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Abstract

Integral Sliding Mode Fault Tolerant Control Schemes with
Control Allocation

Mirza Tariq Hamayun

The key attribute of a Fault Tolerant Control (FTC) system isto maintain overall system stability
and acceptable performance in the face of faults and failures within the system. In this thesis
new integral sliding mode (ISM) control allocation schemesfor FTC are proposed, which have
the potential to maintain the nominal fault free performance for the entire system response, in
the face of actuator faults and even complete failures of certain actuators. The incorporation of
ISM within a control allocation framework uses the measuredor estimated values of the actua-
tor effectiveness levels to redistribute the control effort among the healthy actuators to maintain
closed-loop stability. This combination allows one controller to be used in both fault free as
well as in fault or failure situations. A fault tolerant control allocation scheme which relies on
ana posteriapproach, building on an existing state feedback controller designed using only the
primary actuators, is also proposed. Retro-fitting of an ISMscheme to an existing feedback con-
troller is advantageous from an industrial perspective, because fault tolerance can be introduced
without changing the existing control loops. To deal with a wider range of operating conditions,
the fault tolerant features of ISM are also extended to linear parameter varying systems. A FTC
scheme considering only the availability of measured system outputs is also proposed, where
now the feedback controller design is based on the estimatedstates. In each of the ISM fault
tolerant schemes proposed, a rigorous closed-loop analysis is carried out to ensure the stability
of the sliding motion in the face of faults or failures.. A high fidelity benchmark model of a large
transport aircraft is used to demonstrate the efficacy of thenew FTC schemes.
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Nomenclature and Abbreviations

Nomenclature

α,β ,γ angle of attack, sideslip and flight path angle (rad)

B†,W weighted right pseudo inverse ofB

B‡ left pseudo inverse ofB

C field of complex numbers

R field of real numbers

R(B) range space of input matrixB

⊂ subset

G Sliding mode matrix

σ linear switching function

S sliding surface

‖.‖ Euclidean norm for vectors or induced spectral norm for matrices

ρ nonlinear modulation gain

ν virtual control input

p,q, r roll rate, pitch rate and yaw rate (deg/sec)

s Laplace variable

Vtas true airspeed (m/sec)

W allowable set of fault or failure

W actuator effectiveness matrix

φ ,θ ,ψ roll angle, pitch angle and yaw angle (rad)

he,xe,ye geometric earth position with respect to the z (altitude), xand y axis (m)

λmin(.),λmax(.) minimum and maximum eigenvalues
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Abbreviations

AFTC Active Fault Tolerant Control

air, aor, ail, aol aileron inner, outer right and aileron inner, outer left

BRL Bounded Real Lemma

CA Control Allocation

CG Centre of gravity

DI Dynamic Inversion

DOF Degree of Freedom

EPR Engine Pressure Ratio

FDI Fault Detection and Isolation

FPA Flight Path Angle

FTC Fault Tolerant Control

FTLAB Flight Lab

GARTEUR Group for Aeronautical Research and Technology in Europe

GS Gain Scheduling

G(s) Transfer function

ISM Integral Sliding Modes

ISMC Integral Sliding Mode Control

IMM Interacting Multiple Model

LMI Linear Matrix Inequallity

LPV Linear Parameter Varying

LQR Linear Quadratic Regulator

LTI Linear Time Invariant

MMST Multiple Model Switching and Tuning

MPC Model Predictive Control

MRAC Model Reference Adaptive Control

PFTC Passive Fault Tolerant Control

PIM Pseudo Inverse Method

SMC Sliding Mode Contol

s.p.d Symmetric Positive Definite

sp spoiler

STC Self Tuning Control

UIO Unknown Input Observer

VSC Variable Structure Control

VSCS Variable Structure Control Systems
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Chapter 1

Introduction

Control is an active research field, and there is always a steady influx of new ideas, concepts and

techniques. Control is an essential part of each new technology development, from cell phones

to jumbo jets and from washing machines to oil refineries. Theobjective of some control appli-

cations is to hold steady the output (of the process) in the face of unknown disturbances, whilst in

others it is tracking a reference signal whilst minimizing the tracking error. To ensure the closed-

loop stability of the overall system in the presence of unknown disturbances and in the face of

uncertainties which arise as a result of creating an approximate mathematical model for the

controller design, is an important part of the control design process. The first systematic study

of the stability of systems was given by J.C. Maxwell [48] in 1868, where he stated that“the

stability depends on the roots of a certain characteristic equation having negative real parts”.

Shortly after, A.M. Lyapunov [48] in(1892) started thinking, about, how to prove the stability

of motion? This work became the fundamental part of the so-called state variable approach to

control theory. Along with stability, issues of operating safety, reliability, performance, cost ef-

ficiency and availability of the systems, especially in safety critical plants like aircraft [22], [46]

and nuclear reactors, are of great importance [66]. Safety critical systems like aircraft became

the basis for the initial research in the field of fault tolerant control systems [136]. Faults or

failures in these safety critical systems cannot be totallyavoided, however their effects (in terms

of human mortality and economic loss) can be mitigated usingfault tolerant control schemes.

1
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Fault tolerant control (FTC) systems are an important aspect in safety critical systems and can

maintain overall system stability and acceptable performance in the face of faults and failures

within the system. One way to achieve a high level of availability, is to ensure a suitable level of

redundancy in terms of the key actuators and sensors within the system. In emergency situations

this redundancy can be manipulated in a way to achieve fault tolerance. Therefore, as argued

in [136], increasing demands for safety, reliability and high system performance, motivated the

need for fault tolerant control and has stimulated researchin this area. To design fault tolerant

controllers many different design paradigms have been proposed in the literature. In the survey

paper for example [100], the scattered areas of fault tolerant control research like fault detection

and isolation (FDI), robust control, reconfigurable control and fault tolerant control methods

are discussed. More recently in [136] the authors have focused on a bibliographical review of

existing fault tolerant control and fault detection and isolation techniques.

Design approaches References
Adaptive control [10,37,67,73]

Control Allocation [6,19,23,24,32,35,44,60,62,76,98,137]
Sliding Mode Control [6,30,41,62,105,106,118]
Dynamic Inversion [31,71]

Multiple Model [9,17,18,74,94,132]
Gain Scheduling [79]

Linear Parameter Varying [84,88,92,101,115],
Model Predictive Control [72,82,89,91,112,130]

H∞ robust control [67,87,124,129]

Table 1.1: An example of existing control design methodologies in FTC

1.1 Motivation and Challenges

Fault tolerant control systems are designed to maintain theclosed-loop performance near to the

desired one in the presence of faults or failures. In safety critical systems, redundancy is the

key component of FTC design, and can be used in emergency situations to have a safe landing.

Nevertheless, when faults have occurred, in some instancesthe pilots have still managed to

land safely: for example on 9 October 2002, the Boeing 747–400 Airline Flight 85 suffered a
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lower rudder hardover failure at an altitude of 35,000 ft (404 people on board including 4 crew

members and 14 flight attendants). Due to this failure the rudder deflected left to the maximum

position limit causing excessive roll. The crew members managed to land the aircraft safely in

Anchorage, Alaska by manipulating the upper rudder and the ailerons together with differential

engine thrust [25]. The Kalitta Air Cargo Boeing 747 (5 crew members on board) landed safely

in Detroit Metropolitan Airport after losing engine 1 on 20 October 2004. From these incidents

it can be inferred that during faults or failures, if some level of redundancy is available, with

pilot skill, the faulty or damaged aircraft is still able to fly well enough to ensure a safe landing.

One motivation to do research in the area of fault tolerant control (FTC) is its ability to increase

the survivability and safety of the safety critical systems.

One of the major hurdles in accepting new ideas in industry, is the requirement to change the

whole physical setup. Increasing safety and survivabilitywhile maintaining good performance

without changing significantly the existing setup can be much more easily accepted. Therefore

it is worth exploring techniques which can be retrofitted to an existing design, without altering

or removing the existing control loops for fault tolerant control.

In safety critical systems, since the plant operating conditions frequently change and therefore

demand methods from the fault tolerant control viewpoint are those which can ensure closed-

loop stability over the entire operating regime. Seeking a single control law, which is automati-

cally scheduled as the plant operating conditions change, and maintains closed-loop stability in

the entire operating envelope, working in both nominal as well as in fault or failure situations, is

challenging.

The objective of this research is to show how the robustness properties of sliding mode control

[118], [41]-especially integral sliding modes- can be usedin the framework of FTC to provide

a suitable solution to the above points to increase the survivability, reliability and stability of

safety critical systems. The advantage of using sliding mode based schemes is that actuator

faults can be directly handled. However, considering the effects of actuator faults or failures on

the closed-loop stability analysis is important and challenging.
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The following section explains how the thesis is organized.

1.2 Organization and Contribution of the thesis

The thesis is organized as follows:

In Chapter 2, the definitions and basic terminologies of FTC and some typical types of faults at

the sensor, actuator and component level are defined. In addition the difference between a fault

and failure is clearly explained. Different types of fault/failure models used in the literature

to design fault tolerant schemes against the actuator faults/failures and component faults are

discussed. An introduction to FTC is given along with an introduction to different fault tolerant

control methods used in the literature based on passive and active approaches. The terminologies

used in the fault detection and isolation framework are defined and some of the techniques which

can be used for the FDI are also documented.

In Chapter 3, the concept, properties and design principlesof sliding mode control are explained.

A simple example of a spring-mass-damper system is used to provide insight into the design pro-

cedure. Different methods which can be used to implement thesliding mode controller in real

practical applications are also given. The concept of integral sliding modes is defined next, with

an explanation how it differs from the classical sliding mode control approach explained earlier

in the chapter. A detailed procedure for the design of integral sliding mode control laws together

with a special choice of sliding surface which helps to mitigate the effects of unmatched uncer-

tainty is explained. The properties of Integral sliding mode control and a simulation example

which validates the design is also given. Finally some motivation for the use of integral sliding

modes as a candidate for FTC is discussed.

In Chapter 4, a new integral sliding mode FTC scheme is presented, which considers the novel

combination of integral sliding modes and a Control Allocation scheme. The design proce-

dure for the integral sliding mode controller is transparent. The concept of a virtual control is

also explained, which is then used by the Control Allocationscheme to achieve the demanded

actuator position. The proposed FTC scheme uses the estimated actuator effectiveness level
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to distribute the control effort among the actuators without reconfiguring the underlying ISM

controller. A rigorous closed-loop stability analysis is carried out and it is proved that the pro-

posed scheme can handle some level of error in estimating theactuator effectiveness by the FDI

scheme. Furthermore in order to compute the controller parameters such that the closed-loop

stability condition (given in the chapter) is satisfied, an LMI synthesis procedure is proposed.

The fault tolerant Control Allocation scheme can cope with actuator faults and certain total ac-

tuators failure without degrading the desired performance. A benchmark model of a large civil

aircraft is used to validate the feasibility of the proposedscheme. The theoretical contribution

of this chapter is to consider the novel combination of integral sliding modes with Control Al-

location in the framework of FTC, and employing an effectivesynthesis procedure using LMI

optimization, to compute the parameters involved in the control law. The initial results of this

chapter were published in [53] and an extended version in theIEEE Transactions on Automatic

Control [54]. The application of an integral sliding mode FTC schemeon the full nonlinear

benchmark model of the large civil aircraft using FTLAB747 is considered in Chapter 5 and

was published in [55].

In Chapter 6 an integral sliding mode augmentation scheme isconsidered in order to introduce

fault tolerance at an actuator level. The scheme is based on an a posteriapproach, building

on an existing state feedback controller designed using only the primary actuators. The control

allocation scheme is developed based on the idea that if the primary actuators are healthy, the

secondary actuator should not be activated, and the secondary actuators should only be activated

for fault tolerant purpose if the primary actuators are faulty. The considered FTC approach

depends on information about the actuator effectiveness levels to distribute the control signals

among the available actuators in the set. The theoretical contribution of this chapter is to consider

retrofitting the ideas of integral sliding mode control to anexisting control scheme designed

using only the primary actuators to induce fault tolerance without the need to remove or alter

existing control loops. Possible errors in estimating the actuator effectiveness by the FDI scheme

are taken into consideration while a closed-loop stabilitycondition is proposed which must be
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satisfied to ensure stability in the case of faults or failures. The efficacy of the proposed scheme

is tested by applying it to a nonlinear benchmark model of a large civil aircraft. The results in

this chapter were published in [56].

In Chapter 7, the ideas of integral sliding mode control allocation discussed in Chapter 4 are

extended for linear parameter varying plants. For the design of the virtual control law, the

parameter varying input distribution matrix is factorizedinto fixed and a matrix with varying

components. In this chapter the proposed scheme seeks a single control law which automatically

schedules with respect to the varying plant operating conditions, to ensure the closed-loop stabil-

ity for a wider range of operating conditions. The proposed scheme also depends on information

about actuators effectiveness levels for control signal distribution. An effective LMI synthesis

procedure is proposed to compute the parameters of the controller, and a rigorous closed-loop

stability analysis is undertaken which ensures certain classes of faults or failures can be dealt

with in the entire operating envelope (with the assumption that the redundancy is available in the

system). A benchmark LPV model of the large civil aircraft isused to demonstrate the efficacy

of the FTC scheme. This chapter has been accepted for publication in [58].

Chapter 8 focuses on an output feedback integral sliding mode control allocation scheme in the

framework of FTC. This chapter relaxes the assumption made in the early chapters that the full

state information is available for the controller design. The chapter also builds on the idea that

information about actuators faults/failures is not available to the controller. A direct control

allocation scheme is employed in this case to distribute thecontrol signal among the actuators.

In order to estimate the plant states an unknown input observer (UIO) is employed and the

necessary conditions for the existence of the UIO are included. A rigorous closed-loop stability

analysis is carried out and a stability condition is posed inan LMI framework. The controller

and the observer gains are computed via LMIs. A benchmark model of a large civil aircraft is

used to demonstrate the efficacy of the proposed FTC scheme byconsidering component faults,

together with faults or failures in the actuators channels.The theoretical contribution of this

chapter is to consider the output feedback integral slidingmodes control allocation in an FTC
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framework and proposing an LMI synthesis procedure in orderto synthesize the observer gains

and the controller parameters which satisfy the closed-loop stability condition. The results of

this chapter have been published in [57].

Finally Chapter 9 makes concluding remarks and gives an overview of the research work pre-

sented in this thesis. Some ideas through which the current research work can be extended are

also given.



Chapter 2

Fault Tolerant Control

Everywhere in our daily life we enjoy the benefits of control–ranging from simple to highly

complex applications. Control is used extensively in industry and plays an important role in

increasing productivity. It is required to operate safely the systems, where interaction with

humans takes place. Particularly in safety critical systems like chemical plants, nuclear reactors,

aircraft etc, the reliability and safety of the system is very important. Broadly speaking, control

systems which have such capabilities, are termed as Fault Tolerant Control (FTC) systems [100].

In this chapter, different terminologies used in the FTC literature are defined, the notion of faults

and failures are distinguished and their classification is explained. The chapter also describes

the state of the art in FTC.

2.1 Fault and Failure and their Classification

The termfault will first be defined to avoid any confusion. The definition of afault given in this

section is in compliance with the definition given in [65].

Fault: “An unexpected change in a system parameter from the acceptable/normal condition,

which can degrade system performance.” It is a fact that a fault can disturb the normal operation

of a system from the desired one, but may be tolerable.

Faults are usually considered to occur very rarely in the system but cannot be totally pre-

8
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vented. However their consequences can sometimes be mitigated by taking appropriate actions.

A FTC system, as the name implies, has the potential to tolerate faults in order to maintain the

closed-loop performance of the system.

A fault is a sudden event, and can occur in any part of the system. Depending upon the location

of occurrence, it can be classified as an actuator fault, a sensor fault and a component fault as

can be seen in Figure 2.1.

Figure 2.1: Classification of faults (adopted from [121])

Actuator faults: Actuators are the work horses in a control system [138], andrepresent a link-

age/interface between the controller commands and the plant. In Figure 2.3(d), an actuator fault

is shown which is termed as a loss in effectiveness, during which time the actuator works with

reduced capability as compared to its normal operating condition (when it is fault free) [121].

This means in a post fault condition, the actuator will only be partially effective in achieving the

required controller demand, which may affect the overall performance of the system. Actuator

faults may occur due to, for instance, a drop in voltage supply, increased resistance, hydraulics

leakage etc [121].

Sensor faults: Sensors are used in the control system to measure and convert the physical quan-

tities of interest into an instrument readable form signal (e.g a tachometer measures the speed

of a rotating motor shaft and converts it into voltage). A fault in the sensor means an incor-

rect measurement from the sensor, which in turn can result ina continuous constant offset as

compared to the true value [121]. Sensor faults can degrade the feedback system performance

even in the presence of a well designed controller. Therefore it is important to detect and isolate

sensor faults at an early stage.
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Component faults: All faults which do not belong in the category of actuator orsensor faults,

can be considered as component faults. A component fault is avery severe type of fault which

can occur in the plant components. As a result the input/output dynamical behaviour/properties

of the controlled system will be disturbed [16]. Component faults can in turn result in a change

in the physical parameters of the system [121], and can reduce the overall performance of the

system.

Furthermore, it is important to note that faults can also be classified with respect to their

time characteristics i.e. how the fault characteristics change with respect to time. According

to [64], [121], the characteristics of faults can change abruptly, incipiently or intermittently with

respect to time as can be seen in Figure 2.2. If a fault characteristic changesabruptly, it can be

Figure 2.2: Classification of faults with respect to time (adopted from [121])

a very severe situation, as the system stability may also be affected. These types of faults often

occur due to hardware damage. On the other handincipient faultsrepresent a scenario whereby

the fault characteristics change very slowly, due to slow variations of parameters for instance,

and are not severe in nature [121]. However if incipient faults are not attended to for a long time,

it can result in a severe situation.Intermittent faultsoccur intermittently with respect to time,

and can be due to intermittent contact or damaged wiring in some part of the circuitry.

In the FTC literature, and throughout this thesis, the notion of faults or failures is frequently

used and may cause confusion, therefore the difference between them is clearly defined in this

chapter in order to avoid any ambiguity.

Difference between fault and failure: Now to distinguish between fault and failure, the term

failure is defined in the literature [65], as“A permanent interruption or a complete breakdown of
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a component or system to perform a specific function.” So a failure is a more serious situation,

because the same component or system can not be used any more to perform a task. This means

if a failure occurs in a sensor or in an actuator, a different sensor or actuator is required for the

continuation of the process. In other words some sort of reconfiguration mechanism is required

in the control system to deal with such a situation. For example, in an aircraft, some very severe

types of actuator failure, if not promptly detected, can degrade or even destabilize the overall

system. Examples are a jam or lock in place failure, a float failure and a runaway/hardover fail-

Figure 2.3: Types of actuator failure ((a),(b),(c)) and actuator fault (d)(adopted from [34])

ure as shown in Figure 2.3. In a jam failure, the actuator becomes stuck or jams at some (offset)

position due to a lack of lubrication for instance, and does not respond even if a control signal is

applied to it. In a float failure, the actuator freely moves and does not provide any desired mo-

ment. The runaway/hardover failure is a very destructive type of failure and it causes the actuator

to move at its maximum rate limit until a saturation limit is reached. This can be due to a ‘wrong
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signal’ being applied to the actuator. In Figure 2.4, some common types of sensor faults/failures

are shown, where the sensor while in the freezing (failure) situation, provides a constant value

instead of actual value of the physical state. During the loss of accuracy fault, the sensor does

not reflect the actual value of the physical state throughout, whereas a bias fault indicates a con-

stant offset in the measurement. Finally in the drift fault,the offset in the measurement of actual

physical state increases with the time. Some common types offaults/failures associated with the

actuators and sensors are considered for example in [140], [70], [138], [50], [20], [7].

Figure 2.4: Types of sensor failure (a) and sensor faults ((b),(c),(d)) (adopted from [34])

In this thesis, different FTC schemes are proposed which have the potential to deal with

faults and failures associated with the actuators, provided that redundant actuators are available.

Faults at the component level are also considered, but the sensor faults and failures are not within

the scope of this thesis.
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2.1.1 Modeling faults and failures

Throughout this thesis, a state space representation of theplant is considered in order to synthe-

size the fault tolerant controllers. Mathematically a linear time invariant (LTI) uncertain system,

subject to actuator faults or failures can be expressed as

ẋ(t) = Ax(t)+BWu(t) (2.1)

whereA∈Rn×n, B∈Rn×m andW = diag(wi , ...wm) is a diagonal weighting matrix. The scalars

wi , ...wm model the effectiveness level of the actuators. As in [6], ifwi = 1, it means that the

correspondingith actuator has no fault and is working perfectly, where as if 1> wi > 0 an actu-

ator fault is present. The situation in whichwi = 0, represents a complete loss of effectiveness

or failure or a complete breakdown of a particular actuator.Some common types of actuator

fault/failure are shown in Figure 2.3. The actuator’s faultand failure representation in (2.1), has

become the building block for many of the FTC schemes in this thesis because this representa-

tion makes the closed-loop stability analysis simple as will be demonstrated in the next chapters.

This representation of actuator faults and failures has been used by many other FTC researchers:

see for example [96], [114], [134], [69] and [6]. Other faultmodels used in the literature can be

found more recently in [121]. To model the actuator fault/failure, the state space model can be

written as [121],

ẋ(t) = Ax(t)+BΣu(t)+B(I −Σ)ū(t) (2.2)

whereΣ = diag[θ1,θ2, ...,θm], θi ∈ [0 1] and ū is an uncontrollable offset vector. Ifθi = 1,

then theith actuator is functioning normally, where as ifθi = 0 then theith actuator has a failure,

i.e the control action from the failed actuator is equal to ¯u(t). As a comparison, in model (2.1)

the control action from the failed actuator is zero. The values of the diagonal entriesθi can

also take the values between 0 and 1 in order to model a loss in effectiveness actuator fault. It

was reported in [121] that themultiplicativefault model is a natural way to represent actuator

or sensor faults, but general component faults cannot be modeled using a multiplicative fault
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model. Equations (2.1)–(2.2) are the examples of multiplicative fault models, where a change in

the diagonal entry ofW andΣ matrices reflect the effectiveness of a particular column oftheB

matrix. From equations (2.1)–(2.2), it is clear that faultsor failures associated with the actuators,

only affect the input distribution matrixB, where as a component fault may introduce changes

in the system matrix and can be represented in the following form

ẋ(t) = (A+△A)x(t)+Bu(t) (2.3)

where△A represent change in the system matrixA. Faults and failures of any type are unwanted

or undesired events but can not be avoided, however there effects can be mitigated.

2.2 Introduction to Fault Tolerant Control Systems

The need for FTC is increasing rapidly, due to increasing demands for safety, reliability and high

system performance in wider engineering applications [136]. FTC systems have the capability

to improve the worst case performance and also guarantee an acceptable level of performance of

a system even in the presence of faults and failures. The motivation for the early research in the

field of fault tolerant control was in the area of flight control systems to improve the reliability

and safety of the aircraft [100], [136]. A fault tolerant control system has the capability to

maintain some level of acceptable performance or degrade gracefully subsequent to a fault or

more specifically ”is a strategy for reliable and highly efficient control law design[100].

In [136], a FTC system is defined as“control systems which possess the ability to accommodate

component failures automatically. They are capable of maintaining overall system stability and

acceptable performance in the event of such failures”.

From the definitions, it is clear that the main task in achieving fault tolerance is to design a

suitable controller which has the ability to maintain overall system stability in fault free as

well as in situations when a system becomes faulty. To designsuch a controller, the system

should have redundant control effectors, which can be efficiently used and exploited to achieve
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fault tolerance [100], [134]. In case of failure in certain actuators, the control effort can be

‘handed over’ to healthy actuators to maintain the desired performance or at least some level

of acceptable performance. Therefore it is fair to say that redundancy is necessary or is at least

a key ingredient in achieving fault tolerance [100], [136].This redundancy can be the direct

replication of the hardware (actuator/sensor) or it can be in the form of dissimilar hardware

having similar functionality, which can be used to achieve fault tolerance

Hardware or direct redundancy can provide an effective means of reliable operation. A

simple example to explain hardware redundancy is the so-called un-interruptible power supply

(UPS), which are used for instance in data centres or in telecommunication equipment where an

unexpected power shut can result in the loss of data or information [1], which is not desired in

reliable systems. For satisfactory performance and to maintain stability of the system, the usual

procedure in fault tolerant control is to replace the faultysensor/actuator with a healthy one.

In safety critical systems such as aircraft abundant actuators and sensors are already provided

to deal with unexpected situations [22]. In normal or fault free operation only one hardware

component i.e only one actuator is sufficient from control point of view to perform a particular

function. To explain it mathematically, consider a linear time invariant system

ẋ(t) = Ax(t)+Bu(t) (2.4)

The input matrixB∈Rn×m can be partitioned asB=

[
Bp Bs

]
where the matrixBp∈Rn×l is

assumed to be of rankl < mand the pair(A,Bp) is controllable [139]. The matrixBs constitutes

the redundant actuators which can be used in case of fault/failre in theBp channels.

Redundant sensors or analytical redundancy which is based on the nominal mathematical model

of the system can be used to measure the same system state to create a reliable measurement in

order to ensure proper controller operation. But in safety critical applications just like aircraft,

it is not practical to substitute entirely (sensor) hardware redundancy by analytical redundancy

[100]. FTC necessitates the presence of redundancy, and managing the redundancy in a suitable

way, is vital.
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2.3 Introduction to Fault Detection and Isolation (FDI)

Fault Detection and Isolation (FDI) schemes provide onlineinformation about system faults or

failures. The fault or failure information provided by the FDI plays an important role in man-

aging the actuator redundancy in an efficient way. On the basis of this information, active FTC

methods (as explained in the next section) take the appropriate action to mitigate the effects of

these faults/failures. For example the FTC methods proposed in [131], [127] and [5] require

knowledge of actuators efficiencies in order to tolerate actuator faults/failures. A typical FDI

scheme has three tasks to deal with [100], [136] and are formally defined here as in [65]:

Fault Detection: “Determination of the faults present in a system and the time of detection.”

Fault Isolation: “ Determination of the kind, location and time of detection ofa fault.”

Fault Identification: “Determination of the size and time-variant behaviour of a fault.”

Fault isolationandFault identificationare also referred to as fault diagnosis [136]. The impor-

tant facet of an FDI scheme is how fast and precisely a fault isdetected, isolated and identified,

so that prompt action can be taken by the FTC scheme to avoid any abnormality. A detailed

discussion on the requirements and merits of FDI and FTC schemes was documented in [135].

Generally FDI schemes in the literature [65], [66], [136] are classified into two categories–

model basedandmodel freeFDI schemes. Model based schemes utilize (nominal fault free)

mathematical models (analytical redundancy) of the plant for the FDI purposes [135], [136], and

can be sub-categorized as residual based FDI schemes and fault estimation based FDI schemes.

In residual based FDI schemes, the measurements from the plant sensors are compared with the

generated signals from the mathematical model to create residual signals [135]. In the case of

no faults, the residuals should vanish or should be very close to zero. The increasing size of

residual due to faults or failures can be used for the detection of fault. Residuals are normally

used with threshold level to avoid any false alarm due to disturbances or noise signals. The

unknown input observer (UIO) based schemes [66] can also be used as a robust (in the sense of

decoupling of disturbance signals) residual generators. The idea behind the UIO scheme is“to

make the state estimation error decoupled from the unknown inputs (disturbance signals)”[66].



17 2.3. INTRODUCTION TO FAULT DETECTION AND ISOLATION (FDI)

Residual based FDI schemes usually provide fault detectioncapabilities and also the location

of the fault [135]. The location of a fault in the system can beinferred by employing a bank of

dissimilar residual signals [40]. One possibility is to make each residual sensitive to a particular

fault and insensitive to all the others in order to isolate a fault [66]. To demonstrate how an

observer works, consider a linear time invariant system as

ẋ(t) = Ax(t)+Bu(t) (2.5)

y(t) = Cx(t) (2.6)

whereA∈Rn×n , B∈Rn×m, C∈Rp×n. In the plant model (2.5)-(2.6) only the measured output

y(t) is assumed to be available i.e. all the state variables are not available. In this situation one

possibility is to employ a so called full order observer [41]to reconstruct all the state vector. To

accomplish this, consider the dynamical system

˙̂x(t) = Ax̂(t)+Bu(t)−L(y(t)−Cx̂(t)) (2.7)

wherex̂(t) ∈ Rn is the estimated state vector andL ∈ Rn×p is an observer gain that should be

designed such that the matrix(A+LC) is Hurwitz. With a good choice ofL, it is possible to

ensure the error signale(t) := x(t)− x̂(t) converge to zero rapidly. The error dynamics associated

with the plant (2.5) and the observer in (2.7) can be obtainedby using the relation

ė(t) = ẋ(t)− ˙̂x(t)

= (A+LC)x(t)− (A+LC)x̂(t)

= (A+LC)e(t) (2.8)

If L is designed such that all the eigenvalues of(A+LC) are stable, the error signal will converge

to zero asymptotically. However the Luenberger observer in(2.7), in case of unknown inputs

or actuator faults for instance, will not be able to force theoutput estimation error to zero.
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Therefore the error dynamics (2.8) will be effected by the unknown input/actuator fault and the

error signale(t) will not converge to zero, which means ˆx(t) will not converge to the true state

x(t).

Figure 2.5: Fault estimation based FDI

In certain FTC schemes e.g. [131], [127] and [5], the efficiency level of the actuators (or an

estimation of the fault) is also required for the FTC purposes. In order to estimate the actua-

tor efficiency/effectiveness level the schemes proposed for example in [131], [127], [5] can be

used. The schemes proposed in [131], [127] used the Kalman filter based approach to estimate

the actuator efficiency. The Kalman filter is recursive in nature and is based on a set of mathe-

matical equations which are categorized into two groups: so-called time update equations and

measurement update equations [125]. The current estimatesof state and error covariance, are

used by the time update equations for thea priori estimates of state and error covariance for the

next time step [125]. Thesea priori estimates of error covariance and state are then used by

the measurement update equations together with the output measurement (obtained through the

sensors) to compute the Kalman filter gain and to generatea posterioristate estimate [125]. The

error covariance is updated using the Kalman filter gain for the next cycle and the procedure re-

peats. The scheme considered in [127], formulated the control effectiveness estimation problem

as an augmented state Kalman Filter, where the control effectiveness factors were modeled as

the augmented states in the linear plant model.

The actuator effectiveness estimation approach proposed in [5] (details can be found in Sec-

tion 4.4.1) considered a sliding mode fault reconstructionscheme similar to [40]. The idea

behind the scheme in [5] is that the scalars which represent the effectiveness level of the actua-
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tors can be estimated from the reconstructed fault signal byintroducing a small threshold, when

the system error dynamics collapse to zero in finite time.

In certain applications such as passenger aircraft actuator effectiveness can be obtained by using

a measurement of the actual actuator deflection compared to the demand. Such information is

typically available in many safety critical systems e.g. passenger aircraft [22].

2.4 Fault Tolerant Control Methods

The ultimate objective of a FTC scheme is to provide a desiredlevel of performance in a fault

free as well as in failure situation, provided that redundancy is available in the system. The

survey papers for example [100], [68], [136] and books [121], [7] provide a bibliographical re-

view of different FTC methods. Depending on the way the problem is tackled, FTC systems can

be classified intopassivefault tolerant control (PFTC) systems andactivefault tolerant control

(AFTC) systems [100], [138], [136], [121]. A block diagram representing the classification of

FTC methods is shown in Figure 2.6.

Figure 2.6: Classification of FTC methods (adopted from [121])
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2.4.1 Passive Fault Tolerant Control Systems

In PFTC systems the controller is of fixed structure and is designed off-line. PFTC systems are

also called reliable control systems in the literature [136]. Due to the fact that PFTC system

does not require up to date fault information, the PFTC methods are computationally more

attractive [121] . If the uncertainty which acts on the system lies within certain bounds, then a

carefully designedpassivefault tolerant controller can ensure the closed-loop stability, but the

PFTC systems can have a limited fault tolerant capability [100], [136].

2.4.1.1 Robust Control

In passive fault tolerant control (PFTC) schemes, the idea is to design a controller using robust

control techniques such that the closed-loop system response is robust against certain classes of

uncertainties and presumed system faults [43], [100], [136].

H∞ Control:

H∞ is a well known technique in the field of robust control, and can take into account the perfor-

mance and stability requirements [67]. It has applicationsfrom the process industry through to

aerospace systems [7]. The idea behindH∞ control is to design a controller which can provide

stabilizing properties and minimize the effects of uncertainties and some faults which are known

a priori and having small effects [67]. Some well knownH∞ controller design methods areH∞

loop shaping,H∞ mixed sensitivity andµ synthesis [67]. In the context of FTC,H∞ optimization

technique was used to present an integrated control and diagnosis framework, which was then

tested on the nonlinear model of Boeing 747-100/200 [87]. Recently the authors in [124] have

reported a mixedH2/H∞ approach to design a fault detection observer for LPV systems.

While designing a robust controller, the worst case performance specifications are taken into

account, which eventually may lead to a requirement to sacrifice the nominal performance of

the system [121]. Faults usually occur very rarely in the system and to sacrifice the nominal

performance to obtain robustness against a ceratin class offaults is not appropriate.
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2.4.2 Active Fault Tolerant Control Systems

Active fault tolerant control (AFTC) systems on the other hand rely on fault information from the

FDI to react appropriately. Specifically AFTC systems, “react to the system component failures

actively, by reconfiguring control actions so that stability and acceptable performance of the

entire system can be maintained. In certain circumstances,degraded performance may have to

be accepted.” [136]. A typical AFTC system is represented in Figure 2.7. The structure of an

Figure 2.7: Main structure of AFTC systems (adopted from [121])

AFTC system is usually more complex compared to PFTC systems, but it can deal with a wide

class of faults [121]. From Figure 2.7, it is clear that thereare two aspects which distinguish

AFTC systems from PFTC systems. The first one is the FDI schemeand the other one is the

reconfiguration mechanism. The reconfiguration mechanism changes the parameters or structure

of the controller based on the fault information passed on toit by the FDI unit. It is common

practice that FTC and FDI schemes are designed independently i.e. while designing the first

the second one is assumed to be perfect and vice versa. Due to the fact that no FDI scheme is

perfect [121], it is quite possible that fault information provided by the FDI scheme has some

uncertainty and it is important to take such uncertainty into consideration while designing a fault

tolerant controller.

In the literature [100], [133], [136], [121], AFTC methods are also classified asProjection
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basedmethods, andonline control redesignmethods. Inprojection basedmethods, one of the

pre-computed controllers from a set, which have already been designed off line for different set

of faults, is selected depending on the fault information provided by the FDI scheme. Inon-

line control redesignmethods, depending on the fault information provided by theFDI, the new

control scheme is synthesized online[133]. Online control redesignmethods are also referred

to asreconfigurablecontrol orrestructureablecontrol [121]. Inreconfigurablecontrol, the con-

troller parameters are computed online depending on the fault information provided by the FDI,

where as inrestructureablecontrol both the structure and controller parameters are computed

online [100], [121]. The ultimate goal of a FTC controller design is to minimize the post fault

or failure effects, so that the performance is close to the nominal or at least closed-loop stability

of the system can be maintained.

