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“To be uncertain is to be uncomfortable, but to be certain is to be 

ridiculous.” 

 

-Chinese proverb 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Abstract 

 

Mathematical models in ecology and evolution are highly simplified 

representations of a complex underlying reality. For this reason, there is 

always a high degree of uncertainty with regards to the model 

specification—not just in terms of parameters, but also in the form taken by 

the model equations themselves. This uncertainty becomes critical for 

models in which the use of two different functions fitting the same dataset 

can yield substantially different model predictions—a property known as 

structural sensitivity. In this case, even if the model is purely deterministic, 

the uncertainty in the model functions carries through into uncertainty in the 

model predictions, and new frameworks are required to tackle this 

fundamental problem. Here, we construct a framework that uses partially 

specified models: ODE models in which unknown functions are represented 

not by a specific functional form, but by an entire data range and constraints 

of biological realism. Partially specified models can be used to rigorously 

detect when models are structurally sensitive in their predictions concerning 

the character of an equilibrium point by projecting the data range into a 

generalised bifurcation space formed of equilibrium values and derivatives 

of any unspecified functions. The key question of how to carry out this 

projection is a serious mathematical challenge and an obstacle to the use of 

partially specified models. We address this challenge by developing several 

powerful techniques to perform such a projection.  
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Chapter 1 

 

Introduction 

 

Mathematical models of biological systems based on differential equations often have the 

troublesome property of structural sensitivity—in which the use of two functional forms 

that are quantitatively close and qualitatively similar yields contradictory dynamical 

behaviour (Myerscough et al., 1996; Wood and Thomas, 1999; Cordoleani et al., 2011). 

Perhaps the best introduction to structural sensitivity would be by way of an example–a 

particularly striking example of structural sensitivity in a biological model was provided 

by Fussmann and Blasius (2005). In this paper they considered three different equations 

for the functional response term— the per-capita feeding rate of the predator as a function 

of prey density—in a Rosenzweig-MacArthur predator-prey model (this model is shown 

and discussed later on, in Section 3.3 of this thesis). The three functional forms 

considered were 

𝑓(𝑥) =
𝑎1𝑥

1 + 𝑏1𝑥
,                                                               (1.1) 

𝑓(𝑥) = 𝑎2tanh(𝑏2𝑥),                                                      (1.2) 

𝑓(𝑥) = 𝑎3(1 − exp(−𝑏3𝑥)),                                         (1.3) 

called the Monod, hyperbolic tangent, and Ivlev functional responses, respectively. 

Crucially, (1.1), (1.2) and (1.3) are qualitatively similar, and their parameters were 

chosen so that they all took close values, as can be seen from their graphs in Fig. 1.1. 

Nevertheless, when used in the Rosenzweig-MacArthur model, they were found to yield 

completely different model predictions, as is shown by the predicted time series in Figure 

1.2. Use of the hyperbolic tangent function (1.2), shown in red, gives us a stable 

equilibrium. Use of the Ivlev function (1.3) on the other hand, shown in black, exhibits 

low amplitude oscillations. Most strikingly, use of the Monod function, as shown in blue, 

yields oscillations with a huge amplitude, with the prey population dropping to 

dangerously low levels that would lead to its extinction in the real world. Notably, such 

sensitivity can be observed around a wide range of parameters—not solely in the vicinity 

of a bifurcation. 
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Figure 1.1: Graphs of three different Holling-type II functional responses. The Monod 

function (1.1) is shown in blue, the hyperbolic tangent function (1.2) is shown in red and 

the Ivlev function (1.3) is shown in black. Figure originally from (Fussmann and Blasius, 

2005). 

 

 

Figure 1.2: Structural sensitivity in the Rosenzweig-MacArthur predator-prey model. 

Simulated time-series data for the prey species in the Rosenzweig-MacArthur model with 

the three different functional responses shown in Fig. 1.1. 

