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Abstract

Robust discrete time output feedback sliding mode control 
with application to aircraft systems

Nai One Lai

This thesis describes the development of robust discrete time sliding mode controllers 
where only output information is available. A connection between discrete time sliding 
mode controllers and so-called min-max controllers is described. New conditions for the 
existence of stabilizing output feedback discrete time sliding mode controllers are given 
for non-square systems with bounded matched uncertainties. A novel sliding surface is 
described; this in itself is not realizable through outputs alone, but it gives rise to a control 
law which depends only on outputs. An explicit LMI optimization procedure is described 
to synthesize a Lyapunov matrix, which satisfies both a discrete Riccati inequality and a 
structural constraint. This Lyapunov matrix is used to calculate the robustness bounds 
associated with the closed-loop system.

For systems which are not static output feedback stabilizable, a compensation scheme is 
proposed and a dynamic output feedback discrete time sliding mode controller is described 
with a simple parameterisation of the available design freedom.

Initially, a regulation problem is considered. Then a new scheme which incorporates 
tracking control using integral action is proposed for both the static and dynamic output 
feedback discrete time sliding mode controller. The scheme requires only that the plant has 
no poles or zeros at the origin and therefore the controller can be applied to non-minimum 
phase systems.

The theory described is demonstrated for various engineering systems including imple­
mentation on a DC-motor rig in real-time and simulations on a nonlinear, non-minimum 
phase model of a Planar Vertical Take-Off and Landing aircraft. The effectiveness of the 
controller is further proven by its application for control of the longitudinal dynamics of 
a detailed combat aircraft model called the High Incidence Research Model. Simulations 
with real-time pilot input commands have been carried out on a Real Time All Vehicle 
Simulator and good results obtained.
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C hapter 1

Introduction and Outline

1.1 Background and Motivation

Whilst much of the control systems literature focuses on the analysis of continuous time 

systems, increasingly, practising control engineers implement control systems using mi­

croprocessors. The controllers can either be implemented from continuous time repre­

sentations using ‘fast sampling’ ideas, or the continuous time controllers can be map­

ped to their discrete time equivalents -  so-called emulation (Franklin et al. 1990). Al­

ternatively, discrete time controllers can be designed directly from a discrete time re­

presentation of the plant. In certain situations, sensor bandwidth or hardware limi­

tation may make fast sampling impossible. Hence, discrete time controllers designed 

from discrete time representations of the plant are needed. One thread of the literature 

has focused on developing discrete time controllers based on Lyapunov ideas to stabi­

lise discrete time uncertain linear systems with bounded uncertainties: for example see 

(Corless & Manela 1986, Kienitz 1990, Yang & Tomizuka 1990, Sharav-Schapiro, Palmor &



1.1 Background and M otivation 2

Steinberg 1996, Sharav-Schapiro, Palmor & Steinberg 1998, Garcia, Pradin, Tarbouriech 

& Feng 2003) and the references therein. Most of this early work considered designing 

(static) state feedback control laws. A technique to design stabilizing state feedback 

controllers for linear discrete time systems based on the solution of a Riccati-like alge­

braic equation is given in (Kienitz 1990). The proposed discrete state feedback controllers 

in (Corless 1985, Yang & Tomizuka 1990) are based on the second method of Lyapu­

nov for single input (Yang & Tomizuka 1990) and multi input (Corless 1985) systems, 

whereas (Spurgeon 1992) addresses the problem of designing a state feedback controller 

from the perspective of (discrete time) sliding mode control. In particular the work of 

Sharav-Schapiro, Palmor & Steinberg (1999) considers a so-called min-max approach.

Another thread of the discrete-time systems literature pursued solutions to the discrete H 2 

and Hoo problems: see for example (Green & Limebeer 1995, Zhou, Doyle & Glover 1996) 

and the references therein. In the output feedback case the approaches described in (Green 

& Limebeer 1995, Zhou et al. 1996) result in dynamical controllers, driven by the measured 

outputs, which are the same order as the plant (plus any weighting functions in the case 

of 'Hoo)- The gains which make up the dynamical controllers are typically obtained from 

solutions to algebraic Riccati equations formed from the plant state-space description. The 

synthesis of lower order/fixed structure controllers is largely an open problem. Recently 

a new numerical algorithm for static output feedback Tioo control has appeared (Bara & 

Boutayeb 2005). This provides sufficient conditions in terms of Linear Matrix Inequalities 

for the existence of a sub-optimal static output feedback control law which meets a given 

Tioo norm.

This thesis concentrates on the analysis and synthesis of discrete time sliding mode control­
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lers (DSMC) to provide robustness to so-called matched uncertainty and in particular 

develops the state-of-the-art in terms of controller design using only output information. 

Classically a (continuous time) sliding mode is generated by means of discontinuities in the 

control signals about a surface in the state space (Utkin 1992). The discontinuity surface 

(usually known as the sliding surface) is attained from any initial condition in a finite time 

interval. Provided the controller is designed appropriately, the motion when constrained 

to the surface (the sliding mode) is completely insensitive to so-called matched uncertainty 

(Utkin 1992, Edwards & Spurgeon 1998), i.e. uncertainties that lie within the range space 

of the input distribution matrix. The effective continuous control action necessary to main­

tain an ideal sliding motion is known as the equivalent control (Utkin 1992). This is not 

the applied control, which is discontinuous, but is a theoretical quantity representing the 

continuous, average behaviour of the applied discontinuous control. In digital control im­

plementation, the control signal is held constant during the sample interval and hence it is 

not possible in general to attain ideal sliding as the required control must switch at infinite 

frequency. As a result, the invariance properties of continuous time sliding mode control 

(CSMC) are lost. The obvious solution of sampling at high frequency, which will closely ap­

proximate continuous time, is not always possible. For this reason the idea of discrete time 

sliding mode control (DSMC) has been proposed in (Milosavljevic 1985, Sapturk, Istefano- 

pulous & Kaynak 1987, Furuta 1990, Chan 1994, Gao, Wang & Homaifa 1995, Chan 1998).

Much of the early DSMC literature (Sapturk et al. 1987, Gao et al. 1995, Bartoszewicz 

1996) focused on establishing a discrete time counterpart to the (continuous time) rea­

chability condition, i.e. the design of the controller to induce sliding (in a discrete time
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sense). In uncertain discrete time systems it is not possible to ensure the states evolve pre­

cisely along a surface within the state space and so the DSMC problem is fundamentally 

different to its continuous time counterpart (Koshkouei & Zinober 2000). A recent com­

prehensive overview of this early development is given in (Milosavljevic 2004). One key 

feature is that DSMC does not necessarily require the use of a variable structure disconti­

nuous control strategy (Spurgeon 1992, Hui & Zak 1999, Koshkouei & Zinober 2000). The 

results presented in (Spurgeon 1992, Hui & Zak 1999) show that an appropriate choice 

of sliding surface, used with the ‘equivalent control’, can guarantee a bounded motion 

about the surface in the presence of bounded matched uncertainty and that the use of a 

relay/switch in the control law is detrimental to performance. From this point of view, 

the DSMC problem can be looked at as a robust optimal control problem and is related 

to discrete time Lyapunov min-max problems (Corless 1985, Manela 1985). Indeed both 

(Spurgeon 1992) and (Hui & Zak 1999) pose the DSMC problem as an appropriately for­

mulated Lyapunov min-max problem, where the feedback gain is chosen to minimise over 

all possible controllers, the worse case effect of the uncertainty on the Lyapunov function.

Compared with continuous time sliding mode strategies, the design problem in discrete 

time is much less mature. Other than early work in (Sira-Ramirez 1991), most of the 

literature assumes all the states of the plant are directly accessible (Chan 1994, Hui & Zak 

1999, Koshkouei Sz Zinober 2000, Golo Sz Milosavljevic 2000, Furuta Sz Pan 2000, Tang Sz 

Misawa 2002). This is not very realistic for practical engineering problems. In real systems, 

it often happens that not all system states are fully available or measurable. The schemes 

which have restricted themselves to output measurements alone have invariably utilised
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observers with or without disturbance estimation (Lee & Lee 1999, Tang & Misawa 2000, 

Mitic & C. Milosavljevic 2002). Recent exceptions have been the work in (Monsees 2002) 

which considers both static and dynamical output feedback problems, and the discrete 

time versions of certain higher-order sliding mode control schemes (Bartolini, Pisano & 

Usai 2001, Bartolini, Pisano & Usai 2000).

In CSMC design using only output information, the system zeros need to be stable- i.e. 

the system needs to be minimum phase. This is a limitation on the class of system for 

which the resulting schemes are applicable. In this thesis, novel DSMC strategies which 

use only measured output information are described. The output feedback discrete time 

sliding mode controllers (ODSMC) which are proposed apply to uncertain systems (with 

matched uncertainties) which are not necessarily minimum phase or relative degree one. 

New sliding surface designs are proposed, which are associated with the equivalent control 

of the output feedback sliding mode controller. Design freedom is available to select the 

sliding surface parameters to produce appropriate reduced-order sliding motions.

Initially, static ODSMC will be considered. In order that a stable (ideal) discrete time 

sliding motion exists, necessary and sufficient conditions will be given in terms of the sta- 

bilisability by static output feedback of a fictitious system triple obtained from the real 

system. This fictitious system can easily be isolated once the real system is transformed 

into a special canonical form. The stabilisability condition for the fictitious system is 

the only significant restriction on the class of systems to which the results are applicable. 

The fact that there is a limitation on the class of systems for which static ODSMC is 

applicable is not surprising since static output feedback controllers do not exist for all sys­

tems (Syrmos, Abdallah, Dorato & Grigoriadis 1997). An explicit procedure is described
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which shows how a Lyapunov matrix, which satisfies both a discrete Riccati inequality 

and a structural constraint, can be used to calculate robustness bounds associated with 

the closed-loop system.

To overcome the static output feedback stabilisability problem, dynamic ODSMC is also 

presented in this thesis. A compensator design is described which introduces additional 

degrees of freedom. A simple parameterisation of the available design freedom is proposed. 

Again a procedure is described to solve both a Riccati inequality and a structural constraint 

to calculate robustness bounds.

Initially, regulation problems are considered. However, in later chapters tracking is incor­

porated into the ODSMC framework using integral action. The practicality of the results 

are demonstrated through the implementation of a static ODSMC in real-time on a small 

DC-motor test rig. As it is not trivial to incorporate tracking control together with the 

compensation scheme for the dynamic ODSMC, a separate chapter in the thesis is de­

dicated to that particular design problem. A nonlinear, non-minimum phase model of a 

Planar Vertical Take-Off and Landing (PVTOL) aircraft is used as an example.

The effectiveness of the dynamic ODSMC tracking controller is further proven by its 

application to a detailed combat aircraft model called the High Incidence Research Model 

(HIRM). The HIRM is a good benchmark problem which has been used in the robust flight 

control design challenge set-up by the Group for Aeronautical Research and Technology 

in Europe (GARTEUR) (Muir et al. 1997). In the case study, a controller is developed for 

the longitudinal dynamics of the aircraft model. Simulations with real-time pilot input 

commands have been carried out on a Real Time All Vehicle Simulator (RTAVS) within
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the Department of Engineering.

1.2 Thesis Structure

The thesis content is as follows:

Chapter 2 presents an introduction to (continuous time) sliding mode control and the 

motivation for DSMC. Basic principles of (continuous time) sliding modes, reaching condi­

tions, invariance properties and a link between DSMC and min-max controllers are given. 

This link underpins most of the work described later in the thesis.

Chapter 3 solves the problem of unavailable states by using ODSMC and investigates 

the conditions necessary for the existence of a static ODSMC design. A controller based 

on these ideas is designed for an aircraft example. The work in this chapter has been 

published in (Lai, Edwards & Spurgeon 2003) and (Lai, Edwards & Spurgeon 2004d). 

Chapter 4 considers dynamic ODSMC resulting from the introduction of a compensator 

developed for systems which are not static output feedback stabilisable. This circumvents 

some of the restrictions identified in Chapter 3. A numerical example and an aircraft 

example are given to illustrate the approach. The work in this chapter has been published 

in (Lai, Edwards & Spurgeon 2004c) and (Edwards, Lai & Spurgeon 2005).

Chapter 5 treats the problem of tracking with ODSMC. This has been achieved by in­

corporating integral action into the controller. The control scheme which is developed is 

based around a static ODSMC from Chapter 3 applied to an augmented system formed 

from the plant and the integrator states. Two examples are given, one of which is a practi­

cal implementation on an experimental DC-motor rig. The work in this chapter has been 

published in (Lai, Edwards & Spurgeon 2004a) and(Lai, Edwards & Spurgeon 2004b).
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C hapter 6 describes a dynamic ODSMC design which incorporates tracking and in­

creases performance by the introduction of a compensator. The robustness of this method 

is shown by simulations on a Planar Vertical Take-off and Landing aircraft (PVTOL). 

This emphasises that the results which have been developed in this thesis are applicable 

to nonminimum phase systems. The work in this chapter has been published in (Lai, 

Edwards & Spurgeon 2005).

Chapter 7 is dedicated to a case study of the High Incidence Research Model (HIRM)- 

a good benchmark for the problem of flight control. The methodology from Chapter 6 

is applied in the design of a longitudinal controller. Results are also obtained from an 

implementation of the controller on a Real Time All Vehicle Simulator (RTAVS). 

Chapter 8 summarizes the contributions made within the thesis and draws attention to 

a few areas of interest for future work.



C hapter 2

Sliding M ode Control

2.1 Introduction

This chapter gives an introduction to sliding mode control. It describes the basic concepts 

of continuous and discrete time sliding mode control and sets up an example to illustrate 

the motivation for the latter as well as showing the main differences between the two. A 

brief insight into the key properties of sliding mode control is given. Finally it is argued 

that discrete sliding mode control problems can be posed in a min-max control setting. 

This link will underly most of the results which will be described in later chapters.

2.2 Continuous Time Sliding Mode Control

Sliding mode control evolved from the ideas of variable structure control which were first 

brought to light in the early 1960’s in Russia. Sliding mode control has been widely utilized 

because of its robustness properties and the ability to decouple high dimensional systems
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into a set of independent sub-problems of lower dimension (Utkin 1992).

A classical sliding mode is generated by means of discontinuities in the control signals on 

a surface in the state space. The discontinuity surface (also called the switching/sliding 

surface) denoted by <S, is attained from initial conditions in a finite-time interval. The 

structure of the feedback system is changed or switched as the state crosses the discon­

tinuity surface. A sliding motion occurs when the system state repeatedly crosses and 

immediately re-crosses a switching surface, because all motion in the vicinity of the sur­

face is directed towards the surface. If infinite frequency switching were possible, once the 

system state reaches the switching surface, it is constrained to lie on the surface and is 

said to be in an ideal sliding mode (Edwards & Spurgeon 1998).

Consider an uncertain linear time invariant system,

x{t) =  Ax(t) +  B(u(t) +  / ( t ,  x)) (2.2.1)

y(t) = Cx(t) (2.2.2)

where x  E Kn is the system state, u E Km is the system input, and y E W  is the 

system output. The matrices A  E Mnxn, B  E IRnXm and C E Mpxn are the system, input 

distribution and output distribution matrices respectively. The quantities m, p and n are 

the number of inputs, outputs and states respectively with m  < p < n. The unknown 

signal /(•) represents matched uncertainty, which is any uncertainty that lies within the

range of the control input matrix, B. The pair (A, B) is assumed to be controllable and

B  is full rank See Appendix B.3.

The design of a state-feedback sliding mode controller consists of two distinct stages:
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• Phase 1 (Existence Problem). Define a sliding surface

S  = { x e W 1 : s(x) =  0} (2.2.3)

which prescribes desired dynamics to the system when the states are confined to the 

surface S. A common choice of s : Rn —> Rm is a linear function represented as

s(:c) =  Sx

where S  G Rmxn .

• Phase 2 (Reachability Problem). The determination of a control law to ensure the 

attainment of the sliding mode on <S, i.e. designing a control law that drives the 

states of the system onto the switching surface in finite time and forces the system 

states to subsequently remain there.

2.2.1 Existence Problem

In terms of switching function design, one of the most straightforward approaches involves 

transforming the system in (2.2.1) and (2.2.2) into a suitable canonical form, where the 

nominal linear system is decomposed into two subsystems. Define an appropriate change 

of coordinates x T x  where T  G Rnxn represents a transformation matrix which is
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orthogonal. In the new coordinates the system triple (A, B , C) has the form

A = T A T 1 =

B  = T B  =

C = C T t =

Mi  M2 

Mi  M2

0

b 2

Cl c 2

(2.2.4)

(2.2.5)

(2 .2 .6)

where A n  e  S 2 € Rmxm and C2 € Rf>xm. The square matrix B 2 is

nonsingular which follows from the assumption that B  is full rank. The matrix T is 

chosen to provide the partitioned structure in (2.2.5). A simple way to synthesize the 

required matrix T  is by so-called QR reduction (Edwards & Spurgeon 1998).

Partition the states so that

T x  =
xi

x 2

where x \ £ Rn 171 and x 2 6 Mm. The system (2.2.1) can then be written as

(2.2.7)

x\ =  A i \x \  +  A \ 2x 2

x 2 = A 2\x \  -I- A 22x 2 +  B 2f ( t ,x )  +  B 2u

(2 .2 .8 )

(2.2.9)

This is called regular form, where (2.2.8) and (2.2.9) represent what is defined as the null 

space dynamics and the range space dynamics of the system respectively (Utkin 1992).
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This is a result of the special structure of the B  matrix in (2.2.5).

Let the switching function be defined as

s(t) =  S x ( t)

where S  G RmXn and is partitioned as

S T 1 = Si S2

where S\ G Rmx(n m\  S 2 G RmXm and S2 is nonsingular.

During the sliding motion, s(t) =  0 and (2.2.10) can be re-written as

Sx(t) = S T t T x =  S xxi  +  S 2x 2 = 0

Expressing x 2 in terms of x\ gives

x 2 — —S 2

or

x 2 = —Kx]

where K  = S 2 lS\. Substituting (2.2.14) into (2.2.8) yields

i i  =  ( A n  -  A i 2K ) x i

(2 .2 .10)

(2 .2 .11)

(2 .2 .12)

(2.2.13)

(2.2.14)

(2.2.15)
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which represents the ideal dynamics in the sliding mode.

Once the sliding mode is attained, the system response is invariant to matched uncer­

tainties. This is because a system with matched uncertainties has all model uncertainties 

and disturbances entering through the control channel. Thus, the uncertainties can be 

compensated by suitable control signals through the control input matrix B. During the 

sliding motion, equation (2.2.15) completely describes the dynamics of the system when 

sliding, and is apparently independent of the control signal. The system is of order n — m  

(lower order than the given plant), and the remaining m  states can be obtained as a linear 

combination of the n — m  sliding motion states. These are the key properties of sliding 

mode control.

The existence problem is one of choosing K  = so that the eigenvalues of A \\ —A 12K

are stable. This can be viewed as a static state feedback design problem for the pair 

(i4n ,^4i2). In the literature, there are many ways to go about solving this problem. 

Robust eigenstructure assignment is one method which effectively minimises the effects 

of parameter variations lying outside the range space of B  (unmatched parameter va­

riations) (Edwards Sz Spurgeon 1998). This approach is sometimes used together with 

the sensitivity reduction approach (Dorling Sz Zinober 1988) which minimises a condi­

tioning parameter to reduce the sensitivity of the position of the closed-loop eigenvalues 

to unmatched parameter variations. A different method of sliding surface design is the 

quadratic performance approach (Utkin Sz Yang 1978) where a quadratic cost function is 

minimised and the strategy is formulated such that it appears as a standard linear qua­

dratic optimal regulator problem. Alternatively, another design approach is to specify a 

region in the left-hand half-plane within which the eigenvalues must lie. Regions studied
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include the disk, vertical strip and damping sector in the left-half plane (Woodham & 

Zinober 1991a, Woodham & Zinober 1991b, Woodham & Zinober 1993).

2 .2 .2  R ea ch a b ility  P rob lem

In order for a sliding motion to take place, the trajectories of s(t) must be directed towards 

the sliding surface within a certain domain about the surface. For the single input case, 

the conditions guaranteeing that an ideal sliding motion will take place can be expressed 

mathematically as

lim s < 0 and lim s > 0 (2.2.16)
s—*0+ s—+0-

The expression given above is usually replaced by an equivalent criterion

ss < 0 (2.2.17)

These are called the reachability conditions (Edwards & Spurgeon 1998). In the multiva­

riable case, a linear reachability condition is

s(t) = <f>s(t) (2.2.18)

where $  € Mrnxm is a stable design matrix. This reachability condition however, only 

ensures that the sliding surface is reached asymptotically: clearly the solution of (2.2.18) 

is

s(t) = e‘Hs( 0) (2.2.19)
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where s(0) is the initial distance from the sliding surface. Since $  is stable, s(t) —> 0 as

t —> oo and the sliding motion is not obtained in finite time but asymptotically.

A better condition would be

s(t) = $s(t) -  p(t, z )jj|r^ ji (2.2.20)

where /?(£, x) is a scalar design function and P2 E Rmxm is a symmetric positive definite

(s.p.d.) matrix (see Appendix B.2) that satisfies the Lyapunov equation

P2$  + $ TP2 =  - I  (2.2.21)

Condition (2.2.20) guarantees an ideal sliding motion, i.e s(t) =  0, in finite time. This can

be shown by selecting the Lyapunov function V(s) =  sTP2s > 0 for s 7̂  0. Then

V(s) = st P2s +  st P2s (2.2.22)

Substituting equation (2.2.20) into (2.2.22) gives

V(s) = sT (P2<i> + <i>TP 2 ) s - 2 p ( t ,x ) \ \P 2s\\ (2.2.23)

and from (2.2.21),

V(s) = — || s ||2 —2p(t,x)  || P2s ||

Since, V (s ) < 0  when s ^  0 for all positive p(t,x)  and V (s ) =  0 in finite time, s = 0 in

finite time.
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To obtain the control law, substitute (2.2.20) in

s(t) = Sx(t)  (2.2.24)

where the nominal system associated with x(t) from (2.2.1) is used. The control law to 

ensure that the system attains sliding motion has two distinct parts, the linear part and 

the non-linear (discontinuous) part, i.e.

u(t) = ui(t) +  un(t) (2.2.25)

Comparing terms yields

Ui(t) = - ( S B ) - l ( S A - $ S ) x ( t ) (2.2.26)

un(t) = (2.2.27)

The scalar function p(t, x), which is chosen depending on the magnitude of the uncertainty 

(Edwards h  Spurgeon 1998), is responsible for the time taken to attain a sliding motion. 

Therefore, the larger the value of p(-), the faster the system reaches a sliding motion. 

However, increasing the value of p(-) would also mean increasing the amplitude of the 

switching frequency. Practically, this is not ideal as it will mean increasing the wear and 

tear of actuators. To circumvent this problem, the stable design term $  is employed to 

effect asymptotic reaching of the sliding mode. Equation (2.2.19) shows that $  affects the 

rate at which the sliding motion is attained. Therefore p(-) can be chosen to be smaller

(to reduce the amplitude of switching) since 4> can be chosen to tailor the time taken to

achieve the sliding motion.
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The next section will present a design to illustrate possible solutions to the existence and 

reachability problem.

2 .2 .3  A n  E x a m p le

The De Havilland-Beaver is a light passenger aircraft with one engine and a maximum 

speed of approximately 225km /h .  A trimmed and linearised model of the ‘DH-Beaver’ 

aircraft was obtained from straight and level flight conditions at a forward speed of 50ms-1 . 

The original aerodynamic coefficients are taken from (Tjee Sz Mulder 1998). The state- 

space linear model of the aircraft’s lateral dynamics is given by

x(t) = Ax(t) +  B u(t) 

y(t) = Cx(t)

(2.2.28)

(2.2.29)

where the states x = [ (3 r p 4>]T represent the sideslip angle, angular rate of yaw, 

angular rate of roll and the roll angle respectively. This data is obtained from the Dhbeaver 

aircraft model in (Rauw 1997) linearised at a constant speed of 50ms_1. The system 

matrices are

- 0.2110 -0.9801 -0.0047 0.1950 -0.0076 0.0299

A =
0.1046 -0.3066 -0.4836 0

, B  =
-0.1179 -1.6084

-2.5016 0.9980 -3.0010 0 -4.0206 0.2457

0 0 1.0000 0 0 0

(2.2.30)

and C — I\.
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After transformation into regular form , (2.2.4)-(2.2.5), the matrices

A n =

A12 =

B 2 =

-0.1989

0.0024

-0.0354

-0.9996

-0.1947

0

-0.9839

0.0293

4.0223 -0.1985

0 1.6152

(2.2.31)

(2.2.32)

(2.2.33)

The eigenvalues of A n  — A \2K  are chosen to be —1 and —2. The corresponding value for 

the matrix K  = S ^ 1 S\ is

K  =
-0.0262 -1.9930

-0.8133 0.2696
(2.2.34)

In the original coordinate system S  = [K 7]T, where T  is the transformation matrix used 

to attain regular form. This yields

0.0243 -0.0288 -0.9996 -1.9930

0.8313 -0.9847 0.0273 0.2696
(2.2.35)

The design matrix 4> was chosen to be

$  =
-8 0

0 - 8
(2.2.36)

The symmetric positive definite matrix P2 is chosen as the solution to the Lyapunov matrix
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equation (P2$  +  P 2) = —I  and is found to be

P2 =
0.0625 0

0 0.0625
(2.2.37)

W ith the choice of p = 0.1 and initial conditions as x  =  [ 0 0 0 0.1], the aircraft 

response was simulated and the closed-loop response is shown in Figures 2.2.1,2.2.2 and 

2.2.3.

