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Abstract. Inner ideals of simple locally finite dimensional Lie algebras

over an algebraically closed field of characteristic 0 are described. In

particular, it is shown that a simple locally finite dimensional Lie al-

gebra has a non-zero proper inner ideal if and only if it is of diagonal

type. Regular inner ideals of diagonal type Lie algebras are character-

ized in terms of left and right ideals of the enveloping algebra. Regular

inner ideals of finitary simple Lie algebras are described. Inner ideals of

some finite dimensional Lie algebras are studied. Maximal inner ideals

of simple plain locally finite dimensional Lie algebras are classified.
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1. Introduction

An inner ideal of a Lie algebra L is a subspace I of L such that [I[I, L]] ⊆ I.

Inner ideals were first systematically studied by Benkart [12, 13] and proved to be

useful in classifying simple Lie algebras, both of finite and infinite dimension. They

play a role similar to one-sided ideals of associative algebras in developing Artinian

structure theory for Lie algebras [17]. They are also useful in constructing gradings

of Lie algebras [19].

The sections 2 to 5 consist mainly of joint work with Alexander Baranov and are

found in [3]. In the paper we study inner ideals of simple locally finite Lie algebras

over an algebraically closed field F of characteristic zero. Recall that an algebra is

called locally finite if every finitely generated subalgebra is finite dimensional. All

locally finite algebras will be considered to be infinite dimensional. Although full

classification of simple locally finite Lie algebras seem to be impossible to obtain,

there are two classes of these algebras which have especially nice properties and can

be characterized in many different ways. Those are finitary simple Lie algebras and

diagonal simple locally finite Lie algebras. Recall that an infinite dimensional Lie

algebra is called finitary if it consists of finite-rank linear transformations of a vector

space. It is easy to see that finitary Lie algebras are locally finite. Diagonal locally

finite Lie algebras were introduced in [4] and are defined as limits of “diagonal”

embeddings of finite dimensional Lie algebras (see Definition 2.4 for details). They

can be also characterized as Lie subalgebras of locally finite associative algebras [5,

Corollary 3.9].

In Section 3 we prove the following theorem, which is one of our main results.

Theorem 1.1. A simple locally finite Lie algebra over F has a proper non-zero inner

ideal if and only if it is diagonal.
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The theorem shows that non-trivial inner ideals appear only in diagonal Lie al-

gebras and gives another characterisation of this class of algebras. The complete

classification of diagonal simple locally finite Lie algebras was obtained in [1] and we

need some notation to state it here.

Let A be an associative enveloping algebra of a Lie algebra L (i.e. L is a Lie sub-

algebra of A and A is generated by L as an associative algebra). We say that A is a

P-enveloping algebra of L if [A,A] = L. Assume now that A has an involution (which

will be always denoted by ∗). Then the set u∗(A) = {a ∈ A | a∗ = −a} of skew sym-

metric elements of A is a Lie subalgebra of A. Let su∗(A) = [u∗(A), u∗(A)] denote

the commutator subalgebra of u∗(A). We say that A is a P∗
-enveloping algebra of

L if su∗(A) = L. It is shown in [1, 1.3-1.6] that every simple diagonal locally finite

Lie algebra L has a unique involution simple P∗
-enveloping algebra A(L) (which is

necessarily locally finite). Moreover, the mapping L �→ A(L) is a bijective correspon-

dence between the set of all (up to isomorphism) infinite dimensional simple diagonal

locally finite Lie algebras and the set of all (up to isomorphism) infinite dimensional

involution simple locally finite associative algebras (the inverse map is A �→ su∗(A)).

Similarly, every simple plain (see Definition 2.4) locally finite Lie algebra L has a

unique (up to isomorphism and antiisomorphism) simple P-enveloping algebra A(L)

(which is necessarily locally finite). Moreover, the mapping L �→ A(L) is a bijec-

tive correspondence between the set of all (up to isomorphism) infinite dimensional

simple plain locally finite Lie algebras and the set of all (up to isomorphism and

antiisomorphism) infinite dimensional simple locally finite associative algebras (the

inverse map is A �→ [A,A]).

In Section 4 we introduce and describe basic properties of so-called regular inner

ideals of simple diagonal locally finite Lie algebras. Those correspond to left and

right ideals of the P- (and P∗
)-enveloping algebras. We believe that the following

conjecture is true.
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Conjecture 1.2. Let L be a simple diagonal locally finite Lie algebra. Assume that

L is not finitary orthogonal. Then every inner ideal of L is regular.

We prove some partial results towards the conjecture (see Theorem 4.13) and show

that the conjecture holds in the case of locally semisimple diagonal Lie algebras (see

Corollary 4.16). We also show that I2 = 0 for every inner ideal I of L, which actually

means that I is a Jordan-Lie inner ideal as defined in [21].

In section 5 we apply our results to the finitary simple Lie algebras. Over a

field of zero characteristic those were classified in [6]. In particular, there are just

three finitary simple Lie algebras over F of infinite countable dimension: sl∞(F ),

so∞(F ) and sp∞(F ). Since finitary simple Lie algebras are both diagonal and locally

semisimple, by Corollary 4.16, all their inner ideals are regular, except in the finitary

orthogonal case. The classification of inner ideals of finitary simple Lie algebras was

first obtained by López, García and Lozano [16] (over arbitrary fields of characteristic

zero), with Benkart and López [14] settling later the missing case for orthogonal

algebras. We provide an alternative proof for the case of special linear and symplectic

algebras over an algebraically closed field of characteristic zero (see Theorem 5.2).

In the case of orthogonal algebras we describe only regular inner ideals.

It follows from a general result, proved for nondegenerate Lie algebras by Draper,

López, García and Lozano, that a simple locally finite Lie algebra contains proper

minimal inner ideals if and only if it is finitary (see [15, Theorems 5.1 and 5.3]). We

prove a version of this result for regular inner ideals, see Corollary 5.7.

In section 6 we study inner ideals of the Lie algebra L = [A,A] where A is a strongly

perfect finite dimensional associative algebra with (RadA)2 = 0. In particular we

show that every inner ideal I of L with I
2 = 0, splits, i.e. I = IS ⊕ IR where S is a

Levi subalgebra of A, R = RadA, IS = I ∩ S and IR = I ∩ R. We also show that I

is regular in certain cases and give an example of a non-regular inner ideal.
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In section 7 the maximal inner ideals of simple plain locally finite Lie algebras

are classified in terms of special maximal pairs of left and right ideals of the plain

enveloping algebra. The case of finitary Lie algebras is considered.
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2. Preliminaries

Recall that a Lie algebra L is called perfect if [L,L] = L. Similarly, an associative

algebra A is perfect if AA = A (which is always true if A contains the identity).

Let L be a perfect finite-dimensional Lie algebra. Then its solvable radical RadL

annihilates every simple L-module and L/RadL ∼= Q1 ⊕ · · · ⊕ Qn is the sum of

simple components Qi. Denote by Vi the first fundamental Qi-module (so Vi is

natural and Qi
∼= sl(Vi), so(Vi), sp(Vi) if Qi is of classical type). The modules Vi

can be considered as L-modules in an obvious way and are called the natural L-

modules. Assume that all Qi are of classical type. An L-module V is called diagonal

if each non-trivial composition factor of V is a natural or co-natural module (i.e.

dual to natural) of L. Otherwise V is called non-diagonal. A diagonal L-module

V is called plain if all Qi are of type A and each non-trivial composition factor of

V is a natural L-module. Let L
� be another perfect finite dimensional Lie algebra

containing L. If W is an L
�-module we denote by W ↓ L the module W restricted

to L. Let V
�
1 , . . . , V

�
k be the natural L�-modules. The embedding L ⊆ L

� is called

diagonal (respectively plain) if (V �
1 ⊕ · · · ⊕ V

�
k) ↓ L is a diagonal (respectively plain)

L-module. By the rank of a perfect finite dimensional Lie algebra we mean the

smallest rank of the simple components of L/RadL.

We will frequently use the following lemma from [1].

Lemma 2.1. [1, Lemma 2.5] Let L1 ⊆ L2 ⊆ L3 be three perfect finite dimensional

Lie algebras. Suppose that the ranks of L1 and L3 are greater than 10 and the

embedding L1 ⊆ L3 is diagonal. Then the embedding L1 ⊆ L2 is diagonal. Moreover,

if the restriction of each natural L2-module to L1 is non-trivial then both embeddings

L1 ⊆ L2 and L2 ⊆ L3 are diagonal.

We will also use the following obvious property of perfect finite dimensional Lie

algebras.
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Lemma 2.2. Let L be a perfect finite dimensional Lie algebra and let Q1, . . . , Qn be

the simple components of L/RadL. Then L has exactly n maximal ideals M1, . . . ,Mn

and L/Mi
∼= Qi.

Proof. Let Mi be the kernel of the natural epimorphism L → Qi. Then Mi is a

maximal ideal of L assume now that M is another maximal ideal of L. We need to

show M ∼= Mi for some i. Since L is perfect, the quotient L/M is perfect, so L/M

is a simple Lie algebra. This implies RadL ⊆ M and M ∼= Mi for some i. �

Definition 2.3. A system of finite dimensional subalgebras L = (Lα)α∈Γ of a Lie

(or associative) algebra L is called a local system for L if the following are satisfied:

(1) L =
�

α∈Γ Lα

(2) for α, β ∈ Γ there exists γ ∈ Γ such that Lα, Lβ ⊆ Lγ.

Put α ≤ β if Lα ⊆ Lβ. Then Γ is a directed set and L = lim
−→

Lα. We say that a

local system is perfect (resp. semisimple) if it consists of perfect (resp. semisimple)

subalgebras.

Definition 2.4. A perfect local system (Lα)α∈Γ is called diagonal (resp. plain) if

for all α ≤ β the embedding Lα ⊆ Lβ is diagonal (resp. plain). A simple locally

finite Lie algebra L is called diagonal (resp. plain) if it has a diagonal (resp. plain)

local system. Otherwise, L is called non-diagonal.

Note that plain locally finite Lie algebras are diagonal.

Lemma 2.5. [2, Theorem 3.2 and Lemma 3] Let L be a simple locally finite Lie (or

associative) algebra. Then L has a perfect local system and if (Lα)α∈Γ is a perfect

local system for L then for every α ∈ Γ there exists α
� ∈ Γ such that for all β ≥ α

�

one has RadLβ ∩ Lα = 0.

Proof. In the case of Lie algebras this was proved in [2, Theorem 3.2 and Lemma 3].

Proof of the associative case is similar. �
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Definition 2.6. A perfect local system (Lα)α∈Γ is called conical if Γ contains the

smallest element 1 such that

(1) L1 ⊆ Lα for all α ∈ Γ;

(2) L1 is simple;

(3) for each α ∈ Γ the restriction of any natural Lα-module to L1 has a non-trivial

composition factor.

By the rank of a conical system we mean the rank of the simple Lie algebra L1.

Note that property (3) of the definition implies that for every α ∈ Γ and every simple

component S of a Levi subalgebra of Lα one has rkS ≥ rkL1. In particular, all these

simple components are classical if rkL1 ≥ 9.

Proposition 2.7. [1, Proposition 3.1] Let L be a simple locally finite Lie algebra

and let L = (Lα)α∈Γ be a perfect local system of L. Let Q be a finite dimensional

simple subalgebra of L. Fix any β ∈ Γ such that Q ⊆ Lβ. For γ ≥ β, denote by L
Q
γ

the ideal of Lγ generated by Q. Put L
Q
1 = Q and ΓQ = {γ ∈ Γ | γ ≥ β} ∪ {1}. Then

LQ = (LQ
α )α∈ΓQ is a conical local system of L and the following hold.

(1) Every natural L
Q
α -module is the restriction of a natural Lα-module. In partic-

ular, the embedding L
Q
α ⊆ Lα is diagonal.

(2) If the local system L is diagonal (resp. plain) then the local system LQ
is

diagonal (resp. plain).

(3) If the local system L is semisimple then the local system LQ
is semisimple.

Proof. Parts (1) and (2) were proved in [1]. Part (3) is obvious. �

Proposition 2.8. [1, Corollary 3.3] Simple locally finite Lie algebras have conical

local systems of arbitrary large rank.
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Remark 2.9. Similar results hold for locally finite associative algebras. In partic-

ular, every (involution) simple locally finite associative algebra A has a conical (∗-

invariant) local system of subalgebras, see [1, Proposition 2.9]. Moreover, this system

will be semisimple if A is locally semisimple.

The following two results were essentially proved in [5, Corollary 3.4].

Theorem 2.10. Let L be a simple locally finite Lie algebra and let (Lα)α∈Γ be a

conical local system for L. Then for every α ∈ Γ there is α
� ∈ Γ such that for all

β ≥ α
�
and all maximal ideals M of Lβ one has Lα∩M = 0. In particular, for every

simple component Q of Lβ/RadLβ one has dimQ ≥ dimLα.

