Logic, Computation and Constraint
Satisfaction

Barnaby D. Martin

University of Leicester

Submitted for the degree of Doctor of Philosophy

November 2005

UMI Number: U537212

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

Dissertation Publishing

UMI U537212
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

We study a class of non-deterministic program schemes with while loops:
firstly, augmented with a priority queue for memory; secondly, augmented with
universal quantification; and, thirdly, augmented with universal quantification and
a stack for memory. We try to relate these respective classes of program schemes
to well-known complexity classes and logics.

We study classes of structure on which path system logic coincides with poly-
nomial time P.

We examine the complexity of generalisations of non-uniform boolean con-
straint satisfaction problems, where the inputs may have a bounded number of
quantifier alternations (as opposed to the purely existential quantification of the
CSP). We prove, for all bounded-alternation prefixes that have some universal
quantifiers to the outside of some existential quantifiers (i.e. Il and above), that
this generalisation of boolean CSP respects the same dichotomy as that for the
non-uniform boolean quantified constraint satisfaction problem.

We study the non-uniform QCSP, especially on digraghs, through a combi-
natorial analog — the alternating-homomorphism problem - that sits in relation
to the QCSP exactly as the homomorphism problem sits with the CSP. We es-
tablish a trichotomy theorem for the non-uniform QCSP when the template is
restricted to antireflexive, undirected graphs with at most one cycle. Specifi-
cally, such templates give rise to QCSPs that are either tractable, NP-complete
or Pspace-complete.

We study closure properties on templates that respect QCSP hardness or QCSP
equality. Our investigation leads us to examine the properties of first-order logic
when deprived of the equality relation.

We study the non-uniform QCSP on tournament templates, deriving sufficient
conditions for tractability, NP-completeness and Pspace-completeness. In partic-
ular, we prove that those tournament templates that give rise to tractable CSP also
give rise to tractable QCSP.

Acknowledgements

I would like to thank my global and local supervisors, lain Stewart and Rick
Thomas, respectively, for their help, guidance and advice throughout the last four
years. I would like to thank my mentor Florent Madelaine for his assistance in the
field of constraint satisfaction problems. I would also like to thank Florent and his
wife Sukhi for their hospitality in Newcastle on many occasions.

I would like to thank my examiners, Dave Cohen and Vincent Schmitt, for
undertaking the arduous task of reading this thesis, and for their many helpful
suggestions.

I am very grateful to the Engineering and Physical Sciences Research Council
(EPSRC) for funding this research.

Contents

1 Introduction

2 Program Schemes

2.1

2.2

2.3

3.1
3.2
3.3
34
3.5

3.6

Structuresand Logic
2.1.1 Graphs and Transitive Closure
2.1.2 Alternating graphs and Alternating Reachability
2.1.3 Hypergraphs and Path Systems
2.14 LeastFixed Pointlogic
2.1.5 Stratified Fixed Pointlogic
Program Schemes o 0oL
2.2.1 IntroducingNPS
222 Shorthands 0 0.
2.2.3 Shorthands on successor structures
2.24 Adding a stack: introducing NPSS
TuringMachines L.

Adding a Priority Queue

Asingleweight: k=0 0.
The Hamilton Path problem isin NPSPQ
NPSPQY CNPspace
Expanding alphabets 00000
Pushing and Popping Numbers in NPSPQ? / NPSPQY.
3.5.1 NPSPQ“t(k) =NPSPQ¥(k). . . . oo v v v v v oot
352 NPSPQY* =NPSPQ%.
NPSPQ®(k) CNPSPQ“(k) o oo

10
11
11
13
15
16
17
17
18
21
23
24
25

39
40
41

3.7 NPSPQ“(k) € NPSPQ*(k+2). . . oo v vv e 43

3.7.1 Start-routine: Tggrr « « « = « + = ¢« 00 e e 43
3.7.2 Simulationof p:Tp. oL 44
373 End-routin€: Tepg - - « « v v v v v v e e e e 45
3.8 NPspace CNPSPQY¥ 47
3.8.1 Preparation: Tpipa) - « « v v v oo 49
3.8.2 Simulation: Tgpm « v« v v v v e e e e e e e e e e e e 51
3.8.3 Verification: Tepg - - v v v v v v e e e e e e e e e 52
3.9 A polynomial-time restriction of NPSPQ*. 54
Adding Universal Quantification 56
4.1 Introducing APS(1). 57
4.2 Introducing APSS(1) L. 61
4.3 The ACCEPT instruction. o v v v v v v v v v 63
44 APSS(1)=APSS(1) 64
44.1 Simulationofp;Ty, oL 65
45 NPspace CAPSS;(1). o o 66
4.6 SUMMAry v i it e e e e e e 72
Classes of Structure on which P = +PS*[FO] 73
5.1 Finitely generatedsets 74
5.1.1 F contains a single k-ary partial function fp. 76
5.1.2 F contains multiple partial functions. 78
5.1.3 An application: finitely generated groups 78
5.2 Hamiltonian Outerplanar graphs 79
Dichotomies in Boolean Constraint Satisfaction 83
6.1 Introduction 83
6.2 Technicalresults 88
6.3 A dichotomy theorem for II>-SATNC . - - - . o 0 o 0 o oo oL 91
6.3.1 Case 1: R isO-validand not 1-valid. 92
6.3.2 Case2:R%*is 1-validand not O-valid. 92

6.3.3 Case 3 : R% is 0-valid and 1-valid, but not complimentative. 93
6.3.4 Case4: R* is 0-valid and 1-valid, and complimentative. . 94

7 Quantified Constraints on Graphs 96

7.1 Introduction 96
7.2 Preliminaries e 99
7.2.1 Structuresand Logic. 99
7.2.2 Alternating-homomorphism problems. 100
72.3 QCSPversus ALT-HOM.. 103
7.2.4 Alternating-homomorphisms as winning strategies. 104
725 Graphs L 106
7.3 Basicgraphresults oo 107
7.3.1 Restricting partitions 107
7.3.2 Basicresults.o oo 110
7.3.3 Non-connected templates. 112
7.4 Quantified H-colouring 114
7.4.1 Bipartitetemplates. 114
7.4.2 Odd Catherine Wheels 116
7.4.3 Atrichotomytheorem 122
7.5 Closure propertiesot 123
7.5.1 Indicator construction 123
7.5.2 Addingavertextoacore. 126

7.5.3 A sufficient condition for ALT-HOM problem equivalence. 129
7.5.4 Why that condition is not necessary: equivalence in frag-

mentsof FO. 131

7.6 Results concerning tournament templates 137
7.6.1 Templateisadirectedcycle. 137

7.6.2 Template is a digraph with source and sink. 138

7.6.3 Tractable tournament ALT-HOM problems. 139
7.6.4 NP-complete tournament ALT-HOM problems. 143
7.6.5 Pspace-complete tournament ALT-HOM problems. 143

8 Conclusions and Further Work 146
8.1 ProgramSchemes, . 146
8.2 Classes of Structure on which P = +PS¥[FO] 146
8.3 Quantified Constraintson Graphs 147

Chapter 1

Introduction

Structural Complexity is that part of the study of Computational Complexity
that concerns itself with the intrinsic computational difficulty of decidable prob-
lems. Perhaps its main thrust is an attempt to classify problems into complexity
classes by various upper and lower bounds on their computational complexity.
Since its inception, logic has impinged on Computational Complexity in a variety
of ways: in the first instance, many of the problems that are amongst the hardest
of many natural complexity classes have been problems in logic. These problems,
known as complete for the given complexity class, include the following prob-
lems in the Propositional Calculus: Circuit Value, complete for P; Satisfiability,
complete for NP; and Quantified Satisfiablity, complete for Pspace.

Another intersection between logic and complexity is in the field of Descrip-
tive Complexity — in which finding an algorithm for a computational problem is
seen as a question of expression — where complexity classes translate to classes
of expressions, i.e. logics. Indeed, the complexity classes, defined through Turing
Machines, may be seen as logics already: for example, if P is defined as those
Turing Machines 7', such that there exists k, such that T accepts an input x of
size n iff T accepts x within time #¥, then this class of Turing Machines is a logic
of sorts. However, it is a logic not of a form that lends itself to study by what
are usually considered the tools of logic: it has a cumbersome syntax and is in-
terpreted over strings and not first-order structures. We may remedy the second
of theses problems by considering certain standard binary string encodings of a
structure. Since, for us, a decision problem is always a subset of finite structures,
we consider a problem to be in P iff the language of all binary encodings of these
structures is in P, as defined previously. In this way, we can talk of conventional
logics capturing Turing complexity classes: a logic captures a complexity class iff
the set of problems expressible in each coincides. It is in the translation between
computational problems over strings and expression problems over finite struc-
tures that Descriptive Complexity is concerned. As such, it is very much a part of
Finite Model Theory.

Perhaps the greatest hope for Descriptive Complexity was that known methods
for separating logics might be brought to bear on complexity classes; that hard
questions on the (non)-equivalence of complexity classes might become easier
questions on the separation of logics. Among the major results of Descriptive

Complexity are the proven equivalence of: existential second-order logic 3SO
and NP (Fagin, 1974 [17]); least fixed-point logic LFP (with successor) and P
(Immerman/Vardi 1982 [28, 44]); partial fixed point logic PFP (with successor)
and Pspace (Vardi 1982 [44]); and transitive closure logic TC (with successor)
and NL (Immerman 1983/1988 [28, 30]). Despite these results, few advances
have been made in the use of techniques such as Ehrenfeucht-Fraisse games to
separate these logics, and, consequently, their complexity classes!. Partly, this can
be explained by the somewhat artificial inclusion of the successor function into
many of these logics (not 3S0), since Ehrenfeucht-Fraisse games are notoriously
hard to win on structures with successor. However, the equivalence of LFP and
PFP, both with successor, is known to be consequent on their equivalence without
successor [1], yet still a proof resists that P # Pspace. One ray of sunshine in this
field was Immerman’s proof, through Transitive Closure logic, that NL =co-NL
[30].

The syntax of a logic is exactly its set of well-formed formulae; a logic is said
to have recursive syntax iff its syntax is decidable. The inclusion of successor
generally precludes the possibility that the resultant logic has recursive (or even
recursively enumerable) syntax [24], a property which is certainly desirable, and
is thought by some authors (e.g. Gurevich [24], Otto [36]) to be necessary, if the
name ‘logic’ is to be bestowed.

In the first part of this thesis we study various classes of non-deterministic
Program Schemes with while loops (based on those in [2, 41]), which are logics
in Gurevich’s sense, but which appear well-suited for computation. We attempt
to relate these logics to standard complexity classes, preferably in the absence of
that built-in successor.

Chapter 2 introduces these program schemes, and discusses some known re-
sults involving them [2]. The situation where a stack is available for memory [2]
is considered.

In Chapter 3, we introduce some new work investigating the addition of a
priority queue as a memory device available to these program schemes. We prove
that the priority queue is sufficiently powerful to simulate a successor function:

'Indeed, it is not known that NL,P,NP and Pspace are not equivalent.

thus we define two ‘logics’ with recursive syntax that subsume NPspace? and NP,
respectively. These logics actually have identical syntax, and differ only in their
semantics.

In Chapter 4, we introduce some new work examining the explicit introduction
of universal quantification to our program schemes (since they are non-deterministic,
existential quantification is already insinuated), both in the absence of any mem-
ory and with the benefit of a stack. With no added memory, we tie the ensuing
logic to least fixed-point logic LFP. With the addition of a stack we, once again,
are able to simulate a successor: this enhanced logic subsumes NPspace.

Chapter 5 uses some known results utilising program schemes [42] to study
various classes of structure on which the infinite hierarchy which constitutes Path
System logic collapses and captures P. We give a brief overview of known results
and introduce some new ones.

A further confluence of logic and complexity, and, indeed, combinatorics, is
in the study of the Constraint Satisfaction Problem, CSP, and its generalisations.
In terms of complexity classification, much has been made of the conjectured di-
chotomy of the non-uniform CSP on finite templates [1]: it seems as though,
for any T, CSP(T) is either tractable or NP-complete. This is remarkable given
the breadth of CSP problems, together with Ladner’s result [35] that such a di-
chotomy will not hold over all NP (unless we actually have P = NP). The non-
uniform CSPs, and their generalisations, lend themselves to dual interpretations:
one in which they are model-checking problems over restricted logics; and one in
which they are combinatorial problems between two structures. In particular, the
non-uniform CSP may be seen as both a model-checking problem in existential
positive conjunctive first-order logic and as the homomorphism problem. This
duality is perhaps at its most obvious on graphs, and it is on these that we dwell
most.

Chapter 6 concerns itself with the dichotomy of alternation-bounded general-
isations of the non-uniform CSP on boolean templates. (These results have been
obtained independently in [27] and, to a lesser extent, in [18].) We prove, for all

bounded-alternation prefixes that have some universal quantifiers to the outside of

2We remind the reader that NPspace and Pspace coincide (e.g. [37]). Even so, we use both
classes in this thesis, depending on which appears the more natural in a given situation.

some existential quantifiers (i.e. I1; and above), that our generalisation of boolean
CSP respects the same dichotomy as that for boolean quantified constraint satis-
faction problems.

Chapter 7 examines the non-uniform Quantified Constraint Satisfaction Prob-
lem, QCSP, on graph templates. We study the QCSP through a combinatorial
analog, the so-called Alternating-Homomorphism problem ALT-HOM. We study
a variety of graph templates that give rise to tractable, NP-complete or Pspace-
complete QCSPs, culminating in a complete classification to those classes — a tri-
chotomy theorem — when the template ranges over undirected antireflexive graphs
with at most one cycle.

We consider two problems to be equal exactly when the respective subsets
of structures that they define coincide. It is well-known that the two problems
CSP(7) and CSP(J") are equal iff the templates T and T’ are homomorphically
equivalent (which is exactly the condition that they have isomorphic cores). We
study a similar condition on templates T, 7" that is sufficient to guarantee the
equality of QCSP(T) and QCSP(J’). However, we find that this condition is
not necessary, and that is has a closer relationship with first-order logic without
equality than the logic we associate with QCSP (positive-conjunctive first-order
logic).

Finally, we study the non-uniform QCSP on tournament templates, deriving
sufficient conditions for tractability, NP-completeness and Pspace-completeness.
In particular, we prove that those tournament templates that give rise to tractable
CSP also give rise to tractable QCSP.

Chapter 2

Program Schemes

10

2.1 Structures and Logic

We will only consider finite relational structures, of at least two elements, over a
given signature 6. We denote this set STRUC(o). If A is a structure, then |A| is
the universe, or domain, of the structure, and ||A|| is the cardinality of that domain.
If R is a relation symbol of 6 then R is the interpretation of R over A. When the
structure A is clear, we may abuse notation by dropping it as the superscript, thus
identifying R with both the relation symbol and the relation actual.

We will also consider the situation where a successor is available to us, built-in
to the signature 6. We consider a successor to be a binary relation succ, whose
realisation as a graph is a directed path, together with two constants min and max,
whose interpretations are the first and last vertices of that path. This is equivalent
to considering the restricted class of structures over oW {succ, min,max} in which
the interpretations of succ, min and max satisfy the properties given. Throughout,
when we consider the restriction to structures that have a successor relation, we
add the subscript s to our logic or class, for example FO;. When we consider
logics in which we have a successor, we will insist on a further semantic restriction
on their formulae, namely, that a formula may only be in that logic if its truth is
independent of the actual successor function used. For example, consider the
formula E(min,max), ostensibly of FOy, interpreted on the directed 3-path — the
graph with vertices {0, 1,2} and edge set {(0,1),(1,2)}. The truth of this formula
is not independent of the ordering we choose on the graph — if the successor is
{(0,2),(2,1)}, it is true; if the successor is {(0,1),(1,2)}, it is false. We conclude
that E(min,max) is not a formula of FO,. Given such a formula, ostensibly of
FQy, establishing whether it has this property of order-independence is, in general,
undecidable [24].

2.1.1 Graphs and Transitive Closure

A graph, or digraph, G is a structure over signature 6, = (E), where E is a binary
relation symbol. There is a (directed) path in § from vertex x to vertex y iff
either: x =y, E(x,y), or there is a sequence of vertices z, .. .,z, such that E(x,z;),
E(zj,zi+1), for 1 <i<r,and E(z,,y). This is equivalent to the inductive definition

11

that there is a path from x to y iff:
e x=y,or
e there is a z such that E(x,z), and there is a path from z to y.

Definition. Define TC to be the global binary relation on graphs expressing reach-
ability. Specifically:

TC = { {(x,y) : thereis apathin G fromxtoy }:G € STRUC (o)}

Let y be some formula whose only free variables are among those of the j-
tuples X and y. A formula TC[AX, yy](#, V) is interpreted as true on a structure A in
the case that, in the graph of ||A||/ vertices with edge set specified by y(%,y), there
is a path from vertex % to vertex v. (It is usual to allow additional free variables, i.e.
other than x and y, in y. However, this does not increase our expressive power,
since i such variables can be moved so they only appear free in the end-point
(j+1i)-tuples # and ¥ of some new Transitive Closure formula over a graph of
size ||A||[/ T (see [16]). We forbid such additional free variables for the sake of a
simpler exposition.)

In the fashion described, the global relation TC has given us a uniform se-
quence of vectorised quantifiers of the same name. This sequence is derived from
the arity of X and y. The first quantifier in the sequence corresponds to the arity of
X = (x1) and y = (y;) being 1, and binds the 2 variables, x; and y;. The ith quanti-
fier in this sequence corresponds to the arity of x = (x1,...,x;) and y = (y1,...,y;)
being i, and binds the 2i variables x,...,x; and y1,...,y;. This sequence of quan-
tifiers is uniform in semantics and syntax, and is an example of a sequence of

Lindstrom quantifiers (see, e.g., [16]).

Definition. Let x,y be j-tuples of variables. Let j/, j/ < janduy,...,uy,vi,...,v
p J

1

J
be variables, and uj;1,...,uj,vjn,1,...,v; be variables or constant symbols. De-

fine:

e +TC![FO] to be the set of formulae of the form

Ju; . ..uj/3V1 SV TC[)@,?W](E,V)

12

where vy is quantifier-free, and

e +TC™[FO] to be the set of formulae of the form
Jur...upIvi..v TCAX, IW](7, V)

where is in the closure under boolean operators of formulae in £ TC™[FO].

In the presence of two distinct constants, any formula in TC™ "1 [FO) is equiva-
lent to some formula of the form TC[Ax,yy](%,7), with y € TC™[FO], i.e. without
the need for existential quantification outside the TC operator [21]. However, we
do not wish to restrict ourselves only to structures with such constants. We define
+TC*[FO] to be J;c,, +TC'[FO).

Recall that the subscript s denotes a built-in successor. The following gives us
an idea as to the power of Transitive Closure logic.

Proposition 1 (Immerman 1983/1988, [29, 30]). TC![FO] = TC![FO] = NL.

Remark. It may be noticed that we are rather liberal with notation such as TC,
allowing it to denote a global relation, an operator and a logic. Hopefully, the
meaning should be clear by context.

2.1.2 Alternating graphs and Alternating Reachability

An alternating graph A is a structure over the signature 621 = (E,U), where the
relation symbols £ and U are binary and unary, respectively. In an alternating
graph the unary relation U partitions the vertices into those that are existential
(—=U), and those that are universal (U). There is an alternating path in an alternat-
ing graph A, from vertex x to vertex y, iff:

e x=y,or

e x is existential, and there is a z such that F(x,z), and there is an alternating
path from z to y, or

e x is universal, and, for all z such that E(x,z), there is an alternating path
from z to y.

13

Definition. Define AR to be the global binary relation on graphs expressing al-
ternating reachability. Specifically:

AR = {{(x,y) : there is an alternating path in A from x to y} : A € STRUC(02;)}

Let y be some formula whose only free variables are among those of X and
y. A formula AR[AX,yy](%, V) is interpreted as true in the case that, in the graph
specified by y(x,¥), there is an alternating path from % to v. (Again, it is customary
to permit additional free variables in y. Again, it is unnecessary for the same
reason as given for TC.)

Definition. LetX,y, be j-tuples of variables. Let j', /" < jand u1,...,up,vi,...,v

be variables, and wy,q,...,u;,vinyq,...,v; be variables or constant symbols. De-
JHLe U V4] Vi
fine:

e +AR![FO] to be the set of formulae of the form:
Juy...upIvy...vir AR[AX, 3y (7,7)

where V is quantifier-free, and

e +AR™[FO] to be the set of formulae of the form
du;y .. .uj&vl LV AR[Ax, yy|(u, V)

where V is in the closure under boolean operators of formulae in +AR™[FO).

We define + AR*[FO] to be |J;c,, = AR[FO]. In the presence of two distinct
constants, =AR™"1[FO] collapses to the class of formulae of the form
AR[Ax,yy](u,v) for y € AR™[FO] (proof similar to that for TC).

Recall that the subscript s denotes a built-in successor. The following gives us
an idea as to the power of Alternating Reachability logic.

Proposition 2 (Immerman 1983, [29]). AR![FO] = AR![FO] = P.

14

2.1.3 Hypergraphs and Path Systems

We consider a hypergraph! 3 to be a structure over the signature 63 = (R), where
R is a ternary relation symbol. A vertex y is said to be R-accessible (or just acces-
sible) from a vertex x iff:

e x=y,or

e there exist z1,22, both accessible from x, such that R(z1,z2,y).

A hypergraph H is said to be commutative exactly when, for all x,y, z, we have
R(x,y,z) iff R(y,x,z). It is said to be deterministic iff, for all x,y, there exists at
most one z such that R(x,y,z).

Definition. Define PS to be the global binary relation on commutative hyper-
graphs expressing accessibility. Specifically:

PS = {{(x,y) : yisaccessible in }, from x } : H is a commutatative hypergraph}

Let y be some formula whose only free variables are among those of X, y
and 7. A formula PS{AX,y,Zy|(#,V) is interpreted as true in the case that, in the
commutative hypergraph specified by y(x,5,2), v is accessible from . (Again, it
is customary to permit additional free variables in y. Again, it is unnecessary for
the same reason as given for TC.)

Definition. Let %, ¥, be j-tuples of variables. Let j’, j” < jand uy,...,uj,vy,..., v
be variables, and uj/1,...,u;,v;7,1,...,v; be variables or constant symbols. De-
fine:

e +PS![FO] to be the set of formulae of the form
Juy .. .ujfﬂvl ce VY PS [?&J,Zw] (ﬁ, V)

where v is quantifier-free, and

'What we refer to as a hypergraph would perhaps be better described as a directed 3-uniform
hypergraph, taking into consideration more standard definitions.

15

e +£PS™"![FO] to be the set of formulae of the form
Juy...upIvy..v PS[Ax,y,2v] (%, V)

where \ is in the closure under boolean operators of formulae in £PS"[FO].

We define +PS*[FO] to be |J;c,, 2PS'[FO]. In the presence of two distinct
constants, PS™![FO] collapses to the class of formulae of the form
PS[Ax,yy](u,v) for y € £PS™[FO] (proof similar to that for TC).

Recall that the subscript s denotes a built-in successor. The following gives us
an idea as to the power of Path System logic.

Proposition 3 ([40]). PS![FO] = PS}[FO] =

2.14 Least Fixed Point logic

Let W(P,X) be a first-order formula with free j-ary relation symbol P whose only
free variables are those of the j-tuple x. Then, over a structure A, ¥ may be seen
as a function f4 : P(JA]7) — P(JA|/) defined by:

fa(R) ={x : A w(Rx)}

If y does not contain negated instances of the free relation symbol P (i.e. is P-
positive), then the function f, is monotone, satisfying R C f4(R). Given a P-
positive Y, we define inductively: w% = 0, and thereafter \|Jk = fal(\u ")- Since
f is monotone and A is finite, we are guaranteed that this sequence of relations

must reach a fixed-point K where \yfl = w;l (forall i > K). This relation is denoted

vy

Definition. Given a formula y(P,x) with free j-ary relation symbol P and includ-
ing free variables of the j-tuple X, and another j-tuple of variables or constants
u, we may apply the Least Fixed Point operator LFP to generate the formula
LFP[APxy](u). This formula’s free variables are those free in y that are not in X,
and those of . The formula is interpreted as true on a structure A (under some
valuation of its free variables) exactly whenu € y7.

16

Least Fixed Point logic LFP[FO] is the closure of FO under the Least Fixed
Point operator.

Remark. It may be noted that we have allowed free variables in y that are not
among the variables of X, in contrast with the situation with the Lindstrom logics
of the previous sections. It seems particularly unnatural to specify LFP with such
free variables forbidden, moreover, we will make use of them in later chapters. It
suffices to say that these additional variables could be forbidden by being forced
into the outer tuple u, as described for Transitive Closure logic.

2.1.5 Stratified Fixed Point logic

Definition. Let R be a free j-ary relation, and X be a j-tuple of variables. Let j' < j
and up,...,u; be variables, and uyy,...,u; be variables or constant symbols.
Define:

e JLFP![FO] to be the set of formulae of the form Ju; ...u; LFP[ARxy](u)
where v is first-order with no universal quantifiers and with negation only

of atomic formulae, and

e JLFP™![FO] to be the set of formulae of the form Ju; ... u LFP[ARX] (%)
where v is first-order with no universal quantifiers but may contain positive
or negative occurrences of formulae of SLFP”[FO)] that do not contain R.

We naturally define ILFP*[FO] to be (J;c,, ILFP[FOJ. In the presence of
two distinct constants, ILFP"*![FQ] collapses to the class of formulae of the
form ILFP[ARxy|(#,v) for y € ILFP™[FO [22].

We note that ILFP*[FO) is often known as Stratified Fixed Point logic SFP.
The following gives us an idea as to the power of JLFP.

Lemma 4 (Grohe 1997, [22]). £PS™[FO] = ILFP™[FO|.

2.2 Program Schemes

We will examine several classes of non-deterministic program schemes with while
loops, originally seen in [2]. These program schemes were born of an attempt to

17

imbue logic with the tools of computation, whilst keeping that logic well-behaved,
e.g., with recursive syntax. Unlike Turing Machines, which compute on strings
encoding some structure, these schemes compute on a structure, in a similar man-
ner to a formula of logic being interpreted on that structure. However, the syntax
of computation is often more easily followed, and this may have advantages in
simplifying proofs. For example, the recursion of while loops may be considered
more natural than that of fixed point logics. Such advantages are largely cosmetic,
but, in studying objects of computation, forms of memory can be added that would
be most bizarre added directly to conventional logic. In doing this, new logics can
be defined without obvious parallel in conventional logic. However, that which
is not obvious is not necessarily untrue, and several results are known tying these
new logics with their better known, conventional counterparts.

2.2.1 Introducing NPS

Definition (Syntax of NPS [2]). Each program scheme p € NPS(1), over signa-
ture ¢, involves a set of input-output variables Vj,, a set of free variables Vy, and a
finite sequence of |p| instructions, where each instruction, other than the first and

last, is of one of the following forms:

e an assignment instruction of the form ‘v:=g¢q’ , where v € V;, and g € V;, U
VrU{c: cis a constant symbol of 6}, or

e a guess instruction of the form ‘GUESS v’ , where v € Vj,, or

e while loops of the form ‘WHILE ¢ DO T OD’ , where ¢ is quantifier-free
FO(o) with free variables among V;, UVy, and where 7 is a sequence of
instructions of one of the forms listed.

The first instruction is INPUT(V;,), and the last OUuTPUT(V,,). All instructions
begin a new line, and all, except while loops, take up only one line. While loops
take up 1+ |t| lines, where |t| is the number of lines in T, in the obvious way.
We consider sub-routines T to be sequences of instructions of the types in the list,
1.e. program schemes without an input instruction at the beginning and an output
instruction at the end.

18

The program schemes p € NPS(m + 1) are defined exactly as the schemes of
NPS(1), except that schemes p’ € NPS(m') (for m’ < m) may take the place of ex-
tensional relations in the tests in while loops. We define NPS to be J;c, NPS(i).

