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Abstract

In this thesis we have proposed the meshless adaptive method by radial basis functions

(RBFs) for the solution of the time-dependent partial differential equations (PDEs)

where the approximate solution is obtained by the multiquadrics (MQ) and the local

scattered data reconstruction has been done by polyharmonic splines. We choose MQ

because of its exponential convergence for sufficiently smooth functions. The solution

of partial differential equations arising in science and engineering, frequently have large

variations occurring over small portion of the physical domain, the challenge then is to

resolve the solution behaviour there. For the sake of efficiency we require a finer grid in

those parts of the physical domain whereas a much coarser grid can be used otherwise.

During our journey, we come up with different ideas and have found many interest-

ing results but the main motivation for the one-dimensional case was the Korteweg-de

Vries (KdV) equation rather than the common test problems. The KdV equation is

a nonlinear hyperbolic equation with smooth solutions at all times. Furthermore the

methods available in the literature for solving this problem are rather fully implicit or

limited literature can be found using explicit and semi-explicit methods. Our approach

is to adaptively select the nodes, using the radial basis function interpolation.

We aimed in, the extension of our method in solving two-dimensional partial differ-

ential equations, however to get an insight of the method we developed the algorithms

for one-dimensional PDEs and two-dimensional interpolation problem. The experiments

show that the method is able to track the developing features of the profile of the solu-

tion. Furthermore this work is based on computations and not on proofs.

i



ii

Dedicated to:
Allah, the Almighty,

And
the Merciful .



Acknowledgements

In the name of Allah, most gracious, most merciful, I would like to say a very big thanks

to my Allah for answering my prayers and for guiding me throughout my life and to

protect me. May Allah shower His countless blessing and peace upon all His prophets in

particular, the last prophet Hazrat Muhammad (peace be upon him (PBUH), and His

Ahlulbait who have always been a source of inspiration and guidance in all walks of life.

I would like to express the deepest appreciation to all the people who made this thesis

a success. First and the foremost, my utmost gratitude to my supervisor, Prof. Jeremy

Levesley, who has an attitude and substance of a genius. He continually and convinc-

ingly conveyed a spirit of adventure in research and an excitement in regard to teaching.

I must say that Prof. Jeremy Levesley has been a true inspiration not just in my research

but also in my life. He has been a source of light in the times when i was quite discour-

aged. I must say thanks to him for his support, patience, time and for his friendly and

caring nature. I would like to extend my gratitude to my co-supervisor, Dr. Fazal-i-Haq

(Associate Professor), and I appreciate his support, help, encouragement and advice

throughout my time as his student.

I am grateful to all the staff members of the mathematics department and the admin-

istration of the university for their help and making so many things easy for me. I am

heartily thankful to Dr. Emmanuil Georgoulis, for his valuable ideas, suggestions and

discussions throughout my studies in Leicester. He has been a great source of learning

for me and despite of his busy schedule he always managed time for my research.

I must acknowledge the support of my family and I salute and express my deep appre-

ciation to my caring and loving father Syed Ali Anjum Naqvi for his training, support,

encouragement and my mother Fakhra Ali for her prayers and dreams for my success

during the whole of my life. My warmest thanks goes to my beloved husband Syed

Mustafa Shah for his patience, support, his sense of understanding and help throughout

my stay. The hard time he had during my stay in Leicester means a lot to me and he

owes much more than a thanks.

iii



iv

I wish to thank all my honourable teachers and I would also like to extend my ap-

preciation and thanks to all my relatives, friends and fellow research students, Jainxia,

Ana, Juxi, Mat, Fazli, Misha, Masha, Peter and Sabika.

My profound gratitude goes to my sponsor, the Higher Education Commission (HEC)

of Pakistan for funding my studies of this degree in the UK. Finally, I wish to thank the

Vice Chancellor Prof. Syeda Farhana Jehnagir of Shaheed Benazir Bhutto University,

Peshawar, Pakistan, for being supportive in all aspects and for granting me study leave

to undertake this programme.

Syeda Laila Naqvi,

Leicester, England, UK.

June, 2013.



Contents

Abstract i

Acknowledgements iii

Notations and abbreviations x

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Hyperbolic partial differential equations . . . . . . . . . . . . . . 3

1.3 Radial basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Differentiation matrices . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 RBF based adaptive methods . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Main achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.1 A brief view of the adaptive method proposed . . . . . . . . . . . 11

1.6 Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Radial Basis Functions 17

2.1 Scattered data interpolation problem . . . . . . . . . . . . . . . . . . . . 17

2.2 Introductory concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Radial basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 RBF interpolation with polynomial reproduction . . . . . . . . . . . . . . 25

2.5 Compactly supported radial basis functions . . . . . . . . . . . . . . . . . 26

2.6 Well-posedness of the radial basis interpolation problem . . . . . . . . . . 28

3 Meshless method of lines using radial basis function method 32

3.1 Meshless method of lines using radial basis function . . . . . . . . . . . . 33

3.1.1 Elements of the method of lines (MOL) . . . . . . . . . . . . . . 34

v



CONTENTS vi

3.1.2 Meshless method of lines using radial basis functions for the gen-

eralized Burgers-Huxley equation . . . . . . . . . . . . . . . . . . 34

3.1.3 RBF interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Classical fourth-order Runge-Kutta method . . . . . . . . . . . . . . . . 40

3.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Allen-Cahn equation in two-dimensions . . . . . . . . . . . . . . . . . . . 46

3.4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Korteweg de Vries Equation 50

4.1 Korteweg-de Vries equation and theory of solitons . . . . . . . . . . . . . 50

4.1.1 Challenges and known numerical methods for solving KdV equation 54

4.1.2 Why choosing the KdV equation for adaptive algorithm? . . . . . 57

5 Adaptive Radial Basis Function Method 59

5.1 Adaptive interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1 Solve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.2 Adapting the shape parameter . . . . . . . . . . . . . . . . . . . . 61

5.1.3 Error indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.4 Natural splines as one-dimensional case of the polyharmonic splines 66

5.1.5 Refine/ Coarse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Adaptive RBF interpolation in the method of lines fashion . . . . . . . . 69

5.3 Numerical experiments for time-dependent PDEs . . . . . . . . . . . . . 73

5.3.1 Korteweg-de Vries (KdV) propagation of a single soliton . . . . . 73

5.3.2 Interaction of two solitons . . . . . . . . . . . . . . . . . . . . . . 76

5.3.3 Burgers equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.4 Allen-Cahn Equation . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Interpolation in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.1 Refinement in 2-D . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.2 Adaptive algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Conclusions and future work 91

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Outlook and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



List of Figures

1.1 Discontinuity propagating in time for advection equation with step func-

tion as initial condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 The adaptive interpolation for tanh(60x− 0.1). . . . . . . . . . . . . . . 15

3.1 Stability region for Runge-Kutta method of order 1, 2, 3, 4, the larger or-

der is the larger the stability region. Stability region of RK4 has an

intersection with imaginary axis. . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Solitary wave solution for Example 1, Parameters: α = β = 1, γ = 2, δ = 1 46

3.3 RBF-MOL solution for the Allen-Cahn equation using uniform distribu-

tion of nodes at t = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Solution at t = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Periodic wave on the surface of water. . . . . . . . . . . . . . . . . . . . . 51

4.2 Solution of KdV equation using uniform distribution of nodes, becomes

unstable with a very small increment in ∆ Left: ∆t = 1.2953 × 10−3,

Right: ∆t = 1.2956× 10−3 . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 The plot of convergence for the MOL-RBF in spatial variable for KdV

equation using ∆t = 0.01, c = 0.65 at time t = 0.5 . . . . . . . . . . . . . 56

5.1 Adaptive flow chart, this cyclic process will be called at every time level

for time-dependent PDEs. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Left: Initial adaptive discretization at time t = 0, Right: Soliton moving

from left to right, adaptive solution at time t = 1. . . . . . . . . . . . . . 74

5.3 The profile of the adaptive solution at time t = 2 and t = 3 . . . . . . . . 75

5.4 The profile of the adaptive solution at time t = 4 and t = 5 . . . . . . . . 75

5.5 Interaction of two solitons moving from right to left, this profile is just

before the interaction and recorded at time t = −0.3,−0.25,−0.2 and −0.15 78

5.6 The smaller solitary wave is interacting with the larger wave at time

t = −0.1, t = −0.05, t = 0.05 and t = 0.1. . . . . . . . . . . . . . . . . . 79

5.7 The waves retain to the original shape at t = 0.25, t = 0.3 . . . . . . . . 80

5.8 Adaptive RBF method for the Burgers equation at time t = 0.4 and t = 0.6 82

vii



LIST OF FIGURES viii

5.9 Adaptive RBF method for the Burgers equation at time t = 0.4 and t = 0.6 82

5.10 Adaptive RBF method for the Burgers equation at time t = 0.6 and t = 0.8 83

5.11 Adaptive solution for the Allen-Cahn equation at at time t = 0, and

t = 0.75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.12 Adaptive solution for the Allen-Cahn at time t = 1.5 and t = 2.25. . . . . 84

5.13 Adaptive solution for the Allen-Cahn at time t = 3 and t = 4.5. . . . . . 85

5.14 Adaptive solution for the Allen-Cahn at time t = 6 and at final time

t = 8.25, it is evident that the nodes are clustering around steep gradients. 85

5.15 Voronoi tile for the point x . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.16 Adaptive interpolation for 2-D interpolation problem . . . . . . . . . . . 90



List of Tables

1.1 Adaptive interpolation for tanh(60x− 0.1). . . . . . . . . . . . . . . . . . 15

2.1 Radial Basis Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Wendland’s Compactly Supported RBFs . . . . . . . . . . . . . . . . . . 28

3.1 MQ α = β = 1, γ = 0.01, c=1.4 . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 MQ α = 1, β = 0, c = 1.02 . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 MQ α = 1,β = 0, δ = 3, c = 1.02, dt = 0.0001 . . . . . . . . . . . . . . . 46

5.1 Comparison of Adaptive and Non-Adaptive methods for the single soliton

at final time t = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Comparison of Adaptive and Non-Adaptive methods for the of interaction

of two solitons at final time t = 0.3 . . . . . . . . . . . . . . . . . . . . . 80

ix



Notations and abbreviations

Notation

[κ(A)] The condition number of a matrix A with respect to a given matrix norm . . . 22

[σmax] Maximum singular value of a given matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

[σmin] Minimum singular value of a given matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

[λmax] Maximum eigenvalue of a given matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

[λmin] Minimum eigenvalue of a given matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

[θcrs] Threshold for coarsening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

[θcrs] Threshold for refining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

[πdm] The space of d-variate polynomials of degree not exceeding m . . . . . . . . . . . . . . . . 20

[hX,Ω] The fill distance of the data corresponding to the data sites X in Ω . . . . . . . . . 22

[qX ] The separation distance of the data sites X in a given domain . . . . . . . . . . . . . . . . 22

[brc] The largest integer that does not exceed r, where r ∈ R . . . . . . . . . . . . . . . . . . . . . . 27

[dre] The smallest integer not less than r, where r ∈ R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

[C2k(Rd)] Space of smooth functions on Rd of smoothness order 2k . . . . . . . . . . . . . . . 27

[VX(x)] Voronoi tile for any x ∈ X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Abbreviation

[RBF] Radial Basis Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

[MQ] Multiquadrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

[DOF] Degrees Of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

x



Notation and abbreviation xi

[PDE] Partial Differential Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

[PD] Positive Definite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

[CPD] Conditionally Positive Definite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

[A.E] Absolute Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

[RMS] Root Mean Squared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

[ODEs] Ordinary Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

[NLPDEs] Non-linear Partial Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

[FEM] Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

[FDM] Finite Difference Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

[FVM] Finite Volume Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

[KdV] Kortweg- de Vries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

[RBF−MOL] Radial basis functions-Method of lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

[BC] Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4



Chapter 1

Introduction

1.1 Background

Partial differential equations (PDEs) with solutions that have highly localized proper-

ties appear in many areas of application. The solutions of such PDEs sometimes exhibit

steep gradients, corners, and rapid topological changes (change of shape, developing

discontinuity). Such examples include, shock hydrodynamics [20, 86], transport in tur-

bulent flow fields, moving front problems [7, 23], combustion processes [1], reactive or

non-reactive flows [65], and singularities in interface flows [8]. The exact/analytical solu-

tion for a large class of PDEs is generally difficult to derive except for the simplest PDE

problems. We then require a numerical solution of such problems, which is simply the

numerical evaluation of analytical solution. There are cases when even the numerical

solution becomes hard to achieve, such as for PDEs solved in complex geometries with

nonlinearities.

Numerical simulation is an ongoing research area in engineering and science prob-

lems. Most of the techniques for these simulations in complex geometries depends upon

discretizing the domain using a grid or triangulation. The major methods include the

finite difference (FDM), finite volume (FVM), finite element (FEM), and spectral meth-

ods. In finite difference methods the derivatives are approximated using differences of

function values on the grid. They are popular for their simplicity but in complex geome-

tries obtaining weights for the grid stencils requires an effort to achieve uniform accuracy.

1



1.2 Motivation 2

In FEM, the creation of a mesh grid in higher dimensions is a significant task. The dis-

cretization in all of these traditional methods involves some sort of mesh generation or

triangulation of the region of interest. In mesh-based methods to create, maintain, and

update (i.e., re-meshing) complex meshes takes significant amount of time.

This leads to the question about the possibility of generating the grid points for

problems with difficult geometries and irregular domains in higher dimensions. For this

reason one might think of meshfree/meshless methods. Meshfree methods are meshless

in a way that they does not require connectivity of grid/mesh points, however finding

nearest neighbours is computationally less intensive than the mesh generation in mesh-

based methods. In the next section we will give a brief introduction to the meshfree

methods.

1.2 Motivation

Scattered data approximation is a recent fast growing research area and deals with the

problem of reconstructing an unknown function from data which may have no particular

structure. The applications of the scattered data approximation are prominent in applied

mathematics, computer science, geology, biology, engineering to business studies. To

name a few specific applications, finance modeling, surface reconstruction, point cloud

modeling, medical applications, fluid-structure interaction and the solution of the partial

differential equations.

A meshfree method is a numerical method used to establish a system of algebraic

equations for the whole domain of the problem without using a predefined mesh for

the domain (or boundary) discretization. We will make use of meshfree methods for

our scattered data approximation because mesh generation is one of the most time

consuming part of any mesh-based numerical simulation. The meshfree method gives

an economical alternative to methods such as those using wavelets, multivariate splines,

finite elements, finite difference and finite volume, where all require the connectivity of

nodes.
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Radial basis function (RBF) methods are not tied to a grid and in turn, belong

to a category of the above mentioned meshfree methods. This is done by composing

a univariate basic function with a norm usually Euclidean, which makes the problem

insensitive to the dimension and makes it virtually one-dimensional.

Most of the physical models in science and engineering have variations, shocks or

steep gradients where the solutions exhibit large variations over small portions of the

domain of interest. The variations usually can be seen in the coefficients, forcing terms,

or in the boundary conditions. The use of a uniform mesh for such problems can be

computationally expensive especially in multidimensions, where the required degrees

of freedom (DoF) i.e., number of nodes/meshes/points can be prohibitively large. An

alternative to the uniform grid, called mesh adaptivity, is to flag more points in the region

of high variation and few points in rest of the domain. Mesh adaptivity is preferred over

the uniform grid for the sake of efficiency. The adaptive grid should reflect the profile

of the solution. The literature for the adaptive methods using different approaches can

be found in [43, 21, 54, 46, 23, 68, 80].

The problems listed in Section 1.1 motivate us to introduce some kind of meshfree

adaptive discretization for the PDEs which have highly localized features in space or

time. Our motivational model is the third-order nonlinear KdV equation, which shall

be discussed briefly in the next section.

1.2.1 Hyperbolic partial differential equations

For numerical methods, hyperbolic PDEs are considered to be a challenging task. Several

issues arise for hyperbolic PDEs which do not occur for parabolic or elliptic PDEs [2].