Proof. For each γ ∈ Γ we denote by Rγ the solvable radical of Lγ, by Sγ the semisim-

ple quotient Lγ/Rγ and by S
1
γ , . . . , S

kγ
γ the simple components of Sγ. In particular,

R1 = 0 and L1 = S1 = S
1
1 . Fix any α ∈ Γ. By Lemma 2.5, there is γ > α

such that Rγ ∩ Lα = 0 and by [5, Corollary 3.4] there is α
�
> γ such that the sets

of S1
1−, S

1
γ−, S

2
γ−, . . . , S

kγ
γ −accessible simple components on level β coincide for all

β ≥ α
�. Recall that for β > γ, a component S

i
β is S

j
γ-accessible if the restriction of

the natural Lβ-module V
i
β to Lγ has a composition factor which is non-trivial as a

S
j
γ-module. Fix any β ≥ α

�. Let M be a maximal ideal of Lβ. Then by Lemma

2.2, Lβ/M
∼= S

i
β for some i. More exactly, M is the annihilator of the natural Lβ-

module V
i
β . Note that all components of Sβ are S

1
1 -accessible by the definition of

conical systems (property (3)). This means that S
i
β is S

j
γ-accessible for all j, i.e. all

simple components of Sγ act non-trivially on V
i
β and cannot be in its annihilator

M . Therefore M ∩ Lγ ⊂ Rγ. Since Rγ ∩ Lα = 0, one has that M ∩ Lα = 0, as

required. �

Corollary 2.11. Let L be a simple locally finite Lie algebra and let (Lα)α∈Γ be a

conical local system for L. Then for every finite-dimensional simple subalgebra Q of

L there exists α
� ∈ Γ such that for all β ≥ α

�
, Q ⊆ Lβ and the restriction of every
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natural Lβ-module V to Q has a non-trivial composition factor, i.e. {Q,Lβ | β ≥ α
�}

is a conical local system of L.

Proof. Fix any α ∈ Γ such that Q ⊆ Lα. By Theorem 2.10, there is α
� ∈ Γ such

that for all β ≥ α
� and all maximal ideals M of Lβ one has Lα ∩ M = 0. Let V

be a natural Lβ-module. Then its annihilator M is a maximal ideal of Lβ. Since

Q ∩M = 0, Q acts non-trivially on V . �

We will need a version of the above theorem for associative algebras.

Theorem 2.12. Let A be a (involution) simple locally finite associative algebra and

let (Aα)α∈Γ be a conical perfect (∗-invariant) local system for A. Then for every

α ∈ Γ there is α
� ∈ Γ such that for all β ≥ α

�
and all (∗-invariant) maximal ideals

M of Aβ one has Aα ∩M = 0.

Proof. The proof is similar to that of the previous theorem. �

Proposition 2.13. Let L be a simple diagonal locally finite Lie algebra and let

(Lα)α∈Γ be a conical local system of L. Then for every n ∈ N there is α
� ∈ Γ and

a simple subalgebra Q of L with rkQ > n such that Q ⊆ Lβ for all β ≥ α
�
and

{Q,Lβ | β ≥ α
�} is a conical diagonal local system of L of rank > n.

Proof. Since L is diagonal, by [5, Theorem 3.8] L has a conical diagonal local system

(Mδ)δ∈∆ of rank > max{10, n}. Note that M1 is simple of rank > max{10, n}. Put

Q = M1. By Corollary 2.11, there is α� ∈ Γ such that Q ⊆ Lα� and for all β ≥ α
� the

restriction of every natural Lβ-module V to Q has a non-trivial composition factor.

It remains to prove that the embeddings Q ⊆ Lβ1 and Lβ1 ⊆ Lβ2 are diagonal for all

β2 > β1 ≥ α
�. Fix any δ ∈ ∆ such that Lβ2 ⊆ Mδ, so we have a chain of embeddings

Q = M1 ⊆ Lβ1 ⊆ Lβ2 ⊆ Mδ.
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Since rkQ > 10 and the embedding Q ⊆ Mδ is diagonal, by Lemma 2.1, the

embedding Q ⊆ Lβ2 is diagonal. Applying this lemma again to the triple Q ⊆

Lβ1 ⊆ Lβ2 , we get that the embeddings Q ⊆ Lβ1 and Lβ1 ⊆ Lβ2 are diagonal, as

required. �

Theorem 2.14. Let L be a simple diagonal locally finite Lie algebra and let (Lα)α∈Γ

be a perfect local system for L. Assume that there is α ∈ Γ, a non-zero x ∈ Lα and

a natural number k such that for all β ≥ α, the rank of x is ≤ k on every natural

Lβ-module. Then L is finitary.

Proof. By Proposition 2.13, we can assume that (Lα)α∈Γ is a conical diagonal local

system for L of rank > 10. Let A be its involution simple associative P∗-envelope

and let Aα be the subalgebra of A generated by Lα. Then it follows from the

construction of A (see proof of Theorem 1.3 in [1]), that (Aα)α∈Γ is a conical diagonal

local system for A, su∗(Aα) = Lα, every natural Lα-module is lifted to Aα and every

irreducible Aα-module is either natural or conatural Lα-module. Let B be the ideal

of A generated by x. Since x∗ = −x, B is ∗-invariant, so B = A. Note that xAx �= 0.

Indeed, otherwise A = A
3 = BAB = 0. Therefore x acts nontrivially on the left

A- (and L-) module V = Ax. We claim that dim xAx ≤ 2k2. It is enough to

show that dim xAβx ≤ 2k2 for all large β. By Theorem 2.12, there is γ > β and a

maximal ∗-invariant ideal M of Aγ such that M ∩ Aβ = 0. Note that the quotient

Q = Aγ/M is either simple or the direct sum of two simple components, so Q is

isomorphic to EndU or EndW1 ⊕ EndW2 where U and W1 are natural Lγ-modules

and W2 is conatural. Since M ∩ Aβ = 0, we have an isomorphic image of Aβ in

Q. Assume first that Q ∼= EndU . Since x is of rank ≤ k on U , it is easy to see

that dim xQx ≤ k
2 (e.g. by using the Jordan canonical form of x). Similarly, if

Q ∼= EndW1 ⊕ EndW2, we get that dim xQx ≤ 2k2. Therefore, dim xAβx ≤ 2k2

and dim xAx ≤ 2k2, as required. Thus, x is a finite rank transformation of V = Ax.
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Note that all finite rank transformations of V in L form an ideal of L. Since L is

simple, V is a non-trivial finitary module for L, so L is finitary. �

Definition 2.15. Let L be a Lie algebra. An inner ideal of L is a subspace I of L

such that [I, [I, L]] ⊆ I.

Although inner ideals are not ideals in general (not even subalgebras) it is easy to

see that they are well-behaved with respect to subalgebras and factor algebras:

Lemma 2.16. Let I be an inner ideal of a Lie algebra L.

(1) Let H be a subalgebra of L. Then I ∩H is an inner ideal of H.

(2) Let J be an ideal of L then (I + J)/J is an inner ideal of L/J .

The following classifies the inner ideals of the classical finite dimensional Lie alge-

bras over F . This is only a very particular case of the results proven in [12, 14].

Theorem 2.17. [12, Theorem 5.1][14, Theorem 6.3(i)] Let V be a finite dimensional

vector space over an algebraically closed field F of characteristic zero. Let A = EndV

and Φ (resp. Ψ) be a non-degenerate symmetric (resp. skew-symmetric) form on V .

Let ∗ be the involution of A induced by either Φ or Ψ.

(1) Let L = sl(V ). A subspace I of L is a proper inner ideal of L if and only if

there exist idempotents e and f in A such that I = eAf and fe = 0.

(2) Let L = sp(V,Ψ) and dimV > 4. A subspace I of L is a proper inner ideal

of L if and only if there exists an idempotent e in A such that I = eLe
∗

and e
∗
e = 0

(equivalently, I = [U,U ] = span{u∗
v + v

∗
u|u, v ∈ U} where U is a totally isotropic

subspace of V and u
∗
v ∈ EndV is defined as (u∗

v)(w) = Ψ(w, u)v for all w ∈ V ).

(3) Let L = o(V,Φ) and dimV > 4. A subspace I of L is a proper inner ideal of

L if and only if one of the following holds.

(i) I = eLe
∗

where e ∈ A is an idempotent such that e
∗
e = 0.

(ii) I = [v,H⊥] where v ∈ V is a nonzero isotropic vector of H, and H is a

2-dimensional subspace of V such that the restriction of Φ to H is nondegenerate
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(equivalently, there is a basis {x1, . . . , xn} of V such that I is the F -span of the

matrix units e1j − ej2, j ≥ 3, with respect to this basis [14, 4.1]).

(iii) I is a Type 1 point space of dimension greater than 1.

Recall that a subspace P of a Lie algebra L is called a point space if [P, P ] = 0

and ad
2
xL = Fx for every nonzero element x ∈ P . Moreover, a point subspace P of

o(V,Φ) is said to be of Type 1 if there is a non-zero vector u in the image of every

non-zero a ∈ P .

Lemma 2.18. [13, Lemma 1.13] Let L be a finite dimensional simple Lie algebra

and let I be a proper inner ideal of L. Then [I, I] = 0, i.e. I is abelian.

The following two facts are well-known, see for example [18, Proposition 2.3].

Lemma 2.19. Let L be a finite dimensional simple Lie algebra and let I be an inner

ideal of L. Then [I, [I, L]] = I.

Proof. Let I be an inner ideal of L. If I = L then this is obviously true. Assume

that I is proper. Then by Lemma 2.18, I is abelian. Let x ∈ I. Then

[x, [x, [x, L]]] ⊆ [x, I] = 0,

so x is ad-nilpotent. By the Jacobson-Morozov Theorem, there exist y, h ∈ L such

that {x, y, h} form an sl2-triple. Note that

[x, [x, y]] = [x, h] = −2x,

so x ∈ [I, [I, L]]. This implies I = [I, [I, L]], as required. �

Lemma 2.20. Let L be a finite dimensional semisimple Lie algebra. Let Q1, . . . , Qn

be the simple components of L. Let I be an inner ideal of L and Ii = I ∩Qi. Then

I = I1 ⊕ · · · ⊕ In.
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Proof. Let ψk : L → Qk, ψk((q1, . . . , qn)) = qk, be the natural projection and let

Jk = ψk(I). We need to show Jk = Ik. Indeed, by Lemma 2.16, Jk is an inner ideal

of Qk. It is clear that Ik ⊆ Jk. On the other hand, by Lemma 2.19,

Jk = [Jk, [Jk, Qk]] = [I, [I,Qk]] ⊆ Ik.

Therefore Ik = Jk for all k, so I = I1 ⊕ · · · ⊕ In. �

Proposition 2.21. Let L be a perfect finite dimensional Lie algebra and let I be an

inner ideal of L. Assume that (I +M)/M = L/M for every maximal ideal M of L.

Then I = L.

Proof. Without loss of generality we can assume that I is minimal among all inner

ideals of L satisfying this assumption. By [13, Lemma 1.1(4)], for every inner ideal J

of L the subspace J
[3] = [J, [J, J ]] is also an inner ideal of L. Note that I

[3] satisfies

the assumption of the proposition since L is perfect. Moreover, I [3] is contained in

I:

I
[3]

⊆ [I, [I, L]] ⊆ I.

Therefore I
[3] = I. Now

[L, I] = [L, [I, [I, I]]] ⊆ [I, [I, L]] ⊆ I

so I is an ideal of L. Since I is not contained in any maximal ideal, I = L, as

required. �

Lemma 2.22. [12, Lemma 4.23] Let L be a classical simple finite dimensional Lie

algebra and let V be the natural module for L. Let I be a proper inner ideal of L.

Then I
3
V = 0. In particular, x

3
V = 0 for all x ∈ I.

Proof. This was proved in [12] but also follows from the classification of inner ideals

given in Theorem 2.17. Indeed, referring to the notation of the theorem, suppose
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I = eAf or I = eLe
∗ as in cases 1, 2 and 3 part (i). Then fe = 0 or e

∗
e = 0, so

I
2 = 0. Now suppose I = [v,H⊥] as in case 3 part (ii). Then I is the F -span of

the matrix units e1j − ej2, j ≥ 3. Note that I
2 = Fe12 and I

3 = 0. Finally consider

case 3 part (iii). If I is a point space of type 1 then I is a subspace of eLe∗ for some

idempotent e with e
∗
e = 0 (see [14, Proposition 4.3]). Thus again I

2 = 0. �
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3. Non-diagonal locally finite Lie algebras

The aim of this section is to prove Theorem 1.1: a simple locally finite Lie algebra

over F has a proper nonzero inner ideal if and only if it is diagonal. First we are

going to show that every simple diagonal locally finite Lie algebra has a non-zero

proper inner ideal. This will be generalized in the next section where we describe all

regular inner ideals of diagonal Lie algebras.

Proposition 3.1. Every simple diagonal locally finite Lie algebra has a proper non-

zero inner ideal.

Proof. Let L be a simple diagonal locally finite Lie algebra. By [1, Theorems 1.1 and

1.2] there exists an involution simple locally finite associative algebra A such that

L = su∗(A). By [1, Corollary 2.11], for every integer m, A contains an involution

simple finite dimensional subalgebra A1 of dimension greater than m. It is well known

A1 is isomorphic to a matrix algebra Mn(F ) with orthogonal or symplectic involution

or the direct sum of two copies of Mn(F ) with involution permuting the components

and L1 = su∗(A1) is a finite dimensional classical Lie algebra isomorphic to sln, spn,

or on (see for example [9, Lemmas 2.1 and 2.2]). Fix any idempotent e in A1 such

that e
∗
e = 0 and eL1e

∗ �= 0 (see Theorem 2.17). Put I = eAe
∗ ∩ su∗(A). Note that

I
2 = 0, so I is a proper non-zero subspace of L. Since (eAe∗)A(eAe∗) ⊆ eAe

∗, one

has [I, [I, L]] ⊆ I, so I is an inner ideal of L. �

Remark 3.2. As it was mentioned to us by Fernández López, the proposition also

follows from [22, Corollary 2.3], because every simple diagonal locally finite Lie

algebra L has an algebraic adjoint representation [5, Corollary 3.9(6)], and hence a

non-zero abelian inner ideal.

