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Introduction

The Electron-Spin Resonance Experiment provides 
information associated with the manner in which 
unpaired electrons are distributed in a system.
Analysis of the data obtained sometimes permits insight 
into the structure of the system investigated. The 
data derived is generally expressed in terms of 
hyperfine coupling constants associated with the nuclei 
which form the radical. In favourable cases this 
information can be separated into an isotropic and an 
anisotropic contribution, supplying valuable 
indications on the nature of the bonding and the 
overall structure of the radical.

The large amount of experimental data available 
has motivated many theoretical studies designed to 
predict the spin density distribution in radical 
species. The majority of these are semi-empirical while 
few calculations on a non-empirical level have appeared 
aimed at the explanation of observed hyperfine 
coupling constants. Although many studies have appeared 
/in the literature concerning the prediction of 
isotropic hyperfine coupling constants, calculations 
designed to give anisotropic hyperfine coupling 
constants are few and generally incomplete.

These deficiencies motivated a study of spin 
density distributions from a Gaussian based ab initio 
viewpoint. The term ab initio implies no approximation 
above the Hartree Eock (separation of the many 
electron problem into a series of one electron 
problems ) with the linear combination of atomic



orbitals approximation generally assumed and the 
atomic orbitals represented, in practice, by Slater or 
Gaussian type functions; all electrons are considered 
explicitly and all integrals evaluated exactly. The 
form of the wavefunction used and the manner in which 
it is constructed and minimised are described in the 
following sections. General analytical formulae for 
the integrals associated with the anisotropic 
hyperfine coupling constants are derived over Gaussian 
functions, A brief discussion of the effects of 
vibronic contributions on spin properties concludes 
this theoretical section. The application of the 
techniques elaborated are then presented.

I . The Unrestricted Hartree Eock Method

Various forms of the wavefunction for an open.-- 
shell system have been considered. The Unrestricted 
Hartree Eock (UHE) function has the advantage of 
retaining many of the analytical features of the 
Restricted Hartree Eock method by the simple extension 
of unpairing the electrons. By permitting the a and (3 
electrons to occupy different spatial^orbitals 
correlation is implicitly incorporated into the 
wavefunction.

Eor an N electron system of p a electrons and q 
(3 electrons (p>q) the UHE wavefunction takes the
single determinantal form,

^ U H E ^  ̂ ̂  ̂ (l)a(l)...\|fp(p)a(p)cpi (p+l) 6 (p+l)..
..cPq(K)p(K)j| ........(1)

Without loss of generality the one electron



functions of the a electrons and of the p electrons 
cpĵ may he considered a-s orthonormal amongst themselves

j-- -1-

A further reduction of the number of integrals
which have to be considered results from the use of
the "corresponding orbitals" suggested by Amos and 

1 > 2Hall . These have the property,

/\|f^cp^dT=T^Sj.^ ; O^Tj^^l  (2 )
In the linear combinations of atomic orbitals 

(l.c.a.o.) approximation the functions and 
written as column vectors \jr and <p (^^=[^^Zi=l^p] '; 
ç^=[^^;i=l^q]), are chosen in the form,

  (^)
-n+Cp=h CÜ

where æ is the column vector, 
with elements w^Zi=l^m, of the atomic orbital basis 
functions; A is an mxp and B an mxq matrix of 
coefficients which must be determined to define \jf' and 
cp and hence

Defining the unrestricted bond order matrices P 
and Q, for the a and (3 electrons respectively, as

............   (4)
Q=BB+

and the overlap matrix S as

^jjœ^^cü^dr     (4 a)
The matrices PS and QS are idempotent with traces 

corresponding to the number of a and p electrons 
respectively,

,(PS)^=PS;_ (QS)^=QS (g)
Tr(PS)=p; Tr(QS)=q
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The TJHP energy may now he written as,

E^j,=Tr(PP“ )+Tr(QP^)-.jTr(PG“ )-.^Tr(QG^)  (6 )
where

pP=h+G^
........................ (7)

h is the one electron matrix with
elements, . •

 (8)
and and G^ are the two electron

matrices defined hy, -
m

.........(g)

Gij=Ü^l[(^kl+Qkl)<ik'jl>-Qki<ikl 1 j>]

<ijlkl>=fwT^l)w*(2)[l/r,2]w%(l)wi(2)dT,dT2 ----(10)
The energy may he minimised hy the variation of 

the coefficients in A and B or, equivalently, of the-
bond order matrices P and Q, Methods which are
applicable to the minimisation problem will be 
considered in a later section.

The expectation values of the charge density 
operator.

q(r)=.Ç  S(r-r^)
and the spin density

operator,
_£(r)=^ 2 S ^ ^ S ( r y )

over the atomic basis
3functions are given by,

m ,
 (11)

u ,v



II,' The Use of Annihilation and Projection Operators

Fundamental theoretical objections may be raised
against the UHP method on the grounds that, although
the wavefunction is an eigenfunction of the operator

2it is not, in general, an eigenfunction of the S 
operator. The deficiency is found to result in 
overestimates of the calculated spin properties.

Lowdin^ has suggested a solution to this problem 
by the use of projection operators. The UHE 
wavefunction is a mixture of components of various 
multiplicities and may be written formally as,

lê) °s+k*s+k
where s=^(p-q), the

spin state required, and pure spin states.

The projection operator,
A;^=S^-k(k+l)   '......... (1 2 )

when applied to will
annihilate the component of multiplicity (2 k+l) in 
^ W e *  ^be process may be repeatedly applied to ipp^-p to 
remove all the unwanted components. Further, an 
operator 0 ^ of the form,

0 = T \  [(S^-k(k+l))/(s(s+l)-k(k+l))] 
k=s+l -

 .......... (13)
may be used to select

the required pure spin state of multiplicity (2 s+l)*
In the Extended Hartree Eock method the variational
procedure is applied to the wavefunction OJ.PuHE*
is an extremely difficult procedure, but Harriman et 

6 .—i 0al - have developed a successful approach.



The difficulties inherent in the practical
2application of ^  led Amos and Hall to suggest the 

use of the single annihilator A^^^ rather than 0 ^.
The justification for this approximation results from 
the demonstration that the major unwanted component in 
'itaîE that with spin (s+1 ), the states of higher

2 f 5multiplicity decreasing rapidly in importance
Although the wavefunction is now simplified to 

^s+]!^tjHE complexities involved in the variational 
, procedure are prohibitive. Eor this reason the 
annihilator A^^^ is generally applied to the 
wavefunction which minimises the energy in the 
Unrestricted Hartree Eock approximation'. Generally a 
lower energy is obtained, but no rigorous proof of 
the necessity of this is available.

The energy after annihilation of the (s+l) spin 
state is given by,

®TJHEAA= ̂ .................. . (14)
-̂-s+iT d h p ^

or

% i r . v =  ' " ^ p I ^ E s+iT d h p ^ ..........(15)
I -^-s+lTaHP^

where the second 
2

result, equation (15), is given as S ' commutes with
the spinless Hamiltonian. Equation (15) may be reduced
further if the approximation that A^^p is idempotent 
is used, so that

+l*k]HE^......... .... (1 6 )

^UHEAA then be more
fully expressed as'̂  \



7

®UHPAA=®-UHP“^~' (l'SQ'SP+QSPSQ-PSQ-QSP)h)
+ T 7  (PSQSP+QSPSQ-PSQ-QSP)^, (P+Q),„;<su |tv> 
iïîïïv

( (PSQSP)3^P^^+ (QSPSQ)stQ%v

-(P 8 Q+Q 8 P)gt(P+Q)uv+fstQuv
+(PSQ)g^(QSP)y^)<su|vt>] ............ (1 7 )

where,
x=f-(p-q) +i-(p+q)~{s+l) (s+2)-Tr(PSQS)

and Epyp is the UHE energy.
The charge and spin density functions are given

"byf

. m .

p ( r ) ) u)̂  ( r ) u,̂  ( r )
(18)

u.v

where
MJ=[A^+pq-q+(3-2A-N+2Tr(PSQS))Tr(P8QS)■ 

-2Tr(PSQ8P8Q8)]P+[p-Tr(PSQS)]Q 
+Q8P8Q+[N-3+2A-4Tr(P8Q8)]PSQ8P 
+ [l-p-A+2 T (PSQ S )][PSQ+Q SP]
-2 [ PSQ 8 PSQ+Q 8 PSQ 8 P ] +I4.PSQSPSQ8 P

/ and
A=q-2(s+l)

2M=A +pq+[2-2A-N+2Tr(P8Q8)]Tr(PSQS)
' -2Tr(P8QSP8Q8)

K is given hy a similar expression
to that for J with the P and p interchanged with the Q

2
and q. As the S and the ^(r) operators do not commute 
the expectation value is from

p(r)= ~^-^3+i?UHP I-̂s+iT e h p ^

^■^s+iTithp^ -̂ 8 +]!Pmp^
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/

All theoretical procedures designed to evaluate
the wavefunctions of molecules of chemical interest
are unsatisfactory if electron correlation is dominant.
In open shell cases this is particularly apparent and
it is necessary, if an objective is chemical, to use a
practical method which has been shown to work.
Although a number of objections have been levelled

1 2against the projected UHE method , in this form, it 
has been found to give an adequate description of the 
spin properties of radicals and for that reason, 
combined with the simplicity of application,, is 
considered a useful tool in the analysis of molecular 
properties.

Ill. Application of Gaussians to Molecular Calculations

In practical applications of the Unrestricted' 
Hartree Eock method on a radical with m basis 
functions, cu , a number of types of integral have to 
be evaluated. By far the most abundant of these are 
the two electron integrals of the form,

Jw^(l)wj(2)[l/r^2]w^(l)w2(2)dTidT2
Infact there are m such 

integrals and although- this number may be considerably 
reduced by symmetry, m does not have to become very 
large for computation to be prohibitively long.
Eor this reason various semi-empirical theories have 
been proposed and applied with varying degrees of 
success.Certainly the information and insight 
acquired by the use of semi-empirical techniques has 
been of great valiqe, but an analysis of the methods of



quantum chemistry from a less arbitrary position 
would be informative as to the nature,and. value, of 
the approximate wavefunctions that have been used.

With the availability of high speed computers it 
is now feasible to approach the problem of molecular 
calculations in an ab initio manner. The need for a 
good approximation to the wavefunction, especially 
close to the nucleus, is critical to the calculation 
of spin properties, thus supplying a rigid test of the 
wavefunction used.

The Slater type orbital (STO) forms an adequate 
representation of the atomic function, particularly 
in the bonding region, but has the disadvantage, for 
the multicentre two electron integral, of difficulty 
of evaluation, generally involving a numerical 
integration. Nevertheless, a large number of ab 
initio studies on molecules have been performed using

1 3STO's. Shavitt and Karplus have suggested the use 
of the Gaussian Expansion method,

-Sr^ ^ Accp-ar
2  TT̂

in the
evaluation of the integrals over STO's. This, however, 
does not alleviate the need'for a numerical 
integration.

The advantages of using Gaussian type orbitals
1 4*was first pointed out by Boys . Gaussians of the 

form,
Xi=r?exp(-air!)

where n is an integer, have
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the property that for a multicentre integral over 
Gaussians a transformation can he found which reduces 
the integral to a one centre problem. This property 
results in quite simple analytical formulae for the 
integrals involved in molecular calculations and has 
led to the extensive use of Gaussian functions in 
theoretical chemistry. The advantage gained by the 
ease of elucidation is somewhat offset by the inferior 
description give by the GTO compared to the STO. This 
deficiency results in the need for a larger basis set 
of Gaussians, and thus an increase in the number of 
integrals required. Fortunately this increase is more, 
than compensated for by the ease of computation of the 
integrals over Gaussians and sufficiently accurate 
wavefunctions can be used.

Ilia. Construction of Gaussian Basis Sets

The requirement for large basis sets of G T O ’s 
in the accurate description of systems in theoretical 
calculations raises problems in'the linear minimisation 
Even for small systems the number of linear parameters 
to be optimised can be very large. d e m e n t i  and Davis 
have suggested that the Gaussian basis should be

15)16contracted , reducing the number of linear
parameters by taking orbitals which are linear
combinations of the Gaussian basis,

n

where % .  is a Gaussian of J
the form
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■Xj=\r^“^exp(-a^r^ )Y]_^(Q,cp)

L m
normalised spherical harmonics and the normalisation
factor,

= 2 ^ + H ( 2 n - D !  ! ^

The application of Gaussians to molecular 
calculations is dependent upon the use of contractions; 
the manner of the contraction has been subject to

1 7 _ 2  0investigation by several workers . In the
applications of the ab initio method reported use is 
made throughput of complete contraction of the Gaussian 
functions. Thus the Is of hydrogen is represented by a 
linear sum of GTO's and the Is, 2s and 2p of carbon 
are represented by similar expansions.

The employment of contraction while paramount to . 
molecular calculations does not in itself result in 
any reduction in the number of integrals to be 
calculated, although it does reduce the number of 
integrals to be stored. Extensive basis sets would 
counter the purpose of Gaussians; generally it is 
found that- 9 to 11s type and 5 to 7p type Gaussian' 
functions are sufficient in the description of the

17)21first row elements . In the applications to be
reported further reductions in integral calculation
has been achieved by using contractions of the form,

n

where the cp̂  are the
s type or p type orbitals used as a basis for the atom 
involved in the molecular system.

I

• Gaussian basis sets, of various sizes, are
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reported in the literature using the manner of .' 
contraction (of linear and non-linear parameters)

1 7 ) 2  1 « 2  4outlined . The major methods used in the
optimisation of parameters are based upon the least 
squares or the energy criterion. The least squares 
approach; fitting a Gaussian expansion-to Slater type 
orbitals, has been employed in a variety of forms by

2 5 _ 2 8many workers . An unfortunate aspect of the method
of least squares is the problem of local minima; for 
large Gaussian sets the number of local minima can be 
particularly troublesome. Generally empirical checks 
can be pursued to clarify the position, for example, 
by scanning around the minimum position. Optimisation 
of the basis set'by minimisation of the SCE atomic

2 1 ) 2 9energy has proved to be the most popular procedure 
The atomic SCE bases, optimised on the energy 
criterion are used as bases for molecular calculations. 
Undoubtedly the atomic (and least squares) bases are 
not optimal for the molecular systems they are applied 
to and for this reason attempts have been made to 
optimise the molecular basis in the molecular

3 0environment . The enormity of the problem involved in 
molecular optimisation is reduced by the use of smaller 
basis sets. This necessity for a smaller basis leads 
to a poor description of the wavefunction and 
invalidates its use for calculations aimed at 
predicting spin properties, although, no doubt, 
insight into less sensitive properties can be 
obtained.

Eor the calculation of spin properties a good
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description of the wavefunction close to the nucleus 
is essential. This has led to the use of the atomic 
Gaussian basis fitted by the energy criterion where an 
adequate description of the orbitals and their cusp 
properties is expected for a reasonable sized basis.

Illb. The Double Basis Approach

A large number of calculations using Gaussian 
type orbitals have been reported. The treatment of 
systems such as the nucleotide bases composing the 
nucleic acids has now become feasible from an ab

3 1initio viewpoint . It is only natural that calculations 
involving large molecules, and hence a large number of 
basis functions, should necessitate the availability 
of an extremely powerful computer installation. The 
fact that for most workers such facilities are not""" 
available has limited the number of accurate, large 
scale calculations to a few centres. Even a system

2 _  32such as SO 4  , using a reasonable basis, would present 
a formidable problem in terms of the time required.
This limitation, through restricted facilities, has 
motivated a search for suitable approximations on the 
ab initio method which, without invalidating the

3 3 , 3 4concept, will allow for a more general application 
The basis functions are approximately 

represented by a linear expansion of Gaussians,

2̂ — ^ jXj +  ....( 1 9 )
J

where as n increases the
truncation error Scû  decreases. It has been
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34demonstrated by Cook and Palmier! that the expansion 

required for the calculation of one electron integrals 
•to a certain accuracy is larger than that required for 
the calculation of two electron integrals to the same 
degree of accuracy. The first order correction in a 
general two electron integral is given by terms such 
as

JSu>|^(l ( 2  ) [l/r, 2 ( 2  )dTi dTg

The numerical value of 
' this correction when the integral is over more than 

one centre will be significantly less than if it were 
a one centre integral. This led Cook and Palmier! to

34suggest a mixed basis method where the one electron 
and one centre two electron integrals are calculated 
over Slater .type orbitals and the multicentre two 
electron integrals are evaluated using small expansions 
of Gaussian type orbitals. As the vast majority of 
computation is spent" on the evaluation of such 
multicentre two electron integrals the reduction in 
computer time : is sufficient to permit much larger 

/ systems to be studied than would otherwise be feasible.
The work of Cook and Palmier! was Slater 

orientated but may easily be extended to complete 
Gaussian orientation and the use of different Gaussian 
expansions in molecular calculations is differentiated 
from their ;"mixed" basis method by reference to the 
"double" basis method. Generally the value of n in 
equation (1 9 ) is about four for the accurate 
reproduction of the one electron and one centre two 
electron integrals and two is sufficient for the
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multicentre two electron integrals.
The problem arises over the most suitable choice

of basis to be used in double basis calculations. The
large expansions optimised on the energy criterion
were considered best suited for the one centre and one
electron integrals. However the molecular, rather than
atomic, nature of the multicentre two electron integrals
suggest that a fit of the small basis over the space
would be preferable. The large expansions and the
Slater type orbitals give an adequate description of
the atomic wavefunction over all regions of space so
that a least squares fit of the small basis to either
of these functions would yield an expansion suitable
to the requirements of the double basis method. Such
small expansions are available for the first row 

2 8elements
The manner in which Gaussian type orbitals are 

applied to ab initio calculations, as outlined above, 
is well documented and no attempt at a comprehensive 
review is felt necessary. The sensitivity of the spin 
properties to the wavefunction, however, requires 
further discussion.

