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The role of avp3 and VEGFR2 endocytic recycling in angiogenesis

Matthew Jones

Abstract .

Placental growth factor (PIGF) binds to VEGFR1 and is known to play a role in
pathological angiogenesis, but its mechanism of action remains unclear. Endothelial
cell migration in response to angiogenic stimuli requires coordination of adhesive
function with VEGFR signalling, and | have studied the intracellular trafficking of
integrins and VEGFRs in primary cultured human umbilical vein endothelial cells
(HUVECs). VEGFR2 and avf3 integrin cycled rapidly between the plasma
membrane and an internal pool, and treatment of HUVECs with PIGF promoted the
rapid mobilisation of both VEGFR2 and avf3 integrin from this internal pool to the
plasma membrane. This mobilisation occurréd via a mechanism that was dependent
on the presence of VEGFR1 and Rab4a, and required the inactivation of GSK3g, but
did not require the activity of PKD1 nor the tyrosine kinase activity of VEGFRs.
Furthermore, RNAi of Rab4a, avf3 and VEGFR1 opposed PIGF-promoted
endothelial cell tubule-like structure branching and cross-bridge formation in an
organotypic tube formation assay.

Taken together, these data show that PIGF can influence endothelial cell
function by controlling the endocytic function of avf3 integrin. This recycling
mechanism is required to induce endothelial cell structure branching and formation
of a 6omplex endothelial cell vessel network. In addition, regulation of VEGFR2
recycling by' VEGFR1 represents a novel mechanism for mediating receptor cross
talk during angiogenesis. Therefore, | have identified a novel pathway by which
PIGF/VEGFR1 is able to positively influence the angiogenic response.
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Chapter One: Introduction



Chapter One: Introduction

1.1 ANGIOGENESIS

1.1.1 The vasculature

In higher organisms the blood vasculature represents one system through which
gases, liquids, nutrients, signalling molecules and cells are transported between
tissues and organs. The vascular system consists of two largely distinct networks of
arterial and venous vessels that have clear structural similarities. Both are composed
of an inner endothelium surrounded by internal elastic tissue, a smooth muscle layer,
external elastic tissue and then fibrous connective tissue (Figure 1.1). Veins however
have a markedly thinner smooth muscle cell layer and contain specialist structures
such as valves to prevent backflow [1]. These structural differences reflect the
differences in physiological parameters such as blood flow pressure and shear
stress that the types of vessel have to endure, and for a while it was believed that
these structural changes were the only differences between veins and arteries.

It is' now becoming clear that molecular differences between artereous and
venous endothelial cells exist even prior to the formation of blood vessels. For
example, proteins in the Notch pathway may be involved in the differentiation of the
arterial branch. Notch receptors are transmembrane proteins that mediate signalling
between neighbouring cells via interactions with transmembrane ligands known
collectively as DSL ligands (Delta, Serrate and Lag2). Notch-1 and Notch-4 are
expressed specifically in arterial endothelial cells whereas Notch-3 is expressed in
arterial smooth muscle cells [2]. In addition the Notch ligands Delta-4, Jagged-1 and

Jagged-2 are expressed in arterial endothelial cells [2]. Therefore Notch signalling
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Figure 1.1: Arteries and Veins

Arteries and veins are both composed of an inner endothelium surrounded by inner elastic tissue, smooth
muscle cells, external elastic tissue and fibrous connective tissue. Larger arteries have thicker smooth muscle
cell layers while larger veins contain specialised structures such as valves. The two networks are largely
distinct but are linked together distally via a system of capillaries found throughout all tissues.



appears to occur specifically in arteries and, as such, Notch-regulated expression of
genes may be important in arterial differentiation.

In addition to components of the Notch signalling pathway, the membrane
bound ligand Ephrin-B2 is expressed by arterial but not venous endothelial cells and
expression of its cognate receptor EphB4 is largely restricted to that of venous
endothelial cells [3], suggesting that the Ephrin-B2-EphB4 signalling may be required
for maintaining vascular boundaries. Furthermore, Neuropilin-1 is restricted to the
arterial endothelium whereas Neuropilin-2 and COUP-TFII are restricted to veins [4,
5]. Indeed, knockout of COUP-TFII results in veins acquiring arterial characterstics
such as expression of Notch pathway components and Ephrin-B2, and expression of
COUP-TFII in arteries results in a down-regulation of these arterial markers [5],
suggesting a key role for this protein in determining venous fate.