Lemma 3.3. Let L be a non-diagonal simple locally finite Lie algebra. Let (Lα)α∈Γ

be a conical local system of L of rank > 10. Then for every β there exists β
� ≥ β

such that for all γ ≥ β
�
the embedding Lβ ⊆ Lγ is non-diagonal.



INNER IDEALS OF SIMPLE LOCALLY FINITE LIE ALGEBRAS 18

Proof. Let β ∈ Γ. Suppose to the contrary that for every β
� ≥ β there is γ ≥ β

� such

that the embedding Lβ ⊆ Lγ is diagonal. Since Lβ ⊆ Lβ� ⊆ Lγ, by Lemma 2.1 the

embedding Lβ ⊆ Lβ� is diagonal for all β� ≥ β. Fix any simple component Q of a

Levi subalgebra of Lβ. Then rkQ > 10 and by Corollary 2.11, there is α
�
> β such

that L = {Q,Lγ | γ ≥ α
�} is a conical local system of L. We are going to prove that

L is a diagonal local system, so L is a diagonal Lie algebra, which is a contradiction.

We already know that all embeddings Q ⊆ Lγ, γ ≥ α
�, are diagonal. Consider any

ξ > ζ ≥ α
�. Then we have a chain of embeddings Q ⊆ Lζ ⊆ Lξ. By construction

both Q ⊆ Lζ and Q ⊆ Lξ are diagonal. Since L is conical and rkQ > 10, by Lemma

2.1 the embedding Lζ ⊆ Lξ is diagonal, as required. �

Lemma 3.4. [4, Lemma 4.5] Let L1 ⊂ L2 be finite dimensional Lie algebras; let

S1 and S2 be Levi subalgebras of L1 and L2, respectively. Then there exists an

automorphism θ of L2 such that θ(S1) ⊆ S2 and θ(l) = l + r(l) for all l ∈ L2,

with r(l) being in the nilpotent radical of L2. Moreover the monomorphism S1 ⊆ S2

induced by θ does not depend on the choice of such θ.

In what follows we will use the function δ introduced in [4]. This is a function

defined on the weights (and modules) of simple Lie algebras. The function δ takes

integral (and half-integral in the case of algebras of type B) values only. The function

is linear and is defined by writing down its values on fundamental weights. Let L

be a finite dimensional simple Lie algebra of rank m. Denote by ω1, . . . , ωm the

fundamental weights of L and α1, . . . αm the simple roots of L. In the following list

δ = (p1, . . . , pm) means that δ(ωi) = pi for i = 1, 2, . . . ,m.
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δ = (1, 2, . . . , k, k, . . . , 2, 1) (A2k);

δ = (1, 2, . . . , k + 1, . . . , 2, 1) (A2k+1);

δ = (1, 2, . . . ,m− 2,m− 1,m) (Cm, m ≥ 2);

δ = (1, 2, . . . ,m− 2,m− 1, [m2 ]) (Bm, m ≥ 3);

δ = (1, 2, . . . , 2k − 2, k − 1, k) (D2k, k ≥ 2);

δ = (1, 2, . . . , 2k − 1, k, k) (D2k+1, k ≥ 2);

δ = (2, 2, 3, 4, 3, 2) (E6);

δ = (2, 2, 3, 4, 3, 2, 1) (E7);

δ = (4, 5, 7, 10, 8, 6, 4, 2) (E8);

δ = (2, 3, 2, 1) (F4);

δ = (1, 2) (G2).
It is easy to verify that δ(αi) ≥ 0 for all i = 1, . . .m. Let V be an L-module and

M be its set of weights then set δL(V ) = sup{δ(µ)}µ∈M . We will write δ(V ) instead

of δL(V ) if L is fixed. Since the value of δ on the simple roots is ≥ 0 this means

δ(V ) = δ(µh) where µh is the highest weight of V . Let S be a finite dimensional

simple Lie algebra of rank > 10 and let V be an S-module. Then V is trivial if and

only if δ(V ) = 0; V is non-trivial diagonal if and only if δ(V ) = 1; V is non-diagonal

if and only if δ(V ) ≥ 2 (see [4, Section 6] for details).

Lemma 3.5. Let L1 ⊆ L2 ⊆ L3 be three perfect finite dimensional Lie algebras such

that L1 is simple and rkL1 > 10. Suppose that the embedding L2 ⊆ L3 is non-

diagonal and the restriction of every natural L2-module to L1 is non-trivial. Then

there is a natural L3-module V such that δ(V ↓ L1) > 1. In particular, the restriction

of V to L1 is non-diagonal.

Proof. By using Levi-Malcev Theorem and Lemma 3.4 we can reduce this to the

case of Levi subalgebras, one embedded into the next, so we can assume that the

Li are semisimple. Since the embedding L2 ⊆ L3 is non-diagonal, there exists a
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natural L3-module, say, V such that V ↓ L2 has an irreducible component W which

is non-trivial, non-natural and non-conatural. We have

δ(V ↓ L1) = δ((V ↓ L2) ↓ L1) ≥ δ(W ↓ L1)

It remains to show that δ(W ↓ L1) > 1. The module W can be represented in the

form W = W1 ⊗ · · · ⊗ Wk where each Wi is a non-trivial irreducible module for a

simple component Si of L2. Then we have two cases: either at least two Wi are non-

trivial or at least one Wi is non-trivial non-natural and non-conatural. For the first

case, without loss of generality we may assume that there are just two non-trivial

Wi, so that W = W1 ⊗W2. Using [4, Lemma 7.2] we see that

δ(W ↓ L1) ≥ δ((W ↓ S1) ↓ L1) + δ((W ↓ S2) ↓ L1) ≥ 2.

In the second case we may assume that W = W1 where W1 is a non-trivial, non-

natural and non-conatural S1-module. Then using [4, Lemma 6.7], we get

δ(W ↓ L1) ≥ δ((W ↓ S1) ↓ L1) ≥ δ(W1 ↓ L1) > δ(V1 ↓ L1) ≥ 1

where V1 is the natural S1-module. In both cases δ(V ↓ L1) > 1, so V is a non-

diagonal L1-module. �

Lemma 3.6. Let L be a non-diagonal simple locally finite Lie algebra and let L be

a conical perfect local system for L of rank > 10. Let n be a positive integer and

let S be a finite dimensional simple subalgebra of L. Then there exists a chain of

subalgebras M1 ⊆ M2 ⊆ · · · ⊆ Mn of L and subalgebras Si ⊆ Mi, 1 ≤ i ≤ n, such

that M1 = S1 = S, for each i = 2, . . . , n, Mi ∈ L, Si is a simple component of a Levi

subalgebra of Mi and the restriction Vi ↓ Si−1 is a non-diagonal Si−1-module where

Vi is the natural Mi-module corresponding to Si. Moreover, δ(Vn ↓ S) > n/2.
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Proof. We construct the algebras Mi and Si by induction. Recall that M1 = S1 = S.

Assume that Mi−1 and Si−1 have been constructed. By Corollary 2.11, there is

an algebra Qi ∈ L such that Si−1 ⊆ Qi and the restriction of every natural Qi-

module to Si−1 is non-trivial. By Lemma 3.3, there is Mi ∈ L such that Qi ⊆ Mi

and the embedding Qi ⊆ Mi is non-diagonal. Therefore by Lemma 3.5, there is a

simple component Si of a Levi subalgebra of Mi such that the restriction Vi ↓ Si−1

is a non-diagonal Si−1-module and δ(Vi ↓ Si−1) > 1 where Vi is the natural Mi-

module corresponding to Si. Let Wi−1 be any non-diagonal composition factor of

the restriction Vi ↓ Si−1. Then Wi−1 can be viewed as both Si−1 and Mi−1-module.

Similarly to the proof of Lemma 3.5, using [4, Lemma 6.7], we get that

δ(Vi ↓ S1) = δ((Vi ↓ Mi−1) ↓ S1) ≥ δ(Wi−1 ↓ S1) > δ(Vi−1 ↓ S1)

Therefore

δ(Vn ↓ S1) > δ(Vn−1 ↓ S1) > · · · > δ(V1 ↓ S1) = 1.

Since δ has half-integer values only, this implies δ(Vn ↓ S1) > n/2. �

Proposition 3.7. Let L be a non-diagonal simple locally finite Lie algebra and let L

be a conical perfect local system for L of rank > 10. Let n be a positive integer and

let S be a finite dimensional simple subalgebra of L. Then there exists a subalgebra

M ∈ L containing S such that for every M
� ∈ L containing M and every natural

M
�
-module V one has δ(V ↓ S) > n.

Proof. By Lemma 3.6, there exists Q1 ∈ L containing S and a simple component

S1 of a Levi subalgebra of Q1 such that δ(V1 ↓ S) > n where V1 is the natural

Q1-module corresponding to S1. By Theorem 2.10, there exists M ∈ L containing

Q1 such that for every M
� ∈ L containing M and every maximal ideal N of M � one

has Q1 ∩ N = 0, so V ↓ S1 is a non-trivial S1-module for every natural M �-module

V . It remains to show that δ(V ↓ S) > n. Let W1 be any non-trivial composition
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factor of the restriction V ↓ S1. Then W1 can be viewed as both S1 and Q1-module.

Similarly to the proof of Lemma 3.5, using [4, Lemma 6.7], we get that

δ(V ↓ S) = δ((V ↓ Q1) ↓ S) ≥ δ(W1 ↓ S) ≥ δ(V1 ↓ S) > n.

�

Proposition 3.8. Let L be a simple non-diagonal locally finite Lie algebra. Then L

has no non-zero proper inner ideals.

Proof. Let (Lα)α∈Γ be a perfect conical local system for L of rank > 10. Let Rα be the

solvable radical of Lα and let Sα be a Levi subalgebra of Lα so that Lα = Sα⊕Rα for

α ∈ Γ. Assume I is a proper non-zero inner ideal of L. For α ∈ Γ put Iα = I ∩ Lα.

Then Iα is an inner ideal of Lα by Lemma 2.16. Fix α1 ∈ Γ such that Iα1 is a

proper non-zero inner ideal of Lα1 . By Lemma 2.5, there is α2 ≥ α1 such that

Lα1 ∩ Rα2 = 0, so Iα2 �⊆ Rα2 and the image Iα2 of Iα2 in the semisimple quotient

Lα2 = Lα2/Rα2 is a non-zero inner ideal of Lα2
∼= Sα2 . It follows from Lemmas 2.20

and 2.22 that Iα2 contains a non-zero ad-nilpotent element. Therefore there exist

a non-zero ad-nilpotent s ∈ Sα2 and an r ∈ Rα2 such that x = s + r ∈ Iα2 . By

the Jacobson-Morozov Theorem, there exists a subalgebra S of Sα2 isomorphic to

sl2 containing s. Consider the subalgebra Ŝ = S + Rα2 of Lα2 . Then Rad Ŝ = Rα2

and I0 = I ∩ Ŝ is an inner ideal of Ŝ containing x. By Proposition 3.7, there exists

α3 ∈ Γ such that Ŝ ⊂ Lα3 and for every natural Lα3-module V one has δ(V ↓ S) > 2.

Fix any such module V . Note that all composition factors of V ↓ Ŝ are irreducible

modules for S, so V ↓ Ŝ has a composition factor W , which is also an irreducible

module for S ∼= sl2 with δ(W ) > 2. It follows from the definition of the function δ

that dimW = δ(W ) + 1 > 3 (see [4, Section 6] for details), so s
3
W �= 0 as s is a

basic ad-nilpotent element of S. Since r ∈ Rad Ŝ = Rα2 and Rα2 annihilates every
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composition factor of V ↓ Lα2 one has rW = 0, so

x
3
W = (s+ r)3W = s

3
W �= 0.

Therefore, x3
V �= 0. Let M be the annihilator of V in Lα3 . Then M is a maximal

ideal of Lα3 and let a �→ ā be the natural homomorphism Lα3 → Lα3 = Lα3/M .

Then Lα3 is a classical simple Lie algebra of rank > 10, Iα3 is an inner ideal of Lα3

and x ∈ Iα3 . Note that x
3
V = x

3
V �= 0. Since V is a natural module for Lα3 , by

Lemma 2.22, one has Iα3 = Lα3 . Since this is true for every natural Lα3-module V

(and so for every maximal ideal M of Lα3), by Proposition 2.21, Iα3 = Lα3 . This

implies that Iα1 = Lα1 , which contradicts the assumption that Iα1 is a proper inner

ideal of Lα1 . �

Proof of Theorem 1.1. This follows from Propositions 3.1 and 3.8.
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4. Regular Inner Ideals and Diagonal Lie Algebras

In this section we discuss inner ideals of simple diagonal locally finite Lie algebras.

Lemma 4.1. Let A be an associative algebra and let L = [A,A]. Let I be a subspace

of L such that I
2 = 0. Then the following hold.

(1) I is an inner ideal of L if and only if ixj + jxi ∈ I for all i, j ∈ I and all

x ∈ L.

(2) IAI ⊆ L.

(3) If IAI ⊆ I, then I is an inner ideal of L.

Proof. (1) Recall that I is an inner ideal of L if and only if [i, [j, x]] ∈ I for all i, j ∈ I

and all x ∈ L. It remains to note that

[i, [j, x]] = ijx− ixj − jxi+ xji = −ixj − jxi.

(2) Indeed,

iaj = i(aj)− (aj)i = [i, aj] ⊆ [A,A] = L

for all i, j ∈ I and all a ∈ A.