Korteweg- de Vries (KdV) equation belongs to the hyperbolic class of PDEs. We will

first discuss about the general challenges for hyperbolic PDEs and numerical schemes

for them and then we will give a brief overview of our motivational model i.e., KdV

equation.
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Hyperbolic PDEs

Hyperbolic PDEs are conservative i.e., non-dissipative and suffers delicate issues of how

the boundary conditions (BC) are applied. A simple example of this can be given using

linear advection equation. For instance, ut − ux = 0, 0 ≤ x ≤ 1, t ≥ 0, let us have

u(0, t) = u0(x), then the solution will be u(x, t) = u0(t + x). The solution depends on

the initial data travelling leftwards with speed dx
dt

= −1. In this situation we requires

only one boundary condition to be specified at x = 1 as the characteristic curve will

exit at x = 0. Similarly for ut + ux = 0 solution will consist of the initial data travelling

rightwards with speed dx
dt

= 1 which require the boundary condition to be specified only

at x = 0. The propagation of the information traveling along the characteristic curve in

more complex situations needs to be handled very carefully.

It is often encountered that numerical schemes can suffer with numerical dispersion

whether or not the PDE is dispersive. For instance, let us again consider the linear

advection equation using initial condition u(x, 0) = e−kx, (k is the wave number). The

PDE is not dispersive in itself but the numerical scheme for this PDEs using finite

difference semi-discretization in space, suffers from numerical dispersion. To handle this

issue, LaxWendroff and leapfrog schemes are discussed in [2].

The eigenvalue stability is another big concern if using explicit method for inte-

grating the ODEs in time where-as using implicit methods can be used but they are

computationally expensive. The nonlinear hyperbolic PDEs may have discontinuities

in the solutions or in its derivatives, even with smooth initial condition and the error

propagates with time. For hyperbolic PDEs unlike the parabolic PDEs, if we have a

discontinuity in the initial condition it will travel in time and may not diffuse. For

instance, considering the advection equation with step function as the initial condition

u0(x) =


1, if x < 0,

0, if x ≥ 0,

the discontinuity will propagate in time. Figure 1.1 is showing this behaviour. The



1.2 Motivation 5

detailed discussion for evolutionary PDEs and more issues related to hyperbolic PDEs

can be found in [2].

Figure 1.1: Discontinuity propagating in time for advection equation with step function as
initial condition.

Korteweg- de Vries (KdV) equation

The nonlinear KdV equation

ut + εuux + µuxxx = 0,

is a hyperbolic model with smooth solutions at all times. The model describes the in-

teraction between nonlinearity and dispersion. The PDE is of special interest in terms

of numerical analysis, that is, an exactly solvable model whose solutions can be ex-

actly specified. For an appropriate initial condition, Garden et al. [33] have shown the

existence and uniqueness of the exact solution of the KdV equation.

There have been many methods proposed for the numerical solution of the KdV

equation. However, many of these are fully implicit [36] which can be quite expensive.

A limited literature concerning explicit schemes or semi-explicit schemes is available in

literature [79, 87]. The numerical solution of PDEs by the traditional methods like finite

difference, finite element can be expensive in terms of mesh generation for dimensions

greater than three. Recently the KdV equation has been solved by RBFs coupled with

the method of lines (RBF-MOL) in [74]. The RBF-MOL becomes our motivation to

solve the problem with a new adaptive approach which is to solve by using as small

number of DoF as possible, to achieve better results.
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In terms of adaptivity, a question comes to mind about the possibility of an easy

way of generating the grid points and to adaptively select the grid points. The structure

of the grid must allow for easy addition and deletion of points, and to determine and

process neighbors. For this reason one might think of a meshless method where RBFs

can provide a positive answer to this question. We combined the meshfree RBFs with

a new adaptive approach for the numerical solution of this problem. The adaption is

based on the method of Iske [46]. We will introduce the RBFs in the next chapter in

detail however we will give a brief summary of the RBF interpolation and the known

adaptive methods based on RBFs.

1.3 Radial basis functions

Radial basis function interpolation, use linear combinations of the translates of one single

basic univariate function. The RBFs have been praised in a variety of settings, where

one of the chief reason for their success is their ease of implementation in multivariate

scattered data approximation. In the last decade, RBF meshless method has become

a viable choice for solving PDEs. Kansa introduced this method in [51, 50] for solving

elliptic and parabolic PDEs. Franke and Schaback in [32] have used collocation using

RBFs. Larsson and Fornberg have applied the idea for elliptic PDEs [53]. A number of

papers have been published combining RBFs with the method of lines (MOL) [78, 39,

9, 38, 37, 40, 74] for time dependent PDEs.

A brief introduction of RBF interpolation is given here; the details are given in the

next chapter. Let x = (x1, . . . , xd) ∈ Rd and X = {x1, ...,xN} ⊆ Rd the given data

set, RBF interpolant takes the form,

s(x) =
N∑
j=1

λjφ(‖ x− xj ‖2), (1.1)

where ‖ . ‖ is the Euclidean distance, and φ : [0,∞] → R. The interpolation condition
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s(xi) = f(xi) gives the simple linear system

Aφ,Xλ = f(xi), (1.2)

to be solved for λ. The interpolation matrix A is guaranteed to be nonsingular for

many choices of φ subject to some restrictions (see Chapter 2). We have a great deal of

flexibility in choosing a suitable RBF. The exponential convergence depend on how we

choose the RBF basis function.

The popular choices of the RBFs are:

• Infinitely smooth: multiquadrics φ(r) = (1 + c2r2)1/2 and Gaussian e−(cr)2
; both

contain a free parameter called the shape parameter.

• Thin plate splines r2k log(r), where k ∈ {1, 2, ...}.

• Compactly supported Wendland’s functions [83].

Our numerical approximations are based on multiquadrics (MQ). The method was in-

troduced by Hardy in 1971 and the exponential convergence rate of the MQ interpolation

for smooth functions was proved by Madych and Nelson in 1992 [55]. The RBF meth-

ods suffer with ill-conditioning while giving good accuracy. This relation is described

as the uncertainty principal in RBF interpolation and was documented by Schaback in

[71]. The infinitely smooth RBFs can gives exponential convergence as compared to

the piecewise smooth RBFs where the convergence is of algebraic order. For instance,

cubic splines in 1-D, as a special case of RBF interpolation becomes φ(r) = |r|3. The

order of the approximation for such splines (when approximating smooth functions), is

O(h4) due to the jump in the third derivative at the origin [31]. The limited smooth-

ness of piecewise smooth functions makes the infinitely smooth RBFs a favourable choice

[13, 17]. The convergence of the RBFs containing the shape parameter, can be discussed

in stationary and non-stationary settings. In stationary approximation, the number of
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the centers N is fixed with varying shape parameter, whereas a non-stationary approx-

imation keeps the shape parameter fixed and increase N . In the non-stationary setting

with increasing N the error behaves as

|f(x)− s(x)| ≤ e−
K(c)
h , (1.3)

where K(c) is a constant depends on the value of the shape parameter and h is the fill

distance (see Definition 2.9). However, the errors occurs due to rounding, it is often

difficult to obtain highly accurate results. In the stationary setting, the estimate (1.3)

cannot be used as K varies with c.

1.3.1 Differentiation matrices

The RBF differentiation matrices can be obtained by differentiating (1.1) at nodes

x1, ...,xN . For one-dimensional case it will be of the form

d

dx
(s(x)) =

N∑
i=1

λi
d

dx
φ(|x− xi|).

The differentiation matrices obtained by RBF collocation, often have eigenvalues with

positive real parts. Sarra [69] investigated numerical accuracy and stability for one and

two-dimensional hyperbolic problems. It was observed that bounding condition num-

ber, can give stable eigenvalue for symmetric RBF collocation. Whereas the eigenvalue

stability can be achieved for asymmetric collocation for structured center locations i.e.,

Chebyshev pseudospectral grid. The structured grid works well where the symmetric

matrix becomes singular. In a very recent study Chen et al. [16] proposed a fully dis-

cretized (both in space and time) RBF methods for hyperbolic PDEs. To analyze the

stability condition, space discretization is kept uniform.

Platte and Driscoll [62] have proved theoretically that RBF differentiation matrices

using the conditionally positive definite functions (CPD), for the time-dependent prob-

lems are stable for periodic domains. For non-periodic domains highly dissipative time
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stepping can be used for stable discretization. They further discussed that for Gaussian

RBF, special node distribution is crucial for stable one-dimensional collocation. Forn-

berg et al. [30] observed the behaviour of differennt RBFs near boundaries in an interval

and its extension to 2-D. He observed that boundary clustering of nodes using Cheby-

shev interpolation is a good alternative than using high order polynomials which causes

Runge phenomenon.

For nonlinear higher order hyperbolic PDEs, the eigenvalue stability of MOL-RBF is

difficult both in theoretical and numerical context. For the KdV equation we observed

that the CFL condition is influenced by shape parameter and the nonlinearity present

in the problem. Adapting the solution for time dependent hyperbolic PDEs, where the

solution becomes from smooth to steep in time, require scattered and unstructured mesh

around the steep gradients or discontinuities (shocks). The investigation of eigenvalue

stability for such problems is still in its early stages.

1.4 RBF based adaptive methods

Interpolation by radial basis functions is a viable choice in several adaptive methods

in a number of time-independent and time-dependent settings. For instance, Driscoll

and Heryudono [23] have proposed the resudial subsampling method for interpolation,

boundary-value, and initial-boundary-value problems with high degrees of localization.

Their adaptive method is based on RBF and it has been observed that adapting the shape

parameter is crucial for better results. Their method is fitting the unknown function on

equally spaced nodes, then computing the interpolation error at points halfway between

the nodes, they added those points where the error exceeds a refining thresholds to

become centers and deleted the points where the error is less than a coarsening threshold.

A combination of B-spline techniques using the scaled multiquadric RBFs has been

presented in Bozzini et al. [11]. In their method scaled multiquadrics have proven to

provide smoother interpolant on the liner B-splines. Schaback et al. [42] have used a

greedy adaptive algorithm where the method is of linear convergence. Behren et al. [7]
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have combined a semi-Lagrangian method with local RBF approximation, specifically,

thin plate splines for linear transport equations. An extension of the method can be in

seen in [5] for the non-linear transport equations i.e., Burgers equation and the Buckley-

Leverett equation which describes a two-phase fluid flow in a porous medium.

Davydov [21] has proposed an adaptive meshless discretization based on generalized

finite difference stencils. Generalized stencil were obtained using five-point formula

and the weights have been computed using RBFs. To generate the finite difference

stencils they preferred RBFs due to their robustness on highly irregular data over the

local polynomial least square method which is the best known approach considered in

literature for the generation of the stencils. Iske et al.[46] combined the adaptive particle

methods with the scattered data reconstruction through polyharmonic splines, which

plays a key role in their method. The numerical stability and approximation behavior

of the polyharmonic splines have been discussed. Their method performed well on real

world problems, for instance, tracer transport problem in the arctic stratosphere and a

popular test case scenario from hydrocarbon reservoir modelling, termed the five-spot

problem. Saara [68] modified a simple moving grid algorithm from finite differences to

RBF methods. The references [23, 46, 74] have been the main motivation of our adaptive

method.

1.5 Main achievements

The adaptive RBF method is proposed for the one-dimensional time dependent KdV

equation. The method has further extended to some more challenging problems. To

get an insight into the extension of the method in 2-D, we present results for 2-D in-

terpolation problem. This thesis contains computational results for RBF simulations

of standard PDE problems. All the numerical experiments are run in MATLAB on

Windows 7 system, running at 3.10 Ghz with 8 GB memory.

Our first adaptive experiment is for the one-dimensional non-linear KdV equation

briefly introduced in Section 1.2.1. The KdV equation has been solved in [74] using a
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uniform grid, but as the variation occur only in a small part of the domain we adapt

the solution in those regions. Our adaptive method solved the problem with fewer

number of grid points than the non-adaptive method with the same accuracy proposed

by [74]. It can be seen that the adaptive grid reflects the profile of the solution. The

approximation has been obtained from multiquadrics due to its spectral convergence for

sufficiently smooth functions. To obtain the residuals we performed local scattered data

reconstruction using polyharmonic splines. Further extension has been made for the

interactions of two solitons for the same model. The adaptive method performs well on

the interaction and adapt the solution when the taller wave catches up, interacts with,

and then passes the shorter wave.

The adaptive method also performs well on some difficult PDEs such as Burgers and

the Alleh-Cahn equation. The efficiency of the adaptive grid and the utility of RBFs, can

be seen in higher dimensions. We extended the adaptive method for the two-dimensional

interpolation problem on the Franke’s function. In the future we aims in extension for

the two-dimensional PDEs though not in this thesis.

1.5.1 A brief view of the adaptive method proposed

For an insight of the adaptive method we will briefly give an overview of the one-

dimensional interpolation problem. We will interpolate the known function f(x) over

the interval [a,b] with the equally spaced initial discretization i.e., xi = a + (b − a)ih

where h = 1/(N + 1) and i = 0, 1, ..., N .

The approximate solution i.e., u(x), is obtained using global multiquadrics. On this

approximation, we reconstruct the solution using polyharmonic splines which will be-

come the natural spline in 1-D. This spline reconstruction will use approximate solutions

obtained by MQ and will interpolate the value of xi on a set of nearest neighbours of

the point xi i.e., Nxi . In our examples we reconstruct using 7 nearest neighbours, which

will give us the local influence around every point.

The next step is to obtain the residual η(x) = |u(xi) − sNxi (xi)| for every point in
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X, based on the thresholds θref and θcrs . If the difference n(x) > θref , the solution

will lie in the region of high variation and we will add more points there. For the 1-D

refinement if the residual at a check point exceeds θref , we will add point to left and to

the right of that check point. The small value of n(x) < θcrs, indicates that the solution

is smooth enough, and hence we will remove such points. The coarsening is done by

sorting the residuals and deleting a specific percentage of the sorted best error. This

percentage depends on the problem we are dealing with.

In our numerical experiments we are using center dependent shape parameters to

prevent the growth of the condition number κ(A) which is due to the fact that, the RBF

method put more nodes in the localized region which remarkably decreases the separation

distance. Varying the shape parameters with the centers results in, improving accuracy

and numerical conditioning [31]. We will adapt the shape parameters as per problem.

The rule is that a formula for cj could depend on spacing of centers xj to its nearest

neighbours.

The adaptive algorithm for one-dimensional (1-D) interpolation problem starts with

the node set X, refining θref and coarsening θcrs thresholds. The idea is to push all

the residuals below θref . The algorithm starts with equal distribution of nodes in the

domain. In step 2.(b) of Algorithm 1, the adaptive selection of nodes relies on the local

reconstruction using polyharmonic splines where the natural splines are used in 1-D. In

step 3, residuals will point out the regions of high variation.
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ALGORITHM 1. Adaptive RBF for 1-D interpolation.

INPUT: X, θref and θcrs.

while {

1. Compute the MQ-interpolant u.

2. For each x ∈ X {

(a) Determine a set Nx ⊂ X of neighbours of x.

(b) Compute s, the natural splines interpolant satisfying s|N = u|N for

each x but not at x.

(c) Using s the local interpolant around x, interpolate at x.

}

3. Compute the residuals |u(xi)− sNxi
(xi)| for each xi.

4. Adaptively refine when |u(xi)− sNxi
(xi)| > θref .

5. Coarsen when |u(xi)− sNxi
(xi)| < θcrs

6. Adapt the shape parameters.

UNTIL Every residual is less than θref .

}

OUTPUT: A new set of adaptively selected set of centers.

To get a better understanding let us implement the algorithm on 1-D interpolation

problems.

Example : Let us consider the so called Runge function f(x) = 1
1+25x2 over the interval

[−1, 1] with the equally spaced initial discretization X = {x1, ..., xN}. We started with

20 equally spaced points and considered θref = 10−4 and θcrs = 10−6. The adaptive

interpolation clusters nodes around the steep gradient. It is evident from Figure (1.2)

that our method converges in four iterations with the maximum error = 5.2× 10−7 with
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adaptively adjusted points.

Another example can be given for tanh(60x− 0.1) it is evident from Table (1.1) and

Fig (1.3) that the adaptive method converges in 7 iterations with a total number of 66

points. It is evident from Fig 1.3 that the nodes are clustering around the steep gradient.

We can see that the condition number given in Table (1.1) increases rapidly and then

becomes stable.

Figure 1.2: The adaptive interpolation of the Runge function f(x) = 1
1+25x2
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Table 1.1: Adaptive interpolation for tanh(60x− 0.1).

