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ABSTRACT 

In Part 1, the correlation problem is briefly reviewed 

and is followed by an outline of some approaches to electron 

correlation. 

In Part 2.1, correlation effects in the ground state of 

a series of open-shell systems in the form of Li-like ions 

are examined. The analysis is performed by using a 

partitioning technique which allows correlation effects in 

the individual electronic shells to be studied. These 

effects are examined by means of Coulomb holes, partial 

Coulomb holes, various correlation coefficients T and 

several one- and two-particle expectation values. The use 

of partial Coulomb holes illustrated changes in the relative 

importance of angular and radial correlation effects as the 

location of the test electron was varied. Comparisons are 

made between the K-shell results for the Li-like ions and 

those for the corresponding shell in some He- and Be-like 

ions. Similarly, the inter-shell results for Li are 

compared with their counterparts in both the Be atom and 

some excited states of He. 

In Part 2.2, the study of correlation effects is 

extended to an examination of the Li-like ions in the 

(1s22p)2P excited state. These results are compared with 

those for the ground state, discussed in Part 2.1. 

In the light of the results obtained in position space, 

a parallel investigation of the Li-like ions was carried out 
in momentum space and those results are presented in Part 3. 

In momentum space, the contrasting behaviour of the angular 

and radial components gave insight into the way electron 

correlation in the K-shell was influenced by the occupation 

of the L-shell. In addition, the analysis highlighted 

certain weaknesses in the description of the inter-shells in 

the excited state wavefunctions. The momentum results for 

the K-shell are compared for the ground and excited states 
+ 2+ 

of Li with Li , Be and also with the Be results. 
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GENERAL INTRODUCTION 



CHAPTER 1.1.1 

THE CORRELATION PROBLEM 

It is well-known that the laws of classical physics are 

applicable only to the motion of macroscopic particles and 

not applicable to the discussion of electron motion in atoms 

and molecules. Consequently the microscopic particle 

requires a new form of mechanics, termed quantum mechanics 

(or wave mechanics). The foundations of present day quantum 

mechanics were laid in 1926 by Schrodinger, who published a 

series of papers on the subject. In the first of these 

papers 
(1), Schrodinger introduced the wave equation which 

was subsequently extended and successfully applied to a 

large number of problems. Since then it has become 

generally accepted that the Schrodinger Wave Equation offers 

an accurate description of microscopic phenomena. This Wave 

Equation can be solved exactly for the hydrogen atom and 

hydrogen molecular ion, each with a single electron. 

However, for a larger atom or molecule, the problem is made 

more complicated by the presence of potential energy terms 

which arise from the mutual repulsion between any two 

electrons. In practice the exact solution to the 

Schrodinger equation for a many-electron system is 

unobtainable. Therefore, in order to make the problem 

tractable it is necessary to have make use of approximate 

methods. This is where a knowledge of the physics of the 

problem becomes important. Any approximations which are 

made in solving the problem must be physically reasonable if 

meaningful results are to be obtained. The first and 
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simplest of such approximations is due to Hartree (2), where 

we assume that the total wavefunction 'Y(1,2,3,..., N) for N 

electrons can be written as a simple product of one-particle 

wavefunctions: 

Y(1,2,3,..., N) = i1(1)+ 2(2)+ 3(3)... 4 N(N) , 1.1.1 

where fi(i) depends on the space and spin coordinates of 

electron i. One of the assumptions in equation (1.1.1) is 

that the electrons move independently of each other; that 

is, each electron moves in the average electrostatic 

potential due to the presence of all the other electrons. 

One major source of difficulty with the total wavefunction 

written in the form of equation (1.1.1) is the so-called 

electron correlation problem. This arises from the fact 

that the Hartree product function incorrectly describes the 

electron-electron interactions. To avoid this difficulty 

and, in particular, to let the Hartree product satisfy the 

Pauli Exclusion principle and take into account the 

indistinguishability of electrons, the total wavefunction is 

(3 
written as a single Slater determinant ) 

i i1(1) i2(1) 
... +N(l) 

I i1(2) f2(2) ... iN(2) 

... ... ... ... ( 1.1.2 

i i. i 1f1 (N) f2(N) ... iN(N) 

The component one-particle functions are referred to as 

spin-orbitals. Any spin-orbital may be written as the 
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product of a space orbital p and a spin function a or ß. If 

41 is determined numerically by an interative self-consistent 

field procedure, it is called a Hartree-Fock (HF) 

wavefunction 
4-6). 

Interchanging the coordinates of any 
( 

two electrons corresponds to interchanging two rows of the 

Slater determinant, which changes the sign of the 

determinant. Thus, Slater determinants meet the requirement 

of the antisymmetry principle. Having two electrons 

occupying the same spin orbital corresponds to having two 

columns of the determinant equal, which makes the 

determinant zero. Consequently, no more than one electron 

can occupy a given spin orbital (Pauli Exclusion Principle). 

The HF orbitals are constrained to form an orthonormal set 

of functions and the multiplying factor (N! ) -1/2 ensures 

that W is normalized to unity after integration over all the 

space and spin coordinates for the N-electron system. 

The independent-particle wavefunction for an N-particle 

system, represented at its best from an energy point of view 

by the Hartree-Fock treatment, allows for some spatial 

correlation between electrons with parallel spin components 

by means of the Pauli Exclusion Principle which gives rise 

(7 to the so-called Fermi-hole , 8) 
" This causes the Hartree- 

Fock energy to be lower than the Hartree energy. 

In reality, all electrons repel each other due to the 

Coulomb potential e2/r12 which exists between them, and each 

electron is therefore surrounded by a Coulomb hole (9) 
with 

respect to the other electrons. Within the HF approximat- 
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ion, the probability of finding two electrons with parallel 
(spins 

at the same point in space is zero 
10'11ý. 

Such a 

point may be termed the centre of a Fermi hole, and is a 

consequence of the antisymmetry of the wavefunction. 

Although the HF method allows electrons with the same spin 

properties to avoid one another, no allowance is made for 

any spatial correlation between electrons with opposite 

spins. The effect of correlation between all electrons can 

only be examined by means of wavefunctions which are more 

flexible than the HF determinant. When described by 

wavefunctions which go beyond the HF level of accuracy, each 

electron lies in a region of space which is largely devoid 

of other electrons, this is a consequence of a more 

realistic description of the Coulombic repulsions. 

Correlation thus refers to the residual error in the 

Hartree-Fock model when describing the electron-electron 

Coulombic interactions. 

One may get an idea of the order of the correlation 

error in the independent particle model by studying the 

correlation energy 
(12) 

, which is defined as the difference 

between the true non-relativistic energy and the HF energy, 

Ecorr - Eexact EHF 1.1.3 

Since the Hartree-Fock energy is an upper bound to the exact 

energy the correlation energy is negative. This definition, 

although straightforward, has the disadvantage of being 

based on two quantities, neither of which can in principle 

be known exactly. Gruninger, Ohrn and Lowdin (13) have 
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shown that the major contributions to Ecorr come from the 

electronic kinetic energy and, in particular, the total 

electron-electron repulsion energy. 

For the ground state (1s) 2 
of the He-like ions, the 

correlation energy is approximately constant -1.1eV, of 

which amount +1.1eV refers to the kinetic energy and -2.2eV 

to the potential energy, in accordance with the virial 

theorem. Similar figures are appropriate for the ground 

state of the hydrogen molecule, H2. It should be observed, 

however, that the correlation energy per electron pair in 

general is not a constant and that, for the ground state of 

atoms, it goes up approximately linearly with increasing 

(1 
atomic number 

4ý. For atoms and small molecules, the 

correlation energy seems to be approximately one per cent of 

the total energy. Although this is a relatively small 

contribution to the total energy it is comparable to 

spectral transition energies, binding energies and 

rotational barriers in molecules. For example, the 1S 

description of H is particularly sensitive to electron 

correlation, since without correlation the existence of the 

ground-state is not even predicted. Many other physical 

quantities such as absorption frequencies and force 

constants are directly related to total energies and can 

therefore be correlation dependent. Energies calculated by 

the Hartree-Fock method are typically in error by about 1%. 

On an absolute basis this is not much, but in chemical terms 

it is still too large. For example, the total energy of the 

carbon atom is about 1000eV, and 1% of this is 10eV. 

Chemical bond energies are typically of the order of 100 
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Kcal/mole, which is 5eV/molecule. Attempting to calculate a 

bond energy by taking the difference between Hartree-Fock 

molecular and atomic energies, which are in error by several 

eV for light atoms, is an unreliable procedure. We must 

seek a way of improving on Hartree-Fock wavefunctions and 

energies. 

The correlation problem is still a field of active 

research and many methods of analysing and studying 

correlation have been proposed. The work of Nesbet(15), 

Brueckner (16) 
and Sinanoglu(16) has been particularly note- 

worthy. Much of the early work on the problem was due to 

Hylleraas(17) who proposed three methods of constructing a 

correlated wavefunction, all of which are still in use 

today. 

In the quantum theory of the electronic structure of 

matter, the two-electron systems provide a valuable bridge 

between the comparatively simple one-electron systems and 

systems containing many electrons. The structure of an 

electronic system within a given nuclear framework depends 

not only on the balance between the kinetic energy of the 

electrons and their attraction to the nuclei, but also on 

the mutual electronic repulsion. The last effect causes 

considerable difficulties in the theory, since it may not be 

treated within the conventional 'one-electron approximat- 

ion'. The accurate solution of the many-electron 

Schrodinger equation therefore demands other methods, and 

the results for two-electron systems are then also of 

guiding importance in treating systems containing many 
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electrons. Two types of solution of the two-electron 

Schrodinger equation have been suggested, namely an 

eigenfunction in the form of a 'superposition of configurat- 

ions' and a form containing the interelectronic distance as 

a variable. Both types were first investigated by Hylleraas 

in his pioneering work on the helium problem(18). Hylleraas 

found that the series of configurations converged rather 

slowly and that a much quicker convergence could be obtained 

by introducing r12 explicitly in the solution. Wave- 

functions containing r12 have later been evaluated by James 

and Coolidge (19) for the H2 molecule, by Henrich (20) for the 

H ion, and for the He series by Eriksson(21), by Baber and 

Hasse(22), and by Chandrasekhar and Herzberg 
23ý. The wave- 

functions containing r12 have the disadvantage that it seems 

impossible to give them an interpretation of simple physical 

visuality, and it is further difficult to generalize the 

(24 
approach to many-electron systems 

ý. Nevertheless, the 

success of the r12 method was so large that, for a rather 

long time, it was almost generally believed in the 

literature (17) that "electronic correlation" could be taken 

into account only by introducing the inter-electronic 

dictances r1 explicitly into the wavefunction. However, it 

was already known in the early days of quantum mechanics 

that the wavefunction for a many-electron system could be 

expressed as a superposition of configurations built up from 

one-electron functions, provided that the one-electron set 

was complete. 

The wavefunctions studied in this work are of the con- 

figuration-interaction (CI) (25,26) 
type and they are 
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analysed by making use of the many electron theory (MET) 

proposed by Sinanoglu(27). In the next Chapter, a brief 

outline is given of some approaches to correlation. In 

Part 2, we examine the effects of electron correlation using 

a partitioning technique 
(28) in position space for the 

ground and first excited states of a series of the Li-like 

ions. In Part 3, the analysis was performed by determining 

correlation properties in momentum space by using the 

Fourier transformation, see Appendix A. 3. 
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CHAPTER 1.1.2 

THE CALCULATION OF CORRELATION EFFECTS 

(A) Some Approaches to Correlation 

The wavefunctions used throughout this work are of the 

configuration-interaction (CI) type. In this approach, the 

correlated wavefunction is expanded as a linear combination 

of Slater determinants(29)1 

'Y =L ci fi 
i i 

where each of the fi's (configurations) is an antisymmetriz- 

ed product of one-electron functions (spin orbitals), and 

the coefficients ci are taken as those which minimize the 

total energy. The exact wavefunction may, in principle, be 

obtained by applying the variation theorem and solving an 

infinite set of secular equations. In practice, of course, 

there is a restriction on the number of configurations that 

can be conveniently handled; the more terms that can be 

accommodated, the better the calculated energy. The main 

drawback of this method is that, at the outset, it is not 

certain which configurations will be most effective in 

lowering the energy. In addition it is found that the 

energy convergence of a CI expansion is notoriously slow. 

These difficulties can be overcome by expressing the wave- 

function in terms of so-called natural spin orbitals(30,31) 

(NSO"s). 
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Lowdin(30) has defined natural spin orbitals Q(xi) as 

being those orbitals which produce a diagonal representation 

of the first order density matrix r(g-j, 2j1), that is: 

ý(gý 
,x 

)=NI ý(xý , Si ,"-" , 2C ) ýU* (X ,Xº... ,X )dý dg .. . dg 1112N12N23N 

* 
=L ni 

i 
1.1.4 

where Ai refers to the space and spin coordinates of 

electron i. The constant ni is known as the occupation 

number of the ith natural orbital (NO) and clearly Lni = N. 

Using a theorem due to Schmidt 
(32) it may be shown that 

the use of the highest N occupied natural orbitals in a CI 

wavefunction leads to the most rapidly convergent expansion 

possible for any basis set of N orbitals. This result may 

appear to be of little value, since in order to determine 

the natural orbitals it is first necessary to calculate the 

density, which in turn requires a knowledge of the exact 

wavefunction. However, a number of workers have made use of 

this result by firstly performing an approximate CI 

calculation, determining approximate natural orbitals and 

then repeating the procedure but now using only those 

natural orbitals of highest occupation number and augmenting 

the basis set with a number of new functions. 

The first natural configuration has been found (33,34) to 

bear a striking resemblance to the Hartree-Fock result in 

terms of energy and total overlap. The relationship between 

natural orbitals and Hartree-Fock orbitals has been 

discussed by several workers 
(34): for example, Davidson and 

10 



Jones (35) 
showed for H2 that the difference between such 

orbitals is almost equal to the f function introduced by 

Sinanoglu(36) in the expansion of an N-particle wave- 

function. The f functions here represent corrections to the 

Hartree-Fock orbitals as a consequence of correlation and in 
(general, their contribution to the energy is very small 
37ý. 

One approach which has received a great deal of 

attention in recent years is the Multiconfiguration Self 

Consistent Field (MCSCF) method. This is a natural bridge 

between the HF and CI methods. This method was pioneered by 

Hartree(40) and by Jucys and collaborators 
(41), 

and it has 

been used to calculate the correlation in the ground state 
(42) (43) of atoms and molecules . The most extensive 

application of the MCSCF scheme to excited states, however, 

has been conducted by Froese44,45) In this method, the 

wavefunction is written as a linear combination of Slater 

determinants, each of which is composed of a set of one- 

particle orbitals. However, unlike the CI method these 

orbitals are not fixed but are to be optimally determined 

along with the expansion coefficients. The equations 

determining these orbitals were formulated some years ago by 

McWeeny(46) but their solution has only recently become 

possible. In practice it is necessary to make a particular 

choice of the type of configurations to be included in the 

MCSCF wavefunction. Two different formalisms have been 

developed - one due to Veillard and Clementi(47) and the 

(other due to Das and Wahl48' . The method developed by the 

latter is known as the Optimised Valence Configuration (OVC) 

method. Both of these approaches have been applied to a 

11 



number of molecules and although problems remain, 

particularly with difficulties of convergence, the general 

MCSCF method seems a promising line of attack for the 

future. 

Some years ago Hurley, Lennard-Jones and Pople (49) 

proposed a method of constructing correlated wavefunctions 

known as the Separated Pair Approximation. Once again this 

approximation have generally yielded only about 40-50% of 

the total correlation energy (calculations on Be and LiH 

excepted). Furthermore the equations determining the 

optimum two particle functions are coupled and rapidly 

become difficult to solve as the number of electrons 

increase. We shall therefore turn our attention to the 

Independent Electron Pair Approximations which have been 

proposed to overcome some of these difficulties. 

In Sinanoglu's Many Electron Theory (MET) (36) the wave- 

function is written, without approximation, in the following 

form 

4)(1,2,..., N) = f(1,2,..., N) + X(1,2,..., N) ý 1.1.5 

where f(1,2,..., N) and X(1,2,..., N) are, respectively, the 

HF and correlation functions. +HF is an antisymmetrized 

product of N spin orbitals 

fHF(1,2,... N) =A i1(X1)i2(g2)... fN(XN) 1.1.6 

and the following orthogonality and normalization 

12 



conventions hold 

<4HFIX(1,2,... N) = 0; <4HFI$HF> =1 

hence <4HFIy> = 1. 

The function X(1,2,..., N) is analyzed into 1,2,..., N 

particle correlation parts by the 'method of successive 
( partial orthogonalization' (MSPO)36). The detailed form of 

the correlation part in equation (1.1.5) which one gets from 

this analysis is 

NNN 
X(1,2,..., N) =E {fi} +E fu ii }+E {U1ý1} + 

i i<j i<j<1 

.... {U12... N} 1.1.7 

} are the 1,2, ..., N The terms {f}, {Ui }, .. "1 {U12 N iJ 

electron correlation parts where {} indicates 

antisymmetrization with the products of the remaining (N-n) 

spin-orbitals, for example 

{Uij... 
n} 

(n! )-1/2 A[(1,2,..., N)U13 
... n/(ij... n]. 1.1.8 

The symbolic division by (ij... n) refers to the absence of 

these orbitals from the HF product (12... N). The n-electron 

correlation functions have the following orthogonality and 

antisymmetry properties 

f , 62,..., AN) + k(gi)dxi =0 1.1.9 

U13 
... n4N) Ui'Iii ,... AN) 1.1.10 

13 



where +k(2ji) in equation (1.1.9) is the HF orbital. 

The form of equations (1.1.5-10) is general for any mHF 

= A(1,2,..., N) in equation (1.1.6) given that these N spin- 

orbitals are orthonormal. 

Sinanoglu decomposes the various functions in equation 

(1.1.7) into a cluster expansion and therefore equation 

(1.1.7) can be written in the much more detailed form which 

separates the terms referred to as unlinked clusters and 

linked clusters. A good approximation to the correlation 

part in equation (1.1.5) can be written in the following 

unlinked cluster 
(16) form: 

XýXý (1,2,..., N) { (2)_1/2 
N 

corr approx 
A Uij/(ij) 

i<j 
1/2 LE Uij Ukl/(ijkl) + ... )] 1.1.11 

i<j k<1 
i, j *k ,1 

The above approximation was considered by Levine, Geller and 

Taylor (50) 
to derive the conditions required for Sinanoglu's 

wavefunction to describe a singlet state. 

So far, the correlation problem reduces to finding the 

pair correlation functions Ui. which satisfy the ortho- 

gonality condition, equation (1.1.9), but are not assumed 

orthogonal to each other. Substituting equation (1.1.11) 

into the variational expression for the total energy allows 

us to determine uncoupled variational equations for each of 

the pair functions Ui]. 

14 



Sinanoglu has suggested that the derivation of pair 

functions by minimisation of the pair energy functional is 

similar to the variational problem of solving the helium 

atom Schrodinger equation. It would seem, therefore, that 

by using explicity correlated trial pair functions it should 

be possible to determine pair energies to the high degree of 

accuracy that Hylleraas achieved for the energy of the 

helium atom. Unfortunately, as Geller, Taylor and 

Levine (51) have pointed out, the presence of the Coulomb 

exchange operators in the expression for the pair energy 

makes the inclusion of the interelectronic separation r12 in 

the trial pair function more difficult to handle than in the 

calculation of an approximate helium wavefunction. 

Hurley, Lennard-Jones, and Pople(49 proposed the use of 

a variational trial function 

If = det *12(1,2)* 34 (3,4) ... %ON-1, N (N-1, N) 1.1.12 

where det symbolizes the total antisymmetrizing operator, 

multiplied by a normalization constant. The two-particle 

wavefunctions $ij called geminals in the more recent 

literature, describe localized pairs of electrons. The 

geminal functions themselves correspond to chemical ideas of 

molecular structure based on inner shells, valence bonds, 

and lone pairs of electrons. 

The paired-electron wavefunction, equation (1.1.12), has 

the advantage of descibing what is expected to be the 

dominant effect of electronic correlation, modification of 
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pairs of doubly occupied localized orbitals. This is 

accomplished with a wavefunction adapted to direct 

variational calculations. 

The obvious disadvantage of the paired-electron 

wavefunction is that it makes no provision for correlation 

between different localized electron pairs. 

It was originally proposed by Brueckner (52,53) 
, in the 

context of a study of nuclear matter, that the correlation 

problem could be solved independently for each pair of 

particles in a many-particle system. The proposal by 

Sinanoglu(16) for the solution of the exact pair equations, 

is closely related to the method of Brueckner, Bethe, and 

Goldstone. The calculations of Geller, Taylor and Levine on 

the Be atom(51), based on Sinanoglu's formalism, are in fact 

a variational solution of the Bethe-Goldstone equations, 

using trial functions that depend explicitly on relative 

coordinates. The Bethe-Goldstone equation for pair (ij) can 

be expressed in a variational formalism involving N-particle 

wavefunctions(54). Nesbet showed the Bethe-Goldstone 
(55) 

equation, whose solution describes the correlation of 

electron pair (ij), to be exactly equivalent to a 

variational determination of the coefficients cif in a total 

wavefunction of the form: 

`Yij (Xl, ... , AN) = fo +I fab i ci ab 

ab 
>> 

1.1.13 

for which the occupied orbitals in fo are Brueckner 

orbitals. Nesbet then extended this method by proposing 

that an mth order-Goldstone equation may be defined whose 
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solution is equivalent to a variational calculation using a 

trial wavefunction 'Pijk which is a linear combination of 

+ and all Slater determinants 'ibk... where the indices 

ijk... may be any subset of the original list i, j, k, 1., etc. 

A comparison of the Nesbet-Bethe-Goldstone approach to 

second order with Sinanoglu"s approach shows that neglect of 

the orbital correction function fi is equivalent to a 

neglect of the single excitations in Nesbet's method, while 

the assumption that the electron pair may be treated as 

uncoupled is equivalent to Nesbet's use of a separate 

variational equation for each pair. Similar approaches to 

the Sinanoglu and Nesbet methods of determination of pair 

, Byron (correlation functions have been proposed by Szasc56ý 

and Joachain(57), Krauss and Weiss (58) 
and many others. 

(B) Determination of fi and U.. within the Many Electron 

Theory of Sinanoalu 

To determine an f. 
1 correction function we use the method 

of successive partial orthogonalizations (MSPO)(36) 

Equation (1.1.5) is multiplied by the orbital product ni, 

which represents the product of all occupied HF spin 

orbitals except f. (i), and then we integrate the result over 

all coordinates occuring in n Thus we obtain a function 

of Ai only, namely, 

<ýcorrI ni(i)> =N[ mi(-4i) + fi(xi) ] 1.1.14 

17 



The constant N in equation (1.1.14) arises from the 

normalizing constant implicit in the antisymmetrizer 

operator A. 

To evaluate N, we multiply equation (1.1.5) by the 

product of all occupied HF spin orbitals n and integrate 

over all coordinates, 

N- <T 
corrITr> all 

Substituting equation (1.1.15) into (1 
.1.14) we get 

1.1.15 

"corrI ni>Iii/<Y corrI IT>all-4i(2Ei) " 1.1.16 

By means of a similar process we may obtain explicit 

formulae for the pair functions. Thus, multiplication of 

equation (1.1.5) by nib, which is equivalent to IT but with 

the omission of the orbitals 0i(xi) and $7(gß), yields, 

after integration over all the space-spin coordinates 

occurring in nil, 

corrI aij> = N[ +i(Xi)+i (Aj) - +i(2ij)+j(Xi) 

+ +i(2ii)fi (Aj) - +i(xj)fj(2ii) 

+ fAi)+i (AP - fi(Ai)+i(xi) 

+ 12 Uii(Ai, lij) 1.1.1.17 

Substitution of N from equation (1.1.15) gives the following 

relationship for the pair function Uij(2ii'Aj)' 
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Uij(äi, äý) = 1/12 [ <Y 
corrI 

IT ij> / <wcorrI IT> 

- fi(äi)+ i (xj )+ oi(Xj )+j (2ii) 

- fi(Xi)# i (Xi) + fi(Ai)*i(xi) 

-+ i(2i)fi (2ij )+ di(2ij )fj (Iii) 7.1.1.18 

It is clear that this process may be extended to obtain 

explicit expressions for any of the higher multielectron 

correlation terms such as Uijk, Uijkl' etc. 

By the above procedure, we may separate the correlation 

effects due to intershell or intrashell pair interactions. 

For the exact wavefunction it is easy to show that the total 

correlation energy E 
corr may be represented by the sum of 

the pair correlation energies eiý defined by 

eij = lVijý 1.1.19 

where U1] is given by equation (1.1.18). Banyard and 

Taylor (65) 
evaluated the pair correlation function Uii and 

their associated energies Eij for the He(1S)-, Li(2S and 
2P)- 

and Be(1S)-like ions. 

In this survey, coupled with the previous chapter, we 

have outlined many of the methods which have been used in 

the field of atomic and molecular structure calculations. 

