalysed in Sec 3.5.2.
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3.5.2 Eigenvalue analysis

An eigenvalue analysis has been performed to verify undéchwt¢onditions the prefactored
cost-optimized schemes of Sec. 3.2.4 coupled with the Byradosures of Sec. 3.5.1 generate
a numerically stable algorithm. This work follows the arsadyby Lele (1992) as extended to
prefactored schemes by Ashcroft & Zhang (2003). Firstly,glyenvalue analysis is performed
on the classical and the cost-optimiZe#l122 interior schemes of eq. (3.24), with the boundary
closure of eq. (A.88). This analysis is reported in Apperli&. Then, the eigenvalue analysis
is carried out on the prefactored counterpart schemes of&88) and (3.34) coupled with the
boundary closure of egs. (3.47) and (3.48). This stabiliigysis of the semi-discrete form of
eg. (2.13) is based on the method of lines (Hirsch, 2007).

Consider the_AE of eq. (2.13) over the domain€ x < 1 with a prescribed inflow boundary
conditionu(0, t) = g(t). For the purpose of this stability analysigt) can be set to zero without
loss of generality (Carpentet al., 1993a). The domain is discretised iMiauniform intervals
(N + 1 nodes) of widttAx = 1/N. Imposing the boundary condition at the- 0 node leads
to N unknowns to be found & 1,--- , N). The spatial derivativé%u( of eq. (2.13) is evaluated
by the prefactored finite ffierence approximation of eq. (3.32). This linear operatoy b
formally written in matrix form as

1
AFuf = HBF u, (3.59a)

1
ABUB = HBBu, (3.59b)

whereu, u’F andu’® are N-dimensional vectors representing, respectively, thaesbf the
function and its prefactored finiteftitrence approximation at the nodes= i/N

U= (U, Uy, ,Un_1, UN)T’ u’F = (uiF’ U/ZF’ L ’u;\lF—l’ UNF)T, u'B = (US-B’ U,ZB’ L ’u;\lB—l’ UNB)T
(3.60)
andAF, AB BF BB areN x N squared matrices. The system of equations (3.59) is apaiied
nodes = 1toN.
Substituting eq. (3.59a) and (3.59b) to eq. (2.13) yielda tystem ofODE swhich may be
written as
du ¢

- _ZM .61
at -~ h (3.61)
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whereM is anN x N matrix, which is determined from linear algebra.
Specifically, through the application of the boundary ctindig(t) = 0, the forward matrices
AF andBF are re-written as

ce be 0 0 0
ﬂ;: aE 0 0 0
de ¢ Dbr 0 0
0 ﬂ;: aF 0 0
0
AF = , BF= 0
0 0 ﬁF aE 0
0 0 de cf br 0
0 0 - 0 B ar
0 0 0 d|: Cg b|:
0O 0 O 0 1
O -+ -5 -+ -3 - -5
(3.62)
Similarly, the backward matrices® andB® are
0
Bg 0 0 --- 0 O 2% &
dg cg bg 0 0
Y8 B8 0 0O --- O
0 0
0
AB = , BB=| o 0
0 0 8 B8 0 O
0 0 0 dg Cg bg 0
0 0 -~ v B O
0 0 0 dB Cp bB
o o o --- 0 1
0 eN-6 ‘- En—2 ©en-1 €N
(3.63)

where the cofficientss’ are

S, =-ye(S2+Cg); S3=-y(S3+bB); S, = ~¥BS4: & = —¥BSs; S = —VBS6: S; = —VBST-
(3.64)

The top row of theBB matrix has been rearranged to eIiminag@, which is defined by the
boundary condition onp, g(t) = 0 as detailed in Appendix A.4.
Using Eq. (3.32)u’ may be expressed as:

=) = (A e () 8 @69
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from which

M = %((AF)_lBF ; (AB)‘lBB). (3.66)

Since eq. (3.61) is a system of ODE's in time with constantfo@ents, it admits as solution
ortho-normal modes = €°'{i, with a constans representing the rate of decay or amplification
of the modes. Substituting = €° into eq. (3.61) leads to an eigenvalue problem

i=-sMaQ, (3.67)

wheres* = 5} is the dimensionless eigenvalue aindbecomes the corresponding eigenvec-
tor. The eigenvalusis in general complex and it depends on the $izef the matrixM, the
interior scheme, and the boundary closures. The mitrig, in general, non-symmetric. To
numerically determine its eigenvalues, a balancing praeeds firstly applied to reduce the
norm of M. Then, the matriXxM is converted into its Hessenberg form, suitable for @
transformation that gives the complex eigenvalues (PreBsr&, 1996).

The real parts of the eigenvalues are required to be equalserthan zero to guarantee the
numerical stability of the interior scheme coupled with bmaindary closure, i.ees| < 1.

Figure 3.29 plots the Laplace plane or eigenvalue spectumwhich is the root-locus of the
combined scheme. Thdfect of the boundary closures on the eigenvalue spectuior the
classical Pad€1111 interior scheme, thatis, = 1/4 in eq. (3.24), is reported. Figure 3.29
reproduces the results of Lele (1992).

Figure 3.30 presents the plot in the Laplace planeGad22 classical sixth-order scheme
and the cost-optimize@1122psm5, C1122Z2psm4, C112Z2psm3 schemes. They are cou-
pled with a fourth-order non-centered comp@et boundary closure at the= 1 andi = N
mesh nodes, and a fifth-order non-centered com@acboundary scheme at the= 2 and

i = N — 1 mesh nodes, as detailed in eq. (A.88). The combined scharaessymptotically
stable (Carpentest al,, 1993a), that i8R (s*) < 0 for all the value ofN considered.

Figure 3.31 shows the eigenvalue spectisirfor the fourth-order prefactored compa&ti122
scheme of Ashcroft & Zhang (2003) coupled with a three-pdmirth-order boundary stencil.
Figure 3.31 shows that the combined is asymptotically stabhis plot matches the results
of Ashcroft & Zhang (2003).

Figure 3.33(a) shows the eigenvalue spectsirof the classicalC1122 prefactored compact
scheme of egs. (3.33) and (3.34) coupled with the prefattone-sided boundary stencils of
egs. (3.47) and (3.48). It is shown that the most of the eigles are located in the left half
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Figure 3.29: Hect of boundary closures of edd.88) on the eigenvalue spectrusi for the
classical Pad€1111 schemen; = 1/4 in eq. B.24). N = 49. (a) First-order explicit scheme
E1 at the boundaries. (b) Second-order explicit scheat the boundaries. (c) Second-order
compact schem€2 at the boundariesyf, = 1). (d) Third-order compact schen@S at the
boundariesdiz = 2).
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Figure 3.30: Eigenvalue spectrum for the classiCall22 scheme and the cost-optimized
C12epsmn schemes, witin = 5,4,3. (A) N = 21,(c) N = 41, (¢) N = 81, (v) N = 201,
(@) N = 401 (a)C1122 Carpenteet al,, 19933. (b) C112Z2psm5. (c) C112Zpsm4. (d)
C1122psm3.
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3. NUMERICAL METHOD 3.5 Perimetrical scheme

of the complex plane. However, some of them marginally ctieeg-axis on the positive side.
In particular, an eigenvalues pair acts as poles at theimsi}’z ~ (0.157,+1.4). A similar
behaviour is reported by Figs. 3.33(b), 3.33(c) and 3.33ftjch show the eigenvalue spec-
trum for the cost-optimize@€112Z2psmn (with n = 5, 4, 3) interior schemes, coupled with the
same prefactored one-sided boundary stencils of eqs.)(8m7(3.48). Table 3.8 reports the
real parts of the first two pairs of positive eigenvalt%g and S34 from eq. (3.67), obtained
by varying the number of nodes for the classical prefactorgd1122 and the cost-optimized
C112Zpsmb5, C1122psm4 andC1122psm3 interior schemes. It is shown that the orders of
magnitude of the real parts of the eigenvalue pg’jlrare relatively small and they tend to zero
as the number of nodds increases. As the number of nodé$ecomes larger, the real parts
of the eigenvalue pairq’2 asymptotes to the constant value. It turns out that thosgponemts
with real part are neutrally stable in practice and they docaoise any instabilities in the ac-
tual computations (Kim, 2007), as reported in Chapters %.r&ference, Fig. 3.32 shows the
classicalC1122 prefactored scheme coupled with the four points, 4bicier one-sided bound-
ary stencils of Ashcroft & Zhang (2003). With such boundamnsils, the combined scheme
results to be asymptotically stable.

This eigenvalue analysis has shown that the cost-optinprefictored compact scheme cou-
pled with the selected boundary closures are conditiorsifible. These schemes, in coinci-
dence with their application to the selected aeroacoustiblems, are reported in Chapters 5.
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Figure 3.31: Eigenvalue spectrum for the fourth-order autefred compac€1122 scheme
of Ashcroft & Zhang(2003 coupled with third-order boundary closur®) N = 26; (X) N =
51;(+) N = 101.
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Figure 3.32: Eigenvalue spectrum for the prefactored idals§1122 scheme coupled with the
four points, third-order one-sided boundary stencil&siicroft & Zhang(2003: (a) N = 21,
(o) N =41,(o) N = 81,(v) N = 201, (o) N = 401.
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Figure 3.33: Eigenvalue spectrum for the prefactored idak€1122 scheme and the cost-
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3. NUMERICAL METHOD 3.5 Perimetrical scheme

C1122 @ = 1/3) N  R(s;,) R(si,)
21 0.153812  0.0279661
41 0157185 0.0104212
81 0.157096 0.00467175
201 0.157096 0.00179513
401 0.157096 0.000881983
C1122psm5 (a1 = 0.33750)

21 0.165735 0.0232195

41 0.16442 0.0091237

81 0.164442 0.00452301

201 0.164442 0.00168956

401 0.164442 0.000831262
C1122psm4 (a1 = 0.34240)

21 0.176703 0.00185276

41 0.172182 0.00869214

81 0.172233 0.00408224

201 0.172233  0.0015743

401 0.172233 0.000771996
C112Zpsm3 (a1 = 0.3532)

21 0.184775 0.0010779
41 0.183112 0.00732721
81 0.183141 0.00347811
201 0.183141 0.00131947
401 0.183141 0.000648061

Table 3.8: Real part of the first two positive eigenvalue spajr and S34 from eq. 3.67)
for different number of nodel. Classical prefactore@1122, cost-optimize€1122Zpsm5,
C112Zpsm4 andC1122psm3 interior schemes.
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3. NUMERICAL METHOD 3.6 Artificial Boundary Conditions

3.6 Artificial Boundary Conditions

3.6.1 Characteristic based boundary conditions

The behaviour of a multi-dimensional prefactored compadifidifference method at the com-
putational domain boundaries can be assessed in the cofteetsimpler problem of the one-
dimensional advection dominated flow, in characteristitnfo Recall the characteristic form
of the governing LEE of egs. (3.22) and (3.23) in Sec. 3.1.2JAder the one*-dimensional
x-direction flow approximation, at an orthonormal comp tadil boundaryi)9 = 0, the
system of egs. (3.23) simplifies into a set of Local One-Disimamal Inviscid (LODI) equa-
tions (Poinsot & Lele, 1992)

aa,:: + :Lz + % (Li+Ly)|=0 (3.68a)
g‘tf ; % (La— Ll): -0 (3.68b)
‘;: s -0 (3.680)
%f: ; % Li+Ll)| =0 (3.684)

Equation (3.68) states the LODI systein in thdirection. Appendix A states the LODI system
in the y-direction, where the terrﬁg% in the system of eq. (3.11) is replaced by the char-
acteristic wave amplitude variatiorhis estimated for the-direction. Comparing the LEE of
eqg. (3.68) with the system of equations reported by Colo(@084), the two set of equations
coincide under the assumption that the characteristic Wwave set to zero.

The treatment of corners in a two-dimensional domain reguin extension of the LODI pro-
cedure. Like any other formulation, the LODI approach forness in a two-dimensional
domain and edges in a three-dimensional domain requires sompatibility conditions to be
satisfied at these locations. A general definition for allghesible combinations of boundary
conditions at corners and edges is not available and apfrebeseven more dicult than the
usual studies of well-posedness, as reported by ColonQg4{j2

The LODI system of eqs. (3.68) is used to close the systengebahic equations at the com-
putational domain boundaries. At the computational dorbaindaries, the LODI system of
egs. (3.68) is solved with the interior scheme of the systésys. (3.23) to predict the flow.
The LODI relations of egs. (3.17) are first used to estimagevthve amplitude variations;.
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Then, the value of the flow state at the boundaries as wellthg @bmputational domain inte-
rior is time-advanced by integrating the system of eqs 2)3 &arting from a known flow state
att = 0 (Thompson, 1987, 1990).

Most physical boundary conditions have a counterpart L@&Htion. This is obtained by set-
ting the amplitude of the characteristics walgsn the system of egs. (3.22) according to the
following condition. If the characteristic velocity; points out the computational domain, the
correspondind.; is computed from the definition of egs. (3.17), using onediderivative ap-
proximations of egs. (3.47) and (3.48). Elsejiifpoints into the computational domaik; is
specified from the boundary conditions.

The following Secs 3.6.1.1, 3.6.1.2, 3.6.1.3 report thresmles of LODI implementation,
respectively: subsonic inflow, subsonic outflow and indseall. These boundary closures are
used in the test-cases of Chapter 5. The LODI implementétiosupersonic case is reported
by Lele (1992).

3.6.1.1 Subsonic inflow

Figure 3.34 sketches a computational domain boundetdmygb, a < x < b, with a prescribed
subsonic inflow boundary condition at the computational dionboundariesx = a andx =

b. This computational domain, having only inflow boundariissnot intended to represent
a physical flow but only to support the current descriptiorthef subsonic inflow boundary
condition. In these domain, the corresponding directidrth@ characteristic velocitie are
shown in Fig. 3.34 and their values are

Xx=a O0<My<l1l 11=My-1<0 Ap=A3=Myx>0 A3=My+1>0, (3.693)

X=b -1<My<0 A21=My-1<0 Ap=A3=My<0 A3=My+1>0. (3.69b)

At the computational domain boundary= a, the characteristic velocity; and the corre-
sponding left going acoustic watg points out the computational domaib; is anoutgoing
waveand it is computed by the one-sided derivative approximatibeqgs. (3.47) and (3.48).
The characteristic velocitie, 13 and A4 are pointing into the computational domain and the
correspondind./ sareincoming wavesTheir amplitude is set to zero, thatlis = L3 = L4 = 0.

At the computational domain boundaxy= b, the characteristic velocitiek;, 12, 13 and the
corresponding characteristics wavgs point into the computational domain. They ameom-

ing wavesand their amplitude is set to zerb; = L, = Lz = 0. The characteristic velocity
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Figure 3.34: Characteristic velocitidsfor subsonic inflow ak = aandx = b.

A4 and the corresponding right going acoustic wayds pointing out the domainL, is an
outgoing waveand it is computed by the one-sided derivative approximatibeqgs. (3.47)
and (3.48).

3.6.1.2 Subsonic outflow

Figure 3.35 sketches a computational domain boundetdmygb, a < x < b, with a prescribed
subsonic outflow boundary condition at the computationah@io boundaries = aandx = h.
This computational domain, having only outflow boundariesnot intended to represent a
physical flow but only to support the current description teé subsonic outflow boundary
condition. In these domain, the corresponding directidrth@ characteristic velocitie are
shown in Fig. 3.35 and their values are

X=a -1<My<0 A1=My—-1<0 Ap=A3=Myx<0 A3=My+1>0, (3.70a)

X=b O0<My<l A1=Myx-1<0 A2=A3=Myx>0 A3=My+1>0. (3.70b)

At the computational domain boundary= a, the characteristic velocity;, 1, and A3 and
the corresponding characteristics waléspoint out the computational domain. They arg-
going wavesand they are computed by the one-sided derivative appraixinsaof egs. (3.47)
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Figure 3.35: Characteristic velocitidsfor subsonic outflow ak = aandx = b.

and (3.48). The characteristic velocity and the corresponding right going acoustic waye
is pointing into the computational domaib, is anincoming waveand its amplitude is set to
zero,L4 = 0.

At the computational domain boundary= b, the characteristic velocity; and the corre-
sponding left going acoustic wavg point into the computational domaih is anincoming
waveand its amplitude is set to zero; = 0. The characteristic velocitiels, 13 andA4 and the
corresponding characteristic waugs point out the computational domain. They atggoing
wavesand are computed by the one-sided derivative approxinmtibrgs. (3.47) and (3.48).

3.6.1.3 Inviscid wall

Figure 3.36 shows a computational domain bounded bpdb, a < x < b, with a subsonic
inflow boundary condition ak = a computational boundary, and an inviscid wallxat b.
Inside the domain the flow is quiescent. The values of theacharistics velocitieg; at the
computational boundary = b are

x=b My=0 A;=-1<0 Ap=13=0 A4=1>0. (3.71a)

Therefore, the characteristic velocitigs, 13 and the corresponding amplitude of the charac-
teristic wavesL, and L3 are set to zero. The characteristic velocityis equal to the non-
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Figure 3.36: Characteristic velocitidsfor a subsonic inflow ak = a and an inviscid wall at
x=b.

dimensional speed of sound and the corresponding righggainustic wavé.4 points out the
computational domainL, is anoutgoing waveand it is computed by the one-sided deriva-
tive approximation of egs. (3.47) and (3.48). The charé&ttervelocity 1; is equal to the

non-dimensional speed of sound too and it points into thepctational domain. Its value is
ou*

ot*

specified by the no-slip wall boundary condition, i&.= v = 0 and = 0. By substituting
these constraints in eq. (3.68b)

Ly = La. (3.72)

Equation (3.72) states that the amplitude of the left goioguaticincoming wave L is set
equal to the amplitude of the right going acoustiggoing wave k. This means, physically,
that the incoming wave is reflected back by the no-slip watlhwhe same amplitude.

Inviscid moving walls are useful boundary conditions in goromputations. They are charac-
terized by only one inviscid wall condition. In the case ofirmero wall normal velocity, the

condition from eq. (3.68b) is
ou*

ot
Lodatoet al.(2008) have extended the Navier-Stokes Characteristin@any Condition (NSCBC)
to account for convection and pressure gradients in boynplanes, resulting in the 3D-

Li=Ls+2 (373)

NSCBC approach. This technique has shown significant regtuctf flow distortion and
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boundary reflection even when the configuration is charaeby high tridimensionality of
the flow field, accompanied by obliquely propagating wavdss s the case of high-speed jet
or shear flows, whereas the LODI relations make serious tigftescwithout proper treatments
or appropriate absorbing layers (Poinsot & Lele, 1992).

3.6.2 Absorbing layers

The present numerical scheme is designed to provide lovwedism and dissipation errors.
Therefore, any inconsistency due to the numerical treatretine computational boundaries
will introduce errors or spurious wave reflections in the paation, which will eventually
degrade the solution. To overcome this problem, an abaptbiyer is introduced in the nu-
merical model to enhance théieacy of the Artificial Boundary Conditions. In this region,
the governing equations are modified approaching the catipotl boundaries. These re-
gions are referred in the literature as absorbing layemsgdrregions, or hiier zone. The
absorbing layer concept was introduced by Israeli & Ors2881) in the context of modelling
linear wave propagation problems. At that time, the teammithey developed was motivated
by difficulties in formulating a local non-reflecting boundary citiod for the linearized wave
propagation problem. Recent advancements of finite-tieskitboundary treatments with non-
reflecting properties are reported by Colonius (2004). Sofitkis development make use of
absorbing layers for both linear and non-linear unsteadyprdations.

Absorbing layer treatments typically damp disturbancesreethe interact with an Artificial
Boundary Condition. A simple way to do this is either by imtoging artificial dissipation
by upwinding (Lockarcet al., 1995; Zhuang & Chen, 1998), or by increasing the value of the
fluid viscosity, or by adding an eddy viscosity (Tatal., 1993), or by adding a linear friction
codficient to the governing equations (Richaedsl., 2004).

The absorbing layer technique is relatively easy to implanmea computational scheme, but
the inclusion of artificial damping within the absorbing éayneans that the solution is locally
non-physical. The absorbing layer is itself reflective amithout further modification, the only
way to obtain a satisfactory result is to gradually increthgedamping over a relatively long
distance. This results in thick, computationallyfiigent layers (Colonius, 2004). Alternative
techniques to the absorbing layer are Asymptotic Expangietihod (Tam & Web, 1993) and
Perfectly Matched Layer (Hu, 1996).

In the present work, two absorbing layer variants are aedly$he first one, referred agpel
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AL (Absorbing Layer), is a technigue by Richastsal. (2004) that directly forces the solution
to a target flow state within the absorbing layer. The secorg @belled aJypell AL, is a
zonal characteristic based boundary condition proposesimyiberg & Sandham (2006).

3.6.2.1 Typel Absorbing layer

In the Typel AL, the absorbing layer is a computational domain enclosiagttysical domain
in which damping is directly applied to the numerical sauatvectorU after each time step

U™t = UM — g0 (U™ = Utarger) (3.74)

whereU™1 is the numerical solution vector after each time step@gge: is a given reference
flow state. The damping cfiicientg(x) is defined as

81

w- X (3.75)

w

1-

g(x) = a2

wherex is the distance from the inner boundary of the absorbingrlapdw is the absorbing
layer width, as sketched in Fig. 3.37. ParameterandB; are used to determine the shape
of the damping caicientg(x). The damping cdécientg(x) is set to zero ak = 0, which is
the interface between the absorbing layer and the compngtilomain interior. Full damping
is applied atx = w, at the outer edge of the fiar zone to damp the target solution. Within
the absorbing layer, the damping fibgent g(x) is varied smoothly to minimize possible re-
flections. In this way, the numerical solution vectdit*! is gradually changed towards the set
target valueUarqet at the outer edge of ifier zone, atx = w. At an outflow computational
domain boundarWiarget is set to the mean flow value.

Setting a target value for the numerical solution vettor is the non-reflecting criterion upon
which absorbing layer boundary conditions work. This typalwsorbing layer approach gen-
erally involves cofficients that are flow-dependent and assume prior knowledtfe dfize of
the flow structure to be damped.