2.4.2.1 Adaptation

A carefully designed feedback controller which is designedfor a system at a certain operating

point, can provide satisfactory performance when the system is functioning around that operat-

ing regime. But if the operating conditions keep changing, some sort of adaptation or recon-

figuration of the controller is required to cope with these changes. Adaptive control systems,

as the name implies, are systems which can adapt to changes inthe dynamic characteristics of

the process. Formally an adaptive controller is“a controller with adjustable parameters and a

mechanism for adjusting the parameters”[10]. In [37] an adaptive controller is defined as “a

fixed structure controller, with adjustable parameters”. Due to its inherent nature of adaptively

responding to dynamic changes of the system, adaptive controllers target a significant range of

applications from process industries to aerospace [37]. The adaptive control approach is clas-

sified into two types:Indirect adaptive controlandDirect adaptive control[37]. In Indirect

adaptive control, the model is estimated or identified first and then subsequently on the basis of

this estimation the controller parameters are computed. Indirect adaptive controlthe controller

parameters are estimated directly rather than from estimating the model parameters [37], [121].
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One of the famous approaches of adaptive control is the ModelReference Adaptive Control

(MRAC) whose structure is shown in Figure 2.8. In Figure 2.8,the Reference Model char-

acterises the performance which the plant is required to attain. The output generated by the

reference model is compared with the plant output to create the tracking error and the controller

parameters are modified accordingly by the Adjustment Mechanism in order to minimize the

tracking error [37]. In adaptive control it depends how the problem is formulated asdirect or

indirect adaptive control, in case ofdirect approach the controller parameters are estimated di-

rectly by using some estimation scheme [121]. For the FTC purposes, the plant model is not

Figure 2.8: Model reference adaptive control system (adopted from [120])

known perfectly due to the faults/failures which may occur,the only objective is to match the

dynamics of the plant with the desired dynamics of the reference model.

Another popular approach in the adaptive control family is Self Tuning Control (STC), which

requires the online estimation of the plant parameters [37]. A typical STC scheme is shown

in Figure 2.9, where it is clear that in the first phase, the plant parameters are estimated by a

recursive estimation process, and then subsequently this plant information is used by the con-

trol design process to compute the controller parameters. Both schemes (MRAC and STC)

mentioned above rely on the certainty equivalence principle (ignoring the uncertainty in the es-

timated values and treating the estimated values as the truevalues) [37], [121]. Due to the lack

of capability to handle unanticipated faults or sudden change in system dynamics alone [67],

a combination with other methods is required such as in [73],a combination of MRAC with

multiple model (discussed in the sequel) is considered in order to handle major system changes.
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Figure 2.9: Self tuning control system (adopted from [37])

2.4.2.2 Control Allocation

Hardware redundancy (i.e. equipping with more control effectors than axes to control) in safety

critical systems for example passenger aircraft [22] and fighter aircraft [46], provides opportu-

nities which can be exploited to design fault tolerant controllers. Control Allocation (CA) has

attracted the attention of many FTC researchers because of its ability to handle actuator faults

or failures without the need to modify the underlying control law [32], [19], [35], [137]. The

advantage of the CA method is that the underlying control lawcan be designed separately in

order to produce the desired control effort and the CA distributes this effort among the avail-

able actuators to achieve the required system performance [60], [6]. This feature of CA, allows

the control effort by choosing any suitable control paradigm. CA method can also deal with

actuator constraints. The work in [38], [19] explicitly uses information about the actuator con-

straints (rate and position) for CA. The work in [24], [98] described a special structure of CA

called daisy chaining where when a control or a set of controleffectors are able to generate the

commanded moments, then the rest of the control effectors donothing. In case if the control

effectors saturate and are not able to generate the desired moments, it creates an error between

the desired moments and that generated by the control effectors, then the next control effector

in the set is used to generate only the moments which are lacking due to saturation of the early
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control effectors and so on until the desired moments are achieved. To get insight into, how

the CA method works, consider a linear model of the plant withredundant actuators, given as

in [60]

ẋ(t) = Ax(t)+Bu(t) (2.9)

whereA∈Rn×n , B∈Rn×m. Assume that the control input distribution matrixB can be factor-

ized as

B= BνBu (2.10)

whereBν ∈Rn×k andBu ∈Rk×m and both haverank k< m [60]. Substituting (2.10) into (2.9)

to get the new system description as follows

ẋ(t) = Ax(t)+Bν Buu(t)︸ ︷︷ ︸
ν(t)

= Ax(t)+Bνν(t)

where,

ν(t) := Buu(t) (2.11)

and therefore

u(t) = B†,W
u ν(t) (2.12)

whereν(t) ∈ Rk is the virtual control effort [60] andu(t) represents the physical control sig-

Figure 2.10: Control Allocation scheme (adopted from [59])

nals which are directly applied to the actuators. The expressionB†,W
u =WBT

u (BuWBT
u )

−1 is the
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weighted right pseudo–inverse ofBu, which provides some design freedom. In order to redis-

tribute the control signals in case of faults or failures, different researchers utilize the design

freedom in the pseudo inverse matrixB† in different ways [60], [6]. The structure of the CA

scheme is shown in Figure 2.10, which demonstrates that the CA element is not the part of the

control law. The virtual control effortν(t) produced by the controller is directly translated into

actuators deflections by the CA module.

The benefits of using CA in terms of FTC are exploited in [23], [32] for high performance air-

craft. In [99], a comparison of different control allocation methods is made and in [60] optimal

control and CA are compared in terms of redistributing a virtual control signal among redun-

dant actuators. In [6], [62] a combination of CA with SMC is considered for FTC. Some recent

CA papers in the field of FTC are [76] and [44]. In [78], a modified daisy chaining method is

proposed to deal with actuator loss of effectiveness.

2.4.2.3 Sliding Mode Control

Sliding Mode Control is a technique to deal with uncertain systems using the sliding mode con-

cept, and is a particular type of variable structure control(VSC) systems [117]. Sliding mode

control (SMC) has a wide range of applications– for example in robotics, process control, ve-

hicle and motion control and aerospace systems [117]. SMC schemes have inherent robustness

properties against matched uncertainties (i.e uncertainties which act in the input channels) dur-

ing a sliding mode. When using sliding mode controllers the closed-loop response of the system

is made insensitive to matched disturbances/uncertainties by forcing the system trajectories to

slide along the so-called switching surface [118], [41]. The basic concept is to first design a slid-

ing (switching) surface, and then a controller is designed based on this switching surface which

induces and maintains the sliding motion on the sliding surface [41]. Due to inherent robustness

advantages against matched uncertainties, SMC schemes have the capability to directly deal

with actuator faults which can be effectively modeled as matched uncertainties (equation 2.1).

A shortcoming of SMC schemes is that failures can not be directly handled, and some sort
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of mechanism is required in order to distribute the control effort among the redundant healthy

actuators. The work for instance in [106], [62], [105], [4],[30] shows that if there is enough

redundancy in the system, SMC can deal with total actuator failures. SMC will be explained in

detail in Chapter 3.

2.4.2.4 Control Signal Redistribution

The main goal of a FTC controller design is to achieve performance close to the nominal in the

case of actuator faults or failures in the system, and most important of all, to maintain stability of

the closed-loop system. One way to deal with this situation is to redistribute the control signals

among the healthy actuators. The pseudo inverse method (PIM) is an approach which provides a

systematic way for designing such a control strategy [51]. The idea behind the PIM is to design

a state feedback gain such that the behavior of the reconfigured system is as close as possible to

the nominal one. To explain this, suppose the nominal linearsystem is given by

ẋp(t) = Apxp(t)+Bpup(t) (2.13)

where,Ap ∈ Rn×n , Bp ∈ Rn×m are the state and input distribution matrices respectively. Let

up(t) = Kpxp(t) where,Kp ∈Rm×n is the state feedback gain which has been designed such that

the closed-loop system

ẋp(t) = (Ap+BpKp)xp(t) (2.14)

is stable and meets the performance specifications. In a postfault/failure scenario suppose that

the closed loop dynamics of the faulty system can be represented as

ẋf (t) = (Af +Bf K f )xf (t) (2.15)

where,Af ∈ Rn×n andBf ∈ Rn×m. Then the desired constant feedback controllerK f can be

obtained by equating the closed loop dynamics of the nominalsystem in (2.14) to that of the
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closed loop dynamics of the faulty system in (2.15), i.e.

Af +Bf K f = Ap+BpKp

K f = B‡
f (Ap−Af +BpKp) (2.16)

whereB‡
f denotes the Moore Penrose pseudo inverse ofBf , and provides some degree of free-

dom, which can be used for redistributing the control signals. In [51], it is argued that the so-

lution to (2.16) does not always guarantee stability of the faulty system. To ensure closed-loop

stability, a modified PIM method was proposed in [51], but this method introduces stability con-

straints while recovering some performance, which can increase the computational burden [121].

In [100], a bank of pre-computed values ofK f for all possible anticipated faults is suggested, and

once the fault information is provided by the FDI and the faulty system model (2.15) is obtained,

the relevant feedback gain of the system can be modified accordingly. In [100] and [90] the idea

of PIM reconfiguration (redistributing the control actions) is presented in order to improve the

closed loop stability of the system. In [102], a reconfigurable control law is reported which tries

to match the nominal productBpup with the faulty productBf uf , whereBf is obtained fromBp

by eliminating the columns which are effected by the fault. In [110] the problem of PIM and

improved PIM was addressed and extended by using a set of admissible reference models.

Dynamic Inversion (DI):

Dynamic inversion (DI) is a method which has a capability to replace the internal dynamics

of the system with the desired dynamics. Formally DI is defined as a “controller synthesis

technique by which existing deficient, or undesirable dynamics are canceled and replaced by

desirable dynamics” [31]. The basic concept of DI can be demonstrated mathematically by

considering a linear system of the form

ẋ(t) = Ax(t)+Bu(t) (2.17)
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To replace the internal system dynamics with that of the desired one, consider the control law as

u(t) = B−1(ẋdes(t)−Ax(t)) (2.18)

whereẋdes(t) is the desired response of ˙x(t). The main assumption in the design of dynamic

inversion controller is that the input matrixB is invertible. In the case whenB is non square, the

pseudo inverse properties of matrixB can be employed with the assumption that the matrixB is

of full rank. According to [36] the desired dynamics ˙xdes(t) are defined as

ẋdes(t) = ẋc(t)+Ke(t) (2.19)

wheree(t) is the error signal and is defined ase(t) := xc(t)−x(t) wherexc(t) is the command

signal. The design of the controller matrixK is to drivee(t) to zero. Pictorially the process of

DI is shown in Figure 2.11. In terms of FTC, DI has the capability to deal with actuator faults

Figure 2.11: Dynamic Inversion Process (adopted from [36])

or failures see for example [71]. In case the model parameters are perfectly known then the

undesired dynamics can be completely canceled and replacedby the desired ones. On the other

hand if the model parameters are uncertain then the inversion process may cause the stability

issues [36]. Typically DI controllers have poor robustnessproperties since it is assumed that

the exact system dynamics are available [31], which is practically not possible due to model
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uncertainties. To minimize the effects of model uncertainties, the combination of DI controller

with other robust techniques is suggested [31]. In [71] the combined use of DI and MPC is

considered for the benchmark model of Boeing 747.

2.4.2.5 Multiple Model

One paradigm to control the dynamical behavior of a nonlinear plant, especially for those where

the operating conditions frequently change, is to obtain multiple linear models of the nonlinear

plant of interest at different operating conditions, and then to design a suitable controller for each

linear model obtained using a linear control theory approach, which can provide a satisfactory

performance. The idea is to keep checking during operation which linear model output matches

most closely with the current states of the plant [17], and then to activate that model and the

corresponding controller. In this way the desired performance can be achieved in the entire

operating range.

In terms of FTC, the bank of linear models and the associated controllers should cover all

possible sets of faults and failures, in order to cope with such situations. In the case of a fault

or failure model that is not in the predesigned set, it may lead to closed-loop instability of the

system. The ability of the FDI to provide exact information plays an important role in order to

select the correct model and controller pair. Two well knownmultiple model schemes which

can be used for fault tolerant purposes are the Multiple Model Switching and Tuning (MMST)

and Interacting Multiple Model (IMM) methods. The MMST scheme was initially proposed to

cope with parameter variations which are due to for example to load variations in mechanical

systems, and actuator failures in flight control systems [94]. Switching between the controllers

to compensate the parameters variations and to maintain thestability while switching, is a crucial

part of the MMST scheme [94]. The switching rules and stability issues were discussed in [94].

In [18] the modeling of a control effector failure (float, lock-in-place, hard-over and loss of

effectiveness) of an aircraft was documented and a multiplemodel approach (MMST) was used
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to demonstrate the lock-in place failure (horizontal tail). Recently in [9], the concept of using a

bank of LQR controllers was proposed to deal with actuator faults governed by an FDI scheme.

A similar concept was also considered in [74]. The shortcomings of these schemes are that only

the anticipated set of faults and failures can be coped with,multiple faults or failures cannot be

handled, and furthermore the number of linear models increase exponentially to address larger

systems [121]. However for anticipated faults or failures,MMST scheme provides a fast and

promising solution.

The IMM scheme addresses the shortcomings of the MMST schemeby considering a small

set of carefully chosen linear models obtained at differentoperating regime and then designing

the controllers for the model set. In the IMM approach, an assumption is made that every

possible set of faults/failures can be modeled as a convex combination of the existing predefined

model set [121], and the control input is obtained by blending the predefined controllers [132].

In [132], an FDI scheme based on IMM was proposed, and the reconfiguration mechanism was

built on predefined controllers which were designed to keep the closed-loop eigenvalues during

fault or failure as close as possible to the nominal ones.

2.4.2.6 Scheduling

Gain Scheduling (GS) Control

Gain scheduling (GS) has a wide range of applications from aerospace to process control. Dif-

ferent GS design techniques are discussed in [79]. To designcontrol schemes for nonlinear

systems one approach is to create a family of linear models atdifferent operating points in the

region of interest, and then to synthesize local controllers which are gain scheduled. In this way

well established linear control methods can be used to address and control the nonlinear system.

The idea of GS is to compensate the plant parameter variations by varying the controller param-

eters [10], which means that as the plant operating conditions change the controller parameters

change too.

The implementation of the gain scheduling controller can bedone by considering the con-
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troller parameters as functions of operating conditions orby using lookup tables [10]. Switch-

ing between the intermediate operating points may cause unnecessary transients, and may be

avoided by creating multiple linear models and then designing particular controllers for each

model. For controller scheduling, various ad hoc methods have been proposed, but often these

methods do not guarantee acceptable performance (and possibly even stability) other than at the

set-points [12]. To calculate the controller parameters for a wide range of operating points could

be time consuming and tedious.

Linear Parameter Varying (LPV) Control

Linear parameter varying (LPV) systems are a special class of finite dimensional linear systems,

in which the entries of the state space matrices continuously depend on a time varying parameter

vector which belongs to a bounded compact set [84]. LPV control schemes are closely related to

GS schemes. The LPV methodology resolves many issues associated with the GS method, and

ensures performance and closed-loop stability over a widerenvelope of operating points. The

LPV technique is attractive and appealing for nonlinear plants which can be modelled as time

varying systems with state dependent parameters which are measurable online [101].

An LPV system can be defined in state space representation form as [84]

ẋ(t) = A(ρ)x(t)+B(ρ)u(t) (2.20)

y(t) = C(ρ)x(t)+D(ρ)u(t) (2.21)

where the matrices are of appropriate dimensions and the time varying parameter vectorρ(t)

lies in a specified bounded compact set. The matrix entries change according to the parameter

vector ρ(t). If the vectorρ(t) is fixed, then the LPV system shown above will become an

LTI system. Using LPV techniques, the control law can be automatically scheduled with the

operating conditions and guaranteed performance can be proved over a wide operating envelope

[12]. For example if all the system states are available, then a suitable state feedback controller

u(t) = −F(ρ)x(t) can be designed in order to achieve desired performance and closed-loop
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stability of the system

ẋ(t) = (A(ρ)−B(ρ)F(ρ))x(t)

for all the admissible values ofρ(t) in a compact set. LPV methods have attracted much at-

tention in recent years especially for aircraft systems [50]. For LPV systems, several controller

synthesis methods have been proposed in recent years in the framework of FTC: the advantages

and capabilities of LPV controller synthesis (based on a single quadratic Lyapunov function

approach) over gain-scheduling controller designs (basedon H∞ controller synthesis) are dis-

cussed and compared in [88] by implementing the two techniques on a high fidelity atmospheric

re-entry vehicle. In [115], an output feedback synthesis method using LMIs is presented in or-

der to preserve closed-loop stability in the case of multiple actuator faults. The authors in [101]

have explored the combined use of fault estimation and faultcompensation for LPV systems.

Recently in [92] an active FTC technique was proposed for LPVsystems to deal with actuator

faults, where actuator faults are identified by using UIO technique by considering them as un-

known inputs and a state feedback controller is realized by approximating the LPV system as

polytopic system i.e the system whose state space matrices range in a polytope of matrices [92],

and tested on a two degree of freedom twin rotor system.

2.4.2.7 Prediction

Model Predictive Control (MPC)

Model predictive control (MPC) is a process specific control, and has become an acceptable

standard in the process industry (perhaps after PID) due to its natural capability to deal with

constraints and changes in the system dynamics [121]. MPC has numerous applications in the

process industry for example petro-chemical and related industries [89].

MPC is based on the dynamical model of the process and an optimization technique,

whereby at each sampling time it matches predictive processoutputs with the predefined (de-

sired or set point) system trajectory, and creates an optimal control sequence. Then only the first

control input in the sequence is actually applied to the plant [89]. Due to the ability of an MPC
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controller to handle the constraints i.e. input constraints, state constraints etc, MPC provides a

promising basis for FTC [82], [72]. In [82], it is argued thatthe actuators faults can be easily

accommodated in the MPC formulation by modifying the input constraints or by modifying the

internal model. In [82] a case study of flight 1862 is considered, where MPC has been used

in the framework of FTC. For the FTC purposes, in most of the cases, MPC depends on reli-

able information from the fault detection and isolation unit in order to update the constraints

for the optimization process and to generate new control signals to stabilize the system in the

new condition. In [112], to deal with input constraints and actuator failures, an AFTC scheme

is proposed for linear systems where multiple MPC controllers are incorporated with the fault

detection filter. In [91] a real time implementation of MPC was considered for accommodat-

ing actuator and system faults in a three tank system. In thatscheme the accommodated MPC

controllers were already calculated off-line and each was switched on at the time of the relevant

fault. Recently in [130], an actuator FTC scheme was proposed for constrained linear systems,

where a bank of MPC controllers (for different possible faults) and state estimators (to match

the fault situation) were considered. The scheme uses faultinformation from the FDI, to activate

the appropriate MPC controller.

2.5 Conclusion

In this Chapter a brief introduction to FTC and some common terminologies which are used in

the FTC literature have been defined. Typical faults or failures associated with the actuators and

sensors were also explained. Redundancy, which is a key criterion in FTC has been defined. A

discussion about some FDI schemes was included. Methods which have been used to design

fault tolerant controllers using active and passive approaches were also discussed.

In the next Chapter, a SMC scheme will be explained in detail and it will be demonstrated

how the closed-loop system response can be made robust against a particular class of uncertain-

ties. A choice of the sliding surface is also discussed whichhelps not to amplify the unmatched

uncertainties (which do not lie in the control input channel) in the sliding mode.
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Integral Sliding Mode Control

The term sliding mode was first used in the literature in the context of relay systems [118]. Slid-

ing mode control (SMC) is a particular class of variable structure control systems (VSCS) [117].

VSCS evolved from work in Russia in the early 1960′s and spread around the world in the late

1970′s after the publication of the survey paper by Utkin [116]. VSCS are a class of systems

where the control law, as a function of the system state, is deliberately changed (from one struc-

ture to another) according to some predefined rules: for example a relay system. A sliding mode

is a phase in the closed-loop system response where the plant’s state trajectories slide along a

sliding surface to the equilibrium point. In sliding mode based schemes, a switching function

dictates which structure of the control law is to be used at a particular time instant, depending

on the position of the state from the sliding surface. The setof points for which the switching

function is zero is called sliding surface. SMC now has become a technical tool to design con-

trollers for uncertain systems and provide robustness properties against matched uncertainties

i.e. uncertainties that affect the plant dynamics acting through the input channels [41], because

in the so-called sliding mode, the system state trajectories are insensitive to matched uncertain-

ties. However this robustness against external disturbances and parameter variations matched to

the control can only be achieved after the occurrence of the sliding mode [41], [118]. Before the

occurrence of the sliding mode i.e during the so-called reaching phase, the system is sensitive to

external disturbance– even matched ones [118], [119], [28]. In order to eliminate the reaching

35
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phase and to have robustness throughout the entire closed-loop system response (i.e a sliding

mode will start from the beginning of the system response) the idea of Integral Sliding Modes

(ISM) was initially proposed in [118], [119]. The inherent robustness of sliding mode based

schemes make them attractive approaches for practical systems to design controllers, which are

robust against external disturbances, model uncertainties and parameter variations.

In this Chapter a step by step design procedure for sliding mode controllers is presented

first, and then these ideas are extended to integral sliding modes in order to have a robustness

throughout the entire system response. The necessary conditions for the existence of sliding

modes are also given. The properties of the system while in the sliding mode are also explained,

and are examined through simulations. The design concepts in this Chapter are closely based

on [41], [118].

3.1 Introduction

SMC design paradigms [118], [41], [2] have now become maturetechniques for the control of

uncertain systems to provide effective solutions against parameter changes and model uncertain-

ties. These are attractive features from a practical viewpoint. SMC has appeared to be the most

promising robustness technique to handle sudden and large changes in the system dynamics [62]

and has many application areas–for example motor control, aircraft and spacecraft control, pro-

cess control and power systems.

The design of a sliding mode controller comprises two steps.The first step is to design a sliding

(switching) surface, on which the sliding motion will take place. The second step is to design a

control law, which depends on the choice of the switching function and forces the system state

trajectories to reach and slide on the sliding surface ideally. An important condition in the slid-

ing mode literature is to verify the reachability condition, which guarantees the existence of the

sliding mode on the sliding surface. An ideal sliding mode can be thought of as the ideal or

best performance which can be achieved. Once sliding is achieved and maintained, robustness

against matched uncertainties is guaranteed. Details of the design procedures are given in the



37 3.2. PROBLEM STATEMENT AND EQUIVALENT CONTROL

next sections.

3.2 Problem statement and equivalent control

In order to explain the design procedure for a system wherefull state informationis available,

consider an uncertain linear time invariant (LTI) system ofthe form

ẋ(t) = Ax(t)+Bu(t)+Mξ (t,x) (3.1)

whereA ∈ Rn×n, B ∈ Rn×m. It is assumed that the matrixB has full rankrank(B) = m [41],

where 1≤m< n and the pair(A,B) is controllable [118], [41]. The matrixM ∈Rn×l is assumed

to be known and is in the range space of input distribution matrix B i.e. R(M)⊂R(B), therefore

it is possible to writeM = BD [41], for someD ∈ Rm×l . The functionξ (t,x) represents an

external disturbance or model uncertainty which is unknownbut has a known upper bounds for

all x andt. Therefore the uncertain system in (3.1) can be rewritten as

ẋ= Ax(t)+Bu(t)+BDξ (t,x) (3.2)

As a first design step, define a sliding surface as

S = {x∈Rn : σ(t) = 0} (3.3)

whereσ(t) is a linear switching function [41] and is defined as

σ(t) = Gx(t) (3.4)

whereG∈Rm×n is a design matrix and is of full rank. Furthermore by design it is assumed that

the square matrixGB is nonsingular matrix i.e det(GB) 6= 0. It is important that the sliding mo-

tion on the sliding surface should be stable and robust against the uncertaintyξ (t,x). Therefore
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in order to analyze the sliding motion associated with the sliding surface (3.3), consider the time

derivative of (3.4) given by

σ̇(t) = Gẋ(t) (3.5)

Substituting the open-loop dynamical equation (3.2) into (3.5) gives

σ̇(t) = G

(
Ax(t)+Bu(t)+BDξ (t,x)

)
(3.6)

Now it is assumed that the system states are forced to reach the sliding surface at time sayts, so

that aftert ≥ ts an ideal sliding motion can be obtained, i.e. during sliding

σ(t) = σ̇(t) = 0 for all t ≥ ts

where the timets is termed as reaching phase i.e. the time when the sliding commences. The

control vectoru(t) such that the time derivative of the vector on the state trajectories equal to

zero [118] can be obtained by equating equation (3.6) to zerowhich yields

ueq(t) =−(GB)−1
(

GAx(t)+GBDξ (t,x)
)

for t ≥ ts (3.7)

where the square matrixGB is nonsingular by design. The expressionueq(t) is termed as an

equivalent control [118], and is an average control which the control signal must take to maintain

the sliding motion on the sliding surface [118] [41]. However it is not the control law which can

induce the sliding mode.

Now in order to obtain the expression for the sliding motion (i.e. the motion while the system is
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in the sliding mode), substituting the value ofueq(t) from (3.7) into (3.2), yields

ẋ(t) = Ax(t)+B

(
− (GB)−1(GAx(t)+GBDξ (t,x))

)
+BDξ (t,x)

= Ax(t)−B(GB)−1GAx(t)−B(GB)−1GBDξ (t,x)+BDξ (t,x)

ẋ(t) = (In−B(GB)−1G)︸ ︷︷ ︸
Ps

Ax(t)+(In−B(GB)−1G)BDξ (t,x) (3.8)

Note that the matrixPs has the property that

PsB= 0 (3.9)

As a result, equation (3.8) can be reduced to

ẋ(t) = PsAx(t) for t ≥ ts (3.10)

From (3.10), it is clear that the effect of the uncertaintyξ (t,x) while in the sliding mode is

completely rejected i.e. the reduced order system motion isinsensitive to matched uncertainties.

Also the stability of the sliding motion (3.10) depends on the choice of sliding surface i.e choice

of switching matrixG. The switching matrixG in (3.4) can be designed for example using

quadratic minimization approach given in [33] and chapter 4of [41], which is based on the

modified form of a classical linear quadraticLQRregulator problem [26].

3.2.1 Sliding Mode Control Laws

The second design step is to design a control law such that thesliding motion on the sliding

surfaceS can be ensured in finite time and thereafter remains on it. A sliding mode controller

typically consists of two parts, a linear part and a nonlinear part and is given by

u(t) = ul(t)+un(t) (3.11)
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where the nonlinear part is of discontinuous type and is responsible for inducing the sliding

motion on the sliding surfaceS , whereas the linear part which is normally the nominal equiva-

lent control and is responsible to maintain sliding [41]. The specific choice of the sliding mode

control lawu(t) will be based on the nominal system (i.e the system without uncertainty) and

to cope with the uncertaintyξ (t,x) the inherent robustness property against matched ones as

demonstrated in the previous section in equation (3.10) will be relied upon. The nominal system

associated with (3.2) is

ẋ(t) = Ax(t)+Bu(t) (3.12)

From (3.7), it is clear that the expression forueq(t) i.e. for the nominal system (3.12) is

ueq(t) =−(GB)−1GAx(t) for t ≥ ts (3.13)

A sliding mode controller based on the nominal equivalent control and discontinuous control

component is then defined as

u(t) =−(GB)−1GAx(t)−ρ(t,x)(GB)−1 σ
‖σ‖ for σ 6= 0 (3.14)

where σ
‖σ‖ is a unit vector component [104], [41], andρ(t,x) is a scalar gain chosen high enough

(greater than the size of the uncertainty present in the system) to enforce the sliding motion.

Remark 3.1: For single input systems, the sliding mode controller in (3.14) can be defined as

u(t) =−(GB)−1GAx(t)−ρ(t,x)(GB)−1sgn(σ) for σ 6= 0 (3.15)

wheresgn(.) is the signum function and has the property thatσsgn(σ) = |σ |.
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3.3 Reachability Problem

In the sliding mode literature the controlleru(t) is to be designed such that the reachability

condition is satisfied [41] which is a sufficient condition toensure that at each time instant, the

system state trajectories will converge towards the sliding surface. Mathematically this can be

expressed for the case of single input systems [41] as

lim
σ→0+

σ̇ < 0 lim
σ→0−

σ̇ > 0 (3.16)

or in a compact form as

σσ̇ < 0 (3.17)

near the sliding surfaceσ(t) = 0. A stronger condition which ensures an ideal sliding motion

[41] in finite time even in the presence of external disturbance or uncertainty is given by

σσ̇ ≤−η|σ | (3.18)

whereη represents a positive design scalar. The expression in (3.18) is often called theη-

reachability condition [41].

For multi input systems, the reachability condition in (3.18) will be modified to become

σT σ̇ ≤−η‖σ‖ (3.19)

This is a sufficient condition to show sliding surfaceS is attractive .

Finally in order to justify that the controller designed in (3.14) satisfies theη-reachability con-

dition (3.19), substituting the value of (3.14) into (3.6) which gives

σ̇(t) = GAx(t)+GB

(
− (GB)−1GAx(t)−ρ(t,x)(GB)−1 σ

‖σ‖

)
+GBDξ (t,x)

= −ρ(t,x)
σ
‖σ‖+GBDξ (t,x) (3.20)
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Pre-multiplying both sides of (3.20) byσT(t) which gives

σT σ̇ =−ρ(t,x)
σTσ
‖σ‖ +σTGBDξ (t,x) (3.21)

By using the property thatσT σ = ‖σ‖2, equation (3.21) becomes

σT σ̇ = −ρ(t,x)‖σ‖+σTGBDξ (t,x)

≤ ‖σ‖(−ρ(t,x)+‖GBDξ (t,x)‖) (3.22)

For a particular choice of scalar gainρ(t,x) such that

ρ(t,x)≥ ‖GBDξ (t,x)‖+η (3.23)

the inequality in (3.22) becomes

σT σ̇ ≤−η‖σ‖ (3.24)

From (3.24), it is clear thatη-reachability condition is satisfied, which ensures the existence of

an ideal sliding motion on the sliding surfaceS .

3.4 A simple simulation example

In this section, the design procedure for sliding mode controllers discussed in the previous sec-

tions are applied to a simulation example to obtain insight into the design procedure.

3.4.1 Spring Mass Damper System

A simple example of a spring-mass-damper system (SMDS) taken from [97] driven by a force

u(t) is considered here as shown in Figure 3.1. It is assumed that at t = 0 the massm is pulled

down from the equilibrium position, such thaty(0) = 0.1m and ẏ(0) = 0.05m/sec[97]. The



43 3.4. A SIMPLE SIMULATION EXAMPLE

Figure 3.1: Spring Mass Damper System (adopted from [97])

dynamical equation of the mechanical system (Figure 3.1) can be written as

mÿ(t)+cẏ(t)+ky(t) = u(t) (3.25)

wherek is the spring constant,c is the viscous-friction coefficient andm is the mass. A dis-

turbance signalasin(y) is added into the control input channel to demonstrate the invariance

against such a disturbance while in the sliding mode. The values of these constants are chosen

asm= 1 kg,c= 3 N-sec/m,k= 2 N/m anda= 0.1. In order to write the differential equation

(3.25) into state space form, define the state variables asx1(t) = y(t) andx2(t) = ẏ(t), which

represent the position and velocity of the massm. By taking the time derivative of these state
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variables, equation (3.25) can be written in terms of state variables as

ẋ1(t) = ẏ(t) = x2(t) (3.26)

ẋ2(t) = ÿ(t) =− k
m

x1(t)−
c
m

x2(t)+
1
m
(u(t)+asin(x1(t)) (3.27)

Hence, the state space representation of the system in (3.25) is




ẋ1(t)

ẋ2(t)


=




0 1

− k
m − c

m




︸ ︷︷ ︸
A




x1(t)

x2(t)




︸ ︷︷ ︸
x(t)

+




0

1
m




︸ ︷︷ ︸
B

(u(t)+asin(x1(t)) (3.28)

By substituting the values for the spring constantk, viscous friction coefficientc, and massm, it

yields 


ẋ1(t)

ẋ2(t)


=




0 1

−2 −3




︸ ︷︷ ︸
A




x1(t)

x2(t)


+




0

1




︸ ︷︷ ︸
B

(u(t)+0.1sin(x1(t)) (3.29)

3.4.2 Simulation objective and SMC design

In the simulation it is assumed that att = 0 the massm is pulled down from the equilibrium

position such thaty(0) = 0.1m and ẏ(0) = 0.05m/sec[97]. The objective here is to design a

sliding mode controller to bring the system back to the equilibrium position from the initial

conditions without overshooting in terms of displacement and with a settling time not more than

6 seconds.

Since the first step is to design a sliding surface, so the switching function in (3.4) can be written

in terms of statesx1(t) andx2(t) as

σ(t) =

[
G1 G2

]



x1(t)

x2(t)




= G1x1(t)+G2x2(t) (3.30)
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whereG1 ∈ Rm×(n−m) andG2 ∈ Rm×m is assumed to be nonsingular i.e. det(G2) 6= 0. While

sliding, the switching functionσ(t) = 0 [118], [41], therefore equation (3.30) can be written as

x2(t) =−G−1
2 G1︸ ︷︷ ︸

E

x1(t) (3.31)

whereE ∈ Rm×(n−m) is the design matrix. It is also clear from (3.31) that oncex1(t) is known,

the statex2(t) can be easily determined, therefore substituting the valueof (3.31) into (3.26), the

sliding motion is given by

ẋ1(t) =−Ex1(t) (3.32)

From (3.32) it is clear that during sliding mode the system behaves as a reduced order i.e. the

system’s order reduces to the number of control inputs. Now for the design purpose, choosing

the value ofG2 = 1 which results inE = G1, and hence the switching matrixG takes the form

G=

[
E 1

]

In this example the value ofE = 0.9 is chosen to satisfy the condition of no-overshooting. The

sliding mode control law defined in (3.15) using the fact thatGB= 1 will become

u(t) = −(GB)−1GAx(t)−ρ(GB)−1sgn(σ)

=

[
2 2.1

]
x(t)−ρ sgn(σ) (3.33)

Finally in order to verify that the control lawu(t) in (3.33) satisfies the reachability condition

(3.18), by substituting (3.33) and (3.29) into the time derivative of (3.30) which yields

σ̇(t) = G1ẋ1(t)+G2ẋ2(t)

= G1x2(t)−2x1(t)−3x2(t)+2x1(t)+2.1x2(t)−ρsgn(σ)+0.1sin(x1(t))

= −ρsgn(σ)+0.1sin(x1(t)) (3.34)
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Multiplying (3.34) with σ(t) and with the choice ofρ ≥ |0.1sin(x1(t)|+ η, the reachability

condition in (3.18) for the controller (3.33) has been established and is given by

σσ̇ ≤−η|σ | (3.35)

which ensures the existence of an ideal sliding mode.

3.4.3 Simulation Results

A sliding mode controller (3.33) based on the nominal system(3.29) is now being tested in

simulations using Matlab/Simulink environment. In the simulations, the value ofρ is selected
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Figure 3.2: Simulation results for the SMDS with disturbance

asρ = 0.15. From Figure 3.2 it is clear that the disturbance has no effect on the system per-



47 3.5. PRACTICAL SLIDING MODE CONTROL LAW

formance, which means that the design requirements of displacement reaching the equilibrium

position with no overshoot and within 6 seconds is met. Switching function plot in Figure 3.2

shows that the sliding surface is attained in 1 sec i.e. sliding motion starts aftert ≥ 1 sec, how-

ever the discontinuous control signal exhibits high frequency switching which is undesired in

some systems due to high wear of moving mechanical components [117]. Therefore smoothing

the discontinuity in the control signal is required to avoidhigh frequency switching (chattering).