In terms of semantics, the assignment instructions and while loops behave
in the obvious way, and the guess instruction non-deterministically assigns an
element of the universe to the variable in question. At the start of computation, the
input-output variables are GUESSed, as just specified. A computation is deemed
accepting if, and only if, it reaches the (final) OUTPUT line. It follows that non-
accepting computations are forever trapped in while loops. Suppose a program
scheme p € NPS(m) involves precisely i free variables zi,. . . ,z;. Then, computing
on a structure A, we write (A,a;...,a;) Ep, or A = p(ay,...,a;), iff p makes it
to the output instruction when computing on A under the free-variable assignment
(z15--+,2) = (a1, ..,a;) € |A]".

Note that free variables may not be ‘used’ during computation, in that they can
not have values assigned to them. However, input-output variables of schemes in
NPS(m) may appear as free variables in schemes of strictly lower strata that ap-
pear in tests in their while loops. In this manner, program schemes of NPS(m)
are evaluated ‘top-down’, entering sub-routines to evaluate any required tests in-

volving such schemes of NPS(m') (where m’ < m).

Definition ([2]). Let the lines on Z denote an i-tuple, and the line on v denote a
j-tuple. Suppose the program scheme p € NPS(1) involves i free variables Z and
J input-output variables v. Then a configuration of p, computing on a structure A,
is an (i + 1+ j)-tuple (z,/,v) giving the values of the free variables, the number
of the line just executed, and the values of the input-output variables.

Each such program scheme p € NPS(1), computing over a structure A of size
n, gives rise to a graph:

e whose vertices are the |p|.n("*/) possible configurations,

e and in which there is an edge (¢,) iff p, executing a single instruction, can

move from configuration ¢ to configuration ¢’.

It may be asking too much to specify this graph in quantifier-free FO, especially
since A may not have |p| distinct constants to play the part of the line numbers. We

19

will actually specify a variant of it, namely the graph G, with n'*IPI*/ vertices,
where the |p|-sub-tuple W = (w1,...,w),|) represents a certain line according to
the following scheme:

e if wy = wy then W represents line 1,
e if wy # w; but wy = w3 then w represents line 2,

e if w; # wy, wy # w3 but w3 = wy then w represents line 3,

®

o if wi #Fws, ..., Wip|—-2 #* Wip|—1 but wigi_1 = wyy then w represents line
lp| — 1, and

e if wi # wa, ..., w1 # w)p| then W represents line |p|.

Let the the lines on Z denote an i-tuple, the line on %,V denote j-tuples, the hat
on w denote a |p|-tuple, and the line on ¥,y denote (i + |p| + j)-tuples.

Proposition 5 ([2]). Suppose p € NPS(1) is as in the definition, and that Y(X,y)
is a quantifier-free first order formula expressing the edge relation of 951. The
following are equivalent:

.« AEP@)

A I: 3w1,...,w|p| wi=wy A
/ / / / / /
Elwl,...,w|p| w) 7«réw2/\..._/\w|p|_1 7$w|p| /\—
31,9 TCAZ WI((Z, w1, - W), 1), (2, W), - - W), P))

Proof. Follows immediately from the definition of 921, together with the existen-
tial semantics of NPS(1). Note that the bizarre constraints on the ws are simply
our means of encoding the first and last lines. As can be seen, we are not too inter-

ested in what the input-output variables are at the start and end of the computation,
i.e. u and v, respectively. a

20

Recall that the class NPS (m) is as NPS(m), but with a built-in successor
available. The following gives us an idea as to the power of NPS.

Theorem 6 ([2]). Form > 1, TC"[FO] = NPS(m), and, consequently, TC*[FO| =
NPS. Furthermore, form > 1, TC7{FO|] = NPS(m) = TC;[FO] = NPS; = NL.

Proof. The first part follows from the fact that there is a program scheme prc €
NPS(1) that expresses the relation TC, combined with the previous proposition,
by induction. The second part follows from the NL-completeness of the Transitive
Closure problem. O

Remark. The class NPS; appears to be devoid of any memory, and it may seem
surprising, in that light, that NPS; = NL. However, NPS has memory, in the form
of the constant number of input-output variables. Moreover, this constant number
of variables may collectively attain n!Viel values, computing on a structure A of
size n. This is of similar order to the number of different tape configurations on an
NL-Turing Machine, which is logn.|Q].|Z|'8”, where Q is the set of states and T
the alphabet. The NL-Turing Machine has constant alphabet and logarithmically-
bounded number of tape squares, while the class NPS; has linearly-sized alphabet

and constant number of memory-variables.

2.2.2 Shorthands

We can build other useful instructions from those that we have, possibly requiring

the introduction of additional new variables. Specifically:

e If p,q are j-tuples of variables or constants, then consider p = g to be short-
hand for py =q1 A ... Apj=gq;.

e If visa j-tuple of variables and g is a j-tuple of variables or constants, then
consider v := g to be shorthand for v :=¢q; ; ... ; v;:=g¢;.

e Consider LOOP FOREVER to be shorthand for:
WHILE v; =v; DO OD.

e Consider IF r THEN DO 1 FI to be shorthand for:

21

GUESS vq,v2
WHILE v; = v, DO LooP FOREVER OD
WHILE v; #v2 At DO T; v :=v, OD

Of course, it may come to pass that a computation entering an IF statement gets
trapped in an endless loop. This may seem undesirable, but it does not affect us:
owing to our existential semantics, we only require that some path leads through

the conditional.
e Consider V' :# v (where v,V are distinct variables) to be shorthand for:

GUESS V/
IF v =V THEN DO LOOP FOREVER FI

Sometimes we will want the computation to evaluate the disjunction of a fixed col-
lection of possibilities. It may not be possible to write these directly in quantifier-
free tests in WHILE loops. In the following, the labels wordl, ..., wordj act as

local dummy ‘variables’.

e Let wordl, ..., wordj be words representing certain possibilities. Con-

sider:

EITHER(wordl, ..., wordj)
IF wordl THEN Do 1; FI

IF wordj THEN Do 7; F1
to be shorthand for:

GUESS Viy. oy Vj
IF vi = v, THEN DO 1; FI
IF vi # vy Avy = v3 THEN DO 1; FI

IFvi #vaA...Avj 2 #Vvj 1 Avj_1=v; THEN DO 1;_; FI
IFvi #vaA...Avj_1 # v; THEN Do 1; FI

22

The EITHER construction allows us to choose between any finite number of
possibilities. Note that, in the EITHER shorthand, we have no need for an ‘Else’
construction, since all possibilities for the antecedent are covered. In all use of
shorthands we will require that the variables we introduce in the longhand do not
appear elsewhere in the program schemes involving those shorthands, lest we lose
their information. This may ultimately require the introduction of new variables
to our program schemes. We only need a fixed number of new variables for this,
and we will usually be sloppy, omitting these variables when writing out program
schemes involving shorthand.

2.2.3 Shorthands on successor structures

In the presence of a successor relation succ, we will use the following shorthands:

e V' := cyc.succ(v) to be shorthand for:

IF v = max THEN DO V' = min OD
IF v # max THEN Do
GUESS v/
IF V' # succ(v) THEN Do LOOP FOREVER Fi1 FI

In contrast to succ, which is a partial function, cyc.succ is a total function. More-
over, it is a bijection.

e V' := inv.cyc.succ(v) to be shorthand for:

GUESS V/
IF v # cyc.succ(v') THEN DO LoOP FOREVER FI

e For variable j-tuples v,V, consider V' := cyc.succ(¥) to be shorthand for:

IF v; # max THEN Do

(v’l,...,v;._l) = V15, Vj-1)

" := cyc.suce(vj) FI

Vj

23

IF (vj = max) A (vj—1 # max) THEN DO
(Vlly-u,vg-_z) = (V],...,Vj_z)

Vi = cyc.succ(vj_1)

/~
i
v; := min F1

IF (vj = max) A... A\ (vi = max) THEN DO

(Vis---sV)) i= (min, ... min) F1
e For variable j-tuples v,V/, consider V' := inv.cyc.succ(V) to be shorthand for:

IF v; # min THEN DO

(Vs Vig) o= (visee ey vjmt)
Vi i= inv.cyc.succ(v;) FI
IF (v; = min) A (vj—1 # min) THEN DO

Vi_y i=inv.eyc.succ(vj-1)

v’j := max F1

IF (vj = min) A...A(vi = min) THEN DO

(Vis+-+,V}) = (max,...,max) F1

2.2.4 Adding a stack: introducing NPSS

We can increase the power of our program schemes by introducing certain types
of memory. In [2], the authors considered adding a stack.

Definition (Syntax of NPSS[2]). The syntax of NPSS(1) is as that of NPS(1),
with the addition of two new instructions:

e a push instruction ‘PUSH v’ , where

v € V,UVrU{c: cis a constant symbol of 6} , and

24

e a pop instruction ‘v :=POP’ , where v € Vj,.

Again, the program schemes of NPSS(m+ 1) are those whose tests in while loops

may include schemes from strictly lower strata as extensional relations.

For semantics, the push instruction should be viewed as pushing the value
of the given variable (or constant) to the stack, and the pop instruction should
be viewed as an assignment instruction removing the current top element of the
stack. If the stack is empty, the pop instruction leaves its variable unchanged.

The following gives us an idea as to the power of NPSS.

Theorem 7 ([2]). Form > 1, PS™[FO] = NPSS(m), and PS*[FO| = NPSS. Fur-
thermore, PST'[FO| = NPSS(m) = PS}[FO] = NPSS; =P.

2.3 Turing Machines

Turing Machines compute on strings and not structures. In order that we can con-
sider the Turing complexity of problems Q C STRUC(c), we will need to have a
standard encoding of structures over a signature 6. Let 6 = (Ry,...R;,c1,...cj),
where the arities of Ry, ...,R;j are ay, ... ,a; respectively.

Over an ordered structure A € STRUC(0) of size n, we will code each R;
by a string bin(R;) over {0,1} of length n%. For a number 0 < r < n% — 1, let
7 be the a;-tuple that represents r in n-ary. Since A is ordered, this 7 represents
an a;-tuple 74 over A. Let the rth? entry of bin(R;) be a 1if 74 € R;, and a 0
otherwise. We code each ¢; by a string bin(c;) of length n, as if ¢; were a unary
relation with one member. Finally, we consider bin(.A) to be the concatenation
bin(R;)...bin(R;)bin(cy)...bin(cy).

We consider Turing Machines to have a one-way infinite tape, finite state set O
and uniform alphabet £ = {zero,one,blank}. The read/write head is initially over

square 1. Given a (non-deterministic) Turing Machine 7 and a string w € {0, 1}*,

2This should really be r -+ 1, since otherwise we would be considering the first entry of bin(®R;)
to be indexed by the number zero. This is an occupational hazard of variously considering the
set Zy tobe {1,...,n} or {0,...,n—1}. We largely use the former for the chapters on program
schemes, and the latter for the chapters on constraint satisfaction.

25

we write 7 | w, iff T enters the accept state, at some point in its computation,
when it is given input w over squares 1 to |w| with all other squares blank.

We say that a (non-deterministic) Turing Machine 7" accepts a problem Q C
STRUC(o) iff, for all structures A € STRUC(0), and for all orderings of A, we

have:
T |bin(A) & A€Q

26

Chapter 3

Adding a Priority Queue

27

We now consider the situation where we have a priority queue for memory.
A priority queue allows us to send elements to memory tagged with a numerical
weight. We are free to choose from a range of weights polynomially-bounded in
the size of the structure on which we are computing, but we may only retrieve
from the maximal (non-empty) weight. We will consider a variety of semantic
variations, and will, therefore, be no more specific at this point as to the properties
of the priority queue. However, we are in a very different situation from before,
because now we deal with both elements of structures and numbers. Such is the
power of the inclusion of numbers, that we will find ourselves dealing with Turing
Machines and complexity classes directly, as opposed to Lindstrom logics that
capture complexity classes only on ordered structures. We needed free variables
in NPS and NPSS in order to build the stratification within those hierarchies.
We do not need that variety of stratification here. Therefore, since we are only
concerned with decision problems, we will have no need for free variables here,
and we dispense with them for the sake of a simpler exposition.

Since we will deal in a range of queue weights that is polynomially-bounded
in the size of the structure A on which we are computing, we will have interest
in the numbers 1,...,n, where n = ||A||. We allow ourselves the first and last of
these, 1 and n, as constants that we may refer to by name.

Definition. For each k > 0, the program schemes of NPSPQ (k), over a signa-
ture o, involve two finite sets of variables, a set V of element variables and a set
N of numeric variables. A program scheme p € NPSPQ (k) consists of a finite
sequence of instructions, where each instruction, other than the first and last, is of

one of the following forms:

e an assignment instruction of the form ‘p :=¢q’ , where p€ Vandg € VU{c:
c is a constant symbol of 6} or p € N and g € NU{1,n}

e a guess instruction of the form ‘GUESS v’ , where v € V
e an increase (numeric successor) instruction ‘INCR m’ , where m € N

e apush instruction ‘PUSH v,m;1,...,my ! where,ve Vandmjy,...,my €N

IWhen k = 0 there are no m’s.

28

e a pop instruction ‘v :=POP’ wherev € V.

e while loops of the form ‘WHILE ¢t DO T OD’ , where ¢ is quantifier-free
FO(o) with free variables among V or quantifier-free FO((1,n)) whose free
variables are among N, and where T is a sequence of instructions of one of
the forms listed.

The first instruction is INPUT(V, N), and the last OUTPUT(V,N). We further define
NPSPQ to be Uy, NPSPQ(k).

As hinted at before, the stratification here — dimension k of the queue — is quite
different from the stratification we have seen thus far, which was based on nestings
of negation. With a priority queue, we will have sufficient computational power
[at what would have been the first level of that nesting] to not require stratification.

The assignment and guess instructions, and the while loops, behave as before.
Observe that in each case there are two modes of use: one relates to elements,
the other to numbers. We do not allow the guessing of numeric variables simply
because it is unlikely to be useful. The instruction INCR m increases the number m
by one, under the convention that INCR n is 1. This ensures that INCR is a function,
like cyc.succ, and in contrast to succ. The push instruction sends the element in
question to the priority queue tagged with weight k-tuple (m;1,...,my), i.e. the
current value of those numeric variables. It is for this reason that & is considered
the dimension of the queue. We will consider a number of alternative semantics
for the pop instruction:

u The pop removes, deterministically, the last element to be sent to the queue
at whatever is the maximal non-empty weight. This semantics leads to a
potentially unbounded queue size, and hence will be referred to as semantics

3 b

u.

b The pop removes, deterministically, the last element to be sent to the queue
at whatever is the maximal non-empty weight, and then scrubs all other
entries at that weight. This is equivalent to the condition that the queue
has only one space at each weight, i.e. new pushes would overwrite. This
semantics leads to a (polynomially-)bounded queue size, and hence will be
referred to as semantics ‘b’.

29

u+ As with ‘u’, but the maximal weight is also returned. This requires pop
syntax ‘p,m;y,...,my =: POP’. We refer to this as semantics ‘u+’.

b+ As with ‘b’, but the maximal weight is also returned. This also requires pop
syntax ‘p,mjy,...,m;y =: POP’. We refer to this as semantics ‘b+’.

As before, the pop instruction leaves its variable unchanged if the queue is
empty. Also as before, the INPUT instruction non-deterministically assigns el-
ements of the structure to V. The numeric variables N are set initially to 1.
Again, we consider an accepting computation of a program scheme p on a struc-
ture A to be any one that reaches OUTPUT, and we denote this A |=p. We refer
to each of the four alternative semantics above specifically by superscript, €.g.
NPSPQ"* (k). Again, we will refer to the classes endowed with successor with
the subscript s, e.g. NPSPQ4* (k).

We will use the following shorthands, specific to schemes of NPSPQ:

e Consider FOR m = m’ To m"Do Tt NEXT to be shorthand for:

m:=m

WHILE m # m"” DO
1
INCR m OD

e Consider DECR m to be shorthand for:

m =1m"=m
INCR m’
WHILE m’ # m Do
m'" :=m'
INCR m’ OD

m:=m".

30

e Consider FOR m = m’ DOWNTO m” DO T NEXT to be shorthand for:

m:=m'

WHILE m # m” DO
T
DECR m OD

Note that FOR loops are inclusive with respect to their limits.
e Consider m := m' +m” to be shorthand for:

m:=m
FOR m"" =1 To m” DO INCR m OD.

e Consider m := m’' —m' to be shorthand for:

m:=1
DECR m; DECR m
For m"" =m’ DOWNTO m" DO INCR m OD.

Henceforth, we will feel free to put arithmetic terms such as m’ —m” as limits

in FOR loops.

Let 71 be a j-tuple (my,...,m;) of numeric variables. Consider INCR 7 to be

shorthand for:

IF (mj =n)A...A(my =n) THEN DO INCR my;...;INCR m;j OD

IF (mj=n)A...A(m3 =n)A(mz # n)THEN DO INCR m2;...;INCR m; OD

IF mj # n THEN DO INCR m; OD

Let 1/ and n/ be the j-tuples of 1s and ns, respectively. We have that INCR

returns the lexicographic next number, subject to the convention that INCR (/)

m

(1/). Define DECR i analogously. Sums and differences of j-tuples 7 and 7’ are

defined in the natural way. However, we will insist that we never attempt the sum

or difference of a j-tuple and j'-tuple when j # .

31

Computing over a structure A, with ||A|| = n, we find we have been granted
basic modulo » arithmetic. This is ostensibly weaker than an ordering of the

elements of A, but it will ultimately allow us to build such an order.

Remark. For each j, 1J represents the number 1, in modulo n/ arithmetic, and
n’ represents the additive identity (zero). So, for example, INCR 1/ = 1/ + 1/ =
(1,...,1,2), where 2 is INCR 1.

3.1 A single weight: £k =0

The bottom level in our apparent hierarchy merits brief attention. In the presence
of a single weight, it is apparent that b+ (respectively, u+) is no stronger than b
(respectively, u).

Lemma 8. NPSPQ2(0) = NPS (1) = NL

Proof. We already have the second equality; we prove the first.

(NPS,(1) € NPSPQ%(0)). Trivially, we will have for any p € NPS,(1), that
also p € NPSPQ%(0).

(NPSPQ?(0) C NPS,(1)). The priority queue may hold only one element
at any time, and, as such, behaves like an extra element variable. Furthermore,
the ability to count in NPSPQ’(0) may be simulated by the successor relation of
NPS;(1). Specifically, if p € NPSPQ?(0) involves |V| element variables and |N|
numeric variables, then we construct p’ € NPS;(1) with |V| + |N| + 3 variables.
Our simulation is made somewhat more complicated by our convention that pop-
ping from an empty queue leaves the variable unchanged: this is why we need the
extra variables v/, V" (we use v/ =" to signify that the queue is non-empty). We

construct p’ thus:

INPUT(V1 yee s VIV VIV 41s -;V|V|+]N]7uneue~,vl-/vﬂ)
v £ N

Tsim

OUTPUT(V],. VWV VIV L - ,vWHIN',uneue,vl,V”)

Where 1y;,, is the body of p (i.e. with the input and output lines removed), with
the following substitutions:

32

Convert all instances of variables m; to variables v|y|y;.

Convert all instances of the numeric constant 1 (respectively, n) to the ele-

ment constant min (respectively, max).

Convert all instances of ‘INCR m;’ to: ‘vjy|4; := cyc.succ(Viy|4.i) -

Convert all instances of ‘PUSH v;” t0: “Vgyeue := Vi s V :=V"".
q

Convert all instances of ‘v; := POP’ to:

Ir v =v" THEN DO

Vi '= Vgueue v I# V' FI.
It should be clear that we have, for all structures A, A = piff A |=p’. O
Lemma 9. NPSPQ*(0) = NPSS,(1) =P

Proof. We already have the second equality; we prove the first.

(NPSS;(1) € NPSPQ¥(0)). Trivially, any p € NPSS(1) is such that p €
NPSPQ¥(0).

(NPSPQ%(0) C NPSS,(1)). The priority queue’s single weight here acts as
a stack. We may use a similar, though simpler, reduction to that of the previ-
ous lemma: we no longer need the variables v/,v” in any capacity, and we leave
instances of ‘PUSH v;” and ‘v; := POP’ in p unchanged in p’. O

Remark. The previous lemmas are somewhat misleading. We had provision for
free variables in NPS and NPSS, but we have none in NPSPQ. The previous
results, therefore, can only authoritatively refer to sentences of NPS; and NPSS,
i.e. those schemes without free variables. The only reason we omit free variables
from NPSPQ is to simplify our exposition. The previous lemmas would hold in
generality, if we were to allow free variables in NPSPQ.

When we are deprived of the successor relation, we find NPSPQ?(0)ZNPS(1)
(respectively, NPSPQ"(0)ZNPSS (1)), since the parity problem may be expressed
in the former, through counting, but not in the latter. Of course, we will have the

inclusions

e NPSPQ?(0) C NPSPQ”(0) = NPS,(1) and

33

o NPSPQ*(0) C NPSPQ¥(0) = NPSS,(1).

We conjecture that these inclusions are proper, and in particular that NPSPQ*(0)
is contained within LFP + COUNT[FO], which is known to be strictly contained
in P [31].

3.2 The Hamilton Path problem is in NPSPQ

We proceed by examining the power of the program schemes of NPSPQ and, in
particular, one of their number pyp with the ability to accept the NP-complete
Hamilton Path problem. The Hamilton Path problem? HP is exactly the class of
digraphs that have a directed path containing each vertex exactly once. The fol-

lowing is part of the program scheme pyp € NPSPQ*(2) that non-deterministically
builds an order on such a structure.

1. INPUT(vy, Vo, 11,12, m3)

2. FORm =1TonDo

3. GUESS v

4. ForRmy=1TonDoO

5 PUSH vy,my,m; NEXT NEXT

Our method is simple enough: we produce n copies of n guessed vertices, each
copy occupying weights (i,1) to (i,n) for 1 <i < n. These could be genuine
orders, but only if we haven’t picked some element twice. After line 5, the queue

2In contrast to TC, AR, PS etc., which we initially defined as global relations, we define HP
as a decision problem.

34

looks like this (entry followed by weight):

X, (n,n)

X1 (l’l, 1)

Xn o (1,n)

x1 o (1,1)

At line 6, we proceed by consuming n — 1 copies of our n guessed elements to
see if some element is repeated. First we look at the last copy and last element,
xn, stored at weight (n,n), then we look through (n,n—1) to (n,1), elements
Xn—1,...,X1, to see if it is repeated. Next, lines 11-13, we remove the unneeded
(already checked) element x,, at weight (n — 1,n) and repeat the process for (n —
1,n—1)to (n—1,1). If we do this n — 1 times, finding no element guessed twice,
then we know we do indeed have a genuine order left in weights (1,1) to (1,n).
(If the first element had been repeated we would have already discovered that; we

only need n — 1 iterations here.)

6. FoRm; =1Ton—1Do
7. wvo:=PoprP
8. FOorRmy=m;y Ton—1DO
9 v1 := Pop
10. IF vi = v, THEN DO LoOP FOREVER F1 NEXT

11. IFmj; #n—1THEN Do
12. FOR m3 =1 To m; Do
13. vy := POP FI NEXT NEXT NEXT

35

For any computation that gets past line 13 the queue will look like

xn - (1,n)

X1 (1,1)

where we know that xy,...,x, is an ordering of the vertices. We will now search
along it for a Hamilton path:

14. v; :=PopP

15. FORm; =1Torn—-1DoO

16. vy:=wv;

17. vy:=Pop

18. IF —E(v,v2) THEN DO LOOP FOREVER FI NEXT
19. OUTPUT(vy,Vv2,m1,mo,m3)

It is because we can non-deterministically guess all orderings that there will be an
accepting computation if, and only if, the structure has a Hamilton path. For all
digraphs G, we will have G = pyp iff G € HP.

The scheme pyp computes in such a way that, on all inputs G, it only uses any
weight at most once. Consequently, pyp also accepts the Hamilton Path problem
under semantics b. Clearly, pyp can undergo minor syntactic changes to produce
a program scheme that accepts HP for semantics u+ and b+, too.

3.3 NPSPQ’ C NPspace

With the polynomially-bounded memory of NPSPQ? , the following is almost
immediate.

Proposition 10. NPSPQ? C NPspace.

Sketch Proof. The proof is by simulation. For p € N PSPQ? we will construct
a non-deterministic Turing Machine T, together with an exhibited bound /, such

36

that, for all structures A (of size n), and all orderings of A, the following are
equivalent:

e AEp.
o T | bin(A).
o T | bin(A) with the read/write head never leaving the first n’ squares.

Note that equivalence of the last two guarantees that 7 is an NPspace machine
since there exists some !’ (dependent on the maximum relation arity of the signa-
wre 6) s.t. |bin(A)| = 0(n").

Ifpe NPSPQ? (k) and involves j program scheme variables (element or nu-
meric) then we need to record at most n* + j items, corresponding to the entries
on the priority queue and the assignments of the variables of p, at any point of
the simulation. Each of these n* + j items may take at most n possible values,
so each of these items may be written on T’s tape in log(n) squares. We do not
give full details of 7’s simulation, but note that the amount of tape space required
to hold all these n* + j items is O((n* + j)log(n)). It follows that we may take
li=k+j+1. |

Corollary. NPSPQb C NPspace.

Proof. The inclusion NPSPQ? C NPSPQ? is trivial. O

3.4 Expanding alphabets

At present there are precisely n distinct symbols that we can send to the queue,
namely the elements of the structure on which we are computing. However, we
can expand this alphabet by always pushing and popping j-tuples, instead of sin-
gle variables. In this way we potentially increase our working alphabet to n/
symbols.

Let v be a j-tuple of variables. We work in semantics u, but our results apply to
semantics u+, and also to NPSS. A similar method may be used for semantics b
and b+, although at the cost of more weights. The method by which these results
for semantics u transfer to semantics b will be explored later.

37

e Consider ‘PUSH v,m’ to be shorthand for ‘PUSH vj,m ;...; PUSH vi,m’.

e Consider ‘v := POP’ to be shorthand for ‘vy := POP ;...;v; := POP’ (note

the reverse order).

By these methods, we can push and pop tuples as if they were single elements.
We can now set up special symbols by the use of a certain convention. Suppose
we want i special symbols My, ..., M;, then we can achieve this, in a rather sloppy
manner, by always pushing and popping (i + 1)-tuples (vq,...,v;y1), using the

convention:
e (vi,...,viy1) where v; = v; is the element v;.
e (vi1,...,viy1) Where v; # v A vy = v3 is the symbol M.
[J
® (vi,...,viy1) where vi v A...Avi_1 # viAv; =v;; is the symbol M;_.
e (vi,...,viy1) where vi #vaA...Av; # viy1 is the symbol M;.

Note that all (i + 1)-tuples are defined. Henceforth we will assume a finite set of
special symbols at our disposal.

Given a program scheme in which we are always pushing and popping j-
tuples, we may drop the line over the variables, and use that line only when re-
ferring to some j'-tuple of ‘variables’ each of which is actually a j-tuple of real
variables. This should not cause too much confusion. This will result in our hav-
ing variables v that can hold values that do not represent actual elements of the
universe on which we are computing. Such special characters will constitute the

symbol set A.

38

3.5 Pushing and Popping Numbers in NPSPQ’/NPSPQ".

For program schemes of NPSPQ¥ or NPSPQ?, consider ‘v := element(m)’ to be
shorthand for

V:i=min

For m'=1Tom—1Do

GUESS v/

IF V' # succ(v) THEN DO LOOP FOREVER FI
v:=v NEXT

and ‘m := position(v)’ to be shorthand for

VvV i=min
m:=1
WHILE V' # v DO
GUESS V'
IF V' # succ(v') THEN DO LOOP FOREVER FI
INCR m
v :=V' 0D

The instruction v := element (m) assigns to v the mth element of the universe,
conversely the instruction m := position(v) assigns to m the position of the ele-
ment v in that order.

For j-tuples @ = (my,...,m;)and v = (vi,...,v;):

o Consider v := element(m) to be shorthand for vy := element(m1) ;...;v; =
element (m;).

e Consider m := position(v) to be shorthand for m; := position(vy) ; ...;

m; = position(v;).

3.5.1 NPSPQ“"(k) = NPSPQY(k).

Lemma 11. NPSPQ“" (k) C NPSPQ¥(k).

39

Proof. The proof is by simulation. For all p € NPSPQ¥* (k) we construct a p’ €
NPSPQ¥(k) such that, for all structures A, we have A = p iff A = p’.