3.6.2.2 Typell Absorbing layer

Sandberg & Sandham (2006) proposed to extend the LODI syt&wam 3.1.2.2 from a bound-
ary plane to a zone of finite thickness. The characteristiocitées A; and the corresponding
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amplitudes of the characteristic wavels are computed within a specific absorbing layer. If
L; is anoutgoing waveits amplitude is computed by the one-sided derivative @agprations
of egs. (3.47) and (3.48), and it is left unchanged withis tiegion. Else, iL; is anincoming
wave its amplitude is gradually ramped to zero at the outer edigeeobufer zone according
to

~ X

G=sx-L,  sx= 0.5[1 + cos(W)] . (3.76)

Figure 3.37 sketches an outflow absorbing layer at the caatipoal domain boundary = b.
The characteristic velocitie and the corresponding characteristic waligsare reported in
eg. (3.70b). At the computational domain boundary: b, the characteristic velocity; of
the corresponding left going acoustic wavepoints into the computational domaih; is an
incoming wavend its amplitude is ramped to zero according to eq. (3.78)imvihe absorbing
layer. The characteristic velocitids, 13 andA4 of the corresponding characteristic walas
L, and L3z point out the computational domairl.;, L, and L3 are outgoing wavesand are
computed by the one-sided derivative approximations of @47) and (3.48) and they are left
unchanged within this region. The technique is extendetid¢artflow boundary condition by
multiplying the amplitude4.s of theincoming wave®y a ramping function within a zone, as
described fol; in the case of an outflow boundary condition.

In contrast to most other zonal approaches, this methodees df codficients that require
calibration. The only parameter to be set is the width of tliféelo zonew.
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Figure 3.37. Sketch of the outflow absorbing layer at the adatmpnal domain boundary

X =h.
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3.7 Chapter summary and achievements

This chapter has presented the numerical method used imeber work.

Section 3.1 has reported the governing equations solvdtipresent study, that are the LAE
and the LEE. The derivation of the LEE in non-dimensional #mnncharacteristic form starting
from the 2-D strong conservative form of the Euler equatioais been reported.

Section 3.2 has introduced the spatial discretization atetised. The most common finite-
difference schemes used in CAA have been reviewed and compaerdciof computational
efficiency. The fect of the spatial discretization and the number of physidalensions on
the computational cost has been analysed. The spatiabptistization technique, based on
the maximization of the spatial resolvinffieiency«* for a given value of normalized errer ™
has been presented. The cost-optimized schemes has berdezkto the class of sixth-order
prefactored compact schemes of Hixon (2000) and a new cfassstoptimized prefactored
high-order compact scheme has been developed.

Section 3.3 has analysed the impact on the computationabtasing diferent time integra-
tion schemes for a two dimensional problem for various apdiscretization schemes. The
temporal cost-optimization technique, based on the masitioin of the temporal resolving ef-
ficiencyZ" for a given value of normalized errerfias been presented. A temporal stability and
accuracy analysis has confirmed that the cost-optimizafioes a small advantage in terms of
temporal dissipation and dispersion properties of theltiaguschemes.

Section 3.4 has shown the predicted performance of the cmdlspace and time cost-optimization
schemes for the same level of error. A computational adgenis predicted by using cost-
optimized schemes to model wave propagation problems iatibgign operational point.
Section 3.5 has shown thdfect of the perimetrical scheme on the interior scheme. Two
methods of treating near-boundary points are presentecc@mgared against the boundary
treatments of Hixon (2000) and Ashcroft & Zhang (2003). Thet fapproach is a prefactored
sixth-order explicit one-sided finiteffierence scheme that uses a seven-point stencil, the sec-
ond is a prefactored explicit central scheme with an 114pstiencil. The wave propagation
characteristics of these boundary closures have been eedmin new 11-point stencil with
double precision accuracy has been derived, which has eddile dispersive error in the
well-resolvedvavenumber range with respect to the same stencil-sizersshavailable in the
literature, without introducing any appreciable addidbdissipation.
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An eigenvalue analysis has been performed and it has sha@tihil cost-optimized prefac-
tored schemes coupled with the selected boundary clostgenaditionally stable.

Section 3.6 details the artificial boundary conditions usethe present study. Three imple-
mentation of the LODI technique are shown: the subsoniciinfthe subsonic outflow and
the inviscid wall. Two type of absorbing layer technique digcussed. The first one is the
absorbing layer technique by Richamtsal. (2004), that directly forces the solution to a target
flow state within the absorbing layer. The second one is alatraacteristic based boundary
condition proposed by Sandberg & Sandham (2006).

The main achievements of this Chapter 3 are:

e The development of a new class of cost-optimized prefadtoigh-order compact schemes.

e The temporal stability and accuracy analysis has confirrhatithe cost-optimization
gives a small advantage in terms of temporal dissipationdésyersion properties of the
resulting cost-optimized schemes.

¢ A computational advantage is predicted by using cost-apéithschemes to model wave
propagation problems at their design operational point.

e The derivation of a prefactored interior 11-point stendihwlouble precision accuracy
that has shown a better performance in spectral sense cethfmathe equivalent ones
available in the literature.

e An eigenvalue analysis has been performed and it has shatrihté cost-optimized
prefactored schemes coupled with the selected boundasyrel® are conditionally sta-
ble.
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Chapter 4

MPI single domain decomposition

4.1 Parallelization strategy

The compact finite-dierence approximation of the spatial derivatives makes taealleliza-
tion challenging and non-trivial. The parallelization sha&eved by domain decomposition, as
shown in Fig. 4.1 for a two-dimensional Cartesian domaine Xlany axes are divided, re-
spectively, inm andn segments, to obtain a total of x n blocks. This multi-block parallel
computation uses one processor per block and the methodrwhaoaication between adjacent
blocks is by finite-sized overlaps. At every time step, thieittan is computed independently
in each block with individual interior and boundary formellas in single-block computations.
The number of points in the interface overlap region is dribg the specific choice of the
finite-difference approximation of the spatial derivative along tieriblock boundaries. This
is estimated by the 11-point explicit prefactored inteboundary stencil of eq. (3.51), which
gives a finite-sized overlap region of five points, as skatdhd-ig. 4.1. The scheme has been
tested to be stable and accurate on general curvilinearesesid viscous flows (Ghillani,
2012).

The LEE in a two-dimensional Cartesian co-ordinate systéfea. 3.1.2 are time-advanced
using the explicit fourth-order RK time-marching schemésec. 3.3. Datas are exchanged
between adjacent blocks at the end of every RK stage. Thetwted mesh of the finite-sized
overlap region gives an envelope of communication of consgize. This enables to use the
MPI persistent calls, to speed up the communication (MesPagsing Interface Forum, 2009).
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Figure 4.1: Domain decompaosition and communication scheitied blocks (h=n = 2).

4.2 Weak scalability tests

Weak scalability tests, that are the variation of the comiahal solution time with the number
of processor® for a fixed problem size, have been carried out by using thpgmation of an
acoustic pulse in a two-dimensional unbounded domain of B2cl.

The classicalC1122 scheme of egs. (3.33) and (3.34) is used as interioagicgéd scheme
combined with the outflow LODI of Sec. 3.6.1 at the computsdionumerical boundaries.
The classicaRK4 scheme is used to time advance the numerical solutionrd-ig@(a) shows
the L, norm error of the non-dimensional density perturbatiomieen the analytical and the
numerical solutions of a two-dimensional acoustic pulsgppgating in an unbounded do-
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main (Hardinet al,, 1995), on progressively refined computational meshe{$s & Rona,
2009). The same results were obtained using the multi-tdode with 4 and 16 blocks. The
rate of the numerical error rollfbis parallel to the-6 log(N) black dashed line, showing that
the code preserves its design sixth-order accuracy witintee-block boundaries.

The speed-up= T_I_r—‘: shown in Fig. 4.2(b), is defined as the ratio betw&gn the total time
of execution (total wall clock time) using the minimum numbéprocessors as referenief,
and Ty the time obtained using a greater numipeof processors (or compute nodes). The
speed-up varies among 0 apdA value of p indicates an ideal value (linear scaling).

Figure 4.2(a) shows the computational speed-up versusuimber of processors on the IBM
S 6 cluster, with a number of processors as refereade= 4, measured by instrumenting the
code with system clock calls and SCALASCA (doc, Julich SQuenputing Centre). The IBM
SP6 cluster was in production in CINECA from September 200%uMay 2012. The IBM
SP6 cluster consisted of 168 Power6 575 compute nodes. Baehcontained 32 cores with
128 GB of memory, with a peak performance of just over 100 Ef(gp6, CINECA). The com-
piler used was the natisel £ compiler of IBM with aggressive optimization using the @alling
flagSFCFLAGS= -03 -g -garch=pwr6 -qtune=pwr6 -gmaxmem=-1 -qcache=auto -ghot=vector
-ghot=simd -qenablevmx.

The speed-up, shown in Fig. 4.2(a), indicates that the glatlk time decreases almost linearly
with the number of processors used, that is upte 128. This is possible because the MPI
time per time step is a small fraction of the computatiormaktand because the communication
network of the SP6 used an Infiniband low latency high banthwigtwork.

4.3 Further work

The MPI single domain decomposition described in the pre/iSec. 4.1 has been imple-
mented by finite-sized overlap. In the mesh point at the faterbetween two adjacent blocks,
the approximation to the first derivative is evaluated with 11-point explicit prefactored in-
terior boundary stencil of eq. (3.51a) and (3.51b). In therior points of the blocks, the

compact prefactored classical 122 and cost-optimize@1122psmn schemes of egs. (3.33)
and (3.34) are used. By comparing the pseudo-wavenumbéeafdmpact interior scheme
of eq. (3.36) with the one of the 11-point explicit prefaerinterior boundary stencil of
eq. (3.57), a spectral mis-match is evident, due the apmetion of a rational function in
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Figure 4.2: Solution to test-case of SB2.1with the MPI domain decomposition.

eg. (3.36) with the Fourier series of eq. (3.57). The consege of that mis-match is the in-
troduction of an error on this parallelization strategy,ahhhas not been revealed in the tests
reported in Sec. 4.2.

An alternative approach to the use of the finite-sized opeidahe slab decomposition. Fig-
ure 4.3 shows that, with this parallelization strategy, shiee division is done for a given
direction of parallelization. The solution is time-advadcin the single slices (or slabs) by
using the boundary and interior formulation as in a seribl(©Golonius, 2011). In this case,
no error or approximation is introduced by the parallel@atstrategy. When the derivative
in next direction has to be computed the data are transpgsedihg the the!PT Al1toAll
directives to transpose the data (Message Passing Iredetacm, 2009). For the extension to
three dimensional space in HPC clusters, the parallel peeoce of the code can take advan-
tage of the new 2D pencil domain decomposition already implated in the 2DECOMP&FFT
library, a software framework in Fortran to build largedsgaarallel applications. It is designed
for applications using three-dimensional structured naghspatially implicit numerical algo-
rithms. This library is optimised for supercomputers amaless well to hundreds of thousands
of cores (Guarrast al,, 2013; Li & Laizet, 2010).
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Figure 4.3: Domain decomposition and communication scheitieslab decomposition: (a)
decomposition irY direction; (b) decomposition iX direction.

4.4 Chapter summary and achievements

This chapter has presented the parellization strategyteddpr the serial code.

Section 4.1 has reported the parallelization strategyemphted in the actual code, based on
MPI single domain decomposition and finite-sized overlagpae.

Section 4.2 has shown the weak scalability tests on the-statgt HPC cluster. Good scala-
bility results are shown up tp = 128 number of processors.

Section 4.3 has described the further work on the paradistia strategy based on the slab
decomposition.

The main achievements of this Chapter 4 are:

e A parallelization strategy based on MPI single domain dqmusition and finite-sized
overlap region has been implemented and tested on HPCircluste

e The parallel version of the code has shown a good scalakiityexecution on HPC
clusters, up to 128 processors.
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Chapter 5

Verification and Validation

5.1 One-Dimensional Test-Cases

5.1.1 Monochromatic sinusoidal wave
Description of the test case

To verify the order of accuracy of the method of Chapter 3 asmda@hstrate his stability char-
acteristics, the classic@l1122 and the cost-optimizetil122psmn (with n = 5, 4, 3) interior
prefactored compact schemes of egs. (3.33) and (3.34) aptecbwith the prefactored interior
boundary stencils of egs. (3.51a) and (3.51b). Considendhedimensional form of the LAE
of eq. (2.13)

ou ou
E + (9_)( = O, (51)
with the following initial condition
u(x 0) = sin(2rx), (5.2)

where the superscript which represents the non-dimensional form, has been rethfor
shortness.
Computational Set-up

Equation (5.2) is solved numerically over the domaig X < 1, on a progressively refined
uniform mesh. The interior prefactored scheme of egs. 388 (3.34) is combined with
the prefactored interior boundary stencils of egs. (3.%&) (3.51b) atx = O andx = 1
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Table 5.1: Stability and accuracy limits for the classi€l122 and the cost-optimized
Cl112Zpsmn (with n = 5,4,3) schemes. StandaiRK4 is used for the time integration
(zs = 2.83,z5 = 0.7323).

scheme omaxfrom eq. .46 | o fromeq. 6.3
C1122/RK4 1.422 0.6631
Cl122psm5/RK4 1.407 0.6199
C1122psm4/RK4 1.394 0.5686
Cl1122psm3/RK4 1.360 0.4708

computational boundaries. The fourth-order, four-stalfeiRe integration scheme is used to
time-march the semi-discreteAE equation up ta = 10 (that is 10 periods), to check asymp-
totic stability. The Courant number is kept under the acoutanit o, which is calculated

as
o= A
©T ke (k)

where the temporal dissipation accuracy limjtand the spatial accuracy limit are taken,

(5.3)

respectively, from Tabs. 3.5 and 3.3. Table 5.1 summarieestabilityo-nax and accuracy
limits for the classicaC1122 and the cost-optimiz&gil12Z2psmn (with n = 5, 4, 3) schemes.
The exact solution to the initial condition of eq. (5.2) is

Uex(X, t) = sin(2r(x — t)), (5.4)

and thel, norm of the dfference between the analytical and the numerical predittioalcu-

_ Z.I\i_ll (Ui — Uex)2

whereN is the number of grid points. The, norm of eq. (5.5) has been calculated omitting

lated as

the last node = N because, in the case of periodic boundary conditions, gtetae = N is
coincident with the first point = 1.

Results and discussion

Figure 5.1(a) shows the comparison between the numeriedigiion and the analytical solu-
tion of the LAE after one periodt(= 1), using 51 uniformly spaced grid points. Figure 5.1(a)
clearly shows that the numerical scheme is able to reproithecadvection of the passive scalar
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u, within a tolerance that depends on the spatial mesh refimeamel on integration time. Fig-
ure 5.1(b) shows thke, norm for the various levels of mesh refinement at the non-agioaal
computational time$ = 0.1,t = 1, andt = 10. The Courant number has been set at a very
low level of o = 0.01, to explore the error due to the spatial discretizatiohe 0, norm for
the classicalC1122/RK4 scheme decreases exponentially with a sixth power fbileo all
three non-dimensional computational times. T#l22/RK4 scheme maintains a sixth-order
accuracy with the prefactored interior boundary stendilegs. (3.51a) and (3.51b) up to a
value of L, ~ 10715, close to the machine error, for the non-dimensional time 0.1, as
shown by the black diamonds) in Fig. 5.1(b). TheL, norm at the non-dimensional com-
putational timeg = 1 andt = 10, shown, respectively, by the triandle) and the circlg(o),
indicates the same sixth-order rolE@rror by displaying an higher cumulative error due to
the temporal integration by tHeK algorithm. The double precision accuracy of the scheme is
reached thanks to the déieients of the prefactored interior boundary stencils of ég$1a)
and (3.51b) calculated in double precision (i.e. 15 digihe C1122/RK4 scheme coupled
with the 11-point boundary stencil of Hixon (2000), shownthg continuous line with squared
symbols(—o—), maintains the sixth-order accuracy uplio~ 10°° due to the single preci-
sion of its codficients (i.e. 8 digits). Table A.5 in Appendix A.9 reports 8patial resolution
used for the numerical tests reported in Fig. 5.1(b).

Figure 5.2(a) represents the monochromatic sinusoidaéwéeq. (5.2) over the extended
domain-2 < x < 3, discretized with 10 grid points per wavelengtNg,= 10, corresponding
to 11 points per period\, = 11. The extended domain over five periods has been analysed
to study how the boundary closure errdireats thel, error norm. Figure 5.2(b) shows the
error norm calculated over the overall doma#2, < x < 3, using the classic&1122 and the
cost-optimizedC1122psmn interior prefactored compact schemes coupled with thedidtp
prefactored interior boundary stencil of egs. (3.51a) é&81b). The numerical solution is
time-marched up to the non-dimensional computational time0.1, using the classicdRK4
time integration scheme. The Courant number usedis0.1. The classicaC1122 scheme,
shown by the black diamon@), has a straight sixth-order rolio up toL, ~ 10713, whereas
the cost-optimizedC1122psmn schemes, witm = 5,4, 3, have a roll-& lower than fourth-
order. For a given number of grid point§ the classicaC1122 scheme has an absolute level
of error lower than the optimized schemes, due to its higbenél order of accuracy. The ab-
solute level of error of the cost-optimizé&ll122psmn schemes is decreasing when the level
of optimizationn increases. Figure 5.2(c) shows theerror norm calculated over the central
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Figure 5.1: Solution t@. AE equation with monochromatic sinusoidal wave of ég2),

domain 0< x < 1. Again, the classical1122 scheme has a sixth-order roffzoNow, the
cost-optimizedC1122psmn schemes have a fourth-order straight line accuracy in thieme
of the well-resolved wavenumber spectruly, (> 15). The diference on the roll4d error of
the cost-optimized schemes between Fig. 5.2(b) and Figc)52due to the boundary error
contribution, which in Fig. 5.2(c) is lower due to the bounda being further away from the
central domain. Figure 5.2(d) shows thg norm error for the cost-optimize@1122psm5
scheme, over the central domain<0 x < 1, at the non-dimensional computational times
t =0.1,t = 1, andt = 10 time marched with the classidg@K4 scheme, at the same Courant
numbero- = 0.1. TheL, norm error at the non-dimensional computational tire€0.1, shown
by the plain black triangl€v), has a roll-d parallel to the fourth-order line in the region of
the well-resolved wavenumber spectruN), (> 15). Thel, norm at the non-dimensional com-
putational timed = 1 andt = 10, shown respectively by the filled bla¢k) and the filled
blue (v) triangles have a roll4d lower than fourth-order. This is due to tRK time integra-
tion scheme that propagates the boundary error into the atatignal domain. Figure A.22 in
Appendix A.9.1 shows a similar trend for the cost-optimiz&dl22psm4 andC1122psm3
schemes. Table A.6 in Appendix A.9.1 reports the spatiadlogion used for the numerical
tests reported in Fig. 5.2.
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Figures 5.2(c) and 5.2(d) display a cusp at number of poiatppriodN, < 15. This feature

is discussed in the context of the following Fig. 5.3.

Figure 5.3 highlights Fig. 5.2(c) over the region<2N, < 80. The computed., norms in
Fig. 5.2(c) has been normalized by the respective valugsedftnorm atN, = 2, and plotted
against the theoretical dispersive eregof eq. (2.57). Figure 5.3 shows these comparison for
the classicalC1122 and the cost-optimizegil122psmn schemesey is definition of the rela-
tive error in wavenumber space assuming zero time integratiror. A low Courant number of

o = 0.1 is used to limit the contribution of tHeK4 time integration scheme. Figure 5.3 shows
that the normalized computdg norm error, computed for the discrete values of numbers of
points per wavelength,, follows the theoretical trendy both for the classical and the cost-
optimized schemes, matching the respecting sixth-ordaf@urth-order roll-d¢f in the region

of the well-resolved spectrd\Ng > 15). The optimized schemes also confirm the ability to
resolve short wavenumbers waves around their error leveptifnization with an error lower
that the classicaC1122, as discussed in the context of Fig. 3.11(b).

Figure 5.5 shows the comparison between the theoreticahawbmputed iso-contours of the
normalized ‘local’ error functiore(k, o) for the monochromatic sinusoidal wave of eq. (5.2).
The computed iso-contours of the normalized ‘local’ ernamdtion in Fig. 5.5(a) have been
calculated using the baseline sixth-ord&t122 scheme for the spatial discretization and the
baselineRK4 scheme for time integration. The computed iso-contounsoofalized ‘local’
error function shown in Figs. 5.5(b), 5.5(c) and 5.5(d) haeen obtained using the cost-
optimizedC112Zpsmn (with n = 5, 4, 3) interior prefactored compact schemes of Tab. 3.4
as the spatial discretization schemes, and the cost-@etitRK temporal solveepsmn (with

n = 5,4, 3) of Tab. 3.5 for the time integration. In all the cases, thatial schemes are cou-
pled with the 11-point prefactored interior boundary stisnof egs. (3.51a) and (3.51b) as
periodic boundary condition. The simulations have beenmdead over the extended domain
-2 < x < 3 of Fig. 5.2(a). The simulations are advanced to a non-déioeal timeT = 1.
Table A.6 reports the spatial and temporal resolutions fmetthe numerical tests. Figure 5.4
in Appendix A.9.1 shows the numerical grid used to produeeish-maps of Fig. 5.5, that is
[0 x k] = [65x 146]. Table 5.2 shows the stability limitsnax for the classicalC1122 and
the cost-optimizedC1122psmn schemes. Thé&, norm computed over the central domain
0 < x < 1 has been normalized, according to eq. (2.42), by the ligitiglitude of the sinu-
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Figure 5.2: Solution th AE equation with monochromatic sinusoidal wave of &), over the
domain-2 < x < 3: (—-) sixth-order logarithmic scalé;-) fourth-order logatithmic scalés)
Cl1122,(---v - -=)C112Zpsm5, (— - —o —- =) C112Zpsm4, (- - -0 — -—) C1122psm3.
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Figure 5.3: Comparison of the theoretical dissipativereggdrom Fig. 3.11(b)with the com-
puted normalized., norm error for the monochromatic sinusoidal wasg(-), L, symbols as
in Fig. 5.2 (a) C1122/RK4, (b)C112Zpsmb5, (c)C112Zpsm4, (d)C112Z&psm3.

Table 5.2: Stability limits for the classic&1122 and the cost-optimizegbsmn (with n =
5,4, 3) schemes.

scheme | omaxfrom eq. .46
C1122/RK4 1.422
epsmb 1.407
epsm4 1.392
epsm3 1.355
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soidal monochromatic wave of (5.2) as

N (- u)’
SN ()

The computed iso-contours of the normalized ‘local’ ertordtion reported in Figure 5.5 were

calculated according to eq. (2.45), thak{g, o) = c%l’ = ¢, by taking into account, that for

the present problem, the propagating speed of sauadL, the wavenumbek = 2z, and the

E-= (5.6)

final timeT = 1.

