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In Part 1, the correlation problem is briefly reviewed

and is followed by an outline of some approaches to electron
correlation.

In Part 2.1, correlation effects in the ground state of
a series of open-shell systems in the form of Li-like ions
are examined. The analysis 1is performed by using a
partitioning technique which allows correlation effects in
the individual electronic shells to be studied. These
effects are examined by means of Coulomb holes, partial
Coulomb holes, various correlation coefficients <t and
several one- and two-particle expectation values. The use
of partial Coulomb holes illustrated changes in the relative
importance of angular and radial correlation effects as the
location of the test electron was varied. Comparisons are
made between the K-shell results for the Li-like ions and
those for the corresponding shell in some He- and Be-like
ions. Similarly, the inter-shell results for Li are
compared with their counterparts in both the Be atom and

some excited states of He.

In Part 2.2, the study of correlation effects 1is
extended to an examination of the Li-like ions in the
2
(1s

those for the ground state, discussed in Part 2.1.

2p)2P excited state. These results are compared with

In the light of the results obtained in position space,
a parallel investigation of the Li-like ions was carried out
in momentum space and those results are presented in Part 3.
In momentum space, the contrasting behaviour of the angular
and radial components gave 1insight into the way electron
correlation 1in the K-shell was influenced by the occupation
of the L-shell. In addition, the analysis highlighted
certain weaknesses in the description of the inter-shells in
the excited state wavefunctions. The momentum results for
the K-shell are compared for the ground and excited states
of Li with Li+, Be2+ and also with the Be results.

K.H. Al-Bayati
1984
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PART ONE

GENERAL INTRODUCTION



It 1is well-known that the laws of classical physics are

applicable only to the motion of macroscopic particles and
not applicable to the discussion of electron motion in atoms
and molecules. Consequently the microscopic particle
requires a new form of mechanics, termed quantum mechanics
(or wave mechanics). The foundations of present day quantum
mechanics were laid in 1926 by Schrodinger, who published a
series of papers on the subject. 1In the first of these
papers (1), Schrodinger introduced the wave equation which
was subsequently extended and successfully applied to a
large number of problems. Since then it has become
generally accepted that the Schrodinger Wave Equation offers
an accurate description of microscopic phenomena. This Wave
Equation can be solved exactly for the hydrogen atom and
hydrogen molecular ion, each with a single electron.
However, for a larger atom or molecule, the problem is made
more complicated by the presence of potential energy terms
which arise from the mutual repulsion between any two
electrons. In practice the exact solution to the
Schrodinger equation for a many-electron system is
unobtainable. Therefore, in order to make the problem
tractable it is necessary to have make use of approximate
methods. This is where a knowledge of the physics of the
problem becomes important. Any approximations which are
made in solving the problem must be physically reasonable if

meaningful results are to be obtained. The first and



simplest of such approximations is due to Hartree (2), where
we assume that the total wavefunction ¥(1,2,3,...,N) for N

electrons can be written as a simple product of one-particle

wavefunctions:
¥(1,2,3,...,N) = #1(1)02(2)03(3)...¢N(N) ' 1.1.1

where Oi(i) depends on the space and spin coordinates of
electron 1i. One of the assumptions in equation (1.1.1) is
that the electrons move independently of each other; that
is, each electron moves in the average electrostatic
potential due to the presence of all the other electrons.
One major source of difficulty with the total wavefunction
written in the form of equation (1.1.1) is the so-called
electron correlation problem. This arises from the fact
that the Hartree product function incorrectly describes the
electron-electron interactions. To avoid this difficulty
and, in particular, to let the Hartree product satisfy the
Pauli Exclusion principle and take into account the
indistinguishability of electrons, the total wavefunction is

written as a single Slater determinant (3),

|I $101) 4501 L. ag(1) |I
|I ¢(2) #,(2) ... #.(2) ||
¥(1,2,3,...,N) = (N1)~ V2 | 1.1.2
| |
| |
| |
| 4, (N) ¢,(N) ... ¢ (N) |

The component one-particle functions are referred to as

spin-orbitals. Any spin-orbital may be written as the



product of a space orbital v and a spin function o« or 8. If
Y is determined numerically by an interative self-consistent
field procedure, it is called a Hartree-Fock (HF)

wavefunction (4-6)

Interchanging the coordinates of any
two electrons corresponds to interchanging two rows of the
Slater determinant, which changes the sign of the
determinant. Thus, Slater determinants meet the requirement
of the antisymmetry principle. Having two electrons
occupying the same spin orbital corresponds to having two
columns  of the determinant equal, which makes the
determinant zero. Consequently, no more than one electron
can occupy a given spin orbital (Pauli Exclusion Principle).
The HF orbitals are constrained to form an orthonormal set
of functions and the multiplying factor (N!)_”2 ensures

that ¥ is normalized to unity after integration over all the

space and spin coordinates for the N-electron system.

The independent-particle wavefunction for an N-particle
system, represented at its best from an energy point of view
by the Hartree-Fock treatment, allows for some spatial
correlation between electrons with parallel spin components
by means of the Pauli Exclusion Principle which gives rise

(7,8)

to the so-called Fermi-hole This causes the Hartree-

Fock energy to be lower than the Hartree energy.

In reality, all electrons repel each other due to the
Coulomb potential e2/r12 which exists between them, and each
electron 1is therefore surrounded by a Coulomb hole (9) with

respect to the other electrons. Within the HF approximat-



ion, the probability of finding two electrons with parallel

spins at the same point in space is zero! 10/ 11)

Such a
point may be termed the centre of a Fermi hole, and is a
consequence of the antisymmetry of the wavefunction.
Although the HF method allows electrons with the same spin
properties to avoid one another, no allowance is made for
any spatial correlation between electrons with opposite
spins. The effect of correlation between all electrons can
only be examined by means of wavefunctions which are more
flexible than the HF determinant. When described by
wavefunctions which go beyond the HF level of accuracy, each
electron 1lies 1in a region of space which is largely devoid
of other electrons, this is a consequence of a more
realistic description of the Coulombic repulsions.
Correlation thus refers to the residual error in the

Hartree-Fock model when describing the electron-electron

Coulombic interactions.

One may get an idea of the order of the correlation
error in the independent particle model by studying the

(12)

correlation energy , which is defined as the difference

between the true non-relativistic energy and the HF energy,

Ecorr = Eexact - Egr - 1.1.3

Since the Hartree-Fock energy is an upper bound to the exact
energy the correlation energy is negative. This definition,
although straightforward, has the disadvantage of being
based on two quantities, neither of which can in principle
(13)

be known exactly. Gruninger, Ohrn and Lowdin have



shown that the major contributions to Ecorr come from the

electronic kinetic energy and, in particular, the total

electron-electron repulsion energy.

For the ground state (1s)2 of the He-like ions, the
correlation energy is approximately constant -1.1eV, of
which amount +1.1eV refers to the kinetic energy and -2.2eV
to the potential energy, in accordance with the virial
theorem. Similar figures are appropriate for the ground
state of the hydrogen molecule, Hz. It should be observed,
however, that the correlation energy per electron pair in
general is not a constant and that, for the ground state of
atoms, it goes up approximately linearly with increasing

(14). For atoms and small molecules, the

atomic number
correlation energy seems to be approximately one per cent of
the total energy. Although this 1is a relatively small
contribution to the total energy it 1is comparable to
spectral transition energies, binding energies and

. . ) 1
rotational barriers in molecules. For example, the 'S

description of H is particularly sensitive to electron
correlation, since without correlation the existence of the
ground-state is not even predicted. Many other physical
quantities such as absorption frequencies and force
constants are directly related to total energies and can
therefore be correlation dependent. Energies calculated by
the Hartree-Fock method are typically in error by about 1%.
On an absolute basis this is not much, but in chemical terms
it is still too large. For example, the total energy of the

carbon atom is about 1000eV, and 1% of this is 10eV.

Chemical bond energies are typically of the order of 100



Kcal/mole, which is 5eV/molecule. Attempting to calculate a
bond energy by taking the difference between Hartree-Fock
molecular and atomic energies, which are in error by several
eV for 1light atoms, is an unreliable procedure. We must
seek a way of improving on Hartree-Fock wavefunctions and

energies.

The correlation problem is still a field of active

research and many methods of analysing and studying

correlation have been proposed. The work of Nesbet(15),
Brueckner(16) and Sinanoglu(16) has been particularly note-
worthy. Much of the early work on the problem was due to
Hylleraas(17) who proposed three methods of constructing a

correlated wavefunction, all of which are still in use

today.

In the quantum theory of the electronic structure of
matter, the two-electron systems provide a valuable bridge
between the comparatively simple one-electron systems and
systems containing many electrons. The structure of an
electronic system within a given nuclear framework depends
not only on the balance between the kinetic energy of the
electrons and their attraction to the nuclei, but also on
the mutual electronic repulsion. The last effect causes
considerable difficulties in the theory, since it may not be
treated within the conventional “one-electron approximat-
ion’. The accurate solution of the many-electron
Schrodinger equation therefore demands other methods, and

the results for two-electron systems are then also of

guiding importance 1in treating systems containing many



electrons. Two types of solution of the two-electron
Schrodinger equation have been suggested, namely an
eigenfunction in the form of a “superposition of configurat-
ions® and a form containing the interelectronic distance as
a variable. Both types were first investigated by Hylleraas

(18)

in his pioneering work on the helium problem Hylleraas

found that the series of configurations converged rather
slowly and that a much quicker convergence could be obtained
by introducing Iyo explicitly in the solution. Wave-
functions containing Lo have later been evaluated by James
and Coolidge(19) for the H, molecule, by Henrich(zo) for the

H ion, and for the He series by Eriksson'2'), by Baber and

(22) (23)_

Hasse , and by Chandrasekhar and Herzberg The wave-

functions containing r,, have the disadvantage that it seems
impossible to give them an interpretation of simple physical
visuality, and it 1is further difficult to generalize the
approach to many-electron systems(zq). Nevertheless, the
success of the Iys method was so large that, for a rather
long time, it was almost generally believed in the

(17)

literature that "electronic correlation” could be taken

into account only by introducing the inter-electronic
dictances r. .
1]
was already known in the early days of quantum mechanics

explicitly into the wavefunction. However, it

that the wavefunction for a many-electron system could be
expressed as a superposition of configurations built up from
one-electron functions, provided that the one-electron set

was complete.

The wavefunctions studied in this work are of the con-

)(25,26)

figuration-interaction (CI type and they are



analysed by making use of the many electron theory (MET)

(27). In the next Chapter, a brief

proposed by Sinanoglu
outline 1is given of some approaches to correlation. In
Part 2, we examine the effects of electron correlation using
a partitioning technique(za) in position space for the
ground and first excited states of a series of the Li-like
ions. In Part 3, the analysis was performed by determining

correlation properties in momentum space by using the

Fourier transformation, see Appendix A.3.



{A) Some Approaches to Corxelation

The wavefunctions used throughout this work are of the
configuration-interaction (CI) type. 1In this approach, the
correlated wavefunction is expanded as a linear combination

of Slater determinants(zg),

Y =1 c, ¢, ,
; i

where each of the Oi‘s (configurations) is an antisymmetriz-
ed product of one-electron functions (spin orbitals), and
the coefficients c; are taken as those which minimize the
total energy. The exact wavefunction may, in principle, be
obtained by applying the variation theorem and solving an
infinite set of secular equations. In practice, of course,
there is a restriction on the number of configurations that
can be conveniently handled; the more terms that can be
accommodated, the better the calculated energy. The main
drawback of this method is that, at the outset, it is not
certain which configurations will be most effective in
lowering the energy. In addition it is found that the
energy convergence of a CI expansion is notoriously slow.
These difficulties can be overcome by expressing the wave-
(30,31)

function in terms of so-called natural spin orbitals

(NSO“s).



Lowdin(30) has defined natural spin orbitals Q(xi) as
being those orbitals which produce a diagonal representation

of the first order density matrix r(x;,51), that is:

. . x
MR, X)=NS (KL X500 Ky) ¥ S0 SYRRERF. L S0 SRRRL- - ¥

*
= f n, Qi(x1)Qi(x1) ' 1.1.4

where X; refers to the space and spin coordinates of
electron 1i. The constant n, is known as the occupation

number of the ith natural orbital (NO) and clearly [ni = N.

Using a theorem due to Schmidt(32) it may be shown that
the use of the highest N occupied natural orbitals in a CI
wavefunction leads to the most rapidly convergent expansion
possible for any basis set of N orbitals. This result may
appear to be of little value, since in order to determine
the natural orbitals it is first necessary to calculate the
density, which in turn requires a knowledge of the exact
wavefunction. However, a number of workers have made use of
this result by firstly performing an approximate CI
calculation, determining approximate natural orbitals and
then repeating the procedure but now using only those
natural orbitals of highest occupation number and augmenting
the basis set with a number of new functions.

d(33,34) to

The first natural configuration has been foun
bear a striking resemblance to the Hartree-Fock result in
terms of energy and total overlap. The relationship between
natural orbitals and Hartree-Fock orbitals has been

(34)

discussed by several workers for example, Davidson and

10



(35)

Jones showed for H2 that the difference between such

orbitals is almost equal to the f function introduced by
Sinanoglu(36) in the expansion of an N-particle wave-
function. The f functions here represent corrections to the

Hartree-Fock orbitals as a consequence of correlation and in

general, their contribution to the energy is very small(37).

One approach which has received a great deal of
attention in recent years is the Multiconfiguration Self
Consistent Field (MCSCF) method. This is a natural bridge

between the HF and CI methods. This method was pioneered by

(40) (41)

Hartree and by Jucys and collaborators , and it has

been used to calculate the correlation in the ground state

(42) (43)

of atoms and molecules The most extensive

application of the MCSCF scheme to excited states, however,

(44'45). In this method, the

has been conducted by Froese
wavefunction is written as a linear combination of Slater
determinants, each of which is composed of a set of one-
particle orbitals. However, unlike the CI method these
orbitals are not fixed but are to be optimally determined
along with the expansion coefficients. The equations
determining these orbitals were formulated some years ago by

McWeeny(46)

but their solution has only recently become
possible. In practice it is necessary to make a particular
choice of the type of configurations to be included in the
MCSCF wavefunction. Two different formalisms have been

(47)

developed - one due +to Veillard and Clementi and the

other due to Das and Wahl(48). The method developed by the
latter is known as the Optimised Valence Configuration (OVC)

method. Both of these approaches have been applied to a

11



'number of molecules and although problems remain,
particularly with difficulties of convergence, the general
MCSCF method seems a promising line of attack for the
future.

Some years ago Hurley, Lennard-Jones and Pople(49)
proposed a method of constructing correlated wavefunctions
known as the Separated Pair Approximation. Once again this
approximation have generally yielded only about 40-50% of
the total correlation energy (calculations on Be and LiH
excepted). Furthermore the equations determining the
optimum two particle functions are coupled and rapidly
become difficult to solve as the number of electrons
increase. We shall therefore turn our attention to the
Independent Electron Pair Approximations which have been
proposed to overcome some of these difficulties.

)(36)

In Sinanoglu’s Many Electron Theory (MET the wave-

function is written, without approximation, in the following
form

v(1,2,...,N) = ¢(1,2,...,N) + X(1,2,...,N) , 1.1.5
where ¢(1,2,...,N) and X(1,2,...,N) are, respectively, the

HF and correlation functions. ’HF is an antisymmetrized

product of N spin orbitals

¢up(1:/2,...N) = A ’1‘“1)’2(32)""N(3N) 1.1.6

and the following orthogonality and normalization

12



conventions hold

GpplXx(1,2,...N) = 0; <¢HF|oHF> = 1
hence <¢HF|¢> = 1,
The function x(1,2,...,N) 1is analyzed into 1,2,...,N

particle correlation parts by the “method of successive

(36). The detailed form of

partial orthogonalization® (MSPO)
the correlation part in equation (1.1.5) which one gets from

this analysis is

N N N
X(1,2,...,N) = ; (fi} + F ,{Uij} + F . {Uijl} +
i i<y i<j<l
--at{U12."N} - 1.107
The terms {fi}, {Ui.}, ey {U12...N) are the 1, 2, ..., N
electron correlation parts where {} indicates

antisymmetrization with the products of the remaining (N-n)

spin-orbitals, for example

(u; . b= (n) V2 ar¢1,2,...,M)0;

ij...n lj...n/(lj"'n]' 1.1.8

The symbolic division by (ij...n) refers to the absence of
these orbitals from the HF product (12...N). The n-electron
correlation functions have the following orthogonality and

antisymmetry Properties

I U35, n(EqrZp - %) ¢ (x)dx; =0 1.1.9
Uij...n(zi'xj""KN) = - Uij...n(ﬂj'xi""ﬁn) i.1.10

13



where ¢k(5i) in equation (1.1.9) is the HF orbital.

The form of equations (1.1.5-10) is general for any OHF
= A(1,2,...,N) in equation (1.1.6) given that these N spin-

orbitals are orthonormal.

Sinanoglu decomposes the various functions in equation
(1.1.7) 1into a cluster expansion and therefore equation
(1.1.7) can be written in the much more detailed form which

separates the terms referred to as unlinked clusters and

linked <clusters. A good approximation to the correlation
part in equation (1.1.5) can be written in the following
unlinked cluster(16) form:
-172 % .
Xcorr * Xapprox = 2 [ (1,2,...,N) { (2) f(juij/(lj) +
1/2 ¢ L Uij Ukl/(ijkl) + ...}] . 1.1.1

i<j k<l
i, j 2k, 1

The above approximation was considered by Levine, Geller and

(50)

Taylor to derive the conditions required for Sinanoglu’s

wavefunction to describe a singlet state.

So far, the correlation problem reduces to finding the
pair correlation functions Uij which satisfy the ortho-
gonality condition, equation (1.1.9), but are not assumed
orthogonal to each other. Substituting equation (1.1.11)
into the variational expression for the total energy allows
us to determine uncoupled variational equations for each of

the pair functions Uij'

14



Sinanoglu has suggested that the derivation of pair
functions by minimisation of the pair energy functional 1is
similar to the variational problem of solving the helium
atom Schrodinger equation. It would seem, therefore, that
by using explicity correlated trial pair functions it should
be possible to determine pair energies to the high degree of
accuracy that Hylleraas achieved for the energy of the
helium atom. Unfortunately, as Geller, Taylor and

Levine(51)

have pointed out, the presence of the Coulomb
exchange operators in the gxpression for the pair energy
makes the inclusion of the interelectronic separation 2P in

the trial pair function more difficult to handle than in the

calculation of an approximate helium wavefunction.

(49)

Hurley, Lennard-Jones, and Pople proposed the use of

a variational trial function
¥ = det ¢12(1,2)¢34(3,4) .. wN_1'N(N—1,N) ‘ 1.1.12

where det symbolizes the total antisymmetrizing operator,
multiplied by a normalization constant. The two-particle
wavefunctions ..

1j
literature, describe localized pairs of electrons. The

called geminals in the more recent

geminal functions themselves correspond to chemical ideas of
molecular structure based on inner shells, valence bonds,

and lone pairs of electrons.

The paired-electron wavefunction, equation (1.1.12), has
the advantage of descibing what is expected to be the

dominant effect of electronic correlation, modification of

15



pairs of doubly occupied localized orbitals. This is
accomplished with a wavefunction adapted to direct

variational calculations.

The obvious disadvantage of the paired-electron
wavefunction 1is that it makes no provision for correlation
between different localized electron pairs.

It was originally proposed by Brueckner(52’53), in the
context of a study of nuclear matter, that the correlation
problem could be solved independently for each pair of
particles in a many-particle system. The proposal by

(16)

Sinanoglu for the solution of the exact pair equations,

is closely related to the method of Brueckner, Bethe, and
Goldstone. The calculations of Geller, Taylor and Levine on
the Be atom(51), based on Sinanoglu’s formalism, are in fact
a variational solution of the Bethe-Goldstone equations,
using trial functions that depend explicitly on relative
coordinates. The Bethe-Goldstone equation for pair (ij) can
be expressed in a variational formalism involving N-particle

(54) (55)

wavefunctions Nesbet showed the Bethe-Goldstone

equation, whose solution describes the correlation of

electron pair (13), to be exactly -equivalent to a

variational determination of the coefficients c?? in a total

wavefunction of the form:

‘ab ab

Vij(x1,..,.KN) = ’O . ijcij ' 1.1.13

for which the occupied orbitals in 00 are Brueckner
orbitals. Nesbet then extended this method by proposing

that an mth order-Goldstone equation may be defined whose

16



solution 1s equivalent to a variational calculation using a

trial wavefunction vijk which is a linear combination of
¢o and all Slater determinants ¢??§"' where the indices
ijk... may be any subset of the original list i,j,k,1l, etc.

A comparison of the Nesbet-Bethe-Goldstone approach to
second order with Sinanoglu’s approach shows that neglect of
the orbital correction function fi is equivalent to a
neglect of the single excitations in Nesbet’'s method, while
the assumption that the electron pair may be treated as
uncoupled 1is equivalent to Nesbet’s use of a separate
variational equation for each pair. Similar approaches to
the Sinanoglu and Nesbet methods of determination of pair

(56)

correlation functions have been proposed by Szasc , Byron

(57) (58)

and Joachain , Krauss and Weiss and many others.

1 1]

Theory of Sinanoqlu

To determine an fi correction function we use the method
of successive partial orthogonalizations (MSPO)(36).
Equation (1.1.5) is multiplied by the orbital product “i’
which represents the product of all occupied HF spin
orbitals except oi(i), and then we integrate the result over

all coordinates occuring in m, . Thus we obtain a function

of Xj only, namely,

chorrl"i(l)) = N [ ¢l(§l) + fl(Kl) ] . 1.1.14

17



The constant N 1in equation (1.1.14) arises from the
normalizing constant implicit in the antisymmetrizer

operator A.

To evaluate N, we multiply equation (1.1.5) by the
product of all occupied HF spin orbitals T and integrate

over all coordinates,

N = <vcorr|">all . 1.1.15

Substituting equation (1.1.15)into (1.1.14)we get

£, (%) = «<¥ |

corr i>3i/<v

By means of a similar process we may obtain explicit
formulae for the pair functions. Thus, multiplication of

equation (1.1.5) by T which is equivalent to W but with

ij’
the omission of the orbitals ¢i(xi) and ¢j(xj), yields,
after integration over all the space-spin coordinates
occurring 1n "ij'

Woorr!Mig? = NL ¢, (x;)90,(K5) - ¢ (55) (%)
+ ¢i(§i)fj(5j) - ‘i(,&j)fj(xi)
LK) (Ky) - (X))

+ /2 Uij(gi,xj) ] . 1.1.17

Substitution of N from equation (1.1.15) gives the following

relationship for the pair function Uij(xi,xj):

18



Uij(xi,zj) = 1//2 [ (vcorrlnij> / <Ycorrln>

oi(ﬁi)’j(ﬂj) + ’i(Kj)’j(Ei)

EiX;)05(Xy) + £, (x5)95(%))

It 1is clear that this process may be extended to obtain
explicit expressions for any of the higher multielectron

correlation terms such as U,

13k’ U

iK1’ etc.

By the above procedure, we may separate the correlation
effects due to intershell or intrashell pair interactions.
For the exact wavefunction it is easy to show that the total

correlation energy E may be represented by the sum of

corr

the pair correlation energies eij defined by

grilu. >, 1.1.19

€.. = (OiOJ i3'Yi3

1]

where Uij is given by equation (1.1.18). Banyard and

(65)

Taylor evaluated the pair correlation function U.. and

1]

their associated energies €55 for the He(1s)'v Li(zs and

2
P)- and Be('S)-like ions.

In this survey, coupled with the previous chapter, we
have outlined many of the methods which have been used in
the field of atomic and molecular structure calculations.
As we have seen, most of these methods are essentially
extensions of either the self-consistent field
approximation, the <configuration interaction method or of

the use of explicitly correlated wavefunctions.
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PART TWO
ELECTRON CORRELATION IN Li-LIKE IONS IN POSITION SPACE
2

2.1 GROUND STATE - (1s 28)25

2.2 EXCITED STATE - (1s22p)?p



2.1 GROUND STATE - (1s%2s)2s



CHAPTER 2.1.1

Here we concern ourselves with a study of electron
correlation in position space. 1In particular, we employ the

concept of the Coulomb hole, which has been used extensively

(60)

to examine the ground state of both He-like ions and Be-

(28)

like ions in position space. With regard to the helium-

like ions, detailed discussions have been presented of the

Coulomb hole in position space for both the ground state and

(61)

some excited states An obvious and interesting

extension of this work would be to examine the Li-like ions,
since they represent the simplest systems with an open-shell

structure.

The electron-electron distribution function f(r12),
which describes the probability of locating two electrons

separated by the interelectronic distance Xy, Was first

(63)

introduced by Coulson and Neilson in their study of

1

electron correlation in the 1'S ground state of He. The

Coulomb hole was then defined as

£ = -
BL(ryp) = £ pp(Ty2) - Eyplryy) 2.1.1

where each f(r12) is normalized to unity, and fcorr(r12) is

‘the distribution function for Lyn evaluated from the

correlated wavefunction, and (r12) is derived from the

fHF
best uncorrelated wavefunction, that is, the Hartree-Fock
wavefunction. This definition of the Coulomb hole is

. . 12
entirely analogous to that for the correlation enerqy( ‘
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and 1is applicable to all atoms and molecules containing two
or more electrons. To make some examination of the way in
which the inter-particle distribution function changes for
specific locations of one of the electrons, say a test
electron 1, we may consider a related distribution function
g(r12,r1), introduced initially by Boyd and Coulson(64).
Changes in this function as a consequence of introducing
electron correlation into the wavefunction are clearly of
interest.

(28,65) have used the

(36)

Recently, Banyard and co-workers
many electron theory (MET) of Sinanoglu to examine
electron correlation effects in some detail for the ground

(65) (28)' In an

state of Be and several Be-like ions
endeavour to gain insight into correlation effects for
specific electronic shells within an N-electron system,
these workers used the Sinanoglu expansion of the
wavefunction to partition the correlated two-particle
density which is required for the evaluation of correlation
properties in individual normalized electronic shells within
the system. Correlation effects for each electronic shell
were then assessed with respect to the corresponding
restricted Hartree-Fock (RHF) description by evaluating the
Coulomb hole, the partial Coulomb holes and the changes
which occur in the one- and two-particle radial density
distributions. For the intra-shell, it was also of interest

to determine various radial and angular statistical

correlation coefficients .
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In the present work we extend the analysis to a series
of open-shell systems by considering several Li-like ions in
the ground state. These three-electron systems, with the
electronic configuration (15225)25, represent the simplest
ground state example in which both Coulomb correlation and
Fermi correlation are present. Coulomb correlation operates
between any pair of electrons and is particularly pertinent
when the electrons possess antiparallel spin components and
are described by a closed-shell, such as, for example,
(15)2. Fermi correlation arises between electrons which
possess parallel spin components. In addition, the
imbalance between the a- and B-spins of the electrons in the
ground-state of the Li-like ions produces a polarization
effect in the K-shell. Following the procedure used for the
Be-like ions, the two-particle density was partitioned into
its pair-wise components and the correlation effects were

(28), in terms of Coulomb holes,

examined, as before
statistical correlation coefficients and several expectation
values. The correlation effects in the KaKf-shell are
compared with those for the doubly-occupied K-shells of the
He- and Be-like series of ions, the KaLa and KpgLa
inter-shells effects are contrasted with the corresponding
shells in the Be-like ions and, further, some comparison can
be made with the correlation-induced changes in the 215 and

23S excited-states of He(ss).

