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Abstract

We study a class of non-deterministic program schemes with while loops: 
firstly, augmented with a priority queue for memory; secondly, augmented with 
universal quantification; and, thirdly, augmented with universal quantification and 
a stack for memory. We try to relate these respective classes of program schemes 
to well-known complexity classes and logics.

We study classes of structure on which path system logic coincides with poly­
nomial time P.

We examine the complexity of generalisations of non-uniform boolean con­
straint satisfaction problems, where the inputs may have a bounded number of 
quantifier alternations (as opposed to the purely existential quantification of the 
CSP). We prove, for all bounded-alternation prefixes that have some universal 
quantifiers to the outside of some existential quantifiers (i.e. and above), that 
this generalisation of boolean CSP respects the same dichotomy as that for the 
non-uniform boolean quantified constraint satisfaction problem.

We study the non-uniform QCSP, especially on digraghs, through a combi­
natorial analog -  the alternating-homomorphism problem -  that sits in relation 
to the QCSP exactly as the homomorphism problem sits with the CSP. We es­
tablish a trichotomy theorem for the non-uniform QCSP when the template is 
restricted to antireflexive, undirected graphs with at most one cycle. Specifi­
cally, such templates give rise to QCSPs that are either tractable, NP-complete 
or Pspace-complete.

We study closure properties on templates that respect QCSP hardness or QCSP 
equality. Our investigation leads us to examine the properties of first-order logic 
when deprived of the equality relation.

We study the non-uniform QCSP on tournament templates, deriving sufficient 
conditions for tractability, NP-completeness and Pspace-completeness. In partic­
ular, we prove that those tournament templates that give rise to tractable CSP also 
give rise to tractable QCSP.
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Chapter 1 

Introduction



Structural Complexity is that part of the study of Computational Complexity 
that concerns itself with the intrinsic computational difficulty of decidable prob­
lems. Perhaps its main thrust is an attempt to classify problems into complexity 
classes by various upper and lower bounds on their computational complexity. 
Since its inception, logic has impinged on Computational Complexity in a variety 
of ways: in the first instance, many of the problems that are amongst the hardest 
of many natural complexity classes have been problems in logic. These problems, 
known as complete for the given complexity class, include the following prob­
lems in the Propositional Calculus: Circuit Value, complete for P; Satisfiability, 
complete for NP; and Quantified Satisfiablity, complete for Pspace.

Another intersection between logic and complexity is in the field of Descrip­
tive Complexity -  in which finding an algorithm for a computational problem is 
seen as a question of expression -  where complexity classes translate to classes 
of expressions, i.e. logics. Indeed, the complexity classes, defined through Turing 
Machines, may be seen as logics already: for example, if P is defined as those 
Turing Machines T, such that there exists k , such that T accepts an input x  of 
size n iff T accepts x within time nk, then this class of Turing Machines is a logic 
of sorts. However, it is a logic not of a form that lends itself to study by what 
are usually considered the tools of logic: it has a cumbersome syntax and is in­
terpreted over strings and not first-order structures. We may remedy the second 
of theses problems by considering certain standard binary string encodings of a 
structure. Since, for us, a decision problem is always a subset of finite structures, 
we consider a problem to be in P iff the language of all binary encodings of these 
structures is in P, as defined previously. In this way, we can talk of conventional 
logics capturing Turing complexity classes: a logic captures a complexity class iff 
the set of problems expressible in each coincides. It is in the translation between 
computational problems over strings and expression problems over finite struc­
tures that Descriptive Complexity is concerned. As such, it is very much a part of 
Finite Model Theory.

Perhaps the greatest hope for Descriptive Complexity was that known methods 
for separating logics might be brought to bear on complexity classes; that hard 
questions on the (non)-equivalence of complexity classes might become easier 
questions on the separation of logics. Among the major results of Descriptive
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Complexity are the proven equivalence of: existential second-order logic 3SO 
and NP (Fagin, 1974 [17]); least fixed-point logic LFP (with successor) and P 
(Immerman/Vardi 1982 [28, 44]); partial fixed point logic PFP (with successor) 
and Pspace (Vardi 1982 [44]); and transitive closure logic TC (with successor) 
and NL (Immerman 1983/1988 [28, 30]). Despite these results, few advances 
have been made in the use of techniques such as Ehrenfeucht-Fraisse games to 
separate these logics, and, consequently, their complexity classes1. Partly, this can 
be explained by the somewhat artificial inclusion of the successor function into 
many of these logics (not 3SO), since Ehrenfeucht-Fraisse games are notoriously 
hard to win on structures with successor. However, the equivalence of LFP and 
PFP, both with successor, is known to be consequent on their equivalence without 
successor [1 ], yet still a proof resists that P ^  Pspace. One ray of sunshine in this 
field was Immerman’s proof, through Transitive Closure logic, that NL =co-NL 
[30].

The syntax of a logic is exactly its set of well-formed formulae; a logic is said 
to have recursive syntax iff its syntax is decidable. The inclusion of successor 
generally precludes the possibility that the resultant logic has recursive (or even 
recursively enumerable) syntax [24], a property which is certainly desirable, and 
is thought by some authors (e.g. Gurevich [24], Otto [36]) to be necessary, if the 
name ‘logic’ is to be bestowed.

In the first part of this thesis we study various classes of non-deterministic 
Program Schemes with while loops (based on those in [2, 41]), which are logics 
in Gurevich’s sense, but which appear well-suited for computation. We attempt 
to relate these logics to standard complexity classes, preferably in the absence of 
that built-in successor.

Chapter 2 introduces these program schemes, and discusses some known re­
sults involving them [2]. The situation where a stack is available for memory [2] 
is considered.

In Chapter 3, we introduce some new work investigating the addition of a 
priority queue as a memory device available to these program schemes. We prove 
that the priority queue is sufficiently powerful to simulate a successor function:

in d e e d , it is not known that N L,P,NP and P space are not equivalent.
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thus we define two ‘logics’ with recursive syntax that subsume N Pspace2 and NP, 
respectively. These logics actually have identical syntax, and differ only in their 
semantics.

In Chapter 4, we introduce some new work examining the explicit introduction 
of universal quantification to our program schemes (since they are non-deterministic, 
existential quantification is already insinuated), both in the absence of any mem­
ory and with the benefit of a stack. With no added memory, we tie the ensuing 
logic to least fixed-point logic LFP. With the addition of a stack we, once again, 
are able to simulate a successor: this enhanced logic subsumes N Pspace.

Chapter 5 uses some known results utilising program schemes [42] to study 
various classes of structure on which the infinite hierarchy which constitutes Path 
System logic collapses and captures P. We give a brief overview of known results 
and introduce some new ones.

A further confluence of logic and complexity, and, indeed, combinatorics, is 
in the study of the Constraint Satisfaction Problem, CSP, and its generalisations.
In terms of complexity classification, much has been made of the conjectured di­
chotomy of the non-uniform CSP on finite templates [1]: it seems as though, 
for any T, CSP(T) is either tractable or NP-complete. This is remarkable given 
the breadth of CSP problems, together with Ladner’s result [35] that such a di­
chotomy will not hold over all NP (unless we actually have P =  NP). The non- 
uniform CSPs, and their generalisations, lend themselves to dual interpretations: 
one in which they are model-checking problems over restricted logics; and one in 
which they are combinatorial problems between two structures. In particular, the 
non-uniform CSP may be seen as both a model-checking problem in existential 
positive conjunctive first-order logic and as the homomorphism problem. This 
duality is perhaps at its most obvious on graphs, and it is on these that we dwell 
most.

Chapter 6  concerns itself with the dichotomy of alternation-bounded general­
isations of the non-uniform CSP on boolean templates. (These results have been 
obtained independently in [27] and, to a lesser extent, in [18].) We prove, for all 
bounded-alternation prefixes that have some universal quantifiers to the outside of

2We remind the reader that N Pspace and Pspace coincide {e.g. [37]). Even so, we use both 
classes in this thesis, depending on w hich appears the more natural in a given situation.



some existential quantifiers (i.e. II2 and above), that our generalisation of boolean 
CSP respects the same dichotomy as that for boolean quantified constraint satis­
faction problems.

Chapter 7 examines the non-uniform Quantified Constraint Satisfaction Prob­
lem, QCSP, on graph templates. We study the QCSP through a combinatorial 
analog, the so-called Alternating-Homomorphism problem A lt- H o m . We study 
a variety of graph templates that give rise to tractable, NP-complete or Pspace- 
complete QCSPs, culminating in a complete classification to those classes -  a tri­
chotomy theorem -  when the template ranges over undirected antireflexive graphs 
with at most one cycle.

We consider two problems to be equal exactly when the respective subsets 
of structures that they define coincide. It is well-known that the two problems 
CSP(T) and CSP(‘T/) are equal iff the templates 7  and 7' are homomorphically 
equivalent (which is exactly the condition that they have isomorphic cores). We 
study a similar condition on templates 7 ,7 '  that is sufficient to guarantee the 
equality of QCSP(T) and QCSP(T'). However, we find that this condition is 
not necessary, and that is has a closer relationship with first-order logic without 
equality than the logic we associate with QCSP (positive-conjunctive first-order 
logic).

Finally, we study the non-uniform QCSP on tournament templates, deriving 
sufficient conditions for tractability, NP-completeness and Pspace-completeness. 
In particular, we prove that those tournament templates that give rise to tractable 
CSP also give rise to tractable QCSP.



Chapter 2 

Program Schemes
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2.1 Structures and Logic

We will only consider finite relational structures, of at least two elements, over a 
given signature o. We denote this set STRUC(o). If A  is a structure, then \A\ is 
the universe, or domain, of the structure, and | \A\ | is the cardinality of that domain. 
If R is a relation symbol of a  then /^  is the interpretation of R over A.  When the 
structure A  is clear, we may abuse notation by dropping it as the superscript, thus 
identifying R with both the relation symbol and the relation actual.

We will also consider the situation where a successor is available to us, built-in 
to the signature o. We consider a successor to be a binary relation succ, whose 
realisation as a graph is a directed path, together with two constants min and max, 
whose interpretations are the first and last vertices of that path. This is equivalent 
to considering the restricted class of structures over ol±J {succ, min, max} in which 
the interpretations of succ, min and max satisfy the properties given. Throughout, 
when we consider the restriction to structures that have a successor relation, we 
add the subscript s to our logic or class, for example FO^. When we consider 
logics in which we have a successor, we will insist on a further semantic restriction 
on their formulae, namely, that a formula may only be in that logic if its truth is 
independent of the actual successor function used. For example, consider the 
formula E(min,max), ostensibly of FO s, interpreted on the directed 3-path -  the 
graph with vertices {0,1,2} and edge set {(0,1), (1,2)}. The truth of this formula 
is not independent of the ordering we choose on the graph -  if the successor is 
{(0,2), (2,1)}, it is true; if the successor is {(0,1), (1,2)}, it is false. We conclude 
that E(min,max) is not a formula of F 0 5. Given such a formula, ostensibly of 
F 0 5, establishing whether it has this property of order-independence is, in general, 
undecidable [24].

2.1.1 Graphs and Transitive Closure

A graph, or digraph, S is a structure over signature 0 2  = (E), where E is a binary 
relation symbol. There is a (directed) path in S from vertex x to vertex y iff 
either: x =  y, E(x,y), or there is a sequence of vertices z\, ■ ■ ■ ,zr such that E(x,z\), 
E(zi,Zi+\), for 1 < i < r, and E(zr,y)- This is equivalent to the inductive definition
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that there is a path from jc to y  iff:

•  x  =  y, or

• there is a z such that E  (j c , z), and there is a path from z to y.

Definition. Define TC to be the global binary relation on graphs expressing reach­
ability. Specifically:

TC =  { {(jc,y) : there is a path in S from j c  to y } : S E STRUC(o2)}

Let \}/ be some formula whose only free variables are among those of the j-  
tuples x  and y. A formula TC [AJc,y\|/] (w, v) is interpreted as true on a structure A  in 
the case that, in the graph of | |A| p vertices with edge set specified by \|/(3c,y), there 
is a path from vertex u to vertex v. (It is usual to allow additional free variables, i.e. 
other than x  and y, in \|/. However, this does not increase our expressive power, 
since i such variables can be moved so they only appear free in the end-point 
( j  + i)-tuples u and v of some new Transitive Closure formula over a graph of 
size ||A ||7+J (see [16]). We forbid such additional free variables for the sake of a 
simpler exposition.)

In the fashion described, the global relation TC has given us a uniform se­
quence of vectorised quantifiers of the same name. This sequence is derived from 
the arity of x  and y. The first quantifier in the sequence corresponds to the arity of 
x  =  (*1) andy =  (yi) being 1, and binds the 2 variables, jci andyi. The ith quanti­
fier in this sequence corresponds to the arity of x  =  (jci , . . . ,  jc ,-) and y =  (yi, . . .  ,y;) 
being i, and binds the 2i variables jci , . . . ,  jc,• and y i , . . .  ,y,-. This sequence of quan­
tifiers is uniform in semantics and syntax, and is an example of a sequence of 
Lindstrom quantifiers (see, e.g., [16]).

Definition. Let 3c, y be y-tuples of variables. Let / ,  j"  < j  and u\ , . . . ,  u y , vi , . . . ,  V f  
be variables, and uy+1 , . . . ,  uj, vy«+i, . . . ,  vj be variables or constant symbols. De­
fine:

•  i T C 1 [FO] to be the set of formulae of the form

3u 1 ... uj>3v 1 ... vj" TCpuc,y\{/](w, v)

12



where \|/ is quantifier-free, and

• ± T C m+1 [FO] to be the set of formulae of the form

3 u \ ... U f3 v \ . . . V f  TC[Xx,y\}/](w, v)

where \|t is in the closure under boolean operators of formulae in ± T C m [FO].

In the presence of two distinct constants, any formula in TCm+1 [FO] is equiva­
lent to some formula of the form TC [Ajc,y\|/] (m, v ) ,  with \|/ E TCm[FO], i.e. without 
the need for existential quantification outside the TC operator [21]. However, we 
do not wish to restrict ourselves only to structures with such constants. We define 

±TC*[FO] to be U;ew±T C i FO]-
Recall that the subscript 5 denotes a built-in successor. The following gives us 

an idea as to the power of Transitive Closure logic.

Proposition 1 (Immerman 1983/1988, [29, 30]). TC][FO] =  TCJfFO] =  NL.

Remark. It may be noticed that we are rather liberal with notation such as TC, 
allowing it to denote a global relation, an operator and a logic. Hopefully, the 
meaning should be clear by context.

2.1.2 Alternating graphs and Alternating Reachability

An alternating graph A is a structure over the signature 02 1  =  (E,U), where the 
relation symbols E  and U are binary and unary, respectively. In an alternating 
graph the unary relation U partitions the vertices into those that are existential 
(-if/), and those that are universal (U). There is an alternating path in an alternat­
ing graph A ,  from vertex x to vertex y, iff:

• x =  y, or

• x  is existential, and there is a z such that E(x,z), and there is an alternating 
path from z to y, or

• x is universal, and, for all z such that E(x,z), there is an alternating path 
from z to y.

13



Definition. Define AR to be the global binary relation on graphs expressing al­
ternating reachability. Specifically:

AR =  {{(*,y): there is an alternating path in A  from x  to y} : A  G STRUC(o2i)}

Let \|/ be some formula whose only free variables are among those of x  and 
y. A  formula AR[A^,y\j/](w, v) is interpreted as true in the case that, in the graph 
specified by \|f(x,y), there is an alternating path from u to v. (Again, it is customary 
to permit additional free variables in \|/. Again, it is unnecessary for the same 
reason as given for TC.)

Definition. Let x,y, be y'-tuples of variables. Let j 1 J "  < j  and u \ , . . . ,  uy, v\ , . . . ,  vy> 
be variables, and uy+\ , . . . ,  uj, vy>+\ , . . . ,  vj be variables or constant symbols. De­
fine:

• i A R 1 [FO] to be the set of formulae of the form:

3u \ .. .Uf3v i .. .vj" AR[Ajc,y\|/](w, v)

where \|/ is quantifier-free, and

• ±A R W+1 [FO] to be the set of formulae of the form

3u \. .  .Uji 3 v i . ..vj" AR[Xjc,y\|/](«, v)

where \(/ is in the closure under boolean operators of formulae in ±  ARm [FO].

We define ±AR*[FO] to be U/e(0 ±AR*[FO]. In the presence of two distinct 
constants, ± A R m+1 [FO] collapses to the class of formulae of the form 
AR[Ajc,y\|/](w, v) for \\f G ±A R m[FO] (proof similar to that for TC).

Recall that the subscript s denotes a built-in successor. The following gives us 
an idea as to the power of Alternating Reachability logic.

Proposition 2 (Immerman 1983, [29]). AR][FO] =  AR*[FO] =  P.

14



2.1.3 Hypergraphs and Path Systems

We consider a hypergraph1 IK to be a structure over the signature 0 3  =  (R), where 
R is a ternary relation symbol. A vertex y is said to be R-accessible (or just acces­
sible) from a vertex x  iff:

• x =  y, or

• there exist z \ ,Z2» both accessible from x, such that /?(zi ,Z2 ,y)-

A hypergraph IK is said to be commutative exactly when, for all we have 
R(x,y,z) iff tf(y,x,z). It is said to be deterministic iff, for all x,y, there exists at 
most one z such that R(x,y,z).

Definition. Define PS to be the global binary relation on commutative hyper­
graphs expressing accessibility. Specifically:

PS =  {{(x ,y): y is accessible in IK, from x  } : IK is a commutatative hypergraph}

Let \|/ be some formula whose only free variables are among those of x, y 
and z. A formula PS[Xx,y,z\j/](w, v) is interpreted as true in the case that, in the 
commutative hypergraph specified by \|/(3c,y,z), v is accessible from u. (Again, it 
is customary to permit additional free variables in \|/. Again, it is unnecessary for 
the same reason as given for TC.)

Definition. Letx,y, be y-tuples of variables. Let j  and u \ , . . . ,  ujf, v i , . . . ,  Vj»
be variables, and uy+\ , . . . ,  uj,Vf/+1 , . . . ,  vj be variables or constant symbols. De­
fine:

•  iP S 'lF O ] to be the set of formulae of the form

3m 1 .. .uj'3v \ .. .Vj" PS[XJ,y,z\j/](w,v)

where \j/ is quantifier-free, and

'What w e refer to as a hypergraph w ould perhaps be better described as a directed  3-uniform  
hypergraph,  taking into consideration more standard definitions.
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•  ± P S W+1 [FO] to be the set of formulae of the form

3tii • . . U j f 3 v i . . . Vj "  PS[A*,y,z\|/](w,v)

where \|/ is in the closure under boolean operators of formulae in ± P S m [FO].

We define ±PS*[FO] to be Uje(0 ±PS'[FO]. In the presence of two distinct 
constants, ± P S m+1 [FO] collapses to the class of formulae of the form 
PS [Ajc,y\j/](w, v) for y  e  ± P S m[FO] (proof similar to that for TC).

Recall that the subscript s denotes a built-in successor. The following gives us 
an idea as to the power of Path System logic.

Proposition 3 ([40]). PS][FO] =  PS,*[FO] =  P.

2.1.4 Least Fixed Point logic

Let y(P,x)  be a first-order formula with free y-ary relation symbol P whose only 
free variables are those of the y-tuple x. Then, over a structure A,  \|/ may be seen 
as a function f a  : y(\A \j)  —> y(\A \i)  defined by:

Ia W  = {x : A  |=\j/(/?,x)}

If \j/ does not contain negated instances of the free relation symbol P (i.e. is P- 
positive), then the function f a  is monotone, satisfying R C  fa(R).  Given a P- 
positive \j/, we define inductively: \|/^ — <]), and thereafter = fa(\\f^). Since 
/  is monotone and A  is finite, we are guaranteed that this sequence of relations 
must reach a fixed-point K  where \j/J =  \|ilA (for all i > K). This relation is denoted

Definition. Given a formula \|/(P,3c) with free y-ary relation symbol P  and includ­
ing free variables of the y-tuple x, and another y-tuple of variables or constants 
u, we may apply the Least Fixed Point operator LFP to generate the formula 
LFP[APx\|/](n). This formula’s free variables are those free in \|/ that are not in x, 
and those of u. The formula is interpreted as true on a structure A  (under some 
valuation of its free variables) exactly when u £ \j/J.
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Least Fixed Point logic LFP[FO] is the closure of FO under the Least Fixed 
Point operator.

Remark. It may be noted that we have allowed free variables in \|/ that are not 
among the variables of x, in contrast with the situation with the Lindstrom logics 
of the previous sections. It seems particularly unnatural to specify LFP with such 
free variables forbidden, moreover, we will make use of them in later chapters. It 
suffices to say that these additional variables could be forbidden by being forced 
into the outer tuple u, as described for Transitive Closure logic.

2.1.5 Stratified Fixed Point logic

Definition. Let R be a free y-ary relation, and x be a y-tuple of variables. Let f  < j  
and u\,...,Uj< be variables, and wy/+1, . . . be variables or constant symbols. 
Define:

•  E3LFP1 [FO] to be the set of formulae of the form 3 u \ .. .UfLF'P[kRx\\f](u) 
where \j/ is first-order with no universal quantifiers and with negation only 
of atomic formulae, and

• 3LFPm+1 [FO] to be the set of formulae of the form 3u\ ... uy LFP [AiCrt|f] (u) 
where \|/ is first-order with no universal quantifiers but may contain positive 
or negative occurrences of formulae of 3LFPm[FO] that do not contain R.

We naturally define 3LFP* [FO] to be U/ew 3LFP* [FO]. In the presence of 
two distinct constants, 3LFPm+1 [FO] collapses to the class of formulae of the 
form 3LFP[?JCc\j/](n, v) for y  € 3LFPm[FO] [22].

We note that E3LFP* [FO] is often known as Stratified Fixed Point logic SFP. 
The following gives us an idea as to the power of 3LFP.

Lemma 4 (Grohe 1997, [22]). ± P S m[FO] =  3LFPw[FO].

2.2 Program Schemes

We will examine several classes of non-deterministic program schemes with while 
loops, originally seen in [2]. These program schemes were born of an attempt to
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imbue logic with the tools of computation, whilst keeping that logic well-behaved, 
e.g., with recursive syntax. Unlike Turing Machines, which compute on strings 
encoding some structure, these schemes compute on a structure, in a similar man­
ner to a formula of logic being interpreted on that structure. However, the syntax 
of computation is often more easily followed, and this may have advantages in 
simplifying proofs. For example, the recursion of while loops may be considered 
more natural than that of fixed point logics. Such advantages are largely cosmetic, 
but, in studying objects of computation, forms of memory can be added that would 
be most bizarre added directly to conventional logic. In doing this, new logics can 
be defined without obvious parallel in conventional logic. However, that which 
is not obvious is not necessarily untrue, and several results are known tying these 
new logics with their better known, conventional counterparts.

2.2.1 Introducing NPS

Definition (Syntax of NPS [2]). Each program scheme p G NPS(l) ,  over signa­
ture o, involves a set of input-output variables V/0, a set of free variables Vf,  and a 
finite sequence of |p| instructions, where each instruction, other than the first and 
last, is of one of the following forms:

•  an assignment instruction of the form ‘v :=  q' , where v G and q G V/0 U 
Vf  U {c : c is a constant symbol of o}, or

•  a guess instruction of the form ‘G u e s s  v’ , where v G V*0, or

• while loops of the form ‘W h i l e  t Do x O d ’ , where t is quantifier-free 
FO(o) with free variables among U Vf ,  and where x is a sequence of 
instructions of one of the forms listed.

The first instruction is Input(V/0), and the last O utput(V /0)- All instructions 
begin a new line, and all, except while loops, take up only one line. While loops 
take up 1 +  |x| lines, where |x| is the number of lines in x, in the obvious way. 
We consider sub-routines x to be sequences of instructions of the types in the list, 
i.e. program schemes without an input instruction at the beginning and an output 
instruction at the end.
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The program schemes p G N P S ( m  + 1 ) are defined exactly as the schemes of 
N P S (1), except that schemes p' G N P S (m') (for m' < m) may take the place of ex- 
tensional relations in the tests in while loops. We define N P S  to be U / e « N P S  (/).

In terms of semantics, the assignment instructions and while loops behave 
in the obvious way, and the guess instruction non-deterministically assigns an 
element of the universe to the variable in question. At the start of computation, the 
input-output variables are G uessed , as just specified. A computation is deemed 
accepting if, and only if, it reaches the (final) O u tp u t line. It follows that non­
accepting computations are forever trapped in while loops. Suppose a program 
scheme p G NPS (m) involves precisely i free variables z i , . . .  ,z / .  Then, computing 
on a structure A ,  we write (A ,a \ | =  p, or A  |= p(«i , . . . ,«/),  iff P makes it 
to the output instruction when computing on A  under the free-variable assignment 

( z i , . . . , z / )  : =  G |A \ l .

Note that free variables may not be ‘used’ during computation, in that they can 
not have values assigned to them. However, input-output variables of schemes in 
NPS (m) may appear as free variables in schemes of strictly lower strata that ap­
pear in tests in their while loops. In this manner, program schemes of NPS(ra) 
are evaluated ‘top-down’, entering sub-routines to evaluate any required tests in­
volving such schemes of NPS(m') (where m' < m).

Definition ([2]). Let the lines on z denote an /-tuple, and the line on v denote a 
y-tuple. Suppose the program scheme p G NPS( l )  involves / free variables z and 
j  input-output variables v. Then a configuration of p, computing on a structure A ,  
is an (/ +  1 +  y')-tuple (z,/, v) giving the values of the free variables, the number 
of the line just executed, and the values of the input-output variables.

Each such program scheme p G NPS(l ) ,  computing over a structure A  of size 
n, gives rise to a graph:

•  whose vertices are the |p|.n^,+^  possible configurations,

• and in which there is an edge (c, d )  iff p, executing a single instruction, can 
move from configuration c to configuration d .

It may be asking too much to specify this graph in quantifier-free FO, especially 
since A  may not have |p| distinct constants to play the part of the line numbers. We
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will actually specify a variant of it, namely the graph with nl+1p I+ -7 vertices, 
where the |p|-sub-tuple w =  (wi , .. - 5W|P|) represents a certain line according to 
the following scheme:

• if w\ — W2 then w represents line 1 ,

•  if wi ^  W2 but u>2 =  W3 then w represents line 2 ,

•  if w\ /  W2 , W2 7̂  W3 but W3 =  W4 then w represents line 3,

•

•  if w\ 7  ̂ W2 , . . . ,  W|p| 2 7̂  wjpi-i but W|pj_i =  W|p| then w represents line

|p| -  1 , and

• if w\ 7  ̂W2 , .. •, W|p|_i 7̂  W|p| then vv represents line |p|.

Let the the lines on z denote an /-tuple, the line on u,v denote 7 -tuples, the hat 
on w denote a |p|-tuple, and the line on x ,y  denote ( / +  |p| +  7 )-tuples.

Proposition 5 ([2]). Suppose p £ NPS( l )  is as in the definition, and that \|t(x,y) 
is a quantifier-free first order formula expressing the edge relation of The 
following are equivalent:

•  A \=  p(!)

A \=  3wi, . . . ,W|p| wi =  w2 A
3w'i, . . . ,wjp| w[ /  w'2 A. . .  Awjp|_j + w(p| A

3 m, v T C [ A ^ , y \ | / ] ( ( z , w i , . . . , W | p| ,M),(! ,vv/1, . . . , W | p| , v ) )

Proof. Follows immediately from the definition of together with the existen­
tial semantics of NPS(l) .  Note that the bizarre constraints on the ws are simply 
our means of encoding the first and last lines. As can be seen, we are not too inter­
ested in what the input-output variables are at the start and end of the computation, 
i.e. u and v, respectively. □
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Recall that the class NPS,(m) is as NPS(m), but with a built-in successor 
available. The following gives us an idea as to the power of NPS.

Theorem 6  ([2]). F orm >  1, TCm[FO] =  NPS(ra), and, consequently, TC*[FO] =  
NPS. Furthermore, fo r  m >  I, TC™[FO] =  NPS,(m) =  TC^jFO] =  NPS, =  NL.

Proof The first part follows from the fact that there is a program scheme pxc £ 
NPS( l )  that expresses the relation TC, combined with the previous proposition, 
by induction. The second part follows from the N L-completeness of the Transitive 
Closure problem. □

Remark. The class NPS, appears to be devoid of any memory, and it may seem 
surprising, in that light, that NPS, =  NL. However, NPS has memory, in the form 
of the constant number of input-output variables. Moreover, this constant number 
of variables may collectively attain n)Vi°\ values, computing on a structure A  of 
size n. This is of similar order to the number of different tape configurations on an 
NL-Turing Machine, which is logw.|Q |.|Z|log/l, where Q is the set of states and X 
the alphabet. The NL-Turing Machine has constant alphabet and logarithmically- 
bounded number of tape squares, while the class NPS, has linearly-sized alphabet 
and constant number of memory-variables.

2.2.2 Shorthands

We can build other useful instructions from those that we have, possibly requiring 
the introduction of additional new variables. Specifically:

• If p , q are y'-tuples of variables or constants, then consider p =  q to be short­
hand for p\ =  q\ A ... A pj = qj.

•  If v i s a  ./-tuple of variables and q is a y-tuple of variables or constants, then 
consider v q to be shorthand for vi : — q\ ; ... ; vj := qj.