The blood vasculature found in higher organisms can form via one of two
mechanisms. Vasculogenesis, which involves the formation of new blood vessels
from endothelial cell precursors, describes the process in which de novo blood
vessels are formed in the absence of pre-existing vasculature. In the embryo,
endothelial cells (ECs) differentiate from angioblasts [6] whereas in the adult ECs
differentiate from endothelial progenitor cells (EPCs), mesoangioblasts, multipotent
adult progenitor cells or side population cells in the bone marrow [7]. These EC-
precursors migrate into defined locations and then differentiate forming solid
endothelial cords that subsequently develop a lumen. The subsequent formation of
new vessels from a pre-existing vasculature is termed angiogenesis, and this
process is responsible for creating the complex branched morphology of the vascular
network. Angiogenesis is thought to occur via three mechanisms: The formation of

transendothelial bridges and intussusception that act to separate large parent



vessels into smaller daughter vessels, and sprouting of new vessels from the exterior
of existing one. It is likely that all three mechanisms combine during development,
whereas sprouting angiogenesis is the key mechanism by which new vessels are
formed in response to angiogenic stimuli in the adult. In view of this, it is this

mechanism which will be referred to whenever angiogenesis is mentioned.

1.1.2 Sprouting angiogenesis
Sprouting angiogenesis can be thought of as occurring in a step-wise fashion
(Summarised in Figure 1.2). Following an angiogenic stimulus, vessels first dilate
and an increase in vascular permeability is observed following a redistribuion of
adhesion molecules such as Platelet Endothelial Cell Adhesion Molecule (PECAM)-1
and Vascular Endothelial (VE)-Cadherin. Extravasation of plasma proteins such as
fibrinogen follows which is proteolytically cleaved to form fibrin, which constitutes a
major component of the provisional matrix through which endothelial cells migrate
[8]. Vascular permeability must be tightly regulated and Angiopoietin-1 (Ang1) is an
anti-permeability factor that provides protection against excessive permeability via its
interactions with the Tie2 receptor [9]. In contrast, Angiopoietin-2 (Ang2) is an
antagonist of Tie2 signalling and is involved in detaching vascular smooth muscle
cells and modifying the surrounding matrix to allow endothelial cell migration [10].
Therefore the balance between Ang1 and Ang2 is key to the initial stages of
angiogenesis.

Degradation of the extracellular matrix is also critical to the initiation of
angiogenesis, and a number of matrix metalloproteinases (MMPs) have been linked
to this process. MMPs 2,3,7 and 9 have been shown to be required for induction of

angiogenesis [11, 12] and Thrombospondin-1 (TSP-1) is believed to exert its anti-



angiogenic function via inhibition of MMP-2 and MMP-9 activity [13]. Itis clear that a
correct balance between proteinase activity and inhibition is required for efficient
angiogenesis to occur. Endothelial cells produce TIMP-1, -2 and -3 which are
inhibitors of MMP activity [14] and TIMP-1 acts to promote vascularisation of mouse
retina [15].

As matrix barriers are degraded this allows endothelial cells to migrate into
distant sites. The growing sprout is lead by ‘tip’ cells selected from the vessel walls
whose polarity is reversed prior to leading new sprouts from the outer side of the
endothelium. Sprout elongation must then continue in a polarised and directional
manner, and this is achieved via a concentration gradient of matrix bound Vascular
Endothelial Growth Factor (VEGF) binding to its cognate receptor VEGFR2
expressed at sprout tips resulting in tip cell extension of filopodia [16]. This extension
of filopodia allows tip cells to sense positive or negative guidance cues in the
surrounding tissue environment. For example members of the Class-3 Semaphorin
family have been linked to both axonal and vascular patterning with SEMA3E and its
receptor PlexinD1 in particular having been identified as inducing a repulsive cue in
endothelial cells [17, 18]. Furthermore the Netrin receptor UNC5B is expressed in
capillaries and endothelial tip cells, and stimulation of this receptor with Netrin-1
results in the retraction of tip cell filopodia [19] suggesting a negative role for this
receptor-ligand pair in regulating vascular sprouting. However, other Netrins have
been implicated in the promotion of angiogenesis during development and in
pathological settings [20].

