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Abstract 
There is much interest in using volunteered geographic information (VGI) in formal 
scientific analyses. This analysis uses VGI describing land cover that was captured 
using a web-based interface, linked to Google Earth. A number of control points, for 
which the land cover had been determined by experts allowed measures of the 
reliability of each volunteer in relation to each land cover class to be calculated. 
Geographically weighted kernels were used to estimate surfaces of volunteered land 
cover information accuracy and then to develop spatially distributed correspondences 
between the volunteer land cover class and land cover from 3 contemporary global 
datasets (GLC-2000, GlobCover and MODIS v.5). Specifically, a geographically 
weighted approach calculated local confusion matrices (correspondences) at each 
location in a central African study area and generated spatial distributions of user’s, 
producer’s, portmanteau, and partial portmanteau accuracies. These were used to 
evaluate the global datasets and to infer which of them was ‘best’ at describing Tree 
cover at each location in the study area. The resulting maps show where specific 
global datasets are recommended for analyses requiring Tree cover information. The 
methods presented in this research suggest that some of the concerns about the quality 
of VGI can be addressed through careful data collection, the use of control points to 
evaluate volunteer performance and spatially explicit analyses. A research agenda for 
the use and analysis of VGI about land cover is outlined.  
 
Key words: VGI; accuracy; geographically weighted models; user’s, producer’s, 
Portmanteau and Partial Portmanteau accuracies; 
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1. Introduction 

 

Volunteers have been observing and reporting information about environmental 

events and phenomena for a long time. One of the pioneers in this area was Robert 

Marsham, who in 1736, started to record the arrival of the first swallow at his home in 

Norfolk, England (The Guardian, 2011). The concept of citizen science emerged as 

information about a particular event but collected by many individuals was collated. 

In many cases the observation location was included, providing a geographical 

reference. Such geographically referenced observations have more recently been 

described as ‘volunteered geographical information’ (VGI) (Goodchild, 2007). This 

information is collected on a voluntary basis by interested individuals, frequently with 

no formal training. There are two broad strands of VGI available to the interested 

researcher. First, many historical datasets, often recording ‘natural’ phenomena such 

as phenological events, are being collated and made freely available. For example, 

data on the first leaf and first bloom dates of the common lilac in the USA as collated 

by Schwartz and Caprio (2003) are available to download 

(ftp://ftp.ncdc.noaa.gov/pub/data/paleo/phenology/north_america_lilac.txt). In the UK, 

spatio-temporal data describing different phenological events are held by The 

Woodland Trust, and can be viewed on their website 

(http://www.naturescalendar.org.uk/). The increased availability of such data is in part 

being driven by the need for public organisations to make their data holdings publicly 

available (Lister and the Climate Change Research Group, 2011). A second, more 

recent phenomenon is the availability of diverse information that is spatially 

referenced and can thus be considered as VGI. Information about all kinds of 

activities, in all kinds of formats, are contributed by members of the public to many 
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different hosting websites. The availability and collection of such data (see for 

example Haklay 2010; Coleman; 2010, Jones et al., 2012, van der Velde et al., 2012) 

is in part due to the many new ways in which the public can share information via the 

web, social networks, specific host sites (e.g. Flickr for photographs), and activities 

such as OpenStreetMap (Mooney and Corcoran, 2012). These are facilitated by the 

near-ubiquitous ability to capture data on location and to upload the information via 

many electronic devices (e.g. GPS enabled cameras, smartphones, electronic 

notebooks, etc). Thus, there is an increasing amount of spatially referenced or geo-

located data available that could be used for formal scientific analyses.  

 

The critical issue in the use of VGI relates to the quality of the information. In 

contrast to formal scientific experiments which include sampling design, training, 

data validation and some degree of scientific objectivity via the ‘designed experiment’ 

(e.g. Myers et al., 2010), in VGI there is no control over who records what, how they 

record it, or the quality of the information they provide (Hudson-Smith et al. 2009; 

Goodchild and Glennon, 2010; Haklay et al., 2010; Wiersma, 2010). As a result, 

recent research has sought to develop methods to assess the quality of VGI. For 

example, Brunsdon and Comber (2012) applied random coefficient modeling and 

bootstrapping approaches to overcome irregularities in the lilac data referred to above 

and suggested the need to consider the data collection methods before selecting the 

approach for model calibration. Haklay et al. (2010) and Tang and Lease (2011) 

suggested the use of multiple observations and observers to enable consensus-based 

data quality assessments and Foody and Boyd (2012) proposed a method for assessing 

the quality of VGI contributors using a latent class analysis of VGI in relation to land 

cover. The key point is that for VGI to be useful in scientific analyses there is a need 
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for some measure of its reliability, where ‘reliability’ here refers to the correctness or 

accuracy of the information. The need to quantify reliability in VGI is critical if this 

information is going to be used for scientific research. Without such measures there 

will always be a lack of trust or credibility in these data. 

