
Partner-Based Scheduling and
Routing for Grid Workflows

by
Jawad Ashraf

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Department of Computer Science

University of Leicester

November 11, 2012

Partner-Based Scheduling and Routing for Grid Workflows

Jawad Ashraf

Supervisor: Professor Thomas Elrebach

Abstract

The Grid has enabled the scientific community to make faster progress. Scientific ex-
periments and data analyses once spanning several years can now be completed in a
matter of hours. With the advancement of technology, the execution of scientific exper-
iments, often represented as workflows, has become more demanding. Thus, there is a
vital need for improvements in the scheduling of scientific workflows. Efficient execution
of scientific workflows can be achieved by the timely allocation of the resources. Ad-
vance reservation can ensure the future availability of heterogeneous resources and help
a scheduler to produce better schedules.

We propose a novel resource mapping technique for jobs of a Grid workflow in an advance
reservation environment. Using a dynamic critical path based job selection method, our
proposed technique considers the conditional mapping of parent and child jobs to the
same resource, trying to minimise the communication duration between jobs and thus
optimising the workflow completion time. The proposed method is analysed in both static
and dynamic environments, and the simulation results show encouraging performance
especially for workflows where the communication costs are higher than the computation
costs.

We also propose a hybrid of multiple scheduling heuristics for the aforementioned prob-
lem, which chooses the best among multiple schedules computed by different algorithms.
Simulation results show a significant improvement over well known scheduling heuristics
in terms of workflow completion time.

Considering the advance reservation environment, a better schedule for the earliest com-
pletion of a workflow can be achieved if better paths can be found for the transfer of
data files between jobs executed on different resources. We propose a K-shortest path
based routing algorithm for finding good paths in the advance reservation environment.
The results show that our proposed algorithm performs very well in terms of the earliest
arrival time of the data.

Finally, we also study a modified partner based scheduling heuristic for non-advance
reservation environments. The results demonstrate that our proposed algorithm is a
promising candidate for adoption in such Grid environments.

Declaration

The content of this submission was undertaken in the Department of Computer Science,
University of Leicester, and supervised by Professor Dr. Thomas Erlebach during the
period of registration. I hereby declare that the materials of this submission have not
previously been published for a degree or diploma at any other university or institute.
All the materials submitted for the assessment are from my own research, except the
reference work in any format by other authors, which are properly acknowledged in the
content.

Part of the research work presented in this submission has been published in the following
papers:

• Jawad Ashraf and Thomas Erlebach. A new resource mapping technique for Grid
workflows in advance reservation environments. In Proceedings of High Perfor-
mance Computing and Simulation (HPCS), pages 63 -70, 2010.

• Jawad Ashraf and Thomas Erlebach. A hybrid scheduling technique for Grid work-
flows in advance reservation environments. In Proceedings of High Performance
Computing and Simulation (HPCS), pages 98 - 106, 2011.

i

In the name of Almighty God, the
Most Gracious, the Most

Merciful

ii

Acknowledgements

I thank to God for providing me the opportunity to work under the supervision of Pro-
fessor Thomas Erlebach. I am grateful to him for helping me excel in research skills.
In addition, I also learnt the soft skills from him, which encouraged me and kept me
going throughout the PhD. He has always been available to help and encouragement. I
consider myself fortunate and honored for being his student.

I also thank the Department of Computer Science, University of Leicester for arrang-
ing and supporting the participation in different events to improve my research skills.
Thanks also goes to the GridSim development team who helped me getting started in the
simulation world. I am also grateful to the Kohat University of Science and Technology,
Pakistan for funding my PhD.

I appreciate the precious time my colleague gave me during the research period. Their
discussions helped me in moving forward.

Finally, I am indebted to my parents as always, their love, prayers, support and teachings
brought me this far. I highly regard the support from my wife for making the PhD easier
for me. I also thank my brothers, sisters, relatives and friends for helping me whenever
needed.

iii

Contents

1 Introduction 1

1.1 Grid Computing . 2

1.2 Grid Workflow Scheduling . 4

1.3 Advance Reservation in the Grid . 6

1.4 Optical Burst Switching Network . 7

1.5 Motivation . 8

1.6 Contributions . 9

1.7 Thesis Organisation . 10

2 Definitions and Terminology 12

2.1 Grid Resource Model . 12

2.2 DAG Workflow . 13

2.3 Workflow Schedule . 13

2.4 Scheduling Terminology . 14

2.5 Advance Reservation and Utilisation Profiles 15

2.6 European Data Grid (EDG) Testbed Instance 17

2.7 Workflow Instances . 17

3 Related Work 23

3.1 Workflow Scheduling Heuristics . 23

3.1.1 Individual Task Scheduling . 24

3.1.2 List Scheduling . 24

3.1.3 Workflow Based Scheduling . 28

iv

3.1.4 Cluster Based Scheduling . 29

3.1.5 Duplication Based Heuristics 29

3.1.6 Meta-heuristics . 30

3.2 Advance Reservation . 31

3.3 Rescheduling in Failure Cases . 32

3.4 Routing in Advance Reservation Environments 33

4 AR Framework, DCPG Scheduling and GridSim 36

4.1 Resource Availability in Advance Reservation Environments 36

4.1.1 Path CAV Calculation . 37

4.1.2 Non-Dominated Set of Path and Cluster Pairs 40

4.2 Dynamic Critical Path for Grids (DCPG) 44

4.2.1 DCPG Example . 46

4.3 GridSim: A Simulator for the Grid Environment 48

4.3.1 GridSim Entities and their Interactions 50

5 Partner Based Dynamic Critical Path for Grids (PDCPG) 54

5.1 PDCPG Heuristic . 55

5.1.1 Problem Description . 56

5.1.2 Proposed Routing Method . 56

5.1.3 Resource Selection . 60

5.1.4 Performance Evaluation . 63

5.1.5 Results . 65

5.2 PDCPG in Dynamic Advance Reservation Environments 68

5.2.1 Evaluation . 69

5.3 Conclusion . 74

6 Hybrid Dynamic Critical Path for Grids (HDCPG) 76

6.1 A Novel Job Selection Technique . 77

6.2 HDCPG . 80

6.2.1 Evaluation . 81

v

6.3 Conclusion . 85

7 PDCPG for Non-Advance Reservation Environments 87

7.1 PDCPG for Non-AR Environments . 88

7.2 Evaluation . 89

7.3 Conclusion . 94

8 K-Shortest Path Routing Technique in Advance Reservation Environ-

ment 95

8.1 Complexity Analysis of Routing Problems in the Advance Reservation

Environment . 95

8.2 Shortcomings of Previous Routing Methods 114

8.3 K-th Shortest Path Variant for AR Routing Problem 117

8.4 Evaluation . 120

8.5 Conclusion . 132

9 Conclusion and Future Work 133

9.1 Summary . 133

9.1.1 PDCPG . 133

9.1.2 HDCPG . 135

9.1.3 Routing in AR Environments 135

9.1.4 PDCPG in Non-AR Environments 136

9.1.5 Critical Analysis of PDCPG . 136

9.2 Future Work . 137

Appendices 138

A Modifications Made to GridSim 138

Bibliography 142

vi

List of Figures

1.1 Grid Workflow Management System [79]. 5

2.1 Modified network topology of EDG testbed resources. 18

2.2 Workflows from Project Scheduling Problem Library [47]. 19

2.3 90 jobs workflow from Project Scheduling Problem Library [47]. 20

2.4 120 jobs workflow from Project Scheduling Problem Library [47]. 21

2.5 DAG of eProtein Project Workflow [57]. 22

4.1 Calculation of the path capacity availability vector ĈSID, and finding the

first available place at cluster D. 39

4.2 DCPG example. 47

4.3 An event diagram for the interaction between a space-shared resource

and other entities [67]. 52

5.1 Execution till a better path to the node B is found by the variant of

Dijkstra’s algorithm. 59

5.2 Partner-based scheduling example . 62

5.3 Initial and actual average makespans generated by heuristics for granu-

larity 0.02. 72

5.4 Initial and actual average makespan generated by heuristics for granularity

0.1. 72

5.5 Initial and actual average makespan generated by heuristics for granularity

1.2. 73

vii

5.6 Initial and actual average makespan generated by heuristics for granularity

1.2, when the number of consecutive slots is set to 10. 73

8.12 (cont’d) Four network topologies used for experiments. Source and des-

tination nodes are also shown. 123

8.13 EAT found by all routing heuristics for each distribution on EDG network

topology. 126

8.14 EAT found by all routing heuristics for each distribution on NSF network

topology. 126

8.15 EAT found by all routing heuristics for each distribution on 5X5 network

topology. 127

8.16 EAT found by all routing heuristics for each distribution on Random

network topology. 127

viii

List of Tables

2.1 EDG testbed resources used for experiments. 17

4.1 Final Schedule for the example in Figure 4.2 48

5.1 Average makespans generated by heuristics, and improvement percentage

of PDCPG. 66

5.2 CPU time in second(s) for scheduling algorithms for each workflow for

low granularity. 66

5.3 Average makespans generated by heuristics for high granularity. 67

5.4 CPU time in second(s) for scheduling algorithms for each workflow for

high granularity. 67

5.5 Initial and actual average makespans generated by heuristics, and im-

provement percentage of PDCPG for granularity 0.02. 72

5.6 Initial and actual average makespans generated by heuristics and improve-

ment percentage of PDCPG for granularity 0.1. 72

5.7 Initial and actual average makespans generated by heuristics and improve-

ment/worsening percentage of PDCPG for granularity 1.2. 73

5.8 Initial and actual average makespans generated by heuristics and im-

provement/worsening percentage of PDCPG for granularity 1.2, when

the number of consecutive slots is set to 10. 73

6.1 Improvement of HDCPG. 82

6.2 Improvement of individual algorithms over DCPG. 83

6.3 Improvement of individual algorithms over HEFT 83

ix

6.4 Count of contribution to best schedule out of 100 by individual algorithms

in HDCPG. 84

7.1 Improvement of PDCPG over heuristics for granularity 0.01 90

7.2 Improvement of PDCPG over heuristics for granularity 0.01. Random

workflows have maximum 8 jobs per level. 90

7.3 Improvement of PDCPG over heuristics for granularity 0.01. Random

workflows have maximum 6 jobs per level. 91

7.4 Improvement of PDCPG over heuristics for granularity 0.1. 91

7.5 Improvement/Worsening of PDCPG over heuristics for granularity 1.0 . 92

8.1 Complexities of variants of routing problem in advance reservation envi-

ronment. 114

8.2 Parameter Settings for Experiments. 124

8.3 Improvement percentage of KSP variants for EAT over other algorithms

for four network topologies. 128

8.4 Percentage of instances where the algorithms fail to find an existing path

for the four network topologies. 129

8.5 Indication of running time (in seconds) of algorithms in the simulation. . 131

x

Acronyms

ADTT Absolute Data Transfer Time

AEST Absolute Earliest Starting Time

ALST Absolute Latest Starting Time

AR Advance Reservation

CAV Capacity Availability Vector

CPOP Critical Path on Processor

CT Completion Time

Comm Communication

DAG Directed Acyclic Graph

DCPG Dynamic Critical Path for Grids

DCPL Dynamic Critical Path Length

DCP Dynamic Critical Path

DS Data Size

EAT Earliest Arrival Time

ECT Earliest Completion Time

EDG European Data Grid

ETT Earliest Transfer Time

GA Genetic Algorithm

GRASP Greedy Randomised Adaptive Search Procedure

HBMCT Hybrid Balanced Minimum Completion Time

HEFT Heterogeneous Earliest Finish Time

HGP Human Genome Project

LSP Label Switched Path

xi

MCP Modified Critical Path

MET Minimum Execution Time

MH Mapping Heuristic

MIPS Million Instructions Per Second

MI Million Instructions

MRS Multicost Routing and Scheduling

MUV Make UnAvailable

Mbps Megabit per Second

OBS Optical Burst Switching

OCS Optical Circuit Switching

OPS Optical Packet Switching

OLB Opportunistic Load Balancing

PDCPG Partner Based Dynamic Critical Path for Grids

PSPLIB Project Scheduling Problem Library

PSPWF Project Scheduling Problem Workflow

SA Simulated Annealing

WFMS Workflow Management System

estET Estimated Execution Time

expCT Expected Completion Time

rbw Requested Bandwidth

rcpu Requested CPU

xii

Chapter 1

Introduction

In Grid computing, the computation and communication capabilities of heterogeneous,

distributed resources are made available to users for solving complex problems. Many

such problems require the execution of a number of jobs, each of which may require as

input the output of a previously executed job. Such systems of jobs can be modelled

as workflows. A fundamental issue that needs to be addressed when workflows are

executed in a Grid is the scheduling problem, i.e., deciding when and where the jobs

of the workflow are executed and how data is exchanged between them. In this thesis,

we propose and evaluate new heuristic methods for workflow scheduling problems in

advance reservation environments with and without resource failures, and in non-advance

reservation environments. We also study the subproblem of routing data from one

resource to another efficiently.

In this introductory chapter, we give the background and motivation of our work and

state our contributions. Background on Grid Computing is discussed in Section 1.1. In

Section 1.2, workflow scheduling is covered. Advance Reservation is briefly described in

Section 1.3, and Optical Burst Switching (OBS) networks are discussed in Section 1.4.

The motivation for our work is presented in Section 1.5. Our contributions are stated in

Section 1.6. Finally, an outline of the structure of this thesis is given in Section 1.7.

1

1.1 Grid Computing

According to [35], John McCarthy suggested in the 1960s that the time-sharing capability

of computing resources might lead to the outsourcing of computational tasks. Initially,

this idea was not taken up because of the lack of capabilities in applications, computing

and communication resources that would have been required for an implementation.

With subsequent advancements in technology, the concept has now been realised in

different forms such as Cluster, Grid and Cloud Computing.

Computing and data intensive tasks and the need for collaboration in scientific research

have led to the creation of the Grid. There is no agreed upon definition of the Grid. Ian

Foster presented three typical attributes of the Grid in [34], which are as follows:

• ”Coordinated resources are not administered centrally”.

• ”Open standards are used”.

• ”Nontrivial quality of service is achieved”.

A brief description of the above three attributes is as follows. Generally, a Grid is a

pool of different types of resources that include computational, communication, storage

resources and instruments. These resources are owned by different organisations or

persons and are available for the utilisation by users across the globe. The user can pay

for the utilisation of resources according to policies of the owner(s) of the resources.

Thus there is no central administration over the resources of the Grid. Since different

architectures, platforms and applications may interact with each other, open standard

protocols and interfaces are required for the accomplishment of better and successful

interaction. Further, the coordinated use of the Grid resources helps in providing greater

quality of service, e.g., response time, as compared to the situation where resources are

used in a non-coordinated way.

The Grid has effectively helped scientists and academics to achieve many of their goals in

the last decade. One of the many success stories was a huge reduction in the duration of

finding solutions to genome sequencing problems. In 2000, the Human Genome Project

2

(HGP) [5], with the main objective of determining the sequence of chemical base pairs

which make up the human DNA, completed after 10 years. With the help of the Grid,

in January 2008 every 4 days major genome centres could sequence the same number

of base pairs as the HGP. Later on, new technologies have reduced this process to 10

hours [45].

Depending on the requirements of applications and the resource design, Grids can be

categorised as follows [48]:

1. Computational Grid. This category accommodates the systems which are built

to solve computing-intensive tasks. It is further subdivided into two categories,

Distributed Supercomputing and High Throughput Computing. Distributed Super-

computing focuses on completing a task, by running it in parallel on multiple ma-

chines, within minimum time possible. Some examples of the problems for which

Distributed Supercomputing is used are weather forecasting, molecular modeling

and fluid dynamics. High Throughput computing targets increased job finishing

rates. In case of processor design verification, tests are run with different param-

eter settings. These experiments are run on a high throughput Grid to increase

the completion rate. Some of the many Grid projects that lie in this category are

MyGrid [28] and Seti@home [14].

2. Data Grid. The characteristic of this category is to specifically address the issue of

sharing and transmitting huge amounts of data. These systems allow scientists to

collaborate with each other by sharing their datasets. To provide these mentioned

facilities the data Grid has specialised infrastructure which the computational Grid

lacks. In a computational Grid the storage management is handled by the appli-

cations themselves rather than by using the Grid’s services. Fields like astronomy,

high energy physics and climate simulation need such facilities to accomplish col-

laboration. There are several projects that focus on these demands, including The

DataGrid Project [9], Particle Physics DataGrid Project [8] and BioGrid [1].

3. Service Grid. The objective of this category of systems is to provide services that

3

a single machine cannot provide. The services can include interaction services,

multimedia services for heavy image/video rendering, data mining services for

extensive data analysis and application services. Furthermore, these services can

also be provided as utilities to consumers on a pay-to-access basis. Darwin and

2K are examples of Service Grids.

Our work is mainly concerned with scheduling problems in Computational and Data

Grids. From now on only these types will be considered. In the following section we will

discuss the scheduling of workflows in Grids.

1.2 Grid Workflow Scheduling

Grid Workflow According to [43], a “workflow is concerned with the automation

of procedures where documents, information or tasks are passed between participants

according to a defined set of rules to achieve, or contribute to, an overall business goal”.

Similarly, scientific experiments are comprised of different applications which run in a

specific order on the basis of a defined set of rules, and data needs to be moved among

the applications as input and output. Thus, they are referred to as scientific workflows.

When a workflow is executed on a Grid, it can be called a Grid Workflow. Some common

workflow applications along with the related field of science are as follows:

• EMAN [2], for electron micrograph analysis.

• GridPhyN [4], for physics.

• e-Protein [57], in biotechnology.

• LEAD [6], in the field of weather forecasting.

• WIEN2K [11], for quantum chemistry.

• Montage [7], for astronomy.

Grid Workflow Management Systems According to [43], a Workflow Management

System (WFMS) is “a system that completely defines, manages and executes workflows

4

Figure 1.1. Grid Workflow Management System [79].

through the execution of software whose order of execution is driven by a computer repre-

sentation of the workflow logic”. On the basis of this, the architecture and functionalities

supported by various components of Grid workflow systems are given in [79] as shown

in Figure 1.1. According to Figure 1.1, the WFMS functions can be classified into two

high-level categories. One is Build Time and the other is Run Time. Build time func-

tions are responsible for defining and modelling workflow tasks and their dependencies

while run time functions are concerned with the management of workflow execution and

interaction with Grid resources for processing workflow application. Workflow modelling

tools (build-time) are used for the specification of workflows, which are then submitted

to a workflow enactment service (run-time) for execution. A workflow enactment service

handles scheduling, fault management and data movement. To obtain services from

Grid resources, workflow enactment services act through low-level Grid middleware like

5

Globus [3] or Unicore [10].

There are many factors that can improve the efficiency of WFMS for the execution of

workflows, but scheduling has the most vital role to play for this purpose [79]. Workflow

scheduling is the process of selecting a certain available job, for which all dependency

requirements are met, from a workflow to be assigned to a resource while satisfying

objective(s) requested by the user. Usually, a directed acyclic graph (DAG) is used to

model a workflow. Workflow/DAG scheduling will be discussed in detail in Section 3.1.

1.3 Advance Reservation in the Grid

There are applications in the Grid which need multiple resources simultaneously. These

resources can be computing resources, network resources, storage resources and other

instruments. But the availability of these resources is difficult to be guaranteed, which

may cause delay in the completion of the application. To guarantee the availability of

resources in the above-mentioned scenario and enable simultaneous allocation, Advance

Reservation (AR) was introduced [64]. AR enables the resources to be reserved in ad-

vance for a user, thus guaranteeing the availability at the requested time. AR is beneficial

for workflow applications. The dependent jobs run when all dependency requirements

are fulfilled. These dependency requirements can be fulfilled well within time with the

help of AR, thus improving the overall completion time of the workflow [62].

There are trade-offs regarding AR implementation in Grid environments. Some of them

are as follows. AR is harder to implement as compared to other non-AR techniques.

AR may cause ready jobs, with no reservation, in a queue to wait longer, which is not

desirable for the owner of the waiting jobs. With AR, fragmentation can occur in the

utilisation of system resources, which is not desirable for the resource provider.

A survey regarding the availability and usage of advance reservation in different Grid sites

across the globe was presented in [62]. 25 Grid sites participated in the survey. Half of

the sites did not support AR and only two sites provided an AR facility without human

6

intervention. The reasons for this lack of automated AR support mentioned in [62] are

as follows:

• Tools lack support for AR.

• The site administrators consider it less important due to its less frequent occur-

rence.

• The belief that AR will cause under-utilisation of resources.

• The site administrators do not encourage users to make reservations unless it is

necessary.

Among these four reasons, three are related to Grid administrators’ fears and attitudes

towards AR. However, since the publication of [62], a lot of effort has been invested

into overcoming the underlying technical issues [62, 66, 46]. Furthermore, increased

automation will help to reduce the costs of AR, thus helping to overcome human-centered

objections. Together with effective demonstrations that AR does not lead to under-

utilisation of resources, increased automation will help to ensure that AR is used more

widely, leading to better QoS outcomes for users.

By focusing on the improvement of tool capabilities, automated AR processes can be

made available. Varvarigos et al. [70] presented a technique that can help in automating

the AR process. They proposed the use of a vector data structure to store the resource

utilisation status at a certain time. Each component of the vector represents a minimum

time slot for which a resource can be reserved. Utilisation profile maintenance using the

vector data structure makes it easier for algorithms to check the availability of resources

and to make decisions.

1.4 Optical Burst Switching Network

Optical Burst Switching (OBS) [77] is a network architecture that adopts the best as-

pects of Optical Circuit Switching (OCS) and Optical Packet Switching (OPS) and

avoids their shortcomings. In OCS, a lightpath is established between two nodes using

7

a specific wavelength. Due to the limited number of wavelengths, not every node can

have a dedicated lightpath to all other nodes, which may result in adopting a longer

path. Further, OCS may not be a feasible way of transferring smaller data, since the

establishment and the releasing of the connection takes several hundred milliseconds.

In OPS, the packet is sent along with its header. The optical packet may be buffered

at the intermediate nodes while the header is being processed with or without O/E

(Optical/Electronic) conversion. The limitations of optical buffering, due to the high-

speed optical logic and the optical memory technology required, minimise the benefits of

popular electronic system routing, like worm-hole routing method [77], for optical pack-

ets. Further, optical packet switching involves greater processing overhead than circuit

switching for a data unit. OBS borrows the high bandwidth utilisation, low setup latency

and high adaptivity to faults from packet switching, which circuit switching lacks, and

adopts low processing per unit data and avoids buffering, which are the features that

packet switching lacks.

In an OBS network, large chunks of data are transferred in a burst. An ingress node

produces a burst by assembling data packets for the same destination. After a certain

number of packets have been assembled or a certain time interval has passed, depending

on the technique being followed, a control packet is sent to the egress node to set up a

Label Switched Path (LSP) and also reserve bandwidth for the data burst to follow. A

request for burst transmission is like a connection requesting an advance reservation with

unspecified starting time and specified duration [83]. This approach makes OBS suitable

for the AR environment. The promising capabilities of OBS for future Grids as discussed

in [56, 51] also attract attention from researchers in the field of Grid Computing.

1.5 Motivation

The potential of the AR environment to provide a better Quality of Service (QoS) to the

user for workflow execution drew our attention to it. Unlike the non-AR environment,

where the load on a system may cause a job to wait in a queue, resulting in delay in

8

the completion time of the job, in the AR environment the situation of the resources is

clearer, making it possible to produce a better schedule. Our intention was to design

a workflow scheduling algorithm that takes advantage of the information about the

future utilisation of resources that is available because of AR. Furthermore, we also

intended to target data-intensive workflows, in which the communication cost is greater

than the computation cost of the jobs. In the case of data-intensive workflows there

is a potential for improvement in the schedule by minimising the communication cost

between interdependent jobs. It was anticipated that in the AR environment, getting an

improvement over existing heuristics will not be a trivial task. It was considered likely

that different heuristics will produce similar schedules for a workflow because of AR. This

situation motivated us to study the scheduling heuristics in different AR scenarios where

they can be misled or distracted from a better schedule, and design a heuristic which

can achieve a better schedule in such situations.

A sub-problem of the workflow scheduling is the routing problem. As mentioned in [26],

better results can be achieved by jointly scheduling the communication and computation

resources in an AR environment. This observation has motivated us to study the AR

routing problem as well.

1.6 Contributions

The main objective of our work was to design a workflow scheduling heuristic for AR

environments which can minimise the communication cost between the interdependent

tasks by scheduling them on the same resource where appropriate, thus minimising the

workflow completion time. Following this objective, the contributions we are able to

make are as follows:

• We propose a novel resource mapping heuristic for workflow scheduling in the

AR environment which conditionally schedules interdependent tasks on the same

resource to minimise the communication cost between them to achieve the goal

of minimising the completion time of the workflow. The condition is used to set

9

a limit for the affordable delay in the completion time of a job so that scheduling

interdependent tasks on the same resource does not worsen the schedule length.

This heuristic is studied in both static and dynamic Grid environments.

A variant of the above-mentioned resource mapping heuristic is proposed for

scheduling workflows in the non-AR environment as well.

• A hybrid of multiple workflow scheduling heuristics is proposed in which the heuris-

tics can run in parallel to compute a schedule to minimise the workflow completion

time using the advance reservation information. The best of the schedules is se-

lected as the final schedule.

• We introduce a new variation of critical path scheduling that ignores the com-

munication times between dependent tasks under certain conditions in order to

predict a critical path that can be used to minimise the workflow completion time.

• We analyse the complexities of different routing problems in the AR environment

when the network architecture is OBS. We also propose a variant of a K-shortest

paths routing algorithm to find a simple path in an OBS network with earliest

arrival time of the data in the AR environment.

The algorithms proposed in this thesis are evaluated and compared with previously pro-

posed scheduling heuristics in simulation experiments for different scenarios and with a

number of different workflows.

1.7 Thesis Organisation

The organisation of the thesis is as follows. In Chapter 2, the definitions and terminology

is provided which is used throughout the thesis. Previous work related to our chosen

problems is surveyed in Chapter 3. In Chapter 4, we present as preliminaries the AR

framework and corresponding path calculation technique as well as the dynamic critical

path method for job selection, which are employed in the rest of the thesis. Further,

the Grid simulator which is used for all the experiments is described as well. Our novel

10

partner-based resource mapping technique is presented and studied in both static and

dynamic Grid AR environments in Chapter 5. In Chapter 6, a hybrid scheduling heuristic

for workflow scheduling in the AR environment is proposed and evaluated. A modified

version of the partner-based resource mapping technique for non-AR environments is

proposed in Chapter 7. The complexity of routing problems in AR environments is

studied and a variant of a K-shortest path algorithm to find a path in the AR environment

is presented in Chapter 8. Conclusions are given in Chapter 9. The modifications and

additions made to the simulator according to our requirements are discussed in Appendix

A.

11

Chapter 2

Definitions and Terminology

This chapter provides formal definitions and terminology related to Grid resources, DAG

workflows, workflow scheduling and advance reservation. It also describes the instances

of the European Data Grid test bed and the workflows used in the experiments. Some

additional definitions will be given in later chapters where they are needed.

2.1 Grid Resource Model

In this thesis, the computational and communication resources of the Grid are modelled

as follows. R = {r1, r2,, rm} is a set of m resources (the terms cluster and resource

will be used interchangeably). The resource ri has Wri CPUs of the same processing

speed. The processing speed in Million Instructions per Second (MIPS) is denoted by

PSri , where 1 ≤ i ≤ m. The owner of the workflow to be scheduled (also referred to

as the user) is connected to a special resource r0, where r0 /∈ R. This resource is used

to submit jobs and stores the data files required by starting job(s). L = {l1, l2,, ln}

is a set of n links by which resources are connected. Cli and dli denote the capacity and

delay in milliseconds of link li, for 1 ≤ i ≤ n, respectively and both are integer numbers.

For most of the experiments, the network architecture is assumed to be OBS (see Section

1.4). Further aspects of the Grid environment that are related to AR and resource failures

will be mentioned in the corresponding sections.

12

2.2 DAG Workflow

A Grid workflow is represented by a directed acyclic graph (DAG) G = (V,E), where V

is the set of jobs and E is the set of edges connecting these jobs. Each edge e(i, j) ∈ E

represents a precedence constraint, meaning that execution of job j (the child job or

direct successor of job i) can only start after the completion of job i (the parent job or

direct predecessor of job j). The size of job j, measured in Million Instructions (MI),

is denoted by JSj, an integer number. Jobs without parents are called starting jobs,

and jobs without children are called sink jobs. For convenience, we introduce for every

workflow a single entry job (without parents) and a single exit job (without children).

These jobs have computation length 0. The entry job is made the parent job of all

the jobs with no predecessor jobs, and the exit job is made the child job of all the jobs

with no successor jobs. F = {f1, f2, ..., fg} is a set of files. The data size of file f

in Megabytes is denoted by DSf , an integer number. Each job requires some integer

number h of input data files, where 1 ≤ h ≤ g, and generates a single output file,

which is added to F . Some files may already exist on a resource before the start of

workflow execution. We assume that only the starting jobs take already existing files

as input, and other jobs use the output files of their direct predecessors as input. By

PTRj = {ptr1, ptr2, . . . , ptrq} we denote the set of q partner jobs of job j, where jobs

are said to be partners if they have at least one common direct successor (child) job.

