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Abstract

A core collapse supernova is the dramatic death of a massive star by core implosion 
and subsequent explosion. Massive stars are known to rotate appreciably, yet the vast 
majority of supernova simulations over the years have not included rotation or its effects.

It is thought that moderate stellar rotation could assist the supernova explosion by 
lowering the effective gravitational potential in the core. More rapid rotation could give 
rise to jets and/or bipolar explosions. At the most extreme rotation rates it is thought that 
gamma ray bursts (GRB) are produced. These bursts may be delayed or revived at late 
times as a result of the collapsing core becoming rotationally unstable and fragmenting.

In this thesis the effects of rotation on core collapse are studied. Sophisticated pro
genitor models with rotation rates of up to a significant fraction of Keplerian are used 
as the starting points for three dimensional simulations. The computational method of 
Smoothed Particle Hydrodynamics is used to follow the collapse until core “bounce”, 
the point at which the collapse is halted.

It is shown that, before bounce, no instabilities occur even for the most rapid rotators. 
The maximum value obtained for the ratio of rotational to gravitational binding energy 
is around 0.13, just below the limit of 0.14 required for instability on a secular timescale. 
However, the more rapidly rotating models obtain interesting structures as they collapse. 
In these models the density distribution remains centrally peaked but is surrounded by a 
torus of centrifugally supported material, consistent with the collapsar model of GRB.

The gravitational wave signals emitted in collapse are also calculated. It is found that 
these are strongest for the slowly rotating models, in which the collapse is not slowed 
significantly. A supernova of this type in the Virgo galaxy cluster would be beyond the 
range of the current generation of gravitational wave detectors.
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Chapter 1
Introduction

“He also made the stars.” 

Genesis 1



Introduction 1.1 Motivation

1.1 Motivation

Approximately 10 billion years after the Universe sprang into existence, we ape- 
descended life forms find ourselves standing precariously on an insignificant blue-green 
planet, orbiting a small unregarded yellow sun far out in the uncharted backwaters of the 
unfashionable end of the Western Spiral arm of the Galaxy (Adams 1979), peering back 
at where we’ve come from.

Years of dogged observation, theory and debate have revealed to us that the blanket 
of stars stretched out above our heads, has, for the most part, formed from the remains 
of other stars before them.

The first stars in the Universe are thought to have had masses of hundreds of times 
solar. These stars fused hydrogen nuclei in their cores, then helium, carbon, oxygen 
and silicon. Most of them would have ended their lives by exploding as supemovae, 
showering the Universe with an abundance of elements. The next generation of stars, 
incorporating these elements, would not have been as massive, still many would have 
produced supemovae, strewing their contents about to become part of yet other stars.

The chemical enrichment of the Universe has grown mainly through the cycle of star 
formation, fusion in stellar cores and explosion. Almost all of the numerous elements that 
make up our bodies come from the dusty remnants of dead stars, the debris of countless 
supemovae. The compact objects left behind may have gravitational fields strong enough 
that even light can not escape from them, or magnetic fields that can accelerate particles 
to almost the speed of light. This is why we study them.

1.2 Going Out With A Bang: Core Collapse Supemovae

We observe supemovae as stars that suddenly appear in the sky or brighten by many 
orders of magnitude. Over the course of a week or so their intrinsic luminosity becomes 
comparable to that of a whole galaxy before slowly fading away in the following weeks 
or months.

Supemovae have been observed since ancient times when Chinese astronomers 
recorded the occasional appearance of “guest stars” (including novae). The brightest 
supernova since the advent of humankind occurred in 1006 and was observed in China, 
the Middle East and Europe. The Chinese also reported a supernova of 1054, whose 
remnant is still observed as the Crab Nebula, illuminated by emission from the neutron 
star that lies at its centre.
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Introduction 1.2 Going Out With A Bang: Core Collapse Supemovae

In 1572 Tycho Brahe discovered a “new” star in Cassiopeia which, aided by Kepler’s 
supernova in 1604, prompted a philosophical revolution as it became clear that the heav
ens were not, as previously thought, perfect and unchanging. Sometime between 1650 
and 1680 another supernova occurred in Cassiopeia, whose remnant is now observed 
as the strong radio source Cas A. Since 1604, only one supernova has occurred close 
enough to us to be observed with the naked eye.

There are different types of supemovae, which are classified by their spectra. The 
principal division is between Type I, which show no hydrogen lines, and Type II, which 
have hydrogen. Observations of the locations of these types reveal that Type II super
novae are found only in regions of star formation, whilst Type I are found everywhere 
that there are stars.

The location and spectra of the main subgroup of Type I supemovae, known as Type 
la, are explained by them being thermonuclear. The sudden collapse of an accreting 
white dwarf when it reaches the Chandrasekhar mass (defined in Section 1.4) ignites 
carbon in a runaway nuclear reaction that explodes the star. White dwarfs are the end 
products of reasonably low mass and long-lived stars and are therefore found in older 
stellar populations.

Type IIs, which make up around 70% of all supemovae, are the result of the col
lapse of the cores of massive stars upon exhaustion of their nuclear fuel. Massive stars 
bum their fuel quickly, so Type II supemovae occur only in regions where stars are still 
forming. Two other subgroups of Type I supemovae, Type lb and Ic, also originate in 
core collapse. They are distinguished from Type la by the absence of a strong absorption 
trough at ~  6150 A caused by blueshifted Si II at 6355 A. Type lb show strong helium 
lines, especially He I at 5876 A, whilst Type Ic have little or no helium. Type Ib/c super
novae are thought to come from massive stars which have lost their envelopes in stellar 
winds.

As well as being classified by their spectra, supemovae can be grouped by the shape 
of their light curves. A typical light curve will rise to its peak value over the course of 
a week or two, as the luminous shell expands. In Type II supemovae, the peak may last 
for around 100 days, followed by a steady decline over roughly a year. This emission 
comes from the decay of nickel to cobalt, which itself decays to iron with a half life of 
77 days. The main division in Type II supemovae is between II-P -  “plateau” -  which 
maintain their peak brightness for an extended period and II-L -  “linear” -  for which 
the brightness falls off steeply initially and then decays exponentially. A composite 
“typical” lightcurve for each of these types is shown in Figure 1.1. Further subdivisions 
are once more provided by the supernova spectrum, such as Il-n -  “narrow” -  in which
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Introduction 1.2 Going Out With A Bang: Core Collapse Supemovae
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FIGURE 1.1. Composite visual lightcurves of Type II-P (“plateau”) and Type II-L (“linear”) su
pemovae, taken from Doggett & Branch (1985).

the ejecta is thought to be interacting with circumstellar material, Il-d -  “double” -  and 
lib, whose spectra begin as Type II and then change to lb. Another class of supemovae 
-  “hypemovae” -  exhibit a strange, almost featureless continuum spectrum at maximum 
light. It is thought that in these cases the ejecta are moving at such extreme velocities 
that the spectral lines are broadened beyond recognition.

The explanation for these rare phenemona, observed since ancient times, took a 
long time in coming. It was Baade & Zwicky (Baade & Zwicky 1934a, Baade & 
Zwicky 1934b) who first postulated (correctly) that supemovae are transitions of or
dinary stars to neutron stars. The concept of a star composed entirely of neutrons had 
been suggested by Landau in a private discussion soon after the discovery of the neutron 
in 1932. Early calculations gave the radius of such an object as about 10km, which is 
still the accepted value. Hoyle, in 1946, suggested that an instability associated with the 
photodisintegration of iron could be the trigger for collapse (Prialnik 2000). It is hum
bling to think that virtually all we know about supemovae has been discovered within 
the last couple of generations.

On 24th February 1987 a new star appeared in the Large Magellanic Cloud, the first 
supernova since 1604 visible to the naked eye, referred to as SN1987A. For the first 
time it became possible to make a detailed comparison of theory and observations. Once 
the remnant had faded it was observed that the star Sanduleak -69°202 had disappeared, 
revealing it to have been the progenitor. This was a surprise to astronomers as prior to 
explosion the star had been a fairly ordinary-looking blue supergiant -  not the expected 
vast red supergiant. Also surprising was that the ejecta took the form of a bright ring 
rather than a spherical shell (Figure 1.2) and the overabundance of helium burning prod
ucts observed in the ejecta, which implied that a great deal of mixing had taken place.
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Introduction 1.2 Going Out With A Bang: Core Collapse Supemovae

FIGURE 1.2. Hubble Space Telescope image of SN1987A, released in April 1994, showing the 
bright ring of ejecta and two off-centre rings of material illuminated by the supernova.

Less unexpected but just as exciting were observations of neutrinos from the supernova 
by Kamiokande II in Japan and IMB in Ohio -  the first neutrinos ever detected from an 
extraterrestrial source other than sun.

A supernova is a big event in the life of a galaxy. Only a fraction of stars -  those 
with masses > 8 M® -  end their lives so dramatically. But the interactions of objects 
produced by core collapse -  neutron stars and black holes -  can be observed across the 
whole of the electromagnetic spectrum in many different environments. Supemovae are 
important in cosmology as probes of the star formation rate, galactic evolution due to 
the chemical enrichment they provide, neutrino physics, nuclear physics, gravitational 
wave astronomy and many other fields. Recently it has become clear that a subset of 
supemovae are connected to gamma ray bursts (GRB), powerful blasts of gamma rays 
that outshine the sky for their duration. (More about these in Section 1.8.) Few areas of 
astronomy cannot benefit from knowing more about supemovae.

5



Introduction 1.3 Final Stages of Stellar Evolution

1.3 Final Stages of Stellar Evolution

A supernova is the dramatic death of a star, the end point of an increasingly rapid se
quence of events that takes place after it has exhausted its central store of hydrogen 
through fusion to helium. Hydrogen exhaustion marks the end of a star’s main sequence 
lifetime and for stars more massive than ~  8 M0 everything that takes place after this 
point is part of the process of demise. What follows is a summary of the stages a massive 
star passes through before the inevitable collapse of its core. A accessible description of 
these phases can be found in Prialnik (2000).

When the hydrogen in the core is used up hydrogen burning moves to a shell around 
it. Because there is no heat source within and therefore no heat flow through the core 
it becomes isothermal. There is a maximum mass for an isothermal core, above which 
it cannot support the stellar envelope, and it is exceeded for stars more massive than 
about 2 M0 . In these stars the core is dynamically unstable and contracts, converting 
gravitational energy to thermal energy, until it restores the temperature gradient neces
sary to balance gravity. This temperature gradient causes heat loss so the core continues 
to contract on a thermal timescale. Because the dominant hydrogen burning process is 
the CNO cycle, which is proportional to a very high power of the temperature, during 
the first contraction the luminosity of the shell around the core increases and overshoots 
thermal equilibrum. The luminosity of the shell becomes greater than that of the star and 
the envelope must expand in order to radiate it away.

Helium burning is ignited in the core when the temperature reaches 108 K. Its prod
ucts are carbon and oxygen. The rate of helium burning varies as ~  T 40 so it takes 
place only at the centre of the core, where it is hottest. Helium is supplied to the centre 
by convection, which takes place in the inner core and ceases when the helium here is 
exhausted, leaving the outer layer of helium untouched. The helium burning lifetime of 
a star is less than one tenth that of the hydrogen burning lifetime. This is because the 
fusion of helium only supplies 1/10 of the energy per unit mass and also because the 
stellar luminosity is about an order of magnitude higher, due to the larger envelope.

While helium burning is taking place, the first “dredge up” occurs. This refers to the 
envelope becoming convective as a result of its increasing opacity combined with the 
need to transfer an increasing energy flux. Hydrogen burning products at the edge of the 
core are mixed into the envelope, increasing the metallicity observed at the surface of the 
star.

For stars with masses > 10 M@ helium burning is followed by another phase of 
core contraction and envelope expansion. The second dredge up occurs, mixing mainly

6



Introduction 1.3 Final Stages of Stellar Evolution

helium and nitrogen into the envelope. Carbon burning is ignited, which in turn proceeds 
more quickly than helium burning.

As the stellar luminosity increases and approaches the Eddington limit, significant 
mass loss takes place by means of a strong stellar wind and affects the subsequent evolu
tion. Energy is lost from the core through neutrino emission, which results in the nuclear 
fuel being consumed more quickly. Nuclear burning proceeds through heavier elements 
increasingly rapidly until eventually, after silicon burning, which lasts about a day, the 
inner core consists of iron group elements and no more fusion can take place.

At this stage the core of the star is made up of concentric shells burning different 
elements -  iron-group elements in core surrounded by shells of silicon, oxygen, carbon, 
helium and hydrogen burning and the H-rich envelope. Figure 1.3 shows a schematic 
diagram of the structure of the star at the end of nuclear burning. In Figure 1.4 a 
Hertzsprung-Russell diagram shows the evolution of stars of 10, 15 and 20 M0.

c/o
Ne/Mg/O 
"Si/S  '

FIGURE 1.3. Schematic diagram of the composition of a massive star at the end of nuclear burning. 
A core consisting of iron-group elements is surrounded by concentric shells of increasingly lighter

elements.
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FIGURE 1.4. Hertzsprung-Russell diagram showing the evolution of stars of 10, 15 and 20 M 0  
after they have left the main sequence (straight line). The envelope of each star expands, causing it 

to move to higher luminosity and lower temperature while successive burning stages take place.

1.3.1 Mass Loss

The massive stars that give rise to supemovae have luminosities close to Eddington 
throughout their lives. They therefore possess strong winds and mass loss affects ev
ery stage of their evolution. Stars greater than ~  30 M@ have stellar winds so powerful 
that their mass loss timescale is shorter than their main sequence lifetime. Their main 
sequence masses therefore tend to converge towards 30 M0 . (Mass loss rates increase 
with increasing metallicity, so in the early Universe the maximum mass of a star was 
much larger than this.)

A certain class of stars called Wolf Rayet stars are thought to start out more massive 
than 30 M0 and lose so much mass during their evolution that only the core remains. 
They are observed to be hydrogen poor, with a range of compositions as a result of 
losing their envelopes at different stages of their evolution. (N.B. A stellar wind is not 
the only way to unbind an envelope -  evolution in a binary can also produce a bare stellar 
core.) Wolf-Rayet stars are thought to give rise to Type lb and Ic supemovae, which are 
core collapse supemovae with no hydrogen in their spectra. It is likely that Wolf-Rayet

8



Introduction 1.4 Catastrophic Collapse

stars are the progenitors of gamma ray bursts, which are described in detail in Section 1.8 
below.

1.4 Catastrophic Collapse

Once nuclear reactions in the core of a massive star have produced iron, no more reac
tions can take place, since both fission and fusion of iron group elements is endothermic. 
The core contracts once more and as the density rises the electrons become a relativistic, 
degenerate gas.

There is a maximum mass for which electron degeneracy can support the iron core 
against gravitational collapse. This is given by the Chandrasekhar limit

Mck *  5.8Ke2 M0 (1.1)

where Ye is the ratio of electrons to baryons (Bethe 1990). When the mass of the de
generate core exceeds the Chandrasekhar limit self-gravity exceeds electron degeneracy 
pressure and the core cannot stop contracting. In the iron core at the onset of collapse Ye 
is generally slightly below 0.5, giving a typical value for Mch of around 1.4 M0 .

Once gravitational collapse has begun, instabilities arise that serve to accelerate the 
collapse to catastrophic proportions. As the density increases, electrons can be captured 
by heavy nuclei, thereby removing their contribution to the pressure. In addition, the 
pressure of a degenerate gas has a low sensitivity to temperature so that as the core 
contracts there is no increase in pressure to halt it. The temperature rises until it reaches 
the point where iron nuclei can photodisintegrate, by the reaction

56Fe -► 134He +  4n -1 0 0  MeV

which is endothermic, requiring 100/56 MeV ~  2 MeV per nucleon.

The energy absorbed by the photodisintegration of iron accelerates the collapse al
most to free fall. Eventually the temperature becomes high enough to dissociate helium 
into protons and neutrons. Electron capture on free protons can then take place, causing 
yet more energy loss. During this time the inner core (~  0.8 M0) collapses homolo
gously (v ex r), whilst the outer core collapse becomes supersonic and similar to free 
fall, with v cx r -1/2. At its maximum, the infall velocity reaches about half that of free 
fall. Figure 1.5 shows a schematic graph of the infall velocity. The only thing that is able 
to stop this runaway collapse is the pressure from the nucleons becoming greater than

9
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FIGURE 1.5 . Schematic diagram of the infall velocity of material during core collapse as a function
of enclosed mass, after Bruenn (1988).

the gravitational acceleration. This happens when the density is so high that the nucleons 
form a degenerate gas, around 3 x 1014 g cm-3.

The collapse of the core takes place on a dynamical timescale and it takes less than 
half a second for it to reach nuclear densities. It should be noted that, because the col
lapse happens so quickly, energy transport is negligible and each fluid element maintains 
essentially constant entropy. This is significant because it limits the effects of transport 
mechanisms to after collapse.

1.5 Matter at High Densities

As the density increases, the opacity of the matter to neutrinos rises and further electron 
capture is prevented by neutrino trapping. The discovery of the neutral weak current 
in the early 1970s meant that neutrinos could not only be absorbed by nucleons and 
scattered by electrons, but also scattered by neutrons (and protons too, to some degree) 
and hence nuclei. This insight led to the discovery of neutrino trapping (Freedman 1974, 
Mazurek 1975, Sato 1975), which occurs when the high density material in the core 
becomes opaque to neutrinos. A detailed theory was produced by Tubbs & Schramm 
(1975).

10



Introduction 1.5 Matter at High Densities

Trapping can be defined in a number of different ways. Cooperstein (1988) defines 
it as occurring when the neutrinos cannot escape from the star due to being dragged in 
with collapsing matter, which gives a trapping density of 6 x 1011 g cm-3. An alter
native definition of the trapping density is that at which neutrinos can no longer diffuse 
significantly with respect to matter. This happens at a density of ~  1012 g cm-3. Bruenn 
(1988) found that the trapping density tends to be higher nearer the centre of the core, 
but generally in agreement with the figures cited above.

Once trapping has occurred, neutrinos attain thermodynamic equilibrium with them
selves and can be described by a Fermi distribution. However, they are not in equilibrium 
with the electrons and so are described with their own temperature Tu and chemical po
tential fj,v.

A “trapping radius” can be defined for the core as that within which neutrinos are 
trapped. We can also define the “neutrinosphere” as the radius at which the optical 
depth for neutrinos r  =  2/3, outside which the neutrinos are assumed to stream freely to 
infinity. (A value of 2/3 rather than 1 is chosen because neutrinos emerge at an angle from 
the neutrinosphere rather than radially.) The neutrinosphere is distinct from the trapping 
sphere and is at a larger radius, meaning that neutrinos diffuse for a long time before 
emission. Since e, fi and r  neutrinos have different rates of interaction with matter, the 
radius of the neutrinosphere is different for each species.

The mass of the inner core is very sensitive to neutrino reactions; for example, Bruenn 
(1988) found that including neutrino-electron scattering in simulations reduces the mass 
of the inner core from 0.75 M0 to 0.64 M0 . The difference between the inner (ho
mologous) core mass and the total mass of the iron core is fundamentally important in 
determining how likely the shock produced at bounce is to successfully traverse the outer 
core and cause an explosion. The bigger the difference, the more material the shock has 
to travel through and the more energy it loses on the way.

The structure of the matter in the core changes dramatically during collapse. When 
collapse begins, the nucleons are in the form of a gas of heavy nuclei, surrounded by 
a lower density gas of alpha particles and nucleons. The lower density gas occupies 
most of the space but is made up of only a small fraction of the material. The electrons 
also form a gas, evenly distributed in space, which supply the pressure (as the nuclear 
pressure is often negative).

The adiabatic index given by this arrangement of matter is T < 4 / 3 ,  meaning that 
once core collapse has begun it is unable to stop until the equation of state becomes 
“hard”. This occurs when the material reaches ~  saturation density, i.e. the density of

11
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uniform nuclear matter,
ps =  0.16fm- 3 , (1.2)

and the adiabatic index abruptly increases to > 1.6. At this point the collapse of the inner 
core is halted, sending a shock outwards into the infalling outer core, “core bounce”. 
At the “maximum scrunch” of the inner core, the central density is around 3 times the 
density of nuclear matter.

1.5.1 Nuclear Pasta

At the beginning of collapse, when the central density is comparitively low, the nuclei 
behave as a gas and are spherical. As the density increases and the transition to nuclear 
matter takes place, between ~  0.1 ps and ps, the nuclei minimize their energy by changing 
shape. This is known as the “nuclear pasta” phase (Ravenhall, Pethick & Wilson 1983, 
Bethe 1990). As the density increases, the spheres deform into prolate spheroids which 
align parallel to each other. These spheroids elongate into long cylinders, which then join 
together to give alternating flat plates of nuclear material and nucleon gas (which consists 
mainly of neutrons that have “dripped” out of nuclei). After this phase the stages invert, 
so that spaghetti-like gas spaces form between between nuclear matter, which shorten 
into spheroids and finally produce spherical bubbles of gas in nuclear matter - “Swiss 
cheese”. The transition from Swiss cheese to uniform nuclear matter occurs when the 
density is around 0.8ps.

The nuclear pasta phases were originally ascertained from phase diagrams of the 
equilibrium state of nuclear material. The core collapse environment, with rapidly in
creasing density, is far from equilibrium. Recently, computational investigations into 
whether these phases can arise during core collapse have been carried out, which show 
that they do indeed occur (Watanabe et al. 2005). This is an important result, as pasta 
phases increase the neutrino opacity of matter (Horowitz, Perez-Garcfa & Piekarewicz 
2004), which in turn affects the mass of the inner core and the success of the shock.

1.5.2 Effect of the Equation of State

Investigations have taken place into the effect the equation of state (EOS) has on the 
formation of the shock and the mass and fate of the compact remnant. It is known that at 
a density of ~  3 x 1014 g cm-3 neutron degeneracy pressure causes the polytropic index 
to increase suddenly from T < 4/3 to T > 1.6. However, how large T actually becomes 
remains uncertain.

12
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It has conventionally been accepted that a softer EOS (i.e. a lower 7 above nuclear 
densities) is favourable for the shock as it leads to a “deeper” bounce (larger maximum 
density). This is true up to a limit above which the mass inside the shock becomes 
greater than the maximum mass of a neutron star and collapse to a black hole ensues. 
Some constraint on possible EOS is provided by the requirement that this critical mass 
must be at least as large as the observed maximum mass of neutron stars, ~  1.44 M© 
(but see the recent discovery of a neutron star of 2 M© claimed by Nice et al. (2005) and 
references therein).

Early investigations into the effect varying the EOS has on the prompt explosion 
showed that a soft equation of state did indeed facilitate explosion (Baron, Cooperstein 
& Kahana 1985, Takahara & Sato 1988). In constrast to these results, Swesty, Lattimer 
& Myra (1994) argue that, when constrained by observation and experiment, altering 
the compressibility parameters in a realistic equation of state has very little effect on the 
radius at which the shock stalls.

In realistic supernova simulations which require a sophisticated treatment for the 
EOS, that of Lattimer & Swesty (1991) is commonly used. This employs a compressible 
liquid drop model for nuclei with an adjustable nuclear force that can be varied to take 
into account the experimental uncertainties. A more up-to-date calculation is provided 
by Shen et al. (1998a), Shen et al. (1998b) who use relativistic mean field theory to 
calculate the interactions between nuclei, alpha particles, protons and neutrons up to 
densities exceeding nuclear. However, it is still reasonably common for modellers to 
parametrize the EOS as a polytrope before bounce with a polytrope of a higher index 
plus a thermal component after bounce (see e.g. Dimmelmeier, Font & Miiller (2002)).

Sumiyoshi et al. (2005) recently ran simulations comparing the Lattimer-Swesty (LS) 
EOS to the Shen EOS. They found that the shock was not affected until more than 200 ms 
after bounce. However, with the LS EOS a more compact neutron star was formed, with 
the central density almost a factor of two higher.

There is much we do not know about the behaviour of matter at extremely high den
sities. Experiments with particle accelerators, determination of the mass-radius relation 
for compact objects and computer simulations will all help to constrain models. Until 
then the exact behaviour of the core during and after bounce will remain uncertain.

13



Introduction 1.6 Shock Launch and Revival

1.6 Shock Launch and Revival

The sudden stiffening of the equation of state at nuclear densities halts collapse and 
causes the inner core to rebound. A shock forms and travels outwards through the mantle, 
which is still infalling. Material passing through the shock is slowed drastically and 
subsequently settles onto the central object.

As the shock wave moves outwards it raises the temperature and entropy of the mate
rial -  temperatures of 5 x 109 K are obtained in the mantle, resulting in nuclear statistical 
equilibrium and the formation of heavy elements. Nickel rather than iron is produced 
because Z /A  «  1/2. (It is the /3-decay of this nickel that produces the exponentially 
decaying light curve of the supernova.)

Early theories of supernova production assumed that the shock would propagate 
through the whole star and in so doing would launch the envelope to infinity. More 
recently it has become clear that this is unlikely to be the case. As the shock travels 
through the iron core it loses energy by dissociating iron nuclei at a cost of ~  9 MeV 
per nucleon. As the shock slows, energy loss through the emission of neutrinos also 
becomes significant. The upshot of this is that the shock slows to a stop at a radius 
of a few hundred kilometres, becoming an accretion shock as material outside it con
tinues to fall in. Computer simulations have shown that in most instances (generally 
those with the most realistic physics) the shock fails between 100 and 200km (Bowers & 
Wilson 1982, Wilson 1985, Bruenn 1989&, Bruenn 1989<a, Baron & Cooperstein 1990).

1.6.1 Supernova Energetics

At this point it is timely to discuss supernova energetics. The huge luminosity of a 
supernova is only a tiny fraction of the energy released in core collapse. In collapsing 
from a “white dwarf” radius RWd ~  1000 km to a proto-neutron star Rpns ~  20 km the 
roughly M c ~  1.5 M© iron core releases

A Esrav *  - G M l  ( - L  -  - L )  ~  ^  3 x io »  erg (1.3)
\  f tp n s  Hwd. /  t tp n s

of gravitational energy.

The “explosion energy”, which is the luminosity of the supernova integrated over 
time, is observed to be of the order of a few x 1051 erg. The kinetic energy of the super
nova ejecta, from observations that give the typical expansion velocity vexp ~  104 km s-1

14
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and for a M* ~  10 M© star, is

i(A f , -  Mc)v2env ~  1052 erg . (1.4)

Another 1052 erg is absorbed in nuclear reactions. It can be seen from these figures that 
there is a large difference between the gravitational energy released in collapse and the 
observed total energy of the explosion. Where has this energy gone? The answer is 
provided by neutrinos, which are emitted from the collapsed core and quietly carry off 
the majority of the gravitational energy.

1.6.2 Shock Revival

Because of the dominance of neutrinos in the energetics of the explosion, it was sug
gested that the absorption of neutrinos might revive the stalled shock by heating the 
material behind (downstream of) it, at a radius of 100-200 km. To produce the explosion 
energies observed the neutrinos need to deposit around 5-10% of their energy in this re
gion. Colgate & White (1966) found in their simulations that this mechanism produced 
explosions where the prompt shock did not, although the significance of this was not 
immediately realised. Like the shock, the idea of neutrino heating took some time to be 
revived, the pioneer of the delayed shock hypothesis being Wilson (1985), who began to 
include the effects of neutrino energy deposition in his simulations.

The dominant mechanism for neutrino absorption is neutrino capture on free nucle
ons so absorption happens in the region where the shock has dissociated nuclei. This 
is within a radius r ~  200 km. Neutrino trapping helps by delaying the emission of 
neutrinos until the shock has formed. Neutrino diffusion in the mantle is also important. 
Its effect is to heat up the mantle—the temperature of a typical mass element rises from 
around 10 to 40 MeV. This helps to set up a negative entropy gradient that may drive 
convection currents, which also help transfer energy to the shock.

Once the shock begins moving again there is a certain cut-off in enclosed mass below 
which material will end up on the proto-neutron star and above which it will be expelled 
by the explosion. At the radius where this division happens the density has previously 
been decreasing due to the material falling in. Bethe (1990) gives the density as a func
tion of time from the beginning of infall as
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where a  is a coefficient between 1/2 and 1, C  is between 1 and 10 and r7 is the radius in 
units of 107 cm. This gives a density of around 107 g cm-3 at r7 = 1 and t — I s ,  very 
low compared to the core density of around 1014 g cm-3. Once the shock has passed 
through and heated the material, most of the energy is held in radiation and electron- 
positron pairs. This cavity of radiation continues to drive the shock.

Since neutrinos are so important in mediating the energy transfer, it is important that 
they are modelled correctly in numerical simulations. This is the biggest challenge for 
the supernova community. There is a wealth of transport mechanisms for neutrinos, in
cluding absorption/emission from free nucleons, absorption/emission from nuclei, scat
tering, e+e_ annihilation (pair and plasmon decay) and v-v annihilation. Even when the 
neutrino transport is handled by approximation, each of these must be taken into account 
and the rates calculated before a decision is made about whether or not to include its ef
fects in the simulations. Full Boltzmann transport in one dimension is only just arriving 
(Liebendorfer et al. 2004, Liebendorfer et al. 2005, Rampp & Janka 2002). Its develop
ment is complemented by less sophisticated but improving methods in two dimensions 
(Livne et al. 2004, Buras et al. 2003). As I will discuss in the following sections, a full 
handling of neutrino transport is necessary but may not on its own even be sufficient for 
producing explosions.