Once tip cells reach their destination they need to suppress their motile
behaviour upon interaction with their targets, such as other sprouts or existing stable

vessels, and this presumably involves the formation of EC-EC contacts, but how this



process occurs and is regulated is unknown. Once this has occurred endothelial
cords acquire lumen, although little is known as to how lumen are formed in the
vasculature. Currently it is thought that lumen formation involves the process of
pinocytosis and vacuole formation involving the small GTPases cdc42 and Rac1 [21]
followed by intra- and intercellular fusion of large vacuoles [22]. These newly formed
tubules are perfused and then stabilised by mural cells — pericytes and vascular
smooth muscle cells — which inhibit endothelial cell proliferation and migration [23] in
conjunction with deposition of subendothelial basement membranes that provide
endothelial growth arrest cues [8], resulting in mature functioning blood vessels.

Angiogenesis is critical in a number of physiological and pathophysiological
processes. In the normal adult, angiogenesis occurs during the ovarian cycle and in
processes such as wound healing. Overall though, little turnover of endothelial cells
is observed [24]. When blood vessel growth is deregulated, however, it can
contribute to a wide range of disorders. In the case of tumour growth, angiogenesis
is essential for establishing a nutrient supply to allow continued growth. In addition,
the formation of the unstable blood vessels associated with tumours provides a route
for invasive malignant cells to enter the circulation and seed metastases [25]. Hence,
it is apparent that the induction of angiogenesis by a tumour is a critical step in
malignant progression.

In addition to cancer, excessive angiogenesis has also been linked with a
variety of infectious diseases [26, 27], psoriasis and arthritis [28), among other
disorders. In addition, insufficient angiogenesis or vessel regression is a
characteristic of many other disorders, for example: alzheimers disease [29],

pulmonary fibrosis and emphysema [30], diabetes [31, 32] and strokes [33].
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Figure 1.2: Sprouting Angiogenesis

1. In response to angiogenic stimuli such as the presence of Vascular Endothelial Growth Factor (VEGF),
vascular permeability is increased following vessel destabilisation resulting in extravasation of plasma proteins
that form the provisional matrix. A Tip endothelial cell (EC) is selected which flips its apical-basal polarity and
migrates through the matrix, a process which is believed to require MMP mediated matrix degradation. 2. The
growing EC sprout is guided by VEGF gradients along with potentially other environmental cues. 3. Tip cells
reach their destination and regulate the fusion of sprouts with adjacent vessels. Stalk cells proliferate and form
lumen via the fusion of vacuoles, although other mechanisms may be involved. 4. Release of PDGF by
endothelial cells, in conjunction with the initiation of blood flow, promotes vessel stabilisation and maturation
via tightening of EC-EC junctions and recruitment of pericytes.



Given the importance of the vasculature in a multitude of disorders, it is clear
that understanding the molecular and cellular mechanisms involved in angiogenesis
may identify targets for therapeutic intervention and enable the development of
treatments for a wide range of disorders.

In addition, it is worth noting that vasculogenesis does not only contribute to
vasculature formation in the embryo. Endothelial progenitors have been shown to
contribute to vessel growth in ischaemic, malignant or inflamed tissues in the adult,
and can be used therapeutically to stimulate vascularisation of ischaemic tissue [34,
35]. Therefore, the contribution of vasculogenesis to pathopysiological processes

such as tumour growth needs to be further investigated.

1.2 GROWTH FACTOR REGULATION OF ANGIOGNESIS: THE VASCULAR
ENDOTHELIAL GROWTH FACTOR (VEGF) FAMILY

Angiogenesis is a tightly controlled process utilising many positive. and negative
regulators, including a number of soluble factors. These include basic-fibroblast
growth factor (bFGF) and members of the vascular endothelial growth factor (VEGF)
family, which mediate endothelial cell proliferation and migration in both physiological
and pathological angiogenesis, and the cytokine interleukin (IL)-8 which plays a role
in tumour neovascularisation [36].

Both physiological and pathophysiological angiogenesis appear to rely heavily
on VEGFs. VEGFs are members of the platelet-derived growth factor (PDGF) family
of growth factors and are encoded by a family of genes consisting of VEGF-A, -B, -
C, -D [37] and placental growth factor (PIGF) [38]. In terms of effect, VEGF-A, -B and
PIGF are linked to blood vessel formation whilst VEGF-C and -D are linked to the

formation of lymphatic vessels [39]. In addition to these mammalian genes, viral



VEGFs expressed by pox viruses of the Orf family are referred to as VEGF-E [27]
and a family of snake venom VEGF variants are called VEGF-F collectively [40, 41].

