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Data Collection in Wireless Sensor Networks

Abstract

This thesis is principally concerned with efficient energy consumption in wireless
sensor networks from two distinct aspects from a theoretical point of view.

The thesis addresses the issue of reducing idle listening states in a restricted tree
topology to minimise energy consumption by proposing an optimisation technique:
the extra-bit technique. This thesis also focuses on showing lower bounds on the
optimal schedule length, which are derived for some special cases of the tree, such as
a single chain, balanced chains, imbalanced chains, three and four level k-ary trees
and Rhizome trees. Then, we propose an algorithm which can exactly match the
lower bound for a single chain, balanced chains and Rhizome trees individually and
which is a few steps away from the optimal solution for imbalanced chains. Finally,
we propose the use of two frequencies to further save energy and minimize latency.

Recent research has shown that significant energy improvements can be achieved
in WSNs by exploiting a mobile sink for data collection via single hop communica-
tions. A mobile sink approaches the transmission range of sensors to receive their
data and deposit the data at the base station. The thesis, as a second problem,
focuses on the design issues of an energy efficient restricted tour construction for
sink mobility. We propose two different techniques. The first one is heuristic and
uses a criterion based on maximum coverage and minimum energy consumption
called the "max-ratio”. Although its time complexity is polynomial, this heuristic
algorithm cannot always produce a good solution. As a result, we propose the sec-
ond algorithm. Despite the time complexity of the second algorithm being pseudo
polynomial, the optimal solution can be found if one exists. For each algorithm men-
tioned, two scenarios are taken into account with regard to the transmission. In the
first scenario, one assumes that there is no upper bound on the transmission range
while in the second setting the nodes can adjust their transmission range between 0

and the maximum range. The algorithms have been implemented and simulated in

Matlab.
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Chapter 1

Introduction

This chapter addresses the motivation, design goals, challenges, contributions of the

thesis and its outline.

1.1 Motivation

Wireless communication, such as cellular network, is generally based on planned
infrastructure or pre-deployment of infrastructure for communication. However,
due to recent diverse applications of wireless networks in certain environments (i.e.,
earthquake hit-places, hostile zones, battlefield, volcano prone areas) infrastructure
is not available. A demand for self-arrangement, independence (infrastructure-less),
adaptability and cost reduction has increased. In the aforementioned situation, An
ad-hoc wireless sensor network (WSN) is the only available solution to respond to
these issues such as providing connectivity among nodes in the absence of infras-
tructure [23]. In addition, this network yields a new promising scheme to extract
and obtain data from the monitored environment. These nice properties motivated
us to focus on this area.

Technological advances have led to the invention and development of small wire-
less devices, including sensors [72] which have the capability of sensing, processing,
computing and communication. Typically, WSNs are comprised of hundreds or
thousands of sensors [73], which are dispersed either randomly in an inhospitable
terrain or deployed deterministically in a specific area of interest without any pre-

existing infrastructure, and many objectives are associated with them. During either
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deployment, sensors configure themselves to form the network in an ad-hoc fashion,
which is a common mode of operation in WSNs [72], and communication happens
either by means of single-hop or multi-hop dissemination, depending on the distance
between the sensors [72), [12], [73]. Correspondingly, WSNs have attracted consider-
able attention in the research community for their own numerous applications in
various areas [12], for instance, military applications, fire detection, healthcare and
environmental or habitat monitoring [73] 58], 48].

Sensors are small devices that are resource-constrained as having limited power,
small memory, relatively slow processors or small transceivers [73]. They are usually
powered by batteries, which must be either replaced or replenished when depleted.
For some applications, neither option is functional, especially when they are deployed
in exotic environments wherein human intervention is not allowed or when sensors
are deployed densely. Energy efficiency, consequently, becomes one of the most
challenging issues in WSNs and is considered as a key factor for extending the
network lifetime. Therefore, many algorithms and techniques have been proposed
and designed from different perspectives to utilise this limited energy budget more
efficiently, in order to improve their lifetime and operation as much as possible [12].

Data collection is one of the fundamental operations in WSNs via tree topology.
Each of these sensors is capable of sensing the monitoring area and routing data
back to a collection point called a sink or base station to achieve an application
goal. Once the sink has received the data, it makes an appropriate decision based
on the requirements of the application. The sink is considered as a powerful node to
which all data is sent and through which the WSN interacts with the outside world.
Furthermore, reporting data from sensors to the sink naturally forms a many to one
traffic paradigm in WSNs.

In the existing literature, there are mainly two modes of data collections which
have been mentioned. These are data collection with in-network processing (aggre-
gation) and data collection without aggregation. In some applications, such as when
the sink needs to determine the maximum temperature in a specific area, it is not
important that each data packet is delivered to the sink individually. In such a case,
the sink does not care about all the data; if all nodes send their data to the base

station, the result is an over-consumption of energy due to the number of trans-
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missions. Therefore, the aggregation strategy can be used to reduce total packet
transmission by performing local calculations at each parent node and forwarding
only aggregated values to the sink [58].

For instance, consider a scenario where seven nodes are deployed to monitor an
agricultural area as shown in Figure [I.I} It is a data collection tree rooted at the
sink (S). Consider that this set {37,30,27,22,19,25,15} represents the values for
each node {G, F, E,D,C, B, A} and the sink asks for the maximum temperature.
Therefore, when each parent receives packets from its children in addition to its
own packet, some calculation needs to be performed to determine a candidate for
the maximum value and forward it to its parent until the sink receives the maximum
value. Thereby, node C' receives {27, 30,37} values from its children in addition to
its own value 19. Then, it chooses the maximum value which is 37 and forwards it to
its parent A. Moreover, the node B has two values {22, 25} after receiving the value
22 from its child D, it forwards the maximum of them which is 25 to its parent.
Similarly, node A has three values {15,25,37} after receiving two values {25, 37}
from its children B and C'. It therefore calculates the maximum value, which is 37,
and forwards it to the sink S.

On the other hand, there are many applications in which all packets are indi-
vidually important. For instance, when sensors are deployed for structural health
monitoring or leak detection, packets need to be collected from all sensors (collec-
tion without aggregation) to learn the conditions at each individual sensor location,
otherwise the exercise could be a failure [37] or lead to catastrophes. It has been
stated that the case of data collection without aggregation is a more challenging
problem compared to the data collection with in-network processing (aggregation).
Hence, this thesis investigates the case of the former.

In addition, there are two main methods that are used to order data collec-
tions [38]. In the first method, triggering of data collection can be performed by the
base station; this process can be fulfilled by sending the query from the sink to either
a sub or whole area for asking for the data. This kind of data collection has a great
impact on energy conservation. This is because sensors do not need to send their
data continually to the sink; instead they send data on demand. Asking the sink for

the maximum temperature from the sensors is an example of this method. However,
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data collection can also be performed by sensors according to a second method. For
example, when sensors are used for event detection (e.g. intruder detection in mili-
tary surveillance, fire detection or habitat monitoring), data is promptly forwarded
to the sink without being asked by the sink. Accordingly, different objectives are
associated with data collection. For instance, in the first method energy efficiency

is the main priority while fast data collection is the main concern in the second

method.
S
T
15 A
s
B 25 19 C

Fig. 1.1 Data collection, maximum temperature.

1.2 Challenges, Objective and Solutions

Despite an immense effort by the research community, limited energy sources re-
main a big challenge in WSNs, especially when they are deployed in harsh areas
or scattered densely; battery replacement or replenishment is unlikely, hence their
energy should be utilised efficiently to prolong their lifespan as much as possible.
Another challenging issue is their topology. After their deployment and topology
construction, the topology is more likely to change due to node failure. Therefore,
reconstructing topology should be energy efficient. Constructing an energy saving
tour for deployed static sensors is another severe challenging area in WSNs. Limited
memory is an additional challenging issue in WSNs. As the sensor nodes are small
devices, battery powered and having a small memory, the mechanism of their data
collection should be efficient to avoid buffer overflow. The overall aim of this thesis
is to design a productive energy saving strategy for WSNs. To achieve this, two
main topics are investigated in this thesis. Namely, idle listening state and sink

mobility with single hop communication since there is a gap for research for these
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two areas as we will be explaining in the literature review.
The following are the two main strategies that should be employed to improve

energy consumption in WSNs:

1. Using a power management mechanism is a very promising technique to achieve
energy saving in WSNs. Since the transceivers are the most energy consuming
part of the sensors, when sensors do not need to take part in the communi-
cation, most circuitry parts of the sensors can be shut down or put in a sleep
mode to save energy. In other words, energy saving can be achieved by al-
ternating between active and sleep mode. Notably, another way in which a
substantial amount of energy is wasted is in idle listening state. Idle listening
occurs when a node is listening to the channel to receive a packet but there
is the possibility that the sending node does not have data and remains silent
[9, 38, [78]. Idle state is comparable to receive state in terms of energy con-
sumption, and the detailed explanation for that will be given in Chapter 3.
The thesis therefore devotes a main part of this dissertation to dealing with

this issue (Chapters 3 and 4).

2. Sink mobility with single hop communication is another method to achieve en-
ergy saving in WSNs. There are certain issues associated with static networks.
Firstly, the many-to-one scheme is a more common way of constructing a net-
work and collecting data from sensors. However, some of the nodes (especially
those which are close to the base station) become a relay for others to forward
their packets toward the sink, and they drain their energy very swiftly [47].
As a result, the entire network is paralysed while nodes that are far from the
sink still functional but cannot forward their packets to the sink. Secondly,
sometimes there are some disconnected parts that cannot communicate with
each other and construct a global network. The above mentioned points are
strong reasons for the allocation of the second part of this thesis (Chapter 5)

to data collection with a mobile sink.
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1.3 Contributions

The main contributions are as follows: The first contribution is in Chapter 3, where
we improve upon a method proposed by Zhao and Tang [81], 82]. They show that in
the setting when only some nodes possess data there is a restriction at which each
parent node must listen to its children before making a transmission. Two main
issues arise in this scenario. Firstly, there are several idle listening states which
cause severe energy consumption. Secondly, the first situation leads to high latency.
As a result, they proposed a heuristic algorithm to reduce idle listening states. The
method by Zhao and Tang produces successive-slot schedules. It was observed that
there is still room to optimise their technique. Therefore, an optimisation technique
is proposed: the extra-bit technique. In our technique, each packet is associated
with one extra bit (0/1) that alerts the parent node whether or not more packets
are coming. Based on that extra bit, the parent node can either continue in listening
or turn off its radio toward its child node. Therefore, idle listening is further reduced
and this also minimises latency. Next, it is proven that the optimal number of time
slots for data collection in a chain using successive-slot or extra-bit schedules is
AN — 6, where N > 3 is the number of nodes in the network excluding the sink.
Then, it is shown how to calculate the expected amount of idle listening for extra-
bit schedules and successive-slot schedules in chains and trees where each node has
data with a fixed probability, and it is demonstrated that the expected amount of
idle listening is significantly smaller with the extra-bit technique. A version of this
chapter has already been published as a conference paper [62].

