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Abstract

An investigation of Hawking radiation and a method for calculating particle creation in

Schwarzschild spacetime using a quantum Langevin approach is presented in this the-

sis. In particular we shall show that an oscillator confined to a free-fall trajectory in

Schwarzschild spacetime radiates as a result of such motions, and this radiation can be

interpreted as Hawking radiation. In chapter 1 we present a literature review of the un-

derlying concept: the Unruh effect. We also present some introductory material pertinent

to the calculations. Chapter 2 is concerned with the case of a thin collapsing shell to form

a black hole in Schwarzschild anti-de Sitter spacetime. We determine the temperature of

the black hole to be TH = h(rh)/4π = κ/2π where h(rh) is the factorization of the confor-

mal factor, r is the radial coordinate with the location of the horizon situated atr = rh,

and κ the surface gravity. We also calculate the stress tensor at early and late space-

times which allows us to calculate the renormalized stress-tensor 〈Tµν〉 which satisfies the

semi-classical Einstien field equations. In chapter 3 we examine the case of a harmonic

oscillator in 2D Schwarzschild spacetime and we show that the choice of trajectory is

responsible for making the oscillator radiate. In chapter 4 we derive a quantum Langevin

equation for the oscillator in the Heisenberg picture. By solving this equation using the

Wigner-Weiskopff approximation we show that, in the case of an oscillator confined to a

free fall trajectory in Schwarzschild spacetime, the oscillator radiates with respect to the

Boulware vacuum. In agreement with Hawking[1] we obtain a temperature of the black

hole as T = 1/8πMB. In chapter 5 we present our conclusions and recommendations for

further work.
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Chapter 1

Introduction and Preliminary

Discussions

1.1 Introduction

In 1976, W. G. Unruh published his celebrated paper ‘Notes on Black Hole Evapora-

tion’[2]. In the paper, Unruh considers the case of a particle detector which was un-

dergoing a uniform constant acceleration. Using the Rindler coordinate system, Unruh

allowed the oscillator to accelerate with respect to the Minkowski vacuum which was of

zero-temperature, and, as a result of such motions, the oscillator comes into equilibrium

with the Minkowski vacuum at a temperature which is entirely dependent on the accel-

eration of the oscillator.

Shortly after Hawking published his procedure for demonstrating the existence of the

emission of a thermal spectrum of particles from a black hole[1], P C Davies applied the

Hawking procedure to Minkowski spacetime using the Rindler coordinate system which

represents hyperbolic motion in Minkowski [3]. Using the Hawking procedure, Davies

demonstrated that particle creation occurs in that region of Minkowski spacetime known

as the Rindler wedge, in effect the horizon for observers undergoing hyperbolic motion in
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Minkowski spacetime. The result is pertinent to Hawking’s result since there is a close

analogy between Rindler coordinate and the Schwarzschild system in the exterior part of

a spherically symmetric collapsing body.

The results of Hawking’s calculations demonstrating particle creation in Schwarzschild

and Minkowski spacetime were not generally contentious and are now generally accepted.

There is however still controversy as to whether the constantly accelerating oscillators as

investigated by Davies and Unruh produce radiation that is actually detectable.

In both his 1976 paper and a later one he co-authored with R. Wald [4], Unruh argued

the Rindler particles could be detected. He suggested that ‘detection is seen by an inertial

observer as the emission of an ordinary Minkowski quantum, this excitation being due

to recoil.’ Unruh argued that as a result of such excitations, the oscillator would emit a

detectable energy signature as it sought to reach equilibrium with the Minkowski vacuum.

These results were widely accepted at the time. However not everyone agreed with

this interpretation. It was P. Grove [5] who first put the argument against the prevailing

agreement. Grove argued that Unruh’s conclusions were an incorrect quantum mechan-

ical interpretation of the results. Grove suggested that the correct interpretation of a

constantly accelerating observer interacting with the Minkowski vacuum is that the en-

ergy is absorbed from the space of the detector. In short, the main physical effect is the

emission of ‘negative’ energy by the detector.

Grove’s alternative interpretation was soon supported by D. Raine, D. Sciama who

co authored a paper (along with P Grove) on inertial detectors [6]. In their paper, a

uniformly accelerating oscillator is confined to a 2-dimensional wordline in Minkowski

spacetime. The oscillator is coupled to a real scalar field and an electrodynamic interac-

tion is used to describe the interaction between the oscillator and the field. The oscillator
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is driven by the action of a constant force. Raine et al. argued that when one takes into

account all of the quantum correlations (i.e. the expected change in physical characteris-

tics as a quantum system passes through a point where the oscillator interacts with the

field), no radiation is observed.

Unruh responded to this by considering the case of an accelerating oscillator coupled

to a thermal bath when both the bath and oscillator are accelerated together [7]. In this

paper, Unruh claimed that Raine et al. discarded some terms in their autocorrelation

function of the field. These terms he argued, would contribute to the excitation of the

detector. Unruh does concede however that in the case of 2 dimensions, the difference

between free-field radiation and a distortion of the field tied to a particle is a difficult one

to make. He further suggested that a more proper consideration of the effect should be to

ask if the oscillator makes any measurable changes to the property of the field; something

he claimed his paper had demonstrated.

Much more recently, the solution to this problem seems to have been given by G. Ford

and R. F. O’Connell. In their paper ‘Is There Unruh Radiation’ [8] Ford and O’Connell

consider the case of a harmonic oscillator coupled to a real scalar field. They then allow

the oscillator to undergo a variety of motions: stationary, moving in the field direction

and hyperbolic motion. Ford and O’Connell form an exact analysis of the problem, and

the approach they take is as follows. First they form a Lagrangian which describes the

oscillator, the free scalar field and the interaction between the two (taken to be electro-

dynamical in nature). They then use this Lagrangian to find the equation of motion for

the oscillator and the scalar field. The solution of the scalar field equation of motion is

one of the form φ = φh − x(τret), where if φ is the scalar field, then φh is taken to be the

homogeneous part. The particular integrals turns out to be the solutions to the oscillator

equation of motion x(t), evaluated at the retarded time.
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Once this is done, the energy flux of the system is calculated by determining the

expectation value of the energy-stress tensor component T 0
1 . By substituting in the full

solution to the free scalar field, Ford and O’Connell are able to split the expectation value

of the energy-stress tensor (and hence the overall energy flux of the system) into three

components:

〈J 〉 = 〈J0〉 + 〈Jint〉 + 〈Jdir〉,

where 〈J0〉 is the flux arising in the absence of the oscillator (and is shown to be always

zero). The term 〈Jdir〉 is the direct flux term, and represents the flux arising directly

from the oscillator alone, while the 〈Jint〉 is the interference term and represents the flux

arising from the result of the interaction between the field and the oscillator.

In all cases of motion considered, Ford and O’Connell demonstrate that there is no

overall energy emission. The calculation is clear in why this is the case: the direct flux

term always precisely balances the interference term so that when the two terms are

added together the total energy flux is zero. Most interestingly, the ability to balance the

two terms seems to come from a property of the oscillator. Ford and O’Connell define

the oscillator susceptibility function α(ω) (where ω is the frequency of the field). This

function has the property that

ℑ{α(ωk)} = ωζ|α(ω)|2,

for some coupling constant ζ (the fluctuation-dissipation theorem). It is this property that

allows the interference term to take on the exact form (but of opposite sign) to the direct

flux term and thus giving 〈J 〉 = 0. At the end of their paper, Ford and O’Connell con-

clude that a system undergoing hyperbolic motion through a zero-temperature vacuum

does indeed experience a finite temperature. However they agree with the conclusions of

Grove, Raine and Sciama that no overall energy is detected. Furthermore they point out

that the argument for no radiation is identical in the case of a stationary oscillator and

one undergoing hyperbolic motion. This strongly implies no energy is radiated since the
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balancing of the direct and interference term always occurs.

Ford and O’Connell then examine Unruh’s results. They dismiss Unruh’s claims that

when a heat bath is introduced and is moving along with the oscillator that radiation

is emitted, claiming it does not represent the situation envisaged by experimentalists

interested in detecting Unruh radiation. In such cases, only a single particle or a single

atomic system is in accelerated motion.

Vanezalla and Matsas [9] seem to argue that the absence of energy in Ford and

O’Connell’s calculations is due to the model they used. In their paper concerning the

interaction between a charged oscillator and the electro-magnetic field, they conclude ra-

diation is observed. However Ford and O’Connell are skeptical of this, and quite rightly

point out that their calculation explicitly shows a detailed balance holds in place for

both the stationary case and that of a oscillator performing hyperbolic motion. Their

conclusion that such a principle is model independent seems very reasonable.

More recently, a good review of the Unruh effect and its applications has been pro-

duced by L. Crispino et al [10]. In this paper the authors review the Unruh effect and

clear up many of the misconceptions regarding the effect. The authors also state that the

Unruh effect does not require an experimental confirmation anymore than free quantum

field theory does. They also imply that the Unruh effect has applications in information

theory, quantum gravity and cosmology and, there are now a number of papers exploring

such things [11, 12]. Indeed [11] discusses Unruh-DeWitt detectors and examines the

implications in the areas of entanglement dynamics and quantum teleportation.

The Unruh effect has also been of interest to theorests in the field of quantum gravity.

D. Bruschi and J. Louko consider the case of a charged Unruh effect on a topological

geon black hole [13] (in this case, the charged Reissner-Nordström geon) . In the paper,
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they conclude that the geon’s exterior region contains non-thermal correlations for par-

ticle pairs of the same charge. J. Louko and A. Satz consider the transition rate of the

Unruh-DeWitt detector in curved spacetime [14]. The Unruh-DeWitt detector is coupled

to a real scalar field in 4D spacetime. The authors derive an integral which gives the

total excitation probability and show that an instanteous transition can be recovered if a

suitable limit is taken. At the end of the paper, Louko and Satz pose a number of inter-

esting questions, including asking if there might be a relationship between the detector’s

response and a dynamical or evolving horizon.

As we have seen the problem of investigating inertial detectors can be persued from

many different avenues and continues to be of interest. We shall take the approach of

Raine and Ford, and O’Connell. We shall show that one can use inertial oscillators to

formulate Hawking radiation just by using a quantum Langevin description. We shall see

that the energy flux associated oscillator confined to a free-fall trajectory in Schwarzschild

spacetime delivers a thermal result, this demonstrates that the process of calculating the

energy flux of an oscillator on a free-fall trajectory in 1+1 Schwarzschild spacetime is

essentially the same as Hawking’s calculation. After performing the Ford and O’Connell

calculation in 2D Schwarzschild spacetime and observing the presence of radiation, we

then use a Hamiltonian which describes the quantum oscillator, the free field and their

interaction, and find the equations of motion for the annihilation and creation operators

of the field and the oscillator. Using a Wigner-Weisskopff approximation we can deter-

mine the expressions for the annihilation and creation operators of the oscillator. We

then adopt the same method as Ford and O’Connell in calculating the energy flux of the

system. We shall show that when the oscillator is stationary or confined to an inertial

trajectory, the indirect flux and direct flux terms exactly balance when we use the fluc-

tuation and dissipation theorem. When the oscillator is put into a free-fall trajectory in

Schwarzschild spacetime however, the two terms do not balance and radiation is indeed

observed.
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The thesis is organized as follows:

• Introduction. In the rest of this chapter, we examine the fundamental principles

and calculations we shall use: in the next section, we have a brief review of the fun-

damental principles of Quantum Field Theory. In §3 we examine the Unruh effect

and see how the Unruh Temperature is derived. In §4 we examine the Schwarzschild

black hole and look at both its spacetime structure and the choice of vacua which are

present. We examine the Hawking method result which uses a ray tracing method

to find relationships between ingoing and outgoing modes. The Bogoliubov trans-

formations between these modes then give rise to particle creation. We compare

this result with the Unruh effect of §3. In §5 we look at the process of obtaining a

quantum Langevin equation for a harmonic oscillator coupled to a real scalar field

using the approach discussed by Louisell [15]. We discuss the Wigner-Weisskopf

approximation needed to solve this equation. In §6 we give the process for deriving

the energy calculations used by Ford and O’Connell from the energy-stress tensor,

while in the final section we look at the method of solving the Klein-Gordon wave

equation using Green’s functions. Sections 1.2, 1.3 and 1.4 are all largely based on

the excllent set of lecture notes given by L. H. Ford. [16]

• In Chapter 2 we consider the case of a thin collapsing shell in two–dimensional

Schwarzschild–anti de Sitter spacetime. Schwarzschild– anti de Sitter is not a glob-

ally hyperbolic spacetime, so there is no past and future timelike infinity. As a result

we consider early-time modes and late-time modes rather than in and out ones as

in the Schwarzschild case. We apply the Hawking-ray tracing process discussed in

Chapter 1 and obtain relations between early-time and late-time modes, and by cal-

culating the Bogoliubov coefficients we demonstrate that particle creation occurs.

We then use these modes to calculate the forms of the renormalised stress tensor

(which satisfies the semi-classical Einstein field equations) at early and late times.
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We discuss the problem of renormalization and the various approaches involved.

We shall discuss the renormalization method as suggested by Davies, Fulling and

Unruh [17, 18] and apply it to obtain an expression for the renormalised stress

tensor in 2D Schwarzschild anti-de Sitter spacetime.

• In Chapter 3 we take an oscillator coupled to a real scalar field and put it on a

constant trajectory in Schwarzschild spacetime. When we perform the energy flux

calculations we see that, as in the case of Ford and O’Connell, the interference

term and direct flux term balance to give zero total energy. However, if we put

the oscillator on a inertial trajectory in Schwarzschild spacetime, we find that the

energy terms no, longer balance, and this is due to the presence of the conformal

factor which was previously constant, and now becomes a function of proper time

on the inertial trajectory.

• In Chapter 4 we form a Hamiltonian describing the oscillator, free field and their

electrodynamic interaction. We solve the equations of motion using a Wigner–

Weisskopff approximation. By forming the position operator for the oscillator and

solving the field equation for φ, we are able to perform the same energy calculations

as we did in Chapter 3. We find that if the oscillator is stationary or undergoing

hyperbolic motion, no radiation is observed, however if the oscillator is on a free-fall

trajectory in Schwarzschild radiation is detected.

• In Chapter 5, we have conclusions and recommendations for further work.

At the end of the thesis there are two appendix sections containing miscellaneous calcu-

lations which are referenced in Chapter 4.

1.2 Quantum Field Theory in Curved Spacetimes

In this section we shall review some of the standard results of quantum field theory ap-

plied to curved spacetimes. While it is beyond the scope of this work to review all of the
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many diverse themes and problems associated with the theory, it is relevant to review

the framework and results of the theory most pertinent to the calculations. The topics

of interest are the principle formalism behind the theory, the Unruh effect and of course

Hawking’s celebrated result of the thermal emission of black holes. In this section we shall

establish the formalism and conventions of quantum field theory, and in the proceeding

two sections after this one we shall examine first the Unruh effect and then the Hawking

effect.

Although in general there is no problem in generalizing the model from flat space to

curved spacetime, it should be noted that there are a number subtle differences which

arise when we make the transfer from QFT in Minkowski (flat) spacetime to that of a

quantum field in curved space time. In flat spacetime for example, we have a natural

choice of vacuum, the Minkowski one. In the case of a curved spacetime, the choice of

vacuum will depend upon the exact physical object we are studying. In flat spacetime

we can work with particles, however in curved spacetime the notion of a particle becomes

ambiguous. There are often more pressing problems; we need to find a suitable coordi-

nate system. Often spacetime geometries are such that a coordinate system covers just

part of the manifold, or there may be coordinate singularities within a particular system.

In the case of some spacetimes, there is not always a timelike killing vector, so there

are problems to be considered when defining positive frequency. We also need to define

a suitable scalar product. These things are all essential if we are to define a vacuum state.

In chapter 2 we shall be concerned with renormalization and in particular the calcu-

lation the renormalised stress tensor 〈Tµν〉ren. The renormalization procedure we adopt

must be consistent and take account of absolute energy values. As we shall see in Chap-

ter 2, even where we work with an asymptotically flat spacetime, such renormalization

schemes must be applied with great care if we are to obtain a meaningful, renormalised

stress tensor satisfying the semi-classical Einstein field equations.
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Construction of QFT in curved spacetime. Let S be a spacetime which can be

modelled as a pseudo-Riemannian manifold which is globally hyperbolic, and has metric

a tensor gµν . We define the following Lagrangian density:

L =
1

2

√−g
[
gµν∂µφ∂νφ−

(
m2 + ξR

)
φ2
]
, (1.1)

where we have a scalar field φ of mass m, R is the Ricci scalar of the spacetime S and

the quantity ξ is the coupling constant. We find two popular choices for ξ:

1. Minimal coupling, in which case ξ = 0 (used for the calculations in this thesis)

2. Conformal coupling for which ξ = 1/6.

We may use the Euler-Lagrange equations to generate the equation of motion for the

scalar field- the Klein Gordon equation:

2φ+m2φ+Rξφ = 0, (1.2)

where 2 is the d’Alembertian operator:

2 = ∇µ∇µ. (1.3)

Let φ1(x) and φ2(x) be two solutions to the Klein-Gordon equation of motion (1.2). We

can define an inner product between the two vectors as

(φ1, φ2) = i

∫

Σ

φ∗2(x)
↔
∂µφ1(x) dΣ

µ (1.4)

where we take the notation

φ∗2(x)
↔
∂µφ1(x) = φ∗2(x)∂µ(φ1(x)) − (∂µφ

∗
2(x))φ1(x)

and we have that dΣµ = nµdΣ and nµ is a suitably chosen timelike unit vector which

is orthogonal to the Cauchy hypersurface Σ. We note the important property that this

inner-product is independent of the choice of hypersurface, so

(φ1(x), φ2(x))Σ1 = (φ1(x), φ2(x))Σ2 . (1.5)
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We may also define a quantity called the canonical momentum, Π by

Π =
δL
δφ̇
, (1.6)

and this satisfies the canonical commutation relation

[φ(x),Π(x′)] = iδ(x, x′). (1.7)

We choose a complete orthonormal set of basis mode solutions of equation (1.2), ui which

satisfy the orthogonality conditions:

(ui, uj) = δij, (u∗i , u
∗
j) = −δij, (ui, u

∗
j) = 0, (1.8)

and we can expand the φ field in terms of these modes:

φ(t, x) =
∑

k

[akuk(t, x) + a†ku
∗
k(t, x)]. (1.9)

We can quantize the scalar field by using the commutation relations:

[ak, aj] = 0, [a†k, a
†
j] = 0, [ak, a

†
j] = δkj. (1.10)

In the Heisenberg picture, quantum states span a Hilbert Space. We use the Fock repre-

sentation as a convenient basis for the Hilbert space of quantum states. The normalized

ket vectors which we denote | 〉, can be constructed from the vacuum state which we

denote by |0〉. The vacuum state has the property that it is annihilated by all the ak

operators:

ak|0〉 = 0, ∀k. (1.11)

It is often the case that we have more than once choice of orthonormal basis modes, and

since both sets span a Hilbert space of states then it must be the case that we can write

one set in terms of another. Suppose that we have another complete set of orthonormal

basis modes, u(x) which are a solution of (1.2).We can expand the φ field in terms of

these new basis modes:

φ =
∑

j

[bjuj + b†ju
∗

j ]. (1.12)
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This new decomposition of the scalar field will also define a new vacuum state |0〉:

bj|0〉, ∀j. (1.13)

As both sets of modes are complete, we can write the new modes vj in terms of the the

old ones:

uj =
∑

i

(αjiui + βjiu
∗
i ), (1.14)

and conversely, the old modes in terms of the new ones:

ui =
∑

j

(α∗jiuj − βjiu
∗

j ). (1.15)

The transformations of (1.14) and (1.15) are called the Bogoliubov transformations, and

the matrices αij and βij are the Bogoliubov coefficients. The coefficients can be evaluated

using the Klein Gordon inner product since

αij = (ui, uj), βij = −(uj, u
∗
j). (1.16)

If we now equate the two field expansions (1.9) and (1.12) then we obtain (using the

orthogonality conditions above) that

ai =
∑

j

(αjibj + β∗jib
†
j) and bj =

∑

i

(α∗jiai − β∗jia
†
i ). (1.17)

The Bogoliubov coefficients posses the property:

∑

k

(αikα
∗
jk − βikβ

∗
ik) = δij and

∑

k

(αikβjk − βikαjk) = 0. (1.18)

We see from(1.17) that the two different Fock spaces which have arisen from two separate

choices of modes will be different so long as the Bogoliubov coefficient βji 6= 0.

The expectation value of the operator Ni = b†ibi for the number of ui-mode particles

in the alternative vacuum |0〉 is

〈0|Ni|0〉 =
∑

j

|βji|2, (1.19)
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i.e this is a way of calculating the number of expected ui particles in the second vac-

uum. The calculation of the Bogoliubov coefficients is an integral part of the Hawking’s

calculation in showing that black holes have a thermal property and hence, a surface

temperature. They also play an important role in the Unruh effect as we shall now see.

1.3 The Unruh Effect

In this section we examine the phenomena known as the Unruh effect : a uniformly

accelerating observer in Minkowski spacetime sees a thermal spectrum of particle in the

vacuum state.

We have the 2D Minkowski metric:

ds2 = dt2 − dx2, (1.20)

where we use Minkowski spacetime coordinates (t, x); t is the coordinate time and x is

the spatial coordinate. We now make the transformation to Rindler coordinates:

t =
eaξ

a
sinh(aτ), and x =

eaξ

a
cosh(aτ), a > 0. (1.21)

Here τ is the proper time experienced on the worldline of the observer ξ =constant. The

metric now becomes:

ds2 = e2aξ[dτ 2 − dξ2]. (1.22)

which gives a metric tensor:

gµν =






e2aξ 0

0 −e2aξ




 . (1.23)

If we let ξ is constant, then this represents an accelerating observer with proper acceler-

ation ae−aξ with a proper time eaξτ . The trajectory of this observer is shown in figure

1.1. Here we have the trajectory ξ is constant along with the horizons represented by the

line x = −t (so τ = −∞ and ξ = −∞) and line x = t (whereby τ = ∞ and ξ = −∞).

The region R+ will be of interest to us later, and this region on the space time diagram
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t

τ
= −∞

,
ξ
= −∞

x

τ = const

ξ = const

R+-Rindler Wedge

R−

τ
=
∞,
ξ
=
−∞

x = t

P

F

Figure 1.1: A uniformly accelerating oscillator in 2D Minkowski spacetime on the trajec-

tory ξ =const.
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is commonly referred to as the Rindler wedge.

We now consider the massless scalar field. We shall need to determine the forms of

the Rindler modes which we shall denote by uR
K . We have the covariant form of the wave

equation:

∂µ

{√−ggµν∂νΦ
}

= 0. (1.24)

Substituting the inverse of the metric tensor given in (1.23) into (1.24) yields the wave

equation:

∂2Φ

∂τ 2
− ∂2Φ

∂ξ2
= 0. (1.25)

Solving this gives us the Rindler modes of the form

uR
K =

eiKξ−i̟τ

√
4π̟

, for ̟ > 0, ̟2 = K2. (1.26)

We can analytically extend the modes to cover both the regions F and P in figure 1.1,

thus providing us with a complete set of basis modes:

u+
K =







1√
4π̟

eiKξ−i̟τ in R+

0 in R−
, and u−K =







0 in R+

1√
4π̟

eiKξ+i̟τ in R−
. (1.27)

We now expand the Φ field in terms of these modes:

Φ =
∑

K

b+Ku
+
K + b†+K u+∗

K + b−Ku
−
K + b−†K u−∗K , (1.28)

where bk represents the annihilation operator, b†k the creation operator of the scalar field.

The operators allow us to define the Rindler-Fulling vacuum

b+K |0R〉 = b−K |0R〉 = 0. (1.29)

Since we are interested in particle creation we shall need to calculate the Bogoliubov

coefficients:

βij = −(uk, v
∗
K). (1.30)

We want particles to be seen by an accelerating observer in the Minkowski vacuum, so

the ui modes correspond to the Minkowski vacuum, and the vj modes correspond to the
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Rindler one. In order to evaluate the product (1.30), we must choose a suitable surface

in order to perform the integration. We choose the Cauchy surface t = 0 which gives

τ = 0. We have the Minkowski modes:

uk =
1√
4πω

eikx−iωt, ω = |k|, (1.31)

and the Rindler modes

vK =
1√
4π̟

eiKξ−i̟τ , ̟ = |K|, (1.32)

for ξ ∈ (−∞,∞), i.e. we have that x > 0. So, the inner product we wish to evaluate is

now

βkK = i

∫ ∞

x=0

uk

↔
∂tv
∗
K dx = i

∫ ∞

0

uk
∂v∗K
∂t

− ∂uk

∂t
v∗K dx.

We now evaluate each of the derivatives in turn:

∂uk

∂t
= − iω√

4πω
eikx−iωt = −iωui, on t = 0, uk =

eikx

√
4πω

.

Using the chain rule we have

∂v∗K
∂t

=
∂ξ

∂t

∂v∗K
∂ξ

+
∂τ

∂t

∂v∗K
∂τ

.

= −e−aξ sinh(aτ)
∂v∗j
∂ξ

+ e−aξ cosh(aτ)
∂v∗j
∂τ

= iKe−aξ sinh(aτ)v∗j +̟e−aξ cosh(aτ)v∗j

and on the surface τ = 0 this reduces to

∂v∗K
∂t

=
i̟

ax
v∗j ,

and on t = 0 we have

v∗K =
e−iKξ

√
4π̟

e−iKξ.

Now, our inner product is

βkK = − 1

4π
√
ω̟

∫ ∞

x=0

̟

ax
eikxe−iKξ + ωeikxe−iKξ dx.

We can write the exponential e−iKξ:

e−iKξ = eln(ax)−iK/a

= (ax)−iK/a.

20



Now make the substitution y = ax, and the integrand reduces to

βkK = − 1

4π
√
ω̟

∫ ∞

0

(
̟

y
+ ω

)

eiky/ay−iK/a dy.

We can write this as two integrals

βkK = − 1

4π
√
ω̟

(I1 + I2).

Dealing with I1 first:

I1 =

∫ ∞

0

̟eiky/ay−1−iK/a dy,

which is clearly a Gamma function, and so we have that

I1 = ̟
( a

ik

)−iK/a

Γ

(
iK

a

)

. (1.33)

We can do a similar thing for the integral I2;

I2 =

∫ ∞

0

ωeiky/ay−iK/a dy = ω
( a

ik

)1−iK/a

Γ

(

1 +
iK

a

)

i.e.

I2 = ω
( a

ik

)1−iK/a iK

a
Γ (iK/a) .

Now, we have that

( a

iK

)−iK/a

= exp

(

−iK
a

log
( a

ik

))

= exp

(

−iK
a

(

log
(a

k

)

− iπ

2

))

= e−πK/2aeiθ.

Hence we have that

βkK = − 1

4π
√
ω̟

(

̟ +
ωK

k

)

eiθe−πK/2aΓ

(
iK

a

)

.

We have that βkK is zero if ̟ = −ωK/k, otherwise

βkK = −2π

a

√
̟

ω
eiθe−πK/2aΓ(iK/a).

Thus we have that

|βkK |2 =
1

4πaω

e−π̟/a

sinh(π̟/a)
=

1

2πaω
(e2π̟/a − 1)−1. (1.34)
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This is a thermal spectrum with temperature T = a/2π. The result is dependent on the

acceleration of the observer and not the velocity, and the thermal spectrum of particles

are seen in the Rindler wedge. As we have discussed at the start of the chapter, the claim

that accelerated observers detect a thermal heat bath is not controversial. However, the

claim that the accelerating oscillator is emitting photons and that such radiations are

therefore detectable has been questioned. In particular both Raine, Sciama and Grove

and Ford and O’Connell have demonstrated that in fact the direct flux arising from the

oscillator exactly balances the radiation caused by the interaction of the oscillator with

the scalar field. Hence there is no overall energy flux.

1.4 Black Holes and the Hawking Effect.

In this section we shall examine the phenomena of Hawking radiation. The Hawking

effect describes the emission of a thermal spectrum of particles by a black hole after

its formation from stellar collapse. The emission of such particles (now called Hawking

photons) does not depend upon the details of the collapse, or the collapse process itself.

In the first part of this section we shall look at the Schwarzschild black hole and its

properties. In the second part of this section we shall look at the case of a thin collapsing

shell in Schwarzschild spacetime. We shall demonstrate the process used by Hawking

whereby early time modes are related to the late time ones by a simple linear function.

This function can be found using the geometric optics approximation as the modes pass

through the collapsing shell. Calculation of the Bogoliubov coefficients then yields the

result of thermal particle creation at late times.

We shall employ this method in Chapter 2 when we come to determine the particle

creation involved in the case of a thin collapsing shell, collapsing in 2D Schwarzschild

anti de-Sitter spacetime.
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1.4.1 2D Schwarzschild Spacetime

In this part, we shall briefly look at the structure of 2D Schwarzschild spacetime. The

Schwarzschild metric describes a static black hole which has formed from the symmetrical

collapse of a massive star. The manifold is described by the metric

ds2 =

(

1 − 2MB

r

)

dt2 −
(

1 − 2MB

r

)−1

dr2. (1.35)

Let rh = 2MB denote the position of the even horizon, then the above metric describes

the exterior of the black hole the region r ≥ rh. Here we have that MB is the mass of the

black hole, and we note the existence of a coordinate singularity at the position r = 2MB.

All two dimensional spacetimes are conformally flat and we can write the metric (1.35)

in the conformally flat form

ds2 = Ω(dt2 − dr2
∗), (1.36)

where

Ω = 1 − 2MB

r
(1.37)

is a quantity called the conformal factor, and r∗ is the ‘tortoise coordinate’ satisfying

dr∗
dr

=

(

1 − 2MB

r

)−1

. (1.38)

Integrating this directly gives

r∗ = r + 2MB ln

∣
∣
∣
∣

r

2MB

− 1

∣
∣
∣
∣
. (1.39)

We may use the ‘tortoise coordinate’ to define the advanced and retarded null coor-

dinates (respectively):

u = t− r∗, and v = t+ r∗. (1.40)

Light rays travel along the lines u = constant or v = constant. In terms of the null

coordinates, the metric in (1.35) becomes

ds2 =

(

1 − 2MB

r

)

dudv. (1.41)
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singularity
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=
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Figure 1.2: A Penrose diagram showing the Maximally extended Kruskal manifold. Time-

like geodesics start at i− and finish at i+. Future and past timelike infinities I + and

I − are shown, and the Singularity is located at r = 0. Past and future event horizons

are H− and H+.
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We now introduce another coordinate system known as the Kruskal Coordinates.

These coordinates cover all of the Schwarzschild manifold and make use of the null coor-

dinates previously defined. We let

u = −4MBe
−u/4MB , and v = 4MBe

v/4MB , u ∈ (−∞, 0), v ∈ (0,∞). (1.42)

Figure 1.2 gives a Penrose diagram of the Schwarzschild black hole as covered by the

Kruskal coordinate system. The intrinsic singularity exists at r = 0. Particles are

confined to timelike geodesics which start at i− and terminate at i+. Light rays travel

at π/2 radians to the origin. We have event horizons situated along the future and past

horizons. It will also be noted that we have four regions: I, II, II and IV .

• Region I: This is the exterior region of the black hole, r > rh.

• Region II: The interior of the black hole containing the singularity at r = 0.

• Region III: A parallel exterior region

• Region IV : A White hole interior.

We now come to the problem of choosing the candidate vacua. For quantum field

theory in flat space, we have a natural candidate: the Minkowski vacuum. However, it is

the case that, in general, for quantum field theory in curved spacetimes, very often there

is no one preferred vacuum, rather the choice of vacuum depends upon in the physical

situation we are working with. However, some spacetimes do admit to a natural choice

of spacetime. In their paper Kay and Wald [19] show that globally hyperbolic spacetimes

possessing a one-parameter group of isometries with a bifurcate Killing horizon do posses

quantum states which are both pure and unique. Minkowski, Schwarzshild and de Sitter

spacetimes have this property.

Consider now the metric:

ds2 = C(r) dudv.
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We have the massless scalar wave equation:

∂µ(
√−ggµν∂νΦ) = 0,

which gives

∂µ∂νΦ = 0. (1.43)

This equation has a general solution

Φ = f(u) + g(v). (1.44)

We can use the null coordinates defined in (1.40) to define positive frequency modes:

e−iωu, e−iωv for ω > 0. This leads us to the following basis modes:

• ‘Up’ modes : These are basis modes of the form

←
us ∝ e−iωu (1.45)

• ‘In’ modes : These are basis modes of the form

→
us ∝ e−iωv (1.46)

Using the Kruskal coordinate system we can define another set of positive frequency

modes:

→
uk ∝ e−iωu,

←
uk ∝ e−iωv (1.47)

We now have three possible choices of vacua:

• Schwarzschild/Boulware Vacuum: This vacuum, |0S〉 represents a vacuum which is

empty at infinity. The vacuum is defined using the basis modes of (1.45) and (1.46).

• Kruskal/Hawking-Hartle Vacuum: This vacuum, |0K〉, represents a vacuum which

is in thermal equilibrium at infinity. This vacuum is defined by using the Kruskal

modes of (1.47).

• Unruh Vacuum: This choice of vacuum, |0U〉 represents an evaporating black hole

and is defined by using the Schwarzschild mode
←
uS and the Kruskal mode

→
uK .
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It is useful to make a comparison with the Unruh effect of the previous section. The

Kruskal coordinates u and v are null coordinates, so consider a time coordinate defined

by

τ =
1

2
(u+ v).

Substituting in the forms for u and v gives in (1.42):

τ = 4MBe
r/4MB

(
r

2MB

− 1

)1/2

sinh

(
t

4MB

)

.

Similarly, we can define a spatial coordinate:

ξ =
1

2
(v − u) = 4MBe

r/4MB

(
r

2MB

− 1

)1/2

cosh

(
t

4MB

)

.

We see that these τ and ξ expressions are the Rindler transformations of the previous sec-

tion (up to a factor
√

(r/2MB − 1) which has appeared due to the fact that Schwarzschild

spacetime is curved). The term a has now been replaced with

k =
1

4MB

, (1.48)

and this quantity represents the surface gravity of the black hole. The similarity between

the Kruskal coordinates and the Rindler coordinates means that we can compare Region

I of the Schwarzschild black hole (see figure 1.2) with the Rindler wedge (region R+

in figure 1.1) of Minkowski spacetime. So in terms of vacuum, the Rindler vacuum is

equivalent to the Boulware vacuum, while the Hawking-Hartle vacuum is equivalent to

the Minkowski vacuum. The inevitable conclusion must be that a stationary observer

in the Schwarzschild spacetime observes a thermal distribution of particles within the

Hawking-Hartle vacuum. (Note that a stationary observer in Schwarzschild spacetime is

a uniformly accelerating one).

1.4.2 The Hawking Effect

We now come to the calculation which demonstrates that at late times, far from the

black hole event horizon, a thermal spectrum of particles is observed. It should be noted

27



that there are a number of different derivations of the Hawking effect, we present the

methodology as used by L. Ford. We will again adopt this procedure in Chapter 2 when

we examine the case of a thin collapsing shell in Schwarzschild anti de-Sitter spacetime.

