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Abstract

Integral Sliding Mode Fault Tolerant Control Schemes with
Control Allocation

Mirza Tariqg Hamayun

The key attribute of a Fault Tolerant Control (FTC) systemoisiaintain overall system stability
and acceptable performance in the face of faults and failwithin the system. In this thesis
new integral sliding mode (ISM) control allocation scherfes=TC are proposed, which have
the potential to maintain the nominal fault free performafar the entire system response, in
the face of actuator faults and even complete failures ddoeactuators. The incorporation of
ISM within a control allocation framework uses the measwredstimated values of the actua-
tor effectiveness levels to redistribute the control éffanong the healthy actuators to maintain
closed-loop stability. This combination allows one coltémoto be used in both fault free as
well as in fault or failure situations. A fault tolerant cooitallocation scheme which relies on
ana posteriapproach, building on an existing state feedback contrdésigned using only the
primary actuators, is also proposed. Retro-fitting of an K&lMeme to an existing feedback con-
troller is advantageous from an industrial perspectiveahse fault tolerance can be introduced
without changing the existing control loops. To deal withidev range of operating conditions,
the fault tolerant features of ISM are also extended to lipaaameter varying systems. A FTC
scheme considering only the availability of measured systatputs is also proposed, where
now the feedback controller design is based on the estinstittels. In each of the ISM fault
tolerant schemes proposed, a rigorous closed-loop arasysarried out to ensure the stability
of the sliding motion in the face of faults or failures.. A hifidelity benchmark model of a large
transport aircraft is used to demonstrate the efficacy ohdve FTC schemes.
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Nomenclature and Abbreviations

Nomenclature

a,B,y
BT,W

®. 0,y
he, Xe, Ye
Amin(.)a)\max(-)

angle of attack, sideslip and flight path angle (rad)
weighted right pseudo inverse Bf

left pseudo inverse @&

field of complex numbers

field of real numbers

range space of input matri

subset

Sliding mode matrix

linear switching function

sliding surface

Euclidean norm for vectors or induced spectral norm for ioasr
nonlinear modulation gain

virtual control input

roll rate, pitch rate and yaw rate (deg/sec)
Laplace variable

true airspeed (m/sec)

allowable set of fault or failure

actuator effectiveness matrix

roll angle, pitch angle and yaw angle (rad)
geometric earth position with respect to the z (altitudeng y axis (m)
minimum and maximum eigenvalues



Abbreviations

AFTC

air, aor, ail, aol

BRL
CA
CG

DI
DOF
EPR
FDI
FPA
FTC
FTLAB
GARTEUR
GS
G(s)
ISM
ISMC
IMM
LMI
LPV
LOR
LTI
MMST
MPC
MRAC
PFTC
PIM
SMC
s.p.d
sp
STC
ulo
VSC
VSCS

Active Fault Tolerant Control

aileron inner, outer right and aileron inner, outer left

Bounded Real Lemma
Control Allocation

Centre of gravity

Dynamic Inversion

Degree of Freedom

Engine Pressure Ratio
Fault Detection and Isolation
Flight Path Angle

Fault Tolerant Control

Flight Lab

Group for Aeronautical Research and Technologywiroge

Gain Scheduling

Transfer function

Integral Sliding Modes

Integral Sliding Mode Control
Interacting Multiple Model
Linear Matrix Inequallity

Linear Parameter Varying

Linear Quadratic Regulator

Linear Time Invariant

Multiple Model Switching and Tuning
Model Predictive Control

Model Reference Adaptive Control
Passive Fault Tolerant Control
Pseudo Inverse Method

Sliding Mode Contol

Symmetric Positive Definite
spoiler

Self Tuning Control

Unknown Input Observer

Variable Structure Control
Variable Structure Control Systems
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Chapter 1

Introduction

Control is an active research field, and there is always agiedux of new ideas, concepts and
technigues. Control is an essential part of each new teogpalevelopment, from cell phones
to jumbo jets and from washing machines to oil refineries. dlthjective of some control appli-
cations is to hold steady the output (of the process) in e dhunknown disturbances, whilst in
others itis tracking a reference signal whilst minimizihg tracking error. To ensure the closed-
loop stability of the overall system in the presence of unkmalisturbances and in the face of
uncertainties which arise as a result of creating an appratd mathematical model for the
controller design, is an important part of the control deggocess. The first systematic study
of the stability of systems was given by J.C. Maxwell [48] 68, where he stated thdhe
stability depends on the roots of a certain characteristja&ion having negative real parts”
Shortly after, A.M. Lyapunov [48] ir{1892) started thinking, about, how to prove the stability
of motion? This work became the fundamental part of the $ledatate variable approach to
control theory. Along with stability, issues of operatirafety, reliability, performance, cost ef-
ficiency and availability of the systems, especially in sateitical plants like aircraft [22], [46]
and nuclear reactors, are of great importance [66]. Saféigat systems like aircraft became
the basis for the initial research in the field of fault totgraontrol systems [136]. Faults or
failures in these safety critical systems cannot be totalbided, however their effects (in terms

of human mortality and economic loss) can be mitigated ufang tolerant control schemes.
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Fault tolerant control (FTC) systems are an important asSpesafety critical systems and can
maintain overall system stability and acceptable perforcean the face of faults and failures
within the system. One way to achieve a high level of avdilgbis to ensure a suitable level of
redundancy in terms of the key actuators and sensors withigyistem. In emergency situations
this redundancy can be manipulated in a way to achieve falgtance. Therefore, as argued
in [136], increasing demands for safety, reliability anghsystem performance, motivated the
need for fault tolerant control and has stimulated reserthis area. To design fault tolerant
controllers many different design paradigms have beengsegbin the literature. In the survey
paper for example [100], the scattered areas of fault totexantrol research like fault detection
and isolation (FDI), robust control, reconfigurable cohaind fault tolerant control methods
are discussed. More recently in [136] the authors have &tos a bibliographical review of

existing fault tolerant control and fault detection andasion techniques.

Design approaches References
Adaptive control [10,37,67,73]
Control Allocation [6,19,23,24,32,35,44,60,62,76,98, 137]
Sliding Mode Control [6,30,41,62,105,106,118]
Dynamic Inversion [31,71]
Multiple Model [9,17,18,74,94,132]
Gain Scheduling [79]
Linear Parameter Varying [84,88,92,101,115],
Model Predictive Control [72,82,89,91,112,130]
H. robust control [67,87,124,129]

Table 1.1: An example of existing control design method@sin FTC

1.1 Motivation and Challenges

Fault tolerant control systems are designed to maintaicltsed-loop performance near to the
desired one in the presence of faults or failures. In safatical systems, redundancy is the
key component of FTC design, and can be used in emergeneyisiia to have a safe landing.
Nevertheless, when faults have occurred, in some instaheepilots have still managed to

land safely: for example on 9 October 2002, the Boeing 74@-Al€line Flight 85 suffered a
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lower rudder hardover failure at an altitude of, 880 ft (404 people on board including 4 crew
members and 14 flight attendants). Due to this failure thdeudeflected left to the maximum
position limit causing excessive roll. The crew members ag@al to land the aircraft safely in
Anchorage, Alaska by manipulating the upper rudder anditamas together with differential
engine thrust [25]. The Kalitta Air Cargo Boeing 747 (5 crewmbers on board) landed safely
in Detroit Metropolitan Airport after losing engine 1 on 2@t©ber 2004. From these incidents
it can be inferred that during faults or failures, if somedkesf redundancy is available, with
pilot skill, the faulty or damaged aircraft is still able tg fivell enough to ensure a safe landing.
One motivation to do research in the area of fault tolerantrob (FTC) is its ability to increase
the survivability and safety of the safety critical systems

One of the major hurdles in accepting new ideas in indusirthé requirement to change the
whole physical setup. Increasing safety and survivabilityle maintaining good performance
without changing significantly the existing setup can be Immore easily accepted. Therefore
it is worth exploring techniques which can be retrofitted noeaisting design, without altering
or removing the existing control loops for fault toleranhtl.

In safety critical systems, since the plant operating dimnk frequently change and therefore
demand methods from the fault tolerant control viewpoiset #@wose which can ensure closed-
loop stability over the entire operating regime. Seekinggle control law, which is automati-
cally scheduled as the plant operating conditions changknaintains closed-loop stability in
the entire operating envelope, working in both nominal al$ agein fault or failure situations, is
challenging.

The objective of this research is to show how the robustnegsegties of sliding mode control
[118], [41]-especially integral sliding modes- can be usethe framework of FTC to provide
a suitable solution to the above points to increase the \&luility, reliability and stability of
safety critical systems. The advantage of using sliding enlealsed schemes is that actuator
faults can be directly handled. However, considering tifieces of actuator faults or failures on

the closed-loop stability analysis is important and chnaglag.
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The following section explains how the thesis is organized.

1.2 Organization and Contribution of the thesis

The thesis is organized as follows:

In Chapter 2, the definitions and basic terminologies of F@ some typical types of faults at
the sensor, actuator and component level are defined. Iti@dthe difference between a fault
and failure is clearly explained. Different types of fafailire models used in the literature
to design fault tolerant schemes against the actuatorsféailtires and component faults are
discussed. An introduction to FTC is given along with anadtrction to different fault tolerant
control methods used in the literature based on passiveciineg approaches. The terminologies
used in the fault detection and isolation framework are @efsamd some of the techniques which
can be used for the FDI are also documented.

In Chapter 3, the concept, properties and design princgdleléding mode control are explained.
A simple example of a spring-mass-damper system is usedwdearinsight into the design pro-
cedure. Different methods which can be used to implemensliieag mode controller in real
practical applications are also given. The concept of natlegliding modes is defined next, with
an explanation how it differs from the classical sliding readntrol approach explained earlier
in the chapter. A detailed procedure for the design of irgtkegjiding mode control laws together
with a special choice of sliding surface which helps to naitegthe effects of unmatched uncer-
tainty is explained. The properties of Integral sliding reasbntrol and a simulation example
which validates the design is also given. Finally some naditon for the use of integral sliding
modes as a candidate for FTC is discussed.

In Chapter 4, a new integral sliding mode FTC scheme is ptedewhich considers the novel
combination of integral sliding modes and a Control Allesatscheme. The design proce-
dure for the integral sliding mode controller is transparéhe concept of a virtual control is
also explained, which is then used by the Control Allocasoheme to achieve the demanded

actuator position. The proposed FTC scheme uses the estimatuator effectiveness level
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to distribute the control effort among the actuators with@configuring the underlying ISM
controller. A rigorous closed-loop stability analysis &ied out and it is proved that the pro-
posed scheme can handle some level of error in estimatirarthator effectiveness by the FDI
scheme. Furthermore in order to compute the controllempei@rs such that the closed-loop
stability condition (given in the chapter) is satisfied, avllLsynthesis procedure is proposed.
The fault tolerant Control Allocation scheme can cope wituator faults and certain total ac-
tuators failure without degrading the desired performacbenchmark model of a large civil
aircraft is used to validate the feasibility of the proposedeme. The theoretical contribution
of this chapter is to consider the novel combination of iraegliding modes with Control Al-
location in the framework of FTC, and employing an effectyathesis procedure using LMI
optimization, to compute the parameters involved in therbhaw. The initial results of this
chapter were published in [53] and an extended version itBB& Transactions on Automatic
Control [54]. The application of an integral sliding mode FTC schemnethe full nonlinear
benchmark model of the large civil aircraft using FTLAB74/7considered in Chapter 5 and
was published in [55].

In Chapter 6 an integral sliding mode augmentation scheroerisidered in order to introduce
fault tolerance at an actuator level. The scheme is basedh @anposteriapproach, building
on an existing state feedback controller designed usingttiel primary actuators. The control
allocation scheme is developed based on the idea that ifrtheagy actuators are healthy, the
secondary actuator should not be activated, and the segoactaators should only be activated
for fault tolerant purpose if the primary actuators are tiaulThe considered FTC approach
depends on information about the actuator effectivenestddo distribute the control signals
among the available actuators in the set. The theoreticafibation of this chapter is to consider
retrofitting the ideas of integral sliding mode control to esting control scheme designed
using only the primary actuators to induce fault toleranddaout the need to remove or alter
existing control loops. Possible errors in estimating ttea@or effectiveness by the FDI scheme

are taken into consideration while a closed-loop stabddgdition is proposed which must be
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satisfied to ensure stability in the case of faults or faguihe efficacy of the proposed scheme
is tested by applying it to a nonlinear benchmark model ofgel@ivil aircraft. The results in
this chapter were published in [56].

In Chapter 7, the ideas of integral sliding mode controlaten discussed in Chapter 4 are
extended for linear parameter varying plants. For the desfgthe virtual control law, the
parameter varying input distribution matrix is factorizedo fixed and a matrix with varying
components. In this chapter the proposed scheme seekdandyol law which automatically
schedules with respect to the varying plant operating ¢mmd, to ensure the closed-loop stabil-
ity for a wider range of operating conditions. The proposgteme also depends on information
about actuators effectiveness levels for control sigretrithution. An effective LMI synthesis
procedure is proposed to compute the parameters of theotlentand a rigorous closed-loop
stability analysis is undertaken which ensures certaiasela of faults or failures can be dealt
with in the entire operating envelope (with the assumptian the redundancy is available in the
system). A benchmark LPV model of the large civil aircrafuged to demonstrate the efficacy
of the FTC scheme. This chapter has been accepted for piidutica [58].

Chapter 8 focuses on an output feedback integral slidingencodtrol allocation scheme in the
framework of FTC. This chapter relaxes the assumption madeesi early chapters that the full
state information is available for the controller desigimeThapter also builds on the idea that
information about actuators faults/failures is not ava#ato the controller. A direct control
allocation scheme is employed in this case to distributetmrol signal among the actuators.
In order to estimate the plant states an unknown input obsdk¥lO) is employed and the
necessary conditions for the existence of the UIO are ireddud rigorous closed-loop stability
analysis is carried out and a stability condition is posedrirLMI framework. The controller
and the observer gains are computed via LMIs. A benchmarkehadda large civil aircraft is
used to demonstrate the efficacy of the proposed FTC schem@nisydering component faults,
together with faults or failures in the actuators channdlse theoretical contribution of this

chapter is to consider the output feedback integral slidmogles control allocation in an FTC
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framework and proposing an LMI synthesis procedure in otaleynthesize the observer gains
and the controller parameters which satisfy the closeg-kiability condition. The results of
this chapter have been published in [57].

Finally Chapter 9 makes concluding remarks and gives arnvawrof the research work pre-
sented in this thesis. Some ideas through which the curesetrch work can be extended are

also given.



Chapter 2

Fault Tolerant Control

Everywhere in our daily life we enjoy the benefits of contrakging from simple to highly
complex applications. Control is used extensively in induand plays an important role in
increasing productivity. It is required to operate safdlg systems, where interaction with
humans takes place. Particularly in safety critical systkke chemical plants, nuclear reactors,
aircraft etc, the reliability and safety of the system ispenportant. Broadly speaking, control
systems which have such capabilities, are termed as Fdatafn Control (FTC) systems [100].
In this chapter, different terminologies used in the FTErature are defined, the notion of faults
and failures are distinguished and their classificatiorkfdaned. The chapter also describes

the state of the artin FTC.

2.1 Fault and Failure and their Classification

The termfault will first be defined to avoid any confusion. The definition daalt given in this
section is in compliance with the definition given in [65].

Fault: “An unexpected change in a system parameter from the aagefrtormal condition,
which can degrade system performance.” It is a fact thatlad¢an disturb the normal operation
of a system from the desired one, but may be tolerable.

Faults are usually considered to occur very rarely in théesydut cannot be totally pre-
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vented. However their consequences can sometimes be tadigg taking appropriate actions.
A FTC system, as the name implies, has the potential to teléaalts in order to maintain the
closed-loop performance of the system.

A fault is a sudden event, and can occur in any part of the sydiEpending upon the location
of occurrence, it can be classified as an actuator fault, sosdault and a component fault as

can be seen in Figure 2.1.

Component
Faults Faults Faults
Reference l l l Output
) Controller »| Actuators > Plant Sensors >

Figure 2.1: Classification of faults (adopted from [121])

Actuator faults Actuators are the work horses in a control system [138],rapdesent a link-
agel/interface between the controller commands and thé praRigure 2.3(d), an actuator fault
is shown which is termed as a loss in effectiveness, duringwime the actuator works with
reduced capability as compared to its normal operating iitondwhen it is fault free) [121].
This means in a post fault condition, the actuator will ordydartially effective in achieving the
required controller demand, which may affect the overatfgrenance of the system. Actuator
faults may occur due to, for instance, a drop in voltage sypptreased resistance, hydraulics
leakage etc [121].

Sensor faults Sensors are used in the control system to measure and ttresphysical quan-
tities of interest into an instrument readable form sigeal @ tachometer measures the speed
of a rotating motor shaft and converts it into voltage). Alfan the sensor means an incor-
rect measurement from the sensor, which in turn can resatdontinuous constant offset as
compared to the true value [121]. Sensor faults can degredieedback system performance
even in the presence of a well designed controller. Theegfas important to detect and isolate

sensor faults at an early stage.
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Component faults All faults which do not belong in the category of actuatorsensor faults,
can be considered as component faults. A component faukésyasevere type of fault which
can occur in the plant components. As a result the inputldutypnamical behaviour/properties
of the controlled system will be disturbed [16]. Componexniifs can in turn result in a change
in the physical parameters of the system [121], and can eetheoverall performance of the
system.

Furthermore, it is important to note that faults can also lassified with respect to their
time characteristics i.e. how the fault characteristicangfe with respect to time. According
to [64], [121], the characteristics of faults can changeiplly, incipiently or intermittently with

respect to time as can be seen in Figure 2.2. If a fault chetatit changesbruptly, it can be
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Figure 2.2: Classification of faults with respect to timedpietd from [121])

a very severe situation, as the system stability may alsdféeted. These types of faults often
occur due to hardware damage. On the other liacigient faultsrepresent a scenario whereby
the fault characteristics change very slowly, due to sloviati@ns of parameters for instance,
and are not severe in nature [121]. However if incipienttiate not attended to for a long time,
it can result in a severe situatiomtermittent faultsoccur intermittently with respect to time,
and can be due to intermittent contact or damaged wiringnmespart of the circuitry.

In the FTC literature, and throughout this thesis, the motbfaults or failures is frequently
used and may cause confusion, therefore the differenceebettihem is clearly defined in this
chapter in order to avoid any ambiguity.

Difference between fault and failure Now to distinguish between fault and failure, the term

failure is defined in the literature [65], as“A permanenemtiption or a complete breakdown of



11 2.1. FAULT AND FAILURE AND THEIR CLASSIFICATION

a component or system to perform a specific function.” Solariais a more serious situation,
because the same component or system can not be used anymperfotm a task. This means
if a failure occurs in a sensor or in an actuator, a differemnissr or actuator is required for the
continuation of the process. In other words some sort ofiégoaration mechanism is required
in the control system to deal with such a situation. For eXamp an aircraft, some very severe
types of actuator failure, if not promptly detected, canrddg or even destabilize the overall

system. Examples are a jam or lock in place failure, a floatriaiand a runaway/hardover fail-
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Figure 2.3: Types of actuator failure ((a),(b),(c)) anduator fault (d)(adopted from [34])

ure as shown in Figure 2.3. In a jam failure, the actuator m&sostuck or jams at some (offset)
position due to a lack of lubrication for instance, and dags@spond even if a control signal is

applied to it. In a float failure, the actuator freely moved dioes not provide any desired mo-
ment. The runaway/hardover failure is a very destructipe tyf failure and it causes the actuator

to move at its maximum rate limit until a saturation limit eached. This can be due to a ‘wrong
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signal’ being applied to the actuator. In Figure 2.4, sommaroon types of sensor faults/failures
are shown, where the sensor while in the freezing (failuteason, provides a constant value
instead of actual value of the physical state. During the wisaccuracy fault, the sensor does
not reflect the actual value of the physical state throughwléreas a bias fault indicates a con-
stant offset in the measurement. Finally in the drift fatlig offset in the measurement of actual
physical state increases with the time. Some common typlesitbé/failures associated with the

actuators and sensors are considered for example in [141)],[L38], [50], [20], [7].
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Measured
Measured
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A (a) Bias A (b) Drift
/-\ Measured
Actual Measured
. » Time » Time
tp (d) Loss of accuracy

(c) Freezing

Figure 2.4: Types of sensor failure (a) and sensor faullg(¢jk(d)) (adopted from [34])

In this thesis, different FTC schemes are proposed whicle tia& potential to deal with
faults and failures associated with the actuators, pravidat redundant actuators are available.
Faults at the component level are also considered, but tis®staults and failures are not within

the scope of this thesis.
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2.1.1 Modeling faults and failures

Throughout this thesis, a state space representation pfaheis considered in order to synthe-
size the fault tolerant controllers. Mathematically a ineéme invariant (LTI) uncertain system,

subject to actuator faults or failures can be expressed as

X(t) = AX(t) + BWU(t) (2.1)

whereA € R™", Be R™MandW = diag(w;, ...wn,) is a diagonal weighting matrix. The scalars
Wi, ...Wm model the effectiveness level of the actuators. As in [6Yif= 1, it means that the
correspondingg, actuator has no fault and is working perfectly, where as#w; > 0 an actu-
ator fault is present. The situation in whiaeh = 0, represents a complete loss of effectiveness
or failure or a complete breakdown of a particular actuawme common types of actuator
fault/failure are shown in Figure 2.3. The actuator’s fault failure representation in (2.1), has
become the building block for many of the FTC schemes in tiesis because this representa-
tion makes the closed-loop stability analysis simple abheildemonstrated in the next chapters.
This representation of actuator faults and failures has beed by many other FTC researchers:
see for example [96], [114], [134], [69] and [6]. Other fanibdels used in the literature can be
found more recently in [121]. To model the actuator fauilifie, the state space model can be
written as [121],

X(t) = AX(t) + BZu(t) + B(l — Z)u(t) (2.2)

whereX = diag01, 6, ...,6y|, 6 € [0 1] anduis an uncontrollable offset vector. & = 1,
then they, actuator is functioning normally, where agjf= 0 then tha, actuator has a failure,
i.e the control action from the failed actuator is equalift. As a comparison, in model (2.1)
the control action from the failed actuator is zero. The galof the diagonal entrie§ can
also take the values between 0 and 1 in order to model a logtentigeness actuator fault. It
was reported in [121] that theultiplicativefault model is a natural way to represent actuator

or sensor faults, but general component faults cannot besl@ddising a multiplicative fault
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model. Equations (2.1)—(2.2) are the examples of multive fault models, where a change in
the diagonal entry oV andX matrices reflect the effectiveness of a particular columtneB
matrix. From equations (2.1)—(2.2), itis clear that faoltfailures associated with the actuators,
only affect the input distribution matri®, where as a component fault may introduce changes

in the system matrix and can be represented in the follovong f
X(t) = (A+ AA)X(t) +Bu(t) (2.3)

where/AArepresent change in the system ma#tiX¥aults and failures of any type are unwanted

or undesired events but can not be avoided, however thereteffan be mitigated.

2.2 Introduction to Fault Tolerant Control Systems

The need for FTC is increasing rapidly, due to increasingateds for safety, reliability and high
system performance in wider engineering applications][1B&C systems have the capability
to improve the worst case performance and also guarantezaptable level of performance of
a system even in the presence of faults and failures. Thevatiatn for the early research in the
field of fault tolerant control was in the area of flight contsgstems to improve the reliability
and safety of the aircraft [100], [136]. A fault tolerant ¢ system has the capability to
maintain some level of acceptable performance or degraatefyily subsequent to a fault or
more specifically is a strategy for reliable and highly efficient control lawsiign[100].

In [136], a FTC system is defined aontrol systems which possess the ability to accommodate
component failures automatically. They are capable of ta@ing overall system stability and
acceptable performance in the event of such failures”

From the definitions, it is clear that the main task in achigviault tolerance is to design a
suitable controller which has the ability to maintain oViesgystem stability in fault free as
well as in situations when a system becomes faulty. To desigh a controller, the system

should have redundant control effectors, which can be effity used and exploited to achieve
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fault tolerance [100], [134]. In case of failure in certaictuwators, the control effort can be
‘handed over’ to healthy actuators to maintain the desimdopmance or at least some level
of acceptable performance. Therefore it is fair to say tedtindancy is necessary or is at least
a key ingredient in achieving fault tolerance [100], [136dhis redundancy can be the direct
replication of the hardware (actuator/sensor) or it canrbthé form of dissimilar hardware
having similar functionality, which can be used to achiemdtftolerance

Hardware or direct redundancy can provide an effective medirreliable operation. A
simple example to explain hardware redundancy is the deecah-interruptible power supply
(UPS), which are used for instance in data centres or indeletunication equipment where an
unexpected power shut can result in the loss of data or irgtbam [1], which is not desired in
reliable systems. For satisfactory performance and to taaistability of the system, the usual
procedure in fault tolerant control is to replace the fagénsor/actuator with a healthy one.
In safety critical systems such as aircraft abundant aatsi@nd sensors are already provided
to deal with unexpected situations [22]. In normal or fauv#tef operation only one hardware
component i.e only one actuator is sufficient from controhpof view to perform a particular

function. To explain it mathematically, consider a lindard invariant system
X(t) = Ax(t) + Bu(t) (2.4)

The input matrixB € ™™ can be partitioned &= { Bp Bs } where the matriBy, € 2™ is
assumed to be of rarlk< mand the paifA, Bp) is controllable [139]. The matriBs constitutes
the redundant actuators which can be used in case of faluétffathe B, channels.

Redundant sensors or analytical redundancy which is bast#tecominal mathematical model
of the system can be used to measure the same system staatoareliable measurement in
order to ensure proper controller operation. But in safetycal applications just like aircraft,

it is not practical to substitute entirely (sensor) hardavaadundancy by analytical redundancy
[100]. FTC necessitates the presence of redundancy, anagimgrthe redundancy in a suitable

way, is vital.
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2.3 Introduction to Fault Detection and Isolation (FDI)

Fault Detection and Isolation (FDI) schemes provide oniliriermation about system faults or
failures. The fault or failure information provided by th®Fplays an important role in man-
aging the actuator redundancy in an efficient way. On theskEdhis information, active FTC
methods (as explained in the next section) take the apjattepaiction to mitigate the effects of
these faults/failures. For example the FTC methods prapos§l31], [127] and [5] require
knowledge of actuators efficiencies in order to tolerateia@ctr faults/failures. A typical FDI
scheme has three tasks to deal with [100], [136] and are foradefined here as in [65]:

Fault Detection “Determination of the faults present in a system and the tindetectior’

Fault Isolation: “ Determination of the kind, location and time of detectioma ddult”

Fault Identification: “Determination of the size and time-variant behaviour ofaltta

Fault isolationandFault identificationare also referred to as fault diagnosis [136]. The impor-
tant facet of an FDI scheme is how fast and precisely a fadkiscted, isolated and identified,
so that prompt action can be taken by the FTC scheme to avgidlamormality. A detailed
discussion on the requirements and merits of FDI and FTCnsehavas documented in [135].
Generally FDI schemes in the literature [65], [66], [136¢ alassified into two categories—
model basednd model freeFDI schemes. Model based schemes utilize (nominal faud fre
mathematical models (analytical redundancy) of the plantife FDI purposes [135], [136], and
can be sub-categorized as residual based FDI schemes #inestanation based FDI schemes.
In residual based FDI schemes, the measurements from thiesglasors are compared with the
generated signals from the mathematical model to creaiduadssignals [135]. In the case of
no faults, the residuals should vanish or should be veryedloszero. The increasing size of
residual due to faults or failures can be used for the detecif fault. Residuals are normally
used with threshold level to avoid any false alarm due toudistinces or noise signals. The
unknown input observer (UIO) based schemes [66] can alseé&® as a robust (in the sense of
decoupling of disturbance signals) residual generatdns. idea behind the UIO schemé€'ie

make the state estimation error decoupled from the unknopuit$ (disturbance signals]66].
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Residual based FDI schemes usually provide fault detectipabilities and also the location
of the fault [135]. The location of a fault in the system carififerred by employing a bank of
dissimilar residual signals [40]. One possibility is to reaach residual sensitive to a particular
fault and insensitive to all the others in order to isolat@altf[66]. To demonstrate how an

observer works, consider a linear time invariant system as

X(t) = Ax(t)+Bu(t) (2.5)

y(t) = Cx(t) (2.6)

whereA € R™", Be R™M, C € RP*". In the plant model (2.5)-(2.6) only the measured output
y(t) is assumed to be available i.e. all the state variables d@ravadable. In this situation one
possibility is to employ a so called full order observer [#d}econstruct all the state vector. To

accomplish this, consider the dynamical system
(t) = AX(t) +Bu(t) — L(y(t) — CX(t)) (2.7)

wherex(t) € R" is the estimated state vector abh& R"*P is an observer gain that should be
designed such that the matriR + LC) is Hurwitz. With a good choice df, it is possible to
ensure the error signe(t) := x(t) —X(t) converge to zero rapidly. The error dynamics associated

with the plant (2.5) and the observer in (2.7) can be obtayeasing the relation

et) = X(t)—X(t)
= (A+LO)X(t) — (A+LO)X(t)

= (A+LC)e(t) (2.8)

If L is designed such that all the eigenvalue§®f LC) are stable, the error signal will converge
to zero asymptotically. However the Luenberger observéR i), in case of unknown inputs

or actuator faults for instance, will not be able to force theput estimation error to zero.
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Therefore the error dynamics (2.8) will be effected by thknawn input/actuator fault and the

error signale(t) will not converge to zero, which meané " will not converge to the true state

X(t).

u(t t
(t) > Plant y( )>
Estimated
Fault Fault J

Estimator

Figure 2.5: Fault estimation based FDI

In certain FTC schemes e.g. [131], [127] and [5], the efficjelevel of the actuators (or an
estimation of the fault) is also required for the FTC purgosk order to estimate the actua-
tor efficiency/effectiveness level the schemes proposedxXample in [131], [127], [5] can be
used. The schemes proposed in [131], [127] used the Kalmanb#sed approach to estimate
the actuator efficiency. The Kalman filter is recursive inunatand is based on a set of mathe-
matical equations which are categorized into two groupscadled time update equations and
measurement update equations [125]. The current estirohttate and error covariance, are
used by the time update equations for &yeriori estimates of state and error covariance for the
next time step [125]. Thesa priori estimates of error covariance and state are then used by
the measurement update equations together with the ougagurement (obtained through the
sensors) to compute the Kalman filter gain and to generptesterioristate estimate [125]. The
error covariance is updated using the Kalman filter gaintierrtext cycle and the procedure re-
peats. The scheme considered in [127], formulated the @laftectiveness estimation problem
as an augmented state Kalman Filter, where the controltefeess factors were modeled as
the augmented states in the linear plant model.

The actuator effectiveness estimation approach propasgs] (details can be found in Sec-
tion 4.4.1) considered a sliding mode fault reconstrucsoheme similar to [40]. The idea

behind the scheme in [5] is that the scalars which reprebsergffectiveness level of the actua-
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tors can be estimated from the reconstructed fault signaitbyducing a small threshold, when
the system error dynamics collapse to zero in finite time.

In certain applications such as passenger aircraft actatitwtiveness can be obtained by using
a measurement of the actual actuator deflection comparéx tdetmand. Such information is

typically available in many safety critical systems e.gsggnger aircraft [22].

2.4 Fault Tolerant Control Methods

The ultimate objective of a FTC scheme is to provide a dedeeel of performance in a fault
free as well as in failure situation, provided that redurayais available in the system. The
survey papers for example [100], [68], [136] and books [1P4]provide a bibliographical re-
view of different FTC methods. Depending on the way the obis tackled, FTC systems can
be classified intpassivefault tolerant control (PFTC) systems aactivefault tolerant control
(AFTC) systems [100], [138], [136], [121]. A block diagrampresenting the classification of

FTC methods is shown in Figure 2.6.
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Figure 2.6: Classification of FTC methods (adopted from [L21
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2.4.1 Passive Fault Tolerant Control Systems

In PFTC systems the controller is of fixed structure and isgihesl off-line. PFTC systems are
also called reliable control systems in the literature [13Bue to the fact that PFTC system
does not require up to date fault information, the PFTC nuathare computationally more
attractive [121] . If the uncertainty which acts on the sgstees within certain bounds, then a
carefully designegbassivefault tolerant controller can ensure the closed-loop $tgpbut the

PFTC systems can have a limited fault tolerant capabili®0[1[136].