•  Consider L o o p  F o r e v e r  to be shorthand for:

W h i l e  v \ =  v\ D o  O d .

•  Consider If t T h e n  D o  t  F i to be shorthand for:
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G u e s s  v i , v 2

W h i l e  v\  =  v2 Do L o o p  F o r e v e r  O d  

W h i l e  vi ^  v2 A t Do t  ; vi : =  v2 O d

Of course, it may come to pass that a computation entering an If  statement gets 
trapped in an endless loop. This may seem undesirable, but it does not affect us: 
owing to our existential semantics, we only require that some path leads through 
the conditional.

•  Consider v ' : /  v (where v, v' are distinct variables) to be shorthand for:

G u e s s  v'

I f  v =  v' T h e n  D o  L o o p  F o r e v e r  F i

Sometimes we will want the computation to evaluate the disjunction of a fixed col­
lection of possibilities. It may not be possible to write these directly in quantifier-
free tests in W h i l e  loops. In the following, the labels wordl, . . . ,  wordy act as
local dummy ‘variables’.

•  Let wordl, . . . ,  wordy be words representing certain possibilities. Con­
sider:

E i t h e r  ( w o r d l , . . . ,  w ord y)

If  w o rd l  T h e n  D o  Ti F i

I f  word j  T h e n  D o  Ty Fi

to be shorthand for:

G u e s s  v i , . . . , v y

I f  vi =  v2 T h e n  D o  t j  Fi

I f  vi / v 2 A v 2 =  v3 T h e n  D o  t 2 Fi

I f  vi 7̂  v2 A . . .  A Vj- 2  7̂  vy_ i A vy_i =  Vj T h e n  D o  iy _ i  Fi 

I f  vi 7  ̂v2 A . . .  A vy_ i 7̂  vj  T h e n  D o  Ty Fi
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The E i t h e r  construction allows us to choose between any finite number of 
possibilities. Note that, in the E i t h e r  shorthand, we have no need for an ‘Else’
construction, since all possibilities for the antecedent are covered. In all use of
shorthands we will require that the variables we introduce in the longhand do not 
appear elsewhere in the program schemes involving those shorthands, lest we lose 
their information. This may ultimately require the introduction of new variables 
to our program schemes. We only need a fixed number of new variables for this, 
and we will usually be sloppy, omitting these variables when writing out program 
schemes involving shorthand.

2.2.3 Shorthands on successor structures

In the presence of a successor relation succ, we will use the following shorthands:

•  v' : =  cyc .succ{y)  to be shorthand for:

IF v =  m ax  THEN Do v' -  m in  O d  

I f  v /  m ax  THEN Do 
G u e s s  v'

I f  v' ^  succ(v)  T h e n  D o  L o o p  F o r e v e r  Fi Fi

In contrast to succ, which is a partial function, eye .su cc  is a total function. More­
over, it is a bijection.

•  v' : =  inv.cyc .succ(v)  to be shorthand for:

G u e s s  V
I f  v /  cyc .su cc(v’) T h e n  D o  L o o p  F o r e v e r  Fi

•  For variable y-tuples v, v ', consider v' : =  cyc .su cc(v )  to be shorthand for:

IF v j ±  m ax  THEN Do 

( v ' i : = ( v i , . . . , Vy_ 1)

v'j :=  cyc .su cc(v j)  Fi
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If  (vj = max) A (vj-\ ^  max) THEN Do 
(v i,...,v '-_ 2) := (v i,.. . ,v ;-_2) 
v'j_x :=  cyc.succ(vj-\) 
v'j :=  mm Fi

IF (v/ =  max) A ... A (vi =  max) Then Do 
(v^, . . . ,  v'j) :=  (mm ,. . . , mm) Fi

•  For variable y-tuples v, v', consider v' :=  inv.cyc.succ(v) to be shorthand for:

If  vj ^  mm T hen Do 
(v^, . . . , v'-_!) := 
v'j :=  inv.cyc.succiyj) Fi

If (vj = min) A (v^-i 7  ̂mm) T h en  Do 
(v i,...,v '-_ 2) := (v 1, . . . ,  Vj—2 )
Vy_j :=  mv.c};c.5wcc(vy_i) 
v'j max Fi

If (vj = min) A ... A (vi =  mm) T hen  Do 
(vj, . . . ,  v'j) :=  ( m a x , m a x )  Fi

2.2.4 Adding a stack: introducing NPSS

We can increase the power of our program schemes by introducing certain types 
of memory. In [2], the authors considered adding a stack.

Definition (Syntax of NPSS[2]). The syntax of N PSS(l) is as that of N P S (l), 
with the addition of two new instructions:

•  a push instruction ‘Push v’ , where

v G U Vf  U {c : c is a constant symbol of 0 } , and
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•  a pop instruction ‘v :=POP’ , where v E V/0.

Again, the program schemes of NPSS (m + 1) are those whose tests in while loops 
may include schemes from strictly lower strata as extensional relations.

For semantics, the push instruction should be viewed as pushing the value 
of the given variable (or constant) to the stack, and the pop instruction should 
be viewed as an assignment instruction removing the current top element of the 
stack. If the stack is empty, the pop instruction leaves its variable unchanged.

The following gives us an idea as to the power of NPSS.

Theorem 7 ([2]). Form > 1, PSw[FO] =  NPSS(m), andPS*[FO] =  NPSS. Fur­
thermore, PS™[FO] =  NPSS s{m) =  PS*[FO] =  NPSS, =  P.

2.3 TUring Machines

Turing Machines compute on strings and not structures. In order that we can con­
sider the Turing complexity of problems Q C STRUC(o), we will need to have a 
standard encoding of structures over a signature a . Let o  =  {R\ ,.. .R j ,c \ , . . . cy), 
where the arities of R \ , . . .  ,Rj are a \ , . . . , aj respectively.

Over an ordered structure A  E STRUC(a) of size n, we will code each /?,- 
by a string bin(Ri) over {0,1} of length na'. For a number 0 < r < na' — 1, let 
r be the a/-tuple that represents r in n-ary. Since A  is ordered, this r represents 
an a/-tuple rj[ over A .  Let the rth2 entry of bin(Ri) be a 1 if rX E and a 0 
otherwise. We code each a  by a string bin{ci) of length n, as if c, were a unary 
relation with one member. Finally, we consider bin(A) to be the concatenation 
bin(Ri).. .bin(Rj)bin(c\ ) .. .bin(cj’).

We consider Turing Machines to have a one-way infinite tape, finite state set Q 
and uniform alphabet X =  {zero,one,blank}. The read/write head is initially over 
square 1. Given a (non-deterministic) Turing Machine T and a string w E {0,1}*,

2This should really be r +  1, since otherwise w e would be considering the first entry o f  b in { %)  
to be indexed by the number zero. This is an occupational hazard o f variously considering the 
set Z„ to be { 1 , . . . , n}  or ( 0 , . . . . n — 1}.  We largely use the former for the chapters on program  
schem es, and the latter for the chapters on constraint satisfaction.
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we write T  j  w, iff T  enters the accept state, at some point in its computation, 
when it is given input w over squares 1 to |w| with all other squares blank.

We say that a (non-deterministic) Turing Machine T accepts a problem Q C  

STRUC(g) iff, for all structures A  E STRUC(o), and for all orderings of A ,  we 
have:

T  |  bin(A) ^  A  E Q
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Chapter 3

Adding a Priority Queue
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We now consider the situation where we have a priority queue for memory. 
A priority queue allows us to send elements to memory tagged with a numerical 
weight. We are free to choose from a range of weights polynomially-bounded in 
the size of the structure on which we are computing, but we may only retrieve 
from the maximal (non-empty) weight. We will consider a variety of semantic 
variations, and will, therefore, be no more specific at this point as to the properties 
of the priority queue. However, we are in a very different situation from before, 
because now we deal with both elements of structures and numbers. Such is the 
power of the inclusion of numbers, that we will find ourselves dealing with Turing 
Machines and complexity classes directly, as opposed to Lindstrom logics that 
capture complexity classes only on ordered structures. We needed free variables 
in NPS and NPSS in order to build the stratification within those hierarchies. 
We do not need that variety of stratification here. Therefore, since we are only 
concerned with decision problems, we will have no need for free variables here, 
and we dispense with them for the sake of a simpler exposition.

Since we will deal in a range of queue weights that is polynomially-bounded 
in the size of the structure A  on which we are computing, we will have interest 
in the numbers 1 , . . . ,n, where n = 11A \ | . We allow ourselves the first and last of 
these, 1 and n, as constants that we may refer to by name.

Definition. For each k > 0 , the program schemes of NPSPQ(k), over a signa­
ture G, involve two finite sets of variables, a set V of element variables and a set 
N  of numeric variables. A program scheme p G NPSPQ(&) consists of a finite 
sequence of instructions, where each instruction, other than the first and last, is of 
one of the following forms:

• an assignment instruction of the form ‘p \ = q ' , where p G V and q G VU { c : 
c is a constant symbol of g } or p e  N  and q G iVU{l,«}

• a guess instruction of the form ‘G uess v’ , where v G V

• an increase (numeric successor) instruction ‘Incr ra’ , where ra GiV

• a push instruction ‘Push v, ran , . . . ,  1 where, v G V and ran, . . . ,  m,* G N

1 When k =  0 there are no m ’s.
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• a pop instruction ‘v := P op’ where v G V.

• while loops of the form ‘W h il e  t Do x O d’ , where t is quantifier-free 
FO(o) with free variables among V or quantifier-free FO((l,w)) whose free 
variables are among N, and where x is a sequence of instructions of one of 
the forms listed.

The first instruction is Input(V, AO, and the last Output(V,N). We further define 
NPSPQ to be U*€t0NPSPQ(£).

As hinted at before, the stratification here -  dimension k of the queue -  is quite 
different from the stratification we have seen thus far, which was based on nestings 
of negation. With a priority queue, we will have sufficient computational power 
[at what would have been the first level of that nesting] to not require stratification.

The assignment and guess instructions, and the while loops, behave as before. 
Observe that in each case there are two modes of use: one relates to elements, 
the other to numbers. We do not allow the guessing of numeric variables simply 
because it is unlikely to be useful. The instruction INCR m increases the number m 
by one, under the convention that Incr n i s i .  This ensures that Incr is a function, 
like eye.succ, and in contrast to succ. The push instruction sends the element in 
question to the priority queue tagged with weight &-tuple (m u,... i.e. the 
current value of those numeric variables. It is for this reason that k is considered 
the dimension of the queue. We will consider a number of alternative semantics 
for the pop instruction:

u The pop removes, deterministically, the last element to be sent to the queue 
at whatever is the maximal non-empty weight. This semantics leads to a 
potentially unbounded queue size, and hence will be referred to as semantics 
V .

b The pop removes, deterministically, the last element to be sent to the queue 
at whatever is the maximal non-empty weight, and then scrubs all other 
entries at that weight. This is equivalent to the condition that the queue 
has only one space at each weight, i.e. new pushes would overwrite. This 
semantics leads to a (polynomially-)bounded queue size, and hence will be 
referred to as semantics ‘fc’.
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m+ As with V ,  but the maximal weight is also returned. This requires pop 
syntax > • • -imik Pop’. We refer to this as semantics ‘« + \

b+ As with ‘b \  but the maximal weight is also returned. This also requires pop 
syntax 1 , . . .  ,ra,* = : Pop’. We refer to this as semantics ‘b + \

As before, the pop instruction leaves its variable unchanged if the queue is 
empty. Also as before, the Input instruction non-deterministically assigns el­
ements of the structure to V. The numeric variables N  are set initially to 1. 
Again, we consider an accepting computation of a program scheme p on a struc­
ture A  to be any one that reaches Output , and we denote this A  |= p. We refer 
to each of the four alternative semantics above specifically by superscript, e.g. 
NPSPQ^+ (&). Again, we will refer to the classes endowed with successor with 
the subscript s, e.g. N PSPQj+ (£).

We will use the following shorthands, specific to schemes of NPSPQ:

• Consider F o r  ra = ra' To ra"Do x N ext to be shorthand for:

ra :=  m'
W hile m ^  m" Do 

x
Incr m Od

x.

• Consider Decr m to be shorthand for:

m' :=  1 \m" := m'
Incr ra'
While ra' ^  ra Do 

ra" := ra'
Incr ra' Od

ra : =  ra".
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•  C o n sid e r F o r  ra =  ra' D o w n T o  ra" Do x N e x t  to  be shorthand  for:

r a  : =  r a '

While m /  m" Do 
x

Decr m Od

x.

Note that For loops are inclusive with respect to their limits.

• Consider ra :=  ra' +  ra" to be shorthand for:

m ra'
For ra'" - 1 TO ra" D o INCR ra Od .

•  Consider ra :=  ra' — ra" to be shorthand for:

ra : =  1

Decr ra; Decr ra
For ra'" =  m' DownTo m" Do Incr m Od .

Henceforth, we will feel free to put arithmetic terms such as ra' — ra" as limits 
in For loops.

Let ra be a 7 -tuple (mi , . . .,mj)  of numeric variables. Consider Incr ra to be 
shorthand for:

IF (nij =  n) A ... A (m2 =  n) Then Do INCR m i;. . .;  INCR mj Od
If (mj =  n) A... A (m3 =  n) A (m2 ±  n)THEN Do INCR m2 ; . . . ;  INCR mj  Od

If mj ^  n Then Do Incr mj  Od

Let V  and n7 be the 7 -tuples of Is and ns, respectively. We have that INCR ra 
returns the lexicographic next number, subject to the convention that Incr ( V )  =  
( V ) .  Define D ecr ra analogously. Sums and differences of 7 -tuples m and ra' are 
defined in the natural way. However, we will insist that we never attempt the sum 
or difference of a 7 -tuple and /-tu p le  when 7 /  / .
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Computing over a structure A,  with ||yi|| = n, we find we have been granted 
basic modulo n arithmetic. This is ostensibly weaker than an ordering of the 
elements of A ,  but it will ultimately allow us to build such an order.

Remark. For each j ,  V  represents the number 1, in modulo nJ arithmetic, and 
ni represents the additive identity (zero). So, for example, INCR V  = V  +  V  = 
(1 , . . . ,  1,2), where 2 is Incr 1.

3.1 A single weight: k =  0

The bottom level in our apparent hierarchy merits brief attention. In the presence 
of a single weight, it is apparent that b+  (respectively, w+) is no stronger than b 
(respectively, u).

Lemma 8 . NPSPQ*(0) =  NPS,(1) =  NL

Proof. We already have the second equality; we prove the first.
(NPSs(l)  C NPSPQ^(O)). Trivially, we will have for any p € NPS5(1), that 

also p E NPSPQj(O).
(NPSPQj(O) C NPSs(1)). The priority queue may hold only one element 

at any time, and, as such, behaves like an extra element variable. Furthermore, 
the ability to count in NPSPQ^(O) may be simulated by the successor relation of 
NPS5(1). Specifically, if p £ NPSPQ^(O) involves |V| element variables and \N\ 
numeric variables, then we construct p' E NPS5(1) with |V| +  \N\ +  3 variables. 
Our simulation is made somewhat more complicated by our convention that pop­
ping from an empty queue leaves the variable unchanged: this is why we need the 
extra variables v^v" (we use v' =  v" to signify that the queue is non-empty). We 
construct p' thus:

lNPUT(vi ,. . . , V | V | , V|V|  +  1 , . . . , V | V|  + |W|, Vqueue, v', v") 
v' v"

'Zsim

OUTPUT(vi , . . . ,V|V/|,V|V| + 1, . . . , V | V/| + |yV| , V ^ Me,V/ ,V//)

Where T i s  the body of p (i.e. with the input and output lines removed), with 
the following substitutions:
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•  Convert all instances of variables m; to variables V|y|+,-.

• Convert all instances of the numeric constant 1 (respectively, n) to the ele­
ment constant min (respectively, max).

•  Convert all instances of ‘I n c r  m;’ to: ‘v|v|+/:== cyc.succ(v\v\+iY■

•  Convert all instances of ‘P u s h  v ,-’ to: ‘vqueue vi i v' := v"’-

•  C onvert all instances o f  ‘v/ :=  P o p ’ to:

I f  v '  =  v" T h e n  D o

,==  Vqueue > P  - 7^  ^  F i .

It should be clear that we have, for all structures A, A  |= p iff A  f= p'. □

Lemma 9. NPSPQ“(0) =  NPSS5(1) =  P

Proof. We already have the second equality; we prove the first.
(N PSSj(l) C NPSPQ“(0)). Trivially, any p G NPSSs(l) is such that p E 

NPSPQ“(0).
(NPSPQ“(0) C N PSSj(l)). The priority queue’s single weight here acts as 

a stack. We may use a similar, though simpler, reduction to that of the previ­
ous lemma: we no longer need the variables v' , v" in any capacity, and we leave 
instances of ‘PUSH v,-’ and ‘v, :=  P o p ’ in p unchanged in p'. □

Remark. The previous lemmas are somewhat misleading. We had provision for 
free variables in NPS and NPSS, but we have none in NPSPQ. The previous 
results, therefore, can only authoritatively refer to sentences of NPS5 and NPSS5,
i.e. those schemes without free variables. The only reason we omit free variables 
from NPSPQ is to simplify our exposition. The previous lemmas would hold in 
generality, if we were to allow free variables in NPSPQ.

When we are deprived of the successor relation, we find NPSPQ^(0)^NPS (1) 
(respectively, NPSPQM(0)^NPSS (1)), since the parity problem may be expressed 
in the former, through counting, but not in the latter. Of course, we will have the 
inclusions

• NPSPQ^O) C NPSPQj(O) =  N PS j(l) and

33



•  NPSPQ“(0) C NPSPQ“(0) =  NPSSs(l).

We conjecture that these inclusions are proper, and in particular that NPSPQ"(0) 
is contained within LFP +  COUNT [FO], which is known to be strictly contained 
in P [31].

3.2 The Hamilton Path problem is in NPSPQ

We proceed by examining the power of the program schemes of NPSPQ and, in 
particular, one of their number php with the ability to accept the NP-complete 
Hamilton Path problem. The Hamilton Path problem2 HP  is exactly the class of 
digraphs that have a directed path containing each vertex exactly once. The fol­
lowing is part of the program scheme p hp € NPSPQ"(2) that non-deterministically 
builds an order on such a structure.

1. lNPUT(vi ,V2,mi ,m2,m3)

2. F o r  m\ = 1 To n Do
3. Guess vi

4. F o r  m2 =  1 To n Do
5. P ush  vi ,m2 ,mi N e x t N e x t

Our method is simple enough: we produce n copies of n guessed vertices, each 
copy occupying weights (/, 1) to (i,n) for 1 <  i < n. These could be genuine 
orders, but only if we haven’t picked some element twice. After line 5, the queue

2In contrast to TC, A R , P S  etc., which w e initially defined as global relations, we define H P  
as a decision problem.
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looks like this (entry followed by weight):

(n ,n )

(«, 1 )

(1  ,n)

( 1 , 1 )

At line 6 , we proceed by consuming n — 1 copies of our n guessed elements to 
see if some element is repeated. First we look at the last copy and last element, 
xn, stored at weight (n,n), then we look through (n ,n — 1) to (n, 1), elements 

i , ... ,x\, to see if it is repeated. Next, lines 11-13, we remove the unneeded 
(already checked) element xn at weight ( n — 1 ,n) and repeat the process for (n — 
1, n — 1) to (n — 1,1). If we do this n — 1 times, finding no element guessed twice, 
then we know we do indeed have a genuine order left in weights ( 1 , 1) to (l,w). 
(If the first element had been repeated we would have already discovered that; we 
only need n — 1 iterations here.)

6 . FOR m \  =  1 T o  n — l D o

7. v2 := Pop

8 . FOR m2 =  m \  T o  n —l D o

9. vi := Pop

10. If vi =  V2 Then Do Loop Forever Fi Next

11. If mi ^  n -  1 Then Do
12. F o r  m3 =  1 T o  mi D o

13. v2 := Pop Fi Next Next N ext
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For any computation that gets past line 13 the queue will look like

xn (l ,n) 

X l  (1,1)

where we know that x \ , . . .  ,xn is an ordering of the vertices. We will now search 
along it for a Hamilton path:

14. vi :=  P o p

15. FOR m \ — 1 To n — l Do
16. V2 :=  vi

17. vi :=  P o p

18. I f  ->£(vi , V2) T h e n  D o  L o o p  F o r e v e r  F i N e x t

19. OUTPUT(vi , V 2,m i,m2,m 3)

It is because we can non-deterministically guess all orderings that there will be an 
accepting computation if, and only if, the structure has a Hamilton path. For all 
digraphs S, we will have £j |= p//p iff S £ HP.

The scheme php computes in such a way that, on all inputs S, it only uses any 
weight at most once. Consequently, php also accepts the Hamilton Path problem 
under semantics b. Clearly, php can undergo minor syntactic changes to produce 
a program scheme that accepts HP  for semantics «+  and b+, too.

3.3 NPSPQ* C NPspace

With the polynomially-bounded memory of NPSPQ^, the following is almost 
immediate.

Proposition 10. NPSPQ^ C NPspace.

Sketch Proof. The proof is by simulation. For p E NPSPQj we will construct 
a non-deterministic Turing Machine T, together with an exhibited bound /, such

36



that, for all structures A  (of size n), and all orderings of A,  the following are 
equivalent:

• A  \= p.

•  T  |  bin(A).

•  T i  bin(A) with the read/write head never leaving the first nl squares.

Note that equivalence of the last two guarantees that T  is an NPspace machine 
since there exists some /' (dependent on the maximum relation arity of the signa­
ture a) s.t. \bin(A) \ =  0{nl>).

If p G NPSPQ^(fc) and involves j  program scheme variables (element or nu­
meric) then we need to record at most nk +  j  items, corresponding to the entries 
on the priority queue and the assignments of the variables of p, at any point of 
the simulation. Each of these nk +  j  items may take at most n possible values, 
so each of these items may be written on f ’s tape in lo g(w) squares. We do not 
give full details of 7” s simulation, but note that the amount of tape space required 
to hold all these nk -f j  items is 0 ((n k +  j)  log(rc)). It follows that we may take 
l : = k  + j  + l. □

Corollary. NPSPQ^ C NPspace.

Proof. The inclusion NPSPQ^ C NPSPQ^ is trivial. □

3.4 Expanding alphabets

At present there are precisely n distinct symbols that we can send to the queue, 
namely the elements of the structure on which we are computing. However, we 
can expand this alphabet by always pushing and popping y'-tuples, instead of sin­
gle variables. In this way we potentially increase our working alphabet to n7 

symbols.
Let v be a 7 -tuple of variables. We work in semantics u, but our results apply to 

semantics w+, and also to NPSS. A similar method may be used for semantics b 
and b+, although at the cost of more weights. The method by which these results 
for semantics u transfer to semantics b will be explored later.
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•  C onsider ‘PUSH v ,ra ’ to  be shorthand  fo r ‘PUSH V j ,m  ; . . . ;  PUSH v i , m \

•  C onsider ‘v :=  P o p ’ to  be shorthand for ‘vi :=  P o p  ; . . . ;  v j  :=  P o p ’ (note 

the reverse  order).

B y these m ethods, w e can push  and pop tuples as i f  they w ere sing le elem ents. 

W e can  now  set up spec ia l sym bols by  the use o f  a certain  convention . Suppose 

w e w ant i special sym bo ls M \ , . . .  ,M /, then we can  achieve this, in  a ra th er sloppy 

m anner, by alw ays p u sh in g  an d  p o p p in g  ( / +  l)-tu p le s  ( v i , . . . ,  v /+ i), u sing  the 

convention:

•  ( v i , . . . ,  v,-+i) w here vi =  V2 is th e  e lem en t v i .

•  ( v i , . . . ,  V/+1) w here vi /  V2 A V2 — V3 is the  sym bol M \ .

•

•  ( v i , . . . ,  V/+1) w here vi /  V2 A . . .  A v;_ 1 /  v,- A v,- =  v/+i is the sym bol M ;_ 1.

•  ( v i , . . . ,  ) w here v\ /  V2 A . . .  A v,- /  v /+ i is the sym bol Af,-.

N o te  that all (i +  l)- tu p le s  are defined. H en cefo rth  we will assum e a finite set o f  

specia l sym bols at our d isposal.

G iven a p rogram  schem e in w hich  w e are alw ays pushing  and popp ing  j -  

tup les, w e m ay drop the line over the  variab les, and use that line on ly  w hen re ­

fe rrin g  to som e / - tu p le  o f  ‘variab les’ each  o f  w hich  is actually  a  / t u p l e  o f  real 

variab les. T h is  should  not cause too m uch  con fusion . This w ill resu lt in ou r hav­

in g  variab les v that can hold values th a t do  n o t represent actual elem ents o f  the 

un iv erse  on w hich  w e are com puting . Such  spec ia l characters w ill constitu te  the 

sym bo l set A.
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3.5 Pushing and Popping Numbers in NPSPQ^ / NPSPQ".

For program schemes of NPSPQ“ or NPSPQj, consider ‘v :=  element(m.y to be 
shorthand for

v :=  min
F o r  m' =  1 To m — 1 D o  

G u e s s  v'

If  v' /  succ(v) T h e n  D o  L o o p  F o r e v e r  F i 

v :=  v' N e x t

and ‘m := position(vY to be shorthand for

v' min 
m \— 1

W h i l e  v ' / v D o  

G u e s s  v"

I f  v" /  succ{v') T h e n  D o  L o o p  F o r e v e r  F i 

I n c r  m 

v' :=  y" Od

The instruction v element(m) assigns to v the mth element of the universe, 
conversely the instruction m :=  position{v) assigns to m the position of the ele­
ment v in that order.

For y-tuples m =  (m \ , . . .  ,mj) and v =  (vi, . . . ,  vy):

• Consider v := elementirn) to be shorthand for vi := element (mi ) ; . . . ;  vj :=  
element (mj).

• Consider m :=  positioniv) to be shorthand for m\ := position(v\) ; . . . ;  
mj :=  position(vj).

3.5.1 NPSPQ“+(fc) = NPSPQ" (k).

Lemma 11. NPSPQ£+(*) C NPSPQ“(1:).
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Proof. The proof is by simulation. For all p € NPSPQ“+ (&) we construct a p' G 

NPSPQg(k) such that, for all structures A ,  we have A  |= p iff A  |= p'.
The program scheme p' will involve all the variables of p together with a new 

&-tuple of element variables v^. Where p pushes and pops single variables, p' 
will always push and pop (k +  1)-tuples of variables (of which the trailing &-tuple 
contains the weight).

• Convert all instances of ‘P u s h  v,m’ , in p, to the following in p':

vft :=  element(m)
P u s h  (v ,v ^ ),m

• Convert all instances of ‘v .ra :=  P o p ’ , in p, to to the following in p':

(v , \v )  :=  P o p  

m :=  position(\ff)

□

Corollary. NPSPQ“+ (&) =  NPSPQ"(£)

Proof The converse inclusion N PSPQ"(k) C  NPSPQ“+(fe) is trivial. □

3.5.2 NPSPQJ+ =  NPSPQ*.

Lem m a 12. NPSPQbs+{k) C  NPSPQ^(2k).

Proof The proof is broadly similar to that of the previous lemma, but we will 
require more than single weights to store the (k+  1)-tuples of that proof. For all 
p G NPSPQ^+ (/:) we construct a p' G NPSPQ J (k) such that, for all structures A,  
we have A  |= p iff A  \= p'.

The program scheme p' will involve all the variables of p together with a new 
fc-tuple of element variables — (v^, . . . ,  v j j .
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•  C onvert a ll instances o f  ‘PUSH v ,ra’ , in p , to the  fo llow ing  in p ':

P u s h  v , (ra, \ k )

P u s h  vkm , (ra, 1 k~ l ,n)

P u s h  v^ ,  (m ,n , l^ - 1 )

•  C onvert all instances o f  ‘v , r a : = P 0 P ’ , in  p, to  to the  fo llow ing  in  p ':

(v ,v ^ ) :=  P o p  

ra :=  positioniym)

□
Corollary. NPSPQ^+ =  NPSPQ^

Proof. T he inc lusion  NPSPQJ(£ ) C  NPSPQ^+ (£) is trivial. □

3.6 NPSPQb(k) C NPSPQ“(/fe)

Intuitively, semantics u appears at least as strong as semantics b. It is relatively 
straightforward to prove this.

Lemma 13. NPSPQb(k) C  NPSPQu{k).

Proof. The proof is by simulation. For all p G NPSPQb(k) we construct a p' G 
NPSPQ" (k) such that, for all structures A ,  we have A  |= p iff A  \= p;.

T he p ro g ram  schem e p ' w ill involve all the  variab les o f  p together w ith  tw o 

new  ^ -tu p les  o f  num eric variables in' ,ra"  an d  a new  elem ent variable v'. A ssum e 

th a t M  is a  specia l m arker sym bol no t used  by  p . B uild  p ' from  p by add ing  the 

fo llow ing  lines to  the beginning (after I n p u t ) :

F o r  ra' =  1* To nk Do 
P u s h  M ,ra ' N e x t

This sends a copy of the marker M  to every weight on the queue. Finally, convert 
all instances of ‘v,ra :=  Pop’ , in p, to the following in p'.
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—/ km : =  n 
v' :=  P o p

W h i l e  in' ^  \ k A v' =  M  D o  

D e c r  in'
V  :=  P o p  Od 

I f  v' /  M  T h e n  D o  

v :=  v'
W h i l e  v ' ^ M D o  

v' :=  P o p  Od Fi 

F o r  in" = in' TO nk D o  

P u s h  M ,m "  N e x t

The given subroutine counts, top-down, the number of empty weights in the queue 
of p -  these contain just M  in the queue of p'. When it finds something other than 
an M, it stores this in v then removes everything else at that weight, i.e. until it 
reaches another M. The situation where the queue of p is empty is dealt with 
by the conditional v' ^  M  in the sixth line. Finally, an M  is returned to each of 
the weights of the queue of p' above and including the weight of the retrieved 
element. □

Corollary.