3.5 Practical Sliding Mode Control law

The discontinuity associated with the nonlinear discontinuous part of the control law (3.14) is the

main hurdle in a practical implementation– especially in mechanical systems. Different methods

have been used in the literature to smooth the transition near the sliding surface–see for example

chapter 3 of [41] and [26]. By smoothing the control signal discontinuity, the state trajectories

no longer slide on the sliding surface, instead they slide inthe vicinity of the sliding surface,

which is termed as pseudo sliding [41]. However this means total invariance against matched

uncertainties is not guaranteed, however there is a possibility of obtaining close approximation

of the discontinuous control term which ensures a certain level of robustness against matched

uncertainties still remains.

One possibility to smooth the control signal in (3.14) is to use the boundary layer approach,

where the discontinuous control signalun(t) can be replaced with a continuous approximation:

un(t) :=





−ρ(t,x)(GB)−1 σ(t)
||σ(t)|| if ||σ(t)|| ≥ δ

−ρ(t,x)(GB)−1σ(t)
δ otherwise

(3.36)

whereδ is a small positive design scalar, whose value determine thesize of the boundary layer

around the sliding surface. Another alternative approach is to use the fractional/sigmoidal ap-

proximation [41], where the unit vector term in (3.14) can bereplaced by the following contin-
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uous approximation

un(t) =−ρ(t,x)(GB)−1 σ(t)
(||σ(t)||+δ )

(3.37)

whereδ is a small positive design scalar.

An alternative approach to smooth the high frequency control switching which leads to chat-

tering is to use the higher order sliding mode control approach [80], [14], and recently [52].

Now the sliding motion is on the constraint setσ = σ̇ = ... = σ r−1 = 0 and is called anrth

order sliding mode. Furthermore if it is possible to steerσ(t,x) to zero using the discontinuous

control u̇(t), then the associated actual control signalu(t) will be continuous and the unwanted

chattering effects can be alleviated [14].

In this Chapter the fractional approximation given in (3.37), as shown in Figure 3.3, is used,

and is a tradeoff between the ideal sliding motion and chattering. Therefore by approximating

the signum function in (3.15) with the fractional approximation σ
|σ |+δ , where the value ofδ is

chosen asδ = 0.0001, the control law in (3.33) becomes

u(t) =

[
2 2.1

]
x(t)−0.15

σ
(|σ |+0.001)
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Figure 3.4: Simulation results for the SMDS with modified control law

From Figure 3.4, it is clear that the chattering or high frequency switching of the control signal

has been removed. This is due to the approximation of the signum function with the fractional

approximation as can be seen in the Figure 3.3. Due to this approximation, the sliding motion

will be in the vicinity of the sliding surface and will be termed as pseudo sliding instead of an

ideal sliding motion. The design requirements however are still met in the presence of external

disturbance as can be seen in Figure 3.4.

3.6 Properties of the Sliding Mode

Some of the properties of siding modes are summarized as below:
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1. during a sliding mode the order of the sliding motion isn−m [118], [41], wheren andm

represent the number of states and the number of inputs respectively.

2. the stability of the closed-loop sliding motion depends only on thesen−m nonnegative

eigenvalues.

3. the performance and stability of the closed loop sliding motion depends on the choice of

the sliding surface.

4. during sliding mode the sliding motion is invariant to matched uncertainties [41], [118].

Remark 3.2: It is argued in [118], [119], [28] that the system is sensitive to model uncertainties

and or external disturbances during the so called reaching phase.

In the coming sections, the ideas of Integral Sliding Mode Control (ISMC) are discussed which

have the property to eliminate the reaching phase associated with the classical SMC approach

discussed in the previous sections to improve the robustness against matched uncertainties by

inducing the sliding mode in the entire closed-loop system response [27], [28].

3.7 Integral Sliding Mode Control (ISMC)

The basic idea of ISMC was initially proposed in [119], [118], [123] to enforce the sliding mode

from the beginning of the system response, which means a controller based on ISMC ideas can

provide compensation to matched uncertainties throughoutthe entire system response. In this

section, a step by step design procedure for Integral Sliding Modes (ISM) controller is explained

and the special features associated with ISMC design are discussed. In this section, it is assumed

that the state information is available for the controller design.

3.7.1 Introduction

In ISMC, it is assumed that there exists an ideal nominal plant, for which a properly designed

state feedback controller has already been designed to ensure the asymptotic stability of the
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closed loop system [118], [119], and to satisfy predefined performance specifications. A discon-

tinuous controller based on ISM ideas is added to the existing nominal state feedback controller

to make sure the nominal performance is maintained, and the system is insensitive to external

disturbances (faults/failures from a FTC perspective) andvariations of system parameters in a

more traditional setting i.e. the system motion while in thesliding mode behaves as the nomi-

nal system. This design philosophy provides the opportunity to retro-fit an ISM to the existing

baseline controller to compensate the matched uncertainties and external disturbances from the

very beginning. More specifically “a sliding mode based auxiliary controller that compensates

the perturbation from the very begging of the control action, while retaining the order of the

uncompensated system is the ISM controller” [103].

ISMC has been used to tackle different set of control problems. A practical implementation of

ISMC was considered for example in [11], [13] for the speed control of synchronous and induc-

tion motors, where the boundary layer approach is used to avoid the chattering associated with

the discontinuous part of the ISM controller. It is known from the early sections of this Chapter

that using sliding mode based schemes the system state trajectories are insensitive to matched

uncertainties while in the sliding mode. But the system state trajectories can be sensitive to

unmatched uncertainties i.e. the uncertainties which do not match to the control or are not in the

range space of input distribution matrix. Therefore while designing a controller such that the

effect of matched uncertainty is rejected in the sliding mode, the unmatched uncertainty in the

system should not deviate the system trajectories away fromthe sliding surface. In [27], [128]

and [28], ISM ideas were used for an uncertain system considering both matched and unmatched

uncertainties and have shown that the system dynamics whileon the sliding surface meets the

performance specifications of the nominal system (which is assumed to be knowna priori in

ISM framework) in the presence of matched uncertainties.
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3.7.2 Problem Statement and ISM Controller design

To explain the design procedure, consider an uncertain LTI of the form

ẋ(t) = Ax(t)+Bu(t)+Mξ (t,x)+ fu(t,x) (3.38)

whereξ (t,x) is a bounded unknown disturbance and the matrixM satisfies the matching condi-

tion i.eR(M)⊂ R(B) and can be written asM = BD [41], for someD ∈Rm×l . The pair(A,B)

is assumed to be controllable andB is of full rank i.e. rank(B) = m, where 1≤ m< n. The

function fu(t,x) represents an unmatched uncertainty i.e. does not lie within the range space

of matrix B [41], but is assumed to be bounded with known upper bound. Thenominal linear

system associated with equation (3.38) can be written as

ẋ(t) = Ax(t)+Buo(t) (3.39)

whereuo(t) is a nominal control law which can be designed by any suitablestate feedback

controller design method to achieve the desired nominal performance of the system. Since it is

assumed that the pair(A,B) is controllable, then there exists a state feedback controller of the

form

uo(t) =−Fx(t) (3.40)

whereF ∈ Rm×n is a state feedback gain to be designed so that the state trajectories of the

nominal system (3.39), sayxo(t), are stable and meet performance specifications. The matrix

F can be designed by using any state feedback design approach.The objective is to design a

control lawu(t), such that the state trajectoriesx(t) of (3.38) while in the sliding mode satisfy

the conditionx(t)≡ xo(t) for all time, starting from the initial time instanti.e x(0)≡ xo(0) [118].

To achievex(0) ≡ xo(0) the order of the sliding dynamics should be of the same order as the

nominal system.
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3.7.3 Design Principles

Define a control lawu(t) of the form

u(t) = uo(t)+un(t) (3.41)

then equation (3.38) using (3.41) can be written as

ẋ(t) = Ax(t)+Buo(t)+Bun(t)+BDξ (x, t)+ fu(t,x) (3.42)

whereuo(t) is the state feedback controller as defined in (3.40), andun(t) is defined to reject

the disturbance termξ (x, t) while in the sliding mode. The choice of the switching function as

in [118] incorporates the nominal performance into the design procedure and is defined as

σ(x, t) = Gx(t)+z(t) (3.43)

whereG ∈ Rm×n is design freedom. Since matrixB is of full rank, with the design of the

switching matrixG it can be ensured that the matrixGB is nonsingular i.e. det(GB) 6= 0. The

second partz(t) introduces the integral term in the switching function [118]. Now in the sequel

the properties while the system is in the sliding mode are explored.

During slidingσ(t) = σ̇(t) = 0 [41], so in order to obtain the expression for the equivalent

control, the time derivative of (3.43) is

σ̇ = Gẋ(t)+ ż(t) = 0 (3.44)

Substituting the value of (3.42) into (3.44) gives:

σ̇ = G

(
Ax(t)+Buo(t)+Bun(t)+BDξ (x, t)+ fu(t,x)

)
+ ż(t) = 0 (3.45)
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To satisfy the conditionx(t)≡ xo(t) at all timest > 0 (when fu = 0) while sliding, the value of

ż(t) should be selected as

ż(t) =−G(Ax(t)+Buo(t)), z(0) =−Gx(0) (3.46)

Substituting the value of ˙z(t) into (3.45) gives,

σ̇ = G

(
Ax(t)+Buo(t)+Bun(t)+BDξ (x, t)+ fu(t,x)

)
−G(Ax(t)+Buo(t)) (3.47)

and the equivalent control expression can be written as

GBuneq(t) = −GBDξ (x, t)−G fu(t,x)

uneq(t) = −(GB)−1GBDξ (x, t)− (GB)−1G fu(t,x)

= −Dξ (x, t)− (GB)−1G fu(t,x) (3.48)

whereuneq(t) is the equivalent control associated withun(t). Substituting the value of equivalent

controluneq(t) into equation (3.42) and after simplifying, the expressionfor the integral sliding

mode becomes

ẋ(t) = Ax(t)+Buo(t)+(I −B(GB)−1G)︸ ︷︷ ︸
Γ

fu(t,x) (3.49)

and definefueq := Γ fu(t,x) as an equivalent uncertainty. From equation (3.49), it is straightfor-

ward to see that the the effect of the matched uncertainty hasbeen completely rejected while in

the sliding mode.

Remark 3.3: In the case whenfu = 0, the equation (3.49) will simplify to become

ẋ(t) = Ax(t)+Buo(t) (3.50)

and the conditionx(t) ≡ xo(t) will be satisfied i.e. the system state trajectories coincide with

the nominal trajectories in the integral sliding mode. But if fu 6= 0, the matrixΓ in (3.49) can
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amplify the effect of unmatched uncertaintyfu(t,x) and the system trajectories can deviate from

the sliding surface.

The objective is to understand how the integral sliding surface can be designed to avoid the

amplification of the unmatched uncertainty.

3.7.4 Integral Switching Surface

One of the key ideas behind an ISMC approach is to eliminate the reaching phase associated with

the classical SMC approach explained earlier. Using equations (3.43) and (3.46), an integral

switching function which eliminates the reaching phase is defined as [27], [28]

σ(x, t) = Gx(t)−Gx(0)−G
∫ t

0

(
Ax(τ)+Buo(τ)

)
d(τ) (3.51)

The term−Gx(0) achieves the property thatσ(x(0), t(0)) = 0, so the reaching phase is elimi-

nated [28]. The sliding mode will exist from the very beginning and the system will be robust

throughout the closed-loop system response against matched uncertainties [119], [27]. In [28],

a choice ofG was proposed as

G= B‡ = (BTB)−1BT (3.52)

which is the Moore-Penrose left pseudo inverse of the input distribution matrixB (with the

assumption thatB is of full rank).

Remark 3.4: From the previous analysis, it is clear that in the case of only matched uncertainty,

then any choice ofG which ensuresGB is invertible is sufficient for the ISM design, but for

unmatched uncertainty a specific choice of G is needed.

The advantages this particular choice ofG in (3.52) brings are: the gain of the discontinuous

controlρ is minimal i.e the amplitude of the chattering can be reduced; it helps not to amplify

the unmatched disturbance when the ISM is combined with other techniques to have robustness

against unmatched disturbance [28], and is demonstrated inthe sequel. This choice ofG has the
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simplifying property that

GB= (BTB)−1BT

︸ ︷︷ ︸
G

B= Im

which ensures that the square matrixGB is nonsingular. With the choice ofG in (3.52), the

matrixΓ in (3.49) becomes

Γ = In−BB‡ (3.53)

whererank(BB‡) < n, which means thatrank(Γ) = rank(In−BB‡) can not be zero, and there

must be at least one nonzero eigenvalue [28]. It can be verified thatΓ in (3.53) is a symmetric

matrix i.e.

ΓTΓ = [In−BB‡][In−BB‡]

= In−BB‡ = Γ

and a symmetric matrix always has real eigenvalues. In [28],it was argued that‖Γ‖= 1, and is

explained as follows: for each eigenvalueλ of Γ, there exists an eigenvectorv such that

Γv= λv⇒ vTΓTΓv= λ 2‖v‖2 (3.54)

However from the fact thatΓTΓ = Γ,

vTΓTΓv= vTΓv= λ‖v‖2 (3.55)

Using equations (3.54)–(3.55), it can be seen that relationλ (λ −1) = 0 must be satisfied by the

eigenvalues ofΓ [28]. Consequently the eigenvalues areλ = 0 or λ = 1. Clearlyλ = 1 is the

maximum eigenvalue. Hence the choice ofG in (3.52) ensures that‖Γ‖= 1, which means that

the effect offu is not amplified i.efueq is equivalent tofu, which is assumed to be bounded.
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3.7.5 Integral Sliding Mode Control Laws

An integral sliding mode controller will be designed based on the nominal system (3.39). The

control law has a structure given by

u(t) = uo(t)+un(t) (3.56)

where,uo(t) is the linear part of the controller, andun(t) is the discontinuous part to enforce the

sliding mode along the sliding surface (3.51). Hence the physical control lawu(t) can be written

as

u(t) =−Fx(t)−ρ(GB)−1 σ
‖σ‖ forσ 6= 0 (3.57)

whereF is the state feedback controller, which is responsible for the performance of nominal

system andρ is the controller gain to enforce the sliding mode and whose precise value is given

in the next subsection.

Remark 3.5: For a single input system, the ISM control law in (3.57) can be written as

u(t) =−Fx(t)−ρ(GB)−1sgn(σ) forσ 6= 0 (3.58)

3.7.6 The Reachability Condition

To justify that the controller designed in (3.57) satisfy theη-reachability condition (3.24), which

is a sufficient condition to ensure the existence of an ideal sliding motion, the time derivative of

(3.51) is

σ̇ = Gẋ(t)−GAx(t)−GBuo(t) (3.59)

Substituting the value of (3.38) and (3.40), it follows that

σ̇ = G

(
Ax(t)+Bu(t)+BDξ (t,x)+ fu(t,x)

)
−GAx(t)+GBFx(t)
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Furthermore by substituting the value of (3.57) and after some simplification it becomes

σ̇ = GAx(t)+GB

(
−Fx(t)−ρ(GB)−1 σ

‖σ‖

)
+GBDξ (t,x)+G fu(t,x)−GAx(t)+GBFx(t)

= −ρ
σ

‖σ‖ +GBDξ (t,x)+G fu(t,x) (3.60)

Now by choosing a positive definite Lyapunov candidate function as

V(σ) =
1
2

σTσ (3.61)

which characterizes the system state trajectories on the sliding surface. Taking the time deriva-

tive of (3.61) along the system state trajectories and substituting the value of (3.60) into it gives

V̇(σ) = σT σ̇

= −ρ‖σ‖+σTDξ (t,x)+σTG fu(t,x)

≤ ‖σ‖(−ρ +‖Dξ (t,x)‖+‖G fu(t,x)‖) (3.62)

where the factGB= Im, has been used. In order to enforce the sliding mode the valueof the

nonlinear controller gainρ should be greater than any disturbance or uncertainty in thesystem,

therefore with the choice ofρ which satisfies

ρ ≥ ‖D‖‖ξ (t,x)‖+‖G‖‖ fu(t,x)‖+η (3.63)

whereη is some positive scalar, then the inequality in (3.62) aftersubstituting the value ofρ

from (3.63) becomes

V̇(σ)≤−η||σ || (3.64)

The inequality in (3.64) is a standardη-reachability condition [41], which implies that the ideal

sliding motion is maintained for all the time.
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3.7.7 Properties of Integral Sliding Mode

The properties of integral sliding modes can be summarized as follows:

1. there is no reaching phase [118],i.e a sliding mode is enforced throughout the entire

system response;

2. during the sliding mode, the order of the motion equation is the same as the original

system [119];

3. By a suitable choice of sliding surface, the effect of unmatched uncertainty can be ame-

liorated;

4. during sliding mode, system motion is invariant to matched uncertainties [118], [41].

5. the ISM approach has the ability to be retro-fitted to an existing feedback controller.

3.7.8 Simulation Example

Here in this section, to make a direct comparison, the same simulation scenario of a spring-

mass-damper system considered in early sections will be simulated and reproduced here as




ẋ1(t)

ẋ2(t)


=




0 1

−2 −3




︸ ︷︷ ︸
A




x1(t)

x2(t)


+




0

1




︸ ︷︷ ︸
B

(u(t)+0.1sin(x1(t))

The objective here is to design an ISM controller to bring thesystem back to the equilibrium

position from the initial conditions without overshootingin terms of displacement and with a

settling time not more than 6 seconds. To begin with the ISM controller design, the integral

switching function, from equation (3.51) is

σ(x, t) = Gx(t)−Gx(0)−G
∫ t

0

(
A−BF)

)
x(τ)d(τ)
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where the value ofG is chosen as in (3.52) and is equal to

G= (BTB)−1BT =

[
0 1

]

The gainF in this example has been designed using the linear quadraticregulator (LQR) method,

which aims to regulate the system states to the origin by minimizing the cost function

J =

∫ ∞

0
(x(t)TQx(t)+uo(t)

TRuo(t))dt (3.65)

whereR andQ are symmetric positive definites.p.d. matrices which penalize the magnitude of

the control signaluo(t) and the deviation of the system states from the origin respectively. Here

the values ofQ andR metrics as chosen asQ = diag{1,0.5} andR= 1, which results in the

matrixF as

F =

[
0.2361 0.1579

]

Now as a second step, considering the ISM control law for a single input system (3.58) as

u(t) =−Fx(t)−ρ(GB)−1sgn(σ) for σ 6= 0 (3.66)

where the choice of G makes sure thatGB= 1. By using similar arguments of reachability con-

dition as mentioned before, it is easy to check that the control law u(t) satisfies the reachability

conditionσσ̇ ≤ −ρ |σ |. In this section, the fractional approximation given in (3.37) as shown

in Figure 3.3 is used, therefore the ISM control law in (3.66)will be modified to become

u(t) =−Fx(t)−ρ(GB)−1 σ
|σ |+δ

(3.67)

where the value of a small positive scalarδ is chosen asδ = 0.0001, to eliminate the chattering

or high frequency switching, and the control lawu(t) after substituting the value ofF can be
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written as

u(t) =−0.2361x1(t)−0.2361x2(t)−ρ
σ

|σ |+δ

The displacement plots in Figures 3.5–3.6 show that the design requirements (which are to
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Figure 3.5: Simulation results for the SMDS nominally (withISMC)

bring the system back to the equilibrium position without overshoot and have a settling time of

not more than 6 seconds) are met both nominally (without disturbance) and in the presence of

disturbance term. From Figure 3.6, it is clear that the effect of the disturbance 0.1sinx1(t) is

completely rejected, whilst achieving the same design requirements. In the switching function

plots of Figures (3.5–3.6), it is demonstrated that there isno reaching phase i.e. the sliding mode

starts from the beginning.
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Figure 3.6: Simulation results for the SMDS with disturbance (with ISMC)

3.8 Output Integral Sliding Mode Control

In the early sections of this Chapter, it was assumed that thestate information of the plant is

available in order to design a state feedback control law. Inthis section such an assumption

is relaxed and the ISM ideas discussed before are extended for the systems where only the

measured system output is available i.e. the full state information is not known. To cope with

such situation one possibility is to construct a state observer based on the plant model [41], [29],

[15], [66] to be considered in order to estimate the system states, such that the estimated states

converge to the true states in a finite time.

Considering an extension, the design steps for the ISM controller design are the same, but the

sliding surface is based on the plant output information which is available in this case. Recently

in [29], the state dependent ISM ideas reported in [27] were extended for the systems where only

the system output information was available and a full-order linear unknown input observer

was incorporated in the design to estimate the real plant states considering both matched and
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unmatched uncertainty, where as in [15] an output dependentISM scheme was considered for

the systems with matched uncertainties, and argued that forthe systems wherep≤m, the closed-

loop dynamics lose observability. Recently in [47], the output ISM ideas of [15] were applied on

the inverted stewart platform in the presence of permanent disturbance (wind), which is normally

used for surveillance purposes.

In order to explain the design procedure, consider an uncertain LTI system as in (3.38),

ẋ(t) = Ax(t)+Bu(t)+BDξ (t,x)+ fu(t,x)

y(t) = Cx(t) (3.68)

whereC ∈ Rp×n is the output distribution matrix with the assumption thatrank(C) = p, with

1≤ p< n andp≥ m. In this section, it is assumed that

A1 The pair (A,B) is controllable.

A2 rank(CB) = rank(B) = m.

A2 The pair (C,A) is observable.

Arguing as before it is assumed that a nominal controlleruo(t) achieving the desired perfor-

mance is already available. Having only the information of plant output, the ISM control law

can be designed by defining first the ISM sliding function as [29],

σ(t) = Gy(t)−Gy(0)−
∫ t

0
uo(τ)dτ (3.69)

whereG∈ Rm×p is a design freedom and must be designed such that det(GCB) 6= 0. A choice

of G proposed in [15] ensuringGCB= Im is given by

G= (CB)‡ = ((CB)T(CB))−1(CB)T (3.70)
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where(CB)‡ is the Moore-Penrose left pseudo inverse ofCB. Sinceσ(0) = 0, suppose an ISM

control law exists which can guaranteeσ(t) = σ̇(t) = 0 starting from the beginning. By taking

the time derivative of (3.69) along the system trajectoriesand substituting (3.68) into it yields

σ̇(t) = Gẏ(t)−uo(t)

= GC(Ax(t)+Bu(t)+BDξ (t,x)+ fu(t,x))−uo(t)

= GCAx(t)+u(t)+Dξ (t,x)+GC fu(t,x)−uo(t) (3.71)

Equatingσ̇(t) = 0 and solving for the equivalent controlueq(t) yields

ueq(t) =−GCAx(t)−Dξ (t,x)−GC fu(t,x)+uo(t) (3.72)

The expression for the sliding motion can be obtained by substituting the equivalent control into

(3.68) to get

ẋ(t) = Ax(t)+B
(
−GCAx(t)−Dξ (t,x)−GC fu(t,x)+uo(t)

)
+BDξ (t,x)+ fu(t,x)

= Ax(t)−BGCAx(t)+Buo(t)−BGC fu(t,x)+ fu(t,x)

= (In−BGC)Ax(t)+Buo(t)+(In−BGC) fu(t,x) (3.73)

By defining the matrixAc := (In−BGC)A and E := (In−BGC), the sliding mode equation

(3.73) can be written as

ẋ(t) = Acx(t)+Buo(t)+E fu(t,x) (3.74)

In [29], it is argued that the feedback control inputuo(t) should be designed such that when the

system is in the sliding mode, robust disturbance attenuation againstfu(t,x) can be achieved.

With the definition of the error signale(t) = x(t)− x̂(t), the control inputuo(t) is defined as

uo(t) =−Fx̂(t) =−Fx(t)+Fe(t) (3.75)
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where x̂(t) is an estimated state vector. The details of how an estimatedstate vector can be

obtained together with closed-loop stability analysis aregiven in Chapter 8. Substituting (3.75)

into (3.74) gives

ẋ(t) = Acx(t)−BFx(t)+BFe(t)+E fu(t,x) (3.76)

Furthermore to enforce the sliding mode (motion on the sliding surfaceσ(t) = 0) and thereafter

to maintain it from the beginning, define an ISM control law as

u(t) =−Fx̂(t)−ρ
σ

||σ || (3.77)

To validate that the control law in (3.77), ensures that the reachability condition is satisfied,

substituteu(t) into (3.71), and exploiting the fact thate(t) = x(t)− x̂(t) yields

σ̇(t) = GCAx(t)−Fx̂(t)−ρ
σ

||σ ||+Dξ (t,x)+GC fu(t,x)+Fx̂(t)

= −ρ
σ

‖σ‖ +GCAx(t)+Dξ (t,x)+GC fu(t,x)

= −ρ
σ

‖σ‖ +GCAx̂(t)+GCAe(t)+Dξ (t,x)+GC fu(t,x)

σT σ̇ = −ρ‖σ‖+σT(GCAx̂(t)+GCAe(t)+Dξ (t,x))+GC fu(t,x)
)

σT σ̇ ≤ −ρ‖σ‖+‖σ‖(‖GCA‖(‖x̂(t)‖+‖e(t)‖)+‖D‖‖ξ (t,x)‖+‖GC‖‖ fu(t,x)‖)(3.78)

where the reachability conditionσT σ̇ ≤−η||σ ||, can be satisfied if the modulation gainρ(t) is

selected as

ρ(t)≥ ‖GCA‖(‖x̂(t)‖+‖e(t)‖)+‖D‖‖ξ (t,x)‖+‖GC‖‖ fu(t,x)‖+η (3.79)

But the gain in (3.79) cannot be realized because the bound ofthe signal‖e(t)‖ is not known.

In [15], it is argued that if the error signale(t) is exponentially stable, then there exist the
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constantsε, µ such that

‖e(t)‖ ≤ εe−µ(t)‖e(0)‖

≤ εe−µ(t)(η +‖x̂(0)‖) (3.80)

wherex̂(0) is the initial condition of the estimated state vector andη is some positive scalar.

Therefore in the expression ofρ(t) in (3.79) the bound on‖e(t)‖ can be replaced by the ex-

pression in (3.80). The reachability condition is sufficient to guarantee that the sliding motion is

maintained for all the subsequent time.

Due to a very little work on ISM in terms of FTC, and by considering the ISMC properties

mentioned in this Chapter, there is a scope to design controllers which provide robustness and

tolerance against actuator faults or failures throughout the entire closed-loop system response.

3.9 Sliding Modes as a candidate for FTC

Sliding mode based control schemes, could be a strong candidate for FTC purpose, because of

the inherent advantages against matched uncertainties andthe special properties as explained in

the early sections of this Chapter. It has already been explained in the Fault Tolerant Control

Chapter that the actuator faults can be effectively modeledas matched uncertainties, therefore

sliding mode based control schemes have the capability to directly deal with the actuator faults.

The researchers for example in [126], [62], [122], [106], [105] have already documented SMC as

a potential candidate for FTC. In [62], [126], it was argued that SMC could deal with large and

sudden changes in the system dynamics due to actuator faultsand has the capability to become

an alternative to reconfigurable systems, where as in [122],the SMC technique was used to

ensure the stability of a damaged aircraft (where effectiveness of the actuators were reduced

by 50%). However actuator failures cannot be handled directly by the sliding modes schemes,

because the complete loss of effectiveness of a channel destroys the regularity of the sliding

mode, and a unique equivalent control signal can no longer bedetermined. Also in the case of a
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failure the actuator is not able to respond to control signals, and a redundant actuator is required

to accomplish the job. Redundancy is the key parameter in order to tolerate the actuator failure.

In the subsequent Chapters, Control allocation (as discussed in Chapter 2) is considered as a

potential candidate to be combined with ISM control to deal with actuator faults or failures due

to its ability to effectively manage the actuator redundancy and to redistribute the control sig-

nals to the healthy actuators in the case of actuator failurewithout reconfiguring the underlying

controller. An obvious difference between the FTC schemes proposed in this thesis as compared

to [3] is the use of integral sliding mode control to design the underlying controller instead of

‘classical’ SMC based methods. The use of integral sliding modes ensures robustness against the

matched uncertainties starting from the beginning by eliminating the reaching phase associated

with ‘classical’ SMC based methods. Integral sliding modeshave the capacity to be retrofitted to

the existing controller design to introduce fault tolerance without changing or altering the exist-

ing control loops, which is advantageous in an industrial perspective. The closed-loop stability

analysis in [3] requires a ‘synthesis-followed-by-analysis’ procedure, whereas the synthesis and

analysis is totally integrated in this thesis. Multiple actuator faults/failures can also be handled

using this idea. The potential features of this combinationwill be exploited in the coming Chap-

ters to design various novel robust FTC schemes to deal with actuator faults/failure without the

need to reconfigure the underlying controller.

3.10 Conclusion

This Chapter has focused on describing detailed design procedures for ‘classical’ SMC based

controllers and subsequently integral sliding modes approaches for controller design. The in-

herent robustness properties while in the sliding mode against matched disturbances were ex-

amined, and necessary conditions for the existence of a sliding mode were discussed to check

the validity of the control law. The integral sliding mode scheme has the capability to ensure the

robustness against matched uncertainties throughout the entire closed-loop system response. To

deal with bounded unmatched uncertainties a special choiceof sliding surface was discussed,
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which help not to amplify the effect of unmatched uncertainty, while rejecting the effect of

matched ones. From the FTC viewpoint, the insensitivity property of sliding mode controllers

against matched uncertainties is very attractive, and willbe exploited in the coming Chapters.



Chapter 4

Design and Analysis of an Integral Sliding

Mode Fault Tolerant Control Scheme

In this Chapter a new fault tolerant control scheme is proposed, where the ideas of integral

sliding modes (ISM) presented in Chapter 3 are incorporatedwith a control allocation scheme

documented in Chapter 2 (Section 2.4.2.2) to cope with actuator faults and the total failure

of certain actuators, under the assumption that actuator redundancy is available in the system.

The proposed scheme uses the estimated effectiveness levelof the actuators to redistribute the

control signals to healthy actuators without reconfiguringthe ISM controller. A relative error in

the estimation of actuator redundancy is taken into accountin the closed-loop stability analysis.

The effectiveness of the proposed scheme against faults or failures is tested in simulation based

on a large transport aircraft model.

4.1 Introduction

As discussed in Chapter 2, one of the important elements necessary for achieving FTC, is the

availability of redundant actuators. This provides increased freedom in terms of controller de-

sign to mitigate the effects of faults and failures. Although these ‘redundant’ actuators are often

designed for different purposes, in the event of an emergency (such as faults or failures to the

69
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primary actuators), they can be used to retain satisfactoryperformance.

This Chapter is concerned with the development of fault tolerant controllers for a class of linear

systems having redundant actuators. This redundancy in thesystem will be exploited to achieve

tolerance to a specified class of faults/failures, which includes the possibility of total failure to

certain primary actuators. The precise class of total actuator failure which can be accommodated

is identified. A novel control scheme is proposed in this Chapter, which involves a combination

of control allocation as discussed in Chapter 2 (Section 2.4.2.2) and integral sliding mode tech-

niques which are explained in Chapter 3. In aircraft systemsfor example, the idea is to design

a controller based on a ‘virtual’ system which provides the desired moments about the centre

of mass [60]. The virtual control signal is then translated into actual control surface deflections

using CA. This distinctive design strategy is beneficial since only one controller is designed to

cover a wide range of fault/failure cases, while the CA redistributes the signals to the available

‘healthy’ actuators.

The novel combination of integral sliding modes and CA considered in this Chapter, allows total

failuresof a certain subset of the actuators (as well as faults in all actuators) to be accounted for.

(Sliding mode systems as explained in (Section 3.9), in common with other traditional feedback

systems, are not capable of mitigating total actuator failures without some form of reconfig-

uration/accommodation). The proposed scheme uses the measured or estimated effectiveness

level of the actuators to redistribute the control effort during faults/failures to maintain close to

nominal closed-loop performance without reconfiguring thecontroller. In the proposed scheme

a relative error in the estimation of actuator effectiveness gains is also taken into considera-

tion. Furthermore the stability test proposed in this Chapter allows a more effectivesynthesis

procedureto be employed using Linear Matrix Inequalities (LMI) optimization to compute the

parameters involved in the control law.
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4.2 System description and problem formulation

In Chapter 3 (Sections 3.2 and 3.7.3) it has been shown that the sliding mode based schemes are

inherently robust against matched uncertainties. In this section these ideas are used to deal with

actuator faults which can be effectively medelled as matched uncertainties. In Section 2.1.1

different models representing actuator faults or failuresare discussed. A multiplicative fault

model given in equation (2.1) is considered here because a multiplicative fault model is a natural

way to represent the actuator faults or failures and in addition it makes the closed-loop stability

analysis simple (which is demonstrated in the sequel). In case of an actuator failure, using the

model in equation (2.1), the relevant column of the input matrix B is nullified, and the control

componentui(t) has no effect on the system dynamics. The fault model given inequation (2.2)

replaces the control componentui with the uncontrollable offset vector ¯ui(t) in the failure of an

ith actuator, which can be treated as a disturbance.

An LTI system with actuator faults or failures discussed in equation (2.1) is

ẋ(t) = Ax(t)+BW(t)u(t) (4.1)

whereA∈ Rn×n , B∈ Rn×m, andW(t) = diag{w1(t), ..,wm(t)} is a diagonal matrix. The pair

(A,B) is assumed to be controllable. The time varying scalarsw1(t), ..,wm(t) model the effec-

tiveness level of the actuators. As mentioned in Section 2.1.1, if wi(t) = 1, it means that theith

actuator has no fault (100% healthy actuator) and is workingperfectly, whereas if 1> wi(t)> 0,

an actuator fault is presenti.e. the actuator functions with reduced capability. Ifwi(t) = 0, ac-

tuator i has completely failed and the control input componentui has no effect on the system

dynamics. The matrixW will be termed the efficiency matrix indicating the health level of each

actuator. Associate with (4.1) a set of controlled outputs

yc(t) =Cx(t) (4.2)

whereC ∈ Rl×n and l < m. The variablesyc(t) are required to respond to desired (external)
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commands. In terms of ‘controlling’ these outputs onlyl independent actuators are sufficient

to induce the required closed-loop performance (for example see the aircraft example). The

remainingm− l actuators constitute redundancy and can be exploited to achieve fault tolerance.