I V . Optimisation in Ab Initio Calculations

The ab initio calculation of hyperfine coupling 
constants derived from the Electron Spin Resonance 
experiment has proved to be a field much neglected. 
Recently some workers have taken up the challenge but 
the results, using various wavefunctions, are

3 5 ) 3 6discouraging . In this work, using the



16

Unrestricted Hartree Pock wavefunction after 
annihilation, the sensitivity of the spin properties 
to the wavefunction have made it necessary, where 
possible, to further optimise the basis. The simplest 
way to achieve a degree of optimisation of the 
Gaussian basis is by varying the exponential factor

J

where is a positive 
scalar representing the change of the exponential 
factor in the molecular species as compared to its 
value in the free atom. Even this approach, in 
conjunction with the optimisation of the geometry, 
will soon become too time consuming as the number of 
basis orbitals in the system increases. Eor this 
reason only the optimisation of the exponential factor 
of the Is orbital of the hydrogen atom is considered. 
This approach is felt to be justified as the atomic 
Is orbital of the hydrogen would be expected to be 
most affected by transfer to a molecular environment.

In larger systems, where optimisation of the 
proton exponent, and even completely or partially of 
the geometry, is not feasible, the best values have to 
be estimated from experience. This approach, of 
non-optimisation in some cases, is taken as any 
reduction of the size of the expansion sets used would 
more than offset the value of any optimisation 
achieved.
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V. Methods of Minimising the UHF Energy

The use of Gaussian type orhitals is centred upon 
the computational efficiency achieved in the evaluation 
of the integrals involved in molecular calculations. 
However, .now that the problem is defined a minimisation 
of the energy of the system must be effected within 
the framework of the approximation used, that is, the 
Unrestricted Hartree Pock method. Even with contraction 
of the basis set the number of atomic orbitals used 
can soon become large, and as the function to be 
evaluated is non-trivial any iteration cycle of 
minimisation must be as efficient as possible. Three 
approachs have been adopted to this problem; the

3 7 , 3 8matrix diagonalisation method , the steepest
3 9 _ t 1descents method and the method of conjugate

n . I 4 2 « 4. 5gradients .

1) The Matrix Diagonalisation Method .
The method of matrix diagonalisation uses the 

equations,
P “A=SAe“’

S 6  ( 2 0 )pPB=SBeP
which the orbitals must 

satisfy. The Eock matrices and for the a and (3 
electrons respectively^ the A and B matrices of . 
coefficients of the molecular orbitals over the atomic 
orbital basis and S the overlap matrix are defined as 
previously (equations (l) to (9) ). The ê'’ and '

.37,3 8matrices are diagonal. The energy is then given by,

- iTr(QG^) ..(21)
—  1 —  1
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As the Eock matrices are functions of the 
matrices A and B the manner of solution must he by 
successive approximation. Thus E^ and E^ are 
calculated from an initial approximation to A and B ; 
the process is repeated until self consistency is 
achieved and hence the minimum attained.

2) The Steepest Descents Method
The method of steepest descents for the solution

of the eigenvalue problem was first suggested by 
3 9 , 4 0McWeeny for closed shell systems and later

4 1extended to the UHE method.
The method; in general terms, may be considered 

as follows! for a function f(x) of n variables, 
x,,X 2 ....x^ or Ix> using Dirac notation, if there is a 
first approximation 1 xq> to [ x> and the gradient of 
f(xo), ) go> (=|g(xo)>), can be found, then a better"^'’ 
approximation, lx,>, to 1 x> is given by 

|x,> = ]Xo> - X o l g o >

or generally,

l^i+l> = l^i> “  (2 2 )
Thus an iterative cycle is formed. The positive 

scalar is chosen at each iteration so that [ x^^^> 
is approximately the minimum in the direction | g^> 
from I Xj^>.

As the first order density matrix and 
consequently the density matrices of all other orders 
may be expressed in terms of P and Q only it follows 
that the bond order matrices are fundamental quantities 
of the theory and there is no requirement to calculate 
the orbitals, as in the matrix diagonalisation method.
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Direct minimisation of the energy by variation of P
4 1and Q has been formulated by Amos for the changes

P->P+ SP 
Q^Q+5Q

subject to the conditions
(PS)^=PS; (QS)^=QS
Tr(PS)=p; lI?r(QS)=q

Defining the matrices,
P'=S"'-P

(23)

(24)

,a 

I=s+s
s=P'P"P 

+

J=8—S^
and similar expression for Q ', t ,

K and L respectively, by replacing P by Q and P “ by P .
Then the directions of descent are, to second order,

SP=-x'^(l+l“^ISI)“ ’(I+x“l3J)......... .....(2 5 )
SQ=-x'^(l+X^^KSK)"’(l+x^KSL)

The inverse in equation (25) may be neglected to 
first order in and to give the more approximate 
result, •

6P = - X ^ ( I + X ^ I S J )  ............................ ( 26 )

SQ=-X^(I+X%SI)
The step lengths X°' and X .are given by the 

expressions,
[d -( 2 a-c ) (2 a ’- c ')]X^=( 2 a-c)b+b’d 
[d/-( 2 a'-c')( 2 a-c)]xP=( 2 a'-c')b'+bd

aiTr(ISJP“ )
b=Tr(IP°')
c=)> [<ik( jl>-<ik)lj>]

ijkl
‘ with similar expressions
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for a', b ' and o' by replacing I, J and by K, L and 
E^ respectively.

d=>  J l.
ijkl

Generally the modified bond order matrices 
obtained are neither idempotent nor have the correct 
traces necessitated by the conditions (2i+).
Idempotency may be restored by repeated application 
of

P=(PS)^(3S"’-2P)
Q=(QS)^'(3S“ ’-2Q)

and the traces
corrected using

P=P+aS"’
Q=Q+bS"^

with
a=(p-Tr(PS))/ÏT 
•b=(q-Tr(QS))/[I 

The steepest descents process may then be 
continued until self consistency is achieved.

3) The Conjugate Gradient Method
4 4In the method proposed by Eletcher for closed

4 5shell systems and extended by Sutcliffe to open 
shell systems for the Restricted Hartree Eock and 
Multiconfigurational Self Consistent Eield 
wavefunctions an approach is adopted which is dependent 
upon the uneonstraining of the parameters to be varied.

The mxp matrix A must satisfy the orthonormality 
condition

where I is the identity matrix
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To 'unoonstrain the minimisation problem an mXp matrix 
'is defined such that

A=X“TJ“    (27)
where U® is constructed in a 

manner to ensure that A satisfies the condition of 
orthonormality

By defining and in a similar fashion for 
B, then the P and Q matrices may be calculated and 
hence the energy. A and B may be obtained by any 
orthonormalisation procedure to give the same energy, 
so that the energy, in Y^ and Y^, is not unique. 
However, as pointed out in the steepest descents method 
as the bond order matrices are uniquely defined so 
are all other properties predicted. Thus the nature of 
the Y- and Y^ obtained is irrelevant and the problem 
of constraints may be ignored.

4 4Hollowing the work of Pletcher for the closed 
shell problem the matrices and are defined as

n%=(TG*8T%)-^'"    (28)

/ The bond order matrices may be written as
+

P=Y%°^Y^  (29)

Q = Y % ^ Y ^
with

=(Y& 8Y&)"'  (30)
and similarly for .

If a change in Y°̂  to Y°'+SY^ is made then is 
changed by Neglecting terms higher than first
order in SY^
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m“+£m“=(y“ sy“+Sx“- sx^+x®- ssx“)“

= (l-M“ e°’)M“’ .  (31)
+ + 

e°^=8Y^ SY^+Y®' SSY°^ .

Thus from (31),

The change in P can he obtained as
+ + + 

gP=Y^M°^SY°^ + 6 Y % ^ Y ^  + Y % M V
+ • , +

=X“m “s x “ (I-SP)+(1-SP) £X°‘m“X°’ .. .(32)
and similar expressions may be

derived for SM^ and S Q .
The change in the energy is then,

SE= Tr(p“SP)+Tr(P^SQ),

= 2Tr(P“X°'M°'SX“ (l-SP))+2Tr(P%%^Sx‘̂ (I-SQ))

=2[(i-sp)p“x“m“] ;sx“+2[(i-sQ)p^x%‘̂] :sx^. .(33)
where the colon I represents 

summation over two suffices. By virtue of the relation
ship between the gradient VE®" (or VE^) and the 
increments in Y^ (or Y^) from equation (33),

V E °̂ =2 ( I - S P  )
................ (34)

VE*^=2(l-SQ)P%%l^
and the complete gradient of 

the energy is given by the mx(p+q) partition matrix

VE=(VE“ :7E^) 
and similarly,

x=(xG:xP)
With the definition of the linear parameters Y 

and the gradientS7E the .method of conjugate gradients
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42proposed by Pletcher and Reeves may be used. The

4 3Pletcher and Powell method is excluded as the 
storage of the inverse Hessian matrix during 
computation is necessitated.

Considering a general quadratic function f of 
n variables in the form,

f=f o+<a 1 x>+j-<xl G| x>  (35)
yhere G is the Hessian matrix 

of second derivatives.|x^>,i=0,1,2 .. are successive 
approximations to the minimum jx>. The gradient \ g^> 
is

]g^>=la>+G)x^>  (36)
The step from !x^> to is defined in the

conjugate gradient approach by
<Si+li Pi>=0  (37),

.......... ...(38)
where is a scalar 1

and |p^> is some specific direction from a line through
x^>.

Repeated application of (38) results in
n-1

x„ >= 1X ̂ . n >+ >  ’ X_- ( P-* > : 0^ j.^n-1
F l

and hence
n-1

■J'

By forming the product of
(39) with |pj>,

n-1
< g j  P 4 > = m > ^ i < P i i  G/p^>  .(40)

i=j+l ^ J
Prom (40) if

<Pj_lG|Pj>=0 ; i/j ...... (41)
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then
<&n|Pj>=0

and since IPo>,IPi>..'.|P%_i> form
a basis

so that
gn>=0

Thus quadratic convergence is achieved in a 
maximum of n iterations when using a set of G conjugated 
directions. For a non-quadratic function the same 
formulation is applicable but the process will be 
iterative rather than finite and a test of convergence 
is necessary.

As the function and gradient are defined 
numerically G is not explicitly known. In the Pletcher' 
and Powell^ procedure |p^> is defined as

|p.>=-H.|g^>   (42)
where are a

sequence of symmetric positive definite matrices 
constructed such that as the minimum is approached 

tends to G , the inverse Hessian matrix. The 
disadvantage of this method lies in the necessity 
to store the intermediate matrix H. The procedure 
adopted by Pletcher avoids this by generating 

|Po>;IPi>''' such that 1 Pj_+q> is a linear combination
of ( and lPo>,IPi>, |p^> which satisfy the
orthonormality condition (4 1 )

The equations are found to reduce to

IP Pj_^  .......(4j?)
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where the scalar 3^ is

Pi=<Si+ll Gi+l>/<Sit Si>
, (1p o > is defined as -|go> 

so that initially a steepest descent is taken).
In summary is given by equation (38);

|g%^^> and hence |Pj_^q> are calculated and the cycle 
repeated. in equation (38) is defined such that 

is the minimum position in the function on a 
line through | x^> in the direction |p^>.

The three approaches to minimisation, matrix 
diagonalisation, steepest descents and conjugate 
gradients, are written into a computer program in a 
manner which allows unrestricted interchange between 
any of the techniques when it is felt that such a
switch will increase the rate of convergence.

.

• V I . Restriction of Spin Contamination

The methods described are used to minimise the 
energy in the Unrestricted Hartree Pock formulation 
and then a single annihilator applied to the UHP
wavefunction

The energy after annihilation

-^s+l^UHP
2

2as S commutes with the 
spinless Hamiltonian. .Expression (44) is difficult to 
evaluate and for this reason it is assumed that A^^^
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is idempotent so that

^ l^s+l4faîP^   (45)
^%Hpl^s+l'PuHP^

As the annihilation is achieved after functional 
minimisation, and infact only a single annihilator is 
used, there is no guarantee that the errors in the 
method are small. Generally the necessary conditions 
for small errors, that all coefficients c^^^ are small 
for i>2 in the equation

^ ^ U H P = ^ ^ s + i ^ s + i  ...............
are satisfied and this ■ 

fact is responsible for the use of the approximation. 
The acute sensitivity of the <S^> value to the 
coefficients can be remedied by minimising the

4 6function
e=oE.jj^p+( l-a)<S  (47)

where & is a scalar in the
range 0^a<l, rather than minimising .

Experience has shown that casés do arise when
2the expectation value of S, even after annihilation,

is unusually high. These cases are due to severe
contamination from spin states of multiplicity
(2(s+i)+l), for i>2, and for this reason the function
(47) has been used. The improvement’ obtained in the

2expectation value of S , however, is achieved at the 
expense of a higher energy.
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V I I . The Calculation of Hyperfine Coupling Constants 

In the electron spin resonance technique the
4 7spin Hamiltonian considered is generally that 

involving coupling of the electrons and the nuclei and 
may he expressed as

Ç  ... (48 )

where i and N refer 
to the electrons and nuclei respectively and is the 
spin of the i^^ electron and I^ the spin of the 
nucleus, g^ and ĝ  ̂are the electronic and nuclear g 
values, and 3^ the electronic and nuclear magnetons. 
Tĵ  is a hyperfine tensor which can always he reduced 
to diagonal form by a suitable choice of axes, these 
axes being referred to as the principal axes.

The tensor T^ may be separated into two 
components

........ *......(49)

where T^ is a traceless 
tensor and represents the purely anisotropic 
contribution to the hyperfine tensor and (8n/3)6(r^) 
represents the isotropic contribution (I is the unit 
tensor).

Thus,

}~{=Xi+)i2

}-{i=8ngg3g .... (50)

K2=Se3e T̂ -Ijj  (51)

The isotropic or Permi contact t e r m r e p r e s e n t s  
the energy of the- nuclear moment in the magnetic field
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produced at the nuclei by electric currents 
associated with the electrons. As a contact term the 
interaction can only occur when the electron has 
finite probability of being at the nucleus, that is, 
for electrons with s orbital character.

The hyperfine coupling constant a^, for nucleus 
N, may be defined from (50) as

8—^ng20gV^kp(r^)  (5 2 )

where is the gyromagnetic 
ratio of nucleus N and p(r^) is the value of the spin 
density function at nucleus N.

The anisotropic or dipolar t e r m m a y  equally 
be defined as

X s ,  representing the quantum mechanical 
equivalent of dipolar coupling, is the interaction 
between the electron and nuclear magnetic moments. For 
a completely spherical environment the anisotropic 
term averages to zero.

The elements of T^ may be written

1]J|-( kl ) = ( r|.6^1-3kl )/r|.

where k,l=x^,y^ or z^

' Defining the matrix (N),

where are the basis 
functions. Then the anisotropic coupling constant,
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B^i (N), for nucleus N, is

Bj^l(ir)=-gePe%Vr(ajjl(N)(P-Q)) .... :.(53)
k,l=x,y,z 

where (P-Q), the difference 
of the bond order matrices, is the spin distribution 
of the odd electron.

As the anisotropic hyperfine coupling tensor 
B(N) can always be diagonalised the anisotropic values 
are reported for the diagonalised matrix as B^(N), 
By(N), B^(N) along the principal axes X, Y and Z. In 
the same way that the isotropic coupling constants 
give an indication of s orbital character the 
anisotropic give an indication of p (or d) orbital 
character.

As hyperfine coupling constants are expressed in 
terms of the applied magnetic field, the quantities a^ 
and B(N) must be obtained in the appropriate units - 
generally Gauss.

By inspection of the expressions for the 
isotropic term and the anisotropic tensor it can be 
seen that^ the former presents a trivial problem 
whereas the latter is less trivial. The difficult • 
nature of the anisotropic integrals has limited the

4 8 , 4 9number of theoretical studies to a very few cases.
5 0Silverstone and Todd have recently derived 

analytical formulae, applicable to the calculation of 
the general anisotropic integral, over Slater type 
orbitals. This represents the first analytical 
analysis of the general three centre integral over a

5 1basis. Por Gaussian type orbitals Kern and Karplus
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have reported an expression for the integral over s 
type Gaussian functions by using the Gaussian transform 
method

=l7r2(lA)+k"’6(x) ; q=x,y,z

General analytical formulae for the anisotropic 
integrals over Gaussian type orbitals, however, have 
not been reported.

