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Abstract

We recently introduced p-automata, automata that read discrete-time Markov
chains and showed they provide an automata-theoretic framework for reasoning
about pCTL model checking and abstraction of discrete time Markov chains. We
used turn-based stochastic parity games to define acceptance of Markov chains by
a special subclass of p-automata. Definition of acceptance required a reduction to
a series of turn-based stochastic parity games. The reduction was cumbersome and
complicated and could not support acceptance by general p-automata, which was
left undefined as there was no notion of games that supported it.

Here we generalize two-player games by adding a structural acceptance condi-
tion called obligations. Obligations are orthogonal to the linear winning conditions
that define whether a play is winning. Obligations are a declaration that player 0
can achieve a certain value from a configuration. If the obligation is met, the value
of that configuration for player 0 is 1.

One cannot define value in obligation games by the standard mechanism of
considering the measure of winning paths on a Markov chain and taking the supre-
mum of the infimum of all strategies. Mainly because obligations need definition
even for Markov chains and the nature of obligations has the flavor of an infinite
nesting of supremum and infimum operators. We define value via a reduction to
turn-based games similar to Martin’s proof of determinacy of Blackwell games
with Borel objectives. Based on this value definition we show that obligation
games are determined. We show that for Markov chains with Borel objectives and
obligations, and finite turn-based stochastic parity games with obligations there
exists an alternative and simpler characterization of the value function without
going through a Martin-like reduction. Based on this simpler definition we give
an exponential time algorithm to analyze finite turn-based stochastic parity games
with obligations and show that the decision problem of winning parity games with
obligations is in NP∩co-NP. Finally, we show that obligation games provide the
necessary framework for reasoning about p-automata and that they generalize the
previous definition.
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1 Introduction
Markov chains are a very important modeling formalism in many areas of science.
In computer science, Markov chains form the basis of central techniques such as per-
formance modeling, and the design and correctness of randomized algorithms used in
security and communication protocols. Recognizing this prominent role of Markov
chains, the formal-methods community has devoted significant attention to these mod-
els, e.g., in developing model checking for qualitative [11, 6, 27] and quantitative [1]
properties, logics for reasoning about Markov chains [10, 17], and probabilistic simula-
tion and bisimulation [18, 17]. Model-checking tools such as PRISM [13] and LiQuor
[5] support such reasoning about Markov chains and have users in many fields of com-
puter science and beyond.

The automata-theoretic approach to verification has proven to be very powerful
for reasoning about systems modeled as Kripke structures. For example, it supports
algorithms for satisfiability of temporal logics [7], model checking [16], and abstrac-
tion [12].

We recently introduced p-automata, which are devices that read Markov chains
as input [14]. We showed that p-automata provide an automata-theoretic framework
for reasoning about pCTL model checking, and abstraction of discrete time Markov
chains. The definition of p-automata is motivated by pCTL [9], the de-facto standard
for model checking Markov chains, and alternating tree automata: they combine the
rich combinatorial structure of alternating automata with pCTL’s ability to quantify the
probabilities of regular sets of paths. Acceptance of Kripke structures by alternating
tree automata is decided by solving turn-based games (cf. [8]). Similarly, acceptance of
Markov chains by p-automata is decided by solving turn-based stochastic games. How-
ever, acceptance of p-automata was defined through a complicated and cumbersome
reduction to solving a series of turn-based stochastic parity games. Furthermore, this
reduction supported only a subclass of p-automata, which we called uniform, and could
not be generalized to unrestricted p-automata. Intuitively, uniform automata separate
measuring probability of regular path sets and setting thresholds on these probabili-
ties. For uniform p-automata, we showed how acceptance can be decided by a series
of turn-based stochastic parity games. Acceptance for general p-automata could not
be defined as there was no game framework that supported the unbounded interaction
between measuring probability and setting thresholds.

Here, we propose a game notion that supports such interaction. In order to do that
we augment winning conditions in games by adding a structural acceptance condition
called obligations. A winning condition is a combination of a classical set of winning
paths and obligations on some of the game configurations. An obligation is a declara-
tion by Player 0 that she can win with a certain value from the configuration. Then,
in order to be able to derive a non-zero value from a configuration with obligation,
Player 0 has to ensure that the measure of paths that satisfy the winning condition from
that configuration meets her promised value. If she can do that, the configuration will
have the value 1 for her. That is, the value of the configuration does not depend on
the measure of winning paths obtained in the game following the visit to that configu-
ration, only on whether the obligation is met or not. In other words, in order to meet
an obligation the measure of the union of the following sets of paths must satisfy the
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Figure 1: Intuition regarding obligations. Circles denote states of Markov chains. The
name of the state is written in the top half and the obligation (if exists) is written in
the bottom half. Probabilities are written next to edges except in case there is a single
outgoing edge whose probability is 1.
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Figure 2: A set of measure 0 matters.

value constraint of the obligation: paths that (i) reach other obligations that can be met,
or (ii) paths that never reach other obligations and satisfy the winning condition. In
addition, paths that visit infinitely many obligations must satisfy the winning condition
as well.

Consider the example in Figure 1. Suppose that every path that visits s2 infinitely
often is rejecting and every accepting path that visits s4 infinitely often must visit s3

infinitely often. In addition, s2 has an obligation of more than 2
3 . That is, in order for

s2 to have a positive value, the measure of the set of paths starting in s2 that satisfies
the acceptance condition must be more than 2

3 . If the obligation is met, the value of s2

is 1. Otherwise, the value of s2 is 0. Similarly, s3 has an obligation of at least 1
2 . The

obligation at s2 cannot be met. Every set of paths starting at s2 with measure more
than 2

3 must contain a path that reaches s2 again. Thus, in order to fulfill the obligation
of s2, it has to be visited again, recursively, where the recursion is unfounded. As the
path that visits s2 infinitely often is rejecting, s2’s obligation cannot be met. Thus, s2’s
value is 0. On the other hand, the obligation of s3 can be met. Indeed, the measure of
paths that start in s3 and reach s3 again without passing through s2 (i.e., ¬s2 until s3)
is exactly 1

2 . Whenever a path reaches s3 the same obligation needs to be met again.
So the same set of paths is used again. Let us consider the set of infinite paths obtained
by concatenating infinitely many finite segments (from obligations to obligations, i.e.,
concatenating paths from s3 to itself without visiting s2) considered above. These paths
visit s3 infinitely often and never visit s2, and thus satisfy the winning condition.

When obligations are involved, the value depends on sets of measure 0. Consider,
for example, the Markov chain in Figure 2. Suppose that the set of winning paths
includes all paths. Then, the obligation of configuration s2 can be met. Indeed, the
probability to reach another obligation that can be met (s2) or never reach obligations
and win is 1. It follows that the value of configuration s1 is 1. However, by removing
from the set of winning paths the single path (s1 · s2)ω , whose measure is 0, this
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changes. The obligation at configuration s2 can no longer be met. Every set of paths
starting from s2 of measure more than half must contain a path that reaches s2 again.
Thus, in order to meet the obligation of s2, the path (s1 · s2)ω must be included. This
is a losing path that makes infinitely many obligations. Hence, the value of s2 is 0 and
the value of s1 is 1

2 .
These two examples consider the most simple types of interaction, where no player

makes choices and everything is determined by chance. Blackwell games with Borel
objectives are a very general form of graph games. Blackwell games are two-player
games where both players choose simultaneously and independently their actions (also
known as concurrent games). From every configuration a choice of actions determines
a distribution over successor configurations. Borel objectives are Borel sets of infinite
paths of configurations. We now discuss the main challenges involved in giving a
formal definition of the value in general obligation Blackwell games. The typical way
of defining a value in a two-player game is done by a sequence of steps: First, fixing
strategies for the two players we get a Markov chain for which the measure of winning
paths is well defined. Then, fixing a strategy for Player 0 one can get a value of this
strategy by considering the infimum over all strategies for Player 1. Finally, the value
of Player 0 in the game is the supremum of the values of all her strategies. All three
steps fail for obligations. First, it is not even clear how to define the value of a Markov
chain, and the value depends on sets of measure 0 (see Figure 2). Then, it is not clear
that a strategy for Player 0 has a well defined value. Such a well defined value would
depend on independence between the choice of “met obligations” and the choice of
strategy for Player 1. Finally, the nature of obligations means that taking the supermum
over strategies of Player 0 does not lead to the real value of the game. This follows
because in some types of Borel games (without obligations) the game value cannot
be attained. There is no single strategy that can achieve the value of the game but an
infinite sequence of strategies can get arbitrarily close to the value. A single obligation
game requires a player to commit to achieving values possibly infinitely many times.
Each obligation could be the result of an infinite sequence of strategies. Hence, a single
external supremum does not capture this and we need an infinite nesting of supremum
(and infimum) operators.

In order to define the value of Blackwell games with Borel objectives and obliga-
tions we use a reduction to turn-based games with Borel objectives similar to Martin’s
proof that Blackwell games with Borel objectives are determined [20]. Intuitively, we
explicitly add the value to the game and make Player 0 prove that a value can be won
by showing how it propagates under probabilistic choices made by both players. We
add a new crucial component that captures obligations to Martin’s proof. This ingredi-
ent, which we call concession, captures the notion that the value for Player 0 may not
be achieveable but may be approximated arbitrarily close. To capture approximation
Player 1 chooses a small concession to grant Player 0 after which Player 0 should not
have a problem to show that she can win the required amount. This reduction defines a
value for Blackwell Borel obligation games.

A major issue is then that of well definedness of obligation games. Well defined-
ness, or determinacy, means that whatever Player 0 cannot avoid losing Player 1 ensures
to win and vice versa. Formally, it says that the sum of values in a game for Player 0
and Player 1 is always 1. This is a fundamental property that needs to be established for

4



games. For almost all types of games used in verification determinacy has never been
an issue. This relies on Martin’s foundational result that Blackwell games with Borel
objectives are determined [20]. Blackwell games are general enough so that a sim-
ple reduction to them suffices to show determinacy for almost all types of two-player
games. However, obligations take our games out of scope of Martin’s result. This is
apparent as inclusion/removal of a 0-measure set can change the value of a game. In
order to show determinacy of Blackwell games with Borel objectives and obligations
we analyze our reduction to turn-based games with Borel objectives. We show that
indeed our games are determined.

Our reduction gives the general definition of values and its analysis gives us the
determinacy result. However, the reduction is not amenable to computational anal-
ysis as it constructs an uncountable game. For computational analysis, we consider
Markov chains with Borel objectives and obligations and finite turn-based stochastic
parity games with obligations. We show that in these cases, we can embed the notion
of winning into the structure of the game by using choice sets. Intuitively, these are
the obligations that have value 1, i.e., where the obligation of Player 0 is actually met.
This gives rise to a simpler definition where we contrast a strategy of one player with
the strategy of the other player as customary in definition of games. We show that this
simpler definition, which does not work for the general case, coincides with the defi-
nition arising from the Martin-like reduction for Markov chains and finite turn-based
stochastic parity games with obligations. Based on this direct characterization, we give
algorithms that analyze finite turn-based stochastic parity games with obligations. We
show how to decide whether the value in such a game is at least (or more) than a given
value r ∈ [0, 1] in NP∩co-NP and to compute the value in exponential time. The algo-
rithm identifies a general choice set and calls a solver for finite turn-based stochastic
parity games to check the sanity of the choice set. Our NP∩co-NP bound matches
the bounds for the special cases of turn-based stochastic reachability games (without
obligations).

We also show that if games with obligations have a finite number of exchanges
between obligations and no-obligations, then the analysis of the game can be reduced
to the analysis of a series of Blackwell games (with no obligations).

Finally, we return to p-automata and using turn-based stochastic parity games with
obligations we define acceptance of general p-automata. We show that the new def-
inition using the obligation games generalizes acceptance of uniform p-automata as
defined in [14].
Related works. While we considered an automata theoretic approach to capture pCTL
an alternative approach is to consider probabilistic µ-calculus. The problem of consid-
ering a probabilistic µ-calculus framework to capture pCTL was considered in [22, 21].
They add an independent choice to turn-based stochastic games and show their deter-
minacy and that such games give a semantics to a probabilistic µ-calculus. In [23], they
show decidability of a fragment of their probabilistic µ-calculus in 3EXPTIME. In con-
trast, our determinacy result for obligation games is for the general class of Blackwell
(concurrent) games with Borel objectives, and our decidability result for turn-based
stochastic obligation parity games establishes a NP∩co-NP bound. Comparison of the
two types of games does not seem simple. Our framework for turn-based stochastic
obligation parity games could also provide better algorithmic analysis for fragments of

5



probabilistic µ-calculus of [22, 21].