As we have seen, most of these methods are essentially 

extensions of either the self-consistent field 

approximation, the configuration interaction method or of 

the use of explicitly correlated wavefunctions. 
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PART TWO 

ELECTRON CORRELATION IN Li-LIKE IONS IN POSITION SPACE 

2.1 GROUND STATE - (1322s)2S 

2.2 EXCITED STATE - (1s22p)2P 



2.1 GROUND STATE - (1s22s)2S 



CHAPTER 2.1.1 

INTRODUCTION 

Here we concern ourselves with a study of electron 

correlation in position space. In particular, we employ the 

concept of the Coulomb hole, which has been used extensively 

to examine the ground state of both He-like ions (60) 
and Be- 

like ions (28) in position space. With regard to the helium- 

like ions, detailed discussions have been presented of the 

Coulomb hole in position space for both the ground state and 

some excited states61ý . An obvious and interesting 

extension of this work would be to examine the Li-like ions, 

since they represent the simplest systems with an open-shell 

structure. 

The electron-electron distribution function f(r12), 

which describes the probability of locating two electrons 

separated by the interelectronic distance r12, was first 

introduced by Coulson and Neilson(63) in their study of 

electron correlation in the 11S ground state of He. The 

Coulomb hole was then defined as 

Af(r12) _ fcorr(r12) - fHF(r12) 2.1. '1 

where each f(r12) is normalized to unity, and fcorr(r12) is 

the distribution function for r12 evaluated from the 

correlated wavefunction, and fHF(r12) is derived from the 

best uncorrelated wavefunction, that is, the Hartree-Fock 

wavefunction. This definition of the Coulomb hole is 

entirely analogous to that for the correlation energy 
(12) 
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and is applicable to all atoms and molecules containing two 

or more electrons. To make some examination of the way in 

which the inter-particle distribution function changes for 

specific locations of one of the electrons, say a test 

electron 1, we may consider a related distribution function 

g(r12'r1)' introduced initially by Boyd and Coulson (64) 

Changes in this function as a consequence of introducing 

electron correlation into the wavefunction are clearly of 

interest. 

Recently, Banyard and co-workers 
(28,65) 

have used the 

many electron theory (MET) of Sinanoglu(36) to examine 

electron correlation effects in some detail for the ground 
(65 In an state of Beý and several Be-like ions ý28ý 

endeavour to gain insight into correlation effects for 

specific electronic shells within an N-electron system, 

these workers used the Sinanoglu expansion of the 

wavefunction to partition the correlated two-particle 

density which is required for the evaluation of correlation 

properties in individual normalized electronic shells within 

the system. Correlation effects for each electronic shell 

were then assessed with respect to the corresponding 

restricted Hartree-Fock (RHF) description by evaluating the 

Coulomb hole, the partial Coulomb holes and the changes 

which occur in the one- and two-particle radial density 

distributions. For the intra-shell, it was also of interest 

to determine various radial and angular statistical 

correlation coefficients T. 
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In the present work we extend the analysis to a series 

of open-shell systems by considering several Li-like ions in 

the ground state. These three-electron systems, with the 

electronic configuration (1522s)2S, represent the simplest 

ground state example in which both Coulomb correlation and 

Fermi correlation are present. Coulomb correlation operates 

between any pair of electrons and is particularly pertinent 

when the electrons possess antiparallel spin components and 

are described by a closed-shell, such as, for example, 

(1s)2. Fermi correlation arises between electrons which 

possess parallel spin components. In addition, the 

imbalance between the a- and a-spins of the electrons in the 

ground-state of the Li-like ions produces a polarization 

effect in the K-shell. Following the procedure used for the 

Be-like ions, the two-particle density was partitioned into 

its pair-wise components and the correlation effects were 

examined, as before(28), in terms of Coulomb holes, 

statistical correlation coefficients and several expectation 

values. The correlation effects in the KaKß-shell are 

compared with those for the doubly-occupied K-shells of the 

He- and Be-like series of ions, the KaLa and KßLa 

inter-shells effects are contrasted with the corresponding 

shells in the Be-like ions and, further, some comparison can 

be made with the correlation-induced changes in the 21S and 

23S excited-states of He (66) 

Note that, during the course of this work, it was 

reconfirmed that the correlated wavefunction of Weiss (25) 

for the 
2S-state 

of the C3+ ion contains an error. 

Consequently this function has not been used. 
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CHAPTER 2.1.2 

WAVEFUNCTIONS AND ANALYSIS 

Using the method of configuration interaction (CI), 

Weiss (25) 
represented the correlated description of the 

(1s22s)2S state of the Li-like ions, for 34Z48, as a 

linear combination of many-electron functions 

YCI(123) = Li C. fi(123) I 2.1.2 

where the coefficients ci are taken as those which minimize 

the total energy and each configuration fi is an anti- 

symmetrized product of one-electron functions (spin 

orbitals). 

Two general types of linearly independent configuration 

were constructed for the three-electron systems. The first 

of these corresponds to the situation where two electrons 

couple together to produce singlet S symmetry, and the 

resulting pair is then coupled with the orbital description 

of the third electron to produce the overall 
2S 

symmetry of 

the state. In the second case, the two electrons are 

coupled to produce triplet S symmetry, and the resulting 

pair is again coupled with the third electron to produce a 

doublet S state (2S). These configurations have the form: 

OpQk,. \ _ (XpXQ) iSXk 

_ (6DA )L [ IX"p, \a(1)xq, \ß(2)Xka(3)I N=-A 

- IXP 
pAß(1)XNq, \a(2)Xka(3)11 2.1.3 
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and 

41 pqk,, )ý _ (XpXq) 3SXk 

+ý 
= 1/3(2DA) 1/2 F[ 21XUp, 

\ a(1)XUqA a(2)Xkß(3)I 
N=-, \ 

- IXUPX a(1)XP qX 
ß(2)Xka(3)I-IXPPXß(1)XuqXa(2)Xka(3)1] 2.1.4 

where D. = 2A +1 and IXOpAa(1)XUgX0(2)Xka(3)I represents a 

determinant 

I X1i PA a(1) XP qAß(1) Xka(1) I 

II 
I XP PA a(2) XNq, 0(2) Xka(2) I 

II 

I XP 
PA a(3) XpqA P(3) Xka(3) I 

2.1.5 

The basis set {X) consists of non-orthogonal Slater type 

orbitals (STO's) 

xnlm(re(P; E)=[(2E)2n+1/(2n')]1/2 rn-1 e- Er Y1'm(g, w), 2.1.6 

where each function X has been normalized to unity. The a 

and spin functions represent the two components of spin. 

The sum over the azimuthal quantum index u from -). to +A in 

equations (2.1.3) and (2.1.4) ensures that the electron pair 

forms either 
1S 

or 
3S 

symmetry, respectively. The orbital 

angular momentum index A specifies the symmetry of the space 

orbital Xnlm(re(P; ý) and DA designates its degeneracy. The 

bar over the spin-orbitals represents the complex conjugate, 

with the phase of the spherical harmonic chosen such that 

24 



Although these CI wavefunctions of Weiss were determined 

several years ago, they still rate amongst the energetically 

best functions since, besides their compactness, they do 

account for over 97.8%, 97.3%, 97.7%, 96.2%, 95.6% and 94.9% 

of the correlation energy for Z=3,4,5,6,7 and 8, 

respectively. The percentage correlation energy obtained in 

the CI calculations is defined as 

'Ecorr = 100 (E 
Corr 

EHF) / (Eexp EHF) ' 

where Ecorr is the energy of the CI wavefunction, E 
exp 

is 

the experimental energy used above and EHF is the energy of 

the HF wavefunction. Each wavefunction contains 45 

configurations formed from 20 basis orbitals, seven of s 

type symmetry (1s, 1 s' , 1s" , 2s, 2s' , 2s" , 3s' ), six of p 

(2p, 2p', 2p", 3p, 3p', 3p"), four of d (3d, 3d', 4d, 5d), two of f 

(4f, 5f), and one of g type (5g). The primes associated with 

orbitals of the same quantum number 1 indicate a different 

orbital exponent (r. ). The STO exponents for the K-shell 

basis functions were identical to these obtained by 

Weiss (25) from a 35-term CI study of the 11S state of the 

appropriate He-like ions. For each three-electron ion, the 

exponents of the basis functions for the outer shell were 

optimized, along with all the CI coefficients, by means of 

the energy variation method. 

The uncorrelated reference state, also determined by 

Weiss, was represented by a restricted HF wavefunction(26) 
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which, for the ground-state of the Li-like ions, can be 

written as a single determinant of one-electron functions, 

namely 

fHF(123) = (3i)-1/2 Itp1sa(1)tp1sß(2)tp2sa(3)i 2.1.7 

The function Wnlm(reI; E) is the spatial part of the spin- 

orbital and was constructed from a basis set of six s-type 

orbitals, 

6 1 (pnl =E cn x nl i=1 
2.1.8 

The basis functions employed here were standard normalized 

STO's and they are defined as in equation (2.1.6). For a 

given system, Weiss minimized the total energy with respect 

to all parameters, including the orbital exponents. 

By analogy with the definition of the correlation 

energy (12), the correlation effects are measured relative to 

the corresponding Hartree-Fock properties. The examination 

of correlation properties such as Coulomb holes, one- and 

two-particle expectation values, etc., requires the 

evaluation of the two-particle density for both the HF and 

correlated wavefunctions. When considering the correlated 

description we adopt the procedure of Sinanoglu(36) 

mentioned in Chapter 1.1.2, and the correlated wavefunction 

for a three-electron system can be written as 

Ycorr(123) = fHF(123) + Xcorr(123)' 2.1.9 
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where the leading term fHF in equation (2.1.9) is chosen to 

be the restricted HF wavefunction. Since this reference 

state is a single determinant, it can be expressed as the 

antisymmetrized product of all occupied HF spin-orbitals 

fHF(123) = An(123) 

where 

2.1.10 

71(123) _ f1(X1)02(2i2)"3(X3) 1 2.1.11 

unless stated otherwise, A is the 3-electron antisymmetrizer 

given by 

A= (3! )_ýý2 L ep P 
P 

2.1.12 

and P is the permutation operator and ep takes the values +1 

and -1 for even and odd permutations, respectively. The HF 

spin orbitals f are designated by the numerals 1,2,3 

starting with the lowest orbital with spin a, consequently 

all odd integers are for a spin and all even ones for ß 

spin. Before the antisymmetrizer is applied in equation 

(2.1.10), spin orbital i is occupied by electron i whose 

space-spin coordinates are represented by gi. 

The correlation part X in equation (2.1.9) can be 

written as 

N=3 N=3 N=3 

X(123) =iX. +I Xi7 +L Xijk 

i=1 1 <j i<j<k 

2.1.13 
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where 

Xi = A{lf(123) fi/#i)} , 

Xi7 = (2)-1/2 A(71(123) Uii /4 if 

and 

Xijk = 

r 

2.1.14 

2.1.15 

(3! ) -1/2 AIn(123) Uijk/ii0i 4 k} . 2.1.16 

The function fi is the orbital correction term corresponding 

to the ith normalized spin orbital ti, Ui) is the pair- 

correlation function associated with fi and fj, and Uijk is 

the higher many-electron correlation term. In equations 

(2.1.14 - 16), we have used the convention 

fi/#i = fi(]Ci)/+i(Xi) 

Uij/#ifj = Uij(xi, xj)/+i(]Ci)+j(]ij) etc. 

Expressions for fi and Ui7 were obtained by the method of 

successive partial orthogonalizations (MSPO) proposed by 

( Sinanoglu36). The correlation terms U are antisymmetric 

under an odd number of permutations, i. e.: 

Uii(Xi, Xi) = Uii(i, 7) = -Uij(Xi, Xi) º 2.1.17 

Uijk(Xi, äjºXk) _ -Uijk(Xj, HiºXk) . 2.1.18 

The correlation function X(123) in equation (2.1.9) is 

orthogonal to all the occupied spin-orbitals in fHF since 

the MSPO procedure is based on the following requirements: 
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<fi ý f1 >=0 

<U ii ý f1 >=0 (1=1,2,3) 

<Uijk f1 >=0, 

where 

<Uij 14 l> = <Uii (xi, Iii) I"i(3ii)>xi 
* =J Uij (Xi, Xj); i(Ai)diji =0 

2.1.19 

2.1.20 

Let us now consider each component of the correlated 

wavefunction in more detail. The first term in Tcorr(123) 

given in equation (2,1,9) is the RHF function fHF(123). 

This may be expanded in terms of its normalized spin- 

orbitals fi as follows: 

HF(123) =A +1(Xi)+2(X2)+3(X3) 

= (3i )-1/2 (+1(X1)+2(X2)+3(X3) - +1(X2)+2(11)+3(13) 

+f1(X2)+2(X3)+3(X1) - +1(X3)+2(X2)+3(X1) 

+f 1 (X3 ) +2 (X1) +3 (112) 

-f1(X1)+2(X3)+3(X2) ) 2.1.21 

HF (123) = (3! )-1/2 [(+ 1(X1)"2(X2) - f2(X1)+1('42)}+3(X3) 

- (f1('41)"3(X2) -4 3(X1"1(X2)}"2(X3) 

+ (4 2(2L 1)"3(X2) -* 3('41)*2(2L2))"1(13) ý 2.1.22 

N=3 
; 
HF( 123) = (N! )_1ý2 L Aiý Ok(3)EP 

Ii<jl*k 
2.1.23 

where, for convenience, we have introduced the abbreviated 

notation 
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Ai7 = fi(2i1)ýi (22) -# i(X1)"i(-42) 2.1.24 

Turning now to the correlated part of equation (2.1.9), 

we see from equation (2.1.13) that X(123) consists of three 

contributions. The first part, involving the orbital 

correction function fi, is written as 

N=3 

L Xi = A( n(123){ f1/+ 1+ f2/4 2+ f3/4 3 }] 2.1.25 

=A {f1e2f3 + f1f24 3+ f1+ 2f3 ). 2.1.26 

Each term in the above equation can be expanded after 

applying the antisymmetrizer to give 

N-3 

i 
X1 .= 

(N! )-1 /2 [{ f1(x1)"2(x2) - "2(x1)f1(x2) } 3(x3) 

-{ f1 (x1 )"3(x2) - "3(x1)f1(x2) } 2(x3) 

+{ f2(x1)"3(x2) - "3(x1)"2(x2) } f1(x3) 

+( "1(x1)f2(x2) - f2(x1)"1 (x2) } "3(x3) 

-{ "1(x1)"3(x2) - 3(x1)"1(x2) } f2(x3) 

+{ f2 (x1 )"3(x2) - 3(x12(x2) } "1 (x3) 

"1(x1)"2(x2) - 2(x1)"1(x2) } f3(x3) 

-( "1(x1)f3(x2) - f3(x1)"1 (x2) } v2(x3) 

+{ f2(x1)f3(x2) - f3(x1)"2(x2) 1 "1(x3)] 2.1.27 

N=3 
Thus, the final form of L Xi may be expressed as 

i 

ý=3x1 
= (N! )-1/2 

ý 
[Aiýfk(3)+(Biý+Diý)+ k(3)]ep 2.1.28 

ii i<j ºsk 
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where 

and 

B 12 
= (>i(xý)fý(x2) - f-(x ý)+i(x2) 

D 
12 

= fi(xý)+ý(x2) - eý(xý)fi(x2) 

2.1.29 

2.1.30 

The second correlation part of X(123) involves the pair- 

correlation functions Uij. This contribution may be 

rewritten, using the same procedure as before, to give 

N=3 

L Xii=(2! )-1/2 A[n(123){ U12/4142 + 
i<j 

U13/4143 + U23/4243 }] 2.1.31 

=(2! )-1/2 A[U12v3(3) + Uý3f2(2) + +1(1)U23]. 2.1.32 

The superscripts on the pair-functions Uij refer to the 

electron coordinates. The use of the antisymmetrizer A then 

gives 

N=3 
-1/2 E X__ = (2! 3! ) 

i<j 
1J 

L{U12 - 
21)* 

3(3) + {U121 _3 U13}42(3) 

+{U23 - U23}4,1(3) + {U12 U12}f3(2) 

+{U12 - 012}43(1) + {U13 U13}+2(2) 

+{U13 UZ3}m2(1) + {U23 U231(1) 

+{U23 U23}+1(2)] 2.1.33 

Equation (2.1.33) may now be represented in the compact form 
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N 

L Xlý _ (2! /3! )1/2 
N=3 
E ep { UiýOk(3) + 
li<jl#k 

} Uiýmk(1) + 01-0k(2) 
ii 

2.1.34 

For N=3, the last correlation part of equation (2.1.13) 

reduces to X123 and contains only the one three-electron 

function U123. Thus, equation (2.1.16) becomes 

x123 = (3! )-1/2 AU123 = (2/3! ) 
N=3 

2.1.35 
(i<j)ýk 13x p 

Substituting equations (2.1.28), (2.1.34) and (2.1.35) 

into equation (2.1.13), we get 

N=3 

X(123) _ (M! )-1ý2 Le LCAlýfk(3) + {Biý + Diý} fk(3)] + 
l i<jP$k 

12( Uiý+k(3) + Uiý4k(1) + Uiý+k(2) + ! (2/3! ) Uijk}]. 2.1.36 

The above expression is the correlated part of the total 

wavefunction (see equation (2.1.9)), written in terms of its 

basic components. 
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CHAPTER 2.1.3 

CALCULATIONS AND RESULTS 

For an N-electron system, the change in the two-particle 

density due to electron correlation can be written as 

er(Ij 
m, 2n) rcorr(lim'2n) rHF("m'An) 2.1.37 

The definition of r(gm, gn) in terms of an N-particle wave- 

function follows, for example, McWeeny and Sutcliffe(67). 

Thus, 

r(Xm, Xn) _ (Z) ! 'ý*(ýýºx2, .. . xN) V(xl, x2º.. . xN) 

dxp, 
... dxN 2.1.38 

where ILm and gn are the space spin co-ordinates of any two 

electrons m and n, and dAp,... dgN indicates integration- 

summation over the combined space and spin co-ordinates of 

all N-electrons except m and n. The binomial coefficient 

(2), which can be written as 

(N) = N! / [2! (N-2)! ] 2 I 2.1.39 

ensures that the two-particle density r(gm, xn) is normalized 

to the number of independent electron pairs within the 

system, so that 

! r(xm, An)d2; md2in = (2) 2.1.40 

Correlation effects can be examined within the individual 
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electronic shells by partitioning each r(Am, gn) into its 

pair-wise components (i, j), where (i, j) labels the occupied 

normalized spin-orbitals ii and fj in the restricted HF 

representation. The partitioning of the restricted HF two- 

particle density into its KaKß-, KaLa- and KoLa-components 

is both straightforward and exact. For the Li-like ions, 

the substitution of equation (2.1.23) into equation 

(2.1.38), followed by integration over the space and spin 

coordinates of one of the electrons, yields 

N=3 
r 

HF(äm, Än) = 1/2 F Ail 

i<j 
. 2.1.41 

where Ail is defined as in equation (2.1.24); see also 

Appendix A. 1. The partitioning of r 
corn(gm, gn) into its 

intra- and inter-shell components is, of necessity, only 

approximate and follows the procedure adopted by Banyard and 
(28 Mashat). The Sinanoglu representation of the correlated 

wavefunction was substituted into equation (2.1.38) and, as 

outlined in the earlier work (28), 
we omitted contributions 

to rcorr(Xm'An) arising from X *(123)X(123). Thus, in 

equation (2.1.38), 'corr(123)"'corr(123) is approximated by 

IF 
corr(123)'V corr(123) z c2 14 HF*(123)fHF(123) + 

"HF (123)X(123) + fHF(123)X (123)} 2.1.42 

where the constant c ensures normalization. As shown in 

Appendix A. 1, the evaluation of the correlated two-particle 

density requires integration over the space and spin co- 

ordinates of, say, electron 3 and, consequently, this 
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removes the U123 term which occurs within X(123). Thus, we 

obtain a partitionable two-particle density of the form 

N=3 
ýcorr(ý1'A2ý - E`j Aij { <If Corr 

III ij>/<Y Corr 
Iný 

-2 A12 j}º 2.1.43 

where, for convenience, we have now chosen m and n to be 1 

and 2, respectively. The density for each pair (i, j) is 

normalized to unity. The symbol Ti represents the product of 

all occupied HF spin-orbitals and similarly for nij but with 

the omission of the spin-orbitals fi and fj. This 

approximate representation of the correlated two-particle 

density was then used in conjunction with the HF description 

in order to determine Coulomb holes and expectation values 

for each shell. 

Within the above approximation, the change in the two- 

particle density, ar(x, , 42), due to electron correlation, 

can be written as 

N=3 
ercgl , X2) _E Arii (A ID, 

Xn) 2.1.44 
i<j 

The i and j values label the occupied spin-orbitals within 

the HF description and, hence, taken as a pair, (i, j) 

references the individual intra- and inter-electronic 

shells. The influence of electron correlation is examined 

here by evaluating the Coulomb hole Af(r12), the partial 

Coulomb holes Ag(r12, r1) and various one- and two-particle 

expectation values. Following Coulson and Neilson (63), 
the 
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change in the distribution function f(r12) for the inter- 

particle separation distance r12 is defined as 

Af(r12) =f AI'(2C1, X2) dX1djj 2/dr12 2.1.45 

where the integration is over spin and all space coordinates 

except r12. See Appendix A. 2 for a general discussion of 

the formulation of the Coulomb hole. Thus, using equation 

(2.1.44), we may re-write (2.1.45) to give 

N=3 N=3 
Af(r12)ýL Afij (r12) =fj Arij(41,42)dgld212/dr12 2.1.46 

i<j i<j 

and hence the Coulomb hole may be examined for each shell. 

Since each fii (r12) has been normalized to unity at both the 

correlated and HF level, it follows that 

M 

j Afii (r12) dr12 =0 
0 

2.1.47 

Although the Weiss CI wavefunctions for the three- 

electron ions account for large fractions of the correlation 

energy, their use in equation (2.1.43) implies that any 

restriction or limitation imposed by Weiss when determining 

his wavefunction will, of course, be reflected in our 

findings. This point will be of special relevance when 

reporting our analysis of correlation effects for the 
2P-state. We show in Table 2.1.2 the configurations which 

were considered in the two-particle density for each shell; 

the notation (xx)1Sq and (xx)3Sq, refers to the manner in 

which the spins of the two electrons are coupled to give a 
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singlet or triplet S symmetry, respectively. The resulting 

pair is then coupled with the third electron q to produce a 

doublet S state (2S). 

In Figures 2.1.1(A-D) we illustrate the distribution 

function f(r12) at the HF level for each individual shell 

and the renormalized total density (which is given by (KaKß 

+ KaLa + KPLa)/3). The Coulomb hole associated with the HF 

spin-orbital pair (i, j) is given in equation (2.1.46), and 

the result for the individual shells and the sum total for 

the Li-like ions are shown in Figures 2.1.2(A-D). It is to 

be noted that each r12-axis has aZ scaling factor, where Z 

is the nuclear charge. Although calculations were performed 

for 3tZt8, some results are presented only for the 

selected ions Li, Be+ and N4+. the KaKß-, KaLa- and 

KßLa-curves are compared with the sum total Coulomb hole, 

and the curves are shown in Figure 2.1.3. In Figure 2.1.4, 

we present, for the series of ions, the percentage (Y%) of 

the interparticle distribution function fHF(r12) 

redistributed by correlation in each individual shell and 

the total. 

Since the Coulomb holes are obtained from averaged 

distributions, it is of interest to evaluate the partial 

Coulomb holes Ag(r12, r1). Following the procedure of Boyd 

and Coulson (64), these "holes" are defined such that 

fag ij(r12, r1)dr1 =J (gij(r12'r1)corr gij(r12'r1)HF)dr1 

= Af(r12) 2.1.48 

and, therefore, they enable us to examine the effect of 
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electron correlation when a test electron, say electron 1, 

is located at a specific distance from the nucleus. The 

functions gHF(r12, r1) and Ag(r12'r1) for Li, Be+ and N4+ 

(for KaKp-, KaLa- and KßLu-shells) are displayed as surfaces 

in Figures 2.1.5 and 6, respectively. N4+ is chosen, rather 

than 0+5, so that some subsequent comparison will be 

possible with our current analysis of the 2P-state 
reported 

by Weiss; his 0+5(2P) wavefunction is thought to be suspect. 

Two-particle expectation values 

In addition to calculating the Coulomb hole, we have 

obtained insight into the shape of each f(r12) by evaluating 

the expectation values 

(r12> _! f(r12ý r12 dr12 2.1.49 

for -1 (nc2. Clearly, different regions of the f(r12) 

curve will be emphasised by each value of n. The spread or 

diffuseness of the two-particle distribution f(r12) about 

it's mean value <r12> is given by the standard deviation 

sr12, which is defined as 

Ar12 al( <r12> - <r12>2 ). 2.1.50 

In order to measure the angular correlation effects in 

different regions of the two-particle density, we calculated 

the expectation values 

38 



< ýý, ý2/r1r2 >=j ýý, ý2/r1r2 ýii(Il1ºX62) dr1dTL2 2.1.51 

where n=0,1 and 2. Each of these expectation values 

assesses angular correlation, and we note that when n=1 we 

obtain the purely angular expectation value <cosy>, where y 

is the angle between the electronic position vectors i1 and 

12. To calculate the expectation values defined by equation 

(2.1.51), it is necessary to evaluate an angular integral 

which contains a product of three spherical harmonics, i. e. 