For a given schedule, RPj ⊂ R denotes the set of resources on which the q partner jobs

of job j are scheduled.

2.3 Workflow Schedule

Given the resource model from Section 2.1 and the workflow model from Section 2.2,

workflow scheduling is the process of determining for each job when and on which

resource it should be executed, while satisfying the precedence constraints and with

the goal of optimising some objective. There can be numerous objectives including

13

minimising the completion time of all jobs of a workflow, minimising the cost of job

execution, finishing all jobs within a deadline and a budget, and efficiently utilising all

available resources. In our case we consider the objective of minimising the completion

time of a workflow, it will be referred to as the makespan, i.e., the difference between

the finishing time of the last job of the workflow and the submission time of the first job

of the workflow.

2.4 Scheduling Terminology

We briefly describe some terminology that is relevant for the scheduling algorithms

considered in this thesis. The precise meanings of some of the terms may depend on the

context or the algorithm in which they are used and will be explained in the respective

sections. Many of the terms refer to a specific job or data transfer that will be clear

from the context where the terms are used.

Absolute Earliest Starting Time AEST refers to a lower bound on the starting time of a

job, and Absolute Latest Start Time ALST refers to an upper bound. The calculation

of AEST and ALST may vary depending on the algorithm. By estET we denote the

estimated Execution Time of a job, which may again be calculated differently by different

algorithms, for example, one may take the average execution time over all the resources

in the Grid. The estimated Execution Time of a job on a particular computing resource

is denoted by estET. Absolute Data Transfer Time ADTT is the data transfer time for

the output file of a job, which different algorithms may also calculate differently.

Earliest Transfer Time ETT refers to the earliest time when a data file can be transferred

from one resource to another. EAT is the Earliest Arrival Time of data at a specific

resource. ECT is the Earliest Completion Time of a job on a resource. ST is the

execution Start Time and CT is the actual Completion Time of a job. expCT rj is the

expected Completion Time of job j on resource r.

Dynamic Critical Path Length DCPL is an estimate for the schedule length of a partially

14

mapped workflow. The calculation of DCPL may vary throughout the thesis. The

makespan of a workflow is the difference between the submission time of the workflow

and the completion time of the last job of the workflow. The granularity of a workflow is

the average of the ratio of computation and communication cost of the v − snk parent

jobs in the workflow, where v is the total number of nodes and snk ≥ 1 is the number

of sink nodes which do not produce output files. The granularity is calculated as follows:

Granularity =
1

v − snk

(v−snk∑
i=1

estET (ji)

ADTTji

)
, (2.1)

assuming that the jobs ji for 1 ≤ i ≤ v − snk are the jobs that are not sink jobs.

Commj,pji(rj, rpji), which may be calculated differently in different contexts, denotes

an estimate for the communication time between the ith parent job pji of job j and job

j if they are allocated to resources rpji and rj, respectively. The ith child job of job j

is denoted by cji.

2.5 Advance Reservation and Utilisation Profiles

In the AR scenario, we consider the setting that both CPUs on resources and the capacity

of links can be reserved in advance. As in [26], we assume that information about

reservations that have already been made is stored in utilisation profiles. The time limit

within which the reservation can be made is T and it is the size of the utilisation profile

as well. We consider two types of AR requests, those for bandwidth and those for CPUs,

denoted by rbw and rcpu, respectively, and both are integers. A request is checked

against the utilisation profiles of links or resources. The utilisation profile vector of a

link l is denoted by Ul, each component of which stores the bandwidth committed for

the connection in future time. The capacity availability profile of a link l at time t is

defined by Ct
l = Cl−U t

l , where U t
l is the bandwidth (an integer value) that has already

been committed to connections on link l at time t. For ease of processing reservation

data, time is discretized in timeslots of duration τl (an integer value). A request for

15

bandwidth rbw is made for a file transfer, and the duration of the requested connection

b can be calculated as

b =
DSf
rbw

.

The value of b is always truncated to the integer value. The binary rbw-capacity avail-

ability vector Ĉl(rbw), abbreviated CAV, has as its k-th entry:

{
Ĉl(rbw)

}
k

=

1, ifCl − U tl ≥ rbw

for all (k-1) · τl < t ≤ k · τl

0, otherwise

 ,

for k = 1, 2, . . . , zl

where zl is the dimension of CAV. If the requested bandwidth rbw is clear from the

context, we omit the argument and simply write Ĉl for Ĉl(rbw). The utilisation profile

U t
r of cluster r is defined as an integer function of time, which records the number

of CPUs that have been committed at time t. The cluster availability at time t is

W t
r = Wr − U t

r . The time axis is discretized in steps of duration τr (an integer value)

and the binary rcpu-cluster availability vector Ŵr(rcpu) is defined as follows:

{
Ŵr(rcpu)

}
k

=

1, ifWr − U tr ≥ rcpu

for all (k-1) · τr < t ≤ k · τr

0, otherwise

 ,

for k = 1, 2, . . . , zr

where zr is the dimension of Ŵr(rcpu).If the requested CPU rcpu is clear from the

context, we omit the argument and simply write Ŵr for Ŵr(rcpu). We assume that τl

and τr are the same for all links and resources.

Sometimes we will consider the subproblem of transmitting a data file over the network

to some resource and then executing a job on that resource that needs the data file as

input. In that context, we use Pn-d to refer to the set of non-dominated paths (i.e.,

paths that are not strictly worse than some other path) from the source of the data file

to different destination clusters. PRn-d refers to the set of non-dominated path-cluster

pairs (p-c), where p is a path from the source of the data file to resource c and the

16

Resource Name (Location) No. of Nodes CPU Rating (MIPS)

CERN (Switzerland) 10 1200
Padova (Italy) 13 1000
Bologna (Italy) 20 1140
Catania (Italy) 5 1200
Torino (Italy) 5 1330
Milano (Italy) 7 1000
NIKHEF (Netherlands) 12 1320
Nordugrids (France) 17 1176
Imperial College (UK) 52 1320
RAL (UK) 41 1140
Lyon (France) 12 1320

Table 2.1. EDG testbed resources used for experiments.

earliest completion of the job on cluster c is also taken into account.

2.6 European Data Grid (EDG) Testbed Instance

The European Data Grid (EDG) testbed [16], considered also in [71], is used as the Grid

environment in most of the simulations carried out in this work. The testbed has 11

resources as clusters of equally rated CPUs. The CPU rating is given in terms of MIPS.

The CPU speed ranges from 1000 to 1330 MIPS. Table 2.1 shows further details of the

testbed. In Figure 2.1, we show the modified topology of the network of EDG testbed

resources that we use in our simulations. We have added some routers and links to

the original topology to make it more challenging to find paths in the AR environment.

We have inserted the router r2 between routers r1 and r3, and inserted the router r8

between the routers r9 and r7. We added a link between the routers r2 and r8 and also

added a link between the routers r8 and r5.

2.7 Workflow Instances

In this section we discuss the workflows that are mostly used in the experiments. The

workflows shown in Figures 2.2, 2.3 and 2.4 are instances of scheduling problems given

in the Project Scheduling Problem Library (PSPLIB) [47]. We refer to these workflows

as PSPWF. There are many scheduling problems available in PSPLIB that are used

17

Figure 2.1. Modified network topology of EDG testbed resources.

as benchmarks by researchers to test scheduling heuristics. Furthermore, the chosen

instances contain a fair number of jobs with challenging structure for scheduling heuris-

tics. Along with the PSPWF we also used randomly generated workflows in which the

number of parent jobs of a single job may vary from two to ten, so that the behaviour of

heuristics could be studied for diverse workflows. As instance of a smaller size workflow

we chose the eProtein project workflow shown in Figure 2.5, which has a structure that

appears complicated enough to test a heuristic in a meaningful way.

To create a specific workflow to be scheduled, each node of the workflow DAG must

be assigned information about the corresponding job such as job length, required input

files, output files and their sizes. The incoming edges to a node are used to create a list

of its required input files. The size of the job and its output file is generated randomly

according to the required granularity. For each granularity we set the lower bound and

upper bound for the job size in terms of MI. A random value between these bounds is

then assigned to the jobs of the workflow. The same procedure is followed to generate

the output sizes of the jobs. In all experiments, only one CPU is requested or assigned

to each job, and the requested bandwidth for each output file is set to 10 Megabits per

second (Mbps) throughout all the AR experiments. For each starting job, i.e., for each

job without parent jobs, there exists one input file on resource r0. The size of this file

18

is set to 1 MB and the requested bandwidth for this file is 1 Mbps in all AR related

experiments.

(a) 30 jobs PSPLIB work-
flow

(b) 60 jobs PSPLIB workflow

Figure 2.2. Workflows from Project Scheduling Problem Library [47].

19

Figure 2.3. 90 jobs workflow from Project Scheduling Problem Library [47].

20

Figure 2.4. 120 jobs workflow from Project Scheduling Problem Library [47].

21

Figure 2.5. DAG of eProtein Project Workflow [57].

22

Chapter 3

Related Work

3.1 Workflow Scheduling Heuristics

Scheduling a DAG of jobs with unit execution time on a bounded number of processors

of the same speed such that each job finishes before a time limit is an NP-complete prob-

lem [69]. For this reason, many heuristics have been proposed in this regard. Several

heuristics have been proposed for homogeneous multiprocessor environments [49]. In ho-

mogeneous multiprocessor environments the architecture and the speed of the processors

are the same. Many DAG scheduling heuristics have been proposed for heterogeneous

and dynamic environments like Grids as well [13,81,84]. In heterogeneous multiprocessor

environments, the architecture and/or the speed of the processors may differ. In many

heuristics proposed for DAG scheduling, there are two main stages: the job selection

stage and the resource selection stage. Different techniques and concepts were followed

for these two stages to develop the heuristics. These heuristics can be divided into six

categories [84, 81]:

• Individual Task Scheduling

• List Scheduling

• Workflow Based Scheduling

• Clustering Based Scheduling

23

• Duplication Based Scheduling

• Meta-Heuristics

In the remainder of this section, we briefly discuss the features of these categories and

some of the heuristics that fall into each category. The heuristics that are going to

be discussed are heuristics for deterministic scenarios. In a deterministic scenario the

dependencies of workflow tasks, their execution time, sizes of input files and output files

are known before the scheduling process.

3.1.1 Individual Task Scheduling

Heuristics in this category follow a very simple approach. No preference is assigned

to any job. A job is selected randomly from the set of available jobs and sent to the

resource which can finish it earliest. This process is repeated until all the jobs in the

workflow are scheduled. Myopic [73] is one of the heuristics that falls under this category.

This technique neither considers global nor local optimisation of the schedule. Here, by

local optimisation we mean optimising the schedule of jobs while considering the set

of all available jobs and by global optimisation we mean optimising the schedule of

jobs while considering the whole workflow. This technique may yield a smaller schedule

computation time but may not give a better schedule since it does not consider the

optimisation at any level.

3.1.2 List Scheduling

One of the most widely adopted approaches for DAG scheduling in both homogeneous

and heterogeneous systems is list scheduling [39]. This choice is due to its low running

time and its tendency to produce good schedules. In this approach, the first task is to

prioritise the jobs. The priority of a job may be assigned depending on its computation

cost and/or the communication cost between the job and its successor jobs. The calcu-

lation of the computation cost and communication cost may vary in different heuristics.

24

Based on these costs, a rank or priority is assigned to the tasks in a workflow. This

rank helps in selecting a task from multiple available tasks. The point that is important

here is that in heterogeneous systems, unlike homogeneous systems, the capacity of the

computational resources and the communication links between them varies, which af-

fects the expected completion time of a task and the transmission time of data among

tasks. Therefore, different approximate calculation methods are used to estimate the

computation and communication costs. After a job is selected, it is sent to a resource

which satisfies any objective(s) under consideration (e.g., having earliest completion time

and/or satisfying budget constraints).

There are different ranking and resource selection methods which further divide list

scheduling into four categories. These categories are discussed in the following.

Static Priority Based

For heuristics in this category, the process of assigning priorities to all the tasks in

a workflow is carried out only once before scheduling. These priorities remain static

throughout the remaining scheduling process. Some of the heuristics included in this

category are Hybrid Balanced Minimum Completion Time (HBMCT) [60], Mapping

Heuristic (MH) [30], Opportunistic Load Balancing (OLB) [36], Minimum Execution

Time (MET) [23] and Heterogeneous Earliest Finish Time (HEFT) [68]. We discuss

HEFT in more detail, as it is a well known scheduling heuristic and considered as a

benchmark.

HEFT: HEFT uses an upward rank technique for assigning ranks to the jobs. In

the upward rank technique, the workflow is traversed in upward direction and the rank

assigned to a job based on its average execution time, the average communication time

to its child jobs and the ranks of its child jobs. The rank of a job gives the critical path

length from the job to the last job of the workflow. The purpose of assigning the rank

to a job is to not only consider the available jobs while scheduling but also consider

the impact of the scheduling of the job on future jobs. For scheduling purposes, jobs

25

are sorted in descending order of their rank values. Following this order, each job is

assigned to a resource which is expected to finish it earliest. HEFT also considers the

insertion of a job into the earliest available idle space between two already scheduled

jobs. In [68], HEFT is compared with list heuristics, including MH and CPOP. The

considered resource model in [68] contained heterogeneous computation resource with

single processor, and different workflows, with varying degree of parallelism and depth,

are generated for the test. HEFT outperformed all of the compared heuristic in terms of

the ratio of obtained makespan and lower bound of the makespan. HEFT is also shown

to be more cost effective with respect to the schedule computation time than all the

other heuristics.

Even though HEFT has a very good reputation, in [58] it is shown to be outperformed by

DCPG in scenarios where communication costs are greater than the computation costs

when the workflow structures are parallel, fork-join and randomly generated and the

resource model comprises of heterogeneous resources with multiple processors. HEFT is

also shown to be outperformed by the heuristic Longest Dynamic Critical Path (LDCP)

in case of greater communication cost than computation cost for some random and

regular workflows from real world applications [29]. A similar worsening behaviour of

HEFT against a duplication based heuristic for workflows with greater communication

cost was noted in [15] as well. The higher communication cost in a workflow can greatly

be reduced by assigning the interdependent jobs to the same resource, thus it can change

the criticality of the jobs and may affect the makespan of the workflow.

Dynamic Priority Based

For heuristics in this category, the priority of a task is computed when it becomes available

for scheduling. The priority of a task may change during the scheduling procedure.

Some of the heuristics included in this category are Min-min [44], Max-min [44] and

Duplex [23]. We discuss Min-min and Max-min next.

26

Min-min and Max-min: The Min-min algorithm gives priority to the smallest avail-

able tasks for scheduling. The expected completion times of available jobs are calculated

on all resources to find their minimum expected completion time. The job with mini-

mum expected completion time is given priority and scheduled on the resource which is

expected to give it the minimum completion time. The same process is repeated at each

iteration until all jobs in a workflow are scheduled. By giving priorities to the smaller

jobs, the algorithm increases the chances of high throughput.

The difference between Min-min and Max-min is that jobs with longer execution time

are given priority rather than the smaller jobs. For all unmapped jobs, the minimum

expected completion time is calculated and the job with the longest completion time is

scheduled on the resource which is expected to finish it earliest. In cases when there

exist jobs with longer execution than many other jobs, the Min-min technique will cause

the longer jobs to wait longer and run them when all the small jobs are executed. In such

cases, the Max-min technique first maps the longer jobs, and then the other, smaller

jobs can be run in parallel, which can improve the makespan.

Even though these techniques consider multiple jobs for the mapping decision, which

works well for independent sets of jobs [23], in case of workflows these techniques do

not take into account the dependent jobs, which may lead to a poor workflow makespan

as compared to techniques that consider the dependent jobs as well, i.e., HEFT, DCPG

[58, 68].

Critical Path Based

This category of heuristic computes a critical path based on the computation and com-

munication cost of the jobs. At the time of selection, priority is given to the most critical

job, the one which is on the critical path. In case no critical path job is available, the

job which is considered most critical after that by the heuristic is chosen for scheduling.

The idea behind the critical path technique is to give priority to the set of jobs which

collectively may give a lower bound on the workflow makespan. Some of the heuristics

27

included in this category are Critical Path on Processor (CPOP), Modified Critical Path

(MCP) [74], Dynamic Critical Path (DCP) [50] and Dynamic Critical Path for Grid [58].

There are heuristics in which the critical path remains the same throughout the schedul-

ing process after it is computed in the beginning, e.g., CPOP, and heuristics where the

critical path keeps changing after each scheduling step, like DCP and DCPG. As our

work is closely related to DCPG, we have already discussed it in detail in Section 4.2.

Here we discuss CPOP.

CPOP: CPOP computes upward and downward ranks, as done by HEFT, of all the

jobs in a workflow. The maximum of the sum of the upward and downward ranks of a

job gives the length of the critical path of the workflow, and all the jobs on the critical

path have the same sum value. A processor is chosen for the critical path jobs, which

is called critical path processor, to minimise the cumulative computation costs of the

jobs on the critical path. If a critical path job is to be scheduled, it is scheduled on the

critical path processor. For other jobs, the resource which is expected to finish it earliest

is assigned to the job. In [68], it is shown that the CPOP stands second to the HEFT for

the average of the ratio of obtained makespan and lower bound of the makespan when

the communication cost of the workflow is greater its computation cost, the experiment

settings are the same as discussed for the HEFT in the previous section. It showed poor

performance as compared to the HEFT and two other heuristics for the same metric

when the computation cost of the workflow is greater than its communication cost.

3.1.3 Workflow Based Scheduling

In this approach the schedule is optimised globally, i.e., at the workflow level [20]. Initially,

multiple schedules for the complete workflow on the available resources are computed

and one of them is chosen as a final schedule. In case of any changes in the environment,

the jobs are reallocated. As shown in [20], this approach works very well in situations in

which communication costs are higher than the computation costs in a workflow. This

technique minimises the communication cost by scheduling the interdependent jobs on

28

the same resource, thus minimising the workflow makespan. But the better results come

at the cost of higher running time for schedule computation, which may not make it a

better choice if many workflows are being scheduled and quick schedule computation is

needed.

3.1.4 Cluster Based Scheduling

The emphasis of this technique is to minimise the communication cost between interde-

pendent jobs so that the makespan can be minimised. The approach adopted in [27] can

be briefly explained as follows. Job clusters are constructed based on the dependencies

between jobs and their communication and computation costs. In the next step, clusters

may be merged conditionally. Clusters of resources are also built. The clusters of jobs are

sorted in descending order with respect to their communication and computation costs.

The clusters of resources are sorted in descending order with respect to their bandwidth

capacity and computation capacity. Following the order, each cluster of jobs is allocated

to a cluster of resources until the load limit is reached. Even though an improvement in

the workflow makespan can be achieved by minimising the communication cost in this

way, this approach incurs a computational overhead to achieve this.

3.1.5 Duplication Based Heuristics

In this technique the tasks are duplicated and run redundantly on multiple machines to

minimise the communication cost between dependent jobs. The duplication is performed

after an initial schedule is computed. Afterwards it is decided which task to duplicate on

which resource. This technique may reduce the communication cost of the workflow but

at the cost of execution overhead. This is suitable for situations where communication

costs are high as compared to the computation costs and execution overhead can be

afforded. In [40] a duplication based heuristic is proposed to solve the DAG scheduling

problem in multiprocessor environments.

29

3.1.6 Meta-heuristics

Meta-heuristics provide both a general structure and strategy guidelines for developing

a heuristic for solving computational problems. They are generally applied to large

and complicated problems. They help in finding good solutions in a large solution

space. Many meta-heuristics have been applied for solving workflow scheduling problems,

including GRASP, Genetic Algorithms and Simulated Annealing.

Greedy Randomized Adaptive Search Procedure (GRASP): This is a search

technique in which a scheduling solution is optimised in iterations [59]. For workflow

scheduling, in each iteration a workflow schedule is computed based on the greedy

approach [20]. Then the local search technique is used to find a better solution by

swapping the allocation of jobs on the resources in the current workflow schedule. The

best solution is updated if the new solution is a better one. The process stops when the

maximum number of iterations are reached.

Genetic Algorithms (GAs): In Genetic Algorithms [38], the principle of evolution

is used to find a better solution from a large search space. An initial population of

randomly generated solutions is created. An individual solution is called a chromosome.

Genetic operators including selection, crossover and mutation are applied to the chromo-

somes to generate new offspring (new solutions). The quality of offspring is measured

using a fitness function. The best individuals are selected to be carried over to the next

generation, and the same steps of applying operators are repeated. Later in the pro-

cedure, the fittest individuals from older generations are exploited and new generations

of individuals are explored. The evolution process is repeated until a certain condition,

like the number of iterations or a certain level of fitness value, is satisfied. GAs have

been adopted for independent and inter-dependent tasks scheduling in homogeneous and

heterogeneous environments. Some GAs for the DAG scheduling problem in a heteroge-

neous environment are proposed in [72, 63, 80]. In [72] and [63], the workflow schedule

is the chromosome and the fitness value is the completion time of the workflow. In [80],

30

a budget constraint is also considered for the fitness of the schedule. The results show

that a GA can find a better schedule as compared to the list scheduling heuristics but

at the cost of execution time. For smaller workflows with certain assumptions, GA can

give a schedule near the optimal schedule within polynomial time [63].

Simulated Annealing (SA): Simulated Annealing (SA) [53] is derived from the re-

peated process of heating and cooling down material such as glass or metal to remove

internal stresses and toughen it. At the start, an initial solution is provided to a typical

SA algorithm by assigning tasks randomly to resources. The temperature is then de-

creased at a specific rate. At each temperature level, multiple iterations are executed,

and at each iteration a new solution is produced by applying random changes to the

current solution. The new solution is definitely accepted if it is better than the current

solution and with a certain probability (depending on the temperature) if it is worse than

the current solution. At higher temperature the probability of the acceptance of a worse

solution is also higher and the acceptance probability decreases as the temperature de-

creases. After a certain number of iterations, the temperature is decreased and the same

process is repeated until the lower boundary of the temperature is reached. In [21], SA

is shown to surpass many solutions to the benchmark project scheduling problems given

in the Project Scheduling Problem Library [47] in terms of earliest completion time. For

Grid workflow scheduling SA, is adopted in [18, 78, 76].

3.2 Advance Reservation

For the automation of AR in Grid environments Varvarigos et al. [70] proposed a mech-

anism to manage the utilisation information of network links over a period of time. This

utilisation information is used to find the availabilities of resources in future time slots.

The resource utilisation information is converted into binary information after checking

it against the user’s requested capacity. Based on the binary information of each network

link, a new technique is proposed to find the availability of a path to a destination. This

31

AR technique is extended for the joint scheduling of communication and computation

resources in [26] by adopting the same technique of maintaining and manipulating the

utilisation information of the computing resources. It is shown that the joint scheduling

gains improvements over separate scheduling for CPU and data intensive tasks in terms

of earliest completion time.

3.3 Rescheduling in Failure Cases

The Grid is a dynamic environment in which the performance of resources fluctuates.

The fluctuation could be because of resource failures, software faults or load from users.

It also happens that resources may join or leave the Grid resource pool which if considered

in time by scheduling algorithms can affect the performance of submitted/ready jobs.

To enhance the performance of the Grid, fault detection and rescheduling techniques are

developed.

To detect faults, push and pull methods are used [55]. In the push model, Grid com-

ponents send messages to the failure detector component regarding liveness, while in

the pull model the failure detector requests the status of liveness from Grid compo-

nents. Fault tolerance approaches can be categorised into pro-active and post-active

techniques [55]. Pro-active techniques consider the failure possibilities in the Grid before

a scheduling decision is made. Post-active techniques, like rescheduling, take decisions

after the occurrence of a failure. Rescheduling is the process of reallocating jobs af-

ter a failure occurrence. Which jobs are reallocated depends on the technique under

consideration.

Rescheduling techniques for independent tasks are proposed in [19, 75]. For workflow

applications, rescheduling mechanisms are given in [61, 82]. In [19], two rescheduling

techniques are proposed: One technique stops and restarts the job and the other tech-

nique handles the job swapping for rescheduling. A self adaptive scheduling technique is

proposed in [75]. Whenever an abnormal behaviour is detected, using an error threshold

prediction in job processing, the affected job is rescheduled. The affected job is migrated

32

to the processor which gives the minimum completion time.

In [61], a selective rescheduling mechanism for rescheduling workflow tasks is proposed.

The purpose of being selective is to lower the cost of rescheduling. Only those tasks are

rescheduled whose difference between the expected actual start time and the expected

start time of the initial schedule is larger than a maximum allowable delay. In [82],

a HEFT based adaptive rescheduling mechanism is introduced. When a performance

change event is triggered, the scheduler reassigns the tasks to the resources considering

earliest finish time.

The above-mentioned rescheduling techniques were proposed for non-AR environments.

For AR environments, a rescheduling policy for workflows was proposed in [24]. The

approach is different from non-AR environments because not only currently running jobs

are considered for rescheduling but also jobs which are scheduled on the faulty resources

in the near future. A problem that arises here is the estimation of the length of the

downtime, for which an adaptive dynamic load based approach is used. It is claimed

that the adopted technique avoids over- or under-estimation of downtime, so that only

jobs with a chance of abnormal termination are remapped.

3.4 Routing in Advance Reservation Environments

Advance reservation of bandwidth was initially considered for video conferencing between

two studios to make sure its adequate availability. Similarly, advance reservation was

needed for the use of transponders of satellite systems [41]. The main focus for such

circuit-switched systems was on traffic modelling and call admission control. Later on,

advance reservation related proposed work for circuit-switched systems was modified for

packet switching networks.

In [41], the authors highlighted the importance of spatial and temporal routing algo-

rithms in the AR environment. The impact of AR on path selection and the related

computational complexity are discussed. It is shown that different requirements yield

33

different computational complexity. In one case, they considered a fixed start time for

the connection, a requested bandwidth and a data transfer duration with the objective

to find a simple path which has a bandwidth more than the requested bandwidth for the

transfer duration from a single source to a single destination so that data can arrive be-

fore a defined time limit. The algorithm proposed for this scenario gave the computation

complexity O(M · D), where M is the total number of edges in the network and D is

the duration of data transfer. In another case they made the starting time flexible and

set the objective to find a simple path with the earliest starting time for the requested

bandwidth. The proposed algorithm for this scenario has the computation complexity

O(M · (T − D)), where T is the time limit. They also discussed a problem in which

the requested bandwidth value is not specified and the objective is to find a simple path

with the maximum available bandwidth for the data transfer. They proved this problem

to be NP-hard. For these AR routing problems, they assumed that routing nodes can

buffer the data, thus data that is transferred can wait at intermediate nodes. An impor-

tant factor pointed out by the authors related to the computational complexity is the

granularity of time slots for which a reservation is made. Higher granularity reduces the

computational complexity at the cost of quality, because the allocated time slots may

exceed the need. Thus, there exists a trade-off between performance and computational

complexity.

In [41], the effect of the delay of links on the AR information has not been discussed.

Later, in [70], it was pointed out that the delay of links may make some of the availability

information outdated. Unlike [41], in [70] the authors considered the AR routing problem

in OBS networks, in which routing nodes do not buffer data and the data flows from the

source node to the destination node without waiting at intermediate nodes. Furthermore,

it is discussed in [70] that the polynomial time solvable AR routing problems mentioned

in [41] when considered in OBS networks can become intractable if the unit of the delay

of the links and the smallest unit of AR are kept the same. Due to the intractability of

the problem, they proposed three polynomial-time multicost routing algorithms to find

a simple path with earliest arrival time, when the bandwidth for the data transfer is

34

specified. They introduced a technique to eliminate the expired information about the

availability of links caused by the delay of links. As stated by the authors in [70], the

polynomial time algorithms do not guarantee to give the optimal path.

In Chapter 8, we consider the routing problem addressed in [70] and propose a K-

shortest path variant for the problem that follows the same path calculation method

as given in [70]. We also present scenarios in which the polynomial time algorithms

proposed in [70] may miss a better path while our K-shortest path variant may succeed

in finding the better path.

35

Chapter 4

AR Framework, DCPG Scheduling

and GridSim

This chapter discusses two techniques that have been introduced in previous work and

that we have adopted throughout our work: The AR framework proposed by Varvarigos

et al. [70] and Christodoulopoulos et al. [26] is explained in detail in Section 4.1, and

the Dynamic Critical Path calculation technique proposed in [58] is presented in Section

4.2. We also explain the working mechanism of the Grid simulator GridSim [67] in the

Section 4.3.

4.1 Resource Availability in Advance Reservation En-

vironments

In AR environments, users can request for a resource to be reserved over a period of

time. The request is checked against the future utilisation of the resource. A resource

that is available for the requested period of time for the requested capacity is reserved

for the user. Here, capacity can refer to the number of CPUs for computing resources

or the bandwidth for network links. Varvarigos et al. [70] proposed a specific mechanism

for maintaining resource utilisation information. A utilisation profile is maintained for

36

each resource, such as a network link or a computing resource, and updated whenever

a new reservation is made. The data structure they use for the utilisation profile is a

vector, which makes it easier for algorithms to check for available capacity. They also

proposed a multicost routing and scheduling algorithm for advance reservation of network

connections which is directly applicable to OBS networks. Christodoulopoulos et al. [26]

extended this algorithm to take into account the resource availability on the destination

cluster. We refer to their extension of the multicost routing and scheduling algorithm

as MRS in the following. There are two major aspects of MRS to be discussed: The

first is how the CAV (see Section 2.5) of a path in the network is calculated, which is

explained in Section 4.1.1, and the other is how a path to a resource/cluster is selected,

which is discussed in Section 4.1.2.

