Theoretical and experimental restraints to drive the docking of

protein-protein complexes

Thesis submitted for the degree of
Doctor of Philosophy

at the University of Leicester

by
Abbas Alameer BSc (Kuwait)
Department of Biochemistry

University of Leicester

March 2012



Abbas Alameer
Title: Theoretical and experimental restraints to drive docking of protein-protein
complexes.

Abstract

Biological processes are frequently driven by gropgotein interactions. The number
of known protein interactions is much higher thd&® thumber of known protein
complex structures. To bridge this gap, data-dripestein-protein docking utilizing
experimental or theoretical restraints is appliadthis study the PROTIN_ID method
for generating theoretical docking restraints israduced. PROTIN_ID generates
residue clusters on the protein surface based guesee conservation. Compared to
WHISCY and CCRXP, PROTIN_ID performs equally well better. Furthermore,
PROTIN_ID has user-friendly features such as thétyalbo improve the quality of
sequence alignments, which improves its performaancd automatically utilizing up-
to-date sequence data for experimentally determpreteins or homology models to
generate theoretical restraints. A webserver versioPROTIN_ID was implemented
for the academic community.

Statistical analyses of the conservation of intfeesidues using the latest version of
Benchmark4.0 demonstrated that interface residuesn®re conserved than non-

interface residues. The application of spatial telaisg of residues is more efficient to

exploit the conservation signal of interface resgluesulting in reliable predictions that
are better than predictions generated by ‘non-etusd’ or at random.

Theoretical restraints derived from PROTIN_ID wexeplied to drive docking and
compared toab initio docking, demonstrating that data-driven dockings waore
successful. Combining theoretical and experimergatraints to drive docking was
compared to experimental-data driven docking. I$ wlaown that combined restraints-
driven docking improved because of increased iaterfresidue recall, demonstrating
that consensus-data is possibly useful for impram@mf docking performance.
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Abbreviations

ASA Accessible surface area

Cl Confidence interval

CSP Chemical shift perturbation
FP False positive

FN False negative

IPA Intervector projection angles
MSA Multiple sequence alignment
NOC Number of correct models
RDC Residual dipolar couplings
ROS Rest of surface

TN True negative

TP True positive
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Chapter 1

Introduction

1.1 Proteins

Proteins are composed of amino acid building bldeksed together through peptide
bonds, forming a polypeptide chain known as thengry structure. The primary
structure forms secondary structural elements, sgcilpha helices and beta sheets via
hydrogen bonds, which in turn interact to create tdrtiary structure through protein
folding. The tertiary structure may combine withotrer to form a quaternary structure
(see Figure 1-1). The outcome is a protein wittcfiomal capabilities whose active site
or interface, where biomolecular interaction ocgcusscomposed of amino acids that
may be far apart on the primary structure-level émat close together because of the
unique three-dimensional arrangement of the fiealiary or quaternary structures.
Broadly, proteins are classified as globular praewhich function in cellular activities
(ex. enzymes) and fibrous proteins (ex. keratirgt tassume a structural role. The
holistic number of proteins produced from the geaavhan organism is known as the
proteome. Unless otherwise stated, “protein” wéfer to globular proteins in this

chapter.

1.2 Protein-protein interactions

Proteins compose the molecular machinery of cellstae association of a protein with
others to form temporary or long-term functionalmgbexes is fundamental in
numerous biological processes. The region of sigebihding between two or more
proteins’ residues is known as the interface. Brgteotein interactions are diverse in
functionality, highlighting their importance. Foxample, protein-protein interactions
are involved in signalling in the bacterial phospholpyruvate-dependent sugar
phosphotransferase system (PTS). The PTS systeolv@svtransfer of a phosphate
derived from phosphoenolpyruvate to proteins o$ thathway ultimately leading to
phosphorylation of sugars coupled with their transthrough bacterial membranes
1



(Cornilescuet al, 2002; Wanget al, 2000). Protein interactions are also involved in
enzymatic inhibitory activities such as inhibitioh matrix metalloproteinases (MMPS)
by tissue inhibitor of metalloproteinases (TIMP)MWs are essential for breakdown of
extracellular matrix constituents during embryogesetissue regeneration, for example
(Arumugam and Van Doren, 2003a; Gomis-Réthal, 1997). TIMPs regulate these
enzymes by forming non-covalent inhibitory compkex®Villiamsonet al 1997). A
disturbance in this regulation favouring heighteraadivity of MMPs can result in
pathophysiological conditions such as cardiovasculisseases like myocardial
infarctions and aneurismsH@vsepianet al, 200Q. In addition, protein-protein
interaction is important for the creation of mudtetein assemblies that perform
specific tasks. For instance, DNA polymerases, Di¢ficase, and DNA primase with
other accessory proteins assemble into the repéistmt undertakes the action of
reproducing DNA during the DNA replication procesdjich is part of cell division
(Perumalet al, 2011; Marians, 2008). Proteins are also involvethe degradation of
others. As an example, in thiiquitin proteasome pathway (UPP), ubiquitin pirote
molecules are linked via ubiquitin ligases to pide These ubiquitinated proteins are
degraded into peptides by a multi-protein complemposed of multiple catalytic sites
called the proteasoméHérshkoet al, 1984; Hershkcet al, 1983. Protein-protein
interactions are important in immune responses. é&@mple, T-cell activation is
achieved through T-cell receptor interaction withtigens in complex with major
histocompatibility complex proteins, leading to mmmune response (Aleksiet al,
2010). The differing varieties of protein interacts are a part of an interaction network
between different proteins and other biomolecubdked the interactome. For example,
in human cells an estimated number of 130,000 @&Rbinary interactions may occur,
and there are 137,713 interactions currently kn@gnpresented in the BioGRID
database, which is a repository for interactiorad&onetta, 2010; Start al, 2010;
Venkatesaret al, 2009). The number of binary interactions is kigthan the estimated
number of proteins (100,000) in a human cell (imional Human Genome
Sequencing Consortium, 2004). Indeed, the totaepreprotein interactions may be as
high as 375,000 based on an estimated 15 intenagtier protein (Ramaset al., 2005).
Protein interactions are undisputedly important ahdir disruption can lead to

interruption of fundamental biological mechanisg®jsing diseases.
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Figure 1-1: Examples of the primary, secondary, tertiary, anaternary structures. The

primary structure is composed of amino acids comukeby peptide bonds, forming a
polypeptide chain. Secondary structures (alphaxhdétrm through hydrogen bond

interactions in the primary structure. This intéi@t of secondary structural elements
leads to a tertiary structure, which may combin¢hwathers to form a quaternary
structure. The example quaternary structure is imuma@moglobin (PDB: 1MKO).



Therefore, it is vital to understand the differéatets of proteins that deal with their
interactions with others in order to comprehendtgno complex formation and by
extension biological processes (Keskeh al, 2004). This allows a wide-ranging
understanding of the inner workings of the intesaw as a whole (Spirin and Mirny,
2003). The sheer magnitude of differing proteinsown to interact and those
interactions yet to be discovered highlights thewgng importance of understanding
protein-protein interactions, which are importaot &ll living things to function and
exist (Alloy and Russell, 2004). For example, knealge of protein-protein complex
structure is important for drug screening and desigllowing targeting of those
complexes linked to cancer to inhibit them (Lessetra., 2013).

1.3 Classification of protein-protein interaction ypes

There are three main features that are employethssify protein-protein interactions.
These are based on protein complex compositiongtsiial subsistence, and protein
interaction lifetime (Ozbabacaet al, 2011). An overview of this classification of
protein-protein interaction types will be discussedhis section. Figure 1-2 presents a

summary of the classification of protein-proteitenaction types.

1.3.1 Homo- and hetero-oligomers

This grouping of complexes is based on compositibthe subunits of a complex. A
protein complex where non-identical monomers corapbss referred to as a hetero-
oligomer (Ozbabacaet al, 2011). A protein complex in which only identicGlbunits
compose it is referred to as a homo-oligomer. Haligomers can be subdivided
further, if a homo-oligomer complex’s subunits @lse same interface for binding and
have 2-fold structural symmetry, they are termedbasmg isologous in interaction,
whereas heterologous interaction means that hoigoroér subunits interact at
different interfaces (Ozbabacanhal, 2011; Nooren and Thornton, 2003a; Goodsell and
Olson, 2000; Monoet al, 1965).



1.3.2 Obligate and non-obligate interactions

An obligate protein complex is one where its boaadstituents are unable to subsist as
monomers i(e. unstable) in unbound form. This means that thesurag their final
configuration upon protein complex formation to dtion (Ozbabacaret al, 2011;
Nooren and Thornton, 2003a). The met represson isxample of an obligate DNA
binding protein, which inhibits DNA expression (Zaual, 2006; Raffertyet al, 1989).
Non-obligate protein complex components can subsiginomously from each other as
stable monomers prior to protein complex formati@zbabacaret al, 2011; Nooren
and Thornton, 2003a). Cyclin-dependent kinaseexaenples of non-obligate proteins
essential for cell cycle regulation and which amé-eancer drug targets (Shakq al,
2012).

1.3.3 Permanent and transient interactions

Based on protein interaction lifetime, there aren@ment and transient interactions
(Ozbabacaret al, 2011; Perkingt al, 2010; Nooren and Thornton, 2003a). Permanent
complexes are stable in association and remain amptex, whereas transient
complexes are transitory such that their componangs able to bind and unbind.
Obligate complexes are mainly permanent in inteactvhile non-obligate complexes
can be transient or permanent in interaction (No@ed Thornton, 2003a). Transient
interactions are further subdivided, based on tbeiding affinity (Ky; see section
1.4.5) and interaction lifetime, into strong andaWeinteractions. Strong transient
interactions like the G-protein complex3¢) subunits remain stable with long lifetimes
due to the binding of GDP (guanosine diphosphags)lting in tight association of the
complex subunits. This changes with the bindingG3fP (guanosine triphosphate),
triggering separation of the complex intoo Gnd @y components (Nooren and
Thornton, 2003a). Weak transient interactions cwadly engage and disengage in
complex formation with short lifetimes (ex. seconffdzbabacaret al, 2011; Perkins
et al, 2010; Nooren and Thornton, 2003a, 2003b).
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Figure 1-2: Classification of protein-protein interaction typascording to protein
complex composition, structural subsistence, amdepr interaction lifetime. Adapted
from Ozbabacaret al, 2011, pp. 2-3 and Perkirg al, 2010, p. 1234. In terms of
composition, protein complexes with identical bmgli partners are called homo-
oligomers, whilst complexes with different bindin@artners are known as hetero-
oligomers. Proteins capable of existing as stabomers upon association and
dissociation are termed non-obligate. Oppositalytgins whose association guarantees
structural subsistence as monomers only and notrelierse are termed obligate.
Interactions based on binding affinity (lifetimekaeither permanent in which case they
form a stable complex, or transient where they walbind upon forming a complex.
Transient complexes can be further sub-grouped temngs and weak transient
interactions. Weak interactions bind and unbindhvghort lifetimes and, in contrast,
strong interactions are stable in complex with Emigetimes when an activating factor

causes them to associate and leave their unboatsd st



1.4 Characteristics of protein-protein interactions

There are differing features that characterize gingprotein interfaces upon protein
complex formation and their interactions. In thestsoon, an overview of these features

will be presented.

1.4.1 Interface size

Interface sizes are defined by the buried surfaea é€BSA) measure, which determines
the change in accessible surface area (ASA) irduesi for proteins in their unbound
and bound complexed stateShpthia and Janin, 19Y.5The BSA is measured as

follows:

BSA= ASA +ASA - ASA, (1- 1)

where ASAsg, ASAa, and ASAs represent the accessible surface areas of thedboun
complex and unbound protein components A and Bpeas/ely (Levy, 2010; Lo
Conte, 1999). Non-obligate hetero-dimer proteintgirocomplexes have an interface
area average of 1,91GA 760A? (Deyet al, 2010). In general, an interface is a single
patch when its interface area is < 2,000(&hakrabarti and Janin, 2002). In contrast,
homo-dimers (mostly obligate with some non-obligat@mplexes) have a larger
average interface area of 3,576 £ 2,490 A? that bury more atoms, and these larger
interfaces may consist of one or more patches $urface residues in structural
proximity) (Dey et al, 2010; Deet al, 2005; Bahaduet al, 2003). A recent study
examined 42 non-obligate, weak homo-dimers andddbat they had an interface area
average of 1,620 A + 480 A2, which is similar to the protein-protein compleXggy

et al, 2010). In general, the BSA measure is mainlgdliy related to the number of
residues and their atoms that are buried upon ipraamplex formation (Det al,
2010). Similar proportions of main chain atom cidmittions to the BSA% are present
for homo-dimers (17% = 6) and hetero-dimer (19)t@reprotein complexes (Dest

al., 2010). It has been suggested that larger irtesfaf proteins (>2,000%finvolve

interactions of significant conformational changéridg protein complex formation,



whereas proteins with smaller interface sizes v déss conformational flexibilityi.e.
rigid-body) during complex formation (Lo Contt al, 1999). Obligate complex
subunits cannot exist as monomers and are lessedrded only become ordered when
forming complexes with each other. Therefore, sith@y have larger interfaces these
types of proteins undergo major conformational geafor them to become ordered
upon protein complex formation (Janin, 2009).

1.4.2 Interface geometrical plane and complemetytari

A feature of protein interface regions is that tla@g more planar than the rest of the
surface of a protein (Wt al, 2007; Murakami and Jones, 2006). Planarity is
calculated by defining the least squares fit plahmterface atoms and determining the
interface atoms’ root mean square deviation from phane (Chakrabarti and Janin,
2002). Compared to each other, non-obligate pratemplex interfaces are more planar
than obligate complex interfaces (Bera and Ray9p0doreover, generally geometric
(shape) complementarity is present in protein cempiterfaces and this is due to close
packing density of interface atoms of an interfé@ahaduret al, 2004). It can be
determined by the shape correlation statistic tiedsures the fit between buried atoms
of an interface of both complex proteins (Lawrearel Colman, 1993). It has been
determined that, in general, the interface packiesity is similar to a protein’s interior
packing density (Sonavane and Chakrabarti, 2008 duate, 1999). Of course there are
exceptions to this. For example, electron trangfeteins have loose atomic packing for
their interfaces and as a consequence geometripleamntarity is less pronounced and
this is most likely due to the nature of their maietions, which occur extremely rapidly
and only generate short-term protein complexesyigirng less emphasis on interface
packing and geometric complementarity (Jaetial, 2007; Bahaduet al, 2004).

1.4.3 Interface secondary structural preferences

The secondary structural preference differs ingnotomplex interfaces for obligate
homo-dimers (mostly obligate with few non-obligatemplexes) and non-obligate

hetero-complex interactions. Specifically, obligdtemo-dimers interfaces have a



higher proportion of alpha helices than beta ssamthereas these secondary structural
elements are almost similar in proportion in notigatte hetero-complex interaction
interfaces (Guharoy and Chakrabarti, 2007). Otlwerctiral elements such as loops,
turns, and coils are present in higher proportiannon-obligate hetero-complex
interfaces than obligate homo-dimer interfaces. @&oyn and Chakrabarti (2007)
grouped alpha helices and beta strands under tegarg of regular structures, and
loops, turns, and coils were grouped as non-regitactures. They observed a higher
proportion for the regular group than the non-ragwroup in obligate homo-dimer
interfaces. For the non-obligate hetero-complegriates this was not the case because
both groups had similar proportions. However, th@pprtion of regular structures was
found to increase with interface sizee( AASA) for non-obligate hetero-complex
interfaces. Specifically, the alpha helices becdomger in length with increased
interface size. But for obligate homo-dimer comptexo change was observed in the
proportion of secondary structural elements wittreéase in interface size. Examination
of “pairing” of secondary structural elements asrasterfaces revealed interesting
results. Pairing refers to the cross-interfacerauigons that occur between two proteins
in complex. There were two pairing categories thate delineated. One category of
cross-interface pairing was defined as being betwesgular secondary structural
elements amongst themselvee.(intra-pairing). Another category was between non-
regular structures pairing with either alpha halicg beta strands, or intra-pairing
between non-regular structures themselves. It wasd that for obligate homo-dimer
complexes an approximately equal share of intemastioccurred for both pairing
categories, whereas non-obligate hetero-compleaesufed the latter category. For
non-obligate hetero-complex interaction interfad®as to the latter category is due to
their interfaces interchanging from exposed to dniand at the same time they must
retain properties of a basic protein surface thatva their monomeric unbound states
to remain stable in their natural soluble staten&ay and Chakrabarti, 2007; Bahadur
et al, 2004). This study highlighted that secondarydtiral preferences are dependent

on protein-protein interaction type.



1.4.4 Interface regions and their physicochemicapprties

It has been observed in protein interfaces thatlightly higher proportion of
hydrophobic residues are found in homo-dimers fatess (65% + 7) that are mostly
obligate with some non-obligate complexes compacedon-obligate hetero-dimer
(58%) interfaces (Dewgt al, 2010). In addition, polar and charged residuessightly
higher in proportion in non-obligate hetero-dimeterfaces (28% polar and 14%
charged) than homo-dimers (22%6 polar and 13% * 6 charged), and both interactio
types have roughly similar water molecule and hgdro bond densities in their
interfaces (Deet al, 2010). Analysis of non-obligate weak homo-dimedicates that
their average contribution of non-polar and po&sidues is 62% (+ 8) and 24% (x 7),
respectively, and this is similar to the generarages for homo-dimers. Furthermore,
their proportion of charged residues is 13% (+\8hjich is similar to non-obligate
protein-protein complexes and the general averaghdmo-dimers (Det al, 2010).
Chakrabarti and Janin (2002) proposed the corewadel that divided an interface into
core (inner) and rim (outer) regions, which contdiaried residues and solvent
accessible residues, respectively (see Figure 1-BAgy defined interface residues as
protein residues (or their atoms) that lose >024 ABSA during protein complex
formation based on equation 1-1. Core residues wWef@med as residues that have a
minimum of one completely buried atom (zero ASA}ile rim residues retain some
solvent accessibility for all their atoms (>zero ASBased on this interface division,
they examined the amino acid percentages for atertore and rim zones for non-
obligate hetero-dimer complexes and later for hahmeers composed of mostly
obligate with some non-obligate interacting pragei(Deyet al, 2010; Bahaduet al,
2003). In terms of average amino acid percentagenfmm-obligate hetero-dimer
complexes, the core region has a greater propodforesidues (55%) then the rim
(45%). In homo-dimers complexes, the core’s pesgmtcontribution of interface
residues is higher (59%) than the rim’s (41%) petage (Deyet al, 2010). Weak
homo-dimers have identical percentages for theie emd rim regions as the transient
protein-protein complexes (Degt al, 2010). The residue composition of the rim
resembles the generic surface of a protein exptwsedivent (57% non-polar and 43%
neutral polar/charged residue compositions of t8&%) for non-obligate hetero-dimer
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protein complexes. It is also similar for homo-disebut in it aliphatic residues are
more prevalent relative to a protein’s surface (Begl, 2010; Bahaduet al, 2003). In
contrast, the core region is between a proteirtsrior and exterior surface in residue
makeup (Levy, 2010). In non-obligate hetero-dimemplexes, aromatic residues
enrich the core, while charged residues are lovpresence with the exception of
arginine Chakrabarti and Janin, 2002n homo-dimer protein complexes, aliphatic and
aromatic residues makeup a major portion of comedues, providing a stronger
hydrophobic character in these complexes than mligaie hetero-dimer complexes
due to their larger interface sizes (Levy, 2010;dbdal, 2005; Bahaduet al, 2003).
Also, in homo-dimers charged residues, excludinginare, are reduced in the core

region (Deyet al, 2010).

A B
C-R Model C-R-S Model

Rim:>0ASA, Rim: > 25% ASA_ I

N

Core: 0 ASA, Core: < 25% ASA_ (> 25% ASA )

Figure 1-3: The delineation of an interface into regions basadchange in buried
surface area is presented based on two modlglSore-rim (C-R) model. Core residues
have a zero accessible surface area upon compuex@ati at least one residue atom
(ASA.), whereas rim residues have > 0 ASAdapted from Chakrabarti and Janin,
2002, p. 33B) Core-rim-support (C-R-S) model. Core residues ra2&% accessible
surface area in protein monomers (Ag/And upon complexation such residues have <
25% ASA.. On the other hand, rim residues have > 25% AS#¥hereas support
residues have < 25% ASAand are buried further upon complexation. Adagtech

Levy, 2010, p. 662. In general in terms of residamposition, the rim region is similar
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to the generic surface of a protein, while coredugss are midway between a protein’s
surface and interior. The support region is sintibea protein’s interior.

Levy (2010) defines a third region, in addition ttee rim and core regions of the
interface, called support (see Figure 1-3B). Htre regions of the interface (ASA > 0)
are divided by a different accessible surface é28& ASA) such that rim residues are
exposed (> 0 ASA) in both unbound and complexedn$of> 25% ASA) of both
complex proteins, while core residues are exposétbfo ASA) in a protein’s unbound
state, but become buried (< 25% ASA) upon compieratThe support residues are
buried (< 25% ASA) in the monomer proteins and beea@ven more so upon protein
complexation (< 25% ASA)The rim’s residues are still similar to a genernicface
patch, while the core’s residues are intermediagjwben a protein’s surface and
interior. The support, however, is similar to atpno's interior in residue composition
(hydrophobic) due to its exclusive buried state rupmbound to bound protein
transition during protein complexation. The residoakeup of the interface cores as
delineated by Chakrabarti and Janin (2002) and L@®10) are similar. The rim as
delineated by Levy (2010) is more similar to a pnotsurface, whereas the rim defined
by Chakrabarti and Janin (2002) is slightly lessilgir to a protein surface in terms of
amino acid frequencies. This slight difference g do the differences of the ASA
values used to partition an interface into its etéht regions. As a result in Levy’s
(2010) work, the proportions of rim, core, and suppegions have analogous numbers
of residues. Nevertheless, a single core residuedalmost double the surface area
than both rim and support regions on average (L20¢0). But, in some cases where
interfaces are small (< 1000°Alike transient interfaces of approximately 806 fe
core’s presence is smaller relative to the interfam; hence these interfaces are more
polar in nature (Levy, 2010). Compared togetherstiohlly, the models’ of partitioning
the interface particularly for core and rim regiare similar in the information they
convey about these regions most notably for the cegion of the interface (Levy,
2010). In addition, the characteristics of the roore, and support were found to be
regular in three specietH¢mo sapiensSaccharomyces cerevisjaand Escherichia

coli), emphasizing the usefulness of this interfaceeh@devy, 2010).
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1.4.5 The energetic terms of protein-protein intéi@ns
The generation of a complex between two proteinar(@B) is described below:

A+BZ AB (1-2)

where K, and Ky are the association and dissociation rate corsstaespectively.
Following the mass action law, the ratio of thesastants defines the equilibrium
dissociation constant (K Ky describes the binding affinity between two prose{(A
and B) upon protein complex formation (AB) and ipmessed in the following

relationship:

Ko _[A][B]
Ko [A:B]

on

Kq= (1-3

where [A], [B] and [A:B] are the concentration (Mwity) of the unbound proteins and
bound complex. The tighter the binding affinity Wween complex proteins, the lower
the Kyvalue. In addition, if the high concentrations A} pnd [B] are required to form
[A:B], this reflects low binding affinity and heneehigh Kyvalue.

The Gibbs binding free energ\A@) describes the thermodynamics of binding of
protein monomers, depicting the affinity of the teio monomers for each other and the
stability of the protein complex upon formation {fTipathiet al, 2011; Janin, 1995).

The thermodynamic terms that define the procesgratiein complex occurrence are

defined in the equations below:

AG, =-RTIn K¢ (1- 4)
C
AG, =0H, ~TAS, (1-5

where c is the 1 standard reference concentration (1 MolR is the gas constant
(8.314 JK* molY), and T is the absolute temperature (Kelvin). Byedmining the K

value, it is possible to calculats by using equation 1-4.
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In equation 1-5AH andAS refer to the change in enthalpy and entropy,ecsgely,
which define the binding free energ&G). The AH term is based on the interactions
that form the protein-protein complex, such as tebstatic interactions, hydrogen
bonds, and van der Waals interactions (Kastritid &wonvin, 2013).Electrostatic
interactions of theAH term involve dipole-dipole, charge-dipole, and charperge
interactions. As an example, the interactions betwglutamic acid and aspartic acid
with lysine, arginine, or histidine represent imstas of charge-charge interactions.
These interactions generally contribute to stabilit protein-protein interfaces (Xet
al., 1997a; 1997p The hydrogen bond is a dipole-dipole interactias it involves a
polar-bonded hydrogen (ex. H-N or H-O hydrogen bdodors) interacting with an
electronegative atom’s non-bonded electron pair @err N hydrogen bond acceptors).
Hydrogen bonds provide specificity in protein-pinténteractions (Bissantet al,
2010; Ponstingkt al, 2005). This specificity of interaction is enahleas hydrogen
bonds follow stringent geometrical restrictionsairbiological setting (Bissantt al,
2010). Coupled with this, a hydrogen bond is weakd) allowing it to swiftly come
into being or break, thereby assisting in proteioigin interaction. van der Waals
interactions occur through non-specific interactiotihat are a result of electron
fluctuation of atoms, resulting in their irregutdistribution, and the creation of induced
dipoles for the atoms that interact with one anotf@ood and Meyers, 1991).
Although these are weak interactions, they arerdribwting factor in protein-protein
interaction specificity sincenany such interactions collectively occur durimgtpin-

protein binding (Kastritis and Bonvin, 2013).

The AS term defines the microstate dynamics of a theymachic system. For protein-
protein interactions, the entropies of conformatfprotein side-chain and main-chain),
solvent, and association are an important compouoietite AS term (Brady and Sharp,
1997). The side-chainAG™®) is the more prominent constituent of conformation
entropy while in comparison the main-chaiaS{™" is limited in contribution to
conformational entropy in protein complex formati@@tites, 1997). This may change
upon the occurrence of limited protein folding eigricomplex formation (Brady and
Sharp, 1997). Prior to complex formation, the bigdsurface of a protein is exposed to
water molecules. Upon protein-protein complexatitims changes and leads to a

favourable ie. positive) solvent entropyAG™"). This occurs when water molecules
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detach from a protein’s binding surface and joie gurrounding water molecules
(Archakovet al, 2003). Furthermore, the hydrophobic effect (potar interactions),
which is a non-specific interaction, results fromtrepic changes in the presence of
water molecules. This is to reduce the effect ef‘ttage” ordering of water molecules
in the presence of non-polar entities, which redueetropy. Holistic aggregation of
non-polar entities relative to water molecules msdutheir “cage” ordering, diminishing
the impact of entropic reductiomiésantzet al, 2010) The hydrophobic effect is an
important driving force for protein-protein compégion especially when the interface
has non-polar and hydrophobic residues that bedmmied (ex. interface core) upon
protein complex formation (Williams, 2011; Ponstimg al, 2005; Tsaket al, 1997).
With regards to the final entropic term, the asation entropy 4579, it decreases as
translational and rotational restrictions occur mpghe complexation of two proteins
(Brady and Sharp, 1997). The sign of the overaltopy value determines if entropy
drives protein-protein interactions. A positié& drives the protein-protein interaction
process, whereas a negati®8& indicates thain\H drives protein-protein interactions
(Archakovet al.,, 2003).

1.5 An overview of hotspot residues

Protein interfaces are composed of residues witkrdnt physicochemical properties,

and they facilitate protein-protein interactionowéver, a specific subset of interface
residues contributes to most of the binding freergy of a protein-protein interaction

(Thorn and Bogan, 2001). These residues are kneamotspots. Clackson and Wells
(1995) first used this terminology to describe saalcial residues for protein binding.

In their work, the authors examined the complexhef human growth hormone (hGH)

and the bound receptor protein (hGHbp). They ag@ianine-scanning mutagenesis to
mutate the complex’s interface residues. Using théthod, two tryptophan residues,
forming part of a hydrophobic area of the interfagere found to provide most of the

binding free energy (Clackson and Wells, 1995).

A hotspot is a residue that, upon mutation, ca@s@sotein complex’s binding free
energy to change by2kcal/mol (Bogan and Thorn, 1998). Tyrosine, trybtan, and

arginine residues have a common occurrence of betgpots. Residues that contribute
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less to the binding free energy of a complex argenled to encircle hotspots, and this
configuration is called a hydrophobic O-ring. Thpiesence around hotspots occludes
bulk solvent, which generally allows hotspots toimtain their contribution to overall
binding free energy for a protein interaction (Bogend Thorn, 1998). Specifically, this
creates a localized low dielectric presence, heighg the impact of electrostatic and
hydrogen bonding in the regions where bulk solvam occluded (Liet al, 2005).
Keskinet al, (2005) observed that hotspots were structuahserved, while residues
that encircle them were less structurally conserwved¢omparison. Moreover, these
energetically important residues form clusters af tegions in an interface, which are
characterized by tight packing of hotspots as oppds them being scattered across an
interface (Keskiret al, 2005). Due to the importance of hotspots in inigdree energy
contribution, methods for predicting hotspots hbeen developed that utilise different
properties (ex. evolutionary conservation data).és@ample, Ahmaet al, (2010), who
observed that clusters of evolutionary conserveitloes (CECRS) contained hotspot
residues, developed a method to predict CECRs. Tugates that hotspots are
evolutionary conserved (Guharoy and Chakrabarti,020Likewise, Ofran and Rost
(2007a) applied their I1SIS method (discussed inti@ecl.8.1) to predict hotspot
residues of a 30 protein complex dataset and demaded accurate predictions of
hotspots. Tuncbangt al, (2009) developed an empirical method (HotPOINAat
incorporated residue conservation with other bigdal properties to predict hotspot
residues in a protein complex, resulting in acaupedictions. The accurate prediction
of hotspot residues in protein complexes facilgéteeir use in protein-protein docking

studies.

1.6 In silico methods to predict protein-protein complexes: pro¢in-protein

docking

Given the sheer number (in the thousands) of prediiprotein-protein interactions
identified by high-throughput approaches like theast two-hybrid method, in
comparison structurally solved protein-protein cterps by NMR and x-ray
crystallography approaches, which are time-consgmare lower in number. For
example, the BioGRID database has about 490,00@rknoteractions and the PDB
database has approximately 94,000 structures, dimguprotein-protein complexes
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(Bermanet al, 2013; Starlet al, 2010). To bridge this gap, the application ajtpm-
protein docking methods is a useful, inexpensing, ttmesaving process of predicting
and studying protein complexes as well as idemfyibiologically important
interactions from those that are false positivesioled from high-throughput methods
(Wasset al, 2011a; Lensinket al, 2007). Docking methods complement NMR and x-
ray crystallography, providing important insighitga protein-protein interactions (Goa
et al, 2004). The objective of protein-protein dockimggyen two (or more) unbound
proteins known to interact, is to predict theiraliprotein complex configuration that is
at the lowest free energy available to the systémay, 2006; Lianget al 2006). For
this to be achieved, a docking algorithm must samppeatedly many structural
binding poses between interacting proteins, usingwk experimentally determined
unbound receptor and ligand protein models, or Hogyomodels if structures are
lacking. Each predicted protein complex is scorednd) docking, filtering accurate
predictions from erroneous ones in order to deteenthe most energetically minimal
complex in free energy terms (Gray, 2006). In pcacthowever, the development of
protein conformational sampling and binding freeergy calculation that a docking
method requires has been quite a lengthy procabssdyy no means complete, and the
“docking problem” as it is known is an open problander active research (Torchala
al., 2013). In this section, an overview of the stepgrotein-protein docking will be

presented.

1.6.1 Protein-protein docking: the sampling praces

The initial stage of protein-protein docking is g@mnpling process. It involves the rapid
generation of docked conformations of proteins g/aitcounting for unbound to bound
conformational flexibility of the interacting prates in an attempt to produce putative
complex models that are biologically meaningful. eTHirst docking algorithm

developed in 1978 performed docking on low-resohlut{coarse-grained) structures
where a residue is depicted as a sphere (Vakséd; 20odak and Janin, 1978). It
involved sampling through angular rotations couphetih translationsi(e. six degrees

of freedom) of one protein’s positional configuoatilocated near its binding partner’s
active site surface to produce docked models (WeaaakJanin, 1978). This pioneering
work demonstrated that docking two proteins usmg-tesolution representation was
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possible. Further development of docking progresseditermediary-resolution rigid-
body docking methods such as fast Fourier transf(fffl) or geometric hashing
techniques that depict interacting proteins as eshamd matches them accordingly
(Fischer et al, 1995; Katchalski-Katziret al, 1992). For example, FFT methods
discretize proteins in three-dimensional spaceav@gid such that proteins are divided
into interior, surface, and exterior sections, antdsequently perform docking of the
two proteins rapidly by shape matching and comptearéy through the overlap of
surface regions between two proteins (Gabhl, 1997; Katchalski-Katziet al, 1992).
Here, the proteins are kept rigid to perform simensional sampling in translational
and rotational space (Chen and Weng, 2002). Suckirtipmethods simplify flexibility
in protein interactions, for example, by means mtraducing restricted structural
flexibility in general and/or protein side-chaifirement (Jacksost al, 1998; Gablet

al, 1997).

Another approach is to permit sterical overlap leetw proteins during the sampling
protocol, implicitly modelling flexibility (Fernarekz-Recioet al, 2002). Rigid-body
docking in general performs well in predicting @iot complexes whose protein
constituents experience minimal conformational geamvhen transitioning to their
bound states, however, performance is poor foreprst that experience major
conformational change during complexation (JaniQl® Ritchie, 2008). Recent
development of high-resolution protein docking noelth has enabled sampling using
atomic-level representations of proteins, while ihngvthe capability to incorporate
flexibility during the docking protocol (Wangt al, 2007; Dominguezt al, 2003;
Gray et al, 2003). In high-resolution docking, the incorparatof flexibility can be
achieved implicitly by using ensembles of proteonformations derived from NMR
and molecular dynamics approaches, for examplby arsing different experimentally-
derived models of the same protein (Domingaeal, 2004; Grinbergt al, 2004).
This application of ensembles has been extendeditbbody docking (Domingueet
al., 2003).

In principle, the use of an ensemble generated filominbound protein presumes that
the combined conformational snapshots for a prateirer a substantial portion of the

actual bound conformational pose adopted by th&epron complex (Dobbingt al,
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2008; Grunberget al, 2004). While helpful, it is possible that stuuet flexibility

produced upon complexation cannot be generatedughrahe ensemble model
approach from unbound proteins that interact walsheother, preventing the actual
modelling of the final bound pose between interagiproteins. This may occur when
an unbound protein’s transition to it's bound cguofation involves major surface
transformation. Further means of incorporating oamfational dynamics in docking in
high-resolution docking methods involves the explieclusion of flexibility of protein

side-chains and/or backbones through the use oécular dynamics or Monte Carlo

simulations (Domingueet al, 2003; Grayet al, 2003).

For proteins that undergo large structural changes complexation, specific sampling
protocols that model this flexibility have recentgen developed (Karaca and Bonvin,
2010). For example, in the Flexible Multidomain Rmg (FMD) data-driven approach
of Karaca and Bonvin (2010), a flexible proteirsgit into sub-domains that are kept
together by connectivity restraints during the FNpbBbtocol. The sub-domains are
docked as multi-bodies to the partner protein, Wwhscfollowed by the introduction of
explicit flexibility in the backbone and side chsinf the interfacial regions of the
docked models. The FMD approach successfully medell protein interaction where
one protein constituent underwent backbone confooma changes of 19.5 A when

transitioning to its bound state (Karaca and Bon201.0).

1.6.1.1 Data-driven sampling in protein-protein &gy

There are two types of docking sampling strategads,nitio and data-driven. The
difference between the two is that the latter sgatlimits sampling to specific regions
on both proteins as dictated by data that guide®cking sampling algorithm. In
contrast, the former strategy is unconstraineddig dnd may sample all possible poses
between proteins, given adequate computationaluress. The data used can be
derived from experimental approaches (NMR) or tegoal approaches like protein
interface predictors (see sections 1.7 and 1.1®)\ikset al, 2006; van Dijk et al.,
2005a). The composite data employed in samplingesemts possible interfacial
regions (ex. Chemical shift perturbations - CSkpsl) arovides orientational information
(ex. Residual dipolar coupling - RDCs) of one pioteo its partner, which is an
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advantage in sampling because it vastly reducessdélaech space (van Dijk et al.,
2005a). This is even more so significant for higeaelution docking where sampling is
a computationally expensive process compared &rnrgdiary and lower resolution
sampling. While data-driven sampling is effectivesteer docking, one side effect is the
possibility the data used is wrong thereby “tragpidocking sampling in the wrong
area of interest. A widely known and establisheghfiesolution docking method that
utilizes the data-driven strategy is the HADDOCKthoel (Dominguezt al, 2003). In
HADDOCK, sampling data is converted into ambigumisractions restraints (AIRS).
These interaction restraints are referred to asiguobs because interface residues
identified from one protein are not known with wiiesidues of the opposing partner
protein they interact (Dominguezt al, 2003). HADDOCK randomly discards some
restraints during its sampling protocol in caseaie restraints being wrong. If wrong

restraints are removed, this may improve docking.

1.6.2 Protein-protein docking: the scoring function

The prediction of a protein complex involves getiagamany models of different poses
whether sampling is data-driven or not. From thaselels, it is anticipated that some
models have similar structures to the native compeoring functions are applied in
order to rank each model in an attempt to distisigiologically meaningful models
from ones that are not (Mooet al,, 1999). The application of a scoring functionidgr
docking is of two kinds. In docking, scoring fursis may be applied directly in the
sampling protocol influencing the generated modkela/hich case they are termed as
‘integrated’, or they may be employed directly aiampling is completed where they
are termed as ‘edgeHg@lperinet al, 2002) Regardless of their implementation in a
docking method, the determination of the proteimplex structure with the lowest
binding free energy is the goal, assuming thatnive complex corresponds to the

lowest energy conformation (Mt al, 2009.

Scoring functions employed in docking protocols banknowledge-based functions or
physical force field functions. The knowledge-basetring functions are based on
statistically deriving residue/atomic contact pnogigy data of experimentally solved
protein-protein complexes and those from decoyegmotomplexes (Zhangt al,

20



2005). This can assist in better discriminatiomfroear-native complexes from decoys.
The ClusPro docking method applies this type ofiagdunction using Atomic Contact
Potential and electrostatic energy in its filterisigge after sampling is performed in
order to select the best scoring models for latecgssing Comeauet al, 2004) The
force field scoring functions calculate the finakegy of a docked complex, which is a
weighted sum of the contribution of interactionnter derived from a molecular
mechanics force field and also incorporate eneggyns that evaluate the use of
experimental/theoretical data in docking (AudieP20Dominguezet al, 2003). An
example of this type of scoring function (equati@r6) is implemented in the
HADDOCK docking method, which is applied in thisudy (de Vrieset al, 2007,
Dominguezet al, 2003).

EHADDOCK = EvdW + Eelec+ Edesolv+ EAIR + Esani + Evean (1' 6)

where Eqw and Eiec represent the van der Waals and electrostaticggnerms,
respectively. Eson iS the desolvation energyak, Esans and Eean are pseudo-energy
terms for the ambiguous interaction restraints, R@R@d intervector projection angles
(IPAs) energies, respectively. They calculate tigee@ment between the generated
models and the experimental data used in HADDOCHKumle docking, acting as a
discriminator between near-native and incorrect @sdlhe individual energetic terms
are weighted to optimize theskpock score. The Eappock Score in various forms is
applied during all stages of the HADDOCK dockingtorcol to select the best scoring

models for each stage of the protocol.

1.6.3 The Critical Assessment of PRedicted Intevast(CAPRI)

CAPRI is a blind docking competition that assesbescapabilities of protein docking
methods. A CAPRI prediction round is held uponehgrgence of new experimentally
determined protein-protein and protein-nucleic aoiinplexes (Lensink and Wodak,
2010). The starting protein structures of the ‘umkn’ CAPRI target complex are
provided to each participating docking team fordweon of the final complex

configuration. The CAPRI participants have no krexdge of the actual experimentally
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determined protein complex. All generated dockingutsons from participating
docking teams are evaluated against the actual leangmd classified as acceptable,
medium, or high quality models (see section 3.8\pdels not assigned to these
classes are classified as incorrect (Méndeal, 2003, 2005). Ideally, the starting
protein structures used for docking would be in ahbound pose. However, if only a
single unbound protein is available for a CAPRYé&dy a bound protein extracted from
the CAPRI target complex is provided for docking,io some cases when feasible, a
homology model is used (Lensink and Wodak, 2010iskrek et al., 2007; Méndezt
al., 2003). The first CAPRI competition (2001-2002ks~vheld for two rounds,
involving 7 CAPRI targets and 19 docking teams allgdaninet al, 2003). In this
competition, acceptable to high quality models wgeaerated for 5 CAPRI targets by
14 docking teams (Méndext al, 2003). The second CAPRI competition (rounds 3-5;
2003-2004) involved more CAPRI targets (10) and kdox teams (30). This
competition was more successful than the firstoagect predictions were generated for
all CAPRI targets (acceptable and higher models2ylocking teams (Méndez al.,
2005). Continuing the momentum of successes, roBAt2 of the third competition
(2005-2007) involved 9 CAPRI targets and resulte@dceptable and medium models
with only one high quality model in total for 8 CRIP targets. In these rounds, 71
docking teams patrticipated, but only 31 teams preduacceptable and above models.
In addition, these rounds featured a scoring erpart. Here, 15 scoring teams scored
models generated by the docking groups for 5 CAf@aRjets and re-ranked them. The
best 10 re-ranked models were submitted to evalubh&sr scoring methods’
performance. The scoring groups identified onlyeptable and medium models for 3
CAPRI targets from their submitted models (Lenstlkal, 2007). Rounds 13-19 of the
fourth CAPRI competition (2007-2009) performed Hlidiocking experiments involving
14 CAPRI targets altogether (Lensink and Wodak, 020176 docking groups
participated in this competition. 51 docking grogeserated acceptable quality models
or above for 11 CAPRI targets. For the scoring fiamc'blind’ test, 41 scoring groups
participated and this was higher than previousi@pdtion. From their submitted
models, the scoring groups identified acceptableé greater models for 7 CAPRI
targets (Lensink and Wodak, 2010). The CAPRI coitipet has stimulated the
development of protein docking methods throughroge testing and assessment. This
will help in docking methods’ development to enalbheir deployment in high-

throughput protein complex prediction at the prateoscale. As a consequence, the
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rapid generation of relevant protein complex modesveen putative proteins known
to interact would be predicted for use in furtheperimental studies. The HADDOCK
data-driven docking method, which has performed wethe CAPRI competition (de
Vries et al, 2007), was used in this study to examine theceff interface prediction

data-driven docking vsb initio docking (see section 1.11).

1.7 In silico methods to predict protein-protein interfaces: prdein interface

predictors

The function of a protein complex at the moleculevel can be understood by
examining its interface. To realize this, it isessal to identify functional residues of
the interface (Ofran and Rost, 2007b). Given twatgins known to interact, the goal is
to predict their functional residues. Accordingbyptein interface predictors have been
developed for this purpose. These protein interfareglictors utilize known interface
residue characteristics determined from analysigigffacial and rest of the surface
residues of proteins (Zhou and Qin, 2007). Thasesilico methods complement
experimental approaches to characterize interfaesidues like site-directed
mutagenesis or NMR CSP analysis (Fernandez-Re@idl).2In the context of protein-
protein docking, interface predictors are usefutheey can provide restraints to reduce
sampling complexity to the region of interest angbiiove scoring of complex models
(Ezkurdiaet al., 2009).

1.7.1 Definitions of interface residues used f@ating an interface residue dataset

Determining surface residues is necessary as thisvsa distinguishing between
interface residues and the rest of the surfaceuesi(ROS) of a protein’s surface (see
sections 3.2.1 and 5.3). Surface residues can tengdeed by defining the relative
(percentage of accessible surface area) or abgq@lctessible surface area) exposure to
solvent of a residueWanget al, 2006;Chakrabarti and Janin, 2002n either case,
only interface residues that are above or equa tertain threshold used for surface
residues are retained, while those residues umdethtreshold are discarded from the

final dataset of interface and ROS residues usettdming a protein interface predictor
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(see section 5.3) (Xust al, 2011a).

It is necessary to define interface residues, fanmgle, to characterize interface residue
properties to be used as a basis to design, tsthenchmark interface predictors (see
sections 3.2.1 and 5.3). Various definitions hagerbapplied to interface residues in
order to construct datasets. One definition is thaze a distance between pairwise
residuesi(e. alpha carbons) or any of their atoms of a proteimplex. If the measured
distance is smaller than or equal to a cut-off @4 or 1.2 nm), then residue pairs of
the interacting proteins are counted as interfaegidues (Fariselliet al, 2002).
Adjusting the distance cut-off to a higher valudirdes more residues as interface, and
decreasing it results in fewer interface residugs.alternative interface definition is
based upon the change in accessible surface amaufibound to bound protein states
(see section 1.4.1Cpakrabarti and Janin, 2002; Chothia and Janin5)1%% with the
distance-based definition, a cut-off is applied. (d% ASA) to determine interface
residues, and its adjustment controls the numbentefface residues determined. A
final definition considers the geometry of intedadhrough the application of Voronoi
diagrams Pontiuset al, 1996 Harpazet al, 1994; Richards, 1974). The Voronoi
diagram is the division of space around points (esidues or residue atoms), leading
to the creation of a polyhedron around each resatam. Residues or residue atoms
(points) from opposing proteins in complex thatreithe same Voronoi facet are part of
the protein complex interface (Cazas al, 2006; Valdar, 2002). Regardless of the
definition used, similar results are produced rmte of interface size/area (Goagal,
2005).

1.7.2 Interface residue predictive characteristics

Different features have been identified that chisréme interface residues from other
surface residues (ROS), and such features areedpad properties to predict protein
interfaces. Interface residues are evolutionaryseored as opposed to non-interface
residues due to functional/structural implicatioimglicating use as a predictive feature
(see Chapter 5) (Churgt al, 2006; Bordner and Abagyan, 2005). The evolutipnar
conservation of residues is determined by compaangotein sequence with other
homologous sequences in a multiple sequence align(MSA; see section 3.4) (de
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Vries et al, 2006). This is achieved using an evolutionargseovation score, which
computes the amino acid variability in an MSA cofurwhile incorporating their
physicochemical characteristics, for example, tiemhine the level of conservation of
the MSA column (see section 3.4). Higher conseowaiinplies functional significance
(i.e. interface residue) due to evolutionary constramd vice versa. In the context of
the core-rim interface model, core residues areenwmnserved than rim residues
(Guharoy and Chakrabarti, 2005). Also conservetlues cluster together spatially in
interfaces (Guharoy and Chakrabarti, 2010). Hydotyph amino acids along with
aromatic/basic residues (tryptophan, tyrosine,agchine), which are found in the core
region of interfaces (see section 1.4.4), are etestin interfaces, highlighting another
predictive feature namely residue propensity (Gojhand Chakrabarti, 2010; Chuag
al, 2006; Lianget al, 2006; Bordner and Abagyan, 2005). Glycine als® &areferred
propensity in conserved residue clusters althotgdhnot enriched in an interface core
(Guharoy and Chakrabarti, 2010). In addition, ifatee residues have higher solvent
accessibility than ROS residueShen and Zhou, 2005Moreover, interface residues
are less probable to adopt different side-chaiamets, which may be in preparation for
loss of conformational entropy of side-chains upostein complex formation (Lianet

al, 2006;Cole and Warwicker, 2002This predictive quality has been applied from x-
ray crystallography B-factor data (Chureg al, 2006). Other features used for
predictive purposes include secondary structureacheristics and interface shape,
hydrophobicity, desolvation, and electrostatice (section 1.4)Kurgoyne and Jackson,
2006 Hoskinset al, 2006;Bradford and Westhead, 2005

1.7.3 Interface prediction approaches

Interface prediction methods are trained on datasktdetermined interface and ROS
residues, using a particular definition to detemnimerface residues (see section 1.7.1).
Structural and sequence data pertaining to interfeesidues are incorporated as
predictive features in an interface prediction rodthn general, given a surface residue
of unknown classificationi.g. interface or ROS), it is either classified as raeriface or
ROS residue by different method8rédford and Westhead, 2009 he classification
can be done by interface prediction methods thahernlly, can be divided into
numerical value-based and probabilistic approa¢@lesu and Qin, 2007).
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1.7.3.1 Numerical value-based approach

A numerical value-based approach is represented fanction taking into account
sequence or structural-based predictive featurémaivn interface residues (Zhou and

Qin, 2007). This is represented as follows:

S = (X, Xjon,C) (1-7)

where xis input datai(e. predictive features like conservation) of an unknaesidue

of interest. In addition, residus neighbour list is considered, which is represdrity
spatially neighbouring residues’[{j n) properties (¥ in terms of their structural or
primary sequence proximity.¢. window) of the residue(Capra and Singh, 2007). The
group of coefficients, which is defined during tiaig, is represented by c. The value of
S determines whether residues classified as interface or ROS residue. A tho&sfor

S may be set such that if S, then it is classed as an interface residdevare versa.
Numerical value-based approaches can be basedhenar liegressiorK{ifarevaet al,
2007). For example, conservation data can be usedoas data in a linear equation and
compared to conservation of known interface resd(ie et al, 2006). Scoring
functions, based on empirical energy functions, aan be applied, permitting different
types of input data.g. interface discriminative features like conservatito be used in
scoring a residue of interest with later classtfama of that residue (see section 3.4).
Finally, there are different machine learning-baapgroaches that have been applied.
For instance, in support vector machines (SVM) hioear mapping of input data of a
training set is performed in high dimensional spaesulting in a hyper-plane that
attempts to separate the input data points intodlasses: interface and ROS residues
(Zhou and Qin, 2007;arraiagaet al, 2006). Subsequently, given a residue of interest
the objective is to assign it through SVM to theeiface or ROS classes.
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1.7.3.2 Probabilistic approach

The objective of a probabilistic approach is toedetine the conditional probability for
the residue of interest to be predicted as anfaderresidue, given a set of input data
(Zhou and Qin, 2007). This is depicted as follows:

(S| %1%, ) (1- 8

wheres represents the residue of interest that can beredim interface or ROS residue.
X1 through x represent the input datee( interface discriminative features) farlf the
obtained probability for a residue of interest reajer than a conditional probability
cut-off, the residue is classified as interface aité versa. The conditional probability
cut-off is derived from the dataset of known inted and ROS residues that is used for
training. There are different applications for thype of method. As an example, the
naive Bayesian method views the input datatiixough x) as being independent in
order to calculate the conditional probability ve tfollowing manner:

P(S| %, %) = P(S)[ ] Px 9 (1-9

2 P(xX)

where p(s) represents the fraction of the clasg.e. interface or ROS residues) of the
training set composed of interface and ROS resi{iesu and Qin, 2007p(X) is the
probability density of the input data\xn the entire dataset (Zhou and Qin, 2007).
Finally, p(x|s) is the likelihood probability of the data subdwttit is of a specific class
s(Zhou and Qin, 2007).