1.6.3 Fate of the Compact Remnant

There is a critical stellar mass above which a black hole rather than a neutron star will be 
formed from core collapse. At present the location of this boundary is very poorly con
strained. Fryer (1999) simulated the collapse of stars of different masses and identified 
three possible outcomes: formation of a neutron star by a strong explosion of a low mass 
star with little fallback; formation of a black hole by fallback after a successful explo
sion; and direct collapse of a massive star to a black hole, with no resultant explosion. 
He found that the transition region above which black holes were formed by fallback was 
around 18-25 M0 . Stars greater than ~  40 M@ were found to produce black holes by 
direct collapse. Assumptions about the initial mass function of the stars gave the ratio of 
black hole to neutron star formation in the Galaxy as 1.5%.

Metallicity affects mass loss rates and therefore the mass of the star at collapse. The 
effect of metallicity on the mass boundaries for different collapse outcomes was investi
gated by Heger et al. (2003). They found that if the metallicity is increased the boundaries 
can fall at significantly higher masses. Above solar metallicity mass loss may be high 
enough to prevent black hole formation completely.
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It has been suggested that rotation may also be a determinant of the fate of the com
pact remnant (Akiyama & Wheeler 2005). In this scenario neutron stars are formed only 
in a transition region where rotation is strong enough for jets to form and assist explo
sion but not strong enough to cause the core to bounce “centrifugally”, producing a weak 
explosion with fallback. Predictions of the outcome of core collapse from initial stellar 
mass are evidently poorly constrained and uncertain.

1.7 Importance of Three Dimensional Effects

As neutrino transport in one dimensional simulations improved it became clear that the 
conditions therein were not sufficient to produce explosions. Even with neutrino heating 
the shock could not be imparted with enough energy to eject the envelope (Bruenn 
1989a,b, Myra & Bludman 1989, Wilson 1985). A consensus is forming that higher 
dimensional effects are necessary to drive successful supernova explosions.

It is not unreasonable to expect that non-spherical effects should be important. Ob
servations of core collapse supemovae have revealed that asymmetry is ubiquitous. Su
pernova remnants close enough to observe are rarely perfectly spherical, examples being 
the aptly-named guitar nebula or the off-centre rings around 1987A. Further evidence 
of asymmetry comes from measurements of the polarisation of supernova light, which 
is typically around 1% (Wang et al. 2003, Wang et al. 2001, Wang et al. 1996, Leonard 
et al. 2002, Leonard et al. 2001, Leonard et al. 2000). This gives the axial ratio of the 
ejecta as around 2:1. In addition, the degree of polarisation increases with decreasing 
envelope mass, implying that the asymmetry is stronger with increasing depth inside a 
star.

Observations of the proper motions of neutron stars give a distribution with a tail 
extending past ~  500-1000 km s-1. It is possible that the distribution is actually bimodal 
with the second peak at ~  500 km s-1 (see Arzoumanian, Chemoff & Cordes (2002) and 
references therein). Velocities of this magnitude cannot arise from the orbital motion 
of a broken binary system and their explanation is presumed to lie in the supernova 
mechanism. Further evidence for NS “kick velocities” comes from the often off-centre 
positions of pulsars relative to their surrounding supernova remnants, for example the 
neutron star in Cas A (Thorstensen, Fesen & van den Bergh 2001).

A good review of the competeing models for the production of neutron star kicks has 
been written by Lai (2003). These can be grouped into three categories:

•  hydrodynamically driven by instabilities or oscillations in the core;
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FIGURE 1.6. Hubble Space Telescope image of the highly aspherical supernova remnant N63A
Menagerie.

• neutrino-magnetic field driven, in which neutrinos are emitted asymmetrically 
from the core due to magnetic fields;

• electromagnetically driven, where the kick is produced after explosion by a rotat
ing, off-centred magnetic dipole.

In addition to direct observations of asymmetric systems, strong evidence for the 
occurrence of mixing before or during the explosion comes from observations of the 
gamma ray emission of SN1987A. Gamma rays are emitted from the decay of 56Co, 
itself a decay product of the 56Ni produced in the core. The gamma ray maximum was 
observed at around 350 days, much earlier than it would have had the nickel remained at 
the bottom of the envelope where it was produced.

With this evidence in mind, the following subsections discuss the most likely causes 
of asymmetry in supemovae.
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1.7.1 Convection

As the shock expands into less dense regions the entropy gradient dS/dr  just behind it 
becomes negative, enabling convection to set in. The Ledoux criterion for convection is 
(Bethe 1990):

dS (dp/dYe)P'S dYe
dr + ( d p / 9 S ) p,Y. dr (1'6)

where p = p(p, S, Ye). Generally

dp
^  < 0 (1-7)

so that Equation 1.6 becomes

where a is positive.

d S ' p .Y .

w) < 0 (18)O Y e ' p , S

dS dYe n
— + a —^ < 0  (1.9)
dr dr

In the prompt shock model, this criterion is generally satisfied. In the delayed shock 
model, after the shock has been revived dYe/dr  is negligible and convection will always 
occur.

Convection helps the shock by transporting energy from the heated material at 100- 
200 km to the shock front. Shocked material can continue to accrete at the same time 
as the shock gains energy. Fingers of cool material flow downwards towards the proto
neutron star in between hot bubbles of buoyant material, which drive the shock outwards.

Early two-dimensional models did indeed show vigorous convection taking place 
and eventually launching an explosion (Burrows, Hayes & Fryxell 1995, Herant et al. 
1994, Fryer 1999). This result was repeated in three dimensional models (Fryer & 
Warren 2004). However, the simplified, “grey”, neutrino transport used in these mod
els is thought to increase the neutrino energy deposited behind the shock. Buras et al. 
(2003) employed more accurate neutrino transport in their two dimensional simulations. 
They found that convection gave a transient increase in the shock radius but was not 
strong enough to produce an explosion, although it came tantalisingly close. It must be 
noted that the angular extent of their simulations was 7t / 4 , meaning that any possible 
instabilities that cause the polar, I =  1 mode to grow would not be observed.

The validity of this approach was called into question by Janka et al. (2005a,b) who 
ran simulations with an angular extent of 7t /4  and 7r /2. They found that when the 7t/2
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segment was used the I =  1 mode was able to grow, ultimately driving an explosion. This 
result is reminiscent of that of Blondin, Mezzacappa & DeMarino (2003) (and more re
cently Blondin & Mezzacappa (2005)), where the stability of a spherical standing accre
tion shock (SAS) was studied in two dimensions. The SAS consists of a spherical shock 
surrounding a radiation cavity with an absorbent inner boundary, and approximately de
scribes a stalled supernova shock. They found that small perturbations to the shock front 
caused instabilities to grow due to the infalling material hitting the perturbed shock at 
oblique angles. This led to turbulence within the shock, which occurred even with flat 
or positive entropy gradients there, conditions stable to convection. In particular, it was 
found that the I = 1 mode grows and forces the shock to expand. This effect was not 
found in a previous one dimensional study (Houck & Chevalier 1992), which hints that 
there may be further, unexpected multi-dimensional effects yet to be discovered.

1.7.2 Rotational effects

An obvious effect that cannot be included adequately in one-dimensional models of core 
collapse is rotation. It is common sense to assume that rotation plays some sort of role, 
since observations of massive stars show that they rotate with equatorial velocities of 
hundreds of kilometres per second (Halbedel 1996, Penny 1996, Fukuda 1982). The 
remnants of core collapse, neutron stars, are observed as pulsars with rotation periods of 
a fraction of a second. Magnetars -  strongly magnetized neutron stars -  may have had 
their fields produced by rotational effects.

Rotation also gives rise to instabilities which may help to explain observations of 
supemovae. As mentioned in Section 1.7, in SN1987A the decay of 56Co was observed 
earlier than would have been possible had mixing not taken place. Mixing instabilities 
caused by rotation, such as the dynamical shear instability or the Solberg-H0iland insta
bility, may have been responsible.

As well as being useful for explaining the observed asymmetries in supemovae, ro
tational energy may be harnessed to make supernova explosions successful. There are a 
number of ways in which rotation may enhance the explosion:

•  The centrifugal force produced by rotation reduces the “effective gravity”, which 
allows the shock to reach a larger radius before stalling. This results in a larger 
gain region in which neutrino heating can take place.

• Neutrino heating is enhanced along the poles relative to the equator due to the 
neutrinospheres becoming non-spherical.
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• Infall proceeds more quickly at the poles than at the equator, creating a funnel of 
low density material along which the shock can propagate more easily.

•  Rotation induces vortices which could dredge up heat from below the neutri- 
nospheres to power the shock.

The second and third of these factors will dominate in the presence of strong rotation 
and are likely to produce an explosion that is stronger along the poles. Slower rotation, 
even if it is insufficient to drive an explosion in this way, could lower effective gravity 
enough in the equatorial region to induce an equatorial explosion.

It is known that a positive angular momentum gradient can suppress convection 
(Endal & Sofia 1978). This effect is evident in the more rapidly rotating simulations 
of Fryer & Heger (2000) and Fryer & Warren (2004). However, rather than weaken the 
shock, the suppression of convection at the equator led to a dominant I =  1 convective 
mode and subsequent polar explosion.

Rotation is likely to enhance the neutrino heating mechanism. Shimizu et al. (2001) 
found that anisotropic neutrino emission would increase the vigour of convective over
turn, thus driving the shock more strongly. The simulations of Kotake, Yamada & Sato 
(2003a) showed that neutrino emission is enhanced by rotation due to deformation of 
the neutrinospheres, with neutrino heating rates an order of magnitude higher along the 
rotation axis than at the equator. Madokoro & Shimizu (2004) investigated the effect 
of setting the neutrino emission to be stronger at either the equator or the poles. They 
found that this produced oblate and prolate explosions respectively, of which the prolate 
explosions were more energetic.

It has also been proposed that supemovae may be powered in part by magnetohydro- 
dynamic (MHD) jets. Differential rotation in the core of a collapsing star might rapidly 
enhance its magnetic field via the magneto-rotational instability (MRI), which goes on 
to drive polar jets (Akiyama et al. 2003, Hoflich, Wheeler & Wang 1999). If this is in
deed the case, in rare cases of very rapid rotation MHD processes could dominate the 
explosion, the rapidly-moving jets giving rise to a hypemova or gamma ray burst, de
pending on how much of the envelope remains. These phenomena will be discussed in 
Section 1.8 below.

Might there be two mechanisms for producing explosions - both neutrino heating 
and MHD jets? This possibility is discussed by Burrows et al. (2005) (and references 
therein). The authors prefer the “neutrino-driven mechanism, perhaps with rotation”, 
with explosions that would otherwise fail being enhanced to the point of success (and
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correct explosion energies) by moderate amounts of rotation (a “rotation boost”). They 
speculate that for a minority of cases, those with rapid rotation, MHD could be “dy
namically influential”. Weak jets would form and become evident after the explosion by 
modifying the shape of the debris.

Other groups argue that there is no need for jets except in very extreme circumstances 
(Janka et al. 2005a,b). They claim that while some rotation is helpful, rapid rotation is 
not necessary for successful explosions with the neutrino-driven mechanism.

Rotation will also affect the compact remnant. A neutron star of above the Chan
drasekhar mass may be formed and supported by differential rotation, delaying collapse 
to a black hole. A centrifugally-supported accretion disc may form during the collapse 
which is able to power a jet (Section 1.8). At the densities achieved at core bounce, ro
tation produces gravitational wave emission, especially if the core becomes unstable to 
triaxial deformations. Many groups are investigating the gravitational wave signatures 
produced by rotational collapse (Ott et al. 2004, Rampp, Mueller & Ruffert 1998, Shibata 
& Sekiguchi 2005).

1.8 Gamma Ray Bursts

Possibly the foremost astronomical mystery of our time is the origin of gamma ray bursts 
(GRB). Outshining the whole gamma ray sky for their duration, these flashes of radiation 
occur roughly once a day. They may last for an amount of time ranging from a fraction 
of a second to several hours, with variations in intensity on a timescale of milliseconds.

GRB were discovered in the 1960s by the American Vela satellites and rumour has 
it that they were thought to be evidence of the Russians performing nuclear tests on the 
moon. Once this was ruled out and their existence de-classified it was thought that they 
might be related in some way to supemovae. The original paper describes a search for 
supemovae coincident in time with the GRB, in which none were found (Klebesadel, 
Strong & Olson 1973).

As the number of observed GRBs has accumulated, it has become evident that they 
have a bimodal distribution in duration (Kouveliotou et al. 1993), with the transition 
occuring at ~2s (see Figure 1.7). Long GRBs, which generally have softer X-ray spectra 
than short GRBs, are defined as having a duration of > 2s.

The first afterglow for a GRB was discovered by the X-ray satellite BeppoSAX 
(Costa et al. 1997, van Paradijs et al. 1997, Frail et al. 1997). Further pinpointing of
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FIGURE 1.7. Distribution of the durations of GRB detected by the Burst and Transient Source 
Experiment (BATSE) on board NASA’s Compton Gamma-Ray Observatory. T90 is the time from 
which 5% to 95% of the total measured counts for a burst are detected. The distribution shows two 

distinct peaks, occurring at ~0 .3  and ~ 3 0  seconds.

the locations of long GRB revealed them to be distributed isotropically, hinting at a cos
mological origin which was later confirmed by observations of the afterglow redshifts 
(Metzger et al. 1997). Not all long GRB have been observed to be followed by X-ray 
and/or optical afterglows and no afterglows at all had been discovered for short GRB 
prior to the launch of the Swift satellite in November 2004. Swift has since found after
glows for 2 of the 4 short bursts it has detected (Gehrels 2005, Barthelmy 2005).

Once the distances to GRB had been ascertained another problem became apparent 
-  if the luminosity of a GRB was assumed to have been emitted isotropically, its total 
energy would be around 1054 erg. Temporal variations in the burst can be no shorter 
than the light crossing time, meaning that all this energy must come from a compact area 
of less that a few hundred kilometres in diameter. There is no known mechanism for 
producing this much energy in so small a space -  an order of magnitude more than the 
total energy released in core collapse.

This dilemma seems to have been solved by the “fireball” model of GRB, in which a 
low density plasma is emitted in a narrow jet from the central engine (whatever that may 
be). The gamma rays are produced by the annihilation of electron-positron pairs and can
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only be observed when the line of sight is along the jet. These jets may have Lorentz 
factor T ~  1000, blueshifting the gamma rays emitted to the high energies observed.

1.8.1 The Supemova-GRB Connection

Despite the original non-observation of coincident supemovae, a link has now been es
tablished between supemovae and the long GRB. Bumps have been identified in after
glow light curves at late times and attributed to the peak of the light from the underlying 
supemovae (Bloom et al. 1999, Zeh, Klose & Hartmann 2004).

The SN-GRB connection was given credibility with the discovery of supernova 
SN1998bw in the error box of GRB 980425 (Galama et al. 1998). However, this GRB 
had an unusually small reshift of z = 0.0085, revealing it to be located at less than 
cosmological distances and underenergetic by 4 orders of magnitude compared to the 
“normal” GRB. In addition to this, the Type Ib/c SN1998bw was also observed to be 
unusual, with expansion velocities 3-4 times higher than a normal Ib/c and a peak lu
minosity about 10 times brighter. Explanations offered were that the supernova was the 
product of the C/O core of a star of originally 40 M0 that had had its envelope stripped, or 
alternatively, that the explosion was bipolar and viewed along the jet (Hoflich et al. 1999).

Clinching evidence for a relationship between supemovae and GRB came in April 
2003 when supernova SN2003dh was discovered spectroscopically in the afterglow emis
sion of GRB 030329 (Stanek et al. 2003). The redshift of z = 0.1685 placed it relatively 
nearby, and the supernova spectrum bore a very close resemblance to that of the un
usual SN1998bw. It therefore seems likely that GRB are produced by an unusual class 
of supemovae, possibly with small envelopes and rapid rotation. Hypemovae may also 
form part of this class. The observation that the host galaxies of long GRB have high 
levels of star formation (Christensen, Hjorth & Gorosabel 2004) and that the locations 
of GRB within these galaxies are within regions of star formation (Bloom, Kulkami & 
Djorgovski 2002) provides further support for a link between GRB and massive stars.

There have been claims that lines due to iron and other metals have been observed 
in the X-ray spectra of GRB afterglows (Reeves et al. 2002, Antonelli et al. 2000, Piro 
et al. 1999). The validity of these claims has been highly contested, but if true, they 
imply a delay between the supernova explosion (which may take several days to reach 
an observable magnitude) and the launch of the GRB. This scenario would support the 
“supranova” model proposed by Vietri & Stella (1998), in which the GRB is launched 
by the collapse of a neutron star to a black hole months after the supernova explosion.
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However, estimations of the time lag for a collection of GRB with associated supemovae 
show little evidence of a delay (see Della Valle (2004) and references therein).

1.8.2 The Collapsar Model

Today, the leading model for the origin of long GRBs is the “collapsar” (Woosley 1993, 
Paczynski 1998, MacFadyen & Woosley 1999). In this model, the core collapse of a 
massive, rapidly rotating star produces a black hole (either immediately or after fall-back 
of material from the stalled shock) surrounded by a centrifugally supported accretion 
disc. Accretion continues as material falls in from further out in the star, lasting for 
tens of seconds. The energy released by accretion is channelled by neutrino annihilation 
or MHD effects into high Lorentz factor jets that punch through the central regions of 
the star. The energy dissipated by the disc may contribute to a partial or full supernova 
explosion, or the supernova may “fail” entirely and the star collapse into the black hole. 
A schematic diagram of a collapsar can be found in Figure 1.8.

The jet becomes what is observed as a GRB once it has emerged from the star and the 
gamma rays are thought to be produced by internal shocks. Current thinking is that the 
large envelope of a supergiant would attentuate the jet too much and that massive stars 
which have lost their envelopes (Wolf Rayet stars) are the most likely GRB progenitors 
(Zhang, Woosley & Heger 2004).

1.8.3 One Lump or Two?

A uniformly rotating spheroid will become dynamically unstable to triaxial (bar-like) 
deformations if its ratio of rotational to gravitational energy /3 =  T /\W \ > 0.27. For a 
differentially rotating body, such as the core of a collapsing star, this ratio may be much 
lower. Since j$ will increase as the core of a star collapses, it is plausible to imagine that 
with a moderate amount of rotation the collapsing core may become bar-like.

It was pointed out by Bonnell & Pringle (1995) that during star formation, the col
lapse of prestellar cores can result in fragmentation of the core and that similar processes 
may take place during supernova collapse. Up-to-date models of rotating supernova 
progenitors (Heger, Langer & Woosley 2000) have core angular momenta immediately 
before collapse equivalent to those of neutron stars rotating close to break-up, making 
fragmentation a bewitching possibility.
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Jet

hole
Accretion torus

FIGURE 1.8. Schematic diagram of a collapsar. The stellar core has collapsed along the poles to 
produce a black hole surrounded by a torus of centrifugally supported material. The energy released 

through accretion drives jets along the evacuated poles.

The idea of core fragmentation was expanded by Davies et al. (2002). If the core of a 
collapsing star fragmented at around the time of bounce, the “lumps” would be of nuclear 
density. A system of two lumps would be akin to a binary neutron star system, with 
the lumps spiralling inwards under the emission of gravitational radiation, and merging 
through a period of unstable mass transfer towards the end of the inspiral. The transfer 
of mass could produce substantial ejecta, giving the merged object a recoil velocity.

This scenario was put forward as a possible explanations for two separate problems. 
The first was neutron star kick velocities, which could be explained by the recoil of the 
merged lump from its ejecta. The second, which would occur only in the absence of the 
first, was that the merged lump and ejecta could form a black hole and accretion disc 
which could power a GRB. The beauty of this method of production is that it would 
give a delay between the supernova and the GRB due to the time taken for the lumps to 
inspiral, which could be several hours. Alternatively, the larger of the lumps may itself 
produce a GRB that is reignited after a delay by the tidal shredding and accretion of
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the second lump. It has been suggested that this is what occurred in the case of GRB 
050502b, for which a highly energetic X-ray flare was detected 400 s after the initial 
burst (King et al. 2005).

This idea is the subject of much current research -  core collapse simulations show
ing secular instabilities in the core (developing on timescales greater than the dynamical 
timescale) have been undertaken by Rampp et al. (1998) and a transient fragmentation 
has been found by Shibata & Sekiguchi (2005). However, in other three dimensional 
simulations the cores have not obtained the rotational energies required for fragmenta
tion, as high angular momentum material is prevented from falling in by the centrifugal 
force (Fryer & Warren 2004).

1.9 Supernovae in Binary Systems

The ratio of Type II to Type Ib/c supemovae is highly uncertain -  between 1.2 and 16 in 
spiral galaxies, depending on the type (Cappellaro et al. 1997). Estimates of the fraction 
of Type Ib/c supemovae that produce GRB are also highly uncertain, given the depen
dence of the number of events observed on the beaming of the jets. Radio observations 
give this fraction as less than 5% (Berger et al. 2003), while optical observations put it at 
less than 1% (Podsiadlowski et al. 2004). GRB are clearly an extremely rare form of core 
collapse and their production must therefore require an extraordinary set of conditions.

Indeed, the conditions required for a collapsar are stringent:

•  The stellar core must collapse to a black hole - this will result in no, or a weak, 
explosion initially.

•  The star must have enough angular momentum for infalling material to form a disc 
around the black hole. The specific angular momentum required in the core before 
collapse is >  3 x 1016 cm2 s-1 (MacFadyen & Woosley 1999).

•  The star must have lost its hydrogen envelope in order for the jet to remain rela- 
tivistic as travels through the star.

It is thought that, in the absence of mass loss, stars with masses in excess of 18-25 
M® will collapse to black holes (Fryer 1999). Even when envelope loss is considered 
there will still be enough stars that will collapse to black holes to explain the rate of 
GRB/hypemovae. The problem the loss of the envelope introduces is that with it is lost 
angular momentum. It is not clear whether single stars that lose their envelopes will
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retain enough angular momentum to form an accretion disc (Heger et al. 2000, Petrovic 
et al. 2005).

It is very likely that a plausible scenario for the production of GRB lies within the 
parameter space of binary systems. Mass transfer at various stages in the evolution of 
the system can dramatically affect the final mass of the core, the amount of mass loss, 
the rate of rotation and the final fate of the star (Podsiadlowski 1992). Pfahl et al. (2002) 
have suggested that stars which lose their hydrogen envelopes by mass transfer soon after 
leaving the main sequence may avoid losing their angular momentum in a stellar wind.

Fryer, Woosley & Hartmann (1999), inspired by a proposed model for the formation 
of SN1987A (Podsiadlowski 1992), suggested that a common envelope phase in a binary 
system could result in the merging of the stellar cores and ejection of the envelope. This 
scenario requires the stars in the binary to have very similar masses, so that the first 
common envelope phase, when the larger star evolves off the main sequence, does not 
lead to a merger of its helium core with the secondary star. Instead, before this can 
happen the secondary star evolves off the main sequence and the two helium cores merge 
in a second common envelope phase. In merging, a proportion of the orbital angular 
momentum of the system becomes the spin of the merged object, fulfilling the condition 
for production of a GRB. Binaries of almost equal masses may form very rarely but often 
enough to explain the observed rates of GRB and hypemovae.

In order to explore the plausibility of this scenario, Fryer & Heger (2005) simulated 
such a merger. Two stars were evolved individually to the point where the merger be
gins, the end of the main sequence phase. At this point, the results of the stellar evolution 
calculations were mapped to a three dimensional hydrodynamics code (SPH -  see Chap
ter 2) to model the merger of the helium cores. The merged core was then mapped back 
into the stellar evolution code and evolved until the onset of core collapse.

The authors performed their calculations using three different binary systems: 8 M©+ 
8 M0 ; 8 Mq+16 M0 ; and 16 M0 +16 M0 . They experienced difficulties in switching be
tween the codes, which resulted in them testing several different methods for controlling 
the post-merger conditions. In most cases, both the 8 M0 +  16 M0 and 16 M0 -I-16 M0 
models produced black holes. All of the models that formed black holes had enough 
angular momentum to form an accretion disc and some had 3-10 times the core angular 
momentum of single massive stars. Although many approximations were made in order 
for these calculations to be possible, the results give credence to the possibility that GRB 
result from binary mergers.
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1.10 Summary

The advent of three dimensional simulations has and will improve our knowledge of how 
SNe explode. It will be possible to determine whether explosions are made possible by 
three dimensional effects such as neutrino-driven convection. Modellers will be able to 
study the effects of asymmetry on explosion energies, chemical composition and mixing, 
as well as instabilities and asphericity caused by rotation. The mechanism and likelihood 
of jet formation may be established, helping us to understand whether they play an im
portant role in enhancing explosions and what it is that powers the engines of GRB. The 
future is bright, and much awaits discovery.

In this thesis I take a step towards that future by running three dimensional simula
tions of the core collapse of rotating stars. I use the computational method of Smoothed 
Particle Hydrodynamics to follow the collapse of sophisticated progenitor models with a 
variety of rotation rates up until core bounce. In some models I enhance the rotation to 
resemble that of a progenitor formed from a merged binary. I am especially interested in 
the prospect of core fragmentation, or otherwise creating conditions suitable for produc
ing GRB. I therefore pay particular attention to the structures formed and how the ratio 
of rotational to gravitational energy grows as the collapse proceeds.

In Chapters 2 and 3 the numerical method used and its adaptation to this problem 
is described. This is followed in Chapter 4 by tests of the code on a control model 
with rotation added using a simple parametrization. State-of-the-art rotating progenitor 
models are used in Chapter 5 to investigate core collapse with various rotation rates, the 
fastest of which is close to Keplerian. The gravitational wave signals produced in the 
collapse are described in Chapter 6 and a brief summary of all the results is provided in 
Chapter 7.
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Chapter 2
Numerical Method

“I would’ve said you weren’t a geek because you 
always express a dislike of computers.”

Roger Light
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2.1 Introduction

Since the first simulations of gravitational core collapse in massive stars were performed 
by Colgate & White (1966), vast progress has been made in both high energy astro
physics and computing. Early supernova codes were one dimensional, employing 100 
or so zones, progenitors were modelled as simple poly tropes and approximate terms 
for neutrino emission and deposition were used. These days, when considering what 
to include in their codes, supernova modellers take their pick from multi-energy, multi
dimensional neutrino transport, multi-dimensional hydrodynamics, rotation, magnetic 
fields, general relativity and the latest equations of state for nuclear matter (although the 
day when it will be possible to include them all is still far off). The end products of 
sophisticated stellar evolution models are used as a starting point for collapse. The abil
ity to model such a complex variety of physical effects is a result of the vast increases 
in the speed and performance of computers. In addition to single processor machines, 
parallel computers which run programs on multiple processors enable simulations that 
use millions of fluid elements.

In this chapter I describe the hydrodynamics code I use to simulate core collapse in 
massive stars. The code is that of Rosswog (Rosswog & Davies 2002), which has been 
run on various multi-processor machines, including the 128-processor U.K. Astrophysi- 
cal Fluids Facility (UKAFF), to perform high resolution, three dimensional simulations 
of merging neutron stars. This code is tailor-made for modelling fluids at neutron star 
densities, which are of the same order as the maximum density obtained in core collapse 
supemovae, just over 1014 g cm-3. Despite this, significant modifications to the code 
were required to make it suitable for my simulations. I will discuss these modifications 
and the initial conditions used for my simulations in chapter 3.

In this chapter I will discuss the equations of fluid dynamics and their conversion to 
the form used in the hydrodynamics code, a scheme known as Smoothed Particle Hydro
dynamics. I will describe the implementation of the “tree” structure used for evaluating 
the gravitational forces. I will also touch briefly on how the code is adapted for use on a 
parallel computer.

2.2 Equations of Fluid Dynamics

The behaviour of a fluid is governed by the three conservation laws — those of mass, 
momentum and energy. A full derivation of these laws can be found in many texts,
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including Landau & Lifshitz (1959).

The Mass Conservation or Continuity Equation accounts for changes in density caused 
by the transport of mass and can be stated as

^  +  V • (pv) =  0 , (2.1)

i.e. a positive divergence in mass flux at a fixed reference point results in a decrease in 
the mass density at that point.

The Equation of Momentum Conservation is the fluid equivalent of Newton’s second 
law, with fluid elements rather than objects being accelerated and density rather than 
mass taken as the measure of inertia. In addition to any net external force, an element 
of fluid will be accelerated by a pressure difference between its surfaces. Expressed at a 
point, this difference becomes the gradient of the pressure:

dv
—  + (v ■ V )v =  - V P  +  f  . (2.2)

Here, the vector f  includes all other forces per unit volume.

The third conservation law of fluid dynamics is that of energy. In addition to the 
macroscopic potential and kinetic energies of a fluid element, which depend on its den
sity and velocity, it also possesses microscopic, internal energy, related to its pressure, 
density and temperature. The equation of energy conservation is

=  f  . v  -  V • F rad -  V • q  . (2.3)

The left hand side of this equation expresses the kinetic, internal and potential energies 
of the fluid. The right hand side includes mechanisms whereby energy is transported to 
or from a fluid element: the work done by forces and energy carried away by radiation 
and heat conduction. In the adiabatic case with no external forces Equation 2.3 simplifies 
to

^  +  (v • V)« =  - - V • v  . (2.4)
ot p

In the equations 2.1, 2.2 and 2.4 above, the time derivatives of the fluid variables are 
for a “fixed” frame of reference, independent of the flow. This is known as the Eulerian 
formulation. The time derivative of a fluid variable can also be expressed as a Lagrangian 
-  the derivative in a frame moving with the fluid, along a flow line. Transformations from 
a fixed to a Lagrangian frame will therefore involve the bulk velocity of the fluid. For
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any quantity Q the Lagrangian derivative is

DQ _  dQ 
D t dt

The continuity equation therefore becomes

+  (v • V)Q (2.5)

Dp
- ^  +  p V - v  =  0 (2.6)

and converting the remaining equations, 2.2 and 2.4, into Lagrangian form gives

Z)v
P~jy£ = - V P  +  f  (2.7)

Du P _
m = —p V v - (2-8)

The set of equations above can be completed by the equation of state, which gives the 
pressure as a function of the density and temperature or internal energy, rendering a 
completely deterministic description of the fluid.