(3) This follows from (1). �

Lemma 4.2. Let A be an associative algebra with involution and let K = su∗(A).

Let I be a subspace of K such that I
2 = 0. Then the following hold.

(1) u∗(IAI) ⊆ K.

(2) u∗(IAI) = IAI ∩K.

(3) If u∗(IAI) ⊆ I, then I is an inner ideal of K.

Proof. (1) Note that IAI is ∗-invariant, so u∗(IAI) = {q− q
∗ | q ∈ IAI}. It remains

to note that

iaj−(iaj)∗ = iaj−ja
∗
i = i(aj+ja

∗)−(aj+ja
∗)i = [i, aj−(aj)∗] ∈ [u∗(A), u∗(A)] = K
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for all i, j ∈ I and all a ∈ A.

(2) This is obvious.

(3) By Lemma 4.1(1), it is enough to check that ixj + jxi ∈ I for all i, j ∈ I and

all x ∈ K. One has

ixj + jxi = ixj − (ixj)∗ ∈ u∗(IAI) ⊆ I

as required. �

We will show (see Theorem 4.13) that for every inner ideal I of an infinite dimen-

sional simple locally finite Lie algebra L one has I
2 = 0, (the only exception being

the finitary orthogonal algebras). Thus Lemmas 4.1 and 4.2 justify the following

definition.

Definition 4.3. (1) Let A be an associative algebra and let L = [A,A]. Let I be

a subspace of L such that I
2 = 0. We say that I is a regular inner ideal of L (with

respect to A) if and only if IAI ⊆ I.

(2) Let A be an associative algebra with involution and let K = su∗(A). Let I be

a subspace of K such that I2 = 0. We say that I is a ∗-regular (or, simply, regular)

inner ideal of K (with respect to A) if and only if u∗(IAI) ⊆ I.

Remark 4.4. Note that regular inner ideals are always abelian (since [I, I] ⊆ I
2 = 0),

so they are proper inner ideals of L (if L is not abelian).

If B is an associative algebra denote by B
(−) the Lie algebra obtained from the

vector space B with the new multiplication [x, y] = xy − yx.

We will use the following well-known facts.

Lemma 4.5. Let A be an associative algebra.

(1) If A is involution simple then A is either simple or A = B ⊕B
∗

where B is a

simple ideal.
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(2) Assume A = B ⊕ B
∗
. Then u∗(A) = {(b,−b

∗) | b ∈ B}. Let ϕ be the

projection of A on B. Then the restriction of ϕ to u∗(A) is an isomorphism of the

Lie algebras u∗(A) and B
(−)

. Moreover, if C is a ∗-invariant subalgebra of A then

ϕ(u∗(C)) = ϕ(C)(−)
.

Proof. (1) Suppose A is not simple. So A has a proper non-zero ideal B. Then B+B
∗

and B ∩ B
∗ are ∗-invariant ideals of A. Since A is involution simple, B + B

∗ = A

and B ∩ B
∗ = 0. So A = B ⊕ B

∗ and B is a simple ideal.

(2) This is obvious. �

Lemma 4.6. Let A = B⊕B
∗

and let ϕ : su∗(A) → [B,B] be the isomorphism as in

Lemma 4.5. Then I is a regular inner ideal of su∗(A) if and only if ϕ(I) is a regular

inner ideal of [B,B].

Proof. We need to show that u∗(IAI) ⊆ I if and only if ϕ(I)Bϕ(I) ⊆ ϕ(I). Since

both u∗(IAI) and I are subspaces of u∗(A), the first inclusion is equivalent to

ϕ(u∗(IAI)) ⊆ ϕ(I). Note that

ϕ(u∗(IAI)) = ϕ(IAI) = ϕ(I)Bϕ(I),

so this can be rewritten as

ϕ(I)Bϕ(I) ⊆ ϕ(I),

as required. �

Lemma 4.7. Let A be a simple associative ring and let L (resp. R) be a left (resp.

right) non-zero ideal of A. Then the following holds.

(1) LA = A, AR = A, and LAR = A.

(2) RL ⊆ R ∩ L.

(3) If LR = 0 then RL ⊆ R ∩ L ∩ [A,A].

(4) RL and R∩ L are non-zero.
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Proof. (1) Assume LA �= A. Since LA is a two-sided ideal of A and A is simple,

LA = 0. This implies that L is a two-sided ideal of A. Since L is non-zero, L = A,

so LA = A
2 = A �= 0, which is a contradiction. Proof for R is similar. Now

LAR = (LA)(AR) = A
2 = A.

(2) It is enough to note that RL ⊆ R and RL ⊆ L;

(3) This is obvious.

(4) Assume RL = 0. Then A = A
2 = (AR)(LA) = A(RL)A = 0, which is a

contradiction. �

Let A be an associative ring. An element x ∈ A is called von Neumann regular if

there is y ∈ A such that xyx = x. The ring A is called von Neumann regular if every

element of A is von Neumann regular. We are grateful to Miguel Gómez Lozano for

the following observation.

Proposition 4.8. Let A be an associative ring.

(1) RL = R ∩ L for all left and right ideals L and R, respectively, in A if and

only if A is von Neumann regular.

(2) RL = R∩L for all left and right ideals L and R, respectively, in A such that

LR = 0 if and only if every x in A with x
2 = 0 is von Neumann regular.

Proof. (1) Suppose RL = R ∩ L for all left and right ideals L and R, respectively.

Let x ∈ A. Consider the ideals R = xA+ Zx and L = Ax+ Zx. Note that

x ∈ R ∩ L = RL = xAx+ Zx2
,

Hence xy
�
x = x for some y

� ∈ A
� where the ring A

� = A+ Z1 is obtained from A by

adding the identity 1. Since A is an ideal of A�, one has xyx = x for y = y
�
xy

� ∈ A.

Therefore A is von Neumann regular.
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Assume now A is von Neumann regular. Let L and R be a left and right ideal of

A respectively. Clearly RL ⊆ R ∩ L. Let x ∈ R ∩ L. Then there exists y ∈ A such

that x = xyx = x(yx) ∈ RL, So RL = R∩ L.

(2) Suppose RL = R ∩ L for all left and right ideals L and R, respectively, such

that LR = 0. Let x ∈ A with x
2 = 0. Then R =xA + Zx and L = Ax + Zx are a

left and right ideal of A with LR = 0. The rest of the argument follows as in (1).

Assume now every x ∈ A for which x
2 = 0 is von Neumann regular. Let L and R

be a left and right ideal of A respectively with LR = 0. Clearly RL ⊆ R ∩ L. Let

x ∈ R ∩ L. Note that x2 ∈ LR = 0 so x by assumption is von Neumann regular. So

there exists y ∈ A such that x = xyx = x(yx) ∈ RL. Therefore RL = R∩ L. �

Now we are in position to describe regular inner ideals.

Proposition 4.9. Let A be an associative algebra and let L = [A,A]. Let I be a

subspace of L. Then I is a regular inner ideal of L if and only if there exist L and

R where L (resp. R) is a left (resp. right) ideal of A such that LR = 0 and

(4.1) RL ⊆ I ⊆ R ∩ L ∩ L.

In particular, if A is von Neumann regular then every regular inner ideal of L is of

the shape I = RL (= R∩ L).

Proof. Assume first that I is a regular inner ideal of L. Then I
2 = 0 and IAI ⊆ I.

Put L = AI + I and R = IA + I. Then L (resp. R) is a left (resp. right) ideal of

A with LR = 0 and

RL ⊆ IAI + I = I ⊆ R ∩ L ∩ L,

as required.
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Now assume that RL ⊆ I ⊆ R ∩ L ∩ L. Then I
2 ⊆ LR = 0 and

IAI ⊆ RAL ⊆ RL ⊆ I,

so I is a regular inner ideal. �

If A is simple then one can show that the ideals L and R are defined by I almost

uniquely. More exactly we have the following.

Lemma 4.10. Let A be a simple associative algebra and let L = [A,A]. If I is a

regular inner ideal of L and a pair of ideals (L,R) satisfies (4.1) then AL = AI and

RA = IA.

Proof. Assume the pair of ideals (L,R) satisfies (4.1). Then I ⊆ L, so AI ⊆ AL.

On the other hand, by Lemma 4.7(1),

AL = (LAR)L = LA(RL) ⊆ AI,

so AL = AI. Similarly, RA = IA. �

The next proposition describes regular inner ideals in the case of algebras with

involution.

Proposition 4.11. Let A be an associative algebra with involution and let K =

su∗(A). Let I be a subspace of K. Then I is a regular inner ideal of K if and only

if there exists a left ideal L of A such that LL
∗ = 0 and

(4.2) u∗(L∗
L) ⊆ I ⊆ L

∗
∩ L ∩K.

In particular, if A is von Neumann regular then every regular inner ideal of L is of

the shape I = u∗(L∗L) (= u∗(L∗ ∩ L)).
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Proof. Assume first that I is a regular inner ideal of K. Then I
2 = 0 and u∗(IAI) ⊆

I. Put L = AI + I. Then L is a left ideal of A, L∗ = IA+ I, LL∗ = 0 and

u∗(L∗
L) ⊆ u∗(IAI + I) ⊆ I ⊆ L

∗
∩ L ∩K,

as required.

Now assume that u∗(L∗L) ⊆ I ⊆ L∗ ∩ L ∩K. Then I
2 ⊆ LL

∗ = 0 and

u∗(IAI) ⊆ u∗(L∗
AL) ⊆ u∗(L∗

L) ⊆ I,

so I is a regular inner ideal. �

Proposition 4.12. Let A be a finite dimensional semisimple associative algebra and

let L = [A,A]. Then every proper inner ideal I of L is regular. More exactly, I = RL

(= L ∩R) where L is a left ideal of A and R is a right ideal of A with LR = 0.

Proof. Suppose I is an inner ideal of L. Note that L is semisimple. Therefore by

Propositions 2.20 and 2.17(1), I = eAf for a pair of idempotents e and f of A such

that fe = 0. Define L = Af and R = eA. Then

RL = eAAf = eAf = I,

as required. �

Recall that every simple diagonal locally finite Lie algebra can be represented as

su∗(A) where A is an involution simple locally finite associative algebra (A is actually

unique and called the P∗-enveloping algebra of L, see introduction). Moreover, if L

is plain then L = [A,A] where A is simple. Thus, the following theorem.

Theorem 4.13. (1) Let A be a simple locally finite associative algebra and let

(Aα)α∈Γ be a perfect conical local system for A of rank > 4. Let L = [A,A] and

let I be a proper inner ideal of L. Put Lα = [Aα, Aα] and Iα = I ∩Lα. Let Iα be the
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image of Iα in Lα = Lα/RadLα. Then I
2 = 0 and for every α ∈ Γ, Iα is a regular

inner ideal of Lα.

(2) Let A be an involution simple locally finite associative algebra and let (Aα)α∈Γ

be a perfect conical ∗-invariant local system for A of rank > 36. Let L = su∗(A) and

let I be an inner ideal of L. Put Lα = su∗(Aα) and Iα = I ∩Lα. Let Iα be the image

of Iα in Lα = Lα/RadLα. If A is not finitary with orthogonal involution (i.e. L is

not finitary orthogonal) then I
2 = 0 and there is α0 ∈ Γ such that for every α ≥ α0,

Iα is a regular inner ideal of Lα.

Proof. (1) By [8, Theorem 6.3(1)] (see also [1, Theorem 2.12(1)] and its proof),

(Lα)α∈Γ is a perfect conical local system for L. By Proposition 2.16 Iα is an inner

ideal of Lα. By Lemma 2.5, for every α there exists β such that RadAβ ∩ Aα = 0.

Let − : Aβ → Aβ/RadAβ be the canonical surjection. Note that RadLβ ⊆ RadAβ,

Lβ = [Aβ, Aβ], and by Lemma 2.16, Iβ is an inner ideal of Lβ. Moreover Iβ is regular

by Proposition 4.12 and Iβ
2
= 0. Since Aα ∩ RadAβ = 0, Aα

∼= Aα, so Aα can be

considered as a subalgebra of Aβ and Iα ⊆ Iβ. Therefore I
2
α ⊆ Iβ

2
= 0, so I

2
α = 0.

Since I = lim
−→

Iα, we conclude that I
2 = 0. This implies that Iα is a proper inner

ideal of Lα for every α ∈ Γ, so Iα is regular by Proposition 4.12.

(2) By [9, Theorem 6.3] (see also [1, Theorem 2.12(2)] and its proof), (Lα)α∈Γ is

a perfect conical local system for L. By Proposition 2.16, Iα is an inner ideal of

Lα. Assume first that A is not simple. Then by Lemma 4.5 A = B ⊕ B
∗ where

B is a simple ideal of A. Moreover, if ϕ is the projection of A on B then ϕ is an

isomorphism of the Lie algebras su∗(A) and [B,B] and the result follows from part

(1) of the theorem. Thus, we can suppose that A is simple.

Assume now that L is finitary. Since A is simple and the involution is not orthog-

onal, it must be symplectic. Therefore there is a local system (Sδ)δ∈∆ of naturally

embedded finite dimensional symplectic subalgebras of L. Fix any δ ∈ ∆ and α0 ∈ Γ

such that Sδ is of rank > 10 and L1 ⊆ Sδ ⊆ Lα0 . We claim that Lα = Lα/RadLα
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is symplectic for all α ≥ α0. Indeed, consider any Levi subalgebra Q of Lα which

contains Sδ and fix δ
� such that Q ⊆ Sδ� . We have a chain of embeddings

L1 ⊆ Sδ ⊆ Q ⊆ Sδ� .

