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ABSTRACT 
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ABSTRACT 
 
Heart rate variability (HRV) analysis is a powerful non-invasive tool used to 

determine the state of the heart and assess the development of the Autonomic Nervous 

System (ANS). The reduced HRV has been associated with negative outcome of 

ANS. This work describes the results obtained by HRV analysis of two groups of 

children, 41 Intrauterine growth retarded (IUGR) and 34 normal for a period of 24 

hours. The main objective of this work was to explore the autonomic control in IUGR 

children by performing HRV analysis and comparing the results with normal children 

to find differences in HRV at 10 years of age. Barker theory and hypothesis states that 

the IUGR can be prone to coronary heart diseases or hypertension in their adulthood. 

Signal processing was performed on the ECG signal (data) provided which included 

filtering and detecting the QRS to find the RR segments. In the time domain analysis 

many parameters were calculated for all 75 children. Several comparisons between 

IUGR and normal children groups using night time and one hour RR data collected at 

night using several variables were computed. Frequency domain analysis of RR has 

been performed by autoregressive model (AR) Fast Fourier Transform (FFT) after re-

sampling RR data of all 75 children. Calculation of the frequency components, large 

frequency, high frequency, and ratio of LF/HF, were obtained using FFT, AR and 

Lomb periodogram. Statistical analyses were performed to compare between IUGR 

and normal children. Time and frequency analysis comparison between the two 

groups of children showed no significant statistical differences, but the analysis has 

shown significant difference when dividing IUGR into IUGR1 (< 2.5 kg) and IUGR2 

(≥ 2.5 kg), and highlighted differences in Respiratory Sinus Arrhythmia (RSA) at 

night time.  QT algorithm was developed to measure HR, QRS, ST and QT. It was 

found that QT for IUGR children is slightly higher than that of normal children. Using 

Poincaré plots, significant difference was found between female and male children. 

Females had low long term variability. The 24 hr and 15 min pre-wake HRV time 

domain and Frequency domain analysis showed that IUGR children have reduced 

HRV which is a marker of a negative outcome of the ANS.   
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1 Introduction 
This work is a continuation to a research started 2004 at Leicester Royal Infirmary looking 

at the development of IUGR and normal children (Chakraborty et al., 2007). The previous 

research investigated the catch up growth of the IUGR compared to the normal children 

and difference in the blood pressure between the two groups of children. This thesis 

presents the results of using Heart rate variability measures to assess cardiovascular system 

development of normal and IUGR children at 10 yrs of age. 

1.1 Intrauterine Growth Restriction (IUGR):- 

Intrauterine growth restriction ( IUGR) is associated with delay in foetal growth at any 

stage of the pregnancy and is a continuation of conditions which consequently result in the 

failure of the foetus to reach its expected growth potential (Pollak and Divon, 1992). There 

are two types of IUGR, namely symmetric and asymmetric. If the growth restriction 

happens to the foetus in the first or the second trimester, the infant will have symmetrical 

growth restriction. Asymmetric growth describes the infant with a decrease in growth 

velocity in the last trimester. IUGR complicates 3-10% of all pregnancies. The markers to 

monitor IUGR are low birth weight, premature birth and ‘small for gestational age’, these 

conditions can lead to adverse prenatal outcomes (Fairley and Leyland, 2006). An infant 

born less than 37 weeks from first day of menstrual period is preterm and the growth 

retarded infants are defined by their biometric dimension being less than the 10th percentile 

for gestational age (Peleng et al. 1998), and the abdominal circumference being less than 

the 2.5th percentile. The suboptimal fetal growth can be called IUGR or sometimes ‘small 

for gestational age’ (SGA), IUGR and SGA are two terms which are used interchangeably, 

but by definition they are different conditions of fetal growth, where SGA is defined by the 

World Health Organisation as a birth weight below the 10th percentile for gestational age, 

but IUGR is a pathological condition in which the fetus is unable to grow to its potential 

growth (Wintour and Owens, 2006). This means that all IUGR are SGA but not all SGA 

are IUGR. Both are considered as risk factors to future diseases.  Figure 1.1 shows growth 

percentiles for fetal weight versus gestational age. 
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Normal intrauterine growth pattern is divided into three stages, the first stage is from 4 to 

20 weeks, when rapid cell division and multiplication (hyperplasia) takes place and the 

embryo grows to a fetus. Next, from 20 to 28 weeks gestation, where hyperplasia 

decreases and the cells increase in size (hypertrophy). In the last 28 to 40 weeks there is a 

rapid increase in cell size, accumulation of fat, muscle, and connective tissue. Most of the 

fetal weight gain (95%) occurs during the last 20 weeks of gestation and because the 

process of development and weight gain is very delicate, any disturbance during this 

period can cause the fetus to suffer from restricted growth. Previous work by (Chakraborty 

et al., 2007) on this data showed that the IUGR gained weight faster after birth than the 

control children, but at 10 years the IUGR children remained lighter and shorter than the 

children in the control group, which means that there is ‘no catch up’ growth.   

 

Most physicians believe that IUGR is caused by a disease process during one or more of 

the three partitions that maintain and regulate fetal growth  (Vandenboshe and Kirchner, 

1998). Table 1.1 presents the following conditions associated with IUGR. 

 

 

 

Figure 1.1: Growth Percentile (right y axis) for fetal weight ( left y axis) versus 
gestational age (bottom x axis ). Modified from an original by (Peleng D et al. 
1998). 
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The three partitions that maintain and regulate fetal growth are:   

• Maternal compartment 

• Placenta 

• Fetus 

 

Table 1.1: The conditions associated with IUGR (Vandenboshe and Kirchner, 1998). 

Intrauterine growth retardation (IUGR)  
Conditions associated with IUGR  

Maternal history  Alcohol use 
Cocaine use 
Smoking 
Malnutrition 
Use of prescription drugs warfarin 
(Coumadin, Panwarfarin) and phenytoin 
(Dilantin) 
Prior history of IUGR pregnancy 
Residing at altitude over 5,000 ft (1,500 m)  

Medical conditions (of mother)  Chronic hypertension 
Preeclampsia early in gestation 
Diabetes mellitus 
Systemic lupus erythematosus 
Chronic kidney disease 
Inflammatory bowel disease 
Severe lung disease 

Infectious diseases  Syphilis 
Cytomegalovirus 
Toxoplasmosis 
Rubella 
Hepatitis B 
Herpes simplex virus 1 or 2 
HIV-1  

Congenital disorders (of fetus)  Trisomy 21 (Down syndrome) 
Trisomy 18 (Edwards syndrome) 
Trisomy 13 (Patau syndrome) 
Turner's syndrome  

 
 

It is estimated that at least 13.7 million infants are born every year at term with low birth 

weight (LBW), this represents 11% of new born in developing countries. LBW defined as < 

2500g affects 16% of all newborns. In developing countries the IUGR defined as birth weight 

below the 10th percentile of birth weight for gestational age reference curve represents 23.8% 

of all infants born every year (30 million). About 75% of these infants are born in Asia, 20% in 

Africa and 5% in Latin America. This shows that many developing countries exceeded the 

internationally recommended cut-off levels for triggering public health action, IUGR (>20%) 

and LBW (> 15%) (de Onis et al., 1998). 

A study was done on the mean birth weight of different ethnic groups; the result was that 

there is significant difference observed between the birth weight of a baby from European 
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mothers (3357 g), Afro-Caribbean mothers (3173 g) and from mothers from the Indian 

subcontinent (3096 g). Also there is a significant interethnic difference in length of 

gestation, parity, maternal height, booking weight, and smoking habit, all of which affect 

birth weight. The difference in birth weight between the ethnic groups will be greater if the 

effect of smoking is excluded. This is due to that the smoking factor (mother smoking 

during pregnancy) may act as a confounder in affecting the fetal growth. When comparing 

non-smokers, Afro-Caribbean, European with Indian and Pakistanis, an even greater ethnic 

influence on birth weight was found (Wilcox et al., 1993). 

1.2 Barker’s Theory (The fetal origin hypothesis) 
In the search for disease causation, Barker (Barker D 2003), (Barker D 2004), along with 

others around the world, came up with a hypothesis to answer the question “is there any 

association between heart diseases in adulthood and growth in infancy or in childhood”. In 

Hertfordshire, a study was done on 10636 men born between 1911 to 1930 to register all 

births and the weight at 1 year(Barker, 1989). Hazard ratios for coronary heart diseases 

decreased when the birth weight increases, and there was a strong trend with the 1 year 

weight. Another similar study was done on women (Osmond et al., 1993), where the same 

trend was found with birth weight, but there was no trend with the 1 year weight. Another 

finding was about type 2 diabetes in men, where it decreased sharply with increasing birth 

weight (Hales et al., 1991). 

The fetal origin hypothesis proposes that coronary heart disease, type 2 diabetes, stroke 

and hypertension occur in development plasticity, as a result of under nutrition during fetal 

life and infancy. There seems to be three kinds of process that explain the relationship 

between under nutrition in fetal life and infancy (Barker, 2004), firstly people with low 

birth weight have fewer cells in their key organs, such as kidneys, and hypertension can be 

associated with reduced number of glomeruli, which can lead to increased blood flow 

through each glomerulus. Studies of the kidneys of people killed in road accidents and 

being treated for hypertension showed that they had fewer but larger glomeruli. Secondly, 

the process of hormones setting and metabolism, where an undernourished baby can get 

the habit of thrifting away from food, especially in conditions of plenty, after birth. Insulin 

resistance is associated with low birth weight, and the blood glucose concentrations are 

used to develop the brain but at the expense of glucose transport into the muscles and 

muscle’s growth. The third link between low birth weight and disease in later life is for 
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people who were thin at birth and had a rapid weight gain after birth and those with low 

income, who had a higher risk of coronary heart disease in later life.  

 Weinberg (Weinberg, 2004) and Yu-Kang (Yu-Kang et al., 2005)  showed that there is no 

correlation between birth weight and blood pressure, but both are positively correlated 

with current weight. A complicating factor is that adjustment in current weight can induce 

negative correlation between birth weight and blood pressure. These findings raise doubts 

to the fetal origin hypothesis. 

1.3 Heart Rate Variability (HRV) 

1.3.1 Historical review and definition of heart rate variability  

The first clinical importance of HRV was realised in 1965 by  (Hon and Lee, 1965), who 

noted that fetal stress was preceded by alteration in the interbeat intervals before any 

changes in the heart beat. After that (Sayers, 1973) reported the existence of physiological 

rhythms imbedded in the beat to beat heart rate signal. In the 1970s a number of bedside 

tests were developed for short-term RR analysis to detect autonomic neuropathy in 

diabetic patients (Ewings et al., 1985). In 1977 a study by (Wolf MM et al., 1978) found 

that reduced HRV was associated with high risk of post-infarction mortality, and that was 

caused by the remodelling of the arrhythmia substrate after acute myocardial infarction 

(Huikuri Heikki and Stein Phyllis, 2012). Power spectral analysis of heart rate fluctuation 

was introduced by (Akselrod et al., 1981) to evaluate and quantify the beat-to-beat 

cardiovascular control. In the late 1980s, the clinical importance of using HRV non-

invasively gained weight as it proved to be a predictor of mortality following an acute 

myocardial infarction (Kleiger RE et al., 1987). HRV has the ability to provide more 

understanding into physiological and pathological conditions and to improve risk 

stratification (The Task Force, 1996) and with the availability of the new digital, high 

frequency ECG recording systems and the use of both HRV linear and non-linear 

techniques, HRV analysis is attracting renewed attention. 

The normal clinical features of the electrocardiogram shown in figure 1.2 include wave 

amplitude and inter wave timings (Clifford et al., 2006), the locations of different waves 

are marked by letters P, Q, R, S and T. In HRV, the R to R (beat to beat interval) is the raw 

measurement used to quantify HRV. The baseline variability of RR time series can be 
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affected by many factors such as age, gender, activity, medication and health. There are 

two basic ways of looking into the changes, one is associated with the mean beat-to-beat 

rate (heart rate), and the other is associated with the variance of the sequence of heart beat 

intervals (Clifford et al., 2006) . 

 

 
 

 

 

 

 

 

 

   
 
The cardiac action potential initiated by a group of cells named as sinoatrial node (SA) 

which is located in the right atrium. This group of cells self depolarise at a regular rate 

hence it works as an automatic pacemaker. This intrinsic pacemaker is influenced by both 

parasympathetic and sympathetic branches of the autonomic nervous system. The ECG is a 

standard clinical tool used by the cardiologists to measure the electrical activity of the 

heart. The p wave represents depolarisation of the left and right atria. The QRS complex 

reflects the depolarisation of the ventricles. The T wave is the repolarisation of both 

ventricular muscles (Boron and Boulpaep, 2003).  

Figure 1.2: A Typical ECG with two heart beats and intervals details. 
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1.3.2 Heart rate variability and the autonomic nervous system 

On the short scale the timing of successive heartbeats is irregular and these short-term 

oscillations reflect changes in the balance between the sympathetic and the 

parasympathetic branches of the autonomic nervous system (ANS). This is called the 

sympathovagal balance, see figure 1.3.  

      Sympathetic                                                   Parasympathetic 
 
 

     

 Empty colon 
 
 

   

Human body 

Side view of spine 

Constrict Dilate 

Stop secretion  

Secrete saliva 

Dilate bronchioles 
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Empty bladder 
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Sacrum 

Thoracic 

Figure 1.3: Innervation of the major organs by the autonomic nervous system (ANS), Redrawn and modified from 
(Boron and Boulpaep, 2003). 
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This irregularity in instantaneous heart rate is well known and is named as heart rate 

variability (Clifford et al., 2006). In general HRV metrics can be evaluated into either 

statistical time-based metrics (time domain analysis), or frequency-based metrics that 

evaluate power, or ratios of power in certain spectral bands. These metrics can be 

calculated on a short scale (about 5 min) or on a long scale (up to 24 hours). 

HRV can be used to aid the assessment of autonomic functions (Boardman, 2003), which 

beforehand had only been possible using invasive methods. HRV has been used clinically 

to assess the damage caused to autonomic nervous system in patients suffering from 

diabetes with neuropathy. It has been shown that HRV could be used in assessing the 

prognosis after myocardial infarction (Kleiger RE et al., 1987).  

1.4 Why measuring HRV for normal and IUGR children at 10 yrs? 

The answer to this question is that by measuring HRV one can assess the development of 

the nervous and cardiovascular systems for normal and IUGR when their age is around 10 

years. The following is a literature review of research work done concerning IUGR 

children. Here a selection of papers and  research regarding IUGR in the literature was 

reviewed to see if any looked at HRV analysis of 10 year-old children and then compared 

the results and the clinical implications of the results with the outcomes of the research by 

Barker (Barker, 2004) and others who investigated the fetal origin hypothesis and 

concluded that, for men, the risk ratio for coronary heart disease fell with increasing birth 

weight and the trend is very strong with weight at 1 year. Another study on women has 

confirmed the same findings, but presenting no trend with weight at 1 year. Regarding 

glucose tolerance or type 2 diabetes, it fell steeply for men and women, with increasing 

birth weight. At 11 years of age, for boys and girls the same general pattern continues, 

where the risk of the two disorders fall with increasing birth weight and rise with 

increasing body mass index. In his preliminary studies Van Leeuwen shows that age-

adjusted cardiac time intervals (CTI) are shorter in growth retarded fetuses (Van Leeuwen, 

2004). 

When looking at the birth weight, postnatal growth and blood pressure at 7 years old, 

(Anusha et al., 2007)concluded that infants who were small for gestational age (SGA), 

were not at increased risk of high blood pressure at 7 years of age, but those who crossed 

their weight percentile during early childhood showed an increased risk. Singal found that 
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for 6-8 years old children, the promotion of faster weight gain for the IUGR in infancy can 

increase the blood pressure at later life (6-8 yrs) (Singal et al., 2007). Another study for 8-

13 years old children (Franco et al., 2006) concluded that children with history of low birth 

weight show impaired endothelial function and increased blood pressure uric acid levels. 

Keijzer-Veen found that at the age of 19 years old the prevalence of hypertension is high 

in individuals who were born preterm when compared with the general population 

(Keijzer-Veen et al., 2005), while in others who were born very preterm, no support to the 

hypothesis that low birth weight is linked with increased BP at young adult age could be 

found.  

Dale Spence et al. (2007), when studying  the effect of IUGR on quality of life at 50 yrs, 

found that the two groups (IUGR and Normal), reported similar health quality of life on 

each of the eight dimensions of the short form health survey (SF-36) and that there are no 

significant differences between them. SF-36 is used to assess quality of life and general 

health all over the world. The eight dimensions measured in this form are physical 

functioning, role limitation due to physical problems, role limitation due to emotional 

problems, social functioning, mental health, energy/vitality, pain and general health 

perception (Spence et al., 2007). When looking at the effect of childhood socio-economic 

condition on coronary heart disease on later life, the result was that this factor will cause a 

modest persisting influence on risk of coronary heart diseases (CHD) in later life. A paper 

(Galland C. Barbara et al., 2006) on HRV and cardiac reflexes in small for gestational age 

SGA infants, suggests reduced autonomic activity and cardiac reflexes in SGA infants, and 

the findings of sympathetic components of the control of HRV is higher, which might be 

linked to higher risk of CHD in later life. Detrended time series analysis of the R-R 

intervals suggests that IUGR fetuses have significantly reduced HRV compared to the 

other groups of children (Govindan et al., 2006). Other non linear HRV measure known as 

Sample Entropy approach) was used to study obstructive Sleep apnoea syndrome (Al-

Hangari and Sahakian, 2007). They proved that normal subjects have significantly more 

complex HRV pattern than the OSA. Classical Cardiotocography, (CTG), is used to 

analyse the fetus’ heart rate (Signorinin and Magenes, 2003), and to distinguish between 

normal and pathological fetuses. Myung-Kul Yum et al. (2000) found that in IUGR 

fetuses, the approximate entropy was significantly lower, and the long term fractional 

scaling was higher than in normal fetuses (Yum et al., 2001). In epidemiological studies, 
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findings support the use of records with the length of at least 5 min long segments for 

HRV measures (Schroeder et al., 2004).  

The previous literature review on research conducted to date on IUGR infants shows that 

many studies on IUGR infant were done to find causes and effects on the well known 

association of IUGR with high risk of mortality, yet there is no study that looks at HRV of 

IUGR children at 10 yrs. 

The novelty of this research is to look at HRV of children at 10 years, IUGR and normal, 

in an attempt to investigate any relation between HRV measures, RSA, QT syndrome and 

the fetal origins hypothesis, to try and identify any factor or factors, such as age, gender, 

maternal smoking, sleeping, or breast feeding, which have an effect on the development of 

coronary heart disease. 

1.5 The organisation of the thesis 
 
 This thesis is organised as follows: The first chapter reviewed the important theories and 

clinical importance of methods used in this work, first IUGR was explained and the 

importance of understanding IUGR children and associated diseases which can be detected 

as soon as possible with the hope of preventing any future CHD was highlighted. The 

second chapter shows the use of time domain analysis described by the Task Force in 

1996, in this chapter the results of developed algorithms were discussed and novel results 

after dividing the IUGR children into IUGR1 (less than 2.5 kg), and IUGR2 (higher than 

or equal to 2.5 kg) were discussed including the clinical implications of these results. The 

third chapter looks at the data used in this project and the pre-processing needed to be done 

on the data in order to eliminate noise and artefacts so HRV measures do not get affected 

by the classical noise associated with ECG signals such as mains noise and ectopic beats. 

The modulation of HR by respiratory frequency is also mentioned.  

The fourth chapter discusses the algorithms and the novelty associated with results from 

the FFT, AR and Lomb methods. Significant difference was found between IUGR whose 

parents smoke at 10 yrs and IUGR with non-smoking parents. RSA was observed by the 

use of frequency methods. Chapter 5 describes the development of an algorithm using 

Matlab to measure all important ECG intervals, the main purpose and the novel result in 

this chapter is measurement of QT interval, which has been associated with long QT 

syndrome or diseases. Other intervals measured are heart rate, QRS, and ST segment. QRS 
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detection and wave delineation was used to calculate all the above mentioned intervals. 

The sixth chapter explains the use of Poincaré plots to compare between IUGR and 

Normal children, especially when analysing the difference between children whose 

mothers smoked during pregnancy and whether the child is normal or IUGR. From this 

study it is found that maternal smoking can have an adverse effect on IUGR children.  