2.3 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is a numerical scheme which takes advantage 
of the simplicity of integrating the Lagrangian equations of fluid dynamics over time. It 
was first used by Lucy (1977) to model the fission of a rotating protostar and has since 
been develped as a tool for modelling a wide variety of astrophysical fluids.

In SPH a fluid is represented by a collection of elements, or “particles”, each with 
its own mass. The local density of the fluid relates to both the mass of the particles 
and the number density. If the particles have equal masses, the mass density is directly 
proportional to the number density.

SPH particles are not point masses - their properties are “smoothed” spatially. The 
function that gives the spatial distribution of the particle, or how the particle is smoothed, 
is called the kernel. It can be helpful to envisage the particles as overlapping, with the 
value for a property of the fluid given by the sum of the contributions from all particles at 
that point (see Figure 2.1). This is the “scatter” interpretation and the one I choose to use 
in this chapter. (There is an alternative interpretation of the mathematical formulation, 
which I will discuss in Chapter 3.) Below I give a summary of the SPH equations used by 
my code. More detailed reviews, with discussion of the relative merits of different forms
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2h

FIGURE 2 .1 . SPH particles are smoothed over a radius 2h. The density of particle i  is the sum of 
the densities of all other particles at its centre.

of the equations, can be found in Benz (1990), Monaghan (1992) and more recently in 
the PhD thesis of Price (2004).

2.3.1 SPH Representation of a Variable

Consider a fluid variable / ( r). This function can be approximated by the integral

</(r)>  =  J  W(r -  r', h ) f ( r')dr' (2.9)

where
/ V ( r  -  r', f t )d r '=  1 .  (2 .10)

W  is the kernel and h is a measure of its extent, known as the “smoothing length”. If W  
is chosen to be strongly peaked at r' =  r  then

lim W(v  — r', h) = 5 (r  — r') (2.11)
h -y  0

and, as h —> 0,
(Hr)) -+ m  . (2.12)

We can discretize equation 2.9 for a collection of discrete points r  j at which the value
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o f f  is known, so that

N m
</(r )> =  Z  ~ h) (2.13)

j=i Pi

Here the mass rrij of each point, or particle, is defined such that represents the number 
density of the particles. The reciprocal of this term replaces the volume term dr' of the 
original integral. At particle i, the summation becomes

U = (2.14)
Pj

where /* =  ( /( r ,))  is any property of the fluid at i and W{j =  W{vi — rj, h). This is the 
basic SPH summation.

Applying this to the density at particle i we obtain

N

Pi = ^2  mjW ij . (2.15)
3 = 1

It follows that the kernel represents the density distribution of a single particle. The 
density at particle i is given by the sum of the densities of all other particles j  at i (Figure 
2.1). Usually the kernel is limited so that the particle has a finite extent, i.e. Wij = 0 
when the distance between the particles rij is greater than some multiple of h.

If the kernel is differentiable it is possible to differentiate the properties of SPH par
ticles directly. As described in Monaghan (1992), the gradient of /  can be obtained by 
using the expansion

p V f  =  V (p /) -  fV p  (2.16)

and writing out the SPH summation for the right hand side. When written in this way 
the summation in j  is performed over the variables operated on by V. Those outside the 
operator take the value at i.

Also useful for future reference is the result

pV • v  =  V • pv — v • Vp (2.17)
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which gives the SPH velocity divergence at particle i:

N m  N 
a(V • v)i = rrijViWij

N (2.18)

The abbreviation =  v* — Vj will be used throughout this chapter.

As is illustrated above, the beauty of SPH is its simplicity: mass is automatically 
conserved and time-dependent equations can be derived from the conservation equations, 
making it possible to evolve all the properties of the system by numerical integration. No 
grid or outer boundary is required — particles are followed wherever they go, meaning 
that computational effort is focused purely where the mass is, with none wasted on empty 
space. SPH is therefore highly suited to astrophysical problems, where there are often no 
clear boundaries and regions of interest may be highly asymmetric, for example, when 
two objects merge, or where mass is ejected from an object.

Certain qualities are required of the kernel: for it to approximate a delta function as 
/i — 0 it must be strongly peaked at =  0, where =  |r< — |; it must be positive in
the region of interest and vanish at infinity; it must have a flat top, i.e. its first derivative 
must vanish at =  0; and it must have continuous first and second derivatives.

Early SPH simulations used a spherical Gaussian kernel to fulfill these criteria. This 
has tended to be replaced by a cubic spline kernel that approximates the Gaussian, and 
conveniently vanishes outside 2h, giving a clear limit on which neighbours must be in
cluded in the summation. The most commonly used spline kernel has the form

2.3.2 The Kernel

W(r,h)  = ^ <
1 -  §<72 +  |<73 

4(2 ~ q f
0 <  q < 1
1 <  q < 2

q > 2
(2.19)

0

where q = rij j h  and a = 1 /7T  is the normalisation in three dimensions.
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2.4 SPH Equations Used in the Code

In this section I will give an outline of how the conservation equations of fluid dynamics 
are converted into the SPH form used by the code before its modification. Since the 
particles’ motion represents the motion of the fluid, SPH is Lagrangian, and the operator 
^  is taken to mean 22.

2.4.1 The Continuity Equation

We saw in Section 2.3 that the density at particle i is expressed as

N

Pi = '52 mjW ij • (2.20)
j =i

If the mass of a particle is constant this means that mass is automatically conserved. 
However, at the edges of the modelled region the density will drop off due to the reduced 
number of neighbours within 2h of a particle. This causes a rarefaction wave to propagate 
inwards on a dynamical time and may lead to unphysical oscillations. The bad behaviour 
of SPH at boundaries is perhaps its Achilles heel -  indeed, it is very difficult to model 
any discontinuity to a precision of less than two smoothing lengths, due to the averaging 
of particle properties over this distance.

2.4.2 Variable Smoothing Lengths

A little should be said about what Wij stands for in the equation above and in subsequent 
equations. The SPH formulation discussed in Section 2.3 is derived under the assumption 
that the smoothing length h is constant in both space and time. In practice, in order to 
achieve adequate resolution and accuracy, it is preferable to maintain a roughly constant 
number of neighbours by allowing the smoothing length of each individual particle hi to 
vary with time.

If the smoothing length for each particle is different, the meaning of is now 
ambiguous, as it not clear which h the kernel is a function of. The solution is usually to 
symmetrize the equation for each interacting pair of particles by taking the average of 
either the kernel

W ij = \  [W(Tij, hi) + W(Tij , hj)] (2.21)
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or the smoothing lengths hij =  \(hi +  hj). In the unmodified version of my code, 
the latter formulation is used throughout. Symmetrization of the kernel ensures that the 
equations are conservative - the force on particle i due to j  is equal to that on j  due to i.

2.4.3 The Momentum Equation

To obtain the velocities of the particles we use equation 2.2 for the conservation of mo
mentum. Neglecting external forces and dividing by p we can write

dv ( V P \  r-,P P ^ P~ 1 ' =  - V ---------- tt- (2.22)
dt \  P J  P P1 

which results in the SPH equation

dv N P  P  N
—-i =  -  ^  r r ijV iW ij- t  |  ^  rrijViWij (2.23)
aZ j = 1 Pj Pi j=l

N ( P  P \
= -  Y .  m i v i w a ( -4  +  - 4 )  ■ (2.24)

3=1 \Pi Pj /

This is the form of the momentum equation that is used in the code. Convention holds 
that it is preferable to use an equation that is symmetrized in this way in order to en
sure conservation of total momentum, although it is possible to derive other forms, both 
symmetric and asymmetric.

Particle positions can be evolved simply by integrating their velocities with respect 
to time,

dTi ^-jr  = ^  (2.25)dt
where Vj is obtained by integrating the momentum equation (2.23).

2.4.4 Energy Conservation

In contrast to the momentum equation, the unmodified code uses an asymmetric form of 
the energy equation derived directly from equation 2.4:

^  =  (2-26)
ri j = 1

This form is used because it avoids the possibility of negative internal energies that can 
arise if the symmetric form is used.
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The total energy of the system is obtained by summing the specific internal, gravita
tional potential and kinetic energies ( | m vf) of all the particles.

2.5 Treatment of Self Gravity

The introduction of gravitational forces into the SPH equations brings with it a degree of 
complexity. The gravitational field at particle i due to a distribution of point masses j  is

_ , rrij Ta
-v<t>i = - G Y . ^ r — . (2-27)

j=1 rij rij

however, SPH particles are not point masses. Particles whose kernels overlap will ex
perience a reduced interaction that is complicated to calculate analytically. The force
calculation requires us to approximate particle i as a point mass while j  maintains its 
spherical distribution. The mass “seen” by i is then

f r ij
Mj(rij,hij) = J 47rr2m jW (r ,h ij)d r . (2.28)

The field experienced at i due to the rest of the fluid will then be

m ^  M Ara, ha) r™
-V0* = - G J 2  2 • <2-29>

j=i rij Tii

This quantity must be computed for each particle before it can be added on to the mo
mentum equation, which becomes

§  =  - g m j V 4̂ g  +  ! ) _ v * .  (2.30)

2.5.1 The Tree

In contrast to the pressure force on a particle, which derives only from the particles within 
2/i of it, the gravitational force depends on every other particle in the simulation. If the 
quantity V 4>i is calculated from the interaction of every pair of particles the number 
of calculations required is N 2/2. Even for a small simulations with a few thousand 
particles several million calculations would be required! It is clear that an algorithm for 
aggregating the gravitational contributions from distant groups of particles is necessary 
to make large simulations possible. This is referred to as a “tree”.
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FIGURE 2 .2 . The tree is built by a process of replacing mutual nearest neighbours with a composite 
“node” and repeating until all particles are contained in a single node. The node structure traces the

clumps in the fluid.

Below I give a brief outline of how the tree used by my code is constructed. A full 
description of this algorithm can be found in the Appendix of Benz et al. (1990).

2.5.2 Building the Tree

Particles are grouped together using the principle of “mutual nearest neighbours” -  if 
a pair of particles are mutual nearest neighbours they are replaced by a second-level 
“node”, located at their centre of mass. This process is then repeated for the second-level 
nodes and any unpaired particles, and so on until all particles have been collected into 
a single node (the “root” of the tree, see Figure 2.2). The advantage of this method of 
building the tree is that the nodes accurately reflect the physical clumping of the particles.

The first stage of the tree algorithm is the identification of each particle’s nearest 
neighbours. To do this, the three dimensional space occupied by the particles is divided 
into an uneven grid with the spacing of the boundary planes following the spacing of the 
particles. The aim is for each grid cell to contain roughly one particle. Linked lists are 
constructed to enable all the particles in a particular cell to be found efficiently.

Starting from the cell a particle is in, the particle’s nearest neighbour is found by 
comparing the distance to the other particles in the cell with the distance to the nearest 
of the six walls of the cell. If there are no particles closer than the nearest wall, the cell 
is expanded to include the cell on the other side of the nearest wall. Each time a cell is 
expanded, the particles contained in the new, enlarged cell are looped over until a particle 
closer than the present nearest wall is found - this is the nearest neighbour. This is shown 
schematically in Figure 2.3.
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b
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Q  : wall
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FIGURE 2.3. Location of the nearest neighbour. If the nearest wall is closer than all neighbours 
within the same cell, it is removed. This process is repeated with the new, expanded cell until a 

particle nearer than the nearest wall is found. This particle is the nearest neighbour.

Once the nearest neighbour of each particle has been located, the tree is constructed. 
For each level of the tree, all “active points” -  the composite as well as unpaired “atomic” 
nodes are looped over. If two nodes are mutual nearest neighbours, i.e.

i f  n e i g h b o u r ( n e i g h b o u r ( p o i n t ) ) = = p o i n t

then a new node is created and the number of nodes t o p n o d e  is incremented. Arrays
are created containing, for each node, pointers to its parent node (the node in the level
above that it is part of), to one daughter node (one of the pair that it is made up of) and 
to one sibling (its mutual nearest neighbour). Because the tree is binary, i.e. it works by 
pairing particles, the total number of nodes will always be 2npart — 1 where npart is the 
number of particles.

For a filled binary tree (meaning that all nodes pair on every level) the number of 
levels m  would be

m = log2 ripart . (2.31)

For a random distribution of points, m  can be estimated as

m  =  lo&!Upart «  1.98 log2 npart (2.32)
log2(l -  fP )

where P  «  0.59 is the probability that a particular point is part of a mutual nearest 
neighbour pair (Benz et al. 1990). In practice, the factor 1.98 is usually substantially
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lower, as levels are not independent of each other and unpaired nodes become more and 
more likely to find partners.

2.5.3 Calculating the Forces

The third component required in the gravitational algorithm is the inclusion of the physics! 
For each node created, composition formulae are used to calculate its total mass M, po
sition r and three-tensor quadrupole moment Q. These formulae are:

M n ode ~  M l  + M2 (2.33)

_  M 1T1 +  M2r 2 
r node — S/f 1 (2-34)Mi +  M2

Mi M2 . ,
Q node =  Qi + Q2 + w"' , " w  (r2 -  ri)<g>(r2 -  ri) . (2.35)Mi +  M2

At the same time as this calculation is made, the code also calculates and stores the radius 
R  of a sphere centred on the centre of mass of the node that is guaranteed to contain all 
its constituents.

Once the tree has been constructed, the code walks through it for each particle, creat
ing three lists. The first is a list of which atoms can have their force contribution evaluated 
using the Newtonian formula (equation 2.29) and the second a list of which nodes require 
their contribution to be calculated by multipole expansion of the quadrupole. The third 
is a list of which nodes are within a cutoff radius R cut . R cut specifies the radius within 
which a node must be “opened up” into its constituents, and is set equal to a multiple of 
R.

For each particle the force contributions from the nodes it sees are summed. The
force on a particle of mass m  due to a clump with parameters M  and Q is

-  =  M / ( 7 - ) r + ^ Q - r + i  
m r 2

m r . Q . r + / m r ( Q ) _ i 4 ^ r (2.36)

and for Newtonian gravity with G =  1, f ( r )  = r— 3

2.6 Time Evolution of Smoothing Lengths

To keep the number of neighbours for each particle approximately constant, h is usually 
scaled with the average local particle separation, which itself depends on local density,
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so that

/ l = / l ° w 3 <2 37)

where ho and p0 are constants. Taking the derivative with respect to time we obtain

dh 1 hdp
^  =  • (2-38) dt 3 p dt

Using the continuity equation 2.6 to substitute for ^  we end up with

=  (2.39)

The divergence can be calculated from its SPH summation (equation 2.18), evolved 
in the same loop as the density and used to evolve hi. However, using this formula does 
not guarantee that the number of neighbours will stay within the desired range and so the 
code uses it only to obtain a first approximation for If the number of neighbours is 
too close to the upper or lower bound of a specified range (the default is 80 to 120), ^
is adjusted. When the number of neighbours nn  is too close to the upper bound nnmoa:
the derivative is decreased using

rlh dhipX _  dhma£.p-xuut _  dt c_____dt
dt ex 4- e~x

(2.40)

where dh™<*x is the maximum ^  for all i and

x  =   . (2.41)
3.5

Similarly, when nn  is too close to the lower bound nnmin then

dhi _  +  mm*Le-v
~dt ~  ev + e-y

where

(2.42)

nn nnmin
y = ----- ^ -------• (2.43)

This algorithm is extremely effective for keeping the number of neighbours within a 
fixed range and thereby reducing noise.
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2.7 Treatment of Viscosity

None of the SPH equations discussed so far include any dissipation mechanism. In their 
present form, if two “slabs” of particles collide there is nothing to stop them passing, un- 
physically, straight through each other. Clearly this cannot be allowed to happen—a vital 
ingredient is missing from our formulation. The missing ingredient is viscosity, which 
converts the kinetic energy of colliding slabs of fluid into internal energy. Adding an 
artificial viscosity term to the SPH equations solves the problem of particle interpenetra
tion and enables SPH to handle shocks accurately. The standard SPH artificial viscosity 
(hereafter AV) parameter has the form

where =  0.5(cj +  Cj) is the average of the sound speed at i and j ,  pij = 0.5(pi +  pj), 
a  and (3 are free parameters (usually =  2a =  2.0) and

The term containing a  accounts for a combination of bulk and shear viscosity, while the 
term containing /3 is similar to the von Neumann-Richtmeyer viscosity and is useful for 
handling high Mach number shocks, where p,ij is large. The v -̂ • term in the AV pa
rameter means that particles only experience a viscous force when they are approaching 
each other.

In most astrophysical situations viscosity is small and only important when the fluid 
is shocked, and the AV term can introduce spurious forces into pure shear flows. It would 
be preferable for the default value of AV to be close to zero, only rising significantly in 
the presence of shocks. The code therefore employs modified, time-dependent viscos
ity parameters (Morris & Monaghan 1997) with the Balsara switch (Balsara 1995) for 
suppressing viscosity in shear flows. Thus the AV prescription becomes:

The parameters a  and (3(= 2a) are now evolved along with the other SPH quantities, 
according to

acijVij+Pul
(2.44)

a(t)cijHij+P(t)n\
(2.46)

dai
dt

■mm *+- Si (2.47)

44



Numerical Method 2.8 Equation of State

where
Si = m a x  (-(V • -  Oj), 0) . (2.48)

In this formulation, a  is evolved along with the other SPH quantities and tends towards 
a minimum a mi„ =  0.05 on a timescale r. In the presence of shocks it rises according 
to the source term Si to a maximum of amax =  1.5. The timescale is set to n  = ^  with 
c =  0.2.

The term pij now becomes

=  hf ij  • y  k  + f i  (2.49)
r2ij +  r]h~j 2

where 77 =  0.01. The term containing fi and f j  is the Balsara switch, with

IV • vL-f. — _________!____ 12_________ (0 501
h  |V-v|i + |Vxv| i +  r j 'c i /hi ' ;

This term approaches unity in the presence of pure shocks, where | V • v|< >> | V x v|*, 
but tends to zero in the case of pure shear flows, where |Vxv|i >>|V-v|i , ensuring 
that unphysical forces are kept to a minimum. A fuller description of this scheme can be 
found in the Appendix of Rosswog et al. (2000).

The AV term is added into the momentum equation. 2.23 to give

§  =  -  ( §  +  5  +  . (2.51)
ox j - i  \Pi Pj )

Similarly, for the specific internal energy equation,

du N ( P  1 \-  = - ^ m j V i W i j ^  + - n i3y  (2.52)

2.8 Equation of State

For the SPH equations to be able to describe a fluid completely there must be a way 
of obtaining the pressure from the density and internal energy. This is provided by the 
equation of state (EOS).

The code uses the high density Shen EOS (Shen et al. 1998a, Shen et al. 1998b), 
which is available from its authors in tabular form. The EOS is tabulated up to a density 
of 2.5 x 1015 g cm-3, an order of magnitude greater than that of an atomic nucleus. It is
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extended to “low” densities using the EOS of a gas made up of baryons, a-particles and 
electrons. The EOS subroutine is called using the density, electron fraction per baryon 
and either the temperature or specific internal energy of each particle. It returns values 
for the pressure, sound speed, entropy per baryon and abundances of electrons, baryons, 
a-particles and a “representative” heavy nucleus. If it is called using the specific internal 
energy, the temperature T  must first be found by interpolation in the table for given u, p 
and electron fraction per baryon Ye . A three-dimensional interpolation is then performed 
using p, T  and Ye to return P  and other variables.

2.9 Time Evolution

The SPH equations are integrated using the third order Adams-Bashforth integrator, 
which advances the variables from step n to n -1-1 using the formula

%n+1 =  Xn “I” ^2 1 ~i“ §Vx,n—2) (2.53)

and similarly for all other variables.

It can be seen above that to advance by one step, derivatives from the beginning of 
the present step and the previous two steps are required. Each time the program enters 
the integrator two steps of second order Runge-Kutta (RK) integration are taken in order 
to accumulate these derivatives. In second order RK the derivatives are determined at the 
midpoint of a step and used to advance a full step, i.e.

dt
3'7l+l/2 = %Tl “t" £̂,71 “ “2” (2.54)

( dvx \  dt
n+l/2 — Vx,n “b I ^  I 2 ’ (2 .55)

followed by
xn+i = x n -H vx,n+1/2 ' dt (2.56)

« * , n + l  = ® * . » + ( ^ r )  d t ■ <2 -5 7 )
\ a t  /  7 1 + 1 / 2

Before the first step is taken the tree must be constructed in order for the gravita
tional forces to be calculated. On subsequent steps, the tree is revised using the updated
positions of the particles.

Once the gravitational forces have been evaluated, the SPH derivatives are computed.

46



Numerical Method 2.9 Time Evolution

Each calculation of the derivatives requires two sets of summations for each particle. The 
following steps are taken to obtain the derivatives:

• The density is computed by summation for each SPH particle, with p*(V • v)* , 

Pi(V x v)j and (V • v)moa; computed in the same loop. This is the first sweep 
through i and j.

• The equation of state is called, using the newly calculated pi to obtain Pi .

•  The time derivative of the smoothing length ^  is calculated using the expressions 
calculated in the density summation and the neighbour numbers.

•  The rate of change of the artificial viscosity parameter ^  is calculated, also using 
quantities from the density summation.

• A second sweep through i and j  is performed in order to evaluate the momentum 
equation (including viscosity) and return the acceleration of each particle

• The time derivative of specific internal energy ^  is calculated.

2.9.1 Timestepping

The routine that calculates the accelerations also sets the new timestep for all particles. 
Following Monaghan (1992), the criteria for setting the timestep is

/  h \ 1
6tf = mini ( j f j  J (2.58)

Sta, (c i  +  0.6(ci +  m a x j/iy ))  (2-59)

where
8t = 0.25min(6tf ,  dt^)  . (2.60)

Here, the time condition 8t/  is based on the acceleration of the particle and 8tcv combines
the Courant and viscous time conditions.

Running all particles on a single, smallest timestep greatly simplifies the integration 
and for merging neutron stars, where the majority of the material has the density of nu
clear matter, the code has proved itself more than adequate. However, the inner layers of
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a massive star during core collapse possess a vast range of densities and hence dynam
ical times (Tdyn ~  (Gp)_1/2). A minority of particles require the smallest timestep and 
advancing all particles on this timestep is grossly inefficient.

In addition to this, since the timestep is set at the beginning of the step with no 
monitoring of the accuracy at the end of the step, this method of integration is most 
suited to problems where the dynamical time does not change rapidly. In runaway core 
collapse Tdyn decreases non-linearly, so that the timestep required at the end of a step 
is shorter than that required at the beginning of the step. Errors thus build up over the 
course of a simulation, increasing as the collapse accelerates.

It is clear, from the considerations above, that it would be preferable by far for each 
particle to run on its own timestep, with the accuracy of each step monitored. I will 
discuss this further in Chapter 3, Section 3.4.

The flowchart in Figure 2.4 provides a summary of the SPH algorithm in the code, 
before modification.

2.10 Parallelization

Upon my acquisition of the code, it was already fully parallelized for use on a shared- 
memory machine, in this case the U.K. Astrophysical Fluids Facility (UKAFF). The 
purpose of parallel processing it to decrease the length of a run in real time by distributing 
the workload over multiple “threads”, each running on a different processor, typically 32 
or 64 for this code, but potentially many hundreds. Parallelization on UKAFF is done 
using the OpenMP compiler directives. A loop is parallelized by a simple declaration 
specifying which variables are to be treated as local to the processor it is sent to and 
which are to be shared among all processors used, as shown in the example below:

C$OMP PARALLEL default(none)
C$OMP& shared(npart,divv,rho,tm,ilen,neighb)
C$OMP& private(ipart,xi,yi,zi,vxi,vyi,vzi,pmassi,hi)
C$OMP DO SCHEDULE(runtime)

do ipart=l,npart

enddo
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C$0MP END DO
The iterations of the do loop are divided up into “chunks” before being allocated to 

the processors. These chunks can be assigned to a predetermined thread or assigned on- 
the-fly to whichever thread has finished its previous chunk. The d o  s c h e d u l e  ( r u n t  i m e ) 

declaration allows the method of assigning chunks of work to be set as an environment 
variable at the beginning of a run.

The simplicity of this kind of parallelization is by virtue of the shared memory, mean
ing that every processor can “see” the values declared as shared. This simplicity comes 
with a high price tag, therefore there is competition for computing resources of this 
kind. A limited number of simulations can be run on high performance machines such 
as UKAFF (or its successor, UKAFF1A). The majority of scientific computations are 
carried out on smaller machines and PC clusters.
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STARTI t J
 !___________________
Set logical unit numbers, initialize output files 

\
Define units

\  '

Read in run parameters 
I

Read in EOS tables 
\

Read in dump files, initialize sound speeds
T

Build table of kernel values
T

Write header to output file 
I

ENTER INTEGRATOR
I

Build tree
T

Get gravitational forces
T

Revise tree

Get SPH derivatives 
t -----

Advance particles
T ------

Reached dump time? m .

t Yes
EXIT INTEGRATOR

Write minidump, full dump every 5th minidump

Write summary to output file
I

Reached stop time? No

{Yes
CentT)

FIGURE 2 .4 . Summary of the algorithm.
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Chapter 3
Code Adaptations for Core Collapse

“Don’t worry, head -  the computer will do all the 
thinking from now on.”

Homer Simpson

51



Code Adaptations for Core Collapse 3.1 Introduction

3.1 Introduction

A computer program designed to model the high-density environment of merging neu
tron star systems will not be directly amenable to simulating the core collapse of massive 
stars. The cold, uniform, deleptonized nuclear matter that makes up neutron stars is a 
far cry from the hot, lower density gas of electrons, nucleons, alpha particles and nuclei 
that composes the core of an evolved, massive star. My SPH code required significant 
alterations to make it suitable for simulations of supemovae.

In this chapter I describe how I adapted the code to make it suitable for simulations of 
core collapse. I begin in Section 3.2 by describing how one dimensional supernova pro
genitor models were used to set up the three dimensional initial distribution and values 
of the SPH particles.

The Adams-Bashforth integrator described in the previous chapter turned out to be 
poorly suited to this problem. At the same time, variations in dynamical time from 
particle to particle due to the large range of densities involved made running on a sin
gle timestep highly inefficient. In Section 3.4 I describe replacing the integrator with a 
scheme that uses multiple particle timesteps and monitors the truncation errors at the end 
of each step.

In addition to causing variations in the required length of timestep, large spatial and 
temporal density variations also lead to large variations in the smoothing length h. In the 
formulation of SPH described in the previous chapter the error introduced by changes in 
h was neglected. In Section 3.5 I describe the alterations made to the code in order to 
take the “grad h” terms into account.

Very rapid rotation in the core of a collapsing star inhibits collapse, with the possi
bility of centrifugally “hung up” material forming a disc. In order to investigate how this 
disc might affect the collapse, I added an option for enhancing shear viscosity. This is 
described in Section 3.6

Apart from the alterations listed above, the numerical methods employed in the 
present code are the same as those described in the previous chapter.

3.2 Progenitor Models

In Section 1.3 of Chapter 1 I described the evolution of massive stars after they leave 
the main sequence. In the moments before collapse the core of the star has an onion-like
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structure with iron-group elements at the centre surrounded by concentric shells fusing 
decreasingly massive nuclei.

It is difficult for stellar evolution codes to model the final stages before collapse, since 
the temperature, pressure and density far exceed those obtained during hydrogen burn
ing and reaction networks including many more elements are required. In addition, the 
increasing brevity of successive burning stages, especially when compared to the main 
sequence lifetime, leads to problems in time resolution. Only a fraction of the groups 
modelling stellar evolution go to the trouble of evolving their stars to the presupemova 
stage.

Of the presupemova models that have been produced down the years, the 15M0 
model sl5 of Woosley & Weaver (1995) has become the “standard” progenitor. This 
model is one dimensional and does not include rotational effects. More recently, Heger 
et al. (2000) have produced rotating supernova progenitor models. These models are also 
one dimensional, meaning that equations quantifying rotational effects must be included 
explicitly in the stellar evolution code. Rotational instabilities that may arise and cause 
mixing (and thus transport of angular momentum) must be identified and an assessment 
made of how likely they are to significantly affect the evolution. In many cases this is 
not known, resulting in a huge number of free parameters.

The output files for progenitor models contain a vast number of quantities describing 
the star’s structure and composition. All the quantities required to set the initial con
ditions in my supernova code are included. In the case of the Heger models the files 
give, for each radial grid cell: mass coordinate at top of cell, radius at top of cell, radial 
velocity at top of cell, average density, temperature, pressure, specific energy, specific 
entropy, angular velocity, mean mass number of nuclei and electron fraction per baryon, 
as well as nuclear abundances. More information about the stellar evolution calculations 
used to generate these models are given in Chapter 5.

The quantities required by my code for each particle are the position and velocity 
vectors, mass, specific internal energy or temperature, electron fraction per baryon and 
entropy per baryon in units of Boltzmann’s constant. I describe below the method I used 
to map the variables from a one dimensional grid code into a three dimensional particle 
code.
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3.2.1 Distributing the particles

In SPH the density at a point in the fluid depends on two things: the number density of 
particles close to that point and the mass of each particle. In order to create a variation 
in density it is therefore necessary to vary the spacing of the particles or the mass of the 
particles or both.