 

The Geo-Wiki project (www.geo-wiki.org) was developed at IIASA in collaboration 

with the University of Applied Sciences in Wiener Neustadt and the University of 

Freiburg (Fritz et al., 2012; Perger et al., 2012). Geo-Wiki is comprised of a web 

interface linked to Google Earth and different data collection campaigns have been 

launched with different aims. In these campaigns, volunteers are randomly provided 

with a series of predefined sample locations and asked to record what they observe at 

each location. The purpose of this paper is to develop a method for determining the 

reliability of the VGI about land cover collected during the first campaign, which was 

launched as the Human Impact Geo-Wiki (http://humanimpact.geo-wiki.org), and to 

explore how such information could be integrated into formal scientific analyses. A 

set of ‘control’ data points was used to generate measures of volunteer reliability. The 

accuracies of each volunteer in identifying each class were linked to the full dataset. 

Correspondences between volunteered land cover and 3 global land cover products 

(GLC-2000, GlobCover and MODIS v.5) were then generated. Reliability in this 

context refers to the per class correspondence measures (user’s, producer’s, 

portmanteau, and partial portmanteau accuracies) of each volunteer and their 

associated probabilities as outlined in Section 3, while control data are locations 

where experts have agreed on the land cover label or class. Spatially distributed 

measures of land cover correspondence (Comber et al., 2012; Comber, 2012), 
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weighted by volunteer reliabilities, were used to infer the most appropriate global 

dataset for describing tree cover at each location in a central African case study.  

  

2. Background: Geo-Wiki and land cover accuracy 

 

The initial Geo-Wiki system was established to encourage wide involvement in land 

cover validation (Perger et al., 2012). It incorporates a web-based interface using 

Google Earth and has become a modular system with different campaigns targeting 

specific objectives, such as validating cropland, urban areas and biomass (Fritz et al., 

2009; 2011a; 2011b; 2012). Volunteers are recruited informally for different 

campaigns involving both the remote sensing community and the wider public. The 

opportunity to participate is completely open with no barriers to involvement. A 

campaign was undertaken to validate a map of land availability for biofuel production 

in the autumn of 2011 using the Human Impact Geo-Wiki. A random sample of 

locations was generated and 65 volunteers were recruited. They were a mixture of 

remote sensing experts, postgraduate students in related areas, other scientists and 

novices. On-going research is analysing the variation in reliability between the 

different volunteers, for example comparing experts with non-experts. Volunteers for 

the Human Impact study were asked to complete a short on-line tutorial to 

demonstrate the process (but this was not a requirement) and then to record the land 

cover at a series of locations. Based on their interpretation of the underlying satellite 

image / aerial photography they assigned each location to one of 10 predefined land 

cover classes. A critical feature of the Human Impact project was that the volunteers 

validated up to 299 control points – locations where experts had labelled the land 

cover. Control points were introduced randomly and 3 volunteers labelled all 299, 
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with each volunteer completing an average of 120 control points (s.d. 114). A full 

description of the Human Impact Geo-Wiki initiative is provided in Perger et al. 

(2012), but in brief, it was a targeted campaign that sought to gather data to validate a 

map of land available for biofuels. The control points were introduced to allow some 

assessment of the quality of information provided by contributors, and Perger et al. 

(2012) scored the participants on the number of points they contributed and the degree 

to which their evaluations matched the control points.  

 

 

The capture and analysis of volunteered information including land cover through 

systems like Geo-Wiki, has the potential to provide valuable data for more formal 

scientific analysis, particularly in relation to land surface process such as land cover 

and land use. Land change is known to be a major variable, being for example a cause 

and a consequence of climate change, and presents the greatest threat to biodiversity 

(Feddema et al., 2005). However, there is considerable disagreement between 

different global land cover products regarding the amount and spatial distribution of 

land cover features particularly in relation to forest and cropland. For example, 

differences of as much as 20% have been found in the amount of land classified as 

arable or cropland when global land cover products have been compared (Fritz and 

See, 2005; See and Fritz, 2006; Fritz et al., 2011c). Thus the uncertainty in these 

products is so great that they cannot be used for global change detection. Formal 

approaches for analysing the reliability of land cover data have been developed (e.g. 