Chapter 4 contains the second contribution. We derive lower bounds on the
optimal schedule length for some other special cases of the tree including balanced
chains (multi-chains), unbalanced chains, balanced binary tree, four level balanced
k-ary tree and Rhizome tree. Moreover, the pseudo code is designed and shown for
balanced multi-chains (multi-lines) and Rhizome tree. The proposed algorithms for
balanced chains and Rhizome tree match the lower bound, whereas the proposed
algorithm for unbalanced chains requires at most 5 steps more than optimal. Fur-
thermore, due to the nature of communication, each node must go through three
states: transmit, receive and idle state. The use of two frequencies is proposed, with

multiple antennae to reduce the need for idle state among nodes. Then, the optimal
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schedule is derived again for all cases except for the unbalanced chains. Part of this
chapter has been submitted and accepted to a journal [61].

The last contribution is in Chapter 5, where energy saving is attempted via a
different technique (i.e., sink mobility). Due to non-uniform energy depletion among
the nodes in the many-to-one pattern or sparse deployment of the sensors in different
zones that cannot form the complete network, sink mobility has recently encouraged
the research community to remedy these problems; therefore, chapter 5 is devoted
to addressing the issue of sink mobility for data collection from static sensors to
enhance the life span of the network by minimising the total energy consumption.
In order to achieve this, the problem is formally defined and it is shown that it
is N P-complete. As a result, two different algorithms are proposed. The first
algorithm is a heuristic and named max-ratio, and the second algorithm uses the
dynamic programming technique. In addition, two scenarios for each algorithm are
considered. In the first scenario, there is no restriction on the transmission, whereas
in the second setting the maximum transmission range is determined. At the end,
simulations in Matlab have been performed to show the impact of the proposed
techniques on energy saving. A version of this chapter has already been published

as a conference paper [63].

1.4 Thesis Outline

The thesis has been written in six chapters. Chapter 2 provides some basics about
graphs, complexity theory, types of interference and a literature review. In Chapter
3, we discuss and propose an optimization technique to mitigate the idle listening
problem in a constrained topology and compare our results with the other proposed
techniques. Chapter 4 extends the proposed technique of Chapter 3 towards the
more general structure of balanced multi-chains, unbalanced multi-chains, k-ary
tree and Rhizome tree. In Chapter 5, we introduce and bring the sink mobility into
a sensor network to collect data. We propose two algorithms for the mobile sink to
specify its trajectory for data collection and minimize the total energy consumption.
We also consider two scenarios for each algorithm. Moreover, the simulation results

are presented and compared with the label covering problem which we will describe
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in the literature review and also in chapter 5. Chapter 6 includes a summary of our

contributions and specifies some future research directions.



Chapter 2

Preliminaries and Related Work

This chapter presents the background information that is necessary to understand
some essential terminologies and notations throughout this thesis. First, we define
some terminologies of graph theory; we subsequently explain the interference model,

and finally complexity theory.

2.1 Graphs

Graph theory is a field in mathematics wherein many real world situations from
various different fields, including communication, scheduling tasks and real-world
networks, can be described, modelled, analysed and represented graphically to help
us to easily understand many properties of the problems. As a result, this field
gained popularity and became an attractive area for the research community.

A graph simply is a collection V' of vertices (nodes) and E of edges that is
represented as G = (V, E). |V| expresses the total number of vertices and |F|
indicates the total number of edges. Vertices are connected to each other by means
of edges. In particular, each edge connects exactly two vertices. For instance, an
edge e = (v,u) is said to be incident with vertices v, u, where v,u € V and e € E.
This implies that they are connected (adjacent or neighbouring). A graph is called
an undirected graph if its edges have no direction. In other words, the edge e = (u, v)
is equivalent to e = (v, u), i.e., they are unordered pairs [41], meaning that they are
symmetrical.

A walk W = {vg,e1,v1,...,0_1,€;,0;,...,€n,0,} is a sequence of vertices and
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edges in a graph, such that each edge e; = (v;_1,v;) connects two vertices in the
sequence, for 1 < ¢ < n. The number of traversed edges in the sequence indicates
the length of the walk, i.e, value n is the length of the walk. A walk is called a path
P if both the traversed vertices and edges are distinct (i.e., there are no repeated
vertices and edges), with the exception of the possibility that the initial and final
vertices are the same. Then, it is said to be a cycle. In addition, a graph G is
connected if there is a walk between every pair of vertices, as shown in Figure [2.1
[16, 32, [7].

Us
(%) Vg

U1 U3

Fig. 2.1 Connected graph, 5 nodes.

A complete graph is a graph in which a unique edge connects every pair of
distinct vertices, i.e., graph G = (V, E) is a complete graph if for all v,u € V with
v # wu there is an edge between them [41], see Figure . An acyclic graph is one
with no cycles. A tree is a connected graph that has no cycle. Trees are important to
study due to their common and widespread usage in diverse fields and applications.

A directed graph (or digraph) is a set of vertices and edges in which all the edges
are directed (have direction), and each edge connects an ordered pair of vertices.
That is, each edge points from one vertex to another. In other words, the edge
e = (u,v) is not equivalent to e = (v, u) |42} 32]. Traffic flow, such as with airlines,
trains and cars are some applications of directed graphs, in which specifying the
direction is quite essential to avoiding collisions. Besides adding a direction to an
edge, each edge can also be associated a weight, which often represents some kind
of cost or distance depending on the application. A weight can be represented by
a weight function as w : £ — R. This extension is a natural one when modelling
real-world networks as graphs. For example, when modelling a railway network as a
graph, railway stations are naturally represented by vertices, whereas two adjacent
stations are connected by means of an edge. We then assign a weight to an edge
representing the distance between those two stations. In our model in chapter 5,

we represent the problem as a weighted graph where each edge is associated with
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a value that represents the distance between two points [42]. In some applications,
due to their own restrictions, we cannot pass through all the vertices and edges of
the graph. Hence, some of the vertices or edges should be skipped to achieve the
application goal. Our problem in chapter 5 is an example of such an application. We
therefore should be familiar with another interesting term of the graph theory called
a sub-graph. The graph G’ = (V’, E’) is defined as a sub-graph of G = (V, E) if G’
consists of a subset of vertices and edges of G. Thatis, V! C V and E' C F [42, 41, [7]
as shown in Figure 2.3

U1

Fig. 2.2 Complete graph G, 5 nodes.

N

U3

Us

U1

Fig. 2.3 Subgraph G’ of graph G in Figure

One version of graph called a unit disk graph (UDG) is mainly considered to
study and model wireless sensor networks. A unit disk graph is a graph wherein
the nodes, which are in the Euclidean plane, all have uniform unit radii (homoge-
neous) [16} [14]. Moreover two nodes can communicate with each other (adjacent) if
the center of one disk lies within the radius (transmission range) of the second disk
or vice versa [71] as shown in Figure 2.4 However this model is too idealistic and

does not account for the existence of obstacles (it is not accurate).
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Fig. 2.4 Unit disk graph.

2.2 Interference Model

Successfully receiving and decoding a signal from the intended transmitter is a great
concern and challenging task in wireless communications. To address this issue,
therefore, two models of interference are widely considered in the literature: the
physical interference model and the protocol interference model.

In the physical interference model, which is also called the signal-to-interference-
and-noise-ratio (SINR) model, the intended receiver node j can successfully receive
a signal (correctly decode it) from the intended transmitter node ¢, if and only
if, the SINR at node j is above its predefined threshold 5. When the intended
transmitter node ¢ transmits to node j, the simultaneous transmissions of other
nodes whose signals reach the node j are considered as interference at node j. Hence,
a transmission succeeds only if the received signal strength, divided by the total
simultaneous transmissions of other nodes’ strength, plus the noise (SINR), is above

some predefined threshold [45], and this is mathematically expressed as follows:

SINR = dlig)™ > 3 (2.1)

Here p; is the transmission power of node i, d(i, j) is the distance between node
i and j; « is the path loss exponent, 2 < a < 6, depending on the environment [65].
The sum in the denominator calculates the total transmission power of the simulta-
neous nodes with node ¢ and W N is the ambient noise. Due to the high complexity
in the calculation of the physical interference model, researchers paid attention to
a simpler model, which is called the protocol interference model. In the protocol
interference model, the intended receiver node j can only receive a signal correctly
from transmitter node 7 if and only if node j is within the transmission range of node
¢ and outside the simultaneous interference range of other nodes. That is, two nodes

can communicate only if they are within the transmission range of each other [I0].
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It can be observed that in the physical interference model the intended receiver can
still decode the signal correctly if its received signal is above its threshold. However,
in the protocol interference model, correct receiving of the signal at the intended
receiver occurs only when it falls inside transmission range of the intended trans-
mitter and outside the interference ranges of all other simultaneously transmitting
nodes. Throughout this thesis, we consider the protocol interference model due to
its simplicity. A detailed explanation of the interference models and signal detection

are beyond the scope of this thesis.

2.3 Complexity Theory

Although the area of computational complexity is somewhat complicated and we
cannot cover the exposition of it in this thesis, we try to briefly define and explain
some terminologies which give an intuitive understanding of the complexity of the
theory and the types of the problems which are relevant to the work presented in
this thesis.

In its simplest form, an algorithm is a well-defined procedure that is composed
of a finite number, and unambiguous sequence, of instructions for solving a compu-
tational problem. In other words, the algorithm is the list of computational steps
that takes the set of input values of the problem, transforms them and produces
the desired output [I5]. Making an algorithm as efficient as possible in terms of
computational resources (time, memory, bandwidth etc.) [41] is the main goal of
the algorithm designers, and in certain applications such an efficient algorithm is
extremely important.

There can be several algorithms for solving the same problem, however we should
choose the most efficient one (a fast one) for solving the problem [15]. Namely,
there are several possible solutions to a problem. When we want to measure the
efficiency of two algorithms for the same problem, we compare their number of
steps regardless of the hardware or software environment (machine independent
model). Therefore, mathematicians and scientists designed a uniform measurement
to measure the efficiency of algorithms, and use a special notation as we will explain

in the next paragraph.
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In general, most of the references are mainly interested in determining the time
complexity (running time) to measure the efficiency of an algorithm. Hence, the
time complexity of an algorithm is the number of computational steps required by
the algorithm to process the input and produce the output. Strictly speaking, the
efficiency of an algorithm is a measure of its run-time proportional to the number
of operations as a function of the input size of the problem. Thus, the input size of
the problem is a key factor to determine the efficiency of an algorithm. So when we
analyse an algorithm, we mainly refer to the maximum number of steps (worst-case
running time) required by the algorithm which is also called an upper bound on
the time complexity and denoted using the symbol O (read as big-Oh-notation).
Whereas, the minimum number of steps of the algorithm is called the best case time
complexity. Furthermore, A lower bound is a function such that no algorithm can
have smaller running time than specified by that function and denoted by €2 (big-
Omega). It is worth pointing out that one describes the running time taken by an
algorithm as a function of the input size; this is because the running time increases
with the input size of the problem [I5]. For instance, the running time of sorting
n = 10 numbers is smaller than n = 100 numbers.

In general, we consider two different functions f(n) and g(n) for the same al-
gorithm. Then, we say that f(n) is O(g(n)), if for all sufficiently large input n
(n — 00), f(n) is bounded by a constant multiple of g(n). This means that the
growth rate of f(n) is at most O(g(n)). In other words, f(n) € O(g(n)) if there
exists some ng, ¢ > 0 such that f(n) < c¢- g(n) for all values n > ny, where ¢
is a constant which is independent of the input size, and ny is a crossing point or
threshold where function g(n) overtakes f(n). This is called asymptotic complexity
analysis.

