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Abstract 

Firdos Mohammed Almadani 

Title: Modelling and analysing vague geographical places using fuzzy set theory 

Vagueness is an essential part of how humans perceive and understand the 

geographical world they occupy. It has now become of increasing important to 

acknowledge this situation in geographical databases and analyses in the field of 

Geographical Information Science (GIScience). This research has tackled the 

wholly original topic of modelling vague geographical places (objects) based on 

fuzzy set theory with a view to assessing the implications of routing problem 

around those vague places. The research has focused on the modelling of vague 

places, for a number of villages and rural settlements, working with national 

address databases which have numerous ambiguous characteristics which add 

challenge to the work. It has demonstrated the way in which fuzzy set theory can 

be used to derive approximate boundaries for vague spatial extents (fuzzy 

footprint) form sets of precise addresses, reporting rural settlements, recorded in 

different databases. It has further explored the implications of applying the 

Travelling Salesman Problem (TSP) in traditional hard village extents versus the 

modelled fuzzy extents. The introduced methods evaluate the usefulness of fuzzy 

set theory in modelling and analysing such vague regions. The results imply that 

the fuzzy model is more efficient than the traditional hard, crisp model of 

approximating the spatial extent of rural areas. However, the TSP results showed 

that longer tours were mostly found in the fuzzy model than the traditional crisp 

model. This is mainly affected by the scale factor of rural areas, considering the 

relatively small distances between villages. One challenge for the approach 

outlined here is to incorporate this method applied in other novel analyses of 

geographical information based on fuzzy representation of geographical 

phenomena.  
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 Introduction 

1.1 Overview 

It is believed that uncertainty is indeed part and parcel of human nature and their 

surrounding world, as they cannot always be sure, consistent and precise in 

themselves nor in their interaction with the surrounding environment. It is 

probably very difficult to assume exact knowledge and be very certain about many 

geographical objects and spatial relations, for instance, if one is directed to go 

"down the road", "up the hill", or "to city centre", or, to be more specific, to "East 

Anglia", "the West End" or even "Bloomsbury". In fact, these places are often 

described as indeterminate, hard to define, ill-defined, or vague; and any two 

individuals will not completely agree about the exact location of these places or 

even their extents. However, people are generally tolerant and prepared to 

conceive of and accommodate the world in terms of that vagueness (Montello et al. 

2003; Fisher and Robinson, 2014). It should be further notice of that people's 

conceptions of vagueness are not limited to such vernacular regions, but also 

extend to other well-defined geographical places. For example, in their social 

communication they refer to London most likely without being concerned about 

the exact location (i.e. in the United Kingdom or in Canada) or the precise nature of 

its boundary (as the capital of the United Kingdom or just the capital of England). 

It is not just that people effectively interact with vagueness in their life systems, 

but they are further participating in a number of ways to provide informative 

sources about geographical places. This can be illustrated in two broad examples 

from social media: (1) individuals tend to refer to vague places or use vernacular 

languages when they are talking about a particular place in Twitter and Facebook 

messages; and (2) there are some websites, such as Flickr and Geograph, which 

allow users to upload and locate their photographs on the Earth’s surface by 

latitude and longitude, which are not necessarily well defined places. Goodchild 

(2007) explains these activities as an explosion of interest in using the Web to 

create, assemble, and disseminate geographic information provided voluntarily by 

individuals. He terms this volunteered geographic information (VGI), a special case 
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of the more general Web phenomenon of user-generated content. Despite the 

debate on VGI quality and reliability, it has recently received a great deal of 

attention in Geographical Information Science (GIScience). It has the potential to 

be a significant source of geographers’ understanding of the surface of the Earth 

(Goodchild, 2007). Even more importantly, different types of VGI data sources 

have been researched to provide insights about the location and extent of vague 

regions and vernacular place names (e.g. Arampatzis et al. 2006; Jones et al. 2008; 

and Twaroch et al. 2008 a & b); the next chapter will elaborate on this in more 

detail. 

However, there is a controversial view that relates this vagueness originally to 

issues related to naming things. Varzi (2001), for instance, considers this as an 

exclusively semantic problem caused by the naming of things and argues against 

the existence of vague geographical objects with boundaries that are themselves a 

matter of degree. To an extent, this cannot be invalidated due to the prominence of 

vernacular place names and vague terms that widely exist in everyday statements 

and conversation. From this, it is not possible to clearly define the geographical 

phenomena (objects, relation and process) in any meaningful way that does not 

involve an arbitrary cut off (Fisher 2000, Fisher and Robinson, 2014). That 

consequently indicates the impossibility of conceiving vagueness in geographical 

phenomena in terms of absolute right versus absolute wrong, and being intolerant 

of any divergence from that norm. The concepts of vagueness, need not be 

discussed here, but are comprehensively reviewed in Chapter 2. 

In contrast to this wide recognition of uncertainty and vagueness, most analytical 

functions and conventional modelling techniques developed in GIScience ignore 

these issues related to the concepts they are storing and analysing. However, 

researchers recently have endorsed the need to develop modelling techniques that 

adequately handle vagueness and imprecision in geographical information. The 

research work in this area is highly informed by: (1) the mathematical and 

computational formalisation of vague objects stored in Geographical Information 

Systems (GIS), - (e.g. Cheng et al. 2004; Fisher et al. 2004; Dilo et al. 2007); and (2) 

gathering information about vaguely defined regions and offering approaches to 
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approximate the regions’ extents (e.g. Montello et al. 2003; Arampatzis et al. 2006; 

Jones et al. 2008). Hence, on the pages that follow, this thesis contributes to the 

literature by considering one example of a vague region, rural settlement or 

village. One could argue that a settlement in general is a relatively precise 

geographical concept in terms of its definite name and precise location. However, 

rural settlements or villages tend to be vaguely defined, as it is not always easy to 

consider whether a person is inside the village or outside the village. This is 

because there are some situations where a person could be partly within the 

village, partly outside it, or even in some places where it may require some thought 

and even indecision as to whether the person is out or in.    

1.2 Research Aims & Objectives 

This research aims to: 

 Evaluate and validate the usefulness of using fuzzy set theory in 

determining the spatial extent (footprint) of vague geographical features in 

rural areas (villages). 

 Explore the implications of applying the travelling salesman problem as a 

routing and navigation application on the fuzzy model versus the 

traditional crisp model.  

The objectives of this research are: 

 Identification of rural areas and villages with insights into the 

conceptualised nature of vagueness and other possible sources of 

uncertainty will be provided. 

 The spatial extents of these villages will be traced, and models of the fuzzy 

footprints of these regions will be developed. 
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 The consequence of the developed methods will be assessed by comparing 

the traditional (Boolean) and fuzzy model in a routing application –the 

travelling salesman problem.  

 

1.3 Rationale and Significance of the Research 

This research sets out to defend the view that vagueness is fundamental to 

geographical phenomena and in analysing those phenomena it must be addressed. 

The aim of this research project has therefore been to develop a method of 

modelling vague geographical places (i.e. rural settlements in the Hinckley and 

Bosworth District) with a view to assessing possible application in the resulting 

fuzzy model of those vague places. 

There are several important areas where this study makes a unique and original 

contribution to the field of GIScience, including: 

 It explores how village territories or extents are defined in different data 

sources and thereby it provides insight into different aspects of uncertainty 

associated with the concept of individual places. These data include: a 

formal definition of village boundaries, but these frequently relate to the 

Parish, a historical ecclesiastical boundary and two address databases 

(formal and contributed data).  

 Most of the research on modelling vague places are based on vernacular 

geography like empirical data engaging human subjects (Montello et al. 

2003; Lüscher and Weibel, 2013) or using information from the web - tag 

points (Goodchild et al. 1998, Hollenstein and Purves, 2010) as a source to 

identify the vague regions. This study employs definite features (geocoded 

address points) to model vagueness in place names and explore further 

aspects of uncertainty beyond the vagueness issue. In doing this, it explores 

the ambiguity and discord within and between data describing villages.  



 
 

5 
 

  

 This research offers a way ahead by considering further analysis once fuzzy 

regions have been modelled, a view which has been ignored in most of the 

previous work on modelling vague regions. 

 

1.4 Thesis Structure 

The research in this thesis is explained in several self-contained chapters, 

including this introductory chapter about the aim of the research. This is followed 

by a discussion of the fundamentals, which describe a particular aspect of the 

research study, and finally closes by providing some conclusions and 

recommendations for future work. This section provides a brief description of 

these chapters, as follows: 

 Chapter 2 reviews the literature to provide a conceptual framework of the 

fundamental aspect of this research. This starts by reviewing the nature of 

vagueness and its formalisation within GIScience. Then it discusses the 

approaches used to address the problem of vagueness and elaborates more 

on the basics of fuzzy set theory. Finally, it explores the previous work in 

connection with vague regions.  

 Chapter 3 sets the scope of the research in terms of the geographical scale 

of the study area, in addition to a detailed explanation of the data used to 

identify villages as vague objects. 

 Chapter 4 formally describes the proposed methods for approximating the 

fuzzy footprint for villages. In addition, it further presents and discusses the 

results obtained from these methods.  

 Chapter 5 explains the implementation of applying some heuristic to solve 

the travelling salesman problem in fixed and indeterminate or fuzzy 

locations. The results acquired from this approach are also presented and 

discussed in this chapter. 
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 Chapter 6 critically reflects on the overall research process along its various 

stages. It summaries the entire results of the research, assessing whether 

these finding successfully achieve the research objectives. Then the 

attention moves to the development and implementation of the suggested 

approaches, including the limitations and some outstanding methodological 

issues that require further research. 

 Finally, Chapter 7 closes the thesis with some conclusions by summarising 

the key findings of the research and highlighting the recommendations for 

future research in the field of GIScience. 
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 Literature Review 

2.1 Introduction 

It is becoming increasingly difficult to ignore the uncertainty associated with 

Geographical Information Science (GIScience). There is rich ground for debate 

about uncertainty in GIScience (e.g. Fisher, 1999; Goodchild, 2000; Longley et al. 

2001; Klimesova, 2006; Comber et al. 2006; Fisher et al. 2006; Vullings et al. 2007). 

The debate, which stems from the large number of different sources and forms of 

uncertainty, has highlighted problems from measurement errors to issues at every 

stage in the handling of the geographic data from acquisition through to final use.  

Due to the longitudinal discussion about the types of uncertainty, a comprehensive 

account of this subject is beyond the scope of the present work; here, the 

consideration is only on one type known as vagueness or fuzziness. Thus, this 

section and the subsequent sections are devoted to provide an overview of the 

relevant aspects of vagueness and its involvement in GIScience. 

The aim of this chapter is to provide a conceptual framework of the fundamental 

aspect of this research. Section 2.2 explores the nature of vagueness and its 

formalisation within GIScience. Then Section 2.3 discusses some of the approaches 

used to address the problem of vagueness. After that, Section 2.4 presents on 

theoretical framework of the fuzzy sets theory; the approach used here to address 

the issue of vagueness. Next, Section 2.5 reviews the role of fuzzy set theory in GIS. 

Sections 2.6 and 2.7 review further related work in connection with modelling 

vague regions. Finally, Section 2.8 summarises the covered literature and  highlight 

new insight to the research topic. 

2.2 Vagueness in Geography  

Although differences of opinion still exist, there appears to be some agreement 

about exactly what is meant by the term vagueness. According to a definition 

provided by Worboys (2001), it refers to a particular type of imprecision where it 
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is difficult to decide, in borderline cases, whether a concept or situation applies or 

not. That means vagueness is a problem about where to draw a demarcation line 

between cases. Fisher (2000), in his seminal article, was apparently the first to 

point out the Sorites Paradox, as a foundation of fuzzy set theory, is used to test 

whether an object or a concept is vague. A well-known example of this argument 

concerns the cut off point of which a few sand grains make a heap. Other examples, 

more geographical, involve scales of size and consider issues like when a village 

becomes a town, when a multi-storey house becomes a skyscraper, when a hill 

becomes a mountain, or when trees become a forest. 

It is now generally recognised that difficulties arise when an attempt is made to 

identify the category and extent of almost all geographical features. There are 

some words or expressions used in the literature to describe such features; they 

are said to be hard to define, ill-defined, indeterminate, or vague.  Hollenstein 

(2008) argues that there are two broad categories of vague geographic entities. 

The first type relates to the majority of natural geographic phenomena that are 

spatially ill-defined, such as vegetation zones or soil types. The second type 

expresses human conceptions about vague places and their extents, for example, 

aboriginal territories or urban neighbourhoods. This view is supported by Erwig 

and Schneider (1997), who consider fuzziness as an intrinsic feature of an object 

itself; each object may either lack a precisely definable border (first type) or by its 

nature lack the ability to be precisely defined (second type). Furthermore, Mesgari 

et al. (2008) indicate two aspects of fuzziness related to many spatial phenomena: 

first, either the spatial features or at least their effects are usually without 

determinate boundaries (fuzzy boundaries); second, every location can be 

categorized into different classes simultaneously with different degrees of 

certainty (fuzzy classifications). In a similar way, Fisher et al. (2004) use the terms 

“semantic” and “epistemic” to identify vague features in a philosophical sense. A 

mountain, for example, is vague object either because of human perception 

dividing a landscape into features called mountains, or the mountain actually exist 

as vague objects. 
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Furthermore, the vast majority of people in everyday life think and communicate 

about the world in terms of vague concepts. Though they talk about particular 

geographical areas, they typically use vernacular geographical terms rather than 

scientific geographical vocabularies when describing regions and spatial relations 

(Montello et al. 2003). In other words, people often refer to geographical contexts 

without clear definitions of where or what they are. There is also an inconsistency 

with the interpretation of geographical features because of the vague and 

imprecise nature of place names. Terms such as “Midwest” in the United States and 

“Midlands” in the United Kingdom have no formal geometric boundaries and may 

be interpreted differently by different people (Arampatzis et al. 2006). Equally, as 

Jones et al. (2008) state, there are places whose names have been adopted for 

administrative purposes, but for which the administrative boundary differs from 

many people’s perception of the extent of the place. Indeed, there are many other 

instances of such vague or vernacular terms used at different levels of 

geographical scales, such as downtown, city centre, the west end, the rocky 

mountains, the south (the north), near the park, up the hill, down the road and so 

forth. As a result, it is an important challenge to develop techniques to 

approximate the extent of such vague places in a manner that enables them to be 

interpreted intelligently for both social and scientific purposes.  

2.3 Approaches Used to Address Vagueness 

A number of methods have been suggested to address the problem of vagueness. 

According to Williamson (1996) one main approach relies on many-valued logic, 

which replaces the dichotomy of truth and the falsity in classical logic by manifold 

classification. One of its widely used implementation is fuzzy set theory, which is 

generally considered the primary method to handle vagueness issues in GIS and 

spatial databases (Fisher, 2000; Erwig and Schneider, 1997). Section 2.4 

elaborates the conceptual details of fuzzy set theory.  

There are only a few alternative approaches available that are not based on fuzzy 

set theory. These might include qualitative approaches, theories of supervaluation 

and rough sets. Qualitative approaches are accounts of the egg-yolk model (Cohn 

and Gotts, 1996), which is an extension of the RCC model (Region Connection 
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Calculus) defined by (Randell et al. 1992). It describes a vague region as a pair of 

crisp regions, one enclosing the other. The ‘yolk’, the inner region, represents the 

certain part of the vague region, the ‘white’, the outer region, represents the broad 

boundary, and the white and yolk together form the egg that is the full extent of the 

vague region (Dilo et al. 2007). Likewise the 9-intersection model (Clementini and 

di Felice, 1996) is extended to deal with such broad-boundary regions. Both 

accounts introduce a broad border region that defines the area that partially but 

not fully belongs to the core region. However, both of them fail to consider the 

challenge of spatial vagueness like gradual transition.  

The basic idea underlying supervaluation is that a vague predicate distinguishes 

entities to which it definitely applies (its positive extension), entities to which it 

definitely does not (its negative extension) and a penumbra of the predicate (when 

some entities are indefinite if the predicate applies)(Kulik, 2003). In this theory, a 

proposition involving a vague term is supertrue and superfalse if and only if all of 

admissible different ways in which the vague term could be made precise come out 

true or false, respectively. All other cases fall into a truth-value gap, where 

propositions are neither true nor false. In other words, the assignment of truth 

value for all interpretations is a supervaluation, such that anything true in all 

precisifications is supertrue; anything false is superfalse (Agler, 2010).  

Rough sets in contrast can be represented by a pair of classical sets, known as the 

lower and upper approximation. The lower approximation consists of all elements 

that certainly belong to the set, whereas the upper approximation consists of all 

elements that possibly belong to the set. This approach has been discussed in 

greater detail in Pawlak (1991, 2002). It is worth noting that rough set theory has 

an overlap with many other theories dealing with imperfect knowledge, such as 

fuzzy set theory and others. Ahlqvist and co-authors have demonstrated how 

rough fuzzy sets could be used to integrate different geographical classifications 

(Ahlqvist et al. 2003).  

In addition, it should be underlined that methods based on rough set theory have 

been developed increasingly in GIScience. Worboys (1998a), for instance, has 
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provided a formal framework for reasoning about imprecision in spatial data. As 

he used rough set to approach the uncertainty associated with information stored 

at multiple resolutions where the discreteness of entities is progressively 

improved with greater resolution. This work has further extended to consider both 

spatial and semantic dimensions in modelling geographical vagueness (Worboys 

1998b). Raubal and Worboys (1999) have also applied rough sets theory to model 

imprecise knowledge in the wayfinding process (in a special scenario of 

wayfinding in a building that is finding one’s way through an airport). Worboys 

and Clementini (2001) describe a variety of different techniques of three valued 

logics for handling the integration of imperfect spatial observations. They develop 

a rough set representation for a region with broad boundary resulting from the 

observation of a crisp region under conditions of granularity (Imprecise 

observation of a spatial phenomenon). Indeed, Worboys along with other 

researchers have demonstrated how rough sets are used widely for modelling 

spatial and semantic components of geographic information, which commonly 

assume a variety of vague interpretations, including inaccuracy, imprecision and 

vagueness (Duckham and Worboys, 2001; Worboys, 2001; and Duckham et al. 

2001). 

2.4 Basic Concept of Fuzzy Set Theory  

The principle of fuzzy set theory was first demonstrated extensively by Zadeh 

(1965). Since his published work, fuzzy set theory and its applications have been 

well documented in the information science literature in general (Klir et al. 1997; 

Klir and Yuan, 1995; Pedrycz and Gomide, 1998; Zimmermann, 2001; Hayward 

and Davidson, 2003) and in GIS in particular (Leung, 1983; Altman, 1994; 

Schneider, 1999, 2000; Robinson, 2003). 

Fuzzy set theory has been suggested as alternative to traditional set theory with 

regard to Boolean logic when dealing with uncertainties associated with many real 

world phenomena. Consequently, various areas as diverse as engineering, 

psychology, GIS, artificial intelligence, medicine, ecology, decision theory, pattern 

recognition, information retrieval, sociology and meteorology produce successful 

applications based on this theory  (Kaymaz, 1995). Hence fuzzy set theory has 
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received more and more recognition as a valid and useful extension of classical set 

theory. This section aims to provide an in-depth review of the basic concepts of 

fuzzy set theory. 

2.4.1 Fuzzy Sets 

As mentioned above, fuzzy set theory is considered as an alternative to the 

Boolean (crisp) set theory, where members of one set are separated from another 

with complete certainty and a precise boundary. So, a sharp unambiguous 

distinction exists between the members and non-members. In other words, each 

individual is either definitely a member of the set or definitely not a member of it. 

In daily lives, however, many classification concepts used and expressed in natural 

languages describe sets that do not exhibit this characteristic. Examples include the 

sets of tall people, expensive cars, close driving distances, high salary, numbers much 

greater than four, sunny days, coast line and many others. In all these sets there is a 

gradual transition between their membership and non-membership that leads to 

imprecise boundaries between them. Therefore, fuzzy set theory is a natural and 

useful way to characterise such concepts (Klir et al. 1997; Klir and Yuan, 1995). 

The major motivation behind introducing fuzzy set theory is to represent such 

vague concepts. An individual element in a fuzzy set might possess some 

uncertainty, and thus its membership is just a matter of degree. That is to say that 

the degree of membership of an individual element in a fuzzy set shows the degree 

of compatibility or the degree of truth of the individual with the concept expressed 

by the fuzzy set (Zimmermann, 2001). In the instance of the set of “tall people”, a 

person is a member of the set to the degree to which he or she meets the concept 

of being tall.  

In essence, fuzzy set theory is an extension and generalization of the classical 

(crisp/ Boolean) sets theory, which assigns a value of either 0 or 1 to each 

individual element in the universal set. Thereby, it discriminates between 

members (who have the value of 1) and non-members (who have the value of 0) of 

the considered set. In contrast, the values that are assigned to each element in the 

fuzzy set fall within a specified range which determines the membership grade of 
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these elements; the larger the values, the higher the membership grade. This grade 

can be any real number in the interval [0, 1], where the 0 indicates absence (no 

membership) and the 1 indicates complete membership. Fuzzy sets are formally 

defined, in relation to the crisp set, as follows:   

Definition 1: Crisp Set versus Fuzzy Set   [Zadeh 1965; Schneider 2000] 

Let X be a classical (crisp) set of objects, then the membership of the classical 

subset A of X, denoted by A (x), can be defined by the characteristics function as:  

𝐴: 𝑋 → {0, 1} such that for all x  X:  A (x) = 1 if and only if  x  A   and  

𝐴 (𝑥) = 0    otherwise. 

This function can be generalized by assigning to each element x of X a number 

A (x), sometimes µ (x), in the closed interval [0, 1] that indicates the degree of 

membership of x in A, and thus the membership function has the form: 

  𝜇(𝑥): 𝑋 → [0, 1]. 

There are several ways to represent the membership function of fuzzy sets, as each 

set is uniquely defined. In other words, each member x of the universal set X is 

assigned to a unique membership degree A (x) in the represented set A. 

Accordingly, the representations of membership functions differ from each other 

in the way in which these assignments are expressed. The most common 

representations could be as graphs, tables, lists, mathematical formulae, or 

coordinates in the n-dimensional unit cube (Klir et al. 1997). 

Additionally, fuzzy sets can be outlined over discrete or continuous domains and 

hence each of these also has different representations (Altman, 1994). In the case 

of the discrete domain, a fuzzy set has elements that are ordered pairs, denoted by 

μ/x or (x, μ), where x is the domain value and μ is its degree of membership. For 

instance, the fuzzy set A representing “the sensible number of children” might be 

defined as: 

A = {0.1/0, 0.3/1, 0.7/2, 1/3, 0.6/4, 0.2/5, 0.1/6}     or 

A = {(0, 0.1), (1, 0.3), (2, 0.7), (3, 1), (4, 0.6), (5, 0.2), (6, 0.1)} 
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Figure 2.1 describes this set graphically in the conventional way with the Y-axis 

representing the degree of membership of the corresponding elements along the 

X-axis. 

 

Figure 2.1: Fuzzy set over discrete domain, an example of "the sensible number of 

children". 

 

When the domain is continuous the fuzzy set has a membership function that 

identifies a degree of membership for each value in the domain. The membership 

functions in this case can be manifest by the very different shapes of their graphs 

according to a particular application (see Figure 2.2). The triangular and 

trapezoidal shapes however, have gained wide acceptance in many fields. 
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Figure 2.2: Formulations of Membership Function (MF) – (modified after Saggaf 

and Nebrija, 2003). 

Hence the membership function for a fuzzy set A representing “distance of about 

5km” might be defined as: 

𝐴 =

{
 
 

 
    
𝑥 − 3

2
                when 3 ≤  𝑥 ≤  5

  
 7 − 𝑥

2
                when 5 ≤  𝑥 ≤  7

0                               otherwise

 

Figure 2.3 shows this set graphically in the conventional way with the Y-axis 

representing the degree of membership of the corresponding elements along the 

X-axis. 
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Figure 2.3: Fuzzy set over continues domain,  an example of "distance about 5 Km". 

Characteristics of a Fuzzy Set 

There are some features used in characterizing the membership functions, which 

usually serve the purpose of identifying fuzzy sets in more detail. These features 

include the concepts of normality, height, support, convexity, concavity, and 

cardinality as well as α-cuts of fuzzy sets. All these characteristics are defined 

formally in the definitions:  

Definition 2: Fuzzy Sets Properties   [Klir et al. 1997; Pedrycz & Gomide, 1998;] 

A fuzzy set A is normal if at least one point of its domain has a membership 

function that reaches its maximum, the value of 1. This can be seen via the formula 

∃ 𝑥|𝑋  𝑎𝑛𝑑  𝜇(𝑥) = 1. 

In another way, A is such if its membership function attains 1, that is, sup A (x) = 1. If 

the supremum is less than 1, then A is called subnormal.  

The largest value of the membership function, the supremum above, is usually 

referred to as the height of A. Thereby saying that a particular fuzzy set is normal is 

essentially identical to saying its height is equal to 1.  

The support of a fuzzy set A within a universal set X is the crisp set that contains 

all elements of X that belong to A to a non-zero degree; formally, 
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𝑆𝑢𝑝𝑝(𝐴) =  {𝑥 ∈ 𝑋|  𝐴(𝑥) >  0}. 

In contrast, the core of a fuzzy set A is the set of all elements of X  for which the degree 

of membership in A is 1; more formally, 

𝐶𝑜𝑟𝑒 (𝐴) =  {𝑥 ∈ 𝑋|  𝐴(𝑥) =  1}. 

The cardinality of a fuzzy set A in a finite universe X, denoted by Card (A) – 

sometimes |𝐴̃|, is defined as 

𝐶𝑎𝑟𝑑  (𝐴) =  ∑ 𝐴(𝑥)
𝑥 ∈ 𝑋

. 

  

Definition 3: Convexity and Concavity  [Klir et al. 1997; Pedrycz & Gomide, 1998;] 

A fuzzy set A is convex if its membership function is such that 

𝜇𝐴(𝜆𝑥 + (𝜆 − 1)𝑦) ≥ min[𝜇𝐴(𝑥), 𝜇𝐴(𝑦)]                        ∀ 𝑥, 𝑦 ∈ 𝑋, 𝜆 ∈ [0, 1].  

By the same token, a fuzzy set A is concave if the corresponding membership function 

satisfies the relationship 

𝜇𝐴(𝜆𝑥 + (𝜆 − 1)𝑦) ≤ max[𝜇𝐴(𝑥), 𝜇𝐴(𝑦)]                        ∀ 𝑥, 𝑦 ∈ 𝑋, 𝜆 ∈ [0, 1].  

 

Definition 4: -Cuts of Fuzzy Sets  [Klir & Yuan, 1995; Klir et al. 1997; Pedrycz & Gomide, 1998;] 

The -cut of a given fuzzy set A, denoted by 𝐴𝛼, is a Boolean set containing all 

the elements of the universal set X whose membership grades exceed the threshold level 

.   In other words, it is a restriction of membership degrees that are greater than or 

equal to (or only greater than in case of a more restricted variant, a strong -cut, 

denoted by 𝐴𝛼+) some chosen value  in [0, 1]. Formally, 

𝐴𝛼 = {𝑥|𝐴(𝑥) ≥ 𝛼} 

𝐴𝛼+ = {𝑥|𝐴(𝑥) > 𝛼}. 
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2.4.2 Fuzzy Sets Operations 

As in the traditional sets, there are standard operations which can usually be 

performed on fuzzy sets. Some of these are complement, intersection, and union. In 

the context of natural languages, each of these operations reflects discrete 

meanings, namely: the terms not, and, and or respectively. Generally, the standard 

operations of complement, intersection, and union of two fuzzy sets A and B can be 

defined as follows: 

Definition 5: Operations on Fuzzy Sets [Klir & Yuan, 1995; Klir et al. 1997; Zimmermann, 2001;] 

The complement of a fuzzy set A, denoted by 𝐴̅, on the universal set X is another 

fuzzy set on X that inverts, to some extent, the degree of membership associated with A. 

For each x  X although A (x) expresses the degree to which x belongs to A, A (x) 

expresses the degree to which x does not belong to A.  

𝐴̅(𝑥) = 1 − 𝐴(𝑥)                                                  ∀ 𝑥 ∈ 𝑋 

Consider two fuzzy sets A and B, defined on the universal set X. Then their 

intersection is a new fuzzy set, denoted by A  B, which is defined by the membership 

functions through the formula 

𝐴 ∩ 𝐵(𝑥) = 𝑚𝑖𝑛[𝐴(𝑥), 𝐵(𝑥)]                                                                   ∀ 𝑥 ∈ 𝑋 

Again consider two fuzzy sets A and B, defined on the universal set X. Then their 

union is a new fuzzy set, denoted by A  B, which is defined by the membership 

functions using the formula 

𝐴 ∪ 𝐵(𝑥) = 𝑚𝑎𝑥[𝐴(𝑥), 𝐵(𝑥)]                                                                   ∀ 𝑥 ∈ 𝑋. 
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2.4.3 Fuzzy Numbers 

There are many quantifiable expressions used in daily life that do not lend 

themselves to being characterized in an absolutely precise manner (Klir et al. 

1997; Schneider, 2000). There are an array of examples including “about 9 o’clock”, 

“below 100”, “around 2:30”, “approximately £ 5”, “nearly 74 years” and others. 

Without a shadow of a doubt, these instances have a quantitative meaning 

(number values) and a linguistic modifier (e.g. approximately, nearly, or around), 

which can give rise to uncertainty in grasping the exact meaning. Therefore, these 

can be seen as fuzzy expressions because they include central values and some 

approximated number values on either side of these central values. As a result of 

this fact the concept of such statements can be captured by a fuzzy set defined on 

the set of real numbers. Its membership function should assign the degree of 1 to 

the central value and degrees to other numbers that reflect their proximity to the 

central value and thus decrease from 1 to 0 on both sides. These kinds of fuzzy sets 

are known as fuzzy numbers which have attained great prominence in many 

applications such as decision-making, approximate reasoning, fuzzy control, 

describing complex systems and statistics with imprecise probabilities (Klir and 

Yuan, 1995; Pedrycz & Gomide, 1998). 

So a fuzzy number is a fuzzy set defined on the domain of real numbers that must 

be a convex normalized fuzzy set (Altman, 1994; Zimmermann, 2001). Definition 6 

illustrates the formal notions of fuzzy numbers. In the context of arithmetic and 

comparative operation, fuzzy numbers are analogous to the computation and 

manipulation of the ordinary numbers. Although membership functions are of a 

great variety of shapes that are possible for representing fuzzy numbers, the most 

common is a trapezoidal shape for its simplicity, which is occasionally referred to 

as fuzzy interval (Klir et al. 1997, Zimmermann, 2001). A triangular fuzzy number 

is, of course, a special case of a fuzzy number, which is defined formally as follows: 
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Definition 6: Fuzzy Number            [Klir & Yuan, 1995; Klir et al. 1997;Schneider, 2000] 

A fuzzy set A on  , expressed as 𝐴: ℜ → [0, 1], is a fuzzy number if and only if 

its membership function is such that 

𝐴(𝑥) = {

𝑙(𝑥)                                     for 𝑥 ∈ [𝑎, 𝑏]

    1                                       for 𝑥 ∈ [𝑏, 𝑐] 
𝑟(𝑥)                                    for 𝑥 ∈ [𝑐, 𝑑]
    0                         for 𝑥 < 𝑎 𝑎𝑛𝑑 𝑥 > 𝑏

 

Where 𝑎 ≤ 𝑏 ≤ 𝑐 ≤ 𝑑; 𝑙 is a continuous function that is monotonically increased to 1 at 

the point 𝑏; and 𝑟 is a continuous function that is monotonically decreased from 1 at the 

point 𝑐. 

A triangular fuzzy number is a fuzzy set which can be expressed in an 

elementary form as a triple such that:  𝑇 = (𝑡𝑐, 𝑡𝑙 , 𝑡𝑟)   

Where 𝑡𝑐 is the centre – thus 𝜇(𝑡𝑐) = 1; 𝑡𝑙  and 𝑡𝑟 are the left and right spreads – the 

domain widths of the triangular fuzzy number, and their membership functions decrease 

from 1 to 0. 

Recalling the example of the fuzzy set that represents “the distance of about 5 km” 

(shown in section 2.4.1), this might be represented by the triangular fuzzy number:  

Tabout_5km = (5, 2, 2). 

2.4.4 Fuzzy Relations: 

Fuzzy relations were introduced by Zadeh (1965) in his original paper and they 

are also extensively covered in the literature (Robinson, 1988; Altman, 1994; Klir 

et al. 1997; Klir and Yuan, 1995; Robinson, 2003). From the traditional 

perspective, crisp relations express solely the presence or absence of association, 

interaction or interconnectedness between elements of at least two sets. In 

contrast, the concept of fuzzy relations is appropriate for capturing the strength of 

association (interaction, connection). In other words, in preference to presence/ 

absence of association, degrees of association can be represented by membership 

grades in a fuzzy relation to the same extent as degrees of set membership are 

represented in a fuzzy set. Thus, a fuzzy relation is a fuzzy set defined on the 
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universal set which is a subset of the Cartesian product of two or more ordinary 

sets. What is more is that its membership function indicates the strength of the 

relation between elements from each component set. The formal definition of 

fuzzy relation is given bellow. 