•  N P S P Q j ( f c )  C  N P S P Q “ (fc)

•  N P S P Q i + ( t )  C  N P S P Q “ + (£ )

•  N P S P Q ^ + O fc )  C N P S P Q “+(& )

Proof. Our proof is equally valid for these statements. □

Remark. It may seem that our method is unnecessarily complicated. In simulating 
semantics b with semantics u, when popping from the queue at a certain weight, 
why do we not simply then pop everything else off at that same weight (foregoing 
any need for the marker M)1 This method would generate very simple proofs 
for the last two statements of the corollary, and a relatively easy proof of the first 
statement of the corollary. However, it would not easily be applied in the case of 
the statement of the theorem.
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3.7 NPSPQ"(/c) C NPSPQ"(fc +  2)

Lemma 14. NPSPQ“(k) C  NPSPQ"(* +  2).

Proof. We prove the inclusion by simulating the successor relation. We take any 
scheme p E NPSPQ“(&), and construct a scheme p' E NPSPQW(& +  2) such that, 
for all structures .A, A  |= p iff A  |= p'.

Assume, without loss of generality, that p involves element variables V and 
numeric variables N, and that vi,V2 £ V and mi ,m2 ,m3 ^ N. Given p we will 
construct p' by adding a special start-routine, a special end-routine, and amending 
push and pop instructions, as well as successor tests in while loops.

Let V' =  V U {vi, V2 } and N' = N U {mi,m2 ,m3 }. Then p' will be:

I n p u t  (V ', A ')

^start ? > 'tend

O u t p u t  (V7, N')

We will now meet the sub-routines ,Tp ,Te/M*, and explain why each one 
performs the function that will be claimed of it.

3.7.1 Start-routine: tstart

We will add a sub-routine xstart to the start, that builds an order over A ’s n el­
ements. We will simply guess an order, as we did in ph p , and we will put this 
putative order in the weights ( 1*, 1 , 1) to ( 1*, 1 ,«). t,start will first send a special 
marker symbol M  to each of these weights via:

FOR mi =  1 To n Do 
P u s h  l , m i )  N e x t

We then add lines 2-13 of the scheme ph p  that solved the Hamilton Path problem, 
with the proviso that weight tuples (mi ,m2 ) in ph p  become (l*,mi,m2) in Tstart-
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Any computation that gets through Tstart will leave the queue looking like:

( 1*,l ,n)

( i  M , « )  

0 ‘, U )

where x \ , . . . ,  xn is an ordering of the elements of A.

3.7.2 Simulation of p: xp.

The main body of p', the sub-routine xp, is that bit that actually simulates p. It will 
use higher weights of the form (n,n,m), where the line on ra specifies a &-tuple. 
Before we get to the main simulation, we will push a special marker symbol M '  

to weight (n ,n , 1*) to ensure that we never stray into the lower weights, in which 
the order is contained, during the simulation. Thus:

P u s h  M ' , ( n , n , l * )

For the actual simulation:

•  C onvert all instances o f ‘PUSH v ,ra’ to: ‘P u s h

•  C onvert all instances o f ‘v :=  P o p ’ to  the fo llow ing  in  p ':

vi :=  v 

v :=  Pop
I f  v =  M '  T h e n  D o  P u s h  v , (w, ra, 1*) F i 

v :=  vi

The simulation of pop is rather complicated because the original program scheme 
p must leave a pop unchanged when the queue is empty. But when the queue 
associated with p is empty, the queue associated with p' still contains entries in 
the lower weights beneath M ' .
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We may also have to evaluate quantifier-free successor queries of the form 
v' =  succ(v), that might appear in a test for a while loop, immediately before the 
test of that while loop. Let O be a propositional formula that involves the atom 
v' =  succ(v):

•  Convert a ll in stan ces o f  W h il e  0 (v ' =  succ(v)) D o  x O d  to:

^succ > W h i l e  0 (m 2  =  n) D o  x ,t succ O d .

Where xsucc is the sub-routine:

m\ :=  1; m2 :=  1 
W h il e  m\ ^  n D o  

G u e s s  vi

P u s h  vi,(1*, l ,mi)
I f  vi =  v T h e n  D o 

I n c r  m\
G u e s s  vi 

P u s h  vi,(1*, l ,mi)
I f  v\ =  v' T h e n  D o  m2 :=  n Fi Fi 

I n c r  m\ O d

Observe that v! and v are free in the sub-routine. What is happening in the while 
loop in the added sub-routine is that we are guessing what we hope to be an order. 
If it is the order that we guessed at the start, then m2 =  n iff v' = succ(v). We will 
check later that all these guessed ‘orders’ are not only genuine orders, but also the 
same as the first. In this manner, each instance of v' — succ(v) in <I> becomes a test 
of m2 =  n. There may be any constant number of tests of the form v' =  succ{v), 
involving different variable pairs: each one of these will cause its own copy of the 
T'succ sub-routine to appear before, and in, the while loop.

3.7.3 End-routine: ten£i

Once the simulation of p is accomplished we will want access to the lower weights 
to verify that these ‘orders’ we have been guessing are uniformly the same. We
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w ill w ant to  pop  every th ing  on  the queue dow n to , and includ ing , the m arker M '.  

Tend w ill there fo re  begin:

W h i l e  vj /  M '  D o  vi :=  P o p  O d .

A t this po in t the queue w ill lo o k  like:

yn:s

y n, 1 (l*, l ,n)

M

y\,s

yi.i (i*,i,i)
X \

w here  ^ is the num ber o f  tim es that w e n eed ed  to  check  successor queries in  w hile 

loops. W e already  know  that x \ , . . .  , x n is an o rd e r o f  the elem ents -  w hat we m ust 

now  check  is that:

•  x\ =y i , i  =  . . . = y i , s

•  x n =  yn,i =  . . .  =  y n ŝ
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so Tend concludes:

FOR m\ =  1 To n 
vi :=  P o p  

W h i l e  vi ^  M  D o  

v2 :=  vi 

Vi :=  P o p

I f  vi ±  v2 T h e n  D o  L o o p  F o r e v e r  Fi O d  N e x t

□
Corollary. NPSPQ"+ -  NPSPQ"+ =  NPSPQ" -  NPSPQ".

Proof. NPSPQ"+ C  NPSPQ"+ is trivial; NPSPQ"+ C  NPSPQ" was proved 
in Lemma 11; NPSPQ" C NPSPQ" was proved in the previous lemma; and, 
NPSPQ" C  NPSPQ"+ is trivial. □

Remark. Whilst we have NPSPQ" C  NPSPQ", there is no reason to think that 
NPSPQj C  NPSPQ*7. NPSPQ*7 can simulate NPSPQ" up to a point, as we will 
see, but if there is a super-polynomial number of successor calls in a scheme of 
NPSPQj7, then we can not use our method to simulate in NPSPQ*7.

3.8 NPspace C NPSPQ"

Let Q C  STRUC(o) be some problem in NPspace. Then there exists a positive 
integer k and a non-deterministic Turing machine T such that, for all structures A  
(of size n), and all orderings of A ,  the following are equivalent:

•  T I bin(A).

• T I bin (A) with the read/write head never leaving the first nk squares.

• A  e Q.

Let Q be the set of states of T, including start state qs and accept state qa.
In addition to variables ranging over the elements of A ,  we will want to enlarge 

our alphabet such that we also have:
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•  The set of pairs n  =  {(zero, q), (one, q), (blank, q)\ q € Q).

•  The special symbols L, R, and U . These will track the movement of T*s 
read/write head.

•  The marker symbol M.

Since Q is fixed this will not be a problem.
Let T C n 2 be such that ( (y i , ^ i ) , (^2 ,^2)) € T  iff y\ =  yz- T appears to be a 

rather unusual set, but we will need to verify such pairs on the queue in our given 
simulation.

Let A C II2 U (FI x {L,#}) be such that:

•  ((yijtfi)? (yiiRi)) G A if there is a transition rule of T from (y\,q\) to (yi.Qi)-

•  ((y,q),R) G A if there is a transition rule that moves the read/write head 
Right from (y,q).

•  ((y,q),L) e  A if there is a transition rule that moves the read/write head Left 
from (y,q).

A is, therefore, our visualisation of T ’s transition rules.

Theorem 15. NPspace C NPSPQ“.

Proof. We aim to prove this by simulation. We will construct a program scheme 
Pq £ NPSPQ“(fc +  1) such that A  J= pQ if, and only if, A  G Q. The nk weights of 
the form (1 ,m) will mimic the nk squares of the Turing machine T. The line on m 
will always refer to a &-tuple. pQ will be:

I n p u t  ( v ^ v ,  v ',v"  ,m,mfj^)

^bin(A) ■>simi ^end
O u t p u t  ( v , vq , v, v', v" , m, mr/w)

We will now meet the sub-routines xbin(A)  ̂ Tsim, and Tend, and explain why 
each one performs the function claimed of it.
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3.8.1 Preparation: t ^ [ a )

First we will write the marker symbol M  to the weights (1,1*) to (1 ,nk). Before 
we can simulate the computation of T we must write bin(A ) to the queue. We 
will do this by randomly writing zero, one or blank, together with the start state 
qs, simultaneously to the weight ranges ( 1 , 1*) to (1  ,nk) and (n, 1*) to (n,nk). 
The n* entries in the range (1,1*) to (1 ,nk) will represent the nk squares of the 
Turing tape at the start of computation. We let the variable m range over these 
tape squares in the following.

F o r  m — (1*) To (nk) Do 
P u s h  M ,(\ ,m )
E it h e r  (Zero, One, Blank)
If  Zero T h e n  D o  P u s h  (zero,qs), (l ,m);  P u s h  (zero,qs),(n ,m ) Fi 

I f  One T h e n  D o  P u s h  (one, qs) , (1, m ) ; P u s h  (one, qs) ,(n,m) Fi 

If  Blank T h e n  D o  PUSH (blank,qs) ,( \ ,m )\  P u s h  (blank,qs),(n,m) F i 

N e x t

This will leave the queue looking like:

(y°nk,qs) (n,nk)

( T p ^ ) (n, 1‘ )

(1,1.*)
M (1,„*)

(1,1*)
M (1,1*)

where each y E {zero,one,blank}. We will consume the top copy in weights 
(n, 1*) to (n,nk) to check tha t y^ , ...  ,y°k is an encoding bin(A).
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If a  is a signature with relations R \ , R i , ...,/? /, of arities a \,a 2 , . . . ,a j  then the 
coding of R\ will take the weights (n, \ k) to (n, 1k + r f x), the coding of R2 will 
take the weights (n, 1k + nai +  1) to (n, 1k + r f l + nai + 1) etc. For i < k, note that 
the /’th power of n is represented by the k-ary vector nl that has a 1 in positions 
1 < i ' < k  — i and an n in positions k — i < i '<  k .

We will explicitly give the method when 0  =  0 2  =  (E 2), i.e. on graphs. In 
the sequence , . . .  ,y^, we must ensure that all apart from the first n2 entries are 
blank. We must then ensure that the first n2 entries code the edge relation of the 
graph. Recall that n2 =  (1 ,. . . ,  1,n, n)3.

FOR m =  nk D o w n T o  1* +  n2 +  1* D o  

v :=  P o p

I f  v ^  blank T h e n  D o  L o o p  F o r e v e r  F i N e x t  

F o r  m =  n2 D o w n T o  l* D o  

v :=  P o p

I f  v =  blank T h e n  D o  L o o p  F o r e v e r  F i 

(vi, . . . ,  Vjfc) element(m\ , ... ,m*)
IF E(vk- 1,vk)A v  = zero T h e n  D o  LOOP FOREVER Fi 

IF -!E(v*_i,vk)A v  = one THEN D o  LOOP FOREVER Fi NEXT

Any computation that gets through that will leave the queue looking like:

(1 ,nk)

(1,«*)

( 1, 1*) 

( 1, 1*)

where is necessarily a copy of bin(A) -  which we consider to be T ’s
tape on input. The superscript 0 refers to time 0.

3We retain the line on the k-ary n2 to distinguish it from the binary n2 =  (n .n ).

ynk
M

A
M
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3.8.2 Simulation: x5im

Throughout the simulation we will keep track of the position of 7”s read/write 
head in a numeric variable £-tuple mr/w, and the state will be remembered in a 
single variable vq.

In simulating the ith step of T we first guess what type of move T  will perform 
at that stage. We will verify later that these were valid choices in the computation. 
There are two basic cases: either moving the read/write head; or changing the 
entry at the read/write head’s current position. We can not move left from position 
1* and if we move right from position nk we may assume we do not have an 
accepting computation.

In the first case we write the symbol R  or L to the weight (1, mr/w) , depending 
on whether the read/write head is to move right or left. We amend the position 
of the read/write head as stored in mr/w, either adding one, or subtracting one. 
Afterwards we guess what will be the entries of T ’s tape at time i +  1 and write 
them, together with the current state stored in vq, to all the weights (1,1*) to 
(1, nk) . We will want the tape-entries we have guessed to be exactly the same as at 
time i, written beneath them on the queue (except for the introduction somewhere 
of a symbol R or L). We will only verify that this is the case at the end of the 
simulation.

In the second case we write the symbol U to the weight (1 ,mr/w). We then 
choose a new state to go into, amending vq accordingly. We then guess the entries 
of 7” s tape at time i +  1 and write them, together with the new state stored in vq, 
to all the weights (1,1*) to (1 ,«*). In this case we will want the tape-entries to be 
the same as at time i except possibly for the weight (1 ,mr/w), i.e., for entries split 
by a U symbol. We will verify this at the end of the computation.

This simulation will continue until we guess that we go into the accept state
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W h i l e  vq ^  qa D o  

E i t h e r  (Right, Left, Unmoved)
I f  Right T h e n  D o 

I f  m =  nk T h e n  D o  L o o p  F o r e v e r  F i 

P u s h

I n c r  m ^ .  F i 

I f  L eft T h e n  D o  

I f  m ^ .  =  l* T h e n  D o  L o o p  F o r e v e r  Fi 

P u s h

DECR mr/w F i 

If  U nm oved  T h e n  D o 

P u s h

G u e s s  vq\ I f  vq ^ Q  T h e n  D o  L o o p  F o r e v e r  F i 

F o r  m =  (l* ) T o  (nk) D o  

E it h e r  (Zero, One, Blank)
I f  Z ero T h e n  D o  P u s h  (zero,vq) , ( \ ,m )  Fi

I f  O ne T h e n  D o  P u s h  (one,vq) , ( l ,m )  Fi

I f  B lank T h e n  D o  P u s h  (blank,vq) ,( l ,m )  Fi N e x t  O d

3.8.3 Verification: xend

We now move into the verification, in which we check that we have effected a 
legitimate computation.

If t is the length of the simulated computation, then at this point each weight 
(1, m) of the queue, representing the mth square of the Turing tape, will have a
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stack on it lo o k in g  som eth ing  like4:

Mi. 9a) 

Mr1, s'-1)

(>§+V +1)
R

( y m ^ )

Mr+V +1)
U

(A . 9*)

( > i V )
(y ! ,rcls)

M

N ote that en tries R, L, U, or, indeed, M  m ay  never be adjacent. W e w ill read  

these  en tries o ff such that w e can co n sid er th ree  ad jacen t at once. A t any p o in t the 

variab les v,v' ,v" will hold descending  successive  en tries on  the stack, tend w ill 

be:

F o r  m  =  n k D o w n T o  1* D o  

v :=  P o p ; v' :=  P o p ; v" :=  b lank  

W h i l e  v" / M D o  

v" :=  P o p

^check

v :=  v'; vr :=  v" O d  N e x t

In the case th a t v, v' £  {L ,R ,U }, w e w ill sim ply  check  that the tape-entry  in v

4The qs with superscript should be considered as representative o f  some state in Q, just as 
the ys with superscript are representative o f one o f  {zero , one, b lank}.  The qs with subscript, e.g. 
qs ,q a, are actual states.
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is the same as in v'. This is not quite the condition v =  v', since each such entry 
on the queue is a pair of tape entry and state, but it is the condition (v, v') G T, i.e. 
the tape entries contained in v and v' are the same -  even if the states are different.

In the case that v G {L,R, U} we do nothing.
Where v' is the symbol R we check that ( / +1 ,ql+l) and (y \q l) (in v and v", 

respectively) are the same. It is actually consequent on our simulation method that 
gI+1 =  ql. We must also check whether T has a transition rule in state ql reading 
yl to move right.

We do analogously when v' is L.
Where v' is the symbol U we check that T  has a transition rule ( ( / ,  ql) , (yl+1, ql+1)) 

(stored in (v, v")) in A.

Thus Tcheck will be:

I f  v , v '  ^  {L,R,U}  T h e n  D o  

I f  ( v ,  v ' )  ^ A T h e n  D o  L o o p  F o r e v e r  Fi F i 

I f  v' =  R T h e n  D o  

I f  v /  v" T h e n  D o  L o o p  F o r e v e r  F i 

I f  ( v,R)  £ A T h e n  D o  L o o p  F o r e v e r  Fi 

I f  v’ —L T h e n  D o  

I f  v /  v" T h e n  D o  L o o p  F o r e v e r  F i F i 

I f  ( v , L )  ^  A T h e n  D o  L o o p  F o r e v e r  F i 

I f  v' =  U T h e n  D o  

I f  ( v , v " )  ^  A T h e n  D o  L o o p  F o r e v e r  F i Fi

The result follows. □

Corollary. NPspace C  NPSPQM

Proof. Recall NPSPQ“ =  NPSPQM. □

3.9 A polynomial-time restriction of NPSPQ".

Definition. A program scheme p G NPSPQ “(A:) is said to be polynomially step- 
bounded if there exists a j  such that, for all structures A,  p accepts A  if, and only 
if, p accepts A  within nj steps. Let:
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N P S P Q U(k)poly :=

{ p i p e  NPSPQM(/i) and p is polynomially step-bounded }

• NPSPQupoly := U*>0NPSPQu(k)poiy.

Proposition 16. NPSPQ"o/>) C  NPSPQ*7.

Proof. We prove this by simulation. The idea is that we can never attempt to use 
a weight more than once. Given some p e  NPSPQu(k)poiy, and the j  that is the 
polynomial power of its step bound, we will construct a p' e  NPSPQ^(& +  j) ,  
such that, for all structures A , A  |= p iff A  \= p'.

Let the line on m indicate a y-tuple. Assume m is a numeric variable tuple not 
involved in p.

Given p we construct p' by

• adding, after every line, except the last, the instructions

INCR m
I f  m — nj T h e n  D o  L o o p  F o r e v e r  F i .

(m will act as a step-counter in p'), and

• converting all instances of PUSH v, (m i,...  ,m*) to P u s h  v , (m i,...

□
Corollary. NP C  NPSPQ*7

Proof The simulation method we used in proving NPspace C  NPSPQM will also 
prove NP C N P SP Q ^,. The result follows from the previous lemma. □
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Chapter 4

Adding Universal Quantification
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4.1 Introducing APS(l)

The schemes of NPS have existential quantification built-in through their guess 
instruction. N P S (l) is devoid of any notion of universal quantification. The 
higher strata, NPS(m), have some notion of universal quantification, through 
negation of existential quantification, but have no facility to combine both types 
of quantification within while-loop recursion. We consider the effect of explicitly 
adding universal quantification. We are, once more, without the stack.

Definition (Syntax of A PS (l)). The syntax of A PS(l) is as that of N PS(l), ex­
cept the extant GUESS instruction is renamed 3GUESS, and a new instruction 
V G u e s s  is added, with identical syntax.

The schemes of N PS(l) accepted a structure, expanded with values for the 
free variables, iff there existed some accepting computation, i.e. at each point the 
program went through an 3GUESS v , there existed an assignment to v such that 
thenceforth the scheme made it to output. The schemes of A PS(l) accept an 
expanded structure iff:

• at each point the program goes through a 3G u e s s  v , there exists an assign­
ment to v such that thenceforth the computation makes it to output, and

• at each point the program goes through a V G u e ss  v , we have that for all 
assignments to v the computation thenceforth makes it to output.

These instructions have an appealing semantic characterisation in terms of the 
configurations of a scheme p E A P S (l). When computing on a structure A ,  we 
can construct an alternating graph A ^ a  just as we constructed but with the 
additional information that a configuration (z, vv, u) is universal iff w represents 
line /, and the instruction on line (/ +  1) is a V G u e s s . Observe that, for the edge 
relation of A $ 9a , there is no difference between 3GUESS and VGUESS, since in 
each case the configuration can move to any configuration that is identical except­
ing the guess for the pertinent variable. Let the the lines on z denote an /-tuple, 
the line on u,v  denote y-tuples, the hat on w denote a |p|-tuple, and the line on x,y  
denote ( /+  |p| +  y)-tuples.
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Proposition 17. Suppose p 6 A PS(l) has i free variables and j  input-output 
variables, and that \|/(Jc, y) is a quantifier-free first order formula expressing the 
edge relation o f A $ A, then the following are equivalent:

•  A  N p(z)

A \=  3vvi,...,W|p| wi =  w2 A

3u,v A R [A ^ ,v\j/ ] ( (z , w i , . . . ,W |p | , m) , ( z , w/1

Proof Follows immediately from the semantics of A PS(l) and the definition of 
AtfA . Recall that the bizarre constraints on the ws are our encoding of the first

Just as acceptance in N PS(l) is a reachability (transitive closure) problem, so 
acceptance in A PS (l) is an alternating reachability problem.

Corollary. A P S (l) C ± A R ![FO].

Not only can the schemes of A P S (l) be recast as formulae of AR1 [FO], but 
a scheme of A PS (l) can express the Alternating Reachability relation. In order 
to prove this, we will have use for another shorthand that is available to us in the 
presence of our new instruction VG u e s s .

•  Let w o rd l,. . . ,  word j  be words representing certain possibilities. Consider:

A L L (w o rd l , . . . ,  w ord j)
If  w o rd l T h e n  D o  Ti F i

If  w ord  j  T h e n  D o  t j  F i 

to  be sho rthand  for:

V G u e s s  v \

I f  vi =  v2 T h e n  D o  t i F i

I f  (vi ^  v2) A (v2 =  v3) T h e n  D o  t 2 F i

and last lines. □
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IF (vi /  v2) A ...  A (vj —2 fi- v j - 1) A ( v j - 1 =  vj) THEN D o  Xj-i Fi 
I f  (vi f i  v2) A ... A (v /_ i f i  v j)  T h e n  D o  t j  F i

A l l  is the un iversa l co u n terp o in t to the existential E i t h e r . W hen  a p rogram  

schem e m eets an E it h e r  in stru c tio n  it w ill accept iff  one o f  those  cho ices leads 

to acceptance; w hen a p ro g ram  schem e m eets the A l l  instruction , it w ill accep t 

iff  all o f  the choices lead to  accep tance.

Proposition 18. There is a program scheme P a r ( w , v )  G A PS(l) with two free 
variables that expresses the relation AR. Formally, for all alternating graphs A, 
and vertices a, a' G A:

A  |= P a r (a,a') iff A  f= A R (a ,a )  (there is an alt. path in A  from a to a')

Proof We will construct P a r .  First we note that the relation AR(«,v) may be 
written in LFP[FO] as LFP[XPxy\|/](n, v), where \|/(/>,x,y) :=

(x = y) V  (3sP(x,s) A-iU (5 ) AE(s,y)) V  (3sP(x,s) AU(s) A [Vr£(j, r) —> P(r,y)])

This can be re-written as \|/(P,x,y) =

(jc =  y) V 3sP(x,s) A ([-»!/(5 ) A£(s,;y)] V  [U(s) A Vr(-i£(j, r) V P(r,y))])

Note that the 3s quantifies everything to its right. We will denote the two conjuncts 
after that quantification as Left and Right. Thus:

• Left is P(x,s), and

• Right is ([-'£/(s) A E(s,y)] V [U(s) A \/r(->E(s,r) V P(r,y))]).

Let T a r ( w ,  v,x,y,s, r) be the sub-routine involving free variables u,v:

x :=  u;y :=  v 
W h i l e  x / y  Do  

B G u e s s  s 

A LL(Left,R ight)
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If  Left T hen  Do y :=  5 Fi 
I f  Right T hen  Do 

If  ->U(s) AE(s,y)  T hen  D O x := y  Fi 
I f  -i(->U(s)AE(s,y))A->U(s) Then Do Loop F o r e v e r  Fi 
VGuess r
If  ->(->U(s)AE(s,y))A->E(s,r) T hen D o x := y  Fi 
I f  ->(-*U(s)AE(s,y))AE(s,r) T hen Do x : = r  Fi Od

We now set Par(w,v) to be:

•  lNPUT(x,y,r,V); t Ar; OUTPUT(x,y,r,s)

P ar evaluates whether (m,v) is in AR from the outside-in, hence x and y are 
initially set to u and v, respectively. Each path of the computation succeeds only 
when the variables x and y become equal. P a r  mimics exactly LFP[APxy\|/](M,v): 
indeed if the rank of (m,v) in LFP[^Fxv\|/](w, v) is j,  i.e. (m,v) G VJ/-7 but (m,v) ^ 

then Tar will go through the while loop [a maximum of] j  times. □

Proposition 19. A R ! [FO] C A PS (l)

Proof. Take any formula cp G A R J[FO]. Then cp is of the form 
3u\ .. .U f3v \ . . .  vj" AR[Xx,y\|/](w, v), where V|/ is quantifier-free. We construct 
Ptp G A PS (l) such that, for all structures A, A  |= p̂ p iff A  |= (p.

Let ptp be:

INPUT (x, y, s, r, mi , . . . ,  U j / , v \ , . . . ,  Vy")

3GUESS Ml, . . . , My/, Vi, . . . , Vj" 

t Ar  (M,v,x,y,5,r)
OUTPUT(x,y ,5 ,r ,mi , . . .  , My, v i , . . . ,  v / ' )

□
Theorem 20. A PS(l) =  AR^FO]

Proof Follows from the previous two propositions. □

Corollary. A PS (l) =  A R![FO] =  LFP[FO] =  AR*[FO].

Proof A R 1 [FO] =  LFP[FO] =  AR*[FO] is proved in [16]. □
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4.2 Introducing APSS(l)

Here we consider the situation where we augment the schemes of APS (1) with 
a stack for memory. We will find that we can quantify over the stack in a way 
that was not possible with NPSS. Consequently, order will not be a problem, and 
we quickly establish that we subsume NPspace. We will have no need for free 
variables to generate stratification: as with NPSPQ, we dispense with them.

Definition (Syntax of A PS S(l)). Notwithstanding the forbidding of free vari­
ables, the syntax is that of A P S (l), with the P u s h  and P o p  instructions of 
N PSS(l).

Definition. Suppose the program scheme p E APSS (1) involves j  variables. Then 
a configuration of p, computing on a structure A,  is a sequence (v, / , w) giving the 
values of the variables, the number of the line just executed, and the contents of 
the stack (w E  |A|*).

Each such program scheme p, computing on a structure A ,  gives rise to an 
infinite alternating graph A ^ a , defined as in the previous section. We say there is 
Si finite alternating path between configurations c ,d  in A $ a , if there is a n / E t o  
such that (c,cr) E \|/*(P,;t,y), where \|/ is as in the proof to Proposition 18.

For some structure A ,  let r A be some subset of \A\*. Then for some signature 
a , let T be the global set {T^ : A  E STRU C(a)}.

Definition (Recognising Stacks). We say that the global set T is recognisable iff 
there is a p r € A PSS(l) such that for all A  the following are equivalent:

•  For all v , there exists v' and w' E |A|* such that there is an alternating path 
in A S a  from configuration (v, 1 , w) to configuration (v', |pp|,w/).

•  w e Ta .

Suppose that Tp is the subroutine constructed from pr be removing the input 
and output instructions. We are stating that, for each A,  the uniform subroutine 
Tr, when confronted with a stack w, finishes (i.e. does not loop forever) if, and 
only if, w E T/p This is independent of the values of all input-output variables 
going into Tp. Essentially, Tr recognises w.
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If a subroutine, computing on A,  recognises a stack with contents w E \A\*, 
without ever popping off more than the top entries w' (|w'| <  |w|), then it fol­
lows that that subroutine will recognise any word in {w'}. This suggests that 
sometimes recognition only relates to the top portion of the contents of a stack. 
This motivates the cartesian product in the following:

Lemma 21. Let M\ be a special marker symbol. The following is recognisable as 
the stack:

{{M \,x \ , . . .  ,xn,M\ : x i , . . .  ,xn is an ordering o f \A\}.\A\*  : .A E STRUC(o)} 

where the ‘. \A\* ’ indicates cartesian product1

Proof Recall that A is our set of additional special symbols. Therefore x ^ A iff 
x represents a bona fide element of the structure on which we are computing. We 
begin by defining zorder:

vi :=  P o p  ; I f  vi /  M\ T h e n  D o  L o o p  F o r e v e r  F i 

V G u e s s  V2 

I f  V2 ^  A T h e n  D o  

vi :=  P o p  

W h i l e  vi /  V2 D o  

vi :=  P o p  O d  

vi :=  P o p

I f  vi =  V2 T h e n  D o  L o o p  F o r e v e r  F i 

W h i l e  Vi /  v2 A vi /  M\ D o  

vi :=  P o p

I f  vi =  v2 T h e n  D o  L o o p  F o r e v e r  F i O d  F i

The subroutine works by checking that every bona fide element appears once 
(lines 4-6), and only once, i.e. not again (lines 7-11), between two markers M\. 