Iteration N κ(A) Max Error

1 20 3.7E+03 4.3E-01
2 22 3.1E+04 4.0E-01
3 25 1.0E+05 1.2E-01
4 31 3.7E+05 8.5E-03
5 36 1.1E+06 7.6E-04
6 54 3.2E+06 9.4E-05
7 66 5.4E+06 7.4E-05

Figure 1.3: The adaptive interpolation for tanh(60x− 0.1).

1.6 Outlines

This thesis is organized as follows,

In Chapter 2, we will give an overview of the radial basis function interpolation.

The MQ-RBF has been the primary tool for the interpolation in our experiments. In

Chapter 3, we propose radial basis function in a method of lines fashion. The method

performs well and is in a good comparison with other methods proposed for the gener-
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alized Burgers-Huxley equation. The so called method of lines is also discussed both for

1-D generalized Burgers-Huxley equation and 2-D Allen-Cahn equation. In Chapter 4

we discussed our motivational model the KdV equation. We will discuss about the PDE

and challenges for numerical methods for this problem, in detail. In Chapter 5, we pro-

pose the adaptive RBF method for KdV equation. In our method, approximations are

obtained by multiquadrics due to their exponential rate of convergence for sufficiently

smooth functions. The residuals have been obtained by local reconstruction through

polyharmonic splines which coincides with the natural splines in the one-dimensional

case. The method essentially solve the KdV equation with lease number of grid points

and insert more points in the region of high activity and coarsen otherwise. We observed

that our method compared to the non-adaptive RBF-MOL [74] gives promising results

for both, single soliton and interaction of two solitons solutions for the KdV equation.

The numerical experiments are discuss for the 1-D time-dependent PDEs, the KdV

equation, Allen-Cahn equation and the famous Burger’s equation. The 2-D adaptive

interpolation is presented for the Franke’s function. We discussed the algorithms for

the construction of the Voronoi diagram in the refinement context. In Chapter 6, We

conclude the results obtained by our method and discuss the future extensions of the

method.



Chapter 2

Radial Basis Functions

2.1 Scattered data interpolation problem

Multivariate scattered data interpolation requires the recovery of an unknown function

f from a finite set of discrete data. The data consists of measurements (called the data

values) obtained at certain pairwise distinct locations (called the data sites). Our in-

terest is not just to approximate the data values at the data sites but to deduce the

information at locations different from those at which the measurements are given. In

other words, we wish to find a function (a good fit) “s” which matches the given mea-

surements at the corresponding locations i.e., the function “s” passes through the data.

This approach is known as interpolation. If the location on which the measurements are

taken do not lie on a uniform or a regular grid then the process is called scattered data

interpolation.

Definition 2.1 (Multivariate scattered data interpolation problem) Let X ⊆

Rd, given the data (xi, f(xi)); i = 1, ..., N where f : Rd → R, the multivariate scattered

data interpolation problem is to find a smooth function s : Rd → R such that s(xi) =

f(xi); i = 1, ..., N where s is called the interpolant to the data.

Here xi are the measurements locations, and f(xi) are the corresponding measure-

ments. We will assume that these values are obtained by sampling a data function f at

17
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data locations.

A convenient approach for solving the scattered data problem is to make the as-

sumption that the interpolant s(.) is a linear combination of certain basis functions,

φi(x); i = 1, ..., N, i.e.,

s(x) =
N∑
i=1

λkφk(x) where x ∈ Rd. (2.1)

Solving the interpolation problem under this assumption

s(xi) = f(xi), i = 1, ..., N, (2.2)

leads to the system of linear equations of the form

Aλ = f, (2.3)

where the entries of the interpolation matrix A are given by

Aj,k = φk(xj), where j, k = 1, ..., N,

and λ = [λ1, ..., λN ]T , f = [f1, ..., fN ]T .

The unique solution of the problem exists, whenever matrix A is non singular. Non-

singularity of matrix A under some mild restrictions i.e., constant shape parameters and

sometimes adding a low order polynomial is guaranteed in [59].

2.2 Introductory concepts

Definition 2.2 (Vector-norms) Let v ∈ Rd the vector norms are defined as

• (`p-norm) The p-norm, 1 ≤ p <∞ is defined as ‖ v ‖p= (
∑n

i=1|vi|p)1/p,
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• (`1 − norm) ‖ v ‖1=
∑n

i=1|vi|,

• (`2 − norm) ‖ v ‖2= (
∑n

i=1|vi|2)1/2,

• (`∞ − norm) =‖ v ‖∞ max1≤i≤n|vi|.

Definition 2.3 (Matrix-norms) Let A : Rn → Rm and v ∈ Rn. The norms of the

matrix A induced by the vector norms are defined as

• (`p-norm) ‖ A ‖p= max
v∈Rn\0

‖Av‖p
‖v‖p ,

• (`1 − norm) ‖ A ‖1= max1≤j≤n
∑n

i=1|Aij|,

• (`2 − norm) ‖ A ‖2=
√
ρ(ATA) where ρ is the spectral radius,

• (`∞ − norm) ‖ A ‖∞= max1≤i≤n
∑n

j=1|Aij|.

Definition 2.4 (Multi-index notation) Let N0 denote the set of non-negative inte-

gers. A d-dimensional multi-index is a d-tuple

α = (α1, . . . , αd) ∈ Nd
0

For x = (x1, . . . , xd) ∈ Rd, we define

|α| = α1 + · · ·+ αd,

xα = xα1
1 · xα2

2 · · · x
αd
d ,

and

Dα =

(
∂

∂x1

)α1

· · ·
(

∂

∂xd

)αd
=

∂|α|

∂xα1
1 . . . ∂xαdd

.

It is effective to use the multi-index notation. For instance, the following example shows

it is less laborious to use this notation.



2.2 Introductory concepts 20

Example : Let us suppose d = 3, and α = (α1, α2, α3), αj ∈ N for j = 1, 2, 3.

For u be a function of three variables, x1, x2, x3,

∑
|α|=3

Dαu =
∂3u

∂x3
1

+
∂3u

∂x2
1∂x2

+
∂3u

∂x2
1∂x3

+
∂3u

∂x1∂x2
2

+
∂3u

∂x1∂x2
3

+

∂3u

∂x3
2

+
∂3u

∂x1∂x2∂x3

+
∂3u

∂x2
2∂x3

+
∂3u

∂x2∂x2
3

+
∂3u

∂x3
3

.

Let us denote πdm , by space of d-variate polynomials of degree not exceeding than

m.

Definition 2.5 (Condition of unisolvancy) The data sites X ⊆ Rd with N ≥ M =

dimπdm are called πdm -unisolvent if the zero polynomial is the only polynomial from the

space πdm that vanishes on all of them.

The definition comes from polynomial interpolation, in which case it guarantees a unique

solution for interpolation to given data at a subset of points X ⊂ Rd by a polynomial of

degree m.

Example : Three collinear points in R2 are not 1-unisolvent since a linear interpolant,

i.e., a plane trough three arbitrary heights at these 3 collinear points is not uniquely

determined. On the other hand, if a set of points in R2 contains 3 non-collinear points,

then it is 1-unisolvent.

Definition 2.6 (Positive definite matrix) A real symmetric matrix A is called pos-

itive semi-definite if its associated quadratic form is non-negative, i.e.,

∑N
j=1

∑N
k=1 λjλkAjk ≥ 0,

for λ = [λ1, ..., λN ]T .

If the only vector λ that turns the above quadratic form into an equality is the zero vector,

then A is called positive definite.

Definition 2.7 (Positive definite function) A real valued continuous function Φ :

Rd → R is positive definite on Rd if and only if it is even and
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∑N
j=1

∑N
k=1 λjλkφ(xj − xk) ≥ 0,

for any N pairwise different points {x1, . . . ,xN} ∈ Rd, and λ = [λ1, ..., λN ]T .

The function φ is strictly positive definite on Rd if the only vector λ that turns the

above into the equality is the zero vector.

Positive definite functions have a vital role in approximation theory and statistics, the

property is crucial for interpolation. A synonym for the positive definite function is

function of positive type.

Definition 2.8 (Conditionally positive functions) A continuous real function Φ :

Rd → R is said to be conditionally positive definite of order m on Rd if and only if

∑N
i=1

∑N
j=1 λiλjφ(xi − xj) > 0,

holds for all possible pairs (λ,X) of choices λ = [λ1, ..., λN ] and X = {x1, ...,xN} ⊆ Rd

satisfying the vanishing moment conditions

∑N
j=1 λjP (xj) = 0,

for all P ∈ πdm−1.

It is not possible to list all of the analogues and generalizations of positive definite

functions but some of the properties of the PD and CPD functions are listed below

(details can be found in [76]).

• If φ1, ..., φN are positive-semi definite and λj ≥ 0, then Φ :=
∑N

j=1 λjφj is also

positive-semi definite. For a positive definite φj if the corresponding λj is also

positive then Φ is also positive definite.

• A conditionally positive definite function of order m = 0 on Rd is positive definite

on Rd.

• If each φj is positive definite, then the limit Φ = lim
j→∞

φj.

• The product of two positive definite functions is positive definite.
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• If φ1, ..., φd are positive definite and integrable functions on R. Then the tensor

product function

Φ(x) = φ1(x1)...φ(xd), x = (x1, ..., xd)
T ∈ Rd

is also positive definite.

• A positive definite function is always conditionally positive define of any order.

Definition 2.9 (Fill distance) The fill distance corresponding to the data sites X in

Ω is defined as:

hX,Ω = sup
x∈Ω

min
xj∈X
‖ x− xj ‖2.

This is sometimes called the covering radius. The geometrical interpretation of fill

distance is the largest possible empty ball amongst the data sites. It is a measure of the

data distribution and can indicate how well the domain Ω is filled with the data in the

set X.

Definition 2.10 (Separation distance) The separation distance is defined as:

qX = 1
2
min
i 6=j
‖ xi − xj ‖2.

This is sometime called as packing radius. The geometrical interpretation of the sep-

aration distance is that no two balls of radius “qX” centered at each RBF centers will

overlap.

Definition 2.11 (Condition number) The condition number of a matrix A with re-

spect to any matrix norm ‖ . ‖ is defined as

κ(A) =‖ A ‖‖ A−1 ‖.
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The condition number of a matrix depends on the separation distance (see Definition

2.10), and provides information on the numerical stability of the interpolation process.

To do so we have to investigate both the maximum and the minimum eigenvalues. A

condition number is used to quantify the sensitivity to perturbations of a linear system,

such as Equation (2.3), and to estimate the accuracy of a computed solution. Using the

2-norm, the matrix condition number is

κ(A) =‖ A ‖2‖ A−1 ‖2= σmax

σmin
.

where σ are the singular values of A, in particular, when A is positive definite this ratio

becomes λmax

λmin
.

A well conditioned matrix will have a small condition number κ(A) ≈ 1, i.e., a sys-

tem of equations is considered to be well-conditioned if a small change in the coefficient

matrix or a small change in the right hand side results in a small change in the solution

vector. While an ill-conditioned matrix will have a large condition number and a small

change in the coefficient matrix or a small change in the right hand side results in a

large change in the solution vector.

2.3 Radial basis functions

Definition 2.12 A function Φ : Rd → R is said to be radial if there exist a univariate

function φ : [0,∞] → R such that Φ(x − xj) = φ(r), where r =‖ x − xj ‖ and ‖ . ‖ is

some norm on Rd (usually the Euclidean norm).

The definition can be explained as that for a finite set of distinct points Rd called the

centers, Φ at any point x ∈ Rd at certain distance from the centers is constant. This

shows that Φ is radially symmetric about the centers. The function φ can be called as

basic function whereas Φ can be called basis function. The reason is that one single

basic function generates all of the basis function which we have used in the expansion
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(2.1). The 2-norm invariance under all the Euclidean transformation has made the

radial function interpolants quite desirable in applications. However what makes radial

functions most useful for applications is the fact that the interpolation problem becomes

insensitive to the dimension d of the space in which the data sites lie. Instead of having to

deal with the a multivariate function Φ (whose complexity will increase with increasing

space dimension d) we can work with the same univariate function φ for all choices of d.

RBF interpolation methods use linear combination of translates of one function φ(r)

of a single real variable. Given a set of centers X in Rd, the RBF interpolant takes the

form

s(x) =
N∑
j=1

λjφ(‖ x− xj ‖2). (2.4)

The coefficients, λ, are chosen by enforcing the interpolation condition

s(xj) = f(xj),

at a set of nodes that typically coincides with the centers. Enforcing the interpolation

condition at N centers results in a N ×N linear system.

A λ = f ,

φ(‖ x1 − x1 ‖2) φ(‖ x1 − x2 ‖2) ... φ(‖ x1 − xN ‖2)

φ(‖ x2 − x1 ‖2) φ(‖ x2 − x2 ‖2) ... φ(‖ x2 − xN ‖2)

. . . .

. . . .

. . . .

φ(‖ xN − x1 ‖2) φ(‖ xN − x2 ‖2) ... φ(‖ xN − xN ‖2)





λ1

λ2

.

.

.

λN


=



f(x1)

f(x2)

.

.

.

f(xN)


.

The above linear system has to be solved for the coefficients λ. The matrix A is

called the interpolation matrix or the system matrix and consist of the functions serving

as the basis of the approximation space. To evaluate the interpolant at points yi for

i = 1, 2, ...,M using Equation (2.4), M ×N evaluation matrix H is formed with entries

hij = φ(‖ yi − xj ‖2), i = 1, ...M and j = 1, ...N .
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Then the interpolant is evaluated at the M points by the matrix multiplication

H λ = f .

2.4 RBF interpolation with polynomial reproduc-

tion

Sometimes the assumption on the form Equation (2.1), for solution to the scattered data

interpolation problem (see definition 2.1) is extended by adding certain polynomials to

the expansion, i.e., s(x) is now assumed to be of the form

s(x) =
N∑
j=1

λiφ(‖ x− xj ‖) + p(x), where x ∈ Rd and p ∈ πdm−1. (2.5)

Equation (2.5) can be written as

s(x) =
N∑
j=1

λjφ(||x− xj||) +
M∑
l=1

dlpl(x), (2.6)

where the polynomials p1, ..., pM form a basis for the M =

 d+m− 1

m− 1

 -dimensional

linear space πdm−1 of polynomials of total degree less than or equal to m−1 in d variables.

Enforcing the interpolation conditions s(xi) = f(xi), i = 1, ..., N , leads to a system

of N linear equations in N +M unknowns λj and dl, one usually adds the M additional

conditions to ensure a unique solution. Let us impose the interpolation conditions on

our interpolant s to get

N∑
j=1

λjφ(||xk − xj||) +
M∑
l=1

dlpl(xk) = f(xk), for 1 ≤ k ≤ N. (2.7)

Equation (2.7) is a linear system of N equations in N+M unknown variables in coef-

ficient vector λ = [λ1, ..., λN ]T of the major part and d = [d1, ..., dM ]T of the polynomial
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part of the interpolant. So we have M additional unknowns and the linear system is un-

der determined. To eliminate these additional degrees of freedom, we add the following

M constraint conditions:

N∑
k=1

λkpl(xk) = 0, for 1 ≤ l ≤M, (2.8)

where p ∈ πdm−1 and m is the order of the basis function φ. This can be explained in an

other way, that the rank of p was the dimension of the appropriate polynomial space.

This requires that the underlying data set have a πm−1(R) unisolvent subset. If the data

set fails to have such a subset then some nonzero polynomial of degree m− 1 or less will

vanish on the data which will make the polynomial reproduction impossible i.e., rank(p)

will fall below the dimension of πm−1(Rd).

Here the radial basis functions φ(||x− xj||) are translates of a conditionally positive

definite radial function φ : [0,∞)→ R of order m.

We have assumed the interpolant “s” to be a linear combination of the translates

φ(||x − xj||) of a conditionally positive definite radial function φ at centers xj plus a

polynomial procession term from the space πdm−1. The use of the additional polynomial

term is somewhat arbitrary in the sense that other set of M linearly independent func-

tions could be used. However, it is clear that addition of a polynomial of total degree at

most m− 1, guarantees the well posedness of system given in Equation (2.5). In other

words if the data come from a polynomial of total degree at the most m− 1, then they

are fitted exactly by our interpolant.

The classical choice for radial basis function φ along with their order m are shown

in Table(2.1).

2.5 Compactly supported radial basis functions

The compactly supported radial basis functions (CSRBFs) were recently developed in

[83, 85, 82]. The order of the CSRBFs can be taken as m = 0 in this case we do not need
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Table 2.1: Radial Basis Functions.

