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Introduction

The Electron-Spin Resonance Experiment provides.
information associated with the manner in which
unpaired electrons are distributed in a system. :
Analysis of the data obtained sometimes permits insight
into the structuré of the system investigated. The
data aerived is generglly éxpressed in terms of
hyperfine coupling constants associated with the nuclei
which form the radical. In favourable cases this
information can be separated into an isotropic and an
anisotropic contribution, supplying valuable
indications on the nature of the bonding and the
overall structure of the radical.

The large amount of experimental data available
has motivated many theoretical studies designed to
predict the spin density distribution in radical
species. The majority of these are semi-empirical while
few calculations on a non—empirical level have appeared
aimed at the explanation of observed hyperfine
coupling constants. Although many studies have appeared
in the literature cohcerning the prediction of |
isotropic hyperfine coupling\constants, calculations
designed to give anisotropic hyperfine coupling
constants are few and generally incomblete.

These deficiencies motivated a study of spin
density distributions from a Gaussian based ab initio
viewpoint. The term ab initio implies no approximation
above the Hartree Fock (separation of the many
olcotroﬁ problem into a series of onc clectron

problems ] with the linear combination of atomic

- -



orbitals approximation generally assumed aﬁd the
atomic orbitals represented, in practice, by Slater or
Gaussian type functions; all electrons are considered
explicitly and all integrals evaluated exactly. The
form of the wavefunction used and the manner in which
it is constructed and minimised are described in the
following sections. General analytical formulae for
the integrals associated with the anisotropic
hyperfine coupling constants are derived over Gaussian
functions. A brief discussion of the effects of |
vibronic contributions on spin properties concludes
this theoretical section. The application of the

techniques elaborated are then presented.

I. The Unrestricted Hartree Fock Method

Varipué forms of the wavefunction for an open.-
shell system have been considered. The Unrestricteg
Hartree Pock (UHF) function has the advantage of
retaining many of the analytical features of the ‘
Restricted Hartree Fock method by the simple extension
- of unpairing the electrons. By permitting the o and B’
-‘electrons to occupy different spetial orbitals
correlation is implicitly incorporated into the
wavefunction,

For an N electron system of p g eléotrons and g

B electrons (p>q) the UHF wavefunction QEHF takes the

single determinantal form,

Ppp= (0 )-%det”%'(l)a(l) o.-“°q’p(P)a(P)<P1 (p+1)B(p+1)..
o (MBM) L......()

Without losg of generality the one electron



functions of the o electrons y; and of the B electrons

¢; may be considered as orthonormal amongst themselves

3% +*
A ‘J’.'wiqudq':j.(piwjd'r:sij |
A further reduction of the number of integrals
which have to be considered results from the use of

the "corresponding orbitals" suggested by Amos and

152
Hall ’ . These have the property,

f¢jtcpde=TiSij; OSTisl oo-oo-o-ooo(2)
In the linear combinations of atomic orbitals
(l.c.a.0.) approximation the functions 5 and o,
written as column vectors y and ¢ (¢+=f¢i:i=l*p]';

¢+=[¢ifi=l*QJ), are chosen in the form,

r=A"0 B &)
¢=B" u
where w is the_column vector,

with elements wi:i#lﬁm, of the atomic orbital bésis/w
functions; A is an mxp and B an mxqg matrix of -
coefficients which must be determined to define y and
¢ and hence Yipp-

Defining the unrestricted bond order matrices P -

and Q, for the a and B electrons respectively, as

P=AL" R ¢S

Q=BB"

and the overlap matrix S as

* -.
%J—"I(Diwjd'l’ .ooooo'-o-ooo.o-o.o(ua)
The matrices PS and QS are idempotent with traces
corresponding to the number of o and B electrons

respectively,

(S) =PS; _ (08)"=s ceeeneneenes(5)
Tr(PS)=p; Tr(QS)=q



The UHF energy EUHF may now be written as,

EUﬁF=Tr(PFa)+Tr(QFB)—&Tr(PG“)-%Tr(QGB) N €Y

where
FO=n+g%
.....................(7)
rPon+P
h is the one electron matrix with
" elements,

hij=fw;('%vg4gz&/fa)wjd Cerererenrencneees(8)

and G% and GP are the two electron

matrices defined by,

1j"§;i[(Pkl+le)<lklal> ~P, <1k113>]

000000(9)
1J-g:i[ Pkl+le)<1k[Jl>—le<1k!IJ>]

<iqikl>=fwi(1)w5(2)[1/f¢2]wk(;)wl(2)dj1dT2 ees.(10)
The energy may be minimised by the variation of
the coefficients in A and B or, equivalently, of the-
bond order matrices P and Q. Methods which are
applicable to the minimisafion problem will be
considered in a later section.,
The expectation values of the charge density
- operator,
)= Sy
and the spin density
operator, : |
g(r)=% 28,6 (r-z;)
over the atomic basis

3

functions w; - are given by,

. |

Q(r)zgt!:\:/<P‘l]V LIV ut?r)w (r)..b.‘.;.:..;."..(ll)

p(2)=3h (2 ~Q,)u (x)u, (7)
v



ITI,; The Use of Annihilation and Projection Operators

Fundamental theoretical objections méy be raised
- against the UHF method on the grounds that, although
the wavefunction is an elgenfunctlon of the S operator
it is not, in general, an elgenfunctlon of the S
operator., The deficiency is found to result in
overestimates of the calculated spin pfoperties.
Lowdin‘ has suggested a solution to this problem
by the use of projection operators. ihe-UHF
wavefunétion is a mixture éf components of various

nmultiplicities and may be written formally as,

QPUHF= ﬁé% Cstic¥srk

where s=%(p-q), the
spin state required, and §S+k_are'pure spin states,
A » .
S §S+k=(s+k)(s+k+l)§s+k
"The projection operator, .
2 : , .
Ak=§-——k(k+l) oooooco.o.coo--oo(’lz)
when applied to gy W11
annihilate the component of multiplicity (2k+1) in
g%HF: The process may be repeatedly applied to\LbHﬁ to

~ remove all the unwanted components. Further, an

operator O of the form,

7‘(1 [(s -k(k+l))/(s s+1 )=k (k+1))]
S B 3
' may be used to select
the required pure spin sta?e of multiplicity (2s+l).
In the Extended Hartree Fock method the variational
procgduré is applied to the wavefunction QéPUHF; This
is an extremely difficult procedure, but Harriman et

6=10
al - have developed a successful approach,



The difficulties inherent in the practical
application of Qs led Amos and Hall2 to suggest the
use of the single annihilator As+l raﬁher than 95'
The jusfification for this épproximation results from
the demonstration that the major unwanted component in -
g@HF is that with spin (s+l1), the states of higher
multiplicity decreasing rapldly in 1mportance2,s.

Although the wavefunctlon is now s1mp11f1ed to
As+fpﬁHF the complexities involved in the varilational
procedure are prohibitive. For this reason the
annihilator_As+l is generally applied to the
wavefunction which minimises the energy in the
Unrestricted Hartree Fock approximation., Generally a
lower energy is obtained, but no rigorous proof of
thelnecessity of this is available.

The energy after annihilation of the (s+1) spig’

state EUHFAA 1s given by,

Empa= <Ag Wmpl BlAg s> eeeel (1)
<As+ﬂIbHFlAs+fthF>
or, '
Eypas= <@UHF}H}As+thHF ceeeee.s(15)

<§bHF'As+ﬂ¥hHF

where the second
result, equation (15), is given as gzlcommutes with
the spinless Hamiltonian. Equation (15) may be reduced
further if the approximation that AS+1 is iaempotent

is used, so that

e <4@HFJHJAS+fL@HF o L...16)
<Ymp | As+1¥0ar

EUHFAA may then be more

UHF

A1
fully expressed as |,



EUHFAAzEUHF-X—1[Tr((PSQSP+QSPSQ—PSQ-QSP)h)
+-§ (PSQSP+QSPSQ—PSQ—QSP) L1 (B+Q) <su [tv>

Z:((PSQSP)st 4y (QSPSQ) Qo
-(PSQ"'QSP) 't(P+Q) 'tQU.V

+(BSQ) 44 (QSP)  )<sulvt>]  o.onenil (D7)

where,
x=£(p=q) “+3(p+q)- (s+l)(S+2)-Tr(PSQS)
an@ EUHF is the UHF energy.

The charge and spin density funcfions are given

_q(r)=§§:(Juv+Kuv)w§(r)wv(r)
oy eeeeeeeane...(18)

p(2)=3 (T, K, Jut (), (x)
v '

where
o, | |
MI=[A +pq-q+(3-2A-N+2Tr(PSQS) )Tr(PSQS)" -

~207 (PSQSPSQS ) 1P+ [p~Tr (2505 ) 1Q L

+QSPSQ+[N-3+2A-LTr (PSQS ) ]PSQSP o

+[1-p=-A+2T(PSQS) ] [PSQ+QSP] | |
- ~2[PSQSPSQ+QSPSQSP J+LPSQSPSQSP

~and

A—q—2(s+l)
M=A +pq+[2 2A-N+2Tr(PSQS)]Tr(PSQS)

" —27r (PSQSPSQS)

K is glven‘by a similar expression
to that for J with the P and p interchanged with the Q
and q. As the § and the R(r) operators do not commute
the expectation value is from |

<Ag Pomr [2(2) [Ag  FPoep>

<As+f}ﬁHF1As+ipUHF>

p(l‘):



All theoretical procedures designed to evaluate
the wavefunctions of molecules of chemical interest
are ﬁnsatisfactory if electron correlation is dominant.
In open shell cases this is particularly aﬁparent and.
it is necessary, if an objective is chemical, to use a
practical method which has been shown to work.
Although a number of objections have been ievelled
against the projected UHF method12, in this form, it
has been found to give an adequate description of the
spin properties of radicals ahd for that reason,
combined with the simplicity of application, is
considered a useful tool in the analysis of molecular

properties.

ITI. Application of Gaussians to Molecular Calculations

In practical applications of the Unrestricted
Hartree Fock method on a radical with m basis
functions, w;, a number of types of integral havé to
be evaluated. By far the most abundant of these are
the two electron integrals of the form,

Joi (1w} (2)[1 /242 ]u (1)) (2)dr4dr,

} '  Infact there are mA such
integrals and although this number may be considerably
reduced by symmetry, m does not have to become very
large fd; computation to bé prohibitively long.

For this reason various éemi—empirical theories have
been proposed and applied with'varying degfees of
success.Ceftainly'the information and insight
acquired by the use of semi—embirical techniques has

been of greét value, but an analysis of the methods of

-



quantum chemistry from a less arbitrary position
would be informative as to the nature,and value, of
the approximate wavefunctiong that haye been used.

With the availability of high speed computers it
is now feasible to approach the problem of molecular
calculations in an ab initio manner. The need for a
good approximation to the wavefunction, especially
close to the nucleus, is critical to the calculation
of spin properties, thus supplying a rigid test of the
wavefunction used. |

The Slater type orbital (STO) forms an adequate
‘"representation of the atomic function, particularly
in the bonding region, but has the disadﬁantage, for
the multicentre two electron integral, of difficulty -
of evaluation, generally involving a numerical
integration. Nevertheless, a_large number of ab
initio studies on molecules have beén performed using
STO0's. Shavitt and Karplus13 have suggested the usé

of the Gaussian Expansion method,

-5 3 @ 3-8 g —ar’
e = QHVJCG % /Ll»d.e at da
o

in the

: evaantionAof the integrals dver STO's. This, however,
does not alleviate the need:for a numerical
integratién.

The advantages of using Gaussian type.orbitals
was first pointed out by Boys14L Gaussians of the
form,

X foxp(-agz))

‘where n is an integer, have
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the property that for a multicentre integral over

' Gaussians a transformation can be found which reduces
the integral to a one centre problem. This property
results in quite simple analytical formulae for the
intégrals involved in molecular calculations and has
led to the extensive use of Gaussian functions in
theoretical chemistry. The advantage gained by the
ease of elucidatiqn is somewhat offset by the inferior
description give by the GTO compéred to the STO. This
deficlency results in the need for a lafge: basis set
of Gauésians, and thus an increase in the number of
integrals required. Fortunately'this incréase is more.
than compensated for by the eaée of qomputation df the
integrals over Gaussians and sufficiently accurate

wavefunctions can be used.

IITa. Construction of Gaussian Basis Sets

The requirement for large basis sets of GTO's
in the accurate description of systems in theoretical
calculations raises ﬁroblems in'the linear minimisation.
Even for small systems the number of 1inea; parameters
to be optimised can be very large. Clémenti and Davis
have suggested that the Gaussian basis should be
contracted15’16, reducing the number of liﬁear

parameters by taking orbitals which are linear

combinations of the Gaussian basis,
Se X
W. = C A
1 j=1 JJ
whe::'e)é'j is a Gaussian of

the form
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n-1 2

)%:Nhr exp(-ajr )Ylm(e,m)
| Ylm are

normalised spiterical harmonics and Nh the normalisation

factor,
M =2 (20-1) 11 T 42y TR (2R

The application of Gaussians to molecular
calculations is dependent upon the use of contractions;
the manner of the contraction has been subject to
investization by several workers — . In the
applications of the ab initié’method reported use is
made throughout of complete contraction of the Gaussian
functions. Thus the 1ls of hydrogen is represented by a
linear sum of GTO's and the 15, 2s and 2p of carbon
are répresented by similar expansions.

The employment of contraction while paramount to .
molecular calculations does nét in itself result in
any redﬁction in the number of integrals to be
calculated, although it doesbreduce the number of
integrals to be stored. Extensive basis sets would\'
counter the purpose of Gaussians; generally it is

/found.thatvé to 1lls type and 5 to 7p type Ggussian'
functions are sufficient in the description of the
first row elements17’21. In the épplicatioﬂs to be

reported further reductions in integral calculation

has been achieved by using contractions of the form,
n :

¢i=;;;Cin5
where the ¢; are the
s type or p type orbitals used as a bésis for the atom
involved in the molecular system;

) '
- Gausgian basis sets, of various sizes, are
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reported in the literature using the manner of
contraction (of linear and non-linear parameters)
outlined17,21—24. The major methods used in the
optimisation of parameters are based upon the least
squares or the energy'criterion. The least squares |
approach, fitting a Gaussian expansion:to Slater type
,orbitals, has been employed in a variety of forms by
many workerszs-za. An unfortunate'aspect of the method
of least squares is the problem of local minima; for
large-Gaussién sets the number of local minima can be
particularly troublesome. Generally empirical checks
can be pursued to clarify the position, for example,

by scanning around the wminimyum position. Optimisation
of the basis set by minimisation of the SCF'atomio
energy hds proved to be the most popular proceéh,wem’29
The atomic SCF bases, optimised on the energy
criterion are used as bases for molecular calculations.
Undoubtedly the atomic (and least squéres) bases afé
not optimal for the molecular systems they are apblied
to and for this reason attempts have been made to
optimise thé molecular basis in the molecular
environmentéo. The enormity of the problem involved in
molecular optimisation is reduced by the use of smaller
basisvsets. This necessity for a smaller basis leads
~to a poor description of the wavefunotion and
invalidates its use for calculations aimed at
prédicting'spin properties, although, no doubt,

insight into less sensitive properties can be

obtained.

Por the calculation of spin properties a good

-
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description of the wavefunction close to the nucleus
is essential. This has led to the use of the atomic
Gaussian basis fitted by the energy criterion where an
adequate description of the orbitals and their cusp

properties is expected for a reasonable sized basis.

ITTb. The Double Basis Approach

A large number of calculations using Gaussian
type orbitals have been reporfed. The;treatment of
systems such as the nucleotide bases composing the
Vnucleic acids has now become feasible from an ab
initio viewpoint31. It is only natural that calculations
involving large molecules; and hence a large number of
basis functions, should necessitate the availability
of an extremely powerful computer installation. The
fact’that for most workers such facilities are not -~
available has limited the qumberéf aocuréte, large
scaie calculations +to a few centres. Even a system
such as SOE-, using'a reasonable basisf2 would present
a férmidable problem in terms of the time required.
This limitation, through restricted facilities, has
motivated a search for suitable approximations on the
'éb initio method which, without invalidating the
concepé,'Will alloﬁ for a more general aﬁplicationss,sk

The basis functions w; are approximately

represented by a linear expansion of Gaussians,

wi=§-ojyj + Swi . . o».-oo'-oo--‘on-o(l9)
where as n increases the

truncation error,Swi decreases. It has been

- -



1,
demonstrated by Cook and PalmierizL that the expansion
required for the calculation of one electron integrals
‘to a certain accuracy is larger than that required for
the caléylation of two eleétron integrals to the same
degree of accuracy. The first order correction in a
general two electron integral is gi&en by terms such
as | | .

Jow; (1w (2)[1 /712 ]uy (1) (2)dridTe

| - The numerical value of
fhis'oorrection when the integral is over more than
6ne'§entre ﬁill be significantly less than if it were
a one centre integral. This led Cook and Palmieri to
suggest a mixed basis method3L where the one elecfron
and one centre two electron integrals aré calculated
over Slater type grbitals and the multicentre two
eieotron intégrals are evaluatea using small expansions
6f Gausslan type orbitals. As the vast majérity of%
computation is spent on the evaluation of such
multicentre ﬁwo electron integréls the reduction in
computer time:is sufficient to permit much larger
: systems.tq'bé studied than would otherwise be'feasible.
Ihé‘work of Cook and Palmieri was Slater
) ofientated but may easily be extendéd té complete
Gaussian'brientation and the use of different Gaussian
expansions in molecular.calcﬁlétions is differentiated
from their :"mixed" basis wethod by reference to the
"double" basis method. Generally.the'value'of n in
equation ﬂl9) is about four for the accﬁrate
reproduotidn'of the one electron and one centre two

electron intégrals and two is sufficient for the

- -
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multicentre two electron integrals.