In figure 1.3 we have a Penrose diagram showing the collapse of the matter to form

a Schwarzschild black hole. Rays start at timelike infinity and pass through the centre

of the collapse. Any ray entering after the ray v0 (which travels along the event horizon)

will hit the singularity. Initially we have the ‘in’-modes which define the in-vacuum state

which we shall denote |0in〉. We have ‘in’-modes of the form

fω ∼ e−iωv as v → ∞, (1.49)

and ‘out’-modes of the form

Fω ∼ e−iωu as u→ ∞. (1.50)

In order to determine the existence of a thermal spectrum of particles at late times we

shall need to calculate the Bogoliubov coefficients. However it is the case that far from

the event horizon at late times, very high frequency modes dominate. These modes have

arrived from I − shortly before the event horizon forms.

The very high frequency nature of the modes as they pass through the collapsing

matter means that we can use a geometric optics approximation to model the modes.

We can also write an asymptotic form for the modes:

fω ∼







e−iωv on I −

e−iωG(u) onI +
and Fω ∼







e−iωu onI +

e−iωg(v) on I −
(1.51)

We shall now need to find the forms of the functions g and G. To do this, we shall use a

ray-tracing method. First, consider the case of a thin collapsing shell. We let the position

of the shell at time t be r = R(t), and so for r > R(t) the spacetime is that of the exterior

Schwarzschild spacetime with line element:

ds2 =

(

1 − 2MB

r

)

dt2 −
(

1 − 2MB

r

)−1

dr2.
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H+

r = 0

Collapsing
Matter

Singularity

v < v0

v = v0

v > v0

I −

Figure 1.3: A Penrose diagram showing the collapse of a star to form a Schwarzschild

black hole. The centre of the collapse is located at r = 0. Light rays come in from I −

and pass through the centre of the collapse. If they pass through the collapse before the

ray v0 then the ray will emerge and travel on to the future timelike infinity, I +.
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Inside the shell MB = 0 and so for r < R(t) the spacetime is flat:

ds2 = dT 2 − dr2. (1.52)

We can also define a set of null coordinates for the interior of the black hole:

U = T − r, and V = T + r. (1.53)

The metrics on both sides of the shell must match and so

dT 2 − dR2 =

(
R− 2MB

R

)

dt2 −
(
R− 2MB

R

)−1

dR2,

which we may write as

1 −
(
dR

dT

)2

=

(
R− 2MB

R

)(
dt

dT

)2

−
(
R− 2MB

R

)−1(
dR

dT

)2

. (1.54)

Consider now figure 1.4. Here we have a diagram showing the collapse. We have two

neighborhoods of interest. There is the δ-neighbourhood which is a region far from the

formation of the event horizon, centered on the point R1, the position where the ray v1

enters the collapsing shell. We also have a ǫ-neighbourhood which is a region close to

the event horizon centered on the point R2, the position of the shell when ray v2 emerges

after passing through the collapsing matter. Consider now the ray v1 shown in the figure.

This ray enters the shell when at a position R1 such that R1 − 2MB is finite. We may

say, approximately that the quantities

R

R− 2MB

, and
dR

dT

are both finite and constant near the point R1. This means that

dt

dT
≈ const, so t ∝ T

approximately. We can also say that in the δ-neighbourhood, by definition of the ‘tortoise’

coordinate in (1.39), that r∗ ∝ r, and so by use of the null coordinates (1.40) and (1.53)

we may say that approximately, in the δ-neighbourhood around R1 that

V (v) = av + b, (1.55)
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Figure 1.4: A diagram showing the passage of modes from past timelike infinity, through

the collapsing matter and on to future timelike infinity. We see that rays which enter the

collapse after the ray v0 are doomed to hit the singularity which has formed after this

point.
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for some constants a and b.

After entering the shell, the ray v1 passes through the centre of the collapse. The

matching of the null coordinates at the centre is simple, since at the centre of the collapse

r = 0. Hence we have that at

r = 0, U = V. (1.56)

Finally, the ray exists the shell at the position R2. The ǫ-neighbourhood which sur-

rounds the point R2 is close to the event horizon. If we let T0 be the time when R = 2MB

(as observed from inside the shell) then near T = T0 we have that

R(t) ≈ 2MB + A(T0 − T ), (1.57)

where A is a constant. We rearrange (1.54):

(
dt

dT

)2

=

(
R− 2MB

R

)−1

−
(
R− 2MB

R

)−1(
dR

dT

)2

−
(
R− 2MB

R

)−2(
dR

dT

)2

.

We shall ignore all but the leading quadratic term since this term is dominant, and so we

have approximately that

(
dt

dT

)2

≈
(
R− 2MB

R

)−2(
dR

dT

)2

.

We now substitute (1.57) into this expression we obtain that

(
dt

dT

)2

≈ 4M2
B

(T − T0)2
. (1.58)

Taking the square root and integrating this equation gives

t ≈ −2MB ln

(
T0 − T

B

)

, (1.59)

where B is constant as T → T0. Similarly, we have from (1.39) that, for T → T0,

r∗ ≈ 2MB ln

(
A(T0 − T )

2MB

)

. (1.60)

From the definition of the null coordinate: u = t− r∗ we can say that

u ≈ −4MB ln

(
T0 − T

B′

)

, (1.61)
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for some constant B′. Now, in this limit we have that

U = T − r = T −R(T ) ≈ (1 + A)T − AT0 − 2MB. (1.62)

So, from (1.61) we may write that

u ≈ −4MB ln

(
T − 2MB − U

B′

)

.

Tracing back through the collapse we have that U = V and so

u ≈ −4MB ln

(
T − 2MB − V

B′

)

,

and we have from (1.55) that

u ≈ −4MB ln

(
T − 2MB − (av + b)

B′

)

. (1.63)

Now, the argument of the logarithm must vanish on the horizon (i.e. when v = v0 and so

T − 2MB = av0 + b,

and hence we arrive at

g(v) = u = −4MB ln

(
v0 − v

c

)

, (1.64)

where c is a constant for this ray. From (1.50), we see that the out modes when traced

back to I − have the form

Fωlm ∼







e4iMB ln((v0−v)/c) v < v0

0 v > v0

(1.65)

Now let {fi} be positive frequency solutions to the scalar field equation in the past (i.e.

the ‘in’-region) and we let {Fi} be the positive frequency solutions in the future (the

‘out’-region). We can choose these sets of modes to be orthonormal, so they satisfy the

property:

(fi, fi′) = (Fi, Fi′) = δii′ , (f ∗i , f
∗
i′) = (F ∗i , F

∗
i′) = −δii′ , (fi, f

∗
i′) = (Fi, F

∗
i′) = 0. (1.66)
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Although we have defined these functions in terms of their asymptotic properties in

different regions, they are still solutions of the wave equation everywhere in the spacetime.

Thus we may expand the in-modes in terms of the out ones:

fi =
∑

k

(αikFk + βikF
∗
k ), (1.67)

and vice-versa

Fi =
∑

j

(α∗jifj − βjif
∗
j ), (1.68)

where α and β are the Bogoliubov coefficients. Thus taking the Fourier transform of

(1.65) and by using the identities in (1.66) we find the Bogoliubov coefficient:

αωω′ =
1

2π

√

ω′

ω

∫ v0

∞
eiω′ve4iMBω ln((v0−v)/c) dv

If we make the substitution v′ = v0 − v then we have that

αωω′ =
1

2π

√

ω′

ω
eiωv0

∫ ∞

0

e−iω′v′

e4iMBω ln(v′/c) dv (1.69)

and

βωω′ =
1

2π

√

ω′

ω
eiωv0

∫ ∞

0

eiω′v′

e4iMBω ln(v′/c) dv. (1.70)

We shall now consider the integrand in (1.69). The integrand is analytic everywhere

except for a branch cut along the negative real axis as shown in figure 1.5. If we let C

be the path

C = γR + γB + γǫ + γA,

to be traversed in the anticlockwise sense, then we have by Cauchy’s theorem that

∮

C

e−iω′v′

e4iMBω ln(v′/c) dv′ = 0. (1.71)

Consider the integrand now along the path γR. We make the substitution

v′ = R cos(θ) + iR sin(θ).

Thus we have that
∫

γR

e−iω′v′

e4iMBω ln(v′/c) dv′ =

∫ π

0

(−R sin(θ) + iR cos(θ))

(
R cos(θ) + iR sin(θ)

c

)

e−iω′(R cos(θ)+iR sin(θ)) dθ.
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C

γR

γAγǫ

ǫ−ǫ

γB

−R R

Figure 1.5: The contour of the integrand for the Bogoliubov coefficient αωω′ ,

Thus
∫

γR

∼ O(eω′R sin(θ)) → 0 as R → ∞,

and so the contribution from
∫

γR
= 0.

Let us now consider the integrand along the small semi-circle γǫ. We make the new

substitution

v′ = ǫ cos(θ) + iǫ sin(θ),

and thus we have that
∫

γǫ

e−iω′v′

e4iMBω ln(v′/c) dv′ =

∫ π

0

(−ǫ sin(θ) + iǫ cos(θ))

(
ǫ cos(θ) + iǫ sin(θ)

c

)4iMBω

e−iω′(ǫ sin(θ)+ǫ cos(θ)) dθ.

We have that
∫

γǫ

∼ O(ǫ) → 0, as ǫ→ 0.

35



Hence we must have that
∫

γA

+

∫

γB

= 0. (1.72)

So, finally we have that

∫ ∞

0

e−i′ω′v′

e4iMBω ln(v/c) dv′ = −
∫ ∞

0

eiω′v′

e4iMBω ln(−v′/c−iǫ) dv′.

Using the fact that

ln

(

−v
′

c
− iǫ

)

= −iπ + ln(v′/c),

then we have that

∫ ∞

0

e−i′ω′v′

e4iMBω ln(v/c) dv′ = −e4πMBω

∫ ∞

0

eiω′v′

e4iMBω ln(v′/c) dv′. (1.73)

Comparison of (1.73) with (1.70) reveals that

|αωω′| = e4πMBω|βωω′ |. (1.74)

We know that
∑

ω′

|αωω′|2 − |βωω′|2 = 1,

and hence from (1.74) we have that

∑

ω′

|βωω′ |2 =
1

e8πMBω − 1
. (1.75)

This is Hawking’s result, and the expression tells that thermal particle creation occurs

with a temperature (with ~ = c = 1)

TH =
1

8πMB

. (1.76)

This is known as the Hawking temperature and we see that it depends only upon the

mass of the black hole. The result we have arrived at does not depend upon the nature

of the collapse as we are only concerned with the energy flux at late times, far from the

black hole.
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1.5 Obtaining a Langevin Equation

In this section, we shall examine the method as presented by Louisell[15] for obtaining a

quantum Langevin equation from a Hamiltonian of a damped harmonic oscillator coupled

to a real scalar field. This approach makes use of a Wigner-Weisskopff approximation,

which we shall also examine. We do this as the process yields forms for the annihilation

and creation operators of the oscillator, and hence allows us to define the position and

momentum functions for the operator. Once we have these, we can perform the energy

calculations of the previous section.

First, let us remind ourselves of some preliminary observations of the harmonic oscil-

lator in the Heisenberg picture. We shall consider a classical harmonic oscillator of unit

mass in one dimension whose position is described by the coordinate q, and momentum

is described by the coordinate p. This discussion is presented in Louisell’s book [15]. The

Hamiltonian is

H =
1

2
(p2 + ω2

cq
2), (1.77)

where ωc is a constant related to the restoring force of the particle. Using the above

Hamiltonian, we can find the equations of motion for position and momenta

dq

dt
=
∂H

∂p
= p, (1.78)

and

dp

dt
= −∂H

∂q
= −ω2

cq. (1.79)

We now have two coupled differential equations, and if we differentiate both sides of

(1.78) with respect to t, then we can eliminate dp/dt from (1.79), thus we obtain

d2q

dt2
= −ω2

cq. (1.80)

The solution to this equation is

q(t) = A sin(ωct) +B cos(ωct), (1.81)
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where A and B are constants. It is clear that if we substitute this into equation (1.79)

and integrate both sides we have that

p(t) = −Aωc cos(ωct) + ωcBωc sin(ωct). (1.82)

Using the arbitrary boundary condition that at t = 0

p = p(0) and q = q(0) (1.83)

means that we have

q(t) = q(0) cos(ωct)+
p(0)

ωc

sin(ωct), and p(t) = −ωcq(0) sin(ωct)+ p(0) cos(ωct). (1.84)

There is an alternative procedure for dealing with the coupled differential equations of

(1.78) and (1.79), and this method has a direct relevance to the quantum mechanical

treatment of the harmonic oscillator which we shall look at shortly. If we multiply (1.78)

through by
√

ωc/2 and equation (1.79) by the quantity ±i/√2ωc then add both equations

together, we find we obtain the two coupled differential equations:

da

dt
= −iωca

∗, (1.85)

and

da∗

dt
= iωca. (1.86)

We define

a =
1√
2ωc

(ωcq + ip), and a∗ =
1√
2ωc

(ωcq − ip). (1.87)

with a∗ being the complex conjugate of a. We may solve these two equations for position

and momenta coordinates:

q =
1√
2ωc

(a∗ + a), and p = i

√
ωc

2
(a∗ − a). (1.88)

Solving (1.85) and (1.86) is trivial and we have the solutions

a(t) = a(0)e−iωct =
1√
2ωc

[ωcq(0) + ip(0)] e−iωct, (1.89)

38



and

a∗(t) = a∗(0)eiωct =
2

ωc

[ωcq(0) − ip(0)] eiωct. (1.90)

Thus, the introduction of the quantities a and a∗ have made the solutions to (1.78)

and (1.79) much simpler. We find that the introduction of a and a∗ also simplifies the

Hamiltonian. After some algebra we find that the Hamiltonian can now be written in the

succinct form

H = ωca
∗a. (1.91)

Indeed, from this form of the Hamiltonian, we can obtain directly the equations (1.85)

and (1.86):

i
da

dt
=
∂H

∂a∗
= ωca, and i

da∗

dt
= −∂H

da
= −ωca

∗.

We now turn to the quantum treatment of the oscillator in the Heisenberg picture. From

standard quantum theory, we associate hermitian operators with the observables q, p,

and H , and furthermore we have that the operators q and p satisfy the commutation

relation

[q, p] = i~. (1.92)

due to (1.87). The Hamiltonian for the system is

H =
1

2
(p2 + ω2

cq
2) = H

†. (1.93)

All of the operators above are in the Schrodinger picture, and as such are independent

of time. The Schrodinger equation of motion is

i~
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 (1.94)

and the solution to this equation is

|ψS(t)〉 = U(t, 0)|ψH(0)〉 = e−iH t/~|ψH(0)〉, (1.95)

where U is unitary. The above equation is the transformation law between state vectors in

the Schrodinger and Heisenberg pictures. Operators transform between the two pictures
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by the similarity transform:

qH(t) = U †(t, 0)qSU(t, 0), and pH(t) = U †(t, 0)pSU(t, 0). (1.96)

Now, for a conservative system, the Hamiltonian in the Heisenberg picture is the same

as the one in the Schrodinger one, thus we may write

HH =
1

2
[p2

H(t) + ω2
cq

2
H(t)]. (1.97)

Where the subscript ‘H’ reminds us that the operators are in the Heisenberg picture.

The Heisenberg equations of motion for qH(t) and pH(t) are

dqH
dt

=
∂HH

∂pH

= pH , and
dpH

dt
= −∂HH

∂qH
= −ω2

cqH . (1.98)

The only difference between these and the classical equations we derived in (1.78) and

(1.79) is that the operators pH and qH now satisfy the commutation relation

[qH(t), pH(t)] = i~. (1.99)

We now introduce two convenient operators- the annihilation operator a, and it’s Hermi-

tian conjugate counterpart, the creation operator a†:

a =
1√

2~ωc

(ωcq + ip), and a† =
1√

2~ωc

(ωcq − ip). (1.100)

The annihilation and creation operators are related to the position and momentum op-

erators by the relations

q =

√

~

2ωc

(a† + a), and p = i

√

~ωc

2
(a† − a). (1.101)

As we would expect, the operators a and a† do not commute, however they do satisfy the

commutation relation

[a, a†] = 1. (1.102)

If we use this and substitute (1.101) into (1.97) we find that the Hamiltonian is now

H =
~ωc

2
(aa† + a†a) = ~ωc

(

a†a+
1

2

)

, (1.103)
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where the term ~ωc/2 is the zero-point energy of the oscillator.

We now turn out attention to the problem of constructing a Langevin equation of

motion for a damped harmonic oscillator. As we shall see, such an approach will in-

volve using a Wigner-Weisskopff approximation. Our aim is to find expressions for the

annihilation and creation operators of the oscillator, we can then use these to determine

the position function q from equation (1.101). In the next section we shall examine the

method introduced by Ford and O’Connell for determining the overall energy flux of the

system.

We start by introducing the Hamiltonian given in Louisell’s text [15]

H = ~ωca
†a+ ~

∑

j

ωjb
†
jbj + ~

∑

j

(κjbja
† + κ∗jb

†
ja). (1.104)

where ωc is the natural frequency of the oscillator which has annihilation and creation

operators, a and a† respectively. Similarly the bj and b†j are the annihilation and creation

operators of the scalar field. The annihilation operator a satisfies the Heisenberg equation

of motion

da

dt
=

1

i~
[a,H ]. (1.105)

So we have

da

dt
= −iωc[a, a

†a] − i
∑

j

κjb
†
j[a, a] − i[a, a†]

∑

k

κjbj. (1.106)

We may use the identity, for operators M , a and a† that

[M , a†, a] = [M , a†]a+ a†[M , a]

along with the commutation relations

[M , a] = −∂M
∂a†

, [M , a†] =
∂M

∂a

and so we find that (1.106) now becomes:

da

dt
= −iωca− i

∑

j

κjbj. (1.107)
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We do the same thing for the scalar field operators:

dbj
dt

= −iωjbj − iκ∗ja = −iωjbj − iκ∗ja. (1.108)

Integrating the above equation gives us an expression for the annihilation operator of the

scalar field

bj(t) = e−iωjtbj(0) − iκ∗j

∫ t

0

a(t′)eiωj(t
′−t) dt′, (1.109)

where bj(0) is the value of the operator at time t = 0. We now substitute (1.109) and it’s

complex conjugate back into (1.106) (being mindful of order as the two separate parts

of bj(t) and b†j(t) do not commute with all functions of a(t) and a†(t) in the Heisenberg

picture):

da

dt
= −iωca+Ga −

∑

j

|κj|2
∫ t

0

a(t′)eiωj(t
′−t) dt′, (1.110)

where we have that

Ga = i
∑

j

κjbj(0)eW−iωjt. (1.111)

We now remove high-frequency behavior from (1.106). Let

a(t) = e−iωctA(t); and still [a(t), a†(t)] = [A(t), A†(t)], (1.112)

and hence we have that

dA

dt
= GA −

∑

j

|κj|2
∫ t

0

A(t′)ei(ωj−ωc)(t′−t) dt, (1.113)

with

GA = −i
∑

j

κjbj(0)e−i(ωj−ωc)t. (1.114)

The equation we have obtained in (1.113) is an integrodifferential equation, and it does

not have an exact solution. We must therefore use an approximation to solve it, and this

will be the Wigner–Weisskopff approximation. First we multiply both sides of (1.113) by

‘e−st’ and integrate with respect to t from 0 to infinity (i.e. we take the Laplace transform

of both sides):

sA(s) = GA(s) +
∑

j

|κj|2
∫ ∞

0

ei(ωc−ωj+is)t dt

∫ t

0

A(t′)ei(ωj−ωc)t′ dt′.
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We change the order of integration so that the integrals can be evaluated:

sA(s) = GA(s) +
∑

j

|κj|2
∫ ∞

t′
ei(ωc−ωj+is)t dt

∫ ∞

0

A(t′)ei(ωj−ωc)t′ dt′.

Performing the t integral first we now have that:

sA(s) = GA(s) +
∑

j

|κj|2
∫ ∞

0

ei(ωc−ωj+is)t′A(t′)ei(ωj−ωc)t′ dt′,

which simplifies to

sA(s) = GA(s) +
∑

j

|κj|2A(s).

Re-arranging the above equation and we arrive at the exact form

A(s) =
GA(s)

s+
∑

j
|κj |2

s+i(ωj−ωc)

, (1.115)

where we have that

A(s) =

∫ ∞

0

e−stA(t) dt, and GA(s) = −i
∑

j

κjbj(0)

s+ i(ωj − ωc)
. (1.116)

We now have to deal with the poles in (1.115). To do this we employ the Wigner-

Weisskopff approximation. For the case where the atom interaction with the field is

small, a zeroth approximation of s = 0 can be used. The next approximation consists in

calculating the first order shift in the simple pole of (1.115) as is discussed in Louisell’s

text [15].

Now

lim
s→0+

{
1

x+ is

}

= lim
s→0+

[
x

x2 + s2
− is

x2 + s2

]

=
1

x
− iπδ(x).

(1.117)

Since we have that

lim
s→0+

{
s

π(x2 + s2)

}

=







0 for x 6= 0,

∞ for x = 0
and lim

s→0+

{∫ ∞

−∞

s

π(x2 + s2)
dx

}

= 1 (1.118)

are required properties of the delta function. So, we now write

−i
∑

j

|κj|2
(ωj − ωc) − is

→ lim
s→0+

{∫
g(ωj)|κ(ωj)|2
(ωj − ωc) − is

dωj

}

.
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Using the Wigner-Weisskopff approximation of (1.117) we have that

lim
s→0

{
g(ωj)|κ(ωj)|2
(ωj − ωc) − is

}

= −i
∫

g|κ|2
(

1

ωj − ωc

+ iπδ(ωj − ωc)

)

dωj,

and thus we can write that

−i
∑

j

|κj|2
(ωj − ωc) − is

=
γ

2
+ i∆̟ (1.119)

where

γ = 2πg(ωc)|κ(ωc)|2, and ∆̟ =

∫
g(ωj)|κ(ωj)|2
ωj − ωc

dωj. (1.120)

The effect of applying the Wigner-Weisskopff approximation means that we can replace

(1.113) with an exact Langevin equation:

dA

dt
= −1

2
A(t) +GA(t), (1.121)

(ignoring small frequency shifts), and this has the general solution,

A(t) = e−γt/2

∫ t

0

GA(t′)eγt′/2 dt′. (1.122)

So, in order to determine a form for the annihilation operator A(t), we simple substitute

in the correct GA(t) (which in this context represents the random operator Langevin

noise source) into (1.122) and perform the integration. Once we have the annihilation

and creation operators we are free to determine q(t) from the expressions in (1.101), and

we can use it to determine the overall energy flux of the system. We do this using the

method as established by Ford and O’Connell [8] and we examine their method in the

next section.

1.6 Method of Determining Energy Flux

In this section we consider the problem of determining the energy flux of a harmonic

oscillator coupled to a real scalar field undergoing some kind of prescribed motion. We

introduce two quantities, the energy density E and the energy flux J . The energy density
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represents the amount of energy stored in the system, while the energy flux is the rate of

transfer of energy of the system. We have the conservation law:

∂E

∂t
+
∂J
∂x

= 0, (1.123)

where t is a time coordinate and spatial the coordinate is x. Let φ be a real scalar field

which satisfies the the Klein- Gordon equation

(2 +m2)φ = 0. (1.124)

where 2 is the usual D’Alembertian operator

2 = ηµν∂µ∂ν . (1.125)

The Klein-Gordon equation may be derived by applying the variational principle to the

action

S =

∫

Σ

L (φ, ∂µφ) d4x. (1.126)

where L is the Lagrangian density for the scalar field. In the process of taking the

variation of the above action, we find an expression for the energy-stress tensor T ν
µ appears

in the expression of the variation of the action for S and has the form

T ν
µ =

∂L

∂(∂µφ)
∂νφ− δµ

ν L . (1.127)

The energy density E is represented by the component T 0
0 in the stress tensor. So we

have from (1.127) that

T 0
0 =

∂L

∂φ̇

∂φ

∂t
− L , (1.128)

where we have used dots to denote differentiation with respect to time. Similarly we have

the energy flux J represented by the component stress tensor component T 0
1 :

T 0
1 =

∂L

∂φ̇

∂φ

∂r
. (1.129)

We shall be interested determining the energy flux of the system and so we shall need to

calculate the expectation value:

〈J 〉 =

〈
∂L

∂φ̇

∂φ

∂r

〉

. (1.130)
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As we saw at the start of the chapter, the general Lagrangian density for the free-scalar

field is given by

L =
1

2

√−g
[
gµν∂µφ∂νφ−

(
m2 + ξR

)
φ2
]
.

Thus we see that in order to determine the energy flux of the system, we shall need to

calculate the expression (1.130). This expression requires the Lagrangian density of the

scalar field, which in turn is dependent on the spacetime metric tensor. We shall also

require the solution to the scalar field equation, which will have a general form

φ(t, x) = φh(t, x) + φp(t, x), (1.131)

where φh(t, x) is the homogeneous solution and φp(t, x) is the particular integral of the

field equation of motion. In fact, as we shall see in Chapters 3 and 4 when we come

to calculate the energy flux of oscillators coupled to a real (massless) scalar field on

various trajectories that the particular integral is in fact the position function of the

quantum oscillator, determined by the method given in the previous section. Thus we

have a method for calculating the energy flux of a quantum oscillator confined to some

prescribed trajectory in a given spacetime:

1. First we form the Hamiltonian which describes the quantum oscillator, the free

scalar field and the interaction between both the field and the oscillator.

2. The annihilation and creation operators of both the oscillator and the free field

must satisfy the Heisenberg equations of motion, so we use this to determine the

equations of motion for the field and oscillator.

3. Solve the equation of motion for the scalar field and obtain expressions for the

annihilation and creation operators bj(t) and b†j(t).

4. Substitute these into the equation of motion for the oscillator. Further, let a(t) =

e−iωctA(t) to remove the high frequency behavior of the system and thus obtain a

first order integro differential equation for the annihilation operator A(t).
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5. Apply the Wigner-Weisskopff approximation to this differential equation so that

the differential equation can be replaced with a quantum Langevin equation, the

solution of which yields a(t) and a†(t). It is then a straightforward matter to obtain

the position function, q(t) from (1.101).

6. Solve the scalar field equation to obtain φ(t, x) = φh(t, x) + φp(t, x).

7. Using expression for q(t) and φ(t, x), determine the overall energy flux of the system

by calculating the expectation value in (1.130).

We now have almost everything we need to calculate the expectation value (1.130) for a

number of different cases. The final thing we need to examine is the process of computing

a solution to the inhomogeneous wave equation. As we shall see in the next section, the

standard way of doing this is through the use of Green’s functions.

1.7 Green’s Function for the Wave Equation

In the last section we shall be give the standard method of solving the inhomogeneous

wave equation:

2φ = f(x, t). (1.132)

The quantity ηµν is the inverse of the Minkowski metric tensor. The spacetimes we

shall examine in this thesis are all two dimensional, and any two dimensional spacetime

is conformally flat; one simply writes the metric tensor in terms of a conformal factor

and the usual Minkowski tensor gµν = Ω ηµν . Thus the method presented here is suitable

for conformally flat spacetimes, and we follow the methodology of P. Szekeres text [20].

Here (in this section) we shall let x = (x1, x2, x3, x4) with x4 = ct.

The general solution of (1.132) has the form

φ(x) = φG + φh(x), (1.133)
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where φh(x) is the homogeneous solution, 2φh(x) = 0, and φG is the particular integral

to be found using a Green’s functions. We shall seek a solution a solution to the equation

2G (x− x′) = δ4(x− x′), (1.134)

where we have taken

δ4(x− x′) = δ(x1 − x′1)δ(x2 − x′2)δ(x3 − x′3)δ(x4 − x′4).

Every Green’s function G generates a solution φG (x) to the inhomogeneous wave equation

of (1.132),

φG (x) =

∫∫∫∫

G (x− x′)f(x′) d4x′,

for

2φG =

∫∫∫∫

2G (x− x′)f(x′) d4x′

=

∫∫∫∫

δ4(x− x′) d4x′ = f(x).

We shall set

G (x− x′) =
1

(2π)2

∫∫∫∫

g(k)eik(x−x′) d4x

where we have let k = (k1, k2, k3, k4) and

k(x− x′) = kµ(xµ − x′µ).

If we write the four-dimensional δ-function as a Fourier Transform we must have that

2G (x− x′) =
1

(2π)2

∫∫∫∫

−k2g(k)eik(x−x′) d4k = δ4(x− x′)

=
1

(2π)4

∫∫∫∫

eik(x−x′) d4k,

hence we have

g(k) = − 1

4π2k2
(1.135)

where k2 = k.k = kµk
µ. So, the Fourier transform of the Green’s function is

G (x− x′) = − 1

(2π)4

∫∫∫∫
eik(x−x′)

k2
d4k. (1.136)
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k4 = −K k4 = K

Complex k4-plane → 0

→ 0 for τ < 0

for τ > 0

Figure 1.6: The contour in the k4-plane of the Green’s function for the 3-dimensional

wave equation.
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We shall now need to evaluate this integral. First we shall let

τ = x4 − x′4, R = x − x′, K = |k| =
√

k · k

and so

G (x− x′) =
1

(2π)4

∫ ∞

−∞

eik4τ dk4

k2
4 −K2

∫∫∫

ek·R d3k.

This is a contour integral and its path in the complex k4-lane is shown in figure 1.6.

There are two possible directions around the path. For τ > 0, the contour is traversed

anti-clockwise and we follow the upper semi circle. Now use Cauchy’s integral theorem:

Cauchy’s Integral Theorem Let D be a bounded domain in the complex plane with

piecewise smooth boundary ∂D. Suppose that f(z) is analytic on D ∪ ∂D except for a

finite number of isolated singularities z1, ..., zm ∈ D. Then

∫

∂D
f(z) dz = 2πi

m∑

j=1

Res[f(z), zj],

where for a pole of order n at the point z0 we have that

Res[f(z), z0] =
1

(n− 1)!
lim
z→z0

{
dn−1

dzn−1
{(z − z0)

nf(z)}
}

and we find
∫ ∞

−∞

eik4τ

k2
4 −K2

dk4 = 2πi

[
eiKτ

2K
− e−iKτ

2K

]

. (1.137)

For τ < 0, we complete the contour in a clockwise fashion and follow the lower semicircle

in figure 1.6. This particular contour does not enclose any poles and so, as a result, the

integral must vanish, thus

∫ ∞

−∞

eik4τ

k2
4 −K2

dk4 = −2π

K
Θ(τ) sin(Kτ), (1.138)

where Θ(τ) is the Heaviside function. The bottom contour gives rise to a Green’s function

which vanishes for τ < 0 i.e for x4 < x′4. It is called the retarded Green’s function for

a source switched on at the spacetime point (x′, x′4) and will only affect field points at

later times. The corresponding contour above the poles is the advanced Green’s function.
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We can finish the calculation of G by using polar coordinates in k-space with the k3 axis

being parallel to R Thus,

G (x− x′) = − 1

(2π)3
Θ(τ)

∫ 2π

0

dφ

∫ ∞

0

dK

∫ π

0

K2 sin(θ)eiKR cos(θ) sin(Kτ)

k
dθ

= −Θ(τ)

2π2R

∫ ∞

0

sin(Kτ) sin(KR) dK

= −Θ(τ)

2π2R

∫ ∞

0

(eiKτ − eiKτ )

2i

(eiKR − e−iKR)

2i
dK

=
Θ(τ)

4πR
(δ(τ +R) − δ(τ −R)) .

Now, the whole expression must vanish for τ < 0 due to the Heaviside function, while

for τ > 0 we have that δ(τ + R) = 0. Hence we find that the Green’s function may be

written as

G (x− x′) = − 1

4π|x − x′|δ(t− t′ − |x − x′|), (1.139)

and this expression is only non zero on the future light cone of x′. The solution to the

inhomogeneous wave equation (1.132) generated by those Green’s function is

φ(x, t) =

∫∫∫∫

G (x− x′)f(x′) d4x′ = − 1

4π

∫∫∫
[f(x′, t′)]ret
|x − x′| d3x′ (1.140)

where the expression [f(x′, t′)]ret means that f is to be evaluated at the retarded time

given by

τ ′ret = t− |x − x′|
c

, (1.141)

where c is the speed of light in a vacuum. Although we shall be dealing with the 1D case

(and the Green’s function is different for different dimensions), the method given here is

essentially the same.
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Chapter 2

Hawking Radiation in 2D

Schwarzschild anti de-Sitter

Spacetime

In this chapter we shall be interested in investigation the Hawking radiation associated

with a thin collapsing shell in Schwarzschild anti de-Sitter spacetime, and determining the

forms of the renormalised energy-stress tensor at both early and late times. We shall cal-

culate the Hawking radiation arising from the collapse of a thin shell in two dimensional

Schwarzschild anti de-Sitter spacetime using the ‘geometric optics’ approach established

by Hawking. This method will allow us to establish a relationship between early modes

and late time modes, and hence by calculation of the Bogoliubov coefficients we show

that particle creation occurs. The investigation of this problem will provide a familiarity

with Hawking radiation in a spacetimetime other than Schwarzschild.

Once we have established a relationship between past and future modes we go on

to find the renormalised energy stress tensor. We discuss the process of renormalisation,

then use the result established by Davies, Fulling and Unruh which allows us to determine

〈Tµν〉ren both at early and at late times.
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We shall adopt the following conventions

• Adopt natural units; G = c = ~ = 1,

• Use a metric signature (− + ++)

• We shall use the abbreviation SADS2 to mean Two Dimensional Schwarzschild–anti

de Sitter spacetime.

2.1 Introduction

It was once the widely held belief that the black hole marked the final end point of

gravitational collapse. The supermassive stars which underwent this process formed a

collapsed region of spacetime which was forever sealed off from the visible Universe by

the event horizon. After this, no further processes took place and the black hole was, for

all intents and purposes, a dead and lifeless object.

The idea that black holes were the final evolutioanry dead end for supermassive stars

was first challenged by J. D Bekenstein [21]. Bekenstein highlighted the number of sim-

ilarities between black-hole physics and thermodynamics. in particular, the similarity

in the behaviors of black-hole area and of entropy. Bekenstein’s argued that objects in

the Universe cannot just obey the laws of general relativity, they must also obey all the

other rules of physics too, including the second law of thermodynamics. The second law

of thermodynamics tells us that the entropy of a closed system always increases. If we

identify the event horizon of a black hole as a measure of its entropy, this implied that

black holes must have a temperature, and hence they must radiate. As we observed in

Chapter 1, Hawking- in his paper concerned with particle creation by black holes [10] -

went on to show that the temperature of the black is given by the expression

T =
κ~

2πkc
,
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where κ is the surface gravity of the black hole, ~ = h/2π where h is Plank’s Constant, k

is the Boltzmann constant and c is the speed of light in a vacuum. This radiation emitted

by black holes is now called Hawking radiation and does not depend upon the nature of

the collapse.

Soon after this result was announced, the Hawking effect was studied from many

different aspects. Boulware’s approach was to investigate quantized scalar and Dirac

fields around a thin collapsing shell [22] in Schwarzschild spacetime using the Kruskal

coordinates. Boulware suggested that the Hawking radiation was result of the collapse

process and involved the emissions of pairs of particles which had come from either side

of the event horizon. Boulware further demonstrated that any back reaction on the shell

would react entirely through the metric and was able to calculate the contributions the

radiation made to the energy-stress tensor.