RadialBasisFunction ϕ(r) = Parameters Order m
Polyharmonic Splines rν ν > 0, ν /∈ 2N m ≥ [ν

2
]

Thin Plate Splines (TPS) r2k log(r) k ∈ N m ≥ k + 1

Gaussians e−(cr)2
c > 0 m ≥ 0

Multiquadrics(MQs) (1 + c2r2)
ν
2 ν > 0, ν /∈ 2N, c > 0 m ≥ [ν

2
]

Inverse Multiquadrics(IMQs) (1 + c2r2)
ν
2 v < 0, c > 0 m ≥ 0

to append the polynomial part as in Equation 2.5. The compactly supported RBFs can

be used for a fixed dimension d where as the RBFs listed in Table 2.1 can be used in

arbitrary d. The Wendland’s compactly supported RBFs are of the form

φd,k(r) =

 Pd,k r ∈ [0, 1]

0 r > 1

φd,k(r) : [0,∞]→ R are the positive definite radial functions with the compact support

normalized to the unit interval [0,1]. Where Pd,k is the univariate cut-off polynomial

(.)+ : R→ [0,∞) defined as

(x)+ =

 x x > 0

0 x ≤ 0

The degree of Pd,k is bd/2c+ 3k+ 1 where the symbol bc denotes the largest integer

less than or equal to x.

The use of locally supported basis function is of general importance in numerical

analysis. Compactly supported basis can be efficient for fast evaluation of the inter-

polant and lead to banded interpolation matrices. The compactly supported radial

basis functions are listed in Table 2.2.
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Table 2.2: Wendland’s Compactly Supported RBFs

Dimension d Radial Basis Function C2k

φ1,0 = (1− r)+ C0

d = 1 φ1,1 = (1− r)3
+(3r + 1) C2

φ1,2 = (1− r)5
+(8r2 + 5r + 1) C4

φ3,0 = (1− r)2
+ C0

d ≤ 3 φ3,1 = (1− r)4
+(4r + 1) C2

φ3,2 = (1− r)6
+(35r2 + 18r + 3) C4

φ3,3 = (1− r)8
+(32r3 + 25r2 + 8r + 1) C6

φ5,0 = (1− r)3
+ C0

d ≤ 5 φ5,1 = (1− r)5
+(5r + 1) C2

φ5,2 = (1− r)7
+(16r2 + 7r + 1) C4

2.6 Well-posedness of the radial basis interpolation

problem

Let us discuss the existence of a unique solution to the above interpolation problem. We

discuss it separately for m = 0 and m > 0.

Suppose m = 0, i.e., the basic function φ is of order 0. In other words φ is positive



2.6 Well-posedness of the radial basis interpolation problem 29

definite; e.g. Gaussian and some of the multiquadrics in Table 2.1. In this case we do

not need to add the polynomial term, and the interpolant s as given in Equation (2.4)

can be used:

s(x) =
N∑
j=1

λjφ(‖ x− xj ‖). (2.9)

In this case we do not need the additional conditions Equation (2.8). The interpolation

conditions s(xi) = f(xi) gives the following simpler system,

Aφ,Xλ = f(xi), (2.10)

where Aφ,X , λ and f(xi) have the same meaning. Since φ is positive definite, matrix

Aφ,X is guaranteed to be positive definite. In this case Equation (2.10) has a unique

solution. So the RBFs interpolation problem is well-posed for the case m = 0.

Now we turn to discuss the problem for m > 0. In other words φ is conditionally

positive definite of order m ≥ 1. In this case our interpolant s given by Equation (2.6)

must contain a nontrivial polynomial term, and we must add the M additional conditions

using Equation (2.8) to eliminate the M additional degrees of freedom. So we have to

search for the solution of the augmented problem given by Equation (2.7) using (2.8).

Before discussing the solution of Equation (2.7), we consider its corresponding ho-

mogenous system  Aφ,X pX

pTX O


 λ

d

 = 0,

where

Aφ,X = [φ(‖ xk − xj ‖)]1≤j,k≤N ∈ RN×N

pX = [pl(x)]1≤k≤N,1≤l≤M ∈ RN×M

O = Null matrix ∈ RM×M .
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which is equivalent to the following equations

Aφ,X · λ+ pX · d = 0, (2.11)

pTX · λ = 0. (2.12)

Multiplying Equation (2.11) with λT , we get

λTAφ,Xλ+ (pTX · λ)T · d = 0,

using Equation (2.12) gives

λTAφ,Xλ = 0. (2.13)

But we know that φ is conditionally positive definite of order m ≥ 1 and it is clear

from Definition 2.8 that Equation (2.13) together with condition given by Equation

(2.12) implies λ ≡ 0 and so Equation (2.11) becomes

pTX · d = 0,

which implies

d = 0, provided that PX is injective.

So the corresponding homogenous system has unique solution [λ,d]T = 0.

This guarantees the non singularity of the matrix

A =

 Aφ,X pX

pTX O

 ,

which implies the well-posedness of system given by Equation (2.6). pX will be injective if

and only if the zero polynomial is the only polynomial from the space πdm−1 that vanishes

on all of the data sites X = {x1, ...,xN}. Such a point set is called πdm−1-unisolvent (see

Definition 2.5). Hence injectivity of the matrix pX is guaranteed by imposing the mild
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condition of unisolvency of the data points which proves the non-singularity of the matrix

A.



Chapter 3

Meshless method of lines using

radial basis function method

A mesh can be described as a net created by connecting nodes in a predefined manner.

The synonyms can be grid, cells or elements. A meshfree method does not require a

predefined mesh and no mesh generation is required throughout the process of solving

the problem. The traditional methods such as finite element, finite volume, or finite

difference requires the generation of a mesh for the underlying problem i.e., the trian-

gulation of the region of interest. For problems involving steep gradients, sharp corners,

or moving boundaries requires more flexibility in some parts of the domain of interest.

Meshfree methods can be preferred over grid based method for such problems. They

can be taken as a response to the limitations of the mesh-based methods.

Meshfree methods are the topic of recent research in many areas of computational

science and approximation theory. The applications can be found in artificial intelli-

gence, computer graphics, image processing, optimization and the numerical solution

of (partial) differential equations. The original motivation for two of the most com-

mon basic meshfree approximation methods (radial basis functions and moving least

squares) came from applications in geodesy, geophysics, mapping and metrology Later,

the applications were found in many areas such as numerical solution of PDEs, arti-

32
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ficial intelligence, learning theory, neural networks, signal processing, sampling theory,

statistics, finance and optimization.

Radial basis function methods have become the primary tool for interpolating multi-

dimensional scattered data. The method has shown promising results for solving PDEs

in complex and irregular domains. RBF methods are not tied to a grid and in turn

belong to a category of methods called meshless methods. RBF methods succeed in

very general settings by composing a univariate function with the Euclidean norm which

turns a multi dimensional problem into one that is virtually one dimensional.

RBF methods enjoys numerous advantages for example, simple implementation,does

not require connectivity of nodes, insensitive of the dimension and spectral convergence

can be achieved. The spectral convergence depends on how we choose the basis function.

But in addition the the advantages mentioned above, RBF methods have some drawbacks

for example, finding optimal value of the shape parameter, ill-conditioning, solving a full

matrix (except for compactly supported RBFs) and choosing nodes.

3.1 Meshless method of lines using radial basis func-

tion

RBF methods are praised for their simplicity and ease of implementation in multivariate

scattered data approximation [12], and they are becoming a popular choice for the

numerical solution of the PDEs. In the last decade RBF meshless method has been

considered as the novel and prospective numerical method for solving PDEs [32, 74, 23,

51, 50]. The method was first introduced by Kansa [51, 50] for the numerical solution

of elliptic and parabolic PDEs. The radial basis function approach is used to solve

various problems in application including transport schemes on a sphere [29], Allen-

Cahn equation [23], and the MOL-RBF scheme for time dependent KdV equation [74].
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3.1.1 Elements of the method of lines (MOL)

The idea of the MOL is to replace the spatial(space boundary-value) derivatives in the

PDE with algebraic approximations [72]. Which in our case is radial basis functions.

After this discretization the spatial derivatives are no longer stated explicitly in terms

of the spatial independent variables. Thus, only the initial-value variable, typically time

in time dependent problems, remain. With only one independent variable we have a

system of ODEs that approximates the original PDE.

We will then integrate this system of ODEs in time by applying any integration

algorithm for the initial-value ODEs to compute an approximate numerical solution to

the PDE. The prominent feature of the MOL is the use of an existing, and generally well

established, numerical method for ODEs. Many of the numerical routines for ODEs can

be found in [72] and reference therein. The name method of lines is motivated by the

fact that graph of the approximated solution υ(x, t) is a set of vertical parallel lines in

x− υ(x, t) plane where the height of each line is υ(x, t).

3.1.2 Meshless method of lines using radial basis functions for

the generalized Burgers-Huxley equation

A large class of problems arising in physical science and engineering, are modeled by

nonlinear partial differential equations (NLPDEs). The solution of most of the NLPDEs

is still very difficult to obtain analytically and numerically. The search of more efficient

methods (analytical/numerical) for solving such problems is an active area of research.

Burgers-Huxely equation belongs to one of the most famous NLPDEs. The equation is

a relevant model to describe the interaction between diffusion, convection and reaction.

The generalized Burgers-Huxley equation was investigated by Satsuma [70] in 1987 is of

the form

ut + αuδux − uxx = βu(1− uδ)(uδ − γ), a ≤ x ≤ b, t ≥ 0, (3.1)
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with the initial condition

u0(x) = u(x, 0) =

(
γ

2
+
γ

2
tanh(ω1x)

) 1
δ

, (3.2)

and boundary conditions

u(x, t) =

(
γ

2
+
γ

2
tanh(ω1(x− ω2t))

) 1
δ

, x ∈ ∂Ω, t > 0. (3.3)

The exact solution of (3.1)-(3.3) is given by [81], i.e.,

u(x, t) =

(
γ

2
+
γ

2
tanh(ω1(x− ω2t))

) 1
δ

, a ≤ x ≤ b, t ≥ 0, (3.4)

where

ω1 =
−αδ + δ

√
α2 + 4β(1 + δ)

4(1 + δ)
γ,

ω2 =
αγ

1 + δ
−

(1 + δ − γ)(−α +
√
α2 + 4β(1 + δ)

2(1 + δ)
,

and α, β, γ, δ are constants such that α ≥ 0, β ≥ 0, δ > 0 and γ ∈ (0, 1).

In addition to the other nonlinear terms, equation (3.1) contains a convection term

uux and a dissipation term uxx.

The generalized Burgers-Fisher equation is given by

ut + αuδux − uxx = βu(1− uδ), a ≤ x ≤ b, t ≥ 0, (3.5)

with the initial condition,

u0(x) = u(x, 0) =

(
1

2
+

1

2
tanh(a1x)

) 1
δ

. (3.6)
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The boundary conditions are extracted from the exact solution of Equation (3.5) given

by

u(x, t) =

(
1

2
+

1

2
tanh(a1(x− a2t))

) 1
δ

, (3.7)

where ,

a1 =
−αδ

2(1 + δ)
,

and

a2 =
α

1 + δ

β(1 + δ)

α
.

Many researchers have established numerical methods for solving the generalized

Burgers-Huxley equation. When α = 0 and δ = 1 equation (3.1) becomes the Huxley

equation which describes nerve pulse propagation in nerve fibres and wall motion in

liquid crystals. For β = 0 equation (3.1) reduces to the famous Burgers equation which

is a relevant model in shock wave formulation for high Reynolds number. This behaviour

is due to the nonlinear advection term uux and the dissipation term uxx. Equation (3.5)

has applications in various fields of science and engineering such as chemical kinetics,

population dynamics and branching Brownian motion processes.

Most recently Jan [48] solved the generlized Burgers Huxley equation (3.1) by RBF

collocation using the multiquadrics in space, and finite difference approximation in time.

Batiha et al. [4] presented the variational iteration method (VIM), Adomain decompo-

sition method (ADM) for Burger’s-Huxley equation by Hashim et al.[41] and numer-

ical solution of generlized Burgers-Huxley equation using pseudospectral method and

Darvishi’s preconditioning by Javidi [49]. We present the solutions of Equation (3.1)

and Equation (3.5) using method of lines and radial basis function. The method, to our

knowledge, is new for solving the Burgers-Huxley equation. In our examples we solve

the problem for higher values of δ, i.e., δ = 2, 4, and 6.
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3.1.3 RBF interpolation

Given the data at N nodes xi ∈ R, where i = 1, 2, ..., N , the basic form of the RBF

approximation for the function u = u(x) is denoted by

u(x) =
N∑
i=1

λi φi = ΦT (x)λ, (3.8)

where Φ(x) = [φ1(x), ..., φN(x)]T and λ = [λ1, ..., λN ]T .

We will denote uN as the approximate solution to u. Let uN(xi) = u(xi) = ui at

N collocation points. Then

A λ = u, (3.9)

where u = [u1, ..., uN ]T and A is the interpolation matrix described in Section 2.3. By

RBF interpolation given in equation 3.8 and using equation 3.9 we get,

u(x, t) ' uN(x, t) =
N∑
i=1

λi φi = ΦT (x) A−1 u, (3.10)

where

u = [u1(t), ..., uN(t)]T .

To replace the derivative terms in equation 3.1 i.e., ux and uxx, we can use equation

3.8 to obtain derivative of ux at centers x1, · · · ,xN by differentiating the basis function

d

dx
(u(x)) =

N∑
i=1

λi
d

dx
φ(|x− xi|) = Axλ, (3.11)

where (Ax)ij = d
dx

[φ(|x−xj|)]x=xi . For instance, derivative term ux in equation 3.10 can

be replaced with the discretized derivative matrix
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d
dx
u(x1)

.

.

.

d
dx
u(xN)


=


Ax





λ1

.

.

.

λN


=


Ax




A−1





u1

.

.

.

uN


.

Let us denote

Dx = AxA
−1. (3.12)

Higher order derivatives can obtained in a similar way by differentiating equation 3.11.

We will impose the boundary conditions i.e., at u(a,t) and u(b,t) can be extracted

from (3.7). One way of doing this to make use of (N −1)× (N −1) matrix Dx, obtained

by taking away the first and last rows and columns i.e.,



d
dx
u(x0)

d
dx
u(x1)

.

.

.

d
dx
u(xN−1)

d
dx
u(xN)



=



Dx





u0

u1

.

.

.

uN

uN+1



.

By applying equation 3.10 on 3.1, and then collocating on the nodes a = x1 < x2 <

, ..., < xN−1 < xN = b in [a,b] we obtain,

dui
dt

+ αuδi (Dx(xi)u)− (Dxx(xi)u = βui(1− uδi )(uδi − γ), for i = 1, 2, ..., N, (3.13)

here ui stands for ui(t).
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The MOL-RBF discretized form of (3.1) can be written in terms of the column vectors

U = [u1, u2, ..., uN ]T , and discretized differentiation matrices Dx and Dxx as,

dU

dt
+ αUδ > (DxU)− (DxxU) = βU > (1−Uδ) > (Uδ − γ). (3.14)

The notation > is used for the component by component multiplication of the two

vectors which is the famous Hadamard product. Equation (3.14) can be written as

dU

dt
= Q(U), (3.15)

where,

Q(U) = −αUδ > (DxU) +DxxU) + βU > (1−Uδ) > (Uδ − γ), (3.16)

subject to the corresponding initial condition given in equation 3.6 as

U(t0) = [u0
1(x1), u0

2(x2), ..., u0
N(xN)]T , (3.17)

and the boundary conditions extracted from equation 3.7 as u(a, t) = u1(t) and u(b, t) =

uN(t).

We have the following convergence theorems for the infinitely smooth RBFs [83].

Theorem 3.1 Let Φ be one of the Gaussian or (inverse) multiquadrics. Suppose that

Φ is conditionally positive of order m. Suppose further that Ω ⊆ Rd is bounded and

satisfies an interior cone condition. Denote the radial basis function interpolant to f ∈

NΦ(Ω) based on Φ and X = {x1, ...,xN} by sf,X. Fix α ∈ Nd
0. For every l ∈ N with

l ≥ max{|α|,m− 1} there exists constants h0(l), Cl > 0 such that

| Dαf(x)−Dαsf,x |≤ Clh
l−|α|
X,Ω |f |NΦ(Ω)

for all x ∈ Ω, provided that hX,Ω ≤ h0(l).
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The convergence theorem for the polyharmonic splines is given as

Theorem 3.2 Suppose that Ω ⊆ Rd is bounded and satisfies an interior cone condition.