Suppose there is an algorithm whose running time is represented by a function
f(n) = 3n®+2n+1 on every input size n (for an array of n numbers, its input size
is n). Then we say that the time complexity (running time in terms of steps) of this
algorithm is O(n3). In other words, we account only for the higher order term and
discard the lower order terms, because when the input size is large, the effect of the
lower order terms are small and insignificant, such that they can be ignored (i.e.,

the higher order term overtakes the lower order terms).
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We can say that the running time of an algorithm is polynomial if it requires
at most O(n®) steps, where n is the input size of the problem and ¢ some constant.
In other words, a problem is polynomial time solvable if there is an algorithm that
can correctly solve it in O(n¢) time. Conversely, we say that the running time of
an algorithm is exponential if its running time is O(c/(™) where ¢ is a constant and
f(n) is some polynomial function of n [31]. Notably, an exponential algorithm can
still be desirable for a small input size.

We should now turn our focus to some other notations. A decision problem is
a problem for which there are only two possible answers, either yes or no, as an
output at the end; e.g., if there is an array A = {ay, as, ..., a, } which asks whether
or not it contains the value of k; after scanning all the elements, the answer is yes
if this value of £ is found; otherwise it is no.

The complexity class P refers to the set of all decision problems that are poly-
nomial time solvable (efficiently solved) under resource constraints (a deterministic
machine). That is, the set of all problems that admit a polynomial time algorithm
to solve it. On the other hand, the complexity class NP aims to target the set of all
decision problems that are polynomial time solvable on a non-deterministic machine
(an unrealistic machine) or equivalently whose solutions can be efficiently verified
on a deterministic machine.

The non-deterministic machine is a powerful machine such that, whenever there
are multiple choices for executing a program, it can follow all the possible choices
simultaneously instead of following each one iteratively. Additionally, all class P
problems can be easily solved polynomially on a non-deterministic machine. There-
fore, P C NP, and the famous remaining unsolved question is whether or not the
two classes P and NP are the same. Many scientists believe that P # NP.

There are a set of particular problems in NP, which are called N P-complete
problems. They essentially cannot be solved in polynomial time (a polynomial time
algorithm is not expected in general instances) unless P = N P. It is quite difficult
to prove a problem to be N P-complete from scratch without robust knowledge of
that area, therefore most of the proofs for a new problem depend on the already
known N P-complete problems via a process called reduction. One of the earliest

problems that was proved to be N P-complete is satisfiability by the Cook theorem
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and most of the proofs for other N P-complete problems are built upon it.

We use a reduction (finding a relationship between problems) to prove that a new
problem is N P-complete. For instance, given two problems A and B, we suppose
that we already know that A is N P-complete and B € NP. Thus, if we can show
that any instance of A can be transformed polynomially to an instance of B, it is
said that A is polynomially reducible to B. Accordingly, if there is a polynomial
time algorithm to solve B, then it must also solve A or vice versa. Thus, B is
N P-complete too [41], 28, 15 [18]. Furthermore, if there is a problem C' where B
is polynomially reducible to C'; but we do not know how to conversely reduce C' to
B or if C € NP, then we do not just say C' is N P-complete, instead we say that
it is NP-hard [4I]. In other words, NP-hard problems are problems to which an
N P-complete problem can be polynomially reduced, they don’t need to be in NP.

There are several strategies that can be used to approximately design a polyno-
mial time algorithm to solve and deal with N P-complete problems. Namely, we can
use a more clever way to design a polynomial time algorithm without an exhaustive

search (naive exponential computations). Some of these techniques are:

1. An approximation algorithm is a strategy that tells us how far the proposed
solution is from an optimal solution in the worst case scenario, which is also
called an approximation ratio (by which factor the proposed solution is away

from the optimal).

2. A heuristic algorithm is a useful strategy that proposes a good polynomial
time algorithm without any guarantee that it is the optimal one, or that it

will always find a solution.

3. Additionally, the dynamic programming technique is another powerful tech-
nique that is used to deal with hard problems. It first finds the optimal
solutions to sub problems and next from these sub problems computes the op-
timal solution to the original problem (i.e., solves the original recursively from
the sub problems [41], [I§]. The running time of a dynamic programming algo-
rithm sometimes is high (depends on the problem), however it is smarter than
an exhaustive search. This is the reason that the complexity of the dynamic

programming algorithm is called pseudo polynomial.
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We used both a heuristic algorithm and dynamic programming techniques to find

the solution to our N P-hard problem.

2.4 Related Work

2.4.1 Related Work to Idle Listening and Scheduling

WSNs have penetrated into various fields for different purposes. During data col-
lection many problems arise due to resource constraints and these pose numerous
challenges. Therefore, several algorithms and techniques have been presented to
tackle these challenges from different angles.

In [76] a new algorithm is proposed and identified as GAF (Geographic Adaptive
fidelity). The main purpose of this algorithm is to conserve energy through load
balancing. It tries to utilise redundant nodes that are equivalent for routing and
alternate between them (activate/deactivate nodes) while the connectivity level is
preserved. The main idea of the algorithm is basically composed of two steps. In the
first step, after node deployment, the whole area is divided into square grids of side
length r = \/ig (normalized to half of the radio range) in which the nodes located
in each grid are equivalent with regard to routing. Furthermore, nodes in adjacent
grids can communicate with each other and local information such as GPS is used
to determine node density and redundancy. Secondly, there is cooperation between
nodes inside each grid for the state transition (sleep/awake) so as to provide load
balancing for packet forwarding. The node that will be responsible for routing is
elected selected through a ranked based election selection algorithm which considers
the nodes’ residual energy. As a result, energy conservation is achieved. One of the
main drawbacks of this algorithm is the need to use GPS to identify redundant nodes,
which is expensive. Moreover, the proposed algorithm is not suitable for dynamic
environments in which topology frequently changes. Furthermore, the hop length
is forced to match the length of the square, which is roughly half the transmission
range of the actual radio which leads to high latency. Another drawback, as far as I
understand, in practice, is that although GAF requires one node per cell, sometimes,

sometimes some of the grids are more likely to be empty; as a result, there is no

guarantee of complete connectivity. Furthermore, the orientation of the source-
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destination is only considered in one direction while there are at least three directions
for each cell except the corner cells (for which there are two directions).

Another direction of research aims to achieve energy conservation through load
balancing by taking advantage of redundancy is Span [II]. Span is a randomized
distributed algorithm that locates between MAC and network layers. It is mainly
designed to dynamically choose a subset of nodes as coordinators (forwarders) from
all nodes in the network to take part in the routing while the connectivity guarantee
is provided. The coordinator eligibility rule is used to elect a node to be a coordi-
nator. A node can become a coordinator only if two of its neighbours cannot either
directly or through one or two coordinators communicate with each other. However,
if there is a need of a coordinator there is a possibility that several nodes simultane-
ously decide to be a coordinator; as a consequence, collision happens among them.
To resolve this issue, each node delays its coordinator announcement by random
back off delay, wherein the residual energy of the node and the number of neigh-
bours that can be connected are taken into consideration as parameters. In general,
the algorithm rotates the coordinators’ election among the redundant nodes in or-
der to ensure all nodes provide connectively roughly equally. The algorithm also
tries to keep the number of nodes that become coordinators as low as possible. The
coordinators should withdraw when all the pairs of its neighbours can communicate
either directly or indirectly. In addition, the nodes only make a local decision to
join the network. As a whole, the lifetime of the network improves when the ratio
of awake/sleep time and the density of the nodes increases. One of the main draw-
backs of this algorithm is that neighbour and connectivity information are required
to make a decision about whether the node becomes a coordinator or not. Thus,
modification in the routing protocol may be required which means that it depends
on the routing protocol.

In [26] energy consumption is analysed in general. They then focus on linear
topology for two cases. First, for the setting where the nodes have an equal number
of packets; second, where nodes have a variable number. Furthermore, both cases,
of equidistance and variable distance among the nodes, have been analysed and the
formula for optimal energy consumption is provided correspondingly. Further study

towards GAF is performed and it is shown that by dividing the area into non-equal
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lengths and using variable transmission ranges among the nodes, more energy can
be saved.

In [85] a probabilistic scenario is proposed to benefit from node redundancy and
achieve load balancing so as to save energy. They are interested in computing the
number of involved hops that are required from source to reach the destination
as a function of distance and the density of the active nodes. The basic idea of
this algorithm is that when the source node has a packet, it broadcasts it to the
active neighbour nodes that are within its transmission range. This packet contains
its own and intender receivers’ location. After broadcasting, the forwarding phase
takes place, during which the focus is on the closest coverage area to the intended
destination that is divided into regions. The priority is for the first slice of the region
which is closest to the intended destination. One of the random nodes which has
high priority in terms of closeness to the destination becomes a transmit node (relay
node) for the next hop. More specifically, the coverage are of the sender is divided
into a number of regions. If there is no relay node in the first slice of the region,
the next slice is tested until one of which can fulfil the task. Namely, this pattern
continues until the packet reaches the area wherein the destination is either within
it and receive the packet directly or is one hop away from it and only needs a single
hope to receive it.

It can be observed that in reality fewer hops are required to deliver the packet
from source to destination, whereas, in GAF due to the restriction of the radio range
tor = \/ig, in the worst case scenario more hops are required for transmission than
GeRaF(geographic Random Forwarding) which leads to high latency.

Xin Guan et al. [33] investigated energy saving for the static network when
sensors are deployed randomly in an area, where the sink being outside this area.
They proposed a load balancing algorithm to save energy. Their algorithm mainly
consists of two steps. In the first step, sensors are classified into layers where the
closest layer to the sink is labelled as layer 0 and the furthest layer is labelled as
layer d. After the step of layer construction, the second step begins. In this step,
each node at layer ¢ (for i = 1,...,d) selects one of the parent nodes at layer ¢ — 1
to forward its packet. Interestingly, their formula proposed to select parent nodes

for packet forwarding, which is based on the distance between the two nodes and
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the residual energy. They also proposed data aggregation to further reduce energy
consumption. However data aggregation is not always possible for an application
where each individual packet forwarding is indispensable.

Energy efficient data aggregation scheduling is another area of research; specif-
ically, the energy that can be saved is via the minimization of the state transitions
of the nodes in the network. In [52] the authors observed that if the consecutive
time slots are assigned to the links (children) associated with the parent node, the
frequent transient states are reduced substantially which lead to great energy saving
and lower latency. In contiguous link scheduling, the parent node needs to start up
only twice; first to receive all the data from its children consecutively, and second,
to forward the received data to the upstream node. They consider only two different
topologies; tree and directed acyclic graph (DAG), in their paper. The centralized
and distributed algorithms are proposed to achieve contiguous link scheduling. It
can be observed that in the centralized algorithm, first, the number of time slots
are assigned to the nodes in decreasing order of their incident link (i.e., weight),
then either recursive back-tracking, or a minimum conflicts heuristic algorithm that
are given, are used to reduce the number of time slots. As they state, the recursive
back-tracking algorithm is a brute force search and is not desirable due to its high
complexity. As a result, the fast algorithm (minimum conflicts heuristic algorithm)
is proposed to reuse time slots and minimize latency.

Further investigation has been conducted towards continuous link scheduling
and expanded to heterogeneous networks [51]. They prove that the contiguous link
scheduling problem in WSNs is NP-complete. The authors show that the proposed
algorithm has a theoretical performance bound to the optimum in both homogeneous
and heterogeneous networks. A similar issue is also examined in [84]. Based upon
all aforementioned research one can observe that great importance has been paid
towards idle listening and that there is still a gap for further research to be filled.