The problem arises over the most suitable choice
of basis to be used in double basis caiculations. The
large expansions optimised on the energy criterion
were considered best suited for the one centre and one
electron integrals. Howevér the molecular, rather than
atdmio, nature of the multicentre two eletctron integrals
suggest that a fit of the small basis over the space
would be preferable. The large expansions and the
Slater type orbitals give an adequate description of
the atomic wavefunction over all regions of space so
that a least squares fit of the small basis to either
of these functions would yieid an expansion suitable
to the requirements of the double basis method. Such
small expansions are available for the first row

28
elements .

The manner in which Gaussian type orbitals afe
applied to ab initio calculations, as outlined abo%é,
is well documented and no attempt at a comprehenéive
review is felt necessary. The sensitivity of the spin
properfies to the wavefunction, however, requires

-further discussion.

IV. Optimisation in Ab Initio Calculations

l

‘The ab initio calculation of hyperfine coupling
constants derived from thé Electron Spin Resonance
experiment has proved to be a field much neglected.
Recently some workers have taken up the challenge but
the results, using various wavefunctions, are |

' 35136
discouraging . In this work, using the
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Unrestricted Hartree Fock wavefunction after
annihilation, the sensitivity of the spin properties
to the wavefunotioﬁ have made it necessary, where
possible, to further optimise the basis. The simplest
way to achieve a degree of optimisation of'fhe

Gaussian basis is by varying the exponential factor

cpi(si)=§;?jsj(a3) ; al=5a;

‘ where §i.is a positive
scalar repfesenting the change of the exponential
factor in the molecular species as compared to its
value in the free atom. Even this approach, in
conjunction with the optimisation of the geometry,
will soon become too time consuming as the number of
basis orbitals in the system increases. For this
reaéon only the optimiéation of the exponential factor:
of the 1ls orbital of the hydrogen atom is considered.
This approach is felt to be justified as the atomig
1ls orbital of the hydrogen would be expected to be
most affected by transfer to a molecular environment.

In larger systems, where optimisation of the
- proton exponent, and even oompletely or partially of
the géometry, is not feasibie, the best values have to
be estimated from experience. Thié approach, of
non—-optimisation in some cases, is téken as any
reduction of the size of the expansion sets used would
more than offset the value of any optiﬁisation

achieved.
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V. Methods of Minimising the UHF Energy

The use of Gaussian type orbitals is centred upon
the computational efficiency achieved in the evaluation
of the integrals involved in_molecular calculations.
However, now that the problem is defined a minimisation
of the énérgy of the system must be effected within
the framewofk of the approximation used, that is, the
Unrestricted Hartree Fock method.‘Even with contraction
of the basis set the number of atomic orbitals used
can soon become large, and as the function to be
evaluated is non—trivial any iteration cycle of
mihimisation must be as efficient as possible. Three

a?proachs have been adopted to this problem; the

7238

3 .
matrix diagonalisation method , the steepest

3941
descents method ¢ and the method of conjugate

. 4245 ' -
gradients . 7

1) The Matrix Diagonalisation Method

The method of matrix diagonalisation uses fhe
equatibns, »
| POA=SAc | |
Br_op. P ..............3....(20)
which the orbitals must
satisfy. The Fock matrices Fa and FB'for the o and B
"electrons respectively, the A and B matrices of
coefficients of the molecular orbitals over the atomic
orbital basis 'and S the overlap matrix are defined as
previously (equations (1) to (9) ). The ¢® and &P -

. ) ) 37138
- matrices are diagonal. The energy is then given by,

-EUHF__‘iegi iijjegi - 47r(26%) - $1r(QeP) ..(21)
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As the Fock matrices are functions of the
matrices A and B the manner of solution wust be by
successive approximation. Thus F% and FB are
calculated from an initial approximation to A and B;
the process is repeated until self consistency is

achieved and hence the minimum attained.

2) The Steepest Descents Method

The method of steepest descents for the solution
of the eigenvalue problem was first_suggested by
Mcﬂﬂ[eenym”'0 for closed shell systems and later
extended torthe UHF methodl:1

The method, in general terms, may‘be considered
as follows:. for a function f(x) of n variables,
X1,Xz....X, OT |x> using Dirac notation, if there is a
first approximation |x,> to [x> and the gradient of
£(x4), | 80> (=]g(x0)>), can be found, fhen a better ™
~ approximation, |x,>, to [x> is given by .

| [ X4> = |Xo> = Xol80>
or generally,

[%X;,9> = 1%4> = Ay (85> e eeeeee (22)

i+l

Thus an iterative cycle is formed. The positive
scalar ); 1s chosen at each iteration so that &Xi+l>
is approximately the minimum in the direction lgi>
from [xi>. -

As the first order denéity matrix and
consequently the density matrices of all other orders
ﬁay be expressed in terms of P and Q only it follows
that the bond order matrices are fundamental quantities

of the theory and there is no requirement to calculate

the prbitals, as in the matrix diagonalisation method.
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Direct minimisation of the energy by variation of P
41
and Q has been formulated by Amos for the‘changes

P-P+ 8P

Ceee ceeeeens ..(23)
QQ+56Q
subject to the conditions
. ) , .
(Ps) =Ps; (Qs) =08 RN ¢-19
Tr(PS)=p; Tr(QS)=q

Defining the matrices,
~ pr'=s” P
s=P'P%P
I=s+s™”
J=s=-s"
- and similar expression for Q', %,
K and L respectively, by replacing P by Q and F*® by FP
Then the directions df descent are, to second order,
§P==)C(1+2% IST)™ (T+2%IST) N (25)
§Q=—22(1+2P%xsk)™" (T+1PxsL)

The inverse in equationA(25) may be negleoted'to
first order in 2% and XB to give the more approximate
result, . .

6P=a (I "I89) eeeree..(26)
§Q=—28(1+2PksL) | | |

The step lengths \% and AP are given by the

- expressions, .
[dz—(2a-c)(2a'-o‘)]Aa=(ga—c)b+b’d
[a"-(2a'=c')(2a=c) ]aP=(2a"~c " )b '+ba

a=Tr (ISIF%)
b=Tr (IF%)
C=Eiki1ijIkl[<ik{jl>—<ik]lj>]

: with similar expressions

- . -
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for a', b' and c¢' by replacing I, J and Pe by K, L and

FB respectively.

a=S T, K, .<ik([j1>
T LiTe

Generally the modified bond order matrices
obtained are neither idempotent nor have thé correct
traces necessitated by the conditions (24).
Idempotency may be restored by repeated application
of

P=(PS) (35~ -2P)
0=(¢s)"(35™ ~2q)
and the tracés
corrected using |
P—P+aS ™'
Q=Q+bS™
with
a=(p-Tr(PS)) /N -
b=(q-Tr(Qs)) /N
The steepest descents process may then be

continued until self consistency is achieved.

3) The Conjugate Gradient Method
g In the method proposed by FletcherLL for closed
shell systems and extended by SutcliffeLs to open
-shell systems for the Restricted Hartree Fock and
Multiconfigurational Self Consistent Fiéld
" wavefunctions an approach is adopted which is dependent
upon the unconstraining of the parameters to be varied.
The mxp matrix A must.satisfy the orthonormality
condition ‘
ATSA=T

- ' "  where I is the identity matrix
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To unconstrain the minimisation problem an mxp matrix
Y®'is defined such that
A=YOU® L, e L (27)
where U% is constructed in a
manner to ensure that A satisfies the condition of
orthonormality | |
By defining YB and U5 in a similar fashion for
B, then the P and Q matrices may be calculated and
hence the energy. A and B may be obtained by any
orthonormalisation procedure to give the same energy,
so that the energy, in Y% and YB, is not unique.
However, as pointed out in the steepest descents method
aé the bond order matrices are uniquely defined so
are all other properties predicted. Thus the nature of
‘the Y* and YB obtained is irrelevant and the problem
of constraints may be ignored.

Lt -
Following the work of Fletcher for the closed

shell problem the matrices U% and ub are defined as

U‘I—(Y“Jrsyo‘)"i/1 |
- _ : (28)

+
uP=(vP sYP)~

The bond order matrices may be written as

+
P=Y*M*Y® | (29)
+
Q=Y uPy?
with
+ + 1
M*=U%U* —(¥%* sY*)"  .......... ....(30)

and similarly for MP.
If a change in Y% to Y*+§Y® is made then M% is
changed by sM%, Neglecting terms higher than first
order in 8Y%
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+ + + 1
MO+ 6M%= (Y% sY%+6Y% sY®+Y® s56Y%)
-
=(I+Ma€a) Ma'
=(I-M%e*)M* . P 2 B
+ + '
e =67 sY%+7% s6Y% .
Thus from (31),
ME==M%*e O
The change §P in P can be obtained as
+ + +
§P=YMr§Y* +5YM*YH +YOgMOY®
+ . + +
=YON%Y* (I-SP)+(I-SP) 6 Y M*Y* .. .(32)
and similar expressions may be

derived for SMB and 5Q.

' The change in the energy is then,

§E= Tr(F%P)+Tr(#P5Q).

= omr (FOYONCE TS (T-5P) )+2Tr(FBYBMBS,YB+'(I—SQ) )
o[ (T-82)F%v*u* ] :57%+2[ (1-5Q)PPYPuP ] :5Y8. . (33)
where the colon . represents h
summation over two suffices. By virtue of the reiation-
shiiﬁ between the gradient VE® (or VEB) and the

increments in Y* (or YP) from equation (33),

VE%=2 (I-5P)r%yin®

vEP=2(1-5Q)rPyPuP |

and the complete gradient of

the energy is given by the mx(p+q) partition matrix

VE=(VE®VEP)
and similarly,

Y=(v%:¥P)
With the definition of the linear parameters Y

and the gradient VE the method of conjugate gradients
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proposed by Fletcher and Reevesl'2 méy be used. The
Fletcher and Powell method’ ~ is excluded as the
storage of the inverse Hessian matrix during
computation is necessitated.
Considering a general quadratic function f of
n variables in the form,
f=f o+<al x>+£<x|G[x> e eeeean (35)
where G is the Hessian matrix
of second derivatives.!xi>,i=0,l,2 .. are successive
approximations to the minimum | x>. The gradient | g;>
is |
|g;>=a>+6 ) x> e (36)
The step from lx;> to [x;,,> is defined in the
conjugate gradient approach by‘

<gi+1j pi>=O it e eeesenae . (37) .

| x.

1417 1E > R> .. (38)

where Ay is a scalar
and [pi> is some specific direction from a line through
Jx;>.

Repeated application of (38) results in
n=1

Y Ixn>=}xj+l>+ > r P3>3 Ogisn-l

and hence

(39) with ij>,
n-1

<gnjpj>=~

A:<Ds] Gl p.> e (40)
=3+ * 1 J

From (uo) if
<pilG|pj>=O E ig5 ..., (41)
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then
<gn{pj>=o
and since lpo>,lp1>....)pn;1> form
a basis |
| 8,>=0
so that
)xn>=1x>

Thus quadratic convergence is achigved in a
maximum of n iterations when using a set of G conjugated
directions. For a non-quadratic function the same
formulation is applicable but the process will be
iterative rather than finite and a test of convergence
is necessary.

As the function and gradient are defined
numerically G is not explicitly known. In the Fletcher:
and Powelle procedure Ipi> is defined as

[pi>=—Hi}gi>v et teeeaeea L2)

- where Ho,H;... are a
sequence of symmetric positive definite matrices
constructed such that as the minimum.is approached
rHi tends to G_1, the inverse Hessian matrix. The |
disadvanfage of this method lies in the necessity
to store the intermediate matrix E. The procedure
adopted by Fletcher avoids %his by génerating

|po>,1P1>... such that |p.

> 4 . . .
i+l is a linear cpmblpatlon

of Jgi+l> and Ipo>,lp1>,.....lpi> which satisfy the
orthonormality condition (L1)
The equations are found to reduce to

]pi+1>=-lgi+l>+6i{pi> ceeeeeee. (U43)

-
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where the scalar Bi is
Bi=<€3 41l 81417/<8;] 85>
. (|po> is defined as =[go>
so that initially a steepest descent is taken).
In summary lxi+l> is given by equation (38);

|g;,1> and hence |p; > are calculated and the cycle

i+l
repeated. A; in equation (38) is defined such that

|x. ,> is the minimum position in the function on a

i+l
line throhgh] x;> in the direction [pi>.

The three approaches to minimisétion,.matfix
diagonalisation, Steepest descénts and conjugate
'gradients, are written into a computer program in a
manner which allows unrestricted interchange between

any of the techniques when it is felt that such a

switch will increase the rate of convergence.

“VI. Restriction of Spin Contamination

The methods described are used to minimise the
energy in the Unrestricted Hartree Fock formulation
and then a single annihilator As+l applied to the UHF"
wavefgnotlon\LhHF

The energy after annihilation
<Ag NWmrl Bl Ao Wyep”
<A Wumrp! s Pymp>

=<ngFlH1A;+f;bHF> oo (b))

2
Bl A+ Wymp>

2
as § commutes with the

E

UHFAA™

spinless Hamiltonian. .Expression (4L ) is difficult to

evaluate and for this reason it is assumed that As+l



is idempotent so that

UHFAA

<gﬁHF1HlAs+flﬁHF ven. (U5)
o\ sy Wpp™ -
As the annihilation is achieved after functional
minimisation, and infact only a single.annihilator is
ﬁsed, there is no guarantee that the errors in the
method are small. Generally the necessary conditions
for small errors, that all coefficients c_ . are small

S+1

for 132 in the equation -

QQUHF j%% S+i s+1' REEEEEIEE .(46)

are satisfied and this
fact is responsible for the use of the approximation._
The acute sensitivity of the <S2> valué‘to the
coefficients can be remedied by minimising the
functionl'6
2 -
e=aBypt (1~a)<8 >yup e e (47)
where o is a scalar in the
range Ogagl, rather than minimising EUHF' |
Expéfienoe has shown that caseés do arise when
/the expectafion value of §f even after annihilatidn,
is unusually high. These cases are due to severe
contamination from spin states of multiplicity
(2(s+i)+1), for i»2, and for this reason the function
(47) has been used. The improvement obtained in the
expectation value of §2, however, is achieved at the

expense of a higher energy.

26
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VII. The Calculation of Hyperfine Coupling Constants

In the electron spin resonance technique the
47 ‘
spin Hamiltonian considered is generally that
involving coupling of the electrons and the nuclei and

may be expressed as

H=ge Bezi% enbrsyi Iy Iy ... (L8)
where 1 and N refer
to the electrons and nuclei respectively and Si is the

th electron and IN the spin of the Nth

spin of the 1
nﬁoleus. 8¢ and gy are the electronic and nuclear g
values, Be and BN the electronic and nucleér magnetoné.
TN is a hyperfine tensor which can always be reduced

to diagonal form by a suitable choice of axes, these
axes being referred to as the principal axes.

| The tensor TN may be separated into two

components

' nzl\T:%ﬂ_S(rl\T):uml'ir ........:‘(L‘L9)

where Tﬁ is a traceless |
tensor and represents the purely anisotfopic
contribution to the hyperfine tensor and (8n/3)8(rN)

, représents'the isotropic contribution (I is the unit

tensor).
Thus,
H=}(1+H2
H‘l:%ﬂgéﬁe ;%gNBN‘S(rN)Si'_IN «...(50)
 He=g, B, & o exPySy I Iy e (51)

The isotropic or Fermi contact term){1 represents

the energy of the nuclear moment in the magnetic field
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produced at the nuclei by electric currents
associlated with the electrons. As a contact term the
interaction can only occur when the electron has

finite probability of being at the nucleus, that is,

_ for electrons with s orbital character.

The hyperfine coupling constant ays for nucleus

N, may be defined from (50) as
aN=%"geBegNBN°(rN)
=%ngeseYth(rN) ' e ... (52)

where Yy is the gyromagnetic
ratio of nucleus N and p(rN) is the value of the spin
density function at nucleus N.
The anisotropic or dipolar term){z may equally

be defined as

S.- I 3(8. 1) (I )
R

}{2, representing the quantum mechanical
equivalent of dipolar coupling, is the interaction
between the electron and nuclear magnetic moments. For
a completely spherical environment the anisotropic
term averages to zero.

The elements of Tﬁ may be written
_ 2 — 5
Py (kl)=(r§6, 1 ~3k1) /r}
where K,l:xN,yN 0T Zy
' Defining the matrix gkl(N),
[ikl(N)]rs=ferﬁ(kl)wsdT

where w., are the basis

functions. Then the anisotropic coupling constant,
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B,1(N), for nucleus N, is

By (N)==g B gyByTr (g (M) (P-Q)) ..... .. (53)
. k,l=x,y,2
where (P-Q), the difference
of the bond order matrices, is the spin distribution
of the odd electron. |

As the anisotropic hypérfine coupling tensor
B(N) can always be diagonalised the anisotropic values
are reported for the diagonalised matrix aé BX(N),
BY(N), BZ(N) along the principal axes X, Y and Z. In
the same way that the isotropic coupling constants
give an indication of s orbital character the |
anisotropic give an indication of p (or d) orbital
character.

As hyperfine coupling constants are expressed in-
terms of the applied magnetic field, the quantities ay
and B(N) must be obtained in the appropriate units -
generally Gauss.