Let Φ(x) = (−1)k+1 ‖ x ‖2k
2 log(‖ x ‖2). Denote the interpolant of a function f ∈ NΦ(Ω)

based on the basis function and the set of centers X = {x1, ...,xN} ⊆ Ω by sf,X. Then

there exits constants h0, C > 0 such that

| Dαf(x)−Dαsf,x |≤ Clh
l−|α|
X,Ω |f |NΦ(Ω)

, for all x ∈ Ω and all α with |α| ≤ k − 1, provided that hX,Ω ≤ h0.

3.2 Classical fourth-order Runge-Kutta method

Space discretization of (3.1) using MQ gives system of equations given by (3.16), next

stage is to integrate the system of ODEs in time, using the classical fourth order explicit

Runge-Kutta (RK4) scheme. The is done in a method of lines fashion. The popular

RK4 method to advance the approximate solution in time is

Un+1 = Un +
4t(K1 + 2K2 + 2K3 +K4)

6
with (3.18)

K1 = Q(Un),

K2 = Q

(
Un +

4t
2
K1

)
,

K3 = Q

(
Un +

4t
2
K2

)
,

K4 = Q(Un +4tK3).

Numerical schemes using explicit methods for time integration of the ODEs requires

to hold the CFL condition. Courant, Friedrichs and Lewy in 1928 [19] formulated

a necessary condition (CFL condition) for solving partial differential equations using

difference methods. They formulated the CFL condition for the convergence of the

difference scheme in terms of the domain of dependence. Runge-Kutta methods, belong
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to an important family of implicit and explicit iterative methods for integration of ODEs

in time and we can hope for stable result if the CFL condition is satisfied. The CFL

restriction in 1-D is defined as

∆t

(∆x)α
≤ C,

where ∆t is time step and ∆x is spatial spacing.

On other way to interpret this is, it is the maximum acceptable number, a time

integrator can use. The Courant number is a measure of how much information pass

through ∆x for each ∆t. A numerical scheme violating the CFL restriction, means that

the time integrator is not interpreting what is physically happening and information

propagating through more than one grid cell each time step. This will make the solution

unstable.

The investigation of eigenvalues stability for the MOL-RBF is in its early stages, and

CFL restriction for MOL-RBF is an open question. However the choice of ∆t is due to

rule of thumb for stability.

Rule of Thumb

The method of lines is stable if the eigenvalues of the (linearized) spatial discretization

operator, scaled by ∆t, lie in the stability region of the numerical ODE method [77].

Stability region of the ODE method is the subset of the complex plane consisting

those eigenvalues (λ) in C, for which the numerical approximation posses bounded solu-

tion when applied to the scalar linear model problem ut = λu, multiplied with ∆t where

∆t is time stepping. It can be seen in Figure 3.1 that the stability region of RK4 is the

largest amongst RK4 of order 1,2,and 3 respectively.

There are other ODE integrators i.e., implicit trapezoidal rule which is second-order

accurate. Details on ODE integrators can be found in references on numerical methods

for ODEs [15]. We choose explicit four stage RK4 for integration of ODEs due to its

larger stability region. For most of the hyperbolic PDEs the eigenvalues lies on the

imaginary axis. The absolute stability region of RK4 intersects with the imaginary

axis (See Figure 3.1) and this property makes it a favourable choice for solving time-



3.2 Classical fourth-order Runge-Kutta method 42

dependent hyperbolic PDEs.

Figure 3.1: Stability region for Runge-Kutta method of order 1, 2, 3, 4, the larger order is
the larger the stability region. Stability region of RK4 has an intersection with
imaginary axis.

For the stable time discretization, RK4 scheme requires the discretized PDE to have

non-positive real parts of all its eigenvalues. The stable spectrum will fit in the stability

region of RK4 scheme, if scaled by an appropriate time step ∆t. A numerical study of

accuracy and stability of RBF collocation methods for hyperbolic PDEs is discussed in

[69].

In literature, for Runge-Kutta methods satisfying the special stability requirements

such as total variation bounded (TVB), total variation diminishing (TVD), and strong

stability preserving schemes (SSP), are discussed in a great detail. For solving nonlinear

time-dependent PDEs where the solution exhibits discontinuities, much attention has

been paid to the numerical schemes having the property of being total variation bounded.

A much in-depth details can be found in [35, 27, 70, 75] and the reference therein.

For the total variation (TV) defined as

TV (u) =
∑
j

|uj+1 − uj|,
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the TVB schemes satisfies

TV (un) ≤ B,

for some fixed B > 0, depending only on TV(u0) n ≥ 0, and for ∆t such that n∆t ≤ T

will be known as TVB in 0 ≤ t ≤ T . In our examples we are using explicit RK4 method

for integrating the ODEs in time which possess the TVB property [44].

3.3 Numerical experiments

In this section the meshless RBF-MOL based approximate results are given for (3.1)

and (3.5). A comparison of absolute errors of the RBF-MOL with variational iteration

method (VIM) [4], meshless RBF collocation method [48], and the adomain decomposi-

tion method (ADM) [41] is presented.

All the computational work is performed with the nodal distance dx = 0.1 and time

step dt = 0.001 otherwise mentioned explicitly. The computational domain is considered

as [0,1] for the sake of comparison with ADM, VIM and RBF collocation method. To

measure the difference between the exact solution and numerical solution the absolute

error (A.E) is calculated. In our numerical experiments we have used multiquadrics as

the radial basis function. Excellent agreement is found between the exact solution and

the the results obtained by the MOL-RBF method.

Example 1. We consider the generalized Burgers-Huxley Equation (3.1) approx-

imated with MOL-RBF and in Table (3.1) a comparison is made with Variational it-

eration method (VIM) [4] using the appropriate initial and boundary conditions. The

parameters, γ = 0.01, α = β = 1, δ = 2 and δ = 4, are taken to be the same as [4] for

the sake of comparison. For γ = 0.01, α = β = 1, δ = 6 we compared the computations

with Adomain decomposotion method (ADM) [41]. The kink-type solution obtained by

MQ-RBF in comparison with the exact solution of Equation (3.5) is presented in Figure

(3.1) where the parameters α = β = 1, γ = 2, δ = 1, c = 2 and dt = 0.001 at time
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t = 10.

Table 3.1: MQ α = β = 1, γ = 0.01, c=1.4

x t

0.1 0.2 0.3 0.4 0.5

δ = 2 RBF-MOL

0.1 1.47E-06 1.25E-05 1.30E-05 1.32E-05 1.32E-05

0.3 3.11E-06 9.93E-06 1.15E-05 1.20E-05 1.22E-05

0.5 3.37E-06 1.140E-05 1.20E-05 1.21E-05 1.22E-05

δ = 2 VIM [4]

0.1 5.51E-05 1.10E-04 1.65E-04 2.20E-04 2.75E-04

0.3 5.51E-05 1.10E-04 1.65E-04 2.20E-04 2.75E-04

0.5 5.51E-05 1.10E-04 1.65E-04 2.20E-04 2.75E-04

δ = 4 RBF-MOL

0.1 4.52E-05 5.10E-05 5.30E-05 5.37E-05 5.39E-05

0.3 4.19E-05 5.70E-05 6.25E-05 6.44E-05 6.49E-05

0.5 2.92E-05 4.79E-05 5.47E-05 5.70E-05 5.77E-05

δ = 4 VIM [4]

0.1 2.17E-04 4.36E-04 6.53E-04 8.71E-04 1.09E-04

0.3 2.17E-04 4.35E-04 6.53E-04 8.70E-04 1.08E-04

0.5 2.17E-04 4.34E-04 6.52E-04 8.69E-04 1.08E-04

δ = 6 RBF-MOL

0.1 3.39-05 4.78E-05 5.09E-05 5.18E-05 8.75E-05

0.3 4.80E-05 7.05E-05 7.86E-05 8.12E-05 1.09E-04

0.5 5.22E-05 8.05E-05 9.06E-05 9.38E-05 9.97E-05

δ = 6 ADM [41]

0.1 3.48E-04 6.96E-04 1.04E-03 1.39E-03 1.74E-03

0.3 3.47E-04 6.95E-04 1.04E-03 1.39E-03 1.74E-3

0.5 3.47E-04 6.94E-04 1.04E-03 1.38E-03 1.73E-03

Example 2. The example illustrate the approximate solution of the generalized
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Burger’s-Fisher Equation (3.5). The results are given in Table (3.2) and (3.3) for α =

1, β = 0, and for δ = 1, 2 and 3, respectively. The comparison is made with the method

based on collocation by RBFs [48].

Table 3.2: MQ α = 1, β = 0, c = 1.02

x t

0.5 1 2 5 50

δ = 1 RBF-MOL

0.1 6.79E-10 2.22E-08 7.08E-08 2.24E-07 5.67E-07

0.5 1.13E-08 3.92E-09 1.12E-08 5.71E-08 1.23E-07

0.9 5.42E-07 5.70E-07 6.23E-07 7.41E-07 7.120E-07

δ = 1 RBF [48]

0.1 1.0E-06 1.0E-06 1.0E-06 4.0E-06 6.0E-06

0.5 5.0E-06 3.0E-06 3.0E-06 9.0E-06 2.0E-06

0.9 3.0E-06 3.0E-06 3.0E-06 3.0E-06 3.0E-06

δ = 2 RBF-MOL

0.1 1.64E-07 1.83E-07 2.20E-07 3.21E-07 5.67E-07

0.5 5.05E-08 5.73E-08 6.82E-08 9.55E-08 1.23E-07

0.9 7.01E-07 7.17E-07 7.46E-07 8.04E-07 7.12E-07

δ = 2 [RBF [48]]

0.1 1.0E-06 0.0 2.0E-06 4.0E-06 3.0E-06

0.5 2.0E-06 1.0E-06 5.0E-06 1.1E-06 1.4E-06

0.9 0.0 2.0E-06 1.0E-06 3.0E-06 5.0E-06
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Table 3.3: MQ α = 1,β = 0, δ = 3, c = 1.02, dt = 0.0001

x t A.E, RBF[48] A.E, MOL-RBF

0.1 0.0005 6.0E-06 3.84E-08
0.0010 1.9E-05 7.82E-08

0.5 0.0005 5.0E-06 2.85E-09
0.0010 1.6E-05 5.69E-09

0.9 0.0005 4.0E-06 9.77E-08
0.0010 1.5E-05 1.94E-07

Figure 3.2: Solitary wave solution for Example 1, Parameters: α = β = 1, γ = 2, δ = 1

3.4 Allen-Cahn equation in two-dimensions

The Allen-Cahn equation in 2-D is with the Dirichlet boundary conditions is defined as:

ut −∆u+
1

ε2
u(u2 − 1) = 0 in ΩT := Ω× (0, T ), (3.19)

u = 0 in ∂ΩT := ∂Ω× (0, T ),

u = u0 in Ω× {0}

where Ω ⊂ RN (N=2,3), T > 0 is a fixed constant, ∆ is the Laplacian operator, ε is the

interaction length.

Radial basis function methods makes the higher dimensional problems virtually one

dimensional hence the MOL-RBF interpolation described in Subsection 3.1.3 can be
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extended for Ω ⊂ R2. The differentiation matrices for the Laplacian operator can be

obtained in the simliar way as

(Axx)ij =
d2

dx2
[φ(‖ x− xj ‖)]x=xi .

(Ayy)ij =
d2

dy2
[φ(‖ y − yj ‖)]y=yi .

Analogous to equation 3.12 Dxx and Dyy will be of the form

Dxx = AxxA
−1,

and

Dyy = AyyA
−1,

respectively. The MOL-RBF discretized form of equation 3.19 can be written in the

form

dui
dt

= Dxxu + Dyyu−
1

ε2
ui(u

2
i − 1), for i = 1, ..., N, (3.20)

here ui stands for ui(t). The above system of ODEs will be integrated in time using

explicit Runge-Kutta scheme of order four.

Example: For 3.19 we will use Ω = [−1, 1]2 ⊂ R2 as the computational domain

with the initial condition

u0(x, y) =


tanh(3

ε
((x− 0.5)2 + y2 − (0.39)2)) if x > 0.14,

tanh(3
ε
(y2 − (0.15)2)) if − 0.3 ≤ x ≤ 0.14,

tanh(3
ε
((x+ 0.5)2 + y2 − (0.25)2)) if x < −0.3.

where tanh = ex−e−x
ex+e−x

and ε = 0.05. We will use N = 41 i.e., a total number of 1681

points. The time stepping is ∆t = 0.0001 with a final time Tf = 0.05. MQ-RBF will be

used for the global approximations with shape parameter c = 10.
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Figure 3.3: RBF-MOL solution for the Allen-Cahn equation using uniform distribution of
nodes at t = 0.01.

Figure 3.4: Solution at t = 0.05.

3.4.1 Conclusions

A radial basis function method, combining method of lines has been proposed to solve

the generalized Burgers Huxley equation. We can see from Table (3.1) that our method

is in good comparison with VIM [4] and ADM [41]. For the problem considered in

Example 2, Table (3.2) and (3.3) are comparing the results obtained by RBF-MOL and

RBF collocation method [48]. The results give us confidence to extend the method for

more difficult 1-D problems, with an adaptive selection of nodes in space. In Section

(3.4) we propose the RBL-MOL for the Allen-Cahn equation in 2-D. We aim in the

extension of the method with adaptive selection of nodes in 2-D. Radial basis function

belongs to the family of meshless methods so the method for 2-D Allen-Cahn equation
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will remain essentially the same as for 1-D (See Subsection 3.1.2).

In the next chapter we will discuss the KdV equation and the difficulty for numerical

methods to produce accurate results for this challenging PDE.



Chapter 4

Korteweg de Vries Equation

The Korteweg-de Vries equation belong to hyperbolic class of PDEs i.e., the linearization

of this equation is a hyperbolic PDE. In general hyperbolic PDEs are considered to be

a challenging task for numerical methods. In this chapter we will discuss this equation

in detail and the challenges a numerical method may face. In next chapter we will use

this PDE as a model problem for our adaptive algorithm.

4.1 Korteweg-de Vries equation and theory of soli-

tons

The discovery of Korteweg-de Vries equation (1895) dated back to the discovery of

soiltary waves (1834). Solitary waves were observed by a Scottish engineer John Scott

Russell in 1834 in Russell’s own words [66],

“I was observing the motion of a boat which was rapidly drawn along a narrow channel

by a pair of horses, when the boat suddenly stopped not so the mass of water in the

channel which it had put in motion; it accumulated round the prow of the vessel in a state

of violent agitation, then suddenly leaving it behind, rolled forward with great velocity,

assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap

of water, which continued its course along the channel apparently without change of form

or diminution of speed. I followed it on horseback, and overtook it still rolling on at a

50
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rate of some eight or nine miles an hour, preserving its original figure some thirty feet

long and a foot to a foot and a half in height. Its height gradually diminished, and after a

chase of one or two miles I lost it in the windings of the channel. Such, in the month of

August 1834, was my first chance interview with that singular and beautiful phenomenon

which I have called the Wave of Translation”.

Despite the fact that Scott Russell’s experimental observation was of fundamental

importance it was not accepted by the science community, until Boussinesq in 1871

found a PDE with a solitary wave solution. In 1895 Diederik Korteweg and his doctoral

student Gustav de Vries derived the equation, named as Korteweg-de Vries equation

(KdV) [52]. The KdV equation was initially derived for the unidirectional propagation

of small amplitude a, long wavelength λ in water of relatively shallow depth i.e., h� λ

Figure 4.1 explains the length scales used in the derivation of shallow water waves

where λ is the wave length which is the measure of the spatial period of the wave, a is

the amplitude which measure of the height of the wave i.e., the distance between the

uninterrupted water to the peak of the wave and h is the depth of the water measured

from the flat bottom of the water up to a quite free surface.

Figure 4.1: Periodic wave on the surface of water.

Korteweg and de Vries showed that this phenomenon could be described approxi-

mately by a nonlinear partial differential equation.

The conventional, non-dimensional version of the third-order nonlinear KdV equation
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is

ut + εuux + µuxxx = 0, (4.1)

where u represents height from the average water surface and x is the coordinate moving

with the velocity of a linearized wave with u → 0 as |x| → ∞, x is a boundary-value

(spatial) independent variable, t is an initial-value independent variable, and ε, µ are

real constants.