Throughout core collapse the density remains centrally peaked. It would therefore 
be possible to produce this density distribution using particles with masses that decrease 
with increasing radius. However, spurious effects can occur when particles of very dif
ferent masses interact, as would happen after bounce as the shock moves outwards into 
lower density material. For this reason, and because it is in the high density core that the 
highest spatial resolution is desired, I use particles with equal masses.

Setting up a spherical distribution of particles with spatially varying density is no 
mean feat. The most straightforward method is to begin by creating a sphere of equally 
spaced particles and then map each particle to a “stretched” radius that is a function of 
the density.

Initial attempts to set up the particles in a cubic grid and stretch it resulted in artifacts 
of the initial grid persisting throughout the simulations. It was therefore decided that 
particles should be set up following a Sobol, or quasi-random, distribution. A quasi
random distribution is not actually random at all, but each successive point is chosen to 
“maximally avoid” all the other points, i.e. it is placed in the region with the most empty 
space. In other words, a quasi-random distribution fills up space uniformly with the 
resolution increasing with the number of points. This avoids the clustering of points that 
happens in truly random distributions. It also allows the resolution to be set by by the 
number of points, rather than the opposite. A more in-depth description of quasi-random 
sequences can be found in Press et al. (1992).

To obtain the initial coordinates for each particle a call is made to the Sobol sequence 
generator which returns a vector X  of three values, each between 0 and 1. The particle 
is then assigned polar coordinates, using the enclosed mass as a radial coordinate, i.e.:

where M* is the total mass of the distribution. Two-dimensional Sobol distributions are 
shown in figure 3.2.1 for two different resolutions.

nrii 

cos Oi 
(f>i

M .X (  1) 
2(X(2) -  1/2) 
2ttX  (3)

(3.1)

54



Code Adaptations for Core Collapse 3.2 Progenitor Models

0.5 0.5

-0.5

-1

•1 -0.5 0.5 -1 -0.5 0.5

FIGURE 3.1. Two dimensional Sobol distribution, with 1500 (left) and 6000 (right) points pro
duced in polar coordinates.

These particles are now evenly spaced in enclosed mass and each particle’s radial 
coordinate can be calculated by using the mass-radius relation given by interpolation 
between the grid cells of the progenitor model. Cartesian coordinates for each particle 
are then calculated using

This creates the correct density distribution, albeit with some noise.

The inner 109 cm of each progenitor was mapped to an SPH particle distribution. 
At this radius the dynamical time is around Is, several times larger than the time until 
core bounce. Quantities here thus remain virtually unchanged during the course of the 
simulation and it is not necessary to model the layers above.

3.2.2 Initial values for particles

The remaining physical variables are determined at each particle by interpolation be
tween the grid points of the progenitor model for the particle’s radial position.

Since the velocities in the progenitors are given as radial and angular components, 
once these have been found by interpolation the velocity of each particle is set by resolv-

(3.2)

Ti  COS Oi
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ing the components along Cartesian unit vectors. For radial velocity,

vx = vr-  (3.3)r

and similarly for vy,v z .

The progenitors are assumed to rotate about the z-axis. In previous studies there has 
been some confusion as to whether the angular velocity should be constant on cylinders 
or shells about the 2-axis (see Ott et al. (2004) for a discussion of this). I give the option 
for either shellular or cylindrical rotation. Shellular means that the angular velocity Q is 
constant with constant radius, i.e.

vx = - t t{ r )y  (3.4)

vy = S2(r)x (3.5)

Cylindrical means that u  is constant with constant distance from the z-axis, i.e.

vx =  -Q {s)y  (3.6)

vy = f2(s)a; (3.7)

where s = y/x2 +  y2 . When the components of the angular velocity have been calcu
lated they are added to those of the radial velocity.

As with the other variables, the electron fraction Ye at a particle is set by interpola
tion. The temperature and internal energy can be set in one of two ways. In initial trials 
the temperature was determined by interpolation of the progenitor model and used, along 
with p and Ye, to return the internal energy and pressure. However, because the stellar 
evolution code and the supernova code use different equations of state, the pressure re
turned was different from the pressure in the progenitor model, resulting in a shallower 
presure gradient and hence reduced forces. In addition to this, centrifugal terms are not 
included in Heger’s stellar evolution code, so that when the progenitor model is mapped 
to three dimensions it experiences an extra outward force. The upshot of these differ
ences was that the more rapidly rotating models failed to collapse in three dimensions.

In later runs this problem was solved by calling the equation of state using the pro
genitor’s pressure along with density and Ye to return a new value for the temperature. 
In this way the pressure gradients in the progenitor model are preserved and the models 
collapse.
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3.2.3 Setting the Smoothing Length

Particle smoothing lengths are estimated from the initial density using

K = h0 M l  (3.8)

where ho = 1.3, following Price (private communication). Once this is set the tree can 
be created and the density summation called to return a new value for the density. This 
density is used to calculate a new value for h and the density summation is repeated, the 
iteration continuing until the value of h is converged. This process is described in more 
detail in Section 3.5 below.

After the starting values for h and p have been determined, the values of all particles 
are written to the initial output or “dump” file.

3.3 Single Timestep Trials

After the particle distributions for the progenitor models had been set up, the original 
SPH code was tested. It was discovered that while early phases of the collapse proceeded 
in a physical manner, at late stages as the collapse accelerated unphysical results were 
produced.

Figure 3.2 shows the densities of the particles at various stages towards the end of 
collapse. It can be seen that at earlier times homologous collapse occurs, leading to 
density profiles that are similar. However, when the centre of the star reaches nuclear 
densities, although material begins to shock, some continues to collapse to densities far 
exceeding nuclear (and the top end of the EOS table). This is clearly unphysical -  the 
core is far too small to be collapsing directly to a black hole -  and is caused by numerical 
errors.

These numerical errors have two main causes:

• Under the Adams-Bashforth scheme, to advance by one timestep requires particle 
values stored from the previous 3 timesteps, where each of these is assumed to be 
the same size. This approximation is accurate enough in the case of slowly varying 
timestep size, but when the timestep is decreasing rapidly it no longer holds.

• The timestep size is set at the beginning of each step with no “quality control” 
at the end of the step. In conditions of slowly-varying density the Courant and
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FIGURE 3.2. Weakly-rotating model E20A as the central density approaches and reaches nuclear 
density (~  3 x 1014 g cm-3 ). A shock forms but some particles continue to collapse due to numerical

errors in the time integration.

dynamical conditions on the timestep may be assumed to produce results of the 
required accuracy. In catastrophic collapse, however, the timestep required at the 
end of the step is almost always going to be smaller than that required at the be
ginning of the step, leading to a systematic overestimate of the length of timestep 
required. A check must be set at the end of the step to prevent too large a timestep 
being used.

It became clear that the Adams-Bashforth integrator was not suitable for solving this 
numerical problem.
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3.4 Multi-timestepping

Neutron stars, being made entirely of nuclear matter, have a fairly uniform density 
throughout, which only drops below nuclear at the edges. Since the dynamical timescale 
goes as p-1/2, in an SPH simulation all particles will have roughly the same dynamical 
times and it is practical to run all the particles on the same timestep.

The core of a massive star is a completely different environment. At the end of 
a star’s evolution the iron core has a central density of around 1010 g cm-3. At core 
bounce, the central density is above 1014 g cm-3. In the time it takes for the core to 
collapse and bounce, the density at a radius of 109 cm has barely changed from a value of 
~  105 g cm-3. Clearly the code needs to be capable of handling this enormous range of 
densities, with corresponding dynamical times ranging over 4-5 orders of magnitude. As 
mentioned in Section 2.9 of Chapter 2, running all the particles on the smallest timestep 
becomes unnecessary and highly inefficient.

In the previous section I discussed how the integrator was failing to produce physical 
results for core collapse around the time of bounce. A new integrator was required and I 
decided to kill two birds with one stone by replacing the old one with one that would:

•  monitor the error at the end of a step to ensure that each step is taken with the 
correct precision;

• move each particle forward on its own timestep;

• be simple enough to make the above feasible, i.e. require a minimum of past steps 
to be saved.

A method of integration that fulfills all these criteria is 2nd/3rd order Runge-Kutta- 
Fehlberg (RKF). The Fehlberg method enhances simple second order Runge-Kutta with 
a third order error estimate obtained via a slight alteration to the scheme.

3.4.1 Runge-Kutta-Fehlberg integration

RKF methods can be used for any order of Runge-Kutta integration. In these methods 
the truncation error at the end of each step is calculated by comparing the result obtained 
using a Runge-Kutta formula with that obtained from one of a higher order. The most 
commonly used and derived formula is 4th/5th order, which can be found in many texts, 
including Numerical Recipes (Press et al. 1992).
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To derive the Runge-Kutta-Fehlberg 2nd/3rd order integrator we start from the for
mulae for 2nd and 3rd order Runge-Kutta estimates for a function x(t), where /(£, x ) = 
^j|, at step n  +  1:

xn+i =  xn +  aifci +  a2k2 (3.9)

xn+\ =  x n +  b\k\ +  b2k2 -t- b$k$ (3.10)

where
k\ =  6 tf( t ,x )
k2 = 6 tf( t  + a i5 t ,x  + (3n ki) (3.11)
&3 =  S tf( t  +  CZ25t, X  +  fi2\k\ +  ̂ 22̂ 2)

The derivation of the 2nd order method (Atkinson 1989) results in a set of 3 simulta
neous equations satisfied when:

a i +  ®2 =  1 (3.12)

=  A l =  2 -  • (3.13)2a2

For RKF, three constraints for the 3rd order Runge-Kutta terms must be satisfied:

61 +  62 ~l“ — 1 (3.14)

b2a  1 +  b^a2 = - (3.15)

b2fin -I- 63(^ 21 +  A22) =  2 ‘ (3.16)

The integration is begun by advancing the variables by a half step and determining
the derivatives at this point. To advance a variable by one full step a mixture of the
half-step derivatives and those at the beginning of the step is used, i.e.

01 = 4  (3'17)

* = I  (3-18)

= H  *  J  ( 3 - i 9 )
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so that
1 , 2 5 5 ,

X"+1 =  *■ +  256*1 +  256*2

, , (3.20)
h  =  6tf (t, x) 

h  =  S tf  ( t + ^ 6 t , x +  ]^6tf(t,x )Sj  .

To convert this second order solution to third order while making use of results al
ready calculated we set a 2 =  1 so that the derivatives calculated at the end of the full 
step can be used to achieve third order accuracy. Then

= 01 = 2 k  <3-21)

255
f a  =  02 =  ™  (3-22)256

gives

( 1 255
t +  St, x n +  — A;i +  — h4

(3.23)

=  S tf  (t + 6 t,xn+1) .

Setting the constants #21 and f a  in this way means that at the end of the second order 
step, derivatives can be determined that fit automatically into the third order method.

Setting

6, =  (3.24)

62 =  —  (3-25)256

63 =  512 (3'26)

and using equation 3.20 we obtain

1 255, 1 ,
*„+. =  * » + 5 1 2 * 1  +  256*» +  512**

, h - k i
^n+i +

(3.27)

512

giving an error estimate

l * n + l - * n + l l =  |fc35 1 2 f c l !  • ( 3 - 2 8 )
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The 2nd/3rd order Runge-Kutta-Fehlberg method therefore requires three evaluations 
of the tree and derivatives for each step taken. However, the derivatives at the end of the 
step are also the derivatives at the beginning of the new step so that in practice only 2 calls 
to the tree are required per step. This is the same as for 2nd order Runge-Kutta and is 
what makes RKF methods so powerful. Once the full step has been taken, the derivatives 
at the half step need not be stored as they are not required for the error estimate.

The implementation of this method of integration is described below.

3.4.2 Initialization

In the method of individual timestepping that I adopted, particles are not assigned 
timesteps from a continuous range. Instead, particles are sorted into a discrete set of 
timestep bins and the particles in each bin are advanced together. Forces and other SPH 
derivatives are calculated for a list of particles in the same time bin rather than for all the 
particles at once.

To initialize the integrator at the beginning of a dump step all the particles are placed 
in the same time bin and synchronised in time. The tree, forces and derivatives routines 
are then called. The forces routine, which calculates the net force on a particle, also sets 
each particle’s desired timestep, according to the Monaghan criteria given in Chapter 2.

Having found the smallest desired timestep min(8ti), the size of the smallest time 
bin is set to this value multiplied by a safety factor (< 1). The size of the bins ranges 
from Stmin to 2n~18tmin, where n is the desired number of levels, set at the beginning of 
a run. If 2n~1Stmin is greater than the maximum allowed timestep dtmax (also set at the 
beginning of the run), the smallest time bin size is reduced to dtmax / 2n_1.

Once the size of the time bins has been determined each particle is allocated to the 
largest bin whose timestep is smaller than its desired timestep.

3.4.3 The Outer Loop

The integrator is based on a set of two loops. The outer loop repeats for each step taken 
in the smallest time bin.
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3.4.4 The Inner Loop

The inner loop integrates over one step for all bins which are to be advanced, starting 
from the smallest. A bin is advanced when the end of its step is synchronised with the 
end of the step of the smallest bin.

A RKF half-step is taken. For the velocity in the ^-direction this is:

Vx,temp =  Vx dt fn  X f v x\ ( 3 . 2 9 )

where d t/u  = dt/ 2 and f v x\ is the derivative of the velocity at the beginning of the step.

The derivatives at the half step are needed, so the properties of the non-advancing 
particles must be extrapolated to this point in time. The RKF half step and extrapolated 
values are used to call the tree and derivatives. The particles are then advanced by a full 
RKF step, for example:

v.*x, temp  —  Vx -f- dtf21 X f v x \  dtf22 ^  f v x 2 ( 3 . 3 0 )

where dtf 21 =  d t /256, dtf 22 =  (255/256)dt and f v X2 is the derivative of the velocity at 
the half step.

At the end of this step, the tree and derivatives are called a third time to give a 
new f v x2 etc., which are used to monitor the errors. The errors are calculated from the 
changes in the derivatives of the quantities and have the dimensions (time)-1, following 
from equation 3 . 2 8 :

\ f V x l  f V x 2 1errorVx =  — :--------------- :—  ( 3 . 3 1 )
\Vx,temp  1

An dimensionless accuracy parameter is calculated from the error and the required toler
ance e:

errormaxdt
A  = ---------------------------------------------------------------------------------------( 3 . 3 2 )

A  is then multiplied by dt to give the new desired timestep. If this timestep is shorter 
than that of the smallest bin, a smaller time bin (or bins) is created (subject to a minimum 
bin size and maximum number of bins). This means that only at the beginning of each 
dump step are the Monaghan criteria used -  from then on the timestep is determined by 
monitoring the errors.

The particle properties are now updated to their full step values, regardless of their 
errors. If the bin being advanced is the largest to be advanced this step, its full step will 
correspond in time to the half step of the larger bin above it. In this case the half-step
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derivatives can be called for the bin above, ready for the next cycle. The result of this is 
that only the smallest bin needs to be advanced a half step upon entry to the inner loop.

3.4.5 Rearranging the Particles

After exiting the inner loop the particles that have been advanced are put into the correct 
time bins for the next step. Since any required extra bins have already been created, all 
that is required is for the list to be updated. Particles are only allowed to stay put or move 
to smaller bins at this stage.

If the step that has just been taken is that of the largest existing bin (i.e. all particles 
are synchronised in time) and if the integrator is to continue, the time bins are emptied 
and the particles are redistributed according to their desired timesteps (obtained from the 
error monitoring). The code then returns to the beginning of the outer loop. If the time 
exceeds the next dump time no rearrangement is needed. The code exits the integrator 
and writes a dump. The whole cycle is then repeated.

3.5 Including grad h terms

In Section 2.3 of the previous chapter I referred to the “scatter” interpretation of SPH, 
in which a quantity at a particle i is determined by the sum of the contributions from all 
particles that overlap the centre of i. The overlapping particles are considered smoothed 
out in space while i acts as a point.

In this section, for reasons that will become clear, I use the “gather” interpretation, 
in which the particles summed over are those which fall within the kernel of particle i 
itself. The particles are thus regarded as point markers in the fluid, whose contributions 
are weighted by the kernel of particle i, which is extended in space (see Figure 3.3, and 
compare to Figure 2.1 of Chapter 2).

The gather and scatter interpretations of SPH are equivalent only if the smoothing 
length is the same for all particles. With individual particle smoothing lengths the neigh
bours are defined in different ways for each method. If the gather method is used, the 
neighbours of particle i are those within 2 hi of it. In the scatter method, the neighbours 
j  are those particles to which i is closer than 2hj. Summations are therefore performed 
over different sets of particles for each method.
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•  \
1

FIGURE 3 .3 . In the “gather” interpretation of SPH the density of particle i is the sum of the masses 
of all particles within the kernel of i, weighted by the kernel.

Hemquist (1993) first discussed the inaccuracies caused by using individual and time- 
dependent smoothing lengths for each particle. In Chapter 2, Section 2.4 I explained 
that the specific internal energy could be evolved alongside the velocities to complete 
the hydrodynamic description of the system. The equation of state relates this quantity 
to other quantities, such as temperature and entropy. But evolving the specific internal 
energy is not the only option - in some cases it is possible to evolve the entropy equation 
instead of the energy equation, and obtain the specific internal energy from the equation 
of state. Hemquist (1993) used simulations of colliding polytropes to show that if the 
entropy equation was evolved, the energy did not stay constant, and if the internal energy 
equation was evolved, the entropy did not stay constant.

The reason for the energy discrepancy is that the kernel is a function of both position 
and smoothing length Wij =  W (r^, hi). When the hydrodynamic equations are derived 
by differentiating the kernel, the V W  terms are considered but the ^  is neglected. For 
example, Hemquist differentiates the continuity equation

3.5.1 Effects of individual h

N

Pi = 52 m i WiJ (3.33)
j=1

to obtain

(3.34)
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In the description of SPH I have provided so far, the second term on the right hand side 
in Equation 3.34 has been ignored. These terms are often referred to as the “grad h” 
terms, and for temporally- and spatially-varying smoothing lengths they are generally 
not negligible.

Nelson & Papaloizou (1994) derived a method for including the grad h terms in full. 
Unfortunately this method requires a third loop through the SPH equations each time the 
derivatives are called, which makes it time consuming for the small increase in accuracy 
it produces. It also requires keeping a strictly constant number of neighbours for each 
particle, making it extremely tricky to implement.

Only recently have Springel & Hemquist (2002) derived a self-consistent method for 
including smoothing length terms without requiring an extra summation. Evolving the 
entropy rather than the energy equation and starting from the Euler-Lagrange equation 
they used Lagrange multipliers to obtain the velocity equation. The multipliers were 
constrained by requiring that the smoothing volume for each particle enclose a “constant 
mass” M sph rather than a constant number of neighbours, such that

47T q
~ ^ hiPi ~  M *Ph =  0 • (3-35)

The resulting velocity equation is modified by terms containing the smoothing lengths 
hi, hj and their derivatives.

It is clear that in Equation 3.35 the extent of a particle is defined only by the particle’s 
own smoothing length. It follows that in this formulation the neighbours of a particle i 
are those within 2hi of it— in other words, the kernel depends only on hi,

N

Pi = ^2  rr i jW (Tij, hi) (3.36)
j=i

i.e. in this method the gather interpretation is assumed.

An alternative derivation of the same scheme was produced by Monaghan (2002). 
Rather than preserve a constant number of neighbours or a constant mass in the smooth
ing volume, h was defined as a function of the density, i.e. h = h(p), and therefore of the 
particle coordinates. Density is also a function of h in the form of equation 3.36. Hence 
the density and the smoothing length are functions of each other and can be iterated to 
convergence. At the same time they are both functions of the particle coordinates.
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With this in mind, taking the time derivative of 3.36 gives

where

=
' dh * dWijihi)
1 -  w

(3.37)

(3.38)
dp “  dhi

In a similar fashion, the Euler-Lagrange equations can be solved to give the momentum 
equation

rfv, JL T P, R  1
(3.39)—— = — > rrij dtUL j=1

and the thermal energy equation becomes

dui Pi N

dt Qipi m j v z j  • ViWij(hi) . (3.40)

This formulation is exactly the same as that of Springel & Hemquist (2002) as long 
as the smoothing length

h oa (3.41)

and automatically conserves linear and angular momentum. It should be noted that in 
every equation where the factor is included the kernel should be a function of hi only.

Where artificial viscosity is added, the symmetrized kernel is used, with the factors 
Qi, Qj included, so that the velocity term becomes

N

 ̂1 fTlj Iljj V i W[j
3 - 1

where

V i W i j  =  2
Vi Wijihi) + ViWij(hj)

Qi Qj

(3.42)

(3.43)

3.5.2 Altering the code

Following the description of Price & Monaghan (2004) and Price (2004) I altered the 
code to include the variable smoothing length terms. The essence of the algorithm is as 
follows:
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1. The density is a function of the smoothing length, but the smoothing length is also 
a function of the density.

2. Therefore make an initial estimate of h using the old value of p.

3. Evaluate the density summation as usual using this value of h.

4. Use the new value calculated for p to set a new value of h.

5. Repeat the summation for p using the new valueo of h.

6. Iterate until the criterion for convergence is met.

In my implementation the initial estimate for hi is obtained from its time derivative, 
as given in Section 2.6 of Chapter 2, which is evolved alongside the other variables as 
before. It should be noted that this method assumes that h oc p-1//3.

In creating the tree, the neighbours of a particle are defined as those within 
max(2/ij, 2hj). This ensures that for each interacting pair of particles, each particle 
counts the other as a neighbour. (A separate count is kept of the number of neighbours 
within 2hi of a particle and this number is that which is to be kept within the upper and 
lower bounds in the h routine.)

Once the neighbours lists have been constructed the density summation is calculated 
as in 3.36. In addition to the density we also calculate

f g  = | > « ^  (3.44)

This requires the calculation of dW /dh  alongside the other the kernel quantities. The 
extra factor Cli can then be computed as in equation 3.38, using

£  =  • 0.45)
op 3 pi

Having obtained these values, a new value for hi can be determined. To begin with, 
a Newton Raphson scheme is used. First, a p consistent with the old smoothing length is 
calculated:

fTT'i a£.\

Prep =  W  ( }

where ho is the constant used to set the initial smoothing length (see Section 3.2.3). Then

y(h) = prep Pi (3.47)
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d y  dp  "  d W ^ h i )  
dh  =

d h ^ ^ d W i j i h i )
d p j^ xmj dK

(3.48)

The new hi is calculated as
u _ u  ynnew -  ta Qy/dh (3.49)

and a particle is considered converged if

new (3.50)

I found that using Newton-Raphson most particles converge within one or two iter
ations. If a particle has failed to converge after the third Newton-Raphson iteration, I 
switch to a fixed-point iteration scheme, where

If convergence has been reached, the old value of hi is kept, in order to be consistent 
with the calculated The code does not continue iterating on converged particles. If 
one or more of the particles requires another iteration, the tree and the density are called, 
but only unconverged particles have their density re-evaluated. This method has been 
tested extensively by Price (2004), who found that it significantly improved the match 
with analytic results in simple test problems.

3.6 Including shear viscosity

In order to examine the effect of angular momentum transport on the pre-bounce dy
namics of core collapse we require a prescription for the, as yet unknown, transport 
mechanism. It is likely that magnetic fields could play a strong role in the transport of 
angular momentum during the course of the collapse. It is possible that some form of the 
magneto-rotational instability, which is thought to be responsible for angular momentum 
transport in accretion discs, may be active (Balbus & Hawley 1991). However the details 
of the physics of any such instability are very uncertain at best, and certainly beyond the 
scope of this thesis.

'new (3.51)
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Rather than implement a detailed scheme for an unknown angular momentum trans
port mechanism, we choose to parametrise it in the form of a Shakura-Sunyeav a  vis
cosity (Shakura & Sunyaev 1973). This semi-empirical model has been used for many 
years, with great success, to study the effects of angular momentum transport in accretion 
discs (see Frank, King & Raine (2002) for a discussion). Much progress was made in 
this field even before a viable physical candidate for the transport mechanism (the MRI) 
was established. The main advantages of the a  viscosity are that it is extremely easy to 
add to a SPH code, and can be adapted quickly and simply to examine different forms of 
angular momentum transport. I discuss the implementation of the viscosity in the code 
below.

In the Shakura-Sunyaev model, it is assumed that the stress tensor in the disc can 
be approximated as a scalar, with a shear force produced at right angles to the pressure 
gradient. The viscous force density is approximated by

fvise,shear ~  p \v  ^  f t2 (3.52)

where A is the typical lengthscale on which viscosity operates, v is the speed of the fluid, 
v# is the tangential velocity of the disc and R  is the distance from the centre of the disc. 
The viscosity v is defined as

v ~  Xv (3.53)

which in the SS model is written as

v = a ssHc (3.54)

where H is a typical length scale in the disc (e.g. the disc thickness or the pressure scale 
height) and c is a typical speed (e.g. the sound speed). It should be noted that the SS 
formulation of viscosity does not contain any information about its physical origin - it 
merely assumes that the scales on which viscosity acts are related to the typical scales of 
the disc.

It has been shown by Murray (1996) that the SPH artificial viscosity can be made 
equivalent to SS viscosity. In the limit of number of particles N  —» oc and h —» 0 
in which the density and sound speed vary on lenghtscales much longer than the sound 
speed then

&sph 2 (3 .5 5 )

where k = 1/5 in 3 dimensions.
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It was simple to alter the code to include this formulation. Normally in SPH the 
artificial viscosity is a tool for handling shocks and therefore only desired when the 
fluid is in compression, i.e. the particles are moving towards each other. In the case 
of SS viscosity, we require a shear, dissipative force between particles whether they 
are moving towards or away from each other. This is achieved by altering the a term 
in the current time-dependent treatment of viscosity while maintaining the usual, time- 
dependent /3 term. As a first approximation we set a  constant, which implicitly assumes 
that the sound speed, typical length scale and smoothing length are constant. The AV 
prescription becomes:

In the future it will probably be best to set a sph according to equation 3.55 and also 
set this treatment to be triggered by the formation of a disc. The present formulation is 
suitable only for a qualitative investigation of the effects of viscosity.

The unaltered SPH code had been tested extensively on “standard” analytical problems 
such as the Sod shock tube and in high Mach number shocks at every stage of its devel
opment. A high performance code such as this tends to be developed as it passes between 
users, and a description of the primeval version can be found in Benz et al. (1990). This 
paper includes tests to identify the effects of numerical viscosity, which was found to be 
insignificant. The addition and testing of the time-dependent artificial viscosity formu
lation described in Chapter 2, Section 2.7 is desrcibed in Rosswog et al. (2000). When 
the Shen EOS was added simulations were run comparing it to the Lattimer-Swesty EOS 
(Rosswog & Davies 2002).

I tested the altered code on a particle distribution representing a neutron star in equi
librium, which was allowed to relax. The code proved stable and after 1000 dynamical 
times the change in total energy was only 1.2% and the density had retained its initial 
profile. Rotation was then added to the initial model and it was run for 100 dynami
cal times. During this time the rotation rate was maintained and the change in energy 
was 2.0%. The same rotating model was then run with the “a ” viscosity formulation as 
described in Section 3.6. After 100 dynamical times the change in energy was 1.4%.

^ s p h ^ i j  P i j

P i j
^ s p h ^ i j  P i j  

P i j

(3.56)

3.7 Tests
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3.8 Summary

In this chapter I have described the alterations made to my SPH code to make it suitable 
for simulating core collapse supemovae. The main changes undertaken are listed below.

• A routine was written to map the variables from the one dimensional progenitor 
models to a three dimensional distribution of particles. The particles were dis
tributed uniformly and quasi-randomly and then stretched radially to produce the 
correct density distribution. Variable values were set by interpolation in the pro
genitor models, except for temperature, which was set so that the EOS would return 
the required pressure. Rotation was set to be constant either on spherical shells or 
cylinders.

•  The Adams-Bashforth integrator was replaced by a 2nd/3rd order Runge-Kutta- 
Fehlberg method, allowing the error to be estimated at the end of each step.

• Individual particle timesteps were introduced, with each particle advanced on the 
largest timestep possible.

• The previously neglected “grad h” terms, which take into account the time-depen- 
dence of the smoothing length, were included, following the description of Mon
aghan (2002).

•  An option for including artificial shear viscosity in a run was added, based on the 
Sunyaev-Shakura “a ” viscosity, which is used in simulations of accretion discs.

•  The altered code was tested by letting a neutron star in equilibrium relax. Energy 
was conserved for 1000 dynamical times. A rotating neutron star was also tested 
and maintained its rotation rate for >100 dynamical times.
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Chapter 4
Collapse of the Woosley Progenitor

“I recently learnt that, contrary to popular belief, 
bumble bees don’t actually defy the laws of physics 
by being too heavy to fly, because of some strange 
air flow they get going around them by batting their 
wings. But before I learnt that, I asked people 
whether or not they thought it worrying that thou
sands of bees were busily flying around disproving 
everything we think we know about the world. And 
no one seemed the least bit bothered by it. Whereas 
I was pulling my hair out. That’s the kind of atti
tude I’m up against when I try to learn more about 
science. ”

Clare Jordin
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4.1 Introduction

A recurrent problem in the field of supernova modelling is the difficulty of comparing re
sults of simulations. Given the size of the parameter space to be tested and the imperative 
to break new ground, modellers tend not to repeat the simulations of other groups but to 
produce new models that highlight the differences in their codes and initial conditions. It 
is a rare and notable occasion when separate groups collaborate to test their codes with 
identical initial conditions, as in Liebendorfer et al. (2005).

