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Abstract 

 

 
Satellite radar imaging is a promising technique for biomass mapping and the 
monitoring of deforestation in tropical forests and reducing the uncertainty in 
the quantification of forest biomass in tropical regions. The present paradigm in 
radar imaging is the fitting of empirical relationships between the radar signal 
and biomass for diverse forest ecosystems, especially in the humid tropics. 
 Therefore, there is a great need to generate knowledge about how to monitor 
and characterise the biomass of intact and disturbed tropical forest biomass. 
This research presents the analysis of data from four years of L-band radar 
imagery from ALOS PALSAR within a carbon dense, tropical peat swamp forest 
ecosystem in Central Kalimantan (Indonesia). 
 
The results showed that the temporal behaviour of the radar signal varied 
across a gradient of forest biomass, being highly variable at low biomass levels. 
Critically a large amount of signal change was unrelated to biomass change. 
Changes in the radar signal were related in a complex non-linear manner to 
changes in the peatland water table. This allowed, for the first time, the 
estimation of water table depth at high spatial resolutions from radar images. 
It was found that the radar signal related to loss of primary forest biomass after 
fire were in the opposite direction to that expected according to fitted radar-
biomass equations. Burnt areas showed highly variable temporal radar with 
variability linked to rainfall indicating a possible interaction between the water 
table and remaining (dead) aboveground biomass. 
 
The implications of these results are that, at least in tropical peatlands, 
estimates of biomass based on single date radar images are likely to be highly 
misleading; multitemporal radar data sets are required to both interpret 
disturbance histories and to produce accurate classifications of above ground 
biomass. 
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1. Introduction 

 

1.1  Research Aim 

The overall aim of this research is to contribute knowledge towards a robust remote 

sensing system that is able to reduce the uncertainty in the estimation of carbon 

stocks in tropical forests through the use of remote sensing and to hence more 

accurately and consistently resolve the carbon fluxes that result from land use 

change processes operating in these environments. 

 

Although there is a long history of using  various remote sensing techniques, in 

conjunction with field mensuration, to estimate forest properties (such as area, stem 

density, canopy height,  biomass, etc) this has been largely confined to  

experimental work and has been limited in both temporal and spatial domains. There 

is a need, driven by and the emerging carbon economy and international forest 

negotiations aimed at reducing carbon emissions,   to move beyond the experimental 

to wide area, frequent, operational monitoring of forest resources. Such systems are 

likely to require multi-sensor, semi automated approaches to monitoring rather than 

simply mapping tropical forests. 

This thesis aims to contribute to such a system by examining the temporal change 

signatures captured within four years of L-band radar images obtained over tropical 

peat swamp forest and relating these to land use change processes occurring on the 

ground.  
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1.2  Tropical forests and the global carbon cycle 

 

The global carbon cycle (GCC) is composed of an interlinked network of carbon 

pools (carbon in its various chemical states) connected together by fluxes; reactions 

which alter or move the carbon from one chemical state to another (Figure 1.1). Our 

need to understand the processes governing these pools and fluxes has increased 

over the last ~30 years in conjunction with our need to control the increase of 

atmospheric CO2 in order to prevent harmful global warming (IPCC, 2007). A 

complete understanding of the GCC is difficult as it requires the integration of 

processes occurring at different spatial scales (from individual leaves to interactions 

between ecosystems) and temporal scales (from daily photosynthetic fluxes to multi-

decadal accumulations of carbon in old growth forests). These processes require the 

use of a variety of research techniques and integration of these into single yet 

accurate estimates. In addition to these scaling issues we do not have adequate 

knowledge of many aspects of the GCC, particularly of those processes operating 

over very large spatial scales (Meir et al., 2006) and this leads to large uncertainties 

in estimates of the pools and fluxes controlling the GCC. 

 

Terrestrial ecosystems convert atmospheric CO2 into organic carbon via 

photosynthesis and large pools of carbon accumulate in vegetation and  
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Figure 1.1. Pools and fluxes of carbon within the GCC. (figure taken, with permission, from 

http://www.globe.gov/image/image_gallery?img_id=2595661&fileName=Global_Carbon_Cycle_diagra

m-2009.jpg&t=1357917736330) 

subsequently in the soil. The amount of carbon stored in terrestrial systems is related 

to climatic constraints, ecological conditions and disturbances events. Tropical 

forests contain large amounts of carbon as vegetation, making tropical forests 

particularly important pools of carbon. As ecosystems reach maturity they achieve a 

dynamic equilibrium whereby the carbon gained by photosynthesis equals that lost 

by net ecosystem respiration and biomass accumulation through growth is balanced 

by that lost by decomposition (though in some circumstances carbon can continue to 

http://www.globe.gov/image/image_gallery?img_id=2595661&fileName=Global_Carbon_Cycle_diagram-2009.jpg&t=1357917736330
http://www.globe.gov/image/image_gallery?img_id=2595661&fileName=Global_Carbon_Cycle_diagram-2009.jpg&t=1357917736330
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accumulate in soil). Disturbances to this equilibrium result in changes to the carbon 

balance that operate over time scales varying from daily (e.g. the balance between 

photosynthesis and respiration in a leaf) to millennial (e.g. the shifting range of 

biomes between ice ages). Anthropogenic disturbances to terrestrial vegetation, 

such as the clearance of forests for agriculture (also known as land use change), 

result in fluxes of carbon to the atmosphere. Since the industrial revolution 7-

11*106km2 of forest has been cleared  (Foley et al., 2005), largely from the 

developed nations in the northern hemisphere. The sum of emissions due to 

changes in land management and land use along with the response of forest to 

disturbance are summed to give the land atmosphere flux. Since the 1960s, land use 

change has contributed ~20% of annual CO2 emissions, with the source of 

emissions  changing from extra tropical nations to being almost exclusively tropical 

(Canadell et al., 2007). 

1.3  Difficulties in calculating forest carbon pools and fluxes. 

When calculating forest carbon pools a number of compounding uncertainties result 

in very large uncertainties in the final estimates. Firstly estimates of tropical forest 

cover vary from 1116*104 km2 (Achard et al. 2002) to 1768*104 km2 (Grainger 2008). 

Uncertainties in the amount and distribution of forest biomass further enlarge these 

errors. For example, values given for the biomass content of the Amazonian 

rainforest vary from 39-93 Gt (Houghton & Lawrence, 2001), 86 +/-20 Gt (Saatchi et 

al. 2007) when including dead and below ground biomass  to 93+/-23 Gt excluding 

roots and dead biomass (Malhi et al., 2006). Figure 1.1 illustrates the spatial 

distribution of uncertainties when producing a biomass estimate using a single 

methodology  from remote sensing data (from Saatchi et al., 2011). Uncertainties are 

much larger when contrasting 
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Figure 1.2. Uncertainty in the amount of estimated tropical biomass. Note high values of uncertainty located in south east Asia, figure taken from and © 

(Saatchi et al., 2011). 
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estimates produced by different methodologies for biomass estimation (e.g. 

Mitchard et al., 2011). Calculating the CO2 flux produced by land use changes 

such as deforestation involves calculating the area of forest lost over a certain 

time period and multiplying this by estimates of the amount of carbon contained 

in these forests. As there are compounding errors particularly in the estimation 

of forest biomass there is often a high degree of uncertainty related to these 

values (see examples given in Figure 1.3). Achard et al. (2002) give an estimate 

of the global deforestation rate of 5.8*104 km2 (+/- 1.4) from the monitoring of 

global hotspots of deforestation between 1990 and 1997. A useful overview of 

estimates of the resultant carbon fluxes is given by Cramer (2004). Yearly 

carbon emission rates vary from 1.9 Gt of carbon per year (Houghton 1999) 

whereas DeFries et al (2002) quote lower figures of 0.65 and 0.97 Gt per year 

for the 1980s and 1990s, respectively. It is for these reasons that terrestrial 

carbon fluxes are currently the least well constrained component of the GCC 

with largest uncertainties in tropical regions as can be seen in Figure 1.3. A 

further complication is that the terrestrial portion of the GCC also shows 

interannual variability. 

1.4  Requirements for future forest monitoring capabilities. 

The requirement for more detailed information on tropical forest cover and 

biomass is driven by a need to reduce the uncertainties associated with 

estimates of the forest carbon pool and related fluxes in order to better 

understand the role played by tropical forests within the GCC. Reducing 

emissions from tropical land use change has been identified as the most cost 

effective method of lessening the increase  of atmospheric CO2 (Eliasch, 2008), 
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Figure 1.3 Examples of uncertainties in terrestrial carbon fluxes. Left; partitioning of 

anthropogenic carbon emissions. Note high variability and uncertainty surrounding the land 

component, middle compared to atmosphere and ocean (from Le Quéré, 2010, ©Elsevier). Top 

right; carbon fluxes as a result of tropical deforestation. Note large error bars in relation to size 

of estimates (from and © DeFries, 2002). Bottom right; changes in the annual carbon 

emissions from land use change in the tropics as calculated using different methods (from and 

© Houghton, 2005, © Wiley) 
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while further motivation for the development of forest monitoring tools is the 

framework agreement to reduce emissions from deforestation and forest 

degradation (known as REDD)  which was agreed at the UNFCCC COP13 in 

Bali, 2005. REDD+ goes beyond deforestation and forest degradation to 

include sustainable forest management and other  enhancements of forest 

carbon. Although to date no REDD( or REDD+) agreement has been formally 

signed, significant progress has been made on several key aspects which are 

likely to be included should any agreement come to fruition. These include 

information on baseline  historical rates of deforestation that are likely to be 

sourced from the Landsat data archive, and the requirement for up to date 

spatial information on areas affected by forest loss and degradation and on 

forest carbon stocks. Any agreement to reduce tropical deforestation would 

also have substantial co-benefits with efforts to reduce biodiversity loss (e.g. 

Venter et al., 2009), thus forest monitoring techniques are likely to have 

significant importance for forest reserve design and management. The work 

presented in this thesis is likely to prove beneficial to the monitoring, reporting 

and validation (aka MRV) activities of REDD and could also be of use in 

REDD+ where management enhancements reduce the occurrence of forest 

disturbance.    

1.5  Thesis structure 

 

Chapter 2: Literature review. Remote sensing technologies and techniques for 

monitoring tropical forests are introduced as well as the advantages and 

limitations of specific techniques and the role they can play in providing data 

towards a monitoring system for tropical forests. The characteristics of tropical 
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peatlands and peat swamp forest are presented; their distribution, high carbon 

density and impact on global carbon fluxes are discussed. Finally research 

gaps are identified and knowledge requirements are summarised and research 

questions are  specified. 

 

Chapter 3: Methodology. This chapter gives details on the study area and the 

processes used to produce the temporal radar stacks and the vegetation 

sampling field methods used to create the forest biomass dataset. Both of 

these datasets are used throughout this thesis. Data sets and methodologies 

specific to individual analyses are discussed in the relevant chapters. 

 

Chapter 4. In this chapter the spatio-temporal patterns of radar backscatter 

change in the study area are analysed and related to above ground forest 

biomass levels and land surface processes occurring in the study area. This 

chapter lays the foundation for the succeeding two chapters which look in detail 

at the different aspects of temporal backscatter change. 

 

Chapter 5. In this chapter the portion of the radar change unrelated to 

vegetation disturbance is examined in detail. Radar backscatter and 

interferometric coherence are shown to be related to variations in the peatland 

water table and this relationship is then used inversely to provide high 

resolution maps of estimated peatland water table depth from the radar data.  

 

Chapter 6. The temporal backscatter change associated with vegetation 

change (peat swamp forest through fire) is examined in more detail in this 
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chapter. Fire occurrences within our dataset were limited so an independently 

derived fire history dataset is used to construct long term estimates of 

backscatter variation associated with historical fires. The effects of fire 

frequency and the period since fire are examined. Variation in the radar signal 

is linked to monthly rainfall estimates. 

 

Chapter 7 summarises the results from the individual chapters and synthesises 

them into conclusions for monitoring peat swamp forest with radar data. 

Implications for the use of radar in monitoring other forest ecosystems and the 

role to be played by radar in global forest monitoring systems and possibilities 

for future research are discussed. 
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2. Literature Review 

 

The first section in this chapter the reviews literature relating to tropical peat 

swamp forests and their role as a globally important carbon pool. Methods for 

monitoring changes in tropical forests are then examined with a particular 

emphasis on the use of remotely sensed data and the role that these can play 

in a system for the monitoring of tropical forests. Subsequently current 

knowledge gaps are identified and used to frame the research objectives to be 

pursued in this thesis. 

This thesis focuses on one tropical forest ecosystem, namely tropical peat 

swamp forest. Located mostly in Southeast Asia, this ecosystem has a high 

carbon density but is vulnerable to destabilisation through human and climate 

induced changes.   

2.1  Tropical peatlands and peat swamp forests 

Peatlands form where anaerobic soil conditions in waterlogged soils impede 

the decomposition of organic inputs to the soil (dead plant matter). The 

resultant build up of organic matter into layers of peat forms a significant pool 

of carbon within the GCC (Vasander & Kettunen, 2006). Disturbances to these 

peatlands can lead to significant fluxes of  CO2 and CH4 to the atmosphere 

(e.g. Macdonald et al., 2006) as stored carbon becomes accessible for 

decomposition. Large areas of peatland occur in boreal areas, however,  

peatlands also occur in poorly drained areas of the tropics. Tropical peatlands 
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have been estimated to comprise 11% of global peatlands by area (Page et 

al., 2011) although accurate estimates of the extent of tropical peatlands are 

difficult due to their remoteness and inaccessibility. Current best estimates 

suggest that tropical peatlands are concentrated in South East Asia; this 

region contains 56% of the total tropical peatlands by area, located in 

Malaysia, Indonesia and to a lesser extent in Papua New Guinea (Page et al., 

2011) and covering an area of 24.8 to 27.1*104 km2 (Aljosja Hooijer et al., 

2010; Page et al., 2011). 

In order to calculate the size of the tropical peatland carbon pool, data on the 

thickness of peatland deposits are required in order to estimate peat volume. 

Tropical peatlands can reach depths of up to 20m (Page et al., 1999) much 

deeper than boreal peatlands which typically have depths of only a few 

meters. Accurate characterisation of the topography of peatlands is difficult 

due to the arduous fieldwork techniques required and data on both surface 

and subsurface topography are severely lacking. Remote sensing, especially 

radar and LiDAR can provide some topographical information (Ballhorn et al., 

2011; Jaenicke et al. 2008) useful for peat volume estimation but ground 

measurements are still required to give information on peat depth that is 

necessary for accurate peat volume estimation. Outside the South East Asian 

region, tropical peatlands have also been found in the Congo basin of Africa 

and in the neotropics (Lähteenoja et al., 2012; Wright et al., 2011) although 

knowledge of the extent, depth and carbon content of these peatlands is 

particularly lacking.  
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Due to various data uncertainties, estimates of the size of the South East 

Asian peatland carbon pool vary widely and have large error margins. A 

conservative estimate of 55Gt +/- 10Gt is given by Jaenicke et al (2008). A 

larger value of 65.2Gt is reported by Page et al. (2011) with a global tropical 

peat carbon pool of 88.6Gt.  This latter value represents 15-20% of the total 

global peatland carbon pool making tropical peatlands, especially those in 

South East Asia, globally significant. 

Tropical peatlands in South East Asia typically form dome shaped structures 

between watercourses with peat maximum depth situated at greatest distance 

from the rivers and reducing peat depth closer to rivers. In South East Asia 

intact peatlands are covered by a type of tropical forest called Peat Swamp 

Forest (PSF). PSF differs from tropical forests growing on mineral soils in that 

the trees are generally shorter, have smaller diameters, higher stem densities 

and adaptations to coping with waterlogged soils such as breathing roots 

(pneumatophores). There is a zonation of forest communities within a PSF 

largely distinguished by tree height and linked to the structure of the peat 

dome by the hydrological conditions. Riverine forest is found on shallow peat 

soils closest to watercourses, followed by shorter statured mixed swamp 

forest (Page et al., 1999). Towards the centre of the peat dome and almost 

permanently flooded is low pole forest where tree height rarely exceeds 15m. 

Some peat domes also have areas of open water in or close to the highest 

part of the dome, although these are not always present and are often the first 

features to disappear once peatlands are disturbed. PSFs  support high levels 

of biodiversity including endangered species such as Gibbon (Hylobates sp.) 
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and Orangutans (Pongo pygmaus pygmaeus ) along with habitat endemics 

(Yule 2008) and perform useful ecosystem services such as water regulation 

and storage (Page et al., 2009).  

Intact peatlands the capillary action of the peat maintains the water table close 

to the surface of the peatland and usually within 30cm of the peat surface. 

The stagnant water table maintains anaerobic conditions which impede the 

decomposition of organic inputs (leaf and branch fall of the forest trees) and 

lead to the accumulation of large and, if left intact, stable stocks of peat. The 

hydrological balance that maintains tropical peatlands is delicate and can be 

disturbed both by a combination of climatic changes (i.e. periods of low 

rainfall) and anthropogenic interference. South East Asian PSFs are 

threatened by logging for timber, plywood and chipboard manufacture and 

clearing for silvicultural plantations (mainly of Elaeis guineensis for palm oil 

and Acacia sp. for wood pulp and paper manufacture) and drainage for 

agriculture. All of these anthropogenic processes involve drainage of the 

peatlands through the construction of networks of ditches and canals which 

have the effect of lowering the peatland water table leading to exposure (see 

Figure 2.1) of the peat to atmospheric oxygen and decomposition (Hirano et 

al., 2008). As the peat dries there is also an increased risk of fire (Hoscilo, 

2009). Fires lead to a rapid loss of forest cover, accumulation of dead wood 

and an increased likelihood of further fires (Page et al., 2009). Both drainage 

and fire result in the loss of large amounts of carbon (largely in the form of 

CO2) to the atmosphere from the peatland as well as increased rates of 

carbon loss through the waterways (Moore et al., 2011). The degradation 

http://en.wikipedia.org/wiki/Bornean_orangutan
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pathway of PSF varies according to the length of the dry season in that area. 

In areas with a relatively short  dry season drainage leads to peat oxidation 

and compaction (Hooijer et al., 2012; Jauhiainen et al., 2012) even at 

distances of 2 km from the drainage canal. In areas where the dry season is 

more severe as in Central Kalimantan there the fires that occur are particularly 

linked to periods of low rainfall associated with El Nino events (Field et al., 

2009; Siegert et al., 2001) leading to an accelerated degradation pathway as 

primary forest is lost to subsurface peat fires. Once-burnt primary forest is 

vulnerable to further fires due to the high surface fuel load of dead wood and 

further lowering of the water table as the peat is exposed to the sun. Although 

forest regeneration is possible after a single fire, due to the residual seed 

bank and proximity of undisturbed forest, further fires are almost inevitable 

and forest regeneration potential is then greatly reduced. The heightened fire 

risk is exacerbated by the colonisation of the peat surface by ferns, which 

provide a flammable fine fuel load.  
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Figure 2.1. Mechanism of peatland degradation. Figure taken  from and © Hooijer et al., 2010. 

Red arrows indicate fluxes of carbon from the peatland to the atmosphere. 

 

Prior to the 1960s, although there had been large scale degradation of 

peatlands in peninsular Malaysia due to colonial timber plantations, the insular 

peatlands in Borneo and Sumatra had remained relatively intact. As 

undisturbed forests are resistant to degradation fires occurred only rarely in 

the 1960's despite periods of low rainfall (Miettinen et al., 2012). As a result of 

changes in land use policies, particularly in Indonesia, which promoted 

development in forested areas (Dennis & Colfer, 2006) by the 1980's fires had 
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become more frequent during periods of low rainfall (Field et al., 2009) due to 

encroachments into the forest. Extensive fires occurred in South East Asia in 

1997 during a severe El Nino period resulting in estimated carbon emissions 

of 0.81-2.75 Gt from the peat to the atmosphere; equivalent to 13-40% of total 

global fossil fuel emissions in the same year (Page et al., 2002). The 1997 

fires also had significant effects on the health of local populations and lowered 

surrounding sea surface temperatures by intercepting solar radiation (Rajeev 

et al., 2008). Satellite studies indicate that by 2010 20% (3.1*104 km2) of 

South East Asian peatlands had been converted into plantations, resulting in 

emissions of between annual carbon emissions 0.230 and 0.310 Gt CO2e y
-1 

to the atmosphere as a result of peat oxidation (Miettinen et al., 2012). Once  

plantations are established on peat soils the peat continues to decompose 

because the water table is maintained in a drained state in order to promote 

tree growth (for example, oil palm requires a water table that is at least 60 cm 

below the peat surface, but in practice is often much lower), leading to fluxes 

estimated at 86 t CO2e ha-1 year-1 (Jauhiainen et al., 2012; Page et al., 2011). 

In 2010, Hooijer et al. (2010) estimated that almost half of the total peatland 

area (12.9*104 km2, Hooijer et al., 2010) with total carbon fluxes due to 

peatland drainage and degradation estimated at between 0.355 and 0.855 Gt 

per year. These emission estimates put carbon fluxes from tropical peatlands 

as contributing between 1.3 and 3.1% of total current global carbon 

emissions. 

These large pools and fluxes of carbon from tropical peatlands in South East 

Asia make them  attractive areas for forest restoration particularly if any future 
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REDD mechanism is extended to include soil carbon, since potential carbon 

payments would be substantial (Busch et al., 2012). A forest carbon funding 

partnership has been instigated between Norway and Indonesia and a 

moratorium on the issuing of forest concession licenses in primary forest and 

peatlands has been put in place (Presidential Instruction No. 

10/2011),although doubts remain over its scope and efficacy  (Clements et al., 

2010; Murdiyarso et al., 2011). Current peatland restoration techniques 

concentrate on damming drainage channels in order to restore the hydrology 

of the peatland and raise the level of the water table alongside assisted 

regeneration of the forest by planting and fire control (Page et al., 2009). 

Although tropical PSF are globally an uncommon vegetation type it is clear 

from the review above that due to the size and vulnerability of the sub-surface 

carbon pool, the rapid rates of conversion to other land uses and their 

degradation by fire that they are a globally relevant source of carbon fluxes to 

the atmosphere. Tropical peatlands globally contain 50-70 Gt carbon (3% 

global soil carbon, Page et al. 2011) but land use changes and fire are 

reducing this carbon store and contributing to greenhouse gas emissions to 

the atmosphere. Information on the sizes of these emissions is urgently 

required as a failure to account for these emissions could lead to 

underestimates of future rates of increase in atmospheric GHGs and the 

extent of human induced climate change. Improved understanding of tropical 

peat swamp forest carbon dynamics has implications for and relevance to a 

range of national and international policies and obligations dealing with 

climate change, including REDD. 
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2.2  Remote sensing of tropical forests 

The United Nations Food and Agriculture Organization (FAO) has produced 

Forest Resource Assessments (FRAs) since 1948 every 5-10 years and this 

series of reports provides the longest international dataset on changes in 

forest cover. The methodology for the reports was initially based on data 

produced by participating countries, however missing data, differing 

methodologies (both between countries and between assessments) and 

variations in the definition of forest in different countries have limited the utility 

of the data for the accurate reporting of changes in forest cover or for 

calculating carbon emissions from LULUCF (land use, land use change and 

forestry). Estimates of forest loss derived from remote sensing are typically 

higher than those from the FAO statistics (e.g. Shearman et al., 2009), 

meaning that the FAO forest estimates can detect relative changes in forest 

cover but do not give accurate estimates of absolute forest cover (Grainger, 

2008).  With the advent of remote sensing it became possible for scientists to 

make more direct observations of tropical forests and the most recent FAO 

report (Lindquist et al., 2012) has evolved to include remotely sensed data. 

There are three remote sensing methodologies of use for monitoring changes 

in tropical forests. These are optical remote sensing, LiDAR and radar remote 

sensing. Of these, optical remote sensing has the longest history and is the 

most developed. Both radar and LiDAR are newer techniques and have been 

less widely adopted than optical remote sensing. Remote sensing studies of 

changing global tropical forest cover have mostly used optical data and take 

one of two approaches; wall to wall coverage or sub sampling. In the first 
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instance tropical areas are completely mapped at continental or global scales. 

Because of the amounts of data to be processed when using this approach 

the majority of studies have been performed at a decadal scale using 

composite images from low resolution optical satellites (e.g. AVHRR 8km2 

DeFries, 2002, SPOT 1km2 Stibig et al., 2009). The second approach to 

estimating forest cover and forest cover change is to sub sample. In this case 

each sample unit (i.e. country or continent) is sub-sampled by a number of 

remote sensing images. These can be randomly distributed (Achard et al., 

2002) or in a regular sample grid  (Lindquist et al., 2012). These samples are 

then used to calculate statistical deforestation rates. A related approach is to 

use a global coverage at coarse resolution (e.g. from the MODIS satellite) to 

identify deforestation hotspots that can be further examined with higher spatial 

resolution data such as LANDSAT (Hansen et al., 2008; Hansen et al., 2010)  

Although coarse remote sensing resolutions (greater than 100m2) allow the 

processing of large global forest datasets and allow the detection of long term 

forest trends, they are much larger than the scale of deforestation and 

degradation processes happening on the ground. Low resolution remote 

sensing data sets are therefore of little use for near real time monitoring of 

forest processes and higher resolutions, in the order of tens of meters, are 

required to adequately describe forest loss processes. 

Higher resolution optical satellites (e.g. Landsat with a spatial resolution of 

30m2) have not in the past been used for wide area tropical forest monitoring 

due to the size of the datasets and computer processing limitations. However, 

such datasets have been used in limited spatial contexts for detection of small 
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scale disturbances, such as logging (Asner et al., 2002; Asner et al., 2004; 

Peres et al., 2006) which is not visible at lower resolutions. Recent advances 

in cluster computing have alleviated these constraints and considerable 

progress has been made in the last few years in the analysis of the historical 

optical satellite data archive, particularly of  Landsat data, in order to provide 

data to calculate historical deforestation rates for use as baseline data (Huang 

et al., 2010; Roy et al., 2010). This has required the development of automatic 

spectral correction, cloud masking algorithms (Zhu & Woodcock, 2012), 

temporal stacks (Kennedy et al., 2010; Zhu et al., 2012) and automatic 

detection of disturbances (Cohen et al., 2010).  The recent launch of the 

Landsat data continuity mission satellite will no doubt see these techniques 

applied to more temporally current datasets. The great limitation of optical 

systems is that the sensors are frequently obscured by persistent cloud cover 

and smoke haze; they are also effected by variations in the angle of 

illumination by the sun. Despite work to overcome these limitations the use of 

optical satellite data for high frequency monitoring of tropical forests is still 

limited. 

LIDAR is an alternate remote sensing technology of use for forest monitoring 

which works by calculating the return time of laser pulses fired vertically from 

the sensor, thus providing information on the height distribution of vegetation 

within a forest and hence giving information on forest biomass. LiDAR 

measurements have been used extensively for aerial surveys of forest 

structure and biomass (e.g. Kronseder et al., 2012). One orbital LiDAR 

instrument has been flown onboard the ICESAT satellite. This has been used 
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to produce a biomass map of tropical regions (Saatchi et al., 2011). The 

limitations of LIDAR are that it currently produces discrete point 

measurements (in the case of the orbital sensors) or thin strips of data (for 

aerial sensors) rather than a full coverage. This means that other data 

sources must be used to interpolate a full coverage between LIDAR samples 

(Mitchard et al., 2012). 

 It is likely that future orbital LIDAR missions will be flown and lead to further 

developments for orbital biomass mapping. However LIDAR suffers from the 

same issue as optical remote sensing in that clouds and smoke haze prevent 

collection of data, a problem which requires careful filtering of the LiDAR 

dataset. LiDAR derived biomass data (Saatchi et al., 2011) have been 

combined with coarse deforestation data (Hansen et al., 2010) to give spatial 

estimates of carbon loss due to deforestation (Harris et al., 2012), However 

the resolution of these maps is still very coarse (18.5km2) in comparison to 

deforestation and degradation processes. Nevertheless, the techniques used 

do point the way for multisensor data fusion techniques that will be needed to 

monitor carbon stocks at the resolution required to detect forest degradation. 

Currently such mapping has only been performed at a sub-national scale (e.g. 

Asner et al., 2010; Sheldon et al., 2012). 

Radar remote sensing is not hampered by cloud cover since water vapour 

does not absorb at the microwave frequencies used and has hence been 

described as an all weather imaging system. Being an active system it is also 

able to gather information both day and night with no complications caused by 

differences in solar illumination angle that can complicate multidate optical 
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imaging. The other major advantage of radar remote sensing is that the radar 

waves penetrate into forest canopies rather simply reflecting from the top 

allowing radar remote sensing to measure structural variables of forests. 

The location of scattering within the various structural elements of the forest is 

important to understand the nature of the returned radar signal and can vary 

depending on both the wavelength and polarisation of the incident radar 

signal. Canopy scattering occurs when the dominant scatterers are randomly 

orientated twigs, branches and leaves and results in a moderate amount of 

radar energy being returned to the sensor. Longer radar wavelengths interact 

less with the fine leaves and branches and tend to scatter from the larger 

trunks and boughs within the canopy (volume scattering). Dihedral (or double 

bounce) occurs when the radar signal is reflected from two surfaces at or near 

right angles to each other often from the ground and walls or tree trunks. This 

scattering mechanism produces strong radar signal returns in the co-polarised 

bands (HH & VV), less so in the cross-polarised bands (HV, VH). Surface 

(ground) scattering is generally low but is related to the roughness of the 

surface with increased roughness producing  increased returns, particularly in 

the co-polarised signal. Finally specular (mirror like) scattering occurs from 

smooth surfaces such as rivers and standing water and results in no returning 

radar energy to the sensor in any polarisation. These areas hence look black 

in radar images. 

Coherence can be used to further discriminate the properties of surfaces. 

Similar phase information collected from on different dates represents a stable 

arrangement of scattering elements such as is found in hard structures and 
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open ground, whereas low coherence indicates that elements have shifted 

slightly such as in forest canopies. For more details on radar scattering 

mechanisms see Ulaby & Dobson (1989). 

Most studies calculate the empirical relationship between ground measured 

biomass and the power of the backscattered radar signal, fit a suitable curve 

to the data and then use this curve in order that the relationship may be 

inverted to produce estimates of biomass directly from the radar data. 

Examples of this include (Austin, 2003; Carreiras et al., 2012; Luckman et al., 

1997; Mitchard et al., 2009; Saatchi et al., 2007; Sandberg et al., 2011; Smith-

Jonforsen et al., 2007; Le Toan et al., 2004; Wang et al., 1995) and many 

others. An example, taken from Englhart et al., (2011) is shown in Figure 2.2. 

Quantifying this radar:biomass calibration for various radar systems and in 

various ecosystems has become the dominant paradigm within radar remote 

sensing. A limitation of these relationships is that they give the impression of a 

stable relationship between radar backscatter and above ground biomass. 

However no indication is given of how stable the relationship is from a 

temporal perspective or how the relationship is likely to vary seasonally or 

across different vegetation types. 

 

Detecting the biomass of tropical forests directly is, however, made difficult by 

the tendency of the radar returns to saturate at relatively low biomass levels 

compared to mature forest (Le Toan et al. 2004). Radar imaging can make 

use of a range of microwave frequencies, although due to design limitations 

only one frequency can be built into a satellite.  Longer wavelengths 
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designated as L-band (23cm ) and P-band (69cm) give more direct 

information on forest biomass as they penetrate further into the forest 

structure and because the signal saturates at higher biomass levels (Le Toan 

et al., 2011; Rignot et al., 1995; Sandberg et al., 2011).  Radar data can be 

collected at different polarisations of transmission and reception is in both the 

horizontal and the vertical direction giving four detection modes each of which 

gives different information about the area being imaged. Radar energy can 

also be electronically pointed giving rise to a number of different observation 

modes (e.g. strip mapping and spotlight mode) which utilise different 

polarisation combinations. A final application is radar interferometry whereby 

radar signals collected from different orbital positions can be compared to 

produce accurate maps of vertical displacement. The drawbacks of radar 

remote sensing are the complex and user intensive image processing chain 

and difficulties of image interpretation. 

Radar waves, being electromagnetic, can be affected by the varying 

properties of the ionosphere and these can complicate radar remote sensing 

from orbiting satellites, particularly at longer wavelengths. Specifically the 

magnitude of scintillation (seemingly random increase or decrease in radar 

signal) and faraday rotation (rotation of polarised radar waves) vary according 

to solar activity (Rogers et al., 2013 ). However as this study was conducted 

during a period of low solar activity the effects were deemed to be negligible. 
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Figure 2.2 One example of an empirically fitted radar:biomass relationship (taken from 

Englhart et al., 2011, © Elsevier). 