It was not long before the Hawking process was applied to collapse scenarios in other

spacetimes. The first alternative spacetime to undergo such investigations was the de

Sitter spacetime. The de Sitter spacetime is the maximally entended symmetric solution

of the vacuum Einstein field equations with a positive cosmological constant, Λ. Gibbons

and Hawking showed that the Killing horizon within de Sitter spacetime has the same

quantum properties as a black hole: namely entropy and temperature. They found the

temperature was determined by the relationship

Tds =
1

2πl
, (2.1)

where l is the curvature radius. In his paper ‘Adventures in de Sitter space’ [23], Busso

gives a concise summary of the work undertaken by Hawking and Gibbons on the de

Sitter manifold.

By this point in the subject’s history, all of the spacetimes investigated had been
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globally hyperbolic manifolds. There is good reason for this: a spacetime which is glob-

ally hyperbolic posses a family of Cauchy surfaces and prohibits the existence of closed

timelike curves (causality conditions). Thus, everything that happens in such a spacetime

can be determined by the equations of motion and some initial boundary data on some

specific Cauchy surface. Avis et al [24] broke with tradition by considering quantum field

theory in anti-de Sitter spacetime a manifold which is not globally hyperbolic. By in-

vestigating conformally-coupled massless scalar fields, and the covering spaces of anti-de

Sitter (which is conformal to part of the Einstien static Universe), Avis et al were able to

give three quantization schemes which came in two varieties: one scheme was concerned

with transparent boundary conditions (i.e. particles in a transparent box), the other two

were concerned with reflective boundary conditions.

It should be noted that undertaking quantum field theory calculations in curved space-

time is far from trivial and many subtleties and difficulties soon occur; a particular prob-

lem which shall concern us here is the calculation of the expectation value 〈0|Tµν |0〉.

The methods for removing divergences from quantum field theory in flat spacetime- for

example renormalizing the zero-point energy by an infinite amount, or the use of a ultra-

violet regulator function eα|k| cannot be employed since (as we shall see later on when we

discuss renormalisation schemes) energy plays an important role in spacetime curvature;

energy gravitates and so it cannot be easily discarded. There are a number of elaborate

renormalisation schemes in existence.

One approach in dealing with the problem of divergences is to consider the semi-

classical field equations:

Gµν = −8π〈Tµν〉ren,

where the stress-energy tensor has been replaced with its renormalised expectation value.

This semi-classical approach gives a convincing model of Hawking radiation and provides

a method for calculating the back reaction to Hawking radiation. Unfortunately, the
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calculaton of 〈Tµν〉ren is also problematic. For example Brown[25] calculated the stress

tensor expectation value of a massive scalar field coupled to an arbitrary classical gravi-

tational field, 〈Tµν〉ren was not conformally invariant: its trace contained additional terms

which gave rise to the so-called trace anomaly.

Davies et al [17] and their book Quantum fields in Curved Space [26], Birrell and

Davies give some reliable methods for calculating the expectation value of the renor-

malised stress tensor and examine the conformal anomalies for the massless case. In

particular, they give a method for calculating 〈Tµν〉ren using the Davies Fulling Unruh

(DFU) derivative. In this procedure, a 2D spacetime metric is written in the conformal

form

ds2 = C(r) dudv,

where C(r) is the conformal factor and u and v are null coordimates. The components

of the renoramlised stress tensor are then computed from the DFU derivative.

Adopting this approach, Tadaki and Takagi [27, 28] demonstrated that by considering

a quantized conformal scalar field in 2D asymptotically flat de Sitter spacetime with a

collapsing star, the stress tensor in a given quantum state is regular if this quantum state

is to be the vacuum state associated with the basis modes defined using the global null

coordinate system described above.

More recent investigations of black hole evaportation by Saida et al [29] use the DFU

method to calculate the radiation power of black holes which are asymptotic to the Ein-

stein Static Universe at spatial and null infinities.

We shall adopt the approach discussed in Birrell and Davies. We start by examining

the structure of 2D Schwarzschild anti-de Sitter Spacetime.
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Figure 2.1: Penrose diagram showing the structure of Schwarzschild 2D anti de-Sitter.

2.2 The Structure of Two Dimensional Schwarzschild

anti-de Sitter Spacetime.

We shall use this section to examine the structure of SADS2. The metric for this spacetime

has the form

ds2 = −
(

1 − 2M

r
− Λr2

3

)

dt2 +

(

1 − 2M

r
− Λr2

3

)−1

dr2, (2.2)

whereM is the mass of the black hole and Λ is the cosmological constant, strictly negative.

In figure 3.1 we have a Penrose diagram which shows the structure of SADS2which is non-

globally hyperbolic. [30, 31] On the diagram we have indicated the following:

• H± (dashed lines): These indicate future/past black hole event horizons

• S± (zig-zag lines): Future/past singularities.

We note also that Region I covers the region outside the event horizon, and Region I’ is

a copy of Region I. Regions II and II’ contain the spacelike singularities S+ and S−.
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Another interesting feature of SADS2 is that there is no null surface I − (past time

like infinities) or I + (future timelike infinities) where null geodesics would normally start

and finish, there is only one timelike infinity I .

We can of course write the metric as a conformally flat one:

ds2 = −C(r)(dt2 − dr2
∗), (2.3)

where the conformal factor

C(r) = 1 − 2M

r
− Λr2

3
. (2.4)

There are no cosmological horizons: if we let C(r) = 0, then

r − 2M − Λr3

3
= 0. (2.5)

The equation (2.5) has just one real root solution when Λ < 0, and hence we have only

the event horizon. Furthermore we have that

dr∗
dr

=

(

1 − 2M

r
− Λr2

3

)−1

, (2.6)

then clearly

r∗ =

∫
dr

C(r)
. (2.7)

We shall now write:

1 − 2M

r
− Λr2

3
= (r − rh)h(r), (2.8)

where the event horizon is located at the position r = rh, and we have that the function

h(r) =
x

r
+ y + zr, (2.9)

where the quantities x, y and z have the forms:

x =
2M

rh

, y = zrh, and z = −Λ

3
. (2.10)

We can define a set of null coordinates (u, v) with a boundary condition on I :

u = t− r∗, v = t+ r∗ ; r∗ = 0 on I , (2.11)
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and in terms of these advanced and null coordinates, the metric becomes

ds2 = −C(r) du dv (2.12)

where the function C(r) is given in equation (2.4) and is infinitely differentiable and con-

tinuous everywhere except at r = 0.

Throughout this chapter we shall be working with a massless scalar field which satisfies

the wave equation:

2φ = 0 (2.13)

where, the 2 represents the usual D’Alambertian operator

2 = gµν∇µ∇ν . (2.14)

The solution to equation (2.13) are plane wave modes, for which we can define early time

modes of pure frequency ω′:

uearly
ω′ =

1√
4πω′

(

e−iω′u − e−iω′v
)

, (2.15)

where u and v are the advanced and retarded null coordinates defined in equation (2.11).

Similarly, we can define late-time modes of pure frequency ω;

ulate
ω =

1√
4πω

(
e−iωU − e−iωV

)
, (2.16)

where U and V are the advanced and retarded null coordinates at late times

U = T +R∗, V = T −R∗. (2.17)

We shall need to impose suitable boundary conditions with the wave equation of (2.13)

as SADS2 is not a globally hyperbolic spacetime. We shall impose reflective boundary

conditions :

φ = 0 at r∗ = 0, (2.18)
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which is simply a reflection at null infinity. We can now define a meaningful inner product

which is not dependent on any particular choice of hypersurface. It is of course the non-

hyperbolicity of SADS2 that has dictated the nomenclature of the two types of modes.

As we saw in Chapter 1, in the case of Schwarzschild collapse (where we have I + and

I −) we can define in-going and out-going modes. However in SADS2 we just have I

and so the modes are a mixture of ingoing and outgoing modes, so a better distinction

will be modes at early times and modes at late times. At early times we shall have that

f ∼ e−iωv,

and at late times:

F ∼ e−iω′g(V ).

Later on, we shall require an expression for the Ricci-scalar, R. We find that, for

SADS2

R = −2

3

Λr3 + 6M

r3
. (2.19)

It can be seen that if Λ = 0, we recover the two-dimensional Schawzrschild Ricci scalar:

R = −4M

r3
.

One more quantity which will be useful to us later on is the surface gravity. This is

easily determined from the expression:

κ =
1

2

dC

dr

∣
∣
∣
r=rh

=
M

r2
h

− Λrh

3
. (2.20)

2.3 Collapse Scenario

We shall now consider the case of a thin uniform collapsing shell in SADS2. Inside the

shell the spacetime is simply anti de-Sitter (ADS2). We shall essentially follow the same

argument as given by Ford which we discussed in Chapter 1.
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Consider now figure 3.2. Here we have a Penrose diagram which illustrates the col-

lapse scenario (this type of illustration made popular thanks to J. Maladacena). We

notice that unlike in the asymptotically flat space, we have no I − and no I +, an in-

coming ray passes through the collapse and is reflected back as a u ray. Furthermore, we

have to arbitrarily choose the start of the collapse which we have done, this is the Cauchy

surface Σt = 0 in figure 3.2.

We start by considering now the three rays: v0, v1 and v2. From figure 3.2 it can be

seen that:

• The ray v0 is the ray which passes through the centre of the collapse and then

emerges and travels along the event horizon H.

• All rays which enter the collapsing matter before the ray v0 will pass through the

centre of the collapse and back out through the shell.

• The ray v1 passes through the collapsing shell and emerges as the future ray u1.

• Any ray entering the shell after v0 (for example, the ray v2) will pass through the

shell and is doomed eventually to hit the singularity which has formed at the centre

of the collapse. Such rays cannot emerge in the future.

• The position of the shell at any time t is given by R = R(t); the ray v0 enters the

shell at point R1, passes through the collapse and emerges at R2 along the future

event horizon.

Since any ray entering the shell after ray v0 will hit the singularity and never emerge in

the future, we shall only be interested in all rays v > v0.

We now have three regions to consider: outside the shell, on the shell and inside the

shell, and we shall consider these three regions separately.
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the surface Σt = 0

Figure 2.2: Penrose diagram showing the collapse Scenario.
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Outside the Shell This is the SADS2 region outside the thin collapsing shell. It is

covered by the advanced and retarded null coordinates:

u = t− r∗, v = t+ r∗ (2.21)

where t is the coordinate time, and the r∗ coordinate is given by the expression:

r∗ =

∫
dr

(r − rh)h(r)
. (2.22)

Inside the Shell The interior of the shell is two dimensional anti de-Sitter, and this

has the metric:

ds2
I = −

(

1 − Λr2

3

)

dT 2 +

(

1 − Λr2

3

)−1

dr2 (2.23)

where T and r are the coordinate time and radial coordinate respectively for ADS2. We

note that both T and r are quite distinct from the t and r. As we did for SADS2, we can

define an advanced and retarded null coordinate for the interior. Let

U = T − r∗, V = T + r∗ (2.24)

and we also have that

dr∗
dr∗

= −
(

1 − Λr2

3

)−1

. (2.25)

On the Shell On the surface of the collapsing shell we have that r = r = R(t), where

as we defined earlier, R(t) is the position of the shell at any particular coordinate time t.

Now that we have the spacetime structure of the whole scenario established, let us

consider the collapse in detail.

2.4 The Ray-Tracing Process

Following the method as outlined by Ford, we shall now use the ray-tracing process to

establish a relationship between the early-time and late-time modes. We do this by using
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the fact that we require the interior metric of the shell to match with the exterior metric

across the shell, thus equating the interior metric with the exterior one we have that

−
(

1 − ΛR2

3

)

+

(

1 − ΛR2

3

)−1(
dR

dT

)2

= −(R−rh)h(R)

(
dt

dT

)2

+
1

(R− rh)h(R)

(
dR

dT

)2

.

(2.26)

From figure 2.3 we observe that a ray which enters the shell at R1 passes through the

ADS2 region and exits in the future at position R2. Since the shell is collapsing it must

be the case that R1 > R2. The figure also shows a small ǫ-neighbourhood situated on the

collapsing shell a long way from the event horizon, and a small δ-neighbourhood situated

near to the future event horizon.

Consider the small ǫ-neighbourhood on the past event horizon. It is located around

the point R1 and we have that R1 >> rh. We note two things of importance. Firstly we

have that R1 − rh is constant, and secondly

dR

dT
≈ constant.

in this ǫ-neighbourhood. So by (2.26),

dR

dT
≈ const ⇒ dt

dT
≈ const ⇒ t ≈ qT,

for some constant q. Since dr∗
dr∗

is also approximately constant in our ǫ-neighbourhood, we

can write

dr∗
dr∗

= α, ⇒ r∗ = αr∗ + β.

So in our ǫ-neighbourhood we have that

u = t− r∗, and v = t+ r∗

and therefore we can say that

U = kt− r∗, and V = Kt+ r∗,

for arbitrary constants k and K. Since r∗ = αr∗ + β, we can say that

u = t− αr∗ − β, and v = t+ αr∗ + β
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Figure 2.3: Diagram showing the collapse of the shell. The ǫ and δ neighbourhoods are

shown.
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and hence by some elementary algebra we can write that approximately, in the ǫ-neighbourhood,

we have that

V = av + b (2.27)

for some constants a and b, and similarly

U = cu+ d, (2.28)

again for some choice of constants c and d. Thus we have that V = g(v) and U = f(u)

where both the mappings f and g have a simple linear dependence. The ray which started

at R1 passes through the collapse, and since r = 0 at the centre of the collapse we have

here that U = V .

Any ray entering at R1 exists at R2. Consider now the δ-neighbourhood in figure 2.3.

We shall only be concerned with rays in this neighbourhood which is situated close to the

future event horizon located at R = rh. Here rays exit near to point R2 which is close to

the horizon. Since in the δ-neighbourhood

dR

dt
≈ const

then we may say that

R(T ) = AT +B, (2.29)

where A and B are constants. Now, let us say that at time T = T0, R = rh, so

rh = AT0 +B, (2.30)

and clearly

R(T ) = rh + A(T − T0). (2.31)

Re-arranging (2.26) gives

(R− rh)h(R)

(
dt

dT

)2

=

(

1 − ΛR2

3

)

−
(

1 − ΛR2

3

)−1(
dR

dT

)2

+
1

(R− rh)h(R)

(
dR

dT

)2
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So, using (2.29), and some further rearrangement, we have that:

(
dt

dT

)2

=
1

(R− rh)h(R)

(

1 − ΛR2

3

)

−
(

1 − ΛR2

3

)−1
A2

(R− rh)h(R)
+

A2

(R− rh)2h2(R)
︸ ︷︷ ︸

∗

.

(2.32)

Now, only the quadratic term (*) makes any significant contribution so we neglect the

linear terms and hence
(
dt

dT

)2

≈ A2

(R− rh)2h2(rh)
,

By expression (2.31),
(
dt

dT

)2

≈ A2

A2(T − T0)2h(rh)2
.

Taking the negative square root because for T < T0 we want R to be positive, we obtain

that

dt

dT
≈ − 1

(T − T0)h(rh)
.

Integrating both sides, we have approximately in the δ-neighbourhood that:

t = − 1

h(rh)
ln

∣
∣
∣
∣

T − T0

ξ

∣
∣
∣
∣
, (2.33)

for some constant ξ. We can find the corresponding expression for r∗ from (2.22). We

have that

r∗ =
1

h(rh)

∫
dR

R− rh

=
1

h(rh)
ln

∣
∣
∣
∣

R− rh

ξ′

∣
∣
∣
∣
,

for some arbitrary constant ξ′and hence

r∗ =
1

h(rh)
ln

∣
∣
∣
∣

A(T − T0)

ξ′

∣
∣
∣
∣
. (2.34)

(again this is approximately true in the δ-neighbourhood). Since we have defined u =

t− r∗, we have by (2.33) and (2.34) that

u = − 2

h(rh)
ln

∣
∣
∣
∣

T0 − T

η

∣
∣
∣
∣
. (2.35)

for some constant η. Now since in the limit T0 ≈ T , U = T − R(t), then we must have

that

A(T0 − T ) = U − T + rh,
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which means that we can write

u ≈ − 2

h(rh)
ln

∣
∣
∣
∣

U − T + rh

η′

∣
∣
∣
∣
,

(η′ is another constant) and so we arrive at:

u ≈ − 2

h(rh)
ln

∣
∣
∣
∣

T − rh − U

µ′

∣
∣
∣
∣

(2.36)

where µ′ is an arbitrary constant. As we pass through the origin, we have imposed

reflective boundary conditions which means U = V and so

u ≈ − 2

h(rh)
ln

∣
∣
∣
∣

T − rh − V

µ′

∣
∣
∣
∣
.

and so when we trace along the v-ray we have

u ≈ − 2

h(rh)
ln

∣
∣
∣
∣

T − rh − (av + b)

µ′

∣
∣
∣
∣
. (2.37)

Now, on the horizon the argument of the logarithm must vanish, and so

T − rh = av0 + b.

Finally, we arrive at an expression for U in terms of v, namely that

U = − 2

h(rh)
ln

∣
∣
∣
∣

v − v0

µ

∣
∣
∣
∣
, (2.38)

for some constant µ.

Similarly, following the same argument that we have just used. Figure 2.4 shows an

incoming u-ray emerging as an outgoing V -ray. The ray u0 travels along the horizon.

Since v = t+ r∗, then by (2.33) and (2.34) we can write

v = − 2

h(rh)
ln

∣
∣
∣
∣

T0 − T

η

∣
∣
∣
∣
.

Again A(T − T0) = R − rh, and at T0 ≈ T , we have that V = T + R and so we can say

that

v ≈ − 2

h(rh)
ln

∣
∣
∣
∣

T − rh − V

µ′

∣
∣
∣
∣
.
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Figure 2.4: Diagram showing the collapse of the shell, this time showing an incoming

u1 (entering the shell at position R3) which passes through the collapse and emerges

as a v1-ray (at point R4). The ray u0 travels along the horizon. Also shown are the

corresponding ǫ and δ neighbourhoods.
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When we pass through the collapse, U = V and so,

v ≈ − 2

h(rh)
ln

∣
∣
∣
∣

T − rh − U

µ′

∣
∣
∣
∣
,

and so tracing along the u-ray:

v ≈ − 2

h(rh)
ln

∣
∣
∣
∣

T − rh − (cu+ d)

µ′

∣
∣
∣
∣
. (2.39)

Again on the horizon, the argument of the logarithm vanishes: so

T − rh = cu0 + d

and hence we have that

V = − 2

h(rh)
ln

∣
∣
∣
∣

u− u0

µ

∣
∣
∣
∣
. (2.40)

We have now established a relationship between early-time modes u and v and late time

modes U and V . We see that the ray tracing process has allowed us to write U = f(v)

and V = g(u).

2.5 Bogoliubov Coefficients

We shall now calculate the Bogoliubov coefficients for the system. As we observed in

Chapter 1, if we have in-going modes of pure frequency ω′ and outgoing modes of pure

frequency ω we can write one set of modes in terms of the other set via a Fourier trans-

form. Once derived, the Bogoliubov coefficients can be used to determine the Hawking

temperature of the black hole.

As we stated earlier, we have early-time modes of pure frequency ω′ of the form

f early
ω′ =

1√
4πω′

[

e−iω′u − e−iω′v
]

, (2.41)

and late-time modes which are of pure frequency ω, and have the form

F late
ω =

1√
4πω

[
e−iωU − e−iωV

]
. (2.42)
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From the Hawking ray-tracing method in the previous chapter, we have derived that, for

v < v0

V = − 2

h(rh)
ln

∣
∣
∣
∣

v0 − v

µ

∣
∣
∣
∣

and U = − 2

h(rh)
ln

∣
∣
∣
∣

v − v0

µ

∣
∣
∣
∣

for some arbitrary constant µ. We shall now use the Fourier transform result of Chapter

1, where by the F late
ω modes are written in terms of the Fourier transform of the f early

ω′

modes, i.e.

F late
ω =

∫ ∞

0

(

α∗ω′ωf
early
ω′ − βω′ωf

early∗

ω′

)

dω′, (2.43)

to calculate the Bogoliubov coefficients αωω and βω′ω. We can calculate the coefficent

αω′ω by taking the Klein–Gordon inner product of f early
ω′ with (2.43), i.e:

αω′,ω = (f early
ω′ , F late

ω ), (2.44)

and similarly for βω′ω we have that

βω′ω = −(f early
ω′ , F late∗

ω ), (2.45)

where the Klein-gordon inner product between two vectors φ1 and φ2 is defined to be

(φ1, φ2) = −i
∫

Σ

φ1(x)
↔
∂µφ2(x)

∗√−gΣ(x) ηµ dΣ (2.46)

and ηµ is the timelike unit vector normal to the Cauchy hypersurface Σ and dΣ is the

volume element of the Cauchy hypersurface. We note that since our two sets of solutions

f early and F late are orthonormal, we must have that

(f early
ω , f early

ω′ ) = (F late
ω , F late

ω′ ) = δωω′ ,

(f early∗

ω , f early∗

ω′ ) = (F late∗

ω , F late∗

ω′ ) = −δωω′ and

(f early
ω , f early∗

ω′ ) = (F late
ω , F late∗

ω′ ) = 0

(2.47)

We shall need to choose our hypersurface Σ. Consider again figure 3.2. For early time

modes, we are interested in all the modes for which v < v0 (as anything entering the hole

after the ray v0 will hit the singularity), so we form the inner-product given in equation

(2.44) and we obtain that

α∗ω′ω =
1

2π

√

ω′

ω

∫ v0

−∞
exp

{
2iω

h(rh)
ln

∣
∣
∣
∣

v0 − v

µ

∣
∣
∣
∣

}

exp {iω′v dv} dv, (2.48)
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Figure 2.5: Integration over the closed contour Γ. The path Γ itself is the sum of paths

γA, γǫ, γB and γR

and correspondingly

βω′ω = − 1

2π

√

ω′

ω

∫ v0

−∞
exp

{
2iω

h(rh)
ln

∣
∣
∣
∣

v0 − v

µ

∣
∣
∣
∣

}

exp {−iω′v} dv. (2.49)

If we make the substitution

v′ = v0 − v,

then we obtain the Bogoliubov coefficients in the more useful form of

α∗ω′ω =
1

2π

√

ω′

ω
eiω′v0

∫ ∞

0

exp

{
2iω

h(rh)
ln

∣
∣
∣
∣

v′

µ

∣
∣
∣
∣

}

exp{−iω′v} dv′, (2.50)

and

βω′ω =
1

2π

√

ω′

ω
e−iω′v0

∫ ∞

0

exp

{
2iω

h(rh)
ln

∣
∣
∣
∣

v′

µ

∣
∣
∣
∣

}

exp{iω′v} dv′. (2.51)

Let us consider the integrand in (2.50). This is a contour integral and the integrand is

analytic everywhere except for a branch cut along the negative real axis. Thus we are

integrating over a closed path Γ and by Cauchy’s integral theorem we must have that

∮

Γ

exp

{
2iω

h(rh)
ln

(
v′

µ

)}

exp{iω′v′} dv′ = 0. (2.52)
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The contour Γ is illustrated in figure 2.5. As can be seen we integrate around the path

in a clockwise manner traversing the paths γA, γǫ, γB and γR. We shall now consider the

integral over each of the separate paths. We start with the arc γR. Let

v′ = Reiθ, for θ ∈ (−π, 0).

So, now

∮

γR

exp

{
2iω

h(rh)
ln

(
v′

µ

)}

e−iω′v′

dv′ =

∫ 0

−π

exp

{
2iω

h(rh)
ln

(
Reiθ

µ

)}

e−iω′Reiθ

iReiθ dθ.

Now, we know that

ln
(
Reiθ

)
= ln(R) + iθ, (2.53)

thus
∮

γR

exp

{
2iω

h(rh)
ln

(
v′

µ

)}

e−iω′v′

dv′ = i

∫ 0

−π

R exp

{
2iω

h(rh)

[

ln

(
R

µ

)

+ iθ

]}

e−iω′Reiθ

eiθ dθ

= i

∫ 0

−π

Re−2θω/h(rh)e
2iω

h(rh)
ln(R

µ )e−iω′R cos(θ)eωR sin(θ)eiθ dθ.

If we take the limit R → ∞, then

∫

O (exp{Rω′ sin(θ)}) dv′ → 0,

thus the above integrand is zero, and hence we have that

∮

γR

exp

{
2iω

h(rh)
ln

(
v′

µ

)}

e−iω′v′

dv′ = 0. (2.54)

Now we shall consider the path γǫ, which is the path around the semicircle contour of

radius ǫ. We shall let

v′ = ǫeiθ, for θ ∈ (0, π)

and upon subsituting this into the integrand given in (2.52) we have that

∮

γǫ

exp

{
2iω

h(rh)
ln

(
v′

µ

)}

e−iω′v′

dv′ =

∫ π

0

exp

{
2iω

h(rh)
ln

(
ǫeiθ

µ

)}

e−iω′ǫeiθ

ǫeiθ dθ.

Using (2.53) we can write

∮

γǫ

exp

{
2iω

h(rh)
ln

(
v′

µ

)}

e−iω′v′

dv′ = i

∫ π

0

ǫe−θω/h(rh)e
2iω

h(rh)
ln( ǫ

µ)e−iǫω′ cos(θ)eǫ sin(θ)ω′

eiθ dθ.
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We now let ǫ→ 0, and we find that once more, the integrand is zero, thus

∮

γǫ

exp

{
2iω

h(rh)
ln

(
v′

µ

)}

e−iω′v′

dv′ = 0. (2.55)

We now consider the integrand along the path γA. Here we must have that

∮

γA

exp

{
2iω

h(rh)
ln

(
v′

µ

)}

e−iω′v′

dv′ =

∫ −ǫ

−L

exp

{
2iω

h(rh)
ln

(

−v
′

ǫ
− iǫ

)}

e−iω′(−v′−iǫ) dv′.

(2.56)

We know that

ln

(

−v
′

µ
− iǫ

)

= −iπ + ln

(
v′

µ

)

, (2.57)

so now

∮

γA

exp

{
2iω

h(rh)
ln

(
v′

µ

)}

e−iω′v′

dv′ =

∫ −ǫ

−L

exp

{
2iω

h(rh)

(

−iπ + ln

(
v′

µ

))}

e−iω′(−v−iǫ) dv′.

Now, we take the limit ǫ→ 0 and L→ ∞, and we have that

∮

γA

exp

{
2iω

h(rh)
ln

(
v′

µ

)}

e−iω′v′

dv′ = −e
2πω

h(rh)

∫ ∞

0

exp

{
iω

h(rh)
ln

(
v′

µ

)}

eiω′v′

dv′.

(2.58)

Finally, we have the integrand along the path γB:

∮

γB

exp

{
2iω

h(rh)
ln

(
v′

µ

)}

e−iω′v′

dv′ =

∫ L

ǫ

exp

{
2iω

h(rh)
ln

(
v′

µ

)}

e−iω′v′

dv′. (2.59)

Using a similar argument as we did for integration around the path γA, and on letting

ǫ→ 0 and L→ ∞, we find that

∮

γB

exp

{
2iω

h(rh)
ln

(
v′

µ

)}

e−iω′v′

dv′ =

∫ ∞

0

exp

{
2iω

h(rh)
ln

(
v′

µ

)}

e−iω′v′

dv′. (2.60)

Now, comparing (2.60) and (2.58), it is clear that we have:

∫ ∞

0

exp

{
2iω

h(rh)
ln

∣
∣
∣
∣

v′

µ

∣
∣
∣
∣

}

e−iω′v dv′ = −e
2ωπ

h(rh)

∫ ∞

0

exp

{
2iω

h(rh)
ln

∣
∣
∣
∣

v′

µ

∣
∣
∣
∣

}

eiω′v dv′, (2.61)

and so

|αω′ω| = e2πω/h(rh)|βω′ω|. (2.62)

If we square both sides of the above equation we have

|αω′ω|2 = e4πω/h(rh)|βω′ω|2.
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Now since the Bogoliubov coefficients satisfy the condition:

∑

ω′

(
|αω′ω|2 − |βω′ω|2

)
= 1

then
∑

ω′

(
e4πω/h(rh) − 1

)
|βω′ω|2 = 1

and so we have that:
∑

ω′

|βω′ω|2 =
1

e4πω/h(rh) − 1
. (2.63)

The mean number of particles created into mode ω is

Nω =
∑

ω′

|βω′ω|2 =
1

e4πω/h(rh) − 1
, (2.64)

which gives us a Hawking Temperature of

TH =
h(rh)

4π
. (2.65)

We have an expression for h(rh). Using (2.9) and (2.10) we may write

h(rh) =
2M

r2
h

− 2Λrh

3
.

Now comparing this expression with the one we have for the surface gravity in equation

(2.20) we see that

κ =
h(rh)

2
,

and hence, in terms of surface gravity, the Hawking temperature is

TH =
κ

2π
. (2.66)

We have here a net flux of particles which has arisen because of the choise of the vacuum

made (which is dictated by the form opf the modes) at the end of section 2.2

2.6 Stress Tensor Renormalization and the DFU Deriva-

tive.

In this section we shall be concerned with calculating the renormalised stress tensor,

〈Tµν〉ren. In particular we shall need to find this quantity at early and late times as it is
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not the same in both regions. In early times, 〈Tµν〉ren can be found using the so-called

DFU derivative, however, this result must be modified for use in later time regions. In

this section we shall derive the DFU derivative, and then use it to find 〈Tµν〉ren at early

and late times in SAdS. First however, it is appropriate to discuss very briefly the problem

of renormalization, which will lead us in to the derivation of the DFU result.

2.6.1 Renormalisation of the Stress Tensor.

It is now widely accepted that changing a gravitational field can produce various quanta,

and that only in rare circumstances, does the notion of a ‘particle’ in curved spacetimes

bear any resemblance to the physical concept of the subatomic particle. In short, there is

no natural definition of a particle in curved spacetime and so particle detectors respond

in a variety of ways.

Part of the problem with the particle concept is that it is concerned with global prop-

erties: it is defined globally in terms of field modes and is therefore connected with the

overall structure of spacetime. From this point of view it becomes clear why we should

take an interest in objects defined locally: the stress tensor Tµν(x) at some point x.

Of course, the main problem with Quantum Field Theory (QFT) in curved spacetimes

are the many divergences which exist within the theory. The expectation value of the

Hamiltonian H in the Minkowski vacuum state is infinite for example. Moreover, the

expectation value 〈0|Tµν |0〉 becomes ultraviolet- divergent.

In flat space QFT, the usual procedure is simply to “discard” these divergences. We

may use normal ordering, or if the topology is non-trivial (but the geometry is still flat)

we use the ultraviolet regulator function e−α|k| to cut off the ultraviolet divergences then

take the difference between 〈Tµν〉 in the topology of interest and its cut off value in

Minkowski spacetime, letting α→ 0 at the end.
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Alternatively, we may use the Green function approach. The divergent Minkowski

expression for G(1)(x, x′) is subtracted from the G(1) function evaluated on the topology

of interest, afterwards the limit x → x′ is taken. Essentially in Minkowski space, we are

interested in the differences in the expectation values in 2 states.

Unfortunately, these approaches cannot be used reliably when the spacetime is curved:

1. In non-gravity physics only energy differences are observable. Clearly an infinite

vacuum energy is unacceptable, so we renoramlize the zero point by an infinite

amount. However, if we take gravity into account, energy is a source for gravity

and will bring about local curvature in spacetime, we are not therefore, free to

rescale the zero point energy.

2. In the case of discarding the Minkowski type terms, we find that we are still left

with divergences. For example, if we calculate the 〈0|T 0
0 |0〉 for the Robertson-

Walker spacetime, we should find that the difference between the Robertson-Walker

Universe and Minkowski space is still infinite: the divergence remains even when

the Minkowski type terms are discarded.

It is clear then, in order to obtain physically meaningful results, we must remove the

divergences. However, this can be done in infinitely many ways, so we must impose some

criteria to make the solution unique.

In QED we find that infinite subtractions may be carried out to give finite results

(which are in good agreement with experiment), provided the subtractions are performed

covariantly. We therefore aim to keep general covariance when handling the divergences

of 〈Tµν〉ren. We could also insist that 〈Tµν〉ren has a number of physical properties. If we

impose enough restrictions on 〈Tµν〉ren, then the subtraction procedure can be defined

uniquely. Indeed, Wald proposes that any physically meaningful 〈Tµν〉 should satisfy 4
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reasonable axioms:

1. Covariant conservation, i.e: 〈T ν
µ 〉ren, ν = 0

2. Causalilty condition: for a fixed ’in’ state, 〈Tµν〉 at some point ξ in spacetime

depends only on the spacetime geometry to the causal past of ξ.

3. The standard results are obtained for ‘off-diagonal’ elements: 〈Φ|Tµν |Ψ〉 is finite

for orthogonal states 〈Φ|Ψ〉 and the value of this quantity should be the formal

one.

4. Standard results in Mikowski space: The normal ordering procedure in Minkowski

spacetime should be valid.

Wald has since proved that if any 〈Tµν〉 satisfies the first three of the above conditions

then it is unique to within a local conserved tensor.

An Alternative Approach. Another way is to treat the calculation of 〈Tµν〉ren as

being part of a wider dynamical theory which involves gravity. We present the derivation

from [18] We shall seek a theory based on the Einstein field equations:

Rµν −
1

2
Rgµν + Λgµν = −8πGTµν , (2.67)

but, we replace the stress tensor with the quantum expectation value 〈Tµν〉:

Rµν −
1

2
Rgµν + ΛBgµν = −8πGB〈Tµν〉, (2.68)

where ΛB is the Bare Cosmological Constant, never observed, and similarly, GB is the

bare gravitational constant. We may derive (2.67) by taking the action

S = Sg + Sm, (2.69)

with condition

2√−g
δS

δgµν
= 0. (2.70)
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The first term, Sg, in (2.69) is the gravitational action

Sg =

∫

Σ

Lg

√−g dnx

=

∫

Σ

√−g
16πGB

[R− 2ΛB] dnx,

for which 2(−g)−1/2δSg/δg
µν yields the left hand side of (2.67) while Sm, the classical

matter action, for which

2√−g
δSm

δgµν
= Tµν (2.71)

yields the right hand side of (2.67).

To make this procedure work in the semi-classical case, we seek the effective action for

the quantum matter fields (W ) which when functionally differentiated gives the desired

〈Tµν〉:
2√−g

δW

δgµν
= 〈Tµν〉. (2.72)

2.6.2 The DFU Derivative.

We shall now derive the full DFU result which allows the calculation of the renormal-

ized stress tensor. This derivation is based upon the one given by Birell and Davies in

their book [26], and is applied in their paper [17]. First, we shall derive a form for the

classical action. We shall want this classical action S to be invariant under conformal

transformations, i.e.

gµν(x) → Ω2(x)gµν(x) = gµν(x). (2.73)

By the definition of the functional derivative we have

S[gµν ] = S[gµν ] +

∫
δS[gµν ]

δgρσ(x)
δgρσ(x) dnx. (2.74)

If we use the fact that

δgµν(x) = −2gµν(x)Ω−1(x)δ(x), (2.75)
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and (2.71), then we have that

S[gµν ] = S[gµν ] +

∫ √−g
2

Tρσ

[
−2gρσ(x)Ω−1(x)δΩ(x)

]
dnx,

and thus

S[gµν ] = S[gµν ] −
∫
√

−gT ρ
ρ [gµν(x)]Ω

−1(x)δΩ(x) dnx, (2.76)

where we have that

T ρ
ρ [gµν(x)] =

−Ω(x)
√

−g(x)
δS[gµν ]

δΩ(x)

∣
∣
∣
∣
∣
Ω=1

. (2.77)

We can now use (2.76) directly to determine a form for the renormalised stress tensor.

