
Data Collection in Wireless Sensor Networks

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Aram Mohammed Rasul

Department of Computer Science

University of Leicester

September 2015

Data Collection in Wireless Sensor Networks

Abstract

This thesis is principally concerned with efficient energy consumption in wireless

sensor networks from two distinct aspects from a theoretical point of view.

The thesis addresses the issue of reducing idle listening states in a restricted tree

topology to minimise energy consumption by proposing an optimisation technique:

the extra-bit technique. This thesis also focuses on showing lower bounds on the

optimal schedule length, which are derived for some special cases of the tree, such as

a single chain, balanced chains, imbalanced chains, three and four level k-ary trees

and Rhizome trees. Then, we propose an algorithm which can exactly match the

lower bound for a single chain, balanced chains and Rhizome trees individually and

which is a few steps away from the optimal solution for imbalanced chains. Finally,

we propose the use of two frequencies to further save energy and minimize latency.

Recent research has shown that significant energy improvements can be achieved

in WSNs by exploiting a mobile sink for data collection via single hop communica-

tions. A mobile sink approaches the transmission range of sensors to receive their

data and deposit the data at the base station. The thesis, as a second problem,

focuses on the design issues of an energy efficient restricted tour construction for

sink mobility. We propose two different techniques. The first one is heuristic and

uses a criterion based on maximum coverage and minimum energy consumption

called the ”max-ratio”. Although its time complexity is polynomial, this heuristic

algorithm cannot always produce a good solution. As a result, we propose the sec-

ond algorithm. Despite the time complexity of the second algorithm being pseudo

polynomial, the optimal solution can be found if one exists. For each algorithm men-

tioned, two scenarios are taken into account with regard to the transmission. In the

first scenario, one assumes that there is no upper bound on the transmission range

while in the second setting the nodes can adjust their transmission range between 0

and the maximum range. The algorithms have been implemented and simulated in

Matlab.

Acknowledgements

I am greatly indebted to my supervisor, Professor Thomas Erlebach, for all of his

encouragement, guidance, dedication, direction, advice, availability and invaluable

support, throughout my PhD studies at the University of Leicester. I believe that

without him, none of this research would have been achieved. Thank you very much

for showing tremendous patience in reading and evaluating my work. Moreover, I

am grateful to Professor Erlebach for providing me with an opportunity to work

with him. Working under his supervision has been a very enriching and memorable

experience. I would also like to thank my second supervisor, Dr Stanley P.Y. Fung,

and Dr Fer-Jan de Vries, for their discussion and feedback in the yearly thesis

committee.

A special thanks to Professor Rick Thomas; his suggestions and discussions have

always been of great help. I would like to express my thanks to all staff members

in the department for their respectfulness and friendship, and I am grateful to my

colleagues for the lovely and enjoyable time that we spent together in the depart-

ment. My special thanks also go to my government for funding my studies in the

UK. Of course, I am grateful to my family for their love and support at all stages

of my studies.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Challenges, Objective and Solutions 4

1.3 Contributions . 6

1.4 Thesis Outline . 7

2 Preliminaries and Related Work 9

2.1 Graphs . 9

2.2 Interference Model . 12

2.3 Complexity Theory . 13

2.4 Related Work . 17

2.4.1 Related Work to Idle Listening and Scheduling 17

2.4.2 Related Work to Sink Mobility 26

2.5 Summary . 30

3 Reducing Idle Listening in Wireless Sensor Networks 31

3.1 Introduction . 31

3.2 System Model, Arbitrary Schedules, Successive-Slot Schedules 32

3.2.1 System Model and Arbitrary Schedules 32

3.2.2 Successive-Slot Schedules . 34

3.3 Extra-Bit Schedules . 37

3.3.1 Equivalence of Extra-Bit and Successive-Slot Schedules 38

3.3.2 Optimal Extra-Bit Schedules for Linear Networks (Chains) . . 41

3.3.3 Extra-Bit Schedules for Trees 47

3.4 Idle Listening in Successive-Slot and Extra-Bit Schedules 48

i

3.4.1 Idle Listening in Chains and Trees 48

3.4.2 Expected Amount of Idle Listening 50

3.5 Uniform Energy Depletion . 53

3.6 Summary and Discussion . 55

4 Towards a More General Form 56

4.1 Optimal Extra-Bit Schedules for Balanced Multi-Chains 56

4.2 Unbalanced Multi-Chains . 65

4.3 Balanced k-ary Tree . 77

4.3.1 Balanced Three and Four Level k-ary Tree 78

4.4 Extra-Bit Schedules with Two Frequencies 79

4.4.1 Single Chain . 81

4.4.2 Balanced Multi-Chains . 82

4.5 Rhizome Tree . 85

4.5.1 How the Algorithm Works . 87

4.5.2 Scenario 1 . 91

4.5.3 Scenario 2 . 97

4.5.4 Implementation of the Algorithm 101

4.6 Summary and Discussion . 103

5 Mobility in Wireless Sensor Networks 105

5.1 Introduction . 106

5.2 System Model and Problem Definition 107

5.3 Proposed Approaches . 110

5.3.1 First Approach: Heuristic Algorithm (max-ratio) 110

5.3.2 Second Approach: Dynamic Programming (DP) Algorithm . . 116

5.4 Simulations and Performance Evaluations of the Proposed Algorithms 120

5.4.1 Simulation Results for Different Network Sizes 120

5.4.2 Comparing Our Results with the Algorithm for the Label Cov-

ering Problem . 126

5.5 Summary and Discussion . 129

6 Conclusion 134

6.1 Thesis Summary . 134

ii

6.2 Future Work Directions . 137

Bibliography 138

Appendix A 147

A.1 Tour for Three Network Sizes with Specific Length Constraint 147

iii

List of Figures

1.1 Data collection, maximum temperature. 4

2.1 Connected graph, 5 nodes. 10

2.2 Complete graph G, 5 nodes. 11

2.3 Subgraph G′ of graph G in Figure 2.2. 11

2.4 Unit disk graph. 12

3.1 Successive-slot schedule. 35

3.2 Data collection, only C,D have data. 37

3.3 A chain with 6 nodes. 41

3.4 Two different schedules for 6 nodes in Figure 3.3 according to successive-

slot and extra-bit schedules for the setting when all nodes have data. 41

3.5 Extra-bit schedule for a chain with 5 nodes. 42

3.6 Illustration of lower bound proof for chain with N nodes. 43

3.7 Illustration of state of the chain in each step with 10 nodes. 46

3.8 Schedule for data collection when only C,E have data. 47

3.9 Expected amount of idle listening for extra-bit and successive-slot

technique in a chain with 10 nodes. 51

3.10 Example tree for calculation of expected amount of idle listening . . . 52

3.11 Expected amount of idle listening for extra-bit and successive-slot

technique in the tree of Figure 3.10. 53

3.12 Non-uniform transmission range for N nodes. 55

4.1 Balanced multi-chain. 57

4.2 Unbalanced multi-chain. 66

4.3 Scheduling unbalanced multi-chain with 5 chains. 69

4.4 The structure of a balanced k-ary tree. 77

iv

4.5 States of the nodes until the sink receives the first packet in linear

network with single frequency. 80

4.6 States of the nodes until the sink receives the first packet in linear

network, with two frequencies. 81

4.7 General structure of the Rhizome tree. 86

4.8 Rizhome tree for 6 nodes when r1 = 0. 95

4.9 Schedule for Figure 4.8. 96

4.10 Rizhome tree for 6 nodes when r1 > 0. 100

4.11 Schedule for Figure 4.10. 100

5.1 Complete graph for 5 nodes, the numbers next to each edge represent

the nodes covered by the edge. 108

5.2 Heuristic algorithm, scenario 1 & 2, Rmax=100, 20 nodes. 124

5.3 Dynamic programming algorithm, scenario 1 & 2, Rmax=100, 20 nodes.125

5.4 Heuristic & dynamic programming algorithms, scenario 1, 20 nodes. . 125

5.5 Heuristic & dynamic programming algorithms, scenario 2, Rmax=100,

20 nodes. 126

5.6 Heuristic algorithm, scenario 1 & 2, Rmax=100, 40 nodes. 126

5.7 Dynamic programming algorithm, scenario 1 & 2, Rmax=100, 40 nodes.127

5.8 Heuristic and dynamic programming algorithms, scenario 1, 40 nodes. 127

5.9 Heuristic and dynamic programming algorithms, scenario 2, Rmax=100,

40 nodes. 128

5.10 Heuristic algorithm, scenario 1 & 2, Rmax=100, 100 nodes. 128

5.11 Dynamic programming algorithm, scenario 1 & 2, Rmax=100, 100

nodes. 129

5.12 Heuristic and dynamic programming algorithms, scenario 1, 100 nodes.130

5.13 Heuristic and dynamic programming algorithms, scenario 2, Rmax=100,

100 nodes. 131

5.14 TSP, 3 nodes . 132

5.15 Direct shortcut for Figure 5.14. 132

5.16 Better shortcut for Figure 5.14. 132

A.1 TSP tour, 20 nodes. 148

v

A.2 Heuristic algorithm, scenario 1, L=700, 20 nodes. 148

A.3 Heuristic algorithm, scenario 2, L=700 & Rmax=75, 20 nodes. 149

A.4 Dynamic programming, scenario 1, L=700, 20 nodes. 149

A.5 Dynamic programming, scenario 2,L=700 & Rmax=75 , 20 nodes. . . 150

A.6 TSP tour, 40 nodes. 150

A.7 Heuristic algorithm, scenario 1, L=4200, 40 nodes. 151

A.8 Heuristic algorithm, scenario 2, L=4200 & Rmax=150, 40 nodes. . . . 151

A.9 Dynamic programming, scenario 1 & 2, L=4200 & Rmax=150, 40 nodes.152

A.10 TSP tour, 100 nodes. 152

A.11 Heuristic algorithm, scenario 1 & 2, L=500 & Rmax=150, 100 nodes. . 153

A.12 Dynamic algorithm, scenario 1 & 2, L=500 & Rmax=150, 100 nodes. . 153

vi

List of Tables

5.1 Results for label covering problem and our algorithm, 20 nodes. . . . 132

5.2 Results for label covering problem and our algorithm, 40 nodes. . . . 132

5.3 Results for label covering problem and our algorithm, 100 nodes. . . . 132

vii

Chapter 1

Introduction

This chapter addresses the motivation, design goals, challenges, contributions of the

thesis and its outline.

1.1 Motivation

Wireless communication, such as cellular network, is generally based on planned

infrastructure or pre-deployment of infrastructure for communication. However,

due to recent diverse applications of wireless networks in certain environments (i.e.,

earthquake hit-places, hostile zones, battlefield, volcano prone areas) infrastructure

is not available. A demand for self-arrangement, independence (infrastructure-less),

adaptability and cost reduction has increased. In the aforementioned situation, An

ad-hoc wireless sensor network (WSN) is the only available solution to respond to

these issues such as providing connectivity among nodes in the absence of infras-

tructure [23]. In addition, this network yields a new promising scheme to extract

and obtain data from the monitored environment. These nice properties motivated

us to focus on this area.

Technological advances have led to the invention and development of small wire-

less devices, including sensors [72] which have the capability of sensing, processing,

computing and communication. Typically, WSNs are comprised of hundreds or

thousands of sensors [73], which are dispersed either randomly in an inhospitable

terrain or deployed deterministically in a specific area of interest without any pre-

existing infrastructure, and many objectives are associated with them. During either

Chapter 1. Introduction 2

deployment, sensors configure themselves to form the network in an ad-hoc fashion,

which is a common mode of operation in WSNs [72], and communication happens

either by means of single-hop or multi-hop dissemination, depending on the distance

between the sensors [72, 12, 73]. Correspondingly, WSNs have attracted consider-

able attention in the research community for their own numerous applications in

various areas [12], for instance, military applications, fire detection, healthcare and

environmental or habitat monitoring [73, 58, 48].

Sensors are small devices that are resource-constrained as having limited power,

small memory, relatively slow processors or small transceivers [73]. They are usually

powered by batteries, which must be either replaced or replenished when depleted.

For some applications, neither option is functional, especially when they are deployed

in exotic environments wherein human intervention is not allowed or when sensors

are deployed densely. Energy efficiency, consequently, becomes one of the most

challenging issues in WSNs and is considered as a key factor for extending the

network lifetime. Therefore, many algorithms and techniques have been proposed

and designed from different perspectives to utilise this limited energy budget more

efficiently, in order to improve their lifetime and operation as much as possible [12].

Data collection is one of the fundamental operations in WSNs via tree topology.

Each of these sensors is capable of sensing the monitoring area and routing data

back to a collection point called a sink or base station to achieve an application

goal. Once the sink has received the data, it makes an appropriate decision based

on the requirements of the application. The sink is considered as a powerful node to

which all data is sent and through which the WSN interacts with the outside world.

Furthermore, reporting data from sensors to the sink naturally forms a many to one

traffic paradigm in WSNs.

In the existing literature, there are mainly two modes of data collections which

have been mentioned. These are data collection with in-network processing (aggre-

gation) and data collection without aggregation. In some applications, such as when

the sink needs to determine the maximum temperature in a specific area, it is not

important that each data packet is delivered to the sink individually. In such a case,

the sink does not care about all the data; if all nodes send their data to the base

station, the result is an over-consumption of energy due to the number of trans-

Chapter 1. Introduction 3

missions. Therefore, the aggregation strategy can be used to reduce total packet

transmission by performing local calculations at each parent node and forwarding

only aggregated values to the sink [58].

For instance, consider a scenario where seven nodes are deployed to monitor an

agricultural area as shown in Figure 1.1. It is a data collection tree rooted at the

sink (S). Consider that this set {37, 30, 27, 22, 19, 25, 15} represents the values for

each node {G,F,E,D,C,B,A} and the sink asks for the maximum temperature.

Therefore, when each parent receives packets from its children in addition to its

own packet, some calculation needs to be performed to determine a candidate for

the maximum value and forward it to its parent until the sink receives the maximum

value. Thereby, node C receives {27, 30, 37} values from its children in addition to

its own value 19. Then, it chooses the maximum value which is 37 and forwards it to

its parent A. Moreover, the node B has two values {22, 25} after receiving the value

22 from its child D, it forwards the maximum of them which is 25 to its parent.

Similarly, node A has three values {15, 25, 37} after receiving two values {25, 37}

from its children B and C. It therefore calculates the maximum value, which is 37,

and forwards it to the sink S.

On the other hand, there are many applications in which all packets are indi-

vidually important. For instance, when sensors are deployed for structural health

monitoring or leak detection, packets need to be collected from all sensors (collec-

tion without aggregation) to learn the conditions at each individual sensor location,

otherwise the exercise could be a failure [37] or lead to catastrophes. It has been

stated that the case of data collection without aggregation is a more challenging

problem compared to the data collection with in-network processing (aggregation).

Hence, this thesis investigates the case of the former.

In addition, there are two main methods that are used to order data collec-

tions [38]. In the first method, triggering of data collection can be performed by the

base station; this process can be fulfilled by sending the query from the sink to either

a sub or whole area for asking for the data. This kind of data collection has a great

impact on energy conservation. This is because sensors do not need to send their

data continually to the sink; instead they send data on demand. Asking the sink for

the maximum temperature from the sensors is an example of this method. However,

Chapter 1. Introduction 4

data collection can also be performed by sensors according to a second method. For

example, when sensors are used for event detection (e.g. intruder detection in mili-

tary surveillance, fire detection or habitat monitoring), data is promptly forwarded

to the sink without being asked by the sink. Accordingly, different objectives are

associated with data collection. For instance, in the first method energy efficiency

is the main priority while fast data collection is the main concern in the second

method.

S

15 A

19 C

27

E

30

F

37

G

25B

22D

Fig. 1.1 Data collection, maximum temperature.

1.2 Challenges, Objective and Solutions

Despite an immense effort by the research community, limited energy sources re-

main a big challenge in WSNs, especially when they are deployed in harsh areas

or scattered densely; battery replacement or replenishment is unlikely, hence their

energy should be utilised efficiently to prolong their lifespan as much as possible.

Another challenging issue is their topology. After their deployment and topology

construction, the topology is more likely to change due to node failure. Therefore,

reconstructing topology should be energy efficient. Constructing an energy saving

tour for deployed static sensors is another severe challenging area in WSNs. Limited

memory is an additional challenging issue in WSNs. As the sensor nodes are small

devices, battery powered and having a small memory, the mechanism of their data

collection should be efficient to avoid buffer overflow. The overall aim of this thesis

is to design a productive energy saving strategy for WSNs. To achieve this, two

main topics are investigated in this thesis. Namely, idle listening state and sink

mobility with single hop communication since there is a gap for research for these

Chapter 1. Introduction 5

two areas as we will be explaining in the literature review.

The following are the two main strategies that should be employed to improve

energy consumption in WSNs:

1. Using a power management mechanism is a very promising technique to achieve

energy saving in WSNs. Since the transceivers are the most energy consuming

part of the sensors, when sensors do not need to take part in the communi-

cation, most circuitry parts of the sensors can be shut down or put in a sleep

mode to save energy. In other words, energy saving can be achieved by al-

ternating between active and sleep mode. Notably, another way in which a

substantial amount of energy is wasted is in idle listening state. Idle listening

occurs when a node is listening to the channel to receive a packet but there

is the possibility that the sending node does not have data and remains silent

[9, 38, 78]. Idle state is comparable to receive state in terms of energy con-

sumption, and the detailed explanation for that will be given in Chapter 3.

The thesis therefore devotes a main part of this dissertation to dealing with

this issue (Chapters 3 and 4).

2. Sink mobility with single hop communication is another method to achieve en-

ergy saving in WSNs. There are certain issues associated with static networks.

Firstly, the many-to-one scheme is a more common way of constructing a net-

work and collecting data from sensors. However, some of the nodes (especially

those which are close to the base station) become a relay for others to forward

their packets toward the sink, and they drain their energy very swiftly [47].

As a result, the entire network is paralysed while nodes that are far from the

sink still functional but cannot forward their packets to the sink. Secondly,

sometimes there are some disconnected parts that cannot communicate with

each other and construct a global network. The above mentioned points are

strong reasons for the allocation of the second part of this thesis (Chapter 5)

to data collection with a mobile sink.

Chapter 1. Introduction 6

1.3 Contributions

The main contributions are as follows: The first contribution is in Chapter 3, where

we improve upon a method proposed by Zhao and Tang [81, 82]. They show that in

the setting when only some nodes possess data there is a restriction at which each

parent node must listen to its children before making a transmission. Two main

issues arise in this scenario. Firstly, there are several idle listening states which

cause severe energy consumption. Secondly, the first situation leads to high latency.

As a result, they proposed a heuristic algorithm to reduce idle listening states. The

method by Zhao and Tang produces successive-slot schedules. It was observed that

there is still room to optimise their technique. Therefore, an optimisation technique

is proposed: the extra-bit technique. In our technique, each packet is associated

with one extra bit (0/1) that alerts the parent node whether or not more packets

are coming. Based on that extra bit, the parent node can either continue in listening

or turn off its radio toward its child node. Therefore, idle listening is further reduced

and this also minimises latency. Next, it is proven that the optimal number of time

slots for data collection in a chain using successive-slot or extra-bit schedules is

4N − 6, where N ≥ 3 is the number of nodes in the network excluding the sink.

Then, it is shown how to calculate the expected amount of idle listening for extra-

bit schedules and successive-slot schedules in chains and trees where each node has

data with a fixed probability, and it is demonstrated that the expected amount of

idle listening is significantly smaller with the extra-bit technique. A version of this

chapter has already been published as a conference paper [62].

Chapter 4 contains the second contribution. We derive lower bounds on the

optimal schedule length for some other special cases of the tree including balanced

chains (multi-chains), unbalanced chains, balanced binary tree, four level balanced

k-ary tree and Rhizome tree. Moreover, the pseudo code is designed and shown for

balanced multi-chains (multi-lines) and Rhizome tree. The proposed algorithms for

balanced chains and Rhizome tree match the lower bound, whereas the proposed

algorithm for unbalanced chains requires at most 5 steps more than optimal. Fur-

thermore, due to the nature of communication, each node must go through three

states: transmit, receive and idle state. The use of two frequencies is proposed, with

multiple antennae to reduce the need for idle state among nodes. Then, the optimal

Chapter 1. Introduction 7

schedule is derived again for all cases except for the unbalanced chains. Part of this

chapter has been submitted and accepted to a journal [61].

The last contribution is in Chapter 5, where energy saving is attempted via a

different technique (i.e., sink mobility). Due to non-uniform energy depletion among

the nodes in the many-to-one pattern or sparse deployment of the sensors in different

zones that cannot form the complete network, sink mobility has recently encouraged

the research community to remedy these problems; therefore, chapter 5 is devoted

to addressing the issue of sink mobility for data collection from static sensors to

enhance the life span of the network by minimising the total energy consumption.

In order to achieve this, the problem is formally defined and it is shown that it

is NP -complete. As a result, two different algorithms are proposed. The first

algorithm is a heuristic and named max-ratio, and the second algorithm uses the

dynamic programming technique. In addition, two scenarios for each algorithm are

considered. In the first scenario, there is no restriction on the transmission, whereas

in the second setting the maximum transmission range is determined. At the end,

simulations in Matlab have been performed to show the impact of the proposed

techniques on energy saving. A version of this chapter has already been published

as a conference paper [63].

1.4 Thesis Outline

The thesis has been written in six chapters. Chapter 2 provides some basics about

graphs, complexity theory, types of interference and a literature review. In Chapter

3, we discuss and propose an optimization technique to mitigate the idle listening

problem in a constrained topology and compare our results with the other proposed

techniques. Chapter 4 extends the proposed technique of Chapter 3 towards the

more general structure of balanced multi-chains, unbalanced multi-chains, k-ary

tree and Rhizome tree. In Chapter 5, we introduce and bring the sink mobility into

a sensor network to collect data. We propose two algorithms for the mobile sink to

specify its trajectory for data collection and minimize the total energy consumption.

We also consider two scenarios for each algorithm. Moreover, the simulation results

are presented and compared with the label covering problem which we will describe

Chapter 1. Introduction 8

in the literature review and also in chapter 5. Chapter 6 includes a summary of our

contributions and specifies some future research directions.

Chapter 2

Preliminaries and Related Work

This chapter presents the background information that is necessary to understand

some essential terminologies and notations throughout this thesis. First, we define

some terminologies of graph theory; we subsequently explain the interference model,

and finally complexity theory.

2.1 Graphs

Graph theory is a field in mathematics wherein many real world situations from

various different fields, including communication, scheduling tasks and real-world

networks, can be described, modelled, analysed and represented graphically to help

us to easily understand many properties of the problems. As a result, this field

gained popularity and became an attractive area for the research community.

A graph simply is a collection V of vertices (nodes) and E of edges that is

represented as G = (V,E). |V | expresses the total number of vertices and |E|

indicates the total number of edges. Vertices are connected to each other by means

of edges. In particular, each edge connects exactly two vertices. For instance, an

edge e = (v, u) is said to be incident with vertices v, u, where v, u ∈ V and e ∈ E.

This implies that they are connected (adjacent or neighbouring). A graph is called

an undirected graph if its edges have no direction. In other words, the edge e = (u, v)

is equivalent to e = (v, u), i.e., they are unordered pairs [41], meaning that they are

symmetrical.

A walk W = {v0, e1, v1, . . . , vi−1, ei, vi, . . . , en, vn} is a sequence of vertices and

Chapter 2. Preliminaries and Related Work 10

edges in a graph, such that each edge ei = (vi−1, vi) connects two vertices in the

sequence, for 1 6 i 6 n. The number of traversed edges in the sequence indicates

the length of the walk, i.e, value n is the length of the walk. A walk is called a path

P if both the traversed vertices and edges are distinct (i.e., there are no repeated

vertices and edges), with the exception of the possibility that the initial and final

vertices are the same. Then, it is said to be a cycle. In addition, a graph G is

connected if there is a walk between every pair of vertices, as shown in Figure 2.1

[16, 32, 7].

v1

v2

v3

v4

v5

Fig. 2.1 Connected graph, 5 nodes.

A complete graph is a graph in which a unique edge connects every pair of

distinct vertices, i.e., graph G = (V,E) is a complete graph if for all v, u ∈ V with

v 6= u there is an edge between them [41], see Figure 2.2. An acyclic graph is one

with no cycles. A tree is a connected graph that has no cycle. Trees are important to

study due to their common and widespread usage in diverse fields and applications.

A directed graph (or digraph) is a set of vertices and edges in which all the edges

are directed (have direction), and each edge connects an ordered pair of vertices.

That is, each edge points from one vertex to another. In other words, the edge

e = (u, v) is not equivalent to e = (v, u) [42, 32]. Traffic flow, such as with airlines,

trains and cars are some applications of directed graphs, in which specifying the

direction is quite essential to avoiding collisions. Besides adding a direction to an

edge, each edge can also be associated a weight, which often represents some kind

of cost or distance depending on the application. A weight can be represented by

a weight function as w : E −→ R. This extension is a natural one when modelling

real-world networks as graphs. For example, when modelling a railway network as a

graph, railway stations are naturally represented by vertices, whereas two adjacent

stations are connected by means of an edge. We then assign a weight to an edge

representing the distance between those two stations. In our model in chapter 5,

we represent the problem as a weighted graph where each edge is associated with

Chapter 2. Preliminaries and Related Work 11

a value that represents the distance between two points [42]. In some applications,

due to their own restrictions, we cannot pass through all the vertices and edges of

the graph. Hence, some of the vertices or edges should be skipped to achieve the

application goal. Our problem in chapter 5 is an example of such an application. We

therefore should be familiar with another interesting term of the graph theory called

a sub-graph. The graph G′ = (V ′, E ′) is defined as a sub-graph of G = (V,E) if G′

consists of a subset of vertices and edges of G. That is, V ′ ⊆ V and E ′ ⊆ E [42, 41, 7]

as shown in Figure 2.3.

v1

v2

v3

v4

v5

Fig. 2.2 Complete graph G, 5 nodes.

v1

v3

v4

v5

Fig. 2.3 Subgraph G′ of graph G in Figure 2.2.

One version of graph called a unit disk graph (UDG) is mainly considered to

study and model wireless sensor networks. A unit disk graph is a graph wherein

the nodes, which are in the Euclidean plane, all have uniform unit radii (homoge-

neous) [16, 14]. Moreover two nodes can communicate with each other (adjacent) if

the center of one disk lies within the radius (transmission range) of the second disk

or vice versa [71] as shown in Figure 2.4. However this model is too idealistic and

does not account for the existence of obstacles (it is not accurate).

Chapter 2. Preliminaries and Related Work 12

D1 D2

Fig. 2.4 Unit disk graph.

2.2 Interference Model

Successfully receiving and decoding a signal from the intended transmitter is a great

concern and challenging task in wireless communications. To address this issue,

therefore, two models of interference are widely considered in the literature: the

physical interference model and the protocol interference model.

In the physical interference model, which is also called the signal-to-interference-

and-noise-ratio (SINR) model, the intended receiver node j can successfully receive

a signal (correctly decode it) from the intended transmitter node i, if and only

if, the SINR at node j is above its predefined threshold β. When the intended

transmitter node i transmits to node j, the simultaneous transmissions of other

nodes whose signals reach the node j are considered as interference at node j. Hence,

a transmission succeeds only if the received signal strength, divided by the total

simultaneous transmissions of other nodes’ strength, plus the noise (SINR), is above

some predefined threshold [45], and this is mathematically expressed as follows:

SINR =

pi
d(i,j)α

WN +
∑

v∈V,v 6=i

pv
d(v, j)α

≥ β (2.1)

Here pi is the transmission power of node i, d(i, j) is the distance between node

i and j; α is the path loss exponent, 2 6 α 6 6, depending on the environment [65].

The sum in the denominator calculates the total transmission power of the simulta-

neous nodes with node i and WN is the ambient noise. Due to the high complexity

in the calculation of the physical interference model, researchers paid attention to

a simpler model, which is called the protocol interference model. In the protocol

interference model, the intended receiver node j can only receive a signal correctly

from transmitter node i if and only if node j is within the transmission range of node

i and outside the simultaneous interference range of other nodes. That is, two nodes

can communicate only if they are within the transmission range of each other [10].

Chapter 2. Preliminaries and Related Work 13

It can be observed that in the physical interference model the intended receiver can

still decode the signal correctly if its received signal is above its threshold. However,

in the protocol interference model, correct receiving of the signal at the intended

receiver occurs only when it falls inside transmission range of the intended trans-

mitter and outside the interference ranges of all other simultaneously transmitting

nodes. Throughout this thesis, we consider the protocol interference model due to

its simplicity. A detailed explanation of the interference models and signal detection

are beyond the scope of this thesis.

2.3 Complexity Theory

Although the area of computational complexity is somewhat complicated and we

cannot cover the exposition of it in this thesis, we try to briefly define and explain

some terminologies which give an intuitive understanding of the complexity of the

theory and the types of the problems which are relevant to the work presented in

this thesis.

In its simplest form, an algorithm is a well-defined procedure that is composed

of a finite number, and unambiguous sequence, of instructions for solving a compu-

tational problem. In other words, the algorithm is the list of computational steps

that takes the set of input values of the problem, transforms them and produces

the desired output [15]. Making an algorithm as efficient as possible in terms of

computational resources (time, memory, bandwidth etc.) [41] is the main goal of

the algorithm designers, and in certain applications such an efficient algorithm is

extremely important.

There can be several algorithms for solving the same problem, however we should

choose the most efficient one (a fast one) for solving the problem [15]. Namely,

there are several possible solutions to a problem. When we want to measure the

efficiency of two algorithms for the same problem, we compare their number of

steps regardless of the hardware or software environment (machine independent

model). Therefore, mathematicians and scientists designed a uniform measurement

to measure the efficiency of algorithms, and use a special notation as we will explain

in the next paragraph.

Chapter 2. Preliminaries and Related Work 14

In general, most of the references are mainly interested in determining the time

complexity (running time) to measure the efficiency of an algorithm. Hence, the

time complexity of an algorithm is the number of computational steps required by

the algorithm to process the input and produce the output. Strictly speaking, the

efficiency of an algorithm is a measure of its run-time proportional to the number

of operations as a function of the input size of the problem. Thus, the input size of

the problem is a key factor to determine the efficiency of an algorithm. So when we

analyse an algorithm, we mainly refer to the maximum number of steps (worst-case

running time) required by the algorithm which is also called an upper bound on

the time complexity and denoted using the symbol O (read as big-Oh-notation).

Whereas, the minimum number of steps of the algorithm is called the best case time

complexity. Furthermore, A lower bound is a function such that no algorithm can

have smaller running time than specified by that function and denoted by Ω (big-

Omega). It is worth pointing out that one describes the running time taken by an

algorithm as a function of the input size; this is because the running time increases

with the input size of the problem [15]. For instance, the running time of sorting

n = 10 numbers is smaller than n = 100 numbers.

In general, we consider two different functions f(n) and g(n) for the same al-

gorithm. Then, we say that f(n) is O(g(n)), if for all sufficiently large input n

(n −→ ∞), f(n) is bounded by a constant multiple of g(n). This means that the

growth rate of f(n) is at most O(g(n)). In other words, f(n) ∈ O(g(n)) if there

exists some n0, c > 0 such that f(n) 6 c · g(n) for all values n ≥ n0, where c

is a constant which is independent of the input size, and n0 is a crossing point or

threshold where function g(n) overtakes f(n). This is called asymptotic complexity

analysis.

Suppose there is an algorithm whose running time is represented by a function

f(n) = 3n3 + 2n+ 1 on every input size n (for an array of n numbers, its input size

is n). Then we say that the time complexity (running time in terms of steps) of this

algorithm is O(n3). In other words, we account only for the higher order term and

discard the lower order terms, because when the input size is large, the effect of the

lower order terms are small and insignificant, such that they can be ignored (i.e.,

the higher order term overtakes the lower order terms).

Chapter 2. Preliminaries and Related Work 15

We can say that the running time of an algorithm is polynomial if it requires

at most O(nc) steps, where n is the input size of the problem and c some constant.

In other words, a problem is polynomial time solvable if there is an algorithm that

can correctly solve it in O(nc) time. Conversely, we say that the running time of

an algorithm is exponential if its running time is O(cf(n)) where c is a constant and

f(n) is some polynomial function of n [31]. Notably, an exponential algorithm can

still be desirable for a small input size.

We should now turn our focus to some other notations. A decision problem is

a problem for which there are only two possible answers, either yes or no, as an

output at the end; e.g., if there is an array A = {a1, a2, ..., an} which asks whether

or not it contains the value of k; after scanning all the elements, the answer is yes

if this value of k is found; otherwise it is no.

The complexity class P refers to the set of all decision problems that are poly-

nomial time solvable (efficiently solved) under resource constraints (a deterministic

machine). That is, the set of all problems that admit a polynomial time algorithm

to solve it. On the other hand, the complexity class NP aims to target the set of all

decision problems that are polynomial time solvable on a non-deterministic machine

(an unrealistic machine) or equivalently whose solutions can be efficiently verified

on a deterministic machine.

The non-deterministic machine is a powerful machine such that, whenever there

are multiple choices for executing a program, it can follow all the possible choices

simultaneously instead of following each one iteratively. Additionally, all class P

problems can be easily solved polynomially on a non-deterministic machine. There-

fore, P ⊆ NP , and the famous remaining unsolved question is whether or not the

two classes P and NP are the same. Many scientists believe that P 6= NP .

There are a set of particular problems in NP , which are called NP -complete

problems. They essentially cannot be solved in polynomial time (a polynomial time

algorithm is not expected in general instances) unless P = NP . It is quite difficult

to prove a problem to be NP -complete from scratch without robust knowledge of

that area, therefore most of the proofs for a new problem depend on the already

known NP -complete problems via a process called reduction. One of the earliest

problems that was proved to be NP -complete is satisfiability by the Cook theorem

Chapter 2. Preliminaries and Related Work 16

and most of the proofs for other NP -complete problems are built upon it.

We use a reduction (finding a relationship between problems) to prove that a new

problem is NP -complete. For instance, given two problems A and B, we suppose

that we already know that A is NP -complete and B ∈ NP . Thus, if we can show

that any instance of A can be transformed polynomially to an instance of B, it is

said that A is polynomially reducible to B. Accordingly, if there is a polynomial

time algorithm to solve B, then it must also solve A or vice versa. Thus, B is

NP -complete too [41, 28, 15, 18]. Furthermore, if there is a problem C where B

is polynomially reducible to C, but we do not know how to conversely reduce C to

B or if C ∈ NP , then we do not just say C is NP -complete, instead we say that

it is NP -hard [41]. In other words, NP -hard problems are problems to which an

NP -complete problem can be polynomially reduced, they don’t need to be in NP.