2.4.1.1 Robust Control

In passive fault tolerant control (PFTC) schemes, the idea design a controller using robust
control techniques such that the closed-loop system ragpsmobust against certain classes of

uncertainties and presumed system faults [43], [100],][136

He Control:
H. is a well known technique in the field of robust control, and take into account the perfor-
mance and stability requirements [67]. It has applicatioos the process industry through to
aerospace systems [7]. The idea behihdcontrol is to design a controller which can provide
stabilizing properties and minimize the effects of undattas and some faults which are known
a priori and having small effects [67]. Some well knowg controller design methods ak&,
loop shapingH. mixed sensitivity angi synthesis [67]. In the context of FT8,, optimization
technigue was used to present an integrated control andabagframework, which was then
tested on the nonlinear model of Boeing 747-100/200 [87LeRdy the authors in [124] have
reported a mixedH,/H., approach to design a fault detection observer for LPV system
While designing a robust controller, the worst case peréoroe specifications are taken into
account, which eventually may lead to a requirement to ieerihe nominal performance of
the system [121]. Faults usually occur very rarely in theaysand to sacrifice the nominal

performance to obtain robustness against a ceratin cldaslts is not appropriate.
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2.4.2 Active Fault Tolerant Control Systems

Active fault tolerant control (AFTC) systems on the othemtheely on fault information from the

FDI to react appropriately. Specifically AFTC systemggdtt to the system component failures
actively, by reconfiguring control actions so that stailénd acceptable performance of the
entire system can be maintained. In certain circumstareg,aded performance may have to

be accepted.[136]. A typical AFTC system is represented in Figure 2. heTstructure of an

(' )

Reconfiguration | | Estimated faults | oy It petection and
Mechanism Isolation (FDI)
7'y 7'}
FTC Faults Faults Faults
Reference l l l Output
if'\_ Controller Actuators > Plant —»| Sensors >
¥ Input]

\_ /

Figure 2.7: Main structure of AFTC systems (adopted froni]12

AFTC system is usually more complex compared to PFTC systiemst can deal with a wide
class of faults [121]. From Figure 2.7, it is clear that thare two aspects which distinguish
AFTC systems from PFTC systems. The first one is the FDI sclermdehe other one is the
reconfiguration mechanism. The reconfiguration mechanemges the parameters or structure
of the controller based on the fault information passed oih by the FDI unit. It is common
practice that FTC and FDI schemes are designed indepepdentlwhile designing the first
the second one is assumed to be perfect and vice versa. Dine tact that no FDI scheme is
perfect [121], it is quite possible that fault informatioropided by the FDI scheme has some
uncertainty and it is important to take such uncertainty gansideration while designing a fault
tolerant controller.

In the literature [100], [133], [136], [121], AFTC methodseaalso classified aBrojection
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basedmethods, an@nline control redesigmethods. Inprojection basednethods, one of the
pre-computed controllers from a set, which have already blesigned off line for different set
of faults, is selected depending on the fault informatioovgted by the FDI scheme. lon-
line control redesigmmethods, depending on the fault information provided byRDég the new
control scheme is synthesized onl[&83]. Online control redesigmethods are also referred
to asreconfigurablecontrol orrestructureablecontrol [121]. Inreconfigurablecontrol, the con-
troller parameters are computed online depending on theifdormation provided by the FDI,
where as irestructureablecontrol both the structure and controller parameters anepcbed
online [100], [121]. The ultimate goal of a FTC controllerstgn is to minimize the post fault
or failure effects, so that the performance is close to theinal or at least closed-loop stability

of the system can be maintained.

2.4.2.1 Adaptation

A carefully designed feedback controller which is desigfeca system at a certain operating
point, can provide satisfactory performance when the aystgunctioning around that operat-
ing regime. But if the operating conditions keep changimgne sort of adaptation or recon-
figuration of the controller is required to cope with thesarges. Adaptive control systems,
as the name implies, are systems which can adapt to changes diynamic characteristics of
the process. Formally an adaptive controllefasontroller with adjustable parameters and a
mechanism for adjusting the parametefg0]. In [37] an adaptive controller is defined a& “
fixed structure controller, with adjustable parameter8ue to its inherent nature of adaptively
responding to dynamic changes of the system, adaptiveattang target a significant range of
applications from process industries to aerospace [37¢ adaptive control approach is clas-
sified into two types:Indirect adaptive controbnd Direct adaptive contro[37]. In Indirect
adaptive contralthe model is estimated or identified first and then subsetyuem the basis of
this estimation the controller parameters are computediréct adaptive controlhe controller

parameters are estimated directly rather than from eshm#ite model parameters [37], [121].
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One of the famous approaches of adaptive control is the MBd&rence Adaptive Control
(MRAC) whose structure is shown in Figure 2.8. In Figure 2t Reference Model char-
acterises the performance which the plant is required twmattThe output generated by the
reference model is compared with the plant output to créetéraicking error and the controller
parameters are modified accordingly by the Adjustment Meisha in order to minimize the
tracking error [37]. In adaptive control it depends how thelpem is formulated adirect or
indirect adaptive contrglin case ofdirect approach the controller parameters are estimated di-

rectly by using some estimation scheme [121]. For the FT@qaes, the plant model is not

Model output | Adjustment |,
i Model Mechanism
| A
Controller Parameters
\ 4
Reference= . Output
Controller Tnput Plant >

-

Figure 2.8: Model reference adaptive control system (aztbfyom [120])

known perfectly due to the faults/failures which may oct¢hg only objective is to match the
dynamics of the plant with the desired dynamics of the refezenodel.

Another popular approach in the adaptive control family éf $uning Control (STC), which
requires the online estimation of the plant parameters. [2Viypical STC scheme is shown
in Figure 2.9, where it is clear that in the first phase, thepfarameters are estimated by a
recursive estimation process, and then subsequently lHms ipformation is used by the con-
trol design process to compute the controller parameteisth Bchemes (MRAC and STC)
mentioned above rely on the certainty equivalence priediiginoring the uncertainty in the es-
timated values and treating the estimated values as thedtues) [37], [121]. Due to the lack
of capability to handle unanticipated faults or sudden geain system dynamics alone [67],
a combination with other methods is required such as in [@3jpmbination of MRAC with

multiple model (discussed in the sequel) is consideredderaio handle major system changes.
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Figure 2.9: Self tuning control system (adopted from [37])

2.4.2.2 Control Allocation

Hardware redundancy (i.e. equipping with more controlaéies than axes to control) in safety
critical systems for example passenger aircraft [22] anfutdigaircraft [46], provides opportu-
nities which can be exploited to design fault tolerant colieérs. Control Allocation (CA) has
attracted the attention of many FTC researchers because ability to handle actuator faults
or failures without the need to modify the underlying cohteav [32], [19], [35], [137]. The
advantage of the CA method is that the underlying control daw be designed separately in
order to produce the desired control effort and the CA diatas this effort among the avail-
able actuators to achieve the required system perform&a¢e[f]. This feature of CA, allows
the control effort by choosing any suitable control paradigCA method can also deal with
actuator constraints. The work in [38], [19] explicitly ss@formation about the actuator con-
straints (rate and position) for CA. The work in [24], [98]sdeibed a special structure of CA
called daisy chaining where when a control or a set of comdffetctors are able to generate the
commanded moments, then the rest of the control effectorsottung. In case if the control
effectors saturate and are not able to generate the desoernts, it creates an error between
the desired moments and that generated by the control @ffethen the next control effector

in the set is used to generate only the moments which arenigckie to saturation of the early
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control effectors and so on until the desired moments areeaeth. To get insight into, how
the CA method works, consider a linear model of the plant wetiundant actuators, given as
in [60]

X(t) = Ax(t) + Bu(t) (2.9)

whereA ¢ R™" B € R™™M. Assume that the control input distribution matBxcan be factor-
ized as

B=B,By (2.10)

whereB, € R™k andB, € R and both haveank k< m[60]. Substituting (2.10) into (2.9)

to get the new system description as follows
X(t) = AX(t) + By Byu(t) = Ax(t) + Byv(t)
(t)
v

where,

V(t) :=Byu(t) (2.112)

and therefore

u(t) =BIWy(t) (2.12)

wherev(t) € RK is the virtual control effort [60] andi(t) represents the physical control sig-
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Figure 2.10: Control Allocation scheme (adopted from [59])

nals which are directly applied to the actuators. The exgoes;" =WE (B\WE)1is the
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weighted right pseudo—inverse Bf,, which provides some design freedom. In order to redis-
tribute the control signals in case of faults or failuredfedent researchers utilize the design
freedom in the pseudo inverse matBX in different ways [60], [6]. The structure of the CA
scheme is shown in Figure 2.10, which demonstrates that Ahel€@nent is not the part of the
control law. The virtual control efforé(t) produced by the controller is directly translated into
actuators deflections by the CA module.

The benefits of using CA in terms of FTC are exploited in [23R][for high performance air-
craft. In [99], a comparison of different control allocatimethods is made and in [60] optimal
control and CA are compared in terms of redistributing awalicontrol signal among redun-
dant actuators. In [6], [62] a combination of CA with SMC ineadered for FTC. Some recent
CA papers in the field of FTC are [76] and [44]. In [78], a modifigaisy chaining method is

proposed to deal with actuator loss of effectiveness.

2.4.2.3 Sliding Mode Control

Sliding Mode Control is a technique to deal with uncertaistsyns using the sliding mode con-
cept, and is a particular type of variable structure coniW@C) systems [117]. Sliding mode
control (SMC) has a wide range of applications— for exampleobotics, process control, ve-
hicle and motion control and aerospace systems [117]. SMEnses have inherent robustness
properties against matched uncertainties (i.e unceigainthich act in the input channels) dur-
ing a sliding mode. When using sliding mode controllers tlosed-loop response of the system
is made insensitive to matched disturbances/uncertaibtidorcing the system trajectories to
slide along the so-called switching surface [118], [41]eDasic concept is to first design a slid-
ing (switching) surface, and then a controller is desigreeskl on this switching surface which
induces and maintains the sliding motion on the slidingastgf41]. Due to inherent robustness
advantages against matched uncertainties, SMC schemesh®x¢apability to directly deal
with actuator faults which can be effectively modeled asamed uncertainties (equation 2.1).

A shortcoming of SMC schemes is that failures can not be thiréandled, and some sort
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of mechanism is required in order to distribute the contffdreamong the redundant healthy
actuators. The work for instance in [106], [62], [105], [f30] shows that if there is enough
redundancy in the system, SMC can deal with total actuatiurés. SMC will be explained in

detail in Chapter 3.

2.4.2.4 Control Signal Redistribution

The main goal of a FTC controller design is to achieve pertoroe close to the nominal in the
case of actuator faults or failures in the system, and mgsbrtant of all, to maintain stability of
the closed-loop system. One way to deal with this situatdo redistribute the control signals
among the healthy actuators. The pseudo inverse method (v approach which provides a
systematic way for designing such a control strategy [Shg iBiea behind the PIM is to design
a state feedback gain such that the behavior of the recoatiggystem is as close as possible to

the nominal one. To explain this, suppose the nominal lisgsiem is given by

%o(t) = ApXp(t) + BpUip(t) (2.13)

where,Ap € R™" |, B, € R™™ are the state and input distribution matrices respectiviegt
up(t) = Kpxp(t) where K, € R™" is the state feedback gain which has been designed such that
the closed-loop system

Xp(t) = (Ap+BpKp)xp(t) (2.14)

is stable and meets the performance specifications. In dqd#failure scenario suppose that

the closed loop dynamics of the faulty system can be repreders

i (t) = (Ar +BrKg)x¢(t) (2.15)

where,As € R™" andBs € R™™M. Then the desired constant feedback contrdflercan be

obtained by equating the closed loop dynamics of the nonsiystem in (2.14) to that of the
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closed loop dynamics of the faulty system in (2.15), i.e.

Ki = BE(Ap—Af+BpKp) (2.16)

WhereB':f denotes the Moore Penrose pseudo inverdgpaind provides some degree of free-
dom, which can be used for redistributing the control signéh [51], it is argued that the so-
lution to (2.16) does not always guarantee stability of thétfy system. To ensure closed-loop
stability, a modified PIM method was proposed in [51], bus tiniethod introduces stability con-
straints while recovering some performance, which carese the computational burden [121].
In [100], a bank of pre-computed valueskof for all possible anticipated faults is suggested, and
once the fault information is provided by the FDI and thetiagl/stem model (2.15) is obtained,
the relevant feedback gain of the system can be modified dioggdy. In [100] and [90] the idea
of PIM reconfiguration (redistributing the control actipms presented in order to improve the
closed loop stability of the system. In [102], a reconfiglgadontrol law is reported which tries
to match the nominal produBpup, with the faulty producB¢us, whereBy is obtained fronB,

by eliminating the columns which are effected by the fautt.[110] the problem of PIM and
improved PIM was addressed and extended by using a set o$sithieireference models.
Dynamic Inversion (DI):

Dynamic inversion (DI) is a method which has a capability éplace the internal dynamics
of the system with the desired dynamics. Formally DI is defias a tontroller synthesis
technique by which existing deficient, or undesirable dynarare canceled and replaced by
desirable dynamic¢s[31]. The basic concept of DI can be demonstrated mathealati by

considering a linear system of the form

X(t) = AX(t) + Bu(t) (2.17)



29 2.4. FAULT TOLERANT CONTROL METHODS

To replace the internal system dynamics with that of therddsine, consider the control law as
u(t) = B (Xgedt) — AX(t)) (2.18)

wherexgedt) is the desired response xift). The main assumption in the design of dynamic
inversion controller is that the input matrkis invertible. In the case whehis non square, the
pseudo inverse properties of matBxan be employed with the assumption that the mdgris

of full rank. According to [36] the desired dynamixgdt) are defined as
Xdes(t) = Xc(t) + Ke(t) (2.19)

wheree(t) is the error signal and is defined @$) := Xc(t) — X(t) wherexc(t) is the command
signal. The design of the controller matixis to drivee(t) to zero. Pictorially the process of

Dl is shown in Figure 2.11. In terms of FTC, DI has the capapbtth deal with actuator faults
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Figure 2.11: Dynamic Inversion Process (adopted from [36])

or failures see for example [71]. In case the model parametex perfectly known then the
undesired dynamics can be completely canceled and reptgcind desired ones. On the other
hand if the model parameters are uncertain then the invemiaocess may cause the stability
issues [36]. Typically DI controllers have poor robustnpesperties since it is assumed that

the exact system dynamics are available [31], which is mabt not possible due to model
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uncertainties. To minimize the effects of model uncertastthe combination of DI controller
with other robust techniques is suggested [31]. In [71] tbmlgined use of DI and MPC is

considered for the benchmark model of Boeing 747.

2.4.2.5 Multiple Model

One paradigm to control the dynamical behavior of a nontipé&mnt, especially for those where
the operating conditions frequently change, is to obtailtipia linear models of the nonlinear
plant of interest at different operating conditions, arehtto design a suitable controller for each
linear model obtained using a linear control theory apgnpadich can provide a satisfactory
performance. The idea is to keep checking during operattuntwliinear model output matches
most closely with the current states of the plant [17], arghtto activate that model and the
corresponding controller. In this way the desired perfarogeacan be achieved in the entire
operating range.

In terms of FTC, the bank of linear models and the associataettalers should cover all
possible sets of faults and failures, in order to cope witthssituations. In the case of a fault
or failure model that is not in the predesigned set, it may keeclosed-loop instability of the
system. The ability of the FDI to provide exact informatidays an important role in order to
select the correct model and controller pair. Two well knawaltiple model schemes which
can be used for fault tolerant purposes are the Multiple M8gétching and Tuning (MMST)
and Interacting Multiple Model (IMM) methods. The MMST sche was initially proposed to
cope with parameter variations which are due to for exanpledd variations in mechanical
systems, and actuator failures in flight control systemg [Svitching between the controllers
to compensate the parameters variations and to maintasteth#ity while switching, is a crucial
part of the MMST scheme [94]. The switching rules and stghidisues were discussed in [94].
In [18] the modeling of a control effector failure (float, le-place, hard-over and loss of

effectiveness) of an aircraft was documented and a multiygléel approach (MMST) was used
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to demonstrate the lock-in place failure (horizontal taRecently in [9], the concept of using a
bank of LQR controllers was proposed to deal with actuatoit§agoverned by an FDI scheme.
A similar concept was also considered in [74]. The shorteg®iof these schemes are that only
the anticipated set of faults and failures can be coped withitiple faults or failures cannot be
handled, and furthermore the number of linear models iserexponentially to address larger
systems [121]. However for anticipated faults or failuredST scheme provides a fast and
promising solution.

The IMM scheme addresses the shortcomings of the MMST schgroensidering a small
set of carefully chosen linear models obtained at diffeop@rating regime and then designing
the controllers for the model set. In the IMM approach, aruaggion is made that every
possible set of faults/failures can be modeled as a convebitation of the existing predefined
model set [121], and the control input is obtained by blegdire predefined controllers [132].
In [132], an FDI scheme based on IMM was proposed, and thenfigewation mechanism was
built on predefined controllers which were designed to kéeprtosed-loop eigenvalues during

fault or failure as close as possible to the nominal ones.

2.4.2.6 Scheduling

Gain Scheduling (GS) Control

Gain scheduling (GS) has a wide range of applications fromspace to process control. Dif-
ferent GS design techniques are discussed in [79]. To desigtrol schemes for nonlinear
systems one approach is to create a family of linear modelgfatent operating points in the
region of interest, and then to synthesize local contrelgnich are gain scheduled. In this way
well established linear control methods can be used to ada@med control the nonlinear system.
The idea of GS is to compensate the plant parameter varsaiprarying the controller param-
eters [10], which means that as the plant operating comditotlhange the controller parameters
change too.

The implementation of the gain scheduling controller camee by considering the con-
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troller parameters as functions of operating conditionsyousing lookup tables [10]. Switch-
ing between the intermediate operating points may causec@ssary transients, and may be
avoided by creating multiple linear models and then desigmarticular controllers for each
model. For controller scheduling, various ad hoc methods lh@en proposed, but often these
methods do not guarantee acceptable performance (andlycsgn stability) other than at the
set-points [12]. To calculate the controller parametersf@ide range of operating points could
be time consuming and tedious.

Linear Parameter Varying (LPV) Control

Linear parameter varying (LPV) systems are a special clfasite dimensional linear systems,
in which the entries of the state space matrices continyalegiend on a time varying parameter
vector which belongs to a bounded compact set [84]. LPV cbathemes are closely related to
GS schemes. The LPV methodology resolves many issues agsbaith the GS method, and
ensures performance and closed-loop stability over a vadeelope of operating points. The
LPV technique is attractive and appealing for nonlineantgdavhich can be modelled as time
varying systems with state dependent parameters which easurable online [101].

An LPV system can be defined in state space representationa®{84]

X(t) = A(p)X(t) +B(p)u(t) (2.20)

y(t) = C(p)x(t)+D(p)u(t) (2.21)

where the matrices are of appropriate dimensions and theetarying parameter vectar(t)

lies in a specified bounded compact set. The matrix entriaagdaccording to the parameter
vector p(t). If the vectorp(t) is fixed, then the LPV system shown above will become an
LTI system. Using LPV techniques, the control law can be @uatically scheduled with the
operating conditions and guaranteed performance can beguover a wide operating envelope
[12]. For example if all the system states are available) theuitable state feedback controller

u(t) = —F(p)x(t) can be designed in order to achieve desired performance laseldeloop
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stability of the system

for all the admissible values gi(t) in a compact set. LPV methods have attracted much at-
tention in recent years especially for aircraft system$.[BOr LPV systems, several controller
synthesis methods have been proposed in recent years rmatheviork of FTC: the advantages
and capabilities of LPV controller synthesis (based on glsiguadratic Lyapunov function
approach) over gain-scheduling controller designs (based., controller synthesis) are dis-
cussed and compared in [88] by implementing the two teclasigu a high fidelity atmospheric
re-entry vehicle. In [115], an output feedback synthesithoe using LMIs is presented in or-
der to preserve closed-loop stability in the case of mudtgdtuator faults. The authors in [101]
have explored the combined use of fault estimation and tarfipensation for LPV systems.
Recently in [92] an active FTC technique was proposed for IsiP$tems to deal with actuator
faults, where actuator faults are identified by using Ulthtegue by considering them as un-
known inputs and a state feedback controller is realizedgpyaimating the LPV system as
polytopic system i.e the system whose state space matangs in a polytope of matrices [92],

and tested on a two degree of freedom twin rotor system.

2.4.2.7 Prediction

Model Predictive Control (MPC)
Model predictive control (MPC) is a process specific contesld has become an acceptable
standard in the process industry (perhaps after PID) duts teaitural capability to deal with
constraints and changes in the system dynamics [121]. MBQiinaerous applications in the
process industry for example petro-chemical and relatedstries [89].

MPC is based on the dynamical model of the process and an iaption technique,
whereby at each sampling time it matches predictive procaegsuts with the predefined (de-
sired or set point) system trajectory, and creates an optiomérol sequence. Then only the first

control input in the sequence is actually applied to thetdld®]. Due to the ability of an MPC



CHAPTER 2. FAULT TOLERANT CONTROL 34

controller to handle the constraints i.e. input constgistate constraints etc, MPC provides a
promising basis for FTC [82], [72]. In [82], it is argued titae actuators faults can be easily
accommodated in the MPC formulation by modifying the inparigtraints or by modifying the
internal model. In [82] a case study of flight 1862 is consedewhere MPC has been used
in the framework of FTC. For the FTC purposes, in most of threesaMPC depends on reli-
able information from the fault detection and isolationtuniorder to update the constraints
for the optimization process and to generate new controlagsgto stabilize the system in the
new condition. In [112], to deal with input constraints amduator failures, an AFTC scheme
is proposed for linear systems where multiple MPC contrsl&e incorporated with the fault
detection filter. In [91] a real time implementation of MPCsa@onsidered for accommodat-
ing actuator and system faults in a three tank system. Insttt&éme the accommodated MPC
controllers were already calculated off-line and each wagcked on at the time of the relevant
fault. Recently in [130], an actuator FTC scheme was prapéseconstrained linear systems,
where a bank of MPC controllers (for different possible faulnd state estimators (to match
the fault situation) were considered. The scheme usesifdoitmation from the FDI, to activate

the appropriate MPC controller.

2.5 Conclusion

In this Chapter a brief introduction to FTC and some commeomitgologies which are used in
the FTC literature have been defined. Typical faults or faBuassociated with the actuators and
sensors were also explained. Redundancy, which is a keyiontin FTC has been defined. A
discussion about some FDI schemes was included. Methodshvilave been used to design
fault tolerant controllers using active and passive apgrea were also discussed.
In the next Chapter, a SMC scheme will be explained in detaliawill be demonstrated

how the closed-loop system response can be made robussegaiarticular class of uncertain-
ties. A choice of the sliding surface is also discussed whalps not to amplify the unmatched

uncertainties (which do not lie in the control input chanmelkhe sliding mode.



Chapter 3

Integral Sliding Mode Control

The term sliding mode was first used in the literature in theext of relay systems [118]. Slid-
ing mode control (SMC) is a particular class of variable&tnee control systems (VSCS) [117].
VSCS evolved from work in Russia in the early 1968nd spread around the world in the late
1970s after the publication of the survey paper by Utkin [116]. \S@re a class of systems
where the control law, as a function of the system state lisetately changed (from one struc-
ture to another) according to some predefined rules: for pl@enrelay system. A sliding mode
is a phase in the closed-loop system response where théstate trajectories slide along a
sliding surface to the equilibrium point. In sliding modesbd schemes, a switching function
dictates which structure of the control law is to be used atréiqular time instant, depending
on the position of the state from the sliding surface. Theo§gbints for which the switching
function is zero is called sliding surface. SMC now has bezantechnical tool to design con-
trollers for uncertain systems and provide robustnessepti®s against matched uncertainties
I.e. uncertainties that affect the plant dynamics actimgugh the input channels [41], because
in the so-called sliding mode, the system state traject@me insensitive to matched uncertain-
ties. However this robustness against external distudsaaicd parameter variations matched to
the control can only be achieved after the occurrence ofiith@g mode [41], [118]. Before the
occurrence of the sliding mode i.e during the so-calledhisacphase, the system is sensitive to

external disturbance— even matched ones [118], [119], [RBprder to eliminate the reaching

35
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phase and to have robustness throughout the entire clospdsl/stem response (i.e a sliding
mode will start from the beginning of the system response)dkea of Integral Sliding Modes
(ISM) was initially proposed in [118], [119]. The inheremthustness of sliding mode based
schemes make them attractive approaches for practicamggb design controllers, which are
robust against external disturbances, model uncertaiatid parameter variations.

In this Chapter a step by step design procedure for slidinderamntrollers is presented
first, and then these ideas are extended to integral slidodesiin order to have a robustness
throughout the entire system response. The necessarytiomsdior the existence of sliding
modes are also given. The properties of the system whilesisliling mode are also explained,
and are examined through simulations. The design concepksési Chapter are closely based

on [41], [118].

3.1 Introduction

SMC design paradigms [118], [41], [2] have now become materkniques for the control of
uncertain systems to provide effective solutions agaiasimeter changes and model uncertain-
ties. These are attractive features from a practical viemtp8MC has appeared to be the most
promising robustness technique to handle sudden and laagges in the system dynamics [62]
and has many application areas—for example motor controta#t and spacecraft control, pro-
cess control and power systems.

The design of a sliding mode controller comprises two stéps.first step is to design a sliding
(switching) surface, on which the sliding motion will takiape. The second step is to design a
control law, which depends on the choice of the switchingfiom and forces the system state
trajectories to reach and slide on the sliding surface igeah important condition in the slid-
ing mode literature is to verify the reachability conditievhich guarantees the existence of the
sliding mode on the sliding surface. An ideal sliding moda ba thought of as the ideal or
best performance which can be achieved. Once sliding i®aetiiand maintained, robustness

against matched uncertainties is guaranteed. Detailseodléisign procedures are given in the
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next sections.

3.2 Problem statement and equivalent control

In order to explain the design procedure for a system whaélstate informations available,

consider an uncertain linear time invariant (LTI) systenthaf form
X(t) = AX(t) + Bu(t) + M&(t, x) (3.1)

whereA € R™", B R™™M. It is assumed that the matr has full rankrank(B) = m [41],
where 1< m< nand the paifA, B) is controllable [118], [41]. The matrid € R™! is assumed
to be known and is in the range space of input distributionim&ti.e. #(M) C Z(B), therefore

it is possible to writeM = BD [41], for someD € R™!. The functioné (t,x) represents an
external disturbance or model uncertainty which is unknbwithas a known upper bounds for

all x andt. Therefore the uncertain system in (3.1) can be rewritten as
x = AX(t) + Bu(t) + BDE (t, x) (3.2)
As a first design step, define a sliding surface as
S ={xeR" : ot)=0} (3.3)
wherea(t) is a linear switching function [41] and is defined as
o(t) = Gx(t) (3.4)

whereG € R™" is a design matrix and is of full rank. Furthermore by destgs assumed that
the square matri&B is nonsingular matrix i.e déBEB) # 0. It is important that the sliding mo-

tion on the sliding surface should be stable and robust agtia uncertaint¥ (t,x). Therefore
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in order to analyze the sliding motion associated with tidrel surface (3.3), consider the time
derivative of (3.4) given by
o(t) = Gx(t) (3.5)

Substituting the open-loop dynamical equation (3.2) iBt&) gives
ot)= G<Ax(t)+Bu(t)+BDE(t,x)) (3.6)

Now it is assumed that the system states are forced to readliding surface at time sdy, so

that aftert > ts an ideal sliding motion can be obtained, i.e. during sliding
ot)y=0(t)=0 forall t>tg

where the timd;s is termed as reaching phase i.e. the time when the slidingnemes. The
control vectoru(t) such that the time derivative of the vector on the statedtajees equal to

zero [118] can be obtained by equating equation (3.6) towéioh yields
Ueq(t) = —(GB) 1 (GAx(t) +GBDE(t,x)> for t>ts (3.7)

where the square matri@B is nonsingular by design. The expressigg(t) is termed as an
equivalent control [118], and is an average control whiehdbntrol signal must take to maintain
the sliding motion on the sliding surface [118] [41]. Howeites not the control law which can
induce the sliding mode.

Now in order to obtain the expression for the sliding motioa. (the motion while the system is
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in the sliding mode), substituting the valuewgf(t) from (3.7) into (3.2), yields

X(t) = Ax(t)+B<—(GB)_1(GAX(t)+GBDE(t,x)))-l—BDE(t,x)
— AX(t) —B(GB) GAXt) — B(GB) GBDE (t,x) + BDé (t,X)

X(t) = (In—B(GB) 'G)AX(t)+ (In— B(GB) 'G)BDE t,x) (3.8)

~/

[

Note that the matri¥; has the property that

PB =0 (3.9)

As a result, equation (3.8) can be reduced to

X(t) = PAX(t) for t>ts (3.10)

From (3.10), it is clear that the effect of the uncertaigiy,x) while in the sliding mode is
completely rejected i.e. the reduced order system motimsensitive to matched uncertainties.
Also the stability of the sliding motion (3.10) depends oa tihoice of sliding surface i.e choice
of switching matrixG. The switching matrixG in (3.4) can be designed for example using
quadratic minimization approach given in [33] and chaptef 441], which is based on the

modified form of a classical linear quadratiQR regulator problem [26].

3.2.1 Sliding Mode Control Laws

The second design step is to design a control law such thatlitheg motion on the sliding
surface can be ensured in finite time and thereafter remains on itidingl mode controller

typically consists of two parts, a linear part and a nonlirpzat and is given by

u(t) = u(t) + un(t) (3.11)
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where the nonlinear part is of discontinuous type and isaesiple for inducing the sliding
motion on the sliding surface”’, whereas the linear part which is normally the nominal eguiv
lent control and is responsible to maintain sliding [41] e®pecific choice of the sliding mode
control lawu(t) will be based on the nominal system (i.e the system withoaertainty) and

to cope with the uncertaint§(t,x) the inherent robustness property against matched ones as
demonstrated in the previous section in equation (3.10peitelied upon. The nominal system
associated with (3.2) is

X(t) = AX(t) + Bu(t) (3.12)

From (3.7), it is clear that the expression tg(t) i.e. for the nominal system (3.12) is
Ueq(t) = —(GB) 1GAXt) for t>ts (3.13)

A sliding mode controller based on the nominal equivalemtic and discontinuous control

component is then defined as

u(t) = —(GB)~'GAXt) — p(t,x)(GB)lﬁ for g #0 (3.14)

Whereﬂ%H is a unit vector component [104], [41], apdt, X) is a scalar gain chosen high enough
(greater than the size of the uncertainty present in thesysio enforce the sliding motion.

Remark 3.1 For single input systems, the sliding mode controller i143 can be defined as
u(t) = —(GB) " 1GAXt) — p(t,x)(GB) sgno) forag #0 (3.15)

wheresgn.) is the signum function and has the property tvagn o) = |o]|.
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3.3 Reachability Problem

In the sliding mode literature the controllaft) is to be designed such that the reachability
condition is satisfied [41] which is a sufficient conditioneilosure that at each time instant, the
system state trajectories will converge towards the didimrface. Mathematically this can be

expressed for the case of single input systems [41] as

lim 0<0 lim >0 (3.16)

o—0+ o—0—

or in a compact form as

06 <0 (3.17)

near the sliding surface(t) = 0. A stronger condition which ensures an ideal sliding motio

[41] in finite time even in the presence of external distudeaor uncertainty is given by
00 < —n|o| (3.18)

wheren represents a positive design scalar. The expression iB8)(&loften called the)-
reachability condition [41].