 

Models are particularly vulnerable to structural sensitivity when we cannot derive 

or justify their constituent functions. This is especially the case in biological models, 

because biological processes have a high level of complexity, involving huge numbers of 

diverse and heterogeneous individuals interacting across wildly differing spatial and 

temporal scales in a fluctuating environment. For this reason, any mathematical function 
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used in the biological sciences is necessarily a highly simplified representation of the 

process it is intended to represent, and so cannot be justified a priori. 

Indeed, even if a particular choice of functional representation is supported by 

experiments on populations at a laboratory scale, there is no reason the same 

representation should be valid after aggregating over a heterogeneous population and 

scaling up to the size of real ecosystems (Chesson, 1998 ; Poggiale, 1998; Pascual et al., 

2001; Englund and Leonardsson, 2008; Morozov et al., 2008; Morozov, 2010). Consider, 

for instance, the famous Monod equation used to describe the feeding rate of a 

consumer/predator, which has a concrete theoretical basis in ecology (Holling, 1966; 

Jeschke et al., 2002; Begon et al., 2002). Since we often deal with the dynamics of a 

population, and not of an individual, we need to use the averaged response over the entire 

population of consumers, so even in the case where the consumption of each individual 

is described exactly by a Monod formulation, averaging this non-linear function over the 

whole population can result in a different mathematical expression.  

Another factor which can potentially cause variation in the underlying model 

functions is evolution of the life traits of animals, which can take place over a relatively 

short period of time (Thompson, 1998; Duffy and Sivars-Becker, 2007; Kinnison and 

Hairston, 2007). Finally, to describe species interactions in a real ecosystem, we need to 

take into account other important factors such as feeding history, complex feeding 

behaviour, adaptation to food and even short term evolution (Yoshida et al., 2003; 

Morozov, 2012). Including each of these factors can also seriously alter the well-known 

Monod formulation, and clearly the same can hold true for any other functional relation 

such as a closure term, growth rate, etc. 

The fact that we cannot justify our precise functions in dynamical systems would 

seem to have been previously addressed in investigations of structural stability 

(Kuznetsov, 2004). Structural stability, however, is not particularly relevant in biology: 

a system is structurally stable if for some sufficiently small 𝜀 all perturbations of 

magnitude less than 𝜀 preserve the topological dynamics of the system, while on the other 

hand, most biological data is quite noisy and cannot be measured to an arbitrary degree 

of accuracy. In fact, in most experiments and observations we are unable to distinguish 

between close functions which differ from each other by less than 5-10% (Canale et al., 

1973; Halbach and Halbach-Keup, 1974; DeMott, 1982; Hansen et al., 1990; Wood and 

Nisbet, 1991; Jost and Ellner, 2000; Morozov et al., 2008). Since we can’t take our 

perturbations to be sufficiently small, we should rather ask whether our model predictions 



4 

 

are consistent for all perturbations within a small but finite magnitude determined a priori 

from the accuracy of our data. Structural sensitivity takes this into account by admitting 

all perturbations within a finite, predetermined magnitude 𝜀, which is taken from the 

accuracy of available data.  

Generally, although structural sensitivity is fairly well acknowledged, the 

conventional way to assess the possibility of errors in model predictions consists of 

checking the sensitivity of the results to variation in the model parameters (Lim et al., 

1989; Janssen et al., 1996; Bendoricchio and Jorgensen, 2001) by carrying out a standard 

bifurcation analysis on models (e.g. Bazykin, 1998; Berezovskaya et al., 2001; Kooi and 

Boer, 2001). The sensitivity in the system can be quantified in this way by finding the 

distance, in parameter space, to the nearest bifurcation hypersurface—which is the 

smallest parameter perturbation that can alter the qualitative dynamics of the system. 

Provided that a particular choice of the constituent model functions is well justified, or 

that considering different mathematical parameterizations does not influence the general 

model behaviour, such an approach is valid. In the case where we cannot justify our 

model functions, however, this approach is inadequate to check for and deal with 

structural sensitivity, because models have been shown to be highly sensitive to the 

formulation of model functions whilst remaining robust with respect to parameter 

perturbations (Fussmann and Blasius, 2005; Cao et al., 2008; Cordoleani et al., 2011). 