4.1.1 Path CAV Calculation

We discuss the calculation of the CAV of a path in the context of the example shown

in Figure 4.1. The example shows a network with three nodes S, I and D. The node S

is connected with the node I and the node I is connected with the node D. The delay

of the link SI, measured in units of τl, is 2 and the delay of the link ID is 4. Considering

the given CAVs of the links, the objective is to find the earliest arrival time of the data

of duration 3 from the node S to the node D.

The routing and resource selection decision is made on node S, therefore the CAVs of

all links and resources are made available at regular intervals to S. It is assumed that a

data file is located on S and we want to transfer it to resource D, where it will be used

as an input for a job execution. The CAV of a path is calculated by combining the CAVs

of all the links in the path using the associative operator ⊕ (see (4.1) and Figure 4.1b).

The CAV of path pSID comprising of links SI and ID with delays dSI = 2 and dID = 4,

respectively, is calculated as follows:

ĈSID = ĈSI ⊕ ĈID = ĈSI &LSH2·dSI
(ĈID), (4.1)

37

where ĈSI and ĈID are the CAVs of links SI and ID, respectively. LSH2·dSI
(ĈID) is the

left shifting by 2 · dSI elements of ĈID, that is 2 times the propagation delay of link SI

measured in τl-time units. The first left shift is to eliminate the first dSI elements from

ĈID that have expired because of the delay of the link while transferring information from

node I to S. The second left shift is to eliminate dSI further elements, which corresponds

to the delay the burst would incur when transmitted from S to I. It is assumed that the

propagation delay in both directions is the same. The next step is to apply the bitwise

AND operation & on the CAVs of SI and ID to get the binary availability vector of path

pSID. Let b = 3, then we have

ETT(pSID, b) = 0,

i.e., the first possible time slot at which ĈSID has b consecutive ones is 0. In other

words, the first time at which the transfer of data over path pSID can start is time 0.

The earliest arrival time of the data at cluster D over path pSID is then

EAT(pSID, b) = ETT(pSID, b) + b+ dpSID
= 9.

So far, the calculations are only concerned with routing and yield the earliest arrival time

of data at D. Now, following [26], we consider additionally the resource availability of D

after the arrival of the data. For this, the irrelevant information about the availability

of D before the arrival of the data is removed from ŴD. To do this, an operation

MUVk(ŴD) (Make UnaVailable) is performed, which makes the first k elements of

vector ŴD unavailable by setting them to 0. In this case, k is set to EAT(pSID, b) = 9,

and the new CAV for D becomes

ŴD(pSID, b) = MUVEAT(pSID,b)(ŴD) = MUV9(ŴD) (see Figure 4.1c).

Thus the new vector gives the availability of D after the data arrives by following the

path PSID.

38

(a) The capacity profile Ct
l and the binary rbw-capacity avail-

ability vector Ĉlrbw of a link l of capacity Cl. Similarly cluster
availability profile W t

r and the binary rcpu-capacity availability
vector Ŵ t

r is defined [70].

(b) Calculation of the path capacity availability vector ĈSID. Before applying
the AND operation, ĈID is left-shifted twice by dSI τl−time units [70].

(c) b = 3 is the data transfer duration. EAT(pSID, b) is the earliest arrival
time of data at cluster D over path pSID. WD(pSID, b) is the cluster avail-
ability vector after EAT(pSID, b). WD(pSID, b) is calculated by putting 0’s
into the first EAT(pSID, b) = 9 elements [26].

Figure 4.1. Calculation of the path capacity availability vector ĈSID, and finding the first available place
at cluster D.

39

4.1.2 Non-Dominated Set of Path and Cluster Pairs

Following the method for the calculation of the CAV of a path described in the previous

section, a set of non-dominated paths Pn-d to all resources is computed by MRS. A

vector Vl for each link l ∈ L is defined as follows:

Vl = (dl, Ĉl) = (dl, 〈Ĉ1,l, Ĉ2,l, ..., Ĉzl,l〉).

The cost vector of path p is defined as

Vp =�
l∈p

Vl
def
=

(∑
l∈p

dl, ⊕
l∈p

Ĉl

)
, (4.2)

where ⊕ is the associative operator defined in (4.1). Based on the cost vectors of paths,

a domination relation between paths with the same destination is defined as follows.

Path p1 dominates path p2 if the delay of path p1 is less than the delay of p2 and

p1 is available at all times at which p2 is available for the considered connection and

source-destination pair. This is formally defined as

p1 dominates p2(notation: p1 > p2) iff (4.3)∑
l∈p1

dl <
∑
l∈p2

dl and ⊕
l∈p1

Ĉl ≥ ⊕
l∈p2

Ĉl

where the inequality ≥ of vectors should be interpreted element-wise. Pn-d is a set of

paths such that no path in Pn-d is dominated by any other path in Pn-d [70]. After the

set of non-dominated paths from a source to multiple destinations has been calculated,

the set of non-dominated path-cluster pairs (p-c pairs) is computed [26]. The cost vector

for a p-c pair for path p and its destination cluster r is defined as

Vpr =

(
Vp,W r(p, b)

)

=

(∑
l∈p

dl,⊕
l∈p

Ĉl,W r(p, b)

)
, (4.4)

40

where W r(p, b) = MUVEAT(p,b)(Ŵr) is the binary cluster availability vector as described

in the previous section. The p-c pair p1r1 dominates p2r2 if p1 dominates p2 (see (4.3))

and cluster r1 is available for job execution after the arrival of input data over path p1

at least at all times the cluster r2 is available for execution of the same job after the

arrival of input data over path p2. This can be formally described as:

p1r1 dominates p2r2 (notation: p1r1 > p2r2) iff

p1 > p2 andW r1(p1, b) ≥ W r2(p2, b), (4.5)

where vector inequality ≥ is interpreted component-wise. The set of non-dominated p-c

pairs PRn-d is computed by applying (4.5) to the set Pn-d. There is no pair in PRn-d

that dominates another and PRn-d ⊆ Pn-d. The optimal p-c pair for a given optimisation

criterion can then be computed by evaluating the optimisation criterion on all p-c pairs

in the set PRn-d.

A drawback of MRS, as mentioned by its authors, is that the number of non-dominated

paths can be exponential. As the algorithm is not guaranteed to run in polynomial time,

two alternative polynomial-time algorithms have also been proposed, which compute a

set of non-pseudo-dominated paths. One of the algorithms, which we refer to as AW,

considers the number of 1s in the CAV of a path. For a link l, wl = weight(Ĉl) denotes

the number of 1s in its CAV. The pseudo-domination relation for the path pruning is

defined as:

p1 pseudo-dominates p2 (notation: p1 >ps p2) iff∑
l∈p1

dl <
∑
l∈p2

dl and weight(⊕
l∈p1

Ĉl) ≥ weight(⊕
l∈p2

Ĉl) (4.6)

That is, the path p1 pseudo-dominates path p2 if the delay of p1 is less than the delay

of p2 and the weight of the CAV of p1 is greater or equal to the weight of the CAV of

p2.

The metric used for pseudo-domination in the second algorithm is the number of times

at which a sequence of consecutive 1s equal to the length of the requested connection

41

duration is available. This algorithm will be referred to as CS. For link l we denote by

Ll(b, Ĉl) the total number of runs of consecutive 1s in Ĉl that have length equal to the

connection duration b. The pseudo-domination relation for the path pruning is defined

as:

p1 pseudo-dominates p2 (notation: p1 >ps p2) iff∑
l∈p1

dl <
∑
l∈p2

dl and L(b, ⊕
l∈p1

Ĉl) ≥ L(b, ⊕
l∈p2

Ĉl) (4.7)

An example for the calculation of the weight and the total number of runs of consecutive

1s in a CAV can be given as follows. Given the CAV

Ĉl = (00111101001100011100011), (4.8)

we have wl = 12, Ll(3, Ĉl) = 3, and Ll(2, Ĉl) = 7.

The polynomial-time algorithms resulting from the use of non-pseudo-dominated paths

are heuristics that do not guarantee to find an optimal path. After we present the

pseudocode for the algorithm proposed in [70], the computational complexity will be

discussed.

Notation

The network is defined as a directed graph G = (N,M): N is the set of n nodes, and

M is the set of m links. The connection request is of size b in slots and has source node

S ∈ N and destination node D ∈ N . Vm is the cost vector of link m ∈ M . Each path

p is represented by a label that includes the cost vector Vp associated with it and the

first hop to the source using that path. Li is the set of labels of the paths from node S

to a node i ∈ N , and L = ∪i 6=SLi is the set of all labels. Lf ⊂ L is the subset of all

final labels for all the nodes, and Lfi is the set of final labels for the node i.

42

Algorithm 4.1 Computing set of non-dominated paths to all nodes in a network.

function ComputeSetofNonDominatedPaths(G,S, Vmof all links)
Initialization(G,S, Vm)
while L 6= Lf do

i = ChooseOptimumLabel(L,Lf)
ObtainNewLabelsAndDiscardDominatedPaths(G, i, L, Vm)

end while
return (Pn-d = LfE)

end function

function Initialization(G,S, Vmof all links)
Lf = { }
for each m ∈M that starts from S do

L = L ∪ Vm
end for

end function

function ChooseOptimumLabel(L,Lf)
find the path pi ∈ L with minimum delay
i = ending node of path pi
Lf = Lf ∪ Vpi

return(i)
end function

function ObtainNewLabelsAndDiscardDominatedPaths(G, i, L, Vm)
1:
for each j ∈ N neighbour of i connected through link l do

V ′pj
= Vpi

� Vl
for all Vpj

∈ L do
if Vpj

> V ′pj
then

goto 1 (check the next neighbour)
else

if V ′pj
> Vpj

then
L = L− Vpj

end if
end if

end for
L = L ∪ Vpj

end for
end function

43

Running Time

The outer while loop in the first function computes Y final non-dominated paths to n

nodes. During the process X paths are stored for each node, from which Y paths are

selected. The size of the utilisation profile is u and ∆ is the maximum degree of the

network. The size of the input for the graph is m+ n, whereas the size of the input for

utilisation profiles is m · u. We calculate the running time of the algorithm as follows:

O(n · Y (log(n ·X) + ∆ · u ·X)), where n · Y is the number of iterations of the while

loop, log(n ·X) is the running time for choosing the optimum label from a priority queue

of n ·X elements and ∆ · u ·X is the running time for finding and discarding the new

label. In the worst case scenario there can be u paths stored at each node for the path

weight from 0 to u, thus X can be replaced by u. The same can be the case for Y final

paths. For the worst case ∆ can be replaced by m links. Thus, the running time can be

bounded as follows: O(n · u(log(n · u) +m · u2)).

4.2 Dynamic Critical Path for Grids (DCPG)

DCPG [58] is a list scheduling heuristic that was proposed for non-AR environments and

is an extension of the Dynamic Critical Path method [50]. In each step, an available

job is selected and assigned to a resource. Priority for selection is given to the jobs on

the critical path, which is the longest path from the entry node to the exit node of a

workflow, calculated on the basis of the (estimated) costs of nodes (computation time)

and edges (data transfer time). As the name suggests, in DCPG the critical path keeps

changing during the scheduling process. For each job, estimates AEST and ALST are

calculated, whose difference determines the level of criticality of a job. The jobs with

the minimum difference of ALST and AEST are the most critical ones. The jobs on the

critical path have a difference of 0. The calculation is done as follows [58].

estET(j) =
JSj

max
r∈R

(PSr)
,

44

ADTTj =
DSfj

max
r∈R

(BandWidth(r))
,

where fj is the output file of job j and BandWidth(r) is the maximum capacity of any

link incident with r ∈ R. AEST of job j is recursively defined as,

AEST(j) =max
1≤i≤x

(AEST(pji) + estET(pji) + Commj,pji(rj, rpji)), rj, rpji ∈ R,

where j has x parent jobs and pji is its ith parent job. rj and rpji are the resources

on which job j and pji are considered, respectively. After a job is scheduled, estET and

ADTT are updated accordingly. Thus AEST changes for the scheduled jobs. AEST(j) =

0 if j is the entry job.

Commj,pji(rj, rpji) = 0, if rj = rpji ,

Commj,pji(rj, rpji) = ADTTpji , if j and pji are not scheduled.

Commj,pji(rj, rpji) is assigned the actual communication time of the path which gives

the earliest arrival time between pji and j, if these jobs have already been scheduled on

different resources. Using this definition, AEST of all jobs is calculated by traversing

the DAG in breadth-first manner starting from the entry job. On the basis of AESTs of

all jobs, the dynamic critical path length (DCPL) is defined as

DCPL =max
1≤i≤v

(AEST(ji) + estET(ji)),

where v is the total number of jobs. After DCPL is calculated, ALST is computed for

all jobs in breadth-first manner in reverse direction. Thus, ALST for job j is defined as

ALST(j) =min
1≤i≤y

(ALST(cji)− estET(j)− Commcji,j(rcji , rj)),

where y is the total number of child jobs of job j and cji is its ith child job,

ALST(j) = DCPL− estET(j), if j is the exit job.

45

With the aim of reducing the overall length of the workflow schedule, a job on the critical

path is selected for scheduling if all its parent jobs are scheduled. If there is no critical

job ready then the job with minimum difference of ALST and AEST is chosen. The

selected job is mapped to the resource which gives the minimum completion time for

the job as well as the earliest possible start time for its most critical child job, that is

the earliest combined start time of the job and its critical child. Here, the critical child

is the child with minimum difference of ALST and AEST.

4.2.1 DCPG Example

We explain the DCPG algorithm with the help of the example given in Figure 4.2. This

example also illustrates how the critical path can change during the scheduling process.

The sample workflow consists of 6 jobs J1, J2, J3, J4, J5 and J6. The length of jobs and

the size of output of each job is measured in MI and Giga Bytes (GB) (see Figure 4.2a).

The jobs are to be mapped on two resources R1 and R2, each with a single processing

unit. Their processing speed and bandwidth capacity is shown in Figure 4.2i. First, the

estET and ADTT are calculated, shown in Figure 4.2a. The next step is to calculate

the AEST and ALST for all jobs and the DCPL of the workflow using the estET and

ADTT values (see Figure 4.2b), as mentioned in the Section 4.2. The jobs which are

on the current critical path are J1, J2, J4 and J6. Since the job J1 is the first available

critical job, it is allocated to the resource R1, which gives it the minimum combined start

time.

The DCPL remains unchanged with this mapping, i.e., 760 (Figure 4.2c). The next

available critical job J2 is also mapped to the resource R1 because of the minimum

start time, which is 100. After this mapping the DCPL changes to 730 and the critical

path changes as well. The job J4 is excluded from the critical path while J3 and J5 are

included into it, thus J3 becomes the next available critical job (Figure 4.2d). Job J3 is

mapped to the resource R2, which gives the earlier starting time of 180 as compared to

300 on the resource R1. After mapping J3, the DCPL changes to 820 and J5 becomes

46

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2. DCPG example.

47

Jobs Resources Start End

J1 R1 0 100
J2 R1 100 300
J3 R2 180 430
J4 R1 300 500
J5 R2 430 630
J6 R2 630 755

Table 4.1. Final Schedule for the example in Figure 4.2 .

the available critical job (Figure 4.2e). J5 is mapped to the same resource on which its

parent job is scheduled, i.e., R2, to get the minimum combined start time of J5 and its

critical child job J6. After this step the DCPL changes to 770 and J6 becomes the only

unscheduled critical job. To meet the dependency requirement for the job J6, its parent

job J4 is scheduled on the resource R1, which gives the minimum starting time of 300

(Figure 4.2g) and the minimum combined start time as well. Finally, the last job J6 is

scheduled on R2, with 630 as the minimum starting time, and the final DCPL becomes

755 (Figure 4.2h). The final schedule of the workflow is given in the Table 4.1.

4.3 GridSim: A Simulator for the Grid Environment

As different fields of science are getting more attracted to utilise the distributed com-

puting technologies, more work needs to be done to tweak them. The community which

develops and maintains distributed computing technologies needs to pace up as well for

their solutions to be validated. For this purpose, one approach is to test the solutions on

a dedicated deployed distributed system or a system which is under utilisation for other

purposes. The former approach is very expensive for many, and the latter one makes

it hard for researchers to configure the system according to a variety of experimental

requirements. To deal with such problems, simulators are developed.

The GridSim [67] simulator is among the well known simulators for P2P, Cluster, Grid

and now Cloud computing environments. Other simulators worth mentioning include

Bricks [12], SimGrid [25] and MicroGrids [65]. GridSim is an effort to provide a number

of features, especially those related to scheduling activities, that are lacking in the above-

mentioned simulators, and to make them all available in one place. The features provided

48

by GridSim, as presented in [67], are as follows;

• It allows modelling of heterogeneous types of resources, like PC and cluster.

• Resources can be modelled as operating in space- or time-shared mode.

• Resource capabilities can be defined (in the form of MIPS (Million Instructions

Per Second) as per SPEC (Standard Performance Evaluation Corporation) bench-

mark).

• Resources can be located in any time zone.

• Weekends and holidays can be mapped depending on the local time of a resource

to model non-Grid (local) workload.

• Resources can be booked for advance reservation.

• Applications with different parallel application models can be simulated.

• Application tasks can be heterogeneous. They can be CPU or I/O intensive.

• There is no limit on the number of application jobs that can be submitted to a

resource.

• Multiple user entities can submit tasks for execution simultaneously in the same re-

source, which may be time-shared or space-shared. In time-shared resources, jobs

can be pre-empted before completion, while in the case of space-shared resources,

jobs are allowed to complete their execution. This feature helps in building sched-

ulers that can use different market-driven economic models for selecting services

competitively.

• The network speed between resources can be specified.

• It supports simulation of both static and dynamic schedulers.

• Statistics of all or selected operations can be recorded and analysed using GridSim

statistics analysis methods.

GridSim is Java based and extends SimJava [31], which is a discrete event based sim-

ulator. We have chosen GridSim for two main reasons: First, it is Java based; second,

49

a built-in AR feature for resources was available. The following section gives a brief

description of SimJava followed by the detailed working of GridSim. Appendix A gives

the details regarding the modifications and additions we made in GridSim for our work.

4.3.1 GridSim Entities and their Interactions

SimJava is a Java-based discrete event simulation application. Entities are created in

SimJava which can run in parallel in their own threads. The behaviour of an entity is

available in the body() method. The body method is also used to communicate with

other entities. First, all entities are created and their body() methods are put in the

run state. To handle simulation events, SimJava uses a Sim system object to create

future events sequentially. Sim system maintains a timestamped ordered queue for this

purpose. After an entity causes an event to occur, the Sim system object pauses the

thread of the event-triggering entity and places the event in the future queue. All the

entities are halted, then events are popped out of the event queue and the simulation

time is forwarded according to the occurring event and the relevant entities are restarted.

This process is repeated until all the events in the event queue are generated. GridSim

uses this event generation mechanism of SimJava. GridSim creates entities extended

from the Sim entity class. The entities include user, broker, resource, grid information

service and router. Furthermore, each entity has its own threaded input and output

entity to communicate with other entities and to simulate a communication delay, if

any. Brief descriptions of the functionalities of the entities are as follows.

• User entities can create jobs, schedule these jobs, and set different optimisation

parameters like budget and time. Users can be created in different time zones.

• Each user is connected to a Broker entity. The broker is the entity which im-

plements the scheduling algorithm. The user submits a job to its broker which

schedules it, according to the user’s scheduling policy, on a resource. Before this,

the broker entity receives a list of available resources from the Grid Information

Services (GIS) entity. Because of the broker entity, users can schedule jobs ac-

50

cording to individual needs. Overall this creates a real Grid environment where

different types of requests with different optimisation functions are handled.

• The Resource entity, a computing entity, can have different configuration param-

eters like number of machines with different number of processors with different

speeds. The time zone, load on different days of the week and dates of the year

can be set for each resource. The internal process scheduling policy, i.e., time

shared or space shared, can also be set.

• The Grid information service (GIS) provides resource registration services. It

also responds to queries regarding resource configurations and status.

• The Router entity connects resources and users. At the start of the simulation,

routers advertise their availability and the routing tables are populated. For routing

of data, the RIP routing protocol is available by default.

• Input and Output entities are connected to each entity as an independent entity,

having their own body method to handle events while running in their own threads.

All the networked entities communicate with each other through their input and

output entities. Having separate input and output channels helps simulating duplex

and multi-user parallel communications.

• A Gridlet is an entity which contains information about a job. The information is

about the owner (a user) of the job, job length in MI, input and output file sizes.

A gridlet is created and submitted by a user to a grid resource.

GridSim entities interact with each other using events. An entity which needs a service

generates a service request event and sends it to an entity which can deliver the service.

Upon receiving a service request event the entity generates an event (or several events)

in response to it and sends it to one or more entities, depending on the type of request.

The provider entity may wrap the data, in response to the service request, inside the

event. The requesting entity receives the response from the provider and extracts the

information stored in the wrapped data inside the event object. The sender and receiver

of the events have to agree upon a protocol, like what data is stored in the event and

51

Figure 4.3. An event diagram for the interaction between a space-shared resource and other entities [67].

how to extract it. All the event processing is done in the body() method.

Events can be internal or external. Internal events are generated by an entity for itself

while external events are sent by other entities. An entity can differentiate between

the events by checking its originator. There is another classification of events on the

basis of the type of the service the events are related to. The classes are synchronous

and asynchronous events. An event is synchronous if the originator of it waits until the

response from the target entity of the event is received. In case of asynchronous events,

the originator of the event does not wait for the response from the targeted entity and

continues with other activities.

We further explain the interaction between the different entities from the start to the

end of a simulation using the diagram in Figure 4.3. At the start of the simulation, the

entities are created, and the resource entities are registered with GIS. The user entity

submits the experiment (a set of three jobs) to the broker entity. Before submitting the

jobs, the broker entity requests the list of available resources from GIS and waits for the

response (synchronous event). After the retrieval of the resource list, the broker requests

the resource configurations like processor speed and idle processors (synchronous event).

52

After the required information is retrieved, the jobs are submitted according to the

user’s scheduling policy. A resource entity receives the job submission event and starts

executing it. To execute a job, the resource entity generates an internal asynchronous

event for job completion. After receiving the job completion event, it updates the

remaining length of the job. A job is returned to the user when it is finished. When all

the jobs are returned to the user, it sends a user shutdown request event to the Grid

Shutdown entity. In case of multiple users, if all the users are finished the Grid Shutdown

entity shuts down all the entities in response to this event. Statistics and reports can be

requested before finishing the simulation.

53

Chapter 5

Partner Based Dynamic Critical Path

for Grids (PDCPG)

PDCPG is an extension of DCPG [58], which was proposed for non-advance reservation

environments while considering the heterogeneity of the Grid. PDCPG considers partner

jobs while scheduling a workflow. Recall that jobs in a workflow are said to be partner

jobs if they have at least one common child job. This approach is adopted with the aim

of minimising the communication costs between parent and child jobs, thus minimising

the workflow makespan. For advance reservation, PDCPG adopts the technique pro-

posed in [26], i.e., it uses a joint advance reservation technique for communication and

computation task scheduling for Grid resources connected by an Optical Burst Switching

(OBS) [77] network. It is shown that for better performance of computation and com-

munication intensive tasks in the Grid, the jointly optimised utilisation of communication

and computation resources can be used. For PDCPG we assume that the Grid resources

are connected using the OBS network architecture. We study the behaviour of PDCPG

in AR environments in scenarios with and without resource failures. The environment

in which failures do not occur is referred to as static environment and the environment

in which failures can occur is referred to as dynamic environment. The performance

of PDCPG is compared with an AR version of DCPG, whose original version has been

shown to outperform other well known Grid workflow scheduling heuristics in [58]. Our

54

results show that PDCPG performs well especially when the granularity of the workflow

is low.

The rest of this chapter is organised as follows. Section 5.1 presents the details of

PDCPG. In Section 5.1.1 the scheduling problem under consideration is made precise.

The routing technique used for PDCPG is described in Section 5.1.2, and our novel

resource selection technique is discussed in Section 5.1.3. The experimental setting

used for the evaluation of PDCPG in static AR environments is described in Section

5.1.4, and the results of the performance evaluation are discussed in Section 5.1.5. The

scheduling problem for dynamic AR environments and a modification of PDCPG for such

environments are presented in Section 5.2. The setting used for performance evaluation

as well as the experimental results are discussed in Section 5.2.1. Conclusions for this

chapter are given in Section 5.3.

5.1 PDCPG Heuristic

In this section we propose and evaluate a new heuristic for workflow scheduling in static

AR environments. The proposed PDCPG heuristic consists of two main parts: the

selection of a job from the workflow to be scheduled next, and the mapping of the

selected job to a resource (which includes the routing of any input data files to that

resource). For job selection, a modified DCPG technique is used. For resource selection,

a novel partner-based technique is applied where the algorithm attempts to schedule

partner jobs on the same resource on the basis of the condition given in (5.1) and

briefly described as follows. If the sum of the expected completion time of the job to be

scheduled on the resource allocated to the partner job and the transmission time of its

output is less than or equal to the sum of the completion time of the partner job and

the transmission time of its output, then the job is allocated to that resource and the

further exploration of other resources is skipped, which saves time during the schedule

computation. In the following section, the problem at hand is specified. In Section 5.1.2,

the routing technique used for PDCPG is described, and the resource selection technique

55

is explained in detail in Section 5.1.3.

5.1.1 Problem Description

For the problem under study, the workflow model is as given in Section 2.2 and the

model of the Grid environment is as given in Section 2.1. In addition, it is assumed that

in the given Grid environment communication and computation resources support AR

and the network architecture is OBS. Further, it is assumed that resources do not fail

and that the user, who is the owner of the workflow, requests one CPU for each job and

requests a certain bandwidth for each file transfer. For AR, the framework proposed by

Varvarigos et al. [70] (see Section 4.1) is used. The objective is to schedule the workflow

submitted by the user so that its makespan is minimised.

5.1.2 Proposed Routing Method

As a subproblem of the resource selection step, the problem of transferring the input data

file(s) of a job to a resource (cluster) needs to be considered. We refer to this subproblem

as the routing problem. A variant of the technique to compute path availability in an AR

environment proposed in [70] and discussed in Section 4.1 is adopted for the proposed

work. The variation is in the way the set of path-cluster pairs (p-c pairs) is maintained.

Our set of p-c pairs contains only one pair for each cluster and is computed by using a

variant of Dijkstra’s algorithm for shortest paths (see Algorithm 5.1). A path is paired

with the cluster that gives the minimum EAT for the considered connection. The shortest

path is computed on the basis of the following measure for the length of a path:

EAT(pr, b) = dpr + ETT(pr, b) + b,

where pr is the path to resource r ∈ R, dpr is the delay of path pr, b is the duration

of the data transfer when the requested bandwidth is available, and ETT(pr, b) is the

earliest possible time at which a transfer of duration b on path pr can be started. The

56

drawback of this approach is that the computation of an optimal path (with earliest

arrival time) is not guaranteed unless all links have the requested bandwidth available at

all times. The pseudo-code of our variant of Dijkstra’s Algorithm for AR environments

is shown in Algorithm 5.1. The relevant notation is as follows.

Notation

A graph G has a set of V vertices and a set of E edges. rbw is the requested bandwidth,

b is the duration of the transfer of data when rbw bandwidth is utilised. Each e ∈ E

has a CAV vector, which gives the availability of the edge for rbw. The weight of each

edge e ∈ E is the earliest arrival time EAT(e, b) which is obtained by finding the first

position in CAVe at which data of duration b can arrive from the start vertex u to the

end vertex v of edge e. The weight of a path P is EAT(P, b), which is obtained by

performing the associative operation between all edges e ∈ P as mentioned in Section

4.1. The algorithm computes the shortest paths in terms of earliest arrival time from

the source vertex to all vertices v ∈ V .

EAT[v] stores the minimum earliest arrival time to vertex v, pathCAV[v] stores the CAV

of the shortest path and previous[v] stores the node previous to v on the shortest path.

LinkCAV[u][v] stores the CAV of the edge connecting vertices u and v. For pseudo code

see Algorithm 5.1.

Execution Example

We give an example of the execution of the modified Dijkstra’s algorithm till the first

relaxation step in Figure 5.1. We have a network consisting of S, A, B, C and D nodes

(Figure 5.1a). For the sake of simplicity, delays of the edges are assumed to be zero and

the status of the utilisation profiles of the edges is not shown, but the availability of the

edges for the requested bandwidth is displayed, instead. The availability is computed

after going through their utilisation profiles. The duration of transfer is assumed to be

20. The source node is S and we want to find the path to all nodes with earliest arrival

57

Algorithm 5.1 Variant of Dijkstra’s Algorithm for Path Finding in AR Environment

function DijkstraVariant(G, source, b)
for each vertex v in V do

EAT[v] ← infinity
previous[v] ← undefined

end for
EAT[source] ← 0
Q ← the set of all nodes in V
while Q is not empty do

u ← vertex in Q with with smallest earliest arrival time in EAT[]
remove u from Q
if EAT[u] =infinity then

break
end if
for each neighbour v of u do

newPathCAV[v] ← ComputeNewPathCAV(pathCAV[u],LinkCAV[u][v])
temp ← ComputeEAT(newPathCAV[v], b)
if temp < EAT[v] then

EAT[v] ← temp
previous[v] ← u
pathCAV[v] ← newPathCAV[v]

end if
end for

end while
end function

function ComputeNewPathCAV(pathCAV[u],LinkCAV[u][v])
Computes and returns new CAV as explained in Section 4.1.

end function
function ComputeEAT(pathCAV[v], b)

Finds and returns the first position in pathCAV[v] at which data of duration b
can arrive at vertex v
end function

time. Starting from the node S, the arrival time of the path S-A to its neighbour node

A is 40 and to the node B is 60 by following the path S-B (Figure 5.1b). In the next

step, the neighbours of the node A are explored. The new path S-A-B to the node B

gives the arrival time 40, which is better than the previous path S-B. Thus, the previous

path is replaced by the new one and the earliest arrival time is updated as well.

