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ABSTRACT 5 

Igneous sills represent an important contribution to upper crustal magma transport 6 

and storage. This study focuses on an exemplary 20–50-m-thick transgressive sill in the 7 

Faroe Islands, on the European Atlantic passive margin, which is hosted in layered lavas 8 

(1–20 m thick) and basaltic volcaniclastic units (1–30 m thick). Preserved steps in the sill, 9 

and offset intrusive segments, are consistent with initial propagation as segmented 10 

fractures, followed by inflation to create a through-going sheet. Although steps 11 

correspond to the position of some host rock interfaces and volcaniclastic horizons, most 12 

interfaces are bypassed. Transgressive sill contacts are sub-parallel to thrust faults that 13 

record ENE-WSW shortening, which are observed within the surrounding country rock, 14 

and within the sill. Remnant sill segments are elongate along a NNW-SSE axis, parallel 15 

to the derived intermediate stress axis for thrust faults. The overall transgressive 16 

geometry is consistent with regional horizontal shortening, with steps indicating 17 

transitions between transgressive and lateral sill propagation controlled locally by 18 

layering. This work emphasizes the importance of scale of observation in considering the 19 

controls on sill emplacement, and in particular, that layering is not the primary control on 20 

geometry. 21 

INTRODUCTION 22 
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Igneous sills represent an important contribution to upper crustal magma transport 23 

(e.g., Airoldi et al., 2011; Muirhead et al., 2014), acting as magma conduits and stores. 24 

Sill emplacement in basin settings can impact subsurface fluid flow (e.g., water aquifer 25 

and hydrocarbon systems: Gudmundsson and Løtveit, 2012), and the maturation of 26 

hydrocarbons (Malthe-Sørenssen et al., 2004). Large volumes of transgressive, saucer-27 

shaped sills are identified in three-dimensional (3-D) seismic data sets across basin 28 

systems (e.g., Thomson and Hutton, 2004), and show that individual sills comprise a 29 

series of lobes that record phases of sill propagation. Field-based observations of saucer-30 

shaped sills (e.g., Polteau et al., 2008; Schofield et al., 2010, 2012), indicate that these 31 

lobes may also comprise smaller structures, such as segmented elongate fingers, which 32 

record phases of inflation and linkage during intrusion. Both observation scales have 33 

invoked the role of host rock strength in controlling sill geometry, but it should be noted 34 

that 3-D seismic resolution is too low to make this critical correlation. This paper 35 

highlights stress controls on transgressive sill emplacement, exemplified in the Faroe 36 

Islands (Fig. 1; Fig. DR1 in the GSA Data Repository1), on the European Atlantic 37 

margin. Detailed mapping shows that the Streymoy sill (Fig. 1) intruded as segmented 38 

fractures, which inflated and linked to create a stepped, through-going sheet. Overall 39 

geometry is controlled by regional stress, with local propagation controlled by layering, 40 

but there is no strict relationship between sill steps and “weak” units or layer interfaces. 41 

These observations have direct importance to transgressive sills identified in volcanic 42 

sub-systems, and particularly studies that infer major effects of intrusion, on host rock 43 

properties or maturation (e.g., Svensen et al., 2004). 44 

FAROE ISLANDS TRANSGRESSIVE SILLS 45 
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The Faroe Islands host several transgressive sills that intrude near-horizontal (0–46 

3° dip) basaltic lavas and volcaniclastic units of the Palaeocene-age Malinstindur, Sneis, 47 

and Enni Formations (oldest to youngest; Fig. 2). The Malinstindur Formation is 48 

dominated by 1–3-m-thick compound basalt lavas that are commonly separated by 49 

volcaniclastic sandstone units (<2 m thick), but which account for <10% of the sequence 50 

where studied. The Sneis Formation is entirely volcaniclastic, ranging from sandstones to 51 

conglomerates, with a total thickness ranging from 1 to 30 m (Passey and Jolley, 2008). 52 