The properties make radar remote sensing systems particularly suitable for 

large scale mapping of forest cover and biomass.  Radar mosaics of forests in 

tropical areas have previously been published from data collected by the 

JERS1 satellite (Rosenqvist et al., 2000) and from the PALSAR instrument 

(De Grandi et al., 2011), although no attempt has been made to interpret 

these mosaics. One issue that has to be dealt with when processing these 

mosaics is that because the image is made of strips of images collected on 

different orbits and hence dates, moisture conditions of the scenes can vary, 

thus changing the overall image brightness of the strips and causing sharp 

contrasts at strip edges (De Grandi et al., 2011). 

Radar remote sensing has been used for biomass mapping via backscatter 

(Carreiras et al., 2012) as part of a forest cover mapping system for the 

Amazon (Sheldon et al., 2012) and for fire mapping in Mediterranean 

ecosystems (Tanase et al., 2010; Tanase et al , 2010a). Radar remote 

sensing has the potential for obtaining regular mapping of both forest area 
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and structure without the complications of cloud masking. The ability to  create 

cloud free mosaics makes it an area of growing interest for the forest 

monitoring community. However few radar remote sensing studies have 

investigated  the potential for forest monitoring in a similar manner to the 

advances recently made for optical remote sensing, with most studies using 

only single or bi-temporal sets of radar images for mapping  rather than 

examining multi-temporal dynamics of the radar signal.  

2.3  Summary 

There is clearly a need for more detailed observations of tropical land use 

change processes in order to reduce the large uncertainties related to the 

terrestrial portion of the global carbon cycle. This need will only become more 

pressing should REDD or a similar scheme for preserving forest carbon 

become a reality. A forest monitoring system that can provide timely and 

accurate data concerning forest cover, biomass and disturbance detections is 

urgently required. Remote sensing will be key to such a system and the 

different techniques outlined above are suited to providing different aspects of 

this system.  

Optical remote sensing has seen large advances in the analysis of the 

historical optical remote sensing archive in order to provide baseline data on 

forest area and deforestation rates. Although with high temporal frequency 

near-real time monitoring of forest cover is possible with optical remote 

sensing, it is not possible with current systems to do this at spatial resolutions 

below that of MODIS (250m2) because of the need for multiple dates in order 
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to allow for cloud masking and compositing.  Despite these limitations most of 

the current literature concerning the implementation of REDD suggests the 

use of optical systems for monitoring purposes (Gibbs et al., 2007; Herold & 

Johns, 2007; Herold & Skutsch, 2011). 

Global LiDAR data are limited but recent studies (Mitchard et al., 2012; 

Saatchi et al., 2011) and work with aerial LiDAR (Asner et al., 2010) have 

shown the potential of LiDAR for producing accurate estimates of spatial 

estimates of forest biomass. The ability of radar to provide data on biomass 

has dominated research for a number of years, but radar remote sensing can 

also play an important role in prompt detection of forest disturbance. Although 

the processing of radar data is not straightforward the lack of clouds allows for 

the ready accumulation of images and thus the easy development of temporal 

data stacks for tracking forest change. 

Any forest monitoring system is likely to consist of historical deforestation (and 

coarse spatial/temporal) data from optical remote sensing, location of forest 

carbon from LiDAR data and high frequency spatial/temporal data from radar 

remote sensing for disturbance detection. 

 

2.4  Current knowledge gaps and research needs 

The following research gaps have been identified: 

 The literature on monitoring (i.e. multi-temporal datasets) of tropical 

forests with radar is lacking, particularly when it comes to detecting and 

characterising disturbances.  
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 Knowledge about the temporal radar signal generated by forest 

disturbance has not been reported in tropical peat swamp forests and 

rarely in other types of tropical forest.  

 It is not known if the forest disturbance signal seen in the radar dataset 

is distinct from other temporal signals. 

 There is no information on how applicable radar:biomass calibrations 

are in a forest monitoring context. 

 

This thesis sets out to address these knowledge gaps through an examination 

of the use of long wavelength (L-band) radar remote sensing and its potential 

application for monitoring forest loss in a carbon-dense tropical forest 

ecosystem: peat swamp forest in Southeast Asia. The problem of 

understanding temporal changes in the radar signal is approached from the 

'bottom up', seeking to understand the behaviour of the radar signal in small 

areas rather than using a 'top down' approach of constructing global radar 

mosaics. 
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2.5  Research Objectives 

Specifically: 

1. To observe the temporal pattern of the radar signal change across a 

four year dataset and examine how these patterns are related to 

landscape processes such as deforestation (Chapter 4).  

2. To examine the effect that ecosystem processes other than changes in 

above ground biomass have on the radar dataset (Chapter 5). 

3. To examine the radar signal occurring as a result of loss of peat swamp 

forest through fire (Chapter 6). 
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3. Study area, data collection & data 

processing 

 

This chapter begins with an introduction to the study area, its climate and 

recent history, before moving on to the methodology for collection of above 

ground biomass data in the field. Finally a detailed account of the radar 

processing  methodology is given. 

3.1 Study Area 

The province of Central Kalimantan, Indonesia is located in the southern half 

of the island of Borneo. PalangkaRaya is the provincial capital and is located 

on the banks of the Kahayan River and is surrounded by extensive peatlands 

occupying the low lying coastal plains. This area was chosen as the study site 

(Figure 3.1) because of the range of intact and degraded peatlands occurring 

across the landscape and because previous research projects have provided 

detailed information about the history and mechanisms of forest loss. There 

were also pre-existing collaborative partnerships built up with local institutions, 

giving access to and pre-existing data sets and field teams. The study area 

covered an area of 28,500km2 or approximately 3.7% of the land area of 

Borneo.  
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Figure 3.1. Map showing the location of the study area (right square outline) in Central 

Kalimantan on the island of Borneo (left). Images from and © Google Earth. 

3.1.1 Climate 

The area experiences a monsoonal climate with annual rainfall averaging 

2700 cm a year (Hooijer et al., 2008). Rainfall is greatest in the 9 month 

period between October and June. The 'dry' season months, between July 

and September typically see rainfall reduced to less 5 cm per month (Hooijer 

et al., 2008) shown in Figure 3.2.  However the length and severity of the dry 

season is highly variable and is strongly influenced by El Nino, becoming 

longer and more severe when El Nino episodes occur (Wooster et al., 2011). 

The relatively long duration and unpredictability of the dry season in Central 

Kalimantan in comparison to other peatland areas in South East Asia makes 

the area prone to wild fires. Air temperature is relatively constant throughout 

the year and is in the range of 25-27oC (Moore et al., 2011). 
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Figure 3.2. Top: average long term monthly rainfall (grey) in the study area, in low rainfall 

period (red and yellow) an in high rainfall years (green). Bottom: annual rainfall in the study 

area. Taken from Hooijer et al (2008). 

3.1.2 Recent history of forest loss, fire and development 

Prior to the 1970s most of the local population were indigenous to Central 

Kalimantan and resided along the major rivers, living by fishing and small 

scale subsistence agriculture. In the late 1970s and 1980s this population was 

boosted by the Indonesian government’s transmigration programme which 

moved people from the heavily populated islands of Java and Sumatra and 
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moved them to less densely populated and 'less developed' regions such as 

Kalimantan (Abdoellah, 1987). Within the study area, transmigrant 

communities settled on peat and alluvial in the southern part of the study area 

close to the River Kahayan and a limited number of drainage canals were dug 

to facilitate agriculture. Fire is used as a land management tool by local 

people and in years of average rainfall the fires are easily controlled and 

cause few problems.  

The next major change to affect the area was the initiation in 1996 of the 

Mega Rice Project (MRP) which aimed to convert 10,000 km2 of PSF into 

paddy fields for the cultivation of rice. In order to facilitate this, a network of 

canals were dug across the peatland domes to provide irrigation/drainage 

(shown in Figure 3.7). These canals had the effect of lowering the peatland 

water table and exposing previously wet, anoxic peat to the atmosphere, 

thereby facilitating the loss of the peat through aerobic decomposition and an 

increased incidence of fire. The acidic, nutrient-poor peat soils proved 

unsuitable for rice production and the project was soon abandoned (Muhamad 

& Rieley, 2002). The area is now referred to as the ex-Mega Rice Project 

(exMRP; the block names used in the project are still used to refer to the four 

large land parcels of land, see Figure 3.3). The MRP left behind a legacy of 

peat fires, forest loss and environmental degradation. 
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Figure 3.3 Location of the blocks of ex-Mega Rice Project (red outline) and the Sebangau 

forest in Central Kalimantan, Indonesia. Also shown are the towns of PalangkaRaya and 

Kualakapuas and the local rivers in blue. Remaining areas of forest show as dark green. 

Background image is from the Global Landcover 2000 collection, USGS/NASA Landsat.  

 

Hoscilo et al (2011) provide a history of the land cover in the study area based 

on a time series of remote sensed images. In the early 1970s, the land cover 

consisted largely of intact peat swamp and riverine forests, with some 

transmigration settlements at the southern end of Block C (see Figure 3.4). 

Over the next 30 years the area of peat swamp forest was reduced by 72%  to 
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be replaced by mosaics of trees and non-woody vegetation (grasses and 

ferns). This change in vegetation cover was a result of an increase in fire 

frequency (Figure 3.5) with fires spreading away from the vicinity of the 

drainage channels and roads. Prior to the establishment of the MRP fire return 

intervals were in the order of 10 years. After the initiation of the MRP and in 

conjunction with the intense El Nino episode of 1997-98, large areas of peat 

swamp forest were lost to fires with the carbon emissions from this one event 

having impacts at both local and global scales (Page et al., 2002). Since then 

periodic fires have become much more frequent with return periods of 2-5 

years, with the most recent fires occurring in October 2009. A result of the fire 

history is that the landscape presents a range of biomass and disturbance 

histories over which to study the changes in the radar signal and also the 

opportunity for direct observation of disturbance events within a multitemporal 

radar data set.  
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Figure 3.4.Land cover change in block C of the exMRP 1973 (left) and 2005 (right, figure 

taken from Hoscilo 2009 PhD thesis). 



38 
 

 

Figure 3.5 Fire frequency in Block C, (left) 1973-1996 and (right) 1997-2005, (figure taken 

from Hoscilo, 2009 PhD thesis) 
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3.1.3 Field data collection 

Above ground biomass data for peat swamp forest (PSF) and secondary 

vegetation derivatives were collected along a gradient of increasing forest 

degradation from intact forest to areas that had been burnt multiple times and 

which contained no woody vegetation at all. As the period of data collection 

was limited to a period of three years, long term monitoring of plots in order to 

quantify growth/regrowth of vegetation following disturbance was not possible. 

Instead plots were located across a biomass gradient from relatively intact 

peat swamp forest in the Sebangau forest to the west of the Sebangau river 

and outside the exMRP area.  This forest has a history of selective logging 

which ceased some ten years ago and is referred to subsequently as the 

Sebangau peatland. In contrast, further plots were located in heavily 

degraded areas of PSF within the exMRP where the land cover was 

dominated by non-woody vegetation (these locations are referred to 

subsequently by the Block names, i.e. Blocks A, C and E). These plots 

provided data across a gradient of disturbance frequency/intensity (Hoscilo et 

al., 2013). Plots were only revisited if, in the time since the last visit, there had 

been a disturbance, as occurred in 2009 when fires burnt some of the 

previously measured plots.  

Forest biomass data were collected using two different methodologies: the 

first created for the purposed of this thesis and referred to below as the 

methodology one. The second method was developed for long term 

monitoring by the Indonesia Australia Forest Carbon Partnership (IAFCP). It is 

referred to as method two below.  Although it would have been ideal if all data 
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had been collected using the same methodology, the inclusion of primary and 

secondary data collected according to the IAFCP methodology not only 

greatly increased the amount of available biomass data, but also gave 

valuable additional information at the higher end of the biomass scale. Despite 

the different data collection methodologies data derived from both datasets 

are comparable using the method described below. Some degree of bias was 

inevitably  introduced by the inclusion of two different sampling schema, 

however this was difficult to quantify as the two datasets sampled vegetation 

at different ends of the biomass range. For a small number of plots in the 

dataset there were estimates of both biomass from both methods. These 

showed no significant bias at high biomass (>50 tonnes per hectare). At lower 

biomass levels the IAFCP method two showed either lower or higher biomass 

estimates as the smaller plot sizes (primarily designed for sampling high 

biomass areas) were affected by the inclusion or exclusion of larger trees 

compared to the larger plots used in method 1.  

 

Plot data were collected at the study sites in the dry seasons of 2009, 2010 

and 2011. The first two trips involved data collection from in and around Block 

C and the Sebangau peatland as well as some plots to the north of 

PalangkaRaya; all data collection on these trips used the University of 

Leicester methodology. The 2011 trip collected data from the IAFCP study 

area in Block A, largely along the banks of the Mantangai River. The data 

from this latter trip were collected in conjunction with IAFCP and according to 

their field protocols. In total, 30 plots were sampled in Block A and 25 in and 
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around Block C and the Sebangau forest (including 6 plots that were sampled 

in both 2009 and again after they burnt in 2010). Access to the IAFCP 

database provided data for another 84 plots in Block A and Block E giving a 

total number of 139 plot based biomass estimates. The locations of all plots 

are shown in Figure 3.7. 

 

Field biomass estimation: method 1. 

As in the emphasis of this study was on assessment of forest biomass rather 

than floristic composition, no tree species identification was undertaken. 

Species identification is an often time consuming process and time saved by 

omitting tree IDs could be spent measuring further plots. A sampling 

methodology utilising two plot sizes was used; three small sub plots of 20m by 

20m in which trees were measured were nested within a 100m by 100m (1 

ha) plot. The reason for choosing this sampling schema was to try and 

account for the spatial heterogeneity that is found, particularly in degraded 

areas. This heterogeneity took the form of isolated clumps of trees often 

centred around surviving intact large forest trees. The high biomass of these 

clumps in comparison to the surrounding areas of fern dominated  peatlands 

could lead to significantly skewed biomass estimates if not accounted for in 

the experimental design of the sampling plots. The scale at which these 

clumps occurred is of a scale too large to be sampled within the nested plots 

but is of a scale that can be captured within the overall 1 ha plots. An average 

biomass value was calculated from the three nested plots that was less likely 

to be affected by stochastic spatial variation in biomass (i.e. clumps of trees) 
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and hence provided an estimate of biomass representative of the sampled 

area less effected by the random inclusion of tree clumps. The difference in 

the biomass between the nested plots also provided an indication of the 

spatial heterogeneity of biomass at the sample locations. The size of the 1ha 

plots was also chosen so that they would contain >5 pixels of medium 

resolution satellite data (e.g. Landsat, ALOS PALSAR, etc). This allowed 

some spatial averaging of information extracted from the remote sensing data 

and reduced the effect of pixel variation, a phenomenon that is particularly 

prevalent in radar imagery where it is referred to as speckle (Lee, 1986) and 

to take into account slant effects of the incident radar sensor, whereby trees 

located outside plots may contribute to scattering apparently from within the 

plot. 

In the field the four corners of the 1ha plots were marked using GPS 

waypoints. The locations of the three sub-plots within the 1 ha plot were 

chosen from a pre-prepared list of random co-ordinates on a 5*5 grid (with a 

possible 20*20m plot locations within the 1 ha plot). Once located the sub-

plots were laid out with the aid of a compass and delineated using 40m 

measurement tapes. The percentage cover of bare earth and non woody 

vegetation within each subplot was noted. The diameter at breast height (dbh, 

standardised as 1.3m above ground level) of all trees in the plots was 

measured using a diameter tape. The height of all trees in the plot >1.5m in 

height was measured in meters using a 2m pole marked in 10cm increments. 

Where tree height was greater than 4m the height was calculated using a 

clinometer at a known horizontal distance from the tree (measured using the 
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height pole) to measure the angle to the top of canopy in relation to the 

horizontal. Tree height was then calculated using equation 3.1. Trees were 

recorded as alive or dead, as judged by the presence or absence of green 

leaves. Where trees had a multi-stemmed growth form with multiple braches 

sprouting from ground level, measurements were taken from each stem.   

 

Calculation of forest biomass 

Biomass was calculated using the global allometric equations for wet forests 

as published by Chave (2005, see equation 2) as there is a lack of any 

specific allometric equations produced specifically for PSF trees. Input 

variables for the equation were tree height and dbh (both measured in the 

field). The third input variable is wood density. Average values of wood 

density were calculated for degraded areas and forested areas as it was 

thought likely that tree species found in degraded areas would be faster 

growing and therefore likely to have less dense wood. In order to calculate 

these average values 16 tree cores were collected using an increment borer. 

Ten cores were taken from trees in a forested area and six from trees in 

degraded areas (tree species were not ascertained as values were used to 

give average wood density for degraded and forested areas). Cores were 

stored and labelled in drinking straws until they could be returned to the lab at 

the University of PalangkaRaya. Wet weight in grams was measured to two 

decimal places using laboratory scales and samples were then dried in an 

oven and weighed daily until their weight was no longer decreasing. Dry 

weight was then recorded and sample volume was calculated using the water 
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displacement method (volume increase after immersion of samples in a water 

filled measuring cylinder). Wood density was calculated according to equation 

3 (Chave, 2005) and the results are shown in Figure 3.6. It is however likely 

that the wood density value for degraded areas is an overestimate as the 

most common species of tree (Cratoxylum arborescens) had wood so light 

that the corer would not bite and wood cores were unobtainable. Once the 

biomass of each tree had been calculated using the allometric equation and 

the appropriate wood density for the sample areas (forest or degraded), 

biomass values were summed per sub-plot and then converted to values in 

tonnes per hectare.  

 

                  (3.1) 

Clinometer formula for the calculation of tree height in meters (H) where d is the distance from 

base of tree (m) to the measuring position,   is the angle from horizontal of tree top as 

measured with a clinometer and h is the the eye height of the person using the clinometer. 

 

                                    (3.2) 

                      

Chave's formula for calculating biomass from tree height in meters(H), where D is the 

diameter of the tree at breast, and p is wood density. (Chave et al., 2005). 

 

         (3.3) 

Calculation of wood density (after Chave, 2005), where WD is wood density (g/cm
3
), w is dry 

sample weight (g) and v  is sample volume (cm
3
). 



45 
 

 

Figure 3.6. Average wood density for each landscape type (degraded = 0.38 g cc-1, forested 

= 0.50 g cc-1). Bars are +/- standard error. 

Field biomass estimation method 2 

The IAFCP data collection methodology was designed to enable long term 

monitoring of forest carbon stocks and as such had subtly different aims to the 

University of Leicester methodology described above. Degraded areas were 

under represented in the existing IAFCP biomass database, thus  fieldwork 

was undertaken in the dry season of 2011 using the IAFCP methodology to 

sample plots in burnt areas of Block A (i.e. in order to increase the 

representation of plots with low biomass within the database). 

IAFCP plots were 32*32m, however as they were designed to be used in 

areas of high stem density (i.e. intact forest) the trees sampled within the plot 

were stratified by tree size and sampled from within nested plots as follows: 

Trees with dbh >20cm were sampled in the full 32*32m plot, trees with a dbh 

of  between 10 and 20cm were sampled within a 16*16m sub-plot, trees with a 
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dbh <10cm and >1.5m in sub-height were sampled within an 8*8m sub-plot 

and trees <1.5m in height within a 2*2m plot. The final class of trees (<1.5m in 

height) were not included in the biomass estimate as no height values were 

attached to them and because they had not been sampled under the 

University of Leicester methodology. 

As for the University of Leicester methodology the volume of each tree was 

calculated using Chave's equation and converted to biomass using the wood 

density value for degraded areas. Biomass values for each tree class/nested 

plot were then summed and converted to biomass values in tonnes per 

hectare. The location of biomass plots throughout the study area is shown in 

Figure 3.7. 
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Figure 3.7.  The location  of biomass sample plots. Yellow dots indicate plots sampled by the 

University of Leicester, Purple dots indicate biomass data collected by the AusAID project. 

Insets show details of two areas where plots were concentrated. Also shown are canals (blue) 

and roads (red). The background Landsat image is as used in Figure 3.3. 
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3.2 Radar image processing 

The following section describes the processing chain used to generate the 

radar dataset; scripts are given in Appendix 8.1. 

3.2.1 Image mode selection 

PALSAR images were obtained via the ALOS user interface gateway 

(https://auig.eoc.jaxa.jp/auigs/top/TOP1000Init.do; shown in Figure 3.8) which 

allows searching and ordering of the radar image catalogue. Images were 

obtained in Fine Beam Dual Polarisation (FBD) mode because of the regular 

acquisition schedule compared to the fully polarimetric (quad-polar, PLR) 

mode, which allowed the collection of a denser time series of images and 

because the extra channel increased the  information content compared to the 

single polarimetric mode (FBS). FBD images were utilised in favour of the 

ScanSAR product which produces monthly images covering a wide area. It 

was felt that the extra spatial resolution (100m2 in the ScanSAR mode as 

opposed to 12.5m2 in FBD) was more suited to the scale at which forest 

degradation was occurring in Kalimantan. The FBD products were collected at 

a consistent incidence angle of 34.3o which simplified image interpretation. 

The PALSAR data were downloaded in the ungeocoded level 1.1 format as 

this provided an  opportunity to investigate the use of multidate interferometric 

coherence as an extra channel of image information.  

https://auig.eoc.jaxa.jp/auigs/top/TOP1000Init.do
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Figure 3.8. Screenshot from the ALOS user gateway showing location of PALSAR radar 

footprints. Boxes 1-3 strip 423, 6-8 strip 422 and 4 & 5 strip 421. Inset shows location of area 

within the Borneo, © JAXA. 

 

3.2.2 Radar backscatter 

Once image files have been downloaded from JAXA and were decompressed 

the basic radar processing was done using the GAMMA radar processing 

package with commands being structured into bash scripts running under a 

Linux platform. PALSAR images were extracted to single-look complexes 

(SLC) and calibrated using a calibration factor of -115db as published on the 

JAXA website (https://auig.eoc.jaxa.jp/auigs/en/doc/an/20090109en_3.html). 

Multilooking was then performed using 2 looks in the range direction and 9 

looks in the azimuth direction. This number of looks was chosen based on the 

effect that they would have on the output pixel size with the selected number 

of looks producing an output pixel of 25m2 identifier by Asner et al.,(2005) as 

https://auig.eoc.jaxa.jp/auigs/en/doc/an/20090109en_3.html
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the minimum at which forest degradation could be detected whilst also 

providing a suitable levels of reduction speckle noise.  

3.2.3 Interferometric coherence 

Coherence images show the phase similarity of a pair of images obtained 

from different locations and/or times. Coherence images were calculated 

based on image pairs acquired 46 days apart (the return time of the ALOS 

satellite). In order to generate coherence images the spatial offset between 

images was calculated using the intensity cross correlation technique and the 

image pair was resampled so that they were precisely co-located and the 

interferogram was calculated. The perpendicular baseline (spatial separation 

between the locations where images were obtained) was calculated from the 

orbital parameters of the satellite and the image was then flattened to 

compensate for the curvature of the earth. The coherence was then generated 

from the interferogram and the results filtered using adaptive interferogram 

filtering. 

3.2.4 Geocoding 

The next task was to convert the calibrated and multilooked images into a 

geocoded product. To do this required an already geocoded reference image 

against which to geocode the processed radar image. A number of reference 

images covering the study area were tested including SRTM tiles and a 

mosaic of Landsat panchromatic bands. However best geocoding results were 

obtained using a combination of the SRTM scene for rough preliminary 

geocoding and a mosaic of PALSAR L1.5 scenes (which were supplied 

geocoded by JAXA) for the final precision geocoding. The process involved 
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creating a map parameter file (dem_par) for the SRTM and PALSAR L1.5 

images and then projecting them both into the final map projection (UTM zone 

50 South). Look up tables for the cross correlation of the reference images 

and the radar images were then produced. The initial values in the look up 

tables was derived from the orbital parameters of the satellite at the time of 

image aquisition and transformed in to the output geometry. The image was 

converted at this stage from slant range to ground range viewing geometries. 

Fine geocoding between the two images was performed using intensity cross-

correlation in a number of sample windows. Once a rough solution to the 

geocoding had been produced it was stored in the parameter file. Further 

precision geocoding was then performed against the L1.5 PALSAR mosaic 

with the geocoding solution being refined using matched search windows in 

the radar and reference image for intensity cross correlation. This was an 

iterative procedure with the size of the windows decreasing and the number of 

windows increasing in order to provide the most accurate final geocoding 

solution possible. The final solution was then applied to the calibrated 

multilooked dual polarisation images and to the interferometric coherence 

images. Images were terrain corrected to account for differences in elevation 

at this stage. However as the study area has little change in elevation (max 

height 30m above sea level) the effects of this process were neglible. 

 

3.2.5 Mosaicing and Filtering 

Subsequent radar processing was carried out using the ENVI 4.7 software 

package. This was facilitated by converting the GAMMA radar parameter files 
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into ENVI header files. To simplify further processing, the images were 

mosaiced into strips obtained on the same date using the georeferenced 

mosaic tool in ENVI. Same strip mosaics from different dates were then 

stacked into a single image using the Layer stack option. 

In order to further reduce speckle noise and improve radiometric resolution 

each stack of images was filtered in the temporal domain using the multi-

channel filtering algorithm developed by Quegan & Yu (2001). The multi-

channel filter was used instead of the more usual spatial filtering in order to 

preserve spatial resolution and because it is particularly suited to reducing 

speckle in multi-temporal image stacks (Trouve et al., 2003). This process 

was implemented in IDL (the script is given appendix 8.2.1) and was 

performed separately for each image stack and polarisation mode. Coherence 

data were not filtered as they had already been filtered in the interferometric 

processing and implementing the MCF filter resulted in overly smoothed 

image data. In order to check that the filtering technique was not altering the 

image data the mean and standard deviation (Std Dev) of pixels values 

collected from regions of interest representing a variety of landscape types 

and image collection dates were compared before and after the filtering 

process. Ideally a filter would not change the average pixel values as this 

could introduce a bias into later analyses, however it would act to 'smooth' the 

pixel by reducing the variability within the pixels. Figure 3.9 shows that the 

MCF filter performs this task almost perfectly with the mean (of mean) ROI 

values remaining virtually unchanged (0.0852 before against 0.0851 after 

filtering) whilst the mean of StDev of pixel values was reduced from (0.0212 
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before and 0.0130 after filtering). The range of mean values was also near 

identical before and after filtering, whilst the range of StDev values was 

significantly reduced. From this it was concluded that that the MCF filtering did 

not introduce any bias into the radar data and that there should be no 

significant effects of the MCF filter on temporal dynamics. The processing 

chain includes two steps in which averaging takes place, firstly in the 

multilooking stage were averaging occurs in the spatial domain and secondly 

in the MCF filtering where the averaging occurs across the temporal domain. 

Although efforts have been made to ensure that neither of the processes 

introduces artefacts onto the data and that the two processes work 

synergistically, it would be preferable if the process could be accomplished 

with a single algorithm, However no such algorithms are available at the 

present time. The final step in the processing chain was to convert the radar 

backscatter from linear units to logarithmic units (decibels). This was done 

using the band math feature within ENVI and multiplying the pixel values by 

10 log10. 
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Figure 3.9. Mean (top) and Standard Deviation (bottom) of pixel values collected from ROIs 

covering a range of landscape types before (left) and after (right) filtering by using the Multi 

Channel filtering algorithm. Histograms are shown on the left of each inset whilst on the right 

the boxes show 25th and 75th quartiles whilst whiskers show 95% quantiles and dots are 

outliers beyond this range . Red bars show the shortest range containing 50% of values. 
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Table 3.1a                                                         Strip: 421 

Year Date 421_7130 421_7140 

HH HV HH HV 

2007 
20070622    

20070807    

20070922    

2008 
20080509    

20080809    

20080924    

2009 20090627    

20090812    

2010 

20100630    

20100815    

20100930    

20101105    

 

               Table 3.1b                                                             Strip: 422 

Year Date 422_7120 422_7130 422_7140 

HH HV HH HV HH HV 

2007 
20070709      

20070824      

20071009      

2008 

20080526      

20080711      

20080826      

20081011      

2009 
20090714      

20090829      

20091014      

2010 

20100717      

20100901      

20101017      

20101202      
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           Table 3.1c                                                                     Strip: 423 

Year Date 423_7120 423_7130 423_7140 

HH HV HH HV HH HV 

2007 
20070610      

20070726      

20070910      

2008 

20080427      

20080612      

20080728      

20080912      

2009 
20090615      

20090731      

20090915      

2010 

20100618     x 

20100803     x 

20100918     x 

20101103     x 

 

Table 3.1. Dual polarisation radar backscatter processing results. Top Table gives results for 

strip 421, middle Table gives results for strip 422 and bottom, Table gives results for strip 423. 

A tick indicates successful processing and georeferencing of the scene. A cross indicates that 

the scene was not able to be processed. 

 

                   Table 3.2a                                                           Strip: 421 

Year Date 1 Date 2 421_7130 421_7140 

HH HV HH HV 

2007 20070807 20090812    

20070922 20080924    

2008 20080924 20070922    

2009 20090812 20070807    

* south east portion largely obscured 
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                        Table 3.2b                                                                        Strip: 422 

Year Date 1 Date 2 422_7120 422_7130 422_7140 

HH HV HH HV HH HV 

2007 20070709 20070824      

20070824 20071009      

2008 
20080526 20080711      

20080711 20080826      

20080826 20081011      

2009 20090714 20090829      

20090829 20091014      

2010 
20100717 20100901      

20101202 20101017      

20100901 20101017     x x 

 

                       Table 3.2c                                                                            Strip: 423 

Year Date 1 Date 2 423_7120 423_7130 423_7140 

HH HV HH HV HH HV 

2007 20070610 20070726      

20070726 20070910      

2008 20080728 20080912      

2009 20090615 20090731      

20090731 20090915      

2010 20100618 20100803      

20100803 20100918      

* scene obscured, **some image artefacts (striping) across these scenes 

Table 3.2. Coherence processing results. Top Table gives results for strip 421, middle Table 

gives results for strip 422, bottom Table gives results for strip 423. Date 1 and date 2 give the 

collection dates for the image pairs. A tick indicates successful interferometric processing of 

the pair of scenes. A cross indicates that the scene was not able to be processed. 
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3.2.6 Processing environment 

All processing was done on the University of Leicester cluster computer. Each 

scene was processed on a separate core with 2Gb of memory and  took 

approximately 10 minutes. 263 scenes were processed, however it was not 

possible to process a number of the backscatter scenes due to the geocoding 

algorithm being unable to match sufficient numbers of intensity cross 

correlation windows due to high signal noise ratios. Details of processed 

backscatter scenes are given in Table 3.1 

The processing of the coherence scenes from image pairs was much more 

problematic with many coherence images failing to process correctly due to 

errors in the processing chain and for this reason there are many fewer 

coherence images available. Details of the coherence processing dates are 

given in Table 3.2. Coherence images were calculated from both HH and HV 

image pairs. However the coherence layers for both polarisations were 

essentially identical and only HH coherence images were used for the 

subsequent analyses in this thesis. Figure 3.10 shows a small subset of a false 

colour composite taken from the final radar data. 

3.3 Summary 

In this chapter the study area has been introduced and its disturbance history 

described. The method of sampling forest biomass in the field is described as is 

the processing and production of the temporal stacks of radar data. In the next 

chapter the spatio-temporal variation of the radar signal in the temporal stacks 

is examined and in the subsequent chapters this variation is linked to ecological 

processes occurring in the landscape. 



59 
 

 

Figure 3.10. Example of false colour composite PALSAR image covering the Kalampangan 

region at the northern end of Block C. (Red channel = HH coherence, Green channel = HV 

backscatter, Blue channel = HH backscatter.) Forested areas appear green, floodplains and 

burnt areas bright turquoise, degraded areas and floodplains red and open water black. Linear 

features are drainage canals. 
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4. Patterns of backscatter change 
across a landscape of Peat Swamp 
Forest 
 

4.1 Introduction 

Past research has established relationships between the radar backscatter and 

the amount of above ground biomass measured on the ground (e.g. Le Toan et 

al., 1992; Cartus et al., 2012; Mitchard et al., 2009; Mitchard et al., 2009). 

However, the majority of these radar:biomass calibration curves are based on 

single temporal samples of (approximately) co-located biomass estimates and 

radar signals and contain no indication of the temporal stability of the radar 

signal and hence of the calibration curve (e.g. Figure 4.1). 