First we replace the classical action S in (2.76) with the renormalised one-loop effective

action Wren:

Wren[gµν ] = Wren[gµν ] −
∫
√

−g(x) 〈T ρ
ρ [gµν(x)]〉ren Ω−1(x)δΩ(x) dnx. (2.78)

Now, we have that

gνσ δ

δgµσ = gνσ δ

δgµσ
, (2.79)

and by using (2.72), we obtain

δWren

δgµν =
δWren

δgµν − δ

δgµν

{∫
√

−g(x) 〈T ρ
ρ

[
gµν(x)

]
〉ren Ω−1(x)δΩ(x) dnx

}

,

and hence

〈Tµν〉ren =
2√−g

δWren[gµν ]

δgµν − 2√−g
δ

δgµν

{∫
√

−g(x) 〈T ρ
ρ

[
gµν(x)

]
〉ren Ω−1(x)δΩ(x) dnx

}

.

Contracting with gµσ and using (2.79) we obtain the expression

〈T ν
µ [gκλ(x)]〉ren =

√
g

g
〈T ν

µ [gκλ(x)〉ren −
2

√

−g(x)
gµσ(x)×

δ

δgµσ

{∫
√

−g(x′) 〈T ρ
ρ [gκλ(x)]〉ren Ω−1(x′)δΩ(x′) dnx′

}

.

(2.80)

Now, in the case of conformally invariant field theories, we find that a trace appears in

the integrand on the right hand side of the expression given in (2.80). This is known

as the trace anomaly and it is both local and state dependent. Birrell and Davies show
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that, if W is conformally invariant in the massless conformally coupled limit, then the

expectation value of the trace of the stress tensor is also zero, thus

〈T µ
µ 〉
∣
∣
m=0, ξ=1/6

= − Ω(x)
√

−g(x)
δW [gµν ]

δΩ(x)

∣
∣
∣
∣
∣
m=0, ξ=1/6, Ω=1

(2.81)

where m is the mass of the scalar field, and ξ = ξ(n) is the scalar field coupling constant.

Birell and Davies demonstrate that if we proceed within the framework of dimensional

regularization, then if the divergent portion 〈Tµν〉div acquires a trace, then so must the

renormalized residue 〈Tµν〉ren, and furthoremore

〈T ρ
ρ [gκλ(x)]〉ren = −〈T ρ

ρ [gκλ(x)]〉div,

and hence by equation (2.81) we have

〈T ρ
ρ [gκλ(x)]〉ren = − Ω(x)

√

−g(x)
δWdiv

δΩ(x)
(2.82)

If we substitute this into the integrand in equation (2.80), the integrand becomes

− 2
√

−g(x)
gνσ(x)

δ

δgµσ

{∫
√

−g(x) 〈T ρ
ρ [gκλ(x

′)〉ren Ω−1(x′)δΩ(x′) dnx′
}

=

− 2
√

−g(x)
gνσ(x)

δ

δgµσ(x)
Wdiv[gκλ] +

2
√

−g(x)
gνσ δWdiv[gκλ]

δgµσgµσ(x)
,

and hence

〈T ν
µ [gκλ(x)]〉ren =

√
g

g
− 2
√

−g(x)
gνσ(x)

δ

δgµσ(x)
Wdiv[gκλ] +

2
√

−g(x)
gνσ δWdiv[gκλ]

δgµσgµσ(x)
.

(2.83)

Now, in order to proceed further, we shall need to find an expression for Wdiv- the

divergent part of the effective action for quantum matter fields. Birrell and Davies give

the action involving the effective Lagrangian density Leff :

W =

∫

Leff(x) dnx =

∫
√

−g(x)Leff(x) dnx. (2.84)

They also show that in n-dimensions, the asymptotic expansion of Leff between two

separate spacetime points x and x′ can be obtained if n is treated as a variable which
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can be analitically expanded throughout the complex plane, and so by taking the limit

x→ x′ and after some manipulation, they obtain the form

Leff =
1

2(4π)n/2

∞∑

j=0

aj(x)(m
2)

n
2
−jΓ(j − n/2). (2.85)

Using the above equation with

a1(x) =

(
1

6
− ξ

)

R,

with the coupling constant ξ = ξ(2) (R is the Ricci scalar), and also the identity:

Γ
(

1 − n

2

)

=
2

2 − n
+ O(1),

means that we have:

Wdiv[gκλ] = − 1

4π(n− 2)

∫
√

−g(x′)a1[gκλ(x
′)] dnx, (2.86)

which we can write in the form:

Wdiv[gκλ] = − 1

24π(n− 2)

∫
√

−g(x′)R(x′) dnx′. (2.87)

Now that we have an expression for Wdiv (2.87), we can substitute it into equation (2.83)

and we get

〈T ν
µ [gκλ(x)]〈ren =

√
gg〈T ν

µ [gκλ(x)]〉ren

+
2

√

−g(x)
gνσ(x)

δ

δgµσ(x)

{
1

24π(n− 2)

∫
√

−g(x′)R(x′) dnx′
}

− 2
√

−g(x)
gνσ(x)

δ

δgµσ(x)

{
1

24π(n− 2)

∫
√

−g(x′)R(x′) dnx′
}

which after some simplification yields,

〈T ν
µ [gκλ(x)]〉ren =

√
g

g
〈T ν

µ [gκλ(x)〉ren +
1

24π(n− 2)

[∫
δR(x′)

δgµσ dnx′ −
∫
δR(x′)

δgµσ
dnx′

]

.

Now, since
∫
δR(x′)

δgµσ
dnx = Rµσ − 1

2
Rgµσ,
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then we have that

〈T ν
µ [gκλ(x)]〉ren =

√
g

g
〈T ν

µ [gκλ(x)〉ren +
1

12π(n− 2)

[(

R
ν

µ − 1

2
δν
µR

)

−
(

Rν
µ − 1

2
δν
µR

)]

.

(2.88)

If we make the conformal transformation,

gµν(x) → gµν(x) = Ω2(x)gµν(x)

then the Ricci tensor transforms as,

Rν
µ → R

ν

µ = Ω−2Rν
µ − (n− 2)Ω−1(Ω−1);µρ g

ρν +
1

n− 2
ω−n(Ωn−2);ρσ g

ρσδν
µ,

and the Ricci scalar as

R → R = Ω−2R + s(n− 1)Ω−3Ω;µν g
µν + (n− 1)(n− 4)Ω−4Ω;µΩ;ν g

µν .

Using the above transformations of the Ricci tensor and scalar, we can now rewrite (2.88)

as

〈T )µν [gκλ(x)]〉ren =

√
g

g
〈T ν

µ [gκλ(x)〉ren

+
1

12π

[
(
Ω−3Ω;ρµ − 2Ω−4Ω;ρΩ;µ

)
gρν + δν

µg
ρσ

(
3

2
Ω−4Ω;ρΩ;σ − Ω−3Ω;ρσ

)]

.

(2.89)

Now, as we stated at the start of the section, all two dimensional spacetimes are

conformally flat and so

gµν = C(x)ηµν , (2.90)

where ηκλ is the Minkowski spacetime metric tensor. We shall let Ω = C1/2 and we can

now write the expectation value of the stress-tensor in any 2D curved spacetime in terms

of its flat spacetime expectation value. The result can be written in a rather simple way

if we move over to the null coordinate system, and so

ds2 = C(u, v) dudv,

and now,equation (2.89) becomes the Davies, Fulling and Unruh result:

〈T ν
µ [gκλ(x)]〉ren =

1√−g 〈T
ν
µ [ηκλ(x)]〉ren + θν

µ −
(

1

48π

)

Rδν
µ, (2.91)
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and

θuu = −
√
C

12π
∂2

u

{
1√
C

}

, and θvv = −
√
C

12π
∂2

v

{
1√
C

}

, with θuv = θvu = 0. (2.92)

Remark. The quantity 〈T ν
µ [ηκλ(x)]〉ren is the flat spacetime contribution. Now, if the

state used in evaluating the expectation value in flate spacetime is a vacuum state, then

the state appearing in the curved spacetime expectation value is a conformal vacuum.

If, however, whether or not the flat spacetime vacuum is the usual Minkowski space-

time vacuum depends upon whether the expectation value of the stress tensor of the

curved spacetime is conformal to all of Minkowski spacetime, or just some part of it. If

the curved spacetime is indeed conformal to all of Minkowski spacetime, then we find

that

〈T ν
µ [ηκλ(x)]〉ren = 0. (2.93)

Otherwise, the quantity is not zero, and its contribution to the curved spacetime expec-

tation value must be determined.

2.7 Calculation of the Renormalised Stress Tensor

The spacetime SADS2 is a dynamical one, and in order to determine if particle creation

occurs, we must calulcate the renormalized stress tensor 〈Tµν〉ren both at early and late

times, and subtract the two. In this section we shall determine these two forms of the

stress tensor using the expressions derived in (2.91) and (2.92). First though, we shall

need to calculate 〈T ν
µ [η]〉ren, since we find that SADS2 is not completely conformal to

Minkowski spacetime, but rather it is conformal to half of it.

2.7.1 Calculation of 〈T ν
µ [η]〉ren

We shall be interested in finding a form for 〈T ν
µ [η]〉ren- that portion of the renormalized

stress tensor which comes from the flat space contribution. We shall use the point-
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Figure 2.6: Penrose diagram Minkowski spacetime. SADS2 is conformal to half of

Minkowski spacetime as indicated
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splitting method to calculate the renormalized stress tensor and the methodology to be

adopted (discussed in Birrell and Davies) is as follows:

1. Solve the scalar field equation to obtain a complete set of orthonomral modes from

which particle states may be defined.

2. Construct G(1)(x, x′) is a mode sum. The function G(1)(x, x′) is a Green’s function

and moreover, it is a biscalar quantity of two spacetime points x and x′.

3. Form the function

G(1)
ren(x, x

′) = G(1)(x, x′) − G(1)
DS(x, x

′), (2.94)

where G(1)
DS(x, x

′) is the truncated DeWitt–Schwinger expansion.

4. Operate on G(1)
ren(x, x′) to form 〈0|Tµν |0〉 ren, discarding any terms which are of

adiabatic order greater than n.

5. Take the limit x→ x′ and display the finite result 〈0|Tµν |0〉ren.

In our case, we find we can determine 〈Tµν [η]〉ren by operating on the Green’s function

G(1)
ren(x, x′) with a differential operator D and then take the limit x→ x′, i.e:

〈Tµν [η]〉ren = lim
x→x′

Dµν(x, x
′)G(1)

ren(x, x
′), (2.95)

where we define the differential operator

Dµν(x, x
′) = ∂µ∂ν′ − 1

2
ηµν

(
ηtt∂t∂t′ + ηrr∂r∂r′

)
. (2.96)

We shall now consider the unbounded Minkowski case first. We have the Hadamard

Green’s funcftion (for 2D):

G(1)
U (x, x′) = − 1

4π
ln
∣
∣(t− t′)2 − (r − r′)2

∣
∣ . (2.97)

Now, we require only half of Minkowski spacetime, and so G(1)(t, r; t′, 0) = 0, and so the

bounded Green’s function is

G(1)
B (x, x′) =

1

4π

[
ln
∣
∣(t− t′)2 − (r + r′)2

∣
∣− ln

∣
∣(t− t′)2 − (r − r′)2

∣
∣
]

(2.98)
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and we see that when r′ = 0, G(1)
B (x, x′) = 0. So now we determine

G(1)
ren(x, x

′) = G(1)
B − G(1)

U ,

and so we have that

G(1)
ren(x, x

′) =
1

4π
ln
∣
∣(t− t′)2 − (r + r′)2

∣
∣ . (2.99)

We can now calculate the various components of DµνG(1)
ren(x, x′). We start with Dtt:

DttG(1)
ren(x, x

′) =
∂G(1)

ren

∂t

∂G(1)
ren

∂t′
+

1

2

[

−∂G
(1)
ren

∂t

∂G(1)
ren

∂t′
+
∂G(1)

ren

∂r

∂G(1)
ren

∂r′

]

,

=
1

2

[

∂G(1)
ren

∂t

∂G(1)
ren

∂t′
+
∂G(1)

ren

∂r

∂G(1)
ren

∂r′

]

. (2.100)

We shall require the following derivatives:

∂G(1)
ren

∂t
=

(t− t′)

2π [(t− t′)2 − (r + r′)2]
,
∂G(1)

ren

∂t′
= − (t′ − t)

2π [(t− t′)2 − (r + r′)2]

∂G(1)
ren

∂r
= − (r + r′)

2π [(t− t′)2 − (r + r′)2]
,
∂G(1)

ren

∂r′
= − (r + r′)

2π [(t− t′)2 − (r + r′)2]

(2.101)

and hence we have that

DttG(1)
ren(x, x

′) =
1

8π2

[
(t− t′)2

((t− t′)2 − (r + r′)2)2 +
(r + r′)2

((t− t′)2 − (r + r′)2)2

]

. (2.102)

Now, to find the 〈Ttt[η]〉ren component we take the following limit of (2.102):

〈Ttt[η]〉ren = lim
t→t′

r→r′

{
1

8π2

[
(t− t′)2

((t− t′)2 − (r + r′)2)2 +
(r + r′)2

((t− t′)2 − (r + r′)2)2

]}

=
1

32π2r2
.

(2.103)

Next, we find the component 〈Ttr[η]〉ren. We have that

DtrG(1)
ren(x, x

′) =
∂G

(1)
ren(x, x′)

∂t

∂G
(1)
ren(x, x′)

∂r′
= − (t− t′)(r + r′)

4π2 [(t− t′)2 − (r + r′)2]2
(2.104)

and so, taking the limit t→ t′ and r → r′ of (2.104) we find that

〈Ttr[η]〉ren = 0. (2.105)
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By symmetry we must also have that

〈Trt[η]〉ren = 0. (2.106)

We need to calculate one more component: 〈Trr[η]〉ren. We have then that

DttG(1)
ren(x, x

′) =

(

∂G(1)
ren

∂r

∂G(1)
ren

∂r′
+

1

2

[

∂G(1)
ren

∂t

∂G(1)
ren

∂t′
− ∂G(1)

ren

∂r

∂G(1)
ren

∂r′

])

=
1

2

(

∂G(1)
ren

∂t

∂G(1)
ren

∂t′
+
∂G(1)

ren

∂r

∂G(1)
ren

∂r′

)

,

and hence we have that

〈Trr[η]〉ren =
1

32π2r2
. (2.107)

We can now display all of the components of 〈Tµν〉ren in matrix form, and we find that

for SADS2 we have the flat spacetime contribution:

〈Tµν [η]〉ren =
1

32π2r2






1 0

0 1




 . (2.108)

2.7.2 〈Tµν〉ren at Early Times

In this section we shall be interested in determining a value for 〈Tµν〉ren at early times.

To do this, we use the previously derived expression:

〈Tµν〉ren = θµν +
R

48π
gµν . (2.109)

Where R is the Ricci scalar and the quantity θµν is known as the ‘DFU (Davies-Fulling and

Unruh) derivative’ and in the case of our two dimensionally conformally flat spacetime,

contains two components:

θuu = − 1

12π
C1/2 ∂

2

∂u2

{
1√
C

}

= −DuC (2.110)

and

θvv = − 1

12π
c1/2 ∂

2

∂v2

{
1√
C

}

= −DvC. (2.111)
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Recall from Section 2 that we can write the conformally flat metric of SADS2 as:

ds2 = C(r) dudv

where C(r) is the conformal factor

C(r) = 1 − 2M

r
− Λr2

3
.

The quantity Rgµν/48π is known as the trace anomaly and we also have that θuv = θvu =

0. We now need to find the two components θuu and θvv so that we can determine the

form of 〈Tµν〉ren given in (2.109).

Calculation of θuu. For this component, we have that:

∂

∂u

{
1√
C

}

= −
∂C(u,v)

∂u

2C3/2(u, v)
(2.112)

and,

∂2

∂u2

{
1√
C

}

=
3
(

∂
∂u
C(u, v)

)2

4C(u, v)5/2
−

∂2

∂u2C(u, v)

2C(u, v)3/2
. (2.113)

We must now find the two derivatives ∂C/∂u and ∂2C/∂u2. We shall determine the

∂C/∂u derivative first. We have that

∂C

∂u
=
dC

dr

dr

du
=
dC

dr

dr

dr∗

∂r∗
∂u

.

It is clear that,

dC

dr
=

2M

r2
− 2Λr

3
, (2.114)

we have by equation (2.6) that

dr

dr∗
= C(r),

and since,

r∗ =
u− v

2

then we see that equation (2.114) is,

∂C

∂u
= −

(
M

r2
− Λr

3

)

C(r). (2.115)
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Next we find the second derivative ∂2C/∂u2. Using the chain rule again we have:

∂2C

∂u2
=

d

dr

{

−
(
M

r2
− Λr

3

)

C(r)

}
(−C(r))

2

=
C(r)

2

[

C(r)

(

−2M

r3
− Λ

3

)

+

(
M

r2
− Λr

3

)(
2M

r2
− 2Λr

3

)]

.

Thus we find that if,

∂2

∂u2

{
1√
C

}

=
3
(

∂
∂u
C(u, v)

)2

4C(u, v)5/2
−

∂2

∂u2C(u, v)

2C(u, v)3/2
.

then

∂2

∂u2

{
1√
C

}

=
3

4
√
C

(
M

r2
− Λr

3

)2

− 1

4
√
C

[

C

(

−2M

r2
− Λ

3

)

+

(
M

r2
− Λr

3

)(
2M

r2
− 2Λr

3

)]

,

and hence we have

θuu =
1

48π

[

−3

(
M

r2
− Λr

3

)2

+

(

C

(−2M

r3
− Λ

3

)

+

(
M

r2
− Λr

3

)(
2M

r2
− 2Λr

3

))]

.

(2.116)

Calculation of θvv. We calculate the other non-zero tensor component, θvv. As one

would expect, this is a similar process to that of finding θuu. We have that

∂

∂v

{
1√
C

}

= −
∂C
∂v

2C(u, v)3/2
(2.117)

and that

∂2

∂v2

{
1√
C

}

=
3
(

∂C
∂v

)2

4C(u, v)5/2
−

∂2C
∂v2

2C(u, v)3/2
. (2.118)

So we must now find expressions for the first order derivative ∂C
∂v

and the second order

derivative ∂2C
∂v2 . We start with the first order derivative, noting that

∂C

∂v
=
dC

dr

dr

dv
=
dC

dr

dr

dr∗

∂r∗
∂v

.

Substituting in the relevant derivatives we obtain that

∂C

∂v
=

[
M

r2
− Λr

3

]

C(r). (2.119)
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Now we find ∂2C
∂v2 . Again, using the chain rule in the same way as we did for the θvv

component, we have that:

∂2C

∂v2
=
C(r)

2

[

C(r)

(

−2M

r3
− Λ

3

)

+

(
M

r2
− Λr

3

)(
2M

r2
− 2Λ

3

)]

Hence we see that

∂2

∂v2

{
1√
C

}

=
3

4
√
C

(
M

r2
− Λr

3

)2

− 1

4
√
C

[

C

(−2M

r3
− Λ

3

)

+

(
M

r2
− Λr

3

)(
2M

r2
− Λ

3

)]

,

and so we must have that

θvv =
1

48π

[

−3

(
M

r2
− Λr

3

)2

+

(

C

(−2M

r3
− Λ

3

)

+

(
M

r2
− Λr

3

)(
2M

r2
− 2Λr

3

))

.

]

(2.120)

We should take this oportunity to compare our result with that obtained by P. Davies

[32] ( and also [18]). Here, Davies calculates 〈Tµν〉ren for the Reissner-Nordström black

hole and finds that θuu = θvv

θuu = θvv =
1

24π

[

−M
r3

+
3

2

M2

r4
+

3e2

2r4
− 3Me2

r5
+
e4

r6

]

(2.121)

If we let the charge e = 0 we recover the Schwarzschild case:

θuu = θvv = − M

24πr3
+

M2

16πr4
. (2.122)

Here we also have that θuu = θvv, moreover, setting Λ = 0 in either (2.116) or (2.120) we

obtain

θvv =
1

48π

[

−3M2

r4
+

(

1 − 2M

r

)(

−2M

r3

)

+

(
M

r2

)(
2M

r2

)]

=
1

48π

[

−2M

r3
+

3M2

r4

]

= − M

24πr3
+

M2

16πr4
,

(2.123)

This is exactly the same as the result obtained by Davies for the Schwarzschild case given

in (2.122).

We now go on to give the full form for 〈Tµν〉ren. Since we have from (2.109) that

〈Tµν〉ren = θµν +
R

48π
gµν ,
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where R is the Ricci scalar given in (2.19). We have written the line element in the

conformal form

ds2 = −C(r)dudv

and so the metric tensor has the form

gµν =






0 C(r)/2

C(r)/2 0




 .

Thus we may now write out the components of the 〈Tµν〉ren:

〈T00〉ren = θuu +
Rg00

48π
= θuu, and 〈T01〉ren = θuv +

Rg01

48π
= −RC(r)

48π

〈T10〉ren = θvu +
Rg10

48π
= −RC(r)

48π
and 〈T11〉ren = θvv +

Rg11

48π
= θvv

(2.124)

and hence for early times, the renormalised stress tensor has the form

〈Tµν〉ren =
1

48π






3M2

r4 + 2MΛ
r

− 2M
r3 − Λ

3
−−(6M+Λr3)(6m−3r+Λr3

9r4

−−(6M+Λr3)(6m−3r+Λr3
9r4

3M2

r4 + 2MΛ
r

− 2M
r3 − Λ

3
.




 (2.125)

2.7.3 Calculation of the Renormalised energy Stress Tensor at

Late Times

In this section we shall calculate the renormalised stress tensor at late times. To do this

we shall need to use the expression stated in the first section of this chapter, namely:

〈T ν
µ [g]〉ren =

√−g〈T ν
µ [η]〉ren + θν

µ − R

48π
δν
µ (2.126)

where the quantity 〈T ν
µ [η]〉ren is conformal to half of Minkowski spacetime (see figure 2.6),

and θν
µ is the DFU derivative and now, as we at late times, will depend on the functions

v = g(U) and u = f(V ) obtained from the ray tracing process earlier in the chapter. We

shall now begin the process of calculating the components of (2.126). We shall start with

〈T ν
µ [η]〉ren.
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Calculation of the DFU Derivative at Late Times We now require the two com-

ponents for the DFU derivative. Recall that the spacetime metric was:

ds2 = −
(

1 − 2M

r
− Λr2

3

)

dt2 +

(

1 − 2M

r
− Λr2

3

)−1

dr2

At late times

v = g(U), and u = f(V )

and so for late times, the metric in terms of null coordinates

ds2 = −
(

1 − 2M

r
− Λr2

3

)
dg

dU

df

dV
dUdV (2.127)

where we define the advanced and retarded null coordinate to be

U = T −R∗, V = T +R∗.

and from the ray-tracing method earlier in the chapter we had that

f(V ) = − 1

h(rh)
ln

∣
∣
∣
∣

V − v0

µ

∣
∣
∣
∣
, and g(U) = − 1

h(rh)
ln

∣
∣
∣
∣

U − u0

µ

∣
∣
∣
∣

(2.128)

and hence we have the derivatives

df

dV
= − 1

h(rh)(V − v0)
, and

dg

dU
= − 1

h(rh)(U − u0)

and so now we can write the metric as

ds2 =
C(r)

h2(rh)(V − v0)(U − u0)
dUdV

and so we now define

C =
C

h2(rh)(V − v0)(U − u0)
, (2.129)

then

ds2 = C dUdV. (2.130)
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Calculation of θUU . We have that

θUU = − 1

12π

√

C
∂2

∂U2

{
1√
C

}

(2.131)

where

∂2

∂U2

{
1√
C

}

=
3
(

∂C
∂U

)2

4C
5/2

−
∂2C
∂U2

2C
3/2
. (2.132)

We find the first derivative:

∂C

∂U
=

1

h2(rh)(V − v0)(U − u0)

∂C

∂U
− C(r)

h2(rh)(V − v0)(U − v0)2
. (2.133)

Using the same chain rule arguments as before we have

∂C

∂U
= −C(r)

(
M

r2
− Λr

3

)

,

and thus

∂C

∂U
= −C

[
M

r2
− Λr

3
− 1

U − u0

]

. (2.134)

Now we find the 2nd derivative. We have

∂2C

∂U2
= −C

2

d

dr

{

−
(
M

r2
− Λr

3

)

C(r)

}

=
C(r)

2

[

−C(r)

(
2M

r3
− Λ

3

)

+

(
2M

r2
− 2Λr

3

)(
M

r2
− Λr

3

)]

.

Next we find:

∂2C

∂U2
=

4

h2(rh)(V − v0)(U − u0)

[

∂2C

∂U2
− 2∂C

∂U

U − u0

+
2C

(U − u0)2

]

.

Substituting these derivatives now into the expression for ∂2C/∂U2:

∂2C

∂U2
=

4

h2(rh)(V − v0)(U − u0)

[
C

2

(

−C
(

2M

r3
− Λ

3

)

+

(
M

r2
− Λr

3

)(
2M

r2
− 2Λr

3

))

− 2

(U − u0)

(

−C
(
M

r2
− Λr

3

))

+
2C

(U − u0)2

]

,

which we can write as

∂2C

∂U2
=
C

2

[

−C
(

2M

r3
+

Λ

3

)

+

(
M

r2
− Λr

3

)(
2M

r2
− 2Λr

3

)

+
4

U − u0

(
M

r2
− Λr

3
+

1

U − u0

)]

.

(2.135)
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We now have everything we need to calculate (2.132):

∂2

∂U2

{
1√
C

}

=
3

4
√
C

(
M

r2
− Λr

3
− 1

U − u0

)2

− 1

4
√
C

[

−C
(

2M

r3
+

Λ

3

)

+

(
M

r2
− Λr

3

)(
2M

r2
− 2Λr

3

)

− 4

U − u0

(
M

r2
− Λr

3
+

1

U − u0

)]

,

and hence by (2.131) we finally arrive at

θUU =
1

48π

[
2M

r3

(
3M

2r
+ Λr2 − 1

)

+
10

U − u0

(
M

r2
− Λr

3
+

1

10(U − u0)

)

− Λ

3

]

.

(2.136)

Calculation of θV V We now calculate the component:

θV V = − 1

12π

√

C
∂2

∂V 2

{
1√
C

}

(2.137)

where we have that

∂2

∂V 2

{
1√
C

}

=
3
(

∂C
∂V

)2

4C
5/2

−
∂2C
∂V 2

2C
3/2
.

Once more we need to comnpute the first and second order derivatives. We have

∂C

∂V
=

4

h2(rh)(V − v0)(U − u0)

[
∂C

∂V
− C

V − v0

]

= C

(
M

r2
− Λr

3
− 1

V − v0

)

.

Using exactly the same argument as we did for θUU , we have that

∂2C

∂U2
=
C

2

[

−C
(

2M

r2
+

Λ

3

)

+

(
M

r2
− Λr

3

)(
2M

r2
− 2Λr

3

)]

.

We now compute

∂2C

∂V 2
=

4

h2(rh)(V − v0)(U − u0)

[

∂2C

∂V 2
− 2∂C

∂V

V − v0

+
2C

(V − v0)2

]

.

Subsituting in the derivatives and the function C gives

∂2C

∂V 2
=
C

2

[

−C
(

2M

r3
+

Λ

3

)

+

(
M

r2
− Λr

3

)(
2M

r2
− 2Λr

3

)

− 4

V − v0

(
M

r2
− Λr

3
− 1

V − v0

)]

.

Finally, we have that

∂2

∂V 2

{
1√
C

}

=
3

4
√
C

[
M

r2
− Λr

3
− 1

V − v0

]2

− 1

4
√
C

[(
2M

r2
− 2Λr

3

)(
M

r2
− Λr

3

)

− C

(
2M

r3
− Λ

3

)

− 4

V − v0

(
M

r2
− Λr

3
− 1

V − v0

)]

,
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and hence, after some simplification, we have that

θV V =
1

48π

[
2M

r3

(
3M

2r
+ Λr2 − 1

)

+
10

V − v0

(
M

r2
− Λr

3
− 7

10(V − v0)2

)

− Λ

3

]

(2.138)

We now calculate the stress tensor at late times. Since

〈T ν
µ [g]〉ren =

√−g〈T ν
µ [η]〉ren + θν

µ − R

48π
δν
µ

and
√−g〈T ν

µ [η]〉ren and R
48π
δν
µ are the same as before, we must have that

〈T ν
µ [g]〉ren =

1

48π






X(r) + 10
U−u0

[
M
r2 − Λr

3
+ 1

10(U−u0)

]

− Λ
3

(6M+Λr3)(6M−3r+Λr3)
9r4

(6M+Λr3)(6M−3r+Λr3)
9r4 X(r) + 10

V−v0

[
M
r2 − Λr

3
+ 7

10(V−u0)

]

− Λ
3




 ,

(2.139)

where we have let

X(r) =
3

πr2

(

1 − 2M

r
− Λr2

3

)−1

+
2M

r3

(
3M

2r
+ Λr2 − 1

)

. (2.140)

This is the value of the stress-tensor at lates times.
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Chapter 3

Chapter 3: Does a Quantum

Oscillator Radiate in 2D

Schwarzschild Spacetime?

3.1 Introduction

In this chapter we shall be interested in calculating the total energy flux associated with a

quantum oscillator on various trajectories. Essentially, we shall follow the method as set

out by Ford and O’Connell (this was method was reviewed in Chapter 1). This method

involves starting with an action for the oscillator (this will be a scalar electro-dynamic

action) and a corresponding one for the free scalar field to which the oscillator is coupled.

By use of the Euler-Lagrange equations we can determine the equations of motion for

both the oscillator and the scalar field. We then solve the scalar field equation by means

of an appropriate Green’s function, and substitute into the equation of motion of the

oscillator to obtain a quantum Langevin equation. The solution of this equation, along

with the fluctuation dissipation theorem, allows us to calculate the various expectation

values needed (namely an interference term and a direct flux term), and hence, the overall

energy flux of the system.
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We shall consider two cases: the first case is that of of a quantum oscillator in 2D

Schwarzschild spacetime confined to a trajectory r∗(τ) = 0. The second case will involve

the oscillator again in 2D Schwarzschild, but this time confined to an inertial trajectory.

In the first case we shall obtain the standard result of no overall net radiation arising in

the system. In the second case we shall see that particle creation arises due to the net im-

balance between the direct flux arising from the oscillator term, and the interference term.

3.2 2D Schwarzschild Spacetime with Constant Tra-

jectory.

In this section we shall show that an accelerating quantum oscillator, which is confined to

a constant trajectory in D = 2 Schwarzschild spacetime (and in the Boulware vacuum),

does not radiate. In particular we derive a quantum Langevin equation, whose solution

will be used to compute the energy flux of the system. We shall show that the direct

energy flux term, balances the interference term.

3.2.1 Coordinate Systems.

The line element for two dimensional Schwarzschild spacetime is

ds2 =

(

1 − 2M

r

)

dt2 −
(

1 − 2M

r

)−1

dr2 (3.1)

where t is the coordinate time, r is the radial coordinate, and M is the mass of the black

hole. The above line element gives a metric tensor of the form

gµν =






1 − 2M
r

0

0 −
(
1 − 2M

r

)−1




 , (3.2)
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with inverse

gµν =






− r
−r+2M

0

0 −−r+2M
r




 . (3.3)

It is clear that
√−g = 1. All two dimensional spacetimes are conformally flat, and so we

can write (3.1) in the form

ds2 = Ω(dt2 − dr2
∗), (3.4)

where Ω is the conformal factor given by

Ω =

(

1 − 2M

r

)

, (3.5)

and r∗ is the so-called ‘tortoise-coordinate’ which satisfies the relation

dr

dr∗
=

(

1 − 2M

r

)−1

. (3.6)

Integrating this equation directly yields the form

r∗ = r + 2M ln |r − 2M | + ξ, for ξ ∈ R. (3.7)

A trajectory of the quantum oscillator in 2D Schwarzschild spacetime is illustrated in fig

3.1. Our oscillator will be coupled to a free scalar field φ which satisfies the massless

Klein-Gordon equation

2φ = 0, (3.8)

where we have that 2 represents the usual D’Alembertian operator:

2 = gµν∇µ∇ν . (3.9)

The oscillator will be confined to the constant trajectory

r∗(τ) = 0, ξ = const, t = t(τ), (3.10)

where τ is the proper time as measured on the worldline of the oscillator.

99



i−

i+

I −

I +

Oscillator trajectory

Figure 3.1: Penrose diagram showing the the trajectory of the oscillator. Timelike

geodesics start at i− and terminate at i+
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It is appropriate at this point to make a choice of vacuum. Our choice of vacuum is

the vacuum is the Boulware vacuum which is empty at infinity. This means that outgoing

modes have the form

uk =
1√
4πω

eikr∗(τ)−iωt(τ) (3.11)

where ω = |k|. The modes given in (3.11) are a complete set of solutions to the Klein-

Gordon equation given in (3.8), and hence we may expand the φ field in a box of volume

V in terms of these basis modes:

φ(r∗, t) =
∑

k

ek

[

bke
−iωkt+ikr∗ + b†ke

iωkt−ikr∗
]

(3.12)

where we have let

ek =

√
2π

ωkV
(3.13)

In the expansion of the φ field above, the quantities b†k and bk are the annihilation and

creation operators (respectively) of the scalar field. The system is quantized in the usual

canonical quantization scheme whereby φ is treated as a field operator. We define

Π =
∂W

∂(∂tφ)
= ∂tφ (3.14)

where W is the Lagrangian of the scalar field, and we impose the following equal time

commutation relations:

[φ(x, t), φ(x′, t)] = 0, [Π(x, t),Π(x′, t)] = 0, and [φ(x, t), φ(x′, t)] = iδ(x− x′). (3.15)

For the given choice of vacuum, the field operators satisfy the following expectation

values

〈bk b†k′〉 = δkk′ , 〈b†k bk′〉 = 0, (3.16)

3.2.2 Equations of Motion.

We shall generate the equations of motion for the oscillator and coupled field by means

of an action with the scalar electro-dynamic form

S =

∫

Σ

(
1

2
m ˙q(τ)2 − eφ(r∗, t)q̇(τ) − V (q)

)

dτ − W , (3.17)
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wherem is the mass of the oscillator, q is the internal particle coordinate, and is a function

of proper time τ along its world line. The quantity V (q) is the potential −µ2q/2, while

W is the action for the free scalar field, which has the general form

W =
1

2

∫

Σ

√−ggµν∂µφ∂νφ dx
2. (3.18)

It is clear that by using (3.3) in (3.18) that:

W =
1

2

∫

Σ

(
r

r − 2M

)(
∂φ

∂t

)2

−
(
r − 2M

r

)(
∂φ

∂r

)2

d2x

Thus,

S =

∫

Σ

(
1

2
m ˙q(τ)2 − eφ(r∗, t)q̇(τ) −

µ2q(τ)

2

)

dτ

− 1

2

∫

Σ

(
r

r − 2M

)(
∂φ

∂t

)2

−
(
r − 2M

r

)(
∂φ

∂r

)2

d2x.