With this is mind, I sought a control model with which to test my code. Happily, 
in the past decade a “standard” supernova progenitor has emerged from the multitude 
of stellar evolution calculations. This is the catchily-named model S15A of Woosley 
& Weaver (1995). In Section 4.3 of this chapter I describe the results of running my 
supernova code on this progenitor model and compare them with those of another group 
who used the same progenitor.

This progenitor has also been widely used in studies of rotation using a simple 
parametrization for the initial angular velocity. Following these studies, I have added 
rotation to S15A to obtain a qualitative picture of how core collapse is affected by in
creasing amounts of rotation. This is described in Sections 4.4 and 4.5. In particular, the 
effect on the structure and rotation rate of the core at bounce is discussed, with a view to 
whether or not instabilities are able to set in by the time bounce occurs.

4.2 Stellar Evolution Models

From the beginning of the era of computers the ability to perform repetitive calculations 
has been applied to the question of exactly what goes on inside stars. The complexity 
of the problem, with hundreds of variables and timescales that vary by many orders of 
magnitude, means that, despite vast increases in computing capabilities, calculations are 
still performed in one dimension. However, as time goes on, more and more detailed 
models of stellar evolution are being produced, using hundreds of zones with nuclear 
reactions followed in detail and effects such as winds, mixing, convection, rotation and 
magnetic fields included. Because there are so many parameters it will be some time 
before speculation as to which effects are truly significant can be tested and the accuracy 
of these models can be established.

Calculation of the evolution of massive stars right up to the brink of core collapse 
requires all the nuclear reactions up to the iron group elements to be followed and the
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code to be able to handle the increasing density (and degeneracy) of the core. Modelling 
supernova progenitors is an ambitious and arduous task and the mantle of producing 
detailed calculations has only been taken on by a few groups worldwide.

In the mid-90s a sophisticated assault on this problem was undertaken by Woosley & 
Weaver (1995), who evolved around 80 non-rotating stellar models with masses ranging 
from 11 to 40 M0 . They used initial metallicities of 0, 10-4, 10-2, 0.1 and 1 times solar 
metallicity Z0 and during the evolution employed a nuclear reaction network of 200 
isotopes. Mixing by convection and semiconvection was also included. Two models, 
S15A and S25A were evolved with a network of 476 isotopes for calibration purposes. 
S15A (sometimes known as sl5s7b2) has become somewhat of a “standard” progenitor 
model in the supernova community. This 15 M0 model has an initial metallicity of Z0 
and a final iron core mass of 1.32 M0 .

The authors simulated the subsequent supernova explosion by placing an outward- 
moving piston at the edge of the iron core. The piston was stopped when it reached 109 
cm, corresponding to a mass M9 =  1.99 M0 , and from this point the explosion continued 
unaided. The nucleosynthetic yields of the explosion were calculated using the reaction 
network and a simplified treatment of neutrino emission from the core.

What this study did not follow was the collapse of the iron core, meaning that I could 
not make use of it to test my core collapse code. However, even before this paper was 
published, Burrows et al. (1995) had simulated the core collapse and explosion of S15A 
using a piecewise parabolic method (PPM) in two dimensions. It is with the results of 
this simulation that I compare my models, using the progenitor S15A as a control.

4.3 Collapse of the 15 M© Progenitor

All the simulations described in this chapter were run with 300 000 particles on the 
SRIF2 cluster at the University of Leicester. The Woosley progenitor SI 5 A was mapped 
to an SPH particle distribution as described in Chapter 3, Section 3.2. Parameters for this 
non-rotating run, hereafter referred to as “Woos”, can be found in Table 4.1.

Snapshots of the model at and just after bounce and profiles of a selection of variables 
can be found in Figure 4.10 at the end of this chapter. It can be seen from the snapshots 
that at bounce the density distribution is centrally peaked and spherically symmetric, as 
is the shock that forms at the edge of the inner core (visible in the snapshot of entropy). 
Around 1 ms after bounce the shock has reached a radius of about 100 km and the 
snapshot of radial velocity shows that it remains roughly spherical.
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Burrows et al. (1995), hereafter B95, simulated the collapse and explosion of S15A 
in two dimensions and included neutrino transport by flux-limited diffusion, ignoring 
neutrino-electron scattering. Because my code does not include neutrinos it is not suit
able for modelling the collapsed core for more than a few milliseconds after bounce. 
Indeed, the absence of neutrino trapping in my models will affect the densities obtained 
in the core as it collapses. I therefore compare the behaviour of my model with B95 only 
up to core bounce.

Figures 4.1-4.6 show the evolution of density, radial velocity, entropy and electron 
fraction per baryon as a function of enclosed mass for the B95 and Woos models. In each 
of the B95 graphs the curve labelled “c” shows the profile at just under 2 ms post-bounce, 
and marks the last point at which the models can be safely compared. Core bounce takes 
place at around 100 ms in my model, whilst the B95 takes 209 ms. This is most likely due 
to variations produced by differences in the mapping of the one dimensional progenitor 
model to two dimensional PPM and three dimensional SPH respectively causing the 
initial stages of collapse to proceed at different rates. From the point where the central 
density reaches 1012 g cm-3 the time to bounce is approximately the same for both 
models.

Evolution of the density profiles are shown in Figure 4.1. The region of homologous 
collapse can be seen in the first three curves in each graph. Comparing the two graphs, the 
behaviour of the density is qualitatively the same, although the drop off in the density at 
the edge of the inner core (around 0.8 M0) is steeper in model Woos. In model Woos the 
central density takes 66 ms to go from 1010 to 1011 g cm-3, 15 ms to go from 1011 to 1012 
g cm-3, then less than 5 ms to reach 1013 g cm-3 and around 1.5 ms to reach 1014 g cm-3. 
Upon reaching nuclear density a shock is observed to form at the centre of the core and 
in a fraction of a millisecond the core reaches “maximum scrunch”, the topmost curve in 
the Woos model. In the following few milliseconds the core relaxes slightly as the shock 
travels outwards, with the central density undergoing a correspondingly slight decrease. 
Because of the lack of neutrinos in my model, the shock does not stall completely and 
can be seen at around 1.2 M0 in the last of the Woos curves, petering out as it becomes 
less well resolved. In B95 the shock stalls at around this point due to neutrino losses and 
the core subsequently grows by accretion.

The behaviour of the core around bounce can be observed more clearly by plotting 
the radial velocity profile, as in Figure 4.2. The homologous infall (compare the first two 
curves with Figure 1.5 in Chapter 1) is followed by a sudden reversal of the velocities 
in the inner core, starting at the centre. The velocity reaches a maximum at the edge of 
the inner core, after which the shock slows and becomes an accretion shock (curve “d”
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FIGURE 4 .1 . Top: Density plotted logarithmically versus enclosed mass for model B95. The 
curves marked “a” through “d” correspond to t  =20.0, 207.5, 210.6 and 269.1 ms, with core bounce 
occurring at around 209 ms. Bottom: Similar plot for model Woos at t  =19.21,98.30, 99.34,99.67, 
99.84,99.95,100.3,100.9,103.7 and 122.0 ms, line colours progressing from black through blue and 
green to red. Core bounce occurred at 100.0 ms. Both models show the shock forming in a similar 
manner, but in model Woos the density falls off more steeply at the edge of the inner core, around

0.8 MQ.
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in B95). The agreement between Woos and B95 is good in terms of the shape of the pre
bounce curve and location and magnitude of the shock at bounce. However, model Woos 
shows an oscillation in the velocity curve around bounce -  it appears that concentric 
shells of material are driven outwards with different velocities.

These oscillations are characteristic of the way SPH handles shocks. Artificial vis
cosity is included in SPH to stop the particles getting unphysically close together or 
passing through each other in regions under compression. When the AV parameter is too 
small the motion of shocked particles is not damped sufficiently and unphysical oscil
lations can occur. This code uses time-dependent viscosity, which is set to grow when 
the divergence of the density decreases, i.e. the particles are moving towards each other. 
Because the shock forms as a result of the equation of state suddenly becoming hard, 
rather than the particles suddenly getting closer to each other, in this case the AV param
eter does not increase as much as it should. Therefore oscillations appear in the shocked 
material.

The radial velocities for individual particles during bounce are shown in Figure 4.3. It 
can be seen that as the shock grows on its way out of the inner core, the amplitude of the 
oscillations increases. Once the shock reaches the mantle it begins to compress infalling 
matter, at which point the AV parameter increases enough to damp the oscillations.

The specific entropy profile of the collapsing core is also in good agreement with 
B95 (Figure 4.5). Because different equations of state were used in the models the initial 
entropy profile is somewhat different, but the subsequent evolution of the entropy around 
the shock is qualitatively similar. A peak in entropy appears at the location of the shock 
and soon broadens to produce an extended region of negative entropy gradient. It is in 
this region that convective overturn can take place.

It can be seen in Figure 4.5 that the entropy appears not to be conserved—in the 
central regions just before bounce the entropy drops to 0 before rising again. This is 
because in my SPH code the entropy is not an evolved variable, but is set by the call 
to the equation of state, which is a function of the temperature, density and electron 
fraction. The temperature itself is calculated from the specific internal energy. In regions 
of temperature degeneracy, i.e. the pre-bounce core, a small change in internal energy 
causes a large change in temperature and entropy. Thus neither variable carries much 
meaning and their values are set to 0.

The final variable for comparison is that of the electron fraction per baryon Ye, shown 
in Figure 4.6. It is immediately obvious that the evolution of this variable in each model 
is very different. In the Woos model, Ye remains unchanged. This is because all changes
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FIGURE 4.2. Top: Radial velocity versus enclosed mass for model B95. The curves marked “a” 
through “d” correspond to t  =20.0,207.5,210.6 and 269.1 ms, with core bounce occurring at around 
209 ms. Bottom: Similar plot for model Woos at t  =19.21,98.30, 99.34,99.67,99.84,99.95, 100.3, 
100.9, 103.7 and 122.0 ms. Core bounce occurred at 100.0 ms. The location and size of the shock 
are in very good agreement, but in model Woos the radial velocity exhibits an oscillation behind the

shock as it forms.
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FIGURE 4.3. Radial velocities of individual particles versus radius at t  =99.67 (blue), 99.84 
(green) and 99.95 ms (red), as the shock is forming. Oscillations in the radial velocity are clearly

visible.
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FIGURE 4.4. Densities of individual particles versus radius at t  =99.67 (blue), 99.84 (green) and 
99.95 ms (red), as the shock is forming. At the latter two times density perturbations are visible 

where the oscillations in radial velocity are large.
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FIGURE 4.5. Top: Entropy per baryon in units of Boltzmann’s constant versus enclosed mass for 
model B95. The curves marked “a” through “d” correspond to t  =20.0, 207.5, 210.6 and 269.1 ms, 
with core bounce occurring at around 209 ms. Bottom: Similar plot for model Woos at t  =19.21, 
98.30, 99.34,99.67, 99.84,99.95, 100.3,100.9,103.7 and 122.0 ms. Core bounce occurred at 100.0 
ms. In model Woos the entropy is set to 0 by the code in regions of temperature degeneracy. Despite 
the different EOS used, the entropy profiles are in good agreement qualitatively, with peaks of a 

similar magnitude and regions of negative entropy gradient forming in both.
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to Ye come about through neutrino transport, which is the only way in which electrons 
can be created or destroyed. In contrast, B95 shows Ye decreasing dramatically, reach
ing a steady value in the inner core near bounce when neutrino trapping sets in. It is 
this difference in composition caused by neutrino transport that is the most significant 
discrepancy between the models before bounce.

In the time before bounce, when neutrino transport does not have a massive effect 
on the core, my simulations of core collapse compare well to those in the literature. In 
the next section I describe the extension of this investigation to the effects of rotation the 
dynamics of the collapse.

4.4 The Effects of Adding Rotation

A common way for quantifying the rotation of a compact object is by the parameter 
ft =  T /\W \, the ratio of its rotational energy to gravitational binding energy. A highly 
accessible description of the significance of this parameter is provided by Odrzywolek 
et al. (2003) and it is also discussed in more established texts such as Shapiro & Teukol- 
sky (1983). The effect of increasing ft is usually discussed in the simplest case—that of 
an incompressible, homogenous but deformable body that rotates rigidly. It is not diffi
cult to appreciate that in the absence of rotation, the body will take the form of a sphere. 
Adding rotation causes the body to become oblate, its shape belonging to the family of 
MacLaurin spheroids and its axial ratio increasing with increasing ft.

As the rotation rate is increased further the behaviour becomes more interesting. 
Above ft =  0.1375 there exist two solutions for the shape of the body. The first is a 
MacLaurin spheroid, the second a rugby ball-shaped Jacobi ellipsoid, the latter of which 
is the ground state (the miniumum T  -I- W). If no dissipation mechanism is present, 
the body will remain in the former state. If the spheroid is able to dissipate its extra 
energy, through viscosity for example, it will undergo transition to an ellipsoid. A value 
of ft — 0.1375 is therefore the limit for secular instability.

Without dissipation the MacLaurin spheroids are dynamically stable up to ft = 
0.2738. Past this point there is no stable configuration -  the body must either disspi- 
ate its energy to become a Jacobi ellipsoid or break up.

The limits for ft are different (and may be reduced) for differentially rotating or 
compressible bodies. For a toroidal density distribution, the limits are much reduced. 
Simulations of rotating core collapse have been carried out in which the core forms a 
toroidal density distribution after bounce, is able to deform triaxially and finally fission
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FIGURE 4.6. Top: Electron fraction per baryon versus enclosed mass for model B95. The curves 
marked “a” through “d” correspond to t  =20.0, 207.5, 210.6 and 269.1 ms, with core bounce oc
curring at around 209 ms. Bottom: Similar plot for model Woos at t  =19.21, 98.30, 99.34, 99.67, 
99.84, 99.95, 100.3, 100.9, 103.7 and 122.0 ms. Core bounce occurred at 100.0 ms. In model Woos 

the electron fraction does not evolve, due to the absence of neutrino emission.
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(Rampp et al. 1998). Nevertheless, for a centrally peaked density distribution the value 
P ~  0.1375 for secular instablities is, according to Shapiro & Teukolsky (1983), “re
markably insensitive” to the angular momentum distribution.

4.4.1 Parametrization of Rotation

A systematic study of the effects of rotation during core collapse is possible if a simple 
parametrization of the angular velocity is used. In my investigations I choose to imi
tate recent parameter studies (Ott et al. 2004, Akiyama & Wheeler 2005), by using the 
rotation law

Q =  n °-T T o 2  (4 1 >r l -I-
where Qq and R  are constants, r  can be either the radius, giving shellular rotation, or the 
distance from the 2-axis, giving cylindrical.

Ott et al. (2004) used a cylindrical rotation law in investigating the different gravi
tational wave signals produced in rotating core collapse. They used the standard 11,15 
and 20 M0 Woosley progenitors in two dimensions over a parameter space defined by 
the the initial rotation parameter $  =  T /\W \ and did not include neutrino transport in 
their simulations. They found that models with fa > 1% tend not to collapse because 
A > Pcriu the critical rotation rate for centrifugal support, if nothing is done to alter the 
hydrodynamic structure. Ott et al. found a transition between nuclear and sub-nuclear, 
“centrifugal” bounce at around /% =  0.3%. The cores which underwent sub-nuclear 
bounce experienced density oscillations for tens of milliseconds after bounce, with a 
drop in maximum density after the first peak of roughly an order of magnitude.

Akiyama & Wheeler (2005), hereafter AW, used a one-dimensional model with vari
ous initial rotation rates and considered the effect of initial £Iq on the maximum value of 
/3. It was found that models with f20 > 4 rads-1 bounce at sub-nuclear density and con
tinue to contract after bounce. Above this value of fi0 the maximum fl and (3 obtained 
depend non-monotonically on the rotation rate. (They were interested in the consequent 
neutron star rotation rate because of its potential effect on the maximum magnetic field 
of the star.)

Kotake, Yamada & Sato (2003&) used both a shellular rotation law and a cylindrical 
law with a steep dependence on the distance from the equatorial plane in their two- 
dimensional investigations of rotating core collapse. Their models were run with fa of 
0.25, 0.5 and 1.5%. In their “standard” model, which is roughly equivalent to the Heger 
models E15B (described in the next chapter) core bounce is at nuclear densities. They
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find that all shellular models bounce at nuclear densities and that sub-nuclear density 
bounce is only ever achieved with cylindrical and highly differential rotation.

There appears to be some confusion about what constitutes a “sub-nuclear” bounce. 
AW describe a model that bounces at a central density of 1.0 x 1014 g cm-3 as sub- 
nuclear, whilst Kotake et al. (2003b) classify a model with a bounce density of 0.53 x 
1014 g cm-3 as “Type I”, nuclear density bounce. In all of my models I classify “nuclear” 
bounce as occurring if the central density at bounce is greater than 2.0 x 1014 g cm-3, 
which is the density at which the sharp increase in the effective T of the EOS takes place.

4.4.2 Model Parameters

Following AW, rotation was added to the Woos model with a shellular angular velocity 
law, as given in Equation 4.1, with R  = 108 cm. We reproduce a subset of their models, 
with initial central rotation rates Qo of 0.6, 0.8, 2.0, 3.0, 4.0, 5.0, 6.0 and 8.0 rad s-1. 
These and other properties of the models are shown in Table 4.1. It should be noted that 
in the original draft of AW, the figures given for T /\W \ were roughly a factor of 2.5 too 
high due to a bug in their code (Akiyama, private communication). These figures were 
amended before publication and are now in agreement with those in Table 4.1.

To give a more intuitive idea of the magnitude of the rotation, the rotation period at 
the edge of the iron core of model w061r has a rotation period of 28 seconds at the start 
of collapse. The most rapidly rotating model, w801r, has a period of just over 2 seconds. 
For comparison, the dynamical time of the core is (R 3/G M )1/2 ^  0.1 s.

4.5 Results and Discussion

Snapshots of all the models at and shortly after bounce and profiles of density, entropy 
and radial velocity can be found in Figures 4.11-4.21 at the end of this chapter. For all 
models quantities were binned spherically in enclosed mass. For the models rotating 
with Q0 =  2 rad s-1 and above the displacement of the centre of mass and the dipole and 
quadrupole moments of the core as a function of time are also shown.

Comparing models W061r and W081r in Figures 4.11 and 4.12 with model Woos in 
Figure 4.10 reveals that imposing a small amount of rotation on the progenitor model 
has very little effect on the collapse and bounce. The slow rotators remain essentially 
spherical and the density, entropy and radial velocity profiles show almost identical fea
tures. (The slight variation in the position and height of peaks is due to the bounce being
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viewed at slightly different times.) The time taken to reach core bounce varies by less 
than a millisecond between all three models. From the snapshots of entropy it can be 
seen that a spherical shock forms at the same position in each one.

At moderate rotation rates changes to the dynamics of the bounce become visible. 
In model W201r (Figure 4.13) the snapshot of entropy shows the shock beginning more 
strongly at the poles, but a short time later the radial velcity shows it to have become 
almost spherical. Model W301r (Figure 4.14) appears to mark a transition region in which 
the density distribution becomes more flattened. The entropy snapshot shows an oblate 
shock that is stronger at the poles, with a low entropy, unshocked torus surrounding the 
inner core. A millisecond later the shock has become slightly prolate, but the snapshot 
of radial velocity shows that it is greater away from the poles.

The cylindrical rotators W20cyl and W30cyl (Figures 4.15 and 4.16) are not hugely 
different from the shellular rotators with the same Q0. The density distribution appears 
slightly squarer in the x-z plane but the shock is still only slightly non-spherical. (The 
difference in the shape of the entropy and angular velocity profiles probably originates 
from the use of spherical rather than cylindrical mass bins.)

With Q,q greater than 3 or 4 rad s-1 the core becomes significantly flattened during 
collapse, with the density distribution in the outer regions becoming toroidal. It should

Table 4.1. Model parameters and results for model Woos with various degrees of rotation added and 
angular velocity constant on either shells or cylinders. The parameter varied was the initial central 
rotation rate do, which correlates with the initial rotation parameter /?*. The total angular momentum 
and the initial specific angular momentum of the iron core are also shown. The last three columns 

show the resulting time of bounce and the rotation parameter and density at bounce.

Model Rotation Qo Pi JFe (1049 jF e ,i  (1016 tb Pb Pb
type (s-1) (%) ergs-1) cm2 s-1) (ms) (%) (g cm-3)

Woos — — 0 0 0 100 0 3.8 x 1014
W061r Shellular 0.6 0.012 0.24 0.38 100 0.29 3.8 x 1014
W081r Shellular 0.8 0.021 0.31 0.5 100 0.41 3.9 x 1014
W201r Shellular 2.0 0.13 0.79 1.3 101 3.4 3.7 x 1014
W301r Shellular 3.0 0.29 1.2 1.9 103 6.6 3.5 x 1014
W401r Shellular 4.0 0.52 1.6 2.5 105 9.0 3.1 x 1014
W501r Shellular 5.0 0.81 2.0 3.2 110 7.5 3.1 x 1014
W601r Shellular 6.0 1.2 2.4 3.8 119 7.5 3.2 x 1014
W801r Shellular 8.0 2.1 3.1 5.0 153 8.3 3.0 x 1014
W20cyl Cylindrical 2.0 0.15 0.85 1.3 101 3.5 3.7 x 1014
W30cyl Cylindrical 3.0 0.34 1.3 1.9 103 6.2 3.4 x 1014
W50visc Shellular 5.0 0.81 2.0 3.2 110 9.1 2.6 x 1014
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be noted, however, that the inner regions of the core remain only slightly oblate even 
for the most rapidly rotating models. In W401r and W501r (Figures 4.15 and 4.16) the 
shock is only visible above the poles where infall is most rapid. With faster rotation the 
bounce becomes weaker due to the shallower effective potential well the centrifugal force 
produces. In these two models the shock begins at the poles but after only a millisecond 
it has become oblate.

When Q0 >  6 (Figures 4.17 and 4.18) the infall of the outer core is held up signifi
cantly and the density snapshot shows a disc-like structure around the central core. The 
shock formed is weak and expands along the evacuated regions above the poles. (For 
these models the density distribution is far from spherical so binning quantities does not 
give particularly meaningful results.)

All rotating models show a similar behaviour in Q over time. The angular velocity 
starts off centrally peaked but the peak moves outwards as low angular momentum ma
terial falls in along the poles whilst high angular momentum material is held up further 
out. The more slowly rotating models retain a flatter profile for longer as the equatorial 
material is more able to fall in, the transition coming between models W401r and W501r. 
The angular velocity profile of W501r very quickly becomes peaked at around 20 km.

4.5.1 Effect of Rotation on Bounce Density and Rotation Parameter

Table 4.1 shows that despite significant differences in the dynamics of the collapse all 
the models here studied bounce at nuclear densities. This is surprising, since all the 
studies I have referred to have some models which undergo my definition of sub-nuclear 
bounce (Ott et al. 2004, Akiyama & Wheeler 2005, Kotake et al. 2003&). However, it can 
also be seen that the maximum density obtained at bounce decreases monotonically with 
the initial rotation of the progenitor. The reduction in effective gravitational potential 
provided by rotation means that the time taken to reach bounce increases with the rotation 
rate. The most rapidly rotating model, W801r, takes just over one and a half times as long 
to reach bounce as the non-rotating control.

The cylindrical models W20cyl and W30cyl show very similar behaviour to their 
shellular counterparts W201r and W301r. They have the same maximum densities at 
bounce and similar initial and final (3. Contrary to the claims of Kotake et al. (2003b) it 
appears likely that the difference in effect of shellular and cylindrical rotation is much 
less significant than, for example, that of the degree of differential rotation (parametrized 
by R).
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After reaching maximum density at bounce all models expand somewhat and begin 
to oscillate, whilst remaining above nuclear density. The maximum density as a function 
of time for models Woos, W081r, W201r, W301r and W501r is plotted in Figure 4.7. As 
would be expected, the more rapidly rotating models reach bounce at a later time and a 
lower density. None of the models were followed past the second peak in density and we 
plot only those whose evolution was followed to the second peak. All the same, it can 
be seen that the time interval between the first and second density peaks lengthens with 
increasing rotation. The trough between the peaks also deepens with increasing rotation, 
with the exception of model W501r. In this model the structure is significantly affected 
by rotation, to the extent that material is still infalling along the equator as bounce is 
occurring at the poles. The time between peaks and the difference between the density 
maximum and minimum after bounce will be reflected in the gravitational wave signal, 
which I will discuss further in Chapter 6.

It can be seen in Figure 4.8 that the value of (3 in the rotating models exhibits similar 
behaviour to the density, peaking at bounce and at the subsequent compression. The 
maximum f3 over all models is 9.0% for model W401r, which was not followed past 
bounce. Since the density remains centrally peaked in all these models this is well below 
the limit for secular instability.

The parameter j3 is, of course, a function of the enclosed mass as well as time. Fig
ure 4.9 shows the profile of /? at bounce for all rotating models, calculated on spherical 
mass shells. The shape of the curve is similar for all models, with (3 increasing almost 
linearly with enclosed mass before reaching a peak and levelling off. The left hand graph 
shows the more slowly rotating models, including those with cylindrical rotation. The 
cylindrical rotators show a similar behaviour to those with shellular rotation. The type 
of rotation does not appear even to correlate with the maximum f3 at bounce -  model 
W20cyl has a greater maximum f3 than W201r, but for the W30 models the shellular 
rotator has the higher p. All of the more slowly rotating models have their peak (3 at 
the edge of the inner core, around O.9M0, and the height of the peak increases with 
increasing fio.

In the more rapidly rotating models the peak in @ moves outwards slightly with in
creasing rotation, as material with high angular momentum falls in more slowly than 
that with low angular momentum, in effect transporting angular momentum outwards 
in (spherical) mass. The peak f3 here is maximum for model W401r, lower for models 
W501r and W601r, and increases again for model W801r. Again, this hints at a transition 
in behaviour around flo =  4 rad s-1 when rotation begins to affect the collapse dynamics 
significantly.
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same time as the peaks in density. For models W081r, W201r and W301r the maximum /? increases 
with increasing initial rotation. For models with rotation faster than that of W401r, /3 becomes non

monotonic.

110 112 114102 104 106 108100
t /  ms

89



Collapse of the Woosley Progenitor 4.5 Results and Discussion

0 . 1

0 08

0.06

0.04

0 . 0 2

0.5 1.51

0 . 1

0.06

0.06

0.04

0.02

0.5 1 1.5
M / solar masses M / solar masses

FIGURE 4.9. Ratio of rotational to gravitational potential energy /3 = T/\W\ versus enclosed mass 
at bounce. Left: W061r (red), W201r (green), W20cyl(blue), W301r (cyan) and W30cyl (magenta). 
For these models the maximum /? increases with the initial rotation rate. There is no consistent 
difference between cylindrical and shellular rotation, however. Right: W401r (red), W501r (green), 
W601r (blue) and W801r (cyan). For these models the dependence of 0  on initial rotation rate is

non-monotonic.

Finally, Figures 4.13-4.21 include plots of the amplitude of the position of the centre 
of mass of the core in the x-y plane and the “dipole” and “quadrupole diagnostics” of the 
core mass distribution as a function of time. The position of the centre of mass is given 
by

_ E i=i rrijXj 
XCM =    ’

the dipole diagnostic by

(4.2)

(4.3)

and the quadrupole diagnostic by

N -  y?) + (4.4)

where M  =  following Ott et al. (2005) and Saijo, Baumgarte & Shapiro
(2003). These give a measure of the azimuthal m = 1 and m = 2 modes which may 
grow if the collapsing core becomes rotationally unstable. Inspection of these curves 
shows clearly that the quadrupole diagnostic does not grow for any of the models (al
though oscillations due to noise increase in frequency as the dynamical time decreases).
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In contrast, the m  = 1 mode appears to grow for all rotating models. However, the dom
inant effect in this case is the motion of the centre of mass, the displacement of which 
grows relative to the core radius as the core collapses. Motion of the centre of mass is a 
common problem in SPH and the conclusion is that no instability in the m  =  1 mode is 
observed. The growth of modes will be discussed further in Chapters 5 and 6.

4.6 Summary

In this chapter I have validated the efficacy of my SPH code by using the “standard” 
progenitor of Woosley & Weaver (1995) as a control. Comparing the profiles of density, 
radial velocity and entropy up to bounce with those simulated by Burrows et al. (1995) 
shows good agreement between the models.

Various rotation rates were added to this model using a simple parametrization of the 
angular velocity. Shellular rotation was used for most models, with two test models run 
with cylindrical rotation. With the rotation rates used, the difference between these and 
the shellular models was slight. It was found that slow rotation has an insignificant effect 
on collapse. At higher rotation rates the maximum density at bounce decreases slightly 
with increasing rotation. This decrease was found to be smaller than in previous studies. 
For the models which were followed past bounce a second density peak is observed. The 
time between the first and second peaks increases with increasing rotation, in agreement 
with previous studies.

The ratio of rotational to gravitational energy /3 at bounce increases with initial ro
tation up to moderate rotation rates. Above a rate of around Do =  4 rad s-1, at 
bounce becomes non-monotonic in D0. This rotation rate seems to mark a transition re
gion where centrifugal effects become important. For the fastest two rotators a disc-like 
structure is observed surrounding the core at bounce and the peak in j3 versus enclosed 
mass moves outwards as equatorial material is prevented from falling in as quickly as 
that at the poles.

At no point does /3 approach the limit of ~  0.14 for secular instability. The maximum 
beta for all models at bounce is < 0.1. No sign of fragmentation or significant growth of 
m  =  1 or m  =  2 modes is observed.
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FIGURE 4 .10 . Density, radial velocity and entropy versus enclosed mass for model Woosley at 
t  =  19.2, 98.3, 99.3, 99.7, 99.8, 100.0, 100.9, and 122.0 ms. Core bounce occurs at 100.0 ms. 