There are several strategies that can be used to approximately design a polyno-

mial time algorithm to solve and deal with NP -complete problems. Namely, we can

use a more clever way to design a polynomial time algorithm without an exhaustive

search (naive exponential computations). Some of these techniques are:

1. An approximation algorithm is a strategy that tells us how far the proposed

solution is from an optimal solution in the worst case scenario, which is also

called an approximation ratio (by which factor the proposed solution is away

from the optimal).

2. A heuristic algorithm is a useful strategy that proposes a good polynomial

time algorithm without any guarantee that it is the optimal one, or that it

will always find a solution.

3. Additionally, the dynamic programming technique is another powerful tech-

nique that is used to deal with hard problems. It first finds the optimal

solutions to sub problems and next from these sub problems computes the op-

timal solution to the original problem (i.e., solves the original recursively from

the sub problems [41, 18]. The running time of a dynamic programming algo-

rithm sometimes is high (depends on the problem), however it is smarter than

an exhaustive search. This is the reason that the complexity of the dynamic

programming algorithm is called pseudo polynomial.

Chapter 2. Preliminaries and Related Work 17

We used both a heuristic algorithm and dynamic programming techniques to find

the solution to our NP -hard problem.

2.4 Related Work

2.4.1 Related Work to Idle Listening and Scheduling

WSNs have penetrated into various fields for different purposes. During data col-

lection many problems arise due to resource constraints and these pose numerous

challenges. Therefore, several algorithms and techniques have been presented to

tackle these challenges from different angles.

In [76] a new algorithm is proposed and identified as GAF (Geographic Adaptive

fidelity). The main purpose of this algorithm is to conserve energy through load

balancing. It tries to utilise redundant nodes that are equivalent for routing and

alternate between them (activate/deactivate nodes) while the connectivity level is

preserved. The main idea of the algorithm is basically composed of two steps. In the

first step, after node deployment, the whole area is divided into square grids of side

length r = 1√
5

(normalized to half of the radio range) in which the nodes located

in each grid are equivalent with regard to routing. Furthermore, nodes in adjacent

grids can communicate with each other and local information such as GPS is used

to determine node density and redundancy. Secondly, there is cooperation between

nodes inside each grid for the state transition (sleep/awake) so as to provide load

balancing for packet forwarding. The node that will be responsible for routing is

elected selected through a ranked based election selection algorithm which considers

the nodes’ residual energy. As a result, energy conservation is achieved. One of the

main drawbacks of this algorithm is the need to use GPS to identify redundant nodes,

which is expensive. Moreover, the proposed algorithm is not suitable for dynamic

environments in which topology frequently changes. Furthermore, the hop length

is forced to match the length of the square, which is roughly half the transmission

range of the actual radio which leads to high latency. Another drawback, as far as I

understand, in practice, is that although GAF requires one node per cell, sometimes,

sometimes some of the grids are more likely to be empty; as a result, there is no

guarantee of complete connectivity. Furthermore, the orientation of the source-

Chapter 2. Preliminaries and Related Work 18

destination is only considered in one direction while there are at least three directions

for each cell except the corner cells (for which there are two directions).

Another direction of research aims to achieve energy conservation through load

balancing by taking advantage of redundancy is Span [11]. Span is a randomized

distributed algorithm that locates between MAC and network layers. It is mainly

designed to dynamically choose a subset of nodes as coordinators (forwarders) from

all nodes in the network to take part in the routing while the connectivity guarantee

is provided. The coordinator eligibility rule is used to elect a node to be a coordi-

nator. A node can become a coordinator only if two of its neighbours cannot either

directly or through one or two coordinators communicate with each other. However,

if there is a need of a coordinator there is a possibility that several nodes simultane-

ously decide to be a coordinator; as a consequence, collision happens among them.

To resolve this issue, each node delays its coordinator announcement by random

back off delay, wherein the residual energy of the node and the number of neigh-

bours that can be connected are taken into consideration as parameters. In general,

the algorithm rotates the coordinators’ election among the redundant nodes in or-

der to ensure all nodes provide connectively roughly equally. The algorithm also

tries to keep the number of nodes that become coordinators as low as possible. The

coordinators should withdraw when all the pairs of its neighbours can communicate

either directly or indirectly. In addition, the nodes only make a local decision to

join the network. As a whole, the lifetime of the network improves when the ratio

of awake/sleep time and the density of the nodes increases. One of the main draw-

backs of this algorithm is that neighbour and connectivity information are required

to make a decision about whether the node becomes a coordinator or not. Thus,

modification in the routing protocol may be required which means that it depends

on the routing protocol.

In [26] energy consumption is analysed in general. They then focus on linear

topology for two cases. First, for the setting where the nodes have an equal number

of packets; second, where nodes have a variable number. Furthermore, both cases,

of equidistance and variable distance among the nodes, have been analysed and the

formula for optimal energy consumption is provided correspondingly. Further study

towards GAF is performed and it is shown that by dividing the area into non-equal

Chapter 2. Preliminaries and Related Work 19

lengths and using variable transmission ranges among the nodes, more energy can

be saved.

In [85] a probabilistic scenario is proposed to benefit from node redundancy and

achieve load balancing so as to save energy. They are interested in computing the

number of involved hops that are required from source to reach the destination

as a function of distance and the density of the active nodes. The basic idea of

this algorithm is that when the source node has a packet, it broadcasts it to the

active neighbour nodes that are within its transmission range. This packet contains

its own and intender receivers’ location. After broadcasting, the forwarding phase

takes place, during which the focus is on the closest coverage area to the intended

destination that is divided into regions. The priority is for the first slice of the region

which is closest to the intended destination. One of the random nodes which has

high priority in terms of closeness to the destination becomes a transmit node (relay

node) for the next hop. More specifically, the coverage are of the sender is divided

into a number of regions. If there is no relay node in the first slice of the region,

the next slice is tested until one of which can fulfil the task. Namely, this pattern

continues until the packet reaches the area wherein the destination is either within

it and receive the packet directly or is one hop away from it and only needs a single

hope to receive it.

It can be observed that in reality fewer hops are required to deliver the packet

from source to destination, whereas, in GAF due to the restriction of the radio range

to r = 1√
5
, in the worst case scenario more hops are required for transmission than

GeRaF(geographic Random Forwarding) which leads to high latency.

Xin Guan et al. [33] investigated energy saving for the static network when

sensors are deployed randomly in an area, where the sink being outside this area.

They proposed a load balancing algorithm to save energy. Their algorithm mainly

consists of two steps. In the first step, sensors are classified into layers where the

closest layer to the sink is labelled as layer 0 and the furthest layer is labelled as

layer d. After the step of layer construction, the second step begins. In this step,

each node at layer i (for i = 1, . . . , d) selects one of the parent nodes at layer i− 1

to forward its packet. Interestingly, their formula proposed to select parent nodes

for packet forwarding, which is based on the distance between the two nodes and

Chapter 2. Preliminaries and Related Work 20

the residual energy. They also proposed data aggregation to further reduce energy

consumption. However data aggregation is not always possible for an application

where each individual packet forwarding is indispensable.

Energy efficient data aggregation scheduling is another area of research; specif-

ically, the energy that can be saved is via the minimization of the state transitions

of the nodes in the network. In [52] the authors observed that if the consecutive

time slots are assigned to the links (children) associated with the parent node, the

frequent transient states are reduced substantially which lead to great energy saving

and lower latency. In contiguous link scheduling, the parent node needs to start up

only twice; first to receive all the data from its children consecutively, and second,

to forward the received data to the upstream node. They consider only two different

topologies; tree and directed acyclic graph (DAG), in their paper. The centralized

and distributed algorithms are proposed to achieve contiguous link scheduling. It

can be observed that in the centralized algorithm, first, the number of time slots

are assigned to the nodes in decreasing order of their incident link (i.e., weight),

then either recursive back-tracking, or a minimum conflicts heuristic algorithm that

are given, are used to reduce the number of time slots. As they state, the recursive

back-tracking algorithm is a brute force search and is not desirable due to its high

complexity. As a result, the fast algorithm (minimum conflicts heuristic algorithm)

is proposed to reuse time slots and minimize latency.

Further investigation has been conducted towards continuous link scheduling

and expanded to heterogeneous networks [51]. They prove that the contiguous link

scheduling problem in WSNs is NP-complete. The authors show that the proposed

algorithm has a theoretical performance bound to the optimum in both homogeneous

and heterogeneous networks. A similar issue is also examined in [84]. Based upon

all aforementioned research one can observe that great importance has been paid

towards idle listening and that there is still a gap for further research to be filled.

In [44], the problem of constructing an efficient data aggregation tree is investi-

gated and termed the minimum energy cost aggregation tree (MECAT), in which

the total energy consumed by sensors for transmission and reception is minimal.

Two types of this problem are considered: with and without relay nodes. Both

cases are shown to be NP-complete. For the case of not using relay nodes, they

Chapter 2. Preliminaries and Related Work 21

find that the shortest path tree algorithm is a 2-approximation algorithm . For the

case where relay nodes are considered in order to enhance the network connectiv-

ity, it is shown that the shortest path and the Steiner tree algorithms each have a

bad approximation ratio in the worst cases. Then an O(1)approximation algorithm

is obtained by constructing the shortest path tree on the routing structure of the

capacitated network design problem.

In [8] an efficient routing of the traffic in the graph towards the sink is investi-

gated in order to maximize the lifespan of the network. To this end, the efficient

routing configuration with regard to efficient energy consumption (balancing energy

consumption throughout the network) is proposed wherein packets are forwarded

through multiple paths to the sink. This is achieved via determining a set of opti-

mal vectors (a vector represents a fraction utilization of each path used to send a

packet from node v to the sink) that minimize the energy consumption of the greed-

iest sensor node in the network. Contention based MAC protocol is used in the

module and the details of the energy consumption per packet per node are analysed

(i.e., reception, overhearing, idle listening, transmission). One of the main draw-

backs of this paper is that the authors consider unlimited retry in the transmission

until the packet is successfully delivered which is an unrealistic scenario.

The Low- Energy Adaptive Clustering Hierarchy (LEACH) is proposed by Heinzel-

man et al [36]. The basic idea of this technique is that a set of sensors are randomly

chosen to become cluster heads, to which other nodes send their data. Then, these

cluster heads aggregate the received data and send it to the sink. Since the cluster

heads have more responsibility, they are rotated in a randomized fashion in order to

achieve evenly distributed workload between the sensors and obtain fair energy de-

pletion among them. In the LEACH algorithm, the operation is divided into rounds

and each round is composed of two stages. The first stage is the setup phase where a

set of nodes based on the probabilistic formula are selected. Then the cluster heads

broadcast the advertisement in order to let the other nodes join the cluster heads

based on the minimum communication energy. Once the first phase is finished, the

second stage, called steady state, begins. In this stage the nodes send their data

to the cluster heads, then the cluster heads aggregate the data and finally transmit

it to the sink. Then a new round starts, with a new cluster head formation. One

Chapter 2. Preliminaries and Related Work 22

of the main drawback of this technique is that the setup phase is non-deterministic

and may lead to service interruption.

Similarly, in [35], further improvements are made on LEACH and the algorithm

named the Enhanced Low-Energy Adaptive Clustering Hierarchy (E-LEACH). Only

two main improvements are made in the first step (setup phase). First, unlike

LEACH, in E-LEACH a cluster head selection algorithm has been proposed for the

setting where sensor networks have non-uniform initial energy levels. Second, the

required number of cluster heads should increase by the square root of the total

number of sensors so as to minimize the total energy consumption. The second

phase (steady phase) of E-LEACH is the same as the second phase of LEACH.

Likewise, further study has been conducted towards cluster hierarchy in [2]. Unlike

LEACH and E-LEACH, in this paper cluster head selection with multi hop up to k

hops within each cluster are considered. As a consequence, energy consumption is

achieved by reducing communication between sensors and cluster heads. However,

cluster heads may run out of energy before the other sensors.

Florens et al. [21, 22] have addressed the issue of minimum data distribution

and collection times on tree networks for the scenario where each node is mainly

equipped with directional and then omnidirectional antennae, each node has an

arbitrary number of packets, and the node, upon receiving a packet, forwards it

immediately (i.e. there is no buffering). A lower bound was derived for certain

cases (i.e., a linear network, multi-line chain and tree, when the degree of the root

is one), and corresponding centralized algorithms have been described. To deal

with general trees, they then suggest that sub-trees should be linearised and that

the proposed multi-line algorithm for the system should be applied. In addition,

graphs with cycles (connected graphs) have been included in their analysis, and the

performance of their own algorithms, that have an approximation ratio of two, has

been compared with the optimal performance of such graphs. Their results became

the starting point for many subsequent papers.

Similarly, Song et al. [69] have addressed the problem of scheduling in WSNs

for a periodic traffic pattern, and the corresponding time and energy efficient algo-

rithm was presented. This differed from the results of Florens et al. [21, 22]. They

also paid attention to alleviation of energy wastage due to idle listening. Thus, a

Chapter 2. Preliminaries and Related Work 23

distributed implementation algorithm was provided, to let each node determine its

own duty cycle and put itself into a sleep state whenever it is not receiving a packet.

However, they did not state how they mitigated interference during scheduling. Sim-

ilarly, Bermond et al. [4] have also studied the delay in the data gathering process,

in WSNs. They analysed and provided the optimal schedule for data collection in

tree networks, for the case where the transmission and interference ranges of the

sensors are the same (i.e., dT = dI). Unlike [21, 22], in their analysis there is a

possibility of buffering the received packets and their later forwarding.

Similarly to Florens et al. [21, 22], the problem of a minimum completion-time

for scheduling data gathering in connected graphs has been studied by Gargano

et al. [29], for the setting where each node is equipped with a directional antenna.

Unlike Florens et al. [21, 22], they show that there exists an algorithm that can obtain

the optimal solution for any connected graph (i.e., they approach the problem by

finding the optimal solution to the collision-free path-colouring problem), for the

setting where the interference range DI is equal to the transmission range DT (i.e.,

DI = DT), and each node has a single packet.

Bermond et al. [3] have investigated the minimum-data gathering problem in

general graphs, for the setting where DI , DT ∈ R, such that DI ≥ DT > 0, and each

node has p packets (i.e., p ≥ 0). The lower bound was then determined, before they

showed that the problem is NP -hard. Finally, an algorithm with an approximation

factor of four for general networks was proposed, regardless of the value of DI , DT .

Furthermore, it has been shown that the problem still remains NP -hard for the case

DI > DT , even if each node has a single packet.

Gandham et al. [24] have considered minimum latency scheduling for data collec-

tion in trees, in a setting where all nodes have data. They show that the minimum

schedule length for data collection in linear networks is 3N−3, where N is the num-

ber of nodes in the chain, excluding the sink. Then unlike previous techniques, they

proposed a distributed scheduling algorithm. Their schedule is not a successive-slot

schedule (it will be defined later). Furthermore, they also show an upper bound

of max{3nk − 1, N} on the schedule length for multi-line networks, where nk is the

length of the longest line connected to the sink, and N is the total number of nodes in

the network. For tree networks, they also show an upper bound of max{3nk−1, N},

Chapter 2. Preliminaries and Related Work 24

where nk is the number of nodes in the largest one-hop sub-tree of the root. Fur-

ther investigation has been performed by the same authors in [79]: firstly, for the

case where a large amount of data is sparsely distributed (each node has a different

amount of data); and secondly, for the case where the data is small and can be

aggregated on the way to the sink. Similarly, scheduling for data collection has also

been addressed by Choi et al. [13]. They show a lower bound of 3(N − 2) time slots

for collecting data in a chain, which matches the results from [24], because they take

N as the number of nodes, including the sink. Moreover, they show that finding a

minimum schedule for general graphs is NP -hard. As a result, a heuristic algorithm

has been proposed, which tries to schedule as many interference-free segments as

possible, in order to minimise the length of the schedule. The issue of the schedul-

ing problem has also been examined by Ergen et al. [20]. They also show that the

scheduling problem, in general, is NP -complete, and a heuristic algorithm has been

proposed.

Another paper that has addressed the scheduling problem in a graph for both

homogeneous and heterogeneous cases is [46]. The authors provide the optimal

solution for a certain homogeneous graph that consists of only three layers, and

where each node has only a single message to forward to the sink. Furthermore,

they show that the optimal solution on three-layered graphs is NP -hard, if each

node has various message sizes, and there are two approximation algorithms for

three-layered graphs. They also show that the data-gathering problem for general

graphs is NP -hard, and they provides an approximation ratio for it.

Dai et al. [17] also address data collection, considering a multi-sink setting for

multi-lines, and using a variable interference model, compared to the constant in-

terference distance of two hops, as in some of the above-mentioned articles. Incel

et al. [37] have argued that if all interference is mitigated between nodes, then data

collection can be performed in max{2nk − 1, N} time slots. They then proposed

an algorithm that matches the lower bound, where each node needs to buffer two

packets, at most. Incel et al. have also suggested using different frequencies for data

convergecast. They show that utilising two frequencies is sufficient to schedule all

nodes in a tree network. Haibo et al. [77] address data collection scheduling in a

model with different frequencies. Moreover, they prove a lower bound of 2N − 1

Chapter 2. Preliminaries and Related Work 25

slots for the chain.

Hang et al. [78] have demonstrated the architecture of the typical WiFi receiver

for processing incoming signals. They have explained that the incoming signal is first

received by the RF and then converted to a baseband signal, by a mixer. Next, the

baseband signal is sampled via a digital to analogue converter (DAC), and passed

to the CPU for decoding and recovering the original bits of the data frame. It has

been shown that both DAC and CPU operate at the full amount of work (full clock

rate) during the idle listening, similar to the receiving mode. Furthermore, it has

been stated that the power consumption of the digital devices is proportional to

voltage-squared and clock rate. Based on this explanation, one can observe that

the energy consumption of idle listening is very similar to receiving packets. As a

result, an interesting, novel technique, E-MiLi (Energy-Minimising Idle Listening),

was proposed in order to reduce the energy consumption that is caused via idle

listening. This is achieved by adding a special preamble to the packet, which is

used to make a separation between packet detection and decoding; that is, in their

technique, the clock rate of the circuitry adaptively downgrades during idle listening,

and returns to full clock rate in the receiving mode. In other words, as soon as the

packet is recognised as its own destination, the CPU reverts to the full clock rate, in

order to decode the packet; otherwise, it remains at the lower clock rate and discards

the packet. Consequently, energy can be saved. Although the proposed technique

of Zhang et al. is quite fruitful, it cannot alleviate the total energy wastage of idle

listening.

The most relevant article which pertain to our work is [81, 82]. Zhao and

Tang [81, 82] consider data collection in trees in a setting where not all sensors

have data in each round, the schedule must be independent of which sensor nodes

have data, and the goal is to reduce idle listening and latency. They aim to conserve

energy and extend the lifespan of the network. They present a technique called

the successive-slot technique, in which all transmissions of a node must be made in

successive slots starting from the first slot during which the node is scheduled to

transmit by the schedule. In particular, parent nodes cannot transmit before their

child nodes, and often parents need to listen to their child nodes one more time after

their last transmission, in order to detect that no more data will come from these

Chapter 2. Preliminaries and Related Work 26

child nodes. Then the parent node can be switched off for all the slots during which

it is scheduled to listen to these child nodes for the remainder of the data collection.

2.4.2 Related Work to Sink Mobility

Due to several restrictions and limitations in the area of WSNs, sink mobility has

been used, exploited and become the subject of many papers, with its pros and cons

having been analysed. Generally speaking, mobile sinks can be classified into types:

random and controlled movement. In the former one, the motion of the mobile sink

is random and we cannot control its movement, however in the second form, the

motion of the mobile sink is restricted to following some chosen paths or locations.

We briefly summarize several energy efficient algorithms that have been proposed

for mobile sinks.

In sparse networks, connectivity can be achieved either by deploying more sen-

sors, which increases the cost, or by using multiple sinks that lead to power saving,

due to the use of short transmission ranges by sensors; this approach is also cost-

effective. Therefore, Shah et al. [64] have proposed a three-layer architecture. The

first layer comprises sensors, while the second layer is a mobile sink (mule) that

collects data when it is in the proximity of sensors, and deposits the result at the

third layer, which is the access point. In their paper, the motion of mobile sink is

random, which is undesirable in some applications, and it is sometimes difficult to

determine latency. Further analysis was performed in [39].

Zhao et al. [83] have studied the mobility approach for data delivery in sparse

networks. A set of mobile nodes message ferries (MF) was exploited in order to pro-

vide connectivity amongst the nodes. Moreover, two variations of MFs have been

considered. In the first setting, MFs move along a known trajectory and carry data

between nodes, whereas in the second scheme, an MF adjusts its trajectory towards

the node. The idea of MF is very interesting, providing connectivity amongst discon-

nected or sparse networks; communication happens via a single-hop method, which

is also productive in terms of energy saving. On the other hand, this technique has

a high latency, which is impractical in delay-constrained applications.

For the first time, Gandham et al. [25] tried to use controlled mobility to collect

data from sensors. They proposed an integer linear programming problem (ILP) to

Chapter 2. Preliminaries and Related Work 27

find the locations of multiple mobile sinks per round. In their model, the locations

of multiple mobile sinks are fixed in each round, and may be different in the next

round. Their aim is to minimise energy consumption per node and total energy

consumption per round. As the number of nodes increases, it is difficult to use their

proposed integer linear programming (ILP) method; their technique is only useful

for some small instances.

Kansal et al. [40] have investigated controlled sink mobility. Their design setting

has multiple objectives, and is application-dependent. In some applications, energy

conservation is important; therefore, the mobile sink should approach each node to

use the least amount of energy in transmitting its data to the mobile sink. In con-

trast, latency is crucial in other applications, and fast data collection takes priority,

via multi-hop forwarding. Kansal et al. have also considered the mobile sink’s speed

of movement (i.e., if it stops in a dense area, or slows down in a sparse area without

stopping).

Scheduling and finding the optimal path for a mobile sink was examined in [67].

The main purpose is to collect data from sensors, before the buffer overflows. The

authors in the proposed scenario allow the mobile sink to visit sensors multiple times,

in order to avoid buffer overflows. They have shown that this scenario is NP -hard.

Consequently, they proposed and analysed certain heuristic algorithms. The same

authors then further investigated multiple mobile sinks, for the same setting [67].

Wang et al. [75] considered the optimisation problem of determining the sink's

movement and its sojourn time at certain points in a grid network, in order to

prolong the network’s overall lifetime. To achieve these goals, a linear program

(LP) was proposed. However, two main drawbacks were observed in their paper:

firstly, it is only applicable to grid networks. Secondly, they did not include routing

problems in the LP; rather, they used the shortest path to forward packets to the

sink, without considering the remaining energy of the sensors. This approach was

further investigated and improved by Papadimitriou et al. [55]. They addressed

sink mobility and its sojourn time, in order to prolong the network lifetime. The

problem was formalised as LP. However, their LP formulation is different from [75];

for example, their LP also includes routing problems, and it is applicable to general

networks.

Chapter 2. Preliminaries and Related Work 28

In [53], a mobile sink, named SenCar, was used for data collection. The authors

have addressed the issue of load balancing and careful path planning. Furthermore,

they have shown that by choosing a careful path, the lifetime of the network can be

prolonged. Finally, they have proposed an algorithm based on divide and conquer

in order to divide the network into two clusters and recursively apply the same

algorithm to each cluster, until the desirable turning points (line segments) are

obtained. Eventually, the mobile sink should follow these line segments that connect

the selected turning points, in order to collect data. Park et al. [56] addressed

the issue of finding a set of stop points on a fixed path with limited length the

path stop point (PSP) problem in order for the mobile sink to collect data and

minimise energy consumption. They have shown that selecting a set of optimal stop

points is NP -hard. They then formulated the problem as LP, in order to find the

optimal solution for small instances, and this became a benchmark for other heuristic

algorithms. Finally, they proposed a heuristic algorithm to determine a subset of

stop points, in order for the mobile sink to collect data from sensors. The selection

of these stopping points is based on certain criteria such as the data rate, sensor

locations and their energy consumption. The sensor nodes that are far from the stop

points then send their packets in a multi-hop manner to those nodes (rendezvous

points) that are a one-hop neighbour of the stopping points; finally, these nodes

(rendezvous points) send the collected data to the mobile sink. Two issues can be

identified with the proposed algorithm. Firstly, with an increase in the stopping

points, latency increases. Secondly, it is more likely that there are some nodes that

are only one hop away from the stop points, and which do not become rendezvous

points; therefore, they do not need to send their data to the candidate rendezvous

points. Instead, they can send data directly to the sink.

Another paper [27] addressed a similar issue and has shown mathematically that

if the number of sub sinks (stopping points) is increased, the lifetime of the network

can be increased. Then they proposed a heuristic algorithm to choose a sub path

that has maximum sub sinks, however; they did not consider the case where the

mobile sink should return to the starting point after finishing its journey.

Another interesting study that investigated sink mobility is [74]. The authors

mainly focused on routing techniques to balance the network load based on the

Chapter 2. Preliminaries and Related Work 29

factors of remaining energy and distance. Thus, a routing algorithm was proposed.

However, the authors did not mention clearly how to choose the next sojourn location

for the mobile sink.

The two papers most relevant to our work are [50] and [70]. In [50], the au-

thors addressed the issue of controlled mobility to prolong the network’s lifetime by

finding the optimal trajectory for the mobile sink. Furthermore, they bounded the

travel distance of mobile sinks per round due to petrol issues and they labelled this

problem the ”distance-constrained mobile sink problem”. They also bounded the

distance between two different candidate locations that the mobile sink can visit in

order to avoid buffer overflow. Moreover, when the mobile sink moves to another

location, the routing tree rooted at that location will be reconstructed and this costs

energy, therefore it should stay at each location for a certain amount of time. They

formulated the problem as a mixed integer linear programming problem (MILPP).

When the network size grows, it is not feasible to solve it using MILPP; therefore, a

three-stage heuristic was proposed that has a lower complexity and high scalability.

In their proposed algorithm, sojourn times are calculated first, then based on these

calculations, a feasible tour is specified for the mobile sink. Although our constraint

is the same as their constraint, our objective is different and the multi-hop approach

is not considered in our problem. Then Liang et al. [49] expanded the idea of [50]

to multiple mobile sinks and find the optimal trajectories for them. Furthermore,

unlike [50], they bounded the maximum hop count from each sensor to its nearest

sink which is quite important in delay sensitive applications.

Sugihara and Gupta [70] focused on controlled mobility for data collection with-

out multi-hop forwarding; their main purpose is to reduce latency during data col-

lection. To this end, they identified the problem of finding the minimum tour as the

”label covering problem” and proposed an algorithm in which dynamic program-

ming was used to achieve a solution. The Travelling Salesman Problem (TSP) is

the problem of finding a minimum cost tour to visit a set of given cities, starting

and ending at the same city, such that each city is visited exactly once. Their al-

gorithm consists of two main stages. Firstly, they try to achieve the TSP tour via

any existing algorithm in order to find the minimum distance (and so construct a

minimum tour). Secondly, they try to optimize the TSP tour by finding shortcuts

Chapter 2. Preliminaries and Related Work 30

(sub paths) for the mobile sink to follow while still covering all the nodes using

the dynamic programming technique. They named the problem the label covering

problem because each shortcut considered must cover the skipped nodes. Again, the

main objective of their paper is to minimize latency while in our work we want to

minimize total energy consumption, subject to a latency constraint.

Similar to [70], He et al. [34] have discussed the issues surrounding path selection

problems, for mobile elements (i.e., mobile scheduling) during data collection. Due

to the difficulty of the problem, the authors have proposed a heuristic algorithm, in

order to find the optimal path for mobile elements to follow and collect data from a

sensor, via single-hop communications. In their proposed algorithm, the TSP is used

as the first step to determine the path. Then, by taking advantage of the combining

wireless communications, some of the visited points are likely to intersect with each

other; then via a binary search, further tour improvement is obtained. Finally, the

mobile sink follows the constructed path, in order to collect data. Via simulation,

the authors also show that the algorithm outperforms the Label Cover algorithm.

2.5 Summary

In this chapter we first defined some terminologies and some fundamental points of

the graph theory which are relevant to our work. Then we revised and explained

complexity theory. Finally, an intensive literature review has been provided to pave

the way to our area. As explained, different techniques have been used to tackle the

issue of energy consumption from different perspectives and their pros and cons have

been analysed. Based on that we observed the idle listening attracted attention of

the research community. Therefore, we focus mainly first on the idle listening then

on sink mobility in our research to further improve energy consumption.

Chapter 3

Reducing Idle Listening in

Wireless Sensor Networks

This chapter, which is the main part of our research, deals with energy consumption

issues in wireless sensor networks with tree topology during data collection, and

provides the comprehensive explanation of our proposed technique (i.e., Extra-bit

technique) to minimise energy consumption via reducing idle listening.

3.1 Introduction

In the literature, several reasons have been pointed out as the cause for wasted en-

ergy. The first one is collisions, which occur when two or more nodes try to transmit

their data to the same destination node simultaneously. Indeed, the packets collide

with each other and the destination node cannot receive either one correctly [43].

As a result, retransmission is needed, which leads to the use of more energy to

send out the packets again. Moreover, both primary and secondary conflicts which

cause collisions must be avoided [19]. Primary conflicts happen either when a node

transmits and receives at the same time, or several nodes send out their packets

simultaneously to the same destination. Secondary conflicts occur when a receiver

is within the transmission range of its sender and other simultaneous senders at

the time of collision. When this happens, the receiver cannot receive the correct

packet successfully [59, 52]. The second source of energy wastage is overhearing,

which happens when a node hears a packet which is destined for another node. The

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 32

third case where energy can be wasted, and the most relevant to our work, is idle

listening because our work is built upon the previous proposed technique to reduce

idle listening and we found out that there was still a gap to be filled. Idle listening

occurs when a node is listening to the channel to receive a packet but there is the

possibility that the sending node does not have data and remains silent [43, 5, 66].

Therefore the main focus of this chapter is on idle listening. We start by extend-

ing earlier work on successive-slot schedules [81, 82]. We propose an optimization

technique, called the extra-bit technique, which reduces idle listening further and

also minimizes latency. We prove that the optimal number of time slots for data col-

lection in a chain using successive-slot or extra-bit schedules is 4N−6, where N ≥ 3

is the number of nodes in the network excluding the sink. We show how to calcu-

late the expected amount of idle listening for extra-bit schedules and successive-slot

schedules in chains and trees where each node has data with a fixed probability, and

we demonstrate by graphs based on the mathematical formula that the expected

amount of idle listening is significantly smaller with the extra-bit technique.

3.2 System Model, Arbitrary Schedules, Successive-

Slot Schedules

3.2.1 System Model and Arbitrary Schedules

Consider a sensor network with a tree topology. The tree network is represented

as a graph G = (V,E), where V is the set of nodes and E is the set of edges in

the network. In other words, V represents sensors and E represents communication

links between these sensors in the tree network. The sink is the root of the tree.

We assume that all nodes have a single omnidirectional transceiver, and all com-

munication among sensors is performed over a single unique frequency channel.

Furthermore, a node cannot send and receive a packet at the same time. It cannot

receive a packet successfully when it hears several packets simultaneously. That is

to say, both primary and secondary conflicts must be avoided for successful trans-

mission. We consider TDMA schedules, where time is divided into a number of slots

of equal length. In each slot several packets can be scheduled, but no conflicting

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 33

transmissions can be scheduled in the same time slot.

We use TDMA as a MAC layer protocol because of its advantage of avoiding

collisions, idle listening and overhearing.

Furthermore, TDMA can collect data in a timely manner which can be beneficial

for certain applications.

We want to collect data from the sensor nodes in a way that minimizes the

total number of time slots, while also reducing idle listening as much as possible.

The aim is to achieve fast data collection and conserve energy. We assume that

not every sensor will have data to be collected in each round of data collection.

Nevertheless, we require a schedule that is independent of which nodes have data:

the same schedule must be followed no matter whether all nodes have data or only

some nodes have data. If a transmission from node v to its parent p is scheduled in

a particular time slot but no data is available at v to be sent to p, there will either

be idle listening (i.e., p listens for a transmission from v, but v remains silent) or, if

p already knows that no data will be sent from v in this time step, the transceivers

of v and p can be switched off (and energy saved).

For a node v ∈ V , we denote by Tv the set of nodes of the subtree rooted at v,

and by |Tv| the cardinality of that set. The set of children of node v is denoted by

C(v).

A schedule S of length (or latency) K is a mapping of time-slots 1, 2, . . . , K to

sets of transmitting nodes, where S(t) is the set of nodes scheduled for transmitting

in time slot t. As every transmission is from a node to its parent, the schedule

does not need to specify the receivers of the transmissions. The sink will never be a

transmitting node. A schedule S is feasible if it satisfies the following conditions:

(C1) For every t, the nodes in S(t) can transmit simultaneously without conflict.

This means that no two nodes in S(t) have distance two or less in the tree G.

(C2) Every node v (apart from the sink) is scheduled exactly |Tv| many times for

transmission.

(C3) For i > 1, if the i-th transmission of node v is scheduled in time slot t, then

at least i − 1 transmissions of children of v must have been scheduled before

time slot t.

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 34

Condition (C1) models interference constraints. Condition (C2) is required because

each node v must transmit its own data and the data of all the other nodes in its

subtree Tv. Condition (C3) expresses that node v cannot send more data than its

own data and the data it has already received from its children.

We refer to such a feasible schedule as an arbitrary schedule as no further re-

strictions are imposed.

If not all nodes have data, the behavior of a node is as follows. Whenever the

node is scheduled to transmit in the current time slot, it checks whether it has any

data (either its own data or data received from a child) that has not yet been sent

to the parent. If so, it uses the current time slot to forward any such data to the

parent. Otherwise, it remains silent in the current time slot. We refer to this node

behavior as local greedy.

3.2.2 Successive-Slot Schedules

As observed by [81, 82], arbitrary schedules can cause a lot of idle listening if not

all nodes have data. For example, if a node has 10 time slots for transmitting data

to its parent, but only 3 nodes in its subtree have data, then there will in general

be 3 time slots with transmissions and 7 time slots with idle listening. The parent

usually cannot turn off its transceiver to avoid idle listening as it cannot predict

whether a packet will be sent by the child in the current time slot or not. Zhao and

Tang therefore propose a restricted type of schedule, which they call successive-slot

schedule. The special property of successive-slot schedules is that all transmissions

from a node to its parent will happen in successive slots starting from the first slot

that is assigned to the node for transmission, provided that local greedy scheduling

is used in each node. A node cannot cause idle listening at the parent in between two

actual transmissions from the node to its parent. Formally, if node v is scheduled

to transmit to its parent in slots t1, t2, . . . , t|Tv | and if r of the nodes in Tv have

data, the transmissions from v to its parent must be made in time slots t1, t2, . . . , tr.