Definition 5: Fuzzy Relation             [Klir & Yuan, 1995; Klir et al. 1997;] 

A fuzzy relation R between variables x and y, whose domains are X and Y, 

respectively, is defined by a function that maps ordered pairs in X  Y to their degree in 

the relation, which is a number between 0 and 1,  

R: X  Y [0, 1] 

More generally, a fuzzy n-ary relation R in, x1, x2, … xn, whose domains are X1, 

X2, … Xn., respectively, is defined by a function that maps an n-tuple <x1, x2, … xn> in  

X1  X2   …  Xn to a number in the interval, 

R: X1  X2   …  Xn [0, 1] 

An example is given of a binary fuzzy relation R defined on set X = {red, blue, 

green} and set Y = {1, 2}:  

R (X, Y) = {1.0/(red, 1), 0.8/(red, 2), 0.3/(blue, 1), 0.7/(blue, 2), 0.2/(green, 1), 

1.0/(green, 2)}.  

As illustrated in the definition above, if the possible values of x and y are 

discrete, then the fuzzy relation can clearly be expressed in a matrix form. For example, 

the binary fuzzy relation could be represented as: 

M = [µR (x, y)]  x  X, y  Y 

2.4.5 Fuzzy Logic: 

Again Zadeh (1965) introduced the concept of fuzzy logic in his seminal paper, for 

the sake of formalizing a mathematical approach to deal with complex or ill-

defined systems. As a result a relatively new mathematical model is consider – 

fuzzy logic (Hayward and Davidson, 2003). There are two forms in the fuzzy 
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literature for using the term ‘logic’. In the broad sense, it refers to a system of 

concepts, principles, and methods for dealing with modes of reasoning that are 

approximate rather than exact, whereas in the narrow sense, it refers to a 

generalization of the various multiple values, which is related to the area of 

symbolic logic (Klir et al. 1997). 

Definition 6: Fuzzy Logic:             [Klir & Yuan, 1995; Klir et al. 1997] 

Consider a fuzzy set A, its membership function A (x), for any element x in the 

universal set X can be interpreted as the degree of truth of the fuzzy proposition “x is a 

member of A”. 

In contrast, an arbitrary proposition “x is F ”, where x  X and F is a fuzzy 

linguistic expression (such as low, high, very far, extremely slow, etc.), its degree of 

truth may be interpreted as the membership degree A (x) by which a fuzzy set A 

characterized by the linguistic expression F is defined in a given context. 

Davidson and Hayward (2003) present some of the power of fuzzy logic through a 

simple control example concerning the field of analytical chemistry; fuzzy logic 

incorporates imprecision and vagueness from measurement noise as well as from 

linguistic process descriptions to produce operational control systems.  

2.5 Fuzzy Set Theory in GIScience 

Great efforts have been made to introduce fuzzy concepts into GIS. This section 

reviews some examples of applications that have adopted the fuzzy set theory in 

GIS. Moghaddam and Delavar (2007) use some statistical and fuzzy logic 

operations in order to achieve important criteria for pipelining and generating real 

cost surface, and their results show that a fuzzy model is a suitable model to 

generate the cost surface. Lee and Lee (2006) present a probable impact of the 

representation of geographic boundary for the soil loss model. To do this, the 

Revised Universal Soil Loss Equation (RUSLE) model was facilitated at a small 

basin in Korea and then the fuzzy representation of geographic boundary, which is 

presumably a better description of soil properties in nature, was introduced into 

the soil factors in the 10 RUSLE. Salski (1999) focuses on two large application 
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areas of the fuzzy set theory in ecological research, namely data analysis (in 

particular fuzzy cluster analysis and fuzzy kriging) and ecological modeling. Cheng 

(2002) presents a systematic discussion of the indeterminate nature of 

geographical entities and how they are represented as fuzzy objects in a GIS. 

Furthermore, the change detection of fuzzy objects and their uncertainties are 

investigated. An example of the dynamic changes of sediments along the Dutch 

coast is applied to illustrate the methodology. The method is also applicable in 

monitoring geographical entities such as natural vegetation units or land-use 

areas. Bielefeld (1992) investigates the use of fuzzy numbers in representing 

uncertainty resulting from data censoring with respect to disease progression in 

individuals, and in particular the spread of HIV infection and the AIDS disease 

through a population considered as the application area for the study 

investigation. Prakash (2003) examines how to address uncertainty in the process 

of land suitability analysis for agricultural crops by using three approaches: 

Analytic Hierarchy Process (AHP), Ideal Vector Approach (IVA) and Fuzzy AHP 

(FAHP). It has been found that the hybrid approach, FAHP, has better performance 

than the rest as it involves AHP techniques, fuzzy numbers, fuzzy extent analysis, 

and alpha cut and lambda functions. Tapia (2004) in his study to model vegetation 

distribution based on remotely sensed data, uses the fuzzy-c-means classifier, 

which has been found to be a promising tool in multivariate models. Hwang and 

Thill (2005) discuss how fuzzy set theory can be properly applied in modelling 

localities. Their result examines whether fuzziness exists in determining the 

location of a locality. Their study develops a fuzzy set membership function for 

indeterminate boundaries of localities. Verstrate et al. (2005) review two different 

approaches for representing field-based fuzzy geographic information with respect 

to their benefits and their drawbacks. These are an extended vector-based method 

using triangulated irregular networks (TIN) and an extended bitmap model. Liang 

and Ding (2003) propose a fuzzy multiple criteria decision-making (MCDM) 

algorithm based on fuzzy set theory and -cut concept. In their study, they attempt 

to efficiently grip the representation and comprehension of decision-makers 

(DMs’) opinions and the ambiguity existing in available information by utilizing 

triangular fuzzy numbers to aggregate the individual opinions used to convey the 

relevant assessment of all DMs’ viewpoints and the monetary/ quantitative terms. 
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Liu et al. (2009) introduce the uncertainty field model based on the conceptual 

model of spatial assertions to represent the probability distribution of a point 

locality. Their research extends the research by Guo et al. (2008), and aims to 

develop a general and more complete positioning method that is suitable for a 

variety of textual descriptions. Fonte and Lodwick (2004) review the computation 

of areas of fuzzy geographical entities (FGEs) and consider two methods: Crisp – 

Rosenfeld (1984), which seems to be limited in its applicability, and Fuzzy – New 

Fuzzy Area Operator, which gives more information about the possible values of 

the area and enables the propagation of the fuzziness to the spatial extent of the 

entity. Guesgen and Albrecht (2000) propose a scheme for incorporating imprecise 

qualitative spatial reasoning with quantitative reasoning in GIS and that is not 

merely restricted to Euclidean geometry as they have adopted fuzzy sets theory to 

model qualitative spatial relations among objects. The same idea is also 

highlighted again by Guesgen (2002); when he looked at qualitative spatial 

reasoning in GIS and gives focus to the aspect of distance particularly the role of 

fuzzy set theory in describing the proximity (i.e. how close objects are to each 

other).  

Having mentioned some applications of using fuzzy set theory in GIS, Robinson 

(1988) identifies two methods of obtaining fuzzy membership in GIS worlds:  

1. The similarity relation model which mainly concerns data driven and 

involves searching for patterns within a dataset in much the same way as 

the traditional clustering and classification methods. The most widely 

implemented approaches are fuzzy c-means algorithms (or k-means 

clustering) (Bezdek, 1981) and fuzzy neural networks (Burrough and 

McDonnell, 1998; Foody, 1996).    

2. The semantic import model, which in contrast is based on expert knowledge 

that specifies a formula or formulae to derive it from existing class 

definition (Altman, 1994; Burrough and McDonnell, 1998). 
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2.5.1 Fuzzy Objects:  

The geographical data has two main structures: raster structure (which defines 

space as an array of equally sized cells arranged in rows and columns, each cell 

containing an attribute value and a location coordinate), and vector structure 

(which represents geographic features such as points, lines, and polygons as a set 

of coordinates). Vagueness is implicit in spatial data and this can be shown in both 

raster and vector structure. 

There are many studies based on the vector representation of spatial vagueness. 

Dilo et al. (2007), for instance, provide a model for a spatial data system that can 

handle vague objects. This model categorizes the vague spatial objects into vague 

points, vague lines, vague regions and vague partitions. The authors make an 

interesting representation of spatial objects that possess thematic vagueness, and 

argue for vague regional types which cover locational vagueness, although the 

vague point and line types presume known (crisp) location. Schneider (1999), in 

contrast, defines a structure of three fuzzy spatial data types for fuzzy points, lines, 

and regions respectively. In his view a fuzzy point can be defined in two different 

ways: either as a point in two-dimensional Euclidean space with a membership 

grade greater than 0, or as a point with a membership function which represents 

the degree of proximity of this point to another reference point.  

On the other hand, there are also many studies that adopt the raster 

representation for spatial vagueness (Altman, 1994; Verstraete et al. 2007). These 

studies introduce the concept of fuzzy regions that consider a region to be a set of 

points (locations) rather than being defined by its boundary as given by Hwang 

and Thill (2005). Each point within the fuzzy region can be interpreted as a degree 

to which it belongs to that region. In other words, the degree to which that point is 

inside or part of some features that may have a fuzzy boundary. Alternatively, it 

can be interpreted as the concentration of some attribute belonging to the feature 

at the particular point. A more detailed description of this approach (fuzzifying 

raster maps) can be found elsewhere for example in Guesgen and Hertzberg, 

(2001), Duff and Guesgen, (2002), or Guesgen et al. (2003). 
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Regardless of the data structures illustrated above, the available models of vague 

spatial data, particularly those related to vague regions and their topological 

relations, can be summarized into two groups (Dilo et al. 2007; Verstraete et al. 

2007). The first group is Broad Boundary Regions (sometimes known as the Egg 

Yolk Models). These consider vague regions to have a homogeneous 2– 

Dimensional boundary rather than a 1– Dimensional boundary (i.e. inner and 

outer boundaries). Locations in such models all have the same degree of 

membership to the region. Furthermore, these models do not take account of 

gradual transition. The second group is recognized as a Fuzzy Spatial Object, which 

employs fuzzy set theory for modelling gradual changes.  

Another distinction concerning the aspects of spatial vagueness models is made by 

Schneider (1999). He points out three general design methods: exact model, 

probabilistic model and fuzzy model. The exact model transfers type systems and 

concepts for spatial objects with sharp boundaries to objects with unclear 

boundaries and models both uncertainty and fuzziness in a restricted way. The 

second, probabilistic, model is described as subjective and depends upon the 

probability theory, mostly on model positional and measurement uncertainty. The 

fuzzy model is described as objective, which seems to be preferential, is based on 

fuzzy set theory and predominantly concerns fuzziness. 

2.6 Modelling Vagueness in GIScience 

Approaches for modelling vagueness have been proposed in many areas. This 

section aims to review some of the proposed works, classify them depending on 

the type of vagueness they convey and provide some generalisations. As indicated 

above, the issue of vagueness can be discussed under two broad categories; 

vagueness in determining the location (fuzzy boundary) and vagueness in feature 

definition (fuzzy class). 

The first type of vagueness is the most widely addressed in the current literature, 

and constitutes the most original part of this report. For example, villages 

inherently have indeterminate boundaries and can be modelled as fuzzy regions. 

Crawford (2002) develops and evaluates a novel approach for linking population 
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and environmental data (by transforming discrete village points, with associated 

demographic and economic attribute data) across a thematic domain, and spatially 

representing functional regions that partition the landscape into village territories. 

Mesgari et al. (2008) also develop a model that implements overlay functions 

based on fuzzy set theory to examine the usability of such functions in integrating 

data related to indeterminate phenomena. They present a case study of 

determining the suitable locations for building commercial sites for oil production 

in the west of Iran. 

Moreover, there are many works in the fuzzy literature to identify vague regions 

using qualitative methods engaging human subjects. Montello et al. (2003), for 

example, conduct an empirical study that investigates people’s perception about 

the extent of downtown Santa Barbara. Their method is based on eliciting 

vagueness in the boundaries in two ways: by comparing variation in boundary 

locations across participants and by having participants draw different boundaries 

to indicate their varying confidence in region membership for different parts of the 

area. Similarly, Mansbridge (2004) examines how people perceive ill-defined 

geographical space in relation to factors that might be expected to influence their 

conceptualization of space. The author conducted a survey at three locations in 

central Sheffield, investigating whether location affects perception of Sheffield City 

Centre. The survey described in this paper is an exploratory study of where people 

consider the vague area of Sheffield City Centre to be.  She also investigates 

peoples’ perceptions of the Midlands, an imprecise region on a larger scale than 

Sheffield City Centre.  

Recent developments in the qualitative methods have led to a renewed interest in 

online mapping using web-based questionnaire. Water and Evans (2003 & 2008) 

produce a new set of tools for capturing fuzzy areas and their associated attributes 

through a web based mapping system. That contains a spraycan tool allows users 

to tag information onto diffuse areas of varying density. By way of illustration, they 

use the system to present the locations considered to be “high crime areas” in 

Leeds. Recently, a similar study suggested by Rosser and Morley (2010) offers a 

Web 2.0 mapping system for eliciting people’s understanding of places. Their 
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application provides a novel approach to capturing boundaries, focused on users 

rating areas with a spray can tool.  In contrast to the work on capturing fuzzy areas 

described by Waters and Evans (2008), this study suggests different technologies 

(JavaScript, Flash and Canvas) in order to prototype and test several interfaces. 

Furthermore, there is also a large volume of published studies that employs the 

web as a source to model the extent of vague places. For instance, Goodchild et al. 

(1998) present methods for searching digital spatial data libraries that extend the 

case of ill-defined geographic footprints. Such cases are common when information 

is catalogued or searched for using vernacular place-names, rather than the 

officially recognized place names which often exist in gazetteers. These methods 

are implemented within the framework of the Alexandria Digital Library, a project 

to implement a digital spatial data library for geo-referenced materials. Arampatzis 

et al. (2006) further present several steps in the derivation of boundaries of 

imprecise regions using the Web as the information source. They explain how to 

obtain locations that are part of, and locations that are not part of, the region to be 

delineated and also suggest methods to compute the region algorithmically. In 

order to evaluate the proposed approach, the authors provide a discussion of 

experimental results that show how well this approach works in both precise 

(Wales) and imprecise (East Anglia, Midlands, and South East) regions in the UK.  

Another technique to automatically construct a representation of the spatial extent 

of neighbourhoods is introduced by Schockaert and de Cock (2007). Because of the 

subjective and vague nature of many neighbourhoods, they do not commit 

themselves to one single boundary for each neighbourhood. Rather, they represent 

the extent of a neighbourhood as a fuzzy footprint (set) of locations. Jones et al. 

(2008) also describe and evaluate a method that utilises knowledge acquired from 

the web pages to model the extent of vague places and generate their approximate 

boundaries. They argue that vague place names are frequently accompanied in text 

by the names of more precise co-located places that lie within the extent of the 

target vague place. Therefore, the density surface modelling of the frequency of co-

occurrence of such names provides an effective method of representing the 

inherent uncertainty of the extent of the vague place.  Interestingly this approach 
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generates representations of vague regions that can be stored in digital gazetteers, 

and provides the ability to process queries that name such vague places by 

associating them with quantitative geographic regions.  

Furthermore, Twaroch et al. (2008 a) discuss the acquisition of vernacular use of 

place names from web sources (such as Flickr and Geograph which facilitate the 

geo-tagging of personal resources and allow people to mark up photo collections) 

and their representation as surface models derived by kernel density estimators. 

They introduce models of vernacular place name geography on a nationwide scale, 

a specific geographic region on Cardiff, Wales, UK, for which automated methods to 

acquire the relevant data are required. Additionally, Hall (2010) develops models 

to represent vague spatial data quantitatively based on text mining among 

geotagged images and human subject experiments on using some spatial 

propositions. His system proves the ability to determine images’ locations based 

on the spatial information contained in their captions. 

The second type of vagueness, on the other hand, is less treated in the current 

literature. For examining the vagueness in feature definition Sui (1992) indicates 

the viability of incorporating fuzzy set theory into GIS modelling, especially in 

urban applications. This is proposed since the criteria used in the evaluation 

sometimes cannot be clearly defined, because of the gradual transition of urban 

land value. His study therefore presents a fuzzy cartographic model for urban land 

evaluation in Jining City, China. Further work described by Arnot et al. (2004) 

explore the variation of metric values when it is hard to distinguish exactly where 

one land cover type changes into another; in this case, the ecotone is not an abrupt 

transition, but has a spatial extent in its own right. The values of metrics are 

explored in a landscape classification, using satellite imagery and the fuzzy c-

means classifier, into fuzzy sets so that every location has a degree of belonging to 

all classes.  

Similarly, Fisher et al. (2004) propose an approach based on multiscale analysis, to 

determine the fuzzy membership of morphometric classes of landscape. They 

explore this idea by looking at peaks and passes in the Lake District of northwest 
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England. These are analysed with respect to named features in a place name 

database for the area, and the application of these results to visibility analysis is 

explored. In addition, Sicat et al. (2005) demonstrate fuzzy modelling of farmers’ 

knowledge (FK-based fuzzy modelling) for agricultural land suitability 

classification using case spatial data sets from India. Capture of FK was through the 

rapid rural participatory approach. The authors distinguish two ways for FK-based 

modelling of pertinent spatial data into fuzzy sets, depending upon the correlation 

or equivalence between farmers’ definitions and scientific classifications of certain 

land characteristics.  

Moreover, Chaudhry and Mackaness (2008) introduce a methodology for 

automatically discerning mountain ranges in addition to the smaller hills that 

constitute them. The algorithm used in this study utilizes derivatives of elevation 

and the density of morphological properties in order to automatically identify 

individual hills or mountains and ranges, together with their extents.  Interestingly 

enough, this study presents an approach of fiat boundaries for hills and ranges 

based on their morphological properties and prominence. Although it has not 

modelled the fuzziness in the output boundaries, it argues that the suggested 

approach can be utilized in the modelling of fuzziness. 

Remarkably, Fisher and Comber along with other colleagues have pay special 

attention to the issue of fuzziness in land classification. Comber at al. (2005) argue 

for the preference of fuzzy classification, where an object has a membership 

(however small) to every class, for analysing complex ecosystems where land 

cover types are heterogeneous or are poorly represented by large pixels. This view 

is also supported by Fisher et al. (2006), who suggest the use of fuzzy models for 

environmental data, land cover mapping and landscape ecology. They develop 

fuzzy change matrix (change detection techniques) to accommodate descriptions 

and measures of sub-pixel changes (fuzzy change), rather than the Boolean 

approach, which depends on pixel-by-pixel comparison and accepts only binary 

changes. Moreover, Comber et al. (2008-b) employ fuzzy set theory to analyse the 

conceptual confusion and overlaps, with data and classifications, associated with 

land cover and land use semantics. They illustrate the differences between the two 
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by analysing their embedded descriptions of land cover and land use definitions of 

‘forest’. In later studies, Comber et al. (2012 a & b) use geographically weighted 

approaches to describe the spatial variation in the accuracy of Boolean and fuzzy 

classifications of remotely sensed data. It proposes a portmanteau approach to 

describe Boolean land cover accuracy and fuzzy difference measures to describe 

the accuracy of fuzzy land cover. A similar study by (Comber et al. 2012 b). Yet it is 

quite noticeable that fuzzy set theory has proved its success in modelling 

uncertainty in a variety of remote sensing image classification contexts, as already 

seen in previous research (Arnot et al. 2004; Fisher 2010; Elaalem et al. 2011). In 

addition to latest work by Fisher and Tate (2015) use fuzzy set theory to derive 

fuzzy class memberships from the results of the UK Output Area Classification 

(OAC) for the city of Leicester City, UK. This work is further extend and modified to 

generate type-2 fuzzy sets for each Output Area (Fisher et al. 2014). 

2.6.1 Higher Order Vagueness  

Researchers have paid attention to new types of fuzzy sets – type 2 fuzzy sets 

(sometimes equated to higher order vagueness). Fisher (2010) and co-authors 

(Fisher et al. 2007, Fisher et al. 2014) for example, initiate a powerful and wide-

ranging discussion on this scope. Fisher discusses fuzzy classification over a large 

area (land cover mapping from remotely sensed data) in more depth and proposes 

alternative methods of reporting fuzzy areas, namely as type 2 fuzzy sets (higher 

order vagueness) or as both fuzzy areas and fuzzy numbers (2010). Fisher et al. 

(2007) explore the fuzzy representation of higher order vagueness in spatial 

phenomena with respect to the concept of type n fuzzy sets and examine the 

spatial extent of mountain peaks in Scotland as an instance of exploring the 

population of geographical Type 2 sets. Cheng et al. (2004) also investigate the 

double vagueness (from space and scale) in identification of coast landscape units. 

They employ fuzzy set theory to describe the vagueness of geomorphic features 

due to the continuity in space and use statistic indicators to evaluate the vagueness 

derived from the scale of measurement. Fisher et al. (2004) also propose an 

approach based on the multiscale analysis of the landscape, and from that derive 

fuzzy memberships of morphometric classes, and explore the consequences of this 
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by looking at regional scale morphometry in the Lake District of northwest 

England. 

2.7 Fuzziness and Travelling Salesman Problem  

Fuzzy set theory has been applied to many disciplines such as computer science, 

artificial intelligence, expert systems, medicine and human behaviour, pattern 

recognition, control engineering, operations research, management science, and so 

forth. Among these, one possible application (considered later in this thesis) 

focuses in using fuzzy methods in Travelling Salesman Problem (TSP). 

Traditionally, a map of cities is given to the salesman, who has to visit all the cities 

only once and return back to the starting point with the minimum travel distance, 

cost or time. It is typical in such problem to assume that the distance between two 

cities as a constant, whereas in reality uncertainty always exists. This where fuzzy 

set comes into play. Lu and Ni (2005) argue that fuzziness and randomness may 

coexists in traveling salesman problem in real world situations. As the route may 

change because of the traffic environment (fuzziness), and the speed of travel 

might be random at different time, weather or traffic circumstance. Therefore, they 

use a fuzzy random number to represent the travelling time between two cities, 

and define three concepts of shortest path in fuzzy random situation (expected 

shortest path, (α, β)-path and chance shortest path according to different optimal 

desire). Botzheim et al. (2009) also offer a novel construction and formulation of 

the TSP in which they take into consideration the requirements and features of its 

practical application in road transportation and supply chains. Fereidouni (2011) 

also develops a fuzzy mathematical programming methodology for solving the TSP 

in uncertain environments based on a fuzzy multi-objective linear programming 

(FMOLP) model with piecewise linear membership function for solving a multi-

objective TSP in order to simultaneously minimise the cost, distance and time. 

Some other works have been proposed by Kumar and Gupta (2011 & 2012) for 

solving fuzzy assignment problems (APs) and fuzzy travelling salesman problems 

with different membership functions. A new algorithm that is similar to the 

classical assignment method has also been proposed by Dhanasekar et al. (2013) 

to solve fuzzy TSP considering the ranking method of fuzzy numbers. Similarly, 
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Chandrasekaran et al. (2013) introduce a new method for solving travelling 

salesman problems using transitive fuzzy numbers. The authors present numerical 

examples to show how the optimal solution as well as the crisp and fuzzy optimal 

total cost provided from this technique.  However, all previously mentioned 

studies focus mainly on the mathematical and computational aspects of the 

problem despite their different methods. Besides, no attempt was made to 

adequately discuss the possible sources of uncertainty and fuzziness associated 

with the locations themselves. Thus, as part of the main aim of this research is to 

investigate the implication of using the traditional method of the travelling 

salesman problem on specific and indeterminate (fuzzy) locations. In particular, 

unlike previous studies which tend to consider numerical examples to represent 

fuzziness and imprecision in the travelling salesman problem, this study utilizes 

the TSP occurring in real life situations proved to be vague and fuzzy model.  

2.8 Summary and New Insights 

The key point arising from this review is that uncertainty and vagueness exist in 

many areas of GIScience. Once a geographical phenomenon is identified vague, 

then it must be addressed. There are several approaches and theories to address 

vagueness, one of which is fuzzy set theory.  Although extensive research has been 

carried out on modelling geographical features as vague or fuzzy entities (as 

discussed in the previous sections). This body of work can be classified under two 

broad divisions: the first set of research have focused on the theoretical and 

computational formalization of fuzzy objects and the mathematical operation that 

can be applied (fuzz measures of distance, ranking fuzzy numbers and so on). 

While other studies focused on modelling vague regions employing the web or 

other vernacular resources (e.g. fuzzy footprint for downtown, city centre and so 

forth). There are few research if any that develop the fuzzy model and adequately 

covers the characteristics of these objects in practical geographical context; and 

even the operations derived from them have not been identified. This has given an 

account of the reasons for the need to undertake this research, which sets out to 

investigate the extent to which fuzzy set theory can be used to model vague 

geographical entities and then employ the fuzzy model in application analysis. 
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 Villages' Identification and Data Specification  

3.1 Introduction 

It is an important challenge for researchers in GIScience to consider aspects of 

uncertainty that are mainly consequently associated with geographical places as it 

is generally recognised that people in everyday life think and communicate about 

the world in terms of vague concepts. Though they talk about particular 

geographical places, they typically use vernacular geographical terms rather than 

scientific geographical vocabularies, even when they exist, in describing regions 

and spatial relations (Montello et al. 2003). They often refer to geographical 

contexts without clear definitions of where or what they are. There is also an 

inconsistency with the interpretation of geographical features because of the 

vague and imprecise nature of place names. Terms such as “Midwest” in the United 

States and “Midlands” in the United Kingdom have no formal geometric boundaries 

and may be interpreted differently by different people (Arampatzis et al. 2006), 

although they are used in conversation and on road signs.  

Equally, as Jones et al. (2008) state, there are places whose names have been 

adopted for administrative purposes, but for which the administrative boundary 

differs from many people’s perception of the place and its extent. Indeed, there are 

many instances of vague or vernacular terms used at different levels of 

geographical scale, one of which is the subject of this chapter: that is, rural 

settlements or villages.  

In this respect, the overall aim of this chapter is to explore how village territories 

or extents are defined in different data sources and thereby to gain insight into 

different aspects of uncertainty associated with the concept of individual places, in 

this case villages. Understanding such qualities associated with spatial information 

is important to be able to use it effectively and intelligently in both social and 

physical sciences. The chapter sets the scene for this work by providing conceptual 

descriptions of rurality in general and its practical definition used in this work 

(Section 3.2). Then the research study area is introduced in Section 3.3. Detailed 
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descriptions of the acquired data for the research are provided in Section 3.4. The 

analytical strategy applied in this study to identify villages is explained in Section 

3.5. Following from that, Section 3.6 explores the origins of the ambiguity and 

contradiction in village place names. Finally, Section 3.7 summarises the key points 

of this chapter. 

3.2 Terms and Definitions of Rurality  

Definitions of rurality, ruralness and what constitutes a rural area are not 

consistent or precise. As Flanagan (2007) noted, what is considered to be a rural 

area in one country is very different from the notions of rurality in another 

country. As an example, a settlement with a population of 5,000 may be perceived 

as rural in England but urban in Northern Ireland (Flanagan, 2007). People 

perceive rurality in a number of different ways. For example, when local people are 

asked to categorise their own settlement, or whether they identify themselves as 

being rural residents, their answers will depend on their sense of identity and self 

(Castleden et al. 2010).  

As a contested concept, various approaches have been proposed to define rurality 

based on different factors. Lienau (1973), for example, indicates four aspects of 

considering settlements. These are the morphological or physiognomic aspect (i.e. 

shape, form); the functional (as regards its own role as well as its place in the 

wider set of correlations); the genetic (origin and development up to the present); 

and the prospective or prognostic aspect (future development by means of 

planned initiatives or “natural” growth). In later work, Cloke (2006) lists three 

distinctive categories to identify rural areas. These are based on: firstly, functional 

perspective, dominated area by extensive land uses, notably agriculture and 

forestry. Secondly, a political-economic perspective which attempts to position the 

rural as the product of broader social, economic and political processes. Finally, a 

perspective in which the area is socially and culturally constructed (engenders a 

way of life which is characterised by a cohesive identity of cultural and moral 

values). It has been argued also that attempts at rematerialising the rural have 

come from three aspects (Woods, 2009) concerning the geographical context of 
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rural locality, the statistical and political definitions of rural space and, finally, 

conceptualising the rural as a hybrid and networked space. 

It is not only the varied functions and meanings attributed to rural space that have 

made "rurality" into an ambiguous and complex concept, but also a host of 

settlement terms and terms indicating types or special traits of settlements 

(Lienau, 1973). Woods (2011) in his book titled "Rural", discusses in depth the 

meaning of rural settlement from a rural geographer’s perspective. Additionally, he 

elaborates on how these diverse meanings and terminologies have shaped the 

effects of the social and economic structure of rural settlements on local people`s 

everyday lives.  

One of the more recent statistical or data-driven definitions of rurality is provided 

by Bibby and Shepherd (2004). They developed a typology for settlements that 

sought to differentiate between different types of rural and urban settlements. 

Their study for the UK government describes and illustrates the methodologies 

used and the key decisions taken in defining a classification of smaller urban areas 

and rural settlements in England and Wales. Their definition of rurality defines a 

settlement hierarchy of small villages, hamlets and isolated dwellings, as depicted 

in Figure 3.1. 

 
Figure 3.1: The new rural definition and area classification modified after Bibby & Shepherd 

(2004). 

In this thesis the identification of rural settlements is treated from a perspective 

that considers the settlement as a vague region without knowing where it is 

actually located or its extent (see Section 3.5). The terms "settlement" and "village" 
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are used interchangeably, despite their meaning within a specific cultural context, 

to refer to vague rural settlements.  

3.3 Study Area 

The geographic focus of this research is the rural settlements of Hinckley and 

Bosworth, a local government district with borough status in southwestern 

Leicestershire, England (Figure 3.2). It covers an administrative area of 297.35 

km² and in 2011 had a resident population of 105,078 people (ONS). 

 

Figure 3.2: Location of Hinckley and Bosworth District within Leicestershire. 

(Source: © Crown Copyright/database right 2012. An Ordnance Survey/EDINA 

supplied service.) 
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The borough of Hinckley and Bosworth covers an area of diverse landscape and 

rolling countryside (Hinckley and Bosworth Borough Council, 2006). That is 

predominantly rural in nature, with a mixture of enclosed farmland, large cropped 

fields, intact hedgerow patterns and scattered woodland and hedgerow trees 

(Hinckley and Bosworth Borough Council, 2014). Hinckley is the district's 

administrative centre (urban centre) and it is located towards the southeast part 

of the borough along with Burbage, Earl Shilton and Barwell which constitutes the 

majority of the built up area.  

The Borough was formed (granted borough status) in 1974 under the Local 

Government Act (1972) by the merger of the Hinckley Urban District and the 

Market Bosworth Rural District, minus Ibstock. Although most of its settlements 

dated back to Saxon times. Table 3.1 presents background information and history 

for some of the settlements, based on their descriptions in the key-to-English-

place-names1 and Hinckley and Bosworth Borough Council websites (Hinckley and 

Bosworth Borough Council, 2006). 

  

                                                        
1 The Institute for Name-Studies (INS) at the University of Nottingham (2015) Key 
to English Place-Names. Available at: http://www.nottingham.ac.uk/ins/key-to-
english-place-names.aspx. 

http://www.nottingham.ac.uk/ins/key-to-english-place-names
http://www.nottingham.ac.uk/ins/key-to-english-place-names
http://www.nottingham.ac.uk/ins/key-to-english-place-names.aspx
http://www.nottingham.ac.uk/ins/key-to-english-place-names.aspx
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Table 3.1: Background information and history for some settlements. 

Settlement Original name 
Elements and their 

meanings 
Historical context 

Hinckley 

Hynca Lēah 
'Hynca's 
wood/clearing'. 
 

Hynca: personal name 
Lēah: A forest, wood, glade, 
clearing; (later) a pasture, 
meadow. 
 

It is the main urban area, 
located in the south of the 
Borough. 
The town became a centre for 
the local wool and knitting 
industries. 

Burbage 
'Fortification 
valley/brook' 

burh: A fortified place. 
bǣce: A beach. 

It is located immediately to the 
southeast of Hinckley town. 
The original village settlement 
was developed in linear 
patterns 

Earl Shilton 
'Shelf 
farm/settlement' 

Scelf: A shelf, a shelving 
terrain; a pinnacle, 
battlement. 
tūn: An enclosure; a 
farmstead; a village; an estate 

It is located towards the 
southeast of the Borough. It 
developed as a result of the 
expansion of the hosiery, 
knitwear and boot and shoe 
trades. 

Market 
Bosworth 

'Bosa's enclosure' 
'Market' from the 
important market 
here  

pers.n: Personal name 
worð: An enclosure. 
market: A market, a market-
place. 

It is an historic market town 
located in the centre of the 
Borough. It was originally 
small nucleated settlement, 
then it has grown up around 
the central market place. 

Barwell 
'Boar 
spring/stream' 

Bār: A boar (wild or 
domestic). 
wella: A spring, a stream 

It is located towards the 
southeast of the Borough. It 
evolved as a centre for the boot 
and shoe trade 

Desford 
'Wild-animal ford' 
or 'Deor's ford'. 

pers.n: Personal name 
dēor: An animal, a beast. 
Ford: A ford. 

It is predominantly 
agriculturally based, with small 
nucleated settlement pattern. 

Markfield 
'Mercians' open 
land'. 

Merce: The Mercians. 
Feld: Open country, 
unencumbered ground (eg. 
land without trees as opposed 
to forest, level ground as 
opposed to hills, land without 
buildings); arable land (from 
late tenth century). 

It is located in the north-
eastern corner of the Borough, 
originally was a small linear 
settlement. 

Ratby 
Rota's 
farm/settlement'. 

pers.n.: Personal name 
bȳ: A farmstead, a village. 