Since the embedding Sδ ⊆ Sδ� is diagonal, by Lemma 2.1, both embeddings Sδ ⊆ Q

and Q ⊆ Sδ� are diagonal. Moreover, since Sδ ⊆ Sδ� is natural, Q must be simple

and both embeddings Sδ ⊆ Q and Q ⊆ Sδ� must be natural. This implies that

Q is symplectic (see for example [10, Proposition 2.3]), so Lα
∼= Q is symplectic.

Therefore Iα is a regular inner ideal of Lα and Iα
2
= 0 for all α ≥ α0. As in the proof

of part (1), fix any β such that RadAβ ∩ Aα = 0. Then I
2
α ⊆ Iβ

2
= 0, so I

2 = 0.

Suppose now that L is not finitary. First we are going to show that I
2 = 0.

Assume I
2 �= 0. Fix any x, y ∈ I such that xy �= 0. Since I

2 = lim
−→

I
2
α, there is

β ∈ Γ such that x, y ∈ Iγ and xy /∈ RadAγ for all γ ≥ β. Let M be a ∗-invariant

maximal ideal of Aγ with xy /∈ M . Note that Q = Aγ/M is involution simple and

K = su∗(Q) is isomorphic to one of the simple components of Lγ/RadLγ. Let V

be the corresponding natural module for K and Lγ and let J be the image of Iγ in

K. Then J is an inner ideal of K. Since xy /∈ M , J2 is nonzero in Q. Therefore

J is as in Theorem 2.17(3)(ii), i.e. spanned by the matrix units e1j − ej2, j ≥ 3.

In particular, x (and y) is of rank 2 on V . Thus x acts as zero or a rank 2 linear

transformation on every natural Lγ-module for all γ ≥ β. Therefore by Theorem

2.14, L is finitary, which contradicts the assumption.

Fix any non-zero x ∈ I and any β ∈ Γ such that x ∈ Iγ and x /∈ RadLγ for

all γ ≥ β. One can also assume that x is of rank greater than 2 on some natural

Lβ-module V (otherwise L is finitary by Theorem 2.14). Let Q be the corresponding

simple component of a Levi subalgebra of Lβ (so V is a natural Q-module). By

Corollary 2.11 there exists α0 ∈ Γ such that for all α ≥ α0 the restriction of every

natural Lα-module W to Q has a non-trivial composition factor. Since the embedding
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Lβ ⊆ Lα is diagonal, this implies that the restriction of W to Lβ contains V or V ∗ as

a composition factor, so rank of x on W is greater than 2. Let M be the annihilator

of W in Lα. Then M is a maximal ideal. Note that the image J of Iα in S = Lα/M

is a regular inner ideal of S because it contains the non-zero image of x and rank of x

is greater than 2 on the natural S-module W . Since the intersection of all maximal

ideals of Lα is the radical of Lα this implies that Iα is a regular inner ideal of Lα. �

Remark 4.14. As it was reported to us by Antonio Fernández López, I2 = 0 implies

in this case that I is a Jordan-Lie inner ideal, as defined in [21]. Thus Theorem

4.13 shows that every inner ideal of a simple diagonal locally finite Lie algebra is

Jordan-Lie.

We say that an associative algebra with involution is ∗-locally semisimple if it has

a local system of ∗-invariant semisimple finite dimensional subalgebras.

Proposition 4.15. (1) Let L be a simple diagonal Lie algebra and let A be its

involution simple associative P∗
-envelope. Then L is locally semisimple if and only

if A is ∗-locally semisimple.

(2) Let L be a simple plain Lie algebra and let A be its simple associative P-

envelope. Then L is locally semisimple if and only if A is locally semisimple.

Proof. We will only prove the first part. The proof of the second statement is similar.

Assume first that A is ∗-locally semisimple. Then A has a local system (Aα)α∈Γ such

that all Aα are ∗-invariant semisimple finite dimensional algebras. Let Lα = su∗(Aα).

Then Lα is a semisimple finite dimensional Lie algebra for each α (see [9, Lemma

2.3] for example). Therefore (Lα)α∈Γ is a semisimple local system for L and L is

locally semisimple.

Assume now that L is locally semisimple. By Proposition 2.13, L has a diagonal

semisimple conical local system (Lα)α∈Γ of rank >10. It follows from the construction

of A as a quotient of the universal enveloping algebra U(L) by the annihilator of a
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diagonal inductive system for L (see proof of [1, Theorem 1.3]) that A is ∗-locally

semisimple. �

Corollary 4.16. (1) Let L be a simple plain Lie algebra and let A be its simple

associative P-envelope, so L = [A,A]. Assume that L is locally semisimple. Then

the following hold.

(i) A is locally semisimple and von Neumann regular.

(ii) Every proper inner ideal I of L is regular, i.e. I = RL (= L∩R) where L is

a left ideal of A and R is a right ideal of A with LR = 0.

(iii) A subspace I of L is a proper inner ideal of L if and only if I = lim
−→

eαAfα

where {eα, fα | α ∈ B} is a directed system of idempotents in A such that fαeα = 0,

eβeα = eα and fαfβ = fα for all α, β with α ≤ β.

(2) Let L be a simple diagonal Lie algebra and let A be its involution simple

associative P∗
-envelope, so L = su∗(A). Assume that L is locally semisimple. Then

the following hold.

(i) A is ∗-locally semisimple and von Neumann regular.

(ii) If L is not finitary orthogonal then every proper inner ideal I of L is regular,

i.e. I = u∗(L∗L) (= u∗(L∗ ∩ L)) where L is a left ideal of A with LL
∗ = 0.

(iii) If L is not finitary orthogonal then a subspace I of L is an inner ideal of L if

and only if I = lim
−→

u∗(eαAe∗α) where {eα | α ∈ B} is a directed system of idempotents

in A such that e
∗
αeα = 0 and eβeα = eα for all α, β with α ≤ β.

Proof. We will prove part (2) only. Proof of part (1) is similar.

(i) By Proposition 4.15, A is ∗-locally semisimple, so von Neumann regular.

(ii) Let (Aα)α∈Γ be a ∗-invariant semisimple local system for A. By [1, 2.9-2.11]

we can assume that this local system is conical of rank > 36. Then the Lie algebras

Lα = su∗(Aα) are semisimple for all α and (Lα)α∈Γ is a conical local system of L. Let

I be any inner ideal of L and let Iα = I ∩ Lα. By Theorem 4.13(2), there is α0 ∈ Γ
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such that Iα = Iα is a regular inner ideal of Lα for all α ≥ α0. We need to show that

I is regular, i.e. u∗(IAI) ⊆ I. Consider any element x ∈ u∗(IAI). Then there exists

α ≥ α0 such that x ∈ u∗(IαAαIα). Since Iα is a regular inner ideal, x ∈ Iα ⊆ I.

Hence I is a regular inner ideal. By Proposition 4.11 all regular inner ideals of L are

of the shape I = u∗(L∗L) (= u∗(L∗ ∩L) ) where L is a left ideal of A with LL
∗ = 0.

(iii) Assume first that I is an inner ideal of L and let (Aα)α∈Γ be a ∗-invariant

semisimple local system for A. Then I is regular by part (ii), so I = u∗(L∗L)

where L is a left ideal of A with LL
∗ = 0. Let Lα = L ∩ Aα. Since every one-

sided ideal of a finite dimensional semisimple algebra is generated by an idempotent,

Lα = Aαe
∗
α and L∗

α = eαAα for some idempotent eα of Aα. We claim that the

system {eα | α ∈ Γ} satisfies the required conditions. Let β ≥ α. Recall that Aα is

semisimple so it contains identity 1, so eα = eα1 ∈ eαAα ⊆ eβAβ . Since eβx = x for

all x ∈ L∗
β = eβAβ we have that eβeα = eα. Also we have

e
∗
αeα ∈ Aαe

∗
αeαAα = LαL

∗
α ⊆ LL

∗ = 0

so e
∗
αeα = 0. Note that eαAβ = eβeαAβ ⊆ eβAβ for all β ≥ α, so eαAβe

∗
α ⊆ eβAβe

∗
β.

Therefore

I = u∗(L∗
L) = lim

−→
u∗(L∗

αLα) = lim
−→

u∗(eαAαe
∗
α) = lim

−→
u∗(eαAe

∗
α),

as required.

Assume now that {eα | α ∈ B} is a directed system of idempotents in A such that

e
∗
αeα = 0 and eβeα = eα for all α, β with α ≤ β. Then eαA is a right ideal of A and

eαA = eβeαA ⊆ eβA for all β ≥ α. Therefore the one-sided ideals L = lim
−→

Ae
∗
α and

L∗ = lim
−→

eαA are well-defined. Note that LL∗ = 0, so I = u∗(L∗L) is a regular inner

ideal of L by Proposition 4.11. �
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5. Finitary Lie algebras

Recall that an algebra is called finitary if it consists of finite-rank linear transfor-

mations of a vector space. First we define the classical finitary simple Lie algebras,

see [6] and [16] for details.

A pair of dual vector spaces (X, Y, g) consists of vector spaces X and Y over F and

a non-degenerate bilinear form g : X ×Y → F . A linear transformation a : X → X

is continuous (relative to Y ) if there exists a
# : Y → Y , necessarily unique, such

that g(ax, y) = g(x, a#y) for all x ∈ X, y ∈ Y . Note that Y can be identified with a

total subspace (i.e. AnnXY = 0) of the dual vector space X
∗. In that case a

#
ϕ = ϕa

for all ϕ ∈ X
∗ and a is continuous if and only if a#Y ⊆ Y .

Denote by F(X, Y ) the algebra of all continuous (relative to Y ) finite rank linear

transformations of X. Then F(X, Y ) is a simple associative algebra with minimal

left ideals. For u ∈ X, w ∈ Y we denote by w
∗
u the linear transformation w

∗
u(x) =

g(x, w)u, x ∈ X, and for subspaces U ⊆ X and W ⊆ Y we denote by W
∗
U the set

of all finite sums of w∗
i ui, ui ∈ U , wi ∈ W . Note that

(y∗2x2)(y
∗
1x1) = g(x1, y2)y

∗
1x2,

for x1, x2 ∈ X, y1, y2 ∈ Y and F(X, Y ) = Y
∗
X.

The finitary special linear Lie algebra fsl(X, Y ) is defined to be [F(X, Y ),F(X, Y )].

Let Φ be a nondegenerate symmetric or skew-symmetric form on X, Φ(y, x) =

�Φ(x, y), � = ±1. Then X becomes a self-dual vector space with respect to Φ and

the algebra F(X,X) of continuous linear transformations on X has an involution

a �→ a
∗ given by Φ(ax, y) = Φ(x, a∗y), for all x, y ∈ X. As before, we denote by

u∗(F(X,X)) = {a ∈ F(X,X) | a∗ = −a} the set of skew-symmetric elements of

F(X,X) and by su∗(F(X,X)) its derived subalgebra. For x, y ∈ X, define [x, y] =

x
∗
y−�y

∗
x ∈ F(X,X). One can check that (x∗

y)∗ = �y
∗
x, so [x, y] ∈ u∗(F(X,X)). If

U,W are subspaces of X, then [U,W ] will denote the set of all finite sums of [ui, wi],
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ui ∈ U , wi ∈ W . Note that

u∗(F(X,X)) = {b− b
∗
| b ∈ F(X,X)}

= {x
∗
y − �y

∗
x | x, y ∈ X}

= [X,X].

If Φ is a symmetric bilinear form, then u∗(F(X,X)) = su∗(F(X,X)) is the finitary

orthogonal algebra fo(X,Φ).

If Φ is a skew-symmetric bilinear form, then u∗(F(X,X)) = su∗(F(X,X)) is the

finitary symplectic algebra fsp(X,Φ).

Theorem 5.1. [6, Corollary 1.2] Any infinite dimensional finitary simple Lie algebra

over F is isomorphic to one of the following:

(1) A finitary special linear Lie algebra fsl(X, Y ).

(2) A finitary symplectic algebra fsp(X,Φ).

(3) A finitary orthogonal algebra fo(X,Φ).

In [7] this result was extended to positive characteristic.

The classification of inner ideals of finitary simple Lie algebras was first obtained

by López, García and Lozano [16] (over arbitrary fields of characteristic zero), with

Benkart and López [14] settling later the missing case for orthogonal algebras. We

provide an alternative proof for the case of special linear and symplectic algebras

over an algebraically closed field of characteristic zero. In the case of orthogonal

algebras we can only describe regular inner ideals.

Theorem 5.2. [16, results 2.5, 3.6, 3.8][14, Theorem 6.6] Let (X, Y, g) be a dual pair

of infinite dimensional vector spaces over F and let Φ (resp. Ψ) be a nondegenerate

symmetric (resp. skew-symmetric) form on X.
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(1) A subspace I is a proper inner ideal of fsl(X, Y ) if and only if I = W
∗
U where

the subspaces U ⊆ X and W ⊆ Y are mutually orthogonal (i.e. g(U,W ) = 0) (or

equivalently, I is a regular inner ideal).

(2) A subspace I is a proper inner ideal of fsp(X,Ψ) if and only if I = [U,U ] for

some totally isotropic subspace U of X (i.e. Ψ(U,U) = 0) (or equivalently, I is a

regular inner ideal).

(3) A subspace I is a proper inner ideal of fo(X,Φ) if and only if I satisfies one

of the following.

(i) I = [U,U ] for some totally isotropic subspace U⊆X (or equivalently, I is a

regular inner ideal).