Yi®(e0) Yl, ID, (ea) Yl 
p 

(9(p). 

The details concerning the calculation of this type of 

spherical harmonic integration, which is involved in 

equation (2.1.51), are discussed in the work of Reed(77). 

The results for these expectation properties are shown in 

Table 2.1.3. 

The radial correlation contained within a wavefunction 

may be investigated by evaluating the two-particle radial 

density distribution, Dii(r1, r2), in each individual 

electronic shell. This density is defined by 

D1ý(rý, r2) =J ý1ý(ýý, ý2)rýr2dQýdQ2 I 2.1.52 

where d41 denotes integration over all angular coordinates 

of the position vector z,, such that 

J Dii (r1, r2)dr1dr2 =1 2.1.53 
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Of particular interest is the change caused in D(r1, r2) by 

the introduction of correlation effects, therefore we have 

calculated 

ADij(r1, r2) = Dij(r1'r2)corr Dij(r1'r2)HF 1 2.1.54 

and the results for DHF(rl, r2) and OD(r1, r2) are presented 

as surfaces in Figures 2.1.7-8. In addition, we have 

analyzed the change which occurs in the two-particle radial 

expectation values 

<rnr2>ii =f Dij(rl, r2)rýr2dr, dr2 2.1.55 

where -2 tnc3. 

One-particle expectation values 

In order to study the effect of electron correlation on 

the one-electron distribution in different regions of each 

individual electronic shell for a given atom, we have 

calculated the radial density function Dii (r1), which is 

defined as 

Dij (r1 )=J Dij (r1, r2)dr2 I 2.1.56 

and the expectation values <rn>ij, defined by 

n >lý drý 2.1.57 

when -2 4n43. If n=0, equation (2.1.57) gives unity 
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for each (i, j)-pair where i<j. From equation (2.1.57), we 

see that the expectation values weight different regions of 

space and consequently they are useful for comparing density 

distributions arising from different wavefunctions. For 

example, the function r, 2 becomes particularly large in 

regions close to the nucleus, thus comparison of <rý2> 

evaluated from two different wavefunctions indicates how 

similar their density distributions are near to the nucleus. 

By contrast, comparison of values of <r3> indicates the 

similarity of density distributions in the outer regions of 

the charge clouds. As well as revealing correlation 

effects, some of the <rn> values are of considerable 

practical importance: for example, we can obtain the 

electron-nucleus attraction energy from <rý1> and the 

electron-electron repulsion energy from <r1I>. 

Radial and Anaular Correlation Coefficients 

In 1968 Kutzelnigq and his colleaques(68) suggested that 

global effects of electron correlation in atoms and 

molecules may be analyzed in terms of so-called correlation 

coefficients T. These coefficients are based on the 

concepts of probability theory and mathematical statistics. 

To obtain a measure of the effects of radial correlation at 

large and small values of r1, we have calculated the radial 

coefficients 

<rýr2> - <rý>ý 
Tradial 

<r2n> - <r n>2 
11 

2.1.58 

where n=I and -1 corresponds to it and t1/r , respectively. 
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To assess angular correlation we use the following 

coefficients 

angular = <r1-1 161 ý2 r2-1> / <rýn> 2.1.59 

where n=1, -1,0 yields TIf , T'Y , and Tl,,, respectively. 

These angular coefficients are related, in turn, to <1 2>, 

<(. 1/rý). (. 2/r2)> and <cos'y>, where - is the angle between 

the electronic position vectors 1,1 and 12 for electrons 1 

and 2. The selection of a particular T enables us to 

emphasize a specific region of the two-particle density when 

measuring angular effects. The radial correlation 

coefficients and the angular coefficients given above are 

dimensionless and, in each instance, they are bounded in 

absolute value by unity i. e. -1 tT<1. For the angular 

coefficients in equation (2.1.60), a value of -1 indicates 

perfect negative correlation and implies that the position 

vectors are oppositely aligned, whereas a value of +1 

represents perfect positive correlation signifying that the 

vectors are parallel. For consistency, we followed the 

definition of the Coulomb hole and hence the changes in each 

T due to electron correlation effects are given as 

AT = Tcorr THF 2.1.60 

The results for AT for each shell, and also for the total 

system, are presented in Table 2.1.8. The totals for AT are 

obtained by using the sum totals for the appropriate 

expectation values to determine each total T at both the HF 

and correlated levels of description. 
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CHAPTER 2.1.4 

DISCUSSION 

Although our main interests are in the effects of 

electron correlation, a brief discussion of the correspond- 

ing HF properties will be of interest. A comparison of the 

energies derived from the restricted Hartree-Fock (RHF) and 

the full CI wavefunctions of Weiss 
(25) is given in Table 

2.1.1. 

For convenience we will first discuss the intra-shell 

for the Li-like ions and then follow with a discussion of 

the inter-shell electron pairs and finally this discussion 

will be ended by the comparison of the total atom properties 

for the three-particle systems with those of the intra- and 

inter-shells. 

The KU8-shelf, 

Inspection of Figure 2.1.1(A) shows that, as Z 

increases, the maximum probability of the interparticle 

distribution function fHF(r12) increases and it is also 

observed that the location of these maxima decreases as Z 

becomes larger. The Coulomb holes of the K-shell, Af(r12), 

are presented in Figure 2.1.2(A) for the Li-like ions. 

These holes are seen to possess coniderable similarity when 

plotted against the scaled co-ordinate Zr12, where Z is the 

nuclear charge. However, one of the most striking features 

of these curves is that for Li and all members of the iso- 

electronic series the Coulomb holes possess the conventional 
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shape previously evaluated for the ground state of the 

helium-like electronic sequence; see, for example, Curl and 

Coulson(61) and Seddon and Banyard(69). A corresponding 

similarity exists when comparing Figure 2.1.2(A) with the 

KuKP- results for the Be-like ions; see Banyard and 
(2 Mashat8'. The balance between the positive and negative 

contributions for a given Af(r12) curve is a consequence of 

the normalisation conditions on fcorr(r12) and fHF(r12) 

whereas the magnitude and, in particular, the location of 

each extremum of a Coulomb hole gives valuable insight into 

the various effects introduced by correlation. Since the 

negative region of Af(r12) indicates a reduction in f(r12) 

relative to the Hartree-Fock curve, the value of r12 such 

that Af(r12) =0 may be interpreted as the radius of the 

Coulomb hole. It was found that this radius decreases as Z 

increases whereas, by contrast, the minimum and maximum 

values for Af(r12) show only small variations with Z. The 

Coulomb holes have radii of 0.66,0.48,0.26 and 0.23 for 

+ 2+ 4+ 5+ Li, Be BNand 0 respectively. Such results are 

comparable with previous work 
(28) i. e., the radii of the 

holes for the K-shell of the four-electron series which 

range from 0.23 to 0.66 a. u. and are ordered as 04+ < B+ < 

Be < Li . From Figure 2.1.2(A) we see that the zeros of the 

scaled Af(r12) curves are in close agreement. An attempt 

was made to bring the present K-shell results into even 

better agreement for all r12 by using a scaling factor (Z - 

6). Greatest coincidence among the curves was achieved when 

the scaling parameter 6 was 0.38 ± 0.01 whereas, from 

previous work, the 6-values were 0.41 + 0.02 for the K-shell 
(28 

of Be-like) and 0.38 for the He-like ions (60) 
. The 
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similarity of such results is quite striking. 

The Coulomb hole is clearly associated with the concept 

of a hole in the atomic or molecular charge cloud around any 

selected electron and can therefore be described in terms of 

its depth and radius(63,70) Consequently, a comparison 

within the series of ions can be obtained in terms of the 

percentage of each fHF(r12) probability density which was 

redistributed due to correlation; this quantity, labeled Y, 

is shown in Table 2.1.3 and Figure 2.1.4. 

The behaviour of the Coulomb hole in the KaKß-shell is 

reflected in the two-particle properties; in particular, the 

value of <r1I> bears a very close relationship to the 

percentage change of the density, Yt. In general, the 

results shown in Table 2.1.3 reveal that the smaller the 

value of <r12>, the greater the value of Y%. This 

correspondence is due to the dependence of the Coulomb hole 

and <r- 1 
upon precisely the same region of the f(r12) 

curve. In addition to this, the results shown in Table 

2.1.3 reveal that the difference, 

-1 -1 -1 0<r12> _ <r12>corr - <r12>HF 

is a constant, independent of nuclear charge. For the 

He-like series, Curl and Coulson 
(61) found that numerically, 

A<r12> _ -0.08 a. u., whereas for the KaKß-shell of the 

Li-like ions we obtained -0.085 + 0.001. From the Tables 

2.1.4 & 9, the percentage of charge shifted, Y, and the 

percentage change in <r12> vary almost linearly with Z-1 
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Correlation produces an increase in the K-shell 

interparticle quantities <r12> and <r12> for 34Z8 

whereas, by contrast, Ar12 is always decreased in value. 

This result is in agreement with the results for Be(65) and 

the Be-like ions (28), and also with those for He (63) 
and the 

He-like ions(60) The decrease in Ar12 indicates that the 

spread of the two-particle density about the mean 

interelectronic separation <r12> is reduced. From Table 

2.1.4 it is observed that the <r12> and <r12> expectation 

values are greater in a three-electron system than those for 

identical Z in the two- and four-electron series. This 

comparison holds for both the HF and correlated descriptions 

of the KaKo-shells. 

The quantities <(. 1/rý). (ý2/r 2)>, where n=0,1 and 2, 

each assess angular correlation but with stress being placed 

on different regions of the two-particle density. As shown 

in Table 2.1.3, when n=0 and 1, the value of these 

components at the correlated level decreases as Z increases 

whereas, when n=2, the expectation value increases with Z. 

At the HF level these quantities are, of course, identically 

zero, so they are not included in Table 2.1.3. At the 

correlated level, these quantities are seen to be of 

negative sign. Therefore, angular correlation enhances the 

probability that y (the angle between the electron position 

vectors I. 1 and ; 2) will be greater than 90' and decreases 

the probability that - is less than 90'. Returning to Table 

2.1.4, the comparison in the KaKß-shell for the above 

quantities can be made between Be, Be+ and Bet+. It is 
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clear that Be+ > Be > Be2+, and therefore we may conclude 

that the addition of one 2s-electron or two 2s-electrons to 

Be2+ causes the value of the angular correlation expectation 

properties in the KaKß-shell to be increased slightly in 

magnitude. There was no steady increase in going from one 

to two 2s-electrons. For the KaKO-shell we see that <11.12> 

in the Li-like ions is greater than the corresponding 

quantity for the Be-like ions, but as Z increases both 

magnitudes become smaller and get closer. For example, 

<'11.162> = -. 0177, -. 0069, -. 0033 and -. 0008 for Li-, Be, B+ 

and 04+, respectively whereas <161.12> _ -. 0179, -. 00707, 

-. 00348 and -. 0008 for Li, Be+, Be 2+ 
and 05+, respectively. 

The gHF(r12, r1) and Ag(r12, r1) surfaces for the KaKß- 

shell are presented in Figures 2.1.5(A) and 2.1.6(A). The 

partial Coulomb holes in Figure 2.1.6(A) show the change in 

behaviour of the Coulomb hole as the position of the test 

electron is varied. The K-shell diagrams for Li, Be+ and 

N4+ show that the largest hole occurs when r, % rK. We see 

in the Ag surfaces a decrease in density on the near-side of 

the nucleus (r12 < r1) and an increase on the far-side (r12 

> r1). It is seen that the greatest reduction in Ag(r12'r1) 

occurs at the diagonal r12 = r1 x rK for the KaKO-shell in 

Li-like ions. All the features mentioned above for the Ag- 

surfaces appear to be similar in shape to the 1S intra-shell 

surface in Be(65), and in Li+(71) From Figures 2.1.5(A) - 

6(A), with support from Table 2.1.5, the 9HF(r12'r1) and 

Ag(r12, r1) surfaces show obvious differences for changing Z. 

As Z increases these surfaces become less diffuse and 

increase in magnitude. Finally, there appears to be no 
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connection between the location of the maximum on a given 

gHF(r12, r1) surface and the locations of the maxima and 

minima on the corresponding Ag(r121r1) surface. 

Consider now the influence of correlation on the 

two-particle radial distribution DHF(rl, r2), as shown by 

AD(r1, r2). As expected, the maximum of DHF(rl, r2) is along 

the diagonal. It can be seen that AD(r1, r2) has a negative 

region along the r1 = r2 axis but it has a positive region 

when r1 is small and r2 is large and viceversa. The deepest 

negative region occurs when r1 = r2 = small, whilst a less 

negative region exists when r1 = r2 = large. As shown in 

Figures 2.1.7(A) - 8(A) the K-shell diagrams of DHF(rl, r2) 

and AD(r1, r2) become less diffuse and increase in magnitude 

as Z increases. From Table 2.1.6 -7 the correlation- 

induced changes in <r-1r2 and <r1r2> give a measure of the 

influence of the radial correlation alone on the two- 

particle density with the emphasis being placed roughly on 

those regions located at a distance of <r-1) and <r1> 

respectively, from the nucleus. Inspection of <rn>, shown 

in Table 2.1.7, reveals a tendency for the correlated 

density to become marginally more diffuse than that obtained 

from the independent particle model (HF). Such a movement 

of density is not unexpected. The presence of the radial 

correlation within the wavefunction tends to keep the 

electrons apart. Consequently, the probability density 

might be expected to experience some radial expansion, 

relative to the HF model. A comparison of the correlated 

and HF values for <r1> and Art for the KaKß-shell shows 

that, not surprisingly, the effect becomes negligible as Z 
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increases. However, for a given Z, inclusion of electron 

correlation within the K-shell decreases the values of <rn ) 1 

and <rnr2> when n>0 and increases these values when n<0 

when compared with the HF values. It is also found that the 

relation <r-2> > <r11> > <r1> > <r2> > <r3> will fit all the 

ions. 

To aid further comparison, we may compare the one- and 

two-particle properties for the K-shell with the correspond- 

ing values for both the Be-like series 
(28) 

and the He-like 

series 
(60). In the comparison of the one-particle 

expectation values <rn>, it is found that Be > Be 2+ < Be+ 

when n>0 and Be < Be 2+ > Be+ when n<0. The same 

relationships were found when comparing 0+, 0 5+ 
and 0 6+ 4 

It seems that adding one L-shell electron or two L-shell 

electrons to Be2+ causes the K-shell density to become 

slightly more diffuse. The cause of this expansion may 

perhaps be due to the L-shell electron providing some 

partial screening of the nucleus, hence permitting the 

K-shell electrons to drift outward slightly. 

The changes in T provide a global measure of electron 

correlation because each coefficient involves expectation 

values based on both the one- and two-particle densities. 

The results are shown in Table 2.1.8. Figure 2.1.10 shows 

that for AT 
^Y , AT- 

I,, 
AT 

Y" and AT 1/r the variation with 1/Z 

is almost linear whereas, for ATr ,a slight curvature can 

be observed. The results for ATr , AT 1/r and ATY are 

essentially unchanged, to within graphical accuracy, when 

compared with the corresponding results for the Be-like 
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ions(28) Finally, the comparison of the K-shells within 

the three-particle systems, can also be made by considering 

the percentage change in one- and two-particle properties 

within the system due to correlation. The results are shown 

in Table 2.1.9. 

The KaLa- and KSLa- shells 

The interparticle distribution fHF(r12) for the KaLa and 

KOLa intershells of the Li-like ions is shown in Figure 

2.1.1(B-C). The general Z dependence is seen to follow that 

observed for the K-shell. The distribution functions 

fHF(r12) for the inter-shells display several interesting 

features. At small r12, the f(r12) distribution function 

will be influenced mainly by the electron pair behaviour 

when the outer electron has penetrated the K-shell. For the 

KaLa curve, the existence of the Fermi effect produces a 

flat region at small r12 whereas, by marked contrast, the 

KpLa curve is seen to possess a small local maximum. 

Clearly, when the K- and L-shell electrons have different 

spin assignments but are both described by orbitals of 

s-type symmetry, a double occupancy can occur in the K-shell 

region with characteristics similar to those for KaKO. 

Probability arguments supports the observation that this 

local maximum in the KOLa curve is of much reduced magnitude 

by comparison with the K-shell results. For convenience in 

subsequent discussion, such behaviour will be refered to as 

a 'mini K-shell' effect. 
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The effect of electron correlation for the like- and 

unlike-spin assignments in the inter-shells can be seen by 

examining the Coulomb holes presented in Figures 2.1.2(B - 

C). The Af(r12) curves not only reveal correlation effects 

but, naturally, reflect the main features of the fHF(r12) 

curves. For a given ion the behaviour of the KaLa and KpLa 

Coulomb holes at large r12 is very similar. Since the spin 

of the third electron is different in the two cases, we 

suspect that this electron will have only an average rather 

than a specific effect on our results. The diagrams for 

KaLa and KPLa show that, as Z increases, this effect is very 

similar to the 23S behaviour found by Boyd and Katriel(62) 

for a series of two- electron systems. The relative 

magnitude of the KaLa and KßLa Coulomb holes is indicated by 

the Y values in Table 2.1.3 and Figure 2.1.4. These 

percentage shifts in probability density are, naturally, 

much smaller than the KaKo-shell value. From the comparison 

between the KaLa- and KPLa-shells, it is observed that the 

spread between the maximum and minimum values of Of(r12) is 

greater in the KPLa-shells that in the KaLa-shells. 

The gHF(r12, r1) and Og(r12, r1) diagrams for KaLa- and 

KßLa-shells show the change in behaviour of the inter- 

particle probability functions as the position of the test 

electron is varied. These surfaces are presented in Figures 

2.1.5(B - C) and 2.1.6(B - C) for Z=3,4 and 7. Following 

the K-shell discussion, we begin with comments on the 

gHF(r121r1) surfaces. These surfaces have their main 

characteristics located about the r12 = r1 diagonal line and 

parallel to the r12 axis for small r1. In addition, and as 
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expected, when Z increases the pattern contracts towards the 

origin and the magnitude of these densities increases. The 

diagonal distribution is again asymmetric with the r12 = r1 

axis: the maximum is always slightly on the right hand side 

(RHS) of the r12 = r1 axis for any selected and fixed r1 

value outside the K-shell. 

From the comparison between the gHF(r12, r1) surfaces for 

the KaLa- and KßLa-shell, it can be seen that a difference 

exists only at r12 = r1 rK. Since there is no Fermi 

effect in KßLa, the behaviour of the g(r12, r1) function has 

characteristics similar to those for the K-shell surface but 

is of much reduced magnitude, this feature is of course 

appropriate to the occurrence of a mini K-shell effect as 

discussed above. It can also be seen that the removal of 

this mini K-shell density causes the main characteristics to 

move towards the origin slightly. Consider now the 

eg (r 121 r 1) surfaces for the KaLe- and KpLa-shells. When r1 

is small, the test electron is located in the K-shell and 

the Ag vs. r12 behaviour illustrates the effects of 

correlation on the L-shell electron. On the other hand, 

when the test electron is located in the L-shell, the Ag vs. 

r12 characteristics are largely a result of correlation 

effects within the K-shell. Returning to the KaLa partial 

Coulomb hole, which is shown in Figure 2.1.6(B), the diagram 

shows that when r1 is small, i. e. the test electron is in 

the K-shell, the flat region could be expected for small r12 

due to the Fermi effect. The Fermi effect has caused a 

slight expansion in the KaLa characteristics compared with 

the KßLa surface, where no Fermi effect exists. In 
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contrast, the KßLa Ag(r12, r1) surface shows a mini K-shell 

effect at r1 0.3 and r12 1 for the example of Li. In 

addition , the comparison between KaLa and KßLa Ag(r121r1) 

shows the same inter-relationship as was found by Banyard 

and Youngman (66) in their examination of the 21S and 

23S-states for He. 

However, in the present case, it is to be noted that, 

for Li, there is an additional small positive hump at r12 

5 and r1 0.3 in both inter-shell surfaces. These humps 

may be due to the averaged effect of the third electron 

which, for the inter-shell electron pairs, resides in the 

K-shell. Angular correlation effects in the inter-shells 

indicate an opening-up of the angle between the electronic 

position vectors z1 and Z2 to values greater than 90', see 

for example (cos912) in Table 2.1.3. Thus, a reduced 

screening of the nucleus by the K-shell electron can occur 

and, therefore, the L-shell density can drift inwards 

(66 towards the origin, as was found in the He study 
ý. These 

surfaces are, as expected, slightly contracted towards the 

origin (nucleus) when compared with the He 21S and 23S 

states, due of course to the higher Z value in Li. As Z 

increases throughout the Li-like series, an examination of 

the Ag(r12, r1) surfaces for KaLa shows that the ordering of 

the absolute minimum and absolute maximum changes, i. e., the 

partial Coulomb hole for Z=3 has a range of -0.002 to 

+0.003, whereas when Z=7 the Ag has a range of -0.014 to 

+0.013. The Ag(r12, r1) values become larger as Z increases, 

and the absolute minimum of Ag increases by about 0.003 as Z 

increases by unity throughout the series. 
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We now examine the D(r1, r2) densities at the HF level 

for the inter-shells. These radial probabilities of finding 

simultaneously the first electron at a distance r1 and the 

second one at a distance r2 from the nucleus are shown in 

Figure 2.1.7 as surface diagrams for the KaLa and KOLa 

shells. The DHF(rl, r2) surface for KOLa shows three 

arrangements having a high probability. These consist of 

two regions in which one electron is near the nucleus and 

the other further away, and a third region in which both 

electrons are near the nucleus. The DHF(rl, r2) surface for 

KaLu shows only two arrangements of high probability, one 

electron being close to the nucleus and the other further 

away. For KaLa, the DHF(rl, r2) gives zero probability for 

r1 = r2; i. e. electrons with parallel spin tend to stay 

apart, so there is no possibility of the electrons being in 

the same region. 

Examination of the one particle radial densities DHF(r1) 

in the inter-shells for Z=3 shows that the location of the 

most probable value of the K- and L-shell can be found at r1 

= 0.36 and 3.10 respectively. Figure 2.1.9 shows the one 

particle radial density DHF(r1) for the KaKß-, KaLa- and 
+ 4+ KpLa- shells for the selected ions Li, Be and N 

Let us now consider AD(r1, r2) for the inter-shells when 

Z=3. From Figure 2.1.8, correlation reduces the two- 

particle density at r1 > radius of the L-shell and increases 

the density at K-radius < r1 < L-radius. This means that 

probability density will be taken from outside the L-shell 
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and placed between the K- and L-shells, when correlation is 

introduced. Except at small ri and r2 we see that the 

general characteristics of the two inter-shell surfaces are 

quite similar. However, for the KPLa-shell at small r, = 

r2, we observe that AD(r1, r2) has a behaviour very much like 

that for the doubly-occupied K-shell, i. e. the density is 

decreased along the r, = r2 diagonal axis and increased in 

the off-diagonal regions. Therefore, in this local region 

the density shifts are in accord with the usual "in-out" 

radial correlation effect. For the KaLa-shell, the Fermi 

effect stops the occurrence of such a feature. 

Comments are now made regarding the one-particle 

expectation values for the inter-shells. The comparison 

between <r'> for Be+ and Be (28) 
shows that the one-particle 

radial density for Be+ in the KaLa-shell is more contracted 

towards the origin than those in Be, i. e. the <rn> results 

for Be+ > Be when n= -1, -2 and Be+ < Be when n=1,2. 

The influence of correlation on the one-particle expectation 

values <r n> > for KaLa has caused D(r1) to become more 

contracted towards the origin. As above, the changes in 

<rnr2> are caused by a contraction of D(r1, r2) toward the 

nucleus. 

Finally the total fHF(r12) and Af(r12) are presented in 

Figures 2.1.1(D) and 2.1.2(D). The relative magnitudes of 

the KaKp-, KaLa-, KPLa- and the 'total' holes are shown in 

Figure 2.1.3 for Li, Be+ and N4+. From Figure 2.1.3 the 

'total' hole seems dominated by the K-shell whereas the 

KaLa- and KßLa contributions cause small change. A relative 
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measure of the KaKp-, KaLa-, KPLa- and normalized 'total' 

holes are provided by the corresponding Y values in Table 

2.1.3. 
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CHAPTER 2.1.5 

SUMMARY 

We have examined the influence of electron correlation 

on the KaKp-, KaLa- and KPLa-shells within the ground state 

of a series of Li-like ions. This has been achieved by 

using a density partitioning technique in conjunction with 

the definition of the Coulomb hole introduced by Coulson and 

Neilson(63). We have investigated the concept of the 

Coulomb hole Af(r12) in position space. The balance between 

the positive and negative contribution for a given Af(r12) 

curve is a consequence of the normalization conditions on 

f 
corr and f HF' whereas the magnitude and, in particular, the 

location of each extremum of a Coulomb hole gives valuable 

insight into the various effects introduced by correlation. 