0.15

0.1

0.05

x(t)

- 0.05

- 0.1

- 0.15

- 0.2

t (sec)

Figure 2.2.1: Plot of states x ( t) against time (t)
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0.05

- 0.05

s(t)

- 0.1

- 0.15
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Figure 2.2.2: Plot of switching function s(t) against time (t)

Practically, the discontinuous control component in (2.2.27) is undesirable. To smooth the 

discontinuity in the control action, a continuous approximation has been used. A small 

positive scalar, 5 has been introduced in the switching function (Edwards & Spurgeon 

1998). Equation (2.2.27) becomes

(2-2.38)

and (2.2.20) is written as

= (2.2.39)

The larger the value of (5, the smoother the signal. However, too big a 6 will cause a 

deviation from ideal performance and this is not desirable either. Therefore, there is a
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Figure 2.2.3: Plot of input signal u(t) against time (t)

trade-off in the design between the requirement of maintaining ideal performance and 

that of ensuring a smooth control action. Figure 2.2.3 shows the control input without the 

smoothing action. Compare this with Figure 2.2.4 which shows the control input when 

5 = 0.0001 has been introduced.

2.2.4 Properties of the Sliding M otion

From the brief introduction to continuous time sliding mode control (CSMC), it can be 

summarized that the choice of the switching function determines the performance response 

of the system, whereas the control law is designed to guarantee that a sliding motion will 

take place in finite time. The key properties of sliding mode control are that whilst sliding, 

the system experiences order reduction and is completely insensitive to any uncertainty 

which lies within the range space of the input distribution matrix, i.e. matched uncertain-
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Figure 2.2.4: Plot of input signal u(t) against time (t) with smoothing action

ties.

Another important observation is that the reduced-order ideal sliding mode is governed by 

the invariant zeros of the (fictitious) system triple (A, J3,S).

P ro p o sitio n  2.2.1 The invariant zeros of (A, B, S ) are the poles of the sliding motion.

P ro o f  (Edwards h  Spurgeon 1998) By definition, the invariant zeros of the system 

(A, B , S) are given by

{z G C : P(z)  loses normal rank} 

where Rosenbrock’s system matrix P{z) (Rosenbrock 1970) is given by

P(z)
z I - A  B  

- S  0
(2.2.40)
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Substituting from equations (2.2.8),(2.2.9) and (2.2.11), Rosenbrock’s system matrix loses 

rank if and only if

z l  — A n —A 12 0

det(P(z)) =  det —A 2i ~ a 22 b 2 = 0

- S i - S 2 0

With the assumption that B2 is nonsingular

det(P(s)) =  0 <*=> det
z l  — A n  —A 12 

- S i - S 2

=  0

(2.2.41)

(2.2.42)

Since

■ 
1

1 I H-‘ 1
0

1

--
-

1

a 12s ^ z l  -  (An -  A i 2K)  0 7 0

1—
 to to to 1 1
O

1

to1O

1 K  I

and the left and right matrices are both independent of 2 and have determinant equal to 

unity,

det(P(z)) =  0 <*=> det
z l  -  (An ~ A 12K)  0

0 —S2
= 0 (2.2.43)

This means that det(P(z)) = 0 &  d e t(z / — (An — A i2K))  =  0 since det(£2) 7̂  0- 

Therefore, this proves that the invariant zeros of (A,B,S)  are the eigenvalues of (An — 

A i2K),  i.e the poles of the reduced-order sliding motion (2.2.15) .
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This brings about a restriction to the class of systems for which CSMC is applicable when 

only output information is available. If S  depends only on output information then S  = 

F C  for some F  G RmXp. Since the invariant zeros of (A, B , C) are a subset of the invariant 

zeros of (A, B, FC),  it follows the system (A , B , C ) needs to be minimum phase (with 

invariant zeros in the open left half plane) in order to use CSMC. Furthermore, in order 

for det(S'J5) ^  0 (which is required in (2.2.26) and (2.2.27)) the condition rank{CB)  =  m  

must hold. These restrictions can be described as relative degree one minimum phase 

conditions. For discrete systems, a new design methodology to overcome both will be 

presented in later chapters.

2.3 Discrete Time Sliding Mode Control

In recent years, a large number of (continuous time) systems are now computer or digitally 

controlled. This means working with digital signals instead of continuous time ones, i.e. 

converting continuous time data into sampled or digital data. Sampling is a basic property 

of computer controlled systems because of the discrete nature of the digital computer. 

The sampling of a continuous time signal replaces the original signal by a sequence of 

values at discrete time instances. If the sampling intervals are sufficiently small, not much 

information is lost and the signal reconstruction (see Appendix A.3) is relatively accurate. 

However, if the sampling points are too far apart, significant information about a signal 

can be lost. For example, Figure 2.3.1 shows what happens when a sine function is sampled 

at the rate of two samples per period (Astrom h  W ittenmark 1984).

A data hold is used to express a sampled signal in a form that closely resembles the 

continuous time signal. With a zero-order hold (Figure 2.3.2), a value is held constant
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- 1
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10

Tim e

Figure 2.3.1: Slow sampling invariably causes loss of information.

until the next sampling instant. Because of its simplicity, it is common in computer- 

controlled systems. The zero-order hold can be regarded as an extrapolation using a 

polynomial of degree zero. It is however possible to attain smaller reconstruction errors 

by using higher order holds (Astrom Sz Wittenmark 1984).

When a sample and hold device is used together with a continuous time plant, it is always 

desirable to sample at the fastest possible rate to get a good approximation to what is 

happening in continuous time. This is particularly crucial for sliding mode control systems 

where, theoretically, sampling at infinite frequency is desirable. However, there is always 

a limit to how fast one can sample. The question of what happens when a system can only 

be sampled at an inherently slow sampling rate becomes pertinent. This can be shown 

by putting a sample and hold on the aircraft simulation in Section 2.2.3, and assuming 

a relatively slow sampling rate. This means that the control input is carried out only at
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Figure 2.3.2: Sampling and zero-order hold reconstruction of a continuous time signal.

discrete instants, with a switching frequency equal to or lower than the sampling frequency. 

Figure 2.3.3 shows the response of the states when the sampling frequency is 0.1s. Figure 

2.3.4 is a plot of the switching function against time. Compare these with Figure 2.2.1 

and Figure 2.2.2 in the previous section.

With a comparatively slow switching frequency, the system states move in a ‘zigzag’ man­

ner about the switching surface. This motion, whereby the system trajectories keep cros­

sing and re-crossing the sliding surface, is known as chattering. As the sampling rate 

is reduced, the system behavior changes from sliding on the switching line to excessive 

‘zigzagging’, and further reduction leads to instability. This is illustrated in Figures 2.3.5 

and 2.3.6.



2.3 D iscrete T im e Sliding M ode Control 28

0.15

0.1

0.05

x(t)

-0.05

- 0.1

-0.15

- 0.2

t (sec)

Figure 2.3.3: Plot of states against time with sampling rate of  0.1s.
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Figure 2.3.4: Plot of switching function against time
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Figure 2.3.5: Plot of states against time with sampling rate of 0.25s.
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Figure 2.3.6: Plot of states against time with sampling rate of 0.3s.
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The effect of sample and hold implementations has prompted the study of sliding mode 

ideas applied to discrete time systems (Chan 1994, Chan 1998, Furuta 1990, Milosavl- 

jevic 1985, Sapturk et al. 1987, Spurgeon 1992). Discrete time sliding modes were first 

named ‘quasi-sliding modes’ by Milosavljevic (1985) after studying the oscillatory cha­

racteristics in the neighborhood of the discontinuity surfaces due to the discretization of 

control signals. This behavior was later called ‘pseudo-sliding modes’ by Yu (1994) because 

the similarity between discrete time sliding modes and continuous time sliding modes di­

sappears as the sampling interval increases with the system trajectory ‘zigzagging’ within 

a bounded region. The main differences between CSMC and discrete time sliding mode 

control (DSMC) is in the modelling of the system under control and the implementation 

of the control law. CSMC invariably uses a non-linear discontinuous control law (with 

both linear and non-linear component) whereas DSMC may use a purely linear control 

law and does not necessarily require the use of a variable structure discontinuous control 

strategy (Hui & Z ak 1999, Koshkouei &; Zinober 2000, Spurgeon 1992, Su, Drakunov & 

Ozguner 2000). There is a fundamental difference between CSMC and DSMC: In conti­

nuous time it is assumed that the control signal can switch with infinite frequency, i.e. 

switching is done at any instant, whenever the state trajectories cross the switching sur­

face. This is required in order to obtain robustness to matched uncertainty. In discrete 

time, this property is lost. The control input is computed at discrete instants and applied 

at a sampling interval. In other words, the control signal only changes at the sample 

instances, and the sampling frequency is limited. Therefore, the rate of which sampling is 

done modulates the extent of the deviation from the ideal sliding mode.
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2.3.1 State-feedback Discrete Time Sliding M ode Control

As in CSMC, the design of a DSMC controller can be (though is not necessarily) said to 

consist of two parts :

• Existence problem/ Hyperplane design : constructing a surface, s(k) =  S x (k ), on 

which the dynamics of the system are stable when s(k) =  0.

• Reachability phase : designing a control law which drives the states towards the 

sliding surface and keeps them as close as possible to the surface.

The first step in the design of a sliding mode controller (in discrete time) is similar to 

that in CSMC. Here, existing CSMC theories (Edwards & Spurgeon 1998, DeCarlo, Zak 

& Matthews 1988, Hung, Gao & Hung 1993) can, quite straightforwardly, be extended to 

discrete time (Monsees 2002).

Consider the nominal system in (2.2.1), discretised at a sampling interval r

x{k +  1) =  Gx(k) +  Hu(k)  (2.3.1)

with i G R "  and u € Km. The pair (G,H)  are the discrete time counterparts of (A, B) 

and are assumed to be fully controllable (see Appendix B.3).

Define

s(k) = Sx(k)  (2.3.2)

where 5  is a design parameter chosen such that S H  is nonsingular. The system shown in 

(2.3.1) is transformed into a suitable canonical form, where the nominal linear system is
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decomposed into two subsystems which describe its null space dynamics and range space 

dynamics, i.e a discrete time version of the regular form from §2.2.1. The nominal system 

is now written in the form

x i(k  + l) = Gn xi(k)  +  Gi2 X2(k) (2.3.3)

x 2{k-\- 1) =  G2ixi(k) + G22x 2(k) + H 2u(k) (2.3.4)

The matrix S  is chosen so that the dynamics of the ideal sliding mode (i.e. a situation

when S x (k ) =  0 for k > ks) are stable in discrete time, i.e. all poles of the reduced-order

system are inside the unit disk.

The construction of a control law which drives the system into the ‘sliding mode’ is a 

slightly different problem in discrete time. The definition of the reachability condition is 

not the same as in continuous time. This will be explored in the next subsection.

2.3.2 Reachability Conditions

The main focus of DSMC has always been to find a suitable reachability condition such that 

when the sample interval, r , tends to zero, the continuous time sliding mode reachability 

conditions are satisfied. Generally, in continuous time systems with continuous control, 

the sliding surface can only be reached asymptotically but in discrete time systems with 

continuous control, the sliding motion may be attained after a finite time interval. Poles 

of the closed-loop system can be assigned at the origin so that the system is driven to the 

sliding surface in (at most) n sampling periods, where n is the number of states. This is 

known as deadbeat response (see Appendix A.3).
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The problem with DSMC is the intersample behaviour. If the sampling interval is large, 

then there will be a ‘zigzagging’ effect (Yu 1994) and the motion will not lie close enough 

to the sliding surface and the states will deviate significantly from the sliding surface.

Discrete time sliding modes were first investigated by Milosavljevic (1985). The conditions 

(2.2.16) and (2.2.17) were translated for the discrete time case as

(s(k + 1) -  s(k))s(k) < 0  (2.3.5)

and

lim As < 0 and lim As > 0 (2.3.6)
s(k)—♦()+ s(k)—+0~

where As =  s(k  +  1) — s(k). However, although these conditions are necessary, they are 

not sufficient for the existence of a discrete time sliding mode and only guarantee that 

the state trajectories approach (and maybe cross) the sliding surface. They do not ensure 

convergence of the state trajectories onto the sliding surface itself.

Sapturk et al. (1987) argue that, unlike in the continuous time case where only one bound 

suffices for the control, in discrete time the control must be upper and lower bounded. 

They proposed the reaching condition

|s(fc +  l) | < Kfc)| (2.3.7)

which can be decomposed into:

(s(k +  1) — s(k))sign(s(k)) < 0 

(s(k +  1) +  s(k))sign(s(k)) > 0

(2.3.8)

(2.3.9)
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Inequalities (2.3.8) and (2.3.9) give an upper and lower bound for the control which, 

according to Kotta (1989), depends on the distance of the system from the sliding surface. 

These conditions are sufficient, but according to Spurgeon (1992), not necessary.

The condition in (2.3.7) is not dissimilar to the one proposed by Furuta (1990) in which

s2(k +  1) < s2(k)

and Sira-Ramirez (1991) with

|s(k -1- l)s(fc)| < s2(k)

Yet another way of approaching this problem was introduced by Gao et al. (1995) who 

suggested tha t the closed-loop system should have the following properties:

• Starting from any initial state, the trajectory should move monotonically towards 

the switching surface and cross it in finite time.

•  Once the trajectory has crossed the switching surface for the first time, it should then 

cross the surface again in every successive sampling interval, resulting in a zigzag 

motion about the switching surface.

• The size of each successive step should not increase and the trajectory must remain 

within a specified band.

The above conditions were proposed for a single input system. However, they can easily
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be applied to a multi input system by applying the three conditions to the m  entries of 

s (k ) independently (Monsees 2002). The reaching law proposed by Gao et al. (1995) for 

the single input case is given by

s(k + 1) — s(k) =  —qrs(k) — ersign(s(k)) (2.3.10)

where r  is the sampling interval, e, q are positive constants and (1 — qr) > 0. This can be 

extended to the multi-input case as

s(k +  1) =  3>s(fc) —

K s^sign(si(k))

K s,2 sign(s2(k))

^ ■ s ,m ^ 5 ^ ( ^ m ( ^ ) )

(2.3.11)

where $  6 Rmxm is some diagonal matrix with 0 < < 1 V i = 1. . .  m  and the gains

Ks,i > 0 V i = 1 . . .  m.

In a multi-input framework, Koshkouei & Zinober (2000) stated that a sufficient condition 

for the existence of the sliding mode can be given as

|s(fc T 1)|| < rj\\s(k)\\ (2.3.12)

where 0 < g < 1 is a real number. In this case

|s(fc)|| < ||s(0)||r/ (2.3.13)

where s(0) is any initial condition. Koshkouei & Zinober (2000) proposed a discrete
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time sliding mode controller with a lattice-wise hyperplane, a surface on which there is 

a countable set of points forming a so-called lattice. The velocity with which the state 

reaches the sliding lattice hyperplane depends on the value of 77 and the time taken to 

attain the sliding mode depends on the initial condition rr(0).

The (multi-input) reaching law used by Hui & Zak (1999) for a multi-input discrete time 

system, is

s(k +  1) =  $s(fc) (2.3.14)

where $  6 Rmxm is a diagonal matrix satisfying 0 < 4>i,i < 1 V i =  1 .. .m . This is also 

called the Linear Reaching Law (Monsees 2002). Notice that this reaching law is similar to 

that in (2.3.11) with the switching term left out. In (Spurgeon 1992) it was shown that a 

simple linear control law, together with a suitable sliding surface design, can provide better 

performance, in terms of minimising the bounds around the sliding surface, compared with 

a more complicated non-linear control structure with an inappropriate choice of sliding 

surface.

2.3.3 Formulation as a M in-M ax Control Problem

As argued in the previous section, in discrete time, it is not possible in general to attain 

ideal sliding as the control signal remains constant between sampling times and is com­

puted at discrete instances. One paradigm is to design the control law to keep the states 

as close as possible to the sliding surface and the problem becomes one of minimising 

sensitivity to the system uncertainty. From this point of view, the DSMC problem can 

be viewed as a robust optimal control problem and is related to discrete time Lyapunov 

min-max problems (Corless & Manela 1986, Manela 1985). Indeed both (Spurgeon 1992)
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and (Hui & Zak 1999) pose the DSMC problem as an appropriately formulated Lyapunov 

min-max problem. These ideas will be expanded here and it will be shown how they relate 

to DSMC.

Consider an uncertain discrete time system

x(k  +  1) =  Gx{k) +  H{u{k) +  £(&)) (2.3.15)

with matched uncertainties, £(&), which are assumed to belong to a ‘balanced set’ (Corless 

&; Manela 1986) \  and where x E Rn and u £ W71. Assume without loss of generality that 

H  is full rank. Define a Lyapunov function candidate as

V(k) = xT (k)Px(k)  (2.3.16)

where P > 0 is a symmetric positive definite (s.p.d.) matrix. The Lyapunov difference 

function is defined as

A V(k) = V(k  +  1) -  V(k)  (2.3.17)

Consider initially a nominal regulation problem when no uncertainty is present (£{k) = 0). 

In the absence of uncertainty, an ideal sliding motion can be attained on the sliding surface

S  =  {x  : Sz =  0} (2.3.18)

As in (Spurgeon 1992) the class of sliding surfaces will be restricted to those which can be

1Suppose the uncertainty £(k)  G P,  then T  is a balanced set i f  £(k)  G T  =>• —£(k)  G T
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expressed in the form S  = H TP. It follows from (2.3.18) that

Sx(k  +  1) =  H TPGx(k) + H T PHu(k) = 0

The equivalent control action necessary to maintain an ideal sliding motion is given by

ueq(k) = - { H t PH )~ 1H t  PGx(k)  (2.3.19)

If P  is such that the closed-loop system, obtained from using the control law (2.3.19) in 

(2.3.15), satisfies A V(k) < 0 for all k , then from standard Lyapunov theory the closed- 

loop system is stable (see Appendix B .l). After some simple algebra, it can be shown that 

A V{k) =  —x{k)T Qx(k) where

Q .=  P  + Gt P H ( H t PH )~1H t PG -  Gt PG  (2.3.20)

Thus if Q > 0, then in the absence of uncertainty, x(k) —> 0 a s / c —>00. The control law

in (2.3.19), where P  is such that Q > 0 in (2.3.20), is referred to as a stabilizing min-max

controller2. The stability follows from Lyapunov arguments and is most easily deduced 

from observing that inequality (2.3.20) is identical to

P - G tcPGc > 0 (2.3.21)

where the closed-loop system matrix

GC:=G — H (H TP H )~ lH TPG  (2.3.22)

2Sharav-Schapiro et al. refer to this as a Riccati min-max control law (Sharav-Schapiro et al. 1998).
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Consequently if in (2.3.20) Q > 0, or equivalently (2.3.21) holds, then the closed-loop 

system matrix Gc is stable.

P ro p o sitio n  2.3.1 For the uncertain discrete time system in (2.3.15), the control law 

(2.3.19), with P  chosen so that Q from (2.3.20) is s.p.d, has the property that it

a) induces an ideal sliding motion on S  in finite time when £(k) = 0;

b) minimises the effect of £(k) on the closed-loop dynamics in a min-max sense i.e. the 

control law in (2.3.19) uniquely satisfies

min ^majc A U (£,u)^ (2.3.23)

over all possible state feedback controllers.

P ro o f  Using the system equation (2.3.15) when £(k) =  0 it follows that

Sx(k  +  1) =  H T PGx(k)  +  H T PHu(k)

and so substituting for u(k) from (2.3.19) ensures Sx(k  +  1) =  0. This proves that an 

ideal sliding mode is induced in finite time.

In the uncertain case, by definition

V(k  +  1) =  (Gx{k) + H(u{k) + i ( k  )))TP{Gx(k)  +  H(u(k) + {(*:))) (2.3.24)

Suppose the optimal min-max control law i.e. the control law which minimises the worst
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case effect of £ on AV (k )  over all possible control laws has the form

u*(fc) =  ~ ( H TP H ) - l H TP G x (k )+ w (k )  (2.3.25)

=  ueq(k) +  w(k ) (2.3.26)

where the component w{k) is yet to be determined. Clearly any (possibly discontinuous)

control law can be written in this way for an appropriate choice of w{k). Substituting for

(2.3.25) in (2.3.24) and collecting terms yields

A V(k) = - x (k )Q x (k )  + S(k)T (HTP H)t(k )  +  2 Z(k)T (HTPH)w(k)  + w(k)T (HT P  H)w(k)  

where Q is defined in (2.3.20).

For any given w(k) let £ be the value from the uncertainty set T  which maximizes A V (w , £) 

with respect to £. For the optimum £ it follows that

2gr (HT PH)w > 0 (2.3.27)

To prove this suppose for a contradiction tha t 2£T (HTPH )w  < 0. In this case, since by 

assumption T  is a balanced set, — £ € T  and so

A V ( tn ,-0  =  - x TQx + ( - Q T (HTP H ) ( - 0 - 2 t T (HTP H )w  + wT (HTPH)w  

> - x TQx +  i r (H t P H ) (  + 2 £t (Ht P H ) w +  wt (Ht P H ) w 

= A V(w , i )

which contradicts £ maximizing AF(ic, £) over T  and so (2.3.27) must hold. Also from



2.3 D iscrete T im e Sliding M ode Control 41

the Cauchy-Schwarz inequality

t r (HTPH)w = a\\(HTPH)i\\ \\w\\

where 0 < a  < 1 is a constant which represents the direction cosine between the vectors 

(H t PH)£  and w. The scalar a  > 0 because H TP H )w  > 0. Consequently

m a x A F (w ,0  =  - x TQx + t ? ( H T P H ) t  +  2a\\{HTPH)£\\ \\w\\ + wT (HT PH)w  (2.3.28)

Since H TP H  > 0 and a > 0 it follows that

2a\\(HTPH)£\\ ||ic|| +  wt (H t P H ) w > 0 for all w ^  0

and consequently from equation (2.3.28)

minfmax AV(w,£))  =  - x TQx-\-$>T (HTP H ) iw

which is obtained (uniquely) by selecting w(k) = 0. Thus the unique optimal min-max 

controller obtained from setting w(k) =  0 in (2.3.25) yields (2.3.19) as claimed.

■

Rem ark 2.3.1 State feedback controllers of the form in (2.3.19) were originally introdu­

ced in the context of discrete time optimal control (Corless & Manela 1986, Manela 1985) 

rather than from a discrete-time sliding mode perspective.

Remark 2.3.2 Proposition 2.3.1 shows that, in a min-max sense, the control law (2.3.19)
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minimises the worst case effect of the uncertainty on A V (k ) over all possible control laws, 

including controllers with discontinuous switched terms, which are typically used in a 

continuous time sliding mode context. This justifies the use of a purely linear control law 

in the discrete time sliding mode scenario (Spurgeon 1992, Hui & Zak 1999, Koshkouei & 

Zinober 2000).

Hui & Zak (1999) pose the min-max control problem slightly differently where the distance 

from the sliding mode is minimised with regards to bounded uncertainty. In Hui & Zak 

(1999) the following uncertain system model was considered

x (k +  1) =  Gx(k)  +  Hu*(k) +  £(fc)

with £(k) as the system uncertainties which are assumed to belong to a balanced set. The 

following is a modification of the results in Hui & Zak (1999)

P ro p o s itio n  2.3.2 The control law (2.3.19) minimises the deviation from the surface

S  = {Sx  € R n : S x  = 0}

in a min-max sense, where S  = H TP  for some s.p.d. matrix P. Specifically, it solves the 

problem

min(max ||5x(/c)||)
u

P ro o f  Assume the optimal control law u*(k) has the form (2.3.26). Then, using (2.3.2) it
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follows

s(k +  1) == Sx(k  +  1) 

=  S{Gx(k) + Hu*(k) + £(k))

= (5H )((SH )-1SGx(fc) + u*(fc) + (SHy'S^k))

= (S fl)((ti*(i) -  ueq(k)) + (SH )~ 1S^(k))  (2.3.29)

Taking the norm of both sides of the above equation yields

IK* + 1)||2 = ||(Sff)(u*(*) -  «e,(*))l|2 +  2(«•(*) -  uet(k))T(SH)TS((k) + ||Sf(*)||2 (2.3.30) 

Substituting (2.3.26) into (2.3.30) gives

| s(k + l ) f  =  \ \ ( S H )w (k ) f  +  2 w(k)T (SH)TS i(k )  +  ||S£(fc)||

As in the proof of Proposition 2.3.1 suppose max \\s(k +  1)||2 is given by £ 6 T . Then, (as 

argued in Proposition 2.3.1) 2wT(SH )TS£ > 0 and so

max ||s{k +  1)||2 =  \\(SH)w\\2 +  2 a ||(S tf  )TS£|| | H I  + ||S£||:

where 0 < a  < 1 is the direction cosine between the vector (SH) S£ and w. It follows 

that

min(max ||s(fc +  1)||2) =  ||S£||2W

obtained from setting w = 0. The min-max controller shown by Hui & Zak (1999) for the 

distance to the switching surface is therefore u*(k) = ueq(k), which is a linear controller.
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2.4 Summary

W ith the advancement of digital technology and computers, implementation of controllers 

using digital signals has motivated the need for discrete time sliding mode control. In 

discrete time, ideal sliding cannot be achieved in the presence of uncertainty and so the 

reaching law must try  to maintain the smallest sliding mode boundary layers within which 

the system states stay. This can be viewed as an optimization problem where the objective 

is to minimise the effect on the Lyapunov difference function of the worst case uncertainty. 