 

Figure 4.1. Example of radar biomass calibration curves (taken from Englhart et al., 2011, © 

Elsevier). 

Only a few studies provide temporal radar profiles with more than two samples; 

of those that do, most report high levels of radar backscatter variability. For 

example, Salas et al (2002) exploited a chronosequence of forest disturbance 
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that produced  a range of biomass values for which the temporal backscatter 

profiles in a series of 8 JERS over Amazonian forest were generated. Good 

qualitative relationships were found when JERS backscatter was compared 

across this chronosequence but it was also observed that quantitative 

estimates of biomass at the plot scale were not stable due to temporal 

variability in the radar signal. This was attributed to a combination of moisture 

effects, calibration errors and system noise. Romshoo (2003), using a time 

series of 14 JERS-1, L-band radar scenes collected over the ex-MRP in Central 

Kalimantan,  found that undisturbed forest had very low temporal variation 

(<1dB). He thus used a change detection threshold of >2dB in order to identify 

areas of biomass change, but noted that riparian and short pole peat swamp 

forest were likely to be falsely identified using this threshold and that croplands 

and burnt areas could show >7dB of radar change between wet and dry 

seasons. In an effort to minimise these temporal variations and overcome false 

detections his analysis proceeded using only radar images collected from the 

dry season. Similarly, Siegert (2000) noted that unburnt areas of peat swamp 

forest in East Kalimantan showed backscatter variation of  ~0.5 dB across a 

collection of  6 ERS images collected over a 9 month period. Martinez (2007) 

acquired a temporal sample of 21 JERS scenes collected over the Amazonian 

floodplain and used a multitemporal classifier in order to perform a vegetation 

classification. This exploited a division of the space described by the mean 

backscatter and a temporal change estimator to label vegetation types and 

flooding duration. A more advanced method utilising decision trees was used in 

the Brazilian Pantanal exploiting both ALOS PALSAR and RADARSAT data to 

perform a classification of vegetation (Evans et al., 2010). Working with ERS 
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data, Minchella et al. (2009) used unburnt forest as a control to compare with 

burnt areas of Mediterranean pine forest. The backscatter from these 

undisturbed areas showed a temporally consistent backscatter value across a 

range of 34 dates with variation approximately +/- 1 dB around the long term 

mean value. Reasons for this temporally stable backscatter are likely related to 

the biomass signal saturating any moisture signal but could equally be due to 

the study occurring in a dry Mediterranean climate without much seasonal 

variability in rainfall. 

Some patterns do emerge from the limited literature on temporal radar profiles. 

Firstly. high biomass areas such as intact forest show more stable (i.e. less 

variable) temporal radar profiles than low biomass or disturbed areas of 

vegetation. Secondly. many of the studies showing high temporal variability of 

the radar signal come from wetland ecosystems or ecosystems that go through 

periods of inundation, indicating that water or moisture effects may be at least 

partially responsible for causing some of the temporal variation in the radar 

signal (e.g. Kasischke, 2003).   Moisture effects are further investigated in 

Chapter 5. 

In this chapter the aim is to describe how the radar signal behaves across a 

gradient of increasing biomass from areas of degraded forest with low biomass 

to areas of intact peat swamp forest with high biomass. The focus in this 

chapter is on areas and/or periods where no change in biomass occurred 

during the period covered by the radar samples. (The radar signal from areas 

undergoing changes in the amount of biomass is examined in more detail in 

Chapter 6 of this thesis). One area of potential terminological confusion should 

be clarified. Although there is some natural variation in the biomass of 
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undisturbed peat swamp forest (for example between mixed peat swamp forest 

on the margins of the peat dome to low pole peat swamp forest further up the 

peat dome) the majority of the biomass gradient examined in this chapter is a 

product of the past history of disturbance across the landscape, in this case the 

accumulated effects of multiple fires (Hoscilo et al., 2011). Hence by examining 

the radar signal across a gradient of peat swamp forest biomass this chapter 

explores the effect of forest disturbance on the radar signal; it does not address 

(at least, not within this chapter) the proximate effect of disturbance directly 

within the time series of radar images. 

4.1.1 Aims 

In this chapter, the following research questions are addressed: 

1. What are the patterns of temporal backscatter change across a gradient 

of increasing biomass from low to high biomass peat swamp forest? 

2. How do the levels of temporal backscatter change across the biomass 

gradient relate to the temporal radar signal across the whole landscape? 

3. Does the temporal variation of the radar signal need to be taken into 

account when producing maps of biomass from radar images? 
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4.2 Methods 

In this section the temporal mean and temporal standard deviation (referred to 

in the following text the as tMean and tSD) of the radar data are investigated.  

4.2.1 How does the temporal backscatter pattern vary across a biomass 

gradient? 

The radar image stacks and biomass amounts described in Chapter 3 were 

overlaid and the temporal radar profile for each plot was extracted using a 

100m circular buffer around the GPS point for each plot. Temporal mean 

backscatter for each biomass value was plotted against measured biomass (n= 

145) with +/- 1 tSD plotted as error bars around the mean (Figure 4.2) in order 

to show the temporal variability of the radar signal. In order to reduce the 

variation between biomass values, the biomass estimates were grouped into 

classes. Biomass ‘bins’ were smaller when biomass was <100 tonnes per 

hectare compared to when they were >100 tonnes per hectare because of the 

skewed distribution of biomass values (the majority of plots contained only 

small amounts of biomass). The mean, minimum, maximum and 10% and 90% 

quantiles of HH and HV backscatter temporal variability were calculated and 

plotted for each biomass class (Figure 4.3) in order to show how the 'envelope' 

of radar signal variability changed across the biomass gradient. Finally, the 

mean HH and HV backscatter values and standard deviations for each biomass 

value were plotted against each other. In order to assist with the interpretation 

of the plot, however, it was necessary to reduce the size of the error bars so the 

tSD were multiplied by 0.2 (Figure 4.4).   
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Figure 4.2. The temporal variation of the PALSAR radar signal measured from 2007-2010 

across the biomass gradient. Error bars represent +/- 1SD of the temporal variation. Top, HH 

polarisation and bottom, HV polarisation. 

As an alternate means of visualising the variability of the radar signal/biomass 

dataset an interactive online animation of this dataset is available online: 

http://mattwaldram.com/biomass_radar.htm.

http://mattwaldram.com/biomass_radar.htm
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Figure 4.3. Envelopes of temporal variability across the biomass gradient. Biomass plots are 

binned into groups and lines join the minimum, 10% quantile, mean, 90% quantile and 

maximum for each group. 

 

Figure 4.4. The relationship between temporal variability in HH and HV polarisation. NOTE that 

the error bars are the 0.2 *standard deviation multiplied by in order to make this graph 

intelligible. Inset shows groups of points as discussed in the text. 
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4.2.2 How does radar backscatter vary over an entire landscape?  

Figure 4.3 shows that the variability of the radar signal changes across the 

biomass gradient. In order to understand how this variability fits with that 

observed across the entire landscape the temporal mean and temporal 

standard deviation were calculated on a per pixel basis for each stack of 

calibrated, multilooked and filtered radar images (see Chapter 3). Image stacks 

were read into MATLAB using the 'enviread.m' script (Appendix 8.3.1) and the 

temporal mean and standard deviation for each stack of pixels were calculated 

('mean_SD_calc.m' scripts, Appendix 8.3.2). The resulting images were then 

joined into a mosaic covering the entire study area and displayed using a colour 

map (ENVI rainbow) in order to provide contrast. This was done separately for 

both polarisations of radar data. The tMean is shown in Figure 4.5, the tSD is 

shown in Figure 4.6. 
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Figure 4.5. A mosaic of 8 PALSAR FBD showing temporal mean (tMean) of the PALSAR backscatter image stack over the period 2007-2010. HH left, HV 

right. Note different colour scales.  
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Figure 4.6. A mosaic of 8 PALSAR FBD images showing the temporal Standard Deviation (tSD) over  the ex-MRP, Central Kalimantan. 
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4.2.3 How can temporal patterns of landscape backscatter change be interpreted?  

Maps of tSD only show the locations where changes in radar backscatter are 

happening;  they say nothing about the relative timing of the changes or how 

frequently they occur. Empirical Orthogonal Functions (EOFs) were used to separate 

different patterns of temporal change in the radar backscatter in both the spatial and 

temporal domains. EOFs belong to a family of eigentechniques that utilise matrix 

rotations in order to simplify data by reducing dimensionality (Hannachi, 2004). EOFs 

are computationally very similar to Principal Component Analyses (PCAs) extended 

into the time domain and have a long history of use in climatology where analysis of 

datasets varying in both the temporal and spatial modes has been common for some 

time (Hannachi et al., 2007). As an example to explain the concept imagine a data 

set consisting of 10 years of daily satellite images (i.e. 3650 image) captured over 

the same location. Captured in this large high dimensional dataset would likely be a 

number of processes occurring over daily, seasonal, annual and interannual 

timescales. When analysed using the EOF methodology the data set would be 

reduced in size and dimensionality. A number of EOF layers would be produced 

each accounting for successively less of the variation in the entire dataset. A time 

profile would indicate the magnitude and frequency of changes and an EOF image 

would indicate where these modes of variation were occurring. EOFs have been 

predominantly used  for describing spatio-temporal patterns in atmospheric and 

oceanographic contexts, although they have also been used to describe the changes 

in patterns of urban development (Small & Elvidge, 2011). In this thesis they have 

been applied in a terrestrial context with the aim of separating seasonal or quasi-

seasonal patterns of backscatter change from more abrupt changes associated with 

forest loss and degradation. The input dataset for the EOFs are the time stack of 
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radar images and the outputs are a series of images explaining decreasing 

percentages of the variation in the original stack. Pixels in the images show how 

similar a pixel’s temporal behaviour is to that described by the individual EOF. Pixel 

values in the output images indicate how similar that pixel’s temporal profile is to that 

of the output EOF band. Each EOF image has with it an associated graph showing 

the variation of that band through time. 

EOFs were calculated individually for each strip and polarisation of radar data. In 

order to calculate the EOFs for each time period the stack of radar images were 

reformatted into a 2 dimensional matrix with one row for each pixel and separate 

columns for each time period. This was done using the 'map2map.m' script 

(Appendix 8.3.3). During this process all 0 values around the outside of the image 

stack were masked.  The first 6 EOFs were then computed using the 'caleof.m' script 

(Appendix 8.3.4) with the memory efficient method 2 selected. Output images files, 

one for each EOF, were then converted back in to geographic co-ordinates 

('mat2map.m' Appendix 8.3.5) and converted into an ENVI format using the script  

'enviwrite' (Appendix 8.3.6). If the EOF script would not run a peat depth mask 

(shown in Figure 4.7) was used to reduce the spatial extent of the input radar 

dataset. Table 4.1shows which scenes required masking and which mask was used. 

Table 4.1. EOF processing success and masking parameters. Y = processed successfully, x = 

process failed.  

 

Strip Polarisation No 

mask 

peat 

mask 

peat > 50cm 

mask 

peat >100cm 

 

 

421 HH Y 

    

 

HV x x Y 

  

 

422 HH Y 

    

 

HV x x x x 

 

 

423 HH x x x x 

 

 

HV Y 
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Text files containing the temporal variability and amount of variation in the total 

dataset explained by each EOF were also output and converted into line graphs and 

tables respectively. EOFs were calculated in MATLAB using a large memory node of 

the ALICE cluster computer (http://www2.le.ac.uk/offices/ithelp/services/hpc/alice). 

Due to computer RAM size constraints it was not possible to run the entire dataset 

as one mosaic as was done for the spatial maps of temporal standard deviation and 

mean. Instead the analysis was run on individual strips of radar data. 

Not all scenes ran successfully with an error produced when the eigenvalues failed 

to converge, indicating that the program had not been able to separate the dominant 

modes of variation in the data. In an effort to overcome this, the peat depth map 

shown in Figure 4.7 was used to spatially subset the input data in an attempt to 

isolate the temporal variability in peatlands from that observed around rivers. Data 

were successively clipped to include only areas of peatland (i.e. peat >0cm), areas of 

peat >50cm deep and areas of peat >100cm. Table 4.1 gives details on which 

datasets were run with which mask. 

4.3 Results 

4.3.1 Temporal variation of radar backscatter across a biomass gradient  

Temporal radar profiles were extracted for 145 locations with associated biomass 

estimates. Figure 4.2 shows the temporal variability of the radar signal (+/- 1 tSD) 

over a 4-year period for both polarisations of the radar signal for each biomass value 

across the gradient of measured biomass for peat swamp forest. The general pattern 

of signal variability change is evident in both radar polarisations, namely that the 

greatest signal variability occurs at low biomass levels, but with the HH polarisation 

showing much high variability. There is also a large amount of variability between 

http://www2.le.ac.uk/offices/ithelp/services/hpc/alice
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biomass values even when the measured biomass is similar. The variability at low 

biomass in the HH polarisation results in some low biomass values having at some 

time points greater backscatter than high biomass values. This can be clearly seen 

in Figure 4.3 which shows the 'envelopes of variation' calculated using binned 

biomass values for both radar polarisations. Whilst the line representing the 

maximum variation is flat in the HV polarisation, in the HH polarisation it is higher at 

low biomass than at higher biomass levels. Figure 4.4 shows how the radar signal 

variability in the HH polarisation is related to that in the HV polarisation. There is a 

concentration of plots with small standard deviation on the right side of the graph 

which consist of biomass plots from high biomass intact forest. 

4.3.2 Temporal variation of radar backscatter over the landscape 

The images of temporal mean backscatter shown in Figure 4.5 and temporal 

standard deviation (Figure 4.6) provide the landscape context in which to place the 

biomass information in figures 4.2.1-3. Figure 4.5 shows that in the HH polarisation 

the highest mean temporal backscatter occurs in the areas surrounding rivers with 

further isolated patches seen in forests. The lowest mean backscatter is seen along 

rivers and canals. The HV backscatter is highest in intact peat swamp forest with 

areas of low backscatter observed along water courses (especially rivers and less so 

along canals) and in agricultural landscapes to the south and east of the mosaic. 

Comparing the patterns seen in the two polarisations of temporal mean radar data it 

appears that areas of high HV tend to relate to values in the middle of the range of 

HH mean backscatter. Figure 4.6 shows a mosaiced image of tSD in both 

polarisations of radar. The highest temporal variability occurs along rivers and in 

areas of agriculture. However some areas of high to moderately high areas of tSD 
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Figure 4.7 Peat depth map courtesy of Delft Hydraulics (left) and peat depth mask (right). Red=peat 

mask, yellow= peat >50cm deep , white = peat >1m deep 
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Figure 4.8. Result of the EOF analysis for the 421 (eastern strip), HH polarisation. Top, grayscale images 

of the first three EOFs. Middle, the percentage variance explained by each EOF. Bottom, the temporal 

profile of each EOF. 
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Figure 4.9. Result of the EOF analysis for the 421 (eastern strip), HV polarisation. Top, grayscale images 

of the first three EOFs. Middle, the percentage variance explained by each EOF. Bottom, the temporal 

profile of each EOF. This datasets was cropped using the >50cm peat mask.
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Figure 4.10 Result of the EOF analysis for the 422 (middle strip), HH polarisation. Top the first three EOFs. 

Middle the percentage variance explained by each EOF. Bottom the temporal profile of each EOF. 
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Figure 4.11. Result of the EOF analysis for the 423 (western strip), HV polarisation. Top the first three EOFs. 

Middle the percentage variance explained by each EOF. Bottom the temporal profile of each EOF 
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were seen in the HH and to a lesser extent the HV polarisation in areas of forest 

adjacent to low biomass degraded areas. The HV polarisation also highlighted 

straight edged areas associated with timber plantations (middle of image) and oil 

palm plantations (bottom left of image). 

4.3.3 Mapping patterns of temporal backscatter change 

The calculation of EOFs was not possible for all scenes in Table 4.1 even with the 

use of the various peat masks to reduce the variation of the input data set. The 

failures were computational errors due to a lack of convergence within the dataset, 

i.e. failure to sufficiently identify modes of variation within the data to assign as 

EOF layers. However of the 6 input datasets run (3 strips and 2 polarisations) 

results were obtained for 4 datasets and the EOF outputs for these datasets are 

given in  Figures 4.8-11. The only strip of images for which both polarisations ran 

was the eastern most strip (421). In the HH polarisation (Figure 4.8) 56% of the 

variation in the full image stack was explained by EOF1. This temporal variation 

associated with the first EOF appears to be quasi-seasonal with a number of peaks 

occurring on an annual basis, with the exception of 2009. This year, however, was 

the driest during the study period as demonstrated by it being the only year in 

which extensive fires occurred. The second EOF appears to be spatially 

associated with areas of agriculture in the lower left part of the image. The third 

EOF appears to be associated with areas of forest in close proximity to canals and 

rivers and shows an increase in late 2009. The first three EOFs together account 

for 87.5% of the variation in the entire dataset. The first EOF of the HV (Figure 4.9) 

dataset appears to be similar both spatially and temporally to EOF1 of the HH 
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dataset. EOF2 was associated with areas of agriculture and degraded peat swamp 

forest. Finally EOF 3 was strongly associated with recently burnt forest. 

It was only possible to obtain an EOF analysis in the HH polarisation for the middle 

(422, Figure 4.10) strip of images. Here the first EOF accounted for 46% of the 

overall variation. Spatially this band appears to be associated with forest burnt 

during the 2009 fires; this is indicated in the time series by a marked increase in 

backscatter. EOF2 is related largely to water courses but also appears to be 

associated with degraded areas. EOF3 appears to be associated with agricultural 

areas in the bottom eastern corner of the image. The first 3 EOFs accounted for 

82% of the total variation in the input dataset. 

The final EOF analysis (Figure 4.11) was for the western most strip (423) and in 

the HV polarisation. In this analysis the first EOF explained only 36% of the 

variation and was spatially associated with areas surrounding the larger rivers. 

Temporally it was very similar to EOF1 in Figure 4.10. The second EOF appeared 

to be associated with water courses with their source on the Sebanagu peat dome.  

The third EOF interestingly appeared to be largely associated with an area of 

expanding oil palm plantation in the south of the image and temporally showed 

peaks in both 2007 and 2008 followed by a reduction in backscatter in 2009-10. 

4.4 Discussion 

4.4.1 Temporal variation of backscatter across a biomass gradient 

Figure 4.2 clearly shows how the temporal variation changes across the biomass 

gradient with high biomass areas showing much lower temporal variation than low 

biomass areas in both polarisations, and with HH showing more variation across 
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the whole biomass gradient than HV. This finding is similar to that described by 

Romshoo (2003), although his sample of biomass plots did not include any riverine 

forest plots that were directly affected by riverine flooding. It should also be noted 

that the temporal variation in the radar signal at low biomass can be larger than the 

increase due to biomass. In other words the backscatter values from some low 

biomass points (particularly in HH) can be higher than the backscatter from high 

biomass plots. This can be seen most clearly in Figure 4.3 which presents 

'envelopes of variation' of the radar signal over peat swamp forest. Figure 4.4 

shows how the biomass values are grouped within the space described by the two 

radar axes. Biomass values fall in to several groupings: firstly a dense grouping of 

plots with low variability at the high end of the HV axes (group 2 in the inset of 

Figure 4.4); these represent high biomass forest where the radar signal is 

saturated. Secondly plots lying on the increasing gradient of HH and HV (group1 in 

the inset). These biomass values generally have high levels of tSD and represent 

degraded forest with lower biomass than that of intact forest. Finally a third group 

(group 3 in the inset of Figure 4.4), show a variety of values in HV backscatter and 

higher mean HH backscatter than intact forest. Despite the high levels of tSD for 

biomass value in both the HH and HV polarisations, the tSD shown in Figures 

4.2.1-3, is much less than that observed in the mosaic images of tSD (Figure 4.6). 

 

4.4.2 Mapping of temporal backscatter variation over the PSF landscape 

 Levels of HH tSD seen over the biomass gradient are dwarfed by those observed 

in the radar mosaic which are seven times as great. In the HV polarisation the 
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difference in tSD is twice as much in the mosaic as that observed over the biomass 

plots.  

These results point to problems when using either of the polarisations or 

combinations of the two polarisations for biomass estimates as the resulting 

estimates could vary widely according to the date of the radar acquisition.   

The maps of tSD and the EOF analysis highlight that similar spatial locations 

exhibit high levels of variability within the radar backscatter stacks. The EOFs 

provide further information on which areas show similar timing and patterns of 

temporal radar backscatter change, although they give no information on what 

landscape processes are producing these patterns. It is likely that they identify 

different processes (e.g. seasonal flooding vs. agricultural land use) and different 

stages in landscape processes (e.g. immediately post fire or years after fire). One 

advantage of the use of EOFs is that they are totally automatic: patterns are 

described with no user input in an unsupervised manner. The challenge to the user 

is then to correctly identify the temporal patterns of backscatter change as 

landscape processes. The next two chapters of this thesis investigate the 

environmental factors causing these patterns of backscatter change. 

Despite being useful in an attempt to partition the landscape according to 

backscatter history the use of EOFs presents a number of challenges. Being based 

on eigentechniques the memory requirements of the EOF analysis are large, 

scaling with the square of the number of pixels in an image. Such limitations have 

not been so problematic in the climatological arena from which the technique 

originates where pixel sizes are of the order of kilometres (often quarter degree 

cells). However in analysing land surface processes the required pixel resolution to 
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adequately describe complex processes such as deforestation and forest 

degradation is of the order of meters (25m2 in this case) and therefore memory 

requirements quickly become limiting. In undertaking this analysis, these obstacles 

were overcome to a limited degree by using memory efficient MATLAB shortcuts, 

masking out image boundaries and performing the analysis on the large memory 

nodes of a cluster computer. However, the present regional scale analysis likely 

represents the approximate maximum spatial scale possible at this pixel resolution 

under current conditions, which precludes the technique from being used for very 

large scale national or global analyses.  

One possible future method to enable the analysis of larger spatial datasets using 

EOF, may be to reduce the size of the input dataset by masking out areas of low 

temporal standard deviation, which are likely to represent landscape units which 

are not undergoing any significant vegetation change. Since EOFs analysis does 

not highlight areas of temporally stable backscatter this should not affect the 

overall outcome of the analysis. Ultimately what is required, however, are memory 

efficient statistical and analytical techniques able to describe the similarity of the 

temporal variability of pixels across images. This need is likely to become more 

acute as satellite data become ever more present and the historical depth of 

imagery around the globe increases. In the last few years algorithms for analysis of 

temporal behaviour have begun to emerge, focussed on differentiating natural 

seasonal variability from disturbances using the Landsat and MODIS datasets (e.g. 

Coops et al., 2010; Zhu & Woodcock, 2012). 

Memory constraints also add an additional complexity to interpreting the resulting 

maps of spatio-temporal variation. It is not possible to produce single mosaics as 
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was done for tSD and tMean since the processing must be split into strips. The 

EOF bands may not be directly comparable between strips as they may capture 

different components of variability (i.e. a mosaic of EOF1 bands for the different 

strips could be misleading). For example although EOF1 for strips 422 (Figure 

4.10) and 423 (Figure 4.11) appear to have similar temporal profiles and might be 

thought to be describing comparable landscape processes, EOF1 from strip 421 

shows a very different temporal profile and likely represents a different landscape 

process. This difference may be due to the fact that forest occupies a much larger 

portion of strip 423 than it does 422.  In a similar manner EOF output bands 

calculated for different time periods may also not be directly comparable. 

4.5 Summary 

In this chapter the spatial temporal patterns of PALSAR backscatter variation in a 

~28,500km2 area of peat swamp forest have been examined over a 4 year period.  

 

Aim 1:What are the patterns of temporal backscatter change across a 

gradient of increasing biomass from low to high biomass peat swamp 

forest? 

 The radar signal was temporally stable over high biomass forest but showed 

considerable variation at lower biomass levels (<80 tonnes per hectare ) 

especially in the HH polarisation where backscatter varied from much lower 

to higher than that from high biomass forest.  
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Aim 2: How do the levels of temporal backscatter change across the biomass 

gradient relate to the temporal radar signal across the whole 

landscape?  

 Maps of temporal standard deviation showed high variability across the 

landscape, only a small proportion of which was related to biomass change 

Aim 3: Does the temporal variation of the radar signal need to be taken into 

account when producing maps of biomass from radar images? 

 Different landscape unit shows different temporal patterns of backscatter 

change which could be used as the basis for land cover classification and 

biomass mapping. 

 

These  findings are important as they address knowledge gaps about the temporal 

behaviour of the radar signal over PSF and the validity of mapping biomass from 

single date radar images using empirically fitted biomass relationships.  In the next 

chapter research the sources of radar signal variation in areas where no biomass 

change is occurring are investigated. Understanding the drivers of this variation in 

the radar signal and the areas in which various drivers dominate the radar signal 

variation is vital if radar is to be used to monitor forest carbon as in  Balzter et al., 

(2003).  
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5. Non-disturbance related changes in 

radar backscatter 

 

5.1 Introduction 

From the data and analyses in Chapter 4 it was evident that much of the temporal 

variability in the radar stacks was not related to biomass change in forests. This 

chapter focuses on that part of the radar signal not related to forest loss and 

examines how changes in the peatland water table affect the radar signal. 

5.1.1 Importance of peat water table for estimating carbon fluxes 

 

The accumulation of organic matter in tropical peatland is a result of the anaerobic 

soil conditions in the waterlogged peat, a situation which is dictated by the climate 

and local hydrology and topography. Any alteration to this hydrology (e.g. as a 

result of drainage) can lower the water table and expose peat to aerobic conditions 

resulting in peat decomposition through microbial oxidation and an increased 

likelihood of fire, both processes resulting in significant fluxes of carbon dioxide 

from the peat to the atmosphere (Hooijer et al., 2012; Jauhiainen et al., 2012; Page 

et al., 2002). These losses of carbon from tropical peat soils can be large in 

magnitude, dwarfing those occurring as a result of the removal of above ground 

woody biomass. The water table in peatlands is naturally variable, depending on 

inputs from seasonal rainfall. Periods of low rainfall, usually occurring during the 
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short dry season but which may be extended during el Nino events, lower the 

water table and lead to increased rates of peat oxidation across a much deeper 

profile of the peat column (Hirano et al., 2007; Jauhiainen et al., 2005) as well as 

leading to an increased risk of fire (Lailan, 2002; Wösten et al., 2006). In peatlands 

that have been drained for agriculture, the water table will be maintained at a 

suitable level for crop production (e.g. 60 – 80 cm below the peat surface for oil 

palm (Jauhiainen et al., 2012)) which leads to a constant loss of peat carbon 

through oxidative decomposition. In Southeast Asia, however, there are also 

extensive areas of peatland that have been subject to unregulated drainage as a 

consequence of either logging activities (with canals constructed to float timber out 

of the forest) or failed agricultural schemes (e.g. the exMRP). Owing to the 

important influence that the peatland water table has in controlling the loss of 

carbon from long-term storage within the peat, assessing the position of the 

peatland water table and its variation through time forms an essential part of any 

monitoring system designed to estimate carbon losses from tropical peatlands (e.g. 

Jauhiainen et al., 2012). 

  

There are two main techniques for monitoring water table and soil moisture in 

peatlands: using in-situ dipwells or remote sensing data. These two techniques 

measure different aspects of peatland hydrology which need to be clearly defined 

at the outset of this chapter: the first is the water table. The position of the ground 

water table is the depth at which the (peat) soil becomes completely saturated by 

water. By convention it is measured relative to the soil surface with negative values 

indicating that the water table is below the soil surface and positive numbers 
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indicating standing water above the soil surface (i.e. flooding). The second concept 

is soil moisture, typically measured as volumetric soil moisture content expressed 

as a percentage of dry soil weight. Soil moisture is measured at a defined soil 

depth for example surface soil moisture which is usually measured at a depth of 0-

5 cm. 

Most remote sensing methods cannot penetrate any distance into the soil (longer 

radar wavelengths such as P-Band and UHF frequencies), meaning remotely 

sensed measures of soil moisture are related to the volumetric soil moisture 

content of the top few centimetres of the soil, whereas dipwells directly measure 

the depth of the water table i.e. the position of the saturated soil layer, which is 

used as a proxy for soil moisture status. As the variable of interest in this study is 

estimating the water table it is important to have some understanding of the 

relationship between  water table depth and surface soil moisture. The porous 

nature of tropical peats mean that they have the ability to draw water upwards from 

the saturated zone through capillary action. The implication of this is that peat 

above the saturated level of the water table will still contain moisture and that the 

percentage of soil moisture at any given point will decrease to zero as the water 

table falls. However little information is available on the exact nature of this 

relationship. (Price, 1997) studied drained lowland peat bogs in Canada and found 

that surface soil moisture content (as a percentage) and the depth of the water 

table (in cm) were positively correlated down to a water table limit of ~1 m at which 

point no further relationship was evident (Figure 5.1).  Anecdotal evidence for 

tropical peatlands suggests that surface peat still holds a significant amount of  
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Figure 5.1. The relationship between water table depth and surface soil moisture. Figure taken from 

(Price, 1997, © Elsevier). 

moisture at the surface when the water table is at ~40 cm depth owing to a 

capillary rise zone of 40 cm (Hooijer pers comm). 

5.1.2  Methods of monitoring the peatland water table. 

Dipwells are constructed from lengths of plastic drain pipe with holes drilled into 

them at regular intervals to allow the free entry and exit of water. These are 

inserted into holes augured vertically into the peat and the pipes should ideally be 

anchored in to the underlying substrate below the peat to prevent movement of the 

pipe relative to the peat surface. The water table in the peatland can then be 

measured using a float attached to a measured piece of line. A series of water 

table depth samples, usually taken from a number of dipwells located along 

transect lines that are sampled regularly (e.g. weekly or twice monthly), can form 

the basis of a water table monitoring program. Correctly installed dipwells provide 
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the most accurate data on variation in the water table of peatlands, although as 

dipwells can only provide data at single spatial locations, monitoring the water table 

over an entire peat dome usually involves the construction of a series of dipwell 

transects. Other drawbacks of this technique are that the installation, maintenance 

and monitoring of the dipwell networks is an expensive as well as a time and 

labour intensive process. The use of automatic dipwell logging devices can help to 

reduce labour costs, but the loggers are themselves expensive. Another drawback 

of the technique is that even networks of dipwells fail to provide a truly continuous 

spatial estimate of the peatland water table, although geospatial techniques such 

as kriging can be used to interpolate values for the water table occurring between 

the locations of individual dipwells. 

The second major technique that can be used to provide information on soil 

moisture and could potentially be able to provide information on the peatland water 

table is remote sensing. Remote sensing of soil moisture is driven by the dielectric 

properties of saturated or unsaturated soil media that influence the microwave 

emissions (in the case of passive radar sensors) and backscatter (for active 

radars) of the soil. Several operational (e.g. SMOS and ASCAT, Brocca et al., 

2010; Sinclair & Pegram, 2010) and proposed (e.g. SMAP, Entekhabi et al., 2010) 

orbiting radar satellites exploit this effect to produce spatial soil moisture estimates 

using algorithms to convert the radar data to estimated soil moisture values. These 

systems produce soil moisture estimates with a high temporal frequency (daily or 

less) and also produce spatially continuous datasets. However the spatial 

resolution is very coarse resolution with pixel sizes of many kilometres. At this 

scale, entire peatland domes can be covered by a single pixel and these data is of 
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little use in estimating soil moisture given the spatial scales of forest degradation 

which are of the order of tens of meters.  

 

5.1.3  Relating peatland water table variation to PALSAR backscatter and 

coherence change 

In Chapter 4 the temporal variability of the PALSAR dataset was analysed and it 

was evident that changes in the backscatter signal were not caused solely by 

changes in the amount of above ground forest biomass. The signatures of this 

change appeared, in some cases, to be quasi-seasonal indicating that the changes 

in the radar signal may be being driven by seasonal changes in the moisture 

content of the peatland. The fact that Central Kalimantan has relatively long and 

intense dry as well as monsoonal wet seasons mean that the peatland landscape 

regularly shows large changes in moisture conditions. In this chapter the 

relationship between the peatland water table and the radar data is examined and 

described and the possibility of using the PALSAR dataset to produce remotely 

sensed estimates of water table depth is investigated. 

Previous efforts have been made to relate radar backscatter to soil moisture (e.g. 