Strahler, 2006) but many land cover datasets are not validated using these protocols 

(Foody, 2002). The Geo-Wiki approach offers great potential to contribute to land 

cover validation (Iwao et al., 2006; Fritz et al., 2012).  
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Recent developments in land cover validation and accuracy reporting have proposed 

spatially explicit extensions to the standard method for reporting land cover accuracy 

based on the confusion matrix. Land cover errors are known to be spatially auto-

correlated but the standard methods for describing them do not report their spatial 

distribution. Foody (2005) sought to address this and applied a kernel based approach 

to develop accuracy surfaces (e.g. user’s accuracy for each class) using a fixed 

number of points under the kernel. Comber et al. (2012) extended Foody’s approach 

and proposed geographically weighted models for describing spatial distributions of 

Boolean portmanteau and Fuzzy difference accuracies, where data points under the 

kernel were weighted by their distance from its centre. Portmanteau accuracy 

measures are described in more detail below. Comber (2012) further extended these 

methods and developed a geographically weighted confusion matrix model that 

generates spatial distributions of the error probabilities associated with user’s and 

producer’s accuracies. Such geographically weighted approaches for estimating local 

variations in accuracies provide a framework for the methods used in this research. In 

remote sensing validation, the confusion matrix is used to generate global 

correspondence measures between two datasets. In land cover validation, these are the 

land cover data being validated and some reference data considered to be of higher 

quality. In this research, local confusion matrices and correspondence measures were 

calculated using a geographically weighted kernel at regular intervals throughout the 

study area. The results are spatially distributed measures of correspondence and their 

associated probabilities, which can be mapped.  

 

3. Methods  
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The approach taken was: 

1) To use the control data to calculate measures of each volunteer’s per class 

reliabilities, namely correspondences based on user’s, producer’s and 

portmanteau accuracies and a further partial portmanteau measure.  

2) To apply these measures to the full volunteered land cover dataset, collected 

by the Human Impact Geo-Wiki initiative such that each data point had a 

measure of reliability depending on the volunteer and the class they indicated. 

3) To compare volunteered land cover information with the GLC-2000, MODIS 

and Globcover data and to calculate geographically weighted measures of 

correspondence. 

4) To infer the most appropriate global dataset in each location for a specific land 

cover class.  

 

3.1 Data 

 

The Human Impact project asked volunteers to classify the land cover into one of ten 

land cover classes: (1) Tree cover, (2) Shrub cover, (3) Herbaceous vegetation / 

Grassland, (4) Cultivated and managed, (5) Mosaic of cultivated and managed / 

natural vegetation, (6) Flooded / wetland, (7) Urban, (8) Snow and ice, (9) Barren and 

(10) Open Water. These class numbers are used in subsequent tables.  

 

The project team at IIASA identified the land cover class at 299 control locations 

introduced randomly, against which the volunteer land cover classes were compared. 

In total, 7657 control records were provided by 65 volunteers. The control data were 
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filtered to exclude volunteers who had contributed less than 20 data points or where 

the land cover had not been recorded by the volunteer for some reason. This was to 

ensure sufficient data to enable reliable volunteer-specific accuracy measures to be 

calculated. The end result was a control dataset of 6906 records contributed by 47 

volunteers, describing the land cover at 299 locations. This was used to characterise 

the reliabilities of each volunteer in identifying each land cover class. The locations of 

the control points are shown in Figure 1.  

 

(insert figure 1 about here) 

 

The calculation of the volunteer per class reliabilities is described and illustrated 

below. These were attached to the full Human Impact dataset based on the user that 

recorded the data point and the land cover class they allocated. The dataset contained 

42,474 records after filtering for the 47 volunteers who contributed more than 20 

validation points and for whom robust reliabilities could be calculated. Here, a central 

African case study was selected to illustrate the results. The case study area was 

defined by an arbitrary bounding box for the area shown in Figure 2 and contained 

5,966 data points labelled by 47 volunteers.  

 

(insert figure 2 about here) 

 

 

3.2 Volunteer reliability 
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The correspondence between control and volunteer land cover classes was used to 

generate 4 measures describing the reliability of each volunteer, in relation to each 

class. Table 1 describes how the components of the different correspondence 

measures are calculated from a collapsed confusion matrix.  