1.7.4 Prediction output of interface predictors

The interface predictors are grouped into patch rasdlue-based predictors (de Vries
and Bonvin, 2008; de Vriest al, 2006; Bradford and Westhead 2005). Patch-based
methods divide a protein’s surface into pre-defipadches of a given size and score

them following a specific approach in an attemptrank the patches in terms of
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confidence such that the top scoring patch or gafugefined patches are classified as
the protein’s interface (Bradford and Westhead,5208 residue-based method outputs
a list of residues that have been predicted toaveqs the interface. Such residues may
be used as the final prediction although if mapped protein’s surface there may be
some isolated residues from some that are spatilabe from one another (de Vries
al., 2006). Alternatively, residues of this approach then clustered into patches that
are re-ranked (Qiu and Wang, 2012). This elimin&ekated residues, which may be
far apart from the main cohort of clustered ressd(®uharoy and Chakrabarti, 2010;
Ofran and Rost, 2007b). Also, applying clusteriaguipported by recent findings that
conserved interface residues cluster spatiallylasec proximity on a protein’s surface
(Guharoy and Chakrabarti, 2010).

1.8 Historical description of protein-protein interface predictors

In this section, a variety of interface predictorghis field will be described, focusing
on all aspects of their methodologies, the trairang testing datasets used, and their
reported performances. Thereafter, further disoassiocusing on other themes relating
to interface predictors will take place. These dsstons will focus on advantages and
disadvantages of the described interface predictbesr application in combination
with protein-protein docking, and their limitatioms the context of what the newly
proposed interface predictor (PROTIN_ID) introdudedthis work seeks to address,

including in its application in combination withgtein-protein docking.

1.8.1 Overview of interface prediction approaches

The first protein interface and functional resiguediction method developed in 1996,
known as the Evolutionary Trace method (ET), dsteslutionary conserved surface
residues using multiple sequence alignments (Ligbtet al, 1996a; 1996b). In the ET
method, the initial step is to generate a sequetadity dendrogram from a multiple
sequence alignment. Sequences in a dendrogramagigoped via partition identity

cut-offs (PIC) and separated into sub-groups baseitieir identity to each other. These

sub-group sequences each branch off from a deradrdgnode at a specific PIC. While
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sharing sequence identities to each other, segsienca sub-group may be similar in
function as well. Based on the PIC selected, tlhisva scaling of functional resolution
of entire sequences in a dendrogram through grtugtecing of all sequences. A higher
PIC results in greater functional resolution anckwersa. The next step in this method
is the construction of an evolutionary trace. Thegins with the generation of a
consensus sequence for each sub-group of sequehaeddelineated partition, and
invariant (conserved) residues of a consensus sequae identified. The remainder of
variant residues are designated as neutral. Faipwiis, all consensus sequences for a
given partition are aligned to identify: - 1) iniemt residues conserved across all
consensus sequences, 2) invariant residues tliat ghfresidue type and designated as
class-specific, and finally 3) variant residuesciiding gaps) for aligned positions,
which are highlighted as neutral (Lichtamgeal, 1996a). The evolutionary trace data of
conserved and class-specific residues are mapptxd tba final three-dimensional
structure of the query protein of interest to vimagathe conservation data and interpret
it through the application of residue clusteringa@bushet al, 2002). An extension to
the ET method incorporated the Shannon entropyes(s@e section 3.4.2) and treated
gaps as the 21amino acid (Mihalelet al, 2004). The later iteration of the ET method

outperformed the original implementation.

Jones and Thornton (1997a) developed, SHARRE interface residue predictor for
prediction of protein-protein interfaces in homonérs, hetero-dimers, and antibody-
antigen interactions. In their method they defindace patches for a given protein. A
surface patch is composed of a seed residue amtuithber of neighbouring residues in
close proximity to it. For homo-dimer interactiossirface patches of a certain size are
determined based on a linear correlation betweeteipr size and interface size, which
are both defined in terms of their number of reipecresidues. In contrast hetero-
dimer and antibody-antigen interactions’ surfactlpaize for a given protein is based
on the average size of the interface patch, arslishdetermined from their dataset.
Each surface patch is scored according to predideatures applied, depending on the
type of protein-protein interaction. The score oi#d for each predictive feature is
combined to create a composite score per surfach.pga complimentary work, Jones
and Thornton (1997b) showed that interface propediffered, according to the type of
protein-protein interaction. This is applied by wag groupings of predictive features

used to score surface patches based on protenadtim type (Murakami and Jones,
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2006; Jones and Thornton, 1997b). For homo-dimé&srantions, these predictive
features are accessible surface area, planaribgrugron, hydrophobicity, solvation
potential, and interface residue propensity. Irefetlimer interactions, four features of
the above predictive features are applied to scoréace patches for the receptor
protein known to interact with its smaller ligandotein; only hydrophobicity and
solvation potential are not used. All six predietifeatures are applied to score the
ligand protein of a hetero-dimer interaction’s sgd patches. In antigen interactions
only the interface residue propensity feature isused. When each feature contributing
to the composite score scores highly, a surfacghpatranked high. In their method, the
three highest scoring patches are taken as thé gnedliction. Overall, this method
produced predictions of >70% specificity (see sectB.5.2) on a dataset of 59

complexes (homo- and hetero-complexes).

Another method developed by Landgeafal. (2001) predicts functional residue surface
patches of a protein and, like the ET method abotiézes both three-dimensional
structural and sequence data to generate predicfidnis method utilizes structural data
of a protein of interest and its sequence data (ME#Ar the initial step, surface patches
are generated the same way as the method of Joddharnton (1997a). Residues of a
patch are removed in the global MSA and conneatetbtm a regional MSA. The
regional MSA represents the structural vicinity rekidues that comprise a surface
patch, and it is derived from the global alignmehthe query sequence of interest with
its related sequences. In the subsequent stedsalglad regional sequence similarity
matrices are created by the method, representmgltbal and regional MSAs. These
matrices are compared to determine, if presentdéugee of difference between them.
This establishes if an individual seed surfacedtesiand its structurally neighbouring
residues are more conserved than the protein #ftegerhis procedure is iterated for
all surface patches’ seed residues and their neigiryg residues to determine their
extent of conservation. The final output involveseerting the associated structural
conservation per seed residue scores into Z-scanesthese are mapped back onto the
protein’s surface. This method was tested on asdataf 25 obligate and transient
proteins, 6 proteins that bind to DNA (or RNA), altlproteins with catalytic sites.
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A pioneering method used machine learning for thediption of interface residues
(Zhou and Shan, 2001). In their work Zhou and S{2001) employed PSI-BLAST
position-specific sequence profile data and solvaotessibility data of spatially
contiguous residues at the structure level to trmimeural network for interface
prediction. Their training set used consisted 05 @itotein-protein complexes (552
homo-dimers and 63 hetero-dimers). Moreover, ttesting set was composed of 129
complexes where 117 were hetero-dimers and theimergavere homo-dimers. Zhou
and Shan’s (2001) method, Protein-Protein Intepac8ite Predictor (PPISP), showed
specificity and sensitivity of 70% and 47%, respety (see section 3.5.4). Later
development of this predictor added consensus heeteork prediction to alleviate
over- and under-prediction problems (Chen and Zi®05). Hence known as cons-
PPISP, this later iteration of the method was &dirusing the same predictive
properties) on a much larger dataset (1156 prateains: - 756 homo-dimers and 400
hetero-dimers) and tested on 100 (58 hetero-dilmes 42 homo-dimers) protein
chains, resulting in much improvement interfacedugs prediction performance. This
was exemplified by increased specificity (80%) amhsitivity (51%) values, when
using the testing set. Further testing of cons-PRIB independent validation datasets
of 8 proteins determined by NMR and 68 transierdtgns resulted in accurate
predictions (NMR proteins: 69% specificity and 4&#nsitivity; Transient proteins:
61.4% specificity and 38% sensitivity). Farisedti al., (2002) also used a neural
network for prediction, training it on the sametteas used in the method of Zhou and
Shan (2001). However, they used sequence profilesred from HSSP MSAs. In their
method, the neural network is trained, using tHode-cross validation, on a dataset of
226 hetero-dimers and performed at 72% specifiaity 56% sensitivity. Unlike the
above authors, Ofran and Rost (2003a) used sequ@taeonly and no structural data
for interface prediction. They used protein inteefacomposition by analysing their
spatial proximity to each other at the sequencellew train (using three-fold cross-
validation) a neural network method. Although stuwal input is not utilized by their
method, it is trained on interface residues deteeshithrough a distance cut-off of a set
of 333 protein complexes predicted as transients Dataset may contain obligate
protein complexes due to its predicted nature.dmmarison to this predicted dataset,
an established transient protein dataset (Benchi#xk exists with a lower number
(176) of transient complexes and their unbound gimotonstituents (Hwangt al.,
2010). Ofran and Rost (2007b) further developedr tiethod ISIS (Interaction Site
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Identified from Sequence) by including more pradetproperties in addition to the
current property implemented in their method. Thesed secondary structure and
solvent accessibility data predicted from sequealoee and evolutionary conservation
data derived from PSI-BLAST sequence profile dagairput to ISIS. The updated
method of ISIS was trained (using cross-validatiam) the original dataset and
generated a minimum of one interface residue iprigslictions for more than 90% of
the dataset used, which corresponded to ~ 61% fepiycat 20% sensitivity. The
original implementation of ISIS managed to preditt 62% specificity at a low
sensitivity (0.5%), and this performance enhancén@nISIS is chiefly from the

addition of more predictive properties.

Neuvirth et al. (2004) developed the ProMate predictor, a NaivgeBian technique,
which utilized various extensive descriptors drayvirom both structure and sequence
data of a training set of 57 transient proteins (©ioss-validation) to predict interface
residues. Specifically the method scans the sudéeeprotein, forming circles around
a specific point at a certain radius. Neighbouriegjdues within a circle are analysed in
terms of the subsequent parameters: (a) residusepation derived from the PSI-
BLAST position-specific sequence scoring matrix;) (knowledge-based features
(secondary structural composition, B-factor, anel phesence of water molecules); (c)
and physicochemical conformation (residue propegresitd pairing, residue and atom
type, and residues’ sequence distance from oneharnotThe surface “circles” are
scored according to the above descriptors to daterrtheir probability of being
assigned as interface or not. ProMate produced raiecuypredictions of> 50%
specificity and> 20% sensitivity. A further update to ProMate faetissolely on re-
optimization of the input parameters (via logistiegression) used for prediction,
resulting in an increased number of correct preahet .e. proteins with specificities
50%) for 67% of the dataset for the optimized \@rf ProMate compared to 63% for
the original ProMate (Neuvirtét al, 2007).

Koike and Takagi (2004) used a support vector nmeclf&VM), which is a machine
learning technique, as an interface predictor @sstion 1.7.3.1). Their method was
trained using sequence residue neighbour profgeiwed from a PSI-BLAST position-
specific sequence scoring matrix and structuratuesneighbour profiles based on the

10 closest residues’ spatial distances to formrease patch. In addition, other features
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for training the SVM such as estimated interac8aa ratio (interface residue to entire
protein sequence), spatially contiguous residu&AAand planarity of surface patches
were utilized. Using k-fold cross validation, themethod was trained on 271 and 291
hetero- and homo-complexes, respectively, and mediia performance of 56.1%

specificity and 44.6% sensitivity.

Keil et al.,(2004) developed a predictor, a neural networkiogktto predict functional

residues. In their method, two topographical (gaxdepth and surface topography
index) and three physicochemical (electrostatie@pial, hydrogen bond acceptor and
donor densities, and lipophilicity) predictive pespes were used to train their method
for the purpose of scoring areas of a query prteiarface termed domains. Surface
domain scores are mapped onto a protein’s surtaceidualization. They employed an
extensive dataset composed of 7821 protein strestoound to proteins and peptides,
ligands, and DNA and RNA that were partitioned irttaining and testing sets

composed of 1,241,859 and 13,994 surface doma@spectively. They reported a
sensitivity value of 76% when the top scoring stefalomains were taken as final
prediction for all bimolecular interactions of thedataset. For protein-protein

interactions, 44% sensitivity was obtained whenttyescoring surface domains were

taken as final prediction

Chelliah et al, (2004, 2006) developed the Crescendo method ¢maployed
environment specific substitution tables (ESST),iclvhwere used to discriminate
between structural and functional constraints mlaoa residues in a given protein
structure. Crescendo accepts as input a queryipreteucture along with a MSA
containing the query protein’s sequence with itsoamted homologous sequences,
which may be obtained from known protein structupesnot. The observed residue
substitution pattern for each residue of an MSAugol is compared to the expected
residue substitution pattern, as determined from EHSST. The comparison can be
quantified through a divergence scoree.( Jensen-Shannon divergence) or a
conservation score. The computed scores are ceavertZ-scores and mapped onto
the final three-dimensional structure of the quprgtein of interest where they are
smoothed and contoured. High Z-scoring residueschrstered and all clusters are
ranked by size. The Crescendo method was origiaglplied to representative proteins

of 164 protein families to predict ligand bindiniges and catalytic residues, producing
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on average accurate performance (28% specificily4®86 sensitivity) (Chelliakt al.,
2004). It was later applied for protein-proteineiriice prediction on a dataset of 20
proteins and achieved correct predictions (>50%cifpity) for 85% of the dataset
(Chelliahet al.,, 2006).

PPI-Pred is a method similar in concept to the @énimg SHARP predictor, as it also
analyses surface patches according to predictiopepties (Bradford and Westhead,
2005). The six predictive properties used were enfaion, solvent accessibility,
hydrophobicity, interface residue propensity, elestiatic potential, surface shape index,
and surface shape curvedness. It differs, howavéehat it utilizes this data to train an
SVM algorithm to differentiate between true inténag patches from ROS patches.
PPI-Pred was trained, using leave-one-out crosslatain, on a 180 protein dataset
composed of obligate and transient interaction$-H?&d computes a confidence value
for each patch and ranks them according to theiresc Like the SHARPpredictor, the
top-three ranked patches are taken as the finalighi@n. A correct prediction was
defined as a patch with >50% specificity and >2@s#ivity ranked in the top three
patches. Based on this definition of success, P&d-Rvas able to obtain correct
predictions for 76% of the dataset. Further tesbnga mixed dataset of 47 proteins
(obligates and transients) and a transient datakeéi7 proteins generated correct
predictions for 72% and 53% of the datasets, rés@bge In later work, Bradford and
Westhead (2006) trained a naive Bayesian classifipredict protein interface patches
using the same predictive properties applied fdrFBd. They used the same previous
dataset, using leave-one-out cross validation faininhg, and the same criteria for
success. This new predictor obtained 82% corresttiptions (within top-three patches)
for the dataset, performing better than PPI-Préds improvement in performance may
be attributed to the lesser degree of data ovangitoy the naive Bayesian classifier
(Bradford and Westhead, 2006).

An SVM-based predictor used evolutionary conseovatates (analysed from a MSA)
and the residue type frequencies for a seed surisgidue and its closest 14 nearest
neighbouring residues for training (Bordner and dyamn, 2005). The residue type
frequencies are determined from the residue typguincies present in a MSAS
columns that correspond to the 15 spatially nean@$ace residues. This is iterated for

all surface residues and their nearest-neighbourse sall surface residues are
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considered seed residues. The predictor was traone@32 protein complexes (518
homo-dimers and 114 hetero-dimers), using five-twtass-validation, which resulted in
performance specificity and sensitivity values 4¥3and 64%, respectively. In addition
it was also tested on 43 transient hetero-dimeryzing accurate predictions (22%

specificity and 67% sensitivity values).

An interesting method, developed by Hoskétsal, (2006), used secondary structural
data to predict potentially interacting beta-stanfla query protein as an initial step for
prediction of interacting residues. This method rabterized beta-strands by their
solvent accessibility, length and orientation (faelaor anti-parallel), strand type and
localization (isolated or sheet; central or edde}a-bulge occurrence, protective loops
(PL) presence, and residue propensity to derivesrub classify beta-strands into
interacting and non-interacting strands. The ne sf this method is prediction at the
residue-level, through scoring surface residuesradang to hydrophobicity and solvent
accessibility that is based on secondary structesdue type and atom type (main-
chain; polar- and non-polar side-chain). If theidess are found in potentially
interacting beta-strands in the first step, thepPesence is taken into account in the
score too. The final step is the mapping of scoesidues onto the three-dimensional
structure of a protein followed by generating caomso This method was developed
using a dataset of 467 proteins and tested onasetadf 77 proteins, resulting in correct
predictions (>50% specificity) for 79% of the irfeases of the testing dataset (Hoskins
et al, 2006).

An interesting combination of an SVM with interfapeedictive properties augmented
with structural conservation displayed enhancedlipten performance compared to
not incorporating structural conservation in SVMining (Chunget al, 2006).
Structural conservation data is mined from a midtigtructure alignment (MSA"),
which the predictor generates and scores via atatal conservation score. The
structural conservation score accounts for diswrimetween residues at an aligned
position of an MSA™® while weighting them by their mutability, as defih by a
mutation data matrix. A novel step follows wherelegenerated conservation score per
MSAS"™ position is additionally weighted by normalizedfdtors obtained from the
query structure. This results in rigid areas ofd@ss in a query protein receiving higher

structural conservation score values than flexibfgons of residues of a query protein
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that cause poor alignment of M8A regions. Along with structural conservation,
which distinguishes this method from those desdritteus far, Chunget al, (2006)
trained their SVM driven method using PSI-BLAST ipiog-specific sequence profile
data and solvent accessibility data of spatialligimeouring residues at the structure
level. Predicted residues are finally clusteredhmnquery protein’s structure. Chuag
al., (2006) trained their method on a dataset of I23%ro-complexes, using three-fold
cross-validation. The method’s specificity and #inty values were 50% and 67.3%,
respectively. Without structural conservation dateeir method generates a lower
sensitivity (59.7%) at 50% specificity using thenaning predictive properties to train
their SVM, highlighting the enhanced prediction fpenance derived from structural

conservation data.

Wanget al, (2006) utilized sequence profile data from H3&FAs like Fariselliet al,
(2002), but also include evolutionary conservatiata derived from phylogenetic tree
analysis based on the methodology of the ET methbdse predictive parameters are
obtained for a seed residue and its structuratluesneighbours, allowing an SVM to be
trained on a dataset of 69 hetero-dimers. Leavesaheross validation analysis was
applied, resulting in accurate performance (49.p#cHicity, 66.3% sensitivity, 65.4%
accuracy, and 0.297 MCC; see sections 3.5.1 and)3.5

The PINUP (Protein Interface residue Prediction¢riiace residue predictor combines
residue conservation, interface residue propeneitgt,an energy score to form a three-
part empirical score function. It is the first pidr to utilize side-chain energy
calculation to distinguish interface residues witgher side-chain energies than side-
chains of ROS residues (Liaegal, 2006). The side-chain energy score is compoked 0
knowledge-based and energy terms optimized by thspective weights. PSI-BLAST
sequence profile data were used to compute théuesionservation term. The residue
propensity term defines the contribution of res&lte protein interfaces normalized by
their contribution to the ROS of proteins and wegghby their accessible surface areas
in interface and ROS areas. PINUP was trained set ®f 57 transient proteins, using
leave-one-out cross validation, and produced 44specificity and 42.2% sensitivity
prediction performance values. PINUP was testahéuron an independent dataset of
68 transient proteins, resulting in 29.4% spedifieind 30.5% sensitivity values. The

PINUP authors noted that the independent testingsdahad binding interfaces less
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conserved than those in the training set, which h@ase contributed to the reduction in
PINUP'’s prediction performance on the independeataskt.

de Vrieset al, (2006) developed a method, WHISCY (WHat Inforioratdoes Surface
Conservation Yield?), that extracts evolutionarysarvation data from a HSSP MSA
through the use of a mutation data matrix-basedugwoary conservation score. All
solvent accessible residues of a protein are asgigonservation scores weighted by
the residues’ interface propensities and mappe#l tzathe protein surface. Following
this, closely proximal surface residues are scdrmgtier than isolated residues by a
smoothing function. In the last step, high scorgugfaces residues are predicted as
interface residues. WHISCY was developed usingsg#saof 57 (developmental) and
38 (testing) transient proteins, respectively. pexformance on the developmental
dataset was 33% specificity and 30% sensitivitye performance values of WHISCY

evaluated on the test dataset were 40.8% spegifind 26.7% sensitivity.

Interface residues are solvent accessible in anumbprotein and buried upon binding.
Methods designed for predicting solvent accessjbdf residues from sequence alone
predict interface residues as buried (Porollo argllél 2007). This observation has
been exploited as a novel interface predictivegéirprint’ in the SPPIDER predictor
(Solvent accessibility-based Protein-Protein Irdéoa sites IDEntification and
Recognition). The difference between solvent acbaig calculated from an unbound
structure and predicted solvent accessibility freequence alone is computed and used
as an interface residue fingerprint (Porollo andl&ée2007). This novel fingerprint and
various other structural and sequence-related ¢ireeli features were applied. The
sequence-based features are MSA-derived evolutiarmarservation using the Shannon
entropy and PSI-BLAST sequence profiles, and resifieatures (side-chain size,
residue type and frequency, charge and hydrophgpidihe structure-based features
employed were residue contact numbers and hydrgpetinstants. All predictive
features were applied to train SPPIDER, which rearal network-based method, via
k-fold cross validation on a training set of 43®teins (homo- and heterocomplexes).
In addition a separate independent dataset of hdth@- and heterocomplexes) was
used for validation. Overall, the authors foundtti®PPIDER achieved accurate
prediction performance for the testing and (63.78écsicity and 60.3% sensitivity

values) and training sets (67% specificity and %2 Sensitivity values). In addition,
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they showed that minus the novel solvent accegsgilithgerprint, methods utilizing the

other predictive features have less effective ptedi performance (Matthews
correlation coefficient- MCC of ~ 0.3) relative t8PPIDER (> 0.42 MCOC),

underscoring the usefulness of this novel fingatpriFinally, further testing of

SPPIDER on a dataset of transient proteins (43fades) generated 47% specificity
and 43% sensitivity.

HotPatch generates patches for high scoring resitlweugh clustering based on spatial
proximity and score (Pettigt al, 2007). The predictive structural properties ufed
scoring individual residues are concavity, surfamgghness, electrostatic charge and
potential. Predicted patches are assigned confedealcies indicating their likelihood of
functional importance. HotPatch, which is neuratwoek-based, was trained (using
jack-knifing) on a dataset of 618 varied proteiteractions, including protein-protein

interactions. The performance of HotPatch w88% specificity.

Another predictor using structural predictive pna@s is InterProSurf (Negi and

Braun, 2007). Interface residue propensity, defiasdthe contribution of a specific

residue type in an interface normalized by thedwess contribution to the entire surface
of a protein, and solvent accessibility, were uagdliscriminative parameters. Given a
query protein, InterProSurf generates surface etasbr alternatively the neighbour
density for each surface residue to form patchdsckéver surface partitioning method
is applied, the clusters (or patches) producedsaceed according to the predictive
properties applied in the predictor and rankeddmyes The predictor was trained on 72
protein complexes and independently validated oprdiein complexes, achieving an
accuracy value of ~70% (for both datasets) by usgither surface partitioning

technique.

Konc and Jane&i(2007) used structural conservation data for ptemi binding sites.
In their method a query protein with a known partpsotein is compared to related
proteins through structural alignment to identifye tmost conserved surface region
between the query protein and its related protdihgs conserved site is isolated from
the first query protein and is compared to the sdaquery protein’s surface to find the
best match on its surface using distance matrioessanilarity of physical chemical

features of the surface atoms. The best matchirfgcaufrom the second query protein
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Is predicted as its binding site. The two surfatesgsolated from both query chains are
taken as the final prediction. This method was tger using a total of 8 proteins (6
obligate hetero-and homo-dimers and 2 transie@sgrall, the method generated ~

42% specificity and ~ 46.6% sensitivity values.

The PIER (Protein IntErface Recognition) predictases structural predictive
discriminators (Kufareveet al, 2007). The structural properties are derivednfro
statistical analyses of structures at atomic reégmiuto generate atom groups with
significant predictive discrimination. This strucl data is coupled with computed
solvent accessibility for atom groups. PIER inljiayenerates the solvent accessible
surface of a query protein and extends it by ah&mt3A. This is followed by the
generation of uniformly spaced surface points oe phrotein surface. The local
neighbourhood of solvent accessible atoms withgpecific radius of a surface point
are determined, creating surface patches. A surfateh is scored based on the
structural discriminators utilized by PIER. Finallye scores are assigned to surface
residues. Surface residues above a specific cureffpredicted as interface residues.
PIER was trained (using three-fold cross validgtion a dataset of 748 proteins
composed of permanent and transient hetero- ando{foomplexes, producing
predictions at 60% specificity and 50% sensitiviialues. Additionally, two
independent validation datasets were used to g&lg&'’s performance. The first
dataset like the training set is mixed and composédobligate and transient
interactions. For this dataset the results werdaino those obtained using the training
set (61.8% specificity and 50% sensitivity valued)e second dataset was composed
solely of transient interactions (340 interfacesaoted from 91 transient complexes).
PIER generated predictions of reasonable accura&db% specificity at 50%
sensitivity) for ~82% of the dataset (Kufareataal, 2007).
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1.9 Advantages and disadvantages of previous proteprotein interface

predictors

Tables A-1 and A-2 of the Appendix summarize anduite details regarding the
advantages (in green) and drawbacks (in red) optbdictors discussed. The following
categories are examined: - (i) the dataset estentitized for predictor development
(tables A-1 and A-2); (ii) the training of predicso(Machine learning predictors only)
and the application of benchmarking (table A-2)i) (ihe use of structural and/or
sequence data and the miscellaneous advantageslisadlantages of a predictor,

including the availability of a predictor webserwgrdownload (table A-2).

1.9.1 Protein dataset essentials: protein compyges’ influence on predictor

performance

Table A-1 shows the developmental (training/tegtisugd independent testing datasets
used for the interface predictors with their parfance measures for the specific dataset
used. It can be seen that most interface predi¢i®¥ are trained and validated on
mixed datasets of different protein complex intéaactypes. These mixed datasets are
composed mainly of obligate (or permanent) andsigart complexes (see section 1.3).
A few methods are trained and tested on transmmptexes in comparison. The protein
complex interaction types contained in those dédadidfer in terms of their interface
characteristics (Ofran and Rost, 2003b). For irtgamterface size, hydrophobicity,
and binding affinity are more prominent in obligatemplexes than transient complexes
(see section 1.4). In addition, obligate interfac@chibit a strong evolutionary
conservation signal and thus are more conservet tthasient interfaces (Dest al,
2010; Bradford and Westhead, 2006; Mintseris andg)/8005a; Caffrewt al, 2004).
Moreover, obligate proteins cannot exist in theaumad form, as they are unstable. In
the context of ‘blindly’ predicting unknown intedes their ‘prediction’ as part of mixed
datasets is a non-biologically relevant problentcabse they only exist in the bound
form in a complex. A more interesting and motivgtohallenge is to solve the complex

of two unbound transient proteins through the dichterface prediction. This scenario
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would be relevant to a biologist intent on detelimgran unknown complex for proteins
in the unbound form that are known to interactedestingly, computational methods
have been developed to distinguish between obligaid transient interaction
complexes, performing accurately in their predicsiqAziz et al, 2011; Zhuet al,
2006). These studies highlighted the differencesvéen obligate and transient
interfaces, which were utilized successfully inddcéon for a biologically relevant
problem in structural biology of distinguishing tween obligate and transient
interactions. As such, it would seem that obligateractions are more suited for the
protein complex type discrimination problem, whrelguires as input a protein complex
for testing, rather than the interface predictiomhem that requires monomeric
(transient) proteins. Furthermore, interface predgc are increasingly utilized with
protein-protein docking to predict the complex wfottransient proteins known to
interact (see section 1.10). Obligate proteinsatcenist in the unbound form and hence
generating interface prediction data for them asidgithem in protein-protein docking

studies to dock obligate proteins is not biolodicaleaningful.

The differences of interface features results icmiower interface prediction difficulty
for obligate interfaces than transient ones, inftieg interface residue prediction
performance. A consequence of this is that a iaterpredictor developed and validated
using protein complex mixed datasets primarily ¢stitgy of obligate (or permanent)
interfaces will perform better (higher specificignd sensitivity) in general than a
predictor solely trained and validated on transietdrfaces because these interfaces are
easier to predict. Indeed, it can be seen that ftwenoverall 15 predictors trained on
mixed datasets, 6 of them were also independerdlidated using transient only
datasets or mixed datasets and have specificitiésansitivities available (see table A-
1). It can be observed that 5 predictors (cons-PPIR®I-Pred, SPPIDER, PIER, and
Bradford and Westhead, 2006’s predictor) perforntelbeon mixed (developmental
and/or independent) datasets then transient onlasets (developmental and/or
independent) overall. An example of this is SPPIDERich performs better in
specificity (+20%) and sensitivity (+10%) for itsixad developmental dataset than its
transient only independent dataset. The sixth pted{Bordner and Abagyan (2005))
performed better for obligate complex types thangrent ones. Although this predictor
had similar sensitivities for both obligate andnsi@nt datasets, the specificity

performance indicates much more accurate predititor obligate proteins. In
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summary, including obligate complexes in trainingd aesting datasets boosts the
performance of a predictor and this explains whadpators trained solely on transient
proteins have lower reported performances (ex. FMbd WHISCY) in comparison to
those trained on mixed datasets (ex. SPPIDER).

1.9.2 Protein dataset essentials: bound vs. unbdtansient proteins in datasets

Regarding dataset essentials, most predictorsdetedets composed of bound transient
protein-protein complexes where each protein cladira complex is extracted. In
contrast, an unbound transient protein refers tandependently determined protein
monomer not in a complex with another protein. Bbdransient proteins used for
predictor development and testing may introducemitdl bias by either influencing the
interface residue predictive properties derived poediction or artificially boosting
prediction performance of a predictor when usingirftb models for testing and
performance assessment. For example, a prediebutifizes solvent accessibility data
of bound interface residues may be using a biasegpepy as it is linked to
conformation change of a protein. It would be mmeal to utilize interface residue
solvent accessibility data from unbound modelsrtmtate a blind prediction setting, as
interface residues are not in a buried and boutetanting pose. Another example of
this is the use of B-factors obtained for interfaesidues as predictive discriminators
for prediction. For the method of Chuegal (2006) bound models are used to derive
this data. Although interface residues have lowdadors than ROS residues in the
unbound form, in bound models their B-factor valaes lower (Neuvirtlet al, (2004).
This may result in optimistic performance of a neethusing such data derived from
bound models (and not unbound models) since irdenfasidues have lower B-factors
due to being in a ‘locked’ binding pose. Indeedrdlo and Meller (2007) showed that
incorporating B-factor data in SPPIDER and testiran a dataset of 21 bound proteins
resulted in better performance on the bound mo(®s5% specificity and 37.5%
sensitivity) in comparison to SPPIDER’s performange their unbound protein
counterparts (59.2% specificity and 31.4% sensyfiviConsequently, this possible bias
of deriving B-factors data from bound models majuence the structural conservation
predictive feature implemented in the method of i@het al, (2006) where each
conservation score assigned to a residue is naethbased on the ‘flexibility’ of the
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region in which it is found. The effect is highenservation scores for rigid residues
than flexible ones, leading to optimistically refgal performance values. An additional
example is the use of bound model data in a piedictvorkflow, potentially
introducing an unintended bias. This is manifestethe method of Konc and Jan&zi
(2007), which was tested using a bound input pnoeitracted’ from a known complex
to predict the binding site of the input proteipartner, which is biased developmental
testing of their method. This can be avoided elytiterough the use of an unbound
protein model as input. Furthermore, during thetfstep of its prediction protocol
(structural alignment between the query proteinhwis related proteins), a closer
examination of the related proteins used in thep sevealed that, for some instances,
the related bound proteins were identical to thpaiirprotein and the protein partner for
which predictions of their binding surfaces wereigtt. Such an error in this method
could be avoided through use of a filtering heugiptior to performing the first step in
this method to remove identical ‘related’ (bound)tpins to the query protein.

Any potential bias introduced in the extracted ‘bdunterface predictive features (ex.
solvent accessibility or B-factor data) is acceteday including spatial contiguity data
of interface residue neighbours in the bound foon tfaining a method. Interface
residues are ‘closer’ during complexation than tiveyld otherwise be in the unbound
and uncomplexed form. This also highlights the dipg& of residue spatial proximity
with the conformational configuration of a protei®imilarly, biased predictive
properties may indirectly affect other predictiveogerties not linked directly to
conformational change of a protein used (ex. sexpigmofile data). For example, a
predictor, which clusters its predicted residuegeaerate clusters, and is validated on
bound proteins, may result in the enhancement efetfiect of clustering and may
artificially boost the effect of sequence profilatal This would be due to bound
interface residues’ closer proximity to each otltar example, two highly conserved
residues may be in closer spatial contiguity atitbend structural level, but not at the
unbound structural level to be included in a clustberefore a potential consequence is
that a ‘bound cluster’ has a stronger conservasignal then the ‘unbound’ cluster,

which may be lacking some of the conserved resiguesent in the ‘bound’ cluster.
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Zhou and Shan (2005; 2001) tested their PPSIP giozddn the effect of unbound vs.
bound change on a dataset of 35 unbound transiesteips and their bound
counterparts. They did not find a difference betwde 35 protein samples in overall
specificity (bound 69% vs. unbound 70%) and cornetuthat their predictor performed
as accurately on unbound models as bound modekddiiion, cons-PPISP was also
tested on Benchmark 1.0 bound and unbound modeldyuging slightly lower unbound
specificity (61.4%) and sensitivity (38%) valuesatize to the bound models (63.6%
specificity and 39% sensitivity) (Chen and Zhou0Q20Chenet al, 2003a). Also,
Bradford and Westhead (2005) tested PPI-Pred omadl dataset of 10 unbound models
with their bound chain equivalents. They achievadcess for 9 unbound models (>
50% sensitivity). However, all these analyses ysetkin datasets composed mainly of
small-induced fit conformational changes duringt@iro complexation and, in addition,
focused on a specific prediction setting. For examfihe 10 unbound model dataset
used by Bradford and Westhead (2005) was composadlynof the ‘rigid-body’
category ie. have minimal conformational change) as categoribgyd docking
difficulty. This may have been the reason thatrtte¢hods’ performance was similar on
bound and unbound models for transient proteinghefr datasets due to lack of
conformational differences on the dataset used Hey ¢ons-PPISP and PPI-Pred
predictors. The analysis on unbound vs. bound igahsodels was not performed at a
‘holistic’ performance level, as offered through ®Canalysis. Rather a specific
prediction setting was used for the previous ptedsc Using ROC analysis facilitates
an overall representation of method performancallgtossible predictor performance
settings. The previous authors have not presehisdrt their papers when examining
bound vs. unbound performance. Utilizing ROC analys/ these developers would
have provided complete predictor performance witllo& potential bias of using only a
single predictor setting (without the knowledgepoédictor performance at alternative

settings) for the specific testing of unbound vaurd performance differences.

Later work by de Vries and Bonvin (2011a) examipeetlictor (for example WHISCY,
SPPIDER, and PIER) performances on unbound vs. dhaooodel prediction, using
Benchmark 2.0 proteins (Mintseret al, 2005b). ROC-like analysis (specificity vs.
sensitivity plots) was performed to examine all gk scoring cut-offs for the
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predictors. Even with small conformational changesformance differed in favour of
bound models for the majority of predictors. Forample, performance was better
overall for PIER on bound models. Additionally, apecific sensitivity ranges
(approximately< 45%), WHISCY performed better on bound modelsoABPPIDER
performed better on bound models than unbound reodelapproximately< 20%
sensitivity. This differs from earlier work perfoed using SPIDDER on 21 bound vs.
unbound models, which found only small differena@sSPPIDER’s performance on
both datasets (Porollo and Meller, 2007). In gdndfre findings of de Vries and
Bonvin (2011a) suggest that interface predictordop@ better on bound models at
specific or all sensitivity ranges. In their wotkey pursue training and testing, using
explicitly unbound models derived from Benchmark, 2o develop their consensus
predictor, composed of individual predictors, footein-protein docking (de Vries and
Bonvin, 2011a).

Generally, interface predictive properties deriiemm bound models may introduce
bias especially for the properties influenced byfoomational changes. In addition
using bound models may result in higher confidemrcea predictor’s performance
during testing (Porollo and Meller, 2007). Thessadvantages are avoided when using
unbound models to derive predictive properties ordtraining and validation of a
predictor. An examination of the predictors in T&ll-1 shows that the majority were
trained and tested on bound models. Only a few usddund models. Additionally,
predictors are increasingly utilized in dockinggdeelow) of unbound proteins known
to interact in an attempt to predict their finahgaexed configuration. In this regard,
bound docking has minimal significance from a bgidal perspective, and recent
development of a consensus predictor is aligned thi¢ target of unbound (and blind)
docking through generating ‘unbound’ docking coastis for data-driven docking (de
Vries and Bonvin, 2011a).

1.9.3 Protein dataset essentials: Crystallization @ntibody-antigen interactions

In some datasets, non-biological interactions adusecrystal packing interactions are

not omitted. For instance, Zhou and Shan (2001)ndidomit such complexes due to
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the lower numbers of dimer interactions in the PiDBallow sufficient complexes for
training their PPISP predictor. They used a filbérinterface size (> 20 residues per
protein) to select for large ‘interfaces’, arguithgt such crystal packing binding sites
are stabilized similarly to other dimer complexesaisoluble environment. The use of
non-biologically relevant interactions was alsosagr in the training and validation sets
for their cons-PPISP predictor (Chen and Zhou, 2008ystal packing interactions are
non-specific and do not have a biological functoupled with them such that they are
not subjected to evolutionary pressures associatgtth biologically relevant
interactions. These non-relevant biological comegexvould not occur in a living
organism (Zhuet al, 2006). While Zhou and Shan (2001) use interfsice as a
discriminator to filter some non-specific crystatdractions from their dataset, this sole
criterion may not be enough, as non-relevant ictemas may have large binding sites
(Bahaduret al, 2004). In addition, crystal packing ‘interfaces’e not conserved,
having no different conservation as ROS residues] this is not the case for
biologically relevant interactions that have moonserved interfaces relative to their
ROS residues (Deyt al, 2010). For a method like cons-PPISP that rebes
conservation data as an interface predictive ptg@anong others, it is risky to include
such complexes in their training and validationadats. The use of non-biologically
relevant complexes (homo-dimers) in training arsding a predictor is not justified and
represents a disadvantage. As a consequence, tgtenmemove such complexes from
a dataset may involve using Swiss-Prot annotati@tks as was done by Bordner and
Abagyan (2005) (Magrane and UniProt Consortium,1201

Although the biological function of an antibodyimgeraction with its antigen, this is not
reciprocated by antigens’ biological functions totaél binding to antibodies. This
makes their interfaces difficult to predict, asytlu® not follow the evolutionary model
that assumes evolution of interfaces of two pratdlmat have overlapping biological
functions (de Vries and Bonvin, 2008; Kufares@al, 2007; Zhou and Qin, 2007).
Antibody-antigen complexes mostly form through tbemplementary determining
regions (CDRSs) identifiable from their sequenceialality relative to other sequence
regions of an antibody in a multiple sequence atignt. Antigens, through antibody
maturation, can have a number of epitopes for adjibinteraction and these may
overlap with other interface regions of other pirtge For predictors implementing

evolutionary conservation data in their predictpyotocol, this makes such interactions
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unsuitable for prediction purposes. This is in casitto other protein-protein complexes
used in training and validation datasets, whichelftwo-way’ interactions coming from
both binding partners and thus have an evolutiomaogel of overlapping biological
functions, facilitating the use of evolutionary eervation data to identify their
interfaces with other interface predictive propsti Therefore, the inclusion of
antibody-antigen complexes in a dataset introdacesnflicting evolutionary model of
interaction compared to that from other proteint@iro complexes. Other authors have
advised in the exclusion of antibody-antigen comedefrom datasets (de Vries and
Bonvin, 2008; Kufarevaet al, 2007; Zhou and Qin, 2007; Liareg al, 2006). For
example, the authors of PINUP and Crescendo exdlaméibody-antigen complexes
from their datasets, as their interactions weredesteloped under evolutionary pressure
during long time spans, but under somatic cell tta that occur swiftly, making
such complexes not appropriate for prediction bgirtlpredictors since they utilize
evolutionary conservation for prediction (Liag al, 2006; Chelliahet al, 2004,
2006).

1.9.4 The training of predictors, their benchmatkio others, and their use of
structural and/or sequence data

Like all predictors, machine learning-based prextictare trained on datasets of known
interface and ROS residues. Since the proportiolrROS residues is greater than
interface residues, the removal of some ROS residigan a dataset during cross-
validation results in a decrease of FRg.(ROS residues), biasedly affecting the
accuracy measure. In a blind setting the interfaod ROS residues are undetermined
(Bordner and Abagyan, 2005). Only three predictbese this disadvantage; the

majority of predictors do not reduce the numbeROIS residues (see Table A-2).

It is important to benchmark a new predictor tosérg predictors to ascertain its
performance relative to theirs. This becomes ingmartwhen a predictor aims to
introduce, for instance, new algorithmic method@sego improve prediction efficacy
and/or applies novel interface predictive featurembined with previous features to
predict interface residues. A small number of s benchmark directly to other
predictors, whereas a larger number do not bendhrdaectly, and with direct
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benchmarking, all standard performance metricsbeansed to gauge different aspects
of each benchmarked predictors performance. Intiadgdithe majority of predictors
utilized interface predictive properties from bathucture and sequence data, and eight
other methods either are sequence- or structuredba¢o given interface predictive
property can unequivocally be used to absolutedgliot interface residues amongst all
the surface residues. However, utilizing multipledctive properties from structure
and sequence sources of data in a predictor pro@dgeater advantage than predictors

that depend exclusively on either source of data.

Additionally, it is more advantageous to utilizes tlatest sequence data with structural
data for a predictor. Some predictors do not w@ilihe latest sequence data. As an
example, there are some predictors that utilizeisece datai.e. MSAS) obtained from
the HSSP database (Dodgeal, 1998). The HSSP database is not updated coryplete
instead only HSSP MSAs older than 6 months aretepda a weekly cycle (Joostet

al., 2010). Consequently, HSSP alignments under 6tmsooid, which do not contain
the latest sequence data, are present in the H&38Pade. This means a predictor may
not have access to latest sequence data for a greeliction. Interestingly, a predictor
that relies on HSSP alignments, and is applied dnegpte predictions for newly
deposited structures in the PDB, would not be ablgenerate a prediction straight
away. This is because newly deposited proteins db have HSSP alignments

immediately generated for them in the HSSP database

1.9.5 The miscellaneous advantages and disadvastag@edictors and their

availability

There were specific advantages or drawbacks unigus shared by predictors (see
Miscellaneous column of Table A-2). As shown inl¢éaB-2, there were a number of
predictors that utilized manually curated datasetsjding the pitfalls of crystallization
packing interactions (ex. PPI-Pred). Also, in sorases antibody-antigen complexes
were excluded (ex. ProMate, WHISCY, and PIER), sthih others they were present
(ex. SHARPE). In summary, the use of manually curated datasepsesents an
advantage in relation to other predictors that wenainly developed using

automatically generated datasets and in a spécsiitance using 77% of PDB-1999 (ex.
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Keil et al, 2004). The size of the dataset for testing $® amportant. Using a small
dataset would not be a robust means of testing@igior’s performance. For example,
Konc and Jane&i(2007) used 8 proteins to test their method. lulbdnave been more
appropriate to test their method using manuallyi@d datasets like Benchmark 2.0 or
those used by earlier predictors to systemati@itbluate their predictor. Likewise, it is
important to remove redundancy in a dataset togmiebias in terms of artificially high
confidence in prediction performance. A useful eghams illustrated using the method
of Fariselliet al. (2002) where originally a dataset of 452 proteims used to validate
it. This dataset was not checked for redundancyeWhedundancy filtering was
applied, only 59 chains were found to be non-redab@orollo and Meller, 2007). The
testing of Fariselliet al. (2002)'s method on both datasets, using 10-folds<r
validation, resulted in marked differences in perfance. Specifically, using the
redundant dataset this predictor yielded a 0.43 Mi@ontrast, a much lower MCC
value of 0.28 was obtained when using the non-reanindataset (Porollo and Meller,
2007). Thus, high redundancy in a dataset affdotsperformance evaluation of a

predictor and should be filtered.

Generated predictions are compared, via a perfarenaretric, to the actual number of
interface and ROS residues, which are determinedh fexperimentally available
complexes (see section 3.5). In order to evaluattbpnance of a given predictor, most
predictors use the actual interface and ROS resmumebers determined beforehand
prior to prediction. This data would be used toeaisin their proportions in all
predictions for proteins in a dataset. If ROSdess are present in predictions they are
classed as false positives (FPs). Likewise allriate residues correctly predicted
would be classed as true positives (TPs). Only pnedictors do not adhere to this
performance evaluation practice and convert sorse faositives into ‘true positives’
based on their proximity to true positives presantheir predictions (ex. cons-PPISP
and Chunget al, 2006). If such FP residues are in reality TRstthey should not be
included initially as ROS residues prior to preiictto avoid introducing bias in
performance assessmenmt(increase the specificity value). The initial sejian of
surface residues into interface and ROS residues for prediction must remain fixed
to enable unbiased performance evaluation. The ession of some FPs into TPs,
which follows after a prediction, is biased and &tsotheir predictor’'s specificity
performance. An example of this was the NMR datasetl to independently validate
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cons-PPISP; the specificity differed when accounfor TPs only (38.5%) and when
accounting for TPs and FPs (converted to TPs) aseclproximity (69%) at 47%

sensitivity.

There are unique drawbacks to certain predictdre.methods of Farisekit al, (2002)
and Wanget al, (2006) both used permissive interface residugfinitions (12 A
between alpha-Carbons of opposing protein chairig}. resulted in 40% and 34.8% of
their surface residues designated as interfaceduesi for the former and latter
predictors. This makes it easier to predict intfaesidues and improves predictor
performance (Chen and Zhou, 2005). In addition, wties is coupled with a highly
redundant dataset as used by Farisllial, (2002); the outcome is an optimistic

performance of their predictor (72% specificity &6%6 sensitivity).