(3.19)

Now we have a Lagrangian density

L =
1

2
m ˙q(τ)2 − eφ(r∗, t)q̇(τ) −

µ2q(τ)

2
− 1

2

[(
r

r − 2M

)(
∂φ

∂t

)2

−
(
r − 2M

r

)(
∂φ

∂r

)2
]

,

(3.20)

and so we can now find the equation of motion for the oscillator. Substituting the

derivatives

∂L
∂q̇

= mq̇(τ) − eφ(r∗, t),
∂L
∂q

= −µ2q,

into the Euler-Lagrange equations yields the equation of motion for the quantum oscilla-

tor:

m
d2q

dτ 2
+ µ2q = e

d

dτ
{φ(r∗, t)} . (3.21)

We now come to find the equation of motion for the free scalar field. From the line

element in (3.4), we have the conformally flat metric:

ds2 = Ω2(dt2 − dr2
∗)

where

Ω =

(

1 − 2M

r

)

. (3.22)
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Note, that since along the oscillator world line we have chosen r∗ = 0 as our constant

trajectory, the conformal factor Ω is also constant.

The conformal metric in (3.4) has a metric tensor (and inverse)

θµν =






Ω2 0

0 −Ω2




 , and θµν =






1/Ω2 0

0 −1/Ω2




 . (3.23)

If we use the metric tensor of (3.23) in the covariant form of the wave equation

1√
−θ

[
∂

∂xµ

{
1√
−θ

θµν

}
∂φ

∂xν

]

= 0

we obtain

1

Ω2

(
∂2φ

∂t2
− ∂2φ

∂r2
∗

)

= 0 (3.24)

We will now return to the equation of motion of the scalar field. We have the Euler-

Lagrange derivatives

∂L
∂φ

= −eq̇(τ)δ(r∗(τ) − r0
∗(τ), t(τ) − t0(τ))

∂L
∂
(

∂φ
∂t

) =
r

r − 2M

∂φ

∂t

∂L
∂
(

∂φ
∂r

) =
−r + 2M

r

∂φ

∂t

Thus, the Euler-Lagrange equations give

r

r − 2M

∂2φ

∂t2
− ∂

∂r

{(

1 − 2M

r

)
∂φ

∂r

}

= −eq̇(τ)δ(r − r0, t− t0). (3.25)

In the form of r∗ we can write

∂2φ

∂t2
− ∂2φ

∂r2
∗

= −Ω2eq̇(r∗ − r0
∗, t− t0). (3.26)

This, then is the equation of motion for the coupled scalar field.

3.2.3 Quantum Langevin Equation.

We shall need to solve the equation of motion for the scalar field, (3.26). The solution to

(3.26) will be a solution of the form

φ(r∗, t) = φh(r∗, t) + φG(r∗, t), (3.27)
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where φh(r∗, t) is the homogeneous solution to (3.26) and φG(r∗, t) is the particular inte-

gral to be found from a suitable choice of retarded Green’s function. Once we have found

a form for φ we can substitute it into the equation of motion for the oscillator (3.21).

The resulting equation will be the quantum Langevin equation.

Solving the equation of motion for the field is a relatively standard procedure which

can be found outlined in many texts (for example, P. Szekeres [20]), and the method

used here is discussed in Chapter 1. We shall write the particular integral in terms of the

retarded Green’s function:

φG(r∗, t) =

∫ ∞

−∞

∫ ∞

−∞
G(r∗, r

′
∗; t, t

′)F(r′∗, t(τ)
′)dr′∗dt

′. (3.28)

By inspection of (3.26), and using the method given in section 1.7 on Green’s function

discussed in Chapter 1, we find that the functions F and G have the form

G(r∗, r
′
∗; t, t

′) = Θ(t(τ) − t(τ)′ − |r∗ − r′∗|)

F(r′∗, t
′) = −eΩ2q̇(τ ′)δ(r′∗ − r0

∗, t
′ − t0),

where Θ is the Heaviside function, and a dot denotes differentiation with respect to proper

time τ . Thus (3.28) now has the form

φG(r∗, t) = −e2Ω2

∫ ∞

−∞

∫ t−|r∗−r0
∗
|

−∞
Θ(t(τ) − t(τ)′ − |r∗(τ) − r∗(τ)

′)|)dq(τ
′)

dτ ′

δ(r∗(τ
′) − r0

∗(τ), t(τ
′) − t0(τ ′)) dt′dr′∗.

Evaluating the integral with respect to r′∗ first, we see that

φG = −
∫ τret

−∞

dq(τ)

dτ

∣
∣
∣
∣ r∗(τ) = r0

∗
(τ),

t(τ) = t0(τ)

Θ(t(τ)) − t(τ ′) − |r∗(τ) − r0
∗(τ)|)e2Ω2(τ) dτ

and so

φG(r∗, t) = −eΩ2

∫ ∞

−∞

dq(τ ′)

dτ ′
δ(t(τ) − t(τ)′ − |r∗(τ) − r0

∗(τ)|) dt′

Now, the only contribution comes when δ(t(τ) − t(τ)′ − |r∗(τ) − r0
∗(τ)|) 6= 0, i.e. when

t(τ)′ = t(τ) − |r∗(τ) − r0
∗(τ)|,
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which is the retarded time t(τret) and so (using the Chain rule) we write

φG(r∗, t) = −eΩ2

∫ t−|r∗−r0
∗
|

−∞
q̇(τ ′)dτ ′

and so

φG(r∗, t) = −eΩ2q(τret) (3.29)

where τret is the retarded time. So, the solution to the scalar field equation of motion, by

(3.27) is

φG(r∗, t) = φh(r∗, t) − eΩ2q(τret). (3.30)

It is this function which we will now substitute into the equation of motion for the

oscillator. First we note that

e
dφG(r∗, t)

dτ
= e

d

dτ
φh(r∗, t) − e2Ω2 dq

dτ

so by (3.21) we have

m
d2q

dτ 2
+ e2Ω2 dq

dτ
+ µ2q = F (τ) (3.31)

where

F (τ) = e
d

dτ
φh(r∗(τ), t(τ)) (3.32)

The quantity F (τ) is called the fluctuating force operator. When it is evaluated on the

worldline of the oscillator it has the form

F (τ) = e
d

dτ
φh(0, t(τ))

3.2.4 Solution of Quantum Langevin Equation.

We now wish to solve the differential equation (3.31). Clearly the solution will be of the

form

q(τ) = qh(τ) + qp(τ),

where qh(τ) is the homogeneous solution, and qp(τ) is the particular integral. In fact,

we find that at later times, qh(τ) → 0, so for all intents and purposes, the homogeneous
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solution is zero and we are left with

q(τ) = qp(τ).

As we stated at the start of the chapter, the scalar field φ can be written as an

expansion of the outgoing modes, whose form defines the vacuum (bk|0〉 = 0), (in this

case, the Boulware vacuum). Thus, we can write the scalar field as:

φ(r∗(τ), t(τ)) =
∑

k

1√
4πω

[

bke
ikr∗(τ)−iωt(τ) + b†ke

−ikr∗(τ)+iωt(τ)
]

, (3.33)

with ω = |k|. Using the expansion in (3.33) we can expand this operator to give it the

form

F (τ) = e
∑

k

ω√
4π

[

−ibke−iωt(τ) + ib†ke
iωt(τ)

]

Using this expansion of the fluctuating force operator in the right hand of (3.31) we now

have

m
d2q

dτ 2
+ e2Ω2 dq

dτ
+ µ2q = F (τ) = e

∑

k

ω√
4πω

[

−ibke−iωt(τ) + ib†ke
iωt(τ)

]

and it can be seen that the solution to the quantum Langevin equation has the expanded

form

q(τ) = e
∑

k

ω√
4π

[

−iχ(ω)bke
−iωt(τ) + iχ(ω)∗b†ke

iωt(τ)
]

(3.34)

where χ(ω) is a quantity called the oscillator susceptibility function and has the form

χ(ω) =
1

−mω2 − ie2Ω2ω + µ2
. (3.35)

We can obtain a very useful relationship from (3.35), namely the Fluctation Dissipation

theorem which states:

Im|χ(ω)| = −e2Ω2ω|χ(ω)|2. (3.36)

Now that we have a solution to the quantum Langevin equation, we are in a position

to calculate the overall energy flux of the system.
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3.2.5 Calculation of Energy Flux.

We shall now calculate the overall energy flux of the system using the energy equations

derived by Ford and O’Connell. The energy flux expressions are found from the energy-

momentum tensor:

T ν
µ =

[
∂L

∂(∂µφ)
∂νφ− δν

µL
]

, (3.37)

where L is the Lagrangian density of the free scalar field:

L =
1

2

√
−θθµν ∂φ

∂xµ

∂φ

∂xν
.

Here θµν is the metric tensor of (3.23). The flux term we require is the expectation value

of the T 0
1 component:

〈J 〉 = 〈T 0
1 〉 = Re

〈
∂L
∂φ̇

∂φ

∂r∗

〉

, (3.38)

and so

〈J 〉 =

〈
∂φ

∂t

∂φ

∂r∗

〉

. (3.39)

On substituting (3.30) into (3.38) we find that the total energy of the system is given by

the relation

〈J (r∗, t)〉 = 〈J0(r∗, t)〉 + 〈Jdir(r∗, t)〉 + 〈Jint(r∗, t), 〉 (3.40)

where 〈J0(r∗, t)〉 is the energy flux in the absence of the oscillator and here it has the

form

〈J0(r∗, t)〉 =
1

2
e2ΩRe

{〈
∂φh(r∗, t)

∂t

∂φh(r∗, t)

∂r∗

〉}

; (3.41)

the quantity 〈Jdir(r∗, t)〉 is the direct flux arising from the oscillator alone and is deter-

mined by

〈Jdir(r∗, t)〉 = −1

2

r∗
|r∗|

e2Ω
〈
q̇(τret)

2
〉
, (3.42)

while the final term, 〈Jint(r∗, t)〉 is the interference term, and is given by

〈Jint(r∗, t)〉 = −1

2
e2ΩRe

{〈

q̇(τret)

[
∂φh(r∗, t)

∂r∗
− r∗

|r∗|
dt

dτ

∂φh(r∗, t)

∂t

]〉}

. (3.43)

We shall now go on to show that the overall energy flux, 〈J (r∗, t)〉 = 0.

Proposition 3.2.1 The energy flux in the absence of the oscillator, 〈J0(r∗, t)〉 = 0.
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Proof: We shall prove this by direct calculation. We have that

〈J0(r∗, t)〉 =
1

2
e2ΩRe

{〈
∂φh(r∗, t)

∂t

∂φh(r∗, t)

∂r∗

〉}

.

The expansion of the φ field is given by

φh(r∗, t) =
∑

k

1√
4πω

[

bke
ikr∗−iωt + b†ke

−ikr∗+iωt
]

,

and so we have the two derivatives,

∂φ

∂t
=

∑

k

iω√
4πω

[

−bkeikr∗−iωt + b†ke
−ikr∗+iωt

]

,

∂φ

∂r∗
=

∑

k′

ik′√
4πω′

[

−bk′eik′r∗−iω′t + b†k′e
−ik′r∗+iω′t

]

.

Thus we find that

〈
∂φh(r∗, t)

∂t

∂φh(r∗, t)

∂r∗

〉

= −
∑

k

∑

k′

ωk′

4π
√
ωω′

〈bkb†k′〉ei(k−k′)r∗−i(ω−ω′)t,

where we have used the expectation values (3.16), which means that the only non-zero

term is 〈bkb†k′〉 = δkk′ . We replace the expectation value with the Kronecker delta, and

sum over repeated indices which gives

〈
∂φh(r∗, t)

∂t

∂φh(r∗, t)

∂r∗

〉

= − 1

4π

∑

k

k.

Since k is the wave number to be summed over positive and negative k we find that the

sum is zero and hence

〈J0(r∗, t)〉 = 0,

as desired.

Theorem 3.2.1 The overall energy flux of the system, 〈J (r∗, t)〉 = 0.

Proof: First we calculate the direct flux arising from the oscillator alone:

〈Jdir(r∗, t)〉 = −1

2

r∗
|r∗|

e2Ω2
〈
q̇(τret)

2
〉
,
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We have by (3.34) that

q(τ) = e
∑

k

ω√
4πω

[

−iχ(ω)bke
−iωt(τ) + iχ(ω)∗b†ke

iωt(τ)
]

,

and so,

q̇(τ) = −
∑

k′

ω′2ṫ(τ)√
4πω′

[

χ(ω′)bk′e−iω′t(τ) + χ(ω′)∗b†ke
iω′t(τ)

]

.

This means that

〈q̇(τret)2〉 =
∑

k

∑

k′

ω2ω′2ṫ(τret)
2

4π
√
ωω′

[

χ(ω)χ(ω′)∗〈bkb†k′〉e−i(ω−ω′)t(τret)
]

.

Again, we use the fact that 〈bkb†k′〉 = δkk′ , and ωk = |k| to reduce the above expression to

〈q̇(τret)2〉 =
∑

k

ω3ṫ(τret)
2

4π
|χ(ω)|2.

Hence we have

〈Jdir(r∗, t)〉 =
e2Ω2ṫ(τret)

2

8π

r∗
|r∗|

∑

k

ω3|χ(ω)|2. (3.44)

Finally we calculate the interference term which on the trajectory of the oscillator has

the general form

〈Jint(r∗, t)〉 = −e
2Ω2

2
Re

{

q̇(τret)
r∗
|r∗|

ṫ(τret)
∂φh(0, t(τret))

∂t

}

.

Putting in the derivatives and using (3.16) gives,

〈Jint(r∗, t)〉 =
e2Ω2ṫ(τret)

2

8π

r∗
|r∗|

Re

{
∑

k

ω2iχ(ω)∗

}

.

After using the Flux Dissipation theorem expression of (3.36) and some rearrangement,

we find that this is simply,

〈Jint(r∗, t)〉 = −e
2Ω2ṫ(τret)

2

8π

r∗
|r∗|

∑

k

ω3|χ(ω)|2,

i.e. we have obtained that

〈Jdir(r∗, t)〉 = −〈Jint(r∗, t)〉.
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Hence we see that

〈J (r∗, t)〉 = 0 + 〈Jdir(r∗, t)〉 − 〈Jdir(r∗, t)〉

= 0,

and the total energy flux of the system is zero.

The fact that the overall energy flux of the system is zero is of no great surprise.

Essentially our oscillator confined to the constant trajectory r∗ = 0 in conformally flat

Schwarzschild spacetime is entirely analogous to the flat spacetime example of Raine et

al [6] and Ford and O’Connell [8] as discussed in Chapter 1.

We shall now make one change to our model. We shall change the trajectory of the

oscillator from a constant trajectory to one where it is some arbitrary function of proper

time; r∗ = r∗(τ). As a result of this, the conformal factor previously constant- now

becomes a function of proper time and this will have a substantial effect upon the overall

energy flux of the system.
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3.3 2D Schwarzschild Spacetime with a non-Constant

Trajectory.

3.3.1 Coordinate System.

We shall now examine the second case: that of a quantum oscillator confined to an inertial

trajectory. The problem is the same as before except that now the oscillator is confined

to the trajectory:

r∗ = r∗(τ), t = t(τ).

The trajectory of the oscillator is shown in the Penrose diagram of figure 3.2. As before we

have the same line element, and we continue to use the Boulware vacuum. The expansion

of the φ field is the same as before and the annhilation and creation operators continue

to satisfy the commutation relations and expectation values of (3.15) and (3.16). The

conformal factor is now a function of proper time, and we have that,

Ω(τ) =

(

1 − 2M

r(τ)

)

. (3.45)

3.3.2 Equations of Motion

Once again, we use the scalar electrodynamic action as before and so we have the same

equation of motion for the oscillator as before:

m
d2q

dτ 2
+ µ2q = e

d

dτ
φ(r∗, t),

however, the equation of motion for the scalar field is subtly different. As we observed

before, if we let r = r∗ which we have that

1

Ω2(r)

[
∂2φ

∂t2
− ∂2φ

∂r2
∗

]

= −eq̇(τ)δ(r∗ − r0
∗, t− t0).

Thus, the equation of motion for the scalar field, due to the delta function on the right

hand side of the above equation, means that:

∂2φ

∂t2
− ∂2φ

∂r2
∗

= −eΩ2(τ)q̇(τ)δ(r∗ − r0
∗, t− t0). (3.46)
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I −

I +

Trajectory of oscillator

r∗ = 0

Figure 3.2: Penrose diagram showing the the trajectory of the accelerating oscillator.

Now the oscillator eventually falls into the singularity located at r∗ = 0
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3.3.3 Quantum Langevin Equation.

We shall now solve equation (3.46) to determine φ(r∗, t) Once we have obtained an ex-

pression for φ, we can substitute it into the equation of motion for the oscillator and

determine the Quantum Langevin equation. The general solution to (3.46) is

φ(r∗, t) = φh(r∗, t) + φG(r∗, t), (3.47)

where φh(r∗, t) is the homogeneous solution, and φG(r∗, t) is the solution found using the

appropriate Green’s function. Once again, we shall say that at late times the homogeneous

solution give zero contribution, so we are left only with contribution from the Green’s

function.

So, we have that

φG(r∗t) = −e2
∫ ∞

−∞

∫ t−|r∗−r0
∗
|

−∞
Ω2(τ)δ(t(τ) − t(τ ′) − |r∗(τ) − r∗(τ

′)|)dq(τ
′)

dτ ′

δ(r∗(τ
′) − r0

∗(τ), t(τ
′) − t0(τ ′)) dr′∗dt

′

Proceeding as before, this gives

φ(r∗, t) = −eΩ2(τret)q(τret). (3.48)

We now now substitute this into the equation of motion for the oscillator, and after some

rearrangement, we obtain the new quantum Langevin equation:

m
d2q

dτ 2
+ e2Ω2(τ)

dq

dτ
+ [2e2Ω(τ)Ω̇(τ) + µ2]q(τ) = F (τ), (3.49)

where F (τ) is the fluctuating force operator as before.

3.3.4 Calculation of Energy Flux.

Since we are using the same metric of the previous section, the total energy flux of the

system is still:

〈J (r∗, t)〉 = 〈J0(r∗, t)〉 + 〈Jdir(r∗, t)〉 + 〈Jint(r∗, t)〉, (3.50)
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where

〈J0(r∗, t)〉 =
1

2
ζRe

{〈
∂φh(r∗, t)

∂t

∂φh(r∗, t)

∂r∗

〉}

.

The direct flux term, 〈Jdir(r∗, t)〉 is given by

〈Jdir(r∗, t)〉 = −ζ
2
Re

{〈
∂q(τret)

∂t

∂q(τret)

∂r∗

〉}

, (3.51)

and the interference term is found from the relation

〈Jint(r∗, t)〉 =
ζ

2
Re

{〈
∂φ

∂t

∂q(τret)

∂r∗
+
∂q(τret)

∂t

∂φ

∂r∗

〉}

(3.52)

where ζ = e2Ω2(τ) is the damping coefficient. As before, the energy flux in the absence

of the oscillator, 〈J (r∗, t)〉 = 0.

Theorem 3.3.1 The quantum oscillator radiates as a result of its motion through the

spacetime. i.e. the overall energy flux of the system 〈J (r∗, t)〉 6= 0

Proof. We have seen that

〈Jdir(r∗, t)〉 = −ζ
2
Re

{〈
∂q(τret)

∂t

∂q(τret)

∂r∗

〉}

,

Now, using the chain rule we can write

∂q(τret)

∂t
=
dq(τret)

dτret

∂τret
∂t

,

and

∂q(τret)

∂r∗
=
dq(τret)

dτret

∂τret
∂r∗

.

Now, using the chain rule on our retarded time relation

t− T (τret) = r∗ −R∗(τret),

we obtain the very useful result that

∂τret
∂r∗

= −∂τret
∂t

. (3.53)
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Now this means that

∂q(τret)

∂t
= −dq(τret)

dτret

∂τret
∂r∗

, and
∂q(τret)

∂r∗
=
dq(τret)

dτret

∂τret
∂r∗

. (3.54)

Now substituting this into (3.51) we see that the direct flux from the source alone is

〈Jdir(r∗, t)〉 =
ζ

2
Re

{

∂τret
∂r∗

〈(
dq(τret)

dτret

)2
〉}

. (3.55)

Now we calculate the interference term:

〈Jint(r∗, t)〉 =
ζ

2
Re

{〈
∂φ

∂t

∂q(τret)

∂r∗
+
∂q(τret)

∂t

∂φ

∂r∗

〉}

.

Using the Chain rule we can write this as

〈Jint(r∗, t)〉 =
ζ

2
Re

{〈
∂φ

∂t

dq(τret)

dτret

∂τret
∂r∗

+
dq(τret)

dt

∂τret
∂t

∂φ

∂r∗

〉}

=
ζ

2
Re

{
∂τret
∂r∗

〈
∂φ

∂t

dq(τret)

dτret
− dq(τret)

dτret

∂φ

∂r∗

〉}

Thus we have obtained

〈Jint(r∗, t)〉 =
ζ

2
Re

{
∂τret
∂r∗

〈
dq(τret)

dτret

(
∂φ

∂t
− ∂φ

∂r∗

)〉}

(3.56)

Comparison of (3.55) with (3.56) shows that unless

∂φ

∂t
− ∂φ

∂r∗
= −dq(τret)

dτret
(3.57)

then 〈Jint(r∗, t)〉 and 〈Jdir(r∗, t)〉 cannot add to give an overall zero net energy flux. The

resulting radiation is due to the conformal factor being a function of time Ω = Ω(τ). We

have the solution for the equation of motion for the scalar field as φ = φh − eΩ2(τ)q(τ).

So,

∂φ

∂t
= −e ∂

∂t
(Ω2(τ)q(τ)) = −e ∂

∂τ
(Ω2q)

dτ

dt
= −2e

∂

∂τ
(Ω2q)

dτ

dr∗
.

Similarly,

∂φ

∂r∗
= −e ∂

∂τ
(Ω2q)

dτ

dr∗
.

Thus the interference term is now

〈Jint〉 = −2eζRe

{
dτ

dr∗

〈
dq

dτ

∂

∂τ
(Ω2q)

〉}

.
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It is clear that if Ω2 is a constant and not a function of proper time τ , then

〈Jint〉 = −ζ
2
Re

{

dτ

dr∗

〈(
dq

dτ

)2
〉}

,

which is the direct energy flux term, 〈Jdir〉. Thus, the radiation depends on the conformal

factor being a function of time. 2

We have shown the first important result, a quantum oscillator confined to a general

trajectory r∗ = r∗(τ) and t = t(τ) in two dimensional Schwarzschild spacetime radiates as

a result of such motions. The radiation seems to been brought about due to the presence

of the conformal factor. In the previous case, Ω was constant, however in the case we

have just examined, it was a function of proper time. The conformal factor is dependent

on both the trajectory of the oscillator and the spacetime in question. So in fact the

radiation has been brought about by a choice of trajectory in this spacetime.
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Chapter 4

Quantum Langevin Approach to

Hawking Radiation

In this chapter we shall be interested in deriving an expression for Hawking radiation

using the method as outlined by Louisell (and discussed in Chapter 1). In particular, we

shall use a Hamiltonian to derive expressions for the annhilation and creation operators

of the free scalar field and the oscillator. We shall then solve these so that we can form an

expression for the position function of the oscillator, and hence calculate the net energy

flux of the system as we did in chapter 3. This quantum Langevin approach will be our

method for calculating Hawking radiation in the last section of the chapter. However first

we shall demonstrate that it produces results in agreement with the standard results.

Hence we consider two cases before the Schwarzschild case: on oscillator on an x =

constant trajectory, and an oscillator undergoing constant acceleration both in Minkowski

spacetime.
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4.1 Quantum Oscillator confined to a constant Tra-

jectory in Flat Spacetime using the Heisenberg

Picture

4.1.1 Hamiltonian

The Hamiltonian for the system is comprised of three parts: the Hamiltonian for the

quantum harmonic oscillator, Hosc, the Hamiltonian for the free scalar field Hsf and

finally the Hamiltonian which describes the interaction between the oscillator and the

free scalar field, Hint. We shall confine the oscillator to a constant trajectory, so in

Minkowski coordinates:

x = x(t) = constant. (4.1)

The Hamiltonian for a harmonic oscillator is:

Hosc = ~ωca
†a (4.2)

where ωc is the angular frequency of the oscillator, and the operators a and a† are the

annihilation and creation operators (respectively) for the quantum oscillator. We can

derive the Hamiltonian for the free scalar field from the usual relation

Hsf = Πφ̇− L =
∂L
∂φ̇

φ̇− L (4.3)

Here we have taken dots to denote derivatives with respect to time, and L is the La-

grangian density for the scalar field which is given by

L =
1

2

√−ggµν ∂φ

∂xµ

∂φ

∂xν
(4.4)

Since we are working in two dimensional Minkowski spacetime, the metric tensor is just

ηµν = ηµν






1 0

0 −1




 , and

√−g = 1,
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thus we obtain the Lagrangian,

L =
1

2

[(
∂φ

∂t

)2

−
(
∂φ

∂x

)2
]

and so by (4.3), the Hamiltonian for the scalar field must be

Hsf =
1

2

[(
∂φ

∂t

)2

+

(
∂φ

∂x

)2
]

.

Now, if we expand the φ field in a box of length V and impose periodic boundary condi-

tions we have the expansion:

φ(t, x) =
∑

k

√
2π

ωkV
[bke

−iωkt+ikx + b†ke
iωkt−ikx], (4.5)

where bk and b†k are the annihilation and creation operators respectively for the scalar

field, x and t are the Minkowski position and time coordinates respectively and ωk is the

angular frequency of the scalar field. It is clear from (4.4) that the Hamiltonian density

for the scalar field in (4.3) will be

Hsf = Πφ̇− L =
1

2

(
∂φ

∂t

)2

and so, upon using the expansion for φ given above we obtain

Hsf =
∑

k

ωkb
†
kbk. (4.6)

Finally, we come to the interaction of the scalar field and the oscillator. We shall use a

scalar electrodynamic form of interaction [6] given by:

Hint =
1

2m
(p+ eφ)2 + ø2

cq

where p is the momentum operator (defined in Chapter 1), and q is the position operator

of the oscillator. Substituting in our definitions for p, q and φ gives:

Hint =
ie√

2ωcm

∑

k

ek[a
† − a]

(

bke
ikx + b†ke

−ikx
)

(4.7)

where we have used the abbreviation

ek =

√
2π

ωkV
, (4.8)
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and as in Chapter 3, we have the dispersion relation

ωk = |k|. (4.9)

So, we have the Hamiltonian for the model:

H = ωca
†a+

∑

k

ωkb
†
kbk +

ie√
2ωcm

∑

k

ek[a
† − a]

(

bke
ikx + b†ke

−ikx
)

. (4.10)

4.1.2 Equations of Motion.

We now use the Hamiltonian established in the previous subsection to derive the equations

of motion for both the oscillator and the scalar field. We shall start with the equation of

motion for the oscillator. Using the usual commutation relation, we have that

da

dt
=

1

i
[H , a]

which gives

da

dt
= −iωc[a, a

†a] +
e√

2ωcm

∑

k

ek([a
†, a] − [a, a])

(

bke
ikx + b†ke

−kx
)

.

Now, we know that in general, operators M , a and a† in the Heisenberg picture satisfy

the identity

[M , a†a] = [M .a†]a+ a†[M , a] (4.11)

and further, the commutation relations satisfy

[M , a] = −∂M
∂a

, and [M , a†] =
∂M

∂a
(4.12)

Hence our equation of motion for the quantum oscillator is

da

dt
= −iωca+

e√
2ωcm

∑

k

ek

[

bke
ikx + b†ke

−ikx
]

. (4.13)

Now we find the equation of motion for the free scalar field. Again we have the relation:

dbk
dt

=
1

i~
[H , bk]. (4.14)
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So, this gives

dbk
dt

= −i
∑

k

ωk[bk, b
†
kbk] +

e√
2ωcm

∑

k

ek(a
† − a)

[

[bk, bk]e
ikx + [bk, b

†
k]e
−ikx

]

,

which means the equation of motion for the free scalar field is:

dbk
dt

= −iωkbk +
eek√
2ωcm

(a† − a)e−ikx. (4.15)

We can solve the differential equation in (4.15) for the field operator bk by use of an

integrating factor in the usual way:

d

dt

{
eiωktbk

}
= bk(0) +

eek√
2ωcm

e−ikx

∫ t

0

[a†(t′) − a(t′)]eiωkt′ dt′,

We now have an expression for the field creation operator:

bk(t) = eiωktbk(0) +
eek√
2ωcm

eikx

∫ t

0

[a(t′) − a†(t′)]e−iωk(t′−t) dt′. (4.16)

Clearly, if we take the hermitian conjugate of (4.16) we obtain the corresponding expres-

sion for the field annihilation operator:

b†k(t) = e−iωktb†k(0) +
eek√
2ωcm

e−ikx

∫ t

0

[a†(t′) − a(t′)]eiωk(t′−t) dt′. (4.17)

We can determine the solution to the scalar field equation of motion using these two

operators. We take (4.16) and multiply it by eikx, and similarly we take (4.17) and

multiply it by e−ikx and adding the resulting expressions gives:

bk(t)e
ikx + b†k(t)e

−ikx = eiωktbk(0) +
eek√
2ωcm

eikx

∫ t

0

[a(t′) − a†(t′)]e−iωk(t′−t) dt′

+ e−iωktb†k(0) +
eek√
2ωcm

e−ikx

∫ t

0

[a†(t′) − a(t′)]eiωk(t′−t) dt′

Multiplying through by ek and summing over k gives:

∑

k

ek[bk(t)e
ikx + b†k(t)e

−ikx] =
∑

k

ek[e
iωktbk(0) + e−iωktb†k(0)]+

e√
2ωcm

∑

k

e2k

∫ t

0

[a†(t′) − a(t′)]
(

eiωk(t′−t) − e−iωk(t′−t)
)

dt′,

i.e.

φ(t, x) = φh(t, x) +
e√

2ωcm

∑

k

e2k

∫ t

0

[a†(t′) − a(t′)]
(

eiωk(t′−t) − e−iωk(t′−t)
)

dt′, (4.18)
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where φh is the homogeneous part, of the solution, and the integral after it is the particular

integral which we shall now find. Using the relations of chapter 1 which relate position

operator q, and momentum operator p , of the oscillator to the annhilation and creation

operators:

a† =
1√
2ωc

[ωcq − ip], and a =
1√
2ωc

[ωcq + ip],

we can now write (4.18) as

φ(t, x) = φh(t, x) − e

ωcm

∑

k

e2k

∫ t

0

ip(t′)
(

eiωk(t′−t) − e−iωk(t′−t)
)

dt′. (4.19)

If we convert the sum over k to an integral over dωk using the prescription as V → ∞
∑

k

{...} =
V

2π

∫

... dωk,

then (and using the relations between p and q)

φ(t, x) = φh(t, x) − e

ωcm

V

2π

∫ ∞

−∞

2π

ωkV
dωk

∫ t

0

iq̇(t′)
(

eiωk(t′−t) − e−iωk(t′−t)
)

dt′.

We can now write the above exponentials in the integral over dωk as a Heaviside function:

φ(t, x) = φh(t, x) − e

ωcm

∫ t

0

iq̇(t′)Θ(t′ − t)dt′,

and so we have

φ(t, x) = φh(t, x) − eπ

ωcm
q(t), (4.20)

which we shall write as

φ(t, x) = φh(t, x) − αq(t), where α =
eπ

ωcm
, (4.21)

for convenience.

We shall now continue to find a differential equation for the annihilation operator

a(t). We substitute (4.16) and (4.17) into (4.13):

da

dt
= −ωca+

e√
2ωcm

∑

k

ek

{

eikx ×
[

e−iωktbk(0) +
eek√
2ωcm

e−ikx

∫ t

0

[a† − a]eiωk(t′−t) dt′
]

e−ikx ×
[

eiωktb†k(0) +
eek√
2ωcm

eikx

∫ t

0

[a− a†]e−i∗ωk(t′−t) dt′
]}
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which, after some simplification we will write as,

da

dt
= Ga(t) − iωca+

e2

2ωcm2

∑

k

e2k

{∫ t

0

[a† − a]
(

eiωk(t′−t) − e−iωk(t′−t)
)}

(4.22)

where

Ga =
e√

2ωcm

∑

k

ek

{

bk(0)e−iωkt+ikx + b†k(0)eiωkt−ikx
}

. (4.23)

We can simplify this equation further by removing the high frequency behavior. This is

easily done; let

a(t) = e−iωctA(t), (4.24)

and now (4.22) becomes

dA

dt
= GA(t)+

e2

2ωcm2

∑

k

e2k

{∫ t

0

[

eiωc(t′+t)A† − e−iωc(t′−t)A
] (

eiωk(t′−t) − e−iωk(t′−t)
)

dt′
}

.

(4.25)

We have now arrived at a first order differential equation for the operator A(t). We

shall now go on to solve this equation and obtain expressions for the annihilation and

creation operators of the quantum oscillator.

4.1.3 Calculation of A(t) and A†(t)

In order to solve (4.25), we first multiply out the brackets contained within the sum

over k. When we do this, we obtain four exponential terms. In fact we can simplify

the expression further by noting that three of the exponential terms we obtain are of

the form ei(ωc+ωk)t. The only contribution these exponentials make is to induce rapid

oscillations into the system, oscillations which the system cannot adapt and respond to

(and so average to zero). So, it is reasonable to neglect these three exponential terms.

We also use the rotating-wave approximation which means we can neglect the a† term,

and as a result we arrive at a simpler form of:

dA

dt
= GA(t) − e2

2ωcm2

∑

k

e2k

{

ei(ωc−ωk)t

∫ t

0

A(t′)e−i(ωc−ωk)t′ dt′
}

. (4.26)
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Now, we multiply both sides of this equation by the term e−st, then integrate both sides

(i.e take the Laplace transform of the equation):

sA(s) = GA(s) − e2

2ωcm2

∑

k

e2k

{∫ ∞

0

ei(ωc−ωk)t−st dt

∫ t

0

A(t′)e−i(ωc−ωk)t′ . dt′
}

.

We now change the order of integration for t and t′:

sA(s) = GA(s) − e2

2ωcm2

∑

k

e2k

{∫ ∞

t′
ei(ωc−ωk+is)t dt

∫ t

0

A(t′)e−i(ωc−ωk)t′ dt′
}

.

Performing the t integration first leaves us with

sA(s) = GA(s) − e2

2ωcm2

∑

k

e2k

∫ ∞

0

e−st′A(t′)

i(ωc − ωk + is)
dt′,

which we can write as

A(s) =
G(s)

s+ e2

2ωcm2

∑

k

e2
k

i(ωc−ωk+is)

. (4.27)

Now we apply the technique used by Louisell as discussed in Chapter 1: we convert

the sum over k into an integral over dωk, and take the limit s→ 0, i.e.:

−i
∑

k

e2k
ωk − ωc − is

→ −i lim
s→0

{
V

2π

∫
e2k

ωk − ωc − is
dωk

}

,

where we have again used the prescription

∑

k

{...} → V

2π

∫

...dωk.