In this Chapter an estimate of the actuator efficiency,Ŵ(t) = diag{ŵ1(t), .., ŵm(t)}, where the

scalars 0≤ ŵi(t)≤ 1, will be used explicitly in the control law. One way to obtain an estimate

of the actuator efficiency is by using a measurement of the actual actuator deflection compared

to the demand. Such information is typically available in many safety critical systems e.g.

passenger aircraft [22]. In other situationsŴ(t) would need to be provided by an FDI scheme,

see for example [131], [127], [5]. It is important to note that whatever method is employed the

estimateŴ(t) will not be perfect and in this Chapter the difference between the actual efficiency

matrixW(t), and its estimatêW(t) is assumed to satisfy

W(t) = (I −△(t))Ŵ(t) (4.3)

where the ‘uncertainty’△(t) = diag{δ1(t), ...δm(t)} represents the estimation error. The un-

known scalarsδ1(t), ..,δm(t) model the level of imperfection in the fault estimation. Theeffect

of this imperfection will be analyzed later in the Chapter. In this Chapter a virtual control con-

cept [60] for resolving actuator redundancy will be employed. In Chapter 2 (equation 2.10) it is

shown that the input distribution matrixB can be factorized into two matrices (i.e.B = BνBu,

whereBν ∈Rn×k andBu ∈Rk×m and both haverank k< m). This factorization is only possible

if rank(B) = k < m [60]. In many actuator redundant systems (as mentioned in the simulation

part), this condition is not satisfied1. However reordering of the states is possible, and the input

distribution matrixB can be partitioned as:

B=




B1

B2


 (4.4)

whereB1 ∈R(n−l)×m, B2 ∈Rl×m of rank l< m. Suppose that by design of the partition in (4.4),

1In equation (4.55),rank(B) = 3 andl which is associated withB2 in (4.4) isrank(B2) = l = 2.
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the pair(A,Bv) where Bv = BBT
2 is controllable. The partition in equation (4.4) is following the

notion of splitting the control law from the control allocation [59] as can be seen in Figure 4.1.

In aircraft systems, for example the partitionB2 can be associated with the equation of angular

accelerations in pitch, roll and yaw [60], becausethe control objectives in (most) aircraft systems

can be obtained by commanding the desired moment which to arebe obtained by the control

surfaces [59]. The partition of matrixB is such that the elements ofB2 have large magnitude

compared to||B1||, so thatB2 represents the dominant contribution of the control actionon the

system compared toB1 [6]. Although this is a restriction, aircraft systems oftensatisfy such a

constraint. By hypothesis‖B1‖ is assumed to be small, because it has a direct impact on the

closed-loop stability analysis (Section 4.3.2). To createthis separation, a permutation of the

states must usually be undertaken. The virtual control input is defined as

ν(t) := B2u(t) (4.5)

whereν(t) ∈ Rl can be interpreted as the total control effort produced by the actuators [60].

Once the partition ofB in (4.4) has been achieved, scale the states so thatB2BT
2 = Il i.e‖B2‖= 1.

This can be achieved without loss of generality, becauserank(B2) = l . The physical control

signalu(t) sent to the actuators can be determined from equation (4.5) as

u(t) = B†,Ŵ(t)
2 ν(t) (4.6)

whereB†,Ŵ(t)
2 ∈ Rm×l is a weighted right pseudo-inverse of the matrixB2. Thus the matrix

B†,Ŵ(t)
2 provides some design freedom and ‘distributes’ the virtualcontrol signal to the physical

actuators via (4.6). As mentioned before in Chapter 2, different researchers utilize the design

freedom in the pseudo inverse matrix in different ways [60],[6]. A generic choice ofB†,Ŵ(t)
2

such thatB2B†,Ŵ(t)
2 = Il is

B†,Ŵ(t)
2 = Ŵ(t)BT

2 (B2Ŵ(t)BT
2)

−1 (4.7)

assuming det(B2Ŵ(t)BT
2) 6= 0.
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Remark 4.1: In the special case when there are no faults present in the system i.e.Ŵ(t) = Im,

then the weighted right pseudo inverse matrixB†,Ŵ(t) in (4.7) using the fact thatB2BT
2 = Il ,

simplifies toB†,Ŵ(t)
2 = BT

2 . This means the physical control law in (4.6) will become

u(t) = BT
2 ν(t) (4.8)

The overall control structure of the proposed scheme to better explain how the integral sliding

modes and control allocation techniques relate, a block diagram is presented in Figure 4.1, where

the virtual control signalν(t) is designed by using the integral sliding mode control whichis

translated into actual control signalu(t) by using the control allocation with the knowledge of

estimated̂W matrix.

Figure 4.1: Schematic of the Overall Control Strategy

In Figure 4.1, it is assumed that theFault Estimatoris able to identify theactuatorfaults/failures

from all other possible faults/failures in the system. Now in order to clarify the set of faults or

failures the scheme proposed in this Chapter can tolerate, define the set

W = {(ŵ1, .., ŵm) ∈ [0 1] × ...× [0 1]
︸ ︷︷ ︸

m times

: det(B2ŴBT
2 ) 6= 0} (4.9)

Becausel < m, it is possible that det(B2ŴBT
2 ) 6= 0 even if up tom− l of the entries ˆwi(t) = 0 in

the matrixŴ(t): in other words, potentially up tom− l can totally fail and yet det(B2ŴBT
2 ) 6=

0. However if more thanm− l entries are zero, then rank(Ŵ(t)) < l and det(B2ŴBT
2 ) = 0.

The setW will be shown to constitute the faults/failures for which closed-loop stability can be
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maintained.

Substituting (4.6) into (4.1) and using (4.7) results in

ẋ(t) = Ax(t)+




B1(I −△(t))Ŵ2(t)BT
2(B2Ŵ(t)BT

2 )
−1

B2(I −△(t))Ŵ2(t)BT
2(B2Ŵ(t)BT

2 )
−1


ν(t) (4.10)

with

ν̂(t) := (B2Ŵ
2(t)BT

2)(B2Ŵ(t)BT
2)

−1ν(t) (4.11)

then (4.10) can be written as

ẋ(t) = Ax(t)+




B1(I −△(t))B†,Ŵ2(t)
2

B2(I −△(t))B†,Ŵ2(t)
2




︸ ︷︷ ︸
B̂(t)

ν̂(t) (4.12)

where

B†,Ŵ2(t)
2 := Ŵ2(t)BT

2(B2Ŵ
2(t)BT

2)
−1 (4.13)

Notice thatB†,Ŵ2(t)
2 is a weighted right pseudo inverse ofB2 sinceB2B†,Ŵ2(t)

2 = Il , for all Ŵ(t)∈

W . Furthermore in the special case whenŴ(t) = I , thenB†,Ŵ2(t)
2 = BT

2 (B2BT
2 )

−1 = BT
2 . Note

that whilst the pseudo inverseB†,Ŵ(t)
2 defined in (4.7) is used for control allocation, the pseudo

inverseB†,Ŵ2(t)
2 defined in (4.13) plays a significant role in the closed-loop analysis which will

be demonstrated in the sequel.

For the closed-loop stability analysis, the upper bound on the norm of the weighted pseudo

inverseB†,Ŵ2(t)
2 is required. In [111], the properties of pseudo inverses aredetailed, and showed

that for a full column rank matrixX, and a diagonal matrixW with positive scalars, the weighted

left pseudo inverse ofX, defined byX†,W = (XTWX)−1XTW is norm bounded by some number

that is independent ofW. In this Chapter, the ideas of [111] are used which follows: there exists
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a scalarγo such that

‖B†,Ŵ2(t)
2 ‖= ‖Ŵ2(t)BT

2(B2Ŵ
2(t)BT

2)
−1‖< γo (4.14)

for all (ŵ1(t), .., ŵm(t)) ∈ W . The upper bound on the norm ofB†,Ŵ2(t)
2 in (4.14) follows from

the result in [111], where the weighted left pseudo inverse was used. But due to the fact that

(B†,Ŵ2(t)
2 )T = (BT

2 )
†,Ŵ2(t), therefore the result in (4.14) agrees with [111].

In the case when the estimates of the efficiency matrix are perfect (i.e. △(t) = 0), and when

there are no faults present (i.e.Ŵ(t) = I ), equation (4.12) simplifies to

ẋ(t) = Ax(t)+




B1BT
2

Il




︸ ︷︷ ︸
Bν

ν(t) (4.15)

sinceB†,Ŵ2(t)
2 |Ŵ(t)=I = BT

2 . The nominal fault free equation (4.15) will be used todesignthe

control scheme. During faults or failures the inherent properties of integral sliding modes will

be replied upon.Since the pair(A,Bv) associated with (4.15) is assumed to be controllable, then

there exists a state feedback controllerν(t) =−Fx(t), so that the nominal system

ẋ(t) = (A−BνF)x(t) (4.16)

is stable. The state feedback controller can be designed to achieve optimality against some

appropriate criteria. The choice of the matrixF will be discussed in the sequel.

4.3 Integral Sliding Mode Controller Design

This section, develops a systematic design procedure for the synthesis of an ISM controller. As

mentioned before in Chapter 3, there are two steps to design an ISM controller, first a sliding

surface is designed, and then in the second step, a control law to induce and maintain a sliding
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motion is created.

4.3.1 Integral-type switching surface design

The ideas of integral sliding surface suggested by [28] as discussed in Chapter 3 will be used

here for the system in (4.15) associated with the virtual control of inputν(t). The sliding surface

is defined by the set:

S = {x∈Rn : σ(x, t) = 0} (4.17)

where the switching functionσ(x, t) ∈Rl is defined as

σ(x, t) := Gx(t)−Gx(0)−G
∫ t

0

(
A−BνF

)
x(τ)dτ (4.18)

andG∈Rl×n is design freedom. Arguing as before in Chapter 3, att = 0, the switching function

σ(x(0),0) = 0, and hence the reaching phase is eliminated. In Chapter 3, it has been shown that,

in case of matched uncertainty (see for example) [119], thatthe sliding motion associated with

(4.18) is always nominally governed by(A−BνF) independent of the choice ofG, but the effects

of unmatched uncertainty cannot be rejected while in the sliding motion. Recently an approach

was suggested for the selection ofG which attempts to ameliorate the effects of unmatched

uncertainty [28] while in the sliding mode and is discussed in Chapter 3. In this Chapter

G := B2(B
TB)−1BT (4.19)

is suggested. Notice that since by definitionBν =BBT
2 , this choice ofG in (4.19) has the property

that

GBν = B2(B
TB)−1BTBBT

2 = B2BT
2= Il

and so is a specific choice of a left-pseudo inverse ofBν which parallels the suggestion in [28]

given in equation 3.52
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Remark 4.2: The choice ofG in equation 3.52, is the left-pseudo inverse of input matrixB, and

ensures that while in the sliding mode the impact of unmatched uncertainty will not amplify.

With the choice ofG in (4.19) genericallyGB̂(t) = Il −B2△(t)BT
2 creates a symmetric matrix.

The symmetry is important and simplifies much of the subsequent analysis and avoids the intro-

duction of conservatism. Also nominally, when there are no faults andW(t)= I , from the special

properties of the matrixB2, it follows thatGB̂(t)|W=I = B2BT
2 = I . This means, nominally,G

has the pseudo inverse properties which [28] argues as explained in Chapter 3 (Section 3.7.4)

are optimal from the point of view of minimizing the impact ofunmatched uncertainties on the

closed loop dynamics.

Remark 4.3:The following analysis is novel compared to the ISM schemes in [119], [27], [28],

since the effects of faults and the actuator redundancy mustbe taken into account. As a conse-

quence, the analysis in this section is quite distinct compared to the papers cited above because

of the incorporation of the ideas from control allocation toexploit the redundancy to ensure

sliding can be maintained even in the face of certain total actuator failures.

Now in order to analyze the sliding motion associated with the surface in (4.18) andG in (4.19)

in the presence of faults, compute the time derivative of equation (4.18). It is easy to see

σ̇(t) = Gẋ(t)−GAx(t)+GBνFx(t) (4.20)

Substituting (4.12) in (4.20), and using the fact thatGBν = I , yields

σ̇(t) = GB̂ν̂(t)+Fx(t) (4.21)

The equivalent control [118], can be obtained by solving forν̂(t) in σ̇(t) = 0 which yields

ν̂eq(t) =−(GB̂)−1Fx(t) (4.22)

Adding and subtractingFx(t) in equation (4.22) and substituting into (4.12) and simplifying
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yields

ẋ(t) = (A−BνF)x(t)+
(
Bν − B̂(GB̂)−1)Fx(t) (4.23)

whereBν is defined in (4.15) and̂B in (4.12). UsingG as defined in (4.19), further simplifying

equation (4.23) gives:

ẋ(t) = (A−BνF)x(t)+ B̃Φ̃(t)Fx(t) (4.24)

where the time varying uncertain term is

Φ̃(t) := B1BT
2 −B1(I −△(t))B†,Ŵ2(t)

2 (B2(I −△(t))B†,Ŵ2(t)
2 )−1 (4.25)

and

B̃ :=




In−l

0


 (4.26)

Remark 4.4:Notice in the case of perfect knowledge of the actuator efficiency (i.e.△(t) = 0),

and when there are no faults in the system (i.e.Ŵ(t) = I ), the matriceŝB|Ŵ(t)=I = Bν and

B†,Ŵ2(t)
2 |Ŵ(t)=I = BT

2 . Then using the fact thatGBν = I , equation (4.24) simplifies to become

ẋ(t) = (A−BνF)x(t) (4.27)

which is stable by design of the state feedback gainF. The nominal equation (4.27) constitutes

ideal fault free behavior. It is important to note that the uncertain termΦ̃(t) = 0 when△(t) = 0,

andŴ(t) = Im while in the sliding mode. In the case, when there is some uncertainty in fault

estimation i.e.△(t) 6= 0, and during actuators fault or failure i.e.̂W(t) 6= Im, the uncertain

termΦ̃(t) 6= 0 and will be treated as unmatched uncertainty in the closed-loop stability analysis.

Therefore for the generic fault/failure case, theclosed-loop stability needs to be provensince the

closed-loop system equation (4.24) depends on matricesŴ(t) and△(t).
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4.3.2 Closed-loop Stability Analysis

In the presence of faults/failures, the closed-loop system(assuming a sliding motion is main-

tained) is governed by

ẋ(t) = (A−BνF + B̃Φ̃(t)F)x(t) (4.28)

where to ensure the closed-loop stability in the presence ofunmatched term̃Φ(t), the small gain

theorem [75] is used, which is a systematical approach to check the input-output stability of the

interconnected systems. For the subsequent analysis, define a transfer function matrix

G̃(s) = F(sI− Ã)−1B̃ (4.29)

whereÃ := A−BνF . By construction,G̃(s) is stable, and define a scalar

γ2 = ‖G̃(s)‖∞ (4.30)

Proposition 4.1: Assume the effectiveness gain estimateŴ(t) is sufficiently accurate so that

the condition△maxγo < 1 holds, whereγo is defined in (4.14) and‖△(t)‖<△max bounds the

relative error in the estimation of the effectiveness gains. Then during a fault or failure condition,

for any(ŵ1(t), .., ŵm(t)) ∈ W , the sliding motion in (4.28) will be stable if:

γ2 γ1(1+ γo)

1−△maxγo
< 1 (4.31)

whereγo > ‖B†,Ŵ2(t)
2 ‖, γ1 = ‖B1‖ andγ2 is as defined in (4.30).

Proof. The system in (4.28), which represents the sliding motion can be written as:

ẋ(t) = Ãx(t)+ B̃ũ(t) (4.32)

ỹ(t) = Fx(t) (4.33)
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where

ũ(t) = Φ̃(t)ỹ (4.34)

In this form, the differential equation in (4.28) may be considered to be the closed loop dynamics

of the negative feedback interconnection ofG̃(s) and the ‘feedback gain’ in (4.34). According

to the small gain theorem [75], as discussed in the Appendix B.1.2 if

‖G̃(s)‖∞‖Φ̃(t)‖< 1 (4.35)

then (4.28) will be stable. In (4.35),‖G̃(s)‖∞ is theH∞ norm of the system̃G(s) which is equal

to theL2 gain of the system in the time domain and‖.‖ is the induced spectral norm. From

(4.25) it is clear that

‖Φ̃(t)‖ ≤ ‖B1B2‖+‖B1(I −△(t))B†,Ŵ2(t)
2 ‖‖(B2(I −△(t))B†,Ŵ2(t)

2 )−1‖

Using the fact that‖B2‖= 1, B2B†,Ŵ2(t)
2 = Il and also that in general‖(I −X)−1‖ ≤ (1−‖X‖)−1

if ‖X‖< 1 [63], then

‖Φ̃(t)‖ ≤ ‖B1‖+‖B1‖(1+△max)‖B†,Ŵ2(t)
2 ‖(I −‖B2△(t)B†,Ŵ2(t)

2 ‖)−1 (4.36)

This is well defined since‖B2△(t)B†,Ŵ2(t)
2 ‖<△maxγo< 1. Sinceγo > ‖B†,Ŵ2(t)

2 ‖ andγ1= ‖B1‖,

inequality (4.36) becomes

‖Φ̃(t)‖ ≤ γ1(1+ γo)

1−△maxγo
(4.37)

Sinceγ2 = ‖G̃(s)‖∞, in conjunction with (4.37), it is clear that if inequality (4.31) holds, the

small gain condition (4.35) holds, and consequently the system in (4.28) is stable.

Remark 4.5:By hypothesis,γ1 = ‖B1‖ is assumed to be small. Basically the size‖B1‖ has a

significant impact on the norm of the nonlinearity in the small gain feedback loop, and so if

‖B1‖ is small, the gain of the nonlinearity is small, and there is aless stringent requirement on
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the magnitude of theH∞ norm of the linear part. Furthermore,‖Φ‖ −→ 0 as‖B1‖ −→ 0 and

Proposition4.1 is trivially satisfied.

Remark 4.6:In the case of exact estimation of effectiveness matrixW(t), thenŴ(t) =W(t) and

△(t) = 0, and the stability condition (4.31) reduces to

γ2γ1(1+ γo)< 1 (4.38)

4.3.3 Integral Sliding Mode control laws

Now a sliding mode control law must be designed based on the virtual system (4.12) with respect

to ν̂(t). The proposed control structure has a form given by:

ν̂(t) = ν̂l (t)+ ν̂n(t) (4.39)

where

ν̂l (t) :=−Fx(t) (4.40)

The scaled unit vector

ν̂n(t) :=





−ρ(t,x) σ(x,t)
||σ(x,t)|| if σ 6= 0

0 otherwise
(4.41)

whereρ(t,x) is a scalar modulation function to enforce the sliding motion. A suitable choice of

ρ(t,x) will be described explicitly in the sequel.

Proposition 4.2:Suppose that

‖△(t)‖ ≤△max<
1
γo

(4.42)

whereγo is defined in (4.14). Ifρ(t,x) is chosen as

ρ(t,x) =
△maxγo‖ν̂l‖+η

1−△maxγo
(4.43)

whereη is a positive scalar, then, the control law proposed in (4.39) satisfies the so-called
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reachability condition and sliding onS in (4.17) is maintained.

Proof. Substituting (4.12) in (4.20) gives

σ̇ = (GB̂)ν̂(t)+Fx(t) (4.44)

Substituting forν̂(t) from (4.39)-(4.41) and using the fact thatGB̂= (I −B2△(t)B†,Ŵ2(t)
2 ), gives

σ̇ =−ρ
σ

||σ || −B2△(t)B†,Ŵ2(t)
2

(
−Fx(t)−ρ

σ
||σ ||

)
for σ 6= 0 (4.45)

Consider the candidate Lyapunov function

V =
1
2

σTσ (4.46)

The time derivative of the Lyapunov function along the trajectories satisfies

V̇ =−ρ‖σ‖+σTB2△(t)B†,Ŵ2(t)
2 Fx(t)+ρσT(B2△(t)B†,Ŵ2(t)

2 )
σ
‖σ‖ for σ 6= 0

and therefore

V̇ ≤ −ρ‖σ‖+‖σ‖‖B2△(t)B†,Ŵ2(t)
2 ‖‖Fx(t)︸ ︷︷ ︸

−ν̂l

‖+ρ‖σ‖‖B2△(t)B†,Ŵ2(t)
2 ‖

≤ −ρ‖σ‖+(ρ +‖ν̂l‖)‖σ‖△maxγo

≤ −ρ(1−△maxγo)‖σ‖+‖ν̂l‖‖σ‖△maxγo (4.47)

Substituting forρ from (4.43) into (4.47) givesV̇ ≤ −η‖σ‖, which is the standardη-

reachability condition [41], and implies that the sliding motion is maintained for all time.

Finally using equations (4.6), (4.7) and (4.11) it follows that the physical control law is given by

u(t) = Ŵ(t)BT
2 (B2Ŵ

2(t)BT
2)

−1(−Fx(t)−ρ
σ

||σ ||) if σ 6= 0 (4.48)
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This is the actual control signal which will be sent to the actuators, and depends on the effective-

ness levels. The proposed ISM controller (4.48) can deal with actuator faults and total actuator

failures, provided that(ŵ1(t), .., ŵm(t)) ∈ W and the conditions ofProposition 4.1are satisfied.

Remark 4.7:In this Chapter, actuator position limits are not considered formally in the control

design, However the fault estimation scheme would declare it as a fault if an actuator exceeds its

position limits. This would be due to the reason that the actual position of the actuator will be

different from the expected position based on commanded control signal. The proposed scheme

attempts to reduce the burden on the faulty actuator channel(ŵi(t) < 1) and to mitigate the

effects of actuator saturation, redistributes the controleffort among the redundant actuators.

The results developed in this section can be summarized in the form of the following theorem:

Theorem 4.1:The system in (4.1) is closed-loop stable for any fault/failure combination be-

longing toW in (4.9) under the control law (4.48), if a feedback gainF can be found such

that
γ2 γ1(1+ γo)

1−△maxγo
< 1

whereγ2 is defined in (4.30),γ1 = ‖B1‖, γo satisfiesγo ≥ ‖B†,Ŵ2(t)
2 ‖ whereB†,Ŵ2(t)

2 is defined in

(4.13), and△max bounds the relative error in the estimation of the effectiveness gains in (4.3).

4.3.4 Design of the Controller Gains

This section demonstrates one of the key advantages of this approach compared to [6]. It will be

demonstrated that the stability test inProposition 4.1is amenable to incorporation within a syn-

thesis framework for determining the feedback gainF in (4.16). For the nominal system (4.16),

the matrixF must be chosen to stabilize(A−BνF). Since(A,Bν) is assumed to be controllable,

the LQR formulation [21] adopted here is to seek the control signalν(t) to minimize the energy

cost function

J =

∫ ∞

0
zTzdt (4.49)
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where

z=




Q1 0

0 R1







x

ν


 (4.50)

where the matricesQ1 and R1 are symmetric positive definite matrices. The optimal solu-

tion of the LQR problem isv(t) = Fx(t). The details of the LMI formulation are given in

Appendix (B.3.1). The LQR problem can be posed as an LMI optimization [21]: Minimize

trace(X−1) subject to




AX+XAT −BνY−YTBT
ν (Q1X−R1Y)T

Q1X−R1Y −I


< 0 (4.51)

X > 0 (4.52)

whereQ1 = [(Q
1
2)T 0T

l×n]
T andR1 = [0T

n×l (R
1
2)T ]T . The variableY := FX with Y ∈ Rl×n

andX−1 ∈ Rn×n is the Lyapunov matrix. In this LMI formulation, the decision variables areX

andY.

Since, in addition, the small gain stability condition (4.31) needs to be satisfied, from the

Bounded Real Lemma [21], theL2 gain from ũ to ỹ, which in this situation is equal to the

H∞ norm of its transfer matrix̃G, satisfies||G̃||∞ < γ iff there existX > 0 andγ ≥ 0 such that




AX+XAT −BνY−YTBT
ν B̃ YT

B̃T −γ2I 0

Y 0 −I



< 0 (4.53)

whereB̃ is defined in (4.26). The details of the LMI formulation are given in Appendix (B.3.2).

Hereγ is an a-priori fixed scalar gain which may be viewed as a tuningparameter. The decision

variables in this LMI formulation are againX andY. If

γ <
(1−∆maxγo)

γ1(1+ γo)
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then the conditions of Theorem 1 are satisfied and closed loopstability for a fault/failure com-

bination belonging toW is guaranteed.

Since the common Lyapunov matrix is sought in the LMI formulations, the overall optimization

process is: Minimizetrace(Z) subject to




−Z In

In −X


< 0 (4.54)

together with (4.51), (4.52) and (4.53). The matrixZ is a slack variable which using the Schur

complements satisfiesZ > X−1 and thereforetrace(Z)≥ trace(X−1). Finally the feedback gain

F can be recovered asF =YX−1.

4.4 Simulations

In this section control of the lateral axis of a large transport aircraft discussed in Appendix A.1

will be considered to demonstrate the effectiveness and feasibility of the proposed scheme. To

design the state feedback gainF in (4.40), a linear model has been obtained using FTLAB747

around an operating condition of straight and level flight at263,000 Kg, 92.6 m/s true airspeed,

and at an altitude of 600m based on 25.6% of maximum thrust andat a 20 deg flap position.

The lateral axis states (in Appendix A.1) which are considered for the controller design are

[φ ,β , r,p]T , whereφ is roll angle (rad),β is sideslip angle (rad),r is yaw rate (rad/sec), andp is

roll rate (rad/sec). The controlled outputsyc(t) =Cx(t) are[β ,φ ] where

C=




0 1 0 0

1 0 0 0




which meansl = 2. For the lateral control, the inner and outer ailerons (δair ,δaor) on the right

wing (in Appendix A.1) are aggregated to produce one controlinput. The available control

surfaces areδ = [δa,δr ,δepr]
T , which represent anti-symmetric aileron deflection (rad),rudder

deflection (rad) and differential aggregated engine pressure ratios (EPR). Note in this example
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the number of control inputsm= 3, while the number of controlled outputsl = 2, and so in

theory only two control inputs would be required to force thecontrolled outputs to follow a

commanded trajectory. Here the fact that three control inputs can be manipulated, indicates the

existence of redundancy in the system which can be exploitedto achieve fault tolerance. The

ordering of the states ensures‖B1‖<< ‖B2‖, so thatB2 represent dominant contribution to the

control action as compared toB1. After scaling the states to ensureB2BT
2 = Il the state-space

representation is

A=




0 0 0.0084 0.3334

0.1055 −0.0999 −0.3170 0.0538

−0.0059 0.5617 −0.1856 −0.1796

0.0008 −4.8828 0.2154 −1.0789




B=




0 0 0

0 0.0174 −0.0010

−0.1459 −0.7584 −0.6352

−0.9387 0.3089 −0.1531




}
B1

}
B2

(4.55)

For tracking the[β ,φ ] commands, the integral action method [97] is used. To accomplish it, the

integral action statesxr(t) satisfying the relation

ẋr(t) = r(t)−Cx(t) (4.56)

are introduced, wherer(t) is the reference signal to be tracked. By definingxa(t) =

col[xr(t),x(t)], the system in (4.15) will be augmented with the integral action states to become

ẋa(t) = Aaxa(t)+Bνaν(t)+Brr(t) (4.57)

where

Aa =




0 −C

0 A


 Bνa =




0

Bν


 Bν =




B1BT
2

Il


 Br =




Il

0


 (4.58)

By design the pair(Aa,Bνa) is controllable and a state feedback gainν(t) = −Fxa(t) is to be

designed to stabilize the nominal system in (4.57). The integral switching function in(4.18) for
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the augmented system will become

σ(xa, t) = Gaxa(t)−Gaxa(0)−Ga

∫ t

0

(
(Aa−BνaF)xa(τ)+Brr(τ)

)
dτ (4.59)

whereGa := B2(BT
a Ba)

−1BT
a , where the augmented input distribution matrixBa is

Ba =




B1a

B2


 B1a =




0l×m

B1




In a fault free scenario, i.e in normal flight, the primary control surfaces forφ andβ tracking are

the ailerons and rudder respectively; however the engine thrust can be used as redundancy for

both surfaces. Based on these assumptions, using a numerical search, it was found that a suitable

bound for the scalar in (4.14) isγo = 3.2020. It can be easily verified thatγ1 = ‖B1a‖= 0.0174.

The nominal state feedback controller gainF associated with equation (4.16) for the augmented

system has been designed using the LMI approach proposed in Section 4.3.4 and is given by

F =




0.4165 −0.0839 0.2936 −1.9273 0.7983 −0.1356

−0.5265 −0.1241 1.1878 −0.6954 −0.1000 0.3879


 (4.60)

The nominal performance design matricesQ andR in LMI (4.51) have been chosen asQ =

diag{0.95,0.08,2,1,15,5} andR= diag{10,2} respectively, where the first two states inQ are

the integral action states. Here△max= 0.17 is chosen which implies an upper bound on the

relative error inŴ of 17%. The choice ofγ = 8.8 in LMI (4.53) results inγ2 = 5.8832 and it

can be verified that
γ2 γ1(1+ γo)

1−△maxγo
= 0.9440< 1

and therefore the condition of Theorem 1 is satisfied. Consequently the closed-loop stability of

the system for any combination of faults(ŵ1, .., ŵ3) ∈ W is ensured.
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4.4.1 Sliding mode fault reconstruction scheme

The control lawu(t) in (4.48) depends on the estimate ofW(t) matrix to distribute the control

effort among the actuators. A sliding mode fault reconstruction scheme, proposed in [5] can be

used to estimate the actuator effectiveness levels. To explain this without loss of generality the

actuator fault model in (4.1) can be written as

ẋ(t) = Ax(t)+B(Im−K)︸ ︷︷ ︸
W

u(t) (4.61)

where it is assumed that input matrixB is of full column rank. The matrixK = diag{ki , ...,km}

where the scalarski = 1−wi . By writing this way the termKu(t) in (4.61) can be considered as

the fault term. To estimate the fault termKu(t) a fault estimator [5] is given by

ż(t) = Az(t)+Bu(t)+Gnϑ(t) (4.62)

where,Gn is an appropriate gain matrix,z(t) is the estimator state andϑ(t) is termed as discon-

tinuous injection term [40], [5] and is defined as

ϑ(t) :=−ρe
e(t)
‖e(t)‖ for e(t) 6= 0 (4.63)

where the value ofρe must be chosen such thatρe≥ ‖Ku(t)‖. From (4.62) and (4.61) it is clear

that the error dynamics using the relatione(t) = x(t)−z(t) can be written as

ė(t) = ẋ(t)− ż(t)

= Ae(t)−ϑ(t)−BKu(t) (4.64)

When the motion one(t)= 0 will be enforced by the discontinuous injection termϑ(t) i.e. while

slidinge(t) = ė(t) = 0 [5], then the fault signalKu(t) can be reconstructed using equation (4.64)
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as

−Ku(t)≈ (BTB)−1BTϑeq(t) (4.65)

whereϑeq(t) is the equivalent injection term and is necessary to maintain sliding. The injection

term is discontinuous and can be approximated to any level ofaccuracy using the relation

ϑδ (t) :=−ρe
e(t)

‖e(t)‖+δ
(4.66)

whereδ is the small positive scalar. The scalarski can be obtained from (4.65) by introducing a

small thresholdε [5] such that for the timetε if |ui(t)| ≤ ε then

ki(t) =





((BTB)−1BTϑδ (t))i
ui(t)

if |ui(t)|> ε

ki(tε) otherwise
(4.67)

The idea is to provide a constant value when|ui(t)|< ε. A saturation block with the limits[0 1]

is used before the information is provided to the control allocation unit to keep the theoretical

limits.

4.4.2 Manoeuvre and fault scenarios

In the simulations which follow the linear aircraft model undertakes a turning manoeuvre, where

the reference command requests a change inφ to 25 deg during the period of time 60−90 sec,

whilst a 0 deg reference command is applied toβ throughout. In the simulations, the discon-

tinuity associated with the nonlinear control term in (4.41) is smoothed by using the fractional

approximation (3.37), discussed in Section 3.5, and is given by σ
||σ ||+δo

where the value of the

positive scalarδo is chosen to be 0.001. An ideal sliding motion will not be obtained in this sit-

uation, and instead a pseudo sliding will be achieved, wherethe sliding motion is in the vicinity

of the sliding surfaceS . This can be made arbitrarily small by selectingδo sufficiently small.
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4.4.2.1 Aileron faults and Lock in place failure

In this subsection to test the efficacy of the proposed scheme, aileron (which is the primary ac-

tuator forφ tracking) faults and failure are considered. Various levels of aileron faults (from

0%− 100%) are tested each occurring at 80-sec in 15% increments.In Figure 4.2 and Fig-

ure 4.3, the plant states and actuator deflections are shown during the aileron fault scenario

(when the estimation ofW is perfect), where it can be seen that the CA scheme systematically

redistributes the control signals to the rudder and the engines, while maintaining the same level

of tracking performance as in the fault free condition.

In Figures 4.4-4.5, the aileron undergoes lock in place failure (where the actuator jams at some

offset position) and is unable to create any moment, which means the effectiveness of the aileron

after the failure time (80sec) is 0%. If the estimate of the actuator effectiveness is perfect then

the information provided to the CA unit regarding the actuator effectiveness ( ˆwi(t)) should be

0%. But since the estimatêW(t) can not be perfect, which is the case considered in this Chap-

ter, the effect of 17% error in the estimation ofW(t) can be seen in Figure 4.5, which is the

maximum theoretical percentage error△max which can be tolerated by the proposed scheme

without violating the stability condition ofTheorem1. Due to the availability of redundancy in

the system, the CA scheme involves the engines more activelyto achieve the performance close

to the nominal (Figure 4.4).
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Figure 4.2: Aileron-fault, Loss in effectiveness: plant states
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Figure 4.3: Aileron-fault, Loss in effectiveness: actuator deflections
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Figure 4.4: Aileron Jam/Lock in place failure: plant states

0 50 100 150
−2

−1

0

1

2

Time (sec)

ai
le

ro
ns

 ri
gh

t (
de

g)

0 50 100 150
−4

−2

0

2

4

Time (sec)

ru
dd

er
 (d

eg
)

0 50 100 150
1

1.05

1.1

1.15

Time (sec)

ep
rs

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Time (sec)

w
i a

ile
ro

n

(aileron jam failure
at 80 sec)

Figure 4.5: Aileron Jam/Lock in place failure: actuator deflections
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4.4.2.2 Rudder Lock in place failure

This subsection validates the scheme, by considering the rudder (which is the primary actuator

for β tracking) failure scenario. Figure 4.6 and Figure 4.7 show the tracking performance of

the states and the control surface deflections, when a rudderjam/lock in place occurs at 80-sec

−2 deg and the estimate of the rudder effectiveness is not perfect i.e effect of 17% error in

the estimation of rudder effectiveness can be seen in Figure4.7. The proposed FTC scheme

redistributes the control effort among the aileron and the engines to cope with the rudder failure,

and to maintain the nominal tracking performance (Figure 4.6). Figure 4.8 shows that the sliding

is maintained throughout the simulations, even in the presence of actuator faults or failures.
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Figure 4.6: Rudder Jam/Lock in place failure: plant states
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Figure 4.7: Rudder Jam/Lock in place failure: actuator deflections
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4.5 Conclusion

A novel Integral Sliding Mode fault tolerant control schemehas been proposed in this Chapter.

To handle total actuator failures, integral sliding mode ideas were incorporated into a control al-

location framework, which has the capability to redistribute the control effort among the healthy

redundant actuators automatically in the case of faults or failures without reconfiguring the con-

troller. The estimation of the actuator effectiveness levels was a key source of information for

the control allocation scheme. The stability analysis ensured closed-loop stability of the system

for a certain level of mismatch between the actual and the estimated fault and in fact the synthe-

sis procedure was carried out in the LMI framework to obtain the parameters of the controller.

The efficacy of the proposed fault tolerant scheme was demonstrated through simulation based

on different fault or failure scenarios in a large civil aircraft.