The program scheme p’ will involve all the variables of p together with a new
k-tuple of element variables v,,. Where p pushes and pops single variables, p’
will always push and pop (k + 1)-tuples of variables (of which the trailing k-tuple

contains the weight).
e Convert all instances of ‘PUSH v,/ , in p, to the following in p’:

Vi 1= element (m)

PUSH (v,v,),m
e Convert all instances of ‘v, := POP’ , in p, to to the following in p’:

(v,Vm) := POP

m := position(vy,)

Corollary. NPSPQ“" (k) = NPSPQ%(k)

Proof. The converse inclusion NPSPQ¥(k) C NPSPQ“* (k) is trivial. d

3.52 NPSPQ’" = NPSPQ’.

Lemma 12. NPSPQ’* (k) C NPSPQ?(2k).

Proof. The proof is broadly similar to that of the previous lemma, but we will
require more than single weights to store the (k + 1)-tuples of that proof. For all
p € NPSPQL* (k) we construct a p’ € NPSPQP(k) such that, for all structures A,
we have A = p iff A =p/.

The program scheme p’ will involve all the variables of p together with a new
k-tuple of element variables v, = (v1,,...,vk).

40

e Convert all instances of ‘PUSH v, , in p, to the following in p’:
PUSH v, (1, 1¥)
PusH V&, (72,171 n)
PUSH v}, (71,n, 15 1)

e Convert all instances of ‘v,7 := POP’ , in p, to to the following in p’:

(v,Vm) := PoOP

i := position(Vy,)

Corollary. NPSPQ’* = NPSPQ’

Proof. The inclusion NPSPQ?(k) C NPSPQ?™ (k) is trivial. O

3.6 NPSPQ’(k) C NPSPQ“(k)

Intuitively, semantics u appears at least as strong as semantics b. It is relatively

straightforward to prove this.
Lemma 13. NPSPQ?(k) C NPSPQ¥(k).

Proof. The proof is by simulation. For all p € NPSPQ®(k) we construct a p’ €
NPSPQ*(k) such that, for all structures A, we have A =p iff A =p'.

The program scheme p’ will involve all the variables of p together with two
new k-tuples of numeric variables 7', 7" and a new element variable v/. Assume
that M is a special marker symbol not used by p. Build p’ from p by adding the
following lines to the beginning (after INPUT):

For 7@ = 1¥ To n* Do
PUSH M, NEXT

This sends a copy of the marker M to every weight on the queue. Finally, convert
all instances of ‘v,7:=POP’ , in p, to the following in p’.

41

= nk
v := PopP
WHILE 7 # 1* AV =M Do
DECR
v :=PopP OD
IF v/ # M THEN DO
vi=Vv
WHILE v/ # M Do
v :=PoP OD F1
For 7" = To n* Do
PUSH M, NEXT

The given subroutine counts, top-down, the number of empty weights in the queue
of p — these contain just M in the queue of p’. When it finds something other than
an M, it stores this in v then removes everything else at that weight, i.e. until it
reaches another M. The situation where the queue of p is empty is dealt with
by the conditional v/ # M in the sixth line. Finally, an M is returned to each of

the weights of the queue of p’ above and including the weight of the retrieved
element. O

Corollary.
e NPSPQ%(k) C NPSPQ¥(k)
e NPSPQ’*(k) C NPSPQ“* (k)
e NPSPQ’" (k) C NPSPQ“* (k)
Proof. Our proof is equally valid for these statements. (|

Remark. It may seem that our method is unnecessarily complicated. In simulating
semantics b with semantics u, when popping from the queue at a certain weight,
why do we not simply then pop everything else off at that same weight (foregoing
any need for the marker M)? This method would generate very simple proofs
for the last two statements of the corollary, and a relatively easy proof of the first

statement of the corollary. However, it would not easily be applied in the case of
the statement of the theorem.

42

3.7 NPSPQ!(k) C NPSPQ"(k+2).
Lemma 14. NPSPQ*(k) C NPSPQ¥(k +2).

Proof. We prove the inclusion by simulating the successor relation. We take any
scheme p € NPSPQ¥(k), and construct a scheme p’ € NPSPQ*(k +2) such that,
for all structures A, A = p iff A = p/'.

Assume, without loss of generality, that p involves element variables V and
numeric variables N, and that vi,v; € V and my,mp,m3 ¢ N. Given p we will
construct p’ by adding a special start-routine, a special end-routine, and amending
push and pop instructions, as well as successor tests in while loops.

Let V' =V U{v;,v2} and N' = NU {m;,mz,m3}. Then p’ will be:

INPUT(V',N')
Tstarts Tps Tend
OutpuT(V/,N')

We will now meet the sub-routines Tyar,Tp, Tend, and explain why each one
performs the function that will be claimed of it.

3.7.1 Start-routine: Ty,

We will add a sub-routine T,,,s to the start, that builds an order over A’s n el-
ements. We will simply guess an order, as we did in pgp, and we will put this
putative order in the weights (1%,1,1) to (1%, 1,n). Tyqa, will first send a special
marker symbol M to each of these weights via:

FOrR m; =1 Ton Do
PUSH M, (1%, 1,m;) NEXT

We then add lines 2-13 of the scheme pyp that solved the Hamilton Path problem,
with the proviso that weight tuples (m,m,) in pyp become (1¥,m1,m3) in Tyarn.

43

Any computation that gets through T4 Will leave the queue looking like:

xn (lkal?n)

M (1%,1,n)
x1 (1%,1,1)
M (1K1,1)
~—~

where x1,...,x, is an ordering of the elements of A.

3.7.2 Simulation of p: T,,.

The main body of p’, the sub-routine T, is that bit that actually simulates p. It will
use higher weights of the form (n,n,m), where the line on m specifies a k-tuple.
Before we get to the main simulation, we will push a special marker symbol M’
to weight (n,n, 1%) to ensure that we never stray into the lower weights, in which
the order is contained, during the simulation. Thus:

PUSH M’ (n,n, 1¥)
For the actual simulation:
e Convert all instances of ‘PUSH v, to: ‘PUSH v, (n,n,m)’.

e Convert all instances of ‘v :=POP’ to the following in p:

Vi =V

v := PopP

IF v = M’ THEN DO PUSH v, (n,m, 1%) FI
Vi=Vi

The simulation of pop is rather complicated because the original program scheme
p must leave a pop unchanged when the queue is empty. But when the queue
associated with p is empty, the queue associated with p’ still contains entries in
the lower weights beneath M.

44

We may also have to evaluate quantifier-free successor queries of the form
V' = succ(v), that might appear in a test for a while loop, immediately before the
test of that while loop. Let @ be a propositional formula that involves the atom

V = succ(v):
e Convert all instances of WHILE ®(v' = succ(v)) Do 1 OD to:
Tsuce 5 WHILE ®@(mp = n) DO T; Tsyee OD.
Where T, is the sub-routine:

mp:=1;mpy:=1
WHILE m; # n DO
GUESS v;
PUSH vy, (1%,1,m))
IF vi = v THEN DO
INCR my
GUESS v;
PUsH vy, (15, 1,m,)
IF vi =V THEN DO my := n FI FI
INCR m; OD

Observe that v/ and v are free in the sub-routine. What is happening in the while
loop in the added sub-routine is that we are guessing what we hope to be an order.
If it is the order that we guessed at the start, then my = n iff v/ = succ(v). We will
check later that all these guessed ‘orders’ are not only genuine orders, but also the
same as the first. In this manner, each instance of v/ = succ(v) in @ becomes a test
of my = n. There may be any constant number of tests of the form v = succ(v),
involving different variable pairs: each one of these will cause its own copy of the

Tsuce Sub-routine to appear before, and in, the while loop.

3.7.3 End-routine: 1,

Once the simulation of p is accomplished we will want access to the lower weights
to verify that these ‘orders’ we have been guessing are uniformly the same. We

45

will want to pop everything on the queue down to, and including, the marker M’.
Tend Will therefore begin:

WHILE v # M’ Do v; := PoP OD.

At this point the queue will look like:

Yn1 (lkal7n)

yip (15,1,1)

where s is the number of times that we needed to check successor queries in while
loops. We already know that x,..., X, is an order of the elements — what we must

now check is that:

® X =Y11=... = Yigs
[
® Xp=Ynl1=---=Yns

46

SO T.n4 concludes:

FORm;=1Ton
vi := PopP
WHILE vi # M Do
V2 1= V1
v; := Pop
IF v{ # v THEN DO LOOP FOREVER FI1 OD NEXT

Corollary. NPSPQ“" = NPSPQ“* = NPSPQ¥ = NPSPQ".

Proof. NPSPQ“" C NPSPQY" is trivial; NPSPQ" C NPSPQY was proved
in Lemma 11; NPSPQY C NPSPQ" was proved in the previous lemma; and,
NPSPQ¥ C NPSPQ"" is trivial. O

Remark. Whilst we have NPSPQY C NPSPQ¥, there is no reason to think that
NPSPQ? C NPSPQ?. NPSPQ? can simulate NPSPQ¥ up to a point, as we will
see, but if there is a super-polynomial number of successor calls in a scheme of
NPSPQf , then we can not use our method to simulate in N PSPQb .

3.8 NPspace C NPSPQ;

Let Q C STRUC(o) be some problem in NPspace. Then there exists a positive
integer k and a non-deterministic Turing machine 7 such that, for all structures A
(of size n), and all orderings of A, the following are equivalent:

o T | bin(A).
e T | bin(A) with the read/write head never leaving the first n* squares.

e Aec Q.

Let Q be the set of states of T, including start state g, and accept state g,.
In addition to variables ranging over the elements of A, we will want to enlarge
our alphabet such that we also have:

47

e The set of pairs I1 = {(zero,q), (one,q), (blank,q) : q € Q}.

e The special symbols L, R, and U. These will track the movement of T’s
read/write head.

e The marker symbol M.

Since Q is fixed this will not be a problem.

Let I" C I1? be such that ((y1,41),(y2,92)) € T iff y; = y;. T appears to be a
rather unusual set, but we will need to verify such pairs on the queue in our given
simulation.

Let A C TT? U (TT x {L,R}) be such that:

e ((y1,91),(y2,92)) € Aif there is a transition rule of T from (y1,4;) to (y2,92)-

e ((v,9),R) € A if there is a transition rule that moves the read/write head
Right from (y, q).

e ((y,9),L) € Aif there is a transition rule that moves the read/write head Left
from (,9).

A is, therefore, our visualisation of 7’s transition rules.
Theorem 15. NPspace C NPSPQ?.

Proof. We aim to prove this by simulation. We will construct a program scheme
pa € NPSPQ¥(k+ 1) such that A k= pq if, and only if, A € Q. The n* weights of
the form (1,7) will mimic the #* squares of the Turing machine 7. The line on 7
will always refer to a k-tuple. pg will be:

INPUT (V,vg, v,V V' 70,772, /)
Thin(A)> Tsims Tend
OUTPUT (¥, vy, v, V', V" 1,1, 73,)

We will now meet the sub-routines Tp;,(4)> Tsim,» and Teng, and explain why
each one performs the function claimed of it.

48

3.8.1 Preparation: Tj;,4)

First we will write the marker symbol M to the weights (1,1) to (1,n*). Before
we can simulate the computation of 7 we must write bin(A) to the queue. We
will do this by randomly writing zero, one or blank, together with the start state
g5, simultaneously to the weight ranges (1,1%) to (1,#%) and (n,1%) to (n,n*).
The n* entries in the range (1,1%) to (1,n*) will represent the n* squares of the
Turing tape at the start of computation. We let the variable m range over these

tape squares in the following.

For 7 = (1¥) To (n*) Do

PUsH M, (1,m)

EITHER(Zero, One, Blank)

IF Zero THEN DO PUSH (zero,qs), (1,m); PUSH (zero,q;s),(n,m) FI

IF One THEN DO PUSH (one, g;),(1,m); PUSH (one,qy), (n,m) Fi

IF Blank THEN DO PUSH (blank, gy),(1,m); PUSH (blank,qs),(n,m) Fi
NEXT

This will leave the queue looking like:

0 k
(ynkvq.s) (n,n)

(y(l)ImQS) (nvlk)

—=

(Opergs) (1,75
M (1,79

(y(l)lmqs) (la lk)
M (1,1

where each y € {zero,one,blank}. We will consume the top copy in weights
(n,1%) to (n,n*) to check that y(])k, e ,ygk is an encoding bin(A).

49

If o is a signature with relations R, Rz, ...,R;, of arities ay,az, .. .,a; then the
coding of R; will take the weights (n, 1) to (n, 1% + n®), the coding of R, will
take the weights (n, 1¥ +n% 4+ 1) to (n, 1* +-n% +n® + 1) etc. For i < k, note that
the i’th power of n is represented by the k-ary vector ni that has a 1 in positions
1 <i <k—iandan nin positions k —i < i’ <k.

We will explicitly give the method when ¢ = 6; = (E?), i.e. on graphs. In
the sequence yY,,...,y%, we must ensure that all apart from the first n” entries are
blank. We must then ensure that the first n? entries code the edge relation of the
graph. Recall that n2 = (1,...,1,n,n)3.

FOR 7 = n* DOWNTO 1¥+n2 + 1¥ Do
v := Pop
IF v # blank THEN DO LooP FOREVER Fi NEXT
FOR 7 = n2 DoWNToO 1*¥ Do
v:= Pop
IF v = blank THEN DO LooOP FOREVER FI
(Viy.--,vk) := element(my, ... ,my)
IF E(vg_1,vx) Av = zero THEN DO LOOP FOREVER FI
IF —E(vk_1,vk) Av = one THEN DO LOOP FOREVER FI NEXT

Any computation that gets through that will leave the queue looking like:

)’Sk (lank)
M (1,7

Yoo (1,15
(1,15

where y?k, . ,ygk is necessarily a copy of bin(A) — which we consider to be T’s
tape on input. The superscript O refers to time 0.

3We retain the line on the k-ary nZ o distinguish it from the binary n? = (n,n).

50

3.8.2 Simulation: T,

Throughout the simulation we will keep track of the position of T’s read/write
head in a numeric variable k-tuple m,/,, and the state will be remembered in a
single variable v,.

In simulating the ith step of 7" we first guess what type of move T will perform
at that stage. We will verify later that these were valid choices in the computation.
There are two basic cases: either moving the read/write head; or changing the
entry at the read/write head’s current position. We can not move left from position

1¥ and if we move right from position n*

we may assume we do not have an
accepting computation.

In the first case we write the symbol R or L to the weight (1,7, ,), depending
on whether the read/write head is to move right or left. We amend the position
of the read/write head as stored in My s either adding one, or subtracting one.
Afterwards we guess what will be the entries of T’s tape at time i+ 1 and write
them, together with the current state stored in v,, to all the weights (1,1%) to
(1,n%). We will want the tape-entries we have guessed to be exactly the same as at
time i, written beneath them on the queue (except for the introduction somewhere
of a symbol R or L). We will only verify that this is the case at the end of the
simulation.

In the second case we write the symbol U to the weight (1,7,/,). We then
choose a new state to go into, amending v, accordingly. We then guess the entries
of 7”s tape at time i + 1 and write them, together with the new state stored in v,
to all the weights (1,1%) to (1,#¥). In this case we will want the tape-entries to be
the same as at time i except possibly for the weight (1,7,,), i.e., for entries split
by a U symbol. We will verify this at the end of the computation.

This simulation will continue until we guess that we go into the accept state

9a-

51

WHILE v, # g, DO
EITHER(Right, Left, Unmoved)
IF Right THEN Do
IF m,},, = n* THEN DO LOOP FOREVER FI
PUSH R, (1,m,},)
INCR m,), FI
IF Left THEN DO
IF m, = 1¥ THEN DO LooP FOREVER Fi
PUSH L, (1,7, ,)
DECR m,,, F1
IF Unmoved THEN DO
PUSH U, (1,7,,)
GUESS vg; IF v4 ¢ Q THEN DO LOOP FOREVER FI
For m = (1%) To (n*) Do
EITHER(Zero, One, Blank)
IF Zero THEN DO PUSH (zero,vy), (1,m) F1
IF One THEN DO PUSH (one,v,), (1,/m) FI
IF Blank THEN Do PUsH (blank,v,),(1,m) FI NEXT OD

3.8.3 Verification: 1.,

We now move into the verification, in which we check that we have effected a
legitimate computation.

If ¢ is the length of the simulated computation, then at this point each weight
(1,m) of the queue, representing the mth square of the Turing tape, will have a

52

stack on it looking something like*:

(Vi1 4a)

o=t h

1
GE g8)
R

(%, 48)

Ot gt
m
U

O, q")

(i q')
(yrl“ﬁa CIS)
M

Note that entries R, L, U, or, indeed, M may never be adjacent. We will read
these entries off such that we can consider three adjacent at once. At any point the

variables v,v/,v"" will hold descending successive entries on the stack. T.nq Will
be:

FoR 7 = n*f DOWNTO 1¥ Do
v :=Popr; V' := PopP; V' := blank
WHILE v/ # M Do

V' := PoOP

Tcheck

v:i=v;Vv :=v' OD NEXT

In the case that v,v' ¢ {L,R,U}, we will simply check that the tape-entry in v

4The gs with superscript should be considered as representative of some state in Q, just as
the ys with superscript are representative of one of {zero,one,blank}. The gs with subscript, e.g.
gs,4a, are actual states.

53

is the same as in v/. This is not quite the condition v =V, since each such entry
on the queue is a pair of tape entry and state, but it is the condition (v,v') € T, i.e.
the tape entries contained in v and v’ are the same — even if the states are different.

In the case that v € {L,R,U} we do nothing.

Where V' is the symbol R we check that (y*!,4'*!) and (/,4) (in v and v",
respectively) are the same. It is actually consequent on our simulation method that
¢! = ¢'. We must also check whether T has a transition rule in state ¢' reading
y' to move right.

We do analogously when v/ is L.

Where ' is the symbol U we check that T has a transition rule ((y,¢'), 1,4’ 1))
(stored in (v,v")) in A.

Thus Topeck Will be:

IFv,v' ¢ {L,R,U} THEN DO
IF (v,v') ¢ A THEN DO LOOP FOREVER FI FI
IF v = R THEN Do
IF v # V' THEN Do LoOP FOREVER FI
IF (v,R) ¢ A THEN DO Loop FOREVER FI
IF v/ = L THEN DO
IF v #v" THEN DO LoopP FOREVER FI Fi
IF (v,L) ¢ A THEN DO LOoOP FOREVER Fi
IF vV = U THEN DO
IF (v,v"") ¢ A THEN DO Loop FOREVER FI1 FI

The result follows. [
Corollary. NPspace C NPSPQ¥

Proof. Recall NPSPQY = NPSPQ*. O

3.9 A polynomial-time restriction of NPSPQ".

Definition. A program scheme p € NPSPQ¥(k) is said to be polynomially step-
bounded if there exists a j such that, for all structures A, p accepts A if, and only
if, p accepts A within n/ steps. Let:

54

e NPSPQ"(k)poiy :=
{p : p € NPSPQ*(k) and p is polynomially step-bounded }

e NPSPQ"

poly *= UkzoNPSPQu(k)poly.

Proposition 16. NPSPQ7, ;. C NPSPQ®.

Proof. We prove this by simulation. The idea is that we can never attempt to use
a weight more than once. Given some p € NPSPQ"(k) 501y, and the j that is the
polynomial power of its step bound, we will construct a p’ € NPSPQ?(k + j),
such that, for all structures A, A = p iff A = p’.

Let the line on m indicate a j-tuple. Assume i is a numeric variable tuple not
involved in p.

Given p we construct p’ by
e adding, after every line, except the last, the instructions

INCR m
IF 7 = n/ THEN DO LooP FOREVER FI.

(m will act as a step-counter in p’), and
e converting all instances of PUSH v, (mj,...,my) to PUSH v, (my, ..., my,m).
O
Corollary. NP C NPSPQ?

Proof. The simulation method we used in proving NPspace C NPSPQ* will also

prove NP C NPSPQ;OI),. The result follows from the previous lemma. O

55

Chapter 4

Adding Universal Quantification

56

4.1 Introducing APS(1)

The schemes of NPS have existential quantification built-in through their guess
instruction. NPS(1) is devoid of any notion of universal quantification. The
higher strata, NPS(m), have some notion of universal quantification, through
negation of existential quantification, but have no facility to combine both types
of quantification within while-loop recursion. We consider the effect of explicitly
adding universal quantification. We are, once more, without the stack.

Definition (Syntax of APS(1)). The syntax of APS(1) is as that of NPS(1), ex-
cept the extant GUESS instruction is renamed 3GUESS, and a new instruction
YGUESS is added, with identical syntax.

The schemes of NPS(1) accepted a structure, expanded with values for the
free variables, iff there existed some accepting computation, i.e. at each point the
program went through an JGUESS v, there existed an assignment to v such that
thenceforth the scheme made it to output. The schemes of APS(1) accept an
expanded structure iff:

e at each point the program goes through a JGUESS v, there exists an assign-
ment to v such that thenceforth the computation makes it to output, and

e at each point the program goes through a VGUESS v, we have that for all

assignments to v the computation thenceforth makes it to output.

These instructions have an appealing semantic characterisation in terms of the
configurations of a scheme p € APS(1). When computing on a structure A, we
can construct an alternating graph ASEZl just as we constructed 921, but with the
additional information that a configuration (Z,w, %) is universal iff W represents
line /, and the instruction on line (/ + 1) is a VGUESS. Observe that, for the edge
relation of A9f4, there is no difference between JGUESS and VGUESS, since in
each case the configuration can move to any configuration that is identical except-
ing the guess for the pertinent variable. Let the the lines on Z denote an i-tuple,
the line on %,V denote j-tuples, the hat on w denote a |p|-tuple, and the line on %,y

denote (i+ |p| + j)-tuples.

57

Proposition 17. Suppose p € APS(1) has i free variables and j input-output
variables, and that y(X,) is a quantifier-free first order formula expressing the

edge relation of ‘ASEI’ then the following are equivalent:

° AEp(2)

AE Jwi,..,wpwi=wa A
/ / / / / /
Eiwl,...,wIpl wi 5¢éw2/\..._/\w|p‘_1 #WIPI A]
Fu,v ARAE, W] ((Z, w1, wip|, 1), (2, W), W), 9)

Proof. Follows immediately from the semantics of APS(1) and the definition of
.AS%. Recall that the bizarre constraints on the ws are our encoding of the first

and last lines. O

Just as acceptance in NPS(1) is a reachability (transitive closure) problem, so

acceptance in APS(1) is an alternating reachability problem.
Corollary. APS(1) C +AR![FO].

Not only can the schemes of APS(1) be recast as formulae of AR![FO], but
a scheme of APS(1) can express the Alternating Reachability relation. In order
to prove this, we will have use for another shorthand that is available to us in the

presence of our new instruction VGUESS.

e Letwordl, ..., wordj be words representing certain possibilities. Consider:

ALL(wordl, ..., wordj)
IF word1 THEN Do 17 F1

IF wordj THEN Do 7; FI
to be shorthand for:

VGUESS vi,...,V;
IF vi = v, THEN DO 1] FI
IF (vi # v2) A (v, = v3) THEN DO 13 FI

58

IF (V1 #vz)/\.../\(vj'_z #vj_l)/\(vj_l = Vj) THEN DO Tj-1 F1
IF (vi #v2)A...A(vj—1 #vj) THEN Do 1; FI

ALL is the universal counterpoint to the existential EITHER. When a program
scheme meets an EITHER instruction it will accept iff one of those choices leads
to acceptance; when a program scheme meets the ALL instruction, it will accept
iff all of the choices lead to acceptance.

Proposition 18. There is a program scheme par(u,v) € APS(1) with two free
variables that expresses the relation AR. Formally, for all alternating graphs A,

and vertices a,a’ € A:
Al=par(a,d) iff AE AR(a,d’) (thereisan alt. pathin A fromatod')

Proof. We will construct par. First we note that the relation AR (u,v) may be
written in LFP[FO] as LFP[APxywy](u,v), where y(P,x,y) :=

(x=y)V (3sP(x,s) AU (s) NE(s,y)) V (3sP(x,5) AU (s) AN [VrE(s,r) — P(r,y)])
This can be re-written as Y(P,x,y) =
(x =y)V3sP(x,s) A([=U(s) NE(s,y)] V [U(s) AVr(=E(s,r)V P(r,y))])

Note that the 3s quantifies everything to its right. We will denote the two conjuncts
after that quantification as Left and Right. Thus:

e Leftis P(x,s), and

e Rightis ([-U(s) AE(s,y)] V [U(s) AYr(=E(s,r)V P(r,y))]).
Let tTar(u,v,x,y,s,r) be the sub-routine involving free variables u, v:

XI=uyy:=v

WHILE x # y DO
JGUESS s
ALL(Left,Right)

59

IF Left THEN DO y :=s FI1
IF Right THEN Do
IF ~U(s) AE(s,y) THEN DO x :=y FI
IF —~(=U(s) AE(s,y)) A—U(s) THEN DO LooP FOREVER FI
VGUESS r
IF =(-U(s) ANE(s,y)) A—E(s,r) THEN DO x :=y FI
IF ~(-U(s) NE(s,y)) NE(s,r) THEN DO x :=r F1 OD

We now set pagr(u,v) to be:
e INPUT(x,y,1,5); TAR; OUTPUT(x,y,1,s)

par evaluates whether (u,v) is in AR from the outside-in, hence x and y are
initially set to u and v, respectively. Each path of the computation succeeds only
when the variables x and y become equal. par mimics exactly LFP[APxyy](u,v):
indeed if the rank of (u,v) in LFP[APxyy](u,v) is j, i.e. (u,v) € y/ but (u,v) ¢
W/~ then T4r Will go through the while loop [a maximum of] j times. O

Proposition 19. AR![FO] C APS(1)

Proof. Take any formula ¢ € AR![FO]. Then ¢ is of the form
Juy...upIvy...vpr ARAX, yy](,v), where y is quantifier-free. We construct
P € APS(1) such that, for all structures A, A |= pg iff A = .

Let pg be:

INPUT(X,¥,5,F,ui,. .. S UV ,vj//)

JGUESS u1,...,uj,vi,...,v

jl/

OUTPUT(X,,5,F, U1, ..., Uj,V1,...,Vj")

O
Theorem 20. APS(1) = AR![FO]

Proof. Follows from the previous two propositions. O
Corollary. APS(1) = AR![FO] = LFP[FO] = AR*[FO|.

Proof. AR!'[FO] = LFP[FO] = AR*[FO)] is proved in [16]. O

60

4.2 Introducing APSS(1)

Here we consider the situation where we augment the schemes of APS(1) with
a stack for memory. We will find that we can quantify over the stack in a way
that was not possible with NPSS. Consequently, order will not be a problem, and
we quickly establish that we subsume NPspace. We will have no need for free
variables to generate stratification: as with NPSPQ, we dispense with them.

Definition (Syntax of APSS(1)). Notwithstanding the forbidding of free vari-
ables, the syntax is that of APS(1), with the PUSH and POP instructions of
NPSS(1).

Definition. Suppose the program scheme p € APSS(1) involves j variables. Then
a configuration of p, computing on a structure A, is a sequence (v,/,w) giving the
values of the variables, the number of the line just executed, and the contents of
the stack (w € |A[*).

Each such program scheme p, computing on a structure A, gives rise to an
infinite alternating graph Aqu, defined as in the previous section. We say there is
a finite alternating path between configurations c,c’ in AS%, if thereisani €
such that (c,c’) € W (P,x,y), where is as in the proof to Proposition 18.

For some structure A, let T4 be some subset of |A|*. Then for some signature
o, let T be the global set {I'4 : A € STRUC(0)}.

Definition (Recognising Stacks). We say that the global set I is recognisable iff
there is a pr € APSS(1) such that for all A the following are equivalent:

e For all v, there exists v and w’ € |A|* such that there is an alternating path

in AG"" from configuration (v, 1,w) to configuration (¥, |pr|,w/).
e wely,.

Suppose that Tr is the subroutine constructed from pr be removing the input
and output instructions. We are stating that, for each A, the uniform subroutine
Tr, when confronted with a stack w, finishes (i.e. does not loop forever) if, and
only if, w € I'4. This is independent of the values of all input-output variables
going into Tr. Essentially, Tr recognises w.