Vila, Analytical Formulae for Anisotropic Integrals 

The analytical derivation of integrals of the
form

<ap^(e)>=<gj^lapq(C)lg3> ..............(54)

are required where 
g^ is a Gaussian centred at A (with coordinates A^,

Ay, Ag)
 ̂ 1. m. n. -a.rz

■ ^A^^^A^A ^A '^A ® =(A,aj^,lj^,m^,n^) .

. =A==-A% 

' ''A=''M+^A
is the normalisation constant; are

non-negative integers. Similarly

ëg— ( ̂ , cCjg, A-g f , n^ )

for a Gaussian centred on
B (with coordinates B »B ,B ) and ,X y z .

apq(C)=3Pq-^c4q

p,q represent x^,y^ or. z^
(=z-C ) and centre' C has coordinates C„,C ,C and x,y,z z X y z
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are . referred to the principal axis system.
The method used to obtain analytical expressions 

for the integrals relies upon the use of the identity
52suggested by the work of Singer, 

is=8(3^4)-’

Using this transformation the integrals may be 
expressed, after considerable manipulation, in the . 
form

<apq(c)> =A[3Wp^-W&p^]   (55)
where p,q=x,y,z and

W = W^+Wyy+W22
o p

A  =2 (a^+a3)exp(-AB /('-

ÂË =(A^-B^) +(Ay-By) +(Ag-Bg)

The W's in (35) are defined as
0 0 0   1 0  0  2 0 0 0
° o " " 4 0 P ^ V  1 0 Q 0 0

0 0 0   0 1 0-  2 0 0 0
^ y y = 2 V o  1 0 “ 4 C P y V o  l! 0"*’^ l ^ y 7 ’o 0 0

0 0 0   0 0 1  2 0 0 0
W z z = 2 V o o i - 4 0 P 2 V o o i + 0 P g V o o o

1 1 0   0 1 0   1 0 0     0 0 0
1 o - 2 0 P ^ V o i o - 2 0 P ^ V i o o + O P ^ O P y V o o o

1 0 1 - 0 0 1   1 0 0     0 0 0
W x z = 4 V i o i - 2 0 P x V o o i - 2 0 P 2 V i o o + C P x C P g V o o o

j ..(56)

0 1 1   0 0 1   'o 1 0     0 0 0
y2=UVo, ,-2CPyVooi-2CPJoio+CPyCP2Vooo

where, for example.

Cfx=Ox-?x

P^=°'a X ’̂“B®x
“A+“B
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In equation (56) the V s  are defined by the 
general expression

S 1 S 2  S 3  V—" nr S ̂ t ■)

12^2

Brr'p:'A „ /(-i)^p^(Y-cpb ...(57)

where
r=ri+r2+r3 , i=ii+i2+i3 , s=s,+S2+S3

t=t,+t 2 +t 3  , v=i"2r+u+2-s

and the gamma function
F (g)=J u^^e"^^ du V •̂0,

The general form of the R ’s as given in equation 
(57) is .

^ir ̂ ^A » » ̂ q » ®q ’ *̂ q ’  ̂"̂ î ̂ ^A ' ' ̂ ^q ’ ̂ ^q ̂

X A S Ü Z l A î ïA Z  ...<58)
r[(i-2r-s)!

y where

Y=aA+aB

e=l/(UY)

In equation (57) the limit of each summation 
is a function of the R which is being summed. Thus, 
using the terminology of equation (58), i is an 
integer within the range s to (k^+k^) and r is an
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integer within the range 0 to ( i - r s ) / 2 . In the
derivation of the V ’s the infinite terms which arise

000 000 000
in ViooV Voi 0  Vooi have been neglected since in
the complete integral'for <a^^(0)> they cancel out
exactly.

The formulae given- are general for any Gaussian 
type orbital. In the application of the integrals it 
is convenient to have special formulae for the s- and 
p-type Gaussian functions. Using the terminology of

1 5d e m e n t i  and Davis
0 0 _  0 0 0 0 

W i ^ r s  I

^ J 

m J

J
where

I°°=CP.CP^P3(t)

I^o=I°^=CP. CP.CB^ P 3 ( t ) - ^ ( C P ^  Sijj)P2 (t)

P ^ = C P ^ C P  .CB^CP^Pj. (t )

-sl^CCcPjCP.Sj^ycp.cPj^S.ycP.cPig.ycp^

+°^jGPi6ik)F3(t)-2gY(&ijSki+&ikSji+5jkSii)F2(t)] 

Uexp(-ajj^agAB /(aya-g))

S =-S (Ajj-Bjj.)a-g/(ayag)

=-S°\^/a^

[&kl/ ^ (“a-̂ “B ) - ( ) a.j^a^Aa^+a^fls°°
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CPi=CyP.

Cf'=(C%-Px)'+(0y-ry)'+(G2-P2)'

Py(a^Ai+aBBi)/(a^+a 3 ) -, (ij,k,l=x,y orz)

t=SiPC

S,=aA+aB

we have the following special formulae with 

<SAla..(C)ls3>=3W°°-W°°g..

<si|aij(G)|PkB>=3W?^-W° ‘Oij

The matrix a„_(c) of integrals over the basis ~pq
can then be used in equation (53) to give the
anisotropic tensor B(C). Diagonalisation then gives

.. B (C), B (O) and B (C) and the principal axes; with ,/ X y z
the calculated isotropic hyperfine coupling constant
a« for centre C the coupling constants A^(C), A,̂ (̂C)• o X y
and Ag(C) for the complete operator defined in equation 
(49) may be obtained

Aj_(C)=a^+B^(C) ; i=x,y, or z
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Vllb. Vibronic Contributions to the Hyperfine Constants

Experimental data for the electron spin 
resonance technique indicates that, in some systems, 
there is a marked dependence on temperature. This 
effect is believed to be due to a vibronic contribution 
augmenting the hyperfine coupling constants in the

5 3system . Discrepancies between the rigid theoretical 
model used in the calculation and experiment suggests 
that some estimate of the vibronic contribution should 
be made when possible.

Assuming the simple case when the zero point 
energy vibrational modes are executing simple harmonic 
motion

t = ( a / n ) S " ^ ' / 2   ,........(59)

where x is the 
displacement from the equilibrium configuration along 
a normal coordinate.

a=2p,E^ib

p, is the reduced mass and E^^^ 
is the zero point energy for the vibration

E ĵ_-g=( v+i*) (k/p. ) •; v=0,l,2...
k is the force constant

of the vibration defined by

E=E
E 0  and E are the UHE energy 

at zero and non-zero displacement respectively.
The general variation of the hyperfine coupling 

constant a with x is
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..............(60a)

If it is assumed that terms with n>2 can he" 
neglected

a=Co+ciX+CgX^  (60)
the term n=l disappears when 

considering an harmonic oscillator. Cq is the 
calculated coupling constant at equilibrium 
configuration. The observed value <a>, using equation 
(6 0 ) and the wavefunction in (59), is given as

<a>=co+G 2 /( 2 a)  (6 I)

This formula, (61), may be used to give an 
estimate of the vibronic contribution if the harmonic 
approximation is reasonable.

Conclusions

The Unrestricted Hartree Eock method with 
single spin annihilation after minimisation has been 
formulated in the framework of the linear combination 
of atomic orbitals approximation. An adequate 
representation of the atomic orbitals may be obtained 
through expansions of Gaussian type orbitals.

Objections levelled against the UHE method on
2the grounds that an eigenfunction of 3 is not

1 2 , 5 4obtained and correlation is not correctly reproduced 
are not completely removed by the action of a single 
annihilator. However this annihilation generally 
results in only minor contamination of the pure spin 
state and,in fact, if electron correlation is dominant



37

none of the methods Used for open shell systems are 
satisfactory.

The necessary condition to test the value of 
any method used to predict a molecular property is an 
accurate wavefunction. In the ah initio method this 
accuracy can he achieved hut generally some degree of 
optimisation, of the basis and the molecular geometry, 
is required. The criterion of optimisation has rarely 
been applied in ab initio calculations, and it may be 
conjectured that, for this reason, the relative value 
of the methods has not been established. The UHE method 
with single annihilation is developed in this thesis 
and the results show that the approach can work and in 

fact give very satisfactory results in most open 
shell systems studied. The importance of optimisation, 
where feasible, is also demonstrated.



CHAPTER 1
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Introduction.

The Unrestricted Hartree Eock (UHE) method is 
applied, in this thesis, to the explanation of the 
observed hyperfine coupling constants in species with 
an unpaired electron. Expressions for the energy and 
other relevant quantities of a molecular system have 
been derived in Sections I and II. The adoption of the 
ab initio approach ensures an adequate description of 
the electron distribution and the application of a 
single annihilation, after minimisation of the UHE 
energy, removes, although not entirely, the 
contamination to the pure spin state, which results 
since the wavefunction is not an eigenfunction of the 
S^ operator.

The method used to minimise the UHE energy is 
threefold; Roothaan's repeated diagonalisation method, 
McWeeny's steepest descents method and a modification, 
for use on UHE wavefunctions, of Eletcher's conjugate 
gradient method ; these procedures are described in 
Section V. The requirements of minimisation are such 
that the energy is the lowest possible subject to an 
orthonormality constraint on the molecular- orbitals.
An additional requirement, for practical applicability,

5 5is a reasonable rate of convergence. Sleeman has 
compared the effectiveness of the procedures of Roothaan 
and McWeeny, using the Open Shell Restricted Hartree 
Eock method, drawing a number of conclusions which 
are also applicable to the Unrestricted Hartree Eock 
method.

A phenomenon displayed by the Roothaan method is
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oscillation, and for some functions divergence, of the 
energy. Sleeman has shown that extrapolation procedures 
which increase the rate of convergence in well 
behaved cases do not necessarily remove the oscillatory

5 6behaviour of the function. Berthier and Millie have 
shown that the convergence problem in the diagonalisa
tion method,at least for the open shell case, is 
associated with the sequence of occupied and virtual 
orbitals. By selecting the correct orbitals at each 
iteration no difficulties arise in the minimisation. 
However, the applicability of this approach is 
limited since, particularly for large molecular systems, 
how to select the right occupied orbitals is not 
obvious.

The method of steepest descents calculates the 
incremental change in the approximate density matrices 
along the negative gradient of the energy at the point 
which reduces the energy most. It is possible to '■ 
estimate optimum multipliers, of the gradient 
vector so that the density matrices are changed by 
these amounts. Sleeman has shown that a good starting 
approximation is necessary when using the McWeeny 
method. However, even,after providing improved 
density matrices, for example, by initial use of the 
diagonalisation method, convergence can be slow.
Sleeman has also demonstrated that the first order 
expression for the x multipliers can be inadequate, 
resulting in divergent behaviour. The method of 
McWeeny assumes that the variables in which the 
energy is defined are independent; however they are 

not’, being restricted by the orthonormality conditions.
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Generally optimum values of the multipliers, X, 
which also -satisfy the orthonormality conditions 

. cannot he found, leading to the necessity to renormalise 
at each iteration so that the energy may he recalculated, 
Since the next iteration takes into account 
information from the previous iteration the modification 
of the variables, by renormalisation, reduces the 
effectiveness of the minimisation.

42The Eletcher method finds the minimum of the 
energy on a line though the energy gradient in the 
conjugate direction. The approach, unlike that of 
McWeeny, is able to make full use of the information 
from the previous iteration by working in variables 
which are independent. Thus, from Section V 3), the 
variables considered are Y where,

A=YU  .(1)
and U is defined as

ü=(T‘̂ Sï)“ ''̂*-  ..,.(2)

SO that A satisfies the 
orthonormality conditions.,This facet, using 
independent variables, allows for a much enhanced 
convergence over the McWeeny method as a more 
efficient minimisation procedure, such as the 
conjugate gradient method, can be used on unconstrained 
problems.

The modifications to the equations of Eletcher, 
for application to UHE wavefunctions, derived in 
Section V 3), were programmed in the manner suggested

4 4by Eletcher . A comparison of the three minimisation 
procedures was then made using, as an example the CN
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radical.

Results and Discussion.

In molecular calculations the initial 
approximation to the molecular orbitals, and density 
matrices, is obtained by the diagonalisation of the one
electron Hamiltonian matrix. The convergence studies in
this Chapter are concerned with the efficient means 
of minimising the energy from this starting point. In 
most,cases the Roothaan method is convergent and may be 
used exclusively, since the iteration time is less 
than half that of the other' two methods. Difficult 
cases, where the Roothaan method does not converge 
initially, are known and the minimum must be 
approached by another method.

5 7Calculations on the CH radical have been done
using a minimal basis set of SCR atomic orbitals
represented by a linear combination of Gaussian type
orbitals in their fully contracted form; the 9s type

2 1and 5p type of Huzinaga were used for carbon and 
nitrogen. The minimisation of this radical has 
proved difficult and therefore suggests itself as a 
good test case. In figure 1 and 2 the electronic 
energy of CH (at 2*2 and 2*0a.u. respectively) has 
been plotted as a function of time, showing the 
convergence properties: of the minimisation procedures 
(commencing with the orbitals obtained from the 
diagonalisation of the one electron Hamiltonian matrix).

For the CH radical at 2*2a.u. the Roothaan 
method minimises on to two values, oscillating 
infinitely between them (curve (iii)) and never
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reaching the trne minimum. The superiority of the 
Fletcher method is apparent in this case (curve (ii)). 
The poor convergence shown by the McWeeny method 
(curve (i)) has been associated with the inner shell 
molecular orbitals, which cause large variations in

5 8the excitation energies. Hillier and Saunders have 
suggested that this defect is corrected by their 
energy weighted steepest descents method. The Roothaan 
method is convergent for the CM radical at 2«0 a.u. 
(figure 2), however, the Fletcher method is initially, 
superior.

Conclusions.

Although only one example has been examined, 
tentative conclusions can be drawn. The Roothaan 
method, with or without incorporating extrapolation 
procedures, is incomparably faster than any other 
technique near the energy minimum, and this method^ 
is reserved exclusively for that situation. The 
steepest descents method appears to be redundant when 
the conjugate gradient approach is available, since 
the Fletcher method enables the minimum to be approached 
much more efficiently. The method of minimisation 
suggested from the results is a combination of the 
Fletcher and Roothaan procedures; initial use of the 
former and then application of the latter,- reaching 
the true minimum without use of McWeeny’s method.
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Introduction,

The isoelectronic hydride series, B H 3 ,  CH3 and
p+ 5 9 „ 6  6M H 3 , has been the subject of many investigations. '

The relatively small values of the isotropic hyperfine
coupling constants of the hqavy atoms has led to the

. 60conclusion that the species are planar tt radicals.
The out-of-plane vibration is also generally
considered to augment the heavy atom coupling 

5 3 > 6 7 > 6 8constants, although other explanations have
6 9been suggested.

The series presents a good test of the ability 
of the ab initio HEP method, with spin annihilation 
after minimisation, to reproduce, non-empirically, 
observed hyperfine coupling constants, particularly 
those of the heavy atoms, for which it has been

70
suggested the UHF approach is inherently inaccurate.'
An important aspect raised by these calculations is 
the importance of the interaction between the radical 
and its environment. It is the implied assumption of 
many qualitative interpretations for the rationalisation 
of observed hyperfine coupling constants in chemical 
terms that the environmental interaction is small. 
Whether,in fact, the interaction is small for charged 
species in charged environments may be indicated by 
theoretical calculations, where the radical is taken 
in isolation,as, for example, in the case of the MH'*’

7 1radical. A study of the effect of the environment 
on the e.s.r. spectra of trapped radicals has already

6 9 ; 7 2 )73been initiated from an experimental viewpoint.
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Method.

The ab initio HHF method in the l.c.a.o.-m.o.
approximation with spin annihilation, as described
earlier (Sections I and II), was used. A minimal basis
set of orbitals was represented by Gaussian expansions
in their completely contracted form; 9s-type and 5p-
type for nitrogen, carbon and boron and 6s-type for

2 1hydrogen as given by Huzinaga. The orbital exponent, 
a, of the hydrogen atomic orbital and the bond length, 
r(X-H), were both optimised to an accuracy of 0-05, 
assuming in each case the radical was planar. The 
results given were calculated from the UHF 
wavefunction after annihilation of the contaminating 
quartet spin state and are expressed in atomic units 
(a.u. where la.u.=0«529l67l, la.u.=27*06eV.) except 
for the hyperfine coupling constants which are 
expressed in Gauss (G).

Mon-planar nuclear configurations were studied 
by moving the heavy atom perpendicularly out of the 
plane of the three fixed hydrogen atoms; no attempt 
was made to optimise the hydrogen orbital exponents or 
the bond lengths for the non-planar configurations.

The vibronic contributions to the coupling 
constants were estimated in the manner outlined 
previously (Section Vllb) assuming an harmonic 
oscillator, using

<a>=Co + 02/(2%)  (1)

C q is the calculated 
hyperfine coupling constant at equilibrium, <a> the 
observed coupling "constant,
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a = 2p,E
p, is the reduced mass. E, the 

zero point energy, is evaluated from the force constant 
k of the vibration which is calculated from the 
variation of the UHE energy along a normal coordinate. 
The coefficient C2 is estimated from the variation of 
the coupling constant along a normal coordinate.