58

(a)

(b)

(c)

Figure 5.1. Execution till a better path to the node B is found by the variant of Dijkstra’s algorithm.

59

5.1.3 Resource Selection

Before discussing the resource selection method in detail, we explain the modifications

of some concepts from [58] (see Section 4.2). The estimated execution time estET of

job j is calculated as

estET(j) =

∑
1≤i≤m

JSj
PSri

m
,

i.e., as the average execution time of the job on all m resources, whereas in [58] it is

calculated as the execution time of the job on the fastest resource. The calculation of

ADTT is modified as follows because of the AR environment:

ADTTj =
DSfj

rbwfk

,

where rbwfk
is the requested bandwidth for the output file fk of job j. As the considered

network is OBS, the propagation delay is considered negligible and ignored for ADTT.

The above-mentioned modifications are used in calculating ALST and AEST of jobs.

The difference between these values determines how critical a job is and whether it is

given priority for selection. The jobs with the same ALST and AEST are considered the

most critical jobs.

A job to be scheduled j′ is selected from among the available jobs of the workflow using

the same criteria used by DCPG. For resource mapping, it is checked whether one or

more of the partner jobs of j′ have already been scheduled or not. If no partner job has

been scheduled, then the resource that gives the earliest completion time is chosen. If

one or more of the partner jobs of j′ have already been scheduled, then the availability

of the resources on which those partner jobs are scheduled is checked first. The job j′

is mapped to the resource of its ith partner ptri ∈ PTRj′ if the condition

expCT
rptri

j′ ≤ CTptri + ADTTptri − ADTTj′ (5.1)

is satisfied, where

60

expCT
rptri

j′ =max
1≤k≤h

(EATfk(pfk
rptri

, b)) + estET
rptri

j′ ,

where (EATfk(prptri
, b)) is the earliest arrival time of input file fk to the resource rptri

when path pfk
rptri

is used. This condition is checked against all scheduled partner jobs one

by one in descending order of criticality. The first resource that satisfies the condition

is selected for scheduling j′, and thus any further availability checking is skipped. If the

condition is not met for any of the partner jobs, then the resource which gives the earliest

completion time among all resources is selected. The motivation for this technique is

that the job that is scheduled first is a more critical job, and further improvement can

only be possible by reducing the communication duration to the critical child job. Even

though the job may finish later on the partner’s resource as compared to other resources,

this allocation increases the probability of reducing the communication duration between

all parent jobs and a critical child. Another point that can be noted is that the condition

(5.1) allows only an affordable delay in the completion time of j′, as illustrated by the

following example. First, the case in which all jobs are scheduled according to their

earliest possible completion time is discussed, and then it will be shown that in spite

of delayed scheduling of jobs the earliest possible start time of the critical child job

will not be affected. The example is as follows. j1, j2, j3 are three partner jobs having

execution duration 10, 8, 12 seconds (seconds will be abbreviated as sec in the following),

respectively (see Figure 5.2a). These are critical in the same order as shown in the figure

from top to bottom, and j4 is their common child. The resources on which these jobs

are to be scheduled have three CPUs each. Only one CPU on each resource is available

at time 0sec. The most critical job j1 is scheduled on resource r1 having start time

STj1 = 0 and completion time CTj1 = 10sec. In Figure 5.2b it is shown that j2, j3 are

mapped to resources r2 and r3, respectively, with start times STj2 = 0, STj3 = 0 and

completion times CTj2 = 8sec, CTj3 = 12sec. Assuming that only r4 is available for

the job j4, the earliest possible start time for it would be at 20sec, which is the time

at which output data of all the parents will be available on r4. Now consider another

scenario as shown in Figure 5.2c. At the time of scheduling j2, j1 is the only scheduled

61

10

8

12

20

r1

STj1=0
CTj1=10

ADTTj1 = 10

ADTTj2 = 10

ADTTj 3 =
 5

j1

j2

j3

j4

10

8

12

20

r1

STj1=0
CTj1=10

ADTTj1 = 10

ADTTj2 = 10

ADTT
j 3

= 5

j1

j2

j3

j4

r2

r3

STj2=0
CTj2=8

STj3=0
CTj3=12

r4

Earliest Possible

STj4=20

(a) Most critical job j1 is scheduled
on resource r1.

10

8

12

20

r1STj1=0
CTj1=10

ADTTj1 = 10

ADTTj2 = 10

ADTTj 3 =
 5

j1

j2

j3

j4

10

8

12

20

r1

STj1=0
CTj1=10

ADTTj1 = 10

ADTTj2 = 10

ADTT
j 3

= 5

j1

j2

j3

j4

r2

r3

STj2=0
CTj2=8

STj3=0
CTj3=12

r4

Earliest Possible

STj4=20

(b) Earliest possible start time of
j4 on only available resource r4
is 20, when all jobs are scheduled
on different resources with earli-
est possible completion time.

10

8

12

20

r1
STj1=0
CTj1=10

ADTTj1 = 10

ADTTj2 = 10

ADTT
j 3

= 5

j1

j2

j3

j4

STj2=2
CTj2=10

STj3=3
CTj3=15

r4

Earliest Possible

STj4=20

(c) Using (5.1), j2 and j3 are
scheduled on the same resource
as j1 with later completion time
as compared to Figure 5.2b, but
still the earliest possible start
time for j4 on only available re-
source r4 is 20.

10

8

12

20

r1
STj1=0
CTj1=10

ADTTj1 = 10

ADTTj2 = 10

ADTT
j 3

= 5

j1

j2

j3

j4

STj2=2
CTj2=10

STj3=3
CTj3=15

r4

Earliest Possible

STj4=20

10

8

12

20

r1
STj1=0
CTj1=10

ADTTj1 = 0

ADTTj2 = 0

ADTT
j 3

= 0

j1

j2

j3

j4

STj2=2
CTj2=10

STj3=3
CTj3=15

Earliest Possible

STj4=15

10

8

12

20

r1

STj1=0
CTj1=10

ADTTj1 = 10

ADTTj2 = 10

ADTTj 3 =
 5

j1

j2

j3

j4

10

8

12

20

r1

STj1=0
CTj1=10

ADTTj1 = 10

ADTTj2 = 10

ADTT
j 3

= 5

j1

j2

j3

j4

r2

r3

STj2=0
CTj2=8

STj3=0
CTj3=12

r4

Earliest Possible

STj4=20

Scheduled

Not
Scheduled

If Scheduled

(d) The mapping technique used in
Figure 5.2c helps to increase the
chance for parent and child jobs to be
scheduled on the same resource.

Figure 5.2. Partner-based scheduling example

62

partner job. By (5.1), the affordable delayed completion time for j2 on r1 is

expCTr1
j2
≤ CTj1 + ADTTj1 − ADTTj2 = 10 + 10− 10 = 10.

Assume that before time 2sec, there are not enough CPUs available on r1 to run j1 and

j2 in parallel, and the same assumption is made for j3 on r1 before time 3sec. j2 is

scheduled on r1 with STj2 = 2sec and CTj2 = 10, which is 2sec later than in the

scenario shown in Figure 5.2b. At the time of scheduling j3, there are two scheduled

partner jobs j1 and j2. First the condition (5.1) is checked for j1, which is

expCT
rj1
j3
≤ CTj1 + ADTTj1 − ADTTj3 = 10 + 10− 5 = 15.

If it is not satisfied, then the next partner job is considered,

expCT
rj2
j3
≤ CTj2 + ADTTj2 − ADTTj3 = 10 + 10− 5 = 15,

There are two reasons to check the condition 5.1 against all partner jobs instead of only

against the most critical job. It is possible that a less critical job may finish later than the

most critical job, or partner jobs might be scheduled on different resources. After jobs

j1, j2 and j3 are scheduled on r1, if j4 is mapped to the only available resource r4, still

the earliest possible start time for j4 would be at 20sec. Thus, the delayed scheduling of

parent jobs would not affect the earliest possible starting time of the child job. Moreover,

this mapping technique increases the chance of reducing the communication duration

between parent and child jobs if r1 is available for j4 (see Figure 5.2d). Thus it can

improve the workflow makespan, and it can reduce the running time of the algorithm as

well.

5.1.4 Performance Evaluation

We evaluate the performance of PDCPG by comparing it to an AR version of DCPG

in a simulation environment for different workflows, with makespan as the optimisation

63

criterion. Since it was shown in [58] that DCPG outperforms HEFT, Min-Min, Max-Min,

Myopic and several meta-heuristic scheduling algorithms in terms of workflow makespan

in non-AR environments, and because we are not aware of any well known scheduling

heuristic for AR environments, we chose to compare our work with an AR version of

DCPG. The only difference between the original version and the AR version of DCPG

is the way in which ADTT is calculated. In the AR version, the calculation reflects the

influence of the AR environment and is done in the same way as for PDCPG (see Section

5.1.3). In this section, first the environment for simulation experiments is described, and

then the results are presented.

Experiment Environment: GridSim [67] is used to simulate a Grid environment that

supports AR for both communication and computation resources. A single user submits

a workflow, and each job of the workflow requests a single processor. The requested

bandwidth for each file transfer is also specified.

The platform details of the simulation system on which GridSim was executed are as

follows: 2.4 GHz Core 2 Duo processor, Mac OSX operating system and 4 GB RAM.

Resource Model: The European Data Grid (EDG) testbed (see Section 2.6) is used

as the model of Grid resources with interconnecting OBS network in the simulation

experiments. The experiments are conducted for a high load of 90% or above on the

resources, and for workflows with high and low granularity. Load refers to the percentage

of CPUs of a resource under utilisation at any time. The CPU load in each interval of 5–

10 consecutive time slots is generated by generating a uniform random value between 0

and the total number of CPUs, and taking the maximum of that value and the target CPU

load (e.g. 90% of the total number of CPUs). The granularity range for low granularity

is 0.1 to 0.5, and for high granularity it is 1.3 to 1.8. The load on the network links is

set to zero so that enough capacity is always available for the requested bandwidth, in

order to check the performance of the proposed algorithm when the bottleneck lies in

the computation resources. Utilisation profile vectors of resources and links are used to

64

store their instantaneous load. For each simulation run, randomly generated values are

assigned to the utilisation profiles.

Workflows: The details of the workflows that have been selected for experimentation

are given is this section. The e-Protein workflow of 15 jobs is taken from a real world

application [57], three workflows of 30, 60 and 90 jobs are taken from j301 1, j601 1,

j901 1 in the Project Scheduling Problem Library (PSPLIB) [47], respectively, and four

random workflows comprising 50, 100, 150, and 200 jobs are generated using the tech-

nique described in [58]. The simulation is run approximately 100 times for each of the

workflows. For workflows other than random workflows, in each run, jobs are assigned

lengths ranging from 40,000 MI to 110,000 MI randomly according to a uniform dis-

tribution, and their output file size is also generated randomly according to a uniform

distribution on the basis of the granularity under consideration. For low granularity, the

output file size ranges from 220 to 250 Megabytes, and for high granularity it ranges

from 40 to 60 Megabytes. For random workflows, the job length ranges from 10,000

MI to 30,000 MI, and the output file size ranges from 100 to 280 Megabytes. This is

done to minimise the size of the required utilisation vector for larger workflows, because

for larger workflows the larger utilisation vector computation could exceed the available

main memory of our simulation system. It should be noted that the size of the utilisation

vector determines the limit of the time within which reservations can be made.

5.1.5 Results

The results for low granularity are presented first, then the results for high granularity

will be discussed.

The main aim of PDCPG is to minimise the communication duration between the parent

and child jobs, and scheduling these jobs on the same resource can help to achieve this.

This is the reason why the improvement obtained by PDCPG is more noticeable for

low granularity than for high granularity. In Table 5.1, the average makespan of 100

65

PDCPG DCPG Improvement %age

eProtein 656.89 666.6 1.46
J301 1PSPLIB 1018.9 1034.9 1.55
J601 1PSPLIB 1149 1174 2.13
J901 1PSPLIB 1370 1401 2.21
50Random 441.9 451.4 2.08
100Random 722.4 745.8 3.14
150Random 646 691.8 6.62
200Random 847.4 902.4 6.09

Table 5.1. Average makespans generated by heuristics, and improvement percentage of PDCPG.

PDCPG DCPG

eProtein 1.4 2.5
J301 1PSPLIB 2.9 3.9
J601 1PSPLIB 5.3 7
J901 1PSPLIB 8 10
50Random 4.5 5.9
100Random 8.1 12
150Random 12.2 19.3
200Random 16.6 29

Table 5.2. CPU time in second(s) for scheduling algorithms for each workflow for low granularity.

simulation runs for each workflow by both heuristics is shown, as well as the percentage

improvement achieved by PDCPG. With an increase in the number of jobs in a workflow,

the percentage of improvement for PDCPG also increases.

Although the improvement obtained by our heuristic is not by a very large margin for

all workflows, PDCPG is able to achieve relatively significant improvements by up to

6.6% for the larger random workflows. It should also be noted that DCPG is known to

outperform many other popular heuristic scheduling algorithms, and PDCPG achieves the

improved results with significantly lower running time for the schedule computation (see

Table 5.2). Table 5.2 shows that PDCPG is approximately two times faster than DCPG

for larger random workflows on our simulation platform. The running time difference

tends to increase with the increase in the size of the utilisation profile and computing

resources in the network. It should be noted, however, that we have not optimised or

tuned the code of the two heuristics in our implementation, so the running times reported

in Table 5.2 should only be taken as an indication of the computational efficiency of the

heuristics. Nevertheless, both algorithms have been implemented in similar style using

similar data structures, so it is unlikely that the faster running times observed for PDCPG

are only due to coding issues.

PDCPG does not always outperform DCPG, but the number of times DCPG improves on

66

PDCPG DCPG Imp\Worsening %age

eProtein 548.2 549 0.15
J301 1PSPLIB 733.8 734 0.03
J601 1PSPLIB 850 850.4 0.05
J901 1PSPLIB 937.8 943.1 0.57
50Random 366.1 365.4 -0.2
100Random 686 679 -1.03
150Random 717.5 718.5 0.14
200Random 801.9 803.1 0.15

Table 5.3. Average makespans generated by heuristics for high granularity.

PDCPG DCPG

eProtein 1.83 2.41
J301 1PSPLIB 3.04 3.87
J601 1PSPLIB 5.49 6.37
J901 1PSPLIB 7.4 8.74
50Random 4.9 5.28
100Random 9.17 11.21
150Random 13.66 18.19
200Random 23 29

Table 5.4. CPU time in second(s) for scheduling algorithms for each workflow for high granularity.

PDCPG is smaller than the number of times PDCPG surpasses it, especially for random

workflows. Furthermore, the margins with which PDCPG has been outperformed are

smaller, again especially for random workflows. In this sense, we can say that our

proposed heuristic performs better for random workflows.

For high granularity workflows, the average makespan obtained by both algorithms is

similar (see Table 5.3), but again the faster running-time of the proposed algorithm

could make it an attractive alternative in practice (see Table 5.4 for the running times

measured on our simulation platform).

The experiments show that the proposed technique for resource mapping can improve the

makespan for larger workflows with low granularity. Furthermore, the results indicate that

the proposed technique has a fast running-time. To study PDCPG in more detail, further

variants of the simulation settings were considered and will be discussed in Chapter 6.

These variants concern the way utilisation profiles are populated (e.g., choosing the

number of consecutive slots that are assigned the same random load value), setting the

resource load so that the number of CPUs available per resource conform to the trend of

the number of partner jobs in a workflow, and reducing the workflow granularity to 0.01.

For these variations of the simulation setting, it was observed that PDCPG achieves

further improvements.

67

5.2 PDCPG in Dynamic Advance Reservation Envi-

ronments

PDCPG was introduced in Section 5.1 for static AR environments. To analyse the

performance of PDCPG, simulation experiments were carried out for a Grid environment

where no failures occur. Real Grid environments are usually dynamic in nature, and

resources may become unavailable during or before the execution of a job for various

reasons. For a scheduling algorithm to be adopted in real Grid environments, it is

necessary to observe its performance also in such dynamic situations. For this purpose,

we now consider PDCPG in a dynamic Grid environment that supports AR.

In a dynamic Grid environment, it is possible that a resource fails after jobs have been

allocated to it. In that case, it becomes necessary to allocate these jobs (and possibly

other jobs that depend on these jobs) to a different resource. Rescheduling refers to

the process of reallocating jobs after the occurrence of a failure. The decision which

jobs to reallocate depends on the specific rescheduling technique. A number of different

rescheduling techniques are available (see Section 3.3) for dealing with resource failures.

For simplicity, we adopt a very simple rescheduling technique, in which three categories of

jobs and their descendants are rescheduled. One category consists of the jobs which were

scheduled on the failed resource but whose execution has not started yet. The second

category of jobs comprises the jobs that were in running state on the failed resource

when it failed. The third category of jobs consists of those jobs that were scheduled on

the failed resource and whose execution has finished before the failure occurrence but

whose output file(s) are not accessible by their child jobs.

To evaluate the performance of PDCPG, we again compare PDCPG to the AR version of

DCPG. It is observed that in a dynamic AR environment, PDCPG again performs better

for low granularity but also, unlike in the other scenarios discussed in Section 5.1.4 and

7.2, for high granularity.

Next we describe the problem under consideration. In Section 5.2.1, the simulation

68

environment and the results are discussed.

Problem Description

The problem is the same as described in Section 5.1.1, except that it is now assumed

that Grid resources may fail. When a resource fails during the execution of a workflow,

the scheduling algorithm is required to reschedule the affected jobs of the workflow. The

objective is to find a schedule (and to react to resource failures by rescheduling affected

jobs) such the that actual makespan of the workflow is minimised.

5.2.1 Evaluation

The GridSim simulator is used to simulate the Grid resource model described in Section

2.6 which supports AR. Computing resource failures may occur. The utilisation profiles

of the resources and the links are populated at the start of a simulation run. Two users

are simulated. One user employs the PDCPG scheduling approach and the other user

the DCPG scheduling technique. The two users submit an identical workflow. Only one

user can submit the workflow at one time, the other user can submit it after the workflow

of the first user has completed. Once the workflow of the first user is completed, for the

second user the utilisation profiles of the computing resources and links are restored to

the state they were in at the time of the simulation start, so that the workflow of the

second user is scheduled in an identical Grid environment. Regarding resource failures,

only one fastest resource is made to fail, as this is expected to affect the schedule of the

workflow in the most significant way. The start time of the failure and its duration is

randomly generated, and it is kept the same for both users. The start time of the failure

is generated in such a way that it occurs after some of the jobs of the workflow have

already been scheduled and executed.

Simulation Settings: For the simulation we modified the European Data Grid (EDG)

testbed (see Section 2.6) by changing the number of CPUs of the fastest resource Torino

69

(Italy) from 5 to 52, and this resource is also the one that is chosen for the resource

failure. The purpose of this modification is to encourage the heuristics to schedule

jobs on that resource, so that when the resource fails it will cause both heuristics to

reschedule a number of jobs. The results are only considered for those simulation runs

in which both scheduling heuristics are affected by the resource failure. The minimum

CPU load is set to 85%. To assign the load to a slot in an utilisation profile, a random

value is generated as follows:

CPULoad = TotalCPU− Random(TotalCPU− 0.85 ∗ TotalCPU).

Here, Random(x) is a uniformly distributed random value in the interval from 0 to x.

The CPU load values generated in this way are assigned to intervals of 10 consecutive

time slots for one experiment and intervals of 2 consecutive time slots for all other

experiments. The number of consecutive slots to which the same random load value

is assigned affects the fragmentation of the resource capacity in the utilisation profile.

Bandwidth utilisation is again kept at zero in order to check the performance of the

proposed algorithms when the bottleneck lies in the computation resources.

Workflows: The details of the workflows that have been selected for experimentation

are as follows. Four workflows of 30, 60, 90 and 120 jobs are taken from j301 1, j601 1,

j901 1 and j1201 1 in the Project Scheduling Problem Library (PSPLIB) [47], respec-

tively, and four random workflows comprising 50, 70, 100, and 150 jobs are generated

using the technique described in [58]. The simulation is run approximately 100 times for

each of the workflows.

Experiments are done for a high granularity of 1.2 and low granularities of 0.1 and

0.02. Job sizes are generated randomly between 10,000 MI and 15,000 MI using uniform

distribution for the granularities 0.1 and 0.02, and between 25,000 MI and 30,000 MI for

granularity 1.0. Job output file sizes are varied and generated randomly using uniform

distribution to achieve different granularities. For granularity 1.2, job output file sizes

are chosen between 10 and 20 MB, for granularity 0.1 between 100 and 150 MB, and

for granularity 0.02 between 320 and 370 MB.

70

Results: PDCPG is compared with DCPG regarding the workflow makespan. Since

the resource failure causes the heuristics to reschedule the workflow, the makespan is

calculated as the difference between submission time of the workflow (before the failure

occurs) and the completion time of the last job of the workflow (after the failure has

occurred and part of the workflow has been rescheduled). In the tables with results, we

show the makespan of the initial schedule (i.e., the schedule computed for the workflow

before resource failure) and the makespan of the actual schedule (i.e., the schedule in

which the jobs affected by resource failure have been rescheduled).

For all granularities, but for different workflows, the performance of PDCPG is signifi-

cantly better than that of DCPG. The best performance is observed for granularity 1.2,

where the minimum improvement is 21.49% and the maximum is 39.27% (see Table 5.7

and Figure 5.5). In case of granularity 0.02 and 0.1 (see Tables 5.5 and 5.6, and Figures

5.3 and 5.4), the improvements are also very significant, ranging from 6% to 24.5% for

most workflows, with just four cases where the improvement is less than 6%.

It can be observed from the results that in many cases the improvement in the makespan

of the actual schedule of PDCPG compared to DCPG is greater than the improvement

in the makespan of the initial schedule. There could be various reasons for this in each

experiment. A common reason is that for the initial schedule both heuristics tend to

schedule many jobs on the fastest of the resources (which is Torino (Italy), see Table2.1)

and the overall schedule is affected by this decision. We enforce the failure of the fastest

resource, after which the heuristics have multiple options to choose for rescheduling.

DCPG always prefers the fastest resources, while PDCPG also considers the resources

on which partner jobs have been scheduled. Thus there is an increased chance that

DCPG may distribute the workflow jobs over multiple fast available resources, while

PDCPG keeps jobs on fewer available fast resources, thus reducing the communication

cost. Other factors that can affect the improvement of PDCPG over DCPG are the

granularity, the structure of the workflow, the available resources, and the amount of

fragmentation in the resource capacity. The latter effect is analysed further as follows. In

the case of the experiments for granularity 0.02 (Table 5.5), the improvement of PDCPG

71

PDCPG Act DCPG Act Improv %age PDCPG Init DCPG Init Init Improv %age

J301 1PSPLIB 655 694 5.71 408 450 9.31
J601 1PSPLIB 1207 1267 4.73 972 1051 7.52
J901 1PSPLIB 1420 1567 9.39 1188 1280 7.25
J1201 1PSPLIB 1590 1661 4.26 1348 1400 3.75
50Random 725 961 24.51 553 588 6.01
70Random 972 1269 23.38 782 831 5.89
100Random 1368 1685 18.84 1139 1204 5.44
150Random 1931 2349 17.80 1660 1794 7.46

Table 5.5. Initial and actual average makespans generated by heuristics, and improvement percentage
of PDCPG for granularity 0.02.

Figure 5.3. Initial and actual average makespans generated by heuristics for granularity 0.02.

PDCPG Act DCPG Act Improv %age PDCPG Init DCPG Init Init Improv %age

J301 1PSPLIB 505 539 6.29 340 367 7.26
J601 1PSPLIB 602 640 5.99 433 455 4.95
J901 1PSPLIB 658 721 8.74 473 499 5.18
J1201 1PSPLIB 779 866 10.06 598 621 3.71
50Random 602 650 7.47 430 441 2.52
70Random 721 789 8.60 542 554 2.16
100Random 1009 1086 7.09 816 825 1.13
150Random 1411 1534 8.01 1179 1199 1.70

Table 5.6. Initial and actual average makespans generated by heuristics and improvement percentage
of PDCPG for granularity 0.1.

Figure 5.4. Initial and actual average makespan generated by heuristics for granularity 0.1.

72

Init Improv/
PDCPG Act DCPG Act Improv %age PDCPG Init DCPG Init Worsening %age

J301 1PSPLIB 630 802 21.49 464 491 5.55
J601 1PSPLIB 868 1279 32.13 670 684 2.11
J901 1PSPLIB 1103 1740 36.64 902 922 2.14
J1201 1PSPLIB 1351 2224 39.27 1143 1160 1.41
50Random 845 1145 26.18 655 650 -0.77
70Random 1086 1515 28.29 889 874 -1.62
100Random 1481 2101 29.51 1269 1251 -1.43
150Random 2159 3072 29.72 1905 1877 -1.48

Table 5.7. Initial and actual average makespans generated by heuristics and improvement/worsening
percentage of PDCPG for granularity 1.2.

Figure 5.5. Initial and actual average makespan generated by heuristics for granularity 1.2.

Init Improv/
PDCPG Act DCPG Act Improv %age PDCPG Init DCPG Init Worsening %age

J301 1PSPLIB 526 573 8.18 371 402 7.76
J601 1PSPLIB 647 713 9.26 475 517 7.99
J901 1PSPLIB 621 730 14.95 444 475 6.58
J1201 1PSPLIB 872 1010 13.69 677 731 7.37
50Random 813 856 4.98 634 633 -0.12
70Random 813 856 5.07 634 632 -0.38
100Random 1114 1171 4.87 922 911 -1.20
150Random 1552 1628 4.63 1316 1291 -1.95

Table 5.8. Initial and actual average makespans generated by heuristics and improvement/worsening
percentage of PDCPG for granularity 1.2, when the number of consecutive slots is set to 10.

Figure 5.6. Initial and actual average makespan generated by heuristics for granularity 1.2, when the
number of consecutive slots is set to 10.

73

increased hugely for random workflows, which seems to be the combined effect of low

granularity, workflow structure and the pattern of available resources conforming to the

workflow structure. Here, by conforming we mean that the CPUs on the resources

are available in such a pattern that in the workflow the partner jobs and their child

jobs can be assigned to them without degrading the performance. The improvement of

PDCPG becomes smaller in the case of granularity 0.1 (Table 5.6), which seems to be

the effect of an increase in granularity. For granularity 1.2, however, the improvement of

PDCPG increases by a great margin (Table 5.7). This is because the job length for this

experiment was increased from 10,000 MI to 25,000 MI while the size of the resource

capacity fragments remained the same. The smaller the resource capacity fragments in

the utilisation profile, the harder it is to find a place for the job (i.e., a time interval

during which a CPU is available). In this tighter situation, PDCPG accepts an affordable

delay in the completion time of partner jobs, allowing it to fit the jobs into the available

fragments, which helps getting better results in the end. To support this argument, we

show in Table 5.8 the results for an experiment where the resource capacity fragment

size was increased. All the settings for this experiments were the same as for Table 5.7,

except that the number of consecutive slots that receive the same random load value

when the utilisation profiles are populated was changed from 2 to 10. With this change,

the improvement percentage of PDCPG decreases, which confirms the above-mentioned

effect of capacity fragmentation on the relative performance of PDCPG and DCPG.

Overall the results show that the performance of PDCPG in scenarios where resource

failure may occur is encouraging.

5.3 Conclusion

We have presented PDCPG, a new technique for mapping jobs to resources after jobs

are selected using the selection method of DCPG, in an advance reservation environment

where resources do not fail. The technique used for dealing with advance reservation is

a variant of the technique proposed in [70]. For route selection, a modification of Dijk-

74

stra’s algorithm is used. It is shown that PDCPG has improved the workflow makespan

significantly and quickly especially for larger workflows with low granularity. The lower

execution time of PDCPG is obtained by direct investigation and selection of relevant

resources for jobs with partner jobs that are already scheduled.

We also investigated the behaviour of PDCPG in an advance reservation environment

where resources may fail and the schedule of the workflow may be affected. Results

are presented for failure scenarios where jobs of affected workflows are rescheduled.

It is observed that PDCPG performs very well against DCPG for both low and high

granularities, which makes PDCPG a potential candidate for deployment in a dynamic

Grid environment.

It is also observed that the performance of PDCPG is significantly influenced by the

structure of the workflow, conformance of the pattern of resource availability with the

structure of the workflow, granularity of the workflow and the amount of capacity frag-

mentation in the utilisation profiles of the resources.