Mattia et al., 2009; Pierdicca et al., 2010) but these have concentrated on low 

biomass environments such as croplands and have not correlated radar 

backscatter to water table depth. To understand how the radar signal might be 

affected by soil moisture it is important to consider how the mechanism of radar 

backscatter would be expected to change across a gradient of increasing above 

ground biomass. Soil moisture signals are most likely to be seen in areas with low 

above ground woody biomass where the dominant mode of radar backscatter is 
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from the soil surface. As the surface soil moisture content varies the changing 

dielectric properties of the soil will alter the backscattered signals with the literature 

suggesting that changes can be of the magnitude of 2-3dB (Kasischke et al., 

2009). As biomass increases the amount of backscatter coming from the surface is 

likely to decrease as more of the incident radar signal is backscattered from tree 

trunks and the canopy, although there may some interaction between the two. If 

the water table is above the surface in degraded areas with standing tree trunks, 

as occurs after a fire, a very strong 'double bounce' signal can occur where the 

radar energy is scattered by both the water surface and the trunks. These two 

surfaces can act as corner reflectors returning a high proportion of the incoming  

radar signal back towards the satellite. Owing to the increasingly dominant role of 

volume scattering by tree biomass the moisture signal is likely to become reduced 

until it is swamped by the biomass signal. In areas of high biomass such as intact 

forest the radar signal will become saturated by the biomass and there is unlikely 

to be any soil moisture signal.  

 

In previous studies examining how biomass and moisture influence the radar signal 

these two variables have been usually investigated separately. Studies of soil 

moisture and rainfall have been undertaken mainly by hydrologists and studies of 

land cover change and forest monitoring have been done by ecologists. Both 

communities see the effects of the other variable of interest as confounding and try 

to minimise or remove its effect on their variable of interest (Dubois et al., 1995; 

Joseph et al., 2010; Moran et al., 2004). The two variables are very rarely 

examined in a synergistic manner and studies of the interaction between moisture 
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and biomass effects are lacking. Hydrological studies on the effects of moisture on 

the returned radar signal have largely been carried out in low biomass systems, 

e.g. deserts (Stephen et al., , 2010), croplands (Joseph et al., 2010), and 

marshlands (Kasischke et al., 2009). Radar studies of forest biomass generally 

involve ‘snapshots’ of forest cover at a single instance (see Chapter 4 for 

examples)  or time averaged values (Englhart et al., 2011) rather than multi-

temporal monitoring and hence ignore effects of changing moisture values. 

It is proven that soil moisture affects the radar signal most strongly in areas of low 

biomass, but the form of the relationship between soil moisture and radar 

backscatter is not proven and is highly dynamic and ecosystem dependent. 

Theory, mentioned previously, suggests that as the water table rises towards the 

soil surface, the surface soil moisture is expected to increase and because water 

has a high dielectric value increasing soil moisture would be expected to lead to 

increased backscattering from the soil. According to the literature these increases 

are likely to be in the range of 3dB (Bourgeau-Chavez et al., 2007; Wang et al., 

1994). As the water table reaches the soil surface and standing water starts to form 

radar backscatter is expected to decrease surface scattering microwave energy 

away from the sensor. This relationship has been previously observed in Alaskan 

wetlands (Kasischke et al., 2009).  

From the literature it is clear that the surface soil moisture interacts with the radar 

signal. In this chapter the analyses take this further: firstly by adding coherence 

data and secondly by attempting to link the radar signal to the depth of the 

peatland water table, with the literature suggesting that the latter is linked to 

surface soil moisture in peatlands. 
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5.2 Aims 

The aim of this chapter is to investigate to what degree changes in the radar signal 

(HH and HV backscatter and coherence) is driven by changes in soil moisture and 

by proxy that this allows an estimate of the depth of the peatland water table to be 

derived from the radar data. Specific research questions are: 

1. Do changes in water table alter the radar backscatter in a predictable  way 

and does this conform with scattering mechanisms previously described in 

the literature? 

2. What effect do changes in the water table have on interferometric 

coherence? 

3. How are these relationships between the radar variables and the peatland 

water table affected by biomass of the overlying peat swamp forest and at 

what biomass value does the  relationship break down? 

4. Can a predictive model allow the estimation of water table depth from the 

PALSAR radar variables and over what  biomass range is this effective? 

 

5.3 Methods 

Dipwell data from Block A of the exMRP had been collected by IAFCP project staff 

between May 2007 and December 2010 overlapping with the acquisition of 

PALSAR data. Dipwells were located along transects running between canals in 

both degraded and forested areas (Figure 5.2
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). 

The depth of the water table relative to the peat surface was measured 

approximately every two weeks. As the dates when the water table was sampled 

and the dates on which PALSAR observations occurred were frequently not 

concurrent, water table records were temporally associated with the nearest 

available radar image up to a maximum of 7 days away. Water table data beyond 7 

days of a radar image were discarded.  

 

Mean backscatter in both the HH and HV polarisations and, where available, 

coherence data, were extracted for each dipwell using a circular buffer of radius 50 

m around the GPS point. In order to examine what effect the  vegetation type had 

upon the relationship between water table and the radar signal, the dipwells were 

classified as being located either in forest or in degraded areas based on the mean 

temporal HV backscatter calculated over the entire 4 year PALSAR dataset. The 

division between the two classes, -15.9dB, was chosen after visual inspection of 

the PALSAR images and the extracted data (Figure 5.3). The forest class 
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represents high biomass intact forest which had not previously burnt (although 

conceivably it could also include areas of significant regrowth), whilst the degraded 

class is exemplified by low biomass open areas which have burnt one or more 

times and are dominated by ferns. A map of the forest/degraded mask is shown in . 
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Figure 5.2 Top, PALSAR image of Block A of the exMRP acquired 20080809 (Red channel = 

coherence, Green = HV backscatter and Blue = HH backscatter). Dipwell transects for the 

monitoring of the peatland water table are shown as black dots. Bottom, location of dipwells 

overlaid on forest (white)/degraded (black) mask according to -15.9dB HV tMean threshold.  
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In order to examine the effect of water table on the radar signal (aim 1 & 2) values 

of water table depth were plotted against radar backscatter (Figure 5.4) and 

coherence (Figure 5.5). In order to examine what effect vegetation biomass had 

upon the water table signal (aim 3) data from forest and degraded classes were 

separated into two groups based on the vegetation classification.  

 

Figure 5.3. Classification of dipwells into forest and degraded classes based on the temporal mean 

HV backscatter. Horizontal line at -15.9 dB indicates division between vegetation classes 

 

The same dataset was used to produce box plots (Figure 5.6) showing variation of 

the radar signal. As more potential water table signal was observed in the 

degraded areas, the high biomass forested areas were excluded from further 

investigations.  

In order to move towards a predictive model of water table depth (aim 4) the 

strength of the correlation between radar variables and the water table was 
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assessed using scatter plots with separate linear fits for the backscatter data 

depending on whether the water table was below the ground  <0cm  or above the 

ground surface >=0cm ( Figure 5.7). Coherence data were fitted with a single line. 

Because the dipwell measurement data and radar image acquisition were not 

acquired simultaneously (with a maximum time lag of up to seven days) orthogonal 

regressions were chosen to fit regression lines as this assumes that there is 

uncertainty in the values of both axes. As both theory (Kasischke et al., 2009) and 

earlier results indicate that the radar water table relationship is fundamentally 

different, depending on whether the water table is above or below the surface, 

separate fit lines were plotted for water table values <0cm and >=0cm. Table 5.1 

shows the correlation coefficient for each of the fitted lines shown in Figure 5.7. 

 

For these reasons generalised additive models (GAMs) were used to generate 

predictive models of water table depth from the radar data. GAMs were chosen 

since instead of using linear fits to describe the relationship between independent 

and dependent variables they utilise splines to model curved response surfaces 

(Wood, 2006). Within GAMs the flexibility of the spline is controlled by the number 

of 'knots' (inflection points in the spline). Too many knots and the spline becomes 

overfitted and the predictive power of the model is lost, too few knots and the 

spline is not flexible enough to represent a true representation of the relationships 

present in the data. After examination of the data, five knots were chosen as being 

the most parsimonious solution (Wood, 2006), i.e. the maximum and minimum and 

three knots in between. Two GAMs were constructed; the first included  HH and 
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HV backscatter intensity and coherence data as independent variables, the second 

used only the two backscatter variables. 

A random sample comprising 17% of the full dipwell dataset was selected and 

assigned as a ‘control’ group with the remaining values assigned as a ‘test’ group. 

The control group were excluded from the water table modelling analyses 

described below and used only during the model validation section of this chapter. 

The results of fitting these two models are shown in Table 5.2. 

5.4 Results 

Data from 78 dipwells was selected over the period 19/06/2007 to 12/11/2010 

giving a total of 616 dipwell data points which were matched to radar acquisition 

dates within 7 days of the dipwell measurement. From this total, 204 of the data 

points also had coherence data. Figure 5.4 shows how radar backscatter from 

forested and degraded areas varies with changing water table depth. In degraded 

areas backscatter values increase with rising water table before decreasing when 

the water table is above the ground surface. This trend is clear although a lot of 

scatter is present in the relationship. In forested areas the trend line is flat 

indicating that the relationship between the radar signal and the water table is 

insignificant. The difference in the water table radar relationship between the two 

vegetation types is likely a consequence of differences in vegetation biomass, 

which is very low in the former instance and very high in the latter. Coherence data 

(Figure 5.5) shows a linear trend of decrease with increasing water table depth, 

although there appears to be a much higher amount of scatter around the trend 
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lines and a suggestion of a small effect of the water table signal on coherence 

even in forested areas. 

Figure 5.6 illustrates the differences in the variability of radar backscatter and 

coherence between degraded and forested areas. Much higher variability is seen 

in all the radar variables in degraded areas compared to forested areas.  
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Figure 5.4. Water table depth plotted against radar backscatter in degraded and intact PSF, 

shown with smoothing line to indicate trend. Positive water table values indicate flooding. 

 

Figure 5.5. Coherence plotted against water table depth for degraded and intact PSF shown 

with a smoothing line to indicate trend. Positive water table values indicate flooding.
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Figure 5.6. Box plots showing the variation radar backscatter and interferometric coherence 

over degraded and intact PSF. Top left HV backscatter, top right HH backscatter and bottom 

left coherence. Box plots show the median 25% & 75% quartiles and whiskers identify 

outliers. 

Figure 5.7 show fitted linear relationships between the measured water depth 

table and radar backscatter and coherence and the water table level. 

Separate lines are fitted to the backscatter graphs depending on whether the 

surface is above or below the ground level. From these graphs it appears that 

different radar scattering mechanisms are occurring depending on whether 

the water table is above or below the ground surface. In contrast to the 

backscatter relationships, the coherence relationship with the water table can 

be modelled with a single regression line.  
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Figure 5.7 Scatter plots of radar backscatter and interferometric coherence plotted against the 

water table depth as measured in degraded peatlands. Top left HV backscatter, top right HH 

backscatter and bottom left coherence. Cross identify water table <0cm, circles water table 

>=0cm. Separate lines have been fitted to the backscatter data at <0 and >=0cm water table 

depth. 

Table 5.1 Regression coefficients of the lines shown in Figure 5.7 

Data < 0cm >=0cm 

HH 0.32 -0.23 

HV 0.13 -0.18 

Coherence -0.47 
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From Figure 5.7 it is clear that the relationship between water table depth and 

the radar variables is not linear and this rules out the use of any sort of linear 

fitting when constructing an accurate predictive model in order to accomplish 

aim 4. Table 5.2 shows the fitted formula structure and relevant statistics for 

both GAM models and Figure 5.8 shows a graphical representation of the 

response surface for the GAM model 1 (including coherence). The accuracy 

of the GAM including the coherence (model 1) model was evaluated from 

plots of the observed (i.e. measured) versus expected (calculated from radar 

variables) values using the data excluded at the start of the modelling process 

(Figure 5.9). Confidence intervals (+ and – 95% were also calculated for all 

values). The most accurate GAM model (model 1) was then applied to the 

PALSAR images over Block A of the study area for which all three radar 

variables were present on a pixel by pixel basis to give a map of estimated 

water table depth. Confidence intervals were also calculated. Maps of 

estimated water table depth are given in Figure 5.10.The logic behind the 

construction of the two models was to examine the predictive value gained by 

including the coherence data as an independent variable as the production of 

this data was computationally intensive and also unreliable in comparison to 

the backscatter data (many dates had missing data for coherence). Hence if 

there was little gain in predictive power from including coherence in the model 

the water table estimates would be easier to obtain and more frequently 

available if calculated solely from the backscatter data. 
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Table 5.2. Model statistics for the two GAM models. Model 1, HH and HV backscatter and 

coherence. Model 2, HH and HV backscatter only. 

Model 1 
     

  
DF Sum of squares F Ratio 

Prob > 
F 

 
HV Spline 4 0.3637502 5.0617 0.001 

 
HH Spline 4 0.1992221 2.7723 0.0314 

 

Coherence 
Spline 4 1.0184276 14.1719 <.0001 

      

    

R 
Square 0.504 

    

Prob > 
F <.0001 

      

      

      

      Model 2 
     

  
DF Sum of squares F Ratio 

Prob > 
F 

 
HV Spline 4 0.5813017 4.4434 0.0016 

 
HH Spline 4 2.2236896 16.9976 <.0001 

      

    

R 
Square 0.253 

    

Prob > 
F <.0001 
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Figure 5.8. The response surface of the modelled GAM (model 1) including interferometric 

coherence. The X & Y values are the independent variables that account for the most 

variation in the measured water table depth. Real (measured) data points are shown around 

the surface 

 

Table 5.3. The prediction formula from GAM model 1. 

 
predicted water table = -2.7920 + (-0.0806 HV spline) + 

(-0.11048 HH spline) + (-2.0559 CC spline )
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Figure 5.9. Observed vs. expected plots for the GAM model incorporating coherence (model 

1). 1:1 (dashed) line is provided as an illustration of perfect fit. Solid line is the correlation 

between model outputs and control group measured values (black crosses). Light grey points 

are the test group and are for illustration only, they are not included in fit. Histograms at the 

side show the distribution of both observed and modelled values. R-square of correlation = 

0.48, shaded area is the 95% confidence intervals of the fit.  
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Figure 5.10. Maps of estimated water depth over block A of the exMRP. Top left 20070622, 

top right 20070807, bottom left 20080809, bottom right 20090627. Black areas masked using 

the forest/degraded area mask. 

 

Table 5.2 The statistical details of the two predictive models (GAMs) are given 

in Table 5.2. Model 1 included all three radar variables and explained just over 

half of the variation seen in the training data set with coherence explaining the 

largest proportion of data variability, followed by HV backscatter. HH 

backscatter explains the least amount of data variation, even though all three 

model terms were statistically significant. The results were significant at the 

0.0001 level. Model 2 did not include coherence as this would allow water 

table estimates to be made at every PALSAR observation date. Whilst this 

model was still significant it explained only 25% of the variation in the data 
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and for this reason subsequent analyses used only the full model as, in a 

trade off, accuracy was a more important factor than frequency.  

A visual interpretation of the response surface given by model 1 is shown in 

Figure 5.8 with the two variables explaining the largest amount of variation 

(HV and coherence) on the x and y axes. The structure of the prediction 

expression is shown in table 3. The accuracy of model 1 was evaluated using 

the control group of data which had been excluded from the original analysis. 

Figure 5.9 shows the observed control group values plotted against the 

predicted (modelled) values. From this it can be seen that the fit is good; in 

the region <-0.25 cm water table depth, however, the predicted values 

become de-correlated from the observed values and the response appears to 

flatten out. This can also be seen by examining the histograms on the sides of 

the graphs in Figure 5.9. The distribution of the  predicted data ends at -0.4 m 

whilst the observed data distribution continues down to -0.6 m. When the 

control group points in this region (<-0.25) are excluded the R-square 

between observed and expected values is 0.48 and the slope is 0.67 (1 is 

ideal in observed vs. expected plots). The lack of predicted values <-0.4 m 

indicates that this is the point at which the surface soil moisture becomes 

decoupled from the water table, i.e. the point where the surface soil moisture 

is zero. 

Model 1 was then used to generate the images seen in Figure 5.10 where HH 

& HV backscatter and coherence are used on a pixel by pixel basis to 

generate estimated water table depth images for Block A of the exMRP. 
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5.5 Discussion 

In this chapter it has been demonstrated that  the water table depth can be 

correlated with radar backscatter. It has also been established that 

interferometric coherence correlates well with the position of the water table. 

No previous studies have shown such a link . The value of including 

coherence data in predictive models is high despite the difficulties involved 

with processing the data and the reduced temporal sample size that results. 

The radar signature of increasing levels of above ground biomass would be 

expected to lessen the influence of the water table on the radar signal until at 

very high levels of biomass (i.e. in undisturbed forest) the biomass saturates 

the radar signal and no water table signal can be detected. It is for this reason 

that most of the literature on the effects of soil moisture on radar signal comes 

from low biomass scenarios such as croplands, burn scars or wetlands.  This 

mechanism is supported by the data presented in this chapter which 

demonstrates  strong relationships between radar values and water table in 

low biomass, highly degraded peatland and very little relationship at higher 

biomass values, i.e. in intact forest. However it should be noted that at  

intermediate biomass levels (‘lightly degraded’) there was a relatively small 

sample size in particular for water table values >=0cm. Hence the most 

accurate radar estimates of water table depth will come from areas of low 

biomass. This attempt to model ground water depth, through soil moisture 

using orbital radars is novel and the spatial resolution of the resulting data is 

an order of magnitude higher than currently available soil moisture data 

products. 



112 
 

This chapter extends previous work relating backscatter intensity to soil 

moisture by linking the radar signal to water table depth. Coherence data have 

previously been shown to correlate with snow melt (Thiel & Schmullius, 2012) 

but this is the first time they have been shown to correlate with water table 

depth. 

These results are broadly similar to those from previous studies examining the 

effect of soil moisture/water table depth on radar backscatter (Laura L. 

Bourgeau-Chavez et al., 2007; Kasischke et al., 2009; Pierdicca et al., 2010) 

in that an increasing soil moisture content leads to an increase in backscatter 

with standing water above the soil surface producing a decrease in radar 

backscatter (Bourgeau-Chavez et al., 2007). The former effect is likely due to 

the increasing dielectric constant of the soil with increasing wetness whilst the 

latter effect is likely due to an increase in specular reflection away from the 

sensor. Due to the roughness of the peat soil surface, as the above surface 

water table progressively increases in depth so less of the soil surface is 

visible to the radar, resulting in a gradual decrease in backscatter rather than 

a sharp decrease. 

The successful retrieval of water table information from SAR data is likely 

mediated through a shared correlation with surface soil moisture. Previous 

research (Price, 1997) suggests that due to capillary action within the peat soil 

the water table and surface soil moisture are linearly related until the water 

table reaches a depth of between 1m (Canadian upland bogs, Price 1997) 

and 40 cm (Hoscilo, 2009 for tropical peat soils which have a lower bulk 

density and higher hydraulic conductivity). The results presented here confirm 
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this linear relationship down to a depth of ~0.30m in tropical peat soils at 

which point the relationship between water table depth and radar backscatter 

becomes decoupled. Despite this limitation in the technique of remotely 

monitoring the water table level, the amount of time that the water table is  

<0.3m is only 30% of the dipwell measurements used in this chapter, implying 

that PALSAR data could be used to calculate accurate water table estimates 

for ~70% of occasions in the exMRP and in other areas of degraded tropical 

peatland. The only previous study to investigate the effect of soil water table 

depth on the radar signal was the ESA INDREX 2 campaign which included 

some aerial P-band SAR data from the present study location (Hajnsek, 

2006). However it occurred under unusually low water table conditions 

(<40cm) and unreported biomass levels and showed no relationship between 

L band backscatter and water table, although a relationship was observed for 

the P-band relationship down to a depth of~-65cm. This is in turn supported 

by the observation that peat fires only occur when the peat water table is 

below a critical threshold of  <40cm (Hoscilo 2009).  

5.6 Summary 

The relationship between the depth of the peatland water table and the radar 

signal is examined and the following questions asked. 

 

Aim 1: Do changes in water table alter the radar backscatter in a 

predictable  way and does this conform with scattering 

mechanisms previously described in the literature? 
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 Radar backscatter showed a non-linear relationship with water table 

depth. Backscatter increased as the water table rose to the surface and 

then decreased as flooding occurred, in line with relationships reported 

in the media. 

Aim 2: What effect do changes in the water table have on interferometric 

coherence? 

 Interferometric coherence showed a linear relationship decreasing with 

water table depth 

Aim 3: How are these relationships between the radar variables and the 

peatland water table affected by biomass of the overlying peat 

swamp forest and at what biomass value does the  relationship 

break down? 

 The relationship with both radar backscatter and coherence was 

observed only in degraded low biomass areas. 

Aim 4: Can a predictive model allow the estimation of water table depth 

from the PALSAR radar variables and over what  biomass range is 

this effective? 

 The relationships between the radar variables and the water table 

depth allowed peatland water table depth to be estimated at high 

spatial resolution from the radar data using a generalised additive 

model. The method is only effective, however, in heavily degraded 

areas with low biomass and accurate estimates are only given within a 

restricted range of water table depths. 
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This chapter examined a source of the radar signal in areas where the amount 

of biomass is constant. In the next chapter the radar signal occurring as a 

result of changes in above ground biomass is examined  
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6. Effect of fire on radar backscatter 

change 

6.1  Introduction 

Chapter 5 examined what part of the temporal variation in the radar signal 

was driven by environmental factors, specifically rainfall and the position of 

the peatland water table. In trying to isolate these environmental factors, the 

Chapter focussed on areas and time periods in/over which there was no 

change in either the amount or the structure of the vegetation (biomass). This 

chapter focuses on characterising the temporal behaviour of the radar signal 

in areas undergoing a change in the amount or structure of the above ground 

vegetation and focuses on developing methods for differentiating this signal 

from the radar signal caused by environmentally driven variation in 

backscatter. 

In the tropics there are a number of different ways in which forests cover can 

be lost (i.e. different 'modes' of deforestation). These include large scale 

mechanical clearing of forest (often for plantation agriculture) and small scale 

manual clearing of the forest for subsistence farming.  Subsistence farmers 

often utilise fire to facilitate land clearance and in dry conditions these fires 

can spread out of control, making uncontrolled fire a third major mode of 

tropical deforestation (Cochrane et al., 1999). Each of these different modes 

of deforestation will result in a different pattern of change in the structure and 
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amount of vegetation remaining after the deforestation event and hence will 

likely have a different effect on the temporal behaviour of the radar signal over 

the time period in which deforestation is occurring. As discussed in the 

literature review, due to climatic conditions (long dry seasons exacerbated by 

el Nino episodes) and the regular use of fire as a traditional land clearance 

tool, the main mode of contemporary forest loss on the peatlands of Central 

Kalimantan is fire. 

The temporal radar signal behaviour will likely vary according to the number of 

deforestation/degradation events (i.e. a fire in a primary forest is likely to 

produce a markedly different signal from a fire in a degraded forest that has 

already been burnt three times). The cause of these differences will be related 

to the amount of change seen in both the structure and the amount of 

vegetation before and after the fire. Changes caused by fire are likely to be 

much greater following the first fire where the prior vegetation was forest as 

opposed to the changes seen when an area that has already experienced 

multiple fires burns again; this difference will be reflected in the amount of 

carbon lost from above ground biomass following a fire. The time between 

fires during which regrowth of the forest can occur is also likely to affect the 

radar signal seen during deforestation events. However, recovery potential 

also reduces after multiple fires as the seed bank becomes reduced so the 

effect of regrowth on the radar signal during a degradation event is likely to 

vary depending on the number of fires experienced in any particular location.  

The power of the backscattered radar signal has been shown many times to 

be sensitive to the amount of biomass present (Austin, 2003; Rignot et al., 



118 
 

1995) . The biomass range in these studies is a product of a study in a 

landscape including plantation forest stands of varying age. Radar remote 

sensing studies of deforestation events in natural forests are rarer, and 

usually take one of two forms: a time series of images during which a 

deforestation event occurs or a single date image comparing separate 

landscape units with different disturbance histories (i.e. fire/no fire or time 

since fire). There are few radar remote studies sensing observations of 

deforestation events (i.e. a time series of images including a deforestation 

event) occurring in tropical areas. What information there is on deforestation 

events is mostly related to fires in boreal and Mediterranean environments 

(Bourgeau-Chavez et al., 2002; Huang et al., 2006; Tanase et al. , 2011). 

Observations of tropical forests using L-band radar to give baseline 

information on backscatter intensity and variation are also lacking (though see 

Englhart et al., 2011). The majority of studies have been performed with C-

band radar due to the larger number of radar satellites that have employed 

this wavelength. Observations have also been made using a variety of 

polarisations. These differences in methodology make it difficult to provide 

predictions from the literature for the behaviour of L-band PALSAR data in 

tropical PSF during deforestation events. 

In Mediterranean pine and eucalypt plantations fire scars were found to have 

an 8db higher backscatter than surrounding unburnt areas (Gimeno et al., 

2004) at C-band, VV polarisation. Also in C-band and using a time series 

approach Minchella (2009) showed an increased backscatter of 2db after fire 

in pine forests; subsequently the radar signal varied between being greater 
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than and less than that of unburnt forest. This variation was attributed to 

seasonal changes in soil moisture. Tanase (2010a) showed increases in 

backscatter following fire at both X and C band (HH &VV) but a decrease in 

backscatter at L-band. The HV polarisation showed a decrease in backscatter 

for all three radar frequencies.  

In boreal forests recent burn scars were initially observed to be brighter than 

surrounding undisturbed forests before becoming darker than undisturbed 

forests at C-band (VV polarisation). This effect was attributed to the drying out 

of remaining dead tree trunks (Kasischke et al., 1992). A 3-6dB increase in 

backscatter following fire (relative to the surrounding unburnt forest) was 

observed by Borgeau-Chavez (2002) and related to increased ground 

moisture.  

The variety of radar signal responses to fire in forests, as well as the number 

of variables (i.e. radar wavelength and polarisation and also forest type) which 

differ between studies, makes it hard to make any predictions as to what the 

radar signal response will be when PSF are affected by fire. 

Many of the above studies were carried out in boreal areas and some discuss 

how changes in moisture (related to spring thaws) can modify the radar signal 

in burnt areas, although all of these observations are incidental. Although in a 

completely different climatic context  this thesis has already demonstrated 

how the peatland water table affects the backscattered radar signal and hence 

it is important to consider in this chapter whether there may be an interaction 

between how moisture affects the radar signal and how the change in forest 



120 
 

structure brought about by fire affects the radar signal. A methodological issue 

linked to this is that fire and the peatland water table are likely to be 

temporally auto-correlated: fires only burn out of control and affect PSF when 

the water table is low and similarly fires are often only extinguished when 

rains raise the water table towards the peat surface. Hence it is likely to be 

difficult if not impossible to separate the influence of these two factors on the 

radar signal.  

6.2  Aims 

In this chapter the radar signal resulting from the interaction of fire histories in 

tropical PSF and monthly rainfall is examined. Specifically, the following 

research questions are addressed: 

 

1. What is the temporal signal of fire occurring in intact primary PSF and 

how does it differ from the signal observed in other areas of the image? 

2. How does the temporal radar signal resulting from fire occurring in 

primary PSF differ from the radar signal resulting from fire in areas that 

have burnt two, three or more times? 

3. Does the amount of time that has elapsed between consecutive fires 

alter the radar signal as might be expected to happen if secondary 

regrowth of the forest was occurring? 

4. Is there an interaction between the radar signal change occurring as a 

result of fire and the rainfall signal described in Chapter 5? What form 
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does it take and can it be used to correct for biomass/disturbance 

classes? 

6.3  Data & Methods 

In the previous chapter it was shown that the position of the groundwater table 

significantly influenced the radar signal coming from degraded areas of PSF. 

However the labour intensive nature of collecting water table depth 

information from dipwells meant that the dataset was necessarily limited both 

spatially and temporally. For that reason in this chapter, monthly rainfall 

estimates derived remote sensing are used as an analogue for the water table 

position and general moisture conditions. A time series of monthly rainfall 

estimates from the Tropical Rainfall Measuring Mission (TRMM, Huffman et 

al., 2007) are employed which had been previously compared to ground 

station measurements of rainfall across insular South East Asia and corrected 

for dry season bias (Vernimmen et al., 2012). These data were obtained 

directly from the authors and have been shown to match ground measured 

rainfall with an R2 of 0.93. The data covered the period of the radar dataset 

and had a ground resolution of 0.25 o * 0.25o which at the latitude of the MRP 

is ~17km2.  

6.3.1 Identifying the fire signal in the temporal radar dataset  

In order to understand the immediate effect of fire on radar backscatter 

temporal radar profiles were collected using ~1 hectare regions of interest 

(ROIs) located in primary forest burnt in October 2009 (Figure 6.2). Mean 

backscatter for each of these ROIs was plotted against time in order to give a 
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temporal profile of the radar signal during the transition from forest to burnt 

forest. 

6.3.2 What is the long term backscatter behaviour following fire? 

The analysis of fires that occurred during the four year PALSAR dataset is 

necessarily limited. This is because only one set of fires occurred during this 

period and they burnt only a limited number of landscape units. In order to 

build up a more comprehensive and longer term picture of temporal radar 

signal variation across the whole range of degradation scenarios from intact 

forest to multiple burns it was necessary to acquire an independent record of 

the long term fire history of the study area. To do this, a fire history dataset for 

Blocks A and E of the exMRP was obtained. The data were derived from 

Landsat satellite images covering the period 1991-2009 and were produced 

by RSS consulting Gmbh. This dataset covered a time period during which it 

had been shown that nearby peatland (Block C of exMRP) was undergoing 

profound changes in landcover caused by fire (Hoscilo et al., 2011) and visual 

inspection of the Landsat images showed that a similar change had also 

occurred in Block A over the same time period. These changes were from an 

almost entirely forested landscape to one heavily dominated by degraded peat 

forest and open fern communities (Figure 6.1). Yearly fire history maps were 

of 30m2 pixel size and maps were coded as being either unburnt (0) or burnt 

(1). 

In order to use the maps to isolate the temporal behaviour of burnt PSF from 

riverine forests and forests on mineral based soils, burn maps were restricted 

to areas of  peat >1m deep using the peat mask described in Chapter 4. Burn 
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scars with an area below a threshold of one hectare were deleted from the 

burn history datasets in order to eliminate age effects around small burn 

scars. This was done in order that extracted temporal radar profiles were not 

contaminated with radar data from unburnt pixels. Burn maps for specific 

years were converted in MATLAB to give maps of the number of fires each 

pixel had experienced over the 1991-2009 period and the time since the last 

fire had occurred (see Appendix 8.3.7-10 for relevant scripts). These maps 

were then converted to vector files and used to extract radar profiles from the 

4 year PALSAR dataset. The resulting dataset contained data on the mean 

HH and HV backscatter for each burn scar over the 4 year period  between 

2007 and 2010 as well as the number of fires and time since most recent fire 

(in months). 

 

6.3.3 What influence does fire history have on the radar signal change? 

The burn map database was interrogated to answer a number of questions 

concerning how longer term landscape fire histories affect the temporal 

variation in the radar signal. Areas were selected from the database that had 

burnt on only a single occasion. This dataset included areas that had burnt in 

different fire years ranging from 1991 to 2009. By plotting the mean 

backscatter for each area against the time, in months since that fire had 

occurred, it was possible to construct similar backscatter profiles to those 

seen in Figure 6.2, but with the scale on the x-axis greatly enlarged. It is 

important to note that this longer term history has been synthesized from the 
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original 4 year PALSAR dataset, i.e. the x-axis scale has been lengthened 

simply by looking at burn scars of different ages. 

Secondly the database was used to investigate the effect that the number of 

fires (over the period 1991-2009) has on the temporal backscatter profile. To 

do this the temporal backscatter profile was plotted separately for each fire 

frequency class (Figure 6.5). By looking at the time since the last fire it was 

possible to investigate if there were any signs in the radar signal of post fire 

vegetation regrowth. To do this the temporal radar profile was plotted with the 

dataset separated by the time since the last fire. 

6.3.4 What causes variation of the radar signal in burnt areas?  

The effect of rainfall on the radar signal from burn scars was examined by 

comparing the radar backscatter from burn scars and from intact forested 

areas against the TRMM derived corrected rainfall for Indonesia (Vernimmen 

et al., 2012). Figure 6.6 shows the temporal radar and rainfall profiles for 

areas of burnt and intact PSF in Block C. Figure 6.7 shows the same data 

displayed with the radar and rainfall data plotted against one another and with 

a regression line fitted. Similarly, Figure 6.8 shows radar signal plotted against 

monthly TRMM rainfall, however in this analysis the radar data were collected 

over co-located biomass plots (see previous chapter). Plots are grouped into 

low (<40 tonnes per hectare) and high (>200 tonnes per hectare)  biomass 

groups in order to examine the effects of biomass on the moisture response. 