Some predictors have notable advantageous feafaresxample the ProMate predictor
is designed to be able to accept potentially neerfiace predictive properties as input
(Neuvirthet al, 2007). Noteworthy predictive properties like SPIPR’s novel solvent
accessibility fingerprint and the utilization ofwgttural conservation in the predictor of
Chunget al, (2006) demonstrate advantageous features umigtheese predictors that
improve the predictors’ performance. All predictolesveloped were tested on datasets
where an experimentally determined complex is knowhis means the interface
residues can be determined prior to testing. Ofswmost proteins bind to more than
one partner and such complexes are not represémted dataset for training and
validation of a predictor. Therefore these unrepmésd interfaces are considered ROS
residues. In their valuable study, Porollo and Bte(2007) incorporate other known
interface residues for each protein of their ddataseluding the ‘actual’ interface of the
specific experimentally determined complex of theéiataset. This approach for
developing a predictor has a further advantagéan potential false positives, which
are in fact alternative interface residues, aradmgand assigned as TPs when correctly
predicted. This prevents decreases in predictocifspey if they are not taken into
account. Over half of the predictors are availdblasers as webservers (or downloads;
see table A-2). This is beneficial and a user-fiigrservice. Also, it is useful for
benchmarking of new predictors and fosters furtherelopment, as demonstrated in
the recent progress of consensus prediction cordbamin protein-protein docking (de
Vries and Bonvin, 2011a; Qin and Zhou, 2007a).
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1.10 The use of interface predictors in combinatiomwith protein-protein docking

Interface residue predictors have been combinech vgtotein-protein docking
approaches to predict the binding poses of protéimewn to interact. This is
accomplished directly to drive docking samplingrbglucing the sampling search space
(i.e. front-end docking), or indirectly by re-ranking dked models via scoring.€.
back-end docking). An early implementation of ateiface residue predictor combined
with back-end docking was achieved using an ETbasethod (Aloyet al, 2001).
Five enzyme-inhibitor complexes’ unbound proteireyevdocked using FTDock (Gabb
et al, 1997). The resulting docked poses were retaihadyrotein’s surface was within
a close distance to a functional residue predictbtained from the predictor for its
partner protein, while all other complexes notifiitig this criterion were disregarded.
It was shown that the prediction-based distancestcaimt data filter improved the
ranking of near-native models (ranked within topr@ddels) compared to no filtering
applied (ranked 87 and above). Specifically, four complexes resuitedhear-native
models found within the top-ten docking predictiohmsthe CAPRI competition, Ben-
Zeevet al, (2003) utilized ET method prediction data innfr@nd docking to predict
the best putative docking model of the HPR kina&RHomplex using its unbound
proteins. A model of acceptable quality was gemeraising MolFit (Heifetzet al,
2002). Zhu and Tytgat (2004) used the ET methopréalict binding sites from Hsp90
and p23 proteins. They mapped this data to theraeked docked model for the two
proteins generated using BIiGGER (Paletal, 2000). It was observed that they were
part of the modelled complex’s putative interfaseiggesting a possibly putative
biologically relevant complex (Zhu and Tytgat, 2D0&ottschalket al, (2004) used
ProMate prediction data as part of a scoring fumcthat computes the tightness of fit
for the potential interfacial sites on docked medeh benchmark of 21 enzyme-
inhibitor complexes was used for docking unbourmtgins using FTDock. Using their
scoring function, a 77% success rate was achiemeddmplexes of their benchmark.
van Dijk et al, (2005b) combined PPISP prediction data and @&xeetal data for 8
CAPRI targets during the CAPRI competition to dritaeir docking using HADDOCK
(Dominguezet al, 2003). Acceptable or above models were obtafoedive targets.
Specifically, 3 medium and 2 high quality modelsrevgenerated. PPISP contributed
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34% specificities and 32% sensitivities for thegéds’ predictions. Tresst al, (2005)
applied prediction data from the method of Fansetlal, (2002) with data derived
from other experimental and theoretical sourcesinduthe CAPRI competition, to
identify near-native models. Docked models’ putatinterfaces were examined and
filtered according to overlap to the prediction angberimental data. 7 CAPRI targets
were docked using Hex and GRAMM, which resultedacteptable models being
produced for 4 CAPRI targets based on their filigrstrategy. de Vriest al, (2006)
applied WHISCY prediction data as restraints te@docking of unbound proteins for
25 complexes obtained from Benchmark 2.0. Using #pproach, successful results
were generated for 48% of their dataset comparedaltoinitio docking using
HADDOCK (0% success). Combining WHISCY and ProMatediction data, the
number of the successful cases increased to 64ealataset. Crescendo predictions
have been applied for back-end docking (Chelkdhal, 2006). Docked solutions
generated by pyDock were scored using distanceanetst derived from Crescendo
prediction data. This protocol produced near-natimedels ranked in the top-20
docking solutions for 80% of the 10 complex dockidgtaset (7 bound-unbound
docking cases, 1 unbound-unbound cases, and 2 {mumdl cases). This protocol was
found to be superior to the native pyDock energgrescused for ranking models.
Furthermore, Crescendo prediction data was alsbeapi drive front-end docking of
four protein complexes (one was bound-unbound daggkivhile the rest were in the
unbound form), using HADDOCK and generated neamaatomplexes ranked highly
(1% for three cases and4or one case). Kanamoet al, (2007) developed a docking
method that applies shape complementarity weighbed residue evolutionary
conservation retrieved from the ET method to penfolocking. This method was used
to dock seven CAPRI targets and it produced nevenenodels for 5 targets. Qin and
Zhou (2007b) combined biochemical data with prediictdata from cons-PPISP
predictions to rank docked models obtained from iature of bound-unbound or
entirely unbound docking generated by ZDOCK for QAPRI targets (Chert al,
2003b). For 23 CAPRI cases, near-native models gererated using ZDOCK. An
individual model is ranked according to the numtseresidues of its putative interface
that match the number of residues predicted agfat in both binding partners. Using
their back-end docking approach, they attainedngmravement in ranking near-native
models for 9 CAPRI cases compared to the native ZRQanking. Martin and

Schomburg (2008) utilized evolutionary conservatmadiction data derived from an
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ET-based method and combined it with other diserative features for developing an
SVM to differentiate and rank near-native model®agdecoys, which were generated
by the ckordo docking method (Zimmermann, 2002). eWhapplied to protein

complexes of Benchmark 2.0, the SVM significantiypked near-native models in the

top-ten ranked models compared to ranking of dagkutions based on geometric fit.

In this work, HADDOCK was applied to study the effef docking performance when
interface prediction data was combined with expental data and this was compared

to standard experimental data-driven docking (seéa 1.11 below).

1.11 Aims of this present study

This work seeks to address limitations in the currgtatus of the field of interface
prediction exclusively pertaining to unbound tramsi protein (hetero-complexes)
interface prediction and its utilization in protelncking. The reasons that this complex
type is studied were clarified in the discussiorthed disadvantages and drawbacks of
the previous predictors (see section 1.9). Thesidiions of the field are summarized
in Appendix table A-3. To the best of my knowledyas is the first study to address
these limitations and solve them.

The initial limitations pertain to interface pretion through use of sequence data and

clustering of prediction data: -

1) Multiple sequence alignments (MSAs) that areegeted automatically may have
alignment errors, which may diminish conservatiggnals because of the alignment
error noise, and may also be out-of-date. HSSP). For the predictors that utilize
sequence data from a multiple sequence alignmentnterface predictor has been
applied to explicitly improve multiple sequencegalinents prior to deriving the
evolutionary conservation from them for the systeenarediction of transient hetero-
complexes (see table A-3). It is predicted thatlieily reducing or eliminating sources
of sequence alignment errors may result in betterservation signal retrieval and
subsequently improve interface prediction. This diipsis is tested in this work
through the use of improved MSAs vs. automaticgbiyperated MSAs and the impact
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they have on evolutionary conservation calculatfon the interface prediction of

transient proteins. Specifically it will be studidarough applying a sequence editing
heuristic protocol introduced in this work on thete-date sequence data derived from
the UniRef90 database for the most recently pubtistransient complex dataset
(Benchmark 4.0). The sequence alignments genetatedgh the sequence editing
heuristic approach introduced in this study will d@mpared to sequence alignments
generated automatically from the same data sou$tasistical hypothesis tests will be

applied to test the significance of explicitly innpgmg MSA data.

2) For the predictors that utilize structural dmtan an unbound transient input protein,
no interface predictor has been applied to sysieaigt address the impact of interface
prediction data clustering using the three-dimemaiocoordinates of the input
(unbound) transient protein. Clustering may improkre impact of interface residue
accuracy. This important hypothesis is tested i work through the use of clustering
vs. no clustering of interface prediction data aheir assessment on prediction
performance. It is predicted that applying thremehsional clustering of interface
prediction data may cause elimination of ROS re=sdior the interface prediction of
transient proteins in the unbound state, leadingfwoved interface prediction quality.
This hypothesis will be studied by clustering potidn data derived from improved
MSAs and its comparison to non-clustering. Statsthypothesis tests will be applied
to test the significance of clustering on interfgcediction performance improvement.
In addition, the application of clustering will mxamined in the context of whether
interface residues are more conserved than resudéce residues for proteins of

Benchmark 4.0 and this analysis will be discussettié context of previous literature.

3) The sequence data editing and interface predictata clustering heuristics will be
integrated into a new predictor, PROTein INterfd@entification (PROTIN_ID),

designed for the prediction of transient proteinteifaces using evolutionary
conservation data. This interface predictor willdeveloped using the Benchmark 4.0
dataset of transient proteins. In addition, PROTIN will be benchmarked to the
WHISCY predictor, developed using transient prateiand the CCRXP predictor.
Finally, a web-server implementation of PROTIN_IDIlIwe designed with user-

friendly features, allowing convenient access efitiethod to the biological community

at large.
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The other identified limitation relates to the apalion of interface predictors in

combination with protein docking: -

4) The systematic application of interface predittdata-driven docking vab initio
docking and its evaluation using stringent CAPRdleation metricswill be performed

to explore interface prediction data’s impact orcldieg performance vsab initio
docking. Statistical analysis will be applied to amxne data-driven docking
performance. This aim paves the way for the explmmaof combining interface
prediction data and NMR data to drive docking. distbeen observed that interface
predictors have been used in successful front-endack-end docking of transient
proteins (see section 1.10). However, interfacelipten data has not been combined
with NMR data (Residual dipolar coupling (RDC) anbemical shift perturbation
(CSP) data). Currently, standard data-driven darkising CSP and RDC data from
NMR is able to produce good quality models. If gsinterface prediction data has been
shown to have a successful impact on docking pmdace, then it is hypothesised that
combining this data with NMR data may improve frend docking performance by
increasing the number of correct docking solutiansl/or their quality according to
CAPRI metrics. This improvement may arise from tgednterface accuracy and
coverage caused by the ‘consensus’ combinationllofiada sources. To test this
hypothesis, a dataset of protein complexes witwknbIMR data (RDC and CSP) will
be used and unbound docking runs of standard empetal NMR data-driven docking
will be performed and compared to consensus daardruns using HADDOCK. This
will be followed by the application of statistichlypothesis tests to investigate the

significance of consensus-data driven docking.
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Chapter 2

Preliminary work

2.1 Introduction

This chapter describes the preliminary work perfednmn this study, and it serves as a
foundation to other work described in this thefdevelopers of previous interface
predictors have not systematically studied andyaedl the impact of multiple sequence
alignment quality and the impact of three-dimenalariustering on transient proteins
(hetero-complexes) for their interface predictase(table A-3). Specifically, the first
analysis described in this chapter investigatesetfext of explicitly improving MSAs
by reducing or eliminating causes of alignment rfoom sequence data obtained for
transient proteins (see section 3.2) of the Benck@® dataset (see section 1.11 point
1 for this hypothesis). This may improve conseorasignal retrieval from an MSA and
hence interface prediction. A comparison will be dmato automatic MSAs not
subjected to any improvemerte( controls) and derived from the same sequence data
sources. The second analysis studies the effatireé-dimensional clustering vs. non-
clustering (e. control) of interface prediction data on unboumdnsient proteins
derived from Benchmark 4.0 (see section 1.11 p®ifr this hypothesis). Unbound
transient protein interfaces are harder to pradicomparison to non-transient proteins
in the context of blind prediction (see section8.ll.and 1.9.2 and table A-1). This
analysis will ascertain whether elimination of RO8sidues is improved after
clustering, leading to improved interface predictguality. Statistical significance tests

will be applied to test the two hypotheses.
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2.2 Preliminary work: multiple sequence alignment ptimization

In this section, the optimization of MSAs vs. auaiim MSAs on the effect of
conservation signal retrieval and consequentlyriate prediction is studied and
discussed. The optimization of MSAs was performeihg the sequence editing
heuristic introduced in this work (see section ¥).3Briefly, this heuristic generates a
pair-wise alignment (via the Needleman-Wunsch dtligor) between a Benchmark 4.0
query protein’s sequence and each of its homologegaencesd.€. hits) retrieved from
the UniProt90 database (Hwarmg al, 2010; Suzeket al, 2007; Needleman and
Wunsch, 1970). The query sequence contains onlydakieues present in its tertiary
structure, as such sequence regions of the hitesega like N/C terminal overhangs
present only in the hit sequence and absent ingthery sequence, are removed.
Likewise, hit sequence insertions are removed, whause the query sequence to split.
This is important as only sequence regions presetite query ‘structural’ sequence
and reciprocated in the each sequence hit arefos@alculating residue conservation

scores and projected onto the query protein streictu

2.2.1 Case study: Tissue inhibitor of metallopnoseie 1 protein

The sequence editing heuristic was written as adsédone PERL script and was
initially tested on the Tissue inhibitor of metadtoteinase 1 protein (TIMP-1; PDB:

1D2B) and its related homologous sequence data. hitheequence data used was
filtered to remove sequence fragments and redundaquences, leaving only hit
sequences with a high fraction of coverage to tery sequence prior to testing (see
section 4.3.1 and figure 4-2). The same sequentzeislased to generate refined (with
the heuristic) and unrefined (without the heur)sitSAs. When ‘edited’ hit sequences,
including the TIMP-1 query sequence, are alignéds tesults in an improved and
structured MSA (refined). In comparison, when gatieg an MSA using ‘unedited’ hit

sequences, this causes a more unstructured MSAfiuenl) (see figure 4-4). For the
TIMP-1 example, the quality of an interface residuwediction is tested using both

refined and unrefined TIMP-1 MSAs. Reducing or a@hating sources of sequence

57



alignment errors (N/C terminal overhangs and inses) that cause misalignment in an
MSA may result in better conservation signal retle To evaluate their impact on

interface residue prediction, both alignments wased to calculate evolutionary
conservation scores for their MSA columns. Only M&*umns representing surface
residues of the TIMP-1 protein were extracted toicvalse positive results caused by
more conserved protein core residues (see sectiBri)3 Rank analysis, which

computes the fraction of top-20 ranked interfacsidue columns, was performed
(Wang and Samudrala, 2006). The top-20 hits scoreei for the best 20 conserved
surface residues since it is equal to the averageo$ a protein interface obtained from
the Benchmark 4.0 dataset (see table 5-2). For TIMR was determined that the
fraction of interface residues according to the-20phits score was higher for the
refined MSA (0.35) in contrast to the unrefined2(®). MSA. Using the top-20 hit score
analysis, this initial result on TIMP-1 suggestatth is possible to improve ranking of
interface residues using evolutionary conservatigh a refined MSA. For meaningful

statistical evaluation, this initial analysis wadesmded to include all proteins derived

from intra-species protein complexes of Benchmak(dee section 3.2).

2.2.2 Refined vs. unrefined MSAs and their impadhterface residue prediction

For all intra-species interacting proteins of Banehk 4.0, sequence data for each
protein were obtained and filtered in the mannexcdbed previously for the TIMP-1
test case. Following this, each protein’s sequelate (qQuery and hits) was submitted to
the editing heuristic protocol to generate refid8As. The sequence data was also
used to generate unrefined MSAs. The top-20 hitesanalysis was performed for each
MSA of the dataset and an average for the wholaseatvas obtained using the refined
and unrefined MSAs. Improving an MSA may not resulbetter interface prediction of
transient protein interfaces and this null hypoithéd,) states that there is no difference
in interface prediction performance when using exitbinrefined or refined MSAs.
Statistical analyses were performed to test thigothesis and demonstrate (actual
hypothesis, B that refined MSAs improved transient protein ifdee residue

prediction.

The Wilcoxon matched pairs test was applied tottesieffect of refined alignments on
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interface prediction against their unrefined coypaets. This test was performed using
GraphPad Prism (version 5.00) at default settiGsaghPad SoftwajeThe fraction of
interface residues as determined by the top-20sd¢wtres for refined and unrefined
MSAs for each protein of the dataset were compaéoedetermine if refined MSAs
produced better interface residue predictions shahtheir top-20 hit score difference
(Awop-20 Was statistically significant at the 5% significa level. In addition, the 95%
confidence intervals (Cl) for the upper and loweuid limits were calculated for the
top-20 hit score difference between both MSA typessng the bootstrap analysis (using
1000 randomly selected samples to calculate sameéns per bootstrap repetition), as
implemented in STATA version 11 (StataCorp LP, 2009

The difference in the top-20 hit scorkd.o0 between refined and unrefined alignments
was computed for the dataset (see table 2})..o may be positivei. Awp-20> 0),
which indicates that refined MSAs have greateratmmient of interface residues, or
negative, indicating the opposiiee( Aop-20< 0). AAtop-200f 0 indicates no improvement
provided by either refined or unrefined alignmeiitsan be seen that on averayge..o

> 0, indicating that refined alignments have marteriface residues with a high ranking
based on evolutionary conservation. This suggésiisthe conservation signal is better
detected from these refined alignments than uredfialignments and translates into
better interface predictions. The sequence edheyyistic is having its intended effect
by removing sources of misalignment errors like Né@ninal overhangs or insertions
both of which arise from hit sequences. This filgdfire. Awp-20> 0) is supported by the
result of the 95% CI analysis, which quantifies grecision of theAp-20 population
mean (1) from which the analysed dataset represents alsarapd depicts the 95%
chance that the true population mean is betweenpiper and lower boundaries (see
table 2-1). Most importantly from this analysissitshown that the lower bound limit of
the 95% CI (0.07) is greater than zef{20= 0), essentially excluding the possibility
that Awp-20 < O where the unrefined MSA dataset on the whaleibi#s a stronger
conservation signal and better interface residediption compared to the refined MSA
dataset. This indicates the usefulness of the seguediting heuristic protocol in
diminishing the effect of misalignment-inducing @s in up-to-date sequence data,
resulting in more structured MSAs and ultimatelyftérinterface residue predictions

compared to an approach in which it is not applied.
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Complementing the 95% CI is the p-value calculatsithg the Wilcoxon matched pair
test. This statistical test evaluates the stasiss@nificance of the null hypothesis that
states that there is no difference in interfacedipt®on performance using residue
conservation from either unrefined or refined MSAs. shown in table 2-1, it can be
seen that the null hypothesis is rejected and atdscthe difference in favour of the
refined MSAs [.e. Awp-20> 0) is statistically significant (p-value <0.0001)

Table 2-1: Comparison of top-20 hit score averages for thenedf and unrefined
multiple sequence alignments (MSA). The standardiatiens are indicated in
parentheses. The fractional difference averageates that the majority of the refined
MSAs generate a stronger conservation signal, lengcthe top-20 most conserved
surface residues with more interface residues thamunrefined MSASsi.€. Ap-20> 0).
The 95% Confidence Interval indicates the upperlang@r bound range limits afop-
20. The Wilcoxon matched pairs test P value indicétesprobability that\p-20> 0 is
statistically significant at the 5% significancevéé (see table A-4 of Appendix for

dataset examined).

. Non-
Editing -~ ) 95%
o editing  Fractional _
heuristic: o . Pvalue Confidence
_ heuristic:  difference
refined . Atop-20> 0 Interval
unrefined  (Atwop-20)
MSA (Atop—ZO)
MSA
Top-20 0.34 0.24

_ 0.10 (0.17) <0.000f 0.07-0.13
hit score (0.22) (0.20)

2 P value < 0.0001 indicates extreme significance.

In the dataset, there were some cases whgjeo < 0 (see table A-4). It was

ascertained that for such cases ROS residues ithaibtlgenerate a high conservation
score in the unrefined MSAs had high conservatimores in refined MSAs and were
ranked among the top-20 surface residues. The M&poms of “displacing” ROS

residues aligned better in refined MSAs comparedunoefined MSAs and hence
generated higher conservation scores. This maybedalthe displacing ROS residues
being part of other binding interfaces.e( crypto-interface residues) with high

conservation signals. These ROS residues scoréerhilgan interface residues in these
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cases and displaced them from the top-20 rankeduess for refined MSA cases,

resulting inAp-20< O for these cases.

2.3 Preliminary work: the effect of clustering vs.non-clustering on interface

prediction

In this section, the effect of three-dimensionalstéring of interface prediction data is
examined and compared to non-clustering of the sarediction data. The working
hypothesis is that there is a potential eliminat@mmROS residues from interface
prediction data using the clustering approach,itegatb improved interface prediction
quality (actual hypothesis, JH Alternatively there may be no difference betwédlea
two approaches (null hypothesisg)HBoth scenarios were examined to ascertain the

extent of the effect of the clustering approachmerface prediction reliability.

Clustering is useful as it can identify potentiaterface residues, which are spatially
contiguous, and likely functionally important. Alsan important effect of clustering is
the removal of isolated residues on a different péra protein’s surface from the
predicted interface (Guharoy and Chakrabarti, 2@fdan and Rost, 2007b). Isolated
residues can erroneously influence protein-protEioking sampling, if used as input
with a potential functionally important cluster i@ docking method, leading to
biologically irrelevant docking solutions. The delsng protocol implemented is
described in detail in chapter 4 (section 4.3.2)efB/, the top-N most evolutionary
conserved surface residues are extracted and dafone distances relative to one
another are determined and stored in an all-agalhgistance matrix (see figure 4-5).
Single-linkage clustering is applied to cluster-tdpredicted residues within a carbon-
o radial distance cut-off (default 7A, see section 5.7). The largest cluster formeuhf
the top-N surface residues is considered the firadliction (see figure 4-6). If two or
more clusters are of the same size, they are sbytede average cluster conservation.
Using the clustering protocol the top-ranking cusis taken as the final interface
prediction. Compared to the clustering protocod, tlon-clustering protocol assigns all
top-N evolutionary conserved surface residues @aéinl interface prediction data.
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2.3.1 Analysis of clustering vs. non-clusteringtpools

The clustering and non-clustering protocols wergleamented in a PERL script and
were tested on a dataset of 123 proteins deriveed 8enchmark 4.0 (see section 3.2).
The top-N evolutionary conserved surface residueevextracted from refined MSAs
for each protein of the dataset. For each top-Muesextraction, the clustering protocol
was applied to derive the top-ranking cluster &sfimal prediction. Likewise, the non-
clustering approach predicted all top-N surfacédrtess as interface residues. This top-
N residue extraction procedure was iterated onfaceiresidue at a time starting from
the most conserved surface residue, incrementiaghéxt conserved surface residue,
until all possible top-N residues were extracted mputted in both clustering and non-
clustering approaches. Both approaches’ interfacigtion data for each top-N
extraction cut-off point were used to generate ivereoperator characteristic (ROC)
curves (see figure 2-1). The areas under the ouere computed for false positive rate
(FPR; see section 3.5.5) ranges of 1.0 (Ag@nd 0.166 (AUG16¢ this analysis will
be explained below) for both clustering and norstdting approaches. A numerical
comparison of AUCs (AUGusterand AUGon-ciuste) at both FPR ranges was performed to
determine if a differenceAquc > 0, H) is present and statistically significant or not
(Aauc = 0, H,) at the 5% significance level, using a standardCAddmparison statistical
test (Soneget al, 2007). In addition, the 95% CI analysis was eggpto determine the
upper and lower bound limits of tiaeyc for both FPR ranges to complement the AUC
comparison statistical test. All analyses perfornagzbve were carried out using
GraphPad Prism (version 5.00).

For AUGC, panalysis, the AUC values for both clustering and-nlustering approaches
are indicated in table 2-2. Althoughauci0> 0 and is in favour of the clustering
approach, this difference is not significant sirtc@oes not support the rejection of the
null hypothesis, as indicated by the p-value (025%his finding is supported by the
95% CI analysis, which shows that the 95% CI ragxgends from negative to positive
values. As the lower bound limit is a negative ealthis indicates that the non-
clustering approach may also have a higher AUC thanclustering approach, or no
difference exists between both approaches ovesddditing to interface prediction
performance sincéayc = 0 is within the 95% CI range. This suggests ldek of
evidence to support the observation that the AU the clustering approachd. Aauc
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0.00160) is significantly better in terms of ineaé prediction than the non-clustering

approach.

Table 2-2: Comparison of AUCs at two FPR ranges (1.0 and (.f&6the clustering
and non-clustering approaches. The 95% Confidentvil indicates the upper and
lower bound range limits afauc for both FPR ranges. The AUC comparison statistica
test P value indicates the probability thagc > 0 is statistically significant at the 5%

significance level.

AUC _
. Non- . P value 95% Confidence
Clustering . difference
clustering (Aauc > 0) Interval (Aauc)
(Aauc)

AUC 0.70030 0.69870 0.00160 0.8552 -0.01563 - 0.01883

AUCp166 0.04760 0.04230 0.00530 0.0098 0.00127 - 0.00933

&P value 0.001 - 0.01 indicates a very significqastilt.

There are two drawbacks to using the above AdJ&nhalysis, which compares both
interface prediction approaches holistically. Thretfdrawback is that for most of the
ROC analysis, a large number of top-N (ex. top-Iid)served surface residue cut-offs
are used, which are not useful to compare bothfade prediction approaches. This is
because of the nature of the single-linkage clisjeapproach, which is to maximize as
much as possible the nearest neighbours when dgergesecluster via a specific carbon-
a radial distance cut-off. Therefore, having margidees to cluster creates a cascading
effect, resulting in the majority of the top-N sacé€ residues or all of them being
clustered via the clustering approach. In this adenthere would not be a major
difference between both approaches, as can bebyabe ROC curves being similar for
the majority of high TPR (see section 3.5.4) an® F&nges in figure 2-1. A potential
best-ranked cluster of conserved residues based low top-N cut-off, which may
contain genuine interface residues, may merge witler distant clusters over a
protein’s surface simply because of this cascadifigct. In the context of using
interface prediction data to drive protein-protdimcking, having a high top-N residue
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cluster, results in a high FPR with many ROS ressdin the final prediction. This is a
risky use of interface prediction data derived lmstering (and even non-clustering) for
data-driven docking and hence the biological ndevance of high top-N cut-offs-

derived data application in the context of datasi docking. In a docking scenario,
predictions are relevant when a sufficient TPR ¢edipvith a low FPR are retrieved as
input docking sampling restraints. Therefore, ahhfgr all) TPR is not useful as it
introduces many false positives that can misdidotking sampling and reduce

docking performance.

Given that the above AUG analysis focuses on all TPR and FPR cut-offs, thadl
high cut-offs are not relevant in the context aftpm-protein docking, the application
of this analysis to a region of biological relevania the context of protein-protein
docking should be pursued instead of comparingethire ROC curves, which is
misleading. This is tied to the second drawbacktled AUG o analysis in this
circumstance. The AU analysis does not indicate if the two compared@gghes’
ROC curves are the same overall or differ in I@eli regions. It can be seen that
indeed they are not the same (see figure 2-1)adh the clustering approach seems
better than the non-clustering approach at the KR range (0 - 0.166) and this
interestingly is the region most important for bigical application in the framework of
protein-protein docking. The difference between #pproaches is because of the
reduction of ROS residue noise using the clustesmgroach, which is more impactful
for interface prediction relative to the non-clustg approach. Besides this relevant
region, there are also other regions of differeneaveen both approaches at higher
FPR ranges, which are not relevant in the contéxiboking. Here, the non-clustering
approach performed better and this is becauseltiséedng approach identified less
interface residues within these FPR ranges, causdgction in interface prediction
performance relative to the non-clustering approach
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Figure 2-1: ROC curves comparing the clustering and non-clusjespproaches for
interface prediction. The AUCs are shown for bgipraaches at FPR ranges of 1.0 (top
plot — AUG, ) and 0.166 (bottom plot — AUGsg), respectively.
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The low FPR range (0 - 0.166) of the ROC curves ws@mpared using AU&es
analysis. For AUgssanalysis, the AUC values for both clustering and-nlustering
approaches indicate thahuco.166> 0, which is in favour of the clustering approach.
This difference is significant and supports thecgpn of the null hypothesis (p-value
0.0098), which states that no difference betweesedhnterface prediction approaches
exists. In addition, this outcome is supported sy 5% CI analysis, which shows that
the 95% CI lower bound limit is greater than zexgluding the possibility thaauc is
zero or lower. To summarize, there is a 95% chahnaethe 95% CI upper and lower
bound limits support the observation th&@fycoies> 0 at a low FPR range.€.
biologically relevant range) upon expanding the sizthe dataset. Using this inference,
evidence exists to support the use of the clugieapproach ife. Hy) since it
significantly improves interface prediction qualiy a biologically relevant low FPR
range compared to the non-clustering approach. deémonstrates its usefulness in
improving interface prediction quality of transigarbteins for its utilization for protein-

protein docking in comparison to lack of clustering

2.4 Conclusion

The overall findings indicate that interface préidics can be significantly improved
using explicitly refined multiple sequence alignnseand three-dimensional clustering.
These novel findings have not been systematicaliyoeed in previous work (see table
A-3). Based on the above work, a new interface iptedto identify protein interfaces
will be created (PROTIN_ID — PROTein INterface IDi@oation), which utilizes both
state-of-the-art sequence editing and clusteringyi$tics. The default parameters of
PROTIN_ID (top-20 conserved surface residues wilistering at 7 Angstroms)
represent its operating point, which is within gignificant 0 - 0.166 FPR range (see
figure 2-1). The PROTIN_ID interface predictor isalssed in detail in chapter 4 and
is benchmarked to other interface residue predictsee chapter 6). Furthermore, the
PROTIN_ID interface prediction data is used to campdata-driven docking tab
initio docking followed by its combination with experim@ndata to drive protein-

protein docking in a novel docking study (see Chaajp}.
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Chapter 3

Methods

3.1 Protein sequence database

The UniProt Reference Cluster dataset 90 (UniRef®0pmposed of protein sequences
derived from the Universal Protein Resource dalfdsiProt), which is a unified and
comprehensive repository of protein sequences (Mugrand UniProt Consortium,
2011). UniRef90 contains protein sequences clustatea 90% sequence identity
threshold to reduce the presence of redundant segsieThe UniRef90 database was
selected as it allows broad coverage of sequenaeespt 90% sequence identity
resolution, hiding redundant sequences. & 90% sequence identity resolution) by
grouping them into clusters that are represented [gngle sequence (Suzek al,
2007). This improves sequence search and retrspegds when a query sequence is
searched against this database. This databasertisopahe PROTein INterface
Identification predictor (PROTIN_ID) implementationlt is used to retrieve
homologous sequences for protein chains derivedn fiarotein-protein complex

structures of the Protein Docking Benchmark 4.@sktt (see section 3.2).

3.2 Protein-protein complex database

The Protein-protein docking Benchmark 4.0 dataseda manually curated dataset of
non-redundant protein-protein complexes (Hwahgl, 2010). All protein complexes of
this dataset form transient interactions. This skttés primarily designed for testing the
performance of protein-protein docking algorithriwever, it has found use outside
the protein docking community as it is used for elegment of protein interface
prediction algorithms (de Vriest al, 2006). There are a total of 176 experimentally
determined protein complexes in this dataset. Tlaeseprotein complexes that are in
their bound form. In addition, the unbound formstludé proteins of each complex are
included in the dataset. The 176 protein complexese grouped into intra-species,
inter-species, and antibody-antigen interactionger@ll, there are 73 intra-species, 76
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inter-species, and 27 antibody-antigen complexdsirther six intra-species complexes
mentioned in the Protein-protein docking Benchméu® paper (1J6T, 102F, 1P9D,
3EZA, 1URG6, and 1GGR) were included, raising thenber to 79 intra-species
complexes (Hwangt al, 2010). The unbound coordinates for the six corgdewere
located in the PDB database and included (1J6TAl&3d 1HDN; 102F: 1IBA and
2F3G; 1P9D: 1P9C and 1P98; 3EZA: 1HDN and 2KX9; 8URE4U and 2ESK; and
1GGR: 1HDN and 2F3G). The intra-species complexeeiurther divided according
to the number of complex protein constituents. Tiasulted in 63 binary and 16
multimeric intra-species complexes. One protein mgem (1PXV) and the ligand
protein of the 1ZHI complex were discarded frons tthataset as the ligand and receptor
proteins had very few homologs or no homologsewe&d from the UniRef90 database.
As a result these proteins could not be used inatieyses of this study. The final
dataset is therefore composed of 62 binary compléiat consist of 123 individual
proteins (see appendix table A-5). The intra-sgeddénary complexes and their
corresponding unbound proteins were selected tatera dataset for this study (see
section 5.2). All residues of the bound proteinichand their unbound counterparts
were manually checked using the PyMol moleculaualigation tool to ensure they
agree in residue numbering (Delano, 2002). If theses disagreement, this was
corrected. This is important for making sure irded and rest of surface (ROS) residues
in the bound and unbound forms of a protein agtherwise their subsequent analysis

will be incorrect.

3.2.1 Determination of interface and “rest of suéd residues from the protein

complex dataset

The dataset of 62 intra-species protein complexas analysed to determine the
number of interface residues for each individuadt@n complex and its unbound

protein counterparts. This data is important as utsed to evaluate the performance of
protein interface prediction algorithms, for exasghterface residues were determined
based on the distance definition of the Criticasdssment of PRediction of Interactions
(CAPRI) assessment established by the proteinipratecking community, which is

used to measure the performance of protein dockiggrithms. A residue is considered
part of an interface if any of its atoms a® A distance from the opposing protein’s
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residue atoms in a complex (Méndszal, 2003). The contact script of the HADDOCK
protein-protein docking suite was applied to cateilthe distances of residue atoms of
an interface that are5 A (Dominguezet al, 2003). A perl script was implemented to
parse all atomic contacts of the contact scriptpot files to generate a list of interface
residues of both interacting (bound and unboundjnshfor each protein complex of
the dataset. This provided a reference to calctiegeotal number of interface residues

based on the distance definition in the entiresdta

Solvent accessibility calculations were performead al residues of the unbound
proteins using Naccess (run via the PROTIN_ID methehere residues were defined
as surface if their side-chain or main-chain atomese > 15% solvent accessibility
(Hubbard and Thornton, 1993). This filters out coesidues and generates surface
residues. All unbound interface residues determimethe distance-based cut-off were
examined to calculate how many are above the sblaenessibility cut-off. The
interface residues for each complex’s unbound prsteabove > 15% solvent
accessibility were determined. This allowed a camspa between the interface sizes
based on the distance and solvent accessibilitgrizifor each unbound protein of each
complex for the entire dataset. A negligible logsnterface residues was determined
using this solvent accessibility threshold. As @&ute of this, the 15% solvent
accessibility was chosen as the default settintp@fPROTIN_ID method for filtering
out core residues prior to predicting interfacedess. A perl script was implemented to
determine the total number of surface residuesudng interface residues (and rest of
surface residues ROS) above the solvent accesgithiieshold, and core residues for

the unbound chains for each protein complex ofititaset.

3.3 Sequence retrieval and multiple sequence aligramt generation

Homologous sequences of the unbound proteins’ shainthe intra-species protein
complex dataset were retrieved by the BLAST algarmitfrom the UniRef90 database.
(Suzeket al, 2007; Altschulet al, 1990). Using the MUSCLE (version 3.8) multiple
sequence alignment program (Edgar, 2004), all thleound proteins’ chains of the
intra-species (binary) protein complex dataset vileea aligned with their homologous
counterparts. The BLAST search and MUSCLE alignnpeatedures were performed
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within the PROTIN_ID method. PROTIN_ID also optim& MSAs by dealing with
sequence redundancy and sequence fragments priontong MUSCLE (see Chapter
4).

3.4 Conservation score analysis of alignments

All multiple sequence alignments were scored wéhes different conservation scores
(described below) using the score conservationrigtgo (default settings) as run from
the PROTIN_ID program (Capra and Singh, 2007). Aseovation window (default 3)
in the score conservation algorithm is applied t@orporate the effect of the
background conservation for each MSA column thatasred (see section 3.4.1). In
addition, MSA columns witlr 30% gaps are disregarded and assigned a score -1000
by the score conservation algorithm since they lass likely to have functional
significance (Capra and Singh, 2007). These sceovese changed to 0.00 by
PROTIN_ID to represent no conservation due to thesgnce of gaps. For MSA
columns with < 30% gaps, a gap penalty is enfor¢ée. score conservation algorithm
implements position-based weights to weight allsbguences in an MSA based on the
diversity of each MSA column. This prevents biasaduced from similar sequences
that are overrepresented (Capra and Singh, 200@ikéfe and Henikoff, 1994). All
residues for each unbound chain of a protein comple the dataset had their
evolutionary conservation calculated. Using a perilpt, the average conservation score
and standard deviations were calculated from thseplaoutput files of the score
conservation algorithm for each unbound chain’satise and solvent accessibility-
based interface residues. This was also calcufatetthe rest of surface residues (ROS)
for comparison purposes. This was done for all enrsion scores in this study.

3.4.1 Window score heuristic:

Functionally important residues have neighboringidees (in sequence and structure)
with higher conservation than average (Capra anagtSi 2007). In the score
conservation algorithm, a window score heuristiatdee is implemented that

incorporates background conservation of residughbers of a residue of interest
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within a sequence window when measuring consenvg@apra and Singh, 2007).

It is calculated as follows:

Zi I]windowS

WindowScore:)ISC+(1—/l)| i V\*
windo

3-1)

where/ is a linear combination factor (default = 0.5) &ds the conservation score of
the column of interesti.€. foreground residue)S is the score of the neighbouring
column (.e. background residueyvindowrefers to the total residue window on the left

and right sides of the column of interest.

3.4.2 Shannon entropy score:

This is an early and widely used conservation meaguWaldar, 2002; Sander and
Schneider, 1991; Shenkat al, 1991; Shannon, 1948).

K
SE= _Z Py Iogz Py (3_2)

whereK anda represent the 20 amino acids and amino acid sysnbespectivelyp,
represents the residue distribution in a multipbguence alignment columm, is
calculated as follows:-
n
pa :Wa (3_3)
wheren, andN refer to number of amino acids of typdi.e. symbol) and total number

of amino acids in the alignment column, respeciivel

3.4.3 Property entropy:

This score is a modified version of the above Shanentropy (Valdar, 2002). The
original Shannon entropy does not take into accoammino acids’ biochemical
relationships and views all amino acids as justt®yisr The property entropy remedies
this by grouping amino acids according to physiewmsital properties into 6 sets:
aliphatic [AVLIMC], aromatic [FWYH], polar [STNQ]positive [KR], negative [DE],
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special conformations [GP], and gaps (Capra anghi2007; Valdar, 2002; Mirny and
Shakhnovich, 1999). The distinct number of growjestified in an alignment column is

then scored using this modified Shannon entropyesco
K
PE=Y plnp (3-4)

where K represents 6 physicochemical setsn which the 20 amino acids are
partitioned.p; represents the physicochemical set distributiom imultiple sequence
alignment column over a given number of sequenténiing et al, 2008; Valdar,
2002).

f
= (3-5)
wheref; is the stereochemical seti§ {requency in an alignment column aNds the

P

total number of sequences.

3.4.4 Property relative entropy:

This score is also a Shannon entropy variant dateceto the Property entropy score in
purpose such that it groups amino acids into plgsiemical sets. It differs by using
nine stereochemical amino acid sets and by havimgrimalizing term, which accounts
for amino acid set frequencies of a multiple segealignment (Manningt al, 2008).

K

PRE=Y p |n£ﬁ] (3-6)

i Y
whereK represents 9 stereochemical sets which the 20 amino acids are partitioned
(Manning et al, 2008; Valdar, 2002). The amino acid set are dsvis:- [VLIM],
[FWY], [ST], [NQ], [HKR], [DE], [AG], [P], [C] (Wil lamson, 1995)p; represents the

stereochemical set distribution in a multiple sewpaealignment column over a given
number of sequenceﬁis the average qf for the entire columns of an alignment.

f
=_ 3-
P=3 (3-7)
wheref; is the stereochemical seti§ {requency in an alignment column aNds the

total number of sequences.
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3.4.5 Relative entropy:

RE=3p log, 2 (3-9)

ib

wherep; represents the residue distribution in a multiguence alignment column.
Pi, represents an amino acid background distributianvel@ from a dataset (default
BLOSUMG62 alignment data) of amino acid frequengt@apra and Singh, 2007; Wang
and Samudrala, 2006). Unlike previous scores, thkzation of a background
distribution enhances the scores of residues #na low background frequencies when
they are very common in an alignment column. Sweshdues are regarded as more
likely to indicate functional significance. On tla¢her hand, if a residue with a high
background frequency is as prevalent with one lilagta lower background frequency
in an alignment column, it will be given a loweose than the other residue because of

its higher background frequency.

3.4.6 Jensen-Shannon divergence:

JS=1RE,, + L-1)REy, (3-9)

where p. and q refer to the amino acid frequencies in an alignmesiumn and
background distribution of residues derived from saquence dataset (default
BLOSUMG6?2), respectively (Capra and Singh, 200X).is a linear combination
weighting factor (default 0.5) ariRE is the Relative entropy.is calculated as follows:-

r=Ap.+@1-A)q (3-10)

3.4.7 Von Neumann entropy:

VNE=-Tr(plogp) (3-1)

wherep is a density matrix normalized by its trace (Traf€a and Singh, 2007; Caffrey
et al 2004). Initially, a matrix is constructed sucfatthits off-diagonals are zero and
only the diagonal values refer to the amino acetj@iencies in an alignment column.

These diagonal values are multiplied by the obskamino acid frequencies from a
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similarity matrix, such as BLOSUM®G62, in order teate a density matrix (Caffrey al,
2004). In doing so, physicochemical similarity iscaunted for in this evolutionary

conservation score.

3.4.8 Sum-of-pairs:

This score measures evolutionary conservation lhywiae comparison of residues in

an alignment column.

SP=

1 N~—N
SN wxw, “2 2y MW X SGC) 3z
i i J

whereS is a similarity matrix used to compare the siniiyaof residues andj of a
columnC. w; andw; are weighting factors for theh andjth sequences (Capra and
Singh, 2007; Valdar, 2002).

3.5 Statistical analysis of Interface prediction aorithms

In order to assess a method’s performance in atterfesidue prediction, it is necessary
to determine the number of interface and ROS residilihis was determined from the
62 protein-protein complex dataset used in thidyst surface residue (section 3.2.1)
can either be an interface residue or not. Thisnyirtlassification of residues by an
interface predictor is compared to the known birdagsification of surface residues of
the dataset of this study. The predictions of fatar prediction methods can have either
a positive/or negative result, according to thisaby classification applied to surface
residues. A positive result is divided into truesiiwes (TP) or true negatives (TN). A
TP is a correctly predicted interface residue, whsra TN is a ROS residue that has not
been included in a prediction method’s final prédic. In other words, it has been
correctly discarded from the final result of anenfdce prediction method. A negative
result is divided into false positives (FP) andséahegatives (FN). An FP is a ROS
residue that has been incorrectly predicted asit@nface residue in the final prediction
of an interface prediction method. A FN is an ifdee residue incorrectly discarded as a
ROS residue. The relationship of TP, FP, TN, and rEbldues is illustrated in the

confusion matrix (table 3.1).
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Table 3-1: A confusion matrix and the components that maka ppsitive or negative
result. TP + FN refer to the total interface ressluwhereas FP + TN refer to the total

ROS residues.

. _ Actual
Confusion Matrix
Positive Negative

Predicted
3 _ TP FP
© interface
D
a Predicted ROS FN TN

The following standard performance metrics arewvaerifrom the confusion matrix

(Fawcett, 2006).

3.5.1 Accuracy:

(TP+TN)
(TP+TN+FP+FN)

The accuracy measure calculates the predicted @A Mrresidue proportion out of the

(3-13

total positive and negative results of an interfawiction algorithm.

3.5.2 TP fraction (specificity):

(TP)

(TP+FP) (319

The TP fraction calculates the percentage of TRkarfinal prediction. A high fraction

reflects more TPs and less FPs in the final prexticbf an interface prediction

algorithm.
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3.5.3 FP fraction:

(FP)
(TP+FP)

(3-19
The FP fraction is the opposite of the TP fractibrguantifies the fraction of FPs in a
final prediction. A predictor that scores a low fieg&ction generates low numbers of FPs

in it final prediction results.

3.5.4 TP rate (sensitivity):

(TP)
(TP+FN)

(3-16

The TP rate quantifies the fraction of interfacsidaes predicted in a final prediction
from the total number of observed interface resdu® higher fraction represents a
greater recall of interface residues.

3.5.5 FPrate:

G 3-1

(FP+TN) (3-17

The FP rate computes the fraction of ROS residuesept in a final prediction from the
total number of observed ROS residues. A lowertifsacrepresents a lower recall of

ROS residues.

3.5.6 F-measure:

2
1/Specificity+ 1/ Sensitivity

(3-19

The F-measure quantifies the harmonic mean froncdmebination of the TP fraction
(specificity) and the TP rate (sensitivity), whiahe weighted equally (Rennie, 2004;
Van Rijsbergen, 1979). Hence, it measures theexeti quality of an interface
prediction method. A method that scores highly lboth TP fraction and TP rate is
awarded a high F-measure and vice versa. An F-meas$uaero implies the lack of TPs

in a final prediction and a score of one refersotal recall of observed interfaces with

76



the absence of FPs in the final prediction.

3.5.7 Matthews's correlation coefficient (MCC):

TPxTN-FPxFN
J(TP+FN)(TP+FP)(TN+FP)(TN+FN) (3-19

The MCC score computes the correlation betweerathteal results of the confusion
matrix (table 3-1) with the predicted results armmbres 1 for completely correct
predictions and -1 for the completely incorrectdacgons (Murakami and Mizuguchi,
2010; Matthews, 1975). An MCC value of zero indesafprediction performed at
random (Baldet al, 2000).

A perl script was implemented to automate the patarnzation of the PROTIN_ID

prediction algorithm to maximize its performance terms of interface residue
prediction. This perl script ran PROTIN_ID at diffat settings and calculated its
performance at each setting, according to the atdngerformance metrics defined
above. Performance evaluation was also applied h® benchmarking of the

performance of PROTIN_ID in comparison to WHISCMa&@CRXP methods (section
3.7).

3.6 Statistical analysis of interface vs. ROS resigs conservation

A statistical analysis was performed to determireetiver interface residues are more
conserved than ROS residues. A perl script wasemehted to calculate the difference
in conservation signal between the interface an® ROnservation for all proteins of
the test datasetACons). This was done iteratively for average imtegf and ROS
conservation as calculated for all seven cons@mwagcoresACons is calculated as

follows: -

ACons = Interface, s~ ROS, ocs (3-20

where Interfacewecs and ROSyecs refer to the average interface conservation and

average ROS conservation, respectively. Al®ns value can be a positive, negative,
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or zero difference. A positive difference indicatimat interface residues are more
conserved than the ROS residues of a protein. Atnegdifference is the opposite
where ROS residues are more conserved than interigidues. If the difference is

zero, this indicates that interface and ROS residwe equally conserved.

STATA version 11 (StataCorp LP, 2009) is a compnshes statistical suite that is
useful for the organization and analysis of datd #s representation in convenient
graphical output. STATA was used to determine & ACons values of all dataset
proteins follow the Normal distribution in order smalyse theACons data with the
appropriate statistical tests of STATA. This is orant as the choice of a statistical test
used for data analysis depends on the underlyiobatility distribution exhibited by
the data. If the wrong statistical test is useddata analysis the subsequent statistical
interpretation may be invalid (Park, 2008). To exsnthe ACons distribution,
graphical methods, which compare a theoretical abmistribution with theACons
distribution, were applied. The graphical methodsnegated with STATA were
histograms, Q-Q plots, and P-P plots. The examphengcands used for histograms and
Q-Q plots (in that order) are given below.

e histogram difference, width(0.05) start(-0.3) freqay  normal
normopts(lwidth(thick)) ytitle(Frequency, size(la)y  ylabel(0(5)30,
labsize(large)) xtitle(Difference, size(large)) béd(-0.3(0.1)0.3, labsize(large))
xline(0, lwidth(thick)) title(Jensen-Shannon divenge, size(large))

* qgnorm difference

In addition, numerical methods that examine skewnasd kurtosis of theé\Cons
variables (skewness-kurtosis test) and test foir thermality (Shapiro-Wilks and
Shapiro-Francia test) were performed in STATA. Stendard commands for these tests
are provided below.

» sktest difference

» swilk difference

+ sfrancia difference
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The Paired t-test was used to examine whethen@e@ns conservation difference in
favour of interface residues over ROS residues vstetistically significant.
Furthermore, the 95% confidence intervals (Cl)thar upper and lower bound limits of
the ACons values were calculated as part of the Paitest results. Both tests presume
that the data follow the normal distributions. Arample command for this test
performed using STATA is provided below.

e ttest asainterfacecsave == surfaceonlycsave

Further statistical tests were applied that assamanderlying probability distribution
(ex. normal) as a precondition prior to data analyBhis was done for comparison with
the Paired t-test and 95% CI analysis, which regag a perquisite normally distributed
data, to determine if overlap in final statisticabults exists. The bootstrap approach
and the Wilcoxon matched pairs test were appliedgasvalents to the Cl analysis and
Paired t-test, respectively. The Wilcoxon matchadsptest was performed using the
biostatistical program GraphPad Prism version @aD@default settings for thaCons
data. The bootstrap approach was performed usi®y/ASTor ACons data. For the
bootstrap analysis, 1000 randomly selected sampdes used to calculate the sample
means per bootstrap repetition in order to caleutae CI for theACons data. The

example command is specified below.

e bootstrap m=r(mean), rep(1000) : summarize diffeeen

3.7 Benchmarking of PROTIN ID with WHISCY and CCRXP algorithms

The protein complexes selected for benchmarkindyaisawere based on the protein-
protein complex datasets used by the authors ofSZAMland CCRXP (see section 6.3).
The WHISCY interface prediction results were geteztausing default parameters for
HSSP and UniRef90 (section 3.3) alignments of theems of the protein-protein
complex dataset. The online webserver of WHISCY wassed
(http://nmr.chem.uu.nl/Software/whiscy/index.htmlJhe output file that lists all
residues by WHISCY score from the highest to loveestes was parsed by a perl script

and the residues that score@.18 where predicted as interface residues, fotigwhe
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WHISCY authors in their inital study (de Vriet al 2006). The predicted interface
residues were evaluated by the statistical perfoomaneasures (see section 3.5). The
CCRXP interface predictions were generated usinfaulte parameters using the
webserver version of the method (http://ccrxp.reetag/). A perl script was
implemented to parse the cluster output file geiedray CCRXP and the largest cluster
of residues (or most conserved cluster if the trgdusters are the same size) was
predicted as interface residues (see section 6.2 perl script further evaluated the
predicted cluster using the previous performancdriose (see section 3.5). The
PROTIN_ID interface predictions were performed gsitefault parameters. Chapter 4
provides a full description of the PROTIN_ID methdédperl script was implemented to
parse the output cluster file of PROTIN_ID (clusféenamedat) to retrieve the final
cluster of predicted interface residues where i vessessed by the performance

evaluation metrics.

3.8 Protein-protein docking driven by interface pralictions

Protein-protein docking seeks to predict the prommplex of two proteins in their
unbound pose that are known to interact with eatiero To examine the effect of
predicted interface data on the docking of profmimtein complexes and compare this
to ab initio docking (.e. without the use of any data), a docking dataset gvaated
from the protein-protein complex dataset of thigdgt Protein-protein complexes were
selected that hag¢ 10% TP rate (section 3.5.4) for both chains wheedigtion
restraints were generated by PROTIN_ID. This resulin a total of twenty-six
complexes in a docking dataset, which consistetheir unbound forms for use in
docking (see Chapter 7).