The KaLe Coulomb hole appears to be much the same as those 

obtained for the doubly occupied K-shells of the 

corresponding He- and Be-like ions. The shape of the 

Coulomb holes is governed by the effects of radial and 

angular correlation which, in position space, are known to 

work in unison. This feature has been supported by 

examining the radial and angular correlation coefficients, 

T. When plotting Af(r12) for the KaKß-shell in Li, Be+, 

B2+, N4+ and 05+ against Zr12, the zeros of these holes 

became almost coincident. They could be brought into a 

higher degree of coincidence by using a scaling factor (Z + 

6); the scaling parameter 6 was found to be only 0.38 + 

0.01, which is in close agreement with the 5 value of 0.38 

for He-like ions (60) 
and 0.41 + 0.02 for the K-shells of the 
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Be-like ions(28), As found in the four-electron series, the 

radii of the holes for the K-shell of the three-electron 

systems are ordered as Li > Be+ > B2+ > N4+ > O. For the 

inter-shells, the Coulomb holes in the Li-like ions showed 

marked differences in behaviour at small r12. In addition, 

we found that the Af(r12) values for KPLa were noticeably 

larger than those for the KaLa inter-shell, a result which 

is not surprising in view of the Fermi correlation present 

in the latter shell. From the relative magnitudes of the 

KaKp-, KaLa-, KßLa- and total holes we conclude that the 

Coulomb hole for a given whole atom is dominated by the 

K-shell contribution. The comparison between the individual 

shells and the total effects can be made by inspection of 

the percentage of each fHF(r12) density which has been 

redistributed as a result of correlation. It was observed 

that in the K-shell, the depth of the Coulomb hole bears a 

very close relationship to the interparticle expectation 

value <r12>, since the later value gives directly the 

electron-electron repulsion energy. Consequently, the 

expectation value <r12> may be related to the percentage 

change Y%. For the intra-shell, we have investigated the 

quantities <rI. r2> for Li +, Li and Li and also for B 2+ + 
, Be 

and Be. We found that the correlated angular expectation 

properties in the KaKO-shell increased as we added the one 

or two 2s electrons to Li or He. + t+ 

Determination of the Coulomb holes as a function of r1 

has revealed that the correlation characteristics are very 

dependent on the location of the test electron. For 

example, for the inter-shell diagrams for eg(r12, r1), the r1 
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value may be chosen to locate the test electron in either 

the K-shell or L-shell regions whereas, for the KaKß-shell, 

all r1 values refer to the test electron being in the 

K-shell. The KaKß-diagrams for Li, Be+ and N4+ each showed 

that when r1 % rK, a reduction in density occurred on the 

near-side of the nucleus with respect to the test electron 

(r12 < r1) and an increase was observed on the far-side (r12 

> r1). Such results are clearly in keeping with our 

physical intuition and, indeed, are seen in the 

corresponding diagrams obtained by Banyard and Mobbs(65) for 

+( Be, and by Banyard and Reed for Li71). For the inter- 

shells, a comparison of KaLa with KßLa for each system 

showed a similarity in the Ag(r12, r1) surfaces when r1 z rL 

whereas, when r1 z rK the surfaces show differences which 

are directly attributable to the influence of Fermi 

correlation in the KaLa-shells. This comparison between the 

Ag-sufaces for KaLa and KOLa seems to be similar to that 

found by Banyard and Youngman (66) in the study of the 21S 

and 23S states for He. The diagrams of the partial Coulomb 

holes and the AD(r1, r2) for each shell become less diffuse 

and increase in magnitude as Z increases. 

Finally, although we have examined only the Z-dependent 

trends within individual electronic shells, it should be 

realized that the partitioning technique used here does 

allow us to perform a comparative analysis of different CI 
(wavefunctions for any given system65) 
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f(r12) 
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f( r12) 
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o. o 10 
Figure 2.1. 

20 

f(r2) 

0.8 

0.4 

0.0 L 
0 10 20 

The HF function f(r12) for the (1s22s)2S 

states for Li, Be+, B2+I C3+' N4+ and 05+ plotted against 

the scaled distance Zr12 (in atomic units). (A) the KaK-- 

shells, (B) the KaLa-shells, (C) the KpLa-shells, and (D) 

the total distribution when normalized to unity. 

69 



0.00 
gomm. 

`ý 

-0.05 4 

-0.10 

0.001 

-- 0.000 N 
:... 

ä -0.001 

-0.002 

-0.003 

o. 002 

o. ooo 

-0.002 
. maw 
4 -0.004 

-0.006 

-0.008 (see over) 



0.01 

domm% N 
ý L 

0.00 

-0.01 

-0.02 

-0.03 

10 20 

Zr12 

30 

(0) TOTAL 

Figure 2.1.2 The Coulomb holes Af(r12) vs Zr12 for the 

(1s? 2s)2S state derived for Li, Be+, B2+, N4+ and 05+. (A) 

The KaKo-shells, (B) the KaLa-shells, (C) the KßLa-shells, 

and (D) the total Coulomb hole for each Z obtained here by 

3 

taking 1/3 F efij (r12). 

i<j 

For the intra-shells and the total system, the curves 

are ordered from right to left as Z increases. 

For the inter-shells, the curves are ordered by noting 

that, at Zr12=5, Af(r12) decreases in value as Z increases. 

At Zr12=20, the curves increase in value as Z increases. 
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Figure 2.1.5 

(see over) 

73 



ti AVA 
t .rtý 
a+ ... rC 

ý+ O 
º. G^ :i 
Ob Cr " 
wý .rp IL v 

öCO 

N".. C 
G>A 

ºý iý Oý 
Id ý 

O 
-ý "U 
ý ... 

" .. ýG 
>aU 

. .ýr ^""" 
Y ... 

Mýr 

.1Y 64 a 
vNS. ' " 
O .. "v 

!nä s° u er 
ýw M .- 

wocý C "+ b 
Iý. ý. __" 

ýým� G ý- � F+ *8Ö 

Z .,. b+ 
10 a de 1 ^i C --- . -. C 

.. p 
. ̂i ti > 

" 
44 oa vý m 

ýJ^ 
ýr� 

JVý� 



+ 
v 
z 

J 

N_ 

L 



Figure 2.1.6 

(see over) 
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Figure 2.1.7 

(see over) 
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Figure 2.1.8 

(see over) 
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2.2 EXCITED STATE - (1s22p)2P 



CHAPTER 2.2.1 

INTRODUCTION 

Previously we have examined and compared the intra- and 

inter-shell 

ground state 

determining 

expectation 

expectation 

statistical 

correlation effects in position space for the 

of Li-like ions. The analysis was performed by 

Coulomb and partial Coulomb holes and various 

values for each electronic shell. The 

values were used to calculate several 

correlation coefficients T. The description of 

each individual shell, at both correlated and HF level, was 

obtained by partitioning the second-order density for the 

total system into its pair-wise components. For the intra- 

shell, global assessments of angular and radial components 

of electron correlation were obtained in terms of at - the 

change in a particular t value when measured relative to its 

HF value. 

In this section, the previous analysis is extended to 

examine the Li-like ions in the excited state (1s22p)2P. 

This state is obtained by exciting the outer electron of the 

(1s22s)2S-state into a 2p orbital and, as a consequence, it 

is anticipated that changes will occur in the relative 

importance of the correlation effects. The comparison 

between the correlation properties of an S-state and those 

of a state with angular dependence, such as a P-state, 

should be especially informative. The similarity and 

differences can be shown by comparing the behaviour of the 

intra- and inter-shells of the S- and P-states. The 

correlated wavefunctions employed throughout this work were 
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those of Weiss(26), used previously by Taylor and 

Banyard(72) to study the correction function f. 
1, pair 

correlation function Uiý and the associated pair energies 

eij these wavefunctions have also been used by Brown and 

Smith (73), Ardill and Stewart (74) 
and Lyons, Pu and Das (75) 

in the evaluation of the hyperfine structure (hfs). 

The availability of extensive CI calculations by 

Weiss (26) for the 2P 
state of a series of Li-like ions 

allows any observed change to be examined as a function of 

the nuclear charge Z. As before, the correlation effect can 

be studied by evaluating the Coulomb hole, the partial 

Coulomb holes and other correlation properties. When 

considering states of non-zero angular momentum, 

modifications in the evaluation of the Coulomb hole are 

necessary. For the inter-shells, it was also of interest to 

determine the 81-dependent partial hole Ag(r12, r1,81), where 

81 is measured relative to the symmetry axis of the system; 

see for example Banyard and Reed(71). The correlation 

effects in the KaKO-shell are compared with those for the 

doubly-occupied K-shells in the ground states of a number of 

two-, three- and four-electron systems. For the 2P 

inter-shells we are also able to compare not only with the 

ground state but also with the correlation effects in the 

21P and 23P excited states of Heý66ý. Atomic units are used 

throughout this work. 

Note that during the course of this work, it was 

reconfirmed that the correlated wavefunction of Weiss (26) 

for Z=8 in the 2P-state of the three electron ions contains 

an error. Consequently this function has not been used. 
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CHAPTER 2.2.2 

WAVEFUNCTIONS AND RESULTS 

In the present investigation, the CI wavefunction 

describing the first excited 2p 
state of the Li-like ions is 

again taken from the work of Weiss(26) The procedure for 

analysing this wavefunction follows the same general 

principles as discussed when presenting equations (2.1.2-6). 

Briefly, each CI wavefunction for the 2P 
state contains 45 

configurations formed from a basis set {pl} of 38 Slater 

type spin orbitals (STO), which extend as far as the 5g 

orbitals. In the basis sets {'pl) used by Weiss (25) the 

functions 1s, 1s' 2s, 2s' , 2p, 2p' , 3s' , 3p, 3p' , 3d, 4d, 4f, 5d, 5f and 

5g were those obtained from the energy-minimization 

calculations for the 'S ground-state of the appropriate He- 

like ion. Additional basis functions is", 2p", 2p"', and 3d' 

for the 2P 
state were introduced into (p1} by Weiss (26) 

to 

give some description of the outer electron in the 2P 
state. 

As for the 2S 
state, all the configuration coefficients for 

the 2P 
state wavefunctions were optimized, along with the 

orbital exponents, by using the energy variation theorem. 

The un-correlated description of each ion was provided 

by the 2P 
restricted Hartree-Fock (RHF) wavefunction of 

Weiss (26), which was constructed from a basis set containing 

four s-type and five p-type orbitals. This wavefunction is 

written as 

fHF(123) = (3i)-1/2 1(P1sa(1)(p1s0 (2)(p 2pet (3) 1,2.2.1 
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where 

nl cn Xnl 
i=1 

f 2.2.2 

and j=4 or 5 where nl = is or 2p, respectively. The basis 

functions are standard normalized STO's and are given by 

xnlm(r9W; E) = Rn(r; E)Ylm( A, w) I 2.2.3 

where 

Rn(r; E) = [(2E)/(2n! )]1/2 rn-1 exp(-Er) 2.2.4 

For a given HF wavefunction, Weiss minimized the total 

energy for all parameters including the exponents E. 

The study of correlation properties, such as the Coulomb 

hole and the partial Coulomb holes, for each electronic 

shell requires the two-particle density to be evaluated and 

partitioned for both the HF and correlated wavefunctions. 

Following Sinanoglu, the correlated wavefunction for a Li- 

like ion can be expressed as 

33 
IV 

corr(123) =A [11(123) ( 1+ L fi/4 i+1LU 
i<j i 72- 

3 
+ ý_ E 

13! i<j<k 
Uijk/+i+i 4k)], 2.2.5 

where all the notation and the orthogonality conditions 

imposed on fit U1 , etc, have been defined in equations 

(2.1.10-20). It is to be noted that the functions fi and 

U.. can be obtained in a way similar to those for the 2S 
13 

state by using the method of successive partial ortho- 
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gonalization proposed by Sinanoglu(36) Following the 

procedure used in Chapter 2.1.2 (see equations (2.1.9--36)), 

equation (2.2.5) can be simplified to give 

N3 

ýcorr(123) _ (N! )-1/2 ýi<jº#kp [A17+k(3)+Aiý4k(3)+Biýýk(3) 

+D12 (3)+f2{U12ý (3)+U23ý (1)+U31ý (2)+f(2/3! )Ui }] 2.2.6 
ij 4k ij k ij k ij k jk 

The correlated descriptions of Li, Be+, B2+, C3+, N4+ 

and 05+ provided by the 45-term CI wavefunction of Weiss 

account for 96.0%, 90.5%, 90.1%, 88.7%, 87.7% and 87.7% of 

the correlation energy, respectively. The energies derived 

from the CI and HF wavefunctions, along with the 

experimental energies used in the evaluation of the 

correlation energy, are shown in Table 2.2.1. 

Electron correlation may be investigated by examining 

the differences between the correlated two-particle density 

rcorr(2ý1'2ý2 and the corresponding HF density rHF(li1'212). 

As in the previous section, r(i1, g2) is normalized to the 

number of independent electron pairs within the system. The 

density for each individual electronic shell is obtained by 

partitioning r into its pair-wise components (i, j); the 

expressions for the HF and correlated two-particle densities 

have already been given in equations (2.1.41) and (2.1.43), 

respectively. Table 2.2.2 contains the number of CI terms 

which were used in the rcorr(2'1'l12) for each shell. The 

notation used in this table has been defined in Chapter 

2.1.3. In general, the partitioned expression for r can be 

written as 
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3 

x2) =F rii (x1 '112) i<j 
2.2.7 

where the interparticle distribution function associated 

with the spin orbital pair (i, j) is given by 

3 
fi7(r12) = LJrij(, ä11X2) d2-1dX2/dr12 2.2.8 

i<j 

such that, for any pair (i, j), we have 

00 
J f(r12) dr12 =1 
0 

2.2.9 

Calculations of f(r12) for non-spherically symmetric 

systems are complicated by the fact that the expression for 

f(r12) obtained from equation (2.2.8) will involve integrals 

of the most general type 

1Y *1 
m 

(1)Y1 m (2)Y*1 m (2) dQ1dX 2.2.10 
11223344 

where dQ1 denotes integration over angular coordinates of 

the position vector 11, and dX indicates integration over an 

angle of rotation. The general procedure for obtaining the 

f(r12) distribution is outlined in the section describing 

the non-spherically symmetric case in Appendix A. 2. The 

fHF(r12) and the Af(r12) results are plotted against Zr12 in 

Figures 2.2.1 and 2.2.2 respectively. A comparison of the 

intra- and inter-shell Coulomb holes vs. Zr12 for Li, Be+ 

and N4+ are shown in Figures 2.2.3. 

The partial Coulomb hole, Ag(r12, r1) characterizes the 

Coulomb hole when the test electron 1 is located at a 
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specified radial distance r1 from the nucleus. The 

gHF(r12'r1 and Ag(r121r1) surfaces for Li, Be+ and N4+ are 

shown in Figures 2.2.4-5. When the system possesses a 

natural axis of symmetry, as occurs in the P state, a 

partial Coulomb hole Ag(r12'r1, e1) may be defined, 81 being 

measured relative to the symmetry axis; see Appendix A. 2 for 

the general calculation, and see also the work of Reed (77). 

The partial Coulomb holes are related to Af(r12) as follows 

JJog(r12, r1,81)sin81d81dr1 = JAg(r12, r1)dr1 

= Af(r12) 2.2.11 

For Z=3,4 and 7, the gHF(r12, r1, B1) and Ag(r12, r1,91) 

results for the KaLa- and KpLa-shells are shown in Figures 

2.2.6-9. 

one- and Two-particle expectation values 

For the purposes of discussion and comparison with our 

work on the 
2S-state, the expectation values <r12> have been 

evaluated using equation (2.1.49) for n= -1,1 and 2, 

together with the standard deviation Ar12 defined by 

equation (2.1.50). 

The methods used here for calculating the two-particle 

expectation values <(z1/rß). (. 2/r2)> follow those outlined 

previously, see equation (2.1.51). Reported in Table 2.2.3 

are some two-particle expectation properties for the 

individual electronic shells, together with the total values 

for each system. The total value is given, as previously, 
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by (KaKP + KaLa + KßLa)/3. For the HF wavefunction, the 

two-particle expectation values <(. 11/rn). (. 2/r2)> are zero 

for the KaKß- and KßLa-shells, so Table 2.2.4 contains the 

results for the KaLa-shell only. Table 2.2.5 and 2.2.6 

contain one- and two-particle radial expectation values for 

the HF and correlated wavefunctions. For the selected 

systems Li, Be+ and N4+, we evaluated DHF(r1, r2) and 

AD(r1, r2) for each electronic shell; see Figures 2.2.10-11. 

Figure 2.2.12 illustrates+ the one-particle radial density 

DHF(r1) for these systems for the KaKP-, KaLa- and KPLa- 

shells. 

As before, we assess the radial and angular components 

of electron correlation by evaluating various statistical 

correlation coefficients 
(6S), defined in equations (2.1.58- 

59). The results for AT are presented in Table 2.2.7 and 

Figure 2.2.13. Table 2.2.8 contains the percentage change, 

due to correlation, in <rý2>, <rn> and <rnr2> for n= -1,1 

and 2. 
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CHAPTER 2.2.3 

DISCUSSION 

The correlation properties for Li-like ions in the 

(1s22p)2P state can be discussed in the same manner as for 

the (1s22s)2S state and comparisons can be made between the 

two states. We anticipate that the fundamental differences 

in correlation effects between the excited and the ground 

states of the ions will be associated with the differences 

in the symmetry of the state. For the 2P 
state, the HF and 

CI energies are listed in Table 2.2.1 for 3tZt8; also 

quoted is the percentage of correlation energy accounted for 

in each CI wavefunction. From Table 2.2.2, it can be seen 

that for the 2P 
state 41,22 and 22 CI terms are included in 

the calculation of the two-particle density for the KaKß-, 

KaLa- and KßLa-shell, respectively, whereas 41,22 and 45 CI 

terms were included for the 2S 
state. Therefore, differ- 

ences may be expected in the KaLa- and KßLa-shell when 

comparing the present results with those for the ground 

state. 

Before the discussion of the correlation effect, it is 

essential to make some observations aboLt the HF properties 

of the 
2P 

state and compare them with the 2S 
state of the 

three-particle systems. Inspection of the expression for 

the KaKP part of the partitioned two-particle density showed 

that, in its analytical form, it was identical to the 
2 

K-shell description in the S state. This correspondence 

between the density expressions for the excited and ground 
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states also extended to the one- and two-particle radial 

density distributions for this shell. Therefore, the HF 

results for the KaKß-shell in 2P 
are expected to be in 

closed agreement with those for 2S. Naturally, for the 

inter-shells, differences exist between 2P 
and 2S 

as a 

consequence of the change in symmetry of the occupied outer 

orbital. Such differences will be commented upon later. 

The KaKS-shell 

Figure 2.2.1(A) shows Z-scaled plots of the HF 

interparticle distribution function f(r12). The behaviour 

of this function is similar to those for the ground state of 

the Li-like ions. The K-shell curves were essentially 

unchanged to within graphical accuracy when compared with 

those in Figure 2.1.1(A). The Coulomb holes vs. Zr12 

displayed in Figure 2.2.2(A) show a high degree of 

similarity at large Zr12 with those in 2S 
whereas, at small 

Zr12, these holes reveal a high degree of coincidence with 

respect to Z compared with those in 2S. These Coulomb holes 

have the same shape and magnitude as those for the ground 

state. The radius of the 2P holes decreases as Z increases 

and are ordered as N4+ < C3+ < B2+ < Be+ < Li. 

Table 2.2.3 shows the HF and correlated interparticle 

expectation values <r12>, the standard deviation Or12 and 

also shows the <1.2/rýr2> values for the correlated level 

only. The expectation values <X61. '12/rnr2> for the 

correlated wavefunction in 2P 
are greater than those in 2 S, 

except for n=2 when Z5 when the converse holds. For 

all Z the correlation effect increases the expectation 
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values <r12> when n is positive and decreases <r12> when n 

is negative. These results are in agreement with the 

previous findings for the 
2S 

state of the Li-like ions, the 

Be-like ions(28), and also for the He-like ions(60) 

In Figures 2.2.4(A), 5(A), 10(A) & 11(A) we present the 

gHF(r121r1), Ag(r12'rl), DHF(rl, r2) and OD(r1, r2) surfaces 

+4 for the KaKO shell for Li, Be and N+. These surfaces, as 

in the ground state, become less diffuse and increase in 

magnitude as Z increases. The general behaviour of the 

K-shell diagrams are comparable with the K-shell diagrams in 

the 
2S 

state (see Figures 2.1.6(A) - 9(A)). 

Examination of the radial and angular correlation 

coefficients give similar trends to those found in the 

ground state of the Li-like ions and the results are shown 

in Table 2.2.7. Figure 2.2.13 shows that for AT 
*y , ATE, , 

ATE� and AT 1/r , the variation with Z-1 is almost linear 

whereas, for ATr , there is a slight curvature. Each of 

these quantities are greater than those in the 
2S 

state for 

the three-particle systems. 

The KaLa- and KBLa-shells 

Figures 2.2.1(B - C) show fHF(r12) vs. Zr12 for the 

KaLa- and KßLa-shells. These curves are seen to follow the 

same trend with respect to Z as that observed for the inter- 

shells in the ground state of the Li-like ions. The 

principal maximum of each fHF(r12) refers to the most 

probable situation that one electron is in the K shell and 
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the other is in the L shell. These maxima are smaller than 

those of the ground state but are, of course, more diffuse. 

Such differences become less noticable as Z is increased. 

In addition, there is no mini K-shell effect in the f HF(r12) 

distribution for the KPLa-shell as occurred for the 2S 

state. The absence of this feature is due to the difference 

in symmetry between the K- and L-shell orbitals in 2P. The 

penetration of the L-shell electron into the K-shell region 

of the excited atom can no longer produce local regions of 

KaKß-type symmetry. 

We now examine the Coulomb holes vs. Zr12 for the KaLa- 

and the KOLu-shells. For Z=3,4 and 7, Figure 2.2.3 shows 

an overall similarity between the Af(r12) characteristics of 

the KßLa and Kala-shells, which is in contrast to a 

comparison between the KßLa and KaLa curves for 2S. It can 

be seen that the shapes of the Coulomb holes for the inter- 

shells in the 2P 
state are less complicated than those of 

the inter-shell curves in 2S. The holes for the inter- 

shells in 2P 
possess a larger variation in the Af(r12) 

values than that observed for the 2S 
curves. A further 

point of contrast is that for the 2P 
state, the Coulomb 

holes for KaLa are seen to be larger than those for KPLa. 

This feature was also found in the 1P and 3P 
states of 

. The distinction between the KaLa and KPLa curves in He (66) 

Figure 2.2.3 is seen to be greater for Z=7. 

An examination of the Coulomb holes for the KaLa- and 

KOLac- shells in 2P 
shows that at small r12, the Fermi effect 

in the KaLa-shell produces a vanishingly small Of(r12) 
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value, as was found for the corresponding Coulomb hole in 

2S. For the KßLa-shell the Af(r12)-curve indicates that 

there is no mini K-shell effect at small r12, in contrast to 

that observed in 2S 
within the same region. In addition, 

Figure 2.2.3 shows that for the 2P-state the Af(r12)-values 

at small r12 are of greater magnitude for KaLa than for 

KpLa. This is in contrast with the He work 
(66) for 1P 

and 
3P. This becomes more understandable when we compare the 

magnitude of f(r12) at small r12 for both the HF and 

correlated description for each shell. As might be 

expected, due to the Fermi effect, the f(r12) for the 

KaLa-shell gives a flat region at small r12 at both HF and 

correlated levels. On the other hand, the HF and correlated 

results for the KßLa-shell do not exhibit a flat regions 

and, further, we also note that, for each description, 

f(r12) (KaLa) ( f(r12) (KpLa) when r12 is small. However, 

since f(r12) for KßLa at both the HF and correlated levels 

are of similar magnitude, the Af(r12) values are exceedingly 

small. For the KaLa-shell, although the individual f(r12) 

values are very small, the resulting Af(r12) is, in fact, 

somewhat larger than that for the KßLa shell as shown in 

Figure 2.2.3. 

The gHF(r121r1) and Ag(r12, r1) surfaces for the KaLa- 

and KßLa-shells of Li, Be IF 
and N 

4+ 
are shown in Figures 

2.2.4(B - C) and 2.2.5(B - C), respectively. As in the 
2S 

state, the gHF(r12'r1) densities for the KaLa- and KPLa- 

shells show the same characteristics in the region of the 

diagonal r12 = r1 axis, when r1 is large compared with rK. 

This similarity also holds for the features parallel to the 
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r12 axis, when r12 > r1 = rK. However, when r12 = r1 rK 

the gHF(r12, r1) surface for KßLa-shell shows a mini K-shell 

density in 2S, 
whereas this density does not appear in the 

gHF(r121r1) surface for the KßLa-shell in 2P due to the 

different symmetry. 