Only the a\ stretching mode and a^' bending 
mode are considered, although the latter seems to be 
the only vibrational mode which can significantly 
affect the coupling constants. Because of the 
difficulties in obtaining reliable estimates of % and 
C2, calculations were made at various values of the 
angle of bending 0 and extrapolated back to @ =0% In 
this way it was considered that some compensation 
would be made for the non-optimisation of the bond 
length and the hydrogen orbital exponent for the 
non-planar configurations.

' Objections to the use of formula (l) may be
raised for vibrations with small force constants or
when the approximations give a poor representation of
the coupling constant for large angles of bending. An
alternative would be to use numerical integration as

6 8suggested by Beveridge and Miller.

The Ammonium Radical Cation.
6 6 6 5Hyde and Freeman and Cole have observed 

electron spin resonance spectra for X-ray irradiated 
ammonium perchlorate crystals at room temperature 
which were interpreted to arise from the radical ion 
MHy, with isotropic hyperfine coupling constants
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aĵ =18«lG, .ajj=-25G and a^=19*3G, ajj=25*8G respectively
6 9Rao and Symons on ^-irradiation of ammonium

perchlorate found the same radical with a^=19'3G,
ajj=25*8G at 77 and 293K. Evidence that the‘ radiedI'Vras
undergoing restricted-rotation limited mainly to an

6 6in-plane motion , suggests that the interaction with 
the environment may be sufficiently small for the 
radical to be regarded as existing in an unperturbed 
state.

The theoretical results for KH3 are presented in 
Table 1 . The energy after annihilation of the quartet 
spin state of the UHE function for the optimised 
planar configuration (figure l) with hydrogen orbital 
exponent of 1*6 and bond length of l*95a.u. was 
calculated to be -55•85623a.u. The hyperfine coupling 
constants were a^=fO"57G and ag=-22*65G. The agreement 
between experimental and theoretical proton coupling 
constants is satisfactory but the theoretical nitrogen 
coupling constant accounts for only 55^ of the 
experimental value. The hyperfine coupling constant of 
nitrogen may be depressed by an inadequate representa- 
tion of the electron density at the nucleus, as well as 
the neglect of orbital contraction on bond formation.
The magnitude of the deviation from experiment, 
however, suggests that consideration should be taken 
of the contribution of the zero point energy 
vibrations to the coupling constants. The vibronic 
contribution should considerably increase a^ while 
leaving a^ relatively unaffected.

. A force constant k=0«1136a.u. (a .u .=1 •544xl06gs”'̂  )



TABLE 1.
50

bond
length
(a.u.)

hydrogen
orbital

exponent

bending
angle
8 "

total
energy
(a.u.)

coupling 
constants(G)

I
<82>

1.80 , 1-40 0 -55*79987 11*67 -17*76 .750018
2.00 1.40 0 -55*84325 13*10 -20.40 .750046
2.20 1.40 0 -55*82179 14*43 -24*22 .750125
1.80 1.60 0 -55*83262 9*737 -20*86 .750010
2.00 1.60 0 -55*85422 10.82 -23*36 *750023
2.20 1.60 0 . -55*81273 11.69 -26.92 .750056.

' 1.80 1.80 0 -55*83769 7*929 -22.56 .750005
2.00 1.80 0 —55 * 83908 8.662 -24*58 .750011
2.20 1.80 0 -55*77896 9*095 -27*32 .750022
1-90 1.55 0 -55*85126 10.83 -21.39 *750018
1-95 1.55 0 —55 * 85500 11.12 -22*06 .750023
2.00 1-55 0 -55 *85426 11*39 -22.79 .750028
1-90 1-60 0 -55*85383 10.31 -22*00 .750015 ■■
1-95 1.60 0 -55*85625 10.57 -22*65 .750019 *
1.90 1.65 0 -55*85472 9.794 -22.51 .750013
1.95 1.65 0 -55 * 85584 10.03 -23*13 -750016
2.00 1.65 0 ’ -55 * 85254 10.26 -25*82 .750019

' 1.95 1 • 60 2.5 -55*85584 11-26 -22.37 .750019
1.95 1.60 5 -55.85455 13*30 -21*56 .750018
1.95 1.60 10 —55 * 8R869 20.98 -18*50 *750017

*marks minimum

Theoretical Results for EE+
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a=l

2.1

Summary of the calculations o n ‘the Kdj radical;
 , variation of the total energy after annihilation
with bond length for those values of the hydrogen 
orbital exponent a as indicated.
 ; estimated minimum total energy after annihilation
as a function of bond length.
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was evaluated for the out of plane vibrational mode,
This compares with k=l*372a.u. for the symmetric stretch 
vibrational mode. The value of Cg in equation (l) was 
found to be 96*15 for nitrogen (see figure 2) which 
gives

a^ = 10*57 + 6*55 = 16*920

Similarly the inclusion of the vibronic 
contribution for hydrogen gives ag=-20*020 where C2 is 
59'82.

Hence the inclusion of the vibronic contribution 
permits 88^ of the experimental coupling constant of 
the nitrogen to be accounted for theoretically. The 
almost linear variation of the hydrogen and nitrogen . 
calculated coupling constants for the symmetrical 
stretching mode (figure 3) together with the high 
force constant, and hence large a in equation (]_),  ̂
demonstrates that this vibration makes negligible - 
contribution to the observed hyperfine coupling constants

The Methyl Radical.

A number of experimental and theoretical studies
are reported for the OH3 radical. An early determination 

6 2by Cole et al , of the carbon isotropic coupling
constant, a^=hlGr, showed, by the relative smallness of
its value, that the radical is planar. Experimental

7 4 .values of ag=38G- and ag=-23G seem to be generally
true, in solution and matrix' environments; however
these hyperfine coupling constants are temperature
dependent. Although ea leu la t ions on CU'̂  have predicted

75reasonable values for the proton coupling constant 
the values found for the carbon are very highI
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Importance has been attached to the effect of the 
out of plane vibration on the hyperfine coupling 
constants, a suggestion originating from Schrader and

5 3Karplus . The temperature dependence is well explained
6 7)68by including the effects of this vibration.

74.Fessenden has suggested that a rigid planar model 
for the methyl radical may have aQ=28G, the other 
lOG- .being due to the out of plane vibration.

The results for the calculations on CH3 are 
summarised in Table 2 . The optimised planar 
configuration has an energy of -39 •5b-28a .u. for a 
bond length of 2*05a.u. and hydrogen orbital exponent 
of 1*40 (figure h). The isotropic'hyperfine coupling 
constants are aQ=27"33G and ag=-23"39G for the rigid 
planar configuration. The contribution of the out of 
plane zero point vibration was estimated in the same 
way as for HE3. The out of plane vibrational force 
constant was calculated to be k=0•Oh05a.u.,This is 
much less than,that calculated for MÎ3 (k=0*1136a.u. ) 
thereby accounting for the marked temperature dependence 
shown by OH3 but not HH3. The symmetrical stretching 
vibrational force constant, k=l*292a.u., is much 
higher than the out of plane force constant and makes 
negligible contribution to the coupling constants.
The coefficients Cg were found to be 26i|*8 for carbon 
and 35"12 for hydrogen (see figure 5) giving 
increments of 27-31G- and 3*960, for carbon and hydrogen 
respectively, to be added to the planar radical 
isotropic coupling constants to account for the out of 
plane vibration. The theoretical estimates of the
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bond
length
(a.u.)

hydrogen
orbit^

exponent

bending
angle
0 "

total
energy
(a.u.)

coupling 
constants (G- ) <S2>

1*80 1.20 0 -39*42928 25*76 -15*55
!

.750017
2.00 . 1.20 0 -39*51166 31*72 -18.04 .750047
2.20 1.20 0 -39*52256 38.70 -21.69 .750139
1.80 l.RO 0 -39*48438 20.80 -19*58 .750010
2.00 l.RO 0 -39*54090 25*96 -22.46 .750026
2.20 l.RO 0 -39*52824 31*74 -26.79 .750074
1*80 1.60 0 -39*49501 16.74 -22.15 .750005
1.90 1.60 0 -39*52256 18.87 -23*48 .750008
2.00 1.60 0 -39*52818 20.94 -25*13 .750013
2.10 1.60 0 -39*51700 23*07 -27*15 .750021
2.00 1.35 0 -39*53818 27*35 -21*52 •■.-750030
2.05 1.35 0 -39*54161 28.78 -22.42 *750039
2.10 1.35 0 -39*54131 30.27 -23*41 .750051
2.05 1 -kO 0 -39*54284 27*33 -23*39 *750033 *
2.10 1 -kO 0 -39*54107 28.74 -24*42 .750043
2.00 1.45 0 -39*54099 24*63 -23*30 .750022
2.05 1-45 0 -39 *54146 25*91 -24*25 .750028
2.10 1.45 0 -39*53824 27*23 -25*28 .750037

2.05 ' 1.40 2 -39*54273 28.68 -23*21 *750033
2.05 1.40 5 -39*54216 35*44 -22.13 *750031
2 .05' 1.40 10 -39*53978 57*85 -18.84 .750025 ‘

•î«-marks minimum

Theoretical Results for OH3
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r(G-H)/(a.u.)
Summary of the calculations on the CH3 radical. 
(See also caption to figure 1 .)
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observed isotropic hyperfine coupling constants then 
become aQ=5h"6h& and 8j^=-19 •43G-. Although the results 
are not in as good agreement with experiment as those 
for EE 3  they are still reasonable. The trend of the 
temperature variation of both a^ and a^ is correctly 
predicted since the effect of increased temperature 
is to increase the increment added to the planar 
radical.

The predicted variations of a^ and a^ with
bond length (in the a Î stretching mode) are given in
figure 6 . For a given hydrogen orbital exponent the

6 8variations parallel those of Beveridge and Miller 
using the IWDO method. If the optimum orbital exponent 
at each bond length is used â . becomes almost independent 
of the OH bond length whereas a^ becomes more sensitive.

The Borohydride Anion.
5 9Symons and Wardale first briefly reported the

B E 3  radical by ^-irradiation of KBH^ and later elaborated
6 0on the reasons for the assignment. Better spectra

6 1were obtained by Sprague and Williams using
tétraméthylammonium borohydride over a wide
temperature range. The two investigations are only in
qualitative agreement in that the hyperfine coupling
constants differ significantly, a^=2U*2G-,a^^=l6 OG-*

6 1and 8^=20*7G,3jj=15 *1G. This is probably an 
environmental effect since the hyperfine coupling 
constants are independent of temperature between 8 h 
and 3 0 0 k!

The results of the ab initio UHF calculations

6 0
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are given in Table 3. The optimum planar configuration, 
at a bond length of 2-35a.u. and hydrogen orbital 
exponent of 1*15 (figure 7), gives hyperfine coupling 
constants of a^=22*hlG and ag=-20'13G. Also reported 
in Table 3 are calculations on the bent BH7 radical, 
in terms of angle of bending from planarity. The 
latter indicate that the stable configuration is when 
BH3 is bent out of plane by about 9°, in contrast to 
the planar configurations calculated for OH3 and HH3, 
figure 8. A qualitative argument, stressing the 
differences in electronegativity of the atoms of the

79_8 1bond, may be used in explanation; in the case of
BH% the electronegativity (between the boron and 
hydrogen) is only 0-1 and in the opposite sense to 
that in OH3 and HH3. The species is therefore 
predicted to be pyramidal whereas OH3 and HH3 are 
predicted to be planar. The potential barrier 
separating the planar and pyramidal conformations is 
probably too small to make them physically . 
distinguishable, in which case the observed 
conformation will be planar.

For the bent geometry a^=h5G, ajj=-l6«5G, the 
former of which is far too large. If it is accepted
that OH3 and KH3 are planar radicals then'; the similar

82 _ _U value\ for BH3 indicates that BH3 is also planar.
However, even for the planar radical the calculated 
a^(=22«hlG) is too large, especially when consideration 
is taken of the contribution the out of plane zero 
point energy vibration will make to the hyperfine 
coupling constants. It is difficult to estimate this 
vibronic contribution, owing to the double minimum in



TABLE 3. Theoretical Results for BH3
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bond
length
(a.u.)

hydrogen
orbital

exponent

bending
angle
G'

total
energy
(a.u.)

coupling 
constants(G) <82>

^B
2.20 1.00 0 -26.28132 21.90 -13-93 .730034
2.U0 1.00 0 -26.30333 27.14 -13-96 -730133
2.60 1.00 0 -26.30030 33.71 -18*76 .730344
2.00 1.20 0 -26.27049 13-62 -17-21 .730013
2.20 1.20 0 -26.31680 17-93 -19-30 -730033
2.I4.O 1.20 0 -26.31936 22.76 -22.40 *730088
2.60 1.20 0 -26.29324 28/83 -26.91 .730243
2.00 l.i+0 0 -26.26927 11.13 -20.32 .730044
2.20 1.40 0 -26.29334 14-82 -23-21 -730033
2.40 1.40 0 -26.27808 18.91 -27-24 .730076
2.35 1.10 0 -26.32147 23.48 -18*38 *730086
2.1+0 1.10 0 -26.32160 24*84 -19-30 .730109
2.43 ■ 1.10 0 -26.32004 26*28 -20*10 .730138
2.30 1.13 0 -26.32299 21*13 -19-41 .730061
2.33' 1.13 0 -26.32370 22.41 -20*13 -730077 *
2 .1+0 1.13 0 -26.32232 23.73 -20*96 .730098
2.23 1.20 0 -26*32081 19-08 -19-97 .730044

/ 2.30 1.20 0 -26.32243 20*23 -20.70 -730033
2.33 1.20 0 -26.32193 21*47 -21*31 .730070 .

2.33 1.13 2 -26.32374 23 - 66 —19-94 .730076
2.33 1.13 3 -26.32392 30*04 -18*87 .730068
2.33 1.13 8 -26.32410 40-98 -17-11 -730037
2.33 1.13 10 -26.32411 30-19 -13-72 .730030
2.33 1.13 13 -26.32309 77-27 -12*11 .730033
2.33' 1.13 20 -26.31933 106*8 -9-167 .730024
2.00 1.40 3 —26.26866 16*99 -19-71 .730003
2.00 1.40 10 -26.26691 33-22 -17-66 .730003

-«-marks minimum
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the energy curve with out of plane bending, but lOOG- 
would be a conservative estimate. Also the force constant 
will be less than that for CH 3  so that a large 
temperature variation in a^ would be expected, which 
has not been observed.

The calculations which have given reasonable 
isotropic hyperfine coupling constants for E H 3  and 
OH 3  should give a comparable accuracy for B H 3 . That 
this is not the case implies that external effects, 
not large for OH 3  and E B 3 "  ̂ but dominant for B H 3 , 

modify the hyperfine coupling constants of the
I

radicals..The neglect og the interaction with the 
environment would appear to be the most obvious source 
for the discrepancies.

Comparison of the Results of the Isoelectronic Radicals.

Some confidence in the calculations for the rigid
planar radicals is given by the agreement between the

74.theoretical a^ and the estimation given by Fessenden 
(27*550 and 280 respectively). Also it may be considered 
that environmental interaction, if important, places • 
in jeopardy the validity of the force constant 
calculations. Taking the view that the electronic 
contributions are more important than the vibrational 
or environmental effects to the hyperfine coupling 
constants the trends 'calculated for the rigid planar 
radicals should reproduce the experimental trends.

The experimental proton hyperfine coupling
constants increase in order BH%,CH 3 ,HH 3  (-16•5G-,- 2 5 *0G

. 8 3 > a 4.and - 2 5 *9 G) as predicted from the excess charge effect.
Although the optimised hydrogen orbital exponents 
( 1  *15 ,1 *b-0 ,1 • 6 0 ), for the planar radicals, are in the
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order expected from the excess charge effect, the 
calculated proton coupling constants are not (-20-15G-, 
-23*39G-,-22 •65G-). Analysis of the results in Tables 
1, 2, 3 shows that the apparent randomness in the 
proton coupling constants arises because of the , 
influence of two opposing trends.

(i) Selecting a particular hydrogen orbital
exponent, a=l*4, for the radicals and minimising the
energy with respect to the bond length, a
characteristic procedure of many semi-empirical
methods, results in a trend in opposition to that

:
observed experimentally ( - 2 3 * 2 1 G - , - 2 2  • h 6 G r , - 2 0 « 0 i | G - )  .

(ii) By fixing the bond length and optimising 
the orbital exponent the excess charge effect may
be examined in approximate') isolation. Selecting a 
standard bond length of 2a.u. the hydrogen orbital 
exponents are.1*2,l*h,1*6 for B H 3 ,CÏÏ3 ,NH 3  respectively 
and the resulting proton coupling constants (-17"32G, 
- 2 2  • h 6 G r , - 2 3 * 3 6 G r )  are in the order observed 
experimentally.