The advantage of successive-slot scheduling is that as soon as the parent detects

that the child is silent in a transmission slot, it knows that no further transmissions

from that child will arrive. Therefore, the parent can switch off its transceiver in

all remaining time slots where that child is scheduled to transmit. Similarly, the

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 35

sink will know that data collection has been completed as soon as each child v of

the sink has either sent |Tv| data packets or has been silent in one time slot. This

means that data collection can potentially be completed earlier (before the end of

the full schedule S). Therefore, successive-slot scheduling can reduce idle listening

(as there can be at most one time slot with idle listening for each parent-child pair)

and schedule latency.

Zhao and Tang prove in [81] that successive-slot schedules can be characterized

as follows.

Lemma 1 ([81]). A feasible schedule S is a successive-slot schedule if and only if

the following condition holds:

(C3′) For each node v and each 1 ≤ i ≤ |Tv|, the i-th transmission of node v is

scheduled after the i-th transmission of each child c of v with |Tc| > i, and

after the last transmission of each child c of v with |Tc| ≤ i.

Observe that condition (C3′) implies condition (C3).

We illustrate the two conditions of Lemma 1 for successive-slot scheduling using

the simple example shown in Figure 3.1.

S

A

B C

D E F
B → A
D → C E → C F → C C → A A→ S C → A A→ S C → A A→ S C → A A→ S A→ S A→ S

1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 3.1 Successive-slot schedule.

In this example node B and C are the children of node A, |TB| = 1 and |TC | = 4.

One can observe that for node B we are in the second part of the condition of

Lemma 1 and for node C we are in the first part of the condition of Lemma 1.

Therefore the first, second and third transmissions of node A must happen after

the first, second and third transmissions of node C (the first, second and third

transmissions of node C can happen at steps 4, 6, 8, respectively). Therefore the first

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 36

second and third transmissions of node A can happen at steps 5, 7, 9, respectively).

After that we are in the second part of the condition of Lemma 1, which means that

|TC | ≤ i. Hence, the fourth, fifth and sixth transmissions of node A can happen

after the last transmission of node C. In other words, the last transmission of node

C happens at step 10. Therefore the rest of the transmissions of node A must come

after step 10.

Successive-slot scheduling can be applied to data collection in any tree network.

In more general networks, a data collection tree can be determined in a first step,

and successive-slot scheduling can then be applied to that tree (but the interference

constraints would be derived from the full network).

In a successive-slot schedule, the process of data collection starts from leaf nodes

and proceeds towards the root node (sink). Generally speaking, a node must listen

for transmissions from its child nodes until an idle transmission occurs. Receiving

idle listening from any child node guarantees the end of transmission from that

node, which allows the parent to turns off its transceiver for any further scheduled

transmissions from that node. Each time the parent node has listened to all its child

nodes and has received at least one packet, it can make one transmission to its own

parent node. This continues until it has received idle listening from all of its child

nodes (or the child nodes have completed all their transmissions). Finally, it will

transmit the remaining packets to its own parent. This process continues for all

nodes until the specified sink node has stopped listening to all its children, implying

that all packets have been received.

We observe that if some node in the subtree Tv does not have data in the current

round of data collection, the parent p of node v needs to listen to v one more time

than the number of actual transmissions from v to p.

Zhao and Tang [81] propose a heuristic that aims at producing successive-slot

schedules with minimum schedule length. They do not prove bounds on the worst-

case schedule length produced by their algorithm compared to the optimum schedule

length.

We illustrate successive-slot scheduling using the simple example shown in Fig-

ure 3.2. There are six nodes; the root is the sink. Suppose that only two of the leaf

nodes have data, namely C and D. Firstly, B must listen to all its child nodes to

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 37

S

A

B

C D F

Fig. 3.2 Data collection, only C,D have data.

check whether they have data. It is obvious that B must listen three times. In the

first two time slots, B can receive data from C and D, while in the last time slot no

packet is available and this results in idle listening. This means that B has only two

packets. After that, A is scheduled to listen to B. In the first and second such slot,

A can receive data from B. Thus, A needs to listen again to B, but in the third

such slot A does not receive any packet from B; therefore, A does not have to listen

to B again after the third listening and turns its transceiver off for transmissions

from B in the remainder of the data collection schedule. Although in B two packets

are available, A will also need to listen one more time than the number of packets,

to find out whether any more packets are available. Similarly, the sink needs to

listen to A three times. In the first two time slots the sink can receive two packets

but in the third slot it does not receive any packet. Therefore, the sink turns its

transceiver off, and the data collection is completed. In an arbitrary schedule for

data collection, it can be observed that the sink should listen to A five times and A

should listen to B four times. Following the successive-slot technique by Zhao and

Tang [81], when a parent has listened and not received any packet from the child

then it does not listen again to that child. This reduces idle listening.

3.3 Extra-Bit Schedules

We propose a technique called the extra-bit technique that extends the successive-slot

technique [81] and reduces idle listening further. In the successive-slot technique,

parent nodes often have to listen to a child node one more time than the number of

data packets sent by the child node, causing an idle listening slot. In the extra-bit

technique, we can avoid idle listening in all cases where at least one node in the

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 38

subtree has data.

The extra-bit technique adds a single extra bit to each packet, which indicates

to the receiver whether this packet is the last one being transmitted by the node in

the current data collection round. The value of the bit is set to 0 if the packet is the

last one, indicating that no more packets will be sent by that node. This tells the

receiver that it does not need to listen any more for transmissions from this node

in the current round of data collection, thus avoiding idle listening. The bit is set

to 1 if the packet is not the last one, which means that more packets will be sent in

later time slots.

According to this technique, when a parent has listened to its child and checked

the extra bit, then it can decide whether to listen again in further time slots. The

process of listening will be continued until the parent receives a packet where the

extra bit is 0; the parent then stops listening to its child node and switches its radio

off for the rest of the schedule regarding that node, resulting in energy conservation.

The only exception is if a node has no data to transmit at all; in that case, there

will be one idle listening time slot for the parent.

A successive-slot schedule in which each node always has the information required

to set the extra bit correctly is called an extra-bit schedule.

3.3.1 Equivalence of Extra-Bit and Successive-Slot Sched-

ules

One might expect that extra-bit schedules are more restrictive than successive-slot

schedules, because whenever a node sends a packet, it needs to be able to set the

extra bit to a correct value. This means that the node must know whether the

packet being sent is the last one or not. Somewhat surprisingly, we can show that

every successive-slot schedule is an extra-bit schedule.

Theorem 1. Every successive-slot schedule S is also an extra-bit schedule.

Proof. Let S be a successive-slot schedule. By Lemma 1, S satisfies condition (C3′).

We prove by induction on the height of the nodes that each node has sufficient

information to set the extra bit for each transmitted packet. The claim clearly

holds for leaf nodes. Now consider a node v and assume that the claim has been

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 39

proved for all children of v. Consider the i-th transmission of node v, 1 ≤ i ≤ |Tv|,

and assume that v has a packet to transmit. By condition (C3′), each child c of v

has already had at least i transmission slots if |Tc| > i, or has already had all its

transmission slots if |Tc| ≤ i. In the former case, node v knows whether c has at

least i+ 1 packets or whether c has already transmitted all its packets. In the latter

case, node v knows that c has already transmitted all its packets. Node v also knows

how many packets it has already received but not yet forwarded to its parent. From

this information, v can set the extra bit of the current packet correctly.

For any given tree network, there can be many different data collection schedules,

and also many different extra-bit schedules or successive-slot schedules. We are

interested in extra-bit schedules of minimum length.

For example, consider six nodes F,E,D,C,B,A and a sink S that are arranged

in a linear chain. We can schedule data collection in this linear network using

the successive-slot or extra-bit technique in different ways. Two different schedules

for this network, together with the idle listening that arises in the successive-slot

technique and the extra-bit technique, are as follows:

1. Figure 3.4 show two different schedules for the setting when all nodes have data

(it can be observed that both successive-slot schedule and extra-bit technique

are the same and there is no idle listening when all nodes have data). It

is worth noting that the first schedule lets each parent node receive all the

packets from its respective children, then forward all to its parent accordingly.

This type of successive-slot schedule in general has maximum length (latency),

because there is no simultaneous transmission between the nodes. The length

of the schedule is 21 time slots for the chain shown in Figure 3.3.

On the other hand, the second type of schedule lets each parent, upon receiving

data from its child node, immediately forward it to the next node. Further-

more, any node that has made one transmission and still has more data, can

reschedule itself with other nodes concurrently after two steps (two hops) from

its previous transmission, as shown in the Figure 3.4. The main advantage of

this type of schedule is that it allows parallel transmissions between the nodes,

which leads to the minimization of the schedule. In general, the first type of

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 40

the schedule is the worst case, whereas the second one is the best case (optimal

schedule).

2. We show two different successive-slot schedules for the setting when only nodes

F and E have data. One possible schedule is that E listens to F , then D should

listen to E twice; likewise, node C should listen to node D three times, where

in the first two time slots it receives data whereas in the third time slot it

receives idle listening. Similarly, node B can receive packets from node C in

the first two time slots, then it receives idle listening in the third time slot,

which means that no packet is coming from C. In the same way, node A can

receive packets from node B in the first two time slots and then it receives

idle listening in the third time slot. Similarly sink node S, upon receiving

idle listening in time slot 15, stops listening in the subsequent slots. It can

be observed that the optimal successive-slot schedule ends at step 15. This

is because where any parent node has listened to its child node and has not

received data, it can stop all subsequent listening slots regarding that child

node; due to its idle listening, the parent node knows that no further data will

come from that child. However, if we do not follow the proposed technique

of Zhao and Tang [81], listening is continuous until the end of the schedule,

which is 21 time steps.

The second possible type of schedule for this setting is similar to the second

type of schedule mentioned before without applying the successive-slot sched-

ule. One can notice that each parent, upon receiving data from its child node,

immediately forwards it to the next node. As a result simultaneous trans-

missions can happen. Therefore in the second type of schedule the sink can

conclude data collection at time step 12.

3. We also show two different extra-bit schedules for the setting when only nodes

F and E have data. The first type of schedule is finished at time step 11,

which finishes a few steps before the first type of successive-slot schedule.

This is because there is no idle listening slots in the extra-bit technique for

this setting, whereas there are 4 idle listening according to the successive-slot

schedule. Similarly, the second type of schedule according to the extra-bit

technique ends at time step 9. One can observe that the data collection in the

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 41

extra-bit schedule ends sooner than the successive-slot schedule for the same

scenario.

Here, only two cases have been mentioned, the first being when all nodes

have data, and the second being when only the last two nodes have data. In

general, concluding data collection depends on which nodes have data. Note

that we may have more possible forms but for simplicity only two forms are

shown. Moreover, for simplicity we have explained the idea of the successive-

slot schedule only for the line which is a special type of the tree, and the same

idea is applicable to the tree as well.

SABCDEF

Fig. 3.3 A chain with 6 nodes.

1. F → E E → D E → D D → C D → C D → C C → B C → B C → B C → B B → A B → A B → A B → A B → A A→ S A→ S A→ S A→ S A→ S A→ S
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

2.
E → D D → C D → C

F → E E → D D → C C → B B → A A→ S C → B B → A A→ S C → B B → A A→ S C → B B → A A→ S B → A A→ S A→ S
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Fig. 3.4 Two different schedules for 6 nodes in Figure 3.3 according to successive-
slot and extra-bit schedules for the setting when all nodes have data.

3.3.2 Optimal Extra-Bit Schedules for Linear Networks (Chains)

In this section we consider WSNs where sensors are arranged as a chain, with the

sink located at one end of the chain. We let N denote the number of nodes in the

chain, excluding the sink. We denote the node that is i hops away from the sink by

vi, for 1 ≤ i ≤ N . We also refer to vi as the i-th node of the chain.

In the schedule we propose, a node will first wait until it receives the first packet

from its child. From this time slot onward, it will make a transmission once every

three steps, and nodes that are 3, 6, 9, . . . hops further away from the sink will

transmit simultaneously with the node. This process continues until the only nodes

that still have packets are the two nodes closest to the sink. Then, these two nodes

transmit their remaining packets to the sink, with only one transmission per time

slot.

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 42

As an example, a chain with N = 5 sensor nodes and a sink node is shown

together with an extra-bit schedule of length 14 in Figure 3.5. Note that time slot 5

is the only slot in which two transmissions take place simultaneously. For illustrative

purposes, we partition the schedule into five phases, where each phase ends with a

time slot in which a packet is transmitted to the sink. In the first phase, five time

slots are required until the sink node receives the first packet. In the second and

third phase, only three time slots are needed until the sink receives the second and

third packet, respectively. Two time slots are used in the fourth phase, and finally

one time slot is used to finish this schedule.

Now suppose that only the last node E has data in a certain data collection

round. Then the schedule shown in Figure 3.5 will complete data collection after

5 time slots at the end of the first phase (when the sink receives the packet from

A with the extra-bit set to 0) and has no idle listening periods. For comparison, if

the same schedule is executed as a successive slot schedule, data collection will be

completed only after 8 time slots, and there will be four cases of idle listening (in

steps 5 to 8).

SABCDE

D → C
E → D D → C C → B B → A A→ S

1 2 3 4 5
C → B B → A A→ S

6 7 8

C → B B → A A→ S
9 10 11

B → A A→ S
12 13

A→ S
14

Fig. 3.5 Extra-bit schedule for a chain with 5 nodes.

The shortest extra-bit schedules for the cases N = 1 and N = 2 can easily be

seen to have lengths 1 and 3, respectively. Next, we prove that for N ≥ 3 the

optimal length of an extra-bit schedule in the chain is 4N − 6. We first give the

lower bound, and then the upper bound.

For arbitrary schedules, it has been shown in [24, 13] that 3N − 3 time slots are

required to complete a converge-cast in the linear network. This lower bound can be

shown by considering the three nodes closest to the sink. All transmissions by these

three nodes must be scheduled in different time slots due to interference. The first

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 43

N − 3 N − 2 N − 1 N

S123•••N-2N-1N

Fig. 3.6 Illustration of lower bound proof for chain with N nodes.

node in the chain must make N transmissions, the second node N −1 transmissions

and the third node N−2 transmissions. As a result, at least N+(N−1)+(N−2) =

3N−3 time slots are required to complete data collection (and a schedule with 3N−3

time slots actually exists). We now show that extra-bit schedules require at least

4N − 6 time slots. We remark that although extra-bit schedules are longer than the

shortest arbitrary schedules, extra-bit schedules have no or substantially reduced

idle listening periods if not all nodes have data.

Theorem 2. For chains with N ≥ 3 nodes and a sink, any extra-bit schedule

requires at least 4N − 6 time slots to complete the data collection.

Proof. In the extra-bit technique, a node cannot make a transmission before it has

received the first packet from its child. This implies that node vN−i cannot make

its first transmission before time slot i + 1, for 0 ≤ i ≤ N − 1. In particular, there

are N − 3 time slots before the first time slot in which the third node v3 can make

its first transmission. The third node must make N − 2 transmissions, the second

node N − 1 transmissions, and the first node N transmissions (see Figure 3.6 for an

illustration). These 3N − 3 transmissions must all be made in different time slots,

and none of them can be made during the first N − 3 time slots. Therefore, the

total number of time slots must be at least (N − 3) + (3N − 3) = 4N − 6.

We now present an algorithm that produces an extra-bit schedule of length 4N−6

for chains with N nodes and a sink. The algorithm is shown in Algorithm 1. First, it

initializes the schedule’s time slots S(t) (representing the set of nodes to be scheduled

at time t) to be empty, the number of packets on node vi to p(i) = 1, and the current

time slot t to 0. Then the procedure ScheduleFirstPart is used to schedule the first

transmission of nodes from the last node to the fourth node. Whenever a node

vi is to be scheduled, t is incremented and the procedure call parallel(i) is used

to schedule the node vi as well as any nodes vi+3, vi+6, . . . that still have a packet.

When ScheduleFirstPart is finished, the procedure ScheduleRest is called. As long

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 44

Algorithm 1: Extra-bit scheduling algorithm for linear network.

Input: Chain with N ≥ 3 nodes v1, . . . , vN and sink s
Output: S(t) for t = 1, . . . , 4N − 6

1 S(t)← ∅ for t = 1, . . . , 4N − 6;
2 p(i)← 1 for i = 1, . . . , N ;
3 t← 0;
4 Call ScheduleFirstPart();
5 Call ScheduleRest();
6 procedure ScheduleFirstPart()
7 for i← N down to 4 do
8 t← t+ 1;
9 parallel(i);

10 procedure parallel(i)
11 for j ← i to N increment by 3 do
12 if p(j) 6= 0 then
13 s(t)← s(t) ∪ {vj};
14 p(j)← p(j)− 1;// send a packet
15 p(j − 1)← p(j − 1) + 1;// receive a packet

16 procedure ScheduleSecondPart()
17 while p(1) 6= 0 do
18 for i← 3 downto 1 do
19 if p(i) 6= 0 then
20 t← t+ 1;
21 parallel(i);

as the first node still has a packet, it repeatedly considers the nodes vi for i = 3, 2, 1

and calls parallel(i) if node vi still has a packet.

The state of the chain (i.e., the number of packets p(j) stored at each node vj)

before the k-th time slot, 1 ≤ k ≤ 4N−8, of the schedule produced by the algorithm

is as follows:

• If k = 4r+1 for r ≥ 0: p(j) = 0 for j ≥ N+1−r, p(j) = 2 for j = N−r−3m

for 1 ≤ m ≤ min{r, (N − r)/3}, and p(j) = 1 for all other j.

• If k = 4r+2 for r ≥ 0: p(j) = 0 for j ≥ N−r, p(j) = 2 for j = N−r−1−3m

for 0 ≤ m ≤ min{r, (N − r − 1)/3}, and p(j) = 1 for all other j.

• If k = 4r+3 for r ≥ 0: p(j) = 0 for j ≥ N−r, p(j) = 2 for j = N−r−2−3m

for 0 ≤ m ≤ min{r, (N − r − 2)/3}, and p(j) = 1 for all other j.

• If k = 4r+4 for r ≥ 0: p(j) = 0 for j ≥ N−r, p(j) = 2 for j = N−r−3−3m

for 0 ≤ m ≤ min{r, (N − r − 3)/3}, and p(j) = 1 for all other j.

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 45

As shown above for every value of r there are 4 values of k. In addition, for every

value of k there are three conditions. These three conditions indicate the state of

the chain. In other words, each node either has 0 packets, 1 packet or 2 packets.

The reason for having 4 values of k with a single value of r, is that the state of the

chain repeats itself after these 4 values.

In general, the first condition indicates how many nodes have 0 packets from

node j to node N , where j is the index of the starting node that has 0 packets. The

second condition indicates how many nodes between node j and the sink have two

packets, where nodes j is the furthest one from the sink to have 2 packets that start

from node j. From this process variable m controls how many decreasing nodes will

end up with 2 packets, this is subject to being 3 steps away from each other. This is

the reason that value of m is multiplied by 3 and (N − r−1)/3 is divided by 3. The

third condition (for all other j) indicates the number of nodes that have 1 packets.

These four conditions (points) show the state of the chain and they repeat as

a circle until k ≤ 4N − 8 (the third node has no more packets). With each circle

only one node becomes 0. At the beginning of the schedule each node has a single

packet. When the algorithm starts running, each node either has 0 packet, 1 packet

or 2 packets. This means that each node requires buffering for at most two packets;

for further explanation refer to Figure 3.7. Furthermore, with each value of r the

steps for these four values of k are as follows:

r = 0 r = 1 r = 2 . . .

k 1 5 9 . . .

k 2 6 10 . . .

k 3 7 11 . . .

k 4 8 12 . . .

We consider an illustrative example for 10 nodes as shown in Figure 3.7 in order to

give insight into these four conditions in each step and the state of the chain. Note

that at step 0 each individual node has 1 packet. Steps 1, 2, 3 and 4 indicate the

first four conditions for the first value of r = 0. During these four steps only one

node becomes 0. This process continues until the condition k ≤ 4N − 8 is satisfied.

Theorem 3. For chains with N ≥ 3 nodes and a sink, the algorithm shown in

Algorithm 1 computes an extra-bit schedule of length 4N − 6.

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 46

S12245678910

Conditions Value of r Steps/Nodes 10 9 8 7 6 5 4 3 2 1
0 1 1 1 1 1 1 1 1 1 1

Condition 1 r = 0 1 0 2 1 1 1 1 1 1 1 1
Condition 2 r = 0 2 0 1 2 1 1 1 1 1 1 1
Condition 3 r = 0 3 0 1 1 2 1 1 1 1 1 1
Condition 4 r = 0 4 0 1 1 1 2 1 1 1 1 1
Condition 1 r = 1 5 0 0 2 1 1 2 1 1 1 1
Condition 2 r = 1 6 0 0 1 2 1 1 2 1 1 1
Condition 3 r = 1 7 0 0 1 1 2 1 1 2 1 1
Condition 4 r = 1 8 0 0 1 1 1 2 1 1 2 1
Condition 1 r = 2 9 0 0 0 2 1 1 2 1 1 2
Condition 2 r = 2 10 0 0 0 1 2 1 1 2 1 1
Condition 3 r = 2 11 0 0 0 1 1 2 1 1 2 1
Condition 4 r = 2 12 0 0 0 1 1 1 2 1 1 2
Condition 1 r = 3 13 0 0 0 0 2 1 1 2 1 1
Condition 2 r = 3 14 0 0 0 0 1 2 1 1 2 1
Condition 3 r = 3 15 0 0 0 0 1 1 2 1 1 2
Condition 4 r = 3 16 0 0 0 0 1 1 1 2 1 1
Condition 1 r = 4 17 0 0 0 0 0 2 1 1 2 1
Condition 2 r = 4 18 0 0 0 0 0 1 2 1 1 2
Condition 4 r = 4 19 0 0 0 0 0 1 1 2 1 1
Condition 4 r = 4 20 0 0 0 0 0 1 1 1 2 1
Condition 1 r = 5 21 0 0 0 0 0 0 2 1 1 2
Condition 2 r = 5 22 0 0 0 0 0 0 1 2 1 1
Condition 3 r = 5 23 0 0 0 0 0 0 1 1 2 1
Condition 4 r = 5 24 0 0 0 0 0 0 1 1 1 2
Condition 1 r = 6 25 0 0 0 0 0 0 0 2 1 1
Condition 2 r = 6 26 0 0 0 0 0 0 0 1 2 1
Condition 3 r = 6 27 0 0 0 0 0 0 0 1 1 2
Condition 4 r = 6 28 0 0 0 0 0 0 0 1 1 1
Condition 1 r = 7 29 0 0 0 0 0 0 0 0 2 1
Condition 2 r = 7 30 0 0 0 0 0 0 0 0 1 2
Condition 3 r = 7 31 0 0 0 0 0 0 0 0 1 1
Condition 4 r = 7 32 0 0 0 0 0 0 0 0 0 2

33 0 0 0 0 0 0 0 0 0 1
34 0 0 0 0 0 0 0 0 0 0

Fig. 3.7 Illustration of state of the chain in each step with 10 nodes.

Proof. We observe that the schedule constructed by the algorithm has the following

properties:

• Every node vi makes N + 1− i transmissions.

• Every node vi makes its j-th transmission only after it has received j packets

from its child (or all packets from the child in case |Tvi+1
| < j).

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 47

• The senders of simultaneous transmissions are at least three hops away from

each other, so there is no interference between them.

Therefore, the schedule is a feasible extra-bit schedule.

The first packet reaches the sink in time slot N . Then one packet reaches the

sink every three time slots, until only the first two nodes have packets left. This

requires 3(N − 3) time slots, and at that point the first node and the second node

will contain one packet each. It then requires three more time slots to transmit

these to the sink. The total schedule length is therefore N + 3(N − 3) + 3 = 4N − 6

time slots.

3.3.3 Extra-Bit Schedules for Trees

Zhao and Tang [81] presented a heuristic algorithm for computing successive-slot

schedules in trees. By Theorem 1, these schedules are also extra-bit schedules. We

illustrate the benefits of extra-bit schedules for trees using the example in Figure 3.8.

S

A B

C D E F

C A D A
SBSASBSASBSABFBE

1 2 3 4 5 6 7 8

Fig. 3.8 Schedule for data collection when only C,E have data.

In the extra-bit technique, 8 time slots are needed to complete data collection if

all nodes have data. If we suppose that only C and E have data, then the beneficial

impact of extra-bit scheduling can be observed: The data collection process finishes

by the end of time slot 4, and there are only two occurrences of idle listening that

happen when A and B listen to D and F , respectively. The sink listens to each

of A and B only once and infers from receiving a packet with the extra-bit equal

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 48

to 0 that no further packets will arrive. With the successive-slot technique, data

collection would finish only after six time slots, and there would be four occurrences

of idle listening.

3.4 Idle Listening in Successive-Slot and Extra-

Bit Schedules

In this section we compare extra-bit scheduling and successive-slot scheduling in

terms of the amount of idle listening. We observe that the number of occurrences

of idle listening in an extra-bit schedule does not depend on the particular choice of

extra-bit schedule, and similarly for successive-slot schedules.

3.4.1 Idle Listening in Chains and Trees

We determine the number of occurrences of idle listening in chains and trees, both

for the successive-slot technique and the extra-bit technique.

3.4.1.1 Chain

Consider a chain with N nodes in addition to the sink. The first node is the node

closest to the sink, and the last node is the node furthest away from the sink.

With the extra-bit technique, we consider several cases for the amount of idle

listening. First, if the last node has data, then there is no idle listening at all, even

if some other nodes do not have data. Second, if no node has data, then there are

N occurrences of idle listening. Third, if the last node has no data but some other

node has data, then the amount of idle listening depends on the position of the

furthest node from the sink that has data. For instance, in Figure 3.5, if node C

has data and nodes D and E do not have data, then idle listening happens twice,

once for a transmission from E to D and once for a transmission from D to C. For

the general case, we can conclude that the number of occurrences of idle listening

is equal to the number of nodes in the chain minus the position (distance from the

sink) of the last node that has data. Let I denote the position of the last node that

has data (and let I = 0 if no node has data). Then the number of occurrences of

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 49

idle listening with extra-bit scheduling is N − I.

With the successive-slot technique, idle listening can be analysed as follows. If

the last node does not have data, the number of occurrences of idle listening is N as

each of the N nodes will have an idle transmission to its parent. If J is the position

of the last node that does not have data (or J = 0 if all nodes have data), then the

amount of idle listening is J .

We observe that the amount of idle listening with extra-bit scheduling (N − I)

is always less than or equal to that of successive-slot scheduling (J): If I = N , then

extra-bit scheduling has no idle listening while successive-slot scheduling may have

up to N − 1 occurrences of idle listening. If I < N , then J = N and therefore J ≥

N−I. The most extreme difference between extra-bit scheduling and successive-slot

scheduling occurs if only the last node has data. In that case, extra-bit scheduling

has no idle listening and successive-slot scheduling has N − 1 occurrences of idle

listening.

3.4.1.2 Tree

In the extra-bit technique, idle listening happens for a transmission from a node v to

its parent if and only if none of the nodes in Tv have data. The number of occurrences

of idle listening is therefore equal to the number of nodes whose subtrees have no

data. In the successive-slot technique, idle listening happens for a transmission from

a node v to its parent if and only if at least one node in Tv does not have data. The

number of occurrences is therefore equal to the number of nodes whose subtrees

contain at least one node that does not have data. It is clear that idle listening for

the successive-slot technique is at least the amount of idle-listening for the extra-bit

technique.

For example, consider the tree in Figure 3.8 and suppose that only A, D, B,

and F have data. With the extra-bit technique there are two occurrences of idle

listening, one for the transmission from C to A and one for the transmission from

E to B. With the successive-slot technique, however, there are four occurrences of

idle listening: the same two as for the extra-bit technique, and in addition one for a

transmission from A to S and one for a transmission from B to S.

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 50

3.4.2 Expected Amount of Idle Listening

Now, we consider a probabilistic model in which each node has data with probability

p (which is the same for all nodes), and show how to calculate the expected amount

of idle listening for extra-bit and successive-slot scheduling.

3.4.2.1 Chain

Consider a chain with N nodes v1, . . . , vN , indexed in order of increasing distance

from the sink.

With the extra-bit technique, there is idle listening for a transmission from vi to

vi−1 if and only if none of the nodes vj with i ≤ j ≤ N have data. The probability

for this event is (1− p)N−i+1. The expected amount of idle listening is therefore:

N∑
i=1

(1− p)N−i+1 =
N∑
i=1

(1− p)i =
1− p− (1− p)N+1

p

For example, consider the chain with five nodes from Figure 3.5. The expected

contributions of the five nodes to idle listening are as follows:

1. 1− p for node E

2. (1− p)2 for node D

3. (1− p)3 for node C

4. (1− p)4 for node B

5. (1− p)5 for node A

The expected amount of idle listening for the chain of five nodes is therefore:

1− p+ (1− p)2 + (1− p)3 + (1− p)4 + (1− p)5 =
1− p− (1− p)6

p

With the successive-slot technique, there is idle listening for a transmission from

vi to vi−1 if and only if at least one node vj with i ≤ j ≤ N does not have data. The

probability that all nodes vj with i ≤ j ≤ N have data is pN−i+1. The probability

for idle listening from vi to vi−1 is therefore 1 − pN−i+1. The expected amount of

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 51

Fig. 3.9 Expected amount of idle listening for extra-bit and successive-slot technique in
a chain with 10 nodes.

idle listening is then:

N∑
i=1

(1− pN−i+1) = N −
N∑
i=1

pi = N − p− pN+1

1− p

For the example chain with five nodes of Figure 3.5, the expected amount of idle

listening for the successive-slot technique is:

1− p+ 1− p2 + 1− p3 + 1− p4 + 1− p5 = 5− p− p6

1− p

Figure 3.9 shows how the expected amount of idle listening for extra-bit and

successive-slot scheduling in a chain with 10 nodes depends on the probability p. The

x-axis represents the probability p that a node has data and the y-axis represents

the expected amount of idle listening. We observe that the amount of idle listening

for the extra-bit technique is much smaller than for the successive-slot technique,

with equality happening only for the extreme cases p = 0 (no node has data, 10

occurrences of idle listening) and p = 1 (all nodes have data, no idle listening). For

a wide range of p, the extra-bit technique has a significantly lower amount of idle

listening. For example, when p = 80% the expected amount of idle listening is close

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 52

S

A B

C D E F I

G K L

Fig. 3.10 Example tree for calculation of expected amount of idle listening

to zero for extra-bit scheduling but roughly 6.4 for the successive-slot technique.

Starting at p = 1, the amount of idle listening increases sharply as p decreases with

the successive-slot technique, but only slightly with the extra-bit technique.

3.4.2.2 Tree

Consider a tree whose set of nodes (excluding the sink) is V . With the extra-bit

technique, idle listening happens for a transmission from node v to its parent if and

only if none of the nodes in Tv have data, which happens with probability (1−p)|Tv |.

The expected amount of idle listening is therefore:

∑
v∈V

(1− p)|Tv |

With the successive-slot technique, idle listening happens if at least one node in Tv

does not have data, so the expected amount of idle listening is:

∑
v∈V

(1− p|Tv |)

For a concrete example, consider the tree shown in Figure 3.10. In this tree,

there are five nodes with subtree size 1, three nodes with subtree size 2, and two

nodes with subtree size 5. With the extra-bit technique, the expected amount of

idle listening in this example is therefore 5(1 − p) + 3(1 − p)2 + 2(1 − p)5. On the

other hand, the successive-slot technique has an expected amount of idle listening

of 5(1− p) + 3(1− p2) + 2(1− p5).

Figure 3.11 shows how the expected amount of idle listening for both techniques

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 53

Fig. 3.11 Expected amount of idle listening for extra-bit and successive-slot technique in
the tree of Figure 3.10.

for the tree of Figure 3.10 depends on p. Again, both techniques produce the same

amount of idle listening only if p = 0 (no node has data) and p = 1 (all nodes have

data, zero idle listening). While decreasing p from 1 to 0, the expected amount of

idle listening increases more quickly for the successive-slot technique than for the

extra-bit technique.

3.5 Uniform Energy Depletion

It can be observed that sensors near the sink should forward more packets than

others. As a result, non-uniform energy drainage occurs; namely, the entire network

is stopped while sensors far from the sink still have a greater level of energy. This

point has motivated us to also address the issue of uniform energy depletion by

adjusting the distance and transmission range of the nodes in order to maximise the

lifespan of the entire network (i.e, all sensors’ energy levels are depleted at the same

time).

Consider five nodes with the sink from Figure 3.5. Assuming the maximum

transmission range is used, each node has energy for sending k packets (for simplicity

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 54

k = 5). Moreover, assuming there is no energy consumption for receiving packets, it

is concluded that the first node near the sink depletes all its energy after forwarding

all the packets of the previous nodes in addition to its own packet (i.e., this network

only works for one round of data collection).

Based on this, we can propose a non-uniform transmission range as shown in

Figure 3.12 in order to improve the suitability of the quality of the network for

taking part in k rounds of data collection (in fact, k depends on D). That is,

we propose a non-uniform transmission range technique in which all nodes thereby

inactivate simultaneously. Suppose that the length of the area to be covered by

sensors is D and each node has an energy for forwarding k packets. We suppose

that energy consumption is proportional to distance squared. Hence the distance

relationship between the nodes is d2N = 2d2N−1 = 3d2N−2 = · · · = Nd21, where d2N

determines the energy consumption of the transmission from the last node to the

node next to it, and Nd21 is the energy consumption of N the transmissions from

the first node to the sink. In general, equations are needed to specify the optimal

distance and transmission range for each node in order for all of them to run out of

energy together. These equations can be expressed as

d2N−i =
d2N
i+ 1

=⇒ dN−i =
dN√
i+ 1

(3.1)

So, all the nodes should cover the area D. Thus, d1 + d2 + · · · + dN = D. Hence

from 3.1 we get

D = dN +
dN√

2
+
dN√

3
+ · · · +

dN√
N

=⇒ dN =
D

1 + 1√
2

+ 1√
3

+ · · ·+ 1√
N

(3.2)

From (3.2) the distance of the last node is determined. Then, when the distance

of the last node is determined, the distance value of other nodes can be calculated

using (3.1).