75

Chapter 6

Hybrid Dynamic Critical Path for

Grids (HDCPG)

In Chapter 5 we presented PDCPG, a workflow scheduling heuristic for advance reser-

vation environments. Even though PDCPG outperformed DCPG in the low granularity

scenario, it was observed that neither of the two algorithms is consistently better than

the other in all cases. This inconsistency shows that different heuristics may perform

better than others in different situations. Based on this observation, in this chapter we

propose a combination of multiple heuristics. We refer to this combination as Hybrid

Dynamic Critical Path for Grids (HDCPG). Our results show that HDCPG performs very

well against DCPG, PDCPG and HEFT for low granularity, while for high granularity

HEFT seems the better option over HDCPG because of faster execution time and only

a marginal difference in performance.

The scheduling problem under consideration in this chapter is the same as the one

that was discussed in Section 5.1.1. In Section 6.1 we present a novel job selection

technique that is used in HDCPG. In Section 6.2, we present the details of HDCPG and

its performance evaluation. Conclusions are given in Section 6.3.

76

6.1 A Novel Job Selection Technique

Before introducing a new critical path method, a problem that is encountered in the

general critical path approach is described. The problem occurs in multiprocessor en-

vironments, as discussed in [52]. It is pointed out that wrong decision making by a

heuristic at any stage of selecting a job from the workflow may result in a makespan

that is far from optimal. The reason is the inability of the heuristic to see the workflow

globally. A modified version of an example given in [52] to illustrate this is shown in

Figure 6.1. To schedule the workflow, we have two fully available processors of the

same speed. The execution time of each job is shown as the label z, shown in the

corresponding node of the DAG. The duration of the transmission of the output file of

a job to a child job on another processor is shown as the label x of the corresponding

edge between these two jobs. For this example we present a hypothetical critical path

based algorithm, it will be referred to as CPA. It computes the critical path by adding

the computation and communication costs of the jobs in the workflow, selects the most

critical job to be assigned to the processor which can finish it earliest.

If the workflow in Figure 6.1a is scheduled on a single processor, it can be completed in

135 units. The optimal schedule of this workflow on two processors has makespan 125

(see Figure 6.1d). For the same workflow CPA computes the critical path (1,2,5,8,9) of

length 370 units, its schedule will take 145 units to complete (see Figure 6.1c), which is

worse than the serial (sequential) schedule. In this scenario, the jobs (1,2,4,5,7,8,9) will

be executed on one processor and the jobs (3,6) on the other processor because of the

chosen critical path. Even though dynamic critical path methods may change the critical

path after scheduling a job, in this case the change comes too late. Had the critical

path been (1,3,6,9) from the start, the schedule produced would have been optimal.

The main difficulty in calculating the right critical path is that the communication costs

between parent and child job may be reduced to 0 in the actual schedule if the jobs are

scheduled on the same resource, but initially it is not known which jobs will be scheduled

on the same resource.

77

(a) Serial Sched-
ule=135, Critical Path
Length(1,2,5,8,9)=370

(b) x = Communication Delay,
y=Node Identifier, z=Node Weight

(c) Optimal Schedule=125 (d) Critical Path Length
(1,2,5,8,9)=370, Schedule=145

(e) New Critical Path Length
(1,3,6,9)=180, Schedule=125

Figure 6.1. Modified example of scheduling failure [52].

78

It is very difficult to tell in advance the choice of which path as critical path can give a

better schedule, and the best solution to one problem may not work well for other prob-

lems. The factors which can be considered while designing a critical path technique are

the structure of the workflow, the relationship between computation and communication

costs of jobs in the workflow and the available resources. To achieve a better critical

path for the problem under consideration, we try to convert the communication costs

between jobs to zero before the scheduling process starts which may become actually

zero after the jobs are scheduled on the same resource because of the higher communi-

cation cost between them. The criterion to convert communication cost to zero is based

on the relationship of the ratio of the cost of a job and the cost of an incoming edge to

the job with the granularity of the workflow.

We address the problem illustrated in the example as follows. The workflow is represented

as a DAG G = (V,E), where V is the set of n nodes and E is the set of m edges

connecting these nodes. IEv ⊆ E denotes the set of incoming edges to the node

v ∈ V . The cost of the node v ∈ V in duration of execution is denoted by cost(v) and

the cost of incoming edge ie ∈ IEv in duration of data transfer is denoted by cost(ie).

The time unit for both cost(v) and cost(ie) is the same. We consider the following

modified definition of workflow granularity:

Granularity =
1

m

(∑
ie=e(u,v)∈E

cost(v)

cost(ie)

)
. (6.1)

The Granularity of a workflow is the average, taken over all m edges of the workflow

DAG, of the cost of the job at the head of the edge, divided by the the cost of the edge.

In our modified critical path method, we convert the cost of an edge ie ∈ IEv to zero if

cost(v)
cost(ie)

< Granularity.

In Figure 6.1e, it is shown that the cost of some edges is converted to zero, which

changes the critical path to (1,3,6,9), leading to an optimal schedule.

The reason for considering the cost of an incoming edge relative to the cost of the target

node in the calculation is its influence on the decision where to schedule its target node.

79

By comparing the ratio with the Granularity of the workflow (calculated according

to (6.1)), we take into account its relationship with the remaining edges. We believe

that there is room to develop a more intelligent way of deciding when to convert the

cost of an edge to zero by considering a combination of workflow-level metrics (in our

case, Granularity), the variation in the computation and communication ratios, the

relationship between a single edge cost and the costs of other edges, and possibly some

other factors.

Following the above-mentioned new technique, we calculate AEST and ALST of the jobs

(an in the critical path calculation by DCPG) in the workflow. The conversion of certain

edge costs to zero is only for the purpose of calculating the criticality of the nodes, which

affects job selection. During the resource selection step, the actual communication cost

is considered.

6.2 HDCPG

We propose a technique in which we compute five different schedules in advance and

select the best among them for the actual schedule. The resource selection mechanism

of PDCPG is combined with three job selection techniques. The first is the job selection

method of DCPG; this combination will be referred to as P . The second job selection

method is the new one described above in Section 6.1, which we refer to as CTZ

(Communication to Zero); the resulting combination will be referred to as Pz. The

third job selection method is the ranking-based job selection method of HEFT; this

combination will be referred to as Ph. The remaining two algorithms are obtained

by combining the resource selection method of HEFT with two job selection methods:

The first combination is with its own job selection method , which will be referred to

as H. The second combination is with a modified version of the HEFT job ranking

technique, which will be referred to as Hz. This modified version of the HEFT job

selection technique is obtained by using the same technique we used to obtain CTZ.

Before assigning the ranks to the jobs, the cost of edges is reduced to zero on the basis

80

of the granularity based criterion described in Section 6.1. The five algorithms P , Pz,

Ph, H and Hz are combined to produce the hybrid algorithm HDCPG. Furthermore, the

job ranking technique of H and Hz is influenced by the AR. The communication cost

of the jobs is calculated based on the requested bandwidth not the average/maximum

bandwidth.

The hybrid algorithm computes five different schedules using the five algorithms, and

then uses the one with smallest makespan as the actual schedule. We remark that the

execution time overhead of hybrid scheduling can be minimised if the five algorithms are

run in parallel.

6.2.1 Evaluation

HDCPG is compared with respect to workflow makespan with PDCPG, DCPG and HEFT

in a simulation environment for different workflows. Before presenting the analysis, the

experimental environment is described. The GridSim [67] simulator is used for the

simulation of the Grid environment for a single user. The selected resource model is

described below.

Resource Model

A subset of the European Data Grid (EDG) testbed (see Section 2.6) is chosen for the

simulation. 11 resources are simulated as clusters of equally rated CPUs, the rating is in

terms of MIPS. CPU speed ranges from 1000 to 1330 MIPS. Experiments are conducted

for a high load of 90% or above on resources and for workflows of high and low granularity.

Load is the percentage of CPUs of a resource under utilisation at any time. The CPU

load in each interval of 5–10 consecutive slots of the utilisation profile vector is generated

by generating a uniform random value between 0 and the total number of CPUs, and

taking the maximum of that value and the target CPU load (e.g., 90% of the CPUs).

The range for low granularity is 0.01 to 0.06, and for high granularity it is 0.8 to 1.5.

To specifically check the performance of scheduling algorithms (rather than the routing

81

DCPG PDCPG HEFT

J301 1PSPLIB 22.03 16.29 17.18
J601 1PSPLIB 19.84 13.35 15.85
J901 1PSPLIB 19.60 13.67 13.44
J1201 1PSPLIB 20.04 13.81 17.05
50Random 16.75 8.95 13.25
70Random 19.08 13.96 13.76
100Random 20.50 21.35 15.30
150Random 25.50 19.89 17.32

(a) Improvement percentage of HDCPG over
DCPG, PDCPG and HEFT for low granularity.

DCPG PDCPG HEFT

J301 1PSPLIB 5.11 3.21 3.70
J601 1PSPLIB 9.08 7.75 2.08
J901 1PSPLIB 10.26 9.51 1.66
J1201 1PSPLIB 8.33 7.67 2.77
50Random 8.46 8.95 0.99
70Random 6.93 7.76 0.67
100Random 7.94 9.44 0.32
150Random 8.29 9.79 0.61

(b) Improvement percentage of HDCPG over
DCPG, PDCPG and HEFT for high granularity.

Table 6.1. Improvement of HDCPG.

aspect for data transmissions), sufficient bandwidth is made available on all network links.

For each simulation run, new randomly generated values are assigned to all utilisation

profiles.

Workflows

The workflows chosen for the simulation experiments are as follows. Four workflows of

30, 60, 90 and 120 jobs are taken from j301 1, j601 1, j901 1, j1201 1 in the Project

Scheduling Problem Library (PSPLIB) [47], respectively. These workflows will be referred

to as PSP workflows. Four random workflows comprising 50, 70, 100, and 150 jobs are

generated using the technique described in [58]. For each of the workflows, the simulation

is run approximately 100 times. For low granularity, the jobs are assigned lengths ranging

from 10,000 MI to 15,000 MI randomly according to a uniform distribution, and their

output file sizes range from 150 to 270 Megabytes. For high granularity, the jobs are

assigned lengths ranging from 30,000 MI to 40,000 MI randomly according to a uniform

distribution, and their output file sizes range from 30 to 50 Megabytes.

Results

It is obvious that HDCPG cannot be outperformed by DCPG, PDCPG and HEFT. One of

the objectives of the study is to find the margin of improvement. The other objective is

to observe the behaviour of the different algorithms for different workflows with different

granularity. From the experiments it can be noted that the good instances and the bad

82

P Pz Ph H Hz

J301 1PSPLIB 6.86 0.48 8.31 5.85 -0.45
J601 1PSPLIB 7.49 4.75 8.44 4.74 1.86
J901 1PSPLIB 6.86 1.41 2.85 7.12 -1.02
J1201 1PSPLIB 7.23 1.41 1.82 3.61 4.92
50Random 8.56 1.95 11.02 4.03 1.68
70Random 5.95 -3.07 11.77 6.17 -0.08
100Random -1.08 -6.17 8.33 6.15 -4.64
150Random 7.01 2.90 10.33 9.89 4.85

(a) Improvement percentage of individual algorithms over
DCPG for low granularity.

P Pz Ph H Hz

J301 1PSPLIB 1.97 0.44 2.59 1.47 1.57
J601 1PSPLIB 1.44 0.11 7.88 7.15 7.99
J901 1PSPLIB 0.82 -0.09 9.80 8.74 8.48
J1201 1PSPLIB 0.72 -1.12 7.92 5.72 5.94
50Random -0.53 -2.57 5.64 7.55 7.70
70Random -0.90 -3.09 4.30 6.30 5.82
100Random -1.66 -3.68 4.99 7.64 7.58
150Random -1.66 -2.94 5.33 7.73 8.00

(b) Improvement percentage of individual algorithms over
DCPG for high granularity.

Table 6.2. Improvement of individual algorithms over DCPG.

P Pz Ph Hz

J301 1PSPLIB 1.06 -5.71 2.61 -6.70
J601 1PSPLIB 2.88 0.00 3.88 -3.03
J901 1PSPLIB -0.27 -6.15 -4.59 -8.76
J1201 1PSPLIB 3.76 -2.28 -1.86 1.36
50Random 4.72 -2.16 7.28 -2.45
70Random -0.24 -9.86 5.96 -6.67
100Random -7.70 -13.12 2.33 -11.50
150Random -3.20 -7.76 0.49 -5.59

(a) Improvement percentage of individual algorithms over
HEFT for low granularity.

P Pz Ph Hz

J301 1PSPLIB 0.51 -1.04 1.14 0.10
J601 1PSPLIB -6.15 -7.58 0.79 0.91
J901 1PSPLIB -8.68 -9.67 1.16 -0.28
J1201 1PSPLIB -5.30 -7.26 2.34 0.23
50Random -8.74 -10.95 -2.07 0.16
70Random -7.68 -10.02 -2.14 -0.51
100Random -10.07 -12.26 -2.88 -0.07
150Random -10.18 -11.57 -2.61 0.29

(b) Improvement percentage of individual algorithms
over HEFT for high granularity.

Table 6.3. Improvement of individual algorithms over HEFT

83

P Pz Ph H Hz

J301 1PSPLIB 35 22 38 19 16
J601 1PSPLIB 25 22 25 23 21
J901 1PSPLIB 24 26 22 17 13
J1201 1PSPLIB 28 12 16 22 28
50Random 31 19 40 13 13
70Random 30 13 27 22 16
100Random 29 17 24 18 18
150Random 30 15 22 10 24

(a) Count of contribution to best schedule for
low granularity.

P Pz Ph H Hz

J301 1PSPLIB 53 38 57 35 33
J601 1PSPLIB 13 10 67 37 53
J901 1PSPLIB 0 0 68 28 21
J1201 1PSPLIB 3 1 79 18 22
50Random 3 3 35 62 67
70Random 10 4 29 56 57
100Random 1 0 12 62 59
150Random 0 0 12 51 67

(b) Count of contribution to best schedule for high
granularity.

Table 6.4. Count of contribution to best schedule out of 100 by individual algorithms in HDCPG.

instances are different for the different individual algorithms. Thus, the hybridisation of

these algorithms leads to a significant improvement over all the individual algorithms.

HDCPG gives a huge improvement over the three other algorithms for low granularity,

and a considerable improvement is obtained over DCPG and PDCPG for high granu-

larity (Table 6.1). HEFT performed very well against HDCPG in the high granularity

scenario. The improvement of HDCPG over HEFT is small especially for random work-

flows. This strong performance of HEFT may make it a better choice than HDCPG for

high granularity scenarios.

If the performance of the individual algorithms that make up HDCPG against DCPG is

analysed (Table 6.2), then P, Ph and H show a good improvement for low granularity

for all workflows except for the 100 jobs random workflow where P is outperformed by a

small margin. Pz and Hz shown a mixed performance against DCPG for low granularity.

These two gave improvements for some workflows and are outperformed for others.

For high granularity, Ph, H and Hz clearly performed well against DCPG. P gave an

improvement for PSP workflows but fell short for random workflows. The difference in

both cases is very small, so we can say that the performance of P and DCPG was almost

the same. Pz is outperformed by DCPG by small margins for most of the workflows.

The performance of the individual algorithms against HEFT is less clear-cut than the

performance against DCPG (Table 6.3). For low granularity, P has shown mixed per-

formance by giving an improvement for half of the workflows and worse performance

for the other half of the workflows. Pz and Hz have shown a considerable worsening

of the makespan for most of the workflows. Only Ph outperformed HEFT for most of

84

the workflows by considerable margins. For high granularity, P and Pz are outperformed

by HEFT by bigger margins, especially for random workflows. Ph has shown a better

performance here, by giving a small improvement for PSP workflows and only a small

worsening for random workflows. The performance of Hz is almost the same as that of

HEFT.

In Table 6.4, we present the count (in percent) of the number of times individual algo-

rithms produced the best schedule. There are cases in which several algorithms gave the

best schedule at the same time, so the percentage values can add up to more than 100%.

For low granularity, the contribution by P and Ph clearly dominates. The contribution

by Pz, H and Hz is still considerable and cannot be ignored. For high granularity, Ph has

contributed very dominantly as compared to all other algorithms for PSP workflows. Its

contribution is between 57 and 79 percent. H and Hz have contributed dominantly for

the random workflows. The contribution by P and Pz for most of the workflows is zero

or very small.

We observe that the HEFT job selection method has a great influence, which makes Ph

perform very well especially for the high granularity scenarios where DCPG, P and Pz do

not fare well. Furthermore, on the basis of these results the following suggestions can be

made. For the low granularity case, the hybridisation is worth adopting as it can produce

significant improvements in workflow makespan compared to the schedules produced by

any single algorithm. For high granularity scenarios, however, using only one of the

algorithms among Ph, H and Hz could be the better option rather than hybridisation.

6.3 Conclusion

The huge improvements obtained by the hybrid method show that the good instances and

the bad instances for the individual algorithms are different. None of the five algorithms

consistently gives better schedules. By running all five algorithms, there is a good chance

that one of them produces a good schedule, and thus the hybrid method gives a strong

improvement over the individual algorithms. In the future, it may be worth exploring

85

new combinations, which might improve the results further.

86

Chapter 7

PDCPG for Non-Advance

Reservation Environments

In Section 5.1 a partner-based resource mapping technique, Partner-based Dynamic

Critical Path for Grids (PDCPG), was proposed for scheduling Grid workflows in advance

reservation (AR) environments. The PDCPG decision rule for selecting a resource for

a job is helped by the AR facility, and it was shown that PDCPG performs better than

two other well known scheduling heuristics, Dynamic Critical Path for Grids (DCPG)

and Heterogeneous Earliest Finish Time (HEFT) (see Sections 4.2 and 3.1), in terms

of workflow completion times when the granularity of certain workflows is low. Since

many workflow scheduling heuristics have been proposed for non-AR environments, this

chapter focuses on the study of the behaviour of PDCPG in an environment which does

not support AR. PDCPG is modified according to the non-AR situation and compared

again with DCPG and HEFT. It is shown that PDCPG performs even better in terms of

workflow completion time in scenarios where the granularity of workflows is low.

In the next section, PDCPG for non-AR environments is explained. Its performance is

evaluated in Section 7.2, and conclusions are drawn in Section 7.3.

87

7.1 PDCPG for Non-AR Environments

For the problem under study, the workflow model is the same as described in Section 2.2

and the model of the Grid environment is the same as described in Section 2.1. Further-

more, it is assumed that Grid resources do not support AR and they do not fail. The

objective is to schedule a workflow of jobs so that its makespan is minimised.

For job selection, the same dynamic critical path method is used, but with a little modifi-

cation. The ADTT calculated for AR environments is modified for non-AR environments

by replacing the requested bandwidth with the average bandwidth, which was also used

in [58]. ADTT for non-AR environments is calculated as follows:

ADTTj =
JSj

Average Bandwidth
.

For resource mapping, the same partner-based approach is used, but with a modification

in the condition used for the resource selection. The modified resource selection condition

is as follows:

minExpCTRPj′ ≤ minExpCT
R\RP
j′ + ADTTj′ , (7.1)

where

minExpCTRP
j′ = min{expCT rpj′ | rp ∈ RPj′},

is the minimum expected completion time of the job j′ on the resources rp ∈ RPj′

(where RPj′ denotes the set of resources on which partner jobs of job j′ have already

been scheduled) and

minExpCT
R\RP
j′ = min{expCTr

j′ | r ∈ R \RPj′}

is the minimum expected completion time of the job j′ on the resources r ∈ R \RP . If

condition (7.1) is satisfied, the resource of a partner job that gives the minimum expected

completion time is selected for the scheduling of job j′. Otherwise, any resource which

gives the minimum expected completion time is chosen.

The reason for the modification of the condition from (5.1) to (7.1) is as follows. In

88

non-AR environments, it is comparatively difficult to predict the completion time of a

job as compared to the AR environment. One of the reasons of uncertainty in non-AR

environments is the dynamic load on the executing system. Based on this factor, the

completion time of the partner job is removed from the resource selection condition

and the competition is simply between the expected completion time of the job to be

scheduled on resources in R \ RP and in RP . Priority is still given to the resources in

RP by allowing a delay in the completion time within a limit equal to the communication

cost of the job to be scheduled plus its minimum expected completion time on a resource

in R \RP .

7.2 Evaluation

In the following, we refer to the modification of PDCPG for non-AR environments simply

as PDCPG. HEFT and DCPG are the heuristics against which PDCPG is compared.

Workflow makespan is used as the evaluation criterion. Recall that workflow makespan

is the difference between the submission time of the workflow and the completion time

of the last job. Eight workflows are selected for comparison purpose. Four workflows of

30, 60, 90 and 120 jobs are taken from j301 1, j601 1, j901 1 and j1201 1 in the Project

Scheduling Problem Library (PSPLIB) [47], respectively. The other four workflows are

random workflows comprising 50, 100, 150 and 200 jobs as in [58]. To generate these

random workflows, the number of levels is set to 10, so that with an increase in the

number of jobs in the workflow, the number of jobs per level also increases, which

increases the number of partner jobs per level as well.

The non-AR environment is simulated using the GridSim [67] simulator. The resource

model of a subset of the European Data Grid (EDG) [16] is chosen (see Table 2.1).

Experiments are conducted for three different granularities, which are 0.01, 0.1 and

1.0. The ranges of job sizes and file sizes, generated using uniform distribution, for the

different granularities are as follows.

• Job size from 60000 to 65000 MI and file size from 400 to 450 MB for granularity

89

DCPG HEFT

30PSP 19.79% 33.53%
60PSP 20.93% 24.38%
90PSP 15.18% 18.44%
120PSP 15.77% 18.21%
50Rand 8.70 % 10.17%
100Rand 8.22% 22.99%
150Rand 7.72% 12.35%
200Rand 2.24% 9.05%

Table 7.1. Improvement of PDCPG over heuristics for granularity 0.01

15
24
1	 19

54
6	

20
77
4	

27
50
7	

96
77
	

18
79
1	

28
97
4	

37
39
3	

18
39
2	

20
43
8	

21
60
4	

28
32
7	

98
35
	

22
39
5	

30
50
5	

40
18
9	

12
22
6	 15
45
5	

17
62
1	

23
16
8	

88
35
	

17
24
6	

26
73
7	

36
55
4	

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

40000	

45000	

30PSP	 60PSP	 90PSP	 120PSP	 50Rand	 100Rand	 150Rand	 200Rand	

M
ak
es
pa

n	

Workflows	

DCPG	

HEFT	

PDCPG	

Figure 7.1. Makespan (in seconds) by heuristics for granularity 0.01.

DCPG HEFT

50Rand 12.96% 24.75%
100Rand 9.70% 15.05%
150Rand 7.03% 13.03%
200Rand 8.40% 9.64%

Table 7.2. Improvement of PDCPG over heuristics for granularity 0.01. Random workflows have
maximum 8 jobs per level.

10
15
6	

19
15
3	

24
26
2	 28

30
5	

11
74
8	

20
36
0	

25
93
7	 28
69
2	

88
40
	

17
29
6	

22
55
7	 25

92
7	

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

50Rand	 100Rand	 150Rand	 200Rand	

M
ak
es
pa

n	

Workflows	

DCPG	

HEFT	

PDCPG	

Figure 7.2. Makespan (in seconds) by heuristics for granularity 0.01. Random workflows have maximum
8 jobs per level.

90

DCPG HEFT

50Rand 12.25% 19.46%
100Rand 11.09% 11.96%
150Rand 8.21% 9.40%
200Rand 3.15% 12.98%

Table 7.3. Improvement of PDCPG over heuristics for granularity 0.01. Random workflows have
maximum 6 jobs per level.

10
41
7	

17
89
8	

21
93
6	 24
03
3	

11
35
1	

18
07
4	

22
22
6	

26
74
9	

91
41
	

15
91
3	

20
13
6	 23

27
7	

0	

5000	

10000	

15000	

20000	

25000	

30000	

50Rand	 100Rand	 150Rand	 200Rand	

M
ak
es
pa

n	

Workflows	

DCPG	

HEFT	

PDCPG	

Figure 7.3. Makespan (in seconds) by heuristics for granularity 0.01. Random workflows have maximum
6 jobs per level.

DCPG HEFT

30PSP 10.81% 12.56%
60PSP 16.33% 20.04%
90PSP 12.30% 12.28%
120PSP 9.44% 13.49%
50Rand 0.72 % 6.51%
100Rand 3.96% 8.26%
150Rand 2.69% 8.24%
200Rand 1.84% 7.76%

Table 7.4. Improvement of PDCPG over heuristics for granularity 0.1.

10
64
9	

12
02
6	

13
44
4	 17

18
6	

66
46
	

14
57
3	

20
36
9	

28
09
8	

10
86
2	

12
58
3	

13
44
0	

17
99
0	

70
57
	

15
25
6	

21
60
0	

29
90
2	

94
98
	

10
06
2	

11
79
0	 15

56
3	

65
98
	

13
99
6	

19
82
1	

27
58
2	

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

30PSPLIB	 60PSPLIB	 90PSPLIB	 120PSPLIB	 50Random	 100Random	 150Random	 200Random	

M
ak
es
pa

n	

Workflows	

DCPG	

HEFT	

PDCPG	

Figure 7.4. Makespan (in seconds) by heuristics for granularity 0.1.

91

DCPG HEFT

30PSP 0.82% -0.03%
60PSP 3.75% 3.34%
90PSP 3.22% 3.06%
120PSP 1.49% 0.12%
50Rand 1.79% -3.57%
100Rand 1.81% -2.56%
150Rand -0.45% -3.18%
200Rand -0.77 % -4.45%

Table 7.5. Improvement/Worsening of PDCPG over heuristics for granularity 1.0
15
97
6	 21

46
9	

20
80
5	

32
70
3	

15
41
4	

30
10
2	

41
36
2	

54
94
8	

15
84
0	 21

37
6	

20
76
9	

32
25
3	

14
61
6	

28
82
0	

40
26
9	

53
01
2	

15
84
5	 20
66
3	

20
13
4	

32
21
4	

15
13
8	

29
55
7	

41
54
8	

55
37
3	

0	

10000	

20000	

30000	

40000	

50000	

60000	

30PSP	 60PSP	 90PSP	 120PSP	 50Rand	 100Rand	 150Rand	 200Rand	

M
ak
es
pa

n	

Workflows	

DCPG	

HEFT	

PDCPG	

Figure 7.5. Makespan (in seconds) by heuristics for granularity 1.0.

0.01.

• Job size from 60000 to 65000 MI and file size from 150 to 270 MB for granularity

0.1.

• Job size from 1500000 to 1505000 MI and file size from 100 to 150 MB for

granularity 1.0.

The simulations are run 100 times for each experiment, and the average makespan is

shown in the results. The results are discussed in order of ascending granularity.

Figure 7.1 shows the average makespan produced by the heuristics and Table 7.1 shows

the percentage of improvement in makespan of PDCPG over the two other heuristics for

granularity 0.01. The improvements are significant, especially over HEFT, where they

range from 9% to 33.5%. In this comparison, HEFT is the least efficient among the

three heuristics for all workflows. This is because of the static ranking technique for

job selection, as the bigger difference between the communication and computation cost

92

in the low granularity case may significantly change the critical path in the scheduling

process. The dynamic critical path selection method kept both PDCPG and DCPG ahead

of HEFT, which is not the case for high granularity experiments (as shown later). This

behaviour of HEFT is similar to the ones noted in [58, 29, 15] and mentioned in Section

3.1.2. Another reason for the huge improvement over HEFT seems to be related to the

structure of the workflows, especially PSPLIB workflows, and the resource model having

multiprocessors per resource for which dynamic critical path methods seem more suitable.

Against DCPG, the performance of PDCPG is significantly better for PSPLIB workflows

as compared to random workflows. For PSPLIB workflows the improvement ranges from

15% to 20%. For random workflows, the maximum improvement is 8.7%. A factor

which influences the performance of PDCPG is whether the number of available CPUs

on a faster computing resource matches the number of partner jobs in a workflow. The

PDCPG resource selection technique can work better if it can schedule as many clusters

of partner jobs on the same resource as possible. The structure of PSPLIB workflows

and the simulated resource models constitute a better combination for PDCPG, whereas

the way random workflows are generated makes them less suitable than the PSPLIB

workflows. To study this relationship between workflow structure and the resource model,

we also generated random workflows differently from the above ones. We generated

random workflows in such a way that at each level the maximum number of jobs remains

8 and 6, respectively. The average makespan given by the heuristics is shown in Figure 7.2

and Figure 7.3, and the improvement achieved by PDCPG is shown in Table 7.2 and

Table 7.3. The improvement of PDCPG over both heuristics is increased as compared

to the results shown in Table 7.1, which supports the hypothesis about the influence

of the relationship between workflow structure and the number of available CPUs on

computing resources on the performance on PDCPG.

Figure 7.4 gives the average makespan produced by the heuristics, and Table 7.4 gives

the improvement obtained by PDCPG, for granularity 0.1. The improvement decreases

as the granularity is increased. This is also noticeable in Table 7.5, which gives the results

for granularity 1.0 (the average makespans are shown in Figure 7.5). The improvement

93

or worsening of PDCPG for granularity 1.0 is marginal. Based on these results we can

say that PDCPG exhibits better performance for low granularity and performs almost

the same as other popular heuristics for the high granularity case.