Snapshots show the density and entropy at bounce and the radial velocity at 100.9 ms.
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FIGURE 4.11. Density, radial velocity and entropy versus enclosed mass for model Woos_06 at 
t  =  19.2, 98.4, 99.6, 99.8, 100.1, 100.4, 100.9 and 105.1 ms. Core bounce occurs at 100.1 ms. 

Snapshots show the density and entropy at bounce and the radial velocity at 100.9 ms.
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FIGURE 4.12. Density, radial velocity and entropy versus enclosed mass for model Woos_08 at 
t  =  19.2, 98.5, 99.6, 100.0, 100.2, 100.5, 101.0 and 108.8 ms. Core bounce occurs at 100.2 ms. 

Snapshots show the density and entropy at bounce and the radial velocity at 101.0 ms.
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FIGURE 4.13. Density, radial velocity and entropy versus enclosed mass and angular velocity 
versus radius for model Woos_20 at t  =  19.8, 99.3, 100.6, 100.9,101.1, 101.3,102.3 and 105.1 ms. 
Core bounce occurs at 101.1 ms. Snapshots show the density and entropy at bounce and the radial 
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(black) and the amplitudes of the dipole (blue) and quadrupole (cyan) moments.
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FIGURE 4 .15 . Density, radial velocity and entropy versus enclosed mass and angular velocity 
versus radius for model Woos_40 at t  — 19.8,103.2,104.7,105.1,105.4,105.7,106.0 and 106.2 ms. 
Core bounce occurs at 105.4 ms. Snapshots show the density and entropy at bounce and the radial 
velocity at 106.2 ms. The graph at the bottom right shows the displacement of the centre of mass 

(black) and the amplitudes of the dipole (blue) and quadrupole (cyan) moments.
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FIGURE 4 .16 . Density, radial velocity and entropy versus enclosed mass and angular velocity 
versus radius for model Woos_50 a i t  =  19.8, 106.4,108.8,109.3,109.7,110.0,112.1 and 115.5 ms. 
Core bounce occurs at 109.7 ms. Snapshots show the density and entropy at bounce and the radial 
velocity at 112.1 ms. The graph at the bottom right shows the displacement of the centre of mass 

(black) and the amplitudes of the dipole (blue) and quadrupole (cyan) moments.
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FIGURE 4.19. Density, radial velocity and entropy versus enclosed mass and angular velocity 
versus radius for model Woos_cyl20 at t  =  19.8, 99.3, 100.7, 100.9, 101.1, 101.5, 102.6 and 106.4 
ms. Core bounce occurs at 101.1 ms. Snapshots show the density and entropy at bounce and the 
radial velocity at 102.6 ms. The graph at the bottom right shows the displacement of the centre of 

mass (black) and the amplitudes of the dipole (blue) and quadrupole (cyan) moments.
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FIGURE 4.20. Density, radial velocity and entropy versus enclosed mass and angular velocity 
versus radius for model Woos_cyl30 at t  =  19.8, 101.3, 102.8, 103.1,103.3, 103.8,104.7 and 105.6 
ms. Core bounce occurs at 103.3 ms. Snapshots show the density and entropy at bounce and the 
radial velocity at 104.7 ms. The graph at the bottom right shows the displacement of the centre of 

mass (black) and the amplitudes of the dipole (blue) and quadrupole (cyan) moments.
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versus radius for model Woos_visc50, which had shear viscosity added at 105.5 ms, at t  =  106.4, 
109.0, 109.7, 110.0 and 110.4 ms. Core bounce occurs at 110.0 ms. Snapshots show the density 
and entropy at bounce and the radial velocity at 110.4 ms. The graph at the bottom right shows the 
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(cyan) moments.
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Chapter 5
Collapse of the Rotating Progenitors

“The sun has one kind o f splendour, the moon 
another and the stars another; and star differs 
from star in splendour.”

St. Paul
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5.1 Introduction

In the previous chapter rotation was imposed on a non-rotating supernova progenitor 
in order to study how the bounce density, time of bounce and rotation parameter was 
affected as rotation increased. Rotation in this case was enough to slow the collapse 
significantly but did not prevent bounce from occurring at nuclear densities.

With more rapid rotation the dynamical evolution of the core will be affected sig
nificantly. In this chapter I investigate what happens to the structure of the core when 
rotation is large enough to dominate the collapse. In particular, rapid rotation may cause 
instabilities to grow, possibly to the extent of inducing core fragmentation.

The progenitors used in this chapter are those of Heger et al. (2000), who included 
rotation in their stellar evolution models. They also produced a set of non-rotating mod
els. I begin in Section 5.3 by comparing the collapse of these non-rotating models with 
the non-rotating Woosley model of the previous chapter.

There are two distinct sets of rotating progenitor models. Those in the first set rotate 
weakly and produce results similar to those obtained in the moderately rotating Woosley 
models of the previous chapter. They are discussed in Section 5.4 below. More interest
ing to us are the strongly rotating models, which have core rotation rates on the lower 
boundary of what might be expected to produce gamma ray bursts (GRB). These mod
els, discussed in Section 5.5, experience significant rotational effects as they collapse, 
and bounce at sub-nuclear densities. A third set of models was run with the rotation en
hanced artificially in an effort to simulate what would happen in the core of a progenitor 
produced by a binary merger. These models are covered in Section 5.6.

With fast enough rotation, a centrifugally supported disc is likely to form as the core 
collapses. By analogy with accretion discs, several models were run with shear viscosity 
added. These are described in Section 5.7.

5.2 Models and Parameters Used

In recent years it has become possible to include the effects of rotation in stellar evolution 
codes. The simulations described in this chapter were run using the rotating supernova 
progenitor models of Heger et al. (2000). They used the STERN (Langer et al. 1988) 
and KEPLER (Weaver, Zimmerman & Woosley 1978, Woosley & Weaver 1988) stellar 
evolution codes to model stars with masses ranging from 10 M© to 25 M© from zero- 
age main sequence (ZAMS) until the onset of core collapse. STERN was used for the

105



Collapse of the Rotating Progenitors 5.2 Models and Parameters Used

evolution up to central neon ignition and KEPLER to model the remaining stages up to 
the onset of core collapse, defined as when the infall velocity in the iron core exceeds 
900 km s-1.

Rotation in these models is defined as the equatorial surface rotation velocity at core 
hydrogen ignition (ZAMS). Stars in the mass range 8-25 M© typically have rotational 
velocities of 200 m s-1 (Halbedel 1996, Penny 1996) and so this rotation speed is used 
in the principal set of models. These models are denoted “E”, with other groups denoted 
“D” (non rotating), “F* (300 m s-1) and “G” (100 m s-1). Parameters for these models 
can be found in Table 5.1.

Gradients in the mean molecular weight fi inhibit rotationally induced instabilities, 
but just how sensitive mixing is to these gradients is greatly uncertain, therefore Heger 
et al. use an efficiency parameter to adjust the amount of mixing. Through trial and 
error and comparison to observed stellar surface abundances a “best value” was obtained 
of fp — 0.05, corresponding to the models suffixed B in Table 5.1. A set of models were 
also produced in which /i-gradients were completely neglected ( /M =  0), resulting in 
stronger mixing, with another parameter adjusted to produce similar surface abundances 
to the B models. I refer to these models as the A models. The strong mixing transported 
angular momentum out of the core to give a final rotation rate that was slower by roughly 
an order of magnitude. However, in the inner regions, the B models resemble the non 
rotators more closely in composition than do the A models.

Simulations employing 50,000 SPH particles were run for all of the models in Ta
ble 5.1. Higher resolution runs were undertaken for the “D” and “E” models using the 
UKAFF and HEX supercomputers and the SRIF2 cluster at the University of Leicester. 
These are what I focus on in my discussion. Owing to a slight defect in the initial con
ditions, all models run on HEX and UKAFF begin with slightly enhanced density and 
entropy at the very centre. As will be seen when comparing these models to those run on 
SRIF2, the effect of this on the overall dynamics of collapse is small.

It should be mentioned that during the evolution of the progenitors, the shells of dif
ferent compositions each develop their own, roughly constant, angular velocities. These 
velocities were mapped directly to the SPH particles with no smoothing between shells. I 
therefore pay careful attention to the shell boundaries in case spurious effects are caused 
by the sudden discontinuities in rotation speeds.

Initial conditions and results of all the simulations run at high resolution can be found 
in Table 5.9 at the end of this chapter.
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5.3 Models Without Rotation

Once again the discussion begins with the non-rotating models, D15 and D20. D15 was 
run with 250 000 particles on HEX and both models were run with 300 000 particles on 
the SRIF2 cluster. The results of these runs can be seen in Figures 5.23-5.25. Figures 5.1- 
5.9 show the density, radial velocity and entropy profiles of these models in more detail. 
The time of bounce and maximum density obtained for each of these models can be 
found in Table 5.9.

Comparing the density profiles of both D 15 runs (Figures 5.1 and 5.2) with the model 
Woos shows them to be virtually indistinguishable. The progenitors themselves have 
very similar profiles, and collapse takes place on the same timescale, roughly 100 ms. At 
bounce the shock proceeds very quickly to around 0.9 — 1.0 M0 with the central density 
settling to ~  3 x 1014 g cm-3. Model D20 (Figures 5.3) behaves similarly to the other 
two progenitors, reaching bounce in 105 ms with a strong shock just below 1 M0 .

The radial velocity curves for these three models (Figures 5.4-5.6) again have a sim
ilar shape to model Woos (and consequently B95). As the shock is forming the radial 
velocity exhibits the same oscillations as in model Woos, caused by the artificial param
eter not increasing sufficiently to damp the particles’ motion completly.

The entropy profiles for these models (Figures 5.7-5.9) is also very similar to that of 
Woos, including the region in which the entropy is set to 0.

Table 5.1. Details o f the Heger progenitor models. The mass of each star at the beginning and end 
of its evolution is given along with the mass of the iron core at the onset of collapse, v z a m s  refers 
to the equatorial velocity at ZAMS and j F e  is the specific angular momentum at the edge of the iron 

core at collapse. This chapter focuses on the D and E models.

Model Minitial 
( M q )

M fin a l MFe
(M0)

v z a m s  
(km s-1)

Mixing JFe
(cm2 s-1)

D15 15 13.55 1.33 0 ... 0
D20 20 16.31 1.64 0 0
E15 15 10.86 1.46 206 strong 6.40 x 1015
E20 20 11.00 1.73 201 strong 5.58 x 1015
E15B 15 13.26 1.40 206 weak 1.46 x 1016
E20B 20 15.19 1.38 201 weak 1.26 x 1016
F15B 15 12.89 1.38 323 weak 1.33 x 1016
F20B 20 14.76 1.36 307 weak 1.37 x 1016
G15B 15 13.46 1.34 102 weak 1.23 x 1016
G20B 20 16.03 1.38 103 weak 1.14 x 1016
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FIGURE 5.1. Density plotted logarithmically versus enclosed mass for Heger model D15 run on 
HEX. Line colours progress from black to blue then through the rainbow towards red, corresponding 
to t  =13.72, 103.6, 104.8, 105.1, 105.4, 105.7 and 106.5 ms. Core bounce occurred at around

105.4 ms.

It is not unexpected that the cores of these three progenitors, one more massive than 
the others, collapse in a similar fashion. At the onset of collapse the density profile in the 
inner core is almost identical across all three models. Collapse happens on the dynamical 
timescale of the inner core -  the main difference between the cores of D15 and D20 is 
the location of the outer core boundary, which is unaffected on this timescale.

Following the use of the standard Woosley progenitor as a control for comparing the 
results of collapse with a model from the literature, Heger models D15 and D20 provide 
a further check. This check proved satisfactory, with the collapse of these models almost 
identical to that of model Woos in the previous chapter. We arrive at the conclusion that 
the differences between non-rotating progenitor models have only a slight effect on their 
collapse. Rotation will have a much larger influence on the dynamics of the collapse, 
and it is to this we look next.
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FIGURE 5.2. Density plotted logarithmically versus enclosed mass for Heger model D15 run on 
SRIF2 at t  =19.21, 101.0, 102.1, 102.4, 102.6, 102.9, 103.7, 106.5 and 112.1 ms. Core bounce

occurred at around 102.6 ms.
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FIGURE 5.3. Density plotted logarithmically versus enclosed mass for Heger model D20 run on 
SRIF2 cluster at t  =19.21, 104.0, 105.1, 105.4, 105.7, 105.9, 106.8, 109.5 and 123.5 ms. Core

bounce occurred at around 105.7 ms.
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FIGURE 5.4. Radial velocity versus enclosed mass for Heger model D15 run on HEX at t =13.72, 
103.6, 104.8, 105.1, 105.4, 105.7 and 106.5 ms. Core bounce occurred at around 105.4 ms. As in 

model Woos, oscillations are visible in the inner core as the shock forms.

5.4 Slowly Rotating Models

Snapshots and profiles for quantities pertaining to models E l5A and E20A are shown in 
Figures 5.26, 5.27 and 5.29 at the end of this chapter and bounce times, densities and 
rotation parameters are given in Table 5.9. E15A was run with 250 000 particles on HEX 
and both E15A and E20A were run with 300 000 particles on the SRIF2 cluster. The 
snapshots show a difference in appearance between model E15A in the HEX run and in 
the SRIF2 run. I believe that this is due to poor time resolution in the HEX run, in which 
the crucial few milliseconds around bounce were not recorded. We therefore catch the 
model significantly before the shock has begun to form and after the core has rebounded 
to a lower density. The SRIF2 run covers the formation of the shock.

The SRIF2 runs show little to distinguish between models E15A and E20A, apart 
from a difference of just over 20ms in time of bounce. The value of the rotation parameter 
ft at bounce is 12% and 9.8% for E15A and E20A respectively, below the limit for 
secular instability. Figures 5.10 and 5.11 shows the angular velocity as a function of 
enclosed mass when the particles are binned on spheroidal shells following the mass 
distribution. This gives a more accurate representation of what is actually happening
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FIGURE 5.5. Radial velocity versus enclosed mass for Heger model D15 run on SRIF2 at t  =19.21, 
101.0,102.1,102.4,102.6,102.9,103.7,106.5,112.1 ms. Core bounce occurred at around 102.6 ms.
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FIGURE 5.6. Radial velocity versus enclosed mass for Heger model D20 run on SRIF2 at t  =19.21, 
104.0, 105.1, 105.4, 105.7, 105.9, 106.8, 109.5, and 123.5 ms. Core bounce occurred at around

105.7 ms.
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FIGURE 5 .7 . Entropy per baryon in units of Boltzmann’s constant versus enclosed mass for Heger 
model D15 run on HEX at t =13.72, 103.6, 104.8, 105.1, 105.4, 105.7 and 106.5 ms. Core bounce

occurred at around 105.4 ms.

to the angular velocity, since the shells on which the core rotates become spheroidal 
as collapse proceeds. Both models show a similar behaviour of the angular velocity 
with time. To begin with f2 is centrally peaked. A few milliseconds before bounce the 
peak becomes stronger in the centre with a second, smaller peak further out. This is 
presumably material that has just enough angular momentum to prevent it from falling 
in, as it also visible at a constant radius in the composite plots at the end of the chapter. 
As the core reaches bounce, the peak in Q increases and moves to higher mass (but lower 
radius) as low-fi material falls in more quickly than high. After bounce the peak becomes 
smaller as the core re-expands.

When the snapshots and rotation profiles of models E15A and E20A are compared 
with the models from the previous chapter it can be seen that, out of all the Woosley 
models, they are most similar to to W401r. The bounce densities are similar, though not 
exactly the same (2.8, 3.0 and 3.1 x lO 14 g cm-3 for E15A, E20A and W401r respec
tively). It is interesting to note that this model obtains the maximum (3 at bounce of all 
the Woosley models. Its rate of rotation seems to be optimum for achieving rapid rota
tion at bounce -  centrifugal support is not quite enough to delay the infall of equatorial 
material, consequently rotation is amplified by the maximum possible amount. It is a
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FIGURE 5.8. Entropy per baryon in units of Boltzmann’s constant versus enclosed mass for Heger 
model D15 run on SRIF2 at t  =19.21,101.0,102.1,102.4,102.6, 102.9,103.7,106.5 and 112.1 ms. 

Core bounce occurred at around 102.6 ms.
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FIGURE 5.9. Entropy per baryon in units of Boltzmann’s constant versus enclosed mass for Heger 
model D20 run on SRIF2 cluster at t  =19.21, 104.0, 105.1, 105.4, 105.7, 105.9, 106.8, 109.5 and 

123.5 ms. Core bounce occurred at around 105.7 ms.
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FIGURE 5.10. Angular velocity versus enclosed mass for SRIF2 model E15A at t  =  137.2, 
138.6,138.9,139.1,139.4 and 139.7 ms, binned on spheroidal shells following the mass distribution. 
Bounce occurs at around 139.4 ms. Line colours progress from black through blue to cyan. The 
angular velocity is initially centrally peaked, but this peak grows and moves outwards as the model

approaches bounce.
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FIGURE 5.11. Angular velocity versus enclosed mass for model E20A at t  =  159.4, 160.8,161.1, 
161.4, 161.6 and 161.9 ms, binned on spheroidal shells following the mass distribution. Bounce

occurs at around 139.4 ms.
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happy coincidence that the Heger A models also rotate at just this rate.

Although the maximum of the Woosley models in the previous chapter showed a 
non-monotonic dependence on initial rotation rate, the fastest rotator once again showed 
an increase in maximum /?. It is possible that there exists a critical rate of rotation which 
more than compensates for the lack of complete contraction of the core to give still higher 
values for /3. It is with this in mind that in the next sections I discuss the collapse of the 
“fast” Heger rotators.

5.5 Rapidly Rotating Models

Heger models E15B and E20B have specific angular momenta at the edge of their cores 
that are at the bottom end of the range that could produce a collapsar (see Table 5.1). In 
these runs we therefore look for anything resembling a disc around the central object and 
pay particular attention to the possibility of core fragmentation. Model E15B was run 
with 250 000 particles on HEX, but did not reach nuclear density in the time the simula
tion was run for. Models E15B and E20B were both run with 300 000 particles on SRIF2. 
Figures 5.30, 5.32 and 5.35 show snapshots and profiles of these models at interesting 
points in their evolution. (It should be noted that all these models become significantly 
non-spherical and quantities binned spherically should not be taken too seriously.)

Figures 5.12 and 5.13 show the initial angular velocity profiles for all rotating models. 
Rotation in the progenitors is on shells corresponding to different compositions, with 
little coupling between them. In mapping the rotating models to SPH nothing was done 
to smooth the angular velocity. Concerned that this may cause spurious forces between 
the SPH particles at the boundaries I also ran a model with a smooth rotation law of the 
form described in Chapter 4, Section 4.4. The core of model D15 was used with f20 set 
to the angular velocity at the centre of E15B and the model was named DE15B. The 
rotation profile that this produces roughly traces that of E15B and is the dotted line in 
Figure 5.12.

Also plotted in Figures 5.12 and 5.13 are the initial profiles of the specific angular 
momentum as a fraction of Keplerian for all the rotating models. The rate of rotation 
falls off more steeply in radius in the 20 M® models, resulting in their maximum angu
lar momentum as a fraction of Keplerian being smaller, but for the B models it is still 
appreciable. For a rigidly rotating, spherical core, this fraction is proportional to r~^, 
therefore if the core radius shrinks by a factor of 10, the Keplerian limit will be reached. 
During collapse (in the non-rotating case) the core actually shrinks by a factor of ~  100.
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FIGURE 5.12. Initial rotation profiles and specific angular momentum as a fraction of Keplerian 
for models E l5 (long dash), E15B (solid), E15C (short dash) and model D15 with added rotation

(dotted).
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FIGURE 5.13. Initial rotation profiles and specific angular momentum as a fraction of Keplerian 
for models E20 (long dash), E20B (solid) and E20C (short dash).

In the absence of dissipation it is therefore certain that the core will become centrifugally 
supported at some point.

Also of note is that for all of the B models $  exceeds that of the fastest rotating of 
the Woosley models. W081r shows structure in the outer core and a significantly delayed 
bounce. Even more extreme behaviour should be expected of these models.
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5.5.1 Results

Figure 5.14 shows the time evolution of the central density for models E15B run on 
SRJF2 and HEX, E20B and DE15B. Two peaks are visible for the SRIF2 run of E15B 
and for E20B, the first of which occurs at the same time for both models. After this point, 
however, there is no correspondence between the models The peaks are much closer 
together for E20B than E15B, whose density grows more gradually. After the second 
density peak both models re-expand, E20B much more than E15B, before contracting 
again until nuclear density is reached. It makes sense that E20B collapses faster, since 
its initial rotation was slightly slower than that of E15B. DE15B collapses more quickly 
than both of these models, but shows similar behaviour with the density peaking twice -  
the second time at just below nuclear densities. Information about the first two bounces 
and the final central density for these models are shown in Table 5.9.

The HEX model E15B was only run past the first peak, which occurred at approxi
mately the same time as in the SRIF2 run. However, at this peak its central density was 
roughly an order of magnitude higher than in the SRIF2 run. It was mentioned in Sec
tion 5.2 that a slight error was made in the initial conditions for the HEX models, which 
led to a slightly enhanced density for the innermost particles. The central density plotted 
in Figure 5.14 is an average over the innermost 500 particles, the very same whose den
sity was enhanced. It appears that a relic of this enhancement is preserved throughout 
the simulation.

The evolution of /? is also shown in Figure 5.14. As expected, the peaks in f3 are 
coincident with the peaks in p, but there are also some secondary peaks which occur at 
points where & changes suddenly. This may arise from the assumption when calculating 
/? that the mass of the core is contained in a sphere. At points when the core changes 
shape suddenly material that is rotating much more quickly or slowly may suddenly fall 
within this shell. It should be noted that the first peak for model E15B is the same height 
for both the SRIF2 and HEX runs. The effect of the erroneous density enhancement on 
the rotational dynamics is small.

Another clue to what is happening in these models is obtained by looking at their 
structure along the polar and equatorial axes. Figure 5.15 shows the density distribution 
at times of maximum and minimum central density along the x- and 2-axes for the SRIF2 
model E15B. At the time of the first density maximum there is a steep drop in density 
at around 200 km along the x-axis, while along the 2-axis the density distribution is 
smoother. At the density minimum this discontinuity has moved to around 350 km, and it 
moves inwards again for the subsequent maximum. Looking at the radial velocity along
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FIGURE 5.14. Top: Evolution of the central density for models E15B (red), E20B (green) and 
DE15B (blue) run on SRIF2 and for E15B run on HEX (magenta). Each SRIF2 model experiences 
two centrifugal bounces. In models E15B and E20B the collapse then proceeds to nuclear densities. 
Bottom: Evolution of the core rotation parameter /? =  T / \ W \  for the same models. Peaks coincide 

not only with peaks in density but also with changes in
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these axes (Figure 5.16), the drop in density along the x-axis corresponds to a shock 
that moves outwards until the density minimum and then recedes. Along the 2-axis it 
appears that a small amount of material at ~  100 km begins to flow outwards but whilst 
material within it, at around 50 km, is still infalling. By the time of the second minimum, 
however, the material along the 2-axis has begun to move outwards at high velocity. It 
is apparent that the first density maximum corresponds to a centrifugal bounce which is 
strongest along the equator. Later on the outflow becomes stronger at the poles, which 
have been evacuated by the infall. By the end of the simulation fallback has begun, once 
more predominantly along the poles.

The central snapshot of model E15B in Figure 5.32 shows the shock causing the 
greatest increase in entropy at the poles, where the infall is most rapid. The HEX model 
(Figure 5.30) shows similar features, and the radial velocity snapshot around this time 
shows an oblate distribution of outflowing material. The density and entropy snapshots 
show that at late times, although the density remains centrally peaked, the core is sur
rounded by an extended torus-shaped distribution of cool material, presumably centrifu- 
gally supported.

Model E20B exhibits similar behaviour (Figure 5.35), although the density distribu
tion at the end of the simulation is slightly less extended than in E15B. Model DE15B, 
again, is similar in morphology, with the weak shock forming at the same radius. This 
simulation was run with a smooth rotation law in order to check that the collapse and 
bounce of the rotating models was not influenced by spurious forces at the boundaries 
between shells. These results show that there is indeed no difference in behaviour at the 
shell boundaries.

The evolution of was discussed earlier in this section. In Figure 5.14 the peaks in 
for each model are always at roughly the same height. In none of these models does 

exceed the limit for secular instability for a uniformly rotating object.

However, it is wise to be cautious before making assumptions. Figures 5.32, 5.35 
and 5.50 all show a growing m  =  1 mode towards the end of the simulation. As in 
the previous section, the growth of the mode appears to correlate with the motion of the 
centre of mass. To verify that this is indeed the case and nothing more, density contours 
of models E15B and E20B in the x — y plane are plotted in Figure 5.17. These show that 
even at the end of the calculation the core remains circular, with no sign of deformation 
or fragmentation. If rotational instabilities occur at all, they must require still faster 
rotation.
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FIGURE 5.15. Density profiles along the x-axis (top) and 2 -axis (bottom) for the SRIF2 model 
E15B. Curves are plotted at the first peak in density when t  =  164.7 ms (red), the subsequent 
minimum at t  =  183.9 (green), second peak at t  =  223.9 (blue), second trough at t  =  244.2 
(magenta) and just as nuclear density is reached at 266.3 ms (cyan). When the first peak in density 
occurs a discontinuity in density is visible at around 200 km along the x-axis, which subsequently

moves outwards.
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FIGURE 5.16. Radial velocity profiles along the x-axis (top) and 2 -axis (bottom) for the SRIF2 
model E15B. Curves are plotted at the first peak in density when t  =  164.7 ms (red), the subsequent 
minimum at t  — 183.9 (green), second peak at t  =  223.9 (blue), second trough at t  =  244.2 
(magenta) and just as nuclear density is reached at 266.3 ms (cyan). The discontinuity in the density 
profile at around 200 km along the x-axis corresponds to a shock forming at this distance. Along the 

2 -axis the shock is weaker and closer in, but the outward motion becomes stronger at later times.
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FIG U RE 5.17. Density contour plots for models E 15B (left) and E20B at the end of the simulations, 
when the central densities have reached nuclear, viewed in the x -y  plane. The axis scale is in units of 

100 km. Neither model shows any significant departure from circular symmetry in this plane.

5.6 “Binary” Models

In the previous section I noted that the rotating models of Heger fall at the bottom of 
the range of core angular momenta that is expected to produce GRB. In Chapter 1 I 
described a recent attempt to simulate the merger of a binary system and the subsequent 
evolution of the merged object to presupemova (Fryer & Heger 2005). Several models 
were produced that had the correct mass and angular momentum for GRB production.

I obtained one of these “successful” models from the authors. Since the file was 
in the same format as the other Heger models I was able to map it straight into my 
code. However, the angular momentum distribution and pressure gradients were such 
that the progenitor would not collapse, even when artificial measures were taken, such as 
enhancing the mass in the central regions of the star or reducing the pressure by reducing

Unperturbed and still wanting to test out a “binary” supernova progenitor, I decided 
to experiment with enhancing the rotation in one of the rotators that did collapse. The 
motivation for this was that in the inner core (< 108cm) the binary model was actually 
less dense than the “normal” rotators (Figure 5.18). I surmised that a more massive inner 
core would assist the collapse.

The model I chose initially was E15B and I produced models with the angular ve
locity multiplied by a factor of 1.4 (E15C) and 1.5 (E15D), values which gave a rotation 
profile that was fairly similar to that of the binary model. Figure 5.18 shows the rotation
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FIGURE 5.18. Left: Enclosed mass versus radius for model E15B (solid line) and the binary 
merger progenitor. The central density of the binary progenitor is less than that of the single star. 
Right: Rotation profiles of model E15B before (solid) and after (dotted) multiplication by a factor of 

1.4, compared with the binary progenitor (dashed).

curve for E15C alongside that of the “binary” merger model. (I also tested out a model 
with the rotation multiplied by a factor of 2, but this model failed to collapse.) This 
rotation profile is also shown alongside those of E15A and E15B in Figure 5.12.

5.6.1 Results

Models E15C and E15D were run with 250 000 particles on HEX. Snapshots and profiles 
for these are in Figures 5.38 and 5.47. Due to an unfortunate blunder the first 200 dumps 
of E15C were lost, so only the behaviour of this model late on in the simulation can be 
described. Model E15D was run with 1 million particles on UKAFF (Figure 5.46). Mod
els E15C and E20C were run with 300 000 particles on SRIF2 (Figures 5.40 and 5.43).

Figure 5.19 shows the evolution of central density and rotation parameter for all of the 
models with enhanced rotation, and Table 5.9 gives more information about the density 
peaks.

Models E15C and E20C, run on SRIF2, undergo a centrifugal bounce at similar times 
and densities, following which the density increases smoothly until a sudden central col
lapse occurs, which takes E20C to nuclear densities. As in the B models, the behaviour 
is qualitatively similar but the collapse faster for the 20 M0 model. The density at the 
first dump available for the HEX run of E15C is around an order of magnitude higher 
than that in the SRIF2 run. As was mentioned in the discussion of the B models, this
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difference in density is likely to be an artifact of the initial conditions. The increase to
wards nuclear densities is much smoother than in the SRIF2 model. It may be that the 
discontinuity in density in the SRIF2 models marks the point at which the code, for some 
reason, has become unstable.