61

If a subroutine, computing on A, recognises a stack with contents w € |A[*,
), then it fol-

lows that that subroutine will recognise any word in {w'}.|A|*. This suggests that

without ever popping off more than the top entries w' (|w/| < |w

sometimes recognition only relates to the top portion of the contents of a stack.
This motivates the cartesian product in the following:

Lemma 21. Let My be a special marker symbol. The following is recognisable as
the stack:

{{My,x1,...,x0,M1 : x1,...,xp is an ordering of |A| }.|A|" : A€ STRUC(0)}

where the *. |A|*" indicates cartesian product!

Proof. Recall that A is our set of additional special symbols. Therefore x ¢ A iff
x represents a bona fide element of the structure on which we are computing. We
begin by defining T,,q4¢,:

vy := POP ; IF vi # M| THEN DO LOOP FOREVER FI
VGUESS v
IF v; ¢ A THEN Do
vy := POP
WHILE vy # vy DO
vi := Popr OD
v) := POP
IF vi = v THEN DO LOOP FOREVER F1
WHILE vy #v2 A vi # M| DO
v1 := POP
IF vi = v, THEN DO Loopr FOREVER F1 OD FI

The subroutine works by checking that every bona fide element appears once
(lines 4-6), and only once, i.e. not again (lines 7-11), between two markers M.

The following scheme p accepts the global set of the lemma:

There is potential for ambiguity here: By |A|* we mean any possible finite string of real
elements of A, i.e. anything that could possibly be pushed to the stack, as opposed to just those
symbols (encoded as tuples) that represent elements of A.

62

INPUT(v1,v2)

Torder
OUTPUT (v1,v2).

a

We will also define the following subroutine Tp,s, Which pushes a random
(non-deterministic) number of random (non-deterministic) choices (except M) to
the stack:

3GuUESS V',V
WHILE v # V' Do
3GUESS w
IF w' = M THEN LooP FOREVER FI
PUSH w/
3GuUEss V',V ODp

4.3 The ACCEPT instruction.

With the inclusion of a universal side to our semantics, we will have need of
an ACCEPT instruction which, as its name suggests, tells the computation to im-
mediately accept. Any program scheme p’ that involves an ACCEPT instruction
should be considered shorthand for a scheme p € APSS(1) in the following way.
Assume, w.l.o.g., that p’ involves variable set V and that vi,v, ¢ V. Let v be p’
without the input and output instructions. Construct T from 7’ via the substitutions:

e All tests ¢ in while loops in T become tests v; # v At inT.
e All instances of ACCEPT in T’ become v := v, in T.
Then p should be considered as:

INPUT(V,Vv1,v2)

V] iFE W
WHILE v; # v, DOTOD
OUTPUT(V,v1,v2)

63

Note that, once vi = v3, the program can never get trapped in an infinite loop, and,
consequently, must make it to output.

4.4 APSS,(1) = APSS(1)
Lemma 22. APSS;(1) C APSS(1).

Proof. We prove the inclusion by simulating the successor relation. We take any
scheme p € APSS(1), and construct a scheme p’ € APSS(1) such that, for all
structures A, A = piff A =p'.

Assume, without loss of generality, that p involves element variables V, with
vi,v2,v3 ¢ V, and does not use the marker symbol M;. Given p, we will construct
p’ by adding a special start-routine, and amending pop instructions as well as
successor tests in while loops.

Let V' =V U{vy,v2,v3}. Then p’ will be:

INPUT(V)

PusH M,

Tpush

PUSH M,

ALL(CheckOrder, Continue)

IF CheckOrder THEN DO 1T,,4.r; ACCEPT FI
IF Continue THEN Do FI

Tp

OuTtput (V')

where 1, is the, as yet undefined, subroutine that actually mimics p. Observe how
we are using the ALL instruction to use the stack twice, once for verification of
the order, and again for whatever we want to do in the rest of the computation.
The stack is no longer readable only once, as it was with NPSS. Note that the
ALL choice ‘Continue’ is a dummy, in that any computation that follows that path
will continue through the rest of the program.

We will now meet T,.

64

4.4.1 Simulation of p; 1,

Any computation that gets to this sub-routine will have M, as the top element of
the stack. Assuming M is not a symbol of p, we can use it to ensure that we never
stray into the bottom part of the stack, where the putative order is held, during our
simulation of p. In constructing 7, we first remove the input and output lines (of

p). Next we,

e convert all instances of ‘v := POP’ to:

Vi =V
v := PopP
IFv=M; THEN DO PUSH v ;v:=v; FI

We may also have to evaluate quantifier-free successor queries of the form
V' = succ(v), that might appear in a test for a while loop, immediately before the
test of that while loop. Let ® be a propositional formula:

e Convert all instances of “WHILE ®{v' = succ(v)) Do 1 OD’ to:

TS ucce

WHILE ®(v; = v2) DO T; Tsyee OD
Where T, iS:

ALL(CheckSuccv, Continue)

IF CheckSuccv THEN DO
WHILE v; # M| DO vy := Pop OD
WHILE v # v DO v; := Popr OD
vy := POP
IF v; =V THEN DO ACCEPT FI
LooP FOREVER FI1

IF Continue THEN Do FI

Observe that v/ and v are free in the sub-routine.

The subroutine works by splitting the computation, both checking that v/ =
succ(v) (consuming the stack in the process) and continuing the computation with
the stack intact. U

65

Corollary. APSS,(1) = APSS(1)

Proof. The converse APSS(1) C APSS,(1) is trivial. O

4.5 NPspace C APSS(1)

We will ultimately prove this by simulation of a non-deterministic Turing Ma-
chine that uses no more than n* tape squares (for some k), on input bin(A), where
||A|| = n. First, we will need some technical lemmas, which are stated for the
case when the signature is 02, i.e. for graphs. Similar lemmas may be obtained
for other signatures. Let m be such that 1 <m < n*, then we identify m with the
lexicographic mth variable k-tuple v, with respect to the built-in successor.

Lemma 23 (Recognise bin(S)). Let My and M, be special marker symbols. The
following is recognisable as the stack (the brackets are synthetic, and appear, as

the commas, purely for clarity):

{{(T,01,M2),(2,05,M2),..., (n*, 0, M2), M1 }.|S]*
: § € STRUC(02), ... 05 = bin(§), 057, ..., 0 = blank}

Proof. Letting v = (v1,...,v;), we define Tp;,:

¥,V V') :=Por
IF v # 1 V' # M, THEN Do Loop FOREVER FI
w:i=Vy
WHILE v # nk Do
(v,v' V') := Pop
IF v % succ(w) THEN DO LOoOP FOREVER FI
IF v’ £ M, THEN DO LOoOP FOREVER FI
IF v > n? AV # blank THEN Do LooP FOREVER FI
IF E(vi_1,vk) AV = zero THEN DO LOoOP FOREVER FI
IF —E(vk—1,vk) AV = one THEN DO LOOP FOREVER FI
w:=7v0D
V' := Pop; IF v/ # M| THEN DO LoOP FOREVER FI

66

Then p, as INPUT (v, V', V", W); Tpin; OUTPUT (¥,V', V", W), recognises the global set
of the lemma. O

Lemma 24 (Read/Write Head Right). Let M and M, be special marker symbols.
The following is recognisable as the stack (the brackets are synthetic, and appear,

as the commas, purely for clarity):

{ {(mvam7M2)7' R) (;Ivg,l_kyMZ)) (T, aT7M2)7 .. '7(m - lva—fn—__laMZ)yMly
(T, 0, Ma), .., (1, 0, M), (T, g, M), ... (7 O, M2), M1 1[G

: § € STRUC(02), 0,...,007 €1}

Proof. We define T,/,,_ion; in two parts. One part will check that the numbers m

to m— 1, and m+ 1 to m behave correctly; that the markers are placed properly;
and that the as are in 2. The other part will check that the ois match in the two tape
lists, i.e. each oi; that appears before the first M is equal to the o7 that appears
between the first and second M;s. In the following, the variables i;,, will hold
the number of the first entry of the first tape (), and Wpe;0, Will hold the number
of the last entry of that tape (m — 1).

Define Tepeck form tO be:

¥,V V') :=Pop
IF(vieA)V...V(neA)V(V ¢ Z)V (V' #M;) THEN DO
LoOP FOREVER FI

Uop =V

Upottom = inv.cyc.succ(lzop)

(w,w',w") ;= PopP

WHILE V 3 Uporrom DO
v,V V") :=Pop
IF W # cyc.succ(v) THEN DO LOOP FOREVER Fl.
IF vV ¢ £V # M; THEN DO LOOP FOREVER FI
w:=vOD

V" := Pop; IF v/ # M; THEN Do LoOP FOREVER FI

67

¥,V V') :=Pop

IF(vie A)V...V(w € A)V(V ¢ Z)V (V' # M) THEN DO
LOOP FOREVER FI

IF v # cyc.succ(l;op) THEN DO LOOP FOREVER FI

WHILE V # U, DO
v,V V') := Pop
IF w # cyc.succ(v) THEN DO LoopP FOREVER FI.
IrF Vv ¢ £V V" # M, THEN DO LoopP FOREVER Fi
w:=v0D

v .= Pop; IF v/ # M} THEN DO LooP FOREVER FI

The first half of the sub-routine (12 lines) checks the form of the stack up to, and
including, the first M;. The second half (last 9 lines) does the same up to, and
including, the second M.

Define Tepeckconten: 10 be:

VGUESS w
IFwi €AV...Vw, € A THEN DO ACCEPT Fi
¥,V V') :=Pop
Ugop 1=V
Uportom = inv.cyc.succ(lop)
IF v=w THEN DO vfirgq 1=V FI
WHILEV #w Do
¥,V V') :=Pop
Vfirstq :=V OD

WHILE V # Uporrom DO

(v,v,v"") := PopP OD
v/ :=Pop

68

¥,V V') :=Pop
IF v =W THEN DO Vyoeondo :=V Fl
WHILE vV #w DO

v,V V') := Pop

)
Vseconda :=V OD

IF Vfirsto. # Vsecondo. THEN DO LOOP FOREVER FI

The three lines culminating in the middle ‘v := POP’ remove down to, and in-
cluding, the first M;.
We now give T,/ igh::

ALL(CheckForm,CheckContent)
IF CheckForm THEN DO Tcheck form F1
IF CheckContent THEN DO Topeckcontent F1

Now, p, as:

=/ I / /!
INPUT(%,V V', W, W, WV firsicr, Vsecondor)

Tr/w—right
= "= !
OUTPUT(V,V’,V s W, W/,Wl ,Vfirst(xavsecondot)

recognises the global set of the lemma. U

Lemma 25 (Read/Write Head Left). Let M| and M> be special marker symbols.
The following is recognisable as the stack (the brackets are synthetic, and appear,

as the commas, purely for clarity):

{ {(mvamaMZ)a' "1(J7%77M2)a(T7aT7M2)7'"v(m_ laam7M2)aM]a
(m_ lﬂam7M2)7'"’(nkaan77M2)7(laaTaMZ)a'"7(m~27am7M2)aM1}-|91*
: G € STRUC,(02), OF,...,0F € x}

Proof. We construct T,/,,_j.r, in a similar manner to T,/ rjg;- U

Proposition 26. NPspace C APSS,(1)

69

Proof. We aim to prove this by simulation. As before, and w.l.o.g., we assume
that € NPspace is a graph problem. Similar lemmas to those previous may be
obtained for other signatures. Suppose Q € NPspace is accepted by the Turing
Machine 7, with space bound of n* on input bin(A), where ||A|| = n. We con-
struct pg such that, for all graphs G, and for all orderings of G, bin(9) € Q iff
S Fra.

We will consider our alphabet expanded to include the |Q| +|Z| symbols rep-
resenting 7"’s states and alphabet; we also assume the additional marker symbols
M and M. We will store T°’s state in one variable v,: let g; and g, be the distin-
guished start and accept states. Once again A is how we envisage 7’s transition
rules (cf. section 3.8). pq will be:

INPUT(V,V V' W, W WV firga, Vsecondos vq,v;)
Vg i=(s
PUSH M,
Tpush
PUSH M,
ALL(CheckBin,Continue)
IF CheckBin THEN DO 7T;, ; ACCEPT FI
IF Continue THEN Do F1
WHILE v; # q, DO
(v,v,v') := Pop; PUSH (v,V' V")
EITHER(Right,Left,Unmoved)
IF Right THEN Do
IF (v4,v',R) ¢ A THEN DO LoOP FOREVER FI1
PUSH M; Tpusn; PUSH M
ALL(Verify,Continue?2)
IF Verify THEN DO 1,/,, ign ; ACCEPT FI
IF Continue2 THEN Do F1 F1

70

IF Left THEN DO
IF (v4,V/,L) ¢ A THEN DO LOOP FOREVER FI
PUSH My; Tpushs PUSH M,
ALL(Verify,Continue2)
IF Verify THEN DO 1,0 ; ACCEPT F1
IF Continue2 THEN Do F1 F1

IF Unmoved THEN Do
v,V V") :=Pop
3GUESS w’,v’q
IF(vg,V',v,w') ¢ A THEN DO LoOP FOREVER FI
vg := vy ; PUSH(V,w',V") FI

OD

= M= /! /
OuTPUT (V,V' V", W, W . W', Vfirsia, Vsecondas Vg» V)

71

4.6 Summary

Below, we summarise the results of this chapter, and the previous.

NPSPQ?(0) € NPSPQ%(0) = NPS (1) = NL
NPSPQ¥(0) C NPSPQ%0) = NPSS,(1) = P
NPSPQ’(k) C NPSPQ¥(k)
NPSPQY(k) <€ NPSPQY*(k)
NPSPQ’*(k) C NPSPQ’(2k)
NPSPQ4+ = NPSPQ?
NPSPQ“*f(k) = NPSPQ(k)
NPSPQ“* = NPSPQY
NPSPQ“" = NPSPQ“" = NPSPQ* = NPSPQ*
NPspace @ C NPSPQ*
NP C NPSPQ4, < NPSPQ’ C NPspace
LFP = APS(1)
P = APS,(1)
NPspace C APSS(1) = APSS(1)

Figure 4.1: Summary of Results

72

Chapter 5

Classes of Structure on which
P = +PS*[FO]

In [42], various classes of structure C were studied, on which, for some k,

NPSS (k) = PS¥[FO] captures exactly P. The method used in the proofs involved
building a canonical order in NPSS(k — 1), whereupon, since NPSS (k) = P on
ordered structures, the result followed. The following is a consequence of that

work:

Proposition 27 ([42]). Let C be any class of structures, and let x,y,Z be vari-
able j-tuples. Suppose there are formulae R(w1,...,wm,%,3,7) € £PSK[FO] and
Y(W1,...,wn) € PS![FO) such that, for all A € C:

e R is commutative in X and y, and deterministic in z, i.e.,

Akl Ywi, oo w3 ZR(W1, o, Wi, X, 9,2) < R(W1,..., Wi, ¥,X,2)

AE Ywi,...,wnXxy IZ R(W1,...,wm,X,¥,2) — ZR(W1,...,Wn,X,¥,2)
o A = y(wi,...,wn) if, and only if

in the deterministic, commutative Hypergraph specified by
J, we have, for all u € |A

’

R(wi,...,wm,X,9,Z) on [(A,wi,...,Wn)

w = (u,...,u) is accessible from wy/.

e A= Jwi,...,wnW(wi,...,wn).

73

Then P = +PS"@{bII+1[RO) on the class C.

Any tuple (wi,...,wn) s.t. A = w(wi,...,w,) may be considered a generat-
ing tuple for A. Generating tuples will be denoted (g1,...,gm), and their underly-
ing generating set {g1,...,8m} as G.

The principle results of [42] were:

e On the class of locally-ordered strongly connected digraphs, P = +PS![FO].

e On the class of planar triangulations, P = +PS?[FO].

In these cases, the construction of y, as in the proposition, is fairly straightfor-
ward. However, if we are prepared to sacrifice a few levels in £PS*[FO], we can
disregard vy altogether.

Given some relation R € :I:PS"[FO], as in the proposition, there must neces-
sarily be some y € PS¥*3[FO] that will satisfy the required conditions. We may
take W(wi,...,wy) =

Vu PS[)\R,?,—Z—,R(W], .. -aWMr—iay»Z)](wljauj)

Since we may write the Yu as =3u—, R € +PS¥[FO] indeed implies that
v € +PSH3(FO).

The following is now immediate:

Corollary. Let C be any class of structures, and let X,y,7Z be variable j-tuples.
Suppose there is a formula R(w1,...,wm,%,5,2) € =PS¥[FO] such that, for all
A € C, there exists a generating tuple (g1,...,8m) € |A|™ such that:

® R(g1,...,8mX,y,2) is commutative in X and 'y, and deterministic in 7
e Forallu € |A|, u is R-accessible from (g1)’.

Then P = +PS*"4[FO] on the class C.

5.1 Finitely generated sets

Intuitively, a set A on which some partial functions are defined is described as
m-generated if it has a (generating) subset of m elements such that all elements of

74

A may be obtained by (possibly nested) applications of these partial functions on
the elements of this subset.

When F is a finite set of partial functions, each of some finite arity, we will
want to define the set F'* of all functions that can be created from those in F by
repeated relabelling and substitution. So long as F contains a non-unary function,
F* must be infinite (even under equivalent relabellings), since it will have func-
tions of all arities. Throughout this chapter we will use a bracketed superscript to
indicate the arity of variable tuples or partial functions. Thus, whilst for an ele-
ment x, x* denotes the k-tuple of xs, the notation v(¥) specifies a variable k-tuple,

whose different positions may hold different values.

Definition. For some finite structure A, let F = {fi,..., f;} be partial functions

of respective arities ay,...,a; (i.e. fl(a‘) AT — A, ..., f}aj) A% — JA].

Then F* is defined inductively via:
o fl(vl,...,val),...,fj(vl,... ,vaj) e F*.

e (Projection/Reordering.) If f € F* of arity a, and a’ < a, thenlet {ny,...,n,}
and {n/,...,n/,} be subsets of Z of order a and ', respectively. If we have
a function p : {ny,...,ns} — {nf,...,nl,}, then f’' € F*, of arity a’, where:

f/(vn17~ .- svna/) = f(vp(m)v- .. 7vp(na))

e (Composition.) If f, f’ € F*, with respective arities a,d’, then f” € F*, of
arity (a — 1+a’), where:

f”(vla"'7va—1vvaa"'7va+a'—l) = f(Vl,.--,Va_l,f’(va,...,Va+al_]))

Projection/Reordering is nothing more than relabelling of the variables. Be-
cause of the Reordering rule, we have no need to explicitly mention compositions
that occur other than at the right hand end of the outer partial function. The mini-
mum depth of nestings of Composition in a partial function f € F* will be known
as the rank of f in F'*.

Definition. Let F = {f1,... , fj} be aset of functions of respective arities ay, . .. ,a;.
Let o = (f1,...,f;) be the associated signature. Then:

75

e STRUC(GF,m) is the class of finite structures over 6, such that, for all
A € STRUC(oF,m), there exists a generating subset G = {g1,...,8m} C
|A|, such that, for every u € |A|, there exists an arity r, a f) e F* and a
w) = (wi,...,w,) € G", such that u = f(’)(w(’)).

STRUC(oF,m) is said to be the class of structures that can be m-generated
by the set of partial functions F.

5.1.1 F contains a single k-ary partial function f.

Theorem 28. For each m, we have that P = +PS*[FO| on the class
STRUC (G{fo}’m)'

Proof. Let k be the arity of the partial function fp, and let X,y,z be variable
(k4 1)-tuples. We will define a deterministic, commutative Hypergraph rela-
tion R(wy,...,wn,X,¥,2), in quantifier-free FO, such that, for all structures A €
STRUC(oyy,},m), there exists g1,...,8m € |A| such that, for all u € |A], w1 is
accessible from g;¥*1. We may then appeal to the Corollary of Proposition 27.

We will specify R(wy,...,wn,X,5,Z) as R(X,¥,Z), where the entries of X,7,Z
may be among the variables wy,...,w,. We will define R over (k + 1)-tuples
from ({P,Q,S,U} W |A|)k+1,

The symbols P, Q, and S are used for switching rules, and LI represents blank.
(Note that we can enlarge our alphabet to include these special symbols in pre-
cisely the manner we did in Section 3.4. Thus, each ‘variable’ we discuss here,
will, in point of fact, be a quintuple of actual variables.)

We begin with the ‘start’ rules:

o RI(WI™), (WD), (AL wi)].

o R[(P,UF1 w)), (PU1 wy), (PUF T wii)] for 1 <i<m.

76

We now progress to the ‘active’ rules:
Switching:
o R[(P,UF D) (k1 %), (Q, Lk)] for () € |AlY, and i < k.
o R[(Q,UF 70) (@, Uk 3Dy (§,Uk~ D)) for) € |A|, and i < k.
Concatenation:

i

o R[(P,UA D) (@, k=7 30)) (PUk—i~ 30D 500 for D e |A
) e |A), and i+ j < k.

9

Production:
o R[(Q,UF,7k=D) (S, 5% (P,LK1 2)] fori+ j=k, and fo(%,5) =z
and the ‘finish’ rule:
o R[(P,LK1 x),(S,LF 1 x), (x**1)] forx € |AJ.
Finally, we consider R to be the symmetric closure of the above rules, i.e. for all
ket 1) k1) ki1

REHHD et 2ht1)y oy peglkth) glke1) s(kt1)).

This ensures the commutativity of R.
R is clearly deterministic in zk+1) and can be written in quantifier-free FO.

, uk*1 is accessible from g1*¥*1. It follows,

We will now prove that, for all u € |A
from the start and finish rules, that this is equivalent to the question of whether
(P,LF1 1) is accessible from the collection (P,Lf™1 g1),...,(P,L* 1 gn).

We know that, for each such u, there exists a partial function f(") € {fo}*,
and tuple (wy,...,w,) € {g1,---,8m}", such that u = f(’)(wl,...,w,). We prove
(P,Uk=1) is accessible by induction on the rank of f (r),

(Base Case.) When the rank of f(’) is 0, then r < k, and it follows that u =
folwi,...,w,) for some wi,...,w, € {g1,...,gm}. We may access (P,L¥"! u)
from (P,L* 1 g1),...,(P,U*"1 g,) by repeated use of Switching, then repeated
Concatenation, and finally a single application of Production.

77

(Inductive Step). Assuming it works for rank J, we prove it works for rank
8+ 1. If £ is of rank 8+ 1, then it follows from the definition of rank, and the in-
ductive hypothesis, that u = fo(wi,...,w,), where (P, wy),....(PU* 1 w,)
have been accessed (since wy,...,w, are generated by partial functions of strictly
lower rank). Again, we access (P, uk“l,u) by repeated use of Switching, then
repeated Concatenation, then a single application of Production.]

5.1.2 F contains multiple partial functions.

Theorem 29. Let F be a finite set of partial function symbols. For each m, we
have that P = +PS*[FO] on the class STRUC (Gf,m).

Proof. We reduce this case to the previous. Suppose F' contains j partial functions
of respective arities ai,...,a;. Let a = max{ai,...,a;}. We aim to construct a
single partial function ff, of arity (a + j), that simulates all the functions in F.
wl) = (w1,...,w;) will represent functions fi to f; according to our ubiquitous

scheme:
e if wi = w then W) represents fi,

e if w; # wy but wp, = w3 then wl) represents f7,

[]
o if wi Zwa,...,wj_2#wj_ butw; 1 =w;j then w) represents f;_1, and
o ifwi #wa,...,wj_| #w;jthen w) represents fj.

Suppose # represents f; whose arity is a;. Consider fr(x\%),5@~%) %) to be
f:(x(@)), if f; is defined at %), and undefined otherwise.

Since j is fixed, this construction of fr can be specified in quantifier-free FO.

O

5.1.3 An application: finitely generated groups

We say that a finite group H is m-generated if there exists a set of m generating
elements G = {g1,-.-,8m}, such that for every x € H we have some y € G* such

78

that x =g y (where * is the usual Kleene star). Clearly, all groups of order < m
are m-generated.

Corollary. For each m, on the class of m-generated finite groups, =PS*[FO| = P.
Corollary. On the class of finite simple groups, +PS*[FO] = P.
Proof. Recall that finite simple groups are 2-generated [3, 39]. O

Despite finitely generated groups being a paradigm for our systems, it should
be noted that the results of the previous section go well beyond groups; beyond

single functions, and beyond associativity.

5.2 Hamiltonian Outerplanar graphs

A graph is said to be outerplanar if it can be drawn in the plane with all its vertices
on the outer face. Such a drawing will be called an OP-drawing.

Definition. A Hamilton cycle in a graph G, where ||G|| = n, is a sequence s,y of
distinct vertices v; (for 1 <i < n) such that, for 1 <i < n, ES (vi,vit1), and also
ES(va,v1).

We consider a hamiltonian outerplanar graph (HOP) to be an antireflexive,
undirected, outerplanar graph with a Hamilton cycle. We start by noting some
basic properties of outerplanar graphs that have a Hamilton cycle.

Lemma 30.

(i) Consider an HOP graph G, with Hamilton cycle scy.. Then, in any OP-

drawing of G, Scyc must be on the outer face.
(it) For any HOP graph G, the subgraph given by any Hamilton cycle is unique.
(iii) G has a unique OP-drawing in the plane, up to combinatorial isomorphism.

Proof. (i) Note that any OP-drawing of s, is combinatorially equivalent to the
n-gon (n = ||G|}). Thus, sc,. must appear on the outer face of any OP-drawing.

79

_x h

Proof forwards Proof backwards

Figure 5.1: Diagrams for Lemma 31.

(ii) Consider a graph G with two Hamilton cycles, scyc and s, that give rise
to different subgraphs. In any OP-drawing of G, s¢y. and S/cyc must be drawn as
distinct n-gons over the same vertices. Yet not both can be on the outer face,
violating part (i) .

(iii) The unique Hamilton cycle subgraph dictates the unique OP-drawing.

O

We make use of this unique OP-drawing by now referring, unambiguously, to

the outer face.

Lemma 31. There is a formula ¢(x,y,z) € +PS>[FO] that holds on an HOP § if,

and only if, x and z are the distinct neighbours of y, on the outer face.

Proof. We first define P(x,z,y,w) € =PS![FO), intended to mean that there is a
path from x to z avoiding both y and w. We define P as the Transitive Closure
(though in Path System logic) of the following formula 6:

8(p,q,y,w) := pEYApFwAqF#yNg#wAE(p,q)

Thus,
P(x,z,y,w) := PS[Ap, p,q0](x,2)

80

Now, ¢(x,y,z) :=

E(x,y) NE(y,2) Ax # zZ/A
Vwl(w # xAw # zANE(y,w) — ~P(x,z,y,w)]

We now prove that x and z are the distinct neighbours of y, on the outer face of G,
if, and only if, G = ¢(x,y,2).

(Forwards.) If x and z are the distinct neighbours of y on the outer face, then the
first three conjuncts of ¢ are clearly satisfied. Furthermore, the edge between any
distinct w and y must cut across the OP-drawing of G (see Figure 5.1). It follows
that all paths from x to z must go through either y or w. Hence G = ¢(x,y,z).

(Backwards.) Suppose x and z are not the distinct neighbours of y on the outer
face. If x and z are not distinct, or y is not adjacent to both, then we fail on one of
the first three conjuncts of ¢. So, assume x and z are distinct, and y is adjacent to
both, but x and z are not the two neighbours of y on the outer face. If we choose
some distinct w that is such a neighbour, then there is clearly a path from x to z
avoiding both y and w (see Figure 5.1). In any case, § K ¢(x,y,2). O

Theorem 32. On the class HOP, P = +PS’[FO].

Proof. We will define a deterministic, commutative Hypergraph relation
R(w1,w2,w3,X1,X2,¥1,¥2,21,22), in +PS3[FO] s.t. for all structures § € HOP,

there exists g1,g22,£3 € || such that, for all u € |G|, u? is accessible from g;2. We

may then appeal to the Corollary of Proposition 27, with j = 2.