The inability of the calculated rigid planar 
radicals.to predict the experimental trend implies 
that other factors are dominant. This view is ramified 
when it is noted that the experimental U values for 
the heavy atoms of the radicals are 2*9 (’^B), 3*4 

3*5 whereas the predicted U values of
the rigid planar radicals are 3*2, 2*i\. and 1*8 
respectively.

Any environmental effect will be expected to be 
over-emphasized in these radicals owing to the
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importance, of the out of plane vibration. Some 
justification of the calculated results may be 
obtained by a qualitative consideration of the 
environment. In a neutral host lattice the usual 
molecular interaction forces are expected to increase 
the force constants of the guest radical compared 
with the corresponding isolated radical. Superimposed 
on this effect will be an additional interaction when 
both lattice and radical are charged. Assuming that 
the positively charged environment of B H 3  increases 
still further the out of plane vibrational force 
constant qualitative agreement with experiment may be 
obtained. The overall effect for B E 3  would be a 
considerable increase in the force constant, accounting 
for the temperature dependence,and a smaller increase 
for the neutral C H 3 , resulting in a smaller vibronic 
contribution to the hyperfine coupling constants.
Since E E 3  is relatively unpolarised, in this respect, 
the deduction is less critical, but the implication 
is that a negatively charged lattice tends to decrease 
the out of plane vibrational force constant, that is, 
the environmental effects partially cancel one 
another.

The calculation of the stable geometry of BE% 
as bent is embarrasing. The result implies that the 
environment must have a sufficient effect to force 
planarity. Eowever, even for the optimised planar 
radical the heavy atom isotropic coupling constant 
is too large. If the view is taken that the positive 
environment about BE% induces a bond length and
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hydrogen orbital exponent similar to CH 3  (&=l«h, 
r(B-H)=2a.u.) the radical is found to be planar (see 
Table 3) and the hyperfine coupling constant of the 
boron is in good agreement with experiment.

Conclusions.

The interpretation of the e.s.r. spectra of BH 3 , 
OH 3  and E H 3  is complicated by the out of plane zero 
point energy vibration which obscures an electronic 
interpretation. In addition there is evidence that 
the properties of BH% are seriously affected by the 
environment. Although OH 3  and E H 3  may be treated, 
theoretically, in isolation It appears that the 
environment of BH% must be included in some manner 
if the calculated results are to be comparable to the 
experimental values.

Optimisation of the hydrogen atomic orbital 
exponent and the bond length have been shown to be"of 
considerable importance and, where the practice is 
possible, this optimisation should be attempted if 
meaningful results for molecular systems are to be 
guaranteed.



CHAPTER 3
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Introduction.

The study of unstable radicals trapped in solids 
can, in suitable cases, give information on the 
anisotropic, as well as the isotropic, contributions. 
Some anisotropic information can be gained from 
radicals trapped in glasses, inert gas matrices or in 
polycrystalline powders but the best results are 
obtained from single crystal studies. The radicals are 
generally regularly orientated to the crystal axis so 
that rotation of the crystal can give complete 
resolution of the anisotropic and the isotropic 
contributions.

The separation of the information, given by the 
electron spin resonance experiment, into an isotropic 
and an anisotropic contribution,supplies valuable 
indications on the nature of the bonding and the 
overall structure of the radical. This follows as the 
isotropic, contribution is a measure of the valence s 
atomic orbital participation in the molecular orbitals 
and the anisotropic of the p (or d) orbital 
participation. Using the orthogonality relations

8 5derived by Ooulson , that is assuming the concept of 
atomic orbitals in molecules is not seriously 
invalidated by molecular formation and orbital overlap 
may be neglected, it can be shown that hybridisation 
ratios and bond angles may be estimated from the 
experimental isotropic and anisotropic coupling 
constants.

The evaluation of the expectation value of the 
isotropic, or Eermi contact, term, between an unpaired
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electron and a magnetic nucleus

(8n/3)gggjjPgPjjS.I  (1)
is uncomplicated, 

the accuracy of the calculated isotropic hyperfine 
coupling constants depending on the adequacy of the 
description of the spin density at the nucleus. The 
expectation value of the anisotropic operator

 (2)
presents a less

trivial problem.
The evaluation of the anisotropic term, in the 

l.c.a.o. approximation, is a three centre problem in 
the general case. The one and two centre integrals, 
arising over the anisotropic operator, have been

5 1analysed in several cases. Kern and Karplus have 
suggested using the Gaussian Transform of the field 
gradient operator, for example

. = + ^ S ( r )   (3)

where S(r) is the 
Dirac delta function, and have deduced the general 
expression for the integral oyer s type Gaussian

5 0functions. Silverstone and Todd have recently 
derived analytical formulae for the three centre one 
electron integrals of the operator r^Y™(0,cp) with 
Slater type orbitals, where Y™ denotes a spherical 
harmonic and n and 1 are integers.

The isotropic hyperfine coupling constants have 
been calculated for a large number of radicals but few 
calculations are j:eported for the anisotropic hyperfine

8 7 , 8 8coupling constants. The analytical formulae for
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the anisotropic operator with Gaussian type orbitals, 
derived earlier (Section Vila), enabled a study of the 
value of the ab initio UHP method, with single spin 
annihilation, in explaining experimental anisotropic 
hyperfine coupling constants. An accurate description 
of the electron distribution close to the nucleus is 
required for the calculation of the anisotropic, terms

- 3as, essentially, <r > is evaluated. It would be 
expected that the method which has been applied to th,e 
calculation of isotropic hyperfine coupling constants, 
giving good agreement with experiment, should prove 
suitable for the evaluation of the anisotropic 
components of the hyperfine interaction tensor.

Results and Discussion.

In the results to be discussed a^ is used to 
denote the isotropic hyperfine coupling constant for 
nucleus X, B^(x) to denote the corresponding 
component of the anisotropic tensor in the i (x,y,z) 
direction referred to the molecular axes and

A^(X)=ajj+B^(X)
The anisotropic components of the hyperfine

+interaction tensor for every atom in the radicals EaH,
]Î2  ,NO,GET,HCO.HBO'jHCTr",HsCN.CaHs ,ÏÏHÎ, and CHj are
evaluated. A minimal basis set of orbitals was used for
all the atoms involved in the calculations with each
orbital corresponding to an SCE atomic orbital
represented by an expansion of Gaussian functions.

2 1Specifically the9s type and 5p type of Huzinaga 
were used for boron, carbon, nitrogen and oxygen, the
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1 812s type and bp type of Veillard for sodium and the

6s type for hydrogen excluding the sodium hydride
cation calculation where the hydrogen was

2 1represented by a 10s type expansion . All the calculations 
were performed using the Unrestricted Hartree Pock 
method with spin annihilation of the quartet state, as 
outlined previously.

The Sodium Hydride Cation. ,
8 9Bloom, Eachus and Symons found that a species, 

formulated as the sodium hydride cation, EaH^, was 
formed when barium sulphate was precipitated from a 
solution containing sodium ions prior to Y -irradiation. 
The interaction between the sodium ion and the 
hydrogen atom gives rise to a proton hyperfine coupling 
constant greater than that for the free atom, 
aj^=511«5G, a^^=17"2G. Ab initio UHP calculations

9 0supported the assignment giving calculated isotropic 
coupling constants, at a bond distance of 3*6a.u., of 
a^^=26*l, a^=308G for a hydrogen orbital exponent of 
one. As the value of the isotropic hyperfine coupling 
constant for the free hydrogen, with the 10s basis 
used, was calculated'to be 302*10, compared with 3080 
found experimentally, a greater value than the free 
hydrogen value was,in fact, obtained. (After suitable 
scaling the calculated proton value in EaH^ is 314*40) 
The reason for the unusual proton value was 
associated with the presence of overlap in the 
calculation.
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The UHF calculations demonstrated that the 
radical cation did not have an isolated existence and
  T m-î o o-h-i n n  nf* f h  A h v d  TOSTGn O r b i t a l

Insert; directly after the seventh line on Pg 73, 

B,((Wa)=l+-2G B_j_(lTa)=-2.1G

B(, (H)=1-7G Bj_(H)=-0.85G

and, using the spin density matrix
of the UHP calculation, the calculated values were,

not very satisfactory. The discrepancy for the proton 
may be accounted for qualitatively when it is noted 
that the unpaired electron on the hydrogen is mainly 
in the Is orbital, making no contribution to the 
anisotropic component of the coupling constant. This 
results, when a minimal basis set of orbitals is used, 
in the calculated coupling arising solely from the small 
amount of spin in the overlap region and on the‘sodium 
ion. By postulating the occurrence of a polarisation 
of the hydrogen orbital, as may be achieved by mixing'
of the Is of the hydrogen with its 2p orbital along the
molecular axis, there will be a contribution of 2B to 
B j j ( H )  and - B  to B j_ (H ). If B were 1 * 0 1 U  exact agreement 
with experiment would result. For an electron in a 
2p atomic orbital of hydrogen the calculated value of 
B is 3 * 1 7 0 - ,  indicating that in EaH^ there is considerable 
polarisation of the orbital on the proton.

The inability to optimise the hydrogen orbital
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exponent led to the use of unit value for the 
exponent. If, as seems probable, a hydrogen orbital 
exponent greater than unity were more appropriate 
for EaH^ an increase in both â . and B would result 
allowing for a smaller calculated polarisation of the 
proton orbital,while still maintaining the unusually 
large isotropic coupling constant found for the 
proton.

The Nitrogen Molecule Anion.

The ease with which inorganic azides may be 
decomposed, both thermally and photolytically, to form 
centres may account for the explosive nature of this 
class of compounds. Some of the centres formed are 
analogous to those of the alkali halides, created by 
radiation damage, but others, such as the E 2  radical, 
are particular to azide compounds. There has been some 
difficulty in the identification of the paramagnetic 
species formed from azides, caused, to some extent, 
by the significant dependence of the coupling constants 
upon the environment. A compilation of experimental 

/ coupling constants for a species assigned as E%, in 
various host lattices, is given in Table 1.

Although the environment has a marked effect a 
calculation should give sufficiently good agreement to 
indicate whether the assignment is realistic. At a 
bond length of 2-la.u. the isotropic hyperfine

I

coupling constants are calculated to be 2-765G- and the 
principal components of the A tensor are given in Table 
1, whore the z axis is coincident with the molecular
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axis and the unpaired electron occupies, a ir* 
antibonding orbital.

2A fortunate feature of the UHP method is the 
lifting of the degeneracy of a degenerate pair of orbital's 
when such a pair is available for the description of 
one electron. As the Ug radical has always been 
observed in environments which remove the degeneracy 
of the rr̂  antibonding orbitals the results of the UHP 
calculation are directly applicable.

Nitric Oxide.

Studies of the NO radical are reported for the
9 8molecule in the gas phase,, absorbed on magnesium

9 9 . .oxide and in single crystals of hydroxylammonium 
1 0 0chloride , after irradiation with X rays at 77K. The

1 00latter study of Ohigashi and Kurita . gave the A 
hyperfine tensor of the nitrogen.

A.,(H)=36.UG , A,fF)=5 -UG , A,(m)=11.5GX. J ^

with the z axis
coincident with the molecular axis. The unpaired electron

/ was found to be in a antibonding orbital lying
2000cm below the rr̂  orbital, the degeneracy being
lifted in a manner analogous to the isoelectronic Ng
ion. No experiment appears to have reported the isotropic
hyperfine coupling constant of the nitrogen in NO so
that the signs of the A tensor components is uncertain.,

10 1Gallagher and Johnson have deduced approximate 
values of a ^ l h * 2 G  and B^(N)=-20*83G, from the 
microwave spectrum of the NO ground state, suggesting 
that Ag(N) is negative.
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Using a bond length of 2 •173a.u. the unpaired 
electron was calculated to occupy the rr̂  antibonding

9 0orbital. The calculated coupling constants are 

ajj=5*39G  ; B ^ (}I)= 2 6 -9 7 G  , B Çs) =-1,0•72Q , B ^ (rr )  = -16 -25G

aQ=-2-llG ; B^(0)=-U3-39G, B (0)=30.08G , B^(0)=13-31G

from which,

A^(N)=32-36G , A (N)=-5-33G , Ag(N)=-10.86G

The agreement between the experimental and the
theoretical coupling constants indicates that the
experimental values of A (N) and A (N) should be takeny z
as negative, a result consistent with Ng.

The Cyanide Radical.
1 02Easley and Welther by trapping CN, in random ■ 

orientation, in argon, kryton and neon matrices at „hK, 
were able to report the following magnetic properties 
of the species

a^,=210G ; B .(o )= 3 2 G  , !^ (C )= -1 6 G

ajj= -U *5G  ; B,| ( i r ) = l lG  , B ^ (N )= -5 -5 G

5 7Ab initio UHP calculations on the radical 
have given isotropic coupling constants of aQ=339*^G, 
a^=-6'182G, showing good agreement for the nitrogen 
but not for the carbon. The discrepancy found was 
not thought to be caused by the UHP method, a similar 
result was obtained with the Restricted Hartree Pock 
method, but rather a result of the inadequacy of the 
SOP atomic orbitals used as basis orbitals. Any 
inadequacy of the basis is exaggerated in the case
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of the ON radical, where a delicate balance between 
the s and p- ratio of the hybrid orbitals involved in 
the a bond and in the non-bonding orbital on the 
carbon is maintained.

The excess s character calculated in the non
bonding orbital of the carbon is also reflected in the 
low values calculated for the anisotropic components, 
Bj|(C)=17*15G whereas the calculated value of B^(N) is 
9*55G, in good agreement with experiment.

The HBO". ECO, HCN^Radicals.

The characteristically large hyperfine interaction 
of the proton in these radicals has interested a 
number of workers. The spin density matrices of the 
ab initio UHP calculations aimed at predicting the 
isotropic coupling constants of the isoelectronic

1 0 7radicals were used for the evaluation of the 
anisotropic components. In these calculations all 
bond angles were assumed to be 120° and for HOG a • 
hydrogen orbital exponent of 1-h was chosen while a 
value of 1*2 was taken for ,the anions. The BO, CO, ON 
bond lengths were chosen as 2»h, 2*3, and 2-2 a.u. 
respectively and the OH of HON" was set at 2*0a.u., 
the others, HB and HO for HBO and HOC, being taken 
as 2*2a.u.

HOC ■
Experimental and theoretical hyperfine coupling

constants for HOC are given in Table 2. Symons and 
1 06Wardale in their study of the radical in single 

crystals of formic acid were only able to find the
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relative orientations of the anisotropic components 
of the hyperfine tensor in the molecular plane, 
rendering unfeasible an estimate of the bond angle 
from the e.s.r. data. The theoretical anisotropic 
components of the hyperfine interaction tensor are • 
given in figure la.

HBO"
The y-irradiation of alkali borohydrides at 20K

_ 106gave values of the B tensors for the HBO radical ;
for boron 12, -6, -60 and for hydrogen 8, -i|, -40.
Calculated components of the anisotropic hyperfine
tensor are given in figure lb. The experimental results

6 0are probable poor approximations and it is 
sufficient that the existence of the radical HBO is 
confirmed by the calculation together with the 
.calculated isotropic coupling constants, a^=91*60, ■

1 0 7  ,a^=1230 (compared with the ag=940, ag=1010 found 
6 0experimentally .)

HON"
Ultraviolet or gamma irradiation of cyanide 

doped alkali halide crystals at 77K followed by briefly
warming to 280K then recooling, results in the

_  1 0 8 - 1 1 0production of the HON radical ion. At 77K the
spectrum is isotropic, indicating rapid rotation or
reorientation of the radical. At 4K however the
tumbling of the radical has been frozen out and the
spectrum is completely anisotropic, permitting a full

1 1 0determination of the magnetic parameters. . This detailed 
magnetic data, for the HON" radical, allows an 
extremely important test to be made of the theoretical
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(i)

-11.1
7

11-5

-8
(ii)

-10*9

The principal values and axes of the anisotropic 
components of the hyperfine coupling tensors for 
(i) HCO and (ii) HBO. All quantities except angles are 
in Gauss. The numbers close to the nuclei represent 
components perpendicular to,the molecular plane. The 
arrows point to the values associated with the 
direction of the axis and do not represent a direction 
(a tensor component, not a vector component).
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method used. An important aspect which arises is the 
accuracy to which the orientation of the principal 
axes of the anisotropic components can be determined, 
particularly if no independent study of the 
orientation of the radical in the crystal is available.

The theoretical and experimental anisotropic 
components of the hyperfine interaction tensors are 
presented in figure 2. The calculated values of aj^=lU0«3, 
a^=7U*H and a^^h-92G for the isotropic coupling 
constants agree excellently with experiment, where 
an angle of 131° was estimated;, a^^l36*hG, aQ=74"7G 
and a^=7G. The agreement between theoretical and 
experimental anisotropic coupling constants is also 
satisfactory. There is a discrepancy between the 
orientation of the calculated and the experimental 
anisotropic components of the proton, suggesting that 
a re-examination of the accuracy with which the 
orientation has been determined may be of value.

