
Ant Colony Optimization in

Stationary and Dynamic

Environments

by

Michalis Mavrovouniotis

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Department of Computer Science

University of Leicester

2013



Declaration of Authorship

The content of this submission was undertaken in the Department of Computer

Science, University of Leicester, and supervised by Prof. Shengxiang Yang during the

period of registration. I hereby declare that the materials of this submission have not

previously been published for a degree or diploma at any other university or institute.

All the materials submitted for assessment are from my own research, except the

reference work in any format by other authors, which are properly acknowledged in

the content.

Part of the research work presented in this submission has been published or has

been submitted for publication in the following papers:

1. M. Mavrovouniotis, S. Yang. Ant colony optimization with immigrants schemes

in dynamic environments, “Proceedings of the 11th International Conference

on Parallel Problem Solving from Nature (PPSN XI)”, LNCS 6238, Part II,

pp. 371–380, Springer-Verlag, 2010.

2. M. Mavrovouniotis, S. Yang. Ant colony optimization with direct communica-

tion for the travelling salesman problem, “Proceedings of the 2010 Workshop

on Computational Intelligence (UKCI2010)”, pp. 1–6, IEEE Press, 2010.

3. M. Mavrovouniotis, S. Yang. Memory-based immigrants for ant colony op-

timization in changing environments, “EvoApplications 2011: Applications of

Evolutionary Computation”, LNCS 6624, Part I, pp. 324–333, Springer-Verlag,

2011.

4. M. Mavrovouniotis, S. Yang. A memetic ant colony optimization for the dy-

namic travelling salesman problem, “Soft Computing - A Fusion of Founda-

tions, Methodologies and Applications”, vol. 15, no. 7, pp. 1405–1425, Springer-

Verlag, 2011.

5. M. Mavrovouniotis, S. Yang. An ant system with direct communication for

the capacitated vehicle routing problem, “Proceedings of the 2011 Workshop

on Computational Intelligence (UKCI2011)”, pp. 14–19, 2011.

6. M. Mavrovouniotis, S. Yang. An immigrants scheme based on environmental

information for ant colony optimization for the dynamic travelling salesman

i



problem, “Proceedings of the 10th International Conference on Artificial Evo-

lution (EA-2011)”, LNCS 7401, pp. 1–12, Springer-Verlag, 2012.

7. M. Mavrovouniotis, S. Yang. Ant colony optimization with immigrants schemes

for the dynamic vehicle routing problem, “EvoApplications 2012: Applications

of Evolutionary Computation”, LNCS 7248, pp. 519–528, Springer-Verlag,

2012.

8. M. Mavrovouniotis, S. Yang. Ant colony optimization with memory-based

immigrants for the dynamic vehicle routing problem, “Proceedings of the 2012

IEEE Congress on Evolutionary Computation”, pp. 2645–2652, IEEE Press,

2012.

9. M. Mavrovouniotis, S. Yang, X. Yao. A benchmark generator for dynamic

permutation-encoded problems. “Proceedings of the 12th International Con-

ference on Parallel Problem Solving from Nature (PPSN XII)”, LNCS 7492,

Part II, pp. 508–517, Springer-Verlag, 2012.

10. M. Mavrovouniotis, S. Yang. Ant colony optimization algorithms with im-

migrants schemes for the dynamic travelling salesman problem, S. Yang and

X. Yao (eds.), “Evolutionary Computation for Dynamic Optimization Prob-

lems”, Chapter 13, pp. 331–357, Springer-Verlag, 2013.

11. M. Mavrovouniotis, S. Yang. Dynamic vehicle routing: A memetic ant colony

optimization approach. A.S. Uyar, E. Ozcan and N. Urquhart (eds.), “Auto-

mated Scheduling”, Chapter 9, Springer-Verlag, 2013.

12. M. Mavrovouniotis, S. Yang. Ant colony optimization with immigrants schemes

for the dynamic travelling salesman problem with traffic factors, “Applied Soft

Computing”, Elsevier, 2013.

ii



Ant Colony Optimization in Stationary and Dynamic Environments

Michalis Mavrovouniotis

Abstract

The ant colony optimization (ACO) metaheuristic is inspired by the foraging be-

haviour of real ant colonies. Similarly with other metaheuristics, ACO suffers from

stagnation behaviour, where all ants construct the same solution from early stages.

In result, the solution quality may be degraded because the population may get

trapped on local optima. In this thesis, we propose a novel approach, called direct

communication (DC) scheme, that helps ACO algorithms to escape from a local

optimum if they get trapped. The experimental results on two routing problems

showed that the DC scheme is effective.

Usually, researchers are focused on problems in which they have static environment.

In the last decade, there is a growing interest to apply nature-inspired metaheuristics

in optimization problems with dynamic environments. Usually, dynamic optimiza-

tion problems (DOPs) are addressed using evolutionary algorithms. In this thesis,

we apply several novel ACO algorithms in two routing DOPs. The proposed ACO

algorithms are integrated with immigrants schemes in which immigrant ants are gen-

erated, either randomly or with the use of knowledge from previous environment(s),

and replace other ants in the current population. The experimental results showed

that each proposed algorithm performs better in different dynamic cases, and that

they have better performance than other peer ACO algorithms in general.

The existing benchmark generators for DOPs are developed for binary-encoded com-

binatorial problems. Since routing problems are usually permutation-encoded com-

binatorial problems, the dynamic environments used in the experiments are gener-

ated using a novel benchmark generator that converts a static problem instance to a

dynamic one. The specific dynamic benchmark generator changes the fitness land-

scape of the problem, which causes the optimum to change in every environmental

change. Furthermore in this thesis, another benchmark generator is proposed which

moves the population to another location in the fitness landscape, instead of modify-

ing it. In this way, the optimum is known and one can see how close to the optimum

an algorithm performs during the environmental changes.



Acknowledgements

First, I would like to thank my supervisor Prof. Shengxiang Yang who gave me

the appropriate direction to complete this thesis. In fact, he was the person that

promoted me in this research area, since he supervised me in my undergraduate

third year project.

I am also grateful to my second supervisor Prof. Thomas Erlebach for all his support,

encouragement, and advice, especially on the last two years of my studies. I would

also like to thank Dr. Fer-Jan De Vries for assessing my work at the end of each

year and Prof. Rajeev Raman for his advice on the professional side of my course.

Furthermore, I would like to thank Prof. Xin Yao for his suggestions regarding some

future work and direction for my work.

Special thanks to the University of Leicester and the Department of Computer Sci-

ence for the financial support of my studies and my attendance in several conferences

around Europe.

I would also like to thank all the members and colleagues in the Department of

Computer Science, and all my friends in Leicester that formed a friendly environment

for me all these years of my studies.

Also, I appreciate the support from my family, my parents and my brother. Without

their help all the things I have achieved would have been impossible. This thesis is

dedicated to them, but especially is dedicated to my loving grandmother who passed

away during my studies.

Finally, I would like to thank the ants! Without these small insects from nature,

“moving” on the graphs of the different optimization problems, this thesis would

not exist. Similarly with the ants that find the shortest path via pheromone trails, I

hope that the pheromone trails of the earth will be generated as quickly as possible

to find all the persons mentioned above again.

iv



Contents

List of Figures ix

List of Tables xi

List of Algorithms xiii

List of Abbreviations xiv

1 Introduction 1

1.1 Ant Colony Optimization (ACO) . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Challenges for ACO in Static Environments . . . . . . . . . . 3

1.1.2 Challenges for ACO in Dynamic Environments . . . . . . . . . 4

1.2 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 From Natural to Artificial Ant Colonies 9

2.1 Real Ant Colonies Behaviour . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Behaviour in Static Environments . . . . . . . . . . . . . . . . 10

2.1.2 Behaviour in Dynamic Environments . . . . . . . . . . . . . . 12

2.2 A Probabilistic Model for Artificial Ants . . . . . . . . . . . . . . . . 15

2.3 Artificial Ant Colonies Behaviour . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Real Ants vs Artificial Ants . . . . . . . . . . . . . . . . . . . 17

2.3.2 Artificial Ants for the Shortest Path . . . . . . . . . . . . . . 19

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Combinatorial Optimization and Metaheuristics 22

3.1 Combinatorial Optimization . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Examples of Routing Problems . . . . . . . . . . . . . . . . . 23

3.1.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Methods for NP-complete Problems . . . . . . . . . . . . . . . . . . 25

3.4 Metaheuristics for Combinatorial Optimization . . . . . . . . . . . . . 29

v



Contents

3.4.1 Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . 30

3.4.2 Simulated Annealing . . . . . . . . . . . . . . . . . . . . . . . 32

3.4.3 Tabu Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.4 Estimation of Distribution Algorithms . . . . . . . . . . . . . 35

3.4.5 Bee Colony Optimization . . . . . . . . . . . . . . . . . . . . . 36

3.4.6 Ant Colony Optimization . . . . . . . . . . . . . . . . . . . . 39

3.5 Characteristics of Metaheuristics . . . . . . . . . . . . . . . . . . . . 39

3.6 Performance Analysis of Metaheuristics . . . . . . . . . . . . . . . . . 41

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 The Ant Colony Optimization Metaheuristic 44

4.1 Gentle Introduction to ACO . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Characteristics and Properties . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Historical Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Ant System (AS): The First ACO Algorithm . . . . . . . . . . . . . . 50

4.5 AS Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5.1 Elitist AS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5.2 Rank-Based AS . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5.3 MAX −MIN AS . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5.4 Best-Worst AS . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.5 Ant Colony System . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Applications of ACO for Combinatorial Optimization . . . . . . . . . 56

4.6.1 Travelling Salesperson Problem (TSP) . . . . . . . . . . . . . 60

4.6.2 Vehicle Routing Problem (VRP) . . . . . . . . . . . . . . . . . 62

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 ACO with Direct Communication 68

5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Description of Direct Communication . . . . . . . . . . . . . . . . . . 69

5.2.1 The Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.2 Exchange Information . . . . . . . . . . . . . . . . . . . . . . 70

5.2.3 Communication Range . . . . . . . . . . . . . . . . . . . . . . 73

5.2.4 Local Pheromone Deposit . . . . . . . . . . . . . . . . . . . . 74

5.3 Experiments for the Static TSP and VRP . . . . . . . . . . . . . . . 75

5.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.2 Parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.3 Experimental Results for the Static TSP . . . . . . . . . . . . 76

5.3.4 Experimental Results for the Static VRP . . . . . . . . . . . . 82

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 ACO for Dynamic Combinatorial Optimization 89

6.1 Dynamic Optimization Problems (DOPs) . . . . . . . . . . . . . . . . 89

vi



Contents

6.2 Optimization Methods for DOPs . . . . . . . . . . . . . . . . . . . . 91

6.2.1 Evolutionary Computation . . . . . . . . . . . . . . . . . . . . 91

6.2.2 Other Metaheuristics . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Detection of Dynamic Changes . . . . . . . . . . . . . . . . . . . . . 96

6.4 Performance Measurements . . . . . . . . . . . . . . . . . . . . . . . 97

6.4.1 Optimum-based Performance Measurements . . . . . . . . . . 98

6.4.2 Behaviour-based Performance Measurements . . . . . . . . . . 100

6.4.3 Average-based Performance Measurements . . . . . . . . . . . 103

6.5 Addressing Dynamic Environments with ACO . . . . . . . . . . . . . 104

6.5.1 Pheromone modification after a change . . . . . . . . . . . . . 105

6.5.2 Memory-based schemes . . . . . . . . . . . . . . . . . . . . . . 106

6.5.3 Multi-colony algorithms . . . . . . . . . . . . . . . . . . . . . 108

6.6 Applications of ACO for Dynamic Combinatorial Optimization . . . . 109

6.6.1 Dynamic TSP (DTSP) . . . . . . . . . . . . . . . . . . . . . . 109

6.6.2 Dynamic VRP (DVRP) . . . . . . . . . . . . . . . . . . . . . 116

6.7 Theoretical Development . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7 Benchmark Generators for Dynamic Optimization Problems 121

7.1 Generating a Dynamic Environment . . . . . . . . . . . . . . . . . . . 121

7.2 Properties of Dynamic Benchmark Generators . . . . . . . . . . . . . 122

7.3 Benchmarks for Binary-Encoded Problems . . . . . . . . . . . . . . . 124

7.4 Benchmarks for Permutation-Encoded Problems . . . . . . . . . . . . 125

7.4.1 Known optimum . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.4.2 Unknown optimum . . . . . . . . . . . . . . . . . . . . . . . . 132

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8 ACO with Immigrants Schemes 136

8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.2 Description of Immigrants Schemes . . . . . . . . . . . . . . . . . . . 137

8.2.1 The Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.2.2 Construct Solutions . . . . . . . . . . . . . . . . . . . . . . . . 139

8.2.3 Pheromone Update . . . . . . . . . . . . . . . . . . . . . . . . 139

8.2.4 Increase and Maintain Diversity . . . . . . . . . . . . . . . . . 140

8.3 Experiments for the DTSP and DVRP . . . . . . . . . . . . . . . . . 149

8.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 149

8.3.2 Experimental Results for the DTSP . . . . . . . . . . . . . . . 150

8.3.3 Experimental Results for the DVRP . . . . . . . . . . . . . . 179

8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

9 Conclusions and Future Work 203

9.1 Technical Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 203

vii



Contents

9.2 Conclusions of the Experimental Results . . . . . . . . . . . . . . . . 205

9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

9.3.1 ACO in Static Environments . . . . . . . . . . . . . . . . . . . 207

9.3.2 ACO in Dynamic Environments . . . . . . . . . . . . . . . . . 207

9.3.3 Further Discussion Regarding the Relation of Dynamic Opti-
mization and Real-World Applications . . . . . . . . . . . . . 209

A Description of Benchmarks 211

B Parameter Settings for Static Combinatorial Problems 214

C Parameter Settings for Dynamic Combinatorial Problems 216

Bibliography 218

viii



List of Figures

2.1 Double bridge experiments setup . . . . . . . . . . . . . . . . . . . . 10

2.2 Double bridge experiment in a static environment with equal . . . . . 11

2.3 Double bridge experiment in a static environment with unequal . . . 12

2.4 Double bridge experiment in a dynamic environment with equal . . . 13

2.5 Double bridge experiment in a dynamic environment with unequal . . 14

2.6 Example of how ants “walk” on graphs . . . . . . . . . . . . . . . . . 18

3.1 Illustration of local optima and a global optimum. . . . . . . . . . . . 26

4.1 Example of a TSP solution . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Example of a VRP solution . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Example of adaptive and random swap . . . . . . . . . . . . . . . . . 72

5.2 The effect of the communication range parameter Tr . . . . . . . . . . 79

5.3 Behaviour of ACO algorithms on the random VRP instances . . . . 85

5.3 (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Behaviour of ACO algorithms on the clustered VRP instances . . . . 87

7.1 Illustration of the distance matrix with the optimum . . . . . . . . . 128

7.2 Illustration of the effect on the population of EAs and heuristic . . . 130

7.3 Illustration of a random dynamic environment with unlimited states . 132

8.1 Flowchart of the general framework of ACO algorithms . . . . . . . . 138

8.2 Offline performance of varying the size of the memory structures . . . 156

8.3 Dynamic behaviour of the algorithms for random DTSPs . . . . . . . 160

8.4 Dynamic behaviour of the algorithms for random DTSPs . . . . . . . 161

8.5 Dynamic behaviour of the algorithms for cyclic DTSPs . . . . . . . . 166

8.6 Dynamic behaviour of the algorithms for cyclic DTSPs . . . . . . . . 167

8.7 Offline performance of varying the replacement rate . . . . . . . . . . 170

8.8 Dynamic behaviour of the proposed algorithms . . . . . . . . . . . . . 174

8.9 Varying values for magnitude and frequency . . . . . . . . . . . . . . 174

8.10 Total diversity of the proposed ACO algorithms . . . . . . . . . . . . 175

8.11 Performance of the algorithms on different dynamic test . . . . . . . . 177

8.12 Dynamic behaviour of the algorithms for random DVRPs . . . . . . . 183

ix



List of Figures

8.13 Dynamic behaviour of the algorithms for random DVRPs . . . . . . . 184

8.14 Dynamic behaviour of the algorithms for cyclic DVRPs . . . . . . . . 189

8.15 Dynamic behaviour of the algorithms for cyclic DVRPs . . . . . . . . 190

8.16 Offline performance of varying the replacement rate . . . . . . . . . . 194

8.17 Dynamic behaviour of the proposed algorithms . . . . . . . . . . . . . 196

8.18 Varying values for magnitude and frequency . . . . . . . . . . . . . . 197

8.19 Total diversity of the proposed ACO algorithms . . . . . . . . . . . . 197

8.20 Performance of the algorithms on different dynamic test . . . . . . . . 199

x



List of Tables

3.1 Classification of the aforementioned metaheuristics . . . . . . . . . . 41

4.1 ACO applications for stationary combinatorial problems . . . . . . . 57

4.1 (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Averaged results over 30 runs of the best solution . . . . . . . . . . . 77

5.2 Averaged results over 30 runs of the total runtime . . . . . . . . . . . 78

5.3 Averaged results over 30 runs of the best solution . . . . . . . . . . . 81

5.4 The mean results of the best solution . . . . . . . . . . . . . . . . . . 83

5.5 The mean results of the best solution . . . . . . . . . . . . . . . . . . 84

6.1 ACO applications for dynamic combinatorial problems . . . . . . . . 110

8.1 Offline performance ofMMAS with different evaporation rates . . . 151

8.2 Offline performance of the proposed framework, without immigrants . 153

8.3 Offline performance of the proposed framework . . . . . . . . . . . . 155

8.4 Offline performance of the proposed algorithms with immigrants . . . 158

8.5 Statistical test results regarding the offline performance . . . . . . . . 159

8.6 Offline performance of the proposed algorithms with immigrants . . . 163

8.7 Statistical test results regarding the offline performance . . . . . . . . 164

8.8 Offline performance of the proposed framework . . . . . . . . . . . . 168

8.9 Offline performance of the proposed framework . . . . . . . . . . . . 169

8.10 Experimental results regarding offline performance on the DTSP . . . 172

8.11 Summary observations regarding the relative performance . . . . . . . 178

8.12 Offline performance of ACS-DVRP with different evaporation rates . 180

8.13 Offline performance of the proposed algorithms with immigrants . . . 181

8.14 Statistical test results regarding the offline performance . . . . . . . . 182

8.15 Offline performance of the proposed algorithms with immigrants . . . 187

8.16 Statistical test results regarding the offline performance . . . . . . . . 188

8.17 Offline performance of the proposed framework . . . . . . . . . . . . 192

8.18 Offline performance of the proposed framework . . . . . . . . . . . . 193

8.19 Experimental results regarding offline performance on the DVRP . . . 196

xi



List of Tables

8.20 Summary observations regarding the relative performance . . . . . . . 200

xii



List of Algorithms

1 Greedy Constructive Heuristic . . . . . . . . . . . . . . . . . . . . . . 27

2 Iterative Improvement Heuristic . . . . . . . . . . . . . . . . . . . . . 28

3 Evolutionary Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Simulated Annealing Algorithm . . . . . . . . . . . . . . . . . . . . . 33

5 Tabu Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Estimation Of Distribution Algorithm . . . . . . . . . . . . . . . . . . 36

7 Bee Colony Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 38

8 Ant Colony Optimization for SOPs . . . . . . . . . . . . . . . . . . . 45

9 Ant Colony Optimization with DC . . . . . . . . . . . . . . . . . . . 70

10 DirectCommunication . . . . . . . . . . . . . . . . . . . . . . . . . . 71

11 Ant Colony Optimization for DOPs . . . . . . . . . . . . . . . . . . . 106

12 Population-based ACO . . . . . . . . . . . . . . . . . . . . . . . . . . 107

13 RIACO and EIACO . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

14 GenerateGuidedImmigrant(xelite) . . . . . . . . . . . . . . . . . . . . 144

15 MIACO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

16 UpdateMemory(klong(t)) . . . . . . . . . . . . . . . . . . . . . . . . . 147

xiii



List of Abbreviations

ACO Ant Colony Optimization

AS Ant System

EAS Elitist Ant System

ACS Ant Colony System

ASrank Rank-based Ant System

MMAS MAX −MIN Ant System

BWAS Best-Worst Ant System

P-ACO Population-based Ant Colony Optimization

EA Evolutionary Algorithm

GA Genetic Algorithm

SA Simulated Annealing

TS Tabu Search

EDA Estimation of Distribution Algorithm

BCO Bee Colony Optimization

LS Local Search

DC Direct Communication

RIACO Random Immigrants ACO

EIACO Elitist-based Immigrants ACO

MIACO Memory-based Immigrants ACO

SOP Stationary Optimization Problem

DOP Dynamic Optimization Problem

TSP Travelling Salesperson Problem

xiv



List of Abbreviations

VRP Vehicle Routing Problem

COP Combinatorial Optimization Problem

EDO Evolutionary Dynamic Optimization

xv



Chapter 1

Introduction

The word optimization refers to the process of making something as good or effective

as possible. In computer science and mathematics, optimization was one of the oldest

scientific issues, whereas optimization problems have been a major issue to be solved,

either empirically or mathematically. Many optimization problems of practical or

theoretical importance are of a combinatorial nature, which involve finding the values

of discrete variables such that a certain condition is satisfied.

Probably the most widely known combinatorial optimization problem (COP) is the

travelling salesperson problem (TSP), in which the shortest cyclic tour among a

set of cities has to be found. COPs are intriguing because they are easy to state

but often very difficult to solve. For instance, there is no existing algorithm to find

the optimal solution for the TSP within polynomial time. This is the case in most

COPs, and led to the development of the NP-completeness complexity theory [105].

COPs appear in many real-world applications and there is a need for algorithms to

solve them efficiently. The algorithms to solve COPs are classified into the following

categories, exact or approximation. Exact algorithms guarantee to provide the global

optimum solution, but not necessarily efficiently, whereas approximation (otherwise

1



Chapter 1. Introduction

known as heuristics) methods, often provide a close to the global optimum solution

efficiently.

However, most real-world applications change over time which makes COPs even

more difficult to solve. Such problems are called dynamic optimization problems

(DOPs). In DOPs, an environment, including the objective function, the decision

variables, the problem instance, the constraints, and so on, may vary over time,

which may cause the optimum to move. In the contrast to COPs with static environ-

ments, for which the goal is to find the optimum solution efficiently, for COPs with

dynamic environments, the goal is to track the moving optimum solution through

the changing environment efficiently.

In the last decade, nature-inspired algorithms, which are approximation algorithms,

have been widely used to address different DOPs. It is believed that such algo-

rithms are able to adapt to changing environments, since they are inspired from

nature which is a continuous adaptation process [17, 137]. Popular examples of

such algorithms applied in COPs with dynamic environments are: evolutionary al-

gorithms (EAs) [89, 129] which are inspired from natural evolution of survival of the

fittest and ant colony optimization (ACO) algorithms [67] which are inspired from

the foraging behavior of real ant colonies. EAs have been mainly established to

address COPs with binary-encoded representation, whereas ACO to address COPs

with permutation-encoded representation.

1.1 Ant Colony Optimization (ACO)

Real ant colonies communicate via pheromone, which is a chemical substance pro-

duced by ants. The more pheromone ants smell in an area, the higher the probability

that ants follow that area. The ACO framework is based on this simple idea.

2



Chapter 1. Introduction

More precisely, ACO algorithms consist of a population of ants, where each one

represents a solution of the problem to be solved. Starting from an empty solution

each ant builds up a feasible solution. After building a solution, each ant updates its

pheromone trails to mark its solution. The pheromone value depends on the quality

of the solution, i.e., the higher the solution quality the more the pheromone value.

In the next iteration, ants will consider the pheromone trails generated from the

previous iteration.

1.1.1 Challenges for ACO in Static Environments

The research of ACO in static optimization problems (SOPs) grew up rapidly over

the years, addressing a lot of applications and developing several ACO variations

and extensions.

However, ACO algorithms suffer from the stagnation behaviour, where all ants fol-

low the same path from the initial stages of the algorithm, when applied to different

COPs. This is because a high intensity of pheromone is generated to a single trail

quickly, that marks a potential solution, and attracts the ants to that area. There-

fore, traditional ACO algorithms are more likely to get trapped in a local optimum

solution, which may degrade the solution quality and the overall performance of the

algorithm.

In general, it is difficult to achieve a balance between exploration and exploitation

for ACO algorithms. Exploration is the ability of an algorithm to discover solutions

not previously selected, whereas exploitation is the ability of an algorithm to search

for solutions in areas where good solutions have previously been found. However,

a proper trade-off between exploration and exploitation is important in order to

achieve a robust searching behaviour for ACO algorithms, or any other metaheuristic

in general.

3



Chapter 1. Introduction

1.1.2 Challenges for ACO in Dynamic Environments

Similarly, stagnation behaviour is a major problem for ACO in DOPs. In case

the algorithm converges quickly, it loses its exploration, and, thus, its adaptation

capabilities. This is because when the environment changes, the pheromone trails

of the previous environment will not match the new environment, especially in the

case where pheromone is located to a single trail.

However, ACO has an adaptation mechanism, called pheromone evaporation, in

which a constant amount of pheromone is deducted from all trails. This may help

eliminate pheromone trails that are not useful and bias the ants to non-promising

areas. A typical way to address DOPs is to re-initialize the pheromone trails equally

after a dynamic change, which acts as a restart of the algorithm. Therefore, every

change is considered as the arrival of a new optimization problem that has to be

solved from scratch. However, such strategy requires substantial computational

efforts and the detection of change, which sometimes is difficult to detect. A more

efficient way to address the stagnation behaviour and adapt well to DOPs is to

transfer knowledge from previous environments. However, the algorithm needs to

be robust enough to accept the knowledge transferred, which can be achieved by

the maintenance of the solution’s diversity. Of course, high levels of diversity may

disturb the optimization process and lead the algorithm to randomization.

The research of ACO in DOPs is still in its infancy, with just a few applications

and ACO variations. Most of the research in DOPs has been done with EAs, which

is otherwise known as evolutionary dynamic optimization (EDO). EDO consists of

many strategies integrated with EAs to address premature converge and enhance

the adaptation capabilities of the algorithms. Similar strategies can be integrated

with ACO algorithms.

4



Chapter 1. Introduction

1.2 Aims and Objectives

The main aim of this thesis is to develop effective approaches to avoid stagnation

behaviour for COPs in static environments, and to contribute to the research of ACO

in DOPs, with the development of strategies to enhance the adaptation capabilities

of ACO. To achieve these aims the following objectives are established:

• Understand the search behaviour of ACO in routing problems (initially under

static environments).

• Improve the performance of ACO in static environments to delay convergence

and avoid stagnation behaviour.

• Develop a benchmark for permutation-encoded DOPs in order to test the al-

gorithms in dynamic environments.

• Develop pheromone strategies (mainly inspired from EAs) to enhance the

adaptation capabilities of ACO algorithms.

• Establish an ACO framework for DOPs.

• Perform systematic experimental studies and relevant analysis to justify pro-

posed ACO variants in both SOPs and DOPs.

1.3 Scientific Contributions

In this thesis we propose and present the following approaches to achieve the afore-

mentioned objectives:

• For SOPs

5



Chapter 1. Introduction

– A scheme where ants, apart from communicating indirectly via pheromone

trails, communicate directly by exchanging information that improves the

performance of traditional ACO in SOPs.

• For DOPs

– An ACO framework to address DOPs.

– The integration of immigrants schemes with ACO for DOPs.

– Development of a benchmark generator that models a real-world scenario.

– Development of a benchmark generator where the optimum is known in

every environmental change.

1.4 Structure of the Thesis

The rest of this thesis is organised as follows.

In Chapter 2, the biological roots of ACO algorithms are presented, including the

early biological experiment of ants finding the shortest path and the first probabilistic

model inspired from ant’s behaviour. Moreover, a simple ACO algorithm is described

and it can be clearly observed what are the differences in the behaviour of real ant

colonies in comparison with the artificial ant colonies.

In Chapter 3, combinatorial optimization is described including the examples of

problems with their applications. Furthermore, an explanation why these problems

are hard to solve is given with respect to some methods. Finally, the term meta-

heuristic is explained with several examples, including their characteristics.

In Chapter 4, the ACO metaheuristic is described, including its historical contribu-

tions. The first ACO algorithm with its several variations and extensions is described

6



Chapter 1. Introduction

for the fundamental TSP. Furthermore, a survey of the main contributions regarding

the ACO applications for SOPs is given, whereas the application for the TSP and

the vehicle routing problem (VRP) are explained in more detail because they are

the problems used in the experiments in Chapter 5.

In Chapter 5, the proposed scheme based on the direct communication (DC) be-

tween ants is described for static TSPs and VRPs. Furthermore, experiments are

presented, including the optimization of some parameter settings, comparisons be-

tween the different variations of traditional ACO algorithms, and comparisons be-

tween conventional ACO and ACO with the DC scheme for the two optimization

problems.

In Chapter 6, the concept of DOPs is explained, including the methods and strategies

used, how to detect an environmental change and the performance measurements

used. Furthermore, an explanation why ACO algorithms are suitable for DOPs is

given, followed by a survey of the main contributions regarding the applications of

ACO in DOPs. As in Chapter 4, the applications for TSP and VRP, in this case the

dynamic versions, are explained in more detail because they are the problems that

will be used in the experiments in Chapter 8.

In Chapter 7, the need of benchmark generators is explained. The properties of

a good benchmark generator are explained, including a description of one of the

most common benchmark generators used in binary-encoded DOPs. Furthermore,

the proposed benchmark generators for dynamic TSPs (DTSPs) and dynamic VRPs

(DVRPs) are described, in which for the first one the optimum is known during the

changes, whereas for the second one, the optimum is unknown in every environmental

change.

In Chapter 8, the proposed algorithms, where immigrants schemes are integrated to

an ACO framework, designed especially for DOPs, are described for the DTSP and

7



Chapter 1. Introduction

DVRP. In the experiments, the algorithms are tested in different dynamic cases and

environmental types using a benchmark generator from Chapter 7. Furthermore,

we show the impact of the important parameters of the algorithms. Finally, the

proposed algorithms have been compared with other peer ACO algorithms in both

DTSP and DVRP and showed good performance.

Finally, Chapter 9 concludes the thesis with the technical contributions and the out-

come of the experimental results of this thesis, and gives some discussion regarding

the future work.

8



Chapter 2

From Natural to Artificial Ant

Colonies

2.1 Real Ant Colonies Behaviour

The main characteristic of the behaviour of many ant species, e.g., Argentine linep-

ithema humile, is foraging [17, 128]. This behaviour is based on the communi-

cation achieved by ants via a chemical substance produced by themselves, called

pheromone. While ants walk to search for food sources from their nest and vice

versa, they lay pheromones on the ground to mark their path, forming in this way

different pheromone trails. Ants can smell pheromones, including the pheromone of

other ants, when walking and they are usually attracted to the areas with strong

pheromone concentrations. In this way, the ants are able to find their way back to

the nest or to the food sources.

This “reading-” and “writing-” pheromone behaviour of ants has inspired researchers

to design and run foraging experiments [53, 110], to observe whether the ants in the

colony as a whole are able to discover the shortest path when few alternative paths

9



Chapter 2. From Natural to Artificial Ant Colonies

(a) (b)

Figure 2.1: Double bridge experiments setup: 2.1(a) the two branches have
equal length and 2.1(b) the two branches have unequal length.

exist from colony’s nest to a food source. The experiments use a colony of Argentine

ants and a double bridge with two branches where both connect the colony’s nest

with a food source; see Figure 2.1.

2.1.1 Behaviour in Static Environments

2.1.1.1 Double Bridge Experiment with Branches of Equal Length

Deneubourg et al. [53] run an experiment where the bridge has two branches of equal

length that connect the colony’s nest with a food source as shown in Figure 2.1(a).

Since the branches have the same length, the two paths generated have the same

length as well.

Ants are released to move between the nest and the food source. The percentage of

ants that chose the upper or the lower branch is recorded over time. The outcome

from the initial phase is that at the beginning the ants are choosing either the upper

or the lower branch, randomly. This is because initially there is no pheromone on

any of the two branches to attract the ants to chose the shortest one. Therefore, the

ants select with an equal probability any of the branches as shown in Figure 2.2(a).

10



Chapter 2. From Natural to Artificial Ant Colonies

(a) (b) (c)

Figure 2.2: Double bridge experiment in a static environment with equal
branches.

After a few minutes from the initial phase more ants follow the same path. In this

case, is the path generated with the upper branch, as shown in Figure 2.2(b). This

is because a few more ants have selected the upper branch on the initial phase where

ants’ choices were random. Therefore, a larger number of ants in the upper branch

means higher intensity of pheromones since the ants deposit pheromone while they

are walking. After a few more minutes the ants will have a preference regarding

which branch to select, since the upper one will contain more pheromone than the

lower one, as shown in Figure 2.2(c).

2.1.1.2 Double Bridge Experiment with Branches of Unequal Length

Gross et al. [110] run an experiment similar with the above one, where the bridge

has two branches of unequal length. This time the lower branch is twice the length

of the upper branch as shown in Figure 2.1(b).

Similarly to the first experiment with the equal branches there is no pheromone on

the two branches. Therefore, on the initial phase the ants are randomly choosing

either the upper or the lower branch since they appear identical to them, as shown in

Figure 2.3(a). However, the outcome after a few minutes from the initial phase was

that the ants chose the shorter branch, even if a few more ants randomly chose the

longer branch in the initial phase as in the first experiment, as shown in Figure 2.3(b).

11



Chapter 2. From Natural to Artificial Ant Colonies

(a) (b) (c)

Figure 2.3: Double bridge experiment in a static environment with unequal
branches.

The reason why ants chose the upper branch is that the ants of the shorter branch are

the first to reach the food and return to the nest. Since ants deposit pheromone while

they are walking, each ant will deposit twice pheromone to the shorter branch, i.e.,

one time walking from nest to the food source and another time vice versa. Therefore,

when they are about to make a decision between the two branches again, the shorter

one will contain higher intensity of pheromone from the longer one because the ants

from the longer branch will still be on their way back to the nest. As a result, the

pheromone on the shorter branch is increased faster and attracts the ants after a

few minutes of the initial phase. Moreover, it was observed that not all the ants

converged to the path of the shorter branch, since a very small percentage was still

choosing the longer path, as shown in Figure 2.3(c).

2.1.2 Behaviour in Dynamic Environments

2.1.2.1 Experiment with Equal Pheromone on the Paths

Considering the double bridge experiments it is confirmed that a colony of ants is

able to find the shortest path without using any visual cues, but via their pheromone

trails [128]. From the observations in these experiments [53, 110] we can also claim

12



Chapter 2. From Natural to Artificial Ant Colonies

(a) (b)

(c) (d)

Figure 2.4: Double bridge experiment in a dynamic environment with equal
pheromone trails on the paths constructed.

that they can adapt to dynamic environments, e.g., to find an alternative path when

the current shortest path found by the ants becomes infeasible.

In Figure 2.4(a) the ants move and converge to the path that connects their nest

to a food source. In result, high intensity of pheromone will be generated to the

specific path since the ants deposit pheromone to their trails when they walk. After

a few minutes an obstacle appears in the middle of the path and the ants are not

able to move on the specific path, as shown in Figure 2.4(b). As on the double

bridge experiments it is expected that approximately half of the ants on the front

of the obstacle will turn right from the obstacle and the remaining will turn left.

The same is expected from the ants on the other side of the obstacle, as shown in

Figure 2.4(c). Since the path formed on the left side around the obstacle is shorter,

13



Chapter 2. From Natural to Artificial Ant Colonies

(a) (b)

(c) (d)

Figure 2.5: Double bridge experiment in a dynamic environment with unequal
pheromone trails on the paths constructed.

the pheromone trails will be generated faster than the ones on the right side around

the obstacle considering the observation from the “double bridge experiments with

branches of unequal length”. As a result, almost all the ants will follow the shortest

path, as shown in Figure 2.4(d).

2.1.2.2 Experiment with Unequal Pheromone on the Paths

In fact, Gross et al. [110] performed an additional experiment to confirm whether

ants can adapt to dynamic changes. Similarly with the double bridge experiment

with unequal branches design, in this experiment only the long branch was offered to

the colony initially. Since only one path is available between the nest and the food

source the ants will converge to that, as shown in Figure 2.5(a). After 30 minutes

14



Chapter 2. From Natural to Artificial Ant Colonies

the short branch was added, as shown in Figure 2.5(b). Considering the obstacle

example in Figure 2.4 the ants are expected to select the path of the short branch,

but that was not the case. The path of the short branch was only selected by few

ants and not very frequently, whereas the path of the long branch was selected by

almost all ants, as shown in Figures 2.5(c) and 2.5(d).

The difference of this experiment with the experiment of the obstacle, in Figure 2.4,

is that pheromone exists in one of the two paths generated after the change of the

environment. This can be explained by the high intensity of pheromones generated

to the long branch which still attracts the ants even if a shorter path appears, and

the slow evaporation of pheromone. In the experiment it was observed that the

lifetime of the pheromone is comparable to the duration of an experimental trial.

Therefore, if the pheromone evaporation was faster, the pheromone trails in the

path of the long branch will be eliminated quickly and the probability to discover

the path of the short branch will be increased.

2.2 A Probabilistic Model for Artificial Ants

From the observations derived in the double bridge experiments, a simple proba-

bilistic model has been proposed to describe the dynamics of real ants [53]. In the

model, the following two assumptions are taken:

• The pheromone on the two branches is proportional to the number of ants that

have used them to cross the bridge in the past until that moment.

• The pheromone does not evaporate, since the experimental time is not enough

to cause the pheromone to evaporate.

15



Chapter 2. From Natural to Artificial Ant Colonies

More precisely, let µ be the size of the ant colony and Uµ and Lµ be the number

of ants that have used the upper branch and lower branch, respectively, where µ =

Uµ +Lµ. The probability pU(µ) of the (µ+1)-th ant to choose the upper branch is:

pU(µ) =
(Uµ + td)

α

(Uµ + td)α + (Lµ + td)α
, (2.1)

where td represents time delay of the ant to traverse the upper branch and α = 2 is

a parameter to fit the model with the double bridge experiment, since ants deposit

pheromone twice, i.e., from nest to food source and vice versa. The corresponding

probability pU(µ) of for the lower branch is:

pL(µ) = 1− pU(µ). (2.2)

The number of ants choosing the upper branch is defined as:

Uµ+1 =















Uµ + 1, if R ≤ pU(µ);

Uµ, otherwise,

(2.3)

and the number of ants choosing the lower branch is defined as:

Lµ+1 =















Lµ + 1, if R > pL(µ);

Lµ, otherwise,

(2.4)

where R is a random number uniformly distributed in the interval [0, 1].

Considering the equations of the model above, further simulations using the Monte

Carlo method [161], with 1000 simulations and the environment used in the double

bridge experiments, confirmed that the model matches the observations discovered

in real ant colonies (when α ≈ 2 and td ≈ 20) [110].

16



Chapter 2. From Natural to Artificial Ant Colonies

2.3 Artificial Ant Colonies Behaviour

2.3.1 Real Ants vs Artificial Ants

The behaviour of real ant colonies in the double bridge experiments shows properties,

that can be used to design artificial ants and use them to solve path optimization

problems, listed as follows:

• Optimization because they are able to find the shortest path.

• Exploitation because they prefer the path rich in pheromone and converge to

it.

• Exploration because even when they converge to a path a few ants may still

choose another path due to their stochastic decisions.

• Adaptation because of pheromone evaporation which may eliminate pheromone

trails that bias ants not to follow the shortest path (this may take a lot of time

due to slow pheromone evaporation).

• Memorization because they mark their path with pheromone trails as they

walk.

• Iterative because they walk from their nest to the food source several times.

Therefore, to design an artificial ant with the above properties for path optimization,

a fully connected graph is considered with several nodes as in Figure 2.6. The idea is

to let each ant “walk” on the arcs of the graph, from the nest (start node), visiting

a neighbour node on each step until it finds the food source (end node). Each ant is

able to “read” existing pheromone and “write” its own pheromone on the arcs when

walking.

17



Chapter 2. From Natural to Artificial Ant Colonies

Figure 2.6: Example of how ants “walk” on graphs. On the forward mode they
build solutions and on the backward mode they deposit pheromone. The intensity
of pheromone varies, where the ant that constructed the shortest tour deposits

more pheromone.

However, if the artificial ant’s behaviour is the same as real ant’s behaviour, it is

less likely to find the shortest path on more complex graphs, where more than two

paths are possible. This is because the ants may get trapped in infinite loops when

they walk on the graph to generate a solution, i.e., walking on the same arc (or arcs)

all the time. In result, high amounts of pheromone will be generated in the path,

most probably not the shortest one, where the ants get stuck since they deposit

pheromone as they walk. The problem is due to the implicit memory the ants have

by marking their path with pheromone and they can revisit partial paths several

times when they build a solution.

It is essential to extend the capabilities in artificial ants to address this problem,

but retain the properties of real ants, in order to build feasible paths on graphs until

they converge to the shortest one. Therefore, artificial ants use explicit memory in

which they can store the nodes visited so far, representing a partial path. In this

18



Chapter 2. From Natural to Artificial Ant Colonies

way, the problem of the infinite loops is solved because artificial ants will not be

allowed to visit nodes stored in their memory.

Furthermore, while ants build their solution they do not deposit any pheromone,

until they build a feasible path. Since the explicit memory of the ant will contain

a valid solution it is then possible to evaluate it, e.g., the sum of the length of

the the arcs, in order to deposit pheromone proportional to the solution’s quality.

Moreover, it enables the ants to retrace their solutions and deposit the appropriate

pheromone on the arcs of their solutions. The extended capabilities of the artificial

ants satisfy the following behaviour: the shorter the path constructed the more

amount of pheromone to be deposited to the trail of that path.

2.3.2 Artificial Ants for the Shortest Path

Let G = (V,E) be a graph where V is a set of nodes and E is a set of arcs. Each

arc (i, j) ∈ E between nodes i and j is associated with artificial pheromone, i.e., τij ,

with i, j ∈ V . Initially, all arcs are assigned with an equal amount of pheromone.

Each ant consists of two modes.

On the forward mode ants construct solutions probabilistically, starting from the

start node. The probability of ant k to choose the next node j when its current

node, i.e., the last node stored in its memory, is i, is calculated as follows:

pkij =















ταij∑
l∈Nk

i
ταij
, if j ∈ N k

i ;

0, if j 6∈ N k
i ,

(2.5)

where N k
i is the neighbourhood of unvisited nodes of ant k when its current node is

i, τij is the amount of existing pheromone in arc (i, j) and α is a constant param-

eter. Each ant repeats the node-by-node decision mechanism until it reaches the

19



Chapter 2. From Natural to Artificial Ant Colonies

destination node, i.e., when N k
i is empty. However, it may be the case that N k

i is

empty but the ant did not reach the destination node. This corresponds to a dead

end in the graph, and, thus, the predecessor of node i is added into N k
i to enable

the ant to escape from it.

On the backward mode ants retrace their path to deposit pheromone from the des-

tination node to the start node. In case the path contains a dead end then it is

removed. An ant k updates the existing values of τij , which correspond to the arcs

of the path as follows:

τij ← τij +∆τk, (2.6)

where ∆τk is the value where the existing τij is increased. The value can be propor-

tional to the quality of the solution or constant. Additionally, pheromone evapora-

tion is performed where the intensity of all the existing pheromone trails is reduced

as follows:

τij ← (1− ρ)τij , ∀(i, j) ∈ E, (2.7)

where ρ ∈ (0, 1] is a constant parameter that represents the evaporation factor.

Evaporation is applied when all ants reach the destination node and complete their

forward mode. After evaporation, the ants switch to their backward mode to deposit

pheromone and reach the start node, where their memory is cleared. An iteration t

is completed when all ants complete their backward mode. Another iteration t + 1

starts using the pheromone trails generated by the ants up to iteration t.

2.4 Summary

In this chapter we have presented the behaviour of real ant colonies and the first

simple algorithm based on ants’ foraging behaviour. From the double bridge exper-

iments we have seen that real ant colonies can find the shortest path. Similarly, the

20



Chapter 2. From Natural to Artificial Ant Colonies

experiments for artificial ant colonies based on a simple probabilistic model show,

to some extent, the same behaviour.

In general, nature can teach us a lot on the way to solve problems in the real-world.

For instance, it is important to have a colony size larger than one in order to solve

problems. Another important aspect is the pheromone evaporation, which helps

the ants to forget bad decisions made in previous iterations. Hence, this can be

interpreted as a benefit for both static and dynamic graphs. On static graphs it

may help to avoid get trapped in a local optimum and improve the solution quality,

whereas on dynamic graphs it may help to eliminate pheromone trails that bias the

ants not to adapt well to the newly generated graph.

Moreover, on static graphs the pheromone updates with a proportional amount

of pheromone may work in favour of the detection to find the shortest path faster.

Differently on dynamic graphs, where the cost of the arcs may change, the pheromone

updates with a constant amount of pheromone seems a better choice because any

bad solution on an old environment may be good for the new one. Hence, equal

probabilities are given for the decision of the ants in the new environment.

21



Chapter 3

Combinatorial Optimization and

Metaheuristics

3.1 Combinatorial Optimization

In general, an optimization problem can be defined as the problem of finding the

best solution, called global optimum, from a set of feasible solutions. Formally an

instance of an optimization problem can be defined as:

Π = (X,Ω, f), (3.1)

where Π is the optimization problem, X is a set of solutions, called the search space,

Ω is a set of constraints and f is the objective function which assigns an objective

value f(x) to each solution x ∈ X . A feasible solution x is a set of optimization

variable values x = {x0, . . . , xn}, that satisfies the constraints Ω. If Ω is empty, then

the problem is called unconstrained, in which no constraints need to be satisfied.

An optimization problem can be either a maximization or a minimization problem,

such that f(x∗) ≥ f(x), ∀x ∈ X or f(x∗) ≤ f(x), ∀x ∈ X , respectively, where x∗

22



Chapter 3. Combinatorial Optimization and Metaheuristics

is the global optimum solution. A COP can be defined as an optimization problem

with a finite set of discrete optimization variables. Note that in this thesis, we only

consider minimization COPs that are modelled using weighted graphs, i.e., routing

problems.

3.1.1 Examples of Routing Problems

Routing problems are usually represented by a complete weighted graph G = (V,E),

where V = {1, . . . , n} is a set of n nodes and E = (i, j) : i 6= j is a set of arcs

connecting the nodes. Each arc (i, j) is associated with a weight dij which is the

distance between i and j. Typical examples are the TSP and its variants, e.g., the

VRP.

Intuitively, the TSP is the problem in which a salesperson wants to find the shortest

path through a given set of customers in different cities, starting from his home city,

by visiting each city once before finally returning home. Differently, the VRP is the

problem in which a number of vehicles with limited capacity are routed in order

to satisfy the demand of all customers at a minimum cost (usually the total travel

time), starting from and returning to the depot. For a formal description of these

problems see Sections 4.6.1 and 4.6.2.

3.1.2 Applications

Considering that many problems have a finite number of alternative solutions to be

addressed, they can be formulated as COPs. Many practical problems arise from

physical networks, such as streets, railway stations, communication networks, etc.

Such problems can be easily represented with graphs. An example of a COP with a

physical network that is represented on a graph is the TSP.

23



Chapter 3. Combinatorial Optimization and Metaheuristics

The TSP is a classical optimization problem that has wide applications in rout-

ing and scheduling, such as the VRP which is closely related in the field of trans-

portation, distribution of goods and logistics [38]. The arc routing counterpart of

the VRP, i.e., the capacitated arc routing problem, has also many applications in

the real-world including salt routing optimization [108, 122], urban waste collection

[55, 190] and snow removal [34, 212].