It was primarily an agricultural 
settlement then changed due to 
the advent of the hosiery 
industry 
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3.4 Data Sources 

The data used in this research can be categorised into two distinct groups. The first 

group is core datasets that are used in the analyses to model the village extents. 

The second one is supplementary data which are of analytical interest for the 

research problem. All the data are obtained with written permission from Great 

Britain's national mapping authority, the Ordnance Survey (OS). 

3.4.1 Core Data 

The main data for this research are records of place names for rural settlements 

that cover the entire study area. These are of two types: formal (OS MasterMap® 

Address Layer 2) and contributed data (OS Point of Interest®). These data consist 

of comprehensive address information for each property and include a settlement 

name. These are used to identify a particular settlement and then approximate its 

spatial extent (footprint); this process is discussed fully in Chapter 4.  

OS MasterMap® Address Layer2 

According to Keith and McLaren (2003), there are two major functions for 

establishing addresses: firstly, for mail delivery; and secondly, to be used as a 

reference allowing a property to be found and defined. To respond to this need, 

there are currently a number of different organisations in Britain that hold and 

maintain national public sector databases of postal and property-level addresses. 

The main purpose of this section is to develop an understanding of the Address 

Point schema. So for this dataset, the source of the address information has been 

assembled from: 

 The Royal Mail’s Postcode Address File® (PAF), which supports the national 

postal service; 

 The Ordnance Survey GB Address-Point – created from PAF and providing a 

national geo-referenced address database; and 
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 The Valuation Office Agency (VOA) databases that support the tax base for 

domestic (Council Tax) and non-domestic (National Non-Domestic Rates) 

properties. 

Therefore, the geographical features in this data are broadly classified in terms of 

their themes, which are:  

 Postal address theme – the creation process for an address is the addition of 

OS identifiers, classification, National Grid coordinates and other metadata 

to addresses provided in the Royal Mail’s PAF. This theme contains 

residential and commercial premises; 

 Multi-occupancies without a postal address (MOWPAs) – these are sourced 

from the addresses in the Royal Mail’s new Multi-Residence (MR) file 

containing residential premises that fall outside the Royal Mail’s definition 

of a delivery point because the premises’ letter boxes are not usually 

accessible to their delivery person; for example, flats within a converted 

house that are clearly separate residences but only have one letter box that 

the postal delivery person can reach (usually the front door of the house); 

or 

 Objects without a postal address (OWPAs) – these are objects that do not 

have a Royal Mail address, but are still significant enough buildings or 

structures within the environment that customers may wish to identify, 

such as churches, halls, car parks, and public conveniences. These are all 

derived from the OS MasterMap Topography Layer. 

Thus, the addresses included in the data are of two types, either a postal address 

related to a Royal Mail Delivery Point Address or one using the British Standards 

Institute form of address (BS7666). 
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British Standard BS7666 Address 

This is a spatial dataset for geographical referencing that identifies a national 

standard for holding details on every street, piece of land and property 

information (BS 7666-0:2006). This provides a structure for creating and 

maintaining unique references for any given address. BS7666 breaks down the 

address into several components, described in Table 3.2, to provide general 

structures of addresses enabling gazetteers of a range of classes of geographic 

locations to be created in a consistent way. 

Table 3.2: The structure of the British Standard Addresses (BS7666). 

Element Field Description 

Organisation 

and Premise 

Sub-

Dwelling 

Otherwise known as ‘SAO’ (Secondary 

Addressable Object); examples of this might be a 

flat number, or an apartment name 

Number / 

Name 

Otherwise known as ‘PAO’ (Primary Addressable 

Object) or ‘Dwelling’; examples of this would be a 

house number or house name 

Thoroughfare Street The road on which the building is located 

Locality 

Locality The name of a suburb, area or village 

Town The town in which the address resides 

County The county or administrative area 

Postcode Postcode The postcode for the residence 

Postal Address 

This allows addresses to be written in a simple line format using mandatory fields 

(postcode, post town and organisation name or PO Box number or building name/ 

number or sub-building name/number). The full structure of the postal address is 

presented in Table 3.3 including other optional attributes. Table 3.4 illustrates 

how the broad categories of themes are obtained with respect to the two basic 

address types. 
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Table 3.3: The structure of the Postal address type (Royal Mail Delivery Point 

Address). 

Element Field Description 

Organisation  

Organization Name 
The business name given to a delivery point 
within a building or small group of buildings.   

Department Name 
This is indicated in case the mail is received by 
subdivisions of the main organisation at distinct 
delivery points.  

Premises 

PO Box Number 
Post Office box identifies the position of the 
delivery office 

Sub-building 
Name/Number 

These are identifiers for subdivision of 
properties 

Building Name 
A description applied to a single building or a 
small group of buildings. 

Building Number 
A number given to a single building or a small 
group of buildings, thus identifying it from its 
neighbours (sometimes called postal number). 

Thoroughfare 

Dependent 
Thoroughfare Name 

In certain places, for example, town centres, 
there are named thoroughfares within other 
named thoroughfares, such as parades of shops 
on a High Street where different parades have 
their own identity. For example, KINGS 
PARADE, HIGH STREET and QUEENS PARADE, 
HIGH STREET 

Thoroughfare Name 

In OS MasterMap Address Layers, a 
thoroughfare is fundamentally a road, track or 
named access route on which there are Royal 
Mail delivery points; for example, HIGH STREET 

Locality 

Double Dependent 
Locality 

This is used to distinguish between similar or 
the same thoroughfares within a dependent 
locality.  

Dependent Locality This defines an area within a post town.  

Post Town 

A town or city in which is located the Royal Mail 
sorting office from which mail is delivered to its 
final recipient. There may be more than one, 
possibly several, sorting offices in a town or 
city. 

Postcode 

Postcode 
An abbreviated form of address made up of 
combinations of between five and seven 
alphanumeric characters.  

Postcode Type 

This indicates whether a postcode applies to a 
single delivery point, which will be indicated 
with by a large value, or a number of delivery 
points, indicated by a small value. 

Delivery Point Suffix 
A two-character code identifying an individual 
delivery point within a postcode. Also known as 
a Premises Code 
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Table 3.4: Summary of the three addresses theme details. 

Theme Description Delivered from Provided in 

Postal 
Contains residential & 

commercial premises 
Royal Mail’s PAF 

Postal 

address & 

BS7666 

Non-

postal 

Considers the miscellaneous 

premises, e.g. churches, halls, 

car parks, etc. 

OS MasterMap 

Topography 

Layer 

BS7666 

address only 

Multi-

occupancy 

Contains residential premises 

in multi-occupied ones, e.g. flats 

within a house.  

Royal Mail’s 

Multi-Residence 

file 

Postal 

address & 

BS7666 

OS Point of Interest ® (POI) 

This is a tabular dataset containing around four million different geographic 

features that covers all of Great Britain. All features are supplied with location, 

functional information and addresses where possible. POI is generally considered 

the main source by which to obtain function information, as it covers the 

commercial addresses and features of interest. This contrasts with the OS 

AddressPoint Data which additionally encompasses residential addresses (Lüscher 

& Weibel, 2013). It has a three-level classification that helps in identifying the 

features or sets of features required. The top-most level comprises nine Groups, 

which are: accommodation, eating and drinking; commercial services; attractions; 

sport and entertainment; education and health; public infrastructure; 

manufacturing and production; retail; and transport. The second level is broken 

into 52 Categories for all the groups. The third level of the classification scheme is 

the most detailed level, which contains more than 600 Classes. 

3.4.2 Supplementary Data 

Parish Boundary 

According to the Department for Communities and Local Government (2010), a 

parish should reflect a distinctive and recognisable community of place, with its 

own sense of identity (Page 19, Guidance on community governance reviews). Or 

to put it differently, the ‘name’ of a parish in the Local Land and Property Gazetteer 
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(LLPG) refers to the geographical name of the area concerned, which might be 

known locally as a town, community, neighbourhood or village, rather than a 

parish. Historically, a parish is the smallest spatial unit of the administrative areas 

in England inherited from the administrative structure of the Church of England; 

the equivalent units in Wales and Scotland are instead known as ‘communities’ 

(The Office for National Statistics - ONS). These parishes only existed, for local 

government purposes, within the boundaries of the former rural district councils 

(Singh, 2009). As a consequence of this, village names may be expected to be 

equivalent to parish boundaries and therefore it would be useful to include these 

data in the research. 

The Parish Boundary is part of the OS Boundary-line® dataset that covers all 

administrative and voting boundaries in the UK. For this study, only the parishes 

that fall within Hinckley and Bosworth District are considered. There are a total of 

24 parishes (also known as Civil Parishes), apart from a parish-free area (formally 

known as Non Civil Parish) which is part of Hinckley and is superseded by other 

local government units. A complete list of the included parishes and their locations 

can be seen in Figure 3.3. 

 

Figure 3.3: Map of Hinckley and Bosworth Borough contains 24 Civil Parishes 

(CP). Hinckley is not a parished area (NCP). (Source: © Crown Copyright/database 

right 2012. An Ordnance Survey/EDINA supplied service.) 
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Basemap Background 

For visualization and to add more geographical context, two basemaps are used in 

conjunction with the maps presented in this thesis. These are of two types: 

OS MasterMap® Topography Layer 

This dataset provides a highly detailed view of surface features on the landscape 

topography at a scale of 1:1250. It is further subdivided into a number of themes: 

land area classifications: buildings, roads, tracks and paths, rail, water, terrain and 

height, heritage and antiquities, structures; and administrative boundaries. For 

visualization, therefore, it seems useful in mapping the villages to overlay the 

address point data on the OS MasterMap, as shown in the figures in this chapter.  

OpenStreetMap (OSM) 

Another background layer that contains data from OpenStreetMap is also used in 

the next chapter. This layer is one of the data sources that has considerable 

potential in GIScience, as OSM creates map data that are freely available, providing 

current digital geographic information without any legal or technical restrictions. 

In this sense, it is a popular example of Volunteered Geographic Information (VGI), 

which relies on crowdsourced spatial data (Haklay, 2008; Mooney and Corcoran, 

2011). Volunteers in the OSM community, acting as mapping parties, collect 

geographic information by taking handheld GPS devices (equipped with open 

source software) with them on journeys or go out specifically to record GPS tracks 

and then submit this information to the global OSM database (Batty et al. 2010). 

OS Strategi ® 

This is another vector representation of the Ordnance Survey’s 1:250,000-scale 

graphic maps. It provides a generalized overview of many features commonly 

portrayed on regional-scale topographic maps, such as the road network, railway 

lines, lakes and watercourses, cities and wooded areas. Of these, only the 

toponyms of rural areas are used here since this dataset contains an annotation 
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layer in which names are stored as point objects. In this way, a village is 

represented as single points, as can be seen in Figure 3.4.  

 

Figure 3.4: Map of Hinckley and Bosworth Borough containing settlement points 

from the OS strategi layer. (Source: © Crown Copyright/database right 2012. An 

Ordnance Survey/EDINA supplied service.) 
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unique and only identified in one database. A full list of these distinct settlements 

and those in common across the three different databases with counts of the 

addresses in each village is shown in Table 3.5. In total, there are 76 rural 

settlements identified in the study area based on these data. According to an 

official website for Leicestershire villages2, some settlements are misplaced or 

missing, as shown in Table 3.6. By way of illustration, a number of the villages 

were originally located in neighbouring boroughs (or even counties), but now 

some addresses fall within the Borough of Hinckley and Bosworth. In this analysis, 

small settlements (e.g. hamlets and special areas – those with very few houses) are 

disregarded, as is Hinckley as it is not a particular settlement, but is rather 

distributed around a borough yet attributed with the same name. The data were 

combined into a new database that records the settlement names and identifies 

the database that they are from. 

  

                                                        
2 http://www.leicestershirevillages.com/ ; Leicestershire villages an online community for 
residents of, and visitors to, Leicestershire. 

http://www.leicestershirevillages.com/
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Table 3.5: List of the rural settlements in the study area with counts of the 

addresses identified. 

No. Village Name BS76 POST POI No. Village Name BS76 POST POI 

1 Ambien 4 0 0 39 Market Bosworth 1140 1048 106 

2 Appleby Magna 1 10 4 40 Markfield 2291 0 173 

3 Aston Flamville 0 8 2 41 Nailstone 260 215 13 

4 Atherstone 0 0 8 42 Newbold Verdon 1429 1376 70 

5 Atterton 0 15 2 43 Newtown Linford 1 1 0 

6 Austrey 3 2 0 44 Newtown Unthank 0 27 10 

7 Bagworth 0 604 24 45 
Norton Juxta 
Twycross 

0 111 6 

8 Bagworth & Thornton 1282 0 0 46 Nuneaton 0 0 23 

9 Bardon Hill 0 8 1 47 Odstone 0 30 8 

10 Barlestone 1118 1080 30 48 Orton-On-The-Hill 0 81 8 

11 Barton In The Beans 0 103 5 49 Osbaston 161 119 10 

12 Barwell 4382 4244 221 50 Peckleton 626 95 18 

13 Bilstone 0 20 5 51 Pinwall 0 15 5 

14 Botcheston 0 198 10 52 Ratby 2010 1904 60 

15 Bufton 0 3 0 53 Ratcliffe Culey 0 83 12 

16 Burbage 6979 6635 257 54 Sapcote 0 1 0 

17 Cadeby 133 83 9 55 Shackerstone 465 68 9 

18 Carlton 139 124 8 56 Sharnford 0 2 0 

19 Castle 2076 0 0 57 Sheepy 692 0 0 

20 Clarendon 5702 0 0 58 Sheepy Magna 0 302 14 

21 Coalville 0 0 6 59 Sheepy Parva 0 47 3 

22 Coatbridge, Lanarkshire 0 0 1 60 Shenton 0 53 9 

23 Congerstone 0 151 9 61 Sibson 0 85 13 

24 Copt Oak 0 20 1 62 Snarestone 0 5 0 

25 Dadlington 0 119 11 63 Stanton Under Bardon 366 281 23 

26 De Montfort 4532 0 0 64 Stapleton 0 195 26 

27 Desford 1864 1497 95 65 Stoke Golding 797 793 59 

28 Earl Shilton 4884 4763 227 66 Sutton Cheney 339 65 14 

29 Ellistown 0 11 5 67 Thornton 0 460 27 

30 Elmesthorpe 0 1 0 68 Thurlaston 0 5 1 

31 Fenny Drayton 0 222 14 69 Trinity 2988 0 0 

32 Gopsall 0 9 4 70 Twycross 508 148 14 

33 Groby 3282 2954 113 71 Ulverscroft 0 3 0 

34 Higham On The Hill 483 284 15 72 Upton 0 43 8 

35 Hinckley 0 0 1346 73 Wellsborough 0 27 4 

36 Kirby Muxloe 4 103 3 74 Witherley 767 313 13 

37 Kirkby Mallory 0 176 19 75 Wolvey 0 5 3 

38 Lindley 0 8 2 76 Wykin 0 25 0 
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Table 3.6: List of the rural settlements that are either misplaced or missed from 

the data. 

No. Misplaced Village  District No. Missed Village  

1 Aston Flamville 

Blaby District 

1 Brascote 
2 Elmesthorpe 

3 Sapcote 
2 Bull In Oak 

4 Sharnford 

5 Thurlaston 
3 Far Coton 

6 Newtown Linford 
Charnwood Borough 

7 Ulverscroft 
4 Field Head 

8 Appleby Magna 

North West Leicestershire 

9 Bardon Hill 
5 Little Orton 

10 Coalville 

11 Ellistown 
6 Little Twycross 

12 Snarestone 

13 Atherstone 

County of Warwickshire 

7 Merry Lees 
14 Austrey 

15 Nuneaton 

8 Sketchley 
16 Wolvey 

17 
Coatbridge, 
Lanarkshire 

Lanarkshire 

 

3.6 Disambiguation of Place Name Records 

Before proceeding to model the rural settlements as vague objects (in the 

following chapter), this section explains in more detail why these rural areas are 

considered vague. The data described in Section 3.4 will be used to represent the 

settlement patterns and to model vagueness in place names, despite the data 

defining feature locations through geocoded address points, which are assumed to 

be recorded accurately. In addition, there are further aspects of uncertainty 

beyond the vagueness issue. Settlement (placial) ambiguity arises from a lack of 

precise locations, crisp boundaries and universal names for many places (Davies et 

al. 2009), and this sections seeks to provide a starting discussion about the 

conceptual vagueness and ambiguity reflected in village name records. 
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3.6.1 Indeterminacy, Incompleteness and Inconsistency 

As mentioned in the previous section, the variation in the distinct village names in 

the different databases suggests conceptual inconsistency in the definition of any 

individual settlement. The combined database allows investigation of these 

vaguely defined entities. Incompleteness is commonly associated with many 

spatial data sets (Worboys, 1998 a &b). Bordogna et al. (2006) describe this lack of 

consistent information relative to a spatial sub-region as being due either to the 

fact that the observation does not cover that specific region or, broadly, to the 

presence of obstacles between the point of observation and the phenomenon 

observed. This is evident in the settlement data, in which some village names are 

recorded differently in different data sources. For instance, village names shared in 

the three databases are Cadeby and Burbage (Figure 3.5). It is clear from the figure 

of different point sources that the spatial patterns of the village varies in their 

distribution and extent. POI tends to have less number of addresses (point 

features) than the other address point data, whereas the BS7666 have much more 

points which are basically missing from other database (POI) or named differently 

in the POST database. 
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Figure 3.5: Examples of the disparity in the village names due to using different 

address databases. The column on the left shows the same settlements with the 

address being aggregated from all databases. (Source: © Crown copyright and/or 

database right 2012. All rights reserved.) 

This indicates a further issue of inconsistency that derives from the availability of 

multiple observations of the same feature - or in this case village, which often leads 

to conflicts and contradictions (Bordogna et al. 2006), as shown in Figure 3.5. It is 

clear from the figure that the spatial patterns of the villages vary in the distribution 

and extent based on the different systems of addresses. The issue of indeterminacy 

and incompleteness can be further contextualized by mentioning that not all the 

villages located in Hinckley and Bosworth exist in the OS Strategi dataset (i.e. not 

represented as single points- see Figure 3.4 and Table 3.5). For example, Wykin, 

Wolvey, Trinty, Sheepy, Pinwall, Lindley, Gopsall, De Montfort, Clarendon, Castle, 

Bufton, Austrey, Atterton and Ambien are all disregarded in this dataset. 
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3.6.2 Spelling and Punctuation 

Another source of ambiguity between the different databases is in the spelling and 

punctuation of village names. Generally, this means that for a certain village 

perhaps with a well-known name, there are multiple written formats. They should 

refer to the same place regardless of the differences in spelling or punctuation, but 

in many cases they have distinct spatial distributions of their address points. This 

is exemplified by the use of a hyphen or space to separate words in village names, 

as in the cases of “Higham on the Hill” or “Higham-on-the-Hill” and “Stanton under 

Bardon” or “Stanton-under-Bardon”. Figure 3.6 illustrates these differences. The 

use of a hyphen or space is not exclusive to a particular database. That is to say 

that both the BS7666 and Postal address sometimes employ a hyphen in some 

villages and use a space for others. Further to that, these village names in the POI 

dataset are even joined with other names (i.e. Nuneaton and Markfield).  These 

indeed add another level of confusion about the place names and therefore more 

uncertainty. 

 
Figure 3.6: Examples of the disparity in village names resulting from use of a 

separator. (Source: © Crown copyright and/or database right 2012. All rights 

reserved.) 
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3.6.3 Parish Boundary vs. Village Extent 

Looking at the rural settlements in these data, it is evident that some of these 

settlements have precisely defined parish boundaries, but the actual extent of the 

addresses differs. Figure 3.7 shows this point clearly. In the cases of Desford, Earl 

Shilton and Stoke Golding, all three have clearly defined parish boundaries. 

However, there are address points that fall beyond or outside the parish 

boundaries, which form the actual extent of the residences  in these villages. It 

appears that the BS76 data coincide with the parish boundary while the POST and 

POI data tend to have a different extent. This again illustrates the problem of 

ambiguity, inconsistency and incompleteness (Worboys, 1998 a&b; Bordogna et al. 

2006). 

 
Figure 3.7: Examples showing the relation between the extents of some village 

names and their parish boundaries (red polygons). (Source: © Crown copyright 

and/or database right 2012. All rights reserved.) 
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Another problem is that many parishes contain two or more rural settlements, 

which often have spatially overlapping addresses. Figure 3.8 shows an example of 

three parishes - Desford, Sutton Cheney and Witherley - that are associated with 

more than one locality. This is mainly due to the fact that not every rural 

settlement has its own parish (with the same name); rather, one parish could be 

responsible for a number of settlements. Regardless of the data source, many 

locations have multiple addresses which have different names (Figure 3.8). The 

first column in Figure 3.8 shows the villages that are equivalent to the parish 

names, while the second presents other villages within those parishes. This 

ambiguity could extend to the possibility of having other point addresses from a 

neighbourhood settlement or even borough, especially in cases of Desford and 

Witherley as they are located at the eastern and western edges of the borough, 

respectively.  
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Figure 3.8: Examples of some parishes (red polygons) associated with more than 

two settlements. The column on the left shows the addresses belonging to 

settlements with the same parish names; while the column on the right shows 

other associated settlements. (Sourcee: © Crown copyright and/or database right 

2012. All rights reserved.) 

3.6.4 Combined Settlement Names 

The same principles also apply to combined settlements. From Figure 3.3 and 

Table 3.4 it is evident that some settlement names appear within the parish 

boundary data and in the BS76 data, while the other databases have a different 

semantic view, separating the names. Figure 3.9 illustrates this situation in the 

case of two or more localities joined together in a combined parish name. The term 

“combined parish” is generally understood to mean the situation arising when the 

local government authorities decide to group parishes or change their status or 
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style based on local community needs (Communities and Local Government, 

2010).  It should also be noted from Figure 3.9 that, in addition to the distinct 

settlements which comprise the parish names, there are other settlements that 

belong either partially (e.g. Botcheston, Desford and Sibson) or completely (e.g. 

Pinwall and Wellsborough) within these parishes.   

 
Figure 3.9: Examples of parishes with combined settlement names. The first 

column (on the left) shows the addresses that belong to settlements with the same 

parish names combined; while the second shows them separated and the last 

column (on the right) shows other associated settlements. (Source: © Crown 

copyright and/or database right 2012. All rights reserved.) 

3.7 Summary 

This chapter introduces and elaborates the scope of the research in terms of the 

geographical scale and the study area and provides a detailed explanation of the 

data sources used to achieve the objectives of the research. It introduces the 

inherent vagueness and ambiguity in village names as recorded in the different 

databases, and identifies examples of vague regions as named settlements from 

address records from different sources (OS address point data – BS76 and POST –  

and OS POI data). A number of inconsistencies and contradictions have been 

identified and illustrated in the mappings of address points, with the same 

apparent villages recorded in multiple datasets and villages with different names 
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at the same location. Moreover, the chapter has shown that the point addresses for 

certain settlements can differ from the equivalently named settlements’ parish 

boundaries. Taken together this provides evidence that there are a number of 

different causes and consequences of inherent uncertainty in spatial databases, 

with important implications for data quality. Overall, this problem reflects the 

recommendation from other studies (Worboys, 1998 a&b; Fisher 1999; and Davies 

et al. 2009) of the need for a better understanding of the possible sources of 

uncertainty, and how they may be addressed. 
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 Modelling and Analysing Vague Rural 

Settlements 

4.1 Introduction 

Representing and modelling a ‘place’ has received considerable critical attention, 

especially when this place is geographically vague in both definition and extent. As 

discussed in the previous chapter, rural settlements are a notable example of 

vague regions, as they often do not have officially defined boundaries or they have 

formal or informal names connected to past events or landmarks. Their labels or 

names can be recorded in different ways, causing contradiction – for example, 

between and within Gazetteers and other databases recording place-based 

information – and resulting in confusion for users. The spatial footprints of ‘places’ 

may vary as a result of differences in individual perception and may depend on 

social factors as much as physical environmental differences. With these issues in 

mind, a number of modelling techniques have been developed to handle vagueness 

and imprecision in GIScience, as described in Chapter 2. 

Within this context, this chapter sets out to map the spatial extent or footprint of 

local rural settlements using records of village names held on national databases 

and to provide an in-depth analysis of the fuzzy spatial settlement patterns arising 

from different databases. It is important to note that it has been possible to use a 

number of different data sources in this thesis to examine vagueness in the spatial 

nature of rural settlements because of the availability of such data.  

Consider the following problem: address datasets include individual addresses 

that are attributed with a settlement. In rural locations, the settlement attribute 

describes the village which the address is considered to be within. Different 

address datasets indicate different addresses and different villages for the same 

address. The problem being considered in this chapter is how to determine the 

spatial extent of the village. In Britain, a number of formal data exist that describe 

villages, their territories and other small areas. However, in developing countries 
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where such infrastructural information may be lacking, and the only address 

datasets available may be user-generated POIs, settlements are commonly 

represented as discrete points (Crawford, 2002). The address data may only 

loosely be attributed. The question is then how such incomplete, sparse, 

contradictory, poorly attributed and frequently informal or vernacular data could 

be used to construct the potential areal extent of each village or settlement.  

This chapter proceeds as follows: Section 4.2 briefly reviews the issue of applying 

two approaches to generate traditional hard boundaries from a set of points. Then 

Section 4.3 illustrates the approach employed for modelling the fuzzy 

representation of the settlements. Analyses of the resulting models are explained 

in Section 4.4, before the entire results are discussed in Section 4.5. Finally, Section 

4.6 offers a summary and general discussion and recommendations from the 

proposed modelling and analyses techniques.   

4.2 Hard / Fixed Boundary 

One of the most essential and critical tasks in GIS is to identify boundaries around 

sets of points. A number of methods exist for doing this, including convex hull and 

Voronoi Tessellation described below. These generate fixed or hard boundaries, 

which may be problematic if the points represent vague locations or regions. This 

section presents two commonly used methods to generate such boundaries; and 

highlights some of the key issues that arise from applying them to rural settlement 

locations, using a small case study around the borough of Hinckley and Bosworth 

in rural Leicestershire. 

4.2.1 Convex Hulls 

A convex hull is a fundamental algorithm in computation geometry. It generates a 

shape that completely encloses a set of points (de Smith et al. 2015) and can be 

thought of as a rubber band that is stretched around the whole set. It is possible, 

therefore, to create convex hull polygons for tracing the geographical extent of a 

village based on the distribution of address points attributed to that village name. 

There are a number of software packages that could be used to obtain the convex 



 
 

62 
 

  

hull polygons – Hawth's Tools and Crimestat, to name two. The latter has been 

chosen for this research because it is freely available and compatible with other 

GIS software (e.g. ArcGIS).  

Given a set of points that represents one of the considered settlements in the 

address point data a convex hull is computed, and the resultant polygon outlines 

the boundary. Figure 4.1 presents maps of the convex hulls for the villages in the 

BS76 and POST data. It is apparent from the maps that, although the convex hulls 

can be useful for describing the geographical spread of a village, they are markedly 

affected by extreme values. The two address databases suggest very different 

settlement areas with large differences in spatial extent. There are gaps between 

the settlement areas computed from any one of the address databases and some of 

the areas overlap because of the way that the hull is computed. Simple 

comparisons can show whether one distribution has a greater extent than another 

does. For instance, the majority of the settlements in the BS76 data (Figure 4.1 top 

left map) generally tend to have larger extents than the settlements in the POST 

datasets (Figure 4.1 bottom left map). In some cases, however, the convex hull 

does not provide a good representation of the boundaries of a given set of points; it 

may not represent the actual area occupied by the set of points very well. Consider 

Sheepy and Sheepy Magna: in this case there are large differences in the village 

attribution or labelling between the databases and consequently in the settlement 

areas suggested by the convex hull, which may be vulnerable to extreme values. If 

one address is a geographical outlier to the settlement, then it is isolated and the 

hull will be pulled out to that location, as can be seen in Nailstone in the BS76 data 

and Twycross in the POST data. The spatial extent of the settlement may be 

dramatically distorted as the areas are defined by the most extreme points. It is 

important to bear in mind that the settlements that share the same name have 

different representations in the two datasets. This is evident in the case of 

Twycross from the two datasets. 
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Figure 4.1: Maps showing the Convex Hulls for The Rural Settlements in The BS76 

and POST Datasets; with some examples in large scale on the right. (Source: © 

Crown copyright and/or database right 2012. All rights reserved.) 

4.2.2 Voronoi Tessellation 

An alternative approach to model the settlement hard boundaries, based on 

georeferenced addresses is by Voronoi Tessellation. It is a widely held view that 

the spatial footprints of inherently vague regions intended for use within 

gazetteers can be delineated by Voronoi Tessellation  of point locations known to 

be located inside or outside the target region for example through their settlement 

attribution (Alani et al. 2001). According to Klein et al. (1990), the Voronoi 

diagram of a set of sites S in the plane partitions the plane into regions, called 

Voronoi regions, one for each site. The region of site p contains all points of the 

plane that are closer to p than to any other site S.  
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Hence, it would be possible to create fixed boundaries around the addresses using 

Voronoi tessellation to divide the study area (borough) into regions (villages) 

based on distance to points in a specific location, typically around village centre 

points (centroid or mean centre). The following pseudo-code (in Figure 4.2) shows 

how a Voronoi function could be used with the point data to generate the Voronoi 

tessellation around the village centres as a classic method for generating hard 

boundaries for the rural settlements . This is done in four different cases, where 

villages identified in the BS7666 data only, the Postal address data only, the POI 

data only, and villages exist in all the different sources combined together. Figure 

4.3 presents these results for the four different data. A, C, E & G are showing the 

Voronoi polygons with the village centres; B, D, F & H are showing the Voronoi 

polygons with the actual address points. Overall, the results show that the address 

points for a village do not correspond to the Voronoi polygon bounding that 

village, as some of these addresses fall in outside and also other address points 

from a different village more likely to be inside this Voronoi polygon.  

 
Figure 4.2: Pseudo-code for generating the Voronoi tessellations for the settlements in 

the four data sources in the study area. 
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Figure 4.3: Results of Voronoi tessellations for the settlements in the four data sources. 

A, C, E & G  show the mean centres while B, D, F & H show the original address points. 
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4.2.3 Key Issues: 

The two methods are not particularly useful where the actual extent of the village 

is unknown and is consequently an inherently vague region. For some villages, the 

output polygons overestimate the area of the village (e.g. by extreme points in the 

convex hull approach), or underestimate the region (e.g. by the points that fall 

outside the Voronoi tessellation). Furthermore, these approaches do not allow the 

address points to have multiple memberships – each village has membership of 

one and only one village. This clearly reflects the need to develop a better way to 

approximate the vague extent of the villages by fuzzy models of their boundaries. 

4.3 Fuzzy Modelling 

4.3.1 Modelling based on Density of Houses 

A common approach applied in GIScience to generate approximate boundaries for 

vague places is based on Kernel Density Estimation (KDE) (Jones et al. 2008; 

Twaroch et al. 2008 a; Hollenstein and Purves, 2010; de Berg et al. 2011). KDE 

generates a smooth, continuous surface from point patterns which represents 

spatial variations of events (Silverman 1986). It is often considered the most 

potent technique for “hot spot” analysis; as Downs (2010) points out, KDE has 

been applied widely to identify hot spots of crime, disease, fatalities, traffic 

accidents and lighting strikes in addition to its usage to characterise the spatial 

distribution of plants, animals and people.      

In this research, however, KDE is used to model the spatial footprint of the “fuzzy 

extent” of villages. KDE estimates the proportion of total incidents (addresses) that 

can be expected to occur at any given map location. It works by first overlaying an 

area of interest with a rectangular two-dimensional grid. It then calculates an 

estimate of the density of incidents in each grid cell, which is based on a weight 

function, the kernel (a function of specific shapes and bandwidths or search 

radius). The general form of the bivariate kernel density estimate f at any point x 

is: 
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𝒇 ̂(𝒙) =  
𝟏

𝒏𝒉𝟐
 ∑ 𝑲 (

𝒙− 𝑿𝒊

𝒉
)𝒏

𝒊=𝟏     Equation 4.1 

Where n is the sample size, X1, X2, … Xn are events and K() represents the kernel 

weighting function which operates on the distance between each point and event 

given a specified bandwidth h (Silverman 1986). This reflects the fact that there is 

a greater probability of an incident occurring in a given location the closer it is to 

the location of a known incident. It should be noted that the choice of the surface 

resolution (grid cell size) and the bandwidth (kernel radius) in this function both 

influence the shape of the surface in terms of its smoothness or peakness 

(Silverman 1986; and Bowman and Azzalini, 1997). Caution must be applied in the 

selection of the surface resolution and the kernel radius (Jones et al. 2008). The 

surface resolution must be sufficient to resolve the boundaries of the region and 

will vary according to region. The kernel radius should ideally be small enough to 

represent local variation within the region at a scale commensurate with the size 

of the region and large enough to capture multiple point locations within the 

kernel radius.  

There is much discussion in the literature about bandwidth selection and there are 

several varieties of bandwidth selectors for kernel density estimators. In many 

situations it is adequate to select the bandwidth based on preliminary examination 

of several density estimates over a range of bandwidths (Keen 2010). 