Models E15D, run on HEX and UKAFF (also Figure 5.19) each undergo very weak 
bounces, at similar times, before collapsing gradually to nuclear densities. The density 
curves are very similar in shape, and not dissimilar to the shape of the curve for the 
SRIF2 model E15C before its discontinuity.

The evolution of (3 with time is consistent between the models. Each core reaches a 
peak which is between 11 and 13%. This is followed by a trough in before it rises 
again to a plateau, f} decreases again as nuclear densities are approached, presumably 
because the core, which is assumed spherical in the calculation of /?, becomes increas
ingly flattened. This effect is very sudden for the SRIF2 models and it corresponds to the 
sudden density increase.

It is also interesting to note that the composite figures show a flat rotation profile 
for the HEX and UKAFF runs right up to nuclear densities (although only E15C on 
HEX reaches this density). In contrast, the SRIF2 runs show the angular velocity profile 
becoming peaked as in the B models.

All of the “binary” models have interesting structures, as can be seen from the snap
shots at various points in their evolution. Their density distributions become highly 
extended in the equatorial plane and at late times a low entropy disc is visible, with 
high entropy material above the poles. The density profiles along the x- and 2-axes for 
model E20C are shown in Figure 5.20, at the times of the first density maximum and the 
minimum that follows, the second density maximum and the final density. At the first 
density maximum a shock/discontinuity is visible along the rc-axis, which has moved 
outwards by the time the subsequent minimum is reached. After this time the profile is 
fairly featureless, with rapid collapse taking place in the innermost regions after the sec
ond density peak. The 2-axis profile remains fairly featureless at all times and is much 
steeper near the centre, showing that the core is flattened (see also Figure 5.43). At late 
times the runaway collapse of the inner core is visible.

The C and D models all take a similar amount of time to collapse and end up with 
similar shapes and similar density profiles in enclosed mass. These profiles show that 
by the end of the simulations the density has increased at mass coordinates right out to 
1.6M@. This mass coordinate corresponds to a radius approaching the outer edge of the 
particle distribution, and since the dynamical time at this edge is of the order of the time
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FIGURE 5 .19 . Top: Evolution of the central density for the SRIF2 runs of E15C (red) and E20C 
(green), HEX runs of E15C (blue) and E15D (magenta) and UKAFF run of E15D (cyan). Both E15C 
models experience their first centrifugal bounce at the same time, but with peak densities differing by 
an order of magnitude. Model E15D collapses slightly quicker on UKAFF than on HEX but appears 
qualitatively similar. Bottom: Evolution of the core rotation parameter /? =  T / \ W \  for the same 

models. Here, the E15C runs show similar behaviour up to ~  400 ms.
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FIGURE 5.20. Density profiles along the x-axis (top) and 2 -axis (bottom) for the SRIF2 model 
E20C. Curves are plotted at the first peak in density when t  =  247.0 ms (red), the subsequent 
minimum at t  =  274.4 ms (green), second peak at t  =  616.8 ms (blue), and the end of the simulation 
at t  =  623.8 ms (magenta). When the first peak in density occurs a discontinuity in density is visible 

just past 300 km along the x-axis, which subsequently moves outwards.
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taken for these models to collapse, inaccuracies may have developed from the lack of 
pressure at the outer edge. Results in this section should therefore be taken with a hefty 
pinch of salt.

In none of these models does the maximum angular velocity rise significantly above 
the maximum angular velocity for the B models. The overall maximum ft of 13% is ob
tained for model E20C. This value approaches the limit for secular instability, and once 
again I perform a modal analsis. The plots of the dipole and quadrupole diagnostics for 
these models all show a very strong correlation between the amplitude of the dipole and 
the position of the centre of mass. The quadrupole mode does not grow significantly 
and there is no sign of triaxial deformation in the core. It seems that once again mate
rial reaches the limit for centrifugal support before it is rotating fast enough to become 
unstable.

In the next two sections I turn to a discussion of processes that are thought to increase 
the likelihood of core fragmentation.

5.7 Models With Viscosity

None of the simulations in Sections 5.5 and 5.6 showed any sign of triaxial instability. 
The B, C and D models generally reach a maximum (3 of between 11 and 13% before 
centrifugal force inhibits further collapse. These values approach the limit for secular 
instability, and raise the question of whether the inclusion of some dissipation mecha
nism may facilitate the collapse of equatorial material and/or allow the core to become 
unstable.

The compact core surrounded by a structure resembling a disc in these models is 
analogous to that of a compact object surrounded by an viscous accretion disc. Test 
models were therefore run for E15A, B, C and D. In these models the SPH equivalent 
of the Shakura-Sunyaev “alpha” shear viscosity described in Chapter 3, Section 3.6 was 
included, with a sph set to a very high value. Parameters for these models can be found in 
Table 5.7. In model E15A the viscosity was added just before bounce, at around 137 ms, 
to observe its effect on the bounce dynamics.

The viscous models were run predominantly on HEX and the time evolution of the 
central density resembles that found for the non-viscous models (Figure 5.21, compare 
with Figure 5.19). The D models with and without viscosity are very similar, the main 
difference being that the viscous models collapse faster due to the removal of angular 
momentum. The knee that occurs at around 400 ms for model E15D is visible at around
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Table 5.2. Viscosity parameters for models in which Sunyaev-Shakura “a ”-viscosity was used. 
The value of the SPH a  used is given in the third column.

Model Run on & S P H

E15A_visc SRIF2 2.0
E15Bvisc HEX 5.0
E15Cvisc HEX 5.0
E15Dvisc HEX 5.0
E15Dvisc UKAFF 2.0

350 ms for E15Dvisc. It is difficult to compare models E15C and E15Cvisc because 
the data for E15C early on is missing, but the curves at late times have the same shape. 
E15C reaches nuclear densities just under 300 ms after E15Cvisc. Models E15B and 
E15Bvisc are also similar, with the first density peak occuring just after 150 ms. The 
main difference here is that the viscous model does not show a second peak in density 
(at around 200 ms) -  the gradient of the curve changes at this point but the density 
increases monotonically up to nuclear, which it reaches at around the same time as does 
E15B. None of these models have a maximum that is higher than in their non-viscous 
counterparts.

Snapshots and profiles of these models at various times can be seen in Figures 5.28, 
5.31,5.39,5.49 and 5.48. Comparing the viscous and non-viscous models it can be seen 
that overall, the extra viscosity has the effect of smoothing the profiles and damping any 
shock that forms.

It is difficult to compare the snapshots and profiles of models E15B and E15Bvisc 
because model E15B on HEX had not reached nuclear densities by the end of the sim
ulation. Comparing model E15Bvisc with E15B run on SRIF2 shows that the shock at 
centrifugal bounce is less defined in the viscous model. The viscous model E15B main
tains a flat angular velocity profile right up to the end of the simulation, in contrast to the 
non-viscous SRIF2 model which forms a peak at just past 10 km soon after centrifugal 
bounce.

Also difficult to compare are the snapshots and profiles for models E15C and E15D 
with and without viscosity due to the faster collapse of the viscous models enabling them 
to be run to later stages in their evolution. A change in the shape of the density profile 
accompanied by the formation of a peak in entropy occurs in the viscous runs at a time 
equivalent to after the end of the simulations in the non-viscous runs. What is perceivable 
in the snapshots is that the viscous models are basically same shape as the non-viscous
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FIGURE 5.21. Top: Evolution of the central density for viscous models E15Bvisc (red), E15Cvisc 
(green) and the HEX (blue) and UKAFF (magenta) runs of E15Dvisc. The first 200 dumps of 
E15Cvisc have been lost. Model E15Bvisc shows very similar to the non-viscous model E15B, 
although the second peak is damped out. Both E15Dvisc models show almost identical behaviour to

their non-viscous counterparts.

129



Collapse of the Rotating Progenitors 5.7 Models With Viscosity

4 . 0

3 . 0 -

2.0'

1.0-

0.0-

-1.0-

-2.0-

- 3 . 0

- 4 . 0 4
4 . 0  - 3 . 0  - 2 . 0  - 1 . 0  0 . 0  1 . 0  2 . 0  3 . 0  4 . 0

2.0

1.0

0.0

-1 .0

-2.0

0.0-2.0 -1 .0 1.0 2.0

FIG U RE 5.22. Density contour plots for models E15Bvisc (left) and E15Dvisc at the end of the 
simulations, when the central densities have reached nuclear, viewed in the x -y  plane. The axis scale 
is in units of 100 km. Neither model shows any significant departure from circular symmetry in this

plane.

models but much smoother. This is illustrated particularly well in the central snapshots 
of Figures 5.39 and 5.40. An extended low-entropy region is visible in both, but in the 
viscous model its boundaries are much smoother and the material above the poles is of 
lower entropy.

As may be expected, in model E l5A the main variable affected by the viscosity, 
which was added just before bounce, is the angular velocity. In models E15A and E20A 
without viscosity, the angular velocity profile changes from being centrally peaked be
fore bounce to peaking at a radius of around 10 km at bounce. In model E15Avisc the 
peak also begins to move outwards, but as the bounce continues a second peak once again 
forms in the centre. Comparing the snapshots of density for models E15A, E20A and 
E15Avisc shows that in the viscous model the central core is less extended in the equato
rial plane and is much more regularly shaped just outside the central regions, whereas in 
the non-viscous models the density has lobes (when viewed in the x-y plane. The snap
shot of entropy shows the shock to be slightly more spherical than in the non-viscous 
models as a result of the difference in the density distrubution.

It has already been observed that the parameter does not exceed the limit for secular 
instability for any of these models, but since once again the dipole diagnostic grows with 
time, it is wise to plot contours in the x-y plane for selected models. Figure 5.22 shows 
model E15Cvisc and E15Dvisc at their final dump. Neither of these models shows any 
significant azimuthal perturbation—indeed, model E15Dvisc is perfectly circular.
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It appears that the addition of viscosity is not sufficient to produce instabilities in the 
cores of any of our rotating models. Although collapse proceeds more quickly due to the 
dissipation of angular momemtum the core still does not condense enough for the ratio 
of rotational energy to gravitational binding energy to exceed the limit for secular insta
bility. In fact, viscosity may even work against instabilities by damping small density 
perturbations in the outer regions of the core. If instabilites in the core during collapse 
are to occur it must be through another mechanism.

5.8 Models With Density Perturbations

One difference between the models described in the preceding sections and those in the 
literature which experience core deformation or fragmentation is that I have added no 
artificial perturbations to the density to act as seeds for instabilities. For completeness, 
I now described simulations produced as a follow up to these runs in which density 
perturbations were added.

Rapidly rotating models E15B, E20B, E15C and E20C were given m = 1 and m  =  2 
density perturbations. The position of each particle was altered according to its initial 
azimuthal coordinate 0, the new coordinate given by:

0new =  <\> +  $isin(<f> +  7r/4) +  52sin(2(f) +  7r/2) (5.1)

where <5i and S2 are constants. After the particles were perturbed the resulting position 
of the centre of mass was subtracted from the positions of the particles.

For one set of models perturbations were added at the first density minimum after 
bounce, as in Ott et al. (2005) with values of and 62 of 0.1% . These are denoted 
by the suffix “_p.” A second set of models were run with the perturbations added to 
the initial particle distribution with a 5\ and d2 of 1%. The names of these models are 
prefixed by “p”. Just to see what happened, a single model was run with and S2 of 
20%, added at the first density minimum. This model is named “Bumps”. All of these 
runs are tabulated in Table 5.8.

Table 5.9 includes the bounce times and densities for the perturbed models. The first 
bounce of the _p models is not included since it it listed for the unperturbed models.

All four of the models that were perturbed from the start of the simulation show the 
same number of bounces with similar bounce times, densities and j3 as their unperturbed 
counterparts. Snapshots of these models in the x-y plane at times of density maxima can
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Table 5.3. Details of the density perturbations added to the rapidly rotating models. The second 
column gives the time at which the perturbations were added, and <Si and 62 give the magnitude of 

the perturbations, as defined in Equation 5.1.

Model tp e r tu rb  (ms) S i S2
E15B_p 184 (-* 0 1 co 10~3
E20B_p 180 10~3 10"3
E15C-p 329 I—

* 0 1 CO 10"3
E20C_p 274 10"3 10-3
pE15B 0 10“2 10“2
pE20B 0 10"2 10~2
pE15C 0 10-2 10~2
pE20C 0 10“2 10"2
Bumps 184 0.2 0.2

be found in Figures 5.34, 5.37, 5.42 and 5.45. In none of these models can any sign of 
deformation of the core be seen, and once again the growing dipole diagnostic traces the 
motion of the centre of mass.

The picture is much the same for the models perturbed after their first bounce (Fig
ures 5.33, 5.36, 5.41 and 5.44). Although the models do not bounce at the same times or 
densities as their unperturbed counterparts, once again there is no evidence for triaxial 
deformation.

Model Bumps was given an extremely large density perturbation at the density min
imum after the first peak (Figure 5.51). From this point on the central density increased 
while the distribution in the x-y plane returned to rotundity within 30 ms. The snapshot 
of entropy at the end of the simulation shows spiral waves having been created as the 
bumps in the density spiralled together. It is interesting that, rather than being unstable 
to fragmentation, this model is resistant to large density perturbations, implying that the 
ground state of this density distribution is spheroidal.

5.9 Summary

In this chapter I have used state-of-the-art supernova progenitor models to simulate core 
collapse in a variety of rotating cases. I began by comparing the collapse of the non
rotating progenitors with that of the control model Woos of the previous chapter. These 
models behaved very similarly to the control.

Following on from this, the collapse of the “weakly-rotating” Heger progenitors
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E15A and E20A was followed. By an interesting twist of fate these models begin with 
values of (3 very close to that of model W401r. Of the Woosley models, this is the one that 
had the highest f3 at bounce. It seems that models E l5A and E20A rotate at the optimum 
rate for enhancement of the rotational energy. The collapse that ensued was indeed very 
similar to that of model W401r, with a maximum /? of 10% and 12% for E15A and E20A 
respectively.

The next set of models used were the rapid rotators, E15B and E20B, whose collapse 
was held up significantly by centrifugal support, and whose central densities peaked 
several times before nuclear density was reached. By the end of the simulations these 
models were highly flattened along the 2-axis with a torus-like distribution of material 
surrounding the central object. In none of these models did f3 rise much above 12%.

Since none of the rotating models had shown any sign of instabilities the rotation 
of the Heger rapid rotators was enhanced to a rate similar to that obtained in a binary 
merger simulation (Fryer & Heger 2005). These models experienced repeated centrifu
gal bounces at very low densities and collapse proceeded very slowly. Once again the 
centrifugal hang-up of equatorial material prevented /3 from rising above 12-13%.

None of the rotating models showed any sign of triaxial deformation or growth of the 
m  =  1 mode. In all cases the density distribution remained centrally peaked although in 
the rapidly rotating and “binary” models the central peak was surrounded by a torus of 
centrifugally supported material.

In an attempt to provoke interesting effects a parametrization of viscosity was added 
to the rapidly rotating models. This caused the collapse to proceed slightly more rapidly 
as angular momentum was dissipated and gave a smoother mass distribution, but ulti
mately had little effect on the shape of the core.

Another set of models was run with m  =  1 and m  =  2 mode density perturbations 
added, some from the start of the simulations and others from the density minimum that 
follows the first peak. Although the rate of collapse was somewhat affected by these 
perturbations they had little effect on the shape of the core, which proved resisant to 
deformation, even when the density perturbed significantly.

I therefore conclude that the collapse of rotating stellar cores does not result in tri
axial deformations or fragmentation, at least before bounce. This appears to rule out the 
delayed model of GRB described in Chapter 1. However, the presence of the torus-like 
object around the core in all of these models gives some hope to the model of GRB. 
In the prescence of a magnetic field that was amplified by collapse and a mechanism
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for driving dissipation in the disc, causing the central object to accrete, it would still be 
possible to power a GRB.
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Table 5.4. Initial parameters and results for all Heger runs undertaken on the HEX and UKAFF 
supercomputers and the SRIF2 cluster. t max 1 and t max2 are the times of the first and second (if 
present) density peaks, for which the central density and rotation parameter /? are also given. If 
density the peaks again after the second maximum, p /jnoj is this density, otherwise pfinal  is the 
density at the end of the simulation. pPerturbations added at minimum after first peak, therefore first 
peak identical to non-perturbed model and t max 1 thus gives time of second peak. “Under-resolved 
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FIGURE 5 .23. HEX run of model D15. Density, radial velocity and entropy versus enclosed 
mass at t  =  13.7, 103.6, 104.8, 105.1, 105.4, 105.7 and 106.5 ms are shown. Core bounce occurs 
at 105.4 ms. Snapshots show the density and entropy just before bounce and the radial velocity at

106.5 ms.
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FIGURE 5.24. SRIF2 run of model D15. Density, radial velocity and entropy versus enclosed mass 
at t  =  19.2, 101.0, 102.1,102.4, 102.6, 102.9, 103.7 and 112.1 ms are shown. Core bounce occurs 
at 102.6 ms. Snapshots show the density and entropy at bounce and the radial velocity at 103.7 ms.
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FIGURE 5.25. SRIF2 run of model D20. Density, radial velocity and entropy versus enclosed mass 
at t  — 19.2, 104.0, 105.1, 105.4, 105.7, 105.9, 106.8 and 123.6 ms are shown. Core bounce occurs 
at 105.7 ms. Snapshots show the density and entropy at bounce and the radial velocity at 106.8 ms.
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FIGURE 5.26. HEX run of model E15A. Density, radial velocity and entropy versus enclosed mass 
and angular velocity versus radius at t  =  13.7, 130.4, 137.2 and 144.1 ms are shown. Core bounce 
occurs at around 140 ms. Snapshots show the density and entropy at 137.2 ms and the radial velocity 
at 144.1 ms. The graph at the bottom right shows the displacement of the centre of mass (black) and 

the amplitudes of the dipole (blue) and quadrupole (cyan) moments.
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FIGURE 5.27. SRIF2 run of model E l5A. Density, radial velocity and entropy versus enclosed 
mass and angular velocity versus radius at t  =  22.0,137.2, 138.6, 138.9, 139.1, 139.4 and 139.7 ms 
are shown. Core bounce occurs at 139.4 ms. Snapshots show the density and entropy at bounce and 
the radial velocity at 139.7 ms. The graph at the bottom right shows the displacement of the centre 

of mass (black) and the amplitudes of the dipole (blue) and quadrupole (cyan) moments.
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FIGURE 5.28. SRIF2 run of model E15Avisc, which had viscosity added at 137.2 ms. Density, 
radial velocity and entropy versus enclosed mass and angular velocity versus radius at t  =  137.2, 
138.9, 139.6, 139.9 and 140.1 ms are shown. Core bounce occurs at 139.9 ms. Snapshots show the 
density and entropy at bounce and the radial velocity at 140.1 ms. The graph at the bottom right 
shows the displacement of the centre of mass (black) and the amplitudes of the dipole (blue) and

quadrupole (cyan) moments.
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FIGURE 5.29. SRIF2 run of model E20A. Density, radial velocity and entropy versus enclosed 
mass and angular velocity versus radius at t  =  22.0, 159.4, 160.8,161.1,161.4, 161.6 and 161.9 ms 
are shown. Core bounce occurs at 161.4 ms. Snapshots show the density and entropy at bounce and 
the radial velocity at 161.9 ms. The graph at the bottom right shows the displacement of the centre 

of mass (black) and the amplitudes of the dipole (blue) and quadrupole (cyan) moments.
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FIGURE 5.30. HEX run of model E15B. Density, radial velocity and entropy versus enclosed 
mass and angular velocity versus radius at t =  13.7, 150.9, 164.7, 171.5 and 178.4 ms are shown. 
A centrifugal bounce occurs sometime between 165 and 170 ms. Snapshots show the density and 
entropy 164.7 ms and the radial velocity at 171.5 ms. The graph at the bottom right shows the 
displacement of the centre of mass (black) and the amplitudes of the dipole (blue) and quadrupole

(cyan) moments.
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FIGURE 5.31. HEX run of model E15Bvisc, which had viscosity included with a 8ph =  5.0. 
Density, radial velocity and entropy versus enclosed mass and angular velocity versus radius at t  =  
13.7, 167.4, 188.0, 212.7, 308.7, 333.4 and 349.9 ms are shown. A centrifugal bounce occurs at 
around 167 ms and nuclear densities are reached by 310 ms. Snapshots show the density at 349.9 ms 
and the entropy at 167.4 and 349.9 ms. The graph at the bottom right shows the displacement of the 

centre of mass (black) and the amplitudes of the dipole (blue) and quadrupole (cyan) moments.

1000

10-
10'2

i  io-3 £
° 10-4

144



Collapse of the Rotating Progenitors 5.9 Summary

10®

0.0 0.5 1.0 1.5
Moss /  M©

0.0 0.5 1.0 1.5
Mass /  M©

14

12
10
8
6
4

2
oe
0.0 0.5 1.0 1.5

Moss /  M©

5000

4000

3000

\  2000 
a

1000

10001 10 100
r /  km

l o g i o  p

- 2 -1  0 1 2
x /  100km

e n t r o p y

1 8> ■ u  *

-1 0 1 
x /  100km

e n t r o p y

20- 
00 ■

/  100km

10'1
<u-o3
a.
E
o

210 220 230 240 250 260
t /  ms

FIGURE 5.32. SRIF2 run of model E15B. Density, radial velocity and entropy versus enclosed 
mass and angular velocity versus radius at t  =  22.0, 164.7,183.9, 223.9, 244.2,261.8, 265.8, 266.3 
and 266.6 ms are shown. A centrifugal bounce occurs at around 165 ms and nuclear densities are 
reached by 265 ms. Snapshots show the density at 266.3 ms and the entropy at 164.7 and 266.3 ms. 
The graph at the bottom right shows the displacement of the centre of mass (black) and the amplitudes 

of the dipole (blue) and quadrupole (cyan) moments.
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FIGURE 5.33. SRIF2 run of model E15B_p, which had density perturbations added at 183.9 ms. 
Density, radial velocity and entropy versus enclosed mass and angular velocity versus radius at t  =  
183.9,220.1,246.4,270.9,283.2,288.7,316.4 and 317.5 ms are shown. A second centrifugal bounce 
occurs at around 220 ms and nuclear densities are reached at around 316 ms. Snapshots show the 
density in the x -y  plane at 220.1, 270.9 and 317.5 ms. The graph at the bottom right shows the 
displacement of the centre of mass (black) and the amplitudes of the dipole (blue) and quadrupole

(cyan) moments.
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FIGURE 5.34. SRIF2 run of model pE15B, which had density perturbations added from the start. 
Density, radial velocity and entropy versus enclosed mass and angular velocity versus radius at t  =  
22.0,163.6,186.6,236.3,281.3,285.4 and 286.2 ms are shown. Centrifugal bounces occur at around 
163.5 and 236.5 ms and nuclear densities are reached at around 281 ms. Snapshots show the density 
in the x -y  plane at 163.6 and 236.3 ms and the entropy at 281.3 ms. The graph at the bottom right 
shows the displacement of the centre of mass (black) and the amplitudes of the dipole (blue) and

quadrupole (cyan) moments.
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FIGURE 5.35. SRIF2 run of model E20B. Density, radial velocity and entropy versus enclosed 
mass and angular velocity versus radius at t  =  22.0, 164.7, 179.8, 202.5, 243.1, 308.5, 311.2, 312.0 
and 312.6 ms are shown. A centrifugal bounce occurs at around 165 ms and nuclear densities are 
reached at around 311 ms. Snapshots show the density at 312.0 ms and the entropy at 164.7 and 
312.0 ms. The graph at the bottom right shows the displacement of the centre of mass (black) and 

the amplitudes of the dipole (blue) and quadrupole (cyan) moments.
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FIGURE 5.36. SRIF2 run of model E20B_p, which had density perturbations added at 179.8 ms. 
Density, radial velocity and entropy versus enclosed mass and angular velocity versus radius at t  =  
179.8,200.9,205.3,212.7,222.0,224.4,225.1 and 225.4 ms are shown. A second centrifugal bounce 
occurs at around 201 ms and nuclear densities are reached by 225 ms. Snapshots show the density in 
the x-y  plane at 200.9,205.3 and 325.4 ms. The graph at the bottom right shows the displacement of 
the centre of mass (black) and the amplitudes of the dipole (blue) and quadrupole (cyan) moments.
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FIGURE 5.37. SRIF2 run of model pE15B, which had density perturbations added from the start. 
Density, radial velocity and entropy versus enclosed mass and angular velocity versus radius at t  =  
22.0, 161.4, 175.9, 199.5, 220.9, 242.9, 245.5 and 246.2 are shown. Centrifugal bounces occur at 
around 161.4 and 199.5 ms and nuclear densities are reached at around 245.5 ms. Snapshots show 
the density in the x -y  plane at 161.4 and 199.5 ms and the entropy at 246.2 ms. The graph at the 
bottom right shows the displacement of the centre of mass (black) and the amplitudes of the dipole 

(blue) and quadrupole (cyan) moments.
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FIGURE 5.38. HEX run of model E15C. Density, radial velocity and entropy versus enclosed 
mass and angular velocity versus radius at t  =  548.9,761.5,912.5 and 946.8 ms are shown. Nuclear 
densities are reached by 760 ms. Snapshots show the density at 946.8 ms and the entropy at 761.5 
and 946.8 ms. The graph at the bottom right shows the displacement of the centre of mass (black) 

and the amplitudes of the dipole (blue) and quadrupole (cyan) moments.
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FIGURE 5.39. HEX run of model E15Cvisc, which had viscosity included with a 8ph =  5-0. 
Density, radial velocity and entropy versus enclosed mass and angular velocity versus radius at t  =  
13.72, 288.2, 301.9, 555.7, 661.4, and 683.3 ms are shown. A centrifugal bounce occurs at around 
288 ms and nuclear densities are reached at around 665 ms. Snapshots show the density at 683.3 ms 
and the entropy at 288.2 and 683.3 ms. The graph at the bottom right shows the displacement of the 

centre of mass (black) and the amplitudes of the dipole (blue) and quadrupole (cyan) moments.
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FIGURE 5.41. SRIF2 run of model E15C_p, which had density perturbations added at 329.3 ms. 
Density, radial velocity and entropy versus enclosed mass and angular velocity versus radius at t  =  
329.3, 548.9, 776.6 and 778.6 ms are shown. The model does not undergo a second centrifugal 
bounce or reach nuclear density by the end of the simulation. Snapshots show the density in the x-y  
plane at 548.9, 776.6 and 778.6 ms. The graph at the bottom right shows the displacement of the 

centre of mass (black) and the amplitudes of the dipole (blue) and quadrupole (cyan) moments.
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FIGURE 5.42. SRIF2 run of model pE15C, which had density perturbations added from the start. 
Density, radial velocity and entropy versus enclosed mass and angular velocity versus radius at t  =
54.89, 279.9, 326.6, 548.9 and 776.1 ms are shown. A centrifugal bounce occurs at around 280 ms. 
Snapshots show the density in the x -y  plane at 279.9, 548.9 and 776.1 ms. The graph at the bottom 
right shows the displacement of the centre of mass (black) and the amplitudes of the dipole (blue)

and quadrupole (cyan) moments.
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FIGURE 5.43. SRIF2 run of model E20C. Density, radial velocity and entropy versus enclosed 
mass and angular velocity versus radius at t  =  54.89,247.0,274.4,548.9,620.8,623.2 and 623.8 ms 
are shown. Centrifugal bounces occur at around 247 and 616 ms and nuclear density is reached at 
around 623 ms. Snapshots show the density at 623.8 ms and the entropy at 247.0 and 623.8 ms. The 
graph at the bottom right shows the displacement of the centre of mass (black) and the amplitudes of 

the dipole (blue) and quadrupole (cyan) moments.Model E20C run on SRIF2
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FIGURE 5.44. SRIF2 run of model E20C_p, which had density perturbations added at 274.4 ms. 
Density, radial velocity and entropy versus enclosed mass and angular velocity versus radius at t  =  
274.4, 603.7 and 647.7 ms are shown. Snapshots show the density in the x -y  plane at these times. 
The model reaches a peak in at 603.7 ms but does not undergo a second centrifugal bounce or reach 
nuclear density by the end of the simulation. The graph at the bottom right shows the displacement 
of the centre of mass (black) and the amplitudes of the dipole (blue) and quadrupole (cyan) moments.
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FIGURE 5.45. SRIF2 run of model pE20C, which had density perturbations added from the start. 
Density, radial velocity and entropy versus enclosed mass and angular velocity versus radius at t  =
54.89, 233.3, 271.7, 548.9, 554.3, 556.3, 562.9 and 564.0 ms are shown. Centrifugal bounces occur 
at around 233 and 554 ms. Snapshots show the density in the x -y  plane at 233.3,554.3 and 564.0 ms. 
The graph at the bottom right shows the displacement of the centre of mass (black) and the amplitudes 

of the dipole (blue) and quadrupole (cyan) moments.
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FIGURE 5.46. UKAFF run of model E15D. Density, radial velocity and entropy versus enclosed 
mass and angular velocity versus radius at t  =  13.72, 343.0, 363.6, 391.0 and 500.8 ms are shown. 
A centrifugal bounce occurs at around 364 ms. Snapshots show the density at 363.6 and 500.8 ms 
and the entropy at 363.6 ms. The graph at the bottom right shows the displacement of the centre of 

mass (black) and the amplitudes of the dipole (blue) and quadrupole (cyan) moments.
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FIGURE 5.47. HEX run of model E15D. Density, radial velocity and entropy versus enclosed 
mass and angular velocity versus radius at t  =  13.72,411.6,953.6, 391.0 and 1098 ms are shown. A 
centrifugal bounce occurs at around 412 ms. Snapshots show the density at 411.6 and 1097 ms and 
the entropy at 411.6 ms. The graph at the bottom right shows the displacement of the centre of mass 

(black) and the amplitudes of the dipole (blue) and quadrupole (cyan) moments.
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FIGURE 5.48. UKAFF run of model E15Dvisc, which had viscosity included with a aph =  2.0. 
Density, radial velocity and entropy versus enclosed mass and angular velocity versus radius at 
t  =  13.72, 295.0, 356.8 and 404.8 ms are shown. A centrifugal bounce occurs at around 357 ms. 
Snapshots show the density, entropy and radial velocity at 356.8 ms. The graph at the bottom right 
shows the displacement of the centre of mass (black) and the amplitudes of the dipole (blue) and

quadrupole (cyan) moments.
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FIGURE 5.49. HEX run of model E15Dvisc, which had viscosity included with a aph =  5.0. 
Density, radial velocity and entropy versus enclosed mass and angular velocity versus radius at t  =  
13.72, 686.1, 801.3 and 869.9 ms are shown. The model does not undergo centrifugal bounce, but 
the collapse plateaus off briefly at around 360 ms. Snapshots show the density at 869.9 ms and the 
entropy at 686.1 and 869.9 ms. The graph at the bottom right shows the displacement of the centre 

of mass (black) and the amplitudes of the dipole (blue) and quadrupole (cyan) moments.
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FIGURE 5.50. SRIF2 run of model DE15B, which was made to rotate with a smooth rotation law 
approximating that of model E15B. Density, radial velocity and entropy versus enclosed mass and 
angular velocity versus radius at t  =  19.76, 151.5, 167.7, 179.4, 190.1, 191.6, 192.2 and 192.6 ms. 
Centrifugal bounces occur at around 151 and 192 ms. Snapshots show the density at 192.2 ms and the 
entropy at 151.5 and 192.2 ms. The graph at the bottom right shows the displacement of the centre 

of mass (black) and the amplitudes of the dipole (blue) and quadrupole (cyan) moments.
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FIGURE 5.51. SRIF2 run of model Bumps, which had extremely large density perturbations added 
at 183.9 ms. Density, radial velocity and entropy versus enclosed mass at t  =  183.9, 194.0, 202.5, 
208.8 and 215.7 ms are shown. The lumps quickly recombine and the density distribution returns 
to spheroidal and continues to contract. Snapshots show the density in the x -y  plane at 183.9 and

208.8 ms and the entropy at 208.8 ms.
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Chapter 6
Gravitational Wave Signals

“Gravity
You just hold me down so quietly” 

Super Furry Animals
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Gravitational Wave Signals 6.1 Gravitational Wave Production

6.1 Gravitational Wave Production

Perhaps the most tantalising possibility for astronomy in the near future is that of the 
detection of gravitational waves. Enormous effort is going into pushing the current gen
eration of gravitational wave detectors towards higher and higher sensitivities. With the 
launch of the Laser Interferometer Space Antenna (LISA) planned for 2015 it seems 
inevitable that within my lifetime gravitational wave astronomy will have uncovered a 
wealth of previously unobserved phenomena in much the same way as X-ray and radio 
observations did in the 1960s (presuming I don’t get run over by a bus or anything).