3.2 Computational Complexity

COPs are usually easy to state, since they are characterized by a finite set of feasible

solutions, but they are very difficult to solve by algorithms. The challenge arises

from the exponential growth of the number of possible solutions as the problem size

increases [142]. For example, in a TSP with n cities, the number of possible feasible

solutions is n!. Hence, evaluating all the possible solutions, using exhaustive search,

for a large problem instance to find the best one becomes impractical because of

efficiency (running time).

The efficiency of an algorithm for a given problem Π is usually measured using

the worst-case complexity. In other words, the worst-case complexity is the longest

running time needed by the algorithm to find a solution for Π of any input size n.

Usually, the worst-case complexity is formalized using the O(·) notation. Let g(n)

and h(n) be functions from the positive integers. Then, we say g(n) = O(h(n)) if

and only if g(n) ≤ Φ× h(n), ∀n ≥ n0, where Φ and n0 are two positive constants.

Moreover, the theory of NP-completeness characterizes the difficulty of COPs [105],

and distinguishes between two classes of problems: the class P in which a COP is

solvable by a deterministic algorithm in polynomial time, i.e., the maximum amount

of computation time needed to find the global optimum of any instance of size n of

24



Chapter 3. Combinatorial Optimization and Metaheuristics

Π is bounded by a polynomial in n, and the class of NP in which a COP is solvable

by a non-deterministic algorithm in polynomial time.

A typical example of a P problem is the simple shortest path problem which can

be solved by Dijkstra’s algorithm in polynomial time [76]. For the great majority of

COPs the computation time of the best algorithms known increases exponentially

as the size of the problem instance increases, such as the TSP which is an NP
problem. Therefore, no polynomial bound considering the worst-case complexity

has been found so far. For example, the computation time of exhaustive search

in the TSP is O(n! × n), and, thus, the time to find the global optimum solution

increases exponentially. A faster algorithm based on dynamic programming solves

the TSP in O(n22n) [125].

Although it was proved that P ⊆ NP [105], after decades of research efforts there

is no evidence that prove that P = NP or P 6= NP. Since no polynomial-time

algorithm has been found yet to solve any problems in NP, most researchers tend

to accept and assume that P 6= NP, but still it is an open research question. Often,

the hardest problems classified in NP, are called NP-complete.

3.3 Methods for NP-complete Problems

Solving NP-complete COPs is a very challenging task due to their time complexity.

Moreover, they may contain many local optima solutions which make it even more

difficult for an algorithm to reach the global optimum solution; see Figure 3.1.

Formally, a local optimum solution can be defined as a solution x such that f(x) 6=
f(x∗) and f(x) ≤ f(x′), ∀x′ ∈ N (x), where x∗ is the global optimum which is defined

as f(x∗) ≤ f(x′), ∀x′ ∈ X and N (x) is the neighbourhood of a solution x which is

25



Chapter 3. Combinatorial Optimization and Metaheuristics

Figure 3.1: Illustration of local optima and a global optimum.

defined as a function N : X 7→ 2X which assigns to every x ∈ X a set of neighbours

N (x) ⊆ X .

An algorithm may consider a very poor-quality local optimum solution as the global

one and get stuck to it. There are two classes of solution methods to address COPs:

• Exact methods: guarantee to provide the global optimum solution, but often

not efficiently; and

• Heuristic methods: do not guarantee to provide the global optimum solution,

but often provide a solution near the global optimum efficiently.

Due to the NP-completeness of most COPs, exact methods need, in the worst case

scenario, exponential time to find the global optimum which makes them impractical.

Such methods suffer from the growth of computation time as the size of COPs

increases. However, with the increasing power of parallel computers the running

time of some exact methods has been improved significantly over the years. For

26



Chapter 3. Combinatorial Optimization and Metaheuristics

Algorithm 1 Greedy Constructive Heuristic

1: x ← empty solution
2: x0 ← InitialComponent
3: x← x ∪ x0
4: while (x is not a complete solution) do
5: xc ← SelectGreedyComponent(x)
6: x ← x ∪ xc
7: end while
8: return x

example, in 2006 a TSP instance of 85,900 points was solved to optimality taking

136 years of CPU-Time [5].

On the other hand heuristic methods sacrifice optimality for the sake of efficiency. In

other words, they are able to provide a near-optimum solution in polynomial time.

For example, the Lin-Kernighan heuristic can provide near-optimum solutions for

the TSP in a few seconds of computation time [126]. Therefore, heuristics are useful

on difficult COPs, especially large problem instances, in which exact methods require

extensive run time and huge computational efforts. Typically, heuristic methods are

classified into two classes:

• Constructive Heuristics: that generate solutions from scratch by iteratively

adding solution components to an initial empty solution, until a feasible solu-

tion is completed; and

• Local Search Heuristics: that repeatedly attempt to improve a current feasible

solution by local changes.

A basic constructive heuristic is to add a solution component step by step in a greedy

fashion as presented in Algorithm 1. For example, a popular example of a greedy

constructive heuristic is the nearest-neighbour heuristic for the TSP. A solution x

is built as follows. Function InitialComponent adds an initial random city as the

first solution component, denoted as x0. Then the nearest city, i.e., the city that has

27



Chapter 3. Combinatorial Optimization and Metaheuristics

Algorithm 2 Iterative Improvement Heuristic

1: x← GenerateSolution
2: repeat
3: N (x) ← GenerateNeighbourhood(x)
4: x′ ← FindBest(N (x))
5: if (f(x′) < f(x)) then
6: x← x′

7: end if
8: until (no further improvement of x)
9: return x

not been selected yet and has the smallest distance from the current one, is selected

which is defined by function SelectGreedyComponent and is added to x using the

∪ operator. This process is repeated until all cities are visited. A feasible solution

is completed by adding at the end the first city of the solution.

A basic local search heuristic is to generate neighbourhood solutions for the initial

solution, generated by function GenerateSolution, and search to find the best one

from the neighbourhood to replace the initial solution, which is defined by function

GenerateNeighbourhood. This process is repeated until no further improvement

is found and it is often called iterative improvement or hill-climbing as presented

in Algorithm 2. A popular example of an iterative improvement heuristic is the

k-exchange for the TSP [164]. Given a solution, a 2-exchange neighbour solution

is generated by exchanging two pairs of arcs. Then, a 2-exchange neighbourhood

consists of solutions with all possible ways of exchanging arcs.

The former heuristics are able to provide a solution faster than local search heuristics,

whereas the latter heuristics usually provide a better solution than the constructive

heuristics. This is due to the generation of neighbourhood which usually requires a

bit more computation time than adding solution components. Moreover, construc-

tive heuristics generate a limited number of solutions since they only have a single

searching iteration, whereas the local search heuristics constructs a neighbourhood

of solutions that provide a searching mechanism. Hence, they are more likely to find

28



Chapter 3. Combinatorial Optimization and Metaheuristics

a better solution than constructive heuristics, usually a local optimum solution. A

disadvantage of a local search heuristic is that the algorithm may terminate in a

poor-quality local optimum. A direct solution to this problem is to restart the local

search and start from a new initial solution. From some experiments it was observed

that the improvements by restarting the local search were not very significant [139].

3.4 Metaheuristics for Combinatorial Optimiza-

tion

To avoid getting stuck in a local optimum solution and guide heuristics into promis-

ing areas in the search space to provide high quality solutions, metaheuristics have

been widely used. Metaheuristics can be defined as a general algorithmic framework

that can define problem-specific heuristic methods to a specific problem, and with

few modifications to a wide set of different optimization problems.

Examples of metaheuristics that generalize the constructive and local search heuris-

tics are: the iterated local search (ILS) [170], guided local search (GLS) [260] and the

greedy randomized adaptive search procedures (GRASP) [85]. Their difference is in

the way the two heuristic methods are activated since different algorithmic concepts

are used. For example, GRASP consists of a constructive phase and a local search

phase, where a greedy randomized solution is generated in which the local search is

applied. ILS and GLS attempt to perform stochastic search in a space of the local

optima with respect to some local search algorithms using the perturbed solution of

the local optimum solution found previously as the new initial solution for the next

perturbation iteration and using a dynamic objective function with penalties that

are updated on every iteration, respectively.

29



Chapter 3. Combinatorial Optimization and Metaheuristics

Another type of metaheuristics is the nature-inspired algorithms that are inspired

and use abstract models from natural phenomena or physical processes. Popular

examples are EAs, simulated annealing (SA), tabu search (TS), estimatation of

distribution algorithms (EDAs), bee colony optimization (BCO) and ACO. Since in

this thesis we deal only with nature-inspired algorithms we describe them in detail

in the following sections.

3.4.1 Evolutionary Algorithms

EAs refer to a class of three main algorithmic developments inspired from natural

evolution: genetic algorithms (GAs) [129], evolutionary programming (EP) [89] and

evolution strategies (ES) [240]. The main concept of EAs is the “survival of the

fittest”.

The common characteristics of these approaches are that they are population-based

and iterative. Each individual (chromosome) in the population represents a potential

solution to the optimization problem under consideration, and, thus, a specific point

in the search space. The actual solution represented is otherwise known as the

genotype of an individual. The individuals are able to exchange information using

search operators, i.e., artificial crossover and mutation, and compete with each other

using selection.

The selection operator considers the fitness (solution quality) of each individual,

where the fittest ones are most possibly selected to generate the next generation.

The fitness is otherwise known as the phenotype of an individual. The crossover

operator considers two individuals and exchanges a certain amount of their existing

content. In result, new individuals are generated, called the offspring. The mutation

operator considers a single individual and modifies its contents randomly. Crossover

and mutation operators are applied with probabilities pc and pm, respectively.

30



Chapter 3. Combinatorial Optimization and Metaheuristics

Algorithm 3 Evolutionary Algorithm

1: t← 0
2: P (0)← InitializePopulation(µ)
3: xbs ← FindBest(P (0))
4: while (termination condition not met) do
5: P ′(t)← Selection(P (t))
6: Crossover(P ′(t), pc)
7: Mutation(P ′(t), pm)
8: xib ← FindBest(P ′(t))
9: if (f(xib) < f(xbs)) then
10: xbs ← xib

11: end if
12: t← t + 1
13: P (t)← P ′(t− 1)
14: end while
15: return xbs

The differences of different EAs lie on the representation of the individuals and the

search operators used. For example, EP and ES use only the mutation operator

and represent continuous variables, whereas GAs use both operators and represent

discrete variables. Note that in this paper when we refer to EAs we consider the

development of GAs since they are often used for COPs.

The general framework of EAs is represented in Algorithm 3, where P (t) denotes

the population of individuals at iteration t, µ the population size, and xbs the best

individual found so far. To define an EA the following functions have to be specified:

• InitializePopulation: generates the initial population.

• FindBest: returns the best individual in the current population for generation

t, denoted as xib.

• Selection: selects individuals (parents) probabilistically, where the fittest

ones have more chances to be selected.

• Crossover: combines parents by exchanging information to generate new in-

dividuals (offspring).

31



Chapter 3. Combinatorial Optimization and Metaheuristics

• Mutation: perturbs one individual randomly.

3.4.2 Simulated Annealing

SA is inspired by the physical annealing, which is the thermal process of solids

to obtain lower energy state [146]. The solids are heated to increase their size and

then the temperature is decreased very slowly, to obtain the perfect configuration by

minimizing the internal energy state. Differently from EAs, SA is a single population

algorithm.

The general idea of SA is to accept worse solutions under some criteria in order

to escape a local optimum solution. Initially, the algorithm starts with a feasible

solution x and at each iteration, a neighbour solution x′ ∈ N (x) is generated that

aims to replace x. If x′ improves x then it is accepted, otherwise it is probabilistically

accepted. The probability depends on the difference in the objective function of the

two solutions, i.e., f(x)− f(x′), and on the temperature parameter T . Inspired by

the physical annealing process, T is lowered, and, thus, the probability of accepting

a worse solution than the current one is reduced.

The probability paccept to accept a solution x′ when it is worse than the current one

x is based on the Metropolis distribution [183], and it is defined as follows:

paccept(x, x
′, T ) =















1, if f(x′) < f(x),

exp
(

f(x)−f(x′)
T

)

, otherwise.

(3.2)

The general framework of the algorithm is presented in Algorithm 4. To define a

SA algorithm the following functions have to be specified:

32



Chapter 3. Combinatorial Optimization and Metaheuristics

Algorithm 4 Simulated Annealing Algorithm

1: t← 0
2: x← GenerateSolution
3: T ← InitializeTemperature
4: xbs ← x
5: while (external-loop termination condition not met) do
6: while (internal-loop termination condition not met) do
7: x′ ← GenerateNeighbour(x)
8: x← AcceptSolution(x,x′,T )
9: if (f(x) < f(xbs)) then
10: xbs ← x
11: end if
12: end while
13: T ← UpdateTemperature
14: t← t + 1
15: end while
16: return xbs

• InitializeTemperature: assigns an initial value for the temperature param-

eter.

• GenerateSolution: generates the initial solution.

• GenerateNeighbour: chooses a new solution x′ in the neighbourhood of solu-

tion x.

• AcceptSolution: uses Equation 3.2 to decide whether to accept or not solution

x′.

• UpdateTemperature: returns a new value for T .

3.4.3 Tabu Search

TS uses memory structures to guide the search process [117, 118]. It is not com-

pletely inspired from nature but it emulates the human problem solving process

33



Chapter 3. Combinatorial Optimization and Metaheuristics

Algorithm 5 Tabu Search Algorithm

1: t← 0
2: x← GenerateSolution
3: InitliazeMemory
4: xbs ← x
5: while (termination condition not met) do
6: N ′(x)← GenerateModifiedNeighbourhood(x)
7: x← FindBest(N ′(x))
8: UpdateMemory(t)
9: if (f(x) < f(xbs)) then
10: xbs ← x
11: end if
12: t← t + 1
13: end while
14: return xbs

[120]. TS has an intelligent search process and a flexible memory which restricts the

search process to move back in any previously visited solution.

More precisely, TS modifies the neighbourhood N (x) of the current solution x to

N ′(x) in order to select elements included in N ′(x) and not to select elements

excluded when N (x) is modified into N ′(x), where N ′(x) ⊆ N (x). In this way, it

keeps a short-term history record of the moves performed during the search process.

Moreover, N ′(x) may be expanded to include additional solutions that are not found

in N (x). In this way, it keeps a long-term history record [119].

In every iteration, TS makes the best possible move from x to a neighbour solution x′

even if the new solution is worse than the current one. Then, the solution attributes

of x′ are declared as tabu to prevent moving back to them. The duration of solution

attributes that are stored in the tabu list depends on the tabu list length, called

tabu tenure. However, this may forbid moves toward attractive unvisited solutions,

and, thus, aspiration criteria are used to override the duration of certain moves. A

commonly used aspiration criterion is to allow tabu-ed solutions which are better

than the current best solution.

34



Chapter 3. Combinatorial Optimization and Metaheuristics

The framework of simple TS algorithm is presented in Algorithm 5. To define a TS

algorithm the following functions have to be specified:

• GenerateSolution: generates the initial solution.

• InitializeMemory: initializes the memory structure used as “tabu”.

• GenerateModifiedNeighbourhood: generates a set of solutions, denoted as

N ′(x), that are not tabu or are tabu but satisfy the aspiration criterion.

• FindBest: returns the best solution in the current modified neighbourhood.

• UpdateMemory: updates the memory on iteration t.

3.4.4 Estimation of Distribution Algorithms

EDAs are considered as a special class of EAs [8, 151]. Similarly with other EAs,

EDAs are iterative population-based algorithms, but search operators are not used.

Instead, a probability distribution is learnt from a set of the fittest solutions, chosen

by selection, in order to avoid explicit modelling. Offspring are constructed by

sampling the probability distribution of the population.

Several EDAs with different probabilistic models have been proposed and are classi-

fied into three categories: univariate, bivariate and multivariate. Univariate EDAs

assume that each variable in the solution is independent, whereas bivariate and mul-

tivariate EDAs assume pairwise interaction and more than two interactions among

variables in the solution, respectively.

The framework of a simple EDA algorithm is presented in Algorithm 6, where P (t)

denotes the population of individuals at iteration t, µ the population size, and xbs

the best individual found so far. To define an EDA algorithm the following functions

have to be specified:

35



Chapter 3. Combinatorial Optimization and Metaheuristics

Algorithm 6 Estimation Of Distribution Algorithm

1: t← 0
2: P (0)← InitializePopulation(µ)
3: xbs ← FindBest(P (0))
4: while (termination condition not met) do
5: Selection(P (t))
6: D(t)← GenerateProbabilisticDistribution
7: P ′(t)← SampleDistribution(D(t))
8: xib ← FindBest(P ′(t))
9: if (f(xib) < f(xbs)) then
10: xbs ← xib

11: end if
12: t← t + 1
13: P (t)← P ′(t− 1)
14: end while
15: return xbs

• InitializePopulation: generates the initial population.

• FindBest: returns the best individual in the current population for generation

t, denoted as xib.

• Selection: selects individuals (parents) probabilistically, where the fittest

ones have more chances to be selected.

• GenerateProbabilisticDistribution: calculates the probabilistic model of

the current population at iteration t, denoted D(t).

• SampleDistribution: generates a new population from the current proba-

bilistic model.

3.4.5 Bee Colony Optimization

BCO is classified as a swarm intelligence (SI) algorithm, because it is inspired from

the collective behaviour of agents in nature. In nature, scout bees leave their hive

to explore sources of nectar, pollen and propolis. Then they return back to their

36



Chapter 3. Combinatorial Optimization and Metaheuristics

hive and report to foraging bees about the quantity, quality and the location of the

sources. Bees exchange information and can convince their nest mates to follow

them by performing a waggle dance. When foraging bees decide to leave the hive

they follow the trail of one of the dancing bees. In this way, they become committed

followers of the dancer bees. Foraging bees return to the hive to pass the nectar to

the food-storer bees. Then, they have three choices: (1) abandon the specific food

source and become uncommitted followers; (2) follow the path for the specific food

source again; and (3) become dance bees to recruit their nest mates. Hence, the

richer the food source, the more bee recruitments [33].

BCO is an iterative population-based algorithm, in which every artificial bee gen-

erates a feasible solution for the optimization problem [169]. Initially, each bee

represents an empty solution. Each bee consists of two passes, forward and back-

ward pass. Each forward pass consists of a predefined number of nc moves a bee

can perform. Therefore, every bee constructs a partial solution in each move of the

forward pass. Then, each forward pass corresponds to a backward pass, in which all

bees share their information about the quality of their partial solutions. The bees

decide, if they will become committed bees and drop their partial solution, or if

they will become recruiters. It is obvious that the bees with better partial objective

function have more chances to become recruiters, and, thus, follower bees inherit

the partial solution of any recruiter bee, probabilistically. For example the partial

objective function for the TSP, is the length of the partial tour. This process is re-

peated until a feasible solution is generated for all bees, and then the next iteration

begins.

There are many algorithmic developments that use the behaviour of bees in the

literature, proposed for different types of problems [169, 249, 268]. In this the-

sis, we consider the BCO development for COPs, which is in fact among the first

developments of bee algorithms [169].

37



Chapter 3. Combinatorial Optimization and Metaheuristics

Algorithm 7 Bee Colony Optimization

1: t← 0
2: P (0)← InitiliazePopulation(µ)
3: xbs ← empty solution
4: while (termination condition not met) do
5: while (complete solution not constructed) do
6: P (t)← ConstructPartialSolutions(nc)
7: EvaluatePartialSolutions(P (t))
8: LoyaltyDecision
9: RecruitingProcess
10: end while
11: xib ← FindBest(P (t))
12: if (f(xib) < f(xbs)) then
13: xbs ← xib

14: end if
15: t← t + 1
16: end while
17: return xbs

The general framework of BCO is presented in Algorithm 7, where P (t) denotes

the population of individuals at iteration t, µ the population size, and xbs the best

individual found so far. To define a BCO algorithm the following functions have to

be specified:

• InitializePopulation: generates the initial population.

• ConstructPartialSolutions: constructs a partial solution of nc steps for

each bee.

• EvaluatePartialSolutions: evaluates the partial solutions constructed in

the forward pass and begin the backward pass.

• LoyaltyDecision: each bee decides probabilistically whether to become a

recruiter bee and follow its own exploration or become an uncommitted bee

and drop its partial solution.

• RecruitingProcess: each uncommitted bee decides probabilistically which

recruiter bee to follow and inherit its partial solution.

38



Chapter 3. Combinatorial Optimization and Metaheuristics

• FindBest: returns the best bee solution in the current population for iteration

t, denoted as xib.

3.4.6 Ant Colony Optimization

ACO is classified as a SI algorithm. The inspiration of ACO algorithms comes from

the foraging behaviour of real ant colonies in nature; see Chapter 1. Since ACO

is the main metaheuristic used in this thesis, it will be discussed in great detail in

Chapter 4.

3.5 Characteristics of Metaheuristics

All metaheuristic algorithms have exploration and exploitation mechanisms. It is

very important to achieve a good balance between the exploration and exploitation

capacities in order for an algorithm to perform well for an optimization problem. In

other words, an algorithm should be able to explore the search space for high quality

or near the optimum solutions, and to exploit them. In case an algorithm performs

too much exploration, it will lead the search process to randomization, whereas too

much exploitation will lead the search process to converge in a poor quality solution.

Each metaheuristic algorithm is designed with different characteristics, where some

of those characteristics achieve the exploration/exploitation balance. In Table 3.1,

all the aforementioned metaheuristics for combinatorial optimization are classified

according to their main characteristics.

Trajectory: Refers to the way metaheuristics move in the search space. Trajectory

methods perform close jumps to the search space within the neighbourhood of a

solution. Typical examples are SA and TS [255].

39



Chapter 3. Combinatorial Optimization and Metaheuristics

Population-based: Refers to the number of search points the metaheuristic con-

sists. Population-based metaheuristics have multiple search points where each one is

associated with an individual in the population. Typical examples are EAs, EDAs,

ACO and BCO.

Global Optimizer: Refers to the way metaheuristics search. EAs, ACO, EDAs,

and BCO are considered as global optimization algorithms because they can search

in many points in the search space in parallel, whereas local optimizers, e.g., ILS,

GLS, TS, SA etc., search only a single point in the search space. Often, global

optimizers are applied with local search since they can provide good initial values

for the local optimizers to improve the solution quality.

Memory-based: Refers to the search experience, in order to avoid moving to the

same area in the search space. TS is the only metaheuristic that uses memory

explicitly. EAs, EDAs, ACO and BCO algorithms have a kind of implicit memory,

if we consider the solutions stored in the population or the pheromone trails, which

are updated adaptively, on each iteration.

Probabilistic Vector: Refers to the way some metaheuristics construct their so-

lutions. EDAs construct their solutions probabilistically on each iteration using a

probabilistic vector based on the solution quality of the previous iteration, whereas

the other metaheuristics have an actual solution, or solutions for EAs, that are up-

dated or replaced by new ones generated under other considerations. ACO and BCO

have this characteristic implicitly since each move of an ant depends on the existing

amount of pheromone located on each link and each move of a bee depends on the

existing number of visits bees made on each link, respectively. For instance, the

pheromone trails can be seen as the probabilistic vector in ACO.

Dynamic Objective: Refers to the objective function a metaheuristic uses with re-

spect to the optimization problem. GLS uses a dynamic objective function whereas

40



Chapter 3. Combinatorial Optimization and Metaheuristics

Table 3.1: Classification of the aforementioned metaheuristics according to their
characteristics, where

√
, ⊥ and χ indicates that the characteristic is present,

partially present and not present, respectively.

Characteristic EAs SA TS EDA ACO BCO ILS GLS GRASP

Trajectory χ
√ √

χ χ χ χ χ χ

Population-Based
√

χ χ
√ √ √

χ χ χ

Global Optimizers
√

χ χ
√ √ √

χ χ χ

Memory-Based ⊥ χ
√ ⊥ ⊥ ⊥ ⊥ ⊥ χ

Probabilistic Vector χ χ χ
√ √ √

χ χ χ

Dynamic Objective χ χ χ χ χ χ χ
√

χ

Nature-Inspired
√ √ ⊥ √ √ √

χ χ χ

the remaining use a static objective function. GLS introduces penalties to the func-

tion that cause the objective to change.

Nature-Inspired: Refers to the inspiration of the metaheuristics. It is a minor

characteristic, however it is important to understand the behaviour of the algorithm.

EAs, ACO, BCO, EDAs and SA are inspired from nature, e.g., natural evolution,

social insects, physical phenomena, etc. TS is partially inspired from nature, e.g,

emulating the human problem solving process [120], whereas ILS, GLS, and GRASP

are inspired by techniques based on the efficient solution of the problem.

3.6 Performance Analysis of Metaheuristics

The weak theoretical foundations of metaheuristics have been a major criticism for

the evaluation concerning their performance, since there is no deep understanding

why and how these algorithms work. More precisely, a theoretical analysis can

guarantee the performance of an algorithm for all problem instances.

41



Chapter 3. Combinatorial Optimization and Metaheuristics

However, mathematically it is very challenging to provide a theoretical analysis for

metaheuristics because they are complex algorithms and combine several methods in

one. Convergence proofs for different metaheuristics have been proposed, but they

are usually based on a very simple version of a metaheuristic, which is applied on a

very simple optimization problem [83, 121, 236].

Due to the challenges regarding theoretical analysis, metaheuristics are usually ana-

lyzed and demonstrated empirically. Differently from theoretical analysis, empirical

analysis is easier, since the implementation of an algorithm is not as challenging as

theoretical analysis. However, it provides performance guarantees only for a limited

number of problem instances, whereas theoretical analysis may cover all problem

instances of an optimization problem.

The empirical analysis of metaheuristics usually takes into account two main aspects:

the effectiveness and efficiency of the algorithm. The effectiveness is based on the

solution quality, i.e., the best an algorithm can perform. The solution quality results

are usually averaged out of several runs of the algorithm. The efficiency is based

on the CPU-time, i.e., the computational effort of the algorithm. Therefore, for a

fair comparison of the efficiency between algorithms, the same implementation style

should be used.

In addition, further characteristics of the metaheuristics should be taken into ac-

count. For example, EAs and ACO algorithms perform several evaluations per iter-

ation because they are population-based algorithms, whereas SA and TS perform a

single evaluation per iteration. Therefore, each algorithm should perform the same

number of function evaluations, in order to have a fair comparison among different

algorithms. More precisely, in case an EA with a population size of µ individuals is

compared with a SA algorithm, then a single iteration of an EA corresponds to µ

iterations of the SA algorithm.

42



Chapter 3. Combinatorial Optimization and Metaheuristics

3.7 Summary

In this chapter we have presented the combinatorial optimization framework and

the NP-completeness theory that characterizes the difficulty of COPs. Different

metaheuristics have been applied on COPs since they trade their optimality for

efficiency. However, the theoretical work of metaheuristics is weak since they are

complex algorithms and combine several methods. For this reason, metaheuristics

are often analyzed empirically on existing benchmark problem instances, either with

static or dynamic environments.

Several existing metaheuristics are explained, in this chapter, such as: EAs, SA, TS,

EDAs, BCO, and ACO. Moreover, the aforementioned metaheuristics are classified

according to their characteristics. More information for different metaheuristics and

their applications can be found in [45].

In general, COPs are intriguing because they are easy to define but often difficult

to solve. Moreover, many problems in the real-world can be modelled as COPs.

Therefore, it is important to find or develop algorithms that solve them efficiently.

The difficulty to solve most COPs is explained by the NP-completeness theory,

which classifies problems according to their difficulty.

43



Chapter 4

The Ant Colony Optimization

Metaheuristic

4.1 Gentle Introduction to ACO

ACO algorithms are inspired from the foraging behaviour of real ant colonies as

described in detail before in Chapter 1. In fact, this self-organizing behaviour is an

example of stigmergy [254], where ants stimulate the remaining ants in the colony

by modifying the environment via pheromone trail updating.

Moreover, the classical TSP was important for the development of the ACO frame-

work. This is because it is the most fundamental NP-complete COP that has many

extensions in several applications. Also, it is a graph problem and, thus, ACO can

be easily applied and understood; see Figure 2.6. In the next sections of this chapter

we describe ACO with respect to the application on the TSP.

The general idea of ACO is to let ants walk on the links of cities in a graph G, and

construct a feasible solution. Each ant has a memory that records the movements

44



Chapter 4. The Ant Colony Optimization Metaheuristic

Algorithm 8 Ant Colony Optimization for SOPs

1: t← 0
2: P (0)← InitializePopulation(µ)
3: InitializePheromoneTrails(τ0)
4: xbs ← empty solution
5: while (termination condition not met) do
6: P (t)← ConstructAntSolutions
7: PheromoneEvaporation(ρ)
8: DepositPheromone(P (t))
9: xib ← FindBest(P ′(t))
10: if (f(xib) < f(xbs)) then
11: xbs ← xib

12: end if
13: t← t + 1
14: end while
15: return xbs

to the cities. The solution construction is based on existing pheromone trails and

heuristic information. When all ants construct a feasible solution, pheromone is

added to the path represented by each ant. In this way, the solutions are stored to

the pheromone trails and considered for the construction phase of the next iteration.

An indirect communication is achieved between the ants via their pheromone trails.

Furthermore, a small amount, i.e., ρ, of pheromone is deducted from all the links of

the cities, to help ants “forget” bad choices made in previous iterations.

The exploitation of ACO metaheuristic is achieved in the constructive phase with

the consideration of heuristic information, e.g., in case of the TSP, it is the distance

between the cities, whereas exploration is achieved by the pheromone trails. If ACO

considers only heuristic information, the closest cities are more likely to be selected,

which corresponds to a classic stochastic greedy algorithm. If ACO considers only

pheromone information, a random tour is more likely to be selected because the

existing pheromone trails are equal in the initial phase.

The general framework of the ACO metaheuristic for SOPs is presented in Algo-

rithm 8, where P (t) denotes the population of ants at iteration t, µ the population

45



Chapter 4. The Ant Colony Optimization Metaheuristic

size, τ0 is the initial pheromone value, and xbs the best ant found so far. To define

an ACO algorithm the following functions have to be specified:

• InitializePopulation: generates the initial population of ants.

• InitializePheromoneTrails: initializes all the trails with an equal value of

pheromone.

• ConstructAntSolutions: each ant constructs a feasible solution.

• PheromoneEvaporation: all pheromone trails are reduced with a constant

value.

• DepositPheromone: each ant deposits pheromone to mark its solution.

• FindBest: returns the best bee solution in the current population for iteration

t, denoted as xib.

4.2 Characteristics and Properties

The ACO metaheuristic is categorized in the class of SI algorithms. Some researchers

consider ACO as special class of EAs because it is believed that the communication

ants have via their pheromone trails is evolution. In contrast, other researchers

believe that ACO is not an EA because it does not have selection and crossover, and,

thus, evolution is not achieved. However, EAs and ACO have similar characteristics

since both of them are population-based, global optimizers and iterative. Moreover,

they both use adaptive memory, if we consider the population of individuals on EAs

and the pheromone table on ACO as memory that is updated adaptively.

If ACO algorithms and EDAs are taken into account and compared, it will be ob-

served that their similarities are more than their differences. EDAs are considered as

46



Chapter 4. The Ant Colony Optimization Metaheuristic

EAs based on a probabilistic model. For example, the population-based incremental

learning (PBIL) algorithm [8], an EDA, starts from an initial random population of

individuals, the next population is generated based on the probabilistic vector. Then,

the new population is evaluated and the probabilistic vector is modified accordingly.

Similarly, in ACO the pheromone table constructed by the ants on each iteration

has a similar role with the probabilistic vector in the PBIL, i.e., the pheromone

trail values are the probabilities of selecting the next city to move. Their main

difference is that in the PBIL all the components of the probability vector are eval-

uated independently. Both EDAs and ACO algorithms are constructive heuristics

since the solutions are generated from scratch probabilistically, whereas on EAs the

population exists and is evolved using the search operators.

Similarly with the other metaheuristics, it is very challenging to have theoretical

analysis for ACO. A simple ACO metaheuristic, known as 1-ANT, has been used to

provide theoretical proofs [148, 198]. 1-ANT assumes only a single ant and heuristic

information is not considered. Hence, the theoretical ACO metaheuristic version

has many differences from the practical ACO metaheuristic, which almost changes

the general concepts of the traditional ACO framework.

4.3 Historical Contributions

In this section, the main contributions of ACO algorithms are reviewed starting from

the first biological inspiration to the different applications regarding ACO.

• 1959: The notion of stigmergy was described for the termites and defined as

“stimulation of workers by the performance they have achieved” [104].

• 1983: The probabilistic behaviour of ants was studied [54].

47



Chapter 4. The Ant Colony Optimization Metaheuristic

• 1988: The collective and self-organizing behaviour of ants was studied [197].

• 1989: The double bridge experiments of Argentine ant species I. humilis were

performed [110].

• 1990: The first probabilistic model was developed inspired from the behaviour

of ants [53].

• 1991: Three versions of Ant System (AS) were proposed called ant-destiny,

ant-quantity and ant-cycle [67]. In the first two versions the ants update their

pheromone directly after they choose one neighbour city, whereas in the last

one the pheromone is updated after all ants constructed their solutions.

• 1993: It was found that in the ant species Lasius niger the ants returning from

rich food sources deposit more pheromone than those returning from poorer

food sources [10].

• 1996: The final version of the AS was developed for discrete optimization

using the ant-cycle version due to its better performance than the other two

versions [68].

• 1996: The first application of ACO in telecommunication networks was de-

veloped [228].

• 1997: Two of the best performing ACO algorithms were proposed (initially

for the TSP), i.e., MAX −MIN AS (MMAS) [244] and Ant Colony Sys-

tem (ACS) [65]. In addition the first integration of ACO with a local search

operator was proposed [244].

• 1998: A multi-colony ACO was proposed where independent ant colonies run

in parallel [242].

• 1999: Stigmergy has been discussed for artificial ants in ACO [254].

48



Chapter 4. The Ant Colony Optimization Metaheuristic

• 1999: A nondeterministic ACO algorithm was proposed, called approximate

nondeterministic tree search [173].

• 1999: The first ACO for multi-objective optimization was proposed [100].

• 2000: A convergence proof for ACO was proposed [115].

• 2001: The first real-world applications based on ACO metaheuristic1 was

developed.

• 2002: The population-based ACO (P-ACO) was proposed, which is the memory-

based version of traditional ACO [112].

• 2001: The first ACO for dynamic optimization was proposed [114].

• 2002: The first ACO for stochastic optimization was proposed [12].

• 2004: The first ACO algorithm for continuous optimization was proposed

[237].

• 2005: An ACO algorithm was proposed to train Neural Networks [16].

• 2009: A runtime analysis of a simple ACO algorithm was proposed [198].

Currently, most researchers of the ACO community are focused to the swarm robotics

area using ideas from ants [61, 62]. Although much research has been done on dif-

ferent applications of ACO, most of it has been done considering stationary environ-

ments, whereas the research of ACO for DOPs is still in its infancy. However, DOPs

are important problems to address, since they have many similarities to real-world

situations, but they are also much more complex (more will be discussed in Chapter

6).

1All applications currently used in the industry are available at www.antoptima.com

49

www.antoptima.com


Chapter 4. The Ant Colony Optimization Metaheuristic

4.4 Ant System (AS): The First ACO Algorithm

The AS consists of an initial phase and two iterative main phases, i.e., ants’ solution

construction and pheromone update [68]. In the initial phase, the pheromone trails

are set with an equal amount τ0, such that ∀(i, j), τij = τ0 = µ/Cnn, where µ is

the number of ants and Cnn is the cost of a greedy constructive heuristic described

in Algorithm 1, e.g., for the TSP the nearest-neighbour heuristic is use, where a

salesperson starts at a random city and repeatedly visits the nearest unvisited city

until all have been visited.

In every iteration µ ants construct their solutions concurrently, each one starting

from a randomly chosen city. Each ant k builds a solution city-by-city using a

probabilistic decision rule, called random proportional rule. At each construction

step the city selected is added to the partial solution of the ant. In particular, the

probability that ant k chooses the next city j, when the last city in the partial tour

is i, i.e., the current city, is defined as follows:

pkij =
[τij ]

α[ηij ]
β

∑

l∈N k
i
[τil]α[ηil]β

, if j ∈ N k
i , (4.1)

where τij and ηij are the existing pheromone trail and heuristic information available

a priori, respectively, α and β are the constant parameters that determine the relative

influence of pheromone trail and the heuristic information, respectively, and N k
i is

the neighbourhood of unvisited cities of ant k when its current city is i. For the

case of the TSP the heuristic information is defined as ηij = 1/dij, which is inversely

proportional to the the distance, i.e., dij, between cities i and j.

After all ants build a feasible solution T k the pheromone trails are updated. At

the beginning all the pheromone trails are lowered by a constant factor, due to the

50



Chapter 4. The Ant Colony Optimization Metaheuristic

pheromone evaporation, such that:

τij ← (1− ρ)τij , ∀(i, j) ∈ E, (4.2)

where 0 < ρ ≤ 1 is the pheromone evaporation rate, which helps the ants to eliminate

pheromone trails that are not used frequently and have been created from bad

decisions previously taken. After evaporation, all ants deposit pheromone on the

arcs of their path as follows:

τij ← τij +

µ
∑

k=1

∆τkij , ∀(i, j) ∈ E, (4.3)

where ∆τkij is the amount of pheromone ant k deposits on the arcs that belong to

its tour T k and is defined as follows:

∆τkij =















1/Ck, if (i, j) ∈ T k,

0, otherwise,

(4.4)

where Ck is the tour cost of the tour T k constructed by ant k. As a result, the

amount of pheromone of each ant is proportional to the solution quality. Hence, the

better the ant’s tour, the more pheromone an ant deposits.

4.5 AS Variations

After the development of the first ACO algorithm, i.e., AS, several variations have

been proposed that mainly differ in the pheromone update. Moreover, an impor-

tant extension has been proposed which has more differences than similarities from

the AS. The main variations and the extension of AS are discussed in the next

subsections.

51



Chapter 4. The Ant Colony Optimization Metaheuristic

4.5.1 Elitist AS

The Elitist AS (EAS) uses an elitist strategy where the best ant deposits an addi-

tional pheromone to its tour [68]. The initial phase and the solution construction

phase are the same as in the AS algorithm. However, after pheromone evaporation,

all the ants deposit pheromone as follows:

τij ← τij +

µ
∑

k=1

∆τkij + e∆τ bsij , ∀(i, j) ∈ E, (4.5)

where ∆τkij is defined as in Equation 4.4, e is the parameter that determines the

influence of the elitist strategy and ∆τ bsij is defined as follows:

∆τ bsij =















1/Cbs, if (i, j) ∈ T bs,

0, otherwise,

(4.6)

where Cbs is the tour cost of tour T bs which is constructed by the best-so-far ant.

Note that the best-so-far ant is a special ant that may not belong to the population

in every iteration.

4.5.2 Rank-Based AS

In the rank-based AS (ASrank) each ant deposits an amount of pheromone propor-

tional to its rank [29]. In addition, the best-so-far ant always deposits a higher

amount of pheromone than the other ants as in EAS. The initial phase and the so-

lution construction are the same as in the AS algorithm. However, after pheromone

evaporation all the ants are ranked according to their solution quality such that only

the w−1 best-ranked ants and the best-so-far ant are allowed to deposit pheromone.

52



Chapter 4. The Ant Colony Optimization Metaheuristic

The best-so-far ant receives the highest weight to deposit pheromone, i.e., w, whereas

the r-th best ant of the iteration has weight max{0, w−r}. Formally, the pheromone

update in ASrank is defined as follows:

τij ← τij +

w−1
∑

r=1

(w − r)∆τ rij + w∆τ bsij , (4.7)

where ∆τ bsij is defined as in Equation 4.6 and ∆τ rij = 1/Cr where Cr is the tour cost

of T r of the r−th best-ranked ant.

4.5.3 MAX −MIN AS

TheMMAS is one of the best performing and well-studied ACO algorithms [244,

245]. Differently from the previous AS variations, in the MMAS only either the

best-so-far ant or the iteration-best ant is allowed to deposit pheromone. The initial

phase and the solution construction phase are the same as in the AS algorithm,

whereas the pheromone update is defined as follows:

τij ← τij +∆τ bestij , ∀(i, j) ∈ T best, (4.8)

where ∆τ bestij = 1/Cbest. In case the best-so-far ant is allowed to deposit pheromone

∆τ bestij = 1/Cbs, whereas in case the iteration-best ant is allowed to deposit pheromone

∆τ bestij = 1/C ib, where C ib is the tour cost of the best ant of the current iteration.

Moreover, the pheromone trails are bounded to the interval [τmin, τmax], where τmin

and τmax are the lower and upper limits, respectively. Since only the best ant

is allowed to deposit pheromone, high intensity of pheromone may be generated

to a, suboptimal, solution. Hence, the mechanism that restricts the range of the

pheromone trails avoids stagnation behaviour. Finally, in case of search stagnation

or if for a given number of algorithmic iterations no improvement is found the

53



Chapter 4. The Ant Colony Optimization Metaheuristic

pheromone trails are re-initialized to an estimate of the upper pheromone trail limit

to increase exploration.

4.5.4 Best-Worst AS

In the Best-Worst AS (BWAS) only the best-so-far and the iteration-worst ants

update their pheromone trails positively and negatively, respectively [42, 43]. The

initial phase and the construction of solutions phase are the same as in the AS

algorithm, whereas the pheromone update is defined as follows:

τij ← τij +∆τ bsij , ∀(i, j) ∈ T bs, (4.9)

where ∆τ bsij is defined as in Equation 4.6. In addition, the arcs that belong to the

iteration-worst ant are penalized if they are not present in T bs, such that:

τij ← (1− ρ)τij , ∀(i, j) ∈ T iw, (i, j) /∈ T bs, (4.10)

where T iw is the solution of the iteration-worst ant.

BWAS uses pheromone re-initialization slightly differently from theMMAS, where

all pheromone trails are set to the initial pheromone value τ0 only if for a given

number of algorithmic iterations no improvement is found.

Furthermore, BWAS uses concepts from evolutionary computation and introduces

pheromone mutation to enhance the exploration. Therefore, in every iteration t the

pheromone trails are mutated with probability pphmut as follows:

τij =















τij + τmut, if R = 0,

τij − τmut, if R = 1,

(4.11)

54



Chapter 4. The Ant Colony Optimization Metaheuristic

where R is a random value in {0, 1} and τmut is the added/subtracted value of the

pheromone trails, defined as:

τmut =
t− tr
G− tr

στavg , (4.12)

where t is the current iteration, tr is the iteration count of the last iteration a

restart is performed, G is the maximum number of iterations, τavg is the average of

the pheromones that exist on the arcs that belong to T bs, and σ is a parameter that

determines the influence of mutation. Note that in case τij becomes negative from

the subtraction in Equation 4.11 is set to small constant value, i.e., cmin.

4.5.5 Ant Colony System

ACS is an extension than a variation of AS, because their differences are not only

in the pheromone update policy [65, 66]. ACS uses a more aggressive decision rule

than AS that provides strong exploitation. More precisely, an ant k selects the next

city j when it is located in city i as follows:

j =















maxl∈N k
i
{τil[ηil]β}, if R ≤ q0,

J , otherwise,

(4.13)

where R is a random number in the interval [0, 1], 0 ≤ q0 ≤ 1 is a parameter

of the decision rule, called pseudorandom proportional rule, and J is the random

proportional rule defined in Equation 4.1. In other words, with probability q0 ants

make the best possible move, whereas with probability (1 − q0) they make a move

probabilistically.

As the ants build their solution they update the pheromone trails locally on the

arcs. For instance, if an ant moves from city i to city j the pheromone trails of arc

55



Chapter 4. The Ant Colony Optimization Metaheuristic

(i, j) are updated directly as follows:

τij ← (1− ξ)τij + ξτ0, (4.14)

where 0 < ξ < 1 is a constant parameter and τ0 is the initial pheromone value. When

all ants construct their solution, the best-so-far ant is allowed to deposit pheromone

as follows:

τij ← (1− ρ)τij + ρ∆τ bsij , ∀(i, j) ∈ T bs, (4.15)

where ρ is the evaporation rate which is performed only to the pheromone trails

that belong to the best-so-far solution T bs, and ∆bs
ij is defined as in Equation 4.6.

It has been verified that the ACS has pheromone trail limits as with theMMAS.

The pheromone trails are implicitly bounded in [τ0, (1/C
bs)], different fromMMAS

where they are explicitly bounded.

Finally, ACS was the first algorithm that restricts the neighbourhood of unvisited

cities for ants using candidate lists. In the AS and its variations N k
i was defined as

all the cities that have not been visited by ant k yet. In ACS, the unvisited cities are

ranked with respect to the heuristic information η, and N k
i contains only the cl best-

ranked cities. Nowadays, most ACO algorithms use the restricted neighbourhood

because it leads to better results regarding solution quality and efficiency (especially

on large problem instances).

4.6 Applications of ACO for Combinatorial Opti-

mization

The ACO metaheuristic has a wide range of applications in combinatorial optimiza-

tion. Table 4.1 shows the important, or the most popular, ACO algorithms designed

56



Chapter 4. The Ant Colony Optimization Metaheuristic

Table 4.1: ACO applications for stationary combinatorial problems categorized
by their type and sorted chronologically. The table updates and extends the

applications given in [69, p. 39] and [64].

Problem type Problem name Year Main References

Routing Travelling Salesperson 1991 [67]

1992 [46]

1995 [97]

1996 [68, 98]

1997 [29, 66, 244]

2000 [43, 144, 152, 245]

2002 [112, 143]

2004 [37, 152]

2007 [213]

Vehicle Routing 1997 [27]

1999 [28, 100]

2002 [57, 216, 219]

2003 [217]

2004 [11, 58, 218]

2006 [158]

2008 [63, 93]

2009 [91, 94]

Sequential Ordering 2000 [99]

Scheduling Job-shop 1994 [47]

2004 [296]

2005 [133]

2007 [298]

2008 [9, 59]

2009 [88, 165]

57



Chapter 4. The Ant Colony Optimization Metaheuristic

Table 4.1: (continued)

Problem type Problem name Year Main References

2010 [230, 266]

Floor-shop 2002 [259]

Flow-shop 1998 [243]

2006 [95]

2009 [165]

Group-shop 2002 [14]

Total Tardiness 1999 [7]

Total Weight Tardiness 2000 [52, 184]

2009 [165]

2001 [185]

2002 [92]

Project-scheduling 2002 [186]

2007 [231]

2009 [292, 299]

Open-shop 1996 [211]

2005 [15]

Assignment Quadratic Assignment 1994 [177]

1999 [101, 173, 175]

2000 [245]

2001 [248]

2002 [44]

2006 [56]

2008 [191]

Course Timetabling 2002 [238]

2003 [239]

58



Chapter 4. The Ant Colony Optimization Metaheuristic

Table 4.1: (continued)

Problem type Problem name Year Main References

2005 [70]

2006 [77]

2007 [78]

2012 [199]

Graph Colouring 1997 [48]

2005 [227]

Generalized Assignment 2002 [171]

Frequency Assignment 2002 [174]

Subset Bus-stop Allocation 2001 [51]

Redundancy Allocation 1999 [159]

2004 [160]

Covering Problems 2000 [2]

2004 [232]

2011 [140]

2002 [176, 215]

Multiple Knapsack 1999 [153]

2005 [86]

2006 [149]

2008 [87, 150]

2010 [145]

Max Independent Set 2001 [154]

Maximum Clique 2003 [84]

2007 [267]

Other Shortest Common Sequence 1998 [187]

Maximum-Cut 2008 [96]

59



Chapter 4. The Ant Colony Optimization Metaheuristic

Table 4.1: (continued)

Problem type Problem name Year Main References

Bin Packing 2004 [155]

Data Mining 2002 [206]

Protein folding 2003 [233]

Water Supply Networks 2005 [1]

2008 [167, 203]

2010 [39]

for different applications with stationary environments. The applications are cate-

gorized to three main types: routing, scheduling and assignments. Of course, other

types of applications exist. However, in this thesis we consider the application of

ACO for the TSP and VRP which are classified in the routing category.