 

(insert Table 1 about here) 

 

 

The 4 reliability measures were: 

1) User’s accuracy: n1 / (n1+n2)  

2) Producer’s accuracy: n1 / (n1 + n3)  

3) Portmanteau accuracy: (n1 + n4) / (n1+n2+n3+n4)  

4) Partial portmanteau accuracy: (n1) / (n1+n2+n3)  

User’s and producer’s accuracies are described Congalton (1991). The portmanteau 

measure reflects whether a volunteer has correctly recorded the presence or absence 

of each class (Comber et al., 2012). It accommodates both the specificity and the 

sensitivity of the data. Sensitivity measures the proportion of the actual land cover 

class (i.e. positive identifications) that is correctly identified and specificity measures 

the proportion of negatives that is correctly identified. A second partial portmanteau 

measure of correspondence was generated from only those points where either the 

control or the contributor indicated the presence of the class under consideration.  

 

3.3 Surfaces of volunteer reliability  
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Spatially distributed correspondence surfaces were generated from the user’s, 

producer’s, portmanteau and partial portmanteau measures described above using a 

geographically weighted kernel. This is a spatial interpolation process that uses a 

moving window to compute geographically weighted values at each point in a 

predefined set of locations, in this case spaced at 100km apart (see Figure 2), with 

data points that are further away from the specific location under consideration 

contributing less to the computation. The spacing was selected arbitrarily and 

reliability measures could have been computed over a finer or coarser distribution of 

locations. The weight, wi, associated with each data point location (ui,vi) is a 

decreasing function of di, the distance from the centre of the window to (ui,vi): 

 

      (Eqn 1) 

 

where h is known as the bandwidth and is specified in whatever map units are being 

used or as a proportion of data points. In this way, the weights associated with each 

location change depending on the location for which an accuracy probability is to be 

calculated. The bandwidth (or kernel size) may be varied to ensure that enough data 

points are used in calibration to minimise the cross validation prediction error 

(Comber et al. 2012). The number of data points is a trade-off between working with 

a dataset that is too small to calibrate the local model reliably, and too big to avoid 

averaging out local effects. In this research the bandwidth was optimised 

automatically using a leave-one-out cross validation procedure. This determines a 

bandwidth that optimises the prediction probability for each individual volunteer 



! 11!

value when it was removed from the dataset. Further details on bandwidth selection 

are in Fotheringham et al. (2002).  

 

3.4 Linking to global land cover data 

 

Land cover classes from three global datasets were compared with the volunteered 

land cover class: MODIS, GLC-2000 and GlobCover. The GLC-2000 map was 

developed with 14 months of satellite data from the VEGETATION instrument on 

board the SPOT 4 satellite. Regional maps were based on the Land Cover 

Classification System (LCCS) of FAO (Di Gregario and Jansen, 2000) and then 

harmonised to produce a global product with 22 classes (Fritz et al., 2003). The 

project was coordinated by the Global Vegetation Monitoring Unit of the Joint 

Research Centre (JRC) of the European Union (Fritz et al., 2003. The MODIS land 

cover product from Boston University is available at a resolution of 500m and uses 

the 17 classes of the IGBP (International Global Biosphere Project) legend (Loveland 

et al., 1998). The product was created using the Moderate Resolution Imaging 

Spectoradiometer instrument on the NASA Terra Platform using an automatic 

supervised classification method (Morisette et al., 2002; Friedl et al., 2010).  Version 

5 of the MODIS land cover data set is used in this paper. The recent release of 

GlobCover (Bicheron et al., 2008) for the reference year 2005 is the highest resolution 

global land cover product available (c. 300m×300m at the equator). This was 

developed by the European Space Agency and a number of partners including the 

Joint Research Centre of the European Union and the Catholic University of Louvain. 

The first version of the land cover product used in this paper was based on an 
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automatic processing chain using MERIS FR time series data from December 2004 to 

June 2006 (Bicheron et al., 2008).  

 

The land cover class from each of the global datasets was extracted for each location 

at which volunteered information on land cover was described. For each of the global 

datasets the land cover class was aggregated into one of the 10 classes described 

above. This was to provide a common framework to evaluate the contributor land 

cover classes. The aggregation look up tables were devised by an expert who had 

worked with all of the datasets, had been involved in their creation and who was 

familiar with them, their nomenclatures, their underlying semantics and critically how 

they varied from each other in the way that they describe land cover. Table 2 

describes the look up tables for these aggregations. The final dataset used for the 

analysis contained 4 land cover classes: 3 from the global land cover datasets and the 

volunteered land cover class. It also included measures of user’s, producer’s, partial 

portmanteau and portmanteau correspondences for that volunteer in identifying that 

class, which were outlined in Section 3.2. 