We perform the Wigner-Weisskopf approximation by taking the above limit and integrat-

ing:

−i lim
s→0

{
V

2π

∫ ∞

0

e2k
ωk − ωc − is

dωk

}

= −i V
2π

∫ ∞

0

e2k

[
1

ωk − ωc

+ iπδ(ωk − ωc)

]

dωk =
γ

2
+i∆ω

(4.28)

and since e2k = 2π/ωkV , where we have that

γ =
πe2

ω2
cm

2
, and ∆ω = −

∫
e2k

ωk − ωc

dωk, (4.29)

and hence we may now write the expression we obtained in (4.27) in the simpler form:

A(s) =
G(s)

s+ γ
2

+ i∆ω
. (4.30)
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We shall now ignore small frequency shifts in the system, and so as a result of applying

the Wigner-Weiskpoff approximation, we can in fact now replace our earlier expression

for the annihilation operator of the quantum oscillator given in (4.25) with the simple

linear first order differential equation:

dA

dt
= −γ

2
A(t) + GA(t) (4.31)

Integrating this equation directly we have

A(t) = e−γt/2

∫ t

0

G(t′)eγt′/2 dt′.

Recalling that

GA(t′) =
e√

2ωcm

∑

k

ek

{

bk(0)ei(ωc−ωk)t′+ikx + b†k(0)ei(ωc+ωk)t′−ikx
}

,

we have that

A(t) =
e e−γt/2

√
2ωcm

∑

k

ek

{

bk(0)eikx

∫ t

0

ei(ωc−ωk−iγ/2)t′ dt′ + b†k(0)e−ikx

∫ t

0

ei(ωc+ωk−iγ/2)t′dt′
}

.

Note that we can take the eikx exponentials outside the integrands since in this case, the

oscillator is on a constant trajectory and so x has no t dependence. It is a straightforward

task to perform the t′ integrations:

A(t) =
e e−γt/2

√
2ωcm

∑

k

ek

{

bk(0)eikx

[
ei(ωc−ωk−iγ/2)t

i(ωc − ωk − γ/2)
− 1

i(ωc − ωk − iγ/2)

]

b†k(0)e−ikx

[
ei(ωc+ωk−iγ/2)t

i(ωc + ωk − iγ/2)
− 1

i(ωc + ωk − iγ/2)

]}

.

Now, we can ignore the two terms in the above expression which have a e−γt/2 term in

the numerator since any such term will decay to zero as t increases. Further, we shall

define the function,

χ(ωk) =
1

ωc + ωk − iγ/2
, (4.32)

and hence we finally arrive at expressions for the annihilation and creation operators of

the quantum oscillator:

A(t) = − ie√
2ωcm

∑

k

ek

{

bk(0)χ(−ωk)e
i(ωc−ωk)t+ikx + b†k(0)χ(ωk)e

i(ωc+ωk)t−ikx
}

, (4.33)
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and

A†(t) =
ie√

2ωcm

∑

k

ek

{

b†k(0)χ∗(−ωk)e
−i(ωc−ωk)t−ikx + bk(0)χ∗(ωk)e

−i(ωc+ωk)t−ikx
}

.

(4.34)

Now that we have obtained A(t) and A†(t), we can go on to calculate the overall energy

flux of the system, using exactly the same method as we did in the preceding chapter. We

first need to find the expression for the energy flux 〈J 〉, and then form for the quantum

oscillator function q(t). Determining an expression for q(t) is a straightforward process.

We know from the definition of the quantum harmonic oscillator that its position equation

q is defined as

q =
1√
2ωc

[a† + a]. (4.35)

Taking into account (4.24), we must have that,

q(t) =
1√
2ωc

[
eiωctA†(t) + e−iωctA(t)

]
,

and hence, after substituting in (4.33) and (4.34), and some trivial rearrangement, we

have that,

q(t) =
ie

2ωcm

∑

k

ek

{

e−iωkt+ikxbk(0)(χ∗(ωk) − χ(−ωk)) + eiωkt−ikxb†k(0)(χ∗(−ωk) − χ(ωk))
}

.

(4.36)

In the proceeding section, we shall require q̇(t), so differentiating (4.132) with respect to

t gives,

q̇(t) =
−e

2ωcm

∑

k

ωkek

{

−e−iωkt+ikxbk(0)(χ∗(ωk) − χ(−ωk)) + eiωkt−ikxb†k(0)(χ∗(−ωk) − χ(ωk))
}

.

(4.37)

We also see that if we differentiate with respect to the spatial coordinate x, then we have

that

dq

dx
= ±q̇(t). (4.38)
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4.1.4 Total Energy Flux of the System.

From Chapter 1, we saw that the energy density E is the component T 0
0 of the stress

tensor and is given by,

T 0
0 =

∂L

∂φ̇
φ̇− L ,

and hence we have that,

E =
1

2

(

φ̇2 + φ′2
)

(4.39)

We now find the energy flux which is the 〈J 〉0 = T 0
1 component of the energy stress

tensor. It is clear that from our earlier definition of T µ
ν that,

〈J 〉 =
1

2

〈
∂φ

∂t

∂φ

∂x
+
∂φ

∂x

∂φ

∂t

〉

. (4.40)

Now, recall the solution to the scalar field wave equation is,

φ(t, x) = φh(t, x) − αq(t), for α =
eπ

ωcm
, (4.41)

where q(t) is position equation of the oscillator, and φh(t, x) is the homogeneous solution

of the wave equation, which when expanded in a box of length V :

φ(t, x)h =
∑

k

ek[bk(0)e−iωkt+ikx + b†k(0)eiωkt−ikx], (4.42)

and,

∂φh

∂t
= i
∑

k>0

kek[−bk(0)e−iωkt+ikx+b†k(0)eiωkt−ikx],
∂φh

∂x
= i
∑

k>0

kek[bk(0)e−iωkt+ikx−b†k(0)eiωkt−ikx].

Hence if:

〈J 〉 =

〈
∂φ

∂x

∂φ

∂t

〉

,

then,

〈J 〉 =

〈(
∂φh

∂x
− α

dq

dx

)(
∂φh

∂t
− αq̇(t)

)〉

.

which by (4.38) means that we can write,

〈J 〉 =

〈(
∂φh

∂x
+ αq̇(t)

)(
∂φh

∂t
− αq̇(t)

)〉
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and so expanding this out we obtain three terms:

〈J 〉 = Re

{〈
∂φh

∂x

∂φh

∂t

〉}

+ Re

{〈

αq̇
∂φh

∂t
− ∂φh

∂x
αq̇

〉}

− Re
{〈
α2q̇2(t)

〉}
(4.43)

where as in the preceding chapter 〈J 〉0 is the energy flux produced by the scalar field

alone,

〈J 〉0 = Re

{〈
∂φh

∂x

∂φh

∂t

〉}

(4.44)

and this in general is always zero. 〈J 〉dir is the direct energy flux which originates from

just the oscillator:

〈J 〉dir = −α2Re
{〈
q̇2(t)

〉}
, (4.45)

and finally we have the interference term 〈J 〉int which is given by

〈J 〉int = αRe

{〈

q̇
∂φh

∂t
− ∂φh

∂x
q̇

〉}

. (4.46)

We calculate the direct flux first. From (4.37) that the product

〈q̇q̇〉 = − e2

4m2ω2
c

∑

k

ω2
ke

2
k Re

{
χ∗(ωk)χ

∗(−ωk) − |χ(−ωk)|2 − |χ(ωk)|2 + χ(ωk)χ(−ωk)
}
,

and so,

〈J 〉dir =
e2α2

4m2ω2
c

∑

k

ω2
ke

2
k

{
−|χ(−ωk)|2 − |χ(ωk)|2 + Re{χ∗(ωk)χ

∗(−ωk)} + Re{χ(ωk)χ(−ωk)}
}
.

Using the relations for the real part of χ(ωk) in Appendix A, section A.1, we see that we

have for outgoing modes (i.e. for k > 0)

〈J 〉dir =
e4π2

4m4ω4
c

∑

k>0

ω2
ke

2
k

{

−|χ(ωk)|2 − |χ(−ωk)|2 +
2

ω2
c − ω2

k

}

. (4.47)

We shall now find the interference term 〈J 〉int. After some algebra, we find that

〈

q̇
∂φh

∂t
− ∂φh

∂x
q̇

〉

=
e

2ωcm

∑

k>0

ω2
ke

2
k Re {iχ∗(−ωk) − iχ(ωk) − iχ∗(ωk) + iχ(−ωk)}

and using the relations in Appendix A, we find that

〈J 〉int =
αeγ

4ωcm

∑

k>0

ω2
ke

2
k

[

|χ(ωk)|2 + |χ(−ωk)|2 −
2

(ω2
c − ω2

k)

]

.
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Since α = eπ/ωcm and γ = e2π/ω2
cm

2 we must have that,

〈J 〉int =
e4π2

4ω4
cm

4

∑

k>0

ω2
ke

2
k

[

|χ(ωk)|2 + |χ(−ωk)|2 −
2

(ω2
c − ω2

k)

]

, (4.48)

and hence we have that the total energy flux,

〈J 〉 = 〈J 〉dir + 〈J 〉int = 0. (4.49)

So, the approach of deriving a quantum Langevin equation, and determining the energy

flux in the same manner as Ford and O’Connell delivers the expected result of no radiation

emitted by the oscillator when coupled to a real scalar field and is confined to a constant

trajectory in M
2.

4.2 Uniformly Accelerating Oscillator in 2D Minkowski.

We shall now modify the previous model: we shall now place the oscillator on an acceler-

ating trajectory. We shall then show that by deriving, and solving a quantum Langevin

equation, that when we come to evaluate the total energy flux of the system, we find it

to be zero in accordance with the standard results.

Although this is essentially the same calcualtion performed by Raine et al. [6], the

methodology employed here is rather different. Instead of considering quantum correla-

tions, we shall adopt the procedure of the preceeding section for calculating the overall

energy flux of the system. Thus, we shall need to find expressions for the annihilation and

creation operators using the Wigner-Weisskopff approximation, then use the energy-flux

method of Ford and O’Connell to show that the interference term again balances with

the direct flux term to give a reult of no overall energy flux.

It should be noted that this same calculation is also performed by Ford and O’Connell,

although those authors make their calculation in the Shrödinger picture, using a second

order differential equation to describe the particle motion. We wish to generalise the
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methodology of the preceeding section and use as a means of deriving Hawking radiation.

Before we do this, we show the method delivers a consistent reuslt with an oscillator

undergoing hyperbolic motion.

4.2.1 Hamiltonian

The oscillator is accelerating uniformly, so the 2D trajectory of the oscillator in Minkowski

coordinates is,

t = ξ sinh(τ), x = ξ cosh(τ), (4.50)

where (τ, ξ) are the usual Rindler coordinates with τ being the proper time and we choose

ξ = 1. We have for x > xret, the retarded time:

τret = ln |x− t| = ln(ν), where ν = x− t, (4.51)

while,

∂τret
∂x

∣
∣
∣
∣
t

= −∂τret
∂t

,
∂τret
∂x

=
1

ν
, and

∂τret
∂t

∣
∣
∣
∣
x

= −1

ν
.

The Hamiltonian will be,

H dτ = ~ωca
† dτa+ ~

∑

k

ωkb
†
kbk dτ +

ie~√
2ωcm

∑

k

ek(a
† − a)

[

bke
ikxτ + b†ke

−ikx(τ)
]

dτ.

(4.52)

4.2.2 Equations of Motion.

We find the equations of motion of the oscillator and the scalar field in the same way as

in the previous section. For the oscillator we have that,

da

dτ
=

1

i~
[H , a]

and so this yields the expression:

da

dτ
= −iωca+

e√
2ωcm

∑

k

ek

[

bke
ikx(τ) + b†ke

−ikx(τ)
]

. (4.53)
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Similarly we have for the scalar field that,

dbk
dτ

=
1

i~
[H , bk],

and so we find that,

dbk
dτ

= −iωk
dt

dτ
+

eek√
2ωcm

(a† − a)e−ikx(τ). (4.54)

We can solve (4.54) to find expressions for bk and b†k. First we write (4.54) as

dbk
dt

dt

dτ
+ iωkbk

dt

dτ
=

eek√
2ωcm

(a† − a)e−ikx(τ)dτ

dt
,

and so,

eiωkt(τ)bk = bk(0) +
eek√
2ωcm

(
dτ

dt

)2 ∫ τ

−∞
[a†(τ ′) − a(τ ′)]eiωkt(τ ′)−ikx(τ ′) dτ ′.

This gives us:

bk(τ) = e−iωkt(τ)bk(0) +
eeke

−iωkt(τ)

√
2ωcm

∫ τ

−∞
[a†(τ ′) − a(τ ′)]eiωkt(τ ′)−ikx(τ ′) dτ ′, (4.55)

and,

b†k(τ) = eiωkt(τ)b†k(0) +
eeke

iωkt(τ)

√
2ωcm

∫ τ

−∞
[a(τ ′) − a†(τ ′)]e−iωkt(τ ′)+ikx(τ ′) dτ ′. (4.56)

We shall now find the full solution to the scalar field equation. We have that,

φ(t, x) =
∑

k

ek[bke
ikx + b†ke

−ikx].

Subsituting in (4.55) and (4.56) we have that,

φ(t, x) = φh(t, x) +
e√

2ωcm

∑

k

e2k e
−iωkt(τ)+ikx(τ)

∫ τ

−∞
[a† − a]eiωkt(τ ′)−ikx(τ ′) dτ ′

+
e√

2ωcm

∑

k

e2k e
iωkt(τ)−ikx(τ)

∫ τ

−∞
[a− a†]e−iωkt(τ ′)+ikx(τ ′) dτ ′.

We now subsitute for the functions e−iωkt(τ)+ikx(τ) and their complex conjugates given in

(4.64) into the above expression, and so we have that,

φ(t, x) = φh(t, x) +
e√

2ωcm

∫ ∞

∞

∫ ∞

−∞

∫ τ

−∞

∑

k

e2kαk(k
′)α∗k(k

′′)eik′′τ ′

e−ik′τ (a† − a) dk′dk′′dτ

− e√
2ωcm

∫ ∞

∞

∫ ∞

−∞

∫ τ

−∞

∑

k

e2kα
∗
k(k
′′)αk(k

′)eik′′τe−ik′τ (a† − a) dτ ′.
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Using the result in Raine et al [6]:

∑

k

e2kαk(k
′)α∗k(k

′′) =
1

π
δ(k′ − k′′)|Γ(ik′)|2eπk′

, (4.57)

so we have, after performing the k′′ integral:

φ(t, x) = φh(t, x) +
e√

2ωcmπ

∫ ∞

−∞

eπk′

eik′(τ ′−τ)

k′ sinh(πk′)
dk′
∫ τ

−∞
(a† − a) dτ ′

− e√
2ωcmπ

∫ ∞

−∞

eπk′

eik′(τ−τ ′)

k′ sinh(πk′)
dk′
∫ τ

−∞
(a† − a) dτ ′,

where we have used the identity,

|Γ(iz)|2 =
π

z sinh(πz)
.

Let us now consider the integrand:

∫ ∞

−∞

eπk′

eik′(τ ′−τ)

k′ sinh(πk′)
dk′.

This is a contour integral with a pole at k′ = 0. We can write

eπk′

sinh(πk′)
=

2eπk′

eπk′ − eπk′
=

1

1 − e2πk
.

We note that

lim
k→∞

{
1

1 − e2πk

}

= 1 and lim
k→−∞

{
1

1 − e2πk

}

= 0.

This integral is discussed in [6]. Essentially, we evaluate the integral around the contour

and the only contribution comes from k = 0 so we make the subsitution k = ni + ǫ and

now we find,
∫ ∞

−∞

eπk′

eik′(τ ′−τ)

k′ sinh(πk′)
dk′ =

1

2π

∑

n

einπ(τ ′−τ)

n
= Θ(τ ′ − τ)

where Θ(τ − τ ′) is the Heaviside function. Thus we now have

φ(t, x) = φh(t, x) − 2πe√
2ωcm

∫ τ

−∞
[a† − a]Θ(τ ′ − τ) dτ ′ − 2πe√

2ωcm

∫ τ

−∞
[a† − a]Θ(τ − τ ′) dτ ′

and after simplifying and using the relations between p and q we have,

φ(t, x) = φh(t, x) − πe

ωcm

∫ τ

−∞

dq

dτ
Θ(τ ′ − τ) dτ ′.
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and hence,

φ(t, x) = φh(t, x) +
πe

ωcm
q(τret) = φh(t, x) − αφ(t, x), (4.58)

where,

α =
πe

ωcm
(4.59)

We now turn our attention back to the oscillator. We now substitute (4.55) and (4.56)

into (4.53) and we obtain now the following equation of motion for the oscillator:

da

dτ
= −iωca(τ) + Ga(τ) +

e2

2ωcm2

∑

k

e2k

{

e−iωkt(τ)+ikx(τ)

∫ τ

−∞
[a†(τ ′) + a(τ ′)]eiωkt(τ ′)−ikx(τ ′) dτ ′

− eiωkt(τ)−ikx(τ)

∫ τ

−∞
[a†(τ ′) − a(τ ′)]e−iωkt(τ ′)+ikx(τ ′) dτ ′

}

,

where,

Ga(τ) =
e√

2ωcm

∑

k

e2k

[

bk(0)e−iωkt(τ)+ikx(τ) + b†k(0)eiωkt(τ)−ikx(τ)
]

. (4.60)

We now remove the high frequency behavior from the above equation in the same manner

as before, only now a is of course a function of proper time τ , so,

a(τ) = e−iωcτA(τ), (4.61)

and hence, our equation of motion for the oscillator is now

dA

dτ
= GA(τ) +

e2

2ωcm2

∑

k

e2k

{

eiωcτe−iωct(τ)+ikx(τ)

∫ τ

−∞

[

eiωcτ ′

A†(τ) − e−iωcτ ′

A(τ ′)
]

eiωkt(τ ′)−okx(τ ′) dτ ′

− e−ωcτeiωkt(τ)−ikx(τ)

∫ τ

−∞

[

eiωcτ ′

A†(τ ′) − e−iωcτ ′

A(τ ′)
]

e−iωkt(τ ′)+ikx(τ ′) dτ ′
}

.

(4.62)

In order to proceed further, we shall need to use the Fourier transforms of the functions

eiωkt−ikx. Let,

eiωkt(τ)−ikx(τ) =

∫ ∞

−∞
αk(k

′)e−ik′τ dk′, and, (4.63)

e−iωkt(τ)+ikx(τ) =

∫ ∞

−∞
α∗k(k

′′)eik′′τdk′′. (4.64)

We find that, for k > 0 [6]:

αk(k
′) =

1

2π
kik′

eπk′/2Γ(−ik′), (4.65)
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and so,

|α(k′)|2 =
eπk′

4π2
|Γ(ik′)|2 =

epik′

4πk′ sinh(πk′)
=

1

4πk′
[coth(4πk′) + 1]. (4.66)

So, substituting (4.64) into the equation of motion for the oscillator we now replace the

eigenfunctions with an integral over k′ and k′′, thus:

dA

dτ
= GA(τ) +

e2

2ωcm2

∑

k

e2k

{

eiωcτe−iωkt(τ)+ikx(τ)

∫ τ

−∞
[eiωcτ ′

A†(τ ′) − e−iωcτ ′

A(τ ′)]dτ ′
∫ ∞

−∞
αk(k

′)e−ik′τ ′

dk′

− eiωcτeiωkt(τ)−ikx(τ)

∫ τ

−∞
[eiωcτ ′

A†(τ ′) − e−iωcτ ′

A(τ ′)] dτ ′
∫ ∞

−∞
α∗k(k

′′)eik′′τ ′

dk′′
}

.

The next stage is to Laplace transform the above differential equation so that we can

obtain a form for A(s), then A(τ). So, multiplying both sides by e−sτ and integrating

with respect to τ gives:

sA(s) = GA(s) +
e2

2ωcm2

∑

k

e2k

{∫ ∞

0

ei(ωc+is)τeiωcτe−iωkt(τ)+ikx(τ) dτ

∫ τ

−∞
[eiωcτ ′

A†(τ ′) − e−iωcτ ′

A(τ ′)]dτ ′
∫ ∞

−∞
αk(k

′)e−ik′τ ′

dk′

−
∫ ∞

0

ei(ωc+is)τeiωcτeiωkt(τ)−ikx(τ) dτ

∫ τ

−∞
[eiωcτ ′

A†(τ ′) − e−iωcτ ′

A(τ ′)] dτ ′
∫ ∞

−∞
α∗k(k

′′)eik′′τ ′

dk′′
}

.

Substituting the Fourier transform expressions for the functions e−iωkt(τ)+ikx(τ) and eiωkt(τ)−ikx(τ),

we have

sA(s) = GA(s) +
e2

2ωcm2

∑

k

e2k

{∫ ∞

−∞

∫ ∞

−∞
αk(k

′)α∗k(k
′′) dk′dk′′

∫ ∞

0

[eiωcτ ′

A†(τ ′) − e−iωcτ ′

]e−ik′τ ′

dτ ′
∫ τ ′

0

ei(ωc+is+k′′)τ dτ

−
∫ ∞

−∞

∫ ∞

−∞
α∗k(k

′′)αk(k
′) dk′dk′′

∫ ∞

0

[eiωcτ ′

A†(τ ′) − e−iωcτ ′

A(τ)]eik′′τ ′

dτ ′
∫ τ ′

0

ei(ωc+is−k′)τ dτ

}

.
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Now we perform the τ integrations:

sA(s) = GA(s) +
e2

2ωcm2

∑

k

e2k

{

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
αk(k

′)α∗k(k
′′)

[
e2iωcτ ′−sτ ′

A†(τ ′) − e−sτ ′

A(τ ′)

i(ωc + is+ k′′)

]

ei(k′′−k′)τ ′

dτ ′dk′dk′′

−
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
αk(k

′)α∗k(k
′′)

[
e2iωcτ ′−sτ ′

A†(τ ′) − e−sτ ′

A(τ ′)

i(ωc + is− k′)

]

ei(k′′−k′)τ ′

dτ ′dk′dk′′
}

.

(4.67)

In the above integrands we have that,

(
V

2π

)−1∑

k>0

ei(k′−k′′) ln(k)

k
→ 0, unless k′ = k′′.

Hence we shall let k′ = k′′ in the abover expression. Furthermore we shall ignore the A†

term since we are using a rotating-wave approximation and so we can write (4.67) in a

much simpler form:

sA(s) = GA(s)+
e2

2ωcm2

{∫ ∞

−∞

(
2π

V

)

|αk(k
′)|2A(s)

(
1

i(ωc − k′ + is)
− 1

i(ωc + k′ + is)

)

dk′
}

.

Factorizing this leaves us with:

A(s) =
GA(s)

s+ e2

2ωcm2

∫∞
−∞
(

2π
V

)
|αk(k′)|2

(
1

i(ωc−k′+is)
− 1

i(ωc+k′+is)

)

dk′
. (4.68)

Let us now consider the denominator of (4.68); it is the following:

s− ie2

2ωcm2

{∫ ∞

−∞

(
2π

V

)(
2π

V

)

|αk(k
′)|2
(

1

ωc − k′ + is

)

dk′ −
∫ ∞

−∞

(
2π

V

)

|αk(k
′)|2
(

1

ωc + k′ + is

)

dk′
}

.

We can write this as,

s− ie2

2ωcm2

∫ ∞

−∞

(
2π

V

) |αk(k
′)|2 − |αk(k

′)|2
ωc − k′ + is

dk′.

Using the expression for (4.66) we find that we have,

s− ie2

2ωcm2

∫ ∞

−∞

(
2π

V

)
1

k′

(
1

ωc − k′ + is

)

dk′ = s− ie2

2ωcm2

∫ ∞

−∞

(
e2k′

ωc − k′ + is

)

dk′.
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This is the same denominator as we had in the previous section and so we can write

(4.68) in the approximate form of:

A(s) =
GA(s)

s+ γ
2

+ ∆̟
. (4.69)

where,

γ

2
=

πe2

2ω2
cm

2
, where ∆̟ = −

∫
e2k

ωk − ωc

dωk. (4.70)

4.2.3 Calculation of A(τ) and A†(τ)

We now have a relatively simple expression for A(s) in the Fourier transform equation of

(4.69). If, as before, we ignore small frequency shifts, then we can re-write this expression

as a simple linear first order differential equation:

dA

dτ
= −γ

2
A(τ) + GA(τ), (4.71)

where we have let,

GA(τ) =
eeiωcτ

√
2ωcm

∑

k

ek

[

bk(0)e−iωkt(τ)+ikx(τ) + b†k(0)eiωkt(τ)−ikx(τ)
]

.

Integrating the above differential equation we have a general solution:

A(τ) = e−γτ/2

∫ τ

0

GA(τ ′)eγτ ′/2 dτ ′,

and hence using the definition GA(τ), and using the Fourier transforms of before we have

that,

A(τ) =
ee−γτ/2

√
2ωcm

∑

k

ek

{

bk(0)

∫ ∞

−∞
α∗k(k

′′)eik′′τ dk′′
∫ τ

0

ei(ωc−iγ/2)τ ′

dτ ′

b†k(0)

∫ ∞

−∞
αk(k

′)e−ik′τ ′

dk′
∫ τ

0

ei(ωc−iγ/2)τ ′

dτ ′
}

.

Now we change the order of integration:

A(τ) =
e−γτ/2

√
2ωcm

∑

k

ek

{

bk(0)

∫ ∞

−∞
α∗k(k

′′) dk′′
∫ τ

−∞
ei(ωc+k′′−iγ/2)τ ′

dτ ′

+ b†k(0)

∫ ∞

−∞
αk(k

′) dk′
∫ τ

∞
ei(ωc−k′−iγ/2)τ ′

dτ ′
}

.
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Performing the τ ′ integrations we have,

A(τ) =
ee−γτ/2

√
2ωcm

∑

k

ek

{

bk(0)

∫ ∞

−∞
α∗k(k

′′)

[
ei(ωc+k′′−iγ/2)τ − 1

i(ωc + k′′ − iγ/2)

]

dk′′

+ b†k(0)

∫ ∞

−∞
αk(k

′)

[
ei(ωc−k′−iγ/2)τ − 1

i(ωc − k′ − iγ/2)

]

dk′
}

.

We now multiply through by the e−γτ/2 term which is sitting outside the sum in the above

expression. When we do this, we find that we have a decaying exponential term in each

integrand, i.e. that,

e−γτ/2

i(ωc + k′′ − iγ/2)
→ 0, and

e−γτ/2

i(ωc − k′ − iγ/2)
→ 0.

We shall now define the quantity

χ(k′) =
1

ωc + k′ − iγ/2
, (4.72)

and hence, substituting the appropriate relations in for αk(k
′) we arrive at expressions

for the annihilation and creation operator:

A(τ) = − ie

2π
√

2ωcm

∑

k

ek

{

bk(0)

∫ ∞

−∞
k−ik′′

eπk′′/2Γ(ik′′)χ(k′′)ei(ωc+k′′)τ dk′′

+ b†k(0)

∫ ∞

∞
kik′

eπk′/2Γ(−ik′)χ(−k′)ei(ωc−k)τ dk′
}

,

(4.73)

and

A†(τ) =
ie

2π
√

2ωcm

∑

k

ek

{

b†k(0)

∫ ∞

−∞
kik′′

eπk′′/2Γ(−ik′′)χ∗(k′′)e−i(ωc+k′′)τ dk′′

+ bk(0)

∫ ∞

∞
k−ik′

eπk′/2Γ(ik′)χ∗(−k′)e−i(ωc−k)τ dk′
}

.

(4.74)

4.2.4 Calculation of Energy Flux

Now that we have the annihilation and creation operators for the quantum oscillator, we

can easily determine an expression for q(τ) and hence calculate the energy flux of the

system. As in the preceding section we have that the total energy flux of the system in

M
2 is

〈J 〉 =

〈
∂φ

∂x

∂φ

∂t

〉

.

137



Once more the solution to the wave equation is,

φ = φh − αq(τret), where α =
πe

ωcm
(4.75)

So,

〈J 〉 =

〈(
∂φh

∂x
− α

∂q(τret)

∂x

)(
∂φh

∂t
− α

∂q(τret)

∂t

)〉

. (4.76)

We now go on to calculate the energy flux of the system. Using the chain rule of differ-

entiation we must have that,

∂q(τret)

∂x
=
dq(τret)

dτret

∂τret
∂x

=
q̇(τret)

ν(τ)
.

where ν = x− t, and,

〈J 〉 =

〈(
∂φh

∂x
− α

q̇(τret)

ν(τ)

)(
∂φh

∂t
+ α

q̇(τret)

ν(τ)

)〉

,

giving

〈J 〉 = ℜ
{〈

∂φh

∂x

∂φh

∂t

〉}

︸ ︷︷ ︸

〈J 〉0=0

+
α

ν(τ)
ℜ
{〈

∂φh

∂x
q̇ − q̇

∂φh

∂t

〉}

︸ ︷︷ ︸

〈J 〉int

− α2

ν2(τ)
ℜ
{〈
q̇(τret)

2
〉}

︸ ︷︷ ︸

〈J 〉dir

. (4.77)

As before

q =
1√
2ωc

[a† + a],

and so we have,

q(τ) =
ie

4πωcm

∑

k

ek

{

bk(0)

[∫ ∞

−∞
k−ik′

eπk′/2Γ(ik′)χ∗(−k′)eik′τ dk′ −
∫ ∞

−∞
k−ik′′

eπk′′/2Γ(ik′′)χ(k′′)eik′′τ dk′′
]

+ b†k(0)

[∫ ∞

∞
kik′′

eπk′′/2Γ(−ik′′)χ∗(k′′)e−ik′′τ dk′′ −
∫ ∞

−∞
kik′

eπk′/2Γ(−ik′)χ(−k′)e−ik′τ dk′
]}

.

(4.78)

We shall need q̇(τ), so differentiating the above expression,

q̇(τ) =
−e

4πωcm

∑

k

ek

{

bk(0)

[∫ ∞

−∞
k′k−ik′

eπk′/2Γ(ik′)χ∗(−k′)eik′τ dk′ −
∫ ∞

−∞
k′′k−ik′′

eπk′′/2Γ(ik′′)χ(k′′)eik′′τ dk′′
]

+

b†k(0)

[

−
∫ ∞

∞
k′′kik′′

eπk′′/2Γ(−ik′′)χ∗(k′′)e−ik′′τ dk′′ +

∫ ∞

−∞
k′kik′

eπk′/2Γ(−ik′)χ(−k′)e−ik′τ dk′
]}

.

(4.79)
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We shall calculate the direct flux term first. The first step in computing this is to find

an expression for the expectation value 〈q̇q̇〉:

〈q̇q̇〉 =
e2

16πω2
cm

2

∑

k

e2k Re

{

[

−
∫ ∞

∞
k′′kik′′

eπk′′/2Γ(−ik′′)χ∗(k′′)e−ik′′τ dk′′ +

∫ ∞

−∞
k′kik′

eπk′/2Γ(−ik′)χ(−k′)e−ik′τ dk′
]

×
[∫ ∞

−∞
k′k−ik′

eπk′/2Γ(ik′)χ∗(−k′)eik′τ dk′ −
∫ ∞

−∞
k′′k−ik′′

eπk′′/2Γ(ik′′)χ(k′′)eik′′τ dk′′
]}

.

Multiplying out,

〈q̇q̇〉 =
e2

16πω2
cm

2

∑

k

e2k Re

{

−
∫ ∞

∞

∫ ∞

∞
k′k′′ki(k′′−k′)eπ(k′+k′′)/2Γ(ik′)Γ(−ik′′)χ∗(−k′)χ∗(k′′)ei(k′−k′′)τret dk dk′′

−
∫ ∞

∞

∫ ∞

∞
k′k′′ki(k′′−k′)eπ(k′+k′′)/2Γ(−ik′)χ(k′′)χ(−k′)ei(k′′−k′)τret dk′ dk′′

+

∫ ∞

∞

∫ ∞

∞
k′k′′ki(k′−k′′)eπ(k′+k′′)/2Γ(ik′)Γ(−ik′′)χ∗(−k′)χ(−k′)ei(k′−k′′)τret dk′ dk′′

+

∫ ∞

∞

∫ ∞

∞
k′k′′ki(k′−k′′)eπ(k′+k′′)/2Γ(ik′′)Γ(−ik′)χ(k′′)χ∗(k′)ei(k′′−k′)τret dk′ dk′′

}

.

Next, we note that,
∑

k>0

ei(k′−k′′) ln(k)

k
→ 0,

unless k′ = k′′, and taking advantage of this gives a much simpler expression for 〈q̇q̇〉:

〈q̇q̇〉 =
e2

16πω2
cm

2

∫ ∞

∞
k′2eπk′|Γ(ik′)|2ℜ

(
|χ(k′)|2 + |χ(−k′)|2 − χ∗(−k′)χ∗(k′) − χ(k′)χ(−k′)

)
dk′.

Again, using the relations for χ(ωk) in Appendix A, section A.1, we find that,

〈J 〉dir =
e2α2

16π2ω2
cm

2ν2(τ)

∫ ∞

−∞
k′2eπk′|Γ(ik)|2

(

−|χ(k′)|2 − |χ(−k′)|2 +
2

(ωc − k′2)

)

dk′.

(4.80)

We have now found an expression for the direct flux which arises from the oscillator

alone. We will now go on to show that the interference term is precisely −〈J 〉dir. The

interference term is given by,

〈J 〉int =
α

ν(τ)
ℜ
{〈

∂φh

∂x
q̇ − q̇

∂φh

∂t

〉}

.
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We know that the homogeneous form of the φ-field is,

φh =
∑

k

ek

[

bk(0)e−iωkt+ikx + b†k(0)eiωkt−ikx
]

,

However, for the interference terms, the field is evaluated on the worldline of the oscillator,

and so,

∂φh

∂x
= i

∂τret
∂x

∑

k>0

kek

[

bke
−iωkt+ikx − b†ke

iωkt−ikx
]

,

and,

∂φh

∂t
= i

∂τret
∂t

∑

k>0

kek

[

−bke−iωkt+ikx + b†ke
iωkt−ikx

]

.

We now calculate the first part of the expectation value:
〈
∂φh

∂x
q̇

〉

=
ie

4πωcmν(τ)

∑

k>0

ke2
k Re

{

eiωkt−ikx

∫ ∞

−∞
k′k−ik′

eπk′/2Γ(ik′)χ∗(−k′)eik′τret dk′

− eiωkt−ikx

∫ ∞

−∞
k′′k−ik′′

eπk′′/2Γ(ik′′)χ(k′′)eik′′τret dk′′
}

.

We now use the Fourier transforms of (4.64) and we have that,
〈
∂φh

∂x
q̇

〉

=
ie

8π2ωcmν(τ)

∑

k>0

ke2
k Re

{

∫ ∞

−∞

∫ ∞

−∞
k′ki(k′′−k′)eπ(k′′+k′)/2χ∗(−k′)Γ(−ik′)Γ(ik′)ei(k′−k′′)τret dk′dk′′

−
∫ ∞

−∞

∫ ∞

−∞
k′′ki(k′−k′′)eπ(k′+k′′)/2χ(k′′)Γ(−ik′)Γ(ik′′)ei(k′′−k′)τret dk′dk′′

}

.