The seventh chapter investigates the 15 min pre-awake period using the linear and non-

linear measures. The novel and important results on children at 10 yrs showed many 

significant differences in many HRV measures when comparing between IUGR1, IUGR2 

and Normal children. We focus on this period around waking up as it has been identified 

as a vulnerable and critical period which has been associated with sudden death by many 

researchers. Chapter 8 discusses the results from all the previous chapters and illustrates 

the importance and the clinical implications of all results, and outlines the outcome and the 

conclusions from this thesis. Adding to the conclusions some future work is suggested to 

improve and to produce additional interesting results in the field. 

Appendix (A) shows some details of the data collected which was used in this project and 

appendix (B) includes two of my publications. Appendix (C) includes the results of the 

algorithm developed in this thesis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 2: Project Data and Signal Processing 
 

25 

2 Project Data and Signal Processing 

 

The data used in this project were collected for a research which started when the 10 

years old children under study here were in the womb of their mothers. A series of 

antenatal ultrasound scanning was taken to identify intrauterine growth retarded 

babies (Chakraborty, 2010). A random sample of normal infants was selected for the 

purpose of comparison. When those children were 10 years of age, they were 

subjected to a cardiovascular study, where data such as weights, heights, and parental 

heights were measured. The 24 hour (Holter) ECG of all IUGR and normal children 

were recorded using a lifecard CF ambulatory recorder (Delmar-Reynolds Medical 

Limited, Hertford, UK). Ambulatory electrocardiogram monitors the electrical 

activity of the heart while the patient performs usual daily activities. Many heart 

problems occur only during certain activities, such as exercise, eating, emotional 

stress, or even sleeping. A continuous 24-hour recording is much more likely to detect 

any abnormal heartbeats that occur during these activities(Yanowitz, 2010). 

The most common type of ambulatory monitoring is called Holter monitoring. The 

recording device of a Holter monitor is worn on a strap at waist or over shoulder. The 

electrical signals of heart are picked up by two small metal pads (electrodes) attached 

to chest, and these are connected to the recorder by wires. Holter monitoring provides 

a continuous 24 to 72 hour record of the electrical signals from heart. After the 

monitoring period, health professional will compare the timing of activities and 

symptoms with the recorded heart pattern.  

 
Figure 2.1:  Block diagram of the Holter monitor. 
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Many people have irregular heartbeats from time to time. The importance of irregular 

heartbeats depends on the type of pattern they produce, how often they occur, how 

long they last. Because arrhythmias can occur irregularly, it may be difficult to record 

an arrhythmia while patient is in the doctor's office. A standard ECG monitors only 40 

to 50heartbeats during the brief period the patient is attached to the machine. A Holter 

monitor records about 100,000 heartbeats in 24 hours and is much more likely to 

detect a problem.(Yanowitz, 2010) 

One factor affecting ambulatory ECG measurement is that external conditions can be 

far from stable and may produce nonstationary changes in a time series, making the 

assessment of the physiological events more difficult or even impossible, than under 

stable laboratory conditions. Sapoznikov et al. (1994) proposed a method for 

separating non-periodic (nonstationary) changes from periodic ones.  

The blood pressure was recorded using 90217 ULTALIT oscillometric ambulatory 

blood pressure monitor for 24 h. Cortisol excretion was measured from two samples 

of urine, one for finding night level, and the other to find the morning surge in 

Cortisol production, Cortisol is a steroid hormone which is considered as a marker of 

physiological alterations due to stress stimuli and the level of Cortisol is found to be 

increased during high stress periods such as students’ final exams. (Kirschbaum and 

Hellhammer, 1994, de Weerth et al., 2003).  

The medical state of the children was recorded and any medication used for any 

illness was written in a spreadsheet along with all other data. Table 2.1a and 2.1b 

show a summary of the data used in this work and related data. Parents kept a diary of 

all daily activity of their child such as sleeping and waking up times, see appendix A. 

The data of table 2.1a and 2.1b shows that both groups of children are of normal 

gestational age, around 38 to 39 weeks. This means that gestational age during 

pregnancy is not a differentiating factor in the growth of the children during infancy.  
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Table 2.1: The data of all Normal and IUGR children used in this work – Continuous variables 
(Chakraborty S. et al. 2007). 

Continuous 
variables 

IUGR N=41 
Mean (95% CI)* 

Control N=34 
Mean (95% CI) 

Difference of 
means (95% 
CI) 

Probabil
ity 
value 

Gestation 
(weeks) 

38.98(38.56, 39.40) 39.18(38.86, 39.49) -0.2(-0.7,0.3) 0.45 

Birth weight kg 2.56(2.43,2.69) 3.53(3.36,3.69) -1.0(-1.2,-0.8) <0.0001 
Birth weight z 
score 

-2.1(-2.3,-1.8) 0.1(-0.1,0.4) -2.2(-2.6,-1.8) <0.0001 

Placental (a) 
weight(Grams) 

488(448,528) 631(583,679) -143(-203,-82) <0.0001 

Breast feeding 
duration(Weeks) 

4.2(1.9,6.5) 10.5(7.9,13) -6.3(-9.7,-2.8) 0.0006 

Maternal height 
(b) (cm) 

161.8(159.2,164.4) 161.7(158.9,164.4) 0.2(-3.6,3.9) 0.93 

Parental height 
(b) (cm) 

175.O(172.5,177.6) 178.2(176.3,180.1) -3.2(6.3,0.03) 0.052 

Current IMD 
(c) score 

21.2(15.9,26.5) 12.9(9.1,16.8) 8.3(1.6,14.9) 0.02 

Current 
age(years) 

9.36(9.12,9.54) 8.96(8.78,9.23) 0.4(0.09,0.7) 0.01 

Final weight(kg) 28.32(26.78,30.46) 32.64(30.48,34.80) -3.8(-6.5,-1.1) 0.007 
Final weight z 
score 

-0.4(-0.7,-0.1) 0.6(0.3,1.0) -1(-1.5,-0.5) <0.0001 

Change in 
weight(kg) 

26.26(24.49,28.03) 29.53(26.95,31.27) -2.9(-5.6,-0.1) 0.04 

Change in 
weight z score 

1.7(1.3,2) 0.5(0.1,1) 1.2(0.6,1.8) <0.0001 

Final height(cm) 131.4(129.3,133.4) 133.8(132,135.5) -2.4(-5.1,0.3) 0.08 
Final height z 
score 

-0.6(-0.9,-0.3) 0.16(-0.1,0.5) -0.8(-1.2,-0.4) 0.0002 

Final BMI 16.63(15.83,17.42) 18.11(17.22,19) -.1.5(-2.7,-0.3) 0.01 
Final BMI z 
score 

-0.1(-0.4,0.3) 0.8(0.4,1.1) -0.8(-1.3,-0.3) 0.002 
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Table 2.2: The data of all Normal and IUGR children used in this work – Categorical variables 

(Chakraborty et al. 2007). 

Categorical 
variables 

IUGR N=41 
Number (%) 

Control N=34 
Number (%) 

Probability 
value 

Gender   0.12 
            Male 19(46.3) 22(64.7)  
            Female 22(53.7) 12(35.3)  
Breast feeding 19(46.3) 25(73.5) 0.02 
Maternal 
smoking in 
pregnancy 

16(39) 9(26.5) 0.25 

Current 
smoking 

21(51.2) 12(35.3) 0.17 

Significant 
medical 
problem 

12(29) 4(12) 0.07 

Currently on 
medication 

11(27) 4(12) 0.16 

Normal 
development 

37(90) 34(100) 0.11 

Mainstream 
schooling 

40(97) 34(100) 0.36 

 
  
NB: 
a: Probability values were derived from t tests for continuous variables and from Chi-

square tests for categorical variables. 

b: Placental weights are available for 35 IUGR and 32 controls. 

c: Maternal and paternal heights are available for 39 IUGR. 

d: Index of Multiple Deprivation (IMD) score is a measurement of socio-economic 

deprivation which is inversely related to deprivation. 

*: CI means confidence interval.  
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2.1 Data Reading 

The Leicester Royal Infirmary (Chakraborty, S. et al. 2007) uses Delmar Reynolds 

software (DR) for data reading, analysis and saving. The data files for the raw ECG 

and RR data for all the 75 children (41 IUGR, 34 normal), were stored in binary 

format files. The Delmar Reynolds manuals were consulted to know how the data file 

was formatted and then algorithms were self-written in Matlab, so the data could be 

read in Matlab environment allowing us to carry out further analysis. Figure (2.1), 

shows the raw ECG extracted by using the Matlab program for reading the data. The 

beginning of the files contains information about the Delmar Reynolds software used 

to store the binary data format and then is the ECG data. Figure (2.2) shows an 

enlarged segment from the raw ECG data. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
  

 

Figure 2.2: Beginning of ECG data file and ECG data were collected for 24 h. 

Figure 2.3: A small zoomed segment of the ECG data file in fig. 2.2. 
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2.2 Sampling Frequency 

The Delmar Reynolds software uses a sampling frequency of 128 Hz, which means a 

sample every 7.8125 ms. This is considered  as low sampling frequency by the Task 

Force of the European Society of Cardiology (1996), who recommended that the 

sampling frequency should be 250 Hz or above. Davingnon uses 333 Hz as sampling 

frequency to find the normal ECG standards for infants and children (Davingnon et 

al., 1979/80). Another study, (Macfarlane et al., 1989), used 500 Hz. In 1990 the 

American Heart Association recommended 500 Hz; this is needed due to the high 

frequency contents of the ECG in young children (Dickinson, 2005). A recent study to 

find the normal limits for the paediatric electrocardiogram by (Rijnbeek et al., 2001), 

uses 1200 Hz. Using a lower sampling frequency means that time jitter will be 

produced for  estimation of fiducial point of the R-waves, but a frequency as low as 

100 Hz may be satisfactory if an algorithm of parabolic (or cubic spline) interpolation 

is used to refine the R wave fiducial point (The Task Force, 1996). 

2.3 Digital Filtering and QRS detection 

A classical technique based on a bandpass filter and an adaptive threshold was used 

for detection of the QRS, (Schlindwein et al., 2000). 

A second order Butterworth band pass filter with cut-off frequencies of 14 Hz and 24 

Hz followed by rectification and then an adaptive threshold was used for QRS 

detection (Schlindwein et al., 2006). The value chosen for the adaptive threshold of 

the detector tends towards 65% of the moving average value of the maximum 

magnitude of the previous QRS complexes. To reduce the possibility of detecting 

false positives we have used an absolute refractory period (300 ms). Figure (2.3) 

shows detected QRS from raw ECG and filtered ECG, fig (2.4), shows an enlarged 

filtered ECG and the behaviour of the adaptive threshold (Pan and Tompkins, 1985). 

The delay between the filtered ECG signal and the original ECG is caused by the 

group delay of the Butterworth band pass filter and it does not affect the measurement 

of RR intervals, as successive QRS complexes will have the same delay. Forward and 

reverse filtering (filtfilt.m) can be used to completely eliminate these delays. 
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Figure 2.4: Raw ECG and Filtered ECG. 

Figure 2.5: Filtered ECG and the behaviour of the adaptive threshold. Notice how the 
adaptive threshold adjusts itself in a way that all R waves will be detected while the T 

waves will be rejected. 
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2.4 Re-sampling RR data 

The RR series is subjected to a process of interpolation to obtain equally spaced data 

to be used for standard spectral analysis as both FFT and autoregressive model (AR) 

must have equally spaced data to perform spectral analysis. The signal has been re-

sampled at 4 Hz after a cubic spline data interpolation. This will give us the results in 

Hertz and allows the spectrum analysis up to 2 Hz. Figure 2.5 shows the detected 

ECG, filtered ECG, RR data and interpolated RR data.  

 
Figure 2.6:  (a) The ECG with detected R waves, (b) the filtered ECG and detected R waves, (c) 
raw RR data series and (d) raw RR data series and the interpolated RR series re-sampled at 4 

Hz. 
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2.5 Artefacts in RR Interval Time Series 

In practice, heart rate variability (HRV) analysis is performed using intervals between 

successive R waves (RR intervals). The RR interval time series used for HRV 

analysis should contain only RR intervals. Ambulatory ECG recording is exposed to 

many physiological and technical disturbances. Errors of physiological origin in QRS 

detection arise from disturbances and extraordinary waveform in the measured ECG 

signal (Pahlm and Sornmo, 1884, Thomas et al., 1979). Abnormal initiation of the 

heart beat (ectopic beat) can lead to a variety of morphologies of QRS complexes and 

cause difficulties in both their classification and their detection. Potential 

physiological sources of errors also include: abnormally large P or T wave and 

electromyogram (EMG) similar enough to QRS complexes in amplitude and 

frequency content to cause spurious detection. The ability of QRS detector to tolerate 

variations in ECG waveforms depends on the recognition criteria themselves and the 

pre-processing of the raw ECG data, of which most essential part is filtering (Friesen 

et al., 1990, Hamilton and Tompkins, 1986).  

Like physiological disturbances in the ECG signal, the tolerance of different QRS 

detection procedures can vary with respect to technical disturbances (Friesen et al., 

1990, Hamilton and Tompkins, 1986). The disturbances of technical origin include 

movement of electrodes relative to heart and skin or other changes in conductivity 

between the electrodes and skin, which result in baseline shift. Thus RR intervals 

obtained from ambulatory recording often include abnormal intervals called artefacts, 

which do not represent the sinus rhythm and differ in length from normal RR 

intervals. These artifacts lead to spurious transient spikes in the resulting RR interval 

time series.  

2.5.1 Detection and Correction of Artefacts 

The decision whether an abnormal beat should be corrected or not usually forms the 

most difficult step in the artefact removal. Error detection algorithms attempt to 

differentiate normal RR intervals from abnormal ones. In computerized artefact 

detection, relatively simple artefact detection criteria supported by additional visual 

verification are still being used (Tikkanen, 1999). This is because results obtained 

with simple procedures are comparable with more complex solutions (Tikkanen, 
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1999, Mulder, 1992). The simple artefact detection criteria described in the literature 

include absolute upper and lower limits for acceptable interval (300-1500 ms), 

absolute or relative difference from the previous accepted interval (e.g. 20-40%) from 

previous RR interval, from mean or from a fitted polynomial representing the baseline 

(Tikkanen, 1999). (Malik et al., 1989) used four simple artefact detection criteria and 

found none of them to be significantly better than the others. A single artefact 

detection criteria always has its particular weaknesses, a combination of criteria 

should be preferred (Sapoznikov et al., 1994) 

The two basic procedures mainly used for removing individual artefacts from an RR 

interval time series are:  

 

 Total exclusion of abnormal intervals 

 Substitution of a better matching value.  

 

The exclusion approach is widely used, suits well for time domain analysis, and can 

also be used with frequency domain analysis if only a few beats are to be excluded, 

whereas the substitution approach is used widely with both time domain and 

frequency domain analysis (Tikkanen, 1999). The substitution can take the form of 

simply replacing the abnormal value with a local mean or median value, but more 

sophisticated procedures include linear, non-linear or cubic spline interpolations or 

more complicated predictive modelling (Lippman et al., 1994). 

If the artefacts are of technical origin, then substitution approach can be used with 

good justification in a physiological sense, whereas if artefacts are due to 

physiological or mental factor, both approaches can be used with success. (Lippman 

et al., 1994) showed that the simple deletion method and more complex non-linear 

predictive interpolation method gave the best results for removing ectopy from 5 

minute RR interval time series. In general, the removal of artefacts tends to increase 

the low frequency component of the spectrum and reduce the standard deviation, but 

it should be noted that the sum of the intervals after correction does not always equal 

the sum of the original intervals. 
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2.6 Discussion 
 
ECG data in this work, stored in a binary format, was subjected to many signal 

conditioning steps to have very reliable and accurate RR intervals to calculate HRV 

measurements. 

The first was filtering the signal to remove any unwanted noise like the 50 Hz mains. 

Then the signal was checked to remove any ectopic beats which can, if present, give 

wrong HRV measures. Faulty lead connection was considered in the algorithm 

because that might affect the results if any lead was removed by any physical activity 

or taken of the measurement position during the 24 hr period when reading data 

(ECG) from the child. Spline interpolation was performed on the signal to produce 

RR ready for the frequency domain analysis (FFT and AR). The use of refractory 

period prevents the QRS detector from looking for QRS wave within a certain period 

of the signal. This will avoid considering a high T wave as a QRS wave, because after 

detecting one QRS the search for a new QRS will always start after the refractory 

period finishes( 300 ms) in this algorithm. 

To do accurate ECG intervals measurements the up sampling of the ECG from 128 

Hz to 512 Hz was implemented. This will give us more accurate measurements of 

ECG interval such as QRS, QT, ST and any other interval measurements.   
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3 Time Domain Analysis 

The simplest way to evaluate the variation in heart rate is using time domain measures 

(The Task Force, 1996). In continuous ECG recording, each QRS is detected and the 

R to R or so-called normal to normal (NN) interval (after removing extra-systoles) or 

the instantaneous heart rate is determined. Figure 3.1 shows a graph of 24 hr RR 

intervals with high RR at night time and low RR at day time.  

A Matlab algorithm (timedomain.m), see the programs CD enclosed with this thesis, 

was developed to measure the TD HRV measures. Data (subjectNo.dat) were read in 

by a subprogram (extractRR.m) .Then the following time domain variables were then 

calculated: mean NN interval, the mean heart rate, the difference between the longest 

and the shortest NN interval, the difference between night and day heart rate. 

Appendix C gives a printout summarising  the results. The time-domain analysis 

results summarised in table 3.1 showed no significant differences between the IUGR 

and the Normal Group (Biala T. et al., 2008). The p values of comparing between all 

HRV of the time domain variables presented in table 3.1 show no significant 

difference between the normal children and the IUGR children, all with p>0.05. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3.1: The 24 hr RR intervals for 10 yrs child. 
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Table 3.1: Time domain HRV measures. 

Subject Normal No=34 
Mean (SD) 

IUGR No=41 
Mean (SD) p value 

95% Confidence 
Interval for 
Differencea 

Lower 
Bound 

Upper 
Bound 

Mean 24 (s) 0.676 (0.057) 0.685 (0.066) 0.581 -0.04 0.023 

Mean day (s) 
 0.612 (0.052) 0.623 (0.064) 0.494 -0.04 0.019 

Mean night (s) 
 0.822 (0.082) 0.828 (0.084) 0.794 -0.047 0.036 

SDNN 
 0.159 (0.029) 0.150 (0.034) 0.289 -0.008 0.025 

SDNN day 
 0.118 (0.023) 0.111 (0.023) 0.238 -0.005 0.019 

SDNN night 
 0.121 (0.031 0.114 (0.032) 0.381 -0.009 0.023 

Mean RR (5 min) (s) 0.676 (0.057 0.684 (0.066) 0.571 -0.04 0.022 

Mean day (5 min) (s) 
 0.596 (0.053) 0.607 (0.065) 0.443 -0.042 0.019 

Mean night (5min) (s) 
 0.811 (0.077) 0.816 (0.079) 0.814 -0.044 0.035 

SDANN 
 0.132 (0.023) 0.124 (0.031) 0.261 -0.006 0.022 

SDANN day 
 0.074 (0.018) 0.068 (0.016) 0.202 -0.003 0.014 

SDANN night 
 0.070 (0.019) 0.065 (0.020) 0.359 -0.005 0.014 

Shortest NN int. 
 0.304 (0.028) 0.315 (0.041) 0.201 -0.03 0.006 

Longest NN int. 
 1.394 (0.131) 1.442 (0.765) 0.740 -0.342 0.244 

Range 1.090 (0.130) 1.127 (0.775) 0.804 -0.334 0.259 
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3.1 The Mean and the Standard Deviation:- 

In this work, where we have the ECG records for 24-hour periods, the mean and SD 

for the averaged segments of 5 min were calculated. Figure (3.2) shows the RR mean 

and SDANN for a normal child. The night time is well defined and marked between 

the two brown lines. The mean of RR is high at night, which means a low heart rate. 

The standard deviation of averaged 5 min, SDANN (ms), is plotted under the RR 

curve and it shows that there is high variability of the RR at night due to the influence 

of the parasympathetic and sympathetic branches of the ANS. At day time, when the 

child is active, the sympathetic branch of the ANS is dominant, RR is short, and so is 

SDANN. Periods before going to bed and awakening are characterised by a sudden 

rise in RR, positive slope, and then a decrease, a negative slope, respectively. 