 

(insert table 2 about here) 

 

 

3.5 Comparing volunteered and global land cover  

 

The next step in the analysis was to compare the volunteered land cover classes with 

global classes recorded by the GLC-2000, MODIS and GlobCover. The volunteer 

land cover data was used as the dependent variable in a binomial geographically 
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weighted regression (GWR) considering each land cover class in turn. The analysis 

regressed data indicating the presence (1) or absence (0) of a particular land cover 

class in both the global and volunteered datasets. The logit transform generated 

probability estimates from the regression coefficients of the degree to which the 

volunteered land cover class was predicted by the global dataset – i.e. the volunteer 

land cover was used as the reference data. Each land cover class considered in turn, 

but the results describe the analysis of the (1) Tree cover class. 

 

A logit function was defined by: 

  

        (Eqn 2) 

 

The logistic geographically weighted regressions were then calculated as follows for 

each global land cover dataset:  

 

      (Eqn 3) 

 

where pr(yi = 1) is the probability that the volunteer class of Tree cover is present, 

and x1 is the explanatory or independent variable (the land cover class from the global 

dataset). The coefficient estimates are assumed to vary across the two-dimensional 

geographical space defined by the coordinates (u, v) and can be considered as 

functions of these coordinates, rather than constants as in a global regression. The 

coefficient estimates arising from Equation 3 were determined for each point in the 

predefined set of locations spaced at 100km apart (as described above and shown in 

€ 

logit(Q) =  
exp(Q)

1+exp(Q)

€ 

pr(yi =1) = logit(b0(ui ,vi ) + b1x1(ui ,vi ))
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Figure 2). From these, the spatially distributed probabilities associated with the 

correspondence measures as described in Section 3.2 were calculated as follows: 

 

User’s accuracy:  

pr(y=1|x=1) / ( pr(y=1|x=1)+pr(y=0|x=1) ) 

 

Producer’s accuracy:  

pr(y=1|x=1) / ( pr(y=1|x=1)+pr(y=1|x=0 ))  

 

Portmanteau: 

pr(y=1|x=1) / ( pr(y=1|x=1)+pr(y=0|x=1))+pr(y=1|x=0)+pr(y=0|x=0) ) 

 

Partial portmanteau:  

pr(y=1|x=1) / ( pr(y=1|x=1)+pr(y=0|x=1))+pr(y=1|x=0) ) 

 

where x is the predicted class in the global land cover data, y is the volunteered class 

and a value of 0 denotes absence of that class and 1 denotes presence, for both x and y. 

Note, that as the statistical relationships between x and y are generated from Equation 

3, then the probabilities above will have values for each location over the geographic 

space (u, v).  

 

4. Results 
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The confusion matrix between control and volunteer land cover classes is shown in 

Table 3. The overall accuracy is 62% and it should be noted that classes 6 and 8 are 

absent in the control dataset.  

 

(insert Table 3 about here) 

 

 

For each volunteer and for each class, 4 correspondence measures were calculated. 

These have potential ranges of [0,1] and 3 examples of volunteer reliability measures 

are shown in Table 4. It is evident that portmanteau is higher than both user’s and 

producer’s correspondences and partial portmanteau is lower. The correspondences  

for each volunteer were linked to the full Human Impact dataset by land cover class. 

So for example, in the VGI dataset, each record in the full dataset that was contributed 

by Volunteer A and scored as (1) Tree cover, had a user’s value of 0.727, a producer’s 

value of 0.833, a portmanteau value of 0.923 and partial portmanteau value of 0.635 

attached to it.  

 

(insert Table 4 about here) 

 

 

The spatial variations in volunteer accuracies for all classes were estimated using a 

geographically weighted kernel and are shown in Figure 3. These are surfaces of the 

weighted means of the correspondence measures, whose weights use the same kernel 

as defined in Equation 1 in a similar manner to GWR – see for example Brunsdon et 

al. (2002). An optimal bandwidth was identified and it included 2.1% of the data 
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points nearest to each location. Figure 3 includes the location of the volunteer 

validation points with the size of the circles indicating the magnitude of their 

correspondence. Figure 4 shows the geographically weighted surfaces of mean 

correspondences for only the class of (1) Tree cover using a kernel bandwidth that 

included 0.8 % of the data points. For Figures 3 and 4, the geographically weighted 

kernel described in Equation 1 was used to interpolate the measures of volunteer 

reliability for all classes (Figure 3) and for just Tree cover (Figure 4). It is worth 

considering how the surfaces in Figures 3 and 4 might be used in relation to their 

derivation. If the control data are correct, then:  

, User’s accuracy or correspondence describes the degree to which the land 

cover data contributed by the volunteer is the same as the control land cover 

(how many times the volunteer got it right); 

, Producer’s accuracy or correspondence describes the probability of the control 

data being correctly identified by the volunteer (how much of the control land 

cover was correctly identified); 

, Portmanteau accuracy or correspondence describes the combined probability 

that the volunteer correctly identified the control land cover when it was 

present and its absence when it was not; 

, Partial portmanteau accuracy or correspondence describes the probability that 

the volunteer correctly identified the land cover when it was present in the 

control or their predictions. 