The Enni Formation comprises interbedded simple (~2–20-m-thick) and compound (~1–53 

3-m-thick) lavas, and <2-m-thick volcaniclastic sandstone units. Fault and fracture 54 

characterization through this sequence (Walker et al., 2013) shows that strain is 55 

accommodated through initial brittle failure in lavas, and ductile flow within 56 

volcaniclastic sandstone units, highlighting contrasting mechanical properties within the 57 

sequence. This paper focuses on the Streymoy sill (see e.g., Hansen et al., 2011), which 58 

covers ~17 km2, with a vertical extent of ~480 m. Hansen et al. (2011) separated the sill 59 

into two broad ‘saucer’ shapes, which were referred to as the northwest and southeast 60 

segments (Fig. 1A). Thickness ranges from 20 to 30 m in the northwest segment, and 40–61 

50 m in the southeast segment. The estimated pre-erosion volume is ~2 km3 (Hansen et 62 

al. 2011). Erosion has resulted in variable incision through the stratigraphy, and the sills 63 

can be identified in the topography by roches moutonées (Fig. 2B). Mapping of the top 64 

and bottom sill contacts, and inclined sheets associated with the sill, where this style of 65 

erosion has not occurred, shows that roches moutonées are parallel to steps in the sill, and 66 

are estimated to be within ~1 m of the original sill contact. 67 

INTRUSION GEOMETRY 68 
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The Streymoy sill southeast segment shows evidence of a ‘saucer-shaped’ 69 

geometry, displaying a flat inner region and a transgressive periphery, which locally dips 70 

≤35° (e.g., Figures 1B and 2A). As shown in Figure 2, however, closer inspection of the 71 

sill reveals that it transgresses as a series of inclined sections (dipping 7–35°), which are 72 

separated by flat sections (dipping 0–3°). Flat sections have lateral extents (parallel to 73 

dip) of ~300–350 m where observed (e.g., Figures 2A and 2C). Inclined sections 74 

accommodate a range of transgression scales, from ~60 m (e.g., Fig. 2B), to ~250 m (e.g., 75 

Figures 2A and 2B) measured parallel to dip. Sill contacts on transgressive sections 76 

display regular undulations (Figs. 2C and 3), with the top contact showing consistent 77 

wavelengths of ~40–60 m and amplitudes ranging from 5 to 25 m, and bottom contacts 78 

showing a stepped geometry at the same scale (Figs. 2B, 2C, and 3C). Individual steps in 79 

the basal contact cannot be measured, but top contact steps in the form of roches 80 

moutonées are continuous for 220–310 m laterally (Fig. 1). 81 

Although flat sections of individual steps correspond to some lava unit interfaces 82 

or volcaniclastic units, including those of the Sneis Formation (Fig. 2), individual sill 83 

steps transect most units and unit interfaces. It is important to note also that overall, the 84 

sill ‘flat’ sections dip at 0–3°W, whereas host units in the study area, dip 2–3°E, so “flat” 85 

sections of the sill are still mildly transgressive through the stratigraphy. For example, the 86 

large sill flat sections correspond locally to the position of the volcaniclastic Sneis 87 

Formation, but the lowermost part of the flat occurs ~10–20 m stratigraphically below it, 88 

within Malinstindur Formation lavas (Fig. 2B). 89 

The sill and host rock are cut by a network of conjugate northeast- and southwest-90 

dipping, millimeter-to-centimeter displacement, calcite- and zeolite-mineralized thrust 91 
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faults that dip sub-parallel to the inclined sections of the sill (Figs. 2A and 2C), however, 92 

it is noted that steps do not correspond to the position of thrusts, nor do the thrusts 93 

accommodate sufficient displacement to account for the scale of the steps. Thrusts dip in 94 

the range 20–40°SW, and 5–30°NE. Walker et al. (2011) showed that those thrust faults 95 

accommodated ENE-WSW to northeast-southwest contraction (see Figure 2C inset), and 96 

are associated with strike-slip faults that accommodate an east-west contraction, and 97 

north-south extension (see Figure 2B inset). The sills cut conjugate dikes that also 98 

accommodate east-west contraction and north-south extension, indicating that the sills 99 

were emplaced during a regional east-west compression. Calculated palaeostress axes 100 