7.3 Conclusion

PDCPG was originally proposed for the AR environment and has been studied here for the

non-AR environment. The simulation experiments show that PDCPG performs better

than two well known heuristics, especially when the granularity is low. These results

further strengthen the potential of PDCPG for being adopted by the Grid community

along with other popular heuristics.

94

Chapter 8

K-Shortest Path Routing Technique

in Advance Reservation Environment

In this chapter we consider the routing problem in AR environments, which occurs as

a subproblem in workflow scheduling when a data file needs to be transmitted from

one resource to another. In Section 8.1 we analyse the complexity of different variants

of the routing problem in the AR environment. Section 8.2 discusses shortcomings of

Dijkstra’s greedy algorithm and two polynomial time algorithms proposed by Varvarigos

et al. [70] for finding a path with earliest arrival time in the AR environment. A K-

Shortest Path (KSP) variant aimed at addressing these shortcomings is proposed in

Section 8.3, and an evaluation of the newly proposed routing algorithm is performed in

Section 8.4. Conclusions are given in Section 8.5.

8.1 Complexity Analysis of Routing Problems in the

Advance Reservation Environment

First, the general routing problem in the AR environment is defined, then a number of

specific cases of the general problem will be analysed. We denote the general Advance

Reservation Routing Problem by ARRP. Given is a directed graph G = (V,E), where

95

V is the set of vertices/nodes and E is the set of edges/links connecting the nodes.

Each edge e ∈ E has a delay de and a capacity/bandwidth denoted by Ce. Each edge

e ∈ E also has a utilisation profile vector Ue which stores the information regarding the

reserved capacity at any future time θ ∈ {0, · · · , T}, where T is the maximum time

for which utilisation information is available and thus the dimension of Ue. The unit of

the link delay and the smallest time for which a reservation can be made is assumed to

be the same. S ∈ V is the source node from where data is to be transferred to the

destination node D ∈ V . For the data transfer, rbw bandwidth is requested, and b is

the duration of the transfer if rbw bandwidth is utilised. It is assumed that de, Ce, rbw

and Ue(θ) are integers. An edge is said to be feasible for rbw bandwidth at time θ if

Ce − Ue(θ) ≥ rbw, and it is unfeasible otherwise. Note that an instance of ARPP has

size O(|V |+ |E|T), as each edge has an utilisation profile of size O(T).

The network is assumed to be an OBS network, in which data is sent in a single burst

from the source node to the destination node, without any queueing at intermediate

nodes. The data burst can enter a link e at time t if e is feasible for rbw bandwidth at

times t, t+ 1, . . . , t+ b− 1. In that case, the first bit of data will arrive at the endpoint

of the link at time t+ de. A path P from S to D is said to be feasible at time t if each

edge e on P is feasible at times Ae, Ae + 1, . . . , Ae + b− 1, where Ae is the time when

the first bit of data enters the link e, i.e., Ae is equal to t plus the sum of the delays of

all edges that precede e on the path P . If the path P enters the same edge e multiple

times, the available capacity of the edge must be at least the appropriate multiple of rbw.

Formally, if the edge e is entered k times and the entry times are A1, A2, . . . , Ak, then

we must have

Ce − Ue(θ) ≥ rbw · |{1 ≤ i ≤ k | θ ∈ [Ai, Ai + b− 1]}|

for all θ ∈ {0, . . . , T}.

If the path P is feasible at time t, the data can be transmitted over path P at time t

and will be completely received at the destination at time AT(P , t) = t+ b+ dP , where

96

dP =
∑

e∈P de is the total delay of path P . The objective is to find a path P from S

to D and a start time t such that P is feasible at time t and has the minimum arrival

time AT(P , t). Only paths with arrival time at most T are considered.

For a path P , we say that the arrival time of P is AT (P , t), where t ≥ 0 is the first

time at which path P is feasible.

Different variants of ARRP are characterised by the type of path that is allowed (i.e.,

whether the path is required to be simple or whether repetition of vertices or even edges

is allowed) and by restrictions on the range of edge delay values or on the duration of

the transmission. A simple path is a path in which neither vertices nor edges can be

repeated. An edge-simple path is a path in which vertices can be repeated but edges

cannot be repeated. A non-simple path is a path in which vertices and edges can be

repeated. Sbλ denotes the variant of ARRP where only simple paths are allowed and

the delay of links is λ and the duration of the transfer is b. Similarly, ESbλ denotes the

corresponding variant of ARRP where edge-simple paths are allowed, and NSbλ denotes

the corresponding variant of ARRP where non-simple paths are allowed. Both b and λ

can be specified as arb, which stands for arbitrary values ≥ 1.

Definition 8.1.1. (S1
1 problem) Given the problem ARRP, we restrict the path to be a

simple path from S to D, λ = 1 and b = 1.

We define the directed Hamiltonian Path Problem (HPP). After that, it is shown that

the HPP can be reduced to S1
1 .

Definition 8.1.2. (Directed Hamiltonian Path Problem (HPP)) Given a directed graph

G′ = (V ′, E ′), where V ′ is the set of vertices/nodes and E ′ is the set of edges/links,

and S ′, D′ ∈ V ′. Find a path from source S ′ to destination D′ that visits each vertex

in the graph exactly once. (Such a path is called a Hamiltonian path.)

HPP is NP-hard [37].

97

Theorem 8.1.3. S1
1 is NP-hard.

Proof. We reduce the HPP to the decision version of S1
1 . The reduction can be explained

with the help of Figure 8.1. Let an instance of HPP be given by a directed graph

G′ = (V ′, E ′) and S ′, D′ ∈ V ′. Let G′ have n nodes. Construct an instance of S1
1 as

follows. Obtain the graph G = (V,E) from G′ by adding two new vertices S and D and

two new edges, one from S to S ′ and one from D′ to D. Set all the edges of G that

correspond to edges from G′ to be feasible at all times. (For the sake of simplicity we

only mention the availability of edges after calculation rather than specifying in detail

their capacities, utilisation profiles and the requested bandwidth for the data transfer.)

The delay of all edges of G is set to 1. The edge from S to S ′ is only feasible at time 0

and the edge from D′ to D is only feasible at time n. The objective is to decide if there

is a simple path from S to D for data of duration b = 1 so that the data arrives at D

at time n+ 1.

We claim that G′ has a Hamiltonian path from S ′ to D′ if and only if there is a path

from S to D in G with arrival time at most n + 1. The proof in both directions is as

follows.

(a) G′ has a Hamiltonian path from S ′ to D′ ⇒ there is a path from S to D in G

with arrival time at most n+ 1.

Let H be a Hamiltonian path from S ′ to D′ in G′. Construct P by taking the

edge S-S ′ followed by H and then D′-D. P is feasible at time 0 as it enters the

edge S-S ′ at time 0 and the edge D′-D at time n. Thus, P is a path with arrival

time n+ 1.

(b) There is a path from S to D in G with arrival time at most n + 1 ⇒ G′ has a

Hamiltonian path from S ′ to D′.

Let P be a path from S to D with arrival time at most n+ 1. It must start with

S-S ′ and end with D′-D. As the edge D′-D is only feasible at time n, the path

must have arrival time equal to n+ 1. Let H be the subpath of P from S ′ to D′.

The data leaves S ′ at time 1 and reaches D′ at time n. Therefore it must traverse

98

Figure 8.1. A graph G′ with n nodes. Source node S and destination node D are connected to the
graph. Edge labels show the time at which the edges are feasible for data transmission.

n − 1 edges between S ′ and D′. As it is a simple path, it is a Hamiltonian path

in G′.

Hence S1
1 is NP-hard.

Definition 8.1.4. (Sarbarb problem) Given the problem ARRP, we restrict the path to a

simple path from S to D. It is assumed that λ ≥ 1 and b ≥ 1 are arbitrary.

Corollary 8.1.5. Sarbarb is NP-hard.

Proof. The S1
1 problem is a special case of the problem Sarbarb . Theorem 8.1.3 proves that

the S1
1 problem is NP-hard. Hence the Sarbarb problem is also NP-hard.

Before analysing other variants of ARRP in which edge-simple and non-simple paths are

allowed, we present some examples for the purpose of motivation. Figure 8.2 shows a

situation in which the destination node is only reachable through an edge-simple path.

The directed graph G in the example has vertex set V = {A,B,C,D,E}, A is the

source node, and E is the destination node. The duration of the data transmission is

assumed to be 1. Due to the gap between the availability periods of edges A-D and

D-E, no simple path is feasible for data transmission to the destination E. Here, the

edge-simple path A-D-C-B-D-E can be used to reach the destination.

Similar to the situation shown in Figure 8.2, there can also be situations in which only

non-simple paths can reach the destination. Such a situation is shown in Figure 8.3. The

directed graph G in this example has vertex set V = {A,B,C,D,E}, A is the source

99

Figure 8.2. Example where the only feasible path from A to E uses node D twice.

Figure 8.3. Example where the only feasible path from A to E uses edges B-C, C-D and D-B more
than once.

node, and E is the destination node. The labels of the edges show their availability

periods. The duration of the data transmission is assumed to be 1. Due to the mistimed

availabilities of the edges, simple and edge-simple paths do not work. Here, the non-

simple path A-B-C-D-B-C-D-B-C-E can be used to reach the destination.

The above mentioned scenarios draw attention to studying problems related to edge-

simple and non-simple paths. We next define the ES1
1 problem and prove it to be

NP-Hard by a reduction from a variant of the 3SAT problem, which is defined as

follows.

Definition 8.1.6. (At-Most-3SAT Problem)

Given a Boolean formula φ, which is the conjunction of m clauses over n boolean

variables and where each clause is a disjunction of exactly 3 literals, where each literal

can be a variable or its negation. Furthermore, each variable is restricted to appear at

most three times and each literal at most two times. Find a truth assignment to variables

such that φ evaluates to true. We denote this problem by At-Most-3SAT.

At-Most-3SAT is NP-hard [37].

100

Definition 8.1.7. (ES1
1 problem)

Given the problem ARRP, we restrict the path to be an edge-simple path from S to D,

λ = 1 and b = 1.

Theorem 8.1.8. ES1
1 is NP-Hard.

Proof. To prove that ES1
1 is NP-Hard we present a reduction from the At-Most-3SAT

problem. For a given instance I of the At-Most-3SAT with m clauses and n variables,

we construct a graph as follows. All edges of the constructed graph have delay 1. For

each variable xi, 1 ≤ i ≤ n, we create a gadget of 10 connected nodes. Each such

gadget consists of two parallel directed paths of 4 nodes together with an entry node

that is connected to the start nodes of the two paths and an exit node to which the

end nodes of the two paths are connected. We call the two paths the upper and lower

paths. For the sake of simplicity, we only mention and show the availability periods of

edges, which means that the available capacity of the edges is more than the requested

bandwidth for the respective periods. The idea of the gadget is that a path that traverses

the gadget from the entry node to the exit node must use either the upper path (which

corresponds to setting the variable to false) or the lower path (which corresponds to

setting the variable to true). This leaves the edges on the other path available, and

some of these edges can then be used by the path at a later time, which corresponds to

satisfying a clause.

Based on the restriction on the occurrence of literals to at most two times in the Boolean

formula, only two special edges, called literal edges, of each of the two paths in the

variable gadget are made feasible at all times so that they can be used in correspondence

to a literal occurrence in a clause. The availability of the edges other than the literal

edges is set in such a way that the data can enter the gadget for variable xi at time

5(i−1) and reach the exit node of the gadget at time 5i. The literal edges are separated

by edges with limited availability, so that a path arriving at the variable gadget from a

clause gadget (to be defined below) can only use one literal edge of the variable gadget.

To achieve this, the availabilities of the edges other than literal edges of the gadget are

101

set as shown in Figure 8.4: For the xi gadget, set the interval of availability of the edges

from 5 · (i− 1) + c to 5 · (i− 1) + c + 1, where c ∈ {0, 2, 4} is the index of the edge.

The edges on each of the two paths in the gadget are indexed by consecutive numbers

starting with 0. The index of the outgoing edge from the entry node of the variable

gadget is 0, and the indices of the literal edges are 1 and 3. The literal edges in the

upper path can be used for positive occurrences of the variable in clauses while the literal

edges in the lower path can be used for negative occurrences. For 1 ≤ i ≤ n − 1, the

gadget for variable xi is connected to the gadget for variable xi+1 by identifying the exit

node of the xi gadget with the entry node of the xi+1 gadget. The entry node of the

first variable gadget is the source node S.

For each clause Cj, 1 ≤ j ≤ m, we create a clause gadget with two nodes. We call

these nodes the entry and exit nodes of the clause gadget. The exit node of the nth

variable gadget is connected to the entry node of the first clause gadget via an edge.

The only feasible paths from the entry node of a clause gadget for clause Cj to the exit

node of the same clause gadget go via a literal edge corresponding to one of the literals

in the clause, i.e., a literal edge of the upper or lower path of the gadget of a variable

that occurs in the clause. For each of the three literals in the clause, we choose a literal

edge of the corresponding variable gadget in such a way that no two clauses choose the

same literal edge (which is possible since each literal occurs at most twice in the given

Boolean formula). For each literal in the clause, we add an edge from the entry node of

the clause gadget to the start node of the chosen literal edge that represents that literal

in the corresponding variable gadget, and an edge from the end node of that literal edge

to the exit node of the clause gadget. This enables a path of three edges that starts

at the entry node of the clause and goes through the start node and end node of a

literal edge and ends at the exit node of the clause. The availability of an edge related

to the clause gadget for clause Cj is set to the interval from 5 · n + 4 · (j − 1) + c to

5 · n+ 4 · (j − 1) + c+ 1, where c ∈ {0, 1, 3} is the index of the edge. Here, the index

is 0 for the incoming edge to the entry node of the clause, 1 for the edges from the

entry node to the start node of a literal edge, and 3 for the edges from the end node of

102

Figure 8.4. General settings for the availabilities of the edges in the variable gadget.

Figure 8.5. Example of the reduction from At-Most-3SAT to ES1
1 .

a literal edge to the exit node of the clause gadget. For 1 ≤ j ≤ m− 1, the exit node

of the clause gadget for Cj is connected to the entry node of the clause gadget for Cj+1

by an edge. The exit node of the mth clause gadget is set to be the destination D.

The idea of the construction is that the path from S to the exit node of the nth variable

gadget corresponds to a truth assignment for the n variables. A path following the upper

edges of a variable gadget sets the variable to false, a path following the lower edges

sets it to true. A clause gadget admits a feasible path from its entry node to its exit

node through a literal edge only if the truth assignment makes that literal true.

We illustrate the above graph construction with the help of an example. Given the

103

Boolean formula (¬X1 ∨ X2 ∨ X3) ∧ (X1 ∨ ¬X2 ∨ ¬X3) ∧ (¬X1 ∨ X2 ∨ ¬X3) with

m = 3 clauses and n = 3 variables, we produce the graph shown in Figure 8.5. The

graph consists of a gadget for each variable and a gadget for each clause. For the ease

of understanding of the figure we keep it less denser by omitting several edges of the

second and third clause gadget. The labels of the edges give their availability for data

transfer and the edges without label are feasible at all times.

Denote by I ′ the constructed instance of ES1
1 . Recall that I denotes the given instance

of At-Most-3SAT. We claim that I is satisfiable if and only if I ′ admits a feasible path

with arrival time at most 5n+ 4m+ 1. The proof in both directions is as follows.

(a) I is satisfiable ⇒ I ′ has a feasible path with arrival time at most 5n+ 4m+ 1.

Consider a truth assignment τ that satisfies the instance I of At-Most-3SAT.

Use the truth assignment τ to construct a path P from S to D as follows. First,

the path goes from S to the exit node of the Xn gadget by choosing in each

variable gadget the upper edges if the variable is false in τ and the lower edges if

the variable is true in τ . Denote this initial part of P by P ′. For each clause Cj,

let lj be a literal of Cj that is true in τ . Continue the path from the exit node

of the Xn gadget using the following edges for each clause Cj, 1 ≤ j ≤ m: Use

the incoming edge of the entry node of the Cj gadget, then the edge to the start

node of the literal edge chosen for lj during the construction, then that literal

edge (which is feasible as it is not used by P ′ nor by another clause), then the

edge from the end node of that literal edge to the exit node of the Cj gadget.

The resulting path P consists of 5n+ 4m edges. Each edge has delay 1, and it is

easy to verify that by construction the ith edge of the path is feasible at time i.

Hence, P is a feasible path with arrival time 5n+ 4m+ 1.

(b) I ′ has a feasible path with arrival time at most 5n+ 4m+ 1 ⇒ I is satisfiable.

Let P be a path from S to D with arrival time at most 5n+ 4m+ 1. The way in

which the availability periods of the edges have been set, P must first go from S

to the exit node of the Xn gadget by traversing the upper or lower path of each

104

of the n variable gadgets. Let P ′ denote this initial part of P . After that, P must

pass through all the clause gadgets, and in each clause gadget it must use a literal

edge that is not used by P ′. This means that the truth assignment corresponding

to P ′ must satisfy at least one literal in each clause, meaning that I is satisfiable.

Hence the above reduction shows that ES1
1 is an NP-hard problem.

To further illustrate that a satisfying truth assignment gives a feasible path from S to D,

we again refer to the Figure 8.5. We consider the following satisfying truth assignment:

X1 = true, X2 = false and X3 = true for the boolean formula mentioned above and

shown in the Figure 8.5. The shown path from S to the exit node of the X3 gadget

corresponds to the truth assignment. The exit node of the X3 gadget and the entry

node of the first clause are directly connected. For the clause (¬X1 ∨ X2 ∨ X3), the

entry and the exit nodes are connected through three paths: For literal ¬X1 one of

the two lower literal edges of the X1 gadget is used, for the positive literal X2 one of

the two upper literal edges of the X2 gadget is used, and for ¬X3 one of the two lower

literal edges of the X3 gadget is used.

The exit node of the first clause gadget is reachable only through two feasible paths,

one path for the literal ¬X1 and the other one for the literal X3. For literal X2, the

path via the corresponding literal edge is not feasible since all the upper edges of the X2

gadget have already been used by the path from S to the exit node of the X3 gadget

(and only edge-simple paths are allowed).In the same manner, feasible paths through

the second and third clause gadget can be found: Each of these clauses has a satisfied

literal, and the corresponding literal edge can be used for the path (we have shown one of

the feasible paths for the remaining clause gadgets). When the data is transferred from

S and reaches the exit node of the last variable gadget, its outgoing edge becomes

available at the appropriate time for appropriate duration, i.e., from 15 to 16. In the

same manner the path goes through the clause gadgets by following feasible edges with

appropriate timing to D. Complete data arrives at time 28 at D after going through

5n + 4m = 27 edges, where 5 is the number of edges in a variable gadget that must

105

Figure 8.6. An unsatisfying truth assignment does not give a feasible path from node S to node D.

be followed by a path, whereas 4 is the number of edges related to a clause gadget that

must be used by a path. Thus, a satisfying truth assignment gives a feasible path to the

destination node D.

Now we give an example, with the help of Figure 8.6, to show that an unsatisfying truth

assignment does not lead to a feasible path from S to D. We consider the following

unsatisfying truth assignment: X1 = true, X2 = false and X3 = false for the same

boolean formula discussed above. The path from S to the exit node of the X3 gadget

corresponds to the considered truth assignment. Three paths, corresponding to the

literals in the clause, from the entry node to the exit node of the first clause gadget

are drawn by following the same technique mentioned above (the paths for other clause

gadgets are not shown in the diagram). Here none of the paths for first clause gadget

is feasible, since all the needed literal edges have already been used by the path from

S to the exit node of the X3 gadget. Thus, the exit node of the first clause gadget

becomes unreachable from its entry node, and therefore D becomes unreachable. Thus,

an unsatisfying truth assignment does not give a feasible path to the destination node.

Definition 8.1.9. (ESarbarb problem)

Given the problem ARRP, we restrict the path to be an edge-simple path from S to D.

106

It is assumed that λ ≥ 1 and b ≥ 1 are arbitrary.

Corollary 8.1.10. ESarbarb is NP-Hard.

Proof. ES1
1 problem is a special case of the problem ESarbarb . Theorem 8.1.8 proves that

the ES1
1 problem is NP-hard. Hence the ESarbarb problem is also NP-hard.

Definition 8.1.11. (NS1
1 problem)

Given the problem ARRP, we allow the path from S to D to be a non-simple path,

λ = 1 and b = 1.

Theorem 8.1.12. NS1
1 is polynomial-time solvable.

Proof. This problem is related to a network flow problem discussed in [32], in which the

goal is to maximise the amount of flow from a source node that can reach a destination

node in the network within a given time limit, where each link has a traversal time and

a capacity that limits the rate at which flow can enter the link. The problem NS1
1 also

asks for data to be transmitted from a source to a destination within minimum time,

but the capacities of the edges are time-dependent and the data must be transmitted

along a single path and in the form of a burst with fixed rate rbw and duration b.

The NS1
1 problem can be solved using the Time-Expanded Network (TEN) construction

as done in [32]. A TEN is a network that contains copies of the original nodes of the

network for each discrete time step and edges connecting the nodes in different time

layers. The TEN for a given graph G = (V,E) of an instance of the problem NS1
1 is

denoted by G(T̃) and can be constructed as follows. G(T̃) contains T + 1 copies of V ,

denoted by VT̃ . The copy of node v ∈ V for time θ ∈ {0, 1, . . . , T} is denoted by vθ.

If nodes u, v ∈ V are connected by an edge e(u, v) ∈ E, edges e(uθ, vθ′) are added to

G(T̃), where θ′ = θ+ de(u,v), for all times θ at which edge e(u, v) is feasible. The path

with earliest arrival time from S to D can be found in polynomial time by finding the

copy Dθ for minimum θ that is reachable from a copy of S. To allow a more efficient

calculation of which copies of D are reachable from some copy of S, an additional node

107

S ′ is added to G(T̃) and connected to all copies of S. It then suffices to determine the

nodes that are reachable from S ′ using, for example, a single depth-first search. Among

all copies Dθ that are reachable from S ′, let Dθ be the one with minimum index θ. The

path from S ′ to Dθ then corresponds to a minimum arrival path.

The construction of the TEN for solving the problem NS1
1 can be illustrated with the

help of Figures 8.7 and 8.8. A sample instance of NS1
1 is shown in Figure 8.7, with

edge labels representing availability periods. The time horizon is T = 13. The TEN

for the graph given in Figure 8.7 is shown in Figure 8.8. It contains T + 1 = 14

copies of all nodes. The nodes are connected based on the availability of the links

between them at different times in the original graph. The paths from copies of S to

copies of D correspond to feasible paths along which data can be transmitted from S

to D. There are two paths through which D is reachable from S in this way, one is

S6-a7-b8-c9-a10-b11-D12 and the other is S10-a11-b12-D13. The path reaching D12 is an

earliest arrival time path.

As mentioned earlier, S ′ is added to the TEN in order to improve the efficiency of finding

the path that starts at some copy of S and reaches a copy Dθ of D with minimum index

θ. This can be explained further as follows. In the original graph G, let the total number

of nodes and edges be n and m, respectively. The graph G(T̃) has (T + 1) · n nodes

(without S ′) and T ·m edges (without the T + 1 edges from S ′ to copies of S). A naive

algorithm that checks for each pair of a copy Sθ of S and a copy Dθ′ of D whether

Dθ′ is reachable from Sθ in G(T̃) has running time O(T · (n + m)) for each pair and

thus O(T 2 · T · (n + m)) = O(T 3 · (n + m)) in total. By connecting S ′ to all copies

of S and running a single depth-first search from S ′, we can solve the problem in time

O(T · (n+m)). As the input has size O(n+m · T), the running-time is polynomial in

the size of the input.

Definition 8.1.13. (NSarb1 problem)

Given the problem ARRP, we allow the path from S to D to be a non-simple path with

λ = 1 and b ≥ 1.

108

Figure 8.7. Example instance of NS1
1 .

Figure 8.8. Time Expanded Network for the Instance of Figure 8.7.

109

Theorem 8.1.14. NSarb1 is NP-Hard.

Proof. To prove that NSarb1 is NP-hard, we use a reduction from the At-Most-3SAT

problem similar to the proof of Theorem 8.1.8. For a given instance I of At-Most-3SAT

with m clauses and n variables, we construct a graph as follows. For each variable

xi, 1 ≤ i ≤ n, we create a gadget of 10 connected nodes, consisting of two parallel

paths of 4 nodes connected to an entry node and an exit node at each end. We call

these paths upper and lower paths. For the sake of simplicity, we only mention the

availability periods of edges. If an edge is feasible at a certain time, this means that the

available capacity of the edge is set equal to the requested bandwidth rbw. Each upper

path and each lower path contains again two literal edges, which are made feasible to be

used in correspondence to a literal in a clause. The duration of the data transfer is set

long enough to ensure that each literal edge can be used only once in the time horizon of

interest. The literal edges in the upper path can be used for positive literals in clauses,

while the literal edges in the lower path can be used for negative literals. The gadget for

the variable xi is connected to the gadget of variable xi+1 by identifying the exit node

of the xi gadget with the entry node of the xi+1 gadget, for 1 ≤ i ≤ n− 1. The entry

node of the first variable gadget is defined to be S. The exit node of the nth variable

gadget is connected to the entry node of the first clause gadget by an edge. For each

clause Cj, 1 ≤ j ≤ m, we again create a gadget with two nodes, the entry node and

exit node of the clause gadget. The only feasible paths from the entry node of the

clause gadget for Cj to the exit node of the same clause gadget go via a literal edge of

the upper or lower path of the corresponding gadget of the variable in the clause. The

path starts from the entry node of the clause, goes through the source node and the

target node of a literal edge, and ends at the exit node of the clause gadget.

The exit node of the clause gadget for Cj is connected to the entry node of the clause

gadget for Cj+1 by an edge, for 1 ≤ j ≤ m − 1. The exit node of the mth clause

gadget is defined to be D. As mentioned earlier, the duration of the data transfer needs

to be set in such a way that it will cause a conflict if a literal edge is used more than

110

once in the path from S to D. By conflict we mean that the data enters the edge for

the second time while the edge is still being used for the earlier data transmission (i.e.,

before the last bit of the data has entered the edge for the first time), which means

that the capacity of the edge is exceeded. A duration of the data transfer that ensures

that a conflict is created if an edge is used twice in our construction is called conflict

duration, denoted by cd. We can choose cd = 5 · n + 4 ·m, where 5 is the number of

edges per side of a variable gadget and 4 is the number of edges that a path uses when

it traverses a clause gadget (which include the incoming edge to the entry node of the

clause gadget and three edges for a path from the entry node to the exit node of the

same clause gadget via a literal edge). Thus cd is the total number of edges in a path

from S to D that first passes through all the variable gadgets and then all the clause

gadgets. We set the duration of the data transfer to b = cd.

To restrict a clause path to use only one literal edge of a variable gadget for the

corresponding variable, the availabilities of the edges are set as follows. For the xi

gadget, set the interval of availability of the edges to be from 5 · (i − 1) + c to 5 ·

(i − 1) + c + b, where c ∈ {0, 2, 4} is the index of the edges, defined as in the proof

of Theorem 8.1.8. The availability of an edge related to the clause Cj is set to be the

interval from 5 · n+ 4 · (j − 1) + c to 5 · n+ 4 · (j − 1) + c+ b, where c ∈ {0, 1, 3} is

the index of the edge, again defined as in the proof of Theorem 8.1.8.

We illustrate the above graph construction with the help of an example. Given the

Boolean formula (¬X1 ∨ X2 ∨ X3) ∧ (X1 ∨ ¬X2 ∨ ¬X3) ∧ (¬X1 ∨ X2 ∨ ¬X3) with

m = 3 clauses and n = 3 variables, we produce the graph shown in Figure 8.9. The

graph consists of a gadget for each variable and a gadget for each clause. The labels

of edges give their availability for data transfer. The value of cd for this graph is 27,

but for the simplicity of representation we assume the duration of the data transfer is

b = 100 (any value of b that is at least 27 would work). All the literal edges are made

feasible at all times.

The shown path from S to the last node of the nth variable gadget corresponds to a

truth assignment that sets X1 and X2 to false and X3 to true. The exit node of the

111

Figure 8.9. Graph construction for an example instance of the At-Most-3SAT problem.

clause gadget for (¬X1∨X2∨X3) is reachable through only two paths, one via a lower

literal edge of the X1 gadget for the literal ¬X1 and the other one via an upper literal

edge of the X3 gadget for the literal X3. For literal X2, the corresponding path would

cause a conflict on the literal edge since all the upper edges of the X2 gadget are still

under use for the first data transmission at time 17. In the same manner, the edges for

the second and the third clause can be constructed (not shown in the figure).

Recall that I is the given instance of At-Most-3SAT, and let I ′ denote the constructed

instance of NSarb1 . We claim that I is satisfiable if and only if I ′ has a feasible path

from S to D with arrival time at most 5n+ 4m+ b. The proof in both directions is as

follows.

(a) I is satisfiable ⇒ I ′ has a feasible path from S to D with arrival time at most

5n+ 4m+ b.

Let τ be a truth assignment that makes I true. It can be used to construct a

path from S to D as follows. First, the path goes from S to the exit node of

the Xn gadget by following in each variable gadget either the upper or the lower

path, depending on whether τ sets the corresponding variable to false or true,

respectively. Denote this initial part of the path by P ′. For each clause Cj, let

112

lj be a literal of Cj that is made true by τ . Complete the path P ′ by traversing

all the clause gadgets, choosing in the Cj gadget the path via the literal edge

corresponding to lj. This gives a path from S to D that consists of 5n + 4m

edges and thus has arrival time 5n+ 4m+ b. Furthermore, the path does not use

any edge twice (ensuring that there is no conflict), and each edge of the path is

feasible at the time period when data is transmitted through it. Hence, I ′ has a

feasible path from S to D with arrival time 5n+ 4m+ b.