The following scheme p accepts the global set of the lemma:

1 There is potential for ambiguity here: By \A\* w e mean any possible finite string o f  real 
elem ents o f  A ,  i.e. anything that could possibly be pushed to the stack, as opposed to just those 
sym bols (encoded as tuples) that represent elem ents o f  A .
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INPUT(v i ,V2)

^order

O u t p u t  (v i,v 2 ).

□
We will also define the following subroutine %push, which pushes a random 

(non-deterministic) number of random (non-deterministic) choices (except M\)  to 
the stack:

3G u e s s  v ',v "

W h i l e  v7 ^  v" Do 

B G u e s s  w'

I f  W  =  M i T h e n  L o o p  F o r e v e r  F i 

P u s h  w '

B G u e s s  v' , v" O d

4.3 The A c c e p t  instruction.

With the inclusion of a universal side to our semantics, we will have need of
an A c c e p t  instruction which, as its name suggests, tells the computation to im­
mediately accept. Any program scheme p 7 that involves an Ac c e p t  instruction 
should be considered shorthand for a scheme p G A PSS(l) in the following way. 
Assume, w.l.o.g., that p 7 involves variable set V and that vi,V2 ^ V. Let x7 be p 7 

without the input and output instructions. Construct T from t7 via the substitutions:

•  All tests t in while loops in T7 become tests vi ^  V2 A t in t .

•  All instances of A c c e p t  in x7 become v\ :=  V2 in x.

Then p should be considered as:

I n p u t  (V, vi, V2 ) 
vi v2

W h i l e  vi 7  ̂V2 Do x O d  

O u t p u t  (V, v i, V2)
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Note that, once vi =  V2 , the program can never get trapped in an infinite loop, and, 
consequently, must make it to output.

4.4 APSSj(l) =  APSS(l)

Lemma 22. A PSSj(l) C A PSS(l).

Proof. We prove the inclusion by simulating the successor relation. We take any 
scheme p G APSS5(1), and construct a scheme p' G A PSS(l) such that, for all 
structures A , A  f= p iff A  |= p'.

Assume, without loss of generality, that p involves element variables V, with 
v i, V2 , V3 ^ V, and does not use the marker symbol M \ . Given p, we will construct 
p' by adding a special start-routine, and amending pop instructions as well as 
successor tests in while loops.

Let V' = V U  {vi,V2 ,V3 }. Then p' will be:

Input(V')
Push M\

'tpush

Push M\
ALL(CheckOrder, Continue)
If CheckOrder Then Do xorder\  Accept Fi 
If Continue Then Do Fi 

Tp
Output(V')

where xp is the, as yet undefined, subroutine that actually mimics p. Observe how 
we are using the All instruction to use the stack twice, once for verification of 
the order, and again for whatever we want to do in the rest of the computation. 
The stack is no longer readable only once, as it was with NPSS. Note that the 
A ll choice ‘Continue’ is a dummy, in that any computation that follows that path 
will continue through the rest of the program.

We will now meet xp.
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4.4.1 Simulation of p; Tp

Any computation that gets to this sub-routine will have M\ as the top element of 
the stack. Assuming M\ is not a symbol of p, we can use it to ensure that we never 
stray into the bottom part of the stack, where the putative order is held, during our 
simulation of p. In constructing xp, we first remove the input and output lines (of 
p). Next we,

•  convert all in stances o f  ‘v :=  P o p ’ to:

vi :=  v 

v :=  P o p

I f  v =  M i T h e n  D o  P u s h  v ; v :=  vi F i

We may also have to evaluate quantifier-free successor queries of the form 
v' =  succ{v), that might appear in a test for a while loop, immediately before the 
test of that while loop. Let O be a propositional formula:

•  Convert all instances of ‘W h i l e  0 ( v '  =  succ(v)) D o % O d ’ to:

T succ

W h i l e  <X>(vi =  v2) D o t ; t 5UCC O d

Where xsucc is.

ALL(CheckSuccv, Continue)
I f  C heckSuccv  T h e n  D o  

W h i l e  vi /  M i D o vi :=  P o p  O d  

W h i l e  vj /  v D o vi :=  P o p  O d  

v2 :=  P o p

I f  v2 =  v' T h e n  D o  A c c e p t  F i 

L o o p  F o r e v e r  F i 

I f  C on tinue T h e n  D o  F i

Observe that v' and v are free in the sub-routine.
The subroutine works by splitting the computation, both checking that v' =  

succ(v) (consuming the stack in the process) and continuing the computation with 
the stack intact. □
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Corollary. APSS,(1) =  A PSS(l)

Proof. The converse A PSS(l) C APSSs(l) is trivial. □

4.5 NPspace C A P S S 5(1)

We will ultimately prove this by simulation of a non-deterministic Turing Ma­
chine that uses no more than nk tape squares (for some k), on input bin(A), where 
\\A\\ =  n. First, we will need some technical lemmas, which are stated for the 
case when the signature is o 2, i.e. for graphs. Similar lemmas may be obtained 
for other signatures. Let ra be such that 1 < m < n k, then we identify ra with the 
lexicographic rath variable /:-tuple v, with respect to the built-in successor.

Lemma 23 (Recognise bin($)). Let M\ and M2 be special marker symbols. The 
following is recognisable as the stack (the brackets are synthetic, and appear, as 
the commas, purely for clarity):

{ { (I,Oty,Af2) , ( 2 , 0t2,Af2), . . - ,  ( ^ , a ^ M 2),Mi}.|S|*
: s  e STRUC5(o2), a T. . . a ^  =  fcm(3), a ^ y , . . . , a ^  = blank]

Proof. Letting v =  ( v i , . . . ,  v*), we define 1

( v ,v ' ,v " )  :=  P o p

I f  v / 1 v  v" 7̂  M 2 T h e n  D o  L o o p  F o r e v e r  F i 

w :=  v

W h il e  v ^ / i^ D o

( v ,v f, v /f) :=  P o p

I f  v 7  ̂succ(w) T h e n  D o  L o o p  F o r e v e r  Fi 

I f  v" 7  ̂M 2 T h e n  D o  L o o p  F o r e v e r  F i 

I f  v >  n2 A v' ±  blank T h e n  D o  L o o p  F o r e v e r  Fi 

I f  £ (v * - i ,v j t)  A v ' =zero T h e n  D o  LOOP FOREVER Fi 

I f  - i£ (v * _ i,v * )  A v' =  one T h e n  D o  L o o p  F o r e v e r  Fi 

w v Od
v" :=  P o p ; I f  v "  f M \  T h e n  D o  L o o p  F o r e v e r  Fi
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Then p, as In p u t (v, v/ , v//, w) ; t^ aj; O u t p u t (v, v', v",w),  recognises the global set 
of the lemma. □

Lemma 24 (Read/Write Head Right). Let M\ and M 2 be special marker symbols. 
The following is recognisable as the stack (the brackets are synthetic, and appear, 
as the commas, purely fo r  clarity):

{ {(m ,a^,M 2 ) , . . . , ( ^ ,o g r ,M2 ) ,(T ,a T,M2) , . . . , ( m - l , a ^ , M 2 ),Mi,
( m+ l ,a ^ TT,M2 ) , . . . , ( ^ , a ^ , M 2 ) ,(T ,aT,M2) , . . . , ( m, a^ , M2 ),M i}.|g |* 

: S e S T R U C , ( o 2), a T, . . . , a y*eZ }

Proof We define i r/w-right *n two parts. One part will check that the numbers ra 
to m — 1, and ra + 1  to ra behave correctly; that the markers are placed properly; 
and that the as are in Z. The other part will check that the as match in the two tape 
lists, i.e. each ay that appears before the first M\ is equal to the ay that appears 
between the first and second M\s. In the following, the variables ufff  will hold 
the number of the first entry of the first tape (ra), and ubottom will hold the number 
of the last entry of that tape (m — 1).

Define Tcheckform to he.

( v y y ' )  :=  P o p

I f  (vi G A) V . . .  V (vk G A) V (V ^ Z) V (v" /  M2) THEN D o  

L o o p  F o r e v e r  F i

Utop ■ =  F

bottom :=  inv.cyc.succ(u^f)
(w ,h / ,  w " ) P o p  

W h i l e  v  ubottom D o  

(v,v',v") :=  P o p

I f  w  7  ̂cyc.succ(v) T h e n  D o  L o o p  F o r e v e r  F i .

I f  v ' ^ Z V v ' V  M2 T h e n  D o  L o o p  F o r e v e r  Fi 

w :=  v Od
v" :=  P o p ; I f  v "  T h e n  D o  L o o p  F o r e v e r  F i
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( v y , v " )  :=  P op

I f  (vi e  A) v . . .  v  (vi e  A) v  (v' ^ I ) v  (v" /  M 2) T h e n  D o  

L o o p  F o r e v e r  Fi 

I f  v ^  cyc.succ(u^) T h e n  D o  L o o p  F o r e v e r  Fi 

W h i l e  v /  D o  

( v y y ' )  :=  P op

I f  vv ^  cyc.succiv) T h e n  D o  L o o p  F o r e v e r  Fi.

I f  v ' ^ Z V v ' y  M2 T h e n  D o  L o o p  F o r e v e r  Fi 

vv :=  v O d

v" :=  Pop; I f  v "  / M i  T h e n  D o  L o o p  F o r e v e r  Fi

The first half of the sub-routine (12 lines) checks the form of the stack up to, and 
including, the first M \. The second half (last 9 lines) does the same up to, and 
including, the second M \ .

Define Tcheckcontent tO

V G u e s s  vv

I f  wi e  A v . . .  v  wk e  A T h e n  D o  A c c e p t  Fi 

( v y , v " )  :=  Pop

Utop ■=  T

Ubottom := inv.cyc.succiu^)
I f  v =  vv T h e n  D o  v /,r5m :=  v' Fi 

W h il e  v /  vv D o

( v y y ' ) : = P o p

V firsta  :=  v' O d

W h i l e  v /  ubottom D o  

( v y y )  :=  P o p  O d  

v" :=  P o p
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( v y , v " )  : =  P o p

I f  v =  vv T h e n  D o  vseconda :=  v' Fi 

W h i l e  v / w D o  

( v y y ;) :=  P o p

Vseconda. V O D

IF Vfirsta 7  ̂ vsm>/u*a  THEN DO LOOP FOREVER Fi

T he  three lines cu lm in a tin g  in  the  m id d le  V ' P o p ’ rem ove dow n to , an d  in ­

clud ing , the first M \.
We now give x r/w_ right\

A L L (C heckF orm ,C heckC onten t)

I f  C heckF orm  T h e n  D o  t  check fo rm  Fi 

I f  C h eck C o n ten t T h e n  D o  t checkcontent Fi

Now, p, as:

I n p u t  (v, v ', v", w, w ', w", v / ir5m, vseconda)

^ r/w —right

O u t p u t  (v, v ', v", w, w ', w". v f irsta ,v seconda)

recogn ises the  g lobal set o f  the lem m a. □

Lemma 25 (Read/Write Head Left). Let M\ and M 2 be special marker symbols. 
The following is recognisable as the stack (the brackets are synthetic, and appear, 
as the commas, purely for clarity):

{  { ( m , a ^ , M 2 ) , . . . , ( ^ , a ^ , M 2 ) , ( T , a T , M 2 ) , . . . , ( m -  l , a ^ z T , M 2 ) , M i ,

(m— l , a ^ T,M2) , . . . , y , a ^ , M 2 ) , ( I , a T,M2) , . . . , (m  —2 , a ^ , M 2),Mi} . |Sr
: S G STRUC5 (o2), a T, . . . , a ? G 2 }

Proof We construct 'ir/w-ieft in a similar manner to t r/w- right- d

Proposition 26. NPspace C  APSS5(1)
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Proof. We aim to prove this by simulation. As before, and w.l.o.g., we assume 
that Q G NPspace is a graph problem. Similar lemmas to those previous may be 
obtained for other signatures. Suppose Q G NPspace is accepted by the Turing 
Machine T, with space bound of nk on input bin(A), where ||yi|| =  n. We con­
struct pQ such that, for all graphs S, and for all orderings of S , bin($) G £2 iff

s  N p q -
We will consider our alphabet expanded to include the \Q\ -f \H\ symbols rep­

resenting T ’s states and alphabet; we also assume the additional marker symbols 
Mi and M2 . We will store 7” s state in one variable vq: let qs and qa be the distin­
guished start and accept states. Once again A is how we envisage 7”s transition 
rules (cf. section 3.8). pQ will be:

l N P U T ( v ,  l / ,  v " ,  VV, W ,  v t / ' ,  Vfirsta, Vseconda, vq,v'q)

vq ■= q$
P u s h  M\

'tpush
P u s h  M i

A L L (C heckB in ,C ontinue)

I f  C heckB in  T h e n  D o  xbin ; A c c e p t  Fi

I f  C o n tinue  T h e n  D o  F i

W h i l e  vq ±  q a D o  

( v y . v " )  :=  P o p ; P u s h  ( v y , v " )

E iT H E R (R ight,L eft,U nm oved)

I f  R ig h t T h e n  D o  

I f  (vq,v',R) £  A T h e n  D o  L o o p  F o r e v e r  F i 

P u s h  xpush; P u s h  M i 

A L L(V erify ,C ontinue2)

I f  Verify T h e n  D o  t r/ w- right '■> A c c e p t  Fi 

I f  C o n tin u e2 T h e n  D o  Fi F i
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I f  L eft T h e n  D o  

I f  (vq ,v ' ,L )  £  A T h e n  D o  L o o p  F o r e v e r  F i 

P u s h  M \ ; x push; P u s h  M \

A L L (V erify ,C ontinue2)

I f  V erify T h e n  D o  z r/ w_ief t ; A c c e p t  Fi 

I f  C o n tin u e2 T h e n  D o  F i F i 

I f  U nm oved  T h e n  D o  

(v ,v ',v " )  :=  P o p  

3G u e s s  w ^ v q

I f (vq ,v ',v 'q ,w f) £  A T h e n  D o  L o o p  F o r e v e r  Fi 

Vq :=  v'q ; P u s h (v ,  w r, v")  F i 

Od

O u t p u t  (v, v ', v" , w, W , w " , v f irsta , vseconda ,v q ,v ’q)

□
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4.6 Summary

Below, we summarise the results of this chapter, and the previous.

NPSPQ^(O) C N P S P Q j(O ) _ N P S5(1) NL
N P S P Q M(0) c N P S P Q "(0 ) - N P SSs( l ) P

N P S P Q 6(*) c N P S P Q M(it)

N P S P Q j (^) c N PSPQ  bs+(k)
N P S P Q  J+ (fc) c NPSPQ^(2fc)
N P S P Q j+ = N P S P Q j
N P S P Q “+ (&) = NPSPQ?(fc)
N P S P Q “+ - N P SPQ ?

N P S P Q M+ - N P S P Q " + - N P SPQ ? =  N P S P Q M

N P space c N P S P Q "
NP c n p s p q “H ) , c N P SPQ ^ C  NPspace

L FP — A P S ( l )
P = A P S j( l )

N P sp ace c A P S S s( l ) — A P S S ( l )

Figure 4.1: Summary of Results
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Chapter 5

Classes of Structure on which
P = ±PS*[FO]

In [42], various classes of structure C were studied, on which, for some k , 
NPSS(*) =PS*[FO] captures exactly P. The method used in the proofs involved 
building a canonical order in NPSS(& — 1), whereupon, since NPSS(fc) =  P on 
ordered structures, the result followed. The following is a consequence of that 
work:

Proposition 27 ([42]). Let C be any class o f  structures, and let x ,y ,z  be vari­
able j-tuples. Suppose there are formulae R(w \ , . . . ,  wm,x,y, z) e  ±PS*[FO] and 

, . .  , ,w m) € PS([FO] such that, fo r  all A  €  C:

•  R is commutative in x and y, and deterministic in z, i.e.,

A  1= V w i, . . . ,w mx y  z R ( w i , . . . ,w m,x,y,z) <-+ R (w i , . . . ,w m,y,x,z)

A  (= Vwu . . . ,w mx y  3 zR (w i,-- - ,w m,x,y,z)  —>• Biz R(wh ... ,wm,x,y,z)

•  A  \= , . . . ,  wm) if and only i f

in the deterministic, commutative Hypergraph specified by
R{yvi , . . . ,  wm,x,y,z) on \(A ,w \ , . . . ,  wm)\J, we have, for  all u G \A\,
u] =  (w,... ,w) is accessible from w \J.

• A  |= 3 w u . . . ,w m\\f(w \,. . . ,w m).
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Then P =  ± p s m“ W>+i [FO] on the class C.

Any tuple (wi , . . . ,  wm) s.t. A  1= \|/(wi, . . . ,  wm) may be considered a generat­
ing tuple for A .  Generating tuples will be denoted (gi , . . .  ,gm)> and their underly­
ing generating set {g i , . . . , gm} as G.

The principle results of [42] were:

•  On the class of locally-ordered strongly connected digraphs, P =  ± P S 1 [FO].

• On the class of planar triangulations, P =  ± P S 2 [FO].

In these cases, the construction of \|/, as in the proposition, is fairly straightfor­
ward. However, if we are prepared to sacrifice a few levels in ±PS*[FO], we can 
disregard \|/ altogether.

Given some relation R £ ±PS*[FO], as in the proposition, there must neces­
sarily be some \|/ £ PS*+3 [FO] that will satisfy the required conditions. We may 
take \ | t (wi , . . . ,wm) :=

Vw PS[A^,y,z,/?(wi,.. . ,w m,x,y,z)\(w\j ,uj )

Since we may write the Vw as R £ ±PS*[FO] indeed implies that
\ |/£  ±PS*+3 [FO].

The following is now immediate:

Corollary. Let C be any class o f structures, and le tx fy fz  be variable j-tuples. 
Suppose there is a formula R(w \ , . . . ,  wm,T,y, z) £ ±PS*[FO] such that, for  all 
A  £ C, there exists a generating tuple ( g i , . . .  ,gm) £ \A\m such that:

• R(g i , . . .  ,gm,x,y,z) is commutative in x andy, and deterministic in z

• For all u £ \A\, uJ is R-accessible from  (gi)^.

Then P =  ±PS^+4 [FO] on the class C.

5.1 Finitely generated sets

Intuitively, a set A on which some partial functions are defined is described as 
m-generated if it has a (generating) subset of m elements such that all elements of
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A may be obtained by (possibly nested) applications of these partial functions on 
the elements of this subset.

When F  is a finite set of partial functions, each of some finite arity, we will 
want to define the set F* of all functions that can be created from those in F  by 
repeated relabelling and substitution. So long as F  contains a non-unary function, 
F* must be infinite (even under equivalent relabellings), since it will have func­
tions of all arities. Throughout this chapter we will use a bracketed superscript to 
indicate the arity of variable tuples or partial functions. Thus, whilst for an ele­
ment jc, xk denotes the &-tuple of xs, the notation specifies a variable fc-tuple, 
whose different positions may hold different values.

Definition. For some finite structure A ,  let F  =  { / i , . . . , / )}  be partial functions 
of respective arities (i.e. f [ ax  ̂ : |.A|ai —> \A\ , . . . ,  : \A\aj —> \A\).
Then F * is defined inductively via:

• / i ( v i , . . . , v fll) , . . . , f j ( v i , . . . , v aj) e F * .

•  (Projection/Reordering.) If /  £ F* of arity a, and a' < a, then let {n \ , . . . ,  na} 
and {n\ , . . . ,  n'a,} be subsets of Z of order a and a', respectively. If we have 
a function p : {n \ , . .. ,na} —* {n[ , . .. ,n'a,}, then f  £ F*, of arity a', where:

f  (v«i 5 • • • i Vna/) • f(Vp(n\)?••••> vp(na))

•  (Composition.) If / , / '  £ F*, with respective arities a, a', then f  £ F*, of 
arity (a — 1 + a ') ,  where:

/ " ( v i , . . . , v fl_i ,vfl, . . . , vfl+fl/_1) := f { v \ , . . . ,  vfl_ i , / , (va, . . . ,  vfl+fl/_i))

Projection/Reordering is nothing more than relabelling of the variables. Be­
cause of the Reordering rule, we have no need to explicitly mention compositions 
that occur other than at the right hand end of the outer partial function. The mini­
mum depth of nestings of Composition in a partial function /  £ F* will be known 
as the rank of /  in F*.

Definition. Let F = { f \ , . . . ,  f j  } be a set of functions of respective arities a \ , . . . ,  aj. 
Let Gp =  ( / ] , . . .  , f j )  be the associated signature. Then:
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•  STRUC (<3f,m) is the class of finite structures over Of, such that, for all 
A  G STRUC(o/7,m), there exists a generating subset G =  {g i , . .. ,gw} C 
|j4|, such that, for every u G |.A|, there exists an arity r, a g i7*, and a 

=  (vvj, . . . ,  vvr) G Gr, such that w —

STRUC (O f,m ) is said to be the class of structures that can be m-generated 
by the set of partial functions F.

5.1.1 F  contains a single k-ary partial function fy .

Theorem 28. For each m, we have that P =  ± PS 4 [FO] on the class 
STRUC (o {/o},m).

Proof. Let k be the arity of the partial function /o, and let x ,y ,z  be variable 
(k+  1)-tuples. We will define a deterministic, commutative Hypergraph rela­
tion R(w i , . . . ,  wm,x,y,z), in quantifier-free FO, such that, for all structures A  G 
STRUC(O{y0},m), there exists g i , . . .  ,gOT G \A\ such that, for all u G \A\, uk+l is 
accessible from g \k+1. We may then appeal to the Corollary of Proposition 27.

We will specify R(wi , . . . ,  wmix ,y ,z)  as R(x,y,z), where the entries of x ,y ,z  
may be among the variables w \, . . . ,w m. We will define R over (£ +  l)-tuples 
from ({P ,Q ,S,U }w |>l|)t+1.

The symbols P, Q, and S are used for switching rules, and U represents blank. 
(Note that we can enlarge our alphabet to include these special symbols in pre­
cisely the manner we did in Section 3.4. Thus, each ‘variable’ we discuss here, 
will, in point of fact, be a quintuple of actual variables.)

We begin with the ‘start’ rules:

.  R[(w*+1),(w*+1) ,( f>,U<:- 1,» '1)].

.  1, w,-), (/> 1, w,-), (/> 1, w,-+,)] fo r i  < i< m .
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We now progress to the ‘active’ rules:

Switching:

• «[(/>,U*-'',]cW), (/>□*-' ' ,j W ) , ( g , j f M ) ]  f o r € l-Ap', and i < k.

•  /f[(e ,U *-,',jcW),(e,LJ*-i, j( ()),(S ,U t - i,jc(i))] forsW 6  1̂ 1', and i <  k. 

Concatenation:

• R[(P,Uk- i,x ^ ) ,(Q ,U k- j j <-j'>),(P,Uk- j - i,x<-i'>,y(-}'>)] for jfW G
v1-̂  G \A \i, and i + j  < k.

Production:

.  /e[«2, Uf,3c<*-0), (S, UJ ), (,P, LJ*-1, z)] for i + j  = k, and /o(*,50 =  Z-

and the ‘finish’ rule:

.  R[(P, U*-1,^), (S, U*-1,x), ( ^ +1)] for jc G |^l|.

Finally, we consider R to be the symmetric closure of the above rules, i.e. for all
x (^+ ̂ *) 5 ,̂

P(3c(*+1\ y (*+1),z(*+1)) => R(y^k+l\x ^ k+l\z ^ k+l)).

This ensures the commutativity of R.
R is clearly deterministic in and can be written in quantifier-free FO.

We will now prove that, for all u £ \A\, uk+l is accessible from g \k+l. It follows, 
from the start and finish rules, that this is equivalent to the question of whether 
(P, U*_ 1, u) is accessible from the collection (P, U*-  1, g i ) , . . . ,  (P, U*- 1, gm).

We know that, for each such u, there exists a partial function / ^  e  {/o}*, 
and tuple (wj , . . . ,  wr) G {gi , .. . ,gm}r, such that u = / ^ ( w q , . . . ,  wr). We prove 
(P, U*-1 , u) is accessible by induction on the rank of f^ r\

(Base Case.) When the rank of is 0, then r < k, and it follows that u =
/o(wi , . . . ,wr) for some wi , . . . ,wr G {g i , . . . , gw}. We may access (P,U*_ 1,w) 
from (P,l_ / - 1 , gi ) , . . . , ( P , b y  repeated use of Switching, then repeated 
Concatenation, and finally a single application of Production.
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(Inductive Step). Assuming it works for rank 8 , we prove it works for rank 
8 + 1 . I f / M  is of rank 8  + 1 , then it follows from the definition of rank, and the in­
ductive hypothesis, that u — /o (w i,.. . ,wr), where (P,U*- 1 ,wi),. .. ,(P,U^- 1 ,wr) 
have been accessed (since w \ , . . . ,  wr are generated by partial functions of strictly 
lower rank). Again, we access (P,U^_ 1 ,m) by repeated use of Switching, then 
repeated Concatenation, then a single application of Production. □

5.1.2 F  contains multiple partial functions.

Theorem 29. Let F be a finite set o f partial function symbols. For each m, we 
have that P =  ± P S 4 [FO] on the class STRUC (<5f,m).

Proof We reduce this case to the previous. Suppose F contains j  partial functions 
of respective arities a \ , . . .  ,aj. Let a =  max{a \ , ... ,a/}. We aim to construct a 
single partial function f p , of arity (a +  j) ,  that simulates all the functions in F. 
wti) — (wi , ...  ,Wj) will represent functions f \  to f j  according to our ubiquitous 
scheme:

• if wi =  W2 then w ^  represents f \ ,

•  if wi /  W2 but W2 =  w>3 then w ^  represents / 2 ,

•

•  if w\ W2 , . . . ,  wj- 2 ~f~ Wj- 1  but w j- 1  =  wj then w ^  represents f j - 1, and

•  if wi 7  ̂W2 , ■ •., Wj- 1  7̂  Wj then w ^  represents f j .

Suppose w represents f  whose arity is a/. Consider fF(x^a‘\y ^ a~ai\w )  to be 
f i x (a')), if f  is defined a.tx^a' \  and undefined otherwise.

Since j  is fixed, this construction of fp  can be specified in quantifier-free FO.
□

5.1.3 An application: finitely generated groups

We say that a finite group H  is m-generated if there exists a set of m generating 
elements G =  {gi , . . .  ,gm}, such that for every x € H  we have some y  G G* such
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that x =h y  (where * is the usual Kleene star). Clearly, all groups of order <  m 
are m-generated.

Corollary. For each m, on the class o f m-generated finite groups, ±P S4[FO] =  P.

Corollary. On the class o f finite simple groups, ±PS 4 [FO] =  P.

Proof Recall that finite simple groups are 2-generated [3, 39]. □

Despite finitely generated groups being a paradigm for our systems, it should 
be noted that the results of the previous section go well beyond groups; beyond 
single functions, and beyond associativity.

5.2 Hamiltonian Outerplanar graphs

A graph is said to be outerplanar if it can be drawn in the plane with all its vertices 
on the outer face. Such a drawing will be called an OP-drawing.

Definition. A Hamilton cycle in a graph S, where ||9 || =  n, is a sequence sc;yc of 
distinct vertices v; (for 1 < i < n) such that, for 1 < i < n, £'^(vJ-,v/+ 1), and also
E 9 (vn,v i).

We consider a hamiltonian outerplanar graph (HOP) to be an antireflexive, 
undirected, outerplanar graph with a Hamilton cycle. We start by noting some 
basic properties of outerplanar graphs that have a Hamilton cycle.

Lemma 30.

(i) Consider an HOP graph S, with Hamilton cycle scyc. Then, in any OP- 
drawing o f$ , scyc must be on the outer face.

(ii) For any HOP graph S, the subgraph given by any Hamilton cycle is unique.

(iii) S has a unique OP-drawing in the plane, up to combinatorial isomorphism.

Proof. (/) Note that any OP-drawing of scyc is combinatorially equivalent to the 
rc-gon (n =  | |S| |). Thus, scyc must appear on the outer face of any OP-drawing.
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Proof forwards

jc

Proof backwards

Figure 5.1: Diagrams for Lemma 31.

(») Consider a graph S with two Hamilton cycles, scyc and s'cyc, that give rise 
to different subgraphs. In any OP-drawing of S, scyc and s'cyc must be drawn as 
distinct n-gons over the same vertices. Yet not both can be on the outer face, 
violating part (/) .

(iii) The unique Hamilton cycle subgraph dictates the unique OP-drawing.
□

We make use of this unique OP-drawing by now referring, unambiguously, to 
the outer face.

Lemma 31. There is a formula cp(;c,y,z) E ± P S 3 [FO] that holds on an HOP S if, 
and only i f  x  and z are the distinct neighbours ofy, on the outer face.