The rules will be the symmetric closure of:

o R[(wy,wy),(wi,w1),(wi,w2)]

o R[(w2,w2),(w2,w2),(w2,w3)]

e R[(w,x),(x,y),(y,2)] if @(w,x,y) A@(x,y,z) (Where @ is as in Lemma 31).
e R[(w,x),(w,x),(x,x)] if w # x.

That the rules are deterministic, commutative, and can be written in +£PS3[FO)]
is straightforward. It is also clear that, starting with any g1, g2, g3 such that
©0(g1,82,83), all vertices are accessible: from g; we access g (some next vertex

81

on the outer face — which determines whether we are moving clockwise or anti-
clockwise around a certain OP-drawing of G), then g3 (the next vertex on the outer
face — now direction is set), then all the way round the outer face until we reach
the final vertex on the Hamilton cycle (before we reach g, again). O

Remark. We can easily extend our result to hamiltonian outerplanar graphs that
are not undirected or not antireflexive, by considering their undirected, antireflex-
ive versions. Specifically change all instances of E(x,y), in the prior discourse, to

(E(x,y) VE(y,x)) Ax # .

82

Chapter 6

Dichotomies in Boolean Constraint

Satisfaction

6.1 Introduction

Let o range over all relational signatures. We define the relational class of boolean
structures BOOL.

BooL := {A : Aisao-structure and ||A|| =2}

We denote tuples of variables (resp. boolean constants) in bold, e.g. x (resp. t).

These tuples are not of a uniform arity.
Definition. For A € BOOL, and each with the question as to whether A = @,
e the problem SATNC(A) has input @ := IxQ0(x),

e the problem QSATNc(A) has input, for some n > 1, of the form,

@ 1= Vx13Ix2Vx33X4 ... VX201 13X2n120(X1, X2, - -, X201 2)

e the problem IT5,41-SATNC(A) has input,

@ :=Vx13X2Vx33X4 ... VX201 10(X1,X2 . . . X2n 1)

83

e the problem Iy, -SATNc(A) has input,
¢ 1= Vx13X2VX33X4 ... VX2n113X20120(X1,X2, . . ., X204 2)
e the problem X, 1-SATNc(A) has input,
¢ := Ix1VXx23xX3VXq. .. IXon 110(X1,X2 .. . X2n41)
e the problem X, 2-SATNc(A) has input,

@ :=3Ix1VXx23IX3VXy. .. VX2n120(X1,X2 ... X2n+1)

where, in each case, Q is a conjunction of positive atoms.
The problems SAT¢(A) etc are defined analogously, but with the two boolean
constants 0 and 1 built-in to the signature.

It is clear that Ty, 2-SATNC(A) (respectively, Z,4+1-SATNC(A)) is in the
complexity class Hzpn 4o (respectively, Zzpn +1)- In fact, it follows from [43] that
they are complete for those classes, for certain A. It is also clear that I[1;-SATNc (A)
is tractable, for all A, since we may check each extensional relation independently,
one-by-one, for an invalidating assignment. Indeed, if the maximum arity of a re-
lation in A is a, then the complexity of IT;-SATNc(A) is O(n?), where n is the
size of the input. It follows, by similar argument [43], that I15,,;1-SATNc (A) (re-
spectively, 22,4 2-SATNc(A)) is in the complexity class Hzpn (respectively, >:2Pn 1)

The comments of the previous paragraph apply equally to the problems I1;-
and X;-SATc, i.e. in the situation where the Boolean constants are available.

Definition. For a relation R, of arity a, define:

e J-FORM(R) to be the set of formulae formed from the closure of the atoms
R(x) (where x is an a-tuple of not necessarily distinct variables), under con-

junction and existential quantification.

e I1,-FORM(R) to be the set of formulae of the form Vxo(x,y), where ¢ €
3-FORM(R).

84

e V/3-FORM(R) to be the set of formulae formed from the closure of the
atoms R(x), under conjunction, existential quantification, and universal quan-
tification.

We define 3-REL(R) to be the set of relations expressible by formulae in 3-FORM(R),
when reading the variables lexicographically. We do likewise for I1,-REL(R) and
V/3-REL(R). These sets are sometimes known as relational clones [14].

We may refer to boolean relations by some propositional formula that ex-
presses them, reading the propositional variables lexicographically, e.g. [A V B]
expresses {(0,1),(0,1),(1,1)}; [A # B] expresses {(0,1),(1,0)}.

Definition. A relation R, of arity a, is:
(i) O-valid iff it contains the tuple (0%).
(if) 1-valid iff it contains the tuple (19).

(iii) horn iff it may be expressed by a propositional formula in CNF where each
clause has at most one positive literal.

(iv) dual horn iff it may be expressed by a propositional formula in CNF where

each clause has at most one negative literal.
(v) bijunctive iff it may be expressed by a propositional formula in 2-CNF.

(vi) affine iff it may be expressed by a propositional formula that is the conjunc-

tion of linear equations over Z.

Given a template A, over signature involving relations Ry, ..., R;, of respective

arities ay,. .., a,, we construct the relation R thus:

e If A has j/ < j non-empty relations, then let R; be the ith non-empty relation
of A.

o Let R =R] ><...><R9,.

85

This construction will enable us to consider signatures with multiple relations,
as though they only had one. This is because each of the six attributes from the
previous definition hold over all the relations of A if, and only if, they hold for R*.
Note that all the relations of A, except possibly the empty relation ¢, are present
in 3-REL(R,).

Theorem 33 (I-1II: Schaefer [38], and IV: Dalmau/Creignou et al [15, 14]).

1. SATC(A) is tractable if R* satisfies any of conditions (iii) — (vi), and is
NP-complete otherwise.

II. SATNC(A) is tractable if R” satisfies any of conditions (i) — (vi), and is

NP-complete otherwise.

III. QSAT(A) is tractable if R* satisfies any of conditions (iii) — (vi), and is

Pspace-complete otherwise.

IV. QSATNc(A) is tractable if R satisfies any of conditions (iii) — (vi), and is

Pspace-complete otherwise.

We will briefly consider the methods involved in proving these dichotomies.
When the boolean constants are present, Schaefer was able to take any R* not in
classes (i) — (iv), and construct the ternary boolean not-all-equal relation, which
is known to give rise to an NP-complete SAT, and Pspace-complete QSAT. When
constants are not present, there are the degenerate cases of 0- and 1-validity, which
become trivial. For the other tractable sub-classes of templates A, we clearly have
that SATNC(A) is polynomially reducible to SATc(A), guaranteeing its tractabil-
ity in the no-constants scenario. It remained for him to prove that SAT¢(A) is
polynomially reducible to SATNc(A) for those A not in classes (i) — (vi). He did
this by simulating the boolean constants. Call a relation Ry complementative if,
for all tuples x in R4, the tuple x’, obtained from x by swapping the Os and s, is
also in R4. Schaefer proved the following:

Lemma 34 ([38]). For some Ry, not in classes (i) — (vi), either [A],[-A] € 3-REL(Ry),
or |[A # B] € 3-REL(Ry) and Ry is complementative.

Before going further, we will need the following lemma.

86

Lemma 35 ([15]). If Ry is complementative, then all relations in V/3-REL(R4)

are complementative.

Proof. We prove this by induction on the term-complexity of ¢ € V/3-REL(R,).
The base case is trivial. For the inductive step, note that:

e R(x) and R'(x’) complementative, implies R A R'(x,x") complementative.
e R(x) complementative, implies 3x; R(x) is complementative.

e R(x) complementative, implies Vx; R(x) is complementative.

We can now sketch Schaefer’s result, and method.

Proposition 36. If R* is in none of the classes (i) — (vi) above, then SATc(A) <p
SATNC (.A)

Proof. By Lemma 34, we need to consider two cases.

(Case 1.) We have 3y1Q1(y1,5), 3yoQo(yo,a) € 3-FORM(R*) expressing [X], [-X],
where Q7 and Qg are positive conjunctive. We are now in a position to simulate
the constants 0 and 1, for, given an input Ix¢(x,0, 1) for SATc(A), we know,

Ixe(w,0,1) < Ix3a3b ¢(x,a,b) AIy101(y1,b) A3yeQo(Yo,a)

The latter formula is an input for SATNc (A), when the inner existential quantifiers
are drawn out, putting it in prenex form.
(Case 2.) We have 3yQ/(y,a,b) € 3-FORM(R") that expresses [A # B], and

R is complementative. It follows that,
Ixp(x,0,1) € SATC(A) < IxTa3b ¢(x,a,b) A3yQ'(y,a,b) € SATNC(A)

since @ must be complementative (by Lemma 35). u

The problem of removing the constants in QSATc was not attended to by
Schaefer. It was finally settled many years later by Dalmau [15], and, indepen-
dently, by Creignou et al. [14].

87

6.2 Technical results

Before progressing, we will need a number of technical lemmas.

Lemma 37 (Quantifier Re-ordering). Let the variables a,b not appear in x. The

following are equivalent on all boolean structures for all conjunctive positive Q:
3Ix3aVb B(a,b) A Q(a,x)

Vb3x3a B(a,b) A Q(a,Xx)

If, and only if:

e Bis ¢ (empty), singleton, {(0,0),(1,0)}, {(1,1),(0,1)}, or

e B contains (0,0) and (0,1).

e B contains (1,0) and (1,1).
Proof. If B is ¢, singleton, {(0,0),(1,0)}, or {(1,1),(0,1)} then both sentences
will be false irrespective of Q.

If B contains both (0,0) and (0, 1), it may easily be verified that both sentences
are equivalent. The case where B contains both (1,0) and (1,1) is symmetric.

The remaining possibilities for B are {(0,0),(1,1)} and {(1,0),(0,1)}, which

will be each false in the former sentence, but may be true in the latter (e.g. if Q is

logically valid). 0

Given the boolean k-tuples t; = (¢{,...,5) and tp = (£],...,#5) we define t; &
tp tobe (1] +1,...,t5 +1X) where the addition is modulo 2.

Lemma 38 (0-affine case. [13]). Let R be a boolean relation of arity k. The

ollowing are equivalent:
followi quival
(a) R isO-valid and affine.

(b) 0k € R, and, for all assignments ty,t3 € R, we have t; @tz € R.

88

Definitions. For a relation R of arity k, and any set T = {i1,...,i;} of j positions
0<i; <...<ij<k, wedefine R|T tobe the j-ary relation 3x, ... E{xlk_jR(xl, ey XK
where {I1,...,lk—;} ={1,...,k} — T. Observe that R|T is in 3-REL(R).

For any t € {0,1}* and T C {1,...,k}, we define t|T as the assignment t’ €
{0, 1}/7] that agrees with t in the positions indexed by 7.

Let R be a relation of arity k, and t € {0,1}* an assignment. We say that t is
Jj-compatible (w.r.t. R) if, for every subset T C {1,...,k} (of size |T| < j), we can
find some assignment t’ € R such that t and t’ agree in the positions indexed by 7.
This is equivalent to the condition that any j-ary sub-tuple of t can be extended to
some k-ary t’ in R. Clearly this is trivially true when t is itself in R; the interesting

cases are when it is not.
The notion of j-compatibility is key in characterising horn logical relations.

Lemma 39 (horn case. [15]). Let R be a boolean relation of arity k. The following

are equivalent:

(a) Ris horn.
(b) forallty,ty €R, we have tj Atz € R.

(c) for every T C {1,...,k}, and for every |T|-compatible (w.r.t. R|T) assign-

ment t € {0,1}T not in R|T, we have that t contains at most a single 0.

Lemma 40 (Adapted from [15]). If R*% is O-valid and non-Horn, then there is a
relation S definable in 3-REL(R™) such that:

€S, ¢85
(0,0,0,0) (0,0,0,1)
(0,1,0,1)
0,0,1,1)

Proof. Since R* is non-horn, we may guarantee to break part (c) of the previous
lemma. This implies that there is a subset of indices T C {1,...,k} and a |T|-
compatible assignment t not in R|T that contains at least two zeros. We may
benefit from dwelling on what exactly this means. It guarantees us some |T'|-ary
T,in 3-REL(R™*), and a |T|-tuple t s.t.

relation R

89

o t¢R|T,
e for any t’ that agrees with t in all but one position, t' € R|T, and
e t contains at least two zeros.

We therefore consider R|T (vy,...,v7|) and two indices o, B € Z;| at which t has
zeros. Note that t can not be all zeros, since R is O-valid yet t ¢ R|T. Let I’ be the
set of indices at which t is one. Finally, let I” be the set of indices, other than i, j,
at which tis zero'. We obtain S} (x, v, vg,y) from R|T (v1,...,v|7|) by substituting
all variables v; s.t. i € I’ by the variable y and substituting all variables v; s.t. i € I”
by the variable x.

We already know that (0,0,0,1) ¢ S, and we have assumed that R is 0-valid,
hence (0,0,0,0) € S;t. Since (0,0,0,1) ¢ S%, we will have (0,1,0,1),(0,0,1,1) €
S;t by the |T|-compatibility, since these two assignments each only change the

value of a single variable in R|T. a

Lemma 41 (Adapted from [15]). If R* is O-valid and non-affine, then there is a
relation Sz definable in 3-REL(R?) such that:

4 4
€S, ¢S,
(0,0,0,0) (0,1,1,0)
(Oa 1707 1)
(0,0,1,1)

Proof. Since R is 0-valid and affine, it follows from Lemma 38 that there are
assignments t;,t; € R such that t; &ty ¢ R. For R(xy,...,x), define:

o Voo={v:ve{xy,...,xx} visOinr andOinz, }
e Vor={v:ve{xs,....,x;} visOinryand 1inz, }
e Vio={v:ive{x,...,.xx} vislins;andOinz, }

o Vij={v:ive{xy,...,xx} vislinfand l inz, }

't is possible that I” is empty, in which case S; will actually be a ternary relation. This will
cause no problems, and will come out in the wash in Lemma 42.

90

Let Sj(yoo,ym ,¥10,Y11) be R(xy,...,xx) with the substitutions yg for Vi, yo1 for
Vot, y10 for Vyg, and yy; for Vi;. The claimed properties follow immediately. [

Lemma 42. If R* is 0-valid and non-Horn and non-affine, then there is a relation
S;‘w definable in 3-REL(R*) such that:

4 4
GSM ngM
(0,0,0,0) (0,0,0,1)
(0,1,0,1) (0,1,1,0)

(0,0,1,1)

Proof. s;tﬂ =S} AS;. O

6.3 A dichotomy theorem for IT1,-SATNC

It follows from Schaefer’s work and [43] that IT,-SATc(A) is tractable if R is in
any of the classes (iii) — (vi), and IT5 -complete otherwise. Borrowing much from
Dalmau, we will show that IT;-SATNc exhibits the same dichotomy.

Our proof rests on the following:

Proposition 43. Let A € B. If R* is neither horn, dual horn, affine, nor bijunctive,
then T15-SATc(A) is polynomially reducible to T1-SATNc(A).

If R4 is neither O-valid nor 1-valid, we may appeal to Schaefer’s method for
simulating the constants. This may only result in more existential quantifiers on
the inside of the input instance, which will not jeopardise our being in l'[g . How-
ever, if we need formulae with universal quantifiers to simulate the constants, then
we find ourselves potentially outside I}, with more than a single alternation of
quantifiers in the input instance.

Recall that we are only concerned with R” that are non-horn, non-dual-horn,
non-bijunctive, non-affine, and either 1-valid or O0-valid. We will consider four

cases.

91

6.3.1 Case1: R" is 0-valid and not 1-valid.

In this case we have the constant O for free, since R"(a, . ..,a) expresses [-A].
Let 53 be the boolean relation {(0,0),(1,0),(1,1)}.

Lemma 44. If R* is 0-valid, non-horn, non-affine, and not 1-valid, then S% is
definable in 3-REL(R*).
Proof. We consider two further possibilities for the relation Siﬂ above.
o If S‘)tﬂ also contains (0,0, 1,0), then §3 = HaS‘{ﬂ(a,a,b,c) ARMa,...,a).
o If S;tu does not contain (0,0, 1,0), then 3 = EIaEia’S;t#(a,a’, c,b)ARM(a,...,a).
O

In both cases S% is of the form I3wQs(w, b, c), where Qs is positive conjunctive.
Note that [A] is expressed by VcS3(b,¢).

Lemma 45. If R* is O-valid, non-horn, non-affine, and not I1-valid, then Tl-
SATc(A) polynomially reduces to T1;-SATNC(A).

Proof. Given an input Vx13x2Q(X1,X2,0, 1) for I[1o-SATc(A), observe,

Vx13xz Q(x1,%2,0,1)
& VxiIxpdadb Q(x1,Xz,a,b) AVe S3(b,c)
ARM(a,...,a)
& Vxp3Ixpdadb Q(x1,x3,a,b) AVcaw Qs(w,b,c)
ARMa,...,a)
& VxiVeadxpdadb Q(x1,xz,a,b) AIw Qgs(w,b,c)
ARMa,...,a)

Note that the final line is a valid input for IT>-SATNc(A). The final equivalence
holds by the Quantifier Re-ordering Lemma, with B := 3w Qs(w,b,¢). Ol

6.3.2 Case2: R is 1-valid and not 0-valid.

This is the symmetric case of the previous (where zero is replaced with one, and

vice-versa).

92

6.3.3 Case 3 : R” is 0-valid and 1-valid, but not complimenta-

tive.

Since R* is 0-valid, 1-valid, and yet not complimentative, there exists a tuple t in
R4 s.t ts complement is not in RA. Let I index the set of positions at which t is
zero and let J index those positions at which t is one. If R*(vy,...,v;) is a k-ary
relation, consider Quom(a,b) to be R4 under the substitution a for all variables
indexed by I and b for all variables indexed by J. Qyom 18 atomic, and it expresses
S2. We now have that ¥bS3(a,b) expresses [A], and VaS3(a,b) expresses [-A].

Lemma 46. If R" is 0-valid, non-horn, non-affine, 1-valid, but not complementa-
tive, then I15-SAT¢ (A) polynomially reduces to T1p-SATNC(A).

Proof. Given an input Vx13x,0Q(X1,X2,0, 1) for [1,-SAT(A), observe,

VX]HXZ Q(Xl, X2,0, 1)
& Vxp3xz3adb O(x1,%2,a,b) AVD S%(a,b’)
AVa' S3(d,b)
& Vxpdxpdadb Q(x1,%x2,a,b) AV Quom(a,b’)

AVd' Qatom(a,ab)
& Y \VP'Vd'3xpdaTb Q(x1,%2,a,b) A Quiom(a,b’)
A Qatom(a/ab)

The final line is a valid input for IT,-SATNc(A). The final equivalence holds via
two applications of the Quantifier Re-ordering Lemma. O

93

6.3.4 Case 4 : R" is 0-valid and 1-valid, and complimentative.

In this case S}, will look like:

€ Si ¢ S,
(0,0,0,0) (0,0,0,1)
(0,1,0,1) (0,1,1,0)
(0,0,1,1)
(1,1,1,1) (1,1,1,0)
(1,0,1,0) (1,0,0,1)
(1,1,0,0)

Note that VdHaS‘}“#(a,b,c,d) expresses [B # C]. Since S;‘w € 3-REL(R*4), it fol-
lows that [A # B is expressed by Vd3a3w(Q,,(w,a,b,c,d), where Oy, is positive

conjunctive.

Lemma 47. If R* is 0-valid, non-horn, non-affine, 1-valid, and complementative,
then T15-SATc(A) polynomially reduces to I1o-SATNc(A).

Proof. Given an input Vx13x20Q(X1,X2,0, 1) for I[1,-SATc(A), observe,

Vx13x2 Q(x1,x2,0,1)
& Vxi3x3b3dc Q(x1,%2.b,c) AVd3aS} (a,b,c,d)
& Vxi3xpdbde Q(x1,X2,b,c) AVdIa3wQy,(w,a,b,c,d)

Now this is not, in general, equivalent to:
Vx1Vd3Ix23b3c Q(x1,X2,b,¢) A HaE]WQM(W,a, b, C,d)

because, when b = ¢, that formula may be true, but the previous ones are always

false. However, we claim that:

Vx13x23b3c Q(x1,X2,b,¢) AVdIa3dwQy,(w,a,b,c,d)

94

is equivalent to
Vx1VdVd' 3xa3b3c Q(x1,%2,b,¢) A Ja3wQ,(w,a,b,c,d) A Ha’ﬂwQ;w (w,d',b,c,d)

which is an input for ITp-SATNc (A). It remains for us to prove this equivalence.
(forwards.) This direction is trivial. For each given x; in both formulae: any
b, c,x; that witness the first formula will also witness the second .
(backwards.) For each given x; in both formulae: if d # d, it follows that any
true valuation of the second formula has b # ¢. This ensures that, if the second

formula is true, that the first formula will also be, witnessed by some b # c. O

Theorem 48. T1,-SATNC(A) is tractable if R is horn, dual horn, bijunctive, or

affine, and is H; -complete otherwise.

Proof. We know I1>-SAT(has the proposed dichotomy. Trivially, the tractability
of IT,-SATc(A) implies the tractability of IT,-SATNc(A). Furthermore, we have
proved, for R* outside the listed classes, that IT,-SAT¢ (A) polynomially reduces
to the Pspace-complete I15-SATNC(A). The result follows. O

Corollary. For i > 2, I1;-SATNC and X;-SATNC exhibit the same dichotomy as
I1,-SATNC and QSAT -

Proof. Let j > 1. Our manipulation of the innermost universal quantifiers in the
pertinent 13 or I'l4 formulae, such that we build equivalent ones in I, will clearly
also work on Il or Il (resp. Xz, or X;;) formulae to obtain equivalent
ones in Ily; (resp. X3j_1). Consequently, our proof is equally valid for these
problems. O

Remark. We are left with the class of problems 2,-SATNc. As noted before, these
are in NP, and they exhibit the same dichotomy as SATNc.

Remark. A similar proof to this dichotomy theorem appears in [27]. The result is
also inferred in [18].

Some recent work has been undertaken in alternation-bounded QCSP, by
Chen [12]. He studies certain templates for which the complexity of the prob-
lem collapses to co-NP-completeness for all levels of the polynomial hierarchy

above or equal to I1.

95

Chapter 7

Quantified Constraints on Graphs

7.1 Introduction

The uniform constraint satisfaction problem, as used in Artificial Intelligence, is

usually defined as follows (see e.g. [32]).

e Input: a finite set of variables A, a finite domain of values T, and a set of
constraints {C(S),...,C(S;)} where each §; is an a;-tuple of (not neces-
sarily distinct) variables from A and each C(S;) is an g;-ary relation over
T.

e Question: is there an assignment to the variables over the domain that mu-
tually satisfies all of the constraints?

It is clear that T, together with the relations Sy, ...,S, is a first-order structure J
(over some signature & of the form (S7',...,8%)). It is also clear that the question
we are posing of this structure concerns the existence of a simultaneous solution
to a conjunction of atomic relational constraints. Therefore, we will prefer to use

the following formulation of the uniform CSP (see e.g. [5]).

e Input: a structure T and a sentence ¢ = 3x Q(x), where Q is a conjunction

of positive atoms.

e Question: does T |= ¢?

96

In this thesis we will be concerned only with the non-uniform variant of CSP,
which is a family of problems parameterised by the template J. Thus, for each
template T, CSP(7) is the decision problem with:

e Input: a sentence @ = 3x Q(x), where Q is a conjunction of positive atoms.
e Question: does T |= @?

Note that the well-known NP-complete problems 3-SAT (satisfiability of a for-
mula in conjunctive normal form with exactly three literals per clause) and 3-CoL
(graph 3-colourability) correspond to constraint satisfaction problems. The prob-
lem 3-QSAT is a popular generalisation of 3-SAT to quantified formulae, which
is Pspace-complete. In this context, it makes sense to generalise constraint satis-

faction problems to quantified constraint satisfaction problems.

Definition ([5]). The non-uniform quantified constraint satisfaction problem with
template T, denoted by QCSP(T), is the decision problem with:

e Input: a sentence y of the form

VX13X2VX33X4. .. VX201 13X20 120 (X1, X2, - . ., X2n42)

(for some n > 1), where Q is a conjunction of positive atoms.
e Question: does T |= y?

3-QSAT is easily recast as a QCSP, but we will be more interested in a variant
problem. Let B?\I Ag be the boolean structure with a single ternary not-all-equal
relation

NAE?® = {(0,0,1),(0,1,0),(1,0,0),(1,1,0),(1,0,1),(0,1,1)}

The problem QCSP(B3;4) is known to be Pspace-complete [38].

Much effort has gone into identifying the T for which CSP(T) is tractable
(e.g. [32, 34]) and NP-complete (e.g. [33]) . It has been conjectured in [19] that
CSP(7) is always either tractable, or NP-complete. (Indeed, it has even been
conjectured in [8] where this separation lies.) However, the grand classification

97

into dichotomy remains incomplete. Some partial results are known: many years
ago Schaefer proved the dichotomy for T ranging over boolean domains [38].
That was recently extended to domains of size 3, through methods of universal
algebra, by Bulatov in [7]. Of greater interest to us is the dichotomy theorem for
undirected, antireflexive graphs of Hell and NeSetfil. They prove in [25] that an
undirected template T gives rise to a CSP(7) that is tractable, if T is bipartite,
and a CSP(7) that is NP-complete otherwise. This dichotomy extends trivially
to all undirected graphs, since templates with self-loops will give rise to a trivial
CSP. Bang-Jenson, Hell and MacGillavray prove a similar dichotomy theorem
for tournament templates in [4]. Specifically, they prove that CSP(7) is tractable,
if T is a tournament with at most one (directed) cycle, and that CSP(T) is NP-
complete, if T is any other tournament. Both of these graph dichotomy results are
proved by non-constructive means.

Following on from Schaefer’s work [38], Dalmau [15] and Creignou et al.
[14] eventually proved a dichotomy (tractable or Pspace-complete) for QCSP on
boolean domains. A trichotomy (tractable, NP-complete or Pspace-complete) has
been proved for QCSP on templates where all graphs of permutations appear as
relations [5]. A significant body of tractability results has been established for
QCSP, largely along the same lines as for CSP, in [5, 11]. However, so far, no
overarching polychotomy for QCSP has been conjectured.

It is well known from work by Chandra and Merlin [9], on the problem of
Conjunctive Query Containment from database theory, that (existential positive)
conjunctive queries are directly related to the existence of homomorphism be-
tween structures. Defining constraint satisfaction problems in terms of structure
homomorphism became popular after the seminal paper by Feder and Vardi [19].
The non-uniform homomorphism problem with template T, denoted HOM(T), is

the decision problem with:
e Input: a structure A.
e Question: does A -T2

If X3 is the 3-clique, then it is clear that HOM(X3) is the problem of graph 3-
colourability.

98

We define the canonical query ¢ 4 associated with A to be the existential quan-
tification of the conjunction of the facts of A. For example, K3 has the canonical

query
Ok, :=3y3z E(x,y) AE(y,x) NE(y,2) NE(2,) NE(2,x) NE(x,2).

HoM(T) and CSP(7) are essentially two views of the same problem. Specifically,
they are equivalent under the bijective (up to structural isomorphism and labelling
of variables) reduction r(A) = @4, i.e. A € HoM(T) iff o4 € CSP(T).

In this chapter, we introduce a new problem ALT-HOM (T'), which is to QCSP(T)
what HOM(T) is to CSP(7). It is defined in terms of alternating-homomorphism
from a partitioned structure to a non-partitioned template. We also give a charac-
terisation of this problem through the existence of winning strategies in a certain
game. Such a method has been used independently by Chen (e.g. in [11, 10, 12]).

7.2 Preliminaries

7.2.1 Structures and Logic.

We consider only finite, non-empty structures. Let A and T be such structures
over 6. We denote the universe, or domain, of A by |A[, and the cardinality of |A|
by ||A||. For each relation R; of &, with arity a;, R?* C |A|% is the interpretation
of R; over A. When it does not lead to confusion we may be sloppy in identifying
R; and R, A structure A is connected if, and only if, it is not the disjoint union of
some structures A’ and A”. An isolated element of a structure A is one that does
not appear in any tuple of any relation of A.

A homomorphism from A to 7 is a function 4 : |A| — |T]| such that, for all

relations R; of o, with arity a;, and for all (xi,...,x,) € |A|%, we have that

RA(x1,...,x,) implies RY (h(x1),...,h(xs)). If there exists a homomorphism
from A to 7T, then we write AT If we have both AT and T-~A then
we describe A and T as homomorphically equivalent.