Note that, during the course of this work, it was

reconfirmed that the correlated wavefunction of Weiss(ZS)

2 3+

for the S-state of the ¢ ion contains an error.

Consequently this function has not been used.
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CHAPTER 2.1.2
WAVEFUNCTIONS AND ANALYSIS

Using the method of configuration interaction (CI),

(23) represented the correlated description of the

Weiss
(15225)25 state of the Li-like ions, for 3 < 2 < 8, as a

linear combination of many-electron functions

where the coefficients C; are taken as those which minimize

the total energy and each configuration ’i is an anti-

symmetrized product of one-electron functions (spin

orbitals).

Two general types of linearly independent configuration
were constructed for the three-electron systems. The first
of these corresponds to the situation where two electrons
couple together to produce singlet S symmetry, and the
resulting pair is then coupled with the orbital description
of the third electron to produce the overall 2S symmetry of
the state. In the second case, the two electrons are
coupled to produce triplet S symmetry, and the resulting
pair 1is again coupled with the third electron to produce a

doublet S state (25). These configurations have the form:

= 1
*oqk, A (xpxq) SX,,
1/2 +A
= ¥ SH
(6D)) LD ¥ e g2 xa03))

- IXMBDXY L a(2)xa(3)1] 2.1.3
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and

_ 3
*pak, A T (xpxq) SXk
172 +A
- - v M
1/3(2D,) ﬁ:—x[ 21X pAd (D)X un(Z)ka(B)l

- XM a (XM B2 xa(3)-Ix ()XY L a(2)X,a(3)]] 2.1.4
PA k PA gA k

qrP

where D, = 2Ax + 1 and | x¥

determinant

p)\o:(1)X“q)\ﬁ(2)ka(3)I represents a

v v
XM x¥ B Xeal1)

)%

|
I
xM a(2) xY . B(2) Xpa(2) | ) 2.1.5
A qAr k
I
|

M M
X pAu(3) X q)\B(3) xku(3)

The basis set (X} consists of non-orthogonal Slater type
orbitals (STO s)
n-1 -Er

J(2n1)11/% ¢ e ¥y, (s,0), 2.1.6

X1 (80 E)=[ (28)20*

where each function X has been normalized to unity. The «a
and B spin functions represent the two components of spin.
The sum over the azimuthal quantum index p from -A to +A in
equations (2.1.3) and (2.1.4) ensures that the electron pair
forms either 1s or 3s symmetry, respectively. The orbital
angular momentum index A specifies the symmetry of the space

orbital X (r8¢;&) and D, designates its degeneracy. The

nim A

bar over the spin-orbitals represents the complex conjugate,

with the phase of the spherical harmonic chosen such that
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oM V|
YA(G,w) =Y A(G.w)

Although these CI wavefunctions of Weiss were determined
several years ago, they still rate amongst the energetically
best functions since, besides their compactness, they do
account for over 97.8%, 97.3%, 97.7%, 96.2%, 95.6% and 94.9%
of the correlation energy for 2 = 3,4,5,6,7 and 8,
respectively. The percentage correlation energy obtained in

the CI calculations is defined as

o°®
11

corr 100 (Ecorr - Egp) / (Eexp - Egp)

where Ecorr is the energy of the CI wavefunction, Eexp is
the experimental energy used above and EHF is the energy of
the HF wavefunction. Each wavefunction contains 45
configurations formed from 20 basis orbitals, seven of s
type symmetry (1s,1s' ,1s",2s,2s' ,2s",3s"), six of p
(2p,2p' ,2p", 3p,3p' ,3p"), four of 4 (34,34 ,44d,5d), two of f
(4£,5f), and one of g type (5g9). The primes associated with
orbitals of the same quantum number 1 indicate a different
orbital exponent (®). The STO exponents for the K-shell
basis functions were identical to these obtained by
Weiss(zs) from a 35-term CI study of the 115 state of the
appropriate He-like ions. For each three-electron ion, the
exponents of the basis functions for the outer shell were

optimized, along with all the CI coefficients, by means of

the energy variation method.

The uncorrelated reference state, also determined by

. . . 6
Weliss, was represented by a restricted HF wavefunctlon(2 )
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which, for the ground-state of the Li-like ions, can be
written as a single determinant of one-electron functions,

namely
¢ap(123) = 372 o alt)egB(2)ey a(3)] . 2.1.7

The function ¢ r8yp;E) is the spatial part of the spin-

nlm(

orbital and was constructed from a basis set of six s-type

orbitals,

i
) = X . 2.1.8

i
n nl

- M 0N

c
=1
The basis functions employed here were standard normalized
STO’s and they are defined as in equation (2.1.6). For a
given system, Weiss minimized the total energy with respect

to all parameters, including the orbital exponents.

By analogy with the definition of the correlation
energy(12), the correlation effects are measured relative to
the corresponding Hartree-Fock properties. The examination
of correlation properties such as Coulomb holes, one- and
two-particle expectation values, etc., requires the
evaluation of the two-particle density for both the HF and
correlated wavefunctions. When considering the correlated
description we adopt the procedure of sinanoglu(36)

mentioned in Chapter 1.1.2, and the correlated wavefunction

for a three-electron system can be written as

Y (123) = OHF(123) + X

corr (123), 2.1.9

corr
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where the leading term ’HF in equation (2.1.9) is chosen to
be the restricted HF wavefunction. Since this reference
state is a single determinant, it can be expressed as the

antisymmetrized product of all occupied HF spin-orbitals

*up(123) = AW(123) 2.1.10
where
M(123) = ¢,(%,),(%,) ¢5(%3) 2.1.11

unless stated otherwise, A is the 3-electron antisymmetrizer

given by

A= (312 e, P 2.1.12
p

and P is the permutation operator and e_ takes the values +1

P
and -1 for even and odd permutations, respectively. The HF
spin orbitals ¢ are designated by the numerals 1,2,3
starting with the lowest orbital with spin «, consequently
all odd integers are for a spin and all even ones for B
spin. Before the antisymmetrizer is applied in equation

(2.1.10), spin orbital i 1is occupied by electron i whose

space-spin coordinates are represented by X;.

The correlation part X in equation (2.1.9) can be

written as

=3 N=3 N=3

N
xX(123) = ¢ Xi + I Xij + L Xijk

i=z1 i<] 1<k

2.1.13
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where

X1i = A{MW(123) fi/oi)) ' 2.1.14
- -1/2
xij = (2) A{W(123) Uij/‘i’j} , 2.1.15
and
X..y = (3')'1/2 A{NM(123) U..,/¢.%. ¢} 2.1.16
i3k : ijk’ i3k ) o

The function fi is the orbital correction term corresponding
to the ith normalized spin orbital ‘.. Uij is the pair-

correlation function associated with ¢, and ’j’ and Uijk is

the higher many-electron correlation term. 1In equations
(2.1.14 - 16), we have used the convention
fi/o

i = fi(xi)/‘i (xi)

Uij/oioj = Uij(xi'xj)/’i(xi)‘j(xj) etc.

Expressions for ti and Uij were obtained by the method of

successive partial orthogonalizations (MSPO) proposed by

(36)

Sinanoglu The correlation terms U are antisymmetric

under an odd number of permutations, i.e.:

Uij(xl'xj) = Uij(luj) = 'Ulj(xjoxl) ' 2.1.17

Uljk(xlij.xk) = ‘Uljk(x)rxlrxk) . 2.1.18
The correlation function X(123) in equation (2.1.9) is

orthogonal to all the occupied spin-orbitals in ’HF since

the MSPO procedure is based on the following requirements:
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]
o

<Uij | 01 >

I
o

(1=1,2,3) 2.1.19

where

i

1
x

Let us now consider each component of the correlated
wavefunction in more detail. The first term in ?corr(123)
given in equation (2,1,9) is the RHF function ¢,.(123).
This may be expanded in terms of its normalized spin-

orbitals ’i as follows:

Sup(123) = A (%), (X,)¢5(X,)
= (372 (0 (a4, (8y) 45 (B5) - (K )4, (K,) 4, (X5)
(%) 9, (KD 050K, - ¢ (X3) 0, (X,)45(X,)
4 (X3)9,(K,) 45 (X,)
-01(51)02(33)03(32) } 2.1.21
0. (123) = (31) V2 [0 (B )0,(K) - ¢ (K )4, (%)), (X)
HF ' 1 (&), (X%, 2 (B ) (Kp) ) 4%,
+ (02(31)03(32) - 03(31)02(32))01(53) ] 2.1.22
172 N3 12
tup(123) = (N1)™ L A S ¢ (3)e 2.1.23
HF {i<)) #k 1] k P

where, for convenience, we have introduced the abbreviated

notation
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AlZ - . - 0. .
i3 01(51)03(12) 03(31)01(52) . 2.1.24
Turning now to the correlated part of equation (2.1.9),

we see from equation (2.1.13) that X(123) consists of three
contributions. The first part, involving the orbital

correction function fi' is written as

"
w

X

M T

A [ w(123)1{ f1/¢1 + f2/¢2 + f3/¢3 }] 2.1.25

A (f1¢203 + ¢1f2¢3 + 0102f3 } . 2.1.26

Each term in the above equation can be expanded after

applying the antisymmetrizer to give

(N T2 [ g (x4, (x)) - #,(X)E, (X)) } 4,(x,)
-1 f1(x1)03(x2) - 03(x1)f1(x2) } 02(x3)
e (x )0 (%) - 03(x1)¢2(x2) b £, (xq)
+{ ¢ (x)E5(x,) - fz(x1)¢1(x2) b 45(xq)
i (xy)e5(xy) - $3(x )0 (x,) ) £,(x4)
+{ fz(x1)¢3(x2) - 03(x1)f2(x2) } 01(x3)
+{ *i(x e, (x,) - 02(x1)¢1(x2) P £3(x3)
- ¢ (x)£3(x,) - f3(x1)¢1(x2) } vz(x3)

+{ $a(x)Ea(x,) - f3(x1)¢2(x2) boe(xq)] 2.1.27

N=3
Thus, the final form of [ Xi may be expressed as
i

=3 N
_ -1/2 12 12, .12
X. = (N! S 4 +{(B." .
i {(N!) f1<,);k[A13 k(3) (BlJ+D1j}0k(3)]ep 2.1.28

- Mz
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where
12

Bij = Oi(x1)fj(x2) - fj(x1)¢i(x2) 2.1.29
and
D12 = F (x.)0.(x.) - &.(x,)E.: (x,) 2.1.30
i3 T fitxdeylng) m a5 (xf 000 s

The second correlation part of X(123) involves the pair-

correlation functions Uij' This contribution may be

rewritten, using the same procedure as before, to give

=3 -1/2
Xij=(2!) A[m(123){ U12/¢1¢2 +

013/0103 + 023/0203 H] 2.1.31

bt Mz
~
[N

- -1/2 13
=(2!) A[U12 3(3) + U13 2(2) + e, (1)U ]. 2.1.32

The superscripts on the pair-functions Uij refer to the

electron coordinates. The use of the antisymmetrizer A then

gives
N=3
I X.. = (2131)"1/2
RS
1<]
(2 - v2lre 3 + (03] - vl2he (3
21 31 .13
+{U23 - US5#,(3) + (UY, - U 5)e,(2)
23 32 13 31
HUYS - U ZEe (1) + (U3 - UJahe,(2)
32 _ ;23 23 _ 32
+{UF3 - U3he, (1) + (U 3o, (1)
g3l _ 413
+U3 - U 3 e,(2)] . 2.1.33

Equation (2.1.33) may now be represented in the compact form
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"
w

3

N N=
rox;, = (21732 e { 012 L(3) +
i< J tic<j) #k P
23 31
Ulj°k(1) + U k(2) } . 2.1.34

For N=3, the last correlation part of equation (2.1.13)
reduces to X123 and contains only the one three-electron

function U Thus, equation (2.1.16) becomes

123"

3
-1/2
= |

X123 (3!) ijk € 2.1.35

N=
AU123 = (2/3!) L
(i<j) #k

Substituting equations (2.1.28), (2.1.34) and (2.1.35)

into equation (2.1.13), we get

-1/2 N=3
X(123) = (N!) [ ¢ [[A (3) + (B + D } . (3)] +
(1(1?#& lJ k k
12 23, 31
J2{ U. J¢ (3) + U 13 k(1) + U ¢k(2) + J(2/3!) U k}] 2.1.36

The above expression 1s the correlated part of the total
wavefunction (see equation (2.1.9)), written in terms of its

basic components.
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CALCULATIONS AND RESULTS

For an N-electron system, the change in the two-particle

density due to electron correlation can be written as

AT (B K,) = Fopry(Eprdp) - FpelXp,x) 2.1.37

The definition of F(zm,xn) in terms of an N-particle wave-
function follows, for example, McWeeny and Sutcliffe(67).

Thus,

x
M(Ey Ky = (3) ¥ (KX Ky YK, Ky .. Xy)

dxp,...de 2.1.38

where Ay and X, are the space spin co-ordinates of any two
electrons m and n, and dxp,...de indicates integration-
summation over the combined space and spin co-ordinates of
all N-electrons except m and n. The binomial coefficient

(g), which can be written as

N, _

(2) = N! / [2!'(N-2)!] ' 2.1.39
ensures that the two-particle density F(xm,xn) is normalized
to the number of independent electron pairs within the

system, so that

N

IMay x)dx ax = () . 2.1.40

Correlation effects can be examined within the individual
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electronic shells by partitioning each F(xm,xn) into its
pair-wise components (i,j), where (i,j) labels the occupied
normalized spin-orbitals ¢, and ’j in the restricted HF
representation. The partitioning of the restricted HF two-
particle density into its KaKg-, KalLa- and KgLa-components
is both straightforward and exact. For the Li-like ions,
the substitution of equation (2.1.23) 1into equation
(2.1.38), followed by integration over the space and spin

coordinates of one of the electrons, yields

N=3

_ 2
rHF(Km'xn) - 1/2 it(j Aij 1 2.1.41
where Aij .,is defined as in equation (2.1.24); see also
Appendix A.1. The partitioning of rcorr(xm'xn) into its

intra- and inter-shell components is, of necessity, only
approximate and follows the procedure adopted by Banyard and
Mashat(za). The Sinanoglu representation of the correlated
wavefunction was substituted into equation (2.1.38) and, as
outlined in the earlier work(za), we omitted contributions
to rcorr(xm'xn) arising from X*(123)X(123). Thus, in

equation (2.1.38), ¥ . __(123)¥

corr (123) is approximated by

corr

x 2 *
Yoorr(123)¥ o (123) = 7 {eyp (123) 0y (123) +
* *
tur (123)X(123) + ¢ (123)X (123)) 2.1.42

where the constant ¢ ensures normalization. As shown in
Appendix A.1, the evaluation of the correlated two-particle
density requires integration over the space and spin co-

ordinates of, say, electron 3 and, consequently, this

3



removes the 0123 term which occurs within X(123). Thus, we

obtain a partitionable two-particle density of the form

N=3

12
r = o T
corr(51'52) f(j Alj { <wcor:l:I"l:j)/c"corrI“>
1 12
> Aij } ' 2.1.43

where, for convenience, we have now chosen m and n to be 1
and 2, respectively. The density for each pair (i,3j) is
normalized to unity. The symbol T represents the product of
all occupied HF spin-orbitals and similarly for "ij but with
the omission of the spin-orbitals ¢. and ’j' This
approximate representation of the correlated two-particle
density was then used in conjunction with the HF description

in order to determine Coulomb holes and expectation values

for each shell.

Within the above approximation, the change in the two-

particle density, Ar(x1,xz), due to electron correlation,

can be written as

Ar(x1,32) = %:j Arij(xm,xn) : 2.1.44
The 1 and j values label the occupied spin-orbitals within
the HF description and, hence, taken as a pair, (i,j)
references the individual intra- and inter-electronic
shells. The influence of electron correlation is examined
here by evaluating the Coulomb hole Af(r12), the partial
Coulomb holes Ag(r12,r1) and various one- and two-particle

expectation values. Following Coulson and Neilson(63), the
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change in the distribution function f(r12) for the inter-

particle separation distance Lyo is defined as

where the integration is over spin and all space coordinates
except rys. See Appendix A.2 for a general discussion of
the formulation of the Coulomb hole. Thus, using equation

(2.1.44), we may re-write (2.1.45) to give

N=3 N=3
Af(r12)=f<jAfij(r12) = f(jf Arij(x1,xz)dx1d52/dr12 2.1.46

and hence the Coulomb hole may be examined for each shell.

Since each fi (r12) has been normalized to unity at both the

J
correlated and HF level, it follows that

g Afij(r12) dr12 =0 . 2.1.47

Although the Weiss CI wavefunctions for the three-
electron ions account for large fractions of the correlation
energy, their use in equation (2.1.43) implies that any
restriction or limitation imposed by Weiss when determining
his wavefunction will, of course, be reflected in our
findings. This point will be of special relevance when
reporting our analysis of correlation effects for the
2P—state. We show in Table 2.1.2 the configurations which
were considered in the two-particle density for each shell;
the notation (xx)1Sq and (xx)35q, refers to the manner in

which the spins of the two electrons are coupled to give a
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singlet or triplet S symmetry, respectively. The resulting
pair 1is then coupled with the third electron q to produce a

doublet S state (25).

In Figures 2.1.1(A-D) we 1illustrate the distribution

function f(r at the HF level for each individual shell

12)
and the renormalized total density (which is given by (KaKp
+ KaLa + KBLa)/3). The Coulomb hole associated with the HF
spin-orbital pair (i,J) 1s given in equation (2.1.46), and
the result for the individual shells and the sum total for
the Li-like ions are shown in Figures 2.1.2(A-D). It is to
be noted that each r12—axis has a Z scaling factor, where 2
1s the nuclear charge. Although calculations were performed
for 3 < Z < 8, some results are presented only for the

4*. the KaKg-, KaLa- and

selected ions Li, Be' and N
KgLa-curves are compared with the sum total Coulomb hole,
and the curves are shown in Figure 2.1.3. In Figure 2.1.4,
we present, for the series of ions, the percentage (Y%) of
the interparticle distribution function fHF(r12)

redistributed by correlation in each individual shell and

the total.

Since the Coulomb holes are obtained from averaged
distributions, 1t 1is of interest to evaluate the partial
Coulomb holes Aq(r12,r1). Following the procedure of Boyd

and Coulson(64), these "holes" are defined such that

[8g; 3(rypury)dxy = 1 (9; (X900 T9) opy = 933(E12:T9)gp)dr,

= Af(r,,) 2.1.48

12

and, therefore, they enable us to examine the effect of
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electron correlation when a test electron, say electron 1,
is located at a specific distance from the nucleus. The
functions gHF(r12,r1) and Aq(r12,r1) for Li, Be' and N4+
(for KaKp-, KaLa- and KfLa-shells) are displayed as surfaces
in Figures 2.1.5 and 6, respectively. N4t s chosen, rather
than 0+5, so that some subsequent comparison will be

2

possible with our current analysis of the “P-state reported

by Weiss; his o+5(2P) wavefunction is thought to be suspect.

Iwo-particle expectation values

In addition to calculating the Coulomb hole, we have
obtained insight into the shape of each f(r12) by evaluating

the expectation values
n n
(r12> = [ f(r12) P dr12 2.1.49

for -1 € n <€ 2. Clearly, different regions of the f(r12)
curve will be emphasised by each value of n. The spread or
diffuseness of the two-particle distribution f(ry,) about
it’s mean value <r12> is given by the standard deviation

Ar12, which is defined as
2 ) . 2.1.50
In order to measure the angular correlation effects in

different regions of the two-particle density, we calculated

the expectation values
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¢ Eq.xp/riry > = [ Xi.Z,/riT)  Tii(xq.xp) drqaz;  2.1.51

where n = 0,1 and 2. Each of these expectation values
assesses anqular correlation, and we note that when n = 1 we
obtain the purely angular expectation value <cosy), where ¥y
is the angle between the electronic position vectors X, and
L,. To calculate the expectation values defined by equation
(2.1.51), it 1is necessary to evaluate an angular integral

which contains a product of three spherical harmonics, i.e.
*
Y, p(0®) Yl.m.(aw) Y1u(°°)'

The details concerning the calculation of this type of
spherical harmonic integration, which is involved in
equation (2.1.51), are discussed in the work of Reed(77).
The results for these expectation properties are shown in

Table 2.1.3.

The radial correlation contained within a wavefunction
may be investigated by evaluating the two-particle radial
density distribution, Dij(r1,r2), in each individual

electronic shell. This density is defined by
D.i(Xyix,) = [ [sxd yr2r2ae . de 2.1.52
ijtt1eT2 i (Eq BT R -1

where dQ, denotes integration over all angular coordinates

of the position vector Iy such that
J Dij(r1,r2)dr1dr2 =1 . 2.1.53
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Of particular interest is the change caused in D(r1,r2) by
the 1introduction of correlation effects, therefore we have

calculated

ADij(r1,r2) = Dij(r1,r2)Corr - Dij(r1,r2)HF ' 2.1.54
and the results for DHF(r1,r2) and AD(r1,r2) are presented
as surfaces in Figures 2.1.7-8. In addition, we have
analyzed the change which occurs in the two-particle radial
expectation values

n_n _ n_n
<r1r2>ij = f Dij(r1,r2)r1r2dr1dr2 2.1.55

where -2 < n < 3.
_ ic] . ]

In order to study the effect of electron correlation on
the one-electron distribution in different regions of each
individual electronic shell for a given atom, we have
calculated the radial density function Dij(r1), which is

defined as

Dij(r1) = Dij(r1,r2)dr2 ' 2.1.56
and the expectation values <r?>ij, defined by
n _ n
<r1>ij = [ Dij(r1) r1 dr1 ' 2.1.57

when -2 < n < 3. If n = 0, equation (2.1.57) gives unity
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for each (i,j)-pair where i<j. From equation (2.1.57), we
see that the expectation values weight different regions of
space and consequently they are useful for comparing density
distributions arising from different wavefunctions. For
example, the function r;z becomes particularly large in
regions close to the nucleus, thus comparison of (r;2>
evaluated from two different wavefunctions indicates how
similar their density distributions are near to the nucleus.
By contrast, comparison of values of <r2> indicates the
similarity of density distributions in the outer regions of
the charge clouds. As well as revealing correlation
effects, some of the <r?> values are of considerable
practical importance: for example, we can obtain the

electron—-nucleus attraction energy from (r;1) and the

electron-electron repulsion energy from (r;;>.

cadial and Anqular C lation Coeffici

(68) suggested that

In 1968 Kutzelnigg and his colleagues
global effects of electron correlation in atoms and
molecules may be analyzed in terms of so-called correlation
coefficients «~. These coefficients are based on the
concepts of probability theory and mathematical statistics.

To obtain a measure of the effects of radial correlation at

large and small values of r,, we have calculated the radial

coefficients
<r?rg> - <r?>2
‘radial " 2n n.2 2.1.58
<r1 > - <r1)
where n = 1 and -1 corresponds to t_ and Ta/r . Yespectively.

I
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To assess angular correlation we use the following

coefficients
_ n-1 n-1 2n
Tangular = <r1 Lq-Xy 15 >/ <r1 > 2.1.59
where n = 1,-1,0 vyields rY . TY. and TY", respectively.

These angular coefficients are related, in turn, to <11.;2>,
<(L1/r$).(;2/rg)> and <cosy>, where ¥y is the angle between
the electronic position vectors I, and X, for electrons 1
and 2. The selection of a particular T enables us to
emphasize a specific region of the two-particle density when
measuring angular effects. The radial correlation
coefficients and the angular coefficients given above are
dimensionless and, in each 1instance, they are bounded in
absolute value by wunity i.e. -1 ¢ v ¢ 1. For the angular
coefficients in equation (2.1.60), a value of -1 indicates
perfect negative correlation and implies that the position
vectors are oppositely aligned, whereas a value of +1
represents perfect positive correlation signifying that the
vectors are parallel. For consistency, we followed the
definition of the Coulomb hole and hence the changes in each

1 due to electron correlation effects are given as

-1 . 2.1.60

At = HF

Tcorr
The results for At for each shell, and also for the total
system, are presented in Table 2.1.8. The totals for At are
obtained by wusing the sum totals for the appropriate
expectation values to determine each total t at both the HF

and correlated levels of description.
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Although our main interests are in the effects of
electron correlation, a brief discussion of the correspond-
ing HF properties will be of interest. A comparison of the
energies derived from the restricted Hartree-Fock (RHF) and

(25)

the full CI wavefunctions of Weiss is given in Table

2.1.1.

For convenience we will first discuss the intra-shell
for the Li-like ions and then follow with a discussion of
the inter-shell electron pairs and finally this discussion
will be ended by the comparison of the total atom properties
for the three-particle systems with those of the intra- and

inter-shells.

The KaKg-shell

Inspection of Figure 2.1.1(A) shows that, as 2
increases, the maximum probability of the interparticle
distribution function fHF(r12) increases and it is also
observed that the location of these maxima decreases as 2
becomes larger. The Coulomb holes of the K-shell, Af(r12),
are presented in Figure 2.1.2(A) for the Li-like ions.
These holes are seen to possess coniderable similarity when
plotted against the scaled co-ordinate Zr 5, where Z is the
nuclear charge. However, one of the most striking features

of these curves is that for Li and all members of the iso-

electronic series the Coulomb holes possess the conventional
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shape previously evaluated for the ground state of the
helium-like electronic sequence; see, for example, Curl and

(61) and Seddon and Banyard(eg), A corresponding

Coulson
similarity exists when comparing Figure 2.1.2(A) with the
KaKB- results for the Be-like ions; see Banyard and
Mashat(za). The balance between the positive and negative
contributions for a given Af(r12) curve is a consequence of
the normalisation conditions on fcorr(r12) and fHF(r12)
whereas the magnitude and, in particular, the location of
each extremum of a Coulomb hole gives valuable insight into
the various effects introduced by correlation. Since the
negative region of Af(r12) indicates a reduction in f(r12)
relative to the Hartree-Fock curve, the value of 4o such

that Af(r = O may be interpreted as the radius of the

12)
Coulomb hole. It was found that this radius decreases as 2

increases whereas, by contrast, the minimum and maximum
values for Af(r12) show only small variations with Z. The
Coulomb holes have radii of 0.66, 0.48, 0.26 and 0.23 for

Li, Be+, Bz+, N4+ and 05+, respectively. Such results are

k(28)

comparable with previous wor i.e., the radii of the

holes for the K-shell of the four-electron series which
range from 0.23 to 0.66 a.u. and are ordered as 04+ < B+ <
Be < Li . From Figure 2.1.2(A) we see that the zeros of the
scaled Af(r12) curves are in close agreement. An attempt
was made to bring the present K-shell results into even
better agreement for all Iy by using a scaling factor (2 -
8). Greatest coincidence among the curves was achieved when
the scaling parameter & was O0.38 + 0.01 whereas, from
previous work, the d-values were 0.41 + 0.02 for the K-shell

(28) (60)

of Be-like and 0.38 for the He-like ions The
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similarity of such results is quite striking.