 

(insert Figure 3 about here) 

(insert Figure 4 about here) 
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Figures 5, 6, 7 and 8 show the different types of geographically weighted 

correspondence between volunteer land cover and land cover from each of the global 

datasets, for the class of (1) Tree cover. They are accompanied by a map describing 

which of the global datasets has the highest correspondence value in each location, 

along with contours describing the variation in the reliability of the volunteered 

information in that class. Land cover accuracy is known to vary spatially. The models 

used to generate the maps explicitly analyse spatial variations in accuracy and extend 

the work of Foody (2005) and Comber et al. (2012). These are in contrast to the usual 

measures for reporting correspondence which are aspatial, such as the standard 

confusion matrix. The results show that for the class of (1) Tree cover: 

1) User’s correspondences are higher for the GLC-2000 and GlobCover than for 

MODIS; 

2) Correspondences with MODIS are stronger than the other global datasets 

when producer’s accuracies are considered; 

3) MODIS portmanteau correspondences are higher overall than GLC-2000 or 

GlobCover; 

4) MODIS partial portmanteau correspondences are higher than GLC-2000 or 

GlobCover.  

In each case, the spatial variations in these trends show where one dataset may be 

preferred over others. However, this preference will depend on the correspondence 

measure required for the particular analysis or hypothesis being tested. For example, 

in a situation where it is important to determine how much of the actual land cover 

was correctly identified, then correspondence described by the producer’s accuracy 

may be preferred, and for a study requiring the best Tree cover information, MODIS 

may be selected as the preferred dataset. Alternatively, for a study in Cameroon, the 
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area in the Southwest of the study area, GLC-2000 data may be preferred. Or, for 

another study, a composite land cover dataset could be constructed from the 3 global 

datasets. Framing the study objectives in relation to the probabilistic logic of the 

different types of accuracy or correspondence (user’s, producer’s, portmanteau, 

partial portmanteau) allows the most suitable dataset, or dataset combinations, to be 

chosen. The differences between the correspondences with global land cover data 

could be tested for significance, but the objective here is to illustrate how 

geographically weighted methods for analysing volunteered land cover data, 

parameterised by volunteer reliabilities, could be used to explore the spatial variations 

in relationships and correspondences.  

 

(insert Figure 5 about here) 

(insert Figure 6 about here) 

(insert Figure 7 about here) 

(insert Figure 8 about here) 

 

5. Discussion 

 

This analysis evaluated the quality of the land cover information provided by 

volunteers through the incorporation of a set of control locations where the land cover 

was known. By comparing volunteered land cover with the control data, volunteer 

reliabilities were calculated, in this case using correspondence measures derived from 

the confusion matrix, the classic approach for reporting accuracy in remote sensing. 

The collection of control data – that is, locations where the land cover recorded by the 

volunteer could be compared with the land cover class determined by experts – via 
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the Geo-Wiki project allowed measures of volunteer reliability to be determined. 

Measures of the volunteer accuracies for each class calculated in this way were linked 

to the data points in the full global dataset. Geographically weighted models were 

used to analyse the spatial variation in the volunteer accuracies and to compare 

volunteer land cover classes with land cover from 3 global datasets. A geographically 

weighted kernel was used to construct surfaces of user’s, producer’s, portmanteau and 

partial portmanteau correspondences from the control data. The volunteered land 

cover classes were then compared to global land cover datasets in order to determine 

the correspondences between VGI land cover and the land cover as recorded in 3 

global datasets. Measures of user’s, producer’s, portmanteau and partial portmanteau 

accuracies were calculated using a logistic geographically weighted regressions of the 

volunteered land cover and land cover classes from the global datasets. The spatial 

distributions of these correspondence measures were mapped. The highest 

correspondence was used to infer which global dataset may be most appropriate at 

each location in the study area, and contours of user reliabilities were overlaid. The 

results indicate how VGI on land cover, parameterised by some control measure, 

could be incorporated into formal scientific analyses. 