The influence of electron correlation on the g(r12, r1) 

densities in the 2P 
state is shown for Z=3,4 and 7 in 

Figures 2.2.5(B - C). We see from the Ag(r12, r1) diagrams 

that when the test electron is in the L-shell i. e. r1 rL , 

a localized positive region exists either side of the r12 = 

r1 diagonal. This is in contrast with the corresponding 

diagrams for 2S 
of Li-like ions and also in contrast with 

the He work(66). Banyard and Youngman(66) established that 

for the 1S, 3S, 1P and 3P 
states, the Ag(r12, r1) surfaces 

show a negative region on the near side of the nucleus (r12 

< r1) and a positive region on the far side (r12 > r1), with 

respect to the position of the test electron. The reason 

for this contrast might be due to the form of the CI 

wavefunction(26) for the 2P 
state. Analysis shows that for 

2 the P wavefunction of Weiss, radial correlation is dominant 

when considering the KL inter-shells. Therefore, any 

correlation induced change in an angular property such as 

<cozy>, for instance, is expected to be much smaller than 

that for the inter-shells in 2S. When comparing these 

values for the KaLa-shell it is found that AT TIf N (=A<cos-(>) 

in 2P is only one-third of that for KaLa in the 2S 
state of 

Li, whereas for the KpLa-shell the ratio is about one- 

quarter. 
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Clearly, from the viewpoint of using the change in 

<cosl> as some rough measure of angular correlation, we see 

from Table 2.2.3 and 2.2.7 that the angular effect in the 2P 

inter-shell descriptions is quite small. Indeed, for Li, 

the values of AT 
"Y N for KaLa and KßLa are only -0.00328 and 

-0.00229, respectively. Even so, the small difference 

between these inter-shell values does seem to show itself in 

the contour diagrams for the partial Coulomb holes (these 

contour diagrams are not presented here for reasons of 

space). When r1 rL , both inter-shells appear, on first 

inspection, to be symmetric in their positive accumulation 

about the r12 = r1 diagonal axis. However, closer exam- 

ination reveals that the KaLu accumulation has a slightly 

higher asymmetry than that observed for the KPLa shell. 

This is in keeping with relative magnitudes of the AT 
*Y . 

values for the inter-shells given above. 

All the above observations seem to be in agreement with 

the conclusions of Smith and Brown (78) that configurations 

of the type spd, sdf, etc. have not been introduced into the 

2P 
wavefunction. Such configurations would provide a 

specific introduction of angular correlation between the 

outer and inner electrons. Thus, in the Weiss wavefunction 

analysed here, any angular effect seems to be of a secondary 

nature and is an indirect consequence of introducing radial 

correlation into an inter-shell of P symmetry. 

Returning to the partial Coulomb holes, let us now 

consider the behaviour of the Li Ag-surface when r1 so rK. 

This partial hole shows that as r12 decreases from a large 
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value, Ag changes from being negative to positive. This 

behaviour indicates that the probability density has moved 

inwards from the outer regions of the L shell. We also note 

that this negative region, which is parallel to the r12 

axis, is more diffuse than that of the 2S 
at large r12 

values. This is in keeping with the fact that in the 

DHF(r1) vs. r1 curve for 2P the L shell maximum is located 

at 3.80, compared with the L shell maximum at 3.10 for the 

DHF(r1) vs. r1 curve for the 2S 
state. 

For the 2P 
state of the Li-like ions, we can discuss the 

functions g(r12'r1, e1) and Ag(r12'r1, e1), since an angle e1 

can be measured relative to the symmetry axis of the state 

of the system. For the KaLa- and KßLa-shells Figures 2.2.6 

-7 show the change in the structure of the gHF(r12'r1, e1) 

surface with respect to 01 for Li, Be and N+. When 8 +4 
1= 

90', the test electron will be located in the nodal plane of 

the p orbital and hence refers only to the K-shell. Con- 

sequently there is no diagonal feature when r, is large. 

When r, is small, the test electron is located in the K- 

shell and the gHF(r12'r1, e1=90') surface reveals a parallel 

effect. 

Consider now the gHF(r12, r1,61) surface when 61 = 0'. 

At this angle the test electron must be along the unique 

line which is perpendicular to the nodal plane. Thus the 

test electron can be in the K-shell or in the L-shell, and 

the gHF(r12, rl, 61=0') surface for the inter-shells possesses 

both diagonal and parallel features. In this case the dia- 

gonal feature seems more significant than the parallel one. 
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For 81 =30', 60' and 90', the gHF surfaces reveal the 

changes in the relative magnitudes of the diagonal and 

parallel features which occur as 81 becomes larger. This 

trend is a result of the decreasing radial overlap between 

the s and p orbitals as 81 is increased. Consider the 

Ag(r12, r1,81) in Figures 2.2.8 -9 for the inter-shells when 

Z=3,4 and 7. For 81 = 90', the Ag(r12, r1,81) behaves 

like the parallel feature seen in the angularly-integrated 

Ag(r12, r1)-surface; as r12 increases, the parallel feature 

is seen to change sign from negative to positive and back to 

negative. When 81 0', Ag(r121r1,81) now behaves like 

Ag(r12, r1) along the diagonal. As 91 increases from 0' to 

90', the parallel feature in Ag(r12, r1, e1) gets emphasized 

whereas the diagonal feature is reduced. In general, we 

note that when 91 = 60' the Ag(r12'r1,91) surface has 

characteristics which are very much like those of the 

integrated Ag(r121r1) surface. The above behaviour holds 

for Li, Be+ and N4+ and only the scales and magnitudes will 

change. The comparison between the KaLa- and KoLa-diagrams 

for Ag(r12'r1, e1) reveals that we get similar features 

except that at small r12 and small r1 we find that Ag(KaLa) 

> Ag(KßLa). Naturally, this difference is also evident in 

the angularly-integrated holes shown in Figures 2.2.5(B - 

C). 

Let us now examine the D(r1, r2) surfaces for the inter- 

shells at the HF level of description. Figures 2.2.10(B - 

C) show the DHF(r1, r2) densities for KaLa and KBLa for Li, 

Be+ and N4+. These probability densities indicate that when 
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one electron is near the nucleus, the other is further away. 

For a given atom the DHF(rl, r2) for the KaLa-shell is 

equal to that for the KßLa-shell in the 2P 
state whereas, in 

2S, these densities are not equal due to the presence of the 

Fermi effect in the KaLa-shell and the occurrence of the 

mini K-shell density in the KßLa-shell. This difference in 

the 2S 
arises from the existence of the cross term in the 

DHF(rl, r2)-expression for the KaLa-shell. In contrast, for 

2P, 
angular integration removes the cross-term when 

determining DHF(rl, r2) for the KaLa-shell due to the angular 

orthogonality between the 1s and 2p orbitals. 

Due to the difference in symmetry for the inter-shell 

orbitals in 2P 
compared with 

2S, 
we note that the un- 

correlated two-particle radial density DHF(rl, r2) will be 

more diffuse in the 2P 
state than in the 2S 

state. As in 

2S, the DHF(rl, r2) distribution for the excited state of the 

Li-like ions becomes less diffuse and increases in magnitude 

as Z increases. Having discussed the DHF(r1, r2) properties, 

let us consider the influence of correlation on these radial 

distributions (see Figures 2.2.11(B - C)) and on the related 

expectation values <rnr2>, (see Table 2.2.6). For Li, Be+ 

and N4+, the AD(r1, r2)-surfaces show that the correlation 

effects are very similar for both the KaLa- and KßLa-shells. 

Therefore, the AD(r1, r2) surfaces for the KaLa-shell reveal 

the same characteristics as those for the KpLa-shell, but 

the magnitudes of these features are greater in KaLa than 

that in KßLa. In contrast, for the 2S 
state, the OD(r1, r2) 

surfaces show that the correlation effects are not the same 
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for both shells due to the existence of the mini K-shell in 

the KPLa diagram and the presence of the Fermi effect in the 

KaLa. In addition to that, the AD(r1, r2) density in the 2S 

state for the KaLa-shell seems smaller than that for KßLa. 

In general, the comparison in magnitude of the AD(r1, r2) 

density between the KaLa- and KßLa-shells in the 2P 
and 

2S 

states follows the comparison of the Af(r12) values in both 

2P 
and 

2S 
states. A summary of the percentage changes in 

the one- and two-particle expectation values (see Tables 

2.2.5 and 2.2.6, respectively) is presented in Table 2.2.8. 
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CHAPTER 2.2.4 

SUMMARY 

An examination of electron correlation in the 2P 
excited 

state of the three-electron ions shows that the results 

obtained for the K-shell are quite similar to those for the 

K-shell in ground state. For the KaLa- and KoLa-shells, the 

results illustrate that marked differences exist between the 

excited and ground states as a consequence of the change in 

symmetry. 

The Coulomb holes for the R-shell of the three-electron 

series possess considerable similarity when plotted against 

the scaled coordinate Zr12. As a consequence of the 

difference between the symmetry of the occupied outer 

orbital between the inter-shells for 2P 
and 

2S, 
we found 

that the shape of the Af(r12) curves for the inter-shells in 

the 2P 
state is less complicated than that for the inter- 

shell curves in 2S. In addition, the Coulomb holes show an 

overall similarity for the KaLa- and KpLa-shells, and this 

is in contrast to the comparison between these shells for 

the 2S 
state. For Z=3,4 and 7, the ordering of the KaLa- 

and KßLa Coulomb holes follows that of the 1P 
and 

3P 
states 

of He. For example, for the excited states of He, Banyard 

and Youngman 
(66) found that, for P symmetry, the Coulomb 

holes for the triplet are larger in their Af(r12) values 

than those for the singlet state. 
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For the 2P-state of the Li-like ions, the Coulomb hole 

for the whole atom showed that, when Zr12 < 5, the 

characteristics were the same as those for the KaKß Coulomb 

hole; this feature also occurred in our earlier examination 

of the 2S 
state. When Zr12 > 5, the total holes for the 2P 

state differ in character from those for 2S. This is 

attributable to differences which arise between the sets of 

Coulomb holes for the inter-shells. Such differences are a 

consequence of the change in symmetry of the orbital 

description of the outer electron. 

The use of the partial Coulomb holes allowed us to 

examine the Coulomb hole as a function of the location of 

the test electron. For the KaKo-shell, the og(r12, r1) 

surface shows characteristics almost identical with those 

seen for the ground state. For the inter-shells, the 

Ag(r12, r1) surfaces showed a feature which was not present 

for those obtained in 2S. This feature, which occurred on 

the diagonal axis when r1 Ys r12 for both KaLa- and KßLa- 

shells, is due to the way in which Weiss (26) 
constructed the 

CI wavefunction for the 
2P 

state. The absence of the 

configurations of the type spd, sdf, d2f etc. from the CI 

wavefunction implies that no specific angular correlation 

has been introduced into the description of the inter- 

shells. Consequently, the behaviour of the partial Coulomb 

holes when r, a rL is governed by radial correlation. This 

was supported by the inspection of the magnitude of AT0 

(=M<cosy>) which, for the inter-shells, was found to be only 

one-third, or less, of the value obtained for the corres- 
2 

ponding shells in the S state of Li. This finding 
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illustrates that the present mode of analysis is also 

capable of indicating the weakness of a wavefunction. The 

partial Coulomb holes Ag(r12, r1, e1) for the inter-shells 

gave further insight into the structure of the corresponding 

angularly integrated hole Ag(r12'r1). 

The two-particle radial density DHF(rl, r2) and the 

density difference AD(r1, r2) for the KaKO in the 2P 
state 

showed features similar to those obtained for the 

corresponding density in 2S. Correlation reduces the two- 

particle radial density along the r1 = r2 axis, where it is 

a maximum, and increases the density in the off-diagonal 

regions. This behaviour holds for Li, Be+ and N4+ for the 

KaKO shell. As Z increases, the DHF(rl, r2) and AD(r1, r2) 

densities increase in magnitude and become less diffuse. 

For the inter-shells the DHF(r1, r2) and AD(r1, r2) surfaces 

show a high degree of similarity between the KaLa- and KßLa- 

shells for a given atom and also show that the changes in 

the two-particle radial density are greater in magnitude for 

the KaLa than those for the KßLa. By contrast, in the 2S- 

state the DHF(rl, r2) and the AD(r1, r2)-surfaces reveal a 

distinction between the KaLa- and KPLa-diagrams and also 

show that AD(r1, r2) for KaLa is smaller in magnitude than 

AD(r1, r2) for KßLa. This contrast seems not surprising in 

view of the presence of Fermi correlation in the KaLa-shell 

of the 2P- 
and 

2S-states. 
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f(r2) 
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0.0 "V--*, -ý -' 0.0 

10 20 

(D) TOTAL 

Z as in (A ) 
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Figure 2.2.1 The HF function f(r12) for the (1s22p)2P state 
for Li, Be+, B2+/ C3+, N4+ and 05+ plotted against the 

scaled distance Zr12 (i. n atomic units). (A) The KaKO-shells, 

(B) the KaLa-shells, (C) the KOLa-shells, and (D) the total 
distribution when normalized to unity. 
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Figure 2.2.2 The Coulomb holes ef(r12) vs Zr12 for the 

(1s22p)2P state derived for Li, Be+, B2+, N4+ and 05+. (A) 

The KaLo-shells, (B) the KaLa-shells, (C) the K La-shells 

and (D) the total Coulomb hole for each Z obtained here by 

3 
taking 1/3 I Afij(r12)' 

i<j 
a 

For the intrashells, the curves are ordered from right 

to left as Z increases. 

For the inter-shells and the total system, the curves are 

ordered by noting that, at Zr12=12, Af(r12) decreases in 

value as Z increses. 
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Figure 2.2.4 

(see over) 
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Figure 2.2.6 

(see over) 
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Figure 2.2.7 

(see over) 
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Figure 2.2.8 

(see over) 
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Figure 2.2.9 

(see over) 
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Figure 2.2.10 

(see over) 
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Figure 2.2.11 

(see over) 
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PART THREE 

ELECTRON CORRELATION IN Li-LIKE IONS IN MOMENTUM SPACE 

3.1 (1s22s)2S- AND (1s22p)2P-STATES 



CHAPTER 3.1.1 

INTRODUCTION 

The effects of correlation in the ground (1s22s)2S state 

and excited (1s22p)2P state of Li-like ions have been 

examined so far in position space. The analysis was 

executed, using the 45 configuration wavefunction of 

Weiss (25), by determining Coulomb holes (63) 
and various 

expectation values for each electronic shell. The 

expectation values were used to calculate several 

statistical correlation coefficients T and the percentage 

change in the expectation values <r12>, <r'r2> and <rn> 

which arises due to correlation. The description of an 

individual electronic shell, at both the HF and the 

correlated level, was obtained by partitioning the 

second-order density for the total atom into its pair-wise 

components. Variations in the importance of correlation 

throughout different regions of position space were studied 

by means of Ag(r121r1) for both the ground and excited 

states of the three-electron systems. Global assessments of 

the angular and radial components of electron correlation 

for the KaKß-shell were obtained in terms of AT - the change 

in a particular T value when measured relative to its HF 

result. In the light of the results obtained in position 

space, a parallel investigation of the Li-like ions will now 

be carried out in momentum space. 

In recent years, considerable progress has been made in 

the experimental and theoretical determination of electron 

distributions in momentum space. The knowledge of electron 
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momentum distributions in atoms and molecules should give 

information about electron-nuclear and electron-electron 

interactions. This is due to the fact that the momentum of 

an electron is the result of the forces exerted upon it by 

the nuclei and other electrons. There exist two fundament- 

ally different approaches to the calculation of momentum 

space wavefunctions. In the first method the Schrodinger 

equation is transformed from a differential equation in 

position space to an integral equation in momentum space. 

In fact, this method of evaluation of the momentum space 

wavefunction has met with very little general success. The 

method has been used, however, by McWeeny and Coulson (79) 

for the helium atom and the hydrogen molecule. Fortunately, 

the second method seems to be a more attractive approach; 

this method involves converting the position space wave- 

function into the momentum space representation by using the 

Dirac transformation 
(80 

procedure. 

From the study of He (81) in both position and momentum 

space, it was found that in momentum space the effects of 

radial and angular correlation work in opposition, whereas, 

by contrast, these components are known to work in unison in 

position space. Consequently, momentum space is useful in 

order to examine the correlation problem, in particular the 

differences between the radial and angular properties of 

correlation for both atoms and molecules. Furthermore, the 

momentum transformation gives greater emphasis to the outer 

regions of the wavefunction than in position space and is 

therefore especially useful when considering the behaviour 

of the valence electrons within a system. By comparison 
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with position space, it has been found that in a study of 
(7 

some two-electron systems1`83ý , such differences in 

behaviour of angular and radial correlation effects give 

rise to a relatively complicated structure for the momentum 

space Coulomb hole and the partial holes; thus, for momentum 

space, it is preferable to use the term 'shift' rather than 

'hole'(82). Mobbs and Banyardý83ý have used the 

partitioning technique of Sinanoglu to study momentum space 

correlation effects in the ground state of the Be atom. 

More recently Youngman (84) has used the same method to study 

Coulomb shifts and a variety of other correlation properties 

in the 2S- 
and 

2P-states 
of the neutral Li atom. In the 

following chapters, Youngman"s analysis in momentum space is 

extended to a sequence of Li-like ions in both 2S- 
and 

2P- 

states, thus enabling comparisons to be made with our 

previous work in position space. In the examination of the 

Z-dependent trends for such correlation effects it is 

convenient to include here the relevent results obtained by 

Youngman for the neutral Li atom in momentum space. 

For both ground and excited states of the three-electron 

ions, the Coulomb shift, partial Coulomb shift, expectation 

values and other properties in momentum space are derived 

from the Weiss (25) 45 configuration wavefunctions. The HF 

reference states for the systems considered are taken, as 
(before, from the work of Weiss 25ý. For the 2P 

state, 

modifications in the evaluation of Coulomb shifts and 

partial Coulomb shifts are necessary. The 81 - dependent 

partial shift Og(p12, P1,81), where the angle 81 is measured 

relative to the symmetry axis of the system, is also of 
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interest for the inter-shells. The present investigation, 

together with the earlier position space study will provide 

an overall view of correlation effects within the individual 

shells for this series of three-electron ions. 

Atomic units are employed throughout this work. 
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CHAPTER 3.1.2 

CALCULATIONS AND RESULTS 

Following Youngman(84) 
I the analysis of electron 

momentum distributions in the Li-like ions is performed here 

using the 45-term CI correlated wavefunctions of Weiss (25) 

for the ground and excited states. The HF reference 

wavefunction is also taken from the work of Weiss (26). 

As in our earlier analysis in position space, the 

normalized HF wavefunction for each atomic state examined 

here was written in the form of a single determinant (see 

Appendix A. 1). Using the procedure of Sinanoglu, the 

correlated wavefunction may be written as 

N 
(ý'2ý"""ºN) = c[ A{II(1,2,..., N)( 1+ E fiýfi IV 

Corr ! =1 

NN 
+1/1(2! )L U+ 1/1(3! ) E Uijk/+i+j+k +... )] 3.1.1 

i<j i<j<k 

where the labels i, j and k refer to members of the basis set 

of occupied HF spin-orbitals {i} and lf(1,2,..., N) is the 

product of all such normalized functions. The function fi 

is an orbital correction term and Uij is the pair- 

correlation function associated with fi and fj. The 

remaining notation and the orthogonality conditions imposed 

on fi , Uij , etc have been given earlier in this work. 

As before, electron correlation can be investigated by 

examining the differences between the correlated two- 

particle density rcorr( 1'A2) and the corresponding HF 

126 



density UHF ("1'L2). In this instance, X, represents the 

combined momentum space and spin co-ordinates of electron 1. 

The definition of r(i1'212 ) in terms of an N-particle 

wavefunction again follows that of McWeeny and 

Sutcliffe 
(67). The two-particle densities r(, xl . 12) for the 

HF and correlated wavefunctions can be partitioned into 

their pairwise components (i, j) by writing, as previously 

(see equations (2.1.41) and (2.1.43)), 

N=3 

<i 
r HF(" 1, A2) = 1/2 i {+i(ii1)+j(X2) - +j(A1)+i(g2)}2 3.1.3 

N=3 

<j 
- "ý(äý)"i(X2)}ý r 

corr(I1-42) =L i(X, )fj(X2) 

<'VcorrITTij>/<TcorrI TT> - 1/2 1*1 ("1)4](112) 

- +i(111)"i(12))] 3.1.4 

The integrations in <TcorrIlTij> are over all the 

co-ordinates occurring in nij and thus we obtain a function 

of 2[1 and A2 only (see Appendix A. 1). 

The HF and the correlated wavefunctions for the 2S 
and 

2P 
states of the Li-like ions, are formed in position space 

from Slater type orbitals (STO's). To obtain the 

corresponding wavefunctions in momentum space, the general 

expression for the Slater type orbital is converted 
(80) into 

momentum space by applying the usual Dirac procedure 

described in Appendix A. 3, to give 

N, /(2/ir) (1! )i1-2n (2p)1 an-1 ý(. 2 
+ P2)-(1+1)1 Ylm 3.1.5 

ö, n-1 
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where E is the appropriate orbital exponent, n is the 

principal quantum number and 1 is the azimuthal quantum 

number. The function Ylm is a normalized spherical harmonic 

in the Dirac phase convention. 

By analogy with the work of Coulson and Neilson (63) in 

position space, Banyard and Reed (82) 
obtained the "Coulomb 

shift' in momentum space from the definition 

Of(p12) - fcorr(p12) fHF(P12) ' 3.1.6 

where f(p12) associated with the pair (i, j) is given by 

fij(P12) =fr ij(P1'22)dP1AP2/aP12 3.1.7 

The limits of integration are analogous to those discussed 

by Coulson and Neilson (63) in position space and it is to be 

noted that spin has been integrated out of equation (3.1.7). 

The details concerning the calculation of f(p12) are 

dicussed in Appendix A. 2. The Coulomb shift Af(p12) is the 

change, due to correlation, in the distribution function 

f(p12 for a given magnitude of the momentum difference 

p12 = 1P1 - -221 
between electrons 1 and 2. Each f(p12) is 

normalized to unity. 

The f HF(p12) distribution and the Coulomb shifts Af(p12) 

vs. Z_P12 for the KaKß-, KaLa-, and KßLa-shells of the Li- 

like ions in the 2S state are shown in Figures 3.1.1-2. For 

the 
2P 

state, the Coulomb shift calculations are more 
2 

complicated than the S state due to the non-zero angular 
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momentum (see Appendix A. 2), the corresponding results for 
2P 

are shown in Figures 3.1.11-12. In addition, the above 

Figures contain the total normalized distribution for 

fHF(P12) and Af(p12); the normalized total is given by (KaKp 

+ KaLa + KßLa)/3. The curves for the individual shells are 

compared with their sum total holes (where the sum total is 

given by the sum of the electronic shell results only) for 

Li, Be+ and N4+ in Figure 3.1.4 for 2S 
state, and Figure 

3.1.14 contains the 2P 
results. In addition to the above we 

have obtained insight into the shape of the f(p12) for both 

HF and correlated wavefunctions by evaluating the 

expectation values 

(P12> =jf (P12) P12 aP12 3.1 .8 

for n=-1,1 and 2. Clearly, different 

curve will be emphasised 

of n. A particularly 

spread of the momentum 

regions of the f(p12) 

by the function 

useful concept 

density is the 

A(p12), which is defined by 

e(P12) =1 L<p12> - <P12>2ý 

n2 for each value 

for displaying the 

standard deviation 

3.1.9 

The results of p12> and ß(p12) are presented in Table 3.1.1 

and Table 3.1.6 for the 2S 
and 

2P 
states, respectively. 

The definition of the gHF(p121 1) function and the 

partial Coulomb shift Ag(p12, p1) in momentum space follow 

those for the corresponding position space quantities. 

pg(p12, p1) measures the influence of correlation when a test 
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electron 1, has a momentum of a given magnitude p1. For 

each electronic shell, the partial Coulomb shift is defined 

such that 

1a9(p12'p1)dp1 = Igcorr(p12ºp1)dp1 - f9HF(p12'p1)dp1 

= "(p12) 3.1.10 

The gHF and Ag-results for each shell are displayed for Li, 

Befand N4+ as surfaces in Figures 3.1.5-6 for the 2S 
state 

and Figures 3.1.15-16 for 2P 
state. For the 

2P 
state, we 

can also define the functions g(p12, p1,81) and Ag(p12, p1,81) 

where 8 is measured relative to the symmetry axis of the 

system. These functions are defined such that 

Mn M 

JJq(P12, P1,91)sin91d91dp1 = 
ö4(P12, 

P1)dp1 = f(p12) 3.1.11 
00 

The A1-dependent functions for the Li, Be+ and N4+ inter- 

shells are shown in Figures 3.1.17-20. 