By inspection of the expressions for the
isotropic term and the anisotropic tensor it can be:
l‘séen thatithe former presen%s a trivial problem
whereas the latter is less trivial. The difficult -
nature of the anisotropic integrals has limited the
- number of theoretical studies to a véry few casesfa,Ag

Silverstone and Todd50 have recently derived
anaiytical formulae, applicable to the oaléulation of
the general anisotropic integral, over Slater type
orbitals. This represents the first analytical
analysis of the general three centre integral over a

' 51
basis. For Gaussian type orbitals Kern and Karplus

- -
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have reported an expression for the integral over s
type Gaussian functions by using the Gaussian transform

method

2_p2 32
3qr5r _ng(l/f)+%n6(r); 4=X,¥,2

General analytical formulae for the anisotropic

integrals over Gaussian type orbitals, however, have

not been reported.

VIIa. Analytical PFormulae for Anisotropic Integrals

- The analytical derivation of integrals of the
form v
<ty (C)>=<gyfa  (Clleg>  ....... oo (54)

are required where

g, 1s a Gaussian centred at A (with coordinates A,

Ay’ AZ) _ ,
' gA=NAXiA YZA'ZEA o Ah =(A,0y,2,,m,,0,)
XA=X-AX
ri=xf+yi+zd
NA is the normalisation constant; lA’mA’nA are

non-negative integers. Similarly

gp=(B,ap,1p,05,15)"
. for a Gaussian centred on
* B (with coordinates BX;By,BZ) and
apq(c)=3PQ‘r68
z8
P,q represent Xa1 ¥ OT. Z4

(=z—CZ) and centre C has coordinates C,,C_,C, and x,y,z

y
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are referred to the principal axis system.

'_ The method used to obtain analytical expressions
‘for the integrals relies upon the use of the identity
suggested by the work of Singerf2

~-r2y2 /(1-v2)
@ -p2y2 ap\=1pl v TV /( dv
L ute 7 du=8(3n*) fo(l-vz)z (1-v2

1

‘— —8(3w”~)

Using this transformation the integrals may be

expressed, after considerable manipulation; in the .
form
= W -W e eesessesee
<ayq (0)> =Al3w,, 64 | (55)
where p,q=x,y,2z and

w_wxx+wyy+w

Z§—8ﬁ (GA+QB)8XP( AB QAQB/KGA*QB)) A B
AB =(AX—BX) +(Ay—By) +(AZ—BZ)

The W's in (55) are defined as

—_—2 000
— OOO‘
Wyy—2V01 O_L-CP Vo i O+CPyVO 00

—_2_ 000
W _2V001 -4, CP Voo1+CP Vooo
. : oo<56)

000

_MV,10 -2CFP. Vo1o 20PyV1OO+CP CPyvooo

000

—LI-V1O1 2GP Voo1 ZCP V100+CP CP VOOO

Q00

—)-I-V°11 2CPyV°o1 ZCP Vo1°+CPyCP Vooo

Y

where, for example,



Tn equation (56) the V's are defined by the

general expression

315233
't tots .ZR11I‘ ’1 ,A »B 9CX,Y)

Sgtz
><§:::R 1,1, (TarPprhys By Cy’Y)
i,r,
Sxsts :
XE ,R 3(1’1 ’n:B,Azszycz’Y)
15T

— ’ "'t'+S “ —_—
;<S E a J(=L)TF (y-TP ) «o(57)
u:O v ’
where
I‘:I‘1+I‘2+r3 ’ i=i1+12+i3 P S=81+52+S3'
t=t1+-t2+-t3 ) \):l—2r+u+2-s

and the géwma function
1 — 2
Fv(g)=fou2ve 8Y%qy

32

The general form of the R's as given in equation

(57) is
(k kgA B, Cq,y):fi(kA,kB,PAq,PBq)

. [ Fpl=2r=s r+t t-s '
1.CPq e (2r+1) ... (58)

rl (i=2r-s)I’
_ where

Y=oy top

e=1/(Lvy)

i=min(3,1) .
fj(l,m,a,b)=EL ’(i)(4Ti)al 1m+i=j
i=max (0, j—m)" J

In equation (57) the limit of each summation
is é function of the R which ié being summed.. Thus,
using the terminology of equation (58), i is an
integer within the range s to (kA+kB) and r is an

- -
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integer within the range 0 to (i=s)/2. In the
derivation of the V's the infinite terms which arise
in V?ggj vﬁ?ﬁ and vng have been neglected since in
the complete integral for <app(C)> they cancel out
exactly. '

The formulae given are general for any Gaussian
type orbital. In the application of the integrals it
is convenlent to have special formulae for the s- and
p-type Gaussian functions. Using the términolpgy of

15
Clementi and Davis

00 00_0O0

wij=r‘s T

W?g:{ﬁ[SkOIOO+SOOIkO]
wg§=fﬂ[sokloo+soolbk1
w?%:[ﬁ[SklI°°+Sk°I°l+SOlIk°+SOOIkl]

where

1773
‘Ik°=I°k=5§l'@'§j'G~kF ()= 23 55-(TB 55, 0% 65, )F2 ()
Ik1=6—16"36fk3'1F4(t)

2%1[(6~‘6_35k1+5§ 6_k531+6—15—153k cP Pk511

, | /2 —2
S —NANB TT/( G.A+GB)) eXP(-aAaBAB /(G.A""O.B))

Sko

00
ok
==5""ap/ay

Skl=[6kl/ Z(G.A"'CLB) (Ak k)(Al Bl)“Ac‘B/(aA"'aB) ]S

-
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CPizci—Pi

—2 2 2 2
CP =(Cy=Py) +(Cy=By) +(C,~P,)

P.=(a

1

r"l

]

Ai+aBBi)/(GA+GB) 3 <i9j7k’l=xyy orz)

=

dkﬂm

8
3

3

t=

€]

1
Si=0y+ap
we have the following special formulae with

1 %1, %1, k1
wE s

00 Q0

: <sAlaij(C)}sB>=3Wij—W Sij
(0] (0]

<Ppf2;3(0) [op>=3Wy 506 5
N ok ..ok

<sp |85 (C) pyp>=3W53=W"" § 4

<pkA!aij<C)[plB>=3W?§—wk16ij
The matrix ipq(c) of integrails over the bagi;

can then be used in equation (53) to give the

anisotropic tensor B(C). Diagonalisation then gives

/,BX(C), By(C) and BZ(C) and the principal axes; with

the calculated isotropic hyperfine coupling constant

ay for centre C the coupling constants AX(C), Ay(C)‘

and AZ(C) for the complete operator defined in equation

~ (49) may be obtained

| | Ai(0)=aC+Bi(C) ; ' i=x,y; or z
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VIIb., Vibronic Contributions to the Hyperfine Constants

Experimental data for the electron spin
resonance technique indicates that, in some systemé,
there is a marked dependence on temperature. This
effect i1s believed to be due to a vibronic contribution
augmentiné the hyperfine coupling constants in the
system53. Discrepancies between the rigid theorétical
model used in the calculation aﬁd experiment suggests
" that some estimate of the vibronic contribution should
"~ be made when possible.

Assuming the simple case when the zero point
energy vibrational modes are executing simple harmonic

motion A
¢=(a/ﬁ;ie‘“x2/2 A (59)
where x is the '
‘displacement from fhe eqﬁilibrium oonfiguration along
a normal coordinate. | 1
a=2pBy 4y, . | .
u 1s the reduced mass and Evib
is the zero point energy for the vibration‘
E;p=(vE) (k/u Y& L y=0,1,2...
k is the force constant -
of the vibration defined by
E=E ,+4kx?
E, and E are the UHF energy
at zero and non-zero displacement respectively.
Thé general variation of the hyperfine coupling

constant a with x is



- .
n

a:E S e (60a)

) N=

If it is assumed that terms with n>2 can be-

neglected
a=Co+C4X+C2X2 o iieea... . ...(60)
the term n=1 disappears when
considering an harmonic oscillator. c, is the
calculated coupling constant at equilibrium
configuration. The observed value <a>, using equation

(60) and the wavefunction in (59), is given as
<a>=cq+c, /(2a) ceeee eeea...(61)

This formula, (61), may be used to give an
estimate of the vibronic contribution if the harmonic

approximation is reasonable.

Conclusions

The Unrestricted Hartree Fock method with
single spin annihilation aftef minimisation has been
formﬁlated in the framework of the linear combinatioﬁ
of atomic orbitéls approxiqation. An adequafe
repfesenﬁétion of the atomic orbitals may be obtained
through expansions of Gaussian type orbitais,

Objections levelled agaiﬁsf the UHF method on
the grounds that an eigenfunction of ga is not |
obtained and correlation is not correctly reproduced12’5‘
are not completely removed by the action of a single
annihilator. However this annihilation generally

results in only minor contamination of the pure spin

state and,in fact, if electron correlation is dominant

- -
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none of the methods used for open shell systems are
satisfactory.

The necessary condition ‘to test the value of
any method used to predict a molecular property is an
accurate wavefunction. In the ab initio method this
accuracy can be achieved but generally some degree of
optimisation, of the basis and the molecular geometry,
i1s required. The criterion of optimisation has rarely
been applied in ab initio calculations, and it may be
conjectured that, for this reason, the relative value
of the méthods has not been established. The UHF method
with single annihilation is developed ih-fhis thesis
and the results show that the approach can work and in

fact give very satisfactory‘results in most open
shell systems studied. The importance of optimisation,

where feasible, is also demonstrated.



CHAPTER 1
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Introduction.

The Unrestricted Hartree Fock (UHF) method is
applied, in this thesis, to the explanation of the
observed hyperfine coupling constants in species with
an unpaired electron. Expressions for the energy and
other relevant quantities of a molecular system have
been derived in Sections I and II. The adoption of the
ab initio approach ensures an adequate description of
the electron distribution and the application of a
single annihilation, after minimisationldf the UHF
energy, removes, although not entirely, the
contamination to the pure spin state, which results
since the wavefunction is not an eigenfunction of the
32 operator.

The method used to minimise the UHF energy is
threefold; Roothaan;s repeated diagonalisation method,
McWeeny's steepest descents method and a modifioation,
for use on UHF wavefunctions, of Fletcher's conjugate
gradient method; these procedures are described iﬁ
Section V. The requirements of minimisation are such
that the.energy‘is the loweést possible subject to an
orthonormality constraint on the molecular orbita1s.
An additiqnal‘requirement, for practical applicability,
is a reasonable rate of convergence.'Sleeman55 has
compared the effectiveness of the procedures of Roothaan
andlMoWeeny, using the Open Shell Restricted Hartree
Fock method, drawing a number of conclusions which
are also applicable to the Unrestricted Hartree Fock
method.

A phenomenon displayed by the Roothaan method is

-
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oscillation, and for some functions divergence, of the
energy. Sleeman has shown that extrapolation prooedures
which increase the rate of convergence in well

behaved cases.do not necessarily remove the oscillatory
behaviour of the function. Berthier and Millie56 have
shown that the convergence problem in the diagonalisa-
tion method,at least for the open shell case, is
associatéd with the sequence of occupied and virtual
brbitals. By selecting the correct orbitals at each
iteration no difficulties arise in the minimisation.
However, the applicability of this approach is

limited since, particularly for large molecular systens,
how to select the right occupied orbitals is not
obvious.

The method of steepest descents calculates the
incremental change in the approximate density matrices
along the negative gradient of the energy at the péint
which reduces the energy most. It is possible to -
estimate optimum multipliers, ), of the gradient
vector so that the density matrices are chénged.by
these amounts; Sleeman has shown that a good sfarting‘
approximation is necessary when using the McWeeny ‘
method. However, even,after providing imoroved
density matrices, for example, by initial use of the
- diagonalisation method, convergence can be slow.
Sleeman has also demonstrated that the first order
expression for the ) multipliers can be inadequate,
fesulting in divergent behaviour. The method of
McWeeﬁy assumes that the variables in which the
energy is defined are independent; however they are

not, being restriéted by the orthonormality conditioms.
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Generally optimum values of the multipliers, A,
which also satisfy the orthonormality conditions
. cannot be found, leading to the necessity to renormalise
at each iteration so that the energy may be recalculated.
Since the next iteration takes into account

information from the previous iteration the wmodification
of the variables, by renormalisation, reduces the |
effectiveness of the minimisation.

The Fletcher method  finds the minimum of the
energy on a line though the energy gradient in the
conjugate direction. The approach, unlike that of
McWeeny, is able to make full use of the information
from the previous iteration by.working in variables
which are independent. Thus, from Section V 3), the

variables considered are Y where,

A=YU ' L

and U is defined as
-1 :
U=(Y+SY) /1 .o..h.o"ouooyt(2)

so that A satisfies the

orthbnormality conditions.,This facet, using |
independént-variables, allows for a much enhanced
convergence o%er the McWeeny method as a more
efficient minimisation prooedufe, such as the
conjugate gradient method, can be used on unconstrained
problems.

| The modifications to the equations of Fletcher,
fof application to UHF wavefunctions, derived in
Section V 3), were programﬁed in the manner suggested
by FletcherLL. A comparison of the three minimisation

procedures was then made using, as an example the CN



L2
radical.

Results and Discussion.

In molecular calculations the initial
approximation to the molecular orbitals, and density
matrices,; is obtained by the diagonalisation of the one
electron Hamiltonian matrix. The convergence studies in
this Chapter are concerned with the efficient meané
of minimising the energy from this starting point. In
most.cases the Roothaan method 1s convergent and méy be
used exclusively, since the iteration time is less
than half that of the other' two methods. Difficult
cases, wh;re the Roothaan method does not converge
initially, are known and the minimum must bé |
approached by another method. |

Calculations on the CN radical have been done57
using a minimal basis set of SCF atomic orbitals
represented by a linear combination of Gaussian type
orbitals in their fully contracted form; the 9s type
and 5p type of Huzinaga21 were uséd for carbon and
nitrogen. The minimisation of this radical has
/,proved difficult and therefore suggests itself as a
good test case. In figure 1 and 2 the electronic
energy of CN (at 2.2 and 2-0a.u. respectively) has
been.plotted'as a function of time, showing the
convergenée properties of the minimisation procedures
(commencing with the orbitals obtained from the
diagonalisation of the one electron Hamiltonian matrix).

For the CN radical at 2.2a.,u. the Roothaan

method minimises on to two values, oscillating

infinitely between them (curve (iii)) and never
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-111

(iv)

Minimisation of the ON radical (bond distance f« a.n.)
(i) McWeeny (ii) Fletcher (iii) Roothaan
(iv) Minimum energy obtained by using Roothaan's aa-thoi

after McWeeny's or Fletcher's method.
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Minimisation of the CM radical (bond distance 2-0 a.n.)
(i) McWeeny (ii) Fletcher (iii) Roothaan
(iv) At this time all minimisation methods were chai'iyed

to 5'oothaan's method.
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reaching the true minimum., The superiority of the
Fletcher method is apparent in this case (curve (ii)).
. The poor convergence shown by the McWeeny method
(curve (i)) has been associated with the inner shell
molecular orbitals, which cause large variations in
the excitation energies. Hillier and Saunders58 have
suggested that this defect is corrected by their
energy weighted steepest descents method. The Roothaan
method is convergent for the CN radical at 2.0 a.u.

(figure 2), however, the Fletcher method is initially.

superior.

Conclusions.

Although only one example has been examined,
tentative conclusions can be drawn. The Roothaan

method, with or without incorporating extrapolation

-
o

prooedures, 1s incomparably faster than any‘othér
technique near the energy miniﬁum, and this method”

is reserved exclusively for that situation. The

steepest descents method appears to be redundant when
the conjugate gradient approach is available, since

, the PFletcher method enables the minimum to be approached
much'more'efficiently. The method of'minimisation
suggested from the results is a combination of the
Pletcher and Roothaan procedures; initial use of the
former and then application of the latter, .reaching

the true minimum without use of MoWeeny;s method.,
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Introduction.

The isoelectronic hydride series, BH;, CH; and
NH?,’has been the subject of many :I.nveS't;iga'l;ionsf9‘-'66
The relatively small values of the isotropic hyperfine
coupling constants of the heavy atoms has led to the
conélﬁsioh that the species are planar n rgdicals?

The out—of-plane vibration is also generally
considered to augment the heévy atom coupling

5367268 - .
constants, although other exblanations have

69
been suggested.

The series presents a good test of the ability
of the ab initio UHF method, with spin annihilation
after minimisation, to reproduce, non—empirically;
observed hyperfine coupling constants, particularly
those of the heavy atoms, for which it has been
suggested the UHF approach is inherently inaccuratef"

An important aspect raised by these calculations is
the i1mportance of the interaction between the radical
and its environment. It is the implied assumption of
many qualitative interpretations for the rationalisation
of observed hyperfine coupling constants in chemical
terms that the environmental interaction is small.
Whether,in‘fact, the interaction is small for charged
species in charged environments may be indicated by
theoretical calculations, where the radical is taken
in isolation,as, for egample, in the case of the NHT
radical:’1 A study of the effect of the environment
on.fhé.e.s.r. spectra of trapped radicals has already

e s . . . 691723973
been initiated from an experimental viewpoint.
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Method.

The ab initio UHF method in the l.c.a.o.-m.o.
approximation with spin.annihilation, as described
earlier (Sections I and II), was used. A minimal basis
set of orbitals was represented by Gaussian expansions
in their completely contracted form; 9s-type and 5p-
type for nitrogen, carbon and boron and 6s-=type for
hydrogen as given by H’uzinaga?1 The orbital exponent,
a,.of the hydrogen atomic Qrbital and the'bond length,.
"r(X-H), were both optimised to an accuracy.of 0-05,'
assuming in each case the radical was pianar. The
results given were calculated from the UHF
wavefunction after annihilation of the contaminating
quartet spin state and are expressed in atomic units
" (a.u. where 1a.u.=0-529167§, la.u.=27-06eV.) except
for the hyperfine coupling constants which are
expresséd in Gauss (G). -

Non-planar nuclear configﬁrations.were studied
by moving the heavy atom perpendicularly out of the
plane of the three fixed hydrogen atoms; no attempt
was made to optimiée the hydrogen orbital exponents or
the bond lengths for the non-planar configurations.