Furthermore, many applications require an automatic choice of smoothing 

parameter when density estimation is to be used routinely on a large number of 

data sets or as part of a larger procedure (Silverman 1986).  In fact, another reason 

for arguing in favour of objective approach for selectin bandwidth is when no prior 

knowledge about the shape of the point distribution; and that would be a fair 

justification for automatic bandwidth selection (Keen 2010). In this research, 

therefore, the KDE for each village is computed independently for the considered 

villages in each of the datasets. This is done using the "kde.points" function in R, 

developed by Brunsdon and Chen (2014) based on a rule-of-thumb approach for 

choosing the bandwidth of a Gaussian kernel density estimator (Venables and 

Ripley, 2002). In other words, the bandwidth parameter used here, which could be 

any real number, is unidentified then a rule-of-thumb method is applied by default.  
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The method was popularised for kernel density estimates by Silverman (1986), who used 

the normal distribution as the parametric family.    

In order to represent the spatial extent of villages as fuzzy objects, a further step is 

needed to transform the density surface to a fuzzy set-based approach (Zadeh 

1965). In other words, there is a need to show the fuzzy memberships from the 

density surface in order to represent and to quantify the degree to which a 

particular location is part of the village. Usually, the normalisation process is used 

for this purpose. This is to change the scale range of the KDE results from 0 to 1. 

Here, a value of 1 indicates a complete membership and 0 represents classical non-

membership; and in between these two extremes, the membership value varies 

according to how dense the area is.  

4.3.2 Generating α-cuts: 

As mentioned in the literature review (Chapter 2), recall that an α-cut (alpha-cut) 

is a fundamental aspect of the fuzzy set theory and plays a key role in this chapter. 

In essence, the α-cut is a set of objects or locations which have a fuzzy membership 

greater than or equal to some threshold, α, is defined as being within the set coded 

as 1, and all other locations outside the set coded 0. Strictly speaking, α-cut is the 

area delineated by a contour of equal membership, giving a hard, crispened or 

Boolean version of the fuzzy set; where α can take any value between 0 and 1 

(Arnot et al. 2004). By generating a set of α-cuts, it is possible, therefore, to model 

fuzzy regions as a set of crisp regions which in turn allow the use of already 

developed algorithms (for hard regions) in a fuzzy context (Schmitz and Morris, 

2006).  

In the work reported here, an R script is used to generate the Boolean maps for the 

rural settlements for values of α in the range from 0.1 to 0.9, giving nine different 

Boolean hardenings of the fuzzy representation of the settlements. This is 

explained using pseudo-code in Figure 4.4, which describes the process to 

generate normalised density surfaces and their α-cuts for the villages. The full R 

script, with the looping structure applied through the studied settlements, is 

provided in Appendix (6.2). 
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Figure 4.4: Pseudo-code for generating the normalised density surfaces and their α-cuts 

for settlements. 

4.4 Analysing the Settlements' Spatial Patterns 

4.4.1 Analysing Settlement Representation in Different Sources 

To restate, the data used for modelling the rural settlements comes from different 

sources: formal data (BS76 and POST) and contributed data (POI). The main cause 

for the variation between the models is because different databases have different 

records and attributes, and consequently represent different views of the village. 

This section focuses on exploring the variation between these data sources under 

the assumption that each data source represents a variable, and there is a need to 

gain insight into the relationship between any pairs of these variables. A widely 

accepted method in statistics for modelling the relationship between two variables 
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is linear regression. It has been applied in this study using the linear model 

function - “lm" in R (Wilkinson and Rogers 1973; Chambers 1992) for three pairs 

(POI vs BS76, POI vs POST and BS76 vs POST). The analysis below proceeds as 

follows. It first creates a scatter plot of the values of the two variables against each 

other. By doing this, it is possible to observe visually whether there is a linear 

association between the two variables. Then two statistical measures are used to 

examine the performance of these models in developing such relationships. These 

are correlation coefficient (r) and root mean square error (RMSE).  

Correlation Coefficient (r) 

Correlation (r) is the statistical method (measure) for assessing the association 

between two quantitative variables, x and y. When they plotted together, how 

close to a straight line is the scatter of points. It simply measures the degree to 

which the two vary together (Freeman and Young 2009). The sign of the 

correlation r indicates the direction of the relationship: 𝑟 > 0 for a positive 

association (i.e. as the values of one variable increase the values of the other 

variable increase) and 𝑟 < 0 for a negative association (i.e. as the values of one 

variable increase the values of the other variable decrease). r is always a number 

between −1 and 1; perfect correlation occurs when r = ±1 only, which means the 

points lie exactly on a straight line, as it moves away from 0 towards ±1 as the 

straight-line relationship gets stronger. The definition of this statistic can be 

expressed mathematically as: 

Give as set of n pairs of observations  (𝑥1, 𝑦1), (𝑥1, 𝑦1), … (𝑥𝑛, 𝑦𝑛) the formula for 

the correlation confident r is given by: 

𝑟 =  
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)
𝑛
𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2
𝑛
𝑖=1 ∑ (𝑦𝑖 − 𝑦̅)2

𝑛
𝑖=1
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Root Mean Square Error (RMSE).  

One of the most widely used statistics in GIS for evaluating the overall quality of a 

regression model is the root mean square error (RMSE, also known as root mean 

square deviation). RMSE measures how much error there is between two datasets. 

RMSE usually compares a predicted value by a hypothetical model and an 

observed value (GISGeography, 2015). In other words, it measures the quality 

(goodness) of the fit between the actual data and the predicted model (Salkind, 

2010). In the regression analysis, the predicted values are more or less different 

from the actual observations unless the relationship or correlation is perfect (i.e. 

𝑟 = ±1). These differences are called prediction errors or residuals. For every data 

point, these residuals are measured by calculating the distance vertically from the 

point (actual value) to the corresponding y value on the regression line, and the 

square of that distance is then quantified. Large distances are indicative of large 

errors. The sum of the squared values for all data points is added up, and then 

divided by the total number of points. Finally, the square root is taken. The smaller 

the RMSE, the closer the fit is to the data. The mathematical formula for computing 

the RMSE is:   

RMSE is the average vertical distance of the actual data points from the fitted. 

Mathematically, RMSE is calculated as:  

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑(𝑥𝑖 − 𝑥̂𝑖)

2

𝑛

𝑖=1

 

where n denotes the size of the sample or number of observations; xi represents 

individual values, and i represents the current predictor. 
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Since the comparison here is between the same address points in the three 

different sources, the explanatory variable (or the independent variable which is 

plotted on the horizontal axis, x) and the response variables (the dependent 

variable plotted in the vertical axis, y) are not clearly distinguished. However, for 

consistency reasons, the POI data always represent the dependent variable 

whenever it is considered. Figure 4.5 explains the pseudo-code for applying this 

analysis, whereas the real R script is available in Appendix (6.3). 

 
Figure 4.5: Pseudo-code to apply the linear regression model in R, full script is available 

in Appendix (6.3). 
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4.4.2 Analysing Inclusion 

It is also important to understand the variation between the different 

representations of the rural settlements modelled as fuzzy objects across different 

data sources. From the set of α-cuts, it is possible to parameterise the degree to 

which a group of address points located in a village are within the fuzzy 

representation of that village. Point in polygon operation has been used as a 

method to check whether many points are placed inside or outside a polygon. 

Thus, it would serve as an ideal tool for use in an inclusion or containment 

analysis. So for this study, a point in polygon operation is performed on four sets of 

data: the villages extracted from the BS76 data, POST data, POI data and all the 

three combined together. For each village with at least 10 addresses, the number 

of points contained in the different α-cuts are computed. This gives a measure of 

the proportion of the points that are labelled as being part of a particular village 

within the associated α-cuts.  

In the next phase of this analysis, as a consequence of exploring the interaction 

between the number of points included and their α-cuts, it is also possible to 

specify a minimum threshold value of the points to be included in any α-cut. In 

other words, instead of considering the number of points captured in a village 

catchment at different α-cuts (where α is the degree of membership), a percentage 

of the points to be identified by the α-cuts is regarded as a threshold limit of 

inclusion. Any specific threshold value will yield a particular instance of the α-cut 

that satisfies this threshold. For example, to determine what α-cut is needed to 

generate a fuzzy area that includes at least 75% of the original points, several 

threshold values (i.e. percentage of coverage from 50 to 95%) are examined for 

each of the respective village in all data sources.  

One further consideration is the density of points within the α-cuts that satisfies 

the threshold values. Different villages may have very different spatial structures – 

from a dispersed linear village to a highly concentrated and concentric one. This is 

to investigate whether there is any pattern or structure in the data in terms of the 

association between the optimum α-cut and the point density. Basically, this could 

give an idea of how the points are spatially distributed on the village area and thus 
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what membership value (α-cut) can be expected. It is likely that as the point 

density increases the probability of scattering decreases. Consequently, as a 

subsequent step in determining the α-cut needed to meet the threshold demand, 

the density of the points is calculated based on the area of that α-cut. This has been 

done using R script for every individual village in the considered data (See 

Appendix 6.4); as the general structure of the code is explained in Figure 4.6.  

 

 Figure 4.6: General structure of the R scripts executed to apply the inclusion analysis for 

all settlements in the different data sources. 
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4.5 Results and Discussion 

4.5.1 Modelling based on the Density of Houses 

The results obtained from applying the KDE analysis to approximate the fuzzy 

footprints of settlements that exist in all data sources and have a minimum of 10 

addresses are presented in Appendix (2). Figure 4.7 presents a subset of the 

results for three villages: Barwell, Desford and Stoke Golding, evaluated using each 

data source. In the figures, the normalised density is, in the top left corner, graded 

from yellow to red in 10 levels representing the values from 0 to 1. As shown in the 

legend, darker red corresponds to higher densities where the larger intensity of 

points indicates a larger values of fuzzy membership. The remaining maps in the 

figure show the Boolean mapping for the nine α-cuts which correspond to areas 

within the villages that have membership values greater than or equal to α, and 

zero for areas outside this region. These maps suggest that the largest α-cuts 

consistently have the smallest area of the examined villages and the smallest α-cut 

has the largest, as expected. In addition some villages’ areas in some α-cuts have 

discontinuous areas, as appears in many cases in Figure 4.7. This implies that the 

density of points varied around the settlements, which is logical since some areas 

are denser than others for many different local reasons and may say something 

about the nature of the village. The address points are overlaid on top of each map 

in the figure for visualisation purposes. For comparison purposes, all the maps are 

shown within the full geographical extent of Hinckley and Bosworth Borough. The 

complete results for all considered villages are presented in Appendix (2). 
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Figure 4.7: Fuzzy representation for Barwell, Desford & Stoke Golding in each dataset, normalised density 
in the top left corner, with their nine α-cuts underneath each village. See Appendix (2) for full size images.  
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It is apparent that KDE works better with compact zones, where areas have a 

high intensity of points, which produce a much better representation than areas 

with a varying intensity of points (i.e. sparsely populated area). This also accords 

with Down's (2010) observations, which showed that, despite the wide spread of 

KDE, it could perform poorly in some situations and for specific types of point 

patterns. One explanation for the poor performance of KDE in this case could be 

its sensitivity to bandwidth selection, as different values produce dramatically 

different results. Given this reason, the selection of bandwidth is generally open 

to a certain degree of subjectivity. 

4.5.2 Comparative Analysis of Settlement Representation in Different 

Sources 

The results of the regression plots are presented in Appendix (3) and Table 4.1 

compares the correlation coefficients (r) and the root mean squared error 

(RMSE) gained from the linear regression model for the different data sources. 

The results of the regression analysis can be grouped along two lines. On the one 

hand, the majority of the settlements (Barlestone, Barwell, Burbage, Desford, 

Earl Shilton, Groby, Market Bosworth, Nailstone, Newbold Verdon, Ratby, 

Stanton under Bardon and Stoke Golding), which have a common characteristic 

in terms of the strong association between the BS76 and POST variables. It can 

be even generalised that a large number of settlements have a perfect positive 

linear relationship with the BS76 data versus the POST data except for a few 

outliers. This is initially expected because these are originally the same dataset, 

which mostly have many duplicated address points. Thus, the other two plots 

(POI vs BS76 and POI vs POST) should look identical. This has been typically 

seen in Barwell, Market Bosworth and Newbold Verdon (Figure 4.8). The 

squared correlation of the BS76 versus POST data emphasises the perfect 

relationship between them; and thus the other two pairs (POI vs BS76 and POI vs 

POST) look very similar even though their r  values might differ, as is the case in 

Market Bosworth. The overall patterns of the POI compered to BS76 and POST 

show a clear direction which moves from lower left to upper right with larger 

variation in y for larger values of x. This finding confirms that for large areas of 
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the plots the association between the village representations, where most of the 

address points overlapped, are similar. Another observation indicates that the 

RMSE values for this group of settlements are very close to 0. That, again, 

stresses on the fact that lower values of RMSE indicate better fit, as that reflect 

how much errors there is between the datasets.    

Table 4.1: Values of the correlation coefficients (r) and the root mean squared 
error (RMSE) between each pair of the data sources. 

Village Name 
POI vs BS76 POI vs POST BS76 vs POST 

r RMSE r RMSE r RMSE 

Barlestone 0.67 0.02 0.66 0.02 1.00 0.00 

Barwell 0.82 0.03 0.82 0.03 1.00 0.00 

Burbage 0.88 0.02 0.87 0.03 1.00 0.01 

Desford 0.77 0.02 0.79 0.02 0.96 0.01 

Earl Shilton 0.66 0.02 0.65 0.02 1.00 0.00 

Groby 0.74 0.02 0.74 0.02 0.98 0.02 

Higham on the Hill 0.64 0.01 0.69 0.02 0.90 0.01 

Market Bosworth 0.67 0.02 0.66 0.02 1.00 0.00 

Nailstone 0.88 0.02 0.87 0.02 0.99 0.00 

Newbold Verdon 0.84 0.02 0.84 0.01 1.00 0.00 

Osbaston 0.69 0.02 0.59 0.02 0.86 0.01 

Peckleton 0.14 0.01 0.28 0.03 0.19 0.05 

Ratby 0.82 0.02 0.81 0.02 1.00 0.00 

Stanton under Bardon 0.83 0.02 0.82 0.02 0.98 0.01 

Stoke Golding 0.75 0.03 0.79 0.03 0.99 0.01 

Sutton Cheney 0.46 0.03 0.51 0.04 0.28 0.04 

Twycross 0.81 0.03 0.48 0.04 0.43 0.04 

Witherley 0.40 0.01 0.65 0.02 0.53 0.04 
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Figure 4.8: Regression Plots for Barwell, Market Bosworth and Newbold Verdon, which 

show strong positive linear relationship between the BS76 and POST data and other 

moderate relation between the other pairs of data (POI vs BS76 & POI vs POST). 

On the other hand, there are some striking results for the regression plots in the 

second group of the analysed villages. This include the settlements: Higham on 

the Hill, Osbaston, Peckelton, Sutton Cheney, Twycross and Witherley. Figure 4.9 

shows three examples from this group. It is clear from the plots of these 

settlements that the fitted models do not follow a linear relationship. 

Furthermore, the r values in Table 4.1 show weak association between each pair 

of datasets, especially in Peckleton. However, the RMSE values are still relatively 

small.  . This could be explained when looking at the spatial distribution of the 

original points for these settlements in each source type, in which the actual 

patterns of the points are different and not responding to each other.   



 
 

80 
 

  

 

Figure 4.9: Regression plots for Peckleton, Sutton Cheney and Twycross that showing no 

apparent pattern in the association between the pairs of the different data sources (not 

suitable for linear regression).

4.5.3 Analysis of Inclusion 

The initial purpose of this analysis is to examine the proportion of address points 

included within the fuzzy model of the villages in each α-cuts. However, this 

gives rise to an alternative view of the analysis, on which the concern moves to 

identifying which α-cuts that satisfy a minimum threshold value of the included 

points. That means which α-cut guarantees the inclusion of a particular 

percentage of the original address points. It is necessary here to first clarify the 

difference between the α-cuts and the thresholds in relation to the concept of 

'villageness'. As already mentioned earlier, a village is identified from a set of 

local points that share a settlement name in their addresses. An α-cut then refers 

to the degree of fuzzy membership of the addresses belonging to that named 

village. For instance, an α-cut of 0.4 specifies all areas in the village that have a 
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fuzzy membership value greater than or equal to 0.4. A threshold, on the other 

hand, refers to the percentage of the minimum number of the address points to 

be considered within the village. Hence, it could be generally assumed that, as 

the threshold value increases, the area captured of the village increases with the 

possibility of places with low membership. 

Following the approach identified above (Section 4.4.2), a set of tables are 

created to record the results of the containment analysis. These are presented in 

four tables: Tables 4.2, 4.3, 4.4 & 4.5 for the BS76 data, POST data, POI data and 

all data combined, respectively. For ease of reading, these tables are structured, 

in exactly the same way, such that each row records the results from one 

settlement. Also, the first three columns contain information about the village 

identification ID in the dataset, its name and the original number of address 

points. The remaining columns generally identify ten percentages of inclusion 

(i.e. 50%, 55%, 60% … 95%). Each percentage is further subdivided into three 

fields to report the results in relation to: (1) the α-cut that assures the threshold 

values, (2) the density of the address points that fall within this limits based on 

(3) the area of this α-cut; (as the density is given by dividing the number of 

points within the α-cut by the area of that α-cut in Km2). The results given in 

these tables are discussed individually in a uniform manner below, and then 

comparisons are made between them. 

Results of the BS76 data: 

Table 4.2 presents the results obtained from the containment analysis of the 

BS76 data. Twenty-eight settlements with at least 10 addresses are identified, 

and these are ranked in descending order by the number of points. In the table, 

the grades of membership, α-cuts, are displayed in light orange; as the values get 

smaller the colour becomes lighter. Likewise, point densities are graded in light 

green whilst lighter green shows low density. The most striking results to 

emerge from these data are discussed under two main categories in the 

following paragraphs: 
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Firstly, exploring α-cut profiles:    

 It can be seen from the table that some villages fail to capture all 

considered thresholds, as they drop before reaching the maximum 

threshold value (95%). Examples include Higham on the Hill, Stanton 

under Bardon, Nailston, Sheepy and Witherley. This can be further 

illustrated in Figure 4.10, which shows maps of Higham on the Hill and 

Stanton under Bardon with their address points on top of a series of α-

cuts (graded from red to yellow), with bar charts indicating the optimal α-

cut for each threshold. It is apparent from this figure that some of the 

address points are disregarded from the fuzzy model, as the majority of 

these points have a non-zero membership value less than 0.1. Even the 

smallest α-cut only captures 65% of the points in the case of Higham on 

the Hill or 75% in Stanton under Bardon. This is presumably because the 

fuzzy model is based on the density of points, which appears to be 

clustered in the middle and scattered further apart.  
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Table 4.2: Results of the containment analysis for the BS76 data. For all considered 

threshold, the optimum α-cuts that satisfy the threshold limits are identified, with the 

measure of the density of points fall within these α-cuts (points/km2).  

ID Village Name 
No. of 
Points 

Threshold of 50 % Threshold of 55 % Threshold of 60 % Threshold of 65 % Threshold of 70 % 

α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area 

5 Burbage 6979 0.60 2478 1.51 0.55 2372 1.84 0.55 2372 1.84 0.50 2237 2.18 0.45 2138 2.54 

6 Clarendon 5702 0.50 3237 0.89 0.45 3056 1.15 0.45 3056 1.15 0.40 2856 1.45 0.40 2856 1.45 

18 Earl Shilton 4884 0.50 2982 0.94 0.50 2982 0.94 0.45 2893 1.16 0.45 2893 1.16 0.40 2745 1.33 

16 De Montfort 4532 0.50 2829 0.82 0.45 2658 1.06 0.45 2658 1.06 0.40 2516 1.26 0.40 2516 1.26 

25 Barwell 4382 0.50 3038 0.79 0.45 2907 0.99 0.45 2907 0.99 0.45 2907 0.99 0.40 2765 1.21 

23 Groby 3282 0.55 2381 0.73 0.50 2237 0.90 0.50 2237 0.90 0.45 2151 1.03 0.40 2059 1.21 

21 Trinity 2988 0.65 3085 0.49 0.60 2821 0.68 0.60 2821 0.68 0.55 2734 0.82 0.55 2734 0.82 

13 Markfield 2291 0.60 2629 0.46 0.55 2560 0.52 0.50 2483 0.59 0.45 2411 0.66 0.40 2348 0.72 

27 Castle 2076 0.50 4384 0.24 0.45 3955 0.33 0.45 3955 0.33 0.40 3543 0.44 0.40 3543 0.44 

19 Ratby 2010 0.70 2664 0.39 0.65 2648 0.46 0.65 2648 0.46 0.60 2510 0.54 0.55 2439 0.61 

22 Desford 1864 0.50 1961 0.50 0.45 1924 0.56 0.40 1892 0.60 0.35 1823 0.68 0.30 1729 0.79 

28 Newbold Verdon 1429 0.60 2449 0.32 0.55 2411 0.39 0.55 2411 0.39 0.55 2411 0.39 0.50 2346 0.44 

24 Bagworth & Thornton 1282 0.60 1009 0.65 0.55 901 0.82 0.50 816 0.99 0.45 728 1.26 0.45 728 1.26 

2 Market Bosworth 1140 0.55 2212 0.27 0.50 2094 0.31 0.45 2010 0.36 0.40 1909 0.41 0.35 1769 0.48 

14 Barlestone 1118 0.70 2919 0.20 0.65 2745 0.25 0.65 2745 0.25 0.60 2661 0.29 0.55 2601 0.32 

1 Stoke Golding 797 0.70 2182 0.20 0.70 2182 0.20 0.65 2082 0.24 0.60 1982 0.27 0.55 1949 0.31 

17 Witherley 767 0.60 807 0.50 0.55 701 0.62 0.45 548 0.88 0.35 453 1.20 0.35 453 1.20 

10 Sheepy 692 0.30 243 1.53 0.25 195 1.98 0.10 98 4.69 0.10 98 4.69 0.05 54 10.56 

20 Peckleton 626 0.75 529 0.59 0.45 174 1.98 0.40 162 2.49 0.35 133 3.16 0.25 92 4.93 

7 Twycross 508 0.45 173 1.60 0.40 150 2.03 0.40 150 2.03 0.35 132 2.54 0.30 115 3.15 

15 Higham on the Hill 483 0.35 928 0.27 0.25 743 0.36 0.20 680 0.44 0.05 301 1.12 0.00 0 0.00 

26 Shackerstone 465 0.55 326 0.77 0.50 288 0.96 0.45 235 1.19 0.40 222 1.48 0.40 222 1.48 

12 Stanton under Bardon 366 0.70 2285 0.08 0.60 2058 0.10 0.55 1874 0.12 0.45 1616 0.15 0.20 1027 0.25 

3 Sutton Cheney 339 0.40 102 1.76 0.35 86 2.36 0.30 68 3.10 0.25 55 4.03 0.20 47 5.40 

9 Nailstone 260 0.55 1502 0.09 0.50 1376 0.11 0.40 1224 0.13 0.35 1161 0.15 0.30 1077 0.17 

11 Osbaston 161 0.20 131 0.75 0.20 131 0.75 0.20 131 0.75 0.15 103 1.09 0.10 79 1.70 

8 Carlton 139 0.60 881 0.08 0.50 812 0.11 0.50 812 0.11 0.40 697 0.13 0.30 565 0.18 

4 Cadeby 133 0.25 246 0.29 0.20 200 0.39 0.15 151 0.67 0.15 151 0.67 0.15 151 0.67 
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Table 4.2: (continued) Results of the containment analysis for the BS76 data. For all 

considered threshold, the optimum α-cuts that satisfy the threshold limits are identified, 

with the measure of the density of points fall within these α-cuts (points/km2).  

ID Village Name 
No. of 
Points 

Threshold of 75 % Threshold of 80 % Threshold of  85 % Threshold of  90 % Threshold of  95 % 

α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area 

5 Burbage 6979 0.45 2138 2.54 0.40 2032 2.87 0.35 1959 3.15 0.30 1887 3.40 0.15 1618 4.15 

6 Clarendon 5702 0.35 2708 1.73 0.35 2708 1.73 0.30 2538 1.97 0.25 2375 2.20 0.10 1736 3.16 

18 Earl Shilton 4884 0.35 2625 1.49 0.35 2625 1.49 0.30 2566 1.67 0.25 2397 1.88 0.20 2223 2.10 

16 De Montfort 4532 0.35 2390 1.50 0.30 2162 1.83 0.30 2162 1.83 0.25 2003 2.09 0.20 1840 2.35 

25 Barwell 4382 0.40 2765 1.21 0.35 2645 1.38 0.30 2487 1.57 0.25 2362 1.71 0.15 2062 2.04 

23 Groby 3282 0.40 2059 1.21 0.35 2019 1.34 0.30 1932 1.51 0.25 1809 1.68 0.15 1501 2.09 

21 Trinity 2988 0.50 2665 0.92 0.50 2665 0.92 0.45 2589 0.98 0.35 2396 1.16 0.30 2319 1.23 

13 Markfield 2291 0.35 2252 0.79 0.30 2140 0.87 0.20 1833 1.09 0.10 1401 1.50 0.05 1060 2.06 

27 Castle 2076 0.35 3267 0.52 0.35 3267 0.52 0.30 2990 0.61 0.25 2791 0.70 0.20 2577 0.79 

19 Ratby 2010 0.50 2404 0.66 0.45 2351 0.72 0.40 2241 0.78 0.35 2133 0.85 0.05 1281 1.49 

22 Desford 1864 0.25 1607 0.88 0.20 1418 1.06 0.10 1013 1.59 0.05 722 2.35 0.00 0 0.00 

28 Newbold Verdon 1429 0.45 2321 0.48 0.40 2265 0.52 0.35 2131 0.58 0.30 2065 0.62 0.10 1436 0.95 

24 Bagworth & Thornton 1282 0.40 630 1.56 0.30 474 2.20 0.15 303 3.68 0.05 172 6.80 0.00 0 0.00 

2 Market Bosworth 1140 0.30 1610 0.55 0.25 1466 0.64 0.20 1317 0.74 0.05 774 1.36 0.00 0 0.00 

14 Barlestone 1118 0.55 2601 0.32 0.45 2371 0.39 0.35 2195 0.44 0.20 1855 0.54 0.10 1408 0.77 

1 Stoke Golding 797 0.55 1949 0.31 0.45 1827 0.36 0.40 1739 0.39 0.30 1626 0.44 0.05 1013 0.75 

17 Witherley 767 0.30 397 1.48 0.10 186 3.30 0.05 131 5.08 0.00 0 0.00 0.00 0 0.00 

10 Sheepy 692 0.05 54 10.56 0.05 54 10.56 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 

20 Peckleton 626 0.20 80 6.02 0.10 53 9.85 0.05 33 17.98 0.05 33 17.98 0.00 0 0.00 

7 Twycross 508 0.20 79 4.84 0.05 31 15.14 0.05 31 15.14 0.05 31 15.14 0.00 0 0.00 

15 Higham on the Hill 483 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 

26 Shackerstone 465 0.35 185 1.88 0.15 82 4.80 0.15 82 4.80 0.05 40 10.93 0.00 0 0.00 

12 Stanton under Bardon 366 0.05 487 0.60 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 

3 Sutton Cheney 339 0.15 38 7.35 0.15 38 7.35 0.10 28 11.20 0.10 28 11.20 0.05 20 16.58 

9 Nailstone 260 0.20 871 0.22 0.05 414 0.55 0.05 414 0.55 0.00 0 0.00 0.00 0 0.00 

11 Osbaston 161 0.10 79 1.70 0.10 79 1.70 0.05 45 3.33 0.05 45 3.33 0.00 0 0.00 

8 Carlton 139 0.20 435 0.25 0.10 314 0.39 0.10 314 0.39 0.05 226 0.56 0.00 0 0.00 

4 Cadeby 133 0.15 151 0.67 0.10 100 1.08 0.05 62 1.93 0.05 62 1.93 0.00 0 0.00 
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Figure 4.10: Maps of two settlements (on the left showing their address points and fuzzy models) 
with bar charts (on the right indicating the optimal α-cut for each threshold).where the smallest 
α-cuts drop before reaching larger thresholds as their points tend to cluster in the middle and 
scatter further apart.  

 Another indication of the addresses being spread out in the area might be 

when the optimum α-cuts for all thresholds are fairly small as in the case 

of Cadeby, Osbaston and Sheepy which have an α-cut values mostly just 

under 2.5. Figure 4.11 presents the instances of Cadeby and Osbaston. 

Interestingly, the figure also reveals that the fuzzy model of the villages 
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are not always continuous as the points density are varied across the 

areas. This in turn highlights number of clusters within the villages with 

some diffuse points, with very low membership values (again greater 

than zero and less than 0.1), between or around theses clusters. 

 

 

Figure 4.11: Map of two settlements(on the left showing their address points and fuzzy models) 

with bar charts (on the right indicating the optimal α-cut for each threshold).  These show fairly 

small α-cuts for all thresholds suggesting the possibility of their addresses being spread out. 
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 On the contrary, when the α-cut values tend to be large with very little 

variation across the thresholds, then this implies the compact nature of 

the settlements. Take, for example, Castle, Trinity, De Montfort and Earl 

Shilton, which have a gradual decline through the thresholds with α-cut of 

0.2 to capture 95% of the points. This can be clearly seen in the maps of 

Castle and Earl Shilton (with fewer dispersed points in the southeast area 

of Earl Shilton; 0 < α < 0.1) in Figure 4.12. 

 
Figure 4.12: Map of two villages (on the left showing their address points and fuzzy models) with bar 

charts (on the right indicating the optimal α-cut for each threshold), in which small transition 

between α-cuts values reflecting the compactness of their addresses. 
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Secondly, exploring relationship with point densities:  

 General observation of the density values in Table 4.2 shows that the 

last/bottom part of the table (last third) appears to have lower density 

values compared to the upper part of the table. This seems to be in line 

with number of address points as, for larger numbers, the density tends 

to be higher (darker green). 

 However, there are some exceptions. Looking, for example, at the 

minimum threshold (50%), it is found that Castle, which has the 

maximum density (4383.78), has fewer points in a small area than other 

settlements with lower density like Burbage, Clarendon, and Earl Shilton, 

which have larger numbers of address points. Moreover, Sutton Cheney 

with 339 address points has the lowest density (102.18), whereas other 

settlements with fewer addresses have larger density, such as Carleton 

and Cadeby, the last two in the table. 

 Looking horizontally, density values decline with the increase in the 

threshold limits. This relation is expected to be applied in all settlements 

(rows) since a particular threshold indicates the proportion of the points 

included. Thus, when considering a certain village (one row with the same 

spatial points structure), half of its points (threshold of 50%) will be more 

intense than three-quarters of its points (threshold of 75%). 

Results of the POST data: 

Forty-nine villages are identified in the POST data, and the results of their 

containment analysis are recorded in Table 4.3 in descending order by number 

of points. The membership grades (α-cuts) and point densities are also in colour 

grades of light orange and light green, as presented in the previous results (Table 

4.2). Taken together, these results suggest the following: 

Firstly, exploring the α-cut profiles:    

 The optimum α-cuts for some villages drop out before reaching the 

maximum threshold, and this reflects the fact that some of their address 
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points are excluded from the fuzzy model (areas with a very small 

membership value greater than zero and less than 0.1). This in turn 

attests to the spread characteristics of those points. This can be 

exemplified in Kirkby Mallory, Atterton and Appleby Magna (Figure 4.13); 

the smallest α-cut only covers 70 or 85% of those villages. This is even 

clearer when the total number of address points is remarkably small, as in 

Atterton (15) and Appleby Magna (10). 
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Table 4.3: Results of the containment analysis for the POST data. For all considered threshold, the optimum α-cuts that satisfy 
the threshold limits are identified, with the measure of the density of points fall within these α-cuts (points/km2). 