3.8.1 The HADDOCK protein-protein docking algorithimeoretical data-driven

docking vs. ab initio docking

The High Ambiguity Driven protein-protein DOCKingHADDOCK) algorithm was
applied for the docking of the protein-protein diockdataset (de Vries and Bonvin,
2010; Dominguezet al, 2003). The HADDOCK algorithm was selected dueit$o
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ability to use experimental or theoreticae(predicted interface residues) data to drive
protein-protein docking. The PROTIN_ID predictetenface residues were designated
as active residues of the ambiguous interactiotraiess (AIRs) and inputted into
HADDOCK (version 2.0). The larger protein chaintbé unbound input proteins was
the receptor protein and the smaller chain wadigfamd protein and this was reflected
in the begin.par HADDOCK docking setup file. In tthata-driven runs, default settings
were used. For example in the run.cns parameterdfil HADDOCK, the random
removal AIRs (noecv = true) is set to 50% (ncvpa) and this results in 50% AIRs
removal per docking trial. This may result in tremioval of possible false positives
from the AIRs restraints that guide docking. Thentoal docking runs gb initio
docking) were done using the centre of mass ressrécmrest = true) while disabling
the random removal of restraints parameter in ns(ooecv = false). These centre of
mass restraints enforce contact between the tw@untb proteins duringb initio
docking. Using default settings, 1000 complexesewgenerated in the rigid-body
docking stage of HADDOCK for each run. Subsequentfye best 200 (default)
complexes ranked according to the HADDOCK score ewtirther subjected to
simulated annealing and water refinements (Domingieal, 2003). The final water
refined 200 protein-protein (docked) complexes gaeel by HADDOCK upon

completion of a data-driven ab initio docking run were analysed.

3.8.2 Analysis of predicted protein-protein dockaognplexes

The Critical Assessment of PRediction of InteratdigCAPRI) quality assessment of
docked complexes was applied to analyse the prpteitein complexes generated by
the docking runs (Lensinkt al, 2007; Méndezt al, 2003). All predicted complex
models for a particular protein complex were coragdaio the experimentally solved
complex and were evaluated according to CAPRI ragiteThe CAPRI criteria
implemented are the fraction of native contactg)(Fligand-rmsd (L-rmsd), and
interface-rmsd (I-rmsd). & is defined as the number of correct residue ctsitaca
predicted complex divided by the number of residoietacts in the actual experimental
complex. A contact is determined from the experitakn solved complex, and it is
defined as a residue pair of the protein interfabese atoms are 5 A apart. The L-
rmsd refers to the ligand (smaller protein) backbdh, G, C, O atoms) rmsd
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difference of the predicted and experimental compigand proteins, following the
superimposition of both predicted and experimeotahplex receptor (larger) proteins.
l-rmsd is all atom-atom contacts between residfiegpposing proteins at 10 A of the
experimental complex’s superimposed backbone (,GC O atoms) over the same
residues in the predicted complex. Both rmsd messlaok at geometric fit between
experimental and predicted complexes (Ménete, 2003).

The CAPRI criteria for ranking predictions are givaelow.
= High quality predictions: Fna> 0.5 and I-rmsek 1.0 A or i-rmsd< 1.0 A.
= Medium quality predictions: F,a> 0.3 and I-rmsd 1.0 < x 5.0 A or i-rmsd
1.0<x<2.0A
= Acceptable quality predictions: Fng > 0.1 and I-rmsd 5.0 < x 10.0 A or i-
rmsd 2.0 <x 4.0 A
= Incorrect predictions: Fna < 0.1 or (I-rmsd > 10.0 A and i-rmsd4.0 A)

The CAPRI analysis (c shell) scripts for calculgtithe Ky, L-rmsd, and I-rmsd were
obtained from the HADDOCK authors. Both thg:and I-rmsd scripts were updated to
perform CAPRI evaluation of the protein-protein ratsdgenerated by docking. Only
the L-rmsd script was re-written in perl for cakibn of the L-rmsd values for
predicted complexes. Both the L-rmsd and I-rmsdptctilize ProFit (version 3.1),
which is a least squares fitting program, in thekigagound for rmsd calculations
(Martin, 1998). The input files for ProFit specifig the interface and ligand zones were
generated for both I-rmsd and L—rmsd scripts, retsgy. For each protein complex of
the dataset under consideration, the number oecomodels (acceptable and above)
out of the final 200 refined models was determif@dboth data-driven and control
docking runs. This data was analysed using theeFiskact test using GraphPad Prism
version 5.00 at default settings to determine @ thfference in numbers of correct

models between both runs was statistically sigaific
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3.9 Protein-protein docking driven by interface pralictions and experimental

data

The effects of using interface predictions and expental data as restraints in protein-
protein docking in order to improve docking perfamie was examined. The
experimental data to be applied in docking weretes dipolar couplings (RDCs) and
chemical shift perturbation (CSP) data. A searachbioary protein-protein complexes
with available unbound protein constituents, RD@srifyed from backbone amides),
and CSP data was performed for all protein-protemplexes of the PDB database and
the Biological Magnetic Resonance Data Bank (BMRM®)ich is a repository of NMR
data derived from NMR analysis of proteins that@mess-linked to PDB entries (Ulrich
et al 2008; Bernsteiet al, 1977). To this end, a dataset was created oéiprpirotein
complexes with the required experimental data kplyaipg a keyword-based search on
the PDB database. Similar keyword-based searctegtes have been applied in other
studies (Choet al, 2009; Nooren and Thornton, 2003b). Text searolexe performed
to get three lists of PDB entries associated wihegal keyword groups: - protein
complexes, RDCs, and CSPs. The following keywordsewised: “Protein Complex”,
“Complex”, “Complexes”, “Chemical Shift’, “ChemicaBhifts”, “Chemical Shift
Perturbation”, “Chemical Shift Perturbations”, “C$SP'CSPs”, “RDC”, “RDCs”,
“Residual dipolar coupling”, and “Residual dipoouplings”. This resulted in a list of
PDB entries for each keyword of each group. A peript was written to combine PDB
entries for each keyword of a group and thus renmrerlapping PDB entries. This
resulted in non-overlapping PDB entries that wemaliined for each group. Following
this, the PDB entries for the protein complex gradpere combined with those with the
CSP group to retrieve overlapping entries. The saagedone with the protein complex
and RDCs groups. Therefore, two lists were createdfor the protein complexes with
associated CSP data and another for those prateiplexes with associated RDC data
in the PDB. These two lists were combined to creafi@al list of overlapping entries,
which are protein complexes with CSP and RDC détase were manually checked to
retrieve only binary protein complexes for thisdstuwhich had CSP and RDC data in
the BMRB (see section 7.2). For each protein compfahe dataset, the RDC and CSP
data were retrieved from the BMRB. If only RDC datas present for a particular
complex, the CSP data for that protein complex re&rgeved from the literature. For all
protein complexes their unbound constituents weuad and these have been used as
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input in HADDOCK docking runs.

3.9.1 RDC and CSP data preparation as restraintgfotein-protein docking

To use RDCs in HADDOCK protein-protein docking, &LES program was used to
derive the axial (Da) and rhombic (R) componentsefach protein-protein complex’s
unbound protein constituent of the dataset (Zwettest 2008; Zweckstetter and Bax,
2000). The standard PALES command is given below.

* Pales —bestFit —inDlel.tab —pdifile2.pdb —outDfile3.tbl

The alignment tensor components and the RDC infmuiMere used for each protein-
protein complex run in HADDOCK (section 3.8.1). thearmore, intervector projection
angle (IPA) restraints generated using the RDC data also used in HADDOCK runs.
IPA restraints are not dependent on the alignmamgdr (Meileret al, 2000). Finally,
CSP restraints for residues that displayed sigamticshifts (Bonvin, 2010) and were
>15% in solvent accessibility were converted intoR&lactive residues. Residues
neighbouring to the designated (CSP) active residared were>15% in solvent
accessibility were included as passive residue Aidraints. The AIRs data were
combined with the other forms of data (RDC andriat®e prediction data) in the
docking runs. The following docking runs were peried:

e Abinitio run (control)

* Interface prediction run

e CSPrun

* Interface/CSP run

* RDC/CSP run

« RDC, CSP, and interface prediction run

For each run, the final 200 water refined predigpedtein-protein complexes were
analysed using the previous CAPRI analysis scripitss was followed by a statistical
comparison of the difference in correct models gateel for each run using the Fisher
exact test of GraphPad Prism version 5.00 (at tteattings). This is to determine if
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the difference in numbers of correct models betwiberruns is statistically significant
(see section 3.8.2). Using the same software, pearan r test was conducted to

compare the correlation of TP fraction and TP materall to the number of correct
models generated.

85



Chapter 4

The Protein Interface ldentification method

4.1 Introduction

Proteins interact through specific residues onrtkeiface, forming the interface. The
identification of interface residues is importaag they can be applied as sampling
restraints in protein-protein docking whose objertis to predict the complex of
proteins known to interact (see section 1.6). Toieae this, the PROTein INterface
IDentification (PROTIN_ID) method was implementeal the prediction of protein-
protein interface residues.d. theoretical restraints) to be used to drive dagkisee
Chapter 7). This method is written in standard Bexhd uses the Bioperl toolkit, which
provides functionality in biological data analyéi®yu, 2009; Stajiclet al, 2002; Wallet
al, 2000). In order to generate theoretical restsaitite PROTIN_ID program requires
as a minimum input a protein structure file in PBBmat (Bermanet al 2000). In
addition, an optional multiple sequence alignméviSA) in CLUSTAL, HSSP, or
FASTA file format may be inputted, if the defaulergeration of an MSA is not

preferred.

4.2 The rationale for the implementation of the PR@IN ID method

The course of action followed in implementing thiethod was driven by previous
work that has identified predictive features ofenfdice residues (see section 1.7.2).
Structural and sequence data were utilized as giregliproperties for interface residues
in this method. For example, in structural terntsriface residues are solvent accessible
and some residues cluster together in close proxifurthermore, interface residues
are conserved due to evolutionary pressure anddhia can be extracted from a
multiple sequence alignment (MSA), taking into agaiothe background environment
of conserved residues, which is the spatial prayinoif other residues varying in
conservation in contiguous alignment columns (setian 3.4.1). Therefore, conserved

interface residues cluster on a protein’s surfaoé, being able to explore the extent of

86



conservation and clustering of conserved residdeanoextensive dataset of intra-

species proteins (see section 3.2), as a preditgéateire of interface residues versus
non-clustering, was a basis for developing thishoet(see section 5.7). And this goal
was implemented in the context of whether interfiees#dues are more conserved than

rest of surface residues (see Chapter 5).

Sequence data in the form of MSAs often require uabrditing before being data
mined. This becomes tedious in the context of ngstiundreds of proteins and their
associated MSAs in a high-throughput setting focktlog, and simply analysing an
alignment generated automatically in a method withonanually checking its

sequences may introduce bias from the noise geuelst alignment errors. This may
introduce non-interface residues in a method’s | fipeediction. When applied to

docking, errors in theoretical restraints may misctithe sampling. The implementation
of an editing heuristic to ‘check’ the sequenceadatior to MSA generation formed

another basis for developing this method.

To recapitulate, the focus on conserved clustenesifiues and elimination of factors
from sequence data that may cause MSA issues iaffettteir prediction led to the
development of PROTIN_ID that generates dockingaeds for (unbound) proteins of
the latest protein complex datasee.Benchmark4.0, see section 3.2). However,
Ahmad, et al (2010) later published a method, Clusters of €oresl Residues-XP
(CCRXP), with a similar protocol, but with specifitifferences. The CCRXP method
was designed to automate the computational taskgeoérating conserved residue
clusters, and provide the first publicly availabhethod to achieve this (Ahmad al,
2010). One difference between it and PROTIN_IDhattCCRXP does not process
sequence data prior to MSA generation, and thé Gilsters of conserved residues in
CCRXP method are not ranked further by a heuristreate a final prediction as done
in PROTIN_ID, but are annotated by structural fesdu(ex. secondary structural
composition). In addition, the CCRXP method wased on a small dataset of protein-
RNA and protein-protein complexes (25 proteinsptedict hotspot interface residues
based on the premise that they form clusters ofsewed residues. In contrast,
PROTIN_ID was trained to cluster conserved intexfeesidues based a bigger dataset
of 123 intra-species proteins to be used in dockseg section 3.2). Since both methods

seek to predict conserved residue clusters, PRODINvas compared in interface
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residue prediction performance to CCRXP and perdairbetter than CCRXP (see
Chapter 6).

4.3 Implementation of PROTein INterface Identificaion (PROTIN ID)

The PROTIN_ID method requires a PDB coordinate @ifean unbound protein of
interest (.e. query) to initiate its prediction of clusters anserved interface residues.
From the PDB file, the method extracts the quernBFA sequence from the file’'s
ATOM coordinates. By default, chain ‘A" of a PDBdiis extracted unless the user
specifies another PDB chain identifier. This prepany step ensures the method has
structural (PDB coordinate) and sequence data yegegruence) upon which to proceed
with the next steps (below), utilizing predictiveoperties of interface residues, for the
final prediction. An overview is of PROTIN_ID is @Wwn in Figure 4-1, indicating the

protocol’s steps from start to finish.

4.3.1 Sequence data retrieval and processing in HROID

PROTIN_ID performs a BLAST search to retrieve hoogolus sequences of the query
protein sequence in the UniRef90 database at aiue-wf 1x1C or as defined by the
user (Altschulet al, 1990). Using this database greatly expands BLA&Arch speeds
to retrieve sequence homologs (hit sequences) llowlsabetter detection of sequences
with distant relationships to the query sequenceabgse redundant sequences. (
>90% sequence identity) are hidden (see sectignSukzeket al, 2007). UniRef90 also
provides convenient access to hit sequence détalsaxonomy ID and species name.
The taxonomy ID is relevant for a subsequent datagssing step in PROTIN_ID to
filter out identical sequences of the same spdabtissmay be present. In PROTIN_ID,
sequences in the generated MSA have their spearmesiappended to their UniRef90
accession codes, making it easier for a user tteredequences to each other, for

example.
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Query POR file Input - or FASTA file formats
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Retrieve query FASTA
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ATOM records
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surface residues
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hits from UniRef90

Map conservation data
to query PDB residues

Cluster residues based on
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:
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:

Filter blast hits by

Get conservation data
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fraction of coverage - to size (and average CS
conservation
cut-off value)
SeQre
Filter blast hits by Pestorm my'tiple
arganism ids sequence alignment

with MUSCLE

l T Output docking

Editing heuristic: restraints
o oo™ =] remove overhane
and insertions from hits visualization script

Figure 4-1: Overview of PROTIN_ID. The default protocol requira PDB file as
input. Along with this, an optional multiple seqaenalignment (MSA) in CLUSTAL,
HSSP, or FASTA format can be inputted by the ushich starts PROTIN_ID from the
point indicated by the dashed arrow. The final atiip a theoretical restraints file for
data-driven docking. Also, two files for molecubasualization of clusters predicted
and the conservation map of the protein of intereftyMol are produced. PROTIN_ID
has important features that have been implemenida: first feature involves
minimizing noise in sequence data. This is achiebgdfilters to remove sequence
fragments and redundant sequences, which are fedldoy the application of an editing
heuristic to remove overhangs or insertions inrémaining sequences that occur when
these sequences are aligned to the query sequdmeediting heuristic step minimizes
or eliminates factors that cause multiple sequetigament (MSA) errors and reduces
the requirement of manual editing of an MSA. Tlsisidesirable user-friendly feature
useful in the context of high-throughput work tongeate theoretical restraints from
many proteins for application in protein-proteirckimg. The second feature is the use
of structural data to apply spatial clustering ohserved surface residues. Residues that
are spatially contiguous are more likely to be fiomally significant, if conserved.

Clustering is useful to remove isolated residuemfbeing included in predictions.
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Following the retrieval of sequence homologs, titeskquences are filtered by the
fraction of coverage (FC%). FC% is determined bmparing the pairwise alignment
of a hit sequence to the query sequence takentlierBLAST report (see Figure 4-2).

It is measured as follows:

FC%=—ht_x100 (4-1)

query

whereny; is the length of a hit sequence without gaps enghirwise alignment (High-
Scoring Segment Pair; HSP) between it and the ggeyence anllyuery is total length

of the query sequence. HSPs are defined in the tdasrt. If more than one HSP is
present for a hit and the query sequence, it isiplesthat they may overlap with each
other in relation to the query sequence. In th&ance, PROTIN_ID calls the tiling
algorithm of Bioperl to retrieve the overall length the hit sequence that is aligned
with the query sequence. If 50% FC is akthits that are> 50% aligned to the query
are retained; the rest of the hit sequences acardisd. This filter allows the user to
filter out very short sequences or fragments caueth partial or incomplete
experimental data from appearing in a multiple sege alignment. If such short
sequences are kept, gaps are inserted in arehe afissing sequence segments of the
fragmented sequences. This can cause conservaboessto penalize for the presence
of these ‘artificial’ gaps, which are assumed to there because of biological
significance, assigning a reduced score to thendent columns enriched in them (see

section 3.4).

Upon filtering by FC% another step may be appligdhe user for further filtering of
sequences. In this step, all hit sequences argegdohy their (NCBI) taxonomic ids in
order to determine how many sequences are fronsdahee species (Figure 4-2). The
taxonomic IDs are retrieved from each sequencei®Ref@0 webpage by PROTIN_ID.
If a taxonomic ID number has more than one hit saqa associated with it, then only
the sequence with the highest fraction of coverageetained, while the rest are
discarded. Conversely, if a taxonomic ID has onig sequence then it is retained by
PROTIN_ID. This taxonomic ID filtering step elimitgs sequence redundanaye.(
identical sequences) in the same species to rernggaepresentation of identical
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sequences of the same species. After applying boweafilter(s) the final set of
homologous hit sequences are defined. These aiacted from the UniRef90 database

by the Fastacmd program when called by PROTIN_ID.

Unfiltered hit sequences

Fraction of coverage
>= 80%

Redundancy filter

Query sequence

0% 50% 80% 100%

Filtered hit sequences

Figure 4-2: Overview of the fraction of coverage/redundanciteifs that are
implemented in PROTIN_ID. The plot shows hit sequeehigh-scoring segment pairs
(HSPs) derived after pairwise alignments with theerg (bold sequence). The hit
sequences (dark blue) align with various regionsth&f query sequence. If a hit
sequence covers 80% fraction of coverage (FC), for example, of thueery sequence
(centre), it is retained and if is under the cutiofs discarded. In some instances, a hit
sequence may have more than one HSP, which majapvén this case, their non-
overlapping contribution to the overlap of the ques determined to calculate their
FC%. Some hit sequences may be redundamtidentical) sequences from the same
species (green). In this case, redundancy filtemay be applied such that all identical
sequences are removed, leaving only the intra-spesequence with the highest
fraction of coverage.g. longest) to the query. In the end only the hitssgtes A-D are
retained. The above step is useful to remove mamichte sequences and sequence
fragments prior to multiple sequence alignment (N1§&neration, reducing the burden
of repetitive manual editing of MSAs especially time context of high-throughput

generation of theoretical restraints for docking.
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The PROTIN_ID editing heuristic is implemented,|ldaling the retrieval of all hit
sequences via Fasatcmd (see Figure 4-3). Firstyigai global alignments between the
query sequence and each hit sequence are creathd Bgedleman-Wunsch algorithm
as implemented in the EMBOSS suite (Reteal 2000; Needleman and Wunsch,
1970). In this analysis, the query sequence isrdeghas the canonical sequence and
any deviations from the query sequence by thedriéscorrected. The objective is to
create a modified set of hit sequences that onggnab the canonical sequence since
protein functional prediction is mapped back to tkmown query 3-D structure
ultimately and such information can only be gattdyg hit sequence residues that align
to the query sequence’s residues. Only these msichave their evolutionary
conservation measured. The hit residues not founthé query PDB structure are
irrelevant for this purpose of mapping and areatded even though their evolutionary

conservation has been measured.

Often in manual editing of an alignment for inpatan interface predictor method, the
following steps are usually applied. If a hit segges has overhangs that exceed the
canonical sequence’s N or C-termini, they are rezdoleaving only a hit sequence’s
areas, which align completely with the query segeeifrurthermore, if there are splits
(i.e. gaps) in the canonical sequence observed in isvipa alignment with a hit
sequence, this is due to the hit sequence havidigi@uhl residuesif. insertions) not
found in the query sequence. Such insertions ameved from the hit sequence. These
rules are automatically implemented by the edithpuristic. The outcome is an
improved, structured MSA when the hits and the gae aligned in the next step by
MUSCLE through the removal of the above factorguFe 4-4 shows the difference
between two MSAs generated by MUSCLE for the Tissumhibitor of
metalloproteinases 1 (TIMP-1) protein sequencehBdSAs use the same number of
sequences. One MSA has been generated using sequedited by the novel editing

heuristic (refined), while the other MSA uses thee, unedited sequences (unrefined).
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Aligned Aligned
region 1 region 2

< Insertion :
N-terminal overhang C-terminal overhang

Query
FECRERRTERERRR Rt

Hit

N/C terminal overhangs
and insertions are removed

No insertions or
overhangs exist RN RN ARna NIy

Figure 4-3: Overview of the sequence editing heuristic thatmplemented in PROTIN_ID. A hit sequence is gldpaligned to the query

sequence by the Needleman-Wunsch algorithm. They gezjuence is regarded as the canonical sequexcany N/C terminal overhangs
beyond the query sequence or insertions that thgliuery by the hit sequence will be removed. ditne result is hit regions that only align to
the canonical sequence. This is important as tteggens are used for computing conservation ofginery. Hit residues not found in the query

are non-essential because they do not exist igubey protein’s 3D protein structure.
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It can be seen for the unrefined MSA that there mrgaligned residues.¢. CVC),
which is due to a long N-terminal overhang presenie hit sequence. This N-terminal
overhang exceeds the length of the TIMP-1 queryesecg, and is the longest sequence
(i.e. to the left) in the holistic view of the unrefinatignment in Figure 4-4(A). In the
refined MSA, this N-terminal overhang is removeahifrthe hit sequence by the editing
heuristic before MSA generation by MUSCLE, as & ha counterpart sequence region
in the query sequence. This has resulted in thalmiged residues’ positions likely
aligned in the appropriate sequence columns that weginally occupied by residues
(i.,e. CLA) of the removed N-terminal region. In the cexit of high-throughput
generation of theoretical restraints for dockingrsunstructured MSAs would require
manual editing before input in an interface premicThe aim of the sequence editing
heuristic is to address this and lessen the neetaoiial editing of MSAs. The refined
MSA is improved because the factors that causettuatsred alignments in the first
place, namely N/C terminal overhangs and insertitias split the query (canonical)
sequence have been eliminated. If more manual Mitthg is required at a later stage
by the user, it will be more efficient to perforrs@ Both the refined and unrefined
MSA were examined further to assess their impactinberface residue prediction
performance of PROTIN_ID. Using the unrefined MS3Aiput, it was determined that
no interface residues were predicted in the firadjtion, whereas using the refined
MSA resulted in interface residues being predictethe final prediction at a 58% TP
fraction (see 3.5.2). This is because more (7)rfeate residues were extracted for
clustering based on the refined alignment in lateps of the protocol, which generated
the largest (12 residue), top-ranking cluster (seetion 4.3.2). Only four interface
residues were extracted using the unrefined MSAmifng a smaller, five-residue

cluster that was ranked second.
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Figure 4-4: The comparison of the MSAs generated by MUSCLIEhefsame number
of hit sequences for the Tissue inhibitor of mefalbteinase-1 sequenck) The top
MSA is when the editing heuristic is not appliedr@fined) and the bottom is when it is
applied (refined). It can be seen that N/C termavadrhangs and insertions of longer hit
sequences than the query cause an unstructured Mfslthis is not the case when the
editing heuristic is applieB) There are three misaligned residues (CVC and Clhl&e
outlines) in the top sections of the unrefined M8dicated by the arrow. In the refined
MSA, the three residues (CVC - blue outline) aleely aligned in the appropriate
sequence columns compared to their original pestia the unrefined MSA. Using the
refined MSA, PROTIN_ID predicts interface residdes its top prediction. With the
unrefined MSA, no interface residues were predictedicating the editing heuristic’s
usefulness in improving PROTIN_ID prediction perfiance.

95



The cluster ranked first based on the unrefined M&& composed entirely of eight
non-interface residues. The four interface residnethe second-ranking cluster that
were extracted based on the unrefined alignmentlaped with four out of seven
interface residues extracted using the refined MBiis leaves a difference of three
residues that could not be extracted using thefimed MSA. A comparison of these
three residues’ assigned conservation scores lmasdte two MSAS revealed that they
score less in the unrefined MSA, decreasing thak rbeyond the absolute residue
extraction cut-off used in PROTIN_ID (see sectioB.2). This indicates that using a
structured MSA derived from ‘edited’ hit sequencea the editing heuristic can
improve PROTIN_ID’s prediction performance througixtracting more interface

residues clustered together, which can boost thester ranking.

As mentioned above, automatically edited hits arbnstted along with the query
protein’'s sequence to MUSCLE (version 3.8) to gateeran MSA (Edgar, 2004).
PROTIN_ID runs MUSCLE using default parameters todpce an output multiple
sequence alignment in clustal format (see secti®h Bhis is followed by conservation
score analysis (see section 3.4). In this stepsawation scores are measured for the
MSA columns by the score conservation algorithmngsithe Jensen-Shannon
divergence score (default) or one of the other exvation scores at a three residue
window to account for background conservation & tesidue neighbours of a query
residue of interest in the alignment column beiogred (see section 3.4.1; Capra and
Singh, 2007).

4.3.2 Structural data processing in PROTIN_ID

The conservation score values for each MSA colunenn@apped back to each query
sequence’s residues and are written in the resi@dfator columns of the query PDB
file in order to generate a conservation map taaldpe residues’ conservation signals
on the query protein’s surface. The “mapped” qué&PB file is submitted to
NACCESS by PROTIN_ID to calculate solvent accessitd#sidues (Hubbard and
Thornton, 1993). NACCESS calculates solvent acbegiby rolling a circular probe
with a radius of 1.4 A along a protein’s van deralgasurface. The path undertaken by
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the probe’s centre for recursive slices of a pridesurface is known as the solvent
accessible surface (Lee and Richards, 1971). Resithat are above a user-defined
relative solvent accessible cut-off (defarli5%, see section 5.3) are defined as surface
and are retrieved by PROTIN_ID. The surface residare ranked according to their
conservation scores and the top N residues (defduit 20, see section 5.7) are
extracted for further processing.

An option in PROTIN_ID exists to delete residuesnirthe query protein where it is
known that they are not part of the interface. Using biological data). These surface
residues may be important for other biological oeas(ex. a known cofactor binding
site). Such residues may display strong consenmvatignals and mask the interface
residues of interest by having higher conservasgignals such that they may be part of
the top-20 residues that are extracted and therefioe residue deletion list can
eliminate these false positives from being patrheftop-20 residues prior to clustering.
This may allow other interface residues to takérthieace and be ranked within the top-

20 conserved surface residues.

The next step involves clustering the extracted;20 conserved residues in order to
determine clusters of conserved residues on theyguetein’s surface. To begin with,
the top-20 extracted residues’ carbodistances are measured from one another and the
distances are recorded in an all-against-all distamatrix. The distance calculation
between alpha carbons of two residues (Carbdis;) is defined as follows:

Carbor}:diqj = \/()(1 =X )2 + (y| Y )2 + (Z —Z )2 (4-2)

wherex,y, and z represent the carbon coordinates of residueand]j. The result is the
distance (A) between two residuestarbons. Data derived from this matrix is inputted
for clustering using the OC clustering algorithma(®n, 2002, 1993). The single-
linkage clustering method, a form of hierarchicalstering, is used to cluster the
residues at a carbanradial distance cut-off (Figure 4-5). In this nmadh residuesN

A radial cut-off (default<7 A, see section 5.7) are clustered as neighboars fata
derived from the all-against-all alpha carbon diseamatrix until no residue nearest
neighbours are found to any of the clustered residcomprising the current cluster

(Ross, 1969; Johnson, 1967). This process is regpg¢atform a new cluster with the
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remaining non-clustered residues until no moredre=s remain to be clustered out of
the Top-20 extracted surface residues. PROTIN_Ipliep a heuristic for sorting a
cluster whereby it first sorts each cluster acaaydp size i(e. number of residues in a
cluster) and calculates the average conservatianadfister. The average conservation

(Averageong is calculated as follows:

=]

Average, .= — (4-3)

j

Z|

wheren; refers to the sum of the conservation of residuwésa cluster andy; is the total
number of residues of a clustee(cluster size). If some clusters are the same Hieg,

are re-ranked according to their average conservati

3D spatial
clustering of
nearest
residue
neighbours
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from seed
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Figure 4-5: Overview of the clustering steps performed in PROTD. The above

protein is transforming growth factor-beta receldGF-beta receptor). The first seed
residue of this protein has its distances fromaiha carbon to all other Top-20
extracted surface residues’ alpha carbon atoms wetmtdp This process is also
performed for every other surface residue. Thelréswan all-against-all alpha carbon
distance matrix. The next step begins with a sesitlue to start a cluster. All nearest
residue neighbours within 7 A from it are clusterdthis is repeated for the new
residues of a cluster until no neighbours remamatbresidues in a cluster. The final

result is a cluster of 17 residues of which 10tare interface residues.
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The top-ranking cluster of conserved residues éslipted as being part of the protein
interface by PROTIN_ID. Previous studies have destrated that interface residues
are in close proximity to each other in three-disienal structural space (Ahmatl al,
2010; Guharoy and Chakrabarti, 2010). It is hypsizedl that interface residues would
be part of the top-ranking cluster (see section. J-drthermore, clustering allows the
filtering out of lone residues on a protein surfaoel sorting clusters by size eliminates
smaller clusters, which may be part of small mdedonding sites (Guharoy and
Chakrabarti, 2010; Ofran and Rost, 2007b). In FegdH6, it can be seen that clustering
of residues for two proteins adrenoxin and tramsfng growth factor beta receptor
(TGF-beta receptor) results in the largest clustdgth interface residues comprising
them and the isolation of smaller lone clusterd ttansist entirely of non-interface
residues. Moreover, the proteins’ conservation magich display the level of
conservation on their surfaces, indicate that éingelr clusters are more conserved than
the smaller ones. These maps can be a useful aidetasers of the PROTIN_ID
method as they can be used to expand the top clifistequired by increasing the

clustering radial cut-off.

4.3.3 PROTIN_ID theoretical restraints output faeun protein-protein docking

The first output file created by the PROTIN_ID nuhis a cluster of conserved
interface residues prediction file that containscalsters ranked by size and average
conservation (see Figure 4-7). The top clusteriptieth can be inputted as direct active
residue restraints in the HADDOCK docking methode(section 3.8.1) for query
proteins in order to guide docking sampling (Donuieget al, 2003).

The second set of files created by PROTIN_ID ap®8 file (with conservation scores

in the B-factor column) coupled with a PyMol script to gesite the conservation map
of the query protein, and another PDB file withrigspective PyMol script to generate
all clusters in different colours (sorted by sizel average conservation) predicted for
the protein as shown in Figure 4-6 (Delano, 198)th these sets of query protein
PyMOL visualization files are meant to complemeatheother and guide the user into
making an informed decision for later use of théoaé restraints in docking.
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Isolated
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No conservation E High conservation No conservation E High conservation

Figure 4-6: PROTIN_ID clustering and conservation map featufé® effect of clustering in isolating lone clustérom the largest cluster is

shown when the Top-20 conserved surface residweslastered for two proteing) The Adrenoxin protein has 4 clusters predictede&h
clusters are small and isolated clusters (hot piim&sidue, yellow 2 residues, and red 1 residuéhenfront and back of the protein’s structure
with respect to the largest cluster (light bluehe$e small clusters are comprised of non-interfaselues. The largest cluster contains 16
residues, including 12 interface residues. Basedsoconservation map, it can be seen that theesarguster is comprised of more conserved
residues relative to the smaller clusté&¥.The transforming growth factor-beta receptor lnmed clusters in total. Two clusters are small and
isolated with regards to the largest one and comtan-interface residues (yellow 2 residues; redter 1 residue). The largest cluster comprises

17 residues, including 10 interface residues. Atss,comprised of more conserved residues tharsthaller clusters in the conservation map.
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1M9Z.pdb

Clustering 20 residues from 77 surface residues (20 extraction) using a 7 Angstrom(s) radial
cutoff:

17,0.73, Cluster_1 ==>81 59 32 30 27 118 119 122 46 52 51 50 49 48 47 78 54

2,0.73, Cluster_2 ==>100 126

1, 0.73, Cluster_3 ==> 66

Figure 4-7: An example of PROTIN_ID’s clusters of conserveteiface residues
prediction file for the transforming growth factoeta receptor protein (TGF-beta
receptor) is shown. In this file, the top predinti@e. Cluster_1) followed by the small
and isolated clusters are indicated. The Top-2@uwes are shown that have been
extracted from 77 surface residues for this protéime clustering of Top-20 residues
was performed using a 7 A radial cut-off. Each uss ranked by size (ex. 17 for the
largest cluster) and then average conservationchisger (0.73), if two clusters are the
same size. In this case, since all clusters hawsdime average conservation value, they

are ranked by size.

The third file outputted by PROTIN_ID is a multipgequence alignment of the query
sequence and its homologous sequeniceshfts) as seen in Figure 4-4. A user may
choose to manually re-edit the alignment or adeérfequences to this alignment and
then resubmit this file along with the query protgiPDB file to PROTIN_ID for re-
prediction. PROTIN_ID allows a user to input a nplé sequence alignment derived
from third party sources along with an input PDRe.filn this case it initiates its
protocol from the conservation score step to stbee MSA and assign the residue
conservation values to the query protein’s residBgsdefault CLUSTAL, FASTA, and
HSSP alignments are recognized. However, HSSPraégts from the HSSP alignment
database are first converted into FASTA format gigine program MView (version

1.52) prior to conservation score analysis (Bratal, 1998; Dodget al, 1998).
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4.4 Conclusion

In general, most interface predictors utilize sempgeand structural data to derive
interface predictive features (see sections 1.81a9d and table A-2). Sequence data is
represented in the form of a multiple sequencenalgnt, which is generated
automatically. In some instances, manual re-edibihiyISAs becomes necessary when
they are unstructured, and this becomes a limifaogor when performed in a high-
throughput setting of generating theoretical réstsafor many proteins. For sequence
data analysis, useful and user-friendly featuresewetroduced to improve interface
residue prediction performance by reducing theofacthat cause MSA errors, which
require manual re-editing by the user, and these features distinguish PROTIN_ID
from other interface predictors (see sections didBk11 and table A-3). These features
introduced involve filtering and editing hit seqoes prior to multiple sequence
alignment generation. The filtering steps use thetion of coverage of the hit to the
query to remove short sequences, and a featuredhmetves redundant.€. identical)
sequences from a sequence dataset to reduce oeseefation of identical sequences
in an MSA. In addition, the editing heuristic renagvN/C-terminal overhangs and
insertions in hit sequences that do not have gooreding residue counterparts in the
query sequence of interest, resulting in bettedipt®n results when comparing MSAs
generated with (refined) and without (unrefinedg thditing heuristic for the same
number of sequences (see sections 2.2.2 and 4Ash, an implicit effect of the
editing heuristic is that residues that are miseddyare likely aligned in the appropriate
sequence columns in refined MSAs relative to tlmiginal positions in unrefined
MSAs. This implicit effect is a result of the renadwf alignment error-inducing factors
(ex. long N-terminal overhangs), which cause ressdto be aligned in the wrong
regions, because other unlikely residues presestich overhangs are occupying their

sequence columns.

Structural data is represented by a query prot&D8 coordinate file. The clustering
of the top-20 conserved surface residueks$o ASA) in three-dimensional structural
space using their alpha-carbon coordinates fronDB fle allows conserved residue
clusters to be identified and sorted by size aretage conservation when two clusters
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have the same size. It also eliminates lone resittoen the final prediction. A recently
published method, CCRXP, has a similar protocoPROTIN_ID, but lacks these
practical and user-friendly features introduce®ROTIN_ID, namely the filtering and
sequence editing heuristics, and the ranking okensed residue clusters, which are
useful to improve interface residue prediction (Auhet al, 2010). Also, if an
experimentally solved protein structure is not klde, it is possible to use homology
models of proteins for prediction of interface dess using PROTIN_ID, which is not
implemented in CCRXP. Furthermore, third-party MSAgy be used in PROTIN_ID,
but this option is not present in CCRXP. The PROTIN webserver has also been
implemented for ease of use and convenient acagssisers in the generation of
theoretical restraints for data-driven docking (Fey 4-8). In addition to this, a
PROTIN_ID script that runs on Linux and UNIX opengtsystems is available to users
that can be used in high-throughput prediction histers of conserved interface

residues of unbound proteins.

In order to assess the prediction performance efrtewly developed PROTIN_ID
method, it will be systematically tested on a dettaf unbound proteins known to
interact (Benchmark 4.0). The results for the umabproteins will be compared to their
known protein-protein complexes to examine PROTINs Iperformance in interface
residue prediction relative to random predictioree(sChapter 5). Furthermore,
benchmarking of the new PROTIN_ID method’s perfanoeaagainst other methods
(ex. CCRXP) is useful to assess it strengths aghlight areas for further development
of the method (see Chapter 6). Upon satisfactorymopation of PROTIN_ID’s
parameters and performance testing, the methodowillpplied to generate theoretical
restraints to drive protein-protein docking to imype docking performance (see Chapter
7).
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Choose File

Figure 4-8: The input web interface of PROTIN_ID. The intedds divided into PDB file input, alignment filegat, and parameters sections.
The minimal input is a PDB file to upload to ruretmethod. In addition a multiple sequence alignneantbe uploaded in combination with a
PDB file.
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Chapter 5

Prediction of protein-protein complex interface resdues

5.1 Introduction

Most cellular processes are driven by protein-pnoit@eractions (see section 1.2). It is
important to consider whether protein interfaced@ss that drive these interactions are
more conserved in comparison to the remainder ofepr surface residues. Protein
complexes and in particular intra-species proteommexes may have a tied
development pattern in the evolutionary lifespammforganism (actual hypothesig)H
This may allow an evolutionary signal to be detdcteor example, an enzyme-inhibitor
interaction may have evolved into it current mattggulatory state where its interface
residues are conserved because of functional eamistand its interface is detectable
because of this. On the other hand, it may wepdgsible that protein interfaces are no
more conserved than the remainder of protein sarfasidues given that proteins can
be promiscuous in nature. Therefore, conservatifierences between a protein’s
interface and (non-interface) surface are no b#taam random, indicating an absence of
an evolutionary signal (null hypothesis,’"H To disprove the null hypothesis, statistical
analyses of conservation signal differences betvirgenface and rest of surface (ROS)
residues of intra-species protein complexes werdopeed. The findings were

discussed in the context of previous work (sed@eétb).

If interface residues emit a detectable consermasignal, it would be desirable to
utilize it as a predictive property for such resduFor example, this would allow
predicted interface residues to be applied as sagqpkstraints in protein-protein
docking of two proteins known to interact (see ieectl.6.1.1). However, the
application of sequence conservation as an interfasidue predictive feature is a
debated topic. This issue is addressed in thistehapd an approach is explored where
sequence conservation of surface residues is auylté their spatial clustering.¢.
using known protein structures) to predict consgrigerface residue clusters. This

strategy is applied in the protein interface predicPROTIN_ID, which is used here.
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Performance evaluation is done as a cluster is groavoptimize PROTIN_ID) and is
compared in terms of interface prediction reliapito a scenario where clustering is not
applied, but residues that are conserved are peedias interface residues. Both
clustering and non-clustering are also comparedthia framework of interface
prediction at random to gauge their contributionsterms of interface prediction

reliability.

5.2 Dataset for analysis of protein-protein interatons

The Benchmark 4.0 dataset is a manually curateasdabf protein-protein complexes
(Hwanget al, 2010). There are a total of 176 structures ofgimocomplexes in this
dataset composed of intra-species, inter-speciebaatibody-antigen interactions (see
section 3.2). For each protein complex, its unbofuedfree form) protein constituents
are available. Only intra-species binary complexese selected for statistical analysis,
which included their unbound proteins. This is heseaintra-species proteins evolve in
the same organism in the context of an importaatofical function crucial for an
organism’s survival in which they are involved (estazymatic inhibitory activity;
Johnsonet al, 2007). This allows the comparison of interfacgsus ROS residue
conservation signals directly, which was done fiolaky interactions, and is useful for
training of PROTIN_ID. All intra-species non-binappmplexes (ex. three or more
chains in a complex) were excluded from analystsabse they may have overlapping
interface residues, making an interface of intetgfftcult to predict by an interface
predictor, if knowledge is not known in advanceottier interfaces to exclude them
from the final predictions. Because inter-specigsractions are composed of proteins
from different organisms they were excluded fronalgsis as a result. The antibody-

antigen interactions were also excluded from amalgee section 1.9.3).
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5.3 Classification of residues of the dataset inioterface and the rest of the
surface

The number of interface residues, the rest of tmdase residues (ROS), and core
residues were calculated for the unbound protefnmitoa-species binary complexes
dataset based on the interface residues deterrfonede same proteins in their bound
form (see section 3.2.1). This data is summarizedable 5-1. Using the CAPRI
interface distance criterion, overall 2,928 ‘bouimdérface residues were yieldgds A

in distance for the proteins in the bound poséhefdataset. Next the same proteins of
the dataset in the unbound poses were examineeetdf he same interface residues
were present. It was found that 2,829 ‘unboundrifisice residues were present in total
in the dataset. There are 99 interface residuesrféwthe total number of interface
residues of the unbound proteins. This is becdusg @re not found in those proteins’
structuresi(e. in their PDB files). In the training of a proteimterface predictor only
unbound structures should be used, mimicking adlghrediction test (see section 3.5).
Therefore, such interface residues found only i lound proteins, but not in their

unbound counterparts are discarded from training.

There are a total of 25,132 residues for the untqumoteins in the dataset. Using the
solvent accessibility criterion>(15% accessible surface area %, ASA), they were
divided into surface and core residues (see se8tdi). Accordingly, there are 17,256
surface residues and 7,876 core residues. Thecsurissidues consisted of 2,498
interface residues that overlap with the distangroon-derived unbound interface
residues, and the remaining 14,759 residues aranterfiace surface residues (rest of
the surface, ROS). There are 331 interface residues % solvent accessibility cut-off
and they are classed as core residues and henc®tamecluded in further statistical
analysis. The percentage of ASA interface residugsof the total surface residues is
14.5% for the unbound proteins dataset. As a rethdte is a substantial bias towards
ROS residues.
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Table 5-1: Total interface, core, and rest of the surfacedress of the unbound dataset
of binary intra-species complexes. The bound pmetdptal interface residues of the

dataset are included for comparison.

Bound proteins Unbound proteins  Unbound proteins  Unbound proteins

total interface total interface total ROS® total core residues
residues residues (ASA%)  residues (ASA%) (ASA%)
(Distancé)
2,928 2,498 14,759 7,876

2 CAPRI distance criterior<(5 A) to derive interface residues.
® Accessible surface area % criterigri$%) to derive interface residues.

° ROS = rest of the surface non-interface residues.

The average interface sizes were calculated fortiwe interface criteria for the
unbound and bound proteins, and this is summairizddble 5-2. The unbound ASA%
average interface size calculated (20.31) diffeysapproximately three residues in
comparison to the unbound interface average (2316@rmined by the distance-based
criterion. This comparison is important becauseieim-world terms, the ASA% is the
only criterion that can be used to determine serfasidues from the core residues of a
protein. Therefore, this division into surface aade residues is an attempt to maximize
the number of interface residues in the extractafbase residues. The ASA% is an
interface residue predictive feature (see secti@r2l Using an ASA% threshold allows
the discernment of how many interface residues albog threshold are determined on
average as surface residues in the dataset. Ancbthparison of this ASA% interface
residue average to the known unbound distance-bassdiace average size acts as a
gauge to determine the suitability of the ASA% ofit-Of course the lower the ASA%
threshold the closer the ASA% interface residueraye is to the distance-based
average, which means more residues are designatesurface (and ROS). This
threshold usedi.e. > 15% ASA) indicates a negligible loss of interfamsidues
(approximately three residues) and justifies usimg specific solvent accessibility cut-
off in the PROTIN_ID interface prediction methodkésChapter 4). Those 331 ‘lost’
interface residues (found in 61 complexes studied} are under the 15% solvent
accessibility threshold had average solvent adodiiss of 5.76% (STDVs of 4.68)
and 2.41% (STDVs of 3.96) for the side and mainrchaespectively. This means the
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ASA% threshold would have had to be lowered comalilg just to extract those
interface residues. Doing this would likely intre@umany core residues as surface
residues, which are conserved (Mintseris and W2@@5a). This would make it more
difficult to assess the difference between intesfand ROS conservation difference. It
Is worth mentioning that the same ASA% cut-off hagen used in an earlier study for
previous versions (1.0 and 2.0) of the proteingirobenchmark (de Vriest al, 2006;
Mintseriset al, 2005b; Chewt al, 2003a).

Given that structural discrepancies can exist wheselues are not found in an unbound
chain relative to its bound chain counterpart, ¢hesssing residues can also be part of
the interface. As mentioned previously, 99 intezfaesidues are not found from the
unbound chains compared to the bound chains. Cangptire averages of the bound
vs. unbound interface based on the distance-bagedan indicates a minor difference
of approximately one residue on average that isimgs This indicates that the loss of

the 99 interface residues is negligible.

An important use of the calculated averages inet&P is that they are relevant to
calculate what is expected for interface predicabnandom. This random prediction is
important to know as it allows comparison to thediction performance of an interface
predictor method to determine if it performs bettean random, is no better than

random, or is worse than random prediction (seeweb.7).

Table 5-2: Calculated averages of the unbound/bound interfacesunbound rest of
surface (ROS) residues of the dataset of binama-species complexes. The solvent
and distance-based definitions were used for th@wmd/bound protein interfaces. The

standard deviations of the average interface simesdicated in parentheses.

Unbound Unbound Bound Unbound
protein protein protein protein
interface interface interface ROS

ave. (15% ave.5A ave. 5 A surface ave.

ASA) distance) distance) (15% ASA)
20.31 23.00 23.80 119.99
(£6.77) (£8.09) (£8.21) (£80.44)
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5.4 Analysis of protein interface residue conservain vs. ROS residue
conservation

Conservation signals were calculated using sev#aremt evolutionary conservation
scores (available in PROTIN_ID) using multiple sexgee alignment data for all dataset
proteins (see sections 3.3 and 3.4). Using all @wasion scores allows comparison of
their results regarding interface residue versu$ R€3idues evolutionary conservation.
The difference in conservation signal between fater and the rest of a protein’s
surface was calculated by subtracting the avera@& Residue surface conservation
signal from the average interface residue conservaignal (see section 3.6). The
resulting signal difference valueaGons) can be a positive, negative, or zero value,
which represents the presence of an interface ocaatgan signal greater than the ROS,
the presence of the non-interface surface residpmalsgreater than interface residues,
or no detectable interface signal conservation umxaboth the interface and the
remainder of the surface residues are equally coedeand negate each others effects.
Why are differences necessary to calculate? Impecal multiple sequence alignment,
background noise may be introduced through diffidol align sequence regions,
causing alignment errors, for example. This intioiin of background noise equally
affects the separately measured conservation sigsfainterface and the rest of the
surface residues since they are derived from thee saultiple sequence alignment. By
calculating theACons values, this noise does not affect the pestivmnegative direction
of the ACons value of the interface conservation signgla-visthe remainder of the
non-interface surface residues. This effectivelgved for statistical analysis to quantify

the extent of statistical significance or lack gadrof ACons.

5.4.1 The probability distribution of empirical d@afACons)

Any statistical analysis assumes certain precantitare satisfied upon its application.
As such, knowing the probability distribution themgrical data i(e. ACons)
approximately models is important for applying ahle statistical tests.€. parametric
or non-parametric) for valid data analysis to deiae if interface conservation is more
conserved than ROS residues (Park, 2008). Otheaygplying an incorrect statistical
analysis that assumes data are normally distribdtecexample, to data that does not
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follow this statistical model will result in unrable interpretations (Park, 2008). To
apply the appropriate statistical test, th€ons data was tested for normality (see
section 3.6)Accordingly, histogram distributions @gfCons and their respective Q-Q
plot diagnostic tests indicate that the underlyatigtribution relationship between
interface and non-interface surface residues falttve Normal distribution (Figure 5-
1). In the Q-Q plots, the quantiles of the actualladare plotted against those of the
theoretical distribution (Normal distribution). the Q-Q plot, the intersecting diagonal
line represents the existence of perfect agreetemieen theoretical and actual data
and implies that the actual data are normally iisted (Park, 2008). The plotted
ACons empirical data residuals in all Q-Q plots havmear pattern with respect to the
intersecting diagonal lines. In addition, a noryatest (Skewness-Kurtosis test) was
applied to demonstrate that the data is normakyributed. This Skewness-Kurtosis
test’s null hypothesis is that the data are noynditributed. If the null hypothesis is
disproven, then the data is not normally distridutEhe p-values of this test show that
no significant departure of normality has been olest accepting the null hypothesis
with regards to the data being normally distribuféable 5-3).

Other normality tests (Shaprio-Wilk and Shapirofieia tests) were applied on the data
and produced p-values in agreement with the Skeswiasgosis test, accepting the
conclusion that the data are normally distributddio forms of normality tests
(graphical and numerical) were conducted to deteentihe probability distribution the
ACons data followi(e. normal distribution or not) as a precursor todbtual statistical
analysis, which examines the significance of theseovation of interface residues to
the ROS residues. All tests agree that the empidata ACons) calculated from all
seven conservation scores are normally distributddch means that parametric tests

can be applied for the next step of analysis.
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Figure 5-1: Histogram distributions of the differenceaCons, see equation 3-20)
between average interface and rest of surface (R@8ilues of the dataset. The
intersecting line at 0 marks no difference in conagon between the interface and the
rest of a protein surfacaCons > 0 indicates an interface conservation sigi@ons <

0 indicates a non-interface surface residue sidghean bee seen thatCons > 0 for the
majority of the data distribution, indicating antdrface conservation signal. The
Shannon entropy and Jensen-Shannon divergences sme&rahown with the Q-Q plots
for each score below it. Q-Q plots depict the retathip between theoretical Normal
distribution data (X-axis) and the actual experitaérdata ACons, Y-axis). The
intersecting diagonal line illustrates perfect agnent between empirical and
theoretical data. As the residuals of the empiritzth depict a linear pattern along the

diagonal line, this suggests that the data follok® normal distribution.
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Table 5-3: Comparison of conservation score averages of sidhce ASA%, ROS ASA%, and interface residues ASAfe standard
deviations of the average conservation valuesratieated in parentheses. ThN€ons > 0 shows that the majority of the interfaceservation
signals are better than the ROS ASA%. The Norm#diy P values were obtained from the SkewnessKigrtest. The null hypothesisdjHhat
indicates that thaCons values follow the normal distribution is nejected for all scores. The 95% Confidence Intestaws the upper and
lower bound range limits chkCons. Paired t test P values indicate the proliigsilof the ROS residue conservation sign@ldns < 0), no

detectable conservation signal between both grotipssiduesACons# 0), and the interface residue conservation sigx@bns > 0).