The vibronic contributions to the coupling
constants were estimated in the manner outlined

previously (Section VIIb) assuming an harmonic

oscillator, using'
<a>=Cc, + c,/(2a) R ¢ 1

Co is the calculated
hyperfine coupling constant at equilibrium, <a> the

observed coupling constant,
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a = 2uE
w 1s the reduced mass. E, the

zero point energy, is evaluated from the force constant
k of the vibration which is calcdlated from the
-variation of the UHF energy along a normal coordinate.
The coefficient ¢, is estimated from the wariation of
the coupling constant along a normal coordinate.

Only the aj stretching mode and éé' bending
mode are considered, although the latter seems to be
the only vibrational mode which can significantly
affect the coupling constants. Because of the
difficulties in obtaining reliable estimates of o and
c,, calculations were made at various values of the
angle of bending B ana extrapolated back to 9:00. In
this way it was considered that some compensation |
would be made for the non—optimisation of the bond

length and the hydrogen orbital gxponent for the

non-planar configurations, ' h
Objections to the use of formula (1) may be

raised for vibrations with small force constants or

, when‘the approximations give a poor representation of

the'coupling constant for largelangles of bending. An

alternative would be to use numerical integiatibn as

68
suggested by Beveridge and Miller,

The Ammonium Radical Cation.

Hyde and Fréeman66 and Cole65 have observed
electron spin resonance spectra for X-ray irradiated
ammonium perchlorate crystals at room temperature
which were interpreted to arise from the radical ion

NH?, with isotropic hyperfine coupling constants
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aN=18-1G,‘aH=w25G and aN=l9-3G, aH=25-8G respectively,
Rao and Symons69 on ¥y-irradiliation of ammonium
perchlorate found the same radical with aN=19o3G,
ay=25.8G at 77 and 293K. Evidence that the radical-was '
undergoing restricted .rotation limited mainly to an

66, suggests that the interaction with

in-plane motion
- the environment may be sufficiently émall for the
radical %o be regarded as existing in an unperturbed
state.

The theoretical results for NH§ are presented in
Table 1. The energy after annihilation of the quartet
spin state of the UHF function for the optimised
planar oonfiguration.(figure 1) with hydrogen orbital
exponent of 1.6 and bond length of 1.95a.u. was
calculated to be —55-85625a.u..The hyperfine coupling
constants were aN=1O-57G and aH=—22-65G. The agreement
between experimental and theoretical proton coupling
céﬁstants is.satiSfactory but the theoretical nitrégen
coupling constant accounts for only 55% of the |
experimentai value. The hyperfine coupling'consfant of
_ nitrogén may be depréssed by an inédequate representa-—
tion of the electron density at the nucleus, as well és
the neglect of orbital contraction on bond formation.
The magnitude of the deviation from experiment,
however, suggests that consideration should be taken
of the contribution of the zero point energy
vibrations to the coupling constanfs. The vibronic
éontribution should considerably increase ay while

1eaying ag relatively unaffected.

. A force constant k=0-1136a.u. (é.u.=1-5uux106gs-2)

-
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TABLE 1.

bond hydrogen| bending| total coupling

length orbital| angle |energy constants(G) <S2>
(a.u.) exponent a° (a.u.) ay an
1.80 | . 1-40 0 |-55-79987 11-67 |~-17-76| -750018
2.00 140 0] =55.84325| 1310 |=2040| «750046
2.20 1-40 O |=55-82179| 14+L3 |=24+22 | -750125
1.80 1.60 0 —55-83262 9737 =20+86 | «750010
2.00 1.60 0 ~5585422[ 1082 |=23.36| «750023
2420 1.60 O, |=55.81273[ 1169 |=26.92 | «750056.
1.80 1.80 0 =55¢83769] 7+929|=22+.56| +750005
2.00 1.80 0 -55+83908] 8.662|=24+58 | 750011
220 1.80 0 =557789¢] 9095 —27-32 + 750022
1.90 1.55 0 ~-55.85126| 10-83 |-21-39 | =750018
1.95 155 0 -55.85500| 11+12 |=-22.06| +750023
2.00 1.55 'O =55854L42¢] 1139 | =22.79 | 750028
1.90 160 0 ~55.85383] 10«31 |=22.00| «750015
1.95 | 160 | 0 [-55.85625(10-57 |-22+65| +750019 «
1.90 | 1465 0 |-55.85L72| 9.79u|=-22.51| -750013
1.95 1.65 0 ~55.8558L{10.03 |=23.13 -7750016
2.00 1.65 0 ' |=55.85254|10.26 |=23.82 | «750019

195 1-60 25 ~55+8558L {1126 |=22.37| 750019
1.95 1-60 5 ~55.85455{13+30 |=21+56 | «750018
1.95 1.60 10 -55.8,869 20{98 ~-18.50 | 750017

*marks minimum

Theoretical Resuits

for NH;




PIGUUU 1.

*H

a=1l

Summary of the calculations on ‘the Kdj radical;

, variation of the total energy after annihilation
with bond length for those values of the hydrogen
orbital exponent a as indicated.

; estimated minimum total energy after annihilation

as a function of bond length.
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was evaluated for the out of plane vibrational mode,
This compares with k=1.372a.u. for the symmetric stretch
vibrational mode. The value of ¢, in equation (1) was
found to be 96.15 for nitrogen (see figure 2) which

gives
ay = 10-57 + 6-35 = 16-92G

Similarly the inclusion of the vibronic
contribution for hydrogen gives aH=-2O~02G where c, is
39.82,

Hence the inclusion of the vibronic contribution
permits 88% of the experimental coupling constant of
the nitrogen to be accounted for theoretically. The
almost linear variation of the hydrogen and nitrogen .
calculated coupling constants for the symmetrical
stretching mode (figure 3) together with tﬁe high
force constant, and hence large o in equation (1),
demonstrates that this vibration makes negligible

contribution to the observed hyperfine coupling constants

The Methyl Radical.

A number of experimental and theoretical studies
are reported for the CH; radical. An early determination
by Cole et a162 , of the carbon isotropic coupling‘
constant, ac=ulG, showed, by the relatiﬁe smallness of
its value, that the redical is planar. Experimentai
values of aC=38G,and aH=—25G74 seem to be generally
true in selution and matrix' environments; however
these hyperfine coupling constants are temperature
dependent. Although calculutions on ClI5 have predicted
reasonable values for the proton coupling constant

the-values found for the carbon are very high?e-78
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Importance has been attached to the effect of the
out of plane vibration on the hyperfine coupling
constants, a suggestion originating from Schrader and
Karplussf The temperature dependence is well explained

67768
by including the effects of this vibration. i

Fessenden7L has suggested that a rigid planar model
for the methyl radical may have ac=28G, the other
10G being due to the out of plane vibratioﬁ.

The results for the calculations on CH; are
summarised ih Table 2. The optimiéed planar
configuration has an énergy of =39.5428a.u. for a
bond lehgth of 2.05a.u. and hydrogen orbital exponent
of 1.40 (figure L4). The isotropic hyperfine coupling
constants are ac=27-33G and ap=-23:39G for the rigid
planar configuration. The contribution of the out of
plane zero point vibration was estimated in the same
way as for NH;. The out of plane vibrational force‘
constant was calculated to be k=0.0405a.u.,This is
much less than,K that calculated for NH§ (k=0.1136a.u.)
thereby accounting for the marked temperafure dependence
| shown by CHS but not NHS. The symmetrical stretching
vibrational force constant, k=1-.292a.u., is much
higher than the out of plane force constant and makes
negligible contribution to the coupling constants.

The coefficients ¢, were found to be 264-8 for carbon
and 35.12 for hydrogen (see Ffigure 5) giving

increments of 27-31G'and'3-96G, for carbon and hydrogen
respectively, to.be added to the planar radical
isotropic coupling constants to account for the out of

plane vibration. The theoretical estimates of the

- -
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TABLE 2.
bond hydrogen|bending| total coupling
length orbit#l| angle |energy constants(G) <S2>

(a.u.) | exponent e° (a.u.) 4a ay

1.80 | 1.20 0 |-39.42928 25-76 |-15-55| -750017
2.00 | . 1.20 0  |=39:51166 31.72 {=18.04 | +750047
2.20 1.20 0 |=39.52256 38.70 [=21.69 | 750139
1.80 140 0  [=39.L8L38| 20480 [=19.58 | «750010
2.00 140 0  |=39.5L090 25.96 |=22.46| +750026
2.20 1.40 0 |-39.5282u) 31.74 |=26.79 | -75007L
1.80 1.60 0  |=39.49501| 1674 [=22.15| »750005
1.90 160 0 |=39-52256| 18.87 |-23.48 | 750008
2.00 1.60 0 |-39.52818| 20.9L |-25.13| -750013
2.10 1.60 o |-39.51700| 23.07 |-27-15| -750021
2.00 135 0 |=39.53818| 27+35 |=21+52 | «750030
2.05 1.35 0 ~39.54161| 28.78 |=-22.42 | 750039
2.10 1435 0  |=39.54131f 30.27 |=23.41 | 750051
2.05 1.40 0 [-39-5L28L| 27-33 |=23.39 | -750033
2.10 | 1-40 0 |-39.54107| 2847 |-2u.u2 | -750043
200 1.45 0 =-39.54099| 24+63 [=23+30 -750022
2.05 145 0 |-39-54116|25.91 |-24.25 | +750028
2.10 | 1-45 0 |-39.5382u] 27.23 |-25.28 | -750037
2.05° | 1l.40 | 2 ~39+51273| 28.68 |=23.21 -550035
2.05 | 1.40 5 ~39.54216| 35.4) |=22+13 | -750031
2.05 1-40 |10 ~39.53978| 57.85 |=18-84 | +750025

#marks minimum

Theoretical Resuits

for CH;
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Summary of the calculations on the CH3 radical.

(See also caption to figure 1.)
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observed isotropic hyperfine coupling constants then
become aC=5u-6uG and aH=-19-u3G. Although the results
are not in as good agreement with experiment as those
for NH§ they are still reasonable. The trend of the
temperature variation of both an and ay is'correctly
predicted since the effect of increased temperature
is to increase the increment added to the planar
radical.

The predicted variafions of ag and ay with
bond length (in the aj stretching mode) are given in
figure 6. For a given hydrogen orbital exponent the
 variations parallel those of Beveridge and Miller68
using the INDO method. If the optimum orbital exponent
at each bond length is used ag becomes almost independent

of the CH bond length whereas ag becomes more sensitive.

The Borohvdride Anion.

Symoné and Wardale59 first briefly reported the
BH; radical by ¥-irradiation of KBH, and later elaborated
on the reasons for the assignment?oBetter spectra
were obtained by Sprague and Williams61 using
/ tetramethylémmonium borohydride over a wide
temperature. range. The two investigations are only in'
qualitative agreement in that the hyperfine coupling
constants differ significantly, aB=2u-2G,aH;l6-3G60
and aB=20-7G,aH=15'lG?1 This is probably an
environmental effect since the hyperfine céupling
constaﬁté are independent of temperature between 8.4
and BOOK?1

The results of fhe ab initio UHF calculations

-
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are given in Table 3. The optimum planar configuration,
at a bond length of 2-35a.u. and hydrogen orbital
exponent of 1.15 (figure 7), gives hyperfine coupling
constants of aB=22-u1G and aH=—20-15G. Also reported
in Table 3 are calculations on the bent BH5 radical,

in terms of angle of bending from planarity. The
latter indicate that the stable configuration is when
BH;“is bent out of plane by about 9°, in contrast to
the planar configurations calculated for CH; and NH:,
figure 8. A qualitative argument, stressing the |
differences in electronegativity of the atoms of the
bond?9—81 may be used in explanation; in the case of

| BH; the electronegativity (between the boron and
hydrogen) is only 0.1l and in the opposite sense to.
that in CH; and NH:. The species is therefore |
predicted to be pyramidal whereas CH; and NHZ are
predicted to be planar. The potentiai barrier M
separating the planar and pyramidal conformations is
probably %oo small to make them physically .
distinguishable, in which case the observed
conformation will be planar.

For the bent geometry ap=L5G, aH=-16-5G, the
former of which is far too large. If.it is accepted
that CH; and NH§ are planar iadicals then:the similar
U %alueﬁz for BH; indicates that BH; is also planar.
However, even for the planar radical the calculated
aB(=22-u1G) is too large, especially when consideration
is taken of the contribution the out of plane zero
point energy vibration will make to the hyperfine

coupling constants. It is difficult to estimate this

vibronic contribution, owing to the double minimum in



TABLE 3. Theoretical Results for BH,
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bond hydrogen|bending| total coupling
length orbital| angle |energy constants (G) <52>

(a.u.) exponent 6° (a.u.) ag ay

2.20 100 0 |-26.28152 21-90 {=13-93| «75005L
2.40 | 1.00 0 |-26-30533 27.14 |-15-96 | -750133
260 1.00 0 ~26+30050 33.71 |=18.76{ «75034lL
2.00 120 0 |-26-27049 13-62 |=17-21 | -750015
2.20 1.20 0 |-26.31680 17-95 |=19-30| -750035
21,0 1.20 0  |-26-31956) 22.76 [-22.40 | -750088
260 1.20 0 -26.2952Lf 28483 |[=26.91 | 750243
2.00 140 0 |-26.26927 11.15 |=20.52| -7500LL
2.20 140 0 |-26-2953L] 14-82 |-23-21 | -750055
21,0 1-40 0 |-26-27808 18.91 |-27-2 | +750076
2.35 1.10 0 |-26.32147 23.48 |-18.58| -750086
24140 1-10 0 |-26.32160 24+84 |=19+30| 750109
2.5 '1.10 0  |-26.32004] 26+28 |=20+10| +750138
2.30 1-15 0 |-26.32299| 21.15 |-19.41| -750061
2.35 1.15 0 |-26.32370| 22.41 |=20.15| 750077
24,0 1415 0 |-26.32252 23.73 |-20.96| .750098
2.25 1.20 0 |-26.32081]19.08 |-19.97| -7500LL
2.30 1.20 0 ~26+32203 20.25 |=20.70| +750055
2.35 1.20 0  [-26+32193| 21.47 [-21.51| -750070
2.35 | 1.15 | 2 |-26.32574] 2366 |=19.9L | +750076
2.35 | 1.15 | 5  -26-32392| 30-04 |-18-87| -750068
2.35 1.15 8 ~26+32410| 4098 |=17+11| +750057
2435 1.15 10 -26+32411| 50.19 |=15.72| +750050
235 1.15 | 15 ~26+32309| 77+27 |=12.11| +750033
2.35° 1.15 20 -26¢31933( 106+8 |=9.167| 750024
2.00 140 5 ~2626866{ 1699 |=19.71| 750005
2.00 1.40 | 10 ~26+26691| 33.22 |-17.66| -750003

#marks minimum
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Summary of the calculations on the BH" radical

(See also caption to figure 1.)
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the energy curve with out of plane bending, but 100G
would be a conservative estimate. Also the force constant
will be less than that for CH; so that a large
temperature variation in ap would be expected,'which

has not been observed.

' The calculations which have given reasonable
isotropic hyperfine coupling constants for NH: and
CH; should give a comparable accuraéy for BHS. That
this 1s not the case implies that external effects}
not large for CHs and NH,® but dominant for BH,
modify the hyperfine coupling constants of the
radicals., The neglect of thé interaction with the
environment would appear to be the most obvious source

for the discrepancies.

Comparison of the Results of the Isoelectronic Radicals.

Some confidence in the calculations for the rigid
planar radicals is given by the agreement between the

‘ 74
theorefical a, and the estimation given by Fessenden

¢

(27.33G and 28G respectively). Alsoc it may be considered
that environmental interaction,.if important, places
’Ain jeopardy the validify of the force constant
calculations. Taking the view that the electronié
contributions are more important than the vibrational
or environmental effedts to the hyperfine coupling
constants the trends ‘calculated for the rigid planar
radicals should reproduce the experimental trends.

The experimental proton hyperfine coupling
constants increase in order BH;,CH;,NH§ (416o5G,—23-0G _
and =-25.9G) as predicted from the excess charge effect?syaL

Although the optimised hydrogen orbital exponents
(1-15,1-40,1.60), for the planar radicals, are in the
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order expected from the excess charge effect, the
calculated proton coupling constants are not (—20-15G,
-23.39G,-22:65G). Analysis of the results in Tables
l, 2, 3 shows that the apparent randomness in the
proton coupling constants arises because of the
influence of two opposing trends. |

(i) Selecting a particular hydrogen orbital
exponent, a=l-4, for the radicals and minimising fhe
energy with respect to the bond length, a
characteristic procedure of many semi-empirical
methods, results in a trend in opposition to that
observed experimentally (-25-21G,-22-u6G,-20-OuG).

(ii) By fixing the bond length and optimising
the orbital exponent the excess charge effect may
be examined in approximateiisolation. Selecting a
standard bond length of 2a.u. the hydrogen orbital
expohehts are 1.2,1-4,1-6 for BH;,CH;,NHQ respectively
and the resulting proton coupling constants (-17-32@,
-22.46G,~23+36G) are in the order observed ~
experimentally.

The inability of the calculated rigid planar
radicals.to predict the experimental trend implies
that other factors are dominant. This view is ramified
when it is noted that the experimental U values for
the heavy atoms of the radicals are 2.9 (!'!'B), 3;u
(130), 3.5 (1+N) wheréas the predicted U values of
the rigid planar radicals are 3.2, 2.4 and 1.8
respectively. » : .