For multi input systems, the reachability condition in . Will be modified to become
a'g<-n|o (3.19)

This is a sufficient condition to show sliding surfagéis attractive .
Finally in order to justify that the controller designed B114) satisfies thg-reachability con-

dition (3.19), substituting the value of (3.14) into (3.6)ish gives

o(t) = GA><(t)+GB<—(GB)1GA><(t)—p(t,x)(GB)1H%H)+GBDE(t,x)
(0)

GBD. 3.20
il + ¢ (t,X) (3.20)

= —p(t,X)
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Pre-multiplying both sides of (3.20) hy' (t) which gives

o'o=—p(t, X)W-i—GTGBDE(t X) (3.21)

By using the property thai™ o = ||o||?, equation (3.21) becomes

o' = —p(t,x)| o] +oc"GBDE(t,x)

< |loll(=p(t,x) +[|GBDE (t, X)) (3.22)
For a particular choice of scalar gairt, x) such that
p(t.X) > | GBDE (t,x)] +n (3.23)

the inequality in (3.22) becomes

a'o<—n|oa| (3.24)

From (3.24), it is clear thap-reachability condition is satisfied, which ensures thatexice of

an ideal sliding motion on the sliding surfacé.

3.4 A simple simulation example

In this section, the design procedure for sliding mode abletrs discussed in the previous sec-

tions are applied to a simulation example to obtain insigta the design procedure.

3.4.1 Spring Mass Damper System

A simple example of a spring-mass-damper system (SMDShtaken [97] driven by a force
u(t) is considered here as shown in Figure 3.1. It is assumedthat & the massnis pulled

down from the equilibrium position, such thg{0) = 0.1m andy(0) = 0.05m/sec[97]. The
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Figure 3.1: Spring Mass Damper System (adopted from [97])

dynamical equation of the mechanical system (Figure 314 peawritten as

my(t) + cy(t) +ky(t) = u(t) (3.25)

wherek is the spring constang is the viscous-friction coefficient ana is the mass. A dis-
turbance signaasin(y) is added into the control input channel to demonstrate thariance
against such a disturbance while in the sliding mode. Thaegbf these constants are chosen
asm=1Kkg,c=3 N-sec/mk=2 N/manda= 0.1. In order to write the differential equation
(3.25) into state space form, define the state variableg (&s= y(t) andxx(t) = y(t), which

represent the position and velocity of the massBy taking the time derivative of these state
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variables, equation (3.25) can be written in terms of stateables as

alt) = ¥t =) (3.26)
olt) = YO = a0~ Sxo) + S(ult) +asinpa(t) (3.27)

Hence, the state space representation of the system ir) (8.25

) || 01| )| |0 (U(t) + asin(xa(t)) (3.28)
Xz(t) —r—l:] _n% X2(t> r_]f1

~ v H,_/

A X(t) B

By substituting the values for the spring constiantiscous friction coefficient, and mass, it

yields
Xq(t) 101 xa(t) n 0 (u(t) + 0.1sin(xy(t)) (3.29)
%o(t) —2 =3 || x(t) 1
X :

3.4.2 Simulation objective and SMC design

In the simulation it is assumed thattat O the massn is pulled down from the equilibrium
position such thay(0) = 0.1m andy(0) = 0.05m/sec[97]. The objective here is to design a
sliding mode controller to bring the system back to the dlgilm position from the initial
conditions without overshooting in terms of displacemertt @with a settling time not more than
6 seconds.

Since the first step is to design a sliding surface, so thekimig function in (3.4) can be written

in terms of stateg; (t) andxy(t) as

x1(t)

Xa(t)
= Gixi(t) + Goxa(t) (3.30)

o) = | & o]
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whereG; € R™ (™M andG, € R™™ is assumed to be nonsingular i.e. (@:) # 0. While

sliding, the switching functiow (t) = 0 [118], [41], therefore equation (3.30) can be written as

X2(t) = — G, Gy xq(t) (3.31)
E

whereE € R™ ("M s the design matrix. It is also clear from (3.31) that orgg) is known,
the statexy(t) can be easily determined, therefore substituting the \afl(@31) into (3.26), the
sliding motion is given by

x1(t) = —Exq (1) (3.32)

From (3.32) it is clear that during sliding mode the systeraves as a reduced order i.e. the
system'’s order reduces to the number of control inputs. Nwowife design purpose, choosing

the value 0iG, = 1 which results irE = G4, and hence the switching mati&takes the form

o-[e 1]

In this example the value @& = 0.9 is chosen to satisfy the condition of no-overshooting. The

sliding mode control law defined in (3.15) using the fact &= 1 will become

utt) = —(GB)'GAXt)~p(GB) 'sgn(o)

= {2 21 } X(t) — psgn(o) (3.33)

Finally in order to verify that the control law(t) in (3.33) satisfies the reachability condition

(3.18), by substituting (3.33) and (3.29) into the time dative of (3.30) which yields

a(t) = Gx(t) +Goxe(t)
= G1Xo(t) — 2x1(t) — 3x2(t) + 2X1.(t) + 2. 1x2(t) — psgn(o) + 0.1sin(xy(t))

= —psgn(o) +0.1sin(x(t)) (3.34)
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Multiplying (3.34) with o(t) and with the choice op > |0.1sin(x1(t)| + n, the reachability
condition in (3.18) for the controller (3.33) has been e#hkbd and is given by

00 < -n|o] (3.35)

which ensures the existence of an ideal sliding mode.

3.4.3 Simulation Results

A sliding mode controller (3.33) based on the nominal sys(8r29) is now being tested in

simulations using Matlab/Simulink environment. In the siations, the value op is selected

State state
0.12 0.06
01 ] 0.04
€ S 0.02
€ 008 8
5 = 0
£ 0.06 g
& g -0.02
2 0.04 °
%’ > -0.04
0 : : . -0.08 : : : :
0 2 4 6 8 10 0 2 4 6 8 10
Time (sec) Time (sec)
0.15 0.5

% 0.1 (Reaching phase)
c /
S
B
5 =
2 005 (Sliding phase) g o
£
<
S
g 0
%]
-0.05 : : : : -0.5 : ‘ ‘ ‘
0 2 4 6 8 10 0 2 4 6 8 10
Time (sec) Time (sec)

Figure 3.2: Simulation results for the SMDS with disturbanc

asp = 0.15. From Figure 3.2 it is clear that the disturbance has recetin the system per-
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formance, which means that the design requirements ofatispient reaching the equilibrium
position with no overshoot and within 6 seconds is met. Sviitg function plot in Figure 3.2
shows that the sliding surface is attained in 1 sec i.e.rglidnotion starts after> 1 sec, how-
ever the discontinuous control signal exhibits high freguyeswitching which is undesired in
some systems due to high wear of moving mechanical comp®{Ehi]. Therefore smoothing

the discontinuity in the control signal is required to aviigh frequency switching (chattering).

3.5 Practical Sliding Mode Control law

The discontinuity associated with the nonlinear discardirs part of the control law (3.14) is the
main hurdle in a practical implementation— especially irchanical systems. Different methods
have been used in the literature to smooth the transitionthealiding surface—see for example
chapter 3 of [41] and [26]. By smoothing the control signalodintinuity, the state trajectories
no longer slide on the sliding surface, instead they sliddévicinity of the sliding surface,
which is termed as pseudo sliding [41]. However this meatd tovariance against matched
uncertainties is not guaranteed, however there is a ptigsidiobtaining close approximation
of the discontinuous control term which ensures a certaiel lef robustness against matched
uncertainties still remains.

One possibility to smooth the control signal in (3.14) is s®euhe boundary layer approach,

where the discontinuous control signglt) can be replaced with a continuous approximation:

—p(t,x)(GB)L-2Y it [lo(t)|| > &
Un(t) = p(t,x)(GB) ‘c(;t()t)H lla(t)|] > (3.36)
- 10 .
—p(t,x)(GB)"*%?  otherwise

whered is a small positive design scalar, whose value determinsitieeof the boundary layer
around the sliding surface. Another alternative approadb use the fractional/sigmoidal ap-

proximation [41], where the unit vector term in (3.14) canréplaced by the following contin-
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Figure 3.3: An approximation of the sign function [41]

uous approximation
a(t)

_ -1
Un(t) = =Pt X)(CB) 5o+ 8)

(3.37)

whered is a small positive design scalar.

An alternative approach to smooth the high frequency cbostritching which leads to chat-
tering is to use the higher order sliding mode control apgnd&0], [14], and recently [52].
Now the sliding motion is on the constraint set= ¢ = ... = ' 1 = 0 and is called am"
order sliding mode. Furthermore if it is possible to steét,x) to zero using the discontinuous
controlu(t), then the associated actual control sigma) will be continuous and the unwanted
chattering effects can be alleviated [14].

In this Chapter the fractional approximation given in (3,3% shown in Figure 3.3, is used,
and is a tradeoff between the ideal sliding motion and chiagje Therefore by approximating
the signum function in (3.15) with the fractional approxiioa WI%’ where the value od is

chosen a® = 0.0001, the control law in (3.33) becomes

o

ut) = [ 2 21 } X(t) —0~15m
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Figure 3.4: Simulation results for the SMDS with modified tohlaw

From Figure 3.4, it is clear that the chattering or high frergry switching of the control signal
has been removed. This is due to the approximation of thaisignnction with the fractional
approximation as can be seen in the Figure 3.3. Due to thioaippation, the sliding motion
will be in the vicinity of the sliding surface and will be teed as pseudo sliding instead of an
ideal sliding motion. The design requirements however tiltarget in the presence of external

disturbance as can be seen in Figure 3.4.

3.6 Properties of the Sliding Mode

Some of the properties of siding modes are summarized agbelo
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1. during a sliding mode the order of the sliding motiomis m[118], [41], wheren andm

represent the number of states and the number of inputsatesg

2. the stability of the closed-loop sliding motion dependls/@n thesen — m nonnegative

eigenvalues.

3. the performance and stability of the closed loop slidirggion depends on the choice of

the sliding surface.
4. during sliding mode the sliding motion is invariant to otetd uncertainties [41], [118].

Remark 3.2 Itis argued in [118], [119], [28] that the system is sensitio model uncertainties
and or external disturbances during the so called reachiage

In the coming sections, the ideas of Integral Sliding Modat@n (ISMC) are discussed which
have the property to eliminate the reaching phase assdaiatk the classical SMC approach
discussed in the previous sections to improve the robustgsinst matched uncertainties by

inducing the sliding mode in the entire closed-loop systesponse [27], [28].

3.7 Integral Sliding Mode Control (ISMC)

The basic idea of ISMC was initially proposed in [119], [1,1[8R3] to enforce the sliding mode
from the beginning of the system response, which means aotlentbased on ISMC ideas can
provide compensation to matched uncertainties througtheugntire system response. In this
section, a step by step design procedure for Integral $jisliades (ISM) controller is explained
and the special features associated with ISMC design acastied. In this section, itis assumed

that the state information is available for the controllesign.

3.7.1 Introduction

In ISMC, it is assumed that there exists an ideal nominaltpfan which a properly designed

state feedback controller has already been designed toectisel asymptotic stability of the
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closed loop system [118], [119], and to satisfy predefingtbp@mance specifications. A discon-
tinuous controller based on ISM ideas is added to the egistiminal state feedback controller
to make sure the nominal performance is maintained, andyfters is insensitive to external
disturbances (faults/failures from a FTC perspective)\ariations of system parameters in a
more traditional setting i.e. the system motion while in stiding mode behaves as the nomi-
nal system. This design philosophy provides the opporgunitetro-fit an ISM to the existing
baseline controller to compensate the matched uncesdaiatid external disturbances from the
very beginning. More specificallya‘sliding mode based auxiliary controller that compensates
the perturbation from the very begging of the control actiaile retaining the order of the
uncompensated system is the ISM contro[[£03].

ISMC has been used to tackle different set of control problefnpractical implementation of
ISMC was considered for example in [11], [13] for the speetien of synchronous and induc-
tion motors, where the boundary layer approach is used tiol éive chattering associated with
the discontinuous part of the ISM controller. It is knownrfrohe early sections of this Chapter
that using sliding mode based schemes the system statetdrégs are insensitive to matched
uncertainties while in the sliding mode. But the systemestedjectories can be sensitive to
unmatched uncertainties i.e. the uncertainties which donadch to the control or are not in the
range space of input distribution matrix. Therefore whigsigning a controller such that the
effect of matched uncertainty is rejected in the sliding mdtle unmatched uncertainty in the
system should not deviate the system trajectories away tihensliding surface. In [27], [128]
and [28], ISM ideas were used for an uncertain system consgleoth matched and unmatched
uncertainties and have shown that the system dynamics whitbe sliding surface meets the
performance specifications of the nominal system (whictssumed to be knowa priori in

ISM framework) in the presence of matched uncertainties.
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3.7.2 Problem Statement and ISM Controller design

To explain the design procedure, consider an uncertain tileoform

X(t) = AX(t) +Bu(t) + M& (t,x) + fu(t,x) (3.38)

whereé (t,X) is a bounded unknown disturbance and the matrigatisfies the matching condi-
tioni.e Z(M) c % (B) and can be written ad = BD [41], for someD € R™!. The pair(A, B)

is assumed to be controllable aBds of full rank i.e. rank(B) = m, where 1< m<n. The
function fy(t,x) represents an unmatched uncertainty i.e. does not liewfktid range space
of matrix B [41], but is assumed to be bounded with known upper bound.nbnenal linear

system associated with equation (3.38) can be written as

X(t) = AX(t) + Blo(t) (3.39)

whereup(t) is a nominal control law which can be designed by any suitatdée feedback
controller design method to achieve the desired nomindbpeaance of the system. Since it is
assumed that the pajA, B) is controllable, then there exists a state feedback cdetrof the
form

Uo(t) = —Fx(t) (3.40)

whereF € R™" is a state feedback gain to be designed so that the statetorégs of the
nominal system (3.39), say(t), are stable and meet performance specifications. The matrix
F can be designed by using any state feedback design apprdaehobjective is to design a
control lawu(t), such that the state trajectorig$) of (3.38) while in the sliding mode satisfy
the conditiornx(t) = X,(t) for all time, starting from the initial time instane X(0) = x,(0) [118].

To achievex(0) = x,(0) the order of the sliding dynamics should be of the same orsl¢he

nominal system.
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3.7.3 Design Principles

Define a control lawu(t) of the form
u(t) = Uo(t) + un(t) (3.41)
then equation (3.38) using (3.41) can be written as
X(t) = AX(t) + Buo(t) + Bun(t) +BDE (x,t) + fu(t,x) (3.42)

whereu,(t) is the state feedback controller as defined in (3.40), wd is defined to reject
the disturbance terr&(x,t) while in the sliding mode. The choice of the switching funatias

in [118] incorporates the nominal performance into theglegirocedure and is defined as
o(x,t) = Gx(t) +z(t) (3.43)

whereG € R™" is design freedom. Since matrB is of full rank, with the design of the
switching matrixG it can be ensured that the mat®8 is nonsingular i.e. déGB) # 0. The
second parz(t) introduces the integral term in the switching function [L18ow in the sequel
the properties while the system is in the sliding mode ardoezg.

During slidingo(t) = o(t) = 0 [41], so in order to obtain the expression for the equivialen

control, the time derivative of (3.43) is
o=0Cx(t)+2zt)=0 (3.44)
Substituting the value of (3.42) into (3.44) gives:

b= G(Ax(t) + Bub(t) + Bn(t) + BDE (x,t) + fu(t,x)) +2(t)=0 (3.45)
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To satisfy the conditiom(t) = x(t) at all timest > 0 (whenf, = 0) while sliding, the value of

2(t) should be selected as
2(t) = —G(AX(t) + Buo(t)), 2(0) = —Gx(0) (3.46)

Substituting the value df(t) into (3.45) gives,
G=G (Ax(t) +Buo(t) + Bun(t) + BDE (x,t) + fu(t,x)) —G(AX1) +Bw(t))  (3.47)

and the equivalent control expression can be written as

GBlh(t) = —GBDé&(x,t) —Gfy(t,x)
Uneg(t) = —(GB) 'GBDE(x,t) — (GB) 'Gfy(t,x)
= —DE&(x,t)—(GB)1Gfy(t,x) (3.48)

whereun,,(t) is the equivalent control associated wigf{t). Substituting the value of equivalent
controlun,,(t) into equation (3.42) and after simplifying, the expresdurthe integral sliding
mode becomes

X(t) = AX(t) + Buo(t) + (I — B(GB) 1G) fy(t,x) (3.49)

N

and definef,,, := I fu(t,Xx) as an equivalent uncertainty. From equation (3.49), itreghtfor-
ward to see that the the effect of the matched uncertaintpéas completely rejected while in
the sliding mode.

Remark 3.3 In the case wherfy, = 0, the equation (3.49) will simplify to become

X(t) = AX(t) + Blo(t) (3.50)

and the conditiorx(t) = X,(t) will be satisfied i.e. the system state trajectories comeiith

the nominal trajectories in the integral sliding mode. But i 0, the matrixI” in (3.49) can
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amplify the effect of unmatched uncertairffy(t,x) and the system trajectories can deviate from
the sliding surface.
The objective is to understand how the integral slidingazefcan be designed to avoid the

amplification of the unmatched uncertainty.

3.7.4 Integral Switching Surface

One of the key ideas behind an ISMC approach is to eliminateghching phase associated with
the classical SMC approach explained earlier. Using egust{3.43) and (3.46), an integral

switching function which eliminates the reaching phasesfingéd as [27], [28]
t
o(x,t) = GX(t) — GX(0) — G / (AX(T) + Buo(1))d(T) (3.51)
0

The term—Gx(0) achieves the property that(x(0),t(0)) = 0, so the reaching phase is elimi-
nated [28]. The sliding mode will exist from the very begimgpiand the system will be robust
throughout the closed-loop system response against nhtoteertainties [119], [27]. In [28],
a choice ofG was proposed as

G=B"=(B"B)" BT (3.52)

which is the Moore-Penrose left pseudo inverse of the inmttidution matrixB (with the
assumption tha is of full rank).

Remark 3.4 From the previous analysis, it is clear that in the case bf oratched uncertainty,
then any choice oG which ensure<GB is invertible is sufficient for the ISM design, but for
unmatched uncertainty a specific choice of G is needed.

The advantages this particular choice®in (3.52) brings are: the gain of the discontinuous
control p is minimal i.e the amplitude of the chattering can be reduddttlps not to amplify
the unmatched disturbance when the ISM is combined withr ¢dlobniques to have robustness

against unmatched disturbance [28], and is demonstratée sequel. This choice & has the
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simplifying property that

GB=(B'B) 1B"B=1,
G

which ensures that the square mai@® is nonsingular. With the choice @ in (3.52), the
matrixI" in (3.49) becomes

M=1,— BB (3.53)

whererank(BB*) < n, which means thatank(") = rank(I, — BB*) can not be zero, and there
must be at least one nonzero eigenvalue [28]. It can be \etig ™ in (3.53) is a symmetric

matrix i.e.

't = [Ih,—BB[l,— BB

= |,—BB¥ =T

and a symmetric matrix always has real eigenvalues. In [P®Rgs argued thatl'|| =1, and is

explained as follows: for each eigenvalue®f I', there exists an eigenvectosuch that

rv=Av=VITTrv=A2|v|? (3.54)

However from the fact thdt'I =T,

VITTIv=vTTv=Alv|? (3.55)

Using equations (3.54)—(3.55), it can be seen that relat{dn— 1) = 0 must be satisfied by the
eigenvalues of [28]. Consequently the eigenvalues are- 0 orA = 1. ClearlyA = 1 is the
maximum eigenvalue. Hence the choice®in (3.52) ensures thaf || = 1, which means that

the effect offy is not amplified i.efueq is equivalent taf,, which is assumed to be bounded.
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3.7.5 Integral Sliding Mode Control Laws

An integral sliding mode controller will be designed basedloe nominal system (3.39). The

control law has a structure given by

u(t) = uo(t) 4+ un(t) (3.56)

where,uo(t) is the linear part of the controller, ang(t) is the discontinuous part to enforce the
sliding mode along the sliding surface (3.51). Hence thesjaay control lawu(t) can be written

as
-1 (0}

o]l

whereF is the state feedback controller, which is responsibleiergerformance of nominal

u(t) = —Fx(t) — p(GB) forg 0 (3.57)

system angb is the controller gain to enforce the sliding mode and whaseipe value is given
in the next subsection.

Remark 3.5 For a single input system, the ISM control law in (3.57) canitten as

u(t) = —Fx(t) —p(GB)!sgno)  fora#0 (3.58)

3.7.6 The Reachability Condition

To justify that the controller designed in (3.57) satisfg tiireachability condition (3.24), which
is a sufficient condition to ensure the existence of an idetihg motion, the time derivative of
(3.51)is

T = GX(t) — GAXt) — GBU(t) (3.59)

Substituting the value of (3.38) and (3.40), it follows that

o= G(Ax(t) + Bu(t) + BDE (t,x) + fu(t,x)) — GAX(t) + GBFxX(t)
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Furthermore by substituting the value of (3.57) and aftenessimplification it becomes

o - GAx(t)+GB<—Fx(t>—p(GB)—lH%H)+GBD§(t,x)+Gfu(t,x>—GA><t)+GBFx(t>
- —pﬁJrGBDé(t,x)JrGfu(t,x) (3.60)

Now by choosing a positive definite Lyapunov candidate fiomcas

V(o)=-0'0 (3.61)

which characterizes the system state trajectories onittiegkurface. Taking the time deriva-

tive of (3.61) along the system state trajectories and gubag the value of (3.60) into it gives

V(o) = o'o
= —pl|lo||+0"DE(t,x)+ 0T Gfy(t,x)

< loll(=p+[IDEE )+ IGfu(t, x)[]) (3.62)

where the facGB = I, has been used. In order to enforce the sliding mode the wdltiee
nonlinear controller gaip should be greater than any disturbance or uncertainty isytbeem,

therefore with the choice gd which satisfies

p = [IB[IE XX + Gl fu(t;¥) | +n (3.63)

wheren is some positive scalar, then the inequality in (3.62) adtérstituting the value gb
from (3.63) becomes

V(o)< —nlla]l (3.64)

The inequality in (3.64) is a standandreachability condition [41], which implies that the ideal

sliding motion is maintained for all the time.
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3.7.7 Properties of Integral Sliding Mode

The properties of integral sliding modes can be summarigddlws:

1. there is no reaching phase [118F a sliding mode is enforced throughout the entire

system response;

2. during the sliding mode, the order of the motion equat®mhie same as the original

system [119];

3. By a suitable choice of sliding surface, the effect of utehed uncertainty can be ame-

liorated;
4. during sliding mode, system motion is invariant to matchecertainties [118], [41].

5. the ISM approach has the ability to be retro-fitted to asteng feedback controller.

3.7.8 Simulation Example

Here in this section, to make a direct comparison, the samalation scenario of a spring-

mass-damper system considered in early sections will belated and reproduced here as

X (t) _ 0 1 Xa(t) I 0 (u(t) +0.1sin(xq(t))
%olt) —2 -3 | | %) 1
A' B

The objective here is to design an ISM controller to bring $histem back to the equilibrium
position from the initial conditions without overshootingterms of displacement and with a
settling time not more than 6 seconds. To begin with the ISktrotler design, the integral

switching function, from equation (3.51) is

o(xt) = Gx(t) — GX(0) — G/Ot (A—BF))x(1)d(T)
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where the value o6 is chosen as in (3.52) and is equal to
G=(B"B)"B" = { 0 1}

The gainF in this example has been designed using the linear quadegtitator LQR) method,

which aims to regulate the system states to the origin bymmaing the cost function
I= / (X(6)TQX(t) + Uo(t) TRU(t))dt (3.65)
0

whereR andQ are symmetric positive definiep.d. matrices which penalize the magnitude of
the control signally(t) and the deviation of the system states from the origin res@de Here
the values ofQ andR metrics as chosen &3 = diag{1,0.5} andR = 1, which results in the

matrix F as

F=1 02361 01579

Now as a second step, considering the ISM control law for glsimput system (3.58) as
u(t) = —Fx(t) —p(GB) 1sgno) fora#0 (3.66)

where the choice of G makes sure tled2 = 1. By using similar arguments of reachability con-
dition as mentioned before, it is easy to check that the oblaw u(t) satisfies the reachability
conditionaoo < —p|a|. In this section, the fractional approximation given in3@®. as shown

in Figure 3.3 is used, therefore the ISM control law in (3.48) be modified to become

u(t) = —Fx(t) —p(GB) !

o3 (3.67)

where the value of a small positive scadais chosen a® = 0.0001, to eliminate the chattering

or high frequency switching, and the control laxft) after substituting the value &f can be
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written as
o

u(t) = —0.2361x; (t) — 0.236Ixx(t) — p o3

The displacement plots in Figures 3.5-3.6 show that thegdagiquirements (which are to
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Figure 3.5: Simulation results for the SMDS nominally (Mi8MC)

bring the system back to the equilibrium position withou¢mhoot and have a settling time of
not more than 6 seconds) are met both nominally (withoutidisince) and in the presence of
disturbance term. From Figure 3.6, it is clear that the eftéche disturbance .Qsinx(t) is
completely rejected, whilst achieving the same designirements. In the switching function
plots of Figures (3.5-3.6), it is demonstrated that them@iseaching phase i.e. the sliding mode

starts from the beginning.
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Figure 3.6: Simulation results for the SMDS with disturbawith ISMC)

3.8 Output Integral Sliding Mode Control

In the early sections of this Chapter, it was assumed thastdte information of the plant is
available in order to design a state feedback control lawthis section such an assumption
is relaxed and the ISM ideas discussed before are extenddtidsystems where only the
measured system output is available i.e. the full statemm&bion is not known. To cope with
such situation one possibility is to construct a state olesdrased on the plant model [41], [29],
[15], [66] to be considered in order to estimate the systatest such that the estimated states
converge to the true states in a finite time.

Considering an extension, the design steps for the ISM abbertrdesign are the same, but the
sliding surface is based on the plant output informationcivlis available in this case. Recently
in [29], the state dependent ISM ideas reported in [27] wetergled for the systems where only
the system output information was available and a full-oigear unknown input observer

was incorporated in the design to estimate the real platéstonsidering both matched and
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unmatched uncertainty, where as in [15] an output deper@dmtscheme was considered for
the systems with matched uncertainties, and argued thidid@ystems wheng < m, the closed-
loop dynamics lose observability. Recently in [47], theppiiSM ideas of [15] were applied on
the inverted stewart platform in the presence of permanstitrtbance (wind), which is normally
used for surveillance purposes.

In order to explain the design procedure, consider an uaicdr@ | system as in (3.38),

X(t) = AX(t)+Bu(t) +BDE(t,X)+ fu(t,x)

y(t) = Cx(t) (3.68)
whereC € RP*" is the output distribution matrix with the assumption thetk(C) = p, with
1< p<nandp>m. Inthis section, it is assumed that
Al The pair @, B) is controllable.

A2 rank(CB) = rank(B) = m.
A2 The pair (C,A) is observable.

Arguing as before it is assumed that a nominal contraligt) achieving the desired perfor-
mance is already available. Having only the information lahp output, the ISM control law

can be designed by defining first the ISM sliding function &j,[2
t
o(t) = Gy(t) — Gy(0) — / Uo(T)dT (3.69)
0

whereG € R™P is a design freedom and must be designed such th@EE@&) +# 0. A choice

of G proposed in [15] ensurinGCB= I, is given by

G=(CB)*=((CB)"(CB)) (BT (3.70)
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where(CB)* is the Moore-Penrose left pseudo invers€8& Sinced(0) = 0, suppose an ISM
control law exists which can guaranteét) = g(t) = O starting from the beginning. By taking

the time derivative of (3.69) along the system trajectoaied substituting (3.68) into it yields

a(t) = Gy(t)—uo(t)
= GC(AX(t)+Bu(t) +BDé (t,x) + fu(t,x)) — Uo(t)

= GCAXt)+u(t) + D&(t,x) + GC fiy(t,X) — Uo(t) (3.71)
Equatingo(t) = 0 and solving for the equivalent contnalq(t) yields

The expression for the sliding motion can be obtained bytgubiag the equivalent control into

(3.68) to get

X(t) = AX(t)+B(—GCAXt) —DE(t,x) — GCy(t,x) + Uo(t)) + BDE (t,x) + fu(t,x)
= AX(t) — BGCAXt) +Bup(t) — BGC f,(t,X) + fu(t,X)

= (In— BGO)AX(t) + Bug(t) + (In— BGC) fu(t, X) (3.73)

By defining the matrixA; := (I, — BGC)A andE := (I, — BGC), the sliding mode equation
(3.73) can be written as

X(t) = AcX(t) + Buo(t) + E fu(t, x) (3.74)

In [29], it is argued that the feedback control inpygtt) should be designed such that when the
system is in the sliding mode, robust disturbance atteonatgainstf,(t,x) can be achieved.

With the definition of the error sign&{t) = x(t) — X(t), the control inputiy(t) is defined as

Uo(t) = —FX(t) = —Fx(t) + Fe(t) (3.75)
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wherex(t) is an estimated state vector. The details of how an estinsit#d vector can be
obtained together with closed-loop stability analysisgiven in Chapter 8. Substituting (3.75)
into (3.74) gives

X(t) = Acx(t) — BFX(t) + BFe(t) + E fy(t,X) (3.76)

Furthermore to enforce the sliding mode (motion on thestjdiurfaceo (t) = 0) and thereafter

to maintain it from the beginning, define an ISM control law as

u(t) = —Fx(t) —pH%H (3.77)

To validate that the control law in (3.77), ensures that #echability condition is satisfied,

substituteu(t) into (3.71), and exploiting the fact theft) = x(t) —X(t) yields

ot) = GCA><t)—Fﬁ(t)—pH%st(t,x)+GCfu<t,x)+F>z<t)
- —pH%HJFGCAxt)+D5(t,x)+GCfu(t,x)
— —pH%:H+GCA>?(t)+GCA€(t)+D€(t,x)+GCfu(t,x)

0’0 = —pllo||+0T (GCA(t) +GCAgt) +DE(t,x)) + GCf(t,x))

Q
_|

Q-

VAN

—pllal +[lall(IGCA[IXM) + &) + IDIHIE ¢ x) [ + [|GC][[[ fu(t, X)[(B-78)

where the reachability conditian” & < —n||o

, can be satisfied if the modulation ggift) is

selected as

p(t) = [[GCA([IX®)] + let)[)) + IDIII€ (&) + [[GC[[| fu(t, )| +-n (3.79)

But the gain in (3.79) cannot be realized because the boutitedafignall|e(t)|| is not known.

In [15], it is argued that if the error sign&t) is exponentially stable, then there exist the
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constantg, u such that

le®)] < eeHVe(0)]

< ee*Y(n+[%0)]) (3.80)

wherex{0) is the initial condition of the estimated state vector ané some positive scalar.
Therefore in the expression gf(t) in (3.79) the bound offje(t)|| can be replaced by the ex-
pression in (3.80). The reachability condition is suffitienguarantee that the sliding motion is
maintained for all the subsequent time.

Due to a very little work on ISM in terms of FTC, and by considgrthe ISMC properties
mentioned in this Chapter, there is a scope to design céensalkhich provide robustness and

tolerance against actuator faults or failures throughmeientire closed-loop system response.

3.9 Sliding Modes as a candidate for FTC

Sliding mode based control schemes, could be a strong caedior FTC purpose, because of
the inherent advantages against matched uncertaintiehasgecial properties as explained in
the early sections of this Chapter. It has already been mquan the Fault Tolerant Control
Chapter that the actuator faults can be effectively modatethatched uncertainties, therefore
sliding mode based control schemes have the capability¢ott deal with the actuator faults.
The researchers for example in [126], [62], [122], [L06D31have already documented SMC as
a potential candidate for FTC. In [62], [126], it was argukdttSMC could deal with large and
sudden changes in the system dynamics due to actuator &altisas the capability to become
an alternative to reconfigurable systems, where as in [1B2] SMC technique was used to
ensure the stability of a damaged aircraft (where effenttgs of the actuators were reduced
by 50%). However actuator failures cannot be handled dyrést the sliding modes schemes,
because the complete loss of effectiveness of a channebggshe regularity of the sliding

mode, and a unique equivalent control signal can no longdetermined. Also in the case of a
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failure the actuator is not able to respond to control sigjreadd a redundant actuator is required
to accomplish the job. Redundancy is the key parameter ierdockolerate the actuator failure.
In the subsequent Chapters, Control allocation (as discussChapter 2) is considered as a
potential candidate to be combined with ISM control to dedh\actuator faults or failures due
to its ability to effectively manage the actuator redundaaid to redistribute the control sig-
nals to the healthy actuators in the case of actuator fanitteut reconfiguring the underlying
controller. An obvious difference between the FTC schemeggsed in this thesis as compared
to [3] is the use of integral sliding mode control to desige tinderlying controller instead of
‘classical’ SMC based methods. The use of integral slidinges ensures robustness against the
matched uncertainties starting from the beginning by elating the reaching phase associated
with ‘classical’ SMC based methods. Integral sliding moldage the capacity to be retrofitted to
the existing controller design to introduce fault toleramdthout changing or altering the exist-
ing control loops, which is advantageous in an industriaspective. The closed-loop stability
analysis in [3] requires a ‘synthesis-followed-by-anaypsrocedure, whereas the synthesis and
analysis is totally integrated in this thesis. Multiplewstbr faults/failures can also be handled
using this idea. The potential features of this combinatidhbe exploited in the coming Chap-
ters to design various novel robust FTC schemes to deal witlator faults/failure without the

need to reconfigure the underlying controller.