Hence, there is a connection between DSMC and so-called min-max controllers. This 

connection is vital to all the theoretical work which is developed in the subsequent chapters. 

The implications of this observation will be used in Chapter 3 to develop output DSMC, 

where a new sliding surface with a direct link to min-max controllers will be introduced.



C hapter 3

D iscrete Output Feedback Sliding 

M ode Control

3.1 Introduction

In Chapter 2, sliding mode control has been predominantly discussed in a framework in 

which all the system states are available. This is not very realistic for practical engineering 

problems. In discrete time, sliding mode schemes which only require output information 

have been proposed by Sira-Ramirez (1991), Bartolini et al. (2000), Bartolini et al. (2001) 

and Monsees (2002). As discussed in §2.2.4, in continuous time the use of only output 

information limits the class of systems for which the sliding mode approach is applicable 

to relative degree one minimum phase systems (Edwards &; Spurgeon 1998). The dis­

crete time results of Sira-Ramirez (1991), Bartolini et al. (2000), Bartolini et al. (2001) 

and Monsees (2002) also implicitly require minimum phase conditions (in a discrete time
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sense). This chapter presents a novel approach to the problem of discrete time output 

feedback sliding mode controller (ODSMC) design, where the system to be controlled may 

be non-minimum phase. The conditions which must hold to employ the design strategy are 

investigated and the importance of a certain subsystem triple is established. The chap­

ter will conclude with an aircraft example to illustrate the application of the approach 

described.

3.2 Problem Formulation

Consider the discrete time system with matched uncertainties

x{k + 1) =  Gx(k)  +  H(u(k)  +  £(k)) (3.2.1)

y{k) = Cx(k)  (3.2.2)

where x  G Kn, u G Rm and y G Rp with m  < p < n. Assume that the input and 

output distribution matrices H  and C are full rank. In addition, assume the pair (G, H)

is controllable. The matched uncertainties, £(&), are unknown but are assumed to belong

to a balanced set (Corless & Manela 1986).

The objective is to determine an appropriate linear sliding surface of the form

S = { x : S x  = 0} (3.2.3)

where S  G MmXn, and a control law which depends only on the measured outputs such

that:
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• for the nominal linear system when £ =  0 an ideal sliding motion is obtained in finite 

time;

•  for uncertain systems the effect of the matched uncertainty £ is minimised and an 

appropriate bounded motion about S  is maintained.

Suppose as in (Spurgeon 1992) the sliding surface is chosen as

S  = H t P  (3.2.4)

where P  is a s.p.d. m atrix and define

V(k) = x(k)TPx(k)

as a Lyapunov function candidate. Then as shown in Proposition 2.3.1, the optimal state 

feedback control law, including all nonlinear state dependent controllers which minimises

the Lyapunov function difference A V(k) = V(k  + 1) — V(k)  with respect to u , for the

worst case £, is given by

ueq(k) =  - ( H TP H ) - lH TP G x(k) (3.2.5)

This means tha t if P  is such that the closed-loop system, obtained from using the control 

law (3.2.5) in (3.2.1), satisfies A V(k) < 0 for all k , then from standard Lyapunov theory 

the closed-loop system is stable (see Appendix B .l). By straightforward algebraic mani­
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pulation, it can be shown that

A V{k) = - x ( k ) T (P + G TP H ( H TP H ) - 1 H TP G - G TPG )x{k)+ iT {k)HTPH(,(k) (3.2.6) 

and so if

Q : = P  + Gt P H ( H t P H ) - 1H t PG -  GTPG  >  0 (3.2.7)

then, in the absence of uncertainty, x(k) —> 0 as k —> oo.

Generally, all states of the system are required in order to implement the control law in

(3.2.5). If the control law is to be realized using only measured outputs, it follows that 

the right hand side of (3.2.5) must be able to be written in the form

(HTP H ) - 1H TPG  =  Y C

for some Y  6 Rmxp. Since a discontinuous term is not going to be employed here it is not 

a requirement that the switching function matrix (3.2.4) must be expressed in terms of the 

outputs. This is a key observation which will be used in the rest of this thesis.

Define a sliding surface for the system as

S  = {x :  F C G ~ lx = 0} (3.2.8)

where F  G R Tnxp is the design freedom in the problem. Comparing the expression for the 

sliding surface (3.2.8) with the one from (3.2.4), it follows that

F C G ~ l =  H t P (3.2.9)
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must hold for some s.p.d matrix P.

Rem ark 3.2.1 The control structure (3.2.5) is also similar to the one which arises from 

considering a special case of the discrete quadratic optimal regulation problem under the 

assumption of ‘cheap control’. This is discussed in the recent paper (Garcia et al. 2003) 

which provides an overview of recent work in the area of robust static output feedback 

control.

Rem ark 3.2.2 Inequality (3.2.7) is the steady-state Riccati inequality associated with a 

state-feedback discrete LQR problem in the special case in which the penalty on control 

effort is zero (Ogata 1995) and hence for which the cost function to be minimised is
oo

J  = x(k)TQx{k). The static output feedback problem which results from including 
k=0

the constraint H TP G  = F C  from (3.2.9) leads to the static output feedback LQR problem 

studied in (Garcia et al. 2003).

Rem ark 3.2.3 The fact that the uncertainty acts through the input distribution matrix 

(i.e. it is matched) is exploited when establishing the expression for the control law in

(3.2.5). As a result, the focus of this chapter will be to develop a tractable design procedure 

to solve (3.2.7) subject to the constraint (3.2.9). Because of the explicit solution to the 

min-max optimization problem embedded in the control law given in (3.2.5), the design 

procedure in §3.3 primarily requires only knowledge of the nominal plant representation 

(G, H, C).

In the previous chapter (§2.3.3), a link was made between DSMC and state feedback min- 

max controllers in which the feedback gain is chosen to minimise over all possible state- 

feedback controllers the worst case effect of the uncertainty on the Lyapunov difference
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function. These results were later extended to the static output feedback case in (Sharav- 

Schapiro et al. 1996, Sharav-Schapiro et al. 1998) where some of the conditions under 

which static output feedback stabilizing min-max controllers (SOMMC) can be realized 

are discussed. In particular, this problem requires the simultaneous solution of a structural 

constraint and a Riccati equation. For square systems, a simple existence test for the 

existence of a SOMMC is described in (Sharav-Schapiro et al. 1998). In the square case, 

the SOMMC gain is completely determined by the plant triple. For non-square systems, 

establishing an equivalent test is an open problem as there is more design freedom which 

needs to be used appropriately.

Here the open problem of ODSMC/ SOMMC for non-square systems will be considered 

and so it will be assumed that p > m. The next section considers conditions under which 

this problem is solvable and proposes a new parameterisation for the design freedom 

available in F.

3.3 Conditions for Realising the Controller

Throughout the remainder of the chapter it will be assumed that

A l) the state transition matrix G is nonsingular 

A2) the matrix CG~l H  has rank m.

R em ark 3.3.1 Assumption A l is not a strong assumption and most discrete systems 

satisfy this requirement.

R em ark 3.3.2 Assumption A2 is a system property and is independent of the choice of
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coordinate system. It is a necessary condition to find a s.p.d. matrix P  and an F  6 RmXp 

to solve (3.2.9). This can be seen as follows: Assuming A l is satisfied, equation (3.2.9) is 

satisfied if and only if H TP  = F C G -1 and consequently H TP H  = F C G ~ 1H.  Since P  

is s.p.d. and H  is full rank, H TP H  is full rank and hence rank(FCG~l H ) =  ra. This 

implies both F  and CG~l H  must be rank ra.

R em ark 3.3.3 Assumption A2 is necessary for the theoretical developments but also 

has a system theoretic interpretation: if Q(z) := C ( z l  — G)~lH  is the transfer function 

representation of the plant then G(0) =  —CG~l H  and so A2 is equivalent to the system 

(G, H , C) not having any invariant zeros at the origin. Thus assumptions A l and A2 

preclude (G, H, C) from having poles or zeros at the origin. Whilst these are limitations, 

they are not particularly strong.

Rem ark 3.3.4 Assuming there exists a s.p.d. matrix P  and an F  such that (3.2.7) and 

(3.2.9) hold, then the discrete output feedback sliding mode control law (3.2.5) can be 

written as

uomm(fc) =  - { F C G ~ l H ) - l Fy(k) (3.3.1)

The controller design problem may therefore be viewed as the problem of finding a matrix 

F  and a s.p.d. matrix P  such that both (3.2.7) and (3.2.9) hold.

Based on assumptions A l and A2, a change of coordinates will be introduced which 

facilitates both insight into the class of systems for which this problem is solvable and a 

constructive design procedure for its solution.
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3 .3 .1  N e c e ssa r y  C o n d itio n s

From assumption A l, det(G) ^  0 and so equation (3.2.9) can be re-written as

H t P = FCG -1 (3.3.2)

Define a new matrix

L  := CG' (3.3.3)

This matrix will take the role of the output distribution matrix for a new purely fictitious 

system (G , H , L) which will be necessary for the theoretical developments. In order to 

facilitate the analysis, a change of coordinates will be introduced for the fictitious system 

(G, i/ ,  L). By definition, and from Assumption 2, rank(LH) = m.  As argued in (Edwards 

&; Spurgeon 1995), since rank(LH) = m, there exists a change of coordinates x  (—► T x  =  x 

such that

T G T ~ l = G =
G n G\2 0

T H  = H  =

G2\ g 22 h 2

L f - 1 = L = ® p x ( n —p) T
(3.3.4)

where G u  € R^n m)x(n i f2 G Rmxm and is nonsingular and T  6 Rpxp is orthogonal. 

Write the design matrix F  from (3.3.1) as

F = F2 K  L (3.3.5)
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where K  £ fl£mx(p-m) an(j p 2 ^ -g nonsjngUiar> This effectively re-parameterizes

the design freedom in F  into two new parameters K  and F2 which are to be determined. 

It is a particularly convenient parameterisation as K  can be interpreted as a state output 

feedback gain for a particular subsystem. From the definition in (3.3.5) and the structure 

of L  in (3.3.4) it follows that

F L  = 0 F T 0 f 2k  f 2 F2K L \  f 2 (3.3.6)

where

U : = 0(p—m) x ( n —p) I p —m
(3.3.7)

The next step is to pick an appropriate F , by choice of K.  The choice of F2 will be 

discussed later. It is convenient to introduce a further nonsingular state transformation, 

=  where

T  :=
Ir, 0

K L 1 Im

In this new coordinate system, the system triple becomes

~

f  G f - 1 =  G =
G u

G2\

G\2

g 22
T H  = H  =

0

h 2

and

(3.3.8)

(3.3.9)

FLT~~l =  F L  = 0 F2 (3.3.10)
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where

Gn  =  Gn  -  Gl2K L 1 (3.3.11)

and G \<2 =  G\ 2 - The structure associated with F L  follows from the expression in equation

(3.3.6) and the definition of T  in equation (3.3.8). The following results show how the

choice of matrix K  affects the closed-loop system matrix.

P roposition  3.3.1 The closed-loop matrix Gc =  G — H {F C G ~ l H )~ l F C  resulting from 

using the output feedback sliding mode controller (3.3.1) is stable if and only if G n  is 

stable.

P ro o f Using the definition in (3.3.3), the closed-loop matrix

GC = G -  H ( F C G ~ lH ) ~ lF C  = G -  H ( F I H ) - 1F L G  (3.3.12)

Substituting for G, H  and F L  as defined previously in (3.3.10), and after some straight­

forward algebra, equation (3.3.12) becomes

Gr =
G \i G\2 

0 0
(3.3.13)

It follows that A (Gc) = A (G n) U {0}m and so Gc is stable (in a discrete time sense) if and 

only if the eigenvalues of G\\ are within the unit disk.

R em ark 3.3.5 As argued in §3.2, if inequality (3.2.7) holds, then the system matrix Gc 

is stable. It follows from Proposition 3.3.1 that G n is stable, and then from equation
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(3.3.11), the triple (C n ,C i2, L\)  must be output feedback stabilisable. Thus necessary 

conditions for the existence of a stabilizing output feedback sliding mode controller are 

tha t assumptions A l and A2 are satisfied and the triple (G n, G12, Li) is output feedback 

stabilisable.

R em ark 3.3 .6  As shown in the proof of Proposition 3.3.1 the closed-loop matrix Gc 

depends only on K  and not F2 . Indeed the control law (3.3.1) is independent of F2 since 

simple algebraic manipulation from the definition of F  in (3.3.5) yields

K  I T Ty(k) (3.3.14)

From the arguments above, the importance of the triple (C n , C 12, Za) has been establi­

shed. The following subsection considers the properties of this triple and how they relate 

to the original system.

3 .3 .2  S y s te m  T h eo re tic  In terp re ta tio n s

The triple (G n, G12, L\)  is fictitious and so it is necessary to investigate conditions under 

which (C h,(5i2) is controllable and (C n ,L i)  is observable.

Lem m a 3.3.1 The pair (G \ \ ,G i 2 ) from (3.3.4) controllable if and only if the pair 

(G, H) is controllable.
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P r o o f  From the change of coordinates in (3.3.4) and the fact that det(i^2) ^  0, it follows 

tha t

rank z I - G  H = rank

= rank

z l  -  Gn  G12 0

—G21 z l  — G22 H 2

z l  — G 11 G 12 +  m

for all 2 G C, which implies

rank z I - G  H = n <=> rank z l  — G 11 G 12 n — m

Using the Rosenbrock-Hautus-Popov (RHP) test (see Appendix B.3), (G , H ) is control­

lable if and only if the pair (G n , G 12) is controllable. ■

Since it has been assumed at the outset that (G, H)  is controllable, (G n , G12) will be taken 

to be controllable. In the following it will be shown that the observability of (G n ,L  1) is 

not guaranteed. Let the submatrix G n  from (3.3.4) be partitioned so that

G n  =
G n u  G1112 

G 1121  G 1122

(3.3.15)

where G m i G p\  Based on this definition, the following results can be proven:

L em m a 3.3.2 The pair (Gn, L1) is observable if and only if  (G nii, G1121) is observable.



3.3 C onditions for Realising the Controller 57

P r o o f  From the definition of G n and L\\

rank
z l  — G n

u

= rank

z l  -  G n u  - G 1112 

- G \ 1 2\ z l  -  G1122

=  rank

0(p—m) x (n—p )

z l  — G m i  

—Gu2i

lp —m

+ (p — m)

Therefore

1

1

1

z l  — G n u
rank = n — m if and only if rank

Li — ̂ 1121

= n — p

for all z e C. By the Rosenbrock-Hautus-Popov (RHP) test (see Appendix B.3) it follows 

tha t (G n ii ,G ii2i) is observable, if and only if (G n ,T i) is observable. ■

If the pair (G n n ,G n 2 i)  is not observable, then there exists a transformation based on a 

nonsingular matrix T0b £ which puts the pair into the observability canonical

form. Specifically:

T0b G n n T obl =
G n G °l 2

0 G 22

0 1 1 2 1 = 0 GS, (3.3.16)

where GJj £ Rrxr and G£l £ ]&(p~rn)x (n~P~r\  the pair ( G ^ G ^ )  is observable and r  > 0 

is the number of unobservable states of (G n m G m i)  (Rosenbrock 1970). From Lemma 

3.3.2 it follows that the unobservable modes of (G n, L\) are the eigenvalues of G ^ .

The following provides a system theoretic interpretation:
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L em m a 3.3 .3  The eigenvalues of are the invariant zeros of (G ,H ,L) .

P r o o f  The invariant zeros of (G, H , L ) are {z £ C : R(z)  loses normal rank} where 

Rosenbrock’s system matrix R{z) (Rosenbrock 1970) is given by

R(z) =
z I - G  H  

- L  0

Assuming (G, H , L ) takes the structure of (3.3.4) and using the fact that det(H2) ^  0 it 

follows that

R(z)  loses rank O

z l  — G n - G i 2 0 

—G21 z l  — G22 H 2

0 —T\ 

z l  -  G\\  

0 —T\

- T 2 0

loses rank

G12

- t 2
loses rank

where the matrix T  from (3.3.4) is partitioned into T\ £ R^p m)xP and T2 G Rmxp. 

Substituting for G n  from (3.3.15) and (3.3.16), and repartitioning gives

z l  -  G n - G 12

0 —T\ - t 2

- -
z l  — G°i - G 12

0 z l  — G22 *

0 -^ 2 !

0 0 - T
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where * represents a matrix sub-block formed from Gni2 and G1122 which plays no part 

in the analysis. Since T  is full rank,

R(z)  loses rank <=>

z l  -  G°n  -G ? 2

z l  -  G9,22

0 -Gil

loses rank

By construction, the pair ( G ^  G ^ ) is completely observable and hence from the Rosenbrock- 

Hautus-Popov (RHP) test for observability,

rank
z l  — Go22

r °(j’21

= n — p — r for all 2 6 C

Therefore,

R{z) loses rank <=> det(z l  — G°x) = 0

and so the invariant zeros of (G, i / ,  L) are the eigenvalues of GJX . ■

A necessary condition for (G n, G12, L\)  to be output feedback stabilisable is that (G, H, L) 

is minimum phase. This can be seen from the following argument. It follows from the 

definition of L\  that from (3.3.15) and (3.3.16)

G n  =  G n  — G12KL1
G°i *

0 *
(3.3.17)

where the matrix sub-blocks * depend on K  and the sub-block G n in (3.3.15). From 

(3.3.17), it follows that A(GJX) C A(Gn) for all K  and so |A(Gn)| < 1 => |A(Gn)| < 1. 

From Lemma 3.3.3 the eigenvalues of G°u  are the invariant zeros of (G, H , L) and hence
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the claim is proven.

Rem ark 3 .3 .7  As argued above, the stability of G n  depends on the invariant zeros of 

the fictitious system (G, i/ ,  L) where L  is defined in (3.3.3). The original system triple 

(G , H , C ), however, need not be minimum phase for (G ii,G i2,Z i) to be output feedback 

stabilisable. This contrasts with the equivalent continuous time situation where (G , H , C ) 

would have to be minimum phase (Steinberg & Corless 1985).

R em ark 3.3.8 For the case of square systems, m = p and no design freedom exists (since 

the matrix K  is an empty matrix) and

A(Gc) = X(Gn)  U {0}m

where G\\  is the upper left sub-block from (3.3.4). Using arguments similar to those 

in Lemma 3.3.3, it can be shown that the eigenvalues of G n  are the invariant zeros of 

(G,H, L ).

The next subsection proves that assumptions A l, A2 and the output feedback stabilisation 

requirement on (G n, G12, L\),  are sufficient conditions for the existence of an output 

stabilizing sliding mode controller.

3 .3 .3  Sufficient C o n d itio n s

Suppose that for a given system (3.2.1)-(3.2.2), A l and A2 are satisfied. Consequently, 

as a result of a change of coordinates to achieve the canonical form in (3.3.4), the triple 

(G h ,G i2,Z i) can be identified. Assume this triple is output feedback stabilisable and
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that a K  £ Rrnx(p~m) can be found so that (G n — G 1 2K L 1 ) is stable. W ith this K ,  define 

the m atrix F  according to (3.3.5) where F2 will be defined shortly. The objective is now 

to show tha t there exists a s.p.d. matrix P  satisfying (3.2.7) and (3.3.2). An explicit 

procedure will now be described to obtain P. In the set of coordinates x  associated with 

the canonical form in (3.3.6), the Lyapunov matrix P  h-> (T~t P T ~ l )T~1 =: P  and

equation (3.3.2) becomes

H t P = F t  (3.3.18)

Likewise inequality (3.2.7) is equivalent to

Q := P  — Gt P G  +  Gt P H ( H t P H ) - 1H t P G  > 0 (3.3.19)

As a result of the structures of H  and F L  from (3.3.10), in order to satisfy (3.3.18) the 

Lyapunov matrix P  must have a block diagonal structure

Pi 0 

0 P2

(3.3.20)

with P\ G R^n m)x(n and P2 € Rmxm. To establish this suppose

P  =
Pi P12

P 12 h

It follows by direct algebraic manipulation from the structure of H  from (3.3.9) and F L
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from (3.3.10) tha t equation (3.3.18) becomes

o f 2

However since det(H2) ^  0 this implies P\2 =  0 and so P  must have the block diagonal 

structure in (3.3.20) as claimed. Furthermore the matrix F2 = H%P2 -

Proposition  3.3.2 Assume A l  and A2 are satisfied and that there exists a K  such that 

G n  — Gi2KL,i is stable. I f  F2 = H2 P2 then there exists a family of s.p.d. matrices P\ 

and P2 such that (3.3.19) is satisfied.

P roof As demonstrated in the proof of Proposition 3.3.1, in the coordinate system of the 

canonical form (3.3.4)

GC = G -  H ( F L H ) ~ lF C  =
G\\ G \2 

0 0
(3.3.21)

where the sub-matrix G n =  G n  — G\2K L \  € j^(n- m)x(n~m) js stable. Some straightfor­

ward algebraic manipulation shows that Q =  P  — G%PGC and so in terms of the partition 

in (3.3.10) and (3.3.20), inequality (3.3.19) can be written as

Q =
Pi -  G ^ P i G n  -G%1Pi G i2

-G T oPi G u  P2 -  GT2A G 12

> 0 (3.3.22)

A family of solutions (P i,/^ )  to this problem will be shown to exist. Specifically, let
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P\ > 0 be a solution to

P i - G j ^ G n  > 0  (3.3.23)

Such a solution is guaranteed to exist since G n  is stable. Then from the Schur complement 

(Boyd, El-Ghaoui, Feron & Balakrishnan 1994), inequality (3.3.22) is satisfied if and only 

if

Pi > G ^ P i G n  +  Gf2A G n ( A  -  C j A G n r H G n P i G i i )  (3.3.24)

Consequently, the claim is proven. ■

The main result may now be summarized as follows:

There exists a solution to the output stabilizing sliding mode control problem if and only 

if assumptions A l and A2 hold and there exists a K  £ Kmx(p~m) such tha t G n  — G 12K L 1 

is stable where G n  and G \2  are defined in (3.3.4) and L\  is defined in (3.3.7).

R em ark 3.3.9 Testing whether conditions A l and A2 are satisfied is straightforward. 

Establishing whether a gain K  £ W nx(p~m  ̂ exists so that G n  =  G n  — G 1 2K L 1 is stable 

is, in general, an open research problem. No algorithm is available to guarantee the 

synthesis of a stabilizing gain. It is, however, an area for which there is a wealth of 

literature (Syrmos et al. 1997). Thus, from a practical viewpoint, any algorithm of choice 

may be employed by the designer to implement these ideas.

3 .3 .4  K e y  S tep s for th e  O D S M C  D esig n

1. Check tha t the system satisfies assumptions A l and A2, and that the pair (G , H ) is 

controllable.
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2. Form an output distribution matrix, L = CG~l to produce the ‘fictitious’ system 

(G, H , L) and check that the invariant zeros of the system triple are inside the unit 

disk.

3. Perform a change of coordinates as in (3.3.4) to obtain (G , H , L ).

4. Select the design parameter K  to stabilise the reduced-order system (Gu — GwKLi) ,  

where L\  is defined in (3.3.7).

5. The control can be calculated from (3.3.14).

3 .3 .5  O p tim a l C h o ices  o f  L yapunov F u n ction

As shown in Proposition 3.3.2, for a given gain K  there is still considerable freedom in 

the choice of P  (as parameterized by P\ and P2): Suppose the matched uncertainty £(k ) 

in (3.2.1) satisfies

||£(fc)||<PiN *O II +  Po (3.3.25)

where p\ and po are positive constants. For a given gain K  which makes G n stable, a 

possibility is to choose Pi and P2 to maximize

_ ^min(Q) 0 r>a\
71 = \ max{HTPH)  (3'326)

where Q = T t T t Q TT  and represents the first term on the r.h.s of equation (3.2.6). 

As argued in (Sharav-Schapiro et al. 1998), this quantity is a measure of the allowable 

cone bounded parametric uncertainty since if p\ < y/rj, then in the absence of external 

disturbances (po = 0), the controller (3.3.1) guarantees asymptotic stability of the system 

(3.2.1) and (3.2.2).
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From the expression in (3.3.26), the problem of maximizing the allowable uncertainty is 

equivalent to minimizing

Amax{H2 P2 H 2 )/ ^min(Q) with respect to P\ and P2. For simplicity, let

T =  ^ m a x ( H j P 2H 2) and Q — ^ m in  CQ )

If P  is replaced by a P , where a  is a positive scalar, then the ratio of r /q  is unaffected, 

since, by definition and from the structure of Q in (3.3.22), both q and r are scaled by a. 