One of the main disadvantages of non-uniform distances is that more sensors are

required to cover the area. Furthermore, sometimes a non-uniform transmission is

not applicable if D is very large.

Chapter 3. Reducing Idle Listening in Wireless Sensor Networks 55

N
dN

N1
dN−1

1
d1

S

Fig. 3.12 Non-uniform transmission range for N nodes.

3.6 Summary and Discussion

We have proposed an optimized scheduling technique for data collection in sensor

networks for scenarios where not all sensor nodes have data in each round of data

collection. Our extra-bit technique is aimed specifically at increasing energy effi-

ciency by reducing the amount of idle listening. Reduced idle listening helps to

preserve energy and prolong network lifetime. Furthermore, we have shown how to

construct extra-bit schedules for chains that have minimum schedule length. We

have also shown how to compute the amount of idle listening in chain and tree net-

works for the previous successive-slot technique and for our new extra-bit technique.

We have analysed the expected amount of idle listening in a model where each node

has data with probability p, showing that the extra-bit technique reduces idle listen-

ing substantially compared to the successive-slot technique. Finally, uniform energy

depletion has been addressed.

One can observe that both successive-slot and extra-bit techniques are fruitful

in terms of idle listening reduction only for the setting when some nodes have data.

However, the length of the schedule compared to the arbitrary schedule is longer.

Therefore, these two techniques are not helpful for the setting when fast data col-

lection is required e.g. in oil leakage detection, fire detection, or disaster rescue

operations.

Chapter 4

Towards a More General Form

In the previous chapter, we have proposed and explained the idea of our optimiza-

tion technique. Despite the fact that we could determine lower and upper bound

schedules for a single chain, finding the optimal schedule for a general tree is very

complicated, and has not been achieved at the time of writing of this thesis. Hence,

in this chapter, we continue to expand the concept of the extra-bit technique to

several other special cases of the tree, such as equal length multi-chains, imbalanced

multi-chains, balanced three and four-level k-ary trees and Rhizome trees. In other

words, we give lower bounds on the schedule length for each of these cases. More-

over, we present algorithms for balanced chains, imbalanced chains and Rhizome

trees. The proposed algorithms for balanced chains and Rhizome trees can match

the lower bound whereas the algorithm for imbalanced chains is a few steps away

from the optimal. Our ultimate goal is to find a solution for a general tree. As a

second objective, we proceed to mitigate the idle state, which is available among the

nodes due to the nature of the communication to avoid interference, to save further

energy and to shorten the length of the schedule using two frequencies.

4.1 Optimal Extra-Bit Schedules for Balanced Multi-

Chains

A multi-chain is the special case of a tree network topology that consists of several

chains and a sink that is connected to one endpoint of each of the chains. In this

section, we consider balanced multi-chains where all the chains have the same length.

Chapter 4. Towards a More General Form 57

We let M denote the number of chains and N the number of nodes in each chain.

We assume N ≥ 3 throughout this section, as the cases N = 1 and N = 2 are

trivial. Including the sink, a balanced multi-chain has MN + 1 nodes. An example

of a balanced multi-chain is shown in Figure 4.1. WSNs with multi-chain topology

can arise in application settings where sensor data needs to be collected by a single

sink from several linear structures. For example, sensors placed in a building for fire

detection could form a chain on each floor, and all the chains could be connected to

the sink for further processing of the sensor data.

Sink

M1M2M3•••MN

313233•••3N

212223•••2N

111213•••1N

Fig. 4.1 Balanced multi-chain.

We want to determine the length of an optimal extra-bit schedule for data collec-

tion in balanced multi-chains. Since extra-bit schedules and successive-slot schedules

are equivalent as shown in Chapter 3, Section 3.3.1, all results in this section also

hold for successive-slot schedules. The case M = 1 brings us back to a single chain

that requires 4N − 6 time slots, as shown in the previous Chapter 3, Section 3.3.2.

For M ≥ 2, we will show the following:

• The optimal schedule length for M = 2 chains is 4N − 4.

• The optimal schedule length for M ≥ 3 chains is N +MN − 1.

Note that we cannot simply let each chain execute the optimal single-chain schedule

as the sink can receive at most one packet in every time step.

First, we show the lower bounds. We need the following lemma.

Chapter 4. Towards a More General Form 58

Lemma 2. Consider any extra-bit schedule for a single chain with N nodes and the

sink. For 1 ≤ i ≤ N − 2, the i-th packet received by the sink cannot be transmitted

to the sink before step N + 3(i− 1).

Proof. For 1 ≤ i ≤ N , let vi be the node that is i hops away from the sink. Because

the schedule is an extra-bit schedule, one can show that the sink can receive all

packets in decreasing order of the index of their origin (i.e., first the packet from

node N , then the one from node N − 1, etc.). This can be achieved simply by each

node giving preference to packets with larger index of origin when deciding which

packet to forward next.

Each of the first N − 2 packets reaching the sink must be transmitted by node

3, node 2 and node 1. In each step only one of these three nodes can transmit.

None of the three nodes can make a transmission during the first N − 3 steps, as

the packet from node N cannot reach node 3 before step N − 3. (Recall that the

steps of a schedule are numbered in such a way that the first step is step 1.) For the

i-th packet to reach the sink, 3i transmissions have to be made by the first three

nodes, as each of the first i packets has to be transmitted by node 3, by node 2 and

by node 1. The transmission in which the i-th packet is sent from node 1 to the

sink must be the last of these 3i transmissions. Therefore, the i-th packet cannot

be transmitted before time N − 3 + 3i = N + 3(i− 1).

Theorem 4. Any extra-bit schedule for data collection in a balanced multi-chain

requires at least 4N −4 steps for M = 2, and at least N +MN −1 steps for M ≥ 3.

Proof. First, consider the case M = 2. By Lemma 2, the sink cannot receive the

(N − 2)-th packet from any chain before time step T = N + 3(N − 3) = 4N − 9.

Therefore, each of the two chains can transmit at most N − 3 packets to the sink

before time step T . Hence, at the start of time step T there are still six packets left to

be sent to the sink, 3 packets from each chain. Transmitting these six packets to the

sink requires at least six more steps, as the sink can receive only one packet per time

step. Thus, the last packet cannot reach the sink before time step T + 5 = 4N − 4.

Next, consider the case M ≥ 3. By Lemma 2, the sink cannot receive any packets

before time step N . At the start of time step N , there are still MN packets that

Chapter 4. Towards a More General Form 59

need to be transmitted to the sink, and each of these must be sent to the sink in a

different time step. Hence, the last packet cannot reach the sink before time step

N +MN − 1.

We remark that the lower bound for M ≥ 3 shows that any algorithm that

produces an optimal schedule must transmit a packet to the sink in each time step

from time N to time N +MN − 1. That is, the sink must not be idle from time N

until it receives the last packet.

To obtain optimal schedules for balanced multi-chains, we will combine optimal

schedules for the individual chains, shifting time steps as necessary to prevent differ-

ent chains from sending packets to the sink at the same time. Consider the optimal

schedule for a single chain described in Chapter 3, Section 3.3.2, and observe that

the sink receives packets in time steps N ,N + 3, . . . , 4N − 9, 4N − 7, 4N − 6. In

other words, the first N − 2 packets are sent to the sink starting at time N , with

a gap of two time steps between consecutive time steps, finishing at time 4N − 9.

After the (N − 2)-th packet is sent to the sink, there is a gap of a single time step,

and then the last two packets are sent to the sink in the two consecutive time steps

4N − 7 and 4N − 6. Denote this schedule by OPT 1. Intuitively, we use shifted

versions of OPT 1 in the second and third chain in order to fill the gaps of the first

chain. All remaining chains collect their packets in the node adjacent to the sink

and transmit them to the sink in arbitrary order at the end of the schedule.

Theorem 5. For balanced multi-chains, there are extra-bit schedules of length

4N − 4 if M = 2 and of length N +MN − 1 if M ≥ 3.

Proof. First, consider the case M = 2. The first chain follows the optimal single-

chain schedule OPT 1 of length 4N − 6. The second chain uses a schedule S2 that

is obtained from OPT 1 by inserting an idle time slot (i.e., a time step in which no

transmission is made in the chain) in the beginning and another idle time slot just

before the (N−1)-th packet is transmitted to the sink. Note that the length of S2 is

4N − 4. Furthermore, we claim that the two chains can follow schedule OPT 1 and

S2, respectively, without creating a conflict at the sink. Observe that S2 transmits

packets to the sink in time steps N + 1, N + 4, . . . , 4N − 8, 4N − 5, 4N − 4, and

therefore S2 avoids all time steps in which OPT 1 sends packets to the sink. We have

obtained a feasible extra-bit schedule of length 4N − 4.

Chapter 4. Towards a More General Form 60

Now consider the case M ≥ 3. The first chain uses a schedule S ′1 that is obtained

from OPT 1 by inserting one idle time step before time 4N − 7. The second chain

uses a schedule S ′2 that is obtained from OPT 1 by inserting one idle time step at the

start and two idle time steps just before the (N − 1)-th packet from that chain is

sent to the sink. The third chain uses a schedule S ′3 that is obtained from OPT 1 by

inserting two idle time slots in the beginning, and three idle time slots just before

the (N − 1)-th packet of that chain is sent to the sink. With these schedules, the

three chains send packets to the sink in time steps as follows:

S ′1: N , N + 3, . . . , 4N − 9, 4N − 6, 4N − 5

S ′2: N + 1, N + 4, . . . , 4N − 8, 4N − 4, 4N − 3

S ′3: N + 2, N + 5, . . . , 4N − 7, 4N − 2, 4N − 1

Observe that the sink receives at most one packet per time step. For M = 3, we

have thus constructed a feasible schedule with N + 3N − 1 = 4N − 1 time steps, as

required. For M ≥ 4, let all the other M − 3 chains first execute the optimal single-

chain schedule for a chain with N − 1 nodes, treating the node adjacent to the sink

as a virtual sink. By Theorem 2, this schedule needs only 4(N − 1)− 6 = 4N − 10

time steps if N−1 ≥ 3, and only 4N−6 = 6 time steps if N−1 = 2. Hence, in each

of these M−3 chains all packets have been collected in the virtual sink after at most

4N − 6 time steps. The first three chains transmit all their packets to the sink in

consecutive time steps from time N to time 4N−1. The remaining M−3 chains can

then send their N(M −3) packets (which have all been collected in the virtual sinks

of those chains) to the sink in arbitrary order in N(M − 3) further time steps. The

total length of this feasible extra-bit schedule is 4N−1+N(M−3) = N+NM−1.

The data collection schedules of Theorem 5 are optimal as their lengths match

the lower bounds from Theorem 4.

Another interesting point that can be noticed is greater energy conservation.

When the third chain finishes all of its transmissions, the other chains (chain four

and upwards) have accumulated their data at their first nodes, therefore, we can let

the other chains sleep until the fourth chain sends all its packets successively, then

wake up another chain one after another, this process continues till the end of the

last chain. As a result, the energy can be saved to some extent.

Chapter 4. Towards a More General Form 61

Algorithm 2: Part one, Scheduling algorithm for M-balanced
chains in extra-bit.

Input: V = v(i,j) | 1 ≤ i ≤M, 1 ≤ j ≤M withSink
Output: S(t) for t = 1, . . . , N +NM − 1 for N,M ≥ 3

1 procedure Main();
2 S(t) = ∅ for t = 1, . . . , N +NM − 1 ;
3 p(i, j)← 1 for 1 ≤ i ≤M, 1 ≤ j ≤ N ;
4 p(Sink) = 0;
5 call procedure Scan-All();
6 call procedure Last-three-Nodes-of the first three chains();
7 call procedure Schedule the rest();
8 procedure Scan-All();
9 for j ← N to 1 do

10 t← t+ 1
11 for i← 1 to M do
12 Parallel(i,j);

13 procedure Parallel(i,j)
14 for j ← j to N increment by 3 do
15 if p(i, j) 6= 0 then
16 if (i 6= 1) and(j == 1) then
17 continue;// skip first nodes of all the chains except the first chain
18 p(i, j)← p(i, j)− 1;
19 s(t)← s(t) ∪ {v(i, j)};
20 if (i == 1) and(j == 1) then
21 Sink ← Sink + 1;
22 else
23 p(i, j − 1)← p(i, j − 1) + 1;

24 procedure Schedule the rest()
25 Schedule the remaining packets of the 3rd chain and upwards which are

accumulated in their first nodes and did not have a chance to send in parallel
with the main chain.

Algorithm 2 and 3 illustrate the implementation of the proposed

schedule for balanced chains.

Generally, in this algorithm, the input is the multiple-chains with the single sink;

the output is the optimal schedule.

Note: All nodes are arranged in a matrix where the farthest node of the first

chain has indices i = 1 and j = N while the first node, which is the closest node

to the sink, has indices i = 1 and j = 1. For ease of description, this algorithm is

divided into three steps as follows:

Step 1 : In this step, which starts in line 8, all the chains are scheduled inde-

pendently in parallel until the first packet of the first node reaches the sink. At the

Chapter 4. Towards a More General Form 62

Algorithm 3: part two, complement of the first part.

1 procedure Last-three-Nodes-of the first three chains()
2 k = 0;
3 while p(1)(3) 6= 0 do
4 for j ← 3 to 1 do
5 t← t+ 1
6 for i← 1 to M do
7 switch j do
8 case 1:
9 if i == 1 then

10 parallel(i,j);
11 else if i == 2 then
12 parallel(i,j+1);
13 else if i == 3 then
14 parallel(i,j+2);
15 else
16 call parallel(i,j+3);

17 case 2:
18 if (i == 3) then
19 s(t)← s(t) ∪ {v(i, j − 1)};
20 packets(i, j − 1)← packets(i, j − 1)− 1;

Sink ← Sink + 1, if(k > 1) parallel(i,j+2);
21 else if i == 2 then
22 parallel(i,j+1);
23 else
24 parallel(i,j);

25 case 3:
26 if i == 2 then
27 s(t)← s(t) ∪ {v(i, j − 2)};
28 packets(i, j − 2)← packets(i, j − 2)− 1;

Sink ← Sink + 1, if(k > 1) parallel(i,j+1);
k ← k + 1;

29 else if (i == 3) then
30 if(k > 1) parallel(i,j-1);
31 else
32 parallel(i,j);

33 schedule the last two nodes of the first chain and more parallel
transmissions of the second chain

beginning, two for-loops are used to process nodes in all chains concurrently. The

index of the chains is then passed to the procedure parallel in line 12. Inside of this

procedure, which starts in line 13, a for-loop is used to schedule the current node

and then take three steps away from the current transmission in order to perform

parallel transmission of each chain in the same time slot. To perform this process,

Chapter 4. Towards a More General Form 63

initially the node should be checked for the packet in line 15. If the node has a

packet, then there are three cases. Firstly, following N time slots, all of the chains

are ready to send their first packet to the sink; however the sink is only capable

of receiving one packet at a time. Therefore, only one of the chains can send its

first packet to the sink; we prefer the first chain (though it could be any) in line 20.

Secondly, when the sink has received the packet from the first chain, the first nodes

of the other chains must refrain from sending their packet to the sink in line 16 due

to the capability of the sink to receive only one packet at a time. Lastly, if they are

not the first node in each of the chains, each node in each chain receives data from

its child node in line 23. This is also due to concurrent transmission or reuse of time

slots inside of each chain. After each operation the for-loop continues to perform

parallel inside each chain. It can be noticed that in the first step N transmissions are

performed in order for the sink to receive the first packet. Then it is only necessary

to restart scheduling starting from the third node, which is explained in the second

step.

Step 2 : In this step data collection starts at the third node of the chains, at the

second part of the algorithm in line 1. From that node to the sink, we need three

time slots which are repeated for many rounds. In the third time slot the first chain

can send the next packet to the sink, these three slots continue until the third node

of the first chain is running out of packets in line 3-32. Then two and one more

time slots are required for the second and first nodes of the first chain to finish their

transmission respectively in line 33. It can be noticed that the sink has capacity to

receive two more packets of the first and second time slots of the three slot group,

which means that two slot gaps are available; therefore, the two other chains can

send their packets in these two available slot gaps of the three time slots. We prefer

to choose the second and third chains (it could be any others). With these three

time slots, the scanning process is also performed for all the chains. The cases are

used to control and regulate the three slots as follows:

1. Case 1: It refers to only the third time slot out of the three in which the next

packet of the first chain reaches the sink and uses the conditional statement to

check other chains with it. The first condition in line 9 means that if the node

is the first node of the first chain, then it sends the packet to the sink by using

Chapter 4. Towards a More General Form 64

the parallel procedure. Likewise, the second condition allows the second node

of the second chain to send the packet to the first node in line 11. Similarly,

in the third condition the third node of the third chain can send the packet

to the second node in line 13. However, the other chains can only perform

their parallel transmissions in this time slot starting from their fourth nodes

in line 15.

2. Case 2: It is used to regulate the second time slot of the main chain And

triggers the third chain to send a packet to the sink. It checks the condition

in line 18 and then initiates the first node of the third chain to send a packet

to the sink. At that time, the second chain does not need to scan previous

nodes because it already has checked them, therefore, we use variable k to let

the node call the scan procedure in the second round and upwards in line 20.

Similarly, the condition in line 21 is used to regulate the second chain with

this time slot. Likewise, the last condition is used to enable the other nodes

to perform their concurrent transmission in line 23.

3. Case 3: Inside this case, again three conditions are used to regulate the first

time slot, the first condition in line 26 qualifies the second chain to send the

packet to the sink in this time slot. At that time, the second chain does not

need to scan previous nodes because it already has checked them, therefore, we

use variable k to let the node call the scan procedure in the second round and

upwards. Similarly, the conditional statement in line 29 is used to prohibit the

third chain from transmitting in the first time slot out of the three, because

chain 2 already has transmitted in this time slot and the sink can only receive

one packet per time slot. Therefore, chain 3 does not perform any action in

the first time slot of the first round. Likewise, the condition in line 31 allows

the other chains to transmit in this time slot.

These two slot gaps have the effect of reducing the total time slots of the schedule

in the network. This step is performed via the third procedure of the algorithm.

Step 3 : By the end of the second step, the packets in the other chains are

accumulated in their first nodes that did not have a chance to send to the sink.

Thus, each remaining chain can send all its packets successively to the sink. As a

Chapter 4. Towards a More General Form 65

result, we need extra time slots for those chains that have remaining packets. This

is performed via the procedure in line 24 in the first part.

As we expected, our proposed algorithm is optimal because it makes the sink

busy from time N onward until all the chains are exhausted of their packets.

Note: We have already explained the expected amount of idle listening for a

single chain in the previous chapter. For balanced chains, since each chain operates

independently in the network, we calculate the amount of idle listening by multi-

plying the formula of the single chain by M , i.e,

M

N∑
i=1

(1− p)i

4.2 Unbalanced Multi-Chains

In this section, we consider data collection from another special type of tree topology:

unbalanced multi-chains, namely, chains of different length as shown in Figure 4.2.

This topology also has its own applications in many areas such as fire detection,

agriculture, etc. For unbalanced multi-chains a more sophisticated way is needed to

efficiently collect data so that the number of time slots (that is, latency) is minimized.

A multi-chain is the special case of a tree network topology that consists of

several chains and a sink that is connected to one endpoint of each of the chains.

We consider the case that the chains can have arbitrary length, and different chains

can have different length. We let M denote the number of chains. We let Ni be the

number of nodes in the i-th chain and assume that the chains are indexed in order

of non-increasing length, i.e., N1 ≥ N2 ≥ · · · ≥ NM . We denote the i-th chain by

Ci. We refer to any chain Cj for j < i as a longer chain than Ci, even if it has the

same length as Ci. Including the sink, a multi-chain has 1+
∑M

i=1Ni nodes.

The operation of the network discussed so far has focused on balanced networks;

that is, those with chains of equal length. Where chains are of unequal length, the

pattern described does not hold true.

When all chains are of equal length, priority of transmission to the sink is de-

termined sequentially, whereas when chains are of different lengths, two factors

determine the order in which those chains transmit to the sink: the order of the

Chapter 4. Towards a More General Form 66

Sink

M1M2M3•••

313233•••

21222324•••

11121314•••1N

Fig. 4.2 Unbalanced multi-chain.

chain in the sequence, and the length of each chain.

Shorter chains will be ready to transmit to the sink sooner than the longest chain

because they involve fewer steps between the end of the chain and the first node.

Therefore, if the i-th chain for i = 1, . . . ,M in the network was the shortest, it

would begin transmitting to the sink first, while longer chains are still processing

data. However, readiness to transmit is not the only criterion in determining which

chain has priority. The length of the chain is also a factor, so that if the (i− 1)-th

chain is then ready to transmit, it will take priority and transmit in preference to

the i-th chain, even if the i-th chain is also ready to transmit. In this manner,

the two criteria of length and readiness to transmit ensure that the longest of the

ready chains will have priority. Assuming no longer chains are ready to transmit,

the i-th chain may then still transmit to the sink while the (i−1)-th chain is unable

to transmit to the sink for two time slots. When longer chains, being of higher

priority, are ready to transmit to the sink, they will do so in preference to shorter

ready chains, which are of lower priority. The length of each chain will determine

when they are ready to transmit, until the longest chain, with the consequently

highest priority, is ready to transmit to the sink. At this point the shorter ones

will generally no longer be able to send, unless they have an opportunity to do so

in an interleaved fashion as described earlier. This point marks the end of the first

step which includes only one round (i.e., N transmissions) and the sink receives one

packet from the longest chain.

Chapter 4. Towards a More General Form 67

After N transmissions, when the longest chain has sent its first packet to the

sink, the second step has begun, which consists of three time slots in each round

(round means that until the sink receives a packet). This step operates many times

as was previously described, with the first chain sending packets to the sink and the

shorter chains transmitting to the sink while the first chain is silent for two time slots

in each round (i.e., the shorter chains fill the two gap of the longest chain). Step

3 begins after the third node of the first chain sends its final packet, at that time

two and one more time slots are needed for the second and first node of the longer

chain to transmit their packets respectively. Step 4 begins when the longer chain

has finished transmitting. Extra time slots are required for all chains to transmit

their remaining packets, accumulated in their first nodes, to the sink.

Note that another method that can also be used to schedule unbalanced chains

is as follows: An alternative procedure operates identically to the above description

during step 1, so that initially the shorter chains, being ready to transmit to the sink

sooner, have the opportunity to do so. Later in step 1, a bias for longer chains means

that the shorter ones are, similarly to the first approach, out-competed by longer

chains. However, once the first (primary chain) has transmitted its first packet to

the sink, step 1 ends and step 2 begins. During step 2, a different bias is present

within the selection approach for transmission to the sink. During these 3 time

slot rounds, for the first two time slots, the longest chain is not ready to send a

packet to the sink, and so other chains which are ready have the opportunity to

do so. Under the previously detailed approach, while the longest chain is unable to

transmit to the sink, the second longest and third longest chains would transmit.

However, under this alternative approach, there is a bias in favour of shorter chains.

This bias operates during the two time slots when the longest chain is unable to

transmit to the sink, so that the shortest chains then transmit to the sink, followed

by a transmission from the longest chain, in the third time slot of the round. This

approach continues until the end of step 2. During step 3, the only available time

slot for a chain other than the primary chain to send, is similarly utilised by the

shortest chain. This bias continues in step 4, so that with all the packets in the

chains having accumulated in the first node of each chain, the chains transmit their

remaining packets successively in order from the shortest remaining chain to the

Chapter 4. Towards a More General Form 68

longest.

The advantage of a bias towards shorter chains is that it should conserve energy

across the network. This is because a bias towards longer chains requires the shorter

ones to wait until the end of all transmissions in longer chains before they themselves

can transmit their final packets to the sink. Enabling the shorter chains to transmit

in an interleaved fashion with the longest chain, and then favouring them in step 4,

we can achieve that the shorter chains finish their transmissions to the sink before

some of the longer chains so that they can then shut down, thereby conserving

energy. This is the general description of how to schedule unbalanced chains. In

the next part we explain the intuition behind of our proposed algorithm and show

mathematically that it is at most 5 steps away from the optimal.

Due to the complexity of unbalanced multi-chains, we consider an illustrative

example for 5 chains of arbitrary lengths as shown in Figure 4.3. Let c1, c2, c3, c4

and c5 denote each chain in decreasing order (i.e., length of c1=6, c2=5, c3=4, c4=3

and c5=3). According to the general description that we proposed for unbalanced

multi-chains, in the first two steps, none of the chains is ready to send a packet to

the sink, instead each one individually sends a packet from a node to its parent in

the chain. It can be observed that in the third step, all of c5 and c4 are ready to send

a packet to the sink. However, the sink can only receive one packet in each step. As

explained before the priority is for c4 (it could be c5 as well because both c4 and c5

have the same length). In the fourth step, both c5 and c3 are ready but the priority

is for c3 according to the proposed algorithm. Similarly, in the fifth step, both c5, c4

and c2 are ready but the priority is for the longer chain, which is c2. Likewise, in

the sixth step, all of c5, c4 and c1 are ready but the priority is for the longer chain,

which is c1. We follow this strategy until the end of the transmission. As shown in

Figure 4.3, the data collection ends at step 23 for this example.

We want to show that our proposed algorithm is near-optimal for data collection

in unbalanced multi-chains. Since extra-bit schedules and successive-slot schedules

are equivalent as shown before, all results in this section also hold for successive-slot

schedules.

The case M = 1 brings us back to a single chain that can be scheduled optimally

in 4N −6 time slots. We show how to construct a near-optimal schedule for M ≥ 2.

Chapter 4. Towards a More General Form 69

Sink

515253

414243

31323334

2122232425

111213141516

c1 53→ 52 52→ 51 52→ 51
c2 43→ 42 42→ 41 41→ S 42→ 41
c3 34→ 33 33→ 32 32→ 31 31→ S 33→ 32 32→ 31 31→ S 32→ 31 31→ S

24→ 23
c4 25→ 24 24→ 23 23→ 22 22→ 21 21→ S 23→ 22 22→ 21 21→ S 23→ 22 22→ 21 21→ S

15→ 14 14→ 13 14→ 13
c5 16→ 15 15→ 14 14→ 13 13→ 12 12→ 11 11→ S 13→ 12 12→ 11 11→ S 13→ 12 12→ 11

steps 1 2 3 4 5 6 7 8 9 10 11

51→ S 51→ S 51→ S
41→ S 41→ S

31→ S
22→ 21 21→ S 21→ S
11→ S 13→ 12 12→ 11 11→ S 12→ 11 11→ S 11→ S

12 13 14 15 16 17 18 19 20 21 22 23

Fig. 4.3 Scheduling unbalanced multi-chain with 5 chains.

By extending the proof of Lemma 2 one can also show that the (N−1)-th packet

cannot be received by the sink before time 4N − 7, and the last packet before time

4N − 6. Thus, we obtain the following corollary.

Corollary 1. Consider any extra-bit schedule for a single chain with N nodes and

the sink. For 1 ≤ i ≤ N , the i-th packet received by the sink cannot be transmitted

to the sink before step N + 3(i− 1)− 3 in any schedule.

Note that the bound of Corollary 1 is tight for the last packet of the i-th chain,

which cannot be sent before time Ni + 3(Ni − 1) − 3 = 4Ni − 6. To construct

a schedule for a multi-chain, we will use near-optimal schedules for the individual

chains, shifting time steps as necessary to prevent different chains from sending

packets to the sink at the same time.

Consider the optimal schedule for a single chain of length N ≥ 3 described

before, and observe that the sink receives packets in time steps N,N + 3, . . . , 4N −

Chapter 4. Towards a More General Form 70

9, 4N − 7, 4N − 6. In other words, the first N − 2 packets are sent to the sink

starting at time N , with a gap of two time steps between consecutive time steps

with transmissions, finishing at time 4N − 9. After the (N − 2)-th packet is sent

to the sink, there is a gap of a single time step, and then the last two packets are

sent to the sink in the two consecutive time steps 4N − 7 and 4N − 6. The shorter

gaps (i.e., a gap of two time steps and 0 time steps, respectively before each of the

last tow packets) complicate the analysis, so we modify the schedule as follows: We

insert one idle time step just before time 4N −7, and two idle time steps just before

the transmission of the last packet to the sink. Denote the resulting schedule for a

chain of length N by S(N). In the schedule S(N), the sink receives packets in time

steps N + 3j for 0 ≤ j ≤ N − 1. Note that such a schedule can also be found for

N = 1 and N = 2. Note that the last packet reaches the sink in step 4N − 3, so the

schedule is longer than the optimal schedule for N ≥ 2 , but at most 3 steps longer.

The idea of our algorithm is to let each chain Ci follow the schedule S(Ni). If two

or more chains want to transmit to the sink simultaneously, the chain with smallest

index is allows to transmit, and the conflicting chains insert an idle time step into

their schedules. If a chain wants to transmit a packet to the sink but cannot do so

because a chain of smaller index is transmitting in the same time step, we say the

chain is blocked in that time step.

More specifically, each chain Ci behaves as follows:

• Phase 0: As long as time steps Ni + 3j for j = 0, 1, . . . are not blocked, the

chain follows the schedule S)Ni). If Ni + 3j0 is the first time step in which Ci

is blocked, the chain enters Phase 1 at time Ni + 3j0.

• Phase 1: As long as time steps Ni + 3j + 1 for j = j0, j0 + 1, . . . are not

blocked, the chain follows the schedule S(Ni) with one idle time slot inserted

just before time Ni+3j0, i.e., it transmits to the sink in steps Ni+3j0+1, Ni+

3(j0 + 1) + 1, If Ni + 3j1 + 1 is the first time step in Phase 1 in which Ci

is blocked, the chain enters Phase 2.

• Phase 2: The chain inserts a second idle time slot just before step Ni+3j1 +1.

As long as time steps Ni + 3j1 + 2, Ni + 3j1 + 5, . . . are not blocked, it follows

the schedule and transmits to the sink in those time steps. If Ni + 3j2 + 2 is

Chapter 4. Towards a More General Form 71

the first time in phase 2 in which Ci is blocked, the chain enters Phase A.

• Phase A: The chain no longer transmits to the sink. Instead, it collects all its

packets in the first node of the chain, which happens by time 4Ni − 1.

• Phase T: From time 4Ni onward, the chain transmits a packet to the sink in

every time step in which it is not blocked.

Note that a chain may complete its schedule in Phase 0, in Phase 1, in Phase 2,

or in Phase T.

We can claim that the resulting schedule is close to optimal. We need the

following lemmas.

Lemma 3. Consider a packet p that is sent to the sink in time step t. If p is sent

by a chain Ci that is in Phase 0, Phase 1 or Phase 2, then p cannot be sent to the

sink before time t− 5 in any schedule.

Proof. Let t be the j-th packet sent by the chain Ci to the sink. By Corollary 1, the

packet cannot be sent to the sink before time Ni + 3(j − 1)− 3 in any schedule. As

Ci sends the packet in Phase 0, Phase 1 or Phase 2, we have t = Ni + 3(j − 1) + x

for x ∈ 0, 1, 2, hence t ≤ Ni + 3(j − 1) + 2. The lemma follows.

Lemma 4. A chain that is in Phase A is blocked in every time step of its Phase A.

Proof. The chain entered Phase A because it was blocked in stepsNi+3j0, Ni+3j1+1

and Ni + 3j2 + 2. In each of these steps it was blocked by some longer chain

that was in Phase 0, Phase 1 or Phase 2. If the chain was blocked by a longer

chain in step Ni + 3j0, it follows that it is also blocked by a longer chain in steps

Ni + 3(j0 + 1), Ni + 3(j0 + 2), . . . , Ni + 3(Ni− 1). Similarly, it follows that the chain

is blocked also in all other time steps from time Ni + 3j2 + 2 to Ni + 3(Ni − 1) + 2

by some longer chain.

Let tC be the time step in which the sink receives the last packet. Let t′ be the

last time slot before tC during which the sink does not receive a packet. (If there

is no such time step, the schedule is clearly optimal.) Note that the sink receives a

packet in every step from time t′ + 1 to time tC .

Chapter 4. Towards a More General Form 72

Lemma 5. Let p be any packet received by the sink in some time step from time

t′ + 1 to time tC . The packet p cannot reach the sink before time t′ − 4 in any

schedule.

Proof. If p is sent by a chain that is in Phase 0, Phase 1 or Phase 2, the claim

follows from Lemma 3. Hence, assume that p is sent by some chain Ci in Phase

T . Note that Ci cannot have been in Phase A nor in Phase T at time t′: If Ci

was in Phase A, then by Lemma 4 it would be blocked in time t′, a contradiction

to time t′ being a time step in which the sink does not receive a packet; and if Ci

was in Phase T at time t′, it would have transmitted a packet to the sink as it was

not blocked at time t′. Therefore, we know that Ci was still in phase 0,1 or 2 at

time t′. Assume that Ci had transmitted j packets to the sink before time t′. This

implies t′ > Ni + 3(j − 1) (the time when the j-th packet is sent in Phase 0) and

t′ < Ni+3j+2 (the time when the (j+1)-th packet is sent in Phase 2). Furthermore,

the packets that Ci collects during Phase A and transmits during Phase T do not

include the first j packets of Ci. By Corollary 1, none of the last Ni − j packets of

Ci can be transmitted before time Ni + 3j − 3. Since t′ 6 Ni + 3j + 1, the packet p

cannot be transmitted to the sink before time t′ − 4 in any schedule.

Theorem 6. The number of time steps that the algorithm needs to schedule a

multi-chain is at most OPT + 5, where OPT is the optimal number of time steps.

Proof. If the schedule has no time step in which the sink does not receive a packet,

the schedule is optimal. Otherwise, let t′ and tC be defined as above. By Lemma 5,

none of the tC − t′ packets transmitted to the sink from time t′ + 1 to tc can be

transmitted to the sink before time t′ − 4 in any schedule. Therefore, t′ − 4 +

(tC − t′ − 1) = tC − 5 is a lower bound on the optimal schedule length, and we get

tC ≤ OPT + 5.

Algorithm 4 and 5 illustrate the implementation of the proposed

schedule for unbalanced chains.

The description is similar to the algorithm for balanced chains with some mod-

ification. Firstly, all the chains should be arranged in descending order, with the

longest chosen as a backbone chain. We already refer to the minimum time slot for

that backbone chain in Chapter 3, Section 3.3.2.

Chapter 4. Towards a More General Form 73

Algorithm 4: part one, unbalanced chains.