3.10 Conclusion

This Chapter has focused on describing detailed desigregues for ‘classical’ SMC based
controllers and subsequently integral sliding modes aggires for controller design. The in-
herent robustness properties while in the sliding modenastjanatched disturbances were ex-
amined, and necessary conditions for the existence of mglidode were discussed to check
the validity of the control law. The integral sliding modéisme has the capability to ensure the
robustness against matched uncertainties throughounthie elosed-loop system response. To

deal with bounded unmatched uncertainties a special clodisbding surface was discussed,
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which help not to amplify the effect of unmatched uncertginthile rejecting the effect of
matched ones. From the FTC viewpoint, the insensitivitypprty of sliding mode controllers

against matched uncertainties is very attractive, andbeikkxploited in the coming Chapters.



Chapter 4

Design and Analysis of an Integral Sliding

Mode Fault Tolerant Control Scheme

In this Chapter a new fault tolerant control scheme is pregpsvhere the ideas of integral
sliding modes (ISM) presented in Chapter 3 are incorporaiéida control allocation scheme
documented in Chapter 2 (Section 2.4.2.2) to cope with émtdfaults and the total failure

of certain actuators, under the assumption that actuatlmndancy is available in the system.
The proposed scheme uses the estimated effectivenes®fdiel actuators to redistribute the
control signals to healthy actuators without reconfigutimgISM controller. A relative error in

the estimation of actuator redundancy is taken into accouhe closed-loop stability analysis.
The effectiveness of the proposed scheme against faultslores is tested in simulation based

on a large transport aircraft model.

4.1 Introduction

As discussed in Chapter 2, one of the important elementsseapefor achieving FTC, is the
availability of redundant actuators. This provides insezhfreedom in terms of controller de-
sign to mitigate the effects of faults and failures. Althbulgese ‘redundant’ actuators are often

designed for different purposes, in the event of an emeggénch as faults or failures to the

69
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primary actuators), they can be used to retain satisfagt@rprmance.

This Chapter is concerned with the development of faulrémiecontrollers for a class of linear
systems having redundant actuators. This redundancy sygtem will be exploited to achieve
tolerance to a specified class of faults/failures, whicluides the possibility of total failure to
certain primary actuators. The precise class of total atdialure which can be accommodated
is identified. A novel control scheme is proposed in this Gaapvhich involves a combination
of control allocation as discussed in Chapter 2 (SectiorR2fand integral sliding mode tech-
niques which are explained in Chapter 3. In aircraft systEmsxample, the idea is to design
a controller based on a ‘virtual’ system which provides tlesickd moments about the centre
of mass [60]. The virtual control signal is then translatet iactual control surface deflections
using CA. This distinctive design strategy is beneficiatsinonly one controller is designed to
cover a wide range of fault/failure cases, while the CA reiistes the signals to the available
‘healthy’ actuators.

The novel combination of integral sliding modes and CA cdesad in this Chapter, allows total
failuresof a certain subset of the actuators (as well as faults irctliedors) to be accounted for.
(Sliding mode systems as explained in (Section 3.9), in comwith other traditional feedback
systems, are not capable of mitigating total actuator feduwithout some form of reconfig-
uration/accommodation). The proposed scheme uses thauredas estimated effectiveness
level of the actuators to redistribute the control effortidg faults/failures to maintain close to
nominal closed-loop performance without reconfiguringdbetroller. In the proposed scheme
a relative error in the estimation of actuator effectivengains is also taken into considera-
tion. Furthermore the stability test proposed in this Caaptlows a more effectiveynthesis
procedureto be employed using Linear Matrix Inequalities (LMI) optration to compute the

parameters involved in the control law.
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4.2 System description and problem formulation

In Chapter 3 (Sections 3.2 and 3.7.3) it has been shown thatiting mode based schemes are
inherently robust against matched uncertainties. In #a$ien these ideas are used to deal with
actuator faults which can be effectively medelled as matangcertainties. In Section 2.1.1
different models representing actuator faults or failumes discussed. A multiplicative fault
model given in equation (2.1) is considered here becausdtgplhuative fault model is a natural
way to represent the actuator faults or failures and in adit makes the closed-loop stability
analysis simple (which is demonstrated in the sequel). $& cd an actuator failure, using the
model in equation (2.1), the relevant column of the inputrird is nullified, and the control
componenty;(t) has no effect on the system dynamics. The fault model giveqimation (2.2)
replaces the control componantwith the uncontrollable offset vectox(t) in the failure of an
ith actuator, which can be treated as a disturbance.

An LTI system with actuator faults or failures discussedqaation (2.1) is
X(t) = Ax(t) + BW(t)u(t) (4.1)

whereA € R™" , B e R™M andW(t) = diag{wi(t),..,wm(t)} is a diagonal matrix. The pair
(A,B) is assumed to be controllable. The time varying scalafs), .., wn(t) model the effec-
tiveness level of the actuators. As mentioned in Sectiorl2iflw;(t) = 1, it means that thith
actuator has no fault (100% healthy actuator) and is worgerfectly, whereas if  w;i(t) > 0,
an actuator fault is presene. the actuator functions with reduced capabilitywi{t) = 0, ac-
tuatori has completely failed and the control input compongritas no effect on the system
dynamics. The matri¥V will be termed the efficiency matrix indicating the healtiideof each

actuator. Associate with (4.1) a set of controlled outputs
ye(t) = CX(t) 4.2)

whereC € R"*" andl < m. The variables/(t) are required to respond to desired (external)
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commands. In terms of ‘controlling’ these outputs ohiyndependent actuators are sufficient
to induce the required closed-loop performance (for exanspe the aircraft example). The
remainingm— | actuators constitute redundancy and can be exploited te\acfault tolerance.
In this Chapter an estimate of the actuator efficieéft) = diag{Wi(t), .., Wm(t)}, where the
scalars O< Wi (t) < 1, will be used explicitly in the control law. One way to olsta@n estimate
of the actuator efficiency is by using a measurement of theahetctuator deflection compared
to the demand. Such information is typically available innjwaafety critical systems e.g.
passenger aircraft [22]. In other situatidﬁ'ﬂ) would need to be provided by an FDI scheme,
see for example [131], [127], [5]. It is important to notettidnatever method is employed the
estimateW(t) will not be perfect and in this Chapter the difference betwie actual efficiency

matrixW(t), and its estimat@/(t) is assumed to satisfy

W(t) = (I — A(t))W(t) (4.3)

where the ‘uncertainty/A(t) = diag{d(t),...dm(t) } represents the estimation error. The un-
known scalar$ (t), .., dm(t) model the level of imperfection in the fault estimation. Teffect

of this imperfection will be analyzed later in the Chapterthis Chapter a virtual control con-
cept [60] for resolving actuator redundancy will be emphhyke Chapter 2 (equation 2.10) it is
shown that the input distribution matrB can be factorized into two matrices (i.B.= By By,
whereB,, € R™K andB, € R**™ and both haveank k< m). This factorization is only possible

if rank(B) = k < m[60]. In many actuator redundant systems (as mentioneceigithulation
part), this condition is not satisfiGdHowever reordering of the states is possible, and the input

distribution matrixB can be partitioned as:

B= (4.4)

whereB; € R(™D*M B, € R'*™M of rank | < m. Suppose that by design of the partition in (4.4),

LIn equation (4.55)ank(B) = 3 andl which is associated witB; in (4.4) isrank(By) = | = 2.



73 4.2. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

the pair(A,By) where B = BB} is controllable The partition in equation (4.4) is following the
notion of splitting the control law from the control allo@at [59] as can be seen in Figure 4.1.

In aircraft systems, for example the partitiBp can be associated with the equation of angular
accelerations in pitch, roll and yaw [60], becatise control objectives in (most) aircraft systems
can be obtained by commanding the desired moment which tbeaabtained by the control
surfaces [59] The partition of matrixB is such that the elements B have large magnitude
compared td|B,||, so thatB, represents the dominant contribution of the control acatiorthe
system compared tB; [6]. Although this is a restriction, aircraft systems oftgatisfy such a
constraint. By hypothesi$B, || is assumed to be small, because it has a direct impact on the
closed-loop stability analysis (Section 4.3.2). To crahis separation, a permutation of the

states must usually be undertaken. The virtual controltirgpdefined as
v(t) ;= Bau(t) (4.5)

wherev(t) € R' can be interpreted as the total control effort produced leyaittuators [60].
Once the partition oB in (4.4) has been achieved, scale the states s@gt=1, i.e||By|| = 1.
This can be achieved without loss of generality, becaas&B,) = 1. The physical control

signalu(t) sent to the actuators can be determined from equation (¢.5) a
ut) =By ) (4.6)

where BZ’W(U e R™! is a weighted right pseudo-inverse of the maBix Thus the matrix
B;’VAV(U provides some design freedom and ‘distributes’ the virtwaltrol signal to the physical
actuators via (4.6). As mentioned before in Chapter 2, whfferesearchers utilize the design
freedom in the pseudo inverse matrix in different ways [§6], A generic choice oB;’VAV(t)
such thaBzBZ’VAV(t) =1l is

BIWO = W(t)B] (BW(t)B]) L (4.7)

assuming déB,W (t)BJ) # 0.
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Remark 4.1 In the special case when there are no faults present in gterayi.e.W(t) = I,
then the weighted right pseudo inverse mashV®) in (4.7) using the fact th@ng =1,

simplifies toBg’VAv(t) = B}. This means the physical control law in (4.6) will become
u(t) =Bl v(t) (4.8)

The overall control structure of the proposed scheme t@beitplain how the integral sliding
modes and control allocation techniques relate, a bloakdra is presented in Figure 4.1, where
the virtual control signab(t) is designed by using the integral sliding mode control whgch
translated into actual control signalt) by using the control allocation with the knowledge of

estimatedV matrix.

Integral t
Sliding Mode vy ACl(l);lct;t(;:)n u(®) Actuators | 5|  Plant yo
Vret > Controller
A
Weighting f Fault
Algorithm Estimator

Figure 4.1: Schematic of the Overall Control Strategy

In Figure 4.1, it is assumed that tRault Estimatoris able to identify thectuatorfaults/failures
from all other possible faults/failures in the system. Novoider to clarify the set of faults or

failures the scheme proposed in this Chapter can tolerat@ecthe set

W ={(W1,..Wm) € [0 1 x..x [0 1] :de(BWB]) 0} (4.9)

- -

mtimes

Becausé < m, it is possible that déB;W B} ) # 0 even if up tom— | of the entries{(t) = 0 in
the matrixW(t): in other words, potentially up tom—| can totally fail and yet déBZVA\/ Eg) =+
0. However if more thann— | entries are zero, then rafW(t)) < | and de@BZVA\/BI) =0.

The set#”” will be shown to constitute the faults/failures for whiclostd-loop stability can be
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maintained.

Substituting (4.6) into (4.1) and using (4.7) results in

_ A2 N —
X(t) = Ax(t) + Bl A(t))VAV (t)BZ(BZVAV(t)BD 1 v(t) (4.10)
Bo(1 — A(t))W2()B] (BaW(t)B] ) L

with
U(t) 1= (B2W?(t)B) (BaW(t)B]) ~tv(t) (4.11)

then (4.10) can be written as

TW2(t)
B.(I — A(t))B i
)t =axp + | AW S | PO (4.12)
Bo(1 — A(t)By "
Bit)
where
N2 ~ ~
Bl .= W2(t)B] (B;WA(1)B]) (4.13)
Notice thatB;’Wz(t) is a weighted right pseudo inverseBgsinceBzB;’Wz(t) =1y, for alIW(t) €
w . Furthermore in the special case whafft) = I, thent’Wz(t) =BJ(B:BJ)"1 =BJ. Note

that whilst the pseudo inver@’w(t) defined in (4.7) is used for control allocation, the pseudo
inverseB;’Vsz(t) defined in (4.13) plays a significant role in the closed-lopnalgsis which will

be demonstrated in the sequel.

For the closed-loop stability analysis, the upper boundhenrtorm of the weighted pseudo
inverseBZ’VAVz(t) is required. In [111], the properties of pseudo inverseslatailed, and showed
that for a full column rank matriX, and a diagonal matrW/ with positive scalars, the weighted
left pseudo inverse of, defined byX "W = (XTW X)~1XTW is norm bounded by some number

that is independent &¥. In this Chapter, the ideas of [111] are used which followsré exists
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a scalany, such that
W2 n n -
1BV Y| = [W2(t)BS (BAWA(1)B]) Y < vo (4.14)

for all (Wq(t),..,Wm(t)) € #. The upper bound on the norm Bﬁ’wz(t) in (4.14) follows from
the result in [111], where the weighted left pseudo inveras wsed. But due to the fact that
(BZ’VAVZ(U)T = (B])MW’(), therefore the result in (4.14) agrees with [111].
In the case when the estimates of the efficiency matrix aregefi.e. A(t) = 0), and when
there are no faults present (i@.(t) =1), equation (4.12) simplifies to

X(t) = AX(t) + B1B2 v(t) (4.15)

—_———
Bv

sinceBZ’Wz(t)\Wm:I = BZ. The nominal fault free equation (4.15) will be useddsignthe
control scheme. During faults or failures the inherent prtips of integral sliding modes will
be replied uponSince the pai(A, By) associated with (4.15) is assumed to be controllathien

there exists a state feedback controltér) = —Fx(t), so that the nominal system
X(t) = (A—ByF)x(t) (4.16)

is stable. The state feedback controller can be designedhieve optimality against some

appropriate criteria. The choice of the matfwill be discussed in the sequel.

4.3 Integral Sliding Mode Controller Design

This section, develops a systematic design procedure éa\ththesis of an ISM controller. As
mentioned before in Chapter 3, there are two steps to desig8M controller, first a sliding

surface is designed, and then in the second step, a contréd lsmmduce and maintain a sliding
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motion is created.

4.3.1 Integral-type switching surface design

The ideas of integral sliding surface suggested by [28] asudised in Chapter 3 will be used
here for the system in (4.15) associated with the virtuatrbof inputv(t). The sliding surface
is defined by the set:

S ={xeR": o(xt)=0} (4.17)

where the switching functioa(x,t) € R is defined as
t
o(xt) = Gx(t)—Gx(O)—G/ (A—ByF)x(1)dT (4.18)
0

andG € R'*"is design freedom. Arguing as before in Chapter 8=a0, the switching function
o0(x(0),0) =0, and hence the reaching phase is eliminated. In Chaptenés been shown that,

in case of matched uncertainty (see for example) [119],tlheasliding motion associated with
(4.18) is always nominally governed b&— B, F ) independent of the choice & but the effects

of unmatched uncertainty cannot be rejected while in titérajimotion. Recently an approach
was suggested for the selection @fwhich attempts to ameliorate the effects of unmatched

uncertainty [28] while in the sliding mode and is discusse@hapter 3. In this Chapter
G:=By(B'B) BT (4.19)

is suggested. Notice that since by definit®yn= BBE, this choice of5in (4.19) has the property
that

GB, = B,(B'B)"'B"BB] = B,BJ=],

and so is a specific choice of a left-pseudo inversBoivhich parallels the suggestion in [28]

given in equation 3.52
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Remark 4.2 The choice ofG in equation 3.52, is the left-pseudo inverse of input madiand
ensures that while in the sliding mode the impact of unmataheertainty will not amplify.
With the choice ofG in (4.19) genericallyGB(t) = I, — B2/A\(t)B) creates a symmetric matrix.
The symmetry is important and simplifies much of the subsetamalysis and avoids the intro-
duction of conservatism. Also nominally, when there areauité andV(t) = I, from the special
properties of the matriB,, it follows that GB(t)|w~ = B,B} = I. This means, nominallyG
has the pseudo inverse properties which [28] argues asiegglan Chapter 3 (Section 3.7.4)
are optimal from the point of view of minimizing the impactuwimatched uncertainties on the
closed loop dynamics.

Remark 4.3:The following analysis is novel compared to the ISM schemg$19], [27], [28],
since the effects of faults and the actuator redundancy beutiken into account. As a conse-
guence, the analysis in this section is quite distinct cargbéo the papers cited above because
of the incorporation of the ideas from control allocationetxploit the redundancy to ensure
sliding can be maintained even in the face of certain totalator failures.

Now in order to analyze the sliding motion associated withdtirface in (4.18) an@ in (4.19)

in the presence of faults, compute the time derivative oéqun (4.18). It is easy to see
g (t) = GX(t) — GAXt) + GB,Fx(t) (4.20)
Substituting (4.12) in (4.20), and using the fact t6&, = |, yields
a(t) = GBU(t) +Fx(t) (4.21)
The equivalent control [118], can be obtained by solvingin in & (t) = 0 which yields
Deq(t) = —(GB) Fx(t) (4.22)

Adding and subtractingx(t) in equation (4.22) and substituting into (4.12) and sinyphif
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yields
X(t) = (A= ByF)x(t) + (B, — B(GB) ) Fx(t) (4.23)

whereB,, is defined in (4.15) angin (4.12). UsingG as defined in (4.19), further simplifying
equation (4.23) gives:
X(t) = (A—ByF)x(t) + BD(t)Fx(t) (4.24)

where the time varying uncertain term is
B(t):= B1B] —Bu(l — A)B}" Y (Ba1 — A (1))B) ) (4.25)

and

B:= (4.26)

Remark 4.4:Notice in the case of perfect knowledge of the actuator efficy (i.e.A(t) = 0),

and when there are no faults in the system (Mé(t) = 1), the matrices§|w(t):| = By and
B;,WZ(t)m(t):I = BE. Then using the fact th&B, = |, equation (4.24) simplifies to become
X(t) = (A—=ByF)x(t) (4.27)

which is stable by design of the state feedback gaiifhe nominal equation (4.27) constitutes
ideal fault free behavior. It is important to note that theentain term®(t) = 0 whenA\ (t) = 0,
andW(t) = I, while in the sliding mode. In the case, when there is somertaiogy in fault
estimation i.e. A(t) # 0, and during actuators fault or failure i.&V(t) # Iy, the uncertain
term CTJ(t) = 0 and will be treated as unmatched uncertainty in the clésepl stability analysis.
Therefore for the generic fault/failure case, thesed-loop stability needs to be prov&nce the

closed-loop system equation (4.24) depends on matikesand/\ (t).
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4.3.2 Closed-loop Stability Analysis

In the presence of faults/failures, the closed-loop syqtessuming a sliding motion is main-
tained) is governed by

X(t) = (A—ByF +Bd(t)F)x(t) (4.28)

where to ensure the closed-loop stability in the presencemiatched ternd(t), the small gain
theorem [75] is used, which is a systematical approach tokctie input-output stability of the

interconnected systems. For the subsequent analysise @efiiansfer function matrix

~

G(s) =F(sl-A) 1B (4.29)
whereA := A— B, F. By construction(3(s) is stable, and define a scalar
Yo =11G(9)le (4.30)

Proposition 4.1: Assume the effectiveness gain estim@té) is sufficiently accurate so that
the conditionAmaxys < 1 holds, whergy, is defined in (4.14) andA(t)|| < Amaxbounds the
relative error in the estimation of the effectiveness galigen during a fault or failure condition,

for any (Wy(t),..,Wm(t)) € #/, the sliding motion in (4.28) will be stable if:

Vo Ya(1+Yo)
e | 4.31
1— Amaxyo ( )

N2
wherey, > ||B;’W ®

, Y= ||B1|| andys is as defined in (4.30).

Proof. The system in (4.28), which represents the sliding motionbmwritten as:

~ ~

xt) = Ax(t)+B(t) (4.32)

y(t) = Fx() (4.33)
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where

{(t) = d(t)y (4.34)

In this form, the differential equation in (4.28) may be doesed to be the closed loop dynamics
of the negative feedback interconnectiorfdfs) and the ‘feedback gain’ in (4.34). According

to the small gain theorem [75], as discussed in the Appendix2Bf
1G(9) || D(1) ]| < 1 (4.35)

then (4.28) will be stable. In (4.35)G(s)||« is theH., norm of the systens(s) which is equal
to the %, gain of the system in the time domain ajpd is the induced spectral norm. From

(4.25) itis clear that
1) < [B1Ball + [Ba(1 — A)BEV O (Bo(1 — A(1)BEV V)

: _ TWA(t) _ : -1 -1
Using the fact tha{ B,|| = 1, B2B, =1, and also that in genera(l — X)™*|| < (1—||X]|)
if ||X|| <1[63], then

&) < 1Bl + Bl (1+ Amad [BE™ V11 — B2 1)BF V) (4.36)

This is well defined sincgBaA (t ) || < Amayo < 1. Sincey, > ||B, H andyr = ||Bq]|,

inequality (4.36) becomes

160 < V(14 vo)

4.37
1— Amayo ( )

Sincey, = ||G(9)|

», IN conjunction with (4.37), it is clear that if inequality.31) holds, the

small gain condition (4.35) holds, and consequently théesysn (4.28) is stable. u

Remark 4.5By hypothesisy; = ||B1]| is assumed to be small. Basically the sji || has a
significant impact on the norm of the nonlinearity in the dngalin feedback loop, and so if

||B1]| is small, the gain of the nonlinearity is small, and there lisss stringent requirement on
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the magnitude of thél., norm of the linear part. Furthermorgp| — 0 as||B1|| — 0 and
Proposition4.1 is trivially satisfied.
Remark 4.6:In the case of exact estimation of effectiveness maftk), thenW(t) = W(t) and

A(t) = 0, and the stability condition (4.31) reduces to

Yoyi(l+y) <1 (4.38)

4.3.3 Integral Sliding Mode control laws

Now a sliding mode control law must be designed based on theavsystem (4.12) with respect

to V(t). The proposed control structure has a form given by:
V(t) =0 (t) + Un(t) (4.39)

where

v (t) := —Fx(t) (4.40)

The scaled unit vector

p(t,x) 2% i g £ 0
oty =4 PE¥TERn T o# (4.41)
0 otherwise

wherep(t,X) is a scalar modulation function to enforce the sliding motid suitable choice of
p(t,x) will be described explicitly in the sequel.

Proposition 4.2:Suppose that
1

A1) < Amax< — (4.42)
Yo
wherey, is defined in (4.14). Ip(t,x) is chosen as
DAmaxdo|lVi]|+n
t,X) = 4.43
ptX) 1— Amaxyo ( )

wheren is a positive scalar, then, the control law proposed in (4s2fisfies the so-called
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reachability condition and sliding o in (4.17) is maintained.

Proof. Substituting (4.12) in (4.20) gives

o = (GB)U(t) +Fx(t) (4.44)

Substituting forv(t) from (4.39)-(4.41) and using the fact thaB = (I— BZA(t)B;’WZ(t)), gives

o= —pH%H —BAMBIV Y (—Fx(t) - pH%H) for o #0 (4.45)
Consider the candidate Lyapunov function
1 1
V= §U o (4.46)

The time derivative of the Lyapunov function along the tcapeies satisfies

. N2 N2 (0]
V =—p|la||+ o BB VEX() + paT (BoA(1)BHY “>)m for o 0

and therefore

. -‘-7\7\\/2 T7w2
V< —pllall+alBA®BY Y Fx(t) |+ plloll B2 1) BYY Y

_VI

IN

—plloll+ P+ [1tIDlol Amayo

IN

—P(1= Lmaxyo) [0l + 11U [[ 0| Amaxyo (4.47)

Substituting forp from (4.43) into (4.47) gives/ < —n|o|, which is the standard)-

reachability condition [41], and implies that the slidingtion is maintained for all time. W

Finally using equations (4.6), (4.7) and (4.11) it followat the physical control law is given by

W(t)BI (BMW2(1)B]) "L (—Fx(t) — p——) ifa#0 (4.48)

uet To]
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This is the actual control signal which will be sent to theuattrs, and depends on the effective-
ness levels. The proposed ISM controller (4.48) can dedl agtuator faults and total actuator
failures, provided thatw, (t), .., Wm(t)) € # and the conditions dProposition 4.1are satisfied.
Remark 4.7:1n this Chapter, actuator position limits are not considd¢ogmally in the control
design, However the fault estimation scheme would decla®a fault if an actuator exceeds its
position limits. This would be due to the reason that theagbosition of the actuator will be
different from the expected position based on commandettaaignal. The proposed scheme
attempts to reduce the burden on the faulty actuator chgmpgl) < 1) and to mitigate the
effects of actuator saturation, redistributes the comffolrt among the redundant actuators.
The results developed in this section can be summarizeaifotin of the following theorem:
Theorem 4.1: The system in (4.1) is closed-loop stable for any fault/fa&lcombination be-
longing to 7 in (4.9) under the control law (4.48), if a feedback g&ircan be found such

that

vo yi(1+yo)

<1
1— Amayo

whereys is defined in (4.30)y1 = ||B1]|, Yo Satisfiesy, > ||B;’W2(t) I whereBZ’Wz(t) is defined in

(4.13), andA\nax bounds the relative error in the estimation of the effectéss gains in (4.3).

4.3.4 Design of the Controller Gains

This section demonstrates one of the key advantages ofgbisach compared to [6]. It will be
demonstrated that the stability testRroposition 4.1is amenable to incorporation within a syn-
thesis framework for determining the feedback daim (4.16). For the nominal system (4.16),
the matrixF must be chosen to stabiliz&— B, F). Since(A, By ) is assumed to be controllable,
the LQR formulation [21] adopted here is to seek the contgyia v(t) to minimize the energy
cost function

J= / Z' zdt (4.49)
0
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where

0
,_ | @ X (4.50)

OR]_ Vv

where the matrice®; and Ry are symmetric positive definite matrices. The optimal solu-
tion of the LQR problem is/(t) = Fx(t). The details of the LMI formulation are given in
Appendix (B.3.1). The LQR problem can be posed as an LMI agttion [21]: Minimize
trace(X 1) subject to

AX+XAT —B,)Y —YTB! X —RY)T
¢ v (QX=R)T (4.51)
QX —RY —

X >0 (4.52)

whereQ = [(Q2)T 0 |7 andRy =[07,, (R2)T|T. The variableY := FX with Y € R'*"
andX~1 € R™" is the Lyapunov matrix. In this LMI formulation, the decisivariables are
andy.

Since, in addition, the small gain stability condition (#)3eeds to be satisfied, from the
Bounded Real Lemma [21], th&, gain fromu'to ¥, which in this situation is equal to the

2, norm of its transfer matrix, satisfieg|G||. < y iff there existX > 0 andy > 0 such that

AX+XAT-B,Y-Y™B] B YT
BT —yl 0 | <0 (4.53)
Y 0o -l

whereB is defined in (4.26). The details of the LMI formulation argegi in Appendix (B.3.2).
Herey is an a-priori fixed scalar gain which may be viewed as a tupargmeter. The decision

variables in this LMI formulation are agak andY. If

(1—Amaxyo)

<
Y Vi(1+ o)
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then the conditions of Theorem 1 are satisfied and closeddtadplity for a fault/failure com-
bination belonging t¢7” is guaranteed.
Since the common Lyapunov matrix is sought in the LMI forntioias, the overall optimization

process is: Minimizérace(Z) subject to

7 |
"l<o (4.54)

Ih —X
together with (4.51), (4.52) and (4.53). The mafixs a slack variable which using the Schur
complements satisfigs> Xt and thereforérace(Z) > trace(X1). Finally the feedback gain

F can be recovered d&=Y X 1.

4.4 Simulations

In this section control of the lateral axis of a large transparcraft discussed in Appendix A.1
will be considered to demonstrate the effectiveness arsidiity of the proposed scheme. To
design the state feedback g&inn (4.40), a linear model has been obtained using FTLAB747
around an operating condition of straight and level fligh2@&®,000 Kg, 92.6 m/s true airspeed,
and at an altitude of 600m based on 25.6% of maximum thrustaad20 deg flap position.
The lateral axis states (in Appendix A.1) which are congdefior the controller design are
[@,B,r,p]T, wheregis roll angle (rad) 3 is sideslip angle (rady,is yaw rate (rad/sec), angis

roll rate (rad/sec). The controlled outpytst) = Cx(t) are[S, ¢| where

0100
1 000

which meand = 2. For the lateral control, the inner and outer ailerahg (da0r) 0N the right
wing (in Appendix A.1) are aggregated to produce one coniplt. The available control
surfaces ar@ = [,, 6, 6epr]T, which represent anti-symmetric aileron deflection (radjider

deflection (rad) and differential aggregated engine presstios (EPR). Note in this example
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the number of control inputsr= 3, while the number of controlled outputs= 2, and so in
theory only two control inputs would be required to force ttwmtrolled outputs to follow a
commanded trajectory. Here the fact that three controltsypan be manipulated, indicates the
existence of redundancy in the system which can be expltiteghieve fault tolerance. The
ordering of the states ensur; || << ||Bz||, so thatB, represent dominant contribution to the
control action as compared & . After scaling the states to enSLBQBE = |, the state-space

representation is

| 0 0 00084 03334 0 0 0
. 01055 00999 03170 00538 | _ 0 00174 —00010| (Bt
| —oo0se 05617 —01856 01796 | | —01459 —0.7584 06352 | |g,
| 00008 48828 02154 —1.0789 09387 03089 —0.1531
- (4.55)

For tracking théf3, 9] commands, the integral action method [97] is used. To actiemip, the

integral action states (t) satisfying the relation

% () = r(t) — Cx(t) (4.56)

are introduced, where(t) is the reference signal to be tracked. By definixgt) =

col[x(t),x(t)], the system in (4.15) will be augmented with the integraioscstates to become

Xa(t) = AaXa(t) +Bvav(t) + Brr(t) (4.57)
where
0 -C 0 B1B} I
Aa — Bva — BV — Br — (458)
0 A By I 0

By design the paifA,, By, ) is controllable and a state feedback gaiit) = —FXa(t) is to be

designed to stabilize the nominal system in (4.57). Thegnatleswitching function irn(4.18) for
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the augmented system will become
t
O (Xa,t) = GaXa(t) — GaXa(0) — Ga/o ((Aa—By,F)Xa(T) +Br(1))dr (4.59)
whereG, := B(B] Ba) ~1B], where the augmented input distribution maixis

OI><m

B> By

In a fault free scenario, i.e in normal flight, the primary ttohsurfaces forp andp tracking are
the ailerons and rudder respectively; however the enginestltan be used as redundancy for
both surfaces. Based on these assumptions, using a nuhseaceh, it was found that a suitable
bound for the scalar in (4.14) i = 3.2020. It can be easily verified thgt = ||B1,|| = 0.0174.
The nominal state feedback controller giimssociated with equation (4.16) for the augmented

system has been designed using the LMI approach proposettiin®4.3.4 and is given by

0.4165 —-0.0839 02936 —1.9273 07983 -—-0.1356
F (4.60)

—0.5265 —0.1241 11878 —0.6954 —0.1000 03879
The nominal performance design matric@sandR in LMI (4.51) have been chosen &=
diag{0.95,0.08,2,1,15 5} andR = diag{ 10, 2} respectively, where the first two stateQrare
the integral action states. Herenax= 0.17 is chosen which implies an upper bound on the
relative error inW of 17%. The choice of = 8.8 in LMI (4.53) results iny, = 5.8832 and it

can be verified that

o Y1(1+Yo)

=0.9440< 1
1— Amayo

and therefore the condition of Theorem 1 is satisfied. Caneseity the closed-loop stability of

the system for any combination of fault#, ..,Ws) € # is ensured.
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4.4.1 Sliding mode fault reconstruction scheme

The control lawu(t) in (4.48) depends on the estimateViéft) matrix to distribute the control
effort among the actuators. A sliding mode fault reconstomcscheme, proposed in [5] can be
used to estimate the actuator effectiveness levels. Taexilis without loss of generality the

actuator fault model in (4.1) can be written as

X(t) = Ax(t) +B(Im— K) u(t) (4.61)
W

where it is assumed that input matixs of full column rank. The matriX = diag{k;, ..., Kkn}
where the scalaidg = 1 —w;. By writing this way the ternKu(t) in (4.61) can be considered as

the fault term. To estimate the fault teu(t) a fault estimator [5] is given by
Z(t) = Az(t) + Bu(t) + Gpd (1) (4.62)

where,Gy, is an appropriate gain matrix(t) is the estimator state arf{t) is termed as discon-

tinuous injection term [40], [5] and is defined as

9(t) = —peHEEt;H for e(t) £ 0 (4.63)

where the value gbe must be chosen such that > ||Ku(t)||. From (4.62) and (4.61) it is clear

that the error dynamics using the relatigfh) = x(t) — z(t) can be written as

&t) = X(t)—xt)
— Adt) — 9(t) — BKu(t) (4.64)

When the motion oe(t) = 0 will be enforced by the discontinuous injection tefitt) i.e. while

slidinge(t) = é(t) = 0 [5], then the fault signdu(t) can be reconstructed using equation (4.64)
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as

—Ku(t) ~ (BTB) BT 9¢q(t) (4.65)

wherede(t) is the equivalent injection term and is necessary to mairgi&ing. The injection

term is discontinuous and can be approximated to any levat@iracy using the relation

._ e(t)
Is(t) 1= —PeW (4.66)

whered is the small positive scalar. The scal&rsan be obtained from (4.65) by introducing a

small threshold [5] such that for the timé: if |u;(t)| < € then

((B"B)~1BT85(1))i if lu(t)>e
ki(t) = LS (0] (4.67)
ki (te) otherwise

The idea is to provide a constant value wheit)| < €. A saturation block with the limitf0 1]

is used before the information is provided to the contral@dtion unit to keep the theoretical

limits.