 

 
Figure 3.2: A normal child average RR and SDANN over 24 hr. 
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The following plot, figure 3.3, shows the mean RR and the SDANN for an IUGR 

child where it can be noticed the changes over the 24 hr between high RR to low RR, 

which means the rising and falling of heart rate during the day and the night. 

 

 

 
Figure 3.3: An IUGR child average RR and SDANN over 24 hr. 

 
Normal and IUGR RR-mean and SDNN box-whiskers for the two groups were 

plotted. This is first to visualise and to study the Normal RR mean (figure 3.4) for a 

24 hr period, including both day and night and the Normal RR SDNN (figure 3.5) and 

then to look at the IUGR RRmean and SDNN. The  

RR mean during night time shows higher values because the heart rate drops during 

the night and the parasympathetic mode of the ANS is dominant. The respiratory 

sinus arrhythmia phenomenon is very clear at night time due to the modulation of the 

heart rate by the breathing, which is more evident with regular breathing. The mean 

RR of the IUGR children (figure 3.6) shows the outliers marked in red. These were 

removed prior to performing HRV analysis. Figure 3.5 shows the SDNN (a very 
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common measure of the HRV) of the normal children. Notice that it is higher than the 

SDNN for the IUGR children (figure 3.7). Low value of SDNN is a proven marker for 

heart diseases.     

 
 

 

 

Figure 3.4: Normal Children RR mean for 24 hr, day and night. 
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Figure 3.5: Normal children SDNN for 24hr, day and night. 

 

 
Figure 3.6: IUGR RR mean for 24hr, day and night. 
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Figure 3.7: SDNN of IUGR children for 24 hr, day and night. 

  
 
The RR mean results for the normal children show that at night time the 

parasympathetic branch of ANS is dominant and heart rate slows down, but at day 

time when the children are very active and playing around, the sympathetic branch is 

dominant and heart rate is faster. The same applies for the IUGR children, and it was 

found that there is no significant difference between the mean RR results for Normal 

and IUGR, in all day, all night and 24 hr periods (p>0.05). The high SDNN for 24hr 

period is due to the consideration of the whole span of tile day and night and it 

includes the waking up and the sleeping transition which is not considered in the day 

and night analysis for both IUGR and normal children data. The results of the time 

domain analysis shows that there is no significant difference between all the HRV 

measures (p>0.05). 

3.2 Heart rate plots 

The inverse of the R to R (NN) intervals is the instantaneous heart rate. In figure 3.7, 

at day time the heart rate for this particular child is high, it is in the range of 

approximately 78 bpm to 160 bpm. At night time when parasympathetic tone is 
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dominant and the child is at rest, the heart rate tends to be as low as 60 bpm. The heart 

rate is equal to 1/RR , and the unit is beat/min. 

 
 
 
 
 
 
 
 
 

 

 

 

 
 
 
 
 
 
 
 
 

 

3.3 Sample Density Distribution 
Sample density distribution plots (which are the plots of all NN intervals against their 

number of occurrences) and Poincaré plots (the plots of the present NN against the 

previous NN) along all the 24 hr are part of the geometrical tools for HRV Poincaré 

analysis They are used to visualise the distribution of the RR intervals and how they 

behave in terms of their statistical distribution. The 'incorrect' NN intervals are usually 

either shorter or longer than the population of 'correct' NN intervals (Malik, 1997). 

Figure (3.9) shows the sample distribution plot for a child, it has a peak of RR around 

0.6 s and another lower peak at 0.8 s. The range of the shortest RR to the longest RR 

is from 0.3 s to just under 1.3 s. 

Triangular index (HRV index) is the value obtained by dividing the area integral of 

the distribution D by the maximum Y, where Y=D(X), and X is the most frequent NN. 

  
𝐻𝑅𝑉 𝑖𝑛𝑑𝑒𝑥 = (𝑡𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑁𝑁 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠)

𝑌
…………….   (3.1) 

 
And the interval histogram (TINN) measure is = M-N     (3.2)  

Figure 3.8: A Graph of the heart rate in beats per min for 24hr. 
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3.4 Statistical results for Night comparison 

It is well known that RR data time series is a non-stationary signal and it is 

unpractical to compare between subjects given the features of RR time series, so a 

possible way of dealing with such a signal is to segment the time series at an 

identified length and analyse the segments in isolation (Clifford et al., 2006). It is 

recommended (by Task Force 1996) to take short segment of 5 or 10 min and I have 

taken 10 min, then I added more than that to study the trend in the data. Interestingly 

enough a lot of results from this study do agree with other results in this thesis or 

confirm results by other researchers. 

In this work, one hour of RR was separated from the 24 hour record of RR to look at a 

period of night when the children having their highest RR and what effect has some 

known factors (IUGR, smoking, breastfeeding, gender) on the ANS. This was done 

for the purpose of comparing between different groups of children with specific 

characteristics, such as IUGR group against Normal, or Normal children with parental 

smoking during pregnancy against normal non smoking parent,… etc. The selected 

one hour starts after the maximum value of RR of every child; that means it is at night 

Figure 3.9: The sample density distribution of the RR intervals for a child. 
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time when the parasympathetic tone is at its highest level. A Matlab algorithm 

enclosed in the CD with this thesis was developed. The program is to find the 

maximum RR and the following hour for all normal children as one group then to find 

the same for the IUGR group. This was done to see the effect of gender, breastfeeding 

and smoking. The results plotted and can be compared graphically.  

It is quite clear that at night time the variation in RR is less and hence the comparison 

between different groups of children will be more adequate if the night time is used as 

this is not affected by the children’s day activities.  

 

 

3.5 Night Time RR comparison 

3.5.1 Night Time 1 hr comparison (IUGR, Normal) 

The night time 1 hr RR comparison between IUGR and Normal groups shown in 

figure 3.10 indicates that they are very similar values of RR. The later results show 

that there are differences between other groups like males and females, but overall 

results of all the IUGR and Normal cancel any differences. The trend of the plots for 

both normal and IUGR starts from  high values of RR because the RR data has been 

chosen arbitrarly to start from the highest value of RR. 
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Figure 3.10: The one hour RR comparison at night between IUGR and Normal children. 

 

 

 
 
 
 
 
 

3.5.2 Night time 1 hr comparison (Male, Female) 

The graphs shown in Figures 3.11 and 3.12 allow a comparison between males and 

females in IUGR and Normal groups; it is obvious that the males have higher RR 

intervals at night than the females. This agrees with the findings of Rijnbeek et al. 

(2001), whose study confirms that the boys have longer RR intervals, and the girls 

have a higher heart rate than the boys at the same age. It is well known that the 

smaller the body size the shorter the RR intervals and the higher the heart rate. This 

also means infant’s heart rate is higher than the adult’s. 
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Figure 3.11: Comparing IUGR males and females. 

 
 
 

 
Figure 3.12: Comparing Normal males and females. 
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3.5.3     Night time 1h comparison (Breast Feeding) 

Breast milk has always been encouraged for the infants as the best nutrition in the first 

months of life. Breastfeeding has been associated with a better cardiovascular risk 

profile (Ravelli et al., 2000), and better cardiovascular outcomes in later life, such as 

less ischemic heart disease, (Fall et al., 1992) and lower risk of obesity in adulthood 

(Dewey, 2003). Research studies on the effect of breast feeding on cardio respiratory 

risk factors in adult life, show that there was no substantial long-term protective effect 

of breastfeeding for >1 month on other cardio respiratory risk factors in adult life. 

Breast-feeding is shown to be linked with a lowering of blood pressure ( at 7.5 yrs) in 

children born at term (Martin et al., 2004).  When breastfeeding IUGR children were 

compared with non-breastfeeding (fig 3.13), the breastfeeding IUGR have longer NN 

intervals than the non-breastfeeding ones. For the normal children there is no effect of 

breastfeeding on NN intervals, see fig (3.14). 

 

 
Figure 3.13: IUGR breastfeeding and non-breastfeeding. 
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Figure 3.14: Normal breastfeeding and non-breastfeeding. 

 
 

 

3.5.4 Night time 1h comparison (Smoking) 
 

The one-hour analysis from this work shows that during pregnancy the IUGR and 

Normal with non-smoking parents have a lower RR intervals, fig (3.15) and fig 

(3.16). This implies that smoking has an effect on the ANS. Studies by Blair, Fleming 

and others, confirm the increased risk of sudden infant death syndrome associated 

with maternal smoking during pregnancy and evidence of household exposed to 

tobacco smoke has an independent additive effect (Blair et al., 1996). At 10 yrs old 

the effect of parental smoking indicates that IUGR have low RR if their parents are 

Smoking, Figure (3.17). The effect of smoking on Normal children RR at night shown 

no significant difference, Fig (3.18).   
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Figure 3.15: Maternal smoking effect on IUGR. 

 

 
Figure 3.16: Maternal smoking effect on Normal children. 
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Another study by (Geerts et al., 2008) found no association between maternal 

exposure to tobacco and diastolic blood pressure, but reported that smoking during 

pregnancy has a substantial increasing effect on systolic blood pressure in early 

infancy. 

 
Figure 3.17: Passive smoking effect on IUGR children. 

 
Figure 3.18: Passive smoking effect on Normal children. 
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3.5.5 Statistical analysis and discussion  

 
All the previous analysis and plots were about one hour comparison of RR intervals at 

night time and this does not give the whole picture of all the RR night time 

differences. The nature of non-stationary RR signal can lead to wrong results when 

doing analysis based on only one hour at night of the IUGR and normal children.  

Statistical analysis on the previous work ( for night time data) was performed by using 

the Mulifactorial Analysis Of Variance to study the effect of many factors on the RR 

intervals at all duration of night time and at day time. The Null hypothesis in this 

analysis is that the outcome RR at night is not affected by any of the factors included 

in the study.  Multifactorial ANOVA is used for analysing the simultaneous effects of 

two or more independent variables. Table 3.2 shows the listed factors under study 

using the above method. The SPSS was used to encode the variables to denote the 

different state of the variable, e.g. breast feeding =1and non breastfeeding = 2. The 

test of homogeneity of variance was satisfied by having the result of the Levene’s test 

not significant p>0.05. The results of running the Multifactorial Analysis of Variance 

test are shown in table 3.3. During night time the RR intervals are not affected by any 

of the listed factors (breast feeding, non-breast feeding, smoking and non-smoking 

during pregnancy, house hold type at the age of 10, males, females, and type of child). 

The p value was not significant for all factors, i.e. it is >0.05, except for the gender 

factor where the p value =0.011.  Males RR intervals at night time have a higher value 

than females RR intervals (mean difference = 54). The day RR intervals analysis 

showed that none of the predictors has any effect on the day RR intervals. These 

results showed no significant difference for all predictors in the study.  

When the test was run for dependent variable SDNN at night time, the results shown 

in table 3.4 gives slightly higher SDNN (HRV) in males, normal, children whose 

mother did not smoke during pregnancy and children who lives in a non-smoking 

family at 10 yrs. However, none of the differences reached statistical significance. 

SDNN is a basic time domain measure for HRV, as explained in chapter 1, and when 

SDNN is high this means that the subject has high HRV which is a good indication of 

a healthy subject. 
 

 



Chapter 3: Time Domain Analysis 
 

53 

 
Table 3.2: Factors under analysis to see their 

effect on RR at night intervals. 

Factors N 

Breast-Feed 

Non Breast-feed  

1.00 44 

2.00 31 

Non-Smoking in preg. 

Smoking  in pregnancy 

0.00 50 

1.00 25 

Non-Family Smoking 

Family Smoking 

0 42 

1 33 

male  

Female 

1.00 41 

2.00 34 

IUGR 

normal 

1 41 

2 34 
 

 
 
 
 
 

Table 3.3: The results of Multifactorial Analysis of variance test of RR night as dependent 
variable. 

Independent Variable 

 Mean Std. Error Sig. 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

Breast-feed 

Non Breast-feed 

1 

2 

842.266 

825.270 

14.965 

16.801 
.469 

812.405 

791.744 

872.128 

858.796 

Non- Smoking 

Preg. 

 Smoking in Preg. 

0 

1 

832.676 

834.860 

14.677 

19.944 .937 

803.388 

795.064 

861.964 

874.657 

Non- smoking 

family 

smoking family 

0 

1 

827.209 

840.328 

18.148 

15.933 .622 

790.994 

808.534 

861.964 

874.657 

Male 

female 

1 

2 

860.789 

806.748 

14.314 

15.506 
.011 

832.226 

775.806 

889.352 

837.690 

IUGR 

Normal 

1 

2 

838.639 

828.897 

14.166 

16.782 
.664 

     810.372 

795.410 

      866.907 

862.384 
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Table 3.4: The results of Multifactorial Analysis of Variance test of SDNN night as dependent 
variable 

Independent Variable Mean Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Breastfeed 

Non Breastfeed 

1 

2 

91.229 

95.224 

5.801 

6.536 
.659 

79.646 

82.175 

102.811 

108.273 

Non-Smoking in Preg 

 smokingPreg 

0 

1 

93.996 

92.457 

5.674 

7.764 
.886 

82.668 

76.956 

105.323 

107.958 

Non- smoking family  

smoking Family 

0 

1 

93.675 

92.778 

7.041 

6.178 
.930 

79.617 

80.442 

107.734 

105.113 

Male 

female 

1 

2 

98.134 

88.319 

5.563 

6.057 
.223 

87.027 

76.225 

109.241 

100.412 

IUGR 

Normal 

1 

2 

90.642 

95.811 

5.541 

6.529 
.553 

79.580 

82.775 
101.704 
108.847 
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4 Frequency Domain Analysis 

Spectral analysis of NN interval sequence allows the interpretation of the effects of 

the sympathetic and parasympathetic influence on the heart rhythm. 
Three power spectral analysis methods have been tested on the NN data to find the 

frequency components of the power spectrum for 10 min segments. 

Table 4.1 shows most frequently used frequency domain parameters and their 

boundaries for short and long term HRV analysis. Short term spectral recordings are 

characterized by VLF, LF, and HF parameters, while long term recordings include 

ULF component in addition. The total power (variance) corresponds to the sum of 

four spectral bands ULF, VLF, LF and HF parameters. The HF power is 

synchronized with respiratory rhythms, primarily related to the vagal innervations 

and can be determined by frequency of breathing. The interpretation of LF is 

controversial, some authors consider LF power as a measure of sympathetic 

modulation, while others consider it as combination of both sympathetic and 

parasympathetic activity. The consensus is that LF is sensitive to cardiac sympathetic 

and parasympathetic nerve activity. The ULF component might reflect circadian and 

neuroendocrine rhythms and VLF reflects long period rhythms and is affected by 

temperature regulation and humoral systems (The Task Force, 1996) . 

  

Table 4.1:Frequency domain HRV measures (Redrawn from Task force 1996) 

 

Variable 

Units Description 
Short term Recordings (5 min) 

Frequency Range 

Total power 
VLF 
LF 
HF 
LF/HF 
 
 
 
 
Total power 
ULF 
VLF 
LF 
HF 

  ms2 
ms2 

ms2 

ms2 

 
 
 
 
 

ms2 
ms2 

ms2 

ms2 

ms2 

Variance of NN intervals 10 min segment 
Power in very low frequency range. 
Power in low frequency range. 
Power in high frequency range. 
Ratio of low frequency and high frequency. 

 
 

Long term Recordings (24 hour) 
 
Variance of all NN intervals 
Power in ultra low frequency range. 
Power in low frequency range. 
Power in low frequency range. 
Power in high frequency range 

Approx.  ≤ 0.4 Hz 
≤ 0.04HZ 
0.04-0.15Hz 
0.15-0.4 Hz 
 
 
 
 
 
Approx. ≤ 0.4 Hz 
≤ 0.003HZ 
0.003-0.04 Hz 
0.04-0.15Hz 
0.15-0.4 Hz 
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4.1 Fast Fourier Transform 

The Fourier model assumes that the RR sequence we observe is the weighted 

summation of a large number of independent sinusoidal oscillators with different RR 

intervals (Burr R. et al. 1992). In figure 4.1b, a spectrum of 10 min of re-sampled RR 

can be seen with a high peak frequency around 0.35 Hz.  

Periodogram estimation of power spectral density is the most basic nonparametric 

PSD estimation. The periodogram is the squared magnitude of Fourier Transform of 

the signal scaled in amplitude by the number of samples. 
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Where 𝑥(𝑛) the original signal of length 𝑁, and  𝑓𝑠 = 1/T is the sampling frequency. 
 

The spectral estimation can be assed according to the issues of spectral leakage, 

resolution and variance. Spectral leakage is associated with a finite signal samples. 

The transform of the finite signal samples is treated at a transform of a convolution of 

infinite number of samples with a rectangular window. At the edges of the truncated 

signal an unwanted spectral components will be introduced, and this will be higher in 

case of shorter signal samples. Decreasing this unwanted signal before the performing 

the Fourier transform the signal may be multiplied by a smooth window function 

tending to zero on at the edges. 

The modified periodogram is defined as follows: 
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Where 𝑤(𝑛)  is the window function. 

The variance can be decreased by computing separate periodograms for M signal 

intervals of length L and then averaged. 
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The averaged periodogram is defined as:  

𝑃(𝑓) = 1
𝑀
∑ � 1

𝐿𝑓𝑠
�∑ 𝑥(𝑛 + 𝑀𝐿)𝑒−𝑗2𝜋

𝑓
𝑓𝑠
𝑛𝐿−1

𝑛=0 �
2

�𝑀−1
𝑀=𝑜      (4.3) 

Welch periodogram is based on the signal divided into a M number of intervals of 

length L overlapping by D samples. Each interval is multiplied by a window function  

𝑤(𝑛). The periodograms are computed for each interval and averaged as shown in 

the following equation: 

𝑃(𝑓) = 1
𝑀
∑

⎣
⎢
⎢
⎡�∑ 𝑥(𝑛+𝑀𝐷)𝑤(𝑛)𝑒
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𝑛=0

⎦
⎥
⎥
⎤

𝑀−1
𝑀=𝑜                  (4.4) 

 
  

4.1.1 Results and discussion 
The frequency domain measures  LF and HF  of HRV were tested to see if they are 

affected by other predictors such as  IUGR, Normal, smoking during pregnancy and 

family smoking. The result of the Multifactorial analysis of variance (ANOVA) test 

is shown in tables 4.1 and 4.2. LF reflects the sympathetic modulation and it 

increases with stress and tension. LF is shown in table 4.1 to be higher in children 

who’s their mothers smoked during pregnancy and higher in normal children as well 

as children who were not subjected to smoking in the family when their age is 10 yrs. 

Figure 4.1: FFT of 10 min RR intervals for a child ( y scale –PSD(s^2/Hz)) 
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Table 4.2: Multifactorial analysis of variance test to study the effect on LF by other predictors 

Independent Variable 

 Mean 

Std. 

Error Sig. 

95% Confidence Interval 

Lower 

Bound Upper Bound 

Non-Smoking in Preg 

 smokingPreg 

0 

1 

1814.373 

2063.672 

157.971 

228.236 
.416 

1498.883 

1607.853 

2129.863 

2519.490 

Non- smoking family 

smoking Family 

0 

1 

2072.157 

1805.888 

199.041 

180.226 
.358 

1674.645 

1445.952 

2469.668 

2165.824 

IUGR 

Normal 

1 

2 

1873.918 

2004.126 

160.832 

178.714 
.578 

1552.714 

1647.210 

2195.123 

2361.043 

 

The results of the HF tests in table 4.2 shows that the children who their mother did 

not smoke during pregnancy and those who were not subjected to family smoking 

have a higher HF, but the affect of all these predictors on HF are not significant 

p>0.05.  

 

Table 4.2: Multifactorial analysis of Variance test to study the effect on HF by other Predictors 

Independent Variable 

 Mean 

Std. 

Error Sig. 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

Non-Smoking in Preg 

 smokingPreg 

0 

1 

2703.890 

2574.766 

419.925 

606.706 
.925 

1865.241 

1363.090 

3542.539 

3786.441 

Non-family smoking 

Family. smoking 

0 

1 

2886.545 

2392.111 

529.098 

479.084 
.874 

1829.864 

1435.314 

3943.226 

3348.908 

IUGR 

Normal 

1 

2 

2668.599 

2610.057 

427.531 

475.064 
.520 

1814.760 

1661.289 

3522.438 

3558.826 
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4.2 Autoregressive model 

For short segments of data Fourier-basis spectral estimation has a poor spectral 

resolution. As sometimes we want to study short segments we also performed the 

spectral estimation based on the autoregressive model.  