The Coulomb hole is clearly associated with the concept
of a hole in the atomic or molecular charge cloud around any
selected electron and can therefore be described in terms of

its depth and radius(63'7o).

Consequently, a comparison
within the series of ions can be obtained in terms of the
percentage of each fHF(r12) probability density which was
redistributed due to correlation; this quantity, labeled Y,

is shown in Table 2.1.3 and Figure 2.1.4.

The behaviour of the Coulomb hole in the KaKf-shell is
reflected in the two-particle properties; in particular, the
value of <r;;> bears a very close relationship to the
percentage change of the density, Y%. In general, the
results shown in Table 2.1.3 reveal that the smaller the
value of <r;;>, the greater the value of Y%. This
correspondence 1is due to the dependence of the Coulomb hole
and <r;;> upon precisely the same region of the f(r,,)

curve. In addition to this, the results shown in Table

2.1.3 reveal that the difference,

1 -1

BLryp> = <Tyodcorr ~ $T27

HF

is a constant, independent of nuclear charge. For the
He-like series, Curl and Coulson(61) found that numerically,
A(r?%) = -0.08 a.u., whereas for the KaKB-shell of the
Li-like ions we obtained -0.085 + 0.001. From the Tables
2.1.4 & 9, the percentage of charge shifted, Y, and the

percentage change in <r;;> vary almost linearly with Z—1.
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Correlation produces an increase 1in the K-shell

interparticle quantities <r12) and <rf2> for 3 ¢ Z < 8

whereas, by contrast, Ar12 is always decreased in value.
(65)

This result is in agreement with the results for Be and
the Be-like ions(za), and also with those for He(63) and the
(60)

He-like ions The decrease in Ar12 indicates that the

spread of the two-particle density about the mean

interelectronic separation <r12> is reduced. From Table

2
12

values are greater in a three-electron system than those for

2.1.4 it 1is observed that the <r12> and <r.,.> expectation
identical Z in the <two- and four-electron series. This

comparison holds for both the HF and correlated descriptions

of the KaKB-shells.

The quantities <(;1/r?).(;2/rg)>, where n = 0, 1 and 2,
each assess angular correlation but with stress being placed
on different regions of the two-particle density. As shown
in Table 2.1.3, when n = 0 and 1, the value of these
components at the correlated level decreases as Z increases
whereas, when n = 2, the expectation value increases with 2.
At the HF level these quantities are, of course, identically
Zzero, sS0 they are not included in Table 2.1.3. At the
correlated 1level, these gquantities are seen to be of
negative sign. Therefore, angular correlation enhances the
probability that ¥y (the angle between the electron position
vectors I, and ;2) will be greater than 90° and decreases
the probability that y is less than 90°. Returning to Table
2.1.4, the comparison in the KaKp-shell for the above

2+

quantities can be made between Be, Be+ and Be It is
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clear that Bet 3 pe > Be2+, and therefore we may conclude

that the addition of one 2s-electron or two 2s-electrons to
Be2+ causes the value of the angular correlation expectation
properties 1in the KaKB-shell to be increased slightly in
magnitude. There was no steady increase in going from one
to two 2s-electrons. For the KaKg-shell we see that <;1.;2>
in the ULi-like 1ions 1s greater than the corresponding
quantity for the Be-like ions, but as 2 increases both

magnitudes become smaller and get closer. For example,

<Z,.x,> = -.0177, -.0069, -.0033 and -.0008 for Li”, Be, B’
and 04+, respectively whereas (;1.;2> = -.0179, -.00707,
-.00348 and -.0008 for Li, Be', Be?' and 0°%, respectively.

The (r and Ag(r12,r1) surfaces for the KaKB-

Iur (T12/7¢)
shell are presented in Figures 2.1.5(A) and 2.1.6(A). The
partial Coulomb holes in Figure 2.1.6(A) show the change in
behaviour of the Coulomb hole as the position of the test
electron 1is varied. The K-shell diagrams for Li, Be' and

4+

N show that the largest hole occurs when r, = rx. We see

1
in the Ag surfaces a decrease in density on the near-side of
the nucleus (£q, < r,) and an increase on the far-side (ry,
>r,). It is seen that the greatest reduction in Ag(r12,r1)
occurs at the diagonal g = Iy = Xy for the KaKg-shell in
Li-like 1ions. All the features mentioned above for the Ag-
surfaces appear to be similar in shape to the 1s intra-shell

surface 1in Be(ss), and in Li+(71).

From Figures 2.1.5(A) -
6(A), with support from Table 2.1.5, the gHF(r12,r1) and
Aq(r12,r1) surfaces show obvious differences for changing 2.

As 2 1increases these surfaces become less diffuse and

increase in magnitude. Finally, there appears to be no
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connection between the location of the maximum on a given

GHF(I12,r1) surface and the 1locations of the maxima and

minima on the corresponding Ag(r12,r1) surface.

Consider now the influence of correlation on the
two-particle radial distribution DHF(r1,r2), as shown by

AD(r1,r As expected, the maximum of DHF(r1,r2) is along

2).
the diagonal. It can be seen that AD(r1,r2) has a negative
region along the r, =1, axis but it has a positive region

when r, is small and r, is large and viceversa. The deepest

negative region occurs when I, =1, = small, whilst a less
negative region exists when r, =r, = large. As shown in
Figures 2.1.7(A) - 8(A) the K-shell diagrams of DHF(r1,r2)

and AD(r1,r2) become less diffuse and increase in magnitude

as 2 1increases. From Table 2.1.6 - 7 the correlation-

induced changes in <r| r£1> and <r,r,

influence of the radial correlation alone on the two-

> give a measure of the

particle density with the emphasis being placed roughly on

1) and <r1>

respectively, from the nucleus. Inspection of <r?>, shown

those regions 1located at a distance of <r;

in Table 2.1.7, reveals a tendency for the correlated
density to become marginally more diffuse than that obtained
from the independent particle model (HF). Such a movement
of density is not unexpected. The presence of the radial
correlation within the wavefunction tends to keep the
electrons apart. Consequently, the probability density
might be expected to experience some radial expansion,
relative to the HF model. A comparison of the correlated
and HF values for <r1> and Ar1 for the KaKg-shell shows

that, not surprisingly, the effect becomes negligible as 2
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increases. However, for a given Z, inclusion of electron

correlation within the K-shell decreases the values of <r?>

and <rnrn> when n > 0 and increases these values when n ¢ O

172
when compared with the HF values. It is also found that the

2> > <r Vs > <xr,> > <x%> > <3

1 1 1 1) will fit all the

relation <r;

ions.

To aid further comparison, we may compare the one- and

two-particle properties for the K-shell with the correspond-

(28)

ing values for both the Be-like series and the He-like

series(Go). In the comparison of the one-particle
expectation values <r?>, it is found that Be > Be2+ ¢ Be'
when n > O and Be < Be2+ > Be' when n < 0. The same
relationships were found when comparing 04+, 05+ and 06+.

It seems that adding one L-shell electron or two L-shell
electrons to Be2+ causes the K-shell density to become
slightly more diffuse. The cause of this expansion may
perhaps be due to the L-shell electron providing some

partial screening of the nucleus, hence permitting the

K-shell electrons to drift outward slightly.

The changes 1in <t provide a global measure of electron
correlation because each coefficient involves expectation
values based on both the one- and two-particle densities.

The results are shown in Table 2.1.8. Figure 2.1.10 shows

that for ArY . Ary. ' ArY and AT1/r the variation with 1/2
is almost linear whereas, for Arr , a slight curvature can
be observed. The results for Arr , AT1/r and ATY are

essentially wunchanged, to within graphical accuracy, when

compared with the corresponding results for the Be-like

49



iOnS(za). Finally, the comparison of the K-shells within
the three-particle systems, can also be made by considering
the percentage change in one- and two-particle properties
within the system due to correlation. The results are shown

in Table 2.1.9.

The KaLa- and K8Lqg- shells

The interparticle distribution fHF(r12) for the KaLa and
KBLa intershells of the Li-like ions is shown in Figure
2.1.1(B-C). The general Z dependence is seen to follow that
observed for the K-shell. The distribution functions
fHF(r12) for the inter-shells display several interesting
features. At small Lios the f(r12) distribution function
will be influenced mainly by the electron pair behaviour
when the outer electron has penetrated the K-shell. For the
KaLa curve, the existence of the Fermi effect produces a
flat region at small Iyo whereas, by marked contrast, the
KBLa curve 1is seen to possess a small 1local maximum.
Clearly, when the K- and L-shell electrons have different
spin assignments but are both described by orbitals of
s-type symmetry, a double occupancy can occur in the K-shell
region with characteristics similar to those for KaKf.
Probability arguments supports the observation that this
local maximum in the KBLa curve is of much reduced magnitude
by comparison with the K-shell results. For convenience in

subsequent discussion, such behaviour will be refered to as

a ‘mini K-shell® effect.
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The effect of electron correlation for the like- and
unlike-spin assignments in the inter-shells can be seen by
examining the Coulomb holes presented in Figures 2.1.2(B -
C). The Af(r12) curves not only reveal correlation effects
but, naturally, reflect the main features of the fHF(r12)
curves, For a given ion the behaviour of the Kala and KgLa
Coulomb holes at large Tyo is very similar. Since the spin
of the third electron 1is different in the two cases, we
suspect that this electron will have only an average rather
than a specific effect on our results. The diagrams for
KaLa and KBLa show that, as Z increases, this effect is very

35 behaviour found by Boyd and Katriel(GZ)

similar to the 2
for a series of two- electron systems. The relative
magnitude of the KaLa and KgLa Coulomb holes is indicated by
the Y values in Table 2.1.3 and Figure 2.1.4. These
percentage shifts _in probability density are, naturally,
much smaller than the KaKf-shell value. From the comparison
between the KaLa- and KBLa-shells, it is observed that the
spread between the maximum and minimum values of Af(r12) is
greater in the KgLa-shells that in the KalLa-shells.

The and Ag(r12,r1) diagrams for KaLa- and

KBLa-shells show the change in behaviour of the inter-
particle probability functions as the position of the test
electron is varied. These surfaces are presented in Figures

2.1.5(B - C) and 2.1.6(B - C) for 2 = 3, 4 and 7. Following

the K-shell discussion, we begin with comments on the

gHF(r12,r1) surfaces. These surfaces have their main
characteristics located about the ry, = r, diagonal line and
parallel to the ryo axis for small r,. In addition, and as

51



expected, when Z increases the pattern contracts towards the
origin and the magnitude of these densities increases. The
diagonal distribution is again asymmetric with the Typ = T,
axis: the maximum is always slightly on the right hand side

(RHS) of the X, =T, axis for any selected and fixed r,

value outside the K-shell.

From the comparison between the gHF(r12'r1) surfaces for
the KaLa- and KBLa-shell, it can be seen that a difference
exists only at r,, = I, = Ip. Since there is no Fermi
effect in KBLa, the behaviour of the g(r12,r1) function has
characteristics similar to those for the K-shell surface but
is of much reduced magnitude, this feature is of course
appropriate to the occurrence of a mini K-shell effect as
discussed above. It can also be seen that the removal of
this mini K-shell density causes the main characteristics to
move towards the origin slightly. Consider now the
Ag(r12,r1) surfaces for the KalLa- and KgLa-shells. When r,
is small, the test electron is located in the K-shell and
the Ag VS. I4, behaviour illustrates the effects of
correlation on the L-shell electron. On the other hand,
when the test electron is located in the L-shell, the Ag vs.
Lyo characteristics are largely a result of correlation
effects within the K-shell. Returning to the KalLa partial
Coulomb hole, which is shown in Figure 2.1.6(B), the diagram
shows that when I, is small, i.e. the test electron is in
the K-shell, the flat region could be expected for small .o

due to the Fermi effect. The Fermi effect has caused a

slight expansion in the KalLa characteristics compared with

the KBLa surface, where no Fermi effect exists. In
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contrast, the Kpla Ag(r12,r1) surface shows a mini K-shell
effect at ry = 0.3 and Xip = 1 for the example of Li. 1In
addition , the comparison between Kala and KglLa Ag(r12,r1)
shows the same inter-relationship as was found by Banyard
and Youngman(ss) in their examination of the 215 and

23s—states for He.

However, in the present case, it is to be noted that,
for Li, there is an additional small positive hump at Lyp =

S and r x 0.3 in both inter-shell surfaces. These humps

1
may be due +to the averaged effect of the third electron
which, for the inter-shell electron pairs, resides in the
K-shell. Angular correlation effects in the inter-shells
indicate an opening-up of the angle between the electronic
position vectors X4 and X, to values greater than 90°, see
for example <cose12> in Table 2.1.3. Thus, a reduced
screening of the nucleus by the K-shell electron can occur
and, therefore, the L-shell density can drift inwards

(66)

towards the origin, as was found in the He study These

surfaces are, as expected, slightly contracted towards the
origin (nucleus) when compared with the He 215 and 235
states, due of course to the higher Z value in Li. As 2
increases throughout the Li-like series, an examination of
the Aq(r12,r1) surfaces for Kala shows that the ordering of
the absolute minimum and absolute maximum changes, i.e., the
partial Coulomb hole for 2 = 3 has a range of -0.002 to
+0.003, whereas when Z = 7 the Ag has a range of -0.014 to
+0.013. The Ag(r12,r1) values become larger as Z increases,

and the absolute minimum of Ag increases by about 0.003 as 2

increases by unity throughout the series.
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We now examine the D(r,,r,) densities at the HF level
for the inter-shells. These radial probabilities of finding
simultaneously the first electron at a distance r, and the
second one at a distance r, from the nucleus are shown in
Figure 2.1.7 as surface diagrams for the Kala and Kgla
shells. The DHF(r1,r2) surface for KBLa shows three
arrangements having a high probability. These consist of
two regions in which one electron is near the nucleus and
the other further away, and a third region in which both
electrons are near the nucleus. The DHF(r1,rz) surface for
KaLa shows only two arrangements of high probability, one
electron being close to the nucleus and the other further
away. For KalLa, the DHF(I1,r2) gives zero probability for
r, = Iy; i.e. electrons with parallel spin tend to stay
apart, so there is no possibility of the electrons being in

the same region.

Examination of the one particle radial densities Dyp(r,)
in the inter-shells for Z = 3 shows that the location of the
most probable value of the K- and L-shell can be found at r,
= 0.36 and 3.10 respectively. Figure 2.1.9 shows the one
particle radial density DHF(I1) for the KaKf-, KalLa- and

KBLa- shells for the selected ions Li, Be+ and N4+.

Let us now consider aD(r,,r,) for the inter-shells when
Z = 3. From Figure 2.1.8, correlation reduces the two-
particle density at r, > radius of the L-shell and increases
the density at K-radius < r, < L-radius. This means that

probability density will be taken from outside the L-shell
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and placed between the K- and L-shells, when correlation is
introduced. Except at small r, and r, we see that the
general characteristics of the two inter-shell surfaces are
quite similar. However, for the KgLa-shell at small r, =
r,, we observe that AD(r1,r2) has a behaviour very much like
that for the doubly-occupied K-shell, i.e. the density is
decreased along the r, =r, diagonal axis and increased in
the off-diagonal regions. Therefore, in this local region
the density shifts are in accord with the usual "in-out"

radial correlation effect. For the KaLa-shell, the Fermi

effect stops the occurrence of such a feature.

Comments are now made regarding the one-particle
expectation values for the inter-shells. The comparison

(28) shows that the one-particle

between <r?) for Be+ and Be
radial density for Be' in the KaLa-shell is more contracted
towards the origin than those in Be, i.e. the <r?) results
for Bet > Be when n = -1, -2 and Bet ¢ Be when n = 1, 2.
The influence of correlation on the one-particle expectation
values <r?> for KaLa has caused D(r,) to become more
contracted towards the origin. As above, the changes in

<r?r2> are caused by a contraction of D(r1,r2) toward the

nucleus.

Finally the total fHF(r12) and Af(r12) are presented in
Figures 2.1.1(D) and 2.1.2(D). The relative magnitudes of
the KaKg-, KalLa-, KgLa- and the “total’ holes are shown in
Figure 2.1.3 for Li, Be+ and N4+ . From Figure 2.1.3 the
“total® hole seems dominated by the K-shell whereas the

KaLa- and KBLa contributions cause small change. A relative
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measure of the KaKp-, Kala-, KBLa- and normalized “total’

holes are provided by the corresponding Y values in Table

2.1.3.
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We have examined the influence of electron correlation
on the KaKp-, KalLa- and KfLa-shells within the ground state
of a series of Li-like ions. This has been achieved by
using a density partitioning technique in conjunction with
the definition of the Coulomb hole introduced by Coulson and

(63). We have 1investigated the concept of the

Neilson
Coulomb hole Af(r12) in position space. The balance between
the positive and negative contribution for a given Af(r12)

curve 1is a consequence of the normalization conditions on

fcorr and fHF' whereas the magnitude and, in particular, the
location of each extremum of a Coulomb hole gives valuable
insight into the various effects introduced by correlation.
The KaLf Coulomb hole appears to be much the same as those
obtained for the doubly occupied K-shells of the
corresponding He- and Be-like ions. The shape of the
Coulomb holes 1is governed by the effects of radial and
angular correlation which, in position space, are known to
work in unison. This feature has been supported by
examining the radial and angular correlation coefficients,
T. When plotting Af(r12) for the KaKg-shell in Li, Be+,

BZ+' N4+ and 05+

against Zr12, the zeros of these holes
became almost coincident. They could be brought into a
higher degree of coincidence by using a scaling factor (Z +
§); the scaling parameter & was found to be only 0.38 +
0.01, which 1is in close agreement with the 5 value of 0.38

(60)

for He-like ions and 0.41 + 0.02 for the K-shells of the
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Be-like ions(ze). As found in the four-electron series, the

radii of the holes for the K-shell of the three-electron

5+ For the

systems are ordered as Li > Bet > B2t 3 N4 5 o
inter-shells, the Coulomb holes in the Li-like ions showed
marked differences in behaviour at small ry,. In addition,
we found that the Af(r12) values for KpLa were noticeably
larger than those for the Kala inter-shell, a result which
is not surprising in view of the Fermi correlation present
in the 1latter shell. From the relative magnitudes of the
KaKg-, KaLa-, KBLa- and total holes we concludé that the
Coulomb hole for a given whole atom is dominated by the
K-shell contribution. The comparison between the individual

shells and the total effects can be made by inspection of

the percentage of each fHF(r12’ density which has been

redistributed as a result of correlation. It was observed

that in the K-shell, the depth of the Coulomb hole bears a
very close relationship to the interparticle expectation
value <r;;>, since the 1later value gives directly the
electron-electron repulsion energy. Consequently, the

expectation value <r;;> may be related to the percentage

change Y%. For the intra-shell, we have investigated the
o .+ . .-

quantities <r?.rg> for Li , Li and Li and also for BZ+, Be+

and Be. We found that the correlated angular expectation

properties in the KaKp-shell increased as we added the one

or two 2s electrons to Li+ or Be2+.

Determination of the Coulomb holes as a function of r,
has revealed that the correlation characteristics are very
dependent on the 1location of the test electron. For
example, for the inter-shell diagrams for Ag(r12,r1), the r,
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value may be chosen to locate the test electron in either
the K-shell or L-shell regions whereas, for the KaKg-shell,

all r, values refer to the test electron being in the

4+

K-shell. The KaKp-diagrams for Li, pet and N each showed

that when r, =r a reduction in density occurred on the

K’
near-side of the nucleus with respect to the test electron
(r12 < r1) and an increase was observed on the far-side (r12
> r1). Such results are clearly in keeping with our
physical intuition and, indeed, are seen in the

(65)

corresponding diagrams obtained by Banyard and Mobbs for

+(71)

Be, and by Banyard and Reed for Li For the interxr-

shells, a comparison of KaLa with KgLa for each system
showed a similarity in the Ag(r12,r1) surfaces when r, = rp
whereas, when r, = Ty the surfaces show differences which
are directly attributable to the influence of Fermi
correlation in the KaLa-shells. This comparison between the
Ag-sufaces for KaLa and KALa seems to be similar to that

(66) 1

found by Banyard and Youngman in the study of the 2 'S

and 235 states for He. The diagrams of the partial Coulomb
holes and the AD(r1,r2) for each shell become less diffuse

and increase in magnitude as Z increases.

Finally, although we have examined only the Z-dependent
trends within individual electronic shells, it should be
realized that the partitioning technique used here does
allow us to perform a comparative analysis of different CI

wavefunctions for any given system(GS).
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(A) KaKp (B) Kala
3
f("12) f(qz) Z as in (A)
0.8
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0.4
]
Zr,
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(C) KfLa (D) TOTAL
flr,,) f(r,,)
0.8 Z as in (A) 0.8 | Zas in (A)
0.4 0.4
0.0 : ‘ 0.0 .
0 10 20 0 10 20
Fiqure 2.1.1 The HF function f(r12) for the (15223)25
states for Li, Be+, BZ+, C3+, N4+ and O5+ plotted against

the scaled distance Zr12 (in atomic units). (A) the KaKpg-
shells, (B) the Kala-shells, (C) the KBLa-shells, and (D)

the total distribution when normalized to unity.
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Figqure 2.1.2 The Coulomb holes Af(r12) Vs Zr12 for the
(15225)25 state derived for Li, Be+, B2+, N4+ and 05+. (A)

The KaKp-shells, (B) the KaLa-shells, (C) the KpLa-shells,

and (D) the total Coulomb hole for each 2 obtained here by
3

taking 1/3 [ Arij (r12).
i<

For the intra-shells and the total system, the curves
are ordered from right to left as Z increases.

For the inter-shells, the curves are ordered by noting
that, at Zr12=5, Af(r12) decreases in value as Z increases.

At 2r,.=20, the curves increase in value as Z increases.

12
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Figure 2.1.5

(see over)
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Figure 2.1.6

(see over)
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Figure 2.1.7

(see over)
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Figure 2.1.8

(see over)
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2.2 EXCITED STATE - (1s%2p)%p



CHAPTER 2.2.1
INTRODUCTION

Previously we have examined and compared the intra- and
inter-shell correlation effects in position space for the
ground state of Li-like ions. The analysis was performed by
determining Coulomb and partial Coulomb holes and various
expectation values for each electronic shell. The
expectation values were used to calculate several
statistical correlation coefficients . The description of
each individual shell, at both correlated and HF level, was
obtained by partitioning the second-order density for the
total system into its pair-wise components. For the intra-
shell, global assessments of angular and radial components
of electron correlation were obtained in terms of Ar - the

change in a particular v value when measured relative to its

HF value.

In this section, the previous analysis is extended to
examine the Li-like ions in the excited state (1322p)2P.
This state is obtained by exciting the outer electron of the
(15225)25—state into a 2p orbital and, as a consequence, it
is anticipated that changes will occur in the relative
importance of the <correlation effects. The comparison
between the correlation properties of an S-state and those
of a state with angular dependence, such as a P-state,
should be especially informative. The similarity and
differences can be shown by comparing the behaviour of the

intra- and inter-shells of the S- and P-states. The

correlated wavefunctions employed throughout this work were
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(26)

those of Weiss , used previously by Taylor and
Banyard(72) to study the correction function fi, pair
correlation function Uij and the associated pair energies

these wavefunctions have also been used by Brown and

eij;

Smith(73), Ardill and Stewart(74)

and Lyons, Pu and Das(75)

in the evaluation of the hyperfine structure (hfs).

The availability of extensive CI calculations by

(26) 2,

for the state of a series of Li-like ions

Weiss
allows any observed change to be examined as a function of
the nuclear charge 2. As before, the correlation effect can
be studied by evaluating the Coulomb hole, the partial
Coulomb holes and other correlation properties. When
considering states of non-zero angular momentum,
modifications in the evaluation of the Coulomb hole are
necessary. For the inter-shells, it was also of interest to
determine the 81—dependent partial hole Ag(r12,r1,e1), where
) is measured relative to the symmetry axis of the system;

1
see for example Banyard and Reed(71).

The correlation
effects in the KaKpB-shell are compared with those for the
doubly-occupied K-shells in the ground states of a number of
two-, three- and four-electron systems. For the 2P
inter-shells we are also able to compare not only with the

ground state but also with the correlation effects in the

1 (66).

2 P and 23P excited states of He Atomic units are used

throughout this work.

Note that during the course of this work, it was
reconfirmed that the correlated wavefunction of Weiss(ze)
for 2Z=8 in the 2P-state of the three electron ions contains

an error. Consequently this function has not been used.
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CHAPTER 2.2.2
WAVEFUNCTIONS AND RESULTS

In the present investigation, the CI wavefunction

describing the first excited 2p state of the Li-like ions is

again taken from the work of Weiss(zs),

The procedure for
analysing this wavefunction follows the same general
principles as discussed when presenting equations (2.1.2-6).
Briefly, each CI wavefunction for the 2P state contains 45
configurations formed from a basis set (wl) of 38 Slater
type spin orbitals (STO), which extend as far as the 5g

(25)

orbitals. In the basis sets {wl} used by Weiss the

functions 1s,1s' 2s,2s' ,2p,2p' ,3s',3p,3p' ,34,44,4f,54,5f and
5g were those obtained from the energy-minimization
calculations for the 1S ground-state of the appropriate He-
like ion. Additional basis functions 1s*,2p",2p"*', and 34

for the 2P state were introduced into {wl) by Weiss(zs)

2

to
give some description of the outer eléctron in the “P state.
As for the 25 state, all the configuration coefficients for
the 2P state wavefunctions were optimized, along with the

orbital exponents, by using the energy variation theorem.

The un-correlated description of each ion was provided
by the °p  restricted Hartree-Fock (RHF) wavefunction of
Weiss(zs), which was constructed from a basis set containing

four s-type and five p-type orbitals. This wavefunction is

written as

1/2

+yp(123) = (3t)° Iw,su(1)w1sﬂ(2)w2pu(3)l ' 2.2.1
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where

and 3j=4 or 5 where nl = 1s or 2p, respectively. The basis

functions are standard normalized STO’s and are given by

anm(rﬂsz) = Rn(r:E)Ylm(B,w) ' 2.2.3

where

172 ¢n=1 exp(-Ex) . 2.2.4

R (xr;E) = [(2E)/(2n!)]
For a given HF wavefunction, Weiss minimized the total

energy for all parameters including the exponents E.

The study of correlation properties, such as the Coulomb
hole and the partial Coulomb holes, for each electronic
shell requires the two-particle density to be evaluated and
partitioned for both the HF and correlated wavefunctions.