2 Background
For a countable set S let D(S) = {d : S → [0, 1] | ∃T ⊆ S such that |T | ∈ N,∀s /∈
T . d(s) = 0 and Σs∈T d(s) = 1} be the set of discrete probability distributions with
finite support over S. A distribution d is pure if there is some s ∈ S such that d(s) = 1.

A countable labeled Markov chain M over set of atomic propositions AP is a tuple
(S, P, L, sin), where S is a countable set of locations, P : S → D(S) is a proba-
bilistic transition, sin ∈ S the initial location, and L : S → 2AP a labeling function
with L(s) the set of propositions true in location s. We sometimes also treat P as
a function P : S × S → [0, 1], where P (s, s′) is P (s)(s′). Let succ(s) be the set
{s′ ∈ S | P (s, s′) > 0} of successors of s. By definition all Markov chains we con-
sider are finitely branching, i.e. succ(s) is finite for all s ∈ S. We write MCAP for the
set of all (finitely branching) Markov chains over AP. A path π from location s in M
is an infinite sequence of locations s0s1 . . . with s0 = s and P (si, si+1) > 0 for all
i ≥ 0.

Given a Markov chain M with set of states S, an open set in Sω is a set {w} · Sω
for some w ∈ S∗. A set is Borel if it is in the σ-algebra defined by these open sets. The
measure of every Borel set α is defined as usual in this σ-algebra [2, 25]. We denote
the measure of a Borel set α as ProbM (α).

Blackwell Games A Blackwell game is G = (V,A0, A1, R, α), where V is a count-
able set of configurations, A0 and A1 are finite sets of actions, α is a Borel set defining
the winning set of Player 0, andR : V ×A0×A1 → D(V ) is a transition function asso-
ciating with a configuration v and a pair of actions for both players a distribution over
next configurations with finite support. A play is an infinite sequence p = v0v1 · · · such
that for every i ≥ 0 there are a0

i ∈ A0 and a1
i ∈ A1 such that R(vi, a

0
i , a

1
i )(vi+1) > 0.

A strategy for Player 0 is σ : V + → D(A0). A strategy for Player 1 is similar. A
strategy is memoryless if for every w,w′ ∈ V ∗ and v ∈ V we have σ(wv) = σ(w′v)
and it is pure if for every w ∈ V + we have σ(w) is pure. Let Σ (resp. Π) be the set of
all strategies for Player 0 (resp. Player 1).

Each (σ, π) ∈ Σ × Π from game G and configuration v determine a Markov
chain with locations V +. Formally, v(σ, π) = (V +, P, L, v), where the labeling
function L is irrelevant, and for every w ∈ V ∗ and v′ ∈ V we set P (vwv′) =∑
a0∈A0

∑
a1∈A1

σ(vwv′)(a0) · π(vwv′)(a1) ·R(v′, a0, a1).
Sometimes, we may want to start a game from an initial sequence of configu-

rations, which we call play prefix or just prefix. Let w = v0 · · · vn ∈ V + be a
prefix. Then w(σ, π) is the Markov chain ({w} · V ∗, P, L,w), where P (wuv) =∑
a0∈Ao

∑
a1∈A1

σ(wuv)(a0) ·π(wuv)(a1) ·R(v, a0, a1), for u ∈ V ∗ and v ∈ V . All
definitions, generalize to this setting.

The value of (σ, π) for Player 0 from prefixw ∈ {v}·V ∗, is Probw(σ,π)(({w} · V ω) ∩ α),
denoted val0(v(σ, π), w). The value ofw for Player 0 inG is sup

σ∈Σ
inf
π∈Π

val0(w(σ, π), w),
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denoted val0(G,w). Dually, the value of w for Player 1 in G, denoted val1(G,w), is
sup
π∈Π

inf
σ∈Σ

(1− val0(w(σ, π), w)).

Theorem 1 Let G be a game and α a Borel set. Then for every w ∈ V + we have
val0(G,w) + val1(G,w) = 1 [20].

The value val1(G,w) can be also obtained by considering the game dual(G) =
(V,A1, A0, dual(R), V ω\α), where dual(R)(v′, a1, a0) = R(v′, a0, a1). Formally,
val1(G,w) = val0(dual(G), w). By definition, for every Markov chain M and every
measurable set α ⊆ V ω we have ProbM (α) = 1− ProbM (V ω\α).

Turn-Based Stochastic Games A turn-based stochastic gameG is ((V,E), (V0, V1, Vp), κ, α)
with the following components.
• V is a countable set of configurations.
• E ⊆ V 2 is a set of edges such that for every v ∈ V we have |{v′ | (v, v′) ∈ E}|

is finite.
• The triplet (V0, V1, Vp) partitions V so that V0 is the set of Player 0 configura-

tions, V1 is the set of Player 1 configurations, and Vp is the set of probabilistic
configurations.

• κ : Vp → D(V ) is such that κ(v)(v′) > 0 if and only if (v, v′) ∈ E.
• α is a Borel set as before.

A play is an infinite sequence v0v1 · · · such that for all i ∈ N we have (vi, vi+1) ∈ E.
A strategy for Player 0 is a function σ : V ∗ · V0 → D(V ) such that for all w ∈ V ∗ and
v ∈ V0 we have σ(wv)(v′) > 0 implies (v, v′) ∈ E. Strategies for Player 1 are defined
analogously. The type of strategy is determined by the type of game and no confusion
will arise. As before (σ, π) ∈ Σ × Π determine a Markov chain w(σ, π). Then, the
value of Player 0 from prefix w is val0(G,w) = supσ∈Σ infπ∈Π Probw(σ,π)(α) and the
value of Player 1 from prefix w is val1(G,w) = supπ∈Π infσ∈Σ(1− Probw(σ,π)(α)).

A turn-based stochastic game can be seen as a Blackwell game whose configura-
tions are of the following types:
• v is a Player 0 configuration if for every a0 ∈ A0 and a1, a

′
1 ∈ A1 we have

R(v, a0, a1) = R(v, a0, a
′
1) and R(v, a0, a1) is pure.

• v is a Player 1 configuration if for every a0, a
′
0 ∈ A0 and a1 ∈ A1 we have

R(v, a0, a1) = R(v, a′0, a1) and R(v, a0, a1) is pure.
• v is a probabilistic configuration if for every a0, a

′
0 ∈ A0 and a1, a

′
1 ∈ A1 we

have R(v, a0, a1) = R(v, a′0, a
′
1).

Corollary 1 LetG be a turn-based stochastic game, α a Borel set, andw ∈ V +. Then,
val0(G,w) = 1− val1(G,w).

When Vp = ∅ the game is simple or just turn based. For turn-based games the set
V does not have to be countable. In this case it is enough to consider pure strategies,
which implies that a pair (σ, π) ∈ Σ × Π induces a unique play w(σ, π). Then, the
value of Player 0 from prefix w is either 1 or 0. Equivalently, Player 0 wins from w if
there is a strategy σ such that for every strategy π we have w(σ, π) ∈ α. Otherwise,
Player 1 wins from w. In this case, we write W0 = {w | Player 0 wins from w} and
W1 = {w | Player 1 wins from w}.
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Theorem 2 Let G be a turn-based game and α a Borel set. Then W0 ∩W1 = ∅ and
W0 ∪W1 = V +. [19]

When w ∈ W0 we also write val0(G,w) = 1 and val1(G,w) = 0. Dually, when
w ∈W1 we write val0(G,w) = 0 and val1(G,w) = 1.

We say that α is derived from a parity condition c : V → [0..k] if for every play
p = v0v1v2 · · · ∈ V ω we have p ∈ α iff lim inf

n→∞
c(vn) is even.

Theorem 3 Consider a finite game G, where α is derived from a parity condition,
./ ∈ {>,≥}, and r is a rational.
• If G is a Blackwell game, whether val0(G,w) ./ r and val1(G,w) ./ r can be

decided in PSPACE [3].
• If G is a turn-based stochastic game, the values val0(G,w) and val1(G,w) can

be computed in exponential time and whether vali(G,w) ./ r can be decided in
NP∩co-NP [4].

• If G is a turn-based stochastic game, there is a memoryless strategy σ achieving
G’s value [4]. That is:

infπ∈Π Probw(σ,π)(α) = val0(G,w)
• If G is a turn-based game, whether w ∈W0 can be decided in UP∩co-UP [15].
• IfG is a countable turn-based game then there are pure-memoryless strategies σ

and π such that σ is winning from every configuration v ∈W0 and π is winning
from every configuration v ∈W1 [26].

3 Obligation Blackwell Games
We introduce obligation Blackwell games. These games extend Blackwell games by
having a winning condition that includes a winning set (as in normal Blackwell games)
and a set of obligations. Intuitively, a play is winning for Player 0 if it belongs to the
winning set. However, whenever meeting an obligation, Player 0 has to make sure that
the value of the game in that configuration satisfies the obligation. If the obligation can
be met, the value for Player 0 at the configuration is 1.

An obligation Blackwell game (OBG for short) isG = (V,A0, A1, R,G), where V ,
A0, A1, and R are like in Blackwell games. The goal G = 〈α,O〉, where α ⊆ V ω is a
Borel set as for Blackwell games andO : V → ({≥, >}×[0, 1])∪{⊥}. The obligation
function O associates with some configurations the value ⊥ saying that there is no
obligation associated with this configuration. With other configurations O associates
an obligation >r or≥r stating that Player 0 can use this configuration (i.e., she derives
a non-zero value when getting to this configuration and this non-zero value is 1) only
if she can ensure that the value she can get from this configuration onwards meets the
obligation. It follows that, recursively, Player 0 has to ensure that every obligation
configuration satisfies the obligation requirement with plays in α. For configuration
v, if O(v) 6= ⊥ we call v an obligation configuration and if O(v) = ⊥ we call v a
non-obligation configuration.

As mentioned, the usual approach to defining values in games by considering the
measure of winning paths on a Markov chain and taking the supremum of infimum of
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V̂ = (V + × (0, 1]) ∪ (V + × (0, 1]× {ε}) ∪(w, r, f)

∣∣∣∣∣∣
w ∈ V +, r ∈ (0, 1], f : succ(w)→ [0, 1], and ∃d0 ∈ D(A0) .∀d1 ∈ D(A1) .∑
a0∈A0

∑
a1∈A1

∑
v′∈succ(w)

d0(a0) · d1(a1) ·R(v, a0, a1)(v′) · f(v′) > r


V0 = {(w, r) | either O(w) = ⊥ or ∃r′.O(w) = >r′} ∪ {(w, r, ε)}
V1 = {(w, r) | ∃r′.O(w) = ≥r′} ∪ {(w, r, f)}
E = {((w, r), (w, r′′, ε)) | O(w) = ≥r′ and 0 < r′′ < r′} ∪ {((w, r, f), (w · v′, f(v′))) | f(v′) > 0} ∪

{((w, r), (w, r′, f)) | either O(w) = ⊥ and r′ = r or O(w) = >r′} ∪ {((w, r, ε), (w, r, f))}
α̂ = {p ∈ V̂ ω | p⇓V ∈ α},where p⇓V is the limit of the projection of p on V +.

Figure 3: Components of turn(G).

strategies of the respective players does not work. This is mainly for two reasons. First,
the definition of value over a Markov chain needs defining in its own right. Second,
if a value is not achievable by a single strategy (which is the case in Blackwell games
with Borel objectives without obligations) the supremum over the value of strategies
is not sufficient to capture the complexity of obligations and (infinitely many) nested
supremum (and infimum) operators are required. Intuitively, the value of a configura-
tion in an obligation game is the value in the modified game where Player 0’s objective
is to either reach obligations she can fulfil or never reach obligations and fulfil the
Borel winning conditions. If during this interaction a new obligation is met then this
obligation needs to be fulfilled in the same way. If infinitely many obligations are met
along a path, this path has to be winning according to the Borel objective. We present
the formal definition of the value for the players in an OBG through a reduction to a
turn-based game similar to Martin’s proof that Blackwell games are determined [20].