For each iso-map, a total of 56146 = 8,030 runs were computed. This parametric study
was run using Dakota. This is an open-source multilevelllghrabject-oriented framework
for design optimization, parameter estimation, uncetyaguantification, and sensitivity anal-
ysis (Eldredet al,, 2013). The total wall-clock time to produce an iso-map @uad 4 hours.
The simulations have been performed in the DataPlex Clidtet cluster at CINECA. The
PLX cluster consists of 274 IBNK360M2 12-way compute nodes. Each node contains 2
Intel(®) Xeon(®) Westmere six-cor&5645 processors, with a clock 0f4DGHz. The com-
pute nodes have 48GB of memory (plx, CINECA). The simulatibave been performed by
reserving the full compute node. No interference with otlueining jobs were present during
the runs in measuring the computational execution timeegdhsimulations.

Figure 5.5(a) shows that the computed error maps for thdibage1122/RK4 scheme are in
good agreement with the theoretical ones in the well-resblvavelength range < 1.4. The
discrepancy between the error maps over the poorly reseolaenumber range > 1.4 is a
numerical artefact in the wavenumber ranged « < &, generated by having a coarsely spaced
numerical grid over this wavenumber range, as shown by Fg. Bhis dfects the placement
of the contours of the computed errors in Fig. 5.5(a). Sincéngeger number of points per
wavelengthN, is required in these tests, this prevents the use of a refomagatational mesh
over this range.

Figures 5.5(b), 5.5(c) and 5.5(d) show that there is a gooekeagent between the iso-contours
of the normalized ‘local’ error functiom(x, o) of the cost-optimizedC112Z2psmn schemes
and the corresponding theoretical estimates from Sec. [eindp left hand quadrant of each
Figure(x < 1.4, o > 0.8). On the bottom left quadrant, over the rar(ge< 1.4, o < 0.8), the
theoretical iso-error lines are able to capture the trendoafiputed cost-optimized schemes.
Specifically, the iso-error lines are shown to the left wihgect to the corresponding iso-error
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Figure 5.4: Numerical grid used for the computed iso-mapsrnted in Fig5.5.

lines of Fig. 5.5(a), for all contour levels lower than thegtt level of error 10". Conversely,
the contour lines are shown to the right with respect to tireesponding iso-error lines of
Fig. 5.5(a) for all contour levels greater than the target¢llef error 10". At these very low
Courant numbetr — 0, the iso-error lines of the cost-optimized schemes do oltiv the
straight vertical trend of the corresponding baselinegisor lines of Fig. 5.5(a). At very low
Courant numbes — 0, the error is mainly a spatial type of error as reported if{2&7). This
gives a straight line as shown in Fig. 2.6(a) for the cla$sidd 22/RK4 scheme. Conversely,
the cost-optimized schemes show a non-straight line dusetpriesence of the spike in such a
region.

The dfect of the cost-optimization at the target level of erroratiér appreciated from Fig. A.23
in Appendix A.9.1 that shows an enlarged view of the computaatours of the normalized
‘local’ error functione(x, o) in the region 0< « < 2, with fifty constant logarithmically spaced
iso-contour levels of errors between-#Gand 10, These figures highlight that the numeri-
cal epsmn «-o iso-contours of the cost-optimized schemes are able tovidthe trend of the
corresponding theoretical ones with the exception of thieesfegion and the region immedi-
ately on its left-hand side. This region corresponds to theepu in the optimal "local’ error
versus cost analysis previously shown in Fig. 3.23, for adimoensional cost-analysis trade-
off. Specifically, in the region on the left-hand side of the spigion, the computed iso-error
lines, shown by the dashéd-) lines, are shown to the left with respect to the correspandin
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theoretical ones, shown by the continudu3 line. The spike represents a locus of low error
in the cost-optimization. This local reduction in the nuio@rimplementation is not achieved
as it is masked by the temporal integration error from the enical implementation of the
algorithm.

Figure 5.6 shows the theoretical and numerical contourkeflbcal’ error functione(x, o),
respectively with solid—) and dashed—-) lines, in conjunction with the one-dimensional
normalized cost; = 1/(0«?), represented by the continuous coloured lines, for theatiam-
matic sinusoidal wave test-case. The based22/RK4 scheme is shown in Fig. 5.6(a)
and the cost-optimizedpsm5 in Fig. 5.6(b). Figures A.24(a) and A.24(b) in Appendix A.9
show the corresponding iso-maps for the the cost-optimipath4 andepsm3 schemes. Fig-
ure 5.6 shows the tangency condition between the iso-contafithe normalized ’'local’ error
function and the normalized one-dimensional cost fun¢t@n reports the optimal cost-error
operational pointék*(é),o-*(é), cj(é)) with the corresponding coloured symbols. Figure 5.6(a)
shows a good agreement between the theoretical and the icahwptimal cost-error opera-
tional points for the baselin€1122/RK4 scheme. The discrepancy increases where the level
of error increases, due to the coarsely spaced numeriahlrgirig. 5.6(b) used to generate
the x — o~ iso-map over the poorly resolved wavenumber range. Fig@pbshows the com-
parison between the theoretical and the numerical optiostterror operational points for the
cost-optimizedepsm5 scheme. The theoretical and numerical optimal cost-eperational
points are relatively further with respect to the path far Haseline€C1122/RK4 scheme, and
their proximity decreases with increasirg similarly to Fig. 5.6(a). It is interesting to no-
tice that the Courant number associated to the cost-optioraputation at the design level of
error € = 107° is higher that other target levels of error. The theoretaad the numerical
cost-optimal operational points at the design error level 10~ are located respectively at
(«*,0*) = (0.39,0.67) and k*,0™) = (0.33,0.82), as reported respectively by the red and blue
diamond in Fig. 5.6(b). A spike in the optimization regiof,f < x < 0.8, o < 0.45], is
only present in the theoretical error forecast. This errgrimum, together with its optimal
cost-error operation point, is not achieved in the numénmplementation.

Table 5.3 reports the absolute percentagiednceAc; between the theoretical and the nu-
merical computational cost at the cost-optimal operatipoints for the eight levels of error
€ shown in Figs. 5.6 and A.24 for the baseliBd122/RK4 and the cost-optimizedpsmn
schemes. For the classi€al122/RK4 scheme, these percentfdrences are below 6% except
for the error levek™= 1071, A substantial percentageffiirence at < 107 is noticed for the
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Figure 5.5: Comparison between the theoretical and the atedpso-contours of normalized
‘local’ error function e(x, o) for the monochromatic sinusoidal wave. Continuous g
theoretical, dashed linfg-—) computed: (alC1122/RK4; (b) epsmb5, (c) epsm4, (d) epsm3.
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(b) epsm5.

Figure 5.6: Theoretical (black solid lines) and numeritdd¢k dashed lines) contours of opti-
mal ‘local’ error functione(x, ) as a function of the one-dimensional cost= 1/(c«?) (con-
tinuous coloured lines) for the monochromatic sinusoidavev (a)C1122/RK4 (b) epsmb.
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Table 5.3: Absolute percentagefdrenceAc; between theoretical and numerical cost-optimal
operating points as function of the one-dimensional costttie monochromatic sinusoidal
wave. The brackets report, respectively, theoretical amdarical cost-optimal values. The
bold values are used in following Tah.5.

é\scheme| C1122/RK4 epsmb epsm4 epsm3

108 0.4 (242.14, 243.15) 41.19 (4847.74, 6844.58) 47.47 (9480.87, 13982.07)) 90.98 (16551.3825, 31611.26
107 1.2(92.36,93.52) | 24.23(848.37,1053.96)| 152.02 (848.37, 2138.07)| 45.32 (2931.408, 4260.07)
10 1.9 (35.40, 36.09) | 12.53 (147.70, 166.22) | 127.51 (147.70, 336.06) | 19.31 (519.103, 619.37)

10° 2.6 (13.5813.99 13.8(9.5110.83 473.44 (9.51, 54.57) 9.56 (91.632, 100.39)

10* 3.6 (5.215.40 5.60 (3.41, 3.6) 45.67 (3.41654.977) 6.00 (15.73, 16.68)

103 4.8 (2.00,2.09 4.38(1.69, 1.77) 14.74 (1.6985, 1.448) 6.54 (1.74,.859

102 5.7 (0.76, 0.8) 7.43(0.71, 0.76) 2.24 (0.7125, 0.6965) 2.12 (0.54, 0.5515)

101 19.0 (0.25, 0.20) 18.05 (0.24, 0.20) 20.89 (0.2465, 0.195) 13.06 (0.21, 0.183)

cost-optimizedepsm5 scheme. In such region, which is the bottom left quadramigf5.6,
the mismatch is due to thdfect of the time integration at very low Courant numbers» 0,
which has been discussed in the context of Fig. 5.5(b). Alaintiend is observed for the
cost-optimizedepsm4 scheme foe < 10 and for theepsm3 scheme foe< 1077,

Figure 5.7 shows the computed optimal cost-error operatipnints compared against the
theoretical ones, represented respectively by symboldiaesl The same algorithm used to
calculate the theoretical cost-optimal operational p()ih(%),cr*(z),c;;D(E)) has been used to
calculate the computed ones, to verify if the analyticalifigd of Sec. 3 are verified by this
simple benchmark problem. Overall, there is satisfactoagcm between computed and theo-
retical cost-optimal points, as shown in Fig. 5.6 and in EaB.

Figure 5.7(a) shows that at the design level of eererT0™", the computational cost for the
cost-optimized schemes is lower than the correspondingpatational cost; for the classical
C1122/RK4 scheme. A cost-saving is therefore achieved in computatioat allow an error
within the range 1% < & < 1072 for the cost-optimize@psm5 scheme, 1¢ < & < 1072 for
the epsm4 scheme, and 18 < & < 107! for the epsm3 scheme. Instead, for computations
requiring an error level lower than the target level of e&er 107", the computational cost of
the cost-optimize@psmn scheme is higher than the baseline non-optimized scheme.
Figure 5.7(b) shows the optimal reduced wavenumber for khssicalC1122/RK4 and the
cost-optimizedepsmn schemes. The cost-optimizegpsmn schemes show a lower value of
optimal wavenumber at their design level of ereoe 710" with respect to the baseline non-
optimizedC1122/RK4 scheme. This disagrees with the theoretical findings af &RB(b), in
which the optimal wavenumber at the design level of errortifigr cost-optimized scheme is
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shown to be higher compared to the baseline non-optimizeehse. This is due to the numer-
ical position of the cost-optimal operational points atdesign level of erroe = 10", which

is not located in the spike region, as discussed in the coafdxg. 5.6(b).

Figure 5.7(c) shows the optimal Courant number for the ak€1122/RK4 and the cost-
optimizedepsmn schemes. The optimal operational point at the design Iéairore = 10"

is higher with respect to the corresponding values for theelr@e scheme. This, again, dis-
agrees with the theoretical findings of Fig. 3.23(c), whichdicts a lower value of Courant
number at the design level of errer="10". This is a consequence, as in Fig. 3.23(b), of
the actual numerical position of the cost-optimal operatigoints at the design level of error
€ = 10", as seen in Fig. 5.6(b).

In order to verify the computational cost saving of the ojtid schemes in the real computa-
tions, the code has been instrumented to measureffibetiee computed elapsed time during
the numerical tests. This enables the comparison of thedtieal cost forecast; = 1/(c«?)
with the dfective computed elapsed time recorded from the instrurdecride. Moreover, it
is possible to compare the percentage gain of the cost-igtthschemes with respect to the
classical scheme in the case of the theoretical cost faregas 1/(c«?) and the &ective
computed elapsed time. To obtain a precise measure of theeglacomputational time, the
runs have been carried out with a full compute node allocaidtie execution of the job, to
avoid any interference with other running jobs. The elapsmtiputational time during the
calculations has been determined using the intrinsic FORN Rystemcall, which measures
the elapsed real time, and the intrinsic FORTRADLLtime which measures the cpu-time.
As the compute node was reserved, there is no apprecidbbeetdice between the measured
elapsed real-time and the measured cpu-timdfelnt evaluations have been done for every
operational point, taking an average of the significanteslunot &ected by the undesirable
presence of the computational perturbations. The meagimed take into account only the
number crunching section of the code, excluding the paativel to the initialization, allocation
of the variables, data writing and deallocation of the \@da. The code has been preliminary
profiled with gprof, to identify the most-called and time-consuming subrasinThe profiler
indicates that the number crunching section takes aroufid &3he total job execution time,
for a typical run ofe’= 10° with a number of time iterations of about a hundred.

Table 5.4 reports the measured computational elapisedn seconds and the computed nor-
malizedL, norm error for the classica&l1122 and the cost-optimizegsbsmn schemes at the
computed optimal cost-error operational points at the tinaé T = 1 for the monochromatic
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Table 5.4: Measured computational elapsietein secs. and computed normalized norm
error for the classicaC1122 and the cost-optimized schenegpsmn at the computed optimal
cost-error operational points. Final non-dimensionaktim= 1.

€ C1122/RK4 epsm5 epsm4 epsm3

time L, time L, time L, time L,
108 | 4.4E-02| 1.0330E-08| 0.866 1.0754E-08| 1.765 1.0731E-08| 4.6 1.0889E-08
107 | 2.0E-02 | 9.7255E-08| 0.163 9.1660E-08| 0.297 1.0133E-07| 0.6 1.0122E-07

10® | 1.2E-02 | 9.8504E-07| 3.1E-02 | 1.0158E-06| 6.0E-02 | 9.0841E-07| 9.2E-02 | 1.0214E-06
10° | 6.0E-03 | 1.0024E-05| 5.5E-03 | 1.0458E-05| 1.4E-02 | 9.8967E-06| 2.0E-02 | 1.0095E-05
104 | 4.0E-03| 1.0253E-04| 3.0E-03 | 9.8729E-05| 3.7E-03 | 1.0143E-04| 6.8E-03 | 1.0132E-04
10% | 2.6E-03 | 1.0019E-03| 2.3E-03 | 9.5922E-04| 2.3E-03 | 8.4095E-04| 2.5E-03 | 1.0034E-03
102 | 2.0E-03 | 8.6665E-03| 1.9E-03 | 6.9636E-03| 1.7E-03 | 1.3702E-02| 1.9E-03 | 1.0122E-02
10t | 1.5E-03| 9.8487E-02| 1.4E-03| 9.5154E-02| 1.4E-03 | 9.0776E-02| 1.4E-03 | 1.0079E-01

sinusoidal wave.

Figure 5.8 compares the theoretical cost of the computdtion given target level of errar ~
with the measured cost, expressed in the form of measuredegldime, at the correspond-
ing numerical error. Figure 5.8(a) is a copy of Fig. 5.7(a)igufes 5.8(b) and 5.8(c) are
the graphical representations of Table 5.4. There is a ntatbtleen the trends reported in
Fig. 5.8(a) and the corresponding ones of Fig. 5.8(b) batlhe classical and the optimized
schemes. Figure 5.8(a) shows a straight line represertmgdst-optimal trend of the clas-
sical C1122/RK4 scheme, whereas a non-straight line is reported in Figbpf8r the same
scheme. This is partially due to the short computational fina 1, which is slightly to &ect
the measurement of the computed elapsed time due to thenpeesEsome jitter in the code
execution time. Figure 5.8(c) shows an enlarged view of &i8(b) in the cost-optimal region
1.5x10°8 < time< 1.2x1072, 8x10°° < L, < 1.1x 1071, highlighted by the dashed rectangle
in Fig. 5.8(b). This enlargement shows thEeetive computational cost saving in computations
that allow an error within the range 10< L, < 1072 for the cost-optimize@psm5 scheme,
10 < L, < 1072 for theepsm4 scheme, and 18 < L, < 107! for theepsm3 scheme, com-
pared to the computational cost of the classical basélitie2/RK4 scheme. This comparison
is analogous to the cost-error function= 1/(c«%) shown in Fig. 5.8(a).

To have a better estimation of the computed elapsed timenuheerical tests for the clas-
sical and the optimized schemes have been registered up tootikdimensional final times
T = 1,10,100 and 500 at the nominal optimal design level of eerer I0", withn = 5, 4, 3.
Table 5.5 reports the aforementioned measured compuahttapsedimein seconds and the
correspondind-, norm error for the classic&1122 and the cost-optimizezbsmn schemes.
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Table 5.5: Measured computational elapsietein secs. and computed normalized norm
error for the classicaC1122 and the cost-optimized schenegpsmn at the computed optimal

cost-error operational points. Final non-dimensionaktim= 1, 10, 100, 500.

T=1 C1122/RK4 epsm5 epsm4 epsm3

€ time L, time L, time L, time L,

10°° 6.2E-03 | 1.0024E-05 | 5.5E-03 | 1.0458E-05| - - -

104 4.0E-03 | 1.0254E-05 | - - 3.7E-03 | 1.0143E-04| -

1073 2.6E-03| 1.0019E-03 | - - - - 2.49E-03| 1.0034E-03
T=10 C1122/RK4 epsmb epsm4 epsm3

€ time L, time [ time L, time L,

10° 2.8E-02| 1.0110E-05 | 2.2E-02 | 1.0317E-05| - - - -

104 1.5E-02 | 1.0255E-04 | - - 1.37E-02| 1.0783E-04| - -

103 7.6E-03| 1.0089E-03 | - - - - 2.5E-03 | 1.043E-03
T =100 C1122/RK4 epsm5 epsm4 epsm3

€ time L, time L, time L, time L,

10°° 0.226 1.0013E-05 | 0.173 1.0306E-05| - - - -

104 9.3E-02 | 1.02047E-04| - - 8.4E-02 | 1.0530E-04| - -

1073 4.3E-02 | 9.0347E-04 | - - - - 3.75E-03| 8.21E-04
T =500 C1122/RK4 epsmb epsm4 epsm3

€ time L, time [ time L, time L,

10° 1.09 1.0002E-05 | 0.832 1.0177E-05] - - - -

10 0.443 9.9264E-05 | - - 0.396 9.4586E-05| - -

1073 0.195 4.4199E-04 | - - - - 0.163 3.28E-04

It is observed that the measured computational time for dsé @ptimizedepsmn schemes at

their design level of erras = 107" is consistently lower than the measured computational time

for the classical scheme. The value of the computed norethliz norm error is very close

to the nominal design level of errer éxcept at the final time§ = 100 andT = 500 for the

epsm3 scheme, for which it is higher that the design level of eédue to the propagation of

the boundary error at these final times.

Finally, Table 5.6 reports the comparison of the percentagé savingA¢; and the measured

elapsed time savingt% of the cost optimize@dpsmn schemes with respect to the classical

baseline scheme, at the nominal optimal design levels of érrThe percentage cost-saving

AC] is taken from the numerical cost-optimal values as a funatiothe one-dimensional cost

c; of Tab. 5.3 (in bold). The percentagefdrence in the measured computational times

are recorded by the code running at thatient non-dimensional final times as tabulated in

Tab. 5.5. There is a good agreement between the theoreticadriage cost-savingg; with

the measured percentage elapsed time savifigat all the four final times reported. The dis-

crepancy at the final tim& = 1 is given by the jitter in the execution time of the same segme
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Table 5.6: Comparison of the percentage cost-saxigigand measured elapsed time-saving
At% of the cost optimized schemes with respect to the cladsésadline scheme, at the nominal

optimal design levels of errar. AC; from Tab.5.3, andAt% from Tab.5.5.

€ epsm5

Aéi% Ato/oTzl AtO/OT=10 Ato/oTzloo AtO/OT=500
10° | 22.3 | 11.29 21.42 23.45 23.66
€ epsm4

Aéi% Ato/oTzl AtO/OT=10 Ato/oTzloo AtO/OT=500
104783 |75 8.6 9.67 10.6
€ epsm3

AC1% | At%rt-1 | At%rt-10 | At%t-100 | At%T=500
10° | 11.24 | 4.23 10.52 12.79 16.41

between successive runs. As far as the final fimecreases, the match betwefeéij andAt%
improves to within 5 percentage points.

According to Tab. 5.3 and Fig. 5.8(c), a bigger cost-savingrédicted when moving a decade
below the design level of errar = 10" for the cost-optimizeagdpsmn schemes. The above
confirms that the theoretical cost-saving predicted in Sewe realizable from the numerical
implementation of the cost-optimized algorithm appliedhte advection of a monochromatic

sinusoidal wave.
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5.1.2 Gaussian pulse

Description of the test case

The initial condition for eq. (2.13) is given by the Gaussmafile:

u(x0) = h exp[— (n2) ()5()2] . (5.7)

Figure 5.10(a) shows the initial profile, with= 0.5 andb = 9, discretized on a grid using
N = 101 grid points, over the domain of non-dimensional lerigth- 130 with-65 < x <
65, using 15 points to resolve the half-widttof the Gaussian pulse (Poinsot & Lele, 1992).
This initial Gaussian distribution specified herdfelis from the initial profile specified in the
First Workshops on Benchmark problems for CAA (Hardiral,, 1995). The distribution of
eq. (5.7) presents a wider half-widtithan the initial Gaussian profile of Hardit al. (1995),
whereasd = 3.

The exact solution to the initial condition of eq. (5.7) is:

Uex(X.1) = h exp[— (n2) (XT_t)Z] . (5.8)

Modelling strategy

Some preliminary consideration on the discretized Gangzitése. The energy of eq. (5.7) may
be expressed in Fourier space by the appropriate form ofatsefal’s relation

= " 0(x))[2dk
E, = fo (@) 2dk, (5.9)

whereli) is the discretex-Fourier transform of the sef;. The discrete energy, or square of
the L, norm from eq. (5.5), calculated on thenumber of points, can be equivalent expressed
in the physical domain as

Eo=h) I(u)P (5.10)
i

The above relation is usually given for function defined dmite interval o0, o], as reported
by Vichnevetsky (1986).

Firstly, it has be checked that the discrete energy of ed0}§avhich lies outside of the finite
domainD is zero within the accuracy of the calculation, that is deytrlecision accuracy (i.e.
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15 digits). Secondly, the energy of the Fourier transforrthefinitial Gaussian

(xb)? ] ’

(5.11)

" 4In2

fi(x, 0) = (%)”2 hbexp[

which lies outside the band (see Sec. 3.2.1), has been verified to be less thantifies the
total energy

f (e, 0)da < 10715 f (e, 0) da. (5.12)

-p =0
The classicalC1122 scheme of egs. (3.33) and (3.34) is used as interioagicgéd scheme.
The LODI inflow and outflow conditions of Sec. 3.6.1 are usethatcomputational domain
boundaries. The advection of a passive scalar in eq. (2sl8jodelled by a flow which is
inviscid and one-dimensional, therefore the LODI appration in the case of the LAE of
eg. (2.13) are exact conditions. The classiRE# scheme is used to time advance the numerical
solution, using dferent Courant numbeks. The solution is time-advanced up to the non-
dimensional final tim&@ = 100, when the pulse has left the computational domain.

Numerical results and discussion

The sixth-order roll-& error is maintained when the number of grid point is incrdasend
similar results to Fig. 5.1(b) have been obtained.