In the coming Chapter, the ideas of integral sliding modes control allocation discussed here

will be applied on the benchmark high fidelity nonlinear model of a civil aircraft using the

FTLAB747 software.



Chapter 5

Application of an Integral Sliding Mode

FTC for a Large Transport Aircraft

Integral sliding mode control ideas incorporated with control allocation, discussed in Chapter 4

are used here to design fault tolerant controllers for the longitudinal and lateral axis control of a

high fidelity nonlinear model of a large transport aircraft.The proposed scheme has the capabil-

ity to retain nominal performance even in the face of total failure of certain actuators, provided

there is enough redundancy in the system. During faults or failures, the control signals are redis-

tributed by the control allocation unit to the healthy actuators based on their effectiveness level,

without reconfiguring the controller. Nonlinear simulations using the Flight lab 747 FTLAB747

software are carried out in order to demonstrate the effectiveness of the novel combination of

ISMC and CA for FTC purpose.

5.1 INTRODUCTION

In safety critical systems, to ensure reliable operation, redundant actuators are used, which can

be exploited to achieve fault tolerance. Actuator redundancy is the key component of FTC

design, and can be resolved by the virtual control concept [60]. It is discussed in Appendix A.1

as shown in Figure A.4, the benchmark model has abundant actuator redundancy which can be

97
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used to tolerate the actuator faults or failures at the primary or secondary level. For example

in case of faults or failures in the elevator channel (the primary actuator for pitch moment) the

horizontal stabilizer can be used.

In aircraft systems, the idea is often to design a virtual controller to provide the desired moments

[60]; then the CA translates the virtual control signals to the actual control surface deflections.

In this way as explained in Chapter 4, one controller can be used to deal with a wide range of

faults or failures without reconfiguration, whereby the CA redistributes the control signals to

healthy actuators.

5.2 Integral sliding mode FTC Design

By considering the generic system representing the actuator faults or failures given in (4.1), for

which the nominal fault free system (4.15) whenW(t) = Im will be used to design the fault

tolerant controller. The complete design phase for the ISM FTC design is explained in the next

subsection.

5.2.1 Design procedure

The control law proposed in this Chapter is based on the ideaspresented in Chapter 4. To track

the commanded reference inputs, integral action in the nominal controller will be used. Some

details which have already been explained in Chapter 4, are reproduced here for completeness.

The design procedure employed in designing the ISM controller is outlined in the following

steps:

1. As argued in section (4.2), rearrange and partition the input distribution matrixB such

that‖B2‖ ≫ ‖B1‖, so thatB2 dominantly represent the contribution of the control action

as compared toB1. Furthermore scale the states to ensure thatB2BT
2 = Il .
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2. Define the virtual control input as

ν(t) = B2u(t) (5.1)

whereν(t) ∈Rl , l < m. Using equation (5.1) the actual control signalu(t) can be written

as

u(t) = B†,W(t)
2 ν(t) (5.2)

whereB†,W(t)
2 ∈Rm×l is a weighted right pseudo-inverse of matrixB2 and a specific choice

of B†,W(t)
2 is given by

B†,W(t)
2 =W(t)BT

2 (B2W(t)BT
2)

−1 (5.3)

provided that det(B2W(t)BT
2) 6= 0. Substituting (5.3) into (5.2) gives a parameterized

expression for the control law

u(t) =WBT
2 (B2WBT

2 )
−1ν(t) (5.4)

3. Furthermore, if

ν̂(t) := (B2W
2BT

2 )(B2WBT
2 )

−1ν(t) (5.5)

thenu(t) in (5.4) can be written as

u(t) =WBT
2 (B2W

2BT
2 )

−1ν̂(t) (5.6)

4. In order to include a tracking facility, consider the introduction of integral action states

xr(t) [97], satisfying

ẋr(t) = r(t)−Cx(t) (5.7)

whereC ∈ Rl×n is the controlled output distribution matrix. Then the system dynamics

can be described by augmenting the integral action states with the system states in (4.15)
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by definingxa(t) = col[xr(t),x(t)], which results in a system of the form

ẋa(t) = Aaxa(t)+Bνaν̂(t)+Brr(t) (5.8)

wherer(t) is the reference signal to be tracked and the augmented matrices are:

Aa =




0 −C

0 A


 Bνa =




0

Bν


 Bν =




B1BT
2

Il


 Br =




Il

0


 (5.9)

5. Suppose that by design the pair(Aa,Bνa) is controllable, then a state feedback controller

ν̂(t) =
[

KI −K

]

︸ ︷︷ ︸
F




xr(t)

x(t)




︸ ︷︷ ︸
xa(t)

(5.10)

where,KI ∈Rl×l , K ∈Rl×n, so that the nominal system

ẋa(t) = (Aa−BνaF)xa(t)+Brr(t) (5.11)

is stable, with steady state tracking properties with respect to r(t).

6. Define the integral switching function based on the augmented nominal system (5.11),

which aims to retain the nominal closed-loop performance as:

σ(xa, t) = Gaxa(t)−Gaxa(0)−Ga

∫ t

0

(
(Aa−BνaF)xa(τ)+Brr(τ)

)
dτ (5.12)

whereGa ∈ Rl×(n+l) is design freedom. The associated sliding surface isS = {xa ∈

R
n+l : σ(xa, t) = 0}. Similarly as in (4.19), the choice ofGa is chosen as

Ga := B2(B
T
a Ba)

−1BT
a (5.13)
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where,

Ba =




B1a

B2


 B1a =




0l×m

B1


 (5.14)

The choice ofGa has the property that

GaBνa = B2(B
T
a Ba)

−1BT
a BaBT

2

= B2BT
2= Il

7. Define the ISM control laws as

ν̂(t) = ν̂l (t)+ ν̂n(t) (5.15)

where

ν̂l(t) :=−Fxa(t) (5.16)

and

ν̂n(t) :=





−ρ σa(x,t)
||σa(x,t)|| if σa(t) 6= 0

0 if σa(t) = 0
(5.17)

whereρ is a modulation gain to enforce sliding.

8. Design the state feedback matrixF for the linear part of the controller (5.16), by solving

the LMIs (4.51)–(4.54) simultaneously given in section (4.3.4) for the augmented system

(5.8).

9. Finally, the actual control signal sent to the actuators online, depending on their effective-

ness level is obtained by substituting (5.15) into (5.6) which yields

u(t) =WBT
2 (B2W

2BT
2 )

−1(−Fxa(t)−ρ
σa

||σa||
) (5.18)

The integral sliding mode controller (5.18) can deal with actuator faults and certain total
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actuator failures, provided that det(B2W2BT
2 ) 6= 0.

5.2.2 FTLAB747 v6.5/v7.1 Software and Design Objectives

In this Chapter, all the simulations are based on a high-fidelity non-linear aircraft model, us-

ing the FTLAB747 v6.5/v7.1 software which represents a ‘real world’ model of B747-100/200

aircraft. The details of the model are given in (Appendix A.1).

The scenario which is considered here is that the aircraft isat a straight and level flight at 600m

and undergoes so-called up and away maneuver followed by a turning manoeuvre. The con-

trollers design objective here is to increase the altitude and the speed of the aircraft from the

current level of flight and after reaching the required altitude the aircraft takes the turn. This can

be achieved by tracking the appropriate FPA and airspeed (Vtas) commands using longitudinal

controller and tracking appropriate roll angleφ and sideslipβ using lateral controller.

To proceed with the controller design, a linearization has been obtained around an operating

condition of straight and level flight at 263,000 Kg, 92.6 m/s true airspeed, and at an altitude of

600 m based on 25.6% of maximum thrust and at a 20 deg flap position using the FTLAB747

v6.5/v7.1 software. In this Chapter the objective is to design FTC for both the longitudinal and

lateral axis such that the coupling between the two axis can be minimal.

5.2.3 Longitudinal Controller Design

In order to design the feedback gainF, the linear state space model representing the longitudinal

system is obtained from AppendixA.1 and is given by

Ag=




0 0 0 1.0000

0 −0.6284 −0.0021 1.0064

−9.8046 1.7171 −0.0166 0

0 −0.5831 0.0004 −0.5137




Bg=




0 0 0

−0.0352 −0.0819 −0.0084

0 −0.1756 5.7072

−0.6228 −1.3578 0.06




}
B1

}
B2

(5.19)
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where the input distribution matrix is rearranged and partitioned according to step 1 to have the structure

as in (4.4). Further scaling of the input distribution matrix make sureB2BT
2 = Il . For the design of

longitudinal control, the available system states arexlong = [θ ,α ,Vtas,q]T whereθ is the pitch angle

(rad),α is the angle of attack (rad),Vtas is the true airspeed (m/sec), andq is the pitch rate (rad/sec). For

longitudinal control, the 4 engine pressure ratios (EPRs) (two engines on each wing) are aggregated to

produce one control input. The available control surfaces for longitudinal control areδlong= [δe,δs,δepr]
T

which represent elevator deflection (rad), horizontal stabilizer deflection (rad) and aggregated longitudinal

EPRs. The controlled outputs for longitudinal control are[γ ,Vtas]
T , whereγ = θ −α is the flight path

angle (FPA). Therefore the output distribution matrices for the longitudinal system is

Cg =




1 −1 0 0

0 0 1 0




The state feedback gainF for the longitudinal control is designed using the augmented system in (5.9)

and the LMI approach proposed in section (4.3.4), where theQ andR matrices in (4.51) are chosen as

Qlong = diag{0.95,0.004,0.01,2,0.1,5} and Rlong = diag{4,8}. The first two states inQlong are the

integral action states. For normal flight in a fault-fee scenario, elevator is the primary control surface

for the FPA tracking, and the horizontal stabilizer is the redundancy. ForVtas tracking, collective engine

thrust is the only actuator (i.e. without redundancy), so itis assumed that the engines are fault free. The

choice ofγ = 7 in (4.53) givesγ2 = 3.0012 and ensures that

γ2γ1(1+ γo)< 1

which means the closed-loop stability condition in (4.38) is satisfied for the current design ofF for the

longitudinal system and is given by

F =




−0.5775 −0.0219 0.7854 0.0115 0.9792 0.3714

−1.9019 0.0377 8.0499 4.4238 −0.1590 4.4302


 (5.20)

The discontinuity in the nonlinear controller term (5.17) has been smoothed by using the fractional ap-

proximation σ
‖σ‖+δlong

given in section (3.5), where the value of the positive scalar is chosen asδlong= 0.01
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and the value of the modulation gainρ is chosen asρ = 1.

5.2.4 Lateral Controller Design

The same approach discussed in the previous subsection is adopted, for the design of state feedback gain

F for the lateral system. The state space model for the lateralsystem is taken from AppendixA.1 and is

given by

Al =




0 0 0.0893 1.0000

0.1055 −0.0999 −0.9887 0.1014

−0.0019 0.2767 −0.2066 −0.1186

0.0004 −1.6478 0.1718 −1.0579




Bl =




0 0 0

0 0.0174 0.0010

−0.0277 −0.2478 −0.1993

−0.3117 0.1187 −0.0386




}
B1

}
B2

(5.21)

where the input distribution matrix is the same as in longitudinal system is rearranged and partitioned

according to step 1 to have the structure as in (4.4). Furtherscaling of the input distribution matrix make

sureB2BT
2 = Il . The available states arexlat = [φ ,β , r, p]T whereφ is the roll angle (rad),β is the sideslip

angle (rad),r is the yaw rate (rad/sec) andp is the roll rate (rad/sec). For the lateral control, two ailerons

(inner and outer on the right wing) are aggregated to produceone control input. For the lateral control

δlat = [δa,δr ,δepr] are the available control surfaces, which represent anti-symmetric aileron deflection

(rad), rudder deflection and differential aggregated EPRs.The controlled outputs for lateral control are

[φ ,β ]T , so the output distribution matrix for the lateral system is

Cl =




1 0 0 0

0 1 0 0




Using the LMI approach in section (4.3.4) where the symmetric positive definite matricesQ andR are

chosen asQlat = diag{0.95,0.08,2,1,15,5} andRlat = diag({10,2}. During normal flight, the primary

control surfaces forφ andβ tracking are ailerons and the rudder respectively, while the differential engine

thrust is the redundancy for both. Based on these assumptions, using a numerical search it can be verified

that γ1(1+ γo) = 0.0731, whereγ1 = ‖B1a‖ andγ0 is defined in (4.14). The choice ofγ = 8.8 in (4.53)



105 5.3. NON-LINEAR FTC SIMULATIONS RESULTS

ensures thatγ2 = 5.8832 and therefore the closed-loop stability in (4.38) is satisfied.

γ2γ1(1+ γo)< 1

The obtained state feedback gainF for the lateral control is

F =




0.4165 −0.0839 0.2936 −1.9273 0.7983 −0.1356

−0.5265 −0.1241 1.1878 −0.6954 −0.1000 0.3879


 (5.22)

The discontinuity of the nonlinear controller (4.41) has been smoothed by using the fractional approxi-

mation, where the value of the positive scalar is chosen asδlat = 0.01, and the selected value ofρ for the

lateral control isρ = 1.

5.3 Non-linear FTC Simulations Results

The simulations are initially conducted at the trim conditions. For the up-and-away manoeuvre, a 3deg

reference command for FPA(during10−60sec), and a change inVtas of 10m/secat 100secare issued to

increase the altitude and speed of the aircraft. For the turning manoeuvre, a reference command requests

a change inφ of 25 degduring(200−250sec). A 0 degreference command toβ is issued throughout.

5.3.1 Fault Free Scenario

In Figures 5.1-5.2, the tracking performance of the nominalfault free system is shown. It can be seen in

Figure 5.1 that there is a small coupling between roll angle and sideslip when the roll angle command

is issued at 200 sec. A small coupling with FPA is also visibledue to roll command. In Figure 5.2, the

corresponding actuator positions are shown, where the actuators effectiveness plotW shows that all the

actuators are fault free.

5.3.2 Elevator Lock in place failure

Figures 5.3-5.4 demonstrate the system states and actuatorpositions and the actuator effectiveness level

in the case when an elevator (the primary control surface forFPA tracking) lock in place/offset-jam failure
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occurs at 50secduring the climb. It can be seen in Figure 5.4 that the controlsignal sent to the elevator

by the control allocation scheme is shutoff as the effectiveness level of the elevator is zero (Figure 5.4 )

and redistributed to the horizontal stabilizer, to maintain the nominal tracking performance (Figure 5.3).

5.3.3 Horizontal stabilizer Hardover/runaway failure

Figures 5.5-5.6 show no degradation in tracking performance as compared to (Figure 5.1) when the

horizontal stabilizer (the redundant control surface for FPA tracking) runaway to the maximum positive

deflection limit of 3 deg during the climb maneuver. It can be seen in Figure 5.6 that the elevator is

deflecting in the negative side to counteract the horizontalstabilizer failure. The effectiveness level of the

horizontal stabilizer can be seen in Figure 5.6 after the runaway failure.

5.3.4 Aileron Lock in place failure

In Figures 5.10-5.11, a scenario is demonstrated when aileron (the primary control surface for roll angle

tracking) lock in place/offset-jam failure occurs at 250secduring the turning manoeuvre, where it can

be seen (Figure 5.11) that the engine thrust level and the rudder react more actively to compensate the

aileron failure and it is clear from (Figure 5.10) that thereis no degradation in system performance as

compared to the nominal performance (Figure 5.1).

5.3.5 Rudder Hardover/runaway failure

Finally, in Figures 5.12-5.13, during the turning manoeuvre at 215sec, a rudder (primary control surface

for sideslip tracking) runaway to 7degoccurs. During the runaway failure, the rudder moves with its max-

imum rate. This is a very severe failure and is very difficult to handle, but it can be seen (Figure 5.13) that

the engine thrust level and the ailerons are actively involved by the control allocation scheme to handle

this situation and the performance close to the nominal is still achieved (Figure 5.12). The effectiveness

level of the rudder after the failure vanishes to zero.
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Figure 5.1: nominal scenario: System States
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Figure 5.5: horizontal stabilizer runaway failure: SystemStates
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Figure 5.6: horizontal stabilizer runaway failure: actuators positions and effectiveness
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Figure 5.7: Switching function elevator lock in place failure
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Figure 5.8: Switching function horizontal stabilizer runaway failure
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Figure 5.9: Switching function aileron lock in place failure
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Figure 5.10: aileron offset-jam failure: System States
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Figure 5.11: aileron offset-jam failure: actuators positions and effectiveness



CHAPTER 5. APPLICATION OF AN INTEGRAL SLIDING MODE FTC FOR A LARGE
TRANSPORT AIRCRAFT 112

0 100 200 300 400
−1

0

1

2

3

4

5

FP
A 

(d
eg

)

longitudinal states

 

 

0 100 200 300 400
90

95

100

105

110

Vt
as

 (m
/s

)

Time (sec)

 

 

0 100 200 300 400
−5

0

5

10

15

20

25

30

φ (
de

g)

lateral staes

 

 

0 100 200 300 400
−2

−1

0

1

2

β 
(d

eg
)

Time (sec)

 

 

γ cmd
γ

φ cmd
φ

v
tas

 cmd

v
tas

β cmd
β

Figure 5.12: rudder runaway failure: System States
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5.4 Conclusion

This Chapter, considered the application of integral sliding mode FTC scheme on the high fidelity non-

linear model of a large transport aircraft using the FTLAB747 v6.5/v7.1 software. FTLAB747 v6.5/v7.1

represents a ‘real world’ non-linear aircraft model in the software environment and was used to test the

effectiveness of the proposed scheme. The proposed integral sliding mode FTC scheme used the effec-

tiveness level of the actuators and has the capability to cope with total failures without reconfiguring the

controller.

The FTC scheme proposed in Chapter 4 is designed for the open-loop plant with no cognizance of any

existing controller. All the parameters for the FTC scheme are synthesized simultaneously and the closed

loop performance in both fault free conditions and in the presence of the fault is completely determined

by this design process. The coming Chapter builds on the ideas to retrofit integral sliding modes around

the existing control scheme to induce fault tolerance. Thisis beneficial in an industrial perspective as the

new controller does not affect the certification of the original underlying baseline controller.



Chapter 6

An Augmentation Scheme for Fault

Tolerant Control using Integral Sliding

Modes

In this Chapter the potential of integral sliding mode approach to be retro-fitted to an existing feedback

controller, (as mentioned earlier in the properties of integral sliding mode control (Chapter 3)) is analysed.

A novel fault tolerant control allocation scheme which is proposed in this Chapter, relies on ana posteri

approach, building on an existing state feedback controller designed using only the primary actuators. An

integral sliding mode scheme is integrated with the existing controller to introduce fault tolerance. The

proposed scheme uses the measured or estimated actuator effectiveness levels in order to redistribute the

control signals to the healthy ones which allows a certain class of total actuator failures to be mitigated.

The effectiveness of the proposed scheme is tested in simulation using a high fidelity nonlinear model of

a large transport aircraft model discussed in Appendix A.1.

6.1 Introduction

To achieve FTC, one paradigm is to subdivide and classify thedifferent actuators into ones of primary and

secondary status. Then, in the case of faults or failures in the primary actuators, secondary actuators can

be exploited to retain acceptable performance [39]. One wayto manage the redundancy which is created

114
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by the use of primary and secondary actuators is to deploy control allocation (CA) schemes discussed in

Section 2.4.2.2 to distribute the control effort over the effector suite.

The FTC technique proposed in this Chapter is quite different to the technique proposed in Chapter 4.

The technique in Chapter 4 is designed based on the open loop plant with no cognizance of any existing

controller and all the parameters associated with the integral sliding mode scheme are synthesized simul-

taneously based on a model of the open loop plant and the closed loop performance (in both fault free

conditions and in the presence of faults) is completely determined by this design process. In this Chap-

ter for controller design purposes the actuators are classified as primary and secondary. It is assumed a

controller based only on primary actuators has already beendesigned to provide appropriate closed loop

performance in a fault free scenario. The technique proposed in this Chapter involves creating ana pos-

teri integral sliding mode design, building on the existing state feedback controller. The idea is to use

only the primary actuators in the nominal fault free scenario, and to engage the secondary actuators only

if faults or failures occur. Crucially, in the fault free case, the closed-loop system behaviour is entirely

dependent on the original controller, and the overall scheme behaves exactly as though the ISM scheme

were not present. Only in the fault/failure case does the FTCscheme become active. In this way the

proposed integral sliding mode FTC scheme can be retrofittedto almost any existing control scheme to

induce fault tolerance. This requires a totally different design philosophy as compared to the scheme

discussed in Chapter 4. The scheme proposed here has an advantage from an industrial perspective, since

the proposed scheme can be retrofitted to an existing controlscheme to induce fault tolerance without

the need to remove or alter existing control loops. Furthermore the nominal fault free performance can

be specified according to any design paradigm. The scheme proposed in this Chapter uses measured or

estimated actuator effectiveness levels in order to distribute the control signals among the actuators. In

the case of faults/failures, the controller structure doesnot need to be changed and the control signals are

automatically redistributed to healthy actuators to maintain the closed-loop performance close to nomi-

nal. A rigorous closed-loop stability analysis, under the assumption of imperfect estimates of actuator

effectiveness levels, will be considered.
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6.2 System description and problem formulation

An LTI system subject to actuator faults or failures can be modelled as

ẋp(t) = Apxp(t)+BpW(t)u(t) (6.1)

whereAp ∈Rn×n , Bp ∈Rn×m andW(t)∈Rm×m is a diagonal weighting matrix representing the effective-

ness of each actuator where the elements 0≤ wi(t)≤ 1 for i = 1, ...,m. If wi(t) = 1, the correspondingith

actuator has no fault, whereas if 1> wi(t)> 0, an actuator fault is present. In a situation wherewi(t) = 0,

the actuator has completely failed. To create the design philosophy, suppose the input distribution matrix

can be partitioned as

Bp =

[
B1 B2

]
(6.2)

whereB1 ∈ Rn×l and B2 ∈ Rn×(m−l) and l < m and l < n. Here B1 is the input distribution matrix

associated with the primary actuators and is assumed to be ofrank equal tol , whilst B2 is associated with

the secondary actuators which provide redundancy in the system. It is assumed that the pair(Ap,B1) is

controllable. For the primary and secondary actuators, theweighting matrixW(t) is also partitioned as

W(t) = diag[W1(t),W2(t)] whereW1(t) = diag[w1(t), ...,wl (t)] andW2(t) = diag[wl+1(t), ...,wm(t)] are

weighting matrices for primary and secondary actuators respectively. In this Chapter, it is assumed that

the matrixW(t) is estimated by some FDI scheme, given in the Section 4.4.1 orby using a measurement

of the actual actuator deflection compared to the demand [22]. The estimated valuêW(t) will not be a

perfect estimate of the real effectiveness matrixW(t), and in this Chapter it is assumed the estimated

matrixŴ(t) = diag[Ŵ1(t),Ŵ2(t)] satisfies the relationship

W(t) = (I −△(t))Ŵ(t) (6.3)

where△(t) = diag[△1(t),△2(t)]. Both△1(t) and△2(t) are assumed to be diagonal matrices such that

the diagonal elementsδi(t) ∈R satisfyδi(t)<△max for some△max> 0 where

△max= max(‖△1(t)‖,‖△2(t)‖) (6.4)
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The matrices△1(t) and△2(t) model the level of imperfection in the fault estimation, andsatisfy

W1(t) = (Il −△1(t))Ŵ1(t)

W2(t) = (Im−l −△2(t))Ŵ2(t)

SinceB1 is assumed to has full column rank equal tol and therefore there exists an orthogonal matrix

Tp ∈Rn×n such that

TpB1 =




0

B21


 (6.5)

whereB21 ∈ Rl×l (and B21 is nonsingular). By a suitable change of coordinatesx 7→ Tpxp it can be

ensured, the input plant distribution matrix has the form

TpBp =




0 B12

B21 B22


 (6.6)

whereB22 ∈ Rl×(m−l). Next scale the lastl states to ensure thatBT
21B21 = B21BT

21 = Il ( i.e. B21 is

orthogonal). Consequently it can be assumed without loss ofgenerality the system (6.1) can be written

as

ẋ(t) = Ax(t)+BW(t)u(t) (6.7)

where

B=




0 B12

B21 B22


 :=

[
Bo Bs

]
(6.8)

Controllability of (Ap,B1) implies that the pair(A,Bo) is controllable. A state feedback control law

νo(t) = Fx(t) (6.9)

has been designeda priori to make the system

ẋ(t) = (A+BoF)x(t) (6.10)
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stable. Note that the gainF is the baseline controller (discussed in Section 6.5) designed for the primary

actuators. Now a control allocation scheme will beretrofitted to the control lawνo(t). The physical

control lawu(t) applied toall the actuatorsis defined as

u(t) = N(t)ν(t) (6.11)

whereν(t) ∈Rl is the virtual control effort produced by the actuators, andwill be discussed in the next

section. The overall control structure is given in Figure 6.1, where it is clear that the integral sliding

mode FTC scheme is retrofitted to the existing baseline controller νo(t) (which is designed using only the

primary actuators) and will be only active in case of faults or failures. In Figure 6.1, it is assumed that the

Figure 6.1: Schematic of the Overall Control Strategy

Fault Estimatoris able to identify theactuatorfaults/failures from all other possible faults/failures in the

system. The proposed control allocation matrix is given by

N(t) =




Il

N2(t)(Il −Ŵ1(t))


 (6.12)

where

N2(t) := BT
22B21(B

T
21B22Ŵ2(t)B

T
22B21)

−1 (6.13)



119 6.2. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

andŴ1(t) andŴ2(t) are the estimates of the effectiveness levels. Now define

W = {(ŵl+1, ...,ŵm) ∈ [0 1] × ...× [0 1]
︸ ︷︷ ︸

m− l times

: det(B22Ŵ2(t)B
T
22) 6= 0} (6.14)

Throughout this Chapter, it is assumed thatm≥ 2l . This allows up tom−2l of the entries ˆwi(t) in the

matrixŴ2(t) to be zero, and yet guarantee det(B22Ŵ2(t)BT
22) 6= 0. The setW will be shown to constitute

the class of faults/failures for which closed-loop stability can be maintained.

Substituting (6.3) and (6.11) into (6.7) yields

ẋ(t) = Ax(t)+




B12(Im−l −△2(t))Ŵ2(t)N2(Il −Ŵ1(t))

B21(Il −△1(t))Ŵ1(t)+B22(Im−l −△2(t))Ŵ2(t)N2(Il −Ŵ1(t))


ν(t) (6.15)

SinceB21 is orthogonal by construction,B21BT
21= Il , and using the definition ofN2(t) in (6.13) it follows

that

B22Ŵ2(t)N2(t) = B21B
T
21B22Ŵ2(t)N2(t) = B21 (6.16)

Consequently using (6.16), equation (6.15) simplifies to

ẋ(t) = Ax(t)+




B12(I −△2(t))Ŵ2(t)N2(Il −Ŵ1(t))

B21(Il −△1(t))Ŵ1(t)+B21(Il −Ŵ1(t))−B22△2(t)Ŵ2(t)N2(I −Ŵ1(t))


ν(t) (6.17)

which can be further simplified to

ẋ(t) = Ax(t)+




B12(Im−l −△2(t))Ŵ2(t)N2(Il −Ŵ1(t))

B21−B21△1(t)Ŵ1(t)−B22△2(t)Ŵ2(t)N2(Il −Ŵ1(t))




︸ ︷︷ ︸
B̂

ν(t) (6.18)

Remark 6.1: In the case of perfect estimation of̂W(t) (i.e. △(t) = 0) and when there is no fault in the

primary and secondary actuators (i.e.W1(t) = Il andW2(t) = Im−l ), the system in (6.18) becomes

ẋ(t) = Ax(t)+Boν(t) (6.19)
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and so only the primary control channels will be used.

In a fault/failure scenario, to maintain the closed-loop performance near to nominal, the concept of inte-

gral sliding mode control is combined with the control law from (6.11) and (6.12). The nominal fault free

system in (6.19) will be used for the design of the augmentation scheme which will be demonstrated in

the sequel.

6.3 Integral Sliding Mode Controller Design

As mentioned earlier in Chapter 3 and Chapter 4, first a sliding surface is designed and in the second step

a control law is developed which can enforce and maintain a sliding motion on the sliding surface.

First choose the sliding surface asS = {x ∈ Rn : σ(x, t) = 0} where the switching functionσ(x, t),

based on the nominal system (6.10), is defined as

σ(x, t) := Gx(t)−Gx(0)−G
∫ t

0

(
A+BoF

)
x(τ)dτ (6.20)

whereG ∈ Rl×n is the design freedom to be selected. The elimination of the reaching phase, ensures

the occurrence of the closed-loop sliding motion throughout the entire response of the system. In this

Chapter, the choice ofG is suggested as

G := BT
o (6.21)

whereBo is defined in (6.8). With this choice ofG it follows

GBo = BT
21B21 = Il

and this choice ofG serves as the pseudo inverse of the matrixBo. Also from (6.18)

(GB̂)−1 =

(
BT

21

(
B21−B21△1(t)Ŵ1(t)−B22△2(t)Ŵ2(t)N2(Il −Ŵ1(t))

))−1

(6.22)

which will be used while obtaining the expression for the equivalent control. To analyze the closed-loop

sliding motion associated with the integral switching function in (6.20) and the choice ofG in (6.21),
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taking the time derivative ofσ(x, t) defined in (6.20) yields

σ̇ = Gẋ(t)−GAx(t)−GBoFx(t) (6.23)

Substituting (6.18) into (6.23), the resulting expressionsimplifies to

σ̇ = GB̂ν(t)−GBoFx(t) (6.24)

Equatingσ̇(t) = 0, and by using the fact thatGBo = Il , the expression for the equivalent control is given

by

νeq(t) = (GB̂)−1Fx(t) (6.25)

The equation of motion governing sliding can be obtained by substituting (6.25) into (6.18) which yields

ẋ(t) = Ax(t)+ B̂(GB̂)−1Fx(t) (6.26)

Adding and subtracting the termBoFx(t), equation (6.26) can be written as

ẋ(t) = (A+BoF)x(t)+ (B̂(GB̂)−1−Bo)Fx(t) (6.27)

which can be further simplified to

ẋ(t)=(A+BoF)x(t)+



B12(Im−l −△2(t))Ŵ2(t)N2(Il −Ŵ1(t))(GB̂)−1

0l


Fx(t) (6.28)

Remark 6.2:Note that in the nominal fault free case whenW(t) = I , and in the case of perfect estimation

of Ŵ(t) matrix, the top row in the second term is zero, and the closed-loop sliding motion is stable. In the

case of faults or failures when̂W(t) 6= I , then the second term is not zero and will be treated as unmatched

uncertainty.

For the stability analysis which follows, write (6.28) as

ẋ(t) = (A+BoF)x(t)+ B̃Φ(t)Fx(t) (6.29)
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where

B̃ :=




B12

0


 (6.30)

and the time varying uncertain term

Φ(t) := (Im−l −△2(t))Ψ(t)
(

Il −△1(t)Ŵ1(t)−BT
21B22△2(t)Ψ(t)

)−1
(6.31)

where

Ψ(t) := Ŵ2(t)N2(Il −Ŵ1(t)) (6.32)

From (6.16) it is clear that̂W2(t)N2(t) is a right pseudo inverse forBT
21B22. Then by using arguments

similar to those as given in Chapter 4 as proved in [111], it follows ‖Ŵ2(t)N2(t)‖ < γ1 for some positive

scalarγ1, provided that det(B22Ŵ2(t)BT
22) 6= 0. Since

‖Ψ(t)‖ ≤ ‖(Il −Ŵ1(t))‖‖Ŵ2(t)N2(t)‖< ‖Ŵ2(t)N2(t)‖ < γ1

‖Ψ(t)‖ remains bounded. Defineγ∗1 as the smallest number (which will be used in theProposition 6.1)

satisfying

‖Ψ(t)‖ < γ∗1 (6.33)

In the following subsections the main results of the Chapterare presented.

6.3.1 Stability Analysis of the Closed-loop Sliding motion

In the case of perfect estimation of thêW(t) matrix, (i.e.△(t) = 0) and when there are no faults in the

system (i.e.W(t) = I ) the uncertain termΦ(t) in (6.29) vanishes (i.e.Φ(t) = 0) and the closed-loop

sliding motion in (6.29) simplifies to

ẋ(t) = (A+BoF)x(t) (6.34)

which is stable by the choice of the baseline controllerF .

In the case of non-perfect estimation ofŴ(t) and in the presence of faults, the stability of (6.29) needs to

be proven. To this end, in this most general situation the equation governing the sliding motion in (6.29)
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can be written as

ẋ(t) = (A+BoF)︸ ︷︷ ︸
Ã

x(t)+ B̃

ũ︷ ︸︸ ︷
Φ(t)Fx(t)︸ ︷︷ ︸

ỹ

(6.35)

For the subsequent stability analysis, define theL2 gain between ˜u to ỹ as

γ2 = ‖G̃(s)‖∞ (6.36)

where the transfer function matrix

G̃(s) := F(sI− Ã)−1B̃ (6.37)

and is stable by design.

Proposition 6.1:Suppose that the condition

(1+ γ3γ∗1)△max< 1 (6.38)

holds, whereγ∗1 and△max are defined in (6.33) and (6.4) andγ3 = ‖B22‖, then during fault or failure

conditions including failure of all primary actuators and for any ŵl+1(t), ...,ŵm(t) ∈ W whereW is

defined in (6.14), the closed loop system in (6.35) will be stable if:

γ2γ∗1(1+△max)

1− (1+ γ3γ∗1)△max
< 1 (6.39)

whereγ2 is defined in (6.36).

Proof. The closed-loop sliding motion in (6.35) can be written as

ẋ(t) = Ãx(t)+ B̃ũ(t) (6.40)

ỹ(t) = Fx(t) (6.41)

where

ũ(t) = Φ(t)ỹ(t) (6.42)

By using the small gain theorem as discussed in the Appendix B.1.2, the feedback interconnection of the

known stable matrixG̃(s) with the bounded uncertain termΦ(t) and hence equation (6.35) will be stable
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if

‖G̃(s)‖∞‖Φ(t)‖ < 1 (6.43)

From equation (6.31), it is clear that

‖Φ(t)‖ ≤ ‖
(
Il −△1(t)Ŵ1(t)−BT

21B22△2(t)Ψ(t)︸ ︷︷ ︸
X(t)

)−1‖‖(Im−l −△2(t))Ψ(t)‖ (6.44)

Using the fact that‖Ŵ1(t)‖ ≤ 1, and‖BT
21‖= 1 (sinceBT

21B21 = Il ), from (6.44)

‖X(t)‖ ≤ ‖△1(t)Ŵ1(t)‖+‖BT
21B22△2(t)Ψ(t)‖

≤ ‖△1(t)‖+‖B22‖‖△2(t)‖‖Ψ(t)‖

≤ (1+ γ3γ∗1)△max< 1

if the conditions ofProposition 6.1hold. Hence from (6.44), and using the fact [63] that in general

‖(I −X)−1‖ ≤ (1−‖X‖)−1 if ‖X‖< 1

therefore

‖Φ(t)‖ ≤ γ∗1(1+△max)

1− (1+ γ3γ∗1)△max
(6.45)

From the expression in (6.45) and the fact that‖G̃(s)‖∞ = γ2, a sufficient condition to ensure the condi-

tions of the small gain theorem in (6.43) hold is that

γ2γ∗1(1+△max)

1− (1+ γ3γ∗1)△max
< 1

This is the condition in (6.39), and the proof ofProposition 6.1is complete.