(e.g., Figures 2B and 2C insets) correlate well with sill geometry in that (1) sill contacts 101 

are sub-parallel to conjugate thrust faults, and form an acute angle to the calculated σ1-σ2 102 

plane for those thrusts (e.g., Fig. 2C), and (2) relict sill segments are elongate parallel to 103 

the calculated σ2 axis for conjugate thrust faults (NNW-SSE). 104 

Steps observed on the contacts of the Streymoy sill (e.g., Fig. 3B) are consistent 105 

with step features observed in dikes (e.g., Pollard et al., 1975), sills (e.g., Schofield et al., 106 

2012), and echelon joint and vein sets (e.g., Pollard et al., 1982). In such cases, steps are 107 

shown to result from linkage of offset or en echelon intrusion or fracture segments, which 108 

coalesce to a single sheet. Segmented sill-parallel minor intrusions (Fig. 3a), and sill 109 

internal contacts (Figs. 2A and 3C), are inferred here to record the early stages of 110 

intrusion as segments, ahead of a through-going sheet. 111 

CONTROLS ON TRANSGRESSIVE SILL GEOMETRY 112 

Numerical models for centrally-fed sills emplaced into isotropic elastic media 113 

(e.g., Malthe-Sørenssen et al., 2004), and analogue models for intrusion using 114 
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homogenous media (e.g., Galland et al., 2009) indicate that transgressive ‘saucer-shaped’ 115 

sills are a fundamental shape in shallow systems. Malthe-Sørenssen et al. (2004) showed 116 

that the development of a saucer shape, from an established flat sill, is strongly controlled 117 

by stress asymmetry ahead of the propagating crack tip: the sill would propagate as a flat 118 

intrusion until it had spread to a radius approximately equal to the depth of emplacement, 119 

when doming in the overburden would affect a tensile stress asymmetry ahead of the tip, 120 

leading to upward propagation. These experiments were conducted using isotropic media, 121 

which indicates transgression is controlled by overburden deformation, rather than host 122 

mechanical layering. This point is supported by observations of the Streymoy sill. For 123 

instance, the broad ‘flat’ part of the sill shown in Figure 2C, does not directly exploit the 124 

Sneis Formation contacts. The implication is that although the layered host sequence may 125 

promote horizontal propagation of the sill, that layering plays a secondary (albeit locally 126 

important) role in the overall sill geometry. 127 

Steps observed in the Streymoy sill contacts, and in minor sheets adjacent to the 128 

sill (e.g., Fig. 3A), are interpreted to represent sill propagation as a series of segmented 129 

fractures, which inflated and linked to create a through-going sheet. Studies of fracture 130 

and fault propagation in elastic multilayers (e.g., Schöpfer et al., 2006; Walker at al., 131 

2013) have shown that during regional extension, fractures develop initially in the 132 

mechanically “stronger” (brittle) units, before linking through “weaker” (ductile) units as 133 

strain increases. Walker et al. (2013) showed that faults cutting interlayered (basaltic) 134 

volcaniclastic-lava sequences develop initially through brittle failure in the lava, and 135 

ductile flow within volcaniclastic units. The result of this early-developed fracture 136 

architecture is that the through-going faults display significant steps. A similar effect 137 
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could occur during regional compression, with fractures developing sub-horizontally 138 

rather than sub-vertically. Layer-bound fracturing could also lead to fractures propagating 139 

preferentially in (NNW-SSE horizontal) the σ2 axis, rather than growing in the 140 

(southeast-plunging) σ1 axis, as a result of individual fractures being impeded by existing 141 

discontinuities. Transgressive steps in the sill occur at the meter to tens of meters scale, 142 

associated with thin-unit boundaries (e.g., 1–3-m-thick compound lavas and sediments: 143 