A quantifier-free first-order formula Q is positive conjunctive if it is a conjunc-

99

tion of positive atoms, i.e. of the form,

Q(x) = Ri,(x1) AR, (X2) A...AR; (Xn),

where, for every 1 < j < n, R;; is a relational symbol from o, and x; is a tuple of
variables of suitable length (i.e., of the same length as the arity of R;;). Note that

a variable may occur more than once in a given tuple.

7.2.2 Alternating-homomorphism problems.

For n € N, let k, = {U1,E2,U3,Ey4,...,Usn+1,E2n12} be a set of unary symbols
that do not occur in 6. Define an n-partitioned structure *3 over © to be a finite
structure over the signature 6UX,, such that the interpretation of the symbols from
K, is a partition of the structure: i.e.,

o Bl =Uo(IV2i11|U|E2i42

); and,

e forany 0 <i < j < n, the sets Uzjy1, Ezit2, Uzjy1 and Epjy o are pairwise
disjoint.

We write Sg3 to denote the 6-structure underlying *B. We write [y, (respectively,
‘BlE;) to denote the substructure of 8¢z induced by U; (respectively, E;). When this
does not cause confusion, we write U; (respectively, E;) for the sake of brevity.
We say there is an alternating-homomorphism from the n-partitioned structure
B over o to the (non-partitioned) o-structure T, and we write 3 AL if, and only

if,

D

for all functions fy, : Uy — |T

, such that,

there exists a function fg, : E; — |T

for all functions fy,,,, : U1 — |T

9

there exists a function fg,, ., : E2n42 — |7, such that,

fu, U fe, Y. fuy, U fEy,,, 18 @ homomorphism from Sgq to 7.

100

A partitioned structure is one that is n-partitioned, for some n.

Definition (Alternating-homomorphism problem). The non-uniform alternating-
homomorphism problem with template T, denoted by ALT-HOM (7), is the deci-

sion problem with:
e Input: a partitioned structure ‘L.
e Question: does ‘,]3“—”>‘J’?

Examples. Consider the graph G with vertices {a,b,c,d} and edge set
{(a,b),(b,a),(c,d),(d,c)}. We define three partitioned structures which have G
as their underlying graph:

e Py such that Uy = {a},E; = {b},Us = {c},Es = {d}.
e P> such that Uy = {a},E» = {b},U; = {c},E» = {d}.
e B3 such that U = {a},Es = {b},U; = {c},E10 = {d}.

These partitioned structures are depicted in Figure 7.1.

The above partitioned structures are equivalent in the sense that, for any struc-
ture 7T, if for any one of them there exists an alternating-homomorphism to 7, then
there exists also an alternating-homomorphism to J from the others. This leads
us to define the following rewrite scheme to transform an n-partitioned structure

B to a rewrite-reduced partitioned structure, denoted 3.

1. If all relations of Sq are empty, i.e. all elements of Sy are isolated, then
set P to be the singleton with 85| = {0}, all relations of Sgz empty, and
E2 = {0}. Otherwise:

2. Remove all isolated elements of 3.

3. Suppose ‘B is the disjoint union of m connected substructures B, ..., LBy,
For each 1 < I < m, construct I3, from 3, thus:

(a) while there is a minimal i < n such that Uy;; is empty, move every
elementof £, into E;, for all i < j < n and every element of Uy 3
into Uzjyq, foralli < j<n—1.

101

U a

E b U, a c U, as ec

Us c E; b d Eg b

E4 d Eqo od
Bi B B3

Figure 7.1: Three Partitioned Graphs.

(b) while there is a minimal i < »n such that Ey; is empty, move every
element of E5; . into Ey;, for all i < j < nand every element of Uy |
into Upj_y, foralli < j <n.

4. Set Ptobe Py w...wR,,

5. Remove as many empty partitions as possible, so obtaining an n’-partitioned
structure (for some n’ < n).

The rewrite scheme is deterministic, up to the order in which the connected sub-
structures are considered, and so P is well-defined. We say that two partitioned
structures 3 and P’ are rewrite-equivalent if P = 3@—/. In figure 7.1, the structures
B1, B2, and B3 are all rewrite equivalent, and P, is rewrite-reduced. Note that,
for any ‘3, we can compute its rewrite-reduced B in polynomial time.

Two partitioned structures 3 and P’ are said to be problem-equivalent if, for
all templates T, we have P8 € ALT-HoM (7)) iff B’ € ALT-Hom(T).

Proposition 49. Let ‘B and P’ be two partitioned structures. If B and P are

rewrite-equivalent then they are problem-equivalent.

102

Proof. Itis easy to see that the rewrite rules preserve the existence of alternating-
homomorphism.]

Note the converse does not hold as the following example shows.

Example. Consider the 1-partitioned digraphs:

e P4: with domain {x,y,z}, edge set {(x,y),(z,v)}, and partitions U; = {x},
E, = {yaz}'

e PBs: with domain {x,y}, edge set {(x,y)}, and partitions U; = {x}, E; =

{}-

Whilst they are not rewrite equivalent, they are problem equivalent. B4 is equiv-
alent to the sentence Vx3y3zE (x,y) A E(y,z) and s is equivalent to the sentence
Vx3yE(x,y). Both sentences have the same class of finite models.

We note, for any B and its rewrite-reduced ‘B, that their underlying structures
Sqp and Sg differ by possibly only some isolated elements. S and Sg are homo-

morphically equivalent, and, for all templates T, S LN 73 35 b

7.2.3 QCSP versus ALT-HOM.

In this section, we show that QCSP and ALT-HOM are essentially the same prob-

lem.

Theorem 50. Let T be a finite 6-structure. The problems QCSP(T) and
ALT-HOM(T) are equivalent under logspace reduction.

Proof. We will modify the bijective reduction r(A) = @4, mapping a structure to
its canonical query, that proved the equivalence of HOM and CSP in the intro-
duction to this chapter. From r we build the function s from partitioned structures
to prenex quantified formulae whose quantifier-free part is positive conjunctive.
Given a partitioned structure ‘B3, consider the canonical query @s, of its underly-
ing structure Sg. Given this existential query @s,,, we produce the query @y by
replacing all instances of Jx, for variables x that correspond to elements of ‘3 in a
universal partition, by Vx. The map s(8) = @ is bijective (up to isomorphism of
the rewrite-reduced ‘B and labelling of variables) and, along with its inverse, may

103

Ul

E2

Vx3y3z E(x,y) NE(y,x) NE(y,z) AE(z,y) NE(z,x) NE(x,2)

Figure 7.2: Canonical sentence of a Partitioned Structure.

be computed in logarithmic space. It follows directly from the definitions that s
and s~ ! are reductions between QCSP(T) and ALT-HoM (7). O

Just as we refer to the canonical query of a non-partitioned structure, so we
will refer to the canonical query of a partitioned structure as being the sentence it
reduces to, as in the previous theorem.

Example. Let T be any graph. The partitioned structure and sentence of Figure 7.2
give rise to equivalent instances of, respectively, ALT-HOM(T) and QCSP(7),
that reduce to one another in logarithmic space. The sentence is the canonical

query of the partitioned structure, as just defined.

7.2.4 Alternating-homomorphisms as winning strategies.

We give a game characterisation of QCSP. The game we are about to define
corresponds exactly to a standard model-checking game, also known as a Hintikka
game [20]. We define this game in order to use the game parlance in subsequent

proofs.

Definition (Game for QCSP). Let 3 be an n-partitioned structure and J a (non-
partitioned) template. The (3,7)-game goes as follows. Opponent plays on the
universal partitions and Proponent plays on the existential partitions. They play

104

alternate partitions, in ascending order, until all the partitions have been played.
For0<i<n:

e Opponent (U-move): for every element in partition Us; 1, Opponent chooses
an element in T, that is, Opponent gives a function oppai;1 : Uziy1 — |7

e Proponent (E-move): for every element in partition E;, 2, Proponent chooses
an element in 7, that is, Proponent gives a function proy;i» : Eziy2 — |7].

If, at any stage of the game, the function defined by the union of the moves of
both players, opp1 U prooUopp3 U.. ., is not a partial homomorphism from Sy
to T, then Opponent wins. Otherwise this finite game will finish with some ho-
momorphism from S to J having been constructed, and Proponent wins. It is
Proponent’s aim to construct such a homomorphism, and it is Opponent’s aim to
stop her. (In deference to the conventions of Ehrenfeucht-Fraisse games, Propo-
nent is considered female, and Opponent male.) Note that, if at some point the
partial function defined by the play can not be extended to a homomorphism no
matter how either side plays, then Opponent must necessarily win the game.

A strategy specifies how Opponent or Proponent are to play, given what has
been played before:

e (Proponent) A strategy for partition Ey;; in the (8, 7)-game is a function
OFy * Eiva X Ihci(Eani2 X T) X (Uppy1 X T) = 7.

e A strategy ¢ for Proponent in the (3, T)-game is the union of her strategies
for all the existential partitions, viz U<, OE,, ,,-

e (Opponent) A strategy for partition Us; 1 in the (I3, T)-game is a function
Wiyt Vaiv1 X ci(Eap X T) X (Uap1 X T) — 7.

e A strategy T for Opponent in the (3, 7T)-game is the union of his strategies
for all the universal partitions, viz Ux<, Ty, -

A winning strategy for Proponent is a strategy ¢ that beats all Opponent strategies
T.

Theorem 51. Let B be a partitioned structure, and Qg the corresponding canon-

ical query. The following are equivalent.

105

(i) PLT.
(ii) Proponent has a winning strategy in the (3, T)-game.
(iii) T = osp.

Proof. The equivalence of (i) and (iii) follows from Theorem 50. Itis well known
that Proponent has a winning strategy in the FO-model-checking game on (@g,7T)
if, and only if, 7 |= @ [20]. The game we define is the model-checking game
restricted to sentences in prenex form whose quantifier-free part is positive con-

junctive. The equivalence of (ii) and (iii) follows. O

7.2.5 Graphs

A digraph is a structure over the signature containing a single binary relation E.

An undirected graph is one whose edge relation is symmetric.

Definitions.

(Cliques.) Let n > 1. Let X, be the (antireflexive) n-clique, that is the graph
with vertices {0, 1,...,n— 1} such that all distinct vertices are adjacent. Let xre/
be the reflexive n-clique, that is the graph with vertices {0, 1,...,n— 1} such that
all vertices are adjacent (when i = j, we call the corresponding edge a self-loop).

(Paths.) Let P, be the undirected antireflexive n-path, i.e. with vertices
{0,1,...,n— 1} suchthat E(i, j) iff j =i+ 1 or j =i— 1. It follows that the 1-path
P is X; and the 2-path P, is K.

(Cycles.) Let DC, be the directed antireflexive n-cycle, i.e. with vertices
{0,1,...,n— 1} such that E(i,j) iff j =i+ 1 mod n. Let C, be the undirected
antireflexive n-cycle, i.e. the symmetric closure of DC,. It follows that C3 is the
3-clique Xs.

It is proved in [5] that, for n > 3, QCSP(XK,) is Pspace-complete. It follows
immediately that ALT-HOM (X,,) is also Pspace-complete, for n > 3.

An induced sub-digraph §’ C G is a retract of G iff there is a homomorphism
h:G — Gs.t. G is the image of h. A graph ' is a core if it contains no proper
retracts. For an arbitrary digraph G, we define a core of G to be any minimal (w.r.t.

106

size) retract that is itself a core. It is well-documented (e.g. [26]) that the core of
a digraph is unique, up to isomorphism.

A bipartite graph is an undirected graph that is 2-colourable. A graph is bipar-
tite iff it has either K or X as its core. Note that bipartite graphs are antireflexive.

7.3 Basic graph results

Most of these results are given for digraphs; we will specifically consider undi-
rected graphs in the next section. When we discuss edges between vertices x and

y, these may be oriented either way, or not at all (double edges).

7.3.1 Restricting partitions

We define restrictions on the input partitioned structure which will ultimately lead

to tractability.

Definitions (restricting partitions). Let 3 be a partitioned digraph. We say that
P is in Xj-form (respectively, I1,-form), if the only non-empty partition is E»
(respectively, if the only non-empty partitions are among {Uj,E>}). If B is in
in I1,-form and there is at most one vertex in Uj, then we say that 3 is in Il;-
fan form. If, moreover, the vertex x € U; exists, and is adjacent to some vertex
y € Ej, then we say that B is in strict [15-fan form. Finally, we say that 3 is in

Iy -multifan form, if 5B is the finite disjoint union of structures in I1,-fan form.

Note that, if ‘P is in X;-form, then ‘P is a fortiori in I1,-fan form. Any ‘B in

[1,-fan form, but not in strict IT,-fan form, has a rewrite-reduced 3 in X;-form.

Proposition 52 (IT,-multifan form). Let T be a digraph. The restriction of
ALT-HOM (T) to inputs in I1p-multifan form is NP-complete, whenever HoOM(T)
is NP-complete.

Proof. Let B be the disjoint union of PBy,...,B,, all in [1-fan form. Note that
B € ALT-HOM (7)) iff P; € ALT-HOM(T), for 1 <i <m.

(Membership of NP) For each 1 < i < m, if ‘B; is not in strict II,-fan form,
then it is equivalent to ‘B; in Z;-form, and we may simply guess a homomorphism

107

Ui

E;

Figure 7.3: A Partitioned Graph in strict Il>-fan form.

and verify in polynomial time. If °3; is in strict I1;-fan form, we test all possible
maps for the single element in U, guessing the rest of the homomorphism and
verifying in polynomial time.

(NP-hardness) If ‘B is in Z;-form, then B € ALT-HOM(T) if, and only if,
8gp € HoM(T). Hence, ALT-HOM(T) is NP-hard provided that HOM(T) is NP-
complete.

|

We will find, for a wide range of templates 7, that every input which is not
in [1;-multifan form can be discarded. This will be because inputs ‘B not in I15-
multifan form are either easily seen to be no-instances of ALT-HOM(T), or to be
equivalent to the rewrite-reduced P which is in IT;-multifan form. Further, we
will find that we can split up inputs * in I'l-multifan form into their constituent
IT,-fan components (as in the previous proof). Thus, structures in IT;-fan form
are central to our discourse. Such a structure appears in Figure 7.3.

Remark. The ‘converse’ of Theorem 52, that the restriction of ALT-HOM(T) to
IT-multifan form being NP-complete implies HOM(T) is NP-complete, does not
in general hold. For example, take T to be (the disjoint union) X3 ¥ .’K;ef . The
self-loop K% makes HoMm (X3 wK/) trivial (every instance is a yes-instance).

However:

Proposition 53. The restriction of ALT-HOM (K3 Lﬁﬂqef) to Ilx-multifan form is
NP-complete.

Proof. Membership of NP follows as in the first part of the proof to the previous

108

proposition. For completeness, we give a reduction from the NP-complete 3-
colourability problem HoM(X3).

Let G be an input for the problem HoM(X3). Let Gy, ..., G, be the connected
components of G and let x,...,x, be some sequence of vertices in these respec-
tive components.

We construct an input for ALT-HoM (K3 & X/) thus:

e For each component G;, construct a partitioned graph B; (in I1,-fan form)
whose underlying graph has vertices |G;| & {y;} (where y; is a new vertex)
and edge set E9 W {(x;,v:), (vi,xi)}, and whose partitions are U; := {y;} and
E2 = |9,|

e Set ‘P to be the disjoint union Py U...UP,,.

Clearly ‘B is in IT,-multifan form: we claim that § € HOM(X3) if, and only if,
P € ALT-HoM (K3 w K).

(forwards.) Suppose G € HOM(X3). For each of the connected components G;
there must be a homomorphism 4; to X3. It suffices to show that there is a winning
strategy for Proponent for each of the games (B;, X3 & iK{ef). If Opponent plays
y; to the self-loop of quf , then Proponent may play the remainder of [3; to the
same self-loop to win. If Opponent plays y; to one of the vertices of the triangle
X3, then Proponent plays x; to an adjacent vertex on the triangle, and may play
the remainder of 3; according to [a cyclic permutation of] the homomorphism #;
to win.

(backwards.) Suppose B € ALT-HoM (K3 & K'*): which implies that for
each 3; there is a winning strategy for Proponent in the game on (;, K3 & fK;ef).
It suffices to show that this must imply the existence of a homomorphism from
each G; to X3. This is immediate, for suppose Opponent plays the y; to some
vertex in the triangle X3, then the remainder of ‘3; must be played to the trian-
gle, since B; is connected, and so the winning strategy provides the necessary

homomorphism. O

109

Ul — | U Ul © U| —| U
E; E> E> E, E;
Us Us U3 Us Us
E4 E4 E4 Ey4 E,4
Case (ii) Case (iii)

Figure 7.4: Types of forbidden edges in the last two cases of Proposition 55.

7.3.2 Basic results.

Proposition 54 (reflexive clique). If T is a reflexive clique, then ALT-HOM(T) is
trivial. Specifically: B € ALT-HOM(T), for every ‘B.

Proof. If T is a reflexive clique, then for any B, all functions from 8¢ to T will
be homomorphisms. 0

?

Definition (e.g.[6]). A dominating vertex z in a digraph J'is one s.t. forallw € |T
both E7 (w,z) and E” (z,w) hold. (It follows that (z,z) € E”.)

Proposition 55 (dominating vertex). Let J be a digraph in which there exists a
dominating vertex z. Then ALT-HOM (T) may be decided in logarithmic space.

Proof. We consider three cases.
(i) If T is a reflexive clique, then ALT-HOM(T) is trivial (Proposition 54).
(ii) T is not a reflexive clique, but is reflexive. In this case ¢ € ALT-HOM(T)
iff ‘B has no edges between distinct vertices x € U; and y € U; (for any i, j, see
Figure 7.4). This property can clearly be checked in logarithmic space; we prove
its correctness. Let a and b be distinct vertices of T s.t. ~E7 (a,b).

(=) By contraposition: if B has an edge between distinct vertices x € U; and
y € Uj, then Opponent may play x on a and y on b to win, proving P ¢
ALT-HOoM (7).

110

(<) If ‘B has no edge between vertices x € U; and y € U}, then Proponent may
follow the strategy of playing all existential vertices to the dominating ver-

tex z. This will overcome all Opponent strategies.

(iii) T is not a reflexive clique, and is not reflexive. In this case B € ALT-HoMm (T
iff ‘B has no edges between (not necessarily distinct) vertices x € U; and y € U;
(for any i, j, see Figure 7.4). The proof proceeds as in part (ii), with all instances
of the word ‘distinct’ dropped. g

Lemma 56 (not a reflexive clique). Let T be a digraph that is not a reflexive
clique, and let B be a partitioned digraph. If there is an edge in T between distinct
vertices x € Uy and 'y € Uj (for any i, j) then B is a no-instance of ALT-HOM (7).

Proof. By assumption, there are vertices a and b in T that are not adjacent (a may
be equal to b). Opponent plays a for x and b for y and wins. O

Lemma 57 (antireflexivity). Let T be an antireflexive digraph. If there is an edge
in ‘P between nodes x € E; and y € U; (for i < j) then B is a no-instance of
ALT-HOM(T). If there is an edge in P between (not necessarily distinct) nodes
x € U;andy € Uj (for any i, j) then B is a no-instance of ALT-HOM (7).

Proof. In the first case, Proponent has chosen some vertex s in T for x. Opponent
also chooses s for y and wins. Similarly, in the second case, Opponent chooses
the same vertex s for both x and y. O

Lemma 58 (isolated vertex). Let T be a digraph with an isolated vertex s, and let
‘B be a partitioned digraph. If there is an edge in *B between x € U; and y € E;
(for any i, j), or between x € U; and y € U; (any i, j), then B is a no-instance of
ALT-HOM(T).

Proof. We prove the first case; the second may be done similarly. Regardless of
what is played before, when Opponent plays x on s, there is no way that partial
function can extend to homomorphism, regardless of where Proponent will map,

or has mapped, y. (Il

Proposition 59 (isolated vertex). If T is antireflexive and has an isolated vertex,
then ALT-HOM (T) and HOM(T) are logspace equivalent.

111

Proof. The reduction of HOM(T) to ALT-HOM (7) is trivial.

We reduce ALT-HOM(T) to HOM(T) as follows. Let N be a fixed no-instance
of HOM(T) (say, 7 augmented with one vertex adjacent to every vertex of 7). If P
has an edge as in the previous lemma then we know that it is a no-instance and we
reduce P to N. If P has no such edge then every element in a universal partition
is isolated. Thus, Opponent’s moves have no bearing on Proponent’s moves, and
we may disregard every element occurring in a universal partition. Indeed, the
rewritten-reduced graph ‘B will be in X;-form. We reduce 9 to its underlying
graph Sgp. U

It is important that T be antireflexive, to guarantee the existence of an N in the
previous proof. The following proposition is a cousin of the previous.

Proposition 60. If T has an isolated vertex, then ALT-HOM(T) and HOM(T) are

equivalent under logspace Turing reductions.

Proof. Again, the reduction from HOM(7) to ALT-HOM (7) is trivial.

We give the reduction ALT-HOM(T) to HOM(T). If ‘B has an edge as in the
previous lemma then we reject the input. If 3 has no such edge then we reduce it
to the underlying graph Sg. O

Example. The problem ALT-HOM (K3 W X;) is NP-complete. It is equivalent to
HoM(X3), which in turn is the well-known NP-complete problem 3-CoL.

7.3.3 Non-connected templates.

Lemma 61 (forbidden paths and non-connected templates). Let T be a non- con-
nected graph. If there is a path in °B between any x € E; and y € U; (for i < j),
then B is a no-instance of ALT-HOM (T). If there is a path in B between any
x € Ujandy € Uj (for any i, j), then B is a no-instance of ALT-HOM (7).

Proof. We prove the first case; the second may be done similarly. Wherever Pro-
ponent plays x, Opponent need only play y in another connected component to

win. O

112

Lemma 62 (forbidden paths yield ITy-multifan form). If there is no path in a
partitioned digraph ‘B between any x € E; and 'y € U; (for i < j), or between any
x € U;andy € Uj (for any i, j), then the rewrite-reduced B will be in Ty-multifan

form.

Proof. Consider ‘B with all isolated vertices removed, and split into disjoint con-
nected components. It suffices to prove that each of these is in IT-fan form.

For any such component ', let 0 < i < n be the largest integer such that Uy, |
is non-empty. It follows that there is an x € Uy; 1, and that all other elements of
P’ are in existential partitions of index at least 2i -+ 2, for otherwise there would
be a path that violates our assumptions. The rewrite rules may be applied to move
x to U; and all other vertices in the component to E,. The result follows. O

Note that we can determine in polynomial time whether or not a digraph 7T has
any of the paths of the previous lemma.

Lemma 63 (non-connected). Let T be a digraph that is not connected, then
ALT-HOM(T) is in NP.

Proof. Let ‘P be a partitioned input digraph. If there are any of the paths in
as in Lemma 61 then we may reject the instance. Otherwise, it follows from the
previous lemma that the rewrite-reduced ‘B is in IT,-multifan form, and we can
use the algorithm of Theorem 52. O

Proposition 64 (non-connected). Let T be a digraph that is not connected. If
HOM(T) is NP-complete then ALT-HOM (T is NP-complete.

Proof. By Lemma 63, ALT-HOM(T) is in NP. HoM(T) reduces trivially to
ALT-HOM (7)), and completeness follows. O

Remark. As in the remark after Theorem 52, the ‘converse’ of the previous propo-
sition is not in general true: i.e. there are T such that HOM(T) is tractable but
ALT-HOM(T) is not. For example, when T = K3 L+JfK;ef, ALT-HOM (7)) is readily
seen to be NP-complete. (Membership follows from Lemma 63 and completeness
follows from Proposition 53.)

113

7.4 Quantified H-colouring

7.4.1 Bipartite templates.

Lemma 65 (forbidden paths and bipartite template). Let H be a bipartite graph.
If there is a path in ‘B between any x € E; and 'y € Uj (for i < j), then *B is a no-
instance of ALT-HOM(J). If there is a path in B between any x € U; and 'y € U;
(for any i, j), then B is a no-instance of ALT-HOM(XH).

Proof. We prove the first case; the second may be done similarly. Let a be any
vertex in H on which Proponent plays x. If a is an isolated vertex, then Opponent
wins (cf. proof of Lemma 58). Assume that a is not isolated. If the path in P
between x and y is of even length, then Opponent plays y on b, where b is adjacent
to a. A winning strategy for Proponent would imply the existence of an odd cycle
in H. This contradicts the fact that J{ is bipartite, thus it follows that Opponent
wins. If the path in ‘B is of odd length, then Opponent plays y on a and wins by
the same argument. O

Lemma 66 (IT;-multifan form and bipartite). Let H be a bipartite graph. If H
has no isolated vertices then, for any B3 in Ily-multifan form, the following are

equivalent:
(i) P
(i) P-LK,
(iii) Sq %K,
Proof. 1f B is the disjoint union of Py,..., R, all in I1p-fan form, recall that
B € ALT-HOM(T) iff P; € ALT-HOM(T), for 1 <i < m.
For each 3; in I1,-fan form. When ‘B; has no vertex in U, the result holds
trivially. Otherwise, let x be the unique vertex in U;. Again, if x is isolated then

‘B can be rewrite-reduced to ﬁi in X;-form. So, assume that *[3; is in strict I1>-fan

form, and that x is adjacent to some y in E>.

e (i) = (ii): Given a winning strategy G for Proponent in the (‘3;, H)-game,
we construct a winning strategy for Proponent in the (3;, X,)-game. Sup-

114

pose, w.l.o.g., that Opponent plays the x on the 1 in KX;. All remain-
ing moves are Proponent’s. So, Proponent chooses any homomorphism
h:H — X, and a vertex a in H such that A(a) = 1. She then plays the
rest of the vertices (all in E,) according to the strategy 4o ¢ (where she as-
sumes Opponent played the x to a in the oracle-game on (%3;,J()). Since A
is a homomorphism, any outcome of the game on (3;,)H) under strategy ©
that is a homomorphism will lead to an outcome of the game on (*J3;,X7)
under strategy h o © that is a homomorphism. We know that, under strategy
o, all outcomes of (P;,H) are homomorphisms, so the result follows.

(ii) = (i): Given a winning strategy ¢ for Proponent in the (3;,X>)-game,
we construct a winning strategy for Proponent in the (3;,H{)-game. Sup-
pose Opponent plays the x on a vertex a in H{. We know that a is not iso-
lated, and has a distinct neighbour b. Let /' : KX — H be the homomorphism
{(1,a),(2,b)}. All remaining moves are Proponent’s. Proponent now plays
the rest of the vertices (all in E;) according to the strategy 4’ o 6 (Where she
assumes Opponent played the x to 1 in the oracle-game on (I3;,%K>)). The

argument concludes as before.

(if) < (iii): Since each B; is in strict ITp-fan form, the result follows imme-
diately from the symmetry of X».

g

Theorem 67 (bipartite). Let H be a bipartite graph. The problem ALT-HOM (H)

is tractable.

Proof. We propose the following algorithm to solve ALT-HoM ().
The input 3 is first scanned to check whether it has any of the forbidden paths

of Lemma 65. If there are any, then the input is rejected.

If there are none of the forbidden paths and JH{ has an isolated vertex, then we

evaluate HOM(J{) on input Sg. That this is correct follows from Proposition 59;

that it is tractable follows from Hell and Nesetfil’s dichotomy theorem [25].

Otherwise, if there are none of the forbidden paths and H has no isolated

vertex, then we check whether S is 2-colorable, and answer accordingly. This

115

is clearly polynomial: we prove its correctness. We know that if 3 has none of

the forbidden paths, then it is rewrite-equivalent to the reduced @ in IT;-multifan
alt alt

form, by Lemma 62. In particular, 8 %> 3 if, and only if, 8 “>H. By Lemma 66,
we know that ﬁﬁl—iﬂ{ if, and only if, Sg . %,. Moreover, by definition of 3, Sg
is the same as Sg; up to possibly some isolated vertices. Hence, Sg 1K, if, and

only if, Sy > 3C,. It follows that B L3 if, and only if, Sq >%K,. O

7.4.2 QOdd Catherine Wheels

We have already met the problem QCSP(%?\] AE)> known to be Pspace-complete.
Let By g be the boolean structure with single n-ary not-all-equal relation

NAE":= {0, 1}" = {(0"),(1")}
For all n > 3, QCSP(Bysg) is Pspace-complete, by a trivial reduction from

QCSP(Bar)-

Definition. We consider an undirected graph W to be an odd catherine wheel
(OCW) if it is isomorphic to some graph G constructed as follows. For some %,
take the (2k + 1)-cycle oy, 1, together with (2k + 1) undirected paths P?, ... P*
(each of any finite length, where X is considered the O-path). Construct G by
identifying an end of each path P with vertex i of Gy ;.