Separate regression lines are drawn for both groups. 
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6.4  Results 

6.4.1 Identifying the fire signal 

Figure 6.2 shows the mean backscatter profiles, in both HH and HV 

polarisations for a number of landscape units, extracted using ROIs from 

areas of approximately 1ha, as measured over the period 2007-2010. During 

this period fires burnt within the landscape in October 2009 (=band 9). 

6.4.2 Long term radar response to fire 

The database of temporal radar backscatter and fire history data over the 

IAFCP project area ran to ~280,800 spatially averaged backscatter values for 

both HH and HV backscatter. Figure 6.3 shows a long term record of 

backscatter variation for areas burnt only once over the period 1991-2009 

synthesized from the long term Landsat fire history dataset. Note that the 

period of time covered by the x-axis is large (>20 years) and that because this 

data set has been synthesized by looking at burn scars of different ages there 

are some periods without observations. 
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Figure 6.1. Landsat true colour mosaics (RGB= Bands 5,4,3) of Blocks A & E of exMRP). Top 

left image 30th June 1991, top right image 7th June 2006, bottom image burnt area map for 

2006 (white areas are classified as burnt). Imagery courtesy of NASA/USGS Landsat 
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Figure 6.2.Temporal backscatter (dB) profiles from 2009 fire, left HH, right HV. Band 1= first 

data of radar stack, 20070709 and band 14 =  last data of stack, 20101202. Fire occurred in 

October 2009 at a time corresponding to band number 9. 

The effect of fire frequency (as number of fires) on backscatter variation 

across the four year PALSAR dataset is shown in Figure 6.4. Results for fire 

frequency are shown as separate trend lines on the graph This figure includes 

only data for burn scars that burnt in October 2009 (the timing of the fire is 

indicated by a red vertical line). The length of the fire free interval between 

fires is likely to have an effect on the radar signal as regrowth of above ground 

biomass can occur in this period. However the ability of the forest to 

regenerate is likely to be affected by the number of fires that have occurred. 

Figure 6.5 shows a series of graphs for different burn frequencies showing the 

variation in the radar signal across different groups of burn scars where the 

time since the last fire varies. 

6.4.3 Understanding the causes of variation in the radar signal  

Figure 6.6 & Figure 6.7 clearly show a link between the variation in the radar 

signal and monthly rainfall, with the HH signal being both more variable and 

more highly correlated with rainfall than the HV signal. Figure 6.8 shows how 
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the TRMM monthly rainfall estimate affects the radar backscatter from two 

groups of sample plots with high and low biomass.  

  

 

Figure 6.3. Synthesized long term record of backscatter variation following fire (fire occurs at 

time 0). Where more than one observation exists for any given month the line is drawn 

through the mean of points 

.
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Figure 6.4. Effect of burn frequency (as number of fires) on the temporal radar profile. Top HH 

backscatter in dB, bottom HV backscatter in dB 

.
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6.5  Discussion 

Despite the fact that fires in previously intact PSF clearly resulted in a 

significant reduction in biomass, both polarisations of L-band PALSAR data 

show an increase in backscatter of 4dB in HH and ~2dB in HV compared to 

the prefire i.e. intact forest signal (Figure 6.2). This observation clearly 

contradicts the assumptions behind empirically fitted biomass:radar 

relationships. The increased backscatter response persisted for at least 12 

months, through to the end of the PALSAR dataset. In order to investigate 

how the radar backscatter varied as a result of fire over longer temporal 

scales a long term backscatter response was synthesized by using a fires 

history database to examine burn scars of different ages. This produced a 

large number of temporal backscatter profiles from individual burn scars. The 

post-fire high backscatter values do not persist for long after the fire (Figure 

6.3) and there is a general downward trend in the radar post-fire radar signal. 

However superimposed upon this is a period of ~50 months during which the 

radar signal varies with an amplitude of ~4db from being higher than the 

prefire forest signal to being lower than the forest signal. The amplitude of this 

variation becomes less >50 months after the fire. This pattern is evident in 

both the HH and HV polarisations. 
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Figure 6.5. The effect of time since the last fire on the temporal radar profile for different fire 

frequency regimes. Fire frequency is shown separately in each panel Left HH, right HV 
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Figure 6.6. Variation in the radar signal over areas of burnt (single burn) and intact PSF. HH 

is shown own in the top graph, HV in the bottom. Monthly rainfall values (TRMM bias 

corrected data) are shown in the middle 

 

In Figure 6.4 the effect of fire frequency (as number of fires) on the radar 

profiles is shown in both polarisations, with a general pattern of decreasing 

backscatter intensity with increasing number of fires, a trend that is most 

pronounced in the HV polarisation. It is also evident that there is some 

synchronisation of the variation in the backscatter profiles which would 

indicate a common outside influence such as moisture conditions becoming 

evident in burnt areas. . shows the temporal radar profiles for burn scars of 

different ages and different fire frequencies. These were examined for any 
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changes in the backscatter profiles. Distinct radar profiles for the different burn 

scar ages would indicate secondary regrowth and forest recovery occurring 

post fire. Evidence for this was only seen, however, for areas that had 

experienced a single fire. This agrees with field observations made by Hoscilo 

et al (2011) that no or little forest recovery occurs after a second fire due to 

the destruction of the soil seed bank and  possibly also changes in chemical 

and physical characteristics of the peat surface (Leanne Milner pers. comm.). 

 

Figure 6.7. The correlation between monthly rainfall and the radar signal from burnt areas. 

Top HH (R
2
=0.77), bottom HV (R

2
=0.38). Data are the same as those shown in Figure 6.6. 
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Figure 6.8. HH (top) and HV (bottom) radar signal plotted against monthly rainfall sum. 

Regression lines drawn for plots <40 tonnes per hectare biomass (red) and plots >200 tonnes 

per hectare biomass. (HH: low biomass R
2
=0.003, high biomass R

2
=0.017. HV: low biomass 

R
2
=0.048, high biomass R

2
=0.014).
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The synthesized long term backscatter records have a number of potential 

drawbacks. Firstly some limited fires may have occurred in unmapped non-fire 

years. Secondly other modes of disturbance such as logging are not accounted 

for in this dataset. Also the number of burn scars sampled is large, much larger 

than the number of fires that have occurred. This is because the GIS maps of 

fire history contained many non-contiguous burns which were each regarded as 

separate burn scars despite all being formed during the same large fire. This 

does not limit the analysis, but provides a large sample size. 

In Chapter 5 variation in the radar signal was successfully linked to in-situ 

measurements of the water table. As these data were only available for a small 

part of the study area, however, a more general technique was required to 

account for variation in the radar profile not linked to fire events. Thus TRMM 

derived estimated of monthly rainfall were employed (Figure 6.6). Figure 6.7 

shows that backscatter variation can be correlated to monthly rainfall in 

degraded/burnt areas with the strongest relationship seen with the HH signal. 

So far, this chapter has demonstrated variation in the radar profile and related 

differences in the temporal behaviour to various aspects of the fire regime. It is 

important, however, to understand the mechanisms controlling the variation of 

the radar signal in burnt areas as identifying the external sources of variation 

may allow easier differentiation of burnt areas using radar images in PSF 

landscapes. Figure 6.8, which includes data from a much larger sample of 

plots, shows that although there is a relationship between monthly rainfall and 

the radar signal, particularly for the HH polarisation, that this correlation is much 

weaker when examined across plots and that the rainfall correlation is 
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swamped by interplot variation in the radar signal. This result indicates that 

using rainfall data to correct for biomass values remains problematic.  

6.6  Summary 

Aim 1: What is the temporal signal of fire occurring in intact primary PSF 

and how does it differ from the signal observed in other areas of 

the image? 

 Fire in primary PSF produces and increase in backscatter intensity in 

both polarisations. The increase is largest (3dB) in the HH polarisation. 

The radar signal remains for ~12 months after fire and then shows large 

oscillations between greater and lesser backscatter in relation to intact 

forest. 

Aim 2: How does the temporal radar signal resulting from fire occurring in 

primary PSF differ from the radar signal resulting from fire in areas 

that have burnt two, three or more times? 

 In the HH polarisations areas that had burnt once has higher backscatter 

~0.5dB higher than areas that had experienced multiple fires. This 

difference was large in the HV polarisation. Areas that had experienced 

multiple fires did not show differences in backscatter. 

Aim 3: Does the amount of time that has elapsed between consecutive 

fires alter the radar signal as might be expected to happen if 

secondary regrowth of the forest was occurring? 

 Some differences in the radar backscatter were seen with increasing 

time since fire were observed, indicating forest regrowth may be 

occurring, but only after a single fire 
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Aim 4: Is there an interaction between the radar signal change occurring 

as a result of fire and the rainfall signal described in Chapter 5? 

What form does it take and can it be used to correct for 

biomass/disturbance classes? 

 Variation in the radar signal from burnt areas was linked to monthly 

 rainfall, but this correlation was not strong enough to allow identification 

 of biomass classes. 

 

Knowledge of how the radar signal responds during forest disturbance is key to 

the application of radar imaging to forest monitoring. In this instance the naive 

application of a radar:biomass calibration would lead to serious overestimation 

of biomass for burnt areas. Following fire the radar signal shows a high degree 

of variation; this behaviour appears to be linked with the rainfall and peatland 

hydrology. 
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7. Synthesis & Conclusions 

 

7.1  Introduction 

The aim of this thesis was to contribute knowledge towards a forest monitoring 

system able to better resolve the inaccuracies associated with estimating tropical 

forest carbon and of reliably detecting forest disturbance. In order to achieve this aim 

this study focussed on the use of radar remote sensing in the tropical peat swamp 

forests of Southeast Asia 

In this Chapter, the answers to the questions posed in Chapters  4, 5 and 6 are 

discussed. This is followed by a discussion of the implications of the research 

findings within the wider context of the role that radar remote sensing plays in 

contributing towards a system for the monitoring of deforestation and forest 

degradation in tropical forests. The conclusions of this work and future avenues of 

research suggested by this work are then discussed. 

7.2  Is the L-band backscatter coefficient related to biomass in a tropical peat 

swamp forest? 

The results presented in Chapter 4 of this thesis indicate that radar:biomass 

calibration curves are not temporally stable, at least not in peat swamp forests. 

Simply adding more collocated radar/biomass data points in order to better 

characterise the curve and its associated uncertainties will not produce more 

accurate spatial estimates of forest biomass.  
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The assumption that, if the current paradigm relating radar and biomass was correct, 

was that temporal changes in the radar signal would be dominated by changes in 

biomass, which in this study area meant loss of forest through fire. This assumption 

was clearly not met. Whilst areas of forest loss could be observed in maps of the HH 

temporal mean and temporal standard deviation they were not sufficiently distinct 

from areas of low pole forest and riverine forest to be reliably separated based solely 

on these measures. The use of Empirical Orthogonal Functions (EOFs) allowed the 

separation of different temporal trends in the radar data and some of these trends 

were linked to forest loss from fire. Even in areas where many fires occurred, 

however, the EOF band most associated with fires accounted for less than 50 

percent of the total variation in the dataset, indicating that factors other than biomass 

change were influencing the temporal changes in the radar signal.  

To further confound the efficacy of empirically fitted radar:biomass relationships for 

estimating biomass from the radar signal the greatest temporal variation in the radar 

signal is observed at low biomass values where the gradient of the calibration curve 

is largest and hence might be expected to be the range in which the most accurate 

estimates of biomass would be produced. At low biomass values in the HH 

polarisation the higher portions of the radar signal range produce greater backscatter 

than high biomass forest (see Figure 7.1 for an example). The only parts of the 

calibration curve which show temporally stable behaviour are the high biomass areas 

where biomass estimation is most difficult due to saturation of the radar signal. 

Rather than being considered as static these calibrations should be deemed to be 

dynamic, changing according to seasonal rainfall patterns but also being affected by  
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Figure 7.1 Examples of variable radar backscatter in burnt areas of peat swamp forest. On 20070824 

low biomass burnt area centre is brighter than adjacent high biomass forest. On 20090824, the forest 

is brighter than the burnt area. No biomass change occurred in this period. Numbers refer to areas 

identified in Figure 7.2 

periods of above and below average rainfall. These findings imply that any forest 

monitoring scheme reliant on a radar:biomass calibration curve that is implemented 

across a landscape of peat swamp forest will produce biomass estimates that vary 

hugely through time even when no actual change in the forest biomass has 

occurred. Such a large potential source of error would lead to  inaccuracies in 

calculation of the forest carbon balance, while application of the methodology and 
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misclassification of landscape change in any future REDD style scenario could have 

major monetary consequences. 

7.3  What is the source of changes in radar backscatter in undisturbed areas?  

If changes in the radar signal were not only related to changes in above ground 

biomass ( as shown in Chapter 4) this raises the question of what is driving changes 

in the radar signal? As there is a strong rainfall seasonality across the peatlands of 

Central Kalimantan are the relationship between the radar signal and the peatland 

water was investigated. Field measurements of the peatland water table obtained 

using a network of dipwells were correlated with the radar signal in degraded areas 

with low above ground biomass. The relationship between the water table and the 

radar backscatter was non-linear, but broadly as expected from the literature, i.e. 

backscatter increased as the water table approached the soil surface, then 

decreased as the increasing water table resulted in standing water on the peat 

surface. The scope of this relationship was extended by including the correlation of 

the water table with interferometric coherence and statistical models of water table 

depth as estimated from radar backscatter and coherence. These showed that the 

position of the water table accounted for just over half of the variation observed in 

the radar data. 

An understanding of the relationship between the three radar variables and the depth 

of the water table in peatlands is extremely valuable as inverting this relationship 

allows for the estimation of the water table depth. This is important as water table 

depth has an important influence on carbon emissions from peatlands due to an 

increase in the oxidative microbial degradation of the organic matter in peatland with 

lowering of the water table below the surface (Hirano et al., 2008; Hooijer et al., 

2012; Page et al., 2011). In addition, this information can also be useful in predicting 
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risk of peat fires, since in the tropical peatlands of Southeast Asia, fires will only 

occur when the water table depth has fallen below 40 cm (Hoscilo, 2009). The 

spatial resolution of the water table depth estimates is the same as the radar data 

used in this thesis, i.e. 25m2, which is several orders of magnitude greater than 

currently available estimates of soil moisture (e.g. soil moisture estimates from the 

TRMM, AMSR-E and SMOS satellites) and is at a scale that would allow for remote 

monitoring of peatland water table depth. 

The linking of water table depth with radar signal is novel, as previous work has only 

correlated radar data with surface soil moisture (Joseph et al., 2010; Moran et al., 

2004). It is likely that in this study changes in the radar signal are also a result of 

changes in surface soil moisture, which is a proxy for water table depth. This co-

correlation also explains why the water table predictions are only accurate to a depth 

of ~40cm below the surface as this is the depth at which surface soil moisture is 

reduced to zero and surface soil moisture and water table depth hence become 

uncoupled. Despite this restriction on water table estimation, the natural range of the 

water table depth in undisturbed peat swamp forest is rarely beyond this limit under 

normal rainfall conditions (i.e. outside of El Nino-related droughts, see Jauhiainen et 

al., 2005).  Hence, a remote sensing method that can indicate when the water table 

is at or approaching the critical depth of 40 cm could be of considerable utility in 

projects attempting to restore the hydrology of degraded peatlands in order to reduce 

carbon emissions and the risk of fire (e.g. the IAFCP REDD demonstration project in 

Block A of the exMRP, see http://www.iafcp.or.id/ ).  

To this end, Interferometric coherence is a key variable for producing accurate 

estimates of the peatland water table. It should be noted, however, that remotely 

sensed estimates of water table can only be produced in areas of low biomass which 

http://www.iafcp.or.id/
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have been degraded by fire, as in this study area, or timber removal. In high biomass 

areas the radar signal is dominated by backscatter from the forest canopy and 

trunks, with none of the radar signal penetrating as far as the ground. Nevertheless, 

the extent of degraded peatland in Southeast Asia at the current time (30,000 km2 in 

Borneo alone Miettinen & Liew, 2011) is such that this approach could have 

widespread application. 

 

7.4  What are the changes in the radar backscatter signal associated with loss of 

forest? 

Having understood the processes driving changes in the radar signal in undisturbed 

(i.e. no biomass change) areas the next question to address is what form the radar 

signal took over disturbed areas where changes in biomass were occurring. The 

sudden removal of biomass by fire between radar observations as occurred in 

October 2009 is precisely the type of event that should be clearly detectable by radar 

remote sensing systems. Reduction in forest biomass would be expected to produce 

an easily observable decrease in radar backscatter in the burned area. No such 

reduction in biomass was observed, however, with fire causing an immediate 

increase in HH backscatter of 2-3dB relative to unburnt forest, that remained evident 

until the end of the dataset a year later. A similar, though weaker signal, was also 

observed in the HV polarisation.  As has been previously discussed changes in the 

radar signals over degraded areas of peat swamp forest is highly variable, thus the 

increase in backscatter associated with fire alone may not be distinctive enough to 

characterise forest loss due to fire. The feature of the fire signal in primary forest is 

that the increase in backscatter is preceded by a temporally stable signal. 
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Subsequent fire events (i.e. second, third burns, etc) also seem to be associated 

with increases in backscatter, although the magnitude of signal increase is smaller 

and the background non-fire variation is larger. There is no signal change following 

fire in highly degraded areas with virtually no above ground woody biomass as the 

radar signal change only arises due to changes in the structure of the vegetation. 

There was evidence in both radar polarisations for the detection of post-fire 

increases in biomass due to secondary regeneration of forest, but only after a single 

fire had occurred. Despite being unable to correlate these radar signal with biomass 

under these conditions (due to the rarity of areas with single fires, small sample size 

and the remote nature of these areas which precluded field data collection) this 

finding is encouraging as the low biomass range that would be  expected in the 

areas of regrowth are precisely the regions where radar should be able to most 

easily discriminate biomass values. These findings also  support the conclusion of 

Hoscilo et al., (2013) who observed that secondary regeneration of forest vegetation 

after a fire was possible after one fire but was absent after two fires, with, instead, 

regrowth of non-woody vegetation. 

 

Although the amount of variability shown by the radar signal in areas with different 

burn histories was different, the pattern of variation (i.e. the timing of peaks and 

troughs)  pointing to a common outside driver of the variation, likely to be related to 

the peatland water table. The radar signal in burnt areas was correlated with monthly 

rainfall, again most strongly in the HH polarisation. This was not in itself an 

unexpected result, since this study had already demonstrated a link between the 

radar signal and the water table which would be expected to correlate with rainfall. 

Instead this finding is important because it shows that in the absence of detailed 
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water table data remotely sensed monthly rainfall estimates can be used to examine 

variation in the radar data. In this case TRMM data were successfully used despite 

the mismatch in ground resolution. 

Unfortunately although rainfall did correlate with the changes in the radar signal from 

burned areas  at any given site it was not possible to use the TRMM rainfall data in 

order to provide rainfall corrected estimates of biomass, as the variation in the radar 

signal between sites with similar levels of biomass was too large. This rainfall driven 

variation did not, however, explain the reason for the post fire increase in radar 

backscatter following fire in primary forest. One possible explanation for this increase 

is an interaction between the water table and the dead fuel load accumulated post 

fire either in the form of remaining standing dead timber or post fire debris on the 

ground. 

7.5  Synthesis 

The majority of radar work dealing with the estimation of above ground biomass 

utilises single or bi-temporal radar images (e.g. Carreiras et al., 2012; Mitchard et al., 

2011). In such situations it is unlikely to be obvious how temporally stable the 

relationship between radar and biomass actually is. The research presented in this 

thesis has shown that the assumption that biomass scales with radar backscatter in 

a temporally stable manner is false for peat swamp forests. In this ecosystem any 

biomass estimates sourced from single date radar images are likely to be highly 

misleading if biomass is naively assumed to scale in a stable manner with radar 

backscatter. For example, Englhart et al (2011) provide unrealistically high woody 

biomass values for peat swamp forest of up to 400 tonnes per hectare in the same 

study area (above ground biomass values of peat swamp forest are rarely greater 

than 250 tonnes per hectare (IACFP project data, used in this thesis). Although 
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Englhart et al (2011) attempted to minimise the effects of rainfall by using only dry 

season images, the  high biomass values could be the consequence of low biomass 

burnt areas with high intensity backscatter being misclassified as high biomass forest 

through the use of empirically fitted radar:biomass curves generated from single date 

radar images, with no consideration given to the temporal nature of the radar signal. 

The use of incorrectly fitted empirical radar:biomass relationships  also has recently 

been criticised from a statistical point of view (Woodhouse, 2012). 

 

This research demonstrates the need for multi-temporal radar datasets in order to 

correctly classify land cover and hence assign accurate biomass levels. Although 

calculating temporal averages is an improvement on single date data, algorithms 

which can classify land cover type based on temporal behaviours are needed. EOFs 

were successfully used in this thesis to investigate temporal patterns and could be 

used as the basis of a temporal classification, but there is an urgent need for simpler 

and more memory efficient algorithms. This need is only likely to grow as satellite 

data, in particular radar data, become more available. 

Owing to the degradation history of the study area in which this research was 

conducted it was only possible to study in detail the effects of deforestation caused 

by fire on the behaviour of the radar signal. Forest, and in particular peat swamp 

forest, can, however, be lost in many different ways and these different modes  
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Figure 7.2 Temporal patterns of backscatter change (HH top and HV bottom) occurring as a result of 

different modes of deforestation in peat swamp forests (fire left and mechanical logging right). Band 

number refers to dates of images. 

 

of deforestation have distinctly different radar signatures. Figure 7.2 contrasts the 

increased backscatter of the radar signal in burnt forest with the reduction in radar 

signal observed when peat swamp forest is the subject of mechanical clearing (data 

taken from a concurrent PALSAR dataset from the Kampar peninsula in Riau, 

Sumatra). These different radar signals both occur as result of a reduction in 

biomass and can help to explain the observations of Whittle et al (2012) who failed to 

find a unique radar signal indicative of forest disturbance using PALSAR data in 

Sumatra; instead the authors found 'diverse temporal characteristics'.  
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It is important to note some multi-temporal L-band radar studies (e.g. Ryan et al., 

2011) have been carried out in areas where the radar signal does not appear to be  

as variable as in peat swamp forest and the relationship between radar and above 

ground biomass is much more stable. The question  raised by this thesis is what 

areas of the globe can changes in the radar signal safely be assumed to be related 

to changes in biomass and in which areas is the situation more complex and require 

more caution when interpreting the radar signal? Although tropical peat swamp 

forest is globally quite a rare ecosystem, wetlands, including other types of forested 

wetland, are globally common. It might be expected that in areas of the globe that 

are predominantly either continuously dry or wet that the radar signal would remain 

temporally stable throughout the year and that most changes in the signal would be 

due to changes in biomass. In areas which have a strong seasonality in rainfall or 

moisture it is likely, however, that the behaviour of the radar signal will be more 

temporally dynamic and complex as has been observed in this study of peat swamp 

forest.  A recommendation arising from this finding is that the radar images should 

be collected in conjunction with some estimate of moisture/rainfall anomaly.  
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Figure 7.3. Hypothesized sources of radar backscatter in peat swamp forest. In intact forest (left) the 

radar signal is dominated by volume scattering from the forest canopy and trunks and the signal 

remains stable. Following first fire in primary forest live woody above ground biomass is lost to be 

replaced with dead wood. The removal of the canopy and most trees allows penetration of radar to 

the ground where it can interact with changing soil moisture levels to give a variable radar 

backscatter. Dead fuel decays or is consumed in subsequent fires. Numbers refer to areas in Fig 7.2. 
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Rather than trying to discount these variations in the radar signal, they can be used 

to provide estimates of water table which itself is of great value for estimating carbon 

fluxes from the tropical peatland system. For accurate estimates a measure of 

interferometric coherence is required, which can, however, be problematic as it is 

typically not supplied by space agencies and requires user intensive processing from 

a low level radar product. Inclusion of coherence data as an option when ordering 

data would facilitate the estimation of the peatland water table. 

 

One of the conclusions that should be drawn from this thesis is the need for 

improved bottom up understanding of how radar describes the temporal changes in 

a particular vegetation type rather than the currently popular top down approach 

whereby entire continents or the global land mass are mapped using a single 'one 

size fits all' algorithm. In the long term a more accurate approach to mapping forest 

biomass over large areas would be to stratify understanding of individual empirically 

derived radar:biomass relationships by vegetation type, before creating final large 

scale maps from a mosaic of relationships. 

Radar remote sensing is a key technology as part of a forest monitoring system 

capable of reducing the uncertainties in the location and amount of tropical biomass 

and in carbon fluxes due to land use change in the tropics. However in order for it to 

be fully utilised the exact temporal relationships between the radar signal and 

various land use processes occurring in different vegetation types and different 

areas of the globe need to be understood in much more detail. If temporal processes 

are not included it threatens to make any future radar based tracking of forest carbon 

less, rather than more, robust.  
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7.6  Conclusions 

The research objectives of this thesis as introduced in Section 2.5 were: 

1. To observe the temporal pattern of the radar signal change across a four year 

dataset and examine how these patterns are related to landscape processes 

such as.  

2. To examine the effect that ecosystem processes other than changes in above 

ground biomass have on the radar. 

3. To examine the radar signal occurring as a result of loss of peat swamp forest 

through fire. 

4. To look at how these radar signals may be separated from each other in order 

to give accurate information on carbon emissions in peat swamp forests. 

In answer to objective 1:  

 Complex patterns of radar signal change were observed across the tropical 

peatland landscape. 

 Large amounts of the backscatter change in peat swamp forest are unrelated 

to biomass change. 

 The amount of temporal change in the radar signal is linked to forest biomass, 

with areas of biomass < 80 tonnes per hectare showing up to 6dB of variation. 

 Empirically derived relationships between the radar signal with biomass are 

not useful tools in peat swamp forests due to the temporal variation in the 

radar signal. 

In answer to objective 2:  

 Changes in the radar signal in degraded areas related to changes in the depth 

of the peatland water table. 

 Radar backscatter shows a non-linear relationship with water table depth. 
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 Interferometric coherence data is also related to the depth of the water table 

 These relationships can be used to produce high spatial resolution estimates 

of water table depth in peatlands, though only in areas of low degraded forest 

where the amount of biomass is low. 

In answer to objective 3:  

 The radar signal related to loss of primary forest by fire is an increase in radar 

backscatter. This is counter to that which would be expected  from empirically 

fitted radar:biomass relationships. 

 Burnt areas show high amount of backscatter variation. 

 This variation in the backscatter is linked to monthly rainfall. 

In answer to objective 4:  

 Temporal pattern of backscatter change was assessed using empirical 

orthogonal functions. 

 These successfully grouped areas with similar patterns of backscatter change 

and could be used as the basis for landscape classifications. 
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7.7  Directions for future research 

 

 In situations where empirically fitted biomass:radar relationships are to be 

utilised it should be appreciated that they are not necessarily static curves but 

can fluctuate. More effort should go into defining these relationships according 

to season, rainfall regime and vegetation type and further research is required 

to better understand the underlying mechanisms and factors influencing these 

relationships curves. 

 

 What is the global distribution of variability in the radar signal? 

 In this thesis high temporal radar backscatter variability has been 

demonstrated in peat swamp forest, but it remains to be established how this 

variability fits into the range of temporal backscatter variability over larger 

areas, e.g. the whole of Borneo or even globally? The generation of a global 

map of PALSAR temporal standard deviation and temporal mean backscatter 

would be a relatively simple if computationally intensive process. Such a map 

could help identify regions where the assumptions of using biomass:radar 

relationships are not broken and they can easily be applied.  

 

 What variables would best predict global temporal standard deviation? 

Vegetation type, wetland distribution, rainfall and rainfall seasonality could all 

be hypothesized as influencing temporal behaviour and investigation of these 

variables could be a worthwhile direction for future research. 
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 Ultimately calculations of PALSAR temporal trends are limited as the archive 

covers a brief period of time (~4years) in comparison to the ~40 year Landsat 

archive which is now beginning to be fully exploited to examine temporal 

changes in land cover. Efforts should be made to extend the length of the 

radar image archive by using data from the ALOS 2 satellite when it is 

launched and by including JERS1 HH data in the temporal data stacks.  

 

 What are the patterns of temporal backscatter change caused by different 

modes of forest disturbance (e.g. fire, logging, etc)? 

The temporal radar signal caused by a wide range of different types of forest 

disturbance should be characterised at various bands and polarisations. This 

could then be further extended to characterise patterns of disturbance in other 

vegetation types.  One option to increase our understanding of temporal 

backscatter behaviour would be to use fully polarimetric SAR to identify the 

centres of backscattering and how these alter over time in both disturbed and 

undisturbed forest. 

 

 How does the temporal radar signal vary when observed using alternative 

radar bands? 

Observations of temporal trends should be characterised at different bands, 

imaging modes and polarisations. Research questions could include: How 

different does a particular disturbance event look depending on, for example, 

imaging mode? Would these differences confound the identification of 

disturbance type from radar remote sensing or help to distinguish different 

disturbance types? 
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 There needs to be a continued development of algorithms for distinguishing 

and classifying temporal patterns in remote sensing data and an application of 

these techniques to the radar remote sensing domain.
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8. Appendix: Computer processing scripts 
 

8.1  Linux scripts 
 

8.1.1 Radar processing scripts 
 

 do_run_isp_palsar.csh  This script contain information on the scenes to be processed, location of data files, and processing 

parameters such as number of looks, polarisation and sources of geocoding data. A separate line is required for each scene 

processed, only example is given.    

#./run_isp_palsar.csh region slc1_dir slc1 slc2_dir slc2 range_looks azimuth_looks image_width pol pixel_spacing 

offset_meth flipping interp_mode year geocode_dem geocode_image 

 

################## 

##  Kalimantan  ## 

################## 

#421_7140# 

#done#./run_isp_palsar_new.csh kalimantan 20070622_FBD_421_7140 IMG-HH-ALPSRP075057140-H1.1__A 20070807_FBD_421_7140 

IMG-HH-ALPSRP081767140-H1.1__A 2 9 2320 HH 25 1 1 0 2007 srtm palsar 

 

The following is an example of the do_run_isp_palsar.csh script for running the radar processing script on a cluster 

computer 

echo "module load gamma;cd /scratch/forest/msw13;./run_isp_palsar_ALICE.csh kampar 20090616_FBD_488_0000 IMG-HH-

ALPSRP180820000-H1.1__A 20090801_FBD_488_0000 IMG-HH-ALPSRP187530000-H1.1__A 2 9 2320 HH 25 1 1 0 2009 srtm palsar" 

| qsub -N Gamma_Proc -M msw13@le.ac.uk -l walltime=00:25:00,nodes=1:ppn=1,pvmem=2Gb 
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run_isp_palsar.csh  This is the main script for the processing of radar data. It has a modular design and various 

stages can be turned on or off. This script is the work of Kevin Tansey and  Matthew Waldram with some contributions 

to the section on geocodinbg added by Emma Tebbs. 