Following Sinanoglu, the correlated wavefunction for a Li-

like ion can be expressed as

3 3
= A [W(123 1+ L £./6, + _1 L U_./¢.9¢.
Yeorr (123) (m( ) i i/% oy i3/ %3 i
3
+ _1_« Usse/*i%5% 1 o 2.2.5

S3V i¢jek

where all the notation and the orthogonality conditions

imposed on f., Uij' etc, have been defined in equations
(2.1.10-20). It is to be noted that the functions fi and
Uij can be obtained in a way similar to those for the 25

state by using the method of successive partial ortho-

82



(36). Following the

gonalization proposed by Sinanoglu
procedure used in Chapter 2.1.2 (see equations (2.1.9-36)),

equation (2.2.5) can be simplified to give

N=3
L [A
{i<j) #k p le

-1/2 12

(123) = (N!) (3)+A; ¢ (3)+B] (3)

corr lJ k

23,
ij

12 12

(3)+U

(3)+f2{U k(1)+U k(2)+f(2/3')U k}] 2.2.6

Bet 2+ 3+ 4+

The correlated descriptions of Li, , B, c°", N

and O5+

provided by the 45-term CI wavefunction of Weiss
account for 96.0%, 90.5%, 90.1%, 88.7%, 87.7% and 87.7% of
the correlation energy, respectively. The energies derived
from the CI and HF wavefunctions, along with the

experimental energies used 1n the evaluation of the

correlation energy, are shown in Table 2.2.1,.

Electron correlation may be investigated by examining
the differences between the correlated two-particle density
corr(51’52) and the corresponding HF density rHF(K1’32)‘
As 1in the previous section, P(x1,32) is normalized to the
number of independent electron pairs within the system. The
density for each individual electronic shell is obtained by
partitioning [ into 1its pair-wise components (i,3); the
expressions for the HF and correlated two-particle densities
have already been given in equations (2.1.41) and (2.1.43),
respectively. Table 2.2.2 contains the number of CI terms
which were used in the T__ .. (X,,X,) for each shell. The

notation used 1in this table has been defined in Chapter

2.1.3. In general, the partitioned expression for I can be

written as
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3
r(x‘]lxz) =r rlj(l1v32) ' 2.2.7
1<y
where the interparticle distribution function associated

with the spin orbital pair (i,j) is given by

3
fij(r12) = f(jjrij(x1,xz) dz,dxz/dr12 2.2.8

such that, for any pair (i,J), we have

I f(r12) dr 1 . 2.2.9

12 =

Calculations of f(r12) for non-spherically symmetric
systems are complicated by the fact that the expression for
f(r12) obtained from equation (2.2.8) will involve integrals
of the most general type

(2) do.4dx 2.2.10

4 1

Iy (1Hy” (1Y (2)Y*
11m1 13m3 l,m

l,m, 4

where dQ1 denotes integration over angular coordinates of
the position vector r,, and dX indicates integration over an
angle of rotation. The general procedure for obtaining the

f(r distribution is outlined in the section describing

12)
the non-spherically symmetric case in Appendix A.2. The
fHF(r12) and the Af(r12) results are plotted against Zr12 in
Figures 2.2.1 and 2.2.2 respectively. A comparison of the

intra- and inter-shell Coulomb holes vs. Zr12 for Li, Be+

and N4+ are shown in Figures 2.2.3.

The partial Coulomb hole, Ag(r,z,r1) characterizes the

Coulomb hole when the test electron 1 is located at a
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specified radial distance r, from the nucleus. The

4+

(r12,r1) and Ag(r12,r1) surfaces for Li, Be+ and N are

uF
shown in Figures 2.2.4-5. When the system possesses a
natural axis of symmetry, as occurs in the P state, a
partial Coulomb hole Ag(r12,r1,e1) may be defined, 8, being
measured relative to the symmetry axis; see Appendix A.2 for

the general calculation, and see also the work of Reed(77).

The partial Coulomb holes are related to Af(r12) as follows

J'IAg(r12,r1,81)sine1d81dr1 = IAg(r12,r1)dr1
= of(r,,) . 2.2.11

For Z = 3,4 and 7, the gHF(r12,r1,81) and Aq(r12,r1,91)

results for the KaLa- and KgLa-shells are shown in Figures

2.2.6-9.

One- and Iwo-particle expectation values

For the purposes of discussion and comparison with our
work on the 2S—state, the expectation values <r?2> have been
evaluated using equation (2.1.49) for n = -1,1 and 2,

together with the standard deviation ar,, defined by

equation (2.1.50).

The methods used here for calculating the two-particle
expectation values <(11/r?)-(12/r2)> follow those outlined
previously, see equation (2.1.51). Reported in Table 2.2.3
are some two-particle expectation properties for the
individual electronic shells, together with the total values

for each system. The total value is given, as previously,
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by (KaKB + KaLa + KBLa)/3. For the HF wavefunction, the
two-particle expectation values <(;1/r?).(:2/rg)> are zero
for the KaKp- and KpLa-shells, so Table 2.2.4 contains the
results for the KaLa-shell only. Table 2.2.5 and 2.2.6
contain one- and two-particle radial expectation values for
the HF and correlated wavefunctions. For the selected

+ 4+

systems Li, Be and N we evaluated DHF(r1,r2) and

AD(r1,r2) for each electronic shell; see Figures 2.2.10-11.
Figure 2.2.12 illustrates the one-particle radial density
DHF(r1) for these systems for the KaKB-, KalLa- and KpLa-

shells.

As before, we assess the radial and angular components
of electron correlation by evaluating various statistical

(68)

correlation coefficients , defined in equations (2.1.58-

59). The results for Ar are presented in Table 2.2.7 and
Figure 2.2.13. Table 2.2.8 contains the percentage change,

due to correlation, in <r?2>, <r?> and <r?rg> forn= -1, 1

and 2.
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The correlation properties for Li-like ions in the
(1522p)29 state can be discussed in the same manner as for
the (15225)23 state and comparisons can be made between the
two states. We anticipate that the fundamental differences
in correlation effects between the excited and the ground
states of the ions will be associated with the differences
in the symmetry of the state. For the 2P state, the HF and
CI energies are listed in Table 2.2.1 for 3 < Z < 8; also
quoted is the percentage of correlation energy accounted for
in each CI wavefunction. From Table 2.2.2, it can be seen
that for the 2P state 41, 22 and 22 CI terms are included in
the calculation of the two-particle density for the KaKpg-,
KaLa- and KBLa-shell, respectively, whereas 41, 22 and 45 CI
terms were included for the 25 state. Therefore, differ-

ences may be expected in the KaLa- and KgLa-shell when

comparing the present results with those for the ground

state.

Before the discussion of the correlation effect, it is
essential to make some observations about the HF properties
of the 2P state and compare them with the 2S state of the
three-particle systems. Inspection of the expression for
the KaKp part of the partitioned two-particle density showed
that, in 1its analytical form, 1t was identical to the

. . , 2 ,
K-shell description in the 'S state. This correspondence

between the density expressions for the excited and ground
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states also extended to the one- and two-particle radial
density distributions for this shell. Therefore, the HF
results for the KaKB-shell in 2P are expected to be in

closed agreement with those for 25. Naturally, for the

inter-shells, differences exist between 2P and 25 as a
consequence of the change in symmetry of the occupied outer

orbital. Such differences will be commented upon later.
The KaK8-shell

Figure 2.2.1(A) shows Z-scaled plots of the HF
interparticle distribution function f(r12), The behaviour
of this function is similar to those for the ground state of
the Li-like 1ions. The K-shell curves were essentially
unchanged to within graphical accuracy when compared with
those in Figure 2.1.1(A). The Coulomb holes vs. Zr,,
displayed in Figure 2.2.2(A) show a high degree of
similarity at large Zr12 with those in 25 whereas, at small
Zr,,, these holes reveal a high degree of coincidence with
respect to Z compared with those in 25. These Coulomb holes
have the same shape and magnitude as those for the ground

state. The radius of the 2P holes decreases as Z increases

and are ordered as N4+ < C3+ < Bz+ < Be+ < Li.

Table 2.2.3 shows the HF and correlated interparticle
expectation values <r?2>, the standard deviation ax,, and
also shows the <;1.;2/r?rg> values for the correlated level
only. The expectation values <;1.12/r?rg> for the
correlated wavefunction in 2P are greater than those in 2s,
except for n = 2 when Z » 5 when the converse holds. For

all 2 the correlation effect increases the expectation
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values <r?2> when n 1s positive and decreases <r?2> when n

is negative. These results are 1in agreement with the
) \ X 2 . . .

previous findings for the S state of the Li-like ions, the

Be-like ions(ze), and also for the He-like ions(so).

In Figures 2.2.4(A),5(A),10(A) & 11(A) we present the
gHF(r12,r1), Ag(r12,r1), DHF(r1,r2) and AD(r1,r2) surfaces

for the KaKg shell for Li, Bet and N4+.

These surfaces, as
in the ground state, become less diffuse and increase in
magnitude as Z increases. The general behaviour of the

K-shell diagrams are comparable with the K-shell diagrams in

the 2S state (see Figures 2.1.6(A) - 9(Aa)).

Examination of the radial and angular correlation
coefficients give similar trends to those found in the
ground state of the Li-like ions and the results are shown
in Table 2.2.7. Figure 2.2.13 shows that for Ar1 ' Ary. .
Ar1" and AT1/r , the variation with Z_1 is almost linear
whereas, for AT, there is a slight curvature. Each of

these quantities are greater than those in the 25 state for

the three-particle systems.

The KaLa- and K8La-shells

Figures 2.2.1(B - C) show fHF(r12) vVSs. Zr12 for the
KaLa- and KpLa-shells. These curves are seen to follow the
same trend with respect to Z as that observed for the inter-
shells in the ground state of the Li-like ions. The
principal maximum of each fHF(r12) refers to the most

probable situation that one electron is in the K shell and
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the other is in the L shell. These maxima are smaller than
those of the ground state but are, of course, more diffuse.
Such differences become less noticable as Z is increased.
In addition, there is no mini K-shell effect in the fHF(r12)
distribution for the KpLa-shell as occurred for the %s
state. The absence of this feature is due to the difference
in symmetry between the K- and L-shell orbitals in 2P. The
penetration of the L-shell electron into the K-shell region

of the excited atom can no longer produce local regions of

KaKp-type symmetry.

We now examine the Coulomb holes vs. Zr12 for the KaLa-
and the KgLa-shells. For Z = 3, 4 and 7, Figure 2.2.3 shows
an overall similarity between the Af(r12) characteristics of
the KpLa and Kala-shells, which 1is in contrast to a
comparison between the KBLa and KaLa curves for 25. It can
be seen that the shapes of the Coulomb holes for the inter-
shells in the zp state are less complicated than those of

the inter-shell curves in 25. The holes for the inter-

shells in 2P possess a larger variation in the Af(r12)
values than that observed for the 25 curves. A further
point of contrast is that for the ZP state, the Coulomb
holes for Kala are seen to be larger than those for K8La.

1P and 3

This feature was also found in the P states of
He(66)  The distinction between the KaLa and KBLa curves in

Figure 2.2.3 is seen to be greater for Z = 7.

An examination of the Coulomb holes for the KaLa- and
KBLa- shells in 2p shows that at small LY the Fermi effect

in the KalLa-shell produces a vanishingly small Af(r12)
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value, as was found for the corresponding Coulomb hole in
2S. For the KpBLa-shell the Af(r12)—curve indicates that
there is no mini K-shell effect at small Lyo: in contrast to
that observed in 2s within the same region. 1In addition,
Figure 2.2.3 shows that for the 2P-state the Af(r12)-values
at small r,, are of greater magnitude for KaLa than for

(66) 1

KpLa . This is in contrast with the He work for 'P and

3P. This becomes more understandable when we compare the
magnitude of f(r12) at small Iy, for both the HF and
correlated description for each shell. As might be
expected, due to the Fermi effect, the f(r12) for the
KaLa-shell gives a flat region at small r,, at both HF and
correlated levels. On the other hand, the HF and correlated
results for the KpLa-shell do not exhibit a flat regions
and, further, we also note that, for each description,
f(r12)(KqLu) < f(r12)(KﬂLu) when P is small. However,
since f(r12) for KBLa at both the HF and correlated levels
are of similar magnitude, the Af(r12) values are exceedingly
small. For the KalLa-shell, although the individual f(r12)
values are very small, the resulting Af(r12) is, in fact,

somewhat larger than that for the KBLa shell as shown in

Figure 2.2.3.

The gHF(r12,r1) and Ag(r12,r1) surfaces for the Kala-
and KpLa-shells of Li, Be+ and N4+ are shown in Figures
2.2.4(B - ¢) and 2.2.5(B - C), respectively. As in the 25
state, the gHF(r12,r1) densities for the KaLa- and KBLa-
shells show the same characteristics in the region of the
diagonal r,, = r, axis, when r, is large compared with L.
This similarity also holds for the features parallel to the
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r12 axis, when 45 > r, = ry. However, when Typg = I, = e
the gHF(r12,r1) surface for KBLa-shell shows a mini K-shell
density in 2S, whereas this density does not appear in the

QHF(r12,r1) surface for the KBLa-shell in 2P due to the

different symmetry.

The influence of electron correlation on the g(r12,r1)
2

densities 1in the P state is shown for 2 = 3, 4 and 7 in
Figures 2.2.5(B - C). We see from the Ag(r12,r1) diagrams
that when the test electron is in the L-shell i.e. r, = r, .,
a localized positive region exists either side of the o =
diagonal. This 1is in contrast with the corresponding

1
diagrams for 2s of Li-like ions and also in contrast with

(66)

) o

the He work(ss). Banyard and Youngman established that

1 1

for the S, 35, P and 3P states, the Ag(r12,r1) surfaces

show a negative region on the near side of the nucleus (r12
< ry) and a positive region on the far side (r12 > r1), with
respect to the position of the test electron. The reason
for this contrast might be due to the form of the CI

(26) for the 2P state. Analysis shows that for

wavefunction
the 2P wavefunction of Weiss, radial correlation is dominant
when considering the KL inter-shells. Therefore, any
correlation induced change in an angular property such as
<cosy>, for instance, 1is expected to be much smaller than
that for the inter-shells in 2s. When comparing these
values for the KaLa-shell it is found that At . (=A<cosyd)
in 2P is only one-third of that for KaLa in the 2s state of

Li, whereas for the KpLa-shell the ratio is about one-

quarter.
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Clearly, from the viewpoint of using the change in
(cosy> as some rough measure of angular correlation, we see
from Table 2.2.3 and 2.2.7 that the angular effect in the 2P
inter-shell descriptions is quite small. Indeed, for Li,
the values of ATY" for KaLa and KBLa are only -0.00328 and
-0.00229, respectively. Even so, the small difference
between these inter-shell values does seem to show itself in
the c¢ontour diagrams for the partial Coulomb holes (these
contour diagrams are not presented here for reasons of
space) . When r, = r, , both inter-shells appear, on first
inspection, to be symmetric in their positive accumulation
about the r,, = r, diagonal axis. However, closer exam-
ination reveals that the Kala accumulation has a slightly
higher asymmetry than that observed for the KgLa shell.

This is in keeping with relative magnitudes of the Ary.

values for the inter-shells given above.

All the above observations seem to be in agreement with
the conclusions of Smith and Brown(78) that configurations
of the type spd, sdf, etc. have not been introduced into the
2P wavefunction. Such configurations would provide a
specific introduction of angular correlation between the
outer and inner electrons. Thus, in the Weiss wavefunction
analysed here, any angular effect seems to be of a secondary

nature and is an indirect consequence of introducing radial

correlation into an inter-shell of P symmetry.

Returning to the partial Coulomb holes, 1let us now
consider the behaviour of the Li Ag-surface when r, = Ip
This partial hole shows that as r,, decreases from a large
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value, Ag changes from being negative to positive. This
behaviour indicates that the probability density has moved
inwards from the outer regions of the L shell. We also note
that this negative region, which is parallel to the ry,

2

axis, 1is more diffuse than that of the “s at large r

12
values. This 1s in keeping with the fact that in the

2

DHF(r1) vVs. 1, curve for “P the L shell maximum is located

at 3.80, compared with the L shell maximum at 3.10 for the

2
DHF(r1) vs. r, curve for the “S state.

For the 2P state of the Li-like ions, we can discuss the
functions g(r12,r1,81) and Ag(r12,r1,81), since an angle 8,
can be measured relative to the symmetry axis of the state
of the system. For the KalLa- and KpLa-shells Figures 2.2.6
- 7 show the change in the structure of the gHF(r12,r1,e1)
surface with respect to 8, for Li, Be' ana N%*. when B, =
90°, the test electron will be located in the nodal plane of
the p orbital and hence refers only to the K-shell. Con-
sequently there 1is no diagonal feature when r, is large.

When r, is small, the test electron is located in the K-

shell and the gHF(r12,r1,81=90') surface reveals a parallel

effect.

Consider now the gup(r ,,r,,68,) surface when 8, = 0°.
At this angle the test electron must be along the unique
line which is perpendicular to the nodal plane. Thus the
test electron can be in the K-shell or in the L-shell, and
the gHF(r12,r1,01=0') surface for the inter-shells possesses
both diagonal and parallel features. 1In this case the dia-

gonal feature seems more significant than the parallel one.

94



For 81 =30°*, 60° and 90°, the 9yp surfaces reveal the
changes in the relative magnitudes of the diagonal and
parallel features which occur as 61 becomes larger. This
trend 1is a result of the decreasing radial overlap between
the s and p orbitals as 61 is increased. Consider the
Ag(r12,r1,81) in Figures 2.2.8 - 9 for the inter-shells when
2 = 3, 4 and 7. For 8, = 90", the Ag(r,,,r,,8,) behaves
like the parallel feature seen in the angularly-integrated
Ag(r12,r1)—surface; as r,, increases, the parallel feature
is seen to change sign from negative to positive and back to
negative. When 8, = o°, Ag(r12,r1,81) now behaves like
Ag(r,,,r,) along the diagonal. As 81 increases from 0° to
90°, the parallel feature in Aq(r12,r1,81) gets emphasized
whereas the diagonal feature is reduced. 1In general, we
note that when 8, = 60° the ag9(r,,.r,,8,) surface has
characteristics which are very much 1like those of the
integrated Ag(r12,r1) surface. The above behaviour holds

4+ and only the scales and magnitudes will

for Li, Be® and N
change. The comparison between the KaLa- and KBLa-diagrams
for Ag(r12,r1,81) reveals that we get similar features
except that at small Lyo and small r, we find that Ag(KaLa)
> Ag(KBLa). Naturally, this difference is also evident in

the angularly-integrated holes shown in Figures 2.2.5(B -

c).

Let us now examine the D(r,,r,) surfaces for the inter-
shells at the HF level of description. Figures 2.2.10(B -
C) show the D, .(r,,r,) densities for KaLa and KBLa for Li,
4+

Be+ and N These probability densities indicate that when
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one electron is near the nucleus, the other is further away.

For a given atom the DHF(r1,r2) for the KaLa-shell is
equal to that for the KpLa-shell in the 2P state whereas, in
2S, these densities are not equal due to the presence of the
Fermi effect in the KaLa-shell and the occurrence of the
mini K-shell density in the KBLa-shell. This difference in
the 25 arises from the existence of the cross term in the
DHF(r1,r2)-expression for the KaLa-shell. 1In contrast, for
2P, angular integration removes the cross-term when
determining DHF(r1.r2) for the KaLa-shell due to the angular

orthogonality between the 1s and 2p orbitals.

Due to the difference in symmetry for the inter-shell
orbitals in 2P compared with 2S, we note that the un-
correlated two-particle radial density DHF(r1'r2) will be

2

more diffuse 1in the “P state than in the 2s state. As in

2S, the Dyp(r,,r,) distribution for the excited state of the
Li-like ions becomes less diffuse and increases in magnitude
as Z increases. Having discussed the DHF(r1,r2) properties,
let us consider the influence of correlation on these radial
distributions (see Figures 2.2.11(B - C)) and on the related
expectation values <r?rg>, (see Table 2.2.6). For Li, pet

4+

and N the AD(r1,r2)-surfaces show that the correlation

effects are very similar for both the KaLa- and KgLa-shells.
Therefore, the AD(r1,r2) surfaces for the KaLa-shell reveal
the same characteristics as those for the KpLa-shell, but
the magnitudes of these features are greater in Kala than
that in KBLa. 1In contrast, for the 2S state, the AD(r1,r2)

surfaces show that the correlation effects are not the same
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for both shells due to the existence of the mini K-shell in
the KpLa diagram and the presence of the Fermi effect in the
KalLa . In addition to that, the AD(r1,r2) density in the 25
state for the KaLa-shell seems smaller than that for KgLa.
In general, the comparison in magnitude of the AD(r1,r2)

2 2

density between the KalLa- and KgLa-shells in the “P and “S

states follows the comparison of the Af(r12) values in both
2P and 25 states. A summary of the percentage changes in

the one- and two-particle expectation values (see Tables

2.2.5 and 2.2.6, respectively) is presented in Table 2.2.8.
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An examination of electron correlation in the 2P excited
state of the three-electron ions shows that the results
obtained for the K-shell are quite similar to those for the
K-shell in ground state. For the KaLa- and KgLa-shells, the
results illustrate that marked differences exist between the

excited and ground states as a consequence of the change in

symmetry.

The Coulomb holes for the K-shell of the three-electron
series possess considerable similarity when plotted against
the scaled coordinate Zr12. As a consequence of the
difference between the symmetry of the occupied outer

2P and 2S, we found

orbital between the inter-shells for
that the shape of the Af(r,,) curves for the inter-shells in
the 2P state 1is less complicated than that for the inter-
shell curves in 25. In addition, the Coulomb holes show an
overall similarity for the KaLa- and KBLa-shells, and this
is in contrast to the comparison between these shells for
the 2S state. For Z = 3, 4 and 7, the ordering of the KalLa-
and KpLa Coulomb holes follows that of the 1P and 3P states
of BHe. For example, for the excited states of He, Banyard
and Youngman(ss) found that, for P symmetry, the Coulomb

holes for the triplet are larger in their Af(r12) values

than those for the singlet state.

98



2P-state of the Li-like ions, the Coulomb hole

For the
for the whole atom showed that, when Zry, < 5, the
characteristics were the same as those for the KaKg Coulomb
hole; this feature also occurred in our earlier examination

of the 2s state. When Zr12 > 5, the total holes for the 2P

state differ in character from those for 2s. This is
attributable to differences which arise between the sets of
Coulomb holes for the inter-shells. Such differences are a

consequence of the change in symmetry of the orbital

description of the outer electron.

The use of the partial Coulomb holes allowed us to
examine the Coulomb hole as a function of the location of
the test electron. For the KaKp-shell, the Ag(r12,r1)
surface shows characteristics almost identical with those
seen for the ground state. For the inter-shells, the
Ag(r12,r1) surfaces showed a feature which was not present
for those obtained in 25. This feature, which occurred on
the diagonal axis when I, ® ry, for both KaLa- and KgLa-

(26)

shells, is due to the way in which Weiss constructed the

cI wavefunction for the 2P state. The absence of the

configurations of the type spd, sdf, dzf etc. from the CI
wavefunction implies thét no specific angular correlation
has been introduced into the description of the inter-
shells. Consequently, the behaviour of the partial Coulomb
holes when Iy = r, is governed by radial correlation. This
was supported by the inspection of the magnitude of Ary,
(=A<cosvy>) which, for the inter-shells, was found to be only
one-third, or 1less, of the value obtained for the corres-

ponding shells in the 2S state of Li. This finding
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illustrates that the present mode of analysis is also
capable of indicating the weakness of a wavefunction. The
partial Coulomb holes Ag(r12,r1,91) for the inter-shells
gave further insight into the structure of the corresponding

angularly integrated hole Ag(r12,r1).