As in that construction, an OCW may be given an ordering over its (2k + 1)-
cycle, which we will call a listing. An OCW may have up to 2.(2k + 1) distinct
listings, corresponding to orientation of the cycle, together with position of the
zero (first) vertex. We will usually refer to a listing by a corresponding sequence
of paths.

Definition. For an undirected graph G, and a subset A C |G| define:
e d(x,y) to be the length of the shortest path in G from x to y,
e d(A,y) = min{d(x,y) : x € A}, and,
e D({p,q}) =max{d({p,q},y) : y €|9[}.

116

Figure 7.5: An OCW and its two D-minimal listings.

D({p,q}) is minimal such that there is an m’-walk (for some m’ < D({p,q}))
from {p,q} to every vertex of G. We will only be concerned with D({p,q}) when
p and g are adjacent vertices on the cycle of an OCW.

Definition. For any OCW ‘W, define:
my = min{D({p,q}) : p,q adjacent on the cycle of W }

A D-minimal listing P°, ... P* of W is one in which D({k,k+1}) = my.

A D-minimal listing is one in which the maximal distance from the vertices
{k,k+ 1} is minimised. These middle vertices k and k+ 1 will eventually play the
role of TRUE and FALSE in a reduction from QCSP(B%,";}%). It is the following

property of D-minimal listings that is important.

Lemma 68. Given a D-minimal listing P°,...,P* of an OCW ‘W, i.e. one in
which D({k,k + 1}) = myw = m, there exists:

e at € |W)|s.t. there is an m-walk from t to k, but no m-walk from t to k + 1,

and

o ans € |W]| s.t. there is an m-walk from s to k+ 1, but no m-walk from s to k.

117

Proof. Let the respective lengths of the paths P’ be A;. It follows that:

m =D({k,k+1})

= max{ Ao+k,
7\,1+[k—1],)\.2k+[k—1],
A_1+1, M2 +1,
}"ka >“k+1 }

We consider three cases.

(exists i, 1 <i<k,s.t. m=A;+[k— 1].) Take such a branch i that has a vertex
at maximal distance from {k,k+ 1}. This vertex will be at the end of the path
. Label this vertex ¢, and its neighbour, the penultimate vertex along P;, 5. (If
the path P’ is X, i.e. there is no path leaving the cycle, then consider i + 1 on
the cycle to be the ‘penultimate’ vertex). It follows that there will be an m-walk
from ¢ to k but not to k + 1 (by maximality of m, together with the fact that t must
be closer to k than k+ 1). It also follows that there will be an m-walk from s to
k + 1 but not k (we can not go the long way round the cycle, and any backstepping
increases the walk by an even amount).

(exists i, k+ 1 <i <2k, s.t. m=A;+[i —k—1].) This case is symmetric to
the previous.

(previous cases fail, and m = Ay + k.) This is the case in which the ultimate
vertex of PV is the unique vertex at maximal distance m from {k,k + 1}. In this

case, we make two claims:
(i) thereexists 1 <i<kst.m—1=2A;+[k— 1], and
(ii) thereexistsk+1<i<2kst.m—1=A+[i—k—1].

For the first claim, if no such i exists, then we do not have a D-minimal listing,
since D({k+ 1,k+2}) < D({k,k+ 1}). (If the vertex O is always considered
at the top of a drawing of W, then this represents rotating the wheel one place
anticlockwise.) The proof of the second claim is symmetric. We may now take ¢
and s to be the ultimate vertices on some paths that fulfill the the second and first

criteria, respectively. The proof concludes as with the previous cases.]

118

3 2 3 2 3 2
Wy Wi W1

Figure 7.6: The listing on Wy is D-minimal, but only the rightmost listing of W
is D-minimal.

Before we go on, we will need the following.

Lemma 69 (e.g. [25]). For all vertices x of the (2k + 1)-cycle Cok+1, there is no

(2k — 1)-walk from x to x, but there is a (2k — 1)-walk from x to all distinct vertices

y.

Proof. That there is no walk from x to itself follows by a parity argument, together
with the fact that the walk can not go round the entire cycle. We now construct a
(2k — 1) walk from vertex O to any vertex 1 <i < 2k, whereafter we may appeal to
symmetry. If i even, then walk backwards (anticlockwise) until i is attained, in an
odd number of moves, and waste the even number of moves remaining walking
between i and some neighbour. If i odd, then walk forwards (clockwise) until i is

attained, in an odd number of moves, and waste the remaining moves as before.
]

Pspace-completeness.

Theorem 70. If W is an OCW, then ALT-HOM(W) is Pspace-complete.

Proof. Suppose W has a (2k + 1)-cycle, and let myy = m be given. The proof is
by direct reduction from QCSP(B%J":]%). It is based on that given in [5]. Let ¢
be an instance of QCSP(‘B%‘;&). Without loss of generality, we assume that ¢
has at least one universal quantifier: if there is none we can introduce a dummy.

I'This restriction is actually unnecessary in the reduction we use, but it saves us considering as
a special case the situation where there are no universally quantified variables.

119

/ N
/ / \\\
Sy)2 U & D
. . A o .
21 22 : 23 24

N(V],V],Vl,vz,v4) N(Vz,V3,V4,V4,V4)

Figure 7.7: Underlying Graph in reduction from QCSP(B3k%!1). The dotted lines
are (2k — 1)-paths; the double dotted lines are m-paths.

120

Suppose ¢ has v variables and x clauses: we will construct a partitioned graph 3
such that @ € QCSP(BZ) iff P8 € ALT-HOM(W).

To build the underlying graph Sy, we first take v copies of the (2k +1)-gon
Cak+1, one for each variable. Consider each of these (2k +1)-gons €5, ., to have
identified vertex w;, and labelled twin vertices x;, y; farthest away in €, . from
w; (it is irrelevant which way round x; and y; are). Attach to each Gék 41 an m-path
from y;, and label the end-vertex on this path z;. Now identify the w;s as a single
vertex w. (A case involving pentagons, with v = 4, is shown in the top half of
Figure 7.7.) We now take x further copies of C, one for each clause. Each
vertex of each of these (2k + 1)-gons represents a variable in the clause. For each
variable v; in such a clause, add a (2k — 1)-path from the vertex representing v;
to the x; previously introduced. The case in Figure 7.7 has x = 2, with clauses
(v1,v1,v1,v2,v3) and (v2,v3,v4.v4,v4). It remains for us to partition the vertices
of Sq. There is nothing in partition U;, and w is on its own in partition E>. Now
we read the quantifiers in @, from the outside. For each existentially quantified
variable v;, we add z;, its path, and all the rest of G;k +1- to the next strictly higher
existential partition. For each universally quantified variable v;, we add just z; to
the next available universal partition. We then add the rest of z;’s path, and all
the rest of ng 11 to the next existential partition. When we have gone through all
the quantifiers of @, we add all of the remaining vertices, i.e. those in the clause
(2k + 1)-gons, and in the paths that reach them, to the next available existential
partition.

This construction is clearly polynomial. It remains for us to prove its correct-
ness. Note that Proponent can not successfully play all the x; associated with some
clause (2k+ 1)-gon to a single vertex of W (if she plays off the cycle she clearly
loses; if she plays on the cycle she loses by Lemma 69).

(pe QCSP(B,Z\IkXEl) — P € ALT-HOM(W)). We give Proponent’s strategy in
the game (3, W). She should play w on some vertex O on the (2k + 1)-cycle of W
such that this gives rise to a D-minimal listing of W. Whenever Opponent plays a
z; in' W, there will be an m-walk such that y; may be played on one of vertices k or
k41 of the cycle of W. These vertices represent TRUE and FALSE respectively.
Since, no matter whether the universal variables are true or false, there is a val-

uation of the existential variables that gives the clauses a not-all-equal valuation,

121

Proponent may ensure that not all x; associated with each clause are mapped to
TRUE (respectively, FALSE). She should play this valuation, finally playing each
clause (2k + 1)-gon and the path to it according to Lemma 69, ensuring homo-
morphism.

(P € ALT-HOM (W) — ¢ € QCSP(BXI1)). If w is not played to a vertex 0
in the (2k + 1)-cycle of W such that this gives a D-minimal listing, then Opponent
may play any universal z; (by assumption there is at least one) to some vertex in
‘W that does not have an m-walk to either k or k + 1, and Proponent loses. (Such a
vertex exists by minimality of m.) Thus, in a winning strategy, w must be played
to some O on the (2k + 1)-cycle that gives rise to a D-minimal listing. Note that
now Proponent must play each {x;,y;} to {k,k+ 1}, with which being played to
which specifying truth or falsity of variable v;. Thereafter, for any play of z;, there
is an m-walk to either k or k+ 1 (TRUE or FALSE respectively), by the definition
of m over a D-minimal listing. For certain z there is an m-walk to k but not to
k + 1, and vice-versa, as guaranteed by Lemma 68. This ensures that Proponent
must answer to all valuations of the universal variables. Finally, when the clause
(2k + 1)-gons are reached, if Proponent can extend to homomorphism, then not
all the x;s of each clause were played to k (respectively k + 1), and we have a

not-all-equal assignment O

Corollary. Let G be a (undirected antireflexive) connected graph that has a unique
cycle, which is of odd length. Then ALT-HOM(S) is Pspace-complete.

Proof. Such a graph G is of form similar to an OCW, but with trees affixed to
the vertices of the odd cycle, instead of paths. The completeness result holds for
such graphs under exactly the same reduction. (The length of such a tree should
be considered the maximal depth from its root on the odd cycle.) L

7.4.3 A trichotomy theorem

Theorem 71. The class of antireflexive undirected graphs with at most one cycle
exhibits ALT-HOM -trichotomy. Specifically:

e If H is bipartite, then ALT-HOM () is tractable.

122

o If H has an odd cycle and is not connected, then ALT-HOM () is NP-

complete.

e If H has an odd cycle and is connected, then ALT-HOM (H) is Pspace-

complete.

Proof. We have just proved the final part. The first part is proved in Theorem 67.
The second part is a consequence of Proposition 64, and Hell and NeSetfil’s Di-
chotomy Theorem [25]. O

Remark. The same trichotomy holds on the class of antireflexive undirected graphs

with exactly one cycle. This is because bipartite graphs may contain even cycles.

7.5 Closure properties

We examine some closure properties on templates that may be used for proving

Pspace-hardness. Later we look at the question of problem equivalence in QCSP.

7.5.1 Indicator construction

Hell and Nesetfil defined three graph constructions to prove their dichotomy the-
orem for undirected graphs in [25]. One of them is known as the Indicator con-

struction. An Indicator is a digraph J with two identified vertices i and j.

Definition (Hell and Nesetfil [25]). The indicator construction J* of a digraph T
with respect to Indicator (J,i, j) is the graph with vertex set |T

; and, edge set:
{(a,b) : existshom. h:J — T s.t. h(i) = a and h(j) = b}.

Remark. In the case of undirected graphs it makes sense to consider only Indi-
cators (J,i, j) that have an automorphism swapping / and j. This ensure that T*
remains undirected when T is undirected. For an example of this construction, see
Figure 7.8.

123

Lemma 72 (Hell and Nesetfil [25]). Let T be an undirected graph and (J,i, j)
an indicator that has an automorphism swapping i and j. If HOM(T*) is NP-
complete then HOM(T) is NP-complete.

Their result readily extends to digraphs; we extend it to QCSP.

Theorem 73 (Indicator Construction). Let G be a digraph and (3,1, j) an indicator.
o If CSP(G*) is NP-complete then CSP(S) is NP-complete.
o I[fQCSP(G*) is Pspace-complete then QCSP(9) is Pspace-complete.

Proof. We prove the first claim by reducing CSP(S*) to CSP(S). The proof
broadly follows that of Hell and NeSetfil. Let m := ||J||. Take the canonical query

0 of J and remove the two existential quantifiers for i and j. It is now of the form:

8(z,7) :=I1Iva- .. Iym—20(2,7,¥1, Y25 -, Ym—2),

where Q is positive conjunctive. It follows directly from the definitions that
EY" (a,b) holds if, and only if,

SE8(z/a,Z /b)=Ty13y2... Iym—20(a,b,y1,y2,- -, ¥m-2)-

Hence, given an instance of CSP(SG*), we can replace each occurrence of E(z,z7’)
by 6(z,7), ensuring that variables introduced are new variables. More precisely,
let zx,, ..., 2, be (not necessarily distinct) variables among z, and let @ :=

3z A1 E(2ky;_,+2ky;) be an instance of CSP(G*). We have §* = @ iff § =y,
where

,
Y=z /\(Hy’iﬂyé e 3)’5)1—2)Q(1k2i—1 7Zk2i7yli >y§> - ’y£'1——2)'
i=1

Note that y can be built from ¢ in polynomial time (remember that the indicator
is a fixed graph). Both CSP(SG) and CSP(G*) are in NP, so it follows immediately
that NP-completeness of the latter implies NP-completeness of the former.

We use the same method to prove the second claim, by reducing QCSP(G*) to
QCSP(SG). We have seen that the edge relation of G* can be defined in existential

124

Cs J C: = Ks

Figure 7.8: Example of the indicator construction.

positive conjunctive first-order logic on G. Thus, by replacing in the same way
each occurrence of E(z,7’) by 6(z,z’), where every variable apart from z and 7’ is
a new one, we get a quantified formula y. The proof concludes as before, but for
Pspace instead of NP. O

We now have an alternative proof, based on that in [25], of the following.

Corollary. Forevery undirected cycle Coi 1 (k > 1), the problem ALT-HOM (Cp; 1)

is Pspace-complete.

Proof. Recall that ALT-HOM (K544 1) is Pspace-complete. For G := Cy1, choose
the indicator (J,i, j) to be the undirected (2k + 1)-path from the vertex i to the
vertex j. It follows from Lemma 69 that G* = XK, ;. The result follows from
Theorem 73. The case k = 2 is depicted in Figure 7.8. (]

Remark. In [25], Hell and Nesetfil introduced two other graph constructions.
When K is a core, they defined the graphs 3™ [respectively, }{"] with respect
to sub-indicator J [respectively, edge-sub-indicator J']. We do not go into the
details of these constructions here. They proved that either of HOM(H™) or
HoM(H") being NP-complete implies HOM(3) is NP-complete. We note that
this result is unlikely to extend to ALT-HOM (QCSP) in the case of the sub-
indicator construction. That is, ALT-HOM (3{™) being Pspace-complete does not
imply ALT-HOM () is Pspace-complete, under the assumption that NP # Pspace.
We do not prove this here.

125

7.5.2 Adding a vertex to a core.

Definition. Let J{ be an antireflexive core (i.e. any core other than the self-loop
ZK;"f). Let Ht be 3 with a new vertex y added, adjacent to all vertices of J{, but
not adjacent to itself (so it does not introduce a self-loop). Formally:

o |3H| = [H|w {y}.
o E% =E"NU{(x,y),(v.x) :x € H}.
We aim to establish that H{" is a core.

Lemma 74. Any homomorphism h : H'* — H™* is such that there is an automor-
phism i of H' that swaps Y and h(Y).

Proof. We may assume h(7y) # y. We prove that h(Yy) is [forward- and backward-
Jadjacent to all vertices of H*t except itself. If that is the case then the function
that leaves all vertices unchanged, but swaps v and A(y), will be an automorphism.

Suppose h(7) were not adjacent to everything in H* (except itself), and that
its neighbours constitute the proper subgraph H' C H* — {h(y)}. Since h is a
homomorphism, it follows that A(3) C ', so we have:

h(30) € 3T = {h(¥)}.

Now, v itself may or may not be in the image A(JH). We consider both cases
separately.

[y € h(3H).] We have h(HH) is a proper subgraph of H, and we are done since
this contradicts H being a core.

[y € h(F().] See Figure 7.9. It follows that there is a homomorphism

B H — h(H) —{yru{h(y)},

defined by /' (x) := h(x) except when h(x) =, in which case #'(x) := h(y). Whilst
h(H) is not actually a subgraph of 3, A’(J{) is, and it is proper since it has the
same cardinality as A(J). This contradicts H{ being a core, and we are done. [J

Lemma 75. H* is a core.

126

}C-I— SRLEN g{+
v ny)
3 |

Figure 7.9: The case y € h(H) in Lemma 74. Note that H*-h(H") must be
non-empty.

Proof. Suppose there were a homomorphism A from H" to a proper subgraph
H' c H*. Since we know there is an automorphism of G that swaps y and A(Y),
we may assume w.l.o.g. that A(y) = y. But that implies that # maps J{ to a proper
subgraph of itself, which contradicts H being a core. (]

Theorem 76. Let H be a core. Then ALT-HOM(XH) is logspace reducible to
ALT-HOM(H ™).

Proof. Given an input ‘B for ALT-HOM(H), we construct P’ as an input for
ALT-HOM (™) such that g € ALT-HOM () iff ' € ALT-HoM (H). We con-
struct P’ from P by introducing a new existential partition Eq before U; (we may
renumber later). Into Ey we place a copy of H™", adding an edge from the 7y of that
H™* to all the existential vertices of 3. Our proof rests on the equivalence of the

following:

127

Ui

E>

P

b e

Figure 7.10: An example of the reduction used in Theorem 76, when H = Cs.

128

(i) Proponent has a winning strategy in the game on (', 3*).

(ii) Proponent has a winning strategy in the game on (8, 3{*) where Opponent
is forbidden to play v 2.

(iii) Proponent has a winning strategy in the game on (3,).

In the game (P',H"), Proponent must play the copy of H™ in Ej to itself in the
template. Thereafter, Proponent may never play this ¥ on the template, since H*
is a core. The equivalence of (ii) and (iii) follows.

The equivalence of (i) and (ii) follows from the fact that vy is adjacent to ev-
erything in H™, so Opponent gains no advantage in playing it. g

Corollary. The graphs associated with the (2n + 1)-gonal pyramids give rise to
Pspace-complete ALT-HOM problems.

Proof. The graph associated with the (2n + 1)-gonal pyramid is €3, ;. The case

of the pentagonal pyramid appears in Figure 7.10. a

7.5.3 A sufficient condition for ALT-HOM problem equivalence.

It is well known that, for any digraph G whose core is H, we have HOM(G) =
HoMm(H), i.e., for all digraphs D we have D € HoM(9) iff D € HOM(XH). This
result does not extend to ALT-HOM.

Example. Let G be X3 W X3, therefore its core H will be K3. Consider a parti-
tioned graph ‘8 whose underlying graph is the directed 3-path DP3. Placing the
two end-nodes in partition U; and the middle node in partition E>, we will have
B € ALT-HOM (K) whilst P ¢ ALT-HOM(S). This is because, for ¢ :=

VxVz3y E(x,y) NE(y,2),

we have K3 = o, but K3 w X3 Ho.

However, we propose a digraph construction that preserves the alternating-

homomorphism problem.

ZNote that ¥ is not necessarily well-defined in H{* until Proponent plays the copy of 3{* in 3’
on to the template H .

129

Definition. Given a digraph G and specified vertex g, we construct G*8 by dupli-
cating the vertex g. Specifically:

o 157%) = |3|U{g}, and

ES™ = ESU{(¢',x): (g.x) €ES} U{(x,g): (x,8) € ES}
U{(g:&):(g',8), (g, &) :iff (g,8) € ET}.

Theorem 77. For all digraphs G, and any g € G, the problems ALT-HOM(9)
and ALT-HOM(G78) are equal, i.e. for all partitioned digraphs 13 we have P €
ALT-HOM (G) iff B € ALT-HOM (G 18).

Proof.

e (Forwards) We prove that a winning strategy ¢ for Proponent in the (3, §)-
game can be translated to a winning strategy ¢’ for her in the (3, 5"¢)-
game.

The strategy ¢’ will tell Proponent that, if Opponent ever plays g’ in the
game on (3, G78), she should behave in the game on (B, §) exactly as if he
had played on g. Since g and g’ are adjacent to exactly the same vertices in
G+8, any play of the (3, G)-game that results in homomorphism must yield
a play of the (3, G¢)-game that results in homomorphism.

e (Backwards) We prove that a winning strategy ¢ for Proponent in the (3, §¢)-
game can be translated to a winning strategy o for her in the (3, G)-game.
Indeed, if we take ¢ and substitiute all instances of g’ for g, then we will

have such a strategy, for the same reason as before.
d

Definition. For the n-clique X, define X, to be X, with any single edge re-
moved.

Corollary. For all n > 4, the problem ALT-HOM(X,,) is Pspace-complete.
Proof. Observe that X, =X '8 forany g € K,_;. O

n—1°

130

Corollary. The graphs associated with the (2n+ 1)-gonal bipyramids give rise to
Pspace-complete ALT-HOM problems.

Proof. The graph associated with the (2r+ 1)-gonal bipyramid is (€3,)",
where 7 is the vertex of G;; 1 adjacent to everything but itself. 0O

7.5.4 Why that condition is not necessary: equivalence in frag-
ments of FO.

Definition.
e Let FO\{=} be first-order logic FO deprived of the binary equality relation.

e Let pos-con j-FO be the fragment of FO involving formulae in prenex form,

whose quantifier-free portion is positive conjunctive.
e Let 3-pos-conj-FO be the existential fragment of pos-con j-FO.

Note the trivial containments 3-pos-con j-FO C pos-conj-FO C FO\{=} C
FO. These containments are readily seen to be proper; we will return to this later.

3-pos-conj-FO is closely related to the problems CSP and HOM. Indeed, it
follows from the definition of CSP that, for any two templates T and 7/, CSP(T) =
CSP(T") iff T and J” agree on all sentences of 3-pos-conj-FO. Similarly, it fol-
lows from the definition of QCSP that QCSP(T) = QCSP(T") iff T and I’ agree
on all sentences of pos-conj-FO. We also have, from the definition of the HOM
problems, that Hom(T) = Hom(7”) iff T is homomorphically equivalent to 77,
i.e. we have both 777 and 7" %~ 7. This is equivalent to the condition that T
and T’ have isomorphic cores. The concept of core gives us a combinatorial char-
acterisation of what it is to be 3-pos-con j-FO-equivalent. Such a characterisation
seems harder for the logic pos-conj-FO: in the world of QCSP and ALT-HOM.
However, such a characterisation is at hand with the logic FO\{=}, but first we
must define the pertinent Ehrenfeucht-Fraisse game. Our exposition is based on

that for the standard FO-game given in [31].

Definitions. Let A and B be digraphs. The FO\ {=}’-game on a pair (A, o9, B, Bo)
is played by two players, Spoiler and Duplicator, with k pairs of pebbles over m

131

rounds. A position in such a game, a k-configuration, is a pair of partial functions
(o, B), where

e a: {v,...,vx} — |A|,and

e B: {vi,....,wm} — |B|,

and we further have that dom(a) = dom(B). The domains of o and P are the
pebbles that have already been played. From some position (o;,[3;), for the next
move, Spoiler picks some pebble i (where 1 < i < k) and chooses to play it in
either |A| or |B|. If the former [resp. latter], then he adds the pair (v;,a) to o;
[resp. (vi,b) to B;] and Duplicator adds the pair (v;,b) to B; [resp. (vi,a) to o],
so obtaining the new position (0t 1,B,41). Note that v; may already have been
in dom(oj) = dom(B;), i.e. the pebble i may already have been played, in which
case some former pairs (v;,a’) € oj and (v;,b") € B; will have been removed. The
initial position of the game is (0tp,Bo). Spoiler wins if at any point the relation
o' oB C |A| x |B| does not satisfy:

(x) EMa,d) < E®(b,b) forall (a,b),(d,b)caoB

If Spoiler does not win, then Duplicator wins.

The FO\{=}-game on (A, 0, B, Bo) is played similarly, but with an unbounded
number of pebble pairs and an unbounded number of moves. This means that
(0o, Bo) is an w-configuration with potentially infinite domain: though only if the
initial position were infinite. Since we are concerned with finite digraphs, this will
never happen. |

The quantifier-rank gr of a formula FO\{=}? is defined inductively thus: if
@ is quantifier-free then gr(@) = 0; if @ = —¢’ then gr(¢) = gr(¢’); if ¢ = ¢' N ¢”
then gr(¢@) = max{qr(¢’),qr(¢”)}; and it @ = Iv¢’ then gr(¢) = gr(¢’) +1.

Let FO\{=}}" be that fragment of FO\{=} whose formulae involve only
the variables vj,...,v, and whose quantifier-rank is at most m. For (o,B) a
k-configuration and ¢ € FO\{=}}" a formula whose free variables are among
dom(a) = dom(PB) we consider ¢ to be true on (A,) [resp. (B,B)] if @ is true

3Quantifier-rank is defined identically in FO.

132

on A [resp. B] under free variable assignment o [resp. B]. Letting (o,) be a

k-configuration, we write:

o (A,0) =" (B,B) iff AandB agree on all formulae of FO\{=}}" (whose
free variables are among dom(a) = dom(B)), and

o (A,0) ~"(B,B) iff Duplicator has a winning strategy for the FO\ {=}}'-
game on (A, o, B,B).

Letting (o, B) be an w-configuration, we write:

o (A,a)=(B,B) iff A and B agree on all formulae of FO\{=} (whose
free variables must be among dom(o.) = dom(p)), and

e (A,0) ~ (B,B) iff Duplicator has a winning strategy for the FO\{=}-
game on (A,o, B, B).

Lemma 78. There are only finitely many inequivalent formulae of FO\{=}}".

Proof. We prove the result for digraphs: it is easily extended to arbitrary (finite,
relational) signatures. We proceed by induction on m.

(Base Case.) For m = 0, the formulae we can write are boolean combinations
of E(v;,vj) (for i,j € {1,...,k}). We may consider any ¢ € FO\{:}Q to be a
propositional formula in these k? propositional variables. We may rewrite this in
CNF to obtain a formula ¢ € FO\{=} s.t. for all digraphs G, G |= ¢ < ¢'. The

number distinct clauses for a formula of FO\{=}? in CNF is bounded by 22 5o
it follows that the number of inequivalent formulae in CNF is bounded by 222k2.
The result for base case follows.

(Inductive step.) Assume it is true for m. Any formula ¢ € FO\{=}7""" is
a boolean combination of formulae of the form Jv;¢’ with ¢’ € FO\{=}". It
follows from the inductive hypothesis that the number of inequivalent such for-
mulae @ is finite, say c, and that therefore the number of inequivalent formulae in

FO\{=}""*! is bounded above by 27" O

Proposition 79 (Methodology). Let A and B be digraphs and let (0, Bo) be an

intial k-configuration. Then the following are equivalent:

133

(i) (.A,(X()) N;{n ($7B0)
(ii) (A,00) =" (B,Bo)

Proof. (Based on that for FO in [31].) We proceed by induction on m. For the base
case, m = 0, Duplicator wins the zero-round game on (A, a, B, Bo) iff o, o Bo
satisfies (x) iff (A, 0p) and (B, o) agree on all quantifier-free formulae ¢ (whose
free variables, indeed, only variables, are in dom(0) = dom(Bo)).

Inductive step: (i) = (ii) (by contraposition). Suppose the proposition is true
for m, but that (A, o) and (B, Bo) disagree on some formula ¢ € FO\{=}7""1. I
¢ were of the form —¢’ [resp. ¢’ A @”] then they would disagree on ¢’ [resp. one of
¢, 0], so we may assume w.l.0.g. that ¢ = Jv;¢’ (1 <i <k)and that (A, 0p) =@
and (B,Bo) = —¢. In playing the FO\{=}7""-game on (A, 0y, B,Bo), Spoiler
begins by playing a witness for ¢ in A, but, no matter where Duplicator replies,
we will end up with a position (o1, B;) s.t. (A, o) = ¢ and (B,B;) E —¢'. Since
the quantifier-rank of ¢’ is m, it follows from the inductive hypothesis that Spoiler
wins the FO\{=}}"-game on (A, a1, B,B1), and we are done.