#!/bin/csh -fe 

if ($#argv < 13) then 

  echo " " 

  echo "***  Process ALOS PALSAR DATA  ***" 

  echo "***  Copyright 2004, Gamma Remote Sensing, v1.4 18-May-2004 ts/uw/clw  ***" 

  echo "***  Emma Tebbs/MSW version  ***" 

  echo " " 

  echo "run_isp_palsar : To calibrate and run interferometric processing sequence for ALOS data" 

  echo " " 

  echo "usage: run_isp_palsar.csh" 

  echo "       region_dir   Region directory e.g. kampar" 

  echo "       slc1_dir   Data directory for slc1" 

  echo "       slc1_IMG_file_name     PALSAR level 1.1 IMG file name e.g. IMG-HH-ALPSRP075937190-H1.1__A" 

  echo "       slc2_dir   Data directory for slc2" 

  echo "       slc2_IMG_file_name     PALSAR level 1.1 IMG file name e.g. IMG-HH-ALPSRP075937190-H1.1__A" 

  echo "       mli_range_looks   Multi-look intensity range looks (FBS = 2; FBD, PLR = 1)" 

  echo "       mli_azimuth_looks Multi-look intensity azimuth looks (FBS, FBD = 6; PLR = 9)" 

  echo "       image_width      Width (pixels) of the interferogram (mli and int)" 

  echo "       polarisation      Polarisation (e.g. HH, HH_HV etc.)" 

  echo "       grd_pixel_spacing     Ground pixel spacing in m for utm (e.g. 25, assume pixel is square)" 

  echo "       create_offset_method     Offset_algorithm  1: intensity cross-correlation (default), 2: fringe 

visibility" 

  echo "       flipping      Left/right flipping flag, (default=1: normal, -1: mirror image)" 

  echo "       interp_mode      Interpolation Mode (0: nn (default), 1: spline, 2: spline log)" 

  echo "       year   year of image aquisition" 

  echo " " 

  exit 

  endif 

 

set region   = $argv[1] 

set slc1_dir   = $2 

set slc2_dir   = $4 

set insardir   = $2_$4 

set slc1   = $3 
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set slc2   = $5 

set range_looks  = $6 

set azimuth_looks  = $7 

set image_width  = $8 

set pol   = $9 

set grd_pixel_spacing  = $argv[10] 

set create_offset_method = $argv[11] 

set flipping   = $argv[12] 

set interp_mode  = $argv[13] 

set year  = $14 

set dem_width   = $argv[15] 

set dem_source   = $argv[15] 

set img_source   = $argv[16] 

 

set init_offset_corr_threshold_1 = 4.0 

set init_offset_corr_threshold_2 = 4.0 

 

set grd_rsp = $grd_pixel_spacing 

set grd_azsp = $grd_pixel_spacing 

 

if (1) then 

  set do_prepare_slc  = 0 

  set do_initial_offset = 0 

  set do_create_offset  = 0  

  set do_interferogram  = 0 

  set do_base_est  = 0 

  set do_flattening  = 0 

  set do_coherence  = 0 

  set do_ad_filtering  = 0 

  set do_calibration  = 0 

  set do_geocode1       = 1 #gecode a la kevin: srtm & landsat 

  set do_geocode  = 0    #geocode from landsat 

  set do_geo_fine_LS = 0 #geocode from SRTM 

  set do_header         = 1 

  set do_kml  = 0 

  set do_tidy_up  = 1 

  endif 
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if (0) then 

  set do_geo_fine_LS = 0 

  set do_geocode_LS = 0 

endif 

 

if (0) then 

  set do_prepare_slc  = 1 

  set do_initial_offset = 0 

  set do_create_offset  = 0 

  set do_interferogram  = 0 

  set do_base_est  = 0 

  set do_flattening  = 0 

  set do_coherence  = 0 

  set do_ad_filtering  = 0 

  set do_calibration  = 0 

  set do_geocode1       = 0 #gecode a la kevin: srtm & landsat 

  set do_geocode  = 0    #geocode from landsat 

  set do_geo_fine_LS = 0 #geocode from SRTM 

  set do_header         = 1 

  set do_kml  = 0 

  set do_tidy_up  = 1 

  endif 

 

set do_unwrapping_bcut  = 0 

set do_unwrapping_mcf  = 0 

 

set hemisphere = 0 

if ($region == "kalimantan") set hemisphere = "South" 

if ($region == "jambi") set hemisphere = "South" 

if ($region == "kampar") set hemisphere = "North" 

 

cd $region/$year 

if (! (-d $insardir\_$range_looks\x$azimuth_looks\_$pol) ) mkdir $insardir\_$range_looks\x$azimuth_looks\_$pol 

cd $insardir\_$range_looks\x$azimuth_looks\_$pol 

 

#Prepare slc data and processing parameter files# 
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if ($do_prepare_slc) then   

  if (-e $slc1.slc) rm -f $slc1.slc 

  if (-e $slc1.slc.par) rm -f $slc1.slc.par 

  par_EORC_PALSAR /clusterhome/kjt7/$region/alos_palsar/$slc1_dir/l1data/LED* $slc1.slc.par 

/clusterhome/kjt7/$region/alos_palsar/$slc1_dir/l1data/$slc1 $slc1.slc 

  if (-e $slc2.slc) rm -f $slc2.slc 

  if (-e $slc2.slc.par) rm -f $slc2.slc.par 

  par_EORC_PALSAR /clusterhome/kjt7/$region/alos_palsar/$slc2_dir/l1data/LED* $slc2.slc.par 

/clusterhome/kjt7/$region/alos_palsar/$slc2_dir/l1data/$slc2 $slc2.slc 

  endif 

 

####################################################################################### 

###   Offset estimation of the slc images                                           ### 

####################################################################################### 

 

if ($do_initial_offset) then 

  if (-e $slc1\_$slc2.off) rm -f $slc1\_$slc2.off 

  if ($create_offset_method == 1) then 

    create_offset $slc1.slc.par $slc2.slc.par $slc1\_$slc2.off $create_offset_method $range_looks $azimuth_looks < 

../../../create_offset_input_ICC 

    else 

   endif 

  if ($create_offset_method == 2) then 

    create_offset $slc1.slc.par $slc2.slc.par $slc1\_$slc2.off $create_offset_method $range_looks $azimuth_looks < 

../../../create_offset_input_FVI 

   else 

   endif 

  init_offset $slc1.slc $slc2.slc $slc1.slc.par $slc2.slc.par $slc1\_$slc2.off $range_looks $azimuth_looks - - 0 0 

$init_offset_corr_threshold_1 

  init_offset $slc1.slc $slc2.slc $slc1.slc.par $slc2.slc.par $slc1\_$slc2.off 1 1 - - 0 0 

$init_offset_corr_threshold_2 

  endif 

 

if ($do_create_offset) then 

  if ($create_offset_method == 1) then 

    if (-e $slc1\_$slc2.offs) rm -f $slc1\_$slc2.offs 

    if (-e $slc1\_$slc2.snr) rm -f $slc1\_$slc2.snr 
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    if (-e $slc1\_$slc2.offsets) rm -f $slc1\_$slc2.offsets 

    if (-e $slc1\_$slc2.coffs) rm -f $slc1\_$slc2.coffs 

    if (-e $slc1\_$slc2.coffsets) rm -f $slc1\_$slc2.coffsets 

    offset_pwr $slc1.slc $slc2.slc $slc1.slc.par $slc2.slc.par $slc1\_$slc2.off $slc1\_$slc2.offs $slc1\_$slc2.snr - 

- $slc1\_$slc2.offsets 1 - - 7.0 

    offset_fit $slc1\_$slc2.offs $slc1\_$slc2.snr $slc1\_$slc2.off $slc1\_$slc2.coff $slc1\_$slc2.coffsets - 4 0 

    else 

    endif 

 

  if ($create_offset_method == 2) then 

    if (-e $slc1\_$slc2.offs) rm -f $slc1\_$slc2.offs 

    if (-e $slc1\_$slc2.snr) rm -f $slc1\_$slc2.snr 

    if (-e $slc1\_$slc2.offsets) rm -f $slc1\_$slc2.offsets 

    if (-e $slc1\_$slc2.coffs) rm -f $slc1\_$slc2.coffs 

    if (-e $slc1\_$slc2.coffsets) rm -f $slc1\_$slc2.coffsets 

    offset_SLC $slc1.slc $slc2.slc $slc1.slc.par $slc2.slc.par $slc1\_$slc2.off $slc1\_$slc2.offs $slc1\_$slc2.snr - 

- $slc1\_$slc2.offsets 2 - - 3.0 

    offset_fit $slc1\_$slc2.offs $slc1\_$slc2.snr $slc1\_$slc2.off $slc1\_$slc2.coff $slc1\_$slc2.coffsets - 4 0 

    else 

    endif 

  endif 

 

 

####################################################################################### 

###   Compute interferogram                                        ### 

####################################################################################### 

 

if ($do_interferogram) then 

  if (-e $slc1\_$slc2.int) rm -f $slc1\_$slc2.int 

  if (-e $slc2.rslc) rm -f $slc2.rslc 

  if (-e $slc2.rslc.par) rm -f $slc2.rslc.par 

  SLC_interp $slc2.slc $slc1.slc.par $slc2.slc.par $slc1\_$slc2.off $slc2.rslc $slc2.rslc.par 

  SLC_intf $slc1.slc $slc2.rslc $slc1.slc.par $slc2.rslc.par $slc1\_$slc2.off $slc1\_$slc2.int $range_looks 

$azimuth_looks 

  if (-e $slc1.mli) rm -f $slc1.mli 

  if (-e $slc1.mli.par) rm -f $slc1.mli.par 

  if (-e $slc2.mli) rm -f $slc2.mli 
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  if (-e $slc2.mli.par) rm -f $slc2.mli.par 

  if (-e $slc2.rmli) rm -f $slc2.rmli 

  if (-e $slc2.rmli.par) rm -f $slc2.rmli.par 

  multi_look $slc1.slc $slc1.slc.par $slc1.mli $slc1.mli.par $range_looks $azimuth_looks 

  multi_look $slc2.slc $slc2.slc.par $slc2.mli $slc2.mli.par $range_looks $azimuth_looks 

  multi_look $slc2.rslc $slc2.rslc.par $slc2.rmli $slc2.rmli.par $range_looks $azimuth_looks 

  raspwr $slc1.mli $image_width 1 0 1 1 1.0 0.35 $flipping $slc1.mli.bmp 

  raspwr $slc2.mli $image_width 1 0 1 1 1.0 0.35 $flipping $slc2.mli.bmp 

  raspwr $slc2.rmli $image_width 1 0 1 1 1.0 0.35 $flipping $slc2.rmli.bmp 

  if (-e $slc1.mli_flip.bmp) rm -f $slc1.mli_flip.bmp 

  if (-e $slc2.mli_flip.bmp) rm -f $slc2.mli_flip.bmp 

  if (-e $slc2.rmli_flip.bmp) rm -f $slc2.rmli_flip.bmp 

  gm convert -flip $slc1.mli.bmp $slc1.mli_flip.bmp 

  gm convert -flip $slc2.mli.bmp $slc2.mli_flip.bmp 

  gm convert -flip $slc2.rmli.bmp $slc2.rmli_flip.bmp 

  rm -f $slc1.mli.bmp $slc2.mli.bmp $slc2.rmli.bmp 

  rasmph $slc1\_$slc2.int $image_width 1 0 1 1 1. 0.35 $flipping $slc1\_$slc2.mag_phase.bmp 

  if (-e $slc1\_$slc2.mag_phase_flip.bmp) rm -f $slc1\_$slc2.mag_phase_flip.bmp 

  gm convert -flip $slc1\_$slc2.mag_phase.bmp $slc1\_$slc2.mag_phase_flip.bmp 

  rasmph_pwr $slc1\_$slc2.int $slc1.mli $image_width 1 1 0 1 1 1.0 0.35 $flipping $slc1\_$slc2.mag_phase_pwr.bmp 

  if (-e $slc1\_$slc2.mag_phase_pwr_flip.bmp) rm -f $slc1\_$slc2.mag_phase_pwr_flip.bmp 

  gm convert -flip $slc1\_$slc2.mag_phase_pwr.bmp $slc1\_$slc2.mag_phase_pwr_flip.bmp 

  rm -f $slc1\_$slc2.mag_phase_pwr.bmp $slc1\_$slc2.mag_phase.bmp 

  endif 

 

####################################################################################### 

###   Generate baseline file (parallel component from the orbit parameters,         ### 

###   perpendicular component from the fringe rate), remove the Earth phase trend,  ### 

###   filter (running adf several times with a smaller coefficient and              ### 

###   decreasing window size (e.g. 128,64,32) will lead to a better filtering but   ### 

###   is time consuming) and estimate the phase noise (obs.: 05721_25394.smcc is    ### 

###   not the degree of coherence but rather the phase noise because it is          ### 

###   estimated from the filtered interferogram without use of the intensities).    ### 

####################################################################################### 

 

if ($do_base_est) then   # generate baseline file (first remove an eventual first estimate)        

  if (-e $slc1\_$slc2.base) rm -f $slc1\_$slc2.base 
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  if (-e $slc1\_$slc2.base.txt) rm -f $slc1\_$slc2.base.txt 

  touch $slc1\_$slc2.base.txt 

  base_init $slc1.slc.par $slc2.rslc.par $slc1\_$slc2.off $slc1\_$slc2.int $slc1\_$slc2.base 0 1024 1024 > 

$slc1\_$slc2.base.txt 

  endif 

 

if ($do_flattening) then   # curved Earth phase trend removal (flattening) and filter 

  if (-e $slc1\_$slc2.flt) rm -f $slc1\_$slc2.flt 

  ph_slope_base $slc1\_$slc2.int $slc1.slc.par $slc1\_$slc2.off $slc1\_$slc2.base $slc1\_$slc2.flt 

  if (-e $slc1\_$slc2.flt_mag_phase_flip.bmp) rm -f $slc1\_$slc2.flt_mag_phase_flip.bmp 

  rasmph $slc1\_$slc2.flt $image_width 1 0 1 1 1. 0.35 $flipping $slc1\_$slc2.flt_mag_phase.bmp 

  gm convert -flip $slc1\_$slc2.flt_mag_phase.bmp $slc1\_$slc2.flt_mag_phase_flip.bmp 

  if (-e $slc1\_$slc2.flt_mag_phase_pwr_flip.bmp) rm -f $slc1\_$slc2.flt_mag_phase_pwr_flip.bmp 

  rasmph_pwr $slc1\_$slc2.flt $slc1.mli $image_width 1 1 0 1 1 1.0 0.35 $flipping $slc1\_$slc2.flt_mag_phase_pwr.bmp 

  gm convert -flip $slc1\_$slc2.flt_mag_phase_pwr.bmp $slc1\_$slc2.flt_mag_phase_pwr_flip.bmp 

  rm -f $slc1\_$slc2.flt_mag_phase.bmp $slc1\_$slc2.flt_mag_phase_pwr.bmp 

  endif 

 

 

if ($do_coherence) then   # coherence estimation and generation of Bitmaps 

  if (-e $slc1\_$slc2.cc) rm -f $slc1\_$slc2.cc 

  cc_wave $slc1\_$slc2.flt $slc1.mli $slc2.rmli $slc1\_$slc2.cc $image_width 

  if (-e $slc1\_$slc2.cc_flip.bmp) rm -f $slc1\_$slc2.cc_flip.bmp 

  ras_linear $slc1\_$slc2.cc $image_width 1 0 1 1 0.0 1.0 $flipping $slc1\_$slc2.cc.bmp 

  gm convert -flip $slc1\_$slc2.cc.bmp $slc1\_$slc2.cc_flip.bmp 

  if (-e $slc1\_$slc2.cc_pwr_flip.bmp) rm -f $slc1\f  

  endif 

 

if ($do_ad_filtering) then   # adaptive interferogram filtering and generation of Bitmaps 

  if (-e $slc1\_$slc2.cc_filt) rm -f $slc1\_$slc2.cc_filt 

  if (-e $slc1\_$slc2.flt_filt) rm -f $slc1\_$slc2.flt_filt 

  adf $slc1\_$slc2.flt  $slc1\_$slc2.flt_filt $slc1\_$slc2.cc_filt $image_width .5 

  if (-e $slc1\_$slc2.flt_filt_mag_phase_pwr_flip.bmp) rm -f $slc1\_$slc2.flt_filt_mag_phase_pwr_flip.bmp 

  rasmph_pwr $slc1\_$slc2.flt_filt $slc1.mli $image_width 1 1 0 1 1 1.0 0.35 $flipping 

$slc1\_$slc2.flt_filt_mag_phase_pwr.bmp 

  gm convert -flip $slc1\_$slc2.cc.bmp $slc1\_$slc2.cc_flip.bmp 

  if (-e $slc1\_$slc2.cc_pwr_flip.bmp) rm -f $slc1\_$slc2.cc_pwr_flip.bmp 
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  rascc $slc1\_$slc2.cc $slc1.mli $image_width 1 1 0 1 1 0.1 0.9 1.0 0.35 $flipping $slc1\_$slc2.cc_pwr.bmp 

  gm convert -flip $slc1\_$slc2.cc_pwr.bmp $slc1\_$slc2.cc_pwr_flip.bmp 

  rm -f $slc1\_$slc2.cc.bmp $slc1\_$slc2.cc_pwr.bmp 

  endif 

 

####################################################################################### 

###   Phase unwrapping                                                              ### 

####################################################################################### 

 

if ($do_unwrapping_bcut) then   # phase unwrapping (first remove an eventual first estimate) 

  if (-e $slc1\_$slc2.flag) rm -f $slc1\_$slc2.flag 

  if (-e $slc1\_$slc2.unw) rm -f $slc1\_$slc2.unw 

  corr_flag $slc1\_$slc2.cc_filt $slc1\_$slc2.flag $image_width 0.25 

  neutron $slc1.mli $slc1\_$slc2.flag $image_width 

  residue $slc1\_$slc2.flt_filt $slc1\_$slc2.flag $image_width 

  tree_cc $slc1\_$slc2.flag $image_width 64 

  grasses $slc1\_$slc2.flt_filt $slc1\_$slc2.flag $slc1\_$slc2.unw $image_width 

  if (-e $slc1\_$slc2.unw.bmp) rm -f $slc1\_$slc2.unw.bmp 

  if (-e $slc1\_$slc2.unw_flip.bmp) rm -f $slc1\_$slc2.unw_flip.bmp 

  rasrmg $slc1\_$slc2.unw $slc1.mli $image_width 1 1 0 1 1 .5 1. .35 0.0 $flipping $slc1\_$slc2.unw.bmp 

  gm convert -flip $slc1\_$slc2.unw.bmp $slc1\_$slc2.unw_flip.bmp 

  endif 

 

if ($do_unwrapping_mcf) then   # phase unwrapping (Minimum Cost Flow) 

  if (-e $slc1\_$slc2.cc_mask.bmp) rm -f $slc1\_$slc2.cc_mask.bmp 

  rascc_mask $slc1\_$slc2.cc $slc1.mli $image_width 1 1 0 1 1 0.2 - - - - - $slc1\_$slc2.cc_mask.bmp 

  if (-e $slc1\_$slc2.unw_mcf0) rm -f $slc1\_$slc2.unw_mcf0 

  mcf $slc1\_$slc2.flt_filt $slc1\_$slc2.cc $slc1\_$slc2.cc_mask.bmp $slc1\_$slc2.unw_mcf0 $image_width 1 0 0 - - 1 

1 - - - 

  rasrmg $slc1\_$slc2.unw_mcf0 $slc1.mli $image_width 1 1 0 1 1 .5 1. .35 0.0 $flipping $slc1\_$slc2.unw_mcf0.bmp 

  gm convert -flip $slc1\_$slc2.unw_mcf0.bmp $slc1\_$slc2.unw_mcf0_flip.bmp 

  if (-e $slc1\_$slc2.unw_mcf0_interp) rm -f $slc1\_$slc2.unw_mcf0_interp 

  interp_ad $slc1\_$slc2.unw_mcf0 $slc1\_$slc2.unw_mcf0_interp $image_width 

  rasrmg $slc1\_$slc2.unw_mcf0_interp $slc1.mli $image_width 1 1 0 1 1 .5 1. .35 0.0 $flipping 

$slc1\_$slc2.unw_mcf0_interp.bmp 

  gm convert -flip $slc1\_$slc2.unw_mcf0_interp.bmp $slc1\_$slc2.unw_mcf0_interp_flip.bmp 

  if (-e $slc1\_$slc2.unw_mcf) rm -f $slc1\_$slc2.unw_mcf 
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  unw_model $slc1\_$slc2.flt_filt $slc1\_$slc2.unw_mcf0_interp $slc1\_$slc2.unw_mcf $image_width - - - 

  if (-e $slc1\_$slc2.unw_mcf.bmp) rm -f $slc1\_$slc2.unw_mcf.bmp 

  rasrmg $slc1\_$slc2.unw_mcf $slc1.mli $image_width 1 1 0 1 1 .5 1. .35 0.0 $flipping $slc1\_$slc2.unw_mcf.bmp 

  gm convert -flip $slc1\_$slc2.unw_mcf.bmp $slc1\_$slc2.unw_mcf_flip.bmp 

  rm -f $slc1\_$slc2.unw_mcf0_interp.bmp $slc1\_$slc2.unw_mcf0.bmp 

  endif 

 

if ($do_calibration) then  # Perform a calibration of the SLC data 

  if (-e $slc1.cslc.par) rm -f $slc1.cslc.par 

  if (-e $slc1.cslc) rm -f $slc1.cslc 

  if (-e $slc2.cslc.par) rm -f $slc2.cslc.par 

  if (-e $slc2.cslc) rm -f $slc2.cslc 

  if (-e $slc1.cmli.par) rm -f $slc1.cmli.par 

  if (-e $slc1.cmli) rm -f $slc1.cmli 

  if (-e $slc2.cmli.par) rm -f $slc2.cmli.par 

  if (-e $slc2.cmli) rm -f $slc2.cmli 

  radcal_SLC $slc1.slc $slc1.slc.par $slc1.cslc $slc1.cslc.par 1 - 0 0 1 0 -115.0 

  radcal_SLC $slc2.slc $slc2.slc.par $slc2.cslc $slc2.cslc.par 1 - 0 0 1 0 -115.0 

  multi_look $slc1.cslc $slc1.cslc.par $slc1.cmli $slc1.cmli.par $range_looks $azimuth_looks 

  multi_look $slc2.cslc $slc2.cslc.par $slc2.cmli $slc2.cmli.par $range_looks $azimuth_looks 

  if (-e $slc1.cmli_flip.bmp) rm -f $slc1.cmli_flip.bmp 

  if (-e $slc2.cmli_flip.bmp) rm -f $slc2.cmli_flip.bmp 

  raspwr $slc1.cmli $image_width 1 0 1 1 1.0 0.35 $flipping $slc1.cmli.bmp 

  gm convert -flip $slc1.cmli.bmp $slc1.cmli_flip.bmp 

  raspwr $slc2.cmli $image_width 1 0 1 1 1.0 0.35 $flipping $slc2.cmli.bmp 

  gm convert -flip $slc2.cmli.bmp $slc2.cmli_flip.bmp 

  rm -f $slc1.cmli.bmp $slc2.cmli.bmp 

  endif 

 

####################################################### 

#   Geocoding using SRTM & Landsat                   ## 

####################################################### 

 

if ($do_geocode1) then 

  if (-e $slc1.dem_par) rm -f $slc1.dem_par 

  if (-e $slc1.dem) rm -f $slc1.dem 

  if (-e $slc1.dem_seg) rm -f $slc1.dem_segset  
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  if (-e $slc1.img) rm -f $slc1.img 

  if (-e $slc1.rough.utm_to_rdc) rm -f $slc1.rough.utm_to_rdc 

  if (-e $slc1.utm.sim_sar) rm -f $slc1.utm.sim_sar 

  if (-e $slc1\_utm.dem_par) rm -f $slc1\_utm.dem_par 

  if (-e $slc1\_utm.dem) rm -f $slc1\_utm.dem 

 

  if ($dem_source == srtm) set dem_projection = eqa 

  if ($img_source == landsat) set img_projection = utm 

  if ($img_source == palsar) set img_projection = utm 

 

 

  create_dem_par $slc1\_utm.dem_par $slc1.cmli.par - -$grd_rsp $grd_rsp < 

/clusterhome/msw13/PALSAR_data/DEMs/landsat/create_dem_par_utm_$region 

  dem_trans /clusterhome/msw13/PALSAR_data/DEMs/$dem_source/$region\_$dem_source\_$dem_projection.dem_par 

/clusterhome/msw13/PALSAR_data/DEMs/$dem_source/$region\_$dem_source\_$dem_projection.dem $slc1\_utm.dem_par 

$slc1\_utm.dem 

  gc_map $slc1.cmli.par - $slc1\_utm.dem_par $slc1\_utm.dem $slc1.dem_par $slc1.dem_seg $slc1.rough.utm_to_rdc - - 

$slc1.utm.sim_sar 

 

  if ($img_source != -) then 

    map_trans /clusterhome/msw13/PALSAR_data/DEMs/$img_source/$region\_$img_source\_$img_projection.dem_par 

/clusterhome/msw13/PALSAR_data/DEMs/$img_source/$region\_$img_source\_$img_projection.img $slc1.dem_par $slc1.img 

    endif 

 

  set dem_width = `awk '{if($1 == "width:" ) printf("%d", $2)}' < $slc1.dem_par` 

 

  if ($img_source != -) then 

    geocode $slc1.rough.utm_to_rdc $slc1.img $dem_width $slc1.sim_sar $image_width - 1 0 

    endif 

  if ($img_source == -) then 

    geocode $slc1.rough.utm_to_rdc $slc1.utm.sim_sar $dem_width $slc1.sim_sar $image_width - 1 0 

    endif 

 

 

  if (-e $slc1.diff_par) rm -f $slc1.diff_par 

  if (-e geocode_info) rm -f 

  create_diff_par $slc1.cmli.par - $slc1.diff_par 1 < /clusterhome/msw13/PALSAR_data/create_diff_par 
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  init_offsetm $slc1.cmli $slc1.sim_sar $slc1.diff_par - - - - - - 2.5 > geocode_info 

  if (-e $slc1.gc_offs) rm -f $slc1.gc_offs 

  if (-e $slc1.gc_snr) rm -f $slc1.gc_snr 

  if (-e $slc1.gc_offsets) rm -f $slc1.gc_offsets 

  if (-e $slc1.gc_coffs) rm -f $slc1.gc_coffs 

  if (-e $slc1.gc_coffsets) rm -f $slc1.gc_coffsets 

#put repeat steps here   

  if ($img_source == -) then 

    offset_pwrm $slc1.cmli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 256 256 $slc1.gc_offsets 1 8 8 

7.0 

    offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs $slc1.gc_coffsets 7.0 3 

    offset_pwrm $slc1.cmli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 128 128 $slc1.gc_offsets 2 24 24 

7.0 

    offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs $slc1.gc_coffsets 7.0 3 >> geocode_info 

    endif 

  if ($img_source != -) then 

    offset_pwrm $slc1.cmli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 128 128 - - 8 32 

    offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs $slc1.gc_coffsets - 1 

    offset_pwrm $slc1.cmli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 128 128 - - 16 64 

    offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs $slc1.gc_coffsets - 1 

    offset_pwrm $slc1.cmli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 128 128 - - 16 64 

    offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs $slc1.gc_coffsets - 3 

    offset_pwrm $slc1.cmli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 128 128 - - 24 96 

    offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs $slc1.gc_coffsets - 4 

    offset_pwrm $slc1.cmli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 96 96 - - 24 96 

    offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs $slc1.gc_coffsets - 4 

    offset_pwrm $slc1.cmli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 96 96 - - 32 96 

    offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs $slc1.gc_coffsets - 4 >> geocode_info 

    endif 

 

#  offset_pwrm $slc1.cmli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 256 256 $slc1.gc_offsets 1 8 8 7.0 

#  offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs $slc1.gc_coffsets 7.0 3 

#  offset_pwrm $slc1.cmli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 256 256 $slc1.gc_offsets 1 16 16 

7.0 

#  offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs $slc1.gc_coffsets 7.0 3 

#put repeat steps here 
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  if (-e $slc1.utm_to_rdc) rm -f $slc1.utm_to_rdc 

  gc_map_fine $slc1.rough.utm_to_rdc $dem_width $slc1.diff_par $slc1.utm_to_rdc 0 

  if (-e $slc1_dir.cmli.utm_$grd_rsp\m_$pol) rm -f $slc1_dir.cmli.utm_$grd_rsp\m_$pol 

  if ($slc2_dir != -) then 

    if (-e $slc2_dir.cmli.utm_$grd_rsp\m_$pol) rm -f $slc2_dir.cmli.utm_$grd_rsp\m_$pol 

    if (-e $slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol) rm -f $slc1\_$slc2.cc.utm_$grd_rsp\m_$pol 

    endif 

  geocode_back $slc1.cmli $image_width $slc1.utm_to_rdc $slc1_dir.cmli.utm_$grd_rsp\m_$pol $dem_width 0 3 0 

  cp $slc1.dem_par $slc1_dir.cmli.utm_$grd_rsp\m_$pol.par_file 

  if ($slc2_dir != -) then 

  if (-e $slc2_dir.cmli.utm_$grd_rsp\m_$pol.par_file) rm -f $slc2_dir.cmli.utm_$grd_rsp\m_$pol.par_file 

    if (-e $slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol.par_file) rm -f 

$slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol.par_file   

 

    geocode_back $slc2.cmli $image_width $slc1.utm_to_rdc $slc2_dir.cmli.utm_$grd_rsp\m_$pol $dem_width 0 3 0 

    geocode_back $slc1\_$slc2.cc $image_width $slc1.utm_to_rdc $slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol 

$dem_width 0 1 0 

    cp $slc1.dem_par $slc2_dir.cmli.utm_$grd_rsp\m_$pol.par_file 

    cp $slc1.dem_par $slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol.par_file 

 

    endif 

  if (-e $slc1_dir.cmli.utm_$grd_rsp\m_$pol.bmp) rm -f $slc1_dir.cmli.utm_$grd_rsp\m_$pol.bmp 

  raspwr $slc1_dir.cmli.utm_$grd_rsp\m_$pol $dem_width 1 0 1 1 1.0 0.35 1 $slc1_dir.cmli.utm_$grd_rsp\m_$pol.bmp 

  if ($slc2_dir != -) then 

    if (-e $slc2_dir.cmli.utm_$grd_rsp\m_$pol.bmp) rm -f $slc2_dir.cmli.utm_$grd_rsp\m.bmp_$pol 

    if (-e $slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol.bmp) rm -f $slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol.bmp 

    raspwr $slc2_dir.cmli.utm_$grd_rsp\m_$pol $dem_width 1 0 1 1 1.0 0.35 1 $slc2_dir.cmli.utm_$grd_rsp\m_$pol.bmp 

    ras_linear $slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol $dem_width 1 0 1 1 0.0 1.0 1 

$slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol.bmp 

endif 

    endif 

 endif 

 

###################################### 

##   Geocode from landsat tile only ## 

###################################### 
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if ($do_geocode) then 

  if (-e $slc1\_utm_dem.par) rm -f $slc1\_utm_dem.par 

  if (-e $slc1\dem) rm -f $slc1\dem 

  if (-e $slc1.rough.utm_to_rdc) rm -f $slc1.rough.utm_to_rdc 

  if (-e $slc1.utm.sim_sar) rm -f $slc1.utm.sim_sar 

#  if (-e /clusterhome/kjt7/kalimantan/Landsat/$1\_l7_utm_dem.par) rm -f 

/clusterhome/kjt7/kalimantan/Landsat/$1\_l7_utm_dem.par 

#  if (-e /clusterhome/kjt7/kalimantan/Landsat/$1\_l7_utm_dem) rm -f 

/clusterhome/kjt7/kalimantan/Landsat/$1\_l7_utm_dem 

 

# Use for SRTM 

#create_dem_par /clusterhome/kjt7/kalimantan/Landsat/$1\_l7_utm_dem.par $slc1.mli.par - -$grd_rsp $grd_azsp < 

/clusterhome/msw13/PALSAR_data/DEMs/Landsat/create_dem_par_utm 

#dem_trans /clusterhome/kjt7/kalimantan/Landsat/$1\_l7_eqa_dem.par 

/clusterhome/kjt7/kalimantan/Landsat/$1\_l7_eqa_dem /clusterhome/kjt7/kalimantan/Landsat/$1\_l7_utm_dem.par 

/clusterhome/kjt7/kalimantan/Landsat/$1\_l7_utm_dem 

 

gc_map $slc1.mli.par - /clusterhome/kjt7/kalimantan/landsat/$1\_landsat_utm.dem_par 

/clusterhome/kjt7/kalimantan/landsat/$1\_landsat_utm.img $slc1.dem_par $slc1.dem $slc1.rough.utm_to_rdc - - 

$slc1.utm.sim_sar 

 

set dem_width = `awk '{if($1 == "width:" ) printf("%d", $2)}' < 

/clusterhome/kjt7/kalimantan/landsat/kalimantan_landsat_utm.dem_par` #gets dem width from dem_par file 