As in position space, the angular effect of correlation 

can be investigated by calculating the expectation values 

ýp1'p2/pnp2> for n=0,1 and 2. These expectation values 

involve the angle - between the momentum vectors 21 and p2 

of electrons 1 and 2, and therefore they are sensitive to 

angular correlation. It is to be noted that the calculation 

of these expectation quantities requires the evaluation of a 
(85) 

product of three spherical harmonics The results for 

these angular properties are shown in Table 3.1.1 and Table 

3.1.6 for the 2S 
and 

2P states, respectively. 
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To gain some understanding of the effects of correlation 

on radial properties in momentum space, we calculated the 

electron pair radial density D(p1, p2) for Li, Be+ and N4+ in 

each electronic shell using both the HF and correlated 

wavefunctions. Radial correlation effects are illustrated 

by calculating the changes in the two-particle radial 

momentum distribution D(p1, p2) relative to the HF value. 

Figures 3.1.7-8 illustrate DHF(p1, p2) and AD(p1, p2) for each 

shell for selected ions in the 2S 
state. Figures 3.1.21-22 

show the DHF(p11p2) and AD(p1, p2) surfaces for the same ions 

in the KaKß-, KaLa- and KoLa-shells of the 2P-state. To 

complete the radial properties we evaluated the one- and 

two-particle radial expectation values <pn> and <pnp2>. The 

results are reported in Tables 3.1.2-3 and Tables 3.1.7-8 

for 2S 
and 

2P 
states, respectively. For the purposes of 

discussion, the one-particle radial density distributions 

D(p1) derived from the HF wavefunctions are presented in 

Figures 3.1.9 and 3.1.23 for the 2S 
and 

2P 
states in the 

+4 
KaKp-, KaLa- and KßLa-shells for Li, Be and N+ 

The radial and angular components of electron 

correlation may be assessed in a global manner by 

calculating various statistical correlation coefficients. 

Following the position space analysis, the radial and 

angular coefficients take the forms 

radial 
(<p1p2> - <pý>2)/(<pýn> - <pý>2) 3.1.12 

angular - <(P1/P1-n)-(P2/P2-n)>/<pýn> 3.1.13 
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where Tradial gives Tp and T1/p when n=1 and -1, 

respectively. These quantities give emphasis, in turn, to 

large and small values of the magnitude of p. For the 

angular coefficients, n=1, -1 and 0 correspond to TY , T, 

and TYu , respectively, where, as defined earlier, Y is the 

angle between the electronic momentum vectors p1 and p2. 

Table 3.1.4 contains the AT results for 2S 
state for each 

shell for the Li-like ions, where AT = Tcorr THF' Table 

3.1.9 contains the 2P 
results. All the T for the HF wave- 

function are zero except for KaLa-shell in the 2P 
state. 

These T values are presented in Table 3.1.10. The 

correlation changes in T have been plotted against Z-1 in 

Figures 3.1.10 and 3.1.24 for the KaKß-shell in both states. 

Table 3.1.4 also contains the percentage change of each 

f HF(p12) probability density. The normalized total for Y, 

was determined from the normalized Coulomb shifts shown in 

Figure 3.1.2D. In this instance, Y is equal to the area of 

the curve below or above the p12 axis multiplied by 100%. 

Finally, in Tables 3.1.5 and 3.1.11 we present the 

percentage changes, due to correlation, in <p12>, <pn> and 

<pnp2> for n=-1,1 and 2 for the 2S 
and 

2P 
states, 

respectively. Notice that the normalized total used in each 

Table is given by (KaKO + KaLa + KOLa)/3. 
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CHAPTER 3.1.3 

DISCUSSION OF THE (1322s)2S STATE 

The KaKß-shell 

Figure 3.1.1(A) shows the Z-1 scaled plots of the HF 

interparticle densities in the KaLO-shell. It is to be 

noted that as Z increases not only does fHF(p12) become more 

diffuse but also decreases in magnitude. Comparing these 

curves with those in position sapce, see Figure 2.1.1(A), we 

observe the fundamental change due to the different spaces. 

The interparticle distribution function in position space 

show that as Z increases fHF(r12) becomes less diffuse and 

increases in magnitude. This behaviour is supported by 

inspection of the corresponding expectation values <pn > 2 
(see Table 3.1.1) and <r12> (see Table 2.1.3), when n=-1,1 

and 2. From these expectation values we see that for the 

KaKp-shell the momentum results are greater than the 

position results when n is positive and vice-versa when n is 

negative. The Coulomb holes in position space can be 

brought into reasonable coincidence by scaling the r12 axis 

as Zr12, where Z is the nuclear charge (see Figure 

2.1.2(A)). In momentum space, the Of(p12) curves suggest an 

inverse scaling with respect to Z and the scaled Coulomb 

shifts are shown in Figure 3.1.2(A) for Li, Be+, B2+, N4+ 

and 0+. These curves reveal the correlation effects 
5 

relative to the fHF(P12) properties. We see from the 

Af(p12) curves that the zeros of the scaled curves are in 

very good agreement. The curves for Za4 cross the axis in 
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the region Z-1p12 = 1.5, whereas the curve for Z=3 crosses 

the axis twice: firstly in the region Z-1p12 x 0.35 and then 

again when Z-1p12 = 1.5. The behaviour of the Coulomb shift 

in Z-1p12 > 0.35 is seen to be well-ordered with respect to 

Z, whereas the curves are not so well-ordered when Z-1p12 < 

0.35, for example the Li Coulomb shift has negative values 

in this region. 

In Figure 3.1.3 we show a comparison of the Coulomb 

shifts for the KaKp-shells in Be (83) 
, Be + and Be 2+(77) 

; also 

included are the Of(p12) curves for KaKß in Li +(82) and Li. 

For Z=4, we observe that although the Be+, Be2+ and Be 

functions give results which are the same when Z-1P12 > 1.5, 

significant differences exist for 0< 2-1p12 < 1.5. For 

two-electron systems, Banyard and Reed (82) 
established that, 

at small p12, the radial component of electron correlation 

gives rise to negative values for Af(p12) whereas, by 

contrast, angular correlation produces a curve which is 

initially positive. From the K-shell in Be+ and Be, it 

appears that the occupation of the L shell by one- and two- 

electrons, respectively, causes an initial cancellation 

between the angular and radial components. In general, we 

conclude that for a given Z the Af(p12) curve for the K- 

shell increases at small p12 when an electron is added to 

the L-shell. These differences between Be+, Be2+ and Be at 

small p12 are in general accord with a comparison between 

the corresponding AT values. It was found that the AT 1/p 

values are ordered in magnitude as Be « Be+ << Be2+ i. e. 

the ATI/p values are -0.0058, -0.0095 and -0.0197 for 

Be(KaKO), Be+(KaKO) and Bet+, respectively. Therefore, by 
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comparison with Bet+, radial correlation at small momenta in 

the Be' and Be K-shell is inhibited by the presence of the 

one and two L-shell electrons. In the light of the momentum 

analysis by Banyard and Reed (82), the overall behaviour of 

the curves in Figure 3.1.2(A) suggests that angular 

correlation has, on balance, the major influence in the K- 

shell of Li-like ions. The comparison of the Af(p12) curves 

in the KaKO-shell with respect to Z can be shown by 

inspection of the percentage change of the momentum density 

Y%. 

Let us now examine the interparticle density fHF(p12) 

and the Coulomb shift Af(p12) for the KaKO-shell as a 

function of the momentum of electron 1, that is gHF(p12'p1) 

and Ag(p12, p1), respectively. The gHF(p12'P1) function and 

the partial Coulomb shift Ag(p12'p1) for Li, Be+ and N4+ are 

presented in Figures 3.1.5(A) - 6(A). The gHF(p12, p1) 

surfaces for Li, Be+ and N4+ show that the maximum for each 

density is always located off the diagonal such that p12>p1. 

The examination of the Aq(p12'p1) surfaces for the selected 

ions can be separated into three regions, depending on the 

value of p1. At very small p1 there is some evidence of a 

small angular effect. From the Ag-surface a small positive 

maximum can be seen at small p1 and P121 this feature is 

very easily observed in N4+ by comparison with Li and Be+ 

surfaces. The cause of this positive Og at small p1 and p12 

is perhaps due to the effect of integrating out the L-shell 

electron when partitioning the two-particle density. 

Therefore, this feature should not appear in the 2P 
state 

because of the orthogonality condition between the s and p 
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orbitals. However, when the test electron is at small p1, 

the Ag(p12, p1) results are a mixture of radial and angular 

correlation with the angular component being just dominant 

in the small p12 regions. As p1 increases, i. e. when the 

test electron lies between the K- and L-shell regions, then 

the partial Coulomb shift shows a reduction and then an 

increase as p12 becomes larger. Consider the Ag- behaviour 

when p1 increases further so that the electron approaches 

the maximum in the DHF(pl) vs. p1 graph for the K-shell. We 

see that the angular correlation component shows a large 

dominant effect for all p12 for all increasing p1. This is 

reasonable since, if the test electron has large p1 it will 

be located near to the nucleus and, therefore, it will be 

influenced by a large, rapidly varying radial potential 

field. Consequently, any radial correlation effect would 

change the energy markedly, however, the electrons can avoid 

one another, without a great change in the nuclear-electron 

energy, by using angular correlation effects. The KaK-- 

e9(p12, Pl) diagram in Figures (3.1.6(A) reveals the 

behaviour of the charateristics mentioned above. 

As Z increases, the gHF and Ag-characteristics (but not 

their location and magnitude) are unchanged, and the whole 

pattern expands, as expected, to fill larger p12 and p1 

values. As in position space for the KaKp-shell, there 

appears to be no immediately obvious connection between the 

relative positioning of the maximum in the gHF(p12'p1) 

surfaces and the maxima and minima in the corresponding 

Ag(p12, p1) diagram. As Z increases, the gHF(p12, p1) and 

Ag(P12'pl) surfaces spread over greater p1 and p12 ranges 
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and consequently, the maxima and minima decrease in 

magnitude. Comparing the heights of the maxima on the 

diagonal with those of the parallel feature of Ag(p12, p1) 

shows that, as Z increases, the ratio is 1.88,2.32 and 2.87 

for Z=3,4 and 7, respectively. Such an increase implies 

that the angular effect at large p1 becomes relatively more 

important than the radial effect at small p1. All these 

observations are consistent with views about angular and 

radial correlation for the KaKO-shell in position space, as 

the density tightens around an increasing nuclear charge. 

Figures 3.1.7(A) and 3.1.8(A) show the DHF(p1, p2) and 

+4 
AD(p1, p2) surfaces for the KaKO-shell in Li, Be and N+ 

Although these surfaces possess a strong resemblance to 

their counterparts in position space, DHF(p1, p2) and 

pD(p1, p2) reveal obvious differences with respect to 

variations in Z. As Z increases not only does £D(p1, p2) 

become more diffuse but it also decreases in magnitude, 

whereas, in position space, the converse occurs. The 

behaviour of OD(p1, p2) is also reflected in the related 

expectation values <pnp2>. Radial correlation causes a 

decrease in <pnp2> for n= -1,1 and 2, which is also shown 

by the percentage change of <pnp2> due to the correlation 

effect. Tables 3.1.2 -3 contains a comparison of the HF 

and correlated one- and two-particle expectation values for 

the KaKß-shell of the Li-like ions. The one-particle radial 

momentum density D(p1) may be obtained by integrating 

D(p1, p2) with repect to p2. For the KaKo-shell, the DHF(p1) 

curves for Li, Be+ and N4+ are shown in Figure 3.1.9. 
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An overall assessment of angular and radial correlation 

components in different regions of momentum space for the K- 

shell is provided by the change in the correlation 

coefficients listed in Table 3.1.4. Figure 3.1.10 shows 

that the changes in the radial correlation coefficient T 

possess a negative sign, whereas changes in the angular 

correlation coefficient T have a positive sign for all Z; by 

contrast, in position space, both components possessed 

negative signs for each Z. 

The KaLa- and KOLa-Shells 

Figures 3.1.1(B - C) and 3.1.2(B - C) illustrate the 

interparticle momentum function fHF(p12) and the Coulomb 

shift Af(p12) for the KaLa- and KPLa-shells, plotted against 

Z-1p12. Examining fHF(p12) vs. Z-1P12 for the KaLa-shell we 

see that it is higher valued at small p12 and lower at 

higher p12 than its KaKß counterpart. This is reasonable 

since the inter-shell will contain more low momentum 

contributions as a consequence of the L-shell occupation. 

Since both the KaLa and KaLe sets of curves are normalized 

to the same value, a reduction at large Z-1p12 for KaLa, 

compared with KaKO, must result in an increase in the curve 

at smaller Z-1p12 values as seen. The KaLa- and KßLa-curves 

for fHF(p12) show Z-dependent trends similar to those in the 

KaKß- shell. From Figure 3.1.1(B - C), the fHF(p12) curves 

for the KaLa-shell tend to have a flat region at small p12 

due to the Fermi effect. As Z increases, the f(p12) maxima 

and their locations tend to increase as we progress from a 

given KPLa curve to the corresponding KaLa curve. 
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Let us consider the Coulomb shift for both the KaLa- and 

KOLa-shells for Li, Be+, B2+, N4+ and O. As in position 

space, the Coulomb shifts for the KßLa-shell seems greater 

in magnitude than those in KaLa. Furthermore, these inter- 

shell Coulomb shifts are found to be of similar shape except 

in the region of small p12. In the KaLa-curves there is a 

flat region due to the Fermi effect whereas this does not 

occur for KpLa curves. Both sets of inter-shell Coulomb 

shifts tend to decrease and increase at 2_1p12 equal to 0.5 

and 1.0, respectively as Z increases. Figure 3.1.2(D) (see 

also Figure 3.1.4) shows the normalized total Coulomb shift 

for each Z. These curves, which are defined by (KaKß + KaLa 

+ KßLa)/3, reflect the dominant effects of the KaKp Coulomb 

shifts and the sum total Coulomb shifts for Li, Be+ and N4+. 

Further comparisons are obtained by inspection of the 

percentage change Y% in Table 3.1.4. 

Consider gHF(P12'P1) and Ag for Z=3,4 and 7 for both 

the KaLa- and KPLa-shells. These functions of P12 and p 12 1 

are shown in Figures 3.1.5(B - C) and 3.1.6(B - C) as 

surfaces. As in position space, the gHF(P12IP1) surfaces 

for the inter-shells show diagonal and parallel 

characteristics. The spread of these features reflects the 

spread of the K- and L-shells densities in p1-space. Since 

the HF model indicates that the average angle between the 

electronic momentum vectors is 90', then the location of the 

most probable distribution of the gHF(P12'P1) density can be 

estimated by using Pythagorous's theorem. The differences 

between gHF(P121p1) for KaLa and gHF(P12'Pl) for KßLa can be 
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found at small p12, for all p1 values, due to the presence 

of the Fermi effect in the KaLa-shell. To investigate this 

difference in more detail, we subtracted the gHF(p12, p1) for 

KßLa from the gHF(p12IP1) for KaLa-shell. From this 

difference, we found that the introduction of the Fermi 

effect caused the most noticeable reduction in probability 

at small p1 and small p12. The partial Coulomb shifts for 

the inter-shells are shown in Figure 3.1.6(B - C) for Li, 

Be+ and N4+. These diagrams reveal the angular and radial 

correlation effects. At p1 > pK (i. e. close to nucleus), we 

see that Ag changes from positive to negative as p12 

increases. This behaviour is thought to be due to the 

dominance of angular correlation. When the test electron p1 

Its PL' we do not see a "left-right" effect as p12 increases, 

but we do see an "up-down" effect in the surface relating to 

the p1 variation. The above features of the partial Coulomb 

shift seem similar to those in the He work for the 1s2s 1 
S- 

and 
3S-states. The comparison of Ag(p12, p1) for KaLa with 

that for KßLa shows that the positive-negative effect for 

the KßLa shell has moved slightly to a smaller p12 value 

compared with KaLa diagram. At small p12 and small p1 we 

see a significant negative in the KßLa diagram which was not 

present in KaLa due to the presence of the Fermi effect in 

the KaLa- shell. 

To examine the influence of correlation on the two- 

particle radial momentum distribution for the inter- 

shells, we have to consider the DHF(p1, p2) and the AD(p1, p2)- 

diagrams shown in Figures 3.1.7(B - C) and 3.1.8(B - C). 

Figures 3.1.7(B - C) reveal that the inter-shells possess an 
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overall similarity in their DHF(p1, p2)-surfaces, although, 

variations do exist. For the KaLa-shell, the principal 

maxima are slightly greater than those for the KßLa-shell 

+ 4+ for Li, Be and N. Such a difference between these 

normalized distributions is a consequence of the Fermi 

effect giving a reduced probability for the KaLa-curve in 

the region of small p1 z p2 when compared with the KßLa 

result. The AD(p1, p2)-surfaces not only reveal correlation 

effects but, naturally, reflect the main features of the 

DHF(pl, p2)-surfaces. These changes due to correlation are 

in keeping with the percentage change shown in Table 3.1.5. 

From Table 3.1.5, the percentage change in <pnp2> for KaLa 

is greater than the corresponding KOLa value for all Z. 

The percentage of each fHF(p12) probability density 

which has been redistributed due to electron correlation are 

shown in Table 3.1.4. These values are smaller than those 

in position space for the Li-like ions. For the He-like 

ions Reed 
(77) found that the fraction in momentum space is 

about one-third of the value obtained in position space. 

Further comparison between the position and momentum results 

can also be made by inspection of the radial and angular 

coefficients shown in Table 2.1.8 and 3.1.4. In position 

space we found that for the KaKo-shell, the radial and 

angular coefficients AT are of negative sign, but by 

contrast, in momentum space these components show a negative 

sign and a positive sign, repectively. This finding holds 

for the whole atom in the series of the Li-like ions. The 

AT results for the KaKß-shell are shown in Figure 3.1.10 and 

reveal that the AT 
Y. 

(=AcosY) for momentum space shows a 

141 



positive value, whereas a negative sign can be found in the 

corresponding quantity in position space. 
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CHAPTER 3.1.4 

DISCUSSION OF THE (1s22, p2 
2P 

STATE 

The KaK9-shell 

As might be expected, the interparticle densities in 

momentum space, fHF(p12), for Li, Be+, B2+, C3+, N4+ and 05+ 

behave as those for the KaKO-shell in the 2S 
state. Figure 

3.1.11(A) reveals that the maximum of the fHF(p12) 

probability distribution decreases as Z increases. This 

behaviour also can be supported by the inspection of the 

interparticle expectation value <p12> shown in Table 3.1.1. 

From Figure 3.1.12(A) we found that, for Li-like ions, the 

introduction of radial effects causes a reduction in Af(p12) 

at small p12. For the three-electron systems, the ionic 

curves of the Coulomb shift in the excited state show a high 

degree of similarity with those in 2S in the region when 

Z_1p12 ), 0.5, but display differences when Z-1p12 4 0.5. 

These differences between 2S 
and 2p for Af(p12) at small 

z-1p12 are in general accord with a comparison between the 

corresponding AT values (see Figures 3.1.10 and 3.1.24). 

Although the KaKp-shell angular correlation coefficients for 

the 
2P 

state are only marginally smaller than those in 2S 

for a given Z, it is seen that the ATp and AT 1/p values in 

2P are noticeably larger than those in the 2S 
state. From 

the Coulomb shift KaKp-diagram we see that the zeros of the 

scaled curves are in excellent agreement. These curves 

cross the axis twice; firstly in the region Z-1p12 = 0.5 and 

then again when Z-1P12 = 1.5. The zeros of these shifts are 
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in close agreement with those of the He-like ions(82) The 

Af(p12) comparisons for the KaKß-shell in Li(2P), Li(2S) and 

Li+(1S), and also for Be+(2P), Be+(2S) and Be(1S) are shown 

in Figure 3.1.13. We see that all the various Z=4 and Z=3 

curves cross the Z-1p12 axis at 1.5. Each set of curves 

then splits again into two groups, for Z=3 and 4, 

respectively, but each curve possesses a large maximum and 

large minimum in Of(p12) at about Z-1p12 0.9 and 2.1, 

respectively. Also we note that at Z-1p12 0.9 and 2.1, 

the ordering of the Z=3 curves differs from the ordering of 

the Z=4 curves. When Z-1p12 x 0.9 and 2.1 we note that the 

Af(p12) for 12P1 > 12S1. As Z-1p12 becomes larger than 2.1, 

the difference between the 2P 
and 

2S 
curves gets smaller as 

Z increases. But when Z-1P12 gets smaller than 0.5 we see 

that all the KaKß curves in 2P 
cross the axis and then 

become negative. This negative behaviour when 0t Z-1 P12 < 

0.5 is in direct contrast with the 2S behaviour in this 

region (except for Z=3 when we do note a small negative in 

the 0t Z-1p12 < 0.3). These differences between 2P 
and 

2S 

for KaKß Coulomb shifts at small Z_1p12 are due to the 

differences in symmetry between the 2s and 2p orbitals. In 

the 
2S 

state, the Coulomb shift for KaKO will reflect the 

radial orthogonality property between the orbitals for the 

inner and outer shell. The 2s orbital will produce some 

confinement of the KaKß-shell and hence reduce radial 

correlation and consequently promote angular correlation. 

In the 
2P 

state, the angular orthogonality between the is 

and 2p orbitals allows the KaKO Coulomb shift the ability to 

exercise radial correlation and therefore Af(p12) can go 

negative at small Z-1p12 values. An overall measure of the 
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Coulomb shifts shown in Figure 3.1.13 may be obtained by 

inspection of the Y values, shown in Table 3.1.9 for 2P 
and 

Table 3.1.4 for 2S, 
and we note that the ordering of these 

values for KaKO is Li(2P) > Li(2S) > Li+(1S) > Be+(2P) > 

Be+(2S) > Be(1S). 

Let us consider the gHF(p12'p1) and Ag(p12, p1) surfaces 
+4 for the KaKß-shell for Li, Be and N+. These surfaces are 

displayed in Figures 3.1.15(A) and 3.1.16(A) and display 

characteristics which are quite similar to those in 2S, 

except when we consider Aq(p12, p1) at small p1 and small 
2S 

we saw in Ag(p12, p1) a small positive effect at p12 . In 

small pl 

it, due 

orbitals. 

and N4+ 

2P than 

positive 

and p12, whereas in the 2P diagrams, we do not see 

to the orthogonality condition between s and p 

Consequently the Ag(p12, p1) surfaces for Li, Be+ 

are slightly more contracted towards the origin in 

those for 2S. Also we note that the magnitudes of 

and negative effects for 2P in the partial Coulomb 

shifts are always slightly greater than the magnitude of the 

corresponding positive and negative effect in the 2S 

surfaces. As Z increases, the range of the Ag(p12'p1) 

values for the KaKß-shell in 2P is seen to decrease as 

-0.006 c Ag(Li) < +0.005, -0.0023 < Ag(Be+) < +0.0019 and 

-0.0004 4 Ag(N4+) 4 +0.0003, whereas in 2S 
we found -0.006 4 

Ag(Li) < +0.005, -0.0017 < Ag(Be+) < +0.002 and -0.0002 

Ag(N4+) 4 +0.0003. 

In general, the Ag(p12, p1) surface for Be+ for the K- 

shell appears to have two distinct but unequal regions. 

When 0.6 < p1 < 2.0, the sizeable negative region in the 
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surface clearly indicates the dominance of radial 

correlation. For p1 > 2.0, angular correlation is now 

dominant. Radial and angular correlation are seen to have 

their maximum effects when the test electron has momentum 

values of about 1.4 and 3.4, respectively. 

Figures 3.1.21(A) and 3.1.22(A) show the two-particle 

radial density DHF(p1, P2) and the effect of correlation 

AD(p1, p2) for the KaKp-shell, and Table 3.1.8 shows the HF 

and correlated expectation values <pnp2>. The DHF(p1, p2) 

and AD(p1, p2) surfaces for Li, Be+ and N4+ possess features 

similar to those obtained for 2S, 
except when p1 is small 

and p1 zp2. The AD(p1, p2)-surface in 2S 
revealed a small 

positive density near the origin which is not observed in 

the 
2P-surface. For the KaKO-shell, when p1"p2 and both 

values are small, it is reasonable to suppose that, in 

position space, the electrons will be located in the far 

outer regions of the shell and, as such, penetration into 

the L-shell region may well occur. With this in mind, it is 

interesting to note that, for 2P, 
where this small effect in 

AD(P1, P2) is absent, an angular orthogonality exists between 

the K- and L-shell orbitals. This contrast between the 

K-shells for 2S 
and 

2P, 
although small, is in keeping with a 

similar comparison between the Ag(p12, p1)-surface at small 

p1! "p12' The percentage change in <pnp2> due to correlation 

reflects the influence of AD(p1, p2) for the Li-like ions: 

the results are shown in Table 3.1.11. 
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The KaLa- and KBLa-Shells 

Fot the inter-shells, the fHF(p12) curves are well 

ordered when plotted against Z-1p12. The fHF(p12) vs Z-1P12 

for a given Z in 2P is slightly more diffuse than 
2S 

and, 

hence, the maximum probability density of fHF(p12) for 2P is 

slightly less than for 
2S. 