Consequently, the problem of minimising the ratio of r/q  with respect to P  is equivalent 

to minimizing r(P)  subject to q(P) = 1. This is in turn equivalent to

min : T Tf TQ f f  > I  (3.3.27)

H j P 2H 2 < fi l  (3.3.28)

P > 0 (3.3.29)

where fj, is a positive scalar and Q is defined as in (3.3.19). This represents a convex 

optimization problem with decision variables Pi, P2 and fi. Linear Matrix Inequality 

(LMI) (see Appendix B.2) optimization (Boyd et al. 1994) can be used to obtain the 

optimal P  matrix as a generalized eigenvalue problem (gevp).

3.4 Design for an Aircraft Example

The design and application of the discrete output sliding mode controller will now be 

illustrated with an example. Consider the 4th order lateral dynamics of the De Havilland- 

Beaver aircraft from Chapter 2 in §2.2.3, discretised at a sample interval of 0.1s. This is a
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sensible choice of sampling interval according to (Astrom & W ittenmark 1984) who argue 

that there should be between 5-20 samples in a step response of the closed-loop system. 

The system matrices associated with the discrete system are

G =

0.9729 0.0200 -0.0945 0.0095 -0.0008 0.0174

-1.1463 0.8416 0.1211 -0.0057
, H  =

-0.6082 0.3055

0.1728 -0.0054 0.9727 0.0008 -0.0771 -0.1958

-0.0574 0.0920 0.0262 0.9998 -0.0320 0.0139

C

0 1 0  0 

0 0 1 0  

0 0 0 1

The states represent sideslip angle, roll rate, yaw rate and roll angle respectively. The 

inputs of the system are the differential tailplane and rudder position. The output dis­

tribution matrix implies that only the quantities of roll rate, yaw rate and roll angle are 

available for use in the control law. The system triple (G, H , C ) satisfies assumptions Al- 

A2 and the fictitious system (G, H, L), where L := CG_1, does not have invariant zeros. 

Changing coordinates to obtain the canonical form in (3.3.4) yields

0.9611 0.0115 0.1453 -0.0058
G n = , G12 =

-0.0735 0.9997 -0.0186 -0.0880

and

T  =

0.0487 0.1190 -0.9917

0.0109 -0.9929 -0.1186

0.9988 0.0050 0.0497
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Since G\2 is square and invertible, some simplification occurs. Equation (3.3.11) can be 

re-written as

Gn  -  G12K h  = Gn  -  W l x

where W  = G\2K.  The choice of gain W  represents an observer gain selection problem 

for the pair (G n ,L i). As argued in §3.3.2 this pair is observable since for this example 

the system (G, H , L) does not possess invariant zeros. Once W  has been determined, an 

appropriate gain K  =  G ^ W .  Here, pole placement was used to locate the eigenvalues of 

G n  at (0.9,0.95). This results in

0.0023 -0.0339
w  =

0.1108
and hence K  =

-1.2512

Once K  is obtained, perform the next change of coordinates as in (3.3.10) to obtain

G n  =
0.9611 0.00092

and h 2 =
0 0.2413

-0.0735 0.8889 0.7092 -0.3534

The sub-matrices P\ and P2 returned by the LMI solver applied to the minimization 

problem subject to (3.3.27)-(3.3.29) are

28.7906 0.0551 20.3046 2.7401

0.0551 22.1791
and P2 =

2.7401 1.9955
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Following this, simple calculations show that the matrices

f 2 = H l P 2 =
1.9434 1.4153

3.9305 -0.0442

and

Q =

2.0863 1.2020 -4.0504 0.0218

1.2020 4.6497 0.3208 1.7373

-4.0504 0.3208 19.6890 2.7288

0.0218 1.7373 2.7288 1.8226

The value obtained for Amaa;(iirJP2 H 2 ) = 1.0210. The maximum computable allowable

bound on the uncertainty for the closed-loop system to remain stable is thus y^l/1.0210 = 

0.9794. This indicates a good level of robustness in this case since this value is large relative 

to the size of the elements in the system and input distribution matrices G and H  for this 

example. Finally, the output feedback control gain from (3.3.14) is given by

H,-1 K  I
-1.2419 -2.2378 -1.7515 

0.4862 -4.1168 -0.1196

3.5 Summary

A new design procedure has been presented to synthesize ODSMC’s. A novel switching 

function is described; this in itself is not realizable through outputs alone, but it gives 

rise to a control law which depends only on outputs. The discrete time reduced-order 

sliding motion associated with this novel choice of switching function is not governed by
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the invariant zeros of the system - which therefore are not required to be minimum phase. 

The class of systems to which this approach is applicable is easily identified. As a result, 

new conditions for the existence of a stabilizing ODSMC have been given, for non-square 

systems with bounded matched uncertainties.

Thus far, it has been shown that for a stable ODSMC to exist, a certain subsystem triple 

has to be output feedback stabilisable. The next chapter will address the situation when 

this subsystem is not static output feedback stabilisable and proposes a method to solve 

this case.



C hapter 4

Dynam ic Discrete Output 

Feedback Sliding M ode Controllers

4.1 Introduction

The chapter considers dynamic discrete time output feedback sliding mode controllers 

(dynamic ODSMC’s) for non-square discrete time uncertain linear systems. It has been 

demonstrated in Chapter 3 that for many systems, it is not possible to obtain stability 

by static ODSMC. This of course is not surprising since not all systems are static output 

feedback stabilisable (Syrmos et al. 1997). To broaden the class, a compensator based 

framework is proposed to introduce additional degrees of freedom. For square systems, 

this problem has been addressed in (Sharav-Schapiro et al. 1999), from the point of view 

of discrete min-max controllers, with the introduction of a compensator. Here, a compen­

sation scheme is proposed and a dynamic ODSMC is described for non-square systems.
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This represents a new solution to an open problem (from a min-max perspective (Sharav- 

Schapiro et al. 1998)). The conditions for the existence of such dynamic ODSMC are 

given in this chapter. They are shown to be relatively mild and easily tested. Further­

more, a simple parameterisation of the available design freedom is proposed. An explicit 

procedure is also described which shows how a Lyapunov matrix, which satisfies both a 

discrete Riccati inequality and a structural constraint, can be obtained using LMI optimi­

zation. This Lyapunov matrix is used to calculate the robustness bounds associated with 

the closed-loop system. The efficacy of the method is demonstrated with an engineering 

example taken from the literature.

4.2 Problem Formulation

As in §3.2, consider the discrete time system with matched uncertainties

where x  6 Rn, u € Rm and y e W  with m  < p < n. Assume that the input and output 

distribution matrices H  and C are full rank. In addition, assume the triple (G, LT, C) is 

minimal. The matched uncertainties, £(fc), are assumed to be unknown but are required 

to belong to a ‘balanced set’. Associate with this system a candidate Lyapunov function

x(k -(-1) =  Gx(k) +  H(u(k)  +  £(fc)) (4.2.1)

y(k) = Cx(k) (4.2.2)

V(k)  = x T (k)Px(k) (4.2.3)

where P  is a s.p.d. matrix.
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As stated in Chapter 3, the optimal state feedback control law, which minimises the 

Lyapunov difference A V(k)  = V(k  +  1) — V ( k ) with respect to u, for the worst case 

uncertainty £, is

u.(fc) =  —(HT PH )~XH T PGx(k)  (4.2.4)

It was shown in §3.2 that the controller can be realised through the outputs, as

Uo(k) = - ( FC G ~lH ) - lFy(k ) (4.2.5)

if the constraint

H t PG  =  FC  (4.2.6)

is satisfied. The design problem is one of finding a matrix P  and an F  such that

Q := P  +  Gt P H ( H t P H ) ~ 1H t PG -  GTP G  (4.2.7)

and (4.2.6) holds for some F  6 Rmxp and Q > 0 in (4.2.7). As argued in §3.3, a solution 

to this problem represents an ODSMC for the system in (4.2.1)-(4.2.2).

Throughout this chapter it will be assumed that:

A l) the plant state transition matrix G is nonsingular 

A2) the matrix CG~lH  has rank m.

Remark 4.2.1 These conditions are entirely compatible with those for square systems 

described in (Sharav-Schapiro et al. 1999) (argued from a min-max point of view) and 

indeed A2 is in fact just a generalization of the transfer function requirement det(G(0)) ^  0
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where G(z) = C ( z l  — G) 1H  used in (Sharav-Schapiro et al. 1999).

Based on assumptions A l and A2 as in §3.3, a change of coordinates will be introduced 

which facilitates insight into the class of systems for which this problem is solvable. As in 

§3.3.1, define a matrix

L  := CG~l (4.2.8)

which will be the new output distribution matrix for a purely fictitious system (G , iJ, L). 

By definition, and from Assumption 2, rank(LiJ) =  m  and there exists a change of 

coordinates such that

(4.2.9)

where G u  € Rh-"*)* h 2 € IT ,xm and is nonsingular and T  6 Rpxp is orthogonal.

The work in §3.3 shows that necessary and sufficient conditions for the solution of the 

problem of establishing a s.p.d. matrix P  and an F  satisfying (4.2.7) and (4.2.6), is that 

assumptions A l and A2 are satisfied and the fictitious triple { G n ,G i 2 , L\)  where

G =
G u G12

H  =
0

L = 0 T
G21 G22 h 2

L\ := Cb™-(p—m ) x ( n —p) I p —m (4.2.10)

is static output feedback stabilisable i.e. there exists a K  E I^mx(p_m) such that the 

m atrix (G u — G 1 2K L 1) is stable. Clearly this is a limitation on the class of systems to 

which static ODSMC is applicable.
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4.3 Dynamic Sliding Mode Controllers

This section explores the scenario in which it is not possible to synthesize a gain K  so 

that (G u — G 1 2K L 1) is stable. Here a compensator will be used to introduce additional 

dynamics to provide more degrees of freedom.

4 .3 .1  C o m p en sa to r  D esig n

For notational convenience let the plant to be controlled be represented by

xp(k + 1) =  Gpxp(k) + Hp(u(k) + £(k)) 

Vp(k) = Cpxp(k)

(4.3.1)

(4.3.2)

where Gp E R nPXnp> Hp E an(j  Qp E W Xnp are the state, input and output

distribution matrices respectively. Consider a compensator of the form

xc(k + 1) =  $ x c(k) +  Typ(k) (4.3.3)

where 4> E MqXq and T E RqXp are to be determined under the restriction that det(4>) 7̂  0. 

Here it will be assumed that q = np — m. An augmented plant description involving the 

plant and the compensator can be established:

x c(k + 1) $ "I

1

xc(k)
+

0

xp(k + l) 0 Gp 1 1

Hp
(u(k) +  £(fc)) (4.3.4)
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Define x(k) := col(xc(k ) ,xp(k)), then the new augmented system matrices are

$ r c p 0
G = H  =

0 Gp Hp
(4.3.5)

Define the output distribution matrix for the augmented system as

C  :=
Iq 0

o a
(4.3.6)

The objective is now to establish that a (static) ODSMC exists for the triple (G, H, C ) 

which of course constitutes a dynamic output feedback controller for the original plant 

(Gp, Hp, Cp).

Notice from the definition in (4.3.4), that det(G) ^  0 if det(Gp) ^  0 since det(4>) ^  0. 

Also

CG~lH  =
<S>-lTCpGp l Hp

c pg ~ ' h p

and so rank(CG ~1H) =  m provided rank(CpG~lHp) = m. Thus conditions A l and A2 

from §4.2 hold for the augmented triple (G, H, C) provided they hold for the original plant 

(Gp, Hp,Cp). Define

L := CG~l =
$ -1  - $ - lTCpG~l

1
•©< i - $ -1 r  l p

0 CpG-1 1
o

— 
i

a.

(4.3.7)
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where Lp := CpG 1. Also define a gain matrix

F : = F Fc$  F0 (4.3.8)

where Fc G RmX9 and F0 G RmXp are to be determined and F  G RmXm is a nonsingular 

matrix which will be specified later. The objective is to establish an equation of the form

H t PG = FC (4.3.9)

for some s.p.d matrix P  G R^2np m)x(2np m) for the augmented system such that the 

control law

u{k) = - ( F C G - l H )~ lFy(k ) (4.3.10)

where y(k) := col(xc(k),yp(k)) is a static ODSMC for the augmented uncertain system 

(4.3.4)-(4.3.6).

For the subsequent analysis, assume the plant system (Gp, Hp, Lp) has the canonical struc­

ture in (4.2.9), so that

Gn G 12 0
Gp — Hp =

G21 G22 h 2
0 T (4.3.11)

where G\\  G R^np m)x(np rn\  iJ2 G RmXm and is nonsingular and T  G RpXp is orthogonal. 

To facilitate the development which follows write

F\ F2 F0T  and Ti r 2 = TT (4.3.12)
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where T  6 Mpxp is the orthogonal matrix from (4.3.11), F\ € Rrnx(p m) and Ti € 

M9X(p-m). Then it follows

F L  = F  

= F

Fc (F0Lp — FCTLP)

Fc ( F x - F c T ^ h  (F2 - F c r 2) (4.3.13)

where

Choose

Li = 0(p—m),(np—p) Ip—m

F2 — Fc r  2 +  /n

(4.3.14)

(4.3.15)

which makes the last sub-block in (4.3.13) equal to the identity matrix. Then choose

Fi = FcTi (4.3.16)

which nullifies the second term in (4.3.13). Equations (4.3.15)-(4.3.16) completely deter­

mine F0 in (4.3.8) once Fc and T are synthesized. Partition the output distribution matrix 

of the plant in the canonical form in (4.3.11) as

Ci C2 (4.3.17)

where Ci G W}X r̂ip m .̂ Perform a change of coordinates x  t—> T x  = x  according to the



4.3 D ynam ic Slid ing M ode Controllers 78

nonsingular matrix

T

Iq 0 0

o I n p -

Fr 0

(4.3.18)

then the system (G, H , F L ) becomes (G, F ,  FL) where

$  -  t c 2f c r c i  r c 2

—Gi2Fc G u  G i2

Fc$  -  (FcTC2 +  G22)Fc FcrG i +  G2i Fcr c 2 +  G22

(4.3.19)

H  =

0

0

H2

and F L  = O O F (4.3.20)

The closed-loop system matrix associated with (4.3.4) and (4.3.10) (in the new coordinates)

is

$  -  TC2Fc r c i r c 2

Gc = G — H ( F L H ) ~ l F C  = - G \ 2Fc G u G i2

0 0 0

G ii Gi2 

0 0
(4.3.21)

This representation is most directly established by noticing that Gc =  (I —H ( F L H )~ l FL)G  

from the definition of L = CG~l . The projection operator which pre-multiplies G to form 

Gc has the form diag(/(np_m), /(n _m), 0mim) because of the special form of H  and F L  

from (4.3.20).

Before proving the main result, two lemmas are required, Lemma 3.3.1 from §3.3.2 and
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another which is proved as follows.

L em m a 4.3.1 I f  the plant (Gp, Hp, Cp) is minimal and det(Gp) ^  0 then the pair (G u, C\) 

is observable.

P roof: By definition Lp = CpGp 1 and in the canonical form of (4.3.11),

Lp — Opx(np — p) T (4.3.22)

where T  6 MpXp is orthogonal. It follows that

CP = T Opx(np — p)
G n  G\2 

G21 G22

where, as in (4.3.11), the sub-block G u  G R^np m)x(np m). From the definition of C\ in 

equation (4.3.17) it can be shown that

Ci = T
G112 

G21

where G112 G represents the last p — m  rows of G u and T  is the orthogonal

matrix from (4.3.22). The observability of the pair (G u, C\) will now be shown using the 

Rosenbrock-Hautus-Popov (Rosenbrock 1970) test. To begin with, clearly

rank
zlq G n

Ci
=  rank

z l q — G n

G 112

G21
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Two cases will now be considered: when z =  0 and when 2 ^ 0 .  If z =  0 then

rank
z l q — Gn

Ci
= rank

=  rank

Gn

Cn2

C21

Cn

C21
= n„ — m

since by definition C 112 represents the bottom p —m  rows of G n  and the last rank equality 

follows because, by assumption, Gp is nonsingular. For z ^  0 then

1

1

l 1
b* 1 O M

1

Z l q —  G n

rank C 112 =  rank —zL\ = rank G21

1 to I C21 Li

where L\  is defined in (4.3.14). To obtain the second expression the last p — m  rows from 

z l  — G11 have been subtracted from C 112; and to obtain the third, the fact that z ^  0 has 

been used. Furthermore

rank

z l q — G n

C21

Li

np — m  <=$> rank

z l q — G 11 — C 12

-C21 z l m  — G 2 2

Li  0

0 Im

= nT

zlnp Gp
nr
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From the Rosenbrock-Hautus-Popov test the last expression is equivalent to (Gp, Lp) being 

observable. Since det(Gp) ^  0 and Lpg = CpG~l , (Gp,L p) is observable if and only if 

(Gp, Cp) is observable and so

rank
zlq — G n

Ci
np — m  for all z € C

and the pair (G n, Ci) is observable as claimed.

P ro p o s itio n  4.3.1 Providing assumptions det(Gp) ^  0 and rank (CpG~^Hp) = m  hold, 

and Fc in (4-3.8) is chosen so that G n  — G i2Fc is stable and V is chosen so that G\ \ — TC\ 

is stable, then if the compensator state transition matrix is chosen as

$  =  r c 2Fc -  c 12f c -  rci +  g u  (4.3.23)

the closed-loop system matrix (4-3.21) will be stable.

P roof: The system matrix in (4.3.21) is stable if and only if the top left sub-block G\\  is 

stable. Notice this is parameterized solely by three matrices still to be determined, namely 

4>, r  and Fc. Also notice that (4.3.21) is not dependent on F  (which is also yet to be 

determined). Let x\  represent the first np — m  components of the state vector x. Then 

the change of coordinates (x c, x \ ) (xc — x \ , x \ ) ,  which is possible since q = np — m,

facilitates the selection of 4>, T and Fc. Specifically, it is easy to check that the top left
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sub-block of (4.3.21) becomes

1 1

1

1—
o

1 1

$ - r c 2F c r c i  

—G\2FC G n

I, III

1 o 1

$  -  r c 2Fc +  g 12f c

—GnFc G n  -  G i2Fc

where 4>* := $  — TC2Fc +  G\2FC +  TC\ — Gn-  Then choosing the design parameter $  as 

in (4.3.23) makes 4>* =  0 and thus

i

1

i

$  -  r c 2p c r c i
1I

c n  -  r c i  o

i—
o

■

- g 12f c G n 1
o

1 —G\2Fc G n  — Gi2Fc

Consequently cr(Gn) = <r(Gn — G\2FC) Ucr(Gn — rC i). From Lemmas 3.3.1 and 4.3.1 the 

triple (Gn,Gi2,Ci) is minimal and so it is always possible to choose Fc and T to make 

G n  stable.

P ro p o s itio n  4.3.2 The control law (4-3.10) in conjunction with the compensator (4-3.3) 

is a stabilising dynamic output feedback sliding mode controller for (4-3.1)-(4-3.2).

P roof: In the new coordinate system, equation (4.3.9) can be written as

H t P  = F L  (4.3.24)

The objective now is to show that there exists a s.p.d. matrix P  satisfying (4.3.24) and

P - G j P G c > 0 (4.3.25)
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where Gc is the closed-loop system matrix from (4.3.21). An explicit procedure will be 

described to obtain P.

As a result of the structures of H  and F L  from (4.3.20), in order to satisfy equation 

(4.3.24), the Lyapunov m atrix P  must have a block diagonal structure

P  =
Pi 0 

0 P2
(4.3.26)

with Pi e  r 2("p-™)x2("p->") and p2 € I ” " .  To establish this suppose

Pi P12

p i ; h

It follows by direct algebraic manipulation from the structure of H  and F L  from (4.3.20) 

that equation (4.3.24) becomes

H j P n  HI Pi 0 F

However since det(H2) ^  0 this implies P\2 =  0 and so P  must have the block diagonal 

structure in (4.3.26) as claimed. Furthermore the scaling matrix F  from (4.3.8) must 

satisfy F  =  H 2 P2- (Note: this scaling term is independent of the coordinate system.)

Some straightforward algebraic manipulation shows that in terms of the partition in

(4.3.21) and (4.3.26)

q  = p - g Tp g c =
P i -  G fjP iG n

- C ^ A G u

•Gu A G is

P2 — Gf2PlGi2
(4.3.27)
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A family of solutions (Pi, P 2) to make Q > 0 will be shown to exist. Specifically, let Pi > 0 

be a solution to

Pi — ^ i i P i ^ i i  ^  0 (4.3.28)

From Lyapunov theory such a solution is guaranteed to exist since G n  is stable. Then 

from the Schur complement, inequality (4.3.27) is satisfied if and only if

P2 > g E jA G W A  -  G j ^ G u r H G u P i G u )  + G j ^ G n  (4.3.29)

Thus the existence of a s.p.d P  satisfying both (4.3.25) and (4.3.24) has been shown which 

means the stabilizing controller (4.3.10) is a min-max controller for (G , H, C) from (4.3.4) 

and (4.3.6). Consequently (4.3.10) in conjunction with (4.3.3) is a dynamic min-max 

controller for (4.3.1)-(4.3.2).

Rem ark 4.3.1 The (dynamic) control law from (4.3.10) can be written as

u(k) = - H 2 l y(k) (4.3.30)

where y(k) = col(xc(k),yp(k)).

R em ark 4.3.2 The choice q =  np — m  is judicious for the developments described in 

this chapter and is required for the coordinate change undertaken in Proposition 4.3.1. 

As demonstrated in this section, it allows a very elegant parameterisation of the closed- 

loop system poles in terms of a ‘separation principle’ result. Such a choice of q does 

not immediately agree with natural intuition. One interpretation of this choice however
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is that the developments described here are appropriate for a sliding mode framework 

since the control structure in (4.3.10) has an ‘equivalent control’ interpretation (Edwards 

& Spurgeon 1998). Viewed from this perspective the compensator effectively acts as a 

full order estimator for the reduced-order motion traditionally associated with sliding 

mode control (Edwards & Spurgeon 1998). The change of coordinates associated with 

Proposition 4.3.1 occurs in the x\  states which are of dimension np — m , which because of 

the inherent matched uncertainty assumption, are independent of the uncertainty. There 

is no requirement in the development here to estimate the states x<i which are associated 

with the ‘dead-beat’ behaviour (and which are directly affected by the uncertainty). Also 

the results in this chapter only require relatively weak assumptions (Al and A2) and not 

the relative-degree-one minimum phase conditions typically required by continuous time 

output feedback sliding mode controllers for systems with matched uncertainty (Edwards 

Sz Spurgeon 1998).

4 .3 .2  K e y  S tep s  for th e  D y n a m ic  O D S M C  D esig n

An explicit design algorithm to realize the compensator can be described as follows:

1. For a given discrete time representation (Gp, Hp,Cp) check that det(Cp) ^  0 and 

rank {CpG~l Hp) = m. If these conditions are not satisfied, then a dynamic compen­

sator does not exist.

2. Form the fictitious triple (GP,H P,L P) where Lp = CPG~1 and change coordinates 

to obtain the canonical form given in (4.3.11). (See (Edwards & Spurgeon 1995) for 

details.) Also establish a representation for the (real) output distribution matrix Cp 

in these coordinates.
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3. Determine the matrices G n , C 12, C\ and T  by partitioning Gp, Cp and Lp according 

to the structures in (4.3.11) and (4.3.17). Choose Fc and T using any algorithm of 

choice so that G n  — G\2 FC and G n — TC\ are stable. (By construction the triple 

(G n, G\2 i C\) is a minimal realization and so Fc and T always exist.)

4. From (4.3.12) determine F\ and T2 as a partition of r T T and calculate F\ and F2 

from (4.3.15)-(4.3.16). The matrix F0 can then be calculated from (4.3.12).

5. Once T and Fc have been calculated the system matrix of the compensator 4> can be 

computed from (4.3.23) and the dynamical system in (4.3.3) is completely specified.

6. The expression for the dynamic output feedback sliding mode control law is then 

given by (4.3.30).

Remark 4.3.3 This chapter has been directed towards non-square systems. In the square 

case i.e when p = m, the same approach is applicable. Some minor modifications can be 

made to §4.3.1 and in particular F\ and T\ become empty matrices and the second term 

in (4.3.13) reduces to (F\ — FcT{)Li = 0. The remainder of the analysis proceeds with no 

further modification.