(ii) I is a Type 1 point space of dimension greater than 1.

(iii) I = [x,H⊥] where H is a 2-dimensional subspace of X such that the restriction

of Φ to H is nondegenerate and x is a non-zero isotropic vector in H.

Proof. Note that the simple infinite dimensional finitary Lie algebras are locally

semisimple Lie algebras, so we can use Theorem 4.16. The associative algebras

F(X, Y ) are simple, with minimal one-sided ideals, and, in particular, they are

locally finite dimensional (see for example [20, Theorem 4.15.3]).

(1) Recall that fsl(X, Y ) = [F(X, Y ),F(X, Y )]. In particular, fsl(X, Y ) is plain

and F(X, Y ) is its simple associative P-envelope. By Corollary 4.16(1) a subspace I

of fsl(X, Y ) is a proper inner ideal if and only if it is a regular inner ideal, i.e. there

exists a left ideal and a right ideal of F(X, Y ), say L and R, such that I = RL =

L ∩R and LR = 0. By [20, Theorem 4.16.1], every right ideal of F(X, Y ) is of the

shape R = Y
∗
U = {a ∈ F(X, Y ) | aX ⊆ U} for some subspace U ⊆ X and every

left ideal is of the shape L = W
∗
X = {a ∈ F(X, Y ) | a#Y ⊆ W} for some subspace

W ⊆ Y . Then

0 = LR = (W ∗
X)(Y ∗

U) = g(U,W )Y ∗
X
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if and only if g(U,W ) = 0. And

I = RL = (Y ∗
U)(W ∗

X) = g(X, Y )W ∗
U = W

∗
U

(2) Recall fsp(X,Ψ) = u∗(F(X,X)) = su∗(F(X,X)) = [X,X]. In particular

fsp(X,Ψ) is diagonal and F(X,X) is its simple associative P∗-envelope. By Corol-

lary 4.16(2) a subspace I of su∗(F(X,X)) is a proper inner ideal if and only if it is a

regular inner ideal, i.e. I = u∗(RR
∗) for some right ideal R of F(X,X). As in part

(1), every right ideal is of the shape R =X
∗
U = {a ∈ F(X,X) | aX ⊆ U} for some

subspace U of X. Therefore R∗ = U
∗
X = {a ∈ F(X,X) | a∗X ⊆ U} and this is a

left ideal. One has R∗R = 0 if and only if Φ(U,U) = 0, i.e. U is a totally isotropic

subspace. Now

I = u∗(RR
∗) = u∗((X∗

U)(U∗
X)) = u∗(Φ(X,X)U∗

U)

= u∗(U∗
U) = {a− a

∗
| a ∈ U

∗
U} = [U,U ],

as required.

(3) Recall

fo(X,Φ) = u∗(F(X,X)) = su∗(F(X,X)) = [X,X].

In particular fo(X,Φ) is diagonal and F(X,X) is its simple associative P∗-envelope.

By Corollary 4.16(2), F(X,X) is von Neumann regular. Then by Proposition 4.11,

I is a regular inner ideal of fo(X,Φ) if and only if I = u
∗(RR

∗) where R is a right

ideal of F(X,X) with R∗R =0. As in the proof of part (2), this is equivalent to say

that I = [U,U ] for some totally isotropic subspace U⊆X. The case of non-regular

inner ideals in fo(X,Φ) is fully considered in [16, 2.5, 3.6, 3.8] and [14, Theorem

6.6]. �
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A Lie algebra is L is called nondegenerate if and only if (ad x)2 �= 0 for all nonzero

x ∈ L.

Proposition 5.3. Let L be a simple locally finite Lie algebra over F . Then L is

nondegenerate.

Proof. Assume L is simple. Let x ∈ L nonzero. Let L = lim
−→

Lα. Find Lα such that

x ∈ Lα and β > α such that Lα ∩ RadLβ = 0. Let¯ := Lβ → Lβ/RadLβ. Then

x̄ �= 0. Since Lβ is a finite dimensional semisimple Lie algebra, Lβ is nondegenerate,

so (ad x)2 �= 0, so (ad x)2 �= 0, hence L is nondegenerate. �

It follows from a general result, proved for nondegenerate Lie algebras by Draper,

López, García and Lozano, that a simple locally finite Lie algebra contains proper

minimal inner ideals if and only if it is finitary (see [15, Theorems 5.1 and 5.3]). As

can be seen by Proposition 5.3 simple locally finite Lie algebras are nondegenerate.

We are going to prove a version of this result for regular inner ideals. We will need

the following facts.

Proposition 5.4. Let A be a simple associative ring and let L = [A,A]. Then L has

a minimal regular inner ideal if and only if A has a proper minimal left ideal.

Proof. Suppose first that A has a proper minimal left ideal. Since A is simple with

non-zero socle, by [20, 4.9], there is a pair (X, Y, g) of dual vector spaces over a

division ring ∆ such that A is isomorphic to the ring F(X, Y ) of all continuous

(relative to Y ) finite rank linear transformations of X. Moreover, dim∆ X > 1

(otherwise A is a division ring and doesn’t have proper non-zero left ideals). Take

any one-dimensional subspaces W ⊂ Y and V ⊂ X such that g(V,W ) = 0. Then

I = W
∗
V will be a minimal regular inner ideal of fsl(X, Y ) = [F(X, Y ),F(X, Y )]

(see [16, Theorem 2.5] or Theorem 5.2(1) above for the case ∆ = F ).

Suppose now that L has a minimal regular inner ideal I. Then L = AI (resp.

R = IA) is a left (resp. right) ideal of A. We claim that both ideals are non-zero.
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Indeed, if, say, AI = 0, then IA is a two-sided ideal of A with (IA)2 = 0. Since A is

simple, this implies that IA = 0 and so I is a non-zero two-sided ideal of A, which

is obviously a contradiction because I
2 = 0. Therefore L �= 0 and R �= 0. Note that

L is a proper ideal of A (otherwise A = AI = (AI)I = AI
2 = 0). We claim that

L is a minimal left ideal of A. Indeed, assume there exists a left ideal L1 of A such

that 0 �= L1 ⊆ L. By Proposition 4.9, I1 = RL1 is a regular inner ideal of L and it

is non-zero by Lemma 4.7(4). Note that

I1 = RL1 ⊆ IAAI ⊆ I

Since I is minimal, I1 = I. Therefore L1 ⊇ ARL1 = AI1 = AI = L, which is a

contradiction. �

A similar result holds for rings with involutions. We need the following analogue

of Lemma 4.7(4).

Lemma 5.5. Let A be a simple associative ring with involution and let L be a non-

zero left ideal of A such that LL
∗ = 0. Assume that the socle of A is zero, i.e. A

doesn’t have minimal left ideals. Then u∗(L∗L) is non-zero.

Proof. Assume to the contrary that u∗(L∗L) = 0. Take any non-zero a ∈ L. Then

a
∗
Aa ⊆ L∗L, so u∗(a∗Aa) = 0. Note that a

∗(x − x
∗)a ∈ u∗(a∗Aa) for all x ∈ A.

Therefore a
∗(x − x

∗)a = 0 for all x ∈ A, i.e. A satisfies a non-trivial generalized

identity with involution. Therefore A has a non-zero socle (see for example [11, 6.2.4

and 6.1.6]), which is a contradiction. �

Proposition 5.6. Let A be an infinite dimensional simple associative algebra over

F with involution and let L = su∗(A). Then L has a minimal regular inner ideal if

and only if A has a proper minimal left ideal.
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Proof. (⇐) Since A is simple with non-zero socle, by [20, 4.9, 4.12], A = F(X,X)

where X is a self-dual vector space over F with respect to a nondegenerate symmetric

or skew-symmetric form Φ and the involution a �→ a
∗ of A is given by Φ(ax, y) =

Φ(x, a∗y), for all x, y ∈ X. Assume first that Φ is skew-symmetric. Then L =

su∗(A) = fsp(X,Φ). Take any non-zero isotropic vector v in X. Then

I = [Fv, Fv] = F [v, v] = F (v∗v + v
∗
v) = Fv

∗
v

is a one-dimensional regular inner ideal by Theorem 5.2(2). Assume now that Φ

is symmetric. Then L = su∗(A) = fo(X,Φ) Take any two-dimensional totally

isotropic subspace U of X (this is always possible because the ground field F is

algebraically closed) and let {x, y} be its basis. Then I = [U,U ] = F [x, y] is again

a one-dimensional regular inner ideal by Theorem 5.2(3)(i). So in both cases there

exists one-dimensional (hence minimal) regular inner ideal.

(⇒) Let I be a minimal regular inner ideal of L and assume that A has no proper

minimal left ideals. By Proposition 4.11, there exists a left ideal L of A such that

LL
∗ = 0 and u∗(L∗L) ⊆ I ⊆ L∗ ∩ L ∩ L. Note that u∗(L∗L) is a non-zero regular

inner ideal by Lemma 5.5, so I = u∗(L∗L). Let x ∈ I be a non-zero element.

We claim that there exists a left ideal L1 of A such that 0 �= L1 ⊂ L, x /∈ L1.

Indeed, suppose x is an element in every non-zero left ideal contained in L. Let

J =
�
{ non-zero left ideals H | H ⊂ L}. Then x ∈ J , so J is non-zero. It is clear

that J is a minimal left ideal of A giving a contradiction. By Proposition 4.11 and

Lemma 5.5, I1 = u∗(L∗
1L1) is a non-zero regular inner ideal of L. Note that I1 ⊆ L1,

so x �∈ I1. Therefore I1 is properly contained in I. Hence I is not minimal. �

Corollary 5.7. Let L be an infinite dimensional locally finite simple Lie algebra over

F . Then L is finitary if and only if it has a minimal regular inner ideal.
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Proof. Suppose first that L is finitary. Then by Theorem 5.1, L = [F(X, Y ),F(X, Y )]

or su∗(F(X,X)). Both F(X, Y ) and F(X,X) are infinite dimensional and have

proper minimal left ideals. Therefore by Propositions 5.4 and 5.6, L has a minimal

regular inner ideal.

Suppose now that L has a proper minimal regular inner ideal I. Since non-diagonal

Lie algebras have no proper non-zero inner ideals (see Theorem 3.8), L must be

diagonal. Therefore by [1, Section 1], L is either plain, i.e. L = [A,A] for some

simple locally finite associative algebra A, or L is non-plain diagonal and L = su∗(A)

for some simple locally finite associative algebra A with involution. By Propositions

5.4 and 5.6, A has a proper minimal left ideal. By [20, 4.9, 4.12], A = F(X, Y ) or

F(X,X), so L is finitary. �
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6. Inner ideals of finite dimensional non-semisimple Lie algebras

In this section the inner ideals of non-semisimple finite dimensional Lie algebras

are studied in the case of L = [A,A] for a finite dimensional associative algebra A

with (RadA)2 = 0. Define a finite dimensional associative algebra A to be strongly

perfect if A is perfect and for every maximal ideal M of A one has dimA/M > 4.

Lemma 6.1. Let A be a strongly perfect associative algebra with (RadA)2 = 0, and

let Q be a Levi subalgebra of A. Put L = [A,A], S = [Q,Q] and R = [Q,RadA].

Then L is a perfect Lie algebra, RadL = R and S is a Levi subalgebra of L.

Proof. By [8, corollary 6.4], L is perfect. It remains to note that S is a semisimple

Lie algebra, R is a solvable ideal of L (in fact, [R,R]=0 since (RadA)2 = 0) and

[A,A] = [Q,Q]⊕ [Q,RadA] = S ⊕R. �

Definition 6.2. Let I be an inner ideal of a finite dimensional Lie algebra L, and

R = RadL. We say that I splits if there is a Levi subalgebra S of L such that

I = IS ⊕ IR where IS = I ∩ S and IR = I ∩R.

The following theorem will be proven at the end of the section.

Theorem 6.3. Let A be a strongly perfect finite dimensional associative algebra.

Assume (RadA)2 = 0. Let L = [A,A] and let I be a proper inner ideal of L with

I
2 = 0 then there is a Levi subalgebra S of L such that I = IS ⊕ IR where IS = I ∩S

and IR = I ∩ RadL (i.e. I splits).

Lemma 6.4. Let V be a vector space over F , and let e be an idempotent in EndV .

Then there is a basis {e1, . . . , en} of V such that e = diag(1, . . . , 1, 0, . . . , 0) in the

corresponding matrix realization of EndV .

Proof. Since e = e
2 it is easy to see that the Jordan Normal form of e must be a

diagonal matrix and the only possible non zero entries are 1. �
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The following simple facts are well known.

Lemma 6.5. Let e, f be idempotents in EndV with ef = fe = 0. Then there is a ba-

sis {e1, . . . , en} of V such that e = diag(1, . . . , 1,� �� �
k

0, . . . , 0) and f = diag(0, . . . , 0, 1, . . . , 1� �� �
l

)

with k + l ≤ n.

Proof. By Lemma 6.4, there is a basis {xi} of EndV such that e = diag(1, . . . , 1� �� �
k

, 0, . . . , 0).

Since ef = fe = 0 one has f =



 0

X



 where X is an n− k by n− k matrix. So

write V = V1⊕V2 where e acts as zero on V2 and the identity on V1. Changing basis

in V2 using Lemma 6.4 we find the desired matrix realization of f without affecting

that of e. �

Lemma 6.6. Let A be a finite dimensional semisimple associative algebra. Let

L = [A,A] and I be an inner ideal of L. Then I = eAf for some e and f idempotents

of A with fe = ef = 0.