4.4.2 Manoeuvre and fault scenarios

In the simulations which follow the linear aircraft modeldemntakes a turning manoeuvre, where
the reference command requests a changetm25 deg during the period of time 6090 sec,
whilst a 0 deg reference command is applie@tthroughout. In the simulations, the discon-
tinuity associated with the nonlinear control term in (4.lsmoothed by using the fractional
approximation (3.37), discussed in Section 3.5, and isrgbwm where the value of the
positive scalad, is chosen to be.001. An ideal sliding motion will not be obtained in this sit-
uation, and instead a pseudo sliding will be achieved, wtiersliding motion is in the vicinity

of the sliding surface”. This can be made arbitrarily small by selectdgsufficiently small.
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4.4.2.1 Aileron faults and Lock in place failure

In this subsection to test the efficacy of the proposed schaiteeon (which is the primary ac-
tuator for @ tracking) faults and failure are considered. Various Igwlaileron faults (from
0% — 100%) are tested each occurring at 80-sec in 15% incremémtBigure 4.2 and Fig-
ure 4.3, the plant states and actuator deflections are shommgdhe aileron fault scenario
(when the estimation A&V is perfect), where it can be seen that the CA scheme systatiati
redistributes the control signals to the rudder and therasgiwhile maintaining the same level
of tracking performance as in the fault free condition.

In Figures 4.4-4.5, the aileron undergoes lock in placeifailwhere the actuator jams at some
offset position) and is unable to create any moment, whichna¢he effectiveness of the aileron
after the failure time (86e9 is 0%. If the estimate of the actuator effectiveness isqutrthen

the information provided to the CA unit regarding the aatuaffectivenessw;(t)) should be
0%. But since the estimat¥/(t) can not be perfect, which is the case considered in this Chap-
ter, the effect of 17% error in the estimation\&f(t) can be seen in Figure 4.5, which is the
maximum theoretical percentage errimax Which can be tolerated by the proposed scheme
without violating the stability condition ofheoreml. Due to the availability of redundancy in
the system, the CA scheme involves the engines more activelghieve the performance close

to the nominal (Figure 4.4).
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4.4.2.2 Rudder Lock in place failure

This subsection validates the scheme, by considering tiheerywhich is the primary actuator
for B tracking) failure scenario. Figure 4.6 and Figure 4.7 shiogvttacking performance of

the states and the control surface deflections, when a ryaitdiock in place occurs at 80-sec
—2 deg and the estimate of the rudder effectiveness is noegeite effect of 17% error in

the estimation of rudder effectiveness can be seen in Figre The proposed FTC scheme
redistributes the control effort among the aileron and tiggrees to cope with the rudder failure,
and to maintain the nominal tracking performance (Figué.£&igure 4.8 shows that the sliding

is maintained throughout the simulations, even in the presef actuator faults or failures.
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4.5 Conclusion

A novel Integral Sliding Mode fault tolerant control schehees been proposed in this Chapter.
To handle total actuator failures, integral sliding modesisiwere incorporated into a control al-
location framework, which has the capability to redisttébthe control effort among the healthy
redundant actuators automatically in the case of faultaitures without reconfiguring the con-

troller. The estimation of the actuator effectivenesslevweas a key source of information for

the control allocation scheme. The stability analysis eztsalosed-loop stability of the system

for a certain level of mismatch between the actual and thmastd fault and in fact the synthe-

sis procedure was carried out in the LMI framework to obthm parameters of the controller.

The efficacy of the proposed fault tolerant scheme was detmated through simulation based

on different fault or failure scenarios in a large civil att.

In the coming Chapter, the ideas of integral sliding modesrob allocation discussed here

will be applied on the benchmark high fidelity nonlinear miodea civil aircraft using the

FTLAB747 software.



Chapter 5

Application of an Integral Sliding Mode

FTC for a Large Transport Aircraft

Integral sliding mode control ideas incorporated with colallocation, discussed in Chapter 4
are used here to design fault tolerant controllers for thgitodinal and lateral axis control of a
high fidelity nonlinear model of a large transport aircrdfthe proposed scheme has the capabil-
ity to retain nominal performance even in the face of totdilifa of certain actuators, provided
there is enough redundancy in the system. During faultsilorés, the control signals are redis-
tributed by the control allocation unit to the healthy attus based on their effectiveness level,
without reconfiguring the controller. Nonlinear simulaisousing the Flight lab 747 FTLAB747
software are carried out in order to demonstrate the effeogiss of the novel combination of

ISMC and CA for FTC purpose.

5.1 INTRODUCTION

In safety critical systems, to ensure reliable operatiedundant actuators are used, which can
be exploited to achieve fault tolerance. Actuator redunyas the key component of FTC
design, and can be resolved by the virtual control concelt [6is discussed in Appendix A.1

as shown in Figure A.4, the benchmark model has abundardtacttedundancy which can be

97
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used to tolerate the actuator faults or failures at the pyinoa secondary level. For example
in case of faults or failures in the elevator channel (thenpriy actuator for pitch moment) the
horizontal stabilizer can be used.

In aircraft systems, the idea is often to design a virtuati@dier to provide the desired moments
[60]; then the CA translates the virtual control signalstte actual control surface deflections.
In this way as explained in Chapter 4, one controller can leel s deal with a wide range of
faults or failures without reconfiguration, whereby the Gaistributes the control signals to

healthy actuators.

5.2 Integral sliding mode FTC Design

By considering the generic system representing the acttaitts or failures given in (4.1), for
which the nominal fault free system (4.15) whéf(t) = I, will be used to design the fault
tolerant controller. The complete design phase for the IS\ Besign is explained in the next

subsection.

5.2.1 Design procedure

the commanded reference inputs, integral action in the naheontroller will be used. Some
details which have already been explained in Chapter 4 ,egn@duced here for completeness.
The design procedure employed in designing the ISM coetradl outlined in the following

steps:

1. As argued in section (4.2), rearrange and partition tpetilistribution matrixB such

that||Bs|| > B,

, SO thatB, dominantly represent the contribution of the control attio

as compared t8,. Furthermore scale the states to ensure&zag =1.
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2. Define the virtual control input as

v(t) = Bau(t) (5.1)

wherev(t) e R', | < m. Using equation (5.1) the actual control signél) can be written
as

u(t) =BIWVOv () (5.2)

WhereBZ’W(t) e R™! is a weighted right pseudo-inverse of maBixand a specific choice

B;W(t)

of is given by

B —w(t)B] (BwW(1)B]) (5.3)

provided that deﬁBZW(t)BZ) = 0. Substituting (5.3) into (5.2) gives a parameterized

expression for the control law

u(t) = WBJ (BWB]) ~tv(t) (5.4)

. Furthermore, if

U(t) ;= (BW?B}) (B2WEB]) ~tu(t) (5.5)

thenu(t) in (5.4) can be written as

u(t) =WB3 (B;W?Bj) (t) (5.6)

. In order to include a tracking facility, consider the aduction of integral action states

X (t) [97], satisfying
X (t) =r(t) —Cx(t) (5.7)

whereC € R'*" is the controlled output distribution matrix. Then the gystdynamics

can be described by augmenting the integral action stateshg system states in (4.15)
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by definingxa(t) = col[x (t),x(t)], which results in a system of the form
Xa(t) = AaXa(t) + By, U(t) +Brr(t) (5.8)
wherer (t) is the reference signal to be tracked and the augmentedcesmtie:

0 -C 0 B1BJ} I
Aa = Bva = Bv = Br = (5-9)
0 A By I 0

v(t) = { Ki ‘ —K ] (5.10)
£

where K, € R"*!, K € R*", so that the nominal system
Xa(t) = (Aa—By,F)Xa(t) +Brr(t) (5.11)

is stable, with steady state tracking properties with ressfoe (t).

6. Define the integral switching function based on the audetenominal system (5.11),

which aims to retain the nominal closed-loop performance as
t
0 (Xa;t) = GaXa(t) — GaXa(0) — Ga/o ((Aa—Bu,F)%a(1) +Brr(1))dt (5.12)

whereG, € R'*(™) is design freedom. The associated sliding surface’is- {xs €

R™: g(xa,t) = 0}. Similarly as in (4.19), the choice @&, is chosen as

Gq:=By(B!IB,) B! (5.13)
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where,
B 0
Ba=| | By=| " (5.14)
B, B:

The choice ofG; has the property that

GaBy, = By(B!B,) 'B!B.B]

= BBl=|

Define the ISM control laws as

V(t) = Vi (t) + Un(t) (5.15)

where

V(1) := —FXa(t) (5.16)

and

a(X.t ;
; ~Poa 1 0alt) #0

Un(t) := (5.17)
0 if 0a(t) =0

wherep is a modulation gain to enforce sliding.

. Design the state feedback matFixor the linear part of the controller (5.16), by solving

the LMIs (4.51)—(4.54) simultaneously given in sectiorB(4) for the augmented system
(5.8).

. Finally, the actual control signal sent to the actuatoilge, depending on their effective-

ness level is obtained by substituting (5.15) into (5.6)akihyields

Oa
||0al|

u(t) =WB;} (BaW?B] ) H(—FXa(t) — pr— ) (5.18)

The integral sliding mode controller (5.18) can deal wittuator faults and certain total
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actuator failures, provided that dBpW?B) ) + 0.

5.2.2 FTLAB747 v6.5/v7.1 Software and Design Objectives

In this Chapter, all the simulations are based on a high#ydebn-linear aircraft model, us-
ing the FTLAB747 v6.5/v7.1 software which represents al ‘vearld’ model of B747-100/200
aircraft. The details of the model are given in (Appendix)A.1

The scenario which is considered here is that the aircrattasstraight and level flight at 600m
and undergoes so-called up and away maneuver followed bgnangumanoeuvre. The con-
trollers design objective here is to increase the altitut® the speed of the aircraft from the
current level of flight and after reaching the required adté@ the aircraft takes the turn. This can
be achieved by tracking the appropriate FPA and airspégg tommands using longitudinal
controller and tracking appropriate roll angdeand sideslig3 using lateral controller.

To proceed with the controller design, a linearization hasrbobtained around an operating
condition of straight and level flight at 26300 Kg, 926 m/s true airspeed, and at an altitude of
600 m based on 26% of maximum thrust and at a 20 deg flap position using the FH L4V
v6.5/v7.1 software. In this Chapter the objective is to ge$tTC for both the longitudinal and

lateral axis such that the coupling between the two axis eaminimal.

5.2.3 Longitudinal Controller Design

In order to design the feedback g&inthe linear state space model representing the longitudina

system is obtained from AppendixA.1 and is given by

| 0 0 0 10000 | 0 0 0

0 06284 00021 10064 | _ | 00352 00819 00084 Br

Mo~ 98046 17171 —0.0166 ol 0 -01756 57072 | g,
i 0 —05831 00004 —05137 | 06228 —13578 Q06

" (5.19)
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where the input distribution matrix is rearranged and partéd according to step 1 to have the structure
as in (4.4). Further scaling of the input distribution matmake sureB,B] = I;. For the design of
longitudinal control, the available system states X¢gy = [0, 0, Vtas, q" where8 is the pitch angle
(rad), a is the angle of attack (rady;as is the true airspeed (m/sec), agds the pitch rate (rad/sec). For
longitudinal control, the 4 engine pressure ratios (EPR®) €ngines on each wing) are aggregated to
produce one control input. The available control surfacetohgitudinal control aréong = [Je, s, 5epr]T
which represent elevator deflection (rad), horizontalikza deflection (rad) and aggregated longitudinal
EPRs. The controlled outputs for longitudinal control &184a¢ ", wherey = 8 — a is the flight path

angle (FPA). Therefore the output distribution matricestiie longitudinal system is

1 -1 00
0O 0 10

The state feedback gakn for the longitudinal control is designed using the augmersigstem in (5.9)
and the LMI approach proposed in section (4.3.4), whereQlamd R matrices in (4.51) are chosen as
Qiong = diag{0.95,0.004,0.01,2,0.1,5} andRng = diag{4,8}. The first two states iQong are the
integral action states. For normal flight in a fault-fee sacén elevator is the primary control surface
for the FPA tracking, and the horizontal stabilizer is theugdancy. Fo¥as tracking, collective engine
thrust is the only actuator (i.e. without redundancy), 9e @ssumed that the engines are fault free. The

choice ofy = 7 in (4.53) givess, = 3.0012 and ensures that

vyi(l+y) <1

which means the closed-loop stability condition in (4.38%atisfied for the current design effor the
longitudinal system and is given by

~05775 —0.0219 07854 00115 09792 03714
F= (5.20)

—1.9019 00377 80499 44238 —0.1590 44302

The discontinuity in the nonlinear controller term (5.1&sheen smoothed by using the fractional ap-

proximation given in section (3.5), where the value of the positive dalehosen agong = 0.01

__o_
[o]l+0ng
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and the value of the modulation gaginis chosen ap = 1.

5.2.4 Lateral Controller Design

The same approach discussed in the previous subsectioopteddfor the design of state feedback gain

F for the lateral system. The state space model for the ladgstiém is taken from AppendixA.1 and is

given by
[ 0 0 00893 10000 | 0 0 0
N 01055 -00999 -0.9887 01014 | 0 00174 00010 | (B!
pr— I:
_0.0019 02767 —0.2066 —0.1186 ~00277 02478 —01993 | g
| 00004 —16478 01718 —10579 03117 01187 —0.0386
- " (5.21)

where the input distribution matrix is the same as in lordjital system is rearranged and partitioned
according to step 1 to have the structure as in (4.4). Fusiteding of the input distribution matrix make
sureB,B) = I|. The available states axg: = [¢, 3.1, p|" whereg@is the roll angle (rad) is the sideslip
angle (rad)r is the yaw rate (rad/sec) ams the roll rate (rad/sec). For the lateral control, two raifes
(inner and outer on the right wing) are aggregated to prodmeecontrol input. For the lateral control
dat = [a, &, %epr] are the available control surfaces, which represent gniisetric aileron deflection
(rad), rudder deflection and differential aggregated EPR® controlled outputs for lateral control are

[@,B]", so the output distribution matrix for the lateral system is

1 000
0100

Using the LMI approach in section (4.3.4) where the symrogidsitive definite matrice® andR are
chosen af);r = diag{0.95,0.08 2,1,15,5} andR5; = diag({10,2}. During normal flight, the primary
control surfaces fop andp tracking are ailerons and the rudder respectively, whiddifferential engine
thrust is the redundancy for both. Based on these assuraptising a numerical search it can be verified

that y1(1+ yo) = 0.0731, wheres = ||By,|| andys is defined in (4.14). The choice ¢f= 8.8 in (4.53)
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ensures thag = 5.8832 and therefore the closed-loop stability in (4.38) tisfad.

Vy(1+y) <1
The obtained state feedback gé&irfor the lateral control is

04165 —0.0839 02936 —19273 07983 —0.1356
F= (5.22)

—0.5265 —0.1241 11878 —0.6954 —0.1000 03879
The discontinuity of the nonlinear controller (4.41) hastemoothed by using the fractional approxi-
mation, where the value of the positive scalar is chosel,as- 0.01, and the selected value pffor the

lateral control iso = 1.

5.3 Non-linear FTC Simulations Results

The simulations are initially conducted at the trim coratis. For the up-and-away manoeuvre, @eg
reference command for FRAluring 10— 60seq, and a change ¥ ,s of 10m/secat 100secare issued to
increase the altitude and speed of the aircraft. For théntyimanoeuvre, a reference command requests

a change inp of 25degduring (200— 250seq. A 0 degreference command {® is issued throughout.

5.3.1 Fault Free Scenario

In Figures 5.1-5.2, the tracking performance of the nomfiaalt free system is shown. It can be seen in
Figure 5.1 that there is a small coupling between roll anglé sideslip when the roll angle command
is issued at 200 sec. A small coupling with FPA is also visthle to roll command. In Figure 5.2, the

corresponding actuator positions are shown, where thatactueffectiveness plav/ shows that all the

actuators are fault free.

5.3.2 Elevator Lock in place failure

Figures 5.3-5.4 demonstrate the system states and acpasitions and the actuator effectiveness level

in the case when an elevator (the primary control surfaceRdrtracking) lock in place/offset-jam failure
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occurs at 5Gecduring the climb. It can be seen in Figure 5.4 that the corsigiial sent to the elevator
by the control allocation scheme is shutoff as the effentigs level of the elevator is zero (Figure 5.4 )

and redistributed to the horizontal stabilizer, to maimtiie nominal tracking performance (Figure 5.3).

5.3.3 Horizontal stabilizer Hardover/runaway failure

Figures 5.5-5.6 show no degradation in tracking perforraaas& compared to (Figure 5.1) when the
horizontal stabilizer (the redundant control surface fBARracking) runaway to the maximum positive
deflection limit of 3 deg during the climb maneuver. It can kersin Figure 5.6 that the elevator is
deflecting in the negative side to counteract the horizatéddilizer failure. The effectiveness level of the

horizontal stabilizer can be seen in Figure 5.6 after thaway failure.

5.3.4 Aileron Lock in place failure

In Figures 5.10-5.11, a scenario is demonstrated wheroailghe primary control surface for roll angle

tracking) lock in place/offset-jam failure occurs at 2&&cduring the turning manoeuvre, where it can
be seen (Figure 5.11) that the engine thrust level and thaderugact more actively to compensate the
aileron failure and it is clear from (Figure 5.10) that the&seno degradation in system performance as

compared to the nominal performance (Figure 5.1).

5.3.5 Rudder Hardover/runaway failure

Finally, in Figures 5.12-5.13, during the turning manoeuar 215se¢ a rudder (primary control surface
for sideslip tracking) runaway todegoccurs. During the runaway failure, the rudder moves withiax-
imum rate. This is a very severe failure and is very difficolbaindle, but it can be seen (Figure 5.13) that
the engine thrust level and the ailerons are actively irelisy the control allocation scheme to handle
this situation and the performance close to the nominailisashieved (Figure 5.12). The effectiveness

level of the rudder after the failure vanishes to zero.
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5.4 Conclusion

This Chapter, considered the application of integral stidnode FTC scheme on the high fidelity non-
linear model of a large transport aircraft using the FTLABY4.5/v7.1 software. FTLAB747 v6.5/v7.1
represents a ‘real world’ non-linear aircraft model in tléhware environment and was used to test the
effectiveness of the proposed scheme. The proposed ih&igiag mode FTC scheme used the effec-
tiveness level of the actuators and has the capability te eath total failures without reconfiguring the
controller.

The FTC scheme proposed in Chapter 4 is designed for the lopprplant with no cognizance of any
existing controller. All the parameters for the FTC schemgesgnthesized simultaneously and the closed
loop performance in both fault free conditions and in thespnee of the fault is completely determined
by this design process. The coming Chapter builds on thesitteeetrofit integral sliding modes around
the existing control scheme to induce fault tolerance. ®hieneficial in an industrial perspective as the

new controller does not affect the certification of the avadiunderlying baseline controller.



Chapter 6

An Augmentation Scheme for Fault
Tolerant Control using Integral Sliding

Modes

In this Chapter the potential of integral sliding mode apgioto be retro-fitted to an existing feedback
controller, (as mentioned earlier in the properties ofgraésliding mode control (Chapter 3)) is analysed.
A novel fault tolerant control allocation scheme which isgosed in this Chapter, relies on aposteri
approach, building on an existing state feedback contrdésigned using only the primary actuators. An
integral sliding mode scheme is integrated with the exgstiantroller to introduce fault tolerance. The
proposed scheme uses the measured or estimated actuatbiveffess levels in order to redistribute the
control signals to the healthy ones which allows a certaas<bf total actuator failures to be mitigated.
The effectiveness of the proposed scheme is tested in dionulasing a high fidelity nonlinear model of

a large transport aircraft model discussed in Appendix A.1.

6.1 Introduction

To achieve FTC, one paradigm is to subdivide and classifdifferent actuators into ones of primary and
secondary status. Then, in the case of faults or failureiseptimary actuators, secondary actuators can

be exploited to retain acceptable performance [39]. Oneteayanage the redundancy which is created

114
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by the use of primary and secondary actuators is to deployalalocation (CA) schemes discussed in
Section 2.4.2.2 to distribute the control effort over thieetbr suite.

The FTC technique proposed in this Chapter is quite diffeterthe technique proposed in Chapter 4.
The technique in Chapter 4 is designed based on the open laopvath no cognizance of any existing
controller and all the parameters associated with thelatetjding mode scheme are synthesized simul-
taneously based on a model of the open loop plant and thedclosp performance (in both fault free
conditions and in the presence of faults) is completelyrdateed by this design process. In this Chap-
ter for controller design purposes the actuators are ledsis primary and secondary. It is assumed a
controller based only on primary actuators has already besigned to provide appropriate closed loop
performance in a fault free scenario. The technique praposthis Chapter involves creating arpos-

teri integral sliding mode design, building on the existing estitedback controller. The idea is to use
only the primary actuators in the nominal fault free scemaand to engage the secondary actuators only
if faults or failures occur. Crucially, in the fault free eaghe closed-loop system behaviour is entirely
dependent on the original controller, and the overall seéhbehaves exactly as though the ISM scheme
were not present. Only in the fault/failure case does the B@lidme become active. In this way the
proposed integral sliding mode FTC scheme can be retrofitt@dinost any existing control scheme to
induce fault tolerance. This requires a totally differemsign philosophy as compared to the scheme
discussed in Chapter 4. The scheme proposed here has ateagviom an industrial perspective, since
the proposed scheme can be retrofitted to an existing casth@ime to induce fault tolerance without
the need to remove or alter existing control loops. Furtlieenthe nominal fault free performance can
be specified according to any design paradigm. The schenpeged in this Chapter uses measured or
estimated actuator effectiveness levels in order to Higiei the control signals among the actuators. In
the case of faults/failures, the controller structure duzsneed to be changed and the control signals are
automatically redistributed to healthy actuators to nainthe closed-loop performance close to nomi-
nal. A rigorous closed-loop stability analysis, under tkeumption of imperfect estimates of actuator

effectiveness levels, will be considered.
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6.2 System description and problem formulation

An LTI system subject to actuator faults or failures can belefled as

whereA, € R™", B, e R™MandW(t) € R™™Mis a diagonal weighting matrix representing the effective-
ness of each actuator where the elements@(t) < 1 fori=1,...,m. If w;(t) = 1, the correspondinigh
actuator has no fault, whereas iflw; (t) > 0, an actuator fault is present. In a situation whei¢) =0,
the actuator has completely failed. To create the desigogaphy, suppose the input distribution matrix

can be partitioned as

Bp = [ B; B, ] (6.2)

whereB; € R™! andB, € R™ (™) and|l < mand| < n. HereB; is the input distribution matrix
associated with the primary actuators and is assumed toraalokqual td, whilst B, is associated with
the secondary actuators which provide redundancy in thersyslt is assumed that the péi,, By) is
controllable. For the primary and secondary actuatorsywighting matrixXW(t) is also partitioned as
W(t) = diagW (t),Wa(t)] whereW (t) = diagjw (t),...,w (t)] andWax(t) = diagwi1(t),...,wm(t)] are
weighting matrices for primary and secondary actuatorga&ssely. In this Chapter, it is assumed that
the matrixW(t) is estimated by some FDI scheme, given in the Section 4.40% asing a measurement
of the actual actuator deflection compared to the demand [P2§ estimated valud/(t) will not be a
perfect estimate of the real effectiveness maidit), and in this Chapter it is assumed the estimated

matrix W (t) = diag]Wi (t),Ws(t)] satisfies the relationship
W(t) = (I = At)W(t) (6.3)

whereA(t) = diag[A1(t), A2(t)]. Both Aj(t) and A,(t) are assumed to be diagonal matrices such that

the diagonal elemen®(t) € R satisfy § (t) < Amaxfor someAnax> 0 where

Amax=max( || Aa(t)], | A2(t)]) (6.4)
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The matrices)\1(t) and A (t) model the level of imperfection in the fault estimation, aadisfy

Wi(t) = (I —Aa(t)Wa(t)

Wo(t) = (Imt— D2(t)Wa(t)

SinceB; is assumed to has full column rank equal tand therefore there exists an orthogonal matrix

Tp € R™" such that
0
TpBL = (6.5)
B21
whereBy; € R'! (and Byy is nonsingular). By a suitable change of coordinates Tpx, it can be

ensured, the input plant distribution matrix has the form

0 B
Bo1 Bz
where By, € R™(M1) Next scale the last states to ensure th&},By; = BB, = I (i.e. By is

orthogonal). Consequently it can be assumed without logeérality the system (6.1) can be written

as
X(t) = AX(t) + BW(t)u(t) (6.7)
where
B= 0 | B = [ Bo Bs:| (6.8)
Bo1 | B2

Controllability of (Ap, B1) implies that the paifA, By) is controllable. A state feedback control law

Vo(t) = Fx(t) (6.9)

has been designexdpriori to make the system

X(t) = (A+ BoF)x(t) (6.10)
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stable. Note that the gah is the baseline controller (discussed in Section 6.5) desidor the primary
actuators. Now a control allocation scheme will fe¢rofitted to the control lawv,(t). The physical

control lawu(t) applied toall the actuatorss defined as

u(t) = N(t)v(t) (6.11)

wherev(t) € R! is the virtual control effort produced by the actuators, wiltlbe discussed in the next
section. The overall control structure is given in Figurg, Gvhere it is clear that the integral sliding
mode FTC scheme is retrofitted to the existing baseline abbert,(t) (which is designed using only the

primary actuators) and will be only active in case of fault§ailures. In Figure 6.1, it is assumed that the

—  Actuators Plant X©

A 4

u(t) Baseline Controller
based on pair (A,By)
Vo(t)

F |«
f FTC

*
CA |20 T 1oMc

A

4 u(t)
A 4
Weighting |, Fault _X(t)
Algorithm Estimator

N )

Figure 6.1: Schematic of the Overall Control Strategy

Fault Estimatoris able to identify theactuatorfaults/failures from all other possible faults/failurestihe

system. The proposed control allocation matrix is given by

N(t) = (6.12)

where

Na(t) := BJ,B21(BY;BaWh(t)Bl,Bo1) ~* (6.13)
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andW (t) andWa(t) are the estimates of the effectiveness levels. Now define

W ={(Wis1,.Wm) € [0 1) x...x [0 1 :detBaWh(t)B],)# 0} (6.14)

m— 1| times

Throughout this Chapter, it is assumed that 2. This allows up ton— 2| of the entriesai(t) in the
matrix\W(t) to be zero, and yet guarantee (@p\Ws(t)BJ,) # 0. The set# will be shown to constitute
the class of faults/failures for which closed-loop stapiian be maintained.

Substituting (6.3) and (6.11) into (6.7) yields

() = Axt) + B1a(Im-1 — A2(t) MA(E)N2(I) —Wa(t)) v(t) (6.15)

Bo1 (I — A1 (t) WA (t) 4+ Bao(Im-i — Aa(t)Wa ()N (I —WA(t))
SinceBy; is orthogonal by constructiorliiﬂBZl = I}, and using the definition dfiz(t) in (6.13) it follows

that

BoaW (t)No(t) = B21Bl,BaWa(t)Na(t) = By (6.16)

Consequently using (6.16), equation (6.15) simplifies to

(1) = AXt) + Bia(l — A2(t) Ma(t)N2 (1) —WA(L)) Vi) (6.47)

Bo1 (1) — A1 (t))Wa(t) + Baa(l) —Wa(t)) — BoaAz ()W (t)Na(1 — Wi (t))

which can be further simplified to

() = Axt) + B1a(Im-1 — A2(t))Ma(t) N2 (I —WA(t)) v(t) (6.18)

Bo1 — Bor A1 (H)WA (1) — BaoAo (t)Wa (t)No (I — WA (L))

B

Remark 6.1:In the case of perfect estimation Wf(t) (i.e. A(t) = 0) and when there is no fault in the

primary and secondary actuators (M&.(t) = I, andWs(t) = I,|), the system in (6.18) becomes

X(t) = AX(t) + Bov(t) (6.19)
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and so only the primary control channels will be used.

In a fault/failure scenario, to maintain the closed-loopf@@nance near to nominal, the concept of inte-
gral sliding mode control is combined with the control laerfr (6.11) and (6.12). The nominal fault free
system in (6.19) will be used for the design of the augmemtascheme which will be demonstrated in

the sequel.

6.3 Integral Sliding Mode Controller Design

As mentioned earlier in Chapter 3 and Chapter 4, first a glidinface is designed and in the second step
a control law is developed which can enforce and maintaiidangl motion on the sliding surface.
First choose the sliding surface &= {x € R": o(x,t) = 0} where the switching functiow(x,t),

based on the nominal system (6.10), is defined as
t
o(xt) := Gx(t) — Gx(0) — G/ (A+BoF )x(1)dr (6.20)
0

whereG € R'*" is the design freedom to be selected. The elimination of éaehing phase, ensures
the occurrence of the closed-loop sliding motion througtiba entire response of the system. In this
Chapter, the choice @ is suggested as

G:=B/ (6.21)

whereB, is defined in (6.8). With this choice @ it follows
GB, =B} B =1
and this choice of serves as the pseudo inverse of the ma@gxAlso from (6.18)
-1
(GB) ! = (BL(BZl— Bo1 A1 (HWA(t) — Boa/A2 (HVAB()Na() —Wl(t)))> (6.22)

which will be used while obtaining the expression for theieajent control. To analyze the closed-loop

sliding motion associated with the integral switching fume in (6.20) and the choice @ in (6.21),
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taking the time derivative ofi (x,t) defined in (6.20) yields

& = GX(t) — GAXt) — GBoFX(t) (6.23)

Substituting (6.18) into (6.23), the resulting expressonplifies to

& = GBv(t) — GBFx(t) (6.24)
Equatingo (t) = 0, and by using the fact th&B, = ||, the expression for the equivalent control is given
by
Veq(t) = (GB)"Fx(t) (6.25)

The equation of motion governing sliding can be obtainedubsstuting (6.25) into (6.18) which yields

X(t) = Ax(t) + B(GB) "Fx(t) (6.26)

Adding and subtracting the terByFx(t), equation (6.26) can be written as

X(t) = (A+ BoF )x(t) + (B(GB) ™t — Bo)Fx(t) (6.27)

which can be further simplified to

_ n W a8\ -1
XA+ BoE)x(t) + B1a(Im-1 — Aa2(t) Mo (t)N2(l) — WA(t)) (GB) Ex() (6.28)

0
Remark 6.2:Note that in the nominal fault free case whaiit) = I, and in the case of perfect estimation
ofW(t) matrix, the top row in the second term is zero, and the clésep-ssliding motion is stable. In the
case of faults or failures whahi(t) # I, then the second term is not zero and will be treated as uhexitc
uncertainty.