The transmission of one-dimensional acoustic waves thir@igon-reflecting boundary is a
well-known test to characterize the performance of theebutbundary treatments for time-
dependent flows.

The two types of waves, physicg)” and numericatq” waves introduced in Sec. 3.2.1, are
uncoupled in the interior but are usually coupled by the ldauy conditions, when an in-
let/outlet boundary closure is present. In fact, wligh waves reach another boundary, for
example an outlet boundary, they are reflected in the formhgsipal waves which are con-
vected downstream again, as sketched in Fig. 5.9(a). At fg5 waves create a feedback
between inlet and outlet which is entirely numerical (Vieletsky & Bowles, 1982).

Although this result has been obtained for th&E equation it can be extended to the acoustic
theory (LEE equation). There is, however, an additional glexity for the Euler equations:
acoustic waves can be reflected by boundaries into physicaaihs, as shown in Fig. 5.9(b).
In a subsonic flow, an acoustic wave propagating at the speednd reaching a reflecting
outlet boundary, will generate two reflected waves: the fiiitbe a physical wave of type
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| - Incident physical "p" wave [EE—

Speed =U

Tnlet boundary
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L - [incident physical "p" wave E——
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Outlet boundary
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Figure 5.9: Numerical and physical reflected waves at olteindary: Fig.5.9(a) LAE;
Fig. 5.9(b)LEE.

“p” propagating upstream at the spaed. This wave is the physically meaningful part of
the reflected wave. Aq” wave will be also reflected and propagate upstream at thed spee
Ug = Kg (u+ c). In a supersonic flow, no reflectég” wave will be created, but the” wave

will still be generated. It will travel upstream a4, reach the inlet of the computational domain,
and induce non-physical pertubations.

The strength of this numerical feedback is determined bwthplitude of the reflected numer-

ical“q” wave. This amplitude is mainly fixed by the quality of the catflooundary condition
treatment. Poinsot & Lele (1992) suggested that, given tinglitude of the incident physical
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(a) Initial Gaussian profile of eq5(7) discretized with(b) Dashed lingd——) o = 0.05, triangle(v) o = 0.25,
101 mesh points. circle (o) o = 0.4.

Figure 5.10: Solution th AE equation with initial Gaussian profile.

wave A, two reflection cofficients must be used to characterize a given boundary conditi
treatment: the reflection ciigient of the physical waves,/A; and the reflection cdicient of
the numerical wavedq/A;. In all cases, an adequate boundary condition treatmeuirescthe
amplitude of the numerical reflected waves to be si@lA; < 1. An adequat@on-reflecting
boundary condition treatment also requires small physeféécted wavesA,/A; < 1).

The maximum value of the amplitude of the physical reflectadasA,/A; for the given Gaus-
sian pulse is reported in Fig. 5.10(b), and the level of eaftar the Gaussian pulse has left the
domain is below 1 as reported by Poinsot & Lele (1992). fiérent tests have been done
at three diferent Courant numbets = 0.05, 0.25 and 04, which have proved the invariance
theorem of Vichnevetsky (1986) related to the reflectiorhatrtumerical boundaries. That is,
the energy reflected at the boundaries is independent ofilhe vf the time step, as shown in
Fig. 5.10(b) for diferent values of- below the stability limitomax = 1.422.
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5. VERIFICATION AND VALIDATION 5.2 Two-Dimensional Test-C ases

5.2 Two-Dimensional Test-Cases

5.2.1 Propagation of an acoustic wave in unbounded domain

Description of the test case

The linearized two-dimensional Euler equations on a umiflow of eq. (3.11) are solved
given an initial acoustic wave propagating in an unboundadain
X2 +
p= exp[—(ln 2)( 5 yz)

X2

2
o= exp[—(ln 2)( ;y )]

u=v=_0.

The computational domain extent+400 < x < 100,-100< y < 100. scheme.
The numerical predictions are compared against the noestianal analytical values given
by Tam & Web (1993) and Hardiet al. (1995):

1 (o)
p=p=5— | e/ cos(et) Jo (&) €0k, (5.13)
20’1 0
wherea; = [(In2)/9],7 = [(x2 + yz)]l/2 andJy() is the zeroth-order Bessel function of the first

kind.

Modelling strategy

The evaluation of the integral in eq. (5.13) has been doneenigaily by using the The Fortran
interface to the GNU Scientific Library (FGSL), using the Ql@aptive integration on semi-
infinite intervals with the 15-point Gauss-Kronrod. An alée error of 02e — 14 has been
reached (Bader, 2007).

Boundary conditions are the LODI outflow at top, bottom, kfid right, and the classical
sixth-orderC1122 prefactored scheme witH #rderRK time advancement is employed. The
Courant number has been set to a low level-of 0.05, to explore the error due to the spatial
discretization.

A two-dimensional version of thke, norm of eq. (5.5) is used to measure the numerical error,
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Run N=Ny=Ny|h Nx x Ny n. of iter. | L, norm from eq. .14
seriall| 51 4 2,601 150 0.02065480432795613
serial2 | 101 2 10,201 300 0.002327223066439975
serial3 | 201 1 40,401 600 3.874124288267828e-05
serial4 | 401 0.5 160,801 1200 5.409684508640224e-07
serial5 | 801 0.25 641,601 2400 8.240016161063194e-09
serial6 | 1601 0.125 | 2,563,201 | 4800 1.285551852175826e-10
serial7 | 3201 0.0625| 10,246,401 9600 2.04502766168723e-12

Table 5.7: Numerical set-up for Fi§.11(c) with aggressive optimization.

which is

2
Z’\i ZN: u-’-—u??(aCt
LZ—J ma 2 (U - ) (5.14)

= NE
Numerical results and discussion

Figures 5.11(a,b) show the comparison between the nurhanchthe analytical solution of
the two-dimensional propagation of the acoustic pulse eruttbounded domain, at the non-
dimensional computational time= 30, using a uniform grid spacing both in tkeandy
direction, equal tcdh = 0.25 in a quiescent flow, that isly = My = 0. There is no appre-
ciable azimuthal distortion of the wave, showing that thenatical solution does not fier
from any appreciable degradation, and the isotropy of thearical scheme is preserved in a
two dimensional space. Figure 5.11(c) and Table 5.7 shovw.th@orm at various levels of
mesh refinement at the same non-dimensional time. It is evithat sixth-order accuracy is
maintained with a good approximation uplip ~ 1.0e — 12.

In order to test the ability of the non-reflecting boundarpditions to accurately predict the
exit from the computational domain of the acoustically \acfilow, further work has to take
into account a plug flow oMy = 0.5 in thex-direction.
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Figure 5.11: Propagation of a two-dimensional acoustisgpoh an unbounded domain at non-
dimensionalt = 30, fixedo = 0.05; dotted ling(- - -) numerical prediction, dashed lirfe-)
analytical solution.
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5. VERIFICATION AND VALIDATION 5.3 Chapter summary and achi evements

5.3 Chapter summary and achievements

This chapter has presented the numerical tests used foetifeeation and validation of the
numerical scheme.

Section 5.1 has presented the one-dimensional test-caalysed. Section 5.1.1 has validated
the numerical scheme against the monochromatic sinuswia.

The classicalC1122/RK4 scheme coupled with the 11-point boundary stencil of €3)514)
and (3.51b) has shown dn norm error parallel to the sixth-order rolffan double precision
accuracy, whereas the classi€dl122/RK4 scheme coupled with the 11-point boundary sten-
cil of Hixon (2000) maintains the sixth-order rolffan single precision.

The dfect of the boundary closure on the norm error has been studied using the monochro-
matic sinusoidal wave over an extended domain, using thesickel RK4 as time integra-
tion scheme. The classical C1122 scheme, coupled with thgoitit boundary stencil of
egs. (3.51a) and (3.51b), maintains a straight sixth-arlénff in double precision accuracy
both on the extended and central domain. The cost-optin@Ag®2psmn schemes present
a roll-off lower than the formal fourth-order in the extended domaiheras in the central
domain they display a fourth-order straight line accuratgauble precision accuracy in the
region of the well-resolved wavenumber spectrum. Thig&dence in roll-& accuracy is given
by the boundary error contribution.

The normalized computdd, norm error, computed for the discrete values of numbersiotpo
per wavelengttN,, follows the theoretical treneh both for the classical and the cost-optimized
schemes, matching the respecting sixth- and fourth-ordléoff in the region of the well-
resolved spectra.

A comparison between the theoretical and the computedastears of the ‘local’ error func-
tion for the monochromatic sinusoidal wave have been shainguhe classical1122/RK4
scheme and the combined cost-optimizpdmn ones. The computed error maps for the base-
line C1122/RK4 scheme are shown in good agreement with the theoreticalinrtbe well-
resolved wavenumber range. The computed error maps foogteptimizecepsmn schemes
are in good agreement with the theoretical estimates orothkeft hand quadrant of Figs 5.5.
The discrepancy of the computed cost-optimized schemésragpect to the theoretical ones,
shown on the bottom left quadrant of Figs 5.5, is given by tlesgnce of the spike. The spike
region and the region immediately on its left-hand side isauhieved in the numerical tests
and it is masked by the temporal integration error from thmewical implementation of the
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algorithm.

A good agreement between the theoretical and the numenitahal cost-error operational
points for the baselin€1122/RK4 and the cost-optimizegbsmn schemes has been achieved.
A cost-saving is predicted for the cost-optimizeggsmn schemes, in computations running at
the design level of errar = 107" or a decade below.

In order to verify the computational theoretical cost sgwhthe optimized schemes in the real
computations, the code has been instrumented to measwefidbiive computed elapsed time
during the numerical tests. The measured elapsed timesvéteunormalized_, norm error
follows a similar trend to the theoretical cost-error rigiat The measured computational time
for the cost-optimizedpsmn schemes at their design level of ereo="10" is consistently
lower than the measured computational time for the clalssid@eme.

There is a good agreement between the theoretical peresatatrsaving\¢; with the mea-
sured percentage elapsed time saviigp for the simulations reported. Specifically, a mea-
sured percentage elapsed time saving up to a 22%, at thexdiesidof error, has been recorded
for the cost-optimizedepsm5 scheme. This computational time saving is envisaged to be
higher for a level of error one decade below the design lefveiror.

Section 5.1.2 has validated the basel@l22/RK4 numerical scheme against the broadband
Gaussian pulse. The ability to model broadband signal visth-®rder accuracy is confirmed
by numerical tests. The maximum value of the amplitude opthesical reflected waves, /A,

is satisfactory for an adequate non-reflecting outlet banndondition. Diferent tests at dif-
ferent Courant numbers have proved the invariance theorem related to the refleetidhe
numerical boundaries.

Section 5.2 has presented the two-dimensional test-casysad. Section 5.2.1 has validated
the baselin€€1122/RK4 numerical scheme against the propagation of an acoustie wain-
bounded domain. The isotropy of the scheme is preservedan dimensional space. The
norm roll-of error maintains the sixth-order accuracy up.go~ 1.0e — 12.

The main achievements of this Chapter 5 are:

e The baseline scheme coupled with the new prefactored anttti-point boundary sten-
cil has shown arL, norm error parallel to the sixth-order rolfan double precision
accuracy, whereas the equivalent stencil available iralitee Hixon (2000) maintains
the sixth-order roll-€ in single precision.
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e The normalized computeld, norm error, computed for the discrete values of numbers
of points per wavelengtN,, follows the theoretical trendy both for the classical and
the cost-optimized schemes.

e A good agreement between the theoretical and the numeptiaha cost-error opera-
tional points for the baseline and the cost-optimized sasehas been achieved.

e There is a good agreement between the theoretical peresotag-saving\c; with the
measured percentage elapsed time saxidg for the simulations reported.

¢ A measured percentage elapsed time saving up to a 22%, atsfgmdevel of error, has
been recorded for the cost-optimizepsm5 scheme. This computational time saving is
envisaged to be higher for a level of error one decade belewddisign level of error.

e Sample applications to broad-band, that is the Gaussiase pahd multi-dimensional
space benchmark problems, that is the propagation of arsticauave in unbounded
domain, have shown the low error-bounded and high-ordesracg characteristics of
the baseline scheme.
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Chapter 6

Conclusion

The major achievements that has been accomplished duithgadink are:

e A new class of prefactored cost-optimized schemes has baariogped for low-speed
error-bounded aeroacoustic applications. This work htenebed Pirozzoli (2007)’s the-
ory to the prefactored compact high-order scheme of Hix@0Q2.

e Theoretical prediction for spatial and temporal error lsiwere determined and com-
pared against benchmark classical schemes. The perfoentdimopular schemes for
CAAapplications and the cost-optimized schemes have beenacethm terms of com-
putational &iciency.

¢ High-order boundary closures, which are accurate andesteitiiin a given Fourier space
envelope, are coupled with the interior prefactored scisenfn eigenvalue analysis
has verified the stability of the prefactored cost-optirdiaehemes coupled with these
boundary closures.

e To aid parallelization, an appropriate interior boundasnsil was developed that was
shown to be an improvement over the equivalent one of Hix08@2and Ashcroft & Zhang
(2003).

e The scheme was shown to be scalable for executiod B clusters with a good scala-
bility up to 128 processors.

¢ A monochromatic sinusoidal test-case verified the themaktoll-off error against the
computedL, norm error, indicating that the cost-optimized schemefoperaccording
to the design high-order accuracy characteristics fordiaiss of problems.
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6. CONCLUSION

e The design cost-optimization of the schemes was achievedgewrfied by numerical
experiments. A 22% computational cost-saving at the ddeiggi of error was recorded.
The percentage cost-saving is envisaged to be higher feebdkerror one decade below
than the design level of error and even more in a multi-diroerad space.

e Sample applications to broad-band and multi-dimensiopate benchmark problems
(Hardinet al., 1995) have shown the low error-bounded and high-ordemracgwcharac-
teristics of the baseline scheme.

The ideal field of application of the newly developed scheiises the Direct Noise Com-
putation over large domains by solving th&E, such in the case of low-speed aeroacoustic
problems, or to predict the far-field sound radiation fromeardfield solution over a closed
boundary (Lighthill, 1978).

These newly developed cost-optimized schemes are nobkuftar problems involving sharp
changes of state variables. Such discontinuities are ndetea well by these high-order cen-
tred schemes, just like in Essentially Non-Oscillatory @Nschemes.

The main limitation of the cost-optimization analysis igitit does not strictly apply to prob-
lems where the selection of the grid spacing is dictated lygiphl constraints, such as in the
computational set-up for boundary layers and in computatigrids with severe stretching.
The use of appropriate boundary closures that mimic thevialaof the interior schemes in
the spectral sense have to be addressed in further work.
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Appendix

A.1 Derivation of the amplification factor for the time integration

This is the derivation of the amplification factor preseritedec. 2.2.
The temporal Fourier transform is obtained by replacin@id)k with t, and« with w:

f(w) = j; :o f(t) e “tdt, (A.1)

Applying a temporal Fourier transform to eq. (2.24):

- . ai0n .
[ LR L Z”J At Y using (2.18) (A.2a)
=1
- - P — j
ot =0™1+ Z 71 (-i ck(kAt) (A.2b)
ji=1
0n+1 p B i p i .
r (k,Co) = 5 = 1+ Zy,- (-ik)Co) =1+ Zy,- (-2 = Ir* (A €A (A.2)
=1 =1

A.2 LODI system along y axis

The following is a replication of section 3.1.2.2, where boaindaries are now located on the
y axis.

Let consider the boundaries locatedyat 0 andy = L. The governing equation (3.6) can be
re-cast as:
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ou* ou* ou*

B = = A
6t*+ an*+c 0 C Aoax* (A.3)
Where theC vector contains all remaining terms which do not involvaredats of oy
Let’s apply the characteristic decomposition to Bygmatrix
detBp— 4il) =0 (A.4)

/11=My—1, /122/13=|\/|y, /14=My+1.

Eigenvaluesl; and A4 are the velocities of sound waves moving in the negative asdipey
direction. A, is the convection velocity (the speed at which entropy wavilsravel), while
Az is the velocity at which thes-velocity is advected along thedirection. Note that the
characteristic velocities are constant because theyal&iwn the linearized matrixgp is a
costant-element matrix).

The corresponding eigenvectors are given by:

1= (0,0,-1,1) =1]-(Ao-A1l)=0 (A.5)
3= (1L,0,0,-1) =1J-(Ao—120)=0
3= (0,100 =1} -(Ag-13)>=0
2= (0,011 =1]-(Ao-l)=0

The Lj’s represent the amplitude of characteristic waves agsutiaith each characteristic
velocity A

ToU”

Li = Al pe

(A.6)
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p*
auU* g | u ap* Av*

Ly = 4417 = 1;(0, 0, -1, 1)— =2 - — A7
1 11(9y* l(’ ’ ] )ay* V* 1(6y* ay*) ( )
p*

p*

AU* g | u dp*  op
Ly, = Al = A(1, 0,0, -1)— =1 - A.8
2 22 ay 2(’ s s )ay* V* Z(ay* ay*) ( )
p*
p*
oU* o | u ou*
L = A3ll = 13(0, 1, 0, 0)— =1 A.9
3 338y* 3(7 s s )ay* V* 3ay* ( )
p*
p*
U™ g | u ap* oV
Ly = A1) = 4(0,0, 1, 1)— =2 — A.10
4 448y* 4(7 ) ] )ay* V* 4(ay*+ay*) ( )
p*
or
w2220
Ly oy oy
o(2-2)
L 2l 5~ 5
L=| % |= 5y*(9 oy (A.11)
L3 A3 .
ay*
Ly op* oV
_14(ayk+ay* |

By using the prefactored scheme, for a gifdow state variable, we have that the OSD (One-
Sided Diference Approximation) at the first and last node alongythgis are given by:
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7

af, 1(off offy ofF 1 _. off 1

9 _ |2 1) 2L =57 oof Lo =N e f (A2
dy 2( dy + By ay Ay i—1 ST ay Ay; EN+1-i i ( )
afy 1(of8 off) off 1 _ ot 1 O

L Rl LRI L B I\ R M, i — =— - 4fi (Al

By 2( oy + ay By~ Ay i=n_6 & Ti ay Ayizg_e sn+a-ifi (AL3)

The corresponding equation for thes become

1
L1 = g(L? +L5)
Ly = %(LZB +L5)
B F
Ls = %(L?) +L5)
La=3 (LB +LE)
opB ovB
L= (— —,0000—)
1 9 9
. agF a\yF
LT =4 By - pPo ay
opB  op® (A.14)
LB = - =
2 AZ( oy oy
opt  op©
LF = pp (2% _ 2P
2 2( oy oy
ou
LS = 23—
3 3 a¥:
ou
LE = A3—
y B3 ay B
0 ov
L2 = /14(— ,0000—)
4 9 P
- agF a\yF
Lh = da|—— + poCo——
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Eqg. A.11 can be inverted to give tlyederivatives of the primitives variables:

g;: _ ;_z (A.16)
% _ %(%_%) (A.17)
z - sy

(A.19)

In the code, we need the prefactored OSD spatial derivativieish can be obtained as:

B LB LB LB
9~ _ 1[_2+l( 4, _ 1 ]] (A.20)
ay c3lU 2\Uo+Co Up—Co

E LF LF LF
9" _ i[_2+}( 4, "1 )] (A.21)
ay cglU 2{U+Co Uo—Co
ouB L2
— = = A.22
oy v (A.22)
ou” LE
— = = A.23
oy Vo (A.23)

B LB LB
A [ 4 _1 ] (A.24)
oy 200C0 [Vo+Co Vo~ Co

F LF LF
A [ 4 _ 1 ] (A.25)
oy 200C0 [Vo+Co Vo~ Co

B LB LB
o0 _ 5[ 4, 1 ] (A.26)
oy 2|Vo+Co Vo—Co

F LF LF
o 5[ 4y 1 ] (A.27)
oy 2|Vo+Co Vo—Co

(A.28)

The S matrix and its inversion are given by:
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A.2 LODI system along y axis

|T
|T

|T

|T

0 0 -—pocCo
20 0
01 0
| 0 0 poCo
1 1
¢ G
0 0

-1
0

2/3800
— 0

2

1
-1
0
1
1
0 -
2c5
1 0
1
0
2P:CIJ_CO
O —_
2

Please note th&™'S = I, andI| - r; = 6ij, wheresj; is the Kroneker’s delta.

Thed vector is given by:

11
. 23
d> 0 0
d= =S.L= 1
ds 0
2.0800
ds o
5 0

o

o

N
R o o%|H

NIH‘OB)
&

Lg

=
¢

(Lz + % (L1 + L4)) 7

L3

1
20050 (Ls—Ly)

1
— (L L
2( 4+ L)

The initial govering equation (3.6) can be now re-writterthia desired form:

ou*

ot
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or in extended form;

op 1 1 op ou

oL+ S(Li+L L ipp— =0
8t+c§(2+2(1+ 4)) o~ + o5

ou 1 ou

—+—(Ls-L +Up— =0

ot " 200 (Le—La) 9% (A.33)
al +L +u il =0

gtp y 0% ou )

E + E (L4 + Ll) +U06—X +poC%a—X =0

The LODI system in terms of primitive variables for the 2-Dnérized Euler equation along
they direction is formally identical to eq. (3.23); the onlyfidirence if given by the lierent
equation for the_{ s along thex andy direction, given, respectively, by eq. (3.17) and (A.11).