Proof We first define P(x,z,y,w) E iP S ^ F O ] , intended to mean that there is a 
path from r  to z avoiding both y  and w. We define P as the Transitive Closure 
(though in Path System logic) of the following formula 0:

Q(p,q,y,w) :=  p f- y  Ap  /  w A q y Aq ±  w A E (p,q)

Thus,
P{x,z,y,w) :=  P S [kp,p,qQ\(x,z)
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Now, cp(x,y,z)

E(x,y) AE (y,z) Ax 7  ̂zA
Vw[(w 7  ̂xA w /  z AE(y,w) —> ^P(x,z,y, w)]

We now prove that x and z are the distinct neighbours of y, on the outer face of 9 , 

if, and only if, 9  |= cp(x,y,z).
(Forwards.) If x and z are the distinct neighbours of y on the outer face, then the 

first three conjuncts of tp are clearly satisfied. Furthermore, the edge between any 
distinct w and y  must cut across the OP-drawing of 9 (see Figure 5.1). It follows 
that all paths from x to z must go through either y or w. Hence 9 |= cp(x,y,z).

(Backwards.) Suppose x and z are not the distinct neighbours of y on the outer 
face. If x and z are not distinct, or y  is not adjacent to both, then we fail on one of 
the first three conjuncts of cp. So, assume x and z are distinct, and y is adjacent to 
both, but x and z are not the two neighbours of y on the outer face. If we choose 
some distinct w that is such a neighbour, then there is clearly a path from x to z 
avoiding both y and w (see Figure 5.1). In any case, 9 (^(p(x,y,z). □

Theorem 32. On the class HOP, P =  ± P S 7[FO].

Proof. We will define a deterministic, commutative Hypergraph relation 
/?(wi,w2 ,w3 ,xi ,x2 ,yi,y2 ,zi,z2), in ± P S 3 [FO] s.t. for all structures 9 £ HOP, 
there exists g\ ,g 2 ,g3 £ |9 | such that, for all u E |9 |, u1 is accessible from g \2. We 
may then appeal to the Corollary of Proposition 27, with j  = 2.

The rules will be the symmetric closure of:

•  t f[(wi,wi),(wi,wi),(vvi,w2)]

•  /?[ (W2 ,W2 ) , ( W 2 , W 2 ) , ( W 2 ,W 3 ) ]

•  /?[(w,x), (x,y), (y,z)] if cp(w,x,y) Acp(x,y,z) (where cp is as in Lemma 31).

•  /?[(w,x), (w,x), (x,x)] ifvvT^x.

That the rules are deterministic, commutative, and can be written in ± P S 3 [FO] 
is straightforward. It is also clear that, starting with any g \,g 2 ,g3 such that 
<p(gi,g2 ,g3 )> all vertices are accessible: from gi we access g2 {some next vertex
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on the outer face -  which determines whether we are moving clockwise or anti­
clockwise around a certain OP-drawing of S), then gi (the next vertex on the outer 
face -  now direction is set), then all the way round the outer face until we reach 
the final vertex on the Hamilton cycle (before we reach gi again). □

Remark. We can easily extend our result to hamiltonian outerplanar graphs that 
are not undirected or not antireflexive, by considering their undirected, antireflex­
ive versions. Specifically change all instances of E(x,y), in the prior discourse, to
(E (x ,y )V E (y ,x ) )A x ^ y .
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Chapter 6 

Dichotomies in Boolean Constraint 
Satisfaction

6.1 Introduction

Let o  range over all relational signatures. We define the relational class of boolean 
structures Bo o l .

B o o l {A  : A  is a o-structure and | \A \ | =  2}

We denote tuples of variables (resp. boolean constants) in bold, e.g. x (resp. t). 
These tuples are not of a uniform arity.

Definition. For A  G B o o l ,  and each with the question as to whether A  \= cp,

•  the problem S aT nc(^ ) has input cp :=  3x<2(x),

•  the problem Q S a tn c (.A) has input, for some n > 1, of the form,

cp := Vxi3x2Vx33X4. . .Vx2n+l3X2n+2G(Xl,X2,.. • ,x2n+2)

•  the problem F[2n+i-SATNc(*^) has input,

cp := Vxi3x2Vx33x4 . . .  Vx2n+i 0 ( x i ,x 2 .. .x2n+i)
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• the problem 112«+2 -S a tn c (^ )  has input,

cp := VXi3x2Vx33x4 . • Vx2n+i3x2n+20(x i,X 2, . .. ,x2n+2 )

•  the problem S ^ + i -SatncO^) has input,

cp := 3 xiVx23x3Vx4 . . .  3x2n+i<2(x1,x2 .. .x2n+i)

•  the problem S^h^ -S aTn cG^) has input,

cp := 3xiVx23x3Vx4 . . .  Vx2n+20 ( x i ,x 2 .. .x2n+i)

where, in each case, Q is a conjunction of positive atoms.
The problems SaTc(*A) etc are defined analogously, but with the two boolean 

constants 0  and 1 built-in to the signature.

It is clear that 132n+2 -SATNc(^) (respectively, Z2/i+i-SaTnc(^0) is in the 
complexity class T\2n+2 (respectively, 1 ^ + 1)- âct’ ^  follows from [43] that 
they are complete for those classes, for certain A . It is also clear that 11i-Satnc (*4) 
is tractable, for all A , since we may check each extensional relation independently, 
one-by-one, for an invalidating assignment. Indeed, if the maximum arity of a re­
lation in A  is a , then the complexity of I1i-SaTnc(^-) is 0(na), where n is the 
size of the input. It follows, by similar argument [43], that II^+i-SaTncOA) (re­
spectively, ^ 2n+2 -SATnc(^O) is in the complexity class (respectively, X^+i)-

The comments of the previous paragraph apply equally to the problems 11;- 
and Z;-SATc, i.e. in the situation where the Boolean constants are available.

Definition. For a relation R, of arity a, define:

•  3 -F o r m  (R) to be the set of formulae formed from the closure of the atoms 
R (\)  (where x is an a-tuple of not necessarily distinct variables), under con­
junction and existential quantification.

•  II2-F0 RM (R) to be the set of formulae of the form Vxcp(x,y), where cp € 
3 -F o rm (/? ) .
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• V /3-Form (/?) to be the set of formulae formed from the closure of the 
atoms R(x), under conjunction, existential quantification, and universal quan­
tification.

We define 3-R el(/?) to be the set of relations expressible by formulae in 3-Form  (/?), 
when reading the variables lexicographically. We do likewise for I3 2 -Rel(/?) and 
V /3 -R e l(R). These sets are sometimes known as relational clones [14].

We may refer to boolean relations by some propositional formula that ex­
presses them, reading the propositional variables lexicographically, e.g. [A V B] 
expresses {(0,1), (0,1), (1,1)}; [A /  B] expresses {(0,1), (1,0)}.

Definition. A relation R, of arity a , is:

(/) 0-valid iff it contains the tuple (O'3).

(ii) I-valid iff it contains the tuple ( l a).

(iii) horn iff it may be expressed by a propositional formula in CNF where each 
clause has at most one positive literal.

(iv) dual horn iff it may be expressed by a propositional formula in CNF where 
each clause has at most one negative literal.

( v )  bijunctive iff it may be expressed by a propositional formula in 2-CNF.

(vi) affine iff it may be expressed by a propositional formula that is the conjunc­
tion of linear equations over Z 2 .

Given a template A , over signature involving relations R \ , . . . ,  Rj, of respective 
arities a \ , . . . ,  a j , we construct the relation RA thus:

•  If A  has /  <  j  non-empty relations, then let R't be the ith non-empty relation 
of A .

• Let Ra  = R[ x ... x R’j,.
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This construction will enable us to consider signatures with multiple relations, 
as though they only had one. This is because each of the six attributes from the 
previous definition hold over all the relations of A  if, and only if, they hold for RA . 
Note that all the relations of A , except possibly the empty relation (J), are present 
in 3 -R e l ( R / i ) .

Theorem 33 (I-III: Schaefer [38], and IV: Dalmau/Creignou et al [15, 14]).

I. SaTcOA) is tractable i f  RA satisfies any o f conditions (iii) — (vi), and is 
UP-complete otherwise.

II. SaTncGA) is tractable if  RA satisfies any o f conditions (i) — (vi), and is 
UP-complete otherwise.

III. QSATc (yi) is tractable if  RA satisfies any o f conditions (iii) — (vi), and is 
Pspace-complete otherwise.

IV. Q S a t n c ( .A ) is tractable ifR A satisfies any o f conditions (iii) — (vi), and is 
Pspace-complete otherwise.

We will briefly consider the methods involved in proving these dichotomies. 
When the boolean constants are present, Schaefer was able to take any RA not in 
classes (i) — (iv), and construct the ternary boolean not-all-equal relation, which 
is known to give rise to an NP-complete S a t , and Pspace-complete Q S a t . When 
constants are not present, there are the degenerate cases of 0 - and 1-validity, which 
become trivial. For the other tractable sub-classes of templates A , we clearly have 
that S a T n c GA) is polynomially reducible to S a t c (*A), guaranteeing its tractabil- 
ity in the no-constants scenario. It remained for him to prove that S a T c ( A )  is 
polynomially reducible to S a T n c OA) for those A  not in classes (/) — (vi). He did 
this by simulating the boolean constants. Call a relation R& complementative if, 
for all tuples x in Rj±, the tuple x', obtained from x by swapping the Os and Is, is 
also in Rj[. Schaefer proved the following:

Lemma 34 ([38]). For some Rj{, not in classes (i) — (vi), either [Aj, [~v4] G 3-Rel(/?/l), 
or [A B] G 3-REL(Ra) and Rj{ is complementative.

Before going further, we will need the following lemma.
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Lemma 35 ([15]). I f  Ra is complementative, then all relations in \f/3 -R e l(R a )  
are complementative.

Proof We prove this by induction on the term-complexity of cp G V /3-R el(/?^).
The base case is trivial. For the inductive step, note that:

•  R(x) and/?'(x ') complementative, implies R A R '(x,x') complementative.

•  R(x) complementative, implies 3x\R(x) is complementative.

•  R(x) complementative, implies Vjci/?(x) is complementative.

□

We can now sketch Schaefer’s result, and method.

Proposition 36. I fR ^  is in none o f the classes (i) — (vi) above, then SATc(7l) <p 

S a tn c (tI) .

Proof By Lemma 34, we need to consider two cases.

(Case 1.) We have 3yi<2i(y1,fc),3yo0o(yo5a) G 3-Form (tf4 ) expressing [X],[^X], 
where Q\ and Qo are positive conjunctive. We are now in a position to simulate 
the constants 0 and 1, for, given an input 3xcp(x,0,1) for Satc(^A), we know,

3xcp(w,0,1) «=> 3x3a3by(x ,a ,b )A 3yiQ i(y i,b )A 3yoQ o(yo ,a )

The latter formula is an input for SaTnc (y4), when the inner existential quantifiers 
are drawn out, putting it in prenex form.

(Case 2.) We have 3yQ '(y,a,b) G 3-Form (Ra ) that expresses [A ^  B], and
r a is complementative. It follows that,

3xcp(x,0,1) G SaTc(^L) <=> 3x3a3b cp(x,a,&) A 3yQ '(y,a1b) G SaTnc(TI)

since cp must be complementative (by Lemma 35). □

The problem of removing the constants in QSatc was not attended to by 
Schaefer. It was finally settled many years later by Dalmau [15], and, indepen­
dently, by Creignou et al. [14].
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6.2 Technical results

Before progressing, we will need a number of technical lemmas.

Lemma 37 (Quantifier Re-ordering). Let the variables a ,b  not appear in x. The 
following are equivalent on all boolean structures fo r all conjunctive positive Q:

3x3a\/b B(a , b) A Q{a,x)

\fb3x3a B(a , b) A Q(a, x)

I f  and only if:

• B is § (empty), singleton, {(0,0), (1,0)}, {(1,1), (0,1)}, or

• B contains (0,0) and (0,1).

•  B contains (1,0) and (1,1).

Proof If B is (J), singleton, {(0,0), (1,0)}, or {(1,1), (0,1)} then both sentences 
will be false irrespective of Q.

If B contains both (0,0) and (0,1), it may easily be verified that both sentences 
are equivalent. The case where B contains both (1,0) and (1,1) is symmetric.

The remaining possibilities for B are {(0,0), (1,1)} and {(1,0), (0,1)}, which 
will be each false in the former sentence, but may be tme in the latter (e.g. if Q is 
logically valid). □

Given the boolean ^-tuples t \  =  ( ? } , . . . , t \ ) and t2 =  ( t \ , • . . ,  ff) we define ti  © 

t2 to be (t\ + 1\ , • • •, t \  +  r |) where the addition is modulo 2 .

Lemma 38 (0-affine case. [13]). Let R be a boolean relation o f arity k. The 
following are equivalent:

(a) R is 0-valid and affine.

(b) 0 k £ R, and, fo r  all assignments t i , t2 £ R, we have tj © t2 £ R.
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Definitions. For a relation R of arity k, and any set T — {i'i, . . . ,  ij} of j  positions 
0 < i\ < . . .  < ij < k, we define R\T  to be the y-ary relation 3x^ ... 3xik_.R(xi, . . . , x f) , 
where { /1 , .. -J k - j}  =  {1, — 7\ Observe that R|T is in 3-Rel(/2).

For any t e  {0,1}* and T  C  {1, we define t|T as the assignment t' G

{0 ,1  that agrees with t in the positions indexed by T .
Let R be a relation of arity k, and t G {0,1 an assignment. We say that t is 

j-compatible (w.r.t. R) if, for every subset T  c  {I,--- ,k} (of size | r |  <  y), we can 
find some assignment t' G R such that t and t' agree in the positions indexed by T . 
This is equivalent to the condition that any y-ary sub-tuple of t can be extended to 
some k-ary t7 in R. Clearly this is trivially true when t is itself in R ; the interesting 
cases are when it is not.

The notion of y-compatibility is key in characterising horn logical relations.

Lemma 39 (horn case. [15]). Let R be a boolean relation o f arity k. The following 
are equivalent:

(a) R is horn.

(b) fo r  all tj, t i  G R, we have tj A t i  G R.

( c )  fo r  every T C  {1,. . .  ,k}, and fo r  every \T\-compatible (w.r.t. R\T) assign­
ment t G {0,1 not in R\T, we have that t contains at most a single 0.

Lemma 40 (Adapted from [15]). I f  RA is 0-valid and non-Horn, then there is a 
relation 5^ definable in B -R ei^ /^ ) such that:

(0 ,0 ,0 , 0) (0 , 0 ,0 , 1)

(0 , 1 ,0 , 1)
(0 , 0 , 1 , 1)

Proof. Since RA is non-horn, we may guarantee to break part ( c )  of the previous 
lemma. This implies that there is a subset of indices T C {1,. . .  ,k} and a |T|- 
compatible assignment t not in R\T  that contains at least two zeros. We may 
benefit from dwelling on what exactly this means. It guarantees us some |T|-ary 
relation R\T, in 3-Rel(/?,/1), and a |T|-tuple t s.t.
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• t i R \ T ,

• for any t' that agrees with t in all but one position, t' E R\T, and

• t contains at least two zeros.

We therefore consider / ? | r ( v i , . . . ,  v ^ )  and two indices a , p E Z ^  at which t has 
zeros. Note that t can not be all zeros, since R is 0-valid yet t£ R \T .  Let I' be the 
set of indices at which t is one. Finally, let I" be the set of indices, other than i j ,  
at which t is zero1. We obtain (*, va , vp,y) f romR| r (vi , . . . ,  v ^ )  by substituting 
all variables v,- s.t. i E I' by the variable y and substituting all variables v; s.t. i E I"  
by the variable x.

We already know that (0,0,0,1) ^  and we have assumed that R is 0-valid, 
hence (0,0,0,0) E Sj. Since (0,0,0,1) ^  we will have (0,1,0,1), (0,0,1,1) E 
SJ by the |r|-compatibility, since these two assignments each only change the 
value of a single variable in R\T. □

Lemma 41 (Adapted from [15]). I f  RA is 0 -valid and non-affine, then there is a 
relation S  ̂definable in 3-R el(/?^) such that:

e s £  i s l  
(0 ,0 ,0 ,0 ) (0 , 1 , 1 ,0 )
(0 , 1 ,0 , 1)
(0 ,0 , 1 , 1 )

Proof Since R is 0-valid and affine, it follows from Lemma 38 that there are 
assignments t i , t i  E R such that ti © t2 £ R • For R (xi, . . . ,**),  define:

• Voo =  {v : v E {xi, . . .  ,Xk} v is 0 in t\ and 0 in t2 }

• Voi =  {v : v E {■*],... >xk} v is 0  in t\ and 1 in ^  }

• Vio =  {v : v E {jci , . . .  ,;ty} v is 1 in t\ and 0 in ^  }

• Vii =  {v : v E {xi , ... ,x̂ .} v is 1 in t\ and 1 in t2 }

!It is possible that I" is empty, in w hich case  S£ will actually be a ternary relation. This will 
cause no problem s, and will com e out in the wash in Lemma 42.
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Let S*Ooo,;yoi,>’io,yii) be R (x \ , . . . ,x k) with the substitutionsyoo for Voo, yoi for 
Voi, yio for Vio, and yi 1 for V n. The claimed properties follow immediately. □

Lemma 42. I f  RA is 0-valid and non-Horn and non-affine, then there is a relation 
S^  definable in 3-Re l (/? l̂ ) such that:

est tsl 
(0 ,0 ,0 ,0) (0 ,0,0 , 1) 

(0 , 1,0 , 1) (0 , 1, 1,0 ) 

(0 ,0 ,1 ,1 )

Proof. S l- .=  S{A S^. □

6.3 A dichotomy theorem for IIo-SaTnc

It follows from Schaefer’s work and [43] that rk-SA TcM ) is tractable if RA is in 
any of the classes (iii) — (vi), and Ilo-complete otherwise. Borrowing much from 
Dalmau, we will show that F ^ -S a tn c  exhibits the same dichotomy.

Our proof rests on the following:

Proposition 43. Let A  G <B. I fR ^  is neither horn, dual horn, affine, nor bijunctive, 
then 112-S a tc  {A) is polynomially reducible to F^-SaTncC^)-

If Ra  is neither 0-valid nor 1-valid, we may appeal to Schaefer’s method for 
simulating the constants. This may only result in more existential quantifiers on 
the inside of the input instance, which will not jeopardise our being in . How­
ever, if we need formulae with universal quantifiers to simulate the constants, then 
we find ourselves potentially outside , with more than a single alternation of 
quantifiers in the input instance.

Recall that we are only concerned with R71 that are non-horn, non-dual-horn, 
non-bijunctive, non-affine, and either 1-valid or 0-valid. We will consider four 
cases.
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6.3.1 Case 1: RA is 0-valid and not 1-valid.

In this case we have the constant 0 for free, since RA (a , ... ,a) expresses [~>A].
Let S3 be the boolean relation {(0,0), (1,0), (1,1)}.

Lemma 44. I f  RA is 0 -valid, non-horn, non-affine, and not 1 -valid, then S | is 
definable in B-REL^^1).

Proof We consider two further possibilities for the relation above.

•  If S ^  also contains (0,0,1,0),  then S3 =  3aSy^i(a ,a ,b 1c) ARA (a, .. . ,a ) .

•  If S ^  does not contain (0,0,1,0),  then S3 =  3a3a 'S^(a ,a ',c ,b) ARA (a, ...,a ) .

□
In both cases S3 is of the form 3w<2s(w, b , c), where Qs is positive conjunctive. 

Note that [A] is expressed by \/cS\(b,c).

Lemma 45. I f  RA is 0 -valid, non-horn, non-affine, and not 1 -valid, then II2 - 
SATc(.A) polynomially reduces to L^-SaTncCA)-

Proof Given an input Vxi=3x2 (2 (xi ,x2 ,0 , 1) for I~l2 -SATc(.A), observe,

Vxi3x2 0 (xi ,x2 ,O, 1)
<(=> \/x \3 x2 3 a3 b Q (x\,X 2 ,a ,b) A^c S^(b,c)

A RA (a, ...,a )
<̂> V x\3 x2 3 a3 b Q (x\,X 2 ,a ,b) AVc3w Qs(vt,b,c)

ARA (a ,... ,a)
Vx\\/c3 x2 3 a3 b Q (x \1X2 1a,b) A3w Qs(w,b,c)

A RA (a, ...,a )

Note that the final line is a valid input for T ^ -S a tn c ^ ) -  The final equivalence 
holds by the Quantifier Re-ordering Lemma, with B  3w Qsfw,b,c). □

6.3.2 Case 2 : RA is 1-valid and not 0-valid.

This is the symmetric case of the previous (where zero is replaced with one, and 
vice-versa).
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6.3.3 Case 3 : RA is 0-valid and 1-valid, but not complimenta- 
tive.

Since is 0-valid, 1-valid, and yet not complimentative, there exists a tuple t in 
Ra  s.t ts complement is not in RA . Let /  index the set of positions at which t is 
zero and let J  index those positions at which t is one. If RA (v \ , . . . ,  v*) is a k-ary 
relation, consider Qatom(a,b) to be RA under the substitution a for all variables 
indexed by I  and b for all variables indexed by J. Qatom is atomic, and it expresses 
S y  We now have that \/bS\{a^b) expresses [A], and 'iaS\(a,b) expresses [~>A].

Lemma 46. I f  RA is 0 -valid, non-horn, non-affine, 1 -valid, but not complementa­
tive, then I l 2-SATc(*A) polynomially reduces to n 2-SATNc(.A).

Proof Given an input Vxi3 x2 <2 (xi , x2 , 0 , 1) for 112-SaTc(.A), observe,

Vxi3x2 <2(xi,x2 ,0,1)
<=> \/x \3x 2 3a3b Q (x i,x 2 ,a,b) A Mb'Sl(a,b')

A\/ar S \{a \b )
<̂> Vxi3x23a36 <2(xi,x2,a,£) A W  Qatom(a,b;)

A\/a Qatomip ib ) 
\/xi\/b'\/a’3x2 3a3b Q {x\,x2 ,a,b) A Qatom{a:bf)

A Qatom(& 5b)

The final line is a valid input for L^-SaTn cG^)- The final equivalence holds via 
two applications of the Quantifier Re-ordering Lemma. □
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6.3.4 Case 4 : RA is 0-valid and 1-valid, and complimentative.

In this case will look like:

e s l
(0 , 0 ,0 ,0) (0 ,0 ,0 , 1)

(0 , 1,0 , 1) (0 , 1, 1,0)
(0 ,0 , 1, 1)

( 1, 1, 1, 1) ( 1, 1, 1,0)

( 1,0 , 1,0) ( 1,0 ,0 , 1)

( 1, 1,0 , 0)

Note that \/d 3 aS^(a ,b ,c ,d )  expresses [B ^  C]. Since G B -R e l^ -71), it fol­
lows that [A /  5] is expressed by Vd3a3v?Qty(vr,a,b,c,d)t where Q^  is positive 
conjunctive.

Lemma 47. 7/7?/L isQ-valid, non-horn. non-affine, 1 -valid, and complementative, 
then I l 2 -SATc(*/i) polynomially reduces to F ^ -S aT n c^ )-

Proof. Given an input Vxi3 x2 <2 (xi,X2 ,0 , 1) for I l2-SATc(^l), observe,

Vx i3x2 (2(x i ,x2,0, 1)
Vxi3 x2 3b3c Q (x \JX2 ,b ,c) AV d3aS^(a,b ,c,d)
Vxi3 x237?3 c Q (x\1X2 ,b ,c) A\/d3a3wQxfl(w ,a ,b ,c ,d)

Now this is not, in general, equivalent to:

\/x i\/d 3 x2 3 b3 c Q (x\,X2 ,b ,c) A 3a3wQxfl(w ,a ,b ,c,d)

because, when b =  c, that formula may be true, but the previous ones are always 
false. However, we claim that:

Vxi3 x237?3 c <2 (xi,X2 ,&,c) A\/d3a3wQxfi(yv,a,b,c,d)
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is equivalent to

Vxi'\/d\/d'3 x 2 3 b3 c Q (x \, X2 , fc, c) A3a3wQxfi(w,a ,b ,c ,d) A3a'3wQxfi(w ,a ,b ,c ,d ')

which is an input for F^-S aTncG^)- It remains for us to prove this equivalence.
(forwards.) This direction is trivial. For each given xi in both formulae: any 

b ,c ,x 2 that witness the first formula will also witness the second .
(backwards.) For each given xi in both formulae: if d /  d', it follows that any 

true valuation of the second formula has b /  c. This ensures that, if the second 
formula is true, that the first formula will also be, witnessed by some b f^ c .  □

Theorem 48. II2-SaTnc(“4) is tractable ifR A is horn, dual horn, bijunctive, or 
affine, and is FI^-complete otherwise.

Proof. We know 112-SaTc has the proposed dichotomy. Trivially, the tractability 
of n 2-SATc(.A) implies the tractability of Fb-SATNcO^)- Furthermore, we have 
proved, for RA outside the listed classes, that 112-SaTc (.A) polynomially reduces 
to the Pspace-complete 112-SaTnc(*A)- The result follows. □

Corollary. For i > 2 , F1/-SaTnc and Z ;-S aTnc exhibit the same dichotomy as 
n 2-SATNC and Q S a tn c .

Proof. Let j  > 1. Our manipulation of the innermost universal quantifiers in the 
pertinent Fb or II4 formulae, such that we build equivalent ones in II2 , will clearly 
also work on Fby+i or Fby+ 2  (resp. J/zj+i or 2 ,2j) formulae to obtain equivalent 
ones in Fl27 (resp. ^ 2j - 1)- Consequently, our proof is equally valid for these 
problems. □

Remark. We are left with the class of problems X2-SATN0  noted before, these 
are in NP, and they exhibit the same dichotomy as S a t n c -

Remark. A similar proof to this dichotomy theorem appears in [27]. The result is 
also inferred in [18].

Some recent work has been undertaken in alternation-bounded QCSP, by 
Chen [12]. He studies certain templates for which the complexity of the prob­
lem collapses to co-NP-completeness for all levels of the polynomial hierarchy 
above or equal to II2 .
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Chapter 7 

Quantified Constraints on Graphs

7.1 Introduction

The uniform constraint satisfaction problem, as used in Artificial Intelligence, is 
usually defined as follows (see e.g. [32]).

•  Input: a finite set of variables A, a finite domain of values T, and a set of 
constraints {C(5'i), . . .  ,C(Sc)} where each 5/ is an a,-tuple of (not neces­
sarily distinct) variables from A and each C(5,-) is an at-ary relation over 
T.

•  Question: is there an assignment to the variables over the domain that mu­
tually satisfies all of the constraints?

It is clear that T, together with the relations S \ , . . .  ,SC, is a first-order structure 7  
(over some signature a  of the form (S^ 1, . . .  ,S“C)). It is also clear that the question 
we are posing of this structure concerns the existence of a simultaneous solution 
to a conjunction of atomic relational constraints. Therefore, we will prefer to use 
the following formulation of the uniform CSP (see e.g. [5]).

• Input: a structure 7  and a sentence cp =  3x Q(x), where Q is a conjunction 
of positive atoms.

•  Question: does T \= cp?

96



In this thesis we will be concerned only with the non-uniform variant of CSP, 
which is a family of problems parameterised by the template T. Thus, for each 
template T, CSP(T) is the decision problem with:

•  Input: a sentence cp =  3x Q (\), where Q is a conjunction of positive atoms.

•  Question: does T |= cp?

Note that the well-known NP-complete problems 3 -S at (satisfiability of a for­
mula in conjunctive normal form with exactly three literals per clause) and 3 -C ol  

(graph 3-colourability) correspond to constraint satisfaction problems. The prob­
lem 3 -Q S at is a popular generalisation of 3 -S at to quantified formulae, which 
is Pspace-complete. In this context, it makes sense to generalise constraint satis­
faction problems to quantified constraint satisfaction problems.

Definition ([5]). The non-uniform quantified constraint satisfaction problem with 
template T, denoted by QCSP(T), is the decision problem with:

•  Input: a sentence \\t of the form

Vxi3x2Vx3 3x4 . . . Vx2n+l3x2n+2!2(xi,X2,... ,X2n+2 )

(for some n > 1), where Q is a conjunction of positive atoms.

• Question: does 7  |= vj/?

3-QSat is easily recast as a QCSP, but we will be more interested in a variant 
problem. Let ®nae be boolean structure with a single ternary not-all-equal 
relation

N A E 3 =  { (0 ,0 ,1) , (0 , 1 ,0) , (1 , 0 ,0) , (1 ,1 , 0) , (1 , 0 ,1) , (0 , 1 ,1) }

The problem QCSP(®Jja e ) is known to be Pspace-complete [38].
Much effort has gone into identifying the T for which CSP(T) is tractable 

(e.g. [32, 34]) and NP-complete (e.g. [33]) . It has been conjectured in [19] that 
CSP(T) is always either tractable, or NP-complete. (Indeed, it has even been 
conjectured in [8 ] where this separation lies.) However, the grand classification
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into dichotomy remains incomplete. Some partial results are known: many years 
ago Schaefer proved the dichotomy for 7  ranging over boolean domains [38]. 
That was recently extended to domains of size 3, through methods of universal 
algebra, by Bulatov in [7]. Of greater interest to us is the dichotomy theorem for 
undirected, antireflexive graphs of Hell and Nesetril. They prove in [25] that an 
undirected template 7  gives rise to a CSP(T) that is tractable, if 7  is bipartite, 
and a CSP(‘T) that is NP-complete otherwise. This dichotomy extends trivially 
to all undirected graphs, since templates with self-loops will give rise to a trivial 
CSP. Bang-Jenson, Hell and MacGillavray prove a similar dichotomy theorem 
for tournament templates in [4]. Specifically, they prove that CSP(T) is tractable, 
if 7  is a tournament with at most one (directed) cycle, and that CSP(T) is NP- 
complete, if 7  is any other tournament. Both of these graph dichotomy results are 
proved by non-constructive means.