ID Village Name 
No. of 
Points 

Threshold of  50 % Threshold of 55 % Threshold of 60 % Threshold of 65 % Threshold of 70 % 

α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area 

49 Burbage 6635 0.60 2484 1.44 0.55 2363 1.77 0.55 2363 1.77 0.50 2256 2.10 0.50 2256 2.10 

48 Earl Shilton 4763 0.50 2907 0.93 0.50 2907 0.93 0.45 2843 1.13 0.45 2843 1.13 0.40 2702 1.32 

47 Barwell 4244 0.50 3023 0.79 0.50 3023 0.79 0.45 2880 1.00 0.45 2880 1.00 0.40 2742 1.20 

46 Groby 2954 0.55 2377 0.71 0.55 2377 0.71 0.50 2256 0.87 0.50 2256 0.87 0.45 2149 1.00 

45 Ratby 1904 0.70 2720 0.36 0.65 2713 0.43 0.65 2713 0.43 0.60 2584 0.49 0.55 2486 0.57 

44 Desford 1497 0.60 2288 0.34 0.55 2179 0.39 0.50 2060 0.46 0.45 1948 0.54 0.45 1948 0.54 

43 Newbold Verdon 1376 0.60 2426 0.31 0.60 2426 0.31 0.55 2406 0.38 0.55 2406 0.38 0.50 2337 0.43 

42 Barlestone 1080 0.70 2893 0.19 0.65 2753 0.24 0.65 2753 0.24 0.60 2645 0.28 0.55 2614 0.32 

41 Market Bosworth 1048 0.55 2249 0.25 0.50 2097 0.30 0.50 2097 0.30 0.45 2019 0.36 0.40 1934 0.40 

40 Stoke Golding 793 0.65 2073 0.23 0.65 2073 0.23 0.65 2073 0.23 0.60 1939 0.27 0.55 1925 0.30 

39 Bagworth 604 0.45 1629 0.21 0.45 1629 0.21 0.40 1532 0.29 0.40 1532 0.29 0.40 1532 0.29 

38 Thornton 460 0.60 2101 0.13 0.60 2101 0.13 0.55 2006 0.15 0.55 2006 0.15 0.50 1889 0.19 

37 Witherley 313 0.70 2006 0.08 0.65 1865 0.10 0.60 1742 0.11 0.55 1670 0.13 0.50 1586 0.14 

36 Sheepy Magna 302 0.55 1247 0.13 0.45 995 0.18 0.45 995 0.18 0.35 855 0.25 0.35 855 0.25 

35 Higham on the Hill 284 0.60 2385 0.06 0.55 2319 0.07 0.55 2319 0.07 0.45 1875 0.10 0.40 1646 0.13 

34 Stanton under Bardon 281 0.75 2339 0.06 0.70 2207 0.08 0.70 2207 0.08 0.60 2027 0.10 0.60 2027 0.10 

33 Fenny Drayton 222 0.65 1515 0.08 0.65 1515 0.08 0.60 1438 0.09 0.50 1255 0.13 0.50 1255 0.13 

32 Nailstone 215 0.65 1537 0.07 0.60 1511 0.08 0.55 1520 0.09 0.50 1369 0.11 0.45 1255 0.12 

31 Botcheston 198 0.35 1018 0.12 0.35 1018 0.12 0.35 1018 0.12 0.30 831 0.18 0.30 831 0.18 

30 Stapleton 195 0.50 1908 0.05 0.35 1577 0.08 0.35 1577 0.08 0.35 1577 0.08 0.25 1350 0.11 

29 Kirkby Mallory 176 0.50 1562 0.06 0.45 1461 0.07 0.35 1105 0.10 0.30 1039 0.12 0.25 903 0.14 

28 Congerstone 151 0.60 1801 0.04 0.55 1513 0.06 0.55 1513 0.06 0.45 1306 0.08 0.45 1306 0.08 

27 Twycross 148 0.55 1280 0.06 0.45 922 0.10 0.45 922 0.10 0.40 894 0.11 0.35 864 0.12 

26 Carlton 124 0.65 950 0.07 0.55 820 0.09 0.50 783 0.10 0.50 783 0.10 0.40 690 0.13 

24 Dadlington 119 0.75 1207 0.05 0.65 983 0.07 0.60 948 0.08 0.55 908 0.09 0.50 794 0.11 

25 Osbaston 119 0.45 667 0.09 0.15 295 0.22 0.10 235 0.37 0.10 235 0.37 0.10 235 0.37 

23 Norton Juxta Twycross 111 0.55 886 0.07 0.55 886 0.07 0.50 880 0.08 0.45 865 0.09 0.40 746 0.11 

21 Barton in the Beans 103 0.65 1440 0.04 0.55 1266 0.05 0.55 1266 0.05 0.50 1212 0.06 0.40 1011 0.07 

22 Kirby Muxloe 103 0.65 3265 0.02 0.55 2950 0.02 0.55 2950 0.02 0.55 2950 0.02 0.45 2833 0.03 

20 Peckleton 95 0.55 649 0.08 0.50 595 0.09 0.45 548 0.11 0.30 416 0.15 0.20 326 0.22 

19 Sibson 85 0.55 1219 0.04 0.45 1149 0.04 0.35 918 0.06 0.30 817 0.07 0.25 739 0.09 

17 Cadeby 83 0.55 459 0.09 0.30 252 0.18 0.25 253 0.22 0.25 253 0.22 0.20 212 0.32 

18 Ratcliffe Culey 83 0.60 1075 0.04 0.50 849 0.06 0.45 799 0.06 0.15 376 0.15 0.10 276 0.24 

16 Orton-on-the-Hill 81 0.70 379 0.11 0.60 302 0.16 0.55 302 0.18 0.55 302 0.18 0.50 288 0.20 

15 Shackerstone 68 0.70 1177 0.03 0.65 1080 0.04 0.55 890 0.05 0.55 890 0.05 0.45 785 0.06 

14 Sutton Cheney 65 0.75 571 0.06 0.65 506 0.08 0.65 506 0.08 0.55 406 0.11 0.25 228 0.20 

13 Shenton 53 0.50 123 0.24 0.45 103 0.29 0.40 95 0.38 0.40 95 0.38 0.35 88 0.51 

12 Sheepy Parva 47 0.50 935 0.03 0.50 935 0.03 0.40 831 0.04 0.35 716 0.04 0.30 686 0.05 

11 Upton 43 0.85 187 0.12 0.80 133 0.18 0.55 58 0.46 0.50 55 0.55 0.35 46 0.84 

10 Odstone 30 0.80 779 0.02 0.65 471 0.04 0.50 329 0.06 0.45 297 0.07 0.20 156 0.15 

8 Newtown Unthank 27 0.95 6648 0.00 0.95 6648 0.00 0.60 2355 0.01 0.20 2078 0.01 0.20 2078 0.01 

9 Wellsborough 27 0.60 56 0.25 0.35 27 0.55 0.25 22 0.80 0.25 22 0.80 0.20 20 1.13 

7 Wykin 25 0.60 386 0.03 0.50 346 0.04 0.50 346 0.04 0.20 159 0.11 0.20 159 0.11 

5 Bilstone 20 0.70 831 0.01 0.55 762 0.01 0.40 772 0.02 0.40 772 0.02 0.35 727 0.02 

6 Copt Oak 20 0.80 173 0.06 0.75 161 0.07 0.75 161 0.07 0.45 63 0.21 0.30 43 0.37 

3 Atterton 15 0.95 3324 0.00 0.15 1870 0.00 0.15 1870 0.00 0.10 1143 0.01 0.10 1143 0.01 

4 Pinwall 15 0.80 92 0.09 0.75 87 0.10 0.75 87 0.10 0.70 74 0.13 0.50 41 0.27 

2 Ellistown 11 0.85 21 0.28 0.65 9 0.84 0.65 9 0.84 0.65 9 0.84 0.65 9 0.84 

1 Appleby Magna 10 0.50 1247 0.00 0.50 1247 0.00 0.50 1247 0.00 0.10 970 0.01 0.10 970 0.01 
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Table 4.3: (continued) Results of the containment analysis for the POST data. For all considered threshold, the optimum α-cuts 
that satisfy the threshold limits are identified, with the measure of the density of points fall within these α-cuts (points/km2). 

ID Village Name 
No. of 
Points 

Threshold of  75 % Threshold of 80 % Threshold of  85 % Threshold of 90 % Threshold of  95 % 

α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area 

49 Burbage 6635 0.45 2141 2.46 0.40 2051 2.77 0.40 2051 2.77 0.35 1950 3.09 0.25 1810 3.54 

48 Earl Shilton 4763 0.40 2702 1.32 0.35 2610 1.48 0.30 2520 1.67 0.25 2361 1.87 0.20 2198 2.08 

47 Barwell 4244 0.40 2742 1.20 0.35 2632 1.37 0.35 2632 1.37 0.30 2476 1.54 0.20 2192 1.86 

46 Groby 2954 0.40 2070 1.14 0.40 2070 1.14 0.35 2016 1.26 0.30 1928 1.42 0.25 1816 1.56 

45 Ratby 1904 0.50 2428 0.63 0.45 2374 0.69 0.45 2374 0.69 0.40 2295 0.75 0.30 2066 0.88 

44 Desford 1497 0.35 1849 0.64 0.30 1793 0.67 0.20 1530 0.84 0.05 943 1.49 0.00 0 0.00 

43 Newbold Verdon 1376 0.45 2312 0.46 0.40 2248 0.52 0.35 2109 0.58 0.30 2036 0.62 0.15 1648 0.80 

42 Barlestone 1080 0.55 2614 0.32 0.45 2378 0.37 0.40 2262 0.41 0.25 1951 0.51 0.15 1670 0.62 

41 Market Bosworth 1048 0.35 1768 0.46 0.30 1610 0.54 0.25 1470 0.62 0.15 1189 0.82 0.10 1015 0.98 

40 Stoke Golding 793 0.50 1871 0.32 0.45 1790 0.36 0.35 1679 0.41 0.25 1528 0.48 0.10 1156 0.65 

39 Bagworth 604 0.35 1354 0.38 0.35 1354 0.38 0.35 1354 0.38 0.30 1167 0.47 0.15 760 0.76 

38 Thornton 460 0.50 1889 0.19 0.45 1716 0.22 0.40 1462 0.27 0.25 1034 0.40 0.05 539 0.82 

37 Witherley 313 0.45 1538 0.16 0.40 1457 0.18 0.35 1387 0.20 0.30 1317 0.21 0.10 927 0.32 

36 Sheepy Magna 302 0.30 796 0.29 0.20 580 0.43 0.10 405 0.65 0.05 290 0.96 0.00 0 0.00 

35 Higham on the Hill 284 0.35 1495 0.15 0.30 1387 0.17 0.25 1289 0.19 0.05 661 0.41 0.00 0 0.00 

34 Stanton under Bardon 281 0.55 1958 0.11 0.45 1698 0.14 0.35 1437 0.17 0.15 951 0.27 0.05 588 0.46 

33 Fenny Drayton 222 0.45 1178 0.15 0.40 1112 0.16 0.30 1016 0.19 0.25 922 0.22 0.05 562 0.38 

32 Nailstone 215 0.35 1183 0.14 0.30 1108 0.16 0.25 1059 0.18 0.05 479 0.43 0.00 0 0.00 

31 Botcheston 198 0.25 722 0.23 0.25 722 0.23 0.20 594 0.30 0.20 594 0.30 0.10 356 0.54 

30 Stapleton 195 0.20 1230 0.12 0.10 934 0.18 0.05 660 0.27 0.05 660 0.27 0.00 0 0.00 

29 Kirkby Mallory 176 0.20 819 0.17 0.15 673 0.21 0.05 471 0.33 0.00 0 0.00 0.00 0 0.00 

28 Congerstone 151 0.40 1184 0.10 0.35 991 0.13 0.30 972 0.13 0.25 856 0.16 0.10 572 0.26 

27 Twycross 148 0.30 757 0.15 0.20 649 0.19 0.15 548 0.24 0.10 441 0.32 0.05 315 0.46 

26 Carlton 124 0.30 570 0.17 0.20 436 0.24 0.20 436 0.24 0.10 323 0.36 0.00 0 0.00 

24 Dadlington 119 0.45 779 0.12 0.35 654 0.15 0.15 408 0.26 0.05 247 0.44 0.00 0 0.00 

25 Osbaston 119 0.05 115 0.96 0.05 115 0.96 0.05 115 0.96 0.05 115 0.96 0.00 0 0.00 

23 Norton Juxta Twycross 111 0.35 688 0.13 0.35 688 0.13 0.25 577 0.17 0.25 577 0.17 0.10 373 0.28 

21 Barton in the Beans 103 0.30 863 0.09 0.25 787 0.11 0.25 787 0.11 0.15 570 0.17 0.10 458 0.21 

22 Kirby Muxloe 103 0.35 2315 0.03 0.25 1808 0.05 0.20 1662 0.05 0.05 935 0.11 0.05 935 0.11 

20 Peckleton 95 0.20 326 0.22 0.15 269 0.29 0.10 202 0.45 0.10 202 0.45 0.05 128 0.72 

19 Sibson 85 0.25 739 0.09 0.15 523 0.13 0.10 427 0.18 0.05 305 0.26 0.00 0 0.00 

17 Cadeby 83 0.20 212 0.32 0.20 212 0.32 0.05 67 1.22 0.05 67 1.22 0.05 67 1.22 

18 Ratcliffe Culey 83 0.10 276 0.24 0.05 184 0.42 0.05 184 0.42 0.05 184 0.42 0.00 0 0.00 

16 Orton-on-the-Hill 81 0.45 267 0.24 0.25 181 0.36 0.10 122 0.57 0.05 80 0.98 0.05 80 0.98 

15 Shackerstone 68 0.45 785 0.06 0.35 693 0.08 0.15 446 0.13 0.10 368 0.17 0.05 259 0.26 

14 Sutton Cheney 65 0.20 225 0.24 0.20 225 0.24 0.10 136 0.43 0.10 136 0.43 0.05 88 0.74 

13 Shenton 53 0.35 88 0.51 0.35 88 0.51 0.30 71 0.65 0.20 49 0.99 0.05 24 2.17 

12 Sheepy Parva 47 0.15 449 0.09 0.15 449 0.09 0.15 449 0.09 0.10 366 0.12 0.05 232 0.20 

11 Upton 43 0.35 46 0.84 0.35 46 0.84 0.35 46 0.84 0.35 46 0.84 0.05 10 4.50 

10 Odstone 30 0.20 156 0.15 0.20 156 0.15 0.15 117 0.22 0.10 96 0.30 0.10 96 0.30 

8 Newtown Unthank 27 0.10 1524 0.01 0.10 1524 0.01 0.05 799 0.03 0.05 799 0.03 0.00 0 0.00 

9 Wellsborough 27 0.20 20 1.13 0.20 20 1.13 0.20 20 1.13 0.15 15 1.74 0.15 15 1.74 

7 Wykin 25 0.15 143 0.15 0.15 143 0.15 0.10 105 0.24 0.10 105 0.24 0.10 105 0.24 

5 Bilstone 20 0.20 392 0.04 0.20 392 0.04 0.15 329 0.06 0.15 329 0.06 0.15 329 0.06 

6 Copt Oak 20 0.30 43 0.37 0.30 43 0.37 0.15 23 0.81 0.15 23 0.81 0.15 23 0.81 

3 Atterton 15 0.05 772 0.02 0.05 772 0.02 0.05 772 0.02 0.00 0 0.00 0.00 0 0.00 

4 Pinwall 15 0.45 42 0.31 0.45 42 0.31 0.45 42 0.31 0.40 37 0.38 0.35 35 0.43 

2 Ellistown 11 0.55 6 1.50 0.55 6 1.50 0.45 4 2.32 0.45 4 2.32 0.40 4 2.80 

1 Appleby Magna 10 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 
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Figure 4.13: Map of three settlements (on the left showing their address points and fuzzy models) with bar charts (on the 

right indicating the optimal α-cut for each threshold), where the smallest α-cuts drop out before reaching larger thresholds 

which indicate the scatter nature of their points. 
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 Another observation shows that villages with larger number of addresses 

and less difference between their α-cuts imply the compact character of 

their address points. This is applied in Burbage, Barwell, Groby, Ratby, 

and Earl Shilton.  In addition, villages with few number of address points 

but still with less difference between their α-cuts, such as Pinwall and 

Ellistown, also highlight the compactness of their patterns. Figure 4.14 

presents three mapping examples for Burbage, Earl Shilton and Pinwall 

with par charts showing which α-cut is satisfying particular threshold. 

Mostly the minimum value reached that capture 95% of these villages is 

about α-cut of 0.2.  
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Figure 4.14: Map of some settlement (on the left showing their address points and fuzzy models) with bar charts (on the 

right indicating the optimal α-cut for each threshold), in which less disparity between α-cuts values showing that their 

addresses are compact.   
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 Some villages show a sudden decline in their α-cut values, suggesting that 

their point distributions contain some outliers located further or spread 

away from the main point groups. This appears in several settlements but 

is more distinct in one small village, Atterton, and a moderate-sized 

village, Osbaston (Figure 4.15). 

 
Figure 4.15: Map of some villages (on the left showing their address points and fuzzy models) 

with bar charts (on the right indicating the optimal α-cut for each threshold) showing sudden 

decline in their α-cut values that relates to points located further and spread away from the main 

point groups. 

© OpenStreetMap (and) contributors, CC-BY-SA
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 It should be further noted that some settlements conversely show a 

gradual decrease of their α-cuts, which signifies that the addresses in 

these villages are less defuse. Here are some examples: Peckleton, Sibson, 

Barlestone, Twycross, Congerstone, Norton Juxta Twycross, Barton in the 

Beans and Botcheston; two of these are mapped in Figure 4.16. 

 
Figure 4.16: Examples of two settlements (on the left, maps showing their address points and 

fuzzy models, with bar charts on the right indicating the optimal α-cut for each threshold),as a 

case of less defuse points which have gradual transition between their α-cuts. 
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Secondly, exploring relationship with point densities:  

 Looking at the density of points recorded in Table 4.3, it is apparent that 

generally there is no clearly discernible pattern between the density and 

the number of the point features. However, there are some flaws in these 

results, which appear in darker colour grades. 

 Newton Unthank, for example, has the maximum density values in the 50 

and 55% with only a few points (27). This is also true for Atterton and 

Appleby Magna, which have fewer points with quite large density.  

 In addition, Kirby Muxloe seems to have larger values of density with 103 

points than other settlements which have much more points, such as 

Burbage, Earl Shilton and even Barwell, which accommodate the 

maximum addresses. 

 Considering the other direction of the table, density values decrease as 

the proportion of the address points included increase. This has been 

confirmed in the previous result of BS76 data (Table 4.2). 

Results of the POI data 

The result of the containment analysis for the POI data are highlighted in Table 

4.4. Thirty-one settlements with at least 10 features are identified, and again 

these are ranked in descending order by the number of points. The same colour 

grades from the previous Tables, 4.2 & 4.3, for α-cuts (light orange) and densities 

(light green) are also applied here (Table 4.4). This table is quite revealing in 

several ways: 

Firstly, exploring the α-cut profiles:    

 Similar to the previous results from Tables 4.2 and 4.3, some villages fail 

to capture all considered thresholds as they drop before reaching the 

maximum threshold value. Desford, Earl Shilton, and Market Bosworth, 

for example, do not have any α-cut values that cover 95% of their address 

points. This indicates that in these villages there are some addresses that 

are spread out (referring to areas in which they have practically a very 
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small value of membership, a non-zero number less than 0.1). Therefore, 

these are excluded from the fuzzy model, as can be noticed from the maps 

and the bar charts of Desford and Earl Shilton in Figure 4.17. It is 

important to notice that firstly in Desford the fuzzy surfaces are not 

continuous since the addresses have different intensities across the area. 

Secondly, there is a certain area (north-west of Desford) that appears 

beyond the parish of Desford although it is usually considered as being 

part of Desford. Thirdly, the points in Earl Shilton look to be slightly 

dispersed, which may explain the low values of membership for all 

thresholds. This can be also realised in Newbold Verdon, which has a 

maximum membership value of 0.2 to include 50% of the points, which 

means the majority of them are less intense.  
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Table 4.4: Results of the containment analysis for the POI data. For all considered 
threshold, the optimum α-cuts that satisfy the threshold limits are identified, with the 
measure of the density of points fall within these α-cuts (points/km2). 

ID Village Name 
No. of 
Points 

Threshold of 50 % Threshold of 55 % Threshold of 60 % Threshold of 65 % Threshold of 70 % 

α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area 

5 Burbage 257 0.30 105 1.64 0.30 105 1.64 0.30 105 1.64 0.30 105 1.64 0.25 84 2.20 

8 Earl Shilton 227 0.20 475 0.25 0.15 333 0.43 0.15 333 0.43 0.10 253 0.70 0.10 253 0.70 

3 Barwell 221 0.55 372 0.30 0.45 345 0.40 0.45 345 0.40 0.35 284 0.51 0.25 233 0.73 

15 Markfield 173 0.75 156 0.66 0.75 156 0.66 0.70 123 0.86 0.60 89 1.30 0.50 69 1.82 

10 Groby 113 0.25 159 0.37 0.20 131 0.54 0.20 131 0.54 0.10 83 1.09 0.10 83 1.09 

14 Market Bosworth 106 0.30 506 0.11 0.20 385 0.16 0.15 314 0.24 0.15 314 0.24 0.10 208 0.40 

7 Desford 95 0.45 93 0.58 0.45 93 0.58 0.40 85 0.71 0.35 77 0.85 0.30 69 1.03 

17 Newbold Verdon 70 0.20 142 0.30 0.20 142 0.30 0.20 142 0.30 0.15 121 0.40 0.10 97 0.64 

22 Ratby 60 0.40 94 0.33 0.35 91 0.44 0.35 91 0.44 0.35 91 0.44 0.30 88 0.54 

28 Stoke Golding 59 0.60 148 0.24 0.60 148 0.24 0.55 136 0.26 0.40 108 0.38 0.35 101 0.44 

2 Barlestone 30 0.35 231 0.06 0.30 208 0.08 0.25 187 0.10 0.20 162 0.13 0.20 162 0.13 

30 Thornton 27 0.60 80 0.18 0.55 70 0.21 0.45 54 0.31 0.35 48 0.45 0.35 48 0.45 

27 Stapleton 26 0.55 23 0.56 0.50 25 0.73 0.50 25 0.73 0.50 25 0.73 0.40 17 1.19 

1 Bagworth 24 0.60 40 0.30 0.45 29 0.55 0.45 29 0.55 0.45 29 0.55 0.40 27 0.71 

19 Nuneaton 23 0.50 1 10.98 0.50 1 10.98 0.40 1 18.87 0.35 1 23.88 0.30 1 33.42 

26 Stanton under Bardon 23 0.65 95 0.14 0.65 95 0.14 0.60 84 0.17 0.45 58 0.26 0.35 47 0.36 

13 Kirkby Mallory 19 0.40 122 0.08 0.35 128 0.09 0.35 128 0.09 0.30 119 0.12 0.30 119 0.12 

21 Peckleton 18 0.90 312 0.03 0.30 88 0.16 0.30 88 0.16 0.30 88 0.16 0.30 88 0.16 

11 Higham on the Hill 15 0.45 151 0.05 0.35 126 0.08 0.35 126 0.08 0.35 126 0.08 0.30 120 0.09 

9 Fenny Drayton 14 0.40 40 0.30 0.40 40 0.30 0.40 40 0.30 0.40 40 0.30 0.40 40 0.30 

24 Sheepy Magna 14 0.85 75 0.09 0.55 22 0.41 0.55 22 0.41 0.50 20 0.55 0.50 20 0.55 

29 Sutton Cheney 14 0.60 12 0.58 0.55 12 0.77 0.55 12 0.77 0.45 8 1.46 0.45 8 1.46 

31 Twycross 14 0.75 18 0.38 0.50 9 0.92 0.45 10 1.15 0.45 10 1.15 0.45 10 1.15 

16 Nailstone 13 0.80 121 0.06 0.70 90 0.09 0.70 90 0.09 0.55 61 0.15 0.45 51 0.19 

25 Sibson 13 0.60 59 0.13 0.60 59 0.13 0.60 59 0.13 0.50 44 0.20 0.40 38 0.26 

32 Witherley 13 0.50 107 0.07 0.50 107 0.07 0.50 107 0.07 0.40 85 0.11 0.35 78 0.13 

23 Ratcliffe Culey 12 0.70 27 0.26 0.70 27 0.26 0.65 28 0.36 0.65 28 0.36 0.65 28 0.36 

6 Dadlington 11 0.85 104 0.06 0.50 29 0.24 0.50 29 0.24 0.20 13 0.60 0.20 13 0.60 

4 Botcheston 10 0.80 32 0.22 0.80 32 0.22 0.80 32 0.22 0.80 32 0.22 0.80 32 0.22 

18 Newtown Unthank 10 0.95 2909 0.00 0.95 2909 0.00 0.95 2909 0.00 0.95 2909 0.00 0.95 2909 0.00 

20 Osbaston 10 0.60 64 0.09 0.60 64 0.09 0.60 64 0.09 0.45 40 0.18 0.45 40 0.18 
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Table 4.4: (continued) Results of the containment analysis for the POI data. For all 
considered threshold, the optimum α-cuts that satisfy the threshold limits are identified, 
with the measure of the density of points fall within these α-cuts (points/km2). 

ID Village Name 
No. of 
Points 

Threshold of 75 % Threshold of 80 % Threshold of 85 % Threshold of 90 % Threshold of 95 % 

α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area 

5 Burbage 257 0.20 73 2.96 0.20 73 2.96 0.15 65 3.65 0.15 65 3.65 0.10 55 4.43 

8 Earl Shilton 227 0.10 253 0.70 0.05 165 1.25 0.05 165 1.25 0.05 165 1.25 0.00 0 0.00 

3 Barwell 221 0.25 233 0.73 0.15 165 1.12 0.10 135 1.50 0.10 135 1.50 0.05 96 2.22 

15 Markfield 173 0.35 48 2.94 0.35 48 2.94 0.30 43 3.48 0.10 25 6.45 0.05 18 9.15 

10 Groby 113 0.10 83 1.09 0.10 83 1.09 0.05 52 2.09 0.05 52 2.09 0.05 52 2.09 

14 Market Bosworth 106 0.10 208 0.40 0.05 123 0.79 0.05 123 0.79 0.05 123 0.79 0.00 0 0.00 

7 Desford 95 0.25 58 1.24 0.10 31 2.55 0.05 21 4.12 0.05 21 4.12 0.00 0 0.00 

17 Newbold Verdon 70 0.10 97 0.64 0.10 97 0.64 0.10 97 0.64 0.05 63 1.10 0.05 63 1.10 

22 Ratby 60 0.30 88 0.54 0.25 74 0.67 0.20 67 0.79 0.15 60 0.92 0.05 38 1.58 

28 Stoke Golding 59 0.30 87 0.52 0.20 73 0.67 0.15 66 0.81 0.10 52 1.05 0.05 38 1.56 

2 Barlestone 30 0.15 123 0.19 0.15 123 0.19 0.10 103 0.29 0.10 103 0.29 0.10 103 0.29 

30 Thornton 27 0.35 48 0.45 0.35 48 0.45 0.30 44 0.52 0.10 25 1.09 0.10 25 1.09 

27 Stapleton 26 0.40 17 1.19 0.35 14 1.49 0.25 10 2.40 0.20 8 2.88 0.10 6 4.16 

1 Bagworth 24 0.40 27 0.71 0.35 25 0.85 0.35 25 0.85 0.15 13 1.71 0.15 13 1.71 

19 Nuneaton 23 0.25 0 43.32 0.20 0 53.88 0.20 0 53.88 0.20 0 53.88 0.15 0 66.07 

26 Stanton under Bardon 23 0.30 39 0.46 0.25 34 0.58 0.25 34 0.58 0.20 30 0.71 0.10 21 1.10 

13 Kirkby Mallory 19 0.25 111 0.14 0.25 111 0.14 0.15 74 0.26 0.15 74 0.26 0.15 74 0.26 

21 Peckleton 18 0.30 88 0.16 0.15 51 0.33 0.15 51 0.33 0.15 51 0.33 0.10 38 0.47 

11 Higham on the Hill 15 0.20 90 0.14 0.20 90 0.14 0.20 90 0.14 0.15 77 0.19 0.15 77 0.19 

9 Fenny Drayton 14 0.40 40 0.30 0.40 40 0.30 0.40 40 0.30 0.20 15 0.96 0.20 15 0.96 

24 Sheepy Magna 14 0.50 20 0.55 0.10 5 2.74 0.10 5 2.74 0.10 5 2.74 0.10 5 2.74 

29 Sutton Cheney 14 0.45 8 1.46 0.45 8 1.46 0.45 8 1.46 0.35 6 2.44 0.35 6 2.44 

31 Twycross 14 0.45 10 1.15 0.20 3 3.62 0.20 3 3.62 0.15 3 4.68 0.15 3 4.68 

16 Nailstone 13 0.45 51 0.19 0.15 25 0.52 0.15 25 0.52 0.15 25 0.52 0.15 25 0.52 

25 Sibson 13 0.40 38 0.26 0.20 26 0.49 0.20 26 0.49 0.20 26 0.49 0.20 26 0.49 

32 Witherley 13 0.35 78 0.13 0.20 62 0.21 0.20 62 0.21 0.20 62 0.21 0.20 62 0.21 

23 Ratcliffe Culey 12 0.65 28 0.36 0.65 28 0.36 0.20 8 1.52 0.20 8 1.52 0.20 8 1.52 

6 Dadlington 11 0.15 11 0.96 0.15 11 0.96 0.15 11 0.96 0.15 11 0.96 0.15 11 0.96 

4 Botcheston 10 0.75 26 0.31 0.75 26 0.31 0.65 17 0.52 0.65 17 0.52 0.50 11 0.91 

18 Newtown Unthank 10 0.70 1870 0.00 0.70 1870 0.00 0.70 1870 0.00 0.70 1870 0.00 0.15 831 0.01 

20 Osbaston 10 0.35 31 0.26 0.35 31 0.26 0.30 34 0.30 0.30 34 0.30 0.30 34 0.30 
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Figure 4.17: Two examples of villages (maps on the left showing their address points and fuzzy 

models with bar charts on the right indicating the optimal α-cut for each threshold) that fail to 

capture 95% of their address points indicating that some of their points are less intense.  

 There are some settlements that rather have slightly higher value of 

membership across the different thresholds, which imply the general 

structure of their points being somehow compact. These involve 

Botecheston, Newtown Unthank, Osbaston and Ratcliffe Culey. However, it 

turns out that these villages accommodate few addresses distributed 

considerably in small area (just about a Kilometre or less) which may affect 

© OpenStreetMap (and) contributors, CC-BY-SA
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the results. Figure 4.18 presents maps and plots of α-cuts for Botcheston 

and Newtown Unthank.  

 
Figure 4.18: Two examples of small villages (maps on the left showing their address points and 
fuzzy models, with bar charts on the right indicating the optimal α-cut for each threshold) that have 
slightly higher value of membership across the different thresholds. 

 There is a gradual decrease in the membership values for some settlements; 

Barwell, Stoke Golding and Ratby are examples in this case. Maps and plots 

of α-cuts for Barwell and Stoke Golding are shown in Figure 4.19. This 

indicates that the points are more clustered in the inner region of the 

settlements and more disperse in the outer region. It should also emphasise 
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the fact that the distribution of points in Stoke Golding does not coincide 

with the equivalent parish name, as some of the points fall nearly outside 

the parished area, although even so they seem to have a higher membership 

grade.  

 
Figure 4.19: Two examples of villages (maps on the left showing their address points and fuzzy 

models with bar charts on the right indicating the optimal α-cut for each threshold) that have 

gradual decrease in the membership values which show how their points vary in intensity., 

 In a similar vein, there is a sudden reduction in the membership grades (α-

cut values) in some settlements, showing that their point distributions have 

© OpenStreetMap (and) contributors, CC-BY-SA
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some outliers a bit further from the main cluster. This can be seen in some 

of the small-sized villages such as Peckleton, Twycross, Dadlington and 

Sheepy Magana. Two of those (Peckleton and Dadlington) are displayed 

with their maps and plots of α-cuts in Figure 4.20. 

 
Figure 4.20: Maps of two settlements (on the left showing their address points and fuzzy models) 

with bar charts (on the right indicating the optimal α-cut for each threshold), which show sudden 

reduction in the membership grades related to the distribution of their point pattern. 

 Other observations found that, in at least the first four examined thresholds 

(50, 55, 60 and 65%), some villages have a plateau in their α-cuts before 

© OpenStreetMap (and) contributors, CC-BY-SA
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declining to their minimums. This is shown in Fenny Drayton, Burbage, 

Newtown Unthank and Botcheston (the latter two are presented in Figure 

4.18). A possible explanation for this might be due to the distribution of 

their points, which is consistent across these (close) thresholds. 

Secondly, exploring the relationship with point densities:  

 There is no clear structure for the association between number of points 

and their density recorded in Table 4.4. There is, however, one striking fact: 

that Newtown Unthank, with not many points distributed in a tiny area, has 

the maximum density across all thresholds. Indeed, it has very high density 

values compared to other settlements in the table.   

 Excluding Newtown Unthank from the table, it is found that Market 

Bosworth, Earl Shilton and Barwell have the top values of density in all 

thresholds, while Sutton Cheney and Nuneaton have the lowest density 

across all thresholds. It has to be noted, however, that the order of point 

density differs in each threshold as the pattern structures for the points are 

different between settlements. This is illustrated by looking at thresholds of 

50 & 55%: Market Bosworth, Earl Shilton, Barwell and Peckleton have the 

highest density (506, 475, 372 & 312 points/km2) in the first instance 

(50%); whereas in the second (55%) the order is different: Barwell (345 

points/km2) is denser than Earl Shilton (333 points/km2) and Peckleton 

(88 points/km2) is replaced by Barlestone (208 points/ km2). This can be 

expected to happen in any other instances. 

 In the same way as before, the density of points declines horizontally across 

thresholds. For a particular village, density values decrease as the threshold 

limits increase. 

Results of the all data combined 

Table 4.5 presents the results of the containment analysis of settlements that are 

identified regardless of what their data sources are. This means that for a 

particular village all the address points which share the same name from any of the 

three data sources are considered as one single village. Thus, there are 58 villages 
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with more than 10 addresses recognised in this way, and they are ranked in 

descending order as well. The table has the same format for membership grades 

and points density as presented in the results from Tables 4.2, 4.3 and 4.4. A 

number of issues have emerged from Table 4.5, as follows: 

Firstly, exploring the α-cut profiles:    

Several settlements miss out some thresholds towards the end from the analysis. 

This is to a large extent due to the distribution of their address points, which are 

mainly spread or scattered around the village area; leaving out areas with very 

small grades of membership (0 < 𝛼 < 0.1). This can be seen in Appleby Magna, 

Higham on the Hill, Twycross, Sheepy and Stanton under Bardon, which drop out 

at 70, 75 & 80% respectively. Some of these settlements (Higham on the Hill and 

Stanton under Bardon) contain a single cluster in the middle with a large number 

of points spread further apart. Also, Appleby Magna has one group of points with 

an outlier digressing from them. Alternatively, Twycross and Sheepy show more 

than one cluster with some dispersed points around the rest. Figure 4.21 

illustrates these observations in the cases of Stanton under Bardon, Appleby 

Magna and Sheepy.  
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Table 4.5: Results of the containment analysis for all data combined. For all considered threshold, the optimum α-cuts that satisfy the 

threshold limits are identified, with the measure of the density of points fall within these α-cuts (points/km2). 