We have that,
∑

k

ei(k′−k′′) ln(k)/k → 0 ∼
∫ ∞

−∞
ei(k′−k′′)u du

for u = ln k, so unless k′ = k′′ the above expression tends to zero, and so:

〈
∂φh

∂x
q̇

〉

=
e

8π2ωcν(τ)m

∫ ∞

−∞
k′2eπk′|Γ(ik′)|2Re (iχ∗(−k′) − iχ(k′)) dk′.

Similarly we have that,
〈

q̇
∂φh

∂t

〉

=
ie

4πωcν(τ)m

∑

k>0

ke2
k

{

− e−iωkt+ikx

∫ ∞

−∞
k′′kik′′

eπk′′/2Γ(−ik′′)χ∗(k′′)e−ik′′τret dk′′

+ e−iωkt+ikx

∫ ∞

−∞
k′kik′

eπk′/2Γ(−ik′)χ(−k′)e−ik′τret dk′
}

,
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and hence, using the Fourier transform results and the same technique as above, we arrive

at,
〈

q̇
∂φh

∂t

〉

=
e

8π2ωcν(τ)m

∫ ∞

−∞
k′2eπk′ |Γ(ik′)|2 Re (iχ(−k′) − iχ∗(k′)) dk′.

Thus,

〈
∂φh

∂x
q̇ − q̇

∂φh

∂t

〉

=
e

8π2ωcν2(τ)m

∫ ∞

∞
k′2eπk′

Γ(ik′)|2 Re [iχ∗(−k′) − iχ(k′) − iχ(−k′) + iχ∗(k′)] dk′,

and upon taking the real parts of the χ(k′) and their complex conjugates, and using the

relations in Appendix A, we see that,

〈J 〉int =
eαγ

16π2ν2(τ)ωcm

∫ ∞

−∞
k′2eπk′|Γ(ik′)|2

(

|χ(k′)|2 + |χ(−k′)|2 − 2

(ωc − k′)2

)

dk′.

Now since,

γ =
πe2

ω2
cm

2
, and α =

πe

ωcm
,

then we must have that,

〈J 〉int =
e4

16ω4
cm

4ν2(τ)

∫ ∞

−∞
k′2eπk′|Γ(ik)|2

(

|χ(k′)|2 + |χ(−k′)|2 − 2

(ωc − k′2)

)

dk′.

(4.81)

Recall that,

〈J 〉dir = − e2α2

16π2ω2
cm

2ν2(τ)

∫ ∞

−∞
k′2eπk′|Γ(ik)|2

(

|χ(k′)|2 + |χ(−k′)|2 − 2

(ωc − k′2)

)

dk′

=
e4

16ω4
cm

4ν2(τ)

∫ ∞

−∞
k′2eπk′|Γ(ik)|2

(

|χ(k′)|2 + |χ(−k′)|2 − 2

(ωc − k′2)

)

,

and so we see that,

〈J 〉0 = 〈J 〉int + 〈J 〉dir = 0, (4.82)

and so the total energy flux of the system is zero. Thus we have shown that by taking

the Hamiltonian for a quantum oscillator coupled to a real scalar field and confined to a

constant accelerating trajectory in M
2, and deriving the equations of motion, we can use

the energy flux calculations of Ford and O’Connell to show that there is no net radiation

observed.
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4.3 Quantum Oscillator Confined to a Free-Fall Tra-

jectory in D = 2 Schwarzschild Spacetime

4.3.1 Two-Dimensional Schwarzschild Spacetime.

As we have discussed earlier, two dimensional Schwarzschild spacetime is a static black

hole solution to the Einstein field equations which in two dimensions is conformally

flat. We adopt the coordinates (t, r) where t is the coordinate time and r is the radial

coordinate, then the line element is:

ds2 =

(

1 − 2MB

r

)

dt2 −
(

1 − 2MB

r

)−1

dr2, (4.83)

where MB is the mass of the black hole. We can write this as the conformally flat metric,

ds2 = Ω(dt2 − dr2
∗), (4.84)

where Ω is the conformal factor:

Ω = 1 − 2MB

r
. (4.85)

In order to write (4.83) as (4.84) we have made the usual tortoise coordinate substitution:

dr2
∗ = Ω−2dr2,

and integrating this directly gives the standard expression for the tortoise coordinate:

r∗ = r + 2MB ln |r − 2MB|. (4.86)

We shall confine the particle to the free-fall trajectory (see Appendix B):

r(τ) = 2MB

(

1 +
τ

2MB

)−1

, (4.87)

and thus,

r⋆ = 2MB

(

1 +
τ

2MB

)−1

+ 2MB ln

∣
∣
∣
∣

2MB

1 + τ/2MB

− 2MB

∣
∣
∣
∣
,
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and hence,

r∗ = 2MB + τ + 2MB ln |τ |. (4.88)

We also have that (near the horizon),

dt

dτ
=

1

1 − 2MB/r
≈ −

(
τ

2MB

)−1

, (4.89)

and so we can write,

t(τ) = 2MB ln |τ |. (4.90)

As we have done in the preceding two sections, we shall now go on to formulate a Hamil-

tonian for the system and from this derive the equations of motion for both the oscillator

and the free scalar field. From these we shall be able to obtain expressions for the an-

nihilation and creation operators and hence form an expression for q and then calculate

the overall energy flux of the system which as we shall see, is not zero.

4.3.2 Hamiltonian

The Hamiltonian of the system is:

H = Hosc +Hint +Hsf . (4.91)

The Hamiltonian for the oscillator and the free scalar field are exactly the same as previ-

ously: The interaction term has been modified now to take account of the fact that we are

no longer in Minkowski space, but conformally flat spacetime. We have the interaction

term:

Hint =
ie~Ω(τ)√

2ωcm

∑

k

ek(a
† − a)

[

bke
ikr∗(τ) + b†ke

−ikr∗(τ).
]

So, the Hamiltonian density now will be

H dτ = ~a†a dτ + ~

∑

k

ωkb
†
kbk dτ +

ie~Ω(τ)√
2ωcm

dτ. (4.92)
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4.3.3 Equations of Motion

We now find the equations of motion for the oscillator and the scalar field. We start with

the oscillator, and since,

da

dτ
=

1

i~
[H , a],

we can form the differential equation

da

dτ
= −iωc[a

†a, a] +
eΩ√
2ωcm

∑

k

ek

(
[a†, a] − [a, a]

) [

bke
ikr∗(τ) + b†ke

−ikr∗(τ)
]

,

and using the commutation relations we have the equation of motion of the oscillator:

da

dτ
= −iωca+

eΩ(τ)√
2ωcm

∑

k

ek

[

bke
ikr∗(τ) + b†ke

−ikr∗(τ)
]

. (4.93)

We do the same thing for the field operators:

dbk
dτ

=
1

i~
[H , bk],

and so,

dbk
dτ

= −iωkbk
dt

dτ
+
eekΩ(τ)√

2ωcm
(a† − a)e−ikr∗(τ). (4.94)

Simply multiplying through and integrating with respect to τ ′ and we obtain expressions

for the creation and annihilation operators for the free field:

bk(τ) = e−iωkt(τ)bk(0) +
eeke

−iωkt(τ)

√
2ωcm

∫ τ

−∞
Ω(τ ′)

[
a†(τ ′) − a(τ ′)

]
eiωkt(τ ′)−ikr∗(τ ′) dτ ′, (4.95)

and,

b†k(τ) = eiωkt(τ)bk(0) +
eeke

iωkt(τ)

√
2ωcm

∫ τ

−∞
Ω∗(τ ′)[a(τ ′) − a†(τ ′) e−iωkt(τ ′)+ikr∗(τ ′) dτ ′. (4.96)

Substituting (4.95) and (4.96) into (4.93) and we have that,

da

dτ
= −iωca(τ)+Ga(τ) +

e2Ω(τ)

2ωcm2

∑

k

e2k

{

e−iωkt(τ)+ikr∗(τ)

∫ τ

−∞
Ω(τ ′)

[
a†(τ) − a(τ ′)

]
eiωkt(τ ′)−ikr∗(τ ′) dτ ′

+ eiωkt(τ)−ikr∗(τ)

∫ τ

−∞
Ω∗(τ ′)

[
a(τ ′) − a†(τ ′)

]
e−iωkt(τ ′)+ikr∗(τ ′) dτ

}
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where we have let,

GA(τ) =
eΩ(τ)√
2ωcm

∑

k

ek

{

bk(0)e−iωkt(τ)−+ikr∗(τ) + b†k(0)eiωkt(τ)−ikr∗(τ)
}

. (4.97)

As in the previous cases, we once again remove high frequency behavior from the above

equation so we shall let,

A(τ) = e−iωcτ)a(τ), (4.98)

and hence we have that,

dA

dτ
= GA(τ) +

e2Ω(τ)

2ωcm2

∑

k

e2k

{

eiωcτe−iωkt(τ)+ikr∗(τ)

∫ τ

−∞
Ω(τ ′)

[

eiωcτ ′

A† − e−iωcτ ′

A
]

eiωkt(τ ′)−ikr∗(τ ′) dτ ′

eiωcτeiωkt(τ)−ikr∗(τ)

∫ τ

−∞
Ω∗(τ ′)

[

e−iωcτ ′

A− eiωcτ ′

A†
]

e−iωkt(τ ′)+ikr∗(τ ′) dτ ′
}

,

(4.99)

with,

GA(τ) =
eΩ(τ)eiωcτ

√
2ωcm

∑

k

ek

[

bk(0)e−iωkt+ikr∗ + b†k(0)eiωkt−ikr∗
]

. (4.100)

4.3.4 Calculation of A(s)

We now wish to go on to find a simple form for A(s) which will enable us to determine a

modified Langevin equation and from this we will be able to find forms for A(τ). Before

we do this however we shall need to define the Fourier transforms:

eiωkt(τ)−ikr∗(τ) =

∫ ∞

−∞
αk(k

′)e−ik′τ dk′, and, (4.101)

e−iωkt(τ)+ikr∗(τ) =

∫ ∞

−∞
α∗k(k

′′)e−ik′′τ dk′′, (4.102)

and as we have the conformal factor as a function of proper time,

Ω(τ) =

∫ ∞

−∞
µ(ν)e−iντ dν. (4.103)

and from Appendix B we have that,

αk(k
′) = −2iMBke

−2iMBk

π

(
1

i(k′ − k)

)1−4iMBk

Γ(−4iMBk); (4.104)

α∗k(k
′) =

2iMBke
2iMBk

π

(
1

−i(k′ − k)

)1+4iMBk

Γ(4iMBk). (4.105)
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We now take the Laplace transform of both sides of (4.99) which gives us,

sA(s) = GA(s) +
e2

2ωcm2

∑

k

e2k

{

∫ ∞

0

Ω(τ)eiωcτ−sτe−iωkt+ikr∗ dτ

∫ τ

−∞
Ω(τ ′)

[

eiωcτ ′

A† − e−iωcτ ′

A
]

e−ik′τ ′

dτ ′
∫ ∞

−∞
αk(k

′) dk′

+

∫ ∞

0

Ω(τ)eiωcτ−sτeiωkt−ikr∗ dτ

∫ τ

−∞
Ω∗(τ ′)

[

e−iωcτ ′

A− eiωcτ ′

A†
]

e−ik′τ ′

dτ ′
∫ ∞

−∞
αk(k

′′) dk′′.

We now substitute the eigenfunctions and the conformal factor Ω(τ) for their respective

Fourier transforms and change the order of integration:

sA(s) = GA(s) +
e2

2ωcm2

∑

k

e2k

{

[∫ ∞

τ ′

ei(ωc+k′′−ν+is)τ dτ

∫ ∞

−∞

[

eiωcτ ′

A† − e−iωcτ ′

A
]

e−iν′τ ′

e−ik′τ ′

dτ ′

∫ ∞

−∞

∫ ∞

−∞
αk(k

′)α∗k(k
′′)′dk′dk′′

∫ ∞

−∞

∫ ∞

−∞
µ(ν)µ(ν ′) dνdν ′

]

+

[ ∫ τ ′

−∞
ei(ωc−k′−ν+is)τ dτ

∫ ∞

−∞

[

e−iωcτ ′

A− eiωcτ ′

A†
]

eiν′′τ ′

eik′′τ ′

dτ ′

∫ ∞

−∞

∫ ∞

−∞
α∗k(k

′′)α
(
kk
′)′dk′dk′′

∫ ∞

−∞

∫ ∞

−∞
µ(ν)µ∗(ν ′′) dνdν ′′

]}

,

Performing the τ integrations we have that,

sA(s) = GA(s) +
e2

2ωcm2

∑

k

e2k

{

[∫ ∞

−∞

(e2iωcτ ′

A† − A)e−sτ ′

i(ωc + k′′ − ν + is)
dτ ′
∫ ∞

−∞

∫ ∞

−∞
αk(k

′)α∗k(k
′′)ei(k′′−k′)τ ′

dk′dk′′
∫ ∞

−∞

∫ ∞

−∞
µ(ν)µ(−ν ′)e−i(ν−ν′)τ dνdν ′

]

+

[ ∫ ∞

−∞

(A− e2iωcτA†)e−sτ ′

i(ωc − k′ − ν + is)
dτ ′
∫ ∞

−∞

∫ ∞

−∞
αk(k

′)α∗k(k
′′)ei(k′′−k′)τ ′

∫ ∞

−∞

∫ ∞

−∞
µ(ν)µ∗(ν ′′)ei(ν′′−ν)τ ′

dνdν ′′
]}

,

where, to make things simpler we have let ν ′ → −ν ′ in the ν ′ integral first set of square

brackets above. As in the previous sections, we assume that e(ik
′′−k′)τ and eiντ are rapid

oscillating functions, and the rest of the functions in the integrand are slowly varying.

Thus we can, for an approximation let k′ = k′′, ν = ν ′ in the first large square bracket,

and ν = ν ′′ in the second. Once more we use the rotating wave approximation and so

ignore the A† term, and we have,

sA(s) = GA(s) +
e2

2ωcm2

∑

k

e2k

{

−
∫ ∞

−∞

∫ ∞

−∞

|αk(k
′)|2µ2(ν)A(s)

i(ωc + k′ − ν + is)
dk′dν +

∫ ∞

−∞

∫ ∞

−∞

|αk(k
′)|2µ2(ν)A(s)

i(ωc − k′ − ν + is)
dk′dν

}

,
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and hence,

sA(s) = GA(s) +
e2

2ωcm2

∑

k

e2k

{

∫ ∞

−∞

∫ ∞

−∞
|αk(k

′)|2µ2(ν)A(s)

(

− 1

i(ωc − k′ − ν + is)
+

1

i(ωc + k′ − ν + is)

)

dνdk′
}

.

After factorizing we have that,

A(s) =
GA(s)

s+ e2

2ωcm2

∑

k e
2
k

{
∫∞
−∞
∫∞
−∞ |αk(k′)|2µ2(ν)A(s)

(

− 1
i(ωc−k′−ν+is)

+ 1
i(ωc+k′−ν+is)

)

dνdk′
} .

(4.106)

We shall want to apply the same Wigner-Weiskopf approximation to the denominator of

the above equation as we have done in the preceding sections. To do this, we first write

the denominator as,

s− ie2

2ωcm

∑

k

e2k







−
∫ ∞

−∞

∫ ∞

−∞

|αk(k
′)|2µ2(ν)

ωc + k′ − ν + is
dk′dν

︸ ︷︷ ︸

(I1)

+

∫ ∞

−∞

∫ ∞

−∞

|αk(k
′)|2µ2(ν)

ωc − k′ − ν + is
dk′dν

︸ ︷︷ ︸

(I2)







.

We now shall need to perform the Wigner-Weiskopff approximation to both I1 and I2.

Recall we let:

lim
s→0

{
1

x+ is

}

= lim
s→0

{
x

x2 + s2
− is

x2 + x2

}

=
1

x
− iπδ(x).

We start with I1:

I1 =
ie2

2ωcm2

∑

k

e2k

∫ ∞

−∞

∫ ∞

−∞

|αk(k
′)|2µ2(ν)

ωc + k′ − ν + is
dk′dν, (4.107)

which we may write as

I1 =
ie2

2ωcm2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e2k

|αk(k
′)|2µ2(ν)

ωc + k′ − ν + is
dk′dνdk. (4.108)

We now take the limit s→ 0 and we now have,

I1 =
ie2

2ωcm2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e2k

[ |αk(k
′)|2µ2(ν)

ωc + k′ − ν
− iπδ(k′ − ν + ωc)

]

dk′dνdk,

147



and hence:

I1 = − e2π

2ωcm2

∫ ∞

−∞

∫ ∞

−∞
|αk(ωc − ν)|2µ2(ν)e2k dkdν

− ie

2ωcm2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

|αk(k
′)|2µ2(ν)e2k

ωc + k′ − ν
dk′dνdk.

If we define:

γ′

2
=

e2π

2ωcm2

∫ ∞

−∞

∫ ∞

−∞
|αk(ωc − ν)|2µ2(ν)e2k dkdν, (4.109)

and,

∆̟′ =
ie

2ωcm2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

αk(k
′)|2µ2(ν)e2k

ωc + k′ − nu
dk′dνdk, (4.110)

then we have now that,

I1 =
γ′

2
+ i∆̟′. (4.111)

We note that γ′ > 0. We do the same thing for I2. We have that,

I2 =
ie2

2ωcm2

∑

k

∫ ∞

−∞

∫ ∞

−∞

|αk(k
′)|2µ2(ν)

ωc − k′ − ν + is
dk′dν,

We now take the limit s→ 0 and we have that,

I2 = − e2π

2ωcm2

∫ ∞

−∞

∫ ∞

−∞
|αk(ν − ωc)|2µ2(ν)e2k dνdk

− ie2

2ωcm2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

αk(k
′)|2µ2(ν)e2k

k′ + ν − ωc

dk′dνdk.

Hence if we define,

γ′′

2
=

e2π

2ωcm2

∫ ∞

−∞

∫ ∞

−∞
|αk(ν − ωc)|2µ2(ν)e2k dνdk, (4.112)

and,

∆̟′′ =
ie2

2ωcm2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

|αk(k
′)|2µ2(ν)e2k

k′ + ν − ωc

dk′dνdk, (4.113)

then we have that,

I2 =
γ′′

2
+ i∆̟′′. (4.114)

Furthermore, if we now let,

γ

2
=
γ′

2
+
γ′′

2
, and ∆̟ = ∆̟′ + ∆̟′′, (4.115)
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then we can write (4.106) as,

A(s) =
GA(s)

s+ γ
2

+ ∆̟
. (4.116)

It is useful to note that γ has the form,

γ = − e2π

2ωcm2

∫ ∞

−∞

∫ ∞

−∞
µ2(ν)e2k

(
|αk(ωc − ν)|2 + |αk(ν − ωc)|2

)
dνdk, (4.117)

and so γ < 0.

4.3.5 Calculation of A(τ) and A†(τ)

As we are able to write (4.106) in the simpler form of (4.116), this means that we can

once more write the equation of motion for the quantum oscillator as a modified Langevin

equation:

dA

dτ
= −γ

2
A(τ) + GA(τ), (4.118)

where,

GA(τ) =
eΩ(τ)eiωcτ

√
2ωcm

∑

k

ek

[

bk(0)e−iωkt+ikr∗ + b†k(0)eiωkt−ikr∗
]

. (4.119)

Integrating (4.118) we have that,

A(τ) = e−γτ/2

∫ τ

0

GA(τ ′)eγτ ′/2 dτ ′,

and hence

A(τ) =
ee−γτ/2

√
2ωcm

∑

k

ek

{

bk(0)

∫ τ

0

e−iωkt+ikr∗Ω(τ ′)ei(ωc−iγ/2)τ ′

dτ ′ + b†k(0)

∫ p

0

teiωkt−ikr∗Ω(τ ′)ei(ωc−iγ/2)τ ′

dτ ′
}

.

Now, we substitute the appropriate Fourier transforms for the eigenfunctions and the

conformal factor, and this gives:

A(τ) =
ee−γτ/2

√
2ωcm

∑

k

ek

{

bk(0)

∫ ∞

−∞
µ(ν) dν

∫ ∞

−∞
α∗k(k

′′) dk′′
∫ τ

−∞
ei(ωc+k′′−ν−iγ/2)τ ′

τ ′

+ b†k(0)

∫ ∞

−∞
µ(ν) dν

∫ ∞

−∞
αk(k

′) dk′
∫ τ

−∞
ei(ωc−k′−ν−iγ/2)τ ′

dτ ′
}

.
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We now perform the τ ′ integrations and we obtain,

A(τ) =
ee−γτ/

√
2ωcm

∑

k

ek

{

bk(0)

∫ ∞

−∞

∫ ∞

−∞
µ(ν)α∗k(k

′′)

[
ei(ωc+k′′−ν−iγ/2)τ ′

i(ωc + k′′ − ν − iγ/2

]

dk′′dν

+ b†k(0)

∫ ∞

−∞

∫ ∞

−∞
µ(ν)αk(k

′)

[
ei(ωc+−k′′−ν−iγ/2)τ ′

i(ωc − k′′ − ν − iγ/2

]

dk′dν

}

.

We shall now define,

χ(k, ν) =
1

ωc + k′ − ν − iγ/2
. (4.120)

We now multiply through by e−γτ/2 and discard the terms which decay to zero and we

obtain the expression for the annihilation operator of the oscillator:

A(τ) = − ie√
2ωcm

∑

k

ek

{

bk(0)

∫ ∞

−∞

∫ ∞

−∞
µ(ν)α∗k(k

′′)χ(k′′, ν)ei(ωc+k′′−ν)τ dk′′dν

+ b†k(0)

∫ ∞

−∞

∫ ∞

−∞
µ(ν)αk(k

′)χ(−k′, ν)ei(ωc−k′−ν)τ dk′dν

}

,

(4.121)

and the creation operator:

A†(τ) =
ie√

2ωcm

∑

k

ek

{

b†k(0)

∫ ∞

−∞

∫ ∞

−∞
µ∗(ν)αk(k

′′)χ∗(k′′, ν)e−i(ωc+k′′−ν)τ dk′′dν

+ bk(0)

∫ ∞

−∞

∫ ∞

−∞
µ∗(ν)α∗k(k

′)χ∗(−k′, ν)e−i(ωc−k′−ν)τ dk′dν

}

.

(4.122)

We shall now need to find an expression for the position operator of the oscillator, and

its first derivative with respect to proper time. As we have seen previously,

q(τ) =
1√
2ωc

[
eiωcτA†(τ) + e−iωcτA(τ)

]
,

and so we must have that,

q(τ) =
ie

2ωcm

∑

k

ek

{

bk(0)

[ ∫ ∞

−∞

∫ ∞

−∞
µ∗(ν)α∗k(k

′)χ∗(−k′, ν)ei(k′+ν)τ dk′dν −
∫ ∞

−∞

∫ ∞

−∞
µ∗(ν)α∗k(k

′′)χ(k′′, ν)ei(k′′−ν)τ dk′′dν

]

+

b†k(0)

[

−
∫ ∞

−∞

∫ ∞

−∞
µ∗(ν)αk(k

′′)χ∗(k′′, ν)e−i(k′′−ν)τ dk′′dν +

∫ ∞

−∞

∫ ∞

−∞
µ(ν)αk(k

′)χ(−k′, ν)e−i(k′+ν)τ dk′dν

]}

.

(4.123)
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Differentiating with respect to proper time τ and letting −ν → ν we obtain:

q̇(τ) = − e

2ωcm

∑

k

ek

{

bk(0)

[ ∫ ∞

−∞

∫ ∞

−∞
(k′ + ν)µ∗(ν)α∗k(k

′)χ∗(−k′, ν)ei(k′+ν)τ dk′dν

−
∫ ∞

−∞
(k′′ + ν)µ(−ν)α∗k(k′′)χ(k′′,−ν)ei(k′′+ν)τ dk′′dν

]

b†k(0)

[

−
∫ ∞

−∞

∫ ∞

−∞
(k′′ + ν)µ∗(−ν)αk(k

′′)χ∗(k′′,−nu)e−i(k′′+ν)τ dk′′dν

+

∫ ∞

∞

∫ ∞

−∞
(k′ + ν)µ(ν)αk(k

′)χ(−k′, ν)e−i(k′+ν)τ dk′dν

]}

.

(4.124)

4.3.6 Energy Flux of the System

Now that we have an expression for q(τ) and q̇(τ), all we need to do next is formulate

expressions for the energy-flux expectation values. Before we do this however, it will be

profitable to consider the trajectory our oscillator is confined to, and the relationship

between proper time and retarded time. So, we have:

r∗ = r + 2MB ln |r − 2MB|, and t(τ) = −2MB ln |τ |,

so the relationship between proper time and retarded time is,

t− t(τret) = r∗ − r∗(τret).

Differentiating;

0 − 2MB
dτret
dτret

= dr∗ −
dr∗
dτret

dτret,

and so,

dr∗ = −dτret +
2MB

r − 2MB

(−dτret)

= −dτret
(

1 +
2MB

r − 2MB

)

= −dτret
(

1 − 2MB

τret

)

.

We shall make the approximation,

dr∗
dτret

≈ 2MB

τret
, (4.125)
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and hence we have that,

∂q(τret)

∂t
=
∂q(τret)

∂τret

(
∂t

∂τret

)−1

= q̇

[
2MB

τret

]−1

, and
∂q(τret)

∂r∗
=
∂q(τret)

∂τret

(
∂τret
∂r∗

)

,

so in fact,

∂q(τret)

∂t
=

τret
2MB

q̇(τret), and
∂q(τret)

∂r∗
=

τret
2MB

q̇(τret). (4.126)

The solution to the scalar field equation is:

φ = φh − αq(τret).

The total energy flux of the system is given by,

〈J 〉 =

〈[
∂φh

∂t
− α

∂q(τret)

∂t

] [
∂φh

∂r∗
− α

∂q(τret)

∂r∗

]〉

,

which we may now write as

〈J 〉 =

〈[
∂φh

∂t
− α

τret
2MB

q̇(τret)

] [
∂φh

∂r∗
− α

τret
2MB

q̇(τret)

]〉

. (4.127)

Hence we have the direct flux term:

〈J 〉dir =
α2τ 2

ret

4M2
B

〈
q̇2(τret)

〉
, (4.128)

and the interference term will be

〈J 〉int =
−ατret
2MB

〈

q̇(τret)
∂φh

∂r∗
+
∂φh

∂t
q̇(τret)

〉

. (4.129)

We shall rewrite the expression for q(τ) by making the substitution ν = −ν, and so we

have that,

q̇(τ) = − e

2ωcm

∑

k

ek

{

bk(0)

[ ∫ ∞

−∞

∫ ∞

−∞
(k′ + ν)µ∗(ν)α∗k(k

′)χ∗(−k′, ν)ei(k′+ν)τ) dk′dν

−
∫ ∞

−∞

∫ ∞

−∞
(k′′ + ν)µ(−ν)α∗k(k′′)χ(k′′,−ν)ei(k′′+ν)τ dk′′dν

]

+ b†k(0)

[

−
∫ ∞

−∞

∫ ∞

−∞
(k′′ + ν)µ∗(−ν)αk(k

′′)χ∗(k′′,−ν)e−i(k′′+ν)τ dk′′dν

−
∫ ∞

−∞

∫ ∞

−∞
(k′ + ν)µ(ν)αk(k

′)χ(−k′, ν)e−i(k′+ν)τ dk′dν

]}

,

(4.130)

and we can now go on to calculate 〈J 〉dir and 〈J 〉int. We start with the direct flux term.
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Calculation of 〈J 〉dir The first step in this calculation is to form the product,

〈q̇q̇〉 =
e2

4ω2
cm

2

∑

k

e2k Re

{

[∫ ∞

−∞

∫ ∞

−∞
(k′′ + ν)µ∗(−ν)αk(k

′′)χ∗(k′′,−ν)e−i(k′′+ν)τret dk′′dν

+

∫ ∞

−∞

∫ ∞

−∞
(k′ + ν)µ(ν)α)k(k′)χ(−k′, ν)e−i(k′+ν)τret dk′dν

]

×
[ ∫ ∞

−∞

∫ ∞

−∞
(k′ + ν)µ∗(ν)α∗k(k

′)χ∗(−k′, ν)ei(k′+ν)τret dk′dν

−
∫ ∞

−∞

∫ ∞

−∞
(k′′ + ν)µ(−ν)α∗k(k′′)χ(k′′,−ν)ei(k′′+ν)τret

]}

.

(4.131)

Multiplying the brackets out, and performing the k′′ integral we have that,

〈q̇q̇〉 =
e2

4ω2
cm

2

∑

k

e2k Re

{

∫∫∫ ∞

−∞
(k′ + ν)(k′ + ν ′)|αk(k

′)|2µ(−ν)µ∗(ν ′)χ∗(k′,−ν)χ∗(−k, ν ′)ei(ν−ν)τret dk′dνdν ′

−
∫∫∫ ∞

−∞
(k′ + ν)(k′ + ν ′)|αk(k

′)|2µ∗(−ν)µ(−ν ′)χ∗(k′,−ν)χ(k′,−ν ′)ei(ν′−ν)τret dk′dνdν ′

+

∫∫∫ ∞

−∞
(k′ + ν)(k′ + ν ′)|αk(k

′)|2µ∗(ν ′)µ(ν)χ(−k′, ν)χ∗(−k′, ν ′)ei(ν′−ν)τret dk′dνdν ′

−
∫∫∫ ∞

−∞
(k′ + ν)(k′ + ν ′)|αk(k

′)|2µ(ν)µ(−ν ′)χ(−k′, ν)χ(k′,−ν ′)ei(ν′−ν)τret dk′dνdν ′
}

.

(4.132)

We now put in the function µ(ν). In fact this function has the form,

µ(ν) = I(ν) + δ(ν), (4.133)

where I(ν) is the Fourier transform of the Conformal factor (See Appendix B, equation

(B.17)), and δ(ν) is the usual delta function. If we substitute (4.133) into (4.132), we

end up with a very long expression which we can write in the compact form as:

〈q̇q̇〉 =
e2

8ω2
cm

2π

∑

k

4∑

j=1

e2k Re {Ij} . (4.134)
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After performing the δ(ν) and δ(ν ′) integrals, we find that we have,

I1 = −
∫∫∫ ∞

−∞
(k′ + ν)(k′ + ν ′)I(−ν)I(ν)χ∗(k′,−ν)χ∗(−k′, ν ′)ei(ν′−ν)τret|αk(k

′)|2 dk′dνdν ′

+

∫∫ ∞

−∞
ik(k′ + ν)I(−ν)χ∗(k′,−ν)χ∗(−k′)e−iντret|αk(k

′)|2 dk′dν

+

∫∫ ∞

−∞
ik′(k′ + ν)I(ν ′)χ∗(k′)χ∗(−k′,−ν ′)eiν′τret|αk(k

′)|2 dk′dν

+

∫ ∞

−∞
k′2χ∗(−k′)χ∗(k′)|αk(k

′)|2 dk′,

(4.135)

I2 =

∫∫∫ ∞

−∞
(k′ + ν)(k′ + ν ′)I(−ν)I(−ν ′)|αk(k

′)|2χ∗(k′,−ν)χ(k′,−ν)ei(ν′−ν)τret dk′dνdν ′

−
∫∫ ∞

−∞
ik′(k′ + ν)|αk(k

′)|2I(−ν)χ∗(k′,−ν)χ(k′)e−iντret dk′dν

−
∫∫ ∞

−∞
ik′(k′ + ν)|αk(k

′)|2I(−ν ′)χ∗(k′)χ(k′,−ν ′)eiν′τret dk′dν ′

−
∫ ∞

−∞
k′2|αk(k

′)|2χ∗(k′)χ(k′) dk′,

(4.136)

I3 = −
∫∫∫ ∞

−∞
(k′ + ν)(k′ + ν ′)|αk(k

′)|2I(ν)I(ν ′)χ(−k′, ν)χ∗(−k′, ν ′)ei(ν′−ν)τret dk′dνdν ′

∫∫ ∞

−∞
ik′(k′ + ν ′)|αk(k

′)|2I(ν ′)χ(−k′)χ∗(−k′, ν ′)eiν′τret dk′dν ′

∫∫ ∞

−∞
ik′(k′ + ν)|αk(k

′)|2I(ν)χ(−k′, ν)χ∗(−k′)e−iντret dk′dν

∫ ∞

−∞
k′2|αk(k

′)|2χ(−k′)χ∗(−k) dk′,

(4.137)

and finally:

I4 =

∫∫∫ ∞

−∞
(k′ + ν)(k′ + ν ′)|αk(k

′)|2I(ν)I(−ν ′)χ(−k′, ν)χ(k′,−ν ′)ei(ν′−ν)τret dk′dνdν ′

−
∫∫ ∞

−∞
ik′(k′ + ν)|αk(k

′)|2I(ν)χ(−k′, ν)χ(k′)e−iντret dk′dν

−
∫∫ ∞

−∞
ik′(k′ + ν ′)|αk(k

′)|2I(−ν ′)χ(−k′)χ(k′,−ν ′)eiν′τret dk′dν

−
∫ ∞

−∞
k′2|αk(k

′)|2χ(−k′)χ(k′) dk′.

(4.138)

154



We now have a large number of integrals to contend with, and at first sight the situation

looks very complicated. However, if we adopt a strategy of dealing with the separate

classes of integrands (meaning the single, double and triple integrals). Starting with the

single integrals over k′, we see that these are just the flat spacetime integrals for the direct

flux that we obtained in the previous section. These must cancel with their counterparts

obtained in the calculation of the interference terms (which we will calculate later). So

we have only the double and triple integrals to deal with.

Let us now deal with the double integrals. We have eight integrals in total:

I1 =

∫∫ ∞

−∞
ik′(k′ + ν)I(−ν)χ∗(k′,−ν)χ∗(−k′)|αk(k

′)|2e−iντret dk′dν

I2 =

∫∫ ∞

−∞
ik′(k′ + ν)I(ν)χ∗(k′)χ∗(−k′, ν)|αk(k

′)|2eiντret dk′dν

I3 = −
∫∫ ∞

−∞
ik′(k′ + ν)I(−ν)χ∗(k′,−ν)χ(k′)|αk(k

′)|2e−iντret dk′dν

I4 = −
∫∫ ∞

−∞
ik′(k′ + ν)I(−ν)χ∗(k′)χ(k′,−ν ′)|αk(k

′)|2eiντret dk′dν

I5 =

∫∫ ∞

−∞
ik′(k′ + ν)I(ν)χ(−k′)χ∗(−k′, ν)|αk(k

′)|2eiντret dk′dν

I6 =

∫∫ ∞

−∞
ik′(k′ + ν)I(ν)χ(−k′, ν)χ∗(−k′)|αk(k

′)|2e−iντret dk′dν

I7 = −
∫∫ ∞

−∞
ik′(k′ + ν)I(ν)χ(−k′, ν)χ(k′)|αk(k

′)|2e−iντret dk′dν

I8 = −
∫∫ ∞

−∞
ik′(k′ + ν)I(−ν)χ(−k′)χ(k′,−ν ′)|αk(k

′)|2eiντret dk′dν,

(4.139)

where we defined earlier that

χ(k′, ν) =
1

ωc + k′ − ν − iγ/2
.

We must now consider each of the Ij’s in turn. In fact, we need only perform the ν

integrations as we shall see, this will be sufficient to allow us to simplify things greatly.