Following on from Schaefer’s work [38], Dalmau [15] and Creignou et al. 
[14] eventually proved a dichotomy (tractable or Pspace-complete) for QCSP on 
boolean domains. A trichotomy (tractable, NP-complete or Pspace-complete) has 
been proved for QCSP on templates where all graphs of permutations appear as 
relations [5]. A significant body of tractability results has been established for 
QCSP, largely along the same lines as for CSP, in [5, 11]. However, so far, no 
overarching polychotomy for QCSP has been conjectured.

It is well known from work by Chandra and Merlin [9], on the problem of 
Conjunctive Query Containment from database theory, that (existential positive) 
conjunctive queries are directly related to the existence of homomorphism be­
tween structures. Defining constraint satisfaction problems in terms of structure 
homomorphism became popular after the seminal paper by Feder and Vardi [19]. 
The non-uniform homomorphism problem  with template 7, denoted Hom(T), is 
the decision problem with:

•  Input: a structure A.

•  Question: does A  - ^ 7 ?

If % 3  is the 3-clique, then it is clear that H om( X 3) is the problem of graph 3- 
colourability.
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We define the canonical query associated with A  to be the existential quan­
tification of the conjunction of the facts of A . For example, X 3 has the canonical 
query

(pK3 :=  3x3y3z E(x,y) AE(y,x) AE(y,z) AE(z,y) AE (z,x) AE (x,z).

H o m (T) and CSP(T) are essentially two views of the same problem. Specifically, 
they are equivalent under the bijective (up to structural isomorphism and labelling 
of variables) reduction r(A) =  cp^, i.e. A  E H o m (T) iff cp̂  € CSP (O').

In this chapter, we introduce a new problem A lt-H o m  (O'), which is to QCSP(O') 
what H o m (T ) is to CSP (O'). It is defined in terms of alternating-homomorphism 
from a partitioned structure to a non-partitioned template. We also give a charac­
terisation of this problem through the existence of winning strategies in a certain 
game. Such a method has been used independently by Chen (e.g. in [11, 10, 12]).

7.2 Preliminaries

7.2.1 Structures and Logic.

We consider only finite, non-empty structures. Let A  and 7  be such structures 
over o. We denote the universe, or domain, of A by \A\, and the cardinality of \A\ 
by | |A | | .  For each relation Ri of o, with arity «/, R f  C \A\a‘ is the interpretation 
of Ri over A . When it does not lead to confusion we may be sloppy in identifying 
Ri and R f .  A  structure A  is connected if, and only if, it is not the disjoint union of 
some structures A! and A " . An isolated element of a structure A  is one that does 
not appear in any tuple of any relation of A .

A  homomorphism from A  to T is a function h : \A\ —► |T| such that, for all 
relations Ri of o, with arity a and for all (*1, . . .  ,xai) E \A\a', we have that 
R f ( x \ , . . . , x aj) implies R j(h (x \ ) , . . .  ,h(xai)). If there exists a homomorphism 

from A  to T, then we write A  If we have both A  - i-T  and T - ^ A  then 
we describe A  and 7  as homomorphically equivalent.

A quantifier-free first-order formula Q is positive conjunctive if it is a conjunc-
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tion of positive atoms, i.e. of the form,

<2(x) =  Rh (xi) ARi2(x2) A ... ARin(xn) ,

where, for every 1 < j < n ,  Rij is a relational symbol from a, and xj is a tuple of 
variables of suitable length (i.e., of the same length as the arity of Note that 
a variable may occur more than once in a given tuple.

7.2.2 Alternating-homomorphism problems.

For n 6  IN, let Kn =  { t/],£ 2 ,t /3 ,£ 4 , .. •, £ 2^+1,£ 2/1+2 } be a set of unary symbols 
that do not occur in a. Define an n-partitioned structure *}3 over a  to be a finite 
structure over the signature oU Kn , such that the interpretation of the symbols from 
Kn is a partition of the structure: i.e.,

•  l*PI =  U U G ^ ' + i l  u  I E 2 / + 2 I ) ;  a n d ,

•  for any 0  <  i < j  < n, the sets U2i+\, £ 22+2 , ^ 2;+i and £ 2.7+2 are pairwise 
disjoint.

We write Srp to denote the o-structure underlying ^3. We write y$\uj (respectively, 
^3 r#f) to denote the substructure of induced by £7/ (respectively, £,•). When this 
does not cause confusion, we write £7/ (respectively, £ 7) for the sake of brevity.

We say there is an alternating-homomorphism from the ^-partitioned structure 
ĵ3 over o  to the (non-partitioned) o-structure 7, and we write ^3 7  if, and only

if,

•  for all functions f a  \U\ —► |T|,

•  there exists a function f s 2 : £ 2  —>• |CT|, such that,

•  for all functions f a n+l : U2 n + 1 —► |T|,

• there exists a function fE 2n+2 : £ 2n+ 2  —* |7j, such that,

•  f a  U /e 2 U . . . fu 2n+{ U /e 2„+2 is a homomorphism from to T.
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A partitioned structure is one that is rc-partitioned, for some n.

Definition (Alternating-homomorphism problem). The non-uniform alternating- 
homomorphism problem with template 7, denoted by A lt-H o m (‘T), is the deci­
sion problem with:

•  Input: a partitioned structure ^3.

•  Question: does *}3 ̂ t-T?

Examples. Consider the graph 9 with vertices {a,b,c, d j  and edge set 
{(a,b), {b,a), (c,d), (d ,c )}. We define three partitioned structures which have 9 
as their underlying graph:

• ^3i such that U\ = {a},£ 2  =  {b},U i — {c} ,£ 4  =  {d}.

•  such that U\ =  {a},E 2 = {b},U \ =  {c} ,£ 2  = {d}.

•  ^ 3  such that U\ =  {a},Eg =  {b},U i = {c},£io =  {d}.

These partitioned structures are depicted in Figure 7.1.

The above partitioned structures are equivalent in the sense that, for any struc­
ture T, if for any one of them there exists an alternating-homomorphism to T, then 
there exists also an alternating-homomorphism to T from the others. This leads 
us to define the following rewrite scheme to transform an n-partitioned structure 
*}3 to a rewrite-reduced partitioned structure, denoted ^3.

1. If all relations of S<p are empty, i.e. all elements of Sq3 are isolated, then 
set *}3 to be the singleton with |S?pj =  {0 }, all relations of empty, and 
E2 =  {0}. Otherwise:

2. Remove all isolated elements of *}3.

3. Suppose is the disjoint union of m connected substructures ̂ 3i, . . .  ,^3m. 
For each 1 < I < m , construct ^3/ from *}3/ thus:

(a) while there is a minimal i <  n such that Uh+i is empty, move every

element of £ 2 ;+ 2  into £ 27, f°r nil i < j < n  and every element of U2j +3  

into U2j+\, for all i < j < n -  1 .
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Figure 7.1: Three Partitioned Graphs.

(b) w hile there is a m inim al i < n such that E2i is em pty, m ove every 

e lem en t o f  E2j +2 into E2j, fo r all i < j <  n and every elem en t o f  U2j+ i 
in to  U2j - \ ,  fo r all i < j < n .

4. Set ^3 to be ^3] l±)... l±)̂ 3m.

5. Remove as many empty partitions as possible, so obtaining an n'-partitioned 
structure (for some n' < n).

The rewrite scheme is deterministic, up to the order in which the connected sub­
structures are considered, and so ^3 is well-defined. We say that two partitioned 
structures ^3 and (J3' are rewrite-equivalent if ^3 =  . In figure 7.1, the structures
?Pi, <p2, and (P3 are all rewrite equivalent, and ^32 is rewrite-reduced. Note that, 
for any ()3, we can compute its rewrite-reduced in polynomial time.

Tw o p artitio n ed  structures ^3 and are  said to be problem-equivalent if, for 

all tem pla tes T , w e have E A lt-H o m (T ) if f  ()3' E A lt-H o m (T ).

Proposition 49. Let ()3 and (J3' be two partitioned structures. I f t y  and are 
rewrite-equivalent then they are problem-equivalent.
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Proof. It is easy  to  see th a t the rew rite rules p reserve the ex istence o f  alternating- 

h o m om orph ism . □

Note the converse does not hold as the following example shows.

E xam ple. Consider the 1-partitioned digraphs:

•  ^ 4 : with domain {*,y,z}, edge set {(x,y), (z,y)}, and partitions U\ =  {*}, 

£2 =  {y,z}.

• ^ 5 : with domain {x,y}, edge set {(x,y)}, and partitions U\ = {*}, E2 =

M -

Whilst they are not rewrite equivalent, they are problem equivalent. ^ 4  is equiv­
alent to the sentence \/x3y3zE(x,y) A E(y,z) and ^ 5  is equivalent to the sentence 
Vx3yE(x,y). Both sentences have the same class of finite models.

We note, for any and its rewrite-reduced ^3, that their underlying structures 
Sqj and Sqy differ by possibly only some isolated elements. 8^3 and are homo-

morphically equivalent, and, for all templates 7,

7.2.3 QCSP versus Alt-Hom .

In this section, we show that QCSP and A lt-H o m  are essentially the same prob­
lem.

Theorem 50. L e t 7  be a fin ite  (3-structure. The p rob lem s  QCSP(T) a n d  

ALT-HOM (T )  are equ iva len t u nder lo g sp a ce  reduction.

Proof. We will modify the bijective reduction r(A) =  tp^, mapping a structure to 
its canonical query, that proved the equivalence of Hom and CSP in the intro­
duction to this chapter. From r we build the function 5 from partitioned structures 
to prenex quantified formulae whose quantifier-free part is positive conjunctive. 
Given a partitioned structure ^3, consider the canonical query 9 §<p of its underly­
ing structure Sqj. Given this existential query 9 §^, we produce the query 9^3 by 
replacing all instances of 3x, for variables ;c that correspond to elements of ^3 in a 
universal partition, by Vjc. The map s(^3) =  933 is bijective (up to isomorphism of 
the rewrite-reduced <}3 and labelling of variables) and, along with its inverse, may
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U1

E2

Vx3y3z E(x,y) AE(y,x) A E (y,z) AE(z,y) AE(z,x) A E(x,z)

Figure 7.2: Canonical sentence of a Partitioned Structure.

be computed in logarithmic space. It follows directly from the definitions that s 
and s~ l are reductions between QCSP(T) and A lt-H o m (T ). □

Just as we refer to the canonical query of a non-partitioned structure, so we 
will refer to the canonical query of a partitioned structure as being the sentence it 
reduces to, as in the previous theorem.

Example. Let T be any graph. The partitioned structure and sentence of Figure 7.2 
give rise to equivalent instances of, respectively, A lt-H o m  (T) and QCSP(T), 
that reduce to one another in logarithmic space. The sentence is the canonical 
query of the partitioned structure, as just defined.

7.2.4 Alternating-homomorphisms as winning strategies.

We give a game characterisation of QCSP. The game we are about to define 
corresponds exactly to a standard model-checking game, also known as a Hintikka 
game [20]. We define this game in order to use the game parlance in subsequent 
proofs.

Definition (Game for QCSP). Let be an ^-partitioned structure and T a (non­
partitioned) template. The (^ ,7 )-g a m e  goes as follows. Opponent plays on the 
universal partitions and Proponent plays on the existential partitions. They play
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alternate partitions, in ascending order, until all the partitions have been played. 
For 0 < i < n:

•  Opponent (U-move): for every element in partition U2i+i, Opponent chooses 
an element in T, that is, Opponent gives a function 0 /7/72/+1 : U2i+i —> |T|.

•  Proponent (E-move): for every element in partition E2/+2. Proponent chooses 
an element in T, that is, Proponent gives a function pro2i+ 2  ■ E2i+ 2  —► 1̂ 1 •

If, at any stage of the game, the function defined by the union of the moves of 
both players, opp\ U pro2 U 0 /7/73 U ...,  is not a partial homomorphism from Sq3 

to 7, then Opponent wins. Otherwise this finite game will finish with some ho­
momorphism from §«p to 7  having been constructed, and Proponent wins. It is 
Proponent’s aim to construct such a homomorphism, and it is Opponent’s aim to 
stop her. (In deference to the conventions of Ehrenfeucht-Fraisse games, Propo­
nent is considered female, and Opponent male.) Note that, if at some point the 
partial function defined by the play can not be extended to a homomorphism no 
matter how either side plays, then Opponent must necessarily win the game.

A strategy specifies how Opponent or Proponent are to play, given what has 
been played before:

•  (Proponent) A strategy for partition E2/+2 in the (^3,T)-game is a function

OE2i+2 '■ E 2i+ 2 x Tlx<i(E2x+ 2 x T) x (U2\+i x T ) - + X

• A strategy o  for Proponent in the ( ^ . ‘XJ-game is the union of her strategies 
for all the existential partitions, viz U^<« ge2X+-, •

•  (Opponent) A strategy for partition t/21+1 in the (()3,T)-game is a function

Tjy2;.+1 : U2i+i x n x<i(E2x x 7) x (U2\ + 1 x 7) —> T.

•  A strategy t for Opponent in the (^3,T)-game is the union of his strategies 
for all the universal partitions, viz •

A winning strategy for Proponent is a strategy o  that beats all Opponent strategies 
T.

Theorem 51. Let ^  be a partitioned structure, and the corresponding canon­
ical query. The following are equivalent.
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(i)

(ii) Proponent has a winning strategy in the (*$,7)-game.

(Hi) 7  (= cp<p.

Proof. The equivalence of (/) and (iii) follows from Theorem 50. It is well known 
that Proponent has a winning strategy in the FO-model-checking game on ((p^, T) 
if, and only if, 7  J= cp<p [20]. The game we define is the model-checking game 
restricted to sentences in prenex form whose quantifier-free part is positive con­
junctive. The equivalence of (ii) and (iii) follows. □

7.2.5 Graphs

A digraph is a structure over the signature containing a single binary relation E. 
An undirected graph is one whose edge relation is symmetric.

Definitions.
(Cliques.) Let n > 1. Let X n be the (antireflexive) n-clique, that is the graph 

with vertices { 0 ,1 ,... ,n — 1} such that all distinct vertices are adjacent. Let X rf ^  
be the reflexive n-clique, that is the graph with vertices {0 , 1 , . . . ,  n — 1 } such that 
all vertices are adjacent (when i =  j , we call the corresponding edge a self-loop).

(Paths.) Let 7 n be the undirected antireflexive n-path, i.e. with vertices 
{ 0 , 1 1 }  such that E ( iJ )  iff j  =  i +  1 or j  = i — 1. It follows that the 1 -path 
7 \ is X \  and the 2 -path T2 is %2 -

(Cycles.) Let be the directed antireflexive n-cycle, i.e. with vertices 
{ 0 ,1 ,... ,n — 1} such that E ( iJ )  iff j  =  / +  1 mod n. Let Gn be the undirected 
antireflexive n-cycle, i.e. the symmetric closure of T)Cn. It follows that C3 is the 
3-clique X 3 .

It is proved in [5] that, for n >  3, QCSP(3C„) is Pspace-complete. It follows 
immediately that A l t -H o m  ( X n) is also Pspace-complete, for n > 3.

An induced sub-digraph S' C S is a retract of S iff there is a homomorphism 
h : S —* S s.t. S' is the image of h. A  graph is a core if it contains no proper 
retracts. For an arbitrary digraph S, we define a core o f S to be any minimal (w.r.t.
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size) retract that is itself a core. It is well-documented (e.g. [26]) that the core of 
a digraph is unique, up to isomorphism.

A bipartite graph is an undirected graph that is 2-colourable. A graph is bipar­
tite iff it has either X \  or % 2  as its core. Note that bipartite graphs are antireflexive.

7.3 Basic graph results

Most of these results are given for digraphs; we will specifically consider undi­
rected graphs in the next section. When we discuss edges between vertices jc and 
y, these may be oriented either way, or not at all (double edges).

7.3.1 Restricting partitions

We define restrictions on the input partitioned structure which will ultimately lead 
to tractability.

Definitions (restricting partitions). Let *}3 be a partitioned digraph. We say that 
^3 is in 'L\-form (respectively, Tl2 -form), if the only non-empty partition is £ 2  

(respectively, if the only non-empty partitions are among [Ux.Ei}). If is in 
in I l2-form and there is at most one vertex in U\, then we say that *}3 is in Fl2 - 
fan form. If, moreover, the vertex x G U\ exists, and is adjacent to some vertex 
y € E2 , then we say that ^3 is in strict T\2 -fan form. Finally, we say that ()3 is in 
Y\2 -multifan form, if ^3 is the finite disjoint union of structures in I l2-fan form.

Note that, if ^3 is in Xi-form, then ^3 is a fortiori in F^-fan form. Any ^3 in 
I l2-fan form, but not in strict Fl2-fan form, has a rewrite-reduced ()3 in Zi-form.

Proposition 52 (Fb-multifan form). Let 7  be a digraph. The restriction of 
A L T -H O M (T )  to inputs in Yl2 ~multifan form is HP-complete, whenever H o m (T )  

is HP-complete.

Proof. L et *}3 be the  d isjo in t un ion  o f  ^ 3 i , . . . ,  ^3m all in I l 2 -fan form . N ote that 

<J3 e  A l t - H o m  (T ) iff  3̂,• e A l t - H o m  (T ), fo r 1 < i < m.
(Membership of NP) For each 1 <  i < m, if (J3; is not in strict n 2-fan form, 

then it is equivalent to ^3/ in Zi-form, and we may simply guess a homomorphism
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Figure 7.3: A Partitioned Graph in strict 112-fan form.

and verify in polynomial time. If <J3; is in strict I l2-fan form, we test all possible 
maps for the single element in U\, guessing the rest of the homomorphism and 
verifying in polynomial time.

(NP-hardness) If ^3 is in Xi-form, then *J3 E A lt-H o m  (T) if, and only if, 
E H o m (T ). Hence, A lt-H o m (T ) is NP-hard provided that H o m (T ) is NP- 

complete.
□

We will find, for a wide range of templates T, that every input which is not 
in I l 2-multifan form can be discarded. This will be because inputs <J3 not in Ffe- 
multifan form are either easily seen to be no-instances of A lt-H o m  (T ), or to be 
equivalent to the rewrite-reduced ^3 which is in Fh-multifan form. Further, we 
will find that we can split up inputs ^3 in 112-multifan form into their constituent 
112-fan components (as in the previous proof). Thus, structures in F^-fan form 
are central to our discourse. Such a structure appears in Figure 7.3.

Remark. The ‘converse’ of Theorem 52, that the restriction of A lt-H o m  (T ) to 
Fh-multifan form being NP-complete implies H o m (T ) is NP-complete, does not 
in general hold. For example, take 7  to be (the disjoint union) X 3 l±J . The 
self-loop makes Hom(DC3 i± )X ^) trivial (every instance is a yes-instance). 
However:

Proposition 53. The restriction of A L T -H O M  (CJC3 l±J!X^) to Y\2 -multifan form is 
NP-complete.

Proof. Membership of NP follows as in the first part of the proof to the previous
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proposition. For completeness, we give a reduction from the NP-complete 3- 
colourability problem H om (3C3 ).

Let S be an input for the problem Hom(3C3 ). Let S i, . . . ,  Sm be the connected 
components of S and let x \ , . . .  be some sequence of vertices in these respec­
tive components.

We construct an input for A lt-H om  (% 3  i±J X r̂ )  thus:

• For each component S/, construct a partitioned graph 93/ (in F^-fan form) 
whose underlying graph has vertices |S/| W {y/} (where y, is a new vertex) 
and edge set Ê > i±j {(jc/,y,-), (y/,Jt/)}, and whose partitions are U\ :=  {y,} and

£ 2 :=|S/ | .

• Set 93 to be the disjoint union 931 U ... U tym.

Clearly 93 is in I l2-multifan form: we claim that S G H o m ( 3 C3 ) if, and only if, 
93 g A lt-H o m (X 3 \ s X [ e f ).

(forwards.) Suppose S G H o m ( 3 C3 ). For each of the connected components S; 
there must be a homomorphism hi to X 3 . It suffices to show that there is a winning 
strategy for Proponent for each of the games (93/, X 3 ttl X r̂ ) .  If Opponent plays 
y/ to the self-loop of X r̂ , then Proponent may play the remainder of 93, to the 
same self-loop to win. If Opponent plays y, to one of the vertices of the triangle 
X 3 , then Proponent plays x, to an adjacent vertex on the triangle, and may play 
the remainder of 93, according to [a cyclic permutation of] the homomorphism hi 
to win.

(backwards.) Suppose 93 G A l t - H o m ( X 3  l±) X r̂ ) :  which implies that for
re j'

each 93, there is a winning strategy for Proponent in the game on (93, , X 3 W9Cj ). 
It suffices to show that this must imply the existence of a homomorphism from 
each S, to X 3 . This is immediate, for suppose Opponent plays the y, to some 
vertex in the triangle X 3 , then the remainder of 93/ must be played to the trian­
gle, since 93/ is connected, and so the winning strategy provides the necessary 
homomorphism. □

109



Ui U i U i Q Ui U i

e 2 e 2 e 2 E 2 E 2

u3 U3 U3 u3 U3

e 4 E a Ea Ea E a

Case (ii) Case (iii)

Figure 7.4: Types of forbidden edges in the last two cases of Proposition 55.

7.3.2 Basic results.

Proposition 54 (reflexive clique). I f  T  is a reflexive clique, then A l t - H o m  (T) is 
trivial. Specifically: G A L T -H O M  ( T ), fo r  every ^3.

Proof If T is a reflexive clique, then for any *}3, all functions from Sqj to 7  will 
be homomorphisms. □

Definition (e.g. [6 ]). A  dominating vertex z in a digraph 7  is one s.t. for all w G |T |, 
both E 7  (w,z) and E 7 (z,w) hold. (It follows that (z,z) G E7.)

Proposition 55 (dominating vertex). Let 7  be a digraph in which there exists a 
dominating vertex z. Then A L T -H O M  ( T )  may be decided in logarithmic space.

Proof. We consider three cases.
(i) If T  is a reflexive clique, then A l t - H o m  (T) is trivial (Proposition 54).
(ii) 7  is not a reflexive clique, but is reflexive. In this case ^3 G A l t - H o m  (T) 

iff <}3 has no edges between distinct vertices x  G £/; and y G Uj (for any i, j ,  see 
Figure 7.4). This property can clearly be checked in logarithmic space; we prove 
its correctness. Let a and b be distinct vertices of 7  s.t. -iE7 (a,b).

(= > )  By contraposition: if ^3 has an edge between distinct vertices x  G U i and 
y G Uj,  then Opponent may play i o n  a and y on b to win, proving )̂3 ^ 
A l t - H o m  (T).
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(<£=) If has no edge between vertices x £ (/, and y £ Uj, then Proponent may 
follow the strategy of playing all existential vertices to the dominating ver­
tex z- This will overcome all Opponent strategies.

(iii) 7  is not a reflexive clique, and is not reflexive. In this case <}3 £ A lt-H om  (T) 
iff ^3 has no edges between (not necessarily distinct) vertices jc £ Ui and y  £ Uj 
(for any i j ,  see Figure 7.4). The proof proceeds as in part (ii), with all instances 
of the word ‘distinct’ dropped. □

Lemma 56 (not a reflexive clique). Let 7  be a digraph that is not a reflexive 
clique, and let ̂ 3 be a partitioned digraph. I f  there is an edge in 7  between distinct 
vertices x  £ Ui and y £ Uj (for any i, j )  then ^3 is a no-instance o f A L T -H O M  (T ).

Proof. By assumption, there are vertices a and b in T that are not adjacent (a may 
be equal to b). Opponent plays a for x  and b for y and wins. □

Lemma 57 (antireflexivity). Let 7  be an antireflexive digraph. I f  there is an edge 
in ^3 between nodes x  £ £) and y £ Uj (for i < j)  then )̂3 is a no-instance o f 
A L T -H O M  ( T ) .  I f  there is an edge in *}3 between (not necessarily distinct) nodes 
x  £ Ui and y  £ Uj (for any i,j)  then ^3 is a no-instance o f A L T -H O M  (T ) .

Proof. In the first case, Proponent has chosen some vertex 5 in 7  for ;c. Opponent 
also chooses s for y and wins. Similarly, in the second case, Opponent chooses 
the same vertex s for both x and y. □

Lemma 58 (isolated vertex). Let 7  be a digraph with an isolated vertex s, and let 
*}3 be a partitioned digraph. I f  there is an edge in ^3 between x £ Ui and y  £ Ej 
(for any i,j) , or between x  £ Ui and y  £ Uj (any i,j), then *}3 is a no-instance o f 
A l t - H o m  ( T ) .

Proof. We prove the first case; the second may be done similarly. Regardless of 
what is played before, when Opponent plays x on s, there is no way that partial 
function can extend to homomorphism, regardless of where Proponent will map, 
or has mapped, y. □

Proposition 59 (isolated vertex). I f  7  is antireflexive and has an isolated vertex, 
then A lt-H om  (T) and Hom(T) are logspace equivalent.
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Proof. T he red u c tio n  o f  H o m ^T) to  A lt-H o m  (T) is trivial.

We reduce A l t -H o m  (T) to H o m (T) as follows. Let N  be a fixed no-instance 
of H o m  (T) (say, T  augmented with one vertex adjacent to every vertex of T). If ̂ 3 
has an edge as in the previous lemma then we know that it is a no-instance and we 
reduce *}3 to N. If <J3 has no such edge then every element in a universal partition 
is isolated. Thus, Opponent’s moves have no bearing on Proponent’s moves, and 
we may disregard every element occurring in a universal partition. Indeed, the 
rewritten-reduced graph ^3 will be in Zi-form. We reduce ^3 to its underlying 
graph 8 <p. □

It is important that T be antireflexive, to guarantee the existence of an N  in the 
previous proof. The following proposition is a cousin of the previous.

Proposition 60. I f  7  has an isolated vertex, then A lt-H o m  (T) and H o m (T) are 
equivalent under logspace Turing reductions.

Proof. A gain , the reduction  from  H o m (T ) to  A lt-H o m  (“T) is trivial.

W e g ive the reduction  A lt-H o m  (T ) to  H o m (T ). If  has an edge as in  the 

p rev io u s lem m a then  w e reject the inpu t. I f  *}3 has no such edge then w e reduce it 

to  the u n d erly in g  graph S<p. □

Example. The problem A lt-H o m (O C 3 l±lX i)  is NP-complete. It is equivalent to 
H o m ( 9 C3 ), which in turn is the well-known NP-complete problem 3 - C o l .

7.3.3 Non-connected templates.

Lemma 61 (forbidden paths and non-connected templates). Let T be a non- con­
nected graph. I f  there is a path in ^3 between any x  G £; and y G Uj (for i <j)> 
then ^3 is a no-instance o f A lt - H o m  (T). I f  there is a path in £)3 between any 
x  G Ui and y G Uj (for any i,j), then ^3 is a no-instance o f A lt-H o m  (T).

Proof. We prove the first case; the second may be done similarly. Wherever Pro­
ponent plays x, Opponent need only play y in another connected component to 
win. □
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Lemma 62 (forbidden paths yield rh-multifan form). I f  there is no path in a 
partitioned digraph *}3 between any x G £; and y G Uj (for i < j), or between any 
x G Ui andy  G Uj (for any i.j), then the rewrite-reduced *}3 will be in \ \ 2 -multifan 
form.

Proof Consider *}3 with all isolated vertices removed, and split into disjoint con­
nected components. It suffices to prove that each of these is in I l2-fan form.

For any such component *j3', let 0 < i < n be the largest integer such that U2i+i 
is non-empty. It follows that there is an ^  G U 2i + \ ,  and that all other elements of 
*}3' are in existential partitions of index at least 2 i +  2 , for otherwise there would 
be a path that violates our assumptions. The rewrite rules may be applied to move 
x io U \  and all other vertices in the component to £ 2 - The result follows. □

Note that we can determine in polynomial time whether or not a digraph 7  has 
any of the paths of the previous lemma.

Lemma 63 (non-connected). Let 7  be a digraph that is not connected, then 
A lt-H o m  (T) is in NP.

Proof Let *}3 be a partitioned input digraph. If there are any of the paths in 3̂ 
as in Lemma 61 then we may reject the instance. Otherwise, it follows from the 
previous lemma that the rewrite-reduced *}3 is in I l 2-multifan form, and we can 
use the algorithm of Theorem 52. □

Proposition 64 (non-connected). Let 7  be a digraph that is not connected. I f  
H o m (T) is HP-complete then A lt-H o m (T) is HP-complete.