Input: multi-chains = l1, . . . , lM ; li = {v(i,j), . . . } , Sink, where
1 ≤ i ≤M, 1 ≤ j ≤ length(i)

Output: S(t) for t = 1, . . .
1 procedure Main()
2 flag ← 0; aux(i, j)← 0 for 1 ≤ i ≤M, 1 ≤ j ≤ 3;
3 S(t) = ∅ for t = 1, . . . , p(i, j)← 1 for 1 ≤ i ≤M, 1 ≤ j ≤ N, k = 0;
4 length(1) > length(2) > length(3), . . . ,> length(M) , arrange all chains in

descending order;
5 length = {length(1), length(2), . . . , length(M)} ;
6 call procedure Scan-All()
7 call procedure Procedure-three-slots()
8 procedures scan-all()
9 for j ← length(1) to 1 do

10 t← t+ 1;
11 for i← 1 to M do
12 if t < length(i) then
13 parallel(i,length(i)-k);
14 else if (t == length(i)) and (flag == 0) then
15 s(t)← s(t) ∪ {v(i, j)};
16 p(i, j)← p(i, j)− 1, Sink ← Sink + 1 ;
17 flag ← flag + 1 ; aux(i, 1)← 1 ;
18 parallel(i,j+3);

19 else if (t > (length(i)) and (flag == 1) then
20 ControlThree(i,j);
21 else if (t > length(i)) and (flag == 0) then
22 if (p(i, 1) > 1) or (p(i, 1) == 1) and (p(i, (2) == 0) then
23 s(t)← s(t) ∪ {v(i, 1)};
24 p(i, 1)← p(i, 1)− 1;
25 Sink ← Sink + 1 ; flag ← flag + 1;
26 if (aux(i, 1) == 0) then
27 parallel(i,4); aux(i, 1)← 1;

28 else
29 ControlThree(i,1);

30 flag ← 0, k ← k + 1;

31 schedule the last three packets of the 1 and 2 chains;
32 Procedure-three-slots()
33 while p(1)(1) 6= 0 do
34 for j ← 3 to 1 do
35 parallel(1,j) ;
36 Concurrently other chains are used to fill the gap of two slots if they

have packets.;

37 All the accumulated packets of the remaining chains are forwarded to the sink
one after another.

Chapter 4. Towards a More General Form 74

Algorithm 5: part two, complement of the first part.

1 Procedure-Parallel(i, j)
2 for j ← j to length(i) increment by 3 do
3 if p(i, j) 6= 0 then
4 s(t)← s(t) ∪ {v(i, j)};
5 p(i, j)← p(i, j)− 1;
6 p(i, j − 1)← p(i, j − 1) + 1;

7 Procedure-ControlThree(i, j)
8 if ((p(i, (j + 3) ≥ 1) and (aux(i, 1) == 0)) then
9 j ← j + 3, aux(i, 1)← 1;

10 else if ((p(i, j + 2) ≥ 1) and (aux(i, 2) == 0)) then
11 j ← j + 2, aux(i, 2)← 1, aux(i, 3)← 0;
12 else if ((p(i, j + 1) ≥ 1) and (aux(i, 3) == 0)) then
13 aux(i, 1)← 0, aux(i, 2)← 0;
14 if (p(i, 2) 6= 0) then
15 aux(i, 3)← 1;// if node three and upwards still have packets
16 j ← j + 1;

17 parallel(i,j);

To simplify the explanation, this algorithm is divided into two steps:

Step1: This step includes one round which starts in line 8 and has length(1) (length(1)

is the length of the longest chain) transmissions in order for the longest chain to

send its first packet to the sink. At the beginning all the chains are arranged as

a matrix similar to Example 4.3 and the lengths of all chains have been stored in

an array (length). Then scheduling starts from the leaf nodes and the processing

proceeds from the longest chain down to the shortest one in each time slot. During

this process, when any chain is ready to send data to the sink they should send it to

the sink (here we choose the longer chain among the ready chains, however we can

choose the shorter one as well). In order to schedule as many nodes as possible with

the length(1) transmissions of the longest chain, we use two for-loops (line 9,11).

Inside the loops, four cases are used to control scheduling nodes as follows:

1. The first case is used to check each chain with the current step in line 12. If

the length of the chain is smaller than current step it means that the chain is

not ready to send data to the sink. Therefore, the node should send data to

its parent.

2. The second case uses two conditions: the first is used to check whether the

length of the chain is equal to the current time step (i.e., this chain is ready

Chapter 4. Towards a More General Form 75

to send a packet to the sink), while the second is used to ensure the sink did

not receive any packets before this chain in line 14. Then the algorithm allows

the first node of this chain to send data to the sink and uses variable flag

to remember that the sink has received data in line 17. Then the parallel

procedure is called to scan and schedule previous nodes of the current chain

and others with the current time slot.

3. The third case is used to handle another possibility of the chain. If the con-

dition is satisfied in line 19, this implies that the sink has already received a

packet from one of the previous chains. As a result, the chain cannot send

data to the sink despite its readiness. Thus the only thing that can be done in

this step is to scan previous nodes in line 20 of this chain to be scheduled in

this time slot. The process of scanning previous nodes in this time slot should

be used attentively, especially when the length of the chain is smaller than the

current time slot. Therefore this process is performed via a control procedure

ControlThree as follows:

(a) The scanning process should start at either the fourth, third or the second

node of the chain because the algorithm does not know which node has

already made a transmission in the previous time slot. Moreover, the

auxiliary array is utilised to control scheduling them. The first condition

in line 8 checks the fourth node of the current chain, whether or not it is

ready to send the packet to the next node. If the fourth node has made

a transmission, its position in the auxiliary array becomes one to mark

this. Then ordinarily the procedure parallel is called to scan previous

nodes of this chain.

(b) Similarly, the second condition in line 10 is used to check the third node

of the chain.

(c) The third condition is used to check the second node. It can be observed

that the algorithm does not need to check the first node of this chain

because one of the longer chains has already made a transmission to the

sink, and due to the limited capacity of the sink to receive only one packet

in each time slot, this chain cannot make a transmission to the sink. Note

Chapter 4. Towards a More General Form 76

that the extra condition in line 14 means that if the third node still has

more packets, remark the second node that has forwarded the packet,

and let the other nodes to do their turn. Otherwise let the second node

to forward all its packets one after another.

Note that the extra condition in line 14 is necessary because if the third

node has no more packet, the algorithm lets the second node to forward

all its packets one after another.

4. Case four in line 21 means that none of the longer chains is ready to transmit

a packet to the sink. As a result, the shorter chains that have already been

passed should be checked to know whether there is a packet to be sent to the

sink. If one of the chains has satisfied the condition in line 22, it can send a

packet to the sink and procedure parallel is called to scan previous nodes of

this chain. However, if this chain does not have data to send to the sink, it

will call the ControlThree procedure in line 29 to check the previous nodes of

this chain.

Step2: Then we come to the three time slot group of the backbone chain in

line 32. These three time slots are performed many times until the first node of

the backbone chain is running out of packets. In this three-time slot group, the

backbone chain can send a packet to the sink at the end of this group, which is the

third time slot. However, we can make the sink busy in the first and the second

time slot of these three time slots by sending data from other chains. (We prefer to

send data from the shorter chains to shut them down sooner than the other longer

chains to save more energy).

After the end of the schedule for the backbone chain, we use another for loop

to send the remaining data of the remaining chains that accumulated in their first

nodes.

Note: For unbalanced chains, the expected amount of idle listening is calculated

as follows:
M∑
j=1

Nj∑
i=1

(1− p)Nj−i+1

Recall that Nj is the length of each chain and M is the total number of chains.

Chapter 4. Towards a More General Form 77

4.3 Balanced k-ary Tree

In this section we proceed to find the optimal extra-bit schedule for a balanced k-

ary tree. Let G be a graph consisting of N nodes that are deployed and arranged

as a balanced k-ary tree. A balanced k-ary tree is a tree where each single parent

node including the root has exactly k children. The root of the tree is the sink to

which all other nodes send their packets. The tree is divided into d levels where

the level of the root node is labelled as level 0, the next one as level 1 and the last

one as level d as shown in Figure 4.4. The balanced k-ary tree is also analysed in

a different way in [24]; the authors explained when each level starts and ends its

transmission in each round of data collection for the case when each node has data

with probability p and demonstrates the expected latency, then they analysed the

energy consumption for the three states of the transceiver (transmitting, receiving

and idle state). In this section, we analyse and derive a lower bound for a k-ary

tree, which is composed of three or four levels.'

&

$

%

S

1

1

...

1 k

...

k

...
...

k

1

...
...

1

...
...

1 k kd

...

k2

k1.........

........

.......· · ·

Fig. 4.4 The structure of a balanced k-ary tree.

Let Ti be the total number of nodes in the tree extending from one parent node

at level i, for i = 1, . . . , d and k ≥ 2.

As we know that

Td = 1.

Td−1 = Tdk + 1 = 1 + k.

Td−2 = Td−1k + 1 = 1 + k + k2.

Chapter 4. Towards a More General Form 78

...

Td−i = Td−(i−1)k + 1 = 1 + k + k2 + · · ·+ ki.

After some simplification the general formula is

Ti =
kd−(i−1) − 1

k − 1
(4.1)

4.3.1 Balanced Three and Four Level k-ary Tree

In this section so far, we can confirm and show the minimum number of steps that

are required for data collection in a balanced three or four-level k-ary tree. Note

that we do not consider cases d = 1 and d = 2 because they are trivial.

Theorem 7. The length of any extra-bit schedule for balanced k-ary trees, k ≥ 2,

is at least k(d+ 1 + k + k2) if d = 3 and at least k(d+ 2 + 2k + k2 + k3) if d = 4.

Proof. We consider first the case d = 3, and second, the case d = 4. Consider d = 3,

meaning that there are three levels excluding the root (sink).

In the first k steps, only the nodes of level 3 can make transmissions. Assume

that step k + t is the first step in which a node at level 1 makes its (k + 1)-th

transmission. Let v be that node at level 1. It follows that each of the k children of

v must have made all its k+ 1 transmissions to v before step k+ t. Besides, v must

have made k transmissions before step k+t. All these transmissions must have been

made after step k, and no two of them can have been made in the same time step.

Therefore, we have t ≥ k(k + 1) + k + 1 = 1 + 2k + k2.

After step k+ t, node v still has to make k2 further transmissions, and the k− 1

other nodes at level 1 still have to make at least k2 + 1 transmissions each. No two

transmissions by nodes at level 1 can be made in the same time step. Therefore, at

least k2+(k−1)(k2+1) = k3+k−1 steps are needed after step k+t. This means that

the length of the schedule is at least k+t+k3+k−1 ≥ k+(1+2k+k2)+k3+k−1 =

4k + k2 + k3.

Now consider d = 4, at least (d− 1)k time slots are required to enable the first

level to make the first k transmissions. We can argue that during the (d − 1)k

transmissions, at most, k − 1 parallel transmissions can happen at the third level,

among the k children of a node at the second level; that is, there is exactly one

Chapter 4. Towards a More General Form 79

node among the children of each node of level 2 at level 3 that cannot make the

parallel transmission with the second level. This is due to the fact that a child

in the third level cannot make a transmission when its parent at the second level

makes a transmission. In addition, with k transmissions of the first level, at most

k − 2 concurrent transmissions can happen at the second level. This is because one

transmission of the third level, which is left, needs to be completed. Therefore, each

parent node at the second level is delayed by two (i.e., each parent node can only

receive from k−2 children). Hence, two extra time slots for T3−T4 times are required

to enable the first level to continue until the third level is running out of packets.

When the third level has finished, there are at least T2−T3 packets left at level two

and only one of them can be schedule per time slot, therefore one extra time slot,

for T2− T3 times (i.e., after T2− T3 times, the second level has no more packets), is

required until the second level is finished. In other words, at most k−1 transmissions

can happen at the second level with k transmissions of the first level whenever there

is no restriction on the second level by the third level. Finally, the first level can make

all the transmissions. Hence (d−1)k+(T3−T4)2+T2−T3+T1k=k(d+2+2k+k2+k3)

is the lower bound.

Note that we do not construct schedules to match the lower bounds for d = 3

and d = 4, because they are very straightforward.

4.4 Extra-Bit Schedules with Two Frequencies

In this section, we consider a setting where two frequencies (channels) are available

and transmissions made on different frequencies do not interfere with each other.

We assume that each sensor node has a single radio that can be tuned dynamically

to either of the two frequencies. The sink is assumed to have two radios, so that it

can receive two packets sent on different frequencies simultaneously.

The availability of two frequencies increases the potential for simultaneous trans-

missions. For example, consider a chain network. With just one frequency, simul-

taneous transmission from node vi+1 to node vi and from node vi+3 to vi+2 is not

possible because the transmission from vi+1 to vi creates interference at vi+2. With

two frequencies, these two transmissions can be made simultaneously provided they

Chapter 4. Towards a More General Form 80

use different frequencies. Therefore, it is no longer necessary for node vi+2 to re-

main idle while vi+1 transmits to vi. In the following we show how to exploit this

capability for chains and balanced multi-chains.

In other words, based on the above explanation, it can be observed that when

a single frequency is used each node passes through three states: transmission(T),

reception(R) and Idle(I), as shown in Figure 4.5. This implies that each node, after

passing through these three states, repeats this cycle again and again until it runs

out of packets. In this example there are five nodes, and transmission initially starts

at the furthest node from the sink, which is node 5, to the node next to it according

to the extra-bit condition and others are in the inactive state. In step one, node 5

transmits to node 4, this implies that node 5 is in transmit state and node 4 is in

receive state. In step 2, node 5 is in the idle state while both node 4 and 3 are in the

transmit and receive states together. In step 3, node 5 turns to receive state but it

cannot receive any packet because it is a leaf node while node 4 is in the idle state

to avoid interference, whereas node 3 and 2 are in the transmit and receive states

together. This process continues until the sink receives all packets. Furthermore,

each node repeats this cycle after three steps.

One can notice that using two frequencies is sufficient to reduce three states to

two states i.e., transmission(T), reception(R) as shown in Figure 4.6. Consequently,

the length of the schedule is reduced substantially and no idle state exists any more.

S12345

step1: T R
step2: I T R
step3: R I T R

step4: T R I T R
step5: I T R I T
step6: R I T R I

Fig. 4.5 States of the nodes until the sink receives the first packet in linear network with
single frequency.

Chapter 4. Towards a More General Form 81

S12345

step1: T R
step2: R T R

step3: T R T R
step4: R T R T R

step5: T R T R T

Fig. 4.6 States of the nodes until the sink receives the first packet in linear network, with
two frequencies.

4.4.1 Single Chain

In the case of a single frequency, we know from Theorem 2 that the optimal length

of an extra-bit schedule for a chain with N nodes is 4N − 6. We now show that

the use of two frequencies reduces the optimal schedule length to 3N − 3 time slots.

First, we show the lower bound.

Theorem 8. Consider a chain with N nodes and the sink. Any extra-bit schedule

with two frequencies requires at least 3N − 3 time steps.

Proof. For 1 ≤ i ≤ N , let vi be the node of the chain that is i hops away from the

sink. The extra-bit technique requires that every node vi for 1 ≤ i ≤ N − 1 must

receive a packet from vi+1 before it can make its first transmission. Therefore, node

v2 cannot receive its first packet from v3 before time step N − 2, and neither node

v2 nor v1 can make any transmission before time N − 1. After time step N − 2,

node v2 must make N − 1 transmissions and node v1 must make N transmissions,

and no two of these transmissions can be made simultaneously as v1 has only one

radio. Therefore, 2N − 1 further time steps are required after the first N − 2 time

steps, giving a lower bound of 3N − 3 time steps overall.

Theorem 9. For chains with N ≥ 2 nodes and the sink and two available frequen-

cies, there is a feasible extra-bit schedule of length 3N − 3.

Proof. We present an algorithm that produces a schedule of length 3N − 3. The

pseudo-code of the algorithm is shown in Algorithm 6. The algorithm is similar to

the algorithm for the single-frequency case, but nodes making simultaneous trans-

missions only have a distance of 2 instead of 3. Nodes need to alternate frequencies

Chapter 4. Towards a More General Form 82

Algorithm 6: Optimal extra-bit scheduling algorithm for chains
using two frequencies.

Input: Chain with N nodes v1, . . . , vN and the sink v0
Output: S(t) for t = 1, 2, ..., 3N − 3

1 S(t)← ∅ for t = 1, 2, . . . , 3N − 3 ;
2 p(i)← 1 for i = 1, 2, . . . , N ; // packets at vi
3 t← 0;
4 call ScheduleFirstPart();
5 call ScheduleSecondPart();
6 procedure ScheduleFirstPart()
7 for i← N down to 1 do
8 t← t+ 1;
9 parallel(i);

10 procedure parallel(i)
11 for j ← i to N increment by 2 do
12 if p(j) 6= 0 then
13 p(j)← p(j)− 1;// send a packet
14 p(j − 1)← p(j − 1) + 1;// receive a packet
15 s(t)← s(t) ∪ {vj};
16 procedure ScheduleSecondPart()
17 while p(1) 6= 0 do
18 for i← 2 down to 1 do
19 if p(i) 6= 0 then
20 t← t+ 1;
21 parallel(i);

to avoid interference. Observe that the algorithm never schedules transmissions

of node vi and vi+1 simultaneously for any i, hence there is no interference be-

tween simultaneous transmissions. The sink receives the first packet in time step

N , then N − 2 further packets with a gap of one time step before each reception.

The last packet is then received without a gap. The total number of time steps is

N + 2(N − 2) + 1 = 3N − 3.

4.4.2 Balanced Multi-Chains

For extending our algorithm for two frequencies from a single chain to balanced

multi-chains, we follow similar ideas as in Section 4.1, but the sink can now receive

two packets simultaneously on different frequencies. Let N be the number of nodes

in each chain, and M the number of chains.

Let OPT 2 denote the optimal schedule with two frequencies constructed by Al-

Chapter 4. Towards a More General Form 83

gorithm 6 for a single chain with N nodes. The length of OPT 2 is 3N − 3. Observe

that the node adjacent to the sink sends N − 1 packets to the sink in time steps N ,

N + 2, . . . , N + 2(N − 2) = 3N − 4, and then the last packet in time step 3N − 3.

Theorem 10. For a balanced multi-chain with M = 2 chains and N nodes per

chain, the optimal length of an extra-bit schedule with two frequencies is 3N − 3.

Proof. The lower bound of 3N − 3 follows because a multi-chain with two chains

of length N cannot admit a shorter schedule than a single chain of length N . For

the upper bound, simply let both chains use schedule OPT 2, but exchange the two

frequencies in the second chain. Both chains will complete their schedule in 3N − 3

time steps. The two chains will send their packets to the sink simultaneously but

on different frequencies, so the schedule is feasible.

Similarly to Lemma 2, we can prove the following.

Lemma 6. Consider any extra-bit schedule with two frequencies for a single chain

with N nodes and the sink. For 1 ≤ i ≤ N − 1, the i-th packet received by the sink

cannot be transmitted to the sink before step N + 2(i− 1).

Theorem 11. For a balanced multi-chain with M = 3 chains and N nodes per

chain, the optimal length of an extra-bit schedule with two frequencies is 3N − 2.

Proof. First, we prove the lower bound. By Lemma 6, the (N −1)-th packet of each

chain cannot be transmitted to the sink before time N +2(N −2) = 3N −4. Hence,

at the start of time step 3N − 4, at least six packets (two from each chain) have not

yet been transmitted to the sink, and at least three further time steps are needed

because at most two packets can be sent to the sink in each step. Hence, the length

of any feasible extra-bit schedule is at least 3N − 2.

Now, we construct a schedule of length 3N − 2. The first chain follows sched-

ule OPT 2. The second chain uses a schedule S2 that is obtained from OPT 2 by

exchanging the two frequencies and inserting an idle time step just before the last

packet is sent to the sink. The third chain uses a schedule S3 that is obtained from

OPT 2 by inserting an idle time step at the start and by using frequency 2 instead

of 1 for the transmission from the first node in the chain to the sink in time step

3N − 3 (to avoid a collision with the simultaneous transmission from the first chain

to the sink).

Chapter 4. Towards a More General Form 84

The three chains make their transmissions to the sink at the following times:

OPT 2: N , N + 2, . . . , 3N − 6, 3N − 4, 3N − 3

S2: N , N + 2, . . . , 3N − 6, 3N − 4, 3N − 2

S3: N + 1, N + 3, . . . , 3N − 5, 3N − 3, 3N − 2

We have a feasible schedule of length 3N − 2.

Theorem 12. For a balanced multi-chain withM ≥ 4 chains andN nodes per chain,

the optimal length of an extra-bit schedule with two frequencies is N−1+dMN/2e.

Proof. First, we prove the lower bound. By Lemma 6, the first packet of each chain

cannot be transmitted to the sink before time N . The total number of packets that

must be transmitted to the sink from time N onward is MN , and at most two

packets can be sent to the sink in each time step. Therefore, the total number of

time steps for any extra-bit schedule is at least N − 1 + dMN/2e.

Now, we construct a schedule whose length matches the lower bound. If M is

even, the following schedule is used: The first two chains use a schedule S ′ that is

obtained from OPT 2 by inserting an idle time step just before the last packet is sent

to the sink. The third and fourth chain use a schedule S ′′ that is obtained from S ′

by adding one idle time step at the start. The second and fourth chain exchange

the two frequencies, compared to the first and third chain, respectively. The sink

receives two packets from the first two chains in steps N , N+2, . . . , 3N−4, 3N−2,

and two packets from the third and fourth chain in steps N + 1, N + 3, . . . , 3N − 3,

3N − 1. The remaining M − 4 chains collect all their packets in their first nodes

in the first 3N − 3 steps. The M − 4 chains are grouped into pairs. From time

3N onward, in each time step two chains from one pair of chains each transmit one

packet to the sink, requiring (M − 4)N/2 further time steps. The total schedule

length is 3N − 1 + (M − 4)N/2 = N − 1 +MN/2 = N − 1 + dMN/2e, as required.

Finally, consider the case that M ≥ 5 is odd. The first two chains follow the

schedule S ′ of length 3N − 2 defined above. The next three chains, denoted by

C3, C4, C5, follow the schedule S ′′ defined above, but in every time step where all

three chains want to send a packet to the sink, one of them does not transmit

to the sink and instead keeps the packet at the first node of the chain. The two

chains among C3, C4, C5 that are selected for transmitting to the sink are chosen

Chapter 4. Towards a More General Form 85

by selecting C3, C4 the first time, C4, C5 the second time, C3, C5 the third time,

and then repeating the pattern. This ensures that the number of remaining packets

always differs by at most 1 between the three chains C3, C4, C5. Whenever two

chains send a packet to the sink in the same time step, the two frequencies can be

exchanged for one of the two chains for that time step to avoid a collision at the

sink. The remaining M − 5 chains, if any, use the first 3N − 3 time steps to collect

all their packets in their first nodes. By the end of time step 3N − 1, the situation

is as follows:

(1) The first two chains have transmitted all their packets to the sink.

(2) The three chains C3, C4, C5 have together transmitted 2N packets to the sink,

and each of the three chains has bN/3c or dN/3e remaining packets that have all

been collected at the first node of the chain.

(3) In each of the remaining M − 5 chains, all N packets have been collected in

the first node of the chain.

Furthermore, the sink has received two packets in every time step from time N

to time 3N − 1. The rest of the schedule is now determined as follows: In the next

dN/2e time steps the chains C3, C4, C5 transmit their N remaining packets to the

sink, continuing the pattern of selecting C3, C4 for transmission to the sink in one

step, C4, C5 in the next, and C3, C5 in the next. After that, the remaining M − 5

chains are paired, and in each step the two chains of a pair transmit one packet each

to the sink. This requires N(M − 5)/2 time steps.

The total length of the schedule is 3N − 1 + dN/2e+N(M − 5)/2 = N/2− 1 +

dN/2e+MN/2. If N is even, this is equal to N − 1 +MN/2 = N − 1 + dMN/2e.

If N is odd, this is equal to N/2 − 1 + (N + 1)/2 + MN/2 = N − 1 + (MN +

1)/2 = N − 1 + dMN/2e. In either case, the length of the constructed schedule is

N − 1 + dMN/2e.

4.5 Rhizome Tree

When we are dealing with a network that comprises more than just a linear chain,

different considerations must be taken into account. Such an example would be

where there is a linear topology, with each node in the main chain having arbitrary

Chapter 4. Towards a More General Form 86

numbers of leaf nodes (neighbours). Such a topology could be called a Rhizome, due

to its particular structure, with sub-chains branching off a main chain. Furthermore,

this Rhizome tree can be represented as a graph G = (V,E), where V = Vmc ∪ Vl.

Vmc={v0, v1, v2, ..., vN} represents nodes in the main chain. These are arranged with

a linear topology (chain). Moreover, these Vmc nodes are numbered from 0 to N ,

where v0 is the sink. Furthermore, vN is the furthest node from the sink and node

v1 is the closest node to the sink. Vl={V (i, j)|1 6 i 6 N, 1 6 j 6 di } where each

node vi has an arbitrary number of leaf nodes di.

S123•••N-2N-1N

dN dN−1 dN−2 d3 d2 d1

Fig. 4.7 General structure of the Rhizome tree.

Figure 4.7 illustrates the topology under consideration. The activity of each node

in the backbone chain should be informed by 3 items of information: The degree

(d), capacity (c) and remainder (r) for each node in the main chain. Information

about the latter two can be derived from the degree. The degree is the number of

neighbours or children of each main-chain node and is given by di. The capacity is

the ability of a node to receive data from its children in parallel with transmissions

from the previous nodes in the chain, without requiring extra time slots. Where the

capacity is insufficient, the remainder is a number indicating how many extra time

slots are required for data from all the node’s children to be collected in addition

to its child node in the backbone chain (i.e., vi to vi−1), triggering the main-chain

node to begin transmitting data to its parent.

Definition 1: The capacity of each node is calculated from the capacity of the

previous node in the chain, plus any extra time slots required (the remainder of the

previous node), plus one further time slot, to account for the transfer of data from

the previous node in the main chain.

We can specify the capacity of each node by this formula: ci = ci+1 + ri+1 + 1,

where i = 1, 2, 3, ..., N − 1.

Definition 2: The remainder can be calculated from the degree of a node, minus

its capacity and can be expressed as ri = max {di − ci, 0}. When the remainder 6 0,

Chapter 4. Towards a More General Form 87

it means that no extra time slots are required.

Note: We assume that there are N main nodes in the network in addition to

the sink. Furthermore, all formulas in this section are correct when N ≥ 3.

There are two exceptions to this rule; the furthest node from the sink is vN ,

and the node next to the final node is vN−1. Being the final node, vN does not

need to adjust itself to transmissions of previous nodes in the chain. Therefore, the

remainder of vN is equal to its degree (rN = dN) and its capacity is zero (cN = 0).

In other words, vN has already received all the packets from the previous nodes and

none of its children had a chance to be scheduled. Correspondingly, its children

must be scheduled in separate time slots. Secondly, the capacity of vN−1 is equal to

the degree of the final node (cN−1 = rN = dN). Once the final node has received all

the transmissions of its children, it begins transmitting without delay.

The above paragraphs provide a general description of the Rhizome tree. How-

ever, there are two scenarios where this approach can be used and the formula

applied is different in each. Scenario 1 is where the remainder for the first node in

the chain, nearest to the sink, is zero. Scenario 2 is where this node has a remainder

greater than zero, where the formula of the first scenario is redefined. At the end of

each scenario an example is given to provide more intuition how the definitions and

rules work.

4.5.1 How the Algorithm Works

Before explaining the formula for each scenario, we illustrate how the basic idea of

the algorithm works and how the scheduling of data collection can be performed

optimally in the Rhizome tree. Then, for further understanding at the end of this

section the pseudocode is given.

1. First of all, the data collection starts from the last node of the main chain and

proceeds towards the sink. Namely, for i = N,N − 1, N − 2, ..., 1, where vi

transmits to vi−1. Furthermore, each node vi must listen to its remaining leaf

nodes in distinct, successive time slots in order to receive data from them in

addition to its previous node vi+1 in the main chain; then it can pass a packet

to the next node in the main chain. In other words, at the beginning, for each

node vi there are two constraints in order to send a transmission: firstly, the

Chapter 4. Towards a More General Form 88

node must listen to its previous node in the main chain, and secondly it must

listen to all of its remaining leaf nodes (neighbours). This node generally

can make another transmission after three time slots following its previous

transmission without listening to its neighbours again because it has collected

data from all of them before making its first transmission. However, it is

possible to make the next transmission at exactly three time slots following

its previous transmission when node vi−2 is busy with its leaf nodes as is

explained in the description of the backward scanning process provided in the

next paragraph.

Ordinarily, during each listening period, the algorithm must scan the network

in both directions (forwards and backwards) from the current node vi in order

to enable concurrent transmissions, which leads to a reduction in the length

of the schedule for the whole network. These two scanning processes should

be used carefully as follows:

(a) Forward scan: It is performed to help subsequent nodes in the main

chain to collect data from their leaf neighbours in parallel with node vi.

There are two cases in which forward scanning can be used.

i. Case 1: When node vi listens to its leaf nodes, the forward scanning

processes nodes in the order vi−1, ..., v1.

ii. Case 2: Conversely, when the node vi transmits data to node vi−1 in

the main chain, forward scanning processes the nodes from vi−2, ..., v1

to avoid interference from the other nodes.

(b) Similarly, a backward scan is performed to help previous nodes in the

main chain to send parallel transmissions with node vi and must be used

attentively. Each node should have two extra variables in order to per-

form backward scanning successfully. The first one is called re which

determines the number of packets that have been received by each node

vi from the previous node vi+1. It is initially set to zero for all nodes

(re(i) = 0, for i = 1, . . . , N − 1) except the last one, which is initially

set to the number of obtainable packets available at the node vN (i.e.,

re(N) = dN +1). This variable is used to control the backward scanning,

Chapter 4. Towards a More General Form 89

i.e., where to start. Moreover, it increases when its node receives a packet

from the previous node and decreases when its node sends a packet.

The second variable is st. Its value is initially set to one for all nodes

(st(i) = 1, for i = 1, . . . , N − 1) except for the last node (st(N) = 0).

This implies that only the previous node of the last one has finished trans-

mitting. This variable points out whether the previous node has finished

transmitting, and it also helps stopping further backward scanning.

When each node vi has forwarded the last packet to vi−1, vi−1 must adjust

its re to re = re + (di−1 + 1) and its st to 0. The number of received

packets in vi−1 is thus equal to the number of received packets from

node vi, in addition to the number of available packets at the node itself.

Notably, before vi transmits a packet to vi−1, its re and st are checked.

Accordingly, the node vi−1 knows whether to adjust its variables (i.e.,

re(i− 1) and st(i− 1)).

The above description provides a general idea about backward scanning,

and again there are two cases in which backward scanning can be per-

formed:

i. Case 1: When the current node vi is busy with its leaf nodes, the

backward scanning process should start at vi+2. First the algorithm

should check the number of available packets that have been received

by vi+2. For this purpose, re and st are used and there are four

conditions.

A. If both of vi+2’s variables re and st have zero values (re = 0

and st = 0), then the algorithm should cease backward scanning.

This is because vi+2 itself, and all previous nodes in the chain,

have finished transmitting.

B. When variable re is not zero and st has value zero (re 6= 0 and

st = 0) for vi+2, the backward scanning process starts from this

node and there is no need to check other nodes, meaning that all

the previous nodes have already forwarded their packets.

C. If (re > 1 and st = 1) for node vi+2, this implies that this node

has a packet to forward to the next node. And then the algo-

Chapter 4. Towards a More General Form 90

rithm should repeat the same process of checking three hops away

from this node in order to maximize the parallel transmissions

of the previous nodes with the current leaf of vi , which means

that the algorithm must start checking three steps further back.

The purpose of going back three steps further is to avoid inter-

ference. If the algorithm has focused three steps further back

and the node cannot satisfy conditions (i.e., it has not received a

packet), then the algorithm should greedily check another node.

Notably, checking three nodes further (i.e., vi+2, vi+3 and vi+4)

from the activity of the current one is sufficient, because when

vi+2 forwards a packet to vi+1, at the same time, the node vi+4

can receive a packet from vi+5. The same argument is true for

the other two nodes vi+3 and vi+4. If these three nodes have no

data, this implies that the other nodes have already transmitted

their packets.

D. Similarly, if re = 0 and st = 1, this means that the node has

not received a packet, and therefore, the algorithm should check

another previous node, which means vi+3, for the aforementioned

conditions (i.e., re and st) and again apply the same process.

Similarly, if the node vi+3 has not satisfied the aforementioned

conditions on re and st, then the algorithm has to check vi+4.

There are two reasons for using backward scanning in general: first,

the algorithm should aim to forward more packets from the node as

soon as possible so as to turn its radio off sooner, thereby conserving

energy. Secondly, forwarding more packets leads to a reduction in

the length of the schedule, especially in the second scenario.

ii. Case 2: When vi transmits data to the next node in the main chain

vi−1, the backward scanning thus starts three hops further (i.e., vi+3,

vi+6,. . . ,vN) from the activity of the current node vi, in order to

avoid interference. However, if vi+3 has already forwarded its received

packet, then the algorithm can check another previous node greedily

to maximize parallel transmissions.

Chapter 4. Towards a More General Form 91

2. After receipt of the first packet by the sink, then only the first three nodes v3,

v2 and v1 , which are close to the sink, are required to be scheduled separately

many times until they finish transmitting all the remaining packets in the

network. Furthermore, these three nodes can never be scheduled together due

to interference and all the remaining previous nodes are scheduled with these

three nodes concurrently until they finish transmitting all the packets as well.

In other words, when the sink receives another packet the third node is ready

to start transmitting again.

Note: When we are in the second scenario, sometimes due to the remainder of

the first node, the third node may forward more received packets to the second

node, at that time. When the first three nodes are scheduled, scheduling may

start from the second node for many times. This is the main difference between

the first and the second scenario.

4.5.2 Scenario 1

Scenario 1 is where the remainder for the first node in the chain, nearest to the sink,

is zero (i.e., when r1 = 0).

The following formula indicates the minimum number of time slots that is re-

quired to collect all the packets from the Rhizome tree.

N − 3︸ ︷︷ ︸
term 1

+
N∑
i=3

ri︸ ︷︷ ︸
term 2︸ ︷︷ ︸

combine 1 and 2

+ (N − 2 +
N∑
i=3

di)︸ ︷︷ ︸
term 3, Third Node

+ (N − 1 + r2 +
N∑
i=2

di)︸ ︷︷ ︸
term 4, Second Node

+ (N +
N∑
i=1

di)︸ ︷︷ ︸
term 5, First Node

(4.2)

1. The first term is the earliest possible time slot when the first packet can reach

the third node in the main chain without accounting for the degree.