The term εuux is the nonlinear term which makes wave steep and the term µuxxx

is the dispersion term describes the spreading of the wave. The KdV equation is a

nonlinear and dispersive wave equation i.e., waves of different wave number propagates

at different velocities which is the characteristic of a dispersive wave. The nonlinear

steepening can be balanced by dispersion effect. In the absence of dispersion term the

equation produces the unique solution only for a finite time. The term ut is the time

evolution of propagation of unidirectional wave.

We can observe the linear dispersive relation of the equation by considering the

simplest dispersive wave equation

ut + ux + uxxx = 0. (4.2)

The dispersion relation is

ω = λ(1− λ2), (4.3)

which can be obtained by substituting

u(x, t) = ei(λx−ωt), (4.4)

into (4.2), where λ is the wave number, ω is the frequency, ω is a function of λ which

means that the phase velocity depends on the wave number. From (4.3) we can see that

λx− ωt = λ{x− (1− λ2)t},
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Hence the solution (4.4), with condition (4.3) describes a wave which travel at the

velocity

m =
ω

λ
= 1− λ2, (4.5)

where m in (4.5)is called the phase velocity which by 4.5 describes that different com-

ponents are traveling at different velocities which will spread or disperse the profile of

the solution.

The balance of dispersion and nonlinearity makes a stationary waveform called a

solitary wave which is a wave with infinite support [22]. The solitary wave propagates

with uniform velocity without changing its shape and is consist of a single symmetrical

hump. Solitary wave which is the phenomenon discovered by Scott Russell, first arose

in connection with water waves it was later realized that it is a model equation which

balance the nonlinearity and dispersion. The equation can be used to study nonlinear

waves with an effect of dispersion in any medium.

The heart of the observations about the KdV was the question that what happens

when two “great waves of translation” runs into each other ?. This question was not

answered by Russell and the observation was hidden in his report [66]. The phenomenon

was first observed by Zabusky and Kruskal [87] while studying the continuum approxi-

mation to the nonlinear discrete mass string of Fermi-Pasta-Ulam. They observed that

initially a sinusoidal profile would decompose into a series of interacting pulses which

had the shape of solitary wave i.e., they considered

ut + uux + δ2uxxx = 0 (4.6)

with periodic boundary conditions

u(x, 0) = cos πx, 0 ≤ x ≤ 2,

and u, ux, uxxx are periodic on [0,2] for all t, they choose δ = 0.0022. The celebrated

observation was that these nonlinear pulses can interact strongly and then continue
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thereafter with almost no effect of interaction at all. One other way of saying this is,

• A localized wave propagates without change of its properties i.e., shape and veloc-

ity.

• Localized waves are stable against mutual collisions and retain their identities.

Zabusky and Kruskal [87] coined the name soliton for such waves. The usual way

to refer the single-soliton solution is as a solitary wave, but when more than one of

them appear in a solution they are called solitons. The KdV equation has become the

streamline research since early 1960’s [87, 26]. The discovery by Zubusky and Kruskal has

led, in turn to a diverse area of research since many physical, mechanical and biological

phenomena can be described using the theory of solitons. This makes the KdV equation

and other equations that admits the solitary wave and soliton solution, an intense area

of research [28, 64]. A detailed survey of results is presented by Miura [60].

4.1.1 Challenges and known numerical methods for solving KdV

equation

The approximate solutions to the KdV equation have been obtained by well known

numerical methods, like finite difference, finite elements and meshfree radial basis func-

tions, as discussed. Miura [60] have presented a survey of results for this equation. The

explicit schemes for the KdV equation suffers from stability issues and we have to keep

the time step very small. For instance, the RBF-MOL scheme proposed in Chapter 3 for

the KdV equation [74] is very sensitive with regard to the time stepping and becomes

unstable with a considerably small increment in time stepping. Figure 4.2 is showing

this observation
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Figure 4.2: Solution of KdV equation using uniform distribution of nodes, becomes unstable
with a very small increment in ∆ Left: ∆t = 1.2953 × 10−3, Right: ∆t =
1.2956× 10−3

Using radial basis function where the basis function contains a the shape parameter

finding the CFL restriction is a difficult task and the reason is two fold, one is the non-

linearity present in the equation, second varying the shape parameter. We numerically

observed the CFL condition for MOL-RBF [74] although not discussed in the given ar-

ticle. The KdV equation is third order is space so for ∆t
(∆)α

≤ C we expected α = 3

but numerical experiments showed that α ≈ 3.2 which varies if we change the shape

parameter. This issue requires a deep understanding while solving such problems using

radial basis function interpolation.

On the basis of our experiments, we also observed convergence of the MOL-RBF for

the KdV equation using equally spaced grid points. In this experiments we fixed shape

parameter c and time step ∆t for different ∆x in space. It is evident from Figure 4.3

that the method is almost exponential in space.
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Figure 4.3: The plot of convergence for the MOL-RBF in spatial variable for KdV equation
using ∆t = 0.01, c = 0.65 at time t = 0.5

We observed that the increasing, the number of grid points, is making the system

severely ill-conditioned i.e., 1010 and requires some preconditioning.

Implicit schemes can enjoy a greater numerical stability but they are expensive in

terms of computations i.e., they require to solve the system of algebraic equations at

each step. For the stiff ODEs implicit methods can be preferred over explicit methods

as they do not have a restrictive absolute stability requirement. Another observation

about numerical methods for this equation is that the numerical scheme has to be

conservative in nature with long time stable results. For instance, leapfrog explicit

scheme produce correct results for a while but at a later stage blows up. Numerical

schemes for the KdV equation should be carefully designed such that they remains

stable for long time integration and conservative in nature. An accurate numerical

scheme should genuinely represent the amplitude of the true solution for long time

integration. A numerical method with damping properties in long time integration will

produce inaccurate solution.

Several methods have been proposed for numerical solution of the KdV equation.

For instance,

• Zabusky and Kruskal [87] and Vliegenthart [79] have used the finite difference

explicit scheme;
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• Greig and Morris [36] have derived the Hopscotch algorithm based on implicit

finite difference scheme;

• Winther [84] and Sanz-Serna and Christie [67] have used the finite element method;

• Shen [73] used spectral method and Cheng et al. [18] have used the discontinuous

Galerkin method;

• Shen [74] has combined meshfree radial basis functions with method of lines;

Meshfree methods are considered to be a viable choice for solving PDEs. In the

last decade radial basis function has been considered as a novel method for solving

PDEs. Recently in [74] KdV equation has been solved by combining RBFs with the

method of lines on a uniform distribution of nodes. However, solving the problem with

adaptive radial basis function interpolation, to our knowledge, is new. Aadaptive radial

basis function interpolation, has drawn attention of many researchers for solving the

PDEs exhibiting high degrees of localization in space/time. Our method have used

the adaptive distribution of nodes, where more nodes have been flagged in the regions

of high activity and coarsened otherwise. Adaptive in comparison with non-adaptive

method, solved the problem with as less as possible, numbers of nodes with the same

accuracy. Our numerical scheme represents the amplitude of the true solution for long

time integrations and is also conservative i.e., non-dissipate. We have also presented the

numerical experiments for the interaction of solitons solution of the KdV equation.

4.1.2 Why choosing the KdV equation for adaptive algorithm?

The study of nonlinear Partial differential equations arising in physical applications

is a growing research area. For many such equations questions regarding existence,

uniqueness and stability of the solution are still unanswered. The KdV equation with the

dispersion present in the equation is a challenging problem for numerical methods. We

will now summarize our discussion for choosing this particular problem from hyperbolic

class of nonlinear PDEs.
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A very wide class of non-linear dispersive systems can be described by this equation

or by one of its modified form. There are many positive reasons to make the present

study, of interest, to summarize the discussion that it is a model nonlinear hyperbolic

equation with smooth solutions for all times. The PDE is nondissipative and it is

of dispersive nature as discussed in Section 4.1. The KdV equation is well know to

satisfy a number of conservation laws in [61]. For instance, the conservation of mass

I1(u) =
∫∞
−∞(u)dx = constant and conservation of energy I1(u) =

∫∞
−∞(u)2dx = constant

and are invariant with time.

The KdV equation for µ � 1 is somehow close to burgers equation its dispersion

limit. Burger’s equation often develops solutions with shock discontinuities whereas the

solution of KdV equation always remains smooth Many recent schemes appeared in the

literature are fully implicit, on the other hand explicit and semi-explicit schemes and are

too limited. The model equation is a nonlinear PDE with an exact solution that can be

used to asses the accuracy of a numerical method. The PDE admits a soliton solution

which is an intense area of research and have applications in many areas of physics,

engineering, and biological sciences. Some nonlinear systems have solitary waves but

not solitons, whereas the KdV is from one of the models having solitary waves which

are solitons.

In the next chapter we will present the adaptive radial basis function method for the

celebrated KdV equation.



Chapter 5

Adaptive Radial Basis Function

Method

The essence of most of the adaptive methods for time-dependent PDEs is a cyclic proce-

dure [23]. For instance, solve→ error indicator→ refine/coarse, and the cycle terminate

when a stopping criterion is satisfied. In this thesis we have developed an adaptive RBF

method which follows this outline.

The procedure solve in the time-dependent sense means that the solutions to the

PDEs are obtained by marching in time using any explicit/implicit ODE solver. In

our case this is done by combining MOL and RBFs. Once the approximate solutions

are obtained the information is then passed to the error indicator which gathers the

information about the local approximation quality of the the interpolation around x ∈ X.

The local residual is the criteria for mesh refinement or coarsening. The decision is then

passed to the refine/coarse stage. The refinement strategy for 1-D is double the number

of points however 2-D refinement requires the construction of Voronoi points. We will

now explain relevant feature of RBF interpolation, with the design of adaptive rules i.e.,

refining and coarsening strategy in the following sections.

The flow chart for the adaptive RBF interpolation is,

59
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Figure 5.1: Adaptive flow chart, this cyclic process will be called at every time level for
time-dependent PDEs.

The above is a cyclic process until we reach to a stopping criterion.

5.1 Adaptive interpolation

5.1.1 Solve

The adaptive interpolation is simple and straight forward to implement. Our adaptive

method for time dependent PDEs, will be discretized in space by RBFs in a method

of lines fashion. For all our experiments we have used MQ-RBF. The method of lines

using RBFs is discussed in Chapter 3, where we explained MOL-RBF for solving the

generalized Burgers-Huxely equation.

Solve; in the adaptive interpolation we advance the solution of the PDE on adaptively

selected nodes using ODE integrators. By space discretization using MQ-RBF in a

method of lines scheme, we get a system of ODEs to advance in time for the solution

of underlying PDE. The choice of the ODE integrator is a flexible feature i.e., we can

use the standard explicit/implicit ODE solvers to integrate our solution in time. In our

numerical experiments for solving KdV equation and Allen-Cahn equation, we have used

explicit fourth-order RK4 ODE integrator (see Section 3.3). For the Burgers equation,



5.1 Adaptive interpolation 61

we have used MATLAB built-in ode15s ODE solver. The solver is based on backward

differentiation formula (BDF) which belongs to a family of implicit methods for solving

ODEs.

The RBFs can be globally supported, infinitely differentiable and contains a free

parameter. RBFs with such properties posses interpolation with spectral accuracy [13,

17] when the solution is smooth.

5.1.2 Adapting the shape parameter

It has been observed in [23] that adapting the shape parameter is crucial for adapting

the profile of the solution. The shape parameter affects the accuracy and the condi-

tioning of the interpolation matrix. Numerical experiments shows that adjustment of

shape parameters with the number of centers can produce invertible well conditioned

interpolation matrix in finite precision arithmetic. The adjustment of shape parameters

means that every center will have its own shape parameter and the strategy is based on

spacing to its nearest centers.

In the literature many researchers have attempted to find the optimal value of the

shape parameter. The optimal value of the shape parameter means that it can produce

the most accurate interpolant. In our numerical experiments we are adapting the shape

parameter as a function of spacing to its nearest neighbours which has shown promising

results in our numerical examples.

The following algorithm can be used to adapt the shape parameters as per center

[23].



5.1 Adaptive interpolation 62

ALGORITHM. (Adapting the shape parameters)

INPUT: Set of centers.

1. Let dx be the differences between centers.

2. Obtain two arrays i.e., [Inf, 1./dx] and [1./dx,Inf].

3. Choose the minimum i.e., c = min([Inf, 1./dx], [1./dx,Inf]).

OUTPUT: c the array of adaptively adjusted shape parameters for each center.

To prevent the growth of the condition number κ(A) we need to raise the lower bound

of the minimum eigenvalue λmin. Due to the Gershgorin’s theorem λmax is bounded for

the quasi-uniformly spaced data. However λmin, as a function of data sites, or their

separation distance, decays much faster. The separation distance is a natural choice

compared to the fill distance, for lower bounds of the eigenvalues. The reason is that

a point could have a big fill distance but for a badly conditioned interpolation process,

only two of the points needs to be very close.

The lower bound for the generalized multiquadrics φ(x, c) = (1 + (‖ cx ‖)2)β given in

[83]

λmin ≥ C(d, β, c)qβ−
d
2

+ 1
2 e

−2Md
qc ,

where β ∈ R \ N0 , d is the dimension, C(s, β, c) and Md are some constants, q is the

separation distance. The specialized case for the above usingβ = 1/2, d = 1 would take

the form λmin ≥ C(1, 1/2, c)q
1
2 e

−2M1
qc .

The λmin for the thin plate splines φ(x) = (−1)β+1(‖ x ‖)2β log ‖ x ‖ is defined as,

λmin ≥ Cdcβ(2Md)
−d−2βq2β,

where Cd, cβ, are known constants, d is the dimension and β ∈ N. The specialized case

for the above using β = 1 and d = 2 would take the form λmin ≥ C2c1(2M2)−4q2

The discussion on the lower bounds of other radial basis functions can be found

in [82, 25]. To raise the lower bound of λmin we are using center dependent shape
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parameters and the strategy is quite straight forward, i.e., the shape parameter for

each center is selected on its distance to its nearest neighbours. In case of using variable

shape parameter the theoretical analysis of the RBF methods is quite complex. However,

Bozzini et al., [10] have provided sufficient conditions for the non-singularity of the RBF

interpolation matrix.

5.1.3 Error indicator

Development of an error estimator/indicator is an active area of research in finite ele-

ments [34]. Solving PDEs with adaptive approach relies on the error indicator which

indicates the region of high variation [23, 45]. This information can be used to place

finer grids in such regions. We have used a simple yet effective error indicator in our

experiments i.e., the pointwise error |u(x)−s(x)| between a sufficiently smooth function

u and polyharmonic spline interpolant satisfying u|N = s|N in a local neighbourhood

N around x. In the next section we will discuss the reconstruction s|N.

Reconstruction by polyharmonic splines

Polyharmonic splines were first established by Duchon [24] in 1977, where he extended

the earlier work of Atteia [3] to higher dimensions. The polyharmonic splines were

the first radial basic function interpolants to be actively researched in a theoretical

context. In 2-D for the thin plate splines the problem was focussed on finding splines

which minimised the bending energy of the infinite thin plate splines subject to the

interpolation constraints. The polyharmonic splines are of the form,

Φd,k(r) =


r2k−d log(r), if d is even,

r2k−d, if d is odd,

(5.1)

where k is required to satisfy 2k > d. We will take the order m = k for Φd,k(r) ∈

CPDd(m). This particular choice of m rather than the minimal choice m = k−dd/2e+1

means that, the Beppo Levi space BLk(Rd) i.e.,
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BLk(Rd) = {f ∈ C(Rd)Dαu ∈ L2(Rd) for all | α |= k} ⊂ C(Rd) (5.2)

is the optimal recovery space for the polyharmonic splines kernel Φd,k. With this choice

of m = k the interpolant in equation (2.6) takes the form

s(x) =
N∑
j=1

cjΦd,k(‖x− xj‖) +
∑
|α|<k

dαx
α. (5.3)

According to [24], the scattered data approximation by polyharmonic splines is optimal

in its native reproducing kernel Hilbert space, as given by the Beppo Levi space. The

seminal papers of Meinguet [56, 57, 58], shows that for a fixed point set X ⊂ Rd the

interpolate s in (5.3) minimizes the energy

| f |2BLk =

∫
Rd

∑
|α|=k

k
α

 (Dαf)2 d(x), (5.4)

among all the functions f satisfying s|X = f |X of the Beppo Levi space given by (5.2).