4.6.1 Travelling Salesperson Problem (TSP)

The TSP is one of the most popular and fundamental COPs. The objective of the

TSP is to determine the permutation of cities that minimizes the length of a cyclic

tour which contains each city once and only once. Figure 4.1 illustrates the optimal

solution of a TSP instance with 13509 cities.

Formally, the TSP can be described as follows:

f(x) = min
n
∑

i=0

n
∑

j=0

dijψij , (4.16)

subject to:

ψij =















1, if arc(i, j) is in the tour,

0, otherwise,

(4.17)

60



Chapter 4. The Ant Colony Optimization Metaheuristic

Figure 4.1: Example of a TSP solution of the usa13509t.tsp benchmark
problem instance (Taken from: http://www.tsp.gatech.edu/gallery/itours/

usa13509.html)

where ψij ∈ {0, 1}, n is the number of cities, dij is the distance between city i and

j.

The main existing applications of ACO regarding the TSP have been extensively

described in Section 4.5, since all the variants of AS, i.e., EAS, ASrank, MMAS,

BWAS, and ACS have been proposed for the TSP. Other improvements based on

these algorithms [163, 207, 246, 252, 284] and hybridizations [60, 178, 295, 297] have

been proposed. Below we briefly summarize the application of ACO for the TSP.

Structure. The TSP can be modelled directly using the problem graph G = (V,E).

Each city, or component of the permutation solution, corresponds an element of the

set V . The links between the cities, correspond to a connection in the set E and the

distance between cities correspond to the distance dij between cities i and j.

Constraints. The constraints of TSP are that all cities have to be visited once and

only once and the last city in the permutation should be identical with the first one.

This corresponds to return home of the salesperson after visiting the customers.

61

http://www.tsp.gatech.edu/gallery/itours/usa13509.html
http://www.tsp.gatech.edu/gallery/itours/usa13509.html


Chapter 4. The Ant Colony Optimization Metaheuristic

Solution construction. Initially, each ant is placed on a randomly selected city

and iteratively adds one unvisited city, considering its neighbourhood N k
i , to its

partial solution. In this way, the constraint of visiting each city once is satisfied.

The construction of solution terminates when all cities are visited once. Then, the

first component of the solution is added to the end to satisfy the second constraint.

AS, EAS, ASrank,MMAS, and BWAS use the decision rule in Equation 4.1, whereas

ACS uses the decision rule in Equation 4.13.

Pheromone trails and heuristic information. The pheromone trails τij and

heuristic information ηij are associated to the links of cities i and j. The heuristic

information is defined as ηij = 1/dij for all the algorithms.

Pheromone Update. The pheromone update procedure varies for all algorithms.

In AS, all the ants deposit pheromone, whereas on the remaining algorithms different

elitism strategies are used.

4.6.2 Vehicle Routing Problem (VRP)

The VRP is a more realistic variant of the TSP [50]. The VRP can be described

as a number of vehicles with a fixed capacity needing to satisfy the demand of all

the customers, starting from and finishing at the depot. Hence, a VRP without the

capacity constraint or with one vehicle can be seen as a TSP. Figure 4.2 illustrates

the optimal solution of a VRP instance with 53 customers served by 7 vehicles

(routes).

Formally, the basic VRP, known as the capacitated VRP (CVRP), can be described

as follows:

f(x) = min

n
∑

i=0

n
∑

j=0

dij

v
∑

k=1

ψk
ij , (4.18)

62



Chapter 4. The Ant Colony Optimization Metaheuristic

0

2

12
14

2

17

2

26

7

24

23

13

25

20

3

18

23

6

2

13

22

3

6

7

1

18

18

10

2

9

10

8

30

16

23

2
18

22

1

8

4

26

21

2

15

25

22

19

3

3

5

13

20

Figure 4.2: Example of a VRP solution of the A-n53-k7.vrp benchmark prob-
lem instance (Taken from: http://neo.lcc.uma.es/radi-aeb/WebVRP/data/

instances/Augerat/A-opt-sol-graph.zip)

subject to:
n
∑

i=1

n
∑

j=1

ψk
ijδi ≤ Qk, ∀k ∈ {1, . . . , v}, (4.19)

ψk
ij =















1, if arc(i, j) is covered by vehicle k,

0, otherwise,

(4.20)

where ψk
ij ∈ {0, 1}, n is the number of customers, v is the number of vehicles, δj is

the demand of customer j and Qk is the capacity of vehicle k.

Apart from the capacity constraint, other possible constraints can be imposed to the

CVRP taken from real-world applications, such as service time, time windows, back-

hauls, multidepots, fuel availability, etc. Hence, VRP has many variations, to which

some ACO algorithms have been applied, e.g., the VRP with time windows [63, 100],

the VRP with backhauls [93, 219], the VRP with time windows and backhauls [217],

the generalized VRP where the customers are clustered [210], the open VRP where

the vehicles do not necessarily have to return to the depot [158], the VRP with

63

http://neo.lcc.uma.es/radi-aeb/WebVRP/data/instances/Augerat/A-opt-sol-graph.zip
http://neo.lcc.uma.es/radi-aeb/WebVRP/data/instances/Augerat/A-opt-sol-graph.zip


Chapter 4. The Ant Colony Optimization Metaheuristic

simultaneous delivery and pickup [94] and the VRP with the two-dimensional load

constraint [91]. In fact, the ACO metaheuristic is used in real-world applications

related to the VRP (more details in [102, 224]).

In this thesis, we are focused on the applications of ACO algorithms regarding

the basic CVRP, described in Equations 4.18, 4.19 and 4.20. Popular examples

such as the ASrank-CVRP [27, 28], Saving-based AS (SbAS) [217, 219] and multi-

colony ACS-VRP (MACS-VRP) [100] are described below. There are also parallel

implementations of these algorithms with promising results [11, 58].

Structure. The VRP can be modelled directly using the problem graph G =

(V,E). Each customer, or component of the permutation solution, including the

depot component, corresponds to one component of the set V . The links between

the cities, correspond to a connection to the set E and the distance between cities

corresponds to the distance dij between cities i and j. Furthermore, a demand

δi is associated with each customer i. This model is adopted by ASrank-CVRP

and SbAS. On the other hand, MACS-VRP uses the same model but it consists of

multiple copies of v−1 depots, called dummy depots, where v denotes the number of

vehicles. The distances between the dummy depot components are zero since they

have the same location.

Constraints. The constraints in the CVRP are that all customers have to be served

once and only once by any vehicle, the vehicle must not exceed the capacity, and

each vehicle must start and return to the depot.

Solution construction. In ASrank-CVRP, the ants are placed on the depot and

build a solution by selecting the next customer using the decision rule in Equa-

tion 4.1. In case the next customer selected violates the capacity constraint, then

the current vehicle route is closed by the vehicle returning to the depot (without

adding the customer selected to the route). A new vehicle route is started if there

64



Chapter 4. The Ant Colony Optimization Metaheuristic

are any other unvisited customers. MACS-VRP consists of two interacting colonies,

ACS-VEI and ACS-TIME, where the former one minimizes the number of vehicles

and the latter one minimizes the travel time for a given number of vehicles. Each

ant, from both colonies, starts from a randomly chosen dummy depot and builds a

solution without violating the capacity constraint as in ASrank-CVRP, using the de-

cision rule in Equation 4.13. However, in MACS-VRP, an ant is allowed to return to

the depot anytime, even when the capacity constraint is not violated by a customer.

This kind of solution construction may generate infeasible solutions where not all

customers are satisfied, due to the limited number of dummy depots that represent

the number of vehicles. Therefore, a repair method is used to insert the unsched-

uled customers, if possible, at a position such that the travel time is minimized. In

SbAS, the solution construction is based on the saving algorithm [40, 205], in which

each customer is assigned as a separate tour and tours are combined as long as the

capacity constraint is not violated, and until no more combinations are feasible. The

combinations of tours are based on the saving heuristic function which is described

below in Equation 4.22. Differently, SbAS uses the decision rule, in Equation 4.1,

and the ants select probabilistically the next tours to be combined.

Pheromone trails and heuristic information. The pheromone trails τij and

heuristic information ηij are associated to the links of cities i and j for the ASrank-

CVRP and the MACS-VRP, whereas for SbAS they are associated with the pairs

of the customers generated initially. In ASrank-CVRP, the heuristic information is

based on the parametrized savings function [205] and defined as:

ηij = di0 + d0j − gdij + f |di0 − dj0|, (4.21)

where di0 is the distance from customer i to the depot and f and g are two constant

parameters (usually g = f = 2). In SbAS, the heuristic information is based on the

65



Chapter 4. The Ant Colony Optimization Metaheuristic

standard saving function [40] and defined as:

ηij = di0 + d0j − dij. (4.22)

In MACS-VRP, the heuristic information is defined as a function of the travel time

between two customers, of the number of times a customer was not included in

ant’s “infeasible” solution in previous iterations, and of other factors based on some

constraints of the problem (for more details see [100]).

Pheromone update. The pheromone update procedures for ASrank-CVRP and

SbAS are based on ASrank defined in Equation 4.7. In MACS-VRP, both colonies

are based on the ACS defined in Equations 4.14 and 4.15, and pheromone trails are

updated according to their objectives.

4.7 Summary

In this chapter we have presented the ACO framework. ACO lies in the category

of metaheuristics. It was inspired by the foraging behaviour of real ants. Since

the development of the first ACO algorithm for the TSP, the area, regarding both

algorithmic variations and applications, has grown rapidly. The main application

and algorithmic contributions of ACO for SOPs are defined in this chapter. More

details are given for the applications of TSP and VRP which are the problems used

for the experiments in Chapters 5.

ACO showed good performance in many NP-complete COPs, especially in problems

where heuristic information is available, such as the TSP and its variations. In such

problems, ACO has a slight advantage over other metaheuristics since it has prior

knowledge of the problem instance. For example, in the TSP or VRP, ants consider

the distances between cities or customers, while the ants construct their solutions.

66



Chapter 4. The Ant Colony Optimization Metaheuristic

In case heuristic information is not available in a COP, the integration of ACO with

a local search is vital for good performance.

Similarly with other metaheuristics, ACO has a high risk to get stuck on a local

optimum solution, especially as the problem size increases. Many modifications

based on the pheromone update have been developed to improve the performance

of ACO, with the aim of a better balance between exploration and exploitation.

67



Chapter 5

ACO with Direct Communication

5.1 Motivation

Generally, conventional ACO algorithms suffer from the stagnation behaviour, where

all ants follow the same path from the initial stages of the algorithm, when applied

to different combinatorial problems. This is because a high intensity of pheromone

is generated to a single trail, that marks a potential solution, and attracts the ants

to that area. Therefore, conventional ACO algorithms are more likely to get trapped

in a local optimum solution, which may degrade the solution quality and the overall

performance of the algorithm.

Different pheromone strategies have been applied to conventional ACO algorithms

in order to increase exploration and avoid stagnation behaviour. Hence, many vari-

ations of the first ACO algorithm, e.g, AS, exist.

One advantage that ACO algorithms have over other metaheuristics when applied to

the TSP and the VRP, is the heuristic information used in the solution construction.

Such information enables the population to have prior knowledge of the problem

68



Chapter 5. ACO with Direct Communication

instance before execution. Such knowledge is gained in other metaheuristics using

local search (LS) operators to improve the solution quality. Similarly, LS operators

have been integrated with ACO and improved its solution quality significantly [245].

In fact, on COPs where heuristic information is not available ACO has more random

behaviour because it considers only pheromone trails, unless it is integrated with a

LS operator.

5.2 Description of Direct Communication

5.2.1 The Framework

In nature, ant colonies do not only communicate indirectly via their pheromone

trails, but also directly by exchanging important information, like sounds, displays

or movements [132]. This extra communication the ants have may help them to

improve their food searching tasks. In the case of ACO algorithms, a direct commu-

nication (DC) scheme may help the population of ants to avoid stagnation behaviour.

Therefore, the proposed DC scheme allows ants to exchange variable objects, e.g.,

cities for the TSP or customers for the VRP, after they construct their solution and

before they deposit pheromone as shown in Algorithm 9.

The DC scheme can be applied to any variation of ACO for the TSP or the VRP.

Therefore, the solution construction and pheromone update policies depend on the

ACO variation in which DC is applied.

It is possible that the solution quality of an ant may be worse than the best ant,

but a subtour may belong to the global optimum. The aforementioned scheme may

take advantage of the different solutions constructed by ants on each iteration with

the information exchanged by the swaps.

69



Chapter 5. ACO with Direct Communication

Algorithm 9 Ant Colony Optimization with DC

1: t← 0
2: P (0)← InitializePopulation(µ)
3: InitializePheromoneTrails(τ0)
4: xbs ← empty solution
5: while (termination condition not met) do
6: P (t)← ConstructAntSolutions
7: P ′(t)← DirectCommunication using Algorithm 10
8: PheromoneEvaporation(ρ)
9: DepositGlobalPheromone(P ′(t))
10: xib ← FindBest(P ′(t))
11: if (f(xib) < f(xbs)) then
12: xbs ← f(xib)
13: end if
14: t← t + 1
15: end while
16: return xbs

5.2.2 Exchange Information

The exchange information process consists of two types of swaps, where with a higher

probability ants swap objects obtained from ants within its communication range,

and with a lower probability ants swap objects randomly as shown in Algorithm

10. At each step of the DC scheme, an object is selected and the successor and

predecessor objects are swapped with others only if the distance between the object

and the new selected object is better than that to the successor or the predecessor.

The adaptive swaps help to avoid randomization and model DC between ants,

whereas random swaps help to avoid local optima, when adaptive swaps become

ineffective. In fact, random and adaptive swaps have a similar effect in the DC

scheme with the mutation and crossover operators in EAs (see Algorithm 3 for more

details).

In the case of the VRP, the above swaps may violate the capacity and service time

constraints of the vehicle routes and generate an infeasible solution. Therefore, only

the swaps that do not violate any of the constraints are allowed.

70



Chapter 5. ACO with Direct Communication

Algorithm 10 DirectCommunication

1: for (k = 0 to µ) do
2: oi ← random object from ant k
3: si ← select successor of oi ∈ k
4: pi ← select predecessor of oi ∈ k
5: if (rand[0.0, 1.0] ≤ 0.2) then
6: s′i ← random object from ant k
7: p′i ← random object from ant k
8: else
9: k′ ← select ant from the communication range of ant k using Equation 5.1
10: locate object oi ∈ k′
11: s′i ← select successor of oi ∈ k′
12: p′i ← select predecessor of oi ∈ k′
13: locate s′i and p

′
i ∈ k

14: end if
15: if (d(oi, pi) > d(oi, p

′
i) && k is feasible after swapping) then

16: swap pi with p
′
i ∈ k

17: DepositLocalPheromone(oi, p
′
i)

18: end if
19: if (d(oi, si) > d(oi, s

′
i) && k is feasible after swapping) then

20: swap si with s
′
i ∈ k

21: DepositLocalPheromone(oi, s
′
i)

22: end if
23: end for

5.2.2.1 Random Swaps

When the population of ants reaches stagnation behaviour, the information adapted

by other ants will be identical with the current one. Therefore, no swaps will be

performed using adaptive swaps and the adaptive swaps become ineffective. Random

swaps can then move the population to another area in the search space and help

to escape local optima.

In random swaps, the successor and predecessor objects to be swapped are selected

randomly from the current ant and they are not adapted from any other ant. In a

way, adaptive and random swaps act as crossover and mutation search operators in

EAs, respectively, but for the ACO case. An example of an adaptive and a random

swap is illustrated in Figure 5.1.

71



Chapter 5. ACO with Direct Communication

Figure 5.1: Example of adaptive and random swaps for the TSP.

5.2.2.2 Adaptive Swaps

Each ant k communicates with another ant within its communication range as fol-

lows:

1. An object oi is randomly selected from ant k.

2. The successor and predecessor of oi, i.e., objects si and pi, respectively, are

selected from ant k.

3. Another ant is randomly selected, i.e., ant k′, from the communication range

of ant k and the corresponding object oi is located in ant k′.

72



Chapter 5. ACO with Direct Communication

4. The successor and predecessor of oi, i.e., objects s
′
i and p′i, respectively, are

selected from ant k′

5. Then, objects s′i and p
′
i are located in ant k

6. Swaps are performed in ant k between the objects si and s′i and between

objects pi and p
′
i

7. Moreover, a small extra amount of pheromone is deposited to the resulted

edges between oi and its new successor and between oi and its new predecessor

in ant k.

5.2.3 Communication Range

The communication range of each ant, say ant p, which determines its neighbour

ants, is based on the similarities of ants and is defined as follows:

Rp = {q ∈ P (t)|S(p, q) ≤ Tr}, (5.1)

where P (t) is the population of ants at iteration t, Tr is a predefined threshold which

determines the size of the communication range of ant p, and S(p, q) is the similarity

metric between ants p and q. For the TSP, S(p, q) is defined as:

S(p, q) = 1− cEpq

n
, (5.2)

where cEpq
are the common edges of the objects between the two ants, and for the

VRP it is defined as:

S(p, q) = 1− cEpq

n + avg(nVp
, nVq

)
, (5.3)

where nVp
and nVq

are the number of vehicles used in the solutions of ant p and q,

respectively.

73



Chapter 5. ACO with Direct Communication

A value S(p, q) = 1.0 in both Equations 5.2 and 5.3 for TSP and VRP, respectively,

denotes that the two ants are completely different, whereas a value S(p, q) = 0.0

denotes that the two ants are identical.

5.2.4 Local Pheromone Deposit

The above communication scheme may provide more exploration but it has a high

risk to degrade the solution quality of the tours constructed by the ants and disturb

the optimization process. Therefore, only the swaps which provide improvement

are allowed in order to limit the risk. For example, if the distance dij between the

current successor object of oi in ant k is less than that to the successor city obtained

from the neighbour ant k′, the ant k remains unchanged. The same happens with

the predecessor object. A similar swap method based on the position of the cities

has been used in a discrete version of particle swarm optimization on the TSP

[262]. However, in the adaptive swaps the positions of the swapped objects are not

predefined but they are adapted from other ants in the population.

Apart from the swaps, a small amount of pheromone is deposited to the edges

affected by the swaps in order to determine the influence of the communication and

bias other ants to explore possible improvements. This process is defined as follows:

τij ← τij +
(τmax − τmin)(1− ω)

n
, (5.4)

where ω ∈ (0, 1] is a parameter which indicates the degree of the communication

influence (a good value is ω = 0.5) and n is the problem size, e.g., number of cities

for the TSP or number of customers for the VRP.

74



Chapter 5. ACO with Direct Communication

5.3 Experiments for the Static TSP and VRP

5.3.1 Experimental Setup

For the experiments in the TSP we have used the ACOTSP1 implementation which

contains all the algorithms described in Section 4.5. All the algorithms in the follow-

ing experiments have been tested on a wide range of benchmark problem instances

obtained from the TSPLIB2. For the experiments in the VRP we have used our

own implementation based on the guidelines of the ACOTSP implementation. The

algorithms used for the experiments are the ones described in Section 4.6, ASrank-

CVRP and MACS-VRP. Although MACS-VRP has been applied to the VRP with

time-windows, we have modified the algorithm for the CVRP. The colony that op-

timizes the number of vehicles is not used, but the way ants construct solutions to

minimize the routes of the vehicles is used. The algorithms have been tested on a

wide range of benchmark problem instances obtained from the VRPLIB3. The VRP

instances have two types of CVRP, with (C1-C5 and C11, C12) and without service

time (C6-C10 and C13, C14). The CVRP with service time, apart from the capacity

constraint Q, described in Chapter 4.6.2, has an additional constraint in which each

vehicle must not exceed the service time L. The benchmark problem instances used

for both TSP and VRP are described in Appendix A.

5.3.2 Parameter Settings

All the algorithms perform 5000 iterations and were executed for 30 independent

runs for each problem instance in both TSP and VRP. Some of the parameters of

1Available at: http://www.aco-metaheuristic.org/aco-code by Thomas Stützle
2Available at: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
3Christofides, Mingozzi and Toth benchmark instances available at: http://neo.lcc.uma.es/

radi-aeb/WebVRP/

75

http://www.aco-metaheuristic.org/aco-code
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://neo.lcc.uma.es/radi-aeb/WebVRP/
http://neo.lcc.uma.es/radi-aeb/WebVRP/


Chapter 5. ACO with Direct Communication

the different ACO algorithms have been obtained from [69, p. 71] that suggest rea-

sonable performance over a significant set of TSP instances and some others from

our preliminary experiments. In the case of the VRP, some of the parameters sug-

gested in [27, 28, 100] have been obtained and some others from our preliminary

experiments again. Appendix B presents all the parameters used for all the algo-

rithms in both TSP and VRP. However, due to the problem dependency, different

parameter settings may result in better or worse performance.

5.3.3 Experimental Results for the Static TSP

5.3.3.1 Conventional ACO Algorithms Performance

In Tables 5.1 and 5.2, the mean results of the best solution and the total runtime

averaged over 30 runs are presented for different conventional ACO algorithms for

the TSP.

From Table 5.1, it can be observed that the best performing ACO algorithm re-

garding solution quality is the MMAS. The main difference of MMAS from the

other ACO variations is that it keeps the pheromone trails to a certain range. In

this way, it eliminates areas with a high intensity of pheromone trail values, and

achieves more exploration, especially on the initial stages of the algorithm. Moreover,

the population of ants is able to escape stagnation behaviour with the pheromone

re-initialization mechanism. In fact, BWAS has a re-initialization mechanism but

its performance is inferior to the MMAS because the former does not keep the

pheromone trail values to a certain range explicitly.

From Table 5.2, it is can be observed that the best performing ACO algorithm

regarding the runtime is the ACS. The main difference of ACS to the other ACO

variations is that the number of ants used is less than the other algorithms. In the

76



Chapter 5. ACO with Direct Communication

Table 5.1: Averaged results over 30 runs of the best solution for 5000 iterations
of the algorithms. Bold values indicate the best results.

Instance AS EAS ASrank MMAS ACS BWAS

eil51 439.67 434.57 430.20 426.44 428.87 431.33

eil76 553.03 550.23 542.23 538.72 543.77 549.27

eil101 676.20 656.34 641.37 632.28 641.83 644.17

kroA100 22806.37 21852.90 21673.00 21358.24 21561.43 21706.00

kroA150 28259.33 27631.43 27428.13 26976.56 27161.93 27139.43

kroA200 31988.13 30586.27 29964.13 29522.32 29671.53 29799.50

lin318 464128.85 44145.20 43446.00 42746.48 43622.00 43317.03

pcb442 59309.13 54145.40 54270.53 52425.76 53064.00 53705.67

att532 31841.83 29875.50 29400.73 28298.60 29344.60 29032.67

rat783 10444.63 9530.00 9619.33 9003.68 9533.10 9279.17

pcb1173 70174.80 64714.37 68097.70 63583.36 64252.17 63646.70

pr2392 468461.17 465301.50 460700.33 432841.30 437465.77 440666.83

case more ants are used in the TSP, the solution quality is degraded. However,

the ants in ACS update pheromone trails while they construct solutions, and they

use a more aggressive decision rule as defined in Equation 4.13. ACS is more likely

an extension of AS, rather than a variation, because it has more differences than

similarities. For example, the pheromone evaporation is applied only to the trails

of the best ant and not to all the pheromone trails as with the other algorithms.

In fact, MMAS has only the best ant to deposit pheromone as with ACS, but in

the former evaporation is applied globally and it has additional processes to keep

the pheromone trail values to a certain range and to detect stagnation behaviour in

order to re-initialize the pheromone trails, which increase the total runtime. It is

worth to mention that ACS also keeps the pheromone trails in a certain range, but

implicitly.

77



Chapter 5. ACO with Direct Communication

Table 5.2: Averaged results over 30 runs of the total runtime (seconds) for 5000
iterations of the algorithms. Bold values indicate the best results.

Instance AS EAS ASrank MMAS ACS BWAS

eil51 3.26 2.10 2.02 2.04 1.84 1.88

eil76 5.98 3.88 5.15 3.77 4.79 4.98

eil101 8.95 6.08 7.80 6.02 6.42 7.88

kroA100 6.26 6.16 5.91 6.06 3.96 5.68

kroA150 15.91 12.15 14.50 12.02 9.72 14.78

kroA200 25.49 20.04 22.97 19.89 12.79 24.66

lin318 45.55 46.28 42.72 46.36 13.11 43.03

pcb442 84.52 84.24 79.75 85.52 19.75 82.40

att532 136.72 122.16 129.56 137.09 36.23 141.38

rat783 265.36 263.21 258.27 294.21 38.30 271.98

pcb1173 577.19 571.45 550.57 448.89 58.97 602.51

pr2392 2030.13 2047.50 1976.62 2111.17 45.97 2103.94

In general, all the variations and extensions of AS improve its performance regard-

ing the solution quality significantly. Therefore, for the remaining experiments we

considerMMAS which is the best performing ACO regarding the solution quality.

Experiments are performed by comparingMMAS andMMAS with the proposed

scheme, denoted asMMAS+DC, on different TSP benchmark problem instances.

5.3.3.2 Effect of Communication Range Tr

The communication range, i.e., Tr, is an important parameter for the proposed DC

scheme in order to achieve a robust behaviour for the ACO algorithm. In Figure 5.2,

different values of the Tr parameter are illustrated, which show the effect they have

on the solution quality for different problem instances. Four different instances are

78



Chapter 5. ACO with Direct Communication

 426

 426.2

 426.4

 426.6

 426.8

 427

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T
ou

r 
C

os
t

Communication Range Tr

eil51

 29490

 29500

 29510

 29520

 29530

 29540

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T
ou

r 
C

os
t

Communication Range Tr

kroA200

 28900

 28950

 29000

 29050

 29100

 29150

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T
ou

r 
C

os
t

Communication Range Tr

att532

 68200

 68300

 68400

 68500

 68600

 68700

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

T
ou

r 
C

os
t

Communication Range Tr

pcb1173

Figure 5.2: The effect of the communication range parameter Tr used in the DC
scheme for different problem instances.

selected, i.e., eil51, kroA200, att532 and pcb1173, indicating small, to medium, and

large problem instances, respectively. When the range parameter is 0.0, it means

that the ants do not communicate with each other and, thus, we have a conventional

MMAS algorithm. On the other hand, if the range value is 1, it means that the

ants are allowed to communicate with all other ants.

The parameter is problem dependent and hence depends on the size of the problem

instance. As the problem size increases the communication range should increase.

This can be observed from Figure 5.2 where a smaller range performs better on

the smallest problem instance, i.e., eil51, and a larger range performs better on the

largest problem instance, i.e., pcb1173.

79



Chapter 5. ACO with Direct Communication

Moreover, it can be observed that when Tr = 0.1 on some problem instances, i.e.,

eil51, kroA200, and att532, the performance of the algorithm is worse. This is

probably due to the fact that more similar ants communicate, because of the limited

communication range, and may get stuck in stagnation behaviour faster.

In general, a good range is 0.6 ≤ Tr ≤ 0.8 which means that it would be good

for the ants to communicate with dissimilar ants but to generate a reasonable size

of a neighbourhood. A larger value of the range may lead the population into a

higher level of diversity, which may result in randomization, whereas a smaller value

may be ineffective since the ants selected have more chances to be similar. An

appropriate communication range influences ants to concentrate on the paths found

from the ACO searching, and not disturb the optimization process. Hence, in the

experiments of the next subsection we have set Tr = 0.6 for eil51, eil76, eil101,

kroA100, kroA150 and kroA200, Tr = 0.8 for pcb1173 and pr2392, and Tr = 0.7 for

the remaining problem instances.

5.3.3.3 MMAS vs MMAS+DC Performance

In Table 5.3, the mean and standard deviations results ofMMAS andMMAS+DC

are presented for the different TSPs. The corresponding statistical results of com-

paring the algorithms by a non-parametric statistical test, i.e., Wilcoxon rank-sum

test, at the 0.05 level of significance are also shown in the last column.

In general, it can be observed that the solution quality of MMAS is significantly

improved for most problem instances when the DC scheme is used. More precisely,

on small problem instances, the solution quality is slightly improved whereas on

larger problem instances the improvement is significantly better. This is due to

the fact that for small problem instancesMMAS will converge to a single solution

quickly. Therefore, neighbourhoods which consist of dissimilar ants cannot be easily

80



Chapter 5. ACO with Direct Communication

Table 5.3: Averaged results over 30 runs of the best solution for 5000 iterations
of the algorithms with the corresponding standard deviations and statistical tests.
“−” or “+” indicates that the first or the second algorithm is significantly better,

respectively, and “∼” indicates no statistical significance.

Instance MMAS MMAS+DC Wilcoxon

Mean Std Dev Mean Std Dev

eil51 426.64 0.76 426.36 0.49 ∼
eil76 538.72 1.17 538.56 0.82 ∼
eil101 632.28 2.85 631.36 3.07 ∼

kroA100 21358.24 52.99 21322.76 49.96 +

kroA150 26976.56 94.61 26910.68 88.36 +

kroA200 29522.32 87.21 29491.36 44.52 ∼
lin318 42746.48 221.74 42618.16 215.47 +

pcb442 52425.76 610.58 52036.80 592.49 +

att532 28298.60 178.03 28104.60 255.85 +

rat783 9003.68 51.90 8988.00 38.84 ∼
pcb1173 63583.36 687.46 63143.48 749.26 +

pr2392 431250.60 4287.98 428917.20 3267.67 +

generated in order for the DC scheme to work properly. The DC scheme tries to

become effective using random swaps, but it may take some time due to the lower

probability to avoid randomization. However, it may also become effective when

MMAS re-initializes its pheromone trails.

On large problem instances, the conventional MMAS has more chances to get

trapped on a local optimum since the search space is larger. Large problem in-

stances require more exploration but MMAS loses its exploration ability quickly

because of the stagnation behaviour. Therefore, the DC scheme is effective on such

cases since different neighbourhoods of dissimilar ants are generated and provide

81



Chapter 5. ACO with Direct Communication

guided exploration. This can be observed from Table 5.3 in whichMMAS+DC is

significantly better on most large problem instances, e.g., pcb1173 and pr2392.

5.3.4 Experimental Results for the Static VRP

5.3.4.1 Conventional ACO Algorithms Performance

In Table 5.4 and Figures 5.3 and 5.4, the mean results of the best solution, and the

behaviour of the algorithms on each iteration, over 30 runs are presented, respec-

tively, for conventional ACO algorithms on different VRP instances.

From Table 5.4, it can be observed that ASrank-CVRP outperforms MACS-VRP in

most random VRP instances, whereas it is outperformed by MACS-VRP in most

clustered VRP instances.

From Figures 5.3 and 5.4 it can be observed that the MACS-VRP has a faster

convergence than ASrank-CVRP in almost all problem instances. This is due to the

different decision rule used by the MACS-VRP, i.e., pseudorandom decision rule,

which is more aggressive than the one used in ASrank-CVRP, and achieves more

exploitation. More precisely, using the traditional decision rule, the ants select the

next object to move probabilistically using the roulette wheel method (a popular

technique proposed on EAs), whereas with the pseudorandom decision rule, the

ants usually select the object with the highest probability.

ASrank-CVRP performs better than MACS-VRP on 7 problems instances, i.e., C1,

C2, C3, C5, C6, C7 and C12, whereas MACS-VRP performs better than ASrank-

CVRP on the remaining problem instances. In general, ASrank-CVRP is comparable

with MACS-VRP in different test cases. The former algorithm has been proposed

specifically for the CVRP, whereas the latter has been modified for the CVRP.

Therefore, for the remaining experiments we consider ASrank-CVRP by comparing

82



Chapter 5. ACO with Direct Communication

Table 5.4: The mean results of the best solution averaged over 30 runs for the
CVRP with and without service time constraint. Bold values indicate the best

results.

Instance ASrank-CVRP MACS-VRP

Random Problems

C1 551.16 564.76

C2 898.16 922.56

C3 903.73 907.86

C4 1166.30 1160.6

C5 1442.36 1456.03

C6 593.30 606.33

C7 982.63 998.5

C8 970.16 962.43

C9 1294.53 1273.53

C10 1577.96 1553.9

Clustered Problems

C11 1171.56 1116.33

C12 962.50 964.93

C13 1687.20 1548.66

C14 1012.70 967.10

the conventional one with the ASrank-CVRP with the proposed DC scheme, denoted

as ASrank-CVRP+DC.

5.3.4.2 ASrank-CVRP vs ASrank-CVRP+DC Performance

In Table 5.5, the mean results of ASrank-CVRP and ASrank-CVRP+DC are presented

for the different CVRPs. The corresponding statistical results of comparing the

algorithms by a non-parametric statistical test, i.e., Wilcoxon rank sum test, at

83



Chapter 5. ACO with Direct Communication

Table 5.5: The mean results of the best solution with the number of vehicles used
averaged over 30 runs for the CVRP with and without service time constraint.
“−” or “+” indicates that the first or the second algorithm is significantly better,

respectively, and “∼” indicates no statistical significance.

Instance ASrank-CVRP ASrank-CVRP+DC Wilcoxon

Best route Vehicles used Best route Vehicles used

Random Problems

C1 551.16 5.13 545.73 5.06 +

C2 898.16 10.73 890.23 10.46 +

C3 903.73 8 894.00 8 +

C4 1166.30 12 1150.43 12 +

C5 1442.36 17 1435.1 17 ∼
C6 593.30 6 588.73 6.06 ∼
C7 982.63 12.03 971.16 12 +

C8 970.16 9 957.43 9 +

C9 1294.53 14.5 1277.73 14.56 +

C10 1577.96 19 1558.60 19 +

Clustered Problems

C11 1171.56 9.93 1123.16 9.73 +

C12 962.50 10 943.90 10 +

C13 1687.20 12.8 1646.03 12.86 +

C14 1012.70 11 983.56 11 +

the 0.05 level of significance are also shown in the last column. Note that the

communication range of ASrank-CVRP+DC was set to Tr = 0.8 for all problem

instances, since it has been found to be a good value for the TSP previously.

In both CVRP variations, the ASrank-CVRP+DC algorithm outperforms the con-

ventional ASrank-CVRP algorithm on almost all the problem instances, which can

84



Chapter 5. ACO with Direct Communication

 540

 560

 580

 600

 620

 640

0 1000 2000 3000 4000 5000

T
ou

r 
C

os
t

Iteration

C1

ASrank-CVRP
ASrank-CVRP+DC

MACS-VRP

 850

 900

 950

 1000

 1050

 1100

 1150

0 1000 2000 3000 4000 5000

T
ou

r 
C

os
t

Iteration

C2

ASrank-CVRP
ASrank-CVRP+DC

MACS-VRP

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

0 1000 2000 3000 4000 5000

T
ou

r 
C

os
t

Iteration

C3

ASrank-CVRP
ASrank-CVRP+DC

MACS-VRP

 1100

 1150

 1200

 1250

 1300

 1350

 1400

 1450

 1500

0 1000 2000 3000 4000 5000

T
ou

r 
C

os
t

Iteration

C4

ASrank-CVRP
ASrank-CVRP+DC

MACS-VRP

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 2200

0 1000 2000 3000 4000 5000

T
ou

r 
C

os
t

Iteration

C5

ASrank-CVRP
ASrank-CVRP+DC

MACS-VRP

 550

 600

 650

 700

 750

0 1000 2000 3000 4000 5000

T
ou

r 
C

os
t

Iteration

C6

ASrank-CVRP
ASrank-CVRP+DC

MACS-VRP

Figure 5.3: Behaviour of ACO algorithms on the random VRP instances, aver-
aged over 30 runs.

85



Chapter 5. ACO with Direct Communication

 960

 980

 1000

 1020

 1040

 1060

 1080

 1100

0 1000 2000 3000 4000 5000

T
ou

r 
C

os
t

Iteration

C7

ASrank-CVRP
ASrank-CVRP+DC

MACS-VRP

 900

 1000

 1100

 1200

 1300

 1400

0 1000 2000 3000 4000 5000

T
ou

r 
C

os
t

Iteration

C8

ASrank-CVRP
ASrank-CVRP+DC

MACS-VRP

 1200

 1300

 1400

 1500

 1600

 1700

 1800

0 1000 2000 3000 4000 5000

T
ou

r 
C

os
t

Iteration

C9

ASrank-CVRP
ASrank-CVRP+DC

MACS-VRP

 1600

 1800

 2000

 2200

 2400

0 1000 2000 3000 4000 5000

T
ou

r 
C

os
t

Iteration

C10

ASrank-CVRP
ASrank-CVRP+DC

MACS-VRP

Figure 5.3: (continued)

be observed from Table 5.5, where the solution quality of ASrank-CVRP+DC is sig-

nificantly different. This is because the conventional ASrank-CVRP algorithm has

more chances to get trapped on a local optimum due to the stagnation behaviour.

On the other hand, it can be observed from Figures 5.3 and 5.4, that ASrank-CVRP

gets trapped in a local optimum in almost all problem instances. The proposed

ASrank-CVRP+DC algorithm increases the exploration ability and escapes from

possible local optima using the swaps. Moreover, the extra local pheromone update

of the DC scheme to the possible improvements found from the swaps may attract

ants to explore promising areas in the search space.

86



Chapter 5. ACO with Direct Communication

 1000

 1200

 1400

 1600

 1800

 2000

0 1000 2000 3000 4000 5000

T
ou

r 
C

os
t

Iteration

C11

ASrank-CVRP
ASrank-CVRP+DC

MACS-VRP

 900

 1000

 1100

 1200

 1300

 1400

 1500

0 1000 2000 3000 4000 5000

T
ou

r 
C

os
t

Iteration

C12

ASrank-CVRP
ASrank-CVRP+DC

MACS-VRP

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 2200

0 1000 2000 3000 4000 5000

T
ou

r 
C

os
t

Iteration

C13

ASrank-CVRP
ASrank-CVRP+DC

MACS-VRP

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 1350

 1400

0 1000 2000 3000 4000 5000

T
ou

r 
C

os
t

Iteration

C14

ASrank-CVRP
ASrank-CVRP+DC

MACS-VRP

Figure 5.4: Behaviour of ACO algorithms on the clustered VRP instances,
averaged over 30 runs.

5.4 Summary

In this chapter we have presented a scheme that improves the conventional ACO

performance in static environments. In conventional ACO algorithms, ants commu-

nicate indirectly via their pheromone trails. In the proposed scheme, ants commu-

nicate both indirectly and directly. The proposed DC scheme enables ants to ex-

change information after they construct their solutions. Ants communicate directly

with other ants within a predefined communication range. The scheme is based on

a combination of adaptive and random swaps, in which the former promotes the

87



Chapter 5. ACO with Direct Communication

exchange of information between ants, whereas the latter promotes exploration once

the algorithm reaches the stagnation behaviour.

In the experiments for the TSP we have compared several ACO variations, explained

in Chapter 4 before, in whichMMAS performs better regarding the solution qual-

ity than its competitors, whereas ACS performs better regarding computation time

than its competitors. Furthermore, the proposed DC scheme was integrated to the

MMAS algorithm and showed that often improves the performance of a conven-

tionalMMAS significantly, if an appropriate communication range is chosen.

In the experiments for the VRP we have compared two ACO variations, explained in

Chapter 4 before, in which ASrank-CVRP outperforms MACS-VRP on some prob-

lem instances, whereas MACS-VRP outperforms ASrank-CVRP on the remaining

problem instances. Furthermore, the proposed DC scheme was integrated to the

ASrank-CVRP and showed that in almost all test problem instances improves the

performance of a conventional ASrank-CVRP significantly.

In general, we have showed that the DC scheme improves the performance of ACO

in the TSP and the CVRP, since it helps the population to escape from possible

local optima.

88



Chapter 6

ACO for Dynamic Combinatorial

Optimization

6.1 Dynamic Optimization Problems (DOPs)

Traditionally, researchers are focused to SOPs, in which a problem remains un-

changed during the execution of an algorithm. However, in many real-world appli-

cations we have to deal with DOPs. Formally, a problem instance of a DOP can be

defined as:

Π = (X(t),Ω(t), f(t))t∈S, (6.1)

where Π is the optimization problem, X(t) is the search space, Ω(t) is a set of

constraints, f(t) is the objective function, which assigns an objective value to each

solution f(x, t) ∈ X(t), where all of them are assigned with a time value t, and S is

a set of time values.

A DOP can be intuitively defined as a sequence of several static problem instances

that are linked under some dynamic rules. The main aspects of “dynamism” are the

89



Chapter 6. ACO for Dynamic Combinatorial Optimization

frequency and the magnitude of environmental changes. The former corresponds to

the speed with which environmental changes occur and the latter corresponds to the

degree of environmental changes. An environmental change may involve factors like

the objective function, the input variables, the problem instance, the constraints,

and so on.

The environmental changes are classified into two types: dimensional and non-

dimensional changes, where both of them cause the optimum to change on every

environmental change. Dimensional changes correspond to adding or removing vari-

ables from the problem. Such environmental changes affect the representation of the

solutions and alter a feasible solution to an infeasible one. A repair operator may

address this problem, but requires prior knowledge of the problem and the detection

of the dynamic changes. Non-dimensional changes correspond to the change of the

variables of the problem. Such environmental changes do not affect the representa-

tion of the solutions, and, thus, are more straightforward to address.

In Chapter 3, we have discussed the challenges to algorithms in solvingNP−complete

COPs with static environment. Addressing NP−complete COPs with dynamic en-

vironment, is even more challenging for algorithms because the objective is not only

to locate the global optimum efficiently, but to also track it during the environmental

changes [24].

A straightforward method to address DOPs is to consider every dynamic change as

the arrival of a new problem instance that needs to be solved from scratch. However,

such a method: (1) requires substantial computational effort; (2) may take long to

re-optimize; and (3) destroys all the domain-specific information. Furthermore, it

requires the detection of changes which is often difficult to achieve in DOPs.

Nature-inspired metaheuristics are used to address DOPs, since they are inspired

from nature which is a continuous adaptation process [137]. Such methods are

90



Chapter 6. ACO for Dynamic Combinatorial Optimization

able to transfer knowledge from previous environments since they are iterative. In

this way, it may be possible to speed up the re-optimization time with the use of

the adaptation capabilities of nature-inspired metaheuristics, e.g., EAs and ACO

algorithms, assuming that the changing environments have similarities. Otherwise,

a global restart of the algorithm may be the better option.

However, even if knowledge is transferred from previous environments the algorithms

need to be flexible enough to accept it and adapt well to the new environment.

The challenge for EAs and ACO algorithms lies in that they loose their adaptation

capabilities early due to the premature convergence or stagnation behaviour. This is

because traditional EAs and ACO algorithms have been designed to tackle SOPs and

the diversity of solutions is decreased as the algorithms progress to optimize. Several

strategies have been integrated with the algorithms to vary the balance between

exploration and exploitation in order to adapt well in dynamic environments.

6.2 Optimization Methods for DOPs

6.2.1 Evolutionary Computation

Mainly, the research to address DOPs is focused on EAs. EAs are able to transfer

knowledge since the information of previous environment is stored in the population

of individuals of the previous iterations. However, the individuals in the old environ-

ment may not be feasible for the new one but, if they are re-evaluated or repaired,

they may transfer valuable information. Several surveys and books are available for

EDO [21, 137, 193, 200, 264, 279, 281].

An EA achieves exploitation via selection and crossover operators, whereas explo-

ration is achieved via the mutation operator. Usually, the mutation operator has a

91



Chapter 6. ACO for Dynamic Combinatorial Optimization

small probability in order for the algorithm to converge to an optimum. In DOPs,

once the population converges to an optimum, then it is difficult for the population

to track the moving optimum after a change.

Many strategies have been proposed and integrated with EAs to improve the re-

optimization time and maintain a high quality of the output efficiently, simultane-

ously. The main contributions of these strategies are categorized as follows.

6.2.1.1 Increasing Diversity after a Change

The methods in this category generate diversity after a dynamic change occurs. Cobb

[41] introduced hyper-mutation, in which the probability of mutation is increased

drastically, after an environmental change, for a number of iterations to generate

diversity. Vavak et al. [256–258] introduced the variable local search (VLS) in

which the mutation probability is increased gradually.

Hyper-mutation and VLS require the detection of a change and may not be com-

patible in DOPs where the changes are undetectable. Moreover, the diversity is

increased randomly and valuable information found in the previous iterations of the

algorithm may be destroyed.

6.2.1.2 Maintaining Diversity during the Execution

The methods in this category maintain diversity throughout the run, not only after

a change occurs. Grefenestette [107] introduced random immigrants, in which ran-

domly generated individuals replace a small portion of the population (usually the

worst) in every algorithmic iteration. However, this immigrants scheme may disturb

the optimization process since diversity is generated randomly.

92



Chapter 6. ACO for Dynamic Combinatorial Optimization

Yang [274] introduced the elitism-based immigrants, in which immigrants are gener-

ated using the best individual of the previous environment as the base. In this way,

diversity is guided but this immigrants scheme may work only when the changing

environments are similar. A hybrid immigrants scheme was introduced later on that

combines random, dualism and elitism-based immigrants [280].

Yu et al. [288] introduced environmental-information based immigrants to address

slightly changing environments. The knowledge transferred from this immigrants

scheme is based on the whole population of the previous environment and not in

one individual as with the elitism-based immigrants.

It has been observed that individual-information immigrants have better perfor-

mance than environmental-information immigrants, whereas the latter one has bet-

ter robustness than the former one. Individual- and environmental-information

based immigrants have been hybridized to combine the merits of both schemes [290].

From the experiments it has been observed that: (1) robustness and performance

cannot be optimized simultaneously; and (2) the interaction between the two types

of immigrants does strike a balance between robustness and performance.

Apart from immigrants schemes, co-evolutionary techniques, e.g., fitness sharing

and crowding [36, 172], help to enhance population diversity. Co-evolution has

significantly improved evolution in optimization problems [127]. Fitness sharing

modifies the objective value of individuals to create niches. Individuals that belong

to the same niche share their fitness. Crowding is a replacement strategy in which

similar individuals are replaced. Both techniques delay premature convergence, and,

thus they maintain diversity.

Immigrants schemes and co-evolutionary techniques slow down the optimization

process, since they enhance exploration in every iteration. Hence, in dynamic envi-

ronments that change quickly, they may not be effective.

93



Chapter 6. ACO for Dynamic Combinatorial Optimization

6.2.1.3 Memory-based schemes

The methods in this category involve memory to the algorithms that store solutions

or knowledge from previous environments that can be reused in the future. Memory-

based schemes are further divided into two categories: implicit and explicit memory.

The former type of memory refers to the integration of EAs with redundant rep-

resentation. The most popular examples of implicit memory are the diploid EAs

[109, 273], where each locus (position) in an individual has two alleles (values).

The latter type of memory refers to the integration of EAs with a memory component

to store information [275, 277, 291]. Memory-based EAs differ in the way information

is stored and retrieved from the memory, and when and how memory is updated.

Memory-based schemes are useful on dynamic environments when previous environ-

ments reappear; otherwise, they might not be effective [20].

6.2.1.4 Multi-population approaches

The methods in this category maintain several sub-populations, in parallel, where

each one tracks a different area in the search space. Multi-population EAs differ in

the way the sub-populations are used.

In self-organizing scouts [23], a main population is used to explore the search space

and locate an optimum, whereas a sub-population is created whenever a new op-

timum is found, and is used to track the new optimum. In shifting balance GA

[265], a main population is used to track any new optimum found, whereas sev-

eral sub-populations explore the search space. In multinational GA [253], several

sub-populations have the ability to both explore and track a location in the search

space.

94



Chapter 6. ACO for Dynamic Combinatorial Optimization

Multi-population approaches have the ability to generate and maintain diversity.

However, a large number of sub-populations may require extensive computation

time. Moreover, it may slow down the optimization process due to the large number

of parallel locations in the search space that the populations track.