The two-particle radial density DHF(r1,r2) and the
density difference AD(r1,r2) for the KaKp in the 2P state
showed features similar to those obtained for the
corresponding density 1in 25. Correlation reduces the two-
particle radial density along the ry =r, axis, where it is
a maximum, and increases the density in the off-diagonal

4+

regions. This behaviour holds for Li, Be+ and N for the

KaKg shell. As Z increases, the DHF(r1,r2) and AD(r1,r2)
densities increase in magnitude and become less diffuse.
For the inter-shells the DHF(r1,r2) and AD(r1,r2) surfaces
show a high degree of similarity between the KaLa- and KgLa-
shells for a given atom and also show that the changes in

the two-particle radial density are greater in magnitude for

25_

the KaLa than those for the KgLa. By contrast, in the
state the DHF(r1,r2) and the AD(r1,r2)-surfaces reveal a
distinction between the KaLa- and KgLa-diagrams and also
show that AD(r1,r2) for KaLa is smaller in magnitude than
AD(r1,r2) for KBLa. This contrast seems not surprising in
view of the presence of Fermi correlation in the KaLa-shell

of the 2P- and 2S—states.
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Tables and Figures - Part 2.2



. (dHg_dx®

8bejzusdaad Iyl

a)/ (Mg -

saTHhI9Ua® [T® 3IBYl 930N

11094 ) 0oL =

‘§3TUn  OTWO3Y UT

XX0O

3y S® PIUTIIP ST ABIBUD UOTIVTSIIOD

pe8saIdx® aIv pue

aaT3ebau

9Ie

TsuoTIOoUNngIALM AWN vhm puwe AWN u P93RTSIIO0OD UIIMYI|¥Qq
STeI693UT dRTISAO PUB SITHISUS UOTIRTIIIOD puw SOTHISUS uoT3IDUNIaaem [ 277 STJCI
GLEGHO'L | €69666°0 | ¥0S666°0 | L¥WE666°0 | LO68B66°O | Z¥ZBE6'O at*™?,
L L8 L' L8 L' 88 106 ' 06 0°96 11995
LL68L°€E9 | SSOLO'8F | €618F°WE | e¥vOZ'€Z | zZE6LL'WL | 9i10Lb L | TeIUSWTISdXZ
viegL €9 | 1ivooey | Lestb ve | 9ce6L €z | 99vLL bL | sesOb L POIRTIXI0D
999¢L €9 | SLLS6°LY | 986Z¥ wE | oLesi €z | ssoercwL | Los9ecL aH
8 L 9 5 v € 2

100



"T1I9Ys yoeod 103 A3TSUaPp ITOT3Ied-OM3 Y3 UT PIISPTSUOD

9dA3 puv suOT3IRINOGTIUOD UOTIPISIIOD 3Y3 jJoO Axeuwuns 4 22 ¢ SIqel

o £ o 0o 0 (o) 6l o1 X

o £ o) 0] o) 0o 6l LR |

0 0] l € L i 61 oy
mwnavvv mmmﬁnmv mmpﬁuov mmwauuv mmpﬁcvv ampammu nm-ﬁmnv

TI3HS

1T9Ys 19d pPIIIPTSUOD SUOTIBINBTIUOD UOTIRIIIIOD JO adL3 pue Iaquny

102



*SUOT3OUNJIIARA JH

SSTOA PU® ID 8STOM HUTSn KXq PIATIIP

(92) (92)
9I® S3INEax ISIYL "SUOT IYTI-TT Y3 I0J saNTeA [LI0Ll PpIZT[eMIOU 3Y3 pue SIIaYs
TenprATpuUT 3Yy3z I0J 33elys mmamwwn—v 9yl 103 saT13radoxd uotrieldadxad aror3Ied-OoM3 BdWOos T 2 ¢ SI1dFL
0L98V "0 ¢868Y 0 [6€6€8°0 9FiF8 'O |TZILL O 6SSLL 0|S868L° T 096LZ Z}|EOVO0 - 90¥Z0 - 0OLOSGE - |Te3ol
CSLPV 0 686V O |LPBLL L L9€EBL L |F0O686°0 65066 °0|18L6Z°L OSL6Z 1L]|89000 - 99200 - €02L0°-| wiegd
PHLEY O LCOPY 'O |LZ86L°L SPLOZ L |SPEOO"L ZBEOO"L|LOLZZ L 8S6TT L|9L600 - ¥O0SO - BEZ9Y -| »Im™y
€S891°0 S9691L°0|CkibL O GZ6EL O |BLIEE O 9EZTEE 0]|8BI0SO" ¥ ELLEL ¥|S9L00 - 69610 - OLLLS -] dxoX
€C609°0 LSELI°0|0BEBC L €OLBZ L |EESS6°0 LCVPS6°0|BELZB L OLLSB L |6€ES00 - €SE€C0" - 1LLZ9Z - |Te30L
96PSS°0 B856SS°01S9LL8°L S9TT8 L |STITZ L €98ZT L|2SC¥O'L LIZHPO L|LLLOO - 8LZOO - SS600°-| widX
LI9PS O SLBPS O|ESZPO L L6WVB L | 69ZFPC L 6WZWZ L |SCV66°0 TLI966°0| 19210 - 88YFPO" - 1G88Z -| oI™N
56861 0 SE00C 0|CCL6L 0O SSE6L O |POL6E O B9L6E O|LELZY E BVVIS E{9H200 - ¥6220° ~ 8006% -| oMo
96918°0 6£6L8°0|€LSCZ°C ¥8BIZ Z |9808¥WZ°L 96EVWZ L |POOSH"L L608¥F L |6PLOO - 89220 '~ OV8S8L - |TE30L
PEEEL O P6EEL O|P60O9L "€ 198GL € |T96L9° L Z981L9° 1 |{SL6BL O 6¥06L 0|€E6L00°- LLEOO - L6900 -| wieX
Z8BZL 0 896ZL°0980CC°€ L60LZ € |EOOFI"L ZT99E9 L |LELSL O SEO9L 0OJ0S9L0 - LVLEO - LibSL -] »I™y
ObZPZ 0 OSYPCT 'O16S€6C°0 96982°0 |6S¥8F O ¥99LF " O|LBYOB"Z 06168 2| ¥OVOO "~ ZSLZO - LLVOW —-| €O
bLLISZ L LSOST’ L |SELO6 Y 8VZS8 ¥ |809CB L BPELB L [CSSLO L C990L "L |990L0 -~ €21Z0 - 9892l - |1e30L
LZ8OL "L 9VPPOL L L1680 L OLBZO'L |ZT60ZW T 9L0L¥P Z|SS6ZS5°0 LBLES 0] 9GE00 - PZEOO - 92¥00 -| widy
E6V60° L 69C60°L |EECEL L SLL90 L |LBSEV T €Z2Ch T|¥W9ELS O LELLS O|6L020 - €1920 - OV090° -| wImy
€SOLE O TBZLE'O|Z9ZBY 'O O09L9% 0 |SVLZI O 90809 0O|BEEBL T LIOLT Z|¥9L00 - ZEWED - €6SLE -] dNoOX
PLIBS"C 96L19°C 198106 8L SSEEL 6L |1LSB6F € 9ZVOS €|52969°0 66¥2L O|L¥BLO - ZSEEO - Z88LO - |T®30L
58691 °C 6€8B0OC T 26158 LT 90ZVZ°8Z|6LOL8 ¥ VWLEEB ¥V|9L¥IZ O 9L¥9Z O|¥EBLO - SESKO - LSLOO -| oIeX
CSPILT EVLOC T |LSTT6 LT TOWIZT 8Z|CSOCB ¥V 6L6EB ¥|09092°0 OZL9Z O|¥S8L0° - 98600 - L6600 -| wIny
LL6ZV O TOSEV'O|BOLE6 'O 65¥68°0 |€Z¥98°0 SB6EB 0|66€9S° L Z96¥9 L|{FEBLO - GESHPO - 86HZZ -| ONON
-t (029 dH yHoo dH -t-{00) dH ¥300 dH p-¢. (o) - (o8] -t (o2
¢ =Uu I = Uu - =Uu 0O=1u I = Uu ¢ =1u TTIHS
ci ci ¢y/C - (bx/b
av < CuT < AQERTT C (GE/PT) >

103



"0I13z 3I® STI3YS-oIgN pu® -gyv®y °ay3 103
S3TNS3I Yl "SUOT IYTT-TT UT T[TIYS-OTOY

Yz I0J TIAST 4H 3Iv ‘0 pue | ’'z=u

uoym ‘<(Sx 7/ %1y baj My, Jo senieA I STACL
6800°0- 99%0°0- 08¥¥ ‘0-
Ziio'o- 60¥0°0- €9LZ°0-
0¥10°0- 0€£€0 " 0- L¥¥L O~
0910°0- Z25120°0- ¥¥S0°0-
80L0°0- 9900 0- LLOO"O-
O=1u I =u 2 =u
¢ Gx sy tag by,
L

104



‘suoT3douUnyaaem JH

SSTaM pue ID

ssToM Hburtsn Lq pPoIATIIP

(92) (92)
°1e sS3[NS3I 3YL °SsuoT SYTI-TT 3Y3z I0J SnIeA [e30] PpozTTemIou 3Y3 pue sSII9Ys T[enpraTpuT
ay3 I03 ajze3s mNAmNNnFV oy3 103 'av uorieraep paepuwis oy3 pue Awuv saniea wuoT3je3dadx3y T ¢ ¢ S1del

SObY'0 BLVY O |€8LS°0 ¥22S°0 |19LP°0 8LLP O RLLY O 8LLP 01588 ¥ S¥BB ¥ PLL6°09 LLL6°09 | Te3ol
CLBY 'O 688F '0|CFPIL 'O ZOLL'O |S685°0 8L6S O {PE6S O OV6S5°0|6986°€ LZ66 €| 66EL 9F 9692 9% o)
SLBY O 688V 0|6€9L°0 <COLL'O |1685°0 8L65°0[BZ6S 0 OV6S°0[8866 € LZ66 €| 08OV 9V 9692 9¥ o] 0y
BEEL'O BEEL'0|B9Z0°'0 6920°0 |L690°0 9690°0|SLZC°0 ¥LZZ°0|L699°9 ¥699°9|2v0Z 06 Zk6L 06 g o)
6255°0 O¥SS°0|0866°0O €EEOO'L |6LE9°O 86€9°0 [P9LS O 69LG O |LVPEL ¥ LVEL ¥V |EPOL bF LEGO VP | Te3ol
0ZL9°0 SEL9 0O(CSLY"L 8Z8F L |8806°0 €ELL6 0 |60€EL°0 WLEL O|VO9€°€ €S9€ €| 60SE €EE 6LSH EE o1 g)
PZL9°0 SEL9°0|9%Lb L 828F°L [CBO6°O €LL6°0|COEL O PLEL O|ILLE € €S9E €| 6LIS EE 6LSV EE Lty
185170 08SL°0|CPPO°O L¥PVO O |8960°0 L960°0 0892 0 6L92°0|22L9°G LLLI G| 6E6E°G9 E€LLE"G9 gyo M
EVYVL O 9EVL O|LLEE Z 6LEE"C |2OLL L B8OL"L |6SPL"0 9SPL O |LEBE € EEBE €|B600°0C LL66°6Z | Te3ol
PvC8'0 6€C8°0|Z99V°€ O08BSVP' € |LF6S L GSL6S L |€9G6°0 $SS6°0|8ZEL"2 SLEL Z|69¥9°22 89LL"22 o1 8)
6¥Z8°0 6€C8B°0|CS9F°E O08BSV'E€ [LE6S L SL6S L |€G56°0 ¥SS6°0|LZWL T SLEL Z|6¥08°2Z 89LL"2Z 1oy
LE6L O OE6L°0|66L0°0O B6LO°O |SEFL O vmvp.o_OwNm.o 6SZE O |GSL9 ¥ 8VLI ¥ |BLLS ¥V LLSS bV g o)
SBEL"L LEEL L |LIEB L POVL L |PLPP'Z 0220 C |2OLO°L 8990 1L |8LE9"C LIE9 Z|2SE9°8L S029°8L | Te3olL
SL9Z"L 6SSZT L|LS99° LI LEES LL|BSKS € 6SLS € JOBGE"L €Z6E L|LVOL T 6L0OL"Z|90€0°FI ¥¥9I0 ¥l g |
¢Z9C°L 6SST L|LE99 L)L LEES LL|CZPPS'E 6SLS E[B96E°L €Z6E L|LLLL C 6L0L°C|{S6LL VL ¥¥90 ¥L o0y
ILVYT 0 SLYPZ O|LLIL O OLIL O |LVEZ'O OFEZ O|LSL¥ 'O LSLP 0|2089°€ €6L9°€|9S86L°LZ SZEL LT g0y
I8GE°C LILE"T|0G98° L9 LZPE " €9|9GSFP 6 OLLS 6 |9€EL6 L LOB6 L |b6LB L EBLB L|SSL6°6 £656°6 Te3ol
9609°C LZE9T|LLLS Z6 SL6L P6]EO096°EL LPEL PUOVLI T ¥H89°Z|L¥WLb L OSLF L|€E96F°L 8E6V'L g €)'
00L9°Z LZE9 T|LWPLS C6 SL6L F6{06S6°€EL LVPEL " VUVELI Z ¥P¥PB9 " Z|69LF L OSLP L|SSLS L 8E6¥V L o] oy
SPVE O PYPE O|EERPP 'O DEPY 'O |ELVP 'O ELVPY O |EELS O €ELS 0[S989°C 0689°2|LPL6 ¥ €068 Wi gy
¥yod JH  |94od dH "¢ (o)) dH  [W§od dH |9¥0D dH YUOD dH

€ = u 2 =1u | = U i- =1u Z- = u TI13HS

av b

105



‘uoTIoungaaem JH

SNTT-TT Y3

SSTOM bue ID SSTOM

(92) (9¢)

butsn Aq pSATISP dIe S3INS3II YL *suoT 103

senTea Te3jol peziTewiIou

Y3 pue ST[9YsS TenprATpuUl aYy3z I03 a3e3s mmamwNn—v Y3 ay3 xo3 AMHWHV soniea uotrjejzodadxm [ ¢ o1l
9920°'0 €L20°0 9250°0 €£SO0°0 2e9iL’o 6291°0 bS6V°'0C 1LE€EL9°0Z | L6LZ°21LLZ 6L89°2S8Z|TeR30L
¥6€0°0 LO¥O° O £9L0°0 9LL0O0° 0O ¢LLe o $81C°0 LeLL 8 L69L"8 LIVS'0OLZ 1L€8S°LIC g €)'
86€0°0 LOVO'O 69L0°0 9LL0°0 o1 ] Aol G81Z°0 9€EL" 8 L69L" 8 bPOL LOZ LEBS LIC o] 0y
9000°0 L0000 L¥00° 0 8¥00°'0 Z180°0 LLsO0°0 6CL6'EY WOBP PP | €L6V "8LLL VL66°PELB]| €N
£¥80°0 9980°0 OoELL"O S¥LL"O £9¢C°0 bLeEZ'O LSLS VL P9CL VL | BVOL POVL LBSZ L6Vl {TEIOL
0sZi'0 6821L°0 P¥91L°0 oL9i 0 ¥8LE"O c0Ze’0 (018 Yo R ) LS00 9 6VZE 66 S06L°66 o1 e
1921°0 68¢C1L°0 5691°0 0oL91°0 96LE°0 rA0 YA M) ELL6"S LS00" 9 IVLL L6 G06L°66 ooy
8L00°0 6L00°0 0600°0 ¥600°0 oLtLo'0 8LLO°O CSELLE 8L91°CE| 9L6L°LIOY €061 bLZY| ©8XdOX
$8S€°0 09%¢°0 8¥6C° 0 9L6C°0 98LE"O 86LE°O bis9°6 ¥8LL 6 SkvL 6E9 PLLB LB89 |T®E30L
1018 %" 2¢) 8S¥S°O LLEV'O L9ev°O SVLS°O 99160 6LbL’ ¢t SOPL "€ peEL8 8¢ ¥61L0°6¢ ()
69€S°0 89¥S O LEEV O L9¢¥v "0 S916°0 991S°0 | L9IL" ¢ SObL € LIOL 8¢ b61L0°6€ o1y
LS00 0 ¥900°0 G610°0 9020°0 8¥0L "0 29010 GG6¥°1LC 6€G8°LC | LBLS OV8BL €£€S8€°G86L | 88X
cves’e 06s5°¢2 LLLO' L c60L’ 1L ¢viL o LbiL"O LS2L"S 98¢28° S 8ZLL 6EC 0€69°€9Z |Te30l
ocsL’' ¢ 1} 24 AR 698G° 1 €EL6G°1L 06860 L¥86°0 c696° L 1 4 ZX 3" 0£06 "0l €666 "0} g )’
bo9e6L" € 11 24" 2 LE6S L £ELes’ 1 0886°0 L¥86°0 1 43 14 7 " LOL9 0Ol 2866 °01 o7y
L¥20°0 L620°0 ¢Ls0’'0 8¥G0°0 L691°0 8CLL°0 GZSZ €L 69€G°EL | OLPL L69 LZ60°69L goX
OLSL VS OLL6°SS | 8LLIC 8 629t °8 0626° 1 veve 'L 9908°¢ bLL8"C £ESCy 69 SiL8 L Te3olL
€EGEL LB C8BGB'EB| ELEZT CL €EPVP CL| CCELZ cevL ¢ ZeiL’o 9LiIL’ O 18 4 28 'TA 4 AN oy g
S9LL L8 TBSB €8 | LOPC CL ¢EbPP-CL| 9WEL"C gebLC ¢60L°0 9LLL"O 99iL¥° 1L SLbY L ooy
Z6SL°0 9961 °0 PL8L"O 100C "0 FA0TA 3] L82E°0 5866°9 060C° L 09iv L6l ¥wcecL 1cCe )R

h-t-(0 0] dH q400 JH p-t- (o0 dH Y400 dH -t (o) dH

£ u 4 u l u - =1u Z- = u TI3HS
¢ Gata s

106




‘sInTeA uoT3eld9dxe aj3vtidoxdde Iay3z I03F sTv303

pezTTewIou 9Yy3 Hursn Aq (09 - 86°L°'Z) suoTIenbs WOIJ pPoj3eNIRAD® II9M

1y 103 sTe30l ¥yl

"PoINQTIISTPAI UIIQ SBY YO TYM

(Chz)dH;

uor3oung

uoTINQIIISTP STOTIIRAISUT 3Y]3 JO 3bejusdaad 8Yz ST Ppo3sIT OSIV
"1 SIUSTOTIFOO0D UOTFIRISIIOD Iv[NHU®P puv [eTPeRI 3Y3 UT 1y abueys ayl 7 2 ¢ 919%1
8L26°0 pS800°0O- LEEOO " O- 665200 0- 96%00° 0~ 89200 °0- Te30lL
9981 °'0 9%200° 0- 9¢000°0- SLL00°O- 66000 ° O+ ¢1900°0- Ll )| L
LSOE’ 0 L¥EO0 O- 82000 °O- S5L00°0- 82C00°0- SLO00 O+ 1oy
SE€9C° 1L 6961L0°0- 0o¥900 '0- ¢9€¢0°'0- 0Z¢LL0°0- 89L20°0- gxox
80LS O LOOLO " O- L8EO0 O~ €9200° 0O- 8L500 O~ £9200°0- Te30lL
vERL O 8L200 0- 62000 °0O- ¢ZL00°0- 80100 O+ 6.S00 0O- L £ 9
£€60€E°0 86£00°0- ¥£000°O- ¢9100°0- L9200 0O- L1100 0O+ LR |
EL8v 1L ¥6220°0- 6v¥L00 O- c¥s20°0- 0CEL0 0~ 692€0°0- g0
6S519°0 OLLLO O- L9%00° O- $S200°0- $6900°0O- 6€£200°'0- Te30L
1880°0 LLEOD O~ L €000 O- b21L00°0- S0L00 O+ L8Y00 0O- L y:) S
6¥¥Cc°0O 9vv¥00° 0O~ 6€000° O~ 85100°0- 8%¥200 O- 0S100° 0+ oy
LS08° L ZSL20°0- L0600 O- ¥i1820°0- LO0910°0- 686£0°0- g0
(4 %A 3] 90¥10°0- £8600°0- 91200 0~ 1 L8000 O~ ¥¥200°0- Te30lL
g6 'O ¥Z2€00°0- 0£000 O~ 10L00°0O- 69000 " O+ P00 0O- o1ed 1 4
LOES'O 19900 0- L¥000 " O- LELOO O~ §2200°0- 0000 'O+ Lad ) |
989¢C°¢ cEPEO " O- 8ELLO O~ $92€0°0- ¢S0¢0°0- SLLSO0°0O- g o)
leLe" L L6910° 0~ 9v¥L00° 0O~ cLLO0 0~ 6€ELLO O~ 06200 0~ T%30L
99¢9°0 6¢200°0- 02000° 0- ov¥000 " 0- ¥%#000° 0O+ §6GS00° 0O~ g f:) | %
osiL’O 8C€00° 0~ 0£000 O~ 9S000°0- S9000 " 0O- S¥¥00 O~ g B |
2880°¢ SESVYO°O- 80SL0°O- 660¥0 O~ 6£8¢0°0- SCLLO O- g o
A A A
A "ty Hay 1y iy Tiy TIIHS 2

107



*SUOT IYTI-TT 943z I0J 23e3s mNAmNNmFV ay3

403 UOT3BT3II0O 03 3anp Awuhuv pue <. uI> uT Ibueyd ebvzusdiad 3yl T 27 STJCI
86C°L- CFV O- 098°0- | 8OF¥°O- ¥CL'0O- E€LO'O+ |9PC2°0- 180°0+ OPE L~ Te3ol
SLS L~ 999°0- LOL 'O+ | 66E°0- 101L°0- O€EL"O- |6EV'O- LSL'O- L¥Z O+ L)
L88°0- L16°0- CLy°0- 1 69V °0- L6L°0- (L9L O+ |¥9C°0- LEO'O- SOC°O- o oy
Lev' e- wv6°0- LPL L—- ] GE0°0+ LOO'O+ SOO0°O+ |O9G°'L+ 8FL L+ POL"C- g o)
S0E" - 8¥b O- LCO'L- | ¥62°0- L60°0- SLO°O+ |¥PL°O- LLL°O+ 909°I- Te3ol
996°L- 89S°0- LCL 0+ | 9LZ°0- S90°0- 9%L°0O- | €09°0- ¥6L°0- 6£0°0+ L g
L88°0- 9LIL O- VLY "O- | 9PE°O0- L9L°O- 881 0O+ |6CL°0- 9L0°0+ 8¥%¥C O- 1oy
Z60°b- GZL L~ SPEL- | LEO'O+ LOO'O+ 600°0O+ }JL68° L+ OLE L+ 6LV 2- g0
066°0- V¥lLE O- 66C°L- | ¥ZL°O0O+ 6€0°0+ CZLO°O+ [EBC°0+ LEE'O+ PPVO"C- Te3o0l
€SL°L- S6€E°0- 8€EO0O 'O+ | 091°0+ G60°0+ OLL O- J¥LO'O+ 1L90°0+ €£€60°0- L 2)'
966°0- 2Z10°0- 9€9°0- 1960°0+ LOO'O- L6l O+ |BOE O+ 80OZ 'O+ C6€ O- ooy
G60°6- 88€°L- OF9°L- | 920°0+ 900°0+ GLO'O+ |OLE"C+ 699 L+ 2C2lLO"€E- gxox
€E6L°0- 810 0O+ POL L- ]208°0+ OCE'O+ ¥POO°O+ {LOO°L+ 6G69°0+ Ol8°C- Te3olL
8LZ 0- O0t0 0+ £9¢°0- | 058°0+ 8OV 'O+ ¥8L 'O- |098°0+ LOVV O+ ¥CV O- L L:)
LLE O+ LZE O+ #96°0- | LOB'O+ 92 'O+ 1LSL 'O+ |BOO'L+ €9S°0+ 0CL O- 1oy
69G°9- 808 IL- LOL"2Z2- | 8LO0°0+ E€00°0O+ LZO'O+ |¥LIZ'E+ 1022+ ©¥b8 €E- gdod
PEL L- 269°0- 8Sy"C- | SLC'L- 09€°0- SSO'O+ |LiC L- P9L°'0O- ¥P96°CE- Te3ol
8E9°L- 9€ES O- EEE'0- 1 8BEC - LIV'O- LZL'O+ |B80Z°L- 98E°0- LEC O- g )
BE9 L~ 9€S°O- EEEO- | BEC L~ LIP'O- LZL'O+ |80Z°LO 98E€E°0- LEC O- ooy
92t "6- 06§72~ 0¢6°C- | CO0°0+ 600°0- 9SO°O+ |6LO'P+ €06°C+ L6 G- )
¢ = u I = u - = u ¢ = u Il = U - = U ¢ = u |l = U - = U

< MHWH > ut abueysd g < ﬂn > urt omnw:u L) < qu > uT sbueyo 4 T13HS

108



(A) KaKp

flr,)

0.8 }

(B) Kalax

Zasin (A)

0.0 .
0 10 20
(C) KBLa (D) TOTAL
f(r,,) flr,)
0.8 | Zasin (A) 0.8 | Z as in (A)

0.4 } 0.4 |

0.0

. 0.0
0 10 20

0 10 20

Fiqure 2.2.1 The HF function f(r12) for the (1s 2p)2P state
+ +

for ri, Be', B%*, o3, W 5

plotted against the
scaled distance 2r,, (in atomic units). (A) The KaKpg-shells,

(B) the KaLa-shells, (C) the KBLa-shells, and (D) the total
distribution when normalized to unity.
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0.002
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-0.002

-0.004

0.000 C

Z=1
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(A) KaKg

(C) KL«

(see over)




0.01 } [\Z=3
— 0.00 L %
= 10 20 30
=
] -0.01

-0.02

U (D) TOTAL
-0.03

Fiqure 2.2.2 The Coulomb holes Af(r12) vs 2112 for the
(1522p)2P state derived for Li, Be+, Bz+, N4+ and 05+. (A)
The KalLpg-shells, (B) the KaLa-shells, (C) the KgLa-shells
and (D) the total Coulomb hole for each Z obtained here by
3
taking 1/3 Afij(r12).
£¢
F;r the intrashells, the curves are ordered from right
to left as 2 increases.
For the inter-shells and the total system, the curves are

ordered by noting that, at Zr12=12, Af(r12) decreases in

value as Z increses.
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Figure 2.2.4

(see over)
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Figure 2.2.5

(see over)
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Figure 2.2.6

(see over)
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Figure 2.2.7

(see over)
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Figure 2.2.8

(see over)
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Figure 2.2.9

(see over)
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Figure 2.2.10

{see over)
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Figure 2.2.11

(see over)
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PART THREE
ELECTRON CORRELATION IN Li-LIKE IONS IN MOMENTUM SPACE

3.1 (1s%2s)%s- AND (1s22p)2P-STATES



CHAPTER 3.1.1

2

The effects of correlation in the ground (1s 25)25 state

and excited (1522p)2P state of Li-like ions have been

examined so far in position space. The analysis was
executed, using the 45 configuration wavefunction of
Weiss(zs), by determining Coulomb holes(63) and various

expectation values for each electronic shell. The
expectation values were used to calculate several

statistical correlation coefficients <t and the percentage

n
1)

which arises due to correlation. The description of an

change in the expectation values <r?2), <r?rg> and <r

individual electronic shell, at both the HF and the
correlated level, was obtained by partitioning the
second-order density for the total atom into its pair-wise
components. Variations in the importance of correlation
throughout different regions of position space were studied
by means of Ag(r12,r1) for both the ground and excited
states of the three-electron systems. Global assessments of

the angular and radial components of electron correlation
for the KaKp-shell were obtained in terms of Atr - the change
in a particular =t value when measured relative to its HF
result. In the light of the results obtained in position
space, a parallel investigation of the Li-like ions will now

be carried out in momentum space.

In recent years, considerable progress has been made in
the experimental and theoretical determination of electron

distributions in momentum space. The knowledge of electron
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momentum distributions in atoms and molecules should give
information about electron-nuclear and electron-electron
interactions. This is due to the fact that the momentum of
an electron 1is the result of the forces exerted upon it by
the nuclei and other electrons. There exist two fundament-
ally different approaches to the calculation of momentum
space wavefunctions. In the first method the Schrodinger
equation is transformed from a differential equation in
position space to an integral equation in momentum space.
In fact, this method of evaluation of the momentum space
wavefunction has met with very little general success. The
method has been used, however, by McWeeny and cOulson(79)
for the helium atom and the hydrogen molecule. Fortunately,
the second method seems to be a more attractive approach;
this method involves converting the position space wave-
function into the momentum space representation by using the

(80)

Dirac transformation procedure.

(81) in both position and momentum

From the study of He
space, it was found that in momentum space the effects of
radial and angular correlation work in opposition, whereas,
by contrast, these components are known to work in unison in
position space. Consequently, momentum space is useful in
order to examine the correlation problem, in particular the
differences between the radial and angular properties of
correlation for both atoms and molecules. Furthermore, the
momentum transformation gives greater emphasis to the outer
regions of the wavefunction than in position space and is

therefore especially useful when considering the behaviour

of the valence electrons within a system. By comparison
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with position space, it has been found that in a study of
some two-electron systems(71'83), such differences in
behaviour of angular and radial correlation effects give
rise to a relatively complicated structure for the momentum
space Coulomb hole and the partial holes; thus, for momentum
space, 1t is preferable to use the term °‘shift’ rather than

d(83) have used the

’hole‘(az). Mobbs and Banyar
partitioning technique of Sinanoglu to study momentum space
correlation effects in the ground state of the Be atom.
More recently Youngman(84) has used the same method to study
Coulomb shifts and a variety of other correlation properties
in the 25- and 2P-states of the neutral Li atom. In the
following chapters, Youngman’s analysis in momentum space is

25_ ana 2p-

extended to a sequence of Li-like ions in both
states, thus enabling comparisons to be made with our
previous work in position space. 1In the examination of the
z-dependent trends for such correlation effects it is

convenient to include here the relevent results obtained by

Youngman for the neutral Li atom in momentum space.