150



A. APPENDIX A.3 Codficients for FD schemes

A.3 Codifcients for FD schemes

Classical centered explicit schemes

For the algebraic calculation of eq (2.1) and (2.9), red@ Taylor series expansion of the
function fi.,(X), at the { + )i, mesh point around the mesh point

. — (Ch)" "f;
fiop = fi + Z e (A.34)
n=1
. . enn]ant
fip="1f+ nzz; iT W( + for evenn, - for oddn) (A.35)
and the Euler relation:
e = cos(x) = i sin(tx) (A.36)

The first unmatched cdigcient determines the formal truncation error of eq. (2LBI€, 1992):

g
22 ta, =1 (second order) (A.37)
=1
g
22 t3a; =0 (fourth order) (A.38)
=1
g
23 P =0 (sixth order) (A.39)
=1
g
2> '3 =0 (eighth order) (A.40)
=1
g
ZZ Pa; =0 (tenth order) (A.41)
=1
g
2 tMa, =0 (twelfth order) (A.42)
=1

So, it is possible to enumerate the following schemes, wighrelatives ca@cients given in
Tab. A.1:

e C0011,Q = P =0,S = R = 1. Classical explicit second order scheme, three point
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stencil
f/ = alw (A.43)
k() = 2a3 Sin() (A.44)
% = 2a; COS) (A.45)

e C0022,Q=P=0,S =R= 2. Classical explicit fourth order scheme, five point stenci

o az(fi+2; fi_2) N al(fi+1; fi_1) (A.46)
k(k) = 2[ag sin(k) + az sin(2)] (A.47)
% = 2[a1 cosk) + 2ay cos(X)] (A.48)

e C0033,Q=P=0,S =R=3. Classical explicit sixth order scheme, seven point gtenc

= ag(fi+3; fi_3) N az(fi+2; fi_2) N al(fi+1; fi_1) (A.49)
k(k) = 2[ag sin(k) + az sin(Z) + ag sin(3¢)] (A.50)
% = 2[a1 cosk) + 2a, cos(Z) + 3ag cos(3)] (A.51)

e C0044,Q = P=0,S = R= 4. Classical explicit eighth order scheme, nine point stenc

¢ a4(fi+4 — fi_a) N a3(fi+3 - fi_3) N az(fi+2 - fi_2) N al(fi+1 - fi_1)

i h h h h (A.52)
k(k) = 2[ag sin(k) + az sin(Z) + ag sin(3) + ay sin(4)] (A.53)
% = 2[a1 cosk) + 2a cos(Z) + 3az cos(Z) + 4ay cos(4)] (A.54)

e C0055,Q = P =0,S = R = 5. Classical explicit tenth order scheme, eleven point
stencil

= a (fis — fis) +a4(fi+4 — fi_a) +a3(fi+3 - fi_3) ta (fisz — fiz2) ta (fis1 — fiz2)

i h h h *"h h
(A.55)
k() = 2[ag sin(k) + ap sin() + agsin(Z) + ag sin(4) + as sin()] (A.56)
8/;(:) = 2[a; cosk) + 2ap coS(Z) + 3ag cos(x) + day cos(4) + 5as cos(x)] (A.57)
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Scheme  C0011 C0022 CO0033 C0044 CO0055 (C0066

a 0.5 23 34 4/5 56 6/7
a -1/12 -320 -1/5 -521  -1556
az 1/60 4105 584 563
a -1/280 -5504  -156
as 1/1260 31155
as -1/5544
Kmax 0.99 1.37 1.58 1.73 1.83 1.92
stencil size 3 5 7 9 11 13
Order (n) 2 4 6 8 10 12

Table A.1: Codficients of the classical centred expli@iPQRSschemesP = Q =0,R=S,
ap=1,a=0,a;=a.

e C0066,Q = P =0,S = R = 6. Classical explicit twelfth order scheme, thirteen point
stencil

¢~ aG(fi+6 —fie) (a5 - fi-5)+a4(fi+4 —fiag) (s fig)  (fio—fig)  (fiva—fig)

P h " h h *h h T
(A.58)
k(k) = 2 [ag sin(k) + a2 Sin(2) + ag sin(X) + a4 sin(4) + as sin(&) + ag Sin(&)]
_ (A.59)
al;sf) = 2[a; cosk) + 2ap cos(Z) + 3ag cos(X) + 4ay cos(4k) + 5as cos(x) + 6ag Cos(6)]
(A.60)

Optimized centered explicit schemes

Tam & Web (1993) constructed a 7-point? drder central dference scheme based on a mini-
malisation of the dispersion error of eq. (2.11). They hawesen the cd@cientsa, andas to
obtain a 4th-order accurate scheme, so the first two const(ai.37), (A.38) are imposed; to
assure a minimal dispersion, the fii@enta; in eq. (A.49) have been chosen to minimie

oE

— =0, A.61

7ar (A.61)
where the integral errde is the squared flierence between the scaled pseudo-wavenumber
and the scaled wavenumber

E= fo e k() — K|dk. (A.62)
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Scheme TamDRP7p BBo9p BBollp BBo13p
a1 0.799266426974156  0.841570125482  0.872756993962 (16696371
a -0.189413141579325 -0.244678631765 -0.28651117397337048393268
as 0.0265199520614978 0.059463584768  0.090320001280 412835327
au -0.007650904064 -0.020779405824 -0.045246480208
as 0.002484594688 0.011169294114
as -0.001456501759
Kmax 1.72 1.87 1.98 2.13
stencil size 7 9 11 13
Order (n) 4 4 6 8

Table A.2: Codicients of the optimized centered explicit schen@ss R=0,a9=1,q=r,
ag=0,a; = aj.

The diferent coéicients, for the optimized scheme, denoted thereaftef aaDRFp are
given in Tab. A.2.

Rocket al. (2004), in their overview, have reported the followindfelient coéicients for the
TamDRFp scheme:

al = 0.77088238051822552
a2 = 0.166705904414580469 (A.63)

a3 =0.02084314277031176

where the integral error has been minimized in the range 1D

Bogey & Bailly (2004), using the same theory as Tam and Weblnad minimize the absolute
difference betweer andk, but the relative dference, optimizing the classical explicit eight
order scheme, 9-point sten€li0044 (see eq A.52), the tenth order scheme, 11-point stencil
CO0055 (see eqg A.55), and the twelfth order scheme, 13-poimic#tC0066 (see eq A.58).
These optimized schemes will be denoted respectiveBBx®p, BBallp andBBol3p.

The integrated error E then becomes:

“h (e(k) — K In (kn) _
E- f kW) =K g, f Ii(k) — «id (In &) (A.64)
K| |

K n (k)

This schemes are developed so that the dispersion erroaisfema large range of wavenum-
bers up tax« = n/2. Two coeficients are chosen with the Taylor Series truncation metbod t
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Figure A.1: Scaled pseudo-wavenumber diagram for a seftecti explicit centered finite-
difference schemes.

obtain a #' order accurate scheme, and the remainingfimientsa; are defined to minimize
the integral error E of eq. (A.64), where the wavenumber#tdimrex = n/16, andkn, = /2

for the BBa®®p andBBollp, andk = x/16, andky, = 37/5 for the BBofdl3. The optimized
codficients are given in table A.2.

The relation between the scaled pseudo-wavenumber anddlersvavenumber for the ex-
plicit classical and optimized schemes is shown in Fig. Alde DRP schemes are low disper-
sive as long as there is a good superposition with the linxattediferentiation. Increasing
the number of points, frol, = 3 to 6, allows to decrease the dispersion error for short siave
It is adequate note that the grid-to-grid waves with & are never resolved.

The dispersive error is represented in logarithmic scal€sg. A.2 for the standard and the op-
timized explicit schemes. The optimized schemes are gléss$ dispersive than the standard
equivalent stencil-size ones for short waves with 7/4, (i.e. N; < 8). The reduction of the
error is particularly important for the wavenumbers nearn/2, (i.e. N, ~ 4) with at least one
order of magnitude between the optimized and the standaetses. The optimized schemes
are also more dispersive for long wavdl, > 8 — 10 compared the their calssical counterpart,
because of their lower formal order, but the dispersionragr¢then very small, about or less
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Figure A.2: Dispersive error for a selection of explicit tened finite-diference schemes.
than 104/107°.

Classical centred implicit schemes

The compact, (also implicit or Pade”), schemes are obtaieshP = Q # 0 in eq (2.1), and
a matrix has to be inverted to determine the unknown valug¢kseofpproximation of the first
derivatives, (L.H.S. of eqg. 2.1). In the case@f= R = 1 andQ = R = 2, a tridiagonal and
a pentadiagonal system, respectively, has to be solvedvéoy grid point. Equations (2.1)
and (2.9) will be re-written as:

Q S
ENCICARS A EEDY (RS U D
j=1 j=1

¥5.4 2a; sin(jx)

K (k) = ,
1+ %2, 20jcos(ix)

(A.66)

156


Appendix1/fig/relative_error_explicit.eps

A. APPENDIX A.3 Codficients for FD schemes

The group velocity is:

Cg _ 5,7(,() [Z, 1 14 cos(jK)] [1+ZJ 1 2 cos(jK)] [Z, 18] Sin(jK):I'[Z?::LZj(Ij sin(jk)]

c |1+ Z L 20 COS(lK)] ’
(A.67)
The relations of order become:
S Q
ZZ jaj=1+ ZZ @ (second order) (A.68)
Q .
ZZ j°aj = 2 — a1+ Z 2 (fourth order) (A.69)
Q .
ZZ j°a; = 2 “lag+ Z 2 (sixth order) (A.70)
=2
> 7 7! S 3]
i79. =21 iy i
2; j'aj=2 &l + JZ:; 2% a; (eighth order) (A.71)
Q .
ZZ i“aj = 2 —lag + Z 241aj (tenth order) (A.72)
4o 11! 9
Z-Zl jTaj=2 Toilet Z 2 (twelfth order) (A.73)
= =

Tridiagonal classical and optimized schemes

Let's consider a family of tridiagonal schemes with five gatencil. This are generated in
eg. (A.65) by setting) = 1 andS = 2:

(fisz — fii2) i a (fis1 — fiz1)

a’lf’1+ f +a’1f|+1§a2 h 1 h (A-74)
e (A75)
GE(K) [al COSk) + 2a cos(ZX)] [1 + 2a1 cosk)] + [az Sin(k) + a2 SiN(2)] [2a; sin(k)]
oK [1 + 2a; cosk)]?
(A.76)
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By imposing fourth-order accuracy (using the eq. A.68 an@9)the following relations are

obtained: 1
ap=-ap= 1—2(4@1 -1)
(A.77)
1
ap=-a1= 5(“1 +2)

whereq is a free parameter:

e Asa — 0, the classical explicit fourth order sche@@022 of eq (A.46) is obtained.
e Fora = 1/4, the classical fourth-order Pade’, 3 point ste@itl11 scheme is obtained.

e Fora = 1/3, the sixth order accurate, 5 point ster€ll122 scheme is obtained .

Hixon’s notation and prefactorization

Hixon (2000) in his notation has re-written eq. (3.24) in tbkkowing form:
Y(Fa+ o) +B(Fy + 14)+ (A -y-28) f/ = % [¢ (fiuz — fi2) + 0 (fis — fig)], (A78)
for sixth-order accuracy
v=0, B=1/5 ¢=1/60, n=7/15 (A.79)

By substituting the above in eq. (A.78):

1., , 3, 1[1 7
s(fa+ ) v g =1 [G—O(mZ ~fi2) + g (fie = i) [ (A.80)

Pre-multiplying eq. (3.24) by the factgel- , we get:

C¥1,+1,+C¥1,_1(6L2_+a—1f,+a1f, a
l+2051 i-1 1+2CL’1i 1+2051 i+l_h 1+2CL’1 =2 l+2051 -1 +1

fi12)+O(h*
1+ 2CL’1 +l + 2(11 |+2)+ ( )’
(A.81)
in the case of sixth-order accuracy, isa. = 1/3, eq. (A.81) is equivalent to eq. (A.80). In this
case the relation for the scaled pseudo-wavenumber of.2d)(Becomes

_ 53 mn sine)
K (k) = T

. (A.82)
T + 2 1ok C0S(K)
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The solution to the system of equations (3.41) is:

1+ \|1- 402
2(1+ 2a1)
a1
 1-4dm; (A.83)
_60’;:(1 + Za/l)
be _Br—arF - 2(a1 +2)
BE + af 3(3|: +a/p)(1+2a/1)

— (dr + bF)

afF =

Br =

F

Pentadiagonal classical and optimized schemes

Now, let's focus on a family of pentadiagonal schemes witbesepoint stencil. This are
generated in eq. (A.65) by settilg= 2 andS = 3:

(fiss—fig)  (fivo—fio) _ (fis — fi1) (A.84)

azfl 2+a’1f| l+f +C¥1f|+1+a’2f|+2 = ag h > h 1 h
_ 2 [ag sin(k) + a2 sin(Z) + ag sin(3)]
= A.
€0 1+ 2a3 cosk) + 2apcos(x) (A-85)
ok(k) {[al COSk) + 2a cos(Z) + 3az cos(X)] [1 + 2a1 coSk) + 2a2 cos(2<)] A 86)
ok [1 + 2a1 cOSk) + 22 COS(X)]2

+ [a1 Sin(k) + ap sin(Z) + ag sin(3)] [2a1 Sin(k) + 4a Sin(2)] }
[1 + 221 cOSK) + 202 cOS(Z)]?

By imposing sixth-order accuracy (using the eq. A.68, ABZ0) the following relations are

obtained:

PRI 1

=83 5p T 5727 M
3 31 8

- _ - _Z L= A.87

a a» 20 + 300/2 0/1 ( )
1

a=-aj= Z—§CX2+1—ZCL’1

wherea; anda; are two free parameter.
The specific choice af; = 1/2 anda, = 1/20 yields to the only tenth-order sche@2233 in

the family (see Tab 3.2).
Recently, Lui and Lele Lui & Lele (2001) employed the comppentadiagonal scheme of
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E4 a2 a1 a3 bip bio bz bisa bis

i = 0 0 0 -2312 4 -3 43 -4
i=2 0 0 0 -¥4 56 32 -12 Y12
C4

i=1 3 0 o -1y6 32 32 -1/6 O

i=2 0 v4 y4 -34 0 34 O 0

C3 (Lele 1992

i=1 2 0 0 -76 2 12 0 0

C5 (Carpenteet al., 19939

i=2 6 12 -59 -1y2 1 Y18 O

Table A.3: Coficients for the boundary formulasiath point from eq. A.88).

eq (A.84), imposing sixth order accuracy and interpolatngct diferentiation atp; = 1.67
andg, = 2.10 (corresponding, respectively, &, = 3.76 andN,, = 2.99 ), for the compu-
tation of spatial developing compressible, turbulent mixiayers. The specific values of
anda; for the optimized scheme, labelédi& Lele thereafter, are reported in Tab. 3.2. Insert
specs. of Kim

Non-centered boundary closures

. , , 1y
=1 f]+anf= > bimfm, (A.88a)
m=1
1 n
=2 onf{+f+axf= - Z Bom fins (A.88D)
m=1
l n
I=N=-1 azf{,+ iy +aafi= o > —bomfn-mia, (A.88¢)
m=1
1 n
=N anfig + =t > —bumfnmea (A.88d)
m=1

Table A.3 reports the cdigcients for the boundary formulasiath point according to egs. (A.88)
for fourth-order explicit (E4) and compact (C4) non-ceateboundary closures. These fibe
cients for varying orders of accuracy can be obtained thrdhg Taylor series term-matching
procedure.
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A.4 Eigenvalue spectrum

Consider the class of tridiagonal compact schemes with fiuat gtencilsC1122 of eq. (3.24)
coupled with a generic boundary closure reported in eq.8Ad Sec. A.3. The matriceA
andB of eq. (A.93), for this combination of interior scheme andibdary closures, are

1 a2 O 0O 0 O 0 0
a1 1 a3 O 0O 0 0 O
O @ 1 a2 O --- O 0 0
0 O a1 1 a1 O 0 0
A= 0 e e e e e e (A.89)
0 0 O @ 1 a9 O 0
0 0 0 0O a1 1 a1 O
0O 0 0 O -+ 0 a3 1 oan
0 0 0O 0 0 -+ 0 a2 1
b1 b bz - by 0 O 0
Doy b bz -+ by O O 0
a2 —a1 O a a 0 0 0
B - 0O -aa -3 O a a 0 0 (A.90)
o .- 0O -a& -4 0 @& a 0
0 0 -+ 0 =—by -+ —bxz —byp -by
0 0 0 - =b;py -+ -bz -bp -byy

Pre-multiplying byA the spatially discretized form afAE of eq. (2.13) and substituting the
non-prefactored version of eq. (3.59) yields

du c
Aa = —HB u, (Agl)
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du . ) ) . L
where— is aN-dimensional vector of the time derivative of the nodal eslu

dt
du (duy dwp dun-y duy T
a—(a’w”* dt ’W) : (A.92)
By inverting theA matrix in eq. (A.91), the problem can be re-cast as
du C,_1
a = —HA Bu, (A93)

since eq. (3.61) is a system of ODE'’s in time with constantfogents, it admits as solution
orthonormal modes = €°'fi, with a constans representing the rate of decay or amplification
of the modes. Substituting = €% into eq. (3.61) leads to an eigenvalue problem

i=-sM, (A.94)

whereM = A~!'B ands' = é} is the dimensionless eigenvalue andecomes the correspond-
ing eigenvector. The eigenvaliss in general complex and it depends on the $izef the
matricesA and B, the interior scheme and the boundary closures. The mitrig, in gen-
eral, non-symmetric. To numerically determine its eigtues, firstly a balancing procedure
is applied to reduce the norm bf. After, the matrixM is converted into an Hessenberg form,
suitable for theQR transformation that gives the complex eigenvalues (PreSsr&, 1996).

The real parts of the eigenvalues are required to be equalserthan zero to guarantee the
numerical stability of the interior scheme coupled with teindary closure, i.eje| < 1.
Section 3.5.2 shows the plot of the eigenvalue spectrum evfcthssicalC1122 sixth-order
scheme and the cost-optimiz€1122psm5, C1122psm4, C1122psm3 schemes coupled
with the non-centered boundary closures of eq. (A.88). ieidli29 reports thefiect of the
boundary closures on the eigenvalue spectsiifior the classical Padé1111 interior scheme

(a1 = 1/4in eq. (3.24)). For reference Fig.10 of Lele (1992).

Figure 3.30 shows the eigenvalue spectrsinfrom eq.(3.67) for the classic&1122 and the
cost-optimizedC12epsmn (with n = 5, 4, 3) interior scheme, coupled with a fourth-order com-
pactC4 boundary scheme at= 1 andi = N mesh nodes, and a fifth-order comp&&
boundary scheme at= 2 andi = N — 1 mesh nodes.

Table A.4 and Fig. A.3 show the corresponding maximum redetl giathe eigenvalues from
eq.(3.67) varying the number of nodNs The classicaC1122 internal scheme and the cost-
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C1122 @ = 1/3) N max(R (s))
21 -0.00452508
41 -0.000538793
81 -6.58263e-05
201 -4.15745e-06
401 -5.17428e-07

C112Zpsm5 (a1 = 0.33750)

21  -0.00464136
41 -0.000553133
81 -6.75728e-05
201 -4.26683e-06
401 -5.30988e-07

C112Z2psm4 (a1 = 0.34240)

21  -0.00479122
41 -0.000571708
81 -6.98404e-05
201 -4.40903e-06
401 -5.48624e-07

C1122psm3 (a1 = 0.3532)

21  -0.00517974
41 -0.000620296
81  -7.5794e-05
201 -4.78311e-06
401 -5.95049e-07

Table A.4: Maximum real parts of the eigenvalues from 8¢5 7) varying the number of nodes
N for the classicalC1122 and the cost-optimizedl2epsm5, C12epsm4 andC12epsm3 in-
terior schemes.

optimizedC1122psmb5, C1122psm4, C1122psm3 schemes with such boundary closures
are asymptotic stable (Carpengdral., 1993a), that i8R (s*) < 0 for the values oN reported.
Figure A.3 shows the absolute maximum real part of the egapg| maxR (w*)|, varying
the number of nodesl for the classicalC1122 scheme. It follows the rollfbof the third-
order logarithmic scale. A similar trend has been obsereedhe cost-optimize€12epsmn
schemes.

Determination of M for the prefactored schemes

Consider the class of prefactored scheme of eq. (3.33) an@.€4) coupled with the prefac-
tored one-sided boundary stencils of eq. (3.47) and eg8)3:Bhe forward matriceA" and
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Figure A.3: Absolute maximum real parts of the eigenvaldesqo 3.67) varying the number
of nodes.(o) C1122,(—-) third-order logarithmic scale.

BF are
-en —en-1 —en2 - —evs O
1 0 O 0O 0 O
dr Ck br 0 0
OB ¢ O -~ 0 O
0 de Ck be 0
0 0 ﬁF aE 0 0
AF = BF =
0 0 - 0 B ar O
0 0 0 de Ck
0O O o .- 0 ﬁF af
0 0 0 0 dr
0O 0 0 O 0 1
0 0 -5 -3
(A.95)
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A. APPENDIX A.4 Eigenvalue spectrum

Similarly, the backward matrices® andBB are

S % B8 0 0

i1 0 O -+ 0 O O
dg cg bg 0 0 0

Y8 pg 0 O --- 0O O
0O dg cg bs 0 0

O » g 0 0O -~ O
AB = , BB= 0
0

O -~ 0 yw pg 0 O
o --- 0 0 dB Cp bB 0

0 0 0 - yw B O
0 o -- 0 0 dB Cg bB

0O 0 0 O 0 1
0O -+ 0 evse -+ eu2 ©en1 €n
(A.96)

They are rearranged to eliminate tfgg@ and f(;F from eq. (3.59). The finite fierence approx-
imationsf(;B and f(;F, according to eq. (3.47) and eqg. (3.48), are re-writtenHeii = 0 nodes
as

B
f(') Sj+1 fj

Sl

fo" —enj fj (A.97)

Mo 1Mo

Sl
Il
o

J

.For the backward loop, eg. (3.34) is rewritten ifer 1 node as

1
Befi® +yefy" = p [bef2 +cafy +dsfo], (A.98)

By substituting the first of eq. (A.97) in the backward loopeaf. (A.98) and re-arranging
(fo = 0 due to boundary condition)

6
1
Befi® + % Z Sjs1fj = h [bgfz + cafi] (A.99)
i=0
rB e 1
Befi® = ~h Z Sj1fj + - [bef2 + Cafa] (A.100)
i=0
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1
Bef®= n [(—yBS2 + CB) f1 + (—yBS3 + bB) f2 — yS4f3 — yBS5f4 — YBS6 f5 — VB S7 6]
(A.101)

1
,BBfl’B:H[s’gfl+%*f2+sj1f3+s§f4+sgf5+s’§f6] (A.102)

where the cofficientss’ are

S, =(-ye2+Cg); S;=(-yeS3 +bB); S) = —vBS; S = —VBSs; S = —VBSs; Sy = —VBST.

(A.103)
MatricesAB andBPB are re-written as &\ + 1 x N + 1) matrix
o o o --- 0 0
i1 0 0O O --- 0 O
0
Y8 B8 0 O --- 0 O TS K
0 dg cp bg 0 0
O  Bg 0 O --- 0
8 e _| O 0
0 0
0O - 0 v B8 0 O
0 0 0 dg cg bs 0
0 0 0 --- s B8 O
0 0 0 0 dB Cg bB
O 0O 0 O 0 1
0 O en-s -+ ©en-2 ©en-1 en
(A.104)

where the first row oB® has been set to zero due to the initial boundary condition. the
forward loop, eq. (3.33) at= 1 node is
1

arfyf +pefF = -

[bF f2 + Cg fl + d|: fo] , (A105)
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which does not involvefj™ (fo = 0). MatricesA™ andBF are re-written as & + 1x N + 1

matrix

0O 0 O 0 0

1 0 0 O 0O O
de ce bg 0 0 0

OB ar 0 -~ 0 O
O dr cr b 0 0

0 0 B ap O -~ O
AF = BF = 0
0

0 0 - 0 Br ar O
o --- 0 0 d|: Cg b;: 0

0O O o -- 0 ﬁF aFE
0 o --- 0 0 de Ce br

0O 0 0 O 0 1
o ... 0 -S - -3 - -5
(A.106)

where the first row oBF has been set to zero due to the initial boundary condition.