For the stability analysis which follows, write (6.28) as

X(t) = (A+ BoF)x(t) + BO(t)F x(t) (6.29)
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where

0
Il

(6.30)

and the time varying uncertain term

O(t) == (Im-1 —Aza))w)(h — Aq(HWA(t) BLBzzAxt)qJ(t)f (6.31)
where
Wi(t) :=Wo(t)Na (I —Wa(t)) (6.32)

From (6.16) it is clear thalAVg(t)Ng(t) is a right pseudo inverse f@},B,,. Then by using arguments
similar to those as given in Chapter 4 as proved in [111],liofes |[Wa(t)Na(t)|| < y1 for some positive
scalary;, provided that déB, s (t)BJ,) # 0. Since

WO < [l(h = Wa(0)) W2 (ON2(1) || < BN ()] < 12

||¥(t)|| remains bounded. Defing as the smallest number (which will be used in Breposition 6.)
satisfying
YOI <w (6.33)

In the following subsections the main results of the Chaptempresented.

6.3.1 Stability Analysis of the Closed-loop Sliding motion

In the case of perfect estimation of thé(t) matrix, (i.e. A(t) = 0) and when there are no faults in the
system (i.e.W(t) = I) the uncertain tern®(t) in (6.29) vanishes (i.e®(t) = 0) and the closed-loop
sliding motion in (6.29) simplifies to

X(t) = (A+ BoF)x(t) (6.34)

which is stable by the choice of the baseline contrdfer
In the case of non-perfect estimationVB’(t) and in the presence of faults, the stability of (6.29) needs t

be proven. To this end, in this most general situation thetom governing the sliding motion in (6.29)
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can be written as

X(t) = (A+BoF)X(t) + Bd(t) Q‘Q (6.35)
A y

For the subsequent stability analysis, define-#3egain betweem fo y as

Vo= [1G(S) (6.36)

where the transfer function matrix

G(s):=F(sl—A)~'B (6.37)

and is stable by design.

Proposition 6.1:Suppose that the condition

(1+¥8%1) DAmax< 1 (6.38)

holds, wherey; and Amax are defined in (6.33) and (6.4) angl= ||B22||, then during fault or failure
conditions including failure of all primary actuators armt any W 1(t),...,Wny(t) € # where? is

defined in (6.14), the closed loop system in (6.35) will bdlstdf:

VoV (1+ Amax)

1—(1+V3¥f1k)ﬁmax< 1 (6.39)

wherey is defined in (6.36).

Proof. The closed-loop sliding motion in (6.35) can be written as

X(t) = Ax(t)+Bi(t) (6.40)
Jt) = Fx(t) (6.41)

where
{(t) = d(t)§(t) (6.42)

By using the small gain theorem as discussed in the Appendi2Bthe feedback interconnection of the

known stable matrix3(s) with the bounded uncertain ter(t) and hence equation (6.35) will be stable
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IG(9) | [|P(1)[| < 1 (6.43)

From equation (6.31), it is clear that

PO < | (1 = Aa(OWA(H) — B3iBooA2(0)W(1)) ]It — A2(®) W (D) (6.44)

X(t)

Using the fact thafi\Wi (t)|| < 1, and||B},|| = 1 (sinceB},Bo1 = 1), from (6.44)

IXEN < [A1OMA)] + [BRB22A2(t) W)

IN

A1) + B2zl | A=) [P O)]]

< (14 ys%)Amax< 1

if the conditions ofProposition 6.1hold. Hence from (6.44), and using the fact [63] that in gaher

=X < @= x|~ i X[l <1

therefore
Y1 (14 Amax)

(L VY Do (6.45)

)] < £

From the expression in (6.45) and the fact th@ts)||. = y», a sufficient condition to ensure the condi-

tions of the small gain theorem in (6.43) hold is that

VoVi (14 Amax)

<1
1-(1+ VSVI)Amax

This is the condition in (6.39), and the prooffoposition 6.1is complete. u

Remark 6.3 If By is zero in (6.30) (which is the assumption in many CA schemses for example [60],
[105]) thenB = 0 , and the condition dProposition 6.1is trivially satisfied. The scheme in this Chapter
considersB;, # 0, and consequently proposes a more general solution whkipls karget a wider range

of potential applications.
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6.3.2 Integral Sliding Mode control laws

Now a control law will be designed such that the sliding motim the sliding surface in (6.20) can be

ensured. Define the integral sliding mode control law as

V(t) = vi(t)+ vn(t) (6.46)

where the linear part of the control law same as in (6.9) wkidmowna priori is

vi(t) := Fx(t) (6.47)

and the nonlinear part, which induces the sliding motion, is

Vn(t) := —p(t,x) HZE:’QH for o(t,x) #0 (6.48)

wherep(t,x) is the modulation gain whose precise value is proposed istdtement oProposition 6.2
Now in the sequel it is demonstrated that the integral gliditode control law in (6.46)-(6.48) satisfies
the reachability condition.

Proposition 6.2:Assume the conditions ¢froposition 6.1hold. Then ifp(t,x) is chosen as

(1+y8Yi) Amaxlvi(t)[| +n
1- (1‘|’ VSVI)Amax

p(t,x) > (6.49)

wheren > 0 is a small positive scalar, the integral sliding mode aaraw in (6.46)-(6.48) satisfies the

reachability condition and sliding o&’ in (6.20) is maintained.

Proof. By substituting the control law proposed in (6.46)-(6.4&)pi(6.24) and by using the fact that
GB, =1, it gives

. - o(t)

o(x,t) = (GB)(Fx(t) — T) —Fx(t) (6.50)
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Since by constructioB),B,1 = 1, using (6.22) and (6.32) equation (6.50) can be written as

. ~ T o(t)
a(t) N T a(t)
—p—— — [ D)WL (L) + By Box Ao ()W(t) ) (FX(t) — p—rt— 6.51
Pl (LMW +BLB W) (FX®) -~ prt)  (651)
Now consider the candidate Lyapunov function
15

Vit)=50"0 (6.52)

Taking the time derivative of (6.52) and substituting &) from (6.51) yields

V. = —plloll- o7 (a0 () + BLB2A)W(D)) FX()
o0 (AaOW(0) +BEB2AOW() o

IN

—pllaf|+ |o[l(Amaxt V8Amaxr) Vi | + Pl O [ (Amax+ V8l maxyi )

—P(1 = (Amaxt B3lmaxyi IOl + [ O[| (Dmax+ YA maxys) VI (6.53)

IN

where/Amaxis defined in (6.4). By choosing the value mft,x) as proposed in (6.49), the expression in
(6.53) become¥ < —n||o|| which is the standard reachability condition, and is swfitito guarantee

that sliding on the surface” is maintained. u

Finally in order to obtain the overall physical control lavash is used to create the actual control signals

sent to all the available control surfaces, substituting@$(6.48) into (6.11) yields

I
u(t) = ' . <Fx(t)—p(t7x)M> (6.54)
Na(t) (I —WA(t)) [o(t,x)||
whereN,(t) is defined in (6.13). The efficacy of the proposed scheme tiedés the following section

using the high fidelity nonlinear model of the large trangpancratft.
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6.4 Simulations: yaw damping of a large transport aircraft

The proposed integral sliding mode FTC scheme employs as&ip approach building on an existing
state feedback controller designed using only the primeiyadors. In the physical control law proposed
in (6.54), the baseline control law is assumed to exis-priori. The technique implemented in the
proposed FTC scheme is to use the baseline controller inoiiménal fault free scenario, and activates the
fault tolerant features only in the case when faults or faduoccur in the actuators. All the simulations
which follow have been based on the high fidelity nonlineadei®f the large transport aircraft using
the FTLAB 747V6.5/7.1 software environment which was used as the basis for theTRAR AG16
benchmark [39].

The objective of the simulations is to damp the lateral dyicarof the aircraft when the initial sideslip
B(0) is perturbed by 4 while the aircraft is flying at a high altitude say 400 ft with a high speed
say 774 ft/lsec. The lateral dynamics of a large transpoctadirdiscussed in Appendix A.1 are used
to evaluate the proposed scheme. For yaw damping the waileustate which is obtained using the
relation [48]:

is augmented with the lateral dynamics, whetis the yaw rate and,, is the washout filter state. The
nominal state feedback controllBrassociated with the primary actuators for yaw damping (wisca
stability augmentation system for the lateral dynamicsro@mcraft) has been taken from the literature,
which is based on the ideal closed-loop eigenvalues in Y@&B8 eigenvectors in (6.60) (Section 6.5) and
is not part of the design process. For design purpose, aitiagian of the benchmark model is obtained
about an operating condition of 40 ft altitude and 774 ft/sec forward speed (MacB)@s defined

in [48], [61]. By augmenting a washout filter state given iatipn (6.55), the state space representation

of the model is given as

_—0.3330 0 0 1 E

0 0 0 00816 1

Ap= 0 00413 —0.0537 —0.9944 00823
0 —-0.0012 06090 —-0.0869 —-0.0335

0 00002 —2.9236 03681 —0.4514
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0 0 0 0 0 0
0 0 0 0 0 0

Bp= 0.0070 0| 0.0003 —-0.0003 00002 —-0.0002 (6.56)

—0.4438 —0.0082| —0.0046 00046 00493 —0.0493

0.1451 -0.1329| —0.0625 00625 00085 -—-0.0085

The states aréxo, @, 8,1, p)T, wherex,, is the washout filter state (rad) in equation (6.55) and ig onl
augmented in this Chapter in the lateral dynamics for yawmag) ¢ is the roll angle (rad)g is the
side slip (rad)r is the yaw rate (rad/sec) arglis the roll rate (rad/sec). The control surfaces which are
considered for the design adg; = {d,éa,ésrﬁ,ésrg,Tn,Tr}}T whered; is the rudder deflection (rad),
0, is the aileron deflection (radds is the left inner spoiler (rad))g is the right inner spoiler (rad) and
Tn andT n are aggregated engine thrusts (N) (scaled 5y a0 the left and right wing. It is assumed that
the left aileron moves in an antisymmetrical fashion to ightrailerort. In (6.56) the input distribution
matrix By is divided into primary(&, )" and secondarjésw,ésgg,Tn,Tr})T actuators. A further
transformation is required in order to have the structur@®ig) and to ensure th&81BJ, = 1,. Using the
set of eigenvalues and eigenvectors as mentioned in theo8€&ch, the ideal baseline control I&wfor
yaw damping (considering only the primary actuat@sd.)" ), based on eigenstructure assignment [81]
is

—0.5342 —-0.4817 00665 11836 —0.0133

F_ (6.57)
—219319 —0.5188 01313 19001 06705

The state feedback control gain matrix in (6.57) will be tales thea priori given controller around

which the novel integral sliding mode scheme from Sectibrsitreated.

6.4.1 Fault Tolerant Control Law for Yaw Damping

In the case of faults or failures the baseline control law6is7) can not be used alone; instead the fault
tolerant control law proposed in (6.54) will be employeddtain performance close to the nominal. In the
nominal case, the aileron is the primary control surfacesfwacking, and the spoilers are the redundancy;

whereas the rudder is the primary control surfaceffdracking (i.e. yaw damping), and differential

1The outer ailerons and spoilespl — 4, sp9 — 12) are not active at high speed cruise condition due totstraic
limit. The spoilers §p6,sp7) are ground spoilers and not used in flight
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engine thrust is the redundancy. The closed-loop stalutitydition in (6.39) should be guaranteed in
nominal and in faults/failures scenarios. The valueyofor the a priori F using equation (6.36) is
y> = 0.0424. Using (6.33) it can be verified using a numerical setivaty; = 7.5920. Hence to satisfy
the stability conditions oProposition 6.1in (6.38) and (6.39) wherg = 0.7176, the maximum value of
the error in estimation of the actuator effectiveness ewdlich can be handled by the physical control

6.5 Baseline control law for yaw damping

Eigenstructure assignment is a method which provides #selém to allow the appropriate set of eigen-
values and associated eigenvectors to be considered iretligndorocedure to achieve the desired per-
formance or shape of the closed-loop system response. &tbdek gair, based only on the primary
actuator, is assumed to be availahleriori and should stabilize the nominal closed-loop system ir0j6.1
The design of is based on the set of eigenvalues given in (6.59) and thebssible eigenvectors sug-
gested in [45]. Based on this available eigenstructurefabdback gairF can be obtained using the
relation

(A+BoF)vi=Aivi i=1..n (6.58)

where; is an eigenvalue ang is the associated eigenvector. It is argued in [93] th&,ifs of full
rank then,a maximum of n eigenvectors can be partially assigned withisimum of | entries in each
eigenvector arbitrarily chosen”

The ideal closed-loop eigenvalues for the nominal statdbf@ek controller= associated with the pri-
mary actuators for yaw damping (which is a stability augratoih system for the lateral dynamics of an
aircraft) are

{-0.0051 —0.468 —0.6+ 0.628j, —1.106} (6.59)

The motions corresponding to the stable real poles arereefé¢o as the spiral mode-0.0051), the
washout filter (0.468) and the roll mode (-1.106). The motion correspondinthéocomplex poles is

referred to as the Dutch roll mode. The best possible eigeorseto ensure decoupling between these
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modes as described in [45] are represented as

_*——*_ _*— —*_ —O_ _XWO_

0 0 1 1 0

1 1 0 0 0 B (6.60)
* * * * 1 r

* * * * 0 p

Dutch roll mode roll modespiral modenashout filter  x(t)

wherex denotes that the magnitude of the element is unimportarg. ablove selection of eigenvectors
ensures no coupling of dutch roll with the roll angle and dr rate. Furthermore the spiral mode and
roll mode are associated with the roll angle only, and sheaklre decoupling from the sideslip angle to
avoid sideslip in the course of a steady turn [93]. The wasfitber which is used for the yaw damping

is only associated with the yaw rate.

6.6 Nonlinear Simulation Results for Yaw Damper

Practically the integral sliding mode control law proposed6.48) cannot be directly used in this case,
and the discontinuities in the unit vector have been smaotiseng fractional approximatiomjl“’ﬁ [41]
given in section 3.5, where value of the positive scalar iseh a® = 0.01. In the sequel three simulation
scenarios are investigated: one a fault free case and evimgjcthe estimation of the/(t) matrix is
perfect; the second considering the same scenario as il casewhen the estimation of tNé(t) matrix

is imperfect; and the third a scenario involving a primarjuator failure and with imperfect estimation

of W(t).

6.6.1 Case 1: Fault Free Case With Perfect Estimation of W(t)

In the case when the estimation of the effectiveness levab&(t) is perfect,A(t) = 0 andAmax= 0.
Consequently the stability condition in (6.39) reducegtg = 0.3217< 1.
Figures 6.2-6.3 demonstrate the nominal fault free perdowce. In Figure 6.2 it can be seen that the roll

and yaw modes are decoupled. During the nominal fault freeas@ the secondary actuators are not
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active (Figure 6.3) because the integral sliding mode FT@mse is not active in this case and only the

baseline controlleF is employed to achieve the nominal performance.

6.6.2 Case 2: Fault Free Case With Imperfect Estimation of W

A second scenario is considered here to demonstrate thaosfiod the scheme when the system is fault
free and estimation of th&/(t) matrix is not perfect. Figure 6.4 shows that due to impreicisgmation
provided by the FDI, the estima\fd(t) 1, (indicating the presence of faults) although in realitgrthis

no fault in the system. In response to this the control atlonascheme engages the secondary actuators
(spoilers forg performance and differential engine thrust foperformance) as shown in Figure 6.5 to

maintain the closed-loop stability of the system and taimataminal performance same as in Figure 6.2.

6.6.3 Case 3: Primary Failure With Imperfect Estimation of W(t)

The third scenario demonstrates the scheme with imperitichatesV(t) in the case of failure in the
primary actuators. Theoretically the maximum percentager &\ ax the proposed scheme can handle
and yet ensure the stability conditionsPrioposition 6.1 is 10%. Figure 6.7, shows the scenario when
both the primary actuators (rudder and ailerons) have jainateffset positions at 6 sec, and due to
imprecise information provided by the FDI scheme, the ¢ilfeness of the primary actuators is estimated
at 10%, instead of 0% (Figure 6.6). Due to this failure, tightriwing spoilersp8B is actively engaged by
the control allocation scheme together with left and rightgrengines thrust to cope with this situation,
and to maintain the performance close to the nominal FigteTge switching function plot in Figure 6.7

shows that the sliding is maintained in the entire systemaese.
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6.7 Conclusion

In this Chapter a novel fault tolerant control allocatiomeme was proposed by incorporating integral
sliding modes. The controller structure does not need tchbaged and the same controller is used in
both nominal as well as in fault/failure scenarios. The psgal scheme employed arposteri approach
building on an existing state feedback controller desigimgdg only the primary actuators. To distribute
the control signals to the functional actuators, the scheseel the estimated effectiveness levels of the
actuators provided by an FDI scheme. Furthermore the pegpe$C scheme can handle a level of error
in terms of estimation of the actuator effectiveness. Andgs stability analysis for imperfect actuator
effectiveness estimate has been developed. The efficabg pibposed scheme was tested in simulation
using a nonlinear benchmark model of a large transportadtrcr

The FTC scheme in the coming Chapter considers an extensitie @eas proposed in Chapter 4 for
the Linear Parameter Varying systems. Due to the fact tleabperating conditions frequently change
in safety critical systems, the extended ideas of FTC in tmicg Chapter will allow to investigate the

closed-loop performance of the FTC scheme in the wider rafggeerating conditions.



Chapter 7

Linear Parameter Varying FTC Scheme

using Integral Sliding Modes

This Chapter introduces a new fault tolerant control schimknear parameter varying (LPV) plants by
incorporating ideas of integral sliding modes and contliokcation. This Chapter consideas extension

of FTC scheme proposed in Chapter 4 by exploiting the globapbgrties (in a sense of concern of the
system behaviour along all possible parameter variatiohk)ear parameter varying systems. An LPV
control design methodology seeks for a single control laviclviexplicitly depends on these varying
parameters [50]. The effectiveness of the scheme is testsithulation by applying it to a benchmark
LPV model of a transport aircraft. The closed-loop stapiitthe overall system is guaranteed throughout

the entire operating conditions envelope even in the poesehtotal failure of certain actuators.

7.1 Introduction

Many different control paradigms see for example ChaptehRkvhave been explored in the literature
to tackle the fault tolerant control problem. However, ipi®bably fair to say that most of the FTC
methods have been proposed for linear time invariant (Ljf$jesns. However there are notable excep-
tions. FTC methods based on LTI system descriptions arewbataestricted to near trim conditions.
Linear parameter varying systems can be considered as ensext of LTI systems and are a certain

class of finite dimensional linear systems, in which theiegtof the state space matrices continuously

136
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depend on a time varying parameter vector which belongs tuaded compact set [85]. LPV methods
have attracted much attention in recent years— especallgifcraft systems [50] and are appealing for
nonlinear plants which can be modelled as time varying systeith state dependent parameters which
are measurable online [101].

In this Chapter an LPV system representation is considex®d, natural extension of LTI systems. The
objective is to synthesize an FTC scheme which will work cvevider range of operating conditions.
There is almost no literature on the use of sliding modelrotlets for LPV systems with the exception
of [107] and [95]. The work in [107] and [95] has proposed SMBieames for LPV systems although
not in the context of fault tolerant control. Theain contributionof this Chapter is t@xtendthe integral
sliding modes control allocation ideas proposed in Chaftar a class of LPV systems. Same as in
Chapters 4 and 6 the inclusion of CA with integral sliding reedhas enabled a baseline controller to
be design for both fault free and faulty condition, by avoglthe need to reconfigure the controller. In
the proposed scheme, it is assumed that (fault free) stiteriation is available for controller design
together with estimates of the actuator health levels. Bigdethe virtual control law, the varying input
distribution matrix is factorized into a fixed and a varyingtnix. The virtual control law designed by
the ISM technique is translated into the actual actuatomsands using the CA scheme. In the proposed
scheme the controller is automatically ‘scheduled’ andgetbloop stability is established throughout
the entire operating envelope. The proposed FTC scheme aartain closed-loop stability even in
the presence of total failures of certain actuators, pexvithat redundancy is available in the system.
The efficacy of the proposed FTC scheme is tested in simualdtyoapplying it to an LPV model of a

benchmark transport aircraft previously used in the liteea[50].

7.2 Problem Formulation

An LTI plant subject to actuator faults or failures consaten Chapter 4 (equation 4.1) can be extended

for linear parameter varying plant which can be represeased

X(t) = A(p)X(t) + B(p)W(t)u(t) (7.2)
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whereA(p) € R™", B(p) € R™MandW(t) € R™™Mis a diagonal semi-positive definite weighting matrix
whose diagonal entries (t),..,wm(t) model the efficiency level of the actuators.wifit) = 1 it means
that theiy, actuator is working perfectly and is fault free, whereas if ®; (t) > 0 some level of fault is
present (and that particular actuator works at reducedegifig). If wi(t) = O it means they, actuator
has completely failed and the actuator does not respondetadhtrol signaly(t). The time varying
parameter vectgp(t) is assumed to lie in a specified bounded compac®setR" and is assumed to be
available for the controller design. Further assume thavérying plant matrice&(p) andB(p) depend

affinely on the parameter(t) that is
r r
A(p) =Ao+ Y pA B(p)=Bo+ ) piB;
%P 28

To design the virtual control law, which is designed in thgusd, assume that the parameter varying

matrix B(p) can be factorized as

B(p) = BfE(p) (7.2)

whereB; € R™Mis a fixed matrix andE(p) € R™™Mis a matrix with varying components and is assumed
to be invertible for allo(t) € Q. This of course is a restriction on the class of systems fachie results

in this Chapter are applicable, but for example many aitagdtems fall into this category.

As discussed in Chapter 4, to resolve actuator redundassynee that by permuting the states the matrix

Bt can be partitioned as

B
Bi=| - (7.3)

B2

whereB; € R(™D*M andB, € R'*M is of rankl < m. Here it is assumed as in Chapter 4 thBg|| >
|IB1]| so thatB;, provides the dominant contribution to the control actioncespared tdB;. Again,
although this is a restriction, the aircraft example satsfiuch a constraint. Furthermore scale thel last
states to ensure thBgBJ = I;. This can be done without loss of generality.
Using (7.2) and (7.3), the system in (7.1) can be written as

B1E(p)W(t)

X(t) = A(p)x(t) + u(t) (7.4)
BoE (p)W(t)
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The design of the virtual control, will be based on the fatgefsystem i.e. wheWw(t) = I. Define the
virtual control input signal as:

v(t) := BoE(p)u(t) (7.5)

wherev(t) € R! is the total control effort produced by the actuators [60]sirld the factB,B) = I,
one particular choice for the physical control lagt) € R™ which is used to distribute the control effort

among the actuators is

u(t) := (E(p)) B3 v(t) (7.6)

Substituting (7.6) into (7.4) yields

X(t) = A(p)X(t) + V(1) (7.7)

In the nominal case, when there is no fault in the systemwitenW(t) = |, equation (7.7) simplifies to

. B.B}
X(t) = A(p)x(t) + I v(t) (7.8)
|

By
Al: The pair &(p),By) is controllable for all the values gi(t) € Q.

In this Chapter all the states are assumed to be availabtbdarontroller design, therefore a state feed-

back gainv(t) = —F (p)x(t) can be appropriately designed in order to stabilize the nahsystem

X(t) = (A(p) —ByF(p))x(t)

for all values ofp(t) € Q, as well as to achieve the desired closed-loop performaFe.nominal fault

free system in (7.8) is used in the next section to designitiwgaV control law.
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7.3 Integral sliding mode controller design

This section focuses first on the design of the sliding seraud then subsequently the control law so

that the sliding motion on the sliding surface can be ensfoedll the time.

7.3.1 Design of Integral switching function:

The integral switching function suggested in Chapter 4 gqn 4.18) ensures that the sliding mode
will exist from the time instant the controller is switchedlioe. Consequently invariance to matched
uncertainty is guaranteed throughout the entire respohgeecsystem. Here the switching function
suggested in equation (4.18) is extended to the use for LBWM$l Choose the sliding surface. a5=

{xeR": o(xp,t) =0}, where the choice
o (x,p,t) = Gx(t) — GX(0) —G/Ot (A(p) — BuF (p))X(1)dT (7.9)

is advocated wher® € R'*" represents design freedom. The choic&a$ based on the fixed matrB;
and is suggested as

G:=By(B]B;) 1Bl (7.10)

The choice ofG in (7.10) is of similar structure as in (4.19). With this ctwiof G, and using the special

properties of matrixB, such thaBng =1y, itis easy to verify that
GB, = B,(BIBf) 'B]B(B} =1, (7.11)

which means that nominally when there are no faults in théegy8/ = I, the special choice d& in

(7.10) serves as the left pseudo inverse of madjixAlso from equation (7.7)

GBw(p) = Ba(BBt) 'BfB{E(p)W(t)(E(p)) 'B;

= B:E(p)W(t)(E(p)) "B} (7.12)

and will be used in the sequel while defining the control lavonk the result in (7.12), it is clear that it

agrees with that of the result in (7.11) nominally.
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To maintain the sliding on the sliding surface, equivalenitmol (which is the average value of the virtual
control v(t)) is required and can be obtained by using the relatioa ¢ = 0. By taking the time

derivative of the switching functiog along the trajectories yields

o (x,p,t) = Gx(t) — GA(p)x(t) + GB,F(p)x(t) (7.13)

and after substituting from (7.7),

a(x,p,t) = GBu(p)v(t) + GB,F(p)x(t) (7.14)

and therefore the expression for the equivalent controbeanritten as

Veq(t) = —(B2E(p)W(t)(E(p)) 'B3) 'F(p)X(t) (7.15)

provided the actuator effectiveness mawiit) is such that déB,E(p)W(t)(E(p)) !B)) # 0. The
expression in (7.15) is obtained from solving f@r= 0 in (7.14) using the expression f@&B,(p) in
(7.12) and the fact thaBB, = I;. Substituting (7.15) into (7.7) yields the expression foe sliding

motion as

X(t) = A(p)x(t) —Bu(p) (B2E(P)W(t)(E(p)) *B}) F(p)X(t) (7.16)

Furthermore by adding and subtracting the tdpk (p)x(t) to the right hand side of equation (7.16)

yields

Aft,
X(t) = (A(D) — BJF (0))X(t) + (;p " R (7.17)
|

where the term which models the uncertainty part is

A(t,p) = B1B] — BiE(p)W(t)(E(p)) B} (B2E(P)W(t)(E(p)) 'B]) ™

Remark 7.1: From equation (7.17) it is clear that when there are no aatufatlts in the system (i.e.
W(t) = Iy the second term disappears and ends up with a stable syli®wever in the case of faults

or failures (i.e. wherwW(t) # I, the second term does not vanish and will be treated as uhsethtc
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uncertainty while sliding.
The closed-loop stability of the motion while sliding must bnsured in the presence of uncertainty
A(t,p). To facilitate the closed-loop stability analysis the d@qra(7.17) can be written in the special

structure as

X(t) = (A(p) —ByF (p)) (t) +BA(t, p)F (p)x(t) (7.18)

where

B:= (7.19)

Now in order to define the class of faults or failures for whilkh FTC scheme proposed in this Chapter

can cope, let the diagonal entriesviéft) belong to the set

We = {(W1,...,Wn) € [ 0 1} X ... X { 0 1} : (GBw(p))T(GBw(p)) > &I} (7.20)

mtimes

wheree is a small positive scalar satisfyinge < 1. Note that whekV(t) = Im, (GBy(p)) T (GBw(p)) =
| > €l and therefore#” # 0. If the actuator effectiveness matki(t) = diag(wi, ...,Wm) € #; then by

construction

1(GBw(p)) "Il = I|(B2E(p)W(E(p))*B3) || < %

The set#”; will be shown to constitute the class of faults/failures vidrich closed-loop stability can be

maintained. From (7.18) note that for aWyc #;
c
APl < va(1+-) (7.21)

wherec = max,cq |[E(p)||[|(E(p)) 1| i.e. the worst case condition number associated ®ith) and

y» = ||B1||, which is very small by hypothesis. Proving the stabilityttoé closed-loop sliding motion in
(7.18) (in the nominal as well as in the fault/failure scéwgris one of the important parts of the design
process which is demonstrated in the following subsection.

Remark 7.2:The conditions in this Chapter are subtly different to thios€hapter 4. In (7.20) the norm

of (GBy(p))~! must be guaranteed to be bounded by limitiNgs #; thus introducing an explicig
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to bound||GBy(p)|| away from zero. This is not necessary in Chapter 4 and so tiee*dor a wider

operating envelope is a more restricted set of possiblerésl

7.3.2 Closed-loop stability analysis:

In the nominal fault free scenario wh¥(t) = I, it is easy to verifyA(t, p) = 0 in equation (7.18) and
simplifies to

X(t) = (A(p) — ByF (0))X(1) (7.22)

which is stable by design (Ff(p)). However in fault/failure scenarios, closed-loop stépifieeds to be

proven. To this end, equation (7.18) can also be represégted

a(t)

I ———
X(t) = (A(p) —BuF (p)) x(t) +BA(t, p) F (p)X(t) (7.23)
Alp) y(t)

Defineyy to be the, gain associated with the operator
G(s) :=F(p)(sl—A(p)) 'B (7.24)

Proposition 7.1:For any possible combination of faults or failures beloggio the set#;, the closed-

loop sliding motion in (7.23) will be stable if

Vova(1+ %) <1 (7.25)

Proof. The specially written structure in (7.23) can be thought ©fdeedback interconnection of an

LPV plant and a time varying feedback gain associated with

X(t) = A(p)x(t)+But) (7.26)

yt) = F(o)x(t) (7.27)

where

U(t) = A, p)y(t) (7.28)
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If (7.25) is satisfied then according to the small gain theofe5] as discussed in the Appendix B.1.2
IG(9)|At, )|l < 1 (7.29)

the closed-loop system in (7.23) will be stable. u

In the next subsection the ideas of integral sliding modesuaed to design the virtual control lawt)

in order to produce the virtual control effort.

7.3.3 ISM Control Laws:

The integral sliding mode control law is based on the nomfiaalt free system in (7.8) and comprises
two components:

V(t) = vi(t)+ vn(t) (7.30)

The linear part which ensures nominal performance is defised

W (t) == —(GBu(p)) "F(p)X() (7.31)

and the nonlinear discontinuous part which induces sliding provides robustness against fault/failure

scenarios is defined as

-1 O(X7p7t

ww:—%mxm@mm»]gggﬁT

foroc #0 (7.32)

where 7 (t,x, p) is the scalar modulation function, whose value is proposdttaposition 7.2

Proposition 7.2:Assume that th@roposition 7.1holds, then if# (t,x, p) is chosen as
H(t,%,0) > No (7.33)

wheren, > 0 is a positive scalar, the integral sliding mode controldal&fined in (7.30-7.32) satisfy the

reachability condition and sliding o is maintained.

Proof. To demonstrate this, substitute the integral sliding maatgrol law in (7.31)-(7.32) into (7.14)
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which yields
a(xp,t)

a(x.p,t) = —%(LX,P)W

for o(x,p,t) #0 (7.34)

Consider the positive definite candidate Lyapunov function
1 1
V(t) = éo- (X,p,t)G(X,p,t) (735)

Taking the time derivative of (7.35) and substituting thkugaof (7.34), yields

<.
Il

— 2 (t,x,p)|o(x,p,t)|

2V (t) (7.36)

IN
|
P

o

Equation (7.36) is a standard reachability condition [41] & sufficient to ensure that the system trajec-

tories always remain on the sliding surface. u

Finally the physical control law which is used to distribtiie control effort among the available actuators

is obtained by substituting (7.30)-(7.32) into (7.6) whidelds

u(t) = —<E<p>>-1B£<BZE<p>w<t><E<p>>-1B£>-1<F<p>x<t>+%<t,x,p>%> for 0 £0 (7.37)

The physical control law (7.37), requires the informatidroat the effectiveness level of the actuators
contained inV/(t), which can be obtained through some FDI scheme— see for ée&@upsection (4.4.1)
or [113]. This information can also be obtained by directhmparing the controller signals with the
actual actuator deflection, as measured by control surfatgoss, which are available in many aircraft

systems [22].