In other words, the reconstruction s minimizes the Beppo Levi energy functional

|.|(BL)k among all the recovery functions f in BLk(Rd) i.e,

• s(x) = f(x) for all x ∈ X.

• |s|(BL)k ≤ |f |(BL)k for all f ∈ BLk(Rd).

For instance, let us take m=d=2 the thin plate kernel will be φ2,2 = r2 log(r), with

x = (x1, x2) ⊆ R2 and for X = {x1, · · · ,xN} ⊂ R2, the reconstruction will take the form

s(x) =
N∑
j=1

λj‖x− xj‖2 log(‖x− xj‖) + d0 + d1x1 + d2x2, (5.5)
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where the semi-norm is

|f |2BL2 =

∫
R2

(
∂2f

∂x2
1

)2

+ 2

(
∂2f

∂x1x2

)2

+

(
∂2f

∂x2
2

)2

dx1dx2, (5.6)

which reflects the bending energy for a thin plate of infinite extent. The motivation of

the name thin plate comes from the fact that the resulting reconstruction minimized the

bending energy | . |2BL among all the interpolants in the Beppo-Levi space,

BL2(R2) = {f : Dαf ∈ L2(R2) for all | α |= 2} ⊂ C(R2). (5.7)

According to Iske [47] the advantages of the the polyharmonic splines can be viewed as,

• The polyharmonic splines reconstruction is well posed for arbitrary dimension and

distribution of interpolation points.

• It is optimal in its corresponding Beppo Levi space BLm(Rd) which is a relevant

function space in nonlinear hyperbolic problems.

• The reconstruction by polyharmonic splines is meshfree which is flexible feature

in terms of adaptivity. It is well suited for problems with shocks, steep gradients

or singularities.

• The problems involves solving a square linear system which is small, if the number

of nodes in X is small.

• The local approximation order of the polyharmonic splines kernel Φd,m is m, w.r.t

Cm functions.
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5.1.4 Natural splines as one-dimensional case of the polyhar-

monic splines

In one-dimensional case, polyharmonic splines becomes natural splines of order 2k.

Preposition : Every natural cubic spline s has a representation of the form

s(x) =
N∑
i=1

λiφ(|x− xj|) + P (x),

where x ∈ R, φ(r) = r3, r ≥ 0, and P ∈ π1(R) satisfying the vanishing moments

condition. More details of natural splines as RBF can be found in [83].

The properties of the natural splines can be seen as one-dimensional case for polyhar-

monic splines discussed in Section 5.1.3. We will now explain it briefly. For univariate

case, i.e., d = 1, the polyharmonic spline takes the form

Φ1,k = r2k−1 where k ≥ 1,

which is natural splines of order 2k. For the one-dimensional numerical experiments,

the scattered data reconstruction has been done by Φ1,2 =| x − xj |3 +d0 + d1x for all

the common test problems. For the KdV equation, where the PDE has the third order

spatial derivative we have used Φ1,3 =| x− xj |5 +d0 + d1x+ d1x
2.

We can now give a precise definition of our error indicator.

Error indication

The error indicator can be considered as the function of the node set X i.e., η : X →

[0,∞] which assigns a significance value to each node x ∈ X, sNx is the polyharmonic

spline reconstruction which matches the solution values at a node set Nx ⊂ X\x in a

neighbourhood around x but not at x i.e.,

sNx(v) = u(v) ∀v ∈ Nx. (5.8)
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The adaption relies on the error indicator defined as

η(x) = |u(x)− sNx(x)| for all x ∈ X, (5.9)

where u is the approximation to the true solution, obtained by the MQ-RBF.

The error indicator is the mean by which we check the variation of the true solution.

It is done by calculating the pointwise deviation between approximate value of the

solution u(x) at x and the interpolated value at x using a local interpolant sNx around

x. When x will lies in the region of high activity such as less regularity for u, around a

discontinuity (shock) or around the steep gradients the error indicator η(x) is expected

to be big, whereas if it lies in the region where the solution is smooth η(x) is expected

to be small. Large values of η(x) indicate that we need to flag more nodes in refinement

context whereas smaller values are subject to coarsening.

Our reconstruction through the polyharmonic splines is local and the interpolant

in (5.3) resulting from the interpolation conditions (5.8) under the vanishing moment

conditions
∑N

j=1 λjP (xj) = 0 for all P ∈ πdm, will takes the form

 Aφ,X PX

P T
X O


 λ

d

 =

 uX

0

 (5.10)

Our local reconstruction is obtained by interpolation through the seven nearest neigh-

bours of the point of interest. We will obtain the set of nearest neighbours by using the

RBF distance matrix

r =



‖ x1 − x1 ‖2 ‖ x1 − x2 ‖2 ... ‖ x1 − xN ‖2

‖ x2 − x1 ‖2 ‖ x2 − x2 ‖2 ... ‖ x2 − xN ‖2

. . . .

. . . .

. . . .

‖ xN − x1 ‖2 ‖ xN − x2 ‖2 ... ‖ xN − xN ‖2
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For instance, the first row of r contains distances of x1 with {x1,x2, ...,xN} we will

first sort the row in ascending order and then pick sorted indexes I = {2, ..., 8}. For

the index I = 1 will represent the distance of the center with itself which will not be

considered. From the center set X we will pick the centers on the index set I. This set

Nx1 will then represent the set of nearest neighbours to x1. The same procedure can be

repeated for every row which will give the set of nearest neighbours Nxi for xi ∈ X

Since for local reconstruction problems, the number of N interpolation conditions is

usually small also the dimension of the polynomial space πdm is small, the dimension of

the resulting system (5.10) will be small. A comparison of the spectral condition number

of polyharmonic spline with five different radial kernel functions can be found in [47].

5.1.5 Refine/ Coarse

The idea of refining and coarsening is as per the computational complexity of the model.

We insert new nodes into the regions where the error indicator η in (5.9), gives us a

bigger value than the predefined threshold i.e., we refine, where-as we remove nodes

from X in regions where the value of η is smaller i.e., we coarse. This is to balance

the approximation quality of the model against the required computational complexity.

We will neither refine nor coarsen the end points. However for 2-D interpolation it is

observed that largest errors occur at the boundary.

Refinement is 1-D context is, adding two nodes (left and right) around the node

which lies in the region of high activity. Refinement in 2-D context is, adding the

Voronoi points which shall be explained in Section 5.4. We did numerous experiments

to maintain the balance between coarsening and refinement. We found that removing all

the nodes which are less than coarsening threshold i.e., θcrs is not an effective approach

in our experiments. This will take away a whole bunch of information from the grid,

and with less information adaptive method will become unstable. We therefore sort the

residuals and remove a percentage i.e., residuals are ranked from worse to least worse

and we only remove points from those nodes associated with a certain percentage at the
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poor end of the scale. This percentage depends on the underlying problem. Coarsening

a percentage is a crucial step in our adaptive method.

5.2 Adaptive RBF interpolation in the method of

lines fashion

The adaptive RBF scheme for time-dependent PDEs is straight forward. We replace

the spatial (boundary-value) derivatives in the PDE with algebraic approximations with

radial basis functions with only one remaining independent variable, we have a system

of ODEs that approximates the original PDE this approach is called the method of

lines using RBFs. For instance, let us try to develop the adaptive scheme for the one-

dimensional third order nonlinear KdV equation,

ut + εuux + µuxxx = 0. (5.11)

The boundary and initial values can be derived from the exact solution given as

u(x, t) = 2 sech2(x− 4t). (5.12)

First we will perform the adaptive interpolation on the the initial condition

u(x, t0) = 2 sech2(x). (5.13)

We will now explain the adaptive algorithm for time-dependent PDEs. To explain

it, let us disuss our adaptive algorithm which will call Subroutine 1 for refining and

coarsening in 1-D.
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ALGORITHM 2. (Adaptive RBF for 1-D time-dependent PDEs)

INPUT: X, θref and θcrs.

1. Calling Subroutine 1; gives adaptive nodes, values at nodes and shape

parameters for given initial condition.

2. For i = 1 : Tfinal

{

(a) Compute; coefficient matrix, coefficients and differentiation matrices.

(b) Advance the solution in time using ODE integrator and incorporate

the boundary conditions.

(c) Compute; the interpolant, using centers in step 1, computed coeffi-

cients in step(a) and updated solution in step (b).

(d) Again calling Subroutine 1 compute adaptive; nodes, values at nodes

and shape parameters, using the computed interpolant in step c.

}

UNTIL The final time level achieved.

OUTPUT: Adaptive profile of the solution at final time level.

Step 2(c) will compute an interpolant for approximating the solution values at new

added points. This step in the algorithm will create an evaluation matrix by using, step

1 for centers, step 2(a) for coefficients and step 2(b) for solution values. We can then

use this evaluation matrix to find the approximate solutions at new added points in the

domain. In our examples this interpolant is MQ-RBF .

Subroutine 1 which is called in step 1 and 2(d) is designed as
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Subroutine 1. (Adaptive selection of nodes)

INPUT: Interpolant, θref , θcrs, N.

X= Distribution of nodes in domain into N equally spaced points.

While {

1. Compute the MQ-interpolant u.

2. For each x ∈ X {

(a) Determine a set Nx ⊂ X of neighbours of x.

(b) Compute s, the natural splines interpolant satisfying s|N = u|N for

each x but not at x.

(c) Using s the local interpolant around x, interpolate at x.

}

3. Compute the residuals |u(xi)− sNxi
(xi)| for each xi.

4. Refine if |u(xi)− sNxi
(xi)| > θref .

5. Coarsen if |u(xi)− sNxi
(xi)| < θcrs

6. Adapt the shape parameters for the new set of adaptively selected point.

7. Interpolate at the new added points using interpolant in the input.

UNTIL Every residual is less than θref .

}

OUTPUT: Adaptively selected centers x ⊂ X, approximate solution u(x),

adaptively adjusted shape parameters c.

Note: Subroutine 1; the input takes interpolant, which is the given initial condition

at time t0 = 0. At time τ = t0 + m4t, where m is a positive integer. We will use the

MQ interpolant to interpolate at the new added points. We will also input N , which

is the number of nodes, for equally spaced distribution for adaptive algorithm to start
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with. This distribution should not be too coarse or too fine. In step 3 the residuals will

be computed as defined in Section 5.1.3. We will now discuss the method in detail.

The procedure starts with adaptive selection of nodes at initial stage. Calling Sub-

routine 1 by using initial condition as the “input interpolant”. We will get a new set

of nodes, values at nodes and adjusted shape parameters. We will now advance our

solution in time. To march in time we will create the (N + 1)× (N + 1) differentiation

matrices Dx and Dxxx for the first and the third derivatives in Equation (5.11). Let us

say for the time dependent PDE method where the derivative may need to be evaluated

thousands of times we will use the following way to evaluate the differentiation matrices,

Dn =

 An


 A(−1)

 ,
with the entries Aij = φcj ‖ (xi−xj) ‖‖ and An = φcj

dn

dxn
(‖ xi−xj ‖) where subscript n

is referred to the order of the derivative. We can then solve the time stepping problem

using any standard explicit/implicit ODE integrator. This will be done in step 2(b) of

Algorithm 2. We have used the explicit Runge-Kutta scheme of order 4 in solving KdV

equation and Allen-Cahn equation. In solving Burger’s equation we will use stiff ODE

integrator.
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The boundary conditions will now be incorporated. Step 2(c) of Algorithm 2 will

compute and update the “interpolant” to predict the approximate solution at the new

added point. This interpolant is the input in Subroutine 1. This interpolant will be
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computed using MQ-RBF for each time level. The errors will be compared at Tfinal.

The adaption depends on the developing features of the problem. For instance, for

adapting the solution of the KdV equation first we did the adaption at every time level.

Later we observed that computational cost can be saved by avoiding excessive cycles of

adapting procedure, i.e., if the re-adaption occur after g time steps, i.e., at τ = t0+m4t,

where m is positive integer. The selection of m depends upon the underlying problem.

Small values will make the algorithm expensive and large values are not recommended

either since, the solution may change its profile before the adaption occurs. At time τ

we will use the same centers at t = t0, but using the updated solution [uτ1, ..., u
τ
N ]T and

we will re-adapt by interpolating this updated solution. This will gives us a new set

of RBF centers and shape parameters that capture the profile of the solution at t = τ .

This process is repeated with values at a new set of RBF centers for the next m time

steps. The procedure will stop when we arrive at desired final time t = Tfinal.

5.3 Numerical experiments for time-dependent PDEs

We will now present numerical results for one-dimensional time-dependent PDEs with

an extension of the method for two-dimensional interpolation problem. The adaptive

method applied for the numerical experiments is described in Section 5.2. The thresholds

used for refining and coarsening are denoted by θref and θcrs respectively. The choice of

the thresholds is problem dependent. We will be using the classical Runge-Kutta (RK4)

method for integrating in time unless otherwise stated. All the numerical experiments

are run in MATLAB on Windows 7 system running at 3.10 Ghz with 8 GB memory.

5.3.1 Korteweg-de Vries (KdV) propagation of a single soliton

In this example, we study a single soliton solution of equation (5.11) with an exact

solution given by (5.13). We choose ε = 6 and µ = 1 and the time step ∆t = 0.001. The

initial condition u(x, 0) and boundary functions f(t) and g(t) can be obtained from the
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exact solution in (5.13).

In order to compare the numerical results we will use the parameters used in [74]. The

computational domain is [−10, 40] × [0, 5]. The adaptive profiles of the single soliton

for t = 0, 1, 2, 3, 4, 5 can be seen in Figures (5.2)-(5.4). The thresholds for refining

θref = 10−3 and for coarsening θcrs = 10−6. The method is advanced in time using

the classical RK4 method. Initially we started with 70 equally spaced points. For the

one-dimensional problems we have used the polyharmonic splines which is the natural

spline of order 2k. For instance, for KdV equation the polyharmonic spline will be of

the form

φ1,k = r2k−1 (5.14)

with the order m = k ≥ 1. In our examples we have used k = 3 which will be of the

form

φ1,3 = |x− xj|5 + d0 + d1x+ d2x
2. (5.15)

Figure 5.2: Left: Initial adaptive discretization at time t = 0, Right: Soliton moving from
left to right, adaptive solution at time t = 1.

On the initial discretization of nodes, we adaptively select the nodes and the shape

parameters t0 = 0 (Figure 5.2). We then marched in time to obtain the solution at time

t = t0 + ∆t. Once the solution is obtained we will again adapt the solution to obtain a

new set of adaptively selected nodes and shape parameters. The procedure will continue

after every 3 time steps and will stop when the final time arrives.
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Figure 5.3: The profile of the adaptive solution at time t = 2 and t = 3

Figure 5.4: The profile of the adaptive solution at time t = 4 and t = 5

In 1-D experiments we adapted the shape parameters in adjustments with the centers.

The MQ is flatter for smaller values of c and have a localized feature for bigger values.

In the region of high activity we will use c be local which will makes the MQ peaked. We

require center dependent shape parameters because the problems we are dealing with,

are time dependent and the profile of the solution changes in time from smooth to steep.

The balance between refining and coarsening is kept by removing 30%of the sorted best

errors.

The adaptive method uses almost half the number of points than the non-adaptive

method for the KdV (see Table 5.2). The performance of the method is compared

using the maximum error, ‖ UN − u ‖∞= max
1≤i≤N

| UN
i − ui | and the root mean square
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(RMS)=

√∑N
i=1(UNi −ui)2

N
. The adaptive method is shifting the points with increasing

time, which is due to the soliton solution of the problem.

Adapting the solution at every time step can be expensive and hence avoided. We

can expect inaccuracy or instability if we readapt, after the solution changes its profile.

Hence we adapted the solution for KdV equation after every 3 time steps which saved

the computational time and give accurate results Table (5.1). However adapting solution

after 4 time steps gives maximum error 1.0E − 2 and RMS 3.5E − 3. This choice of

adapting every 3 time steps is due to to our experiment, i.e., adapting the solution at

every 5 time steps gives us unstable results. The unstable results are due to the reason

that the solution changes its profile before the adaption occur.

Table 5.1: Comparison of Adaptive and Non-Adaptive methods for the single soliton at final
time t = 5

Adaptive/Non-Adaptive RBF No: of nodes Max-Error RMS errors

MQs 151 5.9E − 3 3.0E − 3
Gaussian 151 1.2E − 3 5.8E − 4
IMQs 251 3.9E − 3 1.2E − 3
Adaptive MQ 94 3.1E − 3 1.3E − 3

The goal of our adaptive method is to obtain a numerical solution in such a way

that the residuals are less than a predefined threshold using smallest number of DoF.