By considering the HCU" radical ion as a 
derivative of the linear HON molecule, formed by 
bending and addition of an electron, two extreme

/

situations can be envisaged. Assuming hemolytic 
fission of the inplane n bond on bending, an electron 
will occupy an sp^ hybrid orbital on the carbon and 
an inplane p orbital on the nitrogen. Addition of an 
electron to form a pair, with the electron in either 
orbital, results in the two extreme cases.
Consideration of the spin density distributions in 
figure 2 (i) and (ii) indicates that both models 
contribute to an appreciable extent.
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(i)

—I • 8

6.0
;i9-5

^^7-11-8

—7 • 6

0*1

(ii)

—3 • 1H

13-9/N15-3

-7

' “*9 • 1

The principal values and axes of the anisotropic 
components of the hyperfine coupling tensors for HOU, 
(i) theoretical values; (ii) experimental values.
(See also the caption to figure 1.)
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The HpCIT Radical.
Interest in HgON is associated with the 

particularly favourable conditions for hyperconjugation,
1 0 7 , 1 1 1arising from the planar structure of the radical,

the short ON double bond and the unpaired electron
being formally located in the inplane 2p orbital of
the nitrogen. Experimental anisotropic parameters are

111reported for the nitrogen only

ajj.=9‘5G ; A|| (ir)=3U-UG , Aj_(ir)=-3G
112

The proton isotropic coupling constant a^^87*4G 
111or 92*10 , the latter from the powder spectrum, is

also reported.
An ab initio UHP calculation for a bond angle 

of 120° and CH and ON bond length of 2*2 and 2 a.u.
10 7respectively gave isotropic couplings

0^=84*80 , aj^=7*2G , 0^=—18*70

Using the spin density matrix of this calculation 
the anisotropic components were calculated and are 
given in figure 3. The A tensor for nitrogen is

A,fir)=37-3G , A^(ir)=-10.5G , A^(ir)=-5-3G

with the z axis parallel to 
the ON bond and the molecule in the yz plane.

The value of 87*40 for the proton hyperfine 
coupling constant appears to have been measured from the 
parallel features of the electron spin resonance

113experiment spectrum and if this is the case should"
correspond closely to Aj|(H). Since ag=A^(H)-B^XH)=90*20
better agreement with experiment, for the 91*20 proton

1 1 1value from the powder spectrum , is obtained.
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FIGURE 3.

—2 • 8

1*1

—8 • 0

-2-5

The principal values and axes of the anisotropic 
components of the hyperfine coupling tensors of HgOE, 
(See also the caption to figure 1.)
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The Vinyl Radical.
The sensitivity of the sign of the a proton 

coupling constant of the vinyl, (ajj=-13*5G experimental) 
to the bond angle OOH^ has caused previous 
calculations to be inconclusive. Ho experimental data 
for the anisotropic interactions is available for the 
vinyl radical but the closely related radical
I)OOC-CH=CH*, produced by irradiation of a single

1 1 4crystal of deuterated maleic acid , has been studied. 
For DOOC-CH^H* the maximum principal value of the 
a proton anisotropic coupling constant is approximately 
along the bond and the minimum is perpendicular
to the radical plane, A(H^)=27, 9*6, 3*9G.

1 1 5An ab initio calculation has been reported 
for a hydrogen orbital exponent of l-h, bond lengths 
of 2-533 and 2 Ohl a.u. for the 00 and CH bonds 
respectively, bond angles of 120° for the p protons, 
and 137°for the a proton, as suggested by the work

5 6of Millie and Berthier. The spin density matrix of the 
calculation was used in the calculation of the 
anisotropic components of the hyperfine tensor and the 
results are presented in figure k.

If a positive value of 13•50, for the isotropic 
coupling constant of H^,is assumed the corresponding 
anisotropic tensor components are B(H^)=13«5, -3*9, 
-9*60. These agree well with the. values, and 
directions, calculated thus reinforcing the view that 
the isotropic coupling constant of the a proton is 
positive.
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-1*9
/T\

1 6  • 8

55 - 3 2 . 1

1 3 7 ° —10 • 6

—3 • 6

The principal values and axes of the anisotropic 
components of the hyperfine coupling tensors for the 
vinyl radical. (See also the caption to figure 1.)
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The Ammonia Radical Cation.
The isotropic hyperfine coupling constants of 

KH 3  have been calculated using the ab initio UHF method, 
with optimisation of the geometry and hydrogen 
orbital exponent for the planar radical. Allowing 
for the out of plane zero point energy vibration the 
calculated coupling constants are a^^l 6 '9 2 G, a^^- 2 0 "0 2 G. 
These calculations are reported in Chapter 2.

Rao and Symons on %-irradiation of ammonium 
perchlorate, at room temperature and 7 7 K, obtained 
the HH 3  radical, with isotropic coupling constants 
and anisotropic components

â =19-3Gr ; Â ^(H)=37G , A^(U)=10.5G
ag=25'8G ; Aj|(H)=28G , A_j_(H)=2h • 7G

The theoretical anisotropic components of the 
hyperfine interaction,tensor are given in figure 5 .
These are very similar to those for EH 2  (also figure 5) 
where A|| (E)=U1 • 7G:-, Aj^(E)=0i3G experimental compare 
favourable with the calculated values of A[j (E)=i-t-l *6 6 G, 
AjJe)=-8*03G. The calculation of the anisotropic 
coupling constants should be atleast as reliable as the 
calculated isotropic coupling constants and therefore 
equally good estimates for the A tensor, as obtained, 
for the a values, are anticipated. Since the calculated 
a^ was low by only 2-3G, compared with experiment, the 
discrepancies between the calculated and experimental 
A values should be equally small.' The large differences 
between the calculated values, A^(E)=30G and 
Aj^(E)=0*5G, and the experimental values may be 
associated with the fact that the true A., and ^  are
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22.84

H

(i)

—l 6 .94

2 2 . 4 2

E 33*02

-3 . 4 7

-16.81

)-16.21

(ii)

The principal values and axes of the anisotropic 
components of the hyperfine coupling tensors for the 
radicals (i) and (ii) E H g . (See also the caption
to figure 1.)
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not measured but have been partially averaged by a
6 8librational motion about the threefold axis.

The calculated anisotropy of the proton
coupling constants is never completely observed owing
to a rapid rotation about the threefold axis. Using
B|=0«5(B +B )=2»575G- the calculated values may be -I—. X y
given as A^^(H) = - 2 5  *170, ( H ) = 1 7 a  difference
between A^ and Aj^ of 7-725G- compared to the observed 
difference of 3-3G-. This discrepancy can also be 
associated with the librational motion.

The Methyl Radical.
The results obtained from calculations of the

isotropic hyperfine coupling constants for CH 3  have
been discussed already ( Chapter 2). The isotropic
values, aQ= 3 4 "6 4 U; ag=- 1 9 "4 3 G, are in reasonable
agreement with the generally accepted experimental
values of 0 ^= 3 8 0 -, a^^- 2 3 C, reported for solution and
matrix environment. On Vycor glass below 130K values

1 1 6less than 3 8 0  for a^ have been measured, which on
6 9extrapolation to OK give aQ=10"60. Rao and Symons

116have suggested that Garbutt et al have 
misinterpreted the spectrum and are infact measuring 
Aj__(0) rather than a^. The calculated value of B| (0), 
after taking into account the out of plane zero point 
energy vibration, was estimated to be -300. If Rao and 
Symons are correct, and the minimum value of a^ is 
3 8 0 , then an J^(0) value of about 80 is obtained. This 
compares favourably with the extrapolated value of 
Oarbutt et al and therefore their unusual results are 
rejected by accepting the interpretation of Rao and
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Symons.

Conclusions.

The calculations which have been carried out 
within the ab initio UHP framework with single spin 
annihilation after minimisation have demonstrated 
that consistently good agreement may be obtained between 
experimental and theoretical anisotropic components 
of the hyperfine coupling tensor. The results give 
confidence in the use of the method to explain the 
observed hyperfine coupling constants of radicals 
and thus verify the identity and structure of species 
reported using the electron spin resonance technique.
Any improvements in the results would be associated 
with more adequate basis orbitals, as indicated in the 
case-of the CU radical, rather than abandoning the 
simple extension to the independent particle model.



CHAPTER 1+
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Introduction.

The advantage of using Gaussian type orbitals 
over Slater type orbitals lies particularly in the 
evaluation of the multicentre two electron integrals 
which arise in molecular calculations. Since the 
introduction of Gaussians a considerable amount of 
effort has been directed towards determining suitable 
Gaussian expansions for Slater type or atomic SC? 
orbitals. Methods for obtaining Gaussian exponents and 
expansion coefficients have been developed by

1 7 _ 2  9Huzinaga and others, using the criterion of 
minimisation of the energy or least squares fit to a 
Slater type orbital.

If the number of Gaussian functions in a calculation 
is E then the number of two electron integrals is 
of the order . Thes,e integrals therefore represent- 
both, the most numerous and the most difficult to 
evaluate. Cook and Palmieri have noted that 
although large Gaussian expansions a.re required to 
reproduce the values of the one electron integrals 
much smaller expansions are adequate for the two ■ 
electron integrals. The application of their "mixed" 
basis method to a molecular system represents a time 
reduction, in the integral evaluation, of an order 
of magnitude. The mixed basis method is STQ 
orientated and it is convenient to distinguish that 
method which is SC? orbital orientated by reference to 
the double basis method. The philosophy of both methods 
is identical; in the double ba’sis method large Gaussian 
expansions are used to represent all one electron and
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one centre integrals and small expansions for the 
multicentre two electron integrals . The approach 
is to he distinguished from the "combined" basis

117method of Silver which augments STO basis sets 
with Gaussian type orbital basis sets.

In the double basis method the "best" Gaussian 
representation of an atom, using the energy criterion, 
is chosen to calculate the one electron and one centre 
integrals. This is invariably the largest expansion 
available. However, as the multicentre two electron 
integrals are of solely molecular origin, the small 
expansions are chosen on the least squares criterion. 
This is because the energy is very dependent upon the 
wavefunction close to the nucleus, whereas most 
multicentre two electron integrals depend on the 
electron density distribution remote from the nucleus.

A number of Gaussian expansions of SC? atomic 
orbitals for the first, second and third row atoms

2 0 _ 2 4are available in the literature and these may
be used for the one electron and one centre integral
calculations. However small expansions, useful in

2 8the double basis method, are few. Stewart has 
reported small expansions for some of the first row
atoms and further work, representing STO's by small •

• 118Gaussian expansions, has been done.
Small Gaussian basis sets (6s,Up), which are 

suitable for use in the double basis method, are 
calculated for the second row atoms by least square 
fitting to the 12s,9p basis of Veillard. The 
differences between the available second row basis 

sets are also analysed. The double basis method is
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then applied to the calculation of the isotropic
hyperfine coupling constants of the radicals X H 3  and
XHgMe (X=A1~, Si, and Me is the methyl group,C H 3 ) .

Determination of Least Squares Basis Sets.

Method.
The 12s type and 9p type fully contracted

Gaussian expansions for the atomic SOP orbitals of the
1 8second row atoms, due to Veillard, were used as the 

standard functions to which small Gaussian expansions 
were to be fitted. The Gaussian expansion of the radial
part of an orbital can be represented as

'y.j^=y^Cj^.r” exp(-qjr^)  (1)

where r is the distance
fto_the nucleus on which the orbital is centred and,,-
n=0 for an s type and n=l for a p type orbital. Por
all orbitals with the same spherical harmonic, on an
atom, the exponent, a, is the same for all . This
restriction represents a considerable reduction in
the time required to evaluate the two electron
integrals, and-limits the usefulness of the orbitals

1 1 8of Stewart and Hehre . Two Gaussian functions per 
orbital were considered the minimum necessary for the 
small basis, leading to six terms in equation (l) 
for the s orbitals and four terms for the p orbitals. 
Por sodium and magnesium,where there is only one p 
orbital to fit, three Gaussian functions were 
considered necessary to give a comparable fit.

The least squares problem which must be solved
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is the minimisation of the error function

 (2)

where i extends over 
all functions with the same spherical harmonic; . 

represents one of the standard functions due to 
Veillard. The minimisation of (2) is subject to the 
conditions

/•XiXjdT=&^.
1 1 9A regression method, programmed in ALGOL, was

used in an attempt to reduce the chance minimisation
on to a local minima. Crudely the function is
evaluated many timeg over varying limits of the
variables c . • and a< such that e is always reduced.^ j J
Despite the considerable effort expended, in an 
attempt to find the true minimum, no guarantee can be 
given, in common with other methods available.

Results and Discussion.

The orbital exponents are given in Table 1 and 
the corresponding expansion coefficients are listed in 
Table 2. Orbital energies were not calculated since 
these basis sets are not intended for use in single 
basis calculations.

The 3s orbitals (figure 1) from the 6s, Up 
Gaussian set deviate from the 12s, 9p set in the 
manner expected for a least squares fit. However the 
deviation of the 3p orbitals (figure 2) is not 
characteristic of a least squares fit, showing a small 
positive fluctuation near the nucleus (the 2p orbitals
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FIGURE 2.

Variation of the aifferenoe, 8 ao a
function of the distance, r, from the nucleus for 
the atoms indicated. X  corresponds to the expansion2 4 2 3of a) Husinaga et al ; 1) Roos and Siegbahn ; 
c) this work.
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show negative deviations in this region). The 
similarity in the plots for the 3p orbitals of each 
atom suggests that the orbitals are consistent 
amongst themselves. The fit of the 6s, Up set to the 
12s, 9p set is very good for all the atoms, 'the 
maximum deviation being about-.0-01.

The error function

e ^ = J ( c p j _ - S j _ ) ^ d T   ( 3 )

was evaluated for various 
functions (Table 3) where and are any pair of 
Gaussian expansion representations of SOP atomic 
orbitals calculated by Veillard (l2s,9p) , Roos and

2 3Seigbahn (I0s,6p) , Huzinaga, McWilliams and Homsky
(9s,5p) ^ , all using a minimum energy criterion, and 
this work.(6s,Up).

The error function, between the 12s,9p
and the 9 ^ p  set for the 3p orbital is particularly 
large compared to the error function of the other 
orbitals and the basis set to the 12s,9p set.
Assuming that the 12s,9p set is the best available, 
consideration of the results in Table 3 suggest that, 
for molecular calculations using a single basis, the 
10s,6p set might be a good compromise. The reasons 
are twofold;

1) The maximum deviation of the 10s,6p is less 
than half that of the 9s,3p set in all cases, except 
aluminium.

2) A considerable reduction in the number of 
integrals to be evaluated is achieved by using the 
10s,6p set rather than the 12s,9p set.
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Applications of the Double Basis Method.

The magnitude of the proton hyperfine coupling
constant is considerablyvreduced on going from the
first row hydride series . B H 3  , O H 3 ,  and E H 3 , to the
second row series, A1H%, S i H 3 , and P H 3 .  This may he
understood if the former are planar and the latter

1 2 0slightly pyramidal , as it is expected that as the
deviation from planarity increases the negative
proton coupling constant will go through zero and then
increase rapidly, accounting for the large positive
proton coupling constants observed for such radicals
as HCO.^ As the radicals A I H 3 , S i H 3  and P H 3 ,  from the

, 1 2 1 «  1 2 8e.s.r. data available, are thought to have
quite large deviations from planarity (I8°h0', 15°51' 
and li|°30' for A I H 3  ^ S i H 3  and PS^izs respectively) 
the small magnitudes of the observed proton hyperfine 
coupling constants are surprising.

Theoretical calculations, using the ab initio 
UHP double basis method, were done on the isoelectronic 
series A I H 3 ,  SiIÎ3  and-PH 3  in order to verify the 

^ assignment given to the species observed by the electron 
spin resonance technique. Calculations were also 
performed on the related series AlHgMe , SiHgMe and

Method.

The ab initio EHP method using the l.c.a.0 .-m.o.ap- 
-proximation with spin annihilation was used (see 
Sections I and II). The minimal basis set of orbitals 
was represented by expansions of Gaussian functions
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in their completely contracted form. The 12s type and
1 89p type of Veillard for the aluminium, silicon and 

phosphorus and the 9 s type and 5 p type for the carbon
2 1and the 6 s type for the hydrogen as given by Huzinaga

were used to calculate the one electron and one centre
integrals. The 6 s type and 4p type for aluminium,
silicon and phosphorus as given and the 4 s type and 3 p
type for carbon and the 3 s type for hydrogen reported 

2 8by Stewart were used to evaluate the multicentre 
two electron integrals. The hydrogen atomic orbital 
exponent and the bond length, r(X-H), were 
optimised to within 0 * 1  at an angle of 1 9 -5 ° from 
planarity for AIH 3  and SiH: 3 and an angle of 1 4 ° for 
PH 3 . With these optimum hydrogen orbital exponents and 
bond lengths the angle of the radicals were optimised 
to within one degree.

The bond lengths and hydrogen orbital exponents 
of the hydrogens attached directly to the second row 
atom and the pyramidal angle in XHgMe (X=A1 , Si, P^) 
were assumed to be the optimum values for the X H 3  

radicals. The bond lengths r(C-X) were taken to be 3*8, 
3*5 and 3*5 a.u. for X=A1, Si and P respectively, 
r(C-H) for the hydrogens of the methyl group was taken 
as 2 «0 3 a.u. and the carbon was tetrahedrally placed with 
respect to the three hydrogens and the central atom,X. 
Prom the calculations on the methyl radical, a 
hydrogen orbital exponent of 1 » 4  was considered 
suitable for the hydrogens of the methyl group.