Conservation ASA%total  ASA ASA Difference Difference above Normality 95% P value P value P value
scores surface ROS interface (ACons) random (ACons%)  test p value Confidence ACons < 0 ACons# ACons >
Interval 0 0

Shannon entropy  0.53 (0.11) (8'51’% 0.61(0.13)  0.10 (0.11) 79% 0.09 0.08 - 0.12 b1.0 <0.00f  <0.001

Property entropy ~ 0.56 (0.11) (8'51"1‘) 0.64 (0.14)  0.10 (0.12) 76% 0.18 0.08 - 0.13 1.0 0001  <0.001

Property relative  ; 5q 37y 153 4 85046) 0.33(0.37) 79% 0.42 0.26 — 0.40 1.0 0001  <0.001

entropy (0.38)

Relative entropy ~ 0.52 (0.12) (8'?2)) 0.60 (0.13)  0.10 (0.11) 80% 0.16 0.08 - 0.12 1.0 0001  <0.001
JS-divergence 0.5 (0.10) (8"1‘8) 057 (0.11)  0.08 (0.09) 75% 0.11 0.06 — 0.09 1.0 0001  <0.001
Von Neumann g 55 19y 060 469 (0.13)  0.09(0.10) 77% 0.11 0.07 - 0.11 1.0 0001  <0.001

entropy (0.11)
Sum of pairs 187 553(0.96) 0.66(0.81) 77% 0.13 0.51 - 0.80 1.0 0001  <0.001

2.00 (0.68) (0.68)

4 ASA% = Accessible surface area percentage.
® P value 1.0 (> 0.05) indicates no significance.
° P value < 0.001 indicates extreme significance.
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5.4.2 Statistical analysis of the empirical daa&Cons)

For all the histogram distributions afCons calculated for all evolutionary conservation
scores, the results suggest that interface resah@esiore conserved than the remainder
of a protein’s surface where the majority of protgiterfaces havaCons% > 0 (table
5-3). ACons% is the percentage of data greater thanAeoms. This indicates that for
the majority of interfaces, their conservation signare greater than the ROS residues
(Figure 5-1). As the\Cons data follows the Normal distribution, parameestatistical
tests were applied to ascertain the significanc&©@bns (greater than zero) for all
conservation scores used (see section 3.6). Thédeone interval (Cl), which
describes the precision of the population meanofuACons, was calculated. The CI
takes into account sample size and variabilityn@aad deviatiors) when performing
the analysis (Motulsky, 2007). The Cl describesat® chance that the true population
W is defined within the Cl range as delineatedh®y €1 upper and lower bound limits.
For example, for 95% of samples of the populatiolddpendently and randomly
sampled) the CI reflects the probability that theetpopulation mean is within the CI
range and a 5% chance for the remaining 5% of &énepkes that it is beyond the CI
range limits. Additionally, calculating the 95% @llows the consideration of where the
CI limit lower boundary falls in comparison to netdctable interface conservation
signal (zeroACons). The interface conservation signal signifogaover the rest of a
proteins surface (ROS) is demonstrated when therdwund CI limit ofACons is
greater than zeraCons. Indeed, for all evolutionary conservationresocapplied it is
observed that there is a 95% chance that all ssbhr@s lower bound CI ranges where
ACons > 0. For example, the Jensen-Shannon divezgeas aA\Cons mean of 0.08
with a lower bound CI limit 0.06ACons minimum) to an upper limit of 0.08Gons
maximum), indicating a good precision of the sconons. All other scores are also in
agreement, highlighting that there is an interfageservation signal to be exploited in
the prediction of a protein-protein interface sitece theirACons averages ansCons
minimum are greater than zero (Table 5-3).

Taken as a whole, the dataset used for statisditallysis represents a sample of intra-
species interacting proteins derived from a grgadpulation of interacting proteins that
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have evolved together in the same species. Thed@ldes the opportunity to make a
broader inference about the interface conservatignal A\Cons) by extrapolating the
findings based on the sample to the populatios derived from. Since the calculated
Cl ranges for each scorel/sCons mean show good precision, indicating thatether’
95% chance that the populatiaons meany( ACons) is similar to the sampiCons
mean, there is a 95% probability that future extarsto the current dataset would have
a 95% CI within the calculated ranges for all comaton scores. This means that if the
current dataset were enlarged to include more-sfegies interacting proteins, there is
a 95% chance that the current CI results indidaetheACons population mean is > 0,
which shows that interface residues are more cwvedethan the rest of the surface

residues.

To complement the CI analysis, the Paired t-test wsed to assess the statistical
significance of the\Cons given that the null hypothesis’s assumptiahas there is no
difference between interface and the rest of aeprist surface in terms of residue
conservation (see section 3.6). The probabilitfesctually observing the curreACons

of all scores were computed. Table 5-3 summarizegptobabilities oACons changes.

It can be seen that for all evolutionary conseorascores the probabilities thaCons
shifts in favor of interface or non-interface resdconservation ACons # 0) is
extremely significant for all scores (p-value <Q@RNO This result is statistically
significant and rejects the null hypothesis’s asserthat no conservation signal is
present between interface residues and other rierfane surface residues. However,
the current resultACons# 0) only means that there is a conservation sidgnaljt does
not elaborate if it is in favour of interface (amthypothesis § or ROS residues.
Seeing thatACons # 0 indicates the presence of a conservation sigha,ACons
conservation signal could be a positive vaiue (nterface residues conservation signal,
ACons > 0) or a negative valuee( ROS residues conservation signgfions < 0). The

P values of negativaCons values are 1.0, which indicates no statisficalificance to
suggest that the conservation signal is presenausec ROS residues are more
conserved than interface residues. This makes sassie lower bound CI limits of
ACons were all greater than zero in the CI statistenalysis i(le. no detectable
conservation signal for ROS residues). This is icor&d for all conservation scores and

therefore ROS residues do not have conservatiaralsighat are more apparent than
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protein interface residues. In contrast posiiieons P values are <0.001, indicating a
statistically significant result and confirmed lnetCl ranges computed for all scores in
Table 5-3. All conservation scores form a consengtls regards to this. This accepts
the actual hypothesis (H and indicates a detectable conservation sign&hvour of

protein-protein interfaces when compared to noarfate surface residues.

It has been demonstrated that an interface consamvsignal is present from analysis
of the current dataset using parametric statistestls that are based on the data being
normally distributed. The statistical analysis does$ support evidence to the contrary
to accept the null hypothesis. For further confitioraof the results, the application of
non-parametric tests that assume no underlying gibty distribution (.e.
preconditions) for the data was performed to amalyge ACons significance for all
evolutionary conservation scores (see section JB& bootstrap approach and the
Wilcoxon matched pairs test, for computing the @tl & values, respectively, both
concur with the above results computed by the panactests. Overall, the evidence is
in support of the actual hypothesisy(hh that interface residues are more conserved
than ROS residues. The statistical data when lo@kad the context of the interface
size vs. non-interface surface residue size (set®reb.3) becomes more pronounced
and illustrates the significance of the detectabtmservation signal for protein

interfaces given that they form 14.5% of the 17,866ound surface residues.

5.5 Interface vs. non-interface surface conservatio the views of others

Early work done by Grishin and Phillips (1994) feed on five enzyme oligomer
proteins and sought to determine if interface ngsidonservation between subunits of
oligomeric enzyme complexes is present and apprecidhey applied an identity
score to examine the positional percentage iderdftyinterface amino acids per
sequence pair in a multiple sequence alignment aosalpto total sequence identity of
the sequence pair. This allowed the analysis ofebautionary rate difference of
interfaces with respect to the rest of the surfadeey concluded that interface residues

are approximately 1.5 times more conserved thaeratrface residues, while enzyme
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active sites and core residues showed the moseeppte conservation. This study
bases its conclusions on a small dataset and oedaced model of quantifying
conservation based on comparing identities. Howea@rounting for physicochemical
properties (see section 3.4.3, for example) of ititerface amino acids may have
improved their conservation signal (Valdar, 2003jddr, 2001). Nonetheless, based on
the results of their study an interface conserwvasignal is still present waiting to be
exploited. In another study, Valdar and ThorntodO® analysed 6 homodimer proteins,
using a more sophisticated score similar to the-sfipairs score (see section 3.4.8).
They compared the conservation of interface resiase surface residues (that included
interface residues) equal to the interface residuesimber. They employ three ways:
(1) interface residues vs. randomly selected serfasidues, (2) interface residues vs.
randomly selected structurally neighbouring surfeessdues and (3) interface residues
vs. an almost circular patch of residues equaltimg interface residues in number.
Based on these thorough analyses, they concludadirtterface residues are more
conserved than the rest of the surface residu&s. Grishin and Phillips’ (1994) study,
the final conclusions are based on a small datd&emmpted by the dataset size
limitations of the previous studies, Caffrey,al (2004) used a considerably larger and
diverse dataset to examine interface vs. non-eterfsurface residue conservation.
Their dataset consisted of 64 proteins composedbbdfobligate complexes (42
homodimers and 12 heterodimers) and 10 transienplexes. Using the Von Neumann
entropy score (see section 3.4.7) they conductedamalyses. The first analysis was
comparing interface residues’ conservation avertmethe rest of the surface’s
conservation average. They observed that interfesidues were more conserved than
the rest of the surface, producing a statisticsiiyificant result. Another analysis was
comparing surfacei.€. non-interface and interface surface residuespuespatches’
average residue conservation to that of the interfpatches. Their results did not
indicate statistical significance in support ofeirihce conservation over the rest of the
surface patches. Caffregt al (2004) concluded that although the interface @ean
conserved than non-interface surface residues,ubec@nterface conservation vs.
surface patches conservation was not significartha@ir patch analysis, evolutionary
conservation as the only factor to predict integfaesidues is not sufficient. Burgoyne
and Jackson (2006) took a different approach winaiyaing interface conservation for
97 transient complexes. They divide a protein’dasg into smaller sizes (clefts) and

observed that interface conservation is not stgilcompared to surface residue clefts
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when ranking clefts by conservation. Other studils® found that when compared to
surface patches, interface patches did not displagnificant conservation signal and
that evolutionary conservation should be used witter features of protein interfaces
and not by itself to predict interfaces (Capra &magh, 2007; Reddy and Kaznessis,
2005). Mintseris and Weng (2005a) took a more oastiapproach when analyzing
interface conservation versus the rest of the sarfarguing that the estimation of
conservation of non-interface surface residuesisan accurate estimate but an upper
bound limit as the surface residues may contairrothterface residues.€. crypto-
interface residues). While acknowledging the pabsibof crypto-interface residues
being present in the rest of the protein’s surfdt|tseris and Weng (2005a) compare
conservation between core, interface, and surfaeeface ie. non-interface surface)
residues for 91 transient and 41 obligate complexed show that the interface
conservation is higher (statistically significarthan the surface/potential crypto-
interface mixture but lower than core residues (sBns and Weng, 2005a). Bordner
and Abagyan (2005), who show that interface residue more conserved than the rest
of the surface of proteins in the bound form $d8 homodimers, 157 hetero-dimers,
and 862 multimersalso highlight the presence of crypto-interfaesidues classed as
non-interface surface and their diminishing effent prediction accuracy of transient
heterodimer complexes. Chet, al. (2009) in their study argued that multiple indexs
should be taken into account when comparing interfaonservation vs. the rest of the
surface. Their dataset consisted of 3844 protemptexes (bound form only) from
which they isolated a total of 2646 interfaces @%hd 302, obligate and transient
interfaces, respectively). They demonstrated thirfiace conservation vs. the rest of
the surface is improved and statistically significavhen multiple interfaces are
considered. This was more apparent for proteingevtiee rest of the surface was more
conserved than a single interface and taking atindtiple interfaces into account; the
multiple interfaces were more conserved than teeakthe surface.

Some studies have much larger dataset sizes tleaonth used in this study and there
are two reasons for this. Firstly, some datasetxcamposed of bound complexes only
(Choi et al, 2009; Bordner and Abagyan, 2005), whereas tladysis of interface

residue versus ROS residue conservation performéds work was based on unbound

proteins, which is important as these proteins vad used for testing of the
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PROTIN_ID method prediction performance, simulatangealistic setting to predict

interface residues (see section 5.6). Furtherntibesyinbound proteins used in this work
will be later applied in data-driven docking usiRBOTIN_ID’s theoretical restraints to

drive docking (see Chapter 7). Secondly, the dat#ghis work is based on only intra-

species interacting proteins, reducing the numlbesomplexes in comparison to the
other dataset of Mintseris and Weng (2005a).

To recap, previous studies compared average ioter@sidue conservation (single or
multiple interface models) versus the average oéshe surface residue conservation
and showed that indeed the interface residues are aonserved, which is statistically

significant. This is in agreement with the currantlysis performed for interface and
ROS residues in this work (see section 5.4.2). foee, there is a possibility to extract

this signal by prediction. In some studies, theyehanplemented predefined protein

surface patches of average interface size (Caétegl, 2004) or smaller sizes (clefts)

(Burgoyne and Jackson, 2006) and did not yieldrnd@rfiace conservation signal that
was significant when compared to other surfacehgstor clefts using conservation as a
predictive factor. One question to ask is: arerfate residues equally conserved
relative to each other? If not, then only thosedwess exhibiting conservation may be
used in interface prediction. If they are identifirst, creating patches should then
follow, which are examined to determine if a pattmservation signal is significant.

Therefore, an approach should be tailored basethisnobservation. Herein, this is

achieved through extracting a specific number offase residues sorted by

conservation, which are then clustered. (structural window) according to proximity

in three-dimensional space to create patches cardpa$ clusters of conserved

residues. This approach is implemented in the PRIOID interface predictor and will

be examined below.
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5.6 Interface residues’ conservation relative to amanother

An analysis of interface residue conservation &ewdint levels of conservation was
carried out. Figure 5-2 shows the interface reswhugservation of the entire dataset of
interface residues compared to all ROS residuessewation at different levels of
conservation windows sorted from high to low comagon (calculated using the
Jensen-Shannon divergence score, see section. Hélgtically, interface residues on
average are more conserved than ROS residuest Ban ibe observed that individual
interface residue conservation is spread out frmmdonservation to high conservation
with other surface residues occupying the same avinchnges. This non-homogeneity
in interface residue conservation agrees with ardieeafinding, indicating the
differences of evolutionary pressure on interfaesidues (Guharoy and Chakrabarti,
2005). Relating this data to the core-rim interfanedel (see section 1.4.4), core
residues are more conserved than rim residues (@Gulaad Chakrabarti, 2005). This
implicitly indicates that conserved residues amodbcalized near to each other under

the assumption they are core residues, accorditiggtoore-rim model.

It can also be seen that there are highly consdR@8 residues, which may be part of
small molecule binding sites or other multiple nfdees. As such, if the goal is to
retrieve all residues for the interface of interdsectly, this may be hampered by a
likely increase in the presence of conserved RQOsSdues ie. crypto-interfaces
residues), which may influence patch analysis.hi ¢ontext of generating theoretical
(conservation) restraints in protein-protein dogkisonserved ROS residues are not
important for docking of two proteins since thewyho role in the interaction of the
proteins of interest, and if included, may have tmelesirable effect of misdirecting
data-driven docking sampling, producing incorreictding poses in the final docked
models (see section 1.6.1.1). Therefore theseuesigresence should be minimized in
a final interface prediction, while maximizing theesence of the number of residues of

the interface of interest to ensure sufficient dagaresent to drive docking.
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Figure 5-2: Histogram distributions of all interface residuesd) compared to rest of

the surface residues (ROS, green) of the datasedrding to different conservation

windows (calculations were performed using the def8hannon divergence score).
Low and high conservation are 0 and 1, respectiwbjistically, interface residues on

average are more conserved than rest of the surksidues. It can be seen that
interface residues are spread out at different ervation windows, indicating non-

homogeneity of conservation. This is the same lfer test of the surface residues.
Attempting to predict all interface residues witicrease background noise from the
ROS residues. The ROS residues may be highly ceeddrecause they are small
molecule binding sites or crypto-interface residues
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5.7 Use of clustering to improve prediction of intdace residues

Since interface residues differ in conservationisithypothesized that high ranking
surface residues (sorted by conservation) will tsamrised of ‘N’ conserved interface
residues that are in close proximity in three-disienal spacei.g. cluster of conserved
residues) when visualized on a protein’s surfates eans that if the top-N conserved
surface residues are extracted, some of thoseusssithay be residues of the interface
of interest. Therefore, it may be possible to idgrstuch residues since they could be in
close proximity to each other through spatial @usg, which may also eliminate
isolated residues to increase interface prediagdiability. An alternative to extracting
top-N residues sorted by conservation is to usalesmolute binary conservation cut-off
and select residues above this cut-off; howeves, dpproach was found to introduce
many ROS residues, which may decrease predicti@abiléy through the increase of
ROS residues in clusters. This is supported incantestudy, which has indicated that
taking top-N residues instead of using absoluteresamutoffs improves interface

prediction reliability (de Vries and Bonvin, 2011a)

To test this hypothesis of taking top-N residuég, PROTIN_ID method was used to
generate clusters of top-20 extracted surface uesicgorted by conservation for all
unbound proteins of the dataset (see Chapter 4idscription of PROTIN_ID). The
top-20 residues extracted is equal to the averemgedd the (unbound) interface (see
table 5-2). As stated earlier, the use of unbourmems is necessary to ensure a
realistic setting, especially for later use of ttetiwal restraints to drive docking (see
Chapter 7). If bound proteins were used in thidyens interface residues may possibly
be in closer proximity because of bound pose comdébional changes, introducing bias
and may artificially enhance the effect of spatialktering (see section 1.9.2). Indeed, a
recent study suggested that using bound proteimstréoning resulted in better
performance of methods in general when comparedsiog unbound proteins in

training (de Vries and Bonvin, 2011a).

Starting with a seed residue from the Top-20 ressdwa cluster was systematically

increased in size to examine the extent of interf@sidues (True positives, TPs) that
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cluster and to minimize the presence of ROS resid&alse positives, FPs) in each
unbound protein’s final cluster (see section 3Mgre than one cluster of varying size
may be generated for a single protein and clusters ranked according to the cluster
size first {.e. number of residues in a cluster) and then avergjdue conservation of a
cluster if two or more clusters were equal in $@ee-rank them. The top ranked cluster
is taken as the final interface prediction. In orde examine the effectiveness of
clustering on the dataset as a whole, the aver&ge(lhterface residues, 20) and FPs
(ROS residues, 120) of the entire dataset (see &2l are needed for comparison to
the average cluster generated by PROTIN_ID foetitee dataset. This average cluster
size generated by PROTIN_ID was statistically aredlyby performance measures to
examine the effect of clustering (see section I 8ple 5-4 displays the average cluster
sizes when extracting the top-20 surface residmescéustering them at incremental
cut-offs (from 4 - 8 A) with the statistical analy®f each cluster. On average, when the
top-20 surface residues are extracted, about #facte and 13 ROS residues are
extracted. The next step is to maximize the ratioRiFP such that it is better than the
random ratio of TP:FP (Kufarevet al, 2007).

Random TP to FP ratio is derived from the averagerface size (20.31) compared to
the average ROS size (119.99) fractions’ of thal tedirface (Table 5-2). Therefore the
minimum (normalized) ratio is one interface residoesix ROS residues. If 100
residues are sampled from N population of surfasdues i(e. 17,256), then it is
expected that 14.5 residues are interface residndsthe remaining 85.5 are ROS
residues. The TP (specificity) and FP fractiongasfdom prediction for interface and
ROS residues are approximately 14.5% and 85.5%ecésely. It can be seen that as
the clusters are grown more TPs are included as-Beein the growing cluster. To
analyze the significance of each grown cluster, TRefraction (specificity) and FP
fractions are computed. The TP fraction quantifies fraction of correctly predicted
TPs in a cluster as it is grown by 1 A (see equaBdb.2). Also, the FP fraction
computes the fraction of FPs present in a cluseg equation 3.5.3). It can be seen that
all TP fractions for the differing radial cut-ofése greater than random (14.5%) with an
average fraction of 43.6%. This is also the samdhe average FP fraction of 56.4%
being smaller than 85.5%. This indicates thatefample, for 4.42 interface residues at
the cluster radial cut-off of 7 A an equivalent®76 FP residues are clustered. This

value is lower than the random value of 23.61 FHritees for every 4 TP residues.
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Table 5-4: The extraction of the top-20 conserved surfacalues by PROTIN_ID. The top-20 residues contain alddnterface residues (true
positives) with the remaining 13 residues as tls¢ oéthe surface (false positives). Clusteringdwss at increasing distance cut-offs increases
the TP count. The FP count is also increased boinmzed, compared to the minimum ratio of TPs t® EP.12), when selecting 14 surface
residues at random. Clustering demonstrates th& signal can be exploited at improved ratios wb@mparing the TP and FP counts. TP and
FP fractions indicate the cluster TP and FP peagast. TP and FP rates indicate how much actuabié&@$Ps are present from the pool of TPs
(20) and FPs (120) (table 5-3). Accuracy reports Baccessfully correct TPs are predicted in theteluand successfully correct FPs have not
been predicted in the cluster from the total 120SR@sidues. The F-measure and MCC measure incasaswre TP residues are clustered;
indicating that the effect of clustering is bettiean selecting the same number of residues of steclat random, where random is 0 for both
measures. The average cluster conservation inditfae the clusters are conserved.

Radial Extracted TP FP CIu_ster TP fraction FP TP rate FP F- a CSs
cut-off interface | count | count Slz€ (Specificity) | fraction | (Sensitivity) | rate Accuracy measure MCC average
A) (TP+FP) | WPECTE Y J
4 6.72 2.02 2.37 4.39 0.46 0.54 0.1 0/02 0.8b6 0.160.16 0.71
5 6.72 2.27 2.91 5.18 0.44 0.56 0.11 0102 0.8b 0.180.16 0.71
6 6.72 3.44 4.46 7.89 0.44 0.56 0.17 004 0.8b 0.250.2 0.7
7 6.72 4.42 5.76 10.19 0.43 0.57 0.22 0.05 0.85 90.2 0.23 0.7
8 6.72 5.15 7.47 12.62 0.41 0.59 0.25 0.06 0.84 108 0.24 0.7

AMCC = Matthews correlation coefficient
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Figure 5-3 displays the TP and FP counts for tipe2® most conserved residues when
beginning clustering from 3 - 23 A and creatingstéus at 1 A increments until all 20
surface residues are clustered in the final clust@3 A. The clusters are compared to
what is expected at random and it is shown thagteting achieves better TP retrieval
than random. Furthermore, the TP and FP averagets@re shown for the entire
dataset when the top-N conserved residues arectedrastarting from 2 — 20 residues
and incrementing by one residue each time. Eacblibsresidue extraction values are
taken as the final prediction without applying $platlustering of the residues. When
compared to the spatial clustering approach, itameeen that clustering minimizes the
FP count unlike the conservation-only extractiorprapch, improving prediction
reliability (i.e. TP fraction), with the best clustering cutoff al#hat is furthest away
from the conservation-only data. If all top-20 dess are clustered or conservation-
only extraction is performed, they are still betteain random, however, this introduces
more FPs, which when used in data-drive dockinglisfumay result in incorrect
docking solutions because of sampling in the wranga of interest. This may be
caused if some residues are on different ‘sidesl pfotein. This is where clustering is
most useful in removing such lone residues throeBhreduction (see Figure 4-6 and

section 2.3).

Both the TP and FP rate refer to the number ofrfexte/ROS residues present in a
patch out of the total observed interface/ROS tesidsee equations 3.5.4 and 3.5.5). It
can be seen that TP rate increases as clusterssggewn and more TP residues are
incorporated in the cluster, ranging from 10% - 28Bthe observed number of average
interface residuesi.€¢. 20.31 interface residues). Because the aim isstoeve the
highest conserved interface residues since it Wwa/s that interface residues are non-
homogeneous in conservation (see section 5.6),attethpting to retrieve them all
would increase the number of FPs in a cluster ksgere 5-2), it can be seen that the
spatial clustering approach reduces the fractiofRx in a cluster, which is reflected in
the FP rates from 4-8 A. These values range frer6% of the observed number of FPs
(i.e.119.99).
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Figure 5-3: Clustering of the top-20 most conserved surfacelues extracted for all
proteins of the dataset. The average interfacee(fositives TP) and ROS (False
positives FP) residues in the extracted Top-2@tes for all proteins are about 7 and
13, respectively. Clustering (black) is initiateittwa 3A radial cut-off and incremented
by 1 A at a time to form a new cluster. All extettTPs and FPs are clustered at 23 A.
Clusters are compared to the top-N conserved resdtraction, starting from 2 — 20
residues, incrementing by one residue each timee(gr Absolute residue extraction
values are taken as the final prediction withowd Hpplication of clustering. Both
approaches are compared to random prediction (ledan be seen that the effect of
clustering improves the retrieval of TPs compaedandom prediction and minimizes
the effect of FPs when compared to conservatiog-ertraction, making it a useful

approach for generating theoretical restraintslédaa-driven docking.
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The accuracy measure quantifies the proportion B Bnd TNs (True negatives)
correctly predicted (see equation 3.5.1) (Xateal 2011a). It can be seen that the
accuracy is stable at all clustering cutoffs withaverage value of 85% for the clusters.
The accuracy measure’s value should be taken apmnoximation of performance of
the clustering as the accuracy measure assigrsathe weight to both correct TPs and
non-prediction of FPs, resulting in optimisticaligh values due to the biased ratio of
interface to ROS residues (de Vries al, 2008). The accuracy measure has been
featured for completeness. The F-measure compbtddrmonic mean of the TP
fraction (specificity) and the TP rate (sensitiyify/an Rijsbergen, 1979) (see equation
3.5.6). A zero F-measure score indicates that n® are added to a cluster. It can be
seen that the F-measure increases as the TP fraatid TP rate increase during
clustering, thus signifying the presence of TPsa icluster and highlighting the impact
of the clustering approach for predicting interfaesidues. Because there is a skewed
ratio of interface to ROS residues, a balanceduat@in is required for this imbalanced
phenomenon and this is provided by the Matthewsetadion coefficient (MCC)
(Ezkurdiaet al, 2009; Carugo, 2007; Balét al, 2000; Matthews, 1975) (see equation
3.5.7). The MCC score for the random predictio Bt is 0. It can be seen that MCC
increases as a cluster is grown from 0.16 — Osdicating that predicting interface

residues is better than random prediction.

It can be seen that prediction using the stratefylastering conserved residues
produces results better than random predictiors iBhbecause not all interface residues
are equally conserved, but those that are consemesdlustered. This observation is in
agreement with previous studies. For example, Laaidgt al (2001) demonstrate the
effect of clustering in predicting functional reses$ that are conserved. They analyzed a
mixed dataset of protein-protein complexes (13diemt and 12 obligate complexes)
and other protein-non-protein complexes; hence approach they use is general-
purpose in the type of functional residue predictéd study by Guharoy and
Chakrabarti (2010) used larger datasets of trahgieteins in their bound forms (204
protein-protein complexes and Benchmark3.0), shgwihat conserved interface
residues are clustered together (Hwacal, 2008). They also demonstrate this for
obligate interactions, using a separate datasethignchapter, a dataset of unbound,
transient complexes was analyzed to identify chssté conserved residues without the
knowledge of bound pose conformational changes,thisdis larger than the dataset
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used by Landgrafet al. (2001) {.e. 13 transient complexes). This is important as it i
necessary for later protein-protein docking of éhaabound proteins using theoretical
restraints to guide docking (see Chapter 7). Cliusgehas been applied to cluster
around clusters. For example, Chuagal (2006) apply clustering in a support vector
machine (see section 1.7.3.1) to eliminate lonedwes from their final prediction of

interface residues and also expand clustering @@minimum of three predicted
interface residuesi.€. seed residues) to include other non-predictecduesi around

them. In essence, this approach uses spatial chgste grow clusters of non-predicted
residues around predicted residues. However, ttnegegy resulted in a marginal
decrease in TP fraction and a marginal increas@Rnrate after clustering when

compared to before clustering.

5.8 Conclusion

Intra-species proteins evolve in the same orgamischare thus subject to evolutionary
pressure to maintain their interactions in the exnof an important biological process.
This hypothesis (actual hypothesis,) M/as tested in this work through comparison of
interface and ROS residue conservation, which isngortant and debated topic. In
this chapter, a dataset of intra-species intergctproteins was derived from
Benchmark4.0 to examine this phenomenon (Hweingl, 2010). Using intra-species
interacting proteins, predictive interface featusesre applied to identify interface
residues for training of the PROTIN_ID method (salvent accessibility, conservation
residue extraction, and spatial clustering), and thas examined in the context of
whether interface residues are more conserved BR@B residues or not. It was
observed that a 15% solvent accessibility cutoflétermine surface residues from core
residues was suitable to identify interface ressgdwehich had been identified using a
distance-based definition, that were above thefti®. solvent accessible). There
were some interface residues that were under thisffcwith low average solvent
accessibilities. As such, lowering the 15% cutaffextract those interface residues
would be risky as it would introduce conserved ae®dues, which may mask surface
interface residues’ conservation signals. This ifigdis important as it allows
application of this cutoff (15% solvent accessip)lias the default cutoff in the
PROTIN_ID method for extracting surface residuesibound proteins for any future

predictions. Ultimately, it was observed that ifdee residues are a minority of overall
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surface residues (14.5%), allowing the comparisbninterface and ROS residue

conservation.

Analyzing interface conservation and ROS consemmatevealed that there exists an
interface conservation signal that is statisticatignificant, supporting the actual
hypothesis (). When attempting to predict interface residugsgiostudies divided a
protein’s surface into patches or clefts, and regabthat conservation of interfaces is
not significant by itself for prediction of inteda residues (see section 5.5). It was
shown that interface residues are non-homogenogsnservation and extracting the
top-20 most conserved residues and clustering theimy the PROTIN_ID method
results in the best ranked cluster of predictedriate residues, which is better than
random prediction. This was confirmed by the cliste performance measures,
particularly the Matthews correlation coefficien@ompared to conservation-only
extraction, the usefulness of clustering is in tb@uction of ROS residues, improving
prediction reliability. It was found that 7 A clesing cutoff starting from a seed residue
had the best reduction of ROS residues in the fohaster when compared to the
conservation-only prediction approach. Based osdlubservations, the top-20 residues
and 7 A clustering cutoffs are included as finafadé values in the PROTIN_ID

method.

It was revealed in this work that an interface @mation signal exists in the statistical
analysis of the dataset, which can be exploitektideve interface residues via spatial
clustering. Based on this, parameterization ofRREOTIN_ID method using interface
residue predictive features to predict such residuas achieved. This allows the use of
this method in performance benchmarking with othesthods (see Chapter 6). In
addition, the generation of theoretical restraiotgshe method is useful to utilize in
data-driven docking to compare its performancealanitio docking (see Chapter 7).
Furthermore, this allows the combination of theioedtrestraints with NMR data
(chemical shift perturbation data, CSP, and residlipolar couplings, RDCs) to
examine where the CSP restraints overlap withtikeretical restraints in the data they
provide, and where they provide non-overlappingadat boost the interface residue
recall. In combination with RDC orientational resfits, this consensus-data can be
useful to examine the improvement in docking pen@amce compared to standard
CSP/RDC-driven docking (see Chapter 7).
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Chapter 6

Benchmarking of the PROTIN_ID Method

6.1 Introduction

Many interface predictors have been developed ditfering features and aims (see
section 1.8 and tables A-1 to A-3). This chapteanexes the performance of the
PROTein INterface IDentification predictor (PROTI®, see Chapter 4) compared to
the other recently published interface residue iptes Clusters of Conserved
Residues-XP (CCRXP) (Ahmadt al, 2010) and WHat Information does Surface
Conservation Yield? (WHISCY) (de Vriet al, 2006). The rationale to select these two
methods for comparison was as follows. CCRXP isilamin design to PROTIN_ID
and it also seeks to predict conserved residudetBishat are part of protein-protein
interfaces, specifically hot spot residues (Ahrea@l 2010). As such, both predictors
have overlapping aims and it was for this reascst GCRXP was selected for
benchmarking performance comparison with PROTIN_WHISCY is primarily
designed in generating docking restraints to bed usethe HADDOCK docking
method. This aim is similar to PROTIN_ID’s andstfor this reason that WHISCY has
been selected for benchmarking. Metrics to meath@gerformance of each predictor
have been implemented and the results have bedysadaln this analysis the dataset,
interface definition, and performance metrics atandardized, thus allowing a
meaningful comparison between the predictors. Suobmparison of PROTIN_ID with
CCRXP and WHISCY is important as it highlights 8teengths and weaknesses, which
can assist in predictor development and their imgmeent (Anibaet al 2010). Just
comparing each predictors’ reported performancehéliterature with PROTIN_ID’s
performance can be misleading, since the predidiargee been tested on different
datasets, use different interface definitions, asd a limited number of performance
metrics for self-evaluation (Ezkurdet al, 2009). All predictors have been compared to
each other using their default settings when udimgir own multiple sequence
alignments (MSAs) (see section 3.7). Furthermoiiaces both PROTIN_ID and
WHISCY accept external MSAs, both use the othedipter’s default MSA as input to

examine their performance.
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6.2 Description of CCRXP and WHISCY predictors

In this section an overview of both WHISCY and CORKethods’ protocols will be
discussed. Both methods utilize structural and eecel data to derive interface residue

predictive features to be used in their predicti@ee section 1.7.2).

6.2.1 Overview of the WHISCY predictor

The WHISCY predictor by default uses a HSSP mudtg#quence alignment (MSA) as
a basis to calculate the conservation of a questepr when its PDB file is inputted in
the method. A HSSP alignment is created for eadtepr deposited in the PDB
database, using sequence homologues, and an ahgmsstored in the HSSP database
(Dodge et al, 1998). WHISCY can also accept as input a useviged multiple
sequence alignment. A score derived from a Dayhaifrix (Dayhoffet al, 1978) for
each surface residue of the query protein is deteanthrough pair-wise alignment of
homologous sequences to the query sequence. Tihpsrisrmed while taking into
consideration the sequence distanaee divergence) of the hit from the query through a
maximum likelihood tool. WHISCY also weights allt lFsequences to eliminate bias
introduced by redundant sequences. (identical or overrepresented in a specific
species) present in a HSSP alignment prior to &atiog conservation. The sequence
weight is determined by ranking all hit sequencggsheir distance and calculating the
weight of each hit sequence as half its sequenstardie difference from the next
sequence ranked below it (de Vregsal, 2006). Next, each residue’s conservation score
is changed to a p-value, which is divided by thedwee’s interface propensity (de Vries
et al, 2006). The p-value is then changed back to aezwason score. As such, residues
more likely to be part of an interface are scorgghér than those that are not. Using the
query protein’s structure, mapped surface residl@sform patches and those that are
spread out on the query protein’s surface haver theores weighted according to
distance from each other by a smoothing functiolos€y proximal residues score
higher than those that are not since interfaceduesi are more likely to be clustered
together (de Vrieset al, 2006). Finally all scored surface residues ardgedoby

conservation and all residues above a conservaomme cut-off are predicted as
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interface residues.

6.2.2 Overview of the CCRXP predictor

The CCRXP predictor requires the PDB file of themrusequence and uses the query
FASTA sequence extracted from the PDB file to penf@ BLAST search against the
UniRef90 database (Suzekal, 2007; Altschulet al, 1990). The top 50 sequences from
the BLAST report are retrieved from UniRef90 to gete an MSA using the ClustalW
MSA program (Larkiret al, 2007). Following this, the MSA is then scoredtbg Sum-
of-pairs evolutionary conservation measure (seéme8.4.8) of the Scorecons server
to calculate conservation (Valdar, 2002). This atiohary conservation score takes into
account sequence redundancy by weighting sequeridas. is accomplished by
computing the average genetic distance, whichasathighting factor, of a sequence to
all other sequences (Valdar, 2002). The next ste@CRXP involves extracting all
query residues above a conservation score cutiudf @mputing their geometric
distances of their atoms from each other to geeenlasters of conserved residues. All
generated clusters are annotated by structuralepiep such as secondary structure
composition, average solvent accessibility (via Bf@SP program) and evolutionary
conservation, and cluster size (Kabsch and Sahé8B). Other properties like packing
densities and dipole moments are also calculatedlifolusters.

The final clusters generated by CCRXP are not ez further to recommend which
cluster is the final prediction. However, the CCRMBthors recommend that the
important features to identify in the final outmitthe predictor are cluster size and high
cluster conservation, and in their work, they destiate that functionally important
residues (hotspots) were located in large clug@&nsnad et al, 2010). Therefore the
cluster sorting heuristic implemented in PROTIN (K@e Chapter 4) has been applied
to sort CCRXP clusters according to size and thgraverage conservation if two
clusters are equal in size; the top-ranking clusteelected as the final prediction. Since
both predictors are similar in design and outcontbss allows an appropriate
comparison to be made between interface residudigimn performance of CCRXP
and PROTIN_ID.
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6.3 The selected test dataset for benchmarking

In this study, the protein-protein complex datasestsd by the authors of the WHISCY
and CCRXP predictors were selected for performamadysis. The WHISCY dataset
was derived from Benchmark versions 1.0 and 2.(h{ddriset al, 2005b; Cheret al,

2003a). The CCRXP dataset was taken from a retedy $§Tuncbaget al, 2009). Only

intra-species protein complexes that consistedvofihteracting chains were used for
testing, following the criteria established in thi®rk (see section 5.2). Overall, 26
proteins (13 protein complexes) were used to coen@dlr the predictors’ interface

residue prediction performance.

6.4 Comparison of interface predictions of the predtors on the test dataset

The average number of interface residues (20.8) ofesurface (ROS) (107.4), and total
surface residues (127.7) was determined from tb&ems of the dataset (Table 6-1).
The interface and ROS averages derived from alieprs of the dataset represent the
random ratio of true positives (interface residud®) to false positives (ROS; FP) that a
predictor is expected to surpass to predict bettem random. The minimum
(normalized) TP to FP ratio is 1.0 interface resido 5.3 ROS residues. This indicates
that if 100 surface residues were sampled rand@mihy the total population of surface
residues, 15.9 will be interface residues whilerést are ROS residues (84.1). The TP
(specificity) and FP fractions at random predictave 15.9% and 84.1%, respectively.
Naturally, the performance of any benchmarked gtedunder consideration should be
better than random prediction.

It is also important to consider the predictionfpenance depending on the objectives a
predictor is aiming for (de Vries and Bonvin, 2008n the one hand, a predictor may
be interested in only predicting a few number déiface residues while minimizing
false positives in the final prediction. This wowddsure a final prediction enriched in
true positives (TPs). However, on the other hangretictor may aim to predict as
many interface residues as feasible, which comdbeaexpense of introducing more
false positives in the final prediction. A predictbat fulfils its designed goals does not
necessarily mean that it produces high scoreslf@tandard benchmark performance
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metrics. This is because performance metrics, wdméatly informative in their own
right, are designed to highlight different aspegitgredictor performance. A predictor
may be rated low by one performance measure (exrai® designed for over
prediction of TPs, while still fulfilling its aimghat it is designed for, and be rated high
by another performance measure (ex. TP fractioal fircuses on the integrity of the
prediction {.e. minimize FPs). Consequently the statistical meador be used for
performance assessment ultimately depends on tip@g®ia predictor is designed for
and seeks to fulfil (de Vries and Bonvin, 2008)eTRROTIN_ID predictor has been
developed to generate protein-protein docking aggs. As such, it has been optimized
to predict sufficient interface residues, while miizing the number of false positives.
Certainly it is possible to incorporate more inded residues in the final prediction in
PROTIN_ID but this introduces more false positivebjch may affect the generation
of reliable protein complex models when the predictdata are used as restraints in
protein-protein docking. In this light, the mosipappriate performance measures when
comparing PROTIN_ID to the other predictors areffBletion (specificity), FP fraction,
FP rate, and to some extent TP rate (sensitivity® Gection 3.5). The TP rate measures
the amount of interface residues recalled from ttital pool of observed interface
residues for all proteins of the dataset. Therefoitda PROTIN_ID it relates to the
number of interface residues that can be predieted minimal expense of false
positives (FPs). A predictor that seeks to maximizerface residues in its final
prediction will aim for a high TP rate. Both TPdten and TP rate of a method can be
combined in one measure, the F-measure. A standsdsure like Matthew’s
correlation coefficient (MCC) while undoubtedly ionmpant, generally reports high
values for predictors that favour over predictiate (Vries and Bonvin, 2008). A
predictor like PROTIN_ID will achieve lower valueé compared to a predictor
designed for over prediction of TPs even if it progls perfect predictions€. 100% TP
fraction) while being assessed by these measutkedegcribed measures are applied in

this study for completeness (see section 3.5).
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Table 6-1: The comparison of interface prediction performansmg standard performance metrics is indicatedferPROTIN_ID, CCRXP,
and WHISCY interface residue predictors when runhair default settings. The average interfacet oésurface (ROS), and total surface

residues of the dataset and their standard dengiioparentheses are indicated.

Total
. Surface | TP FP TP fraction FP TP rate FP F-
Predictor | Interface | ROS ' count o _ o Accuracy MCC?
Residues| count | count (Specificity) | fraction | (Sensitivity) | rate measure
(TP+FP)
PROTIN_ID 442 | 5.69 10.12 0.44 0.56 0.22 0,05 0.83 0.29 0.22

20.31 | 107.38 | 127.69
CCRXP 523 | 18.35| 23.58 0.22 0.78 0.26 0/17 0.74 0.24 | 0.08
(+6.96) | (+66.62) (+69.23)

WHISCY 5.27 | 7.50 12.77 0.41 0.59 0.26 0,07 0.82 0.32 0.23

AMCC = Matthews correlation coefficient
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6.4.1 Benchmarking the predictors using the TPRERdractions

The TP fraction results of the predictors for thére dataset are shown in table 6-1 (see
Tables A-6 to A-10 of the Appendix for individualgteins’ results). The PROTIN_ID,
WHISCY, and CCRXP predictors achieve 44%, 41%, &% TP fractions,
respectively. This measure is important to compheeintegrity {.e. minimization of
FPs) of the final predictions for all predictor$, reliability of predictions is most
essential especially when applied as restrainggotein-protein docking. As expected,
all predictors’ TP fractions are greater than thedom TP fraction (15.9%). This was
also observed for the predictors’ FP fractions wheey were all lower than the 84.1%
random FP fraction. PROTIN_ID achieves a marginddstter TP fraction when
compared to WHISCY. This is because the TP/FP cdifference on average between
the methods is minor since both are designed tergén docking restraints and aim to
generate a satisfactory number of TPs in the fimedliction without over prediction in
order to minimize the number of FPs (de Veesl, 2006).

Both methods’ TP fractions are significantly bettean CCRXP’s TP fraction. The TP
fraction of PROTIN_ID (and WHISCY) is two times bt which is relevant
considering both predictors apply a similar appho&mr prediction. The reason why
CCRXP has the lowest TP fraction is due to the ayerfinal prediction (23.58
residues), which is higher than the average fimatigtions for the other predictors
WHISCY (12.77) and PROTIN_ID (10.12). This sugge€SS€RXP favours over
prediction. Out of these 23.58 residues, a higlhenbrer are FP residues (18.35). This
increased CCRXP’s FP fraction (78%) and resultetiendowest TP fraction. In contrast
WHISCY, which generates 12.77 residues on averaga prediction, has a similar TP
count (5.27) to CCRXP, but has a significantly low® count (7.50).

6.4.2 Benchmarking the predictors using the TPERdates and accuracy measures

Both CCRXP and WHISCY have the same TP rates of, 2@%reas PROTIN_ID has a
lower value of 22% (see section 3.5.4). This défee in TP rates is marginal, as it is

due to an approximately one interface residue rdiffee between the average TP count
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of PROTIN_ID with the other predictors’ TP counBROTIN_ID has the lowest FP
rate (5%), which is a marginal difference compar@dVHISCY, because it has the
lowest number of FPs from the total number of R@Sdues (107.38) introduced in its
final prediction. This analysis of the two measudepends on the design goals of a
predictor. Both PROTIN_ID and WHISCY are designed denerating protein-protein
docking restraints and aim to strike a suitableahe¢ between TPs and FPs in their
predictions. They produce similar results when carnmg TP and FP rates, indicating
that PROTIN_ID is as efficient and competitive abIMSCY.

The CCRXP predictor also has a TP rate of 26% ithdtigher than PROTIN_ID’s
(24%) and this is also due to an approximately msedue difference in their final TP
counts. Interestingly, CCRXP’s over prediction gt resulted in a TP rate that is
substantially higher than the rest of the predgctaut it has only resulted in the highest
FP rate (17%), which is 3.4 times more than PROTIN FP rate (5%). Overall,
PROTIN_ID and WHISCY achieve similar performancedxzh on the TP and FP rate
metrics since they overlap in their defined goldscontrast, CCRXP incorporates more
FPs in its predictioni.e. FP rate) with a minor increase in TRe.(TP rate), resulting in
a decrease in prediction reliability.

The PROTIN_ID, WHISCY, and CCRXP predictors’ ineré prediction data were
used to generate receiver operator characterB@) curves and their respective areas
under the curves (AUC) at certain false positivie (&@PR) ranges (see table 6-2 and
figure 6-1). This analysis examines the predici@nformance of the predictors in an
unbiased and independent manner. This is madebt®sss all prediction cut-offs,
including the default predictor cut-off, are coresied in this analysis, allowing the
comparison of the performance of the predictordhgyr AUCs (via a standard AUC
comparison statistical test and 95% CI analysibe TCRXP interface predictor source
code could not be obtained from its author. Theegfoall prediction cut-offs
implemented in the CCRXP webserver version wered use this analysis. The
relationship between the TP and FP rates of alipters are compared to each other in
ROC analysis (Fawcett, 2006). The objective of dumparison is to show the TP rate
performance of a predictor while gauging its caliigbof reducing the FP rate (Figure
6-1). An ideal situation would be when a predictgmerated predictions where all

interface residues were correctly predicted withaoy ROS residues incorporated in
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the prediction.

The AUC valuesi(e. AUC; o) for all predictors at an FPR of 1.0 are indicatethble 6-

2. WHISCY’s AUC (0.6864) is marginally higher th&ROTIN_ID’s AUC (0.6828),
however, this difference is not significant, asitated by the p-value (0.8515). This
result is supported by the 95% CI analysis, whiobmss that the 95% CI range extends
from negative to positive values for theyci.0 between these predictors (see table 6-2).
Because the lower bound limit of the 95% CI is riega this indicates that
PROTIN_ID may also have a higher AUC than WHISCMIat their AUCSs’ difference
is zero Aauc = 0), as it is also amongst the calculated 95%a@fje. In addition, it can
be seen that localized regions (FPRs 0.084-0.42#80a194-0.859) of the ROC curves
for the PROTIN_ID and WHISCY predictors differ froome another (see figure 6-1
and table 6-2). For these localized AUC comparisahe differences were not
significant (see table 6-2). This is also indicatedhe 95% CI analysis, which follows

the same outcome as the 95% CI analysis at an FPR.o

In summary, the holistic and localized (FPR: 0.08428) analyses for the AUCs
suggest the absence of evidence to support thevaltiea that WHISCY’s marginally
better interface prediction performance is sigalfity better than PROTIN_ID’s
performance on the same protein-protein complexasgat This indicates that
PROTIN_ID is as competitive and useful as the WHISCedictor.

Compared to CCRXP, both methods have higher AUQegsathan CCRXP (0.5151),
which is closest to random prediction (0.5), anid thifference is significant (p-value
<0.0001). The 95% CI analyses for both predictammared to CCRXP have lower
bound limit values greater than zerdAUC = 0), eliminating the likelihood that
CCRXP can perform better than PROTIN_ID or WHISCQHe decrease in prediction
reliability of CCRXP is caused by the increase d?sF(over prediction) in its
predictions, which has resulted in similar predictireliability to a random interface

predictor.
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Table 6-2: Comparison of area under the curves (AUC) for tROPIN_ID, WHISCY,
and CCRXP interface predictors. AUCs for PROTIN aitd WHISCY are compared at
three FPR ranges (1.0, 0.084-0.428, and 0.494-p.&&%h interface predictors are
compared to CCRXP at FRPR The 95% Confidence Interval indicates the uppet a
lower bound range limits of AUC differenceaa(c) for the FPR ranges. The AUC
comparison statistical test P value indicates trabability thatAauc is statistically

significant at the 5% significance level.

Interface predictor PROTIN_ID WHISCY CCRXP
AUC; o 0.6828 0.6864 0.5151
AUC( 084-0.428 0.1655 0.1829 N/A
AUCO,494-0,859 0.3202 0.3072 N/A
PROTIN_ID vs. A P value 95% Confidence
WHISCY AUC (Aauc) Interval (Aauc)
FPR o 0.0036 0.8515 -0.0342 - 0.041
FPRy.084-0 428 0.0174 0.1219 -0.0047 - 0.03%
FPRy.494-0 859 0.0130 0.4181 -0.0185 - 0.0445
A P value 95% Confidence
PROTIN ID vs. CCRXP A (Aauc) Interval (Aauc)
(FPR1.0
0.1677 <0.0001 0.1296 - 0.2058
A P value 95% Confidence
WHISCY vs. CCRXP e (Aauc) Interval (Aauc)
(FPR1.0
0.1713 <0.0001 0.1332 - 0.209p

4P value < 0.0001 indicates extreme significance.
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Figure 6-1: ROC curves comparing the PROTIN_ID, WHISCY, and G®Rprotein
interface predictors. The AUG values at an FPR range of 1.0 are shown for all
interface predictors in parentheses. TP rate repteshe recall of interface residues,
while FP rate signifies the number of FP positif@®S residues or noise) from the
total number of observed ROS residues incorporiatéite prediction of a predictor. An
ideal predictor seeks to maximize TP rate and mgzenkP rate. The intersecting red
line (y = x) represents random prediction such thatTP rate equals the FP rate. Any
curves above the random diagonal line represedigti@n better than random, whereas

curves below the line are considered predictionssethan random.