All of the integrals in (4.139) are contour integrals and we may evaluate them using

Cauchy’s integral theorem which we stated earlier as:
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Cauchy’s Integral Theorem Let D be a bounded domain in the complex plane with

piecewise smooth boundary ∂D. Suppose that f(z) is analytic on D ∪ ∂D except for a

finite number of isolated singularities z1, ..., zm ∈ D. Then

∫

∂D
f(z) dz = 2πi

m∑

j=1

Res[f(z), zj],

where for a pole of order n at the point z0 we have that

Res[f(z), z0] =
1

(n− 1)!
lim
z→z0

{
dn−1

dzn−1
{(z − z0)

nf(z)}
}

.

In the case of I1 we see that the integral has a pole at ν = 0 and at ν = −ωc−k′−iγ/2.

Thus applying the above theorem we find that,

I1 =

∫ ∞

−∞
−2πik′2χ∗(−k′)χ∗(k′) + 2πik′

(

ωc +
iγ

2

)

χ∗(−k′)χ∗(k′)k′ dk′. (4.140)

In the case of I2 we have a pole at ν = 0 and ν = ωc − k′ + iγ/2 and hence we find,

I2 =

∫ ∞

−∞
2πik′2χ∗(k′)χ∗(−k′) − 2πik′

(

ωc +
iγ

2

)

χ∗(k′)χ∗(−k′) dk′. (4.141)

For the integral I3 we have a pole at ν = 0 and at ν = −ωc − k′ − iγ/2 and we obtain,

I3 =

∫ ∞

−∞
2πik′2|χ(k′)|2 + 2πik′

(

ωc +
iγ

2

)

|χ(k′)|2 dk′. (4.142)

The integral I4 has poles at ν = 0 and at ν = −ωc − k′ + iγ/2 and so,

I4 =

∫ ∞

−∞
2πik′2|χ(k′)|2 + 2πik′

(

ωc −
iγ

2

)

|χ(k′)|2 dk′. (4.143)

In the case of I5 we have a pole at ν = 0 and at ν = ωc − k′ + iγ/2, which gives,

I5 =

∫ ∞

−∞
2πik′2|χ(−k′)|2 + 2πik′

(

ωc +
iγ

2

)

|χ(−k′)|2 dk′. (4.144)

The integral I6 has a pole at ν = 0 and ν = ωc − k′ − iγ/2, thus,

I6 =

∫ ∞

−∞
2πik′2|χ(−k′)|2 + 2πik′

(

ωc −
iγ

2

)

|χ(−k′)|2 dk′. (4.145)

Coming to the last two integrals, I7 has a pole at ν = 0 and at ν = ωc − k′ − γ/2, so,

I7 =

∫ ∞

−∞
−2πik′2χ(k′)χ(−k′) + 2πik′

(

ωc −
iγ

2

)

χ(k′)χ(−k′) dk′, (4.146)
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and finally we have the integrand I8 with poles at ν = 0 and ν = −ωc − k′ + iγ/2 and

hence,

I8 =

∫ ∞

−∞
2πik′2χ(−k′)χ(k′) − 2πik′

(

ωc −
iγ

2

)

χ(−k′)χ(k′) dk′. (4.147)

Now, if we add each of the integrals I1 to I8 together and take the real part of each

expression, we find after using the fluctuation-dissipation theorem that the terms cancel

in pairs (this is done by using the relations for the real parts of the χ functions given in

Appendic A.1 as we have done in the preceeding two sections) thus,

8∑

j=1

ℜ{Ij} = 0. (4.148)

We now come to the volume integrals, of which there are four. Indeed, the direct flux

term is now just four volume integrals,

〈J 〉dir =
α2τ 2

rete
2

32π2ω2
cM

2
Bm

2

4∑

j=1

∑

k

e2k ℜ{Ij}, (4.149)

where we have that,

I1 =

∫∫∫ ∞

−∞

(k′ + ν)(k′ + ν ′)

νν ′
|αk(k

′)|2χ∗(k′,−ν)χ∗(−k′, ν ′)ei(ν′−ν)τret dk′dνdν ′,

I2 =

∫∫∫ ∞

−∞

(k′ + ν)(k′ + ν ′)

νν ′
|αk(k

′)|2χ∗(k′, ν)χ(k′, ν)ei(ν′−ν)τret dk′dν ′dν,

I3 =

∫∫∫ ∞

−∞

(k′ + ν)(k′ + ν ′)

νν ′
|αk(k

′)|2χ(−k′, ν)χ(k′.ν ′)ei(ν′−ν)τret dk′dν ′dν,

I4 =

∫∫∫ ∞

−∞

(k′ + ν)(k′ + ν ′)

νν ′
|αk(k

′)|2χ(−k′, ν)χ(k′,−ν ′)ei(ν′−ν)τret dk′ dνdν ′.

(4.150)

In each of the integrals we shall perform the ν and ν ′ integrations (again using Cauchy’s

integral theorem) and then let ei(ν′−ν)τret → 1 as τret → 0. We start with I1 and we find,

for the ν ′ integration that we have simple poles at ν ′ = 0 and ν = ωc − k′ + iγ/2, and so

after we perform the ν ′ integration we obtain:

I1 = 2πi

∫∫ ∞

−∞

(k′ + ν)χ∗(k′,−ν)|αk(k
′)|2

ν
[k′χ∗(−k′) + (ωc + iγ/2)χ∗(−k′)] dk′dν.

(4.151)
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Finally, performing the ν integration where we note simple poles at ν = 0 and ν =

−ωc − k′ − iγ/2, we find that:

I1 = −4π

∫ ∞

−∞
|αk(k

′)|2 [k′χ∗(−k′) + (ωc + iγ/2)χ∗(−k′) + k′χ∗(k′) + (ωc + iγ/2)χ∗(k′)] dk′.

(4.152)

Similarly, isolating the simple poles for ν ′ and ν in I2, I3 and I4 and performing the

necessary integrations we obtain that

I2 = −4π

∫ ∞

−∞
|αk(k

′)|2(k′χ(k′) − (ωc + 2k′ − iγ/2)χ(k′) + k′χ∗(k′)−

(ωc + 2k′ + iγ/2)χ∗(k′)) dk′,

(4.153)

I3 = −4π

∫ ∞

−∞
|αk(k

′)|2(k′χ∗(k′) + (ωc + iγ/2)χ∗(k′) + k′χ(−k′) − (ωc − iγ/2)χ(−k′)) dk′,

(4.154)

and finally,

I4 = −4π

∫ ∞

−∞
|αk(k

′)|2(k′χ(k′) + (ωc − iγ/2)χ(k′) + k′χ(−k′) − (ωc − iγ/2)χ(−k′)) dk′.

(4.155)

Finally, adding all of the four Ij’s together and taking the real part using the expressions

in Appendix A, section A.2, we arrive at an expression for the direct flux term:

〈J 〉dir =
−α2τ 2

retγ

8πωcM2
Bm

2

∑

k

e2k

∫ ∞

−∞
|αk(k

′)|2
( |χ(k′)|2

2
+ |χ(−k′)|2

)

dk′.

Substituting in |αk(k
′)|2 from Appendix B, section B.3 and using the identities in Ap-

pendix A.1 to simplify the bracket inside the integral, we find that we have that,

〈J 〉dir =
α2τ 2

retγe
2

4πωcMBm2

∑

k

kk′e2k [coth(4πMBk) + 1]

∫ ∞

−∞

(
1

(k′ − k)

)2 [
1

(ωc + k′)2(−ωc + k′)2

]

dk′.

(4.156)

Calculation of the Interference Term We can now calculate the interference term

which is given by the relation,

〈J 〉dir = −ατret
2MB

Re

{〈

q̇
∂φh

∂r∗
+
∂φh

∂t
q̇

〉}

. (4.157)
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We shall calculate

Re

{

q̇
∂φh

∂r∗

}

and Re

{
∂φh

∂t
q̇

}

,

separately. As before, the expansion of the homogeneous part of φ in a box of length V

is given by,

φh =
∑

k

ek

[

bk(0)e−iωkt+ikr∗ + b†k(0)eiωkt−ikr∗
]

, (4.158)

and so,

∂φh

∂r∗
= i
∑

k

kek

[

bk(0)e−iωkt+ikr∗ − b†k(0)eiωkt−ikr∗
]

and

∂φh

∂t
= i
∑

k>0

kek

[

−bk(0)e−iωkt+ikr∗ + b†k(0e
iωkt−ikr∗

]

.

So, we have

Re

{〈

q̇
∂φh

∂r∗

〉}

= − ie

2ωcm

∑

k

ke2
kRe

{

− e−iωkt+ikr∗

∫∫ ∞

−∞
(k′′ + ν)µ∗(−ν)αk(k

′)χ∗(k′′,−ν)e−i(k′′+ν)τret dk′′dν

+ e−iωkt+ikr∗

∫∫ ∞

−∞
(k′ + ν)µ(ν)αk(k

′)χ(−k′, ν)e−i(k′+ν)τret dk′dν

}

.

(4.159)

We now use the Fourier transforms we defined earlier in (4.102). Substituting them into

(4.159),

Re

{〈

q̇
∂φh

∂r∗

〉}

= − ie

2ωcm

∑

k

ke2
kRe

{

−
∫∫∫ ∞

−∞
(k′′ + ν)µ∗(−ν)α∗k(k′)χ∗(k′′,−ν)ei(k′−k′′)τrete−iντret dk′′dk′dν

+

∫∫∫ ∞

−∞
(k′ + ν)µ(ν)α∗k(k

′′)αk(k
′)χ(−k′, ν)ei(k′′−k′)τrete−iντret dk′dk′′dν

}

.

We perform the k′′ as before

Re

{〈

q̇
∂φh

∂r∗

〉}

= − ie

2ωcm

∑

k

ke2
kRe

{

−
∫∫ ∞

−∞
(k′ + ν)|αk(K”)|2µ∗(−ν)χ∗(k′,−ν)e−iντret dk′dν

+

∫∫ ∞

−∞
(k′ + ν)|αk(k

′)|2µ(ν)χ(−k′, ν)e−iντret dk′dν

}

.
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Next, we substitute in the fact that µ(ν) = δ(ν) + I(ν). The resulting δ(ν) terms simply

become the flat spacetime integrals, and these cancel with their counterparts in the 〈J 〉dir

terms. The ones that are left are the terms with µ(ν) = I(ν). Thus we have that

Re

{〈

q̇
∂φh

∂r∗

〉}

= − ie

2ωcm

∑

k

ke2
kRe

{

∫ ∞

−∞
|αk(k

′)|2 dk′
∫ ∞

−∞

(k′ + ν)e−iντret

ν(ωc + k′ + ν + iγ/2)
dν

+

∫ ∞

−∞
|αk(k

′)|2 dk′
∫ ∞

−∞

(k′ + ν)e−iντret

ν(ωc − k′ − ν − iγ/2)
dν

}

.

(4.160)

We have two ν integrals to perform:

I1 =

∫ ∞

−∞

(k′ + ν)e−iντret

ν(ωc + k′ + ν + iγ/2)
dν, and I2 =

∫ ∞

−∞

(k′ + ν)e−iντret

ν(ωc − k′ − ν − iγ/2)
dν.

We start with I1. We shall perform the ν integral which is a contour integral with simple

poles at ν = 0 and ν = −ωc − k′ − iγ/2. Using Cauchy’s integral theorem as before then

letting e−iντret → 1 as τret → 0 we find that,

I1 =

∫ ∞

−∞

(k′ + ν)

ν(ωc + k′ + ν + iγ/2)
dν = 2πik′χ∗(k′) + (ωc + iγ/2)χ∗(k′)2πi. (4.161)

We now determine I2. Like I1 this is also a contour integral with simple poles located at

ν = 0 and ν = ωc−k′− iγ/2. So, calculating the residues and applying Cauchy’s integral

theorem once more we have that,

I2 =

∫ ∞

−∞

(k′ + ν)

ν(ωc − k′ − ν − iγ/2)
dν = 2πik′χ(−k′) − 2πik′(ωc − iγ/2)χ(−k′). (4.162)

We now add together the expressions we obtained for I1 and I2 and we arrive at,

Re

{〈

q̇
∂φh

∂r∗

〉}

=

− ie

2ωcm

∑

k

ke2
kRe

{

− 2πk′χ∗(k′) − 2πk′χ(−k′) − 2πωcχ
∗(k′) + 2πk′ωcχ(−k′)

}

.

(4.163)

We now need to find,

Re

{〈
∂φh

∂t
q̇

〉}

= − e

2ωcm
ke2

kRe

{

eiωkt−ikr∗

∫ ∞

−∞
(k′ + ν)µ∗(ν)α∗k(k

′)χ∗(−k′, ν)ei(k′+ν)τret dk′dν

− eiωkt−ikr∗

∫ ∞

−∞
(k′ + ν)µ(−ν)α∗k(k′)χ(k′,−ν)ei(k′+ν)τret dk′dν

}

.
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Using the Fourier transforms of (4.102) then we obtain,

Re

{〈
∂φh

∂t
q̇

〉}

= − e

2ωcm
ke2

kRe

{

∫∫∫ ∞

−∞
(k′′ + ν)µ∗(ν)α∗k(k

′)αk(k
′′)χ∗(−k′, ν)ei(k′−k′′)τreteiντret dk′dk′′dν

−
∫∫∫ ∞

−∞
(k′ + ν)µ(−ν)α∗k(k′)αk(k

′′)χ(k′,−ν)ei(k′−k′′)τreteiντret dk′dk′′dν

}

.

Integrating with respect to k′′ first we obtain,

Re

{〈
∂φh

∂t
q̇

〉}

= − e

2ωcm
ke2

kRe

{

∫∫ ∞

−∞
(k′ + ν)µ(ν)|αk(k

′)|2χ∗(−k′, ν)eiντret dk′dν

∫∫ ∞

−∞
(k′ + ν)µ(−ν)|αk(k

′)|2χ(k′,−ν)eiντret dk′dν

}

.

(4.164)

We now have two more ν integrals to find:

I3 =

∫ ∞

−∞

k′ + ν

ν(ωc − k′ − ν + iγ/2)
dν and − I4 =

∫ ∞

−∞

k′ + ν

ν(ωc + k′ + ν − iγ/2)
dν. (4.165)

Starting with I3 we have yet another contour integral with simple poles at ν = 0 and

ν = ωc−k′+iγ/2, and so calculating the residues and applying Cauchy’s integral theorem

we obtain,

I3 =

∫ ∞

−∞

k′ + ν

ν(ωc − k′ − ν + iγ/2)
dν = 2πik′χ∗(−k′) − 2πi(ωc + iγ/2)χ∗(−k′). (4.166)

Similarly for I4, we have simple poles at ν = 0 and ν = −ωc − k′ + iγ/2 and applying

Cauchy’s integral theorem once more gives,

−I4 =

∫ ∞

−∞

k′ + ν

ν(ωc + k′ + ν − iγ/2)
dν = −2πik′χ(k′) + 2πi(ωc − iγ/2)χ(k′). (4.167)

Hence we have that,

Re

{〈
∂φh

∂t
q̇

〉}

= − ei

2ωcm
ke2

kRe

{

− 2πk′χ(−k′) + 2πωcχ(−k′) + 2πk′χ(k′) − 2πωcχ(k′)

}

.

(4.168)
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We now have that

Re

{〈

q̇
∂φh

∂r∗
+
∂φh

∂t
q̇

〉}

= − e

2ωcm

∑

k

ke2
k

[

− 2πk′Re{χ∗(k′) + χ(k′)} + 2πk′Re{−χ∗(−k′) − χ(−k′)}

+ 2πωcRe{−χ∗(k′) − χ(k′)} + 2πωcRe{χ(−k′) + χ(−k′)}
]

.

(4.169)

Using the relations in Appendix A section A.2, we find that the above terms cancel in

pairs so in fact

〈J 〉int = 0. (4.170)

Thus we have that the overall energy flux of the system is not zero, but the only contri-

bution comes directly from the oscillator and has the form:

J =
α2τ 2

rete
2γ

4πωcM2
Bm

2

∑

k

kk′e2k [coth(4πMBk) + 1]

∫ ∞

−∞

(
1

(k′ − k)

)2 [
1

(ωc + k′)2(−ωc + k′)2

]

dk′.

(4.171)

Which we shall write as,

J =
α2τ 2

retγ

ωcM2
Bm

2

∑

k

kk′e2k [coth(4πMBk) + 1]Q(k, k′), (4.172)

We now write,

coth(x) =
ex + e−x

ex − e−x
+ 1 =

2ex

ex − e−2x
=

2

1 − e−x
,

Thus,

coth(4πMBk) =
2

1 − e−8πMBωk

Compare this now with Planck’s law:

1

1 − exp{−hν
kBT

} ,

where kB is the Boltzmann constant, and T is the temperature of the black body. The

comparison (with ~ = 1) shows that we have a temperature of:

T =
1

8πMBkB

, (4.173)

which is the same temperature as the Hawking temperature.
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It can be seen that the expression given in (4.172) is infinite. The singularity at k = k′

in (4.172) is an artefact of our approximation of the free-fall trajectory which is only valid

near the horizon. As it is an artifical singularity introduced by this approximation it does

not matter that it makes the expression infinite. If we were to evaluate the expression

numerically, the contribution from when k = k′ would be small.
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Chapter 5

Conclusions and Recommendations

for Further Work.

In this chapter we discuss the findings of this thessis and its implications. We also make

recommendations on how this work can be continued and pose some questions raised by

this work.

5.1 Conclusions.

We now summarize the results of the previous 3 chapters. We shall start with chapter 2

which was concerned with Hawking radiation in Schwarzschild anti-de Sitter spacetime

(which will abbreviate to SADS2). At the start of chapter 2 we considered the spacetime

structure of SADS2. As we observed, unlike the Schwarzschild spacetime, there is no I −

or I +, there is only I in SADS2. The spacetime is a dynamic one, and we defined two

types of modes, early time modes and late time modes. We then considered the case

of a thin shell collapsing in 2D to form a black hole in SADS2. By applying Hawking’s

method, (as discussed in Chapter 1) and reflective boundary conditions, we were able

to use the geometrical optics approximation, and find an expression for the early time

modes in terms of the late time modes.
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We have a relationship between the early and late time modes enabled us to calculate

the Bogoliubov coefficients. Evaluating these coefficients allowed us to demonstrate that

the black hole is indeed thermal and has a Hawking temperature of

TH =
h(rh)

4πω
=

κ

2πω

where h(rh) is the factorized form of the conformal factor, and rh is the position of the

event horizon.

After we had done this we went on to consider the problem of calculating the renor-

malised stress tensor. After some consideration of the problems involved in doing this,

and choosing a suitable renormalization scheme we use the Davies Fulling and Unruh

derivative. This method given by Birrell and Davies gives the form for the renormalised

stress tensor as,

〈T ν
µ [gκλ(x)]〉ren =

1√−g 〈T
ν
µ [ηκλ(x)]〉ren + θν

µ −
(

1

48π

)

Rδν
µ. (5.1)

Since SADS2 is conformal to half of Minkowski spacetime, we had to compute the con-

tribution 〈T ν
µ [ηκλ(x)]〉ren, which after applying our point-splitting method delivers the

result,

〈Tµν [η]〉ren =
1

8π2r2






1 0

0 1




 .

After we found this quantity, we went on to find the components θµν . In the case of

calculating the stress tensor at early times, we had to calculate the components θuu and

θvv (θuv = θvu = 0 for all conformally flat spacetimes). This was performed using the

DFU derivative and allowed us to form the renormalised stress tensor at early times. We

then wished to find the renormalised stress tensor at late times, however the spacetime

is a dynamical one, and so we used the relations u = f(V ) and v = g(u) found by the

ray tracing method. Performing the DFU derivative and using the previously calculated

expression for 〈Tµν [η]〉ren allowed us to find the renormalised stress tensor at late times.
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In chapter 3 we used the methodology of Ford and O’Connell to investigate a quantum

oscillator coupled to a real scalar field moving in Schwarzschild spacetime. We examined

two specific cases: a r∗ = const trajectory, and an inertial trajectory whereby r∗ = r∗(τ)

(τ is the proper time). The result of this experiment showed that, in the case where

r∗ = const no radiation was observed; the direct flux arising from the oscillator bal-

ances that of the interference term. When we put the oscillator on a general trajectory

r∗ = r∗(τ) we find that the direct flux term no longer balances the interference term. This

is due to the presence of the conformal factor, Ω, which on a non-constant trajectory,

becomes a function of proper time, and as a result it plays a part in the direct flux and

interference terms.

One question that seems obvious is, if a harmonic oscillator is radiating in Schwarzschild

spacetime, then does this have implications for the formation of black holes? The answer

we believe is no. We could model the surface of a collapsing star as a thin shell of such

oscillators, and as they fall in under collapse, radiation is generated. Now, it is the case

that the collapse takes a finite amount of time in the frame of reference of the oscillators,

external observers would see the oscillators falling in, but due to time dilation effects, the

external observer never sees the formation of the event horizon[33]. The radiation from

the oscillators would become infinitely red shifted and be quite undetectable by the time

the hole has formed. Thus one would expect never to be able to detect the radiation of

the in-falling oscillators.

The other point to be considered when discussing the likelihood of black hole forma-

tion is the reasonable amount of circumstantial evidence which now exists. Obviously it

is not possible to observe a black hole directly, but their existence has been revealed in

the motions of other stars and other circumstantial evidence. Astronomers now know of

many binary systems whereby the one star seems to be under the gravitational influence

of an unseen companion. By observing these systems, an orbital period of the unseen
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companion can be established and hence an lower mass limit imposed on the compan-

ion. Such mass limits in observed systems (like Cygnus X1) have placed the mass of the

unseen companion above the mass limit of a neutron star. It is true that these limits

depend heavily on the assumptions made about the properties of dense matter, and it

has recently been proposed that black hole candidates with masses in the range 3.8 to 6

solar masses could in fact be quark stars[34]. Even if this is the case, there are black hole

candidates much heavier than this both in binary systems, and at the centres of many

galaxies. The indirect evidence for the existence of black holes seems to be reasonable,

and growing in body.

In chapter 4 we took a different approach to that of chapter 3. Here we formed a

Hamiltonian to describe the oscillator, the scalar field and the electrodynamic interac-

tion. From this we established equations of motion for the annihilation and creation

operators of the scalar field and the oscillator. We used the scalar field operators to write

the full expressions of φ = φh +φp, and then we used a Wigner-Weisskopff approximation

to solve the equation of motion for the operator to obtain expressions for the annihilation

and creation operators of the oscillator. We then used these to form an expression for the

position function q(t), and then calculate the energy flux of the system as we did in chap-

ter 3. In the case of a x = constant trajectory we found no net radiation was produced,

and similarly in the case of constant acceleration there was no radiation detected (in

agreement with the results of Grove, Raine and Ford and O’Connell). When we confined

the oscillator to a free fall trajectory, we found that radiation was detected. Morever, the

temperature of the radiation is the same as the Hawking temperature T = 1
8πMBkB

. We

obtain a result which looks infinite, and this is due to the approximations made in the

free-fall trajectory that the oscillator is confined too.

Although this method is perfectly valid, it is in fact much more labor intensive than

that of Ford and O’Connell (the method used in Chapter 3). Moreover the result depends
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upon the correct application of the Wigner-Weisskopff approximation where as the Ford

and O’Connell approach does not. What the method does show is that we can take a

Hamiltonian and form a quantum Langevin equation and obtain a description of Hawking

radiation using a classical physical approach, rather than the usual approach of having

to consider the passage of modes from the past passing through the collapsing matter

and piling up in the far future. In this setting we are suggesting that black holes radiate

because they satisfy the same laws of physics as other radiating objects in the Universe

(namely a Langevin equation).

5.2 Recommendation for Further Work

We now make recommendations for further work. In chapter 2, the calculation was car-

ried out in two dimensions. In fact, the Schwarzschild a anti-de Sitter space time is a four

dimensional manifold, and it would be interesting to see what contributions the higher

dimensions make to the calculation.

In the case of the work carried in chapters 3 and 4, this work could also be ex-

tended greatly. Firstly, the calculation concerning an oscillator on a free fall trajectory in

Schwarzschild spacetime was again, for simplicity performed in two dimensions. Since the

full Schwarzschild spacetime is static, it would be interesting to see what contributions

the higher dimensions make to this calculation. It would also be interesting to perform

the calculation in a spacetime which is dynamical rather than static. If such a calculation

was to be performed, the methodology in Chapter 3 would probably more effective than

that used in chapter 4, since it does not involve the Wigner-Weisskopff approximation.

Another interesting extension of this work would be to explore the model with a

proper description for the mass of the oscillator, namely the Higgs field for the mass of the

oscillator. If we were to incorporate the Higgs field in the 4D calculation discussed above,
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we should be able to see the mechanism whereby the mass of the oscillator is converted

into radiation. Such an investigation would be of interest for researchers concerned with

the Transplanckian problem.
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Appendix A

Useful Indentities

A.1 Real Parts of Products

We have the function χ(ωk) defined as

χ(ωk) =
1

ωc + ωk − iγ/2
, (A.1)

and with this we can now find the real parts of the following products (note we neglect

γ2 terms):

1. ℜ{χ∗(−ωk)χ
∗(ωk)}. We have that

χ∗(−ωk)χ
∗(ωk) =

1

(ωc − ωk + iγ/2)

1

(ωc + ωk + iγ/2)

=
1

ω2
c − ω2

k + iγωc

,

and thus

ℜ{χ∗(−ωk)χ
∗(ωk)} = ℜ

{
ω2

c − ω2
k − iγ/2

(ω2
c − ω2

k)
2

}

.

Hence we have

ℜ{χ∗(−ωk)χ
∗(ωk)} =

1

ω2
c − ω2

k

. (A.2)

2. ℜ{χ(−ωk)χ(ωk)}. We simply take the complex conjugate of (A.2) and we obtain

ℜ{χ(−ωk)χ(ωk)} =
1

ω2
c − ω2

k

. (A.3)
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3. ℜ{χ(ωk)χ
∗(ωk)}. We have that:

χ(ωk)χ
∗(ωk) =

1

(ωc + ωk − iγ/2)

1

(ωc + ωk + iγ/2)
=

1

(ωc + ωk)2
= |χ(ωk)|2 (A.4)

which is of course strictly real.

4. ℜ{χ(−ωk)χ
∗(−ωk)}. We have that:

χ(−ωk)χ
∗(ωk) =

1

ωc − ωk − iγ/2

1

ωc − ωk + iγ/2
=

1

(ωc − ωk)2
= |χ(−ωk)|2 (A.5)

which again, is strictly real.

A.2 Real Parts of χ(k), χ(−k) and their Complex

Conjugates

We now determine the real parts of iχ(ωk), iχ(−ωk) and their complex conjugates.

1. ℜ{iχ(ωk)}. We have that

ℜ{iχ(ωk)} = ℜ
{

i(ωc + ωk) − γ/2

(ωc + ωk − iγ/3)(ωc + ωk + iγ/2)

}

and hence

ℜ{iχ(ωk)} = − γ

2(ωc + ωk)2
(A.6)

2. ℜ{iχ∗(ωk)}. Here

ℜ{iχ∗(ωk)} = ℜ
{

i(ωc + ωk) + γ/2

(ωc + ωk + iγ/2)(ωc + ωk − iγ/2)

}

thus,

ℜ{iχ∗(ωk)} =
γ

2(ωc + ωk)2
. (A.7)

3. ℜ{χ(−ωk)} Here we have

ℜ{χ(−ωk)} = ℜ
{

i(ωc − ωk) − γ/2

(ωc − ωk − iγ/2)(ωc − ωk + iγ/2)

}

giving

ℜ{χ(−ωk)} =
−γ

2(ωc − ωk)2
(A.8)
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4. ℜ{iχ∗(−ωk)}. The final idenity we need:

ℜ{iχ∗(−ωk)} = ℜ
{

i(ωc − ωk) + γ/2

(ωc − ωk + iγ/2)(ωc − ωk − iγ/2)

}

(A.9)

and so

ℜ{iχ∗(−ωk)} =
γ

2(ωc − ωk)2
(A.10)
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Appendix B

Miscellaneous Calculations

B.1 Spacetime Trajectory

In this section we shall calculate a suitable free fall trajectory, and then make an approx-

imation for it to be used in the curved spacetime calculations of Chapter 4. We start

with the spacetime metric

dτ 2 =

(

1 − 2MB

r

)

dt2 −
(

1 − 2MB

r

)−1

dr2 (B.1)

and so we have

1 =

(

1 − 2MB

r

)(
dt

dτ

)2

−
(

1 − 2MB

r

)−1(
dr

dτ

)2

(B.2)

We know that

dt

dτ
=

E
(
1 − 2MB

r

) , (B.3)

where E is the energy of the particle, and so after some rearrangement we have that

(

1 − 2MB

r

)

− E2 = −
(
dr

dτ

)2

. (B.4)

We now let E2 = 1 which represents a particle falling in from infinity and thus we have

that

dr

dτ
= −

√

2MB

r
. (B.5)
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We now need to integrate this expression. First we make the substitution

y =
2MB

r
⇒ dr

dy
= −2MB

y2
.

Now,

dr

dτ
=
dr

dy
dydτ = −2MB

y2

dy

dτ
,

and thus

−2MB

y2

dy

dτ
= −√

y. (B.6)

Integrating both sides gives

−2

3
y−3/2 =

τ

2MB

− 2

3
, (B.7)

and hence we arrive at

y =

(

1 − 3τ

4MB

)−2/3

. (B.8)

We now apply the Binomial expansion, using the first two terms we have that

(

1 − 3τ

4MB

)−2/3

≈ 1 − 2

3

(

− 3τ

4MB

)

and so we have that

y ≈ 1 +
τ

2MB

. (B.9)

This means we can say, approximately that

1 − 2MB

r
≈ − τ

2MB

, (B.10)

or

r = 2MB

(

1 +
τ

2MB

)−1

(B.11)

B.2 Fourier Transform of the Conformal Factor

From the Schwarzschild metric we have that

ds2 =

(

1 − 2MB

r

)2

dt2 −
(

1 − 2MB

r

)−1

dr2. (B.12)
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We may write this as the familiar conformally flat spacetime metric

ds2 = Ω(dt2 − dr2
∗), (B.13)

where Ω is the conformal factor given by

Ω = 1 − 2MB

r
. (B.14)

Now, we define the Fourier transform of the conformal factor to be

Ω(τ) =

∫ ∞

−∞
µ(ν)e−iντ dν. (B.15)

We now wish to find a form for the function µ(ν). From (B.10) we may write that,

approximately

Ω(τ) =

(

− τ

2MB

− 1

)

+ 1,

and so now

µ(ν) =
1

2π

[∫ 0

−2MB

eiντ

(

− τ

2MB

− 1

)

dτ +

∫ 0

−∞
eiντ dτ

]

,

or,

µ(ν) =
1

2π

[∫ 0

−2MB

eiντ

(

− τ

2MB

− 1

)

dτ + δ(ν)

]

.

Using integration by parts we have that

µ(ν) =
1

2π

[[

− τ

2MB

eiντ iν

]0

−2MB

+

∫ 0

−2MB

eiντ

2iMBν
dτ −

∫ 0

−2MB

eiντ dτ + δ(ν)

]

,

giving,

µ(ν) =
1

2π

[

e−2iMBν

iν
+

[
eiντ

−2MBν2

]0

−2MB

−
[
eiντ

iν

]0

−2MB

+ δ(ν)

]

,

and so,

µ(ν) =
1

2π

[

− 1

iν
+

1

ν2

(
1 − e−2iMBν

)
+ δ(ν)

]

. (B.16)

Consider now the second term in (B.16). We can write

1

ν2

(
1 − e−2iMBν

)
=

2ie−iMBν sin(2MBν)

ν2
,
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and thus

µ(ν) ≈ δ(ν) − i

ν
+

2ie−iMBν sin(2MBν)

ν2
.

We now consider what happens near ν = 0. We see that

sin(2MBν)

ν
→ 2MB as ν → 0,

while

e−iMBν → 1 as ν → 1,

and so we may say that approximately,

µ(ν) ≈ δ(ν)

2π
+

i

2πν
= I(ν) +

δ(ν)

2π
(B.17)

B.3 Fourier Transform of the Free-Fall Trajectory in

Schwarzschild Spacetime

In this section we shall derive an expressions for both αk(k
′) and |αk(k

′)|2. We start with:

r∗(τ) = r + 2MB ln |r − 2MB|. (B.18)

The free-fall trajectory is

r(τ) = 2MB

(

1 +
τ

2MB

)−1

≈ 2MB − τ, (B.19)

and hence we have that

r∗ = 2MB − τ + 2MB ln |τ |, (B.20)

with

t(τ) = −2MB ln |τ |. (B.21)

By definition we had that

αk(k
′) =

1

2π

∫ ∞

−∞
eikt(τ)−ikr∗(τ)eik′τ dτ, for k > 0. (B.22)
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However we have that τ ∈ [−∞, 0], and so in fact we can write (B.22) as

αk(k
′) =

e−2iMBk

2π

∫ 0

−∞
e−4iMBk ln(τ)ei(k′−k)τ dτ. (B.23)

We now make the subtitution: u = i(k′ − k)τ , this allows us to write

αk(k
′) = − ie2iMBk

2π(k′ − k)

∫ i0

−i∞

(
u

i(k′ − k)

)−4iMBk

eu du,

i.e.

αk(k
′) =

e−2iMBk

2π

(
1

i(k′ − k)

)1−4iMBk ∫ i0

−i∞
u−4iMBkeu du.

We now make one more subtitution; we let U = −iu and this gives

αk(k
′) =

e−2iMBk

2π

(
1

i(k′ − k)

)1−4iMBk ∫ ∞

0

(−iU)−4iMBke−iU dU. (B.24)

Comparision of the above integrand with

Γ(z) =

∫ ∞

0

tz−1e−t dt

allows us to write that

αk(k
′) =

e−2iMBk

2π

(
1

i(k′ − k)

)1−4iMBk

Γ(1 − 4iMBk).

Using the identity

Γ(z + 1) = zΓ(z), (B.25)

means that we have

αk(k
′) = −2iMBke

−2iMBk

π

(
1

i(k′ − k))

)1−4iMBk

Γ(−4iMBk), (B.26)

and

α∗k(k
′) =

2iMBke
−2iMBk

π

(
1

−i(k′ − k))

)1+4iMBk

Γ(4iMBk). (B.27)

If we mutliply togher (B.26) with (B.27) we obtain that

|αk(k
′)|2 =

4M2
Bk

2

π2

(
1

k′ − k

)2

e4πMBk|Γ(4iMBk)|2.
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Now, since

|Γ(4iMBk)|2 =
π

4MBk sinh(4πMBk)
, (B.28)

then we have that

|αk(k
′)|2 =

MBk

π

(
1

k′ − k

)2
e4iMBk

sinh(4MBk)

and hence we have:

|αk(k
′)|2 =

MBk

π

(
1

k′ − k

)2

[coth(4πMBk) + 1] (B.29)

The singularity at k = k′ is a factor that is an artefact of our approximation of the

free-fall trajectory which is only valid near the horizon.
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[34] Z. Kovács, K. Cheng, and T. Harko. Can stellar mass black holes be quark stars?

Monthly Notices of the Royal Astronomical Society, 400 (3):1632–1642 (2009).

182