Any énvironmental effect will be expected to be

over—emphasized in these radicals owing to the
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importance. of the out of plane vibration. Some
justification of the calculated results may be
obtained by a qualitative consideration of the
environment. In a neutral host lattice the usual
molecular interaction forces are expected to increase
the force constants of the guest radical compared
with the corresponding isolated radiéal. Superimposed
on this effect will be an additional interaction when
both lattice and radical are charged. Assuming that
the positively charged environment of BH5 increases
still further the out of plane‘vibrational force
constant qualitative agreement with experiment.may be
obtained. The overall'effect for BH5 would be a
considerable increase in the force constant, accounting
for the temperature dependence,and a smaller increase
for the neutral CH;, resulting in a smaller vibronigﬁ
contribution to the hyperfine coupling constants.
Sincé-NH§ is relatively unpolarised, in this respect,
the deduction is less critical, but the implication
is that a negatively charged lattice tends to décrease
/the out of plane vibrational force constant, that is,
the envirommental effects partially cancel one |
anothér.

The calculation of the stable geometry of BH,
as bent is embarrasing. The result implies ﬁhat the
environment must have a sufficient effect to force
planarity. However, even for the optimised planar
fadical the heavy atom isotropic coupling constant
is too large. If the view is taken that the positive

environment about BH; induces a bond léngth and

- -
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hydrogen orbital exponent similar to CH; (a=1-lL,
r(B-H)=2a.u.) the radical is found to be planar (see
Table 3) and the hyperfine coupling constant of the

boron is in good agreement with experiment.

Conclusions.

The interpretation of the e.s.r. spectra of BH;,
CH: and NHS is complicated by the out of plane zero
point energy vibration which obscures an electronic
interpretation. In addition there is evidence that
'the properties of BH; are seriously affected bj the
‘environment. Although CHS and NHY may be tréated,
theoretically, in isolation it appears that the
environment of BH5 must be iﬁclﬁded in séﬁe manner
if the calcﬁlatéd results are to be comparable to the
experimental values. |

Oﬁtimisation of the hydrogen atomic orbital
exponent and the bond length have been shown to be of
considerable importance and, where the practice is
possible, this optimisation should be attempted if
meaningful results for molecular systems are to be

guaranteed.
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Introduction.

The study of unstable radicals trapped in solids
can, in suitable cases, give information on the |
anisotropic, as well as the isotropic, contributions.
Some anisotropic information can be gained from
radicals trapped in glasses, inert gas matfices or in
polycrystalline powders but the best results are
obtained from single crystal studies. The radicals are
generally regularly orientated to the crystal axis so
that rotation of the crystal can give complete
resolution of the anisotropic and the isotropic
contributions.

The separation of the information, given by the
electron spin resonance experiment, into an isotropic
and an anisotropic contribution, supplies valuable
indications on the nature of the bonding and the
overall structure of the radical. This follows as ﬁhe
isotropic, contribution is a measure of the valence s
atomic orbital participation in the molecular orbitals
and the anisotropic of the p (or d) orvital
participation. Using the orthogonality relations
derived by Coulsonaf that ié assuming the concept of
atomic orbitals in molecules is not seriously
invalidated by molecular formation and orbital overlap
may be néglected, it can be shown that hybridisation
ratios and bond angles may be estimated from the
experimental isotropic and anisotropic couﬁling
oonstants?6

The evaluation of the expebtation value of the

isotropic, or FPermi contact, term, between an unpaired

- —



electron and a magnetic nucleus

(8n/3)8 8B ByS T e (1)
is uncomplicated,
the accuracy of the calculated isotropic hyperfine
céupling constants depending on the adequacy of the
description of the spin density at the nucleus. The
expectation value of the aniéotropic opefator
g gyB, By [3(I+2) (5ex) /r =I5 ......(2)
presents a less
trivial problem.

The evaluation of_the anisotropic term, in the
l.c.a.o. approximation, is a three centre problem in
the generai case. The one and two centre integrals,
arising over the anisotropic operatof, have been
analysed in several cases. Kern and Karpluss1 have
suggested using the Gaussian Transform of the fieldﬂ

gradient operator, for example

I () B . ve.(3)

where 6(5) is the
| Dirac delta function, and have deduced the general
expressioh for the integral over s type Gaussian
functions. Silverstone and Todd50 have recently
derived analytical formulae for the three centre one
electron integrals of the operator rnY§(6,¢) with
Slater type orbitals, where Y? denotes a spherical
harmonic and n and 1 are integers.

The isotropic hyperfine coupling constants have
been calculated for a large number of radicals but few
calculations are.reported for the anisotropic hyperfin

87288
coupling constants. The analytical formulae for
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the anisotropic operator with Gaussian type orbitals,
derived earlier (Section VIIa), enabled a study of the
value of the ab initio UHF method, with single spin
annihilation, in explaining experimental anisotropic
hyperfine coupling constants. An accurate description
of the electron distribution close to the nucleus is
required for the calculation of the anisotropio_terms
as, essentially, <r™’> is evaluated. It would be
expected that the method which has been applied to thé
calculation of isotropic hyperfine coupling constants,
gilving good agreement'with experiment, should prove
suitable for the evaluation of the anisotropic

components of the hyperfine interaction tensor.

Results and Discussion.

In the results to be discussed ay is used to
denote the isotropic hyperfine coupling consfant féf
nucleus X, Bi(X) to denote the corresbonding
component of the anisotropic tensor in the i (x,y,2)

direction referred to the molecular axes and
Ai(X)=aX+Bi(X)

The anisotropic components of the hyperfine
interaction tensor for every atom in the radicals NaHf
NQ,NO,oN,Hco,HBo‘,HoN“,HZCN,02H3,NHZ} and CH5 are
evalugted. A minimal basis set of orbitals was used for
all the atoms involved in the calculations with each
orbital corresponding to an SCF atomic orbital
represented by an expansion of Gaussian functions.

21

‘Specifically the9s type and 5p type of Huzinaga

were used for boron, carbon, nitrogen and oxygen, the

- -
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- 12s type and 6p type of Veillard18 for sodium and the

6s type for hydrogen excluding the sodium hydride

cation calculation where the hydrogen was

represented by a 10s type'expansionzz All the calculations
wefe performed using the Unrestricted Hartree Fock

vmethod with spin annihilation of the quartet state, as

outlined previously.

The Sodium Hydride Cation.

Bloom, Eachus and Symonssg_found that a species,
formulated as the sodium hydride cation, NaH+, was
formed when barium sulphate was precipitated from a
solution containing sodium ions prior to ¥ -irradiation.
The interaction between the sodium ion and the
hydrogen atom gives rise to a protdn hyperfinerooupling
constant greater than that for the free atom, |

aH=511-5G, 17+2G. Ab initio UHF calculations

¥Na™ ,
supported the assignmentgo giVing calculated isotropic
coupling constants, at a bond distance of 3-6a.u., of
aNa=26ol, éH=508G for a hydrogen orbital exponent of
one. As the value of the isotropic hyperfine coupling
constant for the free hydrogen, with the 1l0s basis
used, was calculated "to be 502.1G, compared with 508G
found experimentally, a greater value than the free
hydrogen value was,in fact, obtained. (After suitable
scaling the calculated proton value in NaH" is 51h <4G)
The reason for the ﬁnusual proton value was

associated with the presence of overlap in the

calculation.
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The UHF calculations demonstrated that the

radical cation did not have an isolated existence and

Les LU mancan Antimicatinan af the hvdrogen orbital

Insert, directly after the seventh line on Pg 73,
By (Na)=4 .26 B, (Na)=-2.1G
B (H)=1-7¢ B, (H)=-0-85G

and, using the spin density matrix

of the UHF calculation, the calculated values were,

not very satisfactory. The discrepancy for the proton
may be accounted for qualitatively when it is noted
that the unpaired electron on the hydrogen is mainly
in the 1s orbital, making no contribution to the
anisotropic component of the coupliﬁg constant. Thiéﬂ
results, when a minimal basis set of orbitals is used,
in the calculated coupling arising solely from the small
amount of spin in the overlap region and on the sodium
ion. By postulating the occurrence of a polarisation
of the hydrogen orbital, as may be achieved by mixing’
of the ls of the hydrggen with its 2p orbital along the
molecular axis, there will be a contribution of 2B to
B (H) and -B to B (H). If B were 1:01G exact agreement
with experiment would result. For an electron in a
2p atomic orbital of hydrogen the calculated value of
B is 317G, indicating that in NaH' there is considepable
polarisation of the orbital on the proton.

The inability to optimise.the'hydrogen orbital

-



exponent led to the use of unit value for the
exponenf. If, as seems probable, a hydrogen orbital
exponent greater than unity were more appropriate

for NaH' an increase in both ay and B would resulﬁ
allowing for a smaller calculated polarisation of the
proton orbital,while-still maintaining the unusually
large isotropic coupling constant found for the

proton.

The Nitrogen Molecule Anion.

The ease with which inorganic azides may be
decomposed, both thermally and photolyfically, to form
centres may account for the explosive nature of this
class of compounds. Some of the centres formed are
analogous to those of the alkali halides, creafed by
radiation damage, but others, such as the N; radical,
are particular to azide compounds. There has been some
difficulty in the identification of the paramagnetic
species formed from azides, caused, to some extent,
by the significant dependenqe of the coupling constants
upon the environment. A compilation of experimental
coupling constants for a species assigned as N,, in
various host lattices, is given in Table 1.

Although the environment has a marked effect a
calculation should give sufficiently good agreement to
indicate whether the assignment is realistic. AtAa
bond length of 2.la.u. the isotropic hyperfine
coupling constants are calcélated to be 2.765G and the
principal components of the A tensor are given in Tabilc

1, where the z axis is colncident with the molecular

L
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TABLE 1.

host crystal reference >N >% >N
(theory) this work 25.66 ~-8:99 -8.38
KN 5 90 6+5 o -l
KN, 91, 92 12.0 -3.8 —~l
KC1 93 21 ~ly+5 ~6-6
Nal, ol 23.5 ~3.9 ~11
Ba(Ns), 95 ~ 20-0 ~3.6 =L .1
KCl 96 21.3 =5.04 ~6.07
KBr 96 214 ~346 =5
KI 96 21 .6 =544 -7l

Hyperfine Coupling Constants (in G) for N, for various Host Crystals
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axis and the unpaired electron occupies a n;
antibonding orbital. |
A fortunate feature of the UHF method2 is the
lifting of the degeneracy of a degenerate pair of orbitals
when such a pair is available for the description of
one electron. As the N, radical has always been
observed in environments which remove the degeneracy
of the n antibonding orbitals the results of the UHF

calculation are directly applicable.

Nitric Oxide.

Studies of the NO radicalAare reported for the
molecule in the gas phasefé absorbed on magnesium'
oxide ~ and in single crystals of hydroxylammonium
chloride ~, after irradiation with X rays at 77K. The
latter study of Ohigashi and Kurita1éo gave the A
hyperfine tensor of the nitrogen.

AX(N)?36-MG , Ay(N0=5-uG , A (N)=11.5G

with the z axis

coincident with the molecular axis. The unpaired electron
- was found to be in a n; antibonding orbital lying
2000cm™ " below the w; orbita;, the degeneracy being
liftéd in a manner analogous to the isoelectronic N,
ion. No experiment appears to have réported the isotropic
hyperfine coupling constant of the nitrogen in NO so
that the signs of the A tensor components is unoertaint
Gallagher and Johnson101 have deduced appro%imate
values of ay=14:2G and BZ(N)=-20-8SG, from the
microwave spectrum of the NO ground state, suggesting

that AZ(N) is negative.

- -
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Using a bond length of 2.175a.u. the unpaired
electron was calculated to occupy the n; antibonding
90 .
orbital. The calculated coupling constants are
aN=5-39G 3 BX(N)=26'9?G , By(N)=—lO-72G ,~BZ(N) ==16+25G
ag=-2-116¢ ; B_(0)=-43-396, B,(0)=30-08¢ , B,(0)=13-31¢
from which,

A (N)=32.36G , Ay(N)=-5-33G , AZ(N)=—10-86G

The agreement between the experimeﬁtal and the
theoretical coupling constants indicates that the
experimental values of Ay(N) and AZ(N) should be taken

as negative, a result consistent with N,.

The Cyvanide Radical.

102 .
Easley and Welther by trapping CN, in random -
orientation, in argon, kryton and neon matrices at LK,
were able to report the following magnetic properties

of the species
a=210G s B”(C);BzG , B, (C)=-16G

aN=-u-5G ; B, (N)=11G , B, (W)==5-5G

- 7
Ab initio UHF calculations on. the radical5

have given isotropic coupling constants of a0=339-2G,v
aN=-6-182G, showing good agreement for the nitrogen
but not for the carbon. The discrepancy found was ’
net thought to be caused by the UHF method, a similar
result was obtained with the Restricted Hartree Fock
method,. bﬁt rather a result of the inadequacy of the
SCPF atomic orbitals used as basis orbitals; Any'

inadequacy of the basis is exaggerated in fthe case
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of the CN radical, where a delicate balance between
the s and p ratio of the hybrid orbitals involved in
the ¢ bond and in the non-bonding orbital on the
carbon is maintained.

The excess s character calculated in the non-
bonding orbital of the carbon is also reflected in the
low values calculated for the anisotropic components,
B”(C)=l7~15G whereas the calculated value of B“(N) is

9.55G, in good agreement with experiment.

The HBO_, HCO, HCN Radicals.

The characteristically largé hyperfine interaction
of the proton in these radicals has interested a
. number of workers. The spin density matrices of the
ab initio UHF calculations aimed at predicting the
isotropic coupling constants of the isoelectronic
radicals  were used for the evaluation of the  *
anisotropic components. In these calculations all
bond angles were assumed to be 120° and for HCO a -
hydrogen orbital exponent of 1.4 was chosen while a
value of 1.2 was taken for the anions. The BO, CO, CN.
" bond lengths were chosen as 2-4, 2.3, and 2.2 a.u.
respectively and the CH of HCN was set at 2.0a.u.,
the others, HB and HC for HBO  and HCO, being taken

as 2+2a.u.

o
Experimental and theoretical hyperfine ooupling

constants for HCO are given in Table 2. Symons and

Wardale106 in their study of the radical in single

crystals of formic acid were only able to find the

- -
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TABLE 2

Hyperfine Coupling Constants (in G) for HCO

nucleus reference a wN ,.w% wm

H 102 ' 136 -l =l 8
H 103 137 =l e2 -0.8 5
H 105 126 -2.85 -6.1 8.92
H * 112.5 =L 8 -6l 11.1
13

C 104 135 ~13.8 =lye2 18
Auo 105 , 130 lHﬂ.Huv -8.56 2569
13

C * 1484 —22.42 -10.8 33.0

-

#this work and reference (106)
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relative orientations of the anisotropic components
of the hyperfine tensor in the molecular plane,
rendering unfeasible an estimate of the bond angle
from the e.s.r. data. The theoretical anisotropic
components of the hyperfine interaction tensor are

given in figure la.

HBO™
The Y-irradiation of alkali borohydrides at 20K
gave values of the B temsors for the HBO™ radical166;
for boron 12, -6, =6G and for hydrogen 8, -4, —-L4G.
Calculated components of the anisotropic hyperfine
tensor are given in figure 1lb. The experimental results
are probable poor approximations60 and it is
sufficient that the existence of the radical HBO is
confirmed by the calculation together with the -
Acalculafgd isotropic coupling constahts, aﬁ=9l-6G,.~
aB=123G107 (compared with the ay=9LG, ap=101G found

60
experimentally .)

HeN

Ultraviolet or gamma irradiation of cyanide
doped alkali halide crystals at 77K followed by briefly
warming to 280K then recooling, results in the
proauotion of the HON™ radical iom, .~ = At 77K the
spectrum is isotropic, indicating rapid rotation or
reorientation of the radical. At LK however the
tumbling of the radical has been frozen out and the
spectrum is completely anisotropic, permitting a full
determination of the magnetic parameters11é This detailed
magnetic data, for the HON radical, allows an

extremely important test to be made of the theoretical
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FIGURE 1.

-11.1

(1)
11-5

(ii)
-10*9

The principal values and axes of the anisotropic
components of the hyperfine coupling tensors for

(i) HCO and (ii) HBO. All quantities except angles are
in Gauss. The numbers close to the nuclei represent
components perpendicular to,the molecular plane. The
arrows point to the values associated with the
direction of the axis and do not represent a direction

(a tensor component, not a vector component).
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method used. An important aspect which arises is the
accuracy to which the orientation of the principal
>axes of the anisotropic components can be determined,
particularly if no independent study of the

orientation of the radical in the crystal is available.

The theoretical and experimental anisotropic
components of the hyperfine interaction tensors are
presented in figure 2. The calculated values of aH=1uO-3,
aC=7uou and aN=M-92G for the isotropic coupling
constants agree excellently with experimentl where
an angle of 131° was estimated; aH=136-uG, aé=7ué7G
and aN=7G. The agreement between theoretical and
experimental anisotropic coupling constants ié also
satisfactory. There is a discrepancy between the
orientation of the calculated and the experimental
anisotropic components of the proton, suggesting that
a re—examination of the accuracy with which the o
orientation has been determined may be of Value.

By considering the HCN™ radical ion as a
derivative of the linear HCN molecule, formed by
bending.and addition of an electron, two extreme
situations can be envisaged. Assuming homolytic
fission of the inplaﬁe m bond on bending, an electron
will occupy an sp? hybrid orbital on-the cérbon and
an inplane p orbital on the nitrogen. Addition of an
electron to form a pair, with the electron in either
orbital, results in the two extreme cases.
Consideration of the spin density distributions in
figure 2 (i) and (ii) indicates that both models

contribute to an appreciable extent.
L}
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FIGURE 2.