For both ground and excited states of the three-electron
ions, the Coulomb shift, partial Coulomb shift, expectation
values and other properties in momentum space are derived
from the Weiss(zs) 45 configuration wavefunctions. The HF
reference states for the systems considered are taken, as

(25). For the 2P state,

before, from the work of Weiss
modifications in the evaluation of Coulomb shifts and
partial Coulomb shifts are necessary. The 81 - dependent

partial shift Ag(p12,P1.81). where the angle 8, is measured

relative to the symmetry axis of the system, is also of

124



interest for the inter-shells. The present investigation,

together with the earlier position space study will provide

an overall view of correlation effects within the individual

shells for this series of three-electron ions.

Atomic units are employed throughout this work.
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CHAPTER 3.1.2
CALCULATIONS AND RESULTS

Following Youngman(84), the analysis of electron
momentum distributions in the Li-like ions is performed here
using the 45-term CI correlated wavefunctions of Weiss(zs)
for the ground and excited states. The HF reference

wavefunction is also taken from the work of Weiss(zs).

As in our earlier analysis in position space, the
normalized HF wavefunction for each atomic state examined
here was written in the form of a single determinant (see

Appendix A.1). Using the procedure of Sinanoglu, the

correlated wavefunction may be written as

N
Vcorr(1,2,...,N) = c[ A{W(1,2,...,N)(C 1 + f=1 fi/oi
N N
+1/7(2!)L Uij/’i’j + 1//(3!) ¢ Uijk/’i‘j‘k +...}] 3.1.1

1< i¢jek

where the labels i,j and k refer to members of the basis set
of occupied HF spin-orbitals ({¢} and 7(1,2,...,N) is the
product of all such normalized functions. The function £,
is an orbital correction term and Ui' is the pair-

3
correlation function associated with 4. and ¢.. The

1 J
remaining notation and the orthogonality conditions imposed
on £, , Uij , etc have been given earlier in this work.

As before, electron correlation can be investigated by

examining the differences between the correlated two-

particle density rcorr(x1'32) and the corresponding HF
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density FHF(31.32). In this instance, X, represents the
combined momentum space and spin co-ordinates of electron 1.
The definition of T(X,.X,) in terms of an N-particle
wavefunction again follows that of McWeeny and

(67)

Sutcliffe The two-particle densities r(x1,32) for the

HF and correlated wavefunctions can be partitioned into
their pairwise components (i,J) by writing, as previously
(see equations (2.1.41) and (2.1.43)),

N=3

= - 2

N=3
rcorr(x1'xz) = f(j (01(11)0j(12) - Oj(x1)¢i(xz))[
<vcorr|"ij>/<vcorr|"> - 1/2 {01(51)0j(§2)
The integrations in <vcorr'"ij> are over all the

co-ordinates occurring in “ij and thus we obtain a function

of X, and X, only (see Appendix A.1).

The HF and the correlated wavefunctions for the 25 and
2P states of the Li-like ions, are formed in position space
from Slater type orbitals (STO’s). To obtain the
corresponding wavefunctions in momentum space, the general
expression for the Slater type orbital is converted(ao) into
momentum space by applying the wusual Dirac procedure
described in Appendix A.3, to give

N/(2/my 1y itT2n (2p>1_a_“‘11 [(e2 4+ p2)~(1#1)
n—

ok

]y 3.1.5

Im '
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where E is the appropriate orbital exponent, n is the
principal quantum number and 1 is the azimuthal quantum
number. The function Y, is a normalized spherical harmonic
in the Dirac phase convention.

By analogy with the work of Coulson and Neilson®3) jn

q(82)

position space, Banyard and Ree obtained the “Coulomb

shift’ in momentum space from the definition

Af(p12) = fcorr(p12) - fHF(P12) ' 3.1.6

where f(p12) associated with the pair (i,j) is given by

fij(p12) = f rij(21.22)dg1§p2/dp12 . 3.1.7

The 1limits of integration are analogous to those discussed

63) . C e
(63) in position space and it is to be

by Coulson and Neilson
noted that spin has been integrated out of equation (3.1.7).
The details concerning the calculation of f(p12) are
dicussed in Appendix A.2. The Coulomb shift Af(p12) is the
change, due to correlation, in the distribution function
£(py5) for a given magnitude of the momentum difference
Py = |21 - EZI between electrons 1 and 2. Each f(p12) is
normalized to unity.

The f,p(P;,) distribution and the Coulomb shifts Af(p12)
vS. 2-1912 for the KaKp-, KaLa-, and KpgLa-shells of the Li-

like ions in the 25 state are shown in Figures 3.1.1-2. For

the zp state, the Coulomb shift calculations are more

. 2
complicated than the S state due to the non-zero angular
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momentum (see Appendix A.2), the corresponding results for
2P are shown in Figures 3.1.11-12. 1In addition, the above
Figures contain the total normalized distribution for
fHF(p12) and Af(p12); the normalized total is given by (KaKp
+ KoaLa + KBLa)/3. The curves for the individual shells are
compared with their sum total holes (where the sum total is
given by the sum of the electronic shell results only) for

4+ 2

+ in Figure 3.1.4 for “S state, and Figure

Li, Be and N
3.1.14 contains the 2P results. In addition to the above we
have obtained insight into the shape of the f(p12) for both

HF and correlated wavefunctions by evaluating the

expectation values

<p?2> = [ £(p,,) p?z dp,, 3.1.8

for n=-1, 1 and 2. Clearly, different regions of the f(p12)
curve will be emphasised by the function p?z for each value
of n. A particularly useful concept for displaying the
spread of the momentum density is the standard deviation
A(p12), which is defined by

Apyy) = 4 [<pa5 - <py%1 . 3.1.9

The results of <p?2> and A(p12) are presented in Table 3.1.1

and Table 3.1.6 for the 23 and 2P states, respectively.

The definition of the QHF(p12.P1) function and the
partial Coulomb shift A9(P12.P1) in momentum space follow
those for the corresponding position space quantities.

Ag(p12,p1) measures the influence of correlation when a test
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electron 1, has a momentum of a given magnitude py. For
each electronic shell, the partial Coulomb shift is defined

such that

faglp,,Py)dPy = 9., (P4 P )dP, - fgp (P, P )dp,

Af(p12) . 3.1.10

and Ag-results for each shell are displayed for Li,
4+

The uF

Be+and N as surfaces in Figures 3.1.5-6 for the 2S state

and Figures 3.1.15-16 for 2P state. For the ZP state, we

can also define the functions g(p12,p1,61) and Ag(p12,p1,81)
where 8, is measured relative to the symmetry axis of the

system. These functions are defined such that

oo T o

559(912:P1,91)Sln81d31dp1 = gq(pn.p,)dp1 = f(p,,) . 3.1.11
, . + 4+

The 01-dependent functions for the Li, Be and N inter-

shells are shown in Figures 3.1.17-20.

As in position space, the angular effect of correlation
can be investigated by calculating the expectation values
<E1.22/p?pg> for n = 0,1 and 2. These expectation values
involve the angle y between the momentum vectors B, and B,
of electrons 1 and 2, and therefore they are sensitive to
angular correlation. It is to be noted that the calculation
of these expectation quantities requires the evaluation of a

(85)

product of three spherical harmonics The results for

these angular properties are shown in Table 3.1.1 and Table

3 1.6 for the S and P states, respectively.
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To gain some understanding of the effects of correlation
on radial properties in momentum space, we calculated the
electron pair radial density D(p1,p2) for Li, Be' and N4+ in
each electronic shell using both the HF and correlated
wavefunctions. Radial correlation effects are illustrated
by calculating the changes in the two-particle radial
momentum distribution D(p1,p2) relative to the HF value.
Figures 3.1.7-8 illustrate DHF(p1'pZ) and AD(p1,p2) for each
shell for selected ions in the °S state. Figures 3.1.21-22
show the DHF(p1'p2) and AD(p1,pz) surfaces for the same ions
in the KaKB-, KaLa- and KgLa-shells of the 2P-state. To

complete the radial properties we evaluated the one- and

two-particle radial expectation values (p?) and <P?pg)_ The

results are reported in Tables 3.1.2-3 and Tables 3.1.7-8

for 2S and 2P states, respectively. For the purposes of

discussion, the one-particle radial density distributions

D(p1) derived from the HF wavefunctions are presented in

25 and 2P states in the

4+

Figures 3.1.9 and 3.1.23 for the

KaKB-, Kala- and KpLa-shells for Li, Be' and N

The radial and angular components of electron
correlation may be assessed in a global manner by

calculating various statistical correlation coefficients.
Following the position space analysis, the radial and
angular coefficients take the forms

= n.ng _ n 2 Zn_ n.2
Tadial = ($PyPR> ~ <PPT)/(Kpy> = <P 3.1 12

1-n 1-n 2n
= ) >/ ¢ > 1.
Tangular <(p_1/p1 ) (nzlp2 )>/ Py 3.1.13
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where p

respectively. These quantities give emphasis, in turn, to

T adial gives T and T1/p when n=1 and -1,

large and small values of the magnitude of p. For the
angular coefficients, n=1, -1 and O correspond to r1 ' ry,
and ryu , respectively, where, as defined earlier, vy is the
angle between the electronic momentum vectors P, and B,-

Table 3.1.4 contains the At results for 25 state for each

- T : Table

shell for the Li-like ions, where At = Teorr HF

3.1.9 contains the 2P results. All the v for the HF wave-

function are zero except for KaLa-shell in the 2P state.
These t values are presented in Table 3.1.10. The
correlation changes 1in 1t have been plotted against 2—1 in
Figures 3.1.10 and 3.1.24 for the KaKp-shell in both states.
Table 3.1.4 also contains the percentage change of each
fHF(p12) probability density. The normalized total for v,
was determined from the normalized Coulomb shifts shown in
Figure 3.1.2D. 1In this instance, Y is equal to the area of
the curve below or above the Pyo axis multiplied by 100%.
Finally, in Tables 3.1.5 and 3.1.11 we present the
percentage changes, due to correlation, in <p?2), (p?) and
(p?pg) for n=-1, 1 and 2 for the 2S and 2P states,

respectively. Notice that the normalized total used in each

Table is given by (KaKp + KaLa + KBLa)/3.
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The KaKg-shell

Figure 3.1.1(A) shows the 2 ' scaled plots of the HF
interparticle densities in the KaLB-shell. It is to be
noted that as 2 increases not only does fHF(p12) become more
diffuse but also decreases in magnitude. Comparing these
curves with those in position sapce, see Figure 2.1.1(A), we
observe the fundamental change due to the different spaces.
The interparticle distribution function in position space
show that as 2 increases fHF(r12) becomes less diffuse and
increases 1in magnitude. This behaviour is supported by
inspection of the corresponding expectation values (p?2>
(see Table 3.1.1) and <ry,> (see Table 2.1.3), when n=-1, 1
and 2. From these expectation values we see that for the
KaKp-shell the momentum results are greater than the
position results when n is positive and vice-versa when n is
negative. The Coulomb holes 1in position space can be
brought into reasonable coincidence by scaling the ryo axis
as 220Y where Z 1is the nuclear charge (see Figure
2.1.2(a)). In momentum space, the Af(p12) curves suggest an

inverse scaling with <respect to Z and the scaled Coulomb

shifts are shown in Figure 3.1.2(A) for Li, Be+, 82+, N4+
and 05+. These curves reveal the correlation effects
relative to the fHF(p12) properties. We see from the

Af(p12) curves that the zeros of the scaled curves are in

very good agreement. The curves for Z » 4 cross the axis in
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the region Z-1p12 = 1.5, whereas the curve for 2 = 3 crosses

the axis twice: firstly in the region Z—1p12 = 0.35 and then
again when z’1p12 = 1.5. The behaviour of the Coulomb shift
in z‘1p12 > 0.35 is seen to be well-ordered with respect to
Z, whereas the curves are not so well-ordered when Z_1p12 <

0.35, for example the Li Coulomb shift has negative values

in this region.

In Figure 3.1.3 we show a comparison of the Coulomb

shifts for the KaKf-shells in Be(83), Be' and Be2+(77); also
included are the Af(p,,) curves for KaKg in Li*t(®2) ang 1i.
For Z = 4, we observe that although the Be+, Be2+ and Be

functions give results which are the same when z"1p12 > 1.5,

significant differences exist for O <« z_1p12 < 1.5. For

(82) established that,

two-electron systems, Banyard and Reed
at small p,,, the radial component of electron correlation
gives rise to negative values for Af(p,,) whereas, by
contrast, angular correlation produces a curve which is
initially positive. From the K-shell in Be' and Be, it
appears that the occupation of the L shell by one- and two-
electrons, respectively, causes an initial cancellation
between the angular and radial components. In general, we
conclude that for a given Z the Af(p,z) curve for the K-
shell increases at small Py, when an electron is added to

2+ and Be at

the L-shell. These differences between Be+. Be
small p,, are in general accord with a comparison between
the corresponding At values. It was found that the A11/p

2+
l.e.

values are ordered 1in magnitude as Be <« Be+ << Be
the Ar1/p values are -0.0058, -0.0095 and -0.0197 for

+ .
Be (KaKB), Be+(KuKB) and Be2 + respectively. Therefore, by
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comparison with Be2+, radial correlation at small momenta in
the Be' and Be K-shell is inhibited by the presence of the
one and two L-shell electrons. 1In the light of the momentum
analysis by Banyard and Reed(az), the overall behaviour of
the curves in Figure 3.1.2(A) suggests that angular
correlation has, on balance, the major influence in the K-
shell of Li-like ions. The comparison of the Af(p,,) curves

in the KaKp-shell with respect to Z can be shown by

inspection of the percentage change of the momentum density

Y%.

Let us now examine the interparticle density fHF(p12)
and the Coulomb shift Af(p12) for the KaKB-shell as a
function of the momentum of electron 1, that is gHF(p12,p1)
and Ag(py,,P,), respectively. The 9yp(P45.P4) function and
the partial Coulomb shift Ag(p12,p1) for Li, Be' ang N4+ are
presented in Figures 3.1.5(A) - 6(A). The gHF(p12,p1)
surfaces for Li, Bet and N4+ show that the maximum for each
density is always located off the diagonal such that p12>p1.
The examination of the Ag(p12,p1) surfaces for the selected
ions can be separated into three regions, depending on the
value of Py At very small P, there is some evidence of a
small angular effect. From the Ag-surface a small positive
maximum can be seen at small P, and Pyo: this feature is

4+ by comparison with Li and Be'

very easily observed in N
surfaces. The cause of this positive Ag at small P, and Pys
is perhaps due to the effect of integrating out the L-shell
electron when partitioning the two-particle density.
Therefore, this feature should not appear in the 2P state

because o0f the orthogonality condition between the s and p
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orbitals. However, when the test electron is at small Py
the Ag(p12,p1) results are a mixture of radial and angular
correlation with the angular component being just dominant
in the small Pqo regions. As P, increases, i.e. when the
test electron lies between the K- and L-shell regions, then
the partial Coulomb shift shows a reduction and then an
increase as P42 becomes larger. Consider the Ag- behaviour
when Py increases further so that the electron approaches
the maximum in the DHF(p1) vs. p, graph for the K-shell. We
see that the angular correlation component shows a large
dominant effect for all Pqs for all increasing P,. This is
reasonable since, if the test electron has large Py it will
be located near to the nucleus and, therefore, it will be
influenced by a large, rapidly varying radial potential
field. Consequently, any radial correlation effect would
change the energy markedly, however, the electrons can avoid
one another, without a great change in the nuclear-electron
energy, by using angular correlation effects. The KaKp-
Ag(p12,p1) diagram in Figures (3.1.6(A) reveals the

behaviour of the charateristics mentioned above.

As Z increases, the g,p and Ag-characteristics (but not
their 1location and magnitude) are unchanged, and the whole
pattern expands, as expected, to (fill larger Pyo and P,
values. As in position space for the KaKp-shell, there
appears to be no immediately obvious connection between the
relative positioning of the maximum in the gHF(p12,p1)
surfaces and the maxima and minima in the corresponding
Ag(p12,p1) diagram. As Z increases, the gHF(p12,p1) and

Ag(p12,p1) surfaces spread over greater Py and P,, ranges
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and consequently, the maxima and minima decrease in
magnitude. Comparing the heights of the maxima on the
diagonal with those of the parallel feature of Ag(p12,p1)
shows that, as 2 increases, the ratio is 1.88, 2.32 and 2.87
for 2 = 3, 4 and 7, respectively. Such an increase implies
that the angular effect at large Py becomes relatively more
important than the radial effect at small p,. All these
observations are consistent with views about angular and
radial correlation for the KaKp-shell in position space, as

the density tightens around an increasing nuclear charge.

Figures 3.1.7(A) and 3.1.8(A) show the DHF(p1,p2) and
AD(p1,p2) surfaces for the KaKp-shell in Li, Be' and N4+.
Although these surfaces possess a strong resemblance to
their counterparts in position space, DHF(p1,p2) and
AD(p1,p2) reveal obvious differences with respect to
variations in 2. As Z increases not only does AD(p1,p2)
become more diffuse but it also decreases in magnitude,
whereas, 1in position space, the converse occurs. The
behaviour of AD(p;.,P,) is also reflected in the related
expectation values (p?pg). Radial correlation causes a
decrease 1in (p?p%) for n = -1, 1 and 2, which is also shown
by the percentage change of <p?pg> due to the correlation
effect. Tables 3.1.2 - 3 contains a comparison of the HF
and correlated one- and two-particle expectation values for
the KaKg-shell of the Li-like ions. The one-particle radial
momentum density D(p,) may be obtained by integrating
D(p1,pz) with repect to Psy. For the KaKf-shell, the DHF(p1)

4+

curves for Li, Be+ and N are shown in Figure 3.1.9.
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An overall assessment of angular and radial correlation
components in different regions of momentum space for the K-
shell is provided by the <change in the correlation
coefficients listed in Table 3.1.4. Figure 3.1.10 shows
that the changes in the radial correlation coefficient t
possess a negative sign, whereas changes in the angular
correlation coefficient v have a positive sign for all 2; by

contrast, in position space, both components possessed

negative signs for each Z.

The KalLa- and KgLa-Shells

Figures 3.1.1(B - C) and 3.1.2(B - C) illustrate the
interparticle momentum function fHF(p12) and the Coulomb
shift Af(p12) for the Kala- and KgLa-shells, plotted against
z"p,z. Examining f,.(p,,) Vs. Z"p12 for the KaLa-shell we

see that it is higher valued at small Pys and lower at

higher p,, than its KaKf counterpart. This is reasonable
since the inter-shell will contain more 1low momentum
contributions as a consequence of the L-shell occupation.
Since both the KaLa and KaLp sets of curves are normalized
to the same value, a reduction at large 2—1912 for Kala,
compared with KaKp, must result in an increase in the curve
at smaller z—1p12 values as seen. The Kala- and KgLa-curves
for fHF(p12) show Z-dependent trends similar to those in the
KaKg- shell. From Figure 3.1.1(B - C), the fHF(p12) curves
for the KaLa-shell tend to have a flat region at small Pys
due to the Fermi effect. As 2 increases, the f(p12) maxima
and their 1locations tend to increase as we progress from a

given KBLa curve to the corresponding KalLa curve.
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Let us consider the Coulomb shift for both the KaLa- and

KBLa~shells for Li, Be+, BZ+, N4+ and 05+.

As in position
space, the Coulomb shifts for the KBLa-shell seems greater
in magnitude than those in Kala. Furthermore, these inter-
shell Coulomb shifts are found to be of similar shape except
in the region of small Pqys- In the KaLa-curves there is a
flat region due to the Fermi effect whereas this does not
occur for KBLa curves. Both sets of inter-shell Coulomb
shifts tend to decrease and increase at Z'1p12 equal to 0.5
and 1.0, respectively as Z increases. Figure 3.1.2(D) (see
also Figure 3.1.4) shows the normalized total Coulomb shift
for each Z. These curves, which are defined by (KaKB + KaLa
+ KgLa)/3, reflect the dominant effects of the KaKf Coulomb
shifts and the sum total Coulomb shifts for Li, Be+ and N4+.

Further comparisons are obtained by inspection of the

percentage change Y% in Table 3.1.4.

Consider gHF(p12.p1) and Ag for 2 = 3, 4 and 7 for both

the KaLa- and KpLa-shells. These functions of Py, and p,

are shown in Figures 3.1.5(B - C) and 3.1.6(B - C) as
surfaces. As in position space, the gHF(p12,§1) surfaces
for the inter-shells show diagonal and parallel
characteristics. The spread of these features reflects the

spread of the K- and L-shells densities in pP,-space. Since
the HF model indicates that the average angle between the
electronic momentum vectors is 90°, then the location of the

most probable distribution of the gHF(p12.p1) density can be

estimated by using Pythagorous’s theorem. The differences

between g, p(P,,,P;) for Kala and g,.(p,,,P,) for KBLa can be
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found at small Pqyp for all P, values, due to the presence
of the Fermi‘effect in the KaLa-shell. To investigate this
difference in more detail, we subtracted the gHF(p12,p1) for
KBLa from the gHF(p12,p1) for KaLa-shell. From this

difference, we found that the introduction of the Fermi
effect caused the most noticeable reduction in probability
at small Py and small Pyo- The partial Coulomb shifts for
the inter-shells are shown in Figure 3.1.6(B - C) for Li,
Be+ and N4+. These diagrams reveal the angular and radial
correlation effects. At P, > pK (i.e. close to nucleus), we
see that Ag changes from positive to negative as Py
increases. This behaviour is thought to be due to the
dominance of angular correlation. When the test electron Py
= Py, we do not see a "left-right" effect as Pyo increases,
but we do see an "up-down" effect in the surface relating to
the p, variation. The above features of the partial Coulomb
shift seem similar to those in the He work for the 1s2s 1S—
and 35-states. The comparison of Aq(p12,p1) for KaLa with
that for KpLa shows that the positive-negative effect for
the KpLa shell has moved slightly to a smaller Pys value
compared with Kala diagram. At small Pqy and small P, we
see a significant negative in the KBLa diagram which was not

present in KaLa due to the presence of the Fermi effect in

the KaLa- shell.

To examine the influence of correlation on the two-
particle radial momentum distribution for the inter-
shells,we have to consider the DHF(p1,p2) and the AD(p1'p2)_
diagrams shown in Figures 3.1.7(B - C) and 3.1.8(B - Q).

Figures 3.1.7(B - C) reveal that the inter-shells possess an
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overall similarity in their Dyp(P4,P,)-surfaces, although,
variations do exist. For the KaLa-shell, the principal
maxima are slightly greater than those for the KgLa-shell

+ .
4 . Such a difference between these

for L1, Be' and N
normalized distributions is a consequence of the Fermi
effect giving a reduced probability for the KaLa-curve in
the region of small P, =P, when compared with the KgLa
result. The AD(p1,p2)—surfaces not only reveal correlation
effects but, naturally, reflect the main features of the
DHF(p1,p2)-surfaces. These changes due to correlation are
in keeping with the percentage change shown in Table 3.1.5.

From Table 3.1.5, the percentage change in <p?pg) for KalLa

is greater than the corresponding KgLa value for all 2.

The percentage of each fHF(p12) probability density
which has been redistributed due to electron correlation are
shown in Table 3.1.4. These values are smaller than those
in position space for the Li-like ions. For the He-like

(77) found that the fraction in momentum space is

ions Reed
about one-third of the value obtained in position space.
Further comparison between the position and momentum results
can also be made by inspection of the radial and angular
coefficients shown 1in Table 2.1.8 and 3.1.4. 1In position
space we found that for the KaKg-shell, the radial and
angular coefficients At are of negative sign, but by
contrast, in momentum space these components show a negative
sign and a positive sign, repectively. This finding holds
for the whole atom in the series of the Li-like ions. The

At results for the KaKg-shell are shown in Figure 3.1.10 and

reveal that the AtY. (=Acosy) for momentum space shows a
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positive value, whereas a negative sign can be found in the

corresponding quantity in position space.
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Ihe KaKB8-shell

As might be expected, the interparticle densities in

momentum space, fHF(p12), for Li, Be+, Bz+, C3+, N4+ and os+

behave as those for the KaKp-shell in the 25 state. Figure
3.1.11(A) reveals that the maximum of the fﬂp(p12)
probability distribution decreases as 2 increases. This
behaviour also can be supported by the inspection of the
interparticle expectation value <pyy> shown in Table 3.1.1.
From Figure 3.1.12(A) we found that, for Li-like ions, the
introduction of radial effects causes a reduction in Af(p12)
at small Pyo- For the three-electron systems, the ionic
curves of the Coulomb shift in the excited state show a high
degree of similarity with those in 25 in the region when
Z-1p12 > 0.5, but display differences when Z—1p12 < 0.5.

2 2

These differences between S and °p for Af(p12) at small

z_1p12 are 1in general accord with a comparison between the

corresponding Ar values (see Figures 3.1.10 and 3.1.24).

Although the KaKg-shell angular correlation coefficients for

the 2P state are only marginally smaller than those in 25

for a given Z, it is seen that the ATp and AT1/p values in
2P are noticeably larger than those in the 2s state. From
the Coulomb shift KaKp-diagram we see that the zeros of the
scaled curves are 1in excellent agreement. These curves

1

cross the axis twice; firstly in the region 2~ Py, = 0.5 and

then again when Z—1p12 = 1.5. The zeros of these shifts are
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(82). The

in close agreement with those of the He-like ions
Af(p12) comparisons for the KaKg-shell in Li(ZP), Li(ZS) and
Li+(1S), and also for Be+(2P), Be+(2S) and Be(1S) are shown
in Figure 3.1.13. We see that all the various 2=4 and 2=3
curves cross the Z_1p12 axis at 1.5. Each set of curves
then splits again into two groups, for 2Z=3 and 4,

respectively, but each curve possesses a large maximum and

large minimum 1in Af(p12) at about z_1p12 = 0.9 and 2.1,

respectively. Also we note that at Z'1p12 ~ 0.9 and 2.1,
the ordering of the 2=3 curves differs from the ordering of

the 2=4 curves. When z_1p12 = 0.9 and 2.1 we note that the

-1
Af(p12) for |2Pl > |Zsl. As Z

2

Pqo becomes larger than 2.1,

2

the difference between the “P and “S curves gets smaller as

Z 1increases. But when Z—1p12 gets smaller than 0.5 we see

that all the KaKg curves in 2P cross the axis and then

become negative. This negative behaviour when O < Z—1p12
2

0.5 is in direct contrast with the “S behaviour in this

4

region (except for 2=3 when we do note a small negative in
the O <« z.1p12 < 0.3). These differences between 2P and 25
for KaKg Coulomb shifts at small Z—1p12 are due to the
differences in symmetry between the 2s and 2p orbitals. 1In
the 2S state, the Coulomb shift for KaKB will reflect the
radial orthogonality property between the orbitals for the
inner and outer shell. The 2s orbital will produce some
confinement of the KaKp-shell and hence reduce radial
correlation and consequently promote angular correlation.
In the 2P state, the angular orthogonality between the 1s
and 2p orbitals allows the KaKB Coulomb shift the ability to

exercise radial correlation and therefore Af(p12) can go

negative at small Z_1p12 values. An overall measure of the
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Coulomb shifts shown in Figure 3.1.13 may be obtained by

inspection of the Y values, shown in Table 3.1.9 for 2P and

Table 3.1.4 for 25, and we note that the ordering of these

values for KaKB8 1is Li(zP) > Li(ZS) > Li+(1s) 5 Be+(zp) N

Bet(%s) > Be('s).