The equation of AR process of order p can be written as 
 

ptptttt xaxaxanx −−− ++++= ...2211                     (4.5) 

Where tn the white noise driving signal, p is the order of the AR model, and 

paa .......1
 are the parameters of the AR filter.  

The AR power spectrum density estimate is given by the following equation (Kay 

and Marple, 1981) (Boardman et al., 2002): 
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Where σ2

 is the variance of the white noise driving function and Δ t is the re-sampling 

interval. 

The heart rate variability report produced by the Task force of the European Society  

of Cardiology and the North American Society of Pacing Electrophysiology (The 

Task Force, 1996) did not select the nonparametric or the parametric spectral method 

to be more applicable to frequency-domain analysis of HRV. They recommend using 

both methods to evaluate frequency domain HRV measures because the 

nonparametric (FFT) has the advantage of algorithmic simplicity and rapidity, while 

the parametric approach produces smoother spectral components and, if the model 

order (p) is well chosen, it will produce an accurate estimation of PSD even for short 

time windows. 

The AR spectral analysis of 10 min segments for 24 hr will produce a graph as shown 

in figure 4.2. Figure 4.3 shows the evolution of the AR spectrum of the HRV over 24 

hr and figure 4.4 shows the 3D of the AR spectrum evolution of the HRV for the 24 
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hr. It can be seen that Respiratory Sinus Arrhythmia (RSA) around 0.3 Hz is more 

apparent at night time, when more regular ventilation is occurring. More details will 

be given about RSA in a later section. The high peak is due to ultra low frequency 

ULF (0.0001Hz 0.003Hz) and very low frequency VLF (0.003Hz to 0.04Hz) is due to 

long-term regulatory mechanisms such as thermoregulatory system, the renin-

angiotensin system (which is related to blood pressure and other chemical factors) 

and other humoral factors (Malik M. and Camm A. J., 1995).  

A study by (Taylor et al., 1998) showed that VLF fluctuation depends primarily on 

the parasympathetic branch. Others (Serrador et al., 1999) demonstrated that the ULF 

band is dominated and affected by the physical contributions and that is why HRV in 

this band tends to increase during exercise. 

 

  

 

Figure 4.2: Autoregressive spectrum of 10 min (R to R) data after re-sampling (y axis is PSD in S2/Hz). 
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Figure 4.3: Sequence of autoregressive spectra of 10 min (R to R) data after re-sampling. 
 

 
Figure 4.4: 3D sequence of AR evolution of HRV spectra. 
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4.2.1 Results and discussion 

The AR method was implemented using the RSA.m algorithm (programme added to 

enclosed CD) to find the RSA ( area) of the power spectrum between 0.15 Hz and 0.4 

Hz, (Biala T. et al., 2009). Data obtained during night time were selected . The 

starting point was defined using the following line in Matlab: 

Fprintf ('Where shall we start (in min. Each record = %3.1f min) ?',DataLength_min); 

Where=input (' '); 

The end of the RSA segment analysis can be defined by the following line: 

Tnum_max=50;           % maximum of 50 segments 

Tnum=min (Tnum,Tnum_max);    % limiting max N. segments ... 

 

The Trapezoid method in equation (4.7) was used to find the energy (area) of the 

RSA: 

2
)( hbaA +

=

                                                   

(4.7)

                  
Where (a and b) are the two parallel sides and h is the distance (height) between 

them. 

The result of the algorithm is: 

RSA area (energy) = 2.65 u^2, Total area(energy) =   9.05 u^2,percentage= 29.32 

percent and the u is arbitrary unit (gain is not calibrated). See Appendix C for results. 

The t-test showed that there was no significant difference between the two groups for 

RSA, difference = 0.44, t = 0.32, p=0.7467 (95% CI = -3.1, 2.3). There was 

homogeneity of variance (Levene’s Test, p=0.14) and the data were approximately 

normally distributed within each group. 

Other variables shown in table 4.4 were assessed for significance but none of them 

significantly predicted (RSA), although IMD (Index of Multiple Deprivation) was 

borderline (0.06). This means deprived children with high IMD don’t have 

synchronised breathing at night. 
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Table 4.3: Predictors and their effect on RSA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

* = independent t-test, # = correlation 

4.3 The Lomb Periodogram 

4.3.1 Introduction  

Power spectral density (PSD) estimation allows a description of the frequency 

contents of a time series. The classical methods for estimating the spectrum of a 

signal or time series are Fourier-based and parametric, of which the AR method is the 

more popular approach as it involves linear equations, which are computationally 

easy to solve. 

The Fourier and AR methods need a uniformly sampled data series to work, hence 

they both have the disadvantage of needing re-sampling of the RR data at uniform 

intervals. This process will alter the frequency content of even a noise-free time series 

by nonlinear low-pass filtering  (Moody, 1993). 

Variable p-value 

Sex * 0.32 
Breast Feeding (y/n) * 0.50 
Parental Smoking (y/n) * 0.99 
Household Smoking (y/n) * 0.72 
IMD # 0.06 
24 hour SBP # 0.59 
24 hour DBP # 0.87 
BMI # 0.77  
Significant Medication * 0.26 
Using Medication * 0.36 
Birth Weight # 0.45 
Length Gestation # 0.50 
Weight change from birth # 0.77 
Night SBP # 0.79 
Night DBP # 0.60 
Day SBP # 0.46 
Day DBP # 0.64 
Cortisol morning # 0.29 
Cortisol night-time # 0.66 
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The PSD can be adversely affected by the ectopic beats or noise in the time series, 

because the impulse noise in time series can be transformed to a broad-band “clutter” 

in frequency domain. The re-sampling can affect more the frequency content of the 

signal because of the need to put replacements to the noise or to the ectopic beats. 

Methods such as Lomb periodogram avoid completely the disadvantages associated 

with re-sampling and interpolation.  

 
 A study by Shin K. S. 1994 applying Lomb periodogram (LP) (Shin et al., 1994) on 

various cardiac event series of real ECG, as shown in figure 4.5, showed that LP is 

very effective in the PSD estimation of HRV, especially in the presence of 

arrhythmias and dropouts of cardiac events. FFT was used by Clifford G.D. (2005) 

for HRV analysis of realistic artificial RR interval generator, interpolation and re-

sampling. LP was proven to be more appropriate to be used for HRV because of the 

better provision of PSD estimation .The Lomb-Welch Periodogram method was used 

by  (Thong et al., 2004 ) to look at the effect of smoking on the HRV analysis. The 

study showed an increase in LF to HF ratio with little change in mean heart rate. This 

suggests that nicotine affects both sympathetic and parasympathetic activities. 

4.3.2 Method 

In this study, the RR data extracted from the recorded ECG over a 24 hr period 

described in chapter 2 was used, as well as data on family smoking when the children 

Figure 4.5: ECG recordings of two heart beats. 
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age is around 10 years. The children in this study were divided into four groups 

depend on the children being normal or IUGR and family smoking as shown in Table 

4.5. 
Table 4.4:  Grouping employed to children used in this study. 

Birth weight of child        Smoking status of parents 
IUGR smokers 
IUGR non-smokers 
Normal smokers 
Normal non-smokers 
 
In this work the Lomb-periodogram method was used to analyse the data in the 

frequency domain. This is described below. 

4.3.2.1 Frequency domain - Lomb periodogram 

The FFT requires a uniformly sampled signal, which is not the case in RR data, so the 

RR data needs to be interpolated and re-sampled at, at least twice the maximum 

frequency of interest in the original signal to avoid aliasing; more of this was 

explained in chapter 2. The re-sampling process alters the frequency content of even a 

noise-free time series by non-linear low-pass filtering (Moody, 1993). The Lomb 

method, developed by Lomb and later elaborated on by Scargle, is a technique 

designed to calculate the frequency power of a signal described by unevenly spaced 

data points (Press et al., 1997), this was implemented in this work to produce Lomb 

periodogram (Cripps and Biala, 2009). No interpolation of the data series is required. 

The Lomb normalised periodogram, PN (ω), is defined by the following equations as 

given in (Press W. H. 1992): 

 
 The Lomb normalised periodogram equation is 
 
 

𝑃𝑁 (𝜔) = 1
2𝜎2 �

�∑ �𝑥𝑗 −�̅�� cos(𝜔(𝑡𝑗𝑗 −𝜏))�2

∑ cos2(𝑗 𝜔(𝑡𝑗−𝜏))
+

�∑ �𝑥𝑗 −�̅�� sin(𝜔(𝑡𝑗𝑗 −𝜏))�2

∑ sin2(𝑗 𝜔(𝑡𝑗−𝜏))
�    (4.5)                                                                

 
Where  𝜏  is defined by the relation 
 
 

𝜏 = tan−1 �
∑ sin(2𝜔𝑡𝑗)𝑗

2𝜔∑ cos (2𝜔𝑡𝑗𝑗
�                                                              (4.6) 
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The average value of the data and the standard deviation are measured by 
 
 

�̅� = 1
𝑁
∑ 𝑥𝑗           ,                  𝜎2
𝑁−1
0 = 1

𝑁−1
∑(𝑥𝑗 − �̅�)2                       (4.7) 

 
where N is the number of data points, τ𝑖 are the data points measured at time  𝑡𝑖,      ω 

= 2πf is the angular frequency and τ is an offset constant that makes 𝑃𝑁 (ω) 

independent of shifting all the 𝑡𝑖’s by any constant. The selection of the offset makes 

equation (4.5) the solution one will obtain if the harmonic content of a data set, at a 

given frequency ω, were estimated by a linear least-squares fitting to the model 

𝑥(𝑡) = 𝐴 cos(𝜔𝑡) + 𝐵 sin(𝜔𝑡) (Lomb, 1976). The Lomb periodogram weights the 

data on a per point basis rather than per time interval basis (where re-sampling can 

introduce errors). The implementation of Lomb was done by using the program 

extractlomb.m. This programme reads the RR data of each child 

(subject1processeddata.mat) from the respective datas file.  Two subfiles (Lomb1.m 

and Lombplot.m) were used to produce the frequency, time and power for each child 

and to be save the data in a file called subjectNoLombdata.mat.  The Lomb 

periodogram was plotted using the lomb3D.m algorithm.  The LF, HF and LF/HF 

components were calculated using the Area.m script. All algorithms enumerated 

above are included in the CD enclosed with the thesis.  Their results  are collected in 

Appendix C. 

4.3.2.2 Respiratory sinus arrhythmia 

In healthy individuals the heart rate varies at the frequency of respiration. This is known as 

respiratory sinus arrhythmia (RSA). During inspiration, the chest expands causing the 

intrathoracic pressure to decrease. This increases the amount of venous blood from the body 

into the right atrium and, via the Bainbridge reflex, causes the heart rate to accelerate. 

Conversely, during expiration the heart rate decelerates via the baroreceptor reflex (Berne 

and Levy, 2001) . Recordings of the autonomic nerves show that the sympathetic nerves are 

activated during inspiration and the parasympathetic during expiration. RSA is most 

pronounced during the night when we are sleeping and can be seen as an increase in activity 

around 0.3 Hz, in the HF region. The greater the heart rate variability in an individual, the 

more pronounced the peak associated with RSA. The identification of RSA was used in this 

study to identify the start of sleep time and the end of sleep time, or awakening time. 
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Adding to that, the parents recording of sleep time was used and the mean of RR graphs. 

4.3.3 Results 

4.3.3.1 FFT 

Periodograms for the all children were produced using spline interpolation of the RR 

intervals, re-sampling at 4 Hz and FFT-based spectral analysis, to allow comparison 

with the periodograms produced using the Lomb method. The FFT periodogram for 

NB (A female child) is shown in Figure 4.6. A strong series of peaks centred around 

0.25 Hz can clearly be seen, corresponding to RSA activity during sleep, between the 

hours of 5 and 17 on the plot (the Holters were fitted around 3 pm, which corresponds 

to time=0 on the plot). 

 

Figure 4.6: FFT periodogram for child NB , an IUGR child at birth whose parents smoked 30 
cigarettes a day in total. 
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4.3.3.2 Lomb periodogram and strength of RSA peaks. 
 
 
Lomb periodograms were also produced for the same children. Figure 4.7 shows the 

Lomb periodogram method for child NB. 

 

 

Figure 4.7: Lomb periodogram for child NB, an IUGR child, whose parents smoked 30 cigarettes 
a day in total.  

 

Strong peaks corresponding to RSA can be seen in both plots (4.6) and (4.7) in the 

region of 0.2 to 0.3 Hz during the hours that the child was asleep. When comparing 

visually the FFT and Lomb periodograms (figure 4.6 and figure 4.7), FFT shows less 

power density at the frequencies of RSA (a future empirical study can be done to 

quantify the difference between FFT and Lomb), this could be due to the leakage 

associated with FFT, so that power of the signal spreads to other adjacent 

frequencies. Alternatively this might have been the effect of the attenuation of high 

frequencies caused by the Low pass filtering associated with re-sampling and 
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interpolation.  Figure 4.8 shows a Lomb periodogram of an IUGR child whose 

parents were not smokers. 

 

 
Figure 4.8: Lomb periodogram for an IUGR child whose parents non smokers and the colour 

scale indicates the strength of the normalised power. 

The RSA is related to the efficiency of breathing of the children the higher the HF 

energy, which is related to the RSA, the better the breathing. 

The LF/HF ratio for each child was also calculated, along with the mean ratio and the 

standard deviation of the group. A Student’s t-test was then performed on the 

pairings, as seen in Table 4.6. The results of comparing the different groups 

according to mother smoking showed no significant difference between them. This is 

an observational study and the sample size is small hence the results can give a type 2 

errors (i.e. accepting a false Null hypothesis). 
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Table 4.5: student t-test analysis of LF/HF ratio of comparing between the different groups with 

regard to smoking during pregnancy 

Group 1 Group 2 

T –
test 

Prob-
asleep 

Reject 
Null 

Hypothesis 

t-test 
Prob-
awake 

Reject 
null 

hypothesis 

IUGR 
smokers 

IUGR 
non 

smokers 
0.4174 No 0.11 No 

Normal 
smokers 

Normal 
non-

smokers 
0.1107 No 0.28 No 

IUGR 
smokers 

Normal 
smokers 0.0585 No 0.18 No 

IUGR 
non 

smokers 

Normal 
non-

smokers 
0.1135 No 0.79 No 

 

The results of the Multifactorial analysis of Variance test in table 4.7 show that day 

time activities appears to have produced higher LF/HF ratios for females, , IUGR and 

non Breast-fed children , but only the effect of gender was significant. 

 
Table 4.6: Multifactorial Analysis Of Variance of LF/HF day as dependent variable. 

Independent Variable Mean Std. Error Sig. 
95% Confidence Interval 

Lower Bound Upper Bound 

Non-Smoking in Preg 

smokingPreg 

0 

1 

2.641 

2.332 

.306 

.443 
.610 

2.030 

1.446 

3.253 

3.219 

Non-family smoking 

Family. smoking 

0 

1 

2.501 

2.473 

.372 

.335 
.959 

1.756 

1.804 

3.246 

3.142 

male 

female 

1 

2 

2.017 

2.957 

.321 

.333 
.045 

1.375 

2.292 

2.659 

3.622 

breast feed 

not breast feed 

1 

2 

2.301 

2.673 

.305 

.372 
.455 

1.692 

1.929 

2.910 

3.417 

IUGR 

Normal 

1 

2 

2.571 

2.403 

.403 

.404 
.799 

1.766 

1.594 

3.376 

3.211 

 

The results in table 4.8 show that the LF/HF during sleep  appears to be lower for  

male children , those who were breastfed, normal children, and those from families 
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where there was smoking in the household, however, none of these differences were 

significant (p>0.05). 

 

 

 
Table 4.7: Multfactorial Analysis of Variance to study the effect of LF/HF during Asleep. 

Independent Variable Mean Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Non-Smoking in Preg 

 smokingPreg 

0 

1 

.654 

.654 

.110 

.160 
1.000 

.434 

.335 

.875 

.974 

Non-family smoking 

Family. smoking 

0 

1 

.712 

.597 

.134 

.121 
.553 

.443 

.356 

.980 

.838 

male 

female 

1 

2 

.557 

.752 

.116 

.120 
.243 

.326 

.512 

.788 

.991 

breast feed  

not breast feed 

1 

2 

.611 

.697 

.110 

.134 
.633 

.392 

.429 

.831 

.965 

IUGR 

Normal 

1 

2 

.735 

.574 

.145 

.146 
.501 

.444 

.282 

1.025 

.865 

 

4.3.4 Conclusions  

In the frequency domain, periodograms were produced using the FFT method and 

Lomb methods. Comparisons of the spectra produced using the two techniques 

showed spectral leakage and high frequency attenuation on the FFT periodograms. 

Therefore, although the Lomb method used in this instance took longer to execute, 

Lomb periodograms were used for further investigation in the frequency domain. 

Analysis of the LF/HF ratios during sleep and awake hours has shown no significant 

difference between IUGR and normal children. 
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5 Development of QT measurement 
algorithm 

5.1 Introduction 

Previous research on Heart rate variability (HRV) measurements on the data used in 

this research (Biala et al., 2008) showed that there is no significant difference 

between the IUGR and Normal children. Respiratory sinus arrhythmia of 10 year old 

children (Biala et al., 2009) showed no significant difference between the two groups 

either. When using Lomb frequency domain method (Cripps and Biala, 2009), passive 

parental smoking on IUGR children caused significant difference compared with the 

IUGR with non-smoking parents. The previous result was valid only for a selected no 

of subject, 24 out of 75, but for all subjects there is no effect of passive smoking on 

IUGR children. The next stage of the research is to measure the different segments 

and intervals in the ECG of all the children and study the QT intervals. Next is an 

overview of the ECG features which will give the definition of all waves, segments 

and intervals associated with ECG.   

A typical ECG waveform comprises of an initial P-wave, followed by QRS complex 

and then a trailing T-wave as shown in figure 5.1. The description of ECG waveforms 

is as follows: 

 P-Wave − The low voltage caused by the depolarisation of the atria prior 

to contraction. The atria contain very little muscle and thus the voltage 

change is quite small. The normal p-wave measures less than 0.11 second  

 QRS Complex − The QRS complex is caused by the ventricular 

depolarisation. The time during which ventricular contraction occurs is 

referred as the systole. The QRS complex should be less than 0.1 second. 

 T-wave − T-wave is caused by the ventricular repolarisation. The time 

between successive ventricular repolarisations is referred to as diastole. 

Although atrial repolarisation occurs simultaneously, it is not seen due to 

the low amplitude of the signal generated by this process which overlaps 

in time with the QRS.. 

Typical amplitude of P-wave is 0.25 mV, R wave is 1.6 mV, Q wave is 25% of R 

wave and T wave is 0.1 to 0.5 mV. The accepted normal interval durations are; PR 
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interval 0.12 to 0.2 second, QT interval 0.35 to 0.44 second, ST interval 0.05 to 0.15 

second, P wave duration 0.11second, and QRS duration 0.09 second (Cromwell et al., 

1996). 

An ECG has many important intervals and segments, such as R to R (used to measure 

the HRV), QT and ST segments. The long QT syndrome (LQTS) is a familial disease 

which is caused by stress-mediated life threatening ventricular arrhythmias (Priori S. 

G. et al., 2001). A  rare single gene mutations (the SCN5A gene) in the long QT 

syndrome have been identified in small numbers of infants dying suddenly and 

unexpectedly (Blair and Fleming, 2008). 

A prolonged QT indicates a myocardium at risk for triggered activity, where the 

cardiac cells will depolarise rapidly and repeatedly, and this is associated with 

dangerous Ventricular tachyarrhythmia (Clifford et al., 2006). Changes in the ST 

segment (depressed, elevated, steeply sloped), indicate various cardiac conditions 

(Sornmo and Laguna, 2005) . 

 

 

 

 

 

 

 

 

 

 

5.2 Aim of work 

The main objective of the work described in this chapter is to develop an algorithm to 

detect QT, other ECG intervals and to find any correlation between QT, ST, QRS, 

Heart rate (HR) of normal and IUGR children at 10 yrs. The cohort under study is 

described in chapter 2 as 41 IUGR and 34 as normal. The ECGs of 24 hour for each 

child were used to find any differences between the two groups. 