In [44], the problem of constructing an efficient data aggregation tree is investi-
gated and termed the minimum energy cost aggregation tree (MECAT), in which
the total energy consumed by sensors for transmission and reception is minimal.
Two types of this problem are considered: with and without relay nodes. Both

cases are shown to be NP-complete. For the case of not using relay nodes, they
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find that the shortest path tree algorithm is a 2-approximation algorithm . For the
case where relay nodes are considered in order to enhance the network connectiv-
ity, it is shown that the shortest path and the Steiner tree algorithms each have a
bad approximation ratio in the worst cases. Then an O(1)approximation algorithm
is obtained by constructing the shortest path tree on the routing structure of the
capacitated network design problem.

In [§] an efficient routing of the traffic in the graph towards the sink is investi-
gated in order to maximize the lifespan of the network. To this end, the efficient
routing configuration with regard to efficient energy consumption (balancing energy
consumption throughout the network) is proposed wherein packets are forwarded
through multiple paths to the sink. This is achieved via determining a set of opti-
mal vectors (a vector represents a fraction utilization of each path used to send a
packet from node v to the sink) that minimize the energy consumption of the greed-
iest sensor node in the network. Contention based MAC protocol is used in the
module and the details of the energy consumption per packet per node are analysed
(i.e., reception, overhearing, idle listening, transmission). One of the main draw-
backs of this paper is that the authors consider unlimited retry in the transmission
until the packet is successfully delivered which is an unrealistic scenario.

The Low- Energy Adaptive Clustering Hierarchy (LEACH) is proposed by Heinzel-
man et al [36]. The basic idea of this technique is that a set of sensors are randomly
chosen to become cluster heads, to which other nodes send their data. Then, these
cluster heads aggregate the received data and send it to the sink. Since the cluster
heads have more responsibility, they are rotated in a randomized fashion in order to
achieve evenly distributed workload between the sensors and obtain fair energy de-
pletion among them. In the LEACH algorithm, the operation is divided into rounds
and each round is composed of two stages. The first stage is the setup phase where a
set of nodes based on the probabilistic formula are selected. Then the cluster heads
broadcast the advertisement in order to let the other nodes join the cluster heads
based on the minimum communication energy. Once the first phase is finished, the
second stage, called steady state, begins. In this stage the nodes send their data
to the cluster heads, then the cluster heads aggregate the data and finally transmit

it to the sink. Then a new round starts, with a new cluster head formation. One
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of the main drawback of this technique is that the setup phase is non-deterministic
and may lead to service interruption.

Similarly, in [35], further improvements are made on LEACH and the algorithm
named the Enhanced Low-Energy Adaptive Clustering Hierarchy (E-LEACH). Only
two main improvements are made in the first step (setup phase). First, unlike
LEACH, in E-LEACH a cluster head selection algorithm has been proposed for the
setting where sensor networks have non-uniform initial energy levels. Second, the
required number of cluster heads should increase by the square root of the total
number of sensors so as to minimize the total energy consumption. The second
phase (steady phase) of E-LEACH is the same as the second phase of LEACH.
Likewise, further study has been conducted towards cluster hierarchy in [2]. Unlike
LEACH and E-LEACH, in this paper cluster head selection with multi hop up to k
hops within each cluster are considered. As a consequence, energy consumption is
achieved by reducing communication between sensors and cluster heads. However,
cluster heads may run out of energy before the other sensors.

Florens et al. |21, 22] have addressed the issue of minimum data distribution
and collection times on tree networks for the scenario where each node is mainly
equipped with directional and then omnidirectional antennae, each node has an
arbitrary number of packets, and the node, upon receiving a packet, forwards it
immediately (i.e. there is no buffering). A lower bound was derived for certain
cases (i.e., a linear network, multi-line chain and tree, when the degree of the root
is one), and corresponding centralized algorithms have been described. To deal
with general trees, they then suggest that sub-trees should be linearised and that
the proposed multi-line algorithm for the system should be applied. In addition,
graphs with cycles (connected graphs) have been included in their analysis, and the
performance of their own algorithms, that have an approximation ratio of two, has
been compared with the optimal performance of such graphs. Their results became
the starting point for many subsequent papers.

Similarly, Song et al. [69] have addressed the problem of scheduling in WSNs
for a periodic traffic pattern, and the corresponding time and energy efficient algo-
rithm was presented. This differed from the results of Florens et al. [21], 22]. They

also paid attention to alleviation of energy wastage due to idle listening. Thus, a
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distributed implementation algorithm was provided, to let each node determine its
own duty cycle and put itself into a sleep state whenever it is not receiving a packet.
However, they did not state how they mitigated interference during scheduling. Sim-
ilarly, Bermond et al. [4] have also studied the delay in the data gathering process,
in WSNs. They analysed and provided the optimal schedule for data collection in
tree networks, for the case where the transmission and interference ranges of the
sensors are the same (i.e., dr = dy). Unlike [2I], 22], in their analysis there is a
possibility of buffering the received packets and their later forwarding.

Similarly to Florens et al. [21], 22], the problem of a minimum completion-time
for scheduling data gathering in connected graphs has been studied by Gargano
et al. [29], for the setting where each node is equipped with a directional antenna.
Unlike Florens et al. [21,22], they show that there exists an algorithm that can obtain
the optimal solution for any connected graph (i.e., they approach the problem by
finding the optimal solution to the collision-free path-colouring problem), for the
setting where the interference range D; is equal to the transmission range Dy (i.e.,
D; = Dr), and each node has a single packet.

Bermond et al. [3] have investigated the minimum-data gathering problem in
general graphs, for the setting where D;, Dy € R, such that D; > Dy > 0, and each
node has p packets (i.e., p > 0). The lower bound was then determined, before they
showed that the problem is N P-hard. Finally, an algorithm with an approximation
factor of four for general networks was proposed, regardless of the value of Dy, Dr.
Furthermore, it has been shown that the problem still remains N P-hard for the case
D; > Dy, even if each node has a single packet.

Gandham et al. [24] have considered minimum latency scheduling for data collec-
tion in trees, in a setting where all nodes have data. They show that the minimum
schedule length for data collection in linear networks is 3N — 3, where N is the num-
ber of nodes in the chain, excluding the sink. Then unlike previous techniques, they
proposed a distributed scheduling algorithm. Their schedule is not a successive-slot
schedule (it will be defined later). Furthermore, they also show an upper bound
of max{3ny — 1, N} on the schedule length for multi-line networks, where ny is the
length of the longest line connected to the sink, and NNV is the total number of nodes in

the network. For tree networks, they also show an upper bound of max{3n; —1, N},
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where n;, is the number of nodes in the largest one-hop sub-tree of the root. Fur-
ther investigation has been performed by the same authors in [79]: firstly, for the
case where a large amount of data is sparsely distributed (each node has a different
amount of data); and secondly, for the case where the data is small and can be
aggregated on the way to the sink. Similarly, scheduling for data collection has also
been addressed by Choi et al. [13]. They show a lower bound of 3(N — 2) time slots
for collecting data in a chain, which matches the results from [24], because they take
N as the number of nodes, including the sink. Moreover, they show that finding a
minimum schedule for general graphs is NV P-hard. As a result, a heuristic algorithm
has been proposed, which tries to schedule as many interference-free segments as
possible, in order to minimise the length of the schedule. The issue of the schedul-
ing problem has also been examined by Ergen et al. [20]. They also show that the
scheduling problem, in general, is N P-complete, and a heuristic algorithm has been
proposed.

Another paper that has addressed the scheduling problem in a graph for both
homogeneous and heterogeneous cases is [46]. The authors provide the optimal
solution for a certain homogeneous graph that consists of only three layers, and
where each node has only a single message to forward to the sink. Furthermore,
they show that the optimal solution on three-layered graphs is N P-hard, if each
node has various message sizes, and there are two approximation algorithms for
three-layered graphs. They also show that the data-gathering problem for general
graphs is N P-hard, and they provides an approximation ratio for it.

Dai et al. [I7] also address data collection, considering a multi-sink setting for
multi-lines, and using a variable interference model, compared to the constant in-
terference distance of two hops, as in some of the above-mentioned articles. Incel
et al. [37] have argued that if all interference is mitigated between nodes, then data
collection can be performed in max{2n; — 1, N} time slots. They then proposed
an algorithm that matches the lower bound, where each node needs to buffer two
packets, at most. Incel et al. have also suggested using different frequencies for data
convergecast. They show that utilising two frequencies is sufficient to schedule all
nodes in a tree network. Haibo et al. [77] address data collection scheduling in a

model with different frequencies. Moreover, they prove a lower bound of 2N — 1



Chapter 2. Preliminaries and Related Work 25

slots for the chain.

Hang et al. [78] have demonstrated the architecture of the typical WiFi receiver
for processing incoming signals. They have explained that the incoming signal is first
received by the RF and then converted to a baseband signal, by a mixer. Next, the
baseband signal is sampled via a digital to analogue converter (DAC), and passed
to the CPU for decoding and recovering the original bits of the data frame. It has
been shown that both DAC and CPU operate at the full amount of work (full clock
rate) during the idle listening, similar to the receiving mode. Furthermore, it has
been stated that the power consumption of the digital devices is proportional to
voltage-squared and clock rate. Based on this explanation, one can observe that
the energy consumption of idle listening is very similar to receiving packets. As a
result, an interesting, novel technique, E-MiLi (Energy-Minimising Idle Listening),
was proposed in order to reduce the energy consumption that is caused via idle
listening. This is achieved by adding a special preamble to the packet, which is
used to make a separation between packet detection and decoding; that is, in their
technique, the clock rate of the circuitry adaptively downgrades during idle listening,
and returns to full clock rate in the receiving mode. In other words, as soon as the
packet is recognised as its own destination, the CPU reverts to the full clock rate, in
order to decode the packet; otherwise, it remains at the lower clock rate and discards
the packet. Consequently, energy can be saved. Although the proposed technique
of Zhang et al. is quite fruitful, it cannot alleviate the total energy wastage of idle
listening.

The most relevant article which pertain to our work is [81, 82]. Zhao and
Tang [81], [82] consider data collection in trees in a setting where not all sensors
have data in each round, the schedule must be independent of which sensor nodes
have data, and the goal is to reduce idle listening and latency. They aim to conserve
energy and extend the lifespan of the network. They present a technique called
the successive-slot technique, in which all transmissions of a node must be made in
successive slots starting from the first slot during which the node is scheduled to
transmit by the schedule. In particular, parent nodes cannot transmit before their
child nodes, and often parents need to listen to their child nodes one more time after

their last transmission, in order to detect that no more data will come from these
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child nodes. Then the parent node can be switched off for all the slots during which

it is scheduled to listen to these child nodes for the remainder of the data collection.

2.4.2 Related Work to Sink Mobility

Due to several restrictions and limitations in the area of WSNs, sink mobility has
been used, exploited and become the subject of many papers, with its pros and cons
having been analysed. Generally speaking, mobile sinks can be classified into types:
random and controlled movement. In the former one, the motion of the mobile sink
is random and we cannot control its movement, however in the second form, the
motion of the mobile sink is restricted to following some chosen paths or locations.
We briefly summarize several energy efficient algorithms that have been proposed
for mobile sinks.