Let us consider the gHF(p12,p1) and Ag(p12,p1) surfaces

for the KaKp-shell for Li, Be+ and N4+. These surfaces are

displayed in Figures 3.1.15(A) and 3.1.16(A) and display

characteristics which are quite similar to those in 2S,

except when we consider Ag(p12.p1) at small P, and small

In 25 we saw 1in Aq(p12,p1) a small positive effect at

2

Py2-
small P, and Pyos whereas in the “P diagrams, we do not see
it, due to the orthogonality condition between s and p
orbitals. Consequently the Ag(p12,p1) surfaces for Li, Be+
and N4+ are slightly more contracted towards the origin in
2P than those for 25. Also we note that the magnitudes of
positive and negative effects for 2P in the partial Coulomb
shifts afe always slightly greater than the magnitude of the
corresponding positive and negative effect in the 2S
surfaces. As 2 increases, the range of the Ag(p12,p1)
values for the KaKf-shell in 2P is seen to decrease as
-0.006 < Ag(Li) < +0.005, -0.0023 < Ag(Be') < +0.0019 and
-0.0004 < Ag(N4+) ¢ +0.0003, whereas in 25 we found -0.006 <
Ag(Li) < +0.005, -0.0017 < Ag(Be+) < +0.002 and -0.0002 <

ag(N¥t) < +0.0003.

In general, the Aq(p12,P1) surface for Be' for the K-
shell appears to have two distinct but unequal regions.

when 0.6 < P, < 2.0, the sizeable negative region in the
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surface clearly indicates the dominance of radial
correlation. For P, > 2.0, angular correlation is now
dominant. Radial and angular correlation are seen to have
their maximum effects when the test electron has momentum

values of about 1.4 and 3.4, respectively.

Figures 3.1.21(A) and 3.1.22(A) show the two-particle
radial density DHF(p1,pz) and the effect of correlation
AD(p1,p2) for the KaKp-shell, and Table 3.1.8 shows the HF

and correlated expectation values <p?93>- The D
4+

HF (PqP2)
and AD(p1,p2) surfaces for Li, Be' and N possess features
similar to those obtained for 25, except when P, is small
and P,*P,- The AD(P1,pz)-surface in 25 revealed a small
positive density near the origin which is not observed in
the 2P—surface. For the KaKg-shell, when P,=P, and both
values are small, it is reasonable to suppose that, in
position space, the electrons will be located in the far
outer regions of the shell and, as such, penetration into
the L-shell region may well occur. With this in mind, it is
interesting to note that, for 2P, where this small effect in
AD(p1,p2) is absent, an anqular orthogonality exists between
the K- and L-shell orbitals. This contrast between the
K-shells for 2S and 2P, although small, is in keeping with a
similar comparison between the Ag(p12,p1)—surface at small
p,*p,,- The percentage change in <p'{p)> due to correlation

reflects the influence of AD(p1,pz) for the Li-like ions:

the results are shown in Table 3.1.11.
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The KaLoa-_and KBLa-Shells

Fot the inter-shells, the fHF(p12) curves are well

. —1 _1
ordered when plotted against 2 Pys- The fHF(p12) vs 2 Pys

for a given 2 in 2P is slightly more diffuse than 25 and,

hence, the maximum probability density of fHF(p12) for 2P is

slightly less than for 2S. From Figure 3.1.11(B) we observe

that the Kala fHF(p12)—curves show a flat region at small

=1 which is due to the Fermi effect. Fermi correlation

Z2 Py
gives a zero value in 2S for the two-particle density
whenever |p1|=|p2| whereas in 2P the density is zero only

for the more limited condition represented by Ry = p,. For
KaLa, the Coulomb shift in Figure 3.1.12(B) is negative at
small Z_1p12 for each 2 due to the presence of radial
correlation. The crossovers of the Af(p12) curves are
located at values of Z—1p12 in the region of 0.5+ 0.1 and
1.0+0.2, whereas the Coulomb shifts in 28 for the KalLa-shell

1

have a major maximum and major minimum when 2~ P,y) is about

0.5 and 1.0 (see Figure 3.1.2(B)). Also we note that the
range of Af(p,,) for P is from -0.0015 to +0.0011 whereas,
for 25, we have a range of -0.0006 to +0.00058. This is to
be expected since, for 2s, it is the outcome of the opposing
effects of angular and radial correlation but for 2P we have

only radial correlation, as mentioned in the discussion of

position space effects.

Consider now qHF(p12.p1) and Ag(p12,p1) for the Kala-
shell. These densities are shown as surfaces in Figure
3.1.15(B) and 3.1.16(B). Since we are examining an inter-

shell density we expect to sSee a diagonal and parallel
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feature for gHF(p12,p1) in the KaLa-shell for a given Z.

For Li it was found that gHF(p12.P1) has two maxima whereas,

4+

for Be' and N gHF(p12,p1) is seen to have only one

maximum although it has a diagonal and parallel structure,

with these structures becoming less obvious as Z increases.

This merging behaviour as 2 increases was not seen in the 25

surfaces in momentum space. The gHF(p12.p1) surfaces for 2s

always possessed distinct diagonal and parallel features for
Li, Be+ and N4+ with each density having two maxima. This

contrast in behaviour seems reasonable and in keeping with

2 2

the one-particle radial densities in “S and “P for a given

Z. From the one particle curves DHF(p1) (see Figure 3.1.23

2S is

5, >4 and =4 for 2=3, 4 and 7, respectively, whereas for 2P

and Table 3.1.7) we found that the ratio of pK/pL for

this ratio is <4, <3 and <2 for Z2=3, 4 and 7, respectively.
This behaviour indicates that for the %5 state the
distinction between the py and P, Vvalues is generally
preserved as 2 increases whereas, for 2P, the Pg and Py,
values become closer in magnitude as Z gets larger.

Consequently, the overlap of the diagonal and parallel

features in the gHF(p12,p1) surfaces in 2P can produce a

maximum which is greater than that located by either the Pg

or pL values separately.

Let us now examine the effect of electron correlation on

4+

. +
g(p12,p1) for the KalLa-shell for Li, Be and N The

Ag(p12,p1) surfaces show a change from negative to positive
as Pq, increases when P, is fixed equal to Pr, which, for Li,
et and N4+, has values 0.375, 0.75 and 1.95, respectively.

This behaviour of Ag(p,,.P4) implies an increase in the

148



momentum for the K-shell electron and is a consequence of
the closer packing of the K-shell electron around the
nucleus. This view 1s consistent with what we found in

2P for KaLa-shell. In

position space for the Ag(r12,r1) in
position space we indicated that the diagonal positive
density at r,, = I, ® Iy was due to a radial correlation
effect in the KaLa decription. An examination of Aq(p12,p1)
for KoLa can also be made by fixing the test electron at
large Py = Pg- For each Z we see a negative-positive effect
as we cross the P4=P,4, diagonal axis. Since angular
correlation is only a secondary effect, we suspect that this
negative-positive behaviour in Ag(p12,p1) arises from an
increase 1in the Ile magnitude. Clearly, 9yp(PyoPy) and
Ag(p12,p1) behave as fHF(p12) and Af(p12), respectively,

when they are integrated with respect to Py.

To study the partial Coulomb shift in more detail we
calculated the density as a function of 61, where 81 is
measured relative to the symmetry axis of the system. Let
us examine gHF(p12,p1,a1) in the KaLa-shell for 2=3, 4 and
7. When 81 = 90° the test electron can be anywhere in the
nodal plane of the 2p orbital and thus it can only be
described by the K-shell orbital. Therefore, we expect P,
to be large which, in turn, will give rise to the diagornal
effect in momentum space and no parallel effect. In
position space for the corresponding surfaces we get only
the parallel effect due to the reverse ordering in the
extent of the 1s and 2p orbitals. At 8, = 0", the test
electron will be found on a line perpendicular to the nodal

plane. Therefore, p, can have a value corresponding either
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to the K- or L-shell radius and thus we should see both
diagonal and parallel effects in gHF(p12,p1). From Figure
3.1.17, we see that the diagonal effect is small compared
with the parallel one. This is the reverse of the situation
found in position space. The weak diagonal effect in
momentum space is understandable since, when Py, * Pg (i.e.
large), we are confined to the unique line along the z-axis
in the 1s shell and, therefore, the probability associated
with this chosen value of Py will be reduced. By contrast,
when Py = Pp, (i.e. small) the test electron is still located
along the unique line but our restricted freedom is a closer
representation of the 2p orbital symmetry and hence the

consequence of such a restriction is less obvious.

Returning to Figure 3.1.17, selecting P, = Pg and 81 =
O0° allows us to examine the L-shell density. Clearly, when

< we are essentially sampling the upper lobe of the

Pq2 Py
2p-orbital and when Pyo > Py We are mainly sampling the
lower lobe of the 2p-orbital. For the KaLa-shell we expect
the Fermi effect to reduce the probability density when
considering the upper lobe and, by comparison, to enhance
the probability when sampling the lower lobe. When Pyp =
Py the existence of the nodal plane in the 2p orbital
produces a reduced probability density compared with the
situations when p,, < Py and p,, > Pg- Such behaviour shows
ijtself in the appropriate gHF—surface as two maxima, of
unequal heights, located either side of a reduced density
along the Piy = Py diagonal axis. However, when P, >> Pk at
8, = 0°, the momenta of electrons 1 and 2 will be very
different. Consequently, the Fermi effect produces less
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distinction between the upper and lower 1lobes of the
2p-orbital and therefore the two maxima in the gyp-Surface,
although of smaller magnitude, will be almost equal in size
and location with respect to the diagonal axis. As 2
increases, the L shell moves, in position space, towards the
nucleus and thus 1its momentum gets closer to the K-shell
value. Therefore, when the test electron has a value of Py

= Py the individual p-orbital 1lobes will be shown more
clearly over a dgreater range of P, (where 0 < Py < pK).
Nevertheless, at 8, = 0°, the main feature shown by the Iyr
surfaces is, of course, still the parallel one when Py = Pp-
Consequently, 1if P, is reduced in magnitude from a value P,
> pg. We see that the density on the left-hand side of the
diagonal becomes smaller than that on the right-hand side.
This result is due to the Fermi effect between the test
electron (when 8, = 0°) and the upper lobe of the 2p-orbital
in momentum space. The gHF(p12,p1,e1=3o’) for the
KaLa-shell shows a similar behaviour to Iup(Py2:P4,8,=0")

when the test electron is placed at p; = py, but at 8,=30°

Fermi correlation is less effective. Therefore when 8,=60°

the gHF(p12,p1,a1) looks rather like the integrated

yp (P1a:Py) -

Having understood the behaviour of the gHF(p12,p1,e1)
density for the KaLa-shell, let us now consider the effect
of correlation. From Figure 3.1.19, we see that the
features in the Ag(p12,p1,81) surfaces behave as follows: as
8, increases from O0° to 90° the diagonal feature becomes

emphasized in momentum space and the parallel feature is

reduced. At 81=O' the Ag(P12'P1.61) surface shows a
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negative-positive effect relative to the diagonal density in
the HF surface; the effect is most noticeable when Py = Pk
This might be interpreted as an increase of L-shell
momentum. The major feature of the Ag(p12,p1,e1) surface
when 81=0' is seen to be parallel to the p12 axis and is
located around Py = Pp- We note that, for any given Pqyoe
the parallel feature behaves as a negative-positive effect
as p, increases from zero to a value mid-way between Pr, and
Pg - At 0.=90°, the Kala Ag(p12,p1,81) surfaces show the
. diagonal feature only. This implies that we have a K-shell

test electron and an L-shell response to correlation.

Consider now DHF(p1'pZ) and the AD(p1,p2) for the
KaLa-shell shown in Figures 3.1.21(B) and 22(B) for Li, Be+
and N4+. The HF surface shows features similar to those for
the KaLa-shell in 25 except in a small region when p, = P, *

In this region (pz=p1=PL), DHF(p1’p2) for 2P is non-

Py, -
2

zero, 1in contrast to the corresponding density in
2

S. The

Dyp(Py.P,) diagrams for Kala in the “P state show that as 2

increases the density in this region increases. For Li and
Be+ we see that, as for 25, the DHF(p1,p2)-densities possess
maxima corresponding to two distinct regions of density

whereas, for N4+, there is one maximum density located on

two

the diagonal (p2=p1=pL), a result which contrasts with that
for the 25 state. The changes in the two-particle densities
are shown by AD(p1,p2). The AD(p1,pz) surfaces indicate
that the density has moved from low Py to high Py - As
expected from the DHF(p1,P2) surfaces, the diagonal feature
in AD(p1,p2) is quite different from that in 2S. As 2

increases the AD diagrams reveal different behaviour
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corresponding to that already observed for the HF surfaces.
The change in the DHF(p1,p2) densities due to correlation

produce the percentage changes 1in <p?pg) shown in Table

3.1.11.

The electron correlation for the KBLa-shell can be
studied in the same way as for the KaLa-shell. The fHF(p12)
Vs Z—1p12 are displayed in Figure 3.1.11(C) and this
function shows similar trends with repect to 2 as was found
for the KalLa-shell. The comparison between KBLa and Kala
for fHF(p12) shows that the fHF(p12) for a given Z has a
maximum which is less than that in KaLa. The Coulomb shift
for the KpLa-shell shows a sharp drop as the curve moves
away from the origin; this is in contrast to the small flat
region in the Kala caused by the Fermi effect. From the
KgLa curves we see, roughly speaking, that Af(p12) has a
negative - positive behaviour with repect to increasing
z_1p12. However, for KaLa we saw that Af(p12) behaves,
roughly, as a negative -positive and negative curve with
repect to increasing Z_1p12. Figure 3.1.14 shows the
relative magnitudes of the Kala- and KpLa-Coulomb holes for
Li, e’ and N as well as the KaKg- and total holes. The
effect of Coulomb correlation in KBLa is seen to be greater
that that in the KaLa-shell, a result which is not

unreasonable in view of the presence of Fermi correlation in

the KaLa-shell. A similar result was found for the

inter-shells in S.

A comparison between the normalized total Coulomb shifts

for 2P and 25 shows that, at small z_1p12, the influence of
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the inter-shells is quite different for the states. The 2P

2

curves contain less structure than those for S. In

passing, we note that when Z—1p12 > 1, both sets of
normalized total shifts are dominated by the KaKB shell and
hence exhibit a high degree of similarity. This is under-
standable since, in Li, the electrons in the K and L-shells
will have different momenta and hence Fermi correlation in
KaLa has a comparatively small effect and therefore a large
similarity should exist with KBLa for 2=3. At 2=7, the K
and L-shell electrons not only have greater momenta than was
the case in Li but their values are now closer in magnitude
and hence the Fermi effect has a greater effect. Conseque-
ntly, at small p,., the differences between Iup(Py2/P,) for

KaLa and KgLa in N4+ are much more noticeable.

Consider the partial Coulomb shifts for the KfLa-shell
as shown in Figure 3.1.16(C) for Li, Be® and N%*. when p,
and Py, are both small, we see a negative region which is

more extensive and deeper than that in the Kala case for 2P.

4+ where the

This behaviour is particularly obvious for N
negative in KBLa is almost twice as deep as in KalLa. The
effect is most noticeable for Z=7 since the large nuclear
charge causes a merging of the K and L-shells (it was noted
in position space that, generally, the L-shell contracted
more rapidly than the K-shell as 2 increased in value). The
above effect is still obvious for Z=4 but is much less clear
cut for 2=3. Generally, at p, = P; we see a negative-
positive effect with repect to increasing Pyo: and this

agrees with our KaLa findings and also agrees with our

position space observations. When the test electron has
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Py = Py the Ag(p12,p1) surfaces for KBLa shows the influence
of electron correlation as a negative - positive feature as
Py, increases. This indicates an increase in the L-shell
momenta which, in turn, is compatible with the inward

movement of the L-shell density observed in position space.

As for the KaLa-shells, we now examine the Coulomb
shifts for KBLa as a function of P, and 81. The results for
gHF(p12,p1,a1) and Aq(p12,p1,81) for Li, Be+ and N4+ are
presented in Figures (3.1.18 and 3.1.20). For e1=0', 30°,
60°, and 90°, gHF(p12,p1,e1) for KBLa shows, in general,
similar patterns of behaviour as was found for Kala, with
exceptions occurring when 81=O' and 30°, for p, = py. The
KaLa discussion for gHF(p12,p1,B1) can be used here. For
the surfaces when e1=0' and 30°, we see that when P, ® Py a
maximum occurs on both sides of the diagonal axis and,
unlike the KaLa-shell, these maxima for KfLa are of
comparable magnitude. This contrast in behaviour between
the gHF(p12,p1,e1=0') surfaces for KBLa and KalLa is clearly
obvious when comparing Figure 3.1.18 with Figure 3.1.17.  As
in the KaLa-shell, the diagonal and parallel features in the
surfaces behave differently from each other as 8,

Jur
increases. When 81=90', we see only a diagonal effect in

the gup(Pyo/Py/84) density. The Ag(p,,.P,,8,) surfaces for
the KBLa-shell shown in Figure 3.1.20 reveal the influence
of correlation effects in gup(P,,.P,.8,). From these
diagrams, when 91=0° and 30°, the test electron can be in
the L-shell (mostly) when p, = P and so we are examining

the K-shell. From 81=O' the Aq(p12,p1,81) surface shows, as

expected, a negative - positive effect on the K-shell shift
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as p,, increases. Now 1if we keep Py = Pr. but let 91
increase to 90° then even though Py ® P, the test electron
is now in the K-shell (since the L-shell orbital is zero in
its nodal plane) with a much reduced probability.
Consequently, the variation of Ag with repect to Pysp
corresponds to a correlation shift for the L-electron. This
effect on the L-shell 1is again seen to be negative -
positive as Pqys increases but the negative and positive
regions are ‘now only about one-sixth of the size of the
91=O' values for the same small Py = lle value. Like the
KaLa shell, the integrated effect Ag(p12,p1) seems to have

characteristics which are similar to those for the

Ag(p12,p1,01) surface when 81=60‘.

Finally, let us examine the DHF(p1,p2) and the AD(p1,p2)
surfaces for the KfLa-shell. Figures 3.1.21-22(C) show the
DHF(p1,p2) and AD(p1,p2) surfaces for Li, Be' and N4+. The
HF surfaces show features identical to those for the
KaLa-shell whereas, in 25, these densities are not equal due
to the presence of the Fermi effect in the KalLa-shell. A
similar observation was made 1n position space. The
AD(p1,pz) surface for Li in the KBLa-shell shows that the
correlation effects are the same as for the KaLa-shell. As
2 increases a comparison of the AD-surfaces for the Kala-
and KpLa-shells reveals different behaviours in the two
shells. For the KgLa-shell, the AD diagrams indicate a

significant movement of the density from low p; to high P,

compared to that found for the KaLa-shell.
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The correlation effects in momentum space are analyzed
and compared within the individual electronic shells for a

25— and 2P-states. This was

series of Li-like ions in the
achieved by means of a partitioning technique used
previously in position space. 1In momentum space, we have
examined the Af(p12)—curves, which are particularly useful
since the structure of such Coulomb shifts reflects the
nature of the dominant correlation component for a given
electronic shell. This behaviour is in contrast with that
found earlier in position space(81), where radial and
angular correlation effects reinforce each other. Banyard
and Moore(81) established that, in momentum space, the
radial correlation coefficients for two-electron ions are
negative, as in position space, whereas, by contrast, the
angular coefficients are positive. Therefore, for the
momentum distribution f(p12), the effect of total

correlation creates changes which are considerably more

complex than those which arise in position space.

2 2

S and “P in the KaKp-shell show

a high degree of similarity for the Li-like ions when Z"1p12

The Coulomb shifts for

> ,0.5 and both states show the domninance of angular
correlation in the KaKg-Coulomb shifts. 1In the region when
0 <« z_1p12 < 0.5, the KaKp-curves show significant diffe-
rences between the 2S— and 2P—states. For the 2P state, the
radial component of electron correlation gives rise to

negative values for Af(p,,) which are very similar to the
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ionic curves obtained by Reed(77) for two-electron systems.

However, for 25, when 271

+ . s
4+ and o5 give a positive value which is a

Pygy ¢ 0.5, the Af(p12) curves for
Be+, 82+, N
consequence of angular correlation. The above findings are
in general accord with a comparison between the correspond-
ing At values. It was found, for example, that the AT1/p
values for KaKp are ordered in magnitude as Be(1S) <<
Be+(25) << Be2+(1S) < Be+(2P). Therefore, by comparision
with Be2+, radial correlation at small momenta in the Be'
and Be K-shells is inhibited by the presence of the one and
two L-shell electrons respectively. As a consequence of
different symmetry of the 2s and 2p orbitals in the Li-like
ions, we expect a different behaviour between the 25- and

2P-states for the Coulomb shifts at small Pyso- This was

indeed the case.

For the inter-shells, comparisons can be made of the
fHF(p12) and Af(p,,)-curves for the Li-like ions between the
2s and 2P states. At small P45, the KaLa curves for both
states give a flat region due to the presence of the Fermi
effect. Fermi correlation gives a zero value in 25 for the
two-particle density whenever |p,|=Ip,| whereas, in 2P, the
density is zero only for the more 1limited condition
represented by p, = 22'. Consequently, when adding Coulomb
correlation into the description, it is not surprising that
its influence in the 25 state is considerably less important
than in 2P. The effects of Coulomb correlation in 25 are
smaller than in ZP. This finding, in momentum space, is

also supported by the 1inspection of the Y% values. The

results for 25 are smaller than the Y% values for p in each
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individual electronic shell. As in the He-like ions, we

found that the momentum results for Y are smaller than those

2
in position space for both "S and 2P. In momentum space for

both states, the effects of Coulomb correlation in the
KfLa-shell are greater than in Kala, a result which is not

unreasonable in view of the presence of Fermi correlation in

KaLa.

Further points of contrast between the S and P states

can be seen from the normalized total Af(p,,) at O < z'1p12

< 0.5. The 2P curves show a negative region whereas, in 2s,

although the curves are identically negative at small 2_1912

2

(but of smaller magnitude than for the “P-state) they have

all become positive when Z-1p12 » 0.25. 1In general, the

difference in behaviour of At(p12) between the 2P and 25

curves is due to the different behaviour of the inter-shells
in both states. These observations are understandable in
view of the absence of direct angular correlation in the 2?
wavefunction. The Af(p12) curves for the KaKB-shell and the
normalized total effect for the both states show a common

. -1
crossover point at 2 912

1.5. Clearly as in position
space for the Li-like ions, the normalized total curves for
the both states show the dominance of the effect of the KaKp
Coulomb shift. In momentum space, the effect is located at

large P, Whereas, in position space, it is located at small
Xyo-

The Coulomb shift has been studied as a function of P,

by the determination of the partial Coulomb shifts

Ag(p12,p1) in 2S and 2P for individual electronic shells.
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2P show

characteristics which are much the same as for those in 25

For the KaKp-shell, the Ag(p12.p1) surfaces 1in

except at small P, and small Pyp- In the 2s state we saw a
small positive effect for the KaKf-shell for Li, Be"’ and

N4+, whereas in 2P, the KaKp surfaces did not show this
positive effect at small P, and small Pys- This contrast

between P and S states is in keeping with the behaviour of

the Coulomb shift Af(p12) at small Pysy and is also in accord

with the change in the t values. The cause of this positive

Ag at small Py and Pys is perhaps due to the effect of

integrating out the L-shell electron when partitioning the

two-particle density. Therefore it was anticipated that
this feature would not appear in the 2P state because of the

orthogonality condition between the s and p orbitals. Our

results confirmed this conjecture. 1In position space, the

KaKp-diagrams of the partial Coulomb holes for both states

show almost identical characteristics. We note that, in

momentum space, the Ag(p,z,p1)—surfaces for the KaKf-shells

for Li, Be+ and N4+ in ZP are slightly more contracted
2

towards the origin than those for S, and also we found that

2

of the positive and negative effects for “P

the magnitude

are always slightly greater than those characteristics in

the 25 surfaces. Otherwise, the Ag(p12.p1) surfaces showed

features similar to those obtained for the corresponding

density 1in 25.

angular correlation produce effects in the

and therefore emphasise once again, that

radial and

RaKg-shell which are common to both states. However,

contrary to the findings in position space as Z increased,

the surfaces not only became more diffuse but also decreased

in magnitude.
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For the inter-shells, the gHF(p12,p1) surfaces show
diagonal and parallel characteristics and their extent
reflects the spread of the K- and L-shell densities respect-
ively. In position space, the diagonal and parallel
characteristics 1in those surfaces are such that, in this
space their spread now reflects that of the L- and K-shells
densities. The inversion of these diagonal and parallel
features for both spaces is due to the reverse ordering in
the extent of the 1s and 2p orbitals. The comparision
between the gHF—surfaces in the inter-shells for the 25 and
2P states show obvious differences due to the different
symmetry of the outer orbital. This contrast is in accord
with the one-particle density, which is a result of
integrating the qﬂp(p12.91) density with respect to Pys-
The comparison between the KaLa- and KpLa-shells for

for both states shows a difference at small Pys
4+

for Li, Be+ and N

Due to the Fermi correlation in the KaLa-shell, a
difference between the KaLla and KpLa-shell for the
Ag(p12,p1)—surfaces can be found at small Pyg- As we
examine Ag(p12,p1) for each Z at chosen Py, = Pr values we
see that as p,, increases from zero to a large value then,

for that fixed P, value, the sign of the Ag-surface changes

from negative (at small p,, values) to positive (at large

values). This occurs for Li, Be+ and N4+ for the KaLa

P
12
and KpLa-shells in the 2P state. This similarity in 2p

between KaLa and KBLa also occurred for Li in 2s but not for

Be+ and N4+, For py = Pg the Ag(p12.p1) surfaces in 2P
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for KalLa- and KBLa show a negative-positive effect which
occurs as p,, increases. This is in contrast with the
inter-shell diagrams in 2S which show a positive-negative
effect when P, = Pk as Py, increases. For the 2S and 2P
states, the KpLa partial Coulomb shifts show a significant

negative at small Pys and small Py which did not exist in

the KaLa-diagrams due to the presence of the Fermi effect.

Further investigation was made by studying the partial

Coulomb shift in 2P for the inter-shells as a function of

01, where 81 was measured relative to the symmetry axis of

the system.