ID Village Name 
No. of 
Points 

Threshold of 50 % Threshold of 55 % Threshold of 60 % Threshold of65 % Threshold of 70 % Threshold of 75 % Threshold of 80 % Threshold of 85 % Threshold of 90 % Threshold of 95 % 

α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area 

10 Burbage 13871 0.60 5169 1.44 0.55 4919 1.76 0.55 4919 1.76 0.50 4708 2.06 0.45 4440 2.42 0.45 4440 2.42 0.40 4288 2.73 0.35 4061 3.06 0.30 3902 3.31 0.25 3752 3.52 

20 Earl Shilton 9874 0.50 6494 0.78 0.45 6075 1.01 0.45 6075 1.01 0.40 5799 1.22 0.40 5799 1.22 0.35 5537 1.41 0.30 5321 1.61 0.30 5321 1.61 0.25 5057 1.78 0.20 4731 1.99 

7 Barwell 8847 0.45 6290 0.85 0.45 6290 0.85 0.45 6290 0.85 0.40 5941 1.06 0.40 5941 1.06 0.35 5620 1.26 0.35 5620 1.26 0.30 5352 1.44 0.25 4999 1.61 0.15 4385 1.94 

23 Groby 6349 0.55 4996 0.64 0.50 4800 0.81 0.50 4800 0.81 0.45 4548 0.95 0.40 4310 1.12 0.40 4310 1.12 0.35 4177 1.25 0.30 4023 1.39 0.25 3816 1.51 0.10 2860 2.15 

14 Clarendon 5702 0.50 3237 0.89 0.45 3056 1.15 0.45 3056 1.15 0.40 2856 1.45 0.40 2856 1.45 0.35 2708 1.73 0.35 2708 1.73 0.30 2538 1.97 0.25 2375 2.20 0.10 1736 3.16 

18 De Montfort 4532 0.50 2829 0.82 0.45 2658 1.06 0.45 2658 1.06 0.40 2516 1.26 0.40 2516 1.26 0.35 2390 1.50 0.30 2162 1.83 0.30 2162 1.83 0.25 2003 2.09 0.20 1840 2.35 

40 Ratby 3974 0.65 5426 0.42 0.65 5426 0.42 0.60 5359 0.49 0.60 5359 0.49 0.55 5111 0.58 0.50 4930 0.64 0.50 4930 0.64 0.45 4853 0.70 0.35 4437 0.82 0.20 3785 1.00 

19 Desford 3456 0.55 4356 0.40 0.50 4139 0.48 0.45 4012 0.54 0.40 3938 0.59 0.30 3676 0.67 0.20 3131 0.86 0.15 2851 0.98 0.10 2390 1.24 0.05 1685 1.87 0.00 0 0.00 

53 Trinity 2988 0.65 3085 0.49 0.60 2821 0.68 0.60 2821 0.68 0.55 2734 0.82 0.55 2734 0.82 0.50 2665 0.92 0.50 2665 0.92 0.45 2589 0.98 0.35 2396 1.16 0.30 2319 1.23 

31 Newbold Verdon 2875 0.55 4998 0.33 0.55 4998 0.33 0.50 4918 0.39 0.50 4918 0.39 0.45 4883 0.45 0.45 4883 0.45 0.40 4731 0.50 0.35 4602 0.54 0.25 4087 0.64 0.10 3134 0.88 

29 Markfield 2464 0.55 2633 0.50 0.50 2547 0.58 0.45 2482 0.65 0.45 2482 0.65 0.40 2385 0.72 0.35 2322 0.81 0.25 2046 1.02 0.20 1854 1.17 0.10 1387 1.62 0.00 0 0.00 

28 Market Bosworth 2294 0.55 4802 0.25 0.50 4536 0.29 0.45 4302 0.35 0.45 4302 0.35 0.40 4077 0.41 0.30 3531 0.53 0.30 3531 0.53 0.20 2903 0.69 0.10 2236 0.94 0.00 0 0.00 

5 Barlestone 2228 0.70 6052 0.19 0.65 5791 0.22 0.60 5460 0.27 0.60 5460 0.27 0.55 5392 0.32 0.55 5392 0.32 0.45 4984 0.36 0.40 4672 0.41 0.25 4070 0.49 0.15 3524 0.61 

13 Castle 2076 0.50 4384 0.24 0.45 3955 0.33 0.45 3955 0.33 0.40 3543 0.44 0.40 3543 0.44 0.35 3267 0.52 0.35 3267 0.52 0.30 2990 0.61 0.25 2791 0.70 0.20 2577 0.79 

50 Stoke Golding 1649 0.70 4510 0.20 0.65 4310 0.23 0.60 4132 0.26 0.60 4132 0.26 0.55 4045 0.30 0.50 3927 0.32 0.45 3748 0.35 0.35 3516 0.40 0.25 3236 0.47 0.05 2112 0.75 

4 Bagworth & Thornton 1282 0.60 1009 0.65 0.55 901 0.82 0.50 816 0.99 0.45 728 1.26 0.45 728 1.26 0.40 630 1.56 0.30 474 2.20 0.15 303 3.68 0.05 172 6.80 0.00 0 0.00 

57 Witherley 1093 0.50 1493 0.38 0.35 1115 0.58 0.30 1009 0.72 0.30 1009 0.72 0.25 863 0.90 0.15 598 1.48 0.15 598 1.48 0.05 333 2.81 0.00 0 0.00 0.00 0 0.00 

24 Higham on the Hill 782 0.45 3471 0.12 0.40 3159 0.14 0.35 2952 0.16 0.25 2359 0.22 0.10 1567 0.36 0.05 1150 0.52 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 

38 Peckleton 739 0.75 563 0.74 0.75 563 0.74 0.70 436 1.03 0.55 230 2.12 0.45 165 3.14 0.35 133 4.29 0.15 75 8.01 0.10 62 10.08 0.05 39 17.83 0.05 39 17.83 

43 Sheepy 692 0.30 243 1.53 0.25 195 1.98 0.10 98 4.69 0.10 98 4.69 0.05 54 10.56 0.05 54 10.56 0.05 54 10.56 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 

48 Stanton under Bardon 670 0.70 4649 0.08 0.65 4644 0.08 0.60 4205 0.10 0.55 4184 0.11 0.45 3680 0.13 0.35 3092 0.16 0.05 1327 0.42 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 

54 Twycross 670 0.35 400 0.85 0.30 348 1.10 0.20 228 1.93 0.20 228 1.93 0.15 176 2.72 0.10 133 3.98 0.05 84 6.68 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 

3 Bagworth 628 0.45 1667 0.22 0.45 1667 0.22 0.40 1542 0.30 0.40 1542 0.30 0.40 1542 0.30 0.35 1387 0.39 0.35 1387 0.39 0.35 1387 0.39 0.30 1204 0.47 0.15 780 0.77 

42 Shackerstone 542 0.65 461 0.60 0.60 424 0.78 0.60 424 0.78 0.55 354 1.02 0.50 313 1.27 0.45 271 1.50 0.20 118 3.68 0.15 98 4.73 0.05 50 10.27 0.00 0 0.00 

30 Nailstone 488 0.55 3174 0.09 0.55 3174 0.09 0.50 2948 0.10 0.40 2540 0.13 0.35 2486 0.14 0.30 2311 0.16 0.20 1991 0.20 0.05 1014 0.43 0.00 0 0.00 0.00 0 0.00 

52 Thornton 487 0.65 2171 0.12 0.60 2207 0.14 0.60 2207 0.14 0.55 2035 0.17 0.50 1826 0.21 0.50 1826 0.21 0.45 1699 0.24 0.40 1461 0.29 0.25 1054 0.42 0.05 560 0.84 

51 Sutton Cheney 418 0.65 254 0.85 0.35 101 2.40 0.30 88 3.05 0.25 73 3.87 0.20 58 5.05 0.15 45 7.44 0.10 35 10.93 0.10 35 10.93 0.10 35 10.93 0.05 26 15.91 

44 Sheepy Magna 316 0.55 1254 0.13 0.45 1044 0.18 0.40 981 0.21 0.35 878 0.26 0.35 878 0.26 0.30 818 0.30 0.25 715 0.35 0.10 423 0.65 0.05 305 0.94 0.00 0 0.00 

37 Osbaston 290 0.30 548 0.26 0.15 325 0.61 0.15 325 0.61 0.15 325 0.61 0.10 224 0.99 0.10 224 0.99 0.05 134 1.97 0.05 134 1.97 0.05 134 1.97 0.00 0 0.00 

12 Carlton 271 0.55 1903 0.07 0.50 1729 0.09 0.40 1610 0.12 0.40 1610 0.12 0.30 1335 0.15 0.25 1189 0.17 0.20 1044 0.21 0.15 884 0.26 0.05 544 0.45 0.00 0 0.00 
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ID Village Name 
No. of 
Points 

Threshold of 50 % Threshold of 55 % Threshold of 60 % Threshold of65 % Threshold of 70 % Threshold of 75 % Threshold of 80 % Threshold of 85 % Threshold of 90 % Threshold of 95 % 

α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area α-cut Density Area 

22 Fenny Drayton 236 0.65 1528 0.08 0.60 1415 0.10 0.60 1415 0.10 0.50 1239 0.13 0.50 1239 0.13 0.45 1182 0.15 0.35 1069 0.18 0.30 1029 0.20 0.20 859 0.25 0.05 508 0.45 

11 Cadeby 225 0.30 615 0.19 0.25 596 0.22 0.20 473 0.32 0.20 473 0.32 0.15 359 0.44 0.10 256 0.71 0.10 256 0.71 0.05 151 1.36 0.05 151 1.36 0.00 0 0.00 

49 Stapleton 221 0.45 1862 0.06 0.40 1650 0.08 0.35 1545 0.09 0.35 1545 0.09 0.20 1223 0.13 0.15 1063 0.16 0.10 879 0.21 0.05 612 0.35 0.05 612 0.35 0.05 612 0.35 

9 Botcheston 208 0.40 1235 0.08 0.35 993 0.14 0.35 993 0.14 0.35 993 0.14 0.30 805 0.19 0.25 695 0.25 0.25 695 0.25 0.20 577 0.32 0.15 473 0.42 0.15 473 0.42 

27 Kirkby Mallory 195 0.45 1354 0.07 0.40 1183 0.09 0.35 1052 0.11 0.30 1066 0.13 0.25 831 0.18 0.20 756 0.20 0.10 561 0.28 0.05 439 0.39 0.00 0 0.00 0.00 0 0.00 

15 Congerstone 160 0.60 1837 0.05 0.55 1546 0.06 0.50 1399 0.07 0.45 1258 0.09 0.45 1258 0.09 0.40 1160 0.10 0.35 1043 0.13 0.30 996 0.14 0.25 879 0.17 0.15 687 0.22 

17 Dadlington 130 0.70 1316 0.06 0.70 1316 0.06 0.65 1080 0.07 0.60 1016 0.09 0.55 945 0.10 0.40 791 0.13 0.25 559 0.19 0.15 466 0.24 0.10 386 0.31 0.00 0 0.00 

33 Norton Juxta Twycross 117 0.50 890 0.08 0.50 890 0.08 0.50 890 0.08 0.45 876 0.09 0.40 757 0.11 0.35 718 0.13 0.35 718 0.13 0.25 611 0.17 0.20 522 0.21 0.05 281 0.41 

26 Kirby Muxloe 110 0.65 3064 0.02 0.55 2992 0.02 0.55 2992 0.02 0.55 2992 0.02 0.45 2701 0.03 0.35 2285 0.04 0.35 2285 0.04 0.10 1234 0.08 0.05 937 0.11 0.05 937 0.11 

6 Barton in the Beans 108 0.65 1496 0.04 0.55 1265 0.06 0.55 1265 0.06 0.50 1230 0.06 0.40 1053 0.07 0.35 970 0.09 0.25 831 0.11 0.25 831 0.11 0.15 600 0.17 0.10 481 0.21 

47 Sibson 98 0.45 1177 0.04 0.40 1020 0.05 0.25 744 0.09 0.25 744 0.09 0.20 649 0.12 0.20 649 0.12 0.15 532 0.15 0.10 406 0.21 0.05 310 0.30 0.05 310 0.30 

41 Ratcliffe Culey 95 0.65 1131 0.04 0.50 724 0.07 0.30 455 0.13 0.20 358 0.17 0.15 291 0.23 0.10 226 0.35 0.10 226 0.35 0.05 144 0.60 0.05 144 0.60 0.00 0 0.00 

36 Orton-on-the-Hill 89 0.65 354 0.13 0.60 338 0.15 0.55 334 0.17 0.50 304 0.20 0.45 286 0.23 0.40 281 0.25 0.10 135 0.56 0.10 135 0.56 0.05 83 1.05 0.05 83 1.05 

46 Shenton 62 0.55 146 0.23 0.50 135 0.28 0.50 135 0.28 0.40 98 0.43 0.35 100 0.53 0.35 100 0.53 0.35 100 0.53 0.35 100 0.53 0.10 38 1.55 0.10 38 1.55 

55 Upton 51 0.85 166 0.16 0.60 64 0.47 0.55 60 0.55 0.45 60 0.77 0.45 60 0.77 0.45 60 0.77 0.45 60 0.77 0.45 60 0.77 0.45 60 0.77 0.10 13 3.70 

45 Sheepy Parva 50 0.50 1205 0.02 0.50 1205 0.02 0.45 1108 0.03 0.35 942 0.04 0.30 831 0.04 0.15 568 0.07 0.15 568 0.07 0.10 434 0.11 0.10 434 0.11 0.05 273 0.18 

35 Odstone 38 0.70 877 0.02 0.35 433 0.06 0.35 433 0.06 0.35 433 0.06 0.25 317 0.09 0.25 317 0.09 0.20 274 0.12 0.20 274 0.12 0.10 189 0.19 0.05 120 0.32 

32 Newtown Unthank 37 0.95 9557 0.00 0.95 9557 0.00 0.95 9557 0.00 0.45 5402 0.00 0.45 5402 0.00 0.15 3013 0.01 0.10 2147 0.01 0.05 1959 0.02 0.00 0 0.00 0.00 0 0.00 

56 Wellsborough 31 0.60 75 0.21 0.30 32 0.56 0.25 29 0.65 0.20 27 0.93 0.20 27 0.93 0.20 27 0.93 0.20 27 0.93 0.15 21 1.36 0.15 21 1.36 0.10 14 2.11 

58 Wykin 28 0.55 416 0.04 0.55 416 0.04 0.55 416 0.04 0.20 208 0.11 0.20 208 0.11 0.20 208 0.11 0.15 151 0.17 0.15 151 0.17 0.10 122 0.23 0.10 122 0.23 

8 Bilstone 25 0.50 1080 0.01 0.35 970 0.01 0.25 831 0.02 0.20 789 0.02 0.20 789 0.02 0.20 789 0.02 0.15 513 0.04 0.10 416 0.06 0.10 416 0.06 0.10 416 0.06 

34 Nuneaton 23 0.50 1 10.98 0.50 1 10.98 0.40 1 18.87 0.35 1 23.88 0.30 1 33.42 0.25 0 43.32 0.20 0 53.88 0.20 0 53.88 0.20 0 53.88 0.15 0 66.07 

16 Copt Oak 21 0.80 199 0.06 0.70 164 0.08 0.70 164 0.08 0.40 68 0.20 0.30 58 0.29 0.30 58 0.29 0.30 58 0.29 0.20 36 0.50 0.10 23 0.92 0.10 23 0.92 

39 Pinwall 20 0.50 143 0.08 0.50 143 0.08 0.45 122 0.10 0.40 104 0.13 0.30 78 0.19 0.30 78 0.19 0.25 74 0.26 0.25 74 0.26 0.25 74 0.26 0.25 74 0.26 

2 Atterton 17 0.15 1524 0.01 0.15 1524 0.01 0.15 1524 0.01 0.10 1350 0.01 0.10 1350 0.01 0.10 1350 0.01 0.05 890 0.02 0.05 890 0.02 0.00 0 0.00 0.00 0 0.00 

21 Ellistown 16 0.90 62 0.14 0.90 62 0.14 0.60 15 0.82 0.60 15 0.82 0.60 15 0.82 0.60 15 0.82 0.50 10 1.37 0.50 10 1.37 0.40 7 2.09 0.30 5 3.01 

1 Appleby Magna 15 0.70 2078 0.00 0.70 2078 0.00 0.70 2078 0.00 0.70 2078 0.00 0.15 1524 0.01 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 0.00 0 0.00 

 

 

Table 4.5:  (continued) Results of the containment analysis for all data combined. For all considered threshold, the optimum α-cuts 

that satisfy the threshold limits are identified, with the measure of the density of points fall within these α-cuts (points/km2). 



 
 

109 
 

  

 

Figure 4.21: Three examples of settlements (maps on the left showing their address points and fuzzy 

models with bar charts on the right indicating the optimal α-cut for each threshold) that miss out some 

thresholds because of their point distribution which contain some diffused point(s).  
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 For some villages, it appears that the optimum α-cuts for all thresholds are 

quite large with a gradual transition between the start and end values. This 

is found in some nucleated village or clustered settlements such as Burbage, 

Earl Shilton, Trinity, Castle and De Montfort. Figure 4.22 presents mapping 

examples of Earl Shilton and Trinity with their α-cut plots.  

 
Figure 4.22: Two examples of settlements with overall high-grade of membership and gradual 

transition between their start and end α-cut values. Maps on the left show their actual address 

points and fuzzy models with bar charts on the right indicate the optimal α-cut for each threshold. 
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 There are few settlements with low membership values generally not 

exceeding 0.3 α for any threshold value. These are shown in Atterton, 

Cadeby and Osbaston. The reason for this is mainly related to the dispersal 

form of their points, as viewed in the maps and par charts of Cadeby and 

Osbaston in Figure 4.23. 

 
Figure 4.23: The case of some settlements with overall low-grade of membership values across all 

thresholds indicating the disperse nature of their points. Maps on the left show their actual address 

points and fuzzy models with bar charts on the right indicate the optimal α-cut for each threshold. 
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 In some of the settlements, the α-cut value stays stable for number of 

thresholds (mostly high percentage), such as appeared in Apply Magana, 

Upton, Shenton, Pinwall and Wellsborough. These settlements appear to be 

in the last section of the table where the number of points is small. 

Moreover, their points are distributed in a way that allows them to be 

captured equally in several thresholds. This can be clearly observed in the 

cases of Upton and Pinwall in Figure 4.24. 
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Figure 4.24: Examples of settlements that have some of their α-cut values stays stable reflects in 

the spatial distribution of their points. Maps on the left show their actual address points and fuzzy 

models with bar charts on the right indicate the optimal α-cut for each threshold. 

 As a general observation, most of the settlements tend to have gradual 

membership values when the majority of their addresses are grouped 

around a certain area or areas in multiple clusters with other focal points 

being scattered further away. This is evidenced by several settlements such 

as Desford, Market Bosworth, Fenny Drayton, and Barton in the Beans. 
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Maps and plots for Desford and Barton in the Beans are presented in Figure 

4.25. 

 
Figure 4.25: Two examples of villages with gradual transition between their α-cuts as most of their 

address appear more clustered in the middle. Maps on the left show their actual address points and 

fuzzy models with bar charts on the right indicate the optimal α-cut for each threshold. 

 By contrast, as the variance between α-cuts in some villages declines 

suddenly, this implies the existence of large gaps or obvious outliers that 

have deviated from the overall pattern of the address points. This can be 
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encountered, for instance, in Sutton Cheney, Newtown Unthank, Odstone 

and Wykin. Figure 4.26 shows the instances of Sutton Cheney and Odstone. 

 
Figure 4.26: Two examples of villages which have sudden decline in their α-cuts as part of their 

addresses are quite spread or defuse. Maps on the left show their actual address points and fuzzy 

models with bar charts on the right indicate the optimal α-cut for each threshold. 

Secondly, exploring relationship with point densities:  

 For point density recorded in Table 4.5, again there is no predictable 

relationship between number of points and the density. Nevertheless, 
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generally speaking, the top quarter of the table (which has a larger number 

of addresses and appears in darker green) shows high density values, 

whereas the highest density is observed in Newtown Unthank, which holds 

few addresses from the different data sources.  

 Another indication of this misleading relation is that Stanton under Bardon, 

which is located in the second quarter of the table, is denser than other 

settlements located in the top quarter of the table such as Stoke Golding, 

Castle and Desford in all thresholds. In addition, Nuneaton, which has the 

lowest density, still holds the biggest number of addresses compared to 

other villages presented in the bottom of the table (Copt Oak, Pinwall, 

Atterton, Ellistown and Appleby Magna). 

 By the same token, horizontally, density behaves in exactly the same 

fashion as viewed in previous results (Tables 4.2, 4.3 & 4.4). It has an 

inverse relationship with the threshold limits. 

Comparison between results/villages in common 

To compare between the results obtained from the different data sources (Tables 

4.2, 4.3, 4.4 & 4.5), the focus is set only on villages in common. There are several 

aspects to note here regarding the inclusion analysis through different datasets. 

For a start, there are 18 settlements identified in the tables. These appear in a 

different order in each table since each dataset recognises a different number of 

addresses for a given village. Table 4.6 presents these settlements according to 

their address numbers. 
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Table 4.6: Lists of settlement names and numbers of their address points that 

exist in each datasets. 

Order 
ID 

BS76 POST POI ALL 

Settlement Name 
No. of 
Points 

Settlement Name 
No. of 
Points 

Settlement Name 
No. of 
Points 

Settlement Name 
No. of 
Points 

1 Burbage 6979 Burbage 6635 Burbage 257 Burbage 13871 

2 Earl Shilton 4884 Earl Shilton 4763 Earl Shiltoin 227 Earl Shilton 9874 

3 Barwell 4382 Barwell 4244 Barwell 221 Barwell 8847 

4 Groby 3282 Groby 2954 Groby 113 Groby 6349 

5 Ratby 2010 Ratby 1904 Market Bosworth 106 Ratby 3974 

6 Desford 1864 Desford 1497 Desford 95 Desford 3456 

7 Newbold Verdon 1429 Newbold Verdon 1376 Newbold Verdon 70 Newbold Verdon 2875 

8 Market Bosworth 1140 Barlestone 1080 Ratby 60 Market Bosworth 2294 

9 Barlestone 1118 Market Bosworth 1048 Stoke Golding 59 Barlestone 2228 

10 Stoke Golding 797 Stoke Golding 793 Barlestone 30 Stoke Golding 1649 

11 Witherley 767 Witherley 313 Stanton under Bardon 23 Witherley 1093 

12 Peckleton 626 Higham on the Hill 284 Peckleton 18 Higham on the Hill 782 

13 Twycross 508 Stanton under Bardon 281 Higham on the Hill 15 Peckleton 739 

14 Higham on the Hill 483 Nailstone 215 Sutton Cheney 14 Stanton under Bardon 670 

15 Stanton under Bardon 366 Twycross 148 Twycross 14 Twycross 670 

16 Sutton Cheney 339 Osbaston 119 Nailstone 13 Nailstone 488 

17 Nailstone 260 Peckleton 95 Witherley 13 Sutton Cheney 418 

18 Osbaston 161 Sutton Cheney 65 Osbaston 10 Osbaston 290 

The second point in the comparison concerns α-cuts profiles per a village. Plots of 

these α-cuts for all examined villages are provided in Appendix (4), based on 

which three clear distinctions can be made in the way that membership grades of 

inclusion appear in each dataset: 

 Settlements in the first group predominantly have a similar attitude 

towards the variation in α-cut values, to wit: Barlestone, Barwell, Burbage, 

Earl Shilton, Groby, Market Bosworth, Newbold Verdon, Ratby and Stoke 

Golding. Often in these settlements the α-cut values correspond to any 

particular threshold limit, mostly equivalent in the BS76, POST and all data, 

and often greater than the α-cuts in the POI data. This emphasises the fact 

that the BS76 and POST data are in large part synonyms, which originally 

have very similar distribution of their address points except for a few 

outliers. ‘All data’, as its name indicates, is the union of all the three data 

sources combined, and so matches the BS76 and POST data most times. 

Figure 4.27 presents plots of two villages that have similar α-cut profiles. 
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Figure 4.27: Plots showing fuzzy membership values for each percentage in each data for two 

villages, which have similar α-cuts profile as α-cuts are almost identical in the BS76, POST & All 

data, but smaller in the POI. Full-size versions of the plots are in Appendix (4). 

 The second group represent settlements that have quite small differences 

between their membership grades among thresholds. These are Desford, 

Nailstone, Peckleton, Twycross and Witherley. The main common 

characteristic found in this group is that these villages in the BS76 data 

have far larger addresses than in the POST and POI data, which mostly have 

homogeneous distribution. Figure 4.28 depicts the plot of α-cuts for two 

villages with small differences between their values. 

 
Figure 4.28: Plots showing fuzzy membership values for each percentage in each data for two 

villages, which have small variations between their α-cuts. Full-size versions of the plots are in 

Appendix (4). 

 Higham on the Hill, Osbaston, Stanton under Bardon and Sutton Cheney 

represent the final group, which has a quite different level of α-cut profiles. 

This is most likely caused by the differences between the settlements in 
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terms of the number and structure of the address points that constitute 

them. Two examples of membership plots are shown in Figure 4.29.  

 
Figure 4.29: Plots of fuzzy membership values for each percentage in each data for two settlements 

that have quite different α-cut profiles. Full-size versions of the plots are in Appendix (4). 

In regards to density of points, the final aspect to analyse in the comparison, the 

settlements are also classified in two divisions in the way in which density values 

varied across the sources per village. Plots of the density values for the examined 

settlements are provided in Appendix (4) 

 First group contains more than half of the settlements in which their 

density values deviate in the same manner. These are Barlestone, Barwell, 

Burbage, Desford, Earl Shilton, Groby, Market Bosworth, Nailstone, 

Newbold Verdon, Ratby and Stoke Golding.  In these villages, the density 

values in the BS76 and POST data are so close where values in the POI are 

extremely smaller; and in the combined data the values are doubled. The 

explanation of this is that the BS76 and POST data are two sides of the same 

coin; and thus when the data are combined the possibility to double count 

the addresses increase. In contrast, the POI data by its nature has fewer 

number of addresses located in smaller areas. Figure 4.30 presents two 

settlements in which their density values change in the same manner. 
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Figure 4.30: Plots of fuzzy membership values for each percentage in each data for two villages 

that have density values nearly equal in the BS76 & POST data and almost doubled in all data 

combined and extremely small in the POI data. Full-size versions of the plots are in Appendix(4). 

 The second category contains a few settlements with irregular variation in 

density values. This can be observed in Higham on the Hill, Osbaston, 

Peckleton, Stanton under Bardon, Sutton Cheney, Twycross and Witherley. 

It is noted that the density values in the POST data are much higher than the 

other data and even, in some cases, higher than the combined data. These 

increments might be explained in two ways: 

o In comparing the values in the BS76 and All data versus the values in 

the POST data, it is believed that the latter frequently has few 

addresses clustered and distributed in quite small areas.  

o In contrast, the number of addresses in the POI data is comparable 

to the addresses in the POST data, but they appear more spread out 

in the POI data. 

Figure 4.31 gives examples of two settlements that have a different pattern 

of transition in their density values among each data sources. 
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Figure 4.31: Plots of fuzzy membership values for each percentage in each data 

for two settlements that irregular pattern of variation in their density values. Full-

size versions of the plots are in Appendix (4). 

4.6 Summary and General Discussion 

The present study is designed to determine the effect of using fuzzy set theory in 

modelling vague regions, focusing on one such example, which is rural settlements. 

It involves representing these settlements as fuzzy features using spatial density 

estimation methods. Before concluding, this section reflects on broader issues 

pertinent to the research approaches and theoretical assumptions presented in 

this chapter. These are discussed under three headings: Data used, Fuzzy model of 

the village and Using α-cuts. 

4.6.1 Data Used: 

As described in the introduction, this chapter uses address data from three sources 

to model where rural settlements are and approximate their extents. These are 

empirical data provided from the UK national mapping agency, Ordnance Survey; 

OS AddressPoint (BS76 & POST) and OS Point of Interest. Details about these data 

sources and the processes used in identifying village names are available in 

Chapter 3. However, it is important to point out that these are used individually 

and only used one time used in conjunction with each other (All data in the 

analysis of inclusion) to achieve the fuzzy models of villages for comparison 

purposes. Because the BS76 and POST data are two variants of the same dataset, 

then in most cases, there is no a priori reason to believe that they would yield 

substantially different results, although differences still exist with the number of 

villages missing from one dataset (e.g. Castle, De Montfort and Fenny Drayton), or 
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large number of address points missed out or appearing under different village 

names (as fully discussed in Chapter 3, Section 3.6). 

The importance of considering different types of data (informal and formal) is that 

in Britain, unlike many other places, much data are available for small areas such 

as rural places with relatively very small populations. However, in the absence or 

unavailability of such formal data, POI/point of interest data provide an efficient 

alternative. So from this viewpoint, the OS POI comes to consideration as a third 

source. 

4.6.2 Fuzzy Model of the Village 

With references to key scientific publications on modelling vague regions 

(reviewed in Chapter 2, Section 2.6), the approach suggested in this work advances 

from using fuzzy set theory to represent rural settlements based on the 

distribution of addresses derived from their density patterns. In other words, it 

involves the identification of two main needs: (1) finding the location of a village, 

and (2) knowing the spatial extent (footprint) of that village. Based on the 

assumption that the actual location of the village is not clearly defined, all maps 

presented in this chapter are set to the same geographical spatial extent of the 

study area. Moreover, it is possible to see that this approach satisfactory yields 

results which model the reality of rural areas, as a fuzzy geographical entity, better 

than the traditional Boolean approaches. Such a comparison would in itself 

represent a valuable contribution, especially when most studies focus on people’s 

perception about vague regions (other than villages) and not on how these places 

are formally identified. However, it should be acknowledged that the current work 

implicitly assumes that the fuzzy region is continuous. Unsurprisingly, that is not 

always the case, as it is commonly seen in villages that intensity of houses varies 

around the village area (see, for example, Figures 4.11, 20, 23 & 26). This has 

raised another challenge, which has not yet been considered in this study; for 

example, the possibility of the existence of obstacles in the region such as a natural 

or artificial pond or lake used for the storage and regulation of water.  
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There is abundant room for further investigation, for a situation querying if a 

house has one village name as its address and it is within a parish of that name. 

Does it mean that it cannot be in any other village to some (a small) degree, or 

even quite a large degree? This is an important question, but one that needs 

asking; and, more to the point, it is important to ask how people living in such 

places identify their address. This is clearly shown in the fuzzy results arising from 

the data analysis above. 

4.6.3 Using α-cuts 

Armed with this model technique, taking α-cuts of the fuzzy objects is extensively 

exploited in the analysis of inclusion (Section 4.5.3). It is possible to perceive that 

an α-cut acts as a filter on a fuzzy set to separate high- and low-value elements 

based on a single threshold (Katinsky, 1994). It has been used in geographical 

analysis by various researchers (Arnot et al. 2004; Fonte and Lodwick, 2004; 

Fisher, 2010; Schmitz and Morris, 2006). However, in this chapter it is further 

examined with the pre-specification of the proportion included from the original 

address points within any particular α-cuts (Tables 4.2, 4.3, 4.4 & 4.5). Perhaps the 

only generalisation that can be made is that, as the percentage threshold increases, 

the membership value decreases; which makes sense because this implies 

including more of the address points, which is more possible with small α-cuts. 

Hence, it could conceivably be hypothesised that using α-cuts in this way gives 

statistical evidence for inclusion of address points within a candidate vague 

representation of the village area. This corroborates the ideas of Jones et al. 

(2008), who suggested creating a model of a vague region that reflects the variation 

in confidence of inclusion; and, in doing so, it is possible to generate hard 

approximations of the region at different levels of confidence as required. This 

finding has important implications for developing any subsequent analysis. It can 

thus be suggested to consider number of α-cuts that at least cover 70 or 75% of the 

address points to be involved, as introduced in the next chapter. 
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 Implementation of the Travelling Salesman 

Problem in Fuzzy Locations 

5.1 Introduction 

The travelling salesman problem (TSP) is well known and researched within both 

operations research and computer science, and is regularly employed in a wide 

variety of applications: vehicle routing, computer wiring, cutting wallpaper, and 

job sequencing or machine sequencing and scheduling in the field of operations 

research are some examples in the field of operation research. The objective of the 

TSP is to cover all the towns or cities in a given area using the minimum driving 

distance, cost or time. Most work, however, is conducted where the visited 

locations are considered to be known exactly.  In real-life situation it may not be 

possible to get the cost or time as a certain quantity, but also many geographical 

places have indeterminate or fuzzy locations. As was pointed out previously in 

Chapter 2, fuzzy set theory was introduced by Zadeh (1965) to directly address the 

problem of vagueness and imprecision. It has been argued, as a result, that any 

statement about a vague phenomenon must itself be allowed to be vague (Fisher et 

al. 2007). That simply means if the value of the cost, time or distance is not certain 

(crisp values), then the travelling salesman problem should become a fuzzy 

problem as well. Since then, significant progress has been made in developing 

numerous techniques to address the fuzzy travelling salesman problem (see 

Section 2.7 for further detail and references). It is noted that, although these 

studies offer different treatments of the TSP problem, they are mainly focused on 

the computational aspect either by developing a new algorithm or making 

modification to an existing one to solve the TSP. More important, there is a paucity 

of information, if any, on the uncertainty and fuzziness of the locations themselves. 