2. The second term indicates the number of extra time slots that are required for

the degree of the nodes starting from node vN up to node v3. Combined with

the first term, this indicates the earliest possible time slot in which the third

node receives the first packet from 4 and from all leaf neighbours of v3 to v3.

3. The third term is the number of packets that are forwarded by the third node.

Chapter 4. Towards a More General Form 92

4. The fourth term is the number of packets that are forwarded by the second

node plus the extra time slots to collect data from the remaining children.

The possibility of having r2 extra time slots in the second node comes from

the fact that this node may have a huge number of children and it could not

finish listening to all of them during the previous transmissions.

5. The fifth term is the number of packets that is forwarded by the first node.

This term indicates no extra time slots, like the fourth term, because the first

node has finished data collection in parallel with the previous nodes.

Theorem 13. The formula(4.2) is a lower bound on the optimal number of time

slots to collect data in the Rhizome tree for any extra-bit algorithm (first scenario).

Proof. For ease of understanding we break the above formula into two parts.

1. In the first part,

Let TvN+1−i = i+
N∑

j=N+1−i

rj , for i = 1, . . . , N.

We assume that the schedule starts at time 1.

Claim: node vN+1−i cannot make its first transmission before time TvN+1−i .

We can prove this part by induction.

Base case: for i = 1.

TvN+1−1
= 1 +

N∑
j=N+1−1

rj

= 1 + rN

(4.3)

Induction hypothesis: Suppose that this is true for i = k, then we get the

following

TvN+1−k = k +
N∑

j=N+1−k

rj (4.4)

Induction step: We should prove that the formula is true for i→ k + 1.

Chapter 4. Towards a More General Form 93

We substitute each i by k + 1, hence left hand side = TvN+1−(k+1)

Note that node vN+1−(k+1) needs one more step in order to receive data from

the previous node vN+1−k and, further, rN+1−(k+1) extra steps to collect data

from the remaining leaf nodes before it can transmit.

these are required because it is obvious that there are TN+1−k steps before node

vN+1−(k+1) and this node can collect packets from its leaf nodes in parallel with

these TN+1−k steps. Furthermore, these TN+1−k steps intuitively indicate how

many parallel transmissions of node vN+1−(k+1) can be performed concomi-

tantly. So, as stated before in definition 2 , rN+1−(k+1) = max{dN+1−(k+1) −

cN+1−(k+1), 0} . Hence rN+1−(k+1) = max{dN+1−(k+1) − TN+1−k, 0}. Therefore

TvN+1−(k+1)
= TvN+1−k︸ ︷︷ ︸

term 1

+ rN+1−(k+1) + 1︸ ︷︷ ︸
term 2

= k +
N∑

j=N+1−k

rj + rN+1−(k+1) + 1 by equation (4.4)

= (k + 1) +
N∑

j=N+1−(k+1)

rj

In general, the above formula is true for all i, 1 ≤ i ≤ N .

Therefore, it can be concluded that the earliest time for the first node (i.e.,

v1) to make the first transmission or the earliest possible time for the sink to

receive the first packet is equal to

Tv1 =
N∑
j=1

rj +N

2. After receipt of the first packet by the sink, the Rhizome tree becomes a single

chain with the possibility of having more than one packet per node (i.e., an

arbitrary number of packets). Similar to a single chain as it has been shown

before, only the first three nodes v3, v2 and v1, which are close to the sink, have

to be scheduled individually in three distinct time slots until they finish their

Chapter 4. Towards a More General Form 94

packets. This is because these three nodes can never be scheduled together due

to interference, and the previous nodes are scheduled with these three nodes

in parallel.

It is obvious that after one packet arriving at the sink at Tv1 , v3 is responsible

for forwarding N − 3 packets in the main chain. Likewise, v2 should forward

N−2 packets of the main nodes. v1 similarly forwards N−1 packets. Therefore

3N−6 time slots are needed for the main chain without degree and extra time

slots for the degree of the nodes. Arguably, if an algorithm sends the first

packet to the sink after Tv1 , it cannot have a shorter schedule.

The third, second and first nodes require extra time slots to forward the extra

packets both of itself and the previous nodes; therefore, v3 must pass
∑N

i=3 di

extra packets while v2 and v1 must forward
∑N

i=2 di and
∑N

i=1 di extra packets,

respectively. These packets come from the secondary chains of each node, and

are then transmitted along the Rhizome tree. Hence Tv1 + 3N − 6 +
∑N

i=3 di +∑N
i=2 di +

∑N
i=1 di is a lower bound

Note: Any packet from the third node and beyond by Lemma 2 needs three

time slots until it reaches the sink. Similarly all the degrees of the second and first

nodes need two and one time slots until they arrive at the sink.

Theorem 14. The proposed algorithm for Rhizome trees is optimal for N ≥ 3 .

Proof. The constructed schedule proposed by the algorithm has the following prop-

erties:

1. Every node vi makes (N + 1− i) +
∑N

k=i dk transmissions.

2. Every node vi, after collecting all the packets from its children, makes its j-th

transmission only after it has received the j-th packet from its child in the main

chain (i.e., vi+1) or after receiving all packets from its child in case |Tvi+1
| < j.

3. The senders of simultaneous transmissions of the main chain are at least three

hops away from each other. Therefore there is no inference between them.

Chapter 4. Towards a More General Form 95

It is obvious that the algorithm sends packets in the way considered in the

induction in the lower bound proof without extra time steps. Namely, the sink

receives the first packet at time

N∑
i=1

ri +N

When the first packet has arrived at the sink, this implies that all the packets

from leaf neighbours of the main nodes have been collected. Thus the algorithm

has to only schedule v3, v2 and v1, in three distinct time slots due to interference

respectively similar to the single chain. The previous nodes can be scheduled in

parallel with them. Therefore the sink receives one packet in every three time slots

according to the algorithm until the third node has no more packets left. This

implies that v3 must pass N − 3 +
∑N

i=3 di packets and each one requires three time

slots to reach the sink. Similarly, the sink receives one packet in every two time

slots as shown in the algorithm until the second node has no more packets left,

thus v2 must forward 1 + d2 packets and each one requires two time slots. Finally,

v1 must forward 1 + d1 packets and each one requires one time slot. The total

schedule length therefore is (
∑N

i=1 ri+N) + 3(N −3 +
∑N

i=3 di) + 2(1 +d2) + 1 +d1=

(
∑N

i=1 ri)+3
∑N

i=3 di+2d2+d1+4N−6. Hence the proposed algorithm is optimal.

Example:

S123456

d= 2 1 4 7 0 0
c= 0 2 3 5 8 9
r= 2 0 1 2 0 0

Fig. 4.8 Rizhome tree for 6 nodes when r1 = 0.

To illustrate how this works in practice, consider Figure 4.8 and 4.9. The main

chain has 6 nodes, with varying numbers of children, as shown. Node 6 requires 2

extra time slots to listen to the transmissions of its 2 children (i.e., d(6,1) and d(6,2)),

as previously explained. After this, it is ready to transmit to node 5. Node 5 has 1

child (i.e., d(5,1)), and its capacity is equal to the degree of the final node, therefore

it does not require any extra time slots, which means that the remainder is 0 and it

Chapter 4. Towards a More General Form 96

d(3, 1)→ 3
d(4, 1)→ 4 d(3, 2)→ 3 d(3, 3)→ 3 6→ 5
d(5, 1)→ 5 d(4, 2)→ 4 d(4, 3)→ 4 d(3, 4)→ 3 d(3, 5)→ 3 5→ 4 6→ 5 5→ 4 4→ 3
d(6, 1)→ 6 d(6, 2)→ 6 6→ 5 5→ 4 d(4, 4)→ 4 4→ 3 d(3, 6)→ 3 d(3, 7)→ 3 3→ 2 2→ 1 1→ s

1 2 3 4 5 6 7 8 9 10 11

5→ 4 4→ 3
3→ 2 2→ 1 1→ s

12 13 14

5→ 4 4→ 3
3→ 2 2→ 1 1→ s

15 16 17

4→ 3
3→ 2 2→ 1 1→ s

18 19 20

4→ 3
3→ 2 2→ 1 1→ s

21 22 23

4→ 3
3→ 2 2→ 1 1→ s

24 25 26

4→ 3
3→ 2 2→ 1 1→ s

27 28 29

4→ 3
3→ 2 2→ 1 1→ s

30 31 32

4→ 3
3→ 2 2→ 1 1→ s

33 34 35

3→ 2 2→ 1 1→ s
36 37 38

3→ 2 2→ 1 1→ s
39 40 41

3→ 2 2→ 1 1→ s
42 43 44

3→ 2 2→ 1 1→ s
45 46 47

3→ 2 2→ 1 1→ s
48 49 50

3→ 2 2→ 1 1→ s
51 52 53

3→ 2 2→ 1 1→ s
54 55 56

3→ 2 2→ 1 1→ s
57 58 59

3→ 2 2→ 1 1→ s
60 61 62

2→ 1 1→ s
63 64

1→ s
65

Fig. 4.9 Schedule for Figure 4.8.

immediately forwards the packet to the next node in the main chain. Node 4 has 4

children (i.e., d(4,1), d(4,2), d(4,3) and d(4,4)), however its capacity is equal to the

capacity of the previous (i.e., node 4), plus 1, plus the remainder (r4 = 0), totalling

3. The capacity means that node 4 can listen to 3 children in parallel with the

transmissions of the previous nodes, without extra time slots. However, because it

has 4 children, and not 3, it requires 1 extra time slot. The third node has 7 children

(i.e., d(3,1), d(3,2), d(3,3), d(3,4), d(3,5), d(3,6) and d(3,7)) and its capacity is 5,

therefore it requires 2 extra time slots, after which it can start transmitting to the

next node. The second node has no children, and as such requires no extra time

slots to transmit. Finally, the first node also has no children and so requires no extra

time slots to transmit. When the sink has received the first packet, the third node

should subsequently forward 17 packets, the second node will forward 18 packets and

the first one will forward 19 packets. At this time, the process follows the pattern

Chapter 4. Towards a More General Form 97

described for a linear chain.

We summarize the scheduling steps as follows:

1. As shown in the schedule table of Figure 4.9, when the last node listens to its

first child, nodes 5, 4 and 3 also concurrently listen to their first child nodes

to receive a packet during the same time slot, and this is performed through

forward scanning in the algorithm.

2. In the second time slot, when the last node listens to its second child node,

simultaneously nodes 4 and 5 also receive packets from their second children.

Likewise, in the third time slot, all these three nodes listen to their child nodes

to receive data.

3. It can be seen that in the third time slot the last node has no more children,

thus it is ready to transmit the first packet to the next node (i.e., 5), at the

same time that nodes 3 and 4 listen to their third child nodes.

4. Again, node 5 forwards a packet to node 4, and node 3 listens to its fourth

child node with it.

5. It can be noticed that when it is time for node 4 in the main chain to transmit,

it cannot forward a packet at once to node 3, thus it must listen to its remaining

child node(s). With it the third node can listen to its fifth child node and this

is performed through forward scanning by the algorithm, and the last node,

which is node 6, can make another transmission to the next node in the main

chain, this is achieved via the backward scan by the algorithm. This process

continues until the sink receives the first packet. Subsequently, only the first

three nodes close to the sink need to be scheduled in three distinctive time

slots to finish the rest of the schedule.

4.5.3 Scenario 2

Scenario 2 is where the remainder for the first node in the chain, nearest to the sink,

is greater than zero (i.e., for r1>0).

Formula (4.5) below indicates the minimum number of time slots that is required

to collect all the packets from the Rhizome tree.

Chapter 4. Towards a More General Form 98

In that scenario, the third node ordinarily can forward N − 2 packets across the

main chain in addition to the degree of itself and the nodes downstream from it

(i.e., N − 2 +
∑N

i=3 di). However, this definition is no longer correct when r1 > 0,

therefore the algorithm must detect the number of packets that have reached the

second node concurrently with the remainder of the first node. This is performed

through variable re of the third node re3, of the fourth node re4, and variable p

respectively. Here variable p indicates all the remaining packets from the fifth node

onwards that have not been passed through node v5 when the first node starts data

collection from its children. The reason for specifying only these three variables is

that, when v3 forwards a packet to v2, node v5 can receive a packet from its previous

node in parallel. Therefore, the algorithm does not need to check further nodes.

T = N − 3 +
N∑
i=1

ri + y + (N − 1 +
N∑
i=2

di) + (N +
N∑
i=1

di) (4.5)

y =

(N − 2 +
∑N

i=3 di)− (re3 + br1 − re3
2

c)︸ ︷︷ ︸
x

if re3<r1 ≤ 2re4 + re3

0 if r1 > 3p+ 2re4 + re3

(N − 2 +
∑N

i=3 di)− (re3 + re4 + br1 − (2re4 + re3)

3
c)︸ ︷︷ ︸

x

if 2re4 + re3 ≤ r1<3p+ 2re4 + re3

(N − 2 +
∑N

i=3 di)− r1︸︷︷︸
x

if r1 6 re3

The second scenario is almost the same as the first one and the same argument of the

first scenario is true for the second one; the only modification is regarding the third node.

When the remainder r1 of the first node is greater than zero, the packets that can be

forwarded by the third node while v1 collects data from its children are significant.

After the first node finishes collecting data from its remaining children, the length of

the subsequent data transmission schedule depends upon the number of packets remaining

at the third node and downstream from it. Therefore we can perform that calculation

according to the conditions that have been shown in the second scenario.

Note: The x variable indicates the extra number of packets that have arrived at the

second node when the first node has finished data collection from its children. This implies

that the responsibility of the third node decreases by x.

Chapter 4. Towards a More General Form 99

1. The first condition means that when the remainder is in the specified range, the

algorithm can forward each packet of the third node concurrently with each trans-

mission of the remainder of the first node according to the condition of the extra-bit

technique. When all the packets of the third node have been forwarded then it is

the turn of the fourth node to forward each packet during two transmissions of the

remainder, because each packet needs two time slots to reach the second node. So,

in the formula, after forwarding all the packets of the third node, re3 is subtracted

from r1 and the result divided by 2 in order to determine how many more packets

can be forwarded to the second node. As a result, the number of packets that have

been forwarded to the second node can be subtracted from the overall transmissions

of the third node.

2. The second condition explains that when the remainder of the first node is quite

large and sufficient in order for the third and downstream nodes to forward all their

packets simultaneously with it, then we need only schedule the first and the second

node respectively to pass all the packets to the sink and no more packets are left

in the third and downstream nodes. That is, the responsibility of the third node

becomes zero.

3. The third condition illustrates that when the remainder of the first node is greater

than the number of the transmissions that are required by the third and fourth

nodes to hand over all their packets to the second node, then the algorithm must

detect how many more packets can be forwarded with the rest of the remainder.

In this case, each packet needs three time slots until it can reach the second node,

therefore, we have to divide the rest of the remainder by 3.

4. The last condition means that when the r1 < re3, we know that only r1 packets of

the third node can be forwarded with r1. Then it is the responsibility of the third

node to forward the remaining packets of itself and downstream nodes.

The proof for the second scenario is almost identical to the proof of the first scenario

and we only need to know the responsibility of the third node. The rest of the proof is

the same as the proof of the first scenario for both lower and upper bounds. Therefore

all arguments of the first scenario are correct except the responsibility of the third node.

Example:

To illustrate how the second scenario operates, an example is provided in Figure 4.10

and 4.11. Suppose that a network consists of 6 main nodes in the Rhizome as well as the

Chapter 4. Towards a More General Form 100

S123456

d= 2 0 4 3 1 15
c= 0 2 3 5 6 7
r= 2 0 1 0 0 8

p = 2 re4 =1 re3 =0

Fig. 4.10 Rizhome tree for 6 nodes when r1 > 0.

d(1, 1)→ 1
d(2, 1)→ 2 d(1, 2)→ 1 d(1, 3)→ 1
d(3, 1)→ 3 d(3, 2)→ 3 d(3, 3)→ 3 6→ 5 d(1, 7)→ 1
d(4, 1)→ 4 d(4, 2)→ 4 d(4, 3)→ 4 d(1, 4)→ 1 d(1, 5)→ 1 d(1, 6)→ 1 6→ 5 5→ 4 4→ 3
d(6, 1)→ 6 d(6, 2)→ 6 6→ 5 5→ 4 d(4, 4)→ 4 4→ 3 3→ 2 2→ 1 d(1, 8)→ 1

1 2 3 4 5 6 7 8 9

3→ 2 5→ 4 4→ 3 3→ 2 5→ 4 4→ 3 3→ 2 4→ 3
d(1, 9)→ 1 d(1, 10)→ 1 d(1, 11)→ 1 d(1, 12)→ 1 d(1, 13)→ 1 d(1, 14)→ 1 d(1, 15)→ 1 1→ s

10 11 12 13 14 15 16 17

4→ 3
3→ 2 2→ 1 1→ s

18 19 20

4→ 3
3→ 2 2→ 1 1→ s

21 22 23

4→ 3
3→ 2 2→ 1 1→ s

24 25 26

4→ 3
3→ 2 2→ 1 1→ s

27 28 29

3→ 2 2→ 1 1→ s
30 31 32

3→ 2 2→ 1 1→ s
33 34 35

3→ 2 2→ 1 1→ s
36 37 38

3→ 2 2→ 1 1→ s
39 40 41

3→ 2 2→ 1 1→ s
42 43 44

2→ 1 1→ s
45 46

2→ 1 1→ s
47 48

2→ 1 1→ s
49 50

2→ 1 1→ s
51 52

2→ 1 1→ s
53 54

1→ s
55

1→ s
56

1→ s
57

1→ s
58

1→ s
59

1→ s
60

1→ s
61

1→ s
62

1→ s
63

1→ s
64

1→ s
65

1→ s
66

1→ s
67

1→ s
68

1→ s
69

1→ s
70

Fig. 4.11 Schedule for Figure 4.10.

sink. The three pieces of information are shown in the figure. As shown, node 6 requires

2 extra time slots to listen to the transmissions of its children. Following this, it is ready

to transmit to node 5. Node 5 has 0 children; therefore, it does not require any extra

time slots and it immediately forwards the packet to the next node in the main chain.

Node 4 has 4 children; however, its capacity is 3, its remainder is 1. Thus, it requires 1

extra time slot; with this extra time slot, one more packet of the last node is forwarded

Chapter 4. Towards a More General Form 101

to node 5. Then, the fourth node can forward a packet to the third node. The third node

has 3 children and its capacity is 5 and its remainder is 0; therefore, it does not require

any extra time slots and it immediately starts transmitting a packet to the next node and

concurrently the last packet of the last node is forwarded to node 5. This implies that

re5 = 2. Then the second node has 1 child and requires no extra time slots to transmit,

and node 5 forwards the second packet with it (i.e., re5 = 1 and re4 = 1). Finally, the first

node has 15 children and its capacity is 7 while its remainder is 8; therefore it requires 8

extra time slots to collect data from its remaining children. With the first 2 time slots, the

received packet at v4 arrives at node 2 (i.e., re4 = 0). Similarly, in the next 3 time slots

during the remainder of the first node, the received packet of node 5 is forwarded to node

2. Finally with the last 3 time slots of the remainder, the last available packet of the fifth

node reaches the second node. In total, 3 more packets can be forwarded during these 8

time slots corresponding to the remainder of the first node. Then, the first node is ready

to forward the first packet to the sink. It is observed that, according to the first scenario

for this example, the third node has the responsibility of forwarding 13 packets; but due

to the remainder of the first node (i.e., second scenario), three more packets can reach the

second node from the previous nodes. Therefore the responsibility of the third decreases

from 13 to 10. In total, 70 time slots are required to collect data in this example.

4.5.4 Implementation of the Algorithm

Algorithm 7 and 8 show the scheduling of the Rhizome tree. Firstly, the capacity and

remainder of each node is calculated based on the explanation previously provided. Then,

five procedures are utilised to finish the process of scheduling as follows:

1. Nodes in the main chain should be processed, checked and scheduled. This is per-

formed via the procedure (line 6) and consists of two main steps. The algorithm

starts from the last node in the first step. First, it has to check each node’s remain-

der, and if it has any packets (line 9), the algorithm has to schedule the remainder

of the node (line 10-12). At the same time, the other main nodes should be checked

via both forward (line 13) and backward scanning (line 14) in order to ensure more

parallel scheduled transmissions.

In the second step (line 15-18), the transmissions of the main nodes are scheduled

(line 16) and both forward and backward scanning are used (line 17-18).

2. Forward scanning (line 19-23) is used to help other nodes in the main chain to make

Chapter 4. Towards a More General Form 102

Algorithm 7: Find schedule for Rhizome tree.

Input: V = {v(i) | 1 ≤ i ≤ N} ∪ {v(i, j) | 1 6 i 6 N, 1 6 j 6 degree(i)}
Output: S(t) for t = 1, . . . , T ; where T is the length of the schedule

1 Main()
2 p(i) = 1, capacity(i) = 0 , re(i) = 0, st(i) = 1, for i = 1, 2, . . . , N ,
t = 0, re(N) = dN , st(N) = 0, S(t) = ∅, for t = 1, ..., T ;

3 derive the capacity and remainder for each node vi ∈ V ;
4 call Read-all-nodes-with degree-and-schedule()
5 call Schedule-First-three-nodes()
6 Procedure Read-all-nodes-with degree-and-schedule()
7 for i← N to 1 do
8 step 1 //check remainder of the current node first
9 if remainder(i) > 0 then

10 for j ← 1 to remainder(i) do
11 t← t+ 1
12 S(t)← S(t) ∪ {v(i, degree(i))};// schedule this leaf

p(i)← p(i) + 1, and p(i, degree(i))← p(i, degree(i))− 1 ;
13 Forward-scanning(i-1);// starts at v(i-1)
14 Backward-scanning(i+2);// start at v(i+2)

15 step 2 // schedule the current node in the main chain
16 Update-re-st(i)// schedule this main node
17 Forward-scanning(i-2);// start at v(i-2)
18 Backward-scanning(i+3);// start at v(i+3)

19 Procedure Forward-scanning(i)
20 for j ← i to 1 do
21 if p(j, degree(j)) > 0 then
22 S(t)← S(t) ∪ {v(j, degree(j))};
23 p(j)← p(j) + 1 and p(j, degree(j))← p(j, degree(j))− 1 ;

24 Procedure Backward-scanning(i)
25 while (i 6 N) do
26 if re(i) == 0 and st(i) == 0 then
27 break;

28 else if (re(i) > 0 and st(i) == 0) then
29 Update-re-st(i);
30 break;

31 else if (re(i) > 1 and st(i) == 1) then
32 Update-re-st(i);
33 i+3; continue;

34 i++;

parallel transmissions with the current node; this procedure has been described in

Section 4.5.1.

3. In addition to this, backward scanning (line 24-34) in Algorithm 7 is used to help

Chapter 4. Towards a More General Form 103

Algorithm 8: Completion of the first algorithm .

1 Procedure Update-re-st(index)
2 t← t+ 1;
3 S(t)← S(t) ∪ {v(index)};
4 p(index)← p(index)− 1, re(index)← re(index)− 1;
5 p(index− 1)← p(index− 1) + 1,re(index− 1)← re(index− 1) + 1;
6 if (p(index) == 0) then
7 st(index− 1)← 0;// previous node has finished transmitting
8 re(index− 1)← degree(index− 1) + p(index− 1);

9 Procedure Schedule-first-three-nodes()
10 while p(1) 6= 0 do
11 for i← 3 to 1 do
12 if re(i) 6= 0 then
13 Procedure Update-re-st(i);
14 Procedure Backward-scanning(i=i+3) ;

other nodes in the main chain to make parallel transmissions with the current node;

this procedure has also been described in Section 4.5.1.

4. The procedure update-re-st in Algorithm 8 (line 1-8) is used to update the current

pair of nodes (transmitter and receiver) regarding their packets and status (re and

st).

5. After scheduling all the nodes in the backbone chain, the algorithm has to sched-

ule the first three nodes until they finish transmitting their packets (line 9-14 of

Algorithm 8).

6. Finally, the first and last procedure must be utilised inside the main procedure in

algorithm 7 (line 1-5) to run the program.

4.6 Summary and Discussion

In summary, the extra-bit technique has been extended towards different topologies of the

tree such as the balanced multi-chain, the unbalanced multi-chain, three and four level

k-ary trees and the Rhizome tree topology.

Algorithms have been proposed that are optimal for the balanced multi-chain and

Rhizome tree, whereas the algorithm is just a few steps away from the optimal solution

for the unbalanced multi-chain.

Two frequencies have been used to save energy and to further reduce the latency.

The lower bounds have been derived for the single chain and the balanced multi-chain

Chapter 4. Towards a More General Form 104

correspondingly; and finally, the optimal schedule has been proposed.

Although we managed to derive a lower bound for some special cases of the tree,

finding the formula of a general tree is still an open question.

Moreover, as we pointed out earlier in chapter three, this technique is not helpful for

fast data collection due to the length of the schedule compared to the arbitrary schedule

(which has shorter latency).

Furthermore, the achieved results are only theoretical. It would be better to simulate

the techniques through any existing simulation software, then finally to assess it in the

testbed.

Chapter 5

Mobility in Wireless Sensor

Networks

Mobile sinks have been used recently, mainly to minimize energy consumption and to

resolve some other issues including data collection from disconnected networks, energy

depletion from sensor nodes which are close to the sink, etc. In this chapter, we address

the problem of finding an optimal path for the mobile sink to traverse through the sensing

field, to collect a single packet from each sensor and return back to its initial point (start-

ing point) such that the total energy use is minimized and subject to the length constraint

requiring that the length of the tour is at most L. We refer to this as the minimum en-

ergy cost mobile sink restricted tour problem (MMRTP), and show that this problem is

NP-hard. Second, we propose two algorithms. The first algorithm is a heuristic one based

on a maximum ratio criterion which is based on the maximum reduction in distance and

minimum energy consumption (hence termed the ’max-ratio’), while the second algorithm

is based on the dynamic programming technique. We consider two scenarios for each algo-

rithm. In the first scenario, there is no restriction on the transmission range of the nodes,

whereas in the second scenario, the maximum transmission range is Rmax. Finally, we

evaluate the performance of our proposed algorithms based on MATLAB simulations for

three different network sizes and show their effectiveness in terms of energy consumption.

Moreover, the simulation results show that our second proposed algorithm has significant

impact on the energy consumption in comparison with the algorithm of [70] for the same

parameters (i.e., lengths and transmission ranges).

Chapter 5. Mobility in Wireless Sensor Networks 106

5.1 Introduction

The phenomenon of multi-hop forwarding leads to non-uniform energy depletion among

the nodes in the network, and especially those nodes which are close to the sink deplete

their energy faster than others, which leads to the cessation of operation across the entire

network while some of the nodes still have power to operate [67, 68]; this phenomenon is

called an energy hole or bottleneck.

Research, therefore, on mobile sinks has received considerable attention in the last

decade to solve some issues such as the bottleneck, disconnection, dispersion and relia-

bility. As a result, several frameworks and algorithms have been designed, proposed and

developed to utilize mobile sinks under different scenarios with different constraints for

various applications and purposes [6, 54]. In addition to the problem of energy holes, relia-

bility is another concern in WSNs; the probability of message loss increases in a multi-hop

fashion, and therefore, the mobile sink can reduce message loss and increase reliability as

well [40].

Similarly, in some applications, sensors are sparse and cannot communicate with each

other. Hence, mobile sinks can either provide the connectivity between them [83] or be

used to visit them to buffer their data before depositing the collected data at the base sta-

tion; in particular, there are sometimes different disconnected networks in which sensors

from one network cannot communicate with another network in order to construct a com-

plete network including the base station. Therefore mobile sinks can be a good solution.

Transmission range is another cause of energy consumption, especially when the sensors

operate at a high transmission range. To reduce the usage of high transmission ranges,

sensors can be either densely deployed, which sometimes leads to high costs, or mobile

sinks can be used to approach sensors in order to enable them to use lower transmission

ranges, which has a great impact on energy conservation [64].

On the other hand, mobile sinks can cause delays for data collection and they are not

desirable in some applications. Hence, mobility and multi-hop forwarding are jointly used

to trade off between latency and energy consumption to some extent [80, 30].

In this chapter, we consider a network where sensors are deployed in a region for the

purpose of data collection. We are interested in finding an efficient path for the mobile

sink to follow and collect the data from sensors via single hop communication and deposit

it at the destination for further processing, subject to the length constraint and with

minimum total energy consumption. We consider one complete round of data collection

as the cycle of the mobile sink traversing from the starting point through all the sensors,

Chapter 5. Mobility in Wireless Sensor Networks 107

thereby collecting a single packet from each, and returning back to the starting point. For

the relevant notations used throughout this chapter refer to Section 5.2.

Our objective is mainly two-fold. Firstly, we want to restrict the length of the tour

`(TS) 6 L for the mobile sink. It is quite reasonable to restrict the length of the tour due

to there being a limited amount of fuel or time for the mobile sink, especially in military

operations. Another example is agriculture or habitat monitoring where the mobile sink

can collect data within limited time or length. Secondly, we want the mobile sink to select

a set of shortcuts (construct a tour) that cover all the nodes and has minimum total energy

consumption (Etotal). Etotal is the summation of the energy cost that is spent by sensors

for sending one packet each to the mobile sink during data collection.

We optimize total energy consumption under the length constraint for two reasons.

First to minimise the energy consumption of the sensors in the network, as they use smaller

transmission ranges to send their packets to the mobile sink via a single hop. Second to

minimize maintenance and costs if we consider battery replacements. In addition, it is

eco-friendly. To this end, we propose two different algorithms. A detailed explanation of

the algorithms is given in Section 5.3. To the best of our knowledge, we are the first to

address this issue.

5.2 System Model and Problem Definition

We consider a network that consists of a number of nodes (sensors), which are deployed in

a specific area for the purpose of monitoring. This network can be modelled as a complete

undirected graph G = (V,E), where each vi ∈ V , i = 1, . . . , N , represents a node in the

network and is a point in the Euclidean plane (vi ∈ R2). Similarly, each e ∈ E represents

the direct path (distance) between two nodes. Each edge has a set of values (labels), which

represent the set of nodes whose communications touch this edge e when it is considered

by the mobile sink as its path.

Suppose the locations of sensors are known in advance via GPS or any other method.

We assume that each node has one packet to be collected by the mobile sink. We consider

two scenarios regarding the transmission range of the sensors. Firstly, we suppose that

there is no restriction on the transmission of the sensors, namely, they can all reach each

other. Secondly, all the sensors have the maximum transmission range Rmax. Notably,

multi hop forwarding is not considered in this chapter. We assume that the transmission

range can be any value between zero and Rmax for the second scenario, and that the

Chapter 5. Mobility in Wireless Sensor Networks 108

energy cost over distance d is proportional to dα, where α is the path loss exponent and

2 6 α 6 6, depending on the environment [60]. In free space, there is no obstacle between

transmitter and receiver and the path loss exponent is set to 2. We use the same value in

our system while for simplicity, we only consider energy consumption for transmitting a

packet from a sensor to the mobile sink, and assume v1 is the depot for the mobile sink.

Figure 5.1, similar to Figure 2(b) in [70], illustrates the complete graph for 5 nodes

wherein each edge is associated with a set of values that refers to the nodes covered by

the edge when the mobile sink moves along this edge. In addition, each edge length is the

direct distance between its endpoints.

v1

2, 1

1, 2, 3 1,
5,

4

v2

2,
3 2,

3,
4

2, 5

v3

3, 4

3, 4, 5

v4

4, 5

v5

1,
5

Fig. 5.1 Complete graph for 5 nodes, the numbers next to each edge represent the nodes
covered by the edge.

Our main objective is to construct a tour (find an optimal cycle) of length at most L

for the mobile sink to follow and collect a single packet from each sensor via single hop

communication and return back to its initial position such that the total amount of energy,

which is spent by all the sensors in this tour, is minimal.

This problem can be defined as the minimum energy cost mobile sink restricted tour

problem (MMRTP).

Definition 3: (MMRTP): Given a set of sensor nodes V with their locations, sink

location ps, transmission range Rmax and a length constraint L. Find a tour of length at

most L for the mobile sink (starting and ending at ps) that minimizes the total energy

cost.

Theorem 15. MMRTP is NP-hard.

Proof. Checking whether a tour of length L and energy cost zero exists is the same as

checking whether a TSP tour of length L exists.

In this chapter, we follow two steps to find a solution for the MMRTP. In the first

step, we construct a TSP tour. Then, in the second step, we optimize the TSP tour by

Chapter 5. Mobility in Wireless Sensor Networks 109

selecting a subset of nodes from the order of the TSP, and construct the trajectory for the

mobile sink to follow, by which to collect data from all the nodes (cover all the nodes),

and return back to its starting point. In other words, let T be a TSP tour of the nodes

in V . Our goal is to find a shortcut tour TS of length at most L, (i.e., `(TS) 6 L), by

choosing a subset of nodes from the tour (T) of the TSP, skipping others, while ensuring

that the sink passes within the transmission range of the nodes that are skipped. The

sink then returns back to the starting point, and the process seeks to minimize the total

energy consumption Etotal, which is used by sensors to send their packets to the mobile

sink.

Notation

1- T denotes the tour of the TSP

2- `(T) the length of the tour of the TSP

3- TS denotes the shortcut tour obtained from the order of the TSP

4- `(TS) denotes the length of the tour according to our algorithm

5- Ri the transmission range of node vi , 0 6 Ri 6 Rmax

6- d(vi, vj) represents the direct distance between node vi and vj

7- dTS(vi, vj) total TS distance of the nodes starting from node vi and ending at vj

8- d(vi, T
S) the distance of the node vi from the path of the mobile sink

9- Evi the energy consumption for node vi

10- E′vi is the new total energy consumption for node vi in the next round

We summarize the two steps mathematically as follows:

Step 1: We want to find the TSP tour T , therefore the order of the visit in the TSP

tour can be represented by a sequence Ii of indices of visited nodes:

∀i 1 6 Ii 6 N and ∀i, j i 6= j =⇒ Ii 6= Ij , I1 = 1.

Then the length of the tour of the TSP is

`(T) =
N−1∑
i=1

d(vIi , vIi+1) + d(vIN , vI1) (5.1)

Step 2: We construct the shortcut tour TS . Therefore, the subset of nodes that are

obtained from the order of the TSP can be represented by a sequence of indices of visited

nodes.

Let I ′1, ..., I
′
M be the list of indices of a subset of nodes that are visited by the mobile sink.

Chapter 5. Mobility in Wireless Sensor Networks 110

M 6 N. I ′1 = 1.