7.3.4 Design of the state feedback gain

In this section, the state feedback gRifp) using the nominal system (7.8) will be designed. In designin
F(p) two objectives must be met: the first is equivalent to achigyire-specified nominal performance
for all the admissible values @f(t), and the second one is to satisfy the closed-loop stabditylition in

(7.25) via the small gain theorem. Nominal performance bellincorporated by the use of a LQR type
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cost functiond = [ (x" Qx+u"Ru)dt, whereQ andR are s.p.d matrices. By using the arguments outlined
in [8], which say the LPV system matriceg(@), B, F(p)) which depend affinely on the parameter vector
p(t)in (7.26) and (7.27) can be represented by the polytopiesyéi(m), B, F(a)) where the allowable
range ofp € Q corresponds to a polytope with vertices, wy, ..., w,, Whereaw,, = 2". This approach

can be posed as an optimization problem: Minimizee(X 1) subject to

A(@)X+XAT (@) —ByY (@) —Y(@)™B) (QiX—RiY(w))" o (7.38)
QX —RiY(w) —1

X>0 (7.39)

whereQ; = [(Q2)T 0O T andRy = [0, (R2)T]T andY(w) := F(w)X andX 1 € R™" is the

Lyapunov matrix. To satisfy the closed-loop stability ciiwah in (7.25), it is sufficient to apply Bounded

Real Lemma (BRL) at each vertex of the polytope such that

A(@)X+XAT (@) ~ByY () -Y(@)™B] B Y(w)T
BT —yAl 0 <0 (7.40)

Y () 0 I

Since the objective is to seek the common Lyapunov matrixhfeil_MI formulations at each vertex, this
can be achieved by introducing the slack variabke R"™" and posing the problem as:

Minimize trace(Z) subject to

z
" <o (7.41)

Ih —X

together with (7.38), (7.39) and (7.40). The decision \#desa areX andY(w ). The matrixZ satis-
fiestrace(Z) > trace(X1). Therefore the LMIs in (7.38-7.41) can be solved for all Wiegtices of the
polytopic system and at each vertex the state feedbackxrean be obtained by using the expression

F(@) =Y(@)X ™.
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7.4 Simulations

In this Chapter, the control law design is based on the LPYitméa transport aircraft from [77] and is

explained in the next subsection.

7.4.1 LPV model of a transport aircraft

In [77] the nonlinear longitudinal dynamics model of thenport aircraft is approximated by polyno-
mially fitting the aerodynamics coefficients obtained frod8][to create an LPV representation using
the function substitution method. The aerodynamic coeffits are polynomial functions of velocity,s
and angle of attackr in the range of150,250m/sec and—2°,8°] respectively and at the altitude of
7000m [77]. The states of the LPV plant in [77] di@, J; Vias, 6, he} T which representleviationof the
angle of attack, pitch rate, true air speed, pitch angle ditdde from their trim values. The inputs
of the LPV plant are[c‘i_e, c‘i_s,'l'_n}T, which represent deviation of elevator deflection, horiabstabilizer
deflection and total engine thrust from their trim valuegessively. The trim values of the states are
{Qtrim, Gtrim s Veagyim » Grims Nayi | = {1.05°,0°/5,227.02m/s,1.05°,7000m} and the trim values of the LPV
plant inputs arg dg,;  Osims Tim + = 10.163°,0.59(°,42291IN}. The LPV system matrices are given by

7 7
A(P)ZA0+_ZPiAi and B(P)ZBo+_ZlPiBi (7.42)

where[ps, ..., p7] := (@, Vias, Vtas@, ViZe, V20, Vids, Vidd, Whered = o — ayim andVias = Vias— Vias, i -

The LPV plant matrices used for the controller design arerakom [77], (and represents the LPV
longitudinal axis model of the benchmark aircraft modellaimd in the Appendix A.1) and has been
reordered to have the structure in (7.2). For the contrdisign the statlge is removed, because normally
the altitude can be controlled by controlling the FPA (ehis tan be seen in [50]) and since the objective
in this section is to control the FPA and speed (2 stateethie altitude is not important while designing
the controller. After reordering, the LPV plant states bneqe_, a  Vias, q}". The LPV system matrix is

given by



CHAPTER 7. LINEAR PARAMETER VARYING FTC SCHEME USING INTEGA.

SLIDING MODES 148
0 0 0 314([))
Ap) = 0  ags(p) asx(p) as(p)
a1(p) ax(p) a(p) O
0 aw(p) as(p) aw(p)
where
a4(p)=1
aza(p)=—0.5935—2.5923% 10 3p,
aza(p) =—5.2124x 10 4-6.2678x 10 " po+1.1121x 10 1p,4
a34(p) =0.9914
agl(p) =-9.7851
(P)

—0.7736x 10 %ps — 1.6408x 10 3ps
ax(p)=—6.1168x 10 32.1091x 10 °p»-2.2374x 10 8p,

ay3(p) =—1.9626+3.417Qp; —0.0172%, + 0.0301p3

—0.38081x 10 *p, + 6.630x 10 °ps
a2(p) =—4.9579x 10 4-3.8893x 10 °0,7.6201x 10 °ps +0.19644x 10~ pg
asa(p) = —0.46087— 0.00203,

and the LPV input distribution matrix is

0 0 0
b31(p) baa(p) bas(p)
B =
() 0 0 bylp)
bs1(p) bax(p) baz(p)
where
bs1(p)=—0.0358— 1.1877x 10 °p, + 1.5311x 10 ®ps+ 3.9135x 10 °pg
b32 P =-0.0716

boa(p) =1.3323— 0.05813%

—1.7696— 0.008%; + 0.5985x 10 *p,
+0.4428x 10 °pg +0.6912x 10 °p;
bus(p) = —3.9993— 0.03523%, — 0.776x 10 4p4
bus(p) =0.015328

()
()
bss(p)=—3.6326x 10 *-5.8732x 10 p+1.6002x 10 ®p, +0.25871x 10 *p3
()
()

ba1(p

7.4.2 Control design objectives

In the simulations scenario it is assumed that the aircradfietgoes over the entire up-and-away flight

envelope. This can be achieved by appropriate tracking Afdfid true air speed,s. The control design
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requirements are taken from [50]. The tracking requiresémt FPA andV;,s are decoupled responses
and with settling times of 20sec and 45sec respectivelyarfdhlt free scenario. In the case of elevator
or horizontal stabilizer failure, the tracking requirerhéor Vi remains unchanged (because speed is
controlled by thrust) but for the FPA response a settlinggetoh30sec is considered.

The controlled outputs afg, Va7, Wherey = 6 — a, is the flight path angle. For the virtual control the

input distribution matriXB(p) has been factorized into fixed and varying matrices:

0 0O
bs1(p) ba2(p) bsz(p)
001 0 O
B(p)= 0 0 blp) (7.43)
010
ba1(p) bax(p) baz(p)
0 01
- - E(p)

B

In order to introduce the tracking facility in the proposetieame, the plant states are augmented with the

integral action states [97] satisfying

% (t) = r(t) - CcxX(t)

wherer (t) is the reference command to be tracked, @oi the controlled output distribution matrix and

is given by

1 -1 00
Ce=
0O 0 10

By definingxa(t) = col[x (t),x(t)], the augmented system from (7.8) becomes

Xa(t) = Aa(p)Xa(t) + By, v(t) +Byr(t) (7.44)

where

(7.45)

Aq(p) = B, = By
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In the augmented system, the choicezoh (7.10) become§ := B»(B} By,) 'Bf where

andB; is the bottom two rows oB;. In this example for simplicity a fixed gain matrk is sought,
which is valid for all the range of the LPV model. Note thatidasg a fixed matrix=, also highlights
the simplicity of adapting an existing Maltlab LMI multi-rdel state-feedback synthesis code ‘msfsyn’
to solve the LMIs (7.38)-(7.41), where the LQR a8 objectives can be solved simultaneously by pro-
viding appropriate LQR weighting matrices and the tuningapeetery in (7.40). For designing the state
feedback gairf, theQ andR matrices in (7.38) have been choserQas diag{500,50,20,20,0.01, 30},
andR = diag{4,8} where the first two states i@ matrix are integral action states. The state feedback

gain resulting from the optimization is

1.0380 35196 68596 —3.8666 —3.2233 (03952
7.8693 —0.2319 —618796 448744 02072 —5.8896

The details of the design process are given in the Appendix Bbviously a varying matri¥ can also
be designed by directly solving the LMIs in (7.38)-(7.41) &l the vertices of the polytopic system.

In the nominal case, the elevator is the primary controlesugffor FPA tracking and the horizontal stabi-
lizer acts as redundancy. For ttgs tracking engine thrusflf) is the only control effector. Therefore in
all the simulations it is assumed that the engines are faadt Based on the condition given in (7.20), for
the positive scalag = 0.197 using a numerical search the valué|aft, p)| by using equation (7.21) is
0.0964. To satisfy the closed-loop stability condition ir2l), the value of;, associated with the operator
in (7.24) should satisfy, < W\/;q = 10.3734. The design process feryields a value of;, = 9.7851,
and hence the stability condition in (7.25) is satisfied. iDgithe simulations, the discontinuity associ-

ated with the nonlinear control term in (7.32) has been sheabby using the fractional approximation

(equation 3.37)W where the value of the positive scalar has been chosér=a8.01.
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7.4.3 Simulation Results

In the simulations, the LPV longitudinal axis model of a spart aircraft discussed in Section 7.4.1 is
used to demonstrate the efficacy of the proposed FTC schamthisIChapter the aircraft operates in
an ‘up and away’ flight envelope [50]. A series ¢f BPA and 10m/se®;;s commands are given to the
controller, in order to ensure the aircraft covers the erftight envelope.

In [50] only elevator failure (lock and float) are considerdds compared to [50], the FTC scheme pro-
posed in this paper is also tested by considering a stabftidare (as well as elevator failure scenarios).
In [77] two separate controllers are designed, one for timeimal fault free situation and second if eleva-
tor fault occurs so that horizontal stabilizer can be emgdbiyn order to achieve FTC. However in case of
elevator failure the reallocation to the stabilizer seed&@c and not formally formalized, where as the
proposed LPV ISM CA scheme in this Chapter, only requirestirainal fault free model based on the

virtual control whereas faults and failures are dealt watunally through CA.

7.4.3.1 Fault free scenario

In Figures 7.1-7.2, the nominal fault free case is demotetravhere it can be seen that good tracking
performance of FPA and,;s commands according to the control design requirementshigwed. The
aircraft undergoes a series df BPA commands in order to increase the altitude of the air¢fiafm
7000 m to 12222 m) and the speed of the aircraft is increased #50 m/sec to 230 m/sec in steps of

10 m/sec to go through the entire flight envelope.

7.4.3.2 Elevator Lock in place/jam failure

In Figure 7.4 an elevator jam failure (where the elevatorgamd stays fixed at some offset position)
occurs during the (climb) first FPA command. To counteraid fhilure, the proposed FTC scheme
demands more from the horizontal stabilizer and enginesttsettings without degrading the tracking
performance as compared to the nominal as can be seen ireHi@urThe sliding motion is maintained

in the entire system response even in the presence of aeldaditwe (Figure 7.4).
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7.4.3.3 Elevator float failure

An elevator float failure is considered in Figure 7.6. In ordesimulate this failure, at the time of failure,
the elevator control signal is replaced with the angle cickit[50], in this way the elevator does not
generate the required moment. During the failure when teeagdr follows the angle of attack aircraft
state, the horizontal stabilizer deflects in the positiveation by 28° to counteract the failure. In the
elevator float failure, the effectiveness of the scheme @asden in Figure 7.5. Both elevator jam and
float failures are set to occur during the first FPA commanchd80]. In [50] only elevator failure is

considered.

7.4.3.4 Horizontal Stabilizer Lock in place/jam failure

In Figure 7.8 horizontal stabilizer jam failure is demoastd. To tolerate this failure, the elevator and
engine thrust are manipulated by the control allocatiorsthto cope with this situation, to maintain the
closed-loop performance similar to the nominal one (Figui®. The sliding motion was not destroyed

by the failure which shows the efficacy of the FTC scheme agjdlire actuator failure (Figure 7.8).

7.4.3.5 Horizontal Stabilizer hardover/runaway failure

Another hard type of failure which is tested by using the psmal scheme is a hardover/runaway failure,
where the horizontal stabilizer runaways to its maximunursdion limit of 3 with its maximum rate
limit and then jams at that position as can be seen in Figli@ T.he control allocation scheme exploits
the available redundancy in an efficient way, and engagesl#vator actively together with the engine
thrust to maintain the desired performance same as nomigeh® can be seen in Figure 7.9. Sliding is
maintained in the entire system response which means thed:loop stability is guaranteed in spite of

runaway failure.
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7.5 Conclusion

This Chapter proposed a Fault Tolerant Control scheme fogdri parameter varying systems. The in-
tegral sliding mode control was used to maintain nhominafgoerance and robustness in the face of
actuator faults or failures. The virtual control signalngeated by the integral sliding mode control law
was translated into the physical actuator commands by uwlk&gontrol allocation scheme. The closed-
loop stability of the system throughout the entire flighteope was guaranteed even in the event of a
total failure of a certain class of actuators provided reldunty is available in the system. The longitu-
dinal LPV model of a large transport aircraft which has poegly been used in the FTC literature was
used to show the efficacy of the proposed scheme.

The coming Chapter considers the case where only the ougpasumements are available and relaxes the
requirement of early Chapters that full plant state vadalare readily available for the controller design.
Also the early FTC schemes in this thesis assume that themiation of actuator effectiveness level is
known to the control allocation for distributing the corts@gnals among the actuators, but in the coming
Chapter this information is also assumed to be unknown. rElgjsires a totally different approach and is

explained in the next Chapter.



Chapter 8

An Output Integral Sliding Mode FTC

Scheme Using Control Allocation

A fault tolerant control scheme is proposed here for syswwitere only output information is available.

In this Chapter an assumption which is made in early Chapibatsthe state information is known and
available for the controller designiislaxedand instead a case is considered where only measured outputs
are available. It is also considered that the knowledge @faittuator faults or failures is not available
from an FDI scheme. The ideas of integral sliding mode coat®used to ensure robustness throughout
the entire response of the system, even in certain actuaitirdr failure cases. This is accomplished by
integratingfixed control allocatiorwithin the ISM framework. Arunknown input observas employed

in the proposed scheme to estimate the states. Simulasoitsen a benchmark civil aircraft model

show good tracking of the commanded signals.

8.1 Introduction

In most physical systems, not all system states are medsunadh therefore output feedback schemes are
more desirable. This also applies for FTC systems. The @antik for example [6], [106] and [62] the
combination of traditional SMC with CA for fault tolerantictwol has been previously explored but in all
this work it was assumed that the system states are knowrhahstate feedback control schemes could
be employed.

The main contribution of this Chapter is to relax the assimnpassociated with the early Chapters that

state information is known, and as compared to the aboveiomeat papers consider instead the situation

159
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where only measured outputs are available. A full orderinegnknown input observer is employed to
estimate the system states used in the underlying virtugtater. In this Chapter no attempt is made
to estimate the actuator faults or failures (using an FDEs®d), instead, the robustness properties of
the UIO coupled with the ISM are relied upon. As compared &odarly schemes in this thesis, a fixed
control allocation scheme (which does not require actsatffectiveness levél/(t)) is used to translate
the virtual control signals into physical actuator demandlea LMI synthesis procedure is proposed in
order to synthesize the observer gains and the controltanpeters and a rigorous closed-loop stability
analysis is carried out to ensure the stability of the sfidimotion in the face of actuator faults and certain
failures, provided that redundancy is available in theesystA civil aircraft benchmark model is used to

investigate the feasibility of the proposed scheme.

8.2 Problem Formulation

To model the actuator faults or failures same as in early @nspactuators effectiveness matikt) is
used whereas component faults are modelled as parametgctainty in the system matrix. Consider an

uncertain system with actuator faults or failures and camepbfaults written as

X(t) = (A+A%X(t)+Bu(t) — BKu(t) (8.1)

yit) = Cx(t) (8.2)

whereA € R™" is the state matrixA° is parametric uncertainty in the system matrix arising fiam
precisely known parameters and possible faults at a cormpdeel, B € R"™™M is the input distribution
matrix andC € RP*" is the output distribution matrix wherp > m. The diagonal weighting matrix
K =diag{ks,..,kn}, where the scalais, .., ky,, models the effectiveness level of the actuatorg; # 0,
the correspondingth actuator is fault free and is working perfectly, wherdas 1> k; > 0, an actuator
fault is present. The valug = 1 indicates théth actuator has completely failed.

Remark 8.1:The description of actuator fault or failure apparentlydsdlifferent from the early Chap-
ters, but in structure is the same because the actuatotiegfeess matrixV(t) without loss of generality
is defined to be having the structofgt) := I — K(t).

Here it is assumed that the outputs to be controlled are diyeg(t) = Ccx(t) whereC; € R'*", where
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| < m. It follows that there is redundancy in the system in termtghefnumber of control inputs. This
will be exploited to achieve fault tolerance. Following thimilar discussion as in Chapter 4, to resolve

the actuator redundancy, (by permuting the state) it isragdithe matriX8 can be partitioned such that
T
B= [ B BJ ] (8.3)

whereB; € R™D*MandB, € R'*Mis of rankl < m. By appropriate scaling of the ldsstates, it can be
ensuredB,B] = 1;, and is assumed th#B; || < ||Bz|| = 1, so thatB; reflects that the dominant control
action contribution on the system acts in the lowehannels of the system. Using (8.3), the system in

(8.1) can be written as

. B1
X(t) = (A4 A%)x(t) + (I —K)u(t) (8.4)
B |
Notice, by definitiorW := | — K is a diagonal matrix and its diagonal elementsatisfy 0< w; < 1.

The objective of this Chapter is to develop a control schdrmased on only output measurements, which
can maintain closed-loop stability in the face of a clascctii@tor faults and failures. The physical control

law u(t) is realized by a so-called ‘fixed’ control allocation scheofi¢he form

u(t) =B v(t) (8.5)

wherev(t) € R! is the ‘virtual control’ effort produced by the control lawhich will be described in the
sequel. In equation (8.5) the fact tigB] = I, is exploited.

Remark 8.2:The control allocation structure in (8.5) is different te ttne employed in Chapter 4, which
requireW(t) (or at least a good estimate W(t) to be known). The fixed CA/ISM scheme developed in
this Chapter will be independent @f(t) and will not require an FDI scheme.

By using (8.5), equation (8.4) can be written as

X(t) = (A+A%)x(t) + v(t) (8.6)
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In the nominal case, when there is no faMit(¢) = I, andA® = 0), equation (8.6) simplifies to

. B1BJ
X(t) = AX(t) + v(t) (8.7)
I
B
becauseB,B} = || by design. The following assumption will be made and usedhénremainder of the

Chapter.

Al: The pair(A,By) is controllable.

8.3 ISM Controller Design

In this section the integral sliding mode strategy will begigd for synthesizing the virtual control signal
v(t). The virtual control signab(t) will use estimated statest), obtained from an observer, so that only
outputs need to be measured. As a first design step, an outguitate-estimate dependent integral

switching function is proposed of the form

a(t) = Gy(t) — Gy(0) + /0 'EX(D)drT 8.8)

whereG € R'*P andF € R'*" are design matrices, selected to specify nominal closegerformance.
The formulation in (8.8) is similar to that given in equati$169) except here both andG depend on
the dimension rather than the number of control inputs. In order to crelagestate estimate(t), the
full-order unknown input observer UIO developed in [66] &ed. The ternBKu(t) in (8.1) is treated as
an unknown input since by assumptikirit) is unknown. Consequently the distribution matrix assediat
with the unknown input signal to be rejected is choseB.adecessary and sufficient conditions for a
linear UIO to exist for the system in (8.1)-(8.2), to provideensitivity with respect to the term BK(t)u(t),

are
A2: rank(CB) =rank(B) =m

A3: the triple(A,B,C) is minimum phase
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The structure of the full-order observer from [66] is,

2t) = Agz(t)+TBut)+Ly(t) (8.9)

() = zt)+Hy(t) (8.10)

wherex(t) is the estimated state, aAg, T,L andH are design matrices of appropriate dimension chosen

in order to decouple the unknown inputs. The ultimate objeatf an UIO is to make the error signal

e(t) = x(t) — X(t) zero, despite the presence of unknown irnuft) so that the estimated states converge

to the true states asymptotically. In particular, the matric R"*P must be chosen so that

(I—HC)B=0 (8.11)
5;—/

becauseB is an unknown input direction in this case. As argued in [@&sumptionA2 is sufficient to

solve (8.11) andH := B((CB)"CB)~1(CB)" is an appropriate choice. After computiklg the matrix

=A—-HCA-L,C 8.12
Ao - 1 ( )

can be defined, whetg € R"P is design freedom which is exploited to makgHurwitz. Finally
Ly := AgH (8.13)

and the gairL := L1+ Lo.

Remarks 8.3:The ISM scheme in this Chapter can tolerate the presencealdéshvariant zeros associ-

ated with the triplg A, B,C) (AssumptionA3) as compared to [15], where it is argued that for the stable

sliding motion, it is assumed that the trigla, B,C) does not have any invariant zeros i.e the pair (C,A)

is observable.
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If e(t) =x(t) —X(t), using the plant equation in (8.1) and the UIO equations i8){@.10), the error

dynamics can be written as

ét) = AX(t)+A%X(t) + Bu(t) — BKu(t) — Agz(t) — TBu(t) — Ly(t)
—HC(AX(t) + A%X(t) + Bu(t) — BKu(t))
= (I —HC)AX(t) 4 (I —HC)A%x(t) + (I — HC)Bu(t) — (I — HC)BKu(t)

—Aoz(t) — TBU) — Ly(t) (8.14)

where it can be seen that with the choicetbf= B((CB)"CB)~1(CB)" and using equation (8.11) the
error dynamics can be made invariant to unknown irpkit(t). Furthermore using equations (8.10),

(8.13) and with the relatioh = L; + L, the error dynamics in (8.14) can be further simplified tdd/ie

ét) = TAX)+TAX(t) — Ag(X(t) — Hy(t)) — Lay(t) — Loy(t)
= TAXt)+ TAX(t) — AgK(t) — L1Cx(t)

= (TA—LC)x(t) + TAX(t) — AoX(t)
Ao

= Aoe(t) + TA%X(t) (8.15)
The choice ofG in (8.8) suggested in this Chapter is
G:=B,((CB)'CB) (CB)T (8.16)

where the existence of the inverse is guaranteed by assum¥s2i. As a result of this choice d,
genericallyGCB,(t) = B,W(t)B) is symmetric. The symmetry is important and simplifies mutcthe
subsequent analysis and avoids the introduction of coassmv. Also nominally, when there are no faults

andW(t) =1, from the special properties of the matBy, it follows that
GCBy(t)|w— = BB} =1

This means, nominallyic has the pseudo inverse properties which [28] argue as eeplan Chapter 3

are optimal from the point of view of minimizing the impact whmatched uncertainties on the closed
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loop dynamics.

Suppose a control law can be designed to force sliding mdtorall time. The equivalent control
signal veq(t) necessary to maintain sliding is obtained from equating 0. The derivative o (t) in
equation (8.8) is

a(t) = Gy(t) + FR(t) (8.17)

then substituting from equation (8.6) and equatr{t) = O yields
Veq(t) = —(GCBy) ~*(FR(t) + GC(A+ A°)X(t)) (8.18)

under the assumption that 6CB,) # 0. With the choice of5 in (8.16) GCB, = B,W B!, and (8.18)
becomes

Veq(t) = —(B2WB]) "1 (FR(t) + GC(A+ A%)x(t)) (8.19)

Substituting (8.19) into (8.6) the sliding dynamics aresgivy
X(t)=(A+ A%)X(t)—Bm(FR(t) + GC(A+ A%)x(1)) (8.20)

where
B;W B} (B,WHB]) !

m-=

Adding and subtracting the terBy, (FX(t) + GC(A+ A%)x(t)) to the right hand side of (8.20) and ex-

ploiting the fact thag(t) := x(t) — X(t), the sliding dynamics in (8.20) can be written as

X(t) = (A+A%)x(t) — By (FX(t) + GC(A+ A%)X(t)) + (By — Bm) (FX(t) + GC(A+ A%)X(1))
— (A—B,F —B,GCAX(t)+A%X(t) + B, Fe(t) — B,GCAx(t)
+BO(t) (Fx(t)—Fe(t)+GC(A+A%)X(1))
= (A—ByF —B,GCAX(t) + (I — B,GC)A%x(t) + B, Fe(t)

+B®(t)(GCA+ F)x(t)—Bd(t)Fe(t)+Bd(t) GCAx(t) (8.21)
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where
_ In_
B | ™ (8.22)
0
and
d(t) = BB} — B;WB} (B,WB) )t (8.23)
W)
Combining equations (8.15) and (8.21), the closed-loopesyslynamics can be written as
et Ag 0 et et
©1_ LBAC (t)
X(t) B,F A—B,F—B,GCA| |x(t) (t)
é(t) Ag 0 et et
— +BaACy (8.24)
X(t) BlF A.—ByF | | X(t) X(t)
Aq Xa
where
Ac := (I -B,GC)A (8.25)
(l-HC) 0 O
By = o (8.26)
(1-B,GC) B B
0 I
Cai=| —F GCA+F (8.27)
0 I
and the uncertainty teriy(t) is
Alt):=diag| A5 ® ®GCA (8.28)
It is convenient to analyze (8.24) in tlfe,X) coordinates. Define accordingly
et I O et
© | _ (t) (8.29)
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which follows

L 0
Aq=TAT = #o (8.30)
Ac—Ao Ac.—ByF
L (I-.HC) 0 0
Ba:=TBy= o (8.31)
HC-B,GC B B
| |
Ca:i=CaT '=| GCA GCAF (8.32)

then in the newe, X) coordinates, equation (8.24) can be written as
Ra(t) = Agfa(t) + BaACaXal(t) (8.33)

Now in order to ensure that the teidqt) in (8.23) is bounded, note thai(t) = B;B] — ¢(t) andy(t) =
BlBZ'W(t) whereB;'W(t) is a weighted right pseudo inverse Bf. Then by using arguments similar to

those as given in Chapter 4 as proved in [111] there existalargg such that
185" = Iw(t)B (BaW(1)BE) | < yo (8.34)

for all combinations of(wy(t),...,wm(t)) such that déB,W(t)B)) # 0. Therefore||Y(t)| < yay and
hence

@) < y(1+w) (8.35)
wherey; = ||Bs]|, which is assumed to be small.

A4: Assume that the parametric uncertaidty in the system matri is bounded and therefore since
®(t) is bounded, it follows

4] < ya (8.36)

for some positive scalag.
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8.3.1 Closed-loop Stability Analysis

In the nominal case, (i.e. whai(t) =1, A% = 0 andA(t) = 0), equation (8.33) simplifies ty(t) =
Kaia(t). From (8.30) it is clear the eigenvalues/ia‘are given by the union of the eigenvaluesfgfand
Ac — ByF. Both these matrices can be made Hurwitz by choice of theyddstedom matricek; from
(8.12) andF respectively. Consequently, by desigh can be made Hurwitz, and hence nominally the

closed loop system is stable. However for the fault or failceises, stability needs to be proven. Define

Vo = [Ga(9)lw (8.37)

where

Ga(s) :=Ca(sl — A) 1Ba (8.38)

Proposition 8.1: In fault or failure conditions, for any combination @ (t),...,wn(t)) such that

det(B,WB)) # 0, the closed loop system in (8.33) will be stable if:

Yoya < 1 (8.39)

Proof. In order to establish closed-loop stability, the systemnaefiin (8.33) can also be written as

Ra(t) = Aafa(t) + Bala(t) (8.40)

Ya(t) = CaXa(t) (8.41)

whereU,(t) := A(t)ya(t). In this form, equation (8.33) is the feedback interconioecbf the known
linear systenﬁa(s), and the bounded uncertain gal(t). According to the small gain theorem (Ap-

pendix B.1.2), the feedback interconnectionGafs) andA(t) will be stable if (8.39) is satisfied. W

Remark 8.4:By hypothesisy; = ||B1|| is assumed to be small. Basically the siBa || has a significant
impact on the norm of the nonlinearity in the small gain feskbloop, and so ifiB;|| is small, the gain
of the nonlinearity is small, and there is a less stringeqtirement on the magnitude of ti&, norm
of the linear part. Furthermore K° = 0, then||A|| — 0 as||By|| — 0 andProposition8.1 is trivially

satisfied.
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8.3.2 LMI Synthesis

In this section the observer gain and the controller gaifr are synthesized, so that stability condition
(8.39) is satisfied. For the triplé\s, Ba,Ca), from the Bounded Real Lemma (BR|l$a(S) || < ¥ if and

only if there exists a s.p.d matrix € R?™?" such that

AX+XAl By XCI
Bl —y¥ 0 |<O (8.42)
CaX [0 I

Here it is assumed that = diag(X;, X2) where the two sub-blockX;, X, € R™" are s.p.d. With this

assumption
X1 Xo
CaX = | GCAX GCA%+Y (8.43)
X1 X2

whereY := FX,. The top left sub-block in (8.42)

_ _ AoXs + XA XAl — XA
AX -+ XAT = 1+ XAy XiAc — XiAg (8.44)

AcXy — AoXy C)
where@ = AX, + XAl —B,Y —YTB]. Also write Ag = Ay — L1C whereA,, is from (8.12). To create a

convex representation, define the observer gain

L, := BBE (8.45)

where 3 is a positive scalar an € R™P is chosen so thatA,, B,EC) is minimum phase. This is
possible if(A,B,C) is minimum phaseAssumptior8). Then as argued in [42] it is possible to find an
s.p.d matrixP which has a structur® = NTdiag(Py,P>)N such thatPB = (EC)T, whereN € R™" is
invertible (and depends dB) and the s.p.d. matricdg € R(™™*(=M p, ¢ R™M  The matrixN is

associated with a change of coordinates to force the t(#sleB, EC) into the canonical form proposed
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in [42]. DefineXy1 = Pyt andX;2 =P, *. It follows thatL;C = BBEC= BBB'P and so if
Xp =Pt = N~1diag(X11, X12)(N"HT >0 (8.46)

thenL1CX; = BBBT and AgXy = AnX; — BBBT. It follows that the matrix inequality in (8.42) is affine
with respect to the decision variabl¥s;, X12, X2, B,Y and so the synthesis problem is convex.

For the nominal system in (8.7), (i.e. whéf(t) = | andA® = 0), the matrixc must stabilize A— B,F).
Since(A,B,) is assumed to be controllablagsumptiorl), an LQR formulation will be adopted where
F is selected to minimize

J :/ (x" Qx+ vTRv)dt
0

whereQ andR are symmetric positive definite design matrices. This mnabtan be posed as an LMI
optimization:
Minimize trace(X, 1) subject to

AXo+XoAT —B)Y —YTB!  (Q1 X —RyY)T
Y v "o (8.47)

QX — RyY —1

whereQ; = [(QZ)T 0O T andRy=[07 , (R2)"]T. For a given-gain y, the overall optimization
problem proposed in convex form becomes:
Minimize trace(Z) with respect to the decision variabl¥g;, Xi2, X2, 8,Y subject to

—Z
" l<o (8.48)

|n _X2
together with (8.42), (8.47), (8.46) and 8.48. The mafrig a slack variable which satisfi&@s> X{l and
thereforetrace(Z) > trace(X, *). Finally the controller and observer gains can be recavase =Y X *

andL, = BBE.
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8.3.3 ISM Control Laws

A control law will be defined to ensure sliding is maintaineohit = 0. Define the virtual control law in
(8.7) as

V(t) = W (1) + Vat) (8.49)

where the linear part, responsible for the nominal perforreaof the system is
Vi (t) = —FX(t) — GCAX(t) (8.50)
and the nonlinear part is defined as

Va(t) = —p% for a(t) # 0 (8.51)

wherep is a modulation gain and is definedPmoposition8.2.