Remark 6.3: If B12 is zero in (6.30) (which is the assumption in many CA schemes,see for example [60],

[105]) thenB̃= 0 , and the condition ofProposition 6.1is trivially satisfied. The scheme in this Chapter

considersB12 6= 0, and consequently proposes a more general solution which helps target a wider range

of potential applications.
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6.3.2 Integral Sliding Mode control laws

Now a control law will be designed such that the sliding motion on the sliding surface in (6.20) can be

ensured. Define the integral sliding mode control law as

ν(t) = νl (t)+νn(t) (6.46)

where the linear part of the control law same as in (6.9) whichis knowna priori is

νl (t) := Fx(t) (6.47)

and the nonlinear part, which induces the sliding motion, is

νn(t) :=−ρ(t,x)
σ(t,x)

‖σ(t,x)‖ for σ(t,x) 6= 0 (6.48)

whereρ(t,x) is the modulation gain whose precise value is proposed in thestatement ofProposition 6.2.

Now in the sequel it is demonstrated that the integral sliding mode control law in (6.46)-(6.48) satisfies

the reachability condition.

Proposition 6.2:Assume the conditions ofProposition 6.1hold. Then ifρ(t,x) is chosen as

ρ(t,x)≥ (1+ γ3γ∗1)△max‖νl (t)‖+η
1− (1+ γ3γ∗1)△max

(6.49)

whereη > 0 is a small positive scalar, the integral sliding mode control law in (6.46)-(6.48) satisfies the

reachability condition and sliding onS in (6.20) is maintained.

Proof. By substituting the control law proposed in (6.46)-(6.48) into (6.24) and by using the fact that

GBo = I , it gives

σ̇(x, t) = (GB̂)(Fx(t)−ρ
σ(t)
‖σ(t)‖)−Fx(t) (6.50)
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Since by constructionBT
21B21 = Il , using (6.22) and (6.32) equation (6.50) can be written as

σ̇(t) =
(

Il −△1(t)Ŵ1(t)−BT
21B22△2(t)Ψ(t)

)
(Fx(t)−ρ

σ(t)
‖σ(t)‖)−Fx(t)

= −ρ
σ(t)
‖σ(t)‖ −

(
△1(t)Ŵ1(t)+BT

21B22△2(t)Ψ(t)
)
(Fx(t)−ρ

σ(t)
‖σ(t)‖) (6.51)

Now consider the candidate Lyapunov function

V(t) =
1
2

σTσ (6.52)

Taking the time derivative of (6.52) and substituting forσ̇(t) from (6.51) yields

V̇ = −ρ‖σ‖−σT
(
△1(t)Ŵ1(t)+BT

21B22△2(t)Ψ(t)
)

Fx(t)

+ρσT
(
△1(t)Ŵ1(t)+BT

21B22△2(t)Ψ(t)
) σ
‖σ‖

≤ −ρ‖σ‖+‖σ‖(△max+ γ3△maxγ∗1)‖νl‖+ρ‖σ‖(△max+ γ3△maxγ∗1)

≤ −ρ(1− (△max+ γ3△maxγ∗1))‖σ‖+‖σ‖(△max+ γ3△maxγ∗1)‖νl‖ (6.53)

where△max is defined in (6.4). By choosing the value ofρ(t,x) as proposed in (6.49), the expression in

(6.53) becomeṡV ≤ −η‖σ‖ which is the standard reachability condition, and is sufficient to guarantee

that sliding on the surfaceS is maintained.

Finally in order to obtain the overall physical control law which is used to create the actual control signals

sent to all the available control surfaces, substituting (6.46)-(6.48) into (6.11) yields

u(t) =




Il

N2(t)(Il −Ŵ1(t))



(

Fx(t)−ρ(t,x)
σ(t,x)

‖σ(t,x)‖
)

(6.54)

whereN2(t) is defined in (6.13). The efficacy of the proposed scheme is tested in the following section

using the high fidelity nonlinear model of the large transport aircraft.



127 6.4. SIMULATIONS: YAW DAMPING OF A LARGE TRANSPORT AIRCRAFT

6.4 Simulations: yaw damping of a large transport aircraft

The proposed integral sliding mode FTC scheme employs an a-posteri approach building on an existing

state feedback controller designed using only the primary actuators. In the physical control law proposed

in (6.54), the baseline control lawF is assumed to exista-priori. The technique implemented in the

proposed FTC scheme is to use the baseline controller in the nominal fault free scenario, and activates the

fault tolerant features only in the case when faults or failures occur in the actuators. All the simulations

which follow have been based on the high fidelity nonlinear model of the large transport aircraft using

the FTLAB 747V6.5/7.1 software environment which was used as the basis for the GARTEUR AG16

benchmark [39].

The objective of the simulations is to damp the lateral dynamics of the aircraft when the initial sideslip

β (0) is perturbed by 1o while the aircraft is flying at a high altitude say 40,000 ft with a high speed

say 774 ft/sec. The lateral dynamics of a large transport aircraft discussed in Appendix A.1 are used

to evaluate the proposed scheme. For yaw damping the washoutfilter state which is obtained using the

relation [48]:

ẋwo = r −0.333xwo (6.55)

is augmented with the lateral dynamics, wherer is the yaw rate andxwo is the washout filter state. The

nominal state feedback controllerF associated with the primary actuators for yaw damping (which is a

stability augmentation system for the lateral dynamics of an aircraft) has been taken from the literature,

which is based on the ideal closed-loop eigenvalues in (6.59) and eigenvectors in (6.60) (Section 6.5) and

is not part of the design process. For design purpose, a linearization of the benchmark model is obtained

about an operating condition of 40,000 ft altitude and 774 ft/sec forward speed (Mach 0.8) as defined

in [48], [61]. By augmenting a washout filter state given in equation (6.55), the state space representation

of the model is given as

Ap =




−0.3330 0 0 1 0

0 0 0 0.0816 1

0 0.0413 −0.0537 −0.9944 0.0823

0 −0.0012 0.6090 −0.0869 −0.0335

0 0.0002 −2.9236 0.3681 −0.4514



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Bp =




0 0 0 0 0 0

0 0 0 0 0 0

0.0070 0 0.0003 −0.0003 0.0002 −0.0002

−0.4438 −0.0082 −0.0046 0.0046 0.0493 −0.0493

0.1451 −0.1329 −0.0625 0.0625 0.0085 −0.0085




(6.56)

The states are(xwo,φ ,β , r, p)T , wherexwo is the washout filter state (rad) in equation (6.55) and is only

augmented in this Chapter in the lateral dynamics for yaw damping, φ is the roll angle (rad),β is the

side slip (rad),r is the yaw rate (rad/sec) andp is the roll rate (rad/sec). The control surfaces which are

considered for the design areδlat = {δr ,δa,δsp5,δsp8,Tnl ,Tnr}T whereδr is the rudder deflection (rad),

δa is the aileron deflection (rad),δsp5 is the left inner spoiler (rad),δsp8 is the right inner spoiler (rad) and

Tnl andTnr are aggregated engine thrusts (N) (scaled by 105) on the left and right wing. It is assumed that

the left aileron moves in an antisymmetrical fashion to the right aileron1. In (6.56) the input distribution

matrix Bp is divided into primary(δr ,δa)
T and secondary(δsp5,δsp8,Tnl ,Tnr)

T actuators. A further

transformation is required in order to have the structure in(6.8) and to ensure thatB21BT
21= I2. Using the

set of eigenvalues and eigenvectors as mentioned in the Section 6.5, the ideal baseline control lawF for

yaw damping (considering only the primary actuators(δr ,δa)
T), based on eigenstructure assignment [81]

is

F =



−0.5342 −0.4817 0.0665 1.1836 −0.0133

−21.9319 −0.5188 0.1313 1.9001 0.6705


 (6.57)

The state feedback control gain matrix in (6.57) will be taken as thea priori given controller around

which the novel integral sliding mode scheme from Section III is created.

6.4.1 Fault Tolerant Control Law for Yaw Damping

In the case of faults or failures the baseline control law in (6.57) can not be used alone; instead the fault

tolerant control law proposed in (6.54) will be employed to retain performance close to the nominal. In the

nominal case, the aileron is the primary control surface forφ tracking, and the spoilers are the redundancy;

whereas the rudder is the primary control surface forβ tracking (i.e. yaw damping), and differential

1The outer ailerons and spoilers (sp1−4,sp9−12) are not active at high speed cruise condition due to structural
limit. The spoilers (sp6,sp7) are ground spoilers and not used in flight
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engine thrust is the redundancy. The closed-loop stabilitycondition in (6.39) should be guaranteed in

nominal and in faults/failures scenarios. The value ofγ2 for the a priori F using equation (6.36) is

γ2 = 0.0424. Using (6.33) it can be verified using a numerical searchthatγ∗1 = 7.5920. Hence to satisfy

the stability conditions ofProposition 6.1in (6.38) and (6.39) whereγ3 = 0.7176, the maximum value of

the error in estimation of the actuator effectiveness levels which can be handled by the physical control

law in (6.54) is△max= 10%.

6.5 Baseline control law for yaw damping

Eigenstructure assignment is a method which provides the freedom to allow the appropriate set of eigen-

values and associated eigenvectors to be considered in the design procedure to achieve the desired per-

formance or shape of the closed-loop system response. The feedback gainF, based only on the primary

actuator, is assumed to be availablea priori and should stabilize the nominal closed-loop system in (6.10).

The design ofF is based on the set of eigenvalues given in (6.59) and the bestpossible eigenvectors sug-

gested in [45]. Based on this available eigenstructure, thefeedback gainF can be obtained using the

relation

(A+BoF)vi = λivi i = 1, ...,n (6.58)

whereλi is an eigenvalue andvi is the associated eigenvector. It is argued in [93] that ifBo is of full

rank then,“a maximum of n eigenvectors can be partially assigned with aminimum of l entries in each

eigenvector arbitrarily chosen”.

The ideal closed-loop eigenvalues for the nominal state feedback controllerF associated with the pri-

mary actuators for yaw damping (which is a stability augmentation system for the lateral dynamics of an

aircraft) are

{−0.0051,−0.468,−0.6±0.628j,−1.106} (6.59)

The motions corresponding to the stable real poles are referred to as the spiral mode (−0.0051), the

washout filter (−0.468) and the roll mode (-1.106). The motion corresponding tothe complex poles is

referred to as the Dutch roll mode. The best possible eigenvectors to ensure decoupling between these
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modes as described in [45] are represented as




∗

0

1

∗

∗







∗

0

1

∗

∗




︸ ︷︷ ︸
Dutch roll mode




∗

1

0

∗

∗




︸ ︷︷ ︸
roll mode




∗

1

0

∗

∗




︸ ︷︷ ︸
spiral mode




0

0

0

1

0




︸ ︷︷ ︸
washout filter




xwo

φ

β

r

p




︸ ︷︷ ︸
x(t)

(6.60)

where∗ denotes that the magnitude of the element is unimportant. The above selection of eigenvectors

ensures no coupling of dutch roll with the roll angle and or roll rate. Furthermore the spiral mode and

roll mode are associated with the roll angle only, and shouldensure decoupling from the sideslip angle to

avoid sideslip in the course of a steady turn [93]. The washout filter which is used for the yaw damping

is only associated with the yaw rate.

6.6 Nonlinear Simulation Results for Yaw Damper

Practically the integral sliding mode control law proposedin (6.48) cannot be directly used in this case,

and the discontinuities in the unit vector have been smoothed using fractional approximation σ
‖σ‖+δ [41]

given in section 3.5, where value of the positive scalar is chosen asδ = 0.01. In the sequel three simulation

scenarios are investigated: one a fault free case and considering the estimation of theW(t) matrix is

perfect; the second considering the same scenario as in case1, but when the estimation of theW(t) matrix

is imperfect; and the third a scenario involving a primary actuator failure and with imperfect estimation

of W(t).

6.6.1 Case 1: Fault Free Case With Perfect Estimation of W(t)

In the case when the estimation of the effectiveness level matrix W(t) is perfect,△(t) = 0 and△max= 0.

Consequently the stability condition in (6.39) reduces toγ2γ∗1 = 0.3217< 1.

Figures 6.2-6.3 demonstrate the nominal fault free performance. In Figure 6.2 it can be seen that the roll

and yaw modes are decoupled. During the nominal fault free scenario the secondary actuators are not
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active (Figure 6.3) because the integral sliding mode FTC scheme is not active in this case and only the

baseline controllerF is employed to achieve the nominal performance.

6.6.2 Case 2: Fault Free Case With Imperfect Estimation of W(t)

A second scenario is considered here to demonstrate the efficacy of the scheme when the system is fault

free and estimation of theW(t) matrix is not perfect. Figure 6.4 shows that due to impreciseinformation

provided by the FDI, the estimatêW(t) 6= I , (indicating the presence of faults) although in reality there is

no fault in the system. In response to this the control allocation scheme engages the secondary actuators

(spoilers forφ performance and differential engine thrust forβ performance) as shown in Figure 6.5 to

maintain the closed-loop stability of the system and to retain nominal performance same as in Figure 6.2.

6.6.3 Case 3: Primary Failure With Imperfect Estimation of W(t)

The third scenario demonstrates the scheme with imperfect estimatesŴ(t) in the case of failure in the

primary actuators. Theoretically the maximum percentage error △max the proposed scheme can handle

and yet ensure the stability conditions ofProposition 6.1, is 10%. Figure 6.7, shows the scenario when

both the primary actuators (rudder and ailerons) have jammed at offset positions at 6 sec, and due to

imprecise information provided by the FDI scheme, the effectiveness of the primary actuators is estimated

at 10%, instead of 0% (Figure 6.6). Due to this failure, the right wing spoilersp8 is actively engaged by

the control allocation scheme together with left and right wing engines thrust to cope with this situation,

and to maintain the performance close to the nominal Figure 6.7. The switching function plot in Figure 6.7

shows that the sliding is maintained in the entire system response.
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Figure 6.2: No fault (perfect estimation ofW): plant states

0 10 20 30
−20

−10

0

10

20

δ a ri
gh

t &
 le

ft 
(d

eg
)

 

 
aileron right
aileron left

0 10 20 30
−1

−0.5

0

0.5

1

ru
dd

er
 (d

eg
)

0 10 20 30
0

2

4

6

8

sp
oi

le
rs

 le
ft 

(d
eg

)

 

 
sp−5

0 10 20 30
0

2

4

6

sp
oi

le
rs

 ri
gh

t (
de

g)

 

 
sp8

0 10 20 30
4

4.5

5

5.5

6
x 10

4

th
ru

st
 le

ft 
(N

)

Time (sec)

 

 
Tn

l

0 10 20 30
4

4.5

5

5.5

6
x 10

4

th
ru

st
 ri

gh
t (

N
)

 

 
Tn

r

Figure 6.3: No fault (perfect estimation ofW): actuators
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Figure 6.4: No fault (imperfect estimation ofW): plant states
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Figure 6.5: No fault (imperfect estimation ofW): actuators
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Figure 6.6: Primary failure (imperfect estimation ofW): plant states
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Figure 6.7: Primary failure (imperfect estimation ofW): actuators
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6.7 Conclusion

In this Chapter a novel fault tolerant control allocation scheme was proposed by incorporating integral

sliding modes. The controller structure does not need to be changed and the same controller is used in

both nominal as well as in fault/failure scenarios. The proposed scheme employed ana posteri approach

building on an existing state feedback controller designedusing only the primary actuators. To distribute

the control signals to the functional actuators, the schemeused the estimated effectiveness levels of the

actuators provided by an FDI scheme. Furthermore the proposed FTC scheme can handle a level of error

in terms of estimation of the actuator effectiveness. A rigorous stability analysis for imperfect actuator

effectiveness estimate has been developed. The efficacy of the proposed scheme was tested in simulation

using a nonlinear benchmark model of a large transport aircraft.

The FTC scheme in the coming Chapter considers an extension of the ideas proposed in Chapter 4 for

the Linear Parameter Varying systems. Due to the fact that the operating conditions frequently change

in safety critical systems, the extended ideas of FTC in the coming Chapter will allow to investigate the

closed-loop performance of the FTC scheme in the wider rangeof operating conditions.



Chapter 7

Linear Parameter Varying FTC Scheme

using Integral Sliding Modes

This Chapter introduces a new fault tolerant control schemefor linear parameter varying (LPV) plants by

incorporating ideas of integral sliding modes and control allocation. This Chapter considersan extension

of FTC scheme proposed in Chapter 4 by exploiting the global properties (in a sense of concern of the

system behaviour along all possible parameter variations)of linear parameter varying systems. An LPV

control design methodology seeks for a single control law which explicitly depends on these varying

parameters [50]. The effectiveness of the scheme is tested in simulation by applying it to a benchmark

LPV model of a transport aircraft. The closed-loop stability of the overall system is guaranteed throughout

the entire operating conditions envelope even in the presence of total failure of certain actuators.

7.1 Introduction

Many different control paradigms see for example Chapter 2 which have been explored in the literature

to tackle the fault tolerant control problem. However, it isprobably fair to say that most of the FTC

methods have been proposed for linear time invariant (LTI) systems. However there are notable excep-

tions. FTC methods based on LTI system descriptions are somewhat restricted to near trim conditions.

Linear parameter varying systems can be considered as an extension of LTI systems and are a certain

class of finite dimensional linear systems, in which the entries of the state space matrices continuously

136
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depend on a time varying parameter vector which belongs to a bounded compact set [85]. LPV methods

have attracted much attention in recent years– especially for aircraft systems [50] and are appealing for

nonlinear plants which can be modelled as time varying systems with state dependent parameters which

are measurable online [101].

In this Chapter an LPV system representation is considered,as a natural extension of LTI systems. The

objective is to synthesize an FTC scheme which will work overa wider range of operating conditions.

There is almost no literature on the use of sliding model controllers for LPV systems with the exception

of [107] and [95]. The work in [107] and [95] has proposed SMC schemes for LPV systems although

not in the context of fault tolerant control. Themain contributionof this Chapter is toextendthe integral

sliding modes control allocation ideas proposed in Chapter4 to a class of LPV systems. Same as in

Chapters 4 and 6 the inclusion of CA with integral sliding modes has enabled a baseline controller to

be design for both fault free and faulty condition, by avoiding the need to reconfigure the controller. In

the proposed scheme, it is assumed that (fault free) state information is available for controller design

together with estimates of the actuator health levels. To design the virtual control law, the varying input

distribution matrix is factorized into a fixed and a varying matrix. The virtual control law designed by

the ISM technique is translated into the actual actuator commands using the CA scheme. In the proposed

scheme the controller is automatically ‘scheduled’ and closed-loop stability is established throughout

the entire operating envelope. The proposed FTC scheme can maintain closed-loop stability even in

the presence of total failures of certain actuators, provided that redundancy is available in the system.

The efficacy of the proposed FTC scheme is tested in simulation by applying it to an LPV model of a

benchmark transport aircraft previously used in the literature [50].

7.2 Problem Formulation

An LTI plant subject to actuator faults or failures considered in Chapter 4 (equation 4.1) can be extended

for linear parameter varying plant which can be representedas

ẋ(t) = A(ρ)x(t)+B(ρ)W(t)u(t) (7.1)
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whereA(ρ)∈Rn×n, B(ρ)∈Rn×m andW(t)∈Rm×m is a diagonal semi-positive definite weighting matrix

whose diagonal entriesw1(t), ..,wm(t) model the efficiency level of the actuators. Ifwi(t) = 1 it means

that theith actuator is working perfectly and is fault free, whereas if 1> wi(t) > 0 some level of fault is

present (and that particular actuator works at reduced efficiency). If wi(t) = 0 it means theith actuator

has completely failed and the actuator does not respond to the control signalui(t). The time varying

parameter vectorρ(t) is assumed to lie in a specified bounded compact setΩ ⊂Rr and is assumed to be

available for the controller design. Further assume that the varying plant matricesA(ρ) andB(ρ) depend

affinely on the parameterρ(t) that is

A(ρ) = A0+
r

∑
i=1

ρiAi B(ρ) = B0+
r

∑
i=1

ρiBi

To design the virtual control law, which is designed in the sequel, assume that the parameter varying

matrix B(ρ) can be factorized as

B(ρ) = Bf E(ρ) (7.2)

whereBf ∈Rn×m is a fixed matrix andE(ρ)∈Rm×m is a matrix with varying components and is assumed

to be invertible for allρ(t)∈ Ω. This of course is a restriction on the class of systems for which the results

in this Chapter are applicable, but for example many aircraft systems fall into this category.

As discussed in Chapter 4, to resolve actuator redundancy, assume that by permuting the states the matrix

Bf can be partitioned as

Bf =




B1

B2


 (7.3)

whereB1 ∈R(n−l)×m, andB2 ∈Rl×m is of rank l < m. Here it is assumed as in Chapter 4 that‖B2‖ ≫

‖B1‖ so thatB2 provides the dominant contribution to the control action ascompared toB1. Again,

although this is a restriction, the aircraft example satisfies such a constraint. Furthermore scale the lastl

states to ensure thatB2BT
2 = Il . This can be done without loss of generality.

Using (7.2) and (7.3), the system in (7.1) can be written as

ẋ(t) = A(ρ)x(t)+




B1E(ρ)W(t)

B2E(ρ)W(t)


u(t) (7.4)
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The design of the virtual control, will be based on the fault free system i.e. whenW(t) = I . Define the

virtual control input signal as:

ν(t) := B2E(ρ)u(t) (7.5)

whereν(t) ∈ Rl is the total control effort produced by the actuators [60]. Using the factB2BT
2 = Il ,

one particular choice for the physical control lawu(t) ∈Rm which is used to distribute the control effort

among the actuators is

u(t) := (E(ρ))−1BT
2 ν(t) (7.6)

Substituting (7.6) into (7.4) yields

ẋ(t) = A(ρ)x(t)+




B1E(ρ)W(t)(E(ρ))−1BT
2

B2E(ρ)W(t)(E(ρ))−1BT
2




︸ ︷︷ ︸
Bw(ρ)

ν(t) (7.7)

In the nominal case, when there is no fault in the system, i.e.whenW(t) = I , equation (7.7) simplifies to

ẋ(t) = A(ρ)x(t)+




B1BT
2

Il




︸ ︷︷ ︸
Bν

ν(t) (7.8)

A1: The pair (A(ρ),Bν ) is controllable for all the values ofρ(t) ∈ Ω.

In this Chapter all the states are assumed to be available forthe controller design, therefore a state feed-

back gainν(t) =−F(ρ)x(t) can be appropriately designed in order to stabilize the nominal system

ẋ(t) = (A(ρ)−BνF(ρ))x(t)

for all values ofρ(t) ∈ Ω, as well as to achieve the desired closed-loop performance.The nominal fault

free system in (7.8) is used in the next section to design the virtual control law.
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7.3 Integral sliding mode controller design

This section focuses first on the design of the sliding surface and then subsequently the control law so

that the sliding motion on the sliding surface can be ensuredfor all the time.

7.3.1 Design of Integral switching function:

The integral switching function suggested in Chapter 4 (equation 4.18) ensures that the sliding mode

will exist from the time instant the controller is switched online. Consequently invariance to matched

uncertainty is guaranteed throughout the entire response of the system. Here the switching function

suggested in equation (4.18) is extended to the use for LPV plants. Choose the sliding surface asS =

{x∈Rn : σ(x,ρ , t) = 0}, where the choice

σ(x,ρ , t) := Gx(t)−Gx(0)−G
∫ t

0

(
A(ρ)−BνF(ρ)

)
x(τ)dτ (7.9)

is advocated whereG∈Rl×n represents design freedom. The choice ofG is based on the fixed matrixBf

and is suggested as

G := B2(B
T
f Bf )

−1BT
f (7.10)

The choice ofG in (7.10) is of similar structure as in (4.19). With this choice ofG, and using the special

properties of matrixB2 such thatB2BT
2 = Il , it is easy to verify that

GBν = B2(B
T
f Bf )

−1BT
f Bf B

T
2 = Il (7.11)

which means that nominally when there are no faults in the systemW = Im, the special choice ofG in

(7.10) serves as the left pseudo inverse of matrixBν . Also from equation (7.7)

GBw(ρ) = B2(B
T
f Bf )

−1BT
f Bf E(ρ)W(t)(E(ρ))−1BT

2

= B2E(ρ)W(t)(E(ρ))−1BT
2 (7.12)

and will be used in the sequel while defining the control law. From the result in (7.12), it is clear that it

agrees with that of the result in (7.11) nominally.
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To maintain the sliding on the sliding surface, equivalent control (which is the average value of the virtual

control ν(t)) is required and can be obtained by using the relationσ = σ̇ = 0. By taking the time

derivative of the switching functionσ along the trajectories yields

σ̇(x,ρ , t) = Gẋ(t)−GA(ρ)x(t)+GBνF(ρ)x(t) (7.13)

and after substituting from (7.7),

σ̇(x,ρ , t) = GBw(ρ)ν(t)+GBνF(ρ)x(t) (7.14)

and therefore the expression for the equivalent control canbe written as

νeq(t) =−(B2E(ρ)W(t)(E(ρ))−1BT
2 )

−1F(ρ)x(t) (7.15)

provided the actuator effectiveness matrixW(t) is such that det(B2E(ρ)W(t)(E(ρ))−1BT
2 ) 6= 0. The

expression in (7.15) is obtained from solving forσ̇ = 0 in (7.14) using the expression forGBw(ρ) in

(7.12) and the fact thatGBν = Il . Substituting (7.15) into (7.7) yields the expression for the sliding

motion as

ẋ(t) = A(ρ)x(t)−Bw(ρ)(B2E(ρ)W(t)(E(ρ))−1BT
2 )

−1F(ρ)x(t) (7.16)

Furthermore by adding and subtracting the termBνF(ρ)x(t) to the right hand side of equation (7.16)

yields

ẋ(t) =
(
A(ρ)−BνF(ρ)

)
x(t)+




∆(t,ρ)

0l


F(ρ)x(t) (7.17)

where the term which models the uncertainty part is

∆(t,ρ) := B1BT
2 −B1E(ρ)W(t)(E(ρ))−1BT

2 (B2E(ρ)W(t)(E(ρ))−1BT
2 )

−1

Remark 7.1: From equation (7.17) it is clear that when there are no actuator faults in the system (i.e.

W(t) = Im) the second term disappears and ends up with a stable system.However in the case of faults

or failures (i.e. whenW(t) 6= Im) the second term does not vanish and will be treated as unmatched
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uncertainty while sliding.

The closed-loop stability of the motion while sliding must be ensured in the presence of uncertainty

∆(t,ρ). To facilitate the closed-loop stability analysis the equation (7.17) can be written in the special

structure as

ẋ(t) =
(
A(ρ)−BνF(ρ)

)
(t)+ B̃∆(t,ρ)F(ρ)x(t) (7.18)

where

B̃ :=




In−l

0


 (7.19)

Now in order to define the class of faults or failures for whichthe FTC scheme proposed in this Chapter

can cope, let the diagonal entries ofW(t) belong to the set

Wε = {(w1, ...,wm) ∈
[

0 1

]
× ...×

[
0 1

]

︸ ︷︷ ︸
m times

: (GBw(ρ))T(GBw(ρ))> ε I} (7.20)

whereε is a small positive scalar satisfying 0< ε ≪1. Note that whenW(t)= Im, (GBw(ρ))T(GBw(ρ))=

I > ε I and thereforeW 6= /0. If the actuator effectiveness matrixW(t) = diag(w1, ...,wm) ∈ Wε then by

construction

‖(GBw(ρ))−1‖= ‖(B2E(ρ)W(E(ρ))−1BT
2 )

−1‖< 1√
ε

The setWε will be shown to constitute the class of faults/failures forwhich closed-loop stability can be

maintained. From (7.18) note that for anyW ∈ Wε

‖∆(t,ρ)‖ ≤ γ1(1+
c
ε
) (7.21)

wherec= maxρ∈Ω ‖E(ρ)‖‖(E(ρ))−1‖ i.e. the worst case condition number associated withE(ρ) and

γ1 = ‖B1‖, which is very small by hypothesis. Proving the stability ofthe closed-loop sliding motion in

(7.18) (in the nominal as well as in the fault/failure scenarios) is one of the important parts of the design

process which is demonstrated in the following subsection.

Remark 7.2:The conditions in this Chapter are subtly different to thosein Chapter 4. In (7.20) the norm

of (GBw(ρ))−1 must be guaranteed to be bounded by limitingW ∈ Wε thus introducing an explicitε
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to bound‖GBw(ρ)‖ away from zero. This is not necessary in Chapter 4 and so the ‘price’ for a wider

operating envelope is a more restricted set of possible failures.

7.3.2 Closed-loop stability analysis:

In the nominal fault free scenario whenW(t) = Im, it is easy to verify∆(t,ρ) = 0 in equation (7.18) and

simplifies to

ẋ(t) =
(
A(ρ)−BνF(ρ)

)
x(t) (7.22)

which is stable by design ofF(ρ)
)
. However in fault/failure scenarios, closed-loop stability needs to be

proven. To this end, equation (7.18) can also be representedby

ẋ(t) = (A(ρ)−BνF(ρ))︸ ︷︷ ︸
Ã(ρ)

x(t)+ B̃

ũ(t)︷ ︸︸ ︷
∆(t,ρ)F(ρ)x(t)︸ ︷︷ ︸

ỹ(t)

(7.23)

Defineγ0 to be theL2 gain associated with the operator

G̃(s) := F(ρ)(sI− Ã(ρ))−1B̃ (7.24)

Proposition 7.1:For any possible combination of faults or failures belonging to the setWε , the closed-

loop sliding motion in (7.23) will be stable if

γ0γ1(1+
c√
ε
)< 1 (7.25)

Proof. The specially written structure in (7.23) can be thought of as a feedback interconnection of an

LPV plant and a time varying feedback gain associated with

ẋ(t) = Ã(ρ)x(t)+ B̃ũ(t) (7.26)

ỹ(t) = F(ρ)x(t) (7.27)

where

ũ(t) = ∆(t,ρ)ỹ(t) (7.28)
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If (7.25) is satisfied then according to the small gain theorem [75] as discussed in the Appendix B.1.2

‖G̃(s)‖‖∆(t,ρ)‖ < 1 (7.29)

the closed-loop system in (7.23) will be stable.

In the next subsection the ideas of integral sliding modes are used to design the virtual control lawν(t)

in order to produce the virtual control effort.

7.3.3 ISM Control Laws:

The integral sliding mode control law is based on the nominalfault free system in (7.8) and comprises

two components:

ν(t) = νl (t)+νn(t) (7.30)

The linear part which ensures nominal performance is definedas

νl (t) :=−(GBw(ρ))−1F(ρ)x(t) (7.31)

and the nonlinear discontinuous part which induces slidingand provides robustness against fault/failure

scenarios is defined as

νn(t) :=−K (t,x,ρ)(GBw(ρ))−1 σ(x,ρ , t)
‖σ(x,ρ , t)‖ for σ 6= 0 (7.32)

whereK (t,x,ρ) is the scalar modulation function, whose value is proposed in Proposition 7.2.

Proposition 7.2:Assume that theProposition 7.1holds, then ifK (t,x,ρ) is chosen as

K (t,x,ρ) > ηo (7.33)

whereηo > 0 is a positive scalar, the integral sliding mode control laws defined in (7.30-7.32) satisfy the

reachability condition and sliding onS is maintained.

Proof. To demonstrate this, substitute the integral sliding mode control law in (7.31)-(7.32) into (7.14)
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which yields

σ̇(x,ρ , t) =−K (t,x,ρ)
σ(x,ρ , t)

‖σ(x,ρ , t)‖ for σ(x,ρ , t) 6= 0 (7.34)

Consider the positive definite candidate Lyapunov function

V(t) =
1
2

σT(x,ρ , t)σ(x,ρ , t) (7.35)

Taking the time derivative of (7.35) and substituting the value of (7.34), yields

V̇ = −K (t,x,ρ)‖σ(x,ρ , t)‖

≤ −ηo

√
2V(t) (7.36)

Equation (7.36) is a standard reachability condition [41] and is sufficient to ensure that the system trajec-

tories always remain on the sliding surface.

Finally the physical control law which is used to distributethe control effort among the available actuators

is obtained by substituting (7.30)-(7.32) into (7.6) whichyields

u(t) =−(E(ρ))−1BT
2 (B2E(ρ)W(t)(E(ρ))−1BT

2 )
−1(F(ρ)x(t)+K (t,x,ρ)

σ(x,ρ , t)
‖σ(x,ρ , t)‖ ) for σ 6= 0 (7.37)

The physical control law (7.37), requires the information about the effectiveness level of the actuators

contained inW(t), which can be obtained through some FDI scheme– see for example Subsection (4.4.1)

or [113]. This information can also be obtained by directly comparing the controller signals with the

actual actuator deflection, as measured by control surface sensors, which are available in many aircraft

systems [22].

7.3.4 Design of the state feedback gain

In this section, the state feedback gainF(ρ) using the nominal system (7.8) will be designed. In designing

F(ρ) two objectives must be met: the first is equivalent to achieving pre-specified nominal performance

for all the admissible values ofρ(t), and the second one is to satisfy the closed-loop stability condition in

(7.25) via the small gain theorem. Nominal performance willbe incorporated by the use of a LQR type
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cost functionJ=
∫ ∞

0 (xTQx+uTRu)dt, whereQ andRare s.p.d matrices. By using the arguments outlined

in [8], which say the LPV system matrices (Ã(ρ), B̃,F(ρ)) which depend affinely on the parameter vector

ρ(t) in (7.26) and (7.27) can be represented by the polytopic system (̃A(ωi), B̃,F(ωi)) where the allowable

range ofρ ∈ Ω corresponds to a polytope with verticesω1,ω2, ...,ωnω whereωnw = 2r . This approach

can be posed as an optimization problem: Minimizetrace(X−1) subject to




A(ωi)X+XAT(ωi)−BνY(ωi)−Y(ωi)
TBT

ν (Q1X−R1Y(ωi))
T

Q1X−R1Y(ωi) −I


< 0 (7.38)

X > 0 (7.39)

whereQ1 = [(Q
1
2 )T 0T

l×n]
T and R1 = [0T

n×l (R
1
2 )T ]T andY(ωi) := F(ωi)X and X−1 ∈ Rn×n is the

Lyapunov matrix. To satisfy the closed-loop stability condition in (7.25), it is sufficient to apply Bounded

Real Lemma (BRL) at each vertex of the polytope such that




A(ωi)X+XAT(ωi)−BνY(ωi)−Y(ωi)
TBT

ν B̃ Y(ωi)
T

B̃T −γ2I 0

Y(ωi) 0 −I



< 0 (7.40)

Since the objective is to seek the common Lyapunov matrix forthe LMI formulations at each vertex, this

can be achieved by introducing the slack variableZ ∈Rn×n and posing the problem as:

Minimize trace(Z) subject to 


−Z In

In −X


< 0 (7.41)

together with (7.38), (7.39) and (7.40). The decision variables areX andY(ωi). The matrixZ satis-

fies trace(Z) ≥ trace(X−1). Therefore the LMIs in (7.38-7.41) can be solved for all thevertices of the

polytopic system and at each vertex the state feedback matrix can be obtained by using the expression

F(ωi) =Y(ωi)X−1.
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7.4 Simulations

In this Chapter, the control law design is based on the LPV plant of a transport aircraft from [77] and is

explained in the next subsection.