The fraction of correctly predicted TPs and TNgascribed by the accuracy measure
(see section 3.5.1) is highest for PROTIN_ID (83&tpwed by WHISCY (82%), and
CCRXP (74%). As discussed earlier (see section thé&)accuracy weights both correct
predictions of TPs and TNs equally and, due toskewved ratio of interface to ROS
residues, results in an optimistically high valkeen so, it can be seen that CCRXP’s
accuracy is lower than the other predictors’ acoesadue to the increased number of
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FPs incorporated in its predictions. PROTIN_ID &#HISCY perform similarly due to
their reduced number of FPs both fulfiling themanded design goals of generating

protein-protein docking restraints.

6.4.3 Benchmarking the predictors using the F-mesaand Matthews correlation

coefficient

The F-measure describes the harmonic mean by takingaccount the TP fraction
(specificity) and TP rate (sensitivity) measuredjioh are weighted equally, of a
predictor (see section 3.5.6). The WHISCY predidtas a higher F-measure (0.32)
when compared to PROTIN_ID (0.29) and this is mab#cause of the 4% difference
between PROTIN_ID and WHISCY’s TP rates, which ppraximately one extra TP
residue on average in WHISCY’s TP count. This hamdated in a value that
marginally boosted WHISCY’s F-measure comparedROPIN_ID’s F-measure. The
F-measure of CCRXP is the lowest at 0.24. Thisue tb the predictor having the
lowest TP fraction, caused by an increase of Filues in its final prediction, which
has been the factor that has reduced this meagenetigough the predictor has the same
TP rate as WHISCY.

The final measure in this analysis is the Mattheatsrelation coefficient and it
provides a holistic interpretation of the perforroamf the predictors when compared to
the F-measure since it takes into account thertegative datai.e. ROS residues not
predicted as interface) and other components tleenup the positive and negative
classes of a confusion matrix (see section 3.5d7Tale 3-1 of Chapter 3). It can be
seen that overall PROTIN_ID has a similar MCC (0 ®2NHISCY (0.23). Their MCC
difference is minor as both methods seek to mirenPs in their predictions. In
contrast, CCRXP has the lowest MCC of 0.08 andasest to random predictiond.

0) due to a high number of FPs in its prediction.
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6.5 The performance differences of the interface @dictors on different
complexes

The general performance of the interface predictirdhe dataset level has been
described. Herein, the performances of the predictdl be examined at the individual
protein complex level. For example, there wereaterproteins where one predictor
performed well on such cases(>0 MCC), whereas other predictors did nat. (<O
MCC). There are eleven examples where this is #ise ¢see appendix tables A6 to A-
8). For instance, there are five cases where b®OTN_ID and CCRXP extracted
correctly predicted interface residues (TPs), bemegated unsuccessful predictions
because the correctly predicted interface residum#d not be clustered (1BRS
(CCRXP), 7CEI (PROTIN_ID) receptor proteins andNFCCRXP), 1E6E (CCRXP),
and 2PCC (both predictors) ligand proteins). The réBidues extracted for these
proteins were further apart than the cluster radigtance cut-offs used by both
predictors to cluster them together in the finaistkr and possibly generate successful
predictions, as defined by the MCC performance iméte. >0 MCC). An example of
this is 1BRS complex’s receptor protein, it wasnduhat CCRXP extracted 7 TP
residues that could not be clustered in one cluster possibly lead to a successful
interface prediction because the residues weranmnolose proximity to each other. A
possible means to improve PROTIN_ID to deal witis #tenario would be to select
more than one cluster for its final prediction. e effective and useful, such an
implementation to improve PROTIN_ID would need te tested via ROC analysis
against the current top-ranking cluster implemématto ascertain if its AUC is

significantly different.

Two examples (LEWY receptor and 1FQ1 ligand prabdeigpecifically failed for
CCRXP due to poor quality MSA alignment columnssuténg in low conservation
scores for MSA columns of interface residues. Trsvented such TP residues from
being extracted by CCRXP. In other protein casdS6EL receptor protein (both
predictors) and 1SPB ligand protein (PROTIN_ID)was ascertained that there were
better aligned ROS residue MSA columns comparedhéo MSA interface residue
columns. For these proteins, this resulted in RS residue conservation scores by
PROTIN_ID and CCRXP and caused their final preditti to contain a majority of
ROS residues (CCRXP - 1EGE receptor protein and/RRAD - 1SPB ligand protein)
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or entirely ROS residues (PROTIN_ID - 1EG6E receppootein). For the 1FIN
complex’s receptor protein, PROTIN_ID predicted ap tranked cluster of ROS
residues. In the top-20 extracted surface resifluethis example only three residues
were TPs. Two TPs formed lone residue clusterstiamdemaining TP residue was part
of a small two-residue cluster. Therefore, the feerface residues extracted by
PROTIN_ID could not make a substantial impact enpitediction performance. Upon
closer inspection of the 1FIN receptor protein’'sAJ8 was revealed that the interface
residue MSA columns were composed of different ananoids, increasing the residue
diversity of such MSA columns. This resulted in loanservation scores as calculated
by the Jensen-Shannon divergence score applieB@TIN_ID. Because of this, a few

interface residues were part of the top-20 extchresidues for this protein case.

Regarding the WHISCY predictor, it was unsucces$tul 1BXI complex’s ligand
protein (-0.15 MCC). The steps in which the finebi® is predicted in WHISCY are
more than one, unlike the other predictors whererservation score is directly applied
to score MSA columns. The effects of these stepss@guence distance calculation) are
difficult to disentangle. For 1BXI complex’s ligangrotein, it is possible that the
interface residues did not predict with high WHIS@®¥nservation scores simply
because they did not appreciably differ in behavibom the WHISCY evolutionary

matrix used to predict them.

Finally, in contrast to the unsuccessful examplesntoned above, the successful
performances of PROTIN_ID, WHISCY, and CCRXP on itgividual proteins of the
dataset (ex. IWQ1 complex’s ligand protein) wetee do generally well-aligned
interface residue columns in their MSAs. This resdilin high conservation scores
being computed for such interface residues anddesignificant {.e. >0 MCC) and
successful predictions for these protein caseshbget predictors. There were proteins
where all the predictors were unsuccessful in ptedj their interfacesi.e. <0 MCC).
This is because conserved alternative binding siteee being predicted for these

proteins.
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Although PROTIN_ID and WHISCY overall perform edyakwell, for individual
protein cases it was seen that they do perfornereifitly in successful predictions, or
even both fail to predict certain protein caseshaf dataset. Where PROTIN_ID is
successful and WHISCY is not (and vice versa) oenehboth are not successful, it
would prove useful to combine them to create a ammgd conservation score predictor.
Both these predictors apply conservation scoreg thHer in computation of
conservation based on the commonness (or prevalerica residue. For example,
arginine is more frequently occurring than tryptaphAs such, columns of conserved
arginine or tryptophan score differently using iM¢ISCY conservation score or the
Jensen-Shannon divergence score applied in PRODINPROTIN_ID would score the
conserved tryptophan column higher than that ofattggnine column, because it has a
lower background frequency.€. less common), and regards it as more strikingly
conserved (see section 3.4.5). WHISCY takes thesifgroute and scores the arginine
column higher simply because it has more subshiletamino acid alternatives based
on physico-chemically property than a tryptophahnergfore, a highly conserved MSA
column of arginine residues suggests evolutionanstraint that does not tolerate even
physico-chemical substitution to similar alternatikesidues (Valdar, 2002). Potential
cases where an interface is composed of commonrz@mmon residues may prove to
be more successfully predicted when WHISCY and PRIOID are combined.

In addition further improvements of both predictoveuld require addition of more
interface predictive features and this would imgrélve prediction performance of both
predictors for cases for which they already achdeseccess, and possibly for those
where both produced unsuccessful predictions. M@edahere are examples where
both WHISCY and PROTIN_ID agree on the surfaceaegif a protein such that their
predictions overlap in terms of correctly predictetérface residues. For example, for
the 1EG6E ligand protein PROTIN_ID and WHISCY cothecpredict 12 and 16
interface residues. The 12 residues predicted bR _ID were predicted by
WHISCY. In blind protein prediction scenarios, tifism of prediction strategy would
be useful to assign confidence to a protein surfagen (or subset region) where both
predictors agree in prediction. It suggests thelipters are likely correct in predicting

the true interface when they agree than scenafesaerthey disagree.
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6.5.1 The underlying factors that caused PROTINamnd CCRXP performance
differences

Based on the above results, it is important tordates the factor that contributed to an
improved performance by PROTIN_ID compared to CCRXRe main difference
between both methods’ performance lies in the nurobaverage FP residues in their
final predictions. CCRXP incorporated more FPs, alvhiwas reflected in its
performance evaluation, and this was examined durffable 6-2 shows a comparison
of the total number of residues predicted as iaterfresidues by both predictors in their
final predictions for all dataset proteins. CCRXfdicts more residues (613) than
PROTIN_ID (263). When broken down into their respec actual TPs and FPs,
CRRXP has 21 TPs more than PROTIN_ID, but this caté¢he cost of 329 additional
FPs.

Table 6-2: The comparison of total TPs and FPs for all prstedh the dataset as
predicted by the CCRXP and PROTIN_ID predictors nvhen at default settings.

Class CCRXP PROTIN_ID
True positives (TP) 136 115
False positives (FP) a77 148

Total 613 263

The dissimilarity in FPs is due to the implememtatof the residue extraction steps in
both methods prior to the final clustering stepCIBRXP, conserved residues above an
absolute binary conservation score cut-off areagxéxd prior to the final clustering step,
whereas the PROTIN_ID predictor extracted the tofai®fault 20) surface residues and
then clustered them. Since CCRXP extracts all vesidabove a binary conservation
score cut-off, this introduces many ROS residuassipredictions (see section 5.7). As
such, many conserved ROS residues in close proximieach other will be extracted
and clustered, increasing cluster size as a re&silan example, the receptor protein of
the 1GLA complex is composed of a total of 497dess, and the prediction generated
by CCRXP resulted in 39% of these residues {94) clustered in the final prediction,
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which were all FP residues. This indicates the ithjpé the binary conservation score-
based extraction step on prediction performanceotiAer example is the 1WQ1
complex’s receptor protein for which CCRXP producegrediction of 58 residues
composed of 19 TPs and 38 FPs. In CCRXP, resiukstliese bias the proportion of
predicted residues in favour of FP residues evengh TPs are predicted, resulting in
decreased overall performance. For 1GLAs protboth PROTIN_ID and WHISCY
also failed to predict any TPs but, as they exti@eer surface residues, they reduce the
effect of noise introduced from conserved ROS re=sd As a consequence, these failed
results consisting of only FPs (PROTIN_ID 4 FPs, MElY 7 FPs) do not have the
same impact on these methods’ overall performasc®raCCRXP since they extract
fewer FPs. The failure of these predictors on tG&A protein may be likely due to
alternative binding sites, which exhibited a stngonservation signal. For 1WQ1’s
protein, PROTIN_ID (11 TPs from 16 total residuasyl WHISCY (6 TPs from 9 total
residues) produced fewer TPs than CCRXP, howeweir, predictions are more reliable

due to fewer FPs in their predictions than CCRXP.

In PROTIN_ID the stringent extraction cut-off reeéscthe number of ROS FPs in the
overall final prediction (see section 5.7), whickpkains dissimilarity in performance
between PROTIN_ID and CCRXP.

6.5.2 Performance analysis of WHISCY and PROTINidIDg their respective MSAS

as input for each other

The HSSP and UniRef90 alignments used by WHISCY B&ROTIN_ID were
reciprocated as input into each predictor. It waseoved that the effect of this on
prediction performance is more noticeable on PROTINthan for WHISCY (table 6-
3). PROTIN_ID has a reduced TP count (3.69) anceamed FP count (6.5) when HSSP
alignments are used even though the size of tted firediction is approximately 10
residues, which is the same as when the defauR&fD alignments are used. This has
caused a decrease in TP fraction and an incredse fraction compared to its default
setup. Furthermore, this is evidenced in its TP BRdates, which have decreased and
increased, respectively. Finally, this has had eredesing effect on the F- and MCC

measures where both decrease, but a minor effetecgaccuracy measure.
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Table 6-3: The comparison of interface prediction performarcendicated for the
PROTIN_ID-HSSP and WHISCY-UniRef90 interface preolis. The default MSAs for

these two predictors is reciprocated as input éatch other.

TP FP | Total | TP FP | TP | FP a F-
Acc.

MCCP
count | count | count | frac. | frac. | rate | rate measure

Method

PROTIN_ID | 3.69 6.5 | 10.19 0.36 0.64 0.18.06| 0.82 0.24 0.16

WHISCY 531 | 831| 1362 0.39 0.61 0.26.08| 0.82 0.31 0.22

8Acc. = Accuracy

b MCC = Matthews correlation coefficient

The WHISCY predictor’s performance was minor congpato its default setup. Only
its FP count (8.31) has increased compared toefsutt setup’s FP count; there is a
negligible difference between the TP counts. Evéh we increase in FP count, the
impact on the other performance measures for WHI&Giinor with slight differences
in TP/FP fractions and the remaining other measheae® slight differences also. This
suggests this drop in PROTIN_ID’s performance ss®&ms from the alignments
used. As such, the structure of HSSP alignmentspi@sence of sequence fragments)
may be the differentiating factor in prediction foemance for PROTIN_ID. To explore
this, a closer inspection of the UniRef90 and H&8§ments revealed that in most
alignments sequence fragments, causing the presémgagpped columnar regions, and
duplicate and overrepresented sequences were mpegeat than in the UniRef90-
based alignments. This indicates that HSSP aligtsneaquire further editing to be
improved. This shift in alignment quality has hadgeeater impact on overall
PROTIN_ID performance than on WHISCY'’s performanééth HSSP alignments,
PROTIN_ID is not able to use its built-in featudesigned to improve the structure of
an alignment such as the fraction of coverage nmeasaquence redundancy filter, and
the sequence editing heuristic prior to consermadioalysis, which has impacted on its

performance (see section 4.3.1). Since PROTIN_HE3 asconservation score (default is
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Jensen-Shannon divergence, see section 3.4.&)dltatates evolutionary conservation
based on the analysis of a column, the presencartdicial (i.e. not biologically
important) gaps from sequence fragments introdgepspenalties during column-based
conservation analysis, or in cases where a coluam dreater than 30% gaps, its
conservation analysis is not performed since itiksly not functionally significant
(Capra and Singh, 2007). This has affected the @oaservation score of an alignment
column(s) and influenced final predictions. Furthere, since a conservation window
is applied (see section 3.4.1) that takes into @aicthe background conservation with
respect to the current column analysed the presaeinsech gaps bearing no biological
significance would also affect the final conservatscore of the column(s) of interest in
PROTIN_ID.

A comparison of total TP/FP count for PROTIN_ID wh&niRef90 and HSSP
alignments were used as input showed that there @@rand 115 TPs for HSSP and
UniRef90 alignments, respectively (Table 6-4). Eherere 19 residues fewer in the
HSSP TP count and 21 extra FP residues where PRADIN FP count increased from
148 to 169 FP residues when HSSP alignments werk W¢ith regards to WHISCY, its
performance did not dip significantly when usingiRef90 alignments. WHISCY was
more robust in performance, which may be due tdetsgn in scoring conservation. As
mentioned previously (see section 6.2.1), WHISCiings pair-wise alignments of hit
sequences to the query sequence and calculatesotiservation for residue pairs
individually for each sequence, taking into accoeath hit's sequence distance from
the query, which is done independently from othesidue pairs Also, background
conservation in the form of residue smoothing iplamented after alignment analysis
where it is reliant on the proximity of residueseach other in the three dimensional
structure of a query protein (unlike the conseoratvindows). All pairwise scores for a
given residue of the query sequence determineduemened to determine the final score
for that query residue’s position. This is differen comparison to the columnar
conservation score used in PROTIN_ID. Therefores imheans of -calculating
conservation may not be sensitive to alignment essin HSSP alignments as
PROTIN_ID was. This allowed WHISCY to retain rolmess even with alignments
where there were bad regions present (de \tied 2006). In addition, WHISCY used
all of its built-in functionality to ensure maximanalysis and optimal predictions

according to its design for any alignment. Theseral aspects of WHISCY allowed it
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to derive relevant prediction data from both HS®E BniRef90 MSAs and produce
similar prediction performance overall, while aviogl the errors present in the HSSP
alignments. This is not the case for PROTIN_ID aighlights the need to implement
the use of all of its features even when an extedignment is used (future work). For
example, for the ligand protein of the 1FIN complthe difference in general in the
UniRef90 and HSSP MSAs is that the latter has sdeience fragments where N or C
termini are missing. PROTIN_ID generated 100% Td&tion (5 of 5 TPs) for the
former MSA, whilst for the latter MSA it producealy FPs in its prediction (0 of 5
TPs), indicating the impact of alignment quality mrediction because of the presence
of artificial gaps in the HSSP MSA resulting in thaforcement of gap penalties in
PROTIN_ID. In contrast, WHISCY produced the sameber of TPs for both MSAs,
but had more FPs in its final prediction using filvener MSA (12 of 25 HSSP, 12 of 31
UniRef90). Where both HSSP and UniRef90 MSAs weilfe somilar quality,
PROTIN_ID produced identical results (7 of 8 TPs) illustrated for the 1BXI
complex’s ligand protein. Unlike the previous MSA9 sequence fragments were
present in the same abundance, allowing PROTINolprbduce the same result. For
the same protein, using either HSSP or UniRef90 BSAHISCY did not predict a
result {.e. all surface residues were under WHISCY score cut-ofniRef90) or
produced only FPs (0 of 3 TPs - HSSP).

This analysis of PROTIN_ID with external alignmerfigghlights the strengths of
PROTIN_ID’s current default protocol where it gemtess refined UniRef90 MSAs
based on new features to implicitly improve MSAgplying the same concepts to
improve alignments as implemented in the defaulOPRI_ID protocol to HSSP

alignments should allow PROTIN_ID to display a s$amiperformance as its default
setting that was found to perform as competitielyWHISCY. The findings indicate

the importance of benchmarking in its ability tglidight areas for further improvement
in future development of PROTIN_ID.
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Table 6-4: The comparison of total TPs and FPs for all pretedh the dataset as
predicted by PROTIN_ID using the UniRef90 (defaaltd HSSP alignments as input.

Class PROTIN_ID-UniRef90 PROTIN_ID-HSSP
True positives (TP) 115 96
False positives (FP) 148 169

Total 263 265

6.6 Conclusion

The comparison of PROTIN_ID was performed with otpeedictors (CCRXP and
WHISCY) for evaluating its performance and hightigg areas for further
development. Performance comparison of the meta@dsconducted using a unified
dataset, interface definition, and standard peréorte metrics. The selected methods
for benchmarking overlapped with PROTIN_ID in desa@y aim. CCRXP was selected
for comparison as it is similar in design and aisedicts clusters of conserved residues.
Like PROTIN_ID, WHISCY is designed to generate tietical restraints to be used in
data-driven docking and was selected for comparis*ROTIN_ID for this reason.

From a user’s viewpoint, the reliability of a metf®predictions in the context of the
aim that a method seeks to fulfil is an importaatér. This influences the choice of the
method by the user. The two performance measungsrtant in this framework are the
TP fraction (specificity) and TP rate (sensitivityccording to the TP fraction metric,
PROTIN_ID (0.44) performs marginally better than V8BY (0.41), and both methods
perform significantly better than CCRXP (0.22). ¢ because CCRXP incorporates
more false positive residues (on average) in iedipgtions than the other methods.
Based on the TP rate metric, CCRXP (0.26) and WHNIST26) perform marginally
better than PROTIN_ID (0.22). Other performancewation metrics employed in this
study (ex. accuracy, F-measure, MCC, and ROC camaéysis with AUC comparisons)
also indicated that the performances of PROTIN_hQ WHISCY are not significantly
different. At the individual protein case levelrfmemance differed such that one could
aim for an enhanced predictive performance based compound conservation score

approach. Furthermore, additional interface pradicfeatures would be useful to
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enhance their predictive capabilities. Finally,seful prediction approach would be the
assignment of high confidence to blind predictiavisen both predictors overlap in

prediction. This has a potential to improve praditsuccess in such scenarios.

The performance evaluation metrics (including RO@ve analysis with AUC
comparisons) scored CCRXP lower due to over pnedicit has the highest FP rate
score (0.17) compared to WHISCY (0.07) and PROTIN (0.05). This is due to
CCRXP’s binary conservation score cut-off extrattsep, which extracted many ROS
residues, causing more to be clustered and intsyriat its prediction results. This
resulted in PROTIN_ID and WHISCY being significanbetter than CCRXP. Besides
the performance difference between them, PROTINh#3 additional user-friendly
features that distinguish it from CCRXP, which eo&venient to a user interested in the
generation of clusters of conserved residues ter k@pplication in data-driven docking
(see Chapter 4 and section 4.4).

In comparison to WHISCY, PROTIN_ID provides accésghe latest sequence data
from the UniRef90 database in order to constructodpgate MSAs for predicting
protein interface residues. PROTIN_ID’s local semeedatabase is updated with each
new release (biweekly) of UniRef90 (Suzekal, 2007). In contrast, WHISCY relies
on the HSSP database for alignments, which is pdated regularly in its entirety.
Instead only HSSP files that have not been updatechore than 6 months are updated
(Joosteret al, 2010). Therefore, HSSP alignments that are owlaté (<6 months old)
are present in the database. WHISCY in its defdakign utilizes available PDB
structures and their HSSP MSAs to generate predi&tiAs a consequence, newly
deposited protein structures in the PDB do not idiately have a HSSP alignment
generated for it. In terms of generating theorétiestraints for docking, retrieval of the
latest sequence data is essential for a user. @Eepit is possible to supply a third-
party alignment to WHISCY but this will involve destring homologous sequences
manually that are needed for alignment with a guesguence of interest to create an
MSA, and this MSA may require manual editing afterds. These steps are already
automated in PROTIN_ID in a user-friendly mannee(€hapter 4). With PROTIN_ID

it is possible to generate an alignment for newlgased structures and even homology
models automatically. Homology models can be usedMHISCY, but only by

manually creating custom MSAs. PROTIN_ID’s defaoéirformance compared to it
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using HSSP alignments revealed that PROTIN_ID’$gperance decreases. This is due
to the poorer alignment quality of HSSP MSAs. Thetufe development of
PROTIN_ID will include processing any third-partyS¥s in the same manner as it
generates refined UniRef90 alignments in its currprotocol. This is to avoid

diminishment of prediction performance caused byemors in third-party MSASs.

In this work, it was shown that PROTIN_ID is as gatitive to WHISCY and CCRXP,
and useful for generation of theoretical restratotde applied in data-driven docking
(see Chapter 7).
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Chapter 7

The docking of protein-protein complexes using thaetical and

experimental restraints

7.1 Introduction

This chapter examines the effect of using theakticestraints i(e. interface
predictions) generated by the newly developed PROID algorithm (see Chapter 4)
to guide protein-protein docking of binary intefagtproteins. HADDOCK is designed
to accept theoretical and experimental restraiotguide docking of two or more
proteins. This feature is ideal for docking usihgdretical restraints. The performance
of data-driven docking using theoretical restrames compared tab initio docking
also performed in HADDOCK. The aim is to test therfprmance i(e. number of
correct models produced) of guided docking compéwe initio docking when using
theoretical data. The ultimate goal is using resliddipolar couplings (RDCs) and
chemical shift perturbation data (CSP), both olgdifrom NMR experiments, in
combination with theoretical data to drive dockiBgth CSP and theoretical data seek
to map the interface of two interacting proteingggesting complementary to each
other when combined in a protein-protein dockingtegt, especially if some interface
residues do not display significant CSP signals @gk, et al, 2005a). Therefore, the
extent of overlap or lack thereof between theseesypf data was examined in the
context of interface coverage. RDCs provide origomal information between two

interacting proteins and their usefulness has deemnstrated in HADDOCK.

It is possible to generate biologically useful protprotein complex models when using
RDCs and CSPs in docking on their own (van Dgk,al, 2005a). The addition of
theoretical restraints to CSP and RDC data in darkias examined to determine if
there is an improvement over CSP/RDC data docKiiferent combinations of data-
driven docking were performed and compared to eaitter to demonstrate the
effectiveness of using all forms of restraints acking performance. To the best of my

knowledge, this study is the first to examine thgpact on docking performance of
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using of theoretical, CSP, and RDC docking restsamcombination.

7.2 Datasets used for protein-protein docking

The protein-protein docking datasesed is derived from Benchmark 4.0 (see sections
3.2 and 3.8). A protein complex was included in doeking datasetwhen both of its
unbound protein chains predictedl0% TP rate (see section 3.5.4) when analysed by
PROTIN_ID, irrespective of the number of false pwses present in the final prediction
(i.e. theoretical restraints). This was to ensure thagaificant number of true positives
composed the theoretical restraints to be usedrite adlocking with HADDOCK,
according to the MCC measure (see section 3.5.70ta of 24 complexes out of the
intra-species dataset (61 complexes) fulfilled tngerion & 10% TP rate) and were
included in the docking datageAll protein chains under < 10% TP rate are asslioe
lack sufficient theoretical restraints data to gates successful results in data-driven
docking. They were not included in the docking datafor testing. However, they are
included in the final statistical analysis, whialmsnarizes the performance for data-
driven docking i(e. conservative estimate taking into account theseuacessful’
cases) and is comparedadb initio docking. As such, the whole dataset of complexes
taken from Benchamark4.0 (see section 3.2) is atedufor both data-driven arab
initio docking.

A second datasgtvas also created comprising protein complexes liadt RDC and
CSP data associated with them. The protein comgplexere identified following a
keyword-based search strategy (see section 3.9¢f\Brprotein complexes were
identified when they were linked with terms représeg RDCs and CSPs. It was found
that two protein complexes of the docking data$®GGR and 1J6T) satisfied this
condition. A further two protein complexes not paft Benchmark 4.0 were found
(1009 and 2L0T) that satisfied this criterion. lAsvascertained that RDC data for the
2L0T protein was incorrect and hence is not inctudethe analysis. 2LOT was still
included along with 1009 in the protein-protein kiog datasatas both provide useful
theoretical restraints datag. > TP 10% rate for both unbound chains) to examités T
also increased the main docking datage26 complexes. Overall, datasistcomposed
of three complexes for testing.

154



7.3 Data-driven andab initio docking with HADDOCK

The theoretical restraints generated by PROTIN_dD éach unbound protein per
complex were put into HADDOCK as ambiguous intemactrestraints (see section
3.8). A correspondingb initio run (control) for each complex using the same unblo
proteins was performed using center of mass resstal he final water refined solutions
for the data-driven andb initio runs were analysed and compared to each other in
terms of the number of correct models and theirggneanking. Although the sampling
process is set to produce 1000 models (defaulBADDOCK, it has been recently
recommended that fab initio runs a minimum of 5000 solutions should be produce
(de Vries et al, 2010). However, for data-driven runs, using dgemerated by
bioinformatics interface predictors, 1000 soluticer® satisfactory (de Vriest al,
2010). For computational efficiency, all runs wererformed using default settings.
However, to test for bias, docking rurab(initio and data-driven) where performed for
three test cases setting the number of solutionergéed at the rigid-body docking
stage to 5000 (see section 7.3.3).

7.3.1 Analysis of correct models using CAPRI anacEon of native contacts criteria

For all docking runs, two criteria were followed &wvaluate the predicted protein
complexes. The first is the CAPRI criteria (CriticAssessment of Prediction of
Interactions), which combines (using Boolean exgoes) different features of
assessing a predicted model’s geometric fit to @aknexperimental model (Lensirakt
al., 2007; Méndeet al, 2003; Wodalet al, 2003). This is achieved by determining the
fraction of native contacts (f) between complex proteins, the orientation ofgarid
protein of a predicted complex with its counterpzfra known complex (L-rmsd), and
the fit between the interface regions of predicded known complexes (I-rmsd) (see
section 3.8.2). Using CAPRI criteria, a correct elochn be classified into one of three
groupings (acceptable, medium, and high) dependimthe similarity of the correctly
docked model to the known experimentally determic@aplex. The second evaluation

criterion uses solely the,fsmeasure and has been applied in previous workr(f@ud
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et al, 2011). This is a less stringent evaluation amnduch all correctly docked models
(> 0.1 F,y) are regarded as being near-native and groupedoim¢ of three classes
(acceptable, medium, and high) based on the nuwibeative contacts detected (see
section 3.8.2). The & criterion is directly related to theoretical restts used in
docking, provided that the restraints have intexfaesidues to guide docking in the
right direction. Therefore, the more interface desis in the theoretical restraints, the
better the chance of improving.F In some scenarios, predicted models generatesl hav
actual native contacts, but may be classified asriect in CAPRI due to global
orientational errors of their complex componentsciSnear-native models may still
provide biologically valuable information of inteteto the scientific community and
disregarding them can be wasteful (Bourquetredl, 2011). This provides a justification
in using this less stringent evaluation for anaygiven that a possibility exists of
biologically relevant near-native complexes beingdpiced during docking, but are
classified as incorrect by CAPRI analysis. Bothleaton criteria assess a docking
algorithm’s sampling performance, allowing the ekaation of the effect of addition of
theoretical restraints in HADDOCK and comparingstiith unrestrainedaf initio)
docking. The objective is to determine if there significantly more correct models in
the data-driven runs compared @b initio runs (actual hypothesis, H It may be
possible that both run types produce no signifidifierence in correct models (null

hypothesis, k).

7.3.2 General comparison of data-driven versusretiooi docking with HADDOCK

The results of data-driven versaB initio docking for CAPRI evaluation are shown in
table 7-1. For CAPRI analysis, there are 17 and@ptexes from the datasethat
produced correct models for the data-driven adnitio docking runs in the final 200
refined solutions, respectively. Of the 17 casesdata-driven docking, 10 protein
complexes generated a statistically significanhérgnumber of correct models, which
represents 38% of the total datasetd 59% of the 17 complexes. In contrast, only one
protein complex (1Z0K) for thab initio runs produced significantly better results out
of the 9 cases, which is 4% of the docking dateesd 11% of the 9 complexes. This is
the onlyab initio result that differed from the actual hypothesisemhit produced a
significant number of correct models than the ahteen run. In the 1Z0K data-driven
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run, the restraints produced 92 models withsgreater than the CAPRI threshold (0.1
Fna). These models’ proteins are in the wrong oriémaand have high |- and L-rmsds,
which are beyond the CAPRI minimum thresholds. Tirtevented the data-driven run
from being more successful than thie initio run. However, there are more cases that
are successful for the data-driven (38%) runs #amnitio runs (4%) of the docking
dataset The datasetepresents a sample of the whole intra-species lex@p derived
from Benchmark4.0 dataset. As some cases wered®adla conservative estimate that
accounts for those excluded cases that would ligedgluce no meaningful resulise(

< 10% TP rate), and thus is a summary statistdicates that 16% cases are successful
for data-driven runs when compared to the samesdasiheab initio runs. For theb
initio runs of datasetthey represent a sample of the 63 complexeshancesults based
on datasetare extrapolated for all complexes and scaledrdougly to calculate the
summary statistic, resulting in 4% cases that aceessful when compared to the same
cases in the data-driven runs. For the remainisgscaf the whole dataset based on the
combined summary statistics, both data-driven @méhitio docking did not produce a
significant difference in correct models (80%). @alk the success rate of data-driven
docking (16%) is four times higher thab initio docking (4%) based on CAPRI
criteria. This supports the actual hypothesis iatiing that data-driven using theoretical
restraints generates significantly more correct @edompared tab initio docking of

the entire dataset.

For dataset only acceptable and medium quality models wereegded for both types
of docking; no high models were produced. Mediuraliggimodels occurred in 50% of
protein complexes displaying statistical significanfor data-driven docking runs,
whereas theab initio run which produced only 1 medium model was notistiaally

significant run (1SYX). For both run types the ficerrect model was ranked within the
top 50 generated models for 7 out of 10 data-driwers and 1 out of @b initio runs

that showed statistical significance. Comparingsrtor which a significant number of
correct models were generated to runs producingsigmficant results, the first best-
ranked correct model (lowest energy correct modehpt ranked lower for statistically

significant runs than non-significant runs.
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Table 7-1: CAPRI analysis of data-driven vab initio docking. The number of correct models out of 208hown. Correct models are grouped
as either acceptable (*) or medium (**). No high dets (***) were produced. The best ranked correcidel and its CAPRI grouping is
indicated. The P values < 0.05 (Fisher exact @%t)indicated. The TP fractions and TP rates foeptor (R) and ligand (L) proteins of the
theoretical restraints used for the data-drivers e indicated.

Ab Ab initio Data Ab initio Data TP fraction TP rate
Complex initio Data - . - * Best Best P value R L R L
rank rank

2HRK 0 33 0 0 8 25 - 4x* <0.0001 0.55 0.88 0.43 0.4
1XD3 2 33 0 2 1 32 124* 19* <0.0001 0.69 0.60 0.5Q0 0.45
102F 1 30 0 1 0 30 15* 6* <0.0001 0.33 0.61 0.15 850.
1WQ1 0 24 0 0 0 24 - 6* <0.0001 0.69 1 0.41 0.31
1009 0 32 0 0 2 30 - 59* <0.0001 0.75 0.62 0.5( 00.4
2L0T 1 22 0 1 7 15 115+ 14+ <0.0001 0.70 0.67 0.64 0.63
3CPH 0 21 0 0 0 21 - 1* <0.0001 0.60 0.71 0.5( 0.6]
200B 2 20 0 2 18 2 66* 79** <0.0001 0.33 0.47 0.63 0.67
203B 0 9 0 0 0 9 - 32* 0.0036 0.63 0.50 0.24 0.44
1EWY 0 7 0 0 0 7 - 22* 0.0148 0.40 0.30 0.22 0.14
1Z5Y 0 4 0 0 0 4 - 18* 0.1231 0.71 0.44 0.36 0.21
2J7P 0 3 0 0 0 3 - 34* 0.1231 0.50 0.30 0.12 0.1
1JK9 0 4 0 0 0 4 - 114* 0.1231 0.76 0.67 0.57 0.22
1P9D 0 3 0 0 0 3 - 65* 0.2481 0.72 0.76 0.72 0.6%
2NZ8 0 2 0 0 0 2 - 36* 0.4987 0.60 0.83 0.27 0.29
1J6T 2 1 0 2 0 1 113* 76* 1 0.43 0.64 0.18 0.64
1Z0K 8 1 0 8 0 1 13* 112* 0.0036 0.86 0.45 0.27 60.5
1GGR 1 0 0 1 0 0 41* - 1 0.33 0.64 0.11 0.6d
1SYX 2 0 1 1 0 0 1%* - 0.4987 0.33 0.45 0.17 0.64
1UR6 1 0 0 1 0 0 21* - 1 0.40 0.40 0.27 0.21
2J0T 0 1 0 0 0 1 - 175* 1 0.78 0.62 0.33 0.57
1GRN 0 0 0 0 0 0 - - 1 0.40 0.82 0.17 0.43
1BKD 0 0 0 0 0 0 - - 1 0.67 1 0.19 0.19
2073 0 0 0 0 0 0 - - 1 0.75 1 0.26 0.19
1FQ1 0 0 0 0 0 0 - - 1 0.29 0.64 0.13 0.37
1F6M 0 0 0 0 0 0 - - 1 0.83 0.60 0.23 0.41]
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Based on R evaluation, the number of cases that produceaciomodels for both run
types increases (Table 7-2). This is because oflegb® stringent evaluation. This is
observed in the number of correct models (NOCsjlyred for both types of runs. 25
out of 26 test cases produced correct models whenrdtical restraints were used. For
ab initio docking, 17 complexes produced correct models.eRgected, a greater
number of test cases produced correct models tithnGAPRI evaluation. This is also
reflected in the number of statistically signifitazases, which have increased to 18
cases (69% of datagsetnd 72% of the 25 complexes). Mb initio runs produced
statistically significant runs, including 1Z0K, vadhi was successful under CAPRI
criteria. This is because the analysis to deterrmsigeificance or not is a comparison of
the correct models produced of both run types. @asek,, the data-driven 1Z0K run
produced 92 correct models to the 1Z8K initio run’s 15, which was the reason for
this. There was little increase in near-native n®dé) to supplement the 8 CAPRI
correct models generated by the 1Z&iinitio run. This is precisely due to the absence
of restraints to guide docking. Some (eight) rure tvere not significant under CAPRI
evaluation, however, were undersfevaluation (ex. 1GRN), signifying that the
theoretical restraints used are having their indenéffect in driving docking and
producing a significant enrichment of near-nativedels. They were unsuccessful in

CAPRI because of orientational errors based on $drand I-rmsd used in CAPRI.

Like with docking evaluated by CAPRI criteria, sulmy statistics were calculated for
both run types based on thgfneasure. A conservative estimate for data-drivers r
indicates that 29% of cases are successful whempa@ud to the same cases in #ie
initio runs. Theab initio docking did not produce cases that were successfupared

to data-driven docking on datasétvVhen extrapolated (based on results of dajatet
represent all 63 complexes, the summary statisticates 0% cases that are successful
when compared to the same cases in the data-dwwven This is because the analysis
for significant results (for CAPRI or,it measures) is dependent on the NOCs produced
by both run types that are compared to ascertasgifificance exists. Only one case
was successful under CAPRI criteria fav initio docking (1ZOK, 8 correct models
compared to one model in data-driven docking),thetsame case did not a produce
significant NOCs (15 fomb initio to 92 for data-driven docking). It is for this
that 0% ofab initio cases produce no significant results when exteapdlto all
complexes based on thesfcriterion. Besides the significant cases, thee &%
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remaining cases of the whole dataset that do nmdyme a significant difference in

correct models for both run types. Overall, thecess rate of data-driven docking is
better tharab initio docking based on the fsmeasure. This confirms the results shown
using CAPRI criteria and supports the actual hypsith such that theoretical data-

driven docking generates significantly more corraotels vsab initio docking.

More high, medium, and acceptable quality neaweatnodels were generated for
restraints-driven runs than theb initio counterparts in datasetThese near-native
models were found in all significant runs of dataxeih docking. 61% of the significant
runs produced medium quality near-native modelsamyg 17% of those runs had high
models. Ranking of the first correct near-nativedelowas within the top 50 for all
significant runs (100%), which is an improvementeowanking under CAPRI

evaluation, because of the less stringent criterion

7.3.3 Docking runs using 5000 rigid body modelslADDOCK

Docking runs &b initio and data-driven) were performed for three tesexq2LOT,
170K, and 1F6M) setting the number of solutionsegated at the HADDOCK rigid-
body docking stage to 5000 to examine if an in@easmodels affects the results
significantly. 2LOT and 1Z0K were selected becathssy produced significant numbers
of models (under CAPRI criteria) for data-driverdab initio runs using 1000 models
(default), respectively. 1F6M was neutral sincehbatn types failed to generate any
correct models for it (under CAPRI criteria). Fdf6M, both run types did indeed not
produce any correct models. The data-driven 1Z0Kpwwduced one acceptable model
and this is the same result as the default runQx06dels). An interesting result was
theab initio 1ZOK run, which did not produce any correct modedsording to CAPRI
(or Facriteria). This was because all the top-200 refinemtlels were incorrect. The
2L0T run produced the opposite result in that thadiriven run produced more correct
models (34), when compared to 22 correct modelsnwdhefault settings are run.
However, the difference of 12 models is not sigaifit (p-value = 0.1124). Tlab initio
2LOT run produced no correct models. In summarigirrg the number of rigid-body
structures to 5000 (from 1000) produced similamultssin data-driven docking. In
general, this is also the same for #teinitio runs, indicating that increasing the number
of models to 5000 (from 1000) for HADDOCK did ndtest the results significantly.
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Table 7-2: Fhat analysis of data-driven vab initio docking. The number of correct modetsQ(1 F,a) out of 200 is shown. Correct models are
grouped as either acceptable (*), medium (**), &igh (***). The best ranked correct model and itg; Grouping is indicated. The P values <
0.05 (Fisher exact test) are indicated. The TRifras and TP rates for receptor (R) and ligandpiloteins of the theoretical restraints used for
the data-driven runs are indicated.

Ab initio Data . Ab Data TP fraction TP rate
Complex | . Ab Data Initio P value
initio - - N - - * Best Best R L R L
rank rank

2HRK 1 153 0 0 1 4 21 128 180* 1* <0.0001 0.5% 0.88 0.43 0.47
1XD3 8 119 0 1 7 0 7 112 12+ 2% <0.0001 0.64 0.60 .500 0.45
102F 1 72 0 0 1 0 7 65 15* 6* <0.0001 0.3 0.6[L 50.1 0.85
1WQ1 0 48 0 0 0 0 0 48 - 2% <0.0001 0.64 1 0.4/L 10.3
1009 2 136 0 0 2 0 19 117 4% 5* <0.0001 0.7% 0.62 .500 0.40
2L0T 2 119 0 0 2 6 16 97 83* 1* <0.0001 0.7( 0.6f .640 0.63
3CPH 0 154 0 0 0 0 11 143 - 1** <0.0001 0.60 0.71.  .500 0.67
2008B 4 54 0 1 3 18 1 35 14* 3* <0.0001 0.3 0.4  630. 0.67
203B 4 101 0 0 4 0 8 93 3* 1* <0.0001 0.63 0.50 40.4 0.44
1EWY 0 12 0 0 0 0 0 12 - 19* 0.0004 0.4(Q 0.30 0.22 0.19
1Z5Y 0 107 0 0 0 0 2 150 - 3* <0.0001 0.7] 0.44 60.3 0.25
2J7P 0 26 0 0 0 0 0 26 - 1* <0.0001 0.50 0.30 0.12 0.11
1JK9 1 106 0 0 1 0 2 104 115% 3* <0.0001 0.76 0.67 0.57 0.22
1PAD 0 63 0 0 0 0 3 60 - 2% <0.0001 0.72 0.7p 0.12 0.65
2NZ8 0 4 0 0 0 0 0 4 - 36* 0.1231 0.6( 0.83 0.2 290.
1J6T 8 14 0 0 8 0 0 14 29* 12* 0.2726 0.43 0.64 80.1 0.69
1Z0K 15 92 0 4 11 0 0 92 13* 1* <0.0041 0.86 0.4% 0.27 0.56
1GGR 4 10 0 1 3 0 0 10 18* 5* 0.171P 0.3 0.64 0.11 0.60
1SYX 2 4 1 1 0 0 0 4 1Hx* 85* 0.6851 0.33 0.45 0.17 0.64
1URG6 3 8 0 0 3 0 0 8 21* 43* 0.2201 0.4(¢ 0.40 0.27 0.21
2J0T 1 149 0 0 1 0 0 149 15+ 1* <0.0001 0.78 0.62 .330 0.57
1GRN 0 45 0 0 0 0 0 45 - 1* <0.0001 0.4( 0.8 0.2f7 0.43
1BKD 0 27 0 0 0 0 0 27 - 3* <0.0001 0.67 1 0.19 90.1
20T3 1 2 0 0 2 0 0 1 51* 3* 1 0.75 1 0.24 0.19
1FQ1 0 1 0 0 0 0 0 1 - 23* 1 0.29 0.64 0.18 0.37
1F6M 0 0 0 0 0 0 0 0 - - 1 0.83 0.60 0.23 0.4/L
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7.3.4 Examination of protein type and protein dogkilifficulty of the docking dataset

The docking datasetvas examined in the context of protein-proteirenattion type

and docking difficulty as categorized in Benchméu® and their relation to the number
significant cases producing correct models in tae-driven runs (Hwangt al, 2010;

Hwanget al, 2008; Mintseriset al, 2005b; Cheret al, 2003a). The relevant protein-
protein interaction types of this study are enzymahsbitors or substrates, and ‘other’
interactions, whereas antibody/antigen interactwase excluded because of difficulty
of generating theoretical restraints for them @aaion 5.2). All protein complexes are
classified according to docking difficulty based stnuctural changes during protein
interaction (Hwanget al, 2010). The protein complexes included in the kdag

dataset, which were not part of the original benchmark @&@e sections 3.2 and 7.2),

were classified according to the same criteriaiegdb generate Benchmark 4.0.

Table 7-3 summarizes the percentage of statisticgtinificant complexes for the
protein interaction types under the different dagkdifficulty classes for the docking
dataset. It can be seen that in general the pagerdf statistically significant cases
combined ice. Total) for both enzyme and ‘other’ interaction ezgdries decreases as
docking difficulty increases according to CAPRIFg: evaluation criteria. In addition,
there is a clear improvement in the significancecg@etage in each docking difficulty
category of the [ evaluation when compared to their CAPRI equivalerftor
example, for the hard docking difficulty class diet‘other’ proteins under CAPRI
criteria, none of the protein complexes generatetiatistically significant number of
correct models, whereas in thgyFevaluation for the same difficulty class thereais
67% improvement. A similar type of improvement ilsoca demonstrated for the
combined difficulty classes of the ‘other’ prot@amplexes when evaluated by theg:F
criterion (76%) compared to CAPRI criteria (35%®dause of the disparity in the total
number of enzymes and other protein complexes, pbeentages of statistical
significance differences are misleading when coeghar However, a greater
improvement in the increase in significance peragatfrom CAPRI to f; evaluation
is observed for ‘other’ protein complexes thantfad enzyme complexes. The inclusion
of Fha evaluation has demonstrated that the seeminglyagessful (not significant)
docking cases of varying docking difficulties arsag by CAPRI criteria, especially the
difficult class, are indeed successful and sigaificin that biologically meaningful
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complexes can be produced. This can been seep itothbined totals of each docking

difficulty class of both protein interaction typeem CAPRI to R4 evaluation.

Table 7-3: The percentage of statistically significant enzy(eezyme/inhibitor or

substrate) and other complexes classed accordidgdking difficulty (rigid, medium,

and hard) when analysed according to CAPRI andckteria in the docking dataget

The number of significant protein complexes outhef total complexes is indicated in

parentheses. N/A (not applicable) indicates thk tdanedium docking difficulty cases

in the docking datasgetor the enzyme category.

Type Enzyme Other Enzyme Other
Total Total
Difficulty CAPRI Frat
Rigid 40% (2/5) | 60% (3/5)| 50% (5/104  60% (3/5)  10(8#E) | 80% (8/10)
Medium N/A 33% (3/19) | 33% (3/9) N/A 67% (6/9 67%Lp
Hard 50% (2/4) 0% (0/3) 29% (2/7 50% (2/4 67982/] 57% (4/7)
Total 44% (4/9) | 35% (6/17)] 38% (10/21) 56% (5/9) | 76% (13/17] 69% (18/2|)

7.3.5 Comparison between protein docking’s proaunctf correct models and
theoretical restraints prediction quality

The number of correct models (NOCs) produced bkidgcbased on CAPRI and.f&
evaluation for each protein complex was comparedhterface prediction quality as
measured by TP fraction and TP rates (see sec3@n2 and 3.5.4) to determine their
relationship with each other (see tables 7-1 a@yl Each protein complex had a single
TP fraction and TP rate calculated by combining diaéa for its receptor and ligand
protein components. The objective is to determime éxtant of correlation existing
between the NOCs and either protein complex TRifraor TP rate to determine the
magnitude of positive, negative, or lack of coriela between them at the protein
complex level. Spearman’s rank correlation, whishainon-parametric analysis, was
applied since it assumes no underlying probabdisgribution for the data (Motulsky,
2007). This analysis determines whether an increadeP fraction or TP rate of the
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PROTIN_ID theoretical restraints used for dockimgluences the NOCs produced
during docking. It may be that both interface peédin quality measures have no
significant relationship with the NOCs, which isethull hypothesis (b). Table 7-4

summarizes the results of this analysis.

Table 7-4: The correlation between protein complex TP fracteord TP rate each
compared with the number of correct models (NOCshegated for the protein
complexes of the datagsefThe 95% Confidence Interval (Cl) shows the upaed

lower bound range limits of the Spearman’s ranketation coefficient (Spearman r). P
values indicate the probabilities of the likelihoofla positive correlation relationship

with the number of correct models produced anceeiil® fraction or TP rate.

. TP fraction and NOCs TP rate and NOCs
Evaluation
Spearman Spearman
type P 95% ClI P value P 95% ClI P value
r r
CAPRI 0.16 -0.26 -0.52  0.45 0.44 0.05-0.71 0.52
Frat 0.32 -0.09 - 0.64 0.11 0.47 0.09-0.73 5.01

2P value (< 0.05) indicates statistical significance

It can be seen that for CAPRI anghfevaluationthe correlation coefficients produced
for both TP fraction and rate association with t@&Cs are positive values. The
correlation coefficient values are higher for thE fiate than for the TP fraction in
CAPRI and R4 evaluation. To examine the significance of all tberelation coefficient
values, the 95% confidence interval (Cl), which mjifees the precision of the
determined correlation coefficient, giving the 95pfobability that a correlation
coefficient value is within the calculated uppeddower bound limits, was calculated
for both TP fraction and TP rate. Furthermore, gunebability that NOCs and TP
fraction or TP rates do not have any correlatiot tat positive correlation coefficient
values observed occurred by chance is calculated Bglues. Both Cl and p value
analyses are complementary. For TP fraction of CIARRI R, evaluations, the CI
ranges are from negative to positive values. Bexdus lower bound limits of the CI
are negative values, this suggests that their eggnt does not indicate a tendency of
the NOCs and TP fraction to increase together. Als® 0 correlation coefficient value,

which represents no correlation, is within the gldted range of Cl values. In addition,
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both p values (CAPRI p = 0.45, angh#p =0.11) support the Cl data and indicate lack
of statistical significance, suggesting the absen€eevidence that the positive
correlations are genuine, but due to chance. Omntier hand, the TP rates in CAPRI
and R evaluation both have upper and lower bound liroftshe CI that are positive
values, excluding the possibility of no correlatipre. Spearman r = 0) and negative
correlation. The CI analysis suggests a tendencyNfoCs and TP rate to increase
together and is unlikely due to chance, which s aupported by p values that are
statistically significant. From the data, it apme@P rate has a more positive correlation
than TP fraction on protein docking’'s ability tongeate NOCs. This suggests that
theoretical restraints used in docking are morkiemnttial if they have a high TP rate.
However, simply taking all the surface residuesvad unbound proteins as theoretical
restraints in docking would fulfil the criterion diaving a high TP rate by generating
100% TP rates. But such docking runs would santpeentire surfaces of both input
proteins instead of localized surface regions thermgenerating similar results abd
initio runs. It is possible that the generation of NOGs/more likely be a qualified
combination of TP rate with a reduction in falsesigges as indicated by the TP

fractions (table 7-1).