Figure 5.1: Some of the intervals measured in 
the ECG. 
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5.3 Method 

The ECG signal was subjected to re-sampling of the ECG from 128 Hz to 512 Hz was 

implemented (The Task Force, 1996) for jitter reduction. The basis of the QT 

algorithm developed using MATLAB is, firstly to detect the QRS by the modified Pan 

and Tompkins technique (Schlindwein et al., 1986) and finding the local maximum 

value of  the ECG, which represents the peak of the R wave, then to window the data 

before the R peak to find all the details such as: Q (the lowest value before the R 

peak), start of the Q wave by setting a threshold and comparing the data values with 

this threshold and when they are equal this point will be marked as the beginning of 

the Q wave,  Secondly, to window the data of the ECG after the R peak, where we can 

detect, by means of maximum and minimum points of the data, the Q, S and the T 

waves. The positions of the start of the T wave and the end of the T wave were 

detected using the same type of threshold comparison used to find the beginning of 

the Q wave. Figure (5.2) shows the ECG with R, Q, S, and T waves detected, as well 

as the onset and offset of each of the waves, so that important intervals can be 

measured. The algorithm was used to find the corrected QT interval, QRS interval, 

and ST interval by means of detection and delineation of Q, S, and T waves. 

 
 
 

 
 
 
 
 
 
 
 
 

 
 
 

 

 
 
 

Figure 5.2: Detections and delimitations of ECG waves. 
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5.4 Results 
A self-developed algorithm QTinterval.m was used, (see CD enclosed with this 

thesis). This algorithm was implemented, to measure the relevant intervals on the 

children ECG signals. First, ECG data files (e.g. ECG10.mat) are read. Then, the 

algorithm estimates the  locations of all onsets and offsets forthe  intervals listed 

below (  prints from the results can be found Appendix C): 

Average of QRS = 48.4 samples...or  94.5 ms 

STD of QRS =  5.0 samples...or   9.9 ms 

Average of QT =181.3 samples...or 354.0 ms 

STD of QT = 36.0 samples...or  70.3 ms 

Average of ST = 30.9 samples...or  60.3 ms 

STD of QT = 36.1 samples...or  70.6 ms 

Heart Rate Beat /Min ....102.7 BPM 

The corrected value of QT =237.1 samples...or 463.2 ms 

 

Figures (5.3, 5.4, 5.5 and 5.6) show the average values of the HR, ST, corrected QT, 

and HR. The average values of Normal children were compared with those of the 

IUGR children.  HR is higher in Normal children at day time and at sleep time HR is 

the same for both groups, see figure (5.3). ST segment in the Normal group is less 

than that in IUGR as shown in figure (5.4). Figure (5.5), shows IUGR children have a 

slightly higher corrected average QT. Figure (5.6) shows Normal children have 

slightly higher RR intervals during awake and asleep. Table (5.1) shows all measured 

values compared with published Paediatric ECG limits. 

5.4.1 Heart rate analysis: 

The heart rate data can show the fact that at day time the heart rate is higher for both 

IUGR and normal children, but IUGR heart rate is higher than Normal. At night time 
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the heart rate decreases due to the fact that the parasympathetic branch is dominant at 

night time, and IUGR children have slightly higher heart rate than Normal children. 

 

 

 

     

Figure 5.3: Heart rate of IUGR and Normal children. 

   

 

5.4.2 ST segment analysis: 
 
Due to the slower heart rate at night time, this causes the ST segments and the QT 

intervals to be longer at night time. The IUGR ST segments are shorter at day time 

than the normal children, but at night time the ST segments for IUGR children are 

longer than the ST for normal children. 

 

 

0

20

40

60

80

100

120

140

Day 

Heart rate of IUGR and Normal (bpm) 

Normal

IUGR

Night 



Chapter 5: Development of QT Measurement Algorithm 

77 

   

Figure 5.4: ST segment for IUGR and Normal at Day and night time. 

      
 

5.4.3 QT interval analysis: 

QT is a very important feature of the ECG; a long QT can suggest a tendency towards 

heart diseases. The condition is called QT syndrome where the subject faints and this 

is associated with mortality (Clifford al et. 2006).  

 

Figure 5.5: QT intervals for IUGR and Normal at day and night. 
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5.4.4 QRS interval analysis 

The QRS intervals are higher at night time and shorter at day time as shown in figure 

5.6.  

 

Figure 5.6: QRS intervals for Normal and IUGR children. 

 
 
 
Table 5.1: All ECG intervals data for Normal and IUGR children and published  Paediatric ECG 

limits 

ECG                
features 

     
       
children 

Heart rate 
/day 
bpm 

Heart 
rate/Night 
bpm 

ST /day 
(ms) 

ST 
/night 
(ms)  

QTc /day 
(ms) 

QTc/Night 
(ms)  

QRS/Day 
(ms) 

QRS/Night 
(ms) 

Normal 
 
 
 

102.31 
±16.60 
 
 
   

72.70 
±9.63 
 
 

68.72 
±18.50 
 

110.94 
±17.83 
 
 

411.37 
±36.13 
 
 

431.79 
±20.16 
 
 

73.96 
±13.65 
 
 

78.75 
±14.76 
 
 
 

IUGR 
 

97.82 
±15.06 
 
 

71.78 
±6.94 
 
 

64.91 
±16.52 
 
 

116.59 
±18.81 
 
 

418.25 
±28.92 
 
 

437.22 
±20.17 
 
 

73.94 
±12.85 
 
 

78.75 
±14.80 
 
 Published 

Data 
Paediatric 
ECG limits* 

Boys 78(55,101) 
Girls  80(58,110)  
 

  Boys 411(373,440) 
Girls  410(365,447) 

Boys  85(67, 103) 
Girls   82( 66,99) 

 
*(Rijnbeek et al., 2001)  
 
Statistical analysis using independent t-tests shows that there is no significant 

difference between the ECG intervals of the IUGR and the normal children. QTc at 
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night time comparison gives a p value of 0.064 which is  border line non-significant, 

The  mean values indicate  that IUGR children  might have  longer QTc (437.22 

±20.17) than the normal children.  Larger samples of IUGR children and normal are 

needed to confirm this in another study   done on the same population’s ECG intervals 

when they become older than 10 yrs.  

 

 
 

Table 5.2: Statistical analysis of the ECG intervals results. 

ECG intervals 
Normal Vs IUGR ( P 

value) 
95% CI (lower, 

upper) 
HR-DAY 0.195 (-11.4            2.35) 

HR-NIGHT 0.623 (-4.58            2.77) 
ST-DAY 0.313 (-10.87          3.52) 

ST -NIGHT 0.164 (-2.30           13.36) 
QTc-DAY 0.123 (-1.92            15.83) 

QTc-NIGHT 0.064 (-0.420           10.79) 
QRS-Day 0.973 (-4.67                4.51) 

QRS -Night 0.91 (-4.8                  5.43) 
 
 

5.5 Conclusion 

The algorithm tested had shown to measure the correct values of the ECG limits for 

signals with good SNR. At 10 years of age the measured ECG intervals of all normal 

and IUGR children was unable to show any deviation from the normal paediatric 

values (Davingnon et al., 1979/80), (Dickinson, 2005). The algorithm needs to be 

improved further for general use to cater different changes and shapes associated with 

paediatric ECG and the ones with higher SNR.  

The analysis of the data showed that the IUGR children are relatively more prone to 

longer QTc intervals. Children with long QT syndrome LQTS are relatively more 

prone to atrioventricular block, multiform premature ventricular contractions, and 

torsade de pointes than other children. Patients with QTc of more than 0.60 are at 

particularly high risk for sudden death (Garson et al., 1993). 
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6 Heart rate variability using Poincaré 
plots  

6.1 Introduction 
Frequency domain measures assume that the R-R interval time series is stationary, or 

that the variations are harmonic or sinusoidal. In reality, HR fluctuations can be both 

periodic (e.g., due to respiration) and non-periodic (e.g., due to abrupt changes in the 

environment or state of the child). Thus HRV may be due to complex, dynamic 

interactions of biological signals and non-linear techniques may strengthen the 

analysis of physiological conditions. S maps have revealed complex, non-linear heart 

patterns in the developing infant [16] and power law slope and Poincaré plots have 

demonstrated increased risk and adversity in cardiovascular disease patients (Acharya 

R. U et al., 2006).  

Poincaré plot is a quantitative visual tool which can be applied to the analysis of RR 

interval time series data gathered over relatively short time periods (Kamen et al. 

1996). In a Poincaré plot each RR interval of a tachogram is plotted as a function of 

previous RR interval. The geometry of this plot has been shown to distinguish 

between healthy and diseased subjects in clinical setting. It is very valuable HRV 

analysis technique due to its ability to display nonlinear aspects of the interval 

sequence. The Poincaré plot is becoming a popular technique due to its simple visual 

interpretation and its proven clinical ability as a predictor of disease and cardiac 

dysfunction (Kamen et al., 1996a). 

In this research Poincaré method was used to look at the effect of maternal smoking 

habit on cardiac function of 10 year-old children (see figure 6.1). These are scatter 

plots where the current RR is plotted against the previous RR. A graphical 

presentation of RR can be produced with SD1 as the short term variability and SD2 as 

the long term variability. The ratio SD1/SD2 represents the randomness in HRV time 

series, and this ratio has a strong association with mortality in infants with congenital 

heart defects. The study of  24-hour ECG data of  for 27 normal infants (Group I) and 

26 infants with congenital heart defects (Group II) after analysis of  five-minute 

segments at birth, showed Group II has reduced SD1 and SD2 and increased 

SD1/SD2 (p<0.001). Post-procedure, greater SD1 and SD2 (p<0.001) was seen in 
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Group II. Poincaré analysis captures congenital differences in autonomic cardiac 

function and improvements over time (Smith R.L, et al. 2009).   

The specific aim of this chapter is to report the use of Poincaré plots method to study 

the effect of maternal smoking habit on the development of the autonomic nervous 

system of normal and IUGR children. 

 

 

Figure 6.1: Poincaré plot and its measurements (x and y in ms). 

 
 
 
 

6.2 Data 

The ECGs of the study population described in chapter 2 at night time were analysed 

according to maternal smoking status and birth weight of the child (IUGR or not). 

 

The 75 children were sorted into 4 groups, depending on IUGR, Normal and their 

maternal smoking habit during pregnancy, the classification of the children do change 

form children who are affected by maternal smoking during pregnancy and those who 

are influenced by parents who smoke when the children are 10 yrs.   
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Table 6.1: The breakdown of the population into subsections. 

Birth weight of child Maternal smoking during pregnancy Number of children 

IUGR Smoker 16 

IUGR Non-Smoker 25 

Normal Smoker 9 

Normal Non-Smoker 25 

 
The emphasis of this part of the work is the study of the development of IUGR 

children whose mothers smoked during pregnancy.  

6.3 Method 

6.3.1  Poincaré plots analysis on maternal smoking children 

The algorithm for Poincaré analysis (poincareplot.m) uses ellipse fitting, for 

calculation of SD1 and SD2 values. (See the algorithm in the CD enclosed with this 

thesis and the 24h results  for one child is in Appendix C).Figure 6.1 shows a typical 

Poincare plot with the ellipse the values of SD1 for short term variability which is 

caused by RSA and SD2 for long term variability. The new axis oriented with the 45° 

line of identity are rotated by θ = π/4. 

 

�𝑥1
𝑥2� = �cos θ − sinθ

sinθ  cos θ � � 𝑅𝑅𝑛𝑅𝑅𝑛+1
�                            6.1 

 

The dispersion of the points around the x1 axis is measured by the standard deviation 

SD1and the measure of the cloud along the line of identity is measured by SD2 which 

is the standard deviation around the x2 axis. 

These measures are related to the HRV measures as follow: 

𝑆𝐷12 = 𝑉𝑎𝑟(𝑥1) = 𝑉𝑎𝑟( 1
√2

 𝑅𝑅 n
 −  1

√2   
𝑅𝑅𝑛+1   )                                          6.2 
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 𝑆𝐷12 = 𝑉𝑎𝑟(𝑥1) = 1
2
𝑉𝑎𝑟(𝑅𝑅𝑛 − 𝑅𝑅𝑛+1   ) = 1

2
𝑆𝐷𝑆𝐷2                         6.3  

 

SD1 is the measure of the poincaré width which is the measure of SD of successive 

intervals scaled by 1/√2 . SD1 and SD2 can be related by the auto covariance function 

𝑆𝐷12 = 𝜙𝑅𝑅  (0) − 𝜙𝑅𝑅  (1)                         6.4 

         𝑆𝐷22 =𝜙𝑅𝑅  (0) + 𝜙𝑅𝑅  (1)                            6.5 

Adding 6.4 and 6.5 will give : 
 

𝑆𝐷12 +𝑆𝐷22 = 2𝑆𝐷𝑅𝑅2                               6.6 
𝑆𝐷22 = 2𝑆𝐷𝑅𝑅2 − 1

√2
𝑆𝐷𝑅𝑅2                       6.7 

 
 

The averages of SD1 and SD2 for all children have been tabulated as shown in table 

6.2. 

 
Table 6.2: Shows average of SD1, SD2 and SD1/SD2 for all children 

Group Mean SD1 Mean SD2 Mean SD1/SD2 

Normal Smoking 70.61 182.87 0.37 

Normal Non-smoking 69.04 166.07 0.41 

IUGR Smoking 60.33 148.53 0.40 

IUGR Non-smoking 69.20 161.64 0.40 
 
6.3.2 Poincaré plots analysis on parental smoking children  
The four groups of children (detailed in table 4.1 in chapter 4) with parental habit of 

smoking where analysed using this non-linear method (Poincaré plot) to look at the 

effect of smoking habit in the household on all the children. The Poincaré plot uses 

the current RR interval plotted against the previous. The resulting ‘clouds’ delimited 

by the standard deviation in each direction can then be enclosed by an ellipse and 

measured, giving an indication of the HRV. SD1, the width of the cloud or the 

standard deviation around the identity axis x1, is a measure of the short-term HRV - 

more precisely the measure of variability over a single heart beat. SD2, the length of 
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the cloud along the line of identity or the standard deviation around axis x2, is a 

measure of long term HRV (Brennan et al. 2001).  

 
Figure 6.2:Poincaré plots of IUGR and Normal children, the children with smoking parents in 

blue and the children with non-smoking parents in yellow 

 
Table 6.3: SD1 and SD2 measurements of clouds in the Poincaré plots of figure 6.2 

 

 
The above results show that all children with non smoking family have a higher short 

term and long term variability during the awake and asleep. The only exception is the 

normal children with non smoking family during awake period which have lower 

short and lower long term variability. 

 
 

Birth 
weight 

Parents, 
smoking 
status 

Awake or 
asleep 

SD1(arbitrary 
units) 

SD2(arbitrary 
units) 

IUGR smokers awake 0.247 0.505 
IUGR smokers asleep 0.263 0.453 
Normal smokers awake 0.224 0.529 
Normal smokers asleep 0.242 0.495 
IUGR non-smokers awake 0.259 0.518 
IUGR non-smokers asleep 0.277 0.505 
Normal non-smokers awake 0.221 0.484 
Normal non-smokers asleep 0.271 0.482 
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6.4  Results 

Lomb Periodograms in chapter were used to find the exact start and end of night time 

for all of the children in this work. The 2D PSD maps are colour coded with low 

power marked in blue and the highest is in red. Respiratory Sinus Arrhythmia (RSA) 

is shown in the periodogram in red at frequency of ventilation, around 0.25 Hertz. 

 

 
Figure 6.3:  Lomb periodogram for an IUGR child with a non-smoking mother during 

pregnancy, the red colour at 0.25 Hz corresponds to the respiratory sinus arrhythmia (RSA) at 
night time. 

 
 
Four Poincaré plots were produced, as seen in Figure 6.4. Measurements and analysis  of the 

values of SD1, SD2 and SD1/SD2 are given in Table 6.5. 
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Figure 6.4: Four typical Poincaré plots for two normal and two IUGR children. 

 
 
From the SD1 and SD2 data for all children a Multifactorial ANOVA test was done to 

find the p value between all the factors and the dependent variable SD1. Table 6.3 

shows the results of the ANOVA test and p values. The results show that there are no 

significant differences for any of the variables in the statistical model. 

 
 

The results of the long term variability term (SD2) in table 6.4 show that the males 

(p=0.04, SD2= 177.646 SE (6.991) have a significantly   higher variability measure 

(SD2) which means that males have a higher long term variability than females.  
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Table 6.4: Multifactorial ANOVA of dependent SD1 

Independent Variable Mean Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Non-Smoking in Preg 

smokingPreg 

0 

1 

69.620 

62.598 

5.922 

8.586 
.549 

57.775 

45.422 

81.466 

79.773 

Non- smoking family  

Smoking Family. 

0 

1 

67.340 

64.878 

7.214 

6.481 
.812 

52.910 

51.915 

81.769 

77.841 

IUGR  

Normal 
1 
2 

63.250 

68.968 

7.799 

7.830 
.656 

47.649 

53.306 

78.850 

84.631 

breast feed 

not breast feed 

1 

2 

65.289 

66.929 

5.900 

7.207 
.865 

53.488 

52.513 

77.090 

81.345 

male 

female 

1 

2 

71.242 

60.977 

6.215 

6.443 
.252 

58.809 

48.089 

83.674 

73.864 

 
 

Table 6.5: ANOVA test results of SD2 dependent variable and the effect of other factors. 

Independent Variable Mean Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Non-Smoking in Preg 

Smoking in Preg 

0 

1 

158.819 

166.967 

6.660 

9.657 
.537 

145.496 

147.649 

172.141 

186.284 

Non- smoking family 

 smoking Family 

0 

1 

166.175 

166.175 

8.113 

7.289 
.574 

149.945 

145.031 

182.404 

174.191 

male 

female 

1 

2 

177.646 

148.140 

6.991 

7.246 
.004 

163.662 

133.645 

191.629 

162.634 

breast feed 

not breast feed 

1 

2 

164.054 

161.732 

6.635 

8.106 
.830 

150.781 

145.517 

177.327 

177.946 

IUGR 

Normal 

1 

2 

162.892 

162.893 

8.772 

8.807 
1.000 

145.346 

145.277 

180.439 

180.509 

 
The results of SD1/SD2 in table 6.5 showed that there is no significant difference on 

the outcome for any of the factors tested.  Somewhat lower values of SD1/SD2 were 

recorded by children whose mothers smoked during pregnancy and by the IUGR 

children. However, these differences were not significant.   Low values of SD1/SD2  

are found to be associated with chronic renal failure patients (Claudia et al., 2003). 
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Table 6.6: ANOVA test results of Dependent variable SD1/SD2 and other factors. 

 

Independent Variable Mean Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Non-Smoking in Preg 
smokingPreg 

0 
1 

.417  

.375 
.023 
.033 

.347 
.372 
.309 

.463 

.441 

Non- smoking family 
Smoking Family. 

0 
1 

.395 

.397 
.028 
.025 

.943 
.339 
.347 

.450 

.447 

male 
female 

1 
2 

.393 

.399 
.024 
.025 

.852 
.345 
.350 

.441 

.449 

breast feed 
not breast feed 

1 
2 

.392 

.400 
.023 
.028 

.834 
.347 
.344 

.438 

.455 

IUGR 
Normal 

1 
2 

.383 

.409 
.030 
.030 

.611 
.323 
.348 

.444 

.469 

 

6.5 Discussion and Conclusion 

Poincaré plots were produced for the 75 children observed during the course of this 

work. The Multifactorial ANOVA test on SD1 by many factors at asleep time in 

Table 6.3 showed that males, normal, with no smoking mother during pregnancy, no 

smoking family a higher have short term variability (SD1 is high). Male children 

proved to have higher term variability (SD2) than females.  

The second finding has shown that SD1/SD2 ratio was lower for IUGR children and 

for those who experience smoking during pregnancy. A decreased SD1/SD2 ratio 

with an elongated, torpedo-like shape is associated with elevated sympathetic tone, 

and an increased SD1/SD2 ratio indicates less sympathetic tone (Woo et al., 1992), 

(Brennan et al., 2001). During anaesthesia, when the autonomic activity lessens this 

will results in decreased SD1, SD2, and converged Poincaré plots. This condition can 

be seen in the condition of brain death in which the total autonomic activity is lost (Su 

et al., 2005).  