Inductive step: (ii) = (i). Suppose that (A,0p) =" (B,Bp), and let Spoiler
take his first move in the FO\{=}7""'-game on (A, 0, B,Bo). Let him place a
pebble i on an element of A, so defining o;. Remembering that there are only
finitely inequivalent formulae of FO\{=}7", let ® be the conjunction of all of
these formulae that (A,) satisfies. We know that (A,0p) = Jv;®: so by as-
sumption (B, Bo) = 3v;®. Let Duplicator play her pebble i on a witness for Jv;®
in B. Thus (A, ;) and (B,) both satisfy ®. Since ® is a complete description
of everything satisfied by (A, o) in FO\{=}}", it follows that (A, o) =7 (B, B1),
and the result follows from the inductive hypothesis. a

Corollary. Let A and B be digraphs and let (0, Bo) be an initial ®-configuration.
Then:

o (A,(X()) ~ (B,BO) lﬁ (.A,(X.O) = (Ba BO)
i (-A,(X()) ~ I (B7 BO) lff (.A,(X()) ~ (3730)

Proof. The first part follows immediately from the previous proposition and the
definitions. The second part follows from the fact that Duplicator need only find

134

an answer for the ||.A|| + ||B|| positions Spoiler can play: thereafter she may copy

previous replies. O

We now introduce the converse of the vertex duplication that we have already

seen.

Definition. If a digraph A possesses two vertices a,a’ such that {x : E(a,x) €
E*} = {x:E(d,x) € E*} and {x: E(x,a) € E*} = {x: E(x,d’) € E*}, then A
may be folded to the graph A~ by collapsing the vertices x and x’ to a single

vertex x' (alternatively, removing vertex v).

A digraph that has no potential folds is said to be sziff. (Similar definitions for
fold, and stiff graph, appear, e.g., in [26].)

Theorem 80. The following are equivalent, for all digraphs A, B:
(i) A and B agree on all sentences of FO\{=}.
(it) Duplicator wins the FO\{=}-game on (A, B).

(iii) There exists a stiff C such that both A and B may be put through a sequence
of folds to derive [isomorphic copies of] C.

Proof. We already have the equivalence of (i) and (ii).

((iii) — (ii).) Suppose f4 : A — Cand fg : B — C are the surjective collapsing
functions for the respective sequences of folds. For the FO\{=}-game on (A, B),
if Spoiler plays in |A| [resp. |B|] then Duplicator should answer with any vertex
b € |B| s.t. f(b) = fa(a) [resp. any vertex a € |A| s.t. fa(a) = fp(b)] (the
existence of such vertices is guaranteed by surjectivity of f4 and fg). This is a
winning strategy by the definition of folding and, its inverse, duplication.

((ii) — (iii).) Suppose Spoiler plays all ||A|| + ||B]|| distinct vertices. Duplica-
tor must be able to answer. Suppose ai, ..., a4 was answered with aj,. .. ’aTIAII
and by, ..., b g was answered with b,... ,bi B||" In A repeatedly collapse vertices
aj,a; to a single vertex iff a; = ag. Continuing until there are no more vertices to
collapse, we ultimately build a stiff C4. In B repeatedly collapse vertices b;,b; to
a single vertex iff b; = b, so obtaining a stiff Cx. It follows by transitivity that
Duplicator has a winning strategy in the FO\{=}-game on (C4,Cg). Let Spoiler

135

play all the positions in €4 and let Duplicator make her reply. The so obtained
o~ o B that satisifes (x) must also satisfy:

injectivity: Va,a' € €4 Vbe Cq (a,b),(d,b) e 'op = a=d
(for otherwise Ag is not stiff since a may be folded to a’), and

surjectivity: Vb€ Cg Ja€Cy (a,b) 0o

1

(for otherwise Cg is not stiff). It follows that oo™" o is an isomorphism, and the

result follows. O

Corollary ([26]). Every digraph G has a unique [up to isomorphism] stiff induced
subgraph that it can be put through a sequence of folds to obtain.

Proof. Take A =B = § in the previous proof.]

We will now unambiguously refer to the stiff-graph-within G as the one which
G reaches through a maximal sequence of folds. We have seen that stiff-graphs-
within characterise FO\{=}-equivalence in exactly the way that cores charac-
terise 3-pos-con j-FO-equivalence. This gives us a new proof of Theorem 77, in
which we proved that, for all digraphs G and g € G, ALT-HOM(G) = ALT-HOM(G8).
Since §*8 may be folded to G, it follows that they share the same stiff-graph-
within. It is now clear that G and G*8 agree on all sentences FO\{=}, which
certainly includes all sentences of pos-con j-FO.

It remains for us to ask whether or not stiff-graphs-within capture equiva-
lence in QCSP, i.e. whether pos-conj-FOactually coincides with FO\{=}. It
turns out not to be so; we demonstrate the proper containments 3-pos-con j-FO C
pos-conj-FO C FO\{=} C FO.

Examples.

X3 and K3 W X3 give rise to the same CSP problem, i.e. are equivalent in
3-pos-con j-FO, but do not give rise to the same QCSP problem, since VxVz3yE (x,y) A
E(y,z) is true in the former, yet false in the latter. It follows that 3-pos-con j-FO

can not express that property.

136

K, =P, and P4 give rise to the same QCSP problems. (In fact, it follows from
Lemmas 58 and 66 that there are precisely three classes of ALT-HOM = QCSP
problem for bipartite template J: specifically, T having no edges; or T has an
edge and an isolated vertex; or J has an edge and no isolated vertices. P; and
P4 are both in the last class.) Consider the sentence 3w, x,y,zE(w,x) A E(x,y) A
E(y,z) AN—E(z,x). This is false in the former, but true in the latter. If follows that
the property can not be expressed in pos-con j-FO.

Finally, consider the query VxVy E(x,y) Vx = y. This can not be expressed in
FO\{=} since K3 and X, disagree on it, yet agree on all sentences of FO\{=}.

7.6 Results concerning tournament templates

7.6.1 Template is a directed cycle.

We consider the case where the template T is a directed n-cycle DC,. Such a
graph is a tournament only when n = 3, but the method easily generalises.

Definition. An oriented path is a list of vertices vi,...,v, and, for 1 <i < m,
exactly one of the edges E(v;,vi+1) or E(vit1,vi). The net length of this oriented
path is the number of instances of edges E(v;,v;11) (forward-edges) minus the
number of instances of edges E(v;1,v;) (backward-edges). An oriented path in a

digraph G is a (not necessarily induced) subgraph of G that is an oriented path.

In a directed r-cycle any oriented path between a vertex and itself must have
net length O mod n. Furthermore, any path between a vertex and its forward-
neighbour must have net length 1 mod n, and every vertex has a forward-neighbour.
These facts will allow us once again to consider only partitioned inputs in Il5-

multifan form since:
Lemma 81. Forn > 3,

o if there is a path in ‘B between any x € E; and y € U; (for i < j), then
B ¢ ALT-HOM(DC,), and

e if there is a path in B between any x € U; and y € Uj (any i, j), then B ¢
ALT-HoM(DC,).

137

Proof. We prove the first claim, the proof of the second is similar. If the path
has net length 0 mod n, then, if Proponent plays a for x, then Opponent plays the
forward-neighbour b of a for y, and wins. If the path has net length other than
0 mod n, then, if Proponent plays a for x, then Opponent also plays a for x, and
again wins. (]

Theorem 82. If T is a directed n-cycle then ALT-HOM(T) is tractable.

Proof. 1f the input ‘B has any of the paths of the previous lemma, then we have a
no-instance. We may therefore assume that ‘3 has no such path, and is equivalent
to the rewrite-reduced 8 in IT,-multifan form. We may further split B into its
I,-fan form components P; (1 < i < m), for some m, and solve separately for
each.
Since 7 is rotationally symmetric, each IT,-fan structure 3; admits an alternating-

homomorphism to T iff the structure SE admits a homomorphism to T. It is
known that the problem HOM(7T) is tractable [4], and the result follows. O

7.6.2 Template is a digraph with source and sink.

In a digraph, a source (respectively, sink) is a vertex with in-degree (respectively,
out-degree) 0.
We consider the case where the template 7 is a digraph with both a source s

and a sink 7. In such cases we need only consider inputs in Z;-form since:
Lemma 83. Forany i, j,

e if there is a forward-edge in ‘B between any x € E; and y € Uj, then B ¢
ALT-HOM(T),

e if there is a backward-edge in B between any x € E; andy € Uj, then P ¢
ArT-HoM(T),

o if there is any forward-edge in ‘B between any x € U; and y € U;, then
B ¢ ALT-HOM(T), and

e if there is any backward-edge in P between any x € U; and y € U;, then
B ¢ ALT-HOM(T).

138

Proof. For the first and third claims, Opponent plays s for y and wins. For the
second and fourth claims, Opponent plays ¢ for y and wins. O

The following should be seen as a generalisation of Proposition 59.

Proposition 84. If T is an antireflexive digraph with both a source and a sink,
then ALT-HOM(T) is logspace equivalent to HOM(T).

Proof. Use the reduction of Proposition 59 (we have the same forbidden edges
here as we did there). O

Definition. An n-tournament is a digraph G with vertex set {0,...n — 1}, such
that, for all i, j € Z,, exactly one of E(i, j) or E(j,i) is an edge of G. The unique
n-tournament which contains no directed cycle as a subgraph is known as the

transitive n-tournament, and will be denoted 77,.
Corollary. If 7! is the transitive n-tournament then ALT-HOM(T%) is tractable.

Proof. T?, has both a source and a sink. So, the result follows from the previous
theorem, and the fact that HOM(T?) is tractable [4]. O

7.6.3 Tractable tournament ALT-HOM problems.
The tournaments T, . ;

We examine the tournaments T}, which are constructed from the directed 3-
cycle by repeatedly adding a source m times. (The superscript u suggests this
unique cycle.)

Definition. We define 7}, ; inductively:
e Let 7O := J% = DC; , the directed 3-cycle..

e From () build 7"*+Y by adding a new source, i.e.,
[T = 17O W {r+3}* and ET"" := ET7 w{(r+3,i) : i € [TV}

o LetT¥ =T,

4 (’), being a tournament with » + 3 vertices, will already have vertex numbers 0 to r + 2.

139

Since we have dealt with the case of the directed 3-cycle, we consider m > 0,
i.e. when T}, | 5 has a source.

Lemma 85. Form > 0:

o If there is a directed edge in ‘B between x € E; and y € Uj (i < j), then
B ¢ ALT-HOM(T}, , 3).

o If there is a directed edge in P between x € U; and y € U (any i, j), then
B ¢ ALT-HoM(T}, 5).

e [f there is a directed edge in ‘P from x € Ej toy € U; (i < j), then P ¢
ALT-HoM (T . 3).

Proof. The first two parts follow from the antireflexivity of T}, 5,

For the final part, if Opponent plays y to the source of T}, 5, Proponent can have

by Lemma 57.

no reply for x. O

Let B be a partitioned digraph, we define its cousin ‘ﬁ inductively:
° (B(O) = ‘,B

e From P we build P+ by removing all sources that are in existential
partitions.

° si}:: ‘}3("’).

Let Ex(*3 — B) be those existential vertices in 9 that are not in B, and let Ex(*B)
be those existential vertices in P that are also in ‘1~3 (since ‘J~3 C B these are the
existential vertices of 53). Let PrEx(*]3) be those vertices of ‘B in existential par-
titions 7o which there is a directed path from some vertex in a universal partition.
Let Un(B) be the set of universal vertices of 3. We refer to the vertices of T}, , 5
that are not in the 3-cycle as the rail of T, , 5.

We will benefit from examining which vertices of the underlying graph Sq
have been removed in the graph 853. It should be clear that vertices in Un(*J3) and
PrEx(B) can never be removed, and are, therefore, protected. Let us consider the
sub-partitioned-graph 31 of P induced by the existential vertices that are not pro-

tected. J3; may be put through our given inductive scheme, iteratively removing

140

sources m times, so obtaining ‘ffl It should be clear that &]~3 is that subgraph of 3
induced by the set Un(B) U PrEx(B) U IS;E |. Apart from the universal vertices
and those existential vertices that are protected, our construction is that given for
+3) in [4]. All of the sets we have defined
should now be considered as subsets of ‘P (though some may be subsets of ‘I&

proving the tractability of HoM (T,

too). Before going on we will benefit from the following lemmas.

Lemma 86. In a winning strategy for Proponent on (3,7}, 3), if Opponent plays
all his vertices to the 3-cycle, then Proponent must play all of the vertices of
Ex(R) [in B] to the 3-cycle.

Proof. Again, let P; be the sub-partitioned-graph of ‘B induced by those exis-
tential vertices that are not protected. Recall that ‘fB is the subgraph of ‘B in-
duced by Un(RB) U PrEx(*B) U \8‘5]
PrEx(B)U |8‘31 |. Since universal vertices are played to the 3-cycle, it follows that

, as in the previous paragraph. So Ex(‘ZNB) is

all vertices of PrEx(3) must be played to the 3-cycle. Furthermore, if any vertex
of |8;ﬁ1 | [in B could be played to the tail of T}, , 5, then this ,c\:f)uld not be extended
to a homomorphism from 8y, to T}, ; — by definition of J3; — so this could not

be a winning strategy for Proponent on (8, 7% . ;). The result follows. a

+3

Lemma 87. Assume that ‘B has none of the edges of Lemma 85. Then Opponent

can win the game on (‘B,‘T’;HB) iff he can win it whilst never playing in the tail of

T3

Proof. Since edges of B from universal partitions only point toward vertices x in
higher existential partitions, if Opponent plays in the tail then he allows Proponent
to answer x with anything on the 3-cycle, whereas, if he plays on the 3-cycle he
limits Proponent to a single adjacent vertex of the 3-cycle. Itis clear that Opponent
gains nothing by playing in the tail. U

Theorem 88. The problems ALT-HOM (T}, 3) are tractable.

Proof. We already have the result for m = 0. For m > 0 we will solve ALT-HOM(T}, 5)
by taking any input 3 for that problem, and constructing a given 3. We will prove

P € ALT-HOM(T}, 5) iff B’ € ALT-HOM(TY), whereupon we may appeal to the
known tractability of ALT-HOM (T%), and our result will follow.

141

If P has any of the edges of Lemma 85 then we define B’ to be any set no-
instance of ALT-HOM(T%) (e.g. the transitive 4-tournament T with all vertices in
E>). If B has none of those edges then we set B’ to be ‘IS via the construction
already described. It remains for us to prove that this is correct. It is trivially
correct if ‘B has any of the edges of Lemma 85: we assume it does not.

(B € ALT-HOM(T} . 3) = P € ALT-HOM (7%).) For a winning strategy ©
for Proponent in the game on (3, 7% +3), we claim ¢ is also a winning strategy for
her in the game on (‘fi,‘J'g‘) This follows immediately from Lemma 86.

(B € ALT-HoM (75) = B € ALt-Hom(T% 3).) From a winning strategy
¢ for Proponent in the game on (%,‘J’“) we construct a winning strategy ¢’ in
the game on (B, 7T}, , ;) where Opponent only plays in the 3-cycle. In that game
on (B, T, . 5), when Opponent plays on the 3-cycle, then Proponent answers the
vertices in Ex(3) according to o, and then maps Ex(B — P) to the tail of Tri3e
The result follows from Lemma 87. (|

The tournaments T3,

These tournaments are analogous to the tournaments J“ ., but are constructed

m+3°
by the repeated addition of a sink, rather than a source. It follows by a similar

argument that, for all m, ALT-HOM(T}, ;) is tractable.

The result

Theorem 89. If T is a tournament with at most one cycle then ALT-HOM(T) is

tractable.

Proof. It follows from standard results about tournaments (see [4]) that T is either
transitive or is J5 with a succession of sources and/or sinks added. If J has both a
source and a sink then we can reduce the problem to HOM(T), which is known to
be tractable [4]. If it has no sink, then it is one of the tournaments T}, 43 above. If

it has no source, then it is one of the tournaments T3, above. O

142

7.6.4 NP-complete tournament ALT-HOM problems.

Bang-Jenson, Hell, and MacGillavray proved that, for any n-tournament 7, that
has at least two distinct cycles, HOM(T),) is NP-complete [4].

Theorem 90. Let T be a tournament with more than one cycle and a source and

sink, then ALT-HOM(T) is NP-complete.

Proof. Follows from Proposition 84 , together with [4]. 0

7.6.5 Pspace-complete tournament ALT-HOM problems.

A 2-walk Tournament (2WT) is a tournament J in which, for all distinct i, j € T,
there is a directed 2-walk from x to y.

Theorem 91. For every 2WT T, ALT-HOM (7) is Pspace-complete.

Proof. Note that ||T|| > 2. Also, since 7 is a tournament, there can be no 2-
walk from any vertex x € 7 to itself. Using the directed 2-path from vertex i to
vertex j as indicator, we find that T is X,,7);. Pspace-completeness follows from
Theorem 73. (]

We conclude by proving that the class of 2WTs is infinite.

Definition. For m > 5, define the Tournament T} | thus:

o 72 |=10,....2m}

m

° E75m+1 =

- {(i,)):i,j €Zyns1 st. i+1=jmod2m+1}U
- {(i,)):i,j € Zoms1 st. i—2=jmod2m+ 1}U
- {(i,j):i,] € Zoyms1 st. i+3=jmod2m+1}U
- {(i,j):i,j € Zymy1 st. i+4=jmod2m+1}U
- {(i,)):4,j € Zoymy1 st. i+5=jmod2m+1}U

- {(i,j):i,] € Zoymy1 st. i+m=jmod2m+1}

143

Figure 7.11: The tournament ‘J'f 1~ The 2-jump dotted edges point anticlockwise;
all other edges point clockwise.

144

It may easily be verified that ’J’é’m 41 1s a tournament. Note that this is partly a
consequence of the odd number of vertices: if we had an even number of vertices
under a similar construction we would either have vertices not joined by an edge
or vertices joined by a double edge. Observe the aberration of the 2-jumps: if we
draw edges on a regular (2m + 1)-gon with the vertices enumerated clockwise,
then all edges point in a clockwise direction, except the 2-jumps which point
anticlockwise (see Figure 7.11.)

D

Lemma 92. For all distinct vertices i, j € Ty, ., there is a directed 2-walk from

itoj,ie. 7§m+1 isa2wWT.

Proof. We will prove that there is a directed 2-walk from vertex O to each of the
vertices 1,...,2m. We may then appeal to symmetry.

It will suffice to show that every number 1,...,2m is the sum (mod 2m + 1) of
exactly two elements of the set {1,—2,3,4,5,....m}. So: 1 =3-2;2=4-2;3=
5 — 2 (this is why m > 5), henceforth we may use the positive numbers {3,...,m}
for 6 = 3+ 3 through to 2m =m +m. a

145

Chapter 8

Conclusions and Further Work

8.1 Program Schemes

Most of our results for program schemes augmented with priority queue are far
from tight, and those that are tight are unsurprising. It is hard to see how a Turing
machine simulation might prove that NPSPQ" is contained in a space-bounded
(or time-bounded) complexity class. This is because the size of the potential mem-
ory of the priority queue in NPSPQ¥ seems to be unbounded. We give no better
upper bound to NPSPQ* than the class of recursively enumerable languages. For
better lower bounds for NPSPQ¥, our simulation method can go no further than
NPspace, since we rely on the fact that we can enumerate the tape squares through
a constant number of variables (which may encode only a polynomial quantity
of numbers). A similar problem arises in the case of a better lower bound for
APSS(1).

We suggest that an indirect method may be more likely to succeed, perhaps
like that used to prove P C NPSS(1) — via the path system problem — in [2].

8.2 Classes of Structure on which P = +£PS*[FO]

Grohe had proved in [23] that P = LFP[FO] on the class of 3-connected planar
graphs. Since triangulations are 3-connected planar graphs and it is known that P

= +PS[FO)] on the class of triangulations [42], it is natural to question whether P

146

= LFP[FO)] on the class of 3-connected planar graphs. Thus far, we have failed
to adapt Grohe’s method to settle this question.

8.3 Quantified Constraints on Graphs

The method used to prove the Pspace-completeness of ALT-HOM (), where H
is an odd catherine wheel, may be applied to prove Pspace-completeness for sim-
ilar templates. An obvious extension is for graphs that are constructed like odd
catherine wheels, but where any bipartite graph (not just a tree) may be appended
to each position on the odd cycle.

For quantified J{-colouring, we conjecture the following extension to Theo-

rem 71.

Conjecture 93. The class of antireflexive undirected graphs exhibits ALT-HOM-
trichotomy. Specifically:

e If X is bipartite, then ALT-HOM (H) is tractable.

e If I is not bipartite, and is not connected, then ALT-HOM(H) is NP-

complete.
e If H is not bipartite, and is connected, then ALT-HOM () is Pspace-complete.

In order to prove this, it would remain for us to prove that ALT-HOM(H)
is Pspace-complete, when H is antireflexive, undirected and connected, and has
more than one odd cycle. '

It is well-known that common cores characterise equivalent 3-pos-con j-FO-
theories (CSP/ HOM), i.e. two templates T, J” have the same core iff they agree
on all sentences of 3-pos-conj-FO. Similarly, common stiff-graphs-within char-
acterise equivalent FO\{=}-theories. We know of no such characterisation for
equivalence of pos-con j-FO-theories (QCSP/ ALT-HOM). It would be interest-
ing to isolate some characteristic on two templates that exactly specifies whether

they give rise to the same QCSP problem.

147

Bibliography

[1]

(2]

3]

[4]

[5]

[6]

[7]

(8]

ABITEBOUL, S., AND VIANU, V. Generic computation and its complexity.
In 32nd IEEE Symposium on FOCS (1991).

ARRATIA-QUESEDA, A., CHAUHAN, S., AND STEWART, 1. Hierarchies in
classes of program schemes. Journal of Logic and Computation 9:6 (1999),
915-957.

ASCHBACHER, M., AND GURALNICK, R. Some applications of the first
cohomology group. Journal of Algebra 90 (1984), 446—460.

BANG-JENSON, J., HELL, P., AND MAGILLIVRAY, G. The complexity of

colourings by semi-complete digraphs. SIAM Journal on Discrete Mathe-
matics 1:3 (1988).

BORNER, F., KROKHIN, A., BULATOV, A., AND JEAVONS, P. Quanti-
fied constraints and surjective polymorphisms. Tech. Rep. PRG-RR-02-11,
Oxford University, 2002.

BREWSTER, R., FEDER, T., HELL, P., HUANG, J., AND MACGILLIVRAY,
G. Near-unanimity functions and varieties of graphs. 2003.

BuLATOV, A. A dichotomy theorem for constraints on a three-element set.
In FOCS’02 (2002).

BULATOV, A., KROKHIN, A., AND JEAVONS, P. Constraint satisfaction
problems and finite algebras. In Proceedings 27th International Colloquium
on Automata, Languages and Programming, ICALP’00 (2000), vol. 1853 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 272-282.

148

[9]

[10]

(1]

[12]

[13]

(14]

[15]

(16]

[17]

[18]

[19]

CHANDRA, A., AND MERLIN, P. Optimal implementation of conjunctive
queries in relational databases. In 9th ACM Symposium on Theory of Com-
puting (1979), pp. 77-90.

CHEN, H. Collapsibility and consistency in quantified constraint satisfac-
tion. In Proceedings of the Nineteenth National Conference on Artificial
Intelligence (2004).

CHEN, H. The Computational Complexity of Quantified Constraint Satis-
faction. PhD thesis, Cornell University, August 2004.

CHEN, H. Existentially restricted quantified constraint satisfaction. Tech.
Rep. ¢s.CC/0506059, ACM Computing Research Repository, 2005.

CREIGNOU, N., AND HERMANN, M. Complexity of generalized satisfia-
bility counting problems. Information and Computation 125 (1996).

CREIGNOU, N., KHANNA, S., AND SUDAN, M. Complexity classifica-
tions of Boolean Constraint Satisfaction Problems. SIAM Monographs on
Discrete Mathematics and Applications 7. 2001.

DALMAU, V. Some dichotomy theorems on constant-free quantified boolean
formulas. Machine Learning 35:3 (1999).

EBBINGHAUS, H.-D., AND FLUM, J. Finite Model Theory. Perspective in
Mathematical Logic. Springer-Verlag, 1995.

FAGIN, R. Generalized first-order spectra and polynomial-time recognizable
sets. In Complexity and Computation: SIAM-AMS 7 (1974).

FEDER, T., AND KoLAITIS, P. Closures and dichotomies for quantified
constraints. To appear in SIAM J. Discrete Math.

FEDER, T., AND VARDI, M. Y. The computational structure of monotone
monadic SNP and constraint satisfaction: a study through datalog and group
theory. SIAM J. Comput. 28 (1999).

149

[20] GRADEL, E. Model checking games. Electronic Notes in Theoretical Com-
puter Science 67 (2002).

[21] GRADEL, E., AND McCoLM, G. Hierarchies in transitive closure logic,
stratified datalog and infinitary logic. Annals of pure and applied logic 77
(1996), 166—-199.

[22] GROHE, M. Existential least fixed-point logic and its relatives. Journal of
Logic and Computation 7 (1997).

[23] GROHE, M. Fixed-point logics on planar graphs. In Logic and Computer
Science: IEEE 13 (1998), pp. 6-15.

[24] GUREVICH, Y. Logic and the challenge of computer science. In Current

trends in Theoretical Computer Science (1988).

[25] HELL, P., AND NESETRIL, J. On the complexity of H-coloring. J. Combin.
Theory Ser. B 48 (1990).

[26] HELL, P., AND NESETRIL, J. Graphs and Homomorphisms. OUP, 2004.

[27] HESMAPANDRA, E. Dichotomy theorems for alternation-bounded quanti-
fied boolean formulas. Tech. Rep. ¢s.CC/0306134, ACM Computing Re-
search Repository, 2003.

[28] IMMERMAN, N. Relational queries computable in polynomial time. Infor-
mation and Control 68 (1986).

[29] IMMERMAN, N. Languages that capture complexity classes. SIAM Journal
of Computing 16:4 (1987).

[30] IMMERMAN, N. Nondeterministic space is closed under complementation.
SIAM Journal of Computing 17:5 (1988).

[31] IMMERMAN, N. Descriptive Complexity. Graduate Texts in Computer Sci-
ence. Springer, 1998.

150

(32]

(33]

(34]

[35]

(36]

[37]
(38]

[39]

[40]

[41]

[42]

[43]

JEAVONS, P., COHEN, D., AND GYSSENS, M. A unifying framework for
tractable constraints. In Proceedings st International Conference on Con-
straint Programming, CP’95 (1995), vol. 976 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 276-291.

JEAVONS, P., COHEN, D., AND GYSSENS, M. A test for tractability. In Pro-
ceedings 2nd International Conference on Constraint Programming—CP’96
(Boston, August 1996) (1996), vol. 1118 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, pp. 267-281.

KoLAITIS, P. G., AND VARDI, M. Y. A game-theoretic approach to con-
straint satisfaction. In AAAI-2000/IAAI-2000 Proceedings (2000).

LADNER, R. E. On the structure of polynomial time reducibility. J. ACM
22 (1975), 155-171.

OTTO, M. Bounded Variable Logics and Counting. Lecture Notes in Logic
9. Springer-Verlag, 1997.

PAPADIMITRIOU, C. Computational Complexity. Addison-Wesley, 1994.
SCHAEFER, T. The complexity of satisfiability problems. In STOC (1978).

STEINBERG, R. Generators for simple groups. Canad. J. Math. 14 (1962),
277-283.

STEWART, 1. Logical description of monotone NP problems. Journal of
Logic and Computation 4 (1994), 337-357.

STEWART, I. Program schemes, arrays, lindstrom quantifiers and zero-one
laws. Theoretical Computer Science 275 (2002), 283-310.

STEWART, 1. Using program schemes to logically capture polynomial-time
on certain classes of structures. LMS Journal of Computation and Mathe-
matics 6 (2003), 40-67.

STOCKMEYER, L. The polynomial-time hierarchy. Theoretical Computer
Science 3 (1977).

151