Examination of the two-particle radial density for KaKp

2

shows a high degree of similarity between 25 and “P in both

position and momentum spaces. The AD(p1.p2) surfaces for

Li, Bet and N4+ showed features similar to those obtained
for the corresponding density in 25, except at small P, and

small P, - In the 2P-state, the KaLa-shell DHF surface for a

given atom is equal to that for the KpLa-shell, whereas, in

25, these densities are not equal due to the presence of the
Fermi effect in the KaLa-shell. In both position and

momentum space the comparison between the AD-surfaces for

KaLa and KpLa shows that correlation effects are not the

2 2

same on the diagonal axis in S and P. This is not

unreasonable in view of the behaviour of the HF surfaces.
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Tables and Figures for the 2s-states
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Figure 3.1.2 The Coulomb shifts Af(py,) Vs z Pqs
(1s225)2s state derived for Li, Be', B%*, N ana 0°*. (a)

for the

The KaKg-shells, (B) the KaLa-shells, (C) the KpLa-shells,

and (D) the total Coulomb shift for each Z obtained here by

3
taking 1/3 f(jAfij(p12).

All curves are ordered at Z-1p12=0.5 such that, as 2

increases the Af(p12) value decreases.
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rigqure 3.1.3 A comparisons of the Coulomb shifts, Af(p,,)

. 4+ 1 +.2
vs. Z-1p12, for the KaKp-shell for Ll(zs), Li ('S), Be (“s),
2+ 1

L+ 1
Be2+(1S) and Be(1S). The results for Li ( S) and Be ( S)
are taken from Reed(77) and the Be(‘S) result is taken from

5
panyard and Mobbs(6 ).

170



I JO S3USWaIDUT UT payiew a1

"93PUTPIOC Ydoed jo dojl Y3l uUO UIATS ST O I3IIYM "ATaATIOBdSaT ‘D X 2 pue O X G 'D X

+pN PU® 94 'TT 103 sateds awpmvuo 9yl -werberp yoea Jo 3JIT

943 UO uMoys ST YO TIym [13Ys-gyoy 343l 103 3IPY3 SP BWes AY} ST 3IJTYS qwono) [e3ol wnsg ay3
103 oﬁmun-am—mvuq SYL ‘o118 + ©oI0y + gNOY Aq USATB ST SUOT3INQTI3UOD 3s3ayjz 3Jo (----) Te3ol
uns ayg .+vz (D) pue 28 (d) ‘11 (¥) Jo 93e3s mNAnNNm—v Y3} UuT STT3Ys (——_)o1gy pue
(—.—)oTIoy '(—)ddo) ay3 103 Npmpun "SA S3IJTYS qQWOINOD 3yl 3o uostaedwod y V'Lt oInNbry
\\4/
/ 19°
) / ,/ A Si- A St- z- 12-
\ {1
S\
\ u—. _f-/. T %\I x ” x
{ / ') R R Q
| " x = x
_, Vify4 = @ @
a /// \ 8 a 8 La - h ] 8
— \ ” ! - = ;
Q I Vi /il v &2 w x _ v
x \ _ 1 c Xx c _ nw.....
4__ __. m & w & [~ ] - —
od __, .__. nlu. Ol. | g
] ; g 3 o 3 | o
3 (I B =3
2 ﬁ \ 2 ¥
\ - -
- __/ -
W
)
V + + 4G+
+ v VAR + mN m m
T swaus_ N 1) ST snaus 2q (9) SIays 17 (v)
&+
v-0L%XS0 o, v-0bXL L 0lxGQ yOLXL L OL%G0 0Lt
d_z sa(Tdyv d

171



Figure 3.1.5

(see over)
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Figure 3.1.6

(see over)
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Figure 3.1.7

(see over)
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Figure 3.1.8

(see over)
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0.4 (A) KaKB 0.4 | (B) KaLa
f(p,) f(p)
0.3 0.3 } Z as in (A)
0.2 0.2 |
0.1 0.1
Z"p,,
0.0 0.0 .
0 0 1 2 3
0.4 (C) KBl 0.4 | (D) TOTAL
f(p,, fip,,)
0.3 Z as in (A) 0.3 Z as in (A)
0.2 0.2 ¢
0.1 0.1
Zp
0.0 = 0.0 A .

0 2 3 0 ! 2 3
Fiqure 3.1.11 The Hf function f(p,,) for the (1522p)2P
state for Li, Be+, 32+, C3+, N4+ and O5+ plotted against the
scaled distance 2 Py, (in atomic units). (A) The KaKp-

shells, (B) the KaLa-shells, (C) the KBLa-shells, and (D)
the total distribution when normalized to unity.
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0.002 (D) TOTAL
0. 001

0.000

Af(p,,)

-0. 001

-0.002

Figure 3.1.12 The Coulomb shifts Af(p,,) vs 2 'p,, for the
(1522p)2P state derived for Li, Be+, BZ+, C3+ and N4+. (A)
The KaKp-shells, (B) the Kala-shells, (C) the KBLa-shells,
and (D) the total Coulomb shifts for each Z obtained here by
3
taking 1/3 F .Afij(p12).
i)
When Af(p12) is positive the curves are ordered from

left to right as Z increases in value.
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Figure 3.1.13

The Af(p,,) comparisons for the KaKB-shell in

., 2 ., 2 .+
Li(“P), ©Li("S) and Li (15), and also for Be+(2p) Be+(2q)

2+ 1
and Be” ('S5). The results for Li+(1S) Be2+(1S) are tak
' 2 akKken

from Reed(77).
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Figure 3.1.15

(see over)
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Figure 3.1.16

(see over)
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Figure 3.1.17

(see over)
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Figure 3.1.18

(see over)
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Figure 3.1.19

(see over)
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Figure 3.1.20

(see over)
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Figure 3.1.21

(see over)
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Figure 3.1.22

(see over)
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PART FOUR

APPENDICES



(55) has shown that the reduced density matrices

Lowdin
provide a valuable tool for analysing the properties of a
wavefunction. The second-order density matrix, expressed in
terms of a normalized wavefunction, will be wuseful in

evaluating the Coulomb hole, Af(r12), for the subsequent

discussion of correlation properties.

In the independent-particle model, the wavefunction for

a system of N electrons can be expressed as a single Slater
determinant, thus

. .(1,2,...,N) = J(1/N!) det l01(1)02(2)...0N(N)| A.1.1

HF

where ¢ is an orthonormal spin-orbital and is a function of
space and spin coordinates. It is easy to show that single
determinant can be written as the antisymmetrized product of

all occupied HF spin-orbitals

QHF(1,2,...,N) = AW(1,2,...,N) A.1.2
where
M(1,2,...,N) = ¢, (1)8,(2)...00(N) A.1.3
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and A* is the N-electron antisymmetrizer operator, given by

A= J/(1/N!) L (—)PP ' A.1.4

all p
and P 1is any permutation of the elctrons, and (-)P has a
value of +1 for an even permutation and -1 for an odd
permutation. The factor J(1/N!) is introduced to ensure
that the wavefunction is normalized, i.e. <.HF|’HF> = 1
where the notation <|> refers to integration over all the

coordinates. Expanding equation (A.1.2), we get

N
_ m P
tpp(1/2,...0N) = T AL ()" AT, A.1.5
i<y
where
mn _ _
and "ij represents the product of all occupied HF spin-
orbitals except Oi(m)and Oj(n); i and j represent spin-

orbital labels and m and n refer to electron labels.

For any N-electron atomic system, the two-particle

3(67)

density is define as

]

.. N
r(xmznlxmzsn) = () f#(...xp---ﬂ (-.-zsp...)(dzsp). A.1.7

As usual, X, represents the combined space and spin

4'A indicates the antisymmetrizer operator unless stated

otherwise.
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coordinates of electron p, and (dxp) indicates integration-

summation over all N electrons except m and n. The factor

(g) ensures that the second-order density matrix
r(xmxnlxéxé) is normalized to the number of electron pairs
within the system; see, for example, McWeeny and
sutcliffe(®7).

Substituting equation (A.1.5) into (A.1.7) yields

AP? ()P ap. . )

M (Bg &) = (3) J f<, i3 i3
N mn P *

The integration in equation (A.1.8) gives zero unless i=k

and j=1, therefore

= mn mn*
rHF(xm.xn) (2) J { f<,A13 Alj IAn An (dxp) . A.1.9
N N mn mn*
Fup (&g &) = () (N-2)!/N! f<,A13 AlJ A.1.10
where
N *
r AﬂijAﬂij (dxp) = (N~2)!/N! A.1.11

i<

Since (g)(N-Z)!/N! = 1/2, equation (A.1.10) yields

N
= mn ,mn*
HE (BpeBn) = 1/2 I A75 A5 A.1.12

The density for each pair (i,j) is normalized to unity.

To enable us to examine correlation effects within
different shells for a given system, the correlated
description of the two-particle density was formulated in

terms of the many electron theory proposed by Sinanoglu.
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This theory allows us to write the correlated wavefunctions

as

Yeorr(1:2: - /N) = clopc(1,2,...,N) + X(1,2,...,N)]. A.1.13

where the leading term *HF in equation (A.1.13) is chosen to
be the restricted HF wavefunction. Since this reference
state is a single determinant, it can be expressed as shown

above in equation (A.1.5).

The correlation part X in equation (A.1.13) can be

expanded as

N N N
X(1,2,...,N)=L X, +L X, .+[ X, 00 +.o..4 X, . A.1.14
e i oy i eyek ijk ijk...N
where
xi = A{ W(1,2,...,N) fi/'bi } A.1.15
-1/2
. o= | ... - . P,
xiJ 2 A{ W(1,2, N) ULJ/¢1¢J ) A.1.16
-1/2
. . = ! - . b,
lek 3 A{ (1,2, ,N) Ul)k/’103‘k } A.1.17
-1/2
- [}
xljk‘ N N! A{ w(1,2,...,N)
Uijk...N/’i‘j’k""N } A.1.18

The ¢i is the ith normalized HF spin-orbital, and fi is the

corresponding orbital correction function, U,.

i3 1s the pair-

correction function associated with ¢. and tj, and Uijk .

Uijk...N are higher many-electron correlation terms. In
equation (A.1.15-18), we have used the convention
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fi/.i=fi(xi)/’i(xi) f) Uij/’i’j=uij(xixj)/.i(xi)’j(xj) , etc.

Expressions for correction functions were obtained by the
method of successive partial orthogonalization (MSPO)

(36)

proposed by Sinanoglu The correlation terms U are

antisymmetric under an odd number of permutations, i.e.

Uy (&;.%5) = U;3508,3) = ~U; 5(5,%;) A.1:19

Ujgu (85 By08y) = Ui gp(X5.%;  Xy) . A.1.20

The correlation function X(1,2,...N) in equation (A.1.13) is
orthogonal to all the occupied spin-orbitals in ’HF since

the MSPO procedure is based on the following strong ortho-

gonality requirements

<fil.l> = 0

<uij|¢1> =0

<Uik'.1> = O (1 = 1'2,.--IN) A.1-21
Uiik...nl*1> =0
where
<Uijl01> = <Uij(xi.xj)lti(xi)>i
*
= f UlJ(Kl.KJNl(Kl)dKl =0 . A.1.22

202



The partitioning of rcorr(xm'xn) into 1its pair (i,3J)
components is, of necessity, only approximate and, as
discussed 1in earlier work(za), the contributions arising

*
from X (1,2,...,N)X(1,2,...,N) will be omitted.

Substituting equation (A.1.7) we get,

Feorr BpBp) = () © J € opp(1,2, ... N)egp(1,2,...,N) +
®
*up(1:2,...,N) X (1,2,...,N) +
*
X(1,2, ..., N)# 0 (1,2,...,N) ) (dx) A.1.23

If we expand the correlation part Xx then, according to the
orthogonality conditions in equation (A.1.21), the equation

(A.1.23) can be written as

N x
Meorr BmiEp) = () © [ J ¢pp(1,2,.. . ,N)#ge(1,2,...,N) +
N * N 4
! *up(1i2,...,N) fgfi (dxp) + f epp(1,2,...,N) f<fij(d“p’
N * N *
+ f_fi’nr‘1'2""'N)(dxp) + {<f xij¢HF(1,2,...,N)(dxp)]
A.1.24
since
N *
f e, (1,2,...,N) ([ Xisr +...+ X, . } (dx ) =0
HF icyck 13k 13k...N “p A.1.25
and
; b oen (1,2
f{r X. . +...+ X.. ..N ’HF ll---rN) (dx)=0
i<jek 13k 13k. P A.1.26

In the present work we are considering three-electron
systems, so it is convenient to set m=1 and n=2, and after
integration over all electron coordinates except those
associated with electrons 1 and 2, equation (A.1.24)

becomes, after some considerable manipulation, as follows,
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3
[A12 12% 12 12* 12 12*

r = 1/2 L . 5 - N L o
corr (Xq:%5) / PRt Rij + A;§ By + Ajj D5 +
12 ,,12%* 12 ,12* 12 , 12> 12 ,12%*
[2 A i3 Uij + Bl] A i3 + D, i3 AlJ + /2 Uij Aij ] . A.1.27
In the above equation, Ai? is defined as in equation

(A.1.6), and B!2 ang p'2

ij i3 as follows

12 _ _ .
B/ iy = *i(xq)E4(x5) £5(x4)9;(X5) . A.1.28
1 2 4 - a .
Dij = £ (mpey(xy) - ¢5(xf;(x,) . A.1.29

Equation (A.1.27) can be rewritten as

3
= T [
1<}

al? f2u12+a12+o‘2+A‘2/z] . A.1.30

rcorr(x1'52) ij 1]

Finally, when we substitute the Uij expression (see

equation 1.1.18), the equation (A.1.30) becomes

3

- 12 _ 12
corr(x1.xz) f(’Alj (<vcorr|"ij)/<vcorr|"> 1/2 Alj)
A.1.31
In this analysis, nij and T are defined as before (see

IT..> are over all the

page 35), and the integrals in <vcorr i3

coordinates occuring in nij and thus we obtain a function of

X, and X, only. The term <Vcorr|ﬂ> is the overlap integral.
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CALCULATION OF THE £(x,,), 9(r,,.x,) AND
a(xr,,.r,.8,) FUNCTIONS

For any N-electron system the two-particle density can be

defined as(67)

M(&py &y = (g) ) ‘P*(x1.x2,--..zsN) V(X9 8y, ..., %)
dgp,...de A.2.1
where X and x are the space spin co-ordinates of any two
electrons m and n, and dxp,...de indicates integration-
summation over the combined space and spin co-ordinates of
all N-electrons except m and n. The factor (g) ensures that
the Tr(x,.Xx,) is normalized to the number of electron pairs
within the system, so that
Jor(x,.x,) dx,dx, = (';) : A.2.2
For the three-electron systems, the density for the
individual electronic shells is obtained by partitioning r
into its pair-wise components (i,3j), and the resulting
expression for  can be written as
3
F(x8,) =L rij(xm,xn) A.2.3
i<
The i and j values label the occupied spin-orbitals within
the HF description and, hence, taken as a pair, (i,j)

references the individual electronic shells. As seen in

Chapter 2.2.3 (also see Appendix A.1) the partioning of
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rHF(Km'Kn) is exact whereas, for the correlated two-particle

density, the resolution may be achieved only approximately.

The interparticle distribution function associated with

the spin orbital pair (i,j) is given by

fij(r12) = [ Fij(x1.xz)dzs1dzs_2/dr12 A.2.4
such that, for any pair (i,j) we have
g fij(r12) dr12 = 1 ' A.2.5
where for convenience we have set m and n to be 1 and 2.
After integration over the spin co-ordinate, equation
(A.2.4) reduces to
A.2.6

£13(rqp) = 1 Ty5(2q25)dE0498,/d1r 4,

where Flj(;1,;2) is the spin-free second-order density, and

I, represents the space coordinates of electron 1. The

element of volume d;i is defined as

= 2 3
dli ri 51nai dei dwi dri
integration in equation (A.2.6) is to be performed over

and the integration region in
(63)

The

all coordinates

except r,,
this equation is just that used by Coulson and Neilson

can be interpreted as the

Physically, f(r12)dr12
probability that the distance separating electrons 1 and 2

lies somewhere between Iy, and ry, + dr12. In order to
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calculate f(r12) we express equation (A.2.6) in terms of r,,
r, and ryoi all angular terms must be integrated out. To
reach this stage we start by transforming the density and
elemental volume in an appropriate ﬁanner by selecting the
I,-direction to be the new polar axis. Transformations of
the element volume 1in equation (A.2.6) may therefore be
acheived by rotating the coordinate system through the Euler
angles afy, see Figure A.2.1, whence

dr, = 13 dr, sing,, de ., dx . A.2.8

From the law of cosines

2 2 2
r{, = rj + r, - 2r1r2cosﬂ12 A.2.9
we obtain
r12dr12 = r.r, sine12 d812 A.2.10

provided that r,, r, are kept fixed. The combined volume

element therefore becomes
dr,dr,/dry, = r1r2r12dr1drzslne1de1dw1dx . A.2.11
Substituting equation (A.2.11) into (A.2.1) we get

f(r =1, r(;1,;2)r1r2dr1drzsin81d81dw1dx ' A.2.12

12)

where X denotes an angle of rotation of the plane 012 around

01 and, for a given Lyor the allowed values of xr, and r, are
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defined by the rotations

Ty - Ty €Iy €, + 1, (r1 < r12)

I, - I,, §$ I, &Iy, +r, (ry > r,) . Aa.2.13
Equation (A.2.12) can be used in general to evaluate f(r12)
for spherically symmetric cases and also for non-spherically
symmetric examples, as considered in the following Sections

I and II, respectively.

ically- .

If the wavefunction ¥ 1in the two-particle density I
involves only I,o I, and o then we may integrate over

angles mentioned in equation (A.2.12) to give

2

f(r12) = 8n Iyo {J1 + Jz} ' A.2.14
where
Tq2 EPALE!
J1 = I r1 dr1 f r(11012) r2 drz A.2.15
0 r27%4
and
. r12+r1
J, = I r, dr, I r(ry.x,) r, dr, A.2.16
Ty2 1 T2

The ranges of the two radial integrations J1 and J2 are

represented by the shaded area shown in Figure A.2.2.

In order to utilise f(r12), the wavefunction ¥ in the

r(r1,r2) must be expressed entirely in terms of Ty I, and
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yo: this 1is easily carried out by applying the spherical

(85)

harmonic addition theorem to equation A.2.14. This

theorem states

+1 *
Pl(cosB12) = 4w/ (21+1) ﬁ_-lY1“(91,w1)Y1u(82,w2) A.2.17

where 812 is the angle between I, and X, This gives

+1 % +1] .
5__1Y1u(81,w1)Y1u(82.w2) £=_1Y1p(81.m1)Y1u(62,w2)
= (21+1) /4w Pl(cose12) A.2.18

The phase of the spherical harmonics used by Weiss in

x
the construction of his wavefunction was Ylu = Yl—p' The
argument cosa12 of the Legendre function appears in equation
(A.2.18) is
2 2
1 ¥ I3

_ _ .2
cose12 = r r12) / 2r1r2 . A.2.19

Boyd and Coulson(sq)

defined a function g(r12,r1) to
represent the probability of finding an interelectronic
separation r,, when a test electron is located at a distance
r, from the nucleus. Therefore, the g(r,,,r,) function may

be calculated by performing only the inner integral in

equation (A.2.15) and (A.2.16). This relation may be

summarised as

"12 N

J' fglry,xyddr, + [ glr,,,r )dr,
a "12

f(r12)

= [ g(r12,r1)dr1 A.2.20
1]
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II. The Non-Sphericall :

The distribution function f(r,,) arising from the

spherically-symmetric wavefunctions built from 12

configurations can be obtained from the use of equations

(A.2.14-18). However, many interesting systems are not

(87)

spherically symmetric In the present analysis the

2P—state of Li-like ions is an example of such a system.
The expression for f(r12) obtained from equation (A.2.12)

will involve integrals of the most general type

*
I=1 Y11m1(°1'¢1)Y12m2(91'¢1)
*

14m4(e

)Y )Sin81d81dw1dx . A.2.21

Yiama (85093 2'%2

Following the procedure of Calais and Lowdin(aa), the
reduction of equation (A.2.21) to an integral involving
functions of r,, I, and r,, can be done by expanding the
product of each pair of spherical harmonics with the same

argument into a sum of spherical harmonics.

According to Rose(eg), equation (A.2.21) becomes
1, +1 1,41

Lo bthe g2 (LyL,L,L,/ (16wnLL )) /2
1=11 21,0 17=11,-1 1

C(l1121;m1—m2m) C(1314l imy-m,m )

m2 +ms

2

where
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K =17 Ylm(1)Y1'm'(2) sin81d81d¢1dx . A.2.23

In equation (A.2.22-23), Li=211+1' m=m, -m, and m’=m3—m4_

The type of Clebsch-Gordan coefficient C(11121;m1m2m) used

in this work is that defined by Rose(eg).

In order to calculate equation (A.2.22), it is necessary
to evaluate the angular integral K. Express the spherical
harmonic Yl.m.(ez,mz) in terms of 81, ¢1,812 and X. This is
equivalent to rotating the coordinate system so that the new
polar axis coincides with the r, direction. The new polar

angles are, of course, 012 and X. In other words, we rotate

the o0ld system by the Euler angles(go). Thereby the
function Yl,m.(az,wz) is transformed to
= 1’
Jl‘m‘(81'w2‘812'x) =L Dm.m(uBY) Yl.m(012,x) A.2.24

L
where Di:m(uﬂv) are the elements of the rotation matrix as

(89)

given by Rose The function J,. .(8,,¢0,;8,,,X) depends

on X only through the function ei™X ip the spherical
harmonic Yl’m(a12'X)' Consequently, we can integrate over X
directly, which reduces the sum in equation (A.2.24) to the
single term with m=0. Therefore
0 1 .
K =2n [ ¥, (1) 0,.(8,,) Dp.g(aBy) sin8,de de, A.2.25

where 9?.(812) is the normalized associated Legendre

polynomial. But since, for m=0

b
pll = (an s 21402 v L (80 A.2.26
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we see that equation (A.2.23) becomes

v

_ _ym
K = 2w (-) Pl,(cose12) 511 %m-m" . A.2.27

Substituting equation (A.2.27) into equation (A.2.22) we

get
m " l1+l2 1341
I =172 (=) 2ttt ! [L1L2L3L4/LL’]1/2
l=ll1-12| 1 =|13-14|
C(11121;000) C(13141 ; 000)
ml

The distribution function g(r12,r1) is determined in the
same way as for the spherically-symmetric case. However, in

order to calculate g(r12,r1) as a function of 01, we follow

the general procedure outlined above. In equation (A.2.25),

however, we integrate over o, only, hence we get the

following relation,

oo w
gg(r12,r1)dr1

(J]'dr1 gg(r12,r1,81)51n81d81

= f(r A.2.29

12)
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4’“

e, ,01¢1)

Figure A.2.1 Coordinate system for the determination of

f(r12)‘ g(r12,r1) and g(r12.r1,a1)_
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0 = .
N g r>r
( 1.) r‘ < r‘! —_— 1 12
0 >
(Fyq. 0) f
Figqure A.2.2 The radial integration range in equation

(A.2.14) 1is represented by the shaded area.
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Momentum space electronic wavefunctions can be obtained

(80,91)

through the Fourier transformation of ordinary

position-space wavefunctions. Thus we may write
X 1 p(B) = 1/7C(2m3) § x| (z) exp(-iP.x)dx A.3.1
where X ;. is a Slater-type orbital (STO) and is given by
Xp1n(E) = Nppp Y1) Ry (@ A.3.2

In equation (A.3.2), N is the normalization factor,

nlm

Ylm(Q) is the normalized spherical harmonic, and Rnl(r) is

the radial part of the function defined as

_ _-Er _n-1
Rnl(r) = e r

Iin order to transform xnlm(r), we first use an

alternative expression for exp(-iP.r), written as(gz),

BRI o grr -0V er) ¥, (@Y, (@) , A.3.3
1=:0 @m=-1
where é = é . ; and represents the angular variables in
momentum space and jl(pr) is a spherical Bessel
function(ga).
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Combining equations (A.3.1) and (A.3.3) we get

o 1 ’ .
r2/m) 1L (-iy?! Y. (Q)
m

anm(B) = anm . m
1 =0 =-1
o0 2 2w n *
g 3y - (pr) R p(r) r” dr g g Y1 (DY ()42 . A.3.4

The angular integration gives rise to the delta functions

511'6mm' which cancel all terms in the summation except when
1 =1 and m = m°. Thus, we obtain
xnlm(E) = Nilm Rnl(B) YD) ' A.3.5
where
R ,(p) = /(2/m) (-i)1 ? j,(pr) R_,(r) r? ar A
nl p 0 1 nl . -3.6

Equation (A.3.6) can be written as

R, (P) = (-i)? g /(pr) J1+1/2(pr) R, (x) r?dr, A.3.6

J1+1/2(pr) is an ordinary Bessel function of order 1 + 1/2

and can be written in terms of a spherical Bessel function

through the relation

J1+1/2(Pr) = (2pr/")1/2 jl(pr) . A.3.7

Substituting equation (A.3.7) into (A.3.5) yields

- +
€r_n 1/2dr

N (-1 1/ /(R) Yy I3, ere " , A.3.8

Xn1m (&)

where v 1 + 1/2.
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The radial integral

oo + -
fe™t2 e g (pr) ar A.3.9
0

which we denote by I, 1is evaluated by making use of the

definite integra1(93)

v+1/2]

e Bt 3 (bt) t¥ dt = (2b)Y F(v+1/2)/[/n(A) , A.3.10

o g

where A = Ez + b2

Differentiating q times with respect to the quantity E we

obtain

[ e &t 3, (bt) £Vte g¢

v+1/2)

= (=)"9 (2b)v/sm F(ve172) 331/ A3 11
aed
If we let g = n-1, t=r and b=p, the integral in Equation

(A.3.11) Dbecomes equal to the integral I. Thus in atomic

units,
r - (o Ml 2p MY 22 3™ At A.3.12
'ggn—l

and therefore equation (A.3.8) can be expressed as

-(1+1)

, -1 -
x| (p) = N(-)"(2pi) 11t/ (2/m) 377 () Y, (2) A.3.13

agh !
where
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N =1/ [(2E)2n+1

/ (2n)!]
Below, we present the position and momentum representat-
ion of the normalization factor Noim and the radial part of

the various STO’s used in this work.

Orbitals anm Position Momentum
1s r(ae) e 8T 2es(2/ma”?
25 7 (4E°/3) re 8% s(8/m)(382-p%)a73
3s 7(8E’/45) r2e 8T s(2/w)248(E2-p%)a7?
2p 7(4E°/3) re 8T _/(2/m)8piEa”3
3p /(8E'/45) r2e 8T r(2/m)8pi(b?-582)a"4
34 7(8E7/45) r2e 5% -48es(2/mpa”?
44 2e%/3/(8/35) r3e EF  48p2r(2/w) (b2-782)a">
54 2e5/a57(2e/7)  rie 8% p2r(2/mE(3b%-784)a7"
af 2e4/3/(€/35) r3e 8% 384pliEs(2/m)a”>
5¢ 2e5/a57(28/7) e BT 384p’is(2/m)(98%-b%)a""

5qg 285/45/(2€/7) e 8T 3ga0ptes(2/w)a8
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