 

The analysis could have included additional steps, for example exploring the 

thresholds of user reliability and combinatorial approaches to indicate compound 

probabilities, which may change the inferences made about the most appropriate 

global dataset (as in Figures 5 to 8). These will be explored in future work as the main 

purpose of this research was to develop generic approaches for evaluating VGI on 

land cover using the data collected under a semi-formal structure such as is afforded 

by the Geo-Wiki approach. This analysis has only described the class of (1) Tree 
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cover in detail. Similar data, reliabilities and spatial correspondences were generated 

for the other classes using the different probabilities associated with the 

correspondence matrix, but space limits their inclusion. The use of geographically 

weighted models to describe spatial variations in accuracy and correspondence 

between different sources of land cover information (in this case land cover from VGI 

and global datasets) provides more informative measures of correspondence than 

simple confusion or correspondence matrices: they generate probabilities which can 

be mapped whereas static correspondence measures do not (Foody, 2005; Comber et 

al., 2012; Comber 2012). Spatially distributed measures of accuracy are more 

informative because they show how and where error rates and correspondences vary.  

 

The measures of correspondence between VGI and global land cover data could be 

seen to be predicated on the assumption that the VGI is correct. However, this would 

be a naïve assumption as this research has generated correspondences commonly 

applied in remote sensing accuracy assessments, extended spatially using a 

geographically weighted kernel, as a way of generating comparison metrics. The 

spatially distributed measures of correspondence do however provide helpful 

information to aid the interpretation of both the VGI and the global land cover 

datasets, but the results of this research indicate the need for an informed 

‘interpretation’ of the numerical correspondences to include allowances for variations 

in data quality.  

 

The use of control points allowed VGI reliabilities to be determined and these in turn 

were used as confidence measures to accompany the inferences made about the 

suitability of different global land cover datasets. Such approaches can support user 
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choices about which data to use for a particular location and application. For example, 

having a composite dataset of forest, comprising the ‘best’ land cover data from 

various global datasets, may be important for global climate modelling. Additionally, 

the use of control points suggests that one possible way to overcome the reliability 

issues inherent in VGI is to set up formal sampling structures within geo-wikis.  

 

There are some assumptions and limitations associated with the research. These 

include possible problems with the control data, where some of them may be less 

reliable and of poorer quality than others. Future work will explore the control data in 

more detail and the impact that variations in the quality and reliability of the control 

data have on the results. Additionally there are some limitations associated with the 

use of the global data in this way. They were collapsed into 10 classes, introducing 

further uncertainty into the results of the analyses. They were produced at different 

scales and the ‘scale’ at which the volunteer identified the land cover at each location 

did not use the same pixel frame as the global datasets. These issues are currently 

being investigated in on-going work. However, this research does present an approach 

for analysing the quality of volunteered land cover information and for integrating 

those into wider analyses using spatially distributed measures of accuracy and 

correspondence (Foody, 2005; Comber, 2012 and Comber et al., 2012).  

 

This research has suggested a number of areas for future work, explicitly in relation to 

volunteered information on land. There is a need for research in the following broad 

areas: 



! 22!

• Comparison of different measures of user reliability using geographically 

weighted models, for instance the latent class model measures proposed by 

Foody and Boyd (2012) with the measures derived from the control points. 

• Analysis of volunteer performance in relation to i) perceptions of scale, ii) 

their ability to discern different granularities of information; iii) how their 

reliability changes with the physical and experiential distances from the 

location being considered. Understanding these potential biases will allow 

more nuanced thresholds of user reliability to be determined and potentially 

may be part of a structured test that establishes a volunteer's characteristics 

before they participate in the program. 

• The use of different formal methods for combining uncertain evidence (e.g. 

Fuzzy sets, Dempster-Shafer, Possibility and Endorsement theories) in order 

to develop measures of belief in volunteered information rather than just using 

a Linus Law approach. This is a strong and longstanding domain in 

informatics that has yet to be explored in relation to VGI.  

• Investigation of the different types of decision about land cover data that are 

supported by the outputs of different uncertainty formalisms, particularly in 

relation to the acceptability of the information. 

 

6. Conclusions 

 

Many volunteer activities generate spatially referenced information. The key issue 

relating to the use of volunteered geographical information or data in scientific 

research concerns its unknown quality and the errors associated with using it in any 

specific analysis. This research has shown that VGI about land cover can be used in 
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formal analyses when it is linked to control data (locations where the land cover was 

known). The collection of control data via the Geo-Wiki project allowed the quality 

of volunteered land cover information to be parameterised, and geographically 

weighted models were used to generate surfaces of reliability, based on different 

kinds of accuracy measures. Generating geographically weighted models of the 

correspondences between VGI and 3 global land cover datasets allowed spatially 

explicit inferences regarding the most suitable global dataset to be made.  