These matrices are used to construct Mhef eq.(3.66). The eigenvalues are calculated by
eliminating the first row and the first column, due to the aliboundary condition at thie= 0
node.
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A.5 Efficiency comparison
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Figure A.5: Iso-contours of normalized ‘local’(a) and ‘gld’(b) error functione(, o) (black
dashed linesf0033 RK4, and normalized one-dimensional cost functigfx, o) (solid green
line). The blue squared symbols represent the ‘optimal’kimgr condition; the black dash-
dotted line(—- - —) corresponds to the stability limitmnay.
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(b) error functione(x, o) (black

Figure A.6: Iso-contours of normalized ‘local’(a) and ‘bl

dashed linesamDRPRK4, and normalized one-dimensional cost functmfk, o) (solid

green line). The blue squared symbols represent the ‘optimeking condition; the black

dash-dotted lin¢—- -

—) corresponds to the stability limityax.
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(b)

Figure A.7: Iso-contours of normalized ‘local’(a) and ‘gld’(b) error functione(, o) (black
dashed lines1122/RK4, and normalized one-dimensional cost functigfx, o) (solid green
line). The blue squared symbols represent the ‘optimal’kimgr condition; the black dash-
dotted line(— - - —) corresponds to the stability limitnay.
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Figure A.8: Iso-contours of normalized ‘local’(a) and ‘gld’(b) error functione(x, o) (black
dashed linesL2233/RK4, and normalized one-dimensional cost funciigfx, o) (solid green
line). The blue squared symbols represent the ‘optimal’kimgy condition; the black dash-
dotted line(— - - —) corresponds to the stability limitnay.
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Figure A.9: Iso-contours of normalized ‘local’(a) and ‘gld’(b) error functione(x, o) (black
dashed lines).ui&Lele/RK4, and normalized one-dimensional cost functafk, o) (solid
green line). The blue circles represent the ‘optimal’ wogkcondition; the black dash-dotted
line (—-- —) corresponds to the stability limitmax.
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Figure A.10: Iso-contours of normalized ‘local’(a) anddghl’(b) error functiore(x, o) (black
dashed linesKim/RK4, and normalized one-dimensional cost funct@m(x, o) (solid green
line). The blue circles represent the ‘optimal’ working ddion; the black dash-dotted line
(—-- —) corresponds to the stability limitmax.
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Figure A.11: Iso-contours of normalized ‘local’(a) anddghl’(b) error functiore(x, o) (black
dashed linesL0011/RK4, and normalized two-dimensional cost funct®fk, o) (solid purple
line). The blue squared symbols represent the ‘optimal’kimgy condition, the black dash-
dotted line(— - - —) corresponds to the stability limitmnay.
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Figure A.12: Iso-contours of normalized

line). The blue squared symbols represent the ‘optimal’kimgy condition, the black dash-
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Figure A.13: Iso-contours of normalized ‘local’(a) anddghl’(b) error functiore(x, o) (black

dashed linesT anyRK4, and normalized two-dimensional cost functimifk, o) (solid purple

line). The blue squared symbols represent the ‘optimal’kimgy condition, the black dash-
—) corresponds to the stability limditmax.
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Figure A.15: Iso-contours of normalized ‘local’(a) anddbhl’(b) error functiore(k, o) (black
dashed linesC2233/RK4, and normalized two-dimensional cost functigyx, o) (solid red
line). The blue squared symbols represent the ‘optimal’kimgr condition; the black dash-

dotted line(—- - —) corresponds to the stability limitmnay.
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Figure A.16: Iso-contours of normalized ‘local’(a) anddbhl’(b) error functiore(k, o) (black
dashed lines).ui& Lele and normalized two-dimensional cost functmi, o) (solid red line).
The blue squared symbols represent the ‘optimal’ workingdd@n; the black dash-dotted line
(—-- —) corresponds to the stability limitmax.
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Figure A.17: Iso-contours of normalized ‘local’(a) anddghl’(b) error functiore(x, o) (black
dashed linesKim/RK4, and normalized one-dimensional cost funct@m(x, o) (solid green
line). The blue circles represent the ‘optimal’ working ddion; the black dash-dotted line
(—-- —) corresponds to the stability limitmax.
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Figure A.18: Iso-contours of normalized ‘local’(a) anddbhl’(b) error functiore(k, o) (black
dashed linesP0011/RK3, and normalized two-dimensional cost funct®fk, o) (solid purple
line). The blue squared symbols represent the ‘optimal’kimgy condition, the black dash-
dotted line(— - - —) corresponds to the stability limitmax.
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Figure A.19: Iso-contours of normalized ‘local’(a) anddghl’(b) error functiore(x, o) (black
dashed linesF0033RK3, and normalized two-dimensional cost funct®fk, o) (solid purple
line). The blue squared symbols represent the ‘optimal’kingy condition, the black dash-
dotted line(— - - —) corresponds to the stability limitnayx
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Figure A.20: Iso-contours of normalized ‘local’(a) anddbhl’(b) error functiore(k, o) (black
dashed linesT anyRK3, and normalized two-dimensional cost functmi, o) (solid purple
line). The blue squared symbols represent the ‘optimal’kimgy condition, the black dash-
dotted line(— - - —) corresponds to the stability limitnayx
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A.6 Time Integration

The following figures report the stability foot-prints, diigation ratdr| and phase error for the
third-order RK3 (black dashed line) and fourth-order RK#ag¢k solid line) time integration
schemes.
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Figure A.21: (a) Stability foot-prints and (b) dissipaticaite|r| and (c) phase erraf for the
third-order RK3 (black dashed line) and fourth-order RK#a¢k solid line) time integration
schemes.
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A.7 Boundaries error
Eq. (3.34) can be rewritten, f@1122 scheme as:
1
(1- aF) {fi’B} + aF {fi'_Bl} =T [befir1 +cafi + dafi_1] = Qirvii-1) (A.107)

This equation is valid for every point, includediif- 1 is on the boundary. To calculate the
value on tha = 1 point

’ , 1
1-aF) {le}bOUndary+ afF {fOB}bOUndal’y: h [bgfy + cgfy +dgfo] = d2.1.0) (A.108)
/B _ aF /B
{ f] }boundary_ (_ 1—ar ) { fo }boundary+ d2,1,0) (A.109)

If the interior scheme should have been applied to obtaisplatial derivative at the boundary:

’ , 1
(1 B aF) { le}interior aF {fOB}interior = H [bB fo +cgfy +dp fo] = (21,0 (A.llO)
/B _ aF /B
{fl }interior - (_ 1-af ) { fo }interior + 0210 (A.112)

by using eq (3.44) applied to the- 0 node:

/B _{_ aF /B _{_ aF _ aF /B
{fl }interior B ( 1-af ) [EO + {fo }boundar;]_'-q(z’l’o) - ( 1-af ) 60+( 1-af ) { fo }boundary+q(2’l’o)

(A.112)
that is:
/B _ /B _ (IF
{fl }interior - {fl }boundary+ ( 1-aF ) €0 (A.113)
Similarly, for the pointi = 2:
/B __ aF B B
{f2 }boundary_ ( 1-af ) { fl }boundary+ @21 = (A.114)

_|__@F __@F /B _
B ( 1- CL’F) [( 1-af ) { fo }boundary+ Q(2,1,0)] +e2y =

2
= |- oF /B _ (07
B ( 1- a,:) {fo }boundary+ ( 1-af ) U210 +0E21)
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A.7 Boundaries error

/B _|_ afF /B 3
{ 2 }interior - ( 1- aF){fl }interior +q@2y = (A115)
_|_ aF _ aF B aF B ~
- ( 1- afF ) [( 1- aF ) “F ( 1- aE ) { fO }boundary+ q(2,1,0) + q(3,2,1) -

2 2
ar aF /B ag
(_ 1- aq:) o (_ 1- a/,:) {fo }boundary+ (_

+ =
1—ar ) G210 * @21

2
- aF /B
B ( 1- aq:) o {f2 }boundary

SO:

2
{fZ,B}interior - (_ 1 iKFCKF) €+ {fZ,B}boundary (A.116)
and for a derivative grid points away from the boundary
i
{ fi,B}interior = {fi,B}boundary+ (_ 1 C_y';F) € (A.117)
or |
6 = (— T fFaF) 0. (A.118)
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A.8 Wavenumber performance of the FD schemes with closures

A.8.1 Derivation of the codficients for the prefactored operators for higher-
order accuracy

The prefactored forward and backward operators of eq.J#3ection 3.2.4 has been derived
up to sixth order accuracy. The Taylor series expansion thpeteleventh-order for the forward
and backward operator can be written as (pg.526, Hixon (§0@8ixon & Turkel, 2000).

- F
onF  of hﬂ_sr@‘“ POk BT P i S Yk NPT PYEN

X ox e Ox8 ox’ X8 9x? X0
(A.119)

ot° _ of Nl Esh3‘9 el pped™h g h Fhsﬁ—G hgﬂm(h“)

ax  ox X2 X6 ax’ x8 9% X0
(A.120)

, , T Bk B
According to Hixon the even derivativeSg, 7z, 75 75+ axw) are equal and opposite be-

tween the two operators, and cancel when the two operateradated. The odd derivatives
't 8%
( 0" fi i

57 30) are equal and remain when the two operators are added.

By setting to zero the cdiécientsD andF, i.e. D = F = 0, the accuracy of the Taylor series
expansion is extended up to the eleventh-order, that is:

> = ax Ahaz—Bh3 +Kh— ax6 Ehag GhalO o'l (A.121)
afiB of, 21 9, %1, 081 A10f;

! —Ah— +BRP— - KhP— —EWN— -Gh—} htl A.122
ax _ox ox ax %6 o8 G +0M)  (AlL22)

By rewriting the prefactored algorithm for backward sweépixon, 2000; Rona & Spisso,
2007)

9B ﬁf-?
1- a)— ra—- [(1 b) fir1 + (2b— 1)f — bf_q] (A.123)
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Our aim is to substitute the eq. (A.120) in eq. (A.123) and Iatahing the coficients find the values fofA, B, K andD, E, F, G.
Remembering that:

a;fl _ a;;l 62f Bh35 f. 1 hsaﬂiﬁl hﬁyf” ~ h7582 1 hga f. 1 _tha f. 1L oty
(h)2 02, (h)3 ot (h*o*f (S o  (h) oo, (h)7 67f (h)8 o8 f; (h)9 °f  (h)°o'0f, 11
fioa =it (h) ot a o Ao B e 6l aet a8l e o e 100 g0 T oM
st PELOFEL OO O° R 00V T PP PP 0P
1= oX 2! 9x? 3! 93 41 ox* 5! ax® 6! 9x8 7! ox7 8! 9x8 9! 9x® 10! 9xo
O 0 P1 OF PO O (R 00 O R 0P 000 000
oX oOx? 2! 0x3 3! ox4 41 x5 5! ox8 6! ox’ 7! ox8 8! ox° 9! gx10 10! ox1t
62fi—1:ﬁ_(h)ﬁ AL O A N A N O 3 R St AN L G R
oOx? oOx? ox3 2! ox* 3l 9x® 41 9x8 5! ax7 6! ox8 7" 0x® 8! 9x10 9! oxi1 10! 9x12
e L S R A s L L R B R i B G B
ox3 ox3 ox4 21 o 3! 9x8 41 X’ 51 9x8 6! 9x° 7' 9x10 8! oxi1 9! 9x12 10! oxi3
CaL UL R LS AL 0 4 N A N 0 A i W i A R s R
ox4 ox4 oxd 2! 9x8 3! ax7 41 ox8 51 9x® 6! 9x10 7! oxi1 8! 9x12 9l ox13 10! x4
G R L RN O A N i O W R i O AR L i R
M T 9 ox’ 2! ox8 3! 9x° 4! §x10 5! gxi1 6! ox12 7! ox3 8l gx14 9l gx15 = 10! oxi6
iy TP OPRL (P O P SO 0P 0P 000
X T ax ox8 21 9x® 31 9x10 41 ox1t 51 gx12 6! ox13 71 Hx14 8! ox15 9l gx16 = 10! oxt7
Bfiy 08 h °f ()2 o0'°f (2 oYf  (h)*o¥f,  (h°o'3f  (h® o™  (h)7 0*5f  (h)Baf  (h)°a'"f  (h)° 4% f; O(htt
8__8_()_9 oI A%10 21 Axll T Al Ax12 Bl Ax13 ' Bl Axld 71 Ax15 ' 8l Ax16 Ol Axl? ] 18+( )
oX oX ox 2! 9x 3! Ix 41 9x 5l dx 6! Jx 7' Ox 8! Ix 9! Ix 10! ox
3 fi1 3 8°f; ~(h )alof @aﬂfi B @alzfi @81% B @61‘% @alsfi B ﬂal‘ifi @8”fi _@ 981 (h)10 9,
T ) Ox10 2! oxit 3! gxi2 4! Hx13 5! gxi4 6! ox5 7! ox16 8! oxi7 9l 9x18 10! 9xi9
(910fi-1 B alOf ( )allf @alzlci ~ @ali’;fi @614fi ~ @alei @alefi ~ @al?fi @alei _@ alei (h)lO 620f
x0T X0 ox1 2! axi2 3! ox13 41 gxi4 5! ox15 6! oxié 7! oxi7 8! gxis8 9l 6x19 ' 10! gx0

(A.124)
(A.125)
(A.126)
(A.127)
(A.128)
(A.129)
(A.130)
(A.131)
(A.132)

(A.133)

+0(hY  (A.134)

+0O(htY) (A.135)

XIAN3ddV 'V

S2INSO[9 WM SaWBYIS (4 Y} JO souewlopad Jaquinuanep 8'y
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By Substituting in thels

L the higher-order derivatives, and neglecting the ter®@f!) and higher:

ofe - 2
—6;1 = 5;'; 9 f Brﬁa f' ke i‘el DhGa f' ! Eh7a f' ! Fh8a f' ! —Gh9a f' L+ o(hty
o8, ot
ax — ox
B L L O T
6X2 21 93 3! oxt 4| x5 5l 6X6 6! ox" 7' ox® 8l Ix® 9l X0 10! oxtt
N L L A S L
X2 NS 209x4 31 oxd 4l 9xE Blox  6!19x8  TIax® 8l ax0 9! gxi
B N T B S B L
ox* S 210xe 31 oxT 41 9x8 5Bl ox 6‘ X0 71 gxtt
| R W e want
X8 ax 2 5¢ 3o A  Blaar
+Dh6 ﬁ_ ﬁ+h_26(‘)_f_h_3610f +h_4(911fi+ +
| X7 Ox8 219 3lax0 4l ot T
9B, °f  h2o0f  hd oMt
7 i i
ENl5e "o T 2w  3iam +~‘]+
[8°f; avf, h2 oM
8
+Fh R TI E ]+
’alOf allf
-G oxa0 h xll ]

(A.136)

(A.137)
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afs af
ax  Ax
[l R RS MR W W WP P00 0o
a2 T 29%@ 30k Mo 5100  6lox T o 819w 9 oxi0 ' 10! axi
Al &R @h R RO et WaTh WO Ko hPof  ho ot
ox2 03 219xt 3o 41 HxE B! ox’ 6I oxé T oxe 8! oxio 9l gx11
B OaZf oFh a0 WG W WG W h P oh b of ool
e " ok ax 9% T 210x  31ax Mo 5190 61 9x0 71 oxit
[ azf 3 f; *f; *f | 08, 6a7f h” 88f,  h8a°f  h°o®f  hoa'f;
-K +0-—+ 00— — +h—— - h —— - = — - —
6x2 0x3 ox4 oxé ox8 ox’ 2l 9x 319X 4l gx10 Bl gxit
AR o, &, Bf I L0 RN e g hO g,
D| 021 +0%1+ 055+ 021+ oS t4pit_pii o0 T L
i a2 o T ok T o Toe ok o 2100 3lox0 ' 4l axll]
[ Pf P o, &, A R . R el B el
-E 092+ 051+ 021+ 05l 4+ 0ty it ity 0 i T
e T Tae T Tae T Vo Tax Vo | e 21ax0 3l Hxll]
[ Pf P o, &, SIS Ph G90f O,
F AL o A P A R, A Rl el L
Pl 0 v05at Ot Oget 056t O 05t Mo Mot axll]
[ Pf P o, &, o ah Bt Pf 0, a1,
— — - - __ ! Z 1 h9 _ th_l
G| %e *%et %%t %t %%t %%t O5e * Oge t Mo Bxll]
(A.138)
af8, af; P (1 Ff (1 A *f;
/1 - Z_a+ Ah — +A|lP— - = + = -B|K*— Al
ax ax ~ LA +(2! " ) o (3! T2 ) ax (A-139)
1 A an 1 A B &,
Blh I (= + 2 - = +K|WEL
" (4I 3 ) e (5 TR TI ) ax
1 A O (1 A B K LB
¥ (a 5 —. K D)h7 (‘ﬁ‘& E‘i_D_E)h?
1 A K D f (1 A B K D E £ 910F
¥ (5 TATE 5*5‘5 F)“W*(‘& gite a ata TTeNGm
1 L K,D _E F 001
+ —_— —_—— JE— —_— JE— —_— —_—
o " M TRETRPT axit

By substituting eq A.139 and A.120 in eq A.123
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ot B afEl 1

(- a)— ax _[(1_b)fi+1+(2b_1)fi—bfi—l]

(1- )[——Ah Bh3 —KthXI3 Dhﬁaf Eh7af thaf thW]

[Z—f—(l A)hazf (; )hzgs—XZ—(%+§— )h“{ii (i g—s)h“g—);Jr

e e L
TSENTIIE St EIPSE A S

1 A B K D E F o

" (10!+9_7!+5+4I_3!+2!_G)h

! P N B ot A i 0 i B O R B

- h[(l_b)( (h) 202 T3 98 T Al ax T 5l ax | 6l e | 7L ax 8l 9%

@ﬁ+(h)wawf .

or ¢ 10 ax0

+ @2b-1) (f)+

_ f_(h)_ )t A i A () ) A O
ox 2! ox2 3 axd 4l gxt Bl 9% 6! 0x8 7" oxX 8! 9x8

_ P (h)mamf)

91 9 | 101 9x10

(1- a+a)—+[ (1-a)A- a(1+A)]h f (1+A)ah2 +la-aB- a(31+§_5)]h3%
SN PR
+ (1—a)D+a(é+§—§+K+D)]hGZE -1- a)E+a(—%—g+4E!—%—D—E)]h7?9];_
= 1(1—b+2b—1—b)fi+(1—b+b)ﬁ+(—(1—b)_E)h%+(_(1_b)+gl)hz%
* ( (- b—B)haaf (—(1 b) + )h“i; (—(1 b)——)h5zxi ( (1-b)+ ) ‘;—f

At the end, we got:

3 4 5 £
o A—q ]h f (1+A)ah2(;— [B—f‘——]hﬂ+(3+a—A—aB)h4a—f'+ (A.140)

ax 2 6 axt "\247 6 X
a aA aB)  dfi ra aA aB 60’ fi 1 A B K B
i (_K_120_24 Z)h 9% [ BTRETI K+D]hax7 (_7!_6!+4!_2!_D+E)_
o (1 .\ & LB (1 b\ G0 (1) 0% (1 b\ g
= (z— )“m (a)hm+(ﬂ‘1—z)ha—xﬁ(1—zo)“ﬁ*(ﬁ‘ﬁ)ha—xe
_l rﬁiﬂ
5040) " ox
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By comparing member by member the last two equations:

0%
832(:

f.
h3%§i
A f;
h45§§
A8 f;
h553§
f.
hﬁgg%
it
E

%fi
Al
ox9

F

9 510 f|

G

And so:

D= 2700

1 b a

aAaBaKaDl
G
1 b a

= -E

B
]
1 A

1 A
*al-g @

K
TR

B K D

“100

5x9! 6! 3!

1 +5-1
3+3+5 12
_ 5+7+5

720
_ -5+17+5

21600

from eq. (A.145)

from eq. (A.146)

—25-227+/5
6048000
277

from eq. (A.147)

= mo fl’0m eq. (Al48)
_ 1475-839V5

544320000 from eq. (A.149)
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1-2b
24

1

N
N

|
=
5
5

-
+__f_f_f_ﬂ

E
2!

from eq. (A.143)and (A.144)

1 b
101 5x 9l

from eq. (A.141) and (A.142)

(A.141)
(A.142)
(A.143)
(A.144)
(A.145)

(A.146)
(A.147)

(A.148)

|

(A.149)



A. APPENDIX A.8 Wavenumber performance of the FD schemes wit closures

A.8.2 Boundary stencils

A.8.3 Prefactored one-sided boundary stencil

By rewriting the prefactored one-sided backward boundyal of egs.(3.47):

ale 1 7
% = RS
=1
ofB 1 jmax
(;”;ax = - > e (A.150)
j=jmax-6
and for the forward sweep, the (3.48):
off 1<
- = T —€jmaxi1-j j
ox hJZ:;
af-F 1 jmax
ajr;ax = - Z _Sjmax+1_j f] (A151)
j=jmax-6

A.8.3.1 Derivation of the cofficients

Prefactored one-sided boundary stencils

Calculate the cd#cients on double precision for one-sided boundary st@m%iIBy rewriting
it in extended form:

ofB 1<
T T hSfis
=1

[sifi+ Spfo+ s3fa+ syfy + s5f5 + sofe + 57f7]  (A.152)

Sl

af8
And for the last node—=
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A. APPENDIX A.8 Wavenumber performance of the FD schemes wit closures

ofl B jmax
jmax 1
Tox = Z €jTj fj = [ejmax 6fjmax—6 *+ €jmax- Smeax 5 1 €jmax- 4fjmax—4 + €jmax- 3fjmax—3+
j=jmax-6
t+  €max-2 fjmax—2 + €jmax-1 fjmax—l + ejmaxfjmax] (A.153)

Let us recall the Taylor series expansion of the functiQq(x), at the mesh point+ 1 around
the mesh point.