 

  if (-e $slc1.sim_sar) rm -f $slc1.sim_sar 

  geocode $slc1.rough.utm_to_rdc $slc1.utm.sim_sar $dem_width $slc1.sim_sar $image_width - 1 0 

  if (-e $slc1.diff_par) rm -f $slc1.diff_par 

  create_diff_par $slc1.mli.par - $slc1.diff_par 1 < /clusterhome/msw13/PALSAR_data/create_diff_par 

  init_offsetm $slc1.mli $slc1.sim_sar $slc1.diff_par - - - - - - 2.0 > geocode_info 

  if (-e $slc1.gc_offs) rm -f $slc1.gc_offs 

  if (-e $slc1.gc_snr) rm -f $slc1.gc_snr 

  if (-e $slc1.gc_offsets) rm -f $slc1.gc_offsets 

  if (-e $slc1.gc_coffs) rm -f $slc1.gc_coffs 

  if (-e $slc1.gc_coffsets) rm -f $slc1.gc_coffsets 

  offset_pwrm $slc1.mli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 128 256 $slc1.gc_offsets 1 8 8 7.0 
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  offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs $slc1.gc_coffsets 7.0 3 

  if (-e $slc1.utm_to_rdcset) rm -f $slc1.utm_to_rdc 

  gc_map_fine $slc1.rough.utm_to_rdc $dem_width $slc1.diff_par $slc1.utm_to_rdc 0 

  if (-e $slc1_dir.cmli.utm_$grd_rsp\m_$pol) rm -f $slc1_dir.cmli.utm_$grd_rsp\m_$pol 

  if ($slc2_dir != -) then 

    if (-e $slc2_dir.cmli.utm_$grd_rsp\m_$pol) rm -f $slc2_dir.cmli.utm_$grd_rsp\m_$pol 

    if (-e $slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol) rm -f $slc1\_$slc2.cc.utm_$grd_rsp\m_$pol 

    endif 

  geocode_back $slc1.cmli $image_width $slc1.utm_to_rdc $slc1_dir.cmli.utm_$grd_rsp\m_$pol $dem_width 0 3 0 

  if ($slc2_dir != -) then 

    geocode_back $slc2.cmli $image_width $slc1.utm_to_rdc $slc2_dir.cmli.utm_$grd_rsp\m_$pol $dem_width 0 3 0 

    geocode_back $slc1\_$slc2.cc $image_width $slc1.utm_to_rdc $slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol 

$dem_width 0 1 0 

    endif 

  if (-e $slc1_dir.cmli.utm_$grd_rsp\m_$pol.bmp) rm -f $slc1_dir.cmli.utm_$grd_rsp\m_$pol.bmp 

  raspwr $slc1_dir.cmli.utm_$grd_rsp\m_$pol $dem_width 1 0 1 1 1.0 0.35 1 $slc1_dir.cmli.utm_$grd_rsp\m_$pol.bmp 

  if ($slc2_dir != -) then 

    if (-e $slc2_dir.cmli.utm_$grd_rsp\m_$pol.bmp) rm -f $slc2_dir.cmli.utm_$grd_rsp\m.bmp_$pol 

    if (-e $slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol.bmp) rm -f $slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol.bmp 

    raspwr $slc2_dir.cmli.utm_$grd_rsp\m_$pol $dem_width 1 0 1 1 1.0 0.35 1 $slc2_dir.cmli.utm_$grd_rsp\m_$pol.bmp 

    ras_linear $slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol $dem_width 1 0 1 1 0.0 1.0 1 

$slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol.bmp 

    endif 

 

#  if (-e $slc1.cmli.utm_$grd_rsp\m) rm -f $slc1.cmli.utm_$grd_rsp\m 

#  if (-e $slc2.cmli.utmmv *.par processing_files_$grd_rsp\m) rm -f $slc2.cmli.utm_$grd_rsp\m 

#  if (-e $slc1\_$slc2.cc.utm_$grd_rsp\m) rm -f $slc1\_$slc2.cc.utm_$grd_rsp\m 

#  geocode_back $slc1.cmli $image_width $slc1.utm_to_rdc $slc1.cmli.utm_$grd_rsp\m $dem_width 0 3 0  

#  geocode_back $slc2.cmli $image_width $slc1.utm_to_rdc $slc2.cmli.utm_$grd_rsp\m $dem_width 0 3 0  

#  geocode_back $slc1\_$slc2.cc $image_width $slc1.utm_to_rdc $slc1\_$slc2.cc.utm_$grd_rsp\m $dem_width 0 1 0  

#  if (-e $slc1.cmli.utm_$grd_rsp\m.bmp) rm -f $slc1.cmli.utm_$grd_rsp\m.bmp 

#  if (-e $slc2.cmli.utm_$grd_rsp\m.bmp) rm -f $slc2.cmli.utm_$grd_rsp\m.bmp 

#  if (-e $slc1\_$slc2.cc.utm_$grd_rsp\m.bmp) rm -f $slc1\_$slc2.cc.utm_$grd_rsp\m.bmp 

#  raspwr $slc1.cmli.utm_$grd_rsp\m $dem_width 1 0 1 1 1.0 0.35 1 $slc1.cmli.utm_$grd_rsp\m.bmp 

#  raspwr $slc2.cmli.utm_$grd_rsp\m $dem_width 1 0 1 1 1.0 0.35 1 $slc2.cmli.utm_$grd_rsp\m.bmp 

#  ras_linear $slc1\_$slc2.cc.utm_$grd_rsp\m $dem_width 1 0 1 1 0.0 1.0 1 $slc1\_$slc2.cc.utm_$grd_rsp\m.bmp 

 



171 
 

  echo $dem_width 

  endif 

 

####################################################### 

#   Geocoding using SRTM only                        ## 

####################################################### 

 

if ($do_geo_fine_LS) then 

  if (-e $slc1\_utm.dem_par) rm -f $slc1\_utm.dem_par 

  if (-e $slc1.dem) rm -f $slc1.dem 

  if (-e $slc1.rough.utm_to_rdc) rm -f $slc1.rough.utm_to_rdc 

  if (-e $slc1.utm.sim_sar) rm -f $slc1.utm.sim_sar 

  if (-e /clusterhome/msw13/PALSAR_data/DEMs/SRTM/$1\_utm.dem_par) rm -f 

/clusterhome/msw13/PALSAR_data/DEMs/Landsat/$1\_utm.dem_par 

  if (-e /clusterhome/msw13/PALSAR_data/DEMs/SRTM/$1\_utm.dem) rm -f 

/clusterhome/msw13/PALSAR_data/DEMs/Landsat/$1\_utm.dem 

 

# Use for SRTM 

create_dem_par /clusterhome/msw13/PALSAR_data/DEMs/SRTM/$1\_utm.dem_par $slc1.mli.par - -$grd_rsp $grd_azsp < 

/clusterhome/msw13/PALSAR_data/DEMs/SRTM/create_dem_par_utm 

dem_trans /clusterhome/msw13/PALSAR_data/DEMs/SRTM/$1\_srtm_eqa.dem_par 

/clusterhome/msw13/PALSAR_data/DEMs/SRTM/$1\_srtm_eqa.dem /clusterhome/msw13/PALSAR_data/DEMs/SRTM/$1\_utm.dem_par 

/clusterhome/msw13/PALSAR_data/DEMs/SRTM/$1\_utm.dem 

 

gc_map $slc1.mli.par - /clusterhome/msw13/PALSAR_data/DEMs/SRTM/$1\_utm.dem_par 

/clusterhome/msw13/PALSAR_data/DEMs/SRTM/$1\_utm.dem $slc1.dem_par $slc1.dem $slc1.rough.utm_to_rdc - - 

$slc1.utm.sim_sar 

 

set dem_width = `awk '{if($1 == "width:" ) printf("%d", $2)}' < $3.dem_par` #gets dem width from dem_par file 

 

  if (-e $slc1.sim_sar) rm -f $slc1.sim_sar 

  geocode $slc1.rough.utm_to_rdc $slc1.utm.sim_sar $dem_width $slc1.sim_sar $image_width - 1 0 

  if (-e $slc1.diff_par) rm -f $slc1.diff_par 

  create_diff_par $slc1.mli.par - $slc1.diff_par 1 < /clusterhome/msw13/PALSAR_data/create_diff_par 

  init_offsetm $slc1.mli $slc1.sim_sar $slc1.diff_par - - - - - - 2.5 > geocode_info 

  if (-e $slc1.gc_offs) rm -f $slc1.gc_offs 

  if (-e $slc1.gc_snr) rm -f $slc1.gc_snr 
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  if (-e $slc1.gc_offsets) rm -f $slc1.gc_offsets 

  if (-e $slc1.gc_coffs) rm -f $slc1.gc_coffs 

  if (-e $slc1.gc_coffsets) rm -f $slc1.gc_coffsets 

  offset_pwrm $slc1.mli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 128 256 $slc1.gc_offsets 1 8 8 7.0 

  offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs $slc1.gc_coffsets 7.0 3 

  if (-e $slc1.utm_to_rdcset) rm -f $slc1.utm_to_rdc 

  gc_map_fine $slc1.rough.utm_to_rdc $dem_width $slc1.diff_par $slc1.utm_to_rdc 0 

  if (-e $slc1_dir.cmli.utm_$grd_rsp\m_$pol) rm -f $slc1_dir.cmli.utm_$grd_rsp\m_$pol 

  if ($slc2_dir != -) then 

    if (-e $slc2_dir.cmli.utm_$grd_rsp\m_$pol) rm -f $slc2_dir.cmli.utm_$grd_rsp\m_$pol 

    if (-e $slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol) rm -f $slc1\_$slc2.cc.utm_$grd_rsp\m_$pol 

    endif 

  geocode_back $slc1.cmli $image_width $slc1.utm_to_rdc $slc1_dir.cmli.utm_$grd_rsp\m_$pol $dem_width 0 3 0 

  if ($slc2_dir != -) then 

    geocode_back $slc2.cmli $image_width $slc1.utm_to_rdc $slc2_dir.cmli.utm_$grd_rsp\m_$pol $dem_width 0 3 0 

    geocode_back $slc1\_$slc2.cc $image_width $slc1.utm_to_rdc $slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol 

$dem_width 0 1 0 

    endif 

  if (-e $slc1_dir.cmli.utm_$grd_rsp\m_$pol.bmp) rm -f $slc1_dir.cmli.utm_$grd_rsp\m_$pol.bmp 

  raspwr $slc1_dir.cmli.utm_$grd_rsp\m_$pol $dem_width 1 0 1 1 1.0 0.35 1 $slc1_dir.cmli.utm_$grd_rsp\m_$pol.bmp 

  if ($slc2_dir != -) then 

    if (-e $slc2_dir.cmli.utm_$grd_rsp\m_$pol.bmp) rm -f $slc2_dir.cmli.utm_$grd_rsp\m.bmp_$pol 

    if (-e $slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol.bmp) rm -f $slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol.bmp 

    raspwr $slc2_dir.cmli.utm_$grd_rsp\m_$pol $dem_width 1 0 1 1 1.0 0.35 1 $slc2_dir.cmli.utm_$grd_rsp\m_$pol.bmp 

    ras_linear $slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol $dem_width 1 0 1 1 0.0 1.0 1 

$slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol.bmp 

    endif 

 

  echo $dem_width 

  endif 

 

 

################################# 

##   Create ENVI header file   ## 

################################# 
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if($do_header) then  

 

  set pixels = `awk '{if($1 == "width:" ) printf("%d", $2)}' < $slc1.dem_par` 

  set lines = `awk '{if($1 == "nlines:" ) printf("%d", $2)}' < $slc1.dem_par` 

  set ul_easting = `awk '{if($1 == "corner_east:" ) printf("%.3f", $2)}' < $slc1.dem_par` 

  set ul_northing = `awk '{if($1 == "corner_north:" ) printf("%.3f", $2)}' < $slc1.dem_par` 

  set pixel_size = `awk '{if($1 == "post_east:" ) printf("%.10f", $2)}' < $slc1.dem_par` 

  set projection = `awk '{if($1 == "projection_name:" ) printf("%s", $2)}' < $slc1.dem_par` 

  set utm_zone = `awk '{if($1 == "projection_zone:" ) printf("%d", $2)}' < $slc1.dem_par` 

 

  set envi_hdr_file = $slc1_dir.hdr 

  echo "ENVI" > $envi_hdr_file 

  echo "description = {" >> $envi_hdr_file 

  echo "  File Imported into ENVI. }" >> $envi_hdr_file 

  echo "samples = $pixels" >> $envi_hdr_file 

  echo "lines   = $lines" >> $envi_hdr_file 

  echo "bands   = 1" >> $envi_hdr_file 

  echo "header offset = 0" >> $envi_hdr_file 

  echo "file type = ENVI Standard" >> $envi_hdr_file 

  echo "data type = 4" >> $envi_hdr_file 

  echo "interleave = bsq" >> $envi_hdr_file 

  echo "sensor type = UNKNOWN" >> $envi_hdr_file 

  echo "byte order = 1" >> $envi_hdr_file 

  echo "map info = {$projection, 1.0000, 1.0000, $ul_easting, $ul_northing, $pixel_size, $pixel_size, $utm_zone, 

$hemisphere, WGS-84, units=Meters}"  >> $envi_hdr_file 

  echo "wavelength units = Unknown" >> $envi_hdr_file 

  echo "band names = {" >> $envi_hdr_file 

  echo " }" >> $envi_hdr_file 

 

  cp $slc1_dir.hdr $slc1_dir.cmli.utm_$grd_rsp\m_$pol.hdr 

  if ($slc2_dir != -) then 

    cp $slc1_dir.hdr $slc2_dir.cmli.utm_$grd_rsp\m_$pol.hdr 

    cp $slc1_dir.hdr $slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol.hdr 

    endif 

  rm -f $slc1_dir.hdr 

  endif 
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##################################### 

##  Create Google Earth KML file   ## 

##################################### 

 

if ($do_kml) then  

   if (-e $slc1\.eqa_par) rm -f $slc1\.eqa_par 

   if (-e $slc2\.eqa_par) rm -f $slc2\.eqa_par 

   if (-e $slc1_dir.cmli.eqa_$grd_rsp\m_$pol.bmp) rm -f $slc1_dir.cmli.eqa_$grd_rsp\m_$pol.bmp 

   if (-e $slc2_dir.cmli.eqa_$grd_rsp\m_$pol.bmp) rm -f $slc2_dir.cmli.eqa_$grd_rsp\m_$pol.bmp 

   if (-e $slc1_dir\_$slc2_dir.cc.eqa_$grd_rsp\m_$pol.bmp) rm -f $slc1_dir\_$slc2_dir.cc.eqa_$grd_rsp\m_$pol.bmp 

   if (-e $slc1_dir.cmli.eqa_$grd_rsp\m_$pol.bmp.kml) rm -f $slc1_dir.cmli.eqa_$grd_rsp\m_$pol.bmp.kml 

   if (-e $slc2_dir.cmli.eqa_$grd_rsp\m_$pol.bmp.kml) rm -f $slc2_dir.cmli.eqa_$grd_rsp\m_$pol.bmp.kml 

   if (-e $slc1_dir\_$slc2_dir.cc.eqa_$grd_rsp\m_$pol.kml) rm -f $slc1_dir\_$slc2_dir.cc.eqa_$grd_rsp\m_$pol.kml 

 

  create_dem_par $slc1\.eqa_par $slc1\.cmli.par - -$grd_rsp $grd_rsp < /clusterhome/msw13/PALSAR_data/create_kml 

  create_dem_par $slc2\.eqa_par $slc2\.cmli.par - -$grd_rsp $grd_rsp < /clusterhome/msw13/PALSAR_data/create_kml 

 

  map_trans $slc1\_utm.dem_par $slc1_dir.cmli.utm_$grd_rsp\m_$pol.bmp $slc1\.eqa_par 

$slc1_dir.cmli.eqa_$grd_rsp\m_$pol.bmp - - 0 2 

  map_trans $slc1\_utm.dem_par $slc2_dir.cmli.utm_$grd_rsp\m_$pol.bmp $slc2\.eqa_par 

$slc2_dir.cmli.eqa_$grd_rsp\m_$pol.bmp - - 0 2 

  map_trans $slc1\_utm.dem_par $slc1_dir\_$slc2_dir.cc.utm_$grd_rsp\m_$pol.bmp $slc1\.eqa_par 

$slc1_dir\_$slc2_dir.cc.eqa_$grd_rsp\m_$pol.bmp - - 0 2 

 

  kml_map $slc1_dir.cmli.eqa_$grd_rsp\m_$pol.bmp $slc1\.eqa_par $slc1_dir.cmli.eqa_$grd_rsp\m_$pol.kml 

  kml_map $slc2_dir.cmli.eqa_$grd_rsp\m_$pol.bmp $slc2\.eqa_par $slc2_dir.cmli.eqa_$grd_rsp\m_$pol.kml 

  kml_map $slc1_dir\_$slc2_dir.cc.eqa_$grd_rsp\m_$pol.bmp $slc1\.eqa_par 

$slc1_dir\_$slc2_dir.cc.eqa_$grd_rsp\m_$pol.kml 

  endif 

 

  

##################################### 

#      tidy up      ## 

##################################### 

 

 

if ($do_tidy_up) then 
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  rm -f $slc1.slc $slc2.slc $slc2.rslc $slc1.cslc $slc2.cslc  

  if (!(-e processing_files)) mkdir processing_files 

  mv *.cmli processing_files 

  mv *.par processing_files 

  mv *.dem processing_files 

  mv *.gc* processing_files 

  mv *.mli processing_files 

  mv *.utm_to_rdc processing_files 

  mv *.sim_sar processing_files 

  mv *.base processing_files 

  mv *.txt processing_files 

  mv *.cc_* processing_files 

  mv *.cc processing_files 

  mv *.flt* processing_files 

  mv *.int processing_files 

  mv *.snr processing_files 

  mv *.rmli processing_files 

  mv *.off* processing_files 

  mv *_flip.* processing_files 

  mv *.coff* processing_files 

  mv *.dem_par processing_files 

  mv *.dem_seg processing_files 

  mv *.diff_par processing_files 

  mv *.img processing_files 

#  mv *.par_file* processing files 

 

  endif 

 

cd .. 

cd .. 

chmod -R 755 * 
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8.2  IDL scripts 
 

The following scripts perform multichannel filtering of a stack of radar images according to the method of Quegan & Yu (2001) in an 

IDL environment. The process is performed by a series of 5 scripts and a data input file and were provided by Martin Whittle of the 

Department of Applied Mathematics, University of Sheffield.  

8.2.1 mcf.data contains information on the names and locations of input files and other input parameters. 
 

D:\IDL\ 

2 2 

20090916_FBD_442_7190_HH.mli 

20090916_FBD_442_7190_HV.mli 

meanRI 

 

Line 1 is the directory 

Line 2 contains the number of bands for processing and the window size 

Last line is the name of the "meanRI" file 

 

8.2.2 mcf_start.pro runs the sequence of scripts needed to perform the calculation 
 

pro mcf_start 

 

;** script file to run multi-channel filtering 

 

; Note: load .hdr files as well as .mli files to directory 

; these compilation need to be done manually at present: 

;.run D:\IDL\mcf_IDL\mcf_start.pro 

;.run D:\IDL\mcf_IDL\checkfiles.pro 

;.run D:\IDL\mcf_IDL\meanRI.pro 

;.run D:\IDL\mcf_IDL\mcf.pro 
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;.run D:\IDL\mcf_IDL\dropout.pro 

 

; then type mcf_start at idl prompt 

 

      checkfiles 

      print, '** starting meanRI **' 

      meanRI 

      print, '** starting mcf **' 

      mcf 

      print, '** mcf terminated OK**' 

 

end 

 

8.2.3 checkfiles.pro checks the dimensions of all input files are identical (required in order to proceed)   
pro checkfiles 

 

; ! USES dropout.pro 

 

; Checks compatability of files 

 

 

ENVI, /RESTORE_BASE_SAVE_FILES 

ENVI_BATCH_INIT 

 

FORWARD_FUNCTION ENVI_OPEN_FILE, ENVI_FILE_QUERY, ENVI_SETUP_HEAD, ENVI_GET_DATA, ENVI_FILE_MNG 

 

 text='' 

 datadir='' 

 filename = '' 

 

; ***** read the file containing filenames ****** 

 

OPENR,1,'D:\IDL\mcf_IDL\mcf.data' 

 

; OPENR,1,'runfile2'      ; i.e. from /home/sm1mw 
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print, 'Opened run file ' 

 

readf,1, datadir 

print, 'data directory is:  ', datadir 

 

readf,1, temp1, temp2 

nband = fix(temp1) 

w = fix(temp2) 

 

win = 1 + w*2      ;  total window width 

 

    print, '   *******  Number of bands: ', nband 

 

   print, '' 

   print, '****   MeanRI  weighted mean ****' 

   print, 'window range w:   ', w 

   print, 'window width win: ', win 

   print, '' 

 

    print, 'Input files: ' 

 

for k=1, nband do begin 

 

  readf,1, text 

  filename = datadir + text 

 

  print, 'Band: ',k, ':   filename:  ', filename 

 

   ENVI_OPEN_FILE, filename, R_FID=fid1, NO_REALIZE=1 

 

   ENVI_FILE_QUERY, fid1, ns=M, nl=N, nb=nb, data_type=data_type, descrip=descrip, bnames=bnames, $ 

                      sensor_type=sensor_type, wavelength_units=wavelength_units ;, dims=dims 

 

 

    print, '   Number of rows: ', N ,' Number of columns ', M 

 

if( k EQ 1 ) then begin 
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  N0 = N 

  M0 = M 

endif 

 

if( N NE N0) then  begin 

 print, ' WARNING row number incompatible ' 

 stop, N, N0 

endif 

 

if( M NE M0) then  begin 

 print, ' WARNING column number incompatible ' 

 stop, M, M0 

endif 

 

endfor 

 

descrip=descrip+ 'average of two files' 

 

dims=[-1,0,M-1,0,N-1] 

 

; *************    read output files *********** 

 

  readf,1, text 

  outfile = datadir + text 

 

  print, '' 

  print, k, ':   output file is:  ', outfile 

 

ENVI_SETUP_HEAD, fname=outfile, ns=M, nl=N, nb=nb, data_type=data_type, offset=0, interleave=0, $ 

                 xstart=0, ystart=0, descrip=descrip, bnames=bnames, sensor_type=sensor_type, $ 

                 wavelength_units=wavelength_units, /write 

 

openw, lun, outfile, /get_lun 

 

 

close, 1 
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end 

 

8.2.4 meanRI.pro calculates image isolating radar 'speckle'.  
pro meanRI 

 

; ! USES dropout.pro 

 

; Computes the "meanRI" weighted mean central to multi channel filtering 

; w is the window range and should be > 0 

 

 

ENVI, /RESTORE_BASE_SAVE_FILES 

ENVI_BATCH_INIT 

 

FORWARD_FUNCTION ENVI_OPEN_FILE, ENVI_FILE_QUERY, ENVI_SETUP_HEAD, ENVI_GET_DATA, ENVI_FILE_MNG 

 

 text='' 

 datadir='' 

 filename = '' 

 

; ***** read the file containing filenames ****** 

 

OPENR,1,'D:\IDL\mcf_IDL\mcf.data' 

 

; OPENR,1,'runfile2'      ; i.e. from /home/sm1mw 

 

print, 'Opened run file ' 

 

readf,1, datadir 

print, 'data directory is:  ', datadir 

 

readf,1, temp1, temp2 

nband = fix(temp1) 

w = fix(temp2) 

 

win = 1 + w*2      ;  total window width 
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    print, '   *******  Number of bands: ', nband 

 

   print, '' 

   print, '****   MeanRI  weighted mean ****' 

   print, 'window range w:   ', w 

   print, 'window width win: ', win 

   print, '' 

 

; *************    read input files *********** 

 

for k=1, nband do begin 

 

  readf,1, text 

  filename = datadir + text 

 

  print, k, ':   filename is:  ', filename 

 

   ENVI_OPEN_FILE, filename, R_FID=fid1, NO_REALIZE=1 

 

   ENVI_FILE_QUERY, fid1, ns=M, nl=N, nb=nb, data_type=data_type, descrip=descrip, bnames=bnames, $ 

                      sensor_type=sensor_type, wavelength_units=wavelength_units ;, dims=dims 

 

 

if (k eq 1) then begin                ; definitions obtained from first band only: others assumed the same 

   indata = FLTARR(M,N) 

   meanRI = FLTARR(M,N) 

   mask = FLTARR(M,N) 

   dims=[-1,0,M-1,0,N-1] 

   print, 'Number of samples: ', nb 

                                  ; *** initialize mask 

    for i=0,N-1 do begin          ; *** on rows 

        for j=0,M-1 do begin       ; *** on columns 

          mask(j,i) = 1.0 

        endfor 

    endfor 
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endif 

 

    print, 'Progress meanRI - band number: ', k 

    print, 'Number of rows: ', N ,' Number of columns ', M 

   dropcount = 0 

 

    indata=ENVI_GET_DATA(FID=fid1, POS=0, DIMS=dims) 

 

                                         ; ******* Average over window ****** 

    dropcount = 0 

 

    for i=0,N-1 do begin          ; *** on rows 

 

         i1 = i - w 

         i2 = i + w 

 

            if(i1 LT 0) then begin          ; ****** Boundary conditions for rows ****** 

              i1 = 0 

            endif 

 

            if(i2 GT N-1) then begin 

              i2 = N-1 

            endif 

 

           if ( (i mod 100) eq 0) then begin 

              print, 'Progress meanRI- band ',k,' of ',nband,'  row number: ', i 

           endif 

 

 

        for j=0,M-1 do begin       ; *** on columns 

 

if( indata(j, i) EQ 0.0 ) then begin       ;****** repair any dropouts ***** 

 

   dropout, indata, M, N, i, j, flag 

 

   if( flag EQ 0) then begin               ;***** if it wasn't a dropout 

     mask(j,i) = 0                         ;***** compile union mask from all images 
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   endif else begin 

     dropcount = dropcount + flag 

   endelse 

 

endif 

 

          j1 = j - w 

          j2 = j + w 

 

            if(j1 LT 0) then begin         ; ****** Boundary conditions for columns ****** 

              j1 = 0 

            endif 

 

            if(j2 GT M-1) then begin 

              j2 = M-1 

            endif 

 

            s=0 

            c=0 

 

            for i0 = i1,i2 do begin ; on rows 

 

                for j0 = j1,j2 do begin ; on columns 

 

                    c = c + 1 

                    s = s + indata(j0,i0) 

 

                endfor 

 

            endfor 

 

            a=float(s)/float(c)        ; ****** normalised window average for pixel (j,i) 

 

 ;           average(j,i)=a   ----- not needed 
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            if (a EQ 0.0) then begin 

 

                tmpdata = indata(j,i) 

 

            endif else begin 

 

                tmpdata = indata(j,i)/a 

 

            endelse 

 

            meanRI(j,i) = meanRI(j,i) + tmpdata    ;*** Accumulate meanRI **** 

 

        endfor 

 

     endfor 

 

    print, '** drop count =  ', dropcount 

 

endfor 

 

 

    print, '** Progress - union masking and normalising the result ** ' 

 

     for i=0, N-1 do begin 

 

        if ( (i mod 1000) eq 0) then begin 

           print, 'Progress - row number: ', i 

        endif 

 

        for j=0, M-1 do begin 

           meanRI(j,i) = mask(j,i)*meanRI(j,i)/float(nband) 

        endfor 

     endfor 

 

 

descrip=descrip+ 'meanRI' 
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; *************    read output files *********** 

 

  readf,1, text 

  outfile = datadir + text 

  print, k, ':   output file is:  ', outfile 

 

ENVI_SETUP_HEAD, fname=outfile, ns=M, nl=N, nb=nb, data_type=data_type, offset=0, interleave=0, $ 

                 xstart=0, ystart=0, descrip=descrip, bnames=bnames, sensor_type=sensor_type, $ 

                 wavelength_units=wavelength_units, /write 

 

openw, lun, outfile, /get_lun 

 

       writeu, lun, meanRI 

       print, '** output data written **' 

 

free_lun, lun 

ENVI_FILE_MNG, id=fid1, /remove 

close, 1 

 

      print, '** meanRI terminated **' 

 

 

end 

 

8.2.5 mcf.pro  removes isolated speckle from each of the input images.  
pro mcf 

 

; ! USES dropout.pro 

 

; Multi-channel filtering using previously computed meanRI 

; w is the window range and should be > 0 - this must be the same as used for meanRI 

 

ENVI, /RESTORE_BASE_SAVE_FILES 

ENVI_BATCH_INIT 
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FORWARD_FUNCTION ENVI_OPEN_FILE, ENVI_FILE_QUERY, ENVI_SETUP_HEAD, ENVI_GET_DATA, ENVI_FILE_MNG 

 

 text='' 

 datadir='' 

 inpfile = '' 

 outfile = '' 

 

; ***** read the file containing filenames ****** 

 

OPENR,1,'D:\IDL\mcf_IDL\mcf.data' 

 

; OPENR,1,'runfile2'      ; i.e. from /home/sm1mw 

 

print, 'Opened data file ' 

 

readf,1, datadir 

print, 'data directory is:  ', datadir 

 

readf,1, temp1, temp2 

nband = fix(temp1) 

w = fix(temp2) 

win = 1 + w*2      ;  total window width 

 

    print, '   *******  Number of bands: ', nband 

 

   print, '' 

   print, '****   Multi-channel filtering ****' 

   print, 'window range w:   ', w 

   print, 'window width win: ', win 

   print, '' 

 

; ******* read the meanRI file ********** 

 

  inpfile = datadir + 'meanRI' 

  print,' input filename is:  ', inpfile 
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   ENVI_OPEN_FILE, inpfile, R_FID=fid1, NO_REALIZE=1 

 

   ENVI_FILE_QUERY, fid1, ns=M, nl=N, nb=nb, data_type=data_type, descrip=descrip, bnames=bnames, $ 

                      sensor_type=sensor_type, wavelength_units=wavelength_units 

 

   indata = FLTARR(M,N) 

   outdata = FLTARR(M,N) 

   meanRI=FLTARR(M,N) 

   dims=[-1,0,M-1,0,N-1] 

 

   meanRI = ENVI_GET_DATA(FID=fid1, POS=0, DIMS=dims) 

 

; *************    read input files *********** 

 

for k=1, nband do begin 

 

  readf,1, text 

  inpfile = datadir + text 

 

  print, k, ' input filename is:  ', inpfile 

 

   ENVI_OPEN_FILE, inpfile, R_FID=fid1, NO_REALIZE=1 

 

   ENVI_FILE_QUERY, fid1, ns=M, nl=N, nb=nb, data_type=data_type, descrip=descrip, bnames=bnames, $ 

                      sensor_type=sensor_type, wavelength_units=wavelength_units 

 

 

if (k eq 1) then begin                ; definitions obtained from first band only: others assumed the same 

   print, 'Number of samples: ', nb 

endif 

 

    print, 'Progress mcf- band number: ', k 

    print, 'Number of rows: ', N ,' Number of columns ', M 

 

    indata=ENVI_GET_DATA(FID=fid1, POS=0, DIMS=dims) 

 

                                         ; ******* Average over window ****** 



188 
 

    dropcount = 0 

 

    for i=0,N-1 do begin          ; *** on rows 

 

         i1 = i - w 

         i2 = i + w 

 

            if(i1 LT 0) then begin          ; ****** Boundary conditions for rows ****** 

              i1 = 0 

            endif 

 

            if(i2 GT N-1) then begin 

              i2 = N-1 

            endif 

 

           if ( (i mod 100) eq 0) then begin 

               print, 'Progress mcf- band ',k,' of ',nband,'  row number: ', i 

           endif 

 

 

        for j=0,M-1 do begin       ; *** on columns 

 

if( indata(j, i) EQ 0.0 ) then begin       ;****** repair any dropouts ***** 

 

   dropout, indata, M, N, i, j, flag 

   dropcount = dropcount + flag 

 

endif 

 

          j1 = j - w 

          j2 = j + w 

 

            if(j1 LT 0) then begin         ; ****** Boundary conditions for columns ****** 

              j1 = 0 

            endif 

 

            if(j2 GT M-1) then begin 
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              j2 = M-1 

            endif 

 

            s=0 

            c=0 

 

            for i0 = i1,i2 do begin ; on rows 

 

                for j0 = j1,j2 do begin ; on columns 

 

                    c = c + 1 

                    s = s + indata(j0,i0) 

 

                endfor 

 

            endfor 

 

            a=float(s)/float(c)        ; ****** normalised window average for pixel (j,i) 

 

                outdata(j,i) = a*meanRI(j,i)            ; **** construct the mcf image ****** 

 

        endfor 

 

     endfor 

 

   print, '** drop count =  ', dropcount 

 

; **** setup output file ****** 

 

  descrip=descrip+ 'mcf of files' 

  outfile = inpfile + '.mcf' 

  print, k, ':   output filename is:  ', outfile 

 

  ENVI_SETUP_HEAD, fname=outfile, ns=M, nl=N, nb=nb, data_type=data_type, offset=0, interleave=0, $ 

                 xstart=0, ystart=0, descrip=descrip, bnames=bnames, sensor_type=sensor_type, $ 

                 wavelength_units=wavelength_units, /write 
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   openw, lun, outfile, /get_lun 

   writeu, lun, outdata 

   print, '** output data written **' 

   free_lun, lun 

 

endfor 

 

  print, 'cycles ended OK ' 

 

ENVI_FILE_MNG, id=fid1, /remove 

close, 1 

 

end 

 

 

8.2.6 dropout.pro is required by all the other IDL files for dealing with any missing values. 
 

pro dropout, img, M, N, i, j, flag 

 

; finds drop outs in the image file "img" and replaces them with 

; a local average.  Also seta flag for counting 

 

 

flag = 0 

 

         i1 = i - 1 

         i2 = i + 1 

 

            if(i1 LT 0) then begin          ; ****** Boundary conditions for rows ****** 

              i1 = 0 

            endif 

 

            if(i2 GT N-1) then begin 

              i2 = N-1 

            endif 
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          j1 = j - 1 

          j2 = j + 1 

 

            if(j1 LT 0) then begin         ; ****** Boundary conditions for columns ****** 

              j1 = 0 

            endif 

 

            if(j2 GT M-1) then begin 

              j2 = M-1 

            endif 

 

 

            c = 0 

            s = 0 

 

            for i0 = i1,i2 do begin ; on rows 

 

              for j0 = j1,j2 do begin ; on columns 

 

                if( img(j0, i0) GT 0.0 ) then begin 

                   c = c + 1 

                   s = s + img(j0,i0) 

                endif 

 

              endfor 

 

            endfor 

 

         if( c GT 6 ) then begin              ; if c is <= 6 img(j,i) is probably on the edge or out of the image 

           img(j,i) = float(s) / float(c)     ; if c > 6 repair the drop 

           flag = 1 

         endif 

end 
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8.3  MATLab scripts 
The following files are used for the calculation of temporal mean standard deviation from a stack of input images and for the  

calculation Empirical Orthogonal functions. 