4 .3 .3  R o b u stn ess  A n a ly sis

This subsection considers the robustness properties associated with the proposed dynamic 

output feedback sliding mode controller. Suppose the matched uncertainty £(k) in (4.3.4) 

satisfies

m m  < pi\\xp(k)\\+ po (4.3.31)
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where p\ and po are positive constants. In §4.3.1 the design freedom associated with the 

Lyapunov matrix was shown to be represented by the pair of s.p.d. matrices Pi and 

P2 . Whilst the pair (P i,P2) must satisfy the matrix inequalities (4.3.28) and (4.3.29), 

there is some inherent design freedom. The selection of these matrices has no effect on 

the compensator dynamics (4.3.3) or indeed the control law (4.3.30). Assume the design 

parameters 4>,r, Fc and F0 have been selected to ensure Gc (and in particular G n  from

(4.3.21)) is stable. Let

V(k)  := x{k)TPx(k)  (4.3.32)

where P  =  f TP f  with P  defined in (4.3.26) and T  is given in (4.3.18). Then from (4.3.4)

A V(k) := V(k  + 1) -  V(k) = - x(k)Tf TQTx{k ) +  (,{k)TH TPH£(k)  (4.3.33)

where Q is defined in (4.3.27). A slightly different approach will be adopted here than the 

one in §3.3.5 because the uncertainty is cone bounded with respect to xp rather than the 

augmented state x. To reflect this let

N fyipx(np—m) n̂p (4.3.34)

then by construction N x  = xp. Consider

C(PU P2, a) := - x l T l QTx  +  £TH TPHZ  +  a ( - x TN TN x  -  ? £ )
L1

(4.3.35)

where the scalars a, p, > 0. It is easy to see if P i, P2 and a  are chosen so that £ (P i, P21 <

0 then ||£|| < y / l /p \ \xp\\ implies A V(k) < 0. Consequently if pi < y / \ / p ,  in the absence 

of external disturbances (i.e. when p0 = 0), asymptotic stability of the closed-loop system
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is guaranteed.

The condition C(P\, P2 , a)  < 0 is guaranteed if

a N TN  < h T t QT  (4.3.36)

and

H t P H  < a l m (4.3.37)

are satisfied subject to P  > I  and a  > 0. A logical way to proceed is to choose P \ ,p 2 

and a  to minimise p  (and thus maximize 1///). This represents a convex optimization 

problem with decision variables P\ ,P 2 ,ot and p. Linear Matrix Inequality (LMI) methods

(Boyd et al. 1994) can be used to obtain the optimal values of the decision matrices as a

generalized eigenvalue problem. Then from the arguments above, if p\ < y / l / p  then the 

uncertain closed-loop system will retain asymptotic stability.

4.4 Examples

The theoretical results from §4.3 will be demonstrated on two examples. The first of 

which shows that the approach is applicable to practical problems, which may or may 

not be output feedback stabilisable, and provides good regulation. Even in the case when 

( G n , G i 2 , L\)  is output feedback stabilisable (and so theoretically a dynamic output feed­

back sliding mode controller is not required) it may be beneficial to design a compensator 

to improve robustness and performance. However, the robustness measure is still typically 

less than tha t which can be achieved from using state-feedback. This will be demonstrated 

in §4.4.2 (Example 2).
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4 .4 .1  E x a m p le  1: A p p lica tio n  to  a H igh  In c id en ce  R esea rch  M o d el

The theoretical results from §4.3 will be demonstrated on an example which represents 

the linearised longitudinal dynamics of a High Incidence Research Model (HIRM) aircraft 

(Magni, Bennani & Terlouw 1997) about an operating condition of 0.8Mach and 5,000ft. 

A discretised version using a sampling time of 0.025 secs is given by

Gp =

0.9619 0.0238 0 -0.0143

-0.1374 0.9730 0 Hp = -0.5528

-0.0017 0.0247 1.0000 -0.0069

Cp =

with

- 1  0 1

0 1 0

the states represent the angle of attack (rad), pitch rate (rad/s) and pitch angle (rad); the 

outputs are flight path angle and pitch rate; the control input is the elevator deflection 

angle (rad). In the canonical form of (4.3.11) the system and input distribution matrices

0.9798 0.0149 0.0336 0

Gp — 0.0248 0.9823 0.0005 Hp = 0

-0.0989 0.0704 0.9728 -0.5683

and the output distribution matrix

Cp =
0.0261 0.9812 -0.0129 

-0.0986 0.0839 0.9727
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The orthogonal m atrix associated with Lp = CpGp 1 is

T  =
0.9999 -0.0137 

0.0137 0.9999

It follows from the above that the partitions of Gp and Cp in (4.3.11) and (4.3.17)

0.9798 0.0149 0.0336
G n  = Gi2 =

0.0248 0.9823 0.0005

and

0.0261 0.9812 -0.0129
c 2 =

-0.0986 0.0839 0.9727
C \  =

Using simple pole assignment (for demonstration purposes) it can be verified that

r  =
0.0401 -0.2913

0.5016 -0.1183

and

3.0030 2.6203

assign a {G\\ — G\ 2 FC) =  { 0.90, 0.96 } and a (Gn  — TCi) =  { 0.50, 0.95 } respectively. 

The compensator system matrix can be computed from (4.3.23) as

$  =
-0.0033 -0.8318 

-0.3664 0.1803
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and in particular det(4>) ^  0. Furthermore this choice of T and Fc gives a stable 4>. With 

r  and Fc calculated, from (4.3.15) and (4.3.16), F\ = 1.4185 and F2 = —0.2045 and so 

from (4.3.12)

F0 = F\ F2 1.4212 -0.1850

Finally from (4.3.8) the output gain matrix

F  = -0.9702 -2.0256 1.4212 -0.1850

and the design is complete. The LMI optimization used to obtain the uncertainty bounds 

yields

P  =

43.2292 -8.8980 -40.1084 10.7694 39.1222

-8.8980 233.6303 236.0424 5.6228 -222.0218

-40.1084 236.0424 268.3925 -3.2092 -252.1647

10.7694 5.6228 -3.2092 3.5270 3.4233

39.1222 -222.0218 -252.1647 3.4233 241.5858

and an associated value of F = —1.8823. The optimal values of /i =  18.3554 which gives 

a bound on the allowable uncertainty of p\ =  yT/18.3554 =  0.2334.

The final control law is given by

u(k) = 1.7073 -3.5647 2.5010 -0.3255 y(k0 (4.4.1)

the design is complete. Figure 4.4.1 shows the response of the nominal system to the 

initial conditions [0, 0, 0.1 ].



4.4 Exam ples 92

0.2

coo
CO
GO

- 0.2

-0.4
0 1 2 3

0.3

0.2

0.1g
coO

- 0.1

- 0.2
20 1 3

Time, sec Time, sec

Figure 4.4.1: closed-loop response of the nominal system

Suppose instead

u(k ) -3.7741 -5.3136 2.5822 -1.0101 y{k) (4.4.2)

The closed-loop poles are now located at { 0.40, 0.50, 0.90, 0.94, 0.95 }. The intention 

here has been to deliberately remove the ‘min-max’ character of the control law by re­

placing the closed-loop pole at the origin with one at 0.4 whilst leaving the remaining 

nonzero closed-loop poles associated with (4.4.1) at their original values. To demonstrate 

the performance of the dynamic ODSMC, the closed-loop system has been subjected to a 

matched disturbance in the form of a sine wave of frequency 1 rad/s.

In Figure 4.4.2 the quantity V(k) = x(k)TPx(k)  has been plotted for both the dynamic 

ODSMC/ ‘min-max’ controller in (4.4.1) and the controller associated with (4.4.2). The 

quantity V(x)  is a measure of the deviation of the states from zero since P  is s.p.d by 

construction. It can be clearly seen that the disturbance is better attenuated by the 

ODSM C/‘min-max’ controller. Figure 4.4.3 is a plot of the absolute value of A V(k)  for 

both the ODSMC controller in (4.4.1) and the controller associated with (4.4.2). The 

dynamic ODSMC controller is specifically designed to minimise the deviation of AV(k)
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for worst case disturbances. It can be seen from Figure 4.4.3 that, even for a sine wave 

disturbance, the dynamic ODSMC controller out-performs the controller associated with 

(4.4.2).

0.12
m in-m ax
dot

0.1

0.08

0.04

0.02

18 2014 1610
Time

12

Figure 4.4.2: Plot of the Lyapunov function V (s )

4 .4 .2  E x a m p le  2: N u m erica l E x a m p le

For the purpose of demonstrating the improved robustness that is brought upon by the 

dynamic ODSMC method described in this chapter, the following system, taken from 

(Sharav-Schapiro et al. 1999), will be used:

x(k + 1) =  Gpx(k) +  Hp(u(k) -1- £(&))

y(k) =  Cpx(k)

(4.4.3)

(4.4.4)
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18 20

(4.4.5)

and pi is a positive scalar. The system matrices are

Gr
0 1 

0.24 0.2
H n = Cp = 1 0

As argued in (Sharav-Schapiro et al. 1999), with a state feedback controller, the maximum 

achievable level of robustness is 0.5 (i.e. if p\ < 0.5, then closed-loop stability is guaran­

teed). This can be shown by choosing Q = I  and solving the Riccati equation in (4.2.7)
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which results in

P  =

Hence, the optimal uncertainty bound is

1 0 

0 2

_  Am i n ( Q )  _  n -
1 A max{HTP H )  •

The static ODSMC does exist for this example and can be obtained using the method 

from Chapter 3. The calculated uncertainty bound is 0.0528. As predicted, this bound is 

smaller than the one obtained for the state feedback case. Next, the dynamic ODSMC will 

be considered where the design parameters T =  —0.2040, Fc = —4.0858 and <f> =  —1.0000. 

The Lyapunov matrix

P  =

154.4254 30.1044 -26.1362

30.1044 16.7941 -5.3308

-26.1362 -5.3308 26.6538

and

26.6948 4.3133 -1.2590

Q  = 18.4712 18.0037 -0.2568

2.7137 1.5258 10.9258

The matrix F  =  [ 4.0858 0.8333 ] and the uncertainty bound obtained is 0.4046. Note 

that this bound is significantly larger than the one obtained for the static ODSMC but is
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smaller than the maximum calculated from the state feedback case.

4.5 Summary

This chapter has considered the design of dynamic ODSMC’s for a class of non-square 

discrete time uncertain linear systems subject to bounded matched uncertainty. The sce­

nario which has been considered here is a realistic one in which only outputs are measured 

and the states of the system are unknown. The dynamic controller that has been pro­

posed relies purely on measured outputs. New, necessary and sufficient conditions for 

the solution of this problem has been proposed. These are relatively mild and can easily 

be verified. A particular compensator, of order less than the original plant, has been 

suggested which is parameterized in a way that is constructive from the point of view of 

synthesis. Furthermore an explicit design algorithm has been proposed which synthesizes 

the parameters of the compensator and provides a Lyapunov matrix which satisfies both 

a discrete Riccati inequality and a structural constraint. The efficacy of the approach has 

been demonstrated by considering a system triple relating to a practical aircraft system.

So far in the thesis, only the problem of plant regulation has been considered. The 

requirement to incorporate tracking control, which is often needed in practical applications, 

will be addressed in the following chapter.



C hapter 5

Discrete Output Feedback Sliding 

M ode Control with Integral 

A ction

5.1 Introduction

The two previous chapters have considered the ODSMC problem, where the objective is 

to drive the system states to zero. This chapter will examine the problem of designing 

a static ODSMC which utilises integral action to provide tracking. The simplicity of the 

resulting scheme will be apparent which is very advantageous from the point of view of 

practical implementation. The conditions necessary in order to realize such a scheme are 

established. A numerical example is used to describe the theoretical implications of the 

approach and real-time implementation of the technique for control of a DC-motor system
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is used to illustrate the ODSMC tracking framework.

5.2 System Description and Problem Formulation

As in Chapter 3, consider the discrete time system with matched uncertainties

xp(k +  1) =  Gpxp(k) +  Hp(u(k) +  £(fc)) (5.2.1)

Vp{k) — CpXp(k) (5.2.2)

which is assumed to be square. The vectors xp 6 Kn, u 6 Rm and yp € Rm with m < n, 

represent the states, inputs and outputs respectively. Assume that the input and output 

distribution matrices Hp and Cp are full rank. In addition, assume the pair (Gp,Hp) is 

controllable and the pair (Gp, Cp) is observable. A more specific structure to the uncer­

tainty will be provided later. The assumption that the system is square helps simplify the 

analysis. For non-square systems a suitable subset of ‘controlled outputs’ would need to 

be identified.

In this chapter, an integral action approach will be considered in the controller design. 

Consider the nominal system in (5.2.1) and (5.2.2). Additional states, x T 6 Km, are 

introduced which satisfy

x r(k +  1) =  x r(k) +  r(r(k) -  yp(k)) (5.2.3)

where r(k) is a reference signal and r  is the sampling interval.
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The states of the system are augmented with the integral action states to obtain

x(k) =
x r (k) 

xp(k)
(5.2.4)

Using (5.2.1), (5.2.2) and (5.2.3) the augmented system can now be written as

x{k + 1) =  Gx(k) +  H(u(k)  +  £(&)) +  Hrr(k) 

y(k) = Cx{k)

(5.2.5)

(5.2.6)

where x E R(n+m) and the augmented system matrices are

1
3" 1

1

0

1 .....

1

G = H  = Hr =

1 o 1 Hp 0

and the output distribution matrix

C
Im 0

o a

(5.2.7)

(5.2.8)

which implies y(k) = col(xr(k),yp(k)), i.e. the integral action states plus the measured 

outputs.

As in the two previous chapters, it will be assumed that

A l) the augmented state transition matrix G from (5.2.7) is nonsingular (which is equi­

valent to Gp from (5.2.1) being nonsingular)

A2) CG 1H  has rank m  (which is equivalent to CpGp 1HP being rank m).
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These two assumptions are perfectly in keeping with the assumptions from Chapter 3 and 

Chapter 4. Assume initially that r(k ) =  0. This assumption will be relaxed later in the 

chapter. Also assume a static ODSMC is sought for the augmented system (5.2.7)-(5.2.8). 

From here, the set-up is similar to that in §3.2. A sliding surface for the (augmented) 

system is defined as

S  = {x  : FC G ~lx = 0} (5.2.9)

where F E R mx2m is the design freedom. In the selection of the design parameter F , the 

condition

FC G ~X =  H t P  (5.2.10)

must hold for some s.p.d matrix P  (which will play the role of a Lyapunov matrix for the 

system). Since by assumption CG~l H  is rank m and F E W nx2m, the design freedom F  

can be chosen so that det{FCG~l H) ^  0. As in Chapter 3 the proposed discrete time 

sliding mode static output feedback control law is given by

u(k) = —(FCG~lH )~ lFCx(k)  (5.2.11)

In order for the closed-loop system to be stable, the system matrix

Gc = G -  H {FCG~l H )~ lF C  (5.2.12)

must be stable and P  must be a Lyapunov function matrix for (5.2.12), i.e.

G ^ P G c -P  < 0 (5.2.13)



5.3 The H yperplane Synthesis Problem 101

The problem is now to find conditions under which it is possible to select an F £ R mx2m 

and a s.p.d. P  £ ]^(n+m)x(n+m) such that (5.2.10) and (5.2.13) hold. This is explored in 

the next section.

5.3 The Hyperplane Synthesis Problem

This section develops necessary and sufficient conditions under which it is possible to select 

an F £ R mx2m which parameterizes the design freedom in (5.2.11) such that (5.2.10) and 

(5.2.13) hold for a s.p.d. P £ j^(n+m)x(n+Tn) which serves as a Lyapunov matrix. As in 

§3.3.1, define L = CG~l and consider a new fictitious system (G , iZ, L). Using assumptions 

A1 and A2, as in §3.3 a change of coordinates will be introduced to facilitate the subsequent 

analysis, where x  h-* T x =  x  such that

G = T G T ~ l =

1

G12
H  = T H  =

0

<N
‘CD

1 G22 h 2

II -1 _
^2mx(rt-m) (5.3.1)

where G\\ £ RnXn, H 2 € R mXm is nonsingular, T  £ R 2mx2m is orthogonal. 

The design m atrix F  from (5.2.9) is reparameterised as

F = F2 K  L (5.3.2)

where K  £ R mxm and F2 £ R mxm is nonsingular. Again this is similar to the approach
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adopted in §3.3.1. From the definition in (5.3.2) and the structure of L  in (5.3.1) it follows 

that

FL  = 0m x (n—m) F T 0m x ( n —m ) F 2K  F 2 F2 K L 1 F2 (5.3.3)

where

Li  := 0 , \ I  (5.3.4)1 umx (n—m) 1m  v '

As in §3.3.1, for convenience, a further nonsingular state transformation is introduced, 

x  1—► T x  =  x, where

In  0
(5.3.5)T  :=

In  0

K L 1 Im

In this new coordinate system, the system triple becomes

G =  T G T ~ l =
Gn G\2

H  =  T H  =
0

G21 G22 h 2

F L = F L T  = 0 F2 (5.3.6)

where

G11 =  Gn  -  GUK L 1 (5.3.7)

The structure associated with F L  in (5.3.6) follows from the expression in equation (5.3.3) 

and the definition of T  in equation (5.3.5). The m atrix G\\  =  G n — G 12K L 1 is crucial 

to the developments that follow. Before proving the main result, some lemmas need to 

be established relating to the fictitious triple (G n, G i2, L\).  Using arguments similar to
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Lemma 3.3.1 in Chapter 3, it can be shown that because of the structure of G and H  

in (5.3.1), the pair { G n , G i 2 ) is controllable if and only if (G,H)  is controllable. The 

next lemma shows that controllability of the augmented pair (G, H ) follows from the 

controllability of (Gp, Hp) provided (Gp, Hp, Cp) does not have any invariant zeros at 

unity.

L em m a 5.3.1 I f  (Gp, HP,CP) is completely controllable and has no invariant zeros at 

unity, then the pair (G , H ) is completely controllable.

P ro o f  Express Rosenbrock’s system matrix as

R(z) =
z l  Gr p Up

■Cp 0
(5.3.8)

The invariant zeros of the triple (Gp,Hp,Cp) are given by

{z € C : det R ( z ) =  0}

where R(z)  is defined in (5.3.8). Hence, the system (Gp,Hp,Cp) has zeros at unity if and 

only if d e tR (l)  =  0, i.e.

d e tR (l) =  0 <=> det

det

- C p 0

In Gp Hp

cp 0

In Gp Hp

=  0

= 0
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Using the RHP rank test, the pair (G, H) is completely controllable if and only if

rank z I - G  H = n +  m  for all z £ C (5.3.9)

If z =  1, then from (5.2.7)

rank z I - G  H = n + m  rank

Otherwise z ^  1 and

0 rCp 0

0 In — Gp Hp
n +  m

rCp 0

In Gp Hp

Cp 0

In Gp Hp

7^0

7^0

<=> (Gp, Hp,Cp) has no invariant zeros at unity

rank z I - G  H
z lm  Im T~Cp 0 

0 zln Gp Hp
= n + m

zln Up Hp = n

Since it has been assumed in §5.2 that (Gp, Hp) is controllable, by assumption

rank zln Gp Hp = n for all z

from the RHP rank test (applied to the pair (Gp,Hp)). Therefore (5.3.9) is true and 

(G , H)  is controllable. ■
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Generally, the pair (G n ,Z i) is not guaranteed to be observable. (In fact, as shown in 

Lemma 3.3.2 and 3.3.3, the unobservable modes of (G n ,Z i) are the invariant zeros of 

(G, U, L).) An important observation will now be made which shows that under mild 

conditions the fictitious system (G,H,L)  has no invariant zeros (and therefore (G n ,Z i) 

is observable).

L em m a 5.3.2 Suppose the triple (Gp, Hp,Cp) is minimal and that conditions A1 and 

A2 hold. I f  in addition, none of the invariant zeros of (Gp, Hp,Cp) are zero, then the 

augmented system (G, H , L ) has no invariant zeros.

P ro o f  For a square plant (Gp, Hp,Cp), under the assumption that rank(CPHP) =  m, a 

coordinate system can be chosen so that

G n G\2 0
Gp = Hp =

G21 G22 h 2
Cp = 0 Ir (5.3.10)

where H 2 € Rmxm is nonsingular and G n  6 Rnxn. Furthermore the eigenvalues of G n are 

the invariant zeros of (Gp, Hp,Cp). This is an extension of the ideas in §5.4 of (Edwards 

& Spurgeon 1998) to discrete systems and is a special case of Lemma 3.3.2 and 3.3.3.

From the definition of L and using the definitions of (G ,H ,C ) from (5.2.7)-(5.2.8), it 

follows that in the coordinates associated with (5.3.10):

L  =  CG_1
T 'rCi 11m •

0 CpG-1
(5.3.11)

The invariant zeros of (G, H, L ) are values of z € C for which Rosenbrock’s system matrix
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(Rosenbrock 1970) given by

R(z)  :==
z I - G  H  

- L  0

loses normal rank.

It follows by substituting from (5.2.7), (5.3.10) and (5.3.11) that

rank R(z)  =  rank

rank

= rank

z - l tCp 0

0 zln Gp Hp

Im - t CpG- 1 0

0 - CPG o _

z - l rC p

0 [ z I - G u  - G

Im - rCpG- 1

0 -G p G ;1

z - l rCp

0 [ z I - G u  - G

I-m 0

0 -GpGp-1

12
+  m

+  m

and so

R(z)  loses rank ^

rCr.

z I - G n  - G n

C pG ;1

loses rank

(5.3.12)

(5.3.13)

(5.3.14)
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Exploiting the structure of Cp from (5.3.10) it follows

R(z)  loses rank
z l  — G\\

loses rank

where X \  € Rmx(n represents the first n — m  columns of CpGp1, 

The remainder of the proof will show that in fact

rank
z l  -  G ii

= n — m  for all z £ (5.3.15)

i.e. R ( z ) does not lose rank, and consequently (G,H,L)  does not possess invariant zeros.

Suppose for a contradiction this is not the case and the expression in (5.3.15) is not rank 

n — m.  Consequently there exists a non-zero vector v € Rn-m such that

{zl  — G\\ )v  — 0 and X\v  =  0

Prom the definition of Xi ,  it follows tha t

C p G J1

• “ -

V V V w

ii o 4 € Af (Cp) =*. G~l =
0 0 0 0

for some w 6 Mn-m where N (C P) represents the null-space of Cp and further, the structure 

of Cp from (5.3.10) has been exploited to obtain the last inequality. Since by assumption 

v ^  0 the last equation implies w ^  0 from the inevitability of Gp. The last equation can
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be re-written as

w V
Gp =

0 0

from the definition of Gp in (5.3.10).

=> G\\w = v and G2 1 W = 0

0 =  (z l  — G\i)Giiw  =  G u ( z l  — G\\)w => (z l  — G\i)w = 0

using the fact that G n  is nonsingular. Since G12IC =  0 it follows that

rank
z I - G u

G21

This means that the pair (G n ,G 2i) is not observable which in turn implies the pair 

(Gp, Cp) is not observable. This is a contradiction.

It has been shown that under mild conditions the triple (G n ,G i2,T i) is minimal. This 

is a slightly different result to the generic case in Chapter 3 where invariant zeros of the 

plant manifest themselves as unobservable modes of (G n ,L i). The main result of this 

chapter will now be proved.

P ro p o sitio n  5.3.1 Necessary and sufficient conditions for the existence of an ideal stable 

sliding mode on the surface S  = {x : FC G ~1x = 0}, where F  is defined in (5.3.2) is that 

the triple (G11, G12, L\) is output feedback stabilisable.
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P ro o f  In the coordinate system associated with (5.3.6), following the coordinate trans­

formation (5.3.5), it is straightforward to identify the sliding motion: let (iq, X2 ) represent 

a partition of the states x  with x 2 € Mm. During an ideal sliding motion, because of the 

structure of F L  in (5.3.6), F C G ~ l x  =  FLx  = 0 implies X2 = 0 and so the sliding motion 

is governed by x \(k  +  1) =  G\\x\(k).  By definition G n =  G n — G 12K L 1 and so the 

sliding mode is stable if and only if the static output feedback problem for the fictitious 

triple (G\i ,G i 2 ,L i)  is feasible.

To prove the converse suppose there exists a K  such that G n =  G n  — G 1 2K L 1 is stable. 

When implementing the discrete output feedback controller (5.2.11), the closed-loop dy­

namics are governed by the system matrix

GC = G -  H {FL H )~1F L G  (5.3.16)

In the new set of coordinates induced by (5.3.5), the Lyapunov matrix

p  ^  = . p  (5.3.17)

Using the definition of Z, equation (5.2.10) becomes

g T p T  =  p c G ~ l = FL  (5.3.18)

In order to show that (5.2.11) is a min-max controller, a P  must be found to satisfy (5.3.18) 

which makes

Q ~ P - G j P G c > 0 (5.3.19)
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It can be seen from the structures of H  and L in (5.3.6) that in order to satisfy (5.3.18) 

P  must have a block diagonal structure:

P =
Pi 0 

0 P2
(5.3.20)

nXn r> s - lremXmwhere Pi 6 Rnxn, P2 € and

f 2 = h T-p 2 (5.3.21)

From here, the proof is similar to Proposition 3.3.2. It can be shown that

Q
Pi-G T iA G h  -G?iPiG12

~GT2PiGn P2 — GT2PiGi2
(5.3.22)

which can be made positive definite if Pi and P2 are chosen to satisfy

P! -  G ^ P i G n  > 0 (5.3.23)

and

P2 > G{2PiGi2 + g ; 2P iG h (P i -  G f ^ G n r H G f tP iG u ) (5.3.24)

This is always possible since G n is stable.