From Figure 3.1.11(B) we observe 

that the KaLa fHF(p12)-curves show a flat region at small 

Z_1p12 which is due to the Fermi effect. Fermi correlation 

gives a zero value in 2S for the two-particle density 

whenever (p1I=Ip2I whereas in 2P the density is zero only 

for the more limited condition represented by p1 = p2. For 

KaLa, the Coulomb shift in Figure 3.1.12(B) is negative at 

small Z-1p12 for each Z due to the presence of radial 

correlation. The crossovers of the Af(p12) curves are 

located at values of Z-1p12 in the region of 0.5+ 0.1 and 

1.0+0.2, whereas the Coulomb shifts in 2S for the KaLa-shell 

have a major maximum and major minimum when 2-1p12 is about 

0.5 and 1.0 (see Figure 3.1.2(B)). Also we note that the 

range of Af(p12) for 2P is from -0.0015 to +0.0011 whereas, 

for 2S, 
we have a range of -0.0006 to +0.00058. This is to 

be expected since, for 2S, it is the outcome of the opposing 

effects of angular and radial correlation but for 2P 
we have 

only radial correlation, as mentioned in the discussion of 

position space effects. 

Consider now gHF(p12'p1) and Ag(p12, p1) for the KaLa- 

shell. These densities are shown as surfaces in Figure 

3.1.15(B) and 3.1.16(B). Since we are examining an inter- 

shell density we expect to see a diagonal and parallel 
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feature for gHF(P12, p1) in the KaLa-shell for a given Z. 

For Li it was found that 9HF(p12pl) has two maxima whereas, 

+9 for Be and N+, gHF(p12'p1) is seen to have only one 

maximum although it has a diagonal and parallel structure, 

with these structures becoming less obvious as Z increases. 

This merging behaviour as Z increases was not seen in the 
2S 

surfaces in momentum space. The gHF(pl2, pl) surfaces for 2S 

always possessed distinct diagonal and parallel features for 

Li, Be+ and N4+ with each density having two maxima. This 

contrast in behaviour seems reasonable and in keeping with 

the one-particle radial densities in 2S 
and 

2P for a given 

Z. From the one particle curves DHF(p1) (see Figure 3.1.23 

and Table 3.1.7) we found that the ratio of PK/pL for 2S is 

>5, >4 and ft4 for Z=3,4 and 7, respectively, whereas for 2P 

this ratio is <4, <3 and <2 for Z=3,4 and 7, respectively. 

This behaviour indicates that for the 2S 
state the 

distinction between the pR and pL values is generally 

preserved as Z increases whereas, for 2P, the pR and pL 

values become closer in magnitude as Z gets larger. 

Consequently, the overlap of the diagonal and parallel 

features in the gHF(P12'pl) surfaces in 2P 
can produce a 

maximum which is greater than that located by either the pK 

or pL values separately. 

Let us now examine the effect of electron correlation on 

g(p12, p1) for the KaLa-shell for Li, Be+ and N4+. The 

Ag(p12, p1) surfaces show a change from negative to positive 

as p12 increases when p1 is fixed equal to pL which, for Li, 

Be+ and N4+, has values 0.375,0.75 and 1.95, respectively. 

This behaviour of 6g(p12, p1) implies an increase in the 
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momentum for the K-shell electron and is a consequence of 

the closer packing of the K-shell electron around the 

nucleus. This view is consistent with what we found in 

position space for the Ag(r12, r1) in 2P for KaLc-shell. In 

position space we indicated that the diagonal positive 

density at r12 = r1 rL was due to a radial correlation 

effect in the KaLa decription. An examination of Ag(p12, p1) 

for KaLa can also be made by fixing the test electron at 

large p1 pK. For each Z we see a negative-positive effect 

as we cross the p1=p12 diagonal axis. Since angular 

correlation is only a secondary effect, we suspect that this 

negative-positive behaviour in Ag(p12, p1) arises from an 

increase in the 'DL) magnitude. Clearly, gHF(p12, p1) and 

Ag(p121p1) behave as fHF(p12) and Af(p12), respectively, 

when they are integrated with respect to p1. 

To study the partial Coulomb shift in more detail we 

calculated the density as a function of 81, where 81 is 

measured relative to the symmetry axis of the system. Let 

us examine gHF(p12, p1,81) in the KaLa-shell for Z=3,4 and 

7. When 81 = 90' the test electron can be anywhere in the 

nodal plane of the 2p orbital and thus it can only be 

described by the K-shell orbital. Therefore, we expect p1 

to be large which, in turn, will give rise to the diagonal 

effect in momentum space and no parallel effect. In 

position space for the corresponding surfaces we get only 

the parallel effect due to the reverse ordering in the 

extent of the is and 2p orbitals. At 81 = 0', the test 

electron will be found on a line perpendicular to the nodal 

plane. Therefore, pl can have a value corresponding either 
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to the K- or L-shell radius and thus we should see both 

diagonal and parallel effects in gHF(P12, p1). From Figure 

3.1.17, we see that the diagonal effect is small compared 

with the parallel one. This is the reverse of the situation 

found in position space. The weak diagonal effect in 

momentum space is understandable since, when p1 x pK (i. e. 

large), we are confined to the unique line along the z-axis 

in the 1s shell and, therefore, the probability associated 

with this chosen value of p1 will be reduced. By contrast, 

when p1 -- PL (i. e. small) the test electron is still located 

along the unique line but our restricted freedom is a closer 

representation of the 2p orbital symmetry and hence the 

consequence of such a restriction is less obvious. 

Returning to Figure 3.1.17, selecting p1 x pK and Al = 

O' allows us to examine the L-shell density. Clearly, when 

P12 < we are essentially sampling the upper lobe of the 

2p-orbital and when p12 > pK we are mainly sampling the 

lower lobe of the 2p-orbital. For the KaLe-shell we expect 

the Fermi effect to reduce the probability density when 

considering the upper lobe and, by comparison, to enhance 

the probability when sampling the lower lobe. When p12 = 

pK, the existence of the nodal plane in the 2p orbital 

produces a reduced probability density compared with the 

situations when p12 < pK and P12 > PK" Such behaviour shows 

itself in the appropriate gHF- surface as two maxima, of 

unequal heights, located either side of a reduced density 

along the p12 = p1 diagonal axis. However, when p1 » pK at 

81 = 0', the momenta of electrons 1 and 2 will be very 

different. Consequently, the Fermi effect produces less 
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distinction between the upper and lower lobes of the 

2p-orbital and therefore the two maxima in the gHF-surface 

although of smaller magnitude, will be almost equal in size 

and location with respect to the diagonal axis. As Z 

increases, the L shell moves, in position space, towards the 

nucleus and thus its momentum gets closer to the K-shell 

value. Therefore, when the test electron has a value of P1 

% pK, the individual p-orbital lobes will be shown more 

clearly over a greater range of p1 (where 0< p1 < pK). 

Nevertheless, at 81 = 0', the main feature shown by the gHF 

surfaces is, of course, still the parallel one when P1 x pL. 

Consequently, if p1 is reduced in magnitude from a value p1 

> pK, we see that the density on the left-hand side of the 

diagonal becomes smaller than that on the right-hand side. 

This result is due to the Fermi effect between the test 

electron (when 81 = 0') and the upper lobe of the 2p-orbital 

in momentum space. The gHF(P12'pl, 81=30') for the 

KaLa-shell shows a similar behaviour to gHF(P12'P1'81=0') 

when the test electron is placed at P1 P4 PK, but at 81=30' 

Fermi correlation is less effective. Therefore when 81=60' 

the gHF(P121P1#81 looks rather like the integrated 

gHF(P12'P1)- 

Having understood the behaviour of the gHF(p12, p1,91) 

density for the KaLa-shell, let us now consider the effect 

of correlation. From Figure 3.1.19, we see that the 

features in the Ag(p12, p1'91) surfaces behave as follows: as 

91 increases from 0' to 90' the diagonal feature becomes 

emphasized in momentum space and the parallel feature is 

reduced. At 8 1=0' the Ag(p12, p1,91) surface shows a 
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negative-positive effect relative to the diagonal density in 

the HF surface; the effect is most noticeable when Pi z pK. 

This might be interpreted as an increase of L-shell 

momentum. The major feature of the Ag(p12, p1,81) surface 

when 81=0' is seen to be parallel to the p12 axis and is 

located around p1 pL. We note that, for any given p12' 

the parallel feature behaves as a negative-positive effect 

as p1 increases from zero to a value mid-way between pL and 

pK' At 81=90', the KaLa Ag(p121p1,81) surfaces show the 

diagonal feature only. This implies that we have a K-shell 

test electron and an L-shell response to correlation. 

Consider now DHF(p1, p2) and the AD(p1, p2) for the 

KaLa-shell shown in Figures 3.1.21(B) and 22(B) for Li, Bef 

and N4+. The HF surface shows features similar to those for 

the KaLa-shell in 2S 
except in a small region when p1 '4 p2 " 

pL. In this region (p2 p1-pL)' DHF(p1, p2) for 2P is non- 

zero, in contrast to the corresponding density in 2S. 
The 

DHF(p1, P2) diagrams for KaLa in the 2P 
state show that as Z 

increases the density in this region increases. For Li and 

Be+ we see that, as for 2S, the DHF(p1, p2)-densities possess 

two maxima corresponding to two distinct regions of density 

whereas, for N4+, there is one maximum density located on 

the diagonal (p2=pl=pL), a result which contrasts with that 

for the 
2S 

state. The changes in the two-particle densities 

are shown by AD(p1, p2). The AD(p1, p2) surfaces indicate 

that the density has moved from low pl to high p1. As 

expected from the DHF(p1, P2) surfaces, the diagonal feature 

in AD(p1ºP2) is quite different from that in 2S. 
As z 

increases the AD diagrams reveal different behaviour 
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corresponding to that already observed for the HF surfaces. 

The change in the DHF(p1, p2) densities due to correlation 

produce the percentage changes in <pnp2> shown in Table 

3.1.11. 

The electron correlation for the KpLa-shell can be 

studied in the same way as for the KaLa-shell. The fHF(P12) 

vs Z-1p12 are displayed in Figure 3.1.11(C) and this 

function shows similar trends with repect to Z as was found 

for the KaLa-shell. The comparison between KOLa and KaLa 

for fHF(p12) shows that the f HF(p12) for a given Z has a 

maximum which is less than that in KaLa. The Coulomb shift 

for the KßLa-shell shows a sharp drop as the curve moves 

away from the origin; this is in contrast to the small flat 

region in the KaLa caused by the Fermi effect. From the 

KßLa curves we see, roughly speaking, that Af(p12) has a 

negative - positive behaviour with repect to increasing 

Z-1p12. However, for KaLa we saw that Af(p12) behaves, 

roughly, as a negative -positive and negative curve with 

repect to increasing Z-1p12. Figure 3.1.14 shows the 

relative magnitudes of the KaLa- and KoLa-Coulomb holes for 

Li, Be+ and N4+ as well as the KaKO- and total holes. The 

effect of Coulomb correlation in KßLa is seen to be greater 

that that in the KaLa-shell, a result which is not 

unreasonable in view of the presence of Fermi correlation in 

the KaLa-shell. A similar result was found for the 

inter-shells in 2S. 

A comparison between the normalized total Coulomb shifts 

for 2P 
and 

2S 
shows that, at small Z-1 P121 the influence of 
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the inter-shells is quite different for the states. The 2P 

curves contain less structure than those for 2S. In 

passing, we note that when Z-1p12 > 1, both sets of 

normalized total shifts are dominated by the KaKß shell and 

hence exhibit a high degree of similarity. This is under- 

standable since, in Li, the electrons in the K and L-shells 

will have different momenta and hence Fermi correlation in 

KaLa has a comparatively small effect and therefore a large 

similarity should exist with KOLa for Z=3. At Z=7, the K 

and L-shell electrons not only have greater momenta than was 

the case in Li but their values are now closer in magnitude 

and hence the Fermi effect has a greater effect. Conseque- 

ntly, at small p12, the differences between gHF(P121P1) for 

KaLa and KOLa in N4+ are much more noticeable. 

Consider the partial Coulomb shifts for the KOLa-shell 

as shown in Figure 3.1.16(C) for Li, Be+ and N4+. When p1 

and p12 are both small, we see a negative region which is 

more extensive and deeper than that in the KaLa case for 2P. 

This behaviour is particularly obvious for N4+ where the 

negative in KPLa is almost twice as deep as in KaLa. The 

effect is most noticeable for Z=7 since the large nuclear 

charge causes a merging of the K and L-shells (it was noted 

in position space that, generally, the L-shell contracted 

more rapidly than the K-shell as Z increased in value). The 

above effect is still obvious for Z=4 but is much less clear 

cut for Z=3. Generally, at p1 a pL we see a negative- 

positive effect with repect to increasing p12, and this 

agrees with our KaLa findings and also agrees with our 

position space observations. When the test electron has 
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PI x pK the Ag(p12, p1) surfaces for KOLa shows the influence 

of electron correlation as a negative - positive feature as 

P12 increases. This indicates an increase in the L-shell 

momenta which, in turn, is compatible with the inward 

movement of the L-shell density observed in position space. 

As for the KaLa-shells, we now examine the Coulomb 

shifts for KßLa as a function of P1 and 81. The results for 

gHF(p12'p1'91) and Ag(P121p1181) for Li, Be+ and N4+ are 

presented in Figures (3.1.18 and 3.1.20). For 81=0', 30', 

60', and 90', gHF(p12IP1, e1) for KßLa shows, in general, 

similar patterns of behaviour as was found for KaLa, with 

exceptions occurring when 81=0' and 30', for p1 '4 pK. The 

KaLa discussion for gHF(P12, P1,81) can be used here. For 

the surfaces when 81=0' and 30', we see that when P1 04 pK a 

maximum occurs on both sides of the diagonal axis and, 

unlike the KaLa-shell, these maxima for KPLa are of 

comparable magnitude. This contrast in behaviour between 

the gHF(P121PI'81=00) surfaces for KßLa and KaLa is clearly 

obvious when comparing Figure 3.1.18 with Figure 3.1.17. As 

in the KaLa-shell, the diagonal and parallel features in the 

9HF surfaces behave differently from each other as 81 

increases. When 81=90', we see only a diagonal effect in 

the gHF(P12IP181) density. The Ag(p12, p1,81) surfaces for 

the KßLa-shell shown in Figure 3.1.20 reveal the influence 

of correlation effects in gHF(P12, P1,81). From these 

diagrams, when 81=0' and 30', the test electron can be in 

the L-shell (mostly) when p1 % PL and so we are examining 

the K-shell. From 81=0' the Ag(p12, p1,81) surface shows, as 

expected, a negative - positive effect on the K-shell shift 
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as p12 increases. Now if we keep p1 x pL, but let 61 

increase to 90' then even though p1 x pL the test electron 

is now in the K-shell (since the L-shell orbital is zero in 

its nodal plane) with a much reduced probability. 

Consequently, the variation of Ag with repect to p12 

corresponds to a correlation shift for the L-electron. This 

effect on the L-shell is again seen to be negative - 

positive as p12 increases but the negative and positive 

regions are now only about one-sixth of the size of the 

61=0' values for the same small p1 = 'EL) value. Like the 

KaLa shell, the integrated effect Ag(p12, p1) seems to have 

characteristics which are similar to those for the 

"(p12, p1,61) surface when 61=60'. 

Finally, let us examine the DHF(p1, p2) and the AD(p1, p2) 

surfaces for the KpLa-shell. Figures 3.1.21-22(C) show the 

DHF(p1, p2) and AD(p1, p2) surfaces for Li, Be+ and N4+. The 

HF surfaces show features identical to those for the 

KaLa-shell whereas, in 2S, these densities are not equal due 

to the presence of the Fermi effect in the KaLa-shell. A 

similar observation was made in position space. The 

AD(p1, p2) surface for Li in the KßLa-shell shows that the 

correlation effects are the same as for the KaLa-shell. As 

Z increases a comparison of the AD-surfaces for the KaLa- 

and KßLa-; hells reveals different behaviours in the two 

shells. For the KßLa-shell, the AD diagrams indicate a 

significant movement of the density from low pl to high p1 

compared to that found for the KaLu-shell. 
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CHAPTER 3.1.5 

SUMMARY 

The correlation effects in momentum space are analyzed 

and compared within the individual electronic shells for a 

series of Li-like ions in the 2S- 
and 

2P-states. This was 

achieved by means of a partitioning technique used 

previously in position space. In momentum space, we have 

examined the Af(p12)-curves, which are particularly useful 

since the structure of such Coulomb shifts reflects the 

nature of the dominant correlation component for a given 

electronic shell. This behaviour is in contrast with that 

found earlier in position space 
(81), 

where radial and 

angular correlation effects reinforce each other. Banyard 

and Moore 
(81) 

established that, in momentum space, the 

radial correlation coefficients for two-electron ions are 

negative, as in position space, whereas, by contrast, the 

angular coefficients are positive. Therefore, for the 

momentum distribution f(p12), the effect of total 

correlation creates changes which are considerably more 

complex than those which arise in position space. 

The Coulomb shifts for 2S 
and 

2P in the KaKß-shell show 

a high degree of similarity for the Li-like ions when Z-1p 12 

> , 0.5 and both states show the domninance of angular 

correlation in the KaKß-Coulomb shifts. In the region when 

0< Z-1p12 4 0.5, the KaKO-curves show significant diffe- 

rences between the 2S- 
and 

2P-states. For the 2P 
state, the 

radial component of electron correlation gives rise to 

negative values for Af(p12) which are very similar to the 
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ionic curves obtained by Reed (77) for two-electron systems. 

However, for 2S, 
when Z-1p12 t 0.5, the Af(p12) curves for 

Be+, B2+, N4+ and 05+ give a positive value which is a 

consequence of angular correlation. The above findings are 

in general accord with a comparison between the correspond- 

ing AT values. It was found, for example, that the AT 1/p 

values for KaKO are ordered in magnitude as Be(1S) « 

Be+(2S) « Be2+(1S) < Be+(2P). Therefore, by comparision 
t 

with Be+, radial correlation at small momenta in the Be+ 

and Be K-shells is inhibited by the presence of the one and 

two L-shell electrons respectively. As a consequence of 

different symmetry of the 2s and 2p orbitals in the Li-like 

ions, we expect a different behaviour between the 2S- 
and 

2P-states for the Coulomb shifts at small p12. This was 

indeed the case. 

For the inter-shells, comparisons can be made of the 

fHF(P12) and Af(p12)-curves for the Li-like ions between the 

2S and 
2P 

states. At small P12, the KaLa curves for both 

states give a flat region due to the presence of the Fermi 

effect. Fermi correlation gives a zero value in 2S for the 

two-particle density whenever 1211=IP21 whereas, in 2P, 
the 

density is zero only for the more limited condition 

represented by E1 = E2 . Consequently, when adding Coulomb 

correlation into the description, it is not surprising that 

its influence in the 
2S 

state is considerably less important 

than in 2P. 
The effects of Coulomb correlation in 2S 

are 

smaller than in 
2P. This finding, in momentum space, is 

also supported by the inspection of the Yt values. The 

results for 2S 
are smaller than the Y% values for 2P in each 
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individual electronic shell. As in the He-like ions, we 

found that the momentum results for Y are smaller than those 

in position space for both 
2S 

and 
2P. 

In momentum space for 

both states, the effects of Coulomb correlation in the 

KPLa-shell are greater than in KaLa, a result which is not 

unreasonable in view of the presence of Fermi correlation in 

KaLa. 

Further points of contrast between the S and P states 

can be seen from the normalized total Af(p12) at 0< Z-1p12 

< 0.5. The 
2P 

curves show a negative region whereas, in 2S, 

although the curves are identically negative at small Z-1p 
12 

(but of smaller magnitude than for the 2P-state) they have 

all become positive when Z-1P12 > 0.25. In general, the 

difference in behaviour of Af(p12) between the 2P 
and 2S 

curves is due to the different behaviour of the inter-shells 

in both states. These observations are understandable in 

view of the absence of direct angular correlation in the 2p 

wavefunction. The Af(p12) curves for the KaKO-shell and the 

normalized total effect for the both states show a common 

crossover point at Z-1p12 = 1.5. Clearly as in position 

space for the Li-like ions, the normalized total curves for 

the both states show the dominance of the effect of the KaKß 

Coulomb shift. In momentum space, the effect is located at 

large p12 whereas, in position space, it is located at small 

r12. 

The Coulomb shift has been studied as a function of p1 

by the determination of the partial Coulomb shifts 

pq(p12, p1) in 2S 
and 

2P for individual electronic shells. 
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For the KaKß-shell, the Ag(p12, p1) surfaces in 2p 
show 

characteristics which are much the same as for those in 2S 

except at small p1 and small p12. In the 2S 
state we saw a 

small positive effect for the KaKO-shell for Li, Be+ and 

N4+, whereas in 2P, the KaKß surfaces did not show this 

positive effect at small p1 and small p12. This contrast 

between P and S states is in keeping with the behaviour of 

the Coulomb shift Af(p12) at small p12 and is also in accord 

with the change in the T values. The cause of this positive 

Ag at small p1 and p12 is perhaps due to the effect of 

integrating out the L-shell electron when partitioning the 

two-particle density. Therefore it was anticipated that 

this feature would not appear in the 2P 
state because of the 

orthogonality condition between the s and p orbitals. Our 

results confirmed this conjecture. In position space, the 

KaKo-diagrams of the partial Coulomb holes for both states 

show almost identical characteristics. We note that, in 

momentum space, the Ag(p12, P1)-surfaces for the KaKp-shells 

" for Li, Be+ and N4+ in 2P are slightly more contracted 

towards the origin than those for 2S, 
and also we found that 

the magnitude of the positive and negative effects for 2P 

are always slightly greater than those characteristics in 

the 
2S 

surfaces. Otherwise, the Aq(p12, p1) surfaces showed 

features similar to those obtained for the corresponding 

density in 2S, and therefore emphasise once again, that 

radial and angular correlation produce effects in the 

KaKO-shell which are common to both states. However, 

contrary to the findings in position space as Z increased, 

the surfaces not only became more diffuse but also decreased 

in magnitude. 
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For the inter-shells, the gHF(P12'Pi) surfaces show 

diagonal and parallel characteristics and their extent 

reflects the spread of the K- and L-shell densities respect- 

ively. In position space, the diagonal and parallel 

characteristics in those surfaces are such that, in this 

space their spread now reflects that of the L- and K-shells 

densities. The inversion of these diagonal and parallel 

features for both spaces is due to the reverse ordering in 

the extent of the 1s and 2p orbitals. The comparision 

between the qHF-surfaces in the inter-shells for the 2S 
and 

2P 
states show obvious differences due to the different 

symmetry of the outer orbital. This contrast is in accord 

with the one-particle density, which is a result of 

integrating the gHF(P12'P1) density with respect to p12. 

The comparison between the KaLa- and KPLa-shells for 

'7,, (P12'p1) for both states shows a difference at small p12 

+ 4+ 
for Li, Be and N. 

Due to the Fermi correlation in the KaLa-shell, a 

difference between the KaLa and KßLa-shell for the 

Ag (p 12, p, )-surfaces can be found at small P12* As we 

examine Ag(p12, p1) for each Z at chosen p1 a pL values we 

see that as p12 increases from zero to a large value then, 

for that fixed p1 value, the sign of the Ag-surface changes 

from negative (at small p12 values) to positive (at large 

p12 values). This occurs for Li, Be+ and N4+ for the KaLa 

and KpLa-shells in the 2P 
state. This similarity in 2p 

between KaLa and KßLa also occurred for Li in 2S but not for 

Be+ and N4+. For P1 3b pK 1 the Ag(p12, p1) surfaces in 2p 

161 



for KaLa- and KpLa show a negative-positive effect which 

occurs as p12 increases. This is in contrast with the 

inter-shell diagrams in 2S 
which show a positive-negative 

effect when p1 x pK as p12 increases. For the 2S 
and 

2P 

states, the KßLa partial Coulomb shifts show a significant 

negative at small p12 and small p1 which did not exist in 

the KaLa-diagrams due to the presence of the Fermi effect. 

Further investigation was made by studying the partial 

Coulomb shift in 2P for the inter-shells as a function of 

8l, where 81 was measured relative to the symmetry axis of 

the system. 