7.4.1 LPV model of a transport aircraft

In [77] the nonlinear longitudinal dynamics model of the transport aircraft is approximated by polyno-

mially fitting the aerodynamics coefficients obtained from [83] to create an LPV representation using

the function substitution method. The aerodynamic coefficients are polynomial functions of velocityVtas

and angle of attackα in the range of[150,250]m/sec and[−2o,8o] respectively and at the altitude of

7000m [77]. The states of the LPV plant in [77] are{ᾱ , q̄,V̄tas, θ̄ , h̄e}T which representdeviationof the

angle of attack, pitch rate, true air speed, pitch angle and altitude from their trim values. The inputs

of the LPV plant are{δ̄e, δ̄s, T̄n}T , which represent deviation of elevator deflection, horizontal stabilizer

deflection and total engine thrust from their trim values respectively. The trim values of the states are

{αtrim,qtrim,Vtastrim ,θtrim,hetrim}= {1.05o,0o/s,227.02m/s,1.05o,7000m} and the trim values of the LPV

plant inputs are{δetrim ,δstrim ,Tntrim}= {0.163o,0.590o,42291N}. The LPV system matrices are given by

A(ρ) = A0+
7

∑
i=1

ρiAi and B(ρ) = B0+
7

∑
i=1

ρiBi (7.42)

where[ρ1, ...,ρ7] := [ᾱ ,V̄tas,V̄tasᾱ ,V̄2
tas,V̄

2
tasᾱ ,V̄3

tas,V̄
4

tas], whereᾱ = α −αtrim andV̄tas=Vtas−Vtastrim .

The LPV plant matrices used for the controller design are taken from [77], (and represents the LPV

longitudinal axis model of the benchmark aircraft model explained in the Appendix A.1) and has been

reordered to have the structure in (7.2). For the controllerdesign the statēhe is removed, because normally

the altitude can be controlled by controlling the FPA (e.g. this can be seen in [50]) and since the objective

in this section is to control the FPA and speed (2 states), therefore altitude is not important while designing

the controller. After reordering, the LPV plant states become{θ̄ , ᾱ ,V̄tas, q̄}T . The LPV system matrix is

given by
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A(ρ) =




0 0 0 a14(ρ)
0 a33(ρ) a32(ρ) a34(ρ)

a21(ρ) a23(ρ) a22(ρ) 0
0 a43(ρ) a42(ρ) a44(ρ)




where

a14(ρ)=1

a33(ρ)=−0.5935−2.5923×10−3ρ2

a32(ρ)=−5.2124×10−4−6.2678×10−7ρ2+1.1121×10−11ρ4

a34(ρ)=0.9914

a21(ρ)=−9.7851

a23(ρ)=5.7733−84.5625ρ1 −3.5127×10−2ρ2−0.7450ρ3

−0.7736×10−4ρ4−1.6408×10−3ρ5

a22(ρ)=−6.1168×10−3−2.1091×10−5ρ2−2.2374×10−8ρ4

a43(ρ)=−1.9626+3.4170ρ1 −0.01729ρ2+0.0301ρ3

−0.38081×10−4ρ4+6.630×10−5ρ5

a42(ρ)=−4.9579×10−4−3.8893×10−6ρ2−7.6201×10−9ρ4+0.19644×10−11ρ6

a44(ρ)=−0.46087−0.00203ρ2

and the LPV input distribution matrix is

B(ρ) =




0 0 0
b31(ρ) b32(ρ) b33(ρ)

0 0 b23(ρ)
b41(ρ) b42(ρ) b43(ρ)




where

b31(ρ)=−0.0358−1.1877×10−5ρ2+1.5311×10−6ρ4+3.9135×10−9ρ6

b32(ρ)=−0.0716

b33(ρ)=−3.6326×10−4−5.8732×10−3ρ1+1.6002×10−6ρ2+0.25871×10−4ρ3

b23(ρ)=1.3323−0.058133ρ1

b41(ρ)=−1.7696−0.0089ρ2 +0.5985×10−4ρ4

+0.4428×10−6ρ6+0.6912×10−9ρ7

b42(ρ)=−3.9993−0.035233ρ2 −0.776×10−4ρ4

b43(ρ)=0.015328

7.4.2 Control design objectives

In the simulations scenario it is assumed that the aircraft undergoes over the entire up-and-away flight

envelope. This can be achieved by appropriate tracking of FPA and true air speedVtas. The control design
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requirements are taken from [50]. The tracking requirements for FPA andVtas are decoupled responses

and with settling times of 20sec and 45sec respectively in the fault free scenario. In the case of elevator

or horizontal stabilizer failure, the tracking requirement for Vtas remains unchanged (because speed is

controlled by thrust) but for the FPA response a settling time of 30sec is considered.

The controlled outputs are[γ̄ ,V̄tas]
T , whereγ̄ = θ̄ − ᾱ, is the flight path angle. For the virtual control the

input distribution matrixB(ρ) has been factorized into fixed and varying matrices:

B(ρ)=




0 0 0

0.01 0 0

0 1 0

0 0 1




︸ ︷︷ ︸
Bf




b31(ρ) b32(ρ) b33(ρ)

0 0 b23(ρ)

b41(ρ) b42(ρ) b43(ρ)




︸ ︷︷ ︸
E(ρ)

(7.43)

In order to introduce the tracking facility in the proposed scheme, the plant states are augmented with the

integral action states [97] satisfying

ẋr(t) = r(t)−Ccx̄(t)

wherer(t) is the reference command to be tracked, andCc is the controlled output distribution matrix and

is given by

Cc =




1 −1 0 0

0 0 1 0




By definingxa(t) = col[xr (t), x̄(t)], the augmented system from (7.8) becomes

ẋa(t) = Aa(ρ)xa(t)+Bνaν(t)+Brr(t) (7.44)

where

Aa(ρ) :=




0 −Cc

0 A(ρ)


 Bνa :=




0

Bν


 Br =




Il

0


 (7.45)
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In the augmented system, the choice ofG in (7.10) becomesG := B2(BT
faBfa)

−1BT
fa where

Bfa =




0

Bf




andB2 is the bottom two rows ofBf . In this example for simplicity a fixed gain matrixF is sought,

which is valid for all the range of the LPV model. Note that designing a fixed matrixF , also highlights

the simplicity of adapting an existing Maltlab LMI multi-model state-feedback synthesis code ‘msfsyn’

to solve the LMIs (7.38)-(7.41), where the LQR andL2 objectives can be solved simultaneously by pro-

viding appropriate LQR weighting matrices and the tuning parameterγ in (7.40). For designing the state

feedback gainF, theQ andRmatrices in (7.38) have been chosen asQ= diag{500,50,20,20,0.01,30},

andR= diag{4,8} where the first two states inQ matrix are integral action states. The state feedback

gain resulting from the optimization is

F =




1.0380 3.5196 6.8596 −3.8666 −3.2233 0.3952

7.8693 −0.2319 −61.8796 44.8744 0.2072 −5.8896




The details of the design process are given in the Appendix B.2. Obviously a varying matrixF can also

be designed by directly solving the LMIs in (7.38)-(7.41) for all the vertices of the polytopic system.

In the nominal case, the elevator is the primary control surface for FPA tracking and the horizontal stabi-

lizer acts as redundancy. For theVtas tracking engine thrust (Tn) is the only control effector. Therefore in

all the simulations it is assumed that the engines are fault free. Based on the condition given in (7.20), for

the positive scalarε = 0.197 using a numerical search the value of‖∆(t,ρ)‖ by using equation (7.21) is

0.0964. To satisfy the closed-loop stability condition in (7.25), the value ofγo associated with the operator

in (7.24) should satisfyγo <
√

ε
γ1(

√
ε+c)

= 10.3734. The design process forF yields a value ofγo = 9.7851,

and hence the stability condition in (7.25) is satisfied. During the simulations, the discontinuity associ-

ated with the nonlinear control term in (7.32) has been smoothed by using the fractional approximation

(equation 3.37) , σ
‖σ‖+δ where the value of the positive scalar has been chosen asδ = 0.01.
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7.4.3 Simulation Results

In the simulations, the LPV longitudinal axis model of a transport aircraft discussed in Section 7.4.1 is

used to demonstrate the efficacy of the proposed FTC scheme. In this Chapter the aircraft operates in

an ‘up and away’ flight envelope [50]. A series of 3o FPA and 10m/secVtas commands are given to the

controller, in order to ensure the aircraft covers the entire flight envelope.

In [50] only elevator failure (lock and float) are considered. As compared to [50], the FTC scheme pro-

posed in this paper is also tested by considering a stabilizer failure (as well as elevator failure scenarios).

In [77] two separate controllers are designed, one for the nominal fault free situation and second if eleva-

tor fault occurs so that horizontal stabilizer can be employed in order to achieve FTC. However in case of

elevator failure the reallocation to the stabilizer seems ad-hoc and not formally formalized, where as the

proposed LPV ISM CA scheme in this Chapter, only requires thenominal fault free model based on the

virtual control whereas faults and failures are dealt with naturally through CA.

7.4.3.1 Fault free scenario

In Figures 7.1-7.2, the nominal fault free case is demonstrated, where it can be seen that good tracking

performance of FPA andVtas commands according to the control design requirements is achieved. The

aircraft undergoes a series of 3o FPA commands in order to increase the altitude of the aircraft (from

7000 m to 12222 m) and the speed of the aircraft is increased from 150 m/sec to 230 m/sec in steps of

10 m/sec to go through the entire flight envelope.

7.4.3.2 Elevator Lock in place/jam failure

In Figure 7.4 an elevator jam failure (where the elevator jams and stays fixed at some offset position)

occurs during the (climb) first FPA command. To counteract this failure, the proposed FTC scheme

demands more from the horizontal stabilizer and engine thrust settings without degrading the tracking

performance as compared to the nominal as can be seen in Figure 7.3. The sliding motion is maintained

in the entire system response even in the presence of elevator failure (Figure 7.4).



CHAPTER 7. LINEAR PARAMETER VARYING FTC SCHEME USING INTEGRAL
SLIDING MODES 152

7.4.3.3 Elevator float failure

An elevator float failure is considered in Figure 7.6. In order to simulate this failure, at the time of failure,

the elevator control signal is replaced with the angle of attack [50], in this way the elevator does not

generate the required moment. During the failure when the elevator follows the angle of attack aircraft

state, the horizontal stabilizer deflects in the positive direction by 2.8o to counteract the failure. In the

elevator float failure, the effectiveness of the scheme can be seen in Figure 7.5. Both elevator jam and

float failures are set to occur during the first FPA command as in [50]. In [50] only elevator failure is

considered.

7.4.3.4 Horizontal Stabilizer Lock in place/jam failure

In Figure 7.8 horizontal stabilizer jam failure is demonstrated. To tolerate this failure, the elevator and

engine thrust are manipulated by the control allocation scheme to cope with this situation, to maintain the

closed-loop performance similar to the nominal one (Figure7.7). The sliding motion was not destroyed

by the failure which shows the efficacy of the FTC scheme against the actuator failure (Figure 7.8).

7.4.3.5 Horizontal Stabilizer hardover/runaway failure

Another hard type of failure which is tested by using the proposed scheme is a hardover/runaway failure,

where the horizontal stabilizer runaways to its maximum saturation limit of 3o with its maximum rate

limit and then jams at that position as can be seen in Figure 7.10. The control allocation scheme exploits

the available redundancy in an efficient way, and engages theelevator actively together with the engine

thrust to maintain the desired performance same as nominal one as can be seen in Figure 7.9. Sliding is

maintained in the entire system response which means the closed-loop stability is guaranteed in spite of

runaway failure.
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Figure 7.1: nominal scenario: System States
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Figure 7.2: nominal scenario: actuators deflection
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Figure 7.3: Elevator jam failure: System States

0 200 400 600 800
0.1

0.2

0.3

0.4

0.5

0.6

δ e (d
eg

)

0 200 400 600 800
0.5

1

1.5

2

2.5

δ s (d
eg

)

0 200 400 600 800
4.2291

4.2291

4.2291

4.2292

4.2292

4.2292
x 10

4

Tn

Time (sec)
0 200 400 600 800

−1

−0.5

0

0.5

1

sw
itc

hi
ng

 fu
nc

tio
n

Time (sec)

(elevator jam
failure)

Figure 7.4: Elevator jam failure: actuators deflection
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Figure 7.5: Elevator float failure: System States
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Figure 7.6: Elevator float failure: actuators deflection
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Figure 7.7: Stabilizer jam failure: System States
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Figure 7.8: Stabilizer jam failure: actuators deflection
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Figure 7.9: Stabilizer runaway failure: System States
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Figure 7.10: Stabilizer runaway failure: actuators deflection
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7.5 Conclusion

This Chapter proposed a Fault Tolerant Control scheme for Linear parameter varying systems. The in-

tegral sliding mode control was used to maintain nominal performance and robustness in the face of

actuator faults or failures. The virtual control signal, generated by the integral sliding mode control law

was translated into the physical actuator commands by usingthe control allocation scheme. The closed-

loop stability of the system throughout the entire flight envelope was guaranteed even in the event of a

total failure of a certain class of actuators provided redundancy is available in the system. The longitu-

dinal LPV model of a large transport aircraft which has previously been used in the FTC literature was

used to show the efficacy of the proposed scheme.

The coming Chapter considers the case where only the output measurements are available and relaxes the

requirement of early Chapters that full plant state variables are readily available for the controller design.

Also the early FTC schemes in this thesis assume that the information of actuator effectiveness level is

known to the control allocation for distributing the control signals among the actuators, but in the coming

Chapter this information is also assumed to be unknown. Thisrequires a totally different approach and is

explained in the next Chapter.



Chapter 8

An Output Integral Sliding Mode FTC

Scheme Using Control Allocation
A fault tolerant control scheme is proposed here for systemswhere only output information is available.

In this Chapter an assumption which is made in early Chaptersthat the state information is known and

available for the controller design isrelaxedand instead a case is considered where only measured outputs

are available. It is also considered that the knowledge of the actuator faults or failures is not available

from an FDI scheme. The ideas of integral sliding mode control are used to ensure robustness throughout

the entire response of the system, even in certain actuator fault or failure cases. This is accomplished by

integratingfixed control allocationwithin the ISM framework. Anunknown input observeris employed

in the proposed scheme to estimate the states. Simulation results on a benchmark civil aircraft model

show good tracking of the commanded signals.

8.1 Introduction

In most physical systems, not all system states are measurable and therefore output feedback schemes are

more desirable. This also applies for FTC systems. The earlywork for example [6], [106] and [62] the

combination of traditional SMC with CA for fault tolerant control has been previously explored but in all

this work it was assumed that the system states are known and that state feedback control schemes could

be employed.

The main contribution of this Chapter is to relax the assumption associated with the early Chapters that

state information is known, and as compared to the above mentioned papers consider instead the situation

159
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where only measured outputs are available. A full order linear unknown input observer is employed to

estimate the system states used in the underlying virtual controller. In this Chapter no attempt is made

to estimate the actuator faults or failures (using an FDI scheme), instead, the robustness properties of

the UIO coupled with the ISM are relied upon. As compared to the early schemes in this thesis, a fixed

control allocation scheme (which does not require actuators effectiveness levelW(t)) is used to translate

the virtual control signals into physical actuator demands. An LMI synthesis procedure is proposed in

order to synthesize the observer gains and the controller parameters and a rigorous closed-loop stability

analysis is carried out to ensure the stability of the sliding motion in the face of actuator faults and certain

failures, provided that redundancy is available in the system. A civil aircraft benchmark model is used to

investigate the feasibility of the proposed scheme.

8.2 Problem Formulation

To model the actuator faults or failures same as in early Chapters, actuators effectiveness matrixW(t) is

used whereas component faults are modelled as parametric uncertainty in the system matrix. Consider an

uncertain system with actuator faults or failures and component faults written as

ẋ(t) = (A+Aδ)x(t)+Bu(t)−BKu(t) (8.1)

y(t) = Cx(t) (8.2)

whereA ∈ Rn×n is the state matrix,Aδ is parametric uncertainty in the system matrix arising fromim-

precisely known parameters and possible faults at a component level,B∈Rn×m is the input distribution

matrix andC ∈ Rp×n is the output distribution matrix wherep ≥ m. The diagonal weighting matrix

K = diag{k1, ..,km}, where the scalarsk1, ..,km, models the effectiveness level of the actuators. Ifki = 0,

the correspondingith actuator is fault free and is working perfectly, whereas if 1 > ki > 0, an actuator

fault is present. The valueki = 1 indicates theith actuator has completely failed.

Remark 8.1:The description of actuator fault or failure apparently looks different from the early Chap-

ters, but in structure is the same because the actuator effectiveness matrixW(t) without loss of generality

is defined to be having the structureW(t) := Im−K(t).

Here it is assumed that the outputs to be controlled are givenby yc(t) =Ccx(t) whereCc ∈Rl×n, where
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l < m. It follows that there is redundancy in the system in terms ofthe number of control inputs. This

will be exploited to achieve fault tolerance. Following thesimilar discussion as in Chapter 4, to resolve

the actuator redundancy, (by permuting the state) it is assumed the matrixB can be partitioned such that

B=

[
BT

1 BT
2

]T

(8.3)

whereB1 ∈R(n−l)×m andB2 ∈Rl×m is of rankl < m. By appropriate scaling of the lastl states, it can be

ensuredB2BT
2 = Il , and is assumed that‖B1‖ ≪ ‖B2‖ = 1, so thatB2 reflects that the dominant control

action contribution on the system acts in the lowerl channels of the system. Using (8.3), the system in

(8.1) can be written as

ẋ(t) = (A+Aδ)x(t)+




B1

B2


(I −K)︸ ︷︷ ︸

W

u(t) (8.4)

Notice, by definitionW := I −K is a diagonal matrix and its diagonal elementswi satisfy 0≤ wi ≤ 1.

The objective of this Chapter is to develop a control scheme,based on only output measurements, which

can maintain closed-loop stability in the face of a class of actuator faults and failures. The physical control

law u(t) is realized by a so-called ‘fixed’ control allocation schemeof the form

u(t) = BT
2 ν(t) (8.5)

whereν(t) ∈Rl is the ‘virtual control’ effort produced by the control law,which will be described in the

sequel. In equation (8.5) the fact thatB2BT
2 = Il is exploited.

Remark 8.2:The control allocation structure in (8.5) is different to the one employed in Chapter 4, which

requireW(t) (or at least a good estimate ofW(t) to be known). The fixed CA/ISM scheme developed in

this Chapter will be independent ofW(t) and will not require an FDI scheme.

By using (8.5), equation (8.4) can be written as

ẋ(t) = (A+Aδ)x(t)+




B1WBT
2

B2WBT
2




︸ ︷︷ ︸
Bw

ν(t) (8.6)
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In the nominal case, when there is no fault (W(t) = Im andAδ = 0), equation (8.6) simplifies to

ẋ(t) = Ax(t)+




B1BT
2

Il




︸ ︷︷ ︸
Bν

ν(t) (8.7)

becauseB2BT
2 = Il by design. The following assumption will be made and used in the remainder of the

Chapter.

A1: The pair(A,Bν) is controllable.

8.3 ISM Controller Design

In this section the integral sliding mode strategy will be adopted for synthesizing the virtual control signal

ν(t). The virtual control signalν(t) will use estimated states ˆx(t), obtained from an observer, so that only

outputs need to be measured. As a first design step, an output and state-estimate dependent integral

switching function is proposed of the form

σ(t) = Gy(t)−Gy(0)+
∫ t

0
Fx̂(τ)dτ (8.8)

whereG∈Rl×p andF ∈Rl×n are design matrices, selected to specify nominal closed-loop performance.

The formulation in (8.8) is similar to that given in equation(3.69) except here bothF andG depend on

the dimensionl rather than the number of control inputs. In order to create the state estimate ˆx(t), the

full-order unknown input observer UIO developed in [66] is used. The termBKu(t) in (8.1) is treated as

an unknown input since by assumptionK(t) is unknown. Consequently the distribution matrix associated

with the unknown input signal to be rejected is chosen asB. Necessary and sufficient conditions for a

linear UIO to exist for the system in (8.1)-(8.2), to provideinsensitivity with respect to the term BK(t)u(t),

are

A2: rank(CB) = rank(B) = m

A3: the triple(A,B,C) is minimum phase
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The structure of the full-order observer from [66] is,

ż(t) = A0z(t)+TBu(t)+Ly(t) (8.9)

x̂(t) = z(t)+Hy(t) (8.10)

wherex̂(t) is the estimated state, andA0,T,L andH are design matrices of appropriate dimension chosen

in order to decouple the unknown inputs. The ultimate objective of an UIO is to make the error signal

e(t) = x(t)− x̂(t) zero, despite the presence of unknown inputKu(t) so that the estimated states converge

to the true states asymptotically. In particular, the matrix H ∈Rn×p must be chosen so that

(I −HC)︸ ︷︷ ︸
T

B= 0 (8.11)

becauseB is an unknown input direction in this case. As argued in [66],AssumptionA2 is sufficient to

solve (8.11) andH := B((CB)TCB)−1(CB)T is an appropriate choice. After computingH, the matrix

A0 := A−HCA︸ ︷︷ ︸
Ah

−L1C (8.12)

can be defined, whereL1 ∈Rn×p is design freedom which is exploited to makeA0 Hurwitz. Finally

L2 := A0H (8.13)

and the gainL := L1+L2.

Remarks 8.3:The ISM scheme in this Chapter can tolerate the presence of stable invariant zeros associ-

ated with the triple(A,B,C) (AssumptionA3) as compared to [15], where it is argued that for the stable

sliding motion, it is assumed that the triple(A,B,C) does not have any invariant zeros i.e the pair (C,A)

is observable.



CHAPTER 8. AN OUTPUT INTEGRAL SLIDING MODE FTC SCHEME USING
CONTROL ALLOCATION 164

If e(t) = x(t)− x̂(t), using the plant equation in (8.1) and the UIO equations in (8.9)-(8.10), the error

dynamics can be written as

ė(t) = Ax(t)+Aδ x(t)+Bu(t)−BKu(t)−A0z(t)−TBu(t)−Ly(t)

−HC(Ax(t)+Aδx(t)+Bu(t)−BKu(t))

= (I −HC)Ax(t)+ (I −HC)Aδx(t)+ (I −HC)Bu(t)− (I −HC)BKu(t)

−A0z(t)−TBu(t)−Ly(t) (8.14)

where it can be seen that with the choice ofH := B((CB)TCB)−1(CB)T and using equation (8.11) the

error dynamics can be made invariant to unknown inputBKu(t). Furthermore using equations (8.10),

(8.13) and with the relationL = L1+L2, the error dynamics in (8.14) can be further simplified to yield

ė(t) = TAx(t)+TAδx(t)−A0(x̂(t)−Hy(t))−L1y(t)−L2y(t)

= TAx(t)+TAδx(t)−A0x̂(t)−L1Cx(t)

= (TA−L1C)︸ ︷︷ ︸
A0

x(t)+TAδ x(t)−A0x̂(t)

= A0e(t)+TAδ x(t) (8.15)

The choice ofG in (8.8) suggested in this Chapter is

G := B2
(
(CB)TCB

)−1
(CB)T (8.16)

where the existence of the inverse is guaranteed by assumption A2. As a result of this choice ofG,

genericallyGCBw(t) = B2W(t)BT
2 is symmetric. The symmetry is important and simplifies much of the

subsequent analysis and avoids the introduction of conservatism. Also nominally, when there are no faults

andW(t) = I , from the special properties of the matrixB2, it follows that

GCBw(t)|W=I = B2BT
2 = I

This means, nominally,G has the pseudo inverse properties which [28] argue as explained in Chapter 3

are optimal from the point of view of minimizing the impact ofunmatched uncertainties on the closed
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loop dynamics.

Suppose a control law can be designed to force sliding motionfor all time. The equivalent control

signalνeq(t) necessary to maintain sliding is obtained from equatingσ̇ = 0. The derivative ofσ(t) in

equation (8.8) is

σ̇(t) = Gẏ(t)+Fx̂(t) (8.17)

then substituting from equation (8.6) and equatingσ̇(t) = 0 yields

νeq(t) =−(GCBw)
−1(Fx̂(t)+GC(A+Aδ)x(t)

)
(8.18)

under the assumption that det(GCBw) 6= 0. With the choice ofG in (8.16)GCBw = B2WBT
2 , and (8.18)

becomes

νeq(t) =−(B2WBT
2 )

−1(Fx̂(t)+GC(A+Aδ)x(t)
)

(8.19)

Substituting (8.19) into (8.6) the sliding dynamics are given by

ẋ(t)=(A+Aδ)x(t)−Bm
(
Fx̂(t)+GC(A+Aδ)x(t)

)
(8.20)

where

Bm :=




B1WBT
2 (B2WBT

2 )
−1

Il




Adding and subtracting the termBν
(
Fx̂(t)+GC(A+Aδ )x(t)

)
to the right hand side of (8.20) and ex-

ploiting the fact thate(t) := x(t)− x̂(t), the sliding dynamics in (8.20) can be written as

ẋ(t)= (A+Aδ )x(t)−Bν
(
Fx̂(t)+GC(A+Aδ)x(t)

)
+(Bν −Bm)

(
Fx̂(t)+GC(A+Aδ)x(t)

)

= (A−BνF−BνGCA)x(t)+Aδ x(t)+BνFe(t)−BνGCAδ x(t)

+B̃Φ(t)
(
Fx(t)−Fe(t)+GC(A+Aδ )x(t)

)

=(A−BνF−BνGCA)x(t)+ (I −BνGC)Aδ x(t)+BνFe(t)

+B̃Φ(t)(GCA+F)x(t)−B̃Φ(t)Fe(t)+B̃Φ(t)GCAδ x(t) (8.21)
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where

B̃ :=




In−l

0


 (8.22)

and

Φ(t) = B1BT
2 −B1WBT

2 (B2WBT
2 )

−1

︸ ︷︷ ︸
ψ(t)

(8.23)

Combining equations (8.15) and (8.21), the closed-loop system dynamics can be written as




ė(t)

ẋ(t)


=




A0 0

BνF A−BνF −BνGCA







e(t)

x(t)


+Ba∆Ca




e(t)

x(t)







ė(t)

ẋ(t)


=




A0 0

BνF Ac−BνF




︸ ︷︷ ︸
Aa




e(t)

x(t)




︸ ︷︷ ︸
xa

+Ba∆Ca




e(t)

x(t)


 (8.24)

where

Ac := (I −BνGC)A (8.25)

Ba :=




(I −HC) 0 0

(I −BνGC) B̃ B̃


 (8.26)

Ca :=




0 I

−F GCA+F

0 I




(8.27)

and the uncertainty term∆(t) is

∆(t) := diag

[
Aδ Φ ΦGCAδ

]
(8.28)

It is convenient to analyze (8.24) in the(e, x̂) coordinates. Define accordingly




e(t)

x̂(t)




︸ ︷︷ ︸
x̂a

=




I 0

−I I




︸ ︷︷ ︸
T̃




e(t)

x(t)


 (8.29)
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which follows

Ãa := T̃AaT̃−1 =




A0 0

Ac−A0 Ac−BνF


 (8.30)

B̃a := T̃Ba =




(I −HC) 0 0

HC−BνGC B̃ B̃


 (8.31)

C̃a := CaT̃−1 =




I I

GCA GCA+F

I I




(8.32)

then in the new(e, x̂) coordinates, equation (8.24) can be written as

˙̂xa(t) = Ãax̂a(t)+ B̃a∆C̃ax̂a(t) (8.33)

Now in order to ensure that the termΦ(t) in (8.23) is bounded, note thatΦ(t) = B1BT
2 −ψ(t) andψ(t) =

B1B†,W(t)
2 whereB†,W(t)

2 is a weighted right pseudo inverse ofB2. Then by using arguments similar to

those as given in Chapter 4 as proved in [111] there exists a scalarγ0 such that

‖B†,W(t)
2 ‖ := ‖W(t)BT

2 (B2W(t)BT
2 )

−1‖< γ0 (8.34)

for all combinations of(w1(t), ...,wm(t)) such that det(B2W(t)BT
2 ) 6= 0. Therefore‖ψ(t)‖ ≤ γ1γ0 and

hence

‖Φ(t)‖ ≤ γ1(1+ γ0) (8.35)

whereγ1 = ‖B1‖, which is assumed to be small.

A4: Assume that the parametric uncertaintyAδ in the system matrixA is bounded and therefore since

Φ(t) is bounded, it follows

‖∆‖< γa (8.36)

for some positive scalarγa.
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8.3.1 Closed-loop Stability Analysis

In the nominal case, (i.e. whenW(t) = I , Aδ = 0 and∆(t) = 0), equation (8.33) simplifies tô̇xa(t) =

Ãax̂a(t). From (8.30) it is clear the eigenvalues ofÃa are given by the union of the eigenvalues ofA0 and

Ac−BνF. Both these matrices can be made Hurwitz by choice of the design freedom matricesL1 from

(8.12) andF respectively. Consequently, by design,Ãa can be made Hurwitz, and hence nominally the

closed loop system is stable. However for the fault or failure cases, stability needs to be proven. Define

γ2 = ‖G̃a(s)‖∞ (8.37)

where

G̃a(s) := C̃a(sI− Ãa)
−1B̃a (8.38)

Proposition 8.1: In fault or failure conditions, for any combination of(w1(t), ...,wm(t)) such that

det(B2WBT
2 ) 6= 0, the closed loop system in (8.33) will be stable if:

γ2γa < 1 (8.39)

Proof. In order to establish closed-loop stability, the system defined in (8.33) can also be written as

˙̂xa(t) = Ãax̂a(t)+ B̃aũa(t) (8.40)

ỹa(t) = C̃ax̂a(t) (8.41)

whereũa(t) := ∆(t) ỹa(t). In this form, equation (8.33) is the feedback interconnection of the known

linear systemG̃a(s), and the bounded uncertain gain∆(t). According to the small gain theorem (Ap-

pendix B.1.2), the feedback interconnection ofG̃a(s) and∆(t) will be stable if (8.39) is satisfied.

Remark 8.4:By hypothesis,γ1 = ‖B1‖ is assumed to be small. Basically the size‖B1‖ has a significant

impact on the norm of the nonlinearity in the small gain feedback loop, and so if‖B1‖ is small, the gain

of the nonlinearity is small, and there is a less stringent requirement on the magnitude of theH∞ norm

of the linear part. Furthermore ifAδ = 0, then‖∆‖ −→ 0 as‖B1‖ −→ 0 andProposition8.1 is trivially

satisfied.
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8.3.2 LMI Synthesis

In this section the observer gainL1 and the controller gainF are synthesized, so that stability condition

(8.39) is satisfied. For the triple(Ãa, B̃a,C̃a), from the Bounded Real Lemma (BRL)‖G̃a(s)‖∞ < γ2 if and

only if there exists a s.p.d matrixX ∈ IR2n×2n such that




ÃaX+XÃT
a B̃a XC̃T

a

B̃T
a −γ2

2 I 0

C̃aX 0 −I



< 0 (8.42)

Here it is assumed thatX = diag(X1,X2) where the two sub-blocksX1,X2 ∈ IRn×n are s.p.d. With this

assumption

C̃aX =




X1 X2

GCAX1 GCAX2+Y

X1 X2




(8.43)

whereY := FX2. The top left sub-block in (8.42)

ÃaX+XÃT
a =




A0X1+X1AT
0 X1AT

c −X1AT
0

AcX1−A0X1 Θ


 (8.44)

whereΘ = AcX2+X2AT
c −BνY−YTBT

ν . Also writeA0 = Ah−L1C whereAh is from (8.12). To create a

convex representation, define the observer gain

L1 := βBE (8.45)

whereβ is a positive scalar andE ∈ IRm×p is chosen so that(Ah,B,EC) is minimum phase. This is

possible if(A,B,C) is minimum phase (Assumption3). Then as argued in [42] it is possible to find an

s.p.d matrixP which has a structureP = NTdiag(P1,P2)N such thatPB= (EC)T, whereN ∈ IRn×n is

invertible (and depends onE) and the s.p.d. matricesP1 ∈ IR(n−m)×(n−m),P2 ∈ IRm×m. The matrixN is

associated with a change of coordinates to force the triple(Ah,B,EC) into the canonical form proposed
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in [42]. DefineX11 = P−1
1 andX12 = P−1

2 . It follows thatL1C= βBEC= βBBTP and so if

X1 := P−1 = N−1diag(X11,X12)(N
−1)T > 0 (8.46)

thenL1CX1 = βBBT andA0X1 = AhX1− βBBT. It follows that the matrix inequality in (8.42) is affine

with respect to the decision variablesX11,X12,X2,β ,Y and so the synthesis problem is convex.

For the nominal system in (8.7), (i.e. whenW(t) = I andAδ = 0), the matrixF must stabilize(A−BνF).

Since(A,Bν) is assumed to be controllable (Assumption1), an LQR formulation will be adopted where

F is selected to minimize

J =
∫ ∞

0
(xTQx+νTRν)dt

whereQ andR are symmetric positive definite design matrices. This problem can be posed as an LMI

optimization:

Minimize trace(X−1
2 ) subject to




AX2+X2AT −BνY−YTBT
ν (Q1X2−R1Y)T

Q1X2−R1Y −I


< 0 (8.47)

whereQ1 = [(Q
1
2 )T 0T

l×n]
T andR1 = [0T

n×l (R
1
2 )T ]T . For a givenL2-gainγ2, the overall optimization

problem proposed in convex form becomes:

Minimize trace(Z) with respect to the decision variablesX11,X12,X2,β ,Y subject to




−Z In

In −X2


< 0 (8.48)

together with (8.42), (8.47), (8.46) and 8.48. The matrixZ is a slack variable which satisfiesZ> X−1
2 and

thereforetrace(Z)≥ trace(X−1
2 ). Finally the controller and observer gains can be recovered asF =YX−1

2

andL1 = βBE.
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8.3.3 ISM Control Laws

A control law will be defined to ensure sliding is maintained from t = 0. Define the virtual control law in

(8.7) as

ν(t) = νl (t)+νn(t) (8.49)

where the linear part, responsible for the nominal performance of the system is

νl (t) =−Fx̂(t)−GCAx̂(t) (8.50)

and the nonlinear part is defined as

νn(t) =−ρ
σ(t)
‖σ(t)‖ for σ(t) 6= 0 (8.51)

whereρ is a modulation gain and is defined inProposition8.2.

Also define the time varying scalarε(t) as the solution to

ε̇(t) =−m0ε(t)+m1‖x̂(t)‖ (8.52)

wherem0 andm1 are positive scalars to be defined in the sequel and letV0 = eTP0e,1 whereP0 is the s.p.d

matrix obtained from solvingP0A0+A0
TP0 =−1. Further suppose that‖Aδ‖ is sufficiently small so that

P0 also satisfies

2‖P0‖‖(I −HC)Aδ‖< 1−µo where µo > 0 (8.53)

whereµo > 0. Then the following Proposition can be proved.