Proof. By Theorem 2.17 and 2.20 I = e1Af1 where e1 = e
2
1, f 2

1 = f1, and f1e1 = 0.

Let e2 = 1− e1 let f2 = e2f1e2 = e2f1(1− e1) = e2f1. Then f2 is an idempotent since

f
2
2 = (e2f1e2)(e2f1e2)

= e2f1e2f1e2

= e2f1(1− e1)f1e2

= e2f1e2 = f2.

Note that e1f2 = f2e1 = 0 so it remains to show that I = e1Af2. Indeed

e1Af2 = e1A(1− e1)f1(1− e1) ⊆ e1Af1.
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Let e1af1 ∈ I where a ∈ A, then

e1af1 = e1af1(1− e1)f1 = e1(e1af1)f2 ∈ e1Af2

so I ⊆ e1Af2. �

Lemma 6.7. Let A = Q⊕ RadA be an associative algebra with Q ∼= Mn(F ) and I

be an inner ideal of L = [A,A]. Let R = RadL and let I = (I + R)/R, the inner

ideal of L = L/R. Then there are integers 1 ≤ k < l ≤ n such that I is the space

spanned by the matrix units {eij|1 ≤ i ≤ k < l ≤ j ≤ n} ⊂ Q.

Proof. By Lemma 2.16, I = (I + R)/R is an inner ideal of L. Using Lemma 6.6

I = eAf where e, f are idempotents with fe = ef = 0. By Lemma 6.5 we easily

identify I with the space spanned by {eij|1 ≤ i ≤ k < l ≤ j ≤ n} ⊂ Q for some

integers k and l. �

Our aim now is to prove Theorem 6.3. Recall that A is a perfect finite dimensional

associative algebra and I is a an inner ideal of A with I
2 = 0. Let Q be a Levi

subalgebra of A and R = RadA, with R
2 = 0. Note that R is a Q-bimodule. We

will first consider 3 special cases of the theorem in the following propositions. The

completion of the proof will follow, using induction on the length of the bimodule R.

Proposition 6.8. Theorem 6.3 holds in the case when A/R is simple and RA = 0,

moreover I is regular.

Proof. Let Q be a Levi subalgebra of A. Then Q ∼= A/R is simple and we can

identify Q with Mn(F ) for some n. Since A is perfect, QR = R. This implies that

R, as a left Q−module, is the direct sum of copies of the natural n−dimensional

Q−module V . So we identify R with V ⊗ Z where Z is a finite dimensional vector

space. Let {e1, . . . , en} be the natural basis of V . Then

V ⊗ Z = {e1 ⊗ z1 + · · ·+ en ⊗ zn|zi ∈ Z}.
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By Lemma 6.7 we identify the inner ideal I = (I+R)/R of L with the space spanned

by the matrix units {eij|1 ≤ i ≤ k < l ≤ j ≤ n} ⊂ Q for some integers l and k.

Assume y = e1 ⊗ z1 + · · · + en ⊗ zn ∈ I ∩ R. Let Zy = span{z1, . . . , zn} ⊆ Z and

denote by

ZI =
�

y∈I∩R

Zy.

We claim first ei ⊗ z ∈ I for all i ≤ k and z ∈ ZI . Indeed consider again an element

y = e1 ⊗ z1 + · · · + en ⊗ zn ∈ I ∩ R. Fix any r ∈ R such that x = ein + r ∈ I, and

consider enj ∈ Q. Then yenjx = 0, so xenjy ∈ I by Lemma 4.1(1). So

(6.1) xenjy = (ein + r)enj(e1 ⊗ z1 + · · ·+ en ⊗ zn) = ei ⊗ zj ∈ I

for all 1 ≤ i ≤ k and 1 ≤ j ≤ n, hence V1 ⊗ ZI ⊆ I where V1 = span{e1, . . . , ek}.

We claim

(6.2) I ∩ V1 ⊗ Z = V1 ⊗ ZI .

Indeed, obviously I ∩ V1 ⊗ Z ⊇ V1 ⊗ ZI . Now let y ∈ I ∩ V1 ⊗ Z, then y =

e1 ⊗ z1 + · · ·+ en ⊗ zn. Since y ∈ V1 ⊗Z, zk+1 = · · · = zn = 0. Also y ∈ I ∩R giving

zi ∈ ZI . So y ∈ V1 ⊗ ZI . Let Z
⊥ be a subspace of Z such that Z = Z

⊥ ⊕ ZI , so

R = V ⊗ Z
⊥ ⊕ V ⊗ ZI . Fix any subset

{x
(1)
ij = eij + r

(1)
ij |1 ≤ i ≤ k < l ≤ j ≤ n} ⊆ I.

Then by Lemma 4.1(1)

x
(2)
ij = x

(1)
ij ejix

(1)
ij = eijeji(eij + r

(1)
ij ) = eij + eiir

(1)
ij ∈ I

Let r(2)ij = eiir
(1)
ij . Then r

(2)
ij ∈ ei⊗Z ⊆ V1⊗Z for (1 ≤ i ≤ k). Hence x

(2)
ij = eij + r

(2)
ij

with r
(2)
ij ∈ ei ⊗ Z. Note ei ⊗ Z = ei ⊗ Z

⊥ ⊕ ei ⊗ ZI . So r
(2)
ij = r

(3)
ij + r

(3)�

ij where
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r
(3)
ij ∈ ei ⊗ Z

⊥ and r
(3)�

ij ∈ ei ⊗ ZI ⊆ I. Put x
(3)
ij = x

(2)
ij − r

(3)�

ij = eij + r
(3)
ij ∈ I, where

r
(3)
ij = ei⊗ zij with zij ∈ Z

⊥. So x
(3)
ij = eij + ei⊗ zij . Note that for x(3)

ij , x(3)
sj we have

X = x
(3)
ij ejsx

(3)
sj + x

(3)
sj ejsx

(3)
ij

= (eij + ei ⊗ zij)ejs(esj + es ⊗ zsj) + (esj + es ⊗ zsj)ejs(eij + ei ⊗ zij)

= eis(esj + es ⊗ zsj) + ess(eij + ei ⊗ zij)

= eij + ei ⊗ zsj ∈ I.

Therefore by equation 6.2

x
(3)
ij −X = ei ⊗ (zij − zsj) ∈ I ∩ V1 ⊗ Z

⊥ = 0.

So zij = zsj. For each x
(3)
ij and x

(3)
sj we have zij = zsj, so denote zij = zj for all i.

Therefore

{xij = eij + ei ⊗ zj|1 ≤ i ≤ k < l ≤ j ≤ n} ⊂ I.

Let

q =
n�

j=l

ej ⊗ zj ∈ R.

Note q
2 = 0, so the map ϕ : A → A given by ϕ(a) = (1 + q)a(1 − q) is a special

automorphism of A and L. Note that ϕ(xij) = eij for all i and j. Indeed

ϕ(xij) = (1 +
n�

j=l

ej ⊗ zj)xij(1−
n�

j=l

ej ⊗ zj) = (eij + ei ⊗ zj)(1−
n�

j=l

ej ⊗ zj)

= eij + ei ⊗ zj − ei ⊗ zj = eij.

Also note ϕ(r) = r for all r ∈ RadA and ϕ(I), so ϕ(I) = ϕ(I)S ⊕ ϕ(I)R where

ϕ(I)S = ϕ(I)∩S and ϕ(I)R = ϕ(I)∩R = I ∩R = IR. By changing Levi subalgebra

Q to ϕ
−1(Q) we get the required properties for I. It remains to prove that I is

regular, i.e. xay ∈ I for all x, y ∈ I and for all a ∈ A. Denote by as (resp. ar)
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the projection of a on Q (resp. R) . We have shown I splits, so x = xs + xr and

y = ys + yr where xs, ys ∈ IS and xr, yr ∈ IR. Since I is regular ysasxs ∈ IS. Also

ysasxr = ysasxr + xrasys ∈ I. Therefore

xay = xay + yax− ysasxs − ysasxr ∈ I.

�

Proposition 6.9. Theorem 6.3 holds in the case when A/R is simple and AR = 0,

moreover I is regular.

Proof. This is identical to the proof of Proposition 6.8 if we replace the left natural

Q−module V by the right natural Q−module. �

Proposition 6.10. Theorem 6.3 holds for the case where A = Q⊕R where Q ∼= Mn

as an algebra and R ∼= Mn as a vector space. The multiplication is defined by R

being considered as a natural Q-bimodule.

Proof. Let I be an inner ideal of L = [A,A]. We will show that there is a special

automorphism ϕ of A such that the theorem holds for the inner ideal ϕ(I). This

will imply the theorem holds for I as well. As in the proof of Proposition 6.8 fix any

standard basis {eij|1 ≤ i, j < n} (resp. {fij|1 ≤ i, j ≤ n}) of Q (resp. R), consisting

of matrix units, such that the action of Q on R corresponds to matrix multiplication

and I is spanned by {eij|1 ≤ i ≤ k < l ≤ j ≤ n} ⊂ Q. Fix any subset

J = {x
(1)
ij = eij +

�
α
ij
stfst|1 ≤ i ≤ k < l ≤ j ≤ n} ⊆ I.

Note x
(1)
ij fjix

(1)
ij = eijfjieij = fij ∈ I for all x(1)

ij ∈ J . Therefore

I0 = span{fij|1 ≤ i ≤ k < l ≤ j ≤ n} ⊆ I ∩R.
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For xij = eij +
�

α
ij
stfst ∈ I denote

θ(xij) = eij +
�

s>k

α
ij
sjfsj +

�

t<l

α
ij
itfit.

We claim θ(xij) ∈ I. Indeed by Lemma 4.1(1)

xijejixij = (eij +
�

α
ij
stfst)eji(eij +

�
α
ij
stfst)

= eij + eii

�
α
ij
stfst + (

�
α
ij
stfst)ejj

= eij +
n�

t=1

α
ij
itfit +

n�

s=1

α
ij
sjfsj

= θ(xij) + r ∈ I

where r ∈ I0 ⊆ I ∩ R. So θ(xij) ∈ I. Let x
(2)
ij = θ(x(1)

ij ). Define the automorphism

ϕ1 on A and L by ϕ1(a) = (1 + q1)a(1− q1) for a ∈ A where

q1 = −

�

s>k

α
1n
snfs1 +

�

t<l

α
1n
1t fnt ∈ R.

Put x
(3)
ij = (ϕ1(x

(2)
ij )) ∈ I1 = ϕ1(I). Then

x
(3)
1n = (1 + q1)x

(3)
1n (1− q1)

= (1−
�

s>k

α
1n
snfs1 +

�

t<l

α
1n
1t fnt)(e1n +

�

s>k

α
1n
snfsn +

�

t<l

α
1n
1t f1t)(1− q1)

= (e1n +
�

s>k

α
1n
snfs1 −

�

s>k

α
1n
snfs1 +

�

t<l

α
1n
1t f1t + α

1n
11fnn)(1− q1)

= (e1n +
�

t<l

α
1n
1t f1t + α

1n
11fnn)(1 +

�

s>k

α
1n
snfs1 −

�

t<l

α
1n
1t fnt)

= e1n +
�

t<l

α
1n
1t f1t + α

1n
11fnn + α

1n
nnf11 −

�

t<l

α
1n
1t f1t

= e1n + α
1n
11fnn + α

1n
nnf11.
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Since I
2 = 0,

0 = (x(3)
1n )

2

= (e1n + α
1n
11fnn + α

1n
nnf11)(e1n + α

1n
11fnn + α

1n
nnf11)

= α
1n
11f1n + α

1n
nnf1n = (α1n

11 + α
1n
nn)f1n

so x
(3)
1n = e1n + αf11 − αfnn for some α ∈ F . Put q2 = αfn1 and consider the special

automorphism ϕ2 defined ϕ2(a) = (1 + q2)a(1− q2). Then

x
(4)
1n = ϕ2(x

(3)
1n )

= (1 + αfn1)(e1n + αf11 − αfnn)(1− αfn1)

= e1n + αfnn + αf11 − αfnn = e1n ∈ I2 = ϕ2(I1).

Put x
(4)
ij = θ(ϕ2(x

(3)
ij )) ∈ I2. Now set x

(5)
1n = x

(4)
1n and x

(5)
ij = x

(4)
ij for j �= n. For j = n

and i �= 1 put

x
(5)
in = x

(4)
in en1e1n + e1nen1x

(4)
in

= x
(4)
in enn + e11x

(4)
in

= (ein +
�

s>k

β
in
snfsn +

�

t<l

β
in
it fit)enn + e11(ein +

�

s>k

β
in
snfsn +

�

t<l

β
in
it fit)

= (ein +
�

s>k

β
in
snfsn +

�

t<l

β
in
it fit)enn

= ein +
�

s>k

β
in
snfsn ∈ ϕ2(ϕ1(I)).

Define the special automorphism ϕ3 of A and L by ϕ3(a) = (1 + q3)a(1 − q3) for

a ∈ A where

q3 = −

�

s>k

k�

t=2

β
tn
snfst
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Then

x
(6)
in = ϕ(x(5)

in ) = (1 + q3)x
(5)
in (1− q3)

= (1−
�

s>k

k�

t=2

β
tn
snfst)(ein +

�

s>k

β
in
snfsn)(1 +

�

s>k

k�

t=2

β
tn
snfst)

= (ein +
�

s>k

β
in
snfsn −

�

s>k

β
in
snfsn)(1 +

�

s>k

k�

t=2

β
tn
snfst)

= ein(1 +
�

s>k

k�

t=2

β
tn
snfst)

= ein +
k�

t=2

β
tn
nnfit ∈ I3 = ϕ3(I2).