6.2.1.5 Hybrid and memetic algorithms

These methods are combinations of the above approaches. Every approach, from

the above categories, may perform better on different dynamic environments with

different properties. For example, memory-based approaches have been integrated

with immigrants schemes [235, 275]. The former approaches promotes guidance, and

the latter approaches generate diversity.

Another type of hybrid algorithms, called memetic algorithms, have been applied

successfully on DOPs. A memetic algorithm is an EA with an LS operator. Usually,

a memetic algorithm provides strong exploitation and may not be suitable for DOPs.

However, immigrants schemes have been integrated with a memetic algorithm to

balance exploitation and exploration with promising results [261]. Other memetic

algorithms have been successfully applied in different dynamic environments [80, 81,

131].

6.2.2 Other Metaheuristics

On the contrast, the research to address DOPs using other metaheuristics is weak

compared with EAs. A parallel implementation of TS has been applied to the

real-time vehicle routing and dispatching with promising results [106]. SA has

been applied to the dynamic load balancing problem to obtain a satisfactory high-

performance scheduling [204]. EDAs enhanced with memory have been applied on

95



Chapter 6. ACO for Dynamic Combinatorial Optimization

different binary-encoded dynamic COPs [283]. The ACO metaheuristic in dynamic

environments will be discussed in great detail in Section 6.5.

6.3 Detection of Dynamic Changes

Many strategies used to enhance the performance of metaheuristics in DOPs, e.g.,

hypermutation described above, take explicit action when a change occurs in dy-

namic environments and require the detection of changes. It can be assumed that

the environment makes the changes known to the algorithm, but this may not be

the case in real-world applications. Therefore, two main strategies are integrated

with the algorithms to enable the detection of dynamic changes: (1) detect a change

by re-evaluating detectors (special locations in the search space where the objectives

are re-evaluated on every iteration to detect changes); and (2) detect a change by

considering the algorithm’s behaviour.

The former method refers to the regular re-evaluation of detectors from the algorithm

to detect changes of their value or their feasibility. The detectors can be part of the

actual population, e.g., the best solutions, [130, 157] or a separate sub-population

[275, 300]. Since the detectors require function evaluations, usually a small number

of detectors is used. However, sometimes the detectors may not be able to detect the

change since a dynamic change may not affect the location of the detectors. Several

studies have been performed for the optimal number of detectors and the location

[193, 222], e.g., using a memory where the best solutions of the previous environment

are used as detectors [278]. In general, this method guarantees to detect a dynamic

change and it is commonly used in EAs for dynamic environments [278]. A drawback

of this method lies in that when noise (a very small environmental change) exists

in the function evaluation, for this case, noise may mislead the detectors to detect

96



Chapter 6. ACO for Dynamic Combinatorial Optimization

a dynamic change. Usually for this case, noise exists in every algorithmic iteration,

and, thus the detectors will always detect a dynamic change [135].

The latter method refers to the monitoring of the algorithm behaviour. For example,

in [41] a dynamic change is detected by monitoring a drop on the value of the best

solution over a number of iterations, whereas in [193] the diversity is monitored.

This method does not require any extra fitness evaluations as the former method,

but there is no guarantee that a dynamic change will be detected [135, 222].

6.4 Performance Measurements

In dynamic optimization there is no agreed unique measurement to evaluate the

performance of algorithms. To simply consider the best solution found may not be

sufficient because the optimum changes. There are three categories of performance

measurements: (1) optimum-based performance measurements; (2) behaviour-based

performance measurements; and (3) average-based performance measurements.

The optimum-based performance measurements measure the best an algorithm can

perform. For example, how close to the optimum an algorithm can perform on

every dynamic change. The behaviour-based performance measurements measure

different behaviours of the algorithms. For example, how different are the solutions

in the population or how well an algorithm reacts after a dynamic change. In the

average-based performance measurements the best individuals are not so important

as in the optimum-based performance measurements. This is because it measures

the population as a whole, i.e., the average fitness values of the population. Some

researchers often adopt average-based measures since they use (population-based)

algorithms as a model of evolutionary systems [214]. The most popular and common

measurements in DOPs are categorized and discussed below.

97



Chapter 6. ACO for Dynamic Combinatorial Optimization

6.4.1 Optimum-based Performance Measurements

Best-performance. Best-performance (BP) is one of the most commonly used

measurements to compare algorithms in DOPs. Different names have been given:

best-of-generation [282], best-fitness [103], best-objective-value [6] and collective

mean fitness [192]. Generally, BP is the average of the best values on each iter-

ation for several runs on the same problem with the same dynamic changes. The

best-performance is defined as follows:

P̄BP =
1

G

G
∑

i=1

(

1

N

N
∑

j=1

FBP ij

)

, (6.2)

where G is the number if iterations (or generations), N is the number of runs, and

FBP ij
is the best value in iteration i of run j.

The advantage of BP is that it gives an overall view of the performance of the

algorithms in dynamic environments, and it is easier to quantitatively compare them.

The disadvantages is that the optimum is not considered, and, thus, the values are

not normalized. Therefore, in case an algorithm performs well after a change, and

has a very poor fitness after a change on a specific period, the final value may be

biased and might not reflect correctly its overall performance.

Modified offline-performance. Offline-performance was initially proposed for

stationary environments and later on it was modified to evaluate dynamic environ-

ments [21, 137]. The modified offline-performance (MOP) is the average over the

best value found since the last environmental change and is defined as follows:

PMOP =
1

G

G
∑

i=1

F ∗
i , (6.3)

where F ∗
i is the best fitness value since the last environmental change in iteration i.

98



Chapter 6. ACO for Dynamic Combinatorial Optimization

The advantages and disadvantages of MOP are similar with the BP above. However,

it has an additional disadvantage because it requires that the period of a dynamic

change is known.

Modified offline-error. In best-performance and modified offline-performance

measurements the optimum is not known. The modified offline-error (MOE) [22]

is the average over the best error value found since the last environmental change

and it is defined as follows:

PMOE =
1

G

G
∑

i=1

E∗
i , (6.4)

where E∗
i is the best error value since the last environmental change in iteration i.

The error is a metric that defines the difference between the best fitness value and the

known global optimum value, where a value closer to 0 means better performance.

MOE has the same advantages and disadvantages as MOP. An additional disadvan-

tage is that it requires that the moving optimum is known for every period.

Best-error. Similarly with the modified offline-error measurement, the best-error

(BE) measures how close to the optimum an algorithm can perform [251]. However,

it considers the average error achieved just before an environmental change, and

not the error of the best fitness value since the last environmental change as in

Equation 6.4. The BE is defined as follows:

PBE =
1

M

M
∑

i=1

Ei, (6.5)

where M is the number of environmental changes and Ei is the best error value

before the i-th iteration.

The advantage of BE is that it can give a clear comparison of the final outcome of the

algorithms. However, it has many disadvantages such as: (1) the moving optimum

has to be known on each period in addition with the time period of the dynamic

99



Chapter 6. ACO for Dynamic Combinatorial Optimization

change; (2) the values of the errors are not normalized and may bias the final values;

and (3) the recovery time of the algorithm until it reaches the best fitness value

before a change is not considered. Therefore, an algorithm that recovers very slow

and reaches the same value as another algorithm that recovers much faster, will have

the same BE as that algorithm.

Relative-error. The relative-error (RE) measures the optimization accuracy as-

suming that the best and the worst value in the search space are known [263]. RE

in iteration i can be defined as follows:

PREi
=
FBP i

− Fworsti

Fbesti − Fworsti

, (6.6)

where FBP i
is the best value of the algorithm, Fbesti is the best value in the search

space, and Fworsti is the worst value in the search space at iteration i, respectively.

The value of PREi
ranges between 0 and 1, where 1 is the best possible value.

The advantages of RE are the same as those of BP, MOP and MOE. However, the

values of RE are normalized and they are less biased in the periods where the fitness

is significantly different than in other periods. The disadvantage is that it requires

that the best and the worst values in the search space for every period are known.

6.4.2 Behaviour-based Performance Measurements

Total-diversity. The total-diversity (TD) measurement tends to measure how dif-

ferent the solutions in the population are. Depending on the encoding of the problem

there are different metrics to define the diversity. Usually, on binary-encoded prob-

lems the hamming-distance is used [202, 278, 290], whereas on permutation-encoded

problems a metric based on the similarities of the objects is used [3]. The TD in

100



Chapter 6. ACO for Dynamic Combinatorial Optimization

iteration i can be defined as follows:

T̄DIV =
1

G

G
∑

i=1

(

1

N

N
∑

j=1

Divij

)

, (6.7)

where in case a binary-encoded representation is used, Divij is defined as:

Divij =
1

lµ(µ− 1)

µ
∑

p=1

µ
∑

q 6=p

HD(p, q), (6.8)

where l is the encoding length, µ is the population size, andHD(p, q) is the hamming

distance between solutions p and q. In case a permutation-encoded representation

is used, Divij is defined as:

Divij =
1

µ(µ− 1)

µ
∑

p=1

µ
∑

q 6=p

S(p, q), (6.9)

where S(p, q) is the similarity metric based on the common edges between solution

p and q defined in Equation 5.2. For both metrics in Equations 6.8 and 6.9 a value

closer to 0 means that the solutions in the population are similar.

TD can provide important information for the algorithm in order to tune the bal-

ance between exploration and exploitation. For example, if an algorithm has high

diversity, it means that the algorithm generates too much exploration, which may

lead to randomization.

Stability. The stability measurement measures the increase of the fitness after a

dynamic change occurs [263]. An algorithm is called “stable” when its optimization

accuracy is not affected significantly when a dynamic change occurs. Therefore,

using the optimization accuracy, defined in Equation 6.6, the stability of an adaptive

algorithm in iteration i is defined as follows:

Si = max{0, PREi−1
− PREi

}, (6.10)

101



Chapter 6. ACO for Dynamic Combinatorial Optimization

where PREi−1
and PREi

are the optimization accuracy values just before and when a

dynamic change occurs, respectively. The value of Si ranges between 0 and 1, where

0 is the best possible value.

Similarly with TD, stability provides important information regarding the adap-

tation capabilities of the algorithm. However, it inherits the disadvantages of RE

above since is based on that.

Best-robustness. The best-robustness (BR) measurement measures the response

of the algorithm when a dynamic change occurs, and it is similar with stability

[136, 290]. The BR for iteration i can be defined as follows:

R̄BRi
=

1

N

N
∑

j=1

BRij (6.11)

where BRij is the best-robustness of iteration i of run j which is defined as follows:

BRij =















1, if
FBPi−1j

FBPij

> 1,

FBPi−1j

FBPij

, otherwise,

(6.12)

where FBP i−1j
and FBP ij

are the best values found by the adaptive algorithm, before

and when an environmental change occurs, respectively. A higher value implies a

better robustness.

BR can provide similar information with stability. However, it inherits the disad-

vantages of BP above because it is based on that. Recently, a new perspective

on DOPs has been established, known as robust optimization over time (ROOT),

where the target is to find the sequence of solutions which are robust over time [287].

More precisely, a solution is robust over time when its quality is acceptable to the

environmental changes during a given time interval.

102



Chapter 6. ACO for Dynamic Combinatorial Optimization

Reactivity. The reactivity measurement measures the time an adaptive algorithm

requires to recover after a dynamic change [263]. Using the optimization accuracy

defined in Equation 6.6, reactivity is defined as follows:

Ri,ǫ = min{i′ − i|i < i′ ≤ G, i′ ∈ N,
PRE′

i

PREi

≥ (1− ǫ)} ∪ {G− i}, (6.13)

where ǫ is a constant that defines the time window and G is defined as in Equa-

tion 6.2.

The advantages and disadvantages of the reactivity measurements are the same as

those of the stability measurement.

6.4.3 Average-based Performance Measurements

Average-performance The average-performance (AP) measurement [214, 290] is

the corresponding average-based performance of the best-performance defined in

Equation 6.2. AP is defined as follows:

P̄AP =
1

G

G
∑

i=1

(

1

N

N
∑

j=1

FAP ij

)

, (6.14)

where FAP ij
is the average of the fitness values of the population on iteration i of

run j, and it is defined as:

FAP ij
=

1

µ

µ
∑

k=1

Fk, (6.15)

where Fk is the fitness value of the k -th individual.

Average-robustness The average-robustness (AR) measurement [214, 290] is the

corresponding average-based performance of the best-robustness defined in Equa-

tion 6.12. Therefore, based on the AP measurement defined in Equation 6.15, the

103



Chapter 6. ACO for Dynamic Combinatorial Optimization

AR for iteration i is defined as follows:

R̄ARi
=

1

N

N
∑

j=1

ARij (6.16)

where ARij is the average-robustness of iteration i of run j which is defined as

follows:

ARij =















1, if
FAPi−1j

FAPij

> 1,

FAPi−1j

FAPij

, otherwise.

(6.17)

6.5 Addressing Dynamic Environments with ACO

Differently from EAs, the research of ACO for DOPs is still infant. ACO algorithms

are able to use knowledge from previous environments using the pheromone trails

generated in the previous iterations. They also have adaptation capabilities due to

pheromone evaporation [17]. For example, when a dynamic change occurs, evapo-

ration will eliminate the pheromone trails concentrated to the old optimum. In this

way, the population of ants will be flexible enough to track the moving optimum.

ACO achieves exploitation due to the consideration of heuristic information of the

problem, and exploration due to the use of the pheromone mechanism. ACO

algorithms are robust since they can accept any knowledge transferred via their

pheromone trails: when the information is useful then it is considered; otherwise, it

is destroyed after a few iterations, depending on the evaporation rate.

However, the time required to adapt to the new environment may depend on the

problem size and the degree of change. When the environmental change is severe

then it will take an ACO algorithm longer to eliminate unused pheromone trails.

On the other hand, pheromone evaporation may destroy information that can be

used on further environments, since a bad solution in the current environment may

104



Chapter 6. ACO for Dynamic Combinatorial Optimization

be good in the next environments [4, 82]. Several strategies have been proposed to

enhance the performance of ACO in DOPs and they are categorized as follows.

6.5.1 Pheromone modification after a change

A global restart of an ACO algorithm is performed with the re-initialization of the

pheromone trails. This mechanism was first proposed inMMAS [244], and later on

adapted in ACS [101] and BWAS [42] algorithms, to avoid the stagnation behaviour

in static environments. Guntsch et. al [111, 114] used pheromone re-initialization

and proposed the Restart − strategy for DOPs. When a dynamic change occurs,

all the pheromone trails are re-initialized with an equal amount.

However, this strategy destroys all the previous information and may slow down the

re-optimization process. The same authors proposed local restart strategies that take

into account where the change of the problem occurs [111, 114]. Two strategies have

been proposed called τ−strategy and η−strategy, in which the former one modifies

pheromone in the affected areas considering the values of the existing pheromone,

whereas the latter one considers heuristic information. From their results, the local

restart strategies performed better than the global one [111].

Eyckelhof and Snoek [82] proposed a “shaking” operator that is applied after a

dynamic change is detected. The purpose of the operator is to smooth all the

pheromone trails accordingly after pheromone evaporation. Areas with high inten-

sity of pheromone may take some time to be eliminated by pheromone evaporation.

Therefore, the shaking operator aims to eliminate them faster.

The methods in this category require the detection of dynamic changes. More-

over, τ − strategy and η − strategy require information regarding the location of

dynamic changes. Such assumptions may not be available in many DOPs. The

105



Chapter 6. ACO for Dynamic Combinatorial Optimization

Algorithm 11 Ant Colony Optimization for DOPs

1: t← 0
2: P (0)← InitializePopulation(µ)
3: InitializePheromoneTrails(τ0)
4: xbs ← empty solution
5: while (termination condition not met) do
6: P (t)← ConstructAntSolutions
7: PheromoneEvaporation(ρ)
8: DepositPheromone(P (t))
9: xib ← FindBest(P (t))
10: if (f(xib) < f(xbs)) then
11: xbs ← xib

12: end if
13: if (environmental change is detected) then
14: DaemonActions
15: end if
16: t← t + 1
17: end while
18: return xbs

general framework of ACO metaheuristc for DOPs is described in Algorithm 11,

where DaemonActions are the different pheromone modification strategies, described

above, taken when a dynamic change occurs. The rest of the functions are the de-

fined as in Algorithm 8.

6.5.2 Memory-based schemes

Guntsch and Middendorf [113] proposed an ACO algorithm with an associated mem-

ory to address dynamic environments, called the population-based ACO (P-ACO).

Every iteration the best ants are stored in the memory which is used to update

pheromone. The ants that enter the memory perform a positive update to their

pheromone trails, whereas the ants that leave the memory perform a negative up-

date to their pheromone trails. When a dynamic change occurs the information

stored in the memory are repaired heuristically, and the pheromone trails are mod-

ified accordingly.

106



Chapter 6. ACO for Dynamic Combinatorial Optimization

Algorithm 12 Population-based ACO

1: t← 0
2: P (0)← InitializePopulation(µ)
3: InitializePheromoneTrails(τ0)
4: klong(0)← empty solution
5: xbs ← empty
6: while (termination condition not met) do
7: P (t)← ConstructAntSolutions
8: UpdatePopulation-List(klong(t))
9: DepositPheromoneTrails(klong(t))
10: xib ← FindBest(P (t))
11: if (f(xib) < f(xbs)) then
12: xbs ← xib

13: end if
14: if (environmental change is detected) then
15: RepairHeuristically(klong(t))
16: GeneratePheromoneTrails(klong(t))
17: end if
18: t← t + 1
19: klong(t)← klong(t− 1)
20: end while
21: return xbs

Angus [3] proposed two variations of P-ACO, in which co-evolutionary techniques

are applied to the memory. Fitness sharing P-ACO (FS-PACO) adjusts the fitness of

the solutions stored in the memory according to their similarities, and the pheromone

trails are adjusted accordingly. In simple crowding P-ACO (SC-PACO) the best ant

replace the most similar ant in the memory. Both variations are able to maintain

diversity because similar ants are eliminated. Furthermore, a memetic ACO (M-

ACO) [180] was proposed, in which LS improvements are applied to the best ant

before entering the memory.

Similarly with the approaches in the previous category, this category of approaches

requires the detection of change. However, for this category there is a way to detect

a change: if the solutions stored in the memory have a change in their fitness, it

means that an environmental change has occurred [278]. The framework of P-ACO

is described in Algorithm 12. Most of the functions in P-ACO are the same as the

107



Chapter 6. ACO for Dynamic Combinatorial Optimization

traditional ACO, described in Algorithm 11. However, additional functions have to

be specified, in order to use the population-list denoted as klong(t), which are defined

as follows:

• UpdatePopulation-List: updates klong(t) on iteration t using Equation 6.20

and 6.21.

• RepairHeuristically: repairs solutions stored in klong(t) in a way that causes

the minimum cost to the resulted solution.

• GeneratePheromoneTrails: re-generates pheromone trails using the repaired

solutions stored in klong(t).

6.5.3 Multi-colony algorithms

The aim of multi colony ACO algorithms is to have several ant colonies explore

different areas in the search space and cooperate at some point by exchanging infor-

mation or promote synchronization [208]. Parallel strategies have been first studied

in [30, 242], where each colony uses its own pheromone matrix. Middendorf et. al

[189] investigated several strategies in which different colonies exchange information.

There are two types of multi colony approaches, i.e., heterogeneous and homo-

geneous. Heterogeneous approaches have ant colonies working with different be-

haviours [100, 101], whereas homogeneous approaches have ant colonies working

with the same behaviour [187, 188].

Although multi colony ACO performs better than single colony ACO in static envi-

ronments [242], there are still no evidence regarding their performance in dynamic

environments. However, this area is worth further investigation and can be consid-

ered as a future work.

108



Chapter 6. ACO for Dynamic Combinatorial Optimization

6.6 Applications of ACO for Dynamic Combina-

torial Optimization

Table 6.1 shows the important, or the most popular, ACO algorithms designed for

different applications in dynamic environments. The applications are categorized

into three main types: routing, network routing and scheduling. On the contrast to

the wide range of ACO applications in static combinatorial optimization, in dynamic

combinatorial optimization the applications are restricted to routing problems (in-

cluding network routing). In this thesis, we consider the application of ACO for the

TSP and VRP with dynamic environments.

6.6.1 Dynamic TSP (DTSP)

On the contrast to the static TSP described in Chapter 4, the dynamic TSP (DTSP)

is more challenging, because there are a series of linked NP-complete problem in-

stances that need to be optimized over time. For the DTSP, we refer to two main

variations that differ in the type of environmental changes. P-ACO [113], ACO with

Restart−strategy [111], τ−strategy [114] and η−strategy [114] have been applied

to the DTSP where the cities of the current problem instance are exchanged with

cities from a spare pool. ACO-shaking [82] has been applied on the DTSP where

the cost of cities’ links increases/decreases to represent potential traffic. The ACO

applications for the DTSP are described in detail below. For more details on how

to generate DTSPs from static problem instances, see Chapter 7.

Structure. The structure for the DTSP with traffic factors is the same as the

static TSP. For the DTSP with exchangeable cities, the problem instance is divided

into the current pool and the spare pool. The current pool is where the algorithm

optimizes, and the spare pool is used to exchange cities. In this way the size of the

109



Chapter 6. ACO for Dynamic Combinatorial Optimization

Table 6.1: ACO applications for dynamic combinatorial problems categorized
by their type and sorted chronologically.

Problem type Problem name Year Main References

Routing Travelling Salesperson 2001 [111, 114]

2002 [12, 13, 82, 113]

2005 [162]

2006 [3]

2011 [180, 181]

Vehicle Routing 2003 [195]

2005 [196]

2012 [182]

Network Routing Wired 1996 [228]

1997 [71, 229]

1998 [18, 72]

2000 [75]

2004 [35]

Wireless 2000 [31]

2001 [32]

2002 [179, 234]

2004 [73]

2005 [74]

Scheduling Job-shop 2007 [168]

2010 [141]

problem instance remains the same.

Constraints. There are no additional constraints for the DTSPs.

110



Chapter 6. ACO for Dynamic Combinatorial Optimization

Dynamics. The environmental changes of the DTSP with traffic factors occur by

the increase of the cost of some links, and decreasing the previously traffic factors

from the links. However, there is no evidence on how the magnitude of environmental

changes is defined [82]. The environmental changes of the DTSP with exchangeable

cities occur by exchanging the same number of cities from the current pool with

those in the spare pool. The magnitude of change depends on the number of cities

exchanged. The frequency of change for both DTSPs is defined by the algorithmic

iterations.

Actions after change. In the P-ACO the solutions stored in klong(t) of limited

size Kl are repaired using the keep-elitist strategy [113]. The offended cities are

removed, and the cities from the spare pool are added to the positions that lead

to the best fitness when they are re-evaluated. In the Restart − strategy, all the
pheromone trails are re-initialized with an equal amount. In the τ − strategy and

η − strategy the pheromone trails of the offended cities are modified. The P-ACO

and Restart − strategy can be applied on both DTSPs, whereas τ − strategy and

η − strategy can be applied only to the DTSP with exchangeable cities. ACO-

shaking smooths the pheromone trails using a logarithmic formula after pheromone

evaporation, which is defined as follows:

τij ← τ0(1 + log(τij/τ0)), ∀(i, j) ∈ E, (6.18)

Solution construction. The solution construction for the DTSPs is the same as

for static TSPs. All the algorithms, expect ACO-shaking, use the pseudorandom

proportional rule in Equation 4.13.

Pheromone trails and heuristic information. The pheromone trails τij and

heuristic information ηij are associated with the links of the problem instances as

111



Chapter 6. ACO for Dynamic Combinatorial Optimization

in the static TSP. However, when the links of the cities change due to traffic factor

the heuristic information changes as well.

Pheromone update. ACO-shaking updates pheromone with the use of the elitist

pheromone strategy of EAS defined in Equation 4.5. Restart−strategy, η−strategy
and τ − strategy uses another elitist strategy to update pheromone where one elite

ant deposits pheromone along the best-so-far ant solution. For every city i a constant

amount of pheromone is added to the link (i, j) when j is the successor of i in the

best-so-far ant solution. The constant amount is defined as:

τij ← τij +
1

4
ρ. (6.19)

P-ACO uses the population-list to update pheromone. Whenever ant k enters

klong(t) a constant positive update is performed, defined as follows:

τij ← τij +∆τij , ∀(i, j) ∈ T k, (6.20)

where ∆τij = (τ0 − τmax)/Kl where Kl is the size of the population-list. When the

population-list is full, an existing ant in klong(t), i.e., ant k
′, needs to be removed to

make space for a new ant. Accordingly, a constant negative update is performed to

ant k′, defined as follows:

τij ← τij −∆τij , ∀(i, j) ∈ T k′, (6.21)

where ∆τij is defined as in Equation 6.20. There are many variations of the P-ACO

algorithm that differ on the update policy of the population list:

1) The Age, Quality, Prob and Age & Prob update policies [113]. In the default Age

strategy, the first ant that entered the population-list is replaced by the new ant

which is described in Equations 6.20 and 6.21. In the Quality strategy, the new ant

112



Chapter 6. ACO for Dynamic Combinatorial Optimization

replaced the worst ant in the population if it is better. In the Prob strategy, the

new ant replaces an existing ant in the population-list, probabilistically, in which

the ants with highest fitness have less chances to be replaced. The Age & Prob

strategy, is a combination of the Age and Prob strategies described above, where

Age is used for the removal of the ant from the population-list and Prob is used for

the insertion of the new ant in the population-list. The difference of the hybrid Age

& Prob strategy from the default Age strategy lies in the selection of the new ant

that replaces the first ant that entered the population-list. In the former strategy

the ant is selected probabilistically, whereas in the latter strategy the best ant is

selected.

2) More update strategies for the population-list have been proposed in FS-PACO

and SC-PACO, which are based on co-evolutionary techniques and the difference

between ants [3], e.g., the similarity metric S(p, q) defined in Equation 5.2. FS-

PACO applies fitness sharing to the population-list, where each ant’s solution value,

say Cp for ant p, is de-rated as follows:

Cp′ =
Cp

cp
, (6.22)

where Cp′ is the de-rated solution value and cp is the niche count, defined as follows:

cp =

Kl
∑

q=1

sh (p, q) , (6.23)

where sh(·) is the sharing function defined as follows:

sh(p, q) =















1−
(

S(p,q)
σshare

)a

, if S(p, q) < σshare,

0, otherwise,

(6.24)

where σshare is the niche radius and a is the parameter that determines the shape of

113



Chapter 6. ACO for Dynamic Combinatorial Optimization

the sharing function. The pheromone update is performed using the shared fitness,

where all ants in the population-list are removed by the new ones. In SC-PACO

simple crowding is applied, where ant p replaces the closest ant, e.g., q, in the

population-list. In other words, the most similar ants are replaced using the S(p, q)

metric, if ant p is better than ant q. The pheromone update policy for SC-PACO and

FS-PACO is the same as the default one defined in Equations 6.20 and 6.21, but with

different ∆τij =
(

Cbs

Cp

)λ

, where Cbs is defined as in Equation 4.6, Cp is the solution

quality of ant p, and λ is the parameter that determines the relative influence of

pheromone quality. Note that all algorithms have pheromone evaporation as defined

in Equation 4.2, except for the P-ACO, FS-PACO and SC-PACO algorithms, in

which no evaporation is used.

3) Another variation of the P-ACO is the M-ACO [180] which follows the same

framework, in addition with multiple LS improvements using blind inversions (BI)

and guided inversions (GI). After constructing solutions, the best ant is selected to

be improved by an LS operator before it enters the population-list. The LS operator

is applied for several steps. In BI, the second object, which determines the size of

the segment to be reversed, is selected randomly from the same individual of the

first object. In GI, the second city is determined according to another individual

randomly selected from the current population. The two inversion operators compete

and cooperate in order to obtain the advantages of both of them during different

periods when they are effective. Both BI and GI are selected probabilistically at

every step of an LS operation on every iteration of the algorithm. Let pbi and pgi

denote the probability of applying BI and GI to the individual selected for LS,

respectively, where pbi + pgi = 1. Initially, the probabilities are both set to 0.5 in

order to promote a fair competition between the two operators. The probabilities

are adjusted according to the improvement each inversion operator has achieved

on every LS step. The probability of the operator with the higher improvement is

increased using a similar mechanism as introduced in [261]. Let ξi denote the degree

114



Chapter 6. ACO for Dynamic Combinatorial Optimization

of improvement of the selected ant after an LS step, which is calculated as follows:

ξi =

∣

∣Cbest′ − Cbest
∣

∣

Cbest
, (6.25)

where Cbest′ is the tour cost of the best ant after applying an LS step (using BI or

GI) and Cbest is the tour cost of the best ant before applying the LS step. When

the number of LS steps reaches the pre-set step size, denoted as LSsteps, the degree

of improvement regarding BI and GI operators, denoted as ξibi and ξ
i
gi, respectively,

is calculated and used to adjust the probabilities of selecting BI and GI in the next

iteration, pbi(t+ 1) and pgi(t+ 1), as follows:

pbi(t + 1) = pbi(t) + ξibi(t), (6.26)

pgi(t + 1) = pgi(t) + ξigi(t), (6.27)

pbi(t + 1) =
pbi(t + 1)

pbi(t+ 1) + pgi(t+ 1)
, (6.28)

pgi(t+ 1) = 1− pbi(t+ 1), (6.29)

where ξibi(t) and ξigi(t) are the total degree of improvement achieved by BI and GI

operators at iteration t, respectively. Both pbi and pgi are set to their initial value,

i.e., 0.5, when an environmental change occurs in order to re-start the cooperation

and competition when a new environment arrives. Due to the high exploitation an

LS provides, triggered random immigrants are added to the population-list whenever

the population-list reaches a predefined threshold calculated by the diversity defined

in Equation 6.9.

General comments. Recently, ACO has been integrated with immigrants schemes

to address different DTSPs with traffic factors (we describe the proposed algorithms

in great detail in Chapter 8).

115



Chapter 6. ACO for Dynamic Combinatorial Optimization

6.6.2 Dynamic VRP (DVRP)

Similarly with the DTSP, the dynamic VRP (DVRP) is challenging because it re-

quires continuous re-optimization of the changing optimum. ACO has been applied

to the DVRP in which orders arrive incrementally. ACS-DVRP [195, 196], is the

single colony version of MACS-VRP described in Chapter 4 and it is the only ACO

algorithm applied to the DVRP with dynamic demands and to the DVRP in general.

Recently, M-ACO [182], described in Section 6.6.1 for the DTSP, has been applied

to solve the DVRP with traffic factors, with promising results. To the best of our

knowledge, there is no other application of the ACO metaheuristic for the DVRP

(a recent survey paper is available in [209]). The existing ACO applications for the

DVRP are described in detail below. For more details on how to generate DVRPs

from static problem instances, see Chapter 7.

Structure. The structure for the DVRP with dynamic demands is strongly related

to the static VRP. The difference lies in that new orders (or customers) arrive when

the working day has already started. The dynamic changes occur incrementally.

More precisely, each static VRP will contain all the customers known at that time,

but their demand is not satisfied yet. The structure of the DVRP with traffic factors

is identical to the corresponding one of the DTSP, and will not be described again

in this section.

Constraints. The constraints are the same as in the static VRP. An additional

constraint is that customers become visible using time slice for the DVRP with

dynamic demands.

Dynamics. The environmental changes of DVRP with dynamic demands occur

when a new time slice will make available new customers. For example when a

vehicle leaves the depot at time t0 an initial route is generated to visit the currently

known requests. While the vehicle executes its route, new requests appear at time t1

116



Chapter 6. ACO for Dynamic Combinatorial Optimization

and the initial route is adjusted to satisfy the demand requests of the new customers.

Note that the dynamic changes appear in an incremental way. The environmental

changes of the DVRP with traffic factors occur in the same way as in the DTSP

with traffic factors.

Actions after change. The only action when a new time slice occurs is the event

manager, which collects the new orders and keeps track of already visited customers.

Solution construction. The solution construction is the same as in MACS-VRP,

which uses dummy depots to represent the number of vehicles. For M-ACO the

solution construction is the same as in ASrank-CVRP; see Section 4.6.2 for more

details.

Pheromone trails and heuristic information. The pheromone trails τij and the

heuristic information ηij are associated with the links of the problem instances as in

the static VRP. The heuristic information of the algorithms is defined as the inverse

of the distance or travel time between customers i and j (for more details see [196]).

Pheromone update. ACS-DVRP follows the same pheromone update policy with

the MACS-VRP. An additional action is taken when a new time slice occurs, in

which the pheromone trails generated from the old time slice are transferred to the

new one. However, they are regulated as:

τij ← (1− γ)τij + γτ0, (6.30)

where γ is a parameter to smooth the intensity of the old pheromone trails. The new

customers applied are initialized with τ0. For M-ACO the same pheromone update

policy as the corresponding algorithm in the DTSP is used. The only difference is

in the LS operators used. In the DTSP, blind and guided inversions have been used,

whereas in the DVRP blind and guided swaps have been used; see Algorithm 10 for

117



Chapter 6. ACO for Dynamic Combinatorial Optimization

more details. The diversity enhancement and the rule where multiple LS operators

are applied remain unchanged.

General comments. Recently, ACO has been integrated with immigrants schemes

to address a new variation of the DVRP with traffic factors (we describe the proposed

algorithms in great detail in Chapter 8).

6.7 Theoretical Development

As discussed in Chapter 3, it is very challenging to analyze metaheuristics on SOPs

and theoretical work is limited. Some main theoretical works done regarding (1+1)

EA, an EA with population size 1, for static environments include first hitting time

[124] and drifting analysis [123]. A recent survey regarding the impact of different

components of EAs, including selection, mutation, crossover, parameter setting, and

interactions among them can be found in [285]. In comparison with the theoretical

work of metaheuristics for static optimization problems, the work for DOPs is even

more limited.

In evidence that the research in dynamic optimization has been mainly made using

EAs, all of the theoretical work developed for DOPs concern EAs. To the best of

our knowledge, there is no any theoretical work for ACO for DOPs. In fact, the

theoretical work for dynamic optimization extends the one made in EAs for static

optimization. (1+1) EAs are used to a very simple problem, i.e., the dynamic bit-

matching problem [25, 241]. Other EA theoretical developments for DOPs include

the analysis of the frequency and magnitude of change in dynamic environments

[225], the analysis of a benchmark generator for binary-encoded problems [250], the

118



Chapter 6. ACO for Dynamic Combinatorial Optimization

analysis of the dynamic subset sum problem [226], the analysis of the dynamic knap-

sack problem [26], and the analysis of the fitness landscape in dynamic environments

[24, 134, 220, 221].

Due to the lack of theoretical work, algorithms in DOPs are analyzed empirically.

Hence, benchmark generators for DOPs are essential tools for the performance eval-

uation of algorithms. A benchmark generator not only provides a standard method

to compare algorithms, but also helps the development of new algorithms (more

details in Chapter 7).

6.8 Summary

In this chapter we have presented the concept of dynamic optimization, which was

mainly focused on EAs. Several strategies that enhance the performance of tra-

ditional EAs are defined. At the moment there is still no agreed measurement to

evaluate the performance of EAs in dynamic optimization, and, thus, several per-

formance measurements used are defined.

Similar to EAs, ACO suffers from the stagnation behaviour. Therefore, different

strategies, mainly inspired from evolutionary computation, have been developed to

delay convergence, increase diversity, and to transfer knowledge. The main applica-

tions and algorithmic contributions of ACO for DOPs are defined in this chapter.

More details are given for the applications of DTSP and DVRP which are the prob-

lems used for the experiments in Chapter 8.

In general, most ACO applications assume static environment (see Table 4.1) and

it can be observed that there are limited existing applications found under dynamic

environments (see Table 6.1). However, it has been shown, from the limited ap-

plications available in DOPs, that ACO is a robust metaheuristic to accept the

119



Chapter 6. ACO for Dynamic Combinatorial Optimization

knowledge transferred from previous environments and adapt to the new one. Fi-

nally, the theoretical foundations of ACO in DOPs are even more weak, than the

theoretical foundation of EAs in DOPs.

120



Chapter 7

Benchmark Generators for

Dynamic Optimization Problems

7.1 Generating a Dynamic Environment

The field of dynamic optimization is related to the applications of nature-inspired al-

gorithms [137]. The area is rapidly growing on strategies to enhance the performance

of algorithms, but still there is limited theoretical work, as discussed in Section 6.7,

due to the complexity of nature-inspired algorithms, e.g., EAs and ACO, and the

difficulty to analyze them in the dynamic domain. Therefore, the development of

benchmark problems to evaluate the algorithms empirically is appreciated by the

evolutionary computation community. Such tools are not only useful to evaluate

algorithms but also essential for the development of new algorithms.

A DOP can be otherwise defined as a series of several static instances. Hence, a

straightforward method, but not efficient, to construct a dynamic test problem is

to switch between different static instances that will cause an environmental change

121



Chapter 7. Benchmark Generators for Dynamic Optimization Problems

[156]. The benchmark problems that generate dynamic environments following this

methodology are specified for a single problem.

However, several general purpose dynamic benchmark generators have been pro-

posed that re-shape the fitness landscape (a survey can be found in [49]). The most

commonly used benchmark generators are: (1) Moving Peaks [20]; (2) DF1 [194];

and (3) exclusive-or (XOR) DOP [271]. The first two benchmark problems work for

the continuous domain where they use functions with adjustable parameters to sim-

ulate shifting landscapes. The continuous space can be modelled as a “field of cones”

[194], where each cone is adjusted individually to represent different dynamics. A

similar approach is not feasible for the combinatorial space because the landscape

is indistinct and cannot be defined without reference to the optimization algorithm,

as described in Chapter 3.

7.2 Properties of Dynamic Benchmark Genera-

tors

In general, a benchmark can be defined as standard test problems designed for the

development of new algorithms and the comparison with existing ones. A useful

benchmark should have the following general properties [21, 193, 272, 293]:

• Simplicity: It should be simple and efficient in order to be easily adapted by

other users.

• Flexibility: It should be flexible in order for the user to configure the different

aspects of dynamism, i.e., frequency and magnitude of change, and periodicity

as described in Chapter 6.

122



Chapter 7. Benchmark Generators for Dynamic Optimization Problems

• Generality: It should be general enough to address a wide range of problems

and be compatible with different types of metaheuristics.

• Applicability: It should model, to some extend, real-world situations.

Other characteristics or properties a benchmark generator for DOPs may have are

classified as follows [200, 294]:

• Known/Unknown Optimum: Whether the environmental changes affect

the optimum explicitly and cause it to change or the environmental changes

shift the population to a different location in the fitness landscape but the

optimum remains unchanged.

• Predictable/Unpredictable Changes: Whether the environment may change

periodically by setting the frequency of change with a fixed number or the fre-

quency of change may vary. In the former case the changes are predictable

whereas in the latter case they are not.

• Detectable/Undetectable Changes: Whether the environmental changes

can be detected, even if they are unpredictable, e.g., with detectors, or the envi-

ronmental changes can not be detected because, apart from dynamic changes,

noise is generated frequently.

• Random/Cyclic Changes: Whether the environmental changes occur in a

random pattern or the environmental changes occur in a cyclic pattern. In the

former case there is no guarantee that any previously generated environment

will re-appear in the future, whereas in the latter case it is guaranteed.

• Time-linkage/Non time-linkage: Whether the dynamic changes in the fu-

ture depend on the current or previous solutions found by the algorithm or

not [19].

123



Chapter 7. Benchmark Generators for Dynamic Optimization Problems

• Dimensional/Non-Dimensional Changes: Whether the environmental

changes affect the problem size or not. Moreover, it should be clear which

factors of the problem change, e.g., objective, constraints, domain variables,

etc.

7.3 Benchmarks for Binary-Encoded Problems

The XOR DOP generator [271] is the only benchmark for the combinatorial space

that constructs a dynamic environment from any static binary-encoded function

f(~s), where ~s ∈ {0, 1}l, by a bitwise XOR operator, where l is the size of vector ~s,

e.g., the encoding length of an individual. XOR DOP simply shifts the population

of individuals into a different location in the fitness landscape. Hence, the global

optimum remains known during the environmental changes if it is known for the

base static function f(~s). It is the only benchmark generator widely accepted to

compare algorithms in binary-encoded DOPs.

Therefore, every f iteration of an algorithm, a dynamic environment is generated as

follows:

f(~s, t) = f(~s⊕ ~M(T )), (7.1)

where ⊕ is the exclusive-or operator, i.e., 1⊕ 1 = 0, 1⊕ 0 = 1, 0⊕ 0 = 0, T = ⌈t/f⌉
is the index of the period of change, t is the current count of iterations, and ~M(T ) ∈
{0, 1}l is a binary mask of period T which is generated incrementally as follows:

~M(T ) = ~M(T − 1)⊕ ~P (T ), (7.2)

where ~P (T ) ∈ {0, 1}l is a binary template randomly generated for period T that

contains m × l ones, where m defines the magnitude of change. Initially, the mask

~M(0) contains only zeros that indicates no change in the environment. The constant

124



Chapter 7. Benchmark Generators for Dynamic Optimization Problems

parameters f and m ∈ [0.0, 1.0] control the frequency and magnitude of change,

respectively. XOR DOP is applied on each individual in the population. However,

it is not feasible for permutation-encoded combinatorial problems, e.g. TSPs and

VRPs.

By default, the environmental changes in XOR occur in a random pattern. In [276]

XOR DOP has been extended to construct the environmental changes cyclically,

and later on cyclically with additional noise [283]. In [278] the magnitude of change

is not fixed, but it varies in every change.

7.4 Benchmarks for Permutation-Encoded Prob-

lems

Most research on dynamic optimization has been done with EAs on binary-encoded

combinatorial problems. Recently, ACO algorithms have been found effective on

permutation-encoded DOPs, e.g., the DTSP and its variants. However, in the case

of permutation-encoded problems, in which the solution f(x) is a set of numbers that

represent a position in a sequence, researchers prefer their own benchmark problems

to address different real-world applications.

Guntsch et al. [112] proposed a benchmark DTSP in which a number of cities are

exchanged between the actual problem instance and a spare pool of cities. The same

benchmark problem has been adapted in [180]. Eyckelhof and Snoek proposed the

DTSP where the cost of the cities’ arcs vary [82]. The same benchmark has been

adapted in [181] to represent potential traffic. Younes et al. [293] introduced a

benchmark DTSP with different modes, in which each mode introduces a different

dynamic. Kilby et al. [147] proposed a benchmark for the DVRP where customer

125



Chapter 7. Benchmark Generators for Dynamic Optimization Problems

requests are revealed incrementally. The same benchmark has been adapted by

Montemanni et al. [196].

On the other hand, Younes et al. [294] introduced a general benchmark framework

that applies a mapping function on each permutation-encoded individual. The map-

ping function swaps the labels, i.e., the IDs, between two components and all the

individuals in the population are treated on the same way. In this way, the individ-

uals represent different solutions after a dynamic change but the fitness landscape

of the problem instance does not change. However, this generator is restricted to

the range of algorithms and problems that it is compatible with and it is limited to

the accuracy regarding the magnitude of change.

Due to the high number of specialized benchmark generators for permutation-encoded

problems, the development of a general one that converts the base of a static opti-

mization problem to a dynamic, as XOR DOP for binary-encoded problems, is vital,

since many of them are not available and they are difficult to be adapted. Moreover,

it is impossible to know how close to the optimum the algorithm performs on each

environmental change.

In the next sections, we describe two novel benchmark generators, where in the first

one the optimum is known during the environmental changes, because it simply

moves the population to a different location in the fitness landscape, and in the

second one the optimum is unknown during the environmental changes, because it

modifies the fitness landscape. More precisely, with the former benchmark generator

it is possible to know how close to the optimum, if known, the algorithm performs

at each environmental change, whereas with the latter benchmark generator it is

impossible. The benchmark generators are used to generate DTSP and DVRP dy-

namic cases from any static problem instance. These benchmark generators are used

later in Chapter 8 to evaluate the performance of our proposed algorithms.

126



Chapter 7. Benchmark Generators for Dynamic Optimization Problems

7.4.1 Known optimum

The proposed dynamic benchmark generator for permutation-encoded problems

(DBGP) is designed in such a way to allow full control over the important aspects

of dynamics and to convert the base of any benchmark static COP with known

optimum to a dynamic one without causing the optimum to change. Such static in-

stances can be obtained from the TSPLIB and VRPLIB, where most of the instances

have been solved to optimality.

Some researchers want to observe “how close to the moving optimum a solution

found by an algorithm is?”. Probably it is the best way to evaluate the effective-

ness of an algorithm for DOPs, in addition to the time needed to converge to that

optimum. However, the global optimum is needed for every changing environment

and this is very challenging due to the NP-completeness of most COPs. Since a

DOP can be considered as several static instances, a direct way is to solve each

one to optimality, which may be non-trivial or even impossible, especially for large

problem instances. It may be possible on small problem instances, but then it will

reduce the usefulness of benchmarking. Hence, the need for a benchmark generator

to address the challenges of comparison is increased, but it is even harder to develop

a generator for DOPs with known optimum in COPs, without re-optimization.

The basic idea of the proposed DBGP is to modify the encoding of the problem

instance, instead of the encoding of each individual, i.e., the distance matrix, without

affecting its fitness landscape. To illustrate such a dynamic change, let G = (V,E) be

a weighted graph where V is a set of n nodes, each of which has a location defined by

(x, y), and E is a set of arcs. Each arc (i, j) is associated with a non-negative weight

dij. Usually, the distance matrix of a problem instance is defined as ~D = (dij)n×n,

where n is the size of the problem instance. Then, an environmental change may

occur at any time by swapping the location of some node i with the location of

127



Chapter 7. Benchmark Generators for Dynamic Optimization Problems

Figure 7.1: Illustration of the distance matrix with the optimum solution of the
problem instance before and after a dynamic change.

some node j. In this way, the values in the distance matrix are reallocated but the

optimum remains the same; see Figure 7.1.

The dynamic environments constructed by DBGP may not reflect a real-life situation

but achieve the main goal of a benchmark in which the optimum is known during all

the environmental changes. In other words, DBGP sacrifices the realistic modelling

of application problems for the sake of benchmarking. Moreover, it is simple and

can be adapted to any TSP and its variants to compare algorithms in dynamic

environments.

7.4.1.1 Frequency and Magnitude of Change

Every f iteration a random vector ~rV (T ) = (1, . . . , n) is generated that contains all

the components of a problem instance of size n, where T = ⌈t/f⌉ is the index of the

128



Chapter 7. Benchmark Generators for Dynamic Optimization Problems

period of change, and t is the iteration count of the algorithm. For example, for the

TSP the components are the cities and for the VRP they are the customers, where

both types of components have a location that is defined by (x, y). The magnitude

m of change depends on the number of swapped locations of components.

More precisely, m ∈ [0.0, 1.0] defines the degree of change, in which only the first

m×n of ~rV (T ) object locations are swapped. In order to restrict the swaps to the first

components, a randomly reordered vector ~rV ′ (T ) is generated that contains the first

m×n components of ~rV (T ). Therefore, exactly m×n pairwise swaps are performed

using the two random vectors starting from the first pair. In Younes’ generator, the

magnitude of change is expressed as the number of swaps imposed on the mapping

function. In this way, the components affected from the dynamic change may not

correspond to the predefined magnitude parameter. For example, if m = 0.5, half

of the components may be swapped with the remaining half of the components of

the optimization problem. Hence, the change affects all the components and may

be considered as m = 1.0.

Moreover, the frequency of change is defined by the constant parameter f which is

usually defined by the algorithmic iterations. Hence, for every f iteration m × n

pairwise swaps are performed with probability. However, before each environmental

change, the previous pairwise swaps are reversed, starting from the end of ~rV (T −1)

and ~rV ′ (T − 1). In this way, the environmental changes are always applied to the

encoding of the initial stationary problem instance.

7.4.1.2 Effect on the Algorithms

DBPG can be applied to algorithms that either maintain an actual population or not,

because the dynamic changes occur to the encoding of the actual problem instance.