Proof. By Lemma 63, A lt-H o m (T ) is in NP. H o m (T) reduces trivially to 
A l t -H o m  (T ) , and completeness follows. □

Remark. As in the remark after Theorem 52, the ‘converse’ of the previous propo­
sition is not in general true: i.e. there are T  such that H o m (T) is tractable but 
A lt-H o m  (T) is not. For example, when 7  — X 3 i±)3C^, A lt-H om  (T) is readily 
seen to be N P-complete. (Membership follows from Lemma 63 and completeness 
follows from Proposition 53.)
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7.4 Quantified ^-colouring

7.4.1 Bipartite templates.

Lemma 65 (forbidden paths and bipartite template). Let cH b e  a bipartite graph. 
I f  there is a path in ^3 between any x  E £) and y E Uj (for i < j ), then *}3 is a no­
instance o f A lt -H o m  (OL). I f  there is a path in )̂3 between any x  E Ui and y  E Uj 

(for any i,j), then is a no-instance o f  ALT-HOM (3-Q.

Proof We prove the first case; the second may be done similarly. Let a be any 
vertex in IK on which Proponent plays x. If a is an isolated vertex, then Opponent 
wins (cf. proof of Lemma 58). Assume that a is not isolated. If the path in ^3 
between x and y is of even length, then Opponent plays y on b, where b is adjacent 
to a. A winning strategy for Proponent would imply the existence of an odd cycle 
in K . This contradicts the fact that K  is bipartite, thus it follows that Opponent 
wins. If the path in <J3 is of odd length, then Opponent plays y on a and wins by 
the same argument. □

Lem m a 6 6  (I l2-multifan form and bipartite). Let % be a bipartite graph. I f  IK 
has no isolated vertices then, fo r  any ^3 in Tl2 -multifan form, the following are 
equivalent:

a >

(ii)

(Hi) S<p-L3C2

Proof. If ^3 is the disjoint union of ^3 i,. . .  , p m all in r i2-fan form, recall that 
<P E A lt-H o m  (T) iff e  A lt-H om  (K), for 1 < i < m .

For each ^3; in n 2-fan form. When 3̂* has no vertex in U\, the result holds 
trivially. Otherwise, let x  be the unique vertex in U\. Again, if x is isolated then 
^3 can be rewrite-reduced to in Xi-form. So, assume that P ; is in strict n 2-fan 
form, and that x is adjacent to some y in £ 2 -

• (/) => (ii): Given a winning strategy a  for Proponent in the (*}3;,K)-game, 
we construct a winning strategy for Proponent in the (P ;,3C2)-game. Sup-
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pose, w.l.o.g., that Opponent plays the x on the 1 in %2 . All remain­
ing moves are Proponent’s. So, Proponent chooses any homomorphism 
h : IK —> %2 , and a vertex a in IK such that h(a) =  1. She then plays the 
rest of the vertices (all in E2) according to the strategy h 0 0  (where she as­
sumes Opponent played the x to a in the oracle-game on (I}3/,IK)). Since h 
is a homomorphism, any outcome of the game on (IJ3;,IK) under strategy o  
that is a homomorphism will lead to an outcome of the game on (^3/, ̂ 2 ) 
under strategy h 0 0  that is a homomorphism. We know that, under strategy 
o, all outcomes of (I]3;,IK) are homomorphisms, so the result follows.

• (ii) => (/): Given a winning strategy o  for Proponent in the C2 )-game, 
we construct a winning strategy for Proponent in the (I]3/,IK)-game. Sup­
pose Opponent plays the x on a vertex a in IK. We know that a is not iso­
lated, and has a distinct neighbour b. Let h ': X 2 —> IK be the homomorphism 
{(1, a) , (2, b)}. All remaining moves are Proponent’s. Proponent now plays 
the rest of the vertices (all in £ 2 ) according to the strategy h! o <5 (where she 
assumes Opponent played the x to 1 in the oracle-game on (I]3;,I)C2 )). The 
argument concludes as before.

•  (ii) (iii): Since each ^3/ is in strict E^-fan form, the result follows imme­
diately from the symmetry of %2 -

□
Theorem 67 (bipartite). Let Oi be a bipartite graph. The problem A lt-H o m  (IK) 
is tractable.

Proof. We propose the following algorithm to solve A lt-H om  (IK).
The input !}3 is first scanned to check whether it has any of the forbidden paths 

of Lemma 65. If there are any, then the input is rejected.
If there are none of the forbidden paths and IK has an isolated vertex, then we 

evaluate Ho m (IK) on input Sqj. That this is correct follows from Proposition 59; 
that it is tractable follows from Hell and Nesetril’s dichotomy theorem [25].

Otherwise, if there are none of the forbidden paths and IK has no isolated 
vertex, then we check whether 8^3 is 2-colorable, and answer accordingly. This
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is clearly polynomial: we prove its correctness. We know that if I}3 has none of 
the forbidden paths, then it is rewrite-equivalent to the reduced IJ3 in I l2 -multifan 
form, by Lemma 62. In particular, <}3 -^IK  if, and only if, <}3 -^-IK. By Lemma 6 6 , 

we know that ^3 if, and only if, S y - ^ % 2- Moreover, by definition of ̂ 3, 

is the same as S y  up to possibly some isolated vertices. Hence, if, and

only if, ~ ^% 2- It follows that ^3 if, and only if, S<p ~ ^% 2 . □

7.4.2 Odd Catherine Wheels

We have already met the problem QCSP(IBnae)’ known to be Pspace-complete. 
Let boolean structure with single rc-ary not-all-equal relation

NAEn := { 0 , 1 — {(0"), (1”)}

For all n > 3, Q C S P (3^AE) is Pspace-complete, by a trivial reduction from 
QCSP(®J[AE).

Definition. We consider an undirected graph W to be an odd Catherine w heel  

(OCW) if it is isomorphic to some graph S constructed as follows. For some k , 
take the (2k +  1 )-cycle C24+1, together with (2k +  1) undirected paths IP0, . . . ,  IP2* 
(each of any finite length, where %\ is considered the 0-path). Construct S by 
identifying an end of each path IP* with vertex i of 6 2 4+1-

As in that construction, an OCW may be given an ordering over its (2k + 1)- 
cycle, which we will call a listing. An OCW may have up to 2.(2k +  1) distinct 
listings, corresponding to orientation of the cycle, together with position of the 
zero (first) vertex. We will usually refer to a listing by a corresponding sequence 
of paths.

Definition. For an undirected graph S, and a subset A C |S| define:

•  d(x,y) to be the length of the shortest path in S from x to y,

• d(A,y) =  min{d(x,y) : x G A}, and,

•  D ( { p , q } )  =  m a x { J ( { p ,4 } ,y )  : y  C |S |} .
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1

2

Figure 7.5: An OCW and its two D-minimal listings.

D({p,q})  is minimal such that there is an ra'-walk (for some m' 
from {p,q}  to every vertex of S- We will only be concerned with D({p,q})  when 
p  and q are adjacent vertices on the cycle of an OCW.

Definition. For any OCW W, define:

raw =  min{D( {/?,#}) : p ,q  adjacent on the cycle of W }

A D-minimal listing CP0, ... ,(P2̂  of W is one in which D ({k ,k-\-1}) — raw-

A  D -m in im al lis ting  is one in w h ich  the m axim al d istance from  the vertices 

{k , k+  1} is m in im ised . These m idd le  vertices k and k +  1 w ill eventually  p lay  the 

ro le  o f  T r u e  and Fa l s e  in a reduction  from  Q C S P ( 2 3 ^ ^ ) .  It is the fo llow ing  

p roperty  o f  D -m in im al listings that is im portan t.

Lemma 68. Given a D-minimal listing CP°, . . . ,  CP2̂  o f an OCW W, i.e. one in 
which D( {k , k+  1}) =  raw =  m, there exists:

•  a t e  |W| s.t. there is an m-walk from t to k, but no m-walkfrom t to k + \ ,  
and

• an s e  |W| s.t. there is an m-walk from s to k + \ ,  but no m-walk from s to k.
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Proof. Let the respective lengths of the paths T* be A,,-. It follows that:

m =  D( { k , k  + 1}) 
=  m ax { Ao +  k ,

A-i 4- [k — 1] , A2k  +  [ k —  1] 5

Afc+2 +  1 ?
A-jfc+i }

We consider three cases.
(exists 1, 1 < i < k, s.t. m = Xi + [k— 1].) Take such a branch i that has a vertex 

at maximal distance from {k , k+  1}. This vertex will be at the end of the path 
CP*. Label this vertex t, and its neighbour, the penultimate vertex along CP,-, 5 . (If 
the path CP* is %\, i.e. there is no path leaving the cycle, then consider i +  1 on 
the cycle to be the ‘penultimate’ vertex). It follows that there will be an m-walk 
from t to k but not to k +  1 (by maximality of m, together with the fact that t must 
be closer to k than k + 1). It also follows that there will be an m-walk from 5 to 
k +  1 but not k (we can not go the long way round the cycle, and any backstepping 
increases the walk by an even amount).

(exists i, k +  1 <  i < 2 k, s.t. m =  A,,- +  [i — k — 1].) This case is symmetric to 
the previous.

(previous cases fail, and m =  Ao +  k.) This is the case in which the ultimate 
vertex of CP° is the unique vertex at maximal distance m from {£,&+ 1}. In this 
case, we make two claims:

(i) there exists 1 <  i < k s.t. m — 1 =  A,,- +  [k — 1], and

(i i) there exists k +  1 <  i < 2 k s.t. m — 1 =  A,,- + [i — k — 1].

For the first claim, if no such i exists, then we do not have a D-minimal listing, 
since D({k  +  1 ,k + 2}) < D({k,k  +  1}). (If the vertex 0 is always considered 
at the top of a drawing of W, then this represents rotating the wheel one place 
anticlockwise.) The proof of the second claim is symmetric. We may now take t 
and s to be the ultimate vertices on some paths that fulfill the the second and first 
criteria, respectively. The proof concludes as with the previous cases. □
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3 2 3 2 3 2

W0 Wi Wi

Figure 7.6: The listing on Wo is D-minimal, but only the rightmost listing of Wi 
is D-minimal.

Before we go on, we will need the following.

Lemma 69 (e.g. [25]). For all vertices x  o f the (2k + 1 )-cycle C2jt+i, there is no 
(2 k — 1)-walk from x to x, but there is a (2 k — 1)-walk from x to all distinct vertices

y-

Proof That there is no walk from jc to itself follows by a parity argument, together 
with the fact that the walk can not go round the entire cycle. We now construct a 
(2 k — 1) walk from vertex 0  to any vertex 1 < i < 2 k, whereafter we may appeal to 
symmetry. If i even, then walk backwards (anticlockwise) until i is attained, in an 
odd number of moves, and waste the even number of moves remaining walking 
between i and some neighbour. If i odd, then walk forwards (clockwise) until i is 
attained, in an odd number of moves, and waste the remaining moves as before.

□

Pspa ce-completeness.

Theorem 70. I f  W is an OCW, then A lt-H om  (W) is Pspace-complete.

Proof Suppose W has a (2k + l)-cycle, and let =  m be given. The proof is 
by direct reduction from Q C SP(!B ^g). It is based on that given in [5]. Let cp 
be an instance of QCSP('BjfJg). Without loss of generality, we assume that cp 
has at least one universal quantifier: if there is none we can introduce a dummy1.

'This restriction is actually unnecessary in the reduction w e use, but it saves us considering as 
a special case the situation where there are no universally quantified variables.
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w

N ( v i , V i , V i , V 2 , V4 )  A ^ ( V 2 , V 3 , V 4 , V 4 , V 4 )

Figure 7.7: Underlying Graph in reduction from Q C S P (® ^ E1). The dotted lines 
are (2 k — l)-paths; the double dotted lines are m-paths.
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Suppose cp has v variables and k clauses: we will construct a partitioned graph *j3 
such that cp E Q C S P ( !B ^ )  iff ^  E A lt-H o m (W ).

To build the underlying graph S<p, we first take v copies of the (2k-\~ l)-gon 
^ 2k+\’ one f°r each variable. Consider each of these (2 k +  l)-gons Gl2k+l to have 
identified vertex w,-, and labelled twin vertices xi,yt farthest away in C^ +1 from 
Wi (it is irrelevant which way round xi and y; are). Attach to each C^ +1 an m-path 
from yi, and label the end-vertex on this path n . Now identify the w,-s as a single 
vertex w. (A case involving pentagons, with v =  4, is shown in the top half of 
Figure 7.7.) We now take k further copies of C2fc+i, one for each clause. Each 
vertex of each of these (2k +  l)-gons represents a variable in the clause. For each 
variable v,- in such a clause, add a (2 k — l)-path from the vertex representing v{ 
to the Xi previously introduced. The case in Figure 7.7 has k =  2, with clauses 
(v i,v i,v i,v 2 ,v3) and (v2 ,v3,V 4 . V 4 , V 4 ) .  It remains for us to partition the vertices 
of S^. There is nothing in partition U1, and w is on its own in partition £ 2. Now 
we read the quantifiers in cp, from the outside. For each existentially quantified 
variable v;, we add z;, its path, and all the rest of C ^+1, to the next strictly higher 
existential partition. For each universally quantified variable v;, we add just Zi to 
the next available universal partition. We then add the rest of z;’s path, and all 
the rest of C2£+1, to the next existential partition. When we have gone through all 
the quantifiers of cp, we add all of the remaining vertices, i.e. those in the clause 
(2 k + l)-gons, and in the paths that reach them, to the next available existential 
partition.

This construction is clearly polynomial. It remains for us to prove its correct­
ness. Note that Proponent can not successfully play all thex, associated with some 
clause (2k +  l)-gon to a single vertex of W (if she plays off the cycle she clearly 
loses; if she plays on the cycle she loses by Lemma 69).

(cp E Q C SP(^B ^g) —> E A lt-H o m (W)). We give Proponent’s strategy in 
the game (^3, W). She should play w on some vertex 0 on the (2k + 1)-cycle of W 
such that this gives rise to a Z)-minimal listing of W. Whenever Opponent plays a 
Zi in W, there will be an m-walk such that y,- may be played on one of vertices k or 
k +  1 of the cycle of W. These vertices represent T r u e  and Fa l s e  respectively. 
Since, no matter whether the universal variables are true or false, there is a val­
uation of the existential variables that gives the clauses a not-all-equal valuation,
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Proponent may ensure that not all x,- associated with each clause are mapped to 
T r u e  (respectively, F a l s e ). She should play this valuation, finally playing each 
clause (2k +  l)-gon and the path to it according to Lemma 69, ensuring homo­
morphism.

(*}3 g A l t - H o m (W) —> cp g Q C S P (® ^g)). If w is not played to a vertex 0 
in the (2k +  1)-cycle of W such that this gives a D-minimal listing, then Opponent 
may play any universal n  (by assumption there is at least one) to some vertex in 
W  that does not have an m-walk to either k or k +  1, and Proponent loses. (Such a 
vertex exists by minimality of m.) Thus, in a winning strategy, w must be played 
to some 0 on the (2k +  l)-cycle that gives rise to a D-minimal listing. Note that 
now Proponent must play each {x/,y;} to {£,/:+  1}, with which being played to 
which specifying truth or falsity of variable v,-. Thereafter, for any play of Zi, there 
is an m-walk to either k or k+  1 ( T r u e  or F a l s e  respectively), by the definition 
of m over a D-minimal listing. For certain z there is an m-walk to k but not to 
k + \ ,  and vice-versa, as guaranteed by Lemma 6 8 . This ensures that Proponent 
must answer to all valuations of the universal variables. Finally, when the clause 
(2k +  l)-gons are reached, if Proponent can extend to homomorphism, then not 
all the x;s of each clause were played to k (respectively k +  1), and we have a 
not-all-equal assignment □

Corollary. Let S be a (undirected anti reflexive) connected graph that has a unique 
cycle, which is o f odd length. Then A l t - H o m  ( S )  is Pspace-complete.

Proof. Such a graph S is of form similar to an OCW, but with trees affixed to 
the vertices of the odd cycle, instead of paths. The completeness result holds for 
such graphs under exactly the same reduction. (The length of such a tree should 
be considered the maximal depth from its root on the odd cycle.) □

7.4.3 A trichotomy theorem

Theorem 71. The class o f antireflexive undirected graphs with at most one cycle 
exhibits A L T -H O M -trichotomy. Specifically:

• I f K i s  bipartite, then A L T -H O M  (TC) is tractable.
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•  I f  7C has an odd cycle and is not connected, then A l t - H o m (CK) is NP- 
complete.

•  I f  7i has an odd cycle and is connected, then A l t - H o m (IK ) is Pspace- 
complete.

Proof. We have just proved the final part. The first part is proved in Theorem 67. 
The second part is a consequence of Proposition 64, and Hell and Nesetril’s Di­
chotomy Theorem [25]. □

Remark. The same trichotomy holds on the class of antireflexive undirected graphs 
with exactly one cycle. This is because bipartite graphs may contain even cycles.

7.5 Closure properties

We examine some closure properties on templates that may be used for proving 
Pspace-hardness. Later we look at the question of problem equivalence in QCSP.

7.5.1 Indicator construction

Hell and Nesetril defined three graph constructions to prove their dichotomy the­
orem for undirected graphs in [25]. One of them is known as the Indicator con­
struction. An Indicator is a digraph 3 with two identified vertices i and j.

Definition (Hell and Nesetril [25]). The indicator construction T* of a digraph 7  
with respect to Indicator (3,i,j) is the graph with vertex set |T|; and, edge set:

{(a,b) : exists horn, h : 3 —* 7  s.t. h(i) =  a and h(j)  =  b}.

Remark. In the case of undirected graphs it makes sense to consider only Indi­
cators (3,i , j)  that have an automorphism swapping i and j.  This ensure that T* 
remains undirected when 7  is undirected. For an example of this construction, see 
Figure 7.8.
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Lemma 72 (Hell and Nesetril [25]). Let “J  be an undirected graph and 
an indicator that has an automorphism swapping i and j. I f  Hom(‘J*) is HP- 
complete then Hom(T) is NP-complete.

Their result readily extends to digraphs; we extend it to QCSP.

Theorem 73 (Indicator Construction). Let Qbea digraph and (5, /, j)  an indicator.

• I f  CSP(3*) is HP-complete then CSP(3) is HP-complete.

•  7/’QCSP(S*) is Pspace-complete then QCSP(3) is Pspace-complete.

Proof. We prove the first claim by reducing CSP(S*) to CSP(S). The proof 
broadly follows that of Hell and Nesetril. Let m :=  | |3| |. Take the canonical query 
0 of J and remove the two existential quantifiers for i and j. It is now of the form:

6 (z,z) := 3 y i 3 y2 ■ ■ - 3 ym -2 Q(z,z , yi , y2 , ■ ■ ■ ,ym- 2 ),

where Q is positive conjunctive. It follows directly from the definitions that 
(a, b) holds if, and only if,

3 |= Q(z/a,z' /b) =  3 y i3 y2 . . . 3 ym- 2 (2 ( a A y i,y 2 ,---,.ym-2 )-

Hence, given an instance of CSP(S*), we can replace each occurrence of E(z,z') 
by 0(z,z/)’ ensuring that variables introduced are new variables. More precisely, 
let zkx, • • • ,Zk2r be (not necessarily distinct) variables among z, and let cp :=  
3 z / \ ri=lE(zk2i„i,Zk2i) be an instance of CSP(S*). We have g* J= <p iff g |= \j/, 
where

r

v := 3z /\(3/,ay2... 3ym_2)e(z*2i. 1,zt2(,y1 ,y2,... ,ym-2)-
i=l

Note that \\f can be built from cp in polynomial time (remember that the indicator 
is a fixed graph). Both CSP(3) and CSP(3*) are in NP, so it follows immediately 
that NP-completeness of the latter implies NP-completeness of the former.

We use the same method to prove the second claim, by reducing Q C SP(3*) to 
QCSP(S). We have seen that the edge relation of 3* can be defined in existential
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Figure 7.8: Example of the indicator construction.

positive conjunctive first-order logic on S- Thus, by replacing in the same way 
each occurrence of E(z,z') by 0(z,z'), where every variable apart from z and zf is 
a new one, we get a quantified formula \\r. The proof concludes as before, but for

We now have an alternative proof, based on that in [25], of the following.

Corollary. For every undirected cycle C2&+1 (k>  \), the problem A lt-H om  (6 2 ^+1) 
is Pspace-complete.

Proof. Recall that A lt - H o m  (% i m  ) is Pspace-complete. For S :=  6 2 ^ + 1 > choose 
the indicator (3,z',y) to be the undirected (2 k + l)-path from the vertex i to the 
vertex j . It follows from Lemma 69 that S* =  %2k+1- The result follows from 
Theorem 73. The case k — 2 is depicted in Figure 7.8. □

Remark. In [25], Hell and Nesetril introduced two other graph constructions. 
When IK is a core, they defined the graphs K ~ [respectively, K A] with respect 
to sub-indicator % [respectively, edge-sub-indicator #']. We do not go into the 
details of these constructions here. They proved that either of H o m (K ~ )  or 
H o m ( K a ) being NP-complete implies H o m (K )  is NP-complete. We note that 
this result is unlikely to extend to A l t -H o m  (Q C S P ) in the case of the sub­
indicator construction. That is, A lt-H o m  (K ~) being Pspace-complete does not 
imply A lt-H o m  (K ) is Pspace-complete, under the assumption that N P /  Pspace. 
We do not prove this here.

Pspace instead of NP. □
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7.5.2 Adding a vertex to a core.

Definition. Let K  be an antireflexive core (i.e. any core other than the self-loop 
%™f). Let K + be K  with a new vertex y added, adjacent to all vertices of K , but 
not adjacent to itself (so it does not introduce a self-loop). Formally:

.  |W+| =  |W |a{y}.

•  E ^ + =  E ^  U  { ( j c ,y ) , (y,jc) : x  G IK}.

We aim to establish that K + is a core.

Lemma 74. Any homomorphism h : K + —> K + is such that there is an automor­
phism i o f ‘H + that swaps y and h(y).

Proof. We may assume h(y) /  y. We prove that h(y) is [forward- and backward- 
jadjacent to all vertices of K + except itself. If that is the case then the function 
that leaves all vertices unchanged, but swaps y and h(y), will be an automorphism.

Suppose h(y) were not adjacent to everything in K + (except itself), and that 
its neighbours constitute the proper subgraph K ' C  K + — {/*(y)}. Since h is a 
homomorphism, it follows that /i(K) C  K ', so we have:

hfK)  c K + - { % ) } .

Now, y itself may or may not be in the image hfK) .  We consider both cases 
separately.

[y ^ hfK).]  We have /z(K) is a proper subgraph of K , and we are done since 
this contradicts K  being a core.

[y G /z(K).] See Figure 7.9. It follows that there is a homomorphism

h ' : K  — ► /*(K) -  {y} U  { % ) } ,

defined by h'(x) :=h(x)  except when h(x) — y, in which case hr{x) := h(y). Whilst 
hfK)  is not actually a subgraph of K , /z'(K) is, and it is proper since it has the 
same cardinality as /z(K). This contradicts K  being a core, and we are done. □

Lemma 75. K + w a core.
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h

y h(y)

Figure 7.9: The case y e  h(‘X )  in Lemma 74. Note that -h(‘K 1 ) must be 
non-empty.

Proof. Suppose there were a homomorphism h from IK4 to a proper subgraph 
IK' C  IK+ . Since we know there is an automorphism of S+ that swaps y and h(y), 
we may assume w.l.o.g. that h(y) =  y. But that implies that h maps IK to a proper 
subgraph of itself, which contradicts IK being a core. □

T h e o re m  76. Let J~C be a core. Then A lt-H o m  (IK) is logspace reducible to 
A l t -H o m  (IK+).

Proof. Given an input for A l t -H o m  (IK), we construct as an input for 
A lt-H o m  (IK+) such that e A l t -H o m  (IK) iff ^3' e  A lt-H o m  (IK+ ). We con­
struct ip' from ip by introducing a new existential partition Eq before U\ (we may 
renumber later). Into Eq we place a copy of IK+, adding an edge from the y of that 
IK+ to all the existential vertices of ip. Our proof rests on the equivalence of the 
following:
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e 4

Figure 7.10: An example of the reduction used in Theorem 76, when % =  C5 .
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(i) Proponent has a winning strategy in the game on (^3',CK+).

(ii) Proponent has a winning strategy in the game on (^3', TC+) where Opponent 
is forbidden to play y 2.

(iii) Proponent has a winning strategy in the game on (*J3,3T).

In the game (*P',!K+), Proponent must play the copy of T i +  in E q to itself in the 
template. Thereafter, Proponent may never play this y on the template, since CK+ 
is a core. The equivalence of (ii) and (iii) follows.

The equivalence of (i) and (ii) follows from the fact that y is adjacent to ev­
erything in <K +, so Opponent gains no advantage in playing it. □

Corollary. The graphs associated with the (2n +  1 )-gonal pyramids give rise to 
Pspace-complete A lt-H om  problems.

Proof. The graph associated with the (2n +  l)-gonal pyramid is C Jj+ l The case 
of the pentagonal pyramid appears in Figure 7.10. □

7.5.3 A sufficient condition for Alt-Hom problem equivalence.

It is well known that, for any digraph S whose core is TC, we have H o m (S ) = 
Hom(TC), i.e., for all digraphs CD we have T) G H o m (S ) iff CD g Hom(CK). This 
result does not extend to A lt-H o m .

Example. Let S be t±J UC3 , therefore its core CK will be CK3 . Consider a parti­
tioned graph <}3 whose underlying graph is the directed 3-path CDCP3 . Placing the 
two end-nodes in partition U\ and the middle node in partition £ 2 , we will have 
C}3 G A lt-H om  (CK) whilst ^3 £ A lt-H o m (S). This is because, for cp :=

VxVz3y E (x, y) A E  (y, z ) ,

we have CJC3 |= 9 , but X 3 l±) X 3 cp.

However, we propose a digraph construction that preserves the alternating- 
homomorphism problem.

2N ote that y is not necessarily well-defined in 9 f+ until Proponent plays the copy o f  TC+ in 
on to the tem plate Tt+ .
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Definition. Given a digraph 9 and specified vertex g, we construct $ +8 by dupli­
cating the vertex g. Specifically:

•  |9 +s| =  |9| U {#'}, and

E 9+S = E s U{{gf,x) : (g,x) e E 9} U{(x,g') : (x,g) e E 9}

U{(g,g'),(g' ,g),(g' ,g') - iff (g,g) £ E 9}.

Theorem 77. For all digraphs 9, and any g £ 9, the problems A lt-H o m (9) 
and ALT-HOM (9+g) are equal, i.e. fo r  all partitioned digraphs ()3 we have *}3 £

A lt-H o m (9) i f fV  £ A lt-H o m (9 +<?).

Proof.

•  (Forwards) We prove that a winning strategy o for Proponent in the (^3,9)- 
game can be translated to a winning strategy o' for her in the ((p,9 +g)- 
game.

The strategy o' will tell Proponent that, if Opponent ever plays g' in the 
game on (^3,9 +5), she should behave in the game on (^3,9 ) exactly as if he 
had played on g. Since g and g' are adjacent to exactly the same vertices in 
9 +g, any play of the (^3,9 )-game that results in homomorphism must yield 
a play of the (^3,9 +g)-game that results in homomorphism.

• (Backwards) We prove that a winning strategy o for Proponent in the (^3, 9 +8)~ 
game can be translated to a winning strategy o' for her in the (*}3,9)-game. 
Indeed, if we take o and substitiute all instances of g r for g, then we will 
have such a strategy, for the same reason as before.

□
Definition. For the n-clique X n, define X ~  to be X n with any single edge re­
moved.

Corollary. For all n >  4, the problem A lt-H o m  (X~) is Pspace-complete.

Proof. Observe that X~ — X ^ x, for any g £ X n- \ . □
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Corollary. The graphs associated with the (2n +  1 )-gonal bipyramids give rise to 
Pspace-complete A lt-H o m  problems.

Proof. The graph associated with the (2n+  l)-gonal bipyramid is (C2n+i) +Y, 
where y  is the vertex of Q^n+i acUacent t 0  everything but itself. □

7.5.4 Why that condition is not necessary: equivalence in frag­
ments of FO.

Definition.

• Let F O \{ =} be first-order logic FO  deprived of the binary equality relation.

•  Let pos-con j - FO be the fragment of FO involving formulae in prenex form, 
whose quantifier-free portion is positive conjunctive.

•  Let 3-pos-con j - FO be the existential fragment of pos-con j -FO.

Note the trivial containments 3-pos-conj-FO C pos-con j -FO C F O \{= } c  
FO. These containments are readily seen to be proper; we will return to this later.

3-pos-conj-FO is closely related to the problems CSP and H o m . Indeed, it 
follows from the definition of CSP that, for any two templates 7  and T', CSP(T) = 
CSP(T') iff T and 7 ' agree on all sentences of 3-pos-conj-FO. Similarly, it fol­
lows from the definition of QCSP that QCSP(T) =  QCSPfT') iff 7  and 7 ' agree 
on all sentences of pos-con j -FO. We also have, from the definition of the H om  

problems, that H o m (T) =  H o m (T') iff 7  is homomorphically equivalent to 7 ', 
i.e. we have both 7 ~ ^ 7 f and 7 ' - ^ 7 .  This is equivalent to the condition that 7  
and 7 ' have isomorphic cores. The concept of core gives us a combinatorial char­
acterisation of what it is to be 3-pos-cony'-FO-equivalent. Such a characterisation 
seems harder for the logic pos-con j - FO: in the world of QCSP and A lt-H o m . 