The width of SD1 can be used to quantify the short-term vagal modulation of the 

heart rate and the decreased SD1 is shown after the autonomic changes, such as 

during laryngoscopy or intubation, and therefore it can be used as a sensitive indicator 

of sympathovagal changes (Kamen et al., 1996b).  
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The Poincaré analysis of long-term variability, SD2 length reflects the sympathetic 

modulation (Brennan et al., 2001),  suggested that female children have less long term 

HRV during asleep than their male counterparts, and (p=0.04).  
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7 Linear and non-linear analysis of pre-
awake period  

7.1 Introduction 

Heart rate is controlled by the sympathetic and the parasympathetic branches of the 

ANS, the parasympathetic (vagal) branch causes the heart to slow down by means of 

releasing acetylcholine, while the sympathetic  nerves cause the heart to beat faster 

through the release of noradrenalin. The alterations in the ANS function reflected by 

reduced HRV are known to be associated with increased risk of cardiovascular 

mortality. 

 

The definition of intrauterine growth restricted (IUGR) children by the world health 

organisation (WHO) is for birth weight below the 10 percentile for gestational age 

(Peleng et al., 1998). IUGR may result in significant fetal morbidity and mortality if 

not adequately diagnosed and managed. In UK the percentage of low birth weight is 

around 7% according to the 2007 UK government office for national statistics 

(http://www.statistics.gov.uk/hub/index.html, 2010) and in America alone 350,000 

children are born weighing less than 2.50 kg, and one third of them, approximately 

100,000 have true IUGR and the rest are defined as small for gestational age (SGA) 

(Vandenboshe and Kirchner, 1998). Low birth weight (LBW) is considered as the 

marker of fetal growth restriction. A baby having birth weight less than 2.5 kg is low 

birth weight (world health organization 1993).  

In our previous study, we have examined alterations of HRV parameters in low birth 

weight IUGR children (birth weight < 2.5 kg) and compared the results with normal 

and IUGR children having birth weight > 2.5 kg by analysing 24 hour RR interval 

time series data of 9-10 years old children. We found a significant difference in most 

of HRV measures in low birth weight IUGR children compared to normal and those 

IUGR children having birth weight > 2.5 kg. In the present study, linear and non 

linear HRV measures of are used to analyse the 15 min pre-awake period RR-interval 

time series data of normal and growth restricted children and compared the results 24 

hour RR-interval time series data of these groups to find the correlation between 
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them. The 15 min pre-awake period was chosen due to the fact that several studies 

proved that the occurrence of sudden death (SD) during 24 hrs shows that the peak 

time for sudden death is from 6 am to midday. In a review of  112 Minnesota 

residents who died suddenly from cardiac causes between July 1987 and July 2003 it 

is found that at night time between 6:00 am and 12:00 am Sudden death occurred to 

20 % of people with obstructive apnoea, 41% for people without obstructive apnoea, 

and 30% for general population.(Gami et al., 2005).  

When studying the circadian variability in the occurrence of sudden death in patients 

with hypertrophic cardiomyopathy, it was found that SD occurs with increased 

frequency after awaking during morning hours (usually 6:00am to noon) (Maron et 

al., 1994) and the same findings is supported by Thakur, who found that sudden death 

occurrence rate is low from midnight to 6:00 am and a 2.4-fold increase occurs 

between 6:00 am and noon (Thakur et al., 1996). Another research highlighted that 

the peak time for sudden infant death (SID) occurs just before 6:00AM in the morning 

(Blair et al., 2006)(Blair and Fleming. 2006).  The selection of 15 min pre-awake is to 

detect any alteration in HRV measures at the beginning of the period when the rate of 

sudden death is high. 

7.2 Materials and Methods 

7.2.1 Data Sets 

Table 7.1 shows the details of the RR data available for this study which is described 

in chapter 2, the first row gives the details of the groups of the children involved in 

the study, the second row shows the birth weight details and the last is gender related 

data, which states how many males and females are in each group. The intrauterine 

growth Restricted (IUGR) children were divided into two groups depending on their 

birth weight, so IUGR 1 group is for any IUGR child who has birth weight < 2.5 kg, 

and IUGR2 group for IUGR children who have birth weight ≥ 2.5 kg. 
Table 7.1: Groups of the children in the this study. 

 Normal IUGR-1 IUGR-2 Total 
IUGR 

Recordings 34 24 17 41 

Birth Weight (kg) 3.53 ± 
0.48 

2.29 ± 
0.19 

2.92 ± 
0.36 2.58 ± 0.42 

Gender 
(Male/Female) 22/12 10/14 9/8 16/21 
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In figure 7.1 the 15 min RR-interval data extracted from the 24 hr RR data before 

awakening (bottom).  

 

 
 

 

 
 

7.3 HRV Analysis Techniques employed 

In this study linear (standard time and frequency domain) and nonlinear (Poincaré 

plot, Approximate Entropy, Sample Entropy and Detrended Fluctuation Analysis) 

HRV analysis techniques have been used. Heart does not act as a periodic oscillator 

under physiological conditions (Babloyantz and Destexhe, 1988), (Goldberger and 

West, 1987) and the classical HRV linear measurements may not detect the nonlinear 

changes caused by the complex system which effects the RR time series (Karrakchou 

et al., 1996). 

7.3.1 Time Domain HRV measures 

The time domain analysis was performed using statistical and geometrical HRV 

measures (The Task Force, 1996) . The statistical measures included Mean RR, Mean 

HR, SDNN, SDANN, RMSSD, NN50 and pNN50. SDNN is the standard deviation of 

normal to normal RR intervals that can be calculated for short periods between 30 s 

and 5 min duration (short term variability) or calculated for long periods (24 hour) as 

Figure 7.1: One of the 15 min pre-awake RR data under study. 
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a measure of long term variability (Ravenswaaji-Arts et al. 1993).  SDANN is the 

standard deviation of average NN intervals calculated over 5 min RR interval time 

series, RMSSD, NN50, and TINN were explained in the second chapter.  

 
Frequency domain analysis was performed using parametric method autoregressive 

with model of order p=16.  Parametric methods provide smoother spectral  

components, easy post processing of the spectrum and accurate estimation of power 

spectral density (PSD) (The Task Force, 1996). The HRV frequency domain measures 

included low frequency (LF, 0.04-0.15 Hz), high frequency (HF, 0.15-0.4 Hz) and the 

ratio of LF to HF power (LF/HF) (Marple S.L, 1987) . Prior to the PSD estimation, 

the RR interval time series was converted into equidistantly sampled time series using 

cubic spline interpolation as explained in chapter 2 in this thesis.  

7.3.2 Nonlinear HRV Measures 
The non-linear HRV measures used in the analysis include Poincaré plot, detrended 

fluctuation analysis (DFA), approximate entropy, and sample entropy (Brennan et al., 

2001), (Pincus, 1991), (Richman and Moorman, 2000), (Peng et al., 1995). 

 

Approximate entropy (ApEn), is a complexity measure proposed by Pincus which 

quantifies the regularity of a time series (Pincus, 1991) .  A high value of ApEn 

indicates randomness and system complexity and smaller values of ApEn indicate 

regularity of a signal. Sample entropy (SamEn) is the modification of ApEn in which 

self matches were excluded (Richman and Moorman, 2000) . The parameters used to 

calculate ApEn and SamEn include length of the vector (m) and tolerance (r). The 

tolerance is the percentage of the standard deviation of the original time series (for 

HRV analysis 10% to 25 % of standard deviation).  

Detrended fluctuation analysis (DFA) is a scaling analysis technique proposed by 

Peng and colleagues to detect long range correlations in a non-stationary time series 

(Peng et al., 1995). The first step in DFA calculation is the integration of the original 

time series. This integrated time series is divided into boxes of equal length n. This 

time series is then detrended by subtracting the local trend in each box and root mean 

square of this integrated and detrended time series, called F(n), is calculated. The 

fluctuations in the data can be characterised by the scaling exponent (α), which is the 

slope of the regression line relating log(Fn) to log(n). Typically correlations are 
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divided into short term, characterized by slope α1 in the range 4≤n≤16, and long term, 

characterized by scaling exponent α2 in the range 16≤n≤64. The scaling exponent 

prognostic α1 was proven to be superior in terms of prognostic ability to detect any 

coronary heart disease (CHD) than α2. The physiological signal yields scaling 

exponent near to 1, indicating fractal like behaviour and altered fractal like behaviour 

has been reported in patients with cardiovascular disease.  

7.3.3 Statistical Analysis 

The wilcoxon rank sum test and the independent t-test were used for comparing 

between two independent groups, depending on the distribution of the data.  The 

Wilcoxon rank sum test is a non-parametric test that is used for data that are not 

normally distributed and the unpaired sample t-test for data was used to compare 

between the data that are normally distributed. The difference between the males and 

females within each group (Normal and IUGR) was calculated and is shown in table 

7.2. In table 7.3 the comparison between the IUGR and Normal groups was done in 

two different time spans (15 mins and 24hr) and results were considered to be 

statistically significant at p<0.05.  

Before carrying out multiple comparisons, the ONE WAY ANOVA method was used 

for the normally distributed data. All variables were tested for normality graphically 

and numerically. If the outcome variable under test was found to be not normally 

distributed (Shapiro-Wilk test) or if the  homogeneity of variance test (Levene's test) 

was rejected, the nonparametric two way independent test was used to assess the 

difference between the groups (Normal, IUGR1 and IUGR2).  

The Nonparametric Test (Kruskall-Wallis test) was used for independent samples. If 

the result of the test was found to be significant, post hoc calculations using Mann-

Whitney tests were performed to compare the groups. Since multiple comparisons 

were performed on the same data, a Bonferroni correction was applied to reduce the 

chance of type I errors. This means that if the Null hypothesis is rejected for p<0.05, 

for multiple comparison this value has to be divided by the number of comparisons. 

In other words, for 3 independent variables (normal, IUGR1 and IUGR2) , divide the 

p-value by 3 (0.05/3 = 0.017) for a significant result. So, to be significant any 

comparison has to be < 0.017 in the post hoc tests. 
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7.4 Results 

The results of this work can be computed using the algorithims developed and 

explained in previous chapters or using the kubios software (Niskanen et al., 2004). 

Kubios software has a very good graphical interface which was used to select the 15 

min data before awakening and it was used to compute the non-linear measures ( 

ApEn, SamEn and DFA). Table 7.2 displays the sex differences in terms of HRV 

measures, between Normal and IUGR children. The HRV measures show that the 

females have significantly lower HRV than the males for some of the outcomes. 

 
Table 7.2: Comparison between males and females HRV measures. 

HRV 
Measures 

Normal Children IUGR Children 
Male Female p-value Male Female p-value 

SDNN  (ms) 

SDANN (ms) 

RMSSD (ms) 

NN50  (ms) 

pNN50 (%) 

LF (ms2) 

HF (ms2) 

LF/HF 

SD1 (ms) 

SD2 (ms) 

ApEn 

SamEn 
 

164.52±30.14 

82.39±23.13 

76.12±32.32 

29502±12899 

24.97±11.51 

2225±1095 

3086±2474 

0.88±0.35 

53.82±22.86 

225.79±39.52 

1.13±0.08 

1.05±0.09 
 

143.34±18.87 

69.35±11.27 

60.18±18.64 

26169±7303 

21.07±8.37 

1513±449 

2036±1380 

0.99±0.44 

42.55±13.18 

197.85±26.33 

1.14±0.07 

1.09±0.08 
 

0.0360 

0.0778 

0.1289 

0.4187 

0.3136 

0.0400 

0.1873 

0.4444 

0.1289 

0.0369 

0.7209 

0.2497 

158.84±36.96 

79.92±23.40 

69.95±32.69 

30555±12723 

25.90±12.48 

2079±1081 

2753±2677 

1.11±0.58 

54.65±27.16 

213.49±54.89 

1.18±0.08 

1.13±0.12 
 

148.24±32.98 

74.54±19.18 

69.30±34.34 

29348±12890 

23.68±11.49 

1658±682 

2620±2760 

1.16±0.89 

54.94±29.14 

198.82±51.09 

1.15±0.09 

1.08±0.13 

0.3721 

0.4557 

0.9544 

0.7813 

0.5848 

0.1642 

0.8855 

0.8604 

0.9760 

0.4148 

0.3318 

0.2339 
 

In Table 7.3 the results of linear and nonlinear HRV measures (mean ± standard 

deviation) for the normal and growth restricted children for 15 min pre-awake period 

interbeat interval time series and 24 hr data are presented. Although the heart 

variability of normal children is higher than that of IUGR children, results showed no 

statistically significant difference between normal and growth retarded children. 
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Table 7.3: HRV measures for 15 min  pre-awake and for 24 hrs RR data. 

HRV 
Measures 

15 min Pre-awake Period 24 hour Data 

Normal IUGR p-value Normal IUGR p-value 

SDNN 106.672±34.845 99.104±40.123 0.2407 156.82±28.24 152.82±35.21 0.6053 

SDANN 48.943±39.364 35.955±26.16 0.1609 77.65±20.46 76.87±21.33 0.8766 

RMSSD 88,72±41.46 77.08±44.92 0.1599 70.32±28.86 69.58±33.62 0.9226 

NN50 432±166.49 390.83±168.80 0.5481 28290±11179 29870±12830 0.5867 

pNN50 35.89±15.05 32.91±16.44 0.4935 23.55±10.51 24.64±11.99 0.6893 

RRtriaIndex 22.42±6.99 21.79±7.94 0.5440 40.637± 7.89 54.81±28.28 0.3962 

TINN 531.51±142.71 506.59±164.54 0.2379 662.121±46.20 205.16±53.32 0.3507 

LF 2.842±1.882 2.532±1.896 0.2656 1966±969 1840±907 0.5742 

HF 4.336±3.703 3.338±3.739 0.0886 2704±2177 2678±2724 0.9647 

LF/HF 0.924±0.731 1.216±0.859 0.0886 0.92±0.38 1.16±0.78 0.1542 

SD1 62.88±29.38 56.42±31,03 0.2588 49.72±20.41 54.81±28.28 0.3962 

SD2 151.17±55.57 141.66±54.44 0.4711 215.63±37.42 205.16±53.32 0.3507 

ApEn 1.22±0.21 1.26±0.14 0.3550 1.14±0.08 1.16±0.09 0.1908 

SamEn 1.14±0.39 1.21±0.29 0.3426 1.07±0.08 1.10±0.13 0.1269 

α1 0.89±0.21 0.94±0.24 0.3158 1.06±0.13 1.11±0.12 0.8738 

α2 0.91±0.17 0.96±0.16 0.2639 0.93±0.06 0.93±0.07 0.9326 

 

After dividing the IUGR children into two categories; IUGR1 for those with birth 

weight (BW) < 2.5 kg and the IUGR2 for those with BW > 2.5 kg, HRV values were 

compared between all three groups of children and the p value was recorded. Table 

7.4 shows the 24 hour HRV results. The p value for significant differences between 

the groups is set to <0.05 and table 7.4 displays the HRV analysis of the 15 min pre-

awake. 
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Table 7.4: HRV measures comparisons for 24 hrs and the p values. 

 

 

Table 7.5: HRV measures for 15 min comparisons between normal and IUGR with p values. 

HRV Parameters Normal IUGR1 IUGR2 
p-value 

Normal VsIUGR1 IUGR1VsIUGR2 NormalVsIUGR2 

RRmean 757.72±76.66 743.59±75.55 767.45±86.41 0.414 0.348 0.949 

SDNN 106.672±34.845 86.38±28.99 122.9±43.01 0.088 0.014 0.758 

RMSSD 88,72±41.46 55.75±24.63 103.74±50.73 0.002 0.002 0.306 

NN50 432±166.49 333.25±157.13 462.81±158.95 0.089 0.056 1.0 

pNN50 35.89±15.05 27.3±14.16 39.93±16.79 0.127 0.044 1.0 

RRtriaIndex 22.42±6.99 19.48±6.62 24.11±9.25 0.613 0.224 1.0 

TINN 531.51±142.71 451±133.04 562.19±196.04 0.210 0.105 1.0 

LF 2.842±1.882 1.791±1.122 3.512±2.289 0.025 0.060 0.522 

HF 4.336±3.703 1.876±1.665 1.38±0.95 0.010 0.017 0.639 

LF/HF 0.924±0.731 1.38±0.95 0.92±0.57 0.045 0.083 0.932 

SD1 62.88±29.38 42.7±17,52 73.57±35.96 0.007 0.004 0.296 

SD2 151.17±55.57 123.78±42.12 164.02±61.12 0.267 0.088 1.0 

ApEn 1.22±0.21 1.28±0.12 1.25±0.17 0.761 1.0 1.0 

SamEn 1.25±0.25 1.14±0.39 1.15±0.33 0.757 1.0 1.0 

α1 1.01±0.22 0.89±0.21 0.86±0.24 0.077 0.098 0.790 

α2 0.97±0.13 0.91±0.17 0.95±0.19 0.558 1.0 1.0 

 

HRV 

measures Normal IUGR1 IUGR2 

normalVsIUGR1 

(p value) 

IUGR1VsIUGR2 

( p value) 

NormalVsIUGR2 

( p value) 

SDNN 156.81±28.24 136.99±25.22 171.45±36.78 0.065 0.002 0.312 

SDANN 48.943±39.364 66.66±11.27 88.87±24.28 0.033 
 0.003 0.091 

RMSSD 70.32±28.86 53.72±18.78 86.25±37.93 0.014 0.001 0.073 

NN50 28290±11179 25139±10115 35435±13712 1.0 0.026 0.127 

pNN50 23.55±10.51 19.83±8.87 30.30±12.93 0.175 0.006 0.026 

LF 1966±2214 1418±456 2336±1057 0.017 0.002 0.187 

HF 2704±2178 1548±1102 4007±3433 0.012 0.003 0.239 

LF/HF 0.92±0.38 1.23±0.66 1.03±0.88 0.163 0.01 0.532 

SD1 49.72±20.41 41.56±17.64 70.41±30.85 0.152 0.001 0.006 

SD2 215.63±37.42 182.37±39.32 231.97±56.11 0.025 0.003 0.626 

ApEn 1.14±0.08 1.17±0.09 1.15±0.08 0.432 1.0 1.0 

SamEn 1.07±0.08 1.13±0.13 1.07±0.12 0.07 0.203 1.0 
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7.5 Discussion:- 

In this study we are looking at the 15 min prior to the awakening. Table 7.1, shows 

the details of the cohort (75) and the number of children in each of the groups, normal 

children are 34, and all IUGR are 41 children. The IUGR group is further sub-divided 

into two groups, IUGR 1 (24 children) and IUGR2 (17 children). In this work 

comparisons between the normal and IUGR groups were undertaken and, further on, 

another comparison of results was obtained between the IUGR sub-groups, with 

regard to their birth weight. In addtion Table 7.2 shows the comparison of the HRV 

measures between the females and the males for normals and IUGRs. The only 

significant difference between the males and the females were SDNN, LF and SD2. 

These were found different when we compared the normal males and females, but 

with IUGR there is no significant difference between the males and the females with 

the group. SDNN shows that males have a higher heart rate variability, which is a 

good marker for a healthy child, and females have a low SDNN. Significantly Low 

SDNN was found to be associated with the risk of , sudden death (Martin  et al., 

1986).  High LF means that the sympathetic branch in males is significantly more 

active than in females and SD2 shows that the males have higher long term 

variability. 

 

Table 7.3 shows the comparison between normal and IUGR children, within the 

duration of 24 hrs and for 15 min pre-awake. It can be seen that the p values show no 

significant difference between the two groups in the time domain, frequency domain 

and using non-linear measures, but one can see that the means of all time domain 

indices (except for the heart rate) for normal children are higher than IUGR, although 

the difference is not significantly different. The means of all non-linear measures are 

higher for IUGR than for normal, but again this difference is not statistically 

significant (p>0.05). When the IUGR group was divided into IUGR1, IUGR2, and 

then compared with the normal group, very interesting results were found in all HRV 

measures, which include time domain, frequency domain, and non-linear indices. 

 

Regarding the time domain, it can be seen that (p>0.05) when looking at comparison 

between normal group and IUGR for 15 min pre-awake, but when we analyse SDNN 

between normal and IUGR it was found that the difference is non-significant (p=NS). 
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Although it is clear that the longer the data, the higher the SDNN, however SDANN 

of the groups are almost equal because we are looking at the short term variability 

over averaged 5 min segments. When the differences between RR intervals were 

analysed it has benn found that RMSSD, NN50, PNN50 are higher in normal than 

IUGR over 15 min. On the other hand 24 hr RMSSD is higher in normal, while 

NN50, PNN50 are higher in IUGR; yet emphasising once more that these differences 

are not statistically significant.  