R em ark  5.3.1 Due to the order reduction which takes place when establishing the triple 

(G n, G12, Li), the stabilisability problem for this lower order system sometimes reduces
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to root locus arguments, as will be seen in the DC-motor implementation study or even 

observer-like arguments if rank(G i2) =  m  > n — m  (as seen in the DH-Beaver aircraft 

example in §3.4).

R em ark  5.3.2 The restrictions on the class of systems for which sliding surfaces of the 

form (5.2.9) are appropriate (in the sense that they produce stable ideal sliding motions) 

depends solely on the stabilisability of the triple (G n, G 1 2 , L\).  There is no obvious 

dependence on the invariant zeros of (G, H , C ). As such the method is applicable to non­

minimum phase systems. This is in direct contrast to the continuous time sliding mode 

situation where in order for classical output feedback sliding mode controllers to work, the 

system must be minimum phase and relative degree one (Edwards & Spurgeon 1998). The 

relative degree assumption is needed to make the first derivative of the switching variable 

discontinuous whilst the minimum phase requirement follows because the reduced-order 

dynamics of the system, when sliding, have the invariant zeros of the system amongst 

the poles of the closed-loop system, and hence unstable transmission zeros will result in 

unstable sliding mode dynamics (Edwards & Spurgeon 1998).

Suppose the reference signal r(k) = rs = const for all k > ks = const. Modify the control 

law (5.2.11) to be

u(k) = - {F C G ~ lH ) - l FCx{k)  +  Frr(k) (5.3.25)

where Fr € Rmxm is a feedforward term to be determined. The steady state value of x(k) 

as k —> 00, obtained by using the control law (5.3.25) is

xs = (I -  Gc) 1(Hr +  HFr)rs (5.3.26)
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The expression in (5.3.26) is well defined since by design the eigenvalues of the closed-loop 

system matrix Gc =  G — H (F C G ~ 1H )F C  are inside the unit disk and so (I — Gc) is 

invertible. Using (5.3.25) and defining e(k) =  x(k) — x s it follows from simple algebraic 

manipulation that

e(k + 1) =  Gce{k) +  H£(k) (5.3.27)

and all the analysis follows through as for the regulation case in Chapter 3 for (5.3.27). 

In the absence of uncertainty, e(k) —> 0 as k —> oo, and since steady state is achieved, it 

follows from the first p equations in (5.2.5) that yp(k) =  rs and so tracking is achieved. 

Furthermore it can be shown that

F C G - 'x s  =  F C G ~ \ I  -  Gc)~1(Hr + HFr)rs =  F C G ~ l {Hr + HFr)rs

and consequently if Fr in (5.3.25) is chosen as

Fr =  - (F C G - 'H y 'F C G - 'H r  (5.3.28)

then FCG~^xs — 0 and so xs 6 S from (5.2.9). Using Fr defined in (5.3.28) the control 

law can then be written as

u(k) = —{FCG~lH)~lFCx(k) -  (FCG~l H)~lFCG~lHTr(k) (5.3.29)— 1 r j \ — 1 1

R em ark  5.3.3 The control law in (5.3.29) can be written as

u(fc) =  - H 2- 1 K  r TTy{k) + H ^ K  L Tt CG~l Hrr(k) (5.3.30)
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which is clearly independent of the Lyapunov matrix P  and is parameterized solely by the 

choice of K.

5 .3 .1  K e y  S tep s for D e sig n in g  th e  Tracking C on tro ller

1. Check that the system satisfies assumptions A1 and A2. These conditions are easily 

tested numerically. If either are not met, then the approach is not valid.

2. Augment the nominal system with integral action states to obtain the system in the 

form of (5.2.5). Check the controllability of the pair (G , H ) which is guaranteed 

providing the triple (Gp, Hp,Cp) has no invariant zeros at unity.

3. Form an output distribution matrix, L = CG~l to produce the ‘fictitious’ system 

(G ,tf ,L ).

4. Perform the change of coordinates in (5.3.1) to obtain the triple (G n, G 12, L\)  and 

select the design parameter K  to stabilise the reduced-order system (G n — G 1 2K L 1 ). 

(In the general case this is not trivial but there is a wealth of literature and algorithms 

which consider this problem; see (Syrmos et al. 1997).)

5. The control can be calculated from (5.3.30).

5.4 Closed-Loop Analysis

The control law synthesis in §5.3 requires only knowledge of the nominal linear system 

and the matched structure of the uncertainty/disturbances represented by £(k). In this 

section the effect of £(k) on the closed-loop dynamics will be explored. When uncertainty 

or external disturbances are present, asymptotic stability is (usually) lost. However if £(k)
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is bounded, as argued in (Corless 1985, Spurgeon 1992) for example, suitable ultimate 

boundedness sets can be calculated for the states x(k) into which the system must enter. 

If £(fc) represents an exogenous disturbance then it can easily be shown that, for the 

closed-loop system, the states x{k) evolve in such a way that

S x (k  + l) = SHt(k ) ,  k = 1 , 2 , . . .  (5.4.1)

and thus ||5'//’£(/c)|| is the deviation from the ideal sliding surface <S =  {x : S x  = 0}. If 

£(k) is bounded then max_ ||5i/^(fc)|| represents the boundary layer about S  into which 

the states x(k) ultimately enter. The discrete time output feedback sliding mode control

law (5.2.11) is derived from the min-max control (2.3.19) in Chapter 2. As argued in

§2.3.3, the choice of the control law in (2.3.19) minimises the worst case deviation from 

<S over all possible controllers. Also, as demonstrated in Proposition 2.3.1 (Chapter 2), 

the control law (2.3.19) minimises the worst case deviation from the nominal ideal sliding 

mode dynamics in a min-max sense.

Assuming £(k) represents matched uncertainty and satisfies

ll£(*OII < P i \ \ x ( k )\\ +  A) { 5 .4 .2 )

where pi and po are positive constants, the same arguments as those in §3.3.5 can be

applied here to formally analyse the closed-loop stability.

Rem ark 5.4.1 From (5.4.1) and (5.4.2) it follows that
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and so the states evolve in a conic sector around <S. This correlates with the work of 

(Furuta & Pan 2000).

R e m ark  5.4.2 In the case when r(k) ^  0 and a tracking problem is being considered, the 

same arguments can be applied to the uncertain situation by considering the e(k) states 

satisfying (5.3.27).

5.5 Examples

Two examples will be considered: one to demonstrate the properties of the discrete time 

sliding mode controllers from a theoretical perspective; and the second to demonstrate the 

practicality of the approach by considering a real-time implementation on a DC-motor rig.

5 .5 .1  E x a m p le  1

Consider the second-order discrete system used in (Sharav-Schapiro et al. 1996, Sharav- 

Schapiro et al. 1998) given by

0 1.0000 0
Gp — Hp =

0.4000 0.2000 1
Cp = 1.5000 1.0000 (5.5.1)

It can be shown that this system is non-minimum phase and that in fact the system has 

a zero at —1.5. For simulation purposes, it has been assumed that the system has been 

obtained from a continuous system by a sample and hold operation with sample interval 

t  = 0.1. After augmenting with an integrator to obtain a system of the form described in
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(5.2.5), and changing coordinates, it can be shown that

G =

-0.0669 -0.0247 0.2659

-0.1423 1.0029 -0.0264

1.4231 0.0711 0.2640

-0.0000 -1.0050 0.0000

-1.4302 0.0291 -0.2653

H

0

0

-3.7687

C =

The fictitious output distribution m atrix is given by

L = CG~ 0 T
0 -0.9950 -0.0995 

0 0.0995 -0.9950

It follows from G in (5.5.2) that

-0.0669 -0.0247 0.2659 r
G\\ = 612 = Li  = 0 1

-0.1423 1.0029 -0.0264

(5.5.2)

(5.5.3)

(5.5.4)

The design procedure involves selecting a K  to ensure (G n -  G 12K L 1) is stable. Prom 

the root-locus (Figure 5.5.1), the matrix (G n — G 1 2K L 1) is stable in a discrete-time sense 

for the range of values —27.0 < K  <  —0.1. If K  = —5, then using T  from (5.5.4) and the 

definition in (5.3.2), the design matrix associated with the sliding surface is

F  = F2 -4.2417 1.2985

To calculate the parameter F2, an LMI optimization problem similar to (3.3.27)-(3.3.29) 

must be solved for the augmented system. Using the LMItool (Gahinet, Nemirovski, Laub



5.5 Exam ples 117

1.5

0.5

- 0.5

- 1

- 1.5

-2
- 3- 5 - 4 -2 - 1

Real Axis

Figure 5.5.1: Root locus plot of reduced-order system (Gn, G 12, — L\)

& Chilali 1995) in M a t l a b  yields p = 3.2793 and a value of F2 =  P2 =  —0.8700 and 

thus

S  = FCG ~l =  -4.2417 0.2186 3.2787

The associated Lyapunov matrix

P =

20.8984 -1.6151 -4.2417

-1.6151 1.4551 0.2186

-4.2417 0.2186 3.2787

(5.5.5)

The control law (5.3.29) is given by

u(k) 1.2937 -0.3960 y(k) +  0.1294r(fc) (5.5.6)

where y(k) = col{yp{k), x r(k)). The corresponding stability margin is y / l /1 1  = 0.5522.
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In the following simulation, the control law in (5.5.6) has been compared with a disconti­

nuous one of the form

u(k) = 1.2937 -0.3960 y(k ) +  0.1294r(fc) — r]{HJ PH) 1sign(Sx(k)) (5.5.7)

for different values of the scalar gain rj. The controller in (5.5.7) satisfies the three condi­

tions of Gao (Gao et al. 1995) and as argued by (Monsees 2002) is an optimal special 

case of the discrete time controllers proposed in (Gao et al. 1995). Of course, as argued 

earlier, generally Sx(k)  cannot be calculated based on output measurements alone and so 

the control law in (5.5.7) technically cannot be implemented. Here the purpose is to show 

that the inclusion of the sign term does not improve the control performance and so the 

linear control law (5.5.6) is more appropriate in the case of discrete-time output feedback 

sliding mode control. In the following simulations the matched disturbance from (5.2.5) 

is given by £(k) =  0.05sin(5rk)  for k = 1,2, 3 . . .  and the reference signal r(k) = 0.

Figure 5.5.2 shows plots of the Lyapunov difference function A V(k) = V(k  +  1) — V(k) 

where V(k) = x{k)TPx{k)  for the value of P  given in (5.5.5). The linear min-max control­

ler minimises the effect of the worst case £ on A V (k ). It can be seen that the linear control 

law (5.5.6) comfortably out-performs the nonlinear one (5.5.7). Another measure of per­

formance is to examine the evolution of V(k)  as this may be viewed as a weighted norm of 

the states x(k). Again it can be seen from Figure 5.5.3 that there is no advantage to ad­

ding a switched term. Figure 5.5.4 show plots of the switching function Sx(k).  Again, as 

predicted in §2.3.3, the linear controller provides a smaller boundary layer around S x  =  0.
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Figure 5.5.4: Plots of Sx(k) for different values of rj 

5 .5 .2  E xam p le  2 (E x p erim en ta l R esu lts)

A discrete output feedback sliding mode integral action controller has been designed for 

a small 30W DC-motor system. The requirement is for the motor to rotate an output 

shaft to a specified reference. In the experimental setup a potentiometer is connected to 

the motor shaft and produces an output voltage proportional to the shaft angle. The 

potentiometer has a track angle of 300 deg and the total voltage across it is 301 ,̂ giving 

IVyiOdeg. An eddy-current disc brake is mounted on the shaft and a disturbance torque 

in the form of a magnet assembly can be engaged and disengaged at will.

A discrete model of the motor was obtained using system identification at a sample time of

0.03s. This is a sensible choice of sampling interval according to (Astrom & Wittenmark 

1984) who argue that there should be between 5-20 samples in a step response of the closed-
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loop system. The third order system has position (rad), velocity (rad/s) and armature 

current (Amp) as the states. In the experiments which follow, only the shaft angular 

position measurement has been used for control purposes. The system matrices are as 

shown below

1.0000 0.0646 0.0065 0.0405

Gp — 0 0.6282 0.0791 Hp = 1.1060

0 -0.3591 -0.0430 1.5651

Cr 1 0  0

Remark 5.5.1 The invariant zeros of (Gp, Hp, Cp) are {—1.3911, —0.0376} and therefore 

the system has one unstable transmission zero. For the augmented system it is not possible 

to use a sliding surface of the form

SQ = {x : F0Cx  =  0} (5.5.8)

where F0 e  Rmx2m since for all choices of F0

(-1.3911, -0.0376} C a(G -  H iF o C H ^ F o C G )

and hence the ideal sliding motion (and thus the closed-loop system) will always be uns­

table. This follows from the fact that, as argued in §3.3.2, output based sliding surfaces 

of the form (5.5.8) always have the invariant zeros of (G , i7, C) as part of the dynamics 

of the ideal sliding motion. This can be easily seen from Lemma 3.3.2 and 3.3.3 which 

indicates that the invariant zeros of (G, H , C) will appear as unobservable modes of the 

triple governing the sliding motion.
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Remark 5.5.2 A standard 3rd order model in continuous time relating the control signal 

to angular position is relative degree three and so most classical continuous time sliding 

mode output based schemes are not applicable. For example the output based scheme 

described in (Edwards & Spurgeon 1998) which use only output measurements (without 

computing the derivatives of the measured signals), and which provide complete insen­

sitivity to matched uncertainty is only applicable to minimum phase relative degree one 

systems. Also only position information is used here compared to the full state-information 

required in the scheme described for servo-position control in (Golo &; Milosavljevic 2000). 

Sliding mode schemes for DC drive control have also been proposed in (Damiano, Gatto, 

Marongiu & Pisano 2004) but this work is concerned with speed control (and hence is only 

relative degree two) and uses output derivative estimation schemes to provide additional 

information to the control system.

The augmented system matrices were formed as in (5.2.7)-(5.2.8) and after the first change 

of coordinates in (5.3.1)

G =

H  =

0.6244 0.4456 -0.0084 0.5965

Gu Gi2 -0.0904 0.9341 0.0012 -0.1244

G2\ G22 0.0000 0.0188 1.0005 -0.0008

0.0000 -0.6269 0.0118 0.0261

0

H2

0.0000 

0.0000 

0.0000

-1.5514
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The fictitious output is given by

r -| -0.0000 0.0000 -0.9996 -0.0300
L = 02x2 T

-0.0000 0.0000 0.0300 -0.9996
(5.5.9)

The design freedom in the controller involves selecting the parameter K  to ensure that the 

eigenvalues of (G y — G 1 2K L 1) lie inside the unit disk. In this instance, K  is a scalar and 

from root locus plots of the single input single output reduced-order system, it is found 

that the range of values for K  which stabilise the system are —14.5 < K  < 0.

The parameter K  =  —1.2 stabilises the sliding motion where the corresponding closed-loop 

poles are { 0.8018 ±  0.1032i, 0.9545 }. The final control law from (5.3.30) is

u(k) = 0.7538 -0.6675 y(k ) +  0.0226r(fc)

Solving the LMI optimization problem yields

P  =

331.5509 -47.6944 -10.5957 0.6462

-47.6944 42.8278 2.3982 4.1054

-10.5957 2.3982 3.7165 -0.4869

0.6462 4.1054 -0.4869 5.3318

and an optimal value of p = 16.7278. The associated values of F2 = H JP 2 = —10.8075 

and so

F = 12.6391 11.1915

The associated robustness bound is pi < a /1/16.7278 =  0.2445. The design described



5.5 Exam ples 124

O - 1
‘<0

8.

-2

-3
15 20 25

t(s)
35 40 451 0 30 50

0.05

-0 .05

_  - 0.1

-0 .15

- 0.2

-0 .25

-0 .3
25
t(s)

10 15 20 30 35 40 45 50

Figure 5.5.5: Plots of output (position) and control signal against time in response to an 
external disturbance

above has been implemented in real-time via dSPACE1 on a test rig. The system was 

tested for disturbance rejection as well as tracking. Figure 5.5.5 shows the response of the 

system to an external torque applied to displace the shaft position from zero. The shaft was 

manually displaced and held at a non-zero angle whilst under closed-loop control. During 

this time, there is a buildup of the current level in the armature coils and integral windup 

occurs in the states x r . The point ‘A’ on the graph indicates the point at which the shaft 

was released. The controller is seen to regulate the shaft back to zero in approximately two 

seconds. In Figure 5.5.6, a ramped signal is used as the reference input to the system and 

the tracking behavior is shown. The maximum current drawn in this case was 0.4346Amps. 

The ‘zig-zag’ phenomenon observed in the control signal is not so-called chattering (the 

control law is linear), but results from the stick-slip behaviour associated with the test rig.

1This is a registered trademark of dSpace GmbH.
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Figure 5.5.6: Plots of output (position) and control signal tracking a ramped signal

5.6 Summary

Theoretical development and a design synthesis procedure for a ODSMC which incorpo­

rates integral action have been presented. The methodology introduces additional states 

to form a new augmented system which utilizes and builds on the new design approaches 

from Chapter 3 to produce a controller with a tracking capability. The efficacy of the ap­

proach has been demonstrated with a real engineering example. Furthermore the scheme 

has been implemented on a rig in real-time and very good results have been obtained. 

Because the controller (thought of as controlling the plant augmented with appropriate 

integrators) is static output feedback in nature, as in Chapter 3, in order for the controller 

to be stabilising it is necessary to be able to solve a certain reduced-order classical static 

output feedback pole placement problem for a certain (fictitious) triple. This is the most 

significant restriction on its applicability.
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The next chapter will investigate improving system performance and solving the tracking 

control problem when the fictitious subsystem is not static output feedback stabilisable.



Chapter 6

Output Tracking Using Dynamic 

Discrete Output Feedback Sliding 

M ode Controllers

6.1 Introduction

The results proposed in chapter 5 using static output feedback sliding mode control requi­

red certain criteria on the discrete time system to be met. In particular, a certain triple 

must satisfy an output feedback criteria (Proposition 5.3.1). It is well known that it is not 

possible to stabilise all systems using static output feedback. One way of overcoming this 

is to introduce additional dynamics, or a compensator, so that the conditions are satisfied 

by the augmented system.

This chapter builds on the work described in Chapter 5 and proposes a specific com­
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pensator structure to circumvent the ‘output feedback stabilisability’ restriction when 

incorporating tracking control. The resulting controller is applied to a planar vertical 

takeoff and landing (PVTOL) aircraft model. The PVTOL has previously elicited in­

terest from the control community (Al-Hiddabi & McClamroch 1998, Lu, Spurgeon & 

Postlethwaite 1997, Fantoni, Zavala & Lozano 2002) because the simplified two degree 

of freedom dynamics are nonlinear and non-minimum phase. It is an interesting theo­

retical problem associated with a nonlinear system clearly motivated by an application. 

Simulation results are presented to verify the robustness of this method.

6.2 Problem Formulation

Consider the discrete time square system with matched uncertainties

xp(k + 1) =  Gzp(fc) + i f  (u(fc)+£(*)) (6.2.1)

y(k) = Cxp(k) (6.2.2)

where xp 6 Mn, u € Km and y 6 Km with m < n. Assume that the input and output 

distribution matrices H  and C are full rank. In addition, assume the triple (G , H, C) is 

minimal. The matched uncertainties, £{k), are assumed to be unknown but bounded.

As before, the objective is to determine an appropriate sliding surface, S , and a control law

which depends only on the outputs. The nominal linear system must achieve an ideal sli­

ding motion in finite time when £ =  0, whereas in the presence of matched uncertainty, the 

effect of £ is minimised and an appropriate bound about the sliding surface is maintained 

by the system trajectories.
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As in chapter 5, introduce integral action, where the difference equations

xr(k +  1) =  xr{k) +  r(r(fc) — Cx(k)) (6.2.3)

are added to plant representation in (6.2.1). In equation (6.2.3), r  represents the sample 

interval. The quantity r(k) represents the signal to be tracked by the output. Furthermore 

assume r(k) = rs =  const for k > ks. As in Chapter 3-5 assume

Al) the plant state transition matrix G is nonsingular.

A2) the matrix CG~lH has rank m.

In chapter 5 a static output sliding mode controller was designed for the augmented system 

formulated from (6.2.1)-(6.2.3). This required that the triple (G n, G 12, L\) obtained from 

the augmented system defined in Proposition 5.3.1 to be output feedback stabilisable (in 

addition to assumptions Al and A2). The stabilisability requirement on (G n, G12, C\) will 

be removed in this chapter by the introduction of a dynamical output feedback controller. 

As in earlier chapters, define a new output distribution matrix L := CG~l to generate 

a new purely fictitious system (G, H , L). In order to facilitate the analysis, a change of 

coordinates will be introduced for the fictitious system (G, JT, L). From assumption A2 

rank(CG~lH) = rank(LH) =  m, there exists a change of coordinates such that

G n G12 0
G = H =

G21 G22 h 2
L = 0 T (6.2.4)

where G\\ G m)x(n m\  iJ2 G R m xm  and is nonsingular and T G R m xm  is orthogonal. 

Partition the state vector xp conformably as col(:ri, £2) where x\ G It follows
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from the canonical form (6.2.4) that the true output distribution matrix

C = LG = T G 21 TG 22 (6.2.5)

6.3 Controller Design

Also introduce additional states x c 6 R^n-m\  which under certain circumstances (which 

will be explained later) represent an estimate of the states x\.

The intention is to induce an ideal sliding motion on the surface

S  =  {(xi, xc,x r , X2 ) : K \ x c +  K rx r + X2 + Srrs) =  0} (6.3.1)

where K\ € Kmx(n_Tn) and K r € Rmxm together with Sr e  Rmxm represent design 

freedom. This is a slightly more complex surface than the one in §5.2 since it is reference 

dependent. However, since Sr is a design parameter, choosing Sr =  0 recovers a sliding 

surface more akin to the one in Chapter 5.

Let the compensator take the form

x c(k +  1) =  Gn x c +  G\2 X2 +  Q(y -  y) (6.3.2)

where

y(k) = T G 2\xc(k) +  TG 22 X2 (k) 

and e  K(n- m)xm is a design variable.

(6.3.3)
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During an ideal sliding motion, from (6.3.1)

X2 (k) = —K \ x c(k) — K rxr(k) — Srr(k ) 

and so after some algebraic manipulation

x c(k +  1) =  $ x c{k) + Tiy(k)  +  T2 x r{k) +  Tsr(k) (6.3.4)

where

$  =  G n -  Q,TG2i -  G2 1K 1 +  QTG 2 2K 1 (6.3.5)

Ti = n  (6.3.6)

r 2 =  - G 12K r + n T G 22K r (6.3.7)

r 3 =  - G 12Sr + n T G 22 Sr (6.3.8)

It is assumed as part of the design process that Q is chosen to guarantee that det $  7̂  0.

Augment the system in (6.2.4) with the integral and compensator states from (6.2.3) and 

(6.3.4) to obtain:

x a(k +  1) =  Gax a(k) +  Ha(u(k) +  £(&)) +  Hrr{k) (6.3.9)

where x a = col(xi, x c, xr , x2). At first sight, this represents a non-intuitive arrangement

of the states but it leads to a simplification in the presentation.

The measurable outputs associated with this system are ya = col(xc, x r ,y). It is easily
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verified that

G u 0 0 G\2 0 0

Fi TG 21 $ r 2 T i TG 22
, Hr =

r 3
, Ha =

0

— T T G 2\ 0 T±m —t T G 22 X Im 0

G2i 0 0 g 22 0 _  H 2 _

and the output distribution matrix

0 I n —m 0 0

0 0 I m 0

T G 21 0 0 t g 22

where ya := Cax a.

A output feedback sliding mode controller of the form

u(k) = - ( F C aG~1H a)~1FCax a(k) + FTr(k )

will now be developed for the augmented system, where both F  and Fr 6 R1 

be determined (in terms of ft, K\, K r and Sr).