Fig. 3A), and at the hundred-meter scale, associated with thick-unit boundaries (e.g., the 144 

Sneis Formation: Fig. 2C). The implication here is that the sill intruded as cracks that 145 

inflated to form a through-going sheet, but that vertical propagation of individual 146 

segments was locally impeded by mechanical contrasts (such as strength, Poisson’s ratio, 147 

and Young’s modulus) in the host sequence (Fig. 4). Sill steps may therefore preserve the 148 

initial strain gradient from a through-going portion of the transgressive sill, with NNW-149 

SSE horizontal intrusion and inflation only possible once cracks becomes connected to 150 

the source. Host mechanical properties therefore play an important role in the local 151 

propagation and segmentation of the sill, either in focusing propagation (e.g., along unit 152 

interfaces), or by impeding propagation across mechanical layers or discontinuities, but 153 

the overall geometry is a record of the northeast-southwest compression. 154 

AN ALTERNATIVE MODEL FOR TRANSGRESSIVE SILL EMPLACEMENT 155 

The transgressive geometry of the Streymoy sill, combined with evidence for 156 

local mechanical control in the early development of the sill as segments, is consistent 157 

with the development of a shallowly-dipping hydrofracture system, similar to that 158 

described by Baer (1995). In that model, intrusion by brittle fracture involved phases of 159 

fracture propagation ahead of the leading edge of the magma, followed by tip fluid 160 
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propagation, and conduit flow. I infer here that emplacement of the Streymoy sill can be 161 

summarized into four stages (Fig. 4): 162 

(1) Regional ENE-WSW contraction and NNW-SSE extension, coupled with magmatic 163 

pressure-driven failure in the host rock, facilitated horizontal propagation of a flat 164 

elliptical sill (Fig. 4A), sub-parallel with the σ1-σ2 plane (i.e., gently WSW-dipping) 165 

related to regional horizontal shortening. 166 

(2) As the radius of the elliptical sill reached a value approximately equal to the depth of 167 

emplacement, doming of the overburden resulted in asymmetric tensile stress ahead 168 

of the propagating sill tip, facilitating an upward deflection (Fig. 4B). 169 

(3) Host mechanical layering resulted in preferential fracture and fault development in 170 

elastically compliant layers (i.e., layers with a lower resistance to fracture), leading to 171 

NNW-SSE layer-bound fracture propagation parallel to σ2 (Figs. 4C and 4Di). 172 

(4) As strain increased through inflation, transgressive fracture tips linked individual sill 173 

segments to create a through-going sill (Figs. 4Dii and 4Diii). 174 

It is important to note that “layering” in this case, may refer to sequences of units, 175 

such as multiple lavas, rather than individual units. As with studies in fault systems (e.g,, 176 

Schöpfer et al., 2006) the extent of individual segments (as measured in the dip direction) 177 

during initial sill propagation is related to the thickness of the host layering and reflects 178 

the distribution of existing fractures in the host rock (Fig. 4C). Upward propagation in 179 

stage 2 could lead to a reduction in magma pressure and flexural strain at the sill 180 

periphery (Malthe-Sørenssen et al., 2004). This would promote magma propagation as 181 

flat-lying sills that preferentially exploit bedding planes (e.g., Fig. 4D). This type of 182 

effect has been proposed elsewhere in discussion of flat outer rims on sills (e.g., Goulty 183 
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and Schofield, 2008; Airoldi et al., 2011). Flat zones are observed in the Streymoy sill at 184 

various elevations (e.g., Figures 2A and 2B), which may be explained by this mechanism, 185 

but it is noted that flat sections of the sill cut through a number of unit interfaces, 186 

including the formation boundary between the Malinstindur Formation compound lavas, 187 

and the sedimentary Sneis Formation. 188 

CONCLUSIONS 189 

The Streymoy sill is an exemplary transgressive sill formed during horizontal 190 

shortening. Although the sill is hosted in mechanically layered units, the broad geometry 191 

is consistent with models for emplacement in an isotropic medium. Steps indicate that 192 

mechanical layering is important in controlling local propagation and contact geometry, 193 

which is important when considering processes associated with transport and storage of 194 

magma in the subsurface. Notably, major sedimentary horizons in the lava-dominated 195 

sequence are not preferentially intruded, but still impose geometric controls on the sill. 196 