We generalize the function O to apply to prefixes, where O(wv) = O(v) for
every wv ∈ V + and similarly for R, and succ. Consider the game turn(G) =
((V̂ , E), (V0, V1), α̂), where the components of turn(G) are given in Figure 3.

There are three types of configurations. Configurations of the form (w, r), where
O(w) = ⊥, are illustrated on the left in Figure 4. Such configurations are Player 0
configurations, where she claims that the value of prefix w is more than r. From such
configurations Player 0 chooses a successor configuration (w, r, f), where f is a func-
tion associating a value to every successor of w that proves that indeed the value at w
is greater than r. Configurations of the form (w, r), where O(w) = >r′, are illustrated
in the middle in Figure 4. Such configurations are Player 0 configurations, where, ig-
noring the value r, she has to prove that the value is greater than r′. Thus, she proceeds
as above but for the value r′ instead of r. Configurations of the form (w, r), where
O(w) = ≥r′, are illustrated on the right in Figure 4. Such configurations are Player 1
configurations, where, acknowledging that it may be impossible for Player 0 to achieve
exactly r′ but possible to achieve every r′′ < r′, Player 1 grants Player 0 a concession
and moves to a configuration (w, r′′, ε) from which, as above, Player 0 chooses a suc-
cessor configuration (w, r′′, f). Notice, that ε is used as a syntactic symbol signifying
that a concession has been granted, it is not a value. Then from configurations of the
form (w, r, f), Player 1 chooses which successor v′ of w to follow and proceeds to
(w · v′, f(v′)). Finally, we note that as α is a Borel set, then α̂ is also a Borel set.
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Figure 4: The structure of turn(G). Diamonds are Player 0 configurations and rectan-
gles are Player 1 configurations. Shaded areas represent a continuum of edges, where
every edge is associated with an entry from the continuous domain written next to the
edge. Fans of discrete edges represent finite choice, where every edge is associated
with a value from the domain written next to the edge. A dashed octagon is either a
Player 0 or Player 1 configuration depending on O(v′).

By Theorem 2 for every prefix w and for every value r ∈ (0, 1] from configuration
(w, r) in the game turn(G) either Player 0 wins or else Player 1 wins.

Lemma 1 For every OBG G and every prefix w, if Player 0 wins from (w, r) in
turn(G), she wins from every configuration (w, r′) for r′ < r. If Player 1 wins from
(w, r) in turn(G), she wins from every configuration (w, r′) for r′ > r.

Proof: This can be done by reusing the strategy in turn(G). Essentially, in order to
show r′ < r Player 0 can show r. Dually, in order to show that r′ > r is infeasible it is
enough to show that r is infeasible.

So winning values for Player 0 are downward closed and winning values for Player 1
are upward closed. It follows that there is a unique value below which Player 0 wins
and above which Player 1 wins.

Corollary 2 For every OBG G and every prefix w, there is a value s(G,w) ∈ [0, 1]
such that for every r′ < s(G,w) Player 0 wins from (w, r′) in turn(G) and for every
r′′ > s(G,w) Player 1 wins from (w, r′) in turn(G).

Notice that Player 0 may or may not win from s(G,w). For a prefixw we define the
value of w inG as follows. IfO(w) = ⊥ then the value of w inG, denoted val0(G,w),
is s(G,w). If O(w) = ./r then val0(G,w) is 1 iff s(G,w) > r or s(G,w) = r and
./ = ≥ and it is 0 otherwise.
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We now turn to the issue of determinacy. In order to show that the value of Player 0
and Player 1 sum to 1, we define the dual game. Dualization of a game consists of
changing the roles of the two players and switching the goal to the complement. Here,
the complementation of the goal is slightly more complicated than usual. Consider
a game G = (V,A0, A1, R,G), where G = 〈ϕ,O〉. The dual game dual(G) =
(V,A1, A0, dual(R), dual(G)), where dual(R)(v, a1, a0) = R(v, a0, a1), dual(G) =
〈V ω \ ϕ, dual(O)〉, and dual(O) is defined below.

dual(O)(v) =

 ⊥ If O(v) = ⊥
>1− r If O(v) = ≥r
≥1− r If O(v) = >r

Intuitively, if in G Player 0 has the obligation to achieve more than r with the set ϕ,
then the dual player (Player 0 in dual(G)) has the obligation to achieve at least 1 − r
with the goal set V ω \ ϕ. Syntactically, dual(dual(G)) = G. We use the dual game
to define the value for Player 1. Formally, let val1(G,w) denote the value of w in
dual(G). We prove that obligation games are determined by showing that the sum of
values of a prefix w in G and in dual(G) is 1.

Lemma 2 For every OBG and every prefix w, there are distributions d0 ∈ D(A0) and
d1 ∈ D(A1) such that

s(G,w) =
∑
a0∈A0

∑
a1∈A1

∑
v′∈succ(v)

d0(a0) · d1(a1) ·R(w, a0, a1)(v′) · val0(G,w · v′).

Furthermore, for every d′0 ∈ D(A0) and d′1 ∈ D(A1) the following hold.

s(G,w) ≤
∑
a0∈A0

∑
a1∈A1

∑
v′∈succ(v)

d0(a0) · d′1(a1) ·R(w, a0, a1)(v′) · val0(G,w · v′).

s(G,w) ≥
∑
a0∈A0

∑
a1∈A1

∑
v′∈succ(v)

d′0(a0) · d1(a1) ·R(w, a0, a1)(v′) · val0(G,w · v′).

Proof: Consider the values val0(G,w · v′) for v′ ∈ succ(w). By Von Neumann’s
minimax theorem [24] there is an r ∈ [0, 1] and optimal distributions d0 ∈ D(A0) and
d1 ∈ D(A1) such that∑

a0∈A0

∑
a1∈A1

∑
v′∈succw

d0(a0) · d1(a1) ·R(w, a0, a1)(v′)val0(G,w · v′) = r

and for every d′0 ∈ D(A0) and every d′1 ∈ D(A1) we have∑
a0∈A0

∑
a1∈A1

∑
v′∈succw

d0(a0) · d′1(a1) ·R(w, a0, a1)(v′)val0(G,w · v′) ≥ r∑
a0∈A0

∑
a1∈A1

∑
v′∈succw

d′0(a0) · d1(a1) ·R(w, a0, a1)(v′)val0(G,w · v′) ≤ r

We have to show that r = s(G,w).
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Suppose that r > s(G,w). Let δ = r − s(G,w) and consider a play starting from
(w, s(G,w)+ δ

2 , f), where f is the function that associatesmax(0, val0(G,w ·v′)− δ
4 )

to every successor v′ of w. Clearly, the minimax value for f is at least r − δ
4 , which

is larger than s(G,w) + δ
2 . By definition of val0(G,w · v′), Player 0 has a winning

strategy from (w · v′, val0(G,w · v′) − δ
4 ). It follows that Player 0 also wins from

(w, s(G,w) + δ
2 ) contradicting the definition of s(G,w).

Suppose that r < s(G,w). Let δ = s(G,w) − r and consider a play starting
from (w, s(G,w) − δ

2 ). Consider the configuration (w, s(G,w) − δ
2 ). In order to

win, Player 0 has to choose a successor configuration (w, s(G,w) − δ
2 , f), where f

associates at least val0(G,w · v′) + δ
2 with some successor w · v′ of w. Then, by

definition of s(G,w), Player 1 wins from configuration (w · v′, f(v′)) contradicting
the definition of s(G,w).

We are now ready to prove that value is well defined and that obligation Blackwell
games are determined.

Theorem 4 For All prefixes w in an OBG G we have val0(G,w) + val1(G,w) = 1.

The proof of Theorem 4 is non-trivial. The proof requires Martin’s determinacy
proof style analysis of the uncountable game turn(G), along with new subtleties (for
example as shown in the example in Figure 2 that measure zero sets could play an
important role in values of obligation games).

Proof: Note that the definition of our values is through turn-based deterministic games,
and thus relies on determinacy of turn-based deterministic games. In the present proof
we do not explicitly rely on Borel objectives, but the definition of values through turn-
based deterministic games requires determinacy for them (and determinacy holds for
turn-based deterministic games with Borel objectives). More explicitly, our proof relies
on determinacy for turn-based deterministic games rather than Borel objectives. The
determinacy proof of Martin also relies on determinacy of turn-based deterministic
games.

We add a few comments for readers familiar with Martin’s work. We note that
Martin considers a quantitative objectives that map plays to payoffs in the range [0, 1]
while we consider whether Player 0 is winning or not. This is equivalent to restricting
the payoffs to the range {0, 1}. Furthermore, he uses the symbol for integration to
represent the value while we use the notation val(·, ·) and talk about winning. The first
part of the proof below corresponds to the construction of the strategy for Player 0 (p.
1570) and the proof of Lemma 1.1 in Martin’s paper. The second part of the proof
below corresponds to the construction of the strategy for Player 1 (p. 1572) and the
proof of Lemma 1.4. The second half of Martin’s paper considers various extensions
of his result. We do not touch upon similar subjects to his.

For a prefix w, let S(G,w) denote the set of values r such that Player 0 wins from
(w, r) in turn(G).
⇒ We show that if r ∈ S(G,w) then 1− r /∈ S(dual(G), w).

Suppose that r ∈ S(G,w). That is, Player 0 wins from (w, r) in game turn(G).
We show that Player 1 wins from (w, 1− r) in turn(dual(G)) proving that 1−
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r /∈ S(dual(G), w). Let σ be the winning strategy of Player 0 in turn(G). We
now construct a winning strategy for Player 1 in turn(dual(G)). To distinguish
between a prefix of a play in G and prefixes in turn(G) or turn(dual(G))
we call the latter two paths. For a path dual(p) in turn(dual(G)) we use the
strategy σ to construct a path p in turn(G) such that whenever dual(p) ends in
configuration (w′, t) then p ends in configuration (w′, r) such that r + t ≥ 1.
Initially, we start from configuration (w, 1 − r) in turn(dual(G)) and from
configuration (w, r) in turn(G). That is, both paths are of length one.
Suppose that the paths p and dual(p) end in configurations (w′, r′) and (w′, t′),
respectively, and that t′ + r′ ≥ 1. We have the following cases.

– Suppose thatO(w′) = ⊥ then (w′, r′) is a Player 0 configuration in turn(G)
and (w′, t′) is a Player 0 configuration in turn(dual(G)). The winning
strategy σ instructs Player 0 to choose some configuration (w′, r′, f) in
turn(G). Suppose that Player 0 chooses the configuration (w′, t′, f ′) in
turn(dual(G)). By definition, there has to be a configuration v′ ∈ succ(w′)
such that f(v′) + f ′(v′) ≥ 1. We make Player 1 choose (w′ · v′, f(v′))
in turn(G) and extend the strategy π of Player 1 in turn(dual(G)) by
choosing (w′ · v′, f ′(v′)).

– Suppose that O(w′) = >r′′ in G. Then O(w′) = ≥1− r′′ in dual(G). It
follows that (w′, r′) is a Player 0 configuration in turn(G) and (w′, t′) is a
Player 1 configuration in turn(dual(G)). The winning strategy σ instructs
us to choose a configuration (w′, r′′, f) in turn(G). From the minimax
theorem [24] it follows that there is a value r′′′ > r′′ that is attained for the
optimal choice d0 ∈ D(A0) such that

inf
d1∈D(A1)

 ∑
a0∈A0

∑
a1∈A1

∑
v′∈succ(w′)

d0(a0) · d1(a1) ·R(w′, a0, a1)(v′) · f(v′)


is at least r′′′. Let δ = r′′′−r′′. Notice that 1−r′′−δ = 1−r′′′. Then, from
configuration (w′, t′) in turn(dual(G)), Player 1 chooses the successor
configuration (w′, 1 − r′′′, ε), in effect giving up δ for Player 0’s benefit.
Suppose that Player 0 chooses the successor configuration (w′, 1− r′′′, f ′)
in turn(dual(G)). As above, there has to be a successor v′ ∈ succ(w′)
such that f ′(v′)+f(v′) ≥ 1. Then we make Player 1 choose (w′ ·v′, f(v′))
in turn(G) and extend Player 1’s strategy in turn(dual(G)) by the choice
(w · v′, f ′(v′)).