This chapter, in accordance with the main goal of this thesis, takes a slightly 

different view by considering the implication of using the traditional method of the 

travelling salesman problem (not fuzzy) on fuzzy locations. 
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This chapter is structured in the following manner: Section 5.2 begins by laying 

out the theoretical dimensions of the chapter’s concepts, and looks at how these 

are applied in the field. Section 5.3 outlines the details of the implementation of the 

method of analyses, and the relevant preparation of the data. Sections 5.4 and 5.5 

present and discuss the results obtained from applying the travelling salesman 

problem. Finally, a concluding summary and suggestions for future work are given 

in Section 5.6.  

5.2 Background Information on TSP 

5.2.1 General Overview and History: 

The travelling salesman problem (also known as travelling salesperson problem or 

TSP for short) is a well-known and important combinatorial optimisation problem. 

The TSP has mathematical origins and has been identified as an element of graph 

theory (Curtin et al. 2013). It was studied in the middle of the 18th century by an 

Irish mathematician named Sir William Rowam Hamilton and a British 

mathematician named Thomas Penyngton Kirkman.  

Theoretically, the TSP is a classical 'tour' problem in which a hypothetical 

salesman needs to find the most efficient sequence of destinations in a territory, 

stopping only once at each, while returning at the end of the tour to the initial 

starting location (Curtin et al. 2013). Effectively, in a TSP, it does not matter from 

which city or which node the travelling salesman starts. The only concern is, 

although the person can start from any node, he has to visit every other node once 

and only once and come back to the staring node in as short a route as possible. If n 

is the number of cities to be visited, then the total number of possible routes 

covering all cities can be given as a set of feasible solutions of the TSP and is given 

as (n - 1)!/2. The question is then to find among these feasible solutions the one 

with the best value or the minimum distance travelled. As n increases the 

computational time one would need to evaluate all possible tours, this results in a 

problem which is extremely hard to solve. In fact, the TSP has been proven to be an 

NP-complete combinatorial optimisation problem, which means that no 
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polynomial-time algorithm is known for solving it (Curtin et al. 2013; Maredia 

2010).  

5.2.2 Structure and Formulations of the TSP: 

There are many structures and formulations for variants of the TSP, employing a 

variety of constraints that enforce the requirements of the problem (Curtin et al. 

2013), although only two of the common mathematical formulations are discussed 

in this research. One of these comes from a graph theoretic problem – a graph is a 

collection of nodes or vertices representing cities and arcs or edges representing 

distances between the given cities. Here the TSP is formulated by means of a 

complete graph in which each node is connected to each of the others with one 

edge between each pair of nodes (Caldwell 1995). The goal is then to find out 

whether the graph is Hamiltonian; or, more specifically, finding a Hamiltonian 

cycle that visits each node in the graph exactly once with the least weight in the 

graph. There is another way of rephrasing the TSP issue, which naturally amounts 

to finding the minimum spanning trees, the connection between all nodes with 

least weight, for tour construction or edge exchanges to improve existing tours 

(Hahsler and Hornik 2007).  
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The traveling salesman problem can be described as follows:  

TSP = {(G, f, t): G = (V, E) a complete graph,  

f is a function V×V Z, →  

t ∈ Z,  

G is a graph that contains a traveling salesman tour with cost that does not exceed 

t}. 

The other way of representing the TSP issue can also be structured as integer and 

linear programming problems. The integer programming (IP) formulation is based 

on the assignment problem with an additional constraint of no sub-tours (Márquez 

and Nieto, 2013). Suppose the solution matrix X =(𝑥𝑖𝑗) of the assignment problem 

represents a tour or a collection of sub-tours (several unconnected cycles) where 

𝑥𝑖𝑗  is equal to1, if the person goes immediately from 𝑖 to 𝑗 and the objective 

function is to minimise the total distance travelled. This can be explained by the 

following notations: 

 

Minimize ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1  

Subject to  ∑ 𝑥𝑖𝑗 = 1,                                 ∀𝑗
𝑛
𝑖=1  

   ∑ 𝑥𝑖𝑗 = 1,                                 ∀𝑖𝑛
𝑗=1  

    𝑥𝑖𝑗 = { 0 , 1 } 

    no sub tours allowed  

5.2.3 Methods to solve the TSP: 

There are ongoing efforts to develop solution procedures for the TSPs. However, 

some of them are discussed in this research. These approaches can be handled 

under two categories: (1) exact solution procedures; and (2) approximate 

approaches. 

Exact solution approaches: 

This approach guarantees providing optimal solutions of the TSP, but – due to the 

combinatorial complexity of the problem – they can generally only be successfully 

used for modestly sized problem instances. When one thinks of solving the TSP, 

the first method that might come to mind is to evaluate all possible combinations 
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of network elements (tours) and to choose the set that performs best (Curtin et al. 

2013). This simply means: generate all possible tours and compute their distances, 

and then the shortest tour is thus the optimal solution. This method is termed 

complete enumeration (Curtin et al. 2013) or the brute-force method (Maredia 

2010, Dasgupta et al. 2006) Naive Solution (Goyal, 2010). This strategy definitely 

works well as long as the number of nodes (n) is relatively small. This is because 

solving a TSP with a large number of n can be frustrating and can even take years 

or centuries, as it is highly unlikely to be solvable in polynomial time (Maredia 

2010, Dasgupta et al. 2006).  

A much faster approach was proposed by Held and Karp (1962) to find the optimal 

solution for the TSP based on the dynamic programming algorithm. The idea of 

this technique is simply to break a problem down into sub-problems to get partial 

solutions by solving a smaller problem. Having solved all these sub-problems, the 

answer to the main question (the original problem) would correspond to the 

biggest sub-problem (Awuni 2014). In solving the TSP in this case, the most 

obvious partial solution is the initial portion of a tour, which seeks to solve a 

problem by first solving smaller instances of the same problem by looking at a 

slightly smaller-sized problem. Suppose that there are n cities or destinations and 

a salesman who has started the tour at city 1, then the question is: what is the best 

order to visit just one of the destinations? 
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Here, then, is an appropriate sub-problem: 

 

The TSP is to find a permutation 𝑃 = (1, 𝑖1, 𝑖2, … 𝑖𝑛 ) that minimise the 

distance 𝑎𝛼𝛽 between each pair of cities in the tour. 

Given a subset of city indices (excluding the first city) 𝑆 ⊂ {2, 3, … , 𝑛} and 𝑙 ∈

𝑆 , let 𝐷(𝑆, 𝑙) denote the minimum length of a path from city 1 to city l that 

visits precisely all cities or vertices in the set S  exactly once each. Then 

a.                    (𝑛(𝑆) = 1) ∶    𝐷({𝑙}, 𝑙) = 𝑎1𝑙                             ∀𝑙 ∈ 𝑆  

b.                    (𝑛(𝑆) > 1) ∶    𝐷(𝑆, 𝑙) = 𝑚𝑖𝑛𝑚∈𝑆−𝑙[𝐷(𝑆 − 𝑙,𝑚) + 𝑎𝑚𝑙]  

             where m is the city that immediately proceeds the final destination in 

the tour city l  

Then the minimum length of the path for a complete tour can be obtained by 

recursively compute the quantities in equation b; which take the form: 

                                   𝐷` = 𝑚𝑖𝑛𝑙∈{2,3,…,𝑛}[𝐷({2,3,…𝑛}, 𝑙) + 𝑎𝑙1] 

It should point out the fact that a permutation P can only be optimal if, and only if, 

                                                𝐷` =  𝐷({2,3, …𝑛}, 𝑖𝑛) + 𝑎𝑖𝑛1 

      and,  for  2 ≤ 𝑝 ≤ 𝑛 − 1, 

                                           𝐷({𝑖2, 𝑖3, … , 𝑖𝑝, 𝑖𝑝+1}, 𝑖𝑝+1) =  𝐷({𝑖2, 𝑖3, … , 𝑖𝑝}, 𝑖𝑝) + 𝑎𝑖𝑝𝑖𝑝+1 

    

A different method that can deal with larger instances is based on the branch-and-

bound algorithm. This strategy is similar to the previous dynamic programming 

technique in dividing a problem to be solved into a number of sub-problems. When 

solving a sequence of sub-problems in the branch and bound approach, each sub-

problem may have multiple possible solutions and the solution chosen for one sub-

problem may influence the possible solutions of later sub-problems (Pothineni 

2013). This means that, according to Hahsler and Hornik (2007), branching is done 

iteratively, yielding a binary tree of sub-problems each of which is either solved 

without further branching or is found to be irrelevant because it produces a 

solution with a longer path than a solution of another sub-problem. The general 

structure of the algorithm is as follows: 
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  Given a subset of solutions 𝑆 and  

         let 𝐿(𝑆) denotes a lower bound on the cost of any solution belonging to S , 

and 

         let C be the cost of the optimum solution found so far; then 

                         if 𝐶 ≤ 𝐿(𝑆) → there is no need to explore S  

                         else 𝐶 > 𝐿(𝑆)  → explore S further as it may contain a     

better solution 

       

Approximate solution procedures – heuristics: 

Heuristic solution procedures are approximate approaches that never guarantee 

an optimal solution but give a near optimal solution by obtaining feasible solutions 

within a reasonable amount of computing time. Curtin et al. (2013) point out two 

key criteria to evaluate heuristics, which are: (1) the total computational time 

(speed or the number of iterations required to reach a solution); and (2) 

performance with respect to the optimal solution. Although there is a wide variety 

of heuristics that can be applied to the TSP, these mainly fall into two categories: 

one in which tours are created from scratch – tour construction heuristics; and the 

other which uses simple local search heuristics to improve existing tours – tour 

improvement heuristics. Not all of these heuristics can be reviewed here; however, 

the following are discussed in this section: the nearest neighbour algorithm and 

the insertion algorithm as examples of a construction heuristic; and the k-Opt 

heuristics as a generic description of improvement heuristics.  

The Nearest Neighbour heuristic (NN) (or so-called greedy algorithm) is the 

simplest and the most straightforward type of heuristic for solving the TSP. This 

NN algorithm allows the salesman to repeatedly choose the least-cost edge to cities 

not already in the tour, as the next move in the tour, and add that edge to the tour 

until all cities are reached. This algorithm quickly yields an effectively short route, 

but it does not provide particularly good solutions for even modest-sized problems 

(Curtin et al. 2013). An extension to this algorithm is to repeat it with each city as 

the starting point and then return to the best tour found; this heuristic is called 

repetitive nearest neighbour (Hahsler and Hornik 2007).  
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Many variations of the insertion heuristic are in common use: nearest, furthest, 

cheapest and arbitrary insertions. All of them follow the same strategy, which is to 

construct the approximation tour by a sequence of steps in which tours are 

constructed for progressively larger subsets of the nodes (Rosenkrantz et al. 1977; 

Matai et al. 2010). Or, simply, this means that the insertion methods start with a 

tour of a small set of cities, and then increase the tour by inserting the remaining 

cities one at a time until all the cities are visited. In this algorithm, a path of the 

tour is constructed as follows:   

 

  1. Start with an arbitrary city 

  2. Choose city k not yet in the tour, having the shortest distance to any one of 

the cities 

 this city is inserted into the existing tour between two consecutive cities i 

and j, such that  

  the insertion cost, the increase in the tour’s length, 

        𝑑(𝑖, 𝑘) + 𝑑(𝑘, 𝑗) − 𝑑(𝑖, 𝑗)   is minimized 

  3. Finally stop when all cities are on the tour 
       

 

The insertion methods differ in the way the city to be inserted next is chosen; 

Table 5.1 explains these variations (adapted from Hahsler and Hornik 2007). 

Table 5.1: Table showing four variations of the insertion heuristic and their 

strategy to choose which city to insert.  

 

Having constructed an optimal tour with any type of tour construction heuristics, a 

small modification can be made to the tour repeatedly stepwise in order to reduce 

its cost, and that is when the tour improvement heuristics come into consideration. 

Tour improvement heuristics are simple local search procedures which try to 

improve an initial tour by making local modifications or an iterative improvement 

 Variations 
Selection criterion 

The city chosen in each step as the city which is: 

Nearest Insertion closest to nodes in the tour 

Farthest Insertion farthest from any of the cities on the tour 

Cheapest Insertion the cost of inserting the new city is minimal 

Arbitrary insertion chosen randomly from all cities not yet on the tour 
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process until a short tour is found (Karkory and Abudalmola 2013; Fischer 2014). 

A simple example of this type of algorithms is the k-Opt heuristics. 

The idea behind the k-opt algorithm is to specify a tour and then perturb it in some 

way to check if an improved tour can be obtained by deleting k edges and replacing 

them with a set of different feasible edges (Matai et al. 2010; Fischer 2014). This is 

known as a k-Opt move and the resulting tour represents a local optimum which is 

referred to as the k-optimal (Hahsler and Hornik 2007; Matai et al. 2010). This 

heuristic is usually applied for k = 2 or k = 3. Empirical evidence suggests that the 

computational time increases as the number of k grows rapidly. 

5.3 Implementation of the TSP 

To apply the TSP in this research, three main stages are required.  First, determine 

the locations to be visited in each settlement. Second, measure the road network 

distance between these locations. Finally, solve the Travelling Salesman Problem 

(TSP). These three stages are applied in two ways: Boolean, Crisp or Hard 

approach (original) and Fuzzy or Soft approach (new). 

5.3.1 Determine Locations for TSP 

Initially, it is helpful to focus the analysis here on the POI data and only consider 

the settlements with at least 10 addresses (as discussed in Chapter 4). It is further 

assumed that one way of deciding where the village is located is to take the 

centroid of the modelled village (Comber et al. 2008-a). It is best, thus, to regard 

the centre of the settlement as the location to be visited. On the Boolean, Crisp or 

Hard approach, the settlement is originally represented as a set of addresses (point 

features), and thus the centroids of each village (middle point or median) are 

identified. This has been done in ArcMap using the Spatial Statistics Tools to 

determine the Median Centre. 

On the other hand, the settlements in the fuzzy approach are modelled as a set of 

α-cut (surfaces) that quantify the degree of uncertainty or vagueness related to the 

villages. Indeed, it is possible to take into account all levels of α-cuts per village or 
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even take one specific α-cut and there is no reason to be identical (the same) in all 

settlements. Nevertheless, it seems difficult to choose one α-cut that satisfies all 

the villages, as discussed in Chapter 4 (Section 4.5.3). For this reason, in this stage 

the option is to pick those α-cuts that capture 75% of the village address points, 

and these are listed in Table 5.2. Having identified the optimum α-cut per village, it 

is vital then to determine the location of that α-cut to be used in the subsequent 

analysis. Figure 5.1 presents the general structure of the script that is being 

executed to identify the centre of the α-cuts – the raster surface (see Appendix 6.5 

for the complete script). 
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Table 5.2: Lists of the considered settlements for the TSP with their equivalent α-
cuts. 

ID Village Name 
No. of 
Points 

α-cut for 
75% 

Continuous 
Surface 

Centre 
Position 

Decision taken 

0 Bagworth 24 0.4  correct - 

1 Barlestone 30 0.2  ok - 

2 Barwell 221 0.3  ok - 

3 Botcheston 10 0.8  replaced  new α-cut = 0.5 

4 Burbage 257 0.2  correct - 

5 Dadlington 11 0.2  ok - 

6 Desford 95 0.3  outside disregarded 

7 Earl Shilton 227 0.1  ok - 

8 Fenny Drayton 14 0.4  ok - 

9 Groby 113 0.1  ok - 

10 Higham on the Hill 15 0.2  outside disregarded 

11 Kirkby Mallory 19 0.3  outside disregarded 

12 Market Bosworth 106 0.1  outside disregarded 

13 Markfield 173 0.4  ok - 

14 Nailstone 13 0.5  correct - 

15 Newbold Verdon 70 0.1  outside disregarded 

16 Newtown Unthank 10 0.7  correct - 

17 Osbaston 10 0.4  outside disregarded 

18 Peckleton 18 0.3  outside disregarded 

19 Ratby 60 0.3  correct - 

20 Ratcliffe Culey 12 0.7  correct - 

21 Sheepy Magna 14 0.5  correct - 

22 Sibson 13 0.4  correct - 

23 Stanton under Bardon 23 0.3  ok - 

24 Stapleton 26 0.4  replaced  new α-cut = 0.3 

25 Stoke Golding 59 0.3  correct - 

26 Sutton Cheney 14 0.5  ok - 

27 Thornton 27 0.4  correct - 

28 Twycross 14 0.5  correct - 

29 Witherley 13 0.4  correct - 

 

 
Figure 5.1: Pseudo-code for identifying the centre of the α-cut rasters.  
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5.3.2 Measuring the Network Distance 

Initially, a distance measure is needed in order to apply the TSP. Here the road 

network distances between each pair of settlements' centres is considered rather 

than simple Euclidean distances. For this reason, a road data for the study area is 

required to generate an OD cost matrix (distance matrix). The road data used is the 

OS MasterMap – Integrated Network Layer (ITN), which is a vector data which 

comprises up-to-date information on roads in the UK downloaded under academic 

licence from the EDINA Digimap3 collection. Given that, to generate the OD cost 

matrix (distance matrix), it essential to determine the supply (origin) and demand 

(destination) of some resources prior to running the analysis. Herein nodes 

representing the origin and destination, essentially identical, which are basically 

the location of settlement centres. By doing this, these nodes are included in the 

network dataset, which makes it now ready to run the network analysis. It should 

be clarified that the network analysis is applied twofold for both approaches. That 

generates a hard OD matrix (for the original centres) and a fuzzy OD matrix (for 

the new centres based on α-cuts). From these matrices, the line layers are exported 

in a readable format (shapefiles) to be used as the main inputs for applying the TSP 

in the next stage. 

5.3.3 Solve the TSP 

In this section, the TSP could serve as an implication of comparative analysis 

between hard and fuzzy approaches of identifying village locations.  Recall that the 

TSP goal is to find the shortest tour that visits each city in a given list exactly once 

and then returns to the starting city. On this basis, the method of 2-Opt 

improvement heuristic algorithm is adopted to apply the TSP in this study, using 

the TSP package in R developed by Hahsler and Hornik (2015).  

The purpose of this section analysis is to do more than merely point out some 

solutions of possible tours. It is rather to examine the inference of employing the 

TSP in different centre locations for every individual settlement. Thus, it could be 

wise to apply this analysis repeatedly for different subsets of villages. The smallest 

                                                        
3 Road data obtained from http://edina.ac.uk/digimap 
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subset contains three villages to make a tour. Figure 5.2 illustrates the pseudo-

code of the implementation of the TSP in hard and fuzzy locations, the full script is 

presented in Appendix (6.6). 

 

Figure 5.2: Pseudo-code for applying the travelling salesman problem on hard 

versus fuzzy location.   

5.4 Results of the TSP 

5.4.1 Centre Locations for TSP: 

The first stage of the analysis was to identify a set of locations that represents the 

villages in order to be utilised in the TSP analysis. These locations have been 

identified in two approaches hard and fuzzy, as mapped in Figure 5.3. This map 

generally shows that for the majority of villages, the two centres are not much 

away from each other and in some cases they overlap (e.g. Groby, Naileston and 

Newtown Unthank). 
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Figure 5.3: Map showing the centre positions in the hard and fuzzy approaches. 

It should be pointed out that, in the fuzzy approach, there are some decisive factors 

that affect the process of defining the centre location. The intention was to select 

the centre of α-cut that covers 75% of the addresses for each settlement. However, 

in some villages the α-cut surface is not always continuous (i.e. non-continuous α-

cut that has an area with zero membership in the middle) and may have two or 

more surfaces. This is primarily due to the nature or structure of the address 

points that represent the village, which have varying density. As a result, the centre 

may be placed outside the α-cut surface. The total number of considered 

settlements in this analysis is 30; over half of them have non-continuous surfaces 

and nine of those suffer from misplaced centres. Table 5.2 summarises these 

results, identifying the decisions taken to overcome this issue, one in which is to 

choose the next smaller α-cut that covers the location of its centre, as is the case in 

Botcheston and Stapleton (Figure 5.4). Nonetheless, seven villages – Desford, 

Higham on the Hill, Kirkby Mallory and four others – still do not account for this 
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solution, as even the smallest available α-cut (0.1α) does not cover the centroid 

area (Figure 5.5). These villages are excluded from the analysis since there are 

barely enough number of eligible settlements to undertake the analysis.  

 
Figure 5.4: Maps of two cases when the fuzzy centres are replaced to smaller α. 

 

Figure 5.5: Maps showing examples of disregarded villages where the centre fall 

outside the α-cut surface. 
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Having decided in the fuzzy approach which centre should be adopted, Table 5.3 

presents the distance in metres between the old and new centres for each 

examined settlement (hard and fuzzy approaches respectively). In fact, not many 

of them are even a quarter of a kilometre apart and the largest distance is about 

only three-quarters of a kilometre, which is in Stapleton. The reason for this 

slightly large distance can be traced back to the fact that the centre location is 

replaced in the fuzzy model due to the spatial pattern of this village, as depicted in 

Figure 5.4. 
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Table 5.3: Distance between the centre locations in the two approaches. 

Old Centre New Centre Distance in 
Meters between  

Old & New ID Name ID Name 

0 Bagworth 0 Bagworth 137.81 

1 Barlestone 1 Barlestone 110.83 

2 Barwell 2 Barwell 159.64 

3 Botcheston 3 Botcheston 158.96 

4 Burbage 4 Burbage 176.98 

5 Dadlington 5 Dadlington 338.43 

6 Earl Shilton 6 Earl Shilton 219.54 

7 Fenny Drayton 7 Fenny Drayton 88.77 

8 Groby 8 Groby 75.00 

9 Markfield 9 Markfield 335.68 

10 Nailstone 10 Nailstone 49.60 

11 Newtown Unthank 11 Newtown Unthank 13.95 

12 Ratby 12 Ratby 71.03 

13 Ratcliffe Culey 13 Ratcliffe Culey 357.04 

14 Sheepy Magna 14 Sheepy Magna 232.58 

15 Sibson 15 Sibson 101.49 

16 Stanton under Bardon 16 Stanton under Bardon 212.92 

17 Stapleton 17 Stapleton 746.85 

18 Stoke Golding 18 Stoke Golding 37.10 

19 Sutton Cheney 19 Sutton Cheney 58.57 

20 Thornton 20 Thornton 54.37 

21 Twycross 21 Twycross 126.13 

22 Witherley 22 Witherley 60.53 

5.4.2 Solving the TSP (Finding the shortest path – 2-opt) 

It was decided here to adopt the k-Opt heuristic algorithm, particularly 2-Opt, as it 

is one of the improvement heuristic algorithms that may improve on the TSP 

results in both approaches. In this stage, the TSP analysis is applied repeatedly to 

some subsets of settlements to figure out how the differences in centre locations 

affect the TSP results in terms of the number of villages involved, the tour lengths 

and the path orders for all tours. Table 5.4 displays the distance of the tour lengths 

in kilometres for each subset. It has to be mentioned again that the subset ranges 

from 3 to 22 villages and these are selected randomly depending upon the average 

of all possible choices. The full details of the villages selected and the actual tours 

for each subset are presented in Appendix (5). 
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Table 5.4: Comparison of the tour lengths for the possible subsets of settlements 

in both approach.  

Subset of 
Tour Length in KM 

(Old centre) 
Tour Length in KM  

(New centre) 
Difference  in 
Tour lengths  

3 23.15 23.70 0.55 

4 30.97 31.80 0.83 

5 41.06 42.01 0.95 

6 59.20 59.93 0.73 

7 60.46 61.42 0.96 

8 64.78 65.88 1.10 

9 66.32 72.32 6.00 

10 68.42 69.89 1.47 

11 69.79 72.76 2.97 

12 74.56 81.89 7.33 

13 77.96 79.83 1.86 

14 79.99 87.93 7.94 

15 86.70 87.30 0.60 

16 83.35 93.89 10.54 

17 87.39 89.08 1.69 

18 97.89 98.18 0.29 

19 98.23 98.42 0.18 

20 101.52 102.09 0.57 

21 101.36 102.60 1.23 

22 98.93 103.25 4.32 

A general observation is that, although the distances between centre locations are 

slightly small, the results of the TSP are quite variant. It should be underlined that 

the fuzzy centres seem to have longer tours than the original centres. Moreover, 

even the order of the villages included in the routes is rather inconsistent. For the 

subsets of three to eight villages, the tours are comparable in the two approaches 

explicitly when the starting points are the same. This is also true for the subsets of 

10, 11, 15 and 17 villages. By contrast, for the remaining subsets (9, 12, 13, 14, 16, 

18, 19, 20, 21 & 22), the variations in the paths are apparent in more instances. 

This can be further demonstrated in a subset of 13 settlements, shown in Figure 

5.6, in which the paths are different in going south from Twycross (coded as 21). 

This discrepancy could be attributed to the choice of the village to be visited next 

to Twycross downward, which is mainly influenced by the heuristic nature of the 

process. From Twycross, the path in the original centres goes to Sibson then to 
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Ratcliffe Culey (i.e. 21  15  13).  Whereas the path in the new centres moves to 

Ratcliffe Culey instead then goes to Sibson (i.e. 21  13  15). 

 

Figure 5.6: An example of the TSP results (tour paths) of a subset of 13 villages 

based in the hard (upper map) and fuzzy (lower map) locations. 

In a similar case, in Figure 5.7 a subset of 18 villages presents the agreement in the 

two approaches only in the path going from Nailstone (coded as 10) to Sutton 

Cheney (coded as 19) through Burbage (coded as 4). The other direction of the 

paths connecting these two however are quite different. As for the original centres, 

the path goes southeast from Nailstone to Barlestone then goes up to Bagworth 
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then Stanton under Bardon (i.e. 10  1  0  16). However, on the new centres, 

instead the path goes straight from Nailstone to Bagworth then Stanton under 

Bardon (i.e. 10  0  16). In addition, the path go directly from Botcheston to 

Sutton Cheney in the hard approach (i.e. 3  19), but it goes from Botcheston to 

Barleston then to Sutton Cheney in the fuzzy approach (i.e. 3  1  19), Besides, 

when 20 villages are selected to apply the TSP (Figure 5.8), only short parts of the 

routes are identical. These are the one connecting Botcheston, Newtown Unthank, 

Groby and Stanton under Bardon (i.e. 3  11  8  16); and the other which link 

between Ratcliffe Culey, Witherley and Fenny Drayton (i.e. 13  22  7).Whilst 

the rest of the routes are extremely varied in their paths among the original 

centres and the new centres.  
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Figure 5.7: An example of the TSP results (tour paths) of a subset of 18 villages 

based in the hard (upper map) and fuzzy (lower map) locations. 
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Figure 5.8: An example of the TSP results (tour paths) of a subset of 20 villages 

based in the hard (upper map) and fuzzy (lower map) locations. 
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5.5 Discussion 

The work presented in this chapter is an implication of using the TSP on 

indeterminate or fuzzy locations (rural settlements in Hinckley and Bosworth). 

Although there is a substantial amount of research currently available that shows 

the integration between fuzzy set theory and TSP, there is a relatively small 

amount of research considering the fuzziness of the locations themselves. Even 

though this body of research (e.g. Botzheim et al. 2009; Fereidouni, 2011; Kumar 

and Gupta 2011 & 2012; Dhanasekar et al. 2013) is diverse in terms of the adapted 

methods, it all focuses on either developing a new algorithm or making a vital 

reconstruction of an existing one to address the fuzzy TSP. Looking from a slightly 

different angle, and building on the results from Chapter 4, modelling fuzzy 

objects, this chapter entirely focuses on application examples exploring the 

quantitative differences between using the TSP on specific and indeterminate 

(fuzzy) locations. 

In constructing and applying the TSP analyses, some important simplifications and 

assumptions have been made that warrant discussion. First, among the available 

data identifying the rural settlements in this thesis, only the OS POI data are used 

in this chapter; exclusively the villages with at least 10 addresses. That is because 

POIs are originally contributed data, as opposed to the OS AddressPoints, which 

contain information from over 150 authoritative suppliers (Ordnance Survey 

2014). This in turn makes the POI increasingly used in the research community as 

an important source of information, especially in the case of unavailability of 

formal infrastructure data (Burgoine and Harrison 2013; Neis and Zielstra 2014). 

Besides, POI features take another major role in less-developed countries, with the 

growth of outdoor tracking available to phones and other mobile devices, which 

allows contributors to share their geographic information on a number of selected 

online portals. Indeed, this incorporates to a new research platform, coined by 

Goodchild (2007): volunteered geographic information (VGI).  

Second, it was recommended previously (from Chapter 4) that an optimal α-cut 

could be selected to represent the fuzzy model of a village, instead of considering 

the entire set of α-cuts, to conduct any subsequent analysis. Insofar as there is no 
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single α-cut value that is recognised as best for all different settlements, it seems 

wise to opt for a mix of different α-cuts for each village as long as they capture 

75% of the village address points (Table 5.2). One part of the analyses in this 

chapter (network analysis) is concerned with identifying centre locations, or 

centroids, as the locations to be visited and connected in the TSP. This is in line 

with other studies indicating that centroids are often used for GIS analyses to 

relate polygon-based objects or surfaces to linear networks (Comber et al. 2008-a). 

The results of this analysis in the fuzzy approach have confirmed the fact that the 

process of selecting the centre of an optimum α-cut is to a large extent affected by 

the shape or structure of the village (see Table 5.2 and Figure 5.4). 

Third, it is generally expected that some places are much closer while others are 

further away. That could also be assumed when comparing the centre locations for 

the hard and fuzzy approaches. For some settlements, the exact centre and the 

fuzzy centre are much the same, while for others they are quite distinct. This is 

highly related to the shape and structure of the settlement patterns with varying 

density. For this reason, it was decided to consider the TSP analysis on a number of 

settlements that are selected randomly regardless the distances between their 

centres. As the observed differences between the centres in Table 5.3 are not 

significant.  

The results of the TSP analyses (presented in Section 5.4.2) show different solution 

methods and heuristics to solve the TSP based on specific and fuzzy locations. 

There are two possible reasons for the differences in the results. The first one, as 

should be expected, stems from the varied nature of those heuristics, as different 

implementations to the same set of villages do not, however, always yield the same 

tours. This is in agreement with previous studies such as Johnson and McGeoch 

(2002) and Curtin et al. (2013). The second reason, less obvious but perhaps more 

appealing, goes back to how the small differences in centre locations affect the 

options made in constructing or improving the tour. This is not relevant just for 

the starting point of the tour, but more so for the village to be visited next.  
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The method applied in this chapter has a number of distinct advantages including: 

first, this approach employs the road network distance to measure the actual 

distances between settlements, rather than the implicit ones using the Euclidean 

or straight line distances. Second, this work acknowledges the uncertainty about 

the location of the settlements to be visited, simply by using the α-cut approach 

(optimal α-cuts). Third, the infrastructure of the analyses to handle and solve TSP 

in hard and fuzzy locations is based on standard GIS and statistical software widely 

available in the GIS community. However, one of the key constraints of this method 

is that the procedures of solving the TSP are accordingly heuristic and not 

guaranteed to determine the optimal solution. The method precisely adopts the 

approximation algorithms, which very likely provide a suboptimal solution for the 

TSP. Also, it has not been possible to identify the best solution using the exact 

algorithms, which could limit the validity of the comparative results of the hard 

and fuzzy approaches. 

5.6 Summary and Further Research 

This chapter has explored the implications of applying some heuristics to solve the 

travelling salesman problem in fixed and indeterminate or fuzzy locations. 

Although the differences between the exact and the fuzzy centres for the 

settlements are quite small, the resultant tours still varied in both the tour length 

and the actual routes. These findings are mainly attributed to the heuristic 

techniques in the first place, and that is ascribed to differences in the visited 

centres. It is hoped that the work presented in this chapter will encourage GIS 

researchers to at least acknowledge the uncertainty and vagueness inherent in the 

geographical phenomena and also their analyses.  

This research has thrown up many questions in need of further investigation. It 

might be reasonable, for example, to bring into consideration the Concorde TSP 

solver (Applegate et al. 2006) or other advanced methods which efficiently 

compute exact solutions to validate the compression among the different 

heuristics in the traditional and fuzzy approaches. More broadly, it would be 

interesting to engage participants in the research, first to identify where they think 
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the settlements centre locations, and, second, to explore their sense about the 

distance of the tours between the settlements. 
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 Discussion 

6.1 Introduction 

Many geographical and spatial phenomena are subject to vagueness, and perhaps 

to other kinds of uncertainty, for a number of reasons. Various models have been 

developed to address these issues, one of which is based on fuzzy set theory. 

Throughout this thesis, villages have been conceptualised as vague and so have 

been considered to be suitable for fuzzy models of uncertainty. This research has 

shown how sets of precise addresses, reporting rural settlements, recorded in 

different databases are geographically vague, both in their definition of any given 

village and in their description of its spatial extent. This research has sought 

therefore to assess the utility of fuzzy set theory in modelling and analysing such 

vague regions. Additionally, it has explored the application of other analytical 

approaches to describe and reason with vagueness measures generated from the 

fuzzy model. The potential impacts of spatial vagueness were illustrated through a 

comparison of the results generated using formal (crisp) village extents compared 

to using modelled fuzzy extents using from the Travelling Salesman Problem as 

applied to informal, contributed data (POI data). The methods and results provide 

a strong indication of how such an approach could be suitable in regions for which 

no formal infrastructure is available, such as developing countries. 