The mechanical contrast here is comparable to sandstone-mudstone sequences, in which 197 

sandstones represent the stronger material. Most steps are below seismic imaging scales, 198 

emphasizing the importance of the scale of observation in understanding intrusion 199 

emplacement controls and mechanisms. 200 
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FIGURE CAPTIONS 279 

Figure 1. The Streymoy Sill, Faroe Islands. A: Aerial image showing the positions and 280 

inferred extent of the northwest and southeast segments (after Hansen et al., 2011). B: 281 

Hill-shaded topographic image (illuminated from 315) with color-coded elevation for the 282 

exposed areas of the sill. C: Aerial image showing color-coded slope (dip) data for the 283 

exposed areas of the sill. 284 

 285 

Figure 2. Cross sections through the Streymoy sill: view-fields shown in Figure 1C. A: 286 

View northwest to the southernmost outcrops of the southeast segment, showing the 287 

overall northeast and southwest transgressive nature of the sill. Insets show (i) variable 288 

attitudes of joints within the sill, and (ii) stepping basal contact of the sill. Horizontal 289 

rock exposures correspond to lava core zones, showing that sill steps do not correspond 290 

to individual lava interfaces. B: Northwest segment shows a stepped transgression up to 291 

the northeast. Note that the photo perspective means that the left of the image is oriented 292 

northeast-southwest, and the right of the image shows northwest-southeast. C: Cross 293 

section through the northwest segment of the sill, showing relationship to inclined 294 

“feeder” dikes (after Hansen et al., 2011), and thrust faults. Lower hemisphere 295 
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stereographic projection insets are for (B) faults within the lava host rock (left) and 296 

calculated principal compressive stress axes (where σ1>σ2>σ3) with the maximum 297 

horizontal compression direction (right), and (C) thrust faults (left) and calculated 298 

principal stress axes (right). Principal stress attitudes were calculated using the simple 299 

shear tensor average method (Sperner et al., 1993). Fmn—Formation. 300 

 301 

Figure 3. Intrusion segments, and relict segments. A: Inclined intrusion (see Figure 2C 302 

for location) is segmented and discontinuous in this cross section. Segment tips are 303 

commonly spatially associated with host unit interfaces, though individual segments also 304 

cut a number of host contacts. B: Transgressive and flat parts of the southeast segment 305 

show steps at the meter and tens of meter scales. C: Internal contact in the southeast 306 

segment (location shown in Fig. 2A). D: Oblique cut-through of a transgressive part of 307 

the southeast segment (location indicated in Fig. 1C). Relict segments are elongate 308 

northwest-southeast. The sill is accommodated by ~50 m of apparent vertical uplift of the 309 

host stratigraphy, whereas the sill thickness measured normal to the margins is ~30 m. 310 

 311 

Figure 4. Conceptual model for the propagation of the Streymoy sill. A–C: Maps (left) 312 

and cross sections (right). See text for details. A: Flat, elliptical sill emplacement. B: 313 

Overburden doming results in upward deflection of the crack tip. C: Transgression and 314 

propagation of the sill is controlled locally by mechanical layering. D: Inflation of 315 

fractures leads to linkage, forming a through-going sheet. Panels i–iii show the 316 

progressive stages of inflation from fractures to a linked sheet. 317 

 318 



Publisher: GSA 
Journal: GEOL: Geology 
DOI:10.1130/G37144.1 

Page 15 of 15 

1GSA Data Repository item 2016xxx, xxxxxxxx, is available online at 319 

www.geosociety.org/pubs/ft2016.htm, or on request from editing@geosociety.org or 320 

Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. 321 
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Fig. 4
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