2L +9
97%-11.8
0 ~12.9
139
-7
N > -7

The principal values and axes of the anisotropic
components of the hyﬁerfine coupling tensors for HON .-
(i) theoretical values; (ii) experimental values.

.(See also the caption to figure 1.)
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The H,CN Radical.

Interest in H,CN is associated with the
particularly favourable conditions for hyperconjugation,
arising from the planar structure of the radical,mh111
the short CN double bond and the unpaired electron
being formally located in the inplane 2p orbital of
the nitrogen. Experimental'anisotropic parameters are

111
reported for the nitrogen only

ay=9-5G ; Ay (W)=3L -LG , A, (N)==3G

. 112
The proton isotropic coupling constant aH=87-uG

or 92-1G111, the latter from the powder spectrum, is
also reported.

An ab initio UHF calculation for a bond angle
of 120° and CH and CN bond length of 2.2 and 2 a.u,.

107
respectively gave isotropic couplings

8H=8LL°8G~ ’ 8N=7'2G' ’ aC=-—18-7G

Using the spin density matrix of this oalculéfion
the anisotropic components were calculated and are
given in figure 3. The A tensor for nitrogen is.

Ay(N)=37-3G , A (N)=-10.5G¢ , A (N)=-5.3G

with the z axis parallel to
the CN bond and the mélecule in the yz plane.

The value of 87-4G for the proton hyperfine
coupling constant appears to have been measured from the
parallel features of the electron spin résdnanoe
experiment spectrum113 and if this‘is the case should
correspond closely to A“(H). Since aH=A“(H)—Bw(H)=9O-2G
better agreement with experiment, for the 91-.2G proton

‘ 111
value from the powder spectrum , 1s obtained.



FIGURE 3.
—2.8
HEED '
54
1.1 S0+l
) c —8'0 >6'9 N—l2‘5 >__17.7 ~
e
B s
-2.8

The principal values and axes of the anisotropic
components of the hyperfine coupling tensors of H,CN.-

.(See also the caption to figure 1.) Lo~
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The Vinvyl Radical.

The sensitivity of the sign of the o proton
coupling constant of the vinyl, (aH=i13-5G experimental)
to the bond angle CCHa has caused previous.
calculations to be inconclusive. No experimental data
for the anisotropic interactions is available for the
vinyl radical but the closely related radical
DOOC—-CH=CH', produced by irradiation of a single
crystal of deuterated maleic acid11f has been studied.
For DOOC-CH=CH' the maximum principal value of the
a proton anisotropic coupling conétant is approximately
along the C--HOL bond and_the minimum is perpendicular
to the radical plane, A(Ha)=27’ 9.6, 3.9G.

An ab initio calculation115 has been reported
for a hydrogen orbital exponent of lou; bond lengths
'.of 2¢533 and 2-041 a.u. for the CC and CH bonds )
respectiﬁely, bond angles of 120° for the B protons:
and 137°for the o proton, as suggested by the work
of Millie and Berthier?6 The spin density matrix of the
calculation was used in the calculation of the
anisotropic components of the hyperfine tensor and the
results are presented in figure 4.

If a positive value of 13.5G, for the isotropic
coupling odnstant of Ha,is assumed the corresponding
anisotropic tensor components are B(Ha)=13-5, ~3.9,
-9+6G, These agree well with the. values, and
directions, calculated thus reinforcing the view that

the isotropic coupling constant of the o proton is

positive.

L]
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PIGURE L.

16.8

27

The principal values and axes of the . anisotropic
components of the hyperfine coupling tensors for the

vinyl radical. (See also the caption to figure 1.)
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The Ammonia Radical Cation.

The isotropic hyperfine coupling constants of
NH? have been calculated using the ab initio UHF method,
with optimisation of the geometry and hydrogen
orbital exponenf for the planar radical. Allowing
for the out of plane zero point energy vibration the
calculated coupling constants are aN=l6o92G, aH=—2O-02G.
These calculations are reported in Chapter 2.

Rao and Symons69 on Y—-irradiation of ammonium
perchlorate, at room temperature and 77K, obtained

the NH§ radical, with isotropic coupling constants

and anisotropic oomponents
ay=19:3¢ A((W)=37¢ , 4 (N)=10-5G
ay=25-8G ; Ay (H)=28G , A_L(H)=2u.7G

The theoretical anisotropic components of the
hyperfine interaction tensor are given in figure 5;f/
These are very similar to those for NH, (also figure 5)
where. A”(N)=ul-7G:, AL(N)zoiBG experimental compare
févourable with the calculated values of-A“(N)=ul-66G,
A (N)=—8-05G. The calculation of the anisotropic
’/coupling constants should be gtleast as reliable as the
calculated isotropic coupling constants and therefore
equally good estimates for the A tensor, as obtained
for the a values, are anticipated. SinceAthe calculated
ay was low by dnly 2+3G, compared with experiment, thé
discrepancies between the calculated and experimental
A values should be equally small. The large differences
between the calculated values, A”(N)=50G and
%L(N)=O-5G,.and the experimentél values may be

associated with the fact that the true Au and AL_are



89
FIGURE 5.

20.8l
A

-5415

Hf——> =17.69

T2E22 5-16-495
H’/////// H

~18.495

(1)

-16-94 N 35.02

-16.21

22-hele ~16-81

(i1)

The principal values and axes of the anisotropic
components of the hyperfine coupling tensors for the
radicals (i) NHY and (ii) NH,. (See also the caption’

to figure 1.)
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not measured but have been partially averaged by a
librational motion about the threefold axise.’8

The calculated anisotropy of the proton
coupling constants is never completely observed owing
to a rapid rotation about the threefold axis. Using -
QL?O-5(BX+By)=2-575G the calculated values may be
given as Ay(H)=-25-17¢, A, (H)=17-46G, a difference
between A“ and A, of 7-725G compared to the observed
difference of 3+3G. This discrepancy can also be

associated with the librational motion.

The Methyl Radical.

The results obtained from calculations of the
isotropic hyperfine coupling constants for'CH3 have
been discﬁssed already ( Chapter 2). The <isotropic
values, ac=5u-6uG, ay==19-43G, are in reasonable
agreement with the generally accepted experimental -~
values of aC=38G, aH=—23G, repbrted for solution and
matrix environment. Qn Vycor glass below 150K values
less than 38G for as have been measured:16 which on
extrapolation to OK give ac=10-6G. Rao and Symons69
have suggested that Garbutt et al116 have
misinterpreted the spectrum and are iﬁfact measuring
A, (C) rather than a,. The calculated value of B, (C),
after taking into account the out of plane zero point
energy vibration, was estimated to be =30G. If Rao and '
-Symons are correct, and the minimum value éf a5 is
38G, then an A (C) value of about 8¢ is obtained. This
compares favourably with the extrapolated value of
Garbutt et al and thcerefore their unusual resﬁlts are

rejected by accepting the interpretation of Rao and
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Symons .

Conclusions,

The calculations which have been carried out
within the ab initio UHF framework with single spin
annihilation after minimisation have demonstrated
that consistently good agreement may be obtained between
expefimental and theoretical anisotropic components
of the hyperfine coupling tensor. The results give
confidence in the use of the method to explain the
observed hyperfine coupling constants of radicals
and thus verify the identity and structure of species
reported using the electron spin resonance technique.
Any improvements in the results would be associated
with more adequate basis orbitals, as indicated in the
case-of the CN radical, rather than abandoning the o

simple extension to the independent particle modelp
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Introduction.

The advantage of using Gaussian type orbitals
ovef Slater type orbitals lies particularly in the
evaluation of the multicentre tWo electron integrals
which arise in molecular calculations. Since the
introduction of Gaussians a éonsiderable amount of
effort has been directed towards determining suitable
Gaussian expansions for Slater type or atomic SCF
orbitals. Methods for obtaining Gaussian exponents and
expansion coefficients have been developed by
Huzinaga and others:7_29using the criterion of
minimisation of the energy or least squares fit to a
Slater type orbital. |

If the number of Gaussian functions in a calculation
is N then the number of two electron integrals is
of the order N%. These integrals therefore represent-
both the most numerous and the most difficult to
evaluate. Cook and PalmierizA have noted that
although large Gaussian expansions are required to
reproduce %he values of the one electron integrals
much smaller expansions are adequate for the two
electron integrals. The application of their "mixed"
"basis method to a molepular system represents a time
reduction, in the integral evaluatioﬁ, of an order
of maéhitude. The mixed basis method 'is STQ
orientated and it is convenient to distinguish that
method which is SCF orbital orientated by reference to
the double basis method. The philosophy of both methods
is identical; in the double basis method large Gaussian

expansions are used to represent all one electron and

- -
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one centre integrals and small expansions for the
multicentre two electron integrals . The approach
is %o be distinguished from the "combined" basis
method of Silver117 which augments STO basis éets
lwith Gaussian type orbital basis sets.

‘In the double basis method the "best" Gaussian
representation of an atom, uéing the energy criferion,
is chosen to calculate the one electron and one centre
integrals. This is invariably the largest expansion
available. However, as the multicentre two electron
integrals are of solely molecular origin, the small
expansions are chosen on the least squares criterion.
This is because the energy is very dependent upon the
wavefunction close to the nucleus, whereas most
multicentre two electron integrals depend on the
electron density distribution remote from the nucleus.

A number of Gaussian expansions of SCF atomié
orbitals for the first, second and third row atoms
are available in the literaturezo_z# and these may
be used for the one electron and one centre integral
oalculatioﬁs. However small expansions, useful in
the double basis method, are few. Stewart28 has
reported small expansions for some of the first row
atoms and further work, representing STO's by small
Gauséian expansions, has been donez18

Small Gaussian basis sets (6s,4p), which are
suitable for use in the double basis method, are
calculated for the second row atoms by leaét square
fitting to the 12s,9p basis of Veillard:8 The

differences between the available second row basis

sets are also analysed. The double basis method is
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then applied to the calculation of the isotropic

hyperfine coupling constants of the radicals XH; and

-+

XH,Me (X=A1", Si, P” and Me is the methyl group,CH;).

Determination of Least Squares Basis Sets.

| Method;

The 12s type and 9p type fully confracted
Gaussian expansions for the atomic SCF orbitals of the
second row atoms, due to Veillard:? were used as the
standard functions to which small Gaussian expansions
were to be fitted. The Gaussian expansion of the radial

part of an orbital can be represented as
'Xi=Z:CijrneXp(—a,jr2) ocoocoo.(l)
J

where r is the distance
Zdo_the nucleus on whiéh the orbital -is centred and -
n=0 for an s type and n=l for a p type orbital. For
all orbitals with the same spherical harmonic, on an
atom, the exponent, o, is the same for all?ﬁi. This
restriction represents a considerable reduction in
the time required to evaluate the two electron
integrals, and -limits the usefulness of the orbitais
of Stewart and Hehre11? Two Gaussian functions per
orbital were cornsidered the minimum ﬁeoessary for the
small basis, leading to six terms in equation (1)
for the s orbitals and four terms for the p orbitals.
For sodium and‘magnesium,where there is only one p
orbital to‘fit, three Gaussian functions were
considered necessary to give a comparable fift.

The least squares problem which must be solved

-
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is the minimisation of the error function
€=Zi:.r(¢i-‘xi)2d7 e e o 0o 0o 00 (2)

where 1 extends over
all functions with the same spherical harmonic; ¢i
represents one of the standard functions due to
Veillard. The minimisation of (2) is subject to the

conditions
Jjxgdm=b; 5

A regression method, programmed in ALGOL:19 was
used in an attempt to reduce the chance minimisation-
on to a local minima.ACrudely the function is
evaluated many times over varying limits of the
varilables Cij and a3 such that ¢ is always reduced..
Despite the considerable effort expended, in an
attempt to find the true minimum, no guarantee oanjbe‘

given, in common with other methods available.

Results and Discussion.

The orbital exponents are given in Table 1 and
the corresﬁonding expansion coefficients are listed in
Table 2. Orbital energies were not calculated since
these basis sets are not intended for use in single
basis calculations.

ot The 3s orbitals (figure 1) from the 6s, Lp
Gaussian set deviate from the 12s, 9p set in the
‘manner expected for a least squares fit. However tle
deviation of the 3p orbitals (figure 2) is.not
characteristic of a least squares fit, showing a small

positive fluctuation near the nucleus (the 2p orbitals

- -
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TABLE 2,

Expanmion oomwﬁwowmsdm_wow the atoms Na-Cl

type Na Mg AL Si P S c1

1s .378210 .372851 3674 7L .362817 .358876 . 35507 4351338
697320 697143 697575 697621 697342 697401 69707

.08L28l +093982 +103659 .111729 115935 124,378 129717

~.032257 ~.037668 | --043273 | --0L7613 ~.046093 | -.053328 051849

00893l .010091 .012263 .013730 007312 .015265 .015730

~.005246 ~.005141 ~.005956 | —.006L41 000001 -.006884 | —=-007110

2s -.10418) ~¢105331 ~+106082 | -.106727 -+107222 ~+107728 ~+107799
276630 ~+289290 ~.299778 | -.308L22 ~.316083 ~.321839 ~.327381

-54.3841 L9699 1152238 415975 .375296 +357385 326797

.556180 596233 .muwHOH 662821 697771 711525 737,04

. 0221401 028578 037871 015339 .052796 «056716 062328

~.01079Y ~+0115L9 ~.013521 | =--014L69Y ~.016151 ~.016245 | =.017149
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TABLE 2. Aoosd.v

type Na Mg Al si f p S o1
3s -016503 +020774 - 024925 -027731 -029785 -031533 +032815
" .0y1178 .056729 .071391 .082090 090767 .098266 104607
~.087001 ~4112107 | --127774 134300 | -+132705 ~.138088 ~.13L,064
—.21974l | --270223 | -.328048 371407 | -+407006 | -.1,31636 - .1,57898
-611708 -59993L +610159 «606418 +610698 «629231 +633L63
67648 «510779 «5214553 «545350 +551965 +5L1829 .mrﬂwmo
2p «249157 «237312 468740 «451130 1439155 431410 424827
575825 .576580 .670879 677276 .681179 1683585 1685526
.,03887 .LL03673 072095 .080276 .085020 .086286 .087835
~.0221, 76 023452 | --023960 ~.022268 ~.021280
3p ~.093948 .108112 | =.117761 ~.125725 ~+131960
110451 +131,132 ~.150631 ~+15837, ~+1664,99
+523L96 511227 +556305 573525 -584599
+59558) 578746 +565310 -556031 +51,8826

AN
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FIGURE 2.

Variation of the aifferenoe, 8 ao a
function of the distance, r, from the nucleus for
the atoms indicated.;ﬁ corresponds to the exg%nsion
of a) Husinaga et al ; 1) Roos and Siegbahn ;

c) this work.
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show negative deviations iﬁ this region). The
similarity in the plots for the 3p orbitals of each
atom suggests that the orbitals are consistent
amongst themselves. The fit o? the 6s, Lp set to the
12s, 9p set is very good for all the atoms, ‘the
‘maximum deviation being about..0-0l,
The error function
ei=[ (03=5;)%ar SR €
was evaluatgd for various
functions (Table 3) where P4 and Si are ény pair of
Gaussian expansion representations of SCF atomic
orbitals calculated by Veillard (12s,9p)18, Roos and
Seigbahn (1Os,6p)23, Huzinaga, McWilliams and Domsky
(9s,5p)°", all using a minimum energy criterion, and
this work.(6s,4p).

The error funct?on, eBp’ between the 12s,9p
and the 9§5p set for the 3p orbital is particularly
large compared to the error function of the other
orbitals and the basis set to the 12s,9p set.
Assuming that the 12s,9p set is the best available,
consideration of the results in Table 3 suggest that,
for molecular calculations using a single basis; the
10s,6p set might be a good compromise; The reasons
are twofold; | |

1) The maximum deviation of the 10s,6p is less
than half that of the 9s,5p set in all cases, except
aluminium,

2) A considerable reduction in the number of
integrals to be evaluated is achieved by using the

10s,6p set rather_than the 12s,9p set.
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TABLE 3 (cont,)

\

2s orbitals

<mHPHmHQ Roos Huzinaga This work Veillard Roos Huzinaga This work
Veillard |y, Na .0001043 | 0002211 | +0001985 || & 4l yoooomwm 0001755 | +000235L
Roos .0000322 .0001313 | 0001881 | | 0000588 . 00014499 -0001976
Huzinaga 0001901 | -0000997 000277, | | -0001810 | .0006951 000307}
This work | -0002263 | -000197. | -0002807 .0002802 | .0002261 | 000332
Veillard | g4 P .oooor:w 0001748 | .0002892 Cl +0001018 | 0001532 | -0003138
Roos . 0000468 .0001409 | +0002318 : .0002418 | -0002782
Huzinaga 0001491 | +0001339 -000363l, .0003853
This work «000286L .0002087 +0003655
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TABLE 3.

(cont.)

A

3s orbitals

<mHHHmHQ

h

This$ work

"Roos Huzinaga Veillard Roos Huzinaga This work
Na Al
Veillard " 0006633 | -0035591 | -0000258 51 0013400 | .0061654 | +0000358
Roos 0000214 .0019415 | .0006109 .0035036 «0020133 | -0013100
Huzinaga | +0066465 | 0065223 0035302 .0062949 | -0006951 0061549
This work | +0000304 | -0000248 | .0066274 .0030347 | -0034899 | .0063047
Veillard | g P .0000507 | 0062906 | -0000456 Cl 0005693 | .0063677 | -0000591
Roos 0001167 .0061127 | -0000385 0045287 | .0005110
Huzinaga | -0063753 | -0058982 000306 0063990
This work + 0000500 + 0063963

+0000900
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TABLE 3. (cont.)

i

\ .