However, such a characterisation is at hand with the logic F O \{= }, but first we 
must define the pertinent Ehrenfeucht-Fraisse game. Our exposition is based on 
that for the standard FO-game given in [31].

Definitions. Let A  and !B be digraphs. The FO \{= }j”-game on a pair (A, oto, 23, po) 
is played by two players, Spoiler and Duplicator, with k pairs of pebbles over m
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rounds. A position in such a game, a ^-configuration, is a pair of partial functions 
(a ,P), where

• a  : {v i,...,v*} -> \A\, and

• p : {vi,...,v*} -> |!B|,

and we further have that d o m ( a )  =  d o m ( p). The domains of a  and p are the
pebbles that have already been played. From some position (oc/,pj), for the next
move, Spoiler picks some pebble i (where 1 < i < k) and chooses to play it in 
either \A\ or |23|. If the former [resp. latter], then he adds the pair (v;,fl) to a  j 
[resp. (v,-,&) to p j] and Duplicator adds the pair (v,-,fc) to P; [resp. (v,-,a) to a  j], 

so obtaining the new position ( a /+ i , P_/+i). Note that v,- may already have been 
in d o m ( a j )  =  d o m ( $ j ) ,  i.e. the pebble i may already have been played, in which 
case some former pairs (v,-,a') G a  j  and (v;,&') G p; will have been removed. The 
initial position of the game is (ao,Po)« Spoiler wins if at any point the relation 
a - 1  o p C \A\ x 1231 does not satisfy:

(*) EA (a,a)  E® (b,bf) for all (a,b), G a - 1  o  p

If Spoiler does not win, then Duplicator wins.
The FO\{=}-gam e on (A,  oto, P o) is played similarly, but with an unbounded 

number of pebble pairs and an unbounded number of moves. This means that 
(oto, P o) is an co-configuration with potentially infinite domain: though only if the 
initial position were infinite. Since we are concerned with finite digraphs, this will 
never happen.

The quantifier-rank qr of a formula FO \ { = } 3 is defined inductively thus: if 
cp is quantifier-free then qr(cp) =  0; if cp =  -iq>' then ^r(cp) =  qr(cp'); if cp =  cp' A cp" 
then qr(cp) =  max{gr(cp'),gr(cp")}; and if cp =  3vcp' then qr(cp) =  qr(cp') +  1 .

Let F O \{= } j” be that fragment of F O \{= }  whose formulae involve only 
the variables and whose quantifier-rank is at most m. For (a ,p ) a
^-configuration and cp G F O \{= }^  a formula whose free variables are among 
dom(a) = dom (p) we consider cp to be true on (A, a) [resp. (23, p)] if cp is true

3Quantifier-rank is defined identically in FO.
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on A  [resp. B] under free variable assignment a  [resp. (3], Letting (a ,p ) be a 
^-configuration, we write:

•  (A , a) (B , (3) iff A  and B  agree on all formulae of FO \{=}]” (whose 
free variables are among dom(a) =  dom(\3)), and

•  (.A, a) (23, P) iff Duplicator has a winning strategy for the F O \{= }j”- 
game on (A,a,CB,p).

Letting (a , (3) be an co-configuration, we write:

• (.A,a) =  (33, P) iff A  and B  agree on all formulae of F O \{= }  (whose 
free variables must be among dom (a) = dom(p)), and

• (A ,a) ~  (23, p) iff Duplicator has a winning strategy for the F O \{= }- 
game on (A ,a,23,P).

Lemma 78. There are only finitely many inequivalent formulae o /F O \{= } j”.

Proof We prove the result for digraphs: it is easily extended to arbitrary (finite, 
relational) signatures. We proceed by induction on m.

(Base Case.) For m = 0, the formulae we can write are boolean combinations 
of E(vi ,vj ) (for i , j  G {1,...,£}). We may consider any cp e FO \{=}^ to be a 
propositional formula in these k2 propositional variables. We may rewrite this in 
CNF to obtain a formula cp 6  F O \{= }° s.t. for all digraphs S, S |= cp cp'. The 
number distinct clauses for a formula of F O \{= }^ in CNF is bounded by 22̂ 2, so

y 2  !?■
it follows that the number of inequivalent formulae in CNF is bounded by 2 .
The result for base case follows.

(Inductive step.) Assume it is true for m. Any formula cp e  FO \{=}j” +1 is 
a boolean combination of formulae of the form 3v/Cp' with cp' £ F O \{= }^ . It 
follows from the inductive hypothesis that the number of inequivalent such for­
mulae cp is finite, say c, and that therefore the number of inequivalent formulae in 
FO \ { = } m+1 is bounded above by 2 2C. □

Proposition 79 (Methodology). Let A  and B be digraphs and let (oco,Po) be an 
intial k-configuration. Then the following are equivalent:
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(i) ( A , a o ) ~ ? ( ® , P o )

(ii) ( A , a o ) ^ ( S , p o )

Proof. (Based on that for FO in [31 ].) We proceed by induction on m. For the base 

case, m =  0 , Duplicator wins the zero-round game on (/L,oto,B,po) iff a o 1 ° Po 
satisfies (*) iff (A, oto) and (B,po) agree on all quantifier-free formulae cp (whose 
free variables, indeed, only variables, are in dom(oto) =  dom{$o)).

Inductive step: (i) => (ii) (by contraposition). Suppose the proposition is true 
for m, but that (A,  oto) and (B, po) disagree on some formula cp E FO\{=}™+1. If 
cp were of the form —icp' [resp. cp7 A cp"] then they would disagree on cp7 [resp. one of 

so we may assume w.l.o.g. that cp — 3v/cp (1 ^  i ^  k) and that (A, oco) (— cp 
and (B,po) |= ^cp. In playing the FO \{=}j"+1-game on (.A,oco,B,po), Spoiler 
begins by playing a witness for cp in A,  but, no matter where Duplicator replies, 
we will end up with a position (a i, pi) s.t. (A ,a i)  |= cp7 and (B ,p i) |= -ncp7. Since 
the quantifier-rank of cp7 is m, it follows from the inductive hypothesis that Spoiler 
wins the F O \{ —}™-game on (.A ,a i,B ,p i), and we are done.

Inductive step: (ii) =>* (/). Suppose that (.A, oto) (B,Po), and let Spoiler 
take his first move in the FO\{=}™+1-game on (A ,ao,B ,Po). Let him place a 
pebble i on an element of A , so defining ot]. Remembering that there are only 
finitely inequivalent formulae of FO\{=}™, let O be the conjunction of all of 
these formulae that (A ,a i) satisfies. We know that (A, oto) 1= 3vzO: so by as­
sumption (B, po) |= 3v;<E>. Let Duplicator play her pebble i on a witness for 3v;0 
in B. Thus ( A , ( X i )  and (B, Pi) both satisfy d>. Since O is a complete description 
of everything satisfied by (A,oti) in FO\{=}J", it follows that (A,oti) = f  (B ,p i), 
and the result follows from the inductive hypothesis. □

Corollary. Let A  and B be digraphs and let (oto, P o) be an initial co-configuration. 
Then:

.  0A ,ao)~C B ,Po) iff ( y i , a o )  =  (® ,P o) .  

.  ( . A . a o H ^ + M e B . p o )  iff  ( A a o ) ~ ( S , P o ) .

Proof The first part follows immediately from the previous proposition and the 
definitions. The second part follows from the fact that Duplicator need only find
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an answer for the | \A\ | + 1 |2311 positions Spoiler can play: thereafter she may copy 
previous replies. □

We now introduce the converse of the vertex duplication that we have already 
seen.

Definition. If a digraph A  possesses two vertices a, a' such that { jc : E(a,x)  G 

Ea } = {x : E(a\x)  G EA } and { jc : E(x,a)  G EA } =  {x : E(x,a') G E A }, then A  
may be folded  to the graph A ~ x by collapsing the vertices x and xr to a single 
vertex x' (alternatively, removing vertex v).

A digraph that has no potential folds is said to be stiff. (Similar definitions for 
fold, and stiff graph, appear, e.g., in [26].)

Theorem 80. The following are equivalent, fo r  all digraphs A , 23:

(i) A  and 23 agree on all sentences o f F O \{= }.

(ii) Duplicator wins the FO \{=}-garae on (A , 23).

(iii) There exists a stiff C such that both A  and 23 may be put through a sequence 
o f folds to derive [isomorphic copies of] C.

Proof We already have the equivalence of (i) and (ii).
((iii) —> (ii).) Suppose f a  : A  —> C and f a  : 23 —>• C are the surjective collapsing 

functions for the respective sequences of folds. For the FO\{=}-gam e on (A,  23), 
if Spoiler plays in \ A\  [resp. |23|] then Duplicator should answer with any vertex 
b e  1231 s.t. fa(b)  = fa(a)  [resp. any vertex a G \A\ s.t. fa(a)  =  fa(b)]  (the 
existence of such vertices is guaranteed by surjectivity of f a  and fa) .  This is a 
winning strategy by the definition of folding and, its inverse, duplication.

((ii) —> (iii).) Suppose Spoiler plays all ||A|| + 1|5|| distinct vertices. Duplica­
tor must be able to answer. Suppose a \ , . . .  was answered with a \ , ... 
and b \ , . .. was answered with b \ , . . . ,  b’̂  |. In A repeatedly collapse vertices 
ai,aj to a single vertex iff aj =  a'j. Continuing until there are no more vertices to 
collapse, we ultimately build a stiff f a .  In B repeatedly collapse vertices bi,bj to 
a single vertex iff b'j =  b'j, so obtaining a stiff fa .  It follows by transitivity that 
Duplicator has a winning strategy in the FO\{=}-gam e on (C/l, fa ) .  Let Spoiler
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play all the positions in C/i and let Duplicator make her reply. The so obtained 
a - 1  o (3 that satisifes (*) must also satisfy:

injectivity: Va,a; E Vi? E {<*,b),(af,b) E a - 1  o  (3 => a = a'

(for otherwise A q is not stiff since a may be folded to a'), and

surjectivity: Vi? E C® 3a £ 6 ^  (a, b ) e  a  1 o p

(for otherwise C® is not stiff). It follows that a - 1  o  p is an isomorphism, and the 
result follows. □

Corollary ([26]). Every digraph S has a unique [up to isomorphism] stiff induced 
subgraph that it can be put through a sequence o f folds to obtain.

Proof Take A  =  23 =  S in the previous proof. □

We will now unambiguously refer to the stiff-graph-within S as the one which 
S reaches through a maximal sequence of folds. We have seen that stiff-graphs- 
within characterise FO\{=}-equivalence in exactly the way that cores charac­
terise 3-pos-conj-FO-equivalence. This gives us a new proof of Theorem 77, in 
which we proved that, for all digraphs S and g E S, A l t - H o m  (S) =  A l t - H o m ( S + s ). 

Since S+g rnay be folded to S, it follows that they share the same stiff-graph- 
within. It is now clear that S and S+<? agree on all sentences FO \{= }, which 
certainly includes all sentences of pos-con j - FO.

It remains for us to ask whether or not stiff-graphs-within capture equiva­
lence in QCSP, i.e. whether pos-con j - FOactually coincides with FO \{= } . It 
turns out not to be so; we demonstrate the proper containments 3-pos-con j - FO c  

pos-con j - FO C F O \{= }  C FO.

Examples.
OC3 and % 3  l±J X 3 give rise to the same CSP problem, i.e. are equivalent in 

3-pos-con j - FO, but do not give rise to the same QCSP problem, since \/x^z3yE  (x,y) A 
E(y,z)  is true in the former, yet false in the latter. It follows that 3-pos-conj-FO 
can not express that property.
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X 2 =  CP2 and CP4  give rise to the same QCSP problems. (In fact, it follows from 
Lemmas 58 and 6 6  that there are precisely three classes of A l t - H o m  =  QCSP 
problem for bipartite template T: specifically, 7  having no edges; or 7  has an 
edge and an isolated vertex; or 7  has an edge and no isolated vertices. CP2 and 
CP4  are both in the last class.) Consider the sentence 3w,x,y,zE(w,x)  A E(x,y)  A 

E(y,z)  A This is false in the former, but true in the latter. If follows that
the property can not be expressed in pos-con j-FO.

Finally, consider the query VxVy E(x,y) \ / x  = y. This can not be expressed in 
F O \{= }  since X 3 and % 4 disagree on it, yet agree on all sentences of F O \{= }.

7.6 Results concerning tournament templates

7.6.1 Template is a directed cycle.

We consider the case where the template 7  is a directed rc-cycle D C „ . Such a 
graph is a tournament only when n — 3, but the method easily generalises.

Definition. An oriented path is a list of vertices v i , . . . ,  vm and, for 1 < i < m, 
exactly one of the edges £(v,-, v,-+i) or E(vi+\, v,-). The net length of this oriented 
path is the number of instances of edges £(v;,v;+i) (forward-edges) minus the 
number of instances of edges £(v,-+i, v,-) (backward-edges). An oriented path in a 
digraph S is a (not necessarily induced) subgraph of S that is an oriented path.

In a directed rc-cycle any oriented path between a vertex and itself must have 
net length 0 mod n. Furthermore, any path between a vertex and its forward- 
neighbour must have net length 1 mod n, and every vertex has a forward-neighbour. 
These facts will allow us once again to consider only partitioned inputs in II2- 
multifan form since:

Lemma 81. For n >  3,

• i f  there is a path in between any x  G E[ and y G Uj (for i < j), then 
^3 A l t - H o m  (D C „ ) , and

• if  there is a path in ^3 between any x  G Ui and y G Uj (any i,j), then ()3 ^ 
A l t - H o m  (T > e n).
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Proof. We prove the first claim, the proof of the second is similar. If the path 
has net length 0 mod n, then, if Proponent plays a for x, then Opponent plays the 
forward-neighbour b of a for y, and wins. If the path has net length other than 
0 mod n , then, if Proponent plays a for jc, then Opponent also plays a for jc, and 
again wins. □

Theorem 82. I f  7  is a directed n-cycle then A lt-H o m  (T ) is tractable.

Proof. If the input 93 has any of the paths of the previous lemma, then we have a 
no-instance. We may therefore assume that 93 has no such path, and is equivalent 
to the rewrite-reduced 93 in Fl2-multifan form. We may further split 93 into its 
I l2-fan form components 93/ (1 <  i < m), for some m, and solve separately for 
each.

Since 7  is rotationally symmetric, each F^-fan structure 93/ admits an alternating- 
homomorphism to 7  iff the structure admits a homomorphism to T. It is 
known that the problem H o m (T) is tractable [4], and the result follows. □

7.6.2 Template is a digraph with source and sink.

In a digraph, a source (respectively, sink) is a vertex with in-degree (respectively, 
out-degree) 0 .

We consider the case where the template “J  is a digraph with both a source s 
and a sink t. In such cases we need only consider inputs in Zi-form since:

Lemma 83. For any i, j,

• i f  there is a forward-edge in 93 between any x  E Ei and y E Uj, then 93 ^ 
A l t - H o m  (T),

• i f  there is a backward-edge in 93 between any x E £/ and y E Uj, then 93 f  
A l t - H o m  (T),

• i f  there is any forward-edge in ^3 between any x E U[ and y E Uj, then 
93 ^  A l t - H o m  (T), and

• if  there is any backward-edge in 93 between any x  E U[ and y E Uj, then 
93 ^  A l t - H o m  (T).
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Proof. For the first and third claims, Opponent plays 5 for y and wins. For the 
second and fourth claims, Opponent plays t for y and wins. □

The following should be seen as a generalisation of Proposition 59.

Proposition 84. I f  7  is an antireflexive digraph with both a source and a sink, 
then A lt -H o m  (T ) is logspace equivalent to HOM fT).

Proof Use the reduction of Proposition 59 (we have the same forbidden edges 
here as we did there). □

Definition. An rc-tournament is a digraph S with vertex set { 0 , . . .n — 1}, such 
that, for all i j  £ Z n, exactly one of E ( i J )  or E(j , i )  is an edge of S- The unique 
^-tournament which contains no directed cycle as a subgraph is known as the 
transitive ^-tournament, and will be denoted Tjj.

Corollary. I f  7 tn is the transitive n-tournament then A lt-H o m  (7^) is tractable.

Proof. 7 tn has bo th  a source and a sink. So, the resu lt fo llow s from  the previous 

theorem , and the fact that H o m (‘JJ<) is trac tab le  [4]. □

7.6.3 Tractable tournament Alt-Hom problems.

The tournaments T“ . 3

We examine the tournaments 7^ +3 which are constructed from the directed 3- 
cycle by repeatedly adding a source m times. (The superscript u suggests this 
unique cycle.)

Definition. We define T“ +3 inductively:

•  Let :=  7% = DC3 , the directed 3-cycle..

•  From build by adding a new source, i.e.,
|T(r+l)| ;=  j0"(r)| l±J {r +  3} 4 and £ T'r+1) :=  E7{r) l+l {(r +  3 , i ) : / e  |TM|}.

•  Let T“ +3 : = T W .

A7 r\  being a tournament with r +  3 vertices, w ill already have vertex numbers 0 to r  +  2.
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Since we have dealt with the case of the directed 3-cycle, we consider m > 0, 
i.e. when T“ +3  has a source.

Lemma 85. For m >  0:

•  I f  there is a directed edge in *}3 between x  £ £/ and y € Uj (i < j ), then 
<P £ A lt-H om  (0£+3).

•  I f  there is a directed edge in between x £ I/,- and y £ f/y (any i,j), then 
<p^ A lt-H o m (0 ^+3).

•  I f  there is a directed edge in *J3 from x £ Ej  to y £ (/,• (i <  j), then ^3 ^ 
A lt-H om  (T“ +3).

Proof The first two parts follow from the antireflexivity of 7^+3, by Lemma 57. 
For the final part, if Opponent plays y to the source of *7^+3, Proponent can have 
no reply for x. □

Let ^3 be a partitioned digraph, we define its cousin *}3 inductively:

.  <p(°) :=<p.

• From ipM we build *p(r+1) by removing all sources that are in existential 
partitions.

• «p:=q3H

Let Ex(^3 — ^3) be those existential vertices in ^3 that are not in ^3, and let Ex{*\3) 
be those existential vertices in ^3 that are also in *}3 (since *}3 C  these are the 
existential vertices of ^3). Let PrEx($3) be those vertices of ^3 in existential par­
titions to which there is a directed path from  some vertex in a universal partition. 
Let Un(%3) be the set of universal vertices of ^3. We refer to the vertices of 7 ^ +3 

that are not in the 3-cycle as the tail of T^+3.
We will benefit from examining which vertices of the underlying graph 

have been removed in the graph S^. It should be clear that vertices in Un(*\3) and 
PrEx(ty) can never be removed, and are, therefore, protected. Let us consider the 
sub-partitioned-graph ^3i of ̂ 3 induced by the existential vertices that are not pro­
tected. ^3i may be put through our given inductive scheme, iteratively removing
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sources m times, so obtaining ^ 1. It should be clear that <}3 is that subgraph of ^3 
induced by the set Un(*$) U PrEx(^)  U  |S ^  |. Apart from the universal vertices 
and those existential vertices that are protected, our construction is that given for 
proving the tractability of H o m (‘J ^ +3) in [4]. All of the sets we have defined 
should now be considered as subsets of ^3 (though some may be subsets of (p 
too). Before going on we will benefit from the following lemmas.

Lemma 8 6 . In a winning strategy fo r  Proponent on (^3,‘J^l+3), i f  Opponent plays 
all his vertices to the 3-cycle, then Proponent must play all o f the vertices o f 
Exifff) [in ()37 to the 3-cycle.

Proof Again, let *}3i be the sub-partitioned-graph of ^3 induced by those exis­
tential vertices that are not protected. Recall that ^3 is the subgraph of ^3 in­
duced by Un{%3) UPrEx(ty)  U |S ^  |, as in the previous paragraph. So Ex{%3) is 
PrEx(y$) U  |S ^  |. Since universal vertices are played to the 3-cycle, it follows that 
all vertices of PrEx(ty) must be played to the 3-cycle. Furthermore, if any vertex 
of |Sjpj | [in ^3] could be played to the tail of O'"+3, then this could not be extended 

to a homomorphism from 8 <p, to T“ +3  -  by definition of *J3i -  so this could not 
be a winning strategy for Proponent on (<J3,0^+3). The result follows. □

Lemma 87. Assume that ()3 has none o f the edges o f Lemma 85. Then Opponent
can win the game on (^3,‘J^!_)_3) iff he can win it whilst never playing in the tail o f
T"

m + 3 '

Proof. Since edges of (J3 from universal partitions only point toward vertices x in 
higher existential partitions, if Opponent plays in the tail then he allows Proponent 
to answer x with anything on the 3-cycle, whereas, if he plays on the 3-cycle he 
limits Proponent to a single adjacent vertex of the 3-cycle. It is clear that Opponent 
gains nothing by playing in the tail. □

Theorem 8 8 . The problems A l t -H o m  (T Jj+3) are tractable.

Proof. W e already  have the resu lt for m — 0. For m >  0  w e w ill solve A l t - H o m  (T ^ +3) 

by taking any inpu t ^3 for that p roblem , an d  constructing  a given ^3; . W e will prove 

()3 G A l t - H o m ( 0 ^ +3) iff ^3' g  A l t - H o m ( T 3), w hereupon we m ay appeal to  the 

know n tractab ility  o f  A l t -H o m  (7 ^ ), and  o u r result w ill follow.

141



If ^3 has any of the edges of Lemma 85 then we define <J3' to be any set no­
instance of A lt -H o m  (O^) (e.g. the transitive 4-tournament 7 tA with all vertices in 
E2). If ^3 has none of those edges then we set *}3' to be ^3, via the construction 
already described. It remains for us to prove that this is correct. It is trivially 
correct if ^3 has any of the edges of Lemma 85: we assume it does not.

0}3 G A l t -H o m  (T^+3) => ^3 G A lt-H o m (T3).) For a winning strategy o  
for Proponent in the game on (*}3,7^+3), we claim o is also a winning strategy for 
her in the game on This follows immediately from Lemma 86.

(^3 G A lt -H o m (T3) => ^3 G A lt-H o m (<JJJj+3).) From a winning strategy 
o  for Proponent in the game on (^3,0^), we construct a winning strategy a ' in 
the game on (^3 , ^ + 3 ) where Opponent only plays in the 3-cycle. In that game 
on (^3,T^+3), when Opponent plays on the 3-cycle, then Proponent answers the 
vertices in Ex(ty) according to a , and then maps Ex(*}3 — ^3) to the tail of 0 ^ +3. 
The result follows from Lemma 87. □

The tournam ents T3 f m

T hese tournam ents are analogous to the tou rnam en ts 0 ^ +3, but are constructed  

by the repeated  addition o f  a sink, ra th er than  a source. It follow s by a sim ilar 

argum ent that, fo r all m, A lt-H o m  (T ^ +3) is tractable.

The result

Theorem 89. I f  7  is a tournament with at most one cycle then A lt-H o m  (T) is 
tractable.

Proof. It follows from standard results about tournaments (see [4]) that T is either 
transitive or is 7% with a succession of sources and/or sinks added. If 7  has both a 
source and a sink then we can reduce the problem to H o m (T), which is known to 
be tractable [4]. If it has no sink, then it is one of the tournaments T“+3 above. If 
it has no source, then it is one of the tournaments T%+m above. □
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7.6.4 NP-complete tournament Alt-H om  problems.

Bang-Jenson, Hell, and MacGillavray proved that, for any rc-tournament 7 n that 
has at least two distinct cycles, Hom^Th) is NP-complete [4].

Theorem 90. Let 7  be a tournament with more than one cycle and a source and 
sink, then ALT-HOM(T) is HP-complete.

Proof. Follows from Proposition 84 , together with [4]. □

7.6.5 Pspace-complete tournament A l t - H o m  problems.

A 2-walk Tournament (2wT) is a tournament 7  in which, for all distinct /, j  € 7, 
there is a directed 2 -walk from x  to y.

Theorem 91. For every 2wT 7, A lt-H om  (T) is Pspace-complete.

Proof. Note that | p | |  > 2. Also, since 7  is a tournament, there can be no 2- 
walk from any vertex x  G 7  to itself. Using the directed 2-path from vertex i to 
vertex j  as indicator, we find that 7 * is ^hth-  Pspace-completeness follows from 
Theorem 73. □

We conclude by proving that the class of 2wTs is infinite.

Definition. For m > 5, define the Tournament thus:

•  l ^ +1l =  {0,....2m}

•  E ^ 2m+1 =

-  {( 

-  {( 

-  {(■

-  (C

, j)  : i, j  G Z 2m+ 1 s.t. 1 +  1 = 7  mod 2m +  1 } U

, j)  : i, j  G Z 2m+i s.t. 1 - 2  =  7 mod 2m +  1 } U

, j)  : i , j  e  Z 2m+\ s.t. i +  3 =  j  mod 2m +  1 }U

, j)  : i , j  e  Z 2m+1 s.t. i +  4 =  j  mod 2m +  1 } U

-  { j)  • j  € ^ 2m+\ s.t. £ +  5 =  7 mod 2m +  1 }U

-  {(u j)  : i, j  € %2m+1 s.t. i +  m =  j  mod 2 m +  1}
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0

6  5

Figure 7.11: The tournament T ^. The 2-jump dotted edges point anticlockwise; 
all other edges point clockwise.
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It may easily be verified that T2m+1 is a tournament. Note that this is partly a 
consequence of the odd number of vertices: if we had an even number of vertices 
under a similar construction we would either have vertices not joined by an edge 
or vertices joined by a double edge. Observe the aberration of the 2-jumps: if we 
draw edges on a regular (2m +  l)-gon with the vertices enumerated clockwise, 
then all edges point in a clockwise direction, except the 2-jumps which point 
anticlockwise (see Figure 7.11.)

Lemma 92. For all distinct vertices i , j  <E ‘Jfm+P there is a directed 2-walk from  
i to j, i.e. 7^+ 1  is a 2wT.

Proof. We will prove that there is a directed 2-walk from vertex 0 to each of the 
vertices 1, . . . ,  2m. We may then appeal to symmetry.

It will suffice to show that every number 1, . . . ,  2m is the sum ( mod 2m + 1 ) of 
exactly two elements of the set { 1 , - 2 , 3 , 4 , 5 , . . . ,  m}. So: 1 = 3  — 2;2 =  4 — 2; 3 =  
5 — 2 (this is why m > 5), henceforth we may use the positive numbers {3 , . . . , m} 
for 6 =  3 +  3 through to 2m =  m +  m. □
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Chapter 8 

Conclusions and Further Work

8.1 Program Schemes

Most of our results for program schemes augmented with priority queue are far 
from tight, and those that are tight are unsurprising. It is hard to see how a Turing 
machine simulation might prove that NPSPQ" is contained in a space-bounded 
(or time-bounded) complexity class. This is because the size of the potential mem­
ory of the priority queue in NPSPQM seems to be unbounded. We give no better 
upper bound to NPSPQ“ than the class of recursively enumerable languages. For 
better lower bounds for NPSPQM, our simulation method can go no further than 
NPspace, since we rely on the fact that we can enumerate the tape squares through 
a constant number of variables (which may encode only a polynomial quantity 
of numbers). A similar problem arises in the case of a better lower bound for 
APSS(l ) .

We suggest that an indirect method may be more likely to succeed, perhaps 
like that used to prove P C NPSS5(1) -  via the path system problem -  in [2].

8.2 Classes of Structure on which P = ±PS*[FO]

Grohe had proved in [23] that P =  LFP[FO] on the class of 3-connected planar 
graphs. Since triangulations are 3-connected planar graphs and it is known that P 
=  ±PS[FO] on the class of triangulations [42], it is natural to question whether P
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=  LFP[FO] on the class of 3-connected planar graphs. Thus far, we have failed 
to adapt Grohe’s method to settle this question.

8.3 Quantified Constraints on Graphs

T he m eth o d  used  to  p rove the P space-com pleteness o f A lt-H o m  (TC), w here K  

is an odd Catherine w heel, m ay be ap p lied  to prove P space-com pleteness fo r s im ­

ilar tem p la tes. A n  obv ious ex tension  is fo r graphs that are construc ted  like odd 

Catherine w heels , bu t w here  any b ip artite  graph (not ju s t a tree) m ay be appended  

to each p o s itio n  on  the  odd  cycle.

For quantified ^-colouring, we conjecture the following extension to Theo­
rem 71.

Conjecture 93. The class of antireflexive undirected graphs exhibits A lt-H o m - 

trichotomy. Specifically:

• If IK is bipartite, then A lt-H o m  (IK) is tractable.

•  If K  is not bipartite, and is not connected, then A lt-H o m (K )  is NP- 

complete.

•  If  K  is no t b ipartite , and is connected , then  A lt-H o m  (K )  is P space-com plete .

In order to prove this, it would remain for us to prove that A lt-H o m  (K )  

is Pspace-complete, when K  is antireflexive, undirected and connected, and has 
more than one odd cycle.

It is well-known that common cores characterise equivalent 3-pos-conj-FO- 
theories (CSP/ H o m ), i.e. two templates T ,T ' have the same core iff they agree 
on all sentences of 3-pos-conj-FO. Similarly, common stiff-graphs-within char­
acterise equivalent FO\{=}-theories. We know of no such characterisation for 
equivalence of pos-con j - FO-theories (QCSP/ A lt-H o m ). It would be interest­
ing to isolate some characteristic on two templates that exactly specifies whether 
they give rise to the same QCSP problem.
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