The attraction of gravitational waves comes with the fact that they are produced with 
great power only in the strongest of gravitational fields and propagate in spacetime vir
tually unattenuated. This means that their detection would allow observations of the 
most catastrophic events in the Universe, such as mergers of compact objects and core 
collapse supemovae. For supemovae, the strongest gravitational wave signals produced 
would come from the core at bounce, impossible to observe in electromagnetic radiation 
due to the intervening material.

General relativity tells us that the shape, or metric, of spacetime is determined by 
the distribution of matter. Therefore a change in the distribution of matter can cause a 
change in the shape of spacetime with the disturbance propagating far from the source. 
By analogy with two rubber ducks floating in the sea, whose relative positions will be 
changed by a passing wave, a passing gravitational wave can be detected by observing a 
change in the relative positions of a number of test masses.

This is the principle of gravitational wave detectors. Presently the favoured method 
for the detection of gravitational radiation makes use of laser interferometry. Mirrors 
are mounted on large masses which are suspended at the ends of two arms extending 
at right angles to each other, like the letter L. A laser beam is split and sent along the 
arms, is reflected from the masses and recombined, producing an interference pattern (in 
actual fact, such large distances are required that the laser beams are reflected between 
the several-kilometre long arms a number of times). Changes in the lengths of the arms 
caused by the passage of a gravitational wave will produce changes in the interference 
pattern. The important quantity to measure is the strain h, the fractional change in length 
of the arms. Detectors currently on line are GEO 600, with 600m long arms, TAMA300, 
with arms of 300m, VIRGO, which has arms of 3km and two LIGO detectors, each with 
arms of 4km, from which the highest sensitivity is expected. Both VIRGO and LIGO are 
now approaching their design sensitivity limits, but so far no signals have been detected.

The launch of the Laser Interferometer Space Antenna (LISA) is planned for 2015.
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Gravitational Wave Signals 6.2 The Weak-Field Quadrupole Approximation

Three spacecraft will trail 20° behind Earth in its orbit, each marking a vertex of an 
equilateral triangle with sides of 5 million km. Away from the rumblings of seismic dis
turbances it will detect gravitational radiation from numerous sources, including binaries 
thousands of years before they merge and merging supermassive black holes in distant 
galaxies.

In contrast to electromagnetism, where electric-dipole radiation dominates, gravita
tional radiation is quadrupolar (or higher order). A system with a constant quadrupole 
moment (and higher) will not radiate. This means that anything spherical or axially sym
metric with constant radius will not be a source of gravitational radiation. In general, 
large or rapidly varying asphericities are required (Misner, Thome & Wheeler 1973).

The collapse of the cores of rotating stars is an obvious case in which the asphericity 
of a very dense object changes rapidly (at its gravitational radius). Two dimensional 
studies of how the degree of rotation affects the gravitational wave signal around core 
bounce are numerous (Zwerger & Mueller 1997, Ott et al. 2004, Kotake et al. 2003b, 
Fryer, Holz & Hughes 2002, Moenchmeyer et al. 1991) and accompanying figures of 
gravitational wave signals have become almost run-of-the-mill in publications of core 
collapse simulations (Fryer & Warren 2004, Shibata & Sekiguchi 2005, Fryer & Heger 
2005). In general, the signals can be divided into two types: Type I, which are strong at 
bounce and subsequently “ring down”; and Type II, which show several distinct peaks 
as the core oscillates after bounce. Which type of signal the core produces depends on 
the effective adiabatic index given by a combination of the pre-bounce equation of state 
and the rate of rotation (Zwerger & Mueller 1997). A larger effective T (hard equation 
of state or more rapid rotation) will tend to result in a gravitational wave signal of Type 
I, and vice versa for Type II. For a set of models mn without varying the actual adiabatic 
index of the equation of state there may be a rotation rate at which a transition takes 
place between Type I and Type II. Ott et al. (2004) find this transition at an initial rotation 
parameter ft of around 0.3%.

6.2 The Weak-Field Quadrupole Approximation

Far away from a source of gravitational waves, where the field is weak, the spacetime 
metric can be approximated by

Qfj,i> =  T)fj,v “1" hfii/ , (6.1)

where /z, v  =  0, 1, 2, 3, is the metric of flat spacetime and \h^u\ <C 1.
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Gravitational Wave Signals 6.2 The Weak-Field Quadrupole Approximation

For “nearly Newtonian” sources (Misner et al. 1973) in SPH, the amplitudes of the 
gravitational waves can be calculated from the reduced quadrupole moments

(6.2)

Choosing a coordinate frame which results in the simplest description, the amplitudes 
are given as the transverse-traceless components of h{j (Centrella & McMillan 1993, 
Rosswog, Speith & Wynn 2004):

hxx =  — ^yy) (6-3)
, t v̂ 2 G “ 

y ~  dct

viewed along the 2-axis, where /iJJ =  —hyy and /iJJ =  hyJ .  The amplitudes when 
viewed along the x- and y -axes can be obtained by a cyclic permutation of the indices. 
These are the only two non-zero components of /iJJ and the deduction follows that each 
corresponds to a specific polarization of gravitational waves. Unlike polarized light, 
which causes an oscillation in one dimension, a polarized gravitational wave will cause 
an oscillation in two perpendicular directions. The two different polarizations are thus 
inclined at 45° to each other. Figure 6.1 illustrates this by showing the effect of a passing 
wave of each polarization on a ring of particles. Hereafter the two polarizations of the 
gravitational wave signal will be referred to as h+ and h x .

hf

h*

P h a s e  0  %f2 % 3% i2. 2k

FIGURE 6 .1 . Effect o f the two different polarizations of a gravitational wave on a ring of particles.
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Gravitational Wave Signals 6.3 Results and Discussion

The total luminosity emitted as gravitational waves is given by

Law  a  (6.5)

where denotes the third derivative with respect to time.

The calculation of the gravitational wave amplitudes was performed by differentiat
ing 6.2 twice with respect to time,

N L  1f i j  ^  1 fTlp XipXjp -|“ 2XipXjp "I- XipXjp 'Z&ij{/£%kp3'kp ~t“ ^^kp^'kp) 
p =  1 L 6

(6.6)

meaning that

2 N
I XX  =  o  m P [ ^ / x p ^ p  —  f y p V p  ~  f z p Z p  +  2 v x p  — Vyp  —  ( 6 . 7 )

P =1
TV

-^xy =  ^  1 TUp [fxptJp  “i" 2 VXpVyp  +  f y p X p ]  (6 .8 )
p=1

and similarly for / yy, / xy etc..

The third derivatives of the reduced quadrupole moments were found by fitting a cu
bic spline interpolation to the points Ijk and calculating the analytical derivatives (Press 
et al. 1992).

6.3 Results and Discussion

The time evolution of the gravitational amplitudes and the gravitational wave luminos
ity of the collapsing cores gives a description of the dynamics that is complementary 
to that derived from the previously-plotted variables. In particular, the amplitudes and 
luminosities at bounce give a measure of the extremes of density and asphericity in the 
core. In this section I discuss the signals from all of the models run on the SRIF2 cluster, 
beginning with the Woosley models.

It has become common practice to quote figures for the gravitational amplitudes h+ 
and h x as the strain that would be produced by the source at a distance of 10 Mpc. In the 
following discussion, all of the amplitudes are expressed in this unit.
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6.3.1 Woosley Models

The gravitational amplitudes along the x- and 2-axes and the total gravitational wave 
luminosity for the Woosley models (Chapter 4) are shown in Figures 6.2-6.6.

In general, there are several points to note:

• The oscillations of h x remain smaller than around 4 x 10~25 in all models, and ap
proximately the same size along either axis. This makes sense, since viewed along 
^-axis the core is close to symmetrical, whilst viewed along rc-axis h x measures 
the quadropole moment at 45 degrees to the quadrupole that the core makes. The 
signal remains at the level of noise created by small deviations from asymmetry.

•  The maximum values of h+ are similar in size to those of h x when viewed along 
the 2-axis. This is also as expected, since again the core is symmetrical. Along 
the z-axis h+ can be much bigger because the core’s oblateness and hence the 
quadrupole moment change with time.

•  In all models, the luminosity grows as the core contracts. The maximum luminos
ity depends on a combination of the rates of change of the density and the degree of 
oblateness. There is therefore a balance to be struck between rapid rotation, which 
gives a large quadrupole that changes fairly slowly and weak rotation, which gives 
a rapidly changing density but a small quadrupole. The luminosity reaches its 
highest value between these extremes, ~  1052 erg s-1 for model W301r.

•  The maximum amplitude of h+ changes in a similar fashion, increasing with initial 
rotation until it reaches approximately 10-23 for models W301r, W30cyl, W401r 
and W501r. The maximum h+ then decreases with rotation for models W601r and 
W801r.

The model with the smallest amount of rotation, W061r, shows a growth in luminosity 
as well as gravitational wave amplitudes as it approaches bounce (Figure 6.2). However, 
the h+ amplitude along the rr-axis does not grow significantly larger than that viewed 
along the 2-axis. In this case the effect of rotation on the gravitational wave signal is 
minimal.

For model W801r, which rotates only slightly faster, a clear peak in both the luminos
ity and h+ at bounce is visible. h+ peaks at around 1.4 x 10-24, or three times the value 
along the 2-axis. After bounce the signals are once again at the level of noise.
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W201r peaks twice in h+ -  the first of these is at the time of bounce and the second just 
before the first density minimum after bounce (Figure 6.3). The signal for W301r is also 
double-peaked, with both peaks occurring approximately, but not exactly, at bounce. It 
appears that the maximum signal is not always produced when the core is at its maximum 
density, but at the time when the density and shape of the core is changing most violently. 
The maximum h+ for model W301r is around 10-23, twice that of model W201r. Model 
W301r also has the highest maximum luminosity of all the Woosley models, around 1052 

erg s-1.

Model W20cyl has a very similar signal to that of model W201r (Figure 6.4). It has 
two peaks which occur at bounce and just after, of around the same magnitude as in 
W201r. A few milliseconds after bounce there is another, smaller peak, corresponding 
to the second peak in density. W30cyl was only followed to bounce, but shows a peak 
in h+ of 10- 2 3  at lOMpc at bounce as in model W301r, although the peak luminosity is 
around 1 0 0  times smaller.

Models W301r and W30cyl mark the beginning of transition region in which the 
combination of rate of collapse and the rate of rotation are optimum for producing grav
itational wave signals. While W301r has the largest peak luminosity of all the models, 
W401r has the largest peak in h+, of around 1.3 x 10- 2 3  (Figure 6.5). It is interesting 
to note that W401r has the highest /? at bounce, which also requires an optimum level 
of rotation and compactness. This model has a double peak occurring at and just after 
bounce, but was not followed further.

As the initial rotation is increased still further the behaviour of the gravitational waves 
changes. Model W501r has a large peak of around 10- 2 3  and is followed by several 
smaller oscillations. The luminosity peaks at just over 3 x 1050 erg s- 1  but does not de
crease by a large amount after bounce. This model is characterised by a drop in density 
after bounce that is much smaller than in the more slowly rotating models. It is possi
ble that the time lag between the polar and the equatorial material reaching bounce is 
equal to the time between the peak density and the first minimum. This would make the 
minimum shallower and also change the shape of the core, leading to oscillations in the 
gravitational wave signal. In fact, the radial velocity just after bounce (Figure 4.16) does 
appear to show two peaks, and the density snapshot at bounce is equatorially extended.

In model W601r rotation delays the bounce significantly, and this is seen in the gravi
tational wave signal (Figure 6 .6 ). h+ has a dominant peak of around 6  x 10-2 4  at bounce 
and several smaller peaks before and after. The largest of these, occuring at around 113 
ms, corresponds to a peak in the value of f3 while the core is still collapsing. Evidently
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a change in the shape of the core takes places around this time. The peak luminosity is 
obtained at bounce and is around 1 0 50 erg s- 1

Increasing the initial rotation still further produces an increasingly weak signal. W801r 
has a peak in h+ of about 1.8 x 10-2 4  at around 125 ms, when a weak, sub-nuclear bounce 
occurs. However, the increase in luminosity is hardly discernible. A second, slightly 
smaller, peak in h+ is visible when the core reaches nuclear density and corresponds to 
an increase in the luminosity, which still does not grow very large. It appears that at 
this rotation rate the core is prevented from collapsing fast enough to produce a strong 
gravitational signal.

6.3.2 Heger Models

The gravitational wave amplitudes along the x- and 2 -axes and the total gravitational 
wave luminosity for the Heger models (Chapter 5) are shown in Figures 6.7- 6.13. Only 
the SRIF2 runs of these models are plotted. The models exhibit similar behaviour to the 
Woosley models with regard to the magnitudes of hx and h+ along each axis.

I begin with the slowly rotating models, which is quite anticlimactic since E15A 
actually has the biggest peak in h+ out of all the models, once again occurring around 
bounce. This peak is around 2 x 10-2 3  and the luminosity rises to around 1051 erg s_1  

(although poor time resolution means that only one point in the peak has been plotted). 
Figure 6.7 shows this model and the model with shear viscosity added just before bounce. 
In the viscous model the h+ peak is smaller, reaching 10-23, although the luminosity 
reaches a slightly higher (albeit better resolved) peak. Model E20A is very similar to 
E15A, with a slightly smaller peak (just over 10-2 3  and 105° erg s-1), which is to be 
expected since it also has a smaller maximum /?. It is not surprising that the A models 
have the strongest signals as they are the Heger models most similar to models W301r 
and W401r, which have the strongest signals of the Woosley models.

The Heger B models show very different behaviour from the A models. The highest 
density parts of the collapse are shown for E15B and E20B in Figure 6.9. The first 
density peak for these models has not been included, but does not give a large peak in 
h+ or Lqw- The second density peak for E15B occurs at around 225-230 ms. This is 
visible in the gravitational wave signal as a small increase in h+ and luminosity, spread 
out over several milliseconds. The luminosity peaks again when the core reaches nuclear 
densities, but does not much exceed 1 0 49 erg s_1, with a maximum magnitude of h+ 
of around 3 x 10-24. Model E20B shows similar behaviour, with a small peak in h+ 
and Lqw around the second peak in density, which subsides and then grows again as
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the core reaches nuclear density. The time evolution of h x viewed along the 2-axis 
shows oscillations that increase in frequency as nuclear density is approached. h+ is also 
oscillatory, with a similar frequency (~  few xlOO s-1) and reaches about 5 x 10-24. 
Presumably this is the rotational frequency of the core at this time. Indeed, looking back 
at Figure 5.32 reveals that the maximum angular velocity at this time is 2500 rad s_1, 
giving a rotational frequency of ~  400 s_1.

From the perturbed models I choose only those originating from E15B, since previ
ous analyses of their behaviour showed little difference from El5B itself. Plotting pE15B 
(in which perturbations were added at the density minimum after the first peak) over the 
same time interval shows very similar behaviour to E15B (Figure 6.10). Again, there is 
a slight peak in h+ and Low  at the second density peak and a second, bigger increase as 
the core approaches nuclear density.

Model E15B_p undergoes one more density maximum than E15B, with the second 
and third bounce at 220 ms and 270 ms. Both are accompanied by an increase in h+ 
and luminosity, with the second peak similar in magnitude to that of E15B and the third 
peak having a maximum h+ of around 3 x 10-24. As the core reaches nuclear density
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the luminosity approaces 1050erg s l , but the corresponding increase in h+ is small.

Model DE15B, which was constructed from the non-rotating model with a rotation 
law added to give similar rotation to E15B, does not resemble any of the E15B models 
(Figure 6.11. This model has density peaks at 151 ms and 192 ms. At both times there 
is a peak in h+ and luminosity, the second peak, at just under nuclear density, being the 
stronger. The maximum is h+ is around 2 x 10~24, which is about the same magnitude 
as the second peak in E15B, and the peak luminosity is also similar, around 1049erg s-1.

Extemely weak signals are obtained from the C models (Figure 6.12). The core 
stays well below nuclear density for most of the simulation and the final collapse is 
not as quick as in the B models, meaning that the quadrupole moment does not change 
rapidly. Model E15C has not reached nuclear density by the end of the simulation. The 
maximum magnitude of h+ is around 10~24, still an order or magnitude larger than h x , 
which oscillates with a virtually constant amplitude.

E20C does reach nuclear densities but the amplitude h+ only just exceeds 2 x 10-24. 
The peak luminosity is comparable to that of E15B, around 1049 erg s_1.

Just for fun, the gravitational amplitudes for the model “Bumps”, in which the density 
was perturbed by 20%, are given in Figure 6.13. Initially both h x and h+ along the z- 
axis are of large amplitude -  h+ is actually greater along z-axis this time because of the 
large quadrupole moment given to the core. As the density perturbations iron themselves 
out and the core returns to a spheroidal shape the amplitudes decrease, although h+ starts 
to increase again towards the end of the simulation when nuclear densities are reached. 
The luminosity behaves in a similar way to the amplitudes, falling off to begin with then 
rising again towards the end, although it never much exceeds 1048erg s-1.

6.4 Summary

It has been shown in this chapter that the production of gravitational waves by a collaps
ing, rotating stellar core requires sufficient rotation for the mass distribution to become 
flattened, but not so much that the collapse of the core is slowed significantly. In all 
models the gravitational wave amplitude h+ viewed along the x-axis peaks at times cor
responding peaks in the central density and/or the rotation parameter /?.

The models for which the largest values of h+ were obtained were the moderately ro
tating Woosley models W301r, W30cyl, W401r and W501r, and the Heger models E15A
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FIGURE 6.9. Time evolution of the gravitational signal amplitudes and total luminosities for mod
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and E20A. In these models h+ grew to 1-2 xlO -23 with corresponding luminsoties be
tween 105O-1052 erg s_1. Above and below these rotation rates in the Woosley models, 
the magnitude of the maximum h+ and Law  falls off quite drastically.

The Heger B models, in which collapse is slowed considerably by rotation, have 
much weaker peak amplitudes and luminosities, with maxima in h + of around 4 x 10-24 
and L ew  of around 1048-105° erg s_1. The signals from the C models are weaker still, 
as rotation prevents the cores from reaching nuclear densities for a long time.

Overall, even the maximum luminosities obtained are not a sizeable fraction of the to
tal energy liberated by gravitational collapse. Assuming a peak luminosity of ~  1051erg 
s-1 is obtained for ~  1m s during bounce gives an energy of around 1048erg, five orders 
of magnitude less than the binding energy of the core at bounce.

Whilst the gravitational signals obtained in the moderately rotating Woosley and 
Heger A models have the largest amplitudes, their short lived, non-periodic nature would 
make them difficult to detect. In constrast, the B models show oscillatory behaviour in 
the gravitational amplitudes which increases in frequency as the core collapses. In the
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dominant polarisation the oscillations are sizeable and it was seen above that their fre
quency corresponds to the rotation rate of the core.

The target sensitivity limit for Initial LIGO is a strain of just under 3 x 10-23 at a 
frequency of 200 Hz. The maximum h+ produced by the Heger A models was around 
2 x 10-23 at 10 Mpc, and by the Heger “B” models 5 x 10-24 at 10 Mpc. A core collapse 
event with the same rate of rotation as the A models would therefore be detectable out 
t o ~  7 Mpc. It is highly unlikely that a supernova in the Virgo cluster (~  17 Mpc), the 
nearest rich cluster to our Galaxy, would be detected.

A recent study of the supernova rate in the local Universe has put the combined rate 
of Type II and Ib/c in late type spirals at 2.0 ±  0.5 (Cappellaro, Evans & Turatto 1999), 
where 1 SNu =  1 SN (100 yr)-1 (1010 LB©)_1. A previous study had estimated the rate 
of Type II and Type Ib/c supemovae as 0.88 SNu and 0.16 SNu respectively (Cappellaro 
et al. 1997) for late type spirals. The supernova rate correlates with galaxy luminosity 
and is much lower in dwarf galaxies.

The number of galaxies within 10 Mpc is ~  several hundred, around 85% of which
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are dwarfs (Karachentsev et al. 2004). We expect most supemovae to be found in spirals, 
of which there are at most 50-100 within 10 Mpc. The rate of supemovae within our 
detection radius is therefore < 1 yr-1, of which a minority would be rotating at the 
optimum rate for gravitational wave production and viewed along an axis perpendicular 
to the axis of rotation. One detection every 10 years would be an optimistic estimate for 
gravitational signals produced by rotating core collapse.
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Chapter 7
Concluding Remarks

“No pessimist ever discovered the 
secrets of the stars...”

Helen Keller
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Concluding Remarks 7.1 Summary and Discussion

The aim of this thesis has been to investigate the effects of rotation on the core col
lapse of massive stars. In particular, it was hoped that rotational instabilities such as 
might lead to fragmentation of the core would be found. This would support the model 
of gamma ray bursts in which the burst is either delayed or revived after a period of dor
mancy as the fragments merge. I conclude by summarizing the results of this work and 
suggesting avenues for further investigation.

7.1 Summary and Discussion

The future is bright for supernova research. After forty years, computing capabilities 
are reaching the stage where three dimensional calculations including detailed descrip
tions of the dominant physical effects are becoming possible. Modellers are now able to 
study the consequences of asymmetric effects such as rotation and convection. Future 
simulations may include magnetic fields that are able to drive jets along the poles of the 
supernova, thus revealing the likelihood that jets help to power supernova explosions and 
shedding light on the central engines of GRB.

In Chapters 2 and 3 I described the three dimensional SPH code, formerly used for 
simulations of neutron star mergers, that was used to simulate core collapse. I explained 
how alterations were made to the code to adapt it to this problem and how realistic 
progenitor models were used as initial conditions. I also included a description of how a 
parametrization of shear “a ” viscosity was added to the code.

In Chapter 4 the code was tested by simulating the collapse of the “standard” Woosley 
progenitor S15A and comparing it to published results. Following from other studies, a 
variety of rotation rates were then added to the model using a simple parametrization of 
the angular velocity.

It was found that the effect of the slowest rotation rates on collapse was negligible. 
In contrast with previous studies, at higher rotation rates the maximum density at bounce 
decreased only slightly with increasing rotation. A second density peak was observed for 
the models which were followed past bounce and, in agreement with previous studies, 
the time between the first and second peaks increased with increasing rotation.

The ratio of rotational to gravitational energy at bounce increases with initial ro
tation up to an initial angular velocity Do =  4 rad s-1. Above this rate, which appears 
to mark a transition region in which centrifugal effects become important, /3 at bounce 
becomes non-monotonic in Do- As a result of this, (3 remains <0 .1  for all models, much 
lower than the secular instability limit of ~  0.14.
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In Chapter 5 rotating progenitor models were used to investigate the effects of more 
rapid rotation. Three types of rotation were used: slow, rapid and enhanced, the lat
ter produced by artificially increasing the angular velocities in the rapid rotators by a 
constant factor.

The weakly rotating models collapsed in a very similar manner to the optimally ro
tating Woosley model, obtaining a maximum value of /3 =  0.12. Centifugal support 
prevented the more rapid rotators from having their rotation amplified to the same de
gree. All of the models with strong and enhanced rotation underwent several peaks and 
troughs in the central density before nuclear density was reached. At the end of the sim
ulations the distribution of material in these models was centrally peaked and surrounded 
by an extended torus in the equatorial plane. The maximum j3 obtained for these models 
was around 12-13%.

Models were also run with enhanced shear viscosity in an attempt to remove enough 
angular momentum to make them collapse quickly. Collapse was accelerated a little but 
the shape of the core remained virtually the same as in the models with low viscosity.

Another set of models was run with m  =  1 and m  = 2 mode density perturbations 
added, some from the start of the simulation and others from the density minimum that 
followed the first density peak. Although the rate of collapse was somewhat affected by 
these perturbations they had little effect on the shape of the core, which proved resistant 
to deformation, even when the density was perturbed significantly.

No sign of fragmentation or significant growth of the m  =  1 or m = 2 modes was 
observed for any of the models, even when the seed density perturbations were added to 
the faster rotators. The most interesting structure observed was the torus of centrifugally 
supported material surrounding the inner core in the rapidly rotating models.

The conclusion of this thesis is therefore that the core collapse of rotating massive 
stars, when simulated with up to date progenitor models and a realistic equation of state, 
does not result in triaxial deformations or fragmentation, at least before it reaches nuclear 
density. The main reason for this is that the equatorial material, which has high angular 
momentum, is centrifugally supported in a torus around the compact core.

7.2 Future Avenues

The simulations described in this thesis were run to a maximum of ~  10 ms after core 
bounce, when the shock formed at bounce had propagated just past the edge of the inner
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core. (Defining when core bounce occurred was difficult for the rapidly rotating models, 
which bounced several times and were thus followed until nuclear densities were ob
tained in the centre.) Since the rapidly rotating models obtained values for the rotation 
parameter j3 approaching the limit for secular instabilities, it would be interesting to con
tinue running these models on a secular timescale. It is possible that instabilities could 
still arise and lead to core deformation or fragmentation. Indeed, in studies where core 
fragmentation or spiral mode (m =  1) instabilities have been found, these have occurred 
on a secular timescale after bounce (Rampp et al. 1998, Ott et al. 2004).

Up to bounce, the inclusion of neutrino transport is not crucial because neutrino trap
ping in the core maintains a high lepton abundance in the central regions. The inclusion 
of neutrino transport would cause a slight decrease in pressure in the core due to the re
duced abundance of electrons. It would be interesting to see how much further this would 
enable the rapidly rotating cores to collapse before they became centrifugally supported.

If the simulations were to be continued past bounce a treatment for neutrinos would 
be vital since neutrinos diffuse out of the core on a secular timesscale and the energy 
they transport becomes important. If only the core was of interest, a parametrization of 
the neutrino emission might be sufficient as the next step in improving the model. If 
the evolution of the shock was also to be followed the inclusion of a full treatment of 
neutrino emission, absorption and scattering would be required. Neutrino transport at 
this level of sophistication is way beyond the scope of this PhD.

It has been suggested that collapsars should be associated with “failed supemovae”, 
in which the shock formed by sub-nuclear bounce is not strong enough to eject the outer 
layers of the star. (In some of these cases enough power might eventually be leeched 
from the GRB jet to cause an explosion.) In the simulations in which rotation caused 
the core to bounce at sub-nuclear densities only a weak shock formed. At the same time 
a toms-like structure was visible around the compact inner core. These simulations are 
therefore consistent with the collapsar model of GRB. It would be interesting to follow 
the evolution of this toms after bounce to see whether it would go on to form an accretion 
disc and if so, how long it would persist and even whether instabilities would arise that 
would enable it to fragment.
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