– Suppose that O(w′) = ≥r′′ in G. Then O(w′) = >1− r′′ in dual(G). It
follows that (w′, r′) is a Player 1 configuration in turn(G) and (w′, t′) is a
Player 0 configuration in turn(dual(G)). Suppose that Player 0 chooses
the successor configuration (w′, 1 − r′′, f ′) in turn(dual(G)). From the
minimax theorem [24] it follows that there is a value r′′′ < r′′ that is
attained for the optimal choice d1 ∈ D(A1) such that

inf
d0∈D(A0)

 ∑
a0∈A0

∑
a1∈A1

∑
v′∈succ(w′)

d0(a0) · d1(a1) ·R(w′, a0, a1)(v′) · f ′(v′)


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is at least 1− r′′. Let δ = r′′ − r′′′. Notice that r′′ − δ = r′′′. Then, from
configuration (w′, r′) in turn(G), we make Player 1 choose the successor
configuration (w′, r′′′, ε), in effect giving up δ for Player 0’s benefit. Now,
Player 0’s winning strategy in turn(G) instructs her to choose a configura-
tion (w′, r′′′, f). As above, there has to be a successor v′ ∈ succ(w′) such
that f(v′) + f ′(v′) ≥ 1. Then we make Player 1 choose (w′ · v′, f(v′)) in
turn(G) and extend Player 1’s strategy in turn(dual(G)) by the choice
(w′ · v′, f ′(v′)).

Consider the two infinite plays played in turn(G) and turn(dual(G)). Clearly,
when projecting the two plays on the configurations in V + × (0, 1] that appear
in them and then on the configurations in V + we get exactly the same play. By
assumption σ is a winning strategy for Player 0 in turn(G). Hence, the limit
of this projection is in α implying that the strategy constructed for Player 1 in
turn(dual(G)) is indeed winning.

⇐ We show that 1 − s(G,w) ≤ s(dual(G), w). Notice that if s(G,w) = 1 then
clearly, 1− s(G,w) ≤ s(dual(G), w). We consider the case that s(G,w) < 1.
By Lemma 1 for every r > s(G,w) we have Player 1 wins in turn(G) from
(w, r). If t = 1 − r then t < 1 − s(G,w). We show that Player 0 wins from
(w, t) in turn(dual(G)).
Consider some value r > s(G,w) such that Player 1 wins from (w, r). We
show that Player 0 wins from (w, 1 − r) in turn(dual(G)) by proving that
1 − r ∈ S(dual(G), w). We use the difference between 1 − r + s(G,w) and
1 to give a winning strategy for Player 0 in turn(dual(G)). We use a winning
strategy π of Player 1 in turn(G) to produce a winning strategy for Player 0
in turn(dual(G)). For a path dual(p) in turn(dual(G)) we use the winning
strategy π of Player 1 in turn(G) to construct a path p in turn(G) such that
whenever dual(p) ends in configuration (w′, t′) then p ends in configuration
(w′, r′) such that r′ ≥ s(G,w′), Player 1 is winning from p using π, and t′ <
1− r′.
Consider a configuration (w, r) such that r > s(G,w). As r > s(G,w) there is
some r > r̃ > s(G,w) such that Player 1 wins from (w, r̃). Let π be the winning
strategy of Player 1 from (w, r̃). Initially, we start from configuration (w, 1− r)
in turn(dual(G)) and from configuration (w, r̃) in turn(G). Clearly, (w, r̃) is
winning for Player 1, r̃ ≥ s(G,w), and 1− r < 1− r̃.
Suppose that the two paths p and dual(p) end in a configurations (w′, r′) and
(w′, t′), respectively, and that r′ ≥ s(G,w), Player 1 wins from p using π, and
t′ < 1− r′. We have the following cases.

– Suppose thatO(w′) = ⊥ then (w′, r′) is a Player 0 configuration in turn(G)
and (w′, t′) is a Player 0 configuration in turn(dual(G)).
For every location v′ ∈ succ(w′) let u(v′) be the following value:

inf{1, f(v′) | (w′ · v′′, r′, f) ∈ V̂ and π(p · (w′ · v′′, r′, f)) = v′}

That is, we consider all possible choices for Player 0 from (w′, r′). Such
a choice includes a function f : succ(w′) → [0, 1]. Then, whenever the
winning strategy of Player 1 chooses to proceed to v′, we record the value
promised by Player 0 and take the infimum of all these values.
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By the minimax theorem there are d0 ∈ D(A0) and d1 ∈ D(A1) such that∑
a0∈A0

∑
a1∈A1

∑
v′∈succ(w′)

d0(a0) · d1(a1) ·R(w′, a0, a1)(v′) · u(v′) = r̃

and d0 and d1 are the optimal distribution choices for both players. We
show that r̃ ≤ r′. Suppose by contradiction that r̃ > r′. Then, let ε = r̃−r′

2
and consider the function f(v′′) = max(0, u(v′′)− ε). Clearly, (w′, r′, f)
is a configuration in turn(G). However, as π is a winning strategy from p
the choice π(p · (w′, r′, f)) contradicts the definition of u. So r̃ ≤ r′.
By assumption t′ < 1− r′. Let ε = 1− r′ − t′. Consider now the function
f ′ : succ(w′) → [0, 1] such that f ′(v′′) = 1 − u(v′′) − ε

2 . The minimax
value of f ′ in turn(dual(G)) is at least 1 − r̃ − ε

2 ≥ 1 − r′ − ε
2 > t′.

Hence, (w′, t′, f ′) is a configuration in turn(dual(G)).
We extend Player 0’s strategy in turn(dual(G)) by choosing configu-
ration (w′, t′, f ′). Then, Player 1 answers by choosing a successor (w ·
v′, f ′(v′)). Notice that it cannot be the case that u(v′) = 1. Indeed, in such
a case f ′(v′) would be 0. So the path dual(p) is extended by (w′, t′, f ′)
and then (w′ · v′, f ′(v′)).
We now turn our attention to extension of the path p. By the choice of u,
there is a function f such that (w′, r′, f) is a configuration in turn(G),
π(p · (w′, r′, f)) is (w′ · v′, f(v′)), and either f(v′) = u(v′) or f(v′) <
u(v′) + ε

4 . So we make Player 0 choose in turn(G) the successor con-
figuration (w′, r′, f). Then, Player 1’s winning strategy π instructs her to
choose (w′ · v′, f(v′)).
It follows that f(v′) ≥ s(G,w′ · v′). Otherwise, Player 0 has a winning
strategy from (w′ · v′, f(v′)) in contradiction with Player 1’s strategy π
being winning. Furthermore, π is winning from p·(w′, r′, f)·(w′·v′, f(v′)).
Finally, as f ′(v′) = 1−u(v′)− ε

2 and f(v′) < u(v′) + ε
4 we conclude that

f ′(v′) < 1− f(v′).
– Suppose that O(w′) = >r′′ in G. Then O(w′) = ≥1− r′′ in dual(G). It

follows that (w′, r′) is a Player 0 configuration in turn(G) and (w′, t′) is a
Player 1 configuration in turn(dual(G)). Suppose that Player 1 chooses
the next configuration (w′, t′′) in turn(dual(G)).
Now, this is similar to the previous case, as we have to continue from the
configurations (w′, r′′) in turn(G) and (w′, t′′) in turn(dual(G)) that are
both Player 0 configurations and t′′ < 1− r′′.

– Suppose that O(w′) = ≥r′′ in G. Then O(w′) = >1− r′′ in dual(G). It
follows that (w′, r′′) is a Player 1 configuration in turn(G) and (w′, 1−r′′)
is a Player 0 configuration in turn(dual(G)).
The winning strategy π instructs Player 1 to choose configuration (w′, r′′′)
such that r′′′ < r′′.
As before, this is similar to the first case, as we have to continue from the
configurations (w′, r′′′) in turn(G) and (w′, 1 − r′′) in turn(dual(G))
that are both Player 0 configurations and 1− r′′ < 1− r′′′.

Consider the two infinite plays played in turn(G) and turn(dual(G)). Clearly,
when projecting the two plays on the configurations in V +× (0, 1] that appear in
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them and then on the configurations in V + we get exactly the same play. By as-
sumption π is a winning strategy for Player 0 in turn(G). Hence, this projection
is not in α implying that the strategy constructed for Player 0 in turn(dual(G))
is indeed winning.

Corollary 3 For every obligation Blackwell game G and every prefix w such that
O(w) 6= ⊥, val0(G,w) ∈ {0, 1}.

Proof: Consider a configuration v such that O(w) = ./r. Then, by definition, the
game turn(G) starting from configuration (w, r′) does not depend on the value r′. It
follows that either Player 0 wins from (w, r′) for all r′ ∈ (0, 1] or Player 1 wins from
(w, r′) for all r′ ∈ (0, 1]. It follows that either val0(G,w) = 1 or val0(G,w) = 0.

4 Markov Chains with Obligations
We show that for Markov chains the measure of an obligation objective can be defined
directly on the Markov chain. This direct characterization is generalized later and is
crucial for the algorithmic analysis for finite games with parity objectives. We intro-
duce the notion of a choice set, a set of obligations that Player 0 can meet. We then
show that the definition of a value through a choice set and the definition in Section 3
coincide.

Consider a Markov chain M = (S, P, L, sin). Let G = 〈α,O〉 be an obligation,
where α ⊆ Sω is a Borel set of infinite paths andO : S → ({≥, >}×[0, 1])∪{⊥} is the
obligation function. We can think about such a Markov chain as an obligation Black-
well game where A0 and A1 are singletons. Formally, GM = (S, {a}, {a}, R,G),
where R(s, a, a) = P (s) for all s ∈ S. As before, we are interested in sequences
of locations, which correspond to prefixes of plays in GM . Thus, we refer to them as
prefixes also here. Let Ŝ denote the set of prefixes sin · S∗. Let O denote the set of
locations s ∈ S such that O(s) 6= ⊥ and Ô prefixes w · s ∈ Ŝ such that s ∈ O. That is,
O is the set of locations with a non-empty obligation and the set Ô is the set of prefixes
that end in a location inO. We denote by O(w) the obligation O(s), where w = w′ · s.
LetN = S\O denote the set of locations that have no obligation and N̂ denote the set
of prefixes Ŝ\Ô. For a prefix w a choice set is Cw ⊆ Ô ∩ ({w} · S+). That is, it is a
set of extensions of w that have obligations. For a prefix w′ ∈ Ŝ and a choice set Cw,
an infinite path w′ · y is good if either (a) y = x · z, x ∈ N ∗ · O, and w′ · x ∈ Cw, or
(b) y ∈ Nω and w′ · y ∈ α. That is, either the first visit to O after w′ is in Cw or O is
never visited and the infinite path is in α. Let βw

′

Cw
denote the set of good paths of w′

with choice set Cw. Given a choice set Cw and a prefix w′, the measure of G from w′

according to Cw is:

MsrGM (w′, Cw) =
ProbM (βw

′

Cw
)

ProbM ({w′} · Sω)
.

A choice set Cw is good if the following two conditions hold:
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• Every infinite path π = s0, s1, . . . in M such that π has infinitely many prefixes
in Cw is in α.

• For every sequence w′ ∈ Cw we have MsrGM (w′, Cw) ./ r, where O(w′) = ./r.
Let Cw denote the set of good choice sets for w.

Consider a Markov chain M = (S, P, L, sin) and an obligation G = 〈α,O〉. For
prefix w the pre-value of w is

ṽ(M,G, w) = sup
C∈Cw

MsrGM (w,C).

Finally, we define the value of w. For a prefix w such that O(w) 6= ⊥ we define
v(M,G, w) to be 1 if ṽ(M,G, w) ./ r, where O(w) = ./r, and v(M,G, w) is 0 other-
wise. For a prefix w such that O(w) = ⊥ we define v(M,G, w) to be ṽ(M,G, w).

We note that in a choice set C, if there is some prefix w /∈ C such that w ∈ Ô
then for every extension w · y of w there is no point in including w · y in C. Indeed,
once a certain obligation is not included in C all the obligations that extend it are not
important. We restrict attention to choice sets that satisfy this restriction.

We show that for every Markov chain and for every prefix the above definition of
value coincides with definition through Martin-like reduction.