In general, there are 18 protein complexes thaeé lstatistically significant NOCs and
high TP rates and fractions when both statisticailiyificant results of CAPRI and.f&
evaluation are pooled. For example, the proteingieres 1009 and 1P9D both have
high TP rates and fractions for their unbound prot®mplex receptor (>50% TP rate
and >70% TP fraction) and ligand (>40% TP rate aB60% TP fraction) proteins.
10089 has high NOCs for both CAPRI (32) ang: EL36) evaluation while 1P9D has
high NOCs (63) for the J criterion. Figure 7-1 shows the L-rmsd, I-rmsdd &hy for
both 1009 and 1P9D protein complexes when datadrandab initio docking are
compared. It can be seen that the effect of thieatetestraints localizes protein
docking sampling to specific binding poses as shbwihe clouds of models produced
for Fhay L-rmsd, and I-rmsd. In general, more than onérdiscloud is formed in data-
driven docking and this may be due to the maniprabf the restraints in HADDOCK
where 50% of restraints are randomly removed dutivgginitial rigid body docking
stage in HADDOCK. This heuristic is performed tanmve the presence of false
positive residues. It may not always succeed imgidhis and may remove more true
positives, which may have contributed to the clofignodels (ex. L-rmsd and I-rmsd)
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beyond the acceptable thresholds defined for comemels (see section 3.8). Also
theoretical restraints (as ambiguous interacti@traents) do not provide orientational
information of two input proteins, but localizedngaling information (Dominguezt
al., 2003).

Consequently, the formation of different cloudslileely due to random restraint
removal and orientational errors where one pratenotated incorrectly with respect to
its partner. Such orientational errors are captungd.-rmsd and I-rmsd measures in
CAPRI evaluation. In comparison to data-driven raisinitio docking does not have
any restrictions on docking sampling and, as caisd®en, models produced are more
dispersed as a consequence. For the fRostab initio models are localized at Q&
reflecting the greater surface area beyond theit@gface of both input proteins that
HADDOCK is sampling. This is also evident in bothsd evaluations with a formation
of a dispersed cloud, indicating as with;Rhe non-specific effect @b initio sampling
(Figure 7-1).

In terms of energy ranking, most data-driven modeéslower in energy than the ones
produced byab initio docking. However, the HADDOCK score is not able to
discriminate efficiently in ranking between corremtd incorrect models produced
through data-driven docking. At least one correotlel is obtained in the top 200 final
refined (out of 1000 rigid body models) HADDOCK gtibns in the majority of cases,
indicating the effectiveness of the HADDOCK scameselecting correct models from
many incorrect ones. Nevertheless, the ideal goalldvbe to have such models
consistently ranked as the besse.(lowest energy) such that the better quality carrec
models (ex. high or medium) would be ranked highan those of lesser quality (ex.
acceptable) and then followed by incorrect modé&lss has not been consistent in
recent CAPRI evaluation of docking programs andisgofunctions (Lensinket al
2010; Lensinket al, 2007). Reliable prediction of binding free enesgusing docking
scoring functions is at its nascent stages (Flegstehal, 2011; Melquioncet al, 2011;
Kastritis and Bonvin, 2010). However, latest depetents such as a recently released
binding affinity benchmark, or the application ofdacking (and by extension its
scoring function) to distinguish true interactingfgins from non-interacting proteins
will provide insights into the development and a&pgion of improved scoring
functions (Kastritiset al, 2011; Wasst al, 2011b).

166



1009 complex 1009 complex 1009 complex

40 40 40
2048 20 . ° 20 L ¢
— 0+ 04 s LI 0 * .
£ [] — LS 34 °® — Se P Qe e o
g o . S 0] N IR ROL RS Cae i sl o,
E i £ ...: 2R YRR ., . ) £ o e . \Q'O" ° .
g -40{].. . g -40] *te {s‘ o lee P 0 e ® -404 Rl :,;‘Sf,’.’g...', PR
= H . 3 L 0,0 3 g . *3. * o 08
o . . 3 Q. oo .
o -604 1, .i":l . - . ;. 604 . e, . :o . HE ‘; -60 - - BYTN b} ... oo
8 sofl, arphyie it I 5 soltEr weeS YL T et S sl Tgs Lo g e
@ 100 . |-Il ||-| et " 3 'j‘. : ‘e @ " o* .
X 10048 I|'I|'I ' x -100] ¥ e x -o0{ ¥ -,
O -1204 | I T S -120.] -1204
8 qaoll +e i i Sl e R B
£ . o = Data < 1404 - Hr 2 -140] . L
160 . @ T 460] . - = Data T 460] . » Data
® Abinitio . ®  Abinitio . e Abinitio
-180 0'0 0'1 0'2 0'3 0'4 05 A0+ T T -1804— T T T T T T T T T T T
i : - - - - 5 10 15 20 25 30 35 40 45 50 55 60 65 70 2 4 6 8 10 12 14 16 18 20 22 24
Frat L-rmsd l-rmsd
» 1P9D complex - 1P9D complex 20 1P9D complex
20]e 20 . 20 .
104g 104 LI . 104 o ® e 0,0 .
(% [ XY
5 o £ Fetidedsite |5 o e
L] 1]
g 0 g . g 10y . RIS a':,. . g -10] e wiie S .
5 2090 ¢ . § 220 .0.0.0.0..'..: ro.. o < -20 o'o’.n. f‘ .?. .
£ 30ft, . . =, -30 . e utbe ¢ e i o) £ -30] . o .,'.-‘. sev 807 Sl
ERRPE| L - 2 40] A LA C IR S o 401 TR AT DA
g 'II I Q " .l.:.' o ® S - ° . M M .; .
a S0, g1l -. S 50 RSTS e e g -50] e N ee o0
x 603 1 i . v " B . . N -1 ° ®
S H -' L S -604 .-: . . ., S 901 "'E. . .
Q - e, . . . Q 70] wup . O 701 wg® . .
g 80 .:”:-_l' HE 2 ] FXe- . 8 -80] ?!- .
® Abinitio -100 L o Abinitio -100+ " o Abinitio
110+ T T T T T Mo+ M+
0.0 0.1 02 03 0.4 05 10 15 20 25 30 35 40 45 50 55 60 4 6 8 10 12 14 16 18 20 22 24
F
nat L-rmsd |-rmsd

Figure 7-1: HADDOCK score versusgg, L-rmsd, and I-rmsd evaluators for data-drivera¢k) andab initio (red) docked models generated for
the 1009 and 1P9D complexes. All models are condp@arexperimentally solved 1009 and 1P9D compléaaterive the rmsds angd The
combination of all three evaluators is what defiG#sPRI criteria, whereas the evaluation of the @nes of near-native models utilizes thg: F
criterion solely. It can be seen that the use ebthtical data to drive docking generates corrigxtibg poses in comparison &b initio docking.
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It can be seen in Figure 7-1 that some incorreatletsoare ranked betterd. lower
energy) than correct models. Even amongst the polcorrect models, their
HADDOCK score ranking is varied. For instance,he 1009 docking results the best
ranking correct models (CAPRI ordrevaluation) are not the best in terms of binding
pose quality (see tables 7-1 and 7-2). In FiguB$/A-B) the best-ranked 1009 correct
(CAPRI) andab initio models’ binding poses in relation to the known exkpentally
determined 1009 complex are compared. The EErmsd, and I-rmsd values are 0.29,
7.1 A, and 3.0 A, respectively for the data-driven mpdehich is classified as
acceptable under CAPRI criteria. Thb initio model in comparison has,d L-rmsd,
and I-rmsd values violating the evaluation criteheesholds. This is illustrated by the
ligand interface of thab initio model being in the opposite direction of the touraling
interface of the reference protein complex. Somar-native models classified as
incorrect by CAPRI due to orientation errors inrhsd and I-rmsd may still provide
biologically useful information. Figure 7-2(C) dlags an example of a superimposed
near-native model that does not satisfy CAPRI gatg.e. incorrect) compared with the
known 1P9D protein complex and the best ranklednitio model (Figure 7-2D). The
near-native model produced by data-driven dockiag 025 k., whereas thab initio
model has none. It is considered incorrect duaientational errors as measured by L-
rmsd and I-rmsd. In spite of this, the number afrect native contacts.€. interface
resides with correct intermolecular interactiongdacted in this model provides a good
starting point for further investigative research.
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F... of model 0.29 F... of model 0

L-rmsd of model 7.1 A L-rmsd of model 19.6 A

I-rmsd of model 3.0 A I-rmsd of model 12.1 A
C D

F.. of model 0.25 F.. of model 0
L-rmsd of model 13.0 A L-rmsd of model 37.6 A
I-rmsd of model 5.4 A I-rmsd of model 15.2 A

Figure 7-2: The comparison of the data-driven aainitio models of 1009 (A & B)
and 1P9D (C & D) with their experimentally deteremh protein complexes. The
receptor proteins (green) of all models are supswsad on the receptor (green) of the
experimental complex to illustrate the binding Eosé the ligand proteins (yellow) of
all models with respect to the ligand protein af #xperimental complex (redd) Best
ranked data-driven docked mod8l) Best rankedab initio docked modelC) Near-
native docked modeD) ab initio docked model.
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7.3.6 The failure of certain protein docking cases

Only 8 protein complexes did not produce significBli®C for data-driven docking in
relation toab initio docking according to Jcriteria. There are possible reasons for
their failure. Firstly, there are examples for whig substantial number of near-native
complexes were produced, but were not regardedasistigally significant due to a
high number of near-natives complexes producetair &b initio comparison runs that
undercut their significance (ex. 1J6T, 1GGR, andR@&)) Secondly, other protein
complexes produced a few near-native models fdn bat types (2NZ8, 1SYX, 20T3
and 1FQ1) and hence were not statistically sigaficThirdly, only 1F6M produced no
near-native models for data-driven aad initio runs. A closer examination of the
theoretical restraints data used for docking reagkghat there are native contacts
correctly predicted for both unbound receptor agdnd proteins. It was observed that
136 of 200 models were produced withyFvalues spanning 0.017 — 0.089. To
determine if acceptable or better models were algicted based on low energy scores
in HADDOCK'’s water refinement stage, the rigid-bodtage’s models (1000) were
examined. The sameVvalue range was found for 590 of 1000 models,usnl this
possibility. The total possible true interfaciabidgue-residue pairs,k that can occur
based on the theoretical restraints was deterntmdod 0.164, which is above thg.F
minimum threshold. In theory HADDOCK had minimumtaldo produce acceptable
models based solely on thgyferiterion, its failure is likely due to the smalimber of
residue pairs derived from the theoretical restsagata combined with HADDOCK
randomly removing some of those restraints. Thig heve resulted in the restraints not
being sufficient for HADDOCK to effectively sampéad predict correct models for the
1F6M complex (see Figure 7-3).
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Figure 7-3: Theoretical data mapped onto the surface of 1F6Mptex protein and
compared to the real 1F6M interface. The actu@riate (red), true positive interface
predictions (blue), and false positive interfaceedictions (green) are shown.
HADDOCK was unsuccessful in predicting correct msder this complex because of
a small number of possible native contact residaiesFa: 0.164) derived from the
prediction data combined with  HADDOCK randomly remmm some of those
restraints.A) Thioredoxin reductase (receptor protein; PDB: 1)CIB) Thioredoxin-1
(ligand protein; PDB: 2TIR).
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7.4 The use of experimental and theoretical data timprove protein-protein

docking performance

Theoretical data have been applied in protein-pradecking as a means to improve
docking sampling and scoring of docked protein cdempnodels using front- or back-
end approaches (see section 1.10). In this worstesyatic front-end application of
conservation data to drive docking has indicatet th general data-driven docking
using theoretical restraints outperforatsinitio runs, generating statistically significant
results. Likewise, the use of prediction data toamk docked models has demonstrated
encouraging results in recent work (Huang and Saen 2008). In addition, in a
related approach re-ranking with structurally dediv'’conservation’ data of protein
complexes of interest originating from their knovwmomologous protein complex
counterparts has been shown to be successful witapaced to a docking approach’s
ranking of models (Xuet al, 2011b). Relatedly using experimental data sicCaP
and RDC data to drive protein docking for front-ethdocking application has been
demonstrated successfully (van Dijgt al, 2005a; Clore and Schwieters, 2003;
Dominguezet al, 2003; McCoy and Wyss, 2002). Moreover, back-epglication
using CSP data solely or in combination with RDQadhas achieved considerably
effective ranking of docked models (Stratmaetnal, 2011; Montalvacet al, 2008;
Dobrodumov and Groenborn, 2003; Morgtial, 2001). It is possible that theoretical
and CSP data complement one another by mappingt@dtenterface regions of two
interacting proteins to aid protein docking aldgumits in predicting intermolecular
interactions of two partner proteins. Coupling these with RDC orientational restraint
data in protein docking simulations also allows tékative orientation of two protein
partners with respect to each other to be enfordedieasing orientational errors that
may otherwise arise in there absence. Ultimatdlg, éxamination of whether it is
possible to improve docking performance using cosgs-data derived from
experimental and theoretical sources to drive dagkvhen compared to CSP/RDC-
driven docking is the target. The case studiesriest below represent the examination
of consensus-data derived from the merger of C8R;,Rind theoretical data in front-

end application to protein docking.
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7.4.1 Application of RDCs, CSPs, and theoreticatreents for docking of the 1009

protein complex

1009 is a complex formed by the interaction of imatretalloproteinase (MMP-3) and
its partner known as tissue inhibitor of metalldpmoase (TIMP-1). MMP-3 is a zinc
endopeptidase involved in extracellular matrix enot breakdown during
embryogenesis and tissue regeneration (Arumuganmvandoren, 2003a). MMP-3 is
controlled by TIMP-1 and the interruption of thiegulation results in, as an example,
arthritis and cancer (Gomis-Righal, 1997).

CSP data obtained for both proteins were used dsigaous interaction restraints
(AIRs) for docking along with RDC data as descrilledection 3.9.1 (Arumugaret
al., 2003b; Arumuganet al, 1998). The mapping of the CSP and theoretiatd dn
the MMP-3 and TIMP-1 protein surfaces is indicaiteéigure 7-4(A, B). Furthermore,
the TP fractions and TP rates for CSP, theoretarad, CSP/theoretical.€. consensus
data) restraints for all docking runs performedsdrewn in Table 7-5. Treating the CSP
data using standard performance metrics to evalidé&face predictors, allows a
comparison between CSP and theoretical data toegdngr contributions in terms of
true positive i(e. interface residue) recall and precision. It mustHighlighted that
passive residues used with the CSP restraints eagr@dered as CSP data even though
they have insignificant CSPs but are in close pnityito active residues that have been
identified as having significant CSPs (Domingetal, 2003). This is because passive
residues are part of the CSP docking restraintsaanglich the TP fraction and TP rate
analysis of the CSP data takes into account passsigues. In Figure 7-4 (A, B) it can
be seen that there is overlap between the theakretnt CSP data for both proteins of
the complex. This overlap includes active and paseesidues of the CSP data. This
indicates that experimentally identified (activesidues with significant CSPs are
conserved. In addition, residues (passive) witls kgnificant CSPs but are in close
proximity to active residues are also conservecer@fore, the knowledge of passive
CSP residues’ conservation from theoretical dakawal their “promotion” to active

residues, which was done in the consensus-datardriuns (section 3.9.1).
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Figure 7-4: CSP and theoretical data mapped onto the surfdcdg3@9 (A & B), 1J6T
(C & D), and 1GGR (E & F) complex proteins. Non-dapping CSP (active and
passive) and theoretical data are coloured redbdunel respectively. Theoretical data
overlapping with CSP-active and CSP-passive are@ucetl magenta and green,
respectivelyA) MMP-3 B) TIMP-1 C) E2A™ D) HPrE) E2A°° F) HPr
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Table 7-5: Comparison ofCAPRI and F5 analysis of consensus-data (ALL = CSPs, RDCs,thedretical restraints) and experimental data-
driven docking (CSPs/RDCs restraints) for 1009, T1Ld6d 1GGR complexes. Various combinations ofttie®retical and experimental data
data-driven runs are included along with #ieinitio runs for comparison. The number of correct mo(&3Cs) out of 200 is shown. They are
grouped as acceptable (*), medium (**), or high*{**The best ranked correct model and its CAPRF@rgrouping is indicated. The statistical
significance is indicated by bold NOCs values fataddriven runs v&ab initio runs. An italicized ‘ALL docking run value indites statistical
significance when compared to CSPs/RDCs dockingThe TP fractions and TP rates of receptor (R)lazohd (L) proteins derived from the
restraints used to drive docking are indicatedafbruns.

CAPRI® Frat TP fraction TP rate
Complex NOCS *%k%k *% * BeSt NOCS *k% *% * BeSt R L R L
rank rank
1009
Ab initio 0 0 0 0 - 2 0 0 2 4* - - - -
TH 322 0 2 30 59* 136 0 19 117 5* 0.75 0.62 0.50 0.40
CSPs 47 0 0 47 16* 106 0 5 101 4* 0.54 0.71 0.61 0.60
CSPs/TH 35 0 0 35 4* 111 0 9 102 4* 0.54 0.67 0.65 0.70
CSPs/RDCs 116 0 4 112 1* 140 0 43 97 1* 0.54 0.71 0.61 0.60
ALL 157 0 7 150 2% 171 2 87 82 2% 0.54 0.67 0.65 0.70
1J6T
Ab initio 2 0 0 2 113* 8 0 0 8 29* - - - -
TH 1 0 0 1 76* 14 0 0 14 12* 0.43 0.64 0.18 0.69
CSPs 7 0 2 5 Shid 142 2 4 136 1* 0.79 0.67 0.71 0.77
CSPs/TH 35 0 25 10 Chid 162 25 9 128 2* 0.67 0.61 0.76 0.85
CSPs/RDCs 137 0 87 50 11** 143 22 74 47 5* 0.79 0.67 0.71 0.77
ALL 168 0 83 85 1** 176 44 108 24 r** 0.67 0.61 0.76 0.85
1GGR
Ab initio 1 0 0 1 41* 4 0 1 3 18* - - - -
TH 0 0 0 0 - 10 0 0 10 5* 0.33 0.64 0.11 0.6
CSPs 69 0 48 21 1** 161 36 29 96 x** 0.79 0.68 0.65 0.87
CSPs/TH 30 0 21 9 1** 158 18 4 136 x** 0.65 0.58 0.65 0.93
CSPs/RDCs 183 11 99 73 1** 185 77 76 32 x** 0.79 0.68 0.65 0.87
ALL 180 9 49 122 Kol 180 51 91 38 Jx** 0.65 0.58 0.65 0.93

2P value < 0.05 indicates statistical significar€islfer exact test).

®No *** models were found according to CAPRI critri
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For MMP3 and TIMP-1, there are non-overlapping te&oal restraint residues that are
part of the interface, indicating that theoreticastraints can provide additional true
positives when included with CSP data in consemsuig-docking. This is important to

demonstrate because if all theoretical restraintslap with CSP data and/or provide
only non-overlapping false positive data they do oféer additionally relevant data for

the protein docking sampling process. Consequetity, combination of theoretical

restraints and CSP data results in an increas® irafe to 0.70 and 0.65 for both ligand
(TIMP-1) and receptor (MMP-3) proteins, respectyyeduggesting their practical use
with CSP data in consensus-data driven dockings Thia significant achievement
considering that the CSP data have higher TP thtes the theoretical data, meaning
that the experimental data identified higher numebef interface residues than the
theoretical data. The TP fractions for both praiemre decreased, which is not
surprising, because of inclusion of false positiyes. ROS residues) caused from
combining the two sets of data.

As discussed earlier (section 7.3.5), TP rates laligher correlation with NOCs than
TP fractions provided that the TP fractions aretnotlow. In this case, the TP fractions
of the consensus data are over 50% for ligand aoeptor consensus restraints, which
is high specificity. All data-driven runs producadstatistically significant number of
correct models in comparison to tla initio run for CAPRI and F: evaluation.
Docking using theoretical (TH), CSP, and combin@f§P/TH datai(e. consensus-data)
was implemented to examine docking performance sioientational restraints in
comparison with the runs using them (CSP/RDC ams@asus-data/RDC). The NOCs
are generally similar for the TH, CSP, and CSP/Tihsr according to CAPRI
evaluation with differences that are not statidycaignificant. However, the use of
RDCs increased the NOCs produced with the consetetasgRDC (‘ALL’) run having

a statistically significant result compared to gtandard CSP/RDC run (Table 7-5).
Furthermore, more models are converged and populteefirst cluster for RDC
incorporating runs than for the rest of the ruret tho not use RDC data (Figure 7-5).
The mean I-rmsd of the first cluster of the ‘ALLir is 3.4 A (STDV of 0.83\), which

is lower than the CSP/RDC run'’s first cluster I-otmaean of 4.2 A (STDV of 1.43 A).
The remaining runs have similar means for thegt fdlusters to the CSP/RDC run (ex.
CSP and CSP/TH runs) or the ‘ALL run (TH run). Hewer, these runs have smaller

clusters containing correct models. There are wlististers with high I-rmsds and low
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energies, and this is especially notable for daitzed runs that do not use RDC data.
The reason these distant clusters have simildvgtier) HADDOCK scores for some of
their models than correct models of the first @ustis due to several charged patches
on the MMP-3 and TIMP-1 proteins, preventing the BHPOCK score from
discriminating between correct and incorrect modelst may be different by, for
example, 180° rotations of their ligand proteinsnir the correct models’ ligand
proteins. And this may explain the absence of araderall positive linear correlation

between energy and I-rmsd of correct and incomemdels in all 1009 runs.

Chiefly, acceptable models are produced for allsrufhe ‘ALL run has the highest
number of medium models (7). The ranking of thetficorrect model for CAPRI

evaluation improves when RDC data is used. Consedata docking only generated
one correct model in the top ten ranked docked mspaehereas adding RDCs with
consensus data produced 8 correct models in théetopnodels. This is higher than
standard CSP/RDC, which generated 6 correct maddlse top ten models. Docking
using TH or CSP restraints do not have ranked nsdddahe top-ten HADDOCK score-

ranked models.

As expected, the RDC incorporating CSP data-drivenshows that the application of
orientational restraints for both 1009 partnersudieinfluences the NOCs generated in
docking and ranking of correct models. This isigatarly significant as CAPRI criteria
take into account the L and I-rmsd for model assess$ of orientational errors,
showing that more models are satisfying the catbance the higher NOCs. The effect
of using TH data with CSP and RDC restraints invghog additional true positives is
pronounced as it boosts the NOCs and improvesmgrddi correct models even though

multiple charged patches are present on both ligawidreceptor proteins.
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Figure 7-5: HADDOCK score versus I-rmsd for consensus-data (ALCSPs, RDCs,
and theoretical restraints) and experimental dataed docking (CSPs/RDCs restraints)
for the 1009 complex. Various combinations of thearetical and experimental data-
driven runs, includingb initio docking are included for comparison. All models ar
compared to the experimentally solved protein cexpb derive the I-rmsd. Structural
clusters are coloured differentlb initio models are not clustered due to diversity of
poses, resulting in small structural clusters. Reuhts and crosses indicate the cluster
means and standard deviations for the HADDOCK saatkl-rmsds, respectively.
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The R4 evaluation of the runs indicates that the consedsiia/RDC performs the best
with statistically significant results when compéite the CSP/RDC run. The ‘ALL run
is also better than the runs, which lack RDCs iokdgy. The TH, CSP, and CSP/TH
runs amongst themselves show a greater differencBl@Cs where the TH run
generated the highest number of statistically &iggmt NOCs than the CSP and
CSP/TH runs based on theyfcriterion. This is interesting considering thae thH
run’s restraint data has the lowest TP rates ftin bgand and receptor proteins than the
other runs. To investigate this further, the rigmdy stage models (1000) were
examined to ascertain the NOCs. These were foubd milar in number for the runs
with differences that were not significant (TH 2Z35P 235, and CSP/TH 242 NOCs).
Thus, the TH run was successful in thg; Evaluation because the HADDOCK score
ranked more NOCs in the top-200 models for it tti@nother runs. In terms of model
quality, RDC-less data-driven runs produced moreepiable (*) models with less
medium (**) models compared with the RDC-implemegtiruns that enrich both
acceptable and medium categories. The ‘ALL rundpiced the most medium quality
models and the only high quality models (2), uncargsg the effect of using
consensus-data/RDC to improve docking performaBeeause the J criterion is less
stringent in comparison to CAPRI criteria, the ustbn of more correct near-native
models has an impact on the ranking of the firstezh near-native model. For all runs,
the first correct model (*) is ranked amongst tbe ten HADDOCK score-sorted
models. The ‘All' data-driven run produced 9 cotreear-native models ranked in the
top ten, which was higher than the CSP/RDC run Wwhbioduced 7 correct models. All
RDC-less runs produced 4 correct models in theg¢opanked solutions. Thab initio
run produced only 1 correct model ranked in theteap The capability of consensus-
data/RDC docking in enriching in correct modelstle top-ten ranked solutions is
likely due to an increased number of near-nativedeis produced during docking
sampling.

7.4.2 Application of RDCs, CSPs, and theoreticatreents for docking of the 1J6T

protein complex

The 1J6T complex is created by the interaction ytbmlasmic domain A of the
mannitol-specific phosphotransferase enzythéE2AM") and the histidine-containing

phosphocarrier protein (HPr). This protein complesx a part of the bacterial

179



phosphoenolpyruvate-dependent sugar phosphotrassfersystem (PTS) that
phosphorylates carbohydrates while transferringitti@ough bacterial cell membranes
(Cornilescuet al,, 2002).

The CSP and RDC data were obtained and applieddcking (section 3.9.1) of this
complex (Clore and Schwieters, 2003; Cornilestwal, 2002). The mapping of CSP
and TH data on both receptor (E2A and ligand (HPr) proteins indicate that thera is
contribution of true positives from the TH data wheobmbined with CSP data (Figure
7-4C, D). Furthermore, it can be seen that consiervaf experimentally identified
active residues and their neighbouring passiveluesi (HPr ligand protein) of CSP data
is present, as overlap exists with TH data. Asestaireviously, passive residues are
designated active if conserved (section 3.9.1). duemntitative contribution of TH data
shows an increase in the TP rate for both ligan85f0and receptor (0.76) proteins
when it is combined with CSP data (Table 7-5). Tk fractions for both proteins
decrease, but are still acceptable since theyatelie60% specificity for both proteins.
In comparison to thab initio run, only the RDC-incorporating and consensus-data
driven (CSP/TH) runs produced statistically sigrafit runs according to CAPRI
criteria (Table 7-5). RDC data improved the resappreciably with the consensus
data/RDC run producing the most NOCs (168) when paoed to the standard
CSP/RDC run (137), and this difference in NOCs istatistically significant result.
Figure 7-6 indicates the I-rmsds of the docked rfsodempared to the reference 1J6T
complex as a function of the HADDOCK score for ralhs. Both RDC-incorporating
runs produced the most correct models that convartfeeir first clusters than the other
data-driven runs, producing the same I-rmsd clustean of 2.4 A (STDVs of 0.57 A
(‘ALL) and 0.56 A (CSP/RDC)), but they differ invarage energies due to differences
in the ambiguous interface restraint (AIR) energyrt of the HADDOCK score, which
reflects AIR violations. For the CAPRI criteria,etiH run did not produce enough
NOCs because the majority of 200 complexes gereratéH docking had f: values
under 0.085 and orientational restraint errorsidcated by L and I-rmsd values, which
where above the CAPRI cut-offs. Interestingly, B8P run, which had higher TP
fractions and TP rates than the TH run also did produce a significant result for
CAPRI criteria due to orientational errors in itsngrated models. Both CSP and TH
runs’ first cluster had I-rmsd means of 4.6 A ar@ A, respectively (STDVs of 1.03 A
and 1.29 A, respectively). It seems that higher rilRs were needed to generate
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significant results as indicated in the CSP/TH nvhijch generated a mean I-rmsd for
the first cluster of 4.1 A (STDV of 0.83). For tfiél, CSP, and CSP/TH runs, it can be

seen that the majority of models cluster at |-rvasidies >9 A.
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Figure 7-6: HADDOCK score versus I-rmsd for consensus-data (ALCSPs, RDCs,
and theoretical restraints) and experimental dataed docking (CSPs/RDCs restraints)
for the 1J6T complex. See the legend of Figurefgr$urther details.
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These distant clusters have arisen because ofafugenof the ambiguous interaction
restraints used in docking, whether derived froniP@8 TH data, which do not provide
orientational input to docking sampling, and thiplains the enrichment of incorrect
models in those clusters where ligand proteingateged incorrectly with respect to the
true ligand’s binding pose to the receptor protespecially for the TH and CSP runs.
These clusters exist in the RDC-incorporating rwith similar incorrect orientational

poses for their ligands (180°) as the models predun the CSP and CSP/TH runs,
however, they are smaller in size, indicating tfiect of the RDC data in enriching the
first clusters with more NOCs and minimizing thesentational errors. The average
cluster energies for these clusters differ betwRBC-incorporating and RDC-less runs
because the HADDOCK score incorporated additionBICRenergy terms for the

former runs.

In general, the correct and incorrect models difig 80° rotation of their ligands even
when RDC data is used. With RDC data, there are fpogsible 180° orientations of
proteins in a complex with respect to the axesnchlegnment tensor, which is four-fold
degeneracy, and combining this data with ambigutesaction restraints data (ex. CSP
data) usually identifies the protein-protein orain out of the possible four that
agrees with both sets of data. For this proteinpter) the combination of RDC and
ambiguous interaction restraints data has resuttetivo-fold degeneracy reduction,
causing the majority of models to adopt two liggasdes that differ by 180° rotations,
and this can be removed through the enforcemergstfaints to favour the orientation
most compatible with the CSP data (Clore and Sdievae 2003). It can also be seen
that the distant clusters have better HADDOCK se@® correct models for all runs.
This is due to an extended charged patch on treptec(E2A™), which includes the
interface, where models localize on it, preventii§ DDOCK discriminating the

correct models from incorrect ones.

The correct models for the consensus-data/RDC (PAltun represent a balanced
proportion of acceptable (83) and medium (85) dquathodels based on CAPRI
assessment, which constitutes the highest numbBIO&s produced altogether when
compared to the other runs. Although the RDC-incmapng runs generated the most
NOCs, because of inconsistency of discriminationtiyy HADDOCK score between

correct and incorrect model ranking, the rankinghef correct models in the top ten
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solutions was affected. For example, no correctetsodere ranked in the top ten for
standard CSP/RDC docking. The first correct modeianked 14 and is of medium
quality for this run. For consensus data/RDC dogkionly 4 correct models were
ranked in the top ten where th&ranked model is of medium (**) quality. The CSP/TH
generated 4 correct models, while the CSP run mexid correct model in their top ten
ranked solutions. The correct solutions of the Tid @b initio runs were not ranked in
the top ten, instead they are rankel] Z6d 118, respectively.

For R evaluation, all runs except the TH data run predustatistically significant
results compared to thab initio run. The reason for the failure of the TH run was
explained previously (see section 7.3.6). The amise data/RDC run produced more
near-native models (176) versus conventional CSE/RIdcking (143), which is a
statistically significant result. In addition, itqggluces more near-native models than the
rest of the runs that do not use RDCs, althougtdifierence between its result and the
CSP/TH run’s result (162) is not statistically sfgrant. Comparing the RDC-less data-
driven runs’s results to each, the CSP/TH run'slltgd62) is statistically significant
compared to the CSP and TH runs. This may be dukedigher TP rates for the
docking restraints used in the CSP/TH run. In teahsnodel quality, the consensus
data/RDC run generated the highest proportion gh {44) and medium (108).&
models along with 24 acceptable models and thassisperior result when contrasted to
the standard CSP/RDC docking. It is interestingiéte that whilst CSP/TH docking
produced a statistically significant number of reative models compared to
RDC/CSP docking and a non-significant differencanpared to consensus/RDC
docking, this achievement is not reflected fully nmodel quality. Most models for
CSP/TH runs are enriched in the acceptable (128c&tegory with only a few models
(9) of medium quality. Although 25 models are ratesi high for CSP/TH docking,
however, the RDC-incorporating runs produced moegliom quality models, and an
almost double number of high models were produgethé consensus data/RDC run,
highlighting the effect of orientational restrairdata’s influence on docking
performance. The ranking of top ten models is impdounder F evaluation. The
‘ALL run produced more (6) near-native models radkn the top ten solutions than the
CSP/RDC run (1), where a high near-native modehiked first for the ‘ALL run.
Only the CSP/TH (7) and CSP (8) runs produced native models in top ten solutions

from the non-RDC integrating runs. While these rysduced more near-native
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models in the top ten then the ‘ALL run and in otese (CSP) ranked a¥ & near-
native model, the ‘ALL" has the best quality modmhked in first place by HADDOCK.
The results based on CAPRI andsFassessment of the EYAHPr docking
demonstrate that consensus/RDC data driven doekirighes in the number of correct

models compared to standard CSP/RDC docking.

7.4.3 Application of RDCs, CSPs, and theoreticatregnts for docking of the 1GGR

protein complex

The 1GGR complex is an interaction involving glueapecific phosphotransferase
enzyme lIA (E2A®) and the histidine-containing phosphocarrier pro(&iPr). Like
the 1J6T complex (section 7.4.2), this protein clexpparticipates in the bacterial
phosphoenolpyruvate-dependent sugar phosphotrassfersystem (PTS) that
phosphorylates carbohydrates and transfers theoughr bacterial cell membranes
(Wang et al, 2000). Both protein complexes share the samendigprotein (HPr),
however, their receptor proteins differ in primagquence and tertiary structure (Clore
and Schwieters, 2003).

The CSP and RDC data were applied for protein ahachi this complex as discussed
in section 3.9.1 (de Vries and Bonvin, 2011b; Clamed Schwieters, 2003). The
mapping of CSP and TH data is indicated for bagard (HPr) and receptor (E3H
proteins in Figure 7-4 (E, F). It can be seen ffdtdata contribute non-overlapping
true positive residues to the ligand protein, iasreg the TP rate to 0.93 for this protein
combined with a TP fraction of 0.58 (Table 7-5). Bdditional non-overlapping true
positive residues are provided for the receptotgimoby the TH data, keeping the TP
rate at 0.65. Instead all non-overlapping residibbse) are false positives that are in
close proximity to the experimentally identifiecsidues, and this has decreased the TP
fraction to 0.65. For both proteins’ TP fractionseir specificity is >50%, which is
satisfactory. There exists overlap between CSRv@eind passive) and TH identified
residues, indicating that these experimentally tified residues and their neighbours
are conserved. As described previously, the presehoverlapping passive residues

that are conserved designates them to active eestaitus (section 3.9.1).
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All runs except the TH run produce more NOCs, whach statistically significant
results, when compared with tlaé initio run under CAPRI assessment. All the TH
run’s models had orientational restraint errorseexiing CAPRI cut-offs for L-rmsd and
I-rmsd, rendering them all as incorrect accordil@CAPRI criteria. These errors may
stem from the fact that TP rate contribution foe tteceptor protein is low (0.11),
preventing adequate docking sampling in the corbeatiing region of the receptor
protein in order to generate a pool of CAPRI acakelet binding poses during docking.
The NOCs produced for the ‘ALL (180) and CSP/RD@83) are similar in number,
indicating the absence of statistical significanmce¢he difference between them (Table
7-5). The possible reason for this is that the tamidiof TH data only contributed to
increase in TP rate for the ligand protein, but the receptor protein. This lack of
increase of receptor TP rate does not improve @p@ting information provided by the
CSP data to improve docking sampling’s generatidnN®Cs. Indeed, it was
demonstrated that when TH data improved the T rfte both ligand and receptor
proteins this resulted in a boost in the NOCs gateerin both 1009 and 1J6T docking
runs that coupled consensus data with RDCs (sec@ighl and 7.4.2).

The NOC results of CSP/TH (30) and CSP (69) rudscate a statistically significant
difference in favour of the CSP run. This may bes do the random removal of
restraints in HADDOCK that possibly removed mongetpositives during docking for
the CSP/TH run coupled with the effect of the faghesitive restraints when the CSP
and TH restraints were combined. This reduced tamber of correct solutions
produced because of the incorrect binding posethéeomodels produced relative to the
known 1GGR experimentally solved complex. An exation of the docking data
revealed that more models fulfilled the L-rmsd &mohsd criteria for CSP docking than
CSP/TH docking, indicating an increase of modelk wrientational errors in CSP/TH,

suggesting that indeed this may be the case.

The I-rmsds of all LGGR runs’ models as a funcodiHADDOCK score are shown in
Figure 7-7. The RDC-incorporating runs producedrtagority of models that converge
in their first clusteri(e. with the lowest I-rmsd average) than the RDC lagkuns. The

consensus data/RDC and standard CSP/RDC runs gadumsd cluster means of 2.7
A (STDV of 0.82 A) and 2.1 A (STDV of 0.75 A), resgively. The CSP and CSP/TH
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runs have similar I-rmsd means (CSP/TH 2.0 A an®®Bf 0.30 A, CSP 2.3 A and
STDV of 0.34 A) for their best clusters to the RI€orporating runs, but have a lower
convergence of models that populate these clustéesclusters for the TH run are all
above the 4.0 A threshold for the I-rmsd criteraord hence the best cluster has an |-
rmsd mean of 5.9 A (STDV of 0.46 A), indicating théentational errors of the models.

For all runs that produced a greater amount ofecbmmodels compared to the initio
run, the HADDOCK score discriminates between cdraac incorrect models such that
the best clusters are clearly identified. Thisue ¢ a charged patch of the interface of
the HPr protein coupled with the shape complem#nthetween the two interfaces of
the ligand and receptor proteins, allowing HADDO@Kdiscriminate between correct

and incorrect models (Dominguetal, 2003; Wanget al., 2000).

Both RDC-incorporating runs enrich the acceptabjeafd medium (**) categories
more than the other runs with the exception ofG8& run, which enriched the medium
quality category with 49 models. More models ofeqatable category are produced for
the ‘ALL run, whereas the standard run producesermedium quality models. This
difference may be attributed to increased falsetipes from the TH data for the
receptor protein, which may have had an impactampéing of docking binding poses
thereby enriching the acceptable category for &id " run. Both RDC-incorporating
runs produce a significant number of high (***) nedsl indicating the success of the
docking for this complex. Examination of the topn tsolutions ranked by the
HADDOCK score indicates that the RDC-incorporatings produce 10 correct models
in the top-ten solutions, according to CAPRI crégerThe CSP/TH and CSP runs

produced 2 and 9 correct solutions ranked in thedo models, respectively.
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Figure 7-7: HADDOCK score versus I-rmsd for consensus-data (ALCSPs, RDCs,

and theoretical restraints) and experimental dataed docking (CSPs/RDCs restraints)
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This difference in the ranking of correct modelsyrba attributed to the smaller amount
of correct models produced in the CSP/TH rAb. initio docking produces only one
acceptable quality model and it is ranked' 4y HADDOCK. Although the ‘ALL,
CSP/RDC, and CSP runs produced a similar amouctrogéct models ranked in the top
ten solutions, the quality of the models rankethentop ten solutions differs somewhat.
For the ‘Al run the % ranked {e. best scored) model is of high quality, whereas for
the other two runs their best-ranked model is oflioma quality. Indeed, there are 3
high quality models ranked within the top-four misdfor the ‘ALL run, whereas the
CSP/RDC run had only one high model in the toprbedels and it was ranked ®est
overall with other models ranked acceptable or omadguality scoring better than it.
The CSP run only produced 9 medium quality modelsthe top ten solutions.
Therefore, even though the overall difference in@¢Camong the RDC-incorporating
runs is not significant, the enrichment of bettealgy models in the ‘ALL docking run
is improved in the top-ten ranked solutions comgérethe standard CSP/RDC run.
This is also the case when the ‘ALL run is compii@ the CSP run.

For the 4 evaluation of the runs, the ‘ALL and the CSP/Rb{s produce 180 and
185 correct near-native models, respectively. Hinee difference in 5 near-native
models is not significant. The RDC-incorporatingnsu results are statistically
significant when compared to the runs that do ilize RDC data. The CSP/TH (158
near-native models) and CSP (161 near-native mpdehts do not have a significant
difference compared to each other. However theli batel the TH andb initio runs
in NOCs produced. In model quality terms, the RDEkiding runs have similar
numbers for the acceptablg.fcategory, but differ in NOCs produced for the roedi
and high quality R categories. The ‘ALL run has higher NOCs (91) rmaedium
quality than the CSP/RDC run, whereas the CSP/RBECHigher NOCs (77) for the
high category of models. Like the CAPRI evaluatitns difference in the spread of
models may be due to higher false positives inaaed for the receptor protein’s
docking restraints from the TH data, which may haflienced docking sampling in
the ‘ALL run, resulting in less high quality mode&nd greater medium quality models
in contrast to the CSP/RDC run.

The ranking of the top-ten scored models for theCRixorporating runs under.f

evaluation parallels the results of the CAPRI eatitin in that 10 correct models in the
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top-ten ranked solutions are found. This was als® result for the CSP run. The
CSP/TH run had 6 correct models ranked in the éopniodels. Although the TH run
produced 10 near-native models overall, 2 of theenranked in the top-ten. Tteb
initio run does not produce any models ranked in thdeogsolutions. The quality of
the models ranked in the top-ten solutions is sinfibr the runs. It can be seen that all
runs (except the TH anab initio runs) produced a high quality model rankédahd
this is because thepf restraints are less stringent as they do not tadae account
orientational errors. Overall, the difference i theneration of NOCs for the 1GGR
complex between the ‘ALL and CSP/RDC runs is nighgicant because the TH data
when combined with the CSP data only increased Eheate for the ligand protein and
not the receptor. The TH data for the receptoreased the number of false positive
residues, which influenced the docking samplingchStesidues may be conserved
because of structural reasons. Additional interfasedue discriminators are required to
combine with the current TH data to predict thenfatce residues not predicted via TH
and CSP data sets. This would be important fordlceptor protein and would likely
result in a non-overlapping contribution by bothadaets, increasing the TP rate. The
outcome would be significant NOCs being generatednmcompared to the RDC/CSP
1GGR run.

7.5 Conclusion

The application of theoretical restraints of theGARN_ID method to guide protein-
protein docking to improve its performance was exa&h This was compared &b
initio docking. The docking results were assessed ssamglard performance measures
of the protein docking community (CAPRI), includitige less stringent,k measure.
Docking runs were performed using a docking dat26t complexes) comprising
unbound proteins that fulfiled a minimure10%) TP rate cut-off when theoretical
restraints were generated for them using PROTIN_{Tbmplexes under the
conservation TP rate cut-off were removed sincey tivere assumed to have few
restraints to generate successful results in datarddocking. Data analysis based on
the docking dataset and extrapolated to accounthioexcluded complexes (<10% TP
rate cut-off) demonstrated that docking is improuethe generation of correct models
through the use of theoretical restraints compé&veab initio docking for both CAPRI
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and R measures. Specifically, a 16% success rate focadkes i(e. conservative
estimate) was determined for data-driven dockingedeon CAPRI criteria, which is
four times more successful, compared to 4%hnnitio docking. For the less stringent
Frat€valuation, a success rate of 29%.(conservative estimate) was observed relative
to no success (0%) iab initio docking. The difference in success ratesdbrinitio
docking for both CAPRI or [z measures is because the analysis for signifiesilts

in the docking dataset cases is dependent on tinéeruof correct models produced by
both data-driven andab initio runs per case that are compared to ascertain if
significance exists. Only one example producedyaiitant number of CAPRI correct
models in favour ofb initio docking in the docking dataset, resulting in a g96cess
rate under CAPRI criteria when extrapolated to ¢hére dataset of (63) complexes.
The same example did not produce a significantltresben analysed by the.f
criterion; however, its data-driven run countergandduced significant results. When
extrapolating to the entire dataset, this resuitedo cases foab initio docking that
produced significant results based on a compatistween the run types according to

the kameasure.

The success of using theoretical restraints to awvgrdocking compared tab initio
docking paved the way for further examination ofngstheoretical and CSP data
(consensus data) combined with RDC orientationstkagnts data to assess its impact
on docking performance. This was compared to standaSP/RDC docking
simulations. Three case studies were examined fachwWRDC and CSP data were
obtainable. In general the performance of consendat®/RDC-driven docking
improves the generation of correct docking soligiocompared to standard CSP/RDC
docking based on CAPRI angd,Fmeasures. The improvement in docking is applicable
specifically when CSP and theoretical data both rniegp same area on a protein’s
surface, resulting in the further inclusion of trpesitive (interface) residues for both
ligand and receptor proteins. This is because theeetheoretical data that do not
overlap with the CSP data, increasing the numbéruef positives. If different areas on
a protein’s surface are identified by both restsirthen it is more likely that the
theoretical restraints have possibly predicted larobinding site. In this scenario, they
are not applicable for use with CSP data to drieekihg. When both CSP and
theoretical restraints localize on the same progeirface’s region, passive residues,

which have insignificant CSPs and/or are in closzimity to (active) residues with
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significant CSPs, were converted to active residuese they were conserved based on
the theoretical restraints that overlapped withmth@o recapitulate, the improvement in
docking using consensus-data was demonstrated @Wis¢h and theoretical data are
restricted to the same region of a protein’s sefaépon satisfying this condition, this
allows the HADDOCK docking program to further restthe docking sampling to the
area of interest and boost docking performanceidmifecantly increasing the number

of correct models produced compared to standardRISP docking.

191



Chapter 8

Conclusions

Determining interfaces of proteins is a significastep for characterizing protein
complexes and contextualizing their functions wtlihe wider protein interactome.
Prior to the onset of this research study, proteierface predictors were found to be
limited with respect to interface prediction thrbugse of sequence data and clustering
of prediction data (see table A-3). Firstly, noeatpt was made to systematically
examine explicit transient protein multiple sequeraignment improvement and its
effect on conservation signal retrieval by previpuedictors, which used conservation
as an interface predictive feature, to improverfate prediction. Secondly, the effect
of three-dimensional clustering of interface prédit data accuracy was not explored
systematically in previous predictors to ascertds effect on interface prediction
accuracy. In this work a new protein-protein iraed predictor (PROTIN_ID) was
introduced that addressed these deficiencies anghsdo identify protein interface
residues through implementing explicit MSA sequemnizda editing and interface
prediction data clustering heuristics to improveeiface prediction quality. These
heuristics were tested on the latest Benchmark dataset of transient protein
complexes (Hwangt al, 2010). The results of this study corroborate higpotheses
that both heuristics significantly improve interagrediction accuracy compared to not
applying them. Thus the PROTIN_ID predictor implensenovel and useful features
for predicting interface residues. Compared to entrinterface predictors (WHISCY
and CCRXP) with similar interface prediction go®&OTIN_ID was found to perform
as well as WHISCY and outperform CCRXP (Ahnedl, 2010; de Vriegt al, 2006).

In the context of whether interface residues weogentonserved compared to rest of
surface residues (ROS), it was demonstrated thetface residues were indeed more
conserved, using seven different conservation scomhich is in agreement with
previous findings (Choét al, 2009; see section 5.5). However, previous wodicated
the absence of prediction significance to distieguinterface patches from ROS
patches, using evolutionary conservation (Burgogneé Jackson, 2006; Caffrey al.,
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2004; see section 5.5). In this work, an evolutigneonservation-based clustering
heuristic, implemented in PROTIN_ID, was shown igngicantly predict interfaces
residue clusters. This approach exploits the comasien signal of interface residues
more effectively than in previous work. This isagreement with recent findings, which
showed that interfaces are non-homogenously coadeand those residues, which are
conserved, are clustered together (Guharoy and r@baki, 2010; Guharoy and
Chakrabarti, 2005).