In this way, the solutions of EAs have the same encoding as before a dynamic

129



Chapter 7. Benchmark Generators for Dynamic Optimization Problems

Figure 7.2: Illustration of the effect on the population of EAs and the heuristic
information used from ACO before and after a dynamic change.

change, but have a different cost after a dynamic change. On the other hand, the

constructive procedure of ACO is affected since different heuristic information is

generated whereas the pheromone matrix remains unchanged. See Figure 7.2 for

more details.

In general, DBGP shifts the population of EAs and biases the population of ACO

algorithms to a new location in the fitness landscape of the search space, respectively.

Younes’ generator assumes that the solver has a population of solutions since the

mapping function is applied on the encoding of each individual, e.g., EAs. Hence,

it cannot be applied to algorithms that do not maintain an actual population, e.g.,

ACO.

Another advantage of the DBGP against Younes’ generator [294] is that in the VRP

the solutions after a dynamic change may represent an infeasible solution when

130



Chapter 7. Benchmark Generators for Dynamic Optimization Problems

dealing with EAs. This is because when the label of the customer changes then

its demand changes, and the capacity constraint is possible to be violated. Hence,

a repair operator or a penalty function has to be applied. The proposed DBGP

overcomes this problem since only the location of customers changes whereas the

label and the demand remain unchanged.

7.4.1.3 Cyclic Dynamic Environments

The default dynamic environments generated by DBGP do not guarantee that any of

the previously generated environment will re-appear. Such environments are called

random dynamic environments ; see Figure 7.3(a). In fact, some algorithms that are

enhanced with memory are expected to work better on dynamic environments that

re-appear in the future [275]. Such environments are called cyclic dynamic environ-

ments ; see Figure 7.3(b), and they can be generated as follows. First, we generate

K random vectors (~rV (0), . . . , ~rV (K−1)) with their corresponding reordered vectors

as the base states in the search space. Initially, the first base state is applied. Then,

every f iterations the previous dynamic changes are reversed, starting from the end

of random vector, and then the new ones are applied from the next base state. In

this way, it is guaranteed that the environments generated from the base states will

re-appear.

DBGP has two options for cyclic dynamic environments regarding the way the base

states are selected: (1) cyclic, where the base states are selected as in a fixed logical

ring; and (2) randomly, where the base states are selected randomly.

From the above cyclic environment generator, we can further construct cyclic dy-

namic environments with noise as follows. Each time a new base state is to be

selected, swaps are performed from the components that are not in ~rV (T ) with a

131



Chapter 7. Benchmark Generators for Dynamic Optimization Problems

(a) (b)

Figure 7.3: Illustration of a random dynamic environment with unlimited states
and a cyclic dynamic environment with 8 states. Each node represents a different
environment where white, light grey, and dark grey, represent low, medium, and

high traffic jams, respectively.

small probability, i.e., pnoise. Note that the swaps due to the noise are reversed in

the same way as with the dynamic changes above.

7.4.1.4 Varying f and m Parameters

In the random and cyclic environments described above the f and m parameters

remain fixed during the execution of the algorithm. An additional feature of DBGP

is to vary the values of f and m with a randomly generated number with a uniform

distribution in [1, 100] and [0.0, 1.0], respectively, for each environmental change.

Note that in this type of environment the changes are not reversed as in the random

and cyclic environments.

7.4.2 Unknown optimum

The basic idea of this benchmark generator is to increase or decrease the cost of

the arcs in E regularly in time, in order to represent potential traffic in roads; see

Figure 7.3. Similar to DBGP, this benchmark generator can convert the base of any

benchmark static COP to a dynamic one and allows full control over the important

132



Chapter 7. Benchmark Generators for Dynamic Optimization Problems

aspects of dynamics. However, it causes the optimum to actually change since the

values of the distance matrix ~D = (dij)n×n are modified with traffic factors.

7.4.2.1 Frequency and Magnitude of Change

A dynamic environment with traffic factors is generated as follows. We assume that

the cost of arc (i, j) is d′ij = dij × cij, where dij is the normal travelled distance and

cij is the traffic factor between components i and j. Every f iterations of algorithmic

iterations, a random number R in [FL, FU ] is generated probabilistically to represent

the traffic factor between components, where FL and FU are the lower and upper

bounds of the traffic factor, respectively. Each arc has a probability m to add traffic

by generating a different R value every f iteration, where the traffic factor cij of the

remaining arcs is set to 1, which indicates no traffic.

For example, a dynamic case with high traffic is constructed by setting traffic factor

values closer to FU with a higher probability to be generated, while for a dynamic

case with low traffic, a higher probability is given to traffic factor values closer to

FL.

7.4.2.2 Effect on the Algorithms

Similarly with DBGP, it can be applied to algorithms that either maintain an actual

population or not, because the dynamic changes occur to the encoding of the actual

problem instance.

The difference in this benchmark generator is that it changes the fitness landscape

because the traffic factors increase the values in the distance matrix. In DBGP, the

values in the distance matrix are swapped but they are not modified.

133



Chapter 7. Benchmark Generators for Dynamic Optimization Problems

7.4.2.3 Cyclic Dynamic Environments

Another variation of a dynamic environment is where changes occur with a cyclic

pattern. In other words, previous environments will appear again in the future. Such

environments are more realistic since they represent a 24-hour traffic jam situation

in a day.

A cyclic environment can be constructed by generating different dynamic cases with

traffic factors as the base states, representing environments where each arc has a

probabilitym to add low, normal, or high traffic as in random dynamic environments.

Then, the environment cycles among these base states, every f iterations, in a fixed

logical ring as represented in Figure 7.3(b). Depending on the period of the day,

dynamic cases with different traffic factors can be generated. For example, during

the rush hour periods, a higher probability is given to the traffic factors closer to

FU , whereas during evening hour periods, a lower probability is given to FU and a

higher probability to FL.

7.4.2.4 Varying f and m Parameters

Dynamic environments with varying m and f are generated in the same way as in

DBGP.

7.5 Summary

In this chapter we have presented two benchmark generators for dynamic permu-

tation problems (TSP and VRP). In general, both benchmark generators can be

applied to a wide range of permutation-encoded problems and can be used with

134



Chapter 7. Benchmark Generators for Dynamic Optimization Problems

different types of algorithms. Moreover, they both satisfy some of the general prop-

erties of a good benchmark generator: simplicity because they are simple methods

and can be adopted easily; flexibility because they allow full control of the frequency

and magnitude of change parameters, and the periodicity of the changes; and gener-

ality because they can address a wide range of algorithms and permutation-problems.

For the case of applicability, DBGP does not satisfy this property whereas the other

benchmark generator does, since it models potential traffic on the roads.

However, DBGP satisfies another characteristic where the optimum is known on each

dynamic change, because it does not modify the fitness landscape of the problem, but

it shifts the algorithm’s population to a new location, whereas the other benchmark

generator modifies the fitness landscape. On the other hand, both generators can

generate predictable and unpredictable changes, since the frequency of change can

be fixed or varied. Moreover, both can generate random and cyclic environments.

Regarding the detection of changes, both benchmarks have detectable and unde-

tectable changes. The type of changes applied can be considered as non-dimensional

because the size of the problem remains the same.

Finally, none of the benchmark generators satisfies the time-linkage property. It

is a good direction of future work and it deserves further development (for more

information see Chapter 9).

135



Chapter 8

ACO with Immigrants Schemes

8.1 Motivation

Immigrants schemes have been successfully applied to GAs to solve different binary-

encoded DOPs as described in Chapter 6. Immigrants schemes are simple to imple-

ment and integrate with a metaheuristic. Considering the results with conventional

GAs, immigrants schemes are effective because they enhance GA’s performance sig-

nificantly [278]. In contrast, ACO has been mainly applied to permutation-encoded

DOPs. An interesting approach is the P-ACO (see Algorithm 12), which has similar-

ities with a GA because it maintains an actual population of solutions, i.e., klong(t).

In conventional ACO algorithms the information of the population is stored in the

pheromone trails.

Considering the good performance of immigrants schemes with GAs, and the simi-

larities of P-ACO with GAs, then a direct approach to enhancing the performance of

ACO algorithms in permutation-encoded DOPs is to integrate immigrants schemes

with them. In fact, other techniques adapted from GAs, such as fitness sharing

136



Chapter 8. ACO with Immigrants Schemes

and simple crowding, have been integrated with the P-ACO in dynamic and multi-

objective environments with promising results [3].

The immigrants schemes can maintain the diversity through the execution of ACO

algorithm and hence avoid stagnation behaviour. Conventional ACO algorithms

have pheromone evaporation that eliminate pheromone trails from solutions that

are not useful, and may help them to adapt to the new environment. However, the

adaptation may depend on the problem instance and the degree of change. On the

other hand, P-ACO does not have pheromone evaporation, since it eliminates old

solutions directly when they are removed from the population-list.

8.2 Description of Immigrants Schemes

8.2.1 The Framework

As mentioned before, the proposed framework of ACO algorithms with immigrants

schemes is inspired from the GA characteristics of the P-ACO framework and the

good performance of immigrants schemes in GAs for DOPs. Considering that P-

ACO maintains a population of solutions, immigrant ants can be generated and

replace ants in the current population. The proposed framework is able to maintain

the diversity within the population and transfer knowledge from previous environ-

ments to the pheromone trails of the new environment. The main idea is to generate

the pheromone information for every iteration of running the algorithm, considering

information from the previous environment and extra information from the immi-

grants schemes.

Therefore, instead of using a long-term memory as in P-ACO, a short-term memory,

denoted as kshort(t), is used, where all ants stored from iteration t−1 are replaced by

137



Chapter 8. ACO with Immigrants Schemes

Figure 8.1: Flowchart of the general framework of ACO algorithms with immi-
grants schemes.

theKs best ants of the current iteration t, where Ks is the size of kshort(t). Moreover,

a number of immigrant ants are generated and replace the worst ants in kshort(t). A

flowchart of the framework is presented in Figure 8.1

The benefits of using kshort(t) are closely related to the survival of ants in a dynamic

environment, where no ant can survive in more than one iteration. For example,

in iteration t, if ants are stored from iteration t − 2 and an environmental change

occurred in iteration t − 1, then the solutions may not be feasible for the current

environment in iteration t, and hence need to be repaired as in the P-ACO. Usually,

a repair procedure is computationally expensive, and requires prior knowledge of the

138



Chapter 8. ACO with Immigrants Schemes

problem. Furthermore, this action can be taken only if the environmental changes

can be detected, which sometimes is not applicable in real-world applications. For

example, the traditional MMAS algorithm with a re-initialization of pheromone

trails when a dynamic change occurs may not be a sufficient choice on DOPs where

the frequency of change is not available beforehand or the dynamic environment is

noisy. Therefore, the pheromone evaporation is responsible to help the population

of ants adapt in changing environments, as discussed previously.

8.2.2 Construct Solutions

The random proportional rule described in Equation 4.1 is used to construct solu-

tions where, initially, all ants are randomly placed on objects, i.e., cities for the TSP

or the depot for the VRP, and each ant represents a partial solution. A complete

solution is constructed by adding to the partial solution objects which are selected

probabilistically by each ant, considering pheromone trails and heuristic information.

Typically, the heuristic information ηij is defined as ηij = 1/dij, where dij is the

distance between two objects i and j. For dynamic environments generated from

the benchmark generator described in Chapter 7, the heuristic information includes

the traffic factor added to the links of the objects such that, ηij =
1

(dij×cij)
, where cij

is the traffic factor.

8.2.3 Pheromone Update

The pheromone update differs from both traditional ACO and P-ACO. Every it-

eration t, the pheromone trails are associated with kshort(t) and any change to the

solutions in kshort(t+1) reflects the pheromone trails. For example, when the worst

ants are replaced by immigrant ants, the pheromone trails of each worst ant are

139



Chapter 8. ACO with Immigrants Schemes

removed, as follows:

τij ← τij −∆τkij , ∀ (i, j) ∈ T k, (8.1)

where T k represents the tour of ant k and ∆τkij = (τmax − τ0)/Ks, where τmax and

τ0 denote the maximum and initial pheromone amount, respectively. Furthermore,

the pheromone trails of each immigrant ant are added, as follows:

τij ← τij +∆τkij , ∀ (i, j) ∈ T k, (8.2)

where ∆τkij and T k are as defined in Equation 8.1. This mechanism keeps the

pheromone trails between a certain value τmin, which is equal to τ0, and a τmax

value, which can be calculated by τ0 +
∑Ks

k=1∆τ
k
ij . We have seen previously the

importance to keep the pheromone trails to a certain level in the best performing

variations of the AS algorithm, i.e.,MMAS and ACS [66, 244].

The same pheromone policy is used when the ants from kshort(t) are replaced from

the new best Ks ants in iteration t + 1 (see Equations 8.1 and 8.2).

8.2.4 Increase and Maintain Diversity

8.2.4.1 Random Immigrants ACO (RIACO)

Random immigrants have been found to perform well with GAs for different DOPs

since they maintain a certain level of diversity during the execution [107, 274]. The

principle is to introduce new randomly generated individuals and replace a small

portion in the current population. RIACO follows the framework described above

where kshort(t) is used instead of klong(t). All the ants of the current iteration

replace the old ones, instead of only replacing the oldest one as in P-ACO. Therefore,

when ants are removed, a negative update is made to their pheromone trails as in

140



Chapter 8. ACO with Immigrants Schemes

Algorithm 13 RIACO and EIACO

1: t← 0
2: P (0)← InitializePopulation(µ)
3: InitiliazePheromoneTrails(τ0)
4: kshort(0)← empty
5: xbs ← empty solution
6: while (termination condition not satisfied) do
7: P (t)← ConstructAntSolutions
8: kshort(t)← AddBestAnts(Ks)
9: if (t = 0) then
10: UpdatePheromone(kshort(t))
11: else
12: if (RIACO is selected) then
13: Sri ← GenerateRandomImmigrants(r)
14: kshort(t)← ReplaceAntsWithImmigrants(Sri)
15: end if
16: if (EIACO is selected) then
17: xelite ← FindBest(kshort(t− 1))
18: Sei ←GenerateGuidedImmigrants(xelite) using Algorithm 14
19: kshort(t)← ReplaceAntsWithImmigrants(Sei)
20: end if
21: UpdatePheromone(kshort(t))
22: end if
23: xib ← FindBest(P ′(t))
24: if (f(xib) < f(xbs)) then
25: xbs ← xib

26: end if
27: t← t + 1
28: end while
29: return xbs

Equation 8.1, and when new ants are added, a positive update is made to their

pheromone trails as in Equation 8.2.

However, before the pheromone trails are updated, a set Sri of r ×Ks immigrants

are randomly generated to replace other ants in kshort(t), where r is called the

replacement rate. The pseudo-code of RIACO is presented in Algorithm 13. More

precisely, to define RIACO the following functions have to be specified:

• InitializePopulation: generates the initial population with µ ants.

141



Chapter 8. ACO with Immigrants Schemes

• InitializePheromoneTrails: initialize all pheromone trails with τ0.

• ConstructAntSolutions: all ants construct feasible solutions.

• AddBestAnts: adds the Ks best ants from P (t) to kshort(t).

• UpdatePheromone: updates pheromone trails using Equations 8.1 and 8.2.

• GenerateRandomImmigrants: generates r ×Ks random immigrants.

• ReplaceAntsWithImmigrants: replaces the worst ants in kshort(t) with the

generated immigrant ants.

• FindBest: returns the best ant in the current population for generation t,

denoted as xib.

A random immigrant represents a feasible solution of the problem which is con-

structed randomly. For the DTSP, a random immigrant is generated by adding an

unvisited city until all cities are used in order to represent one feasible TSP solution,

in which at the end the first city is also added, which represents the returning of

the salesperson to its home city. For the DVRP, a random immigrant ant is gener-

ated as follows. First, the depot is added as the starting point; then, an unvisited

customer is randomly selected as the next point. This process is repeated until the

first segment (starting from the most recent visit to the depot) of customers do not

violate the capacity constraint. When the capacity constraint is violated the depot

is added and another segment of customers starts. When all customers are visited

the solution will represent one feasible VRP solution.

It is claimed that “the continuous adaptation of algorithms makes sense only when

the environmental changes of a problem are small to medium” [20]. This is due to the

fact that a new environment has a high chance to be similar with the old one. After

a change occurs, transferring knowledge from the old environment to the pheromone

142



Chapter 8. ACO with Immigrants Schemes

trails may move the ants into promising areas in the new environment. Considering

this argument, RIACO is expected to perform well in fast and significantly changing

environments, since knowledge is not transferred by immigrants and the diversity is

generated randomly.

8.2.4.2 Elitsm-Based Immigrants ACO (EIACO)

The RIACO algorithm works by introducing random ants into kshort(t) as described

previously. This may increase the diversity and improve the performance of ACO

algorithms in dynamic environments. However, the diversity is randomly generated

and the generated pheromone information may misguide the ants from tracking the

optimum during slight environmental changes. As a result, random immigrants may

generate a high level of diversity and degrade the performance of ACO because of

too much randomization.

In order to generate guided diversity, EIACO is proposed to address DOPs by

transferring knowledge from the previous environment. For each iteration t, within

EIACO, the elite ant from the previous environment, i.e., the best ant from kshort(t−
1), is used as the base to generate a set Sei of r×Ks elitism-based immigrants. For

the DTSP, an elitism-based immigrant is generated by applying the inver-over op-

erator [116] on the best ant, where two cities are selected and the segment between

them is reversed. Similarly, for the DVRP, the inver-over operator is applied after

the depot components of the best ant are removed. When the inversion operator

finishes, the depot components are added so that the capacity constraint is satisfied

in order to represent one feasible VRP solution which is similar with the best ant

obtained from kshort(t− 1).

The pseudo-code of EIACO is also shown in Algorithm 13. All the functions that

define EIACO are the same with RIACO except the GenerateGuidedImmigrants,

143



Chapter 8. ACO with Immigrants Schemes

Algorithm 14 GenerateGuidedImmigrant(xelite)

1: xelite
′ ← xelite

2: xr ← SelectRandomCity(xelite
′

)
3: while (termination condition not satisfied) do
4: if (rand[0.0, 1.0] ≤ 0.02) then
5: x′r ← SelectNewRandomCity(xelite

′

)
6: else
7: xran ← SelectRandomAnt(P (t))
8: x′r ← NextCity(xr + 1) ∈ xran
9: end if
10: if (x′r = xr + 1 ∈ xelite′ or x′r = xr − 1 ∈ xelite′) then
11: break
12: else
13: Inversion(xr + 1,x′r) ∈ xelite

′

14: xr ← x′r
15: end if
16: end while
17: return xelite

′

// guided immigrant generated

which is presented in Algorithm 14. More precisely, to define the generation of a

guided immigrants the following functions have to be specified:

• SelectRandomCity: selects a random component from the elite ant, denoted

as xr.

• SelectNewRandomCity: selects a second random component (different from

the previous one) from the elite ant, denoted as x′r, with probability 0.02.

• SelectRandomAnt: selects a random ant from the current population, denoted

as xran.

• NextCity: assigns to x′r the next component to the component xr in the

randomly selected ant.

• Inversion: inverses the components from the next component of component

xr to component x′r in the elite ant, denoted as xelite
′

.

144



Chapter 8. ACO with Immigrants Schemes

This operator performs several inversions in which the size of the segment of each

inversion is adapted by other ants (higher probability), and the number of inversions

are terminated when the next or previous component of component xr for xelite
′

is

x′r.

In cases where the changing environments are similar, e.g., the magnitude of change

is small, and when the population has sufficient time to converge into a good solution

in the previous environment, EIACO may be beneficial. Transferring the knowledge

gained from the previous environment, using guided immigrants, to the pheromone

trails of the new environment will guide the population of ants to promising areas.

However, there is a risk to transfer too much knowledge and start the optimization

process to a near local optimum and get stuck there. Therefore, in some cases with

slightly changing environments, EIACO may not be efficient.

8.2.4.3 Memory-Based Immigrants ACO (MIACO)

MIACO is a generalized version of EIACO since not only the best ant from the

previous environment is considered, but the best ant among several environments

is considered as the base to generate immigrants in MIACO. The only difference

between MIACO and EIACO lies in that MIACO uses both kshort(t) and klong(t),

where the first type of memory is updated and used as in RIACO and EIACO.

The second type of memory is initialized with random ants (or memory points)

and updated by replacing any of the randomly initialized ants, if they still exist

in the memory, with the best-so-far ant; otherwise, the closest ant in the memory

is replaced with the best-so-far ant if the best-so-far ant is better. Note that the

update strategy of klong(t) in MIACO is different from that in P-ACO regarding

which ant to replace, since in MIACO the most similar memory updating strategy

is used [20], whereas in the default P-ACO, the new ant replaces the oldest one.

145



Chapter 8. ACO with Immigrants Schemes

Algorithm 15 MIACO

1: t← 0
2: P (0)← InitializePopulation(µ)
3: InitializePheromoneTrails(τ0)
4: kshort(0)← empty
5: klong(0)← InitializeRandomly(Kl)
6: tM ← rand[5, 10]
7: xbs ← empty solution
8: while (termination condition not satisfied) do
9: P (t)← ConstructAntSolutions
10: kshort(t)← AddBestAnts(Ks)
11: if (t = tM or dynamic change is detected) then
12: UpdateMemory(klong(t)) using Algorithm 16
13: tM ← t+ rand[5, 10]
14: end if
15: if (t = 0) then
16: UpdatePheromone(kshort(t))
17: else
18: xelite ← FindBest(klong(t))
19: Smi ← GenerateGuidedImmigrants(xelite) using Algorithm 14
20: kshort(t)← ReplaceAntsWithImmigrants(Smi)
21: UpdatePheromone(kshort(t))
22: end if
23: f(xib)← FindBest(P ′(t))
24: if (f(xib) < f(xbs)) then
25: xbs ← xib

26: end if
27: t← t + 1
28: klong(t)← klong(t− 1)
29: end while
30: return xbs

In MIACO, a metric to define how close ant p is to ant q is used. For the case of

DTSP it is defined as in Equation 5.2 and for the DVRP as in Equation 5.3. Apart

from which ant is replaced in klong(t), the update strategy of MIACO is different

from the one used in P-ACO with respect to when an ant is replaced. In P-ACO,

the update occurs every iteration, whereas in MIACO the update occurs whenever a

dynamic change occurs in order to store useful solutions from different environments.

Therefore, for each iteration t within MIACO, the ants in klong(t) are re-evaluated

146



Chapter 8. ACO with Immigrants Schemes

Algorithm 16 UpdateMemory(klong(t))

1: if (t = tM) then
2: xbest ← FindBest(P (t))
3: end if
4: if (dynamic change is detected) then
5: xbest ← FindBest(kshort(t− 1))
6: end if
7: if (still any random ant in klong(t)) then
8: ReplaceRandomWithBest(xbest,klong(t))
9: else
10: xcm ← FindClosest(xbest,klong(t))
11: if (f(xbest) < f(xcm)) then
12: xcm ← xbest

13: end if
14: end if

in order to be valid with a new environment and to detect an environmental change.

The ants in klong(t) are used as detectors; see Section 6.3 for more details. Then,

the best ant from klong(t) is selected and used as the base to generate a set Smi

of r × Ks memory-based immigrants using Algorithm 14. Note that the memory-

based immigrants for both the DTSP and DVRP are generated in the same way

as the elitism-based immigrants, but differ on the ant used as the base to generate

immigrants. For the former method the best ant from klong(t) is used, whereas for

the latter method the best from the kshort(t− 1) is used.

The pseudo-code of MIACO is presented in Algorithm 15. All the functions that

define MIACO are the same with RIACO and EIACO, but it contains an additional

function that uses klong(t), called UpdateMemory, which is described in Algorithm

16. More precisely, the functions used in the memory’s update procedure are defined

as follows:

• FindBest: returns the best ant in the current population for generation t,

denoted as xbest.

147



Chapter 8. ACO with Immigrants Schemes

• ReplaceRandomWithBest: replaces a random ant, generated in the initializa-

tion phase and still exists, in klong(t) with the best ant previously selected, i.e.,

xbest.

• FindClosest: returns the most similar of ant of xbest in klong using Equa-

tion 5.2, denoted as xcm.

As discussed in Section 6.3, this mechanism is not suitable for dynamic environ-

ments with noise. Therefore, the update does not depend only on the detection of

dynamic changes since in some real-world applications it is not easy or impossible

to detect changes. For example, in DTSPs, noise may be added in every iteration of

the algorithm apart from the traffic factor, which may also indicate environmental

changes using the detection mechanism with the detectors from klong. As a result,

the algorithm will not be able to distinguish whether the change of the fitness in a

solution is because of noise or an environmental change. The detection mechanism

will not work properly because it will detect changes in every iteration due to the

noise. Therefore, instead of updating klong(t) only in a fixed time interval, e.g., every

f iterations, which is dependent on the dynamic changes, klong(t) is also updated in

a dynamic pattern as presented in Algorithms 15 and 16. More precisely, on every

update of klong(t), a random number R ∈ [5, 10] is generated, which indicates the

next update time. For example, if the memory is updated at iteration t, the next

update will occur at iteration tM = t + R [283] (if no change is detected before

iteration tM ).

MIACO inherits the advantages of the memory scheme to guide the population

directly to an old environment already visited and the guided immigrants scheme

to maintain diversity of the population in order to avoid the stagnation behaviour

of ACO algorithms. It is very important to store different solutions in klong(t)

which represent different environments that are useful in the future. The key idea

148



Chapter 8. ACO with Immigrants Schemes

behind MIACO is to provide guided diversity, using memory-based immigrants, into

the pheromone trails in order to avoid the possible disruption of the optimization

process as in RIACO.

MIACO may be beneficial on the same environmental cases with EIACO since it

is a generalized version of EIACO. However, it may be also advantageous in cases

where the previous environments will re-appear in the future, e.g., cyclic dynamic

environments.

8.3 Experiments for the DTSP and DVRP

8.3.1 Experimental Setup

For the experiments in the DTSP and DVRP we have used the benchmark generator

with unknown optimum described in Chapter 7, which models a real-world scenario,

i.e., traffic on road networks. Therefore, from some (three) stationary benchmark

problem instances with different sizes, several dynamic environments with different

properties are generated. In all the following experiments each algorithm performs

1000 iterations for 30 independent runs on the same environmental changes, and

the offline performance defined in Equation 6.3 is used. For the statistical results,

Wilcoxon rank-sum test at a 0.05 level of significance is used.

In order to evaluate the adaptation and searching capabilities of each algorithm the

frequency of change was set to f = 5, f = 50 and f = 100, indicating fast to

slowly changing environments, respectively, and the magnitude of change was set

to m = 0.1, m = 0.25, m = 0.5 and m = 0.75, indicating slightly, to medium, to

significantly changing environments, respectively. As a result, for each of the three

problem instances, 12 dynamic environments were generated, i.e., 3 f values × 4 m

149



Chapter 8. ACO with Immigrants Schemes

values. The basic results for random and cyclic DTSPs are presented in Sections

8.3.2.5 and 8.3.2.6, respectively, and for random and cyclic DVRPs in Sections 8.3.3.3

and 8.3.3.4, respectively.

8.3.2 Experimental Results for the DTSP

8.3.2.1 Parameters Settings

The parameter settings of the algorithms differ from the ones used in the static TSP.

Appendix C presents all the parameters used to the DTSP. Most of them have been

inspired from the literature [3, 111, 113, 114] and [69, p. 71], whereas the important

algorithmic parameters have been optimized via experiments as presented in the

next subsections.

8.3.2.2 Effect of the Evaporation Rate ρ

For the results shown in Table 8.1, one of the best performing traditional ACO

algorithm, i.e., MMAS, is applied to slowly changing environments with different

magnitudes, and the evaporation rate is optimized (RIACO, EIACO and MIACO do

not have pheromone evaporation). In the static TSP, the recommended evaporation

rate for MMAS is ρ = 0.02 [69, p. 71], whereas in the DTSP it has the worst

results.

It can be observed that as the evaporation rate increases up to 0.6 the solution

quality improves, whereas when it is higher than 0.6 the solution quality is usually

degraded or it has similar performance. As we discussed in Chapters 1 and 6,

pheromone evaporation is an important mechanism in ACO algorithms to adapt in

dynamic changes. This is because it eliminates pheromone trails generated from the

150



Chapter 8. ACO with Immigrants Schemes

Table 8.1: Offline performance of MMAS with different evaporation rates for
the DTSP. Bold values indicate the best results.

f = 100, m⇒ 0.1 0.25 0.5 0.75

Alg. & Inst. kroA100

MMAS(ρ = 0.02) 24591.19 27082.79 34861.35 47782.55

MMAS(ρ = 0.2) 23575.57 25858.26 33162.43 45547.84

MMAS(ρ = 0.4) 23367.60 25675.32 32804.83 45052.21

MMAS(ρ = 0.6) 23331.39 25541.11 32864.74 44994.17

MMAS(ρ = 0.8) 23320.99 25595.99 32845.60 44986.17

Alg. & Inst. kroA150

MMAS(ρ = 0.02) 31840.23 35648.34 43194.10 59544.27

MMAS(ρ = 0.2) 30259.85 34139.32 41192.83 57139.14

MMAS(ρ = 0.4) 30031.67 33854.66 40809.19 56544.39

MMAS(ρ = 0.6) 29938.17 33788.31 40832.21 56597.26

MMAS(ρ = 0.8) 29913.39 33734.48 40979.44 56882.78

Alg. & Inst. kroA200

MMAS(ρ = 0.02) 36037.17 39797.21 48778.72 69179.75

MMAS(ρ = 0.2) 34335.07 38100.82 46662.05 66448.51

MMAS(ρ = 0.4) 33920.44 37801.86 46333.89 65742.27

MMAS(ρ = 0.6) 33741.35 37775.56 46412.48 65878.12

MMAS(ρ = 0.8) 33741.89 37897.85 46712.78 66222.85

previous environment that are useless in the new environment, and may bias ants

towards non-promising areas in the search space.

On the other hand, an extremely high evaporation rate decreases the performance

because it may eliminate useful pheromone trails from the previous environment

fast, and the knowledge transferred from the pheromone trails is destroyed quickly.

151



Chapter 8. ACO with Immigrants Schemes

8.3.2.3 Effect of Short-Term Memory Size Ks

For the results shown in Table 8.2 and Figure 8.2, the proposed framework (without

immigrant ants) is applied to slowly changing environments with different mag-

nitudes of change, and the size of kshort memory is optimized. Differently from

MMAS, in our proposed framework there is no pheromone evaporation. It is a sim-

ilar framework with the P-ACO described in Algorithm 12 regarding the pheromone

update policy, but differs in the way memory is maintained. P-ACO uses a long-

term memory because ants from more than one iteration are stored in the memory,

whereas in our framework only ants from the previous iteration are stored.

When Ks = 1, the algorithm is actually a P-ACO with Kl = 1, which can be seen as

an ACO algorithm with a global restart, since the pheromone trails are re-initialized

in every iteration. It can be observed that when Ks = 6 the performance of the

algorithm is improved, probably because the pheromone trails get more information

from kshort. When an extreme value is given to Ks, which is closer to the actual

population size, then the algorithm has no selection of the best ants. This is due to

the fact that all the ants in the framework deposit a constant amount of pheromone

and, thus, no effort is given to the best ants.

MMAS and the proposed framework with r = 0.0 have been applied on the same

dynamic environments. Therefore, when we compare the best values obtained from

MMAS and the proposed framework, there is an interesting observation; see Ta-

bles 8.1 and 8.2. On kroA100 with m = 0.1 and m = 0.25, the performance values

of MMAS(ρ = 0.6) are 23331.39 and 25541.11, respectively, whereas the corre-

sponding values of the proposed framework with Ks = 6 are 23414.59 and 25676.11,

respectively, which means that the former one performs better than the latter one

for both dynamic test cases.

152



Chapter 8. ACO with Immigrants Schemes

Table 8.2: Offline performance of the proposed framework, without immigrants,
with different short-term memory sizes for the DTSP. Bold values indicate the

best results.

f = 100, m⇒ 0.1 0.25 0.5 0.75

Alg. & Inst. kroA100

Ks = 1 23403.69 25789.93 33345.29 45785.38

Ks = 6 23414.59 25676.11 32636.93 44408.31

Ks = 10 24151.29 26348.11 33291.71 44976.31

Ks = 25 26101.84 28727.52 35867.99 48225.68

Alg. & Inst. kroA150

Ks = 1 30415.70 34395.95 41691.53 57877.48

Ks = 6 29870.47 33410.98 40280.44 55412.54

Ks = 10 30735.97 34323.47 40964.49 55815.99

Ks = 25 33191.44 36865.50 43934.01 59251.70

Alg. & Inst. kroA200

Ks = 1 34531.48 38619.43 47531.08 67269.41

Ks = 6 33624.40 37283.06 45396.54 64373.36

Ks = 10 34710.26 38230.56 46107.69 64447.82

Ks = 25 37642.80 41491.16 49469.89 68129.84

On the same problem instance withm = 0.5 andm = 0.75, the values ofMMAS(ρ =

0.6) are 32864.74 and 44994.17, respectively, whereas the corresponding values of

the proposed framework with Ks = 6 are 32636.93 and 44408.31, respectively, which

means that the latter one performs better than the former one for both dynamic test

cases. However, on the remaining problems instances, i.e., kroA150 and kroA200

the proposed framework with Ks = 6 performs better than MMAS(ρ = 0.6) in

all dynamic cases. For example, in kroA200 with m = 0.1, the performance of the

former one is 33624.40 and the performance of the latter one is 33741.35.

153



Chapter 8. ACO with Immigrants Schemes

In general, as the problem size and the magnitude of change increase the performance

of MMAS is degraded, which supports our claim in Section 6.5 that “the time

required to adapt to the new environment may depend on the problem size and the

degree of change”. This is because if the environmental change is significant then

it will take longer to eliminate unused pheromone trails. The proposed framework

overcomes this problem since it removes the previous pheromone trails directly,

similarly as in P-ACO.

8.3.2.4 Effect of Long-Term Memory Size Kl

For the results shown in Table 8.3 and Figure 8.2, MIACO with different Kl sizes is

applied to cyclic environments with different number of cyclic states. The replace-

ment rate for memory-based immigrants is set to r = 0.3. The population size of

MIACO depends on the size of Kl since the ants stored in klong are used as detectors,

and they are re-evaluated to detect an environmental change. Therefore, the number

of ants in the population of MIACO is set as µ′ = µ−Kl. Since MIACO is developed

to address dynamic environments where previously visited environments re-appear,

an ideal Kl value is to be equal with the number of states in the cyclic environment.

More precisely, each solution stored in klong will represent one environment that can

be used when the specific environment re-appears.

It can be observed that whenKl = 1, MIACO performs better when the environment

changes slightly, i.e., when m = 0.1 and m = 0.25, whereas for a value 2 ≤ Kl ≤ 4

MIACO performs better when the environment changes significantly, i.e., when m =

0.5 and m = 0.75. This is because the environments are more likely to be similar

and there is no need to store several solutions in klong.

154



Chapter 8. ACO with Immigrants Schemes

Table 8.3: Offline performance of the proposed framework with different long-
term memory size for MIACO on cyclic changing DTSPs. Bold values indicate

the best results.

f = 50, m⇒ 0.1 0.25 0.5 0.75

Alg. & Inst. kroA100(4 cyclic states)

MIACO(Kl = 1) 23313.50 26013.27 32663.93 45448.51

MIACO(Kl = 2) 23360.53 26344.74 31268.99 39287.60

MIACO(Kl = 4) 23333.32 26372.99 31217.16 39205.91

MIACO(Kl = 6) 23386.83 26390.08 31338.78 39367.70

MIACO(Kl = 10) 23563.70 26487.74 31464.35 39455.40

Alg. & Inst. kroA100(6 cyclic states)

MIACO(Kl = 1) 23480.31 25993.23 32634.60 45446.53

MIACO(Kl = 2) 23569.25 25999.49 31732.32 39844.28

MIACO(Kl = 4) 23525.57 25935.75 31602.30 39709.84

MIACO(Kl = 6) 23644.43 26020.93 31674.05 39923.23

MIACO(Kl = 10) 23694.87 26126.08 31877.01 40037.39

Alg. & Inst. kroA100(10 cyclic states)

MIACO(Kl = 1) 23503.41 25994.19 32731.99 45439.68

MIACO(Kl = 2) 23581.77 26185.05 31248.77 40562.32

MIACO(Kl = 4) 23522.15 26158.51 31280.45 40466.86

MIACO(Kl = 6) 23603.22 26202.38 31353.91 40632.69

MIACO(Kl = 10) 23674.62 26340.72 31460.02 40805.63

Furthermore, the size of Kl is not dependent on the number of states of the cyclic

environment which can be observed from the three problems with different num-

ber of cyclic states. For example, in kroA100(4 cyclic states) the performance of

MIACO(Kl = 4) is similar in kroA100(10 cyclic states). This is because one solu-

tion in klong may be useful for several environments. Therefore, there is no need to

store one solution for each cyclic state to represent one environment. In this way,

155



Chapter 8. ACO with Immigrants Schemes

 20000

 25000

 30000

 35000

 40000

 45000

 50000

0.1 0.25 0.5 0.75

O
ff

lin
e 

Pe
rf

or
m

an
ce

m

kroA100,  f = 100

Ks=1  
Ks=6  
Ks=10
Ks=25

 25000

 30000

 35000

 40000

0.1 0.25 0.5 0.75

O
ff

lin
e 

Pe
rf

or
m

an
ce

m

kroA100 (4 states),  f = 100

Kl=1  
Kl=2  
Kl=4  
Kl=6  
Kl=10

 30000

 35000

 40000

 45000

 50000

 55000

 60000

0.1 0.25 0.5 0.75

O
ff

lin
e 

Pe
rf

or
m

an
ce

m

kroA150,  f = 100

Ks=1  
Ks=6  
Ks=10
Ks=25  24000

 26000

 28000

 30000

 32000

 34000

 36000

 38000

 40000

0.1 0.25 0.5 0.75

O
ff

lin
e 

Pe
rf

or
m

an
ce

m

kroA100 (6 states),  f = 100

Kl=1  
Kl=2  
Kl=4  
Kl=6  
Kl=10

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 70000

0.1 0.25 0.5 0.75

O
ff

lin
e 

Pe
rf

or
m

an
ce

m

kroA200,  f = 100

Ks=1  
Ks=6  
Ks=10
Ks=25  24000

 26000

 28000

 30000

 32000

 34000

 36000

 38000

 40000

0.1 0.25 0.5 0.75

O
ff

lin
e 

Pe
rf

or
m

an
ce

m

kroA100 (10 states),  f = 100

Kl=1  
Kl=2  
Kl=4  
Kl=6  
Kl=10

Figure 8.2: Offline performance of varying the size of the memory structures,
i.e., short-term memory (left) and long-term memory (right), on different DTSPs.

function evaluations are not wasted.

156



Chapter 8. ACO with Immigrants Schemes

8.3.2.5 Performance Analysis in Random Environments

The experimental results regarding the offline performance of the proposed algo-

rithms in DTSPs with random traffic factors are presented in Table 8.4. The corre-

sponding statistical results are presented in Table 8.5. Moreover, to better under-

stand the dynamic behaviour of algorithms, the offline performance for the first 20

environments (100 iterations/5) is plotted in Figure 8.3 for f = 5 and m = 0.1 and

m = 0.75, respectively, and the offline performance for the first 10 environments

(500 iterations/50) is plotted in Figure 8.4 for f = 50 and m = 0.1 and m = 0.75,

respectively. From the experimental results, several observations can be made by

comparing the behaviour of the algorithms.

First, RIACO outperforms EIACO and MIACO in almost all dynamic cases with

f = 5 and m = 0.75; see the comparisons of RIACO ⇔ EIACO and RIACO ⇔
MIACO in Table 8.5. This is because both EIACO and MIACO use knowledge

based on ants from previous environments to generate immigrant ants, and thus,

when not enough time is available to converge to a good solution, it is difficult to

transfer useful knowledge. RIACO generates diversity randomly that may be more

suitable on dynamic cases with m = 0.75, where the changing environments are not

similar. On the other hand, when the magnitude of change is small, i.e., m = 0.1,

even when f = 5, EIACO and MIACO outperform RIACO. This is because random

immigrants may reach high levels of randomization and disturb the optimization

process.

Second, EIACO outperforms RIACO in all dynamic cases with f = 50 and f =

100; see the comparisons of RIACO ⇔ EIACO in Table 8.5. This is because the

population has enough time to converge to a good optimum before a dynamic change

occurs. Therefore, the knowledge transferred with the generation of elitism-based

immigrants is more useful. The pheromone trails of the new environment are gene-

157



C
h
a
p
ter

8
.
A
C
O

w
ith

Im
m
igra

n
ts

S
ch
em

es

Table 8.4: Offline performance of the proposed algorithms with immigrants in random DTSPs.

Alg. & Inst. pr76 pr152 pr299

f = 5, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO 132975 152034 189087 260507 92035 103511 126235 169585 66199 76346 97020 135038

EIACO 131478 151542 189108 260965 90598 102793 126248 170030 65143 75625 96764 135260

MIACO 131621 151300 189326 260801 90367 102799 126207 170045 65122 75619 96818 135210

f = 50, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO 125344 137969 171101 223288 84665 93198 111715 147320 60568 67649 83671 114974

EIACO 122176 136126 169398 221994 83608 92234 110468 145418 59595 66881 82734 113471

MIACO 122144 135960 169562 221828 83398 92339 110422 145570 59649 66817 82644 113570

f = 100, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO 123111 136769 166829 218761 82857 90713 108788 141367 58988 65671 80564 112862

EIACO 121026 134773 164601 217610 81877 89674 107167 139293 58062 64607 79611 110482

MIACO 121157 134865 164626 218009 81894 89788 107217 139460 57948 64662 79565 110901

158



C
h
a
p
ter

8
.
A
C
O

w
ith

Im
m
igra

n
ts

S
ch
em

es

Table 8.5: Statistical test results regarding the offline performance of the algorithms in random DTSPs. “s+” or “s−”
indicates that the first algorithm is significantly better or the second algorithm is significantly better, respectively, and “+” or
“−” indicates that the first algorithm is insignificantly better or the second algorithm is insignificantly better, respectively.

Alg. & Inst. pr76 pr152 pr299

f = 5, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO⇔EIACO s− s− + s+ s− s− + s+ s− s− s+ s+

RIACO⇔MIACO s− s− s+ s+ s− s− s+ s+ s− s− s+ s+

EIACO⇔MIACO + s− s+ − s− − + − + + − +

f = 50, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO⇔EIACO s− s− s− s− s− s− s− s− s− s− s− s−
RIACO⇔MIACO s− s− s− s− s− s− s− s− s− s− s− s−
EIACO⇔MIACO s+ + − + − − − s+ + − − +

f = 100, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO⇔EIACO s− s− s− s− s− s− s− s− s− s− s− s−
RIACO⇔MIACO s− s− s− s− s− s− s− s− s− s− s− s−
EIACO⇔MIACO + + + + + + + + − + − s+

159



Chapter 8. ACO with Immigrants Schemes

 120000

 125000

 130000

 135000

 140000

 145000

 150000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr76 (random),  f = 5,  m = 0.1

RIACO
EIACO

MIACO

 220000

 240000

 260000

 280000

 300000

 320000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr76 (random),  f = 5,  m = 0.75

RIACO
EIACO

MIACO

 85000

 90000

 95000

 100000

 105000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr152 (random),  f = 5,  m = 0.1

RIACO
EIACO

MIACO

 140000

 150000

 160000

 170000

 180000

 190000

 200000

 210000

 220000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr152 (random),  f = 5,  m = 0.75

RIACO
EIACO

MIACO

 60000

 62000

 64000

 66000

 68000

 70000

 72000

 74000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr299 (random),  f = 5,  m = 0.1

RIACO
EIACO

MIACO

 110000

 120000

 130000

 140000

 150000

 160000

 170000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr299 (random),  f = 5,  m = 0.75

RIACO
EIACO

MIACO

Figure 8.3: Dynamic behaviour of the algorithms for random DTSPs with fast
changing environments.

160



Chapter 8. ACO with Immigrants Schemes

 110000

 115000

 120000

 125000

 130000

 135000

 140000

 145000

 150000

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr76 (random),  f = 50,  m = 0.1

RIACO
EIACO

MIACO

 200000

 220000

 240000

 260000

 280000

 300000

 320000

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr76 (random),  f = 50,  m = 0.75

RIACO
EIACO

MIACO

 80000

 85000

 90000

 95000

 100000

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr152 (random),  f = 50,  m = 0.1

RIACO
EIACO

MIACO

 130000

 140000

 150000

 160000

 170000

 180000

 190000

 200000

 210000

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr152 (random),  f = 50,  m = 0.75

RIACO
EIACO

MIACO

 56000

 58000

 60000

 62000

 64000

 66000

 68000

 70000

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr299 (random),  f = 50,  m = 0.1

RIACO
EIACO

MIACO

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 170000

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr299 (random),  f = 50,  m = 0.75

RIACO
EIACO

MIACO

Figure 8.4: Dynamic behaviour of the algorithms for random DTSPs with slowly
changing environments.

161



Chapter 8. ACO with Immigrants Schemes

rated to promising areas, which speed up optimization. When f = 100, EIACO

outperforms, either significantly or insignificantly, MIACO in almost all dynamic

cases, since the elitism mechanism has enough time between the two environments

to express its effect.

Third, MIACO has a similar behaviour with EIACO when compared with RIACO.

This is because MIACO is a generalization of the elitism mechanism of EIACO. More

precisely, EIACO and MIACO are similar since both use guided immigrants, but

MIACO is able to choose the best solution among several previous environments from

the memory to generate immigrants when the environment changes, whereas EIACO

choose the best solution from the previous environment since the last environmental

change to generate immigrants when the environment changes. This can be observed

when f = 50 where the two algorithms are comparable; see the comparisons EIACO

⇔ MIACO in Table 8.5.

8.3.2.6 Performance Analysis in Cyclic Environments

The experimental results regarding the offline performance of the proposed algo-

rithms in DTSPs with cyclic traffic factors are presented in Table 8.6. The corre-

sponding statistical results are presented in Table 8.7. Moreover, to better under-

stand the dynamic behaviour of algorithms, the offline performance for the first 20

environments (100 iterations/5) is plotted in Figure 8.5 for f = 5 and m = 0.1

and m = 0.75, and the offline performance for the first 10 environments (500 itera-

tions/50) is plotted in Figure 8.6 for f = 50 and m = 0.1 and m = 0.75. From the

experimental results, several observations can be made by comparing the behaviour

of the algorithms.

First, the performance of RIACO in cyclic DTSPs matches the performance in ran-

dom DTSPs (except in pr152); see the comparisons of RIACO ⇔ EIACO in Table

162



C
h
a
p
ter

8
.
A
C
O

w
ith

Im
m
igra

n
ts

S
ch
em

es

Table 8.6: Offline performance of the proposed algorithms with immigrants in cyclic DTSPs.

Alg. & Inst. pr76 pr152 pr299

f = 5, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO 129910 145530 174108 209318 87994 99940 122442 144714 64042 72319 91831 114474

EIACO 128229 144515 174380 209766 84842 99127 122046 144451 62480 70805 91697 114503

MIACO 128031 144523 174110 209700 84481 98990 121915 144275 62489 70772 91520 114335

f = 50, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO 123255 134213 154301 186060 82973 90139 108914 127253 58988 65429 79761 97809

EIACO 121767 132704 153530 184697 81517 89785 107833 126122 58032 64423 79043 97217

MIACO 121505 132233 153494 184174 81537 89418 107813 125948 57806 64303 78928 97093

f = 100, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO 122221 132647 151599 180891 81457 88240 106108 123931 57953 63661 76998 94441

EIACO 120197 130406 150256 179176 80418 87708 104969 122678 56778 62592 75936 93519

MIACO 120512 130296 150286 179192 80434 87488 105000 122308 56675 62284 75832 93430

163



C
h
a
p
ter

8
.
A
C
O

w
ith

Im
m
igra

n
ts

S
ch
em

es

Table 8.7: Statistical test results regarding the offline performance of the algorithms in cyclic DTSPs. “s+” or “s−” indicates
that the first algorithm is significantly better or the second algorithm is significantly better, respectively, and “+” or “−”

indicates that the first algorithm is insignificantly better or the second algorithm is insignificantly better, respectively.