2p orbitals

1
/

Veillard Roos Huzinaga This work Veillard Roos Am:NHSmmm This work
Veillard ug %@ | 0010358 | .0001982 | .0012552 || (&7 .0001273 | -0007272 .oomwmmr
RoOS «0007999 .0005031 | +0011522 +0001850 .000758L | -0060L6L
Huzinaga .0001171 | .o00u877 0009492 .ooobpq: +0005498 0060598
This work .0010682 | .0008792 | .0008481 0053708 | .004L7622 | 0055275
Veillard | ¢ Pl .0002171 | -0003341 | 0047765 ¢t | -oo01949 | 0001709 | -0041166
Roos «0001929 - 0004376 «0041197 ..oooum@m «003628Y
msstmmm +0002575 | +0003426 .005020L .0045263
This work .0041206 | -0038468 | .0047051
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k!
\

5p orbitals

TABLE 3. (cont.)

!

i

. Veilllard Roos m:NHSWWm This work Veillard Roos m:NHSmmm. ewwm work
Veillard | i Na g1 &L | .o197262 | .05279u3 | -0011311
Roos .0091803 0177840 | .0215377
Huzinaga .orwmwwu‘ .0217828 «0545237
This work +0010959 | 0095695 [ -0435523
Veillard ) P 1 .ooy2857 | .0378756 | 001802 CL 1} Lo0027914 | .0372887 | 0014866
Roos -0034052 0271050 | +0038846 . 0309090 .oomommm
Huzinaga .04,09963 | -032492) 0039813 0401473
This work .OOH:owu .0027,38 | .0L332ulL ,

s
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Applications of the Double Basis Method.

The magnitude of the proton hyperfine coupling
.constant is considerably reduced on going from the
firét row hydride series, BH;, CH;, and NHS, to the
seéond row series, AlH5, SiHs, and PH?. This may be
understood if the former are planar and the latter
slightly pyramidal12? as it is expected that as thg
deviation from planarity increases the negétive
proton cdupling constant will go tﬁrough zero and then
increase rapidly, accounting for the large positive |
proton coupling constants observed for such radicals
as HCO.° As the radicals A1HS, SiH, and PHS, from the
€.8.Tr. data’availablé:21—128 are thought to have
qulte large deviations from planarity (18°u0’, 15051
~and 14°30' for AlH;12fSiH3122and PHT 128 respectively)
the small magnitudes of the observed proton hyperfine
coupling constants are surprising;

Theoretical calculations, using the ab initio
UHF double basis method, were done on the isocelectronic
series A1HS, SiH, and -PHS in order to verify the
' assignment given to the species observed by the electron
spin reépnanoe technique. Calculatiohs were also

performed on the related series AleMe-, SiH,Me and

PH,Me™.

Method.

The ab initio UHF method using the l.c.a.o.-m.o.zp-
~proximation with spin annihilation was used (see
Sections I and II). The minimal basis set of orbitals

was represented by expansions of Gaussian functions

- -
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in their completely contracted form. The 12s type and
9p type of Veillard18 for the aluminium, silicon and
phosphorus and the 9s type and 5p type for the carbon
and the 6s type for the hydrogen as given by Huzinaga21
were used to calculate the one electron and one centre.
integrals. The 6s type and L4p type for aluminium,
silicon and phosphorus as given and the 4s type and 3p
typé for carbon and the 3s type for hydrogen reported
by Stewart28 were used to evaluate the multicentre

two electron integrals. The hydfogen atomic orbital
exponent and the bond length, r(X-H), were

optimised to within 0.1 at an angle of 19-5° from
planarity for AlHS and SiH; and an angle of 14° for
PH;; With these optimum hydrogen orbital exponents‘and
bond lengths the angle of the radicals were optimised
to‘within one degree. '

The bond lengths and hydrogen orbital exponénts
of the hjgrogens attached directly to the second réw
atom and the pyramidal angle in XH,Me (X=A1", Si, P*)
were assumed to be the optimum.values for the Xﬁ3
" radicals. The bond lengths r(C-X) were taken to be 3.8,
3¢5 and 35 a.,u. for X=A1l, Si and P respectively,
r(C-H) for the hydrogens of the methyl group was taken
as 2+05a.u. and the carbon was tetrahedrally placed with
respect to the three hydrogens and the central atom,X.
From the calculations on the methyl radical, a
hydrogen orbital exponent of 1.4 was considered
sultable for the hydrogens of the methyl group.

All results were calculated from the UHF

wavefunction after annihilation of the contaminating

- -
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quartet state and are expréssed in atomic units,
except the hyperfine coupling constants which are

expressed in Gauss.

The Radical Anion AlH;.

126
Catton and Symons on Y- irradiation of

lithium and sodium aluminium hydride at 77K produced
a paramagnetic species which, by analogy with the
Y-irradiation product of KBH, (BH;) was expected to be
AlHS. The isotropic éoupling constant of aluminium,
aAl£223G, was reported but no proton coupling constant
could be detected, limiting its value to less than 20G.
The deviation from planarity was estimated to be 18°40!"
The results of UHF calculations on AlH; are
given in Table L. The total energy was —243.-57247a.u.
at an optimum bond length of 3-2a.u., hydrogen
orbital exponent of 1.0 (figure 3) and angle from
planarity of 21°. The calculated isotropic hyperfine
coupling constants are-a,,;=213-8G and aH=3-u8G; The
agreement with experiment, of the aluminium coupling:
constant and the angle, is excellent. The smallness of
the calculated coupling constant of the protoh is
reassuring since the observed small magnitude was

unexpected.

The Silyl Radical SiH-.

Two values of the silicon isotropic coupling
constant have been reported by Gordy and his co-
workersyf“’z2 For the radical trapped in a xencn
matrix,'aSi=l9OG122, and for the same species in a

121
krypton matrix at LK, aSi=266G . As the radical is
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TABLE L.

bond‘ hydrogen|bendingl total coupling

length orbital| angle | energy constants(G) <S2>
(a.u.) | exponent 8° (a.u.) a1 ey
32 0.9 19.5 [243.56571 2256 6«14 + 750003
33 0.9 19-5 |2L3.56633 242.4 | 8.03 | +750002
3.0 09 19.5 [-21,3+56L50 260+6 |10+36 | 750001
3.1 1.0 19-5 [-24,3-56999 190-4 | 110 | -750010
3.2 1.0 19.5 |-243.57240 203.8 | 2.5 | -750010
3.3 1.0 19.5 |-2443.57221] 217+6 | L4-02 | -750008
3.1 1.1 19.5 |-243.56125| 1707 {=L-82 | +750026
3.2 1.1 19+5 =24,3.56373 181+6 | =3.92 -750628
3.3 1.1 | 19-5 |F2u3.56315/192.7 |=3.00 | -750031
3.2 1.0 19.0 |-243.57232| 200+5 | 2.10 | -750011
3.2 1.0 20.0 |-2.3.57247] 207-3 | 2.85 | -750009
342 1.0 1.0 |-243.57248] 213.8 | 3.48 | -750007 *
3.2 1.0 22.0 |~243.57232| 220.0 | L.06 | -750006

smarks minimum

Theoretical

Results for AlHS
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Summary of the calculations of the AIH: radical;
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exponent a as indicated.
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uncharged, and hence environmental effects on the
conformation are expected to be small, the large
difference is surprising (especially as the

123
environments are so similar). Sharp and Symons have

demonstrated that for the radicals SiHnMeB—n (h=0,1,2)
the silicon coupling constants are about the same
(180G), that is, addition of a methyl group has little
effect on agy - This led to the suggestion that the value
of 190G for the coupling constant of silicon_éhould be
accepted, being more consistent with the known data,
and the value of 226G rejected. Also reported for the
silyl radical were aH=7-8uG and an estimated angle out
of plane of 15°51"',

The results of the calculations on SiHis are
collected in Table 5 and figure L. The optimum bond
length of 2+9 a.u., hydrogen orbital exponent of 1.2
and angle out of plane of 17° for the SiHs; give .
isotropic coupling constants of aSi=—l7O-8G and
aHz-O-MZG. The agreement with experiment is still very
good for the heavy atom coupling coﬁstant. The theoretical

proton coupling constant does not permit the sign of

the experimental value to be unequivocally assigned.

The Radical Cation PHY.

The species formed when phosphonium sulphate is
Y-irradiated at 77K has been assigned to the radical
cation PH§12? A phosphorus coupling constant of
aP=5l7G was estimated but the.proton hyperfine
coupling constant was not detected, limiting its value

to less than 10G. The angle out of the plane was

- -
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TABLE 5.

bond hydrogen| bendingl total- coupling

length orbital| angle | energy constants (G) <S2>
(a.u.) | exponent e° (a.u.) 451 ay
2-9'. l.1 19.5 [-290.-54541-207-1 7e1l2 + 750006
540 l.1 19-5 {-290-54599-215-5 9.22 + 750005
3.1 1.1 19:5 |~290.5414G-223.1 |11+67 | +750004
2.8 1.2 19.5 |-290.54207-184-0 1.54 + 750010
2.9 1.2 19+5 |-290-54688-191-L | 2.94 | +750010
3.0 1.2 19.5 |-290.545574=198+3 | L.27 + 750011
2.8 1.3 19.5 [=290+53512-169+6 |=3.73 + 750013
2.9 1.3 19.5 |[=290.53865~=175.6 | =2+26 + 750015
3.0 1.3 19.5 |-290.53555-181.0 | =125 + 750018
249 1.2 19.0 |=290.54702~-187.6 233 «+ 750011
29 1.2 18.0 —29005u720—179-u 086 « 750014
29 1.2 17.0 |-290.5472L~170.8 | =042 -750017
2.9 1.2 16-0 |-290-54718-162.1 |-2.01 | -750021

¥marks minimum

Theoretical Results forASiH3
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estimatéd, from the e.s.r..data, to be lu°30‘.

The theoretical results (Table 6 and figure 5)
give hyperfine coupling constants aP=196-5G, aH=-15-9lG
for a bond length of 2.8 a.u., hydrogen orbital
exponent of 1.3 and angle from planarity of 8°. The
phosphorus coupling constant is very low and the angle.
of bending is also unsatisfactory.

The method which has given good agreement with
experiment for the radicals AlH; and SiH; would be
expected to give an adequate result for the isoelectronic
radical PH?. That this is not the case, and the
assignment of the'e.s.r. species reported as PHZ seeums
reasonable, suggests that effects not important for
A1HS or SiHj are influential for PH;. A siﬁilar
situation was found for the isocelectronic series BH;,'
CHs., NH'3+ (see Chapter 2), although the interpfetation
was oObscured by the large‘vibronic contribution to
the isotropic éoupling constants. A qualitative -
argument'based on the effects bf the environment was
suggested to explain the discrepancies found for the
- first row hydride series and a similar stance can be
taken when considering the radical PH?.

Begum, Lyons and Symons128 have suggested that
the result for PH§ could- be exaggerafed by hydrogén
bonding to the oxygens of the medium, If all the
hydrogens of PHf were bonded in this way, loss of a
hydrogen to give PH; would leave the radical constrained-
somewhat to a tetrahedral configuration. Constraint

. of the radical, in this manner, would result in an

increase in the phosphorus hyperfine coupling

- -
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TABLE 6.

bond hydrogen bending total. coupling
length orbital| angle | energy constants(G) <32>
(a.u.) | exponent o° (a.u.) ap ay

2.7 1.2 14.0 |-342.03723 330.7 | =2.18| «750021
2.8 1.2 140 |-342.04385 335.0 | =1.63| .750026
29 1.2 140 |-342.04258 3373 =126 | «750032
2.7 1.3 4.0 |=342.0474d 310-4 | -L-93| -750021
2.8 1.3 | 140 |-342.0509€ 312.6 | =L 87| -750028
29 1.3 140 |-342.04638 3127 | =494 | 750036
2.7 1.k 14+0 |-342.04918 286.1 | =7-99| 750019
2.8 1.k 140 |-3142.05007 286.L | =8.04 | +750025
2.9 1.k 140 [|-3L2.04258 287.1 | =8:L6| +750033
2.8 1.3 15-0 |-342.05056| 333.5 | =3.01| -750023
2.8 1.3 130 [=342-05127] 2918 | =6+68 | «750033
2.8 1.3 12.0 |-342.05150| 2714 | ~8-55 | -750039
2.8 1.3 11.0 |-342.05166| 251+5 |=10-46 | «750045
2.8 1.3 10-0 |~342+05177| 2322 |=12+31| +7500L7
2.8 1.3 9.0 |-342.05183| 213.8 |-14.15 | +750055
2.8 1.3 8.0 |-342.05185|196+5 |=15+91 | «75006L *
2.8 1.3 7.0 [-342.05184]180.L [=17-52 | -750072

*marks minimum

Theoretical Results for PH}
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constant, ap, through the increased deviation from
plaharity (see figure 7), and also the increase in
the bond length, r(P-H), by hydrogen bonding. A
further enhancement of ap may be conjectured if it
is considered that_the bonding of the hydrogens to
the medium resulfs in a more diffuse hydrogen
orbital. An increased diffuseness of the hydrogen
orbital implies a decrease in the hydrogen atomic
orbital exponent, leading to an increased value of
ap (see figure 6). The net result would be a
considerable increase in the hyperfine coupling
constant of the phosphorus.In fact, with only a
slight change in the parameters much better

- agreement with experiment can be obtained, for
example, with a bond length of 2.9 a;u;, hydrogen
orbital exponent of 1.2 and angle out of plane of

14° the coupling constants are aP=337-3G and ag=—=126G,

Theoretical trends ih the variation of the angle-
out of plane, for the isoelectronic radicals AlHj,
SiH- and PHZ, follow the experimental trends and are
in the order expected in terms of Pauling's

electronegativity theory? 1that is, the radicals
are predicted to flatten on going from aluminium to
phosphorué. The trend in the hydrogen}atomic orbital
exponents is also in the order expected from the
excess oharge effect83 (L-0, 1.2, 1.3 for AlH,, SiH,,
PHY respectively). Generally the agreement with

experiment is satisfactory, if environmental effects

are assumed to be important for PH?.
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FIGURE u.
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Variation of a” with a for r (?-H)=2 ¢Sa .n. and9=1i+"°
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The Radicals AlH,Me~, SiH,Me and PH.Me?

Of the radicals XH,Me (X=A1", Si, P*) only the

silicon species has been observed, as the product

12,..128 L
of Y-irradiation of SiH;Me . However, radicals
- . +12572128 .
AlR., SiRs and PR , where R is an alkyl group

or hydrogeﬁ, have been reported experimentally and
some of these are compiled in Table 7, with the
calculated results for XH,Me and XHs. The theoretical
results are not compatible with experimeht.

The experimental trends in the coupling
constants of the heavy atoms generally show an increase
on going from AlH5; to AlR5, no significant change
between SiHs and SiRs; and a decrease for PH; to PR?.
The trends suggest that alkylation has little effect
upon the shape of silyl radicals but opposite effects .
on the AlR5 and PR? radicals, the former being
induced to bend further and the latter to flatten{

The argument, using electronegativity differences,
requires that the radicals should bend further on.
alkylation, and this can be used to account for the

- trend in the aluminium coupling constants but not
for the trend in the phosphorus, which is in
opbosition to this view. The results for the silicon
suggest that, to within the accuracy'of the
experiment, there is no significant increase in the
bending. |

This trend may be rationalised with the concept
of hyperconjugation128 but, as pointed out previously,
‘hydrogen bonding of PHT to the environment, an effect
which is not possible for PRg radicals, may considerably

increase the hype}fine coupling constant of the



. TABLE 7. Experimental hyperfine coupling constants 123

for the radicals XR, (X=A1", Si, P

—+

; R=H or alkyl).

Radical Hyperfine coupling'constant angle out
ay aH(q) ER aH(B) of plane
A1HS 233 18.67*¢
AlMeS 32l 21.00'**
AlEtS 325 01.5,0%27
Al(isoBu); 322 21.80%*¢
A1H(QCH,CH, oCH5)3| 179 18.05%
A1HS 213.8| " 3.48 21 i
AlH,Me™ 103.3|=10-88 | 34210 L49.54 | 21 *
SiH, 190 7+8L 15-85"**
SiH,Me *** 181 | 11.8 8.0 |
SiHMe 5**° 183 17 7.2
© SiMe, 181 6.3 | 15.25"°
' SiH, ~170.8 éo-uz 17 =
5iH,Me ~114+7 |-11:56 |=5-037| 53+56 | 17 *
pHY 517 14 -50**°
PEtE 38 12.53*°
P(n-Bu)? 360 12.25%*8
put 1955 | =15.91 8 #
. PH,Me" 192.2 | -19.98|-5.602 | 39.4,8 | 8 =

*marks

calculated values
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phosphorus., If the view is taken that the interaction
with the environment is important for PH: then it

may be conjectured that the trend is only apparent,

as the unrestricted radical, PH?, may have a smaller
phosphorus coupling constant, and hence smaller angle
of bending, than the alkyl derivafives. The calculated
coupling constant of ap=192:2G for PH,Me' is very
similar to the wvalue calculated for PH?, although
optimisation of the bond lengths and hydrogen orbital
exponents may increase its magnitude. If it is assumed
that the deviation from planarity is greater in the
radical PH,Me® than in PH3, that is, if the
electronegativity differences have la dominant effect,
then the iéotropic coupling constant of the phosphorus
would be increased, to bring the theoretical result

more into line with the experimental values.