In sparse networks, connectivity can be achieved either by deploying more sen-
sors, which increases the cost, or by using multiple sinks that lead to power saving,
due to the use of short transmission ranges by sensors; this approach is also cost-
effective. Therefore, Shah et al. [64] have proposed a three-layer architecture. The
first layer comprises sensors, while the second layer is a mobile sink (mule) that
collects data when it is in the proximity of sensors, and deposits the result at the
third layer, which is the access point. In their paper, the motion of mobile sink is
random, which is undesirable in some applications, and it is sometimes difficult to
determine latency. Further analysis was performed in [39].

Zhao et al. [83] have studied the mobility approach for data delivery in sparse
networks. A set of mobile nodes message ferries (MF) was exploited in order to pro-
vide connectivity amongst the nodes. Moreover, two variations of MFs have been
considered. In the first setting, MFs move along a known trajectory and carry data
between nodes, whereas in the second scheme, an MF adjusts its trajectory towards
the node. The idea of MF is very interesting, providing connectivity amongst discon-
nected or sparse networks; communication happens via a single-hop method, which
is also productive in terms of energy saving. On the other hand, this technique has
a high latency, which is impractical in delay-constrained applications.

For the first time, Gandham et al. [25] tried to use controlled mobility to collect

data from sensors. They proposed an integer linear programming problem (ILP) to



Chapter 2. Preliminaries and Related Work 27

find the locations of multiple mobile sinks per round. In their model, the locations
of multiple mobile sinks are fixed in each round, and may be different in the next
round. Their aim is to minimise energy consumption per node and total energy
consumption per round. As the number of nodes increases, it is difficult to use their
proposed integer linear programming (ILP) method; their technique is only useful
for some small instances.

Kansal et al. [40] have investigated controlled sink mobility. Their design setting
has multiple objectives, and is application-dependent. In some applications, energy
conservation is important; therefore, the mobile sink should approach each node to
use the least amount of energy in transmitting its data to the mobile sink. In con-
trast, latency is crucial in other applications, and fast data collection takes priority,
via multi-hop forwarding. Kansal et al. have also considered the mobile sink’s speed
of movement (i.e., if it stops in a dense area, or slows down in a sparse area without
stopping).

Scheduling and finding the optimal path for a mobile sink was examined in [67].
The main purpose is to collect data from sensors, before the buffer overflows. The
authors in the proposed scenario allow the mobile sink to visit sensors multiple times,
in order to avoid buffer overflows. They have shown that this scenario is /N P-hard.
Consequently, they proposed and analysed certain heuristic algorithms. The same
authors then further investigated multiple mobile sinks, for the same setting [67].

Wang et al. [75] considered the optimisation problem of determining the sink's
movement and its sojourn time at certain points in a grid network, in order to
prolong the network’s overall lifetime. To achieve these goals, a linear program
(LP) was proposed. However, two main drawbacks were observed in their paper:
firstly, it is only applicable to grid networks. Secondly, they did not include routing
problems in the LP; rather, they used the shortest path to forward packets to the
sink, without considering the remaining energy of the sensors. This approach was
further investigated and improved by Papadimitriou et al. [55]. They addressed
sink mobility and its sojourn time, in order to prolong the network lifetime. The
problem was formalised as LP. However, their LP formulation is different from [75];
for example, their LP also includes routing problems, and it is applicable to general

networks.
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In [53], a mobile sink, named SenCar, was used for data collection. The authors
have addressed the issue of load balancing and careful path planning. Furthermore,
they have shown that by choosing a careful path, the lifetime of the network can be
prolonged. Finally, they have proposed an algorithm based on divide and conquer
in order to divide the network into two clusters and recursively apply the same
algorithm to each cluster, until the desirable turning points (line segments) are
obtained. Eventually, the mobile sink should follow these line segments that connect
the selected turning points, in order to collect data. Park et al. [56] addressed
the issue of finding a set of stop points on a fixed path with limited length the
path stop point (PSP) problem in order for the mobile sink to collect data and
minimise energy consumption. They have shown that selecting a set of optimal stop
points is N P-hard. They then formulated the problem as LP, in order to find the
optimal solution for small instances, and this became a benchmark for other heuristic
algorithms. Finally, they proposed a heuristic algorithm to determine a subset of
stop points, in order for the mobile sink to collect data from sensors. The selection
of these stopping points is based on certain criteria such as the data rate, sensor
locations and their energy consumption. The sensor nodes that are far from the stop
points then send their packets in a multi-hop manner to those nodes (rendezvous
points) that are a one-hop neighbour of the stopping points; finally, these nodes
(rendezvous points) send the collected data to the mobile sink. Two issues can be
identified with the proposed algorithm. Firstly, with an increase in the stopping
points, latency increases. Secondly, it is more likely that there are some nodes that
are only one hop away from the stop points, and which do not become rendezvous
points; therefore, they do not need to send their data to the candidate rendezvous
points. Instead, they can send data directly to the sink.

Another paper [27] addressed a similar issue and has shown mathematically that
if the number of sub sinks (stopping points) is increased, the lifetime of the network
can be increased. Then they proposed a heuristic algorithm to choose a sub path
that has maximum sub sinks, however; they did not consider the case where the
mobile sink should return to the starting point after finishing its journey.

Another interesting study that investigated sink mobility is [74]. The authors

mainly focused on routing techniques to balance the network load based on the
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factors of remaining energy and distance. Thus, a routing algorithm was proposed.
However, the authors did not mention clearly how to choose the next sojourn location
for the mobile sink.

The two papers most relevant to our work are [50] and [70]. In [50], the au-
thors addressed the issue of controlled mobility to prolong the network’s lifetime by
finding the optimal trajectory for the mobile sink. Furthermore, they bounded the
travel distance of mobile sinks per round due to petrol issues and they labelled this
problem the ”distance-constrained mobile sink problem”. They also bounded the
distance between two different candidate locations that the mobile sink can visit in
order to avoid buffer overflow. Moreover, when the mobile sink moves to another
location, the routing tree rooted at that location will be reconstructed and this costs
energy, therefore it should stay at each location for a certain amount of time. They
formulated the problem as a mixed integer linear programming problem (MILPP).
When the network size grows, it is not feasible to solve it using MILPP; therefore, a
three-stage heuristic was proposed that has a lower complexity and high scalability.
In their proposed algorithm, sojourn times are calculated first, then based on these
calculations, a feasible tour is specified for the mobile sink. Although our constraint
is the same as their constraint, our objective is different and the multi-hop approach
is not considered in our problem. Then Liang et al. [49] expanded the idea of [50]
to multiple mobile sinks and find the optimal trajectories for them. Furthermore,
unlike [50], they bounded the maximum hop count from each sensor to its nearest
sink which is quite important in delay sensitive applications.

Sugihara and Gupta [70] focused on controlled mobility for data collection with-
out multi-hop forwarding; their main purpose is to reduce latency during data col-
lection. To this end, they identified the problem of finding the minimum tour as the
"label covering problem” and proposed an algorithm in which dynamic program-
ming was used to achieve a solution. The Travelling Salesman Problem (TSP) is
the problem of finding a minimum cost tour to visit a set of given cities, starting
and ending at the same city, such that each city is visited exactly once. Their al-
gorithm consists of two main stages. Firstly, they try to achieve the TSP tour via
any existing algorithm in order to find the minimum distance (and so construct a

minimum tour). Secondly, they try to optimize the TSP tour by finding shortcuts
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(sub paths) for the mobile sink to follow while still covering all the nodes using
the dynamic programming technique. They named the problem the label covering
problem because each shortcut considered must cover the skipped nodes. Again, the
main objective of their paper is to minimize latency while in our work we want to
minimize total energy consumption, subject to a latency constraint.

Similar to [70], He et al. [34] have discussed the issues surrounding path selection
problems, for mobile elements (i.e., mobile scheduling) during data collection. Due
to the difficulty of the problem, the authors have proposed a heuristic algorithm, in
order to find the optimal path for mobile elements to follow and collect data from a
sensor, via single-hop communications. In their proposed algorithm, the TSP is used
as the first step to determine the path. Then, by taking advantage of the combining
wireless communications, some of the visited points are likely to intersect with each
other; then via a binary search, further tour improvement is obtained. Finally, the
mobile sink follows the constructed path, in order to collect data. Via simulation,

the authors also show that the algorithm outperforms the Label Cover algorithm.

2.5 Summary

In this chapter we first defined some terminologies and some fundamental points of
the graph theory which are relevant to our work. Then we revised and explained
complexity theory. Finally, an intensive literature review has been provided to pave
the way to our area. As explained, different techniques have been used to tackle the
issue of energy consumption from different perspectives and their pros and cons have
been analysed. Based on that we observed the idle listening attracted attention of
the research community. Therefore, we focus mainly first on the idle listening then

on sink mobility in our research to further improve energy consumption.



Chapter 3

Reducing Idle Listening in

Wireless Sensor Networks

This chapter, which is the main part of our research, deals with energy consumption
issues in wireless sensor networks with tree topology during data collection, and
provides the comprehensive explanation of our proposed technique (i.e., Extra-bit

technique) to minimise energy consumption via reducing idle listening.

3.1 Introduction

In the literature, several reasons have been pointed out as the cause for wasted en-
ergy. The first one is collisions, which occur when two or more nodes try to transmit
their data to the same destination node simultaneously. Indeed, the packets collide
with each other and the destination node cannot receive either one correctly [43].
As a result, retransmission is needed, which leads to the use of more energy to
send out the packets again. Moreover, both primary and secondary conflicts which
cause collisions must be avoided [19]. Primary conflicts happen either when a node
transmits and receives at the same time, or several nodes send out their packets
simultaneously to the same destination. Secondary conflicts occur when a receiver
is within the transmission range of its sender and other simultaneous senders at
the time of collision. When this happens, the receiver cannot receive the correct
packet successfully [59, 62]. The second source of energy wastage is overhearing,

which happens when a node hears a packet which is destined for another node. The
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third case where energy can be wasted, and the most relevant to our work, is idle
listening because our work is built upon the previous proposed technique to reduce
idle listening and we found out that there was still a gap to be filled. Idle listening
occurs when a node is listening to the channel to receive a packet but there is the
possibility that the sending node does not have data and remains silent [43], 5], [66].

Therefore the main focus of this chapter is on idle listening. We start by extend-
ing earlier work on successive-slot schedules [81, [82]. We propose an optimization
technique, called the extra-bit technique, which reduces idle listening further and
also minimizes latency. We prove that the optimal number of time slots for data col-
lection in a chain using successive-slot or extra-bit schedules is 4N — 6, where N > 3
is the number of nodes in the network excluding the sink. We show how to calcu-
late the expected amount of idle listening for extra-bit schedules and successive-slot
schedules in chains and trees where each node has data with a fixed probability, and
we demonstrate by graphs based on the mathematical formula that the expected

amount of idle listening is significantly smaller with the extra-bit technique.

3.2 System Model, Arbitrary Schedules, Successive-
Slot Schedules

3.2.1 System Model and Arbitrary Schedules

Consider a sensor network with a tree topology. The tree network is represented
as a graph G = (V| E), where V is the set of nodes and F is the set of edges in
the network. In other words, V represents sensors and F represents communication
links between these sensors in the tree network. The sink is the root of the tree.
We assume that all nodes have a single omnidirectional transceiver, and all com-
munication among sensors is performed over a single unique frequency channel.
Furthermore, a node cannot send and receive a packet at the same time. It cannot
receive a packet successfully when it hears several packets simultaneously. That is
to say, both primary and secondary conflicts must be avoided for successful trans-
mission. We consider TDMA schedules, where time is divided into a number of slots

of equal length. In each slot several packets can be scheduled, but no conflicting
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transmissions can be scheduled in the same time slot.