Alg. & Inst. pr76 pr152 pr299

f = 5, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO⇔EIACO s− s− + s+ s− s− s− s− s− s− s− +

RIACO⇔MIACO s− s− + s+ s− s− s− s− s− s− s− s−
EIACO⇔MIACO + + s− + s− s− s− s− − + s− s−
f = 50, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO⇔EIACO s− s− s− s− s− s− s− s− s− s− s− s−
RIACO⇔MIACO s− s− s− s− s− s− s− s− s− s− s− s−
EIACO⇔MIACO − s− − s− + s− − − s− − − −
f = 100, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO⇔EIACO s− s− s− s− s− s− s− s− s− s− s− s−
RIACO⇔MIACO s− s− s− s− s− s− s− s− s− s− s− s−
EIACO⇔MIACO + − + + + − + s− − s− − −

164



Chapter 8. ACO with Immigrants Schemes

8.7. However, MIACO is comparable with RIACO even in fast changing environ-

ments, since the environments re-appear several times. In some environments, i.e.,

f = 5 with m = 0.75 in pr76, MIACO is outperformed by RIACO. This is because

when the environment changes quickly, the best memory point may not be able

to store useful solutions for the current environment and hence may misguide the

immigrants to non-promising areas.

Second, EIACO is outperformed by MIACO in almost all dynamic cases, either sig-

nificantly or insignificantly, with f = 5, f = 50 and f = 100 in cyclic DTSP; see the

comparisons of EIACO ⇔ MIACO in Table 8.7. In comparison with the results of

random DTSPs in Table 8.5, where EIACO had a slight advantage against MIACO,

the performance of EIACO is inferior over that of MIACO in cyclic DTSPs. The

reason is that, even if the two algorithms are similar, MIACO has an advantage

against EIACO when previously visited environments appear again in the future.

This can be observed in Figure 8.6 where MIACO is able to maintain better perfor-

mance in the dynamic environment. On the contrast, the performance of EIACO

is superior over that of RIACO even in cyclic DTSP, in which similar observations

were found in the random DTSPs before. Third, MIACO outperforms EIACO

and RIACO in almost all dynamic cases, either significantly or insignificantly, with

f = 50 and f = 100 in cyclic DTSPs; see the comparisons of RIACO ⇔ MIACO

and EIACO ⇔ MIACO in Table 8.7. As mentioned above, RIACO may disturb

the optimization process due to the high randomization it generates. The reason

why MIACO performs better in cyclic DTSPs than in random DTSPs is that it can

move the population directly to any previously visited environment. MIACO stores

the best solutions for all cyclic base states and reuses them by generating memory-

based immigrants, whereas EIACO moves the population to an area which is similar

with the previous environment only. As the environments cycle (re-appear) more

times, more knowledge is gained to the memory in MIACO, and memory expresses

165



Chapter 8. ACO with Immigrants Schemes

 120000

 125000

 130000

 135000

 140000

 145000

 150000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr76 (cyclic),  f = 5,  m = 0.1

RIACO
EIACO

MIACO

 180000

 200000

 220000

 240000

 260000

 280000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr76 (cyclic),  f = 5,  m = 0.75

RIACO
EIACO

MIACO

 82000

 84000

 86000

 88000

 90000

 92000

 94000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr152 (cyclic),  f = 5,  m = 0.1

RIACO
EIACO

MIACO

 110000

 120000

 130000

 140000

 150000

 160000

 170000

 180000

 190000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr152 (cyclic),  f = 5,  m = 0.75

RIACO
EIACO

MIACO

 60000

 62000

 64000

 66000

 68000

 70000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr299 (cyclic),  f = 5,  m = 0.1

RIACO
EIACO

MIACO

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 160000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr299 (cyclic),  f = 5,  m = 0.75

RIACO
EIACO

MIACO

Figure 8.5: Dynamic behaviour of the algorithms for cyclic DTSPs with fast
changing environments.

166



Chapter 8. ACO with Immigrants Schemes

 110000

 115000

 120000

 125000

 130000

 135000

 140000

 145000

 150000

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr76 (cyclic),  f = 50,  m = 0.1

RIACO
EIACO

MIACO

 160000

 180000

 200000

 220000

 240000

 260000

 280000

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr76 (cyclic),  f = 50,  m = 0.75

RIACO
EIACO

MIACO

 78000

 80000

 82000

 84000

 86000

 88000

 90000

 92000

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr152 (cyclic),  f = 50,  m = 0.1

RIACO
EIACO

MIACO

 110000

 120000

 130000

 140000

 150000

 160000

 170000

 180000

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr152 (cyclic),  f = 50,  m = 0.75

RIACO
EIACO

MIACO

 56000

 58000

 60000

 62000

 64000

 66000

 68000

 70000

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr299 (cyclic),  f = 50,  m = 0.1

RIACO
EIACO

MIACO

 80000

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 170000

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

pr299 (cyclic),  f = 50,  m = 0.75

RIACO
EIACO

MIACO

Figure 8.6: Dynamic behaviour of the algorithms for cyclic DTSPs with slowly
changing environments.

167



Chapter 8. ACO with Immigrants Schemes

Table 8.8: Offline performance of the proposed framework with different replace-
ment rates of random immigrants on fast changing DTSPs. Bold values indicate

the best results.

f = 5, m⇒ 0.1 0.25 0.5 0.75

Alg. & Inst. pr76

RIACO(r = 0.0) 132195 151766 188893 260958

RIACO(r = 0.1) 132805 151800 189041 260340

RIACO(r = 0.3) 132975 152034 189087 260507

RIACO(r = 0.5) 134751 153213 190194 262004

RIACO(r = 0.8) 139942 157912 195374 269299

Alg. & Inst. pr152

RIACO(r = 0.0) 90824 102559 125618 170123

RIACO(r = 0.1) 91553 103326 126028 169840

RIACO(r = 0.3) 92035 103511 126235 169585

RIACO(r = 0.5) 92849 103844 126782 170807

RIACO(r = 0.8) 95603 105866 129136 174453

Alg. & Inst. pr299

RIACO(r = 0.0) 65131 75316 96265 136108

RIACO(r = 0.1) 65717 75902 96650 135530

RIACO(r = 0.3) 66199 76346 97020 135038

RIACO(r = 0.5) 67223 77436 97994 136040

RIACO(r = 0.8) 69584 79738 100469 139286

its effect.

8.3.2.7 Effect of Immigrants Replacement Rate r

In order to investigate the effectiveness of the immigrants replacement rate, fur-

ther experiments were performed on the same problem instances with the same

168



Chapter 8. ACO with Immigrants Schemes

Table 8.9: Offline performance of the proposed framework with different replace-
ment rates of elitism-based immigrants on slowly changing DTSPs. Bold values

indicate the best results.

f = 50, m⇒ 0.1 0.25 0.5 0.75

Alg. & Inst. pr76

EIACO(r = 0.0) 124827 137938 171135 222960

EIACO(r = 0.1) 123042 136844 170214 222263

EIACO(r = 0.3) 122176 136126 169398 223288

EIACO(r = 0.5) 121123 136184 170351 225151

EIACO(r = 0.8) 121180 137550 173809 231944

Alg. & Inst. pr152

EIACO(r = 0.0) 84387 92858 111201 146613

EIACO(r = 0.1) 83841 92421 110598 146006

EIACO(r = 0.3) 83608 92234 110468 145418

EIACO(r = 0.5) 83477 92697 110781 145919

EIACO(r = 0.8) 84486 94447 113972 150618

Alg. & Inst. pr299

EIACO(r = 0.0) 60313 67265 83244 114246

EIACO(r = 0.1) 59775 66942 82976 113776

EIACO(r = 0.3) 59595 66881 82734 113471

EIACO(r = 0.5) 59516 67381 83594 114705

EIACO(r = 0.8) 60853 70182 88275 121821

parameters used before but with different immigrant replacement rates, i.e., r ∈
{0.0, 0.1, 0.3, 0.5, 0.8}, where r = 0.0 means that no immigrants are generated to

replace ants in the kshort(t). RIACO and EIACO (or MIACO) are applied on the

dynamic cases that showed good performance from the basic experiments above,

which make use of random and guided immigrants, respectively.

In Table 8.8 and Figure 8.7, RIACO is applied in fast changing environments, which

169



Chapter 8. ACO with Immigrants Schemes

 140000

 160000

 180000

 200000

 220000

 240000

 260000

0.1 0.25 0.5 0.75

O
ff

lin
e 

Pe
rf

or
m

an
ce

m

pr76,  f = 5

RIACO(r=0.0)
RIACO(r=0.1)
RIACO(r=0.3)
RIACO(r=0.5)
RIACO(r=0.8)  120000

 140000

 160000

 180000

 200000

 220000

0.1 0.25 0.5 0.75

O
ff

lin
e 

Pe
rf

or
m

an
ce

m

pr76,  f = 100

EIACO(r=0.0)
EIACO(r=0.1)
EIACO(r=0.3)
EIACO(r=0.5)
EIACO(r=0.8)

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 170000

 180000

0.1 0.25 0.5 0.75

O
ff

lin
e 

Pe
rf

or
m

an
ce

m

pr152,  f = 5

RIACO(r=0.0)
RIACO(r=0.1)
RIACO(r=0.3)
RIACO(r=0.5)
RIACO(r=0.8)

 80000

 90000

 100000

 110000

 120000

 130000

 140000

 150000

0.1 0.25 0.5 0.75

O
ff

lin
e 

Pe
rf

or
m

an
ce

m

pr152,  f = 100

EIACO(r=0.0)
EIACO(r=0.1)
EIACO(r=0.3)
EIACO(r=0.5)
EIACO(r=0.8)

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 140000

0.1 0.25 0.5 0.75

O
ff

lin
e 

Pe
rf

or
m

an
ce

m

pr299,  f = 5

RIACO(r=0.0)
RIACO(r=0.1)
RIACO(r=0.3)
RIACO(r=0.5)
RIACO(r=0.8)  60000

 70000

 80000

 90000

 100000

 110000

 120000

0.1 0.25 0.5 0.75

O
ff

lin
e 

Pe
rf

or
m

an
ce

m

pr299,  f = 100

EIACO(r=0.0)
EIACO(r=0.1)
EIACO(r=0.3)
EIACO(r=0.5)
EIACO(r=0.8)

Figure 8.7: Offline performance of varying the replacement rate of immigrants,
i.e., random immigrants (left) and guided immigrants (right), on different DTSPs.

170



Chapter 8. ACO with Immigrants Schemes

shows that random immigrants improve the performance of ACO when m = 0.75

and confirms that RIACO performs well on fast and significantly changing envi-

ronments. Furthermore, when m = 0.1, m = 0.25 and m = 0.5, RIACO(r = 0.0)

performs better, which shows that random immigrants disturb the optimization pro-

cess because of too much randomization and validates our expectation mentioned

before.

In Table 8.9 and Figure 8.7, EIACO is applied in slowly changing environments,

which shows that guided immigrants improve the performance of ACO in all cases

when the replacement rate is r = 0.3, and confirms that EIACO performs well on

slowly changing environments. Furthermore, when the replacement rate is r > 0.3,

the performance is usually degraded and sometimes is even worse than EIACO(r =

0.0). This shows that too much knowledge transferred may start the run in a new

environment from a local optimum (or a near local optimum) location and get the

algorithm stuck there, which validates our expectation mentioned before.

8.3.2.8 Comparison with other Peer ACO Algorithms in DTSP

In the experiments above, the performance of RIACO, EIACO and MIACO was

investigated under two kinds of dynamic environments, i.e., random and cyclic, but

with fixed f and m values. However, real world problems may involve different pe-

riods and severities of change. That is, each environment may change in different

values of f and have different values of m on each environmental change. In order

to investigate the performance of RIACO, EIACO and MIACO in such environ-

ments, further experiments were performed on a DTSP with varying f and m values

randomly generated with a uniform distribution in [1, 100] and [0, 1], respectively.

We compare the proposed algorithms with other peer ACO algorithms, i.e.,MMAS

described in Section 4.6.1 and P-ACO, SC-PACO, FS-PACO and M-ACO described

171



C
h
a
p
ter

8
.
A
C
O

w
ith

Im
m
igra

n
ts

S
ch
em

es

Table 8.10: Experimental results regarding offline performance on the DTSP with m = rand[0, 1] and f = rand[1, 100] in
att532. “s+” or “s−” indicates that the algorithm in the row is significantly better than the one in the column or the opposite

and “∼” indicates no significance.

Alg. RIACO EIACO MIACO MMAS P-ACO SC-PACO FS-PACO M-ACO

Offl. Perf. 147646 145968 146240 150436 156287 152848 150185 155176

Std. Dev. 523.14 507.91 585.91 292.57 691.61 756.33 643.04 503.27

Wilcoxon Sum-Rank Test

RIACO s− s− s+ s+ s+ s+ s+

EIACO s+ s+ s+ s+ s+ s+ s+

MIACO s+ s− s+ s+ s+ s+ s+

MMAS s− s− s− s+ s+ ∼ s+

P-ACO s− s− s− s− s− s− s−
SC-PACO s− s− s− s− s+ s− s+

FS-PACO s− s− s− ∼ s+ s+ s+

M-ACO s− s− s− s− s+ s− s−

172



Chapter 8. ACO with Immigrants Schemes

in Section 6.6.1. Note that since the time interval of such kind of environment

varies, many existing approaches used in ACO algorithms for DTSPs, e.g., global

and local restart strategies (τ − strategy and η − strategy) or the ACO-shaking,

also described in Section 6.6.1, cannot be applied because they do not have any

mechanism to detect dynamic changes. The parameter settings for RIACO, EIACO

and MIACO are the same as in the basic experiments above, whereas the rest are

shown in Appendix C.

The experimental results regarding the offline performance of the aforementioned

algorithms are presented in Table 8.10 with the corresponding statistical results. In

Figure 8.8 the dynamic behaviour of the algorithms is presented with corresponding

m values shown in Figure 8.9. From the experimental results several observations

can be drawn.

First, among the proposed algorithms, EIACO performs significantly better than its

competitors, followed by MIACO. This matches our previous experimental results

where EIACO (and MIACO) perform better than RIACO in most dynamic cases.

Second, all the proposed algorithms perform significantly better thanMMAS and

P-ACO. This is because MMAS uses only pheromone evaporation to eliminate

pheromone trails from the previous environment that are not useful to a new envi-

ronment, and thus, needs sufficient time to adapt to the changing environments. On

the other hand, P-ACO eliminates pheromone trails directly if an ant is removed

from klong(t). However, if identical ants are stored in the klong(t), then the algorithm

will reach stagnation behaviour, and thus, needs sufficient time to escape from it.

Third, FS-PACO and SC-PACO perform significantly better than P-ACO, whereas

the former algorithm performs significantly better than the latter algorithm. Both

algorithms are variations of the P-ACO algorithm that aims to increase and maintain

diversity in klong(t). Hence, SC-PACO and FS-PACO adapt better to the changing

173



Chapter 8. ACO with Immigrants Schemes

 100000

 150000

 200000

 250000

 300000

0 100 200 300 400 500 600 700 800 900 1000

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

att532,  f = rand[1,100], m = rand[0,1]

MMAS
RIACO
EIACO

MIACO
P-ACO

SC-PACO
FS-PACO

M-ACO

Figure 8.8: Dynamic behaviour of the proposed algorithms in comparison
with other peer ACO algorithms on the DTSP with m = rand[0, 1] and f =

rand[1, 100].

 0

 0.2

 0.4

 0.6

 0.8

 1

0 100 200 300 400 500 600 700 800 900 1000

M
ag

ni
tu

de
s

Iteration

att532,  f = rand[1,100], m = rand[0,1]

Figure 8.9: Varying values for m = rand[0, 1] and f = rand[1, 100] used for the
DTSP.

environment than P-ACO probably because the simple crowding policy and the

fitness sharing used in the algorithms, respectively, address the stagnation behaviour

in P-ACO.

Fourth, M-ACO is significantly better than P-ACO since the local search that is

integrated promotes exploitation to improve the solution quality, and the risk of

174



Chapter 8. ACO with Immigrants Schemes

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

MMAS RIACO EIACO MIACO P-ACO SC-PACO FS-PACO M-ACO

T
ot

al
 D

iv
er

si
ty

Algorithm

att532,  f = rand[1,100], m = rand[0,1]

Figure 8.10: Total diversity of the proposed ACO algorithms in comparison
with other peer ACO algorithms on the DTSP with m = rand[0, 1] and f =

rand[1, 100].

stagnation behaviour is eliminated using a diversity increase scheme based on tradi-

tional immigrants. Whenever klong(t) contains identical ants, a random immigrant

replaces an ant until the algorithm generates sufficient diversity.

Finally, in order to investigate the effect of the diversity generated, we calculate the

total diversity using Equation 6.7. The total diversity results for the algorithms are

presented in Figure 8.10. It can be observed thatMMAS has a higher diversity than

most algorithms. The P-ACO algorithm has the lowest diversity level, which shows

the effect when identical ants are stored in the population-list. RIACO maintains

the highest diversity among the algorithms with immigrants schemes, since diversity

is generated randomly, whereas EIACO and MIACO generate guided diversity via

transferring knowledge. FS-PACO, SC-PACO and M-ACO increase the diversity of

P-ACO with the different strategies used, but SC-PACO maintains higher levels of

diversity. Considering the results of the total diversity with the those of the offline

performance in Table 8.10 shows that ACO algorithms that maintain high diversity

levels do not always achieve better performance than other ACO algorithms for the

DTSP.

175



Chapter 8. ACO with Immigrants Schemes

8.3.2.9 Summary for the DTSP Experimental Results

In this subsection we summarize all the results from the experiments of DTSP.

In Figure 8.11 the results from Table 8.5 and Table 8.7 are transformed to squares,

that indicate the relative performance of the algorithms. The vertical and horizontal

axes indicate the magnitude and frequency values, respectively. The brightness of

squares indicate how well the algorithm performs on a specific dynamic test case.

For example, if an algorithm is outperformed from all its competitors in all problem

instances, then the square will be white; otherwise the square will be grey. The

darkness of the square depends on the number of algorithms a specific algorithm

outperforms, and on the consistency in different problem instances.

In Table 8.11 the analysis of the algorithms from the experiments in DTSP is summa-

rized, where slow and fast indicate the frequency of the dynamic environment, and

where low, medium and high indicate the magnitude of the dynamic environment.

From Figure 8.11 it can be observed that:

1. RIACO performs well only in dynamic cases where f = 5 with m = 0.5 and

m = 0.75 because the squares are darker in these cases and white on the

remaining. In cyclic DTSPs the squares are brighter because the performance

of RIACO is not consistent in all problem instances, e.g., is outperformed in

one problem instance.

2. EIACO performs in dynamic cases where f = 50 and f = 100 with m = 0.1,

m = 0.25, m = 0.5 and 0.75 because the squares are darker in these cases and

lighter in the f = 5 cases. The squares of EIACO are brighter in cyclic TSPs

when compared with the ones in random DTSPs because MIACO performs

better.

176



Chapter 8. ACO with Immigrants Schemes

Figure 8.11: Performance of the algorithms on different dynamic test cases for
the DTSP. The darkest squares indicate better performance of the algorithm when

compared with its competitors considering all the problem instances.

3. MIACO performs well in random DTSPs and has similar performance with

EIACO. However, EIACO performance is superior from MIACO performance

because the squares of MIACO are lighter in random DTSPs. On the other

hand, MIACO improves its performance in cyclic DTSPs because the squares

are darker from the ones in random DTSPs. Moreover, MIACO performance is

superior from EIACO performance because the squares of MIACO are darker

in cyclic DTSPs.

177



C
h
a
p
ter

8
.
A
C
O

w
ith

Im
m
igra

n
ts

S
ch
em

es

Table 8.11: Summary observations regarding the relative performance of the algorithms in different dynamic test cases of
DTSPs.

Environmental Dynamic Case

Algorithms Slow Fast Low Medium High

RIACO Disturbs the opti-
mization process
because of too much
randomization.

Performs well only
when the changes
are severe.

Similar perfor-
mance as in the
“slow” case.

Similar perfor-
mance as in the
“slow” case.

Similar perfor-
mance as in the
“slow” case.

EIACO Performs well since
it has enough time
to gain knowledge
from previous envi-
ronments.

Performs well only
when the envi-
ronment changes
slightly.

Performs well since
the knowledge
transferred fits
between similar
environments.

Similar perfor-
mance as in the
“low” case.

Performs well only
when the envi-
ronment changes
slowly.

MIACO Similar perfor-
mance with EIACO
in random environ-
ments but better
performance in
cyclic environments
because of memory
usage.

Memory cannot
keep track of the
best solutions.

Performs better on
most cyclic environ-
ments.

Similar perfor-
mance as in the
”low” case.

Similar perfor-
mance as in the
”low”.

178



Chapter 8. ACO with Immigrants Schemes

8.3.3 Experimental Results for the DVRP

8.3.3.1 Parameter Settings

The parameter settings for RIACO, EIACO and MIACO in the DVRP are the same

with the parameters in the DTSP. Appendix C presents all the parameters used for

the DVRP. The important algorithmic parameters for ACS-DVRP, which follows

the traditional ACO framework, have been optimized via experiments as presented

in the next subsection.

8.3.3.2 Effect of the Evaporation Rate ρ

In Table 8.12, one of the best performing traditional ACO algorithms, i.e., ACS-

DVRP, is applied to slowly changing environments with different magnitudes of

change, and the evaporation rate is optimized (RIACO, EIACO and MIACO do not

have pheromone evaporation). In the static VRP, the recommended evaporation

rate for ACS is ρ = 0.1 [196].

In contrast to the observation withMMAS in Table 8.1 for the DTSP previously,

the recommended evaporation rate in the static VRP usually has good performance

or competitive performance in the DVRP. This can be observed in Table 8.12 with

the ACS-DVRP(ρ = 0.1) results in F-n45-k4 and F-n72-k4. However, when ρ is

high, the performance is often degraded as in MMAS for the DTSP. When ρ >

0.1 the performance is sometimes improved, e.g., in all test cases of the F-n135-

k7. This shows that a higher evaporation rate improves the performance in larger

problem instances, e.g., F-n135-k7, and the performance is furthermore improved

when the magnitude of change increases, e.g., when m = 0.5 and m = 0.75. A

similar observation was found withMMAS in Table 8.1 for the DTSP.

179



Chapter 8. ACO with Immigrants Schemes

Table 8.12: Offline performance of ACS-DVRP with different evaporation rates
for the DVRP. Bold values indicate the best results.

f = 100, m⇒ 0.1 0.25 0.5 0.75

Alg. & Inst. F-n45-k4

ACS-DVRP(ρ = 0.1) 920.29 1134.74 1871.18 3291.76

ACS-DVRP(ρ = 0.2) 925.76 1139.36 1866.70 3311.35

ACS-DVRP(ρ = 0.4) 928.51 1141.75 1864.71 3351.59

ACS-DVRP(ρ = 0.6) 936.63 1160.26 1862.90 3323.81

Alg. & Inst. F-n72-k4

ACS-DVRP(ρ = 0.1) 313.17 393.90 664.33 1117.12

ACS-DVRP(ρ = 0.2) 314.45 393.83 666.77 1120.75

ACS-DVRP(ρ = 0.4) 314.71 396.88 666.66 1118.43

ACS-DVRP(ρ = 0.6) 315.22 398.26 665.13 1121.20

Alg. & Inst. F-n135-k7

ACS-DVRP(ρ = 0.1) 1497.29 1866.97 2900.09 5011.19

ACS-DVRP(ρ = 0.2) 1491.20 1860.12 2910.56 5005.90

ACS-DVRP(ρ = 0.4) 1494.08 1865.71 2888.78 4985.65

ACS-DVRP(ρ = 0.6) 1496.40 1864.13 2901.97 5008.14

In general, the evaporation rate does not have a significant impact on the perfor-

mance of ACS-DVRP in dynamic environments with a small search space. This is

natural because the difference between the standard ACS and MMAS is that, in

the former algorithm, pheromone evaporation is applied only to the trails of the best

ant, whereas in the latter algorithm it is applied to all the trails.

8.3.3.3 Performance Analysis in Random Environments

The experimental results regarding the offline performance of the proposed algo-

rithms in DVRPs with random traffic factors are presented in Table 8.13. The cor-

180



C
h
a
p
ter

8
.
A
C
O

w
ith

Im
m
igra

n
ts

S
ch
em

es

Table 8.13: Offline performance of the proposed algorithms with immigrants in random DVRPs

Alg. & Inst. F-n45-k4 F-n72-k4 F-n135-k7

f = 5, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO 913.7 1137.0 1859.3 3176.4 326.9 417.4 683.6 1160.8 1562.5 2015.2 3256.9 5408.6

EIACO 914.3 1139.3 1860.4 3172.1 325.2 415.1 678.9 1153.3 1561.2 2011.9 3251.7 5407.0

MIACO 914.2 1140.1 1857.7 3170.6 325.1 415.2 679.7 1155.3 1560.9 2012.5 3250.1 5409.9

f = 50, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO 866.6 1021.4 1662.6 2847.7 299.8 367.8 590.8 1024.8 1454.2 1751.8 2781.7 4746.1

EIACO 871.5 1026.6 1674.1 2825.8 294.8 362.7 573.2 1006.2 1441.3 1722.1 2702.3 4638.3

MIACO 871.4 1026.7 1662.2 2835.7 294.3 362.9 576.5 1002.9 1442.1 1724.6 2705.1 4626.8

f = 100, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO 869.2 1024.6 1575.8 2914.6 294.1 356.6 585.8 980.4 1434.4 1719.3 2658.3 4648.1

EIACO 875.7 1023.0 1570.5 2790.3 288.7 349.8 572.4 959.7 1418.3 1702.2 2556.2 4512.7

MIACO 872.8 1024.1 1579.9 2791.0 288.5 349.9 567.2 964.3 1422.3 1702.1 2566.0 4486.8

181



C
h
a
p
ter

8
.
A
C
O

w
ith

Im
m
igra

n
ts

S
ch
em

es

Table 8.14: Statistical test results regarding the offline performance of the algorithms in random DVRPs. “s+” or “s−”
indicates that the first algorithm is significantly better or the second algorithm is significantly better, respectively, and “+” or
“−” indicates that the first algorithm is insignificantly better or the second algorithm is insignificantly better, respectively.

Alg. & Inst. F-n45-k4 F-n72-k4 F-n135-k7

f = 5, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO⇔EIACO + + + − s− s− s− s− − − − −
RIACO⇔MIACO + + + − s− s− s− s− − − − +

EIACO⇔MIACO + − + + − + + + + − + +

f = 50, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO⇔EIACO s+ s+ s+ s− s− s− s− s− s− s− s− s−
RIACO⇔MIACO s+ − s+ − s− s− s− s− s− s− s− s−
EIACO⇔MIACO + − − + − + + − + + + −
f = 100, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO⇔EIACO s+ − − s− s− s− s− s− s− s− s− s−
RIACO⇔MIACO s+ − + s− s− s− s− s− s− s− s− s−
EIACO⇔MIACO − + + + − + − − + − + −

182



Chapter 8. ACO with Immigrants Schemes

 800

 900

 1000

 1100

 1200

 1300

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n45-k4 (random),  f = 5,  m = 0.1

RIACO
EIACO

MIACO

 2500

 3000

 3500

 4000

 4500

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n45-k4 (random),  f = 5,  m = 0.75

RIACO
EIACO

MIACO

 280

 300

 320

 340

 360

 380

 400

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n72-k4 (random),  f = 5,  m = 0.1

RIACO
EIACO

MIACO

 900

 1000

 1100

 1200

 1300

 1400

 1500

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n72-k4 (random),  f = 5,  m = 0.75

RIACO
EIACO

MIACO

 1400

 1450

 1500

 1550

 1600

 1650

 1700

 1750

 1800

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n135-k7 (random),  f = 5,  m = 0.1

RIACO
EIACO

MIACO

 4500

 5000

 5500

 6000

 6500

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n135-k7 (random),  f = 5,  m = 0.75

RIACO
EIACO

MIACO

Figure 8.12: Dynamic behaviour of the algorithms for random DVRPs with fast
changing environments.

183



Chapter 8. ACO with Immigrants Schemes

 800

 900

 1000

 1100

 1200

 1300

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n45-k4 (random),  f = 50,  m = 0.1

RIACO
EIACO

MIACO

 2500

 3000

 3500

 4000

 4500

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n45-k4 (random),  f = 50,  m = 0.75

RIACO
EIACO

MIACO

 280

 300

 320

 340

 360

 380

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n72-k4 (random),  f = 50,  m = 0.1

RIACO
EIACO

MIACO

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n72-k4 (random),  f = 50,  m = 0.75

RIACO
EIACO

MIACO

 1350

 1400

 1450

 1500

 1550

 1600

 1650

 1700

 1750

 1800

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n135-k7 (random),  f = 50,  m = 0.1

RIACO
EIACO

MIACO

 3500

 4000

 4500

 5000

 5500

 6000

 6500

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n135-k7 (random),  f = 50,  m = 0.75

RIACO
EIACO

MIACO

Figure 8.13: Dynamic behaviour of the algorithms for random DVRPs with
slowly changing environments.

184



Chapter 8. ACO with Immigrants Schemes

responding statistical results are presented in Table 8.14. Moreover, to better un-

derstand the dynamic behaviour of algorithms, the offline performance for the first

20 environments (100 iterations/5) is plotted in Figure 8.12 for f = 5 and m = 0.1

and m = 0.75, respectively, and the offline performance for the first 10 environments

(500 iterations/50) is plotted in Figure 8.13 for f = 50 and m = 0.1 and m = 0.75,

respectively. From the experimental results, several observations can be made by

comparing the behaviour of the algorithms.

First, it was expected that RIACO would outperform EIACO and MIACO in fast

and significantly changing environments, whereas EIACO and MIACO would out-

perform RIACO in slowly and slightly changing environments as it was observed in

the DTSP previously. However, this is not true in the case of the DVRP because

RIACO is outperformed by EIACO (and MIACO) in most changing environments

(except in F-n45-k4); see the comparisons of RIACO ⇔ EIACO and RIACO ⇔
MIACO in Table 8.14. In problem instances where the search space is small, i.e.,

F-n45-k4, RIACO performs better in most dynamic test cases, even in fast or slowly

changing environments, than its competitors. This behaviour may have several rea-

sons: (1) the knowledge transferred in EIACO or MIACO is too much that it starts

the run in the new environment from a local optimum as it was observed previ-

ously; and (2) random immigrants have a higher probability to hit the optimum in

a smaller search space and the risk of randomization is less.

Second, EIACO and MIACO have similar performance in most dynamic test cases,

since none of the algorithms is significantly better than the other; see the compar-

isons of EIACO ⇔ MIACO in Table 8.14. This behaviour is natural since both

algorithms generate guided immigrants. A similar observation has been found in

some dynamic test cases in the experiments before for the DTSPs.

185



Chapter 8. ACO with Immigrants Schemes

8.3.3.4 Performance Analysis in Cyclic Environments

The experimental results regarding the offline performance of the proposed algo-

rithms in DVRPs with cyclic traffic factors are presented in Table 8.15. The cor-

responding statistical results are presented in Table 8.16. Moreover, to better un-

derstand the dynamic behaviour of algorithms, the offline performance for the first

20 environments (100 iterations/5) is plotted in Figure 8.14 for f = 5 and m = 0.1

and m = 0.75, respectively, and the offline performance for the first 10 environments

(500 iterations/50) is plotted in Figure 8.15 for f = 50 and m = 0.1 and m = 0.75,

respectively. From the experimental results, several observations can be made by

comparing the behaviour of the algorithms.

First, RIACO has a similar performance for cyclic DVRP as for random DVRPs

before, on some dynamic test cases in F-n45-k4; see the comparisons of RIACO

⇔ EIACO and RIACO ⇔ MIACO in Table 8.16. The results on F-n72-k4 and

vrp145 for cyclic DVRPs match the results for random DVRPs, since RIACO is

outperformed by its competitors in almost all dynamic cases. The performance of

RIACO is inconsistent in both random and cyclic DVRPs and it requires further

investigation; see Table 8.17.

Second, EIACO and MIACO have similar performance for cyclic DVRP as for the

random DVRP above, except in some cases where MIACO performs better than

EIACO, i.e., when f = 5 and m = 0.25 in F-n45-k4; see the comparisons of EIACO

⇔ MIACO in Table 8.16. Different from the observation found in the cyclic DTSPs

for MIACO, for DVRP, the memory is not advantageous when the environments re-

appear, which was not expected. This is probably because the memory is not able to

store solutions that may represent previously visited environments. The similarity

metric used in Equation 5.3 is based on the common edges and may not be suitable,

186



C
h
a
p
ter

8
.
A
C
O

w
ith

Im
m
igra

n
ts

S
ch
em

es

Table 8.15: Offline performance of the proposed algorithms with immigrants in cyclic DVRPs.

Alg. & Inst. F-n45-k4 F-n72-k4 F-n135-k7

f = 5, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO 947.4 1018.3 1648.6 2616.5 322.2 422.5 577.9 729.9 1593.4 1881.4 2595.1 4583.9

EIACO 952.8 1017.1 1643.2 2614.5 319.9 420.9 576.5 726.9 1594.2 1880.3 2595.2 4583.0

MIACO 951.1 1014.8 1645.0 2612.1 319.6 421.3 577.4 727.3 1593.1 1876.8 2598.6 4584.2

f = 50, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO 887.1 959.2 1434.2 2320.3 302.1 381.7 500.2 658.0 1477.6 1688.2 2307.5 4101.4

EIACO 888.8 956.1 1427.5 2309.6 296.6 373.4 487.3 646.4 1472.5 1668.0 2261.7 4023.8

MIACO 887.8 957.4 1432.2 2306.3 295.8 373.2 487.7 646.0 1472.8 1670.2 2263.7 4024.5

f = 100, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO 871.1 943.3 1341.8 2241.9 296.7 375.2 481.1 643.8 1434.9 1644.9 2207.0 3877.6

EIACO 872.3 940.5 1350.6 2173.4 290.8 362.8 466.3 623.1 1430.2 1623.7 2158.2 3777.8

MIACO 871.2 943.1 1353.3 2164.2 290.0 362.9 467.0 623.3 1427.1 1622.4 2155.4 3784.1

187



C
h
a
p
ter

8
.
A
C
O

w
ith

Im
m
igra

n
ts

S
ch
em

es

Table 8.16: Statistical test results regarding the offline performance of the algorithms in cyclic DVRPs. “s+” or “s−”
indicates that the first algorithm is significantly better or the second algorithm is significantly better, respectively, and “+” or
“−” indicates that the first algorithm is insignificantly better or the second algorithm is insignificantly better, respectively.

Alg. & Inst. F-n45-k4 F-n72-k4 F-n135-k7

f = 5, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO⇔EIACO s+ − s− − s− s− s− s− + − + −
RIACO⇔MIACO s+ s− − − s− s− − s− − s− + +

EIACO⇔MIACO − s− + − − + + + − s− + +

f = 50, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO⇔EIACO + − − − s− s− s− s− − s− s− s−
RIACO⇔MIACO + − − s− s− s− s− s− − s− s− s−
EIACO⇔MIACO − + + − − − + − + + + +

f = 100, m⇒ 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75 0.1 0.25 0.5 0.75

RIACO⇔EIACO + − + s− s− s− s− s− − s− s− s−
RIACO⇔MIACO + − s+ s− s− s− s− s− s− s− s− s−
EIACO⇔MIACO − + + − − + + + − − − +

188



Chapter 8. ACO with Immigrants Schemes

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n45-k4 (cyclic),  f = 5,  m = 0.1

RIACO
EIACO

MIACO

 1500

 2000

 2500

 3000

 3500

 4000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n45-k4 (cyclic),  f = 5,  m = 0.75

RIACO
EIACO

MIACO

 300

 310

 320

 330

 340

 350

 360

 370

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n72-k4 (cyclic),  f = 5,  m = 0.1

RIACO
EIACO

MIACO

 500

 600

 700

 800

 900

 1000

 1100

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n72-k4 (cyclic),  f = 5,  m = 0.75

RIACO
EIACO

MIACO

 1400

 1500

 1600

 1700

 1800

 1900

 2000

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n135-k7 (cyclic),  f = 5,  m = 0.1

RIACO
EIACO

MIACO

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

0 10 20 30 40 50 60 70 80 90 100

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n135-k7 (cyclic),  f = 5,  m = 0.75

RIACO
EIACO

MIACO

Figure 8.14: Dynamic behaviour of the algorithms for cyclic DVRPs with fast
changing environments.

189



Chapter 8. ACO with Immigrants Schemes

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n45-k4 (cyclic),  f = 50,  m = 0.1

RIACO
EIACO

MIACO

 1500

 2000

 2500

 3000

 3500

 4000

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n45-k4 (cyclic),  f = 50,  m = 0.75

RIACO
EIACO

MIACO

 280

 300

 320

 340

 360

 380

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n72-k4 (cyclic),  f = 50,  m = 0.1

RIACO
EIACO

MIACO

 500

 600

 700

 800

 900

 1000

 1100

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n72-k4 (cyclic),  f = 50,  m = 0.75

RIACO
EIACO

MIACO

 1400

 1500

 1600

 1700

 1800

 1900

 2000

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n135-k7 (cyclic),  f = 50,  m = 0.1

RIACO
EIACO

MIACO

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

0 100 200 300 400 500

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

F-n135-k7 (cyclic),  f = 50,  m = 0.75

RIACO
EIACO

MIACO

Figure 8.15: Dynamic behaviour of the algorithms for cyclic DVRPs with slowly
changing environments.

190



Chapter 8. ACO with Immigrants Schemes

as in the DTSP, because of the capacity constraint in DVRPs that changes the

solution representation.

8.3.3.5 Effect of Immigrants Replacement Rate r

In order to investigate the effect of the immigrants replacement rate, further experi-

ments were performed on the same problem instances with the same parameters used

before but with different immigrant replacement rates, i.e., r ∈ {0.0, 0.1, 0.3, 0.5, 0.8},
where r = 0.0 means that no immigrants are generated to replace ants in the kshort(t).

RIACO and EIACO (or MIACO) are applied on the dynamic cases that showed

good performance from the basic experiments above, which make use of random

and guided immigrants, respectively.

In Table 8.17 and Figure 8.16, RIACO is applied on fast changing environments

which shows that random immigrants improve the performance of ACO slightly.

This shows that random immigrants do not have a significant effect on fast and

significantly changing environments, except in F-n45-k4, different from what was

observed in the DTSP. In most dynamic cases, random immigrants disturb the

optimization process, as in the DTSP, otherwise the improvement is slight. For

example, the improvement from RIACO(r = 0.0) to RIACO(r = 0.3) in F-n45-k4

is often greater than the improvement from RIACO(r = 0.0) to RIACO(r = 0.3) in

F-n135-k7 for m = 0.75, whereas in F-n72-k4 the performance is degraded. In fact,

this is the case for the remaining dynamic test cases, e.g., when m = 0.1, m = 0.25

and m = 0.5. This probably confirms our observation in the basic experiments that

random immigrants have a higher probability to hit the optimum in a smaller search

space and the risk of randomization decreases.

In Table 8.18 and Figure 8.16, EIACO is applied on slowly changing environments

which shows that guided immigrants improve the performance of ACO in all cases.

191



Chapter 8. ACO with Immigrants Schemes

Table 8.17: Offline performance of the proposed framework with different re-
placement rates of random immigrants on fast changing DVRPs. Bold values

indicate the best results.

f = 5, m⇒ 0.1 0.25 0.5 0.75

Alg. & Inst. F-n45-k4

RIACO(r = 0.0) 915.7 1139.1 1867.9 3188.1

RIACO(r = 0.1) 915.6 1139.6 1846.7 3186.4

RIACO(r = 0.3) 913.7 1137.0 1859.3 3176.4

RIACO(r = 0.5) 911.4 1136.7 1858.4 3178.9

RIACO(r = 0.8) 910.9 1140.2 1866.3 3181.7

Alg. & Inst. F-n72-k4

RIACO(r = 0.0) 326.2 416.3 680.1 1155.8

RIACO(r = 0.1) 325.9 415.9 681.0 1156.2

RIACO(r = 0.3) 326.9 417.4 683.6 1160.8

RIACO(r = 0.5) 328.0 418.3 685.5 1166.5

RIACO(r = 0.8) 330.4 420.9 690.4 1174.5

Alg. & Inst. F-n135-k7

RIACO(r = 0.0) 1558.3 2010.7 3261.9 5410.3

RIACO(r = 0.1) 1557.9 2011.2 3254.7 5409.9

RIACO(r = 0.3) 1562.5 2015.2 3256.9 5408.6

RIACO(r = 0.5) 1566.9 2019.9 3260.7 5417.9

RIACO(r = 0.8) 1575.8 2028.0 3268.2 5434.5

In contrast with the effect of guided immigrants on DTSPs, when the replacement

rate is r > 0.3, the performance is not degraded because of too much knowledge

transferred, but is often improved on DVRPs.

The most interesting observation is when the results of EIACO(r = 0.0), which is

our proposed framework without immigrants, are compared with the corresponding

results of ACS-DVRP in Table 8.12, since they were executed on the same dynamic

192



Chapter 8. ACO with Immigrants Schemes

Table 8.18: Offline performance of the proposed framework with different re-
placement rates of elitism-based immigrants on slowly changing DVRPs. Bold

values indicate the best results.

f = 100, m⇒ 0.1 0.25 0.5 0.75

Alg. & Inst. F-n45-k4

EIACO(r = 0.0) 883.1 1038.7 1624.5 2872.4

EIACO(r = 0.1) 882.7 1039.0 1623.6 2876.4

EIACO(r = 0.3) 875.7 1023.0 1570.5 2790.3

EIACO(r = 0.5) 872.9 1017.0 1571.2 2772.5

EIACO(r = 0.8) 870.2 1017.3 1571.1 2747.4

Alg. & Inst. F-n72-k4

EIACO(r = 0.0) 294.0 356.1 583.9 989.0

EIACO(r = 0.1) 297.7 356.1 584.3 988.0

EIACO(r = 0.3) 288.7 349.8 572.4 959.7

EIACO(r = 0.5) 287.8 350.4 563.8 959.1

EIACO(r = 0.8) 287.3 351.2 565.2 961.4

Alg. & Inst. F-n135-k7

EIACO(r = 0.0) 1436.2 1723.2 2612.9 4619.2

EIACO(r = 0.1) 1433.3 1724.2 2612.2 4628.1

EIACO(r = 0.3) 1418.3 1702.2 2556.2 4512.7

EIACO(r = 0.5) 1417.9 1701.7 2552.6 4463.8

EIACO(r = 0.8) 1420.5 1706.1 2547.3 4446.1

environments. In all dynamic cases, our proposed framework performs better than

ACS-DVRP, even with the best evaporation rate. For example, the performance of

EIACO(r = 0.0) in F-n45-k4 when m = 0.1, m = 0.25, m = 0.5 and m = 0.75

is 883.1, 1038.7, 1624.5 and 2872.4, respectively, whereas the performance of ACS-

DVRP with the best ρ on the same dynamic test cases is 920.2, 1134.7, 1862.9 and

3291.7, respectively.

193



Chapter 8. ACO with Immigrants Schemes

 1000

0.1 0.25 0.5 0.75

O
ff

lin
e 

Pe
rf

or
m

an
ce

m

F-n45-k4,  f = 5

RIACO(r=0.0)
RIACO(r=0.1)
RIACO(r=0.3)
RIACO(r=0.5)
RIACO(r=0.8)

 1000

 1500

 2000

 2500

 3000

0.1 0.25 0.5 0.75

O
ff

lin
e 

Pe
rf

or
m

an
ce

m

F-n45-k4,  f = 100

EIACO(r=0.0)
EIACO(r=0.1)
EIACO(r=0.3)
EIACO(r=0.5)
EIACO(r=0.8)

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

0.1 0.25 0.5 0.75

O
ff

lin
e 

Pe
rf

or
m

an
ce

m

F-n72-k4,  f = 5

RIACO(r=0.0)
RIACO(r=0.1)
RIACO(r=0.3)
RIACO(r=0.5)
RIACO(r=0.8)  300

 400

 500

 600

 700

 800

 900

 1000

0.1 0.25 0.5 0.75

O
ff

lin
e 

Pe
rf

or
m

an
ce

m

F-n72-k4,  f = 100

EIACO(r=0.0)
EIACO(r=0.1)
EIACO(r=0.3)
EIACO(r=0.5)
EIACO(r=0.8)

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

0.1 0.25 0.5 0.75

O
ff

lin
e 

Pe
rf

or
m

an
ce

m

F-n135-k7,  f = 5

RIACO(r=0.0)
RIACO(r=0.1)
RIACO(r=0.3)
RIACO(r=0.5)
RIACO(r=0.8)  1500

 2000

 2500

 3000

 3500

 4000

 4500

0.1 0.25 0.5 0.75

O
ff

lin
e 

Pe
rf

or
m

an
ce

m

F-n135-k7,  f = 100

EIACO(r=0.0)
EIACO(r=0.1)
EIACO(r=0.3)
EIACO(r=0.5)
EIACO(r=0.8)

Figure 8.16: Offline performance of varying the replacement rate of immigrants,
i.e., random immigrants (left) and guided immigrants (right), on different DVRPs.

194



Chapter 8. ACO with Immigrants Schemes

8.3.3.6 Comparison with other Peer ACO Algorithms in DVRP

In the experiments above, the performance of RIACO, EIACO and MIACO was

investigated under two kinds of dynamic environments, i.e., random and cyclic,

but with fixed f and m. As in the DTSP, further experiments were performed on a

DVRP with varying f and m values randomly generated with a uniform distribution

in [1, 100] and [0, 1], respectively.

We compare the proposed algorithms with other peer ACO algorithms, i.e., ACS-

DVRP, and M-ACO described in Section 6.6.2. The parameter settings for RIACO,

EIACO and MIACO are the same as in the basic experiments above, whereas the

rest are shown in Appendix C.

The experimental results regarding the offline performance of the aforementioned

algorithms are presented in Table 8.19 with the corresponding statistical results. In

Figure 8.17, the dynamic behaviour of the algorithms is presented with the corre-

sponding m values in Figure 8.18. From the experimental results several observation

can be drawn.

First, EIACO and MIACO perform similarly, and they are significantly better than

other peer ACO algorithms, followed by RIACO. This matches our previous exper-

imental results where it is better to generate guided immigrants instead of random

immigrants in most dynamic cases.

Second, all the proposed algorithms perform significantly better than ACS-DVRP.

This shows that immigrants schemes improve the performance of ACO in DVRPs.

This is due to the pheromone policy of the proposed framework, where pheromone

is generated on every iteration according to the knowledge of the previous environ-

ments. Moreover, M-ACO outperforms ACS-DVRP since the LS operators used in

195



Chapter 8. ACO with Immigrants Schemes

Table 8.19: Experimental results regarding offline performance on the DVRP
with m = rand[0, 1] and f = rand[1, 100] in C5. “s+” or “s−” indicates that
the algorithm in the row is significantly better than the one in the column or the

opposite and “∼” indicates no significance.