 

The key conclusions of this work are:  

• Accuracies can be attached to VGI if some of it can be cross-referenced with 

control data; 

• Spatially explicit methods for calculating correspondences, such as 

geographically weighted models, allow different surfaces of correspondence 

or accuracy to be generated (user’s, producer’s, portmanteau, partial 

portmanteau); 

• VGI on land cover analysed in this way can be used to select the most 

appropriate datasets from a set of competing choices, in this case the GLC-

2000, GlobCover and MODIS v.5 global land cover products, and to make 

inferences about their reliability in describing specific land cover classes at 

different locations.  

On-going activities are extending this research area in a number of directions. 
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 Control true Control false 
Volunteered true n1 n2 
Volunteered false n3 n4 

Table 1. The 2-class error matrix used to calculate different accuracy measures. 
!



Class GLC-2000 MODIS GlobCover 
(1) Tree cover 1 to 10 1 to 5, 8, 9 40, 50, 60, 70, 90, 100, 110, 160, 170 

(2) Shrub cover 11, 12 6, 7 130 
(3) Herbaceous / Grassland 13 10 120, 140 

(4) Cultivated / Managed 16 12 11, 14 
(5) Mosaic of cultivated & natural  17, 18 14 20, 30 

(6) Flooded / wetland 15 11 180 
(7) Urban 22 13 190 

(8) Snow and ice 21 15 220 
(9) Barren  14, 19 16 150, 200 

(10) Open Water 20 17 210 
Table 2. The aggregation of global land cover classes. 
!



 
  Control Class 
  1 2 3 4 5 6 7 8 9 10 User 

V
olunteered C

lass 

1 800 69 47 8 223 0 0 0 0 0 0.697 
2 245 294 97 24 113 0 0 0 0 0 0.380 
3 112 99 279 61 154 0 0 0 1 0 0.395 
4 19 8 21 1689 226 0 0 0 0 0 0.860 
5 99 20 72 548 1141 0 0 0 0 0 0.607 
6 3 12 16 8 11 0 0 0 0 1 0.000 
7 4 0 0 30 14 0 26 0 0 0 0.351 
8 3 0 0 1 2 0 0 0 6 0 0.000 
9 19 38 98 21 43 0 0 0 51 0 0.189 
10 0 0 1 1 1 0 0 0 0 27 0.900 

 Producer 0.613 0.544 0.442 0.706 0.592 0 1 0 0.879 0.964  
Table 3. The correspondence matrix between control and volunteered land cover data, with User and Producer accuracies.!



 
Figure 1. The location of the 299 control points.  
!



 
Figure 2. The case study area and the location of the 5966 data points, with the locations at which the geographically weighted measures were 
computed. 
!



 

  
User’s Producer’s 

 

 

Partial Portmanteau Portmanteau 
Figure 3. Surfaces of mean volunteer reliabilities estimated from the correspondences of all classes. The circles show the location of the 
volunteer validation points and their size indicates volunteer accuracies.!
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Figure 4. Surfaces of volunteer mean reliabilities estimated for the class of (1) Tree cover. 
!
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Figure 6. User’s correspondences for Tree cover derived from comparisons between volunteered land cover and global datasets, with a map of 
the global datasets with the highest user’s value at each location, overlaid with contours of the geographically weighted variation in the user’s 
accuracy for Tree cover.  
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Figure 6. Producer’s correspondences for Tree cover derived from comparisons between volunteered land cover and global datasets, with a map 
of the global datasets with the highest producer’s value at each location, overlaid with contours of the geographically weighted variation in the 
producer’s accuracy for Tree cover.!!
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Figure 7. Portmanteau correspondences for Tree cover derived from comparisons between volunteered land cover and global datasets, with a 
map of the global datasets with the highest portmanteau value at each location, overlaid with contours of the geographically weighted variation 
in the portmanteau accuracy for Tree cover. !

 
 
 
 

under 0.52
0.52 to 0.68
0.68 to 0.84

over 0.84

 
 
 
 

under 0.62
0.62 to 0.74
0.74 to 0.87

over 0.87

 
 
 
 

under 0.55
0.55 to 0.70
0.70 to 0.85

over 0.85
GLC-2000
Globcover
MODIS



  
GLC-2000 GlobCover 

  
MODIS Highest 

Figure 8. Partial portmanteau correspondences for Tree cover derived from comparisons between volunteered land cover and global datasets, 
with a map of the global datasets with the highest partial portmanteau value at each location, overlaid with contours of the geographically 
weighted variation in the partial portmanteau accuracy for Tree cover. !
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