We use TDMA as a MAC layer protocol because of its advantage of avoiding
collisions, idle listening and overhearing.

Furthermore, TDMA can collect data in a timely manner which can be beneficial
for certain applications.

We want to collect data from the sensor nodes in a way that minimizes the
total number of time slots, while also reducing idle listening as much as possible.
The aim is to achieve fast data collection and conserve energy. We assume that
not every sensor will have data to be collected in each round of data collection.
Nevertheless, we require a schedule that is independent of which nodes have data:
the same schedule must be followed no matter whether all nodes have data or only
some nodes have data. If a transmission from node v to its parent p is scheduled in
a particular time slot but no data is available at v to be sent to p, there will either
be idle listening (i.e., p listens for a transmission from v, but v remains silent) or, if
p already knows that no data will be sent from v in this time step, the transceivers
of v and p can be switched off (and energy saved).

For a node v € V, we denote by T, the set of nodes of the subtree rooted at v,
and by |T,| the cardinality of that set. The set of children of node v is denoted by
C(v).

A schedule S of length (or latency) K is a mapping of time-slots 1,2,..., K to
sets of transmitting nodes, where S(t) is the set of nodes scheduled for transmitting
in time slot . As every transmission is from a node to its parent, the schedule
does not need to specify the receivers of the transmissions. The sink will never be a

transmitting node. A schedule S is feasible if it satisfies the following conditions:

(C1) For every t, the nodes in S(t) can transmit simultaneously without conflict.

This means that no two nodes in S(t) have distance two or less in the tree G.

(C2) Every node v (apart from the sink) is scheduled exactly |T,| many times for

transmission.

(C3) For i > 1, if the i-th transmission of node v is scheduled in time slot ¢, then
at least 4 — 1 transmissions of children of v must have been scheduled before

time slot ¢.
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Condition (C1) models interference constraints. Condition (C2) is required because
each node v must transmit its own data and the data of all the other nodes in its
subtree T,. Condition (C3) expresses that node v cannot send more data than its
own data and the data it has already received from its children.

We refer to such a feasible schedule as an arbitrary schedule as no further re-
strictions are imposed.

If not all nodes have data, the behavior of a node is as follows. Whenever the
node is scheduled to transmit in the current time slot, it checks whether it has any
data (either its own data or data received from a child) that has not yet been sent
to the parent. If so, it uses the current time slot to forward any such data to the
parent. Otherwise, it remains silent in the current time slot. We refer to this node

behavior as local greedy.

3.2.2 Successive-Slot Schedules

As observed by [81], B2], arbitrary schedules can cause a lot of idle listening if not
all nodes have data. For example, if a node has 10 time slots for transmitting data
to its parent, but only 3 nodes in its subtree have data, then there will in general
be 3 time slots with transmissions and 7 time slots with idle listening. The parent
usually cannot turn off its transceiver to avoid idle listening as it cannot predict
whether a packet will be sent by the child in the current time slot or not. Zhao and
Tang therefore propose a restricted type of schedule, which they call successive-slot
schedule. The special property of successive-slot schedules is that all transmissions
from a node to its parent will happen in successive slots starting from the first slot
that is assigned to the node for transmission, provided that local greedy scheduling
is used in each node. A node cannot cause idle listening at the parent in between two
actual transmissions from the node to its parent. Formally, if node v is scheduled
to transmit to its parent in slots ¢;,%s,...,r, and if 7 of the nodes in T, have
data, the transmissions from v to its parent must be made in time slots t1, o, . .., t,.
The advantage of successive-slot scheduling is that as soon as the parent detects
that the child is silent in a transmission slot, it knows that no further transmissions
from that child will arrive. Therefore, the parent can switch off its transceiver in

all remaining time slots where that child is scheduled to transmit. Similarly, the



Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 35

sink will know that data collection has been completed as soon as each child v of
the sink has either sent |T,| data packets or has been silent in one time slot. This
means that data collection can potentially be completed earlier (before the end of
the full schedule S). Therefore, successive-slot scheduling can reduce idle listening
(as there can be at most one time slot with idle listening for each parent-child pair)
and schedule latency.

Zhao and Tang prove in [81] that successive-slot schedules can be characterized

as follows.

Lemma 1 ([81]). A feasible schedule S is a successive-slot schedule if and only if

the following condition holds:

(C3') For each node v and each 1 < i < |T|, the i-th transmission of node v is
scheduled after the i-th transmission of each child ¢ of v with |T.| > i, and

after the last transmission of each child ¢ of v with |T,| < i.

Observe that condition (C3’) implies condition (C3).
We illustrate the two conditions of Lemma (1| for successive-slot scheduling using

the simple example shown in Figure (3.1}
S
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Fig. 3.1 Successive-slot schedule.

In this example node B and C' are the children of node A, |Tg| =1 and |T¢| = 4.
One can observe that for node B we are in the second part of the condition of
Lemma [I] and for node C' we are in the first part of the condition of Lemma [I]
Therefore the first, second and third transmissions of node A must happen after
the first, second and third transmissions of node C' (the first, second and third

transmissions of node C' can happen at steps 4, 6, 8, respectively). Therefore the first
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second and third transmissions of node A can happen at steps 5, 7, 9, respectively).
After that we are in the second part of the condition of Lemma I} which means that
|Tc| < i. Hence, the fourth, fifth and sixth transmissions of node A can happen
after the last transmission of node C'. In other words, the last transmission of node
C happens at step 10. Therefore the rest of the transmissions of node A must come
after step 10.

Successive-slot scheduling can be applied to data collection in any tree network.
In more general networks, a data collection tree can be determined in a first step,
and successive-slot scheduling can then be applied to that tree (but the interference
constraints would be derived from the full network).

In a successive-slot schedule, the process of data collection starts from leaf nodes
and proceeds towards the root node (sink). Generally speaking, a node must listen
for transmissions from its child nodes until an idle transmission occurs. Receiving
idle listening from any child node guarantees the end of transmission from that
node, which allows the parent to turns off its transceiver for any further scheduled
transmissions from that node. Each time the parent node has listened to all its child
nodes and has received at least one packet, it can make one transmission to its own
parent node. This continues until it has received idle listening from all of its child
nodes (or the child nodes have completed all their transmissions). Finally, it will
transmit the remaining packets to its own parent. This process continues for all
nodes until the specified sink node has stopped listening to all its children, implying
that all packets have been received.

We observe that if some node in the subtree T, does not have data in the current
round of data collection, the parent p of node v needs to listen to v one more time
than the number of actual transmissions from v to p.

Zhao and Tang [81] propose a heuristic that aims at producing successive-slot
schedules with minimum schedule length. They do not prove bounds on the worst-
case schedule length produced by their algorithm compared to the optimum schedule
length.

We illustrate successive-slot scheduling using the simple example shown in Fig-
ure There are six nodes; the root is the sink. Suppose that only two of the leaf

nodes have data, namely C' and D. Firstly, B must listen to all its child nodes to
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Fig. 3.2 Data collection, only C, D have data.

check whether they have data. It is obvious that B must listen three times. In the
first two time slots, B can receive data from C' and D, while in the last time slot no
packet is available and this results in idle listening. This means that B has only two
packets. After that, A is scheduled to listen to B. In the first and second such slot,
A can receive data from B. Thus, A needs to listen again to B, but in the third
such slot A does not receive any packet from B; therefore, A does not have to listen
to B again after the third listening and turns its transceiver off for transmissions
from B in the remainder of the data collection schedule. Although in B two packets
are available, A will also need to listen one more time than the number of packets,
to find out whether any more packets are available. Similarly, the sink needs to
listen to A three times. In the first two time slots the sink can receive two packets
but in the third slot it does not receive any packet. Therefore, the sink turns its
transceiver off, and the data collection is completed. In an arbitrary schedule for
data collection, it can be observed that the sink should listen to A five times and A
should listen to B four times. Following the successive-slot technique by Zhao and
Tang [81], when a parent has listened and not received any packet from the child

then it does not listen again to that child. This reduces idle listening.

3.3 Extra-Bit Schedules

We propose a technique called the extra-bit technique that extends the successive-slot
technique [81] and reduces idle listening further. In the successive-slot technique,
parent nodes often have to listen to a child node one more time than the number of
data packets sent by the child node, causing an idle listening slot. In the extra-bit

technique, we can avoid idle listening in all cases where at least one node in the
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subtree has data.

The extra-bit technique adds a single extra bit to each packet, which indicates
to the receiver whether this packet is the last one being transmitted by the node in
the current data collection round. The value of the bit is set to 0 if the packet is the
last one, indicating that no more packets will be sent by that node. This tells the
receiver that it does not need to listen any more for transmissions from this node
in the current round of data collection, thus avoiding idle listening. The bit is set
to 1 if the packet is not the last one, which means that more packets will be sent in
later time slots.

According to this technique, when a parent has listened to its child and checked
the extra bit, then it can decide whether to listen again in further time slots. The
process of listening will be continued until the parent receives a packet where the
extra bit is 0; the parent then stops listening to its child node and switches its radio
off for the rest of the schedule regarding that node, resulting in energy conservation.
The only exception is if a node has no data to transmit at all; in that case, there
will be one idle listening time slot for the parent.

A successive-slot schedule in which each node always has the information required

to set the extra bit correctly is called an extra-bit schedule.

3.3.1 Equivalence of Extra-Bit and Successive-Slot Sched-

ules

One might expect that extra-bit schedules are more restrictive than successive-slot
schedules, because whenever a node sends a packet, it needs to be able to set the
extra bit to a correct value. This means that the node must know whether the
packet being sent is the last one or not. Somewhat surprisingly, we can show that

every successive-slot schedule is an extra-bit schedule.
Theorem 1. Every successive-slot schedule S is also an extra-bit schedule.

Proof. Let S be a successive-slot schedule. By Lemmall] S satisfies condition (C3').
We prove by induction on the height of the nodes that each node has sufficient
information to set the extra bit for each transmitted packet. The claim clearly

holds for leaf nodes. Now consider a node v and assume that the claim has been
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proved for all children of v. Consider the i-th transmission of node v, 1 < i < |T,],
and assume that v has a packet to transmit. By condition (C3'), each child ¢ of v
has already had at least i transmission slots if |7.| > ¢, or has already had all its
transmission slots if |7.] < i. In the former case, node v knows whether ¢ has at
least i 4+ 1 packets or whether ¢ has already transmitted all its packets. In the latter
case, node v knows that ¢ has already transmitted all its packets. Node v also knows
how many packets it has already received but not yet forwarded to its parent. From

this information, v can set the extra bit of the current packet correctly. O

For any given tree network, there can be many different data collection schedules,
and also many different extra-bit schedules or successive-slot schedules. We are
interested in extra-bit schedules of minimum length.