-

The calculated hyperfine coupling constant oi
the siliconm, aSi=—llu-7G, may also be increased by
optimisation of bond lengths and hydfogen orbital
expohenté. Combining this optimisation with any
. increase arising from further bending, which way occur,
would be expected to give a value of 854 closer to
the experimental value. The exberimental B proton
coupling constant ('8(})125 compares uﬁfavourably with
the calculated value (53-56G), however, the agreement

may be improved when the conformation of the radical
is optimised

The calculated value of the hyperfine coupling -
constant of the aluminium in AlH,Me™, a,;=103-3G, is

surprisingly low._ﬁxperimental values for AlR5 show
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an increased coupling constant compared to AlHj,
implying an increased bending, in aco;rd with the‘
electronegativity theory. The position may be
improved with optimisation, leading to an increased
CINE but there is little reason to believe that a

value comparable with A1H; could be attained.

An examination of the theoretical results,
reveals that the unpaired electron occupies similar
orbitals in AlH,Me and AlH, but the orbital in the
methyl derivative has less 3s character and more 3p
character. The unpaired electron is delocalised over:
the methyl group, to some extent, in AleMe—. The
reduction in 3s character and partial delocalisation
on to the methyl group appears to account for the
fall in the hyperfine coupling constant of the central
atom. It may be that the radicals XH,Me show an
‘exaggerated delocalisation of the unpaired electron,
which might be equated with hyperconjugation, resui%ing
from the lack of d orbitals in the calculation.

Although the general trend for the AlR; radicals
is to an increase in the aluminium coupling constant,

" the radical identified as AL1H(OCH,CH,O0CH;)I, produced
by gamma irradiation of NaAlH, (OCH,CH,0CHs),, has
a reduced value of aA1=179G:29 If the assignment is

correct the result would be compatible with that
calculated for AlH,Me .

Conclusions.
The: calculations on the radicals XHs and XH,Me
(X=A1", si, P") indicatec that the double basis method

can. give hyperfine. coupling constants in good agreecment
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with experiment. The results reinforce the conclusions
drawn from the calculations on BH;, CHs; and NHY
(Chapter 2) that in order to obtain consistent agreement
with experiment the hydrogen orbital exponent and the
geometty must be optimised as far as it is possible.
Also the problem of a strong interaction with the
environment is possibly encountered again. The use of
the double basis method makes optimisation feasible
for Al1H;, SiH; and PHS but not for ALH,Me™, Sil,Me
and PHZMe+, thls deficiency in the calculations on

the latter series may account for the inconclusive

nature of the results obtained.'



CHAPTER 5
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Introduction.

In the preceeding sections ab initio
calculations of radicals systems have been discussed
and the applicability of the full baéis and double
basis Unrestricted Hartree Fock method with single
annihilation evaluated. The spin density distributions
predicted have, genérally, proven to be in good
agreement with the experimental data, offering some
confidence in the use of this formulation. A factor
of considerable importance which emerges from the
calculations of hyperfine coupling constants is the
need for optimisation, of the geometry and hydrogen
atomic orbital exponent, if a coherent anélysis is
envisaged. In many cases optimisation cannot be
complete and any experience gained from other
studies must be used.

The species which have been studied contain
no more than two atoms, other than hydrogen atoms,
since the number of integrals computed rises as the
fourth power of the number of basis orbitals. The
time consuming nature of ab initio calculations
therefore prohibits the study of large molecular
systems in most laboratories, although Clemerﬂ;i31’.130-132
has demonstrated that such systems may be examined
and ‘-reasonable results obtained. This barrier, imﬁosed
by computational considerations, precludes the
extensiv? analysis of many' radicals, such as aryl
ions and transition metal complexes, using‘the.
non—-empirical methods developed in this thesis.

However an attempt to evaluate the applicability of

- -
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the ab initio UHF method'in a test case was
considered necessary and this Chapter is concerned
with calculations on the pyrazine anion and the
moﬁoprotonated pyrazine radical, using the double.
basis approach. The closed shell pyrazine molecule

is also.presented for comparison with the resulits

132
obtained by Clementi.

Method.

The ab initio Closed Shell and Unrestricted
Hartree Fock methods were used iﬁ the l.c.a.o0.-m.o.
approximation, with spin annihilation in the UHF method.
The minimal basis set of orbitals was represented
' by expansions of daussian functions in their
completely contracted form; for the one electron and
one, centre integral calculation the 9s type and 5p |
type for carbon and nitrogen and the 10s type for‘/
hydrogen as given by Huzinagaz'1 and for the
multicentre two electron integrals the 4s type and
3p type for the carbon and nitrogen and the 3s type
for hydrogen, from the work of Stgwartzf Were used.

The coordinate system of pyrazine is given in Table 1.
(The additional hydrogen in the monoprotonated
pyrazine is H(5) in Table 1.) Hydrogen atomic orbital
exponents of 1.2 and 1l-4 were used for the calculations
on the pyrazine molecule and 1.4 for the pyrazine
anion and monoprotonated pyrazine, as suggested from
the work on CHs (Chapter 2),.

‘Qhe function |
| (1-q)<52>

Byt UHF
- was minimised in the



TABLE 1.

centre X z
c(1) ~1.3020464 2.3307193
c(2) 1302046l . 2-3307193
c(3) -1.3020464 -2.3307193
c(l) 1.3020464 -2.3307193
N(1) =2.2627005 0.0
N(2) 2.2627005 0.0
H(1) -2.29,41718 L4 .0491302
H(2) 2.29,,1718 L +0491302
H(3) -2.2941718 -4 +0491302
H(Y) 2.2941718 -1 +0491302
H(5) 1627005 0.0

The y coordinate is zero..

Coordinate System used in the Calculations on the
Pyrazine molecule, the Pyrazine anion and the
Monoprotonated Pyrazine. (Distances‘are expressed in

atomic units.)

129
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case of the pyrazine anion in an attempt to remove

spin contamination (see Section VI). The values of the
scalar, a, used were 0-85; 0.90, 0.95, 098 and 1-.00
(the last being a normal unconstrained UHF
minimisation). The results for the pyrazine anion

and the monoprotonated pyrazine radical were calculated
from the UHF wavefunction after annihilation of the
contaminating quartet spin state and all quantities
given are expressed in atomic units, except for the
hyperfine coupling constants which are expresSéd in

Gauss.

Results and Discussion.

The Ezraéine Molecule.

Bene and Jaffe133 have performed calculations
on diazine molecules, using the CNDO method, in an
attempt to study the ﬂﬁﬂ% and n-n* transitions -
which occur in the ﬁltraviolet spectra of these
‘compounds. Also an ab initio calculation on pyrazine,
using a 180 Gaussian basis, has been reported by
Clementi13f giving as the first electronic transition
the nonbonding to m antibonding, nﬁn*, cbnsistent
with experiment.

The results of the calculations for a hydrogen
orbital exponent 1«2 and 1.4 are summarised in
Tables 2 and 3 and figure 1. The corresponding
résults for the Clementi calculation are also given
for comparison. As the coordinate system for the
calculations reported is slightly different from that

used by Clementi the results are not directly

comparable. The-orbital energies computed (Table 2 and
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TABIE 2.

Total Energy and Orbital Energies (in a.u.'s) for the

Pyrazine Molecule.

type Clementi132 a=1l-2 a=1l-:4
~15-695LL -15.68278 | =15.63389
-15.69527 -15.67768 -15.62872 .
=11.47642 -11-48648 ~1143777
~11-475L1 ~11.46762 ~11.41879
-1-37619 -1.45422 -1.41834
A(5) | =1-27295 -1.33609 ~1.30166
—-95711 -.88175 -.8,282
- 77967 ~. 7621l ~.71687
-.72282 -.64203 ~-.62133
-.53275 -.49157 -.43807
--44125 =432 -.38L88
-11-47649 ~11.47025 -11.42109
=-11-47540 -11.46149 ~11.41265
-1.13257 -1-42624 -1-39938
B, (o) -+93097 -.89910 - -.8561L
~-+75519 ~+77060 —-+75037
-.68371 -+69657 -+.66113
~.61071 ~.63165 ~+59500
B, () -+64940 -.87123 --8383L
4 \TT
--49355 --32672 -+.29194
A, () -.46176 -+29629 -.26158
Total'
Enerey -261+55)32 ~262.23830 -262.11569
-V /T 2.0001 1+999
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TABLE 3.

Electronic Configuration of Pyrazine,

J

separate : In the pyrazine molecule
atoms Clementi?32 q=1+2 a=1+4
o .
1ls 2 1.9992 .m.oouw 20030
2s 2 1.0558 1.0038 1.0366
2pa, 1 1.0954 29963 1.0292
.M@QN 1.0190 1.0201 1.0379
2P 1 1.0025 «998L +9955
N
1s 2 19975 1.9998 1.9998
2s 2 1.4927 15780 1.5852
2po, 1 H.bmmm 1.0432 1.0535
mme 1.6816 1.6908 1.7013
2D 1 +9951 1.0031 1-0090
H
1s 1 <7139 +8208 723N
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figure l)_sho% that the highest occupied orbital is
the n orbital of A, stmetry, in disagreement with
experiment and Clementi, although a lower energy was
obtained in these calculations. The gross population
charges have not been evaluated but the electronic
configuration of the separate atoms in pyrazine is
given in Table 3. |

The lack of agreement, between the results of
Clementi and those using the double basis technique,
is not wholly discouraging. The optimisation of the
geometry and hydrogen orbital exponents could easily
correct the situation since the difference in energy

of the higher occupied orbitals is not very great.

The Pyrazine Anion.

On reduction of pyrazine with potassium metal
Carrington and Santos—Veiga134 produced a speciesﬂ
which they identified as the mononegative ion of
.pyrazine, with isotropic hyperfine coupling constants
aN=7-22G, éH=2-66G. The theoretical results are
summarised in Table 4, with the w orbital of A,
~symmetry occupied by the'unpaired electron. In fact
during the minimisation of the energy iﬁ was noted
that the anion was converging on to the wrong symmetry
: —thgt'is the orbital the unpaired electron was
occupying was not that found practicéllj, This
observation led to the conclusion that it would be
neéessafy to intervene and force the correct symmetry

if meaningful results were to be obtained, so ‘that the

summarised results are those for the forced,.rather

- . -
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TABLE L.

Theoretical Results for the Pyrazine anion.

B hyperfine coupling conétants
« UHFAA .
ac ay !

-85 -261.9857 -1.28 5455 -1.97

-90 -261.9901 -2.20 - 705 -1.83

<95 -261-9955, =3.71 9.19 -1.43

-98 -261.998Y =536 11.11 =074
1.00 -261.9991 =646 12-&8 -0-31
Exp+t 72 £2.7

Unpaired electr

-
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X
//

A
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than the natural but incorrect, minimisation.
The unsatisfactory S2 value (1.0458 before
annihilation) suggests serious contamination of the

doublet spin state, and for this reason the function

+(l—a)<Sz>UHF

aBygp
was minimised. The
variation of the energy, S? value, nitrogen and
proton hyperfine coupling constants with a are given
in figures 2 and 3. |

The theoretical coupling constants, aN=12-u8G
-and aH=—O-31G3 are in reasonable agreement with
experiment. The removal of the contaminating spin
states would produce a reduction in ay and an increase
in 2y (see figures 2 and 3) resulting in values
closer to those found experimentally. Although the
‘small value of the calculated proton coupling o
constant does not permit an unequivocai statement on
the sign of the experimental coupling eonstant it
might tentatively be concluded that the sign is
negative.

The unfortunate difficulties during the
minimisation of the energy naturally reduce the potency
of any conclusions drawn. The reason for the wrong
orBital"occupancy is not clear, although such results
are not unknown with the UHF method. The fault'may ,
also lie with the application of the double basis
approach to large systems, where small errors in
individual integrals accumulate due to the size of

the problem.

- -
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The Monoprotonated Pyrazine Radical.

While the neutral monoprotonated pyrazine
radical has not yet been reported the lithium salt
of the pyrazine anion is well characterised by its
€.5.r. speotrum135’136 The experimental data indicates
that the two nitrogens are not equivalent, suggesting
that an ion pair is formed with the lithium cation
in the molecular plane in the region of the nitrogen
lone pair electrons. Extended fuckel ~ and CNDO/'.’Z138
calculations have failed to predict the
non—~equivalence of the nitrogens, locating the most
probable position of the lithium cation as above the
centre of the pyrazine ring.

By calculating the electron distribution of the
monoprotonated system, with the extra proton 1.9 a.u..
from one of the nitrogens, values of the isotropic .-
coupling constants will be obtained which should
resemble the coupling constants in the lithium-
pyrazine ion pair. In this way some verification ofv
the experimental assignment may be achieved.

The results of the ab initio calculations are .
given in figure L, with the corresponding coupling
constants calculated for the pyrazine anion. In ‘
Table 5 the electronic oonfiguratiohé of the atoms
in the pyrazine molecule, the pyrazine anion ahd’the
monopiotonated pyrazine radical are collected,
showing ﬁhe considerable fneqﬁality in the charge
distribution resulting from protonation. Experimentally,
for lithium pyrazine, Athertop and Gog_;ginsws’.136

deduced two proton values of 1.98G and 3.33G and two



FIGURE L. 14,0
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a) Hyperfine coupling constants for the monoprotonated:

Pyrazine. ' -

b) Hyperfine coupling constants for the Pyraczine anion.
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TABLE 5.

Electronic configuration of Pyrazine, the Pyrazine anion and monoprotonated

Pyrazine. (The hydrogen orbital exponent is 1.4 for all systems. )

Pyrazine Pyrazine HVW%meH5®1m Zn
C1ls | 2.0030 2.0031 . 2.003L 2.002 -
os | 1.0366 1.0226 1.2661  1.2259
2po,| 1:0292 10209 1-12146 1.2240 -
2po,| 10379 1.0423 .8328 114766
2p. -9955 11152 '1.1704 1.5198
N 1s 1:9998 1.9999 2.0011 2.0008
25 | 1.5852 1-5369 -8530 C1.7796
2po;| 1:0535 1.0118 -5968 +9178
2pg,| 1.7013 1-6771 1971 1.0449
2p, | 1:0090 1-2695 +0503  1.569
H 1s 723y | -7983 - .8212 .8925
H(5) . . :
1s «8696
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nitrogen values of 5-.36G and 8.68G. A comparison of
" the theoretical and experimental hyperfine coupling
constants is not very fruitful and no definite
conclusions can be drawn.

The orbital occupied by the unpaired eléotron
in the monoprotonated species is different from that
occupied by the unpaired electron in the pyrazine anion
since in the latter case a specific drbital was forcibly
occupied.(Cf pyrazine anion; for the protonated species
the unpaired electron occupies a ¢ orbital with a node
through the nitrogens.) Since the monoprotonated
species has not been observed there is no rationale
for forcing the unpaired electron into a different
orbitél,'although, intuitively, it would be felt fhat
the orbital scheme of the two species should be very

similar.

Conclusions.

Bf using the double basis method calculations
on benzene type systems just enter the area of
feasibility of computation buf no optimisation is -
possible. This lack of optimisation of geometry and
hydrogen brbital exponents, forced by the size of the
problems considered, may account for the discrépanoies
in the theoretical results. A further source of error,
for large molecular systems; may result from the use
of the double basis method. Although the absolute
error in the individual multicentre integrals,
incurred by use of small Gaussian expansions, may

be small the percentage error for the molecule may

- -
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be large. This accumulation gf errors may account

for the unsatisfactory observation made for the anion,
where the unpaired electron was occupying the wrong
orbital (the lack of consideration of environmental
effects may also play a part in this anomaly).
However the results given for the pyrazine anion

do permit some optimism on the value of the double
basis ab initio UHF method for the prediction of

' isotrépic hyperfine coupling constants in large
molecular systems. Moreover, for the smaller systems
of Chapter L4 the double basis method représents a
very useful tool for spin density calculations as ij
permits a'comprehensive study by reducing the
'computational times to a reasonable level while still
retaining the accuracy expected in full ab initio

calculations.
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(1)

ABSTRACT,

This thesis is concerned with the calculation of
spin density distributions in molecular species with an
unpaired electron. The ab initio Unrestricted Hartree
Fock method with single spin annihilation is used for this:
purpose'and the construction of the wavefunction and
methods by which the energy may be minimised and the
hyperfine coupling constants evaluated are discussed. The
atomic basis sets used are represented by combinations of
Gaussian type orbitals; sufficiently large expansions are
used to ensure that the wavefunction is of the accuracy
required. A mixed basis approach, where smalléf Gaussian
expansions are used for the two electron multicentre
integrals than for the other integrals, is also put
forward as a reasonable approximation which results in a
considerable reduction in computational times.

The merits of the Roothaan, steepest descents and
conjugate gradient methods, in minimising fhe energy, are
analysed for the CN radical, leading to 'the conclusion
that a oombination of the Roothaan and conjugate gradient
methods should be employed.

In Chapter 2 the UHF method is used to calculate
the isotropic hyperfine coupling constants of NH;, CHs,
BH; and the importance of 0ptimisation and the out—-of-plane
zero point energy vibration is emphasised.

The third chapter deals with the calculation of
anisotropic coupling constants, demonstrating the value of
the anisotropic coupling constants, and their directiomns,

in supporting experimental assignments.



(ii)

A mixed basis approach is then applied to AlH,,
SiH-, PH? and associated radicals, using small expansions
fitted by a least squares technique. The retention of
accuracy in the calculated coupling constants combined
with the considerable time saviﬁg suggests that the -
technique may prove very useful,

The final chapter is concerned with large scale
calculations -on pyrazine systems using the mixed basis

method.