When we analyse table 7.4, it is clear that RMSSD time domain measures show a 

significant difference between the normal and IUGR1 (birth weight less than 2.5 kg), 

a low value of RMSSD may be associated with complete heart block (CHB),  left 

bundle branch block (LBBB), and ischemia/dilated cardiomyopathy and this is 

associated with small RR variation (Acharya et al., 2002), (Acharya et al., 2004). The 

frequency domain HRV measures that show statistically significant differences are LF 

and HF. Low HF is a marker of sudden death (Myers et al., 1986), and high LF/HF 

ratio is associated with CHB and ischemia/dilated cardiomyopathy (Binkley et al., 

1991). SD2, which is related to the long term variability, gives p<0.05, and SD1/SD2 

is high for premature ventricle contraction (PVC), atrial fibrillation (AF), sick sinus 

syndrome (SSS) and ventricle fibrillation (VF). A low value for the ratio has been 

associated with CHB (Acharya et al., 2004). 

ApEn gives p>0.05, but SamEn shows p<0.05, when comparing normal and IUGR1 

and when comparing IUGR1 and IUGR2. SamEn is a measure of complexity of the 

biological signal and here SamEn is lower in IUGR1 and higher in the other two 

groups. Normally AF patients have lower SamEn (Tuzcu et al., 2006). 

Table 7.5 summarises the results of 15 min pre-awake interval as we compare normal 

with IUGR1 and IUGR2, as well as IUGR1 against IUGR2. Furthermore, When 

comparing normal with IUGR1, the RMSSD is significantly different between the two 

groups ( P=0.002). The other HRV measures which are SD are HF (p=0.010) and SD1 

( p=0.007). The comparison between IUGR1 and IUGR2 has the following significant 

difference in the HRV measures: SDNN, RMSSD, HF and SD1 all these have 

p<0.017 correcting for multiple comparison. Regarding normal against IUGR2, p 

>0.05 for all HRV indices. HRV measures show high correlation between the 15 min 

and the 24 hr data.  
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7.6 Conclusions  

The analysis of the results shows a very high correlation between the short term 

recording of ECG (15 min pre-awake data) and the long term ECG recordings (24 h).  

When comparing normal children with IUGR children we find no significant 

differences, this is due to the fact that many of IUGR are in fact normal children or 

their development of the autonomic nervous system (ANS) is as good as the normal 

counterparts. After dividing the IUGR children into IUGR1 and IUGR2, interesting 

results were found with regard to the development of the autonomic nervous system 

of the IUGR children. The low value of SDNN for IUGR1 which has been found in 

medical research associated with sudden death can be an important marker when 

looking after IUGR1 children. The low values of RMSSD, NN50, pNN50, 

RRtriaIndex and TINN in IUGR1, do represent a low variability in RR and this has 

been found to be the case in complete heart block (CHB), left bundle branch block 

(LBBB), and ischemic/dilated cardiomyopathy (Acharya et al., 2002). An important 

frequency domain result is the high value of the LF/HF ratio (which is the measure or 

an index of autonomic balance or the balance between the sympathetic and 

parasympathetic branches of ANS) for 15 min pre-awake period in IUGR1. This high 

value of LF/HF in IUGR1, might suggest future association with cardiac heart failure 

(CHF).  All these findings suggest the importance of looking after the cardiovascular 

health of IUGR children from birth, especially when the IUGR children have birth 

weights 2.5 kg or less.  
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8 Discussion and conclusion  
8.1 The thesis main finding 
 
This study has looked at the Application of HRV analysis to a unique data of 75 

normal and IUGR children. The main aim is to find any abnormality in the 

development of the ANS. The heart pace maker is affected by neurohumoral system 

driven by stimuli from the brain, human senses and other internal physiological 

system.  Heart rate variability (HRV) signal can be used as a reliable marker of the 

condition of the heart. The results of this study would be summarised and a 

conclusion may be drawn in the light of barker theory.  

The research started by developing an algorithm that will be able to read paediatric 

ECG considering the interested frequency for this application which is the HRV 

analysis. The algorithm used band pass filtering with adaptive threshold, refractory 

and other routines to improve the signal to noise ratio.  

The RR signal was subjected to cubic spline interpolation to 4 Hz for frequency 

domain analysis using FTT and AR methods. An up sampling to 512 Hz was applied 

to the original ECG signal of 128 Hz for better detection of ECG intervals. 

Time domain analysis showed no significant difference between the normal and the 

IUGR children at the age of 10 yrs. The time domain analysis showed the influence of 

the sympathetic branch of the ANS during the day (small RR interval) and the 

influence of parasympathetic branch (high RR interval) at night. Another study 

carried out done to look at the one hour analysis during night time. An attempt was 

made to compare between the IUGR and normal children with the effect of other 

factors including smoking, gender, and breast feeding. The accuracy of the this 

analysis was questionable due to the fact that the signal is not stationary and it’s very 

difficult to select the same hour for all the children to obtain an accurate comparison 

study . Night time, day time or 24 hr comparison proved to be more used in research 

to find the right HRV measures (Task Force of the European Society of et al., 1996). 

The one hour study showed some results that confirmed with the consequent accurate 

results such as the effect of gender on RR data at night time. The effect of many 
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factors such as gender, IUGR, smoking and breast feeding were chosen to see their 

influence on RR interval and SDNN at night time. The ANOVA test results showed 

that such factors no effect don’t have any effects on the RR intervals and SDNN at 

night. For example, smoking during pregnancy increases the sympathetic and reduce 

vagal activity. HRV decreases with smoking and this is caused by its effect on the 

ANS.  

Low heart rate variability presents a risk factor of sudden death in myocardial 

infarction patients. A study (Karakaya et al., 2007) on the effect of acute smoking on 

the ANS showed that mean R-R interval, SDNN, RMSNN, significantly decreased 

within the first 5-minute period compared with baseline, SDNN increased within the 

20- to 30-minute period. The LF/HF ratio significantly decreased within the first 5 

minutes after smoking and did not change for the duration of the study. LF and HF 

increased within the 5 min compared with baseline. The results of this study show 

that RR at night is not affected by smoking in pregnancy and family smoking 

(passive smoking) this could be due to the fact that the effect of mother smoking on 

RR intervals at night diminishes after 10 yrs. The effect of family smoking or 

passive smoking can be prevented by parents smoking away from the children. Brest 

feeding showed no significant effect on RR at night but the breast-fed children have 

higher RR intervals than the RR intervals for the Non breast-fed children. A study 

(Dahlstrom et al., 2008) showed that LF/HF is correlated with the milk nicotine 

concentration from a smoking mother. The HRV decreases with increasing milk 

nicotine.  Males have a higher RR at night time (860.789 SE 14.314) than female 

children (806.748 SE 15.506). 

 It is well known that HRV is an age and gender related. HRV decreases with the 

increase in age and the variation is more in female than men (Lavi et al., 2007).  

The SDNN measure is lower for children who are IUGR, male and subjected to 

smoking. 

 

Frequency domain analysis was used to assess the ANS through the frequency 

components of the power spectrum. FFT was used to evaluate the LF and HF during 

the 24 hr and it was found the LF is high for children who are subjected to mother 

smoking during pregnancy. Normal children have a higher LF (sympathetic activities) 
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during the 24 hr. The HF was found to be high in IUGR children.  Low HF was found 

in subjects with chronic renal failure (CRF) (Acharya et al., 2006).    

AR method was to used find RSA in children, it is very apparent at night time when 

breathing is synchronised and the rate of breathing is nearly constant. The results of 

all   children RSA area were compared between the IUGR and the normal children to 

see if there is any difference occurred. The comparison showed no significant 

difference between the two groups. Other predictors were tested to see their effect on 

the RSA and the result was that no predictor had any relation with RSA. IMD which 

is the measure of poverty was in the border line in predicting the RSA. This means 

that deprived children have less synchronised breathing at night time. RSA is related 

with the efficiency of breathing and the efficiency of pulmonary gas exchange is 

improved by RSA. The larger RSA area, the more efficient is the breathing and 

consequently the transfer of oxygen to the body. RSA becomes less dominant with 

age, diabetes and cardiovascular disease.   

Lomb peridogram was used due to the advantage of this method when compared with 

FFT and AR (Moody, 1993). LF/HF at day is affected significantly with gender where 

females have a higher LF/HF than males. IUGR has a higher sympathetic shown by 

the high value of LF/HF. Non breast-feeding children have a higher LF/HF. The night 

time LF/HF was higher for IUGR, non breast feed, and female children.  

ECG intervals measurements were calculated by a developed algorithm further more 

it was found that all the calculated intervals were within the paediatric published 

limits (Macfarlane et al., 1989, Rijnbeek et al., 2001, Davingnon et al., 1979/80). The 

intervals were QTc, ST, QTS and heart rate. The other aim of this algorithm is to look 

at the QTc interval for both groups to see if there is any sign of long QT syndrome in 

IUGR that might suggest future prognosis of heart disease. QT analysis showed that 

IUGR group has a higher QT interval than the normal children, and this is an 

indication that IUGR children could be vulnerable to QT syndrome in the future. 

Poincare plot is a non linear technique to measure SD1, SD2 and the ratio SD1/SD2. 

The calculation was for the night period only to monitor the effect of many factors on 

theses dependent variables. The result was that there is no factor that affected any of 

short term variability SD1, the long term variability or the ratio of SD1/SD2. The 

results showed that males, normal, with no smoking mother during pregnancy, no 
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smoking family have higher short term variability (SD1is high). Male children proved 

to have significantly higher term variability (SD2) than females. SD1/SD2 ratio was 

lower for IUGR children and for those who experience smoking during pregnancy. 

The ratio is low for slowly varying signals like complete heart block. A decreased 

SD1/SD2 ratio with an elongated, torpedo-like shape is associated with elevated 

sympathetic tone, and an increased SD1/SD2 ratio indicates less sympathetic tone 

(Woo et al., 1992), (Brennan et al., 2001) 

The Respiratory Sinus Arrhythmia study of a sample of different children, (IUGR and 

Normal), did not show statistically significant differences. The energy measurement 

of RSA for all IUGRs and normal children can be measured, and a similar comparison 

to RR at night time of RSA is needed for children with variables such as ‘smoking’, 

and breast-feeding. 

Children with special medication have shown different measurements in comparison 

to other normal healthy children.   The intrauterine growth Restricted (IUGR) children 

were divided into two groups depending on their birth weight, so IUGR 1 group is for 

any IUGR child who has birth weight < 2.5 kg, and IUGR2 group for IUGR children 

who have birth weight ≥ 2.5 kg. 

The low value of SDNN for IUGR1 which has been found in medical research 

associated with sudden death can be an important marker when looking after IUGR1 

children. The low values of RMSSD, NN50, pNN50, RRtria Index and TINN in 

IUGR1, do represent low variability in RR and this has been found to be the case in 

complete heart block (CHB), left bundle branch block (LBBB), and ischemic/dilated 

cardiomyopathy (Acharya et al., 2002). An important frequency domain result is the 

high value of the LF/HF ratio (which is the measure or an index of autonomic balance 

or the balance between the sympathetic and parasympathetic branches of ANS) for 15 

min pre-awake period in IUGR1. This high value of LF/HF in IUGR1, might suggest 

future association with cardiac heart failure (CHF).  

IUGR with low birth weight showed a lower HRV than the normal and IUGR with 

birth weight higher than 2.5Kg. HRV and cardiac reflexes in small for gestational age 

SGA infants (Galland C. Barbara et al., 2006) , suggests reduced autonomic activity 

and cardiac reflexes in SGA infants, and the findings of sympathetic components of 

the control of HRV is higher, which might be linked to higher risk of CHD in later 
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life. Detrended time series analysis of the R-R intervals suggests that IUGR fetuses 

have significantly reduced HRV compared to the other groups of children (Govindan 

et al., 2006). The Sample Entropy showed lower values for IUGR<2.5KG but not 

significantly different to IUGR2 and Normal children and SamEn was used to study 

obstructive Sleep apnoea syndrome (Al-Hangari and Sahakian, 2007) and found that 

normal subjects have significantly more complex HRV pattern than the OSA. 

In this work there is a low statistical power due to the small sample size. This means 

that we can expect some type 2 errors (failing to reject a false null hypothesis).
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8.2 Conclusions and future work 
 
The main novelty of this work would be in the application of HRV time domain 

analysis (TDA) and frequency domain analysis (FDA) to a unique set of data of 75 

children (IUGR and Normal), to enhance our understanding of the development of the 

ANS and improve our ability to identify risk factors, risk period and risk patients. The 

main findings of the thesis are listed below.  

• HRV analysis was applied on IUGR and Normal children at 10 yrs and no 

significant difference between Normal and all IUGR was found. 

• When dividing IUGR into IUGR1 (<2.5 kg) and IUGR2 (≥2.5 kg), there is 

Significant difference between Normal and IUGR1, IUGR1 and IUGR2. 

• Girls have a lower HRV than boys. 

• RSA phenomena can be seen very clearly at night time by using FFT, AR, or 

Lomb periodogram applied on the NN data. 

• Lomb method was used to find Frequency domain measures without 

resampling.  

• QT analysis showed that IUGR children have a longer QT interval than the 

normal children. 

• Poincaré plot results seem to indicate more risk on female than male children. 

• 24 hr and Pre-awake analysis highlighted that IUGR have lower HRV. 

• The work done on the data reading, TDA, and FDA, gives a fairly complete 

picture of the differences between the two groups, but not a complete one.  

• The algorithm used for QRS detection can be reviewed for a better detection 

and the results of the TDA from the RR files can be compared with the RR 

found by the QRS detector.  

• One of the novelties in this work is finding the difference between Normal and 

IUGR1, and IUGR1 and IUGR2 in TD, FD and other HRV measures. 

The FDA work showed no difference in LF/HF between IUGR and normal groups 

using the Lomb method. Lomb is superior to standard Fourier-based approaches as it 

does not require data interpolation and re-sampling. Comparison between AR, FFT 

and Lomb can be analysed more using the ECG data of this work.  The RSA feature is 

very interesting at night time. The comparison of RSA energy between different 
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groups of children is useful for the study of the Autonomic Nervous System (ANS), in 

particular the influence of the parasympathetic branch of the ANS. QT measurements 

showed that QT interval for IUGR is longer than that for normal children, which 

might suggest future risk of CHD. Pre-awake study highlighted some significant 

difference in HRV which might indicate that this period before awake can be critical. 

As a continuation to the pre-awakening study, a further study on more periods pre-

awake and more periods post-awake to look at the trend of HRV measures would be 

interesting. 

The QT algorithm can be improved to detect a wider variety of shapes of paediatric 

ECG waves and to deal with ECGs with poorer SNR. The effect of other factors like 

smoking can be studied to see if ECG is affected by these factors. 

A continuation to study the same cohort at a elder age than 10 yrs to analyse the 

extend of any changes in HRV measures.  

The effect of children’s ethnicity (African, Asian, ..etc) on their HRV measures can 

be explored and analysed in comparison with western children. The study of the 

behaviour of the HRV focussed on children with medical conditions and disabilities 

such as autism, asthma, epilepsy and other diseases might also show interesting 

results. 
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Appendix A 
 

A Sample of Physiological data of the 75 children 
category  

IUGR1 Name 
Weight 
change 

Current 
height(cm) 

sex (F=2 or 
M=1) 

current 
age 

Birth 
weight 

current 
weight 

1 HA 28.88 138.00 1.00 9.91 2.82 31.70 
1 JB 23.90 122.00 1.00 8.61 2.00 25.90 
1 DC 26.20 133.00 1.00 8.88 2.40 28.60 
1 NB 31.54 140.00 2.00 9.07 3.46 35.00 
1 JC 23.61 127.50 1.00 8.90 3.29 26.90 
1 BC 21.88 129.00 1.00 9.11 3.12 25.00 
1 PC 22.60 130.00 2.00 8.48 2.40 25.00 
1 EM 23.96 130.00 1.00 8.95 3.34 27.30 
1 RD 27.22 130.00 2.00 8.82 1.78 29.00 
1 EW 24.86 140.00 2.00 10.02 2.54 27.40 
1 HD 20.70 127.00 2.00 9.22 2.20 22.90 
1 AW 27.54 137.00 2.00 9.49 2.46 30.00 
1 EW 24.12 126.50 1.00 9.85 2.28 26.40 
1 AFJ 24.30 130.00 1.00 8.98 2.50 26.80 
1 LG 21.01 127.00 2.00 9.13 2.50 23.50 
1 JH 20.51 122.00 1.00 9.30 2.49 23.00 
1 AH 19.54 125.00 2.00 8.66 2.46 22.00 
1 GL 25.44 134.00 1.00 9.45 2.46 27.90 
1 BL 21.93 131.00 2.00 9.48 2.37 24.30 
1 AL 37.53 126.00 2.00 9.76 2.47 40.00 
1 LM 22.69 130.00 1.00 9.76 2.21 24.90 
1 LP 28.88 133.00 2.00 9.56 3.12 32.00 
1 CP 26.90 119.00 2.00 9.55 2.10 29.00 
1 JS 20.85 125.00 1.00 9.40 2.55 23.40 
1 JS 21.66 128.00 1.00 8.98 2.44 24.10 
1 CC 36.65 130.00 2.00 9.11 2.55 39.20 
1 AG 33.42 141.00 2.00 10.22 2.38 35.80 
1 NH 22.55 128.50 2.00 8.53 2.15 24.70 
1 SH 27.02 138.50 2.00 9.57 2.38 29.40 
1 GH 30.95 137.00 1.00 10.33 2.05 33.00 
1 DM 30.77 138.00 1.00 10.16 3.23 34.00 
1 HA 27.74 124.00 2.00 9.13 2.26 30.00 
1 AM 15.41 121.00 2.00 8.44 2.70 18.11 
1 CP 31.82 139.00 1.00 9.63 2.18 34.00 
1 LR 25.65 137.00 2.00 8.58 2.35 28.00 
1 CS 25.86 135.00 1.00 9.98 2.44 28.30 
1 MS 27.95 135.00 1.00 10.72 3.25 31.20 
1 SY 44.34 147.00 2.00 10.16 2.76 47.10 
1 AB 22.28 125.00 2.00 8.28 2.72 25.00 
1 JB 21.56 126.50 2.00 8.96 3.34 24.90 
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2 SM 39.00 142.00 2.00 10.29 3.20 42.20 
2 TA 33.02 134.50 2.00 8.10 3.18 36.20 
2 SA 23.28 131.00 2.00 8.00 3.72 27.00 
2 HB 28.78 132.00 2.00 8.22 3.32 32.10 
2 SB 32.06 135.00 1.00 8.75 3.64 35.70 
2 AB 27.06 136.00 1.00 8.09 4.05 31.10 
2 JC 37.82 140.00 1.00 10.90 3.78 41.60 
2 BC 37.72 141.00 1.00 9.10 4.08 41.80 
2 LG 28.86 131.00 2.00 9.27 2.64 31.50 
2 TG 34.24 140.00 1.00 8.75 3.46 37.70 
2 HH 22.78 134.00 1.00 9.02 3.22 26.00 
2 CL 19.58 130.00 1.00 8.97 3.52 23.10 
2 BM 21.44 130.00 1.00 8.89 3.56 25.00 
2 ToM 30.40 140.50 1.00 10.43 3.60 34.00 
2 TrM 22.26 125.00 1.00 8.34 3.74 26.00 
2 RM 27.41 138.50 1.00 9.91 2.49 29.90 
2 TYM 28.98 130.00 1.00 9.21 3.52 32.50 
2 MO 25.90 133.00 2.00 8.61 4.10 30.00 
2 TP 38.32 136.00 1.00 9.49 3.68 42.00 
2 JP 45.10 141.00 1.00 8.99 2.80 47.90 
2 ER 30.86 136.00 2.00 9.05 2.94 33.80 
2 GS 21.90 127.00 1.00 8.74 3.90 25.80 
2 CS 28.16 132.00 1.00 8.84 3.84 32.00 
2 GS 23.62 129.00 1.00 8.93 2.58 26.20 
2 JT 25.20 136.00 2.00 8.81 4.30 29.50 
2 CB 30.86 137.50 1.00 8.85 3.64 34.50 
2 LW 27.26 129.00 2.00 7.90 3.94 31.20 
2 EG 33.16 136.50 2.00 8.62 4.04 37.20 
2 RC 33.00 132.00 2.00 8.64 3.20 36.20 
2 AS 15.74 120.00 2.00 8.60 3.06 18.80 
2 BL 29.32 136.00 1.00 9.84 3.68 33.00 
2 LP 28.09 135.00 1.00 8.61 3.91 32.00 
2 HN 31.94 131.00 1.00 9.81 4.26 36.20 
2 HG 26.60 130.00 1.00 8.12 3.40 30.00 
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 2 Department of Health Science University of Leicester 
tb93@le.ac.uk 

 
Abstract. The objective of this work is to verify any correlation between HRV of children at 10 yrs and 
the Barker Theory and hypothesis which states that IUGR children are prone to coronary disease and 
hypertension in adulthood. Time domain analysis was done on the raw ECG after filtering and QRS 
detection. The mean, SDANN, Poincaré plots and the sample density distribution of RR were obtained 
for all 75 children. It was found that the lowest p-value is 0.29, when comparing time domain measures 
between the two groups. This means, there is no significant difference between the IUGR and normal 
children at 10 years. Frequency domain analysis of RR by autoregressive model (AR), Fast Fourier 
Transform (FFT), and Lomb periodogram was performed for 10 min segments of all 75 children to find 
frequency components (LF, HF, and LF/HF). IUGR and normal comparison showed that the lowest p-
value is 0.48, and for other variables (smoking, body mass index, sex, gestational period) the lowest p-
value is 0.27. Frequency domain results support time domain findings that there is no significant 
difference between IUGR and normal children at 10 years.   
1  Introduction  
HRV is a powerful non-invasive tool used by physicians to determine the state of the 
heart and assess the development of the autonomic nervous system (ANS). This work 
describes the results obtained by HRV analysis of two groups of children, 41 IUGR 
and 34 normal for a period of 24 h, to find any correlation between HRV of children 
at 10 years and the Barker Theory and hypothesis which states that IUGR children are 
prone to coronary disease and hypertension in their adulthood [1]. The HRV analysis 
is calculated from a raw data of the ECG for all children. Figure (1), shows an ECG 
and its details [2]. 