VEGF variants are expressed as a number of different isoforms
demonstrating different signalling properties. For example, the VEGF-A gene
encodes peptides of 206, 189, 165 and 121 amino acids. In addition, alternative
splicing of each splice variant can introduce an extra level of variability. For example,
VEGF-A165b carries sequences encoded by exon 9 at the carboxy terminus as
opposed to sequences encoded by exon 8 seen in VEGF-A165. This alternative form
of VEGF-A165 inhibits VEGF-A driven signalling [42], demonstrating that multiple
isoforms of VEGF-A are able to influence and regulate the complexity of VEGF-
signalling in both negative and positive fashions.

All the VEGFs outlined are able to influence either blood or lymph vessel
formation, but VEGF-A is by far the best characterised and possibly the most
biologically significant variant in terms of blood vasculature formation. The presence
of both VEGF-A and its receptor VEGFR2 is essential for both embryonic
development [43] and tumour vascularisation [44, 45], with VEGF-A165 being the
main isoform studied for the ability to induce angiogenesis [46]. For this reason, the
biological effects of VEGF-A will be further considered along with that of PIGF. The
precise role for PIGF in angiogenesis remains unclear, although it has a particular

significance for pathological angiogenesis.

1.2.1 VEGF-A
VEGF-A is a cytokine necessary for vascular development and was first identified as
a vascular permeability factor released by tumours [47], a process mediated by

calcium influx [48] and the redistribution of intercellular adhesion molecules such as

10



platelet endothelial cell adhesion molecule (PECAM)-1 and vascular endothelial
(VE)-Cadherin. Indeed, phosphorylation of VE-cadherin [49] B-catenin [50] and
connexin 43 [51], all major components of tight, gap and adherens junctions have
been reported in response to VEGF-A.

In vitro, VEGF-A is able to act as a survival factor for ECs, as shown by the
ability of VEGF-A to prevent apoptosis in ECs grown in the absence of serum. This
occurs via activation of the PI3-kinase/Akt pathway [52] and the induction of
expression of anti-apoptotic caspase inhibitor molecules such as Bcl-2 and A1 [53].
This ability of VEGF-A to act as a survival factor and influence EC apoptosis has
also been shown in vivo, where the endothelium of newly formed vessels in tumours
displays VEGF-A dependence. This dependence on VEGF-A is subsequently lost
when vessels are stabilised by pericyte recruitment and become established [54]. In
addition to acting as an EC survival factor and mediating the dissolution of cell-cell
contacts, VEGF-A is able to contribute to many of the subsequent steps involved in
angiogenesis. VEGF-A is able to stimulate EC proliferation [565] and migration [56],
and has been shown to increase lumen formation following assembly of EC cords
[57]. Therefore, it is clear that VEGF-A is able to stimulate and mediate all the major

stages of vascular sprouting.

1.2.2 PIGF

While PIGF is primarily expressed in the placenta, transcripts have also been
identified in tissues of the lung, heart, thyroid gland and skeletal muscle [58]. PIGF is
expressed at low levels by quiescent ECs as well as vascular smooth muscle cells,
bone marrow cells, neurons and inflammatory cells [28, 59]. Upon activation,

angiogenic ECs upregulate expression of PIGF [60], suggesting that PIGF plays a
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role in initiating angiogenesis. However, whilst PIGF is able to affect vascular
development it is not required for angiogenesis during development [60].

PIGF contributes to revascularisation of ischaemic tissues [28] and may even
be more potent than VEGF-A in this regard. Genetic deletion of PIGF significantly
impairs revascularisation of ischaemic tissues [28] as well as angiogenesis
associated with tumour growth [61]. Therefore, PIGF is a potent regulator of
pathological angiogenesis. PIGF has been reported to stimulate EC proliferation [62,
63] and migration [63] and hence can influence EC behaviour and the angiogenic
response. This role, however, may not be due to the direct effects of PIGF on ECs,
as is the case for VEGF-A, as PIGF has also been reported to enhance the EC
response to VEGF-A [60]. Therefore, the direct effect of PIGF on ECs is open to
debate, as any observed response to PIGF could be due to the influence that PIGF
has on VEGF-A signalling.

PIGF may not, however, only act through ECs to regulate angiogenesis as it is
also able.to affect multiple other cell types involved in vascular development, such as
smooth muscle cells and haematopoietic progenitor cells [60]. In addition, PIGF is
chemoattractant. for monocytes and macrophages [28, 64], cell types required to
induce remodelling of the extracellular matrix and allow smooth muscle cell
migration. Monocytes and macrophages in turn produce PIGF when activated [60],
thus establishing a positive feedback loop.

PIGF clearly influences angiogenesis, although via differing mechanisms to
that of VEGF-A. The ability of 