Alg. RIACO EIACO MIACO ACS-DVRP M-ACO

Offl. Perf. 4219.56 4170 4164.37 4378.99 4230.47

Std. Dev. 24.82 19.10 27.55 18.34 24.15

Wilcoxon Sum-Rank Test

RIACO s− s− s+ ∼
EIACO s+ ∼ s+ s+

MIACO s+ ∼ s+ s+

ACS-DVRP s− s− s− s−
M-ACO ∼ s− s− s+

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

0 100 200 300 400 500 600 700 800 900 1000

O
ff

lin
e 

Pe
rf

or
m

an
ce

Iteration

C5,  f = rand[1,100], m = rand[0,1]

ACS-DVRP
RIACO
EIACO

MIACO
M-ACO

Figure 8.17: Dynamic behaviour of the proposed algorithms in compari-
son with other peer ACO algorithms on the DVRP with m = rand[0, 1] and

f = rand[1, 100].

M-ACO promote exploitation and often improve the solution quality, whereas it is

comparable with RIACO.

Finally, in order to investigate the effect of the diversity generated, we calculate the

196



Chapter 8. ACO with Immigrants Schemes

 0

 0.2

 0.4

 0.6

 0.8

 1

0 100 200 300 400 500 600 700 800 900 1000

M
ag

ni
tu

de
s

Iteration

C5,  f = rand[1,100], m = rand[0,1]

Figure 8.18: Varying values for m = rand[0, 1] and f = rand[1, 100] used for
the DVRP.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

ACS-DVRP RIACO EIACO MIACO M-ACO

T
ot

al
 D

iv
er

si
ty

Algorithm

C5,  f = rand[1,100], m = rand[0,1]

Figure 8.19: Total diversity of the proposed ACO algorithms in comparison
with other peer ACO algorithms on the DVRP with m = rand[0, 1] and f =

rand[1, 100].

total diversity using Equation 6.7. The total diversity results for the algorithms are

presented in Figure 8.19. It can be observed that ACS-DVRP has a higher diversity

than all other algorithms. EIACO and MIACO have the lowest diversity among

all the ACO algorithms since they generate guided diversity, whereas RIACO has

higher diversity from EIACO, MIACO and M-ACO. M-ACO has higher diversity

than EIACO and MIACO because it uses random immigrants to balance the strong

197



Chapter 8. ACO with Immigrants Schemes

exploitation provided by the LS operators. Considering the results of the total diver-

sity with those of the offline performance in Table 8.19 shows that ACO algorithms

that maintain high diversity levels do not always achieve better performance than

other ACO algorithms for the DVRP. This matches the observation found for the

corresponding case of the DTSP in Section 8.3.2.8.

8.3.3.7 Summary for the DVRP Experimental Results

In this subsection we summarize all the results from the experiments of DVRP. In

Figure 8.20 the results from Table 8.14 and Table 8.16 are transformed to squares,

that indicate the relative performance of the algorithms. The vertical and horizontal

axes indicate the magnitude and frequency values, respectively. The brightness of

squares indicate how well the algorithm performs on a specific dynamic test case.

For example, if an algorithm is outperformed from all its competitors in all problem

instances, then the square will be white; otherwise the square will be grey. The

darkness of the square depends on the number of algorithms a specific algorithm

outperforms, and on the consistency in different problem instances.

In Table 8.20 the analysis of the algorithms from the experiments in DTSP is summa-

rized, where “slow” and “fast” indicate the frequency of the dynamic environment,

and where “low”, “medium” and “high” indicate the magnitude of the dynamic

environment.

From Figure 8.20 it can be observed that:

1. RIACO performs well on a wide range of dynamic test cases in which there

squares are lighter. This is because RIACO has an inconsistent behaviour in

both random and cyclic DVRPs, e.g., performs well only on small problem

instances.

198



Chapter 8. ACO with Immigrants Schemes

Figure 8.20: Performance of the algorithms on different dynamic test cases for
the DVRP. The darkest squares indicate better performance of the algorithm when

compared with its competitors considering all the problem instances.

2. EIACO performs well on most DVRP test cases and it is more consistent than

RIACO because the squares are darker. The reason why the squares for both

EIACO and MIACO are not as dark as in the DTSP cases (see Figure 8.11)

is due to the inconsistency of RIACO which performs better than them in all

dynamic test cases of one problem instance.

199



C
h
a
p
ter

8
.
A
C
O

w
ith

Im
m
igra

n
ts

S
ch
em

es

Table 8.20: Summary observations regarding the relative performance of the algorithms in different dynamic test cases of
DVRPs.

Environmental Dynamic Case

Algorithms Slow Fast Low Medium High

RIACO Disturbs the opti-
mization process ex-
cept in small prob-
lem instances.

Performs better
only in small prob-
lem instances which
shows inconsistent
behaviour.

Similar perfor-
mance as in the
“slow” case.

Similar perfor-
mance as in the
“slow” case.

Similar perfor-
mance as in the
“slow” case.

EIACO Performs well since
it has enough time
to gain knowledge
from previous envi-
ronments except in
small problem in-
stances.

Similar perfor-
mance as in the
“slow” case.

Performs better
only in larger
problem instances.

Similar perfor-
mance as in the
“low” case.

Similar perfor-
mance as in the
“low” case.

MIACO Similar perfor-
mance with EIACO
in both random
and cyclic environ-
ments.

Similar perfor-
mance as in the
“slow” case.

Similar perfor-
mance as in the
“slow” case.

Similar perfor-
mance as in the
“slow” case.

Similar perfor-
mance as in the
“slow” case.

200



Chapter 8. ACO with Immigrants Schemes

3. MIACO performs well in most DVRP test cases and it has a similar perfor-

mance with EIACO. Moreover, the performance of MIACO has no significance

difference from random DVRPs to cyclic DVRPs as in the DTSP case; see Fig-

ure 8.11. A similar observation can be made for the EIACO performance.

8.4 Summary

In this chapter we have presented our proposed algorithms that integrate immigrants

schemes with an ACO framework. In every iteration, immigrant ants are generated

either random or guided to replace a small portion of the worst in the current ant

population. The proposed ACO framework consists of a kshort of size Ks, where in

every iteration the Ks best ants replace all the ants of the previous iteration.

The proposed algorithms showed good performance in both DTSP and DVRP in

comparison with other peer ACO algorithms. Each proposed algorithm showed good

performance on different dynamic cases. In the DTSP, RIACO performed better in

fast and significantly changing environments, EIACO (and MIACO) in slowly and

slightly changing environments and MIACO in environments that re-appear. In

the DVRP, the results where quite different. RIACO performed better in small

problem instances, EIACO (and MIACO) in most dynamic cases, either random or

cyclic. Moreover, the framework of the proposed algorithms performs better than

conventional ACO algorithm in both DTSP and DVRP, even if no immigrants are

generated.

In general, it is important to achieve a good balance between exploration and ex-

ploitation, such as the example of M-ACO, and also to achieve a good balance

between the diversity generated and the knowledge transferred, such as the example

of EIACO and MIACO. For the case of traditional ACO algorithms, it is important

201



Chapter 8. ACO with Immigrants Schemes

to choose a higher evaporation rate that will eliminate the pheromone trails of the

previous environment quickly, in order for the ants to adapt to the new environment.

The benchmark generator with unknown optimum from Chapter 7 has been used in

this chapter. Further experiments with the proposed DBGP with known optimum

is a good direction for future work (for more information see Chapter 9).

202



Chapter 9

Conclusions and Future Work

In this thesis, we have studied the behaviour of ACO algorithms for static and

dynamic COPs. These algorithms are inspired from the foraging behaviour of real

ant colonies in nature. They are classified into the category of metaheuristics which

are able to provide the global optimum (or a near global optimum) solution for NP-
complete problems efficiently. Often, metaheuristics so far are analyzed empirically

due to the limited foundation of theoretical work.

Usually, ACO algorithms suffer from stagnation behaviour, where ants construct the

same solution from early stages of the algorithm. This degrades the solution quality

provided by ACO algorithms in static and dynamic environments because they may

get trapped in local optima and may lose their adaptation capabilities, respectively.

9.1 Technical Contributions

Our contributions in the field of ACO cover the development of strategies that: (1)

help to escape local optima in static environments; (2) enhance the adaptation capa-

bilities in dynamic environments; and (3) the development of tools for the empirical

203



Chapter 9. Conclusions and Future Work

analysis of ACO (or other metaheuristics) in dynamic permutation-encoded COPs.

The main contributions are summarized as follows:

• The development of a novel scheme based on direct communication for ACO,

which delays stagnation behaviour and avoids possible local optima in the TSP.

The results showed that ACO algorithms with the DC scheme produce better

performance than conventional ACO algorithms.

• The DC scheme has been extended and applied to the VRP with similar good

performance as in the TSP.

• The development of a novel ACO framework to address dynamic environments.

The framework prepares the pheromone trails in every iteration and speeds up

the adaptation capabilities of the algorithm. The conventional ACO frame-

work eliminates pheromone trails with evaporation (according to the rate),

whereas in the proposed one, pheromone trails are eliminated directly. From

the results, the proposed framework performs better than the conventional

ACO for DTSPs.

• The novel integration of immigrants schemes with the proposed ACO frame-

work. RIACO, EIACO, and MIACO showed good performance in different

dynamic cases for DTSPs and DVRPs.

• RIACO, EIACO and MIACO have been extended and applied to the DVRP

with similar performance.

• The development of a benchmark generator that generates dynamic environ-

ments with different properties from static problem instances. It works for

both DTSPs and DVRPs, and adds traffic factors to the problem instances in

order to model a real-world application.

204



Chapter 9. Conclusions and Future Work

• The development of another general benchmark generator for COPs that are

represented with weighted graphs. DBGP generates dynamic environments,

where the optimum remains unchanged (if known), because it moves the pop-

ulation to a different position in the fitness landscape instead of modifying

it.

9.2 Conclusions of the Experimental Results

From the experimental results presented in Chapters 5 and 8, for the ACO with

DC scheme in static environments and ACO with immigrants schemes in dynamic

environments, respectively, several concluding remarks can be drawn as follows:

• The DC scheme helps the population to escape possible local optima and

improves the performance of conventional ACO in static TSPs and VRPs,

with an appropriate communication range.

• Increasing the evaporation rate improves the performance ofMMAS in DT-

SPs, whereas increasing the evaporation rate improves the performance of

ACS-DVRP only in large problem instances in DVRPs.

• As the problem size and the magnitude of change increases the performance of

conventional ACO algorithms is degraded, when compared with the proposed

framework, in which a short-term memory is used, in dynamic environments.

• Each proposed algorithm performs good on different DTSP test cases. RI-

ACO performs better in fast and significantly changing environments. EIACO

(and MIACO) performs better in slowly and slightly changing environments.

MIACO performs better in environments that re-appear.

205



Chapter 9. Conclusions and Future Work

• Each proposed algorithm performs good on different DVRP test cases. RIACO

performs better in small problems. EIACO (and MIACO) performs better in

most dynamic cases, even if the environments re-appear or not.

• The performance of RIACO, EIACO and MIACO is not consistent on different

dynamic COPs because they have different performance in some dynamic test

cases of DTSPs when compared with the corresponding test cases of DVRPs.

This is probably because the proposed algorithms were initially designed to

address different DTSPs, and they were modified to address DVRPs.

• The size of the long-term memory used in MIACO is not dependent on the

number of states of the cyclic dynamic environment.

• The effect of the immigrants replacement rate for the proposed algorithms

depends on the dynamic COP and the magnitude of change.

• Maintaining high diversity levels does not always achieve better performance

than other ACO algorithms in both DTSPs and DVRPs.

• It is important to achieve a good balance between exploration and exploitation,

and also to achieve a good balance between the diversity generated and the

knowledge transferred in DOPs.

Generally speaking, ACO with DC scheme outperform other peer ACO algorithms

in TSPs and VRPs and ACO with immigrants schemes outperform other peer ACO

algorithms in almost all dynamic test cases in DTSPs and DVRPs.

9.3 Future Work

The main goals of the thesis was the improvement of ACO in static and dynamic

environments. From our experiments and observations, several future works and

206



Chapter 9. Conclusions and Future Work

directions are posed, many of which were pointed out across the thesis, and they are

briefly summarized in the next subsections.

9.3.1 ACO in Static Environments

The future work for ACO in static environments is summarized as follows:

• It will be interesting to apply the DC scheme with other ACO algorithm vari-

ations and with other variations of TSPs and VRPs.

• Investigate the effect of the DC scheme when an ACO algorithm is applied with

an LS, e.g., the 2-opt operator [164]. Usually, on larger problem instances, the

solution quality of algorithms is more likely to be degraded, whereas a local

search may improve it at the price of more computation time. Therefore, DC

may be able to guide the local search operator for better solution quality and

computation time.

• Integrate crossover and mutation operators to the DC scheme, for the ants to

exchange information, instead of the swap operator.

9.3.2 ACO in Dynamic Environments

Different from ACO in static environments, there are more directions for future work

for ACO in dynamic environments, and they are summarized as follows:

• Most of the strategies used to develop RIACO, EIACO and MIACO are in-

spired from EAs for DOPs. However, they have been developed for DOPs with

a binary search space. For example, the memory scheme [223] can be further

improved in order to address more accurately DOPs with combinatorial space.

207



Chapter 9. Conclusions and Future Work

• The effect of immigrants schemes usually depends on the magnitude of change

in the environment and the optimization period of the algorithm. In order

to achieve a good balance between exploration and exploitation it will be

interesting to adapt the replacement rate of the immigrants schemes [289].

• The performance of conventional ACO can be further improved in DOPs if the

evaporation rate, i.e., ρ, is adapted, since it has a significant impact on ACO’s

performance. Different evaporation rates, either high or low, may be the best

choice in different periods of the algorithm’s execution.

• Apart from single-colony ACO, multi-colony ACO can also be applied to DOPs

since different colonies may explore different areas in the search space. RI-

ACO, EIACO and MIACO can be extended as multi-colony algorithms and

can exchange immigrants between the colonies. In fact, immigrants have been

initially proposed for multi-population algorithms [269, 270].

• More real-world related models can be modelled with the proposed benchmark

generators for DOPs. For example, to integrate the time-linkage property

where the future behaviour of the problem depends on the current or previous

solution found by the algorithm [201].

• Moreover, it will be interesting to integrate the DBGP benchmark generator

with the ROOT framework [90, 287]. In fact, some real-world dynamic (com-

binatorial) problems, in scheduling and vehicle routing, have the time-linkage

property [19]. Therefore, tracking the moving optimum, as in our experiments,

may not be the best choice, because the decision made to improve the per-

formance at present may influence the performance in the future. Hence, the

overall performance may be degraded in the long run.

208



Chapter 9. Conclusions and Future Work

9.3.3 Further Discussion Regarding the Relation of Dynamic

Optimization and Real-World Applications

From the surveys regarding the ACO applications in static and dynamic environ-

ments in Tables 4.1 and 6.1, respectively, it can be observed that the work in the

former one is extensive, whereas in the latter one the work is still in its infancy.

Moreover, the amount work on ACO for DOPs is also relatively weak in comparison

with the work done on EAs for DOPs. Since ACO algorithms showed that they

have good performance in DTSPs and DVRPs it will be interesting to apply them

on more realistic applications, or even make a start on theoretical works regarding

ACO for simple DOPs, as done for EAs [225]. Of course, this thesis has focused on

the practical side of the ACO and not on the theoretical side.

Although the research of EDO (or more generally dynamic optimization) is mature

enough it still has many aspects for further consideration, which are summarized as

follows:

• Define a computational experimentation protocol to compare the performance

of algorithms in dynamic environments.

• Develop new performance measurements to tackle the performance of algo-

rithms more accurately in dynamic environments.

• Consider other types of dynamism to perfectly fit real-world application.

• Consider multi-objective dynamic optimization, since many real-world prob-

lems are not only dynamic, but they may have several objectives [138, 166].

• Develop methods to predict dynamic changes or the severity of the dynamic

change, e.g., integrate learning methods with metaheuristics.

209



Chapter 9. Conclusions and Future Work

In nature-inspired metaheuristics, there is a great gap between theory and practice

in academic research, since many applications have been proposed and there are just

a few theoretical works. With the term “practice” some researchers mean that the

metaheuristic actually works and has been tested in a real-world scenario, whereas

other researchers mean that the metaheuristic has been applied on academic bench-

marks that model some characteristics of a real-world scenario. To the best of our

knowledge, the practical works, with the former meaning, are just a few, which is a

similar case with theoretical works, whereas there are many practical works, with the

latter meaning. Therefore, the statement regarding the great gap between theory

and practice differs depending on the meaning of the term practice.

In case metaheuristics are applied on academic benchmarks, some evidence can be

obtained that they might work on the actual real-world scenarios that the academic

benchmarks model, but there is no guarantee that they will have the same good

performance. Therefore, it is essential to apply effective metaheuristics in actual

real-world scenarios to bring the academic research of dynamic optimization closer

to real-world applications.

210



Appendix A

Description of Benchmarks

Static TSP instances

Instance Name n Known Optimum

eil51 51 426

eil76 76 538

eil101 101 629

kroA100 100 21282

kroA150 150 26524

kroA200 200 29368

lin318 318 42029

pcb442 442 50778

att532 532 27686

rat783 783 8806

pcb1173 1173 56892

pr2392 2392 378032

211



Appendices

Dynamic TSP instances

Instance Name n Known Optimum

pr76 76 108159

pr152 152 73682

pr299 299 48191

Static VRP instances

Instance Name n Q L δ v Best Known Optimum

Random Problems

C1 50 160 ∞ 0 5 524.61

C2 75 140 ∞ 0 10 835.26

C3 100 200 ∞ 0 8 826.14

C4 150 200 ∞ 0 12 1028.42

C5 199 200 ∞ 0 16 1291.29

C6 50 160 200 10 6 555.43

C7 75 140 160 10 12 909.68

C8 100 200 230 10 9 865.94

C9 150 200 200 10 14 1162.55

C10 199 200 200 10 19 1395.85

Clustered Problems

C11 120 200 ∞ 0 9 1042.11

C12 100 200 ∞ 0 10 819.56

C13 120 200 720 50 12 1541.14

C14 100 200 1040 90 11 866.37

212



Appendices

Dynamic VRP instances

Instance Name n Q v Best Known Optimum

F-n45-k4 45 2010 4 724

F-n72-k4 72 30000 4 237

F-n135-k7 135 2210 7 1162

213



Appendix B

Parameter Settings for Static

Combinatorial Problems

TSP parameters

ACO algorithm α β ρ µ τ0

AS 1 5 0.5 25 µ/Cnn

EAS 1 5 0.5 25 (e+ µ)/ρCnn

ASrank 1 5 0.1 25 0.5r(r − 1)/ρCnn

MMAS 1 5 0.2 25 1/ρCnn

ACS – 5 0.1 10 1/nCnn

BWAS 1 5 0.1 25 1/nCnn

MMAS+DC 1 5 0.2 25 1/ρCnn

The additional parameters for the ACO algorithms are set as follows:

• EAS: The parameter e is set to e = µ.

214



Appendices

• ASrank: The parameter w is set to w = 6.

• MMAS: The pheromone trail boundaries are set to τmax = 1/ρCbs and τmin =

(1− n
√
0.05)/((avg − 1)× n

√
0.05) (see [245] for more details).

• ACS: The parameter ξ is set to ξ = 0.1 and q0 is set to q0 = 0.9.

• BWAS: The parameters σ and pphmut are set to σ = 0.4 and pphmut = 0.3,

respectively. Moreover, q0 is set to q0 = 0.9.

• MMAS+DC: The parameters ω and Tr are set to ω = 0.5 and Tr ranges

0.6 ≤ Tr ≤ 0.8 depending on the size of the problem instance, respectively.

VRP parameters

ACO algorithm α β ρ µ τ0 q0

ASrank-CVRP 1 5 0.1 50 0.5r(r − 1)/ρCnn 0.0

MACS-VRP – 5 0.1 50 1/nCnn 0.9

ASrank-CVRP+DC 1 5 0.1 50 0.5r(r − 1)/ρCnn 0.0

• ASrank-CVRP: The parameter w is set to w = 6.

• ASrank-CVRP+DC: The parameters ω and Tr are set to ω = 0.5 and Tr = 0.8,

respectively.

215



Appendix C

Parameter Settings for Dynamic

Combinatorial Problems

TSP parameters

ACO algorithm α β q0 ρ Ks Kl µ

RIACO 1 5 0.0 – 6 – 28

EIACO 1 5 0.0 – 6 – 28

MIACO 1 5 0.0 – 6 3 25

MMAS 1 5 0.0 0.6 – – 28

P-ACO 1 5 0.9 – – 3 28

M-ACO 1 5 0.9 – – 3 20

SC-PACO 1 5 0.5 – – 8 20

FS-PACO 1 5 0.5 – – 8 28

The additional parameters for some algorithms are set as follows:

• RIACO, EIACO and MIACO: The parameter r is set to r = 0.3.

216



Appendices

• M-ACO: The parameter LSsteps is set to LSsteps = 8.

• FS-PACO: The parameters σshare, a, and λ are set to σshare = 0.2, a = 1 and

λ = 2, respectively.

• SC-PACO: The parameter λ is set to λ = 2.

• MMAS: The pheromone trail boundaries are set to τmax = 1/ρCbs and τmin =

(1− n
√
0.05)/((avg − 1)× n

√
0.05) (see [245] for more details).

VRP parameters

ACO algorithm α β q0 ρ Ks Kl µ

RIACO 1 5 0.0 – 6 – 28

EIACO 1 5 0.0 – 6 – 28

MIACO 1 5 0.0 – 6 3 25

ACS-VRP – 5 0.9 0.2 – – 28

M-ACO 1 5 0.0 – – 3 20

The additional parameters for some algorithms are set as follows:

• RIACO, EIACO and MIACO: The parameter r is set to r = 0.3.

• M-ACO: The parameter LSsteps is set to LSsteps = 8.

• ACS-DVRP: The parameter ξ is set to ξ = 0.1.

217



Bibliography

[1] M.H. Afshar. A new transition rule for ant colony optimization algorithms:
application to pipe network optimization problems, Engineering Optimization,
37(5), pp. 525–540, Taylor & Francis, 2005.

[2] D.A. Alexandrov, Y.A. Kochetov. The behavior of the ant colony algorithm
for the set covering problem. Proceedings of the 1999 Operations Research, K.
Inderfurth, G. Schwodiauer, W. Domschke, F. Juhnke, P. Kleinschmidt, G.
Wäscher, editors, pp. 255–260. Springer-Verlag, 2000.

[3] D. Angus. Niching for population-based ant colony optimization. Proceedings
of the 2nd International IEEE Conference on e-Science and Grid Comput-
ing, Workshop on Biologically-inspired Optimisation Methods for Parallel and
Distributed Architectures: Algorithms, Systems and Applications, 2006.

[4] D. Angus, T. Hendtlass. Dynamic ant colony optimisation. Applied Intelli-
gence, 23, pp. 33–38, 2005.

[5] D.L. Applegate, R.M. Bixby, V. Chvátal, W.J. Cook. The Traveling Salesman
Problem, 2006.

[6] T. Bäck. On the behaviour of evolutionary algorithms in dynamic environ-
ments, Proceedings of the 1998 IEEE International Conference on Evolution-
ary Computation, pp. 446–451, IEEE Press, 1998.

[7] A. Bauer, B. Bullnheimer, R. F. Hartl, C. Strauss. An ant colony optimiza-
tion approach for the single machine total tardiness problem. Proceedings of
the 1999 IEEE Congress on Evolutionary Computation, pp. 1445–1450. IEEE
Press, 1999.

[8] S. Baluja, R. Caruana. Removing the genetic from the standard genetic algo-
rithm. Proceedings of the 12th International Conference on Machine Learning,
A. Prieditis, S. Russell, editors, pp. 38–46, Morgan Kaufmann, 1995.

[9] M. Bandieramonte, A. Di Stefano, G. Morana. An ACO inspired strategy to
improve jobs scheduling in a grid environment, Proceedings of the 8th Inter-
national Conference on Algorithms and Architectures for Parallel Processing,
LNCS 5022, pp. 30–41, Springer-Verlag, 2008.

218



Bibliography

[10] R. Beckers, J.-L. Deneubourg, S. Gross. Modulation of trail laying in the ant
lasius niger (hymenopetra:Formicidae) and its role in the collective selection
of a food source. Journal of Insect Behaviour, 6(6), pp. 751–759, 1993.

[11] J.E. Bell, P.R. McMullen. Ant colony optimization techniques for the vehicle
routing problem, Advanced Engineering Informatics, 18(1), pp. 41–48, Elsevier
Science, 2004.

[12] L. Bianchi, L.M. Gambardella, M.Dorigo. An ant colony optimization ap-
proach to the probabilistic traveling salesman problem, Proceedings of the
7th International Conference on Parallel Problem Solving from Nature, LNCS
2439, pp. 883–892, Springer-Verlag, 2002.

[13] L. Bianchi, L.M. Gambardella, M.Dorigo. Solving the homogeneous probabilis-
tic travelling salesman problem by the ACO metaheuristic. Proceedings of the
Third International Workshop on Ant Algorithms, M. Dorigo, G. Di Caro, M.
Sampels, editors, LNCS 2463, pp. 176–187, Springer-Verlag, 2002.

[14] C. Blum. ACO applied to group shop scheduling: a case study on intensifica-
tion and diversification. Proceedings of the Third International Workshop on
Ant Algorithms, M. Dorigo, G. Di Caro, M. Sampels, editors, LNCS 2463,
pp. 14–27. Springer-Verlag, 2002.

[15] C. Blum. Beam-ACO - hybridizing ant colony optimization with beam search:
an application to open shop scheduling, Computers and Operations Research,
32(6), pp. 1565–1591, Elsevier Science, 2005.

[16] C. Blum, K. Socha. Training feed-forward neural networks with ant colony
optimization: An application to pattern classification, Proceedings of the 5th
International Conference on Hybrid Intelligent Systems, pp. 233-238, 2005.

[17] E. Bonabeau, M. Dorigo, G. Theraulaz. Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York, 1999.

[18] E. Bonabeau, F. Henaux, S. Guérin, D. Snyers, P. Kuntz, G. Theraulaz. Rout-
ing in telecommunication networks with Smart ant-like agents. Proceedings of
the Second International Workshop on Intelligent Agents for Telecommunica-
tion Applications, LNAI 1437, Springer-Verlag, 1998.

[19] P.A.N. Bosman. Learning, anticipation and time-deception in evolutionary
online dynamic optimization, Proceedings of the 2005 International Conference
on Genetic and Evolutionary Computation, pp. 39–47, ACM Press, 2005.

[20] J. Branke. Memory enhanced evolutionary algorithms for changing optimiza-
tion problems. Proceedings of the 199 IEEE Congress on Evolutionary Com-
putation, 3, pp. 1875–1882, IEEE Press, 1999.

219



Bibliography

[21] J. Branke. Evolutionary Optimization in Dynamic Environments. Kluwer,
2001.

[22] J. Branke, Schmeck H. Designing evolutionary algorithms for dynamic op-
timization problems, Theory and Application of Evolutionary Computation:
Recent Trends, S. Tsutsui, A. Ghosh, editors, pp. 239–262, Springer-Verlag,
2003.

[23] J. Branke, T. Kauβler, C. Schmidt, H. Schmeck. A multi-population approach
to dynamic optimization problems. Adaptive Computing in Design and Man-
ufacturing, pp. 299–308, Springer-Verlag, 2000.

[24] J. Branke, E. Salihoğlu, C. Uyar. Towards an analysis of dynamic environ-
ments. Proceedings of the 2005 International Conference on Genetic and Evo-
lutionary Computation, pp. 1433–1440, ACM Press, 2005.

[25] J. Branke, W. Wang. Theoretical analysis of simple evolution strategies in
quickly changing environments, Proceedings of the 2003 International Con-
ference on Genetic and Evolutionary Computation, LNCS 2723, pp. 537–548,
Springer-Verlag, 2003.

[26] J. Branke, M. Orbayi, S. Uyar. The role of representations in dynamic knap-
sack problems. Proceedings of the 2006 EvoWorkshops on Applications of Evo-
lutionary Computation, LNCS 3907, pp. 764–775, Springer-Verlag, 2006.

[27] B. Bullnheimer, R. F. Hartl, C. Strauss. Applying the ant system to the ve-
hicle routing problem. Meta-Heuristics: Advances and Trends in Local Search
Paradigms for Optimization, S. Voβ S. Martello, I. H. Osman, C. Roucairol,
editors, pp. 285–296, Kluwer Academic, 1999.

[28] B. Bullnheimer, R. F. Hartl, C. Strauss. An improved ant system algorithm for
the vehicle routing problem. Annals of Operations Research, 89, pp. 319–328,
1999.

[29] B. Bullnheimer, R.F. Hartl, C. Strauss. A new rank-based version of the ant
system: a computational study. Central European Journal of Operations Re-
search and Economics, 7(1), pp. 25–38, 1999.

[30] B. Bullnheimer, G. Kotsis, C. Strauss. Parallelization strategies for the ant sys-
tem, High Performance Algorithms and Software in Nonlinear Optimization,
Applied Optimization, 24, pp. 87–100, Kluwer Academic, 1998.

[31] D. Câmara, A.F. Loureiro. A novel routing algorithm for ad hoc networks.
Proceedings of the 33rd Hawaii International Conference on System Sciences,
2, pp. 1–8, IEEE Press, 2000.

[32] D. Câmara, A.F. Loureiro. Gps/ant-like routing in ad hoc networks. Telecom-
munication Systems,18(1–3), pp. 85–100, 2001.

220



Bibliography

[33] S. Camazine, J. Sneyd J. A model of collective nectar source by honey bees:
Self-organization through simple rules. Journal of Theoretical Biology, 149,
pp. 547–571, 1991.

[34] J. Campbell, A. Langevin. Roadway snow and ice control. Arc routing: Theory,
Solutions and Applications, pp. 389–418, Kluwer Academic, 2000.

[35] L. Carrillo, J.L. Marzo, L. Fábrega, , P. Vilá, C. Guadall. Ant colony behaviour
as routing mechanism to provide quality of service. Proceedings of the Fourth
International Workshop on Ant Algorithms, M. Dorigo, M. Birattari, C. Blum,
L. M. Gambardella, F. Mondada, T. Stützle, editors, LNCS 3172, pp. 418–419,
Springer-Verlag, 2004.

[36] W. Cedeno, V. R. Vemuri. On the use of niching for dynamic landscapes,
Proceedings of the 1997 IEEE International Conference in Evolutionary Com-
putation, pp. 361–366, IEEE Press, 1997.

[37] S.C. Chu, J.F. Roddick, J.S. Pan. Ant colony system with communication
strategies, Information Sciences, 167(1–4), pp. 63–76, 2004.

[38] N. Christofides. Vehicle Routing, The Traveling Salesman Problem. pp. 431–
448, John Wiley, 1985.

[39] S.E. Christodoulou, G. Ellinas. Pipe routing through ant colony optimization,
Journal of Infrastructure Systems, 16(2), pp. 149–159, 2010.

[40] G. Clarke, J. W. Wright. Scheduling of vehicles from a central depot to a
number of delivery points. Operations Research, 12(4), pp. 568–581, 1964.

[41] H. G. Cobb. An investigation into the use of hypermutation as an adap-
tive operator in genetic algorithms having continuous, time-dependent non-
stationary environments, Technical Report AIC-90-001, Naval Research Lab-
oratory, Washington, USA, 1990.

[42] O. Cordón, I.F. de Viana, F. Herrera. A new ACO model integrating evolution-
ary computation concepts: The best-worst Ant System. Abstract Proceedings
of the 2nd International Workshop on Ant Algorithms, pp. 22–29, 2000.

[43] O. Cordón, I.F. de Viana, F. Herrera. Analysis of the best-worst Ant System
and its variants on the TSP. Mathware and Soft Computing, 9(2–3), pp. 177–
192, 2002.

[44] O. Cordón, I.F. de Viana, F. Herrera. Analysis of the best-worst Ant System
and its a variants on the qap. Proceedings of the 3rd International Workshop
on Ant Algorithms, M. Dorigo, G. Di Caro, M. Sampels, editors, LNCS 2463,
pp. 228–234, Springer-Verlag, 2002.

[45] D. Corne, M. Dorigo, F. Glover. New Ideas in Optimization, London, McGraw
Hill, 1999.

221



Bibliography

[46] A. Colorni, M. Dorigo, V. Maniezzo. Distributed optimization by ant colonies.
Proceedings of the 1st European Conference on Artificial Life. F.J Verela, P.
Bourgine, editors, pp. 134–142, MIT Press, 1992.

[47] A. Colorni, M. Dorigo, V. Maniezzo, M. Trubian. Ant system for job-shop
scheduling. Belgian Journal of Operations Research, Statistics and Computer
Science, 34, pp. 39–53, 1994.

[48] D. Costa, A. Hertz. Ants can colour graphs. Journal of the Operational Re-
search Society, 48, pp. 295–305, 1997.

[49] C. Cruz, J. R. Gonzalez, D. A. Pelta, Optimization in dynamic environments:
A survey on problems, methods and measures, Soft Computing – A Fusion of
Foundations, Methodologies and Applications, 15(7), pp. 1427–1448, Springer-
Verlag, 2011.

[50] G.B. Dantzig, J.H Ramser. The truck dispatching problem, Management Sci-
ence, 6(1), pp. 80–91, 1959.

[51] J. de Jong, M.A. Wiering. Multiple ant colony systems for the busstop allo-
cation problem. Proceedings of the 13th Belgium-Netherlands Conference on
Artificial Intelligence, pp. 141–148, 2001.

[52] M. den Besten, T. Stützle, M. Dorigo. Ant colony optimization for the total
weighted tardiness problem. Proceedings of the 6th International Conference
on Parallel Problem Solving from Nature, M. Schoenauer, K. Deb, G. Rudolph,
X. Yao, E. Lutton, J.J. Merelo, H. Schwefel, editors, LNCS 1917, pp. 611–620,
Springer-Verlag, 2000.

[53] J.-L. Deneubourg, S. Aron, S. Goss, J.-M. Pasteels. The self-organizing ex-
ploratory pattern of the Argentine ant. Journal of Insect Behavior, 3, pp. 159–
168, 1990.

[54] J.-L. Denebourg, J.M. Pasteels, J.C. Verhaeghe. Probabilistic behaviour in
ants : a strategy of errors? Journal of Theoretical Biology, 105, pp. 259–271,
1983.

[55] B. De Rosa, G. Improta, G. Ghiani, R. Musmanno. The arc routing
and scheduling problem with transshipment. Transportation Science, 36(3),
pp. 301–313, 2002

[56] N.C. Demirel, M.D. Toksari. Optimization of the quadratic assignment prob-
lem using an ant colony algorithm, Applied Mathematics and Computation,
183(1), pp. 427–435, 2006.

[57] K.F. Doerner, M. Gronalt, R.F Hartl, M. Reimann, C. Strauss, M. Stummer.
Savings ants for the vehicle routing problem. Proceedings of 2002 EvoWork-
shops on Applications of Evolutionary Computation, LNCS 2279, pp. 11–20,
Springer-Verlag, 2002.

222



Bibliography

[58] K.F. Doerner, R.F. Hartl, G. Kiechle, M. Lucka, M. Reimann Parallel ant
systems for the capacitated vehicle routing problem. Proceedings of the 4th
European Conference on Evolutionary Computation in Combinatorial Opti-
mization, LNCS 3004, pp. 72–83, Springer-Verlag, 2004.

[59] D.D. Dong, H.Q. Dinh, H.X. Huan. On the pheromone update rules of ant
colony optimization approaches for the job shop scheduling problem, Proceed-
ings of the 11th Pacific Rim International Conference on Multi-Agents, 5357,
pp. 153–160, 2008.

[60] G.F. Dong, W.W. Guo. A cooperative ant colony system and genetic algo-
rithm for TSPs, Proceedings of the 1st International Conference on Swarm
Intelligence, LNCS 6145, pp. 597–604, Springer-Verlag, 2010.

[61] F. Ducatelle, G. Di Caro, A. Förster, L.M. Gambardella. Mobile stigmergic
markers for navigation in a heterogeneous robotic swarm. Proceedings of the
7th International Conference on Swarm Intelligence, 2010.

[62] F. Ducatelle, G. Di Caro, A. Förster, L.M. Gambardella. Cooperative self-
organization in a heterogeneous swarm robotic system. Proceedings of 2010
International Conference on Genetic and Evolutionary Computation, pp. 87–
94, ACM Press, 2010.

[63] A. V. Donati, R. Montemanni, N. Casagrande, A. E. Rizzoli, L. M. Gam-
bardella. Time dependent vehicle routing problem with a multi ant colony
system. European Journal of Operational Research, 185(3), pp. 1174–1191,
2008.

[64] M. Dorigo, G. Di Caro, L. M. Gambardella. Ant algorithms for discrete opti-
mization, Artificial Life, 5(2), pp. 137–172, 1999.

[65] M. Dorigo, L.M. Gambardella. Ant colonies for the travelling salesman prob-
lem. BioSystems, 43(2), pp. 73–81, 1997.

[66] M. Dorigo, L.M. Gambardella. Ant colony system: a cooperative learning ap-
proach to the travelling salesman problem. IEEE Transactions in Evolutionary
Computation, 1(1), pp. 53–66, IEEE Press, 1997.

[67] M. Dorigo, V. Maniezzo, A. Colorni. Positive feedback as a strategy. Technical
report 91-016, Dipartimento di Elettronica, Politecnico di Milano, Milan, 1991

[68] M. Dorigo, V. Maniezzo, A. Colorni. Ant system: optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, 26(1), pp. 29–41, IEEE Press, 1996.

[69] M. Dorigo, T. Stützle. Ant Colony Optimization. MIT Press, London, 2004.

223



Bibliography

[70] K.A. Dowsland, J.M. Thompson. Ant colony optimization for the examina-
tion scheduling problem. Journal of the Operational Research Society, 56(4),
pp. 426–438, Palgrave Publishers, 2005.

[71] G. Di Caro, M. Dorigo. Adaptive learning of routing tables in communication
networks. Proceedings of the Italian Workshop on Machine Learning, 1997.

[72] G. Di Caro, M. Dorigo. AntNet: Distributed stigmergetic control for commu-
nications networks. Journal of Artificial Intelligence Research, 9, pp. 317–365,
1998.

[73] G. Di Caro, F. Ducatelle, L.M. Gambardella. AntHocNet: an ant-based hybrid
routing algorithm for mobile ad hoc networks. Proceedings of 8th International
Conference on Parallel Problem Solving from Nature, LNCS 3242, pp. 461–470,
Springer-Verlag, 2004.

[74] G. Di Caro, F. Ducatelle, L.M. Gambardella. AntHocNet: an adaptive nature-
inspired algorithm for routing in mobile ad hoc networks. European Transac-
tions on Telecommunications, 16(5), pp. 443–455, 2005.

[75] G. Di Caro, T. Vasilakos. Ant-SELA: Ant-agents and stochastic automata
learn adaptive routing tables for QoS routing in ATM networks. Proceedings
of the 2nd International Workshop on Ant Colony Optimization, 2000.

[76] E.W. Dijkstra. A note on two problems in connexion with graphs, Numerische
Mathematik, 1, pp. 269–271, 1959.

[77] M. Eley. Some experiments with ant colony algorithms for the exam
timetabling problem, Proceedings of the 5th International Workshop on Ant
Colony Optimization and Swarm Intelligence, M.Dorigo, L.M. Gambardella,
M. Birattari, A. Martinoli, T. Stützle, editors, LNCS 4150, pp. 492–499,
Springer-Verlag, 2006.

[78] M. Eley. Ant algorithms for the exam timetabling problem, Proceedings
of the 6th International Conference on Practice and Theory of Automated
Timetabling, LNCS 3867, pp. 364–382, Springer-Verlag, 2007.

[79] L. Ellabib, P. Calamai, O. Basir. Exchange strategies for multiple ant colony
system. Information Sciences, 177(5), pp. 1248–1264, 2007.

[80] R. Eriksson, B. Olsson. On the behaviour of evolutionary global local hybrids
with dynamic fitness functions. Proceedings of the 7th International Conference
on Parallel Problem Solving from Nature, LNCS 2439, pp. 13–22, Springer-
Verlag, 2002.

[81] R. Eriksson, B. Olsson B. On the performance of evolutionary algorithms with
life-time adaptation in dynamic fitness landscapes. Proceedings of the 2004
IEEE Congress on Evolutionary Computation, pp. 1293–1300, IEEE Press,
2004.

224



Bibliography

[82] C.J. Eyckelhof, M. Snoek. Ant systems for a dynamic TSP: Ants caught in a
traffic jam. Proceedings of the 3rd International Workshop on Ant Algorithms,
LNCS 2463, pp. 88–99, Springer-Verlag, 2002.

[83] U. Faigle, W. Kern. Some convergence results for probabilistic tabu search.
ORSA Journal on Computing, 4(1), pp. 32–37, 1992.

[84] S. Fenete, C. Solnon. Searching for maximum cliques with ant colony opti-
mization. Proceedings of 2002 EvoWorkshops on Applications of Evolutionary
Computation, G.R. Raidl, J.-A. Meyer, M. Middendorf, S. Cognoni, J.J.R.
Cardalda, D.W. Corne, J. Cottlieb, A. Guillot, E. Hart, C.G. Johnson, E.
Marchiori, editors, LNCS 2611, pp. 236–245, Springer-Verlag, 2003.

[85] T.A. Feo, M.G.C. Resende. Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6, pp. 109–133, 1995.

[86] S. Fidanova. Ant colony optimization for multiple knapsack problem and
model bias, Proceedings of the 3rd International Conference on Numerical
Analysis and its Applications, LNCS 3401, pp. 280–287, Springer-Verlag, 2005.

[87] S. Fidanova. Probabilistic model of ant colony optimization for multiple knap-
sack problem, Proceedings of the 6th International Conference on Large-Scale
Scientific Computing, LNCS 4818, pp. 545–552, Springer-Verlag, 2008.

[88] N. Figlali, C. Ozkale, O. Engin, A. Figlali. Investigation of ant system pa-
rameter interactions by using design of experiments for job-shop scheduling
problems, Proceedings of the 35th International Conference on Computers and
Industrial Engineering, 58(2), pp. 538–559, 2009.

[89] L.J. Fogel, A.J. Owens, M.J. Walsh. Artificial Intelligence through Simulated
Evolution, New York, John Wiley. 1966.

[90] H. Fu, B. Sendhoff, K. Tang, X. Yao. Characterizing environmental changes
in robust optimisation over time. Proceedings of the 2012 IEEE Congress on
Evolutionary Computation, pp. 551–558, IEEE Press, 2012.

[91] G. Fuellerer, K.F. Doerner, R.F. Hardl, M. Lori. Ant colony optimization for
the two-dimensional loading vehicle routing problem, Computers & Operations
Research, 36(3), pp. 655–673, Elsevier Science, 2009.

[92] C. Gagné, W.L. Price, M. Gravel. Comparing an ACO algorithm with other
heuristics for the single machine scheduling problem with sequence dependent
setup times. Journal of the Operational Research Society, 53(8), pp. 895–906,
2002.

[93] Y. Gajpal, P.L. Abad. Multi-ant colony system for a vehicle routing prob-
lem with backhauls. European Journal of Operational Research, 196(2009),
pp. 102–117, Elsevier Science, 2008.

225



Bibliography

[94] Y. Gajpal, P.L. Abad. An ant colony system (ACS) for vehicle routing problem
with simultaneous delivery and pickup, Computers & Operations Research,
36(12), pp. 3215–3223, Elsevier Science, 2009.

[95] Y. Gajpal, C. Rajendran, H. Ziegler. An ant colony algorithm for scheduling in
flowshops with sequence- dependent setup times of jobs, International Journal
of Advanced Manufacturing Technology, 30(5–6), pp. 416–424, 2006.

[96] L. Gao, Y. Zeng, A.G. Dong. An ant colony algorithm for solving max-cut
problem, Progress in Natural Science, 18(9), pp. 1173–1178, Elsevier Science,
2008.

[97] L. M. Gambardella, M. Dorigo. Ant-Q: A reinforcement learning approach
to the traveling salesman problem. Proceedings of the Twelfth International
Conference on Machine Learning (ML-95), A. Prieditis, S. Russell, editors,
pp. 252–260. Morgan Kaufmann, 1995.

[98] L. M. Gambardella, M. Dorigo. Solving symmetric and asymmetric TSPs by
ant colonies. Proceedings of the 1996 IEEE International Conference on Evo-
lutionary Computation, pp. 622–627, IEEE Press, 1996.

[99] L. M. Gambardella, M. Dorigo. An ant colony system hybridized with a new
local search for the sequential ordering problem. INFORMS Journal on Com-
puting, 12(3), pp. 237–255, 2000.

[100] L.M. Gambardella, É.D. Taillard, C. Agazzi. MACS-VRPTW: A multicolony
ant colony system for vehicle routing problems with time windows. New Ideas
in Optimization, pp. 63–76, 1999.

[101] L. M. Gambardella, E. D. Taillard, M. Dorigo. Ant colonies for the quadratic
assignment problem. Journal of the Operational Research Society, 50(2),
pp. 167–176, 1999.

[102] L.M. Gambardella, A. Rizzoli, F. Oliverio, N. Casagrande, A. Donati, R. Mon-
temanni, E. Lucibello. Ant colony optimization for vehicle routing in advanced
logistics systems, Proceedings of the International Workshop on Modelling and
Applied Simulation, pp. 3–9, 2003.

[103] A. Gaspar, P. Collard. From GAs to artificial immune systems: Improving
adaptation in time dependent optimization, Proceedings of the 1999 IEEE
Congress on Evolutionary Computation, 3, pp. 1859–1866, IEEE Press, 1999.

[104] P.-P. Grassé. La reconstruction du nid et les coordinations inter-individuelles
chez Belicositermes natalensis et Cubitermes sp. La théorie de la Stigmergie
: Essai dinterprtation du comportement des termites constructeurs, Insectes
Sociaux, 6, pp. 41–80, 1959.

226



Bibliography

[105] M.R. Garey, D.S. Johnson. Computer and Intractability: A guide to the theory
of NP-completeness. San Francisco, Freeman, 1979

[106] M. Gendreau, F. Guertin, J.Y. Polvin, E. Tailard. Parallel tabu search for real-
time vehicle routing and dispatching, Transportation Science, 33(4), pp. 381–
390, 1999.

[107] J.J. Grefenestette. Genetic algorithms for changing environments. Proceedings
of the 2nd International Conference on Parallel Problem Solving from Nature,
pp. 137–144, Elsevier Science, 1992.

[108] G. Ghiani, F. Guerriero, G. Laporte, R. Musmanno. Tabu search heuristics
for the arc routing problem with intermediate facilities under capacity and
length restrictions, Journal of Mathematical Modelling and Algorithms, 3(3),
pp. 209–223, 2004.

[109] D. E. Goldberg, R. E. Smith. Nonstationary function optimization using ge-
netic algorithms with dominance and diploidy, Proceedings of the 2nd Interna-
tional Conference on Genetic Algorithms and their Application , J. J. Grefen-
stette, editors, pp. 59-68, 1987.

[110] S. Goss, S. Aron, J.-L. Deneubourg, J.-M. Pasteels. Self-organized shortcuts
in the Argentine ant. Naturwissenschaften, 76, pp. 579–581, 1989.

[111] M. Guntsch, M. Middendorf. Pheromone modification strategies for ant algo-
rithms applied to dynamic TSP. Proceedings of 2001 EvoWorkshops on Ap-
plications of Evolutionary Computation, LNCS 2037, pp. 213–222, Springer-
Verlag, 2001.

[112] M. Guntsch, M. Middendorf. A population based approach for ACO, Pro-
ceedings of 2002 EvoWorkshops on Applications of Evolutionary Computation,
LNCS 2279, pp. 71–80, Springer-Verlag, 2002.