Proposition 8.2:Define the modulation gain from (8.51) as

ρ(t) =
‖GCAδ‖‖x̂(t)‖+‖νl‖+ ε(t)(‖GCA‖+‖GCAδ‖)/

√
λmin(P0)+η

(1−λ0)
(8.54)

whereη is a positive design scalar, and assume the fault tuple(k1, . . . ,km) belongs to a set

D = {(k1, ...,km) : λmax(B2KBT
2 )< λ0 < 1}

1Using the Rayleigh-Ritz theoremV0 = eTP0e≤ λmax{P0}‖e‖2.
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Also assume that by choice of ˆx(0) and ε(0) the state estimation error at t =0, writtene(0), satisfies
√

e(0)TP0e(0) < ε(0). Then the integral sliding mode control law defined in (8.50)-(8.51), guarantees

that the system trajectories remain on the sliding surface.

Proof. Equation (8.15) can be written as

ė(t) = (A0+(I −HC)Aδ)e(t)+ (I −HC)Aδ x̂(t) (8.55)

then the derivative of the positive definite functionV0 = eTP0e is given by

V̇0 = e(P0A0+AT
0 P0)e

T +2eTP0(I −HC)Aδe+2eTP0(I −HC)Aδ x̂

≤ −‖e‖2+2‖e‖2‖P0‖‖(I −HC)Aδ‖+2‖e‖‖P0‖‖(I −HC)Aδ‖‖x̂‖

and therefore since by assumption 2‖P0‖‖(I −HC)Aδ‖< 1−µowhereµo > 0 it follows

V̇0 ≤ −µ0‖e‖2+(1−µ0)‖x̂‖‖e‖

≤ − µ0

λmax(P0)
V0+

1−µ0√
λmax(P0)

‖x̂‖
√

V0 (8.56)

where the Rayleigh-Ritz theorem has been used. DefineṼ =
√

V0, then (8.56) implies

˙̃V ≤− µ0

2λmax(P0)
Ṽ +

1−µ0

2
√

λmax(P0)
‖x̂‖ (8.57)

which for notational convenience can also be further written as

˙̃V ≤−m0Ṽ +m1‖x̂‖ (8.58)

where the positive scalarsm0, andm1 are appropriately defined. Comparing (8.58) and (8.52) ifε(0) >

Ṽ(0), then it can be shown thatε(t)> Ṽ(t) and consequently

ε(t)≥
√

λmin(P0)‖e(t)‖ for t ≥ 0 (8.59)

Now it will be shown that the control law defined in (8.49) satisfies the standard reachability condition.
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Using the relationshipK = I −W, equation (8.17) can be written as

σ̇(t) = GC(A+Aδ )x(t)+(B2WBT
2 )ν(t)+Fx̂(t)

= GC(A+Aδ )x(t)+ν(t)−(I−B2WBT
2 )ν(t)+Fx̂(t)

= GC(A+Aδ )x(t)+ν(t)−(B2(I−W)BT
2 )ν(t)+Fx̂(t)

= GC(A+Aδ )x(t)+ν(t)−B2KBT
2 ν(t)+Fx̂(t) (8.60)

Substituting the control law (8.49)-(8.51), into equation(8.60) and exploiting the fact thate(t) = x(t)−

x̂(t) yields

σ̇(t) = GCAδ x̂(t)+GCAδ e(t)+GCAe(t)− (B2KBT
2 )(νl +νn)−ρ

σ(t)
‖σ(t)‖

Now consider the time derivative of the candidate Lyapunov functionV = 1
2σTσ . From (8.61) the time

derivative

V̇ = σT
(
GCAδ x̂(t)+GCAδ e(t)+GCAe(t)− (B2KBT

2 )(νl +νn)−ρ
σ(t)
‖σ(t)‖

)

≤ ‖σ‖
(
‖GCAδ‖‖x̂‖+(‖GCAδ‖+‖GCA‖)‖e‖+‖B2KBT

2‖‖νl‖−ρ(1−‖B2KBT
2‖)
)

≤ ‖σ‖
(
‖GCAδ‖‖x̂‖+(‖GCAδ‖+‖GCA‖)‖e‖+‖B2KBT

2‖‖νl‖−ρ(1−λ0)
)

(8.61)

for a fault set(k1, . . .km) ∈ D . Then from the definition ofρ(t) in (8.54) and using the fact thatε(t) ≥
√

λmin(P0)‖e(t)‖, the inequality (8.61) can be written as

V̇ ≤−η‖σ‖=−η
√

2V (8.62)

which is a standard reachability condition and sufficient toguarantee that a sliding motion is maintained

for all subsequent time.

Finally the physical control lawu(t) is obtained by substituting equations (8.49)-(8.51) into (8.5) to

obtain

u(t) = BT
2 (−Fx̂(t)−GCAx̂(t)−ρ

σ(t)
‖σ(t)‖) for σ(t) 6= 0 (8.63)
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8.4 Simulations

The civil aircraft benchmark model as discussed in AppendixA.1 will be used in simulations to demon-

strate the effectiveness, and fault tolerant nature of the proposed scheme. The simulation scenario which

is considered in this section is that the aircraft undergoesactuator fault or failure during the climb from a

straight and level flight. This scenario can be realized by tracking a suitable flight path angle (FPA) while

keeping the speed at a constant level. To design the linear component of the controller in (8.50), the flight

operating condition considered here is the same as in Chapter 4 and Chapter 5. The linearized state space

model is given in Chapter 5 and is reproduced here as

Ap =




−0.5137 0.0004 −0.5831 0

0 −0.0166 1.7171 −9.8046

1.0064 −0.0021 −0.6284 0

1 0 0 0




Bp =




−0.6228 −1.3578 0.0599

0 −0.1756 5.7071

−0.0352 −0.0819 −0.0085

0 0 0




The system states arex(t) = (q,Vtas,α ,θ)T whereq is the pitch rate (rad/sec),Vtas is the true airspeed

(m/sec),α is the angle of attack (rad) andθ is the pitch angle (rad). In the simulations, only measured

system outputs

y=




1 0 0 0

0 1 0 0

0 0 0 1




︸ ︷︷ ︸
Cp




q

Vtas

α

θ




are available for use in the control law. The available control surfaces areδlong = [δe,δs,δepr]
T which

represent elevator deflection (rad), horizontal stabilizer deflection (rad) and aggregated longitudinal EPR

(i.e. the four individual engine pressure ratios (EPRs) aggregated to produce one control input). In the

simulations a series of 3-deg flight path angle (FPA) commands are given to increase the altitude of the

aircraft, while the true airspeedVtas is held constant by using a separate inner-loop Proportional Integral

(PI) controller which creates an auto-throttle manipulating EPR. Throughout the simulationsit is assumed

that the engines are fault free. By splitting the input distribution matrix into matrices which are associated
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with [δe,δs]
T andδepr, the linear model can be written as

ẋp(t) = Apx(t)+Bsu1+Beδepr (8.64)

y = Cpx(t) (8.65)

whereu1 = [δe,δs]
T and matricesBs ∈ R4×2 andBe ∈ R4×1. Define a new state associated with the PI

controller forVtas as

ẋr(t) = r1(t)−C1xp(t) (8.66)

wherer1(t) is the reference signal forVtas tracking andC1 =

[
0 1 0 0

]
. The inner loop PI control

is given by

δepr = Kp(r1(t)−C1x(t))+Kixr(t)

where the PI gains are chosen asKp = 0.6, andKi = 0.9. Now augmenting the plant in (8.64) withxr(t)

yields 


ẋr

ẋp


=




0 −C1

BeKi (Ap−BeKpC1)




︸ ︷︷ ︸
A




xr

xp




︸ ︷︷ ︸
x(t)

+




0

Bs




︸ ︷︷ ︸
B

u1+




I

BeKp




︸ ︷︷ ︸
Br

r1 (8.67)

Also it is assumed thatxr(t) is available for the controller design, thereforey = Cx(t) whereC =

diag{1,Cp}. In order to introduce the steady state tracking for the controlled outputyc(t), a feedfor-

ward termLrr2(t) is introduced where

Lr := (Cc(A−BνF −BνGCA)−1Bν)
−1 (8.68)

and the exogenous constant signalr2 is the reference to be tracked (by the FPA). From Assumption 1,

F can always be chosen to ensure that(A−BνF −BνGCA) is Hurwitz and therefore det(A−BνF −

BνGCA) 6= 0. Consequently the inverse in (8.68) is well defined. In the absence of faults and uncertainty

it is easy to see the linear control lawu(t) = −Fx̂(t)+Lr r2−GCAx̂ ensures that at steady stateyc = r2.

To accommodate this tracking requirement, the control law in (8.63) must be changed to

u(t) = BT
2 (−Fx̂(t)+Lrr2(t)−GCAx̂(t)−ρ

σ(t)
‖σ(t)‖ ) for σ(t) 6= 0 (8.69)



CHAPTER 8. AN OUTPUT INTEGRAL SLIDING MODE FTC SCHEME USING
CONTROL ALLOCATION 176

and

σ(t) = Gy(t)−Gy(0)+
∫ t

0
(Fx̂(τ)−Lrr2(τ))dτ (8.70)

The fault tolerant control will now be designed based on the system in (8.67) governed by the triple

(A,B,C) using only the elevator and stabilizer as inputs. A further scaling of theB is required to ensure

thatB2BT
2 = Il (where in this examplel = 1). It can be verified thatrank(CB) = rank(B) = 2, and therefore

AssumptionA2 holds. In this aircraft system(A,B,C) has one stable invariant zero. Since the objective

is to track an FPA command, the controlled output isyc(t) =Ccx(t), whereCc =

[
0 0 0 −1 1

]
.

The gainG in equation (8.16) isG=

[
0 0.6694 0 0

]
. In addition to actuator faults or failures, to

introduce potential faults which cause changes to the aerodynamics of the aircraft, a 10% change in the

aerodynamic coefficients (due to airframe damage) is considered in the simulation specifically:

Aδ =




0 0 0 0 0

0 0.0514 0 0.0583 0

0 0 0.0017 0 0

0 0.1006 0 0.0628 0

0 0 0 0 0




Choosing

E =




−12.4139 −1.6056 12.4139 −1.6056

5.6942 0 −5.6942 0




givesECB= I , and(Ah,B,EC) is minimum phase with stable zeros at{−1.0000,−0.6451,−1.0000}.

The corresponding value of the observer gainL1 is

BE=




0 0 0 0

0 1 0 1

−1 0 1 0

−0.0290 0.0566 0.0290 0.0566

0 0 0 0



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andA0 = (Ah−βBEC) is then stable for anyβ > 0. ChoosingQ= diag(0.02,0.5,0.2,0.1,10) andR= 1

in (8.47) the feedback gain matrixF, obtained by solving the LMIs (8.42), (8.47), (8.48) is given by

F =

[
−0.8142 9.9401 −2.2095 −0.3356 8.8802

]

In the simulations, it is assumed that the engines are fault free. Based on this assumption, using a nu-

merical search, it can be verified using (8.28) that the valueof γa in (8.36) isγa = 0.1597. To satisfy the

closed-loop stability condition in (8.39), the value ofγ2 must satisfyγ2 <
1

0.1597 = 6.2621. This has been

satisfied through the designed parametersL1 andF.

8.4.1 Simulation Results

In this section the performance of the benchmark civil aircraft model is demonstrated by considering the

potential failures in the actuators. In the simulations, the discontinuity associated with the control signal

in (8.51), is smoothed using a fractional approximationσ‖σ‖+δ , where the value of the positive scalarδ

is chosen asδ = 0.01. The value of the modulation gain is chosen here asρ = 2. In the simulations

the aircraft undergoes a series of 3-deg FPA commands issuedin two intervals between (25-50 sec)

and between (100-125 sec) in order to increase the altitude of the aircraft, while the true airspeedVtas

is kept constant as shown in Figure 8.1. The initial conditions for the plant and observer are taken as

x0 = [0,0,0,0]T , andx0obs = [0,0,0,0,0.5(π/180)]T respectively.

8.4.1.1 Nominal Vs perturbed system matrix

In Figures 8.1-8.2 good tracking performance of the commanded signals is achieved nominally and while

perturbing matrixA with Aδ matrix (a 10% change in the aerodynamic coefficients (due to possible

airframe damage). The system states and the actuator deflections in both cases are almost overlapping,

which shown the robustness of the proposed scheme against the parameter variations.

8.4.1.2 Elevator Lock in place/jam failure

In Figure 8.4 a failure is considered, where the elevator jams at some offset position. To maintain the

performance close to the nominal, the proposed FTC scheme invokes the horizontal stabilizer to counter-
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act the failure, while maintaining the sliding motion throughout the entire system response (Figure 8.5).

There is no performance degradation while comparing the nominal performance (Figure 8.1) with the

performance while in the failure (Figure 8.4). In Figure 8.3, it can be seen that the observer output error

quickly converges to zero despite the failure scenario.

8.4.1.3 Horizontal stabilizer Hardover/runaway failure

Figure 8.7 demonstrate the situation when the horizontal stabilizer runs-away to a maximum position

limit of 3-deg. Due to the availability of the redundant actuator (i.e. elevator) the proposed scheme can

still maintain good tracking performance close to nominal as seen in Figure 8.6. The observer output

error does not influence with the failure and converges to zero quickly.
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8.5 Conclusion

In this Chapter, a new fault tolerant control scheme was proposed which assumes only output information

is available and no information about the actuator faults orfailures is available. To estimate the system

states, a linear unknown input observer is employed. The estimated states are used in the virtual con-

trol law to produce signals which are then translated into the physical control signals (associated with

the actuators) by using a fixed control allocation scheme. The closed-loop stability analysis allows for

parameter uncertainty in the system matrix (due to airframedamage for example) in addition to actu-

ator faults/failures. A convex representation of the synthesis problem is established in order to prove

closed-loop stability by synthesizing appropriate observer and controller gains. The simulation results on

a benchmark aircraft model show fast convergence of the observer output error, and demonstrate good

FTC features of the proposed scheme.



Chapter 9

Conclusions and Future work

This Chapter makes some concluding remarks and then ideas for the extension of this research work will

be suggested.

9.1 Conclusions

The summary of the thesis is explained as follow: Chapter 4, considers the novel combination of integral

sliding mode ideas and control allocation in the framework of FTC to address the issues discussed in

Section 3.9: namely that sliding mode schemes cannot directly handle complete actuator failures. This

unique combination allows redundant actuators to deal withactuator faults or failures by enforcing a slid-

ing mode during the entire system response without the need to reconfigure the underlying control law.

The fault tolerant control scheme uses actuators effectiveness levels provided by a FDI scheme to redis-

tribute the control effort among the healthy actuators. TheFTC scheme allows the nominal performance

of the system to be considered in the design of the switching function and maintains the performance

close to the nominal provided healthy actuators are available. Due to possible uncertainty in estimating

the actual actuators effectiveness levels, a bound on the estimation error (i.e. the maximum estimation

error which can be coped with) is considered in the rigorous closed-loop stability analysis and an LMI

optimization synthesis procedure is employed to compute the parameters associated with the control law

such that the closed-loop stability condition is met. The ideas in Chapter 4 are then applied and tested

in Chapter 5 on the nonlinear benchmark model, controlling both the longitudinal and the lateral axis

183
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system of the aircraft.

Chapter 6 considers a novel FTC scheme which consider ana posteriapproach building on an existing

state feedback controller designed using only the primary actuators. This approach is quite interesting

from an industry viewpoint because it can be retrofitted to almost any existing state feedback control

scheme to induce fault tolerance without the need to remove or alter existing control loops. More specifi-

cally in the fault free case, the augmented FTC scheme behaves exactly as the existing feedback controller

specified using any design paradigm. The FTC scheme uses the estimated effectiveness level of the actu-

ators to distribute the control signals. In fault or failurecases in the primary actuators, the FTC scheme

activates the secondary actuators to maintain nominal performance. As in Chapter 4 a rigorous closed-

loop stability analysis is carried out in the case of faults or failures, taking into account a bound on error

estimation . The integral sliding mode FTC scheme is tested by applying it on the nonlinear bench-

mark model FTLAB747 software environment where the actuator saturation and rate limits are already

embedded by considering severe and even multiple failures on the primary actuators.

Chapter 7 considers a novel fault tolerant control scheme incorporating the ideas of integral sliding modes

and control allocation for linear parameter varying systems. This is appealing for nonlinear systems which

can be modelled as time varying systems with state dependentparameters. The linear parameter varying

FTC scheme allows investigation of the behaviour of the system in the entire operating regime. A single

control law is used in the entire operating envelope and the controller automatically schedules according

to the varying parameters to maintain the closed-loop stability. The FTC scheme has the potential to

mitigate the effects of actuator faults or failures. This was demonstrated by applying it to the benchmark

linear parameter varying model of the large civil aircraft.The LMI synthesis procedure is adopted from

Chapter 4 and is extended for the polytopic system representation to obtain the controller parameters

which satisfy the stability condition.

Chapter 8 considers an FTC scheme for systems where only the measured plant outputs are available and

furthermore assumes that information about the actuator faults or failures is not available. To be able to

employ the LMI synthesis procedure proposed in Chapter 4, and to address the situation that information

about the actuator faults or failures is unknown to the controller, an unknown input observer from the

literature is employed to estimate the plant states. To dealwith complete loss of actuator effectiveness a

direct control allocation scheme, which is quite differentform the control allocation schemes proposed
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in early Chapters (which require information of actuator effectiveness), is integrated with integral sliding

modes. The controller and the observer gains are synthesized by using an LMI synthesis procedure to

satisfy the closed-loop stability condition. The efficacy of the output feedback FTC scheme is tested

on a benchmark civil aircraft model where the component faults (possible airframe damage) are also

considered together with actuator faults or failures. Thisscheme highlights the fact that the combination

of integral sliding modes and direct control allocation canhandle the actuator faults or failures without

an FDI scheme.

9.2 Future Work

The integral sliding mode FTC schemes proposed in this thesis have only explored how to mitigate the

effects of actuator faults or failures. A potential extension of this research work is to look at the option of

using integral sliding modes to explore the effects of faults at the sensor level.

The scheme proposed in Chapter 7 extends the ideas of Chapter4 to linear parameter varying plants. In

Chapter 7, the theory developed suggests a controller whichis automatically scheduled with the varying

parameters, but in the simulations, for simplicity, a fixed state feedback controller is designed for the

entire flight envelope using the multi-model state feedbackLMI synthesis Toolbox. A fixed state feed-

back controller for the whole operating envelope may be bit conservative. The next step is to design

the controller, using the LMI synthesis procedure proposedin Chapter 7, and the performance can be

compared with the fixed design using the LMI synthesis Toolbox. Another direction can be to extend the

augmentation FTC scheme in Chapter 6 for linear parameter varying systems.

In Chapter 8 parametric uncertainty is considered in the system matrix arising from imprecisely known

parameters and possible faults at a component level, in addition to actuator faults or failures in the output

feedback framework. Component faults may also introduce changes to other matrices from the system

state space model. A potential extension of the approach in Chapter 8 will be to consider uncertainty in

the input distribution matrix, and to investigate the effect of this uncertainty.
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Appendix A

Benchmark model of Large Transport

Aircraft

A.1 Benchmark model FTLAB747 v6.5/v7.1 Release2.2

FTLAB 747 V6.5/7.1 software environment runs under Matlab/Simulink and was used as the basis for the

Group for Aeronautical Research and Technology in Europe Action Group (GARTEUR AG16) bench-

mark [39]. The purpose of the project AG-16 was to develop newand cutting edge FTC and FDI tech-

niques in Europe for the application to a civil aircraft. This software is an upgraded version of the

Delft University Aircraft Simulation and Analysis Tool, DASMAT, and Flight lab 747 FTLAB747 [86].

This high-fidelity nonlinear model contains 77 states and represents a ‘real world’ model of a B747-

100/200 aircraft. The model incorporates realistic actuators, sensors and aero-engine dynamics, where

all the control surfaces are modeled using the realistic position and rate limits. The upgraded version

FTLAB 747 V6.5/7.1 [109], provides the flexibility to be employed to manipulate the control surfaces

independently, which is beneficial to apply FTC schemes in case of faults or failures. The rigid body

states of the B747-100/200 aircraft for the longitudinal, lateral and directional axis are

x(t) = {p,q, r,Vtas,α ,β ,φ ,θ ,ψ ,he,xe,ye}T (A.1)

188
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which are determined from the 6-DOF equations. In equation A.1 the states for the longitudinal axis

(Figure A.1) arexlong = {q,Vtas,α ,θ ,he}T , which represent pitch rateq (rad/sec), true air speedVtas

(m/sec), angle of attackα (rad), pitch angleθ (rad) and altitudehe (m). On the other hand the states for

the lateral and directional axis (Figures A.2-A.3) arexlat = {p, r,β ,φ ,ψ}T , which represent roll ratep

(rad/sec), yaw rater (rad/sec), sideslipβ (rad), roll angleφ (rad) and yaw angleψ (rad). In equation (A.1),

the stateshe,xe,ye represent the geometric earth position, along the z-axis, x-axis and y-axis respectively.

The typical control surfaces for the longitudinal and lateral axis control are shown in Figure A.4. The

Figure A.1: Longitudinal axis states

Figure A.2: sideslip and yaw angle (Lateral-Directional Flying Qualities, vmihosting.com)

control surfaces which are typically used for the longitudinal axis control comprise 4 elevators (inner

and outer on each elevator), a horizontal stabilizer, 4 engines (two on each wing) thrust, which can be

controlled through Engine Pressure Ratio (EPR). For lateral axis control 4 ailerons (inner and outer on
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Figure A.3: roll angle and aircraft axis (Lateral-Directional Flying Qualities, vmihosting.com)

each wing), 12 spoilers (2 inner and 4 outer spoilers on each wing), 2 rudders (upper and lower), and

4 engine thrust (controlled through EPR) are used. For designing the linear part of the control law, the

Figure A.4: Primary and secondary control surfaces of a transport aircraft (adopted from [7])

linear state space model of the benchmark nonlinear model can be obtained at the trim point using the

FTLAB software. At the trim point, aircraft is in the steady state i.e. straight and level flight. In this

thesis longitudinal and lateral axis of the benchmark modelat different trim conditions are considered to

design the FTC schemes. For example in chapters 4 and 8 the simulations are based around an operating

condition of straight and level flight at 263,000 Kg, 92.6 m/strue airspeed, and at an altitude of 600m

based on 25.6% of maximum thrust and at a 20 deg flap position. The result is of 12 order linear model,

which can be divided into two six order models for longitudinal and lateral axis control. The first four

statesxlong = {q,Vtas,α ,θ}T and xlat = {p, r,β ,φ}T are used for the controller design. At this trim
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condition the state space matrices are:

Along =




−0.5137 0.0004 −0.5831 0

0 −0.0166 1.7171 −9.8046

1.0064 −0.0021 −0.6284 0

1.0000 0 0 0




(A.2)

Blong =




−0.6228 −1.3578 0.0082 0.0218 0.0218 0.0082

0 −0.1756 1.4268 1.4268 1.4268 1.4268

0.0352 −0.0819 0.0021 −0.0021 −0.0021 −0.0021

0 0 0 0 0 0




(A.3)

Alat =




−1.0579 0.1718 −1.6478 0.0004

0.1186 −0.2066 0.2767 −0.0019

0.1014 −0.9887 −0.0999 0.1055

1.0000 0.0893 0 0




(A.4)

Blat =




−0.0832 0.0832 −0.2285 0.2285 −0.2625 −0.0678 0.0678

−0.0154 0.0154 −0.0123 0.0123 −0.0180 −0.0052 0.0052

0 0 0 0 0.0017 0.0006 −0.0006

0 0 0 0 0 0 0

0.2625 0.1187 0.0246 0.0140 −0.0140 −0.0246

0.0180 −0.2478 0.1269 0.0724 −0.0724 −0.1269

−0.0017 0.0174 0.0005 0.0005 −0.0005 −0.0005

0 0 0 0 0 0




(A.5)

where the control surfaces for the longitudinal axis control are

δlong = {δe,δs,e1long,e2long,e3long,e4long}T
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which represent elevator deflection (rad) (4 elevators are aggregated to produce one control input), hori-

zontal stabilizer deflection (rad) and four longitudinal engines pressure ratios. For the lateral axis control

the control surfaces comprise

δlat = {δair ,δail ,δaor,δaol,sp1−4,sp5,sp8,sp9−12,δr ,e1lat ,e2lat ,e3lat ,e4lat}T

which represent aileron inner (right and left) deflection (rad), aileron outer (right and left) deflection (rad),

left wing spoilers deflections (rad) (sp1−4,sp5), right wing spoilers deflections (rad) (sp8,sp9−12), rudder

deflection (rad) (upper and lower rudders are aggregated to produce one control input) and four lateral

engine pressure ratios. The spoilerssp−6,sp−7 are ground spoilers and not used in the flight.

Further details of the B747-100/200 aircraft model can be found in [86], [39] and the references therein.



Appendix B

Closed loop stability and synthesis of

feedback gain

B.1 L2 gain and small gain theorem

B.1.1 L2 gain

In case of LTI systems theL2 gain can be calculated exactly, and to find out the way to calculate it

consider a LTI system

ẋ(t) = Ax(t)+Bu(t)

y(t) = Cx(t)+Du(t)

where it is assumed that matrixA is Hurwitz. The above system can be written asG(s) =C(sI−A)−1B+

D, then according to Theorem 6.4 [75], theL2 gain of the systemG(s) is supω∈R‖G( jω)‖2, which is

induced 2-norm of the systemG( jω) and is equal toσmax[G( jω)]. TheL2 gain of the system in time

domain is equal to theH∞ norm in the frequency domain [75], which means ifY( jω) = G( jω)U( jω),

then in the proof of Theorem 6.4 [75] it is shown that

‖y‖2
L2

≤ (sup
ω∈R

‖G( jω)‖2)
2‖u‖2

L2
(B.1)
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where‖u‖2
L2

=
∫ ∞

0 uT(t)u(t)dt.

B.1.2 Small gain theorem

The small gain theorem is a systematic approach to investigate the input-output stability of interconnected

dynamical systems [75]. To explain the small gain theorem, first the notion of finite gainL2 stable need

Figure B.1: Feedback interconnection of two systems (adopted from [75])

to be discussed. Suppose thate1 is the input to a systemH1 andy1 is the output, then the systemH1 will

be finite gainL2 stable if‖y1‖L2 ≤ γ2‖e1‖L2. Now consider the interconnection of two systems as shown

in Figure B.1, then according to the small gain theorem [75],with the assumption that the two systems

H1 andH2 are finite gainL2 stable, then the feedback connection will be finite gainL2 stable if

γ2γ1 < 1 (B.2)

whereγ2 and γ1 are the gains of the two systems. The proof of the small gain theorem can be found

in [75].

B.2 Matlab LMI multi-model state feedback synthesis

The state feedback gainF for the augmented system in equation (7.44) is obtained by using the Matlab

LMI multi-model state feedback synthesis code ‘msfsyn’ which performs mixedH2/H∞ criterion. To be
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able to use that code the plant needs to be written in the generalized form as given in [49],

ẋa(t) = Aa(ρ)xa(t)+Bdw+Bνaν(t) (B.3)

z2(t) = C2xa(t)+D22ν(t) (B.4)

z∞(t) = C1xa(t)+D11w+D12ν(t) (B.5)

The matricesAa(ρ) = Aa0 +∑7
i=1ρiAai andBνa are given in equation (7.45) andw is the exogenous signal

(disturbance). For the simulation example in chapter 7, theabove mentioned plant can be written in the

matrix form as:

P=




Aa(ρ) Bd Bνa

C2 D21 D22

C1 D11 D12



=




Aa(ρ) B̃ 0 Bνa

Q
1
2 0 0 0

0 0 0 R
1
2

0 0 0 I




(B.6)

The formulation in equation (B.6) is taken from [108], wherethe matrixB̃ is defined in equation (7.19) and

Q andR are symmetric positive definite matrices. The parameter vector ρ is obtained using the relation

[ρ1, ...,ρ7] := [ᾱ ,V̄tas,V̄tasᾱ ,V̄2
tas,V̄

2
tasᾱ ,V̄3

tas,V̄
4

tas] where each parameter of the vector has the minimum

and the maximum extremal values i.e.[ρ
i
,ρ i]. After getting the range of each parameter the parameter

dependent plant can be defined by using the command Matlab command ‘psys’.

Here the objective is to obtain the desiredH2 performance objectives while maintaining the closed-loop

transfer functionw to z∞ bellow some prescribed value ofγ , therefore while using the ‘msfsyn’ command

the optimization option

[
g 0 0 1

]
is used whereg is the value ofγ . The details of the ‘msfsyn’

code can be obtained from [49].

B.3 LMI equivalence of closed-loop stability analysis

To satisfy the stability condition ofTheorem 1in chapter 4, the closed-loop stability analysis is carried

out in an LMI framework in order to find a feedback gainF such that theH∞ norm of the transfer

functionG̃(s) = F(sI− Ã)−1B̃ is less than some predefined scalarγ i.e. ‖G̃(s)‖∞ < γ . Two constraints are

imposed on the design of feedback gainF which need to be satisfied simultaneously. Firstly to achieve
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the performance, an LQR formulation is used, and secondly, to ensure the design of anF to satisfy the

stability condition ofTheorem 1, a Bounded Real Lemma (BRL) formulation is used.

B.3.1 LMI Formulation of LQR

The design of the feedback gainF is based on the nominal system in (4.15). For the LMI formulation of

the LQR problem, consider the LTI system

ẋ(t) = Ax(t)+Bνν(t) (B.7)

z(t) = Q1x(t)+R1ν(t) (B.8)

whereQ1 and R1 are symmetric positive definite matrices. The LQR problem seeks the control law

ν(t) =−Fx(t) such that the output energy
∫ ∞

0 zTz is minimized. For the Lyapunov functionV(x) = xTPx

whereP> 0 is a Lyapunov matrix, the output energy ofz is minimal [21], if the performance index

J =

∫ ∞

0
(V̇(τ)+zTz)dτ ≤ 0 for all x andz (B.9)

Taking the time derivative of functionV(x) and substituting value of (B.7) into it gives

V̇ = xTP(Ax+Bνν)+ (Ax+Bνν)TPx

= xT(PA+ATP)x+xTPBνν +νTBT
ν Px

Substituting the value oḟV, and (B.8) into (B.9) gives

J =

∫ ∞

0
(xT(PA+ATP+QT

1 Q1)x+xTPBνν

+νTBT
ν Px+xTQT

1 R1ν +νTRT
1 Q1x+νTRT

1 R1ν)dτ (B.10)

Sinceν(t) =−Fx(t), (B.10) becomes

J =
∫ ∞

0
(xT (PA+ATP+QT

1 Q1−PBνF −FTBT
ν P−QT

1 R1F −FTRT
1 Q1+FTRT

1 R1F)︸ ︷︷ ︸
P̄

x)dτ (B.11)
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To fulfil the condition of (B.9), the matrix̄P should satisfy

PA+ATP+QT
1 Q1−PBνF −FTBT

ν P−QT
1 R1F −FTRT

1 Q1+FTRT
1 R1F < 0 (B.12)

Inequality (B.12), is clearly not convex [21], and cannot bewritten as an LMI representation. Define

X = P−1 then (B.12) is equivalent to

AX+XAT +XTQT
1 Q1X−BνFX−XTFTBT

ν −XTQT
1 R1FX−XTFTRT

1 Q1X+XTFTRT
1 R1FX < 0

(B.13)

With change of variableY = FX, whereY ∈Rl×n, the inequality (B.13) can be written as

AX+XAT +XTQT
1 Q1X−BνY−YTBT

ν −XTQT
1 R1Y−YTRT

1 Q1X+YTRT
1 R1Y < 0 (B.14)

Finally using the Schur’s complements [21], the inequality(B.14) can be written as




AX+XAT −BνY−YTBT
ν (Q1X−R1Y)T

(Q1X−R1Y) −I


< 0 (B.15)

where the matricesX andY are variables in the inequality (B.15), and the feedback gain F can be recov-

ered asF =YX−1. In (B.15), the matricesQ1 andR1 are:

Q1 =




Q
1
2

0l×n


 R1 =




0n×l

R
1
2




B.3.2 LMI Formulation of BRL

In chapter 4, the closed-loop stability of the sliding motion governed by

ẋ(t) = (A−BνF + B̃Φ̃(t)F)x(t) (B.16)
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which can be represented as

ẋ(t) = (A−BνF)︸ ︷︷ ︸
Ã

x(t)+ B̃ω(t) (B.17)

z(t) = Fx(t) (B.18)

whereω(t) = Φ(t)z(t). TheL2 gain fromω to z (which in this case is theH∞ norm ofG̃(s)) is less than

γ if there exists a Lyapunov functionV(x) = xTPxwhereP> 0 andγ ≥ 0 for all t [21] such that

J =

∫ ∞

0
(V̇(τ)+zTz− γ2ωTω)dτ ≤ 0 for all x andω (B.19)

holds. Taking the time derivative of the functionV(x) and substituting value of (B.17) into it, gives

V̇ = xTP(A−BνF)x+xTPB̃ω +xT(A−BνF)TPx+ωTB̃TPx

= xT(P(A−BνF)+ (A−BνF)TP)x+ωTB̃TPx+xTPB̃ω

SubstitutingV̇ and (B.18) into (B.19) gives

J =
∫ ∞

0
(xT(P(A−BνF)+ (A−BνF)TP)x+ωTB̃TPx+xTPB̃ω +xTFTFx− γ2ωTω)dτ

=

∫ ∞

0
(xT(P(A−BνF)+ (A−BνF)TP+FTF)x+ωTB̃TPx+xTPB̃ω − γ2ωTω)dτ

where the function inside the integral can be written in the matrix representation as




x

ω




T 


P(A−BνF)+ (A−BνF)TP+FTF PB̃

B̃TP −γ2I







x

ω




To satisfy the condition in (B.19), it needs to be ensured that




P(A−BνF)+ (A−BνF)TP+FTF PB̃

B̃TP −γ2I


< 0 (B.20)



199 B.3. LMI EQUIVALENCE OF CLOSED-LOOP STABILITY ANALYSIS

which can also be written as




P(A−BνF)+ (A−BνF)TP PB̃

B̃TP −γ2I


+




FT

0



[

F 0

]
< 0 (B.21)

From Schur’s complements [21], the system in (B.21) can be written as




P(A−BνF)+ (A−BνF)TP PB̃ FT

B̃TP −γ2I 0

F 0 −I



< 0 (B.22)

From equation (B.22) it is clear that the expression in the top left position is not convex and cannot be

written as an LMI representation, therefore multiplying both sides of (B.22) with diag[P−1, I , I ] gives




(A−BνF)P−1+P−1(A−BνF)TP B̃ P−1FT

B̃T −γ2I 0

FP−1 0 −I



< 0 (B.23)

Letting P−1 = X the inequality in (B.23):




(A−BνF)X+X(A−BνF)TP B̃ XFT

B̃T −γ2I 0

FX 0 −I



< 0 (B.24)

Finally with the change of variableY = FX, the inequality in (B.24) can be written as




AX+XA−BνY−YTBT
ν B̃ YT

B̃T −γ2I 0

Y 0 −I



< 0 (B.25)

where the matricesX andY are variables in the inequality (B.25). The inequality (B.25) is convex and

available LMI tools can be used to find the feasible solution and F can be recovered using the relation

F =YX−1.
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