(b) I ′ has a feasible path from S to D with arrival time at most 5n+ 4m+ b ⇒ I is

satisfiable.

Let P be a path from S to D in I ′ with arrival time at most 5n + 4m + b. As

the duration of the data transfer is b and all edges have delay 1, the path must

consist of at most 5n + 4m edges. As the duration of the data transfer is not

smaller than cd = 5n + 4m and no edge has more than rbw available capacity

at any time, P does not use any edge twice. Furthermore, by the choice of the

availability periods of the edges, the path P must traverse first all the n variable

gadgets and then all the m clause gadgets and thus consist of exactly 5n + 4m

edges.

Let P ′ be the initial part of P from S to the exit node of the nth variable gadget.

Let τ be the truth assignment corresponding to P ′. As P must traverse each

clause gadget via a literal edge corresponding to a literal of the clause that is

made true by τ , we have that τ satisfies I.

Hence, the above reduction show that NSarb1 is an NP-hard problem.

ARRP with λ = 0

In some scenarios, the delay of the links in the network may be negligible compared to

the units of time for which advance reservations are recorded in the utilisation profiles. In

such scenarios, the link delay can effectively be assumed to be zero. Finding an earliest

arrival path is possible in polynomial time in this case. Using our notation, we consider

113

delay = 0 delay ≥ 1

duration = 1 arbitrary duration duration = 1 arbitrary duration

Simple Path polynomial polynomial NP-Hard NP-Hard
Edge-Simple Path polynomial polynomial NP-Hard NP-Hard
Non-Simple Path polynomial polynomial polynomial NP-Hard

Table 8.1. Complexities of variants of routing problem in advance reservation environment.

ARRP with λ = 0. The problem is solvable in polynomial time as follows (see [41] for

a similar algorithm): To find a path from S to D when b = 1, for each θ ∈ [0, T − 1]

remove all the links from graph G which are not feasible at time θ. Check whether a

path from node S to D exists using only the remaining links. Repeat the process until

a path is found or the time limit T is reached. For the case when b ≥ 1, the same

approach can be followed, except that links are only kept in the graph if they are feasible

at all times from time θ to θ + b − 1. Furthermore, we note that in the case λ = 0 a

simple path with arrival time t exists if and only if an edge-simple or non-simple path

with arrival time t exists.

Table 8.1 summarises the complexity results for the variants of ARRP considered in this

section.

8.2 Shortcomings of Previous Routing Methods

Finding a simple path that gives the earliest arrival time for a data transfer from a source

to destination in an OBS network with non-zero link delays that supports AR is NP-hard,

as shown in the previous section. For this reason, different polynomial-time heuristics

have been proposed by Varvarigos et al. [70], and a Dijkstra variant was proposed by us

(see Section 4.1). These heuristics do not guarantee to produce an optimal path. We

noticed that there are scenarios, even when the delay of all the links is zero, in which

these heuristics can be misled while there is a way of routing the data on a much better

path.

To explain the scenarios the problem Sarb0 is defined as follows. Given the problem ARRP,

we restrict the path to be a simple path from the source to the the destination, λ = 0

114

and b ≥ 1. Consider the problem Sarb0 and the graph G with V = {S,A,B,C,D} shown

in Figure 8.10. The labels of the links show the range of future time slots at which rbw

bandwidth is available. It is assumed that the duration is b = 20 if bandwidth rbw is

used for the data transfer. S is the source node and D is the destination node. We show

that the variant of Dijkstra’s algorithm not only fails to find a simple path with earliest

arrival time but also fails to find any existing path. Due to the earliest arrival time

criterion used by our variant of Dijkstra’s algorithm, the path to a node which is feasible

for transmission at earlier time will be selected and the path with later transmission time

will be dropped. By following the Associative Operation ⊕ for path calculation, it can

be seen that the arrival time at the node B is 40 for the path S-A-B. The path S-B is

dropped because of its later arrival time (i.e., 60). For the node C the path S-A-B-C is

better but it cannot be continued to node D because of the unavailability of link C-D

at the time when the path S-A-B-C is feasible. The decision of dropping the path S-B

caused the path S-B-C to be missed, which would have led to D. Thus, in AR scenarios

the simple variant of Dijkstra’s algorithm may miss an optimal path or even non-optimal

existing path(s). For this reason, routing algorithms which unlike Dijkstra’s approach

maintain a set of multiple paths to each node were proposed in [70].

In Section 4.1, we discussed the AW and the CS heuristics proposed in [70]. Here we

illustrated the potential inefficiency exhibited by these heuristics in certain situations

using the example graph given in Figure 8.11. Consider the Sarbarb problem and a graph

G with V = {S,A,D}. S is the source node and D is the destination node. The delays

of links S-D, S-A and A-D are 3, 1 and 1, respectively, and it is assumed that b = 20.

First, AW and CS compute a set of non-pseudo-dominated paths. S-A-D and S-D

are the two paths from S to D. According to the pseudo-domination checks of both

AW and CS, the path S-A-D dominates the path S-D because its delay is smaller, it

is feasible during more time slots and it has more fragments of 20 consecutive feasible

slots. Thus, the path S-D is discarded. However, the path S-D has an earlier arrival

time. Hence, a better path is missed. To address the problems shown in Figures 8.10

and 8.11, we will propose a K-th shortest path variant in the next section.

115

(a) Link labels show the range of time slots at which the requested
bandwidth is available.

(b) Two paths are found from node S to node B, S-A-B and S-B.
Dijkstra’s algorithm drops the path S-B because of its later arrival
time.

(c) Due to the decision made in the previous figure, the path
S-A-B-C is adopted, which fails to reach node D because of mist-
iming.

Figure 8.10. The variant of Dijkstra’s algorithm fails to find an existing path for earliest arrival time of
data from node S to node D.

Figure 8.11. Two paths from node S to node D are found. Link labels show the time slots when the
requested bandwidth is available and the delay, in parentheses. According to CS and AW the path
S-A-D pseudo-dominates the path S-D.

116

8.3 K-th Shortest Path Variant for AR Routing Prob-

lem

The K-th Shortest Path (KSP) problem was initially introduced by Hoffman and Pavely

in 1959 [42]. Afterwards, several algorithms were proposed for this problem. In the KSP

technique, a set {p1, p2, · · · , pK} of paths from source to target node are determined

for an objective function c in such a way that

c(pk) ≤ c(p), for any p ∈ P − P (k − 1) for all k ∈ {2, 3, · · · , K},

where P is the set of all simple paths from source to target node and

P (k) = {p1, p2, · · · , pk} is the set of k shortest paths, for k ∈ {1, 2, · · · , K}.

So along with finding the shortest path, a second, third, . . . , Kth shortest path are also

found. A typical application where KSP is used is to find multiple shortest paths in a

network, so that in case a problem arises on the shortest path, the next shortest path

can be used.

Computing the K shortest paths with respect to edge delays and then choosing the

path with minimum arrival time among the K paths seems a promising approach to the

routing problems we are considering. If the KSP technique is applied in the scenario

shown in Figure 8.10, it may find the path S-B-C-D as the second shortest path. It

will also work in scenarios like the one shown in Figure 8.11.

One of the issues with the KSP technique in the AR scenario is the choice of the value

of K. In larger networks it would be difficult to decide what value of K is necessary

or sufficient to yield the optimal path. The KSP approach may miss a better path in

larger networks similarly as Dijkstra’s variant can miss it already among few feasible

paths (Figure 8.10). The other issue is the fine tuning of the KSP algorithm for the AR

scenario. Even though different algorithms with different running times are available for

the standard KSP, in the AR environment where a vector data structure computation is

involved, KSP algorithms may get slow. Our work is not intended to address these issues

of the KSP algorithm, but to show that in some cases it can indeed find a better path than

117

the CS and AW heuristics. In our experiments we, used a modified KSP code written by

Guillaume Boulmier [22], which is a variant of Bellman-Ford algorithm [17, 33, 54]. The

original algorithm for KSP implemented by Guillaume Boulmier and our modification are

described in the following.

Notation

A directed graph G has a set of vertices V and a set of edges E. The weight of each

edge in E is called its delay. The weight w of a path is the sum of the delays of the

edges in the path. The objective is to find the K shortest paths on the basis of w from

a source vertex S to a destination vertex D. K paths to each vertex v ∈ V are stored in

KPathListv in ascending order of w. curr iV is a set of currently improved vertices,

to which a better path has been found in the current iteration of the outermost loop in

the procedure FindKShortestPaths, and prev iV is a set of previously improved vertices

to which a better path was found in the previous iteration of the outermost loop.

Pseudo-code

Description

To find a shortest path in a graph, the standard Bellman-Ford algorithm uses two nested

loops: The number of iterations of the outer loop is equal to the number of vertices,

and in each iteration of the outer loop, the inner loop processes all edges. In each

iteration of the inner loop, the distance and predecessor node of the vertex reached by

the edge are updated if a shorter path is found. The complexity of the Bellman-Ford

algorithm is O(|V | · |E|). In the pseudo-code above, this approach has been adapted

to the KSP as follows. Unlike the Bellman-Ford algorithm, the pseudo-code above does

not go through all edges at each iteration of the outermost loop. Instead, it keeps a set

of vertices for which a better path was found in the previous iteration of the outer loop.

It only goes through the edges of these previously improved vertices and may insert the

118

Algorithm 8.1 Guillaume Boulmier Implementation of KSP Algorithm

function FindKShortestPaths(G,S,D)
Initialization(S, prev iV)
for passNumber = 0 to V.size() do

for each piv in prev iV do
updateOutgoingEdges(piv)

end for
prev iV ← curr iV

end for
end function
function Initialization(S, prev iV)

prev iV ← previV ∪ S
add empty path to KPathListS

end function
function updateOutgoingEdges(piv)

for each v in V neighbour of piv do
if newPathAdded(cv, piv, e) then

curr iV ← curr iV ∪ cv
end if

end for
end function
function newPathAdded(cv, piv, e)

pathAdded ← false
for each p in KPathListpiv do

np ← p ∪ e (np is the encountered path to cv)
wnp ← weight of np
for each q in KPathListcv do

wq ← weight of q
if wnp ≤ wq then

insert np in KPathListcv
pathAdded ← true
if size of KPathListcv > K then remove last path from

KPathListcv
end if

end if
if (wnp > wq) and (q is the last path in KPathListcv) and (size of

KPathListcv < K) then
insert np in KPathListcv
pathAdded ← true

end if
end for

end for
return(pathAdded)

end function

119

encountered paths into their neighbour’s KPathList. For each vertex, a set of the up

to K best paths found from the source to this vertex is maintained. The complexity of

this algorithm is O(K · |V | · |E|)

In our approach, we maintain the KPathList on the basis of EAT instead of w. The

EAT of a path is computed in the same manner as discussed in Section 3.4. The

EAT of each path is computed only once, when it is first encountered, and stored in the

KPathList together with the path and its CAV. The time complexity of our approach is

O(|V |·|E|·K ·T), where T is the size of the utilisation profile of a link (see Section 8.2).

One point is important to be mentioned regarding the difference between the path

selection technique used by this KSP variant and by the heuristics due to Varvarigos

et al. [70]: The KSP variant starts looking for a path on the basis of the objective

criterion of earliest arrival time from the beginning, while CS and AW first build a set

of non-pseudo-dominated paths and only at the end select the best path among them

on the basis of the objective criterion. The CS and AW approach is flexible and can be

used for different objective functions at the same time, but may not perform better in

every case.

8.4 Evaluation

We evaluate six heuristics for the routing problem with advance reservation using the

GridSim simulator [67]. Among them, three are different versions of KSP, namely K5,

K10 and K20, for which the value of K has been chosen as 5, 10 and 20, respectively.

The other three algorithms are the non-polynomial optimal method (OM), CS and AW

proposed by Varvarigos et al. [70]. The main evaluation criterion is the arrival time of

the computed path in an AR network for a data transmission from a single source node

to a single destination node using the requested bandwidth. The tendency of a heuristic

to fail to find an existing path in the network is also studied. The time complexities and

CPU running time of the heuristics are compared as well. Experiments are conducted

for four network topologies. Two network topologies (Figures 8.12b and 8.12c) were

120

used by Varvarigos et al. for their experiments. One network topology is a subset of the

European DataGrid Testbed (Figure 8.12a) and one is a randomly generated network

(Figure 8.12d). The link delay is kept the same for all network topologies. There is only

one source node and one destination node, and they are shown in each network figure.

The simulation parameters and the procedure for setting them are as follows. We assume

that each link has a maximum bandwidth of 1000 Megabits per second (Mbps). The

parameter minimum load is specified as percentage of the maximum bandwidth, e.g., a

minimum load of 80% would correspond to 800 Mbps in this case. To get the actual

load value, a random value between 0 and the difference of maximum bandwidth and

minimum load is generated, which would be 20 in this case, and then subtracted from the

maximum bandwidth. The reason for adopting this technique is to make the situation

harder for path finding. While populating utilisation profile with the randomly generated

load values, each load value is assigned to a number of contiguous slots (ncs). The

choice of ncs has a significant effect on the availability of a path for the requested

bandwidth, as explained below. The size of the utilisation profile (uSize), within which

we have to find a path, is also set. The other two parameters are the data file size (dfs)

in Megabytes, which will be transferred from the source to the destination node, and

the requested bandwidth (rbw), against which the utilisation profile is checked.

The combination of the above parameters can greatly affect the outcome of an experi-

ment. If the rbw is kept closer to the available bandwidth, say 6 Mbps for an 18 MB file,

then the transfer requires 24 contiguous slots (assuming a slot duration of one second)

on multiple links from the source to the destination. If the value of parameter ncs is

small, say 1, then the probability of the occurrence of 24 contiguous slots in a utilisation

profile having available bandwidth equal to or greater than 6 Mbps is low. The proba-

bility will be high if ncs is set to 25, however. So the four parameters minimumload,

ncs, rbw and dfs, can be adjusted to make the path finding difficult or easier.

We experimented with 5 different combinations of these above parameters for each

network. Due to different topologies, the number of links in a path from source to

121

(a) The network topology of the subset of the European Data Grid test bed [16].

(b) The NSF network topology used in [70].

Figure 8.12. Four network topologies used for experiments. Source and destination nodes are also
shown. (Figure continues on next page.)

122

(c) 5X5 mesh network topology used in [70].

(d) Random network topology.

Figure 8.12. (cont’d) Four network topologies used for experiments. Source and destination nodes are
also shown.

123

min. load rbw dfs ncs duration

D1 80-90% 30 Mbps 100 MB 5-10 27
D2 80% 30 Mbps 200 MB 5-10 54
D3 80% 30 Mbps 300 MB 5-15 80
D4 80% 30 Mbps 400 MB 10-15 107
D5 85% 40 Mbps 400 MB 10-15 80

Table 8.2. Parameter Settings for Experiments.

destination varies between the topologies, and we slightly modified the parameters

in the 5 combinations. We named these 5 combinations D1,D2,D3,D4 and D5 (see

Table 8.2). For each parameter combination, on every network the simulation is run at

least 100 times and the average of the EAT of only those simulation runs are shown in

the results in which all the algorithms found a path.

Performance for earliest arrival time

First we discuss the results for the EDG network topology (Table 8.3a). For parameter

settings D1, D2 and D3 the value of ncs is set to 5. For D4 and D5 the value of ncs

is set to 10 to relax the situation for the algorithms. The results are variable but overall

the KSP variants performed very well. For D1, D2 and D5 all the KSP variants gave

optimal results, the same as OM, while gaining improvements up to approximately 13%

over CS and AW. For the EDG network, even K5 seems efficient. The reason CS and

AW could not perform well or optimally is the way parameter ncs is set. KSP variants

remain successful because there are few possible paths from S to D, so the chance of

missing a better path or even the optimal path is low. CS and AW seem to be misled

due to the way the parameters are set.

In case of the NSF network topology, again the KSP variants performed better than CS

and AW, especially for D2 where 30% improvement is obtained (Table 8.3b). Once again,

the KSP variants either give optimal paths or are close to the optimal paths. Another

point that is common with the EDG network topology result is that the performance

of K5 is the same as the performance of K20. For D5, all the algorithms gave the

same results. A possible explanation is that the harder setting of parameters forced all

algorithms to choose from among very few paths. The paths with fewer edges have a

124

better chance of being feasible and are selected by all of the algorithms.

The 5X5 network topology with a large number of possible paths from the source to the

destination increased the difference between the optimal path and the paths found by

the heuristics (Table 8.3c). Still, the KSP variants performed better than CS and AW

with up to 33% improvement, except for D1 and D2, where CS is marginally better.

It is noticeable that with the increase in the possible number of paths, K20 performed

better than K5 and K10, which shows that the network size may affect the suitable

choice of K for finding a good solution.

In the Random network topology not only the number of possible paths are higher but

many paths from the source to the destination node are longer as well (Table 8.3d). This

make it difficult for heuristics, even for K20, which was closer to optimal for the other

discussed networks, to stay close to the optimal method, unless the parameter settings

are relaxed. The probability is higher that a longer path can change a good decision into

a bad one in the end, as illustrated in Figure 8.10. Still, the KSP variants performed

very well with K20 obtaining a maximum improvement of 60% over AW and 34% over

CS for D2. Further improvements may be possible with higher values of K, but as

discussed earlier it is not easy to tell for which network with what parameter settings

which value of K would be the right choice. Experience may be helpful in selecting the

right value of K.

The results are also shown as bar charts in Figures 8.13, 8.14, 8.15 and 8.16. Overall, the

KSP variants have outperformed CS and AW . Among the two heuristics by Varvarigos

et al. [70], CS performed better than AW in a number of cases. In the harder scenarios,

among the KSP variants K20 performed better. In relaxed situations, all variants of

KSP gave almost the same performance.

Path finding failures

It was mentioned earlier that in the AR environment, the heuristics under consideration

may give an optimal or non-optimal path or miss existing paths entirely (i.e., fail to find

125

259.23&

294.96&

1589.36&

676.14&

3674.43&

259.23&

294.96&

1589.36&

675.05&

3674.43&

259.23&

294.96&

1589.36&

675.05&

3674.43&

259.23&

294.96&

1580.49&

675.05&

3674.43&

297.20&

306.30&

1608.24&

726.04&

3816.14&

297.20&

306.30&

1608.24&

726.04&

3862.05&

0.00&

500.00&

1000.00&

1500.00&

2000.00&

2500.00&

3000.00&

3500.00&

4000.00&

4500.00&

D1& D2& D3& D4& D5&

Ea
rl
ie
st
)A
rr
iv
al
)T
im

e)
(s
ec
on

ds
))

Parameter)Se6ngs)

K5&

K10&

K20&

OM&

CS&

AW&

Figure 8.13. EAT found by all routing heuristics for each distribution on EDG network topology.

1901.13&

192.40&

740.1&

3903.44&

6561.79&

1901.13&

191.43&

740.1&

3903.44&

6561.79&

1901.13&

191.43&

740.1&

3903.44&

6561.79&

1901.13&

182.69&

710.9&

3771.95&

6561.79&

1922.75&

266.57&

898.8&

4089.48&

6561.79&

2008.81&

273.66&

921.9&

4313.07&

6561.79&

0.00&

1000.00&

2000.00&

3000.00&

4000.00&

5000.00&

6000.00&

7000.00&

D1& D2& D3& D4& D5&

Ea
rl
ie
st
)A
rr
iv
al
)T
im

e)
(s
ec
on

ds
))

Parameter)Se6ngs)

K5&

K10&

K20&

OM&

CS&

AW&

Figure 8.14. EAT found by all routing heuristics for each distribution on NSF network topology.

126

3506.23'

6100.06'

427.72'

2126.28'

1444.80'

3397.77'

5937.24'

437.52'

2126.28'

1390.00'

3268.67'

5887.66'

397.92'

2087.72'

1363.47'

3163.96'

5621.61'

344.55'

1998.16'

1266.27'

3360.75'

5819.77'

553.27'

2141.06' 1515.87'

3635.81'

6162.31'

599.21'

2252.94' 1785.73'

0.00'

1000.00'

2000.00'

3000.00'

4000.00'

5000.00'

6000.00'

7000.00'

D1' D2' D3' D4' D5'

Ea
rl
ie
st
)A
rr
iv
al
)T
im

e)
(s
ec
on

ds
))

Parameter)Se6ngs)

K5'

K10'

K20'

OM'

CS'

AW'

Figure 8.15. EAT found by all routing heuristics for each distribution on 5X5 network topology.

332.91&

608.36&

917.24&

2125.46&

3729.50&

328.06&

581.03&

870.00&

2125.46&

3692.25&

322.20&

498.16&

804.77&

2090.85&

3571.50&

216.90&

339.94&

635.98&

2020.85&

3119.50&

422.61&

764.00&

1079.95&

2393.92&

3580.00&

529.42&

1255.51&

1230.28&

2492.38&

4432.00&

0.00&

500.00&

1000.00&

1500.00&

2000.00&

2500.00&

3000.00&

3500.00&

4000.00&

4500.00&

5000.00&

D1& D2& D3& D4& D5&

Ea
rl
ie
st
)A
rr
iv
al
)T
im

e)
(s
ec
on

ds
))

Parameter)Se6ngs))

K5&

K10&

K20&

OM&

CS&

AW&

Figure 8.16. EAT found by all routing heuristics for each distribution on Random network topology.

127

D1 D2 D3 D4 D5

OM CS AW OM CS AW OM CS AW OM CS AW OM CS AW

K5 0 12.8 12.8 0 3.7 3.7 -0.6 1.2 1.2 -0.2 6.9 6.9 0 3.7 4.9
K10 0 12.8 12.8 0 3.7 3.7 -0.6 1.2 1.2 -0.2 6.9 6.9 0 3.7 4.9
K20 0 12.8 12.8 0 3.7 3.7 -0.6 1.2 1.2 -0.2 6.9 6.9 0 3.7 4.9

(a) Results for EDG network topology (Figure 8.12a).

D1 D2 D3 D4 D5

OM CS AW OM CS AW OM CS AW OM CS AW OM CS AW

K5 0 1.1 5.4 -5.3 27.8 29.7 -4.1 17.7 19.7 -3.5 4.6 9.5 0 0 0
K10 0 1.1 5.4 -4.8 28.2 30.1 -4.1 17.7 19.7 -3.5 4.6 9.5 0 0 0
K20 0 1.1 5.4 -4.8 28.2 30.1 -4.1 17.7 19.7 -3.5 4.6 9.5 0 0 0

(b) Results for NSF network topology (Figure 8.12b).

D1 D2 D3 D4 D5

OM CS AW OM CS AW OM CS AW OM CS AW OM CS AW

K5 -10.8 -4.3 3.6 -8.5 -4.8 1 -24.1 22.7 28.6 -6.4 0.7 5.6 -14.1 4.7 19.1
K10 -7.4 -1.1 6.6 -5.6 -2 3.7 -27 20.9 27 -6.4 0.7 5.6 -9.8 8.3 22.1
K20 -3.3 2.7 10.1 -4.7 -1.2 4.5 -15.5 28.1 33.6 -4.5 2.5 7.3 -7.7 10 23.7

(c) Results for 5X5 network topology (Figure 8.12c).

D1 D2 D3 D4 D5

OM CS AW OM CS AW OM CS AW OM CS AW OM CS AW

K5 -53.6 21.2 37.2 -79 20.4 51.6 -44.2 15.1 25.4 -5.2 11.2 14.7 -19.6 -4.2 15.9
K10 -51.5 22.4 38 -70.9 24 53.7 -36.8 19.4 29.3 -5.2 11.2 14.7 -18.4 -3.1 16.7
K20 -48.6 23.8 39.1 -46.5 34.8 60.3 -26.5 25.5 34.5 -3.5 12.7 16.1 -14.5 0.2 19.4

(d) Results for Random network topology (Figure 8.12d).

Table 8.3. Improvement percentage of KSP variants for EAT over other algorithms for four network
topologies.

any path that allows transmitting the data from the source to the destination within the

given time horizon even though such a path exists). To study this further, we collected

the data shown in Table 8.4. The only algorithm which cannot miss an existing path

is OM, so it was used to check if a path exists at all in each given instance of the

routing problem. The total number of instances where OM finds a feasible path was

used to calculate for each of the other algorithms the percentage of instances where

that algorithm misses an existing path. For the EDG topology, none of the algorithms

ever missed an existing path, presumably because of the relatively small network size.

In the case of the NSF topology, AW missed an existing path several times for D1 and

D5, and once for D4. CS missed an existing path once. None of the KSP versions

missed a path for the NFS topology. Although the topology is neither large nor dense

(in terms of the ratio of edges to nodes), the reason why AW misses a path could be its

path pruning technique, which was discussed earlier in Section 8.2. The 5X5 topology

is a denser and larger network, which made heuristics miss a path more often than for

128

K5 K10 K20 CS AW

EDG Network

D1 0 0 0 0 0

D2 0 0 0 0 0

D3 0 0 0 0 0

D4 0 0 0 0 0

D5 0 0 0 0 0

NSF Network

D1 0 0 0 1.1 2.4

D2 0 0 0 0 0

D3 0 0 0 0 0

D4 0 0 0 0 1

D5 0 0 0 0 2.5

5X5 Network

D1 9.7 7.5 4.3 3.2 4.3

D2 6.5 6.5 5.2 2.6 3.9

D3 0 0 0 0 0

D4 10.3 10.3 5.1 5.1 5.1

D5 13.6 8 5.7 3.4 3.4

Random Network

D1 0 0 0 0 0

D2 0 0 0 0 0

D3 1.8 0.9 0.9 2.7 2.7

D4 18.4 15.8 11.8 25 34.2

D5 15.6 11.1 7.8 14.4 21.1

Table 8.4. Percentage of instances where the algorithms fail to find an existing path for the four network
topologies.

the smaller topologies. Another factor which should be considered is the setting of the

parameters, as tighter settings make it harder to find a path. For D3 the parameter

settings are relaxed as compared to D1 and D2, and they are gradually made tighter for

D4 and D5. It is noticeable that K5 is the heuristic that has the lowest chance to find a

feasible path. This drawback is related to the remarks made in Section 8.2 stating that

in larger networks with tighter parameter settings, a smaller value of K might cause the

algorithm to miss an existing path. By increasing the value of K, the chances for missing

an existing path can be reduced, as the results of K20 show. The Random topology

is also dense and large, and the parameter settings are gradually made tighter from D1

to D5. CS and AW missed existing paths more often than the KSP variants. It seems

that the topology of the Random network plays a major role in this result. We conclude

that in the AR environment, larger size and density of a network and tighter parameter

settings can make it harder for heuristics to find an existing path.

129

Time complexity and CPU time

Another aspect for the evaluation is the time complexity of the heuristics and their

CPU usage time during the simulation experiments. According to our analysis, the time

complexity of the polynomial heuristics by Varvarigos et al. is O(|V | · T · log(|V | · T) +

|E| ·T 3) which is greater than the time complexity of the KSP-based heuristic, which is

O(|V | · |E| ·K ·T) (see Section 8.3). To measure the CPU usage time, we adopted the

following procedure. At the start of a simulation run, the utilisation profiles of all links

in the simulated network are populated. Each algorithm is run one by one on the same

instance in the simulation. The utilisation profile remained the same for all algorithms. It

was observed that an algorithm which is run earlier runs more slowly and one which is run

later runs faster, which could be an effect of the availability of data (like the utilisation

profiles) in the system cache of the simulation platform. To get fairer measurements,

each algorithm was run twice and the CPU time was measured for the second run. Still

the results should only be seen as a rough indication of the running time. A point that

needs to be mentioned regarding the running time of the KSP variant is that due to

its implementation technique the running time may vary for the same network with the

same utilisation profile size. This variation is related to the path availability, as the

algorithm runs faster if fewer paths are feasible and need to be added to the path lists

of the nodes. The running time of the algorithms for all network topologies are given in

seconds in Table 8.5.

For the smaller networks, EDG and NSF, the running time differences are marginal.

For the Random network, which has more vertices and edges, the KSP heuristic K20,

which is the slowest of the KSP variants, is 10 to 20 times faster than AW for different

parameter settings, and the CS heuristic is 4 to 7 times slower than AW for the same

settings.