This chapter brings together all of the previously discussed material. It explains 

how this material contributes to the field and provides a critical reflection of the 

thesis including its merits, assumptions and shortcomings. The next section 

provides an overall summary of results from the previous chapters. Section 6.3 

reflects on the methods employed and their assumptions, and some possible 

modifications are suggested. Section 6.4 discusses the limitations and Section 6.5 

suggests some areas for future studies. Finally, a summary is given in Section 6.6. 
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6.2 Summary of Results 

With respect to modelling the fuzzy footprints of rural settlements, the results in 

Chapter 4 present a fuzzy representation (model) of villages derived from discrete 

address points as recorded in different data sources (Section 4.5.1). These were 

analysed to determine the degree to which individual points, nominally associated 

with a particular village, were contained within the crisp and fuzzy village models 

(Section 4.5.3). This research has shown that the vagueness associated with rural 

settlements can be adequately described by considering two types of vagueness 

they exhibit. The first concerns the locational vagueness and is associated with the 

settlement location and its extent (fuzzy boundary), and the second relates to 

vagueness in feature definition (fuzzy class). Section 3.6 in Chapter 3 discussed 

some evidential problems in the address point datasets and showed that villages 

are typically not represented as formal administrative boundaries and historically 

often have been defined by the parish boundaries. However, it is found that this is 

not always the case, since some settlements do not have equivalent parishes, or 

even if they do exist the address points belonging to these villages spill over the 

parished areas. Another indication of vagueness and imprecision is found in the 

extraction of address points that are located in a particular area but could have 

different definitions (settlement name) in different databases. This is generally 

true for many, if not most, places used for any application in GIS that would be 

represented differently in different systems. 

This study applied spatial density estimation methods (KDEs) to quantify the 

villages’ fuzzy entity and Boolean mappings of settlements using different α-cuts 

were presented (Figure 4.7 and Appendix 2). These fuzzy models can be viewed as 

a set of locations where each point has a membership in the range [0, 1]. The most 

obvious finding was that these results model the reality of rural areas, as a fuzzy 

geographical entity. Consider for instance the three villages Barwell, Desford and 

Stoke Golding (shown in miniature in Figure 4.7; and the same holds for all data 

sources and also any other villages identified in this thesis). Although a settlement 

may have an unequivocal parish boundary associated with it, the exact spatial 

extent of the village area is different and hard to define. This is because it is 
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difficult to decide consistently where one definitely is within the village becomes in 

an area that is definitely outside that village. These results formalised this lack of 

definition in assigning membership grades to any location (or point) matching the 

definition of the village depending upon the density of houses (address points). In 

other words, the presence of houses indicates spatial extent (or extents – when 

there are two or more distinct clusters within the village) but moving towards the 

edge of that village the quantity of houses thins out (it does not remain at a high 

density) and eventually drops to nothing. This fuzziness is observed in the villages 

identified in this thesis from the different data sources (the BS76, POST and POI 

datasets) and can be seen in any towns or even cities around the world (Fisher and 

Wood 1998). 

Another major benefit of fuzzy set theory is the concept of alpha-cut (α-cut). That 

relates to the second main group of results concerning the inclusion of a group of 

addresses that share the same village name within the fuzzy models. This shows 

that the spatial patterns of each rural settlement vary enormously and thus affect 

the fuzzy model. As been noticed in an exploratory trip (Appendix 1), some villages 

are clustered housing whilst others are a ribbon development along a main road. 

Others function as service centres for other neighbouring villages, such as main 

school, medical practice, and general store and post office. Also, many villages 

grew up around agriculture and forestry, others developed around fishing, and still 

others around industries such as mining. These different patterns typically 

indicate the varying density of houses within villages, which in turn influences the 

fuzzy model of the settlements. This study explored this effect by showing the 

degree to which a group of address points located in a village are within the fuzzy 

representation of that village. The results of these containment analyses were 

presented and discussed in Section 4.5.3 in Chapter 4. The overall conclusion about 

these results was that using α-cuts develops a series of alternative hard (Boolean 

or crisp) versions of the fuzzy set by varying the value of α. It is then possible to 

use a combination of different Boolean hardenings of the fuzzy model or, rather, 

select an optimum one for particular reasons. This study, unlike others in this 

respect (Arnot et al. 2004; Fonte and Lodwick, 2004; Fisher et al. 2004; Schmitz 

and Morris, 2006; Fisher, 2010), settled upon adopting those α-cuts that ensure a 
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75% level of inclusion for address points to apply the analysis of TSP. There are 

two reasons for this decision. The first is practical and arises from the fact that it 

was difficult to select a single α-cut that equally provides reasonable extent 

through all villages. The second is theoretical and implies the need for the 

salesman to visit the location that serves at least 75% of the houses in a village.  

The results in Chapter 5 relate to exploration of the implication of using the fuzzy 

representations within the travelling salesman problem as a routing and 

navigation application. A comparison was made there between solving the TSP 

based on hard and fuzzy locations. These locations are considered to be in the 

centre of the villages and are assumed to be in position close to a number of 

houses. However, in comparing the hard and fuzzy centre locations for the 

considered villages, it was found that their locations in most villages are very close 

or almost identical, while only a few have slight distance between the two (see 

Figure 5.2 and Table 5.2 in Chapter 5). These results indicated that the distances 

between the hard and fuzzy centres, for all considered villages, are only a few 

metres. Not many of them are even a quarter of a kilometre apart, and the largest 

distance is only about three-quarters of a kilometre, which is in Stapleton. In fact, 

this is not surprising as one could expect this situation in rural areas where the 

villages are quite small and not very far from each other. That may make it difficult, 

sometimes, to recognise the shift from one village to another (Fisher and Wood, 

1998).  

Apparently, although the distances between centre locations are slightly small, the 

results of the TSP are quite varied (See Figures 5.6 to 5.8 and Appendix 5). These 

results showed that the fuzzy (new) centres seem to have longer tours than the 

hard (original) centres. Moreover, even the order of the villages included in the 

routes is rather inconsistent. These results generally found that, while the 

distances between the centres in the hard and fuzzy models are slightly small, the 

resulting TSP tours are varied. That is not to say the fuzzy approach is better than 

the hard one, nor would it be true in all circumstances, but simply that they are 

divergent approaches in the conceptualisation of the villages, which may be more 

valid in acknowledging their reality. Furthermore, these results could have been 
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influenced by the scale factor of rural areas, as it is anticipated that other vague 

regions in a larger scale would provide more variation between the two 

approaches. 

6.3 Reflection on Methods 

6.3.1 Summary of the Methods  

The approach used in this thesis was to approximate the spatial extents (fuzzy 

footprints) of rural settlements based on normalised kernel density estimation of 

addresses, as illustrated in Chapter 4 (Section 4.3.1). This technique generates a 

probability surface, and it has been used widely in modelling vague regions 

(Montello et al. 2003; Jones et al. 2008; Twaroch et al. 2008 a & b ; Hollenstein and 

Purves 2010; de Berg et al. 2011). In this thesis, it was used under fuzzy set theory. 

The assumption was that a settlement name recorded in any address databases is 

more likely giving reference to a typical member or good part of the settlement (i.e. 

where it is located). Density surface modelling methods can then be used to 

identify regions corresponding to the most frequently co-occurring addresses to 

define the extent of the settlement as a vague place. This is partially inspired by 

similar studies on identifying settlement extents. For example, Chaudhry in his 

thesis also (2007) defines ‘citiness’ from a prototypical and functional point of 

view based on the area and density of buildings. 

This technique has again raised the question of the relationship between fuzzy sets 

and probability, which has been, and continues to be, an object of controversy 

(Zadeh, 1995 & 2002). Models of probability and fuzzy membership are both used 

to model uncertainty in spatial phenomena (Fisher, 1994), and both allocate 

modelled objects a value between 0 and 1. However, as argued by Fisher (1994), in 

determining the visibility from a position in the landscape, a viewshed operation, 

the primary distinction is mainly conceptual. That is to say, the line-of-sight to a 

location may be uninterrupted, making the location visible (an issue of 

probability), but it may not be possible to clearly discern an object which may be at 

that location (fuzziness). This means that a village which may have a precise 

(crisp) boundary at any given location within it or not is considered an issue of 
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probability (i.e. the accuracy to be either inside or outside the village).  However, it 

may not be possible to clearly discern the degree to which an object may be at that 

location, which represents an issue of fuzziness (i.e. relates to vagueness that the 

object is definitely outside the village and occasionally within it). This 

controversial view is not restricted to geographers, as Zadeh (2003) stated "Fuzzy 

logic is probability theory in disguise" (page 1) and "…that most of the information 

relevant to probabilistic analysis is intrinsically imprecise, and that there is 

imprecision and fuzziness not only in probabilities, but also in events, relations 

and properties such as independence"(page 143). It is therefore possible to adopt 

this approach to model vagueness in rural settlements or, more precisely, the fuzzy 

footprint for villages. 

At the heart of fuzzy modelling is the fuzzy membership and its basic related 

concept of generating alpha cuts. This has been used in combination with the 

point-in-polygon strategy to analyse the spatial pattern of villages in relation to the 

inclusion of address points within a candidate settlement, as demonstrated in 

Chapter 4 (Section 4.3.2). This is similar to the idea of generating crisp 

approximations of the boundary of the vague region at different levels of 

confidence if they are required, as suggested by Jones et al. (2008). These methods 

have shown potential in providing information and help in selecting an α-cut level 

to be employed in any subsequent analysis. For example, in  Chapter 5, Section 5.3 

has contributed an implication of using the TSP on indeterminate or fuzzy 

locations at a particular confidence level . On that point, it was recommended to 

consider the α-cuts that guarantee 75% of the address points to be included in a 

single village (see Table 5.2 for details). The reason for doing this is because no 

single α-cut value was recognised as best for all different settlements. It was 

possible therefore to consider the 75% a valid choice to implement the TSP. Other 

options for capturing different percentages of the points are also possible. 

However, they probably will not provide much difference in the results because 

the spatial patterns of the points in any village are consistent and only the 

proportions of the points captured decrease with the increase of membership 

values. In addition to that, since α-cuts are always nested, then the centres’ 

positions will not change dramatically. 
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As mentioned before, the integration between fuzzy set theory and TSP is not new 

and has been suggested before by other research (e.g. Botzheim et al. 2009; 

Fereidouni, 2011; Kumar and Gupta 2011 & 2012; Dhanasekar et al. 2013). These 

studies differ in terms of the adapted methods, but they are all similar in focusing 

on either developing a new algorithm or making vital reconstruction to an existing 

one to address the fuzzy TSP. This study, however, did not consider the combined 

methods as suggested by these researchers; it was rather aimed at comparing the 

performance of applying the traditional method of travelling salesman problem on  

hard and fuzzy locations. 

6.3.2 Possible Alternative Approach  

An alternative method for modelling the fuzzy footprint for rural settlements could 

be applied based on interpolating distance (Almadani et al. 2014). The main idea is 

inspired by the conceptualisation of fuzzy c-mean classification. That does classify 

a dataset into groups (clusters) such that the points that belong to the same group 

are more similar than the points belonging to different groups. Besides, it is fuzzy 

because it is a generalisation of a hard clustering partitioning method, which 

makes a clear-cut decision for each object (i.e. each object of the dataset is assigned 

to one and only one cluster). In contrast, a fuzzy clustering method allows for some 

ambiguity in the data, which often occurs. So, each object is spread out over the 

various clusters by means of degree of belonging, which is quantified as 

membership coefficients that range from 0 to 1 (Kaufman and Rousseeuw 1990). 

As it is assumed that a set of address points that share a village name represent 

one single cluster, it is then possible to consider the centroid as the core area of 

that village. So from the address points in a village the centroid is identified, and 

for every house the distance away from the village centre is calculated. 

Interpolation from the address points extends the memberships to a continuous 

surface over the entire area within that village. Following Hall et al. (2011), 

ordinary kriging is used to transform these point measurements into the 

continuous field representation. Again, normalisation is necessary to transform 

values to fuzzy memberships. This approach might be promising in regard to 

representing how fuzzy memberships are used to represent fuzziness in vague 

regions. However, specifically in this research, it comes out that due to the spatial 
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distribution of the address points two main shortcomings are explicit: 

extrapolating and artefact (Almadani et al. 2014).  

There are other more mathematical and computational methods that could 

provide a good representation of the vague region based on graph theory. An 

example of this is the work of de Berg et al. (2011), which proposes a method to 

delineate imprecise regions from a set of points using shortest-path graphs based 

on the squared Euclidean distance. Their work is successful in dealing with regions 

containing holes. Other approaches consider a geometric notion of ‘shape’ (or, 

more precisely, shape generation algorithms), such as the work of Reinbacher et al. 

(2008), which suggests a method based on α-shapes to determine a reasonable 

boundary for an imprecise region. Additionally, there is the study of Duckham et al. 

(2008), which argues for the potential applications of the characteristic shapes or 

simply χ-shapes in generation of geographic “footprints” for vague and imprecise 

spatial concepts. Although these approaches may be applicable to the problem at 

hand, they have not been considered in this research due to the high 

computational demands required compared to the relatively intuitive and 

straightforward (conceptually elegant) approach suggested. 

6.4 Limitations 

Although several key findings have emerged from the research, these are subject to 

a number of limitations. Initially, the issue of ambiguity is probably the biggest 

limitation inherent in spatial datasets. This prominently occurs when there is 

doubt as to how a phenomenon should be classified because of differing 

perceptions of it (Fisher 1999). This typifies the situation existing here in which 

most villages are indicated either in different ways or by different names (see 

Section 3.6 in Chapter 3). This indeed extends to the description of villages and 

rural places in other informal data such as tweets, geotags to Flickr and so forth, 

given that people normally have different perceptions about a place and cannot 

always agree on a given precise description about it either. 

This leads to a limitation: the work described in this study did not consider 

modelling areas with multiple membership, although there is evidences that they 



 
 

158 
 

  

exist. The fuzzy model was based on using the data separately in order to get a 

discrete view about the village representation in each dataset (Section 4.5.1 in 

Chapter 4). This suggests the need for further research to develop modelling 

techniques that address the issue of multiple membership.   

The implementation of the TSP (in Chapter 5, Section 5.4) is not free of problems. 

Probably the most important one was that this study was not able to compare all 

exact solutions for the TSP for the entire settlements in the two approaches, since 

this requires an advanced tool under different licence and with particular 

computational speed. 

6.5 Future Research 

In reviewing the relevant literature, the issue of identifying the geographical 

distance between two places modelled as fuzzy objects was raised (Almadani et al. 

2012). This is to argue that, within a Boolean concept of space, the distance 

between two locations is simple and well understood (can be found with the 

Pythagorean equation), but if the model of the objects is changed from Boolean to 

fuzzy then the problem of identifying the distance between them is vastly 

complicated. The issue of fuzzy distance is not particularly new (see, for example, 

Rosenfeld, 1985; Altman, 1994; Voxman, 1998; Bloch, 1999; and Guha and 

Chakrborty, 2010). Most previous research extends the concept of distance to 

subsets of a metric space, and argues for the representation of fuzzy distance as a 

fuzzy number. These studies tend to suggest many potential applications for 

different areas, including pattern recognition, image processing, robotics, 

computer graphics and engineering. However, few if any make use of geographical 

distance or link fuzzy distance to real world phenomena, although Guesgen and 

Hertzberg (2001), Guesgen et al. (2003) and Fisher and Almadani (2010) have all 

looked at the related topic of fuzzy buffering. 

There are other possible directions for future work based on the findings and 

limitations discussed throughout this thesis. Further study could look into the 

applicability of this method in other places. It is expected that for some countries 

such formal data are not an issue and similar results could be obtained. However, 
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this is not the case in many other places with emergent spatial data 

infrastructures. It would be possible, then, to adapt the method to fully exploit the 

potentials of other crowdsourced data (e.g. Twitter, Flickr, and so on) to generate 

fuzzy extents of different geographical regions. 

A variety of alternative methods are currently available for modelling vague 

regions (Section 6.3.2) which aim to address the issue of vagueness, but do not 

consider fuzzy set theory. A direct extension then is to explore possible integration 

between these approaches and fuzzy set theory.  

The remaining challenge involves the development of other novel analyses of 

geographical information based on fuzzy representation of geographical 

phenomena. Buffer operations, for example, are typically used in site selection 

procedures; Fisher (2009) shows the advantage of using fuzzy buffers around 

Boolean entities in site selection. One challenge for the approach outlined in this 

thesis should therefore concentrate on the investigation of possible 

implementation of a fuzzy buffer method as applied in methods such as site 

selection analysis, location allocation or perhaps gravity model application. 
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 Conclusion 

7.1 General Summary of research contribution 

This research has demonstrated the way in which fuzzy set theory can be used to 

derive approximate boundaries (fuzzy spatial extents - footprints) for vague 

regions such as villages. These were approximated from named settlements 

recorded in different address databases. It has further discussed how such regions 

are typically not represented as formal administrative boundaries and are often 

considered to be vague and imprecise. The methods introduced evaluate the 

usefulness of fuzzy set theory in modelling and analysing such vague regions. It has 

further explored the implications of applying the Travelling Salesman Problem 

using informal, contributed data (POI data) in formal, crisp village extents versus 

the modelled fuzzy extents. In short, the results imply that the fuzzy model is more 

efficient than the traditional Boolean, crisp model of approximating the spatial 

extent of rural areas. However, the TSP results showed that to a large extent longer 

tours were found in the fuzzy model than the traditional crisp model. This was 

mainly affected by the scale factor of rural areas, considering the relatively small 

distances between centres' locations in the two approaches.  

7.2 Overall Research Outlook 

It is indicated that further work needs to incorporate other novel analyses of 

geographical information based on fuzzy representation of other geographical 

phenomena with varied attributes in terms of  scale or location (e.g. urban areas in 

other countries). Overall, this study strengthens the idea that vagueness and 

uncertainty in general are fundamental to geographical phenomena. It is therefore 

necessary to acknowledge these issues in geographical databases and analyses. 

The subsequent question then becomes, how do such problem with vague regions, 

specifically informally named in places where no infrastructure data available or 

under severe restriction for worldwide application, be solved. This in turn 

highlight the valuable role of the general public who act voluntarily to create a 

global patchwork of geographic information sources.  
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Appendices 

Appendix (1): Field trip agenda  September 18, 2013 

Some notes 

 Some of the villages which have equivalent parish boundaries and either  

o Their extents are limited with the boundaries [Twycross, Peckleton, 

Osbaston, Nailstone, Cadeby,], or  

o Exceed the parish boundaries [Desford, Earl Shilton, Stanton-under-

Bardon, and Stoke Golding].  

 Villages that exist only in one address types: 

o BS7666 only 

o Postal only 

o Villages in common but different distribution// can’t be seen on the 

field just looking at the maps/// 

 Compound names and punctuation 

o Bagworth and Thornotn 

o “Higham on the Hill” OR “Stanton under Bardon”  

 Missing places from my data 

There are some places missing from my data, which are listed below: 

o Brascote – [Newbold verdon] 

o Bull in Oak – [Cadeby] 

o Coton– [Market Bosworth] 

o Far Coton – [Market Bosworth] 

o Field Head – [Groby] 

o Hinckley – [Hinckley] 

o Hollycroft – [Hinckley] 

o Little Orton – [Twycross] 

o Little Twycross – [Twycross] 

o Merry Lees – [Bagworth] 

o Peckleton Ind Est 4– [Desford  ] 

o Sketchley –[Hinckley or Burbage]  

 

                                                        
4 May be stands for “Industrial Estate” 
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# Parish Name # Parish Name 

0 Higham on the Hill CP 12 Barwell CP 

1 Sheepy CP 13 Earl Shilton CP 

2 Twycross CP 14 Osbaston CP 

3 Burbage CP 15 Nailstone CP 

4 Sutton Cheney CP 16 Bagworth & Thornton CP 

5 Peckleton CP 17 Ratby CP 

6 Newbold Verdon CP 18 Groby CP 

7 Desford CP 19 Stanton-under-Bardon CP 

8 Witherley CP 20 Markfield CP 

9 Market Bosworth CP 21 Stoke Golding CP 

10 Shackerstone CP 22 Carlton CP 

11 
 NCP * 
(Hinckley) 

23 Cadeby CP 

24 Barlestone CP 
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 Higham on the Hill [no. 0] 

 
1- Sheepy [no.1] 
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2- Twycross[no. 2] 

 
3- Burbage [no.3] 
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4- Sutton Cheney [no.4] 

 
5- Peckleton [no.5] 
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6- Newbold Verdon [no.6] 

 
7- Desford [no.7] 
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8- Witherley [no.8] 

 
9- Market Bosworth [no.9] 
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10- Shackerston [no.10] 

 
11- ….NCP [no.11] 

This parish is Non-Civil Parish or Community; that is way it doesn’t have a name. 
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12- Barwell [no.12] 

 
13- Earl Shilton [no.13] 
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14- Osbaston [no.14] 

 
15- Nailstone [no.15] 
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16- Bagworth & Thornton [no. 16] 

 
17- Ratby [no.17] 
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18- Groby [no.18] 

 
19- Stanton-under-Bardon [no.19] 
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20- Markfield [no.20] 

 
21- Stoke Golding [no.21] 
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22- Carlton [no.22] 

 
23- Cadeby [no.23] 

  



 
 

 
175 

 

  

24- Barlestone [no.24] 
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Appendix (2): Maps of the normalised kernel density with their α-cuts 
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Appendix (3): Regression plots between each pair of the data sources 
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Appendix (4): Plots of the fuzzy membership grades along each thresholds 
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Plots of the density values along each thresholds 
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Appendix (5): Maps of the Travelling Salesman Problem for some subsets 
Table 7.1 List of Village names and ID included in the tours 

ID Name ID Name ID Name ID Name 

0 Bagworth 6 Earl Shilton 12 Ratby 17 Stapleton 

1 Barlestone 7 Fenny Drayton 13 Ratcliffe Culey 18 Stoke Golding 

2 Barwell 8 Groby 14 Sheepy Magna 19 Sutton Cheney 

3 Botcheston 9 Markfield 15 Sibson 20 Thornton 

4 Burbage 10 Nailstone 
16 

Stanton under 
Bardon 

21 Twycross 

5 Dadlington 11 Newtown Unthank 22 Witherley 
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Table 7.2: Comparison of the tour lengths and paths for the possible subsets of settlements in both 
approach. 

Subset 
of 

Tour 
Length 
(O) KM 

Tour 
Length 
(N) KM 

Difference 
KM 

Tour Path (O) Tour Path (N) 

3 23.15 23.70 0.55 Barlestone ,Barwell ,Earl Shilton Barlestone ,Earl Shilton ,Barwell 

4 30.97 31.80 0.83 
Earl Shilton ,Botcheston 
,Barlestone ,Barwell 

Earl Shilton ,Botcheston 
,Barlestone ,Barwell 

5 41.06 42.01 0.95 
Barlestone ,Barwell ,Earl Shilton 
,Groby ,Botcheston 

Barlestone ,Barwell ,Earl Shilton 
,Groby ,Botcheston 

6 59.20 59.93 0.73 
Barlestone ,Twycross ,Barwell 
,Earl Shilton ,Groby ,Botcheston 

Earl Shilton ,Groby ,Botcheston 
,Barlestone ,Twycross ,Barwell 

7 60.46 61.42 0.96 
Earl Shilton ,Groby ,Botcheston 
,Barlestone ,Twycross ,Sibson 
,Barwell 

Twycross ,Barlestone ,Botcheston 
,Groby ,Earl Shilton ,Barwell 
,Sibson 

8 64.78 65.88 1.10 
Botcheston ,Groby ,Stanton under 
Bardon ,Barlestone ,Twycross 
,Sibson ,Barwell ,Earl Shilton 

Earl Shilton ,Botcheston ,Groby 
,Stanton under Bardon ,Barlestone 
,Twycross ,Sibson ,Barwell 

9 66.32 72.32 6.00 

Twycross ,Nailstone ,Barlestone 
,Stanton under Bardon ,Groby 
,Botcheston ,Earl Shilton ,Barwell 
,Sibson 

Sibson ,Twycross ,Nailstone 
,Stanton under Bardon ,Groby 
,Botcheston ,Earl Shilton ,Barwell 
,Barlestone 

10 68.42 69.89 1.47 

Botcheston ,Earl Shilton ,Barwell 
,Fenny Drayton ,Sibson ,Twycross 
,Nailstone ,Barlestone ,Stanton 
under Bardon ,Groby 

Nailstone ,Barlestone ,Stanton 
under Bardon ,Groby ,Botcheston 
,Earl Shilton ,Barwell ,Fenny 
Drayton ,Sibson ,Twycross 

11 69.79 72.76 2.97 

Stanton under Bardon ,Groby 
,Botcheston ,Earl Shilton ,Barwell 
,Stapleton ,Fenny Drayton ,Sibson 
,Twycross ,Nailstone ,Barlestone 

Barwell ,Earl Shilton ,Botcheston 
,Groby ,Stanton under Bardon 
,Barlestone ,Nailstone ,Twycross 
,Sibson ,Fenny Drayton ,Stapleton 

12 74.56 81.89 7.33 

Earl Shilton ,Botcheston ,Groby 
,Stanton under Bardon ,Barlestone 
,Nailstone ,Twycross ,Sibson 
,Ratcliffe Culey ,Fenny Drayton 
,Stapleton ,Barwell 

Fenny Drayton ,Earl Shilton 
,Barwell ,Stapleton ,Barlestone 
,Botcheston ,Groby ,Stanton under 
Bardon ,Nailstone ,Twycross 
,Ratcliffe Culey ,Sibson 

13 77.96 79.83 1.86 

Ratcliffe Culey ,Fenny Drayton 
,Sutton Cheney ,Stapleton ,Barwell 
,Earl Shilton ,Botcheston ,Groby 
,Stanton under Bardon ,Barlestone 
,Nailstone ,Twycross ,Sibson 

Groby ,Stanton under Bardon 
,Barlestone ,Nailstone ,Twycross 
,Ratcliffe Culey ,Sibson ,Fenny 
Drayton ,Sutton Cheney ,Stapleton 
,Barwell ,Earl Shilton ,Botcheston 

14 79.99 87.93 7.94 

Bagworth ,Barlestone ,Nailstone 
,Twycross ,Sibson ,Ratcliffe Culey 
,Fenny Drayton ,Sutton Cheney 
,Stapleton ,Barwell ,Earl Shilton 
,Botcheston ,Groby ,Stanton under 
Bardon 

Nailstone ,Bagworth ,Stanton 
under Bardon ,Groby ,Botcheston 
,Earl Shilton ,Barwell ,Stapleton 
,Fenny Drayton ,Ratcliffe Culey 
,Twycross ,Sibson ,Sutton Cheney 
,Barlestone 

15 86.70 87.30 0.60 

Witherley ,Ratcliffe Culey ,Sibson 
,Twycross ,Nailstone ,Bagworth 
,Stanton under Bardon ,Groby 
,Botcheston ,Barlestone ,Earl 
Shilton ,Barwell ,Stapleton ,Sutton 
Cheney ,Fenny Drayton 

Barlestone ,Earl Shilton ,Barwell 
,Stapleton ,Sutton Cheney ,Fenny 
Drayton ,Witherley ,Ratcliffe Culey 
,Sibson ,Twycross ,Nailstone 
,Bagworth ,Stanton under Bardon 
,Groby ,Botcheston 

16 83.35 93.89 10.54 

Nailstone ,Twycross ,Sibson 
,Ratcliffe Culey ,Witherley ,Fenny 
Drayton ,Stoke Golding ,Sutton 
Cheney ,Stapleton ,Barwell ,Earl 
Shilton ,Botcheston ,Groby 
,Stanton under Bardon ,Bagworth 
,Barlestone 

Bagworth ,Botcheston ,Groby 
,Stanton under Bardon ,Nailstone 
,Twycross ,Ratcliffe Culey 
,Witherley ,Fenny Drayton ,Sibson 
,Stoke Golding ,Earl Shilton 
,Barwell ,Stapleton ,Sutton Cheney 
,Barlestone 

17 87.39 89.08 1.69 

Barlestone ,Nailstone ,Bagworth 
,Stanton under Bardon ,Groby 
,Botcheston ,Earl Shilton ,Barwell 
,Stapleton ,Stoke Golding ,Fenny 
Drayton ,Witherley ,Ratcliffe Culey 
,Sheepy Magna ,Twycross ,Sibson 
,Sutton Cheney 

Barlestone ,Nailstone ,Bagworth 
,Stanton under Bardon ,Groby 
,Botcheston ,Earl Shilton ,Barwell 
,Stapleton ,Stoke Golding ,Fenny 
Drayton ,Witherley ,Ratcliffe Culey 
,Sheepy Magna ,Twycross ,Sibson 
,Sutton Cheney 
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Subset 
of 

Tour 
Length 
(O) KM 

Tour 
Length 
(N) KM 

Difference 
KM 

Tour Path (O) Tour Path (N) 

18 97.89 98.18 0.29 

Witherley ,Fenny Drayton ,Stoke 
Golding ,Burbage ,Earl Shilton 
,Barwell ,Stapleton ,Sutton Cheney 
,Botcheston ,Groby ,Stanton under 
Bardon ,Bagworth ,Barlestone 
,Nailstone ,Twycross ,Sheepy 
Magna ,Sibson ,Ratcliffe Culey 

Bagworth ,Stanton under Bardon 
,Groby ,Botcheston ,Barlestone 
,Sutton Cheney ,Stapleton ,Barwell 
,Earl Shilton ,Burbage ,Stoke 
Golding ,Fenny Drayton ,Witherley 
,Ratcliffe Culey ,Sibson ,Sheepy 
Magna ,Twycross ,Nailstone 

19 98.23 98.42 0.18 

Sutton Cheney ,Sibson ,Fenny 
Drayton ,Witherley ,Ratcliffe Culey 
,Sheepy Magna ,Twycross 
,Nailstone ,Barlestone ,Bagworth 
,Stanton under Bardon ,Groby 
,Newtown Unthank ,Botcheston 
,Earl Shilton ,Barwell ,Stapleton 
,Burbage ,Stoke Golding 

Sheepy Magna ,Sibson ,Ratcliffe 
Culey ,Witherley ,Fenny Drayton 
,Stoke Golding ,Burbage ,Earl 
Shilton ,Barwell ,Stapleton ,Sutton 
Cheney ,Botcheston ,Newtown 
Unthank ,Groby ,Stanton under 
Bardon ,Bagworth ,Barlestone 
,Nailstone ,Twycross 

20 101.52 102.09 0.57 

Dadlington ,Burbage ,Barwell ,Earl 
Shilton ,Botcheston ,Newtown 
Unthank ,Groby ,Stanton under 
Bardon ,Bagworth ,Nailstone 
,Barlestone ,Stapleton ,Sutton 
Cheney ,Sibson ,Twycross ,Sheepy 
Magna ,Ratcliffe Culey ,Witherley 
,Fenny Drayton ,Stoke Golding 

Fenny Drayton ,Sutton Cheney 
,Dadlington ,Stoke Golding 
,Burbage ,Earl Shilton ,Barwell 
,Stapleton ,Barlestone ,Bagworth 
,Botcheston ,Newtown Unthank 
,Groby ,Stanton under Bardon 
,Nailstone ,Twycross ,Sheepy 
Magna ,Sibson ,Ratcliffe Culey 
,Witherley 

21 101.36 102.60 1.23 

Groby ,Markfield ,Stanton under 
Bardon ,Bagworth ,Nailstone 
,Barlestone ,Sutton Cheney 
,Twycross ,Sheepy Magna ,Sibson 
,Ratcliffe Culey ,Witherley ,Fenny 
Drayton ,Stoke Golding 
,Dadlington ,Burbage ,Stapleton 
,Barwell ,Earl Shilton ,Botcheston 
,Newtown Unthank 

Stoke Golding ,Dadlington 
,Burbage ,Earl Shilton ,Barwell 
,Stapleton ,Botcheston ,Newtown 
Unthank ,Groby ,Markfield 
,Stanton under Bardon ,Bagworth 
,Nailstone ,Barlestone ,Sutton 
Cheney ,Sibson ,Twycross ,Sheepy 
Magna ,Ratcliffe Culey ,Witherley 
,Fenny Drayton 

22 98.93 103.25 4.32 

Witherley ,Ratcliffe Culey ,Sheepy 
Magna ,Twycross ,Nailstone 
,Barlestone ,Bagworth ,Stanton 
under Bardon ,Markfield ,Groby 
,Ratby ,Newtown Unthank 
,Botcheston ,Earl Shilton ,Barwell 
,Stapleton ,Burbage ,Stoke Golding 
,Dadlington ,Sutton Cheney ,Sibson 
,Fenny Drayton 

Sibson ,Sheepy Magna ,Twycross 
,Nailstone ,Bagworth ,Stanton 
under Bardon ,Markfield ,Groby 
,Ratby ,Newtown Unthank 
,Botcheston ,Barlestone ,Stapleton 
,Barwell ,Earl Shilton ,Burbage 
,Stoke Golding ,Dadlington ,Sutton 
Cheney ,Fenny Drayton ,Witherley 
,Ratcliffe Culey 
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Appendix (6): Description and provenance of R codes used in this Thesis 
 

1. R script for generating the Voronoi tessellations for the settlements in the 

four data sources in the study area: 
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2. R script for generating the normalised density surfaces and their α-cuts for 

settlements.  
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3. R script to apply the linear regression model for settlements in each data 

types: 
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4. R script applying points in polygon analyses and tables for inclusion: 
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5. R script for centroid extraction from the fuzzy extents of the villages: 

 

  



 
 

 
277 

 

  

6. R script for applying the travelling salesman problem on the hard extent 

versus the fuzzy extents of villages: 
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