Theorem 5 For every Markov chainM , obligation G = 〈α,O〉, and prefix w ∈ S∗ we
have v(M,G, w) = val0(GM , w).

The proof of Theorem 5 requires a refined analysis of a winning strategy in the
uncountable game turn(M) obtained from a Markov chain M . Using this analysis we
extract a witness choice set in M from a winning strategy in the uncountable game.

Proof: We show that val0(GM , w) ≥ v(G,w).
• Fix ε > 0. We have to show that if there is a choice set C that shows the value

v(G,w) − ε then Player 0 can get the value v(G,w) − ε in turn(GM ). This
proof uses heavily Martin’s proof of determinacy of Blackwell games [20]. Fix
a Markov chain M = (S, P, L, sin) for the rest of this proof.
Given a Borel winning set β ⊆ Sω , Martin defines a turn-based game Ĝm that
is slightly different to ours. Formally, Ĝm = 〈(S+ × [0, 1]) ∪ (S+ × F ), E, β̂〉,
where F is the set of functions {f : S → [0, 1]} and

E = {((w, v), (w, f)) |
∑
s′∈S P (s, s′) · f(s′) ≥ v}

∪ {((w, f), (w · s, v)) | f(s) ≥ v} .

For a set P ⊆ S+, let P ↑w denote P ∩{w} ·S+, i.e., exactly all suffixes of w in
P . Then, based on determinacy of Ĝm and measurability of β (since β is Borel),
Martin’s proof shows that ProbM (β↑w)

ProbM (S+↑w) ≥ v iff Player 0 wins Ĝm from every
configuration (w, v′) for v′ < v. That is, Player 0 announces the values she can
derive from successors of w and Player 1 chooses a successor from which to
show the value. Finally, β̂ is the set of plays whose projection on S+ has limit
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in β. The strategy of Player 0 forces all infinite plays to be in β̂.1

We use Martin’s result to show that whenever MsrGM (w,C) ≥ v then Player 0
wins in turn(GM ) from (w, v′) for every v′ < v. Let δ = v − v′. As
MsrGM (w,C) ≥ v, then according to Martin’s proof Player 0 wins in Ĝm from
(s, v′ + δ

2 ). We use Player 0’s strategy in Ĝm to win in turn(GM ). As we play,
we maintain the requirement in turn(Gm) always below the requirement in Ĝm
by repeatedly dividing the gap between the values in the two games by 2. It fol-
lows that in the ith round of playing the two games, the gap between the values
is δ

2i . Furthermore, as Player 0’s strategy in Ĝm is winning it cannot be the case
that the play created passes through an obligation prefix that is not in C (indeed,
all continuations from this point are losing in Ĝm). If on the other hand, a play
passes through an obligation point that is in C, then the correspondence between
the game turn(GM ) and a new instance of Ĝm from the new obligation point is
created. Consider an obligation prefix w′ such that O(w′) = ≥v′. By goodness
of C, MsrGM (w′, C) ≥ v′. In the game turn(GM ) Player 1 moves to a configu-
ration (w′, v′′, ε), where v′′ < v′. Thus, we can use the same argument and use
Martin’s game Ĝm to continue the strategy in turn(GM ). Consider an obliga-
tion prefix w′ such that O(w′) = >v′. By goodness of C, MsrGM (w′, C) > v′.
Hence, there is some v′′ such that v′ < v′′ < MsrGM (w′, C) that can be used
in Martin’s game. Finally, consider an infinite play in turn(GM ). If the play
visits C infinitely often, then by C’s goodness, it is winning for Player 0. If the
play visits C finitely often, according to Martin’s result, the corresponding play
is winning in Ĝm implying that the play is in α.

In the other direction we show that v(G,w) ≥ val0(GM , w).
• In the other direction, a winning strategy for Player 0 in the game turn(GM )

from (w, v) induces a good choice set C. We start by fixing the winning strategy
σ of Player 0. For the sake of this proof we assume that Player 0 always plays
by this strategy σ. Furthermore, from a prefix w ∈ Ô such that O(w) = ≥v, we
know that Player 1 can choose every successor (w, v′, ε) for v′ < v. We restrict
Player 1s choices to those v′ such that v′ ≥ 0 and v′ = v − 1

n for some n ∈ N.
Thus, when we say configuration is reachable we mean under these choices of
Player 0 according to σ and for choices of Player 1 restricted in ≥-obligation
configurations as explained.
The definition of the choice set C is quite involved as it has to take into account
the infinitely many different strategies that are involved in showing an obligation
of the form ≥ r (corresponding to each of the choices v′ = v − 1

n ). We assume
that the initial prefix w is an obligation such that O(w) = ≥v for the value that
interests us v. Indeed, this forces Player 0 to be able to win the game (w, v′, ε)
for every v′ = v − 1

n for every n ∈ N. The choice set we construct has to factor
in these infinitely many different strategies. However, the same occurs whenever
another obligation w′ that extends w is reached for which O(w′) = ≥v′′ for

1 The main difference between the two games (except for no obligations in Martin’s version) is as follows.
In our game the value promised by Player 0 is always slightly below the real value. Accordingly, we require
that the weighted sum of values of the successors be strictly larger than the promised value. In Martin’s
version the weighted sum of values of successors may be equivalent to the promised values (or larger).
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some v′′. It follows, that the choice set we construct must include the same
construction for every obligation of the form ≥v′′ that is encountered in the
game. More formally, we have the following.
Assume that we start from prefix (w, r′) such that O(w) = ≥v. Let T denote
the set of prefixes reachable from w excluding w itself. For every w′ = w ·
s1 · · · sn ∈ T , let level(w′) denote the number of locations si such that si ∈
O and O(si) = ≥r′ for 1 ≤ i ≤ n and r′ ∈ (0, 1]. That is, level(w′) is
the number of ≥-obligations on the way from w to w′ excluding w itself but
including w′ (if appropriate). For every i ≥ 1, let Ti ⊆ T denote the set Ti =
{w′ | level(w′) = i}. It follows that T =

⋃
i≥1 Ti and for every i and j we have

Ti∩Tj = ∅. We now restrict attention (by induction) to a subset of the obligation
configurations that appear in T .
Consider an obligation w′ in T1. For every such obligations there is a mini-
mal n ∈ N such that w′ is reachable from (w, v − 1

n , ε). We call this the rank
of w, denoted rank(w). Consider an obligation w′ in Ti. Let s1, . . . , si be
the ≥-obligations on the way from w to w′ and let v1, . . . , vi be the values of
these obligations. Then, there is a minimal according to the lexicographic or-
der (n1, . . . , ni) such that w′ is reachable from w by Player 1 taking the choice
(sj , vj − 1

nj
, ε) from (sj , v

′
j) for the appropriate v′j . As before, we call this the

rank of w′, denoted rank(w′). We say that w′ is good if for every ≥-obligation
w′′ on the path from w to w′ we have that rank(w′′) is a prefix of rank(w′).
That is, whenever w′ is reachable through multiple choices of Player 1, we con-
sider only the strategy Player 1 used from w′ for the minimal choice of conces-
sion given on all≥-obligations on the way tow′. We say that>-obligation prefix
w′′ is good if it appears in T and all ≥-obligation prefixes appearing on the path
fromw tow′′ are good. That is, if it appears as part of one of the same “minimal”
strategies. Let C = {w ∈ T ∩ Ô | w is good}. We note that the definition of C
does not depend on GM being derived from a Markov chain. Indeed the same
definition is used in the proof of Theorem 7.
In order to show that C is a good choice set we have to prove two things. First,
that every path that visits infinitely many obligations in C is in α. Second, that
all obligations in C are met.
For the first claim we note that an infinite sequence of prefixes in C appears also
in turn(GM ) and from σ being a winning strategy must be in α. We have to
show that the obligation of every w′ ∈ C is met. However, for this we can use
again Martin’s reduction. For every prefix w ∈ C, the strategy of Player 0 in
turn(GM ) can be used to show a win in Ĝm from (w, v′), where O(w) = ./r
and either ./ = ≥ and v′ ≥ r or ./ = > and v′ > r. Essentially, Player 0’s strat-
egy in turn(GM ) promises values for each prefix visited in a play. These values
are larger than the values needed in Ĝm and can be used to construct a strategy
in Ĝm. If some prefix in O is reached, then clearly the play must be included in
C as there is a strategy of Player 1 that makes it reachable. Furthermore, every
infinite play that includes infinitely many prefixes in C can be forced by Player 1
in turn(GM ) showing that it is in α. It follows that in the Markov chain we have
MsrGM (w,C) ./ r.
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Figure 5: An obligation Markov chain with no global good choice set.

The definition above uses the supremum over all good choice sets. We show that
there is a choice set that attains the supremum.

Theorem 6 For every Markov chain M , obligation G = 〈α,O〉, and prefix w ∈ Ŝ
there is a choice set C ∈ C such that MsrGM (w,C) = s(M,w).

Proof: Fix a prefix w. There are choice sets {Ci}i∈N such that MsrGM (w,Ci) ≥
s(G,w)− 1

2i .
Let C ′0 = C0. Consider a set Ci+1. Let

C ′i+1 = Ci+1\{w′ ∈ Ci+1 | ∃w′′ ∈ C ′j for j ≤ i s.t. w′ = w′′ · y for some y}.

We set C =
⋃∞
i=1 C

′
i. We show that C is a good choice set.

Consider an infinite path that visits infinitely many prefixes in C. Clearly, all of the
prefixes in C belong to the same set Ci for some i ∈ N. Hence, by Ci being a good
choice set, the path is in α.

Consider a point w′ ∈ C. Let i be the minimal such that w′ ∈ C ′i. Then, for every
extension w′′ = w′ · y such that w′′ · y ∈ Ci we have w′′ ∈ C ′i. Indeed, as w′ does not
have a prefix in C ′j for all j < i, so is the case for w′′. Then, as MsrGM (w′, Ci) satisfies
the obligation of w′ then so does MsrGM (w′, C).

We can show that MsrGM (w,C) = s(G,w). Indeed, if it were smaller than s(G,w)
then there is an i such that MsrGM (w,Ci) > MsrGM (w,C). It must be the case that Ci
includes extensions of w that are not in C, contradicting the definition of C.

We can show that in some cases there is no one good choice set that covers all
possible prefixes. Consider for example the Markov chain in Figure 5. Suppose that
the path in which s1 appears infinitely often is not in α. Clearly, for every prefix p =
s1 · · · s1 the pre-value of this configuration is 1. Indeed, the choice set that includes
exactly p · s1 proves that. However, this choice set, establishes the value of p · s1 as 2

3 ,
which is, as required, more than 1

3 . A choice set that shows the values of all prefixes
simultaneously, has to include all prefixes s1 · · · s1. Thus, the infinite path s1 · s1 · · ·
is visited infinitely often by this choice set and it cannot be good.

5 Finite Turn-Based Stochastic Parity Games with Obli-
gations

We extend the results from obligation Markov chains to finite turn-based stochastic
parity games with obligations, and show that the value function in such games has an
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Figure 6: Finite turn-based stochastic parity game with obligations requiring mem-
ory. Diamonds are Player 0 configurations and circles are stochastic configurations.
Priorities in the range [0..1] next to state define a parity acceptance condition. Only
configurations v6 and v8 have priority 0.

alternate direct characterization using choice sets. The direct characterization is crucial
to present algorithms to solve finite turn-based stochastic parity games with obligations.
The simpler definition does not generalize to infinite games, Blackwell games, or more
general winning conditions. In these more complicated games optimal strategies do not
always exist. For such games, we need a more elaborate construction that captures the
winning with ε-optimal strategies (and non-existence of optimal strategies), as done in
Section 3.

We reuse the notation G = ((V,E), (V0, V1, Vp), κ, G) for turn-based stochastic
parity games with obligations. Here, G = 〈α,O〉 is a goal andα is derived from a parity
condition c : V → [0..k]. Strategies are defined as before. Given a prefix w ∈ V +

and two strategies σ and π, we denote by w(σ, π) the Markov chain obtained from G
by using the strategies σ and π starting from prefix w. Then, we define the value of
Player 0 in the prefix w in the game to be v(G,w) = sup

σ∈Σ
inf
π∈Π

v(w(σ, π),G, w).