8.3.1 ENVIread.m reads ENVI data files into MATLab. ENVIread and ENVIwrite were written by Ian Howat 

http://www.mathworks.co.uk/matlabcentral/fileexchange/15629-envi-file-reader-updated-292010 and modified by Martin 

Whittle. 
 

function [varargout] = enviread(varargin) 

% ENVIREAD Easily import ENVI raster files (BSQ,BIL,BIP) from header info. 

%   Z = ENVIREAD(FILENAME); Reads an ENVI binary file (BSQ,BIL,BIP) into 

%       an array using the information from the corresponding header 

%       file FILENAME.hdr. The output array will be of dimensions 

%       (m,n,b) where b is the number of bands. 

%   Z = ENVIREAD(FILENAME,HEADERFILE); Uses the header information in 

%       headerfile. 

%   [Z,X,Y] = ENVIREAD(....); Returns the map coordinate vectors for geo- 

%       registered data. 

%   [Z,X,Y,info] = ENVIREAD(....); Returns the header information as a 

%       structure. 

% 

%   NOTES:  -Requires READ_ENVIHDR to read header data. 

%          -Geo-registration does not currently support rotated images. 

% 

%  Typical usage: 

%  a(:,:,1) = 

enviread('/data/sm1mw/SAR/Scene1_mcf/20070131.hh.R.mli.mcf','/data/sm1mw/SAR/Scene1_mcf/20070131.hh.R.mli.mcf.hdr'); 

% 

% Ian M. Howat, Applied Physics Lab, University of Washington 

% ihowat@apl.washington.edu 

% Version 1: 11-Jul-2007 15:11:13 

% Martin Whittle 2009 - minor modification added to recover original orientation  

http://www.mathworks.co.uk/matlabcentral/fileexchange/15629-envi-file-reader-updated-292010
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% 

%  Typical usage: 

%  a(:,:,1) = 

enviread('F:\PALSAR_FBD_RECALIB\kalimantan_proc\FBD_421_utm50S_25m_HH_mcf_db','F:\PALSAR_FBD_RECALIB\kalimantan_proc

\FBD_421_utm50S_25m_HH_mcf_db.hdr'); 

 

 

%% check for header reader 

if exist('read_envihdr.m','file') == 0 

    error('This function requires READ_ENVIHDR.m') 

end 

%% READ HEADER INFO 

% Read Filename 

file = varargin{1}; 

hdrfile = [file,'.hdr']; 

if nargin == 2 

    hdrfile = varargin{2}; 

end 

% Get image size and map data from header 

info = read_envihdr(hdrfile); 

%% Make geo-location vectors 

if isfield(info.map_info,'mapx') && isfield(info.map_info,'mapy') 

    xi = info.map_info.image_coords(1); 

    yi = info.map_info.image_coords(2); 

    xm = info.map_info.mapx; 

    ym = info.map_info.mapy; 

    %adjust points to corner (1.5,1.5) 

    if yi > 1.5  

       ym =  ym + ((yi*info.map_info.dy)-info.map_info.dy); 

    end 

    if xi > 1.5  

        xm = xm - ((xi*info.map_info.dy)-info.map_info.dx) 

    end 

         

    varargout{2} = xm + ((0:info.samples-1).*info.map_info.dx); 

    varargout{3} = fliplr(ym - ((0:info.lines-1).*info.map_info.dy)); 

end 
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%% Set binary format parameters 

switch info.byte_order 

    case {0} 

        machine = 'ieee-le'; 

    case {1} 

        machine = 'ieee-be'; 

    otherwise 

        machine = 'n'; 

end 

switch info.data_type 

    case {1} 

        format = 'int8'; 

    case {2} 

        format= 'int16'; 

    case{3} 

        format= 'int32'; 

    case {4} 

        format= 'float'; 

    case {5} 

        format= 'double'; 

    case {6} 

        disp('>> Sorry, Complex (2x32 bits)data currently not supported'); 

        disp('>> Importing as double-precision instead'); 

        format= 'double'; 

case {9} 

        error('Sorry, double-precision complex (2x64 bits) data currently not supported'); 

case {12} 

        format= 'uint16'; 

case {13} 

        format= 'uint32'; 

case {14} 

         format= 'int64'; 

case {15} 

        format= 'uint64'; 

    otherwise 

        error(['File type number: ',num2str(dtype),' not supported']); 

end 
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%% Read File 

Z = fread(fopen(file),info.samples*info.lines*info.bands,format,0,machine); fclose all; 

switch lower(info.interleave) 

    case {'bsq'} 

        Z = reshape(Z,[info.samples,info.lines,info.bands]); 

        for k = 1:info.bands; 

            tmp(:,:,k) = rot90(Z(:,:,k)); 

        end 

    case {'bil'} 

        Z = reshape(Z,[info.samples,info.lines*info.bands]); 

        for k=1:info.bands 

            tmp(:,:,k) = rot90(Z(:,k:info.bands:end)); 

        end 

    case {'bip'} 

        tmp = zeros(info.lines,info.samples); 

        for k=1:info.bands 

            tmp1 = Z(k:info.bands:end); 

            tmp(:,:,k) = rot90(reshape(tmp1,[info.samples,info.lines])); 

        end 

end 

 

[imax, jmax, kmax] = size(tmp); 

Z = tmp; 

for k = 1:kmax 

  Z(:,:,k) = rot90(tmp(:,:,k)');        % modification to recover orientation of original (MW) 

end 

 

varargout{1} = Z; 

varargout{4} = info; 

 

read_envihdr.m  is required by envriread.m  

 

function [varargout] = enviread(varargin) 

% ENVIREAD Easily import ENVI raster files (BSQ,BIL,BIP) from header info. 

%   Z = ENVIREAD(FILENAME); Reads an ENVI binary file (BSQ,BIL,BIP) into 

%       an array using the information from the corresponding header 

%       file FILENAME.hdr. The output array will be of dimensions 
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%       (m,n,b) where b is the number of bands. 

%   Z = ENVIREAD(FILENAME,HEADERFILE); Uses the header information in 

%       headerfile. 

%   [Z,X,Y] = ENVIREAD(....); Returns the map coordinate vectors for geo- 

%       registered data. 

%   [Z,X,Y,info] = ENVIREAD(....); Returns the header information as a 

%       structure. 

% 

%   NOTES:  -Requires READ_ENVIHDR to read header data. 

%          -Geo-registration does not currently support rotated images. 

% 

%  Typical usage: 

%  a(:,:,1) = 

enviread('/data/sm1mw/SAR/Scene1_mcf/20070131.hh.R.mli.mcf','/data/sm1mw/SAR/Scene1_mcf/20070131.hh.R.mli.mcf.hdr'); 

% 

% Ian M. Howat, Applied Physics Lab, University of Washington 

% ihowat@apl.washington.edu 

% Version 1: 11-Jul-2007 15:11:13 

% Martin Whittle 2009 - minor modification added to recover original orientation  

% 

%  Typical usage: 

%  a(:,:,1) = 

enviread('F:\PALSAR_FBD_RECALIB\kalimantan_proc\FBD_421_utm50S_25m_HH_mcf_db','F:\PALSAR_FBD_RECALIB\kalimantan_proc

\FBD_421_utm50S_25m_HH_mcf_db.hdr'); 

 

 

%% check for header reader 

if exist('read_envihdr.m','file') == 0 

    error('This function requires READ_ENVIHDR.m') 

end 

%% READ HEADER INFO 

% Read Filename 

file = varargin{1}; 

hdrfile = [file,'.hdr']; 

if nargin == 2 

    hdrfile = varargin{2}; 

end 
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% Get image size and map data from header 

info = read_envihdr(hdrfile); 

%% Make geo-location vectors 

if isfield(info.map_info,'mapx') && isfield(info.map_info,'mapy') 

    xi = info.map_info.image_coords(1); 

    yi = info.map_info.image_coords(2); 

    xm = info.map_info.mapx; 

    ym = info.map_info.mapy; 

    %adjust points to corner (1.5,1.5) 

    if yi > 1.5  

       ym =  ym + ((yi*info.map_info.dy)-info.map_info.dy); 

    end 

    if xi > 1.5  

        xm = xm - ((xi*info.map_info.dy)-info.map_info.dx) 

    end 

         

    varargout{2} = xm + ((0:info.samples-1).*info.map_info.dx); 

    varargout{3} = fliplr(ym - ((0:info.lines-1).*info.map_info.dy)); 

end 

%% Set binary format parameters 

switch info.byte_order 

    case {0} 

        machine = 'ieee-le'; 

    case {1} 

        machine = 'ieee-be'; 

    otherwise 

        machine = 'n'; 

end 

switch info.data_type 

    case {1} 

        format = 'int8'; 

    case {2} 

        format= 'int16'; 

    case{3} 

        format= 'int32'; 

    case {4} 

        format= 'float'; 
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    case {5} 

        format= 'double'; 

    case {6} 

        disp('>> Sorry, Complex (2x32 bits)data currently not supported'); 

        disp('>> Importing as double-precision instead'); 

        format= 'double'; 

case {9} 

        error('Sorry, double-precision complex (2x64 bits) data currently not supported'); 

case {12} 

        format= 'uint16'; 

case {13} 

        format= 'uint32'; 

case {14} 

         format= 'int64'; 

case {15} 

        format= 'uint64'; 

    otherwise 

        error(['File type number: ',num2str(dtype),' not supported']); 

end 

%% Read File 

Z = fread(fopen(file),info.samples*info.lines*info.bands,format,0,machine); fclose all; 

switch lower(info.interleave) 

    case {'bsq'} 

        Z = reshape(Z,[info.samples,info.lines,info.bands]); 

        for k = 1:info.bands; 

            tmp(:,:,k) = rot90(Z(:,:,k)); 

        end 

    case {'bil'} 

        Z = reshape(Z,[info.samples,info.lines*info.bands]); 

        for k=1:info.bands 

            tmp(:,:,k) = rot90(Z(:,k:info.bands:end)); 

        end 

    case {'bip'} 

        tmp = zeros(info.lines,info.samples); 

        for k=1:info.bands 

            tmp1 = Z(k:info.bands:end); 

            tmp(:,:,k) = rot90(reshape(tmp1,[info.samples,info.lines])); 
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        end 

end 

 

[imax, jmax, kmax] = size(tmp); 

Z = tmp; 

for k = 1:kmax 

  Z(:,:,k) = rot90(tmp(:,:,k)');        % modification to recover orientation of original (MW) 

end 

 

varargout{1} = Z; 

varargout{4} = info; 

 

 

 

8.3.2 mean_SD_calc.m calculated the temporal mean and temporal standard deviation of a stacked input image. Written 

by Matthew Waldram.  
 

disp ('reading data from file') 

tic; 

a(:,:,:) = enviread('D:\Kali_subs\421_HH_sub','D:\Kali_subs\421_HH_sub.hdr'); 

disp('**files read**') 

disp(toc) 

[imax,jmax,kmax] = size (a); 

M = zeros(imax,jmax,1); 

S = zeros(imax,jmax,1); 

 

disp ('calculating temporal StDev') 

tic 

 

for iy=1:imax 

  for ix=1:jmax 

       s = a(iy,ix,:); 

       S(iy,ix) = std(s); 

  end % for 

end %for 
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disp(toc) 

disp ('calculating temporal Mean') 

tic 

 

for iy=1:imax 

  for ix=1:jmax 

      m = a(iy,ix,:); 

       M(iy,ix) = mean(m); 

  end % for 

end %for 

 

disp(toc) 

 

disp('writing temporal StDev ENVI file') 

tic 

enviwrite(S, 'D:\Kali_subs\sd');  

disp(toc) 

 

disp('writing temporal mean ENVI file') 

tic 

enviwrite(M, 'D:\Kali_subs\mean'); 

disp(toc) 

disp ('Process finsished') 

 

8.3.3 map2mat.m Converts data in map co-ordinates to data in columns. Written by  Guillame Maze and available at 

http://www.mathworks.co.uk/matlabcentral/fileexchange/17915-pcatool 
 

% D = MAP2MAT(F,C) Reshaping matrix 

% 

% => Conversion of a 'map' matrix C(TIME,LON,LAT) into a D(TIME,PT) matrix 

% under the mask F(LON,LAT). 

% F is a matrix contenaing 1 where you would like to keep the point and 

%  0 elsewhere. 

% 

http://www.mathworks.co.uk/matlabcentral/fileexchange/17915-pcatool
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% Rq: No check is done about the input. 

% 

% See also: mat2map 

%================================================================ 

 

% March 2004 

% gmaze@univ-brest.fr 

 

function [D] = map2mat(F,C); 

 

% Get dimensions 

[tps nolon nolat] = size(C); 

 

% So output matrix will be: 

D = zeros(tps,nolon*nolat); 

 

% point indice 

ipt = 0; 

 

% 'Un-mapping' : 

for iy=1:nolat 

  for ix=1:nolon 

      if F(ix,iy)>0 

         ipt = ipt + 1; 

         D(:,ipt)=squeeze(C(:,ix,iy)); 

      end % if 

  end % for 

end %for 

 

% OUTPUT: 

D = squeeze(D(:,1:ipt)); 
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8.3.4 caleof.m calculates Empirical Orthogonal Functions. Written by Guillaume Maze and available from 

http://www.mathworks.co.uk/matlabcentral/fileexchange/17915-pcatool 
 

% [EOFs,PC,EXPVAR] = CALEOF(M,N,METHOD) Compute EOF 

% 

% => Compute the Nth first EOFs of matrix M(TIME,MAP). 

% EOFs is a matrix of the form EOFs(N,MAP), PC is the principal 

% components matrix ie it has the form PC(N,TIME) and EXPVAR is 

% the fraction of total variance "explained" by each EOF ie it has 

% the form EXPVAR(N). 

% Differents method can be used: 

% 1 - The "classic" one, ie we compute eigenvectors of the  

%     temporal covariance matrix with the eig Matlab function. 

% 2 - A faster "classic" one, same as method 1 but we use the 

%     eigs Matlab function. 

% 3 - We compute eigenvectors by the singular value decomposition, 

%     by used of the svd Matlab function. 

% 4 - Same as method 3 but faster by used of the svds Matlab function 

% 

% See also EIG, EIGS, SVD, SVDS 

% 

% Ref: L. Hartmann: "Objective Analysis" 2002 

% Ref: H. Bjornson and S.A. Venegas: "A manual for EOF and SVD -  

%      Analyses of climatic Data" 1997 

%================================================================ 

 

%  Guillaume MAZE - LPO/LMD - March 2004 

%  Revised July 2006 

%  gmaze@univ-brest.fr 

 

 

function [e,pc,expvar,L] = caleof(M,N,method); 

 

% Get dimensions 

[n p]=size(M); 

 

http://www.mathworks.co.uk/matlabcentral/fileexchange/17915-pcatool
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% Temporal covariance is p*p matrix, that why max EOF computable is p,  

% so we perform a test on parameter N: 

if(N>p) 

 disp('Warning: N is larger than possible so it''s modified to perform') 

 disp('         EOFs computing...'); 

 N = p;  

end 

 

 

% Eventualy time filtering of data 

if 0==1 

   disp('====> Time filtering...') 

   Fc  = 1/20; Fc2 = 1/1; 

   Fc  = 1/7 ; Fc2 = 1/3; 

   SIGNAL = M(:,1); 

   nj = fix(length(SIGNAL)/10); % Nombre de points du filtre 

   for ipt = 1 : p 

       SIGNAL = M(:,ipt); 

       SIGNALF = lanczos(SIGNAL,Fc2,nj); 

       SIGNALF = SIGNALF - lanczos(SIGNALF,Fc,nj); 

       Y(:,ipt) = SIGNALF; 

   end 

   M = Y; 

end 

 

 

disp('====> Let''go for EOFs and pc computing...') 

switch method 

    case 1 % CLASSIC METHOD 

%================================================================ 

% Transform the data matrix in the correct form (map*time) for eig 

M = M'; 

 

% Remove the time mean (ie the mean of each rows of M) 

% Rq: detrend remove the mean of columns ie we take M'. 

F = detrend(M','constant')'; 
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% Covariance Matrix (inner product over space = covariance in time) 

R = F * F'; 

 

% Eigenanalysis of the covariance matrix R 

[E,L] = eig(R); 

 

% Get PC by projecting eigenvectors on original data 

Z = E'*F; 

 

% Make them clear for output 

for iN=1:N 

    e(iN,:) = squeeze( E(:,p-(iN-1)) )'; 

   pc(iN,:) = squeeze( Z(p-(iN-1),:) ); 

end 

 

% Amount of explained variance (at 0.1%) 

dsum = diag(L)./trace(L); 

for iN=1:N 

   expvar(iN)=fix((dsum(p-(iN-1))*100/sum(dsum))*10)/10; 

end 

 

% Plots Original field and reconstructed one 

if 0==1 

figure; 

subplot(1,2,1);imagesc(abs(M));title('ORIGINAL');cx=caxis; 

%subplot(1,2,2);imagesc((E*Z));title('RECONSTRUCTED') 

subplot(1,2,2);imagesc(abs(e'*pc));title('RECONSTRUCTED');caxis(cx); 

end 

 

    case 2 % RAPID CLASSIC METHOD  

%================================================================ 

% Remove the time mean of each column 

F = detrend(M,'constant'); 

 

% Covariance Matrix 

if n >= p 

   R = F' * F; 
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else  

   R = F * F'; 

end 

 

% Eigen analysis of the square covariance matrix 

[E,L] = eigs(R,N); 

if n < p 

  E = F' * E; 

  sq = [sqrt(diag(L))+eps]'; 

  sq = sq(ones(1,p),:); 

  E = E ./ sq; 

end 

 

% Get PC by projecting eigenvectors on original data 

if n >= p 

   Z = (F*E)'; 

else 

   Z =  E'*F'; 

end 

 

 

% Make them clear for output 

for iN=1:N 

    e(iN,:) = squeeze( E(:,iN) )'; 

   pc(iN,:) = squeeze( Z(iN,:) ); 

end 

 

% Amount of variance explained a 0.1 pres et en % 

dsum=diag(L)./trace(L); 

for iN=1:N 

   expvar(iN)=fix((dsum(iN)*100/sum(dsum))*10)/10; 

end 

 

 

    case 3 % SVD METHOD 

%================================================================ 

% Ref: H. Bjornson and S.A. Venegas: "A manual for EOF and SVD -  
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% Analyses of climatic Data" 1997 => p18 

 

% Assume that M is (time*map) matrix 

[n p]=size(M); 

 

% Remove the mean of each column (ie the time mean in each station records) 

F=detrend(M,'constant'); 

 

% Form the covariance matrix: 

R = F'*F; 

 

% Find eigenvectors and singular values 

[C,L,CC] = svd(R); 

% Eigenvectors are in CC and the squared diagonal values of L 

% are the eigenvalues of the temporal covariance matrix R=F'*F 

 

% find the PC corresponding to eigenvalue 

PC = F*CC; 

 

% Make them clear for output 

for iN=1:N 

    e(iN,:) = squeeze( CC(:,iN) )'; 

   pc(iN,:) = squeeze( PC(:,iN) )'; 

end 

 

if 0 

figure; 

subplot(1,2,1);imagesc(F);title('ORIGINAL');cx=caxis; 

subplot(1,2,2);imagesc(C*L*CC');title('RECONSTRUCTED');caxis(cx); 

end 

 

% Amount of variance explained at 0.1% 

dsum=diag(L)./trace(L); 

if length(dsum)<N % L was not squared 

  dsum = [dsum ;zeros(N-length(dsum),1)]; 

end 

for iN = 1 : N 
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   expvar(iN)=fix( ( dsum(iN)*100/sum(dsum) )*10 ) /10; 

end 

 

 

    case 4 % FAST SVD METHOD 

%================================================================ 

% Ref: H. Bjornson and S.A. Venegas: "A manual for EOF and SVD -  

% Analyses of climatic Data" 1997 => p18 

 

% Assume that M is (time*map) matrix 

[n p]=size(M); 

 

% Remove the mean of each column (ie the time mean in each station records) 

F=detrend(M,'constant'); 

 

% Form the covariance matrix: 

R = F' * F; 

 

% Find eigenvectors and singular values 

[C,L,CC,flag] = svds(R,N); 

% Eigenvectors are in CC and the squared diagonal values of L 

% are the eigenvalues of the temporal covariance matrix R=F'*F 

% (Sometimes, CC stops for nul eigenvector, then we need to fill to reach N) 

if size(CC,2)<N 

  CC = [CC  zeros(size(CC,1),N-size(CC,2)+1)]; 

end 

 

% find the PC corresponding to eigenvalue 

PC = F*CC; 

% Which is similar to: C*L 

 

% Make them clear for output 

for iN=1:N 

    e(iN,:) = squeeze( CC(:,iN) )'; 

   pc(iN,:) = squeeze( PC(:,iN) )'; 

end 
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% Amount of variance explained a 0.1 pres et en % 

dsum=diag(L)./trace(L); 

if length(dsum)<N % L was not squared 

  dsum = [dsum ;zeros(N-length(dsum),1)]; 

end 

for iN=1:N 

   expvar(iN)=fix( ( dsum(iN)*100/sum(dsum) )*10 ) /10; 

end 

 

%figure; 

%subplot(1,2,1);imagesc(M);title('ORIGINAL');cx=caxis; 

%subplot(1,2,2);imagesc((e'*pc)');title('RECONSTRUCTED');caxis(cx); 

 

 

end % switch method 

disp('====> Finished !') 

 

 

 

8.3.5 mat2map.m converts data in columns (i.e. EOF output) to data in map co-ordinates. Written by Guillaume Maze and 

available from http://www.mathworks.co.uk/matlabcentral/fileexchange/17915-pcatool 
 

% C = MAP2MAT(F,D) Reshaping matrix 

% 

% => Creation of a 'map' matrix C(TIME,LON,LAT) from D(TIME,PT) 

% following mask F(LON,LAT). 

% F is a matrix contenaing 1 where you would like to keep the point and 

%  0 elsewhere (see mat2map). 

%  

% Rq: No check is done about the input. 

% 

% See also: map2mat 

%================================================================ 

 

% March 2004 

http://www.mathworks.co.uk/matlabcentral/fileexchange/17915-pcatool
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% gmaze@univ-brest.fr 

 

function [C] = mat2map(F,D); 

 

% Get dimensions 

[nolon nolat] = size(F); 

[time npt] = size(D); 

 

% So output 'map' matrix has the form: 

C = zeros(time,nolon,nolat); 

 

% Variables 

nul = NaN.*ones(time,1); 

ipt = 0 ; 

 

 

% 'mapping' : 

  for iy=1:nolat 

      for ix=1:nolon 

         if F(ix,iy)>0 

            ipt = ipt + 1; 

            C(:,ix,iy) = D(:,ipt); 

         else 

            C(:,ix,iy) = nul; 

         end %if 

      end %for ix 

  end %for iy 

 

 

8.3.6 enviwrite.m creates an ENVI file from an internal MATLab matrix. Written by Vincent Guissard and available at 

http://www.mathworks.co.uk/matlabcentral/fileexchange/4919-matlab-to-envi/content/enviwrite.m  modified by Martin 

Whittle. 
 

function i=enviwrite(image,fname) 

 

http://www.mathworks.co.uk/matlabcentral/fileexchange/4919-matlab-to-envi/content/enviwrite.m
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% enviwrite           - write ENVI image from MATLAB array (V. Guissard, Apr 29 2004) 

%       MODIFIED by M. Whittle.  Jan 2009 to rotate image and correct 

%       orientation 

%       and April 2009 to accept single bands 

% 

% *** NOTES : When diplaying in Envi some images (particularly masks) **** 

% *** require the use of enhance/linear scaling to display properly   **** 

% *** This may apply if only one channel is visible                   **** 

% *** The .hdr is also generated and needs to be transferred to the   **** 

% *** same directory as the .env file.   This will not contain        **** 

% *** geographic information which need to be obtianed from another   **** 

% *** file.  However, it is best to do this manually rather than      **** 

% *** using "udating attributes" from anothe file                     **** 

% 

%     Write a MATLAB array to a file in ENVI standard format 

%    from a [col x line x band] array 

% 

% SYNTAX: 

% 

%  i = enviwrite(temp, 'filename');   

%  where temp(:,:,3) is a MATLAB array 

% 

% image=freadenvi(fname) 

% [image,p]=freadenvi(fname) 

% [image,p,t]=freadenvi(fname) 

% 

% INPUT : 

% 

% 

% image c by l by b name of the MATLAB variable containing the array to export 

%    to an ENVI image, with c = cols, l the lines and b the bands 

% fname string full pathname of the ENVI image to write. 

% 

% OUTPUT : 

% 

% i  integer i = -1 if process fail 

% 
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%   

% 

%%%%%%%%%%%%% 

 

% Parameters initialization 

i=0; 

 

im_size=size(image); 

im_size(3)=size(image,3); 

 

Z = zeros(im_size(2), im_size(1), im_size(3));     %Transpose image    

for(k = 1: im_size(3)) 

Z(:,:,k) = image(:,:,k)'; 

end 

 

image=Z; 

 

im_size=size(image); 

im_size(3)=size(image,3); 

 

elements={'samples =' 'lines   =' 'bands   =' 'data type ='}; 

d=[4 1 2 3 12 13]; 

% Check user input 

if ~ischar(fname) 

    error('fname should be a char string'); 

end 

 

cl1=class(image); 

if cl1 == 'double' 

    img=single(image); 

else 

    img=image; 

end 

 

cl=class(img); 

switch cl 
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    case 'single' 

        t = d(1); 

    case 'int8' 

        t = d(2); 

    case 'int16' 

        t = d(3); 

    case 'int32' 

        t = d(4); 

    case 'uint16' 

        t = d(6); 

    case 'uint32' 

        t = d(7); 

    otherwise 

        error('Data type not recognized'); 

end 

wfid = fopen(fname,'w'); 

if wfid == -1 

    i=-1; 

end 

disp([('Writing ENVI image ...')]); 

fwrite(wfid,img,cl); 

fclose(wfid); 

 

% Write header file 

 

fid = fopen(strcat(fname,'.hdr'),'w'); 

if fid == -1 

    i=-1; 

end 

 

fprintf(fid,'%s \n','ENVI'); 

fprintf(fid,'%s \n','description = {'); 

fprintf(fid,'%s \n','Exported from MATLAB}'); 

fprintf(fid,'%s %i \n',elements{1,1},im_size(1)); 

fprintf(fid,'%s %i \n',elements{1,2},im_size(2)); 

fprintf(fid,'%s %i \n',elements{1,3},im_size(3)); 

fprintf(fid,'%s %i \n',elements{1,4},t); 
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fprintf(fid,'%s \n','interleave = bsq'); 

fclose(fid); 

 

8.3.7 burn_map.m Reclassifies input burn severity images (from RSS Gmbh )as burn/no burn images 
 

a(:,:,:) = 

enviread('F:\MSW\MATLAB\fire_maps\data\2009_season_20080519_TM7_20110512_TM7_merge_frost','F:\MSW\MATLAB\fire_maps\d

ata\2009_season_20080519_TM7_20110512_TM7_merge_frost.hdr'); 

[imax,jmax,kmax] = size (a); 

h = zeros(imax,jmax); 

 

 

for iy=1:imax 

  for ix=1:jmax 

      if a(iy,ix) >= 3;  

           h(iy,ix)=1; 

      else 

          h(iy,ix)=0; 

      end 

   end % for 

end %for 

 

 

enviwrite(h,'F:\MSW\MATLAB\fire_maps\data\2009_season_20080519_TM7_20110512_TM7_burn_map'); 

 

8.3.8 burn_count_map.m outputs out puts a map of total number of fires from a stack of yearly burnt area input files 
 

A(:,:,:) = 

enviread('F:\MSW\MATLAB\fire_maps\data\burn_map_stack_sub','F:\MSW\MATLAB\fire_maps\data\burn_map_stack_sub.hdr'); 

[imax,jmax,kmax] = size (A); 

h = zeros(imax,jmax); 

 

for iy=1:imax 

  for ix=1:jmax 
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      B = A(iy,ix,:); 

      h(iy,ix)=sum(B);      

  end % for 

end %for 

 

enviwrite(h,'F:\MSW\MATLAB\fire_maps\data\Burn_count_map'); 

 

8.3.9 burn_map_select.m outputs map of areas with selected fires frequency 
 

a(:,:,:) = enviread('F:\MSW\MATLAB\fire_maps\data\fire_map_sum','F:\MSW\MATLAB\fire_maps\data\fire_map_sum.hdr'); 

[imax,jmax,kmax] = size (a); 

h = zeros(imax,jmax); 

 

 

for iy=1:imax 

  for ix=1:jmax 

      if a(iy,ix) == 1;  

           h(iy,ix)=1; 

      else 

          h(iy,ix)=0; 

      end 

   end % for 

end %for 

 

enviwrite(h,'F:\MSW\MATLAB\fire_maps\data\burn_map_select_fire1'); 

 

8.3.10 burn_history_map.m produces maps of time of last fire for selected burn frequency from output of previous scripts 
 

a(:,:,:) = 

enviread('F:\MSW\MATLAB\fire_maps\data\burn_map_stack_sub','F:\MSW\MATLAB\fire_maps\data\burn_map_stack_sub.hdr'); 

b(:,:,:) = 

enviread('F:\MSW\MATLAB\fire_maps\data\burn_map_select_fire1_sub','F:\MSW\MATLAB\fire_maps\data\burn_map_select_fire

1_sub.hdr'); 

[imax,jmax,kmax] = size (a); 
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h = zeros(imax,jmax); 

 

for iy=1:imax 

  for ix=1:jmax 

      if b(iy,ix) == 1;  

            if a(iy,ix,1)==1 

            h(iy,ix)=126; 

            end 

            if a(iy,ix,2)==1 

            h(iy,ix)=73; 

            end 

            if a(iy,ix,3)==1 

            h(iy,ix)=61; 

            end 

            if a(iy,ix,4)==1 

            h(iy,ix)=37; 

            end             

            if a(iy,ix,5)==1 

            h(iy,ix)=25; 

            end 

            if a(iy,ix,6)==1 

            h(iy,ix)=13; 

            end             

            if a(iy,ix,7)==1 

            h(iy,ix)=-2; 

            end             

      else 

            h(iy,ix)=0; 

      end 

   end % for 

end %for 

 

enviwrite(h,'F:\MSW\MATLAB\fire_maps\data\burn_map_year'); 
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