For example, consider six nodes F, E, D,C, B, A and a sink S that are arranged
in a linear chain. We can schedule data collection in this linear network using
the successive-slot or extra-bit technique in different ways. Two different schedules
for this network, together with the idle listening that arises in the successive-slot

technique and the extra-bit technique, are as follows:

1. Figure[3.4]show two different schedules for the setting when all nodes have data
(it can be observed that both successive-slot schedule and extra-bit technique
are the same and there is no idle listening when all nodes have data). It
is worth noting that the first schedule lets each parent node receive all the
packets from its respective children, then forward all to its parent accordingly.
This type of successive-slot schedule in general has maximum length (latency),
because there is no simultaneous transmission between the nodes. The length

of the schedule is 21 time slots for the chain shown in Figure |3.3]

On the other hand, the second type of schedule lets each parent, upon receiving
data from its child node, immediately forward it to the next node. Further-
more, any node that has made one transmission and still has more data, can
reschedule itself with other nodes concurrently after two steps (two hops) from
its previous transmission, as shown in the Figure [3.4] The main advantage of
this type of schedule is that it allows parallel transmissions between the nodes,

which leads to the minimization of the schedule. In general, the first type of
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the schedule is the worst case, whereas the second one is the best case (optimal

schedule).

2. We show two different successive-slot schedules for the setting when only nodes
F and E have data. One possible schedule is that E listens to F', then D should
listen to E twice; likewise, node C' should listen to node D three times, where
in the first two time slots it receives data whereas in the third time slot it
receives idle listening. Similarly, node B can receive packets from node C in
the first two time slots, then it receives idle listening in the third time slot,
which means that no packet is coming from C. In the same way, node A can
receive packets from node B in the first two time slots and then it receives
idle listening in the third time slot. Similarly sink node S, upon receiving
idle listening in time slot 15, stops listening in the subsequent slots. It can
be observed that the optimal successive-slot schedule ends at step 15. This
is because where any parent node has listened to its child node and has not
received data, it can stop all subsequent listening slots regarding that child
node; due to its idle listening, the parent node knows that no further data will
come from that child. However, if we do not follow the proposed technique
of Zhao and Tang [81], listening is continuous until the end of the schedule,

which is 21 time steps.

The second possible type of schedule for this setting is similar to the second
type of schedule mentioned before without applying the successive-slot sched-
ule. One can notice that each parent, upon receiving data from its child node,
immediately forwards it to the next node. As a result simultaneous trans-
missions can happen. Therefore in the second type of schedule the sink can

conclude data collection at time step 12.

3. We also show two different extra-bit schedules for the setting when only nodes
F and E have data. The first type of schedule is finished at time step 11,
which finishes a few steps before the first type of successive-slot schedule.
This is because there is no idle listening slots in the extra-bit technique for
this setting, whereas there are 4 idle listening according to the successive-slot
schedule. Similarly, the second type of schedule according to the extra-bit

technique ends at time step 9. One can observe that the data collection in the
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extra-bit schedule ends sooner than the successive-slot schedule for the same

scenario.

Here, only two cases have been mentioned, the first being when all nodes
have data, and the second being when only the last two nodes have data. In
general, concluding data collection depends on which nodes have data. Note
that we may have more possible forms but for simplicity only two forms are
shown. Moreover, for simplicity we have explained the idea of the successive-
slot schedule only for the line which is a special type of the tree, and the same

idea is applicable to the tree as well.

F—E—D—C—B — A — 8§

Fig. 3.3 A chain with 6 nodes.

1 \F~>E E—-DFE—-D D—-C D-CD—-C C-B C—-B C-B(C—=-B B-A B-A B+A BAB—AA=S A-5S5 A=-S A5 A=S AA)S\

‘ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21

E—-D D—=C D—C

2. F-EE—-D D—-C C—-B B—-A A-S C—-B B—+A A-SC—-B B—+A A-SC—-B B—-A A—-S B—-A A—-S A—-S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

18

Fig. 3.4 Two different schedules for 6 nodes in Figure according to successive-
slot and extra-bit schedules for the setting when all nodes have data.

3.3.2 Optimal Extra-Bit Schedules for Linear Networks (Chains)

In this section we consider WSNs where sensors are arranged as a chain, with the
sink located at one end of the chain. We let N denote the number of nodes in the
chain, excluding the sink. We denote the node that is ¢ hops away from the sink by
v;, for 1 <7 < N. We also refer to v; as the i-th node of the chain.

In the schedule we propose, a node will first wait until it receives the first packet
from its child. From this time slot onward, it will make a transmission once every
three steps, and nodes that are 3, 6, 9, ...hops further away from the sink will
transmit simultaneously with the node. This process continues until the only nodes
that still have packets are the two nodes closest to the sink. Then, these two nodes
transmit their remaining packets to the sink, with only one transmission per time

slot.
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As an example, a chain with N = 5 sensor nodes and a sink node is shown
together with an extra-bit schedule of length 14 in Figure [3.5] Note that time slot 5
is the only slot in which two transmissions take place simultaneously. For illustrative
purposes, we partition the schedule into five phases, where each phase ends with a
time slot in which a packet is transmitted to the sink. In the first phase, five time
slots are required until the sink node receives the first packet. In the second and
third phase, only three time slots are needed until the sink receives the second and
third packet, respectively. Two time slots are used in the fourth phase, and finally
one time slot is used to finish this schedule.

Now suppose that only the last node E has data in a certain data collection
round. Then the schedule shown in Figure |3.5) will complete data collection after
5 time slots at the end of the first phase (when the sink receives the packet from
A with the extra-bit set to 0) and has no idle listening periods. For comparison, if
the same schedule is executed as a successive slot schedule, data collection will be
completed only after 8 time slots, and there will be four cases of idle listening (in

steps 5 to 8).

E—D—C—B — A — S

D—C
F—-D D—-C C—-B B—-A A—=S||C—-B B—-A A—=>S
1 2 3 4 5 6 7 8

C—-BB—-AA—-S||B—>A A—=-S||A—=S
9 10 11 12 13 14

Fig. 3.5 Extra-bit schedule for a chain with 5 nodes.

The shortest extra-bit schedules for the cases N = 1 and N = 2 can easily be
seen to have lengths 1 and 3, respectively. Next, we prove that for N > 3 the
optimal length of an extra-bit schedule in the chain is 4N — 6. We first give the
lower bound, and then the upper bound.

For arbitrary schedules, it has been shown in [24], [13] that 3V — 3 time slots are
required to complete a converge-cast in the linear network. This lower bound can be
shown by considering the three nodes closest to the sink. All transmissions by these

three nodes must be scheduled in different time slots due to interference. The first



Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 43

N-3 N—-2 N—-1 N

N > N-1-N2 > e<0e<0e — 3 — 2 — 1] — S

Fig. 3.6 Illustration of lower bound proof for chain with N nodes.

node in the chain must make /N transmissions, the second node N — 1 transmissions
and the third node N —2 transmissions. As a result, at least N4+(N —1)+ (N —2) =
3N —3 time slots are required to complete data collection (and a schedule with 3N —3
time slots actually exists). We now show that extra-bit schedules require at least
AN — 6 time slots. We remark that although extra-bit schedules are longer than the
shortest arbitrary schedules, extra-bit schedules have no or substantially reduced

idle listening periods if not all nodes have data.

Theorem 2. For chains with N > 3 nodes and a sink, any extra-bit schedule

requires at least 4N — 6 time slots to complete the data collection.

Proof. In the extra-bit technique, a node cannot make a transmission before it has
received the first packet from its child. This implies that node vy_; cannot make
its first transmission before time slot ¢ 4+ 1, for 0 < ¢ < N — 1. In particular, there
are N — 3 time slots before the first time slot in which the third node v3 can make
its first transmission. The third node must make N — 2 transmissions, the second
node N — 1 transmissions, and the first node N transmissions (see Figure for an
illustration). These 3N — 3 transmissions must all be made in different time slots,
and none of them can be made during the first N — 3 time slots. Therefore, the

total number of time slots must be at least (N — 3) 4+ (3N — 3) = 4N — 6. O

We now present an algorithm that produces an extra-bit schedule of length 4N —6
for chains with N nodes and a sink. The algorithm is shown in Algorithm [I] First, it
initializes the schedule’s time slots S(t) (representing the set of nodes to be scheduled
at time t) to be empty, the number of packets on node v; to p(i) = 1, and the current
time slot ¢ to 0. Then the procedure ScheduleFirstPart is used to schedule the first
transmission of nodes from the last node to the fourth node. Whenever a node
v; is to be scheduled, ¢ is incremented and the procedure call parallel(i) is used
to schedule the node v; as well as any nodes v; 3, v;14, ... that still have a packet.

When ScheduleFirstPart is finished, the procedure ScheduleRest is called. As long
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Algorithm 1: Extra-bit scheduling algorithm for linear network.
Input: Chain with N > 3 nodes v, ...,vy and sink s
Output: S(t) fort =1,...,4N —6
S(t)«+ O fort=1,...,4N — 6;
p(i) < 1fori=1,...,N;
t <+ 0;
Call ScheduleFirstPart();
Call ScheduleRest();
procedure ScheduleFirstPart()
for i <~ N down to 4 do
t—t+1;
L parallel(i);

© 00 N O ok W N

10 procedure parallel(i)
11 for j <~ i to N increment by 3 do
12 if p(j) # 0 then

13 s(t) < s(t) U{v;};
14 p(j) < p(j) — 1;// send a packet
15 p(j —1) < p(j — 1)+ 1;// receive a packet

16 procedure ScheduleSecondPart()
17 while p(1) # 0 do

18 for : < 3 downto 1 do

1 if p(i) # 0 then

20 t+—1t+1;

21 parallel(i);

©

as the first node still has a packet, it repeatedly considers the nodes v; for i = 3,2, 1
and calls parallel(7) if node v; still has a packet.

The state of the chain (i.e., the number of packets p(j) stored at each node v;)
before the k-th time slot, 1 < k < 4N —8, of the schedule produced by the algorithm

is as follows:

o Ifk=4r+1forr>0:p(j)=0forj >N+1—r p(j)=2forj=N—-r—3m
for 1 < m < min{r, (N —r)/3}, and p(j) = 1 for all other j.

o Ifk=4dr+2forr>0: p(j)=0forj > N—r,p(j)=2forj=N—-—r—1-3m
for 0 < m < min{r, (N —r —1)/3}, and p(j) = 1 for all other j.

o lfk=4r+3forr>0: p(j)=0forj >N—r,p(j)=2forj=N—-r—2—3m
for 0 < m < min{r, (N —r —2)/3}, and p(j) = 1 for all other j.

o Ifk=4r+4forr>0: p(j)=0forj > N—r,p(j)=2forj=N—-r—3-3m
for 0 < m < min{r, (N —r —3)/3}, and p(j) = 1 for all other j.
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As shown above for every value of r there are 4 values of k. In addition, for every
value of k there are three conditions. These three conditions indicate the state of
the chain. In other words, each node either has 0 packets, 1 packet or 2 packets.
The reason for having 4 values of k£ with a single value of r, is that the state of the
chain repeats itself after these 4 values.

In general, the first condition indicates how many nodes have 0 packets from
node j to node N, where j is the index of the starting node that has 0 packets. The
second condition indicates how many nodes between node j and the sink have two
packets, where nodes j is the furthest one from the sink to have 2 packets that start
from node j. From this process variable m controls how many decreasing nodes will
end up with 2 packets, this is subject to being 3 steps away from each other. This is
the reason that value of m is multiplied by 3 and (N —r —1)/3 is divided by 3. The
third condition (for all other j) indicates the number of nodes that have 1 packets.