We note that if we extend the definition of a measure of a choice set so that bad
choice sets give measure 0 for all configurations then the following holds:

v(G,w) = sup
σ∈Σ

inf
π∈Π

sup
Cw

MsrGw(σ,π)(w,Cw) ≥

≥ sup
σ∈Σ

sup
Cw

inf
π∈Π

MsrGw(σ,π)(w,Cw)

This follows from properties of supremum and infimum. In the proof of Theorem 7
we actually show that v(G,w) ≤ val0(G,w) ≤ sup sup inf(· · · ). Hence, the two are
actually equivalent. Formally, we show that for every finite turn-based stochastic parity
game with obligations and for every prefix the two values v(G,w) and val0(G,w)
coincide.

Theorem 7 For all finite turn-based stochastic obligation parity games G and prefix
w ∈ V +, v(G,w) = val0(G,w).

As another illustration of the notion of a choice set consider the game in Figure 6.
In order to use v1, Player 0 has to win more than 1

2 from that configuration. Choos-
ing the self loop from v3 to itself or the edge from v3 to v1 only makes things worse
(though, each can be chosen a finite number of times). So the only option from v3

is to go back to v2 so that the probability of getting from v2 to v4 is 1. If from v4,

21



Player 0 chooses to go to v7 the value is 1
2 which does not satisfy the obligation of v1.

Going from v4 to v5, on the other hand, and upon returning from v5 to v4 proceed-
ing to v7 fulfills all obligations. Indeed, the value for v1 is 1 as all paths eventually
reach v5, and the value for v5 is 3

4 as the loop to itself through v6 is winning and the
paths from v5 to v4 and then on to v7 have value 1

4 . It follows that a possible choice
set for this game is C = {v1, v1v2(v3v2)∗v4v5(v+

6 v5)∗}. Indeed, Player 0 has a strat-
egy reaching from v1 to v1v2(v3v2)∗v4v5 with probability 1. She has a strategy from
v1v2(v3v2)iv4v5(vj6v5)k to either reach v1v2(v3v2)iv4v5(vj6v5)kv+

6 v5 or win the par-
ity objectives with probability 3

4 . We note that Player 0 uses its first visit to v4 to go to
v5, in order to boost the probability needed for the obligation of v1, and in subsequent
visits goes to v7.

We show that for a finite turn-based stochastic parity game G, from a winning
strategy in the uncountable game turn(G), we can construct a regular witness choice
set C ′. Using the regular witness and the fact that for finite turn-based stochastic ω-
regular games finite-memory optimal strategies exist we obtain Theorem 7 .

Proof: As before, let O = {v ∈ V | O(v) 6= ⊥}, N = {v ∈ V | O(v) = ⊥}.
Let Oi = {v ∈ O | c(v) = i} and Ni{v ∈ N | c(v) = i} be the obligation and
non-obligation configurations with priority i. Similarly, let O≥i = {v ∈ O | c(v) ≥ i}
and N≥i = {v ∈ O | c(v) ≥ i}.

We show that v(G,w) ≥ val0(G,w).
• Consider a winning strategy for Player 0 in turn(G) that starts in (w, r). We can

extract from it a set C of obligations that are used. This is done just like in the
proof of Theorem 5. Clearly, every path that visits infinitely many prefixes in C
is in α as it appears also in turn(G) as before. We modify C to a set C ′ that we
can show is good. We construct C ′ by induction on the number of obligations
passed on the way from (w, r).
Consider a prefix w′ ∈ C ∪ {w}. Let ob(w′) be the set of obligations w′′ ∈ C
such thatw′′ = w′ ·w′′′ andw′′′ ∈ N ∗ ·O. That is, ob(w′) is the set of obligations
directly reachable from w′ without passing through other obligations. Further-
more, annotate every prefix w′′ in ob(w′) by the minimal priority occurring in
w′′′, where w′′ = w′ ·w′′′ and w′′′ ∈ N ∗ ·O. For every prefix w′ ∈ C ∪{w} we
define a set obs(w′) ⊆ V ×[0..k], where [0..k] are the priorities of the parity con-
dition. Formally, obs(w′) is the set of pairs (v′, i′) such that some w′′ ∈ ob(w′)
is annotated by i′ and the last configuration in w′′ is v′.
Let Ni and Oi denote the configurations in G whose priority is i. Let N≥i and
O≥i denote the configurations in G whose priority is at least i.
We now construct C ′ by induction. We label every prefix p′ ∈ C ′ by a prefix
p ∈ C that is the reason for inclusion of p′ in C ′. Consider the configuration w.
By construction, for every (v, i) ∈ obs(w) there is a prefix w(v,i) ∈ C such that
w(v,i) ∈ ob(w) and w(v,i) ends in v. We add to C ′ all the prefixes w · p, where p
is in the following set (restricted to those reachable from w):⋃

(v,i)∈obs(w)

(N ∗≥i · Ni · N ∗≥i · {v} ∪ N ∗≥i · (Oi ∩ {v}))

Furthermore, every prefixw ·p for p ∈ (N ∗≥i ·Ni ·N ∗≥i ·{v}∪N ∗≥i ·(Oi∩{v})) is
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labeled by w · w(v,i). We now continue by induction. Consider a prefix p′ ∈ C ′
that is labeled by prefix p ∈ C. By construction, for every (v, i) ∈ obs(p) there
is a prefix p(v,i) ∈ C such that p(v,i) ∈ ob(p) and p(v,i) ends in v. We add to
C ′ all the prefixes p′ · p′′, where p′′ is in the following set (restricted to those
reachable from p′):⋃

(v,i)∈obs(p)

(N ∗≥i · Ni · N ∗≥i · {v} ∪ N ∗≥i · (Oi ∩ {v}))

Furthermore, every prefix p′ ·p′′ for p′′ ∈ (N ∗≥i ·Ni ·N ∗≥i ·{v}∪N ∗≥i ·(Oi∩{v}))
is labeled by p · p(v,i).
This completes the construction of C ′. We have to show that C ′ is a good choice
set. That is, every infinite path in G that visits infinitely many configurations in
C ′ is fair and the strategy of Player 0 in G establishes all the obligations posed
by C ′.
The fact that every infinite path in G that visits infinitely many prefixes in C ′

is fair can be deduced by following the labels in C of prefixes in C ′. Consider
such an infinite sequence of prefixes p0, p1, . . . in C ′ and their respective labels
w0, w1, . . . from C. By construction, the minimal priority visited in the exten-
sion of pi to pi+1 is the minimal priority visited in the extension of wi to wi+1.
Furthermore, the sequence w0, w1, . . . corresponds to a path in G that visits in-
finitely many configurations in C. As C is obtained from turn(G), it follows
that the limit of w0, w1, . . . is fair. That is, the limit of w0, w1, . . . satisfies the
parity objective. We conclude that the limit of p0, p1, . . . is fair as well.
We now have to show that all obligations inC ′ are met. Consider a prefix p′ ∈ C ′
labeled by prefix p ∈ C. Both p′ and p end in the same configuration v ∈ V
of G. It follows that the obligation O(v) is fulfilled in turn(G). Assume that
O(v) = ≥r. It follows that Player 0 wins in turn(G) from (p, r′) for every
r′ < r. Recall the sets ob(p) ⊆ C and obs(p) ⊆ V × [0..k]. The winning in
turn(G) from (p, r′) for every r′ < r can be translated to a win in Ĝ for the goal
ob(p) · V ω for every r′′ < r, where Ĝ is the game obtained from G by Martin’s
reduction. Thus, the value of ob(p) ·V ω ∪ (α∩Nω) in G is r. We now consider
the following goal γ in G:

γ =
⋃

(v,i)∈obs(p)

((N ∗≥i · Ni · N ∗≥i · {v}) ∪ (N ∗≥i · (Oi ∩ {v}))) ∪ (α ∩Nω)

In particular, γ contains at least all the extensions p′ such that p · p′ ∈ ob(p)
as well as α ∩ Nω . Furthermore, γ can be translated to a parity goal in G by
including a simple monitor for the minimal parity encountered along the path.
As reach(ob(p))∪ (α∩Nω) ⊆ γ it follows that the value of γ in G is at least r.
However, values in finite turn-based stochastic parity games are attained. That is,
there is a strategy for Player 0 such that the value of γ according to this strategy is
at least r. It follows that by using this strategy Player 0 can ensure the obligation
of p in G. The case that O(v) = >r is simpler, as Player 0 wins directly from
(v, r) in turn(G).
It follows thatC ′ is a good choice set and that Player 0 has a strategy that ensures
that all obligations in C ′ are met.
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In the other direction we show that v(G,w) ≤ val0(G,w).
• Suppose by way of contradiction that r = v(G,w) > val0(G,w). Let t < r

be such that t > val0(G,w). By definition of val0(G,w), Player 1 wins in
turn(dual(G)) from (w, 1 − t). This winning strategy induces a good choice
set T just like in the previous proofs. Note that this set is good for Player 1.
Thus, every path that visits infinitely many configurations in T does not satisfy
the acceptance condition. As in the other direction of the proof, the set T can be
extended to a good choice set T ′ such that Player 1 has a strategy to enforce all
obligations in T ′ (in the dual game). We show that T ′ proves that the value of w
in G cannot be r. Fix a strategy σ of Player 0 in G. We show that the strategies
of Player 1 in G that enforce the obligations in T ′ (in the dual game) induce a
strategy π ∈ Π such that every choice set in Gσ,π that shows the value r cannot
be good. Notice, that the set O is the same in G and dual(G). Hence, there is a
strategy π for Player 1 in G that achieves the value 1− t for Player 1. Consider
the strategy σ and assume that it achieves the value r for Player 0 in G for some
choice set C. Then, as 1 − t + r > 1, and Nω ∩ α and Nω ∩ α are disjoint,
it follows that C and T ′ have a non-empty intersection such that the strategy σ
reaches C ∩ T ′.
We now proceed by induction. Consider a configuration w′ ∈ C ∩ T ′. There are
two cases, either O(w′) = ≥r′ or O(w′) = >r′.

– Suppose that O(w′) = ≥r′. In this case, the obligation of w′ in dual(G)
is>1−r′. It follows that there is some value r′′ < r′ such that the value of
(T ′ ·V ω)∪ (Nω ∩α) in G for Player 1 is 1− r′′. Then, as 1− r′′+ r′ > 1,
and Nω ∩ α and Nω ∩ α are disjoint, it follows that C and T ′ have a
non-empty intersection such that the strategy σ reaches C ∩ T ′.

– Suppose thatO(w′) = >r′. In this case, there is a value r′′ > r such that σ
must attain the goal (C ·V ω)∪ (Nω ∩α) with probability r′′. At the same
time Player 1 can force the goal (T ′ · V ω) ∪ (Nω ∩ α) with probability
1− r′. As r′′+ 1− r′ > 1 the sets C and T ′ have a non-empty intersection
such that the strategy σ reaches C ∩ T ′.

Continuing by induction we create a path that visits infinitely many configura-
tions in T ′ and in C. It follows that C cannot be a good choice set.

Corollary 4 For every finite turn-based stochastic parity game with obligations G
and prefix w ∈ V +, there are strategies σ ∈ Σ and π ∈ Π such that v(G,w) =
v(w(σ, π),G, w). Furthermore, for every strategy σ′ ∈ Σ and π′ ∈ Π we have
v(w(σ′, π),G, w) ≤ v(G,w) ≤ v(w(σ, π′),G, w).

Proof: This follows from the proofs of Theorems 5 and 7. Consider a configuration
w. Suppose that v(G,w) = r. Then, for every n there is a strategy σn such that for
every π ∈ Π the value v(Gσn,π(w),G, w) ≥ r − 1

n . Furthermore, there is a good
choice set Cn such that the goal (Cn · V ω) ∪ (Nω ∩ α) is enforced with probability
at least r − 1

n . As in the proof of Theorem 5 the different choice sets {Cn}n>0 can
be combined to a single choice set C. Furthermore, the choice set C has a simple
structure as in the proof of Theorem 7. It follows that Player 0 can enforce the goal
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(C · V ω) ∪ (Nω ∩ α) with probability larger than r − 1
n for every n. As G is finite it

must be that (C · V ω) ∪ (Nω ∩ α) can be enforced with probability r.
The proof that Player 1 also has an optimal strategy is similar.