During this study and after its completion, otheterface predictors have been
published. Like PROTIN_ID, they also implementedveloconcepts for predicting
protein interfaces. For example, &i al, (2008) trained an SVM-based predictor that
utilized neighbour residue profiles at the sequearte structural levels during training.
Both structural and sequence profiles concepts haea implemented separately in the
previous predictors of Wanet al, (2006) and Ofran and Rost (2003a), respectively.
This predictor combined both concepts to constaunblistic neighbour profile utilizing

8 predictive features (ex. hydrophobicity, sequeroaservation, physicochemical
properties, solvent accessibility, side-chain emuinent, secondary structure, and
sequence and spatial distance) to predict corefacte residues. This predictor uses a
PSI-BLAST profile to compute conservation. It coblel combined with PROTIN_ID’s
sequence editing heuristic and conservation scomglementation to enhance the
conservation signal retrieval during its trainingge, as it was determined that the PSI-
BLAST profile conservation predictive feature oetpredictor contributed most to the
accuracy measure compared to the rest of the piredfeatures during cross-validation
of their predictor (Liet al, 2008). PROTIN_ID’s clustering heuristic could &eaplied

to cluster top-N ranked surface residues predibiethe method of Let al, (2008) to
improve core interface prediction accuracy througimination of potential noise
created by false positive residues. Another notgibéglictor used only electrostatic
desolvation profiles for prediction of interfacedesi (Fiorucci and Zacharias, 2010a).
This predictor scanned protein surfaces to idersdifgs with low desolvation penalties,
which are predicted as putative interface sitesngushe finite-difference Poisson-
Boltzmann method. When implemented with other fat discriminative features, it
has a potential to improve interface prediction.pkgd with PROTIN_ID, this
desolvation profile concept could be used to dgv@&BROTIN_ID’s cluster ranking and

improve its interface prediction success rate.
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The application of PROTIN_ID’s theoretical resttaino docking performance was
investigated using the HADDOCK method. It was destaied that theoretical
restraints-driven dockingvas more successful thab initio docking, when evaluated
with stringent or relaxed metrics, generating digantly more correct models for a
higher percentage of the test dataset @amitio docking. The current findings agree
with previous work by de Vriest al (2006) who used WHICSY’s prediction data to
guide docking, and this was contrastedaboinitio docking. Additionally, PROMATE
prediction data was also combined with WHISCY dataepeat the same runs, which
showed greater guided-docking performance improweniéowever, in their work de
Vries et al (2006) conduct docking using the initial rigidelyo docking stage of
HADDOCK, and used a relaxed evaluation metric fockdng performance assessment.
In contrast, in this work the full HADDOCK protocalas applied and stringent CAPRI
criteria were used to evaluate docking resultsyiging a more realistic framework for
the study. Although, combination of PROTIN_ID restts with another predictor’s
restraints (ex. WHISCY) was not assessed on docker@ormance here, the same
principle of consensus data was explored in thidysthrough the novel combination of
NMR data (CSP/RDC) with theoretical restraints, i@gimg an improvement over
docking runs using only PROTIN_ID’s restraintd. was demonstrated that this
approach improved the performance of data-drivenkidg compared tostandard
experimental (CSP/RDC) docking overall. Recent woskowed that using
heterogeneous experimental data to filter dockoigt®ns (.e. back-end docking) in a
novel meta-docking approach led to improved rankihgcceptable quality models or
higher (61% ranked®) for Benchmark 4.0 caseS¢hneidman-Duhovnegt al, 2012;
Hwanget al, 2010). Although both studies showed that doclpegormance can be
improved, they differ in the sources of data inatgd in the step of their docking
procedures (front-end vs. back-end docking). It doe valuable to extend the work of
Schneidman-Duhovnet al, (2012) to includanore data sources such as consensus
interface predictor data (including PROTIN_ID pidr data) with the experimental
data (RDC and CSP) to improve their back-end darkipproach further. Thus using
more experimental and/or theoretical sources tcamspconsensus-data would make
significant inroads in docking performance improegm Recent steps have been taken

to achieve this. For example, de Vries and Bonwydfl{a) used prediction data
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generated from a consensus predictor (CPORT) coadpos six individual interface
predictors (including WHISCY) to guide HADDOCK dank, and showed that
docking performance was better than HADDOGK initio docking and as competitive
to ZDOCK. Schneider and Zacharias (2012) combined the ATTRAGAdking method
with the meta-PPISP (composed of three predicfmegjiction data to drive docking of
unbound proteins (Qin and Zhou, 2007a; Fiorucci Zadharias, 20104ylintseris et
al., 2005h Zacharias, 2003). It was found that data-driverkd@rwas more successful
thanab initio docking (77% vs. 65% success rate). Comparedigccthrent work and
others, the main difference in this study is théeaf ATTRACT has on docking
performance. For example, Schneider and Zacha2@k2j compared their results to
CPORT prediction data-driven docking aaldl initio docking both using HADDOCK,
which achieved 41% and 15% success rates, resplgctihe prediction performance is
more significant using both ATTRACT docking apprbas compared to CPORT-
driven orab initio HADDOCK docking. This is because input predicti@straints are
applied as force field weights to bias samplinghe predicted region on a protein’s
surface, while also permitting other surface regito be sampled (Schneider and
Zacharias, 2012). In contrast, HADDOCK data-drigexcking sampling is exclusive to
the region of interest, and can produce incorresults if the prediction data are
completely incorrect. In another study, Li and K#n&2012) used the CPORT interface
predictor with a different docking method, PI-LZerd analyze their approach on
Benchmark 2.0 (de Vries and Bonvin, 2011a; Venkasmaet al, 2009). PIl-LZerD
allows more flexible sampling (unlike HADDOCK) bgmpling around prediction data
defined on two input proteins’ surfaces. ComparedCPORT-HADDOCK, their
approach’s success rate was better (24.6% vs. }58B8th ATTRACT and PI-LZerD
are more sampling tolerant and would be usefulpi@yain future work to extend this
study using all Benchmark 4.0 complexgivanget al, 2010). It is anticipated that
prediction performance would improve for most cases to their sampling efficiency.
This would also be true when combining predictioatad with other sources of

experimental data.

The field of interface prediction is growing rapidlJpon the conclusion of this work,
future research directions were identified to inyer@and extend this field of interface

prediction. For example, current predictors areighesl on the basis that protein
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interactions have negligible conformation changkeictvis reflected in the training and
testing datasets used to develop them. This isalveays the case as some protein
interfaces are difficult to predict because of hggimformational change upon complex
formation. Correctly predicted interface residuedheir unbound forms would be far
apart, where it would not be apparent that theypaogimal interface residues. Further
studies are required to address this. For instamstarting point would be to generate
conformational ‘snap shots’ of a protein (ex. fravtolecular Dynamics) to allow
ensemble interface prediction (e.g., via PROTIN_&)d merge their results (or
provide conformational prediction ‘snap shots’)determine if proximity associations
exist between predicted residues. Another problenthe lack of standardization in
terms of training and testing datasets and interfasidue definitions. Most predictors
utilize different interface definitions and devetoental datasets, when reporting their
predictors’ performance evaluation (ex. specificisgnsitivity, etc.). This makes it
unsuitable to compare their reported performantesay forward is to create standard
non-redundant transient protein datasets basedatasets reported in previous work.
The standard datasets can be categorized basedolmgidal functionality of the
transient complexes and the number of known intemacpartners per protein to
determine all possible interface residues fromRKXS residue group.

Another way of improving interface predictors woué the incorporation of more
useful interface residue predictive features. Swagnal, (2012) have shown that
interface residues of transient proteins with thedst B-factors were mostly interface
core residues, indicating their rigidity. Additidlya interface core residues were
observed to be significantly more rigid than ROSidees. To compute the rigidness of
surface residues, they applied a normalized baceklBfactor measure. This interface
residue predictive feature can be combined witlerstimplemented in current interface
predictors to improve interface prediction qualitising their approach is advantageous
as the predictive data is derived from unboundgdnstunlike the approach Ghunget
al., (2006) who in contrasitilized B-factor data derived from bound modeikjch can
introduce bias in terms of ‘inflated’ predictor femance (see section 1.9.Zhe novel
features introduced in this work and recent studigggest that practical application of
such features has the potential to boost predicpenformance. An important
achievement has recently been made in a recent ptudished after the completion of

this current work. Segurat al, (2011) used multiple sources of interface piacic
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features (ex. structural, sequence, and energydpasedevelop a predictor. This
predictor produced ROC area under the curve valllsEC) of 0.85 on Benchmark 3.0
(excluding antibody-antigen complexes) (Segetral, 2011). This indicates the benefit
of applying many heterogeneous predictive featimasterface prediction. While the
AUC cannot be meaningfully compared to PROTIN_IBYC value due to differing
protein complexes in their datasets and interfagfenitions used, it is not surprising
that the predictor of Segurat al, (2011) produced a high AUC due to multiple
heterogeneous interface residue predictive featoeesy implemented. As such, these
heterogeneous features would be beneficial in éutlavelopment of PROTIN_ID and
other predictors to improve their prediction penfi@nce. Another dimension to enhance
and improve interface predictors would be to addomponent based on known
homologous protein complexese( protein complex-level predictive feature) and use
the data as an interface predictive feature in ¢oation with other heterogeneous
interface residue predictive features. Indeed ustngctural data was shown to improve
prediction performance in a recent study (ateal, 2011a). Such new and improved
interface predictors would be useful especiallyhieir combination with experimental

data in the application of high-throughput dockiagpredicting protein complexes.
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Appendix

Table A-1: The advantages (green) and disadvantages (rededictors for categories regarding training andinngsdatasets and predictor
performances on these datasets predictor are shdwash (-) indicates no information could be oh¢ai. A category not applicable for a

predictor is indicated as ‘N/A’.
Developmental
dataizgstiﬂg;::IUdlng Developmental Ssz?giftli(\:/litt))///a:rd Ino_iependent . Ino_iependent i Specifi(_:i_ty_ and
. Transient only or dataset: transient accuracy testing qlataset. testing datasgt. sensitivity
Predictor mixed proteins bound or | performance % transient, transient proteins performance %
(obligate/permanent unbound? (developmental _obhgate, or bound O[, (Independent testing
and transient) testing dataset) mixed complexes unbound? dataset)
complexes
ET-
Mihaleket al,
2004, N/A N/A N/A N/A N/A N/A
Litchargeet
al., 1996a
SHARPE*-
Murakami
and Jones, Specificity: >70
2006; Jones Sensitivity: - N/A N/A N/A
and Thornton,
1997a
Landgrafet ObI|g§te complexes N/A N/A N/A N/A
al., (2001) | Transient complexe
Specificity: 61.4
Sensitivity: 38
Cons-PPISP e
Chen and ggﬁg:gaiy 22 (8 NMR proteins)
Zhou (2005) Y: Specificity: 69
Sensitivity: 47
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Fariselliet al,
(2002)

ISIS-
Ofran and
Rost (2006,
2003)

ProMate-
Neuvirthet
al., (2004)

Crescende
Chelliahet
al., (2006)

Koike and
Takagi (2004)

Keil et al,
(2004)

PPI-Pred-

Bradford and

Westhead
(2005)

Subset of dataset:
Obligate (114
proteins)

Specificity: 72
Sensitivity: 56

N/A N/A

N/A

Specificity: ~61
Sensitivity: 20

N/A N/A

N/A

Specificity:> 50

Sensitivity:> 20

both for 67% of
dataset

N/A N/A

N/A

Specificity: > 50

for 85% of dataset

N/A N/A

N/A

Specificity: 56.1
Sensitivity: 44.6

N/A N/A

N/A

Specificity: N/A
Sensitivity: 44

N/A N/A

Specificity: > 50

Sensitivity:> 20

both for 76% of
dataset

N/A

Subset of dataset:
Transient (66
proteins)

Specificity:> 50

Sensitivity:> 20

both for 82% of
dataset

Specificity: > 50

Sensitivity:> 20

both for 72% of
dataset

Specificity:> 50
Sensitivity:> 20
both for 65% of
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Sensitivity:> 20

both for 53% of
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Bordner and
Abagyan
(2005)

Bradford and
Westhead
(2006)

Subset of dataset:

Obligate (114
proteins)

dataset

Specificity: 34
Sensitivity: 64

Specificity:> 50

Sensitivity:> 20

both for 82% of
dataset

Subset of dataset:

Transient (66
proteins)

Specificity:> 50

Sensitivity:> 20

both for 84% of
dataset

Hoskinset al.,
(2006)

Chunget al,
(2006)

Wanget al,
(2006)

Specificity:> 50

Sensitivity:> 20

both for 79% of
dataset

N/A

Specificity: 22
Sensitivity: 67

N/A

N/A

Specificity: > 50

for 79% protein

interfaces in the
dataset

N/A

N/A

N/A

Specificity: 50
Sensitivity: 67.3

N/A

N/A

N/A

Specificity: 49.7
Sensitivity: 66.3

N/A

N/A

N/A
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PINUP-
Lianget al,
(2006)

Specificity: 44.5
Sensitivity: 42.2

WHISCY-
de Vrieset
al., (2006)

Specificity: 33
Sensitivity: 30

Specificity: 29.4
Sensitivity: 30.5

SPPIDER-
Porollo and
Meller (2007)

Specificity: 67
Sensitivity: 52.7

Specificity: 40.8
Sensitivity: 26.7

Specificity: 47
Sensitivity: 43

HotPatch-
Pettitet al.,
(2007)

Specificity:> 33
Sensitivity: -

Specificity: 63.7
Sensitivity: 60.3

Specificity:> 33
Sensitivity: -

Specificity: 60
Sensitivity: 50

N/A

PIER- Subset of dataset:

Specificity: 65.5

Kufarevaet (average)
al, (2007) | Permanent (552 Sensitivity: 58
proteins) (average)
Subset of dataset: Spg\:/'gf:g; 9
Transient (196 Sensitivity: 50
proteins) (average)

Specificity: 61.8
Sensitivity: 50
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Sensitivity: 80

both for 82% of
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Konc and
Jane
(2007)

Specificity: ~ 42
Sensitivity: ~ 46.6

N/A

N/A

N/A

Negi and
Braun (2007)

Accuracy: ~ 70

N/A

N/A

N/A
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Table A-2: The advantages (green) and disadvantages (redg¢dicfors for categories based on dataset essefdigbredictor training, the use

of structural and/or sequence predictive featuoegfedictor development, miscellaneous detaild, @vailability of a predictor webserver or

download for each interface residue predictor adécated. A dash (-) indicates no information cooddobtained. A category not applicable for
a predictor is indicated as ‘N/A’.

. ROS residue
. . Antibody-
Biological or X removal hmarki Sequence b
_ crystal antigen during Benchmarking and/or ' Webserver or
Predictor . (Ab/Ag) L . to other Miscellaneous download
packing . > training (with . Structural .
. . interaction predictors available
interaction ; Cross- data usage
exclusions o
validation)
ET-
Mihalek et al,
2004, - N/A N/A
Litchargeet
al., 1996a
SHARPE?-
Murakami and
Jones, 2006;
Jones and
Thornton,
1997a

Landgrafet al,
(2001)

Cons-PPISP
Chen and Zho
(2005)

Fariselliet al,
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(2002)

ISIS-
Ofran and Rost
(2007, 2003)

ProMate-
Neuvirthet al,
(2004)

Crescendo
Chelliahet al,
(2006; 2004)

Koike and
Takagi (2004)

Keil et al,
(2004)
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PPI-Pred-
Bradford and
Westhead
(2005)

Bordner and
Abagyan
(2005)

Bradford and
Westhead
(2006)

Hoskinset al.,
(2006)

Chunget al,
(2006)

Wanget al,
(2006)

PINUP-
Lianget al,
(2006)
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WHISCY-
de Vrieset al,
(2006)

SPPIDER-
Porollo and
Meller (2007)

HotPatch-
Pettitet al.,
(2007)

PIER-
Kufarevaet al,
(2007)
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Konc and
JaneZi (2007)

N/A

InterProSurf-
Negi and
Braun (2007)

N/A

N/A

N/A
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Table A-3: The limitations (red) of interface residue predistare indicated. These are addressed in this ¢tegysection 1.11 for details). A
category not applicable for a predictor is indidads ‘N/A’.

Conservation data source:
Multiple sequence alignment

Predictor (MSA) or PSI-BLAST
PSSM
ET-
Mihalek et al, 2004; MSA
Litchargeet al, 1996a
SHARPE*
Murakami and Jones, N/A
2006; Jones and
Thornton, 1997a
MSA

Langrafet al, (2001)

Cons-PPISP
Chen and Zhou (2005

(PPISP, Zhou and
Shan, 2001)

PSI-BLAST PSSM

Fariselliet al., (2002)

MSA (HSSP sequence profil

Explicit sequence data editing
heuristic generated MSA vs.
automatically generated
MSA: A comparison by
systematic analysis of
transient proteins (hetero-
complexes)

N/A

208

Interface residue
prediction data
clustering vs. non-
residue clustering:
A comparison by
systematic analysis|
of unbound
transient proteins
(hetero-complexes)

N/A

Application of interface

prediction and
experimental (NMR)
data-driven protein-
protein docking?

N/A




ISIS-
Ofran and Rost (2006 PSI-BLAST PSSM
2003)

ProMate-Neuvirthet

al., (2004) PSI-BLAST PSSM

Crescende
Chelliahet al, (2006; MSA
2004)

Koike and Takagi

(2004) PSI-BLAST PSSM

Keil et al, (2004) N/A

PPI-Pred-
Bradford and MSA
Westhead (2005)

Bordner and Abagyan

(2005) MSA
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Bradford and
Westhead (2006)

MSA

Hoskinset al, (2006)

N/A

Chunget al, (2006)

MSAS™ and PSI-BLAST
PSSM

Wanget al, (2006)

MSA and MSA (HSSP
sequence profile)

PINUP-
Lianget al, (2006)

PSI-BLAST PSSM

WHISCY-
de Vrieset al, (2006)

MSA (HSSP)

SPPIDER-
Porollo and Meller
(2007)

MSA and PSI-BLAST PSSM
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HotPatch-

Pettitet al, (2007) N/A N/A
KufarevZIeEtz[, (2007) N/A N/A

Konc(ggg 7J)ane«ii N/A /A
Negi and Braun (2007 N/A N/A
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Table A-4

Non- .
editing Elem.g .
. heuristic: | Top-20 hit score
heuristic: . .
Complex unrefined refined fractlonal
MSA difference
MSA (Top-20 hit (Atop-20)
(Top-20 hit op-20
score)
score)

1E6E_A:B_r 0 0 0
1E6E_A:B_| 0.3 0.6 0.3
1EWY_A:C_r 0.2 0.25 0.05

1EWY_A:C_| 0.3 0.3 0
208V_A:B_r 0.1 0 -0.1
208V_A:B_| 0.6 0.65 0.05
2PCC_AB r 0.15 0 -0.15

2PCC_A:B_| 0.25 0.25 0

7CEl_AB_r 0.2 0.2 0
7CEl_A:B_| 0.1 0.05 -0.05
1B6C_A:B_r 0.2 0.3 0.1
1B6C_A:B_| 0 0.05 0.05

1BUH_A:B_r 0.05 0.05 0
1BUH_A:B_| 0.4 0.35 -0.05
1E96 _A:B_r 0.1 0 -0.1
1E96_A:B_| 0.3 0.45 0.15
1FQJ_AB_r 0.2 0.15 -0.05
1FQJ_A:B_| 0.3 0.75 0.45

1GLA_G:F_r 0 0 0
1GLA_G:F | 0.1 0.25 0.15
1GPW_A:B_r 0.3 0.25 -0.05

1GPW_A:B | 0.55 0.55 0

1K74_A:D_r 0.5 0.5 0
1K74_A:D | 0.4 0.15 -0.25
1KTZ_A:B_r 0 0.1 0.1
1KTZ_A:B_| 0 0.5 0.5
1QA9_A:B_r 0.15 0.1 -0.05
1QA9_A:B_| 0.05 0.15 0.1
1S1Q_A:B_r 0.3 0.15 -0.15
151Q_A:B_| 0.35 0.4 0.05
1XD3_A:B r 0.15 0.6 0.45
1XD3_A:B | 0.7 0.55 -0.15
1ZOK_A:B_r 0.35 0.45 0.1
1Z0K_A:B_| 0.4 0.45 0.05
1Z5Y_D:E_r 0 0.45 0.45
1Z5Y_D:E_| 0.2 0.45 0.25

1ZHI_A:B_r 0.05 0.05 0
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2HQS_A:H_r 0.1 0.2 0.1
2HQS_A:H_| 0.25 0.7 0.45
200B_A:B_r 0.05 0.25 0.2
200B_A:B_| 0.3 0.4 0.1
1M10_A:B_r 0 0.25 0.25
1M10_A:B_| 0.25 0.05 0.2
INW9_B:A_r 0.15 0.1 -0.05
INW9_B:A _| 0.5 0.25 -0.25
1GRN_A:B_r 0.5 0.6 0.1
1GRN_A:B_| 0.3 0.55 0.25
1HES_B:A_r 0.25 0.25 0
1HES_B:A_| 0 0 0
1WQl_R:G_r 0.6 0.6 0
1WQ1_R:G_| 0.9 0.9 0
1XQS_A:C_r 0.05 0.65 0.6
1XQS_A:C_| 0 0.05 0.05
2CFH_A:C_r 0.1 0.45 0.35
2CFH_A:C_| 0.1 0 0.1
2HRK_A:B_r 0.3 0.3 0
2HRK_A:B_| 0.1 0.35 0.25
2NZ8_AB r 0.5 0.6 0.1
2NZ8_A:B_| 0.25 0.65 0.4
1FQ1_AB r 0.1 0.15 0.05
1FQ1_A:B_| 0.1 0.4 0.3
1BKD_R:S_r 0.6 0.55 -0.05
1BKD_R:S_| 0 0.5 0.5
1IRA_Y:X_r 0.15 0.05 0.1
1IRA_Y:X_| 0.35 0.2 -0.15
1JMO_A:H_r 0.1 0.05 -0.05
1JMO_A:H_| 0.1 0.45 0.35
1R8S_A:E_r 0.55 0.55 0
1R8S_A:E_| 0.6 0.85 0.25
20T3_B:A_r 0.15 0.5 0.35
20T3_B:A_| 0.45 0.5 0.05
1GXG_A:C_r 0 0 0
1GXG_A:C_| 0.25 0.1 -0.15
10C0_A:B_r 0 0.05 0.05
10C0_A:B_| 0.4 0.5 0.1
2J0T_A:D_r 0.15 0.5 0.35
2J0T_A:D_| 0.2 0.35 0.15
1FFW_A:B_r 0.1 0.1 0
1FFW_A:B_| 0.35 0.55 0.2
1H9D A:B r 0.1 0 0.1
1H9D_A:B_| 0.45 0.5 0.05
1PVH_A:B_r 0 0 0
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1PVH_A:B_| 0.05 0.15 0.1
1ZHH_A:B_r 0.05 0.05 0
1ZHH_A:B_| 0.2 0.15 -0.05
2AST _AB_r 0.15 0.2 0.05
2A5T_A:B_| 0.05 0.2 0.15
2FJU_B:A_r 0 0 0
2FJU_B:A_| 0.35 0.35 0
LIW_P:l_r 0.3 0.2 -0.1
1IW_P:1_| 0.05 0.3 0.25
1MQ8_A:B_r 0 0.15 0.15
1MQ8_A:B_| 0 0.25 0.25
1R6Q_A:C_r 0.35 0.4 0.05
1R6Q_A:C_| 0.15 0.3 0.15
1SYX_A:B_r 0.25 0.4 0.15
1SYX_A:B_| 0.45 0.45 0
2AYO AB r 0.1 0.55 0.45
2AYO_A:B_| 0.55 0.75 0.2
2J7P_A:D_r 0.45 0.45 0
2J7P_A:D_| 0.15 0.45 0.3
3CPH_G:A_r 0.25 0.45 0.2
3CPH_G:A_| 0.2 0.65 0.45
1F6M_A:C_r 0.1 0.25 0.15
1F6M_A:C_| 0.55 0.5 -0.05
203B_AB r 0.2 0.45 0.25
203B_AB | 0.45 0.45 0
1JK9_B:A_r 0.55 0.65 0.1
1JK9_B:A_| 0.4 0.45 0.05
219B_E:A_r 0.15 0.15 0
219B_E:A_| 0.15 0.3 0.15
1GGR_A:B_r 0.05 0.3 0.25
1GGR_A:B_| 0.35 0.45 0.1
1J6T_AB r 0.1 0.45 0.35
1J6T_A:B_| 0.35 0.45 0.1
102F_AB r 0 0.25 0.25
102F_A:B_| 0.3 0.55 0.25
1P9D_S:U_r 0.35 0.65 0.3
1P9D_S:U_| 0.65 0.65 0
1UR6_A:B_r 0.05 0.2 0.15
1UR6_A:B_| 0.6 0.6 0
3EZA_AB_r 0 0 0
3EZA_A:B_| 0.55 0.65 0.1
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Table A-5: Overview ofthe intra-species binary protein complexes of Bematk4.0.

Complex function Complex Receptor Ligand
Enzyme/electrlon transport 1E6E AB Adrenoxin Adrenoxin
protein — reductase
Enzyme/electrlon transport 1EWY A:C Ferredoxin Eerredoxin
protein reductase
Enzyme/electr_on transport 208V _AB PAPS Thioredoxin
protein reductase
Enzyme/electr_on transport 2PCC_AB Cyt_C Cytochrome C
protein peroxidase
Enzyme/enzyme inhibitor _ Colicin E7 Im7 immunity
. 7CEI_AB :
protein — nuclease protein
FKBP
Receptor inhibitor/Receptor 1B6C_A:B  binding TGFbeta receptor
protein
Enzyme/enzyme regulatory | 4 p 1 aA-g | CDK2 kinase Ckshs1
protein
Components of the enzyme ) ,
complex NADPH oxidase 1E96_A:B Rac GTPase p67 Phox
Signal transducer protein/Signal . i
transducer inhibitor protein 1FQJ_A:B Gt-alpha RGS9
Enzyme/Non-competitive _ Glycerol Glucose specific
L 1GLA G:F : :
enzyme inhibitor — Kinase phosphocarrier
Molecular blenzy_me complex’s 1GPW AB | HISF protein Amidotransferase
subunits HISH
Hetero-dimeric receptors of
transcriptional factor complex| 1K74_AB:DE| RXR-alpha PPAR-gamma
ARF6
Cytoque (signalling) 1KTZ_AB TGF-beta TGF-beta receptar
protein/Receptor
Receptor/ligand interaction 1QA9 AB CD2 CD58
Protein transport complex 1S1Q_A:B  UEV domain Uliigu
Enzyme/Enzyme substrate 1XD3 A:B UCH-L3 Ubiquitin
Protein transport enzyme 170K AB Rab4A Rggigmpg
(PTE)/PTE effector protein - GTPase
Rabenosyn
Electrc_)n transport 175Y DE N-term of E.coli C(_:MG
protein/enzyme — DsbD protein
Chromatin silencing proteins 1ZHI_AB BAH domain | Sir Orc-lnte_ractlon
of Orcl domain
Maintenance of t_)acter_lal outer 2HQS AH TolB Pal
membrane integrity
Ubquitin-binding enzyme Ubiquitin
(UBE) /Ubiquitin (promoter of| 200B_A:B i qase Ubiquitin
protein dimerization of UBE 9
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and hence UBE biological
activity)

Cause reduction in platelet \Von
velocity at vascular damaged ) Willebrand Glycoprotein IB-
: : 1M10_A:B
areas and are important in - Factor dom. alpha
haemostasis and thrombosis Al
Enzymefenzyme inhibitor |y B:A | Capase-9 BIR3-XIAP
protein
Enzyme/enzyme activating 1GRN_AB * CDC42 CDCA42 GAP
protein GTPase
Enzyme activating 1HE8_B:A | RasGTPas¢  PIP3kinase
protein/activated enzyme
Enzyme/enzyme regulatory | 4\ -G +| Ras GTPas¢ Ras GAP
protein (inactivates enzyme)
Protein chaperone
(PC)/Nucleotide exchange . Hsp70 ATPase
protein which inhibits PC IXQS_AC HspBP1 domain
nucleotide affinity
Core sub-complex component of
the transport protein particle| 2CFH_A:C BET3 TPC6
(TRAPP) complex
Components of the aminoacyl- Glutamyl-t- ) :
tRNA synthetase (aaRS) protein2HRK_A:B RNA C.;U.4 nuclelg
binding protein
complex synthetase
Enzyme/enyme activator protejn
(activates the enzyme by the . DH/PH domain of
exchange of bound GDP for 2NZ8_AB Rac GTPass TRIO
GTP)
Enzyme/enzyme inhibitor | 4 -1 A-g | cDK2 kinase  CDK inhibitor 3

(inactivates enzyme)
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Enzyme/enzyme

Cystein protease

)

hibitor 1PXV_A:.C Cystein protease inhibitor
Enzyme/ Nucleotide
exchange protein
(allows nucleotide 1BKD_R:S Ras GTPase Son of Sevenless
exchange for the
enzyme)
e ecer
(inhibits II-1 by binding 1IRA_Y:X Interleukin-1 receptor| receptor antagonlst
protein
to the receptor)
Thrgmbln protease 1IJMO_A:HL Heparin cofactor Thrombin
inhibitor/Protease
GTP-binding protein
(enzyme)/guanine- | 4 pac A p Arfl GTPase Sec 7 domain
nucleotide exchange
factor
GTP-binding protein
(enzyme)/nucleotide | 20T3_B:A Rab21 GTPase Rabex-5 VPS¢
exchange factor
Enz.ym_e/_enzyme 1GXD_A:C proMMP2 type IV Met'allqp_rotelnase
inhibitor collagenase inhibitor 2
Protein (PAI-1)/ PAI-1 ) .
activator protein (causes Plasminogen activatof Vltronectm
o R 10CO0_A:B S Somatomedin B
fibrinolysis inhibition inhibitor-1 domain
when PAI-1 is active)
Enzyme/enzyme ) MMP1 Intersitial Metalloproteinase
AT 2J0T_A:D e
inhibitor collagenase inhibitor 1
Sensory signal
transmission proteins , . . .
(chemoreceptors to the 1FFW_A:B Chemotaxis protein | Chemotaxis proteir]
CheY CheA
flagellar motors
transmission)
Components of
heterodimeric Runx1 domain of Dimerisation
transcription factor 1H9D_A:B domain of CBF-
J CBFal
known as core binding beta
factors
Receptor/receptor 1PVH AB IL6 receptor beta chain Leukemia
protein (cytokine) = D2-D3 domains inhibitory factor
Signal transduction
proteins in the quorum : - Autoinducer 2
sensing communication Autoinducer 2-binding
. . , _ . : ) sensor
process: periplasmic| 1ZHH_A:B periplasmic protein .
. kinase/phosphatas
receptor/ inner LuxP
LuxQ
membrane sensor
protein 217
Components of NMDA AT AB NMDA receptor R1- NMDA receptor
(N-methyl-D-aspartate — 4A subunit ligand- R2A subunit




receptor

binding core

ligand-binding co

Participate in signalling
cascade: Enzyme/

Protein activator of 2FJU_AB Phospolipase beta 2 Rac GTPase
enzyme
Enz.ym_e/_enzyme 1JIW_P:l Alkallne. Proteinase inhibitor
inhibitor - metalloproteinase
Intercellular. adhesion 1MQS_A'B ICAM-1 domain 1-2 Integrin g-L I
proteins domain
Enzyme/activity , Clp protease
modulator of the 1R6Q_A:C Clp protease subunit adaptor protein
ClpA
enzyme ClpS
. CD2 receptor
Comp_onents of the 1SYX_AB SpllceosomaI_US 15 binding protein 2
spliceosome kDa protein
C-ter fragment
Deubiquitinating _ Ubiquitin carboxyl- N
enzyme/ubiquitin 2AYO_AB terminal hydrolase 14 Ubiquitin
GTPases sub-units of]
the.S|gnaI recognl'tlon 2J7P_AD SRP GTPase Efh Cell C!IVISIOI‘]
particle co-translational protein FtsY
targeting complex
Rab small
GTPase/GDP/GTP _ Ras-related protein Rab GDP-
. 3CPH_AG dissociation
exchange reaction Sec4 inhibitor

regulator of Rab

Redox reaction proteins

protein 1F6M_A:C | Thioredoxin reductase Thioredoxin 1

Enz_ym_e/_enzyme 203B_AB NucA nuclease Nu_|A r_1u_c|ease

inhibitor inhibitor

Metallochaperone

(trafficking factors),
which dellvers_copper 1JK9_A:B | CCS metallochaperone SOD_l superoxide
co-factor to activate the dismutase
enzyme (i.e.
apoenzyme)

Receptor/recentor Urokinase Urokinase-type
ptorirecep 219B_A:E | plasminogen activatof plasminogen
protein )

surface receptor activator
Signal transduction
proteins involved in the
phosphoenolpyruvate Glucose-specific Phosphocarrier
sugar 1GGR phosphotransferase :
protein HPr
phosphotransferase enzyme IIA component
system (PTS) signal
transduction pathway
Signal transduction
proteins involved in the PTS system mannitol Phosphocarrier
phosphoenolpyruvate 1J6T specific EIICBA P!
protein HPr
sugar component
phosphotransferase
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system (PTS) signal
transduction pathway

Signal transduction
proteins involved in the
phosphoenolpyruvate

Glucose-specific

PTS system

sugar 102F phosphotransferase| glucose-specific
phosphotransferase enzyme IIA component EIICB component
system (PTS) signal
transduction pathway
Proteosomal 26S proteasome nont UV excision repair
subunit/modulator of 1P9D ATPase regulatory protein RAD23
subunit subunit 4 homolog A
Proteins involved in the Ubiquitin-conjugating CCRA".N.OT
S 1URG6 transcription
ubiquitination pathway enzyme E2 D2 :
complex subunit 4
Signal transduction
proteins involved in the
phosphoenolpyruvate Phosphoenqlpyruvate- Phosphocarrier
sugar 3EZA protein rotein HPr
phosphotransferase phosphotransferase P

system (PTS) signal
transduction pathway
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Table A-6: PROTIN ID default

Total

Complex TP FP Cluster Interface Surface | Total Cluster | Cluster TP FP Specificity | Accuracy F- MCC
count | count | count res only res| Surface | TP_frac | FP_frac | rate rate measure

1A00_AB_r 0 10 10 12 76 88 0.00 1.00 0.0p 0.13 00.0 0.75 0.00 -0.14
1A00_A:B_| 8 7 15 14 43 57 0.53 0.47 0.57 0.16 0.53 0.77 0.55 0.40
1BRS_AD_r 3 7 10 20 66 86 0.30 0.70 0.15 0.11 0.30 0.72 0.20 0.06
1BRS AD || 13 5 18 16 51 67 0.72 0.28 0.81 0.10 0.72 0.88 0.76 0.69
2PTC_E:l_r 8 3 11 20 124 144 0.73 0.27 0.40 0.02 0.73 0.90 0.52 0.49
2PTC_E:l_| 10 10 20 13 35 48 0.50 0.5Q 0.77 0.29 500. 0.73 0.61 0.44
1FIN_AB_r 0 5 5 41 160 201 0.00 1.00 0.00 0.03 0.00 0.77 0.00 -0.08
1FIN_A:B_| 5 0 27 131 158 1.00 0.00 0.19 0.00 1.00 0.86 0.31 0.40
1SPB_S:P_r 4 1 5 33 129 162 0.8d 0.2 0.12 0.p1 0 0.8 0.81 0.21 0.26
1SPB_S:P_| 5 13 18 17 42 59 0.28 0.71 0.29 0.31 8 0.2 0.58 0.29 -0.02
1E6E_AB_r 0 7 7 26 279 305 0.00 1.00 0.00 0.03 0.00 0.89 0.00 -0.05
1E6E_A:B_| 12 4 16 24 55 79 0.75 0.25 0.50 0.q7 50.7 0.80 0.60 0.49
1EWY_A.C_r 4 6 10 18 177 195 0.40 0.60 0.22 0.03 400. 0.90 0.29 0.25
1EWY_A.C | 3 7 10 16 56 72 0.30 0.70 0.19 0.18 0.30 0.72 0.23 0.08
7CEI_AB_r 0 12 12 19 52 71 0.00 1.00 0.00 0.23 0.00 0.56 0.00 -0.27
7CEI_AB_| 0 8 8 17 81 98 0.00 1.00 0.00 0.10 0.00 0.74 0.00 -0.14
2PCC_AB_r 0 5 5 15 177 192 0.00 1.00 0.00 0.03 00.0 0.90 0.00 -0.05
2PCC_AB_I 1 4 5 16 63 79 0.20 0.80 0.06 0.06 0.200 0.76 0.10 0.00
1GLA G:F r 0 4 4 15 250 265 0.00 1.00 0.00 0.02 00.0 0.93 0.00 -0.03
1GLA_G:F_| 2 5 7 16 82 98 0.29 0.71 0.18 0.06 0.29 0.81 0.17 0.09
1IWQ1 R:G_r 11 5 16 27 86 113 0.69 0.31 0.41 0.06 69 0. 0.81 0.51 0.43
1IWQ1_R:G_I 10 0 10 32 182 214 1.00 0.0( 0.31 0.00 .001 0.90 0.48 0.53
1FQ1 AB r 2 5 7 16 179 195 0.29 0.71 0.13 0.03 90.2 0.90 0.17 0.14
1FQ1_AB_I 7 4 11 19 93 112 0.64 0.36 0.37 0.04 0.64 0.86 0.47 0.41
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1BXI_AB_r

10

10

18

78

96

0.00

1.00

0.0

D

0.1

00.0

0.71

0.00

-0.16

1BXI_AB_|

21

45

66

0.88

0.13

0.33

0.02

0.88

0.77

0.48

0.44
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Table A-7: CCRXP

Complex TP FP Cluster Total Surface Total Cluster Cluster TP FP Specificity | Accuracy F- MCC
count| count| count | Interface _re§ only res | Surface| TP_frac FP_frac rate rate measure

1A00_AB_r 0 5 5 12 76 88 0.00 1.00 0.00 0.07 0.00 0.81 0.00 | -0.10
1A00_AB_| 9 3 12 14 43 57 0.75 0.25 0.64 0.07 0.75 0.86 0.69 0.61
1BRS_AD r 0 7 7 20 66 86 0.00 1.00 0.00 0.11 0.00 0.69 0.00 | -0.16
1BRS_A:D_| 2 1 3 16 51 67 0.67 0.33 0.13 0.02 0.67 0.78 0.21 0.22
2PTC_E:lr 18 33 51 20 124 144 0.35 0.65 0.90 0.27 0.35 0.76 0.51 0.46
2PTC_E:l_I 7 2 9 13 35 48 0.78 0.22 0.54 0.06 0.78 0.83 0.64 0.55
1FIN_AB_r 18 36 54 41 160 201 0.33 0.67 0.44 0.23 0.33 0.71 0.38 0.19
1FIN_A:B_| 0 9 9 27 131 158 0.00 1.00 0.00 0.07 0.00 0.77 0.00 | -0.11
1SPB_S:P_r| 11 9 20 33 129 162 0.55 0.45 0.33 0.07 0.55 0.81 0.42 0.32
1SPB_S:P_| 3 5 8 17 42 59 0.38 0.63 0.18 0.12 0.38 0.68 0.24 0.08
1E6E_AB_r 1 10 11 26 279 305 0.09 0.91 0.04 0.04 0.09 0.89 0.05 0.00
1E6E_AB_| 4 13 17 24 55 79 0.24 0.76 0.17 0.24 0.24 0.58 0.20 | -0.08
1IEWY_AC r| 1 16 17 18 177 195 0.06 0.94 0.06 0.09 0.06 0.83 0.06 | -0.04
1IEWY_AC 1| 11 10 21 16 56 72 0.52 0.48 0.69 0.18 0.52 0.79 0.59 0.47
7CEl_AB_r 5 1 6 19 52 71 0.83 0.17 0.26 0.02 0.83 0.79 0.40 0.39
7CEI_A:B_| 0 4 4 17 81 98 0.00 1.00 0.00 0.05 0.00 0.79 0.00 | -0.09
2PCC_ ABr| O 7 7 15 177 192 0.00 1.00 0.00 0.04 0.00 0.89 0.00 | -0.06
2PCC_AB_| 1 10 11 16 63 79 0.09 0.91 0.06 0.16 0.09 0.68 0.07 | -0.11
1GLA G:F r 0 194 194 15 250 265 0.00 1.00 0.00 0.78 0.00 0.21 0.00 | -0.40
1GLA _G:F_| 4 10 14 16 82 98 0.29 0.71 0.25 0.12 0.29 0.78 0.27 0.14
1IWQ1_R:G_r| 19 39 58 27 86 113 0.33 0.67 0.70 0.45 0.33 0.58 0.45 0.21
1WQ1 R:G_I| 3 3 6 32 182 214 0.50 0.50 0.09 0.02 0.50 0.85 0.16 0.17
1FQ1_AB r| 14 38 52 16 179 195 0.27 0.73 0.88 0.21 0.27 0.79 0.41 0.41
1FQ1_AB_| 0 5 5 19 93 112 0.00 1.00 0.00 0.05 0.00 0.79 0.00 | -0.10
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1BXI_AB_r

18

78

96

0.00

1.00

0.00

0.08

0.00

0.75

0.00

-0.12

1BXI_AB_|

21

45

66

0.83

0.17

0.24

0.02

0.83

0.74

0.37

0.35
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Table A-8: WHISCY default

Complex TP FP Cluster Total Surface Total Cluster Cluster TP FP Specificity | Accuracy F- MCC
count| count| count | Interface _re§ only res | Surface| TP_frac FP_frac rate rate measure
1A00_AB_r 0 13 13 12 76 88 0.00 1.00 0.0p 0.17 00.0 0.72 0.00 -0.17
1A00_AB_| 1 1 2 14 43 57 0.50 0.50 0.07 0.0p 0.50 0.75 0.13 0.11
1BRS_AD r 2 1 3 20 66 86 0.67 0.33 0.1p 0.02 0.67 0.78 0.17 0.20
1BRS_A:D_| 7 0 7 16 51 67 1.00 0.00 0.44 0.90 1.00 0.87 0.61 0.61
2PTC_E:lr 6 2 8 20 124 144 0.75 0.25 0.30 0.02 50.7 0.89 0.43 0.43
2PTC_E:l_I 1 1 2 13 35 48 0.50 0.50 0.08 0.03 0.50 0.73 0.13 0.11
1FIN_AB_r 14 24 38 41 160 201 0.37 0.63 0.34 0.15 0.37 0.75 0.35 0.20
1FIN_A:B_| 12 13 25 27 131 158 0.48 0.52 0.44 0.10 0.48 0.82 0.46 0.36
1SPB_S:P_r 5 1 6 33 129 162 0.83 0.17 0.15 001 308 0.82 0.26 0.31
1SPB_S:P_| 5 0 5 17 42 59 1.00 0.00 0.29 0.00 1.00 0.80 0.45 0.48
1E6E_AB_r 11 29 40 26 279 305 0.28 0.73 0.42 0.10 0.28 0.86 0.33 0.26
1E6E_AB_| 16 5 21 24 55 79 0.76 0.24 0.6[7 0.09 60.7 0.84 0.71 0.60
1IEWY_A.C r 8 18 26 18 177 195 0.31 0.69 0.44 0.10 .310 0.86 0.36 0.29
1EWY_A.C | 6 5 11 16 56 72 0.55 0.45 0.38 0.09 0.5 0.79 0.44 0.33
7CEl_AB_r 1 1 2 19 52 71 0.50 0.50 0.05 0.02 0.50 0.73 0.10 0.09
7CEI_A:B_| 0 2 2 17 81 98 0.00 1.00 0.00 0.0p 0.0 o0.81 0.00 -0.07
2PCC_AB r 0 10 10 15 177 192 0.00 1.00 0.00 0.06 .000 0.87 0.00 -0.07
2PCC_AB_| 3 11 14 16 63 79 0.21 0.79 0.19 0.17 10.2 0.70 0.20 0.01
1GLA G:F r 0 7 7 15 250 265 0.00 1.00 0.00 0.03 00.0 0.92 0.00 -0.04
1GLA _G:F_| 6 2 8 16 82 98 0.75 0.25 0.38 0.02 0.7 0.88 0.50 0.47
1IWQ1_R:G_r 6 3 9 27 86 113 0.67 0.33 0.22 0.03 0.6y 0.79 0.33 0.30
1WQ1 _R:G_| 18 7 25 32 182 214 0.72 0.28 0.56 0.04 .720 0.90 0.63 0.58
1IFQ1_AB r 7 27 34 16 179 195 0.21 0.79 0.44 0.15 .210 0.82 0.28 0.21
1FQ1_AB_| 2 4 6 19 93 112 0.33 0.67 0.1 0.04 0.33 0.81 0.16 0.10
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Table A-9: PROTIN ID HSSP

Complex TP FP Cluster Total Surface Total Cluster Cluster TP FP Specificity | Accuracy F- MCC
count| count| count | Interface _re§ only res | Surface| TP_frac FP_frac rate rate measure
1A00_AB_r 0 10 10 12 76 88 0.00 1.00 0.0p 0.13 00.0 0.75 0.00 -0.14
1A00_AB_| 8 4 12 14 43 57 0.67 0.33 0.57 0.09 0.67 0.82 0.62 0.51
1BRS_AD r 5 4 9 20 66 86 0.56 0.44 0.2b 0.06 0.56 0.78 0.34 0.26
1BRS_A:D_| 11 5 16 16 51 67 0.69 0.31 0.69 0.10 90.6 0.85 0.69 0.59
2PTC_E:lr 8 1 9 20 124 144 0.89 0.11 0.40 0.01 90.8/ 0.91 0.55 0.56
2PTC_E:l_I 5 14 19 13 34 47 0.26 0.74 0.38 0.41 60.2 0.53 0.31 -0.02
1FIN_AB_r 0 10 10 41 160 201 0.00 1.00 0.00 0.06 .000 0.75 0.00 -0.172
1FIN_A:B_| 0 5 5 27 131 158 0.00 1.00 0.00 0.04 00.0 0.80 0.00 -0.08
1SPB_S:P_r 4 2 6 33 129 162 0.67 0.33 0.12 0,02 70868 081 0.21 0.23
1SPB_S:P_| 4 14 18 17 42 59 0.22 0.78 0.24 0.3 202 054 0.23 -0.10
1E6E_AB_r 0 7 7 26 279 305 0.00 1.00 0.00 0.03 00.0 0.89 0.00 -0.05
1E6E_AB_| 12 4 16 24 55 79 0.75 0.25 0.50 0.07 50.7 0.80 0.60 0.49
1IEWY_A.C r 0 10 10 18 177 195 0.00 1.00 0.00 0.06 .000 0.86 0.00 -0.07
1EWY_A.C | 2 7 9 16 57 73 0.22 0.78 0.13 0.1p 0.22 0.71 0.16 0.00
7CEl_AB_r 0 12 12 19 52 71 0.00 1.00 0.0p 0.23 00.0 0.56 0.00 -0.27
7CEI_A:B_| 0 4 4 17 81 98 0.00 1.00 0.00 0.0 0.0 0.79 0.00 -0.09
2PCC_AB r 0 8 8 15 178 193 0.00 1.00 0.90 0.04 00.0f 0.88 0.00 -0.06
2PCC_AB_| 2 11 13 16 65 81 0.15 0.85 0.13 0.17 50.1 0.69 0.14 -0.05
1GLA G:F r 0 3 3 15 251 266 0.00 1.00 0.00 0.01 00.0 0.93 0.00 -0.03
1GLA _G:F_| 2 6 8 16 82 98 0.25 0.75 0.13 0.07 0.2 0.80 0.17 0.07
1IWQ1_R:G_r 9 3 12 27 86 113 0.75 0.25 0.33 0.03 50.7] 0.81 0.46 0.41
1WQ1 _R:G_| 11 0 11 32 182 214 1.00 0.00 0.34 0.00 .001 0.90 0.51 0.56
1IFQ1_AB r 0 16 16 16 179 195 0.00 1.00 0.90 0.09 .000 0.84 0.00 -0.09
1FQ1_AB_| 6 5 11 19 93 112 0.55 0.45 0.3 0.05 50.5 0.84 0.40 0.33
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Table A-10: WHICSY UniRef90

Complex TP FP Cluster Total Surface | Total Cluster Cluster TP FP Specificity | Accuracy F- MCC
count | count count | Interface_req only_res| Surface| TP_frac FP_frac rate rate measure
1A00_AB_r 1 15 16 12 76 88 0.06 0.94 0.08 0.20 60.0 0.70 0.07 -0.10
1A00_AB_| 0 0 0 14 43 57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1BRS_AD r 1 2 3 20 66 86 0.33 0.67 0.0b 0.03 0.33 0.76 0.09 0.05
1BRS_A:D_| 8 0 8 16 51 67 1.00 0.00 0.5p 0.90 1.00 0.88 0.67 0.66
2PTC_E:lr 6 1 7 20 124 144 0.86 0.14 0.30 0.01 60.8/ 0.90 0.44 0.47
2PTC_E:l_I 0 0 0 13 35 48 0.00 0.00 0.0p 0.90 0.00 0.00 0.00 0.00
1FIN_AB_r 11 23 34 41 160 201 0.32 0.68 0.27 0.14 0.32 0.74 0.29 0.13
1FIN_A:B_| 12 19 31 27 131 158 0.39 0.61 0.44 0.15 0.39 0.78 0.41 0.28
1SPB_S:P_r 4 2 6 33 129 162 0.67 0.33 0.12 0,02 708 081 0.21 0.23
1SPB_S:P_| 3 0 3 17 42 59 1.00 0.00 0.18 0.00 1.00 0.76 0.30 0.36
1E6E_AB_r 10 36 46 26 279 305 0.22 0.78 0.38 0.13 0.22 0.83 0.28 0.20
1E6E_AB_| 17 6 23 24 55 79 0.74 0.26 0.7 0.11 40.7 0.84 0.72 0.61
1IEWY_A.C r 8 18 26 18 177 195 0.31 0.69 0.44 0.10 .310 0.86 0.36 0.29
1EWY_A.C | 4 4 16 56 72 0.50 0.50 0.2% 0.0/7 0.50 0.78 0.33 0.24
7CEl_AB_r 1 19 52 71 0.50 0.50 0.05 0.02 0.50 0.73 0.10 0.09
7CEI_A:B_| 0 17 81 98 0.00 1.00 0.00 0.01 0.0 0.82 0.00 -0.05
2PCC_AB r 1 15 16 15 177 192 0.06 0.94 0.07 0.08 .060 0.85 0.06 -0.07
2PCC_AB_| 3 10 13 16 63 79 0.23 0.77 0.19 0.16 30.2 0.71 0.21 0.03
1GLA G:F r 0 15 15 15 250 265 0.00 1.00 0.0 0.06 .000 0.89 0.00 -0.06
1GLA _G:F_| 8 3 11 16 82 98 0.73 0.27 0.5p 0.04 0.73 0.89 0.59 0.54
1IWQ1_R:G_r 15 8 23 27 86 113 0.65 0.35 0.56 0.09 650. 0.82 0.60 0.49
1WQ1 _R:G_| 17 4 21 32 182 214 0.81 0.19 0.53 0.02 .810 0.91 0.64 0.61
1IFQ1_AB r 6 26 32 16 179 195 0.19 0.81 0.38 0.15 .190 0.82 0.25 0.17
1FQ1_AB_| 6 8 19 93 112 0.25 0.75 0.1 0.06 0.25 0.79 0.15 0.06
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