All results were calculated from the UHP 
wavefunction after annihilation of the contaminating
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quartet state and are expressed in atomic units, 
except the hyperfine coupling constants which are 
expressed in Gauss.

The Radical Anion AlH^.
12 6 ,Catton and Symons on irradiation of 

lithium and sodium aluminium hydride at 77K produced 
a paramagnetic species which, by analogy with the 
^(-irradiation product of ( B H 3 )  was expected to be
A I H 3 .  The isotropic coupling constant of aluminium, 
a^2 = 2 2 3 G, was reported but no proton coupling constant 
could be detected, limiting its value to less than 20G. 
The deviation from planarity was estimated to be 18*401 

The results of UHP calculations on A I H 3  are 
given in Table 4. The total energy was -243*37247a.u. 
at an optimum bond length of 3-2a.u., hydrogen 
orbital exponent of 1*0 (figure 3) and angle from 
planarity of 21*. The calculated isotropic hyperfine 
coupling constants are•a^^=213-8G and ajj=3*48G. The 
agreement with experiment, of the aluminium coupling- 
constant and the angle, is excellent. The smallness of 
the calculated coupling constant of the proton is 
reassuring since the observed small magnitude was 
unexpected.

The Silyl Radical SiH^.

Two values of the silicon isotropic coupling
constant have been reported by Gordy and his co- 

1 2 1  » 1 2 2workers' . Por the radical trapped in a xenon
1 2 2matrix, ag^=190G , and for the same species in a

 ̂̂ 1 2 1krypton matrix at 4K, ag^=256G . As the radical is



TABLE 4.
Ill

bond
length
(a.u.)

hydrogen
orbital

exponent

bending
angle
8*

total
energy
(a.u.)

coupling 
constants(G) <82>
^A1

3-2 0*9 19*5 -243-36371 223-6 6 . 1 4 . 7 3 0 0 0 3

3-3 0-9 19*5 -243-36633 2 4 2 - 4 8 . 0 3 . 7 3 0 0 0 2

3-4 0*9 19-5 - 2 4 3 - 3 6 4 3 0 2 6 0 . 6 1 0 . 3 6 . 7 3 0 0 0 1

3-1 1.0 19-5 - 2 4 3 - 3 6 9 9 9 1 9 0 . 4 1.10 . 7 3 0 0 1 0

3-2 1.0 19-5 - 2 4 3 - 3 7 2 4 0 203-8 2 . 4 3 . 7 3 0 0 1 0

3-3 . 1.0 19*5 - 2 4 3 - 3 7 2 2 1 217-6 4-02 . 7 3 0 0 0 8

3-1 1.1 19-3 -243-36123 1 7 0 . 7 — 4  - 8 2 . 7 3 0 0 2 6

3-2 1.1 19-3 -243-36373 181.6 - 3 - 9 2 . 7 3 0 0 2 8

3-3 1.1 19-3 - 2 4 3 - 3 6 3 1 3 1 9 2 . 7 - 3 . 0 0 - 7 3 0 0 3 1

3-2 1.0 19*0 - 2 4 3 - 3 7 2 3 2 2 0 0 . 3 2.10 . 7 3 0 0 1 1

3-2 1.0 20.0 - 2 4 3 - 3 7 2 4 7 2 0 7 . 3 2.83 . 7 3 0 0 0 9

3-2 1.0 21.0 - 2 4 3 - 3 7 2 4 8 2 1 3 . 8 3-48 . 7 3 0 0 0 7

3-2 1.0 22.0 - 2 4 3 - 3 7 2 3 2 220.0 4 - 0 6 . 7 3 0 0 0 6

-«-marks minimum

Theoretical Results for AIR.



1 1 2

FIu IjIül 1 .

•H

«H

H

-P a=l * 0

3*2
r(P-H)

Summary of the calculations of the AIH 3 radical;
------, variation of the total energy after annihilation
with bond length for those values of the hydrogen orbital 
exponent a as indicated.
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uncharged, and hence environmental effects on the 
conformation are expected to he small, the large 
difference is surprising (especially as the

' 12 3environments are so similar). Sharp and Symons have 
demonstrated that for the radicals SiH^Me^_^ (n=0 ,l,2 ) 
the silicon coupling constants are about the same 
(180G-), that is, addition of a methyl group has little 
effect on a^^. This led to the suggestion that the value 
of 190G- for the coupling constant of silicon should be 
accepted, being more consistent with the known data, 
and the value of 226G- rejected. Also reported for the 
silyl radical were a^^ 7 "8 4 G and an estimated angle out 
of plane of 1 5 *5 1 '.

The results of the calculations on SiH] are 
collected in Table 5 and figure 4. The optimum bond 
length of 2 « 9  a.u., hydrogen orbital exponent of 1 » 2  

and angle out of plane of 17* for the SiHj give 
isotropic coupling constants of a^^^=-170• 8 G- and 
aj^=-0«U2G-. The agreement with experiment is still very 
good for the heavy atom coupling constant. The theoretical 
proton coupling constant does not permit the sign of 
the experimental value to be unequivocally assigned.

The Radical Cation Pht.

The' species formed when phosphonium sulphate is 
^-irradiated at 7 7 K has been assigned to the radical

r + 1 2 8cation PH 3  . A phosphorus coupling constant of 
ap=517Gr was estimated but the proton hyperfine 
coupling constant .was not detected, limiting its value 
to less than 10G-. The angle out of the plane was



TABLE 5.
114

bond 
length 
(a .u. )

hydrogen
orbital

exponent

bending
angle
8'

total • 
energy 
(a.u.)

coupling 
constants(O) <82>
^Si

2.9 \ 1.1 19-5 - 2 9 0 . 5 4 5 4 1 -207*1 7*12 . 7 5 0 0 0 6

3-0 1.1 19-5 - 2 9 0 .5 4 5 9 c- 2 1 5 . 5 9*22 . 7 5 0 0 0 5

3*1 ■ 1.1 19*5 - 2 9 0 . 5 4 1 4 6 - 2 2 3 * 1 11*67 . 7 5 0 0 0 4

2.8 1.2 19-5 - 2 9 0 . 5 4 2 0 7 — 1 8 4  * 0 1*54 . 7 5 0 0 1 0

2 . 9 1.2 19-5 - 2 9 0 . 5 4 6 8 8 - 1 9 1 * 4 2^94 . 7 5 0 0 1 0

3-0 1.2 1 9 . 5 - 2 9 0 . 5 4 5 5 7 rl98*3 4*27 . 7 5 0 0 1 1

2.8 1-3 1 9 . 3 - 2 9 0 . 5 3 5 1 2 — 1 6 9  * 6 -3*73 . 7 5 0 0 1 3

2 . 9 1-3 19-5 - 2 9 0 . 5 3 8 6 5 -175*6 -2.26 . 7 5 0 0 1 5

3-0 1-3 19-5 - 2 9 0 . 5 3 5 5 5 -181*0 - 1 . 2 5 . 7 5 0 0 1 8

2 . 9 1.2 19-0 - 2 9 0 . 5 4 7 0 2 -187*6 2 . 3 3 . 7 5 0 0 1 1

2 . 9 1.2 18.0 - 2 9 0 .5 4 7 2 c- 1 7 9 * 4 0.86 . 7 5 0 0 1 4

2 . 9 1.2 1 7 . 0 - 2 9 0 . 5 4 7 2 4 -170.8 - 0 . 4 2 . 7 5 0 0 1 7  *
2 . 9 1.2 1 6 . 0 - 2 9 0 . 5 4 7 1 8 -162.1 -2.01 . 7 5 0 0 2 1

•«•marks minimum

Theoretical Results for SiH-
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estimated, from the e.s.r. data, to be 1 U° 3 0 '.
The theoretical results (Table 6  and figure 5) 

give hyperfine coupling constants ap= 1 9 6 *5 G, ap-=-1 5 *9 1 G 
for a bond length of 2 * 8  a.u., hydrogen orbital 
exponent of 1*3 and angle from planarity of 8 °. The 
phosphorus coupling constant is very low and the angle 
of bending is also unsatisfactory.

The method which has given good agreement with 
experiment for the radicals AIH 3  and SiHg would be 
expected to give an adequate result for the isoelectronic 
radical P H 3 .  That this is not the case, and the 
assignment of the e.s.r. species reported as PH 3  seems 
reasonable, suggests that effects not important for 
A I H 3  or S i H 3  are influential for P H 3 .  A similar 
situation was found for the isoelectronic series B H 3 ,

CH 3 ,, (see Chapter 2), although the interpretation
was obscured by the Targe vibronic contribution to 
the isotropic coupling constants. A qualitative 
argument based on the effects of the environment was 
suggested to explain the discrepancies found for the 
first row hydride series and a similar stance can be
taken when considering the radical PH3.

1 2 8Begum, Lyons and Symons have suggested that 
the result for PH 3  could be exaggerated by hydrogen 
bonding to the oxygens of the medium. If all the 
hydrogens of PH^ were bonded in this way, loss of a 
hydrogen to give PH 3  would leave the radical constrained' 
somewhat to a tetrahedral configuration. Constraint 
of the radical, in this manner, would result in an 
increase in the'phosphorus hyperfine coupling
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bond
length
(a.u.)

hydrogen
orbital

exponent

bending
angle
e*

total
energy
(a.u.)

coupling 
constants(O) < 8 2 >

3p

2*7 1*2 IL'O -342*03723 3 3 0 * 7 - 2 * 1 8 . 7 5 0 0 2 1

2*8 1*2 1 4 '0 - 3 4 2 * 0 4 3 8 3 335*0 - 1 * 6 3 . 7 5 0 0 2 6

2*9 1*2 l U - o - 342*04238 337*3 -1*26 * 7 5 0 0 3 2

2 *7 1 -3 l U - o - 342*0474c 310*4 - 4.93 * 7 5 0 0 2 1

2*8 1 - 3  • 14-0 - 342*05096 312*6 - 4 - 8 7 *750028
2*9 1 - 3 ,14*0 - 342*04639 3 1 2 . 7 -4 *94 * 7 5 0 0 3 6

2 *7 1 - k 1 4 -0 -3 4 2 *0 4 9 1 8 286*1 -7*99 * 7 5 0 0 1 9

2.8 1-U 1 4 *0 - 342*05007 286*4 —8 * 04 . 7 5 0 0 2 5

2 . 9 1-U 1 4 -0 - 342.04258 287*1 —8 *46 *750033
2.8 1 - 3 1 5 -0 -342 * 05056 333*5 - 3 * 0 1 *750023
2.8 1 - 3 13 *0 - 342*05127 291*8 —6 * 68 * 7 5 0 0 3 3

2.8 1 - 3 12.0 - 342*05150 271*4 - 8 * 5 5 *750039
2.8 1 - 3 11.0 -3 4 2 *0 5 1 6 6 2 5 1 * 5 —10 *46 *750045
2.8 1 - 3 1 0*0 - 342.* 05177 2 3 2 * 2 - 12.31 *750047
2.8 i - 3 9 *0 -342*05183 2 1 3 * 8 - 1 4 * 1 5 * 7 5 0 0 5 5

2.8 1 - 3 8*0 -342*05185 1 9 6 * 5 - 15*91 *750064
2.8 1 - 3 7*0 -342*05184 180*4 - 17*52 * 7 5 0 0 7 2

*marks minimum

Theoretical Results for PHT T  +
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' constant, 8 p, through the increased deviation from 
planarity (see figure 7 ), and also the increase in 
the bond length, r(P-H), hy hydrogen bonding. A 
further enhancement of Op may be conjectured if it 
is considered that the bonding of the hydrogens to 
the medium results in a more diffuse hydrogen 
orbital. An increased diffuseness of the hydrogen 
orbital implies a decrease in the hydrogen atomic 
orbital exponent, leading to an increased value of 
Op (see figure 6 ). The net result would be a 
considerable increase in the hyperfine coupling 
constant of the phosphorus.In fact, with only a 
slight change in the parameters much better 
agreement with experiment can be obtained, for 
example, with a bond length of 2 * 9  a.u., hydrogen 
orbital exponent of 1 * 2  and angle out of plane of 
lh° the coupling constants are ap=337*3G and ap=-l- 2 6 G.

Theoretical trends in the variation of the angle• 
out of plane, for the isoelectronic radicals A I H 3 ,

S i I Î 3  and P H 3 ,  follow the experimental trends and are 
/ in the order expected in terms of Pauling's

7 9 _ 8  1electronegativity theory, that is, the radicals 
are predicted to flatten on going from aluminium to 
phosphorus. The trend in the hydrogen atomic orbital 
exponents is also in the order expected from the 
excess charge effect (1*0, 1*2, 1*3 for AIH 3 , SiH^, 
PH 3  respectively). Generally the agreement with 
experiment is satisfactory, if environmental effects 
are assumed to be important for P H 3 .
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The Radicals AlH?Me , SiH?Me and PH?Met

Of the radicals XH 2 Me (X=A1 , Si, P"̂ ) only the
silicon species has heen observed, as the product

1 2 4 - 1 2  8of j-irradiation of SiHjMe . However, radicals
12 5 ) 1 2 8

A I R 3 ,  SiR] and PR 3 , where R is an alkyl group
or hydrogen, have been reported experimentally and 
some of these are compiled in Table 7, with the 
calculated results for X H 2 M e  and X H 3 .  The theoretical 
results are not compatible with experiment.

The experimental trends in the coupling. 
constants of the heavy atoms generally show an increase 
on going from A I H 3  to A I R 3 ,  no significant change 
between S i H 3  and 8 iR. 3 and a decrease for P H 3  to P R 3 .

The trends suggest that alkylation has little effect 
upon the shape of silyl radicals but opposite effects 
on the A 1R %  and P R 3  radicals, the former being 
induced to bend further and the latter to flatten.
The argument, using electronegativity differences, 
requires that the radicals should bend further on 
alkylation, and this can be used to account for the 
trend in the aluminium coupling constants but not 
for the trend in the phosphorus, which is j_n 
opposition to this view. The results for the silicon 
suggest that, to within the accuracy of the 
experiment, there is no significant increase in the 
bending.

This trend may be rationalised with the concept 
1 28of hyperconjugation but, as pointed out previously, 

hydrogen bonding of PH 3  to the environment, an effect 
which is not possible for PR 3  radicals, may considerably 
increase the hyperfine coupling constant of the



TABLE 7. Experimental hyperfine coupling constants 1^3 
for the radicals X R 3  (X=Al", Si, R=H or alkyl).

Radical Hyperfine coupling constant angle out 
of plane_  ag (a ) ^0 a^ds)

A1H% 233 18.67^^^
AlMe% 32h 2 1 .0 0 '̂ ^
AlEt% 323 2 1 .4 2 “ ^
A 1 (isoBu ) 3 322 21.80^^

AlHfQOHzOHzoCHs)! 179 18.03^^
AIH 3 213'8 :\3'k8 2 1  i(-
AlHzMe" 103-3 — 1 0  * 8 8 3 - 2 1 0 49-54 2 1  *

SiH 3 1 9 0 7-84 13-85*^''
SiHjMe 181 11.8 8.0
SiHMes*'^ 183 17 7-2

' SiMej 181 6-3 13-23"^
SiH 3 -170-8 - p - 4 2 17 ^
SiHaMe -llh-7 - 1 1 . 3 6 - 3 - 0 3 7 33-36 17 *

PH 3 3 1 7 1 4 -3 0 '''*
PEtj 384 12-43^^
P(n-Bu)3 360 1 2 .2 3 ^^
PHÎ 1 9 3 - 3 -13-91 8

' PEgMe^ 192.2 -19-98 - 3 - 6 0 2 39-48 8

•îî-marks calculated values
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phosphorus. If the view is taken that the interaction 
with the environment is important for PII3  then it 
may be conjectured that the trend is only apparent, 
as the unrestricted radical, P H 3 ,  may have a smaller 
phosphorus coupling constant, and hence smaller angle 
of bending, than the alkyl derivatives. The calculated 
coupling constant of ap= 1 9 2 *2 G- for PEgMe"** is very 
similar to the value calculated for P H 3 ,  although 
optimisation of the bond lengths and hydrogen orbital 
exponents may increase its magnitude. If it is assumed 
that the deviation from planarity is greater in the 
radical PHsMe"^ than in PH 3 , that is, if the 
electronegativity differences have \a dominant effect, 
then the isotropic coupling constant of the phosphorus 
would be increased, to bring the theoretical result 
more into line with the experimental values.