The objective is to select F  and a parameter F2 E ]RmXm so that the surface

Sa =  {xa : FCaG~lx a +  F2Srrs =  0}

(6.3.10)

(6.3.11)

(6.3.12) 

m are to

(6.3.13)

is identical to the surface S  in (6.3.1), and then to select K\, K r and ft to ensure a stable 

ideal sliding motion when confined to S.
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Providing the design matrix F  is chosen to ensure the eigenvalues of

Gc = Ga -  Ha(FCaGZ1Ha)FCa (6.3.14)

are inside the unit disk, (I — Gc) is invertible. As in §5.3, define

x s = (I -  G c ) ^ ( H r +  HaFr)rs (6.3.15)

Then using (6.3.12) and defining e(k) = x a(k) — x s it follows from simple algebraic mani­

pulation that

e(k +  1) =  Gce(k) +  Hai(k)  (6.3.16)

In the absence of uncertainty e(k) —> 0 as k —>■ oo, and since steady state is achieved, it 

follows from (6.2.3) that yp(k) = rs and so tracking is achieved. Furthermore it can be 

shown that

FCaG : lx ,  =  FCaG z \ l  -  Gc) - \ H r + HaFr)ra =  F C a G ^ iH r  +  H aFr)rs 

and consequently if Fr is chosen as

Fr =  - ( F C a G ^ H a ) - 1 (FCaG~lHr + F2Sr) (6.3.17)

then

FCaGa lxa +  F2Srrs =  0
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and so x s 6 S.  The control law can then be written

u(k) = - ( F C aG ; 1Ha) - 1 (FCax a(k) + (FCaG~lHr +  F2ST)r(k)) (6.3.18)

In order to make (6.3.12) an output feedback sliding mode controller, the problem is

therefore to find an F  and a s.p.d. matrix Pa 6 R2nx2n such that

FCa = H l P aGa (6.3.19)

and

G Tc P a G c - P a <  0 (6.3.20)

As in §6.2 define for the augmented system La := CaGa 1. From (6.3.10)-(6.3.11) and after 

some algebra

Define

0 -$ _1r2 —4>_1riT — r3>-1r2T

Im tT

0 T

L a = 0 0

1--
---

-
o 0

1&1

II 0 T±m

0 0

$-1r2 —$~1FiT -  $"1r2TT

tT  

T

(6.3.21)

(6.3.22)
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and observe that detTa /  0. Then

La = o Ta (6.3.23)

and the triple (Ga, Ha, La) has the form of the canonical form from (5.3.1) except Ta is 

nonsingular rather than orthogonal. Define a matrix

F  =  F2 Kl  K r I,

F2K i F2K r F2

$ r2 Ti

0 Im Im

0 0 T -1

F2K\<& F2K 1r 2 +  F2K r F2K \ T i — F2K rr  + F2T - l (6.3.24)

where F2 6 Mmxm and is nonsingular. This variable has no effect on the dynamics of the 

reduced-order sliding motion but is required to solve the constraint (6.3.19).

After a little algebra it can be shown that

F L a =  FCaGZx =  F2 0 Ki K r Ir (6.3.25)

and so the sliding surface Sa in (6.3.13) is identical to the one in (6.3.1) because by 

definition F2 is nonsingular.

To facilitate choosing the parameters Cl, K i and K r change coordinates according to the
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transformation xa »—► T x a =: x  where

T : =

I n —m I n —m 0 0

0 I n —m 0 0

0 0 I m 0

0 Ki K r I m

(6.3.26)

This effectively forces the last m  states of the new coordinates to represent what in conti­

nuous time sliding mode control would be called the ‘switching function’ a = K rxr +  

K \ x c -I- X2 associated with S  in (6.3.1). It follows G =  TG aT-1 , H  = T H a, Hr = T H r , 

C = CaT ~ l and L = LaT ~l . Using the definition of <f>, Ti and T 2 in (6.3.5), (6.3.6) and 

(6.3.7) respectively,

G

G11 — QTG21 

QTG21 

- t T G 2 1 

K 1LT G 21 — K rr  T G 21 +  G21

0 0

G u  ~  G 1 2 K 1  —G \ 2K r

■tTG2i +  TTG2 2K 1 I  -H tTG22Kt

G\2 ^43

G il -  SITG22 

SITG22 

—T T G 22 

K1LTG22 — K rT TG22 +  G22

(6.3.27)

where

G42 =  - K rrTG 2i +  G21 +  K iG n  -  K XG12 +  K t tT G 22K1 -  G22K X 

G43 =  Kr -  K iG n K r  +  K rrTG 22K r -  G22K r
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Also

C  =

0 -r 3

0 r3
H  = H r  =

0 T i m

H 2 _ K i T 3 +  r K r

0 I 0 0

0 0 I  0

T G 21 T G 2 1 - T G 2 2 K 1 - T G 2 2 K r  T G 22

(6.3.28)

From equation (6.3.25)

F L  = 0 0 0 F 2 (6.3.29)

Some algebra reveals the closed-loop system matrix

G c =  G -  H ( F L H ) ~ l F C

Gn ~ nT G 2i 0 0 G n  — QTG22

SITG21 Gu — G12K 1 — G u K r SITG22

—tTG2i - tTG2 1 +  tTG22K i I  +  tTG22Kt - tTG22

0 0 0 0

G\\ G12

0 0
(6.3.30)
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This is most easily seen from the definition of L = CG 1 and the fact that

Gc = (I  — H ( F L H ) - 1FL)G

From (6.3.28) and (6.3.29) it can be easily shown that

( /  -  H(FLH) lFL) = diag(/n_m, J„_m, Jm, 0mxm)

and hence the structure in (6.3.30) follows immediately. The matrix G\\  can be written

as

G\\ — QTG 21 0

611 = UTG 21
Grr,

—tT G 2\

where

G m  :=

Gn  ~  G n K i  —G ^ K r

— TTG 2I +  TTG 22K 1 Im +  tT G 2 2 ^ f

(6.3.31)

(6.3.32)

It is clear from (6.3.30) and (6.3.31) that

a(Gc) = {0}m U <r(Gn  -  QTG21) U a(Gm)

where Gm from (6.3.32) can be decomposed as

Gn  0 Gl2
Gm — —

- tT G 2 1 Im - tT G 22
Ki K T (6.3.33)
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Since the matrix pair (G n ,G 2i) is observable (see §5.3) and T  is nonsingular, the pair

QTG21) stable. Likewise it can be shown that provided (G,H,C)  does not have any 

invariant zeroes at unity, the pair is controllable and hence the choice of the

parameters K \  and K r constitutes a state-feedback problem. Consequently K r and 

Q can be chosen to make G n from (6.3.31) stable.

In the new set of coordinates x , let the Lyapunov matrix be represented by P. Using the 

definition of L, equation (6.3.19) becomes

(G h ,T G 2i) is observable. Consequently an fI can always be found which makes (G n —

Ht P = FC G ~l =  FL (6.3.34)

In order to show that P  is a Lyapunov matrix for Gc it must be established that

Q : = P - G j P G c > 0 (6.3.35)

It can be seen from the structures of H  and FL  in (6.3.28) and (6.3.29) and from the fact

that det H2 ^  0 that in order to satisfy (6.3.34) P  must have a block diagonal structure:

Pi 0
P = (6.3.36)

0 P2

where A  e R (2 » -m )x (2 n -m )) p2 €  R m xm  an(J

F2 = H jP 2 (6.3.37)
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In terms of the partition in (6.3.30), (6.3.35) can be written as

Q =
Pi  —  Gn PiGn —Gh P\Gi2

~ G y y P \ G \ \  P 2 ~  G T o P \ G  12

(6.3.38)

As shown in Proposition 5.3.1, a family of solutions (Pi, P2 ) exists to make Q > 0. Speci­

fically, let Pi > 0 be a solution to

Pi -  G ^P iG n > 0 (6.3.39)

Such a solution Pi is guaranteed to exist since G n  is stable. Then from the Schur com­

plement, inequality (6.3.38) is satisfied if and only if

P2 > G ^ P i G u i P i - G h P i G u r H G j . P i G ^  + G ^ P i G u  (6.3.40)

Any pair ( P n A )  satisfying (6.3.39) and (6.3.40) ensures P  from (6.3.36) satisfies (6.3.34) 

and (6.3.35).

6 .3 .1  K ey  S tep s for D esig n in g  D yn am ic  O D SM C  w ith  Tracking

The approach to designing a dynamic ODSMC which incorporates tracking is summarized 

as follows:

1. Check that for a discrete time system, represented by (G, if, G), the state transition 

matrix G is nonsingular and rank (CG~l H) = m. If these conditions are not met,
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then a dynamic ODSMC does not exist.

2. Form the fictitious triple (G, H, L) where L =  GG_1 and change coordinates to 

obtain the canonical form given in (6.2.4). From (6.2.4) identify the matrices G n ,G i2 

and G21. Also determine the true output distribution matrix, C  in these coordinates.

3. Select Cl using any algorithm of choice so that (G n — CITG2 1 ) is stable where T  is 

defined in (6.2.4). Determine K\  and K r from the state feedback problem in (6.3.33).

4. Once Cl, K\  and K r have been selected, the system matrices of the compensator <3>, 

Ti and T2 can be computed from (6.3.5)-(6.3.7). Calculate F  and Fr from (6.3.24) 

and (6.3.17) respectively.

5. The control law can be calculated from (6.3.18).

6.4 PVTOL Aircraft Simulations

The planar vertical takeoff and landing (PVTOL) aircraft is an example of a nonlinear, 

non-minimum phase system (Al-Hiddabi & McClamroch 1998, Lu et al. 1997, Fantoni 

et al. 2002). The coupling between the rolling moment and the lateral acceleration of the 

aircraft is taken into account in the model by means of a coefficient e. The inputs of the 

system are the roll acceleration (u \ ) and the thrust acceleration (^2). The two outputs 

are the horizontal position, x(fc), and the vertical position, y(k ) (altitude). The inputs, 

outputs and tracking configuration used here are the standard framework for the PVTOL
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system. The nonlinear equations are given by

x = — sin 0 u2 +  e cos 9u\

y = cos 0 U2 +  e sin 6u\ — g 

0 = u\

(6.4.1)

(6.4.2)

(6.4.3)

A linearisation of the aircraft system about the equilibrium point

x = y = 6 = 6 = y = x = 0

with u\ — 0 and U2 = g is given by

A =

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 ~9 0 0 0
B =

e 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

C
1 0 0 0 0 0 

0 1 0 0 0 0

where g — 9.81 is the acceleration of gravity and e ^  0 is the coupling coefficient. This 

linearisation has zeros at ±3.3015 and so is (significantly) non-minimum phase. It is also 

not relative degree one because CB = 0. The system was discretised at a sample interval
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of t — 0.2s and the controller was designed with a nominal value of e = 0.9. The discrete­

time zeros are at { —1, —1, 1.9359, 0.5166 } so the discretization is also significantly 

non-minimum phase.

The control task as in (Al-Hiddabi &; McClamroch 1998) is to track the reference trajec­

tories, which are step commands: x(k ) —*• 20m while maintaining y{k) —» 30m and the 

roll angle, 6 —> 0.

A change of coordinates is performed and the canonical form in (6.2.4) is obtained, where

G =
G n G12 

G 21 G 22

2.0213 1.0326 0.0863 -0.0675 0 13.1365

0.7447 1.9820 -0.0829 -0.3434 1.6918 7.4590

0.0448 -0.0849 2.9930 -0.0177 -20.3255 0.4927

3.1491 0.0267 0.0131 1.0037 -0.1106 23.5350

0 -0.0163 0.1954 0.0011 - 1 0

-0.2701 0 0 0 0 -1

0 -0.0200 

0.0173 0

r r 1

H  =
0

—
0 0

and L =
0 0 0 0 0 - 1

h 2 0 0 0 0 0 0 1 0

The closed-loop poles associated with G 1 1—QTG21 were selected to be { 0.8, 0.82, 0.86, 0.88 }



6.4 PVTO L Aircraft Simulations 144

which gives the design parameter

9.1734 -46.6902

8.0573 -58.9717

0.6065 6.1411

11.7521 2.9799

The matrices obtained from (6.3.33) are

2.0213 1.0326 0.0863 -0.0675 0 0

0.7447 1.9820 --0.0829 -0.3434 0 0

0.0448 -0.0849 2.9930 -0.0177 0 0

3.1491 0.0267 0.0131 1.0037 0 0

-0.0540 0 0 0 1.0000 0

0 0.0033 --0.0391 -0.0002 0 1.0000

0 13.1365

1.6918 7.4590

-20.3255 0.4927

-0.1106 23.5350

0 -0.2000

0.2000 0

(6.4.4)

(6.4.5)

The closed-loop poles associated with the matrix Gm are { 0.8, 0.85, 0.875, 0.825, 0.9, 0.95 }
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and the design matrices K i, K r from (6.3.33) are

0.6725 -1.2162 -0.2143 0.2002 0.0393 0.0490
#1 = and K r =

0.1108 -0.1477 -0.0128 0.0921 0.0010 0

From equations (6.3.5)-(6.3.7), the following matrices (which constitute the compensator) 

are obtained

$  =

30.5027 -55.9246 -0.7423 8.9653

37.1544 -68.7275 -0.8386 11.2427

9.4323 -17.2524 -1.2479 2.8261

-3.2600 5.3050 0.1963 -0.6588

9.1734 -46.6902 1.8288 2.2862

r i  =
8.0573 -58.9717

and T2 =
2.2488 2.8049

0.6065 6.1411 0.5568 0.6946

11.7521 2.9799 -0.1240 -0.1411

This gives the matrix

F =
-27.3473 50.7349 0.8275 -8.3815 -1.6100 -2.0020 -1.4150 40.5923

-2.5277 4.6616 0.0756 -0.7637 -0.1470 -0.1827 -0.0992 3.7307

from equation (6.3.24). Finally the control law, denoted by u(k) = —Gyy(k) — Grr(k) is
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given by

-8.4761 -10.5339 -145.7202 268.7433

80.5006 100.0998 1367.3661 -2536.7466

4.3609 -44.0254 -5.7197 215.0751

-41.3727 419.0747 70.7523 -2029.6169

0.0111 0.0005

-0.3925 -0.4897

The simulation results are shown in Figures 6.4.1, 6.4.2 and 6.4.3. From the graphs, as 

e varies from its nominal value, the horizontal position is affected very minimally. It is 

observed that tracking performance is good and 6 is well regulated.

These results can be compared with those from existing sliding mode methods in conti­

nuous time (Lu et al. 1997), where a nonlinear control law is used. Due to the undesirable 

non-minimum phase characteristics of the PVTOL model, Lu et al. (1997) keep 0 bounded 

by using a second control law. The results in this section, however, are obtained from a 

linear control law which proves to be robust and gives good tracking.

6.5 Summary

In this chapter, a new dynamic ODSMC scheme incorporating tracking has been proposed. 

The scheme requires only that the plant has no poles or zeros at the origin. This shows that 

with an appropriate choice of surface, discrete time sliding mode control can be applied 

to non-minimum phase systems. The scheme which has been proposed here includes a
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Figure 6.4.1: Tracking control of the PVTOL for e = 0.9. 9 is well regulated.
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Figure 6.4.2: Tracking control of the PVTOL for e = 0.5. 9 is well regulated.
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Figure 6.4.3: Tracking control of the PVTOL for e =  0.25. 9 is well regulated.

compensator and simple parameterisation of the design freedom has been obtained. As a 

demonstration it has been applied to a discretised version of a linearisation of the PVTOL 

aircraft, which has unstable zero dynamics. The resulting discrete time control law has 

been tested on the nonlinear model to verify the robustness. Very good results have been 

obtained.



Chapter 7

Case study - High Incidence 

Research M odel (HIRM)

7.1 Introduction

The thesis thus far has been concerned with the development of ODSMC. This chapter 

will focus on a case study, a high incidence research model (HIRM), which is a detailed 

nonlinear fighter aircraft model, and use it as a test bed for the ODSMC. The HIRM model 

was developed as a benchmark problem for the Group for Aeronautical Research and 

Technology in Europe (GARTEUR). Although the aircraft is stable both longitudinally 

and laterally, there are combinations of angle of attack and control surface deflections 

which may cause the aircraft to be unstable. The HIRM model represents an ideal case 

study for the theoretical work proposed in this thesis. Longitudinal control of the aircraft 

model will be considered and in particular pitch control. Various different control methods
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from the literature have considered the HIRM design problem (Bag 1997, Papageorgiou 

& Glover 1999, Harkegard & Glad 2000, Amato et al. 2000). However, with the exception 

of (Harkegard & Glad 2000), the results in the literature look at commanding a different 

output to that used in this chapter. Hence, it is not strictly possible to directly compare 

the results obtained in this chapter with the ones found in the literature. However, the 

aim of this chapter is to demonstrate the robustness of the ODSMC technique by means 

of simulation on detailed linear and nonlinear models of the aircraft. Simulations of the 

HIRM have also been carried out on a Real Time All Vehicle Simulator (RTAVS) where 

manual pilot input commands have been used.

7.2 High Incidence Research Model (HIRM)

The HIRM is a mathematical model of a generic fighter aircraft developed by the Group 

for Aeronautical Research and Technology in Europe (GARTEUR). The HIRM is based 

on aerodynamic data obtained from wind tunnel tests and flight testing of an unpowe­

red, scaled drop model. The aerodynamics contain nonlinearities. Engine and actuator 

models have been added to create a representative, nonlinear simulation of a twin engi- 

ned modern fighter aircraft of F-18 proportions (Muir et al. 1997). The model is one of 

the three benchmark military aircraft models within GARTEUR. The model was set-up 

to investigate flight at high angles of attack (—50° to +120°) and over a wide sideslip 

range (-50deg to +50deg), but does not include compressibility effects resulting from high 

subsonic speeds (Muir et al. 1997).

The aircraft model has 16 states (including 4 engine states), 11 inputs (including wind 

turbulence) and 20 measured outputs (although some are available only for simulation
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HIRMplus dynamics model
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Clock time into workspace
symmetrical canard (dcs)

trim inputs

differential canard (dcd)

Sum  u m easurem tens

rudder (dr)

simulation outputsn o se  suction (suction)

left engine throttle (throttH)
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Figure 7.2.1: Block diagram of nonlinear HIRM aircraft system.

purposes). The Simulink block diagram of the six degrees of freedom (see Appendix C.2) 

nonlinear HIRM is shown in Figure 7.2.1. The states, inputs and outputs of the aircraft 

system are given in Tables C.1.1, C.1.2 and C.1.3 of Appendix C. The available control 

surfaces and sensor information used in the HIRM aircraft model are:

Control Surfaces Sensors

Rudder Body axis angular rates, p , q and r

Differential canard Body axis attitudes, 6, <p and ip

Differential tailplane Airspeed

Symmetric canard Mach number

Symmetric tailplane Altitude

Engine throttle Angles of attack and sideslip, a and (3
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Full details of the HIRM’s aircraft dynamics, actuator and sensor models can be found in 

(Muir et al. 1997).

7.2 .1  C ontro l P rob lem  D efin ition

In this section, a controller will be designed for the longitudinal dynamics of the HIRM 

model, with a (pilot) command input controlling the pitch demand via deflection of sym­

metrical tailplane. The controller should track a series of manoeuvres with good response 

times (Amato et al. 2000, Harkegard & Glad 2000) within the flight envelope shown in 

Figure 7.2.2. These manoeuvres will be discussed in detail in later sections. When de­

signing the controller for a pitch demand system, the following limitations must also be 

addressed :

D l) —10° and +30° for the angle of attack.

D2) —40° and 10° for the symmetrical tailplane deflection.

If there are overshoots that exceed any of the limits (Dl and D2), the aircraft should 

recover and within 2 seconds return to a slight regime which satisfies the limits.

7.2 .2  R o b u stn ess  C on sid eration s

The control system should maintain good performance and robustness across the flight 

envelope (Figure 7.2.2). The design envelope for the HIRM control law is:
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• Mach (M) 0.15 to 0.5,

• Angle of attack (a) -10° to 30°,

• Sideslip m ±10°,

• Altitude 100 to 20000/t

4 .5  -

3.5

® 2.5

0.5

0.8 0.90.2 0.3 0.4 0.5 i 
Mach number, M

0.6 0.70.1

Figure 7.2.2: Flight envelope of the HIRM. (Sets of points marked are used in the testing 
of the controller on the nonlinear model in subsequent sections.)

7.3 Design of an ODSMC for Pitch Control

In this section, the longitudinal dynamics of a linear model of the HIRM will be considered. 

The nonlinear model of the aircraft system has been linearised at an operating point of
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Mach number 0.3 and a height of 5000ft. This flight condition is within the recommended 

design envelope for the HIRM control laws in Muir et al. (1997) (see Figure 7.2.2) and is 

one of the linearised design points suggested for the design of control laws for the HIRM 

(Moormann & Bennett 1999).

The states selected from the complete model of the linearised aircraft model to form a 3rd 

order system are angle of attack (a), pitch rate (q) and pitch angle (0). The input is the 

symmetrical tailplane deflection (dts) and the output is pitch angle. In continuous time, 

the system matrices which have been obtained are

-0.5430 0.9826 0 -0.1114

A = -1.0674 -0.4144 0 , B  = -3.2599

0 1.0000 0 0

, C = 0 0 1

The 3rd order system has been discretised using a sample interval of r  =  0.025 and the 

discrete counterparts of (A, B , C) are

0.9862 0.0243 0 -0.0038

Gp — -0.0264 0.9894 0 , Hp = -0.0810

-0.0003 0.0249 1.0000 -0.0010

, Cp = 0 0 1

The discrete time system has open loop poles at { 1.0000, 0.9878±0.0252i } and transmis­

sion zeros at { —0.9962, 0.9874 }. The system is then subjected to a change of coordinates
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(6.2.4) and the resulting canonical form is given by

TrG pT-1

0.9874 -0.1166 9.1989 0

-0.0003 2.9806 -157.0127 , TrHp = 0

-0.0003 0.0251 -0.9925 0.0010

L = CpG~lT ~ l 0.0000 0.0000 1.0000

(7.3.1)

(7.3.2)

where L = CG 1 is the new fictitious output distribution matrix and the transformation

matrix to achieve the canonical form is

-0.9988 0.0924 -3.6769

Tr = -0.0266 -0.9916 79.2729

-0.0003 -0.0251 1.0000

7 .3 .1  C ontroller D esig n

A dynamic ODSMC law which incorporates tracking will be designed by using the metho­

dology proposed in §6.3. For the design of the controller, the sub-matrices G n, G12, C21 

and T  are obtained by partitioning the canonical form in 7.3.1 to give (in the notation of

6.2.4) :

0.9874 -0.1166 9.1989
Gn  = > Gl2 =

-0.0003 2.9806 -157.0127
, £ 2 1 -0.0003 0.0251
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and T  = 1. Once G n and G12 have been isolated

Gf j =

0.9874 -0.1166 0 9.1989

-0.0003 2.9806 0 and G^2 = -157.0127

0 -0.0006 1.0000 0.0248

from (6.3.33). The design matrices Cl, K \ and K r have been selected so that

<j(Gn  -  CITG21) =  {0.97,0.98} and a(Gm) = {0.8,0.9,0.98}

and hence (6.3.31) is stable. Using pole placement techniques, the matrices were selected 

to be

Cl
-4.5025

80.2795
K! = 0.4004 0.0090 K r = 0.6418

The system matrices of the compensator 4>, Ti and T2 can be computed from (6.3.5)-(6.3.7) 

to be

$  =
-0.9082 -0.0460

r1 =
-4.5025

r2 =
-3.0357

30.9949 1.6593 80.2795 49.6316

The matrix F , which defines the hyperplane, calculated from (6.3.24), is

F = -0.1277 -0.0851 -0.0035 -0.0974

The term Sr , from the definition of the sliding surface, is a design matrix that affects the
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transient response and has been selected to be 0.005. The poles of the closed-loop system 

are { 0, 0.8, 0.9, 0.97, 0.98, 0.98 }.

R em ark  7.3.1 In this particular example, the bigger the value of S r , the faster the 

response of the system. However, it also brings about bigger overshoots. The final selection 

of Sr =  0.005 has been made as a trade-off.

This particular design, in terms of the choice of the poles for G n  — QTG 21 and Gm , has 

been selected because it stabilises the compensator and does not result in too large values 

of the controller gain. The control law, from (6.3.18), is given by

u{k) =  [ 124.8638 83.1914 3.4452 95.2110 ] y(k) -  14.7186r(fc) (7.3.3)

The robustness measure can be obtained from LMI optimisation methods in §4.3.3: here 

the calculated optimal value of fi = 2.7792.

7.3.2 Simulation Results

The controller (7.3.3) was first applied to the 3rd order linear HIRM model in Simulink. 

Three different sets of results are shown here, each for a different tracking demand. Table

7.3.1 gives a summary of the manoeuvres, L1-L3, and the respective results.

For the first manoeuvre, a step input to 5° (LI), the simulation results in Figure 7.3.1 show 

that tracking is achieved with relatively small overshoots (less than 0.2°) with a rise time 

of approximately 2.5 seconds. Maximum deflection of the symmetrical tailplane (dts) is 

±4°, which is well within the limits [—40°, 10°] given in §7.2.1. Figure 7.3.2 gives results



Co
ntr

ol 
sig

na
l, 

dts 
(cle

g) 
Pitc

h 
ang

le 
(cl

eg)
7.3 Design of an ODSM C for Pitch Control 158

Manoeuvre Description Results

LI
Step inputs to pitch demand 

+5° at t = 2 seconds 
—5° at t = 10 seconds

Figure 7.3.1

L2
Step inputs to pitch demand 

+8° at t = 1 seconds 
—5° at t = 7 seconds

Figure 7.3.2

L3
Ramp input to pitch demand 

slope of +1.5°/s 
Cut-off at 3°

Figure 7.3.3

Table 7.3.1: Simulated manoeuvres on linear model
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Figure 7.3.1: M anoeuvre  L I Plot of output (pitch angle) and reference signal against 
time.
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Figure 7.3.3: M anoeuvre L3 Plot of output (pitch angle) and reference signal against
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corresponding to L2, a bigger step input command and also a slightly quicker manoeuvre. 

The signal has less time to settle initially on the step input to 8° but overall tracking is 

still good. The response time can be improved by increasing the parameter Sr. However, 

the trade off will be bigger overshoot and increased control effort. Figure 7.3.3 shows that 

a relatively small dts signal is needed to track the ramped input given in L3.