[113] M. Guntsch, M. Middendorf. Applying population based ACO to dynamic op-
timization problems. Proceedings of the 3rd International Workshop on Ant Al-
gorithms, M. Dorigo, G.A. Di Caro, M Sampels, editors, LNCS 2463, pp. 111–
122. Springer-Verlag, 2002.

[114] M. Guntsch, M. Middendorf, H. Schmeck. An ant colony optimization ap-
proach to dynamic TSP. Proceedings of the 2001 International Conference on
Genetic and Evolutionary Computation, pp. 860–867, 2001.

[115] W.J. Gutjahr. A graph-based Ant System and its convergence, Future Gener-
ation Computer Systems, 16, pp. 873–888, 2000.

[116] T. Guo, Z. Michalewicz. Inver-over operator for the TSP. Proceedings of the
5th International Conference on Parallel Problem Solving from Nature, LNCS
1498, pp. 803–812, Springer-Verlag, 1998.

227



Bibliography

[117] F. Glover. Tabu Search–Part 1. ORSA Journal on Computing 1(2), pp. 190–
206. 1989.

[118] F. Glover. Tabu Search–Part 2. ORSA Journal on Computing 2(1), pp. 4–32.
1990.

[119] F. Glober, M. Laguna. Tabu search. Boston, Kluwer Academic Publishers.
1997.

[120] F. Glover, M. Laguna, R. Marti. Principles of tabu search. Approximation
Algorithms and Metaheuristics, Chapman and Hall, 2005.

[121] W.E. Hart. A Theoretical Comparison of Evolutionary Algorithms and Sim-
ulated Annealing. Proceedings of the 5th Annual Conference on Evolutionary
Programming, pp. 147–154, 1996.

[122] H. Handa, L. Chapman, X. Yao. Robust Salting Route Optimization Using
Evolutionary Algorithms. Proceedings of the 2006 IEEE Congress on Evolu-
tionary Computation, 1, pp. 497-517, IEEE Press, 2006.

[123] J. He, X. Yao, Drift analysis and average time complexity of evolutionary
algorithms, Artificial Intelligence, 127(1), pp. 57–85, 2001.

[124] J. He, X. Yao. From an individual to a population: An analysis of the first
hitting time of population-based evolutionary algorithms. IEEE Transactions
on Evolutionary Computation, 6(5), pp. 495–511, 2002.

[125] M. Held, R.M. Karp. A dynamic programming approach to sequencing prob-
lems. Journal of SIAM, 10, pp. 196–210, 1968.

[126] K. Helsgaun. An Effective Implementation of the Lin-Kernighan travel-
ing salesman heuristic. European Journal of Operational Research, 126(1),
pp. 106–130, 2000.

[127] W.D. Hills. Co-evolving parasites improve simulated evolution as an optimiza-
tion procedure.Physica D, 42(1–3), pp. 228–234, 1990.

[128] B. Holldobler, E.O. Wilson. The Ants. Springer-Verlag, Berlin, Germany, 1990.

[129] J. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor, Univer-
sity of Michigan Press, 1975.

[130] X. Hu, R. Eberhart. Adaptive particle swarm optimisation: detection and
response to dynamic systems, Proceedings of the 2002 IEEE Congress on Evo-
lutionary Computation, pp. 1666–1670, IEEE Press, 2002.

228



Bibliography

[131] A. Isaacs, V. Puttige, T. Ray, W. Smith, S. Anavatti. Development of a
memetic algorithm for dynamic multi-objective optimization and its appli-
cation for online neural network modelling of UAVs. Proceedings of the 2008
IEEE International Joint Conference on Neural Networks, pp. 548–554, IEEE
Press, 2008.

[132] D.E. Jackson, F.L.W. Ratnieks Communication in ants. Current Biology,
16(15), pp. 570–574, Elsevier Science, 2006.

[133] P.K. Jain, P.K. Sharma. Solving job shop layout problem using ant colony op-
timization technique, Proceedings of the 2005 IEEE International Conference
on Systems, Man and Cybernetics, 1–4, pp. 288–292, IEEE Press, 2005.

[134] T. Jansen, U. Schellbach. Theoretical analysis of a mutation-based evolution-
ary algorithm for a tracking problem in lattice, Proceedings of the 2005 Inter-
national Conference on Genetic and Evolutionary Computation Conference,
pp. 841–848, ACM Press, 2005.

[135] S. Janson, M. Middendorf. A hierarchical particle swarm optimizer for noisy
and dynamic environments, Genetic Programming and Evolvable Machines,
7(4), pp. 329–354, 2006.

[136] E. Jen. Stable or robust? Whats the difference? Complexity, 8(3), pp. 12–18,
2003.

[137] Y. Jin, J. Branke. Evolutionary Optimization in Uncertain Environments - A
survey. IEEE Transactions on Evolutionary Computation, 9(3), pp. 303–317,
2005.

[138] Y. Jin, B. Sendhoff. Constructing dynamic optimization test problems using
the multi-objective optimization concept. Proceedings of 2004 EvoWorkshops
on Applications of Evolutionary Computation, LNCS, 3005, pp. 525–536, 2004.

[139] D.S. Johnson, L.A. McGeoch. The travelling salesman problem: a case study
in local optimization. Local search in combinatorial optimization, E.H.L Aarts,
J.K. Lenstra (editors), pp. 215–310, John Wiley, 1997.

[140] R. Jovanovic, M. Tuba. An ant colony optimization algorithm with improved
pheromone correction strategy for the minimum weight vertex cover problem.
Applied Soft Computing, 11(8), pp. 5360–5366, 2011.

[141] A. Kant, A. Sharma, S. Agarwal, S. Chandra. An ACO Approach to Job
Scheduling in Grid environment, Proceedings of the 1st International Confer-
ence on Swarm, Evolutionary and Memetic Computing, LNCS 6466, pp. 286–
295, Springer-Verlag, 2010.

[142] R.M. Karp. Reducibility Among Combinatorial Problems. Complexity of Com-
puter Computations, R.E. Miller, J.W. Thatcher (editors). New York, Plenum.
pp. 85–103, 1972.

229



Bibliography

[143] H. Kawamura, M. Yamamoto, A. Ohuchi. Improved multiple ant colonies sys-
tems for traveling salesman problems. Operations research / management sci-
ence at work, E. Kozan, A. Ohuchi, editors, pp. 41–59. Kluwer Academic,
2002.

[144] H. Kawamura, M. Yamamoto, K. Suzuki, A. Ohuchi. Multiple ant colonies
algorithm based on colony level interactions. IEICE Transactions, Fundamen-
tals, E83-A, pp. 371–379, 2000.

[145] L.J. Ke, Z.R. Feng, Z.G. Ren, X.L. Wei. An ant colony optimization ap-
proach for the multidimensional knapsack problem, Journal of Heuristics,
16(1), pp. 65–83, 2010.

[146] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi. Optimization by simulated anneal-
ing. Science 220(4598), pp. 671–680, 1983.

[147] P. Kilby, P. Prosser, P. Shaw. Dynamic VRPs: A study of scenarios, Technical
Report APES-06-1998, University of Strathclyde, U.K., 1998.

[148] T. Koetzing, F. Neumann, H. Roglin, C. Witt. Theoretical analysis of two
ACO approaches for the travelling salesman problem. Swarm Intelligence, 6(1),
pp. 1–21, 2012.

[149] M. Kong, P. Tian. A new ant colony optimization applied for the multidimen-
sional knapsack problem, Proceedings of the 6th International Conference on
Simulated Evolution and Learning, LNCS 4247, pp. 142–149, Springer-Verlag,
2006.

[150] M. Kong, P. Tian, Y.C. Kao. A new ant colony optimization algorithm for
the multidimensional knapsack problem, Computers and Operations Research,
35(8), pp. 2672–2683, 2008.

[151] P. Larrañaga, J.A. Lozano. Estimation of distribution algorithms: A new tool
for evolutionary computation. Kluwer Academic Publishers, Boston, 2002.

[152] F.-X. Le Louarn, M. Gendrau, and J.-Y. Potvin. GENI ants for the traveling
salesman problem. INFORMS Fall 2000 Meeting, pp. 5–8, 2000.

[153] G. Leguizamó n, Z. Michaelewicz. A new version of Ant System for subset
problems. Proceedings of the 1999 Congress on Evolutionary Computation,
pp. 1459–1464, IEEE Press, 1999.

[154] G. Leguizamó n, Z. Michaelewicz, M. Shütz. An Ant System for the maxi-
mum independent set problem. Proceedings of the VI Argentinium Congress
on Computer Science, 2, pp. 1027–1040, 2001.

[155] J. Levine, F. Ducatelle. Ant colony optimisation and local search for bin pack-
ing and cutting stock problems. Journal of the Operational Research Society,
Special Issue on Local Search, 55(7), 2004.

230



Bibliography

[156] J. Lewis, E. Hart, G. Ritchie. A comparison of dominance mechanisms and
simple mutation on non-stationary problems. Proceedings of the 5th Inter-
national Conference on Parallel Problem Solving from Nature, LNCS 1498,
pp. 139–148, 1998.

[157] X. Li, J. Branke, T. Blackwell. Particle swarm with speciation and adaptation
in a dynamic environment. Proceedings of the 8th International Conference on
Genetic and Evolutionary Computation, pp. 51–58, ACM Press, 2006.

[158] X.Y. Li, P. Tian. An ant colony system for the open vehicle routing prob-
lem. Proceedings of the 5th International Workshop on Ant Colony Optimiza-
tion and Swarm Intelligence, M. Dorigo, L.M. Gambardella, M. Martinoli, T.
Stützle, editors, LNCS 4150, pp. 356–363, Springer-Verlag, 2006

[159] Y.-C. Liang, A. E. Smith. An Ant System approach to redundancy alloca-
tion. Proceedings of the 1999 IEEE Congress on Evolutionary Computation,
pp. 1478–1484. IEEE Press, 1999.

[160] Y.-C. Liang, A. E. Smith. An ant colony optimization algorithm for the redun-
dancy allocation problem. IEEE Transactions on Reliability, 53(3), pp. 417–
423, IEEE Press, 2004.

[161] J. S. Liu. Monte Carlo Strategies in Scientific Computing. New York, Springer-
Verlag, 2001.

[162] J.L. Liu. Rank-based ant colony optimization applied to dynamic travelling
salesman problems, Engineering Optimization, 37(8), pp. 831–847, Taylor &
Francis, 2005.

[163] A.Z. Liu, G.S. Deng, S.M. Shan. Mean-contribution ant system: An improved
version of ant colony optimization for traveling salesman problem. Proceed-
ings of the 6th International Conference on Simulated Evolution and Learning,
LNCS, 4247, T.D. Wang, X. Li, S.H. Chen, X. Wang, H. Abbass, H. Iba, G.
Chen, X. Yao, editors, pp. 489–496, Springer-Verlag, 2006.

[164] S. Lin, B.W. Kernighan. An effective heuristic algorithm for the traveling
salesman problem. Operations Research, 21(2), pp. 498–516, 1973.

[165] T.D. Lin, C.C. Hsu, D.R. Chen, S.Y. Chiu. A new ant colony optimization
algorithm with an escape mechanism for scheduling problems. 1st International
Conference on Computational Collective Intelligence, LNAI 5796, pp. 152–162,
Springer-Verlag, 2009.

[166] D. Lohpetch, D. Corne. Multiobjective algorithms for financial trading: Mul-
tiobjective out-trades single-objective. Proceedings of 2011 IEEE Congress on
Evolutionary Computation, pp. 192-199, IEEE Press, 2011.

231



Bibliography

[167] M. Lopez-Ibanez, T.D. Prasad, B. Paechter. Ant colony optimization for op-
timal control of pumps in water distribution networks, Journal of Water Re-
sources Planning and Management, 134(4), pp. 337–346, 2008.

[168] S. Lorpunmanee, M.N. Sap, A.H. Abdullah, C. Chompoo-Inwai. Ant ant
colony optimization for dynamic job scheduling in grid environment, Pro-
ceedings of the World Academy of Science, Engineering and Technology, 23,
pp. 314–321, 2007.

[169] P. Luc̆ic̀, D. Teodorovic̀. Bee system: modeling combinatorial optimization
transportation engineering problems by swarm intelligence. Preprints of the
TRISTAN IV Triennial Symposium on Transportation Analysis, pp. 441–445,
2001

[170] H.R. Lourenoço, O. Martin, T. Stützle. Iterated local search. Handbook of
Metaheuristics, F. Glover, G. Kochenberger, editors, 57, pp. 321–352, Kluwer
Academic, 2002.

[171] H.R. Lourenoço, D. Serra. Adaptive search heuristic for the generalized as-
signment problem. Math and Soft Computing, 9(2–3), pp. 209–234, 2002.

[172] S. Mahfoud. Crowding and Preselection Revisited. Proceedings of the 2nd In-
ternational Conference of Parallel Problem Solving from Nature, S. Manner,
B. Manderick, editors, 2, pp. 27–36, Elsevier, 1992.

[173] V. Maniezzo. Exact and approximate nondeterministic tree-search procedures
for the quadratic assignment problems. INFORMS Journal on computing,
11(4), pp. 358–369, 1999.

[174] V. Maniezzo, A. Carbonaro. An ANTS heuristic for the frequency assignment
problem. Future Generation Computer Systems, 16(8), pp. 927–935, 2000.

[175] V. Maniezzo and A. Colorni. The Ant System applied to the quadratic as-
signment problem. IEEE Transactions on Knowledge and Data Engineering,
11(5), pp. 769–778, 1999.

[176] V. Maniezzo, M. Milandri. An ant-based framework for very strongly con-
strained problems. Proceedings of the 3rd International Workshop on Ant Al-
gorithms, M. Dorigo, G. Di Caro, M. Sampels, editors, LNCS 2463, pp. 222–
227, Springer-Verlag, 2002.

[177] V. Maniezzo, A. Colorni, M. Dorigo. The ant system applied to the quadratic
assignment problem. Technical Report IRIDIA/94-28, Universit Libre de
Bruxelles, Belgium, 1994.

[178] G. Martinovic, D. Bajer. Elitist ant system with 2-opt local search for the
travelling salesman problem. Advances in Electrical and Computer Engineer-
ing, 12(1), pp. 25–32, 2012.

232



Bibliography

[179] S. Marwaha, C. K. Tham, D. Srinivasan. Mobile agents based routing protocol
for mobile ad hoc networks. Proceedings of 2002 IEEE Conference on Global
Telecommunications, 1, pp. 163–167, 2002.

[180] M. Mavrovouniotis, S. Yang. A memetic ant colony optimization for the dy-
namic travelling salesman problem, Soft Computing - A Fusion of Foundations,
Methodologies and Applications”, 15(7), pp. 1405–1425, Springer-Verlag, 2011.

[181] M. Mavrovouniotis, S. Yang. An immigrants scheme based on environmental
information for ant colony optimization for the dynamic travelling salesman
problem, Proceedings of the 10th International Conference on Artificial Evo-
lution, LNCS 7401, pp. 1–12, Springer-Verlag, 2011.

[182] M. Mavrovouniotis, S. Yang. A memetic algorithm based on ant colony opti-
mization for the dynamic vehicle routing problem. A.S. Uyar, E. Ozcan and
N. Urquhart, editors, Automated Scheduling, Springer-Verlang, 2012.

[183] N. Metropolis, A. Rosenbluth, M. Rosenbluth, M. Teller, E. Teller. Equation
of state calculations by fast computing machines. The Journal of Chemical
Physics, 21(6), pp. 1087–1092, 1953.

[184] D. Merkle, M. Middendorf. An ant algorithm with a new pheromone evalua-
tion rule for total tardiness problems. Proceedings of 2002 EvoWorkshops on
Applications of Evolutionary Computation, LNCS 1803, pp. 287–296, Springer-
Verlag, 2000.

[185] D. Merkle, M. Middendorf. A new approach to solve permutation scheduling
problems with ant colony optimization. Proceedings of 2001 EvoWorkshops on
Applications of Evolutionary Computation, E.J. Boers, S. Cagnoni, J. Gottlieb,
E. Hart, P.L. Lanzi, G. Raidl, R.E. Smith, H. Tijink, editors, LNCS 2037,
pp. 213–222. Springer-Verlag, 2001.

[186] D. Merkle, M. Middendorf, H. Schmeck. Ant colony optimization for resource-
constrained project scheduling. IEEE Transactions on Evolutionary Compu-
tation, 6(4), pp. 333–346, 2002.

[187] R. Michel, M. Middendorf. An island model based ant system with lookahead
for the shortest supersequence problem. Proceedings of the 5th International
Conference on Parallel Problem Solving from Nature, A. E. Eiben, T. Back,
M. Schoenauer, H.-P. Schwefel, editors, pp. 692–701, Springer-Verlag, 1998.

[188] M. Middendorf, F. Reischle, H. Schmeck. Multi colony ant algorithms, Journal
of Heuristics, 8, pp. 305–320, 2002.

[189] M. Middendorf, F. Reischle, H. Schmeck. Information exchange in multi colony
ant algorithms, Proceedings of the 3rd Workshop on Biologically Inspired So-
lutions to Parallel Processing Problems, LNCS 1800, pp. 645–652, Springer-
Verlag, 2000.

233



Bibliography

[190] M. Mourão, L. Amado. Heuristic method for a mixed capacitated arc routing
a problem: A refuse collection application. European Journal of Operational
Research, 160(1), pp. 139–153, 2005.

[191] M. Mouhoub, Z.J. Wang. Improving the ant colony optimization algorithm for
the quadratic assignment problem, Proceedings of the 2008 IEEE Congress on
Evolutionary Computing, pp. 250–257, IEEE Press, 2008.

[192] R.W. Morrison. Performance Measurement in Dynamic Environments. Pro-
ceedings of the 2003 International Conference on Genetic and Evolutionary
Computation, pp. 5–8, ACM Press, 2003.

[193] R.W. Morrison. Designing Evolutionary Algorithms for Dynamic Environ-
ments. Springer-Verlag, 2004.

[194] R.W. Morrison, K.A De Jong, A test problem generator for non-stationary
environments. Proceedings of the 1999 IEEE Congress on Evolutionary Com-
putation, pp. 2047–2053, IEEE Press, 1999.

[195] R. Montemanni, L. Gambardella, A. Rizzoli, A. Donati. A new algorithm for
a dynamic vehicle routing problem based on ant colony system. Proceedings
of the 2nd International Workshop on Freight Transportation and Logistics,
pp. 27–30, 2003.

[196] R. Montemanni, L. Gambardella, A. Rizzoli, A. Donati. Ant colony system for
a dynamic vehicle routing problem, Journal of Combinatorial Optimization,
10(4), pp. 327–343, 2005.

[197] F. Moyson, B. Manderick. The collective behaviour of Ants : an example of self-
organization in massive parallelism. Artificial Intelligence Laboratory, 1988.

[198] F. Neumann, C. Witt. Runtime analysis of a simple ant colony optimization
algorithm, Algorithmica, 54(2), pp. 243–255, 2009.

[199] C. Nothegger, A. Mayerm, A. Chwatal, G.R. Raidl. Solving the post enrolment
course timetabling problem by ant colony optimization. Annals of Operations
Research, 194(1), pp. 325–339, 2012.

[200] T. T. Nguyen, S. Yang, J. Branke. Evolutionary dynamic optimization: A
survey of the state of the art. Swarm and Evolutionary Computation, 6, pp. 1–
24, Elsevier, 2012.

[201] T. Nguyen, X. Yao. Dynamic Time-Linkage Problems Revisited. Proceedings
of 2009 EvoWorkshops on Applications of Evolutionary Computation, LNCS
5484, pp. 735–744, Springer-Verlag, 2009.

234



Bibliography

[202] F. Oppacher, M. Wineberg. The Shifting Balance Genetic Algorithm: Improv-
ing the GA in a Dynamic Environment, Proceedings of the 1999 International
Conference on Genetic and Evolutionary Computation, 1, W. Banzhalf, edi-
tors, pp. 504–510, Morgan Kaufmann, 1999.

[203] A. Ostfeld, A. Tubaltzev. Ant colony optimization for least-cost design and
operation of pumping water distribution systems, Journal of Water Resources
Planning and Management, 134(2), pp. 107–118, 2008.

[204] M. Paletta, P. Herrero. A simulated annealing method to cover dynamic load
balancing in grid environment, International Symposium on Distributed Com-
puting and Artificial Intelligence, 50, J.M. Corchado, S. Rondriguez, J. Linas,
J.M. Molina, editors, pp. 1–10, Springer-Verlag, 2010.

[205] H. Paessens. The savings algorithm for the vehicle routing problem. European
Journal of Operational Research, 34, pp. 336–344, 1988.

[206] R.S. Parpinelli, H.S. Lopes, A.A. Freitas. Data mining with an ant colony op-
timization algorithm. IEEE Transactions on Evolutionary Computation, 6(4),
pp. 321–332, 2002.

[207] P. Pellegrini, T. Stützle, M. Birattari. A critical analysis of parameter adapta-
tion in ant colony optimization, Swarm Intelligence, 6(1), pp. 23–48, Springer-
Verlag, 2012.

[208] D.A.L. Piriyakumar, P. Levi. A new approach exploiting parallelism in ant
colony optimization. International Symposium on Micromechatronics and Hu-
man Sciences, 7, pp. 237–243, 2002.

[209] V. Pillac, M. Gendreau, C. Guéret, A. L. Medaglia. A review of dynamic vehi-
cle routing problems. Technical Report, CIRRELT CIRRELT-2011-62, 2011.

[210] C.M. Pintea, C. Chira, D. Dumitrescu, P.C. Pop. Sensitive ants in solving
the generalized vehicle routing problem, International Journal of Computers
Communication and Control, 6(4), pp. 734–741, 2011.

[211] B. Pfahringer. Multi-agent search for open shop scheduling: Adapting the
Ant-Q formalism. Technical Report, TR-96-09, Austrian Research Institute
for Artificial Intelligence, Vienna, 1996.

[212] M. Polacek, K. Doerner, R. Hartl, V. Maniezzo. A variable neighbourhood
search for the capacitated arc routing problem with intermediate facilities,
Journal of Heuristics, 14(5), pp. 405–423, 2008.

[213] A. Puris, R. Bello, Y. Martinez, A. Nowe. Two-stage ant colony optimization
for solving the travelling salesman problem, Proceedings of the 2nd Interna-
tional Conference on the Interplay Between Natural and Artificial Computa-
tion, LNCS 4528, pp. 307–316, Springer-Verlag, 2007.

235



Bibliography

[214] W. Rand, R. Riolo. Measurements for understanding the behavior of the ge-
netic algorithm in dynamic environments: a case study using the shaky ladder
hyperplane-defined functions. Proceedings of the 2005 International Confer-
ence on Genetic and Evolutionary computation Conference, pp. 32–38, ACM
Press, 2005.

[215] M. Rahoual, R. Hadji, V. Bachelet. Parallel Ant System for the set covering
problem. Proceedings of the 3rd International Workshop on Ant Algorithms, M.
Dorigo, G. Di Caro, M. Sampels, editors, LNCS 2463, pp. 262–267. Springer-
Verlag, 2002.

[216] M. Reinmann, K. Doerner, R. Hartl. Insertion based ants for vehicle routing
problems with backhauls and time windows. Proceedings of the 3rd Interna-
tional Workshop on Ant Algorithms, M. Dorigo, G. Di Caro, M. Sampels,
editors, LNCS 2463, pp. 135–148. Springer-Verlag, 2002.

[217] M. Reinmann, K. Doerner, R. Hartl. Analyzing a unified ant system for the
VRP and some of its variants. Proceedings of 2003 EvoWorkshops on Applica-
tions of Evolutionary Computation, G.R. Raidl, J.-A. Meyer, M. Middendorf,
S. Cagnoni, J.J.R. Cardalda, D.W. Corne, J. Gottlieb, A. Guillot, E. Hart,
C.G. Johnson, E. Marchiori, editors, LNCS 2611, pp. 300-310, Springer-Verlag,
2003,

[218] M. Reinmann, K. Doerner, R. Hartl. D-ants: Saving based ants divide and
conquer the vehicle routing problem. Computers and Operations Research,
31(4), pp. 563–591, 2004.

[219] M. Reinmann, M. Stummer, K. Doerner. A saving based ant system for the
vehicle routing problem. Proceedings of the 2002 International Conference on
Genetic and Evolutionary Computation, W.B. Langdon, E. Cantú, K. Mathias,
R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J.
Wegener, L. Bull, M.A. Potter, A.C. Schultz, J.F. Miller, E. Burke, N. Jonaska,
editors, pp. 1317–1325, Morgan Kaufmann, 2002.

[220] H. Richter. Behavior of evolutionary algorithms in chaotically changing fit-
ness landscapes. Proceedings of the 8th International Conference on Parallel
Problem Solving from Nature, LNCS 3242, pp. 111–120, Springer-Verlag, 2004.

[221] H. Richter. Evolutionary optimization in spatiotemporal fitness landscapes.
Proceedings of the 9th International Conference on Parallel Problem Solving
from Nature, LNCS 4193, pp. 1–10, Springer-Verlag, 2006.

[222] H. Richter. Detecting change in dynamic fitness landscapes, Proceedings of
the 2009 IEEE Congress on Evolutionary Computation, pp. 1613–1620, IEEE
Press, 2009.

236



Bibliography

[223] H. Richter, S. Yang. Learning behavior in abstract memory schemes for dy-
namic optimization problems, Soft Computing - A Fusion of Foundations,
Methodologies and Applications, 13(12), pp. 1163–1173, Springer-Verlag, 2009

[224] A. E. Rizzoli, R. Montemanni, E. Lucibello, and L. M Gambardella. Ant colony
optimization for real-world vehicle routing problems - from theory to appli-
cations, Journal of Swarm Intelligence, 1(2), pp. 135–151, Springer-Verlag,
2007.

[225] P. Rohlfshagen, P. K. Lehre, X. Yao. Dynamic evolutionary optimisation: An
analysis of frequency and magnitude of change, Proceedings of the 2009 Genetic
and Evolutionary Computation Conference, pp. 1713–1720, ACM Press, 2009.

[226] P. Rohlfshagen, X. Yao. Dynamic combinatorial optimization problems: An
analysis of the subset sum problem, Soft Computing - A Fusion of Foundations,
Methodologies and Applications, 15(9), pp. 1723–1734, Springer-Verlag, 2011.

[227] E. Salari, K. Eshghi. An ACO algorithm for graph coloring problem, Pro-
ceedings of the IEEE Congress on Computational Intelligence Methods and
Applications, pp. 179–183, IEEE Press, 2005.

[228] R. Schoonderwoerd, O. Holland, J. Bruten, L. Rothkrantz. Ant-based load
balancing in telecommunications networks. Adaptive Behaviour, 5(2), pp. 169–
207, 1996.

[229] R. Schoonderwoerd, O. Holland, J. Bruten. Ant-like agents for load balancing
in telecommunications networks. Proceedings of the 1st International Confer-
ence on Autonomous Agents, pp. 209–216, ACM Press, 1997.

[230] M. Seo, D. Kim. Ant colony optimization with parametrised search space
for the job shop scheduling problem, International Journal of Production Re-
search, 48(4), pp. 1143–1154, Taylor & Travis, 2010.

[231] Y.Y. Shou. A bi-directional ant colony algorithm for resource constrained
project scheduling, Proceedings of the IEEE International Conference on In-
dustrial Engineering and Engineering Management, 1–4, pp. 1027–1031, IEEE
Press, 2007.

[232] S.J. Shyu, P.Y. Yin, M.T. Lin. An ant colony optimization algorithm for the
minimum weight vertex cover problem, Annals of Operations Research, 131(1–
4), pp. 283–304, Kluwer Academic, 2004.

[233] A. Shmygelska, H.H. Hoos. An improved ant colony optimization algorithm
for the 2D HP protein folding protein, Proceedings of the 16th Conference of
the Canadian Society for Computational Studies of Intelligence, LNAI 2671,
pp. 400–417, Springer-Verlag, 2003.

237



Bibliography

[234] E. Sigel, B. Denby, S. Le Heárat-Mascle. Application of ant colony optimization
to adaptive routing in a LEO telecommunications satellite network. Annals of
Telecommunications, 57(5–6), pp. 520–539, 2002.

[235] A. Simõ s, E. Costa. An immune system-based genetic algorithm to deal with
dynamic environments: diversity and memory. Proceedings of the 6th Interna-
tional Conference on Neural Networks and Genetic Algorithms, pp 168–174,
2003.

[236] F. Romeo, A. Sangiovanni-Vincentelli. A theoretical framework for simulated
annealing, Algorithmica, 6(3), pp. 302–345, 1991.

[237] K. Socha. ACO for continuous and mixed-variable optimization. Proceedings of
the 4th International Workshop on Ant Colony Optimization and Swarm In-
telligence, M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada,
T. Stutzle (editors), LNCS 3172, pp. 25–36, Springer-Verlag, 2004.

[238] K. Socha, J. Knowles, M. Sampels. A MAX −MIN ant system for the
university timetabling problem. Proceedings of the 3rd International Workshop
on Ant Algorithms, M. Dorigo, G. Di Caro, M. Sampels, editors, LNCS 2463,
pp. 1–13. Springer-Verlag, 2002.

[239] K. Socha, M. Sampels, M. Manfrin. Ant Algorithms for the University Course
Timetabling Problem with regard to the state-of-the-art. Proceedings of the
3rd European Workshop on Evolutionary Computation in Combinatorial Op-
timization, LNCS 2611, pp. 334345. Springer-Verlag, 2003.

[240] H.-P Schwefel. Numerical optimization of computer models, Chichester, UK,
John Wiley, 1981.

[241] S. A. Stanhope, J. M. Daida. Genetic algorithm fitness dynamics in a changing
environment, Proceedings of the 1999 IEEE Congress on Evolutionary Com-
putation, 3, pp. 1851–1858, IEEE Press, 1999.

[242] T. Stützle. Parallelization strategies for ant colony optimization. Proceedings
of the 5th International Conference on Parallel Problem Solving from Nature,
LNCS 1498, pp. 722–731, Springer-Verlag, 1998.

[243] T. Stützle. An Ant Approach to the Flow Shop Problem. Proceedings of the 6th
European Congress on Intelligent Techniques and Soft Computing, 3, pp. 1560–
1564, 1998.

[244] T. Stützle, H.H. Hoos. TheMAX −MIN Ant System and local search for
the travelling salesman problem. Proceedings of the 1997 IEEE International
Conference on Evolutionary Computation, T. Bäck, Z. Michalewicz, X. Yao,
editors, pp. 309–314, IEEE Press, 1997.

238



Bibliography

[245] T. Stützle, H.H. Hoos. MAX −MIN Ant System. Future generation com-
puter systems, 16(8), pp. 889–914, 2000

[246] K. Tatsum, T. Tanino. A new rank-based ant system using different sensitive
ants, Symposium on Soft Computing and its Applications, 4(5), pp. 1183–1193,
2008.

[247] E.-G. Talbi, O. Roux, C. Fonlupt, D. Robillard. Parallel ant colonies for combi-
natorial optimization problems. Proceedings of the 1999 Workshops on Parallel
and Distributed Processing, 11, LNCS 1586, Springer-Verlag, 1999.

[248] E.-G. Talbi, O. Roux, C. Fonlupt, D. Robillard. Parallel ant colonies for
the quadratic assignment problem. Future Generation Computer Systems, 17,
pp. 441–449, 2001.

[249] D. Teodorovic̀. Bee colony optimization (BCO). Innovations in Swarm In-
teligence C. P. Lim, L. C. Jain, S. Dehuri, editors, 65(215), pp. 39–60, Springer-
Verlag, 2009.

[250] R. Tinos, S. Yang. An analysis of the XOR dynamic problem generator based
on the dynamical system, Proceedings of the 6th International Conference on
Parallel Problems Solving from Nature, LNCS 6238, pp. 274–238, 2010.

[251] K. Trojanowski, Z. Michalewicz. Searching for Optima in Non-stationary En-
vironments, Proceedings of the 1999 IEEE Congress on Evolutionary Compu-
tation, 3, pp. 1843–1850, IEEE Press, 1999.

[252] S.P. Tseng, C.W. Tsai, M.C. Chiang, C.S Yang. A fast ant colony optimization
for traveling salesman problem, Proceedings of the 2010 IEEE Congress on
Computational Intelligence, pp. 1–6, IEEE Press, 2010.

[253] R. K. Ursem. Mutinational GA optimization techniques in dynamic environ-
ments, Proceedings of the 2000 International Conference on Genetic and Evo-
lutionary Computation Conference, pp. 19–26, 2000.

[254] G. Theraulaz, E. Bonabeau. A brief history of stigmergy. Artificial Life, 5,
97–116, 1999

[255] R.J.M. Vaessens, E.H.L. Aarts, J.K. Lenstra. A local search template. Tech-
nical Report COSOR 92-11, Department of Mathematics and Computing Sci-
ence, Eindhoven, 1995.

[256] F. Vavak, K. Jukes, T. C. Fogarty. Learning the local search range for genetic
optimisation in nonstationary environments. Proceedings of the 1997 IEEE
International Conference on Evolutionary Computation, pp. 355–360, IEEE
Press, 1997.

239



Bibliography

[257] F. Vavak, K. A. Jukes, T. C. Fogarty. Performance of a genetic algorithm with
variable local search range relative to frequency for the environmental changes.
Proceedings of the 1998 International Conference on Genetic Programming,
Morgan Kaufmann, 1998.

[258] F. Vavak, T. C. Fogarty, K. Jukes. A genetic algorithm with variable range
of local search for tracking changing environments. Proceedings of the 3rd In-
ternational Conference on Parallel Problem Solving from Nature, LNCS 1141,
pp. pp 376–385, Springer-Verlag, 1996.

[259] A. Vogel, M. Fischer, H. Jaehn, T. Teich. Real-world shop floor scheduling
by ant colony optimization. Proceedings of the 3rd International Workshop on
Ant Algorithms, M. Dorigo, G. Di Caro, M. Sampels, editors, LNCS 2463,
pp. 268–273. Springer-Verlag, 2002.

[260] C. Voudouris, E. Tsang. Guided local search. European Journal of Operational
Research, 113(2), pp. 469-499, 1999.

[261] H. Wang, D. Wang, S. Yang. A memetic algorithm with adaptive hill climbing
strategy for dynamic optimization problems. Soft Computing - A Fusion of
Foundations, Methodologies and Applications, 13(8–9), pp. 763–780, 2009.

[262] K.P. Wang, L. Huang, C.G. Zhou, W. Pang. Particle swarm optimization for
travelling salesman problem. Proceedings of the 2nd International Conference
on Machine Learning and Cybernetics, 3, pp. 1583–1585, 1993.

[263] K. Weicker. Performance Measures for Dynamic Environments, Proceedings
of the 7th International Conference on Parallel Problem Solving from Nature,
J. Merelo, P. Adamidis, H.G. Beyer, J. Fernández-Villacañas, H.P. Schwefel,
editors, LNCS 2439, pp. 64–73, Springer-Verlag, 2002.

[264] K. Weicker. Evolutionary Algorithms and Dynamic Optimization Problems.
Der Andere Verlag, Berlin, 2003.

[265] M. Wineberg, F. Oppacher. Enhancing the GAs ability to cope with dynamic
environments, Proceedings of the 2000 International Conference on Genetic
and Evolutionary Computation, pp. 3–10, 2000.

[266] L.N. Xing, Y.W. Chen, P. Wang, Q.S. Zhao, J. Xiong. Knowledge-based ant
colony optimization for flexible job shop scheduling problems, Applied Soft
Computing, 10(3), pp. 888–896, Elsevier Science, 2010.

[267] X.S. Xu, J. Ma, J.S. Lei. An improved ant colony optimization for the maxi-
mum clique problem, Proceedings of the 3rd International Conference on Nat-
ural Computation, pp. 766–770, IEEE Press, 2007.

[268] L. P. Wong, M. Y. H. Low, C. S. Chong, Bee colony optimization with lo-
cal search for travelling salesman problem. International Journal on Artificial
Intelligence Tools, 19, pp. 305–334, 2010.

240



Bibliography

[269] S. Wright. Evolution in mendelian populations, Genetics, 16(2), pp. 97–159,
1931.

[270] S. Wright. On the roles of directed and random changes in gene frequency in
the genetics of populations, International Journal of Organic Evolution, 2(4),
pp. 279–294, 1948.

[271] S. Yang. Non-stationary problem optimization using the primal-dual genetic
algorithm. Proceedings of the 2003 IEEE Congress on Evolutionary Computa-
tion, pp. 2246–2253, IEEE Press 2003.

[272] S. Yang. Constructing dynamic test environments for genetic algorithms based
on problem difficulty. Proceedings of the 2004 IEEE Congress on Evolutionary
Computation, 2, pp. 1262–1269, 2004.

[273] S. Yang. On the design of diploid genetic algorithms for problem optimization
in dynamic environments. Proceedings of the 2006 IEEE Congress on Evolu-
tionary Computation, pp. 1362–1369, IEEE Press, 2006.

[274] S. Yang. Genetic algorithms with elitism based immigrants for changing op-
timization problems. Proceedings of 2007 EvoWorkshops on Applications of
Evolutionary Computation, M. Giacobini, editors, LNCS 4448, pp. 627–636,
Springer-Verlag, 2007.

[275] S. Yang. Memory-based immigrants for genetic algorithms in dynamic envi-
ronments, Proceedings of the 2005 International Conference on Genetic and
Evolutionary Computation Conference, pp. 1115–1122, ACM, 2005.

[276] S. Yang. Memory-enhanced univariate marginal distribution algorithms for
dynamic optimization problems. Proceedings of the 2005 Congress on Evolu-
tionary Computation, 3, pp. 2560–2567, IEEE Press, 2005.

[277] S. Yang. Associative memory scheme for genetic algorithms in dynamic envi-
ronments, Proceedings of 2006 EvoWorkshops on Applications of Evolutionary
Computation, LNCS 3907, pp. 788-799, Springer-Verlag, 2006.

[278] S. Yang. Genetic algorithms with memory- and elitism-based immigrants in
dynamic environments. Evolutionary Computation, 16(3), pp. 385–416, MIT
Press, 2008.

[279] S. Yang, Y. Jiang, T. T. Nguyen. Metaheuristics for dynamic combinatorial
optimization problems. IMA Journal of Management Mathematics, Oxford
University Press, 2012.

[280] S. Yang, R. Tinos. A hybrid immigrants scheme for genetic algorithms in
dynamic environments. International Journal of Automation and Computing,
4(3), 243–254, 2007.

241



Bibliography

[281] S. Yang, Y.-S Ong, Y. Jin. Evolutionary computation in dynamic and Uucer-
tain environments. Computational Intelligence Series, 51, Springer-Verlag,
2007.

[282] S. Yang, X. Yao. Dual population-based incremental learning for problem op-
timization in dynamic environments. Proceedings of the 7th Asia Pacific Sym-
posium on Intelligent and Evolutionary Systems, pp. 49–56, 2003.

[283] S. Yang, X. Yao. Population-based incremental learning with associative mem-
ory for dynamic environments. IEEE Transactions on Evolutionary Computa-
tion, 12(5), pp. 542–561, IEEE Press, 2008.

[284] J.Q. Yang, J.G. Yang, G.L. Chen. An improved ant colony system based on
negative biased, Proceedings of the International Conference on Advanced Mea-
surement and Test, Y.W. Wu, editors, pp. 439–440, pp. 558–562, 2010.

[285] X. Yao. Unpacking and understanding evolutionary algorithms. Advances in
Computational Intelligence, LNCS 7311, pp. 60–76, Springer-Verlag, 2012.

[286] W.J. Yu, X.M Hu, J. Zhang, R.Z. Huang. Self-adaptive ant colony system
for the travelling salesman problem. Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, pp. 1399–1404, IEEE Press,
2009

[287] X. Yu, Y. Jin, K. Tang, X. Yao. Robust optimization over Time – A new
perspective on dynamic optimization problems. Proceedings of the 2010 IEEE
Congress on Evolutionary Computation), pp. 3998–4003, 2010.

[288] X. Yu, K. Tang, X. Yao. An immigrants scheme based on environmental in-
formation for genetic algorithms in changing environments. Proceedings of the
2008 IEEE Congress of Evolutionary Computation, pp. 1141–1147, 2008.

[289] X. Yu, K. Tang, X. Yao. Immigrant schemes for evolutionary algorithms in
dynamic environments: Adapting the replacement rate. Science China Series
F: Information Sciences, 53(1), pp. 1–11, 2010.

[290] X. Yu, K. Tang, T. Chen, X. Yao. Empirical analysis of evolutionary algorithms
with immigrants schemes for dynamic optimization.Memetic Computing, 1(1),
pp. 3–24, 2009.

[291] E. L. Yu, P. N. Suganthan, Evolutionary programming with ensemble of
explicit memories for dynamic optimization. Proceedings of the 2009 IEEE
Congress on Evolutionary Computation, pp. 431–438, IEEE Press, 2009.

[292] Y.B. Yuan, K. Wang, L. Ding. A solution to resource-constrained project
scheduling problem based on ant colony optimization algorithm. Proceedings
of the 9th International Conference on Hybrid Intelligent Systems, 1, pp. 446–
450, IEEE Press, 2009.

242



Bibliography

[293] A. Younes, O. Basir, O., P.A. Calamai. Benchmark generator for dynamic
optimization, Proceedings of the 3rd WSEAS International Conference on Soft
Computing, Optimization, Simulation & Manufacturing Systems, 2003.

[294] A. Younes, P. Calamai, O. Basir. Generalized benchmark generation for dy-
namic combinatorial problems, Proceedings of the 2005 International Confer-
ence on Genetic and Evolutionary Computation Conference, pp. 25–31, ACM
Press, 2005.

[295] X.Y. Zhang, H.B. Duan, J.Q. Jin. DEACO: Hybrid ant colony optimization
with differential evolution, Proceedings of the 2008 IEEE Congress on Evolu-
tionary Computation), pp. 921–927, IEEE Press, 2008.

[296] H.P. Zhang, M. Gen, S. Fujimura, K.W. Kim. Ant colony optimization ap-
proach for job-shop scheduling problem, Proceedings of the 3rd International
Conference on Information and Management Science, 3, pp. 426–431, 2004.

[297] X.X. Zhang, L.X. Tang. A new hybrid ant colony optimization algorithm for
the travelling salesman problem, Proceedings of the 4th International Con-
ference on Intelligent Computing, LNCS 5227, pp. 148–155, Springer-Verlag,
2008.

[298] X.L. Zhou, J. Zhang, W.N. Cheng. A new pheromone design in ACS for solving
JSP, Proceedings of the 2007 IEEE Congress on Evolutionary Compuatation
(CEC’07), pp. 1963–1969, IEEE Press, 2007.

[299] Y.M. Zhou, Q.S. Guo, R.W. Gan. Improved ACO algorithm for resrouce-
constrained project scheduling problem, International Conference on Artificial
Intelligence and Computation Intelligence, 3, pp. 358–365, IEEE Press, 2009.

[300] X. Zou, M. Wang, A. Zhou, B. Mckay. Evolutionary optimization based on
chaotic sequence in dynamic environments, Proceedings of the 2004 IEEE In-
ternational Conference on Networking, Sensing and Control, 2, pp. 1364–1369,
IEEE Press, 2004.

243


	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	1 Introduction
	1.1 Ant Colony Optimization (ACO)
	1.1.1 Challenges for ACO in Static Environments
	1.1.2 Challenges for ACO in Dynamic Environments

	1.2 Aims and Objectives
	1.3 Scientific Contributions
	1.4 Structure of the Thesis

	2 From Natural to Artificial Ant Colonies
	2.1 Real Ant Colonies Behaviour
	2.1.1 Behaviour in Static Environments
	2.1.2 Behaviour in Dynamic Environments

	2.2 A Probabilistic Model for Artificial Ants
	2.3 Artificial Ant Colonies Behaviour
	2.3.1 Real Ants vs Artificial Ants
	2.3.2 Artificial Ants for the Shortest Path

	2.4 Summary

	3 Combinatorial Optimization and Metaheuristics
	3.1 Combinatorial Optimization
	3.1.1 Examples of Routing Problems
	3.1.2 Applications

	3.2 Computational Complexity
	3.3 Methods for NP-complete Problems
	3.4 Metaheuristics for Combinatorial Optimization
	3.4.1 Evolutionary Algorithms
	3.4.2 Simulated Annealing
	3.4.3 Tabu Search
	3.4.4 Estimation of Distribution Algorithms
	3.4.5 Bee Colony Optimization
	3.4.6 Ant Colony Optimization

	3.5 Characteristics of Metaheuristics
	3.6 Performance Analysis of Metaheuristics
	3.7 Summary

	4 The Ant Colony Optimization Metaheuristic
	4.1 Gentle Introduction to ACO
	4.2 Characteristics and Properties
	4.3 Historical Contributions
	4.4 Ant System (AS): The First ACO Algorithm
	4.5 AS Variations
	4.5.1 Elitist AS
	4.5.2 Rank-Based AS
	4.5.3 MAX-MIN AS
	4.5.4 Best-Worst AS
	4.5.5 Ant Colony System

	4.6 Applications of ACO for Combinatorial Optimization
	4.6.1 Travelling Salesperson Problem (TSP)
	4.6.2 Vehicle Routing Problem (VRP)

	4.7 Summary

	5 ACO with Direct Communication
	5.1 Motivation
	5.2 Description of Direct Communication
	5.2.1 The Framework
	5.2.2 Exchange Information
	5.2.3 Communication Range
	5.2.4 Local Pheromone Deposit

	5.3 Experiments for the Static TSP and VRP
	5.3.1 Experimental Setup
	5.3.2 Parameter Settings
	5.3.3 Experimental Results for the Static TSP
	5.3.4 Experimental Results for the Static VRP

	5.4 Summary

	6 ACO for Dynamic Combinatorial Optimization
	6.1 Dynamic Optimization Problems (DOPs)
	6.2 Optimization Methods for DOPs
	6.2.1 Evolutionary Computation
	6.2.2 Other Metaheuristics

	6.3 Detection of Dynamic Changes
	6.4 Performance Measurements
	6.4.1 Optimum-based Performance Measurements
	6.4.2 Behaviour-based Performance Measurements
	6.4.3 Average-based Performance Measurements

	6.5 Addressing Dynamic Environments with ACO
	6.5.1 Pheromone modification after a change
	6.5.2 Memory-based schemes
	6.5.3 Multi-colony algorithms

	6.6 Applications of ACO for Dynamic Combinatorial Optimization
	6.6.1 Dynamic TSP (DTSP)
	6.6.2 Dynamic VRP (DVRP)

	6.7 Theoretical Development
	6.8 Summary

	7 Benchmark Generators for Dynamic Optimization Problems
	7.1 Generating a Dynamic Environment
	7.2 Properties of Dynamic Benchmark Generators
	7.3 Benchmarks for Binary-Encoded Problems
	7.4 Benchmarks for Permutation-Encoded Problems
	7.4.1 Known optimum
	7.4.2 Unknown optimum

	7.5 Summary

	8 ACO with Immigrants Schemes
	8.1 Motivation
	8.2 Description of Immigrants Schemes
	8.2.1 The Framework
	8.2.2 Construct Solutions
	8.2.3 Pheromone Update
	8.2.4 Increase and Maintain Diversity

	8.3 Experiments for the DTSP and DVRP
	8.3.1 Experimental Setup
	8.3.2 Experimental Results for the DTSP
	8.3.3 Experimental Results for the DVRP

	8.4 Summary

	9 Conclusions and Future Work
	9.1 Technical Contributions
	9.2 Conclusions of the Experimental Results
	9.3 Future Work
	9.3.1 ACO in Static Environments
	9.3.2 ACO in Dynamic Environments
	9.3.3 Further Discussion Regarding the Relation of Dynamic Optimization and Real-World Applications


	A Description of Benchmarks
	B Parameter Settings for Static Combinatorial Problems
	C Parameter Settings for Dynamic Combinatorial Problems
	Bibliography