The calculated hyperfine coupling constant of 
the silicon, agp=“ 1 1 4 *7 G-, may also be increased by 
optimisation of bond lengths and hydrogen orbital 
exponents. Combining this optimisation with any 
increase arising from further bending, which may occur, 
would be expected to give a value of a^^ closer to 
the experimental value. The experimental (3 proton

125coupling constant (oG-) compares unfavourably with 
the calculated value (33-56G), however, the agreement 
may be improved when the conformation of the radical 
is optimised

The calculated value of the hyperfine coupling ■ 
constant of the aluminium in AlHgMe", a^p= 1 0 3 *3 G, is 
surprisingly low. Experimental values for AIR 3 " show
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an increased coupling constant compared to A I H 3 , 

implying an increased bending, in accord with the 
electronegativity theory. The position may be 
improved with optimisation, leading to an increased 
S a i > but there is little reason to believe that a 
value comparable with A I H 3  could be attained.

An examination of the theoretical results. 
reveals that the unpaired electron occupies similar 
orbitals in AlHgMe" and A1H% but the orbital in the 
methyl derivative has less 3 s character and more 3 p 
character. The unpaired electron is delocalised over’ 
the methyl group, to some extent, in AlHgMe . The 
reduction in 3 s character and partial delocalisation 
on to the methyl group appears to account for the 
fall in the hyperfine coupling constant of the central 
atom. It may be that the radicals XHgMe show an 
exaggerated delocalisation of the unpaired electron, 
which might be equated with hyperconjugation, resulting 
from the lack of d orbitals in the calculation.

Although the general trend for the AIR 3  radicals 
is to an increase in the aluminium coupling constant, 
the radical identified as A 1 H( 0 CH 2 GH 2 0 CH 3 )s, produced 
by gamma irradiation of NaAlH 2 (OCH 2 CH 2 OCH 3 )2 , has

12 9a reduced value of a^^=179G. If the assignment is 
correct the result would be compatible with that 
calculated for AlH 2 Me".

Conclusions.

The : calculations on the radicals X H 3  and XH 2 Me 
(X=A1 , Si, ?"*") indicate that the double basis method 
can.give hyperfine- coupling constants in good agreement
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with experiment. The results reinforce the conclusions 
drawn from the calculations on B H 3 , OH 3  and H H 3  

(Chapter 2) that in order to obtain consistent agreement 
with experiment the hydrogen orbital exponent and the - 
geometry must be optimised as far as it is possible.
Also the problem of a strong interaction with the 
environment is possibly encountered again. The use of 
the double basis method makes optimisation feasible 
for AIH 3 , SiH 3  and PH 3  but not for AlHgMe", SiHgMe 
and PHgMe'*’, this deficiency in the calculations on 
the latter series may account for the inconclusive 
nature of the results obtained.



CHAPTER 5
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Introduction.

In the proceeding sections ab initio 
calculations of radicals systems have been discussed 
and the applicability of the full basis and double 
basis Unrestricted Hartree Pock method with single 
annihilation evaluated. The spin density distributions 
predicted have, generally, proven to be in good 
agreement With the experimental data, offering some 
confidence in the use of this formulation. A factor 
of considerable importance which emerges from the 
calculations of hyperfine coupling constants is the 
need for optimisation, of the geometry and hydrogen 
atomic orbital exponent, if a coherent analysis is 
envisaged. In many cases optimisation cannot be 
complete and any experience gained from other 
studies must be used.

The species which have been studied contain 
no more than two atoms, other than hydrogen atoms, 
since the number of integrals computed rises as the 
fourth power of the number of basis orbitals. The 
time consuming nature of ab initio calculations 
therefore prohibits the study of large molecular

3 1 > 1 3  0 - 1 3 2systems in most laboratories, although d e m e n t i  
has demonstrated that such systems may be examined 
and-reasonable results obtained. This barrier, imposed 
by computational considerations, precludes the 
extensive analysis of many'radicals, such as aryl 
ions and transition metal complexes, using the 
non-empirical methods developed in this thesis.
However an attempt to evaluate the applicability of
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the ab initio TJHP method in a test case was 
considered necessary and this Chapter is concerned 
with calculations on the pyrazine anion and the 
monoprotonated pyrazine radical, using the double 
basis approach. The closed shell pyrazine molecule 
is' also•presented for comparison with the results

13 2obtained by dementi.

Method.

The ab initio d o s e d  Shell and Unrestricted
Hartree Pock methods were used in the l.c.a.o.-m.o.
approximation, with spin annihilation in the UHP method.
The minimal basis set of orbitals was represented
by expansions of Gaussian functions in their
completely contracted form; for the one electron and
one, centre integral calculation the 9 s type and 5 p
type for carbon and nitrogen and the 1 0 s type for

2 1hydrogen as given by Huzinaga ■ and for the
multicentre two electron integrals the Us type and
3 p type for the carbon and nitrogen and the 3 s type

2 8 •for hydrogen, from the work of Stewart , were used.
The coordinate system of pyrazine is given in Table 1. 
(The additional hydrogen in the monoprotonated 
pyrazine is H(5) in Table 1.) Hydrogen atomic orbital 
exponents of 1 * 2  and 1 »U were used for the calculations 
on the pyrazine molecule and 1 *U for the pyrazine 
anion and monoprotonated pyrazine, as suggested from 
the work on OH 3  (Chapter 2),

The function

^^UHP"*" ( ̂  - 0 .  ) <S 2
was minimised in the
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TABLE 1.

centre X z

0(1) -1*30201+6U 2 . 3 3 0 7 1 9 3

0(2) 1-3020U61J. . 2 . 3 3 0 7 1 9 3

0(3) - 1 . 3 0 2 0 4 6 4 - 2 . 3 3 0 7 1 9 3

c(u) 1 . 3 0 2 0 4 6 4 - 2 . 3 3 0 7 1 9 3

N(l) , -2.2627005 0.0
N(2) 2 . 2 6 2 7 0 0 5 0.0
H(l) - 2 . 2 9 4 1 7 1 8 4 . 0 4 9 1 3 0 2

H(2) 2 . 2 9 4 1 7 1 8 4 . 0 4 9 1 3 0 2

H(3) - 2 . 2 9 4 1 7 1 8 -4 . 0 4 9 1 3 0 2

H(U) 2.2941718 - 4 . 0 4 9 1 3 0 2

■ H(5) 4 . 1 6 2 7 0 0 5 0 . 0

The y coordinate'i s .zero.

Coordinate System used in the Calculations on the 
Pyrazine molecule, the Pyrazine anion and the 
Monoprotonated Pyrazine. (Distances are expressed in

atomic units.)
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case of the pyrazine anion in an attempt to remove 
spin contamination (see Section VI). The values of the 
scalar, a, used were 0*85, 0-90, 0*93, 0*98 and 1*00 
(the last being a normal unconstrained UHP 
minimisation). The results for the pyrazine anion 
and the monoprotonated pyrazine radical were calculated 
from the UHP wavefunction after annihilation of the 
contaminating quartet spin state and all quantities 
given are expressed in atomic units, except for the 
hyperfine coupling .constants which are expressed in 
Gauss.

Results and Discussion.

The Pyrazine Molecule.
1 3 3Bene and Jaffe have performed calculations

on diazine.molecules, using the OHDO method, in an
*

attempt to study the and n^n* transitions
which occur in the ultraviolet spectra of these 
compounds. Also an ab initio calculation on pyrazine, 
using a 180 Gaussian basis, has been reported by

1 3 2d e m e n t i  , giving as the first electronic transition 
the nonbonding to n antibonding, n->n̂ ,̂ consistent 
with experiment.

The results of the calculations for a hydrogen 
orbital exponent l*-2 and 1 *U are summarised in 
Tables 2 and 3 and figure 1. The corresponding 
results for the d e m e n t i  calculation are also given 
for comparison. As the coordinate system for the 
calculations reported is slightly different from that 
used by d e m e n t i  the results are not directly 
comparable. The'orbital energies computed (Table 2 and
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TABLE 2.

Total Energy and Orbital Energies (in a.u.’s) for the
Pyrazine Molecule.

type 1 32d e m e n t i a=l *2 a=l . 4

- 1 5  *69544 -15*68278 -15*63389
-15-69527 -15*67768 -15*62872
-11*47642 -11*48648 -11*43777
-11*47541 -11*46762 -11*41879
-1*37619 - 1 . 4 5 4 2 2 -1*41834

-A- 1 ( a) -1*27295 - 1 . 3 3 6 0 9 — 1 . 3 0 4 6 6

- . 9 5 7 1 1 -.88175 -.84282
-*77967 - . 7 6 2 1 4 -*71687
- . 7 2 2 8 2 - . 6 4 2 0 3 -.62133
- . 5 3 2 7 5 - . 4 9 1 5 7 -*43807
- . 4 4 1 2 5 - . 4 3 4 2 4 — . 3 8 4 8 8

-11 . 4 7 6 4 9 - 1 1 . 4 7 0 2 5 - 1 1 . 4 2 1 0 9

-11 . 4 7 5 4 0 - 1 1 . 4 6 1 4 9 -11*41265
- 1 . 1 3 2 5 7 - 1 . 4 2 6 2 4 -1*39938

B 2 ( G ) - . 9 3 0 9 7 - . 8 9 9 1 0 -.85614
- . 7 5 5 1 9 - . 7 7 0 6 0 - . 7 5 0 3 7

-.68371 -.69657 -.66113
. -.61071 -.63165 - . 5 9 5 0 0

(n) — . 6 4 9 4 0 -.87123 -.83834,
- . 4 9 3 5 5 - . 3 2 6 7 2 - . 2 9 1 9 4

A 2 ( n) - . 4 6 1 7 6 - . 2 9 6 2 9 -.26158

Total
Enefgy -261*55432 -262*23830 -262*11569

-Y/T 2*0001 1*999
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figure 1) show that the highest occupied orbital is 
the n orbital of A 2 symmetry, in disagreement with 
experiment and dementi, although a lower energy was 
obtained in these calculations. The gross population 
charges have not been evaluated but the electronic 
configuration of the separate atoms in pyrazine is 
given in Table 3.

The lack of agreement, between the results of 
d e m e n t i  and those using the double basis technique, 
is not wholly discouraging. The optimisation of the 
geometry and hydrogen orbital exponents could easily 
correct the situation since the difference in energy 
of the higher occupied orbitals is not very great.

The Pyrazine Anion.

On reduction of pyrazine with potassium metal
1 3  4.Carrington and Santos-Veiga produced a species 

which they identified as the mononegative ion of 
pyrazine, with isotropic hyperfine coupling constants 
a^=7'22G, ajj=2«66G. The theoretical results are 
summarised in Table h, with the rr orbital of A 2  

symmetry occupied by the unpaired electron. In fact 
during the minimisation of the energy it was noted 
that the anion was converging on to the wrong symmetry 
-that is the orbital the unpaired electron was 
occupying was not that found practically. This 
observation led to the conclusion that it would be 
necessary to intervene and force the correct symmetry 
if meaningful results were to be obtained, so that the 
summarised results are those for the forced, rather
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TABLE U .

Theoretical Results for the Pyrazine anion.

a ®XmPAA
hyperfine coupling constants

^0

.85 -261.9857 —1 *28 5-55 -1-97
• 90 -261-9901 -2.20 7*05 -1-83
-95 -261-9955, -3-71 9-19 -1-43
.98 -261-9984 -5-36 11-11 -0 • 74

l.QO -261-9991 —6 «hO 12-48 -0-31

Ex p t . 7-2 ±2-1

Unpaired electron in rr orbital (Ag)
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than the natural hut incorrect, minimisation.
The unsatisfactory value (l-Oh58 before 

annihilation) suggests serious contamination of the 
doublet spin state, and for this reason the function

was minimised. The 
variation of the energy, value, nitrogen and 
proton hyperfine coupling constants with a are given 
in figures 2 and 3.

The theoretical coupling constants, a^^l2*48G 
and ag=-0'31G> are in reasonable agreement with 
experiment. The removal of the contaminating spin 
states would produce a reduction in a^ and an increase 
in a^ (see figures 2 and 3) resulting in values 
closer to those found experimentally. Although the 
small value of the calculated proton coupling 
constant does not permit an unequivocal statement^on 
the sign of the experimental ooupling constant it 
might tentatively be concluded that the sign is 
negative.

The unfortunate difficulties during the 
minimisation of the energy naturally reduce the potency 
of any conclusions drawn. ^The reason for the wrong 
orbital ‘occupancy is not clear, although such results 
are not unknown with the UHF method. The fault' may 
also lie with the application of the double basis 
approach to large systems, where small errors in 
individual integrals accumulate due to the size of 
the problem.
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The Monoprotonated Pyrazine Radical.

While the neutral monoprotonated pyrazine 
radical has not yet been reported the lithium salt 
of the pyrazine anion is well characterised by its

1 3 5 , 1 3 6e.s.r. spectrum. The experimental data indicates
that the two nitrogens are not equivalent, suggesting 
that an ion pair is formed with the lithium cation 
in the molecular plane in the region of the nitrogen

1 3 7  138lone pair electrons. Extended Hu eke 1 and CHI)0/2 
calculations have failed to predict the 
non-equivalence of the nitrogens, locating the most 
probable position of the lithium cation as above the 
centre of the pyrazine ring.

By calculating the electron distribution of the 
monoprotonated system, with the extra proton 1*9 a.u. 
from one of the nitrogens, values of the isotropic- 
coupling constants will be obtained which should 
resemble the coupling constants in the lithium- 
pyrazine ion pair. In this way some verification of 
the experimental assignment may be achieved.

The results of the ab initio calculations are 
given in figure h, with the corresponding coupling 
constants calculated for the pyrazine anion. In 
Table 5 the electronic configurations of the atoms 
in the pyrazine molecule, the pyrazine anion and the 
monoprotonated pyrazine radical are collected, 
showing the considerable inequality in the charge 
distribution resulting from protonation. Experimentally,

1 3 5 , 1 3 6for lithium pyrazine, Atherton and G-oggins 
deduced two proton values of 1*98G- and 3"33& and two
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nitrogen values of 5*360- and 8•680-, A comparison of 
the theoretical and experimental hyperfine coupling 
constants is not very fruitful and no definite 
conclusions can he drawn.

The orbital occupied by the unpaired electron 
in the monoprotonated species is different from that 
occupied by the unpaired electron in the pyrazine anion 
since in the latter case a specific orbital was forcibly 
occupied.(Cf pyrazine anion; for the protonated species 
the unpaired electron occupies a n orbital with a node 
through the nitrogens.) Since the monoprotonated 
species has not been observed there is no rationale 
for forcing the unpaired electron into a different 
orbital; although, intuitively, it would be felt that 
the orbital scheme of the two species should be very 
similar.

Conclusions.

By using the double basis method calculations 
on benzene type systems just enter the area of 
feasibility of computation but no optimisation is • 
possible. This lack of optimisation of geometry and 
hydrogen orbital exponents, forced by the size of the 
problems considered, may account for the discrepancies 
in the theoretical results. A further source of error, 
for large molecular systems, may result from the use 
of the double basis method. Although the absolute 
error in the individual multicentre integrals, 
incurred by use of small Gaussian expansions, may 
be small the percentage error for the molecule may
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be large. This accumulation of errors may account 
for the unsatisfactory observation made for the anion, 
where the unpaired electron was occupying the wrong 
orbital (the lack of consideration of environmental 
effects may also play a part in this anomaly).
However the results given for the pyrazine anion 
do permit some optimism on the value of the double 
basis ab initio UHP method for the prediction of 
isotropic hyperfine coupling constants in large 
molecular systems. Moreover, for the smaller systems 
of Chapter 4 the double basis method represents a 
very useful tool for spin density calculations as it 
permits a comprehensive study by reducing the 
computational times to a reasonable level while still 
retaining the accuracy expected in full ab initio 
calculations.
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ABSTRACT.

This thesis is concerned with the calculation of 
spin density distributions in molecular species with an 
unpaired electron. The ab initio Unrestricted Hartree 
Pock method with single spin annihilation is used for this 
purpose and the construction of the wavefunction and 
methods by which the energy may be minimised and the 
hyperfine coupling constants evaluated are discussed. The 
atomic basis sets used are represented by combinations of 
Gaussian type orbitals; sufficiently large expansions are 
used to ensure that the wavefunction is of the accuracy 
required. A mixed basis approach, where smaller Gaussian 
expansions are used for the two electron multicentre 
integrals than for the other integrals, is also put 
forward as a reasonable approximation which results in a 
considerable reduction in computational times.

The merits of the Roothaan, steepest descents and 
conjugate gradient methods, in minimising the energy, are 
analysed for the ON radical, leading to 'the conclusion 
that a combination of the Roothaan and conjugate gradient 
methods should be employed.

In Chapter 2 the UHP method is used to calculate 
the isotropic hyperfine coupling constants of NH 3 , OH 3 ,
B H 3  and the importance of optimisation and the out-of-plane 
zero point energy vibration is emphasised.

The third chapter deals with the calculation of 
anisotropic coupling constants, demonstrating the value of 
the anisotropic coupling constants, and their directions, 
in supporting experimental assignments.



(ii)
A mixed basis approach is then applied to AIH 3 , 

SiH 3 , P H 3  and associated radicals, using small expansions 
fitted by a least squares technique. The retention of 
accuracy in the calculated coupling constants combined 
with the considerable time saving suggests that the v : 
technique may prove very useful.

The final chapter is concerned with large scale 
calculations~on pyrazine systems using the mixed basis 
method.