Minimize Etotal(T
S) =

N∑
i=1

d(vi, T
S)2 (5.2)

s. t. `(TS) =
M−1∑
i=1

d(vI′i , vI′i+1
) + d(vI′M , vI

′
1
) ≤ L (5.3)

Minimizing Etotal(T
S) represents the least energy consumption of the nodes when the

mobile sink follows the shortcut tour TS . Inequality (5.3) restricts the length of the

shortcut tour to L.

To apply these two steps, we propose two algorithms (the reason for proposing two

algorithms instead of one is mentioned at the end of Section 5.3.2. These two algorithms

start from the initial point of the TSP tour, and visit a subset of the nodes, skipping

others, while ensuring that the sink passes within the transmission range of the nodes

that are skipped. The sink then returns back to the starting point, and the process seeks

to minimise total energy consumption.

Note: We should make a clear distinction between TSP, travelling salesman with

neighbourhoods (TSPN) and our problem. In TSP, the goal is to find the minimum

length of the tour while visiting each city exactly once (i.e., each city is a single point).

On the other hand, TSPN is a variation of the TSP in which cities are substituted with

regions, and the objective is to find a minimal tour through the set of regions that visits

at least one point in each region [1]. Clearly both TSP and TSPN are well known NP-

hard problems. Our model is a combination of both the TSP and TSPN models in which

the mobile sink visits the nodes if it does not exceed the length of the restricted tour; in

that case, it is identical to TSP. However, it should skip the central visit to some nodes

by choosing alternative paths (shortcuts) during which it can cover the skipped nodes at

some points, which is similar to TSPN.

5.3 Proposed Approaches

5.3.1 First Approach: Heuristic Algorithm (max-ratio)

The algorithm mainly consists of three steps. The first step finds the order of the tour

according to a TSP algorithm (constructed TSP tour). In the second step, calculations are

performed to find the shortcuts and the corresponding energy consumption of the nodes.

Each shortcut has a saved distance and energy cost, and we consider dividing the saved

Chapter 5. Mobility in Wireless Sensor Networks 111

distance by its energy cost as our main criterion (metric) in the algorithm and record

the result in a table. Finally, in the third step the shortcut is established, based on the

criterion of choosing a maximum value from the table that we obtained in the second part.

In other words, the key factor for choosing which shortcut to use, is based on the maximum

reduction in distance and minimum energy consumption (termed the ’max-ratio’). Then,

only steps 2 and 3 are repeated with the remaining nodes in the tour until the condition of

having length at most L is achieved. Our algorithm is a heuristic and there is no guarantee

that this metric produces the optimal solution.

The details of this algorithm are as follows:

1. After deployment of the sensors, the order of the visit to the nodes is specified via

one of the existing approximation algorithms for the TSP.

2. Assume v1,v2,. . . ,vN is the tour, and vN is a duplicate of v1. Once the visiting

order is determined, our proposed algorithm selects a subset of nodes accordingly.

Choosing this subset of nodes means that some of the nodes are skipped and not

visited by the mobile sink. This skipping process is called shortcutting. We consider

a shortcut from each node vi to node vj to find both the distance saved by the

shortcut and the total energy consumption increase for the node(s) vz in between,

where i = 1, 2, 3, ..., N − 2, j = i + 2, i + 3, ..., N and z = i + 1, i + 2, ...j − 1. The

shortcut indicates by how much the length of the tour can be reduced if one or more

nodes are skipped, e.g., if the length of the tour d(vi, vi+1) + d(vi+1, vj), where

j = i + 2, is 150 meters in TSP, what is the distance saved by the shortcut if the

mobile sink goes directly from vi to vj . Suppose the distance d(vi, vj) is 100 meters.

Then the shortcut reduces the tour length by 50 meters (150− 100 = 50m).

This process of shortcutting is performed as follows:

(a) The segment distance d(vi, vj) is determined via the formula of the Euclidean

distance between two points, then the minimum distance of each node lying

between these two nodes on the TSP tour from the line segment vi, vj is de-

termined. This can be calculated via the equation that is used to find the

distance of the point from the line segment d(vz, vivj), where vivj means the

line segment from vi to vj .

(b) After finding the distance of the node(s) vz from the line vivj , this distance

should be squared as energy consumption over distance d is proportional to

distance squared. Then, the total squared distance from the line, of the node(s)

Chapter 5. Mobility in Wireless Sensor Networks 112

bypassed as a result of the shortcut between vi and vj should be found. Namely,

Etotal(i, j) = Evi+1 + Evi+2 + ...+ Evj−1 (5.4)

This indicates the total energy usage by the skipped nodes when the mobile

sink goes directly from node vi to vj .

Note: In some cases, d(vM , T
S) could be smaller than d(vM , vivj), but we

only consider the distance from vM to line segment vivj .

Note: Sometimes one shortcut is not enough to reduce the length of the

tour. The algorithm, therefore, should be performed for several rounds to find

several shortcuts. Hence, the distance of the skipped nodes from the line must

be retained on record, as these nodes may be involved in the shortcutting

process again in the next round. The reason for this is that when the distance

is established between these skipped node(s) and the line in the shortcut of the

next round, the marginal difference in power output needs to be calculated and

for this, the marginal change in distance between each node and the line must

be used (some of this distance was already included in the previous calculations

for the shortcut). Namely, if the energy of the skipped node (vi+1) is Evi+1 in

the first round, and if the node is involved again in the next round then its new

energy cost is E′vi+1
. Finally, the algorithm should account for the difference

between the old and new energy expenditures, ∆Evi+1 ← E′vi+1
− Evi+1 .

(c) Then the algorithm calculates the distance saved by the shortcut when the

order of the visits is scheduled directly from node vi to vj .

S(i, j) = (

j−1∑
z=i

d(vz, vz+1))− d(vi, vj) (5.5)

Then, the algorithm calculates SEtotal(i, j) = S(i,j)
Etotal(i,j)

based on the two pre-

vious calculations, which is used in the next step of the current round for

choosing the maximum value in SEtotal. This maximum value is the main cri-

terion in this algorithm that determines the maximum shortcut and minimum

energy consumption possible.

(d) The above two steps are performed for all the nodes and the results are kept

in SEtotal.

Chapter 5. Mobility in Wireless Sensor Networks 113

3. Finally, the algorithm attempts to choose the optimal values in terms of distance

saved and energy expended; that is, the maximum value in SEtotal determines the

shortcutting.

4. When the shortcutting has been executed, SEtotal is reset to zero to be ready for

the next round. Furthermore, in the next round the number of nodes decreases as

some nodes are skipped. Then, step 2 and step 3 are repeated for the remaining

nodes of the TSP after shortcutting until the condition of the length of the tour

`(TS) 6 L is satisfied.

Algorithm 9 illustrates the implementation of the proposed technique for the case of

unrestricted transmission range. In essence, there are two main functions.

1. The first one is named Evaluate-all-shortcuts(), line 11. Inside this procedure

three for-loops are used. The first two for-loops are used to find the possible short-

cuts (line segments) between a pair of nodes. The third for-loop is used to find the

distance of the skipped nodes to the line segment; according to the TSP order, these

skipped nodes are ordered sequentially between the pair of nodes joined by the line

segment, line 20. Then, this value should be squared as explained before. Inside

the third loop, one condition is used to check whether this node is already involved

in the process of shortening the tour, line 22; namely, whether it has been skipped.

Consequently, the energy conserved relative to the previous calculation should be

deducted from the current amount. When the third loop has finished its calculation,

the ratio of the distance saved relative to energy consumption should be kept in the

table SEtotal. Then this process is continued until all shortcuts are found for all the

nodes.

2. The second procedure is named Find-max-value(), line 27. The responsibility of

this function is to choose the maximum value in SEtotal and reduce the length of the

tour based on the shortcut with this maximum value. Then the squared distances

for the skipped nodes (involved nodes) in this iteration are kept in the vector record

(line 33), which are necessary for the next iteration, namely, if these skipped nodes

will be involved in the shortcutting, only ∆E should be used.

Finally, these two procedures are repeated until the tour length 6 L is achieved or all

nodes are checked (line 4) or all the values of SEtotal are zero (line 7).

Algorithm 10 shows the implementation of the proposed technique for the case of

Chapter 5. Mobility in Wireless Sensor Networks 114

Algorithm 9: Mobile sink, scenario 1.

Input: G = (V,E), depot=v1, L
Output: sub− tour (T S) with `(T S) 6 L

1 Main()
2 SEtotal(i, j)← 0, record(i)← 0, indication(i) = false ,∀i, j = 1, 2, 3, . . . , N ;
3 make a TSP tour T using any approximation algorithm for TSP . c← 0,
T S ← T ;

4 while (`(T S)) > L and c ≤ N do
5 call Evaluate-all-shortcuts()
6 if SEtotal(i, j) == 0 ,∀ i, j = 1, 2, 3, . . . , N ; then
7 break;
8 call Find-max-value(SEtotal)
9 SEtotal(i, j)← 0, ∀i, j = 1, 2, 3, . . . , N ;

10 c← c+ 1;

11 Procedure Evaluate-all-shortcuts()
12 for i← 1 to N − 2 do
13 if indiction(i) == true then
14 continue//skip involved nodes
15 for j ← i+ 2 to N do
16 if indication(j) == true then
17 continue//skip involved nodes
18 S ← 0, d← 0, sum← 0;
19 for z ← i+ 1 to j − 1 do

20 d← d(v(z), v(i)v(j));
21 d← d2;
22 if indication(z) == true then
23 d← d− record(z);//∆E ′vz
24 sum← sum+ d;// Etotal(i, j);

25 S ← dT S(v(i), v(j))− d(v(i), v(j));
26 SEtotal(i, j) = S/sum;

27 Procedure Find-max-value(SEtotal)
28 maxvalue← max(SEtotal);
29 find i, j locations of maxvalue;
30 `(T S)← `(T S)− dT S(v(i), v(j)) + d(v(i), v(j));
31 for z ← i+ 1 to j − 1 do

32 d← d(v(z), v(i)v(j));
33 record(z)← d2;
34 indication(z) = true;

restricted transmission range (For simplicity we set the maximum transmission range to

100m). The general idea of this algorithm is almost identical to the first algorithm, the

only difference is in the Evaluate-all-shortcuts() function, where the distance of the

nodes that lie between a pair of nodes in the order of TSP should be checked to know

whether they can be covered by the line segment of the pair. This condition is checked in

Chapter 5. Mobility in Wireless Sensor Networks 115

Algorithm 10: Mobile sink, scenario 2.

1 Evaluate-all-shortcuts()
2 Rmax ← 100;
3 for i← 1 to N − 2 do
4 if indiction(i) == true then
5 continue
6 for j ← i+ 2 to N do
7 if indication(j) == true then
8 continue
9 S ← 0, d← 0, sum← 0, count1← 0, count2← 0;

10 for z ← i+ 1 to j − 1 do
11 count1← count1 + 1;

12 d← d(v(z), v(i)v(j));
13 if d 6 Rmax then
14 count2← count2 + 1;
15 d← d2;
16 if indication(z) == true then
17 d← d− record(z);//∆E ′vz=E

′
vz − Evz ;

18 sum← sum+ d;

19 S ← dT S(v(i), v(j))− d(v(i), v(j));
20 if count1 == count2 and S > 0 then
21 SEtotal(i, j) = S/sum;

line 13. It should be pointed out that only some of the nodes may be covered by Rmax

instead of all. Hence we consider this line segment as a shortcut only when all the nodes

are covered by the shortcut (the line segment). This is the reason that two counters are

used (count1 and count2). When these two values are matched, line 20, then we consider

this line segment and fill in SEtotal with the ratio value, line 21. Then the second function

is called to perform the shortcutting based on the value of the maximum ratio.

5.3.1.1 Time Complexity of the Heuristic Algorithm

The complexity of the first proposed algorithm is TSP + O(N4) where TSP is the com-

plexity of the TSP based on the used approximation algorithm. N is the number of

nodes in the system. The TSP should be found for our algorithm as the first step,

thus, the complexity for the TSP is needed, then our algorithm needs at most O(N3)

steps to find shortcut saving, first function (Evaluate-all-shortcuts()), next there are

at most O(N2) steps to choose the best shortcut in the second function (Find-max-

value()). Finally, these two functions should be repeated at most N times until one of

the conditions of stopping is satisfied (main function). As a result, the complexity be-

Chapter 5. Mobility in Wireless Sensor Networks 116

comes O(N ∗ (N2 + N3)) = O(N4 + N3), and the total complexity of the algorithm is

TSP +O(N4).

5.3.2 Second Approach: Dynamic Programming (DP) Al-

gorithm

We observed that our problem is similar to the 0-1 knapsack problem and can be solved

using a similar dynamic programming approach. Therefore we would like to describe the

Knapsack problem briefly.

The Knapsack problem is a problem in combinatorial optimization and belongs

to the family of NP-hard problems. This means that it is unlikely to admit an algorithm

that finds an optimal solution in polynomial time. Suppose there is a knapsack with

limited capacity C and there are N different items; moreover, suppose each item has two

attributes, namely weight (volume) and value (profit). As all the items cannot be loaded

into the knapsack due to its limited capacity, a subset of items should be determined,

chosen and loaded into the knapsack such that they have maximum value (profit) and do

not exceed the capacity of the knapsack.

There are several types of the knapsack problem but we are interested in the 0-1

knapsack problem where the item can either be completely taken or not. I.e, we cannot

take a fraction of the item. For more detail about the knapsack problem and its solution

refer to [57].

The simple approach to solve this problem is to go through all possible subsets of the

N items and output the best of them. It should be noted that the complexity of this

simple technique is exponential, which is not desirable for large input N . The second

technique is a dynamic programming approach, which is used to find a solution to this

problem and is usually better than the brute force technique.

When the dynamic programming technique is used to find a solution to the knapsack

problem, two tables (arrays) are required, the first one is used to record the solution

and only return back the optimal solution value (maximum profit) at the end without

determining the chosen items. Therefore, the second one is used to keep track of the

subset of items that makes the optimal solution.

We observed that our problem is similar to the 0-1 knapsack problem and can be solved

using a similar dynamic programming approach. To further understand how to apply the

dynamic programming approach to our problem, refer to Algorithm 11 and 12.

Note: It should be pointed out that in the knapsack, we want to maximize the profit

Chapter 5. Mobility in Wireless Sensor Networks 117

whereas in our solution we want to minimize energy consumption.

In our problem, when the DP technique is used to find a solution, two tables (ar-

rays) are required to record the solution, we call these two tables Table E and Table P

respectively. The first table is used to record the calculation for the problem and finally

return the optimal solution (least energy cost). Moreover the table entry E(v, l) stores the

optimal solution value (least energy cost) for the subtour node v from node v1 up to node

v with length constraint l. E(N,L) stores the overall optimal solution for the problem

with length constraint L. The detailed calculation is shown in line 30-40 in Algorithm 11.

Since the first table only returns the optimal solution value we do not know how many

nodes have been exactly chosen to be visited by the mobile sink to construct the tour.

Therefore the second table is required to record the involved subset of nodes (selected nodes

to be visited by the mobile sink) during the calculation of the first table and traced-back

at the end.

Algorithm 11 based on the dynamic programming technique solves the problem as

follows:

After constructing the TSP tour via any existing algorithm, two essential functions are

used in order to find a solution for our problem. The first one is again named Evaluate-all-

shortcuts(): this procedure finds all the possible distances (shortcuts) and corresponding

energy wastage respectively between pairs of nodes. For simplicity, all the results are

kept in two separate tables; we call them distance table (d) and energy table (energy)

respectively. Then, these two tables are used in the second function to apply the idea of

the dynamic programming to find a solution to the problem.

The second function dynammic-programming(), which starts in line 22, is the main

idea of the dynamic programming technique for our problem. First of all, the two tables

E and P , described earlier, should be initialized as shown in line 23-29. Then three main

loops are required to perform the calculation to find the optimal solution for the problem

based on the dynamic programming approach, line 30-40. Since the first node is the depot,

the first loop goes from node two through N . Line 34 is used to check whether there is a

shortcut between a pair of nodes w, v; if there is (line 35), we should specify the optimal

solution for node v with length l, this can be done either by inheriting the optimal solution

of node w with length s plus the energy cost of the shortcut (line 38) and replacing the

value of E(v, l) with this optimal solution (line 40) or keeping its own value. Then this it-

eration is repeated for all the nodes until the optimal solution is achieved. In other words,

these iterations try to choose the best optimal solution for node v from all its shortcuts. Fi-

Chapter 5. Mobility in Wireless Sensor Networks 118

Algorithm 11: Mobile sink, dynamic programming technique.

Input: G = (V,E), depot=v1, L
Output: `(T S) 6 L

1 Main()
2 { energy(i, j)← 0, d(i, j)←∞ ,∀ i, j = 1, 2, 3, ..., N ;
3 make a TSP tour T using any approximation algorithm for TSP ;
4 Evaluate-all-shortcuts()
5 Dynamic-programming()
6 }
7 Evaluate-all-shortcuts()
8 Rmax ← 100;
9 for i← 1 to N − 2 do

10 for j ← i+ 2 to N do
11 sum← 0, count1← 0, count2← 0;
12 for z ← i+ 1 to j − 1 do
13 count1← count1 + 1;

14 d← d(v(z), v(i)v(j));
15 if d 6 Rmax then
16 count2← count2 + 1;
17 d← d2, sum← sum+ d;

18 if count1 == count2 then
19 d(i, j)← d(v(i), v(j));
20 d(j, i)← d(v(i), v(j));
21 energy(i, j) = sum;

22 dynamic-programming()
23 for v ← 1 to N do
24 for l← 0 to L do
25 if v 6= 1 then
26 E(v, l) =∞;// this table for dynamic programming;
27 else
28 E(v, l) = 0;
29 p(v, l) = 0;// this table for trace-back;

30 for v ← 2 to N do
31 for l← 0 to L do
32 for w ← 1 to v − 1 do
33 if d(w, v) ==∞ then
34 continue; // skip non-existing shortcuts
35 s = l − d(w, v);
36 if s < 0 then
37 continue;// skip negative path lengths
38 e = E(w, s) + energy(w, v);
39 if E(v, l) > e then
40 E(v, l) = e, P (v, l) = w;

Chapter 5. Mobility in Wireless Sensor Networks 119

nally, Algorithm 12 is used to specify the involved nodes (visited node by the mobile sink).

Algorithm 12: Mobile sink, dynamic programming,trace-back.

1 Trace-back()
2 l = 1;
3 for j ← 1 to L do
4 if E(N, j) < E(N, l) then
5 l = j;

6 output(E(N, l));
7 v = N ;
8 while v > 1 do
9 w = P (v, l);

10 if w 6 0 then
11 break;
12 l = l − d(w, v);
13 output w;
14 v = w;

5.3.2.1 Time Complexity of the Second Algorithm

It is worth noting that the complexity of the second approach is O(N3 +N2L), where N

is the number of nodes and L is the length constraint of the tour. For the first function at

most O(N3) steps are required to find shortcut savings, then at most O(N2L) steps are

required for the DP approach to find the best possible solution. It can be observed that

the length constraint can change the complexity of the algorithm, if we use meter as a

unit then the accuracy is precise but the computation cost is high, on the other hand we

can reduce the complexity of the algorithm by changing the unit length but the accuracy

is decreased.

Note: There are two main differences between our problem and the 0-1 knapsack

problem. Firstly, in the knapsack problem, each item has two fixed values (p=profit and

w=weight), which cannot be changed (updated) during the calculation, and these two

fixed values are the inputs. In other words, the DP technique selects the best combination

of items and returns the optimal solution at the end without modifying the two fixed

values for any item. Secondly, the optimal solution for item i, ∀i = 1, 2 . . . , N , depends on

the optimal solution for item i− 1. Consequently, the optimal solution for item i will be

inherited from item i− 1 either with or without including item i. Refer to [57] for further

details.

Chapter 5. Mobility in Wireless Sensor Networks 120

Two crucial points should be mentioned for the proposed algorithms. Firstly, despite

the fact that the second proposed algorithm can achieve the best possible solution for the

problem if one exists, its running time increases substantially with length L. That is, for

large input L, the complexity is very high. Secondly, all the distance values between nodes

must be integers. Therefore, in our calculation all the values have been rounded to integer

by using the round function.

On the other hand, the complexity of the first proposed algorithm (heuristic max-ratio)

is polynomial, as we have explained before. Therefore, we can choose between these two

algorithms based on the size of the problem in terms of input and length. Moreover, the

values for the first algorithm do not need to be only integers.

5.4 Simulations and Performance Evaluations of

the Proposed Algorithms

5.4.1 Simulation Results for Different Network Sizes

In this section, we present and evaluate the results of simulations for both proposed al-

gorithms with three different network sizes; that is, 20 nodes, 40 nodes and 100 nodes,

respectively.

The algorithm is applied to 10 iterations of the experiment and the average length

constraint and energy usage are calculated for each network size.

The first step of the experiment is the deployment of sensors at random locations in

a specific area; 300m*300m for the 20-node experiment and 1000m*1000m for the 40 and

100-node experiments, respectively. Secondly, we obtain the TSP tour by using NEOS

Server for Concorde 1, which is available online, to find the TSP tour and its length

(`(T)=1300m for 20 nodes, `(T)=5750m for 40 nodes, and `(T)=7762m for 100 nodes).

Then, we finally apply our proposed algorithms.

In all the plots, the X-axis represents length constraints and the Y-axis, energy con-

sumption per length constraint. For all of the following simulations we use no restriction on

the transmission range for the first scenario. This freedom of range allows both algorithms

to find a solution at an early step of the constraint. For simplicity, in the second scenario

we set the maximum transmission range to 100m thereby allowing both algorithms to find

a solution at a late stage of the length constraint.

1http://neos.mcs.anl.gov/neos/solvers/co:concorde/TSP.html.

Chapter 5. Mobility in Wireless Sensor Networks 121

In general, when the length constraint reaches the length of the TSP, energy con-

sumption approaches 0 due to the fact that the mobile sink traverses through each sensor,

reducing their energy consumption for sending packets since the transmission range is 0

whereas if the length constraint is lower, the transmission range of the sensors would be

higher to reach the mobile sink, causing them to use more power for packet transfer.

Figure 5.2 illustrates the results of simulations for the heuristic algorithm on 20 nodes.

The dotted line represents scenario one while the dark solid line represents scenario two.

As expected, the algorithm can find a solution at low length constraints according to the

first scenario, meaning there is high energy consumption due to some sensors transmitting

over a long range to reach the mobile sink. Moreover, the energy consumption is the same

for the first and second length constraints as the algorithm achieves the same solution

for both of these data points (although a valid solution was found for only 1 out of

the 10 deployments, there is no guarantee to find a solution for all of the deployments,

because the algorithm is heuristic). At higher length constraints, the energy consumption

reduces sharply for 300m and 400m, with valid solutions found for 4 and 8 out of 10 of

the deployments, respectively. For length constraints from 500m up to 1100m, there is a

further decline in energy consumption, and at each length constraint, valid solutions are

found for 10 out of 10 of the deployments. At higher length constraints of 1200m and

1300m only 6 out of 10 and 1 out of 10, respectively, of the deployments yield a valid

solution. This is due to the dispersal pattern of the nodes which do not allow for such a

large length constraints in all deployments. Furthermore, at the length constraint of 600m,

there is a valid solution for the second scenario and the energy consumption is lower than

the energy consumption in the first scenario because for the second scenario, only 2 out

of 10 take part in the solution, while in the first scenario 10 out of 10 take part in the

solution, so that the lower average value may reflect stochastically less dispersal in the

data averaged. There is a valid solution in general in the second scenario for constraints

of 700m and onwards. This is because the transmission range and length constraint are

very restricted and not all of the nodes are able to send their packets to the sink. Then,

with an increase in length constraint for both scenarios, energy cost decreases gradually

until it eventually approaches zero. Notably, for the second scenario, from 600m up to

1100m, 10 out of 10 of the deployments are involved in the solution. and for 1200m and

1300m only 6 and 1 out of 10 have this length.

Similarly, Figure 5.3 shows the results of simulations for the same 20 nodes according

to the dynamic programming algorithm for both scenarios. Evidently, the solution can be

Chapter 5. Mobility in Wireless Sensor Networks 122

achieved at an early step of the length constraint with high energy consumption according

to the first scenario for 10 out of 10 of the deployments, then it gradually decreases with

an increase in length constraint until it approaches zero. On the other hand, the solution

can be found at a very late stage (i.e., 500m) for 2 out of 10 the deployments according to

the second scenario with slightly lower energy consumption compared to the first scenario

in which 10 out of 10 involve in the solution. For the length constraint of 600m, again

only 5 out of 10 involve in the solution. From 700m to 1100m, 10 out of 10 involve in the

solution and the energy consumption steadily decreases until it finally becomes zero.

It can be observed that dynamic programming technique can find a solution if there

exits one, therefore, at the early stage of the length constraint 10 out of 10 involve in

the solution, whereas for the heuristic algorithm less than 10 deployments involve in the

solution.

Figure 5.4 demonstrates and compares both heuristic and dynamic programming al-

gorithms for the first scenario. As we have explained, both algorithms can find a solution

at a very early step with high energy consumption. Moreover, the energy cost is high and

constant at some length constraints (i.e., 100m and 200m) then decreases substantially

towards zero in the heuristic algorithm. However, for the dynamic programming algorithm

the energy cost is not constant and decreases gradually with each length constraint until

it becomes zero. Unexpectedly, the energy consumption under length constraint 100m is

higher for dynamic programming compared to the heuristic algorithm. Again, this is due

to the involvement of 1 out of 10 the deployments in the solution for heuristic algorithm,

while 10 out of 10 are involved in the solution at that stage.

Likewise, Figure 5.5 compares both heuristic and dynamic programming algorithms

for the second scenario. Expectedly, a solution is found at a very late step of the length

constraint(i.e., 500m for dynamic programming and 600m for heuristic algorithm), with

different points varying in their energy consumptions. The energy consumption then

gradually decreases towards zero.

Similarly, Figure 5.6 shows the results of simulations for the heuristic algorithm (first

and second scenarios) on 40 nodes. For the first scenario the solution starts at the length

constraint of 1000m with the involvement of 2 out of 10 the deployments in the solution and

very high energy consumption. Notably, for three consecutive length constraints (1250m,

1500m and 1750m) the energy consumption show only slight differences due to the fact that

their achieved lengths are very close to each other and only 7 out of the 10 deployments

are involved in the solution. From the length constraint of 1750 to 2000m only 8 out of 10

Chapter 5. Mobility in Wireless Sensor Networks 123

the deployments involve in the solution with a steep decline in energy consumption. From

2250m up to 5000m, 10 out of 10 the deployments involve in the solution and the energy

consumption steadily decreases until it finally becomes zero. Again for 5250m, 5500m and

5750m only 7, 5 and 1 out of 10 the deployments, respectively, have this length.

Figure 5.7, shows the results of simulations for the dynamic programming algorithm

(first and second scenarios) on 40 nodes. Evidently, the solution can be achieved at an

early step of the length constraint with high energy consumption according to the first

scenario for 10 out of 10 of the deployments, then it sharply decreases in the first three

consecutive lenght constraints and then gradually decreases with an increase in length

constraint until it approaches zero. On the other hand, the solution can be found at

a very late step (i.e., 4000m) for 2 out of 10 the deployments according to the second

scenario with slightly lower energy consumption compared to the first scenario in which

10 out of 10 involve in the solution. Finally, energy consumption gradually decreases with

an increase in length constraint until it approaches zero. Note that for length constraint

of 5250m, 5500m and 5750m, again only 7, 5 and 1 out of 10 involve in the solution,

respectively.

Figure 5.8 compares both heuristic and dynamic programming algorithms for the first

scenario on 40 nodes with different points varying sharply and gradually in their energy

consumptions with the involvement of different number of simulations. Eventually, the

energy consumption gradually decreases towards zero.

Similarly, figure 5.9 compares both heuristic and dynamic programming algorithms for

the second scenario on 40 nodes. Expectedly, finding a solution is achieved at a very late

step of the length constraint(i.e., 4000m for dynamic programming and 4500m for heuristic

algorithm). It can be observed that in dynamic programming, energy consumption can

remain at the same level for both lengths 4000m and 4250m respectively, then sharply

decreases up to 5000m. Similarly, for the heuristic algorithm, there is a steep decrease

for the two length constraints. Then energy consumption in both algorithms gradually

decreases until it finally becomes zero.

Figure 5.10, 5.11, 5.12 and 5.13 are the results of simulations involving 100 nodes.

Figure 5.10 shows the results of simulations for the heuristic algorithm (first and

second scenarios) on 100 nodes. Unexpectedly, the energy consumption in the first length

constraint compared to the second one is low due to the fact that only 2 out of the 10 and

4 out of 10 deployments involve in the solution, respectivley. Then there is a combination

of steep and gradual decline in the energy consumption up to 2750m. Finallly, the energy

Chapter 5. Mobility in Wireless Sensor Networks 124

consumption in both algorithms gradually decreases until it finally becomes zero.

Similarly, Figure 5.11 shows the results of simulations for the same 100 nodes according

to the dynamic programming algorithm for both scenarios. Clearly, a solution can be

achieved at an early and late step of the length constraint with high energy consumption

according to the first and second scenarios respectively. Then, it gradually deceases with

an increase in length constraint until it approaches zero with the involvement of different

deployments in the solutions.

Similarly, Figures 5.12 and 5.13 compare both heuristic and dynamic programming

algorithms for the first scenario on 100 nodes, for energy consumptions with different

length constraints and with the involvement of different deployments in the solutions.

In general, as we expected, the algorithm can find a solution at an early stage ac-

cording to the first scenario for any network size in comparison with the second scenario.

Furthermore, the second algorithm can always find a better solution with lower energy

consumption compared to the first algorithm due to the power of the dynamic program-

ming.

Note: Some plots for three network sizes and specific length constraints for one Ran-

dom deployyment foe each network size are shown in Appendix A in order to visually see

the tour after simulations.

Fig. 5.2 Heuristic algorithm, scenario 1 & 2, Rmax=100, 20 nodes.

Chapter 5. Mobility in Wireless Sensor Networks 125

Fig. 5.3 Dynamic programming algorithm, scenario 1 & 2, Rmax=100, 20 nodes.

Fig. 5.4 Heuristic & dynamic programming algorithms, scenario 1, 20 nodes.

Chapter 5. Mobility in Wireless Sensor Networks 126

Fig. 5.5 Heuristic & dynamic programming algorithms, scenario 2, Rmax=100, 20 nodes.

Fig. 5.6 Heuristic algorithm, scenario 1 & 2, Rmax=100, 40 nodes.

5.4.2 Comparing Our Results with the Algorithm for the

Label Covering Problem

In this section, we present the numerical results achieved from the experiments for three

different network sizes, namely 20, 40 and 100 nodes. In particular we compare our second

proposed algorithm with the algorithm for the label covering problem [70].

Chapter 5. Mobility in Wireless Sensor Networks 127

Fig. 5.7 Dynamic programming algorithm, scenario 1 & 2, Rmax=100, 40 nodes.

Fig. 5.8 Heuristic and dynamic programming algorithms, scenario 1, 40 nodes.

In the experiments, for simplicity, we consider four different transmission ranges (75m,

100m, 125m, 150m) for each network size. The results obtained for 20 nodes are shown

in Table 5.1. The first column refers to the achieved minimum length tours based on

Chapter 5. Mobility in Wireless Sensor Networks 128

Fig. 5.9 Heuristic and dynamic programming algorithms, scenario 2, Rmax=100, 40 nodes.

Fig. 5.10 Heuristic algorithm, scenario 1 & 2, Rmax=100, 100 nodes.

the algorithm for the label covering problem. The second column is the corresponding

energy consumption, and the third column shows energy consumptions according to our

algorithm when its length constraint is set to the achieved minimum length of the label

Chapter 5. Mobility in Wireless Sensor Networks 129

Fig. 5.11 Dynamic programming algorithm, scenario 1 & 2, Rmax=100, 100 nodes.

covering problem (i.e., we use the same lengths that are obtained from the algorithm for

the label covering problem). It is observed that our algorithm has slightly lower energy

consumption for the first two transmission ranges (75m and 100m), whereas the last two

transmission ranges (125m and 150m) have the same energy consumptions.

The numerical results for the network of size 40 are illustrated in Table 5.2. Interest-

ingly, there is a significant reduction in the energy consumption according to our algorithm.

Similar results are shown in Table 5.3 for 100 nodes. In our algorithm, we observe that

when the network size increases, there is a great reduction in the energy consumption

in comparison with the algorithm for the label covering problem. This reduction can be

referred to our method by which we find the shortcuts that satisfy the length constraint

and total energy consumption rather than finding only the minimum length to cover all

of the nodes in label covering problem which does not focus on energy consumption.

5.5 Summary and Discussion

In this chapter, we have considered the problem of selecting an optimal trajectory for the

mobile sink to follow such that the sink can collect data from sensors with minimal total

energy consumption while satisfying the imposed length constraint L. To this end, this

Chapter 5. Mobility in Wireless Sensor Networks 130

Fig. 5.12 Heuristic and dynamic programming algorithms, scenario 1, 100 nodes.

problem has been defined formally and proven to be NP-complete. We have proposed

and presented two algorithms that utilize a mobile sink efficiently to traverse through a

sensing field and collect data from sensors in a single-hop pattern, without considering

multi-hop forwarding, after which the mobile sink deposits the collected data at the base

station. In the first algorithm, the key factor for choosing the optimal shortcut (sub

path) , as explained earlier, is based on the maximum reduction in distance and minimum

energy consumption (termed the ’max-ratio’), while the second algorithm is based on the

dynamic programming technique. Moreover, two scenarios have been considered for each

algorithm. In the first scenario the maximum transmission range is not specified, whereas

in the second scenario it is specified.

As shown in the experimental MATLAB simulations, the second proposed algorithm

(dynamic programming) can achieve better results in comparison to the max-ratio criterion

due to the influence of the dynamic programming architecture. Furthermore, in some cases

the max-ratio criterion cannot find a solution, even if one existent, due to the fact that

there is no guarantee to find a solution for all of the deployments in all cases since the

Chapter 5. Mobility in Wireless Sensor Networks 131

Fig. 5.13 Heuristic and dynamic programming algorithms, scenario 2, Rmax=100, 100
nodes.

first algorithm is heuristic, whereas, the dynamic programming technique can always find

the best solution among the available solutions. The second algorithm has been compared

with the proposed algorithm for the label covering problem. Interestingly, our algorithm

can achieve significant reduction of energy consumption for the same minimum length.