6 Algorithmic Analysis of Obligation Games
We give algorithms for solving obligation Blackwell games in two cases. First, in
case that in every path in the game, the number of transitions between an obligation
configuration and a non-obligation configuration is bounded. In this case, we show
that obligation Blackwell games can be reduced to a sequence of turn-based stochastic
games. Second, in case that the game is finite and the winning condition is a parity
condition. In this case, we give an exponential time algorithm for computing the value
of the game.

6.1 Reduction to Stochastic Games
Essentially, this is the solution adopted in [14] for solving acceptance of uniform p-
automata. We partition the game to regions where there are no transitions between
obligation configurations and non-obligation configurations. A region that consists
only of non-obligation configurations can be thought of as a stochastic game. A region
that consists only of obligation configurations can be thought of as a turn-based (non-
stochastic) game. More formally, we have the following.

Consider an obligation Blackwell gameG = (V,A0, A1, R, G), where G = 〈α,O〉.
We say that a configuration v is pure if for every a0 ∈ A0 and a1 ∈ A1 we have
R(v, a0, a1) is pure. We say that the game is uniform if all the following holds.
• There is a partition {Vi}i∈N of V such that for every i we have, either (i) for

every v ∈ Vi we have O(v) = ⊥ or (ii) for every v ∈ Vi we have O(v) 6= ⊥ or
v is pure.

• We say that Vi ≤ Vi′ if there are some v ∈ Vi, v′ ∈ Vi′ , a0 ∈ A0, and a1 ∈ A1

such that R(v, a0, a1)(v′) > 0. The partition must also satisfy that every chain
according to ≤ is finite.

Theorem 8 The computation of the value of a uniform obligation Blackwell game G
can be reduced to the solution of multiple Blackwell games.

Proof: Let {Vi}i∈N be the partition of the game G. By assumption, consider a set Vi
such that there is no other set Vi′ such that Vi < Vi′ . Consider a prefix w = w′ · v such
that v ∈ Vi. Clearly, the extension of this prefix to a play in G remains forever in Vi.

Suppose that for all v ∈ Vi we have O(v) = ⊥. Let G′ = (V ∗, A0, A1, R, α) be
the game obtained from G by restricting attention to configurations reachable from w.
The game G′ is a normal Blackwell game and hence the value of every configuration
in {w} · V ∗i is well defined.

Suppose that for all v ∈ Vi we have O(v) 6= ⊥ or v is pure. Consider the turn-
based game G′ = ((V ∗ ∪ V ∗ × 2V , E), (V ∗, V ∗ × 2V ), α′), where we restrict V ∗ to
configurations reachable from w and E and α′ are as follows. Consider a prefix u′ · v′
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and a set S ⊆ V . If O(v′) = ⊥, we say that S is possible from u′ · v′ if there is
d0 ∈ D(A0) such that for all d1 ∈ D(A1) we have∑

a0∈A0

∑
a1∈A1

∑
v′′∈S

R(v′, a0, a1)(v′′) ./ p, (1)

where O(v′) = ./ p. If v′ is pure, we say that S is possible from u′ · v′ if there is a0 ∈
A0 such that for all a1 ∈ A1 the unique configuration v′′ such that R(v, a0, a1)(v′′) =
1 is in S. Notice, that this is like considering a pure configuration as having the obliga-
tion ≥1.
• E = {(w′ ·v′, (w′ ·v′, S)) | S possible from w′ · v′}∪{((w′, S), (w′ ·v′)) | v′ ∈
V }.

• α′ includes all infinite paths such that the limit of their projection on V ∗ is in α.
This is in effect equivalent to the reduction to turn(G) when restricted to {w} · V ∗i .

Consider now a set Vi and a configuration w = w′ · v such that v ∈ Vi. Suppose,
by induction, that for all configurations u · v′ such that v′ ∈ Vi′ for Vi < Vi′ a value
has already been computed.

If for every v ∈ Vi we have O(v) = ⊥, then a similar reduction to a normal
Blackwell game by plugging in the value of precomputed configurations gives the value
of all configurations in {w} · V ∗i .

If for every v ∈ Vi we have O(v) 6= ⊥, then a similar reduction to a turn-based
game can be done. This time, value of precomputed configurations has to be combined
in the small minimax games as in Equation 1.

We note that this is a “meta”-algorithm. Consider a uniform obligation Blackwell
game G and the partition V1, . . . , Vn showing that it is uniform. Suppose that every
Vi reduces to a Blackwell game that can be analyzed algorithmically. Then, from
Theorem 8, the game G can be analyzed algorithmically.

6.2 Finite Turn-based Stochastic Obligation Parity Games
We show that values in finite turn-based stochastic parity games with obligations (POG,
for short) can be computed in exponential time and decision problems regarding values
lie in NP∩co-NP.

We give a nondeterministic algorithm for finding a maximal (wrt to inclusion)
choice set, which calls the computation of values in stochastic parity games as a sub-
routine. Then, the value of a configuration in the game can be computed by computing
the value of reaching the choice set computed by the algorithm or winning the parity
condition without reaching other obligations. By results of previous sections, dualiza-
tion of the game gives the value of the opponent. It follows that the decision regarding
the value is also in co-NP.

We now give an algorithm that decides and computes values in G. A dependency
for v ∈ O is either Cv = ⊥ or Cv ⊆ (O × [0..k]). That is, Cv is either undefined
or a (possibly empty) set of pairs of obligation configurations annotated by priorities.
A game dependency is a set {Cv}v∈O. A game dependency is good if the following
conditions hold:
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Figure 7: Illustration of a dependency. Priorities in the range [0..4] next to state define
a parity acceptance condition.

1. If for some v ∈ O we have (v′, i) ∈ Cv then Cv′ 6= ⊥.
2. For every infinite sequence (v0, i0), (v1, i1), . . . such that for every j we have

(vj+1, ij+1) ∈ Cvj the minimal priority occurring infinitely often in i0, i1, . . . is
even.

3. For every v ∈ O such that Cv 6= ⊥ we have val0(G′, v) ./ r, where O(v) = ./r
and G′ is the game G considered as a turn-based stochastic game with the goal
γ: ⋃

(v′,i)∈Cv

 (N ∗≥i · Ni · N ∗≥i · (O≥i∩{v′}) · V ω) ∪
(N ∗≥i · (Oi∩{v′}) · V ω) ∪
(α ∩Nω)


Informally, for an obligation v with non-empty dependency, the dependency in-
deed shows that the obligation is met: Player 0 can force (i) winning the original
winning condition while never reaching another obligation or (ii) reaching an
obligation v′ that v depends on, with i, the required parity, being the minimal
visited along the way.

We illustrate the notion of a dependency using Figure 7. The obligation of s1

is 3
4 . The probability to reach s1 from itself is 1. However, the paths (s1s

+
2 s4s6)ω

have a minimal priority of 1 and are losing. It follows that the only winning paths are
(s1s

+
2 s4s5)ω , (s1s

+
3 s4s5)ω , and (s1s

+
3 s4s6)ω . Thus, s1 depends on reaching s1 with

minimal priority 0 (through s3) and on reaching s1 with minimal priority 2 (through
s2 and s5). This satisfies the three conditions as (1) s1 has a defined dependency, (2)
every cycle visits either the minimal priority 0 or 2, and (3) the probability of reaching
s1 with minimal priority 0 is 1

2 , the probability of reaching s1 with minimal priority 2
is 1

4 , and the probability of not reaching s1 is 0. So the total probability is 3
4 , which

fulfils the obligation of s1. Adding an obligation of ≥ 1
2 at s4, changes the dependency.

Now, s1 depends on reaching s4 with priority 0 or 2 and s4 depends on reaching s1

with priority 3. However, if the obligation of s4 is set to > 1
2 , then there is no good

dependency. Indeed, this would mean that whenever s4 is reached the path through s6

must be included. Then, the path from s1 through s2 can not be part of the dependency
as this would create a cycle with minimum priority 1 and the obligation of s1 is no
longer fulfilled. The dependency for the game in Figure 6 is v1 depends on reaching
v5 with priority 1 and v5 depends on reaching itself with priority 0. This is a good
dependency as (a) the only cycle in it is v5 reaching itself with priority 0 (b) from v1

Player 0 has a strategy that ensures that v5 is reached with probability 1, and (c) from
v5 Player 0 has a strategy that ensures that either v5 is reached with minimial priority
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0 encountered or getting to v8 and staying there (with no obligations on the way) with
probability 3

4 .
The nondeterministic algorithm is as follows. We guess a game dependency {Cv}v∈O.

The size of {Cv}v∈O is polynomial in |V |. We check that {Cv}v∈O is good by doing
the following. First, checking that if (v′, i) ∈ Cv then Cv′ 6= ⊥ can be completed in
polynomial time by scanning all the sets Cv . Second, checking that all cycles induced
by Cv have a minimal even parity in them can be completed in polynomial time by
drawing the graph of connections between the different configurations in O for which
Cv 6= ⊥ and searching for a cycle with minimal odd priority. Third, ensuring that
the values in the different turn-based stochastic games fulfill the obligations can be
achieved in NP∩co-NP by Theorem 3. Finally, consider the goal γ′:

γ′ = (N ∗ · {v : Vc 6= ⊥} · V ω) ∪ (α ∩Nω)

We evaluate whether val0(G,w) ./ r by checking whether val0(G′, w) ./ r, where G′

is the turn-based stochastic game obtained from G by considering the goal γ′. This
can be checked in NP∩co-NP. To compute the value val0(G,w) we compute the value
of w in G′. This can be computed in exponential time. Notice that the values of γ′ in
G′ correspond to the value s(G,w) and not val0(G,w). For obligation configurations
we must compare the result with the required obligations. If the obligation is met, the
value val0(G,w) is 1. Otherwise, it is 0. Overall, if all the nondeterministic guesses
are made up-front (i.e., the dependency and the winning strategies in all games) then
the global size of the witness is polynomial and all the checks can be completed in
polynomial time. Overall, the decision problem is in NP∩co-NP, and the values can be
computed in exponential time.

We apply the algorithm on the example in Figure 7. As analyzed above, the depen-
dency for s1 is (s1, 0) and (s1, 2). This proves that the value for all configurations is 1.
Indeed, for every configuration in the game the probability of reaching s1 at least once
is 1. Once s1 is reached for the first time, the more complex reliance on the choice set
that is extracted from the dependency is required. Applying the algorithm on the game
in Figure 6 we see that the value of v1, v2, v3, v4, and v6 is 1 as from them Player 0 can
reach v5 with probability 1. The pre-value of v5 is 3

4 as it reaches itself with probability
1
2 and wins the parity condition (reaching v8) with probability 1

4 . As this matches its
obligation its value is 1.

Algorithm correctness follows from the following Lemmas.

Lemma 3 There is a memoryless winning strategy in turn(G).

Proof: According to the proof of Theorem 7 from every obligation used as part of the
winning strategy in turn(G), there is a simple goal that leads to the next frontier of
used obligations. Namely, given the sets ob(p) and obs(p) the goal is:

γ =
⋃

(v,i)∈obs(p)

((N ∗≥i · Ni · N ∗≥i · {v}) ∪ (N ∗≥i · (Oi ∩ {v}))) ∪ (α ∩Nω)

The structure of this goal implies that there is a strategy with memory linear in the
number of priorities in the game that achieves an optimal value for this goal. However,
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an obligation configuration v ∈ O may appear infinitely often in turn(G), each time
using a different strategy.

Consider now all the possible strategies for Player 0 in G with a goal γ as above
with memory bounded by the number of priorities. Clearly, the number of such strate-
gies is finite. In particular, for every obligation configuration v ∈ O there is a finite
number of strategies that are used in turn(G). We now construct a finite parity game
G′ based on these strategies. For every prefix p · v such that v ∈ O used in turn(G)
add a Player 0 configuration v to G′. For every strategy σ that is used from the prefix
p · v in turn(G) we add a Player 1 configuration σ to G′. For every pair (v′, i) such
that v′ ∈ O and i is a priority such that application of σ from p · v reaches a config-
uration v′ with priority i being the minimal visited along the way we add the Player 0
configuration (σ, v′, i) to G′. We add edges to G′ as follows. From configuration v we
add edges to all strategies σ used from p · v for some p. From strategy σ we add edges
to all triplets (σ, v′, i). From configuration (σ, v′, i) we add an edge to v′. We set the
priority of (σ, v′, i) to be i and priorities of all other configuration to be the maximal
possible priority.