Then for 1 ≤ i, p ≤ k,

x
(6)
in x

(6)
pn = (ein +

k�

t=2

β
tn
nnfit)(epn +

k�

t=2

β
tn
nnfpt) = β

pn
nnfin

Since I
2 = 0 this implies β

pn
nn = 0 for all p = 1, . . . k. So x

(6)
in = ein for i = 1, . . . k.

Put x
(6)
ij = θ(ϕ3(x

(5)
ij )) ∈ I3. Now for j �= n set

x
(7)
ij = x

(6)
in enix

(6)
ij + x

(6)
ij enix

(6)
in

= einenix
(6)
ij + x

(6)
ij eniein

= eiix
(5)
ij + x

(5)
ij enn

= eii(eij +
�

s>k

γ
ij
sjfsj +

�

t<l

γ
ij
it fit) + (eij +

�

s>k

γ
ij
sjfsj +

�

t<l

γ
ij
it fit)enn

= eij +
�

t<l

γ
ij
it fit ∈ I3
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and put x
(7)
in = x

(6)
in = ein ∈ I2 for i = 1, . . . k. Note for i �= 1 we have that

x
(7)
in en1x

(7)
1j + x

(7)
1j en1x

(7)
in = einen1x

(7)
1j + x

(7)
1j en1ein

= ei1x
(7)
1j

= ei1(e1j +
�

t<l

γ
ij
it fit)

= eij +
�

t<l

γ
1j
1t fit ∈ I2.(6.3)

Let x
(8)
ij = eij +

�
t<l γ

1j
1t fit for j �= n, and for j = n, x

(8)
in = x

(7)
in = ein. Then

equation 6.3 implies x
(8)
ij ∈ I2 for 1 ≤ i ≤ k < l ≤ j ≤ n. We define a final special

automorphism ϕ4 on A and L by ϕ4(a) = (1 + q4)a(1− q4) where

q4 =
n−1�

s=l

�

t<l

γ
1s
1t fst.

Put

x
(9)
ij = ϕ4(x

(8)
ij ) = (1 +

n−1�

s=l

�

t<l

γ
1s
1t fst)(eij +

�

t>l

γ
1j
1t fit)(1−

n−1�

s=1

�

t<l

α
1s
1tfst)

= (eij +
�

t>l

γ
1j
1t fit +

n−1�

s=l

γ
1s
1i fsj)(1−

n−1�

s=1

�

t<l

α
1s
1tfst)

= eij +
�

t>l

γ
1j
1t fit +

n−1�

s=l

γ
1s
1i fsj −

�

t<l

γ
1j
1t

= eij +
n−1�

s=l

γ
1s
1i fsj.

Note

x
(9)
ij x

(9)
pq = (eij +

n−1�

s=l

γ
1s
1i fsj)(epq +

n−1�

s=l

γ
1s
1pfsq) = eij

n−1�

s=l

γ
1s
1pfsq = γ

1j
1pfjq,

and since I
2 = 0, γ1j

1p = 0 for 1 ≤ p ≤ k < l ≤ j ≤ n. Therefore x
(9)
ij = eij ∈ I4 =

ϕ4(I3) for 1 ≤ i ≤ k < l ≤ j ≤ n. So I4 splits. Hence I splits. �
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The following example shows that I may not be regular in Proposition 6.10.

Example 6.11. Let A be the associative algebra as described in Proposition 6.10.

Let

I = span{e1n, f1n, αf1n−1 + βf2n}

where α, β ∈ F are non-zero. Then I
2 = 0 and xay+ yax ∈ I for all x, y ∈ I and for

all a ∈ A so I is indeed an inner ideal. However e1nen1(αf1n−1+βf2n) = αf1n−1 �/∈ I,

so xay �/∈ I for some x, y ∈ I and a ∈ A. Therefore I is not regular.

Proposition 6.12. Theorem 6.3 holds for A = Q ⊕ R where Q = Q1 ⊕ Q2, with

Q1
∼= Mn, Q2

∼= Mm and R ∼= Mnm is a left Q1− right Q2− bimodule. Moreover

any inner ideal I of A is regular.

Proof. Let B1 and B2 be the two maximal ideals of A. Then Bs = Qs + R, s = 1, 2

and B1 + B2 = A. Let¯: A → A/R ∼= Q1 ⊕ Q2 be the natural homomorphism and

let I be an inner ideal of A with I
2 = 0. Since A is semisimple I = I1 ⊕ I2 where Is

is an inner ideal of Bs
∼= Qs, (s = 1, 2). Consider the map I → I = I1 ⊕ I2. Let Is

be the full preimage of Is in I. Then Is ⊆ I and I1 + I2 = I. Since Is ⊆ Bs and Bs

is the full preimage in A of Bs, Is ⊆ Bs. Therefore Is ⊆ Js = Bs ∩ I. On the other

hand, Js ⊆ Bs ∩ I = Is, so Js ⊆ Is. Thus, Is = Bs ∩ I. Note that Is is an inner ideal

of Bs and I
2
s = 0. Since Bs satisfies the conditions of Proposition 6.8 or 6.9, one can

assume that Qs is a Levi subalgebra of Bs which splits Is. Since I = I1 + I2, the

Levi subalgebra Q = Q1 +Q2 of A splits I. �

We are now ready to provide the proof of Theorem 6.3.

Proof. (of Theorem 6.3) Let Q be a Levi subalgebra of A and let Q1, . . . , Qt be the

simple components of Q. Note R is a Q−Q−bimodule. Since A2 = A, R = QR+RQ

so R is the direct sum of copies of natural left Qi modules Vi, natural right Qi-modules

Wi, and natural left Qi− right Qj− bimodules Uij (with QiUijQj = Uij, QsUij = 0
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for s �= i, and UijQs = 0 for s �= j). The proof follows by induction on the length m

of the bimodule R. Indeed if m = 1, then this is proved in Propositions 6.8, 6.9, 6.10

and 6.12. Assume that m > 1. Since I is an inner ideal of the semisimple algebra

Q1 ⊕ · · · ⊕Qt, I = I1 ⊕ · · · ⊕ I t with Is = spanE
s where

E
s = {e

s
ij|1 ≤ i ≤ ks, lS ≤ j ≤ ns}

for some choice of matrix presentations for Qs. Put E = E
1 ∪ · · · ∪E

t. Note that I

splits if and only if there exists a special automorphism ϕ of A such that E ⊆ ϕ(I).

Fix any preimage xs
ij ∈ I of esij, i.e. xs

ij = e
s
ij+r

s
ij with r

s
ij ∈ R (for all i, j, s). Consider

any submodule T of R of length m− 1. Note T is an ideal of A. Let B = A/T and

let IB be the image of I in B and EB the image of E in B. By the case m = 1, there

is a special automorphism ϕ1 of B such that EB ⊆ ϕ1(IB). Note that ϕ1 is induced

by a special automorphism ϕ2 of A, so X = {xs
ij = e

s
ij + t

s
ij|∀s, i, j} ⊆ ϕ2(I). Denote

I2 = ϕ2(I) ∩ (Q ⊕ T ). Then I2 is an inner ideal of Q ⊕ T . Since the length of T is

less than m, by induction I2 splits, so there is a special automorphism ϕ3 of Q⊕ T

(and A), such that E ⊆ ϕ3(I2) ⊆ ϕ3(ϕ2(I)), so I splits. �
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7. Classification of Maximal Inner Ideals

In this chapter it will be shown that maximal inner ideals exist and are classified

in plain simple locally finite Lie algebras and finitary Lie algebras. First finitary Lie

algebras are considered and we need the following two facts. We use the notation of

section 5.

Lemma 7.1. [16, Theorem 2.5(iii)]Let L = fsl(X, Y ). If I = W
∗
U is an inner ideal

where U ⊆ X and W ⊆ Y are mutually orthogonal subspaces (i.e. g(V,W ) = 0).

Then U = IX and W = I
#
Y .

Proposition 7.2. Let L = fsl(X, Y ). Let U1 ⊆ X,W1 ⊆ Y and U2 ⊆ X,W2 ⊆ Y

be two mutually orthogonal pairs of subspaces then U
∗
1W1 = U

∗
2W2 if and only if

U1 = U2 and W1 = W2.

Proof. Follows from the above Lemma. �

Theorem 7.3. (1) I is a maximal inner ideal of fsl(X, Y ) if and only if I = W
∗
U

where 0 �= U ⊆ X and 0 �= W ⊆ Y are subspaces such that W = AnnU and

U = AnnW .

(2) I is a maximal inner ideal of fsp(X,Ψ) if and only if I = [U,U ] for a maximal

totally isotropic subspace U of X.

(3) I is a maximal inner ideal of fso(X,Φ) if and only if I = [U,U ] for a maximal

totally isotropic subspace U of X or I = [x,H⊥] for a 2-dimensional subspace H

of X such that the restriction of Φ to H is nondegenerate and an isotropic vector

x ∈ H.

Proof. (1) Suppose I is maximal. By Theorem 5.2, I = W
∗
U for a pair of mutually

orthogonal subspaces U ⊆ X and W ⊆ Y . It is clear that if B = W
∗
1U2 is another

inner ideal with B ⊆ I then U1 ⊆ U and W1 ⊆ W . Therefore if I is maximal we
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must have W = AnnU and U = AnnW so that U and W are maximal mutually

orthogonal subspaces. The converse is clear.

(2) Let I be an inner ideal of L. By Theorem 5.2, I = [U,U ] for some totally

isotropic subspace U . Clearly I is maximal if and only if U is maximal.

(3) Let I be a maximal inner ideal of fso(X,Φ). By Theorem 5.2 I = [U,U ] for a

totally isotropic subspace, or I = [x,H⊥] for a 2-dimensional subspace H of X with

nondegenerate restriction of Φ to H and isotropic vector x ∈ H, or I is a type 1

point space. Note if I is a point space of type 1 then I is a subspace of [U,U ] for

some totally isotropic subspace U and so cannot be maximal (see [14, Proposition

4.3]). It is clear that if I = [U,U ] then U must be maximal. Finally [x,H⊥] as above

is always maximal (see proof of 3.8 in [16]). The converse is clear. �

Now the case of the plain locally finite Lie algebras is considered. The following

results and definitions will be needed.

Lemma 7.4. Let L = [A,A] and I be an inner ideal with I
2 = 0. Denote Î = IAI+I.

Then the following are true.

(1) I ⊆ Î

(2) Î
2 = 0

(3) ÎAÎ ⊆ IAI ⊆ Î, so Î is an inner ideal of L (see 4.1(3)).

(4) Î is a regular inner ideal of L (see def 4.3).

Definition 7.5. Let L and R be left and right ideals of an associative algebra A.

Then (L,R) is called a maximal pair of ideals if L = LAnnR = {a ∈ A|aR = 0}

(the left annihilator of R) and R = RAnnL = {a ∈ A|La = 0} (the right annihilator

of L).

Let (L,R) be a maximal pair. Then LR = 0, so I = L ∩ R ∩ L is an inner ideal

of [A,A] by Proposition 4.9. Our aim is to show that every maximal inner ideal is

obtained in this way.



INNER IDEALS OF SIMPLE LOCALLY FINITE LIE ALGEBRAS 58

Proposition 7.6. Let (L1,R1) and (L2,R2) be two maximal pairs of a simple locally

finite associative algebra A and let L = [A,A]. Let I1 = L1 ∩ R1 ∩ L and I2 =

L2 ∩R2 ∩ L. Then I1 ⊆ I2 if and only if L1 = L2 and R1 = R2.

Proof. Assume I1 ⊆ I2. Consider the left ideal L = L1 + L2. By Lemma 4.10,

AL = AL1 + AL2 = AI1 + AI2 = AI2 = AL2 ⊆ L2.

Assume LR2 �= 0. Since A is simple and LR2 is a two sided ideal of A, LR2 = A. So

ALR2 = A
2 = A. But ALR2 ⊆ LR2 = 0. Thus LR2 = 0, so L ⊆ LAnnR2 = L2,

so L1 ⊆ L2. Similarly R1 ⊆ R2. But L1 = LAnnR1 ⊇ LAnnR2 = L2 this implies

L1 = L2. Similarly, R1 = R2. �

Theorem 7.7. Let A be a simple locally finite associative algebra and let L = [A,A].

Then

(1) For every maximal pair of ideals (L,R), ILR = L∩R∩L is an inner ideal of

L.

(2) The map (L,R) → ILR is a bijection between the set of all maximal pairs of

ideals and the maximal inner ideals of L.

Proof. (1) Is obvious.

(2) Let ϕ be the map (L,R) → ILR. First by proposition 7.6, ϕ is injective.

Assume now ILR is not maximal. Then ILR is properly contained in another inner

ideal I. Since I is maximal by Lemma 7.4, Î = I, so I is regular. Therefore there

exists a pair of ideals (L�
,R�) so that

ILR ⊆ I ⊆ I
�
= L

�
∩R

�
∩ L.

Let R�� = RAnnL�, and L�� = LAnnR�� so that (L��
,R��) is a maximal pair of ideals.

Note R� ⊆ R��, and L� ⊆ L��. So ILR � I ⊆ IL��R�� . By proposition 7.6, L = L�� and

R = R�� so I = ILR giving a contradiction. Finally assume I is a maximal inner
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ideal of L then I ⊆ Î ⊆ ILR where (L,R) is a maximal pair of ideals. So every

maximal inner ideal is of the shape ILR. �
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