 

 
 
 
 
                                                        

Figure (1.2): A typical ECG waveform. 
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2 Method 
 

The Task Force [3] specifies the standards used in any HRV studies, where time 
domain    and frequency domain analysis can be used. 

                     
 2.1     Time domain analysis  
 
(TDA) was done on the raw ECG after filtering it [4], to remove the mains noise 
and detecting the QRS to find the RR segments, Fig 2.1(a), shows the RR (NN) for 
24 hours period. In the time domain analysis the following were calculated for all 
75 children, the mean over 5 min intervals for the day and for the night, the 
SDANN also for day and night. Fig 2.1(b), shows a plot of the mean and SDANN 
for one child. The  Poincaré plot of NN vs. NN-1 and the sample density 
distribution of RR for all children were plotted. Fig2. 1(c) shows the sample density 
distribution of RR for one child, and Fig 2.1(d), shows a Poincaré plot of NN-1 vs. 
NN. 
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   2.2       Frequency domain analysis 
 
Frequency domain analysis (FDA) of RR has been determined by three methods, Fast 
Fourier Transform (FFT) and autoregressive model (AR), for 10 min segments after 
re-sampling, and Lomb periodogram, without re-sampling. The Task Force [3] defines 
low frequencies as between 0.04 Hz and 0.15 Hz and high frequencies as between 
0.15 Hz to 0.4 Hz. To measure the low frequency activity and high frequency activity, 
the results of the Lomb analysis in the power spectra density (PSD) were integrated 
between the low frequency boundaries and high frequency boundaries for each 10 
minute segment in a day. Fig (3) shows the autoregressive spectrum of the HRV for a 
child with Autism. 
 
 

 
 
 
 
 
 
 
 
 

                                     
                                
                               
Fig (3), The AR spectrum of a child with Autism 
 
  

3 Results 
 
For the IUGR, the mean over 24 h, for the day and for the night are, (0.68, 0.61, 0.82), 
and for control (0.67, 0.59, 0.81). The SDANN over 24 h, day and night for IUGR are 
(0.12, 0.07, 0.07), and for control, (0.13, 0.07, 0.07). 
 
When performing the t-test for the time domain data to find the p-value, the following 
results was obtained:- 
 
Table (3.1). Results for Time Domain Analysis (R to R), over 5 minute intervals 
 

Variable IUGR 
(ms) 

Normal 
(ms) 

Diff 
(ms) 

p-value 

Mean 24hr 0.68 (0.07) 0.67 (0.06) 0.0116 0.4641 
Mean Day 0.61 (0.07) 0.59 (0.06) 0.0143 0.3531 
Mean Night 0.82 (0.08) 0.81 (0.08) 0.0067 0.7396 
SDANN 24 hr 0.12 (0.03) 0.13 (0.02) 0.008 0.2881 
SDANN Day 0.07 (0.02) 0.07 (0.02) 0.004 0.3629 
SDANN Night 0.07 (0.02) 0.07 (0.02) 0.005 0.3379 
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The power of the frequency components (LF, HF and LF/HF), was calculated from 
the Lomb periodogram spectral analysis. 
 
When carrying a t-test on the IUGR and normal for low frequency, high frequency 
and L/H for 10 min segment we get the results recorded in table (3.2). If p value is 
higher than 0.05, there is no significant difference between the 2 results. 
 

IUGR v Normal 
 IUGR 

Mean * 
Normal 
Mean * 

p-value 

Night H 0.63 0.60 0.5254 
Night L 0.65 0.62 0.5282 
Night LH 1.23 1.22 0.8730 
Day H 0.66 0.63 0.4782 
Day L 0.73 0.74 0.8469 
Day LH ratio 1.44 1.44 0.9925 

Table (3.2), shows the p- value for significant difference between the variables. 
• The calculations of H and L shown in table (3) in arbitrary units squared (gain is not 

calibrated). 
 

 
Table(3.3).lists the results of a t-test on IUGR and normal data to find the p-values for 
candidate predictors such as , the use of medication, significant medication, smoking 
at pregnancy, body mass index, index of deprivation, and gestational period. 
 
 

P-VALUES FOR CANDIDATE PREDICTORS 
 use med sig med sex cigs p cigs h bmi imd gest 

Night H 0.97 0.55 0.49 0.85 0.69 0.67 0.17 0.38 
Night L 0.37 0.19 0.98 0.88 0.86 0.66 0.47 0.39 

Night LH 0.69 0.79 0.18 0.76 0.36 0.78 0.45 0.72 
Day H 0.25 0.37 0.027* 0.55 0.71 0.19 0.56 0.08* 
Day L 0.51 0.49 0.77 0.82 0.64 0.81 0.95 0.09* 

Day LH r 0.31 0.46 0.003 0.12 0.98 0.46 0.40 0.56 
 

Table (3.3) - Results of t-test to find p-value for candidate predictors. 
* These values are related to t-test type 1 error of 5%. 

 

4 Discussion 
 
In the TDA, changes in the state of the autonomic nervous system (ANS) can be seen 
very clearly. In the day time sympathetic rhythm is indicated by higher heart rate (low 
R to R).  IUGR=0.61 ms, and for normal =0.59 ms. This is due to the various 
activities done by the children like running and playing. In the night time the 
parasympathetic rhythm takes over and low heart rate (high R to R) is dominant. The 
IUGR mean of RR=0.82 ms, and for normal children=0.81 ms. When carrying the t-
test the lowest p-value =0.2881. FDA shows the frequency components of the power 
spectrum which is associated with known physiological mechanisms, VLF is caused 
by thermoregulation and humoral factors, LF by baroreflex-related HRV, and HF 
arises from the respiratory sinus arrhythmia (RSA). The lowest p-value is 0.4782, 
which means that FDA shows no significant difference between IUGR and normal 
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groups. Candidate predictors’ results showed that none of them has a significant effect 
on the H, L and L/H ratio . 
 
 

5  Conclusions 
 
Time domain analysis didn’t show any differences between IUGR and normal 
children at 10 years old. Frequency domain analysis showed the same results, that 
there is no significant difference between the two groups. Other candidate predictors 
(body mass index, medication, smoking, gestational period, deprivation) were 
investigated to see their effect on the HRV, but there was no significant effect to these 
variables on HRV either.  
The main conclusion would be: the heart rate variability in children who were 
previously growth restricted is no different from that of normal children at age 10 
years, which means that at 10 yrs there is no signs of coronary heart diseases or 
hypertension. This might lead to the conclusion that the development of heart 
diseases, for IUGR is in a later stage of life, if Barker theory is founded. The results of 
this study support evidence that IUGR and normal children have no difference at 10 
yrs.  
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Abstract 
Frequency domain analysis of RR has been determined by three methods, 
autoregressive model (AR), Fast Fourier Transform (FFT) and Lomb periodogram for 
10 min segments. The first two methods were done after re-sampling and the third 
method without re-sampling RR series of all 75 children. AR was used in this work, 
and RSA was identified   at night time during sleep. The area of the RSA was 
calculated for every 10 min interval and compared to the overall area of the 10 min 
segment, then the average RSA of all segments was calculated, as well as the overall 
percentage of the RSA energy to the total area for the whole period of sleeping. This 
was done firstly for a sample of Normal and IUGR 10 year olds. Secondly for all the 
children under study, an independent t-test concluded that there is no significant 
difference between the IUGR and Normal (p=0.7467),.    
1 Introduction 

HRV is a powerful non-invasive tool used by physicians to determine the state of 
the heart and assess the development of the ANS. This work describes the results 
obtained by HRV analysis of two groups of children, 41 IUGR and 34 controls for a 
period of 24 h .The main objective of the work is to find any correlation between 
HRV of children at 10 years and the Barker Theory and hypothesis, which states that 
IUGR children are prone to coronary disease and hypertension in their adulthood [1]. 
The RR interval normally oscillates periodically, shortening with inspiration and 
lengthening with expiration. This is known as Respiratory sinus arrhythmia, and it’s 
due partly to the Bainbridge reflex via the expansion and contraction of the lungs and 
the cardiac filling volume caused by variations of intrathoracic pressure [2]. During 
inspiration, the pressure within the thorax decreases increasing blood influx into the 
right atrium resulting in a reflex that increases the heart rate (i.e., shortens the RR 
intervals). During expiration, the reverse of this process results in a slowing of the 
heart rate.  
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2 Methods 
The Task force [3] specifies the standards used in HRV studies, where time domain 
and frequency domain analysis can be used to study heart rate variability. 
 
 

The RR signal is subjected to a process of interpolation to obtain an equally 
spaced data to be used for spectral analysis. FFT and AR must have an equally 
spaced data to perform spectral analysis. The signal has been re-sampled at 4 Hz 
after a cubic spline data interpolation. This will give us the results in Hertz and 
allows the spectrum analysis up to 2 Hz. The AR  spectral method (equation 
1),(because of better resolution than FFT when dealing with low sampling 
Frequency), have been tested on the RR data to find the frequency components of 
the power spectrum for 10 min segments .The RSA frequency range (HF) is 
defined to be  from 0.15 to 0.40 Hz ,[2]. 
 

2.1 Figures and tables:- 
The AR spectral analysis of 10 segments produces a graph as shown in Fig (2.1). 
Graphs (a, b) are for Normal children, and (c, d), for IUGR children. 

 
        Fig (2.1)a. AR spectrum of Normal child with RSA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig (2.1)b. AR spectrum of Normal child with less RSA. 
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Fig (2.1) c, AR power spectrum of IUGR child with RSA. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig (2.1) d. AR power spectrum of IUGR child with less RSA. 
 
The application of an algorithm to find the energy of the RSA (area), by using 
Trapezoidal method (equation 2), produced the following table (2.1):- 
 
Table (2.1), The RSA Energy, Total, and % of RSA to Total for IUGR and Normal 
children. 

No child RSA (energy) 

u2 

Total (energy) 

u2 

% RSA/Total 

1 IUGR 4.5936 10.3187 45.6287 

2 IUGR 2.3244 5.8750 39.8064 

3 IUGR 2.5484 5.5834 45.9105 

4 IUGR 5.2631 10.6212 50.0502 

5 IUGR 8.5370 18.5431 46.6481 

6 Normal 6.9783 12.6834 54.7855 

7 Normal 2.6899 6.7861 41.3924 

8 Normal 3.6029 9.0093 40.0707 

9 Normal 5.0364 11.0507 45.2321 

10 Normal 3.7838 8.8850 43.0941 
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2.2 Equations 
The equation of  AR process of order p can be written as:- 
 

ptptttt xaxaxanx −−− ++++= ...2211  
 
Where tn  is the white noise driving signal p is the order of the AR model, and (

paa .......1 ) are the parameters of the filter.  
 
  The AR power spectrum density estimate is given by the following equation [4]:- 
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Where σ2

 is the variance of the white noise driving function and ∆t is the re-sampling 
interval. 
 
 
The Trapezoid method in equation (2) was used to find the energy ( area ) of the RSA: 
 

2
)( hbaA +

=
………………………..…………… (2) 

Where ( a  and b) are the two parallel sides and h is the distance (height) between 
them. 
 
Statistically, an independent t-test was used for  equality of means between IUGR and 
Normal in terms of RSA, and to verify the Null hypothesis which is , there is no 
difference in the RT score ( Average of all ratio of RSA energy to total energy within 
10 min segment for night time .). 
 
Table (2.2), and (2.3), shows the results of the independent t-test :- 
 
 
 
 
 
Table (2.2) IUGR and Normal Independent t-test results 
 
 
 
 
 

Group 
 

n Mean SD 

IUGR 37 46.83 6.10 
Normal 30 47.27 4.65 
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The t-test showed that there was no significant difference between the two groups for 
RT score, difference = 0.44, t = 0.32, p=0.7467 (95% CI = -3.1, 2.3). There was 
homogeneity of variance (Levene’s Test, p=0.14) and the data was approximately 
normally distributed within each group. 
 
Other variables were assessed for significance but none of them significantly 
predicted (RT) score, although IMD (Index of Multiple Deprivation) was borderline 
(0.06). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
* = independent t-test, # = correlation 
 
Discussion 
 
The results obtained are both qualitative and quantitative. The graphs in Fig (2.1) a 
and b, show the evolution of the AR spectrum of the HRV for a Normal child. It can 
be seen that the RSA energy in child (a) is higher than the RSA energy for   Normal 
child shown in Fig (2.1) b. The frequency at which RSA occurs in (a) is at 0.3 Hz, but 
for child (b), RSA occurs at 0.25 Hz. The RSA for IUGR children can be seen in 
figures (2.1) c and d. Child (d), has RSA at Frequency of 0.2 Hz, and Child (c), at 
approximately 0.25Hz. The calculations of RSA energy from IUGR and Normal 
children are shown in table (2.1) in arbitrary units squared (gain is not calibrated). The 
data presented in the table shows that the lowest energy of RSA is 39.8 u2, and the 
highest is 50 u2 for IUGR. Normal children has the lowest energy of RSA is 40 u2, 
and the highest is 54.78 u2.  
The result of the t-test shows no significant difference between the two groups for the 
RT score, but when looking at other variables,  IMD  was found to be(p=0.06). Which 
means that the children who have high index of multiple deprivation (IMD) are very 
correlated with RT score, and consequently this means that the deprived children 
don’t have a synchronized breathing pattern at night time. 
 

Variable p-value 
  
Sex * 0.32 
Breast Feeding (y/n) * 0.50 
Parental Smoking (y/n) * 0.99 
Household Smoking (y/n) * 0.72 
IMD # 0.06 
24 hour SBP # 0.59 
24 hour DBP # 0.87 
BMI # 0.77  
Significant Medication * 0.26 
Using Medication * 0.36 
Birth Weight # 0.45 
Length Gestation # 0.50 
Weight change from birth # 0.77 
Night SBP # 0.79 
Night DBP # 0.60 
Day SBP # 0.46 
Day DBP # 0.64 
Cortisol morning # 0.29 
Cortisol night-time # 0.66 
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4 Conclusions  
 
This work identifies the RSA in two ways, the first is graphically, and the second, in 
terms of the RSA Energy (area). RSA is an interesting phenomenon which represents 
the parasympathetic branch of the Autonomic nervous system. RSA occurs at 
frequency between 0.15 Hz and 0.4 Hz at night time and at this frequency (HF), RR 
intervals tend to be longer than at day time due to the parasympathetic tone, and 
consequently heart rate will be slower. At night ventilation is more regular; hence it is 
easier to identify the peak corresponding to RSA. 
 RSA cannot be used to distinguish between the IUGR and normal children, because 
there is no significant difference between the two groups. Other variables, such as 
parental smoking and household smoking cannot predict any differences in RSA.  
 Children who have high index of multiple deprivation (IMD) are very correlated with 
RT score, and consequently this means that the deprived children don’t have a 
synchronized breathing pattern at night time. 
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Appendix C 
1-Timedomain.m algorithm results: 
 
Mean over 24 h:    0.6149 

Mean day time:    0.5540 

Mean night time:    0.7504 

SDNN:    0.1371 

SDNN day:    0.0838 

SDNN night:    0.1131 

Mean of all 5 min segments:    0.6140 

Mean of day time (5 min):    0.5406 

Mean of night time (5 min):    0.7340 

SDANN:    0.1146 

SDANN day:    0.0505 

SDANN night:    0.0622 

RMSSD day time:   45.8380 

NN50 day time:        8407 

pNN50 day time:    0.0899 

Shortest NN interval:    0.2960 

Longest NN interval:    1.2400 

Range:    0.9440 
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2-RSA.m algorithm results printout: 
 
Opening file: 
 
File opened sucsesfully. 

 There are 143 segments 

bandpass from f1=14Hz to f2=24Hz 

Where shall we start (in min. Each record = 10.0 min) ? 450 

starting at segment 46. t = 450.0 min. 

number of qrs=1357, number of rr=1356 

450.0 min, rr_avg = 113.2 samples ... or 884.0+/-63.1ms 

RSA area=  1.20 u^2, Total area =   2.86 u^2,percentage= 41.79 percent 

number of qrs=1326, number of rr=1325 

460.0 min, rr_avg = 115.9 samples ... or 905.4+/-59.6ms 

RSA area=  1.20 u^2, Total area =   2.66 u^2,percentage= 45.15 percent 

number of qrs=1316, number of rr=1315 

470.0 min, rr_avg = 116.8 samples ... or 912.3+/-66.0ms 

RSA area=  2.84 u^2, Total area =   6.47 u^2,percentage= 43.85 percent 

number of qrs=1360, number of rr=1359 

480.0 min, rr_avg = 113.0 samples ... or 882.5+/-90.0ms 

RSA area=  4.50 u^2, Total area =  11.71 u^2,percentage= 38.43 percent 

number of qrs=1447, number of rr=1446 

490.0 min, rr_avg = 106.2 samples ... or 829.3+/-80.0ms 

RSA area=  3.65 u^2, Total area =  10.50 u^2,percentage= 34.79 percent 

AveRSA =  2.6764    AveTotalArea = 6.8377    AvePercentage =   40.8015 
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3-Lomb periodogram algorithm results: 
 
 
 
Name = subject2 

LFsleep =    0.0421 

HFsleep =    0.1484 

LFHF =   0.2839 

LFHFsleep =  0.2267 

LFawake =  0.0196 

HFawake =   0.0454 

LFHFAwake =    2.1487 
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4-QT.m algorithm results: 
 
 
Average of QRS = 48.4 samples...or  94.5 ms 

STD of QRS =  5.0 samples...or   9.9 ms 

Average of QT =181.3 samples...or 354.0 ms 

STD of QT = 36.0 samples...or  70.3 ms 

Average of ST = 30.9 samples...or  60.3 ms 

STD of QT = 36.1 samples...or  70.6 ms 

Heart Rate Beat /Min ....102.7 BPM 

The corrected value of QT =237.1 samples...or 463.2 ms 
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 5-Poincareplot.m algorithim results: 
 
 
Opening file: File opened successfully. 

File header: Research Tools output from Reynolds Medical Pathfinder 

Extracting RR data from source file, please wait. 

End of source file. 

File closed successfully. 

Preparing RR interval plot. 

Separating RR intervals into day & night time. 

Preparing Scatter plots. 

SD1day =    0.0324 

SD2day =    0.1255 

SD1night =    0.0813 

SD2night =   0.1378 

End of program. 
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