For the 5X5 network, K20 is an order of magnitude faster than AW, and CS performed

worse than AW especially for D1 and D3. The reason is the network topology of the

5X5 network and the domination condition used by AW and CS (see (4.7)). This can

130

K5 K10 K20 OM CS AW

EDG Network

D1 0.2 0.5 0.7 0.6 0.3 0.3

D2 0.2 0.5 0.8 0.6 0.2 0.3

D3 0.2 0.5 0.5 0.6 0.3 0.3

D4 0.1 0.1 0.1 0.6 0.3 0.3

D5 0.1 0.2 0.2 0.6 0.3 0.3

NSF Network

D1 0.5 1.0 1.6 3.6 0.5 0.5

D2 0.2 0.2 0.2 3.6 1.0 0.5

D3 0.3 0.5 0.5 3.6 0.8 0.5

D4 0.1 0.1 0.1 3.6 1.2 0.5

D5 0.1 0.1 0.1 3.6 1.2 0.5

5X5 Network

D1 0.06 0.06 0.2 747.6 133.5 8.3

D2 0.06 0.06 0.2 601.5 4.5 5.0

D3 0.05 0.05 0.2 810.6 574.7 16.8

Random Network

D1 0.07 0.1 0.2 52.7 2.1 2.0

D2 0.04 0.07 0.1 61.0 13.7 2.0

D3 0.06 0.13 0.2 14.7 5.2 1.6

D4 0.05 0.1 0.1 13.8 6.4 1.9

D5 0.04 0.07 0.1 14.1 7.8 1.8

Table 8.5. Indication of running time (in seconds) of algorithms in the simulation.

be explained as follows. As the delay of each link in the 5X5 network is the same, when

the set of non-dominated paths from node 1 to node 25 (see Figure 8.15) is made on

the basis of the condition that a path can dominate another only if the delay of the

path is strictly less than the delay of the other path, then a large number of paths will

remain in the set because of the existence of many alternative paths having the same

minimum delay for this network topology. Additionally, the second condition of the

domination check will not make a difference if all the paths are made completely feasible

or unfeasible because the weight of CAV or the number of runs of consecutive ones in a

CAV will be the same. If the condition related to delay is modified to require inly that

the delay of one path is at most the delay of the other path (i.e., domination is possible

between paths of the same delay), then this will prune many paths and make the CS

and AW algorithms faster for the above-mentioned situation. In situations where paths

are mostly feasible, the new modified pruning condition will help, but if the availabilities

of the paths are variable then the danger of moving further away from the optimal path

may also increase.

131

In summary, it can be concluded that the KSP variants do not only have a better

theoretical time complexity than CS and AW, but are also observed to run more quickly

with respect to actual CPU time measured in the simulation experiments.

8.5 Conclusion

In this chapter we have analysed routing problem in the AR environment. We proved

that finding a path from a source node to a destination node with earliest arrival time

of the data is an NP-hard problem in the setting with non-zero edge delays. For this

problem, a variant of the KSP heuristic was proposed, which outperformed the CS

and AW heuristics proposed by Varvarigos et al. in terms of earliest arrival time. The

theoretical time complexity of the KSP variant was also shown to be better than the

complexity of the CS and AW heuristics. It was also indicated that on some networks

the actual running time of the KSP variant is an order of magnitude faster than both of

these competing heuristics.

132

Chapter 9

Conclusion and Future Work

We summarise the thesis in Section 9.1, and the plans for the future are discussed in

Section 9.2.

9.1 Summary

9.1.1 PDCPG

The main objective of this thesis is to explore ways to improve the scheduling of work-

flows in Grid environments with advance reservation. Taking advantage of the future

information regarding the availability of resources, we proposed PDCPG, a new partner

based resource mapping technique, and combined it with the dynamic critical path based

job selection technique. PDCPG showed great potential over other resource mapping

techniques. The key feature of the partner based resource mapping is to schedule partner

jobs on a single resource so that the chances of child job(s) getting scheduled on the

same resource become higher, thus minimising the communication cost between the jobs

and achieving a shorter makespan of the workflow. PDCPG combines the advantages

of having the low running time of list scheduling heuristics and the chance of minimis-

ing the communication cost between interdependent job like cluster based scheduling

heuristics. In PDCPG, jobs are prioritised as in list scheduling heuristics, and at the time

133

of scheduling a cluster of jobs is conditionally scheduled on the same resource. PDCPG

variants not only have the same time complexity as DCPG or HEFT depending on which

heuristic’s job selection technique it is combined with, but it also tends to practically

reduce the time for resource selection in the AR environment. We believe that it is not

always a good decision to schedule a cluster of jobs on the same resource especially

when the situation of capacity availability is tight. Thus, we have proposed a balanced

condition by which PDCPG schedules clusters of jobs on the same resource.

The performance of PDCPG is compared with DCPG, which is known to outperform

HEFT in the non-AR environment. Different levels of improvement are observed in

different situations. Considerable improvements are achieved by PDCPG in situations

when the load on the systems is high and the communication cost of a workflow is

higher than its computation cost. Only marginal improvements or even a worsening of

the makespan is observed for situations when the communication cost of a workflow

is similar to its computation cost. Furthermore, we have noticed some factors which

can affect the improvement achieved by PDCPG, which are as follows. The first factor

is the pattern/trend of partner jobs and its conformance with the pattern/trend of

available CPUs per faster resources. The second factor is the suitability of the size of

the fragments in the capacity availability vectors of the resources, which may cause the

other heuristics to find an earlier available space on other resource while PDCPG may

fit the jobs into the fragments of available capacity on the same resource as a partner

job. In our experiments, the size of the capacity availability fragments is dependent on

the value of the parameter that determines the number of consecutive slots that receive

the same random load value when filling in the utilisation profile. Smaller values of this

parameter create smaller fragments.

We also study PDCPG in a dynamic environment where schedules may have to be altered

because of resource failures. It is observed that in most of the cases, PDCPG achieved

huge improvements over DCPG for the final schedule makespan. One of the reasons

for such a huge improvement is the resource model we used for the experiments, where

the fastest resource fails, making more than one resources the fastest resources among

134

the remaining ones. Thus, DCPG may spread the scheduled jobs over several fastest

available resources while PDCPG may fit the interdependent jobs on fewer resources,

improving the makespan.

9.1.2 HDCPG

Inconsistency in the performance of different heuristics for workflow scheduling in AR

environments is observed in our experiments. Based on this observation, we proposed

a heuristic called HDCPG, which is a hybrid of five list scheduling heuristics. The five

different schedules can be computed in parallel based on the basis of future resource

availability information. Thus, the parallel running time of HDCPG is the same as the

sequential running time of the slowest amongst the five heuristics. We also introduced

a new critical path calculation method which is used in two of the five heuristics for the

job selection. In the new critical path technique, we convert the cost of an edge in a

workflow to zero based on a criterion based on the idea that higher communication costs

may force heuristics to schedule two interdependent jobs on the same resource, which

may change the critical path later.

HDCPG showed huge improvements over the other heuristics, HEFT, DCPG and PD-

CPG, especially for the low granularity scenario. For high granularity, HEFT is only

marginally worse than HDCPG, which shows that HEFT is competitive against a com-

bination of multiple heuristics, thus making HEFT a better choice in such cases if only

one heuristic has to be chosen to minimise the execution overhead.

9.1.3 Routing in AR Environments

In AR environments where network links and computing resources can both be reserved,

better schedules can be obtained for workflows if better paths can be found for transmit-

ting data files from one resource to another. With this motivation, we analysed variants

of the routing problem in OBS networks with AR support. The variants are combinations

of different restrictions on the type of allowed path, the transfer duration and the delay

135

of the network links. Except for one variant and the special case where the link delays

are zero, for all the other variants it was proved to be NP-hard to find an optimal path

with earliest arrival time for a data transmission from a source node to a destination

node. This motivates the study of heuristics for the routing problem.

We proposed a polynomial time K-shortest path (KSP) variant for finding a simple path

for the earliest arrival of data in an OBS network which supports AR. The KSP variant

is compared with the heuristics proposed by Varvarigos et al. [70] in different network

topologies with different parameter settings. Overall the KSP variant performed well for

most of the cases while having a comparatively low running time. One problem with

the KSP variant is determining which value of K is sufficient for getting a good path,

depending on the network topology and load. We believe that the KSP variant has the

potential to be a good candidate for adoption in many real world situations.

9.1.4 PDCPG in Non-AR Environments

Originally PDCPG was designed for the AR environment, but many existing Grids do

not support AR. Thus we also studied PDCPG in non-AR environments. A small modi-

fication was made in PDCPG to adapt it to the non-AR environment. The performance

of PDCPG was very encouraging in terms of workflow makespan in the case of low

granularity. Therefore, it can be concluded that PDCPG has potential for both AR and

non-AR environments.

9.1.5 Critical Analysis of PDCPG

Even though it has been shown that PDCPG can gain makespan improvement over

DCPG and HEFT for certain workflows when the granularity is low, it is dependent on the

number of partner jobs and the number of available CPUs per resource to accommodate

them. In case of workflows with many partner jobs, very few or no partner jobs PDCPG

may not give considerable improvement. PDCPG may also lose its other advantage of

finding a place quickly for the partner jobs on the resources in an AR environment when

136

the availability of the resources is tight enough to cause the algorithm to look through

all the resources.

9.2 Future Work

Grid workflow scheduling is a complicated problem, and it is hard to identify the best

scheduling method. One may find a better method for a particular workflow in a certain

situation, but the method may not work well for another workflow in the same situation,

or for the same workflow in another situation. In the future, we plan to devise a general

workflow scheduling algorithm which takes into account the workflow structure, the

granularity of the workflow and the characteristics of the available resource pool. We

plan to investigate and develop a new critical path method for job selection that will

also consider the relationship between the costs of the edges and nodes and the available

resource pool.

We also plan to design an improved partner based resource mapping technique in which

a resource will be selected for the first of several partner jobs if it has the capacity to

accommodate further partner jobs and the completion time of the first partner job on

the resource will be within a margin of affordable delay. The margin of affordable delay

will be decided based on the completion time of the job on the fastest available resource.

Partner based resource mapping may create a higher load on few resources while leaving

other resources underutilised, which may not be appreciated by the resource provider. It

is planned to modify the mapping technique to achieve a more balanced allocation that

satisfies both the user and the provider of Grid services. Other objectives that can also

be considered are energy efficiency and budget constraints.

Furthermore, the workflow scheduling problem in Cloud computing environments is also

of interest to us. In Cloud environments we may have limited time and limited re-

sources to schedule a workflow, so getting an efficient solution in such situations will be

challenging task.

137

Appendix A

Modifications Made to GridSim

The modifications and additions made to the GridSim to meet our simulation require-

ments are discussed here. Most of the modifications made to GridSim are related to

including the AR features according to our requirements. There are also a few changes

that are are due to the implementation of the OBS network simulation. In the coming

sections the new and modified GridSim entities are discussed.

User Entity

Among the different types of users supported by GridSim, we merged two types of users

for our simulations. One of the two types of user is the DataGridUser, which can per-

form actions related to data files such as file attribute request, file location request, or

requesting the replication of a file to a destination. The other type of user is the Ad-

vanceReservationUser, which can perform AR related activities such as creating, commit-

ting, modifying and cancelling the reservation for a job. By merging the DataGridUser

and the AdvanceReservationUser we created a new AdvanceReservationDataGridUser

which contains all the characteristics from both types of users. Additionally, the Ad-

vanceReservationDataGridUser can request the creation of an advance reservation for a

data file transfer. This reservation initiates a file transfer which goes through an explicit

route to a resource where it is required for the execution of a job. The working of the

138

newly added explicit routing, which is a feature of OBS networks, is explained in the

next section.

Router Entity

After a reservation is made for a job on a resource, additional reservation(s) for the

transfer of file(s) are also created. These file(s) are required as inputs by the job. For

this file transfer an explicit route, which is decided for the file for the scheduled job, is

used. As the result of a job execution reservation, a unique reservation ID is generated,

which is used to assign a unique booking ID to each required input data file. This unique

booking ID is sent along with an explicit route for the data file in a control packet to

all the included routers in the explicit route. An entry is made for this booking ID and

its associated next node to be followed in the routing table of the router. When a file

transfer is started, the whole file is sent in a single data packet with a booking ID. Upon

receiving the data packet, the router forwards it to the next node after looking up its

booking ID. Even though this data transmission technique is not an exact simulation of

data transmission in an actual OBS network, the arrival time of the data is exactly the

same as it would be in OBS. The data packet does not go through router buffering or

packet scheduling processes that could cause extra delay.

Network Link Entity

GridSim does not support AR for network links. To add this feature, a utilisation profile

was added to the link entity (see Section 4.1). When an instance of the link entity is

created during a simulation run, the utilisation profile is populated. To calculate a path

for the input file transfer, the utilisation profiles from the links are requested by the user

broker. After a path is selected for the reservation, the utilisation profiles are updated

accordingly. In our simulation setup, the links are bidirectional and one utilisation profile

is maintained for both directions instead of maintaining a utilisation profile for each

139

direction. Maintaining a single utilisation profile for both directions has no effect on the

results of the scheduling and routing experiments reported in this thesis. In the case of

the scheduling experiments, sufficient bandwidth is made available to avoid any network

bottleneck. The routing related experiments are conducted for only one connection per

simulation, thus a link is used only in one direction. In the future, an extension of the

implementation to support separate utilisation profiles for both directions of a link would

be meaningful.

Computing Resource Entity

A new resource type ARDataGridResource was created by merging two of the available

types of resources, DataGridResource and ARGridResource. Before describing ARData-

GridResource, some of the features that are specific to the DataGridResource entity can

be given as follows:

• It can handle a datagridlet, a gridlet which requires an input file for execution.

• If a required file does not exist on the resource, then the DataGridResource requests

the replication of the required file(s).

• Other data related operations are creating, deleting, replicating and delivering a

file.

For performing these above-mentioned operations, each DataGridResource needs its own

Replica Manager entity. The ARGridResource can create, modify, cancel and commit

reservations for job execution. To perform these functions, each ARGridResource has its

own ARSimpleSpaceShared scheduler entity. The ARDataGridResource inherits all the

operations from DataGridResource and ARGridResource. Additionally it has a utilisation

profile which maintains the availability of CPUs in future time slots. The utilisation

profile is populated at the time of creation of an instance of ARDataGridResource. In

the procedure for new reservations, first the start time is decided using the utilisation

profile, then the start time and the length of the job is sent to the resource scheduler

140

which creates a reservation as it was done by the original ARGridResource entity. We

also added the features of creating a reservation for a file transfer and initiating a file

transfer as a result of a reservation. The ARDataGridResource entity is used in most of

the AR related experiments.

Another added computing resource entity is the ARDataGridResourceWithFailure which

extends the ARDataGridResource with a failure capability. The failure-related be-

haviour and attributes are taken from the GridResourceWithFailure entity. The AR-

DataGridResourceWithFailure is used in simulations in which failures may occur after

the reservations for the job executions have been made.

Along with these changes, several small modifications were also made in the simulator

according to the requirements of specific scenarios.

141

Bibliography

[1] Biogrid Project. http://www.biogrid.jp/. Last accessed: April, 2012.

[2] EMAN. http://blake.bcm.tmc.edu/eman/. Last accessed: April, 2012.

[3] Globus Project. http://www.globus.org. Last accessed: April, 2012.

[4] GriPhyN. http://www.griphyn.org/. Last accessed: April, 2012.

[5] Human Genome Project. http://www.ornl.gov/sci/techresources/Human_

Genome/home.shtml. Last accessed: April, 2012.

[6] LEAD. http://portal.leadproject.org/. Last accessed: April, 2012.

[7] Montage. http://montage.ipac.caltech.edu/. Last accessed: April, 2012.

[8] Partice Physics Data Grid Project. http://ppdg.net/. Last accessed: April, 2012.

[9] The DataGrid Project. http://eu-datagrid.web.cern.ch/eu-datagrid. Last

accessed: April, 2012.

[10] Unicore Project. http://www.unicore.org. Last accessed: April, 2012.

[11] WIEN2K. http://www.wien2k.org/. Last accessed: April, 2012.

[12] K. Aida, A. Takefusa, H. Nakada, S. Matsuoka, S. Sekiguchi, and U. Nagashima.

Performance evaluation model for scheduling in a global computing system. The

International Journal of High Performance Computing Applications, 14:268–279,

2000.

[13] S. G. Akl and F. Dong. Scheduling algorithms for grid computing: State of the art

and open problems. Technical Report 2006-504, School of Computing — Queen’s

142

University, Kingston, Ontario, Canada, January 2006.

[14] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. SETI@home:

an experiment in public-resource computing. Commun. ACM, 45:56–61, November

2002.

[15] S. Baskiyar and C. Dickinson. Scheduling directed a-cyclic task graphs on a bounded

set of heterogeneous processors using task duplication. Journal of Parallel and

Distributed Computing, 65(8):911–921, August 2005.

[16] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar, K. Stockinger, and F. Zini.

Simulation of dynamic grid replication strategies in OptorSim. In Proceedings of the

Third International Workshop on Grid Computing, GRID ’02, pages 46–57, 2002.

[17] R. E. Bellman. On a Routing Problem. Quarterly of Applied Mathematics, 16:87–

90, 1958.

[18] S. Benedict and V.Vasudevan. Scheduling of scientific workflows using simulated

annealing algorithm for computational grids. International Journal of Soft Comput-

ing, 2(5):606–611, 2007.

[19] F. Berman, H. Casanova, A. Chien, K. Cooper, H. Dail, A. Dasgupta, W. Deng,

J. Dongarra, L. Johnsson, K. Kennedy, C. Koelbel, B. Liu, X. Liu, A. Mandal,

G. Marin, M. Mazina, J. Mellor-Crummey, C. Mendes, A. Olugbile, Jignesh M.

Patel, D. Reed, Z. Shi, O. Sievert, H. Xia, and A. YarKhan. New grid scheduling

and rescheduling methods in the grads project. International Journal of Parallel

Program., 33:209–229, June 2005.

[20] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy.

Task scheduling strategies for workflow-based applications in grids. In Proceedings

of the Fifth IEEE International Symposium on Cluster Computing and the Grid

(CCGrid’05) - Volume 2, pages 759–767, 2005.

[21] K. Bouleimen and H. Lecocq. A new efficient simulated annealing algorithm for

the resource-constrained project scheduling problem and its multiple mode version.

European Journal of Operational Research, 149(2):268 – 281, 2003.

143

[22] G. Boulmier. http://www.jgrapht.org/javadoc/org/jgrapht/alg/

KShortestPaths.html, 2007. Last accessed: April, 2012.

[23] T. D. Braun, H. Jay Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I. Reuther,

J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund. A comparison

of eleven static heuristics for mapping a class of independent tasks onto hetero-

geneous distributed computing systems. Journal Parallel Distributed Computing,

61(6):810–837, June 2001.

[24] L. Burchard, H. Heiss, B. Linnert, J. Schneider, and C. A. F. De Rose. VRM:

a failure-aware grid resource management system. International Journal of High

Performance Computing and Networking, 5(4):215–226, 2008.

[25] H. Casanova. SimGrid: A toolkit for the simulation of application scheduling.

In 1st IEEE/ACM International Symposium on Cluster Computing and the Grid

(CCGrid’01), pages 430–437, Brisbane, Australia., 2001.

[26] K. Christodoulopoulos, N. Doulamis, and E. Varvarigos. Joint communication and

computation task scheduling in grids. In CCGrid ’08: Proceedings of the 2008

Eighth IEEE International Symposium on Cluster Computing and the Grid, pages

17–24, Washington, DC, USA, 2008. IEEE Computer Society.

[27] B. Cirou and E. Jeannot. Triplet: A clustering scheduling algorithm for hetero-

geneous systems. In International Conference on Parallel Processing Workshops,

pages 231 – 236, 2001.

[28] L. B. Costa, L. F., E. Arajo, G. Mendes, R. Coelho, W. Cirne, and D. Fireman.

MyGrid: A complete solution for running bag-of-tasks applications. In Proceedings

of the SBRC 2004 Salao de Ferramentas (22nd Brazilian Symposium on Computer

Networks III Special Tools Session), 2004.

[29] M. I. Daoud and N. Kharma. A high performance algorithm for static task scheduling

in heterogeneous distributed computing systems. Journal of Parallel and Distributed

Computing, 68(4):399–409, April 2008.

[30] H. El-Rewini and T. G. Lewis. Scheduling parallel program tasks onto arbitrary

144

target machines. Journal of Parallel and Distributed Computing, 9(2):138–153,

1990.

[31] R. McNab F. Howell. SimJava: A discrete event simulation package for Java with

applications in computer systems modelling. In 1st International Conference on

Web-based Modelling and Simulation, 1998.

[32] L. R. Ford and D. R. Fulkerson. Constructing maximal dynamic flows from static

flows. Operations Research, 6:419–433, 1958.

[33] L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton Univ. Press, 1962.

[34] I. Foster. What is the Grid? - a three point checklist. GRID today, 1, 2002.

[35] I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and Grid computing 360-

degree compared. In Grid Computing Environments Workshop, GCE 2008, pages

1–10, 2008.

[36] R. F. Freund and H. J. Siegel. Guest editor’s introduction: Heterogeneous process-

ing. Computer, 26:13–17, 1993.

[37] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[38] D. E. Goldberg. Genetic Algorithms in Search Optimization and Machine Learning.

Addison-Wesley Longman Publishing Co., 1989.

[39] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical

Journal, 45(9):1563–1581, 1966.

[40] L. Guodong, C. Daoxu, W. Daming, and Z. Defu. Task clustering and schedul-

ing to multiprocessors with duplication. In Proceedings of the 17th International

Symposium on Parallel and Distributed Processing, IPDPS ’03, 2003.

[41] R. A. Gurin and A. Orda. Networks with advance reservations: The routing per-

spective. In INFOCOM, Nineteenth Annual Joint Conference of the IEEE Computer

and Communications Societies., pages 118–127, 2000.

[42] W. Hoffman and R. Pavley. A method for the solution of the nth best path problem.

145

Journal of the ACM, 6:506–514, October 1959.

[43] D. Hollingsworth. Workflow management coalition - the workflow reference model.

Technical report, Workflow Management Coalition, 1995.

[44] O. H. Ibarra and C. E. Kim. Heuristic algorithms for scheduling independent tasks

on nonidentical processors. Journal of the ACM, 24(2):280–289, 1977.

[45] B. Jones. Building the European eInfrastructure Ecosystem for Data Intensive

Science. Keynote talk in High Performance Computing and Simulation Conference,

2010.

[46] G. Juve, E. Deelman, K. Vahi, and G. Mehta. Experiences with resource provisioning

for scientific workflows using Corral. Scientific Programming, 18:77–92, April 2010.

[47] R. Kolisch and A. Sprecher. PSPLIB - A project scheduling problem library. Euro-

pean Journal of Operational Research, 96(1):205–216, 1997.

[48] K. Krauter, R. Buyya, and M. Maheswaran. A taxonomy and survey of grid resource

management systems for distributed computing. Software: Practice and Experience,

32(2):135–164, 2002.

[49] Y. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed task

graphs to multiprocessors. ACM Computing Surveys, 31:406–471, December 1999.

[50] Y. K Kwok and I. Ahmad. Dynamic critical-path scheduling: An effective technique

for allocating task graphs to multiprocessors. IEEE Transactions on Parallel and

Distributed Systems, 7(5):506–521, 1996.

[51] M. De Leenheer, D. Van, E. Van Breusegem, P. Thysebaert, B. Volckaert, F. De

Turck, B. Dhoedt, P. Demeester, D. Simeonidou, R. Nejabati, A. Tzanakaki, and

I. Tomkos. An OBS based grid architecture. IEEE Global Telecommunication

Conference (GLOBECOM), Workshop on High-Performance Global Grid Networks,

December 2004.

[52] C. L. McCreary, M. A. Cleveland, and A. A. Khan. The problem with critical path

scheduling algorithms. Technical report, Department of Computer Science and

146

Engineering, Auburn University, 1996.

[53] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.

Equation of State Calculations by Fast Computing Machines. The Journal of Chem-

ical Physics, 21(6):1087–1092, 1953.

[54] E.F. Moore. The shortest path through a maze. Proceedings of the International

Symposium on the Theory of Switching, pages 285–292, 1957.

[55] B. Nazir and T. Khan. Fault tolerant job scheduling in computational Grid. In

International Conference on Emerging Technologies, pages 708–713. Ieee, 2006.

[56] R. Nejabati. Grid optical burst switched networks (GOBS). Open Grid Forum Draft

GFD-I.128, April 2008.

[57] A. O’Brien, S. Newhouse, and J. Darlington. Mapping of scientific workflow within

the E-Protein project to distributed resources. In UK e-science all-hands meeting,

AHM 2004, Nottingham, UK, pages 404–409, August 2004.

[58] M. Rahman, S. Venugopal, and R. Buyya. A dynamic critical path algorithm for

scheduling scientific workflow applications on global grids. Proceedings of the 3rd

IEEE International Conference on e-Science and Grid Computing (e-Science 2007),

pages 1–8, 2007.

[59] M. Resende and C. Ribeiro. Greedy Randomized Adaptive Search Procedures,

volume 57 of International Series in Operations Research and Management Science.

Springer New York, 2003.

[60] R. Sakellariou and H. Zhao. A hybrid heuristic for DAG scheduling on heterogeneous

systems. 18th International Parallel and Distributed Processing Symposium 2004

Proceedings, pages 111–123, 2004.

[61] R. Sakellariou and H. Zhao. A low-cost rescheduling policy for efficient mapping of

workflows on grid systems. Scientific Programing, 12:253–262, December 2004.

[62] G. Singh, C. Kesselman, and E. Deelman. Performance impact of resource provision-

ing on workflows. Technical report, Department of Computer Science, University

147

of Southern California, 2006.

[63] H. Singh and A. Youssef. Mapping and scheduling heterogeneous task graphs

using genetic algorithms. In Proceedings Heterogeneous Computing Workshop

(HCW’96), pages 86–97, 1996.

[64] W. Smith, I. Foster, and V. Taylor. Scheduling with advanced reservations. Pro-

ceedings 14th International Parallel and Distributed Processing Symposium, pages

127–132, 2000.

[65] H. Song, X. Liu, D. Jaken, R. Bhagwan, X. Zhang, K. Taura, and A. Chien. The

MicroGrid: A scientific tool for modeling computational Grids. In IEEE Supercom-

puting, pages 4–10, Dallas, TX., 2000.

[66] A. Sulistio. Advance Reservation and Revenue-based Resource Management for Grid

Systems. PhD thesis, Department of Computer Science and Software Engineering,

The University of Melbourne, Australia, 2008.

[67] A. Sulistio, C. S. Yeo, and R. Buyya. Visual modeler for Grid modeling and sim-

ulation (GridSim) toolkit. In International Conference on Computational Science,

pages 1123–1132, 2003.

[68] H. Topcuoglu, S. Hariri, and M. Y Wu. Performance-effective and low-complexity

task scheduling for heterogeneous computing. IEEE Transactions on Parallel and

Distributed Systems, 13(3):260–274, 2002.

[69] J. D. Ullman. NP-complete scheduling problems. Journal of Computer and System

Sciences, 10(3):384–393, 1975.

[70] E. Varvarigos, V. Sourlas, and K. Christodoulopoulos. Routing and scheduling

connections in networks that support advance reservations. Computer Networks,

52(15):2988–3006, 2008.

[71] S. Venugopal and R. Buyya. A set coverage-based mapping heuristic for scheduling

distributed data-intensive applications on global grids. In Proceedings of the 7th

IEEE/ACM International Conference on Grid Computing(GRID 06), 2006.

148

[72] L. Wang, H. J. Siegel, V. R. Roychowdhury, and A. A. Maciejewski. Task match-

ing and scheduling in heterogeneous computing environments using a genetic-

algorithm-based approach. Journal of Parallel and Distributed Computing, 47(1):8–

22, 1997.

[73] M. Wieczorek. Scheduling of scientific workflows in the askalon grid environment.

SIGMOD Record, 34(3):56–62, 2005.

[74] M. Wu and D. D. Gajski. Hypertool: A programming aid for message-passing

systems. IEEE Transactions on Parallel and Distributed Systems, 1:330–343, 1990.

[75] M. Wu and X. Sun. Self-adaptive task allocation and scheduling of meta-tasks in

non-dedicated heterogeneous computing. International Journal High Performance

Computing Network, 2:186–197, February 2004.

[76] A. YarKhan and J. Dongarra. Experiments with scheduling using simulated an-

nealing in a grid environment. In Proceedings of the Third International Workshop

on Grid Computing, GRID ’02, pages 232–242, London, UK, UK, 2002. Springer-

Verlag.

[77] M. Yoo and C. Qiao. Optical burst switching (OBS) - a new paradigm for an optical

internet. International Journal of High-speed Networks, 8(1):69–84, 1999.

[78] L. Young, S. Mcgough, S. Newhouse, and J. Darlington. Scheduling architecture

and algorithms within the ICENI Grid middleware. In UK e-Science All Hands

Meeting, pages 5–12, 2003.

[79] J. Yu and R. Buyya. A taxonomy of workflow management systems for grid com-

puting. Journal of Grid Computing, 3(3-4):171–200, 2005.

[80] J. Yu and R. Buyya. Scheduling scientific workflow applications with deadline and

budget constraints using genetic algorithms. Scientific Programing., 14(3,4):217–

230, December 2006.

[81] J. Yu, R. Buyya, and K. Ramamohanarao. Workflow scheduling algorithms for grid

computing. Studies in Computational Intelligence, 146:173–214, 2008.

149

[82] Z. Yu and W. Shi. An adaptive rescheduling strategy for grid workflow applications.

In IEEE International Parallel and Distributed Processing Symposium 2007, IPDPS

07, pages 1–8, 2007.

[83] J. Zheng and H. T. Mouftah. Routing and wavelength assignment for advance

reservation in wavelength-routed WDM optical networks. In ICC 2002: IEEE Inter-

national Conference on Communications 2002, volume 5, pages 2722–2726, 2002.

[84] W. Zheng. Explorations in Grid Workflow Scheduling. PhD thesis, School of

Computer Science, University of Manchester, 2010.

150