These four conditions (points) show the state of the chain and they repeat as
a circle until £ < 4N — 8 (the third node has no more packets). With each circle
only one node becomes 0. At the beginning of the schedule each node has a single
packet. When the algorithm starts running, each node either has 0 packet, 1 packet
or 2 packets. This means that each node requires buffering for at most two packets;
for further explanation refer to Figure [3.71 Furthermore, with each value of r the

steps for these four values of £ are as follows:

r=0|r=1|r=2|...
9

10
11

k
k
k
k

12

We consider an illustrative example for 10 nodes as shown in Figure |3.7]in order to
give insight into these four conditions in each step and the state of the chain. Note
that at step 0 each individual node has 1 packet. Steps 1, 2, 3 and 4 indicate the
first four conditions for the first value of r = 0. During these four steps only one

node becomes 0. This process continues until the condition k < 4N — 8 is satisfied.

Theorem 3. For chains with N > 3 nodes and a sink, the algorithm shown in

Algorithm (1| computes an extra-bit schedule of length 4N — 6.
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10 —9 —-8§ w7 —6 —5 —4 — 2 — 2 —1—S

Conditions | Value of r | Steps/Nodes [ 10 | 9|8 | 7|6 |54 3|21

0 1 1/1/1|1(1]1]11]1
Condition 1 | r =0 1 O [2(1|1|1|1|1]|1]1]|1
Condition 2 | r =10 2 O [1](2|1|1|1|1]1]1]|1
Condition 3 | r =0 3 0 112111111
Condition 4 | r =0 4 O |1]1|1]|2|1|1]|1]1]|1
Condition 1 | r =1 5 0 |0j2|1]1]2|1|1]1]|1
Condition 2 | r =1 6 0 o(1|2(1(1}2(1|1|1
Condition 3 | r =1 7 0 |0j1|1]|2|1]|1]|2]1]|1
Condition 4 | r =1 8 O |Ooj1|1]|1]|2]|1]|1]2]|1
Condition 1 | r =2 9 0 Oj(o|2(1(1]2]1|1]|2
Condition 2 | r =2 10 0 |0j0O|1]2|1]|1]|2]1]|1
Condition 3 | r =2 11 0 |0jO|1]1|2|1]|1]2]|1
Condition 4 | r =2 12 0 oOj(o|1(1(1}2]1|1]|2
Condition 1 | r =3 13 0 |0]O0|O]2|1|1]2|1]1
Condition 2 | r =3 14 0 |0jO0|O|1|2|1]|1]2]|1
Condition 3 | r =3 15 0 Oj(ojof1(1}j2|1|1|2
Condition 4 | r =3 16 0 |0j]O|O|1|1|1]2|1]1
Condition 1 | r =4 17 0 |0j]O0|O]O]2|1]1|2]1
Condition 2 | r =4 18 0 0001012112
Condition 4 | r =4 19 0 |0]O|OJO|1|1]2|1]1
Condition 4 | r =4 20 0 |0j]O|OjO|1|1]1|2]|1
Condition 1 | r =5 21 0 |0]O0|Oj0O|0|2]|1|1]|2
Condition 2 | r =5 22 0 |0j0|0O]|O|O|1]|2]|1]|1
Condition 3 | r=25 23 0 |0]0|0O]|O|O|1]|1]2]|1
Condition 4 | r =5 24 O 1 O O I A
Condition 1 | r =6 25 0 |0j]0|0]|0O]|0O]|0O]|2]1]|1
Condition 2 | r =6 26 0 |0]0|0O]|0O]|O|O|1]2]|1
Condition 3 | r =6 27 0 |0j]O|OjO|O|O]1|1]|2
Condition 4 | r =6 28 0 |0]0|0]|O|O|O|1]1]|1
Condition 1 | r=17 29 0 |0]0|0]|0O]|0O]|0O]|0]2]|1
Condition 2 | r =7 30 0 |0]0O|OjO|0O|O]O|1]|2
Condition 3 | r=17 31 0 |0]0|0]|0O|0O]|0O]|0O]1]|1
Condition 4 | r =7 32 0 |0]0|0]|0|0O|0O]|0O]|0]|2

33 0 |0|]0O|O]O|O|O]O|O]1

34 0 |0]jO|OjO|O]O]OfO]|O

Fig. 3.7 Illustration of state of the chain in each step with 10 nodes.

Proof. We observe that the schedule constructed by the algorithm has the following

properties:
e Every node v; makes N + 1 — ¢ transmissions.

e Every node v; makes its j-th transmission only after it has received j packets

from its child (or all packets from the child in case |1, | < j).
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e The senders of simultaneous transmissions are at least three hops away from

each other, so there is no interference between them.

Therefore, the schedule is a feasible extra-bit schedule.

The first packet reaches the sink in time slot N. Then one packet reaches the
sink every three time slots, until only the first two nodes have packets left. This
requires 3(N — 3) time slots, and at that point the first node and the second node
will contain one packet each. It then requires three more time slots to transmit
these to the sink. The total schedule length is therefore N +3(N —3)+3 =4N —6

time slots. O

3.3.3 Extra-Bit Schedules for Trees

Zhao and Tang [81] presented a heuristic algorithm for computing successive-slot
schedules in trees. By Theorem [I] these schedules are also extra-bit schedules. We

illustrate the benefits of extra-bit schedules for trees using the example in Figure|3.8|

7N

A B
/A 7N
C D E F

C»A D»A
E-B F+B A»S B»S A»S B-»S A-»S B=->S
1 2 3 4 5 6 7 8

Fig. 3.8 Schedule for data collection when only C, E' have data.

In the extra-bit technique, 8 time slots are needed to complete data collection if
all nodes have data. If we suppose that only C' and E have data, then the beneficial
impact of extra-bit scheduling can be observed: The data collection process finishes
by the end of time slot 4, and there are only two occurrences of idle listening that
happen when A and B listen to D and F', respectively. The sink listens to each

of A and B only once and infers from receiving a packet with the extra-bit equal
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to 0 that no further packets will arrive. With the successive-slot technique, data
collection would finish only after six time slots, and there would be four occurrences

of idle listening.

3.4 Idle Listening in Successive-Slot and Extra-

Bit Schedules

In this section we compare extra-bit scheduling and successive-slot scheduling in
terms of the amount of idle listening. We observe that the number of occurrences
of idle listening in an extra-bit schedule does not depend on the particular choice of

extra-bit schedule, and similarly for successive-slot schedules.

3.4.1 Idle Listening in Chains and Trees

We determine the number of occurrences of idle listening in chains and trees, both

for the successive-slot technique and the extra-bit technique.

3.4.1.1 Chain

Consider a chain with N nodes in addition to the sink. The first node is the node
closest to the sink, and the last node is the node furthest away from the sink.
With the extra-bit technique, we consider several cases for the amount of idle
listening. First, if the last node has data, then there is no idle listening at all, even
if some other nodes do not have data. Second, if no node has data, then there are
N occurrences of idle listening. Third, if the last node has no data but some other
node has data, then the amount of idle listening depends on the position of the
furthest node from the sink that has data. For instance, in Figure [3.5] if node C'
has data and nodes D and E do not have data, then idle listening happens twice,
once for a transmission from F to D and once for a transmission from D to C. For
the general case, we can conclude that the number of occurrences of idle listening
is equal to the number of nodes in the chain minus the position (distance from the
sink) of the last node that has data. Let I denote the position of the last node that

has data (and let I = 0 if no node has data). Then the number of occurrences of
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idle listening with extra-bit scheduling is N — I.

With the successive-slot technique, idle listening can be analysed as follows. If
the last node does not have data, the number of occurrences of idle listening is IV as
each of the N nodes will have an idle transmission to its parent. If J is the position
of the last node that does not have data (or J = 0 if all nodes have data), then the
amount of idle listening is J.

We observe that the amount of idle listening with extra-bit scheduling (N — I)
is always less than or equal to that of successive-slot scheduling (J): If I = N, then
extra-bit scheduling has no idle listening while successive-slot scheduling may have
up to N — 1 occurrences of idle listening. If I < N, then J = N and therefore J >
N — 1. The most extreme difference between extra-bit scheduling and successive-slot
scheduling occurs if only the last node has data. In that case, extra-bit scheduling
has no idle listening and successive-slot scheduling has N — 1 occurrences of idle

listening.

3.4.1.2 Tree

In the extra-bit technique, idle listening happens for a transmission from a node v to
its parent if and only if none of the nodes in T}, have data. The number of occurrences
of idle listening is therefore equal to the number of nodes whose subtrees have no
data. In the successive-slot technique, idle listening happens for a transmission from
a node v to its parent if and only if at least one node in T}, does not have data. The
number of occurrences is therefore equal to the number of nodes whose subtrees
contain at least one node that does not have data. It is clear that idle listening for
the successive-slot technique is at least the amount of idle-listening for the extra-bit
technique.

For example, consider the tree in Figure |3.8| and suppose that only A, D, B,
and F' have data. With the extra-bit technique there are two occurrences of idle
listening, one for the transmission from C' to A and one for the transmission from
E to B. With the successive-slot technique, however, there are four occurrences of
idle listening: the same two as for the extra-bit technique, and in addition one for a

transmission from A to S and one for a transmission from B to S.
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3.4.2 Expected Amount of Idle Listening

Now, we consider a probabilistic model in which each node has data with probability
p (which is the same for all nodes), and show how to calculate the expected amount

of idle listening for extra-bit and successive-slot scheduling.

3.4.2.1 Chain

Consider a chain with N nodes vq,...,vy, indexed in order of increasing distance
from the sink.

With the extra-bit technique, there is idle listening for a transmission from v; to
v;—1 if and only if none of the nodes v; with ¢ < j < N have data. The probability

for this event is (1 — p)N =1, The expected amount of idle listening is therefore:

N N )+

D (=pNTH =N (1—p) = lop-Uop

i=1 i=1 p

For example, consider the chain with five nodes from Figure The expected
contributions of the five nodes to idle listening are as follows:

1. 1 —p for node E

2. (1 —p)? for node D

3. (1 —p)? for node C

4. (1 —p)* for node B

5. (1 —p)® for node A

The expected amount of idle listening for the chain of five nodes is therefore:

5:1_p_(1_p)6
p

1—p+(1=p +(1=p’+(1—-p)*+(1-p)

With the successive-slot technique, there is idle listening for a transmission from
v; to v;_; if and only if at least one node v; with ¢ < j < N does not have data. The

probability that all nodes v; with i < j < N have data is pV ="', The probability

N—i+1

for idle listening from v; to v;_; is therefore 1 — p . The expected amount of



Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 51

105 T T T T T

T T T
. Extra-bit technique
9\ Successive technique .

Expected value of idle listening
[, ]
T
|

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability

Fig. 3.9 Expected amount of idle listening for extra-bit and successive-slot technique in
a chain with 10 nodes.

idle listening is then:

For the example chain with five nodes of Figure [3.5 the expected amount of idle

listening for the successive-slot technique is:

l—p+1—-p"+1—-pP’+1—-p'+1—-p =5-—

Figure [3.9) shows how the expected amount of idle listening for extra-bit and
successive-slot scheduling in a chain with 10 nodes depends on the probability p. The
xr-axis represents the probability p that a node has data and the y-axis represents
the expected amount of idle listening. We observe that the amount of idle listening
for the extra-bit technique is much smaller than for the successive-slot technique,
with equality happening only for the extreme cases p = 0 (no node has data, 10
occurrences of idle listening) and p = 1 (all node