The game G′ is a finite parity game and we know that Player 0 wins G′ based on
the combination of the winning strategies in turn(G). It follows from Theorem 3 that
there is a memoryless winning strategy for Player 0 in G′. However, a memoryless
winning strategy in G′ induces a unique choice of a strategy from every obligation
configuration in turn(G) leading to a memoryless winning strategy in turn(G).

Lemma 4 An obligation configuration v fulfills val0(G, v) = 1 iff there is a good game
dependency {Cv′}v′∈O such that Cv 6= ∅.

Proof: The existence of a good game dependency clearly shows that the obligation of
v can be met.

In the other direction, if the obligation of v can be met, this means that Player 0
wins in turn(G) from (v, r′) for every r′ ∈ (0, 1]. Furthermore, a choice set of a
very particular form can be extracted as in the proof of Theorem 7. According to
Lemma 3 Player 0 has a memoryless winning strategy in turn(G). We note further,
that in turn(G), if an obligation configuration (w, r′) occurs, the game below (w, r′)
does not depend on the value r′. Thus, if two obligations w · v and w′ · v and the
configurations (w · v, r) and (w′ · v, r′) occur in turn(G) the extension of the game
below both is identical. It follows, that the memoryless strategy behaves exactly the
same from all obligations w ·v and w′ ·v for the same obligation configuration v. Then
obs(w · v) = obs(w′ · v) for all w,w′ ∈ V ∗. So for an obligation v appearing in
turn(G) we can use the set obs(w · v) for some prefix w as the dependency Cv . For
every obligation v′ not appearing in turn(G) we set Cv′ = ⊥. We have to show that
this induces a good game dependency. First, if we have (v′, i) ∈ Cv then it follows that
some prefix w′ · v′ is reachable from a prefix w · v. Thus, C ′v must be defined. Second,
every cycle in {Cv}v∈O with minimal odd priority corresponds to an infinite path in
the good choice set with a minimal odd priority, which is impossible. Third, it must be
the case that val0(G′, v) ./ r, where G′ is obtained from G by considering the goal γ:

γ =
⋃

(v′,i)∈Cv

((N ∗≥i · Ni · N ∗≥i · {v′} · V ω) ∪ (N ∗≥i · (Oi ∩ {v}) · V ω)) ∪ (α ∩Nω)
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Indeed, this is the exact construction of the choice set from turn(G) as in the proof of
Theorem 7, where it is proven that it is also good.

Lemma 5 For every configuration v, val0(G, v) = r iff there is a good game depen-
dency {Cv′}v′∈O such that val(G′, v) = r, whereG′ is obtained fromG by considering
the goal γ.

γ = (N ∗ · {v : Vc 6= ⊥} · V ω) ∪ (α ∩Nω)

Proof: As before, if val(G′, v) = r then clearly val0(G, v) ≥ r. In the other direction,
we consider all the obligations appearing in the choice set showing that val0(G, v) = r.
According to the previous lemma, these obligations require a good game dependency.
Finally, the value val0(G, v) is exactly the reachability of the good choice set or win-
ning parity without reaching obligations.

Theorem 9 For a POGG and a prefix w ∈ V +, the values val0(G,w) and val1(G,w)
can be computed in exponential time and whether val0(G,w) ./ r can be decided in
NP∩co-NP.

7 p-Automata
In [14], we defined uniform p-automata and showed that they are a complete abstrac-
tion framework for pCTL. Acceptance of Markov chains by uniform p-automata was
defined through a cumbersome and complicated reduction to a series of turn-based
stochastic parity games. Here, using obligaton games, we give a clean definition of ac-
ceptance by p-automata. What’s more, obligation games allow us to define acceptance
by general p-automata and remove the restriction of uniformity. To simplify presenta-
tion we remove the notion of ∗-transitions (see [14]).

We assume familiarity with basic notions of trees and (alternating) tree automata.
For set T , let B+(T ) be the set of positive Boolean formulas generated from elements
t ∈ T , constants tt and ff, and disjunctions and conjunctions:

ϕ,ψ ::= t | tt | ff | ϕ ∨ ψ | ϕ ∧ ψ (2)

Formulas in B+(T ) are finite even if T is not.
For set Q, the set of states of a p-automaton, we define term sets [[Q]]> as follows.

[[Q]]> = {[[q]]./p | q ∈ Q, ./ ∈ {≥, >}, p ∈ [0, 1]}

Intuitively, a state q ∈ Q of a p-automaton and its transition structure model a
probabilistic path set. So [[q]]./p holds in location s if the measure of paths that begin
in s and satisfy q is ./ p.

An element of Q ∪ [[Q]]> is therefore either a state of the p-automaton, or a term
of the form [[q]]./p. Given ϕ ∈ B+(Q ∪ [[Q]]>), its closure cl(ϕ) is the set of all
subformulas of ϕ. For a set Φ of formulas, let cl(Φ) =

⋃
ϕ∈Φ cl(ϕ).
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Definition 1 A p-automaton A is a tuple 〈Σ, Q, δ, ϕin, α〉, where Σ is a finite input
alphabet, Q a set of states (not necessarily finite), δ : Q × Σ → B+(Q ∪ [[Q]]>) the
transition function, ϕin ∈ B+([[Q]]>) the initial condition, and α a parity acceptance
condition.

In general, p-automata have states, Markov chains have locations, and games con-
figurations.

For every AP, p-automata A = 〈2AP, Q, δ, ϕin, α〉 have MCAP as set of inputs.
For M = (S, P, L, sin) ∈ MCAP, we define whether A accepts M by a reduction to
a turn-based stochastic parity game with obligations. The language of A is L(A) =
{M ∈ MCAP | A accepts M}.

We construct a game GM,A = ((V,E), (V0, V1, Vp), κ,G). A configuration of
GM,A corresponds to a subformula appearing in the transition of A and a location in
M . Configurations with a term of the form [[q]]./p correspond to obligations. All other
configurations have no obligations. The Markov chain is accepted if the configuration
(ϕin, sin) has value 1 in GM,A.

Formally, we define GM,A as follows. Let GM,A = ((V,E), (V0, V1, Vp), κ,G),
where the components of GM,A are as follows.
• V = S × cl(δ(Q,Σ)).
• V0 = {(s, ψ1 ∨ ψ2) | s ∈ S and ψ1 ∨ ψ2 ∈ cl(δ(Q,Σ))}.
• V1 = {(s, ψ1 ∧ ψ2) | s ∈ S and ψ2 ∧ ψ2 ∈ cl(δ(Q,Σ))}.
• Vp = S × (Q ∪ [[Q]]>).
• The set of edges E is defined as follows.

E={((s, ϕ1 ∧ ϕ2), (s, ϕi)) | i ∈ {1, 2}} ∪
{((s, ϕ1 ∨ ϕ2), (s, ϕi)) | i ∈ {1, 2}} ∪

{((s, q), (s′, δ(q, L(s)))) | s′ ∈ succ(s)} ∪
{((s, [[q]]./p), (s′, δ(q, L(s)))) | s′ ∈ succ(s)}

• κ((s, q), (s′, δ(q, L(s)))) = κ((s, [[q]]./p), (s
′, δ(q, L(s)))) = P (s, s′).

• G = 〈α̃, O〉, where
– For q ∈ Q and p ∈ [0, 1] we have α̃(s, q) = α(q), α̃(s, [[q]]./p) = α(q). For

every other configuration c we set α̃(c) to the maximal possible priority.
– For q ∈ Q and p ∈ [0, 1] we have O(s, [[q]]./p) = ./p. For every other

configuration c, we have O(c) = ⊥.
As obligation games are well defined it follows that it is well defined whether a

p-automaton accepts a Markov chain.

Theorem 10 Given a finite p-automaton A and a finite Markov chain M , we can de-
cide whetherM ∈ L(A) in time exponential in the number of states ofA and locations
of M .

Proof: This follows from the polynomial construction of the finite-state turn-based
stochastic obligation parity game GM,A for the Markov chain M and p-automata A,
and Theorem 9.
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The definition in [14] restricts attention to uniform p-automata. Such automata
restrict the cycles in the transition graph of p-automata. We recall the definition of
uniform p-automata. In doing so, we differentiate states q′ appearing within a term
in [[Q]]> (bounded transition) from q′ appearing “free” in the transition of a state q
(unbounded transition). In this way, a p-automaton A = 〈Σ, Q, δ, . . .〉 determines a
labeled, directed graph GA = 〈Q′, E,Eb, Eu〉:

Q′ = Q ∪ cl(δ(Q,Σ))
E = {(ϕ1 ∧ ϕ2, ϕi), (ϕ1 ∨ ϕ2, ϕi) | ϕi ∈ Q′ \Q,

i ∈ {1, 2}} ∪ {(q, δ(q, σ)) | q ∈ Q, σ ∈ Σ}
Eu = {(ϕ ∧ q, q), (q ∧ ϕ, q), (ϕ ∨ q, q), (q ∨ ϕ, q) |

ϕ ∈ Q′, q ∈ Q}
Eb = {([[q]]./p, q) | [[q]]./p ∈ [[Q]]>}

Elements (ϕ, q) ∈ Eu are unbounded transitions; elements (ϕ, q) ∈ Eb are bounded
transitions; and elements of E are called simple transitions. Note that E, Eu, and Eb
are pairwise disjoint. Let ϕ �A ϕ̃ iff there is a finite path from ϕ to ϕ̃ in E ∪Eb ∪Eu.
Let ≡ be �A ∩ �−1

A and ((ϕ)) the equivalence class of ϕ with respect to ≡. Each ((ϕ))
is an SCC in the directed graph GA.

Definition 2 [14] A p-automaton A is called uniform if: (a) For each cycle in GA, its
set of transitions is either in E ∪ Eb or in E ∪ Eu. (b) There are only finitely many
equivalence classes ((ϕ)) with ϕ ∈ Q ∪ cl(δ(Q,Σ)).

That is,A is uniform, if the full subgraph of every equivalence class in�A contains
only one type of non-simple transitions. Also, all states q′ ∈ Q or formulas ϕ occurring
in δ(q, σ) for some q ∈ Q and σ ∈ Σ can be classified as unbounded, bounded, or
simple – according to SCC ((q)). Intuitively, the cycles in the structure of a uniform p-
automatonA take either no bounded edges or no unbounded edges. Uniformity allowed
to define acceptance for p-automata through the solution of a sequence of stochastic
games.

Theorem 11 p-automata (Definition 1) extend the definition of uniform p-automata
(Definition 2).

Proof: The obligation Blackwell game resulting from the composition of a uniform
p-automaton with a Markov chain is a uniform turn-based obligation game. From
Theorem 8 it follows that its value is obtained from solving a sequence of turn-based
stochastic games and turn-based games. This gives rise to exactly the definition of
acceptance through a sequence of turn-based stochastic games and turn-based games
as in [14].

Closure under union and intersection is easy due to alternation (see [14] for details).
Closure under complementation follows from our determinacy result for obligation
games.
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8 Conclusions and Future Work
We introduced obligations, a structural winning condition that complements winning
conditions on paths. We show that Blackwell games with Borel objectives and obli-
gations are well defined. We then present a simpler definition of value for Markov
chains with Borel objectives and obligations and for finite turn-based stochastic parity
games with obligations. Based on the simpler definition we give algorithms for ana-
lyzing finite turn-based stochastic parity games with obligations. We then use games
with obligations to define acceptance by unrestricted p-automata, showing that the new
definition generalizes a previous definition for uniform p-automata.

This is one of the rare cases in games that arise in verification that determinacy of
games does not immediately follow from Martin’s result that Blackwell games with
Borel objectives are determined. The proof of determinacy uses elements from Mar-
tin’s determinacy proof but introduces new concepts that were not needed in that proof.
These new concepts are required due to the more elaborate nature of games with obli-
gations.

Our work gives rise to many interesting questions. For example, determining the
complexity of other types of games such as Streett, Rabin, Muller, and quantitative
games with obligations.

Finally, many questions regarding the theory of p-automata remain open. For in-
stance, understanding the different transition modes of such automata (i.e., alternation
vs. nondeterminism vs. determinism) and conversions between the different modes.
A related question is that of feasibility of algorithmic questions such as emptiness of
p-automata, which generalizes the satisfiability problem of pCTL.
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