Table 5.1 is a comparison for KdV equation on uniform node distribution of nodes and

adaptive distribution. We can see that our method solved the problem with smallest

number of DoF with almost the same accuracy.

5.3.2 Interaction of two solitons

This example is studying the interaction of the two solitons solution of Equation (5.11)

with ε = 6 and µ = 1. The initial condition is:

u(x, t0) = 12
3 + 4 cosh(2x− 8t0) + cosh(4x− 64t0)

(3 cosh(x− 28t0) + cosh(3x− 36t0)2
, (5.16)
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where t0 is the initial time. The exact solution of (5.11) is given by

u(x, t) = 12
3 + 4 cosh(2x− 8t) + cosh(4x− 64t)

(3 cosh(x− 28t) + cosh(3x− 36t)2
. (5.17)

The boundary functions f(t) and g(t) can be obtained from the exact solution.

The computational domain is [−15, 15]× [−0.3, 0.3]. The profile of interaction of the

two solitons shows that the adaptive method is able to track the developing features of

the profile of the solution. We have recorded the results for t = −0.3 , −0.25, −0.2,

−0.15, −0.1, −0.05, 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 in Figures (5.5)-(5.7)

We started the adaptive interpolation with 80 equally spaced points where the refin-

ing threshold θref = 10−3 whereas the coarsening θcrs = 10−7. To maintain the balance

in refining and deleting the number of points we coarsened 70% of the sorted errors. We

solved this problem with MATLAB built-in ode15s ODE solver with ∆t = 0.0001. The

adaption occurred at every time level.
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Figure 5.5: Interaction of two solitons moving from right to left, this profile is just before the
interaction and recorded at time t = −0.3,−0.25,−0.2 and −0.15

Figure 5.5 is the profile of soltions moving from right to the left. We recorded this

before the interaction actually happens. We can see that the adaptive algorithm is using

a finer set of points where required.



5.3 Numerical experiments for time-dependent PDEs 79

Figure 5.6: The smaller solitary wave is interacting with the larger wave at time t = −0.1,
t = −0.05, t = 0.05 and t = 0.1.

Interaction of the two waves can be seen in Figure (5.6). We observed and recorded

the results at the time levels when the interaction actually happened. We can see that

at t=−0.05 the shorter wave passes through the bigger wave towards the left. At time

t=0.1 it interacted with a total number of adaptively adjusted points N = 152.
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Figure 5.7: The waves retain to the original shape at t = 0.25, t = 0.3

Figure (5.7) shows that taller wave catches up, interacts with the shorter one and

then passes towards the left. We can see that this is like almost no effect of interaction at

all. Adaptive algorithm performed well to place a finer grid in a region of high variation.

The process ends up with a total number of N = 155 adaptively distributed points.

Table 5.2: Comparison of Adaptive and Non-Adaptive methods for the of interaction of two
solitons at final time t = 0.3

Adaptive/Non-Adaptive RBF Degrees of Freedom Max-Error RMS errors

MQs 201 9.5E − 3 4.7E − 3
Gaussian 201 1.4E − 3 5.4E − 4
IMQs 201 3.4E − 3 5.7E − 3
Adaptive MQ 155 4.9E − 3 1.5E − 3

The adaptive method captured the developing features the solution at all times. In

Table (5.2) we presented a comparison with the non-adaptive RBF method [74].

5.3.3 Burgers equation

Burgers equation is a nonlinear advection-diffusion problem [14]. It is defined as

εuxx − uux = ut, (5.18)

where ε ≥ 0 is a given parameter and will be chosen such that(5.18) develops a shock.

The solution then exhibits moving fronts that can be made arbitrarily sharp by decreas-
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ing the kinematic viscosity ε as a coefficient of the second-derivative uuxx term which is

the dissipation term.

Burgers equation appears in various fields of applied mathematics. The applications

can be seen in modelling of fluid dynamic, shock wave formation, traffic flow, turbulence,

boundary layer behaviour. Initially the Burgers equation was introduced to describe

turbulence in one space dimension.

We will now consider this moving front problem given by (5.18) which is a common

test problem for adaptive methods [23] and references therein. The initial condition is

u(x, 0) = sin(2πx) +
1

2
sin(πx), (5.19)

with the boundary conditions

u(0, t) = u(1, t) = 0. (5.20)

The boundary conditions are taken to be zero which diminish the amplitude of the wave

with increasing time. Here u(x, t) is a wave that generates a steep front of width O(ε)

and moves towards x = 1. This is one of the principal reasons which makes Burger’s

equation a stringent test problem. The solution u(x, t) steepens with increasing time t

and become difficult to resolve spatially.

The computational domain we are using is (0, 1) × [0, 1] with parameter ε = 10−3.

Solution is advanced in time using the MATLAB built-in stiff ode-solver ode15s with

∆t = 0.01. We have given the Jacobian matrix in odetset for the stiff solver ode15s to

work faster. The thresholds θref = 10−5 and θcrs = 10−8. The method starts initially

with 13 equally spaced nodes and the adaption occurs at every time level until the

final time arrives. All the residuals becomes less than 10−5 with a total number of 155

adaptively selected nodes in the domain. The coarsening percentage for this problem is

20% of the sorted array of best errors.

The polyharmonic splines φ1,k = r2k−1 reconstruction for the Burgers equation will
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take the form

φ1,2 = |x− xj|3 + d0 + d1x. (5.21)

Figure 5.8: Adaptive RBF method for the Burgers equation at time t = 0.4 and t = 0.6

Figure 5.9: Adaptive RBF method for the Burgers equation at time t = 0.4 and t = 0.6
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Figure 5.10: Adaptive RBF method for the Burgers equation at time t = 0.6 and t = 0.8

For the given smooth initial condition equation (5.19) the solution is moving towards

1, and generating a steep moving front. Due to the zero boundary conditions solution

decays with time. In Figures (5.8)-(5.10) we can observe that our adaptive method is

performing well.

5.3.4 Allen-Cahn Equation

The Allen-Cahn equation is defined as

ut − u(1− u2) = νuxx, (5.22)

with the initial condition

u(x, 0) = 0.6x+ 0.4 sin[
π

2
(x2 − 3x− 1)], (5.23)

and the boundary conditions

u(−1, t) = −1, u(1, t) = 1. (5.24)

In this experiment we have used parameter ν = 10−6 and the computational domain

[−1, 1] × [0, 8.25]. The adaption occurs every 15 time steps since we observed that the
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solution is not changing its profile rapidly. We started the algorithm with 30 initially

equally distributed points in the domain. The thresholds are θcrs = 10−5 and θref = 10−3.

In this experiment we coarsened 30 percent of the residuals. Fourth order Runge-Kutta

method is used for time stepping and the step size we used is 0.01.

Figure 5.11: Adaptive solution for the Allen-Cahn equation at at time t = 0, and t = 0.75.

Figure 5.12: Adaptive solution for the Allen-Cahn at time t = 1.5 and t = 2.25.
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Figure 5.13: Adaptive solution for the Allen-Cahn at time t = 3 and t = 4.5.

Figure 5.14: Adaptive solution for the Allen-Cahn at time t = 6 and at final time t = 8.25,
it is evident that the nodes are clustering around steep gradients.

5.4 Interpolation in 2D

For the two-dimensional case we will consider the Franke-type function with the com-

putational domain [−1, 1]2. The function is defined by,

f(x, y) = e−0.1(x2+y2) + e−5((x−0.5)+(y−0.5)2) + e−15((x+0.2)2+(y+0.4)2) + e−9((x+0.8)2+(y−0.8)2).

(5.25)

The idea of adaptive method is straight forward in extension for 2-D interpolation

problem. However, refining in 2-D require sophisticated algorithms specifically for points

lying on the boundary.
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5.4.1 Refinement in 2-D

Voronoi diagram is defined as

Definition 5.1 Voronoi Diagram Suppose that X ⊂ Rd is a finite point set in Rd.

Then, for any x ∈ X , the point set

VX(x) = {y ∈ Rd) :‖ y − x ‖= minx∈X ‖ y − x ‖} ⊂ Rd)

is said to be the Voronoi tile of x, and the collection {VX(x)}x∈X of Voronoi tiles is

called the Voronoi diagram of X.

The Voronoi tile VX(x) is a non empty, closed and convex polyhedron, whose vertices

are called Voronoi points. Construction of the Voronoi diagram can be found in [63].

Adding the Voronoi points i.e., VX(x) in the refining context, for a point x is due to

the local error estimates of the polyharmonic splines [45]. Bound of the pointwise error

|u(x)− s(x)| where u(x) is a sufficiently smooth function and s(x) is the polyharmonic

spline interplant satisfying s|N = u|N, is given by the estimate

|u(x)− s(x)| ≤ C · hk−d/2N,ρ (x), (5.26)

where C is a constant depending on u, and ρ > 0 is radius and

hN,ρ(x) = sup
‖y−x‖<ρ

dN(y)

is the local fill distance of N around x.

In order to refine around x ∈ X the distance function dN = min
x∈N
‖ · − x ‖ shall be

reduced for a reduction in estimate (5.26). The distance function dN is convex on VX(x)

for any x ∈ N another observation is that dN has local maxima at the Voronoi points

in the tile Vx. This give us an understanding to add Voronoi points VX(x) , for a point

x which, lies in the region of high variation. Adding VX(x) will reduce the local error

(5.26) around x.
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Refinement: A node x ∈ X is refined by the insertion of the vertices of its Voronoi

tile, i.e., the Voronoi points VX(x) into the node set X.

Figure 5.15: Voronoi tile for the point x

Coarsening: A node x ∈ X is coarsened by its removal from the current node set

X, i.e., X is modified by replacing the X by X/x.

We will now present the adaptive algorithm for 2-D interpolation problem.

5.4.2 Adaptive algorithm

We will now discuss the algorithm for interpolation in 2-D.
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ALGORITHM 3. Adaptive RBF for 2-D interpolation.

INPUT: X, θref and θcrs.

Repeat {

1. Compute the MQ-interpolant u.

2. For each x ∈ X {

(a) Determine a set Nx ⊂ X of neighbours of x.

(b) Compute s, the polyharmonic splines interpolant satisfying s|N = u|N

for each x but not at x.

(c) Using s the local interpolant around x, interpolate at x.

}

3. Compute the residuals |u(xi)− sNxi
(xi)| for each xi.

4. Calling Subroutine 2 for refinement.

UNTIL Every residual is less than θref .

}

OUTPUT: A new set of adaptively selected set of centers.

Algorithm 3 will call Subroutine 2 and will do the adaptive interpolation for Frank’s

function given in 5.25. We will now give the Subroutine 2 for the refinement in 2-D.
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Subroutine 2. (Voronoi points of interior and boundary nodes)

INPUT: X, residuals.

1. Find the Voronoi points.

2. Find index i.e., I=find(residuals> θref ).

3. If I∈ Ω = X ⊂ R2,

(a) Select the Voronoi points on such indices.

4. If I∈ ∂Ω ⊂ X,,

(a) Select boundary points and the Voronoi points on such indexes.

(b) Remove the infinite ray from the Voronoi points

(c) Compute the inersection of the Vornoi diagram with the bounded

computational domain.

5. Combine the interior and boundary points with their corresponding

Voronoi points.

}

OUTPUT: Adaptively selected centers.

The polyharmonic spline reconstruction for two-dimensional problem, the equation

(5.1) will takes the form φ2,k = r2k−2log(r) of order k. In our experiment we have used

k = 2 which reduces the above as

φ2,2 =‖ x− xj ‖2 log(x− xj) + d1 + d2x1 + d3x2,

where x1 and x2 are the coordinates of the of x = (x1, x2) ∈ R2. The thresholds for

refining and coarsening are 10−2 and 10−5 respectively. The refining will be adding the

Voronoi points of a point x which lies in the region of high variation and coarsening will

be the removal of that point from the domain.
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Figure 5.16: Adaptive interpolation for 2-D interpolation problem

Figure 5.16 shows that for the Frank’s function the method is adapting the steep

gradients efficiently and the interpolation process ends with 1024 adaptively selected

nodes. The RMS is 1.2E-3 and the maximum error is recorded as 7.6E-3. We believe

that the algorithm gives us some confidence for its improvement and extension to two-

dimensional PDEs.



Chapter 6

Conclusions and future work

We developed a new adaptive method for the one-dimensional KdV equation, the goal

of the method was to solve the problem with smallest number of degrees of freedom, i.e.,

with the smallest number of grid points. The extension of the method for 2-D interpo-

lation provided some confidence to extend the method for two dimensional PDEs. In

this chapter some findings and achievements of the adaptive method for time dependent

PDEs using radial basis functions have been discussed where the RBFs are suitable for

reconstruction on both the structured and unstructured grids. The chapter ends with

some suggestions and recommendations, upon the completion of the thesis.

6.1 Conclusions

The adaptive spectral methods are preferred for problems with steep gradients, sharp

corners, moving fronts and with singularities. We developed the adaptive scheme for

single soliton and interaction of two solitons solution of the third order nonlinear KdV

equation. A large number of nonlinear dispersive systems can be described by the KdV

equation or one of its modified form. Some interesting numerical results are found during

this journey, but keeping in mind that the RBF is relatively new subject many of its

behaviours still require rigourous justifications, in this context the theoretical analysis

is far from complete. Our method uses MQ-RBFs to approximate the solution, which

91
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is due to its spectral convergence. For the indication of the error, we reconstruct the

solutions in a local neighbourhood around every node using the polyharmonic splines

which is a popular choice for adaptive schemes [6]. For instance, η(x) = |u(x)− sNx(x)|

for all x ∈ X, where u(x) is the MQ approximation at the point and sNx(x), is the local

reconstruction around x but not at x. The polyharmonic splines for the 1-D case becomes

the natural splines, for the KdV equation we have used φ1,3 = |x−xi|5 +d0 +d1x+d2x
2.

Our goal was to obtain a numerical solution with less number of DoF as possible,

by using an adaptive approach such that the errors are below a prescribed threshold.

Solving the problem with less number of DoF can be efficient in saving the computer

storage and adaption occur at a certain time level can be computationally less expensive.

The implementation of the schemes results in, solving the problem with almost half

the number of the grid points than the non-adaptive scheme. The comparison can be

seen in Table (5.1) for a single soliton and Table (5.2) for interaction of two solitons.

The results are showing that our method is able to track the developing features in

the solution profile. The method have shown promising results for the second order

nonlinear difficult problems, i.e., the Burgers equation with the moving front solution

and Allen-Cahn equation. The method is able to add more points in the region of

high activity. The RBF collocation for the time-dependent PDEs in particular, the

hyperbolic PDEs, are challenging for their time stability. We observed the CFL condition

for KdV equation using the non-stationary RBFs, depend on the non-linear part and

the shape parameter. Our 2-D interpolation problem for the Frank’s function, we have

used φ2,2 = ‖ x− xi ‖2 log(‖ x − xi ‖) + d1 + d2x + d2x which has been praised for

several reasons. For instance, the scattered data approximation by polyharmonic splines

is optimal in its native reproducing kernel Hilbert space, as given by the Beppo Levi

space. Constructing the algorithm for refinement in 2-D is a motivation for the extension

of the method for PDEs.
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6.2 Outlook and future work

Our goal in this effort is to deliver the base of the method which may be useful for

future research and applications. The utility of the RBFs is not quite evident for the

1-D problems, even though our results are satisfactory. We developed the algorithm

for the 2-D interpolation problem and in future we will extend the idea, to solve 2-D

time-dependent problems. The convergence analysis of the RBF with scattered data

in a finite domain is a big concern as the RBF collocation methods use interpolation

to approximate the solutions of PDEs. The use of center dependent shape parameters

breaks the symmetry of the interpolation matrix A and the proof of its nonsingularity.

This issue require a better understanding. In addition we require the CFL restriction

for time dependent problems for both, the uniform and non-uniform distribution of grid

points. This is an urgent question to be answered while solving time-dependent prob-

lems i.e., stability domain in terms of distributions of the nodes and shape parameters.

Eigenvalue stability of the RBF differentiation matrices is another big concern. However

this question needs to be answered theoretically for both, uniform and adaptive node

distribution.
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