7.4 Nonlinear Model

In this section, the linear controller from §7.3.1 is implemented on the full nonlinear HIRM 

model in Simulink shown in Figure 7.4.1. The 52-state model includes 12 states from flight 

dynamics, 4 states from engine dynamics, 13 states from actuator dynamics and 23 states 

from sensor dynamics. The block diagram shows the closed-loop HIRM set-up together 

with the ODSMC controller. The ODSMC has been integrated into the closed-loop model 

of the HIRM together with the Robust Inverse Dynamics Estimation (RIDE) controller, 

designed by GARTEUR (Moormann & Bennett 1999) to form an augmented controller 

block diagram.

The ODSMC controls pitch angle via the symmetrical tailplane deflection (dts) and the 

RIDE controller controls the other 7 control inputs, u(2)-u(8) (see Table C. 1.1 in Appendix 

C), which includes the lateral dynamics of the aircraft model.

The aircraft flight dynamics are represented by the HIRM dynamics block in Figure 7.4.1. 

This block is expanded in Figure 7.4.2. In Figure 7.4.1, the block trim inputs includes the 

actuator input trim settings from Table 7.4.1.
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Figure 7.4.1: Block diagram of nonlinear HIRM with ODSMC controller.
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Figure 7.4.2: Block diagram of HIRM dynamics model.
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Description M  = 0.3 II 0 00

symmetrical tailplane deflection (dts) 
differential tailplane deflection (dtd) 

rudder deflection (dr) 
pitch angle (6) 

angle of attack (a) 
flight path angle (7) 

pitch rate (q) 
true airspeed (V) 

thrust of engines (Fp)

-7.7619°
0°
0°

11.9786°
11.9786°

0°
0°

100.3181m/s 
10787.0474iV

-5.8036°
0°
0°

3.0849°
3.0849°

0°
0°

267.5148m/s 
32605.8407AT

Table 7.4.1: Straight and level flig h t: Trimmed values of the 
HIRM at M  = 0.3 and M  = 0.8 (h = 5000f t )

Manoeuvre Flight Condition Description Results

N1
N2

M  = 0.3, h = 5000f t  
M  = 0.8, h = 5000f t

Step inputs to pitch demand 
+ 8° at t = 1 seconds 
—5° at t = 7 seconds

Figure 7.4.3 
Figure 7.4.4

N3
N4

M  =  0.3, h = 5000f t  
M  = 0.8, h = 5000f t

Ramp input to pitch demand 
slope of +1.5°/s 

Cut-off at 3°

Figure 7.4.5 
Figure 7.4.6

Table 7.4.2: Simulated manoeuvres on nonlinear HIRM model

7.4 .1  S im u lation  R esu lts

Similar manoeuvres to L2 and L3 as described in Table 7.3.1 are used for easy comparison 

with the linear model. In addition, different flight conditions, in the form of Mach number 

(M ) and height (h), are also simulated to show the robustness of the ODSMC. This is 

summarised in Table 7.4.2. The controller, designed based on the HIRM model at trimmed 

flight conditions M  =  0.3 and h = 5000f t ,  is applied to the nonlinear HIRM model at 

both M  = 0.3 and M  = 0.8 flight conditions. Both these flight cases are within the HIRM 

flight envelope, with M  =  0.8 at h = 5000f t  a point in the flight envelope used for the 

testing of nonlinear response criterion (Moormann & Bennett 1999). In the simulations, 

the wind components, ugust, wgust and vgust are set to zero.
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Figure 7.4.3: M anoeuvre  N1 Plot of output (pitch angle)and reference signal against 
time.
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The discrete nature of the controller can be seen from the control signal in Figures 7.4.3- 

7.4.6. The response for N1 and N3 (Figure 7.4.3 and Figure 7.4.5) are similar to that of 

their linear counterparts L2 and L3 (compare with Figure 7.3.2 and Figure 7.3.3). Al­

though there is a difference between the linear and nonlinear simulation results in the 

control effort needed, the margin is not big. The maximum deflection of the symmetrical 

tailplane (dts) relative to the trim points for manoeuvre N1 (Figure 7.4.3) in both di­

rections are —9.2797° and 6.6045°. For N3 (Figure 7.4.5) the maximum dts is —0.6781°. 

These are well below the system limits given in §7.2.1. The results from N1 (Figure 7.4.3) 

are comparable with those from Harkegard & Glad (2000), who use backstepping control. 

The response shown in Figure 7.4.3 has a slower rise time but gives less overshoot than 

that of (Harkegard & Glad 2000).

N2 (Figure 7.4.4) and N4 (Figure 7.4.6) are similar manoeuvres to N1 and N3 but at a 

different operating point (M =  0.8, h = 5000f t ) .  The simulation results are obtained by 

using the same controller design, with the exception of the value of 5r , which has been 

increased slightly to 0.05. Figure 7.4.4 and Figure 7.4.6 show that the ODSMC controller 

is robust enough to control the dynamics at a different trim point, even in this case, M = 0.8 

and h = 5000f t  which borders the flight envelope (see Figure 7.2.2).

7.5 Implementation on a Real Time All Vehicle Simulator

Real Time All Vehicle Simulators (RTAVSs) are used for varying applications, from flight 

testing new aircraft to full mission rehearsal for existing or future vehicles. They make it 

possible to evaluate and assess systems in a representative, safe and controlled environ­

ment. They can be used for any vehicle and any problem, as long as a computer generated
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Figure 7.5.1: Photograph of the RTAVS.

model can be created. Systems can be added and modifications can be made. The RTAVS 

includes PC driven head-down displays and a monitor that reproduces an ‘outside world’ 

representation. In an aircraft representation a seat is configured to represent a basic cock­

pit. Longitudinal and lateral motion are controlled through a joystick and foot pedals. 

Figure 7.5.1 is a photograph taken of the RTAVS.

The nonlinear HIRM model has been run on the RTAVS to simulate flight with manual 

pilot commands (via the joystick) and not a fixed tracking signal as previously. This 

was achieved via the Real-Time Workshop (RTW). RTW generates and executes stand­

alone C code for developing and testing algorithms modelled in Simulink. The resulting 

code can be for an entire model or for an individual subsystem and can be run on any 

microprocessor or real-time operating system.

A series of manoeuvres will be shown with real-time pitch demand and control.
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Figure 7.5.2: Block diagram of modified HIRM dynamics model used for the RTAVS.

Manoeuvre Description Results/Plots
R1 Pitch up (8°) followed by pitch down (5°) Figure 7.5.3 and

Figure 7.5.4
R2 Pitch up to +30° and down to -10° Figure 7.5.5 and

Figure 7.5.6
R3 Series of steps up and down Figure 7.5.7 and

Figure 7.5.8

Table 7.5.1: Simulated manoeuvres on the RTAVS

7.5.1 F lig h t C o n d itio n s  a n d  RTAVS S e ttin g s

In the results which follow, the operating point is given by Mach number M  =  0.3, height 

h = 5000ft (1524m) with initial conditions as given in Table 7.4.1. The nonlinear model of 

the HIRM (Figure 7.4.1) has been implemented on the RTAVS with a few modifications 

to the flight dynamics (see Figure 7.5.2).

7.5.2 M an o eu v res  an d  R esu lts

In this section, 3 different manoeuvres will be shown as described in Table 7.5.1, where 

the input command is given via the joystick.
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R e m a rk  7.5.1 The commanded input for pitch is given by the user/pilot via a joystick 

which is connected to sensors. In the plots there is high frequency noise from the sensors 

which does not reflect the input command from the user.

The manoeuvre R1 (Figure 7.5.3) is an attempt to emulate the one carried out in N1 

(Figure 7.4.3) in real-time so that comparisons can be made. The control signals (Figure

7.5.3) appear to be slightly smaller than that of the nonlinear simulation (Nl). This 

may possibly be because of the ‘gradual’ increase in input command (imagine the user 

pushing the joystick forwards/ pulling it back) compared to a step-input command block 

in Simulink.

The high frequency component in the control signals arises from noise in the input channel 

and is not ‘chattering’ of the controller. This is clear when comparing R1 (Figures 7.5.3-

7.5.4) and R2 (Figures 7.5.5- 7.5.6), where there is less noise in the input channel of R2 

(Figure 7.5.6) and hence the control signal for R2 is ‘smoother’ than that for R1 (Figure

7.5.4).

Figures 7.5.5 and 7.5.6 show the results for R2. In this manoeuvre, the limits of the control 

surface is tested where the symmetrical tailplane deflection dts exceeds the 10° maximum 

limit set in §7.2.1. However, the guidelines are still met since the aircraft recovers and 

returns to stay inside the limiting values within 2 seconds. Tracking is achieved in good 

time even with a 30° step-input command and the tracking error decays to zero after 3 

seconds.

R3 is a series of step-input commands and the results of the real-time simulation are shown 

in Figure 7.5.7. The controller copes well with the 5 consecutive input commands. The
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tracking error goes to zero within 4 seconds of each step-input. The control signal always 

remains within acceptable bounds.

Although pitch rate (q) is not a controlled output, Figures 7.5.4, 7.5.6 and 7.5.8 have 

included a plot of q against time. This is so the results can be put into perspective with 

those found in the literature: linear quadratic optimal control (Amato et al. 2000) and 

robust gain scheduled control (Papageorgiou & Glover 1999). Amato et al. (2000) and 

Papageorgiou &; Glover (1999) have been designed for controlling pitch rate instead of 

pitch angle.

Even with the noise and amateur handling of the pilot joystick, the system proves to be 

robust and good tracking is maintained throughout. From the plots, it can be observed 

that the tracking error for each manoeuvre is usually close to zero or moves to zero quickly 

after a step-input command.

7.6 Summary

This chapter has considered the application of ODSMC techniques to a flight control pro­

blem. The ODSMC has been implemented on a linear and nonlinear model of the HIRM. 

In both cases, strong results show good tracking was obtained. Real time simulations on 

the RTAVS have emphasized further the robustness properties of the controller: the results 

show that the controller can produce good tracking at different operating points or flight 

conditions within the flight envelope. The ODSMC design is also relatively insensitive to 

noise in the pilot input/demand channel. It has been demonstrated that the theoretical 

developments previously described are suitable for practical application.



C hapter 8

Conclusions and Future Work

8.1 Conclusions and Contributions

This thesis has considered the problem of designing robust output feedback sliding mode 

controllers in discrete time. The development of a static output feedback discrete time 

sliding mode controller (static ODSMC) was presented, where no additional dynamics 

have been used in the controller. Conditions under which such controllers exist have 

been established. For systems which do not satisfy the conditions for the static output 

feedback methodology, a dynamic output feedback discrete time sliding mode controller 

(dynamic ODSMC) has been introduced. The latter approach uses a compensator to give 

additional freedom in the design and performance of the controller. Tracking has been 

incorporated into both the static and dynamic case by using an integral action approach. 

Whilst examples have been given in each chapter to illustrate the theoretical developments 

and design methodology described, a detailed case study has also been undertaken which 

focuses on the longitudinal control of an aircraft system model. This controller has been
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tested in a ‘piloted’ situation on an aircraft simulator.

The major contributions of this thesis are outlined below:

• It has been argued that discrete time sliding mode control problems can be posed in 

a min-max control setting. This is because in discrete time, ideal sliding cannot be 

achieved in the presence of uncertainty and so the reaching law must try to attain 

the smallest sliding mode boundary layers within which the system states stay. This 

can be viewed as an optimization problem where the objective is to minimise the 

effect on the Lyapunov difference function of the worst case uncertainty. This idea 

has been extended to the case of ODSMC where a new sliding surface with a direct 

link to min-max controllers was introduced.

• A novel sliding surface has been described, which in itself is not realisable through 

the outputs alone but gives rise to a control law which depends only on the outputs. 

Using this approach, the discrete time reduced-order sliding motion is not governed 

by the invariant zeros of the system. Therefore, requirements of relative degree and 

minimum phaseness are overcome and the method presented is applicable to non­

minimum phase systems. This is significant because typically sliding mode schemes 

require minimum phase conditions which limits the class of systems to which the 

controllers can be applied. The work in this thesis therefore broadens significantly 

the class of systems for which DSMC can be employed.

• New conditions for the existence of a stabilizing static ODSMC have been given 

in Chapter 3, for non-square systems with bounded matched uncertainties. It has 

been shown that for a stabilising static ODSMC to exists, a certain subsystem triple 

has to be output feedback stabilisable. A new design procedure has been presented
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to synthesize ODSMC’s. The design problem involves finding a matrix F  and a 

Lyapunov matrix P  which simultaneously solve a structural constraint as well as a 

discrete Riccati inequality. A novel parameterisation for the design matrix F  which 

allows existing static output feedback pole-placement algorithms to be used to obtain 

the stabilizing gain has been shown. For a given computed stabilizing gain, there 

is still design freedom in the choice of Lyapunov matrix P. An LMI optimization 

procedure has been proposed to optimally select P. This Lyapunov matrix is used 

to calculate the level of robustness associated with the closed-loop system.

• Because of the link which has been established between ODSMC and output min- 

max controllers, the results in Chapter 3 may be viewed as providing a solution to 

the open problem of designing output min-max controllers for non-square systems 

as posed in (Sharav-Schapiro et al. 1998).

•  Since static output feedback controllers do not exist for all systems, a compensation 

scheme has been proposed in Chapter 4 and a dynamic ODSMC has been described 

for non-square systems. A particular compensator, of order less than the original 

plant, has been suggested which is parameterized in a way that is constructive from 

the point of view of synthesis. An explicit design algorithm has been given which 

synthesizes the parameters of the compensator. The examples given also show that 

the introduction of the compensator to the ODSMC improved robustness.

• Again because of the link between ODSMC and output min-max controllers, the 

results of Chapter 4 may be viewed as representing a solution to the open problem 

of designing dynamic output min-max controllers as posed in (Sharav-Schapiro et al. 

1999) and the conditions for the existence of such dynamic ODSMC are given.
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• The requirement to incorporate tracking control, which is often needed in practical 

applications, has been addressed. The problem of designing an ODSMC which uti­

lises integral action to provide tracking is examined individually for the static and 

dynamic case. In the static case (in the sense that a static controller is designed 

for the augmented plant formed from incorporating integrators with the original 

plant dynamics) the dependency on the invariant zeros is apparently circumvented. 

This potentially broadens the applicability of the results even more although a sta­

tic output feedback pole placement problem must still be solved. The methodology 

introduced in Chapter 5 involves the addition of integrators to form a new augmen­

ted system which utilises and builds on the new design approaches from Chapters 

3 to produce a controller with a tracking capability. The simplicity of the resulting 

scheme will be apparent and is very advantageous from the point of view of practi­

cal implementation. Again the conditions necessary in order to realize the tracking 

control law have been established. The examples in Chapter 5 demonstrate the ro­

bustness of the approach: tracking an output shaft angular position of a DC-motor 

rig in real-time.

• Chapter 6 has introduced a new dynamic ODSMC incorporating integral action. The 

developments in Chapter 6 are quire different from Chapter 3-5. A quite different 

control structure has been obtained which requires only very mild assumptions on 

the plant (basically no poles or zeros at the origin). The ideas from this chapter have 

been used as a basis for a controller for the nonlinear planar vertical take-off and 

landing (PVTOL) aircraft which has unstable zero dynamics. The PVTOL aircraft 

is a nonminimum phase system which has been widely studied in the literature. 

Traditional sliding mode controllers cannot be applied to this system because it is
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not relative degree one and minimum phase. Good results have been obtained.

• To verify the practicality of the controller design, the methodologies proposed have 

been applied to a High Incidence Research Model (HIRM) aircraft. The synthesis of 

a dynamic controller for longitudinal control of the aircraft model was shown and the 

resulting linear and nonlinear simulations were compared with other design methods 

in the literature. The nonlinear aircraft model was implemented on a Real Time 

All Vehicle Simulator (RTAVS) to allow the results to be explored on a reasonably 

realistic platform. Good results have been obtained.

Significant theoretical developments in the area of robust discrete time output feedback 

sliding mode control have been shown and their practicality as well as robustness substan­

tiated by the examples. All the results, numerical, simulated and ‘real-time’, demonstrate 

the applicability and effectiveness of method for real systems in the industry, and specifi­

cally for a flight control problem case study.

8.2 Recommendations for Future Work

This thesis has presented a theoretical basis for robust output feedback sliding mode 

control design in discrete time which is novel and practical. It can be viewed as a platform 

for further research and development.

• The design, in terms of selecting the controller parameters, has been achieved using 

existing techniques, for example pole placement and root locus methods. This is 

reasonable for low order systems but is not ideal for more complex systems. Further 

work would need to develop more systematic methods, perhaps building on Linear
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Matrix Inequality (LMI) aspects and using these ideas as a synthesis tool, to take 

advantage of the design freedom and show how it can be fully and best utilised.

• So far, only linear and linearised systems have been considered in the development 

of the control law. A challenging route for future research would be to extend the 

approach in this thesis and explore optimal ideas for nonlinear systems, perhaps 

initially in terms of nonlinear systems affine in the control.

• In the implementation of the robust discrete time output feedback sliding mode 

controller on the HIRM and RTAVS (Chapter 7), only longitudinal control was 

considered. Future work can include the design of a controller for the whole aircraft 

model, i.e. a complete design for both longitudinal and lateral control without using 

the existing Robust Inverse Dynamics Estimation (RIDE) controller.
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A ppendix A

N otation

A .l Mathematical Notation

R the field of real numbers

C the field of complex numbers

M (A) the null space of the matrix A

In the n x n identity matrix

{■)T the transpose of a matrix

(-)"1 the inverse of a square matrix

det(-) the determinant of a square matrix

rank(-) the rank of a matrix

|| • || the Euclidean norm of a vector and the spectral norm of a matrix

cr(-) the spectrum of a matrix

^max(') the maximum eigenvalue of a square matrix

Am i n ( ’) the minimum eigenvalue of a square matrix

V for all

s.p.d. symmmetric positive definite



N otation 190

A. 2 Acronyms

LMI Linear Matrix Inequality

HIRM High Incidence Research Model

RTAVS Real Time All Vehicle Simulator

CSMC Continuous Time Sliding Mode Control

DSMC Discrete Time Sliding Mode Control

ODSMC Output Discrete Time Sliding Mode Control

PVTOL Planar Vertical Take-Off and Landing

SOMMC Static Output Min-Max Controller
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A .3 Definitions

Deadbeat response The response of a closed-loop control system to a step in­

put which exhibits the minimum possible settling time, no 

steady-state error, and no ripples between the sampling in­

tervals (§4-7 in (Ogata 1995)).

Rank The rank of a matrix is the number of linearly independant

rows or columns (Strang 1993).

Signal reconstruction The determination of the analog signal that has been trans­

mitted as a train of pulse samples (§1-4 in (Ogata 1995)).

Symmetric Matrix A  is a symmetric matrix if it is a square matrix and satisfies

A t  = A  where A T denotes the transpose. This also implies 

A ~1A t  = I , where I  is the identity matrix (§4.0 in (Horn & 

Johnson 1985)).

Positive Definite A  is positive definite if xTA x  > 0, where x TAx  is a quadratic

form, for all nonzero x € Rn. All eigenvalues have to be 

real and positive, and all determinants associated with all 

upper-left submatrices are positive (§7.1 in (Horn & Johnson 

1985)).
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M athem atical Preliminaries

B .l Lyapunov Equations for Stability Analysis

Consider the discrete time system described by

x(k  +  1) =  Gx{k) (B.1.1)

where x  £ Rn is a state vector and G £ RnXn is a constant nonsingular matrix. The origin 

x = 0 is the equilibrium state. Define a Lyapunov function

V(x(k)) = x T(k)Px(k)
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where P  € RnXn is a symmetric positive definite matrix. The function (B.1.2) is non-zero 

except at the origin. Then

AV(x(k) )  = V(x(k + 1 ) ) - V ( x ( k ) )

= xT (k +  1 )Px(k  +  1) — xT (k)Px(k)

= (Gx(k))TP{Gx(k)) -  x T (k)Px(k)

= x T(k)(GTP G - P ) x ( k )

Since V(x(k))  is chosen to be positive definite, to obtain asymptotic stability, A V(x(k))  

has to be negative definite. Therefore,

A V(x(k)) = —xT (k)Qx(k),  where Q = P  — GTPG

is positive definite. Hence, for asymptotic stability of the discrete time system in (B.1.1), 

it is sufficient that Q be positive definite (see Theorem 5-6 in (Ogata 1995)).

B.2 Linear Matrix Inequalities (LMI’s)

A linear matrix inequality (LMI) is any constraint of the form

A(x) :— A q -j- x \A \  +  ... +  x n A n  > 0

where

x = (xi, ...Xjv) is a vector of unknown scalars (decision/optimization variables)
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• Ao, ...An  are given symmetric matrices

• ’> 0 ’ means positive definite

The main strength of LMI formulations is the ability to combine various design constraints 

or objectives in a numerically tractable manner

Nonlinear inequalities can be converted to LMI form using Schur complements, i.e the

LMI

Q(x) S(x)
> 0

S(x)T R(x)

where Q(x) = Q{x)T, R(x) = R{x)T and S (x ) depend aflinely on x , is equivalent to

R(x) > 0 (B.2.2)

Q(x) — S(x)R(x)  1S(x)T > 0 (B.2.3)

In other words, the set of nonlinear inequalities (B.2.2) - (B.2.3) can be represented as the

LMI (B.2.1). For example,

A P t  + P A  + P B R ~ 1B t P  +  Q < 0 (B.2.4)

can be converted into the LMI

A t P - P A - Q  P B  

B t P  R
> 0 (B.2.5)
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where Q = QT, R  = R T and P = P T is the optimization variable. Notice that variable P  

only appears in linear form in the LMI.

For more details and further information on LMI’s in control, see (Gahinet et al. 1995) 

and (Boyd et al. 1994).

B.3 Controllability and Observability

Consider the linear system

x{k +  1) =  Gx{k) +  Hu(k)  (B.3.1)

y(k) = Cx(k)  (B.3.2)

where G 6  RnXn, H  e  K nxm  and C  E RpXn. The system (B.3.1) is said to be controllable 

if it is possible to move the system from any arbitrary initial state to a desired state in 

finite time by a suitable choice of control signals (Franklin, Powell &; Emami-Naeini 2002).

The Rosenbrock-Hautus-Popov (RHP) test (Rosenbrock 1970) states that the system

(G , H ) is controllable if the matrix [zl — G H] has full rank, i.e

rank [zl — G H] = n for all 2 € C

Observability refers to the ability to determine information on all the modes of the sys­

tem from only the sensed outputs (Note: Unobservability means one or more mode or 

subsystem has no effect on the output). The concept of observability is the dual to that 

of controllability and the RHP test can be applied by substituting the transpose GT for
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G and H T for C, where C is the output distribution matrix of the system. The other 

properties that are dual to controllability can be found in Chapter 8 of Franklin et al. 

(2002).
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Aircraft Flight Dynamics

C .l Nomenclature

Alphanumeric Symbol Name Unit

u(i) dts symmetrical tailplane deflection rad
i(2) dtd differential tailplane deflection rad
u (3) dcs symmetrical canard deflection rad
u(4) dcd differential canard deflection rad
u(5) dr rudder deflection rad
u (6) suction nose suction -

u(7) throttlel left engine throttle -

1(8) throttle2 right engine throttle -
1(9) ugust longitudinal wind m /s
i(10) vgust lateral wind m /s
i ( l l ) wgust normal wind m /s

Table C.1.1: Definition of aircraft model inputs
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Symbol Name Unit

u longitudinal velocity m/sec
V lateral velocity m/sec
w normal velocity m/sec
P roll rate rad/sec
q pitch rate rad/sec
r yaw rate rad/sec
<P roll angle rad
0 pitch angle rad

heading angle rad
X x-position of the center of gravity m
y y-position of the center of gravity m
z z-position of the center of gravity m

engine lp first state of engine 1 (thrust) N
engine! px second state of engine 1 (time derivative of thrust) N /s
engine 2p first state of engine 2 (thrust) N
engine 2 px second state of engine 2 (time derivative of thrust) N /s

Table C.1.2: Definition of aircraft model states

Symbol Name Unit

Measured
P roll rate rad/sec
q pitch rate rad/sec
r yaw rate rad/sec
9 pitch attitude rad
<t> roll angle rad
ip heading angle rad

anx x-accelerometer output in body axes m / s 2
any y-accelerometer output in body axes m / s 2
anz z-accelerometer output in body axes m / s 2
V total velocity (true airspeed) m / s
M Mach number -

h height m
a angle of attack rad
(3 sideslip angle rad

Simulated
7 flight path angle rad

Vground total ground speed (magnitude) m /s
F pl Thrust of engine 1 N
Fp2 Thrust of engine 2 N

Table C.1.3: Definition of aircraft model outputs
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C.2 Degrees of Freedom

Figure C.2.1-C.2.3 show the primary flight controls of an aircraft and illustrate its degrees 

of freedom. For a full description of the differential equations of motion for a rigid body 

with six degrees of freedom see §2.3.2 of (Muir et al. 1997).

Figure C.2.1: Aircraft diagram showing pitch

Figure C.2.2: Aircraft diagram showing yaw

Figure C.2.3: Aircraft diagram showing roll