Examination of the two-particle radial density for KaKp 

shows a high degree of similarity between 2S 
and 

2P in both 

position and momentum spaces. The AD(p1, p2) surfaces for 

Li, Be+ and N4+ showed features similar to those obtained 

for the corresponding density in 2S, 
except at small p1 and 

small p2. In the 2P-state, the KaLa-shell DHF surface for a 

given atom is equal to that for the KPLa-shell, whereas, in 

2S, these densities are not equal due to the presence of the 

Fermi effect in the KaLa-shell. In both position and 

momentum space the comparison between the AD-surfaces for 

KaLa and KpLa shows that correlation effects are not the 

same on the diagonal axis in 2S 
and 

2P. This is not 

unreasonable in view of the behaviour of the HF surfaces 
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Tables and Figures for the 2S-states 
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Fi mire 31.1 The HF function f (p12) for the ( 1s22s) 2S 
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(0) the total distribution when normalized to unity. 
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All curves are ordered at Z-1 P12=0-5 such that, as Z 

increases the Af(p12) value decreases. 
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Figure 3.1.5 

(see over) 
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Figure 3.1.6 

(see over) 
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Figure 3.1.7 

(see over) 
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Figure 3.1.8 

(see over) 
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figure 3-1-11 The Hf function f (p 
12) for the (1s2 2p) 

2p 

state for Li, Be+, B2+, C3+, N4+ and 05+ plotted against the 

scaled distance 2- 
1 

p12 (in atomic units). (A) The KaKp- 

shells, (B) the KaLa-shells, (C) the KpLa-shells, and (D) 

the total distribution when normalized to unity. 
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Fi aure 3.1.12 The Coulomb shifts Af(p12) vs Z-1p12 for the 

(1s22p)2P state derived for Li, Be+, B2+, C3+ and N4+. (A) 

The KaKp-shells, (B) the KaLm-shells, (C) the KßLa-shells, 

and (D) the total Coulomb shifts for each Z obtained here by 
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When Af(p12) is positive the curves are ordered from 

left to right as Z increases in value. 
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Figure 3.1.15 
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Figure 3.1.16 

(see over) 
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Figure 3.1.18 

(see over) 
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Figure 3.1.19 

(see over) 
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Figure 3.1.20 

(see over) 
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PART FOUR 

APPENDICES 



APPENDIX A. 1 

EVALUATION OF THE SECOND-ORDER REDUCED DENSITY MATRIX 

FOR THE HF AND CORRELATED ELECTRONIC WAVEFUNCTIONS 

IN POSITION SPACE FOR THE 
2S- 

AND 
2P-STATES 

Lowdin(55) has shown that the reduced density matrices 

provide a valuable tool for analysing the properties of a 

wavefunction. The second-order density matrix, expressed in 

terms of a normalized wavefunction, will be useful in 

evaluating the Coulomb hole, Af(r12), for the subsequent 

discussion of correlation properties. 

In the independent-particle model, the wavefunction for 

a system of N electrons can be expressed as a single Slater 

determinant, thus 

HF (1,2,..., N) = 1(1/N! ) det 14 1(1)f2(2)... fN(N)1 A. 1.1 

where + is an orthonormal spin-orbital and is a function of 

space and spin coordinates. It is easy to show that single 

determinant can be written as the antisymmetrized product of 

all occupied HF spin-orbitals 

fHF(1,2,..., N) = An(1,2,..., N) 

where 

n(1,2,..., N) = f1(1)i2(2)... fN(N) I 

A. 1.2 

A. 1.3 
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and A} is the N-electron antisymmetrizer operator, given by 

A= t(1/N! ) E (-)PP 
all p 

A. 1.4 

and P is any permutation of the elctrons, and (-)p has a 

value of +1 for an even permutation and -1 for an odd 

permutation. The factor f(1/N! ) is introduced to ensure 

that the wavefunction is normalized, i. e. «HF 1 4HF >=1 

where the notation <I> refers to integration over all the 

coordinates. Expanding equation (A. 1.2), we get 

H 

fHF(1,2, ..., N) =L (-)P A 1Ii7 
i<i 

where 

Amý _ (m)+i(n) - "ý(m)+i(n) 

A. 1.5 

A. 1.6 

and nij represents the product of all occupied HF spin- 

orbitals except +i(m)and + (n); i and j represent spin- 

orbital labels and m and n refer to electron labels. 

For any N-electron atomic system, the two-particle 

density is defined (67) 
as 

r(ýýnýýýn) _ (2) ! f(... gp... )f*(... ý .. )(d 
pý 2ip) " A. 1 .7 

As usual, gp represents the combined space and spin 

}A indicates the antisymmetrizer operator unless stated 

otherwise. 
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coordinates of electron p, and (dgp) indicates integration- 

summation over all N electrons except m and n. The factor 

N 
ensures that the second-order density matrix 

ý(xmxnixxn) is normalized to the number of electron pairs 

within the system; see, for example, McWeeny and 

(s 7ý. Sutcliffe 

Substituting equation (A. 1.5) into (A. 1.7) yields 

HF(26,2ýn) _ (2) f(F Amý (-)P Alii7 } 
t<ý 

N 

Akion i 
(-)P A1fk1 (dgp) 

k<1 
A. 1.8 

The integration in equation (A. 1.8) gives zero unless i=k 

and j=1, therefore 

N 

t'HF(X®,, Xn) _(2) f1 E<iAm; Amj* IAIIiýA]fij*(dyp) A. 1.9 
i 

N * 
r HF(, ý, gn) _ (2) (N-2)! /N! E Amý Am7 

i<i 

where 

Ff Afii A1Ti7 (di) = (N-2)'/N! 
i<j 

Since (2)(N-2)! /N! = 1/2, equation (A. 1.10) yields 

r HF(ý, gn) = 1/2 L Amý Aýj- 
t<j 

A. 1.10 

A. 1.11 

A. 1.12 

The density for each pair (i, j) is normalized to unity. 

To enable us to examine correlation effects within 

different shells for a given system, the correlated 

description of the two-particle density was formulated in 

terms of the many electron theory proposed by Sinanoglu. 

N 
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This theory allows us to write the correlated wavefunctions 

as 

Tcorr(1,2,..., N) = c[+HF(1,2,..., N) + X(1,2,..., N)]. A. 1.13 

where the leading term +HF in equation (A. 1.13) is chosen to 

be the restricted HF wavefunction. Since this reference 

state is a single determinant, it can be expressed as shown 

above in equation (A. 1.5). 

The correlation part X in equation (A. 1.13) can be 

expanded as 

NNN 
X(1,2,..., N)=E_1Xi+EXij+t< 

j `kXijk 
+... + Xijk 

`j... 
N 

where 

A. 1.19 

Xi = A{ n(1,2,..., N) fi/+ i)A. 1.15 

Xl, = 2! -1/2 A{ n(1,2, .., N) Uij/+i+i ) A. 1.16 

Xijk = 3l-1/2 A{ 71(1,2,..., N) Uijk/fiýýfk ) A. 1.17 

xijk... N = N! -1/2 A{ n(1,2,..., N) 

Vijk... N/+i+j+ k... ON } A. 1.18 

The +i is the ith normalized HF spin-orbital, and fi is the 

corresponding orbital correction function, Uij is the pair- 

correction function associated with i and +j, and Uijk 

Uijk... N are higher many-electron correlation terms. In 

equation (A. 1.15-18), we have used the convention 
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f i/+i=fi(Xi)/+i(Xi) , Uij/+i+j=tiij(XiXj)/+i(xi)+j(xj) , etc. 

Expressions for correction functions were obtained by the 

method of successive partial orthogonalization (MSPO) 
(36) 

proposed by Sinanoglu The correlation terms U are 

antisymmetric under an odd number of permutations, i. e. 

Uij (Xi, Xj )=Uii (iº7) = -Uij (Xi ºXi) A. 1: 19 

Uijk(4i'äj, Xk) _ -Uijk(Xj"6i, Xk) A. 1.20 

The correlation function X(1,2,... N) in equation (A. 1.13) is 

orthogonal to all the occupied spin-orbitals in fHF since 

the MSPO procedure is based on the following strong ortho- 

gonality requirements 

<filf1> =0 

<Uiil01> =0 

<Uik1f1> =0 (1 = 1,2,..., N) A. 1.21 

<Uijk... N141> =0 

where 

<UiýIf1> _ <Uij(xi, Xj)I"i(2ii)>i 

=I Uii (xi, xj)vi(xi)axi =0 A. 1.22 
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The partitioning of f 
corr( 

) into its pair (i, j) ýa'gn 

components is, of necessity, only approximate and, as 

discussed in earlier work 
28), 

the contributions arising 
( 

from X (1,2,..., N)X(1,2,..., N) will be omitted. 

Substituting equation (A. 1.7) we get, 

rcorr(Xm, Xn) = (2) cJ( fHF(1,2,..., N)*HF(1,2,..., N) + 

fHF(1,2,..., N) X*(1,2,..., N) + 
* X(1,2,..., N)ýHF (1,2,..., N) } (d2jp) A. 1.23 

If we expand the correlation part x then, according to the 

orthogonality conditions in equation (A. 1.21), the equation 

(A. 1.23) can be written as 

rcorr(Bm'xn) = (N CCI #HF(1,2,..., N)*HF(122,..., N) + 

NN 
J 

HF 
(1,2,..., N) E Xi*(dXp) +14 HF(1,2,..., N) L Xij (dgp 

i=t i<j 

N*N* 
ffL XiýHF(1,2,..., N)(da 

p) 
+fr Xij4 HF(1,2,..., N)(da 

p)] i_I i<j 
A. 1.24 

since 

N* 

!+ HF(1º2,..., N) { i`j<kXijk +... + Xijk... N} (dý) _A01.25 

and 

N* 
f(EX. 

ijk +... + Xijk... N) fHF(1,2,..., N) (djj )= 0 

i<j<k 
p A. 1.26 

In the present work we are considering three-electron 

systems, so it is convenient to set m=1 and n=2, and after 

integration over all electron coordinates except those 

associated with electrons 1 and 2, equation (A. 1.24) 

becomes, after some considerable manipulation, as follows, 
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3 
r (2C 

,ä)= 1/2 L [A12 A12* + A12 B12* + A12 p12* + corr 12i; ,;,; _ I1-1, 
ý! ý- -- J ý' J -J 

--ý 
/2 A12 U12* + B12 A12* + D12 A12* + 12 U12 12* 

ij 13 ij 13 ii ii ii Aii ) A. 1.27 

In the above equation, Aid is defined as in equation 

(A. 1.6), and Bid and Di? as follows 

BI? = "i(x, )fj(-l12) - fj(1'1)*i(22) , A. 1.2a 

D17 = fi(Xl)ej(1ä2) - ýj(X1)fi(ä2) 

Equation (A. 1.27) can be rewritten as 

A. 1.29 

3 
r 

corr(11'12) - L<j[Aij [ f2Uiý+Biý+Diý+Aiý/2] 
. A. 1.30 

Finally, when we substitute the Uij expression (see 

equation 1.1.18), the equation (A. 1.30) becomes 

3 
£ A12 (<'Y ýff. . >/<`Y ýff> - 1/2 A12 corr 12 
i<j 

tý corr iý corr ;, j) 
A. 1.31 

In this analysis, nij and n are defined as before (see 

page 35), and the integrals in <'V 
corr i(n. j> are over all the 

coordinates occuring in nij and thus we obtain a function of 

2j, and 212 only. The term <'corrlT> is the overlap integral. 

-J -i yJ 1J 
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APPENDIX A. 2 

CALCULATION OF THE f (r 12) ,q (r 
1 2, j1) AND 

-q-(X 12 1 ý1-) FUNCTIONS 

For any N-electron system the two-particle density can be 

defined as 
(67) 

r(Xm, X) = (N 2) 
1 'p*(X1, X2,..., XN) 'y (X1, X2,..., XN) 

dXp,... dXN A. 2.1 

where I[ m and 2[ n are the space spin co-ordinates of any two 

electrons m and n, and d2p,... djj N indicates integration- 

summation over the combined space and spin co-ordinates of 

all N-electrons except m and n. The factor (2) ensures that 

the r(Xm, Xn) is normalized to the number of electron pairs 

within the system, so that 

J r(xm, xn) dgmd2in = (2) A. 2.2 

For the three-electron systems, the density for the 

individual electronic shells is obtained by partitioning r 

into its pair-wise components 

expression for r can be written as 

and the resulting 

3 
r(xm, Xn) =E rij(2cm, 2Ln) A. 2.3 

i<j 

The i and j values label the occupied spin-orbitals within 

the HF description and, hence, taken as a pair, (i, j) 

references the individual electronic shells. As seen in 

Chapter 2.2.3 (also see Appendix A. 1) the partioning of 
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UHF( 
m, n) 

is exact whereas, for the correlated two-particle 

density, the resolution may be achieved only approximately. 

The interparticle distribution function associated with 

the spin orbital pair (i, j) is given by 

fij(r12) =f rij(X1'X2)djj 1d-42/dr12 

such that, for any pair (i, j) we have 

go 
j f. ij(r12) dr12 =1 
0 

I 

A. 2.4 

A. 2.5 

where for convenience we have set m and n to be 1 and 2. 

After integration over the spin co-ordinate, equation 

(A. 2.4) reduces to 

fij(r12) =J rij(r, 11162)az1a112/ar12 A. 2.6 

where rij(iz1,12) is the spin-free second-order density, and 

Z1 represents the space coordinates of electron 1. The 

element of volume d1i is defined as 

d. ji = ri sin9i dAi dýi dri A. 2.7 

The integration in equation (A. 2.6) is to be performed over 

all coordinates except r12 and the integration region in 

this equation is just that used by Coulson and Neilson63) 

Physically, f(r12)dr12 can be interpreted as the 

probability that the distance separating electrons 1 and 2 

lies somewhere between r12 and r12 + dr12. In order to 
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calculate f(r12) we express equation (A. 2.6) in terms of r 1' 

r2 and r 12; all angular terms must be integrated out. To 

reach this stage we start by transforming the density and 

elemental volume in an appropriate manner by selecting the 

L1-direction to be the new polar axis. Transformations of 

the element volume in equation (A. 2.6) may therefore be 

acheived by rotating the coordinate system through the Euler 

angles aPq, see Figure A. 2.1, whence 

d12 = r2 dr2 sine12 d812 dX 

From the law of cosines 

r2 = rý + r2 - 2rýr2cos812 

we obtain 

r12dr12 = rýr2 sin812 d812 

A. 2.8 

A. 2.9 

A. 2.10 

provided that rl, r2 are kept fixed. The combined volume 

element therefore becomes 

d. LldIL2/dr12 = r1r2r12dr1dr2sin81d81dip 1dX 

Substituting equation (A. 2.11) into (A. 2.1) we get 

f(r12) = r12 f r(L111,2)rlr2drldr2sin8ld8ldpldX , 

A. 2.11 

A. 2.12 

where X denotes an angle of rotation of the plane 012 around 

01 and, for a given r12, the allowed values of r1 and r2 are 
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defined by the rotations 

r12 - r1 t r2 t r12 + r1 

r1 - r12 < r2 < r12 + r1 

(r1 < r12) 

(r1 > r12) A. 2.13 

Equation (A. 2.12) can be used in general to evaluate f(r12) 

for spherically symmetric cases and also for non-spherically 

symmetric examples, as considered in the following Sections 

I and II, respectively. 

The Spherically-Symmetric Case 

If the wavefunction 'P in the two-particle density r 

involves only r1, r2 and r12 then we may integrate over 

angles mentioned in equation (A. 2.12) to give 

f(r12) = 8n2r12 {J1 + J2) 

where 

A. 2.14 

r12 r12+r1 

J1 =f r1 dr1 j r(z1 'Z2) r2 dr2 A. 2.15 

0 r12-r1 

and 
M r12+r1 

2=f r1 dr1 f r(. 11 1-12) r2 dr2 A. 2.16 

r12 r1-r12 

The ranges of the two radial integrations J, and J2 are 

represented by the shaded area shown in Figure A. 2.2. 

In order to utilise f(r12), the wavefunction 'V in the 

r(r1, r2) must be expressed entirely in terms of r1, r2 and 
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r12: this is easily carried out by applying the spherical 

harmonic addition theorem (85) 
to equation A. 2.14. This 

theorem states 

+1 * 
P1(cos812) = 4n/(21+1) L Y1N(81, (p1)Y1N(82, p2) A. 2.17 

p=- 1 

where 812 is the angle between 1,1 and 12. This gives 

tl * t1 * 
E Y1w (81fWl)Y1u(82' 4)2) =L Y1W (81 Opi )Y1tj(82'4p2) 

= (21+1)/4n P1(cose12) A. 2.18 

The phase of the spherical harmonics used by Weiss in 

the construction of his wavefunction was Yx 1N = Y1_ß. The 

argument cos812 of the Legendre function appears in equation 

(A. 2.18) is 

cos912 = rý + r2 - r12) / 2rýr2 A. 2.19 

Boyd and Coulson (64) defined a function g(r12, r1) to 

represent the probability of finding an interelectronic 

separation r12 when a test electron is located at a distance 

r1 from the nucleus. Therefore, the g(r12, r1) function may 

be calculated by performing only the inner integral in 

equation (A. 2.15) and (A. 2.16). This 

summarised as 

rýý 00 

relation may be 

f(r12) = I"'g(r12, r1)dr1 +J g(r12, r1)dr1 
U r12 

00 

=J g(r12'r1)dr1 
0 
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II. The Non-Spherically Symmetric Case 

The distribution function f(r12) arising from the 

spherically-symmetric wavefunctions built from 12 

configurations can be obtained from the use of equations 

(A. 2.14-18). However, many interesting systems are not 

spherically symmetric(87). In the present analysis the 

2P-state of Li-like ions is an example of such a system. 

The expression for f(r12) obtained from equation (A. 2.12) 

will involve integrals of the most general type 

I=I Yl, 
mt 

ce1 1 WI )Y12m2ce1, ýýý 

Y13m3 ý82'ýp2ýY14u14 ýe2'(P2)sin81de1dtpldX . A. 2.21 

Following the procedure of Calais and Lowdin(88), the 

reduction of equation (A. 2.21) to an integral involving 

functions of r1, r2 and r12 can be done by expanding the 

product of each pair of spherical harmonics with the same 

argument into a sum of spherical harmonics. 

According to Rose (89), equation (A. 2.21) becomes 

I= L1«12 E3«14 {L1L2L3L4/(16nwLL')}1/2 

1=111-121 1 =113-141 

C(11 121; m1-m2m) C(13141'; m3-m4m') 

c(11121; 000) C(13141'; 000) K (-)M2+m4 I A. 2.22 

where 

210 



K=J YlmMY1'm'(2) sin9 1d91dtp, dX A. 2.23 

In equation (A. 2.22-23), Li=21i+1, m=m1-m2 and m'=m3-m4. 

The type of Clebsch-Gordan coefficient C(11121; m1m2m) used 
9). 

in this work is that defined by Rose 

In order to calculate equation (A. 2.22), it is necessary 

to evaluate the angular integral K. Express the spherical 

harmonic Yl. 
m. 

(82, ý02) in terms of 81, (p1,812 and X. This is 

equivalent to rotating the coordinate system so that the new 

polar axis coincides with the r1 direction. The new polar 

angles are, of course, 812 and X. In other words, we rotate 

(90 
the old system by the Euler angles). Thereby the 

function Y1. 
m-(82'1p2) 

is transformed to 

1 1"m"(81'92'812'X) =L DM"m(CKOY) Yl. 
m(812, 

X) A. 2.24 
" 

where D1, 
m(a0l) are the elements of the rotation matrix as 

given by Rose(89). The function Ji. 
m. 

(e1, p2; e12, X) depends 

on X only through the function eimX in the spherical 

harmonic Yl. 
m(e121X). 

Consequently, we can integrate over X 

directly, which reduces the sum in equation (A. 2.24) to the 

single term with m=0. Therefore 

K= 2n 1 Ylm(1) 80'(812) Dm'0(aßY) sin81d81dw1 A. 2.25 

where 
8 

, (812) is the normalized associated Legendre 

polynomial. But since, for m=0 

Dm, 
D = (4n / 21'+1) 1/2 Y1-m-(81, tp1) A. 2.26 
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we see that equation (A. 2.23) becomes 

K= 2n (-) mI P1, (cose12) all'bm-m' A. 2.27 

Substituting equation (A. 2.27) into equation (A. 2.22) we 

get 

11+12 13+14 
1/2 I= 1/2 )ý2+T4 EE [L1L2L3L4 /LL'] 

1=I11_121 1'=I13-14I 

C(11 121; ml-m2m) C(13141"; m3-m4m') 

C(11121; 000) C(13141"; 000) 

(-)m P1. (cosA12) 6 11'6 m-m' A. 2.28 

The distribution function g(r12'r1) is determined in the 

same way as for the spherically-symmetric case. However, in 

order to calculate g(r12, r1) as a function of 81, we follow 

the general procedure outlined above. In equation (A. 2.25), 

however, we integrate over ip1 only, hence we get the 

following relation, 

ana 
fdr1 fg(r12, rite 1)sin81d91 = fg(r 

000 
12'r1)dr1 

= f(r12) A. 2.29 
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2 

A 

2irz, eZ'PZ) 

y 

FiaureA. 2.1 Coordinate system for the determination of 

f(r12), 4(r12'r1) and 9(r12'rl, o1). 
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co, 2 

Figure A. 2.2 The radial integration range in equation 

(A. 2.14) is represented by the shaded area. 
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APPENDIX A. 3 

MOMENTUM REPRESENTATION OF 

SLATER-TYPE ORBITALS 

Momentum space electronic wavefunctions can be obtained 

through the Fourier transformation (80,91) 
of ordinary 

position-space wavefunctions. Thus we may write 

Xnlm(P) = 1/f((2n)3) f Xnlm(1, ) exp(-iP.. L)d. L A. 3.1 

where Xnlm is a Slater-type orbital (STO) and is given by 

Xnlm(L) Nnlm Ylm(Q) Rnl(r) A. 3.2 

In equation (A. 3.2), Nnim is the normalization factor, 

Ylm(9) is the normalized spherical harmonic, and Rnl(r) is 

the radial part of the function defined as 

Rnl(r) = e- 
Er 

rn-1 

In order to transform Xnlm(r), we first use an 

alternative expression for exp(-ij.. I), written as(92), 

N! 
* 

4n LL (-i)l 71(Pr) Ylm(Q)Ylm(Q) A. 3.3 
1 =0 0 =-1 

where Q=8, c and represents the angular variables in 

momentum space and jl(pr) is a spherical Bessel 

(93 ). function 
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Combining equations (A. 3.1) and (A. 3.3) we get 

Mi" 

xnlm(ý) - Nnlm f(2/n) E yi, 
m, 

(Q) 
1 =0 m '=-1' 

ýO 2 lf ff 

Yl"m-(Q)Ylm(Q)dQ A. 3.4 ö J1"(Pr) Rnl(r) r2 dr 
00 

The angular integration gives rise to the delta functions 

all'6mm' which cancel all terms in the summation 

1= 1' and m= m'. Thus, we obtain 

xnlm(-E) Nnlm Rnl(-E) Y1m(Q) 

where 

except when 

A. 3.5 

Rnl(P) = f(21r) (-i) 17 7l(Pr) Rn1(r) r2 dr A. 3.6 
0 

Equation (A. 3.6) can be written as 

Rnl(P) = (-i) 1J f(pr) J1+1/2(Pr) Rnl(r) r2 dr , A. 3.6 
0 

J1+1/2(pr) is an ordinary Bessel function of order 1+ 1/2 

and can be written in terms of a spherical Bessel function 

through the relation 

J1+1/2(Pr) = (2Pr/n)1/2 jl(Pr) 

Substituting equation (A. 3.7) into (A. 3.5) yields 

A. 3.7 

xnlm(1) = Nnlm(-1)11/1(p)Ylm J Jv(pr)e-errn+l/2dr , A. 3.8 
0 

where 
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The radial integral 

00 

0 

n+1/2 e-er 1r Jv (Pr) dr A. 3.9 

which we denote by I, is evaluated by making use of the 

definite integral (93) 

00 
j e-Ft Jv(bt) tv dt = (2b)v r(v+1/2)/[fR(A)v+1/2ý A. 3.10 
0 

where A=F, 2+ b2 

Differentiating q times with respect to the quantity E we 

obtain 

j e- Et Jv(bt) tv+q dt 

0 

_ (-)-q (2b)v/tw r(v+1/2) ag(1/Av+1/2) 

a Eq 

A. 3.11 

If we let q= n-l, t=r and b=p, the integral in Equation 

(A. 3.11) becomes equal to the integral I. Thus in atomic 

units, 

(-)1-n211! (2P)1+1/2f(2/n) an-1(1/A1+1) A. 3.12 
aE n-1 

and therefore equation (A. 3.8) can be expressed as 

Xnlm(g) = N(-)n(2pi)11! t(2/n) önn11(A)-(1+1) Ylm(Q) A. 3.13 

a E.. - 

where 
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N=1 [(2E)2n+1 , (2n)! ] 

Below, we present the position and momentum representat- 

ion of the normalization factor Nnlm and the radial part of 

the various STO"s used in this work. 

Orbitals Nnlm 

15 1 (4E3) 

2s I(4E5/3) 

3s I(8E7/45) 

2p I(4E5/3) 

3p I(8E7/45) 

3d I(8E7/45) 

4d 2E4/3I(E/35) 

5d 2E5/45I(2E/7) 

4f 2E4/3I(E/35) 

5f 2E5/45I(2E/7) 

5g 2E5/45I(2E/7) 

Position Momentum 

e- 
Er 2Ef(2/rt)A-2 

re-Er I(8/n)(3E2-b2)A-3 

r2e-Er I(2/n)24E(E2-b2)A-4 

re-Er -I(2/a)8piEA-3 

r2e-Er I(2/n)8pi(b2-5E2)A-4 

r2e-Er -48EI(2/R)p2A-4 

r3e-Er 48p2I(2/n)(b2-7E2)A-5 

r4e-Er p2I(2/n)E(3b2-7E2)A-6 

r3e-Er 384p3iEI(2/R)A-5 

r4e-Er 384p3iI(2/n)(9E2-b2)A-6 

r4e-Er 3840p4EI(2/n)A-6 
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