Also define the time varying scalatt) as the solution to
E(t) = —mog(t) +my|[X(t)]] (8.52)

wheremy andmy are positive scalars to be defined in the sequel andylete’ Pye,! whereR is the s.p.d
matrix obtained from solving,Ag+ Ag" Py = —1. Further suppose th&n?®|| is sufficiently small so that
P, also satisfies

2|[Po|[[|(1 —HC)A®|| < 1— o where o >0 (8.53)

whereL, > 0. Then the following Proposition can be proved.
Proposition 8.2:Define the modulation gain from (8.51) as

IGCA IR + [[v ]| + () (IGCA| + [|IGCA])/ v/ Amin(Po) + 1

(t)= 170 (8.54)

wheren is a positive design scalar, and assume the fault tikale. . , k) belongs to a set

2 = {(K, ... km) : Amax(B2KBJ ) < Ao < 1}

lUsing the Rayleigh-Ritz theoreXy = " Ppe < Amax{Po ||€]|%.
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Also assume that by choice &f0) and £(0) the state estimation error at t =0, writtef0), satisfies
e(0)"Pye(0) < £(0). Then the integral sliding mode control law defined in (8-68051), guarantees

that the system trajectories remain on the sliding surface.

Proof. Equation (8.15) can be written as
é(t) = (Ao+ (I —HC)A%)e(t) + (I — HC)A%k(t) (8.55)
then the derivative of the positive definite functidn= e Pye is given by

Vo = e(PoAg+ Al Po)e + 2eT Py(1 — HC)A%e + 2e" Py (1 — HC)A%R

< —lell?+2llel?[|Poll| (1 —HC)A?[| + 2|l [Poll[|(1 = HC)A®[[IX]
and therefore since by assumptigPg]|||(I — HC)A?|| < 1— powherey, > 0 it follows

Vo < —pollell* + (1— o) %] [ el

Ho 1-po o
< = Vo + X 8.56
S APy 0 ﬁ\max(PO)” vVo (8.56)

where the Rayleigh-Ritz theorem has been used. D¥fire,/Vp, then (8.56) implies

Ve Mo g, 171 g4 (8.57)

2Amax(Po) 21/ Amax(Po)

which for notational convenience can also be further writie

V < —moV + my g (8.58)

where the positive scalars,, andm, are appropriately defined. Comparing (8.58) and (8.52)0) >

V(0), then it can be shown thatt) > V(t) and consequently

E(t) >/ Amin(Po)|le(t)|| for t>0 (8.59)

Now it will be shown that the control law defined in (8.49) shés the standard reachability condition.
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Using the relationshix =1 —W, equation (8.17) can be written as

0(t) = GC(AHA%)X(t1H(BW B) )V (EHF (1)
= GC(AFA%)X(t v (t)—(1-BW B v (t HFR(t)
= GC(AFA%)X(t v (1) —(B2(I-W) B )V (EHF k()

= GC(AFA%)X(t v (1) -BaKBI v (tHF R(t) (8.60)

Substituting the control law (8.49)-(8.51), into equat{860) and exploiting the fact thaft) = x(t) —

X(t) yields

G(t) = GCAR(Y)+CCA(t) + GCAGL) — (BKB)(v + ) —p‘ug‘gu

Now consider the time derivative of the candidate LyapunmcfionV = %GTG. From (8.61) the time

derivative

V= o (GCAS(Y) + GCAelt) + GCAGY) — (BKB)(u + )~ pro i)

< llol (IGCA IR + (IGCA || + GCA|) lell + IB2KBE [l v | — p(1— [[B2KB3 1))

< ol (IGCA[[IRIl+ (IGCA || + | GCA)|le] + [|B2KB ||| v ]| — p(1~ Ao)) (8.61)

for a fault set(k,...kn) € 2. Then from the definition op(t) in (8.54) and using the fact thaft) >
VAmin(Po)||e(t)]], the inequality (8.61) can be written as

V<-nfoll=-nvav (8.62)

which is a standard reachability condition and sufficienywarantee that a sliding motion is maintained

for all subsequent time. u

Finally the physical control law(t) is obtained by substituting equations (8.49)-(8.51) i&&) to

obtain
a(t)

u(t) = B} (—FX(t) ~ GCAR() —prsy

) foro(t) #0 (8.63)
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8.4 Simulations

The civil aircraft benchmark model as discussed in Appeddixwill be used in simulations to demon-
strate the effectiveness, and fault tolerant nature of tbpgsed scheme. The simulation scenario which
is considered in this section is that the aircraft undergmdsator fault or failure during the climb from a
straight and level flight. This scenario can be realized agkiing a suitable flight path angle (FPA) while
keeping the speed at a constant level. To design the lineapaoent of the controller in (8.50), the flight
operating condition considered here is the same as in Qhéapied Chapter 5. The linearized state space

model is given in Chapter 5 and is reproduced here as

(05137 00004 —0.5831 0 06228 —1.3578 00599
N 0 —00166 17171 —9.8046 . 0 —01756 57071
10064 —0.0021 —0.6284 0 00352 —0.0819 —0.0085

i 1 0 0 0 i 0 0 0

The system states arét) = (0, Vtas, @, 0)T whereq is the pitch rate (rad/secyiqs is the true airspeed
(m/sec),a is the angle of attack (rad) artlis the pitch angle (rad). In the simulations, only measured

system outputs

q
1 000
Vtas
y=101 00
a
0 001
0
Cp - -

are available for use in the control law. The available curgurfaces aréong = [Je, 55,5epr]T which
represent elevator deflection (rad), horizontal stalildaflection (rad) and aggregated longitudinal EPR
(i.e. the four individual engine pressure ratios (EPRsYyeggted to produce one control input). In the
simulations a series of 3-deg flight path angle (FPA) comrmaamnd given to increase the altitude of the
aircraft, while the true airspeéd,s is held constant by using a separate inner-loop Propoitlotegral
(P1) controller which creates an auto-throttle manipuaigfe PR. Throughout the simulatioit$s assumed

that the engines are fault fre®y splitting the input distribution matrix into matricedweh are associated
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with [, O] anddepr, the linear model can be written as

Xp(t) = ApX(t) + Bsur + Belepr (8.64)

y = Cpx(t) (8.65)

whereu; = [&, d]" and matrice®8s € R**? andB, € R**1. Define a new state associated with the PI

controller forViazs as

X (t) = 11(t) —Caxp(t) (8.66)

wherer(t) is the reference signal f&,s tracking andC; = [ 01 00 ] The inner loop PI control
is given by

Oepr = Kp(r1(t) —Cax(t)) + Kix (t)

where the Pl gains are chosenkgs= 0.6, andK; = 0.9. Now augmenting the plant in (8.64) with(t)

yields
Xy 0 —C Xr 0 I
= + Up + r (867)
—— ———

RS

A X(t) B Br
Also it is assumed thax,(t) is available for the controller design, therefoye= Cx(t) whereC =
diag{1,C,}. In order to introduce the steady state tracking for the rodietl outputyc(t), a feedfor-

ward termL,rz(t) is introduced where

L, := (Cc(A—B,F —B,GCA)!B,) ! (8.68)

and the exogenous constant signals the reference to be tracked (by the FPA). From Assumptjon 1
F can always be chosen to ensure tbat- B,F — B,GCA) is Hurwitz and therefore dgA — B,F —
B,GCA) # 0. Consequently the inverse in (8.68) is well defined. In theeace of faults and uncertainty
it is easy to see the linear control lat) = —FX(t) + L,r, — GCAX ensures that at steady stgte=r».

To accommodate this tracking requirement, the control a{@i63) must be changed to

u(t) = BY (=FR(t) + Lira(t) - GCAR(t) —p——=—)  foro(t) #0 (8.69)
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and

o(t) = Gyt) - B(0) + [ (FR(T) ~ Liro(r))de

(8.70)

The fault tolerant control will now be designed based on tystesn in (8.67) governed by the triple

(A,B,C) using only the elevator and stabilizer as inputs. A furttealiag of theB is required to ensure

thatB,B] =1, (where in this example= 1). It can be verified thaank(CB) = rank(B) = 2, and therefore

AssumptionA2 holds. In this aircraft systerfA,B,C) has one stable invariant zero. Since the objective

is to track an FPA command, the controlled outpuy:id) = Ccx(t), whereCe =

The gainG in equation (8.16) i& =

000 -1 1]/

0 06694 0 0]/. Inaddition to actuator faults or failures, to

introduce potential faults which cause changes to the gaedics of the aircraft, a 10% change in the

aerodynamic coefficients (due to airframe damage) is ceresitlin the simulation specifically:

Choosing

0 0
0 00514
0 0
0 0.1006
0 0

0
0

00017

0
0

0 0
00583 0
0 0
00628 O
0 0

—124139 —-1.6056 124139 —1.6056

5.6942

0 —-5.6942

0

givesECB= 1, and (A, B,EC) is minimum phase with stable zeros{at1.000Q —0.6451 —1.0000}.

The corresponding value of the observer dains

BE =

0
0

-1

0

0
1
0

0

0 0
0 1
1 0

0 0

—0.0290 00566 00290 00566
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andAp = (A, — BBEC) is then stable for ang > 0. ChoosingQ = diag(0.02,0.5,0.2,0.1,10) andR=1
in (8.47) the feedback gain matrix, obtained by solving the LMIs (8.42), (8.47), (8.48) is givey

F=1] -08142 99401 —22095 —0.3356 88802

In the simulations, it is assumed that the engines are feadt fBased on this assumption, using a nu-
merical search, it can be verified using (8.28) that the vafug in (8.36) isy, = 0.1597. To satisfy the
closed-loop stability condition in (8.39), the valueygfmust satisfyy, < %597 =6.2621. This has been

satisfied through the designed parametgrandF.

8.4.1 Simulation Results

In this section the performance of the benchmark civil afitomodel is demonstrated by considering the
potential failures in the actuators. In the simulations, discontinuity associated with the control signal
in (8.51), is smoothed using a fractional approximath%ﬁir, where the value of the positive scalar

is chosen a® = 0.01. The value of the modulation gain is chosen herg as2. In the simulations
the aircraft undergoes a series of 3-deg FPA commands igaub intervals between (25-50 sec)
and between (100-125 sec) in order to increase the altitbitleecaircraft, while the true airspedédghs

is kept constant as shown in Figure 8.1. The initial condgidor the plant and observer are taken as

X = [0,0,0,0]T, andxg,,. = [0,0,0,0,0.5(77/180)]" respectively.

8.4.1.1 Nominal Vs perturbed system matrix

In Figures 8.1-8.2 good tracking performance of the comraedrsignals is achieved nominally and while
perturbing matrixA with A% matrix (a 10% change in the aerodynamic coefficients (dueossiple
airframe damage). The system states and the actuator aefleat both cases are almost overlapping,

which shown the robustness of the proposed scheme agagnsatameter variations.

8.4.1.2 Elevator Lock in place/jam failure

In Figure 8.4 a failure is considered, where the elevatorsjainsome offset position. To maintain the

performance close to the nominal, the proposed FTC scherakds the horizontal stabilizer to counter-
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act the failure, while maintaining the sliding motion thghout the entire system response (Figure 8.5).
There is no performance degradation while comparing theimadnperformance (Figure 8.1) with the
performance while in the failure (Figure 8.4). In Figure,8tZan be seen that the observer output error

quickly converges to zero despite the failure scenario.

8.4.1.3 Horizontal stabilizer Hardover/runaway failure

Figure 8.7 demonstrate the situation when the horizongddilster runs-away to a maximum position
limit of 3-deg. Due to the availability of the redundant aattur (i.e. elevator) the proposed scheme can
still maintain good tracking performance close to nomirakaen in Figure 8.6. The observer output

error does not influence with the failure and converges to gaickly.
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Figure 8.1: No fault Vs perturbation ik matrix: states
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8.5 Conclusion

In this Chapter, a new fault tolerant control scheme wasgse@ which assumes only output information
is available and no information about the actuator faultiaiures is available. To estimate the system
states, a linear unknown input observer is employed. Thmatsd states are used in the virtual con-
trol law to produce signals which are then translated ineoghysical control signals (associated with
the actuators) by using a fixed control allocation schemee dibsed-loop stability analysis allows for

parameter uncertainty in the system matrix (due to airfralamage for example) in addition to actu-

ator faults/failures. A convex representation of the sgaih problem is established in order to prove
closed-loop stability by synthesizing appropriate obseand controller gains. The simulation results on
a benchmark aircraft model show fast convergence of therediseutput error, and demonstrate good

FTC features of the proposed scheme.



Chapter 9

Conclusions and Future work

This Chapter makes some concluding remarks and then idetsefextension of this research work will

be suggested.

9.1 Conclusions

The summary of the thesis is explained as follow: Chapteodsicers the novel combination of integral
sliding mode ideas and control allocation in the framewdrlEdC to address the issues discussed in
Section 3.9: namely that sliding mode schemes cannot bireahdle complete actuator failures. This
unigue combination allows redundant actuators to deal agthator faults or failures by enforcing a slid-
ing mode during the entire system response without the reeeconfigure the underlying control law.
The fault tolerant control scheme uses actuators effewis® levels provided by a FDI scheme to redis-
tribute the control effort among the healthy actuators. F€ scheme allows the nominal performance
of the system to be considered in the design of the switchimgtfon and maintains the performance
close to the nominal provided healthy actuators are availdbue to possible uncertainty in estimating
the actual actuators effectiveness levels, a bound on timat®n error (i.e. the maximum estimation
error which can be coped with) is considered in the rigordased-loop stability analysis and an LMI
optimization synthesis procedure is employed to compugtrameters associated with the control law
such that the closed-loop stability condition is met. Theaglin Chapter 4 are then applied and tested

in Chapter 5 on the nonlinear benchmark model, controllinth the longitudinal and the lateral axis

183
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system of the aircratft.

Chapter 6 considers a novel FTC scheme which consider @steriapproach building on an existing
state feedback controller designed using only the primatyadors. This approach is quite interesting
from an industry viewpoint because it can be retrofitted tocat any existing state feedback control
scheme to induce fault tolerance without the need to rempaéar existing control loops. More specifi-
cally in the fault free case, the augmented FTC scheme bglexeetly as the existing feedback controller
specified using any design paradigm. The FTC scheme usestimated effectiveness level of the actu-
ators to distribute the control signals. In fault or failw@ses in the primary actuators, the FTC scheme
activates the secondary actuators to maintain nominabpedance. As in Chapter 4 a rigorous closed-
loop stability analysis is carried out in the case of fauttéadures, taking into account a bound on error
estimation . The integral sliding mode FTC scheme is testedgdplying it on the nonlinear bench-
mark model FTLAB747 software environment where the actusaduration and rate limits are already
embedded by considering severe and even multiple failurekeoprimary actuators.

Chapter 7 considers a novel fault tolerant control scher@rporating the ideas of integral sliding modes
and control allocation for linear parameter varying systefirhis is appealing for nonlinear systems which
can be modelled as time varying systems with state depepdeaineters. The linear parameter varying
FTC scheme allows investigation of the behaviour of theesysh the entire operating regime. A single
control law is used in the entire operating envelope and dmé¢raller automatically schedules according
to the varying parameters to maintain the closed-loop létabiThe FTC scheme has the potential to
mitigate the effects of actuator faults or failures. Thisswlamonstrated by applying it to the benchmark
linear parameter varying model of the large civil aircrathe LMI synthesis procedure is adopted from
Chapter 4 and is extended for the polytopic system repraentto obtain the controller parameters
which satisfy the stability condition.

Chapter 8 considers an FTC scheme for systems where onlyghsured plant outputs are available and
furthermore assumes that information about the actuatdisfar failures is not available. To be able to
employ the LMI synthesis procedure proposed in Chapterdif@address the situation that information
about the actuator faults or failures is unknown to the abletr; an unknown input observer from the
literature is employed to estimate the plant states. Tow#hlcomplete loss of actuator effectiveness a

direct control allocation scheme, which is quite differéorim the control allocation schemes proposed
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in early Chapters (which require information of actuatdeetiveness), is integrated with integral sliding
modes. The controller and the observer gains are syntliebizeising an LMI synthesis procedure to
satisfy the closed-loop stability condition. The efficadytlee output feedback FTC scheme is tested
on a benchmark civil aircraft model where the componentt$a(dossible airframe damage) are also
considered together with actuator faults or failures. Blaiseme highlights the fact that the combination
of integral sliding modes and direct control allocation ¢emdle the actuator faults or failures without

an FDI scheme.

9.2 Future Work

The integral sliding mode FTC schemes proposed in thisghesie only explored how to mitigate the
effects of actuator faults or failures. A potential extensof this research work is to look at the option of
using integral sliding modes to explore the effects of faaltthe sensor level.

The scheme proposed in Chapter 7 extends the ideas of CHatatdinear parameter varying plants. In
Chapter 7, the theory developed suggests a controller vignightomatically scheduled with the varying
parameters, but in the simulations, for simplicity, a fixéakes feedback controller is designed for the
entire flight envelope using the multi-model state feedbadi synthesis Toolbox. A fixed state feed-
back controller for the whole operating envelope may be bitservative. The next step is to design
the controller, using the LMI synthesis procedure propase@hapter 7, and the performance can be
compared with the fixed design using the LMI synthesis Taal#mother direction can be to extend the
augmentation FTC scheme in Chapter 6 for linear parametgingasystems.

In Chapter 8 parametric uncertainty is considered in theeaysnatrix arising from imprecisely known
parameters and possible faults at a component level, iti@aldd actuator faults or failures in the output
feedback framework. Component faults may also introdu@ages to other matrices from the system
state space model. A potential extension of the approachaptér 8 will be to consider uncertainty in

the input distribution matrix, and to investigate the efffefcthis uncertainty.
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Appendix A

Benchmark model of Large Transport

Aircraft

A.1 Benchmark model FTLAB747 v6.5/v7.1 Releasg.2

FTLAB 747 V6.5/7.1 software environment runs under Matiamulink and was used as the basis for the
Group for Aeronautical Research and Technology in Europ@AdGroup (GARTEUR AG16) bench-
mark [39]. The purpose of the project AG-16 was to develop aed cutting edge FTC and FDI tech-
niques in Europe for the application to a civil aircraft. FHoftware is an upgraded version of the
Delft University Aircraft Simulation and Analysis Tool, BBMAT, and Flight lab 747 FTLAB747 [86].
This high-fidelity nonlinear model contains 77 states amutegents a ‘real world’ model of a B747-
100/200 aircraft. The model incorporates realistic actisatsensors and aero-engine dynamics, where
all the control surfaces are modeled using the realistigtipasand rate limits. The upgraded version
FTLAB 747 V6.5/7.1 [109], provides the flexibility to be enagled to manipulate the control surfaces
independently, which is beneficial to apply FTC schemes se a# faults or failures. The rigid body

states of the B747-100/200 aircraft for the longitudinatetal and directional axis are

X(t) = {p7q7 ravtas,aﬁ»fp,97(/-’7he>Xane}T (Al)
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which are determined from the 6-DOF equations. In equatiadhtAe states for the longitudinal axis
(Figure A.1) ar€Xiong = {0, Vtas, @, 8,he}T, which represent pitch ratg (rad/sec), true air speedas
(m/sec), angle of attack (rad), pitch angléd (rad) and altitudéne (m). On the other hand the states for
the lateral and directional axis (Figures A.2-A.3) age = {p,r,B, @, w}", which represent roll ratg
(rad/sec), yaw rate(rad/sec), sideslip (rad), roll anglep (rad) and yaw angley (rad). In equation (A.1),
the statede, Xe, Ye represent the geometric earth position, along the z-axasjscand y-axis respectively.

The typical control surfaces for the longitudinal and latexxis control are shown in Figure A.4. The

Figure A.1: Longitudinal axis states

X
Relative Wind )E +B T -
\ . ‘)/Fh ght Path

W \
\
Sideslip Angle, 3 Y ﬂ \

Adrplane CG

Figure A.2: sideslip and yaw angle (Lateral-Directionaflitg Qualities, vmihosting.com)

control surfaces which are typically used for the longitadiiaxis control comprise 4 elevators (inner
and outer on each elevator), a horizontal stabilizer, 4regg{two on each wing) thrust, which can be

controlled through Engine Pressure Ratio (EPR). For latetia control 4 ailerons (inner and outer on
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W ormg

Figure A.3: roll angle and aircraft axis (Lateral-Directad Flying Qualities, vmihosting.com)

each wing), 12 spoilers (2 inner and 4 outer spoilers on eaog)w2 rudders (upper and lower), and

4 engine thrust (controlled through EPR) are used. For degjghe linear part of the control law, the

Kruger
flaps

Engine no. 2 A :. o Flap track fairing

Three slotted outer

9 flaps

Figure A.4: Primary and secondary control surfaces of esprart aircraft (adopted from [7])

linear state space model of the benchmark nonlinear modebeabtained at the trim point using the
FTLAB software. At the trim point, aircraft is in the steadigt® i.e. straight and level flight. In this
thesis longitudinal and lateral axis of the benchmark matldifferent trim conditions are considered to
design the FTC schemes. For example in chapters 4 and 8 thiatons are based around an operating
condition of straight and level flight at 263,000 Kg, 92.6 nmige airspeed, and at an altitude of 600m
based on 25.6% of maximum thrust and at a 20 deg flap positioa.rdsult is of 12 order linear model,
which can be divided into two six order models for longitwadiand lateral axis control. The first four

stateSXiong = {0, Vtas, @, 0}" and xat = {p,r,B,¢}" are used for the controller design. At this trim
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condition the state space matrices are:

Along

BIong

Alat =

—0.5137 00004 —0.5831 0
0 -0.0166 17171 —-9.8046
1.0064 —0.0021 —0.6284 0

1.0000 0 0 0

—0.6228 —1.3578 00082 00218 00218 00082
0 —0.1756 14268 14268 14268 14268
0.0352 —-0.0819 00021 —-0.0021 —-0.0021 -0.0021

0 0 0 0 0 0

—-1.0579 01718 -—-1.6478 Q0004 ]
0.1186 —0.2066 02767 —0.0019
0.1014 —-0.9887 —0.0999 01055

1.0000 00893 0 0

—0.0832 00832 —-0.2285 02285 —-0.2625 —-0.0678 00678
—0.0154 00154 -0.0123 00123 —-0.0180 —0.0052 00052
0 0 0 0 00017 Q0006 -—0.0006
0 0 0 0 0 0 0

0.2625 01187 00246 00140 —0.0140 —0.0246_
0.0180 —-0.2478 01269 00724 —-0.0724 —-0.1269
—0.0017 00174 00005 00005 —0.0005 —0.0005

0 0 0 0 0 0

where the control surfaces for the longitudinal axis cdrdre

Aong = {%, &, €liong; €2i0ng, E3iong; e“rlong}T

(A.2)

(A.3)

(A.4)

(A.5)
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which represent elevator deflection (rad) (4 elevators ggeegated to produce one control input), hori-
zontal stabilizer deflection (rad) and four longitudinafjgres pressure ratios. For the lateral axis control

the control surfaces comprise

dat — {5air> 5ai| ) 5aor> 5ao| ySPL-4,SP5,S®B, SPH-12, 6!’ ) ellat P e2|at ) e3|at 3 e4|at }T

which represent aileron inner (right and left) deflectiad(r; aileron outer (right and left) deflection (rad),
left wing spoilers deflections (rad$ 4, Sps), right wing spoilers deflections (radd s, Spp_12), rudder
deflection (rad) (upper and lower rudders are aggregatedottupe one control input) and four lateral
engine pressure ratios. The spoileps- 6,sp— 7 are ground spoilers and not used in the flight.

Further details of the B747-100/200 aircraft model can hmdbin [86], [39] and the references therein.



Appendix B

Closed loop stability and synthesis of

feedback gain

B.1 _% gain and small gain theorem

B.1.1 % gain

In case of LTI systems th&% gain can be calculated exactly, and to find out the way to tatkelit

consider a LTI system

X(t) = AXt)+Bu(t)

y(t) = Cx()+Du(t)

where it is assumed that matrixis Hurwitz. The above system can be written®@s) = C(sl — A) 1B+
D, then according to Theorem4[75], the % gain of the systen®(s) is SUR,cr ||G(jw)||2, which is
induced 2-norm of the systef@(jw) and is equal t@ma{G(jw)]. The £ gain of the system in time
domain is equal to thél., norm in the frequency domain [75], which mean¥ {fjw) = G(jw)U (jw),

then in the proof of Theorem.4[75] it is shown that

V%, < (sup||G(jw)l2)?[lull%, (B.1)
welR
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wherel|ul|%, = fo"uT (H)u(t)dt.

B.1.2 Small gain theorem

The small gain theorem is a systematic approach to inveéstiba input-output stability of interconnected

dynamical systems [75]. To explain the small gain theorerst, tihe notion of finite gain, stable need

E—

_|..

Uy €1 H, Y1

+

Y2 H, ezc + U2

Figure B.1: Feedback interconnection of two systems (aatbfvom [75])

to be discussed. Suppose thais the input to a systerd; andy; is the output, then the systelh will
be finite gain%, stable if|ly1||.« < ys||e1]|.. Now consider the interconnection of two systems as shown
in Figure B.1, then according to the small gain theorem [WBih the assumption that the two systems

H1 andH, are finite gain% stable, then the feedback connection will be finite gainstable if

vy <l (B.2)
wherey, andy; are the gains of the two systems. The proof of the small gaorém can be found

in [75].

B.2 Matlab LMI multi-model state feedback synthesis

The state feedback gakn for the augmented system in equation (7.44) is obtained inguke Matlab

LMI multi-model state feedback synthesis code ‘msfsyn’ athperforms mixedH,/H., criterion. To be
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able to use that code the plant needs to be written in the glerest form as given in [49],

Xa(t) = Aa(p)Xa(t) +Baw+By,v(t) (B.3)
2(t) = CoXa(t)+D2av(t) (B.4)
Zco(t) = Clxa(t)+D11W+ D12V(t) (B.S)

The matricef\a(p) = Ag, + le piA; andB,, are given in equation (7.45) amdis the exogenous signal
(disturbance). For the simulation example in chapter 7atimve mentioned plant can be written in the

matrix form as:

Aa(p) B O BVa
Aa(p) Bd BVa 1
Q¢ [0 o] o
P=1 C |Da Dxp | = L (B.6)
0 0 0| R?
C, | D11 D2
0 0 0 I

The formulation in equation (B.6) is taken from [108], where matrixB is defined in equation (7.19) and

Q andR are symmetric positive definite matrices. The parameteiovecis obtained using the relation
(01, ..., p7] i= [@, Vias, Vias s Vi2s, Vi2:01, Vi3, V2] Where each parameter of the vector has the minimum
and the maximum extremal values i.[gi,ﬁi]. After getting the range of each parameter the parameter
dependent plant can be defined by using the command Matlaimaath‘psys’.

Here the objective is to obtain the desifdg performance objectives while maintaining the closed-loop
transfer functiorw to z,, bellow some prescribed value pftherefore while using the ‘msfsyn’ command
the optimization option[ g 001 ] is used wherg is the value ofy. The details of the ‘msfsyn’

code can be obtained from [49].

B.3 LMI equivalence of closed-loop stability analysis

To satisfy the stability condition ofheorem 1in chapter 4, the closed-loop stability analysis is carried
out in an LMI framework in order to find a feedback gdthsuch that theH. norm of the transfer
functionG(s) = F(sl—A) B is less than some predefined scalae. ||G(s)||» < y. TWo constraints are

imposed on the design of feedback g&invhich need to be satisfied simultaneously. Firstly to aghiev
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the performance, an LQR formulation is used, and secomallgnsure the design of &hto satisfy the

stability condition ofTheorem 1a Bounded Real Lemma (BRL) formulation is used.

B.3.1 LMI Formulation of LQR

The design of the feedback gdtis based on the nominal system in (4.15). For the LMI formatabf

the LQR problem, consider the LTI system

X(t) = AX(t)+Byv(t) (B.7)

z(t) = Qux(t)+Ruv(t) (B.8)

whereQ; andR; are symmetric positive definite matrices. The LQR probleeksehe control law
v(t) = —Fx(t) such that the output enerdy’ z' zis minimized. For the Lyapunov function(x) = x" Px

whereP > 0 is a Lyapunov matrix, the output energyzit minimal [21], if the performance index
= / (V(1)+Z'2dTr <0  forallxandz (B.9)
0
Taking the time derivative of functiov (x) and substituting value of (B.7) into it gives

V = X P(Ax+ByVv)+ (Ax+B,v)"Px

= X' (PA+ATP)x+x"PB,v+v'B]Px
Substituting the value df, and (B.8) into (B.9) gives

J = /(xT(PA+ATP+QIQ1)x+xTPBVv
0

+VTBIPx+x"Q] RV + VTR Qix+ VTR Ryv)dt (B.10)
Sincev(t) = —Fx(t), (B.10) becomes

J:/O (x" (PA+ATP+Q]Q; —PB,F —F'BTP-QIRIF —FTRIQ; + FTRIRF)x)dr  (B.11)

P
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To fulfil the condition of (B.9), the matri should satisfy

PA+ATP+QIQ; - PB,F —F'BIP—QIR,F —FTRIQ: + FTRIR;F < 0 (B.12)

Inequality (B.12), is clearly not convex [21], and cannotviaétten as an LMI representation. Define

X =P~1then (B.12) is equivalent to

AX+XAT+XTQI QX —B,FX —XTFTB] —XTQIRiIFX —XTFTRIQ:X + XTFTR]RiFX < 0

(B.13)
With change of variabl® = FX, whereY € R'*", the inequality (B.13) can be written as
AX+XAT+XTQIQ1X —B,Y —YTB] —XTQIRY —YTRIQ:X +YTRIRY <0 (B.14)
Finally using the Schur's complements [21], the inequglByl4) can be written as
AX+XAT —B,Y —YTB] (Q1X —RyY)T o ©.15)

(QX—RyY) —1

where the matriceX andY are variables in the inequality (B.15), and the feedback Baian be recov-

ered aF =Y X1 In (B.15), the matrice®: andR; are:

Q% 0n><|
Q= R =
len Rz

B.3.2 LMI Formulation of BRL

In chapter 4, the closed-loop stability of the sliding motgoverned by

X(t) = (A—ByF + B®(t)F)x(t) (B.16)
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which can be represented as

X(t) = (A—B,F)x(t)+Bw(t) (B.17)
%:—J
A
Z(t) = Fx() (B.18)

wherew(t) = ®(t)z(t). The.% gain fromw to z (which in this case is thel., norm of G(s)) is less than

y if there exists a Lyapunov function(x) = x" PxwhereP > 0 andy > 0 for all t [21] such that
J= / V(1) +Zz— Y0 w)dT <0  forallxandw (B.19)
0
holds. Taking the time derivative of the functivt{x) and substituting value of (B.17) into it, gives

V = X'P(A—ByF)x+x PBw+x" (A—B,F)"Px+ w'B"Px

= X' (P(A—ByF)+ (A—B,F)"P)x+ w'B"Px+x"PBw
Substitutingv and (B.18) into (B.19) gives

J = /(xT(P(A—BVF)+(A—BVF)TP)x+wTéTPx+xTP|§w+xTFTFx—waTw)dr
0

_ / (X" (P(A—ByF) + (A— ByF) TP+ FTF)x+ " BTPx+ X" PBw — 2o w)dr
0

where the function inside the integral can be written in ttegrir representation as

.
X P(A-B,F)+(A-B,F)"P+FTF PB X

) BTP —yAl w

To satisfy the condition in (B.19), it needs to be ensuretl tha

P(A-B,F)+(A-B,F)'TP+FTF PB
BTP —2l

<0 (B.20)
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which can also be written as

P(A—B,F)+(A—B,F)TP PB FT
. + [ F O ] <0 (B.21)
B'P —VA 0

From Schur’s complements [21], the system in (B.21) can hitenras

P(A-B,F)+(A-B,F)'"P PB FT
BTP -~y 0 | <0 (B.22)

F o -l

From equation (B.22) it is clear that the expression in thelédt position is not convex and cannot be

written as an LMI representation, therefore multiplyingtbsides of (B.22) with dia@®—2,1,1] gives

(A-B,F)P1+P{A-B,F)TP B P IFT
BT —yl 0 <0 (B.23)

Fp-1 S
Letting P~! = X the inequality in (B.23):

(A—B,F)X +X(A-B,F)TP B XFT
BT —y3 0 |<0 (B.24)

FX 0 —I

Finally with the change of variabM = F X, the inequality in (B.24) can be written as

AX+XA-B)Y-Y'B] B YT
BT ¥l 0 | <O (B.25)

Y o -l

where the matriceX andY are variables in the inequality (B.25). The inequality .% convex and
available LMI tools can be used to find the feasible solutind & can be recovered using the relation

F=vYX1L
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