()" onf of (N2  (h)?3 3t
fioa=fi+ Z T = O S e aa

(A.154)

And similarly for fi_1(X)

n n 2 02 3 13
fi_y = f+2[ Q) ]a f =f of ot o f+..(+forevenn,—foroddr) (A.155)

Tox 210 3 ox

Consider the Taylor series expansion of the the functigr) = f1,1(x), at the mesh poirit= 2
around the mesh poimt= 1 up to the sixth order, with an interval equalito

6
3 N (ho"fy afl (h)2 3%t ()23, (h)*a%fy (h)5 Pt ()8 oty
fo = frua = f“Z{ IV Ul v TR VI TR VRTINS VA T -
(A.156)
In a similar way consider the Taylor series expansion of tlegfainctionfz(x) = f1,2(x), at the

+O(h)’

mesh poini = 3 around the mesh point= 1 up to the sixth order, with an interval equal to 2
and so on up td7 = f1.6

6
B N (2h)" o f af (2h)? 9%t (2h)3 a3 f (2h)4a4f (2h)5 o°f (2h)6 A%t
fo= frz > i), moaa - N S Se T a a4l ad T Bl a6 6 a6 O

(A.157)
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A. APPENDIX A.8 Wavenumber performance of the FD schemes wit closures

fa = fra=f+ (3h)

fs = fra=f+ (4h)

fo = fus=~fi+ (5h)—

f7 = fue=~fi+ (Gh)

2U o2 | 3l o | 4
(6h)2 *f  (6h)393f  (Bh)* 9*f  (Bh)® 9°f
2 a2 3 ad 4

@ et

L G2 @Rt @ttt (@P ot

21 9x2 31 93 41 gx¢ 5! 9x8

6! ox8

(@ o't

L @23t @t @t att  (an)s oot
2 2 T 3 a4l
(Bh)2%f (BhPa*f (Bh)* 9t (h)° %t

ox* 5! 9x8

6! ox8

(5P 2t

¢ Bl oxe

6l 9
(6h)8 981

94 Bl 9y

6! 98

+0(3n)’
+ O(4h)’

+ O(5h)’

+ O(6h)’
(A.158)

And similarly for fimax-1, consider the Taylor series expansion of the the funcfipg1(X),

at the mesh point = jmax— 1 around the mesh point= jmaxup to the sixth order, with an

interval equal tdh

6

) J“laX Jmax
fioow ~ f § — h
jmax-1 = jmax T £ nl o0 Jmax ( ) X

(h)° 8 fjmax  (h)® 8 fmax 7
51 9x8 * 6! O9x8 +O(h)

And so on up tofjmax-6
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(h)2 8° fjmax _ @ 0 fjmax +

21 9x2

31 03

4 (94f'
@ jmax N

4! ox4

(A.159)



A. APPENDIX A.8 Wavenumber performance of the FD schemes wit closures
f: (Zh)afjmax (2?9 fimax B (2h)® &° fimax _ (2h)* 0" fjmax _ (20)° 0° fimax +
jmax-2 Jmax 2l X2 3! ox3 4! oxt 51 ox8
381,
_(2;) I o2n)’
f: fimax — (3h)afjmax (3h)2 0% fimax 3 (3n)% P fjmax  (3h)* 0" fjmax _ (3h)° 8° fimax
jmax-3 jmax ox 21 ox2 31 93 41 Hxd 51 9x8
6 95 f.
_(3;) R L oy’
f (4h)af1max (4n)? fimax _ (4h)° 0 fimax  (4N)* 9*fimax _ (40)° 6° fimax
jmax-4 Jmax 21 X2 3l o3 41 ox4 5! 0x8
381,
_(4;) I o)’
f f (5h)aflmax (8h)? 9 fimax _ (5h)° 0 fimax _ (5h)* 9*fimax _ (5h)° 6° fimax
jmax-5 jmax — 21 ox2 3l 93 41 ox4 5/ 9x8
6 961,
_(5;) ) ;(rgax + O(5h)’
f (6~ ,max (6M)? *fimax _ (61)° 0 fimax  (BN)* 9" fjmax _ (61)° 3 fimax
jmax-6 Jmax 2l X2 3l a3 41 x4 51 ox8
381,
_(6:') Ly O(6h)7

By substituting the previous values in equation A.152 ferfirst node
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A. APPENDIX A.8 Wavenumber performance of the FD schemes wit closures
ot 1
ax - %R
ofy (h)zazfl (h)363f, (h)464f1 (h)5a5f1 (h)GaGfl
fi+(h)— + — =
* SQ( Ot o T3 a8 T Al ok T B 9% T 6l o
v oslfs (2h)af1 (2n)2 9%f;  (2h)303fy  (2h)*9%fy  (2h)° 0% 1y (2h)6 66f1
2! 9x? 3l 9x3 4! ox4 5! 8X5 6!
Y (gh)afl (Bn)?2a%fy  (Bh)39%f,  (Bn)*a*fy  (3h)°8°f, (3h)6 E)Gfl
2! 9x? 3l 9x3 4! ox4 5! 8X5 6!
Y PR 4h)a_f1 (4n)2 3%y (4h)303f,  (4h)* 9%fy N (4hy° 0°fy (4h)6 E)Gfl
2! 9x? 3 9x3 41 oxt 5! 8X5 6!
ofy  (Bh)29%fy  (5h)39%f,  (Bh)*9*fy  (5h)°6°f; (5h)6 E)Gfl
f1+ h—
* 36( +(5h) 20 02 T3 0@ | 4l o Bl 06 6l
v o (6h)6—f1 . (6h)? 9%f,  (Bh)3a9%f,  (Bh)*9*fy  (Bh)° 0°fy (6h)6 66f
T\ ax 20 o2 ' 3l ok 4 o Bl 9 6l
ot B 1
% - T (S1+S2+S3+u+S5+ S+ 57) ft
f
+ (sz+233+3s4+4s5+556+637)h2+ (A.160)
12 22 32 42
+ (2|32+—33+—s4+—55+—se+2|s7)
%2
+ 1—3 +2—3 +3—3 +4—3 +— +6—3$ hSEjfl
332 3,83 3,54 3,85 Se 4 Ly
R 3“ 4_“ 6_“3 e,
TRCTAS 15 Tl R
15 25 35 45 5 65 h fl
+ 5524'583 5|S4 5| 5|S7
+ r +2—6 +3—6 +4—6 +— —s ]
TR 7 a

And similarly for the last node, substituting in eq A.191

198



66T

afﬁwax 1.
ox h

+€jmax fjmax

€jmax-6

+€jmax-5

+€jmax-4

+€jmax-3

+€jmax-2

+€jmax-1

fjmax
fjmax

fjmax

fjmax -

fjmax -

fjmax

(6|’1)a meax (6h)? 02 fimax 3 (6h)3 0° fimax ~ (6h)* a* fimax _ (6h)° & fimax _ (6h)° &° Fimax
21 ox? 3 a3 41 x4 51 0ox6 6! 0x6
(5h)a meax (5h)2 02 fJ'max B (5h)3 0° fjmax " (5h)4 a* fjmax _ (5h)5 & fjmax (5h)6 & fjmax
21 ox? 3 a3 41 x4 51 ox6 6! 0x6
(4h)a meax (4h)2 02 fJ'max B (4h)3 0° fjmax + (4h)4 a* fjmax _ (4h)5 & fjmax (4h)6 & fjmax
2 9x? 3 o3 41 ox4 51 0x6 6! 0x8
(3h)afimax N (3n)? 9 fjmax _ (3n)y &° fjmax N (3h)* 9" fjmax EN 0°fimax . (3n)® 8®fjmax
0X 2 ox? 3! ox3 41 ox4 5! Ox8 6! Oxb
(2h)a fjmax (2h)2 (92 fjmax _ (2h)3 (93 fjmax " (2h)4 54 fjmax _ (2h)5 55 fjmax (2h)6 (96 fjmax
0X 2 ox? 3! ox3 41 ox4 5! ox8 6! 0x6
(h) of Jmax (h)2 52 fjmax _ @ 63 fjmax @ 84 fjmax _ @ 65 fjmax @ 86 fjmax
ox 21 o2 3 ox3 41 ox4 51 ox8 6! ox8

XIAN3ddV 'V
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00¢

of

B

jmax

X

1
h

(ejmax *+ €jmax-1 + €max-2 + €max-3 + €jmax-4 + €jmax-5 + ejmax—G) fimax +

(ejmax—l + 26jmax2+ 3€max3+ 4€maxs + S€maxs +6 ejmax—G) h

12 22 32 42 52 62

57 €max-1 + 57 €max-2 + 57€max-3 + 57€max-4 + 57€jmax5 + Eejmax—G)

2! 2! 2! 2! 2!

13 23 33 43 53 63

57 €max-1 T 57€max-2 T 57 €jmax3 T 57€jmax-4 + 57 €jmax5 T 57€max-6
3! 3! 3!

3! 3! 3!

Eejmax—l + Eejmax—z + —€jmax-3 T -7 €jmax-4 + =7 €jmax5 + —ejmax—G)

41 4] 4] 4]
15 25 35 45 55 65
aejmax—l + aejmax—z + aejmax—s + aejmax—4 + aejmax—s + aejmaﬁ)
16 26 36 46 56 66

gejmax—l + gejmax—z + gejmax—s + gejmax—4 + gejmax—s + gejmax—G

|
(4 4 4 4 4 4
(l 2 3 4 5 6
|
<

afjmax
oX
ox2
h?’ﬁ +
ox3
9*f;
h*— +
ox4

h5ﬁ +

|

ax®

eﬁ]
0x8

(A.161)

XIAN3ddV 'V
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A. APPENDIX A.8 Wavenumber performance of the FD schemes wit closures

Now, given the values of A B and K in eq A.150, by equating theosel member of equation
A.160 and A.120 up to sixth-order accuracy:

11 1 1 1 1 1 S 0 = fijline
0 1 2 3 4 5 6 At s
S 1 = Zlline
S A T i "
5 o 5 5 5 5 S -A = h‘{—; line
0 1‘ é é é % é _ 2();(3fi . A.162
1 24 3H 44 54 64 30 |
0O — = = = = = S5 B =h = line
24 Zé Zé 24 Zé Zé 9
1 2> 3P 4 5 6 4056, |
0o — = = I = - S 0 = h'Zz line
120 1%0 1%0 1%0 1%0 1%0 .
o L 2 ¥ & 3 6 ||y ~K = h°ZL line
720 720 720 720 720 720

By inverting the matrix and the L.H.S. and solving the systeith matlab:

Ans so the codicients are:

545+ 353V5 545+ 3535

s = - . — _2.74887508613328
150(1+ V5)  150(1+ V5)
1515+ 823V5 1515+ 823V5
S, = +823V5 _ +823V5 _ o o6506738317
150(1+ V5)  150(1+ V5)
405+ 191V5 2025+ 9555
= ——>F V5 _ 2025+ 955V5 _ o o 00a7a0300814
30(1+ V5) 150(1+ V5)
35+ 16V5 1750+ 800V5
s = +16V5 _ +800V5 _ 0044096437489
3(1+V5)  150(1+ V)
95+43V5 950+ 430V5
g = -7 V5 _ 95044305 | 0ar00558049996
15(1 + \/3) 150(1 + \/?3)
205+ 133V5 295+ 133V5
% = +133V5 _ 295+133V6 | 10502050166
150(1+ V5)  150(1+ V5)
20+ 95 40+ 185
S = +9V5 _ +18V5 _ 1 65302402508333

75(1+ VB)  150(1+ VB)
(A.163)
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A. APPENDIX A.8 Wavenumber performance of the FD schemes wit closures

For thee;j codficients by equating the second member of A.161 and A.120

o -1 -2 -3 -4 -5 -6 _ o
— — — — — — 2 H -
0 2 2 2 2 2 2 €jmax-2 -A = h?,—xg line
1 23 3 43 53 6° .
o £ 2 ¥ 4 5 & |, B = hZl jine
24 24 24 24 24 24 imax-4 = Mo
1 2 3 4 5 6 e 0 h4a5fi l
—_— — —— —— —— —— jmax-5 = N'5F ine
120 1gO lgO 1gO lgO 1620 .
i 2_ 3_ 4_ 5_ 6_ €imax-6 -K = hs% line
720 720 720 720 720 720
(A.164)

By inverting the matrix and the |.h.s and solving the systeith watlab
Ans so theg; codficients are:

95+191V5 190+ 382V5

75(1+ v5)  150(1+ V5)

285+977V5 285+ 997V5

1501+ vB)  150(1+ VB)

Omaxz = 2F 259V5 _ 225+ 1295V5 _ ¢ 1001510670221
30(1+ V5)  150(1+ V5)

5+24V5 250+ 1200V5 _

= 2.15112491386675

€jmax

= —-5.08773493261699

€jmax-1 =

Cmax3 = — _ — —6.04289236895886
mex 3(1+ V5)  150(1+ V5)
1 17
Emaxa = 35+130V5 _ 175+ 695V5 _ .01 41050031
30(1+ V)  150(1+ V5)
65+ 227V5 65+ 227V5
Omaxs = ——r V5 _ _85+227¥6 |, 11050407040844
150(1+ v5)  150(1+ V5)
1 10+ 32
s = o 1OVS _ 10+32V5 ) 6a010840825015

75(1+ v5)  150(1+ V5)
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A. APPENDIX A.8 Wavenumber performance of the FD schemes wit closures

Prefactored interior boundary stencil

The interior boundary stencils are given by eq. (3.51a) 8ri&ilp).
By rewriting the first of eq. (3.51a) in extended form:

1
fi,F = E [b_5 fj_5 + b_4 fj_4 + b_3 fj_3 + b_2 fj_z + b_l fj_]_ + bo fJ+ (A165)

+  byfjg+bafjp+ bafjia+ bafjia+ bsfis|
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A.8 Wavenumber performance of the FD schemes wit closures

And expanding up to the 11th order the Taylor series expagnsio

fi+1

fi+2

fi+3

fi +4

fi+5

S ot
i+ 2 -

(26%f (P (9% (WP&°F  (nPaff () o'
(h)ax I A TN T TR Y TR N TRV VO
B BF  (W°&°F ()09t u
8l ax8 * 9 o 101 g0 O
2 Rf  (BRF  (*o* (NS5  (NSabF (h)7a7f
R T I B R B
(B aBf  (2h)° 8%  (h)L0 §10f u
ﬁﬁ‘Tmu—ouﬁ“’(h )
(2h)2 o*f (23 a%f  (2h)*otf  (2n)°aPf  (2h)Pa°F  (2h)Ta'f
(Zh) 2l 2 3l @ 4 o Bl a6 6 a6 7 ox
(2h)8 an (2n)° 3°f (2h)10 910f 11
+ — + — + O(2h™)
T8 ax8 9 9x° 10! 9xi0
(2h)— @2o2f  (nP ot @)oot (2h)°°f (@) oTf
OX 2! 9x2 ox3 41 x4 51 9x® 6! 9x8 7! ox7
8 18 9 19 10 10
(3h)2 52 (3h)3 Pf B 3Sf (3o (3ot
(3h) ox T2 o T B 8 A axd Bl a6 6l oxe | T ox
8 18 9 19 10 10
zxz CTC e
f_(3h)_ (3h)252_f_ (3h)353_f @ntatt (@t (@n°°F @7
X 2! 9x2 ox3 41 ox4 5! 9x5 6! oxb 71 ox?
(BnBatf  (3n8°f  (3n)19610f 11
RGN axo OGN
i 4h)_ (4h)262_f (4h)° °f L @’ (4n)*a%f  (4h)o°f  (4h)°a%f  (4h)a'f
X 21 ox2 3 4l gxd " Bl 9% 6! oxb 7! ox7
(4h)8 oBf (4 9°f (4h)10 910f 11
8l 8x8+ 9 56 T 101 g T OUN)
( 4h) (4h)2 o*f  (4h)°f RGN (4h)* o't (4n)°a°f  (4h)°a°F  (4h)’a'f
(9x 21 9x2 I ox3 41 oxt 51 9x® 6! 9x8 7! ox7
8 18 9 19 10 410
ERCIANCL o
(5h) (5h)2 ARG S C Vs G VR N VA GO
21 e ax® Al 9x4 " Bl 9% 6l axe 7 ax
(5h)8 an (5h)° §°f (5h)10 510 1
B W*TI Y a0 + O
(5h) Ca (5h)3a3_f CLANCD R B CD L G VW)
21 o @ Al x4 Bl o Bl ax Tl ax
(5h)® an (5h)° 3°f (5h)10 910f 11
AL ML R L /AR I A Yo (- 1 )

8l ox8 9 9x°

10! 9x 910

204




A. APPENDIX A.8 Wavenumber performance of the FD schemes wit closures

By substituting in eq. (A.165):

aff 1
dx h
. (5h)— (52 3 _ (BN O°f (S ot (BNOPT  (Sh)°OSF (ST
202 3 a8 M ok 5 a6 6l a6 T ax
(5h)® 68f  (5h)° 0°f  (5h)10 90f 1
Y OTE a8 9 a0 1or g0 T OCM)
LT @NPOT @t att @t (et @) o't
* b“‘(f (4h) 2002 3 a8 M axd 5 o 6 o 1 ox
(4h)? 68 (4h)9 8°f  (4n)0 §10f "
Y e a6 o a0 " 1or aa T o4
. . (3h)— @2 PT @S @at @ F  @Nf @I
202 3 @ A od 5l 06 6 a6 7 ax
@B Bf  (3n)° °f  (3n)0 410f ”
M-I i 9!a_x9 10 x0T OB
. (- (2h) LR @ BE @t @t @t @ T
20 ¢ 3 o8 M od 5 o6 6 o6 7 ax
(2h)? 68 (2h)9 &f  (2h)0 §10f ”
R T I TR P TR U L
R A U A VS N O S S LA
ox T2 9@ B e A ad Bl 6 ae T ax
(EBf (N2 6°F  (h)™© 820f »
* grae o ae a0 g T O Fhe(B)+
of (2t (PPt (ot (oot (W°a°f () oTf (W) o°f
* bl(f+(h) 2092 3 o A o9xd Bl a6 6l axd | T ox 8l o
(h)g o%f (h)lo o10f 1
* o g tior a0 T OM)
(2h)— G AN A ) ) i S WA
ZTI A TR I TR R R VR TR NI TR
(RSB Bf  (2h)° 8°f  (2h)™0 §%0f ”
8 ¢ o e T 100 g o)
LGP @ @t @t @neat @ o
" b3(f+(3h) 202 3 a@ A o Bl o6 6 a6 T ax
@B aBf  (3n)° &°f  (3n)0 410f ”
R T TR R TR U S
L@ RT @ T @nt ot (@S T (PPt @ o
* b4(f+(4h) 202 3 a@ M o B o6 6 o6 T ax
(4h)B BF  (4h)° 8°f  (4n)™0 §10f ”
M T T P TR U L
LGP RT (SPGB (SPPT (B O
bS(H(Sh) 202 T3 a@ M od Bl e 6 a6 T ax
(5h)8 88f  (5h)° 8°F  (Bh)*C 9'of 1
8 ¢ 9 0 100 gao T OO)
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90¢

F
(?9—];1 %l(b_5+b_4+b_3+b_2+b_1+b0+b1+b2+b3+b4+b5) fi+
ofi
+ (=5b_s—4b_s —3b_3—2b_5 — b_1 + by + 2by + 3bg + 4bs + 5bs) h—'
22 P o2 12 12 2 42 5, 20,
+ (Eb_5 + Eb_4 + Eb_g + Eb_z + = o —b_1+ = o —b + zbz + zbg + Eb o bs)h T2
53 43 3 23 13 13 28 S 303 i
+ (—Qb_s—ab_4—§b_3—§b_2 3 b_1+ 3|b §b2+ §b3+ gb 3|b5)h 6 3
SO R L S GO C O DN LN C N O WL
+ (—Ib_5+mb_4+Eb_3+mb_2+mb_1+mb1+mb2+ 4|b3+Eb4+ 4|b5)h W
5° & P 2 1° P > > B\ 50°f;
+ (—gb 5—§b 4—§b 3—§b z—ab 1+§bl+ab2+§b3+§b4+ab5)h ﬁ
56 46 36 26 16 16 26 36 46 56 56 f
+ (—!b_5 + ab_4 + ab_g + ab_z + ab_l + gbl + gbz + ab:g + ab4 + abs) hsa_xﬁl +
5 4 F o 7 r g g5\ g,
+ (_ﬁb_s ﬁb_4 ﬁb_g ﬁb_z - ﬁb_l + ﬁbl + ﬁbz + ﬁbg + ﬁb4 + ﬁbs) h W
58 48 3 28 18 18 22 3@ 8 BB 08
+ (—!b_5 + Qb_4 + Qb_g + Qb_z + Qb_l + gbl + gbz + gbg + §b4 + gbs) h W
B4 . ® 10 109 3 g0 B\ g0,
+ (— ol b_5 ab_4 ol b_3 ol b_2 ab_l + ol b]_ + gb ol b ol b + g 5) h m
510 410 310 210 110 110 210 10 410 1
+ (mb_5+ﬁb_4+ﬁb_3+ﬁb_2+ b_1+ 10Ib mb2+mb 1O|b4+ﬁb5

By comparing eq. A.121 and eq A.166, finally we get:

)h1

0%
axto

|

(A.166)
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A. APPENDIX A.8 Wavenumber performance of the FD schemes wit closures

17 1 1 1 1 1 1 1 1 1 1
b_5 0 = fijline
5 -4 -3 -2 -1 0 1 2 3 4 5 b
52 g2 32 22 12 12 2 3P g2 g b_4 1 = 7 line
= I = Z = oo = Z = I = 5
ocfi |
3 3 T3 33 31 3 3 3 3 || by 0 = h2Zljine
5 4 3 2 © o 2 3 2 5 o
T T ] onoo@m mo@m @ || b B = h3Zt jine
L% %5 %% T33goEn ;
s s = _= - = = _ = _ ot |
I | | | ;0 5 51 5l 5 5l bo [=| 0 =h'3zline
5o 46 P 26 g 16 26 3P 46 56 or
- = = = = 0 = = = = = b1 K = h°Z line
% % % g % § 8§y 8 B
T A A | I 0 = h°2t line
I I I I I 7171 71 71Tl
2 4 3 2 1 18 28 P 4 5B bs E — h?f:_g line
— — — — — — — — — — X
8l 8 8 8 8 8l 8 8 8 8
®e e 2 v T 2 P LS 0 = e line
! ! ! ! ! 9l 9 9 9 o w0
50 4B o o g8 g gbogb b gh ln ) e s meihine
100 10! 10! 10! 10! 100 10! 10' 10! 10!

By inverting the matrix and the L.H.S. and solving the systeith matlab file, the cocients
given in eq. (3.51a) and (3.51b) are obtained.