This reduction has a great impact on the lifespan of the network since the label covering

problem focusses only on the achieving minimum length.

On the other hand, the proposed algorithms may in some cases be unable to achieve

good performance due to a large geographical area or sparse deployment of sensors such

that some sensors cannot be covered by the mobile sink under the imposed restrictions.

Also, another limitation of the proposed algorithms is that they are based on directly

implementing a shortcut in the TSP tour, which is not energy efficient in all cases. For

example, in Figure 5.15 there is a shortcut involving going from node one to node three

and returning back to node one, which means that we can skip the second node. The

second node then requires a higher transmission range, while the third node uses zero

energy. It would therefore be better for the mobile sink to approach both nodes, to some

Chapter 5. Mobility in Wireless Sensor Networks 132

Table 5.1 Results for label covering problem and our algorithm, 20 nodes.

Minimum-length energy-cost(label-cover) Energy-cost(our problem) Rmax

639 26857 26742 75
518 48985 48874 100
464 88746 88746 125
437 103020 103020 150

Table 5.2 Results for label covering problem and our algorithm, 40 nodes.

Minimum-length energy-cost(label-cover) Energy-cost(our problem) Rmax

4945 45468 38115 75
4646 81471 61442 100
4102 150940 116130 125
3655 218980 207600 150

Table 5.3 Results for label covering problem and our algorithm, 100 nodes.

Minimum-length energy-cost(label-cover) Energy-cost(our problem) Rmax

5790 134450 97246 75
5183 48985 164010 100
4631 402130 260080 125
3686 675810 568060 150

extent, in order to balance energy consumption between the nodes as shown in Figure

5.16.

Therefore, in our future work, we intend to optimise the tour to have minimal energy

consumption. Moreover, we intend to find a solution for scenarios with sparse sensor de-

ployment (or a large geographical area), which cannot be covered by a single mobile sink.

This will be done by either using multiple sensors and mobile sinks or allowing mobile

sinks to utilise multi-hop forwarding. Another potential approach is to find the solution

for the problem without considering the TSP tour as the first step.

v1

v2 v3

Fig. 5.14 TSP, 3 nodes

v1

v2 v3

Fig. 5.15 Direct shortcut
for Figure 5.14.

v1

v2 v3

Fig. 5.16 Better shortcut
for Figure 5.14.

Moreover, occasionally multiple nodes are closer to each other due to the random

deployment and therefore when shortcuting is performed energy consumption is increased.

As a result, this situation should be considered to improve the quality of the algorithm.

Furthermore, our heuristic algorithm produces a smaller tour than the imposed length

Chapter 5. Mobility in Wireless Sensor Networks 133

constraint with higher energy consumption in both scenarios.

Finally, another limitation with regards to the dynamic programming is that the values

of the shortcuts are being rounded up to integers which could cause misguidance of the

actual length of the tour to the mobile sink.

Chapter 6

Conclusion

This chapter reiterates the study of this thesis, followed by some directions for further

investigations by others.

6.1 Thesis Summary

The main requirement of resource constrained sensors is to utilize their resources, in

particular their energy more efficiently, to prolong their functionalities as much as possible.

Hence, designing energy efficient algorithms remains a key challenging issue in WSNs.

Therefore, this study examines energy consumption from two different points of view. In

other words, this investigation revolves around two points: idle listening and mobility

mechanism.

The primary goal of this study is to propose energy efficient mechanisms in WSNs for

data collection. The first part of this study has focused on the idle listening perspective

since the idle listening state lets the radio of the nodes be in the active state for a possible

incoming message. Thereby a significant amount of energy is wasted.

Zhao and Tang [81, 82] have explored this problem in WSNs with tree topology under

the restriction that data collection proceeds from bottom to top and only some nodes have

data. Two issues in this setting are a rise. First, the issue of idle listening because each

parent p must listen to its child c |Tc| times, where |Tc| indicates the number of nodes

in the sub-tree rooted at the child c. Second, the side effect of the idle listening leads to

huge latency. As a result Zhao and Tang have proposed an approach called successive-

slot schedules to reduce the amount of idle listening in this restricted topology. In their

technique, each parent, when it detects the idle listening from any of its children, then

it should next time stop listening toward this child. In other words, detecting the idle

Chapter 6. Conclusion 135

listening means that this child has no more packet for forwarding, therefore the parent

node can turn off its radio towards this child.

Considering the interesting technique of Zhao and Tang, one can observe that there

is more room to reduce idle listening further. My project has been built up upon their

earlier work and proposed an optimization technique, called the extra-bit technique, which

reduces idle listening further and also minimizes latency. This project has proposed that

each child node adds one extra bit (0/1) to the packet as an indication to inform the

parent whether or not more packets are coming. 1 means that more packets are coming

while 0 means the end of transmission from this child. This extra bit alleviated this extra

idle listening of the previous technique. This study has investigated further deriving the

lower bound for data collection in a chain using successive-slot or extra-bit schedules. It

has been proved that the optimal number of time slots is 4N − 6, where N ≥ 3 is the

number of nodes in the network excluding the sink. The research has also presented how to

calculate the expected amount of idle listening for extra-bit schedules and successive-slot

schedules in chains and trees where each node has data with a fixed probability. We have

also demonstrated that the expected amount of idle listening is significantly smaller with

the extra-bit technique.

As the second contribution, the study has sought to derive the minimum length of

the successive-slot/extra-bit schedule (latency) for various special cases of the tree and

to provide the corresponding schedule. For example, N + NM − 1 is the lower bound

for M balanced chains, where N is the length of each chain and M is the number of the

chains. Similarly, for a four level K-ary tree k(d + 2 + 2k + k2 + k3) indicates the lower

bound, where d is the depth of the tree, d = 4, and k ≥ 2 is the degree of each node

in the tree. For the results for Rhizome trees, refer to the two scenarios in Chapter 4.

Next, the project has proposed an algorithm that can obtain the optimal schedule for two

of these special cases (balanced chains and Rhizome trees) individually that matches the

lower bound. Nonetheless, and for unbalanced multi-chains, the length of the proposed

algorithm is a few steps away from optimal. Subsequently, one can observe that the extra

idle state, which is available among the nodes due to the nature of the communication,

to avoid interference, can be alleviated by utilizing two frequencies. This leads to further

energy saving and the further minimization of latency. Therefore, the study has sought to

utilize two frequencies for all the above-mentioned cases, with the exception of the k-ary

tree, and to prove the correctness of the theorems.

In order to further explore the issue of energy expenditure from a different perspective,

Chapter 6. Conclusion 136

as another main part of our work, the study has investigated and used sink mobility. The

used of a mobile sink is quite significant to reduce energy consumption by eliminating

multi hop forwarding among the sensors. It is also beneficial to cover disconnected areas.

However, in general finding the optimal trajectory for the mobile sink to traverse through

the sensing field and collect data from sensors is NP -complete, thus various algorithms

have been presented to find a good possible solution (trajectory). In this thesis, Chapter 5

has focused on an energy efficient restricted tour construction, which is also NP -complete.

We have proposed two distinct algorithms to find an energy efficient constrained tour for

the mobile sink to follow and collect data from sensors via single hop communication

such that the total amount of energy that is spent by all the sensors is minimum. The

first algorithm is heuristic, while the second one uses a dynamic programming technique.

Furthermore, for each algorithm two scenarios have been considered. In the first scenario,

we have assumed that there is no restriction on the transmission range of the sensors,

whereas in the second setting we have considered that the maximum transmission range is

limited. In the first algorithm, the main key factor to construct the tour is ”max-ratio” for

both scenarios. Max-ratio means that we choose the path that cover the maximum sensors

such that the total energy that is spent by the internal nodes is minimum. Note that for

both algorithms when the tour is constructed, then sensors adjust their transmission ranges

according to the constructed tour to save energy.

This project has examined the complexity of each proposed algorithm. One can argue

that while the complexity of the heuristic algorithm is polynomial (i.e., TSP + O(N4)),

nevertheless it cannot always find a solution. On the other hand, the complexity of the

dynamic programming technique, which is O(N3 +N2L), where N is the number of nodes

and L is the length constraint of the tour, may be polynomial or exponential depending

on the length of the tour, and furthermore, all the distance values must be integer. At

the end, the simulation results in Matlab have illustrated that the proposed techniques,

in particular the second algorithm, can significantly reduce the total energy consumption

in the network in comparison with an existing algorithm (label covering problem) for the

same length. All in all, this interesting project has been productive in terms of energy

consumption.

Chapter 6. Conclusion 137

6.2 Future Work Directions

Research is an endless journey and there are various unfolding questions which remain

unresolved.

1. One of the biggest remaining challenging issue with regard to the successive-slot/extra-

bit technique is either to find the optimal schedule for general trees or to provide

sufficient evidence that it is NP -complete, and then propose an algorithm to achieve

a good solution.

2. Devising a distributed algorithm can be a potential further direction for the extra-bit

technique.

3. In Chapter 5, the project has considered TSP as the first step to find the tour, then

based on it we constructed the restricted tour. It would be interesting to find the

solution for the problem without considering the TSP tour as the first step.

4. As another potential future direction, it could be highly interesting to examine

the combination of the optimal number of sinks and multi-hop transmissions in

order to either trade-off between energy consumption and latency, or cover sparse

or disconnected areas.

5. Further investigation can be done on multiple frequencies for densely deployed sen-

sors and multiple antennas for mobile sinks to shorten latency. Additionally, replen-

ishing sensors through mobile sinks is another interesting project.

6. It would be interesting to implement the proposed techniques in a real sensor

testbed.

7. Another potential direction that could be taken into consideration is that choosing a

subset of nodes which can cover the target area, namely, deactivation of redundant

nodes that cover the same area.

Bibliography

[1] Sergey Alatartsev, Marcus Augustine, and Frank Ortmeier. Constricting insertion

heuristic for traveling salesman problem with neighborhoods. In Proceedings of

the Twenty-Third International Conference on Automated Planning and Scheduling,

ICAPS 2013, Rome, Italy, June 10-14, 2013, 2013.

[2] Seema Bandyopadhyay and Edward J Coyle. An energy efficient hierarchical clus-

tering algorithm for wireless sensor networks. In INFOCOM 2003. Twenty-Second

Annual Joint Conference of the IEEE Computer and Communications. IEEE Soci-

eties, volume 3, pages 1713–1723. IEEE, 2003.

[3] Jean-Claude Bermond, Jerome Galtier, Ralf Klasing, Nelson Morales, and Stephane

Perennes. Hardness and approximation of gathering in static radio networks. Parallel

Processing Letters, 16(02):165–183, 2006.

[4] Jean-Claude Bermond and Min-Li Yu. Optimal gathering algorithms in multi-hop

radio tree-networks with interferences. In Ad-hoc, Mobile and Wireless Networks,

pages 204–217. Springer, 2008.

[5] Archana Bharathidasan and Vijay Anand Sai Ponduru. Sensor networks: An

overview. Technical report, Department of Computer Science, University of Cali-

fornia, Davis, 2002.

[6] Yanzhong Bi, Limin Sun, Jian Ma, Na Li, Imran Ali Khan, and Canfeng Chen. Hums:

an autonomous moving strategy for mobile sinks in data-gathering sensor networks.

EURASIP Journal on Wireless Communications and Networking, 2007.

[7] John Adrian Bondy and Uppaluri Siva Ramachandra Murty. Graph theory with

applications, volume 290. Macmillan London, 1976.

Bibliography 139

[8] F. Bouabdallah, N. Bouabdallah, and R. Boutaba. Load-balanced routing scheme for

energy-efficient wireless sensor networks. In Global Telecommunications Conference,

2008. IEEE GLOBECOM 2008. IEEE, pages 1–6, Nov 2008.

[9] Fatma Bouabdallah. Minimizing the Energy Consumption in Wireless Sensor Net-

works. PhD thesis, Composante universitaire : IFSIC, IRISA - campus de Beaulieu

- F - 35 042 Rennes Cedex, Novomber 2008.

[10] Gurashish Brar, Douglas M Blough, and Paolo Santi. Computationally efficient

scheduling with the physical interference model for throughput improvement in wire-

less mesh networks. In Proceedings of the 12th annual international conference on

Mobile computing and networking, pages 2–13. ACM, 2006.

[11] Benjie Chen, Kyle Jamieson, Hari Balakrishnan, and Robert Morris. Span: An

energy-efficient coordination algorithm for topology maintenance in ad hoc wireless

networks. Wireless Networks, 8(5):481–494.

[12] Xujin Chen, Xiaodong Hu, and Jianming Zhu. Minimum data aggregation time prob-

lem in wireless sensor networks. In Proceedings of the First International Conference

on Mobile Ad-hoc and Sensor Networks (MSN’05), LNCS 3794, pages 133–142, Berlin,

Heidelberg, 2005. Springer-Verlag.

[13] Hongsik Choi, Ju Wang, and Esther A Hughes. Scheduling for information gathering

on sensor network. Wirel. Netw., 15(1):127–140, January 2009.

[14] Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit disk graphs.

Discrete Mathematics, 86(1):165 – 177, 1990.

[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[16] David Coudert, Herv Rivano, and Xavier Roche. A combinatorial approximation

algorithm for the multicommodity flow problem. In Roberto Solis-Oba and Klaus

Jansen, editors, Approximation and Online Algorithms, volume 2909 of Lecture Notes

in Computer Science, pages 256–259. Springer Berlin Heidelberg, 2004.

[17] Xuewu Dai, Peter E Omiyi, Kaan Bür, and Yang Yang. Interference-aware converge-

cast scheduling in wireless sensor/actuator networks for active airflow control appli-

cations. Wireless Communications and Mobile Computing, 14(3):396–408, February

2014.

Bibliography 140

[18] Sanjoy Dasgupta, Christos H. Papadimitriou, and Umesh Vazirani. Algorithms.

McGraw-Hill, Inc., New York, NY, USA, 1 edition, 2008.

[19] Anthony Ephremides, J.E. Wieselthier, and D.J. Baker. A design concept for reliable

mobile radio networks with frequency hopping signaling. Proceedings of the IEEE,

75(1):56–73, Jan 1987.

[20] Sinem Coleri Ergen and Pravin Varaiya. TDMA scheduling algorithms for wireless

sensor networks. Wireless Networks, 16(4):985–997, 2010.

[21] C. Florens and R. McEliece. Packets distribution algorithms for sensor networks. In

INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer

and Communications. IEEE Societies, volume 2, pages 1063–1072 vol.2, March 2003.

[22] Cédric Florens, Massimo Franceschetti, and Robert J McEliece. Lower bounds on

data collection time in sensory networks. Selected Areas in Communications, IEEE

Journal on, 22(6):1110–1120, 2004.

[23] Mounir Frikha. Ad Hoc Networks: routing,QoS and Optimization. John Wiley &

Sons, Hoboken, NJ, 2011.

[24] Shashidhar Gandham, Ying Zhang, and Qingfeng Huang. Distributed time-optimal

scheduling for convergecast in wireless sensor networks. Comput. Netw., 52(3):610–

629, February 2008.

[25] Shashidhar Rao Gandham, Milind Dawande, Ravi Prakash, and Subbarayan Venkate-

san. Energy efficient schemes for wireless sensor networks with multiple mobile base

stations. In Global telecommunications conference, 2003. GLOBECOM’03. IEEE,

volume 1, pages 377–381. IEEE, 2003.

[26] Quang Gao, Keith J Blow, David J Holding, Ian W Marshall, and XH Peng. Radio

range adjustment for energy efficient wireless sensor networks. Ad hoc networks,

4(1):75–82, 2006.

[27] Shuai Gao and Hongke Zhang. Energy efficient path-constrained sink navigation in

delay-guaranteed wireless sensor networks. Journal of Networks, 5(6):658–665, 2010.

[28] Michael R Garey and David S Johnson. Computers and intractability: a guide to the

theory of np-completeness. 1979. San Francisco, LA: Freeman, 1979.

Bibliography 141

[29] Luisa Gargano and Adele A Rescigno. Optimally fast data gathering in sensor net-

works. In Mathematical Foundations of Computer Science 2006, pages 399–411.

Springer, 2006.

[30] Mukhtar Ghaleb, Shamala Subramaniam, Mohamed Othman, and Zuriati Zukarnain.

Predetermined path of mobile data gathering in wireless sensor networks based on

network layout. EURASIP Journal on Wireless Communications and Networking,

2014(1):1–18, 2014.

[31] Thomas Grant. Algorithms for Wireless Communication and Sensor Networks. PhD

thesis, University of Leicester, 2013.

[32] Jonathan L Gross and Jay Yellen. Graph theory and its applications. CRC press,

2005.

[33] Xin Guan, Lin Guan, Xin Gang Wang, and Tomoaki Ohtsuki. A new load balancing

and data collection algorithm for energy saving in wireless sensor networks. Telecom-

munication Systems, 45(4):313–322, 2010.

[34] Liang He, Jianping Pan, and Jingdong Xu. Reducing data collection latency in wire-

less sensor networks with mobile elements. In Computer communications workshops

(INFOCOM WKSHPS), 2011 IEEE Conference on, pages 572–577. IEEE, 2011.

[35] Wendi B Heinzelman, Anantha P Chandrakasan, and Hari Balakrishnan. An

application-specific protocol architecture for wireless microsensor networks. Wire-

less Communications, IEEE Transactions on, 1(4):660–670, 2002.

[36] W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient com-

munication protocol for wireless microsensor networks. In System Sciences, 2000.

Proceedings of the 33rd Annual Hawaii International Conference on, pages 10 pp.

vol.2–, Jan 2000.

[37] Ö. D. Incel, Amitabha Ghosh, Bhaskar Krishnamachari, and Krishnakant Chintala-

pudi. Fast data collection in tree-based wireless sensor networks. IEEE Transactions

on Mobile Computing, 11(1):86–99, January 2012.

[38] Aravind Iyer, Sunil S Kulkarni, Vivek Mhatre, and Catherine P Rosenberg. A

taxonomy-based approach to design of large-scale sensor networks. In Wireless Sensor

Networks and Applications, pages 3–33. Springer, 2008.

Bibliography 142

[39] Sushant Jain, Rahul C Shah, Waylon Brunette, Gaetano Borriello, and Sumit Roy.

Exploiting mobility for energy efficient data collection in wireless sensor networks.

Mobile Networks and Applications, 11(3):327–339, 2006.

[40] Aman Kansal, Arun A Somasundara, David D Jea, Mani B Srivastava, and Deborah

Estrin. Intelligent fluid infrastructure for embedded networks. In Proceedings of

the 2nd international conference on Mobile systems, applications, and services, pages

111–124. ACM, 2004.

[41] Arie M.C.A. Koster and Xavier Muoz. Graphs and Algorithms in Communication

Networks: Studies in Broadband, Optical, Wireless and Ad Hoc Networks. Springer

Publishing Company, Incorporated, 1st edition, 2009.

[42] Fabian Kuhn, Rogert Wattenhofer, and Aaron Zollinger. Ad-hoc networks beyond

unit disk graphs. In Proceedings of the 2003 joint workshop on Foundations of mobile

computing, pages 69–78. ACM, 2003.

[43] Sumit Kumar and Siddhartha Chauhan. A survey on scheduling algorithms for wire-

less sensor networks. International Journal of Computer Applications, 20(5):7–13,

April 2011.

[44] Tung-Wei Kuo and Ming-Jer Tsai. On the construction of data aggregation tree with

minimum energy cost in wireless sensor networks: Np-completeness and approxima-

tion algorithms. In INFOCOM, 2012 Proceedings IEEE, pages 2591–2595, March

2012.

[45] E. Lebhar and Z. Lotker. Unit disk graph and physical interference model: Putting

pieces together. In Parallel Distributed Processing, 2009. IPDPS 2009. IEEE Inter-

national Symposium on, pages 1–8, May 2009.

[46] Liron Levin, Michael Segal, and Hanan Shpungin. Cooperative data collection in ad

hoc networks. Wireless networks, 19(2):145–159, 2013.

[47] Xu Li, Amiya Nayak, and Ivan Stojmenovic. Sink mobility in wireless sensor net-

works. Wireless Sensor and Actuator Networks: Algorithms and Protocols for Scalable

Coordination and Data Communication, pages 153–184, 2010.

[48] Yingshu Li and My T Thai. Wireless sensor networks and applications. Springer

Science & Business Media, 2008.

Bibliography 143

[49] Weifa Liang and Jun Luo. Network lifetime maximization in sensor networks with

multiple mobile sinks. In Local Computer Networks (LCN), 2011 IEEE 36th Confer-

ence on, pages 350–357. IEEE, 2011.

[50] Weifa Liang, Jun Luo, and Xu Xu. Prolonging network lifetime via a controlled

mobile sink in wireless sensor networks. In Global Telecommunications Conference

(GLOBECOM 2010), 2010 IEEE, pages 1–6. IEEE, 2010.

[51] Junchao Ma, Wei Lou, and Xiang-Yang Li. Contiguous link scheduling for data

aggregation in wireless sensor networks. Parallel and Distributed Systems, IEEE

Transactions on, 25(7):1691–1701, 2014.

[52] Junchao Ma, Wei Lou, Yanwei Wu, Xiang-Yang Li, and Guihai Chen. Energy ef-

ficient TDMA sleep scheduling in wireless sensor networks. In INFOCOM 2009.

28th IEEE International Conference on Computer Communications, Joint Confer-

ence of the IEEE Computer and Communications Societies, 19-25 April 2009, Rio

de Janeiro, Brazil, pages 630–638, 2009.

[53] Ming Ma and Yuanyuan Yang. Sencar: an energy-efficient data gathering mechanism

for large-scale multihop sensor networks. Parallel and Distributed Systems, IEEE

Transactions on, 18(10):1476–1488, 2007.

[54] Mirela Marta and Mihaela Cardei. Using sink mobility to increase wireless sensor

networks lifetime. In World of Wireless, Mobile and Multimedia Networks, 2008.

WoWMoM 2008. 2008 International Symposium on a, pages 1–10. IEEE, 2008.

[55] Ioannis Papadimitriou and Leonidas Georgiadis. Maximum lifetime routing to mobile

sink in wireless sensor networks. In Proc. of the 13th IEEE SoftCom, pages 1–5, 2005.

[56] Junyoung Park, Kyoungjin Moon, Sungjoo Yoo, and Sunggu Lee. Optimal stop points

for data gathering in sensor networks with mobile sinks. Wireless Sensor Network,

4(01):8, 2011.

[57] David Pisinger. Algorithms for knapsack problems. PhD thesis, Dept. Computer

science, University of Copenhagen, 1995.

[58] Ramesh Rajagopalan and Pramod K. Varshney. Data-aggregation techniques in sen-

sor networks: A survey. IEEE Communications Surveys & Tutorials, 8(4):48–63,

2006.

Bibliography 144

[59] Subramanian Ramanathan and Errol L. Lloyd. Scheduling algorithms for multihop

radio networks. IEEE/ACM Trans. Netw., 1(2):166–177, April 1993.

[60] Theodore S. Rappaport. Wireless Communications: Principles and Practice. IEEE

Press, Piscataway, NJ, USA, 1st edition, 1996.

[61] A. Rasul and T. Erlebach. The extra-bit technique for reducing idle listening in data

collection. International Journal of Sensor Networks (IJSNET), accepted, 2016.

[62] Aram Rasul and Thomas Erlebach. Reducing idle listening during data collection

in wireless sensor networks. In 10th International Conference on Mobile Ad-hoc and

Sensor Networks, MSN 2014, Maui, HI, USA, December 19-21, 2014, pages 16–23,

2014.

[63] Aram Rasul and Thomas Erlebach. An energy efficient and restricted tour con-

struction for mobile sink in wireless sensor networks. In 12th IEEE International

Conference on Mobile Ad Hoc and Sensor Systems, MASS 2015, Dallas, TX, USA,

October 19-22, 2015, pages 55–63, 2015.

[64] Rahul C. Shah, Sumit Roy, Sushant Jain, and Waylon Brunette. Data mules: mod-

eling and analysis of a three-tier architecture for sparse sensor networks. Ad Hoc

Networks, 1(2-3):215–233, 2003.

[65] Yi Shi, Y Thomas Hou, Jia Liu, and Sastry Kompella. How to correctly use the

protocol interference model for multi-hop wireless networks. In Proceedings of the

tenth ACM international symposium on Mobile ad hoc networking and computing,

pages 239–248. ACM, 2009.

[66] Kazem Sohraby, Daniel Minoli, and Taieb Znati. Wireless sensor networks: technol-

ogy, protocols, and applications. John Wiley & Sons, Hoboken, NJ, 2007.

[67] A.A. Somasundara, A. Ramamoorthy, and M.B. Srivastava. Mobile element schedul-

ing for efficient data collection in wireless sensor networks with dynamic deadlines. In

Real-Time Systems Symposium, 2004. Proceedings. 25th IEEE International, pages

296–305, Dec 2004.

[68] Arun A. Somasundara, Aditya Ramamoorthy, and Mani B. Srivastava. Mobile ele-

ment scheduling with dynamic deadlines. IEEE Transactions on Mobile Computing,

6(4):395–410, April 2007.

Bibliography 145

[69] Wen-Zhan Song, Fenghua Yuan, and R. LaHusen. Time-optimum packet scheduling

for many-to-one routing in wireless sensor networks. In Mobile Adhoc and Sensor

Systems (MASS), 2006 IEEE International Conference on, pages 81–90, Oct 2006.

[70] Ryo Sugihara and Rajesh K. Gupta. Improving the data delivery latency in sensor

networks with controlled mobility. In Distributed Computing in Sensor Systems, 4th

IEEE International Conference, DCOSS 2008, Santorini Island, Greece, June 11-14,

2008, Proceedings, pages 386–399, 2008.

[71] My T Thai and Ding-Zhu Du. Connected dominating sets in disk graphs with bidi-

rectional links. Communications Letters, IEEE, 10(3):138–140, 2006.

[72] Sameer Tilak, Nael B. Abu-Ghazaleh, and Wendi Heinzelman. A taxonomy of wireless

micro-sensor network models. ACM Mobile Computing and Comunications Review,

6(2):28–36, 2002.

[73] Ashraf Wadaa, Stephan Olariu, Larry Wilson, Mohamed Eltoweissy, and Kennie

Jones. Training a wireless sensor network. Mobile Netw. Appl., 10(1-2):151–168,

February 2005.

[74] Jin Wang, Xiaoqin Yang, Jian Shen, Ping Guo, and Feng Xia. Mobile-sink rout-

ing algorithm based on energy and distance for wireless sensor networks. In Green

Computing and Communications (GreenCom), 2013 IEEE and Internet of Things

(iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical

and Social Computing, pages 951–956. IEEE, 2013.

[75] Z Maria Wang, Stefano Basagni, Emanuel Melachrinoudis, and Chiara Petrioli. Ex-

ploiting sink mobility for maximizing sensor networks lifetime. In System Sciences,

2005. HICSS’05. Proceedings of the 38th Annual Hawaii International Conference on,

pages 287a–287a. IEEE, 2005.

[76] Ya Xu, John Heidemann, and Deborah Estrin. Geography-informed energy conser-

vation for ad hoc routing. In Proceedings of the 7th Annual International Conference

on Mobile Computing and Networking, MobiCom ’01, pages 70–84, New York, NY,

USA, 2001. ACM.

[77] Haibo Zhang, Pablo Soldati, and Mikael Johansson. Optimal link scheduling and

channel assignment for convergecast in linear wirelesshart networks. In Modeling and

Optimization in Mobile, Ad Hoc, and Wireless Networks, 2009. WiOPT 2009. 7th

International Symposium on, pages 1–8. IEEE, 2009.

Bibliography 146

[78] Xinyu Zhang and Kang G Shin. E-mili: energy-minimizing idle listening in wireless

networks. Mobile Computing, IEEE Transactions on, 11(9):1441–1454, 2012.

[79] Ying Zhang, Shashidhar Gandham, and Qingfeng Huang. Distributed minimal time

convergecast scheduling for small or sparse data sources. In Real-Time Systems Sym-

posium, 2007. RTSS 2007. 28th IEEE International, pages 301–310. IEEE, 2007.

[80] Miao Zhao and Yuanyuan Yang. Bounded relay hop mobile data gathering in wireless

sensor networks. Computers, IEEE Transactions on, 61(2):265–277, 2012.

[81] Wenbo Zhao and Xueyan Tang. Scheduling data collection with dynamic traffic

patterns in wireless sensor networks. In INFOCOM 2011. 30th IEEE International

Conference on Computer Communications, Joint Conference of the IEEE Computer

and Communications Societies, 10-15 April 2011, Shanghai, China, pages 286–290,

2011.

[82] Wenbo Zhao and Xueyan Tang. Scheduling sensor data collection with dynamic

traffic patterns. IEEE Transactions on Parallel and Distributed Systems, 24(4):789–

802, April 2013.

[83] Wenrui Zhao, Mostafa Ammar, and Ellen Zegura. A message ferrying approach

for data delivery in sparse mobile ad hoc networks. In Proceedings of the 5th ACM

international symposium on Mobile ad hoc networking and computing, pages 187–198.

ACM, 2004.

[84] Jin Zheng, Xinlin Xu, and Guojun Wang. Energy efficient data aggregation schedul-

ing in wireless sensor networks. In Trust, Security and Privacy in Computing and

Communications (TrustCom), 2011 IEEE 10th International Conference on, pages

1662–1667. IEEE, 2011.

[85] M. Zorzi and R.R. Rao. Geographic random forwarding (geraf) for ad hoc and sen-

sor networks: multihop performance. Mobile Computing, IEEE Transactions on,

2(4):337–348, Oct 2003.

Appendix A

A.1 Tour for Three Network Sizes with Specific

Length Constraint

In this section, we show some plots for specific length constraints in order to visually see

the tour after simulations. Note that these results are extra simulations for the algorithms

proposed in Chapter 5.

Figure A.1 represents the TSP tour for 20 nodes whereas Figure A.2 and A.3 are

the results of simulations based on the heuristic algorithm for both scenario 1 and 2

respectively when the length constraint is set to 700 (L=700m). The achieved length is

666m and energy consumption is 27343 units after the simulation for the first scenario,

whereas the achieved length is 677m and energy consumption is 31028 units after the

simulation for the second scenario when the transmission range is set to 75m (Rmax=75m).

On the other hand, Figure A.4 and A.5 are the result of simulation based on the

dynamic programming algorithm for both scenario 1 and 2 with the same conditions.

Interestingly, despite the fact that the achieved length and energy consumption are the

same, that is, L=700m and energy consumption is 21671 units, they have slightly different

tours.

Similarly, Figure A.6 shows the TSP tour for 40 nodes whereas Figure A.7 and A.8

are the result of simulation based on the heuristic algorithm for both scenario 1 and 2

when the length constraint is set to 4200 (L=4200m). The achieved length is 4007 and

energy consumption is 159180 units after the simulation for the first scenario; whereas the

achieved length is 4167m and energy consumption is 138060 units after the simulation for

the second scenario when the transmission range is 150m (Rmax=150m). However, the

achieved results for the same specifications based on the dynamic programming algorithm

for both scenarios is coincidentally the same and shown in figure A.9; namely, achieved

Appendix A 148

length is exactly 4200m and energy consumption is 104785 for scenario 1 and 2.

Likewise, Figure A.10 illustrates the TSP tour for 100 nodes whereas Figure A.11

shows the tour after simulation for both scenarios based on the heuristic algorithm, i.e.

they have the same result. Figure A.12 shows the tour after simulation for both scenarios

based on the dynamic programming algorithm.

Fig. A.1 TSP tour, 20 nodes.

[]

Fig. A.2 Heuristic algorithm, scenario 1, L=700, 20 nodes.

Appendix A 149

Fig. A.3 Heuristic algorithm, scenario 2, L=700 & Rmax=75, 20 nodes.

Fig. A.4 Dynamic programming, scenario 1, L=700, 20 nodes.

Appendix A 150

Fig. A.5 Dynamic programming, scenario 2,L=700 & Rmax=75 , 20 nodes.

Fig. A.6 TSP tour, 40 nodes.

Appendix A 151

Fig. A.7 Heuristic algorithm, scenario 1, L=4200, 40 nodes.

Fig. A.8 Heuristic algorithm, scenario 2, L=4200 & Rmax=150, 40 nodes.

Appendix A 152

Fig. A.9 Dynamic programming, scenario 1 & 2, L=4200 & Rmax=150, 40 nodes.

Fig. A.10 TSP tour, 100 nodes.

Appendix A 153

Fig. A.11 Heuristic algorithm, scenario 1 & 2, L=500 & Rmax=150, 100 nodes.

Fig. A.12 Dynamic algorithm, scenario 1 & 2, L=500 & Rmax=150, 100 nodes.

	Introduction
	Motivation
	Challenges, Objective and Solutions
	Contributions
	Thesis Outline

	Preliminaries and Related Work
	Graphs
	Interference Model
	Complexity Theory
	Related Work
	Related Work to Idle Listening and Scheduling
	Related Work to Sink Mobility

	Summary

	Reducing Idle Listening in Wireless Sensor Networks
	Introduction
	System Model, Arbitrary Schedules, Successive-Slot Schedules
	System Model and Arbitrary Schedules
	Successive-Slot Schedules

	Extra-Bit Schedules
	Equivalence of Extra-Bit and Successive-Slot Schedules
	Optimal Extra-Bit Schedules for Linear Networks (Chains)
	Extra-Bit Schedules for Trees

	Idle Listening in Successive-Slot and Extra-Bit Schedules
	Idle Listening in Chains and Trees
	Expected Amount of Idle Listening

	Uniform Energy Depletion
	Summary and Discussion

	Towards a More General Form
	Optimal Extra-Bit Schedules for Balanced Multi-Chains
	Unbalanced Multi-Chains
	Balanced k-ary Tree
	Balanced Three and Four Level k-ary Tree

	Extra-Bit Schedules with Two Frequencies
	Single Chain
	Balanced Multi-Chains

	Rhizome Tree
	How the Algorithm Works
	Scenario 1
	Scenario 2
	Implementation of the Algorithm

	Summary and Discussion

	Mobility in Wireless Sensor Networks
	Introduction
	System Model and Problem Definition
	Proposed Approaches
	First Approach: Heuristic Algorithm (max-ratio)
	Second Approach: Dynamic Programming (DP) Algorithm

	Simulations and Performance Evaluations of the Proposed Algorithms
	Simulation Results for Different Network Sizes
	Comparing Our Results with the Algorithm for the Label Covering Problem

	Summary and Discussion

	Conclusion
	Thesis Summary
	Future Work Directions

	Bibliography
	Appendix
	Tour for Three Network Sizes with Specific Length Constraint