A.8.3.2 Wave propagation characteristics
Prefactored backward one-sided boundary stencil first nodé = 1

Rewriting the backward prefactored derivative of eq. (3)4@ri = 1 node:

1 7
fiB = E Z Sj fj
j=1
(A.167)
or in extended form:
f]’_BZlh-[51f1+52f2+53f3+54f4+55f5+ng6+S7f7] (A.168)

By taking the DFT of eq. A.168
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ik fj(x) = % [s1fi(k) + (k) + 5367 (k) + 546¥* (k) + 556" (k) + 56™ (k) + 7™ f ()|
(A.169)
or:

k() () = [51F() + 928 (k) + 5™ F () + 5467 () + 556" Fj (k) + 566 () + 7% (¥)

(A.170)
dividing by fj(x)
k() = [s1+ 928" + 5™ + 548™ + 556" + 5567 + 5,65 ] (A.171)
Applying the Euler relations:
ik(k) = s+ s(cosk) +isink)) + s3(cos(Z) +isin(Z)) + (A.172)

+ s2(cos(X) +isin(3X)) + s5(cos(4k) + i sin(4)) + ss (cos(x) + i sin(x)) + sy (cos(&) + i sin(&))

By splitting Real and Im component on the R.H.S of previousatign:

ik(k) = [S1+ S2C08k) + S3C0S(X) + s4c0S(%) + S5C0S(4k) + S5 c0s(%) + S7 cos(&)] +
+ 1 [$2Sink) + s3Sin(Z) + s4SiN(X) + s5SiN(4) + s sin(&) + sysin(&)] (A.173)

Dividing by i

k() = —i[s+ Sc0osk) + s3€0S(Z) + S4€05(%) + S5€05(4) + S5c05(%) + S7cos(&)] +
+ [$2Sin(k) + s3SiN(2Z) + S4SIN(3) + S5SiN(4) + S Sin(&) + s7sin(&)] (A.174)
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or:

k(k) = [s2sink) + s3Sin(Z) + s4SiN(%) + sssin(4) + Sg sin(5) + s7 cos(&)] + (A.175)
— i [s1+ $C0Sk) + S3C0S(X) + S4C0S(X) + S5c0S(4) + S COS(%) + S7 Sin(6)]

The real part of of thenodified wavenumbeéR (ﬂé) is given by:
R (?F) — [, SiN() + S3SIN(2) + S45IN(34) + S5 SiN(&) + S SIN(54) + S7SiN(6)]  (A.176)

The imaginary part of of thenodified wavenumbé¥ (ﬂé) is given by:

N (?f‘) = —[$1 + $C0Sk) + S3C0S(ZX) + $4€0S(X) + S5C0S(4) + S5C0S(%) + S7 coS(&)]

(A.177)
The group velocity is equal to:
Cg _ Ok(k)
c T o (A.178)

[s2cosk) + S3€0S(ZX) + S €0S(X) + S5c0S(4) + S COS(%) + S7 cOS(&)] +

+

i [s1+ S sin(k) + s3SiN(2) + s4SiN(X) + s5SiN(4) + SsSin(5) + s7sin(6¢)]

Prefactored forward one-sided boundary stencil last nodé = N

Rewriting the forward prefactored derivative of eq. (3.4&Iy thei = N mesh point:

ofF 1 jmax
—= = = —Simax f] A.179
- max+1-j 1] ( . )

ox h j=jmax-6
or in extended form:
ﬁf-F 1 jmax 1
max
L;X = = Z Simax+1- | fj = E [_37 fjmax—6 - S(Sfjmax—S - SSfjmax—4 - S4fjmax—3+
j=jmax-6

—S3fjmax-2 — S2 fjmax-1 + S1fjmax] (A.180)
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By taking the DFT of eq. A.191

il f 1 —6ix § ~5ik § ~dik £, ~3ik £, ~2ik §
iKj fj'r:nax(’() = 5 [—379 o fimax(k) — S6€ > fimax(k) — S5€ 4 fimax(x) — 1€ 3 fimax(k) — s3€ 2 fimax(x)+

—se fAjmax -5 fAjmax] (A.181)
or:
[ ’7(’()': fAJ"r:nax(K) = [—379_6ik fAjmax(’() - SGG_SiK fAjmax(K) - Sse_4iK fAjmax(K) - 349_3ik fAjmax(’() - SGe_ZiK fAjmax(’()"‘
—S’Ze_iK fAjmax -9 fAjmax] (A.182)

dividing by fimax(x)

II?F(K) - _ [S7e—6i/< + SGe—SiK + Sse_4iK + 346—3iK + Sge_ZiK + Sze_iK + SCI.]
(A.183)
Applying the Euler relations:
ik(k) = -—s7(cos(&) —isin(6)) — ss (cos(x) — i sin(x)) — s5 (cos(4) — i sin(4)) +
—54(Ccos(%) — i sin(X)) — sz (cos(&) — i sin(Z)) — s, (Cosk) — i sink)) — 1
(A.184)
By splitting Real and Im component on the R.H.S. of previogsagion:
ik(k) = —[s7cos(&) + ssC0s(%x) + S5c08(4) + S4€0S(%) + S3c0S(Z)+
+ S C0Sk) + 1] +i[S7Sin(6¢) + s Sin(5) + S5Sin(4) + S4.Sin(3)+
+  s38iN() + s sinK)] (A.185)
Dividing by i:
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k(k) = i[s7cos(&) + sscos(x) + S5c08(4) + S4€0S(%) + S3c0S(Z)+
+  $C0Sk) + 1] + [S7Sin(6) + S SiN(5) + S5 8iN(4) + S4.8iN(3)+
s3SiN() + s sin)] (A.186)

Or:

k(k) = [s7sin(6x) + sgsin(x) + s5sin(4) + S4 SiN(X) + s3SiN() + S sin)]
+i [S7 cOS(&) + S5COS(5) + S5C0S(4) + S4COS(XK) + S3COS(ZX) + S COSK) + S1]
(A.187)

/f?/
The real part of of thenodified wavenumber Fég%ax) is given by:

ofr
Re[ (;r;ﬂ(ax} = [s7sin(&) + ss SIN(&) + S5 SiN(4) + Sy SiN(%X) + S3SiN(Z) + 2 sin(k)]

(A.188)
:}’
The imaginary part of of thenodified wavenumber I(ﬁjfé%“) is given by:

F
Im [%(] = [s7cos(&) + S5 c0oS(%) + S5C0S(4k) + S4c0S(%) + S3C0S(X) + S COSk) + S1]

(A.189)

Prefactored backward one-sided boundary stencil last node= N

Rewriting the backward prefactored derivative of eq. (B)ydr thei = N mesh point:

0 ijanax 1 Inax
ox _ h Z &if)
j=jmax-6

(A.190)
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or in extended form;

of B jmax
jmax 1 1
“ox = h Z gfj = h [ejmax—G fimax-6 + €jmax-5 fjmax-5 + €jmax-4 fjmax-4 + €jmax-3 fjmax-3+
j=jmax-6
+  €max2 fjmax-2 + €jmax-1 fjmax-1 + ejmaxfjmax] (A.191)

By taking the DFT of eq. A.191

e A 1 . Cea A A
i Kj fj%’]ax(l() = h [ejmax—6e Bix fimax(k) + €jmax_5€ Sk fimax(k) + €jmax4€ Ak fimax(k) + €jmax_3€ 3 fimax(k)+
+ ejmax—ze_ZIK fimax(k) + ejmax—le_lk fimax(x) + ejmaxfjmax(K)] (A.192
or:
s — fAB _ . —Bix fA . —5ix 1? . —Aix 1? . —3ix 1?
i k(k) jmax(K) = [€jmax-6€ jmax(k) + €jmax-5€ imax(k) + €jmax-4€ imax(k) + €jmax-3€ jmax(K)+
+ ejmax—ze_ZIK fimax(k) + €jmax-1€ " fimax(k) + ejmaxfjmax(K)] (A.193)

dividing by fimax(x)

o 6 g i 3 i B
i (k) = [ejmax—6e "+ €jmax-5€ "+ €jmax-4€ "+ €jmax-3€ "+ €jmax-2€ "+ €jmax-1€ "+ ejmax]

(A.194)
Applying the Euler relations:

ik(k) = €jmaxs (COS(G) —isin(6)) + €jmax-s5 (COS(&) — i SIN(X)) + €jmax-4 (COS(4) — i sin(4)) +
+  €jmax3 (COS(X) — i siN(X)) + jmax-2 (COS(Z) — i sin(x)) +
+  €jmax-1 (COSk) — i Sin(k)) + €jmax (A.195)

By splitting Real and Im component on the R.H.S. of previoygagion:
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i k()

[ejmax_e COoS(&) + €jmax-5 COS(%X) + €jmax-4 COS(4) + €jmax-3 COS(X) + €jmax—2 COS(&)+

+

+

Dividing by i:

k(k) = -i [ejmax_g cos(&) + €jmax-5 COS(X) + €jmax-4 COS(4) + €jmax-3 COS(X) + €jmax-2 COS(&)+
+  €jmax-1COSk) + ejmax] - [ejmax—G SiN(6) + €jmax-5 SIN() + €jmax-4 SiN(4) + €jmax-3 SIN(3)+

+ €jmax2SiN(2) + Ejmax-1 SINE)| (A.197)

x|
—~
=

Il

+ €jmaxa sin(K)] —i [ejmax_e cOS(&) + €jmax.5 COS(%) + €jmax_4 COS(4) + €jmax.3 COS(X)+

TN
The real part of of thenodified wavenumber Fég%ax) is given by

98
Re[ﬂ] = - [ejmax_e SIN(6) + €jmax-5 SIN(5) + €jmax_4 SIN(4) + Emax3 SIN(X) + Ejmax-2 SIN(X) + Ejmax 1 sin(K)]

ox
(A.199)
The imaginary part of of thenodified wavenumber | : 5’;‘:‘*) is given by:
Ot P
Im X = - [ejmax,e COS(&) + €jmax5 COS(XK) + €jmax-4 COS(4) + €jmax-3 COS(Z)+
+  €max2 COS(X) + €jmax-1 COSK) + e,-max] (A.200)
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Prefactored forward one-sided boundary stencil first nodd = 1

Rewriting the forward prefactored derivative of eq. (3.48a thei = 1 node:

a le 1 7
e, — _ejmax+1—j fj
oX h JZ:;

(A.201)

or in extended form;

ofF

7
1 1
X = h Z —€jmaxr1-j fj = h [—ejmaxfl — €jmax-1 2 — €jmax-2 3 — €jmax3 fa+
=1

—  Gjmax-4 fs — €jmax-5 fe — €imax-6 f7] (A.202)

By taking the DFT at = 1 node of eq. A.191

. 1 . . L o
| k] f:ll_: (K) = H [—ejmaxfl(K) - ejmax_leIK fl(K) - ejmax_zeZIK fl(K) - ejmax_3e3|K fl(K)+
_ejmax—4e4iK fAl(K) - ejmax—SGSiK fAl(K) - ejmax—GGGiK fAl(K)] (A.203)
or.
i k(k) fAlF K = [_ejmaxﬂ(’() - ejmax—leiK ﬂ(’() - ejmax—ZeZiK fAl(K) - ejmax—3e3iK fAl(K)"'
—ejmax—4e4iK fAl(K) - ejmax—SESiK fAl(K) - ejmax—GEGiK fAl(K)] (A.204)
dividing by fT (x)
ik(k) = [—ejmax - ejmax—leiK - ejmax—ZeZiK - ejmax—3egik+

4 5 6
—€jmax-4€ — €jmax-5€ - €jmax-6€ IK] (A.205)

Applying the Euler relations:
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ik(k) = —€jmax— €max-1 (COSk) +1SiN(K)) — €jmax-2 (COS(Z) + i SIN(Z)) — €jmax-3 (COS(X) + i sin(X)) +
—€jmax-4 (COS(4) + i SiN(4)) — €jmax-5 (COS(X) + i SiN(5)) — €jmax-6 (COS(&) + i Sin(6))
(A.206)

By splitting Real and Im component on the R.H.S. of previogsagion:

ik(k) = - [ejmax + €jmax-1 COSk) + €jmax-2 COS(Z) + €jmax-3 COS(X) + Ejmax-4 COS(4) + €jmax-5 COS(%X) +
+€jmax-6 COS(6)| — i | €jmax-1 SINK) + Ejmax-2 SIN(2) + Ejmax-3 SIN(Z) + Ejmax-4 SIN(&)+ (A.207,

Dividing by i:

k() = i|€max+ Ejmax-1COSK) + Ejmax 2 COS(X) + Ejmax-3 COS(X) + €jmax-4 COS(4) + Ejmax-5 COS(%) +
+€jmax.6 cos(G()] - [ejmax_l SiN(k) + €jmax-2 SIN(Z) + €jmax-3 SIN(X) + €jmax.4 SiN(4)+ (A.208)

Or:

k(k) = - [ejmax—l sin() + €jmax-2 sin() + €jmax-3 sin(3) + €jmax-4 sin(4) + €jmax-5 sin(&) + €imax-6 Sin(&)] +
+ [ejmax + €jmax-1 COSK) + €jmax-2 COS(Z) + €jmax-3 COS(X) + €jmax-4 COS(4) + €jmax_5 COS(%)+
+Ejmax-6 COS(6) | (A.209)

The real part of thenodified wavenumber Fé%%) is given by:

Re[a—)l(] =- [ejmax,l SiN() + €jmax-2 SIN(%) + €jmax-3 SIN(3) + €jmax-4 SIN(4) + Ejmax-5 SIN() + Ejmax-6 S'n(GK)]
- (A.210)
. . o aftF) . . ]
The imaginary part of thenodified wavenumber I(ﬁa—}() is given by:
o1f
Im X = [e,-maX + €jmax-1 COS) + €jmax-2 COS(Z) + €jmax-3 COS(Z) + €jmax-4 COS(4) + €jmax-5 COS(X) + Ejmax-6 cos(&)]

(A.211)

215



A. APPENDIX A.8 Wavenumber performance of the FD schemes wit closures

Prefactored Forward interior boundaries stencil

Rewriting eq. (3.51a) for the geneiiith mesh point:

5
) 1
fF = sz"f‘”’ (A.212)
j==5
or in extended form:
(7 = Z(sfis+bafiatbsfisrbofiotbafias (A.213)

+ bofi + by fig + bafiso + bafivg + bafiia + bsfiis)

By taking the DFT of eq. A.213:

ikifi(x) = %[b_g,e—f’ik fi(k) + b_ae™*f; (k) + b_ze 3 (k) + b_oe 2% fj(k) + b_1e7 1% fj(x) +

+  bofj(k) + bi€*fj(k) + bae? fj(k) + bee®* fj(x) + ba€™ f; (k) + bse® f;(k)] (A.214)

ik(k) = [b_se™ + b_ge ¥ + b_3e™ ¥ + b_e* + b_e ¥ +

+  bp+ b€ + bye?™ + bge®* + bye®™ + bse®¥] (A.215)
ik(k) =[b_s(cos(x) —isin(5)) + b_4 (cos(4) — i sin(4)) + b_3 (cos(X) — i sin(X)) + (A.216)
+  b_y(cos(X) —isin(Z)) + b_1 (cosk) — i sin()) + bg + by (cosk) + i sin()) +
+ by (cos(ZX) +isin(Z)) + bz (cos(Z) + i sin(X)) + by (cos(4) + i sin(4)) + bs (cos(&) + i sin(%))]
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Table A.5: Spatial and temporal resolution for the numétiests reported in Figs.1(b)

«(K)

+

test-cases N h N, K o |n
N 6 0.2 5 2r/5 | 0.01| x
N> 11 0.1 10 | n/5 | 0.01] x
N3 21 0.05 | 20 | /10 | 0.01 | x
N4 31 | 0.033| 30 | /15 | 0.01]| x
Ns 51 0.02 | 50 | n/25 | 0.01 ]| x
Ne 101| 0.01 | 100| =/50 | 0.01] x
N7 201 | 0.005 | 200 | =/100 | 0.01
Ng 401 | 0.0025| 400 | n/200 | 0.01
Ng 601 | 0.0016| 600 | 7/400 | 0.01

ik(k) =[(b_s + bs)cos(x) + (b_4 + by) cos(4) + (b_3 + b3) cos(F) + (A.217)
+  (b_z + by) cos(%) + (b_1 + by) cosk) + bg] +
+  i[(~=b_s + bs) sin(5) + (—b_4 + bg) sin(4) + (—b_3 + b3) sin(3k) +
+  (=b_z + bp)sin() + (=b_1 + by) sin)]

= —i[(b_s + bs) cos(x) + (b_4 + bs) cos(4) + (b_3 + bs) cos(X) + (b_» + by) cos(Z) + (b_; + by) cosk) + b]
[(—b_s + bs) sin(&) + (—b_4 + by) sin(4) + (—b_3 + b3) sin(3) + (—b_z + by) sin(Z) + (—=b_1 + by) sin(k)]

Re(k(x)) = [(~b_s + bs) Sin(5¢) + (~b_a + ba) sin(4) + (~b_s + bs) Sin(Z) + (~b_s + by) SiN(%) + (~b_1 + by) sin()]

(A.218)

Im(k(x)) = —[(b_s + bs) cos(%) + (b_4 + by) cos(4) + (b_z + b3) cos(Z) + (b_, + by) cos(X) + (b_; + by) cosk) + bo]

A9

(A.219)

Validation results

A.9.1 Monochromatic sinusoidal wave
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Table A.6: Spatial resolution for the numerical tests regmbin iso-maps of Figh.5, k = 2x.
Np is the number of point per period. Final time= 1. omin = 0.01. omax = 1422, see

eq. 6.2.

test-cases N Np h N, K Omin < 0 < O'max n
N1 11 3 1/2 10 7~ 3.14 = Kmax 0.1 2
Ny 16 4 1/3 25 2r/3 ~ 2.09 0.1 4
N3 21 5 1/4 20 n/2 ~ 157 0.1 4
Ny 26 6 1/5 25 2r/5 ~ 1.25 0.1 4
Ns 31 7 1/6 30 /3~ 1.04 0.1 6
Ne 36 8 1/7 35 2r/7 ~ 0.89 0.1 6
N 41 9 1/8 40 n/4~0.78 0.1 8
Ng 46 10 1/9 45 2r/9 ~ 0.69 0.1 8
No 51 11 1/10 50 /5~ 0.62 0.1 10
N1g 56 12 1/11 55 1r/11~ 0.57 0.1 10
Ni1 61 13 1/12 60 /6 ~ 0.52 0.1 12
N1 66 14 1/13 65 27/13~ 0.48 0.1 12
Nis 71 15 1/14 70 n)7 ~ 044 0.1 15
Ni4 76 16 1/15 75 2r/15~ 0.41 0.1 15
Nis 81 17 1/16 80 /8 ~ 0.39 0.1 16
N1 86 18 1/17 85 27/17 ~ 0.36 0.1 16
Ni7 91 19 1/18 90 /9~ 0.34 0.1 18
Nig 96 20 1/19 95 27/19=~0.33 0.1 18
N1g 101 21 1/20 100 7/10=~ 0.31 0.1 20
Noo 106 22 1/21 105 21/21~0.29 0.1 20
No1 111 23 1/22 110 m/11~0.285 0.1 20
Noo 116 24 1/23 115 2r/23~0.273 0.1 20
No3 121 25 1/24 120 /12~ 0.261 0.1 20
Nos 126 26 1/25 110 2r/25~ 0.251 0.1 20
Nos 131 23 1/22 110 m/11~0.285 0.1 20
Nog 136 28 1/27 135 2r/27 ~ 0.232 0.1 20
No7 141 29 1/28 140 /14~ 0.224 0.1 20
Nog 146 30 1/29 145 2r/29~ 0.216 0.1 20
Nog 151 31 1/30 150 n/15=~ 0.20 0.1 20
Nzo 156 32 1/31 155 2r/31~0.202 0.1 20
Naz 161 33 1/32 160 /16~ 0.196 0.1 20
Nzo 166 34 1/33 165 27/33~0.19 0.1 20
Na3 171 35 1/34 170 7/17 ~ 0.184 0.1 20
Nag 176 36 1/35 175 27/35~0.17 0.1 20
Nass 181 37 1/36 180 /18~ 0.174 0.1 20
Nasg 186 38 1/37 185 2r/37 ~ 0.169 0.1 20
Ns7 191 39 1/38 190 /19~ 0.165 0.1 20
Nag 196 40 1/39 195 2r/39~ 0.161 0.1 20
Nzg 201 41 1/40 200 n/20=~ 0.15 0.1 40
Nao 211 43 1/42 210 /21~ 0.149 0.1 40
N1 221 45 1/44 220 /22~ 0.142 0.1 40
N2 231 47 1/46 230 /23~ 0.136 0.1 40
Na3 241 49 1/48 240 /24~ 0.130 0.1 40
Nas 251 51 1/50 250 n/25~0.12 0.1 60
Nas 301 61 1/60 300 7/30=~ 0.10 0.1 60
Nae 351 71 1/70 300 /35~ 0.089 0.1 60
N7 401 81 1/80 400 n/40 =~ 0.07 0.1 80
Nag 451 91 1/90 450 /45~ 0.069 0.1 80
Nao 501 101 1/100 500 /50~ 0.06 0.1 100
Nso 751 151 1/150 750 /75~ 0.04 0.1 100
N5z 1001 | 201 1/200 1000 /100~ 0.03 0.1 200
Ns» 2001 | 401 1/400 2000 /200~ 0.015 0.1 400
Ns3 3001 | 601 1/600 3000 /300~ 0.010 0.1 600
Ns4 4001 | 801 1/800 | 4000 /400~ 0.007 0.1 800
Nss 5001 | 1001 | 1/2000 | 5000 /500~ 0.006 0.1 1000
Nse 10001 | 2001 | 1/2000 | 10000 | 7/1000= 0.003 = Kmin 0.1 1000
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10°

10°

10°

(a) C112Zpsm4. (b) C1122psm3.

Figure A.22: Solution ta.AE equation with monochromatic sinusoidal wave of &g2), over
the central domain & x < 1: (-) fourth-order logarithmic scalé;- - — o — - =) C1122psm4,
(--—o—---) C112Zpsm3; plain symbolst = 0.1, filled black symbolg = 1, filled blue
symbolst = 10. ClassicaRK4 is used for time integration.
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(d) epsm3.

Figure A.23: Enlarged view of the comparison between thereiteeal and the computed 'local’
error functione(k, o) for the monochromatic sinusoidal wave. Fifty constantalapmically

spaced iso-contours errors between®ldnd 101. Continuous lind—) theoretical, dashed line
(=-) computed.
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(b) epsm3.

Figure A.24: Theoretical (black solid lines) and numerifi@bck dashed lines) contours of
optimal ‘local’ error error functione(x, o) as a function of the one-dimensional cast =
1/(c«x?) (continuous coloured lines) for the monochromatic siiesowave. (a)epsmé4 (b)

epsma3.
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