Indeed, mathematically speaking, checking sensitivity in this way with a 

particular choice of function which has 𝑝 parameters amounts to considering only an 

arbitrary 𝑝-dimensional (at most) subset of the infinite-dimensional space of potential 

model functions. Therefore the approach of varying parameters of a fixed model function 

amounts to exploring an arbitrary, co-dimension infinity, subset of the space of valid 

model functions, so we shouldn’t be surprised that it is incomplete. For this reason, we 

should aim to develop frameworks for detecting structural sensitivity, and carrying out 

bifurcation analysis, in which the uncertainty in model specifications is not ignored, but 

is instead carried through our analysis. 

We can achieve this, and explicitly include the uncertainty in model functions by 

considering partially specified models (Wood, 2001; Adamson and Morozov, 2012a, 

2014a, 2014b). In such models, we leave unknown functions unspecified apart from 

requiring that they satisfy some qualitative criteria inherited from the biological problem 

being modelled—we may require a function to be increasing, for instance, or to pass 
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through the origin, etc. This approach is based on similar ideas to the seminal works of 

Gause and Kolmogorov as early as the 1930s (Gause, 1934, Kolmogorov, 1936). Many 

properties of models are locally determined, such as the number and stability of 

equilibrium points, and it is quite easy to deal with such properties in partially specified 

models. For example, near an equilibrium point the system behaviour is solely 

determined by the value of the equilibrium density and the local values of the unknown 

functions and their derivatives at this point (Kuznetsov, 2004). We can then treat these 

values as independent parameters and construct a generalised bifurcation diagram in this 

new parameter space.  

Construction of a generalised bifurcation diagram in a generalised parameter 

space consisting of local function derivatives etc. is also the basis of the approach known 

as ‘Generalized modelling’ (Gross and Feudel, 2006; Kuehn et al. 2012). In this way, 

possible dynamics of a system can be explored independently of functional forms. 

Generalized modelling can be linked with data by considering a transformation of model 

functions in which the Jacobian depends not on the derivatives of unspecified functions 

at the equilibrium, but on the ‘elasticities’, which can theoretically be measured from 

data. However, all the resulting parameters still need to be measured at equilibrium states, 

and obtaining these measurements can be impossible in the case of an unstable 

equilibrium. There is also the potential issue with this approach that the model is only 

linked with data obtained at a single population density. 

An alternative way to link models with unspecified functions and data is to limit 

our choice of model functions to those functions which stay within a certain possible 

range of data points—given by upper and lower bounds between which any valid 

functions must pass. These upper and lower bounds could be constructed by fitting a 

particular function to data, and allowing all functions which pass within a given distance 

𝜀 of this fitted function, where 𝜀 is given by the error in the data. We can also restrict our 

model functions qualitatively so that they are biologically reasonable—we may have 

reason to demand them to be positive, or increasing, for instance. In order to detect 

sensitivity in this way we should consider all valid perturbations of the model functions—

even though this set is in general infinitely dimensional. However, consider the case 

where we can determine, for any set of values in the generalised bifurcation space, 

whether or not there is a valid function taking these values. If we can do this, we can map 

out the entire closed region of the generalised bifurcation space corresponding to 

qualitatively appropriate functions that remain between our error bounds. In this way, we 
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can project the entire set of valid model functions into the generalised bifurcation space, 

and detect structural sensitivity by exploring the entire range of possible model behaviour 

admitted by valid functions. Therefore, finding such a projection is extremely powerful, 

and is the main mathematical question addressed in this thesis. 

The thesis is organised as follows. In Chapter 2, we shall introduce precise 

definitions of structural sensitivity of dynamical systems, discuss its relation to the 

property of structural stability, and compare and contrast several different metrics of 

dynamical systems, and their usefulness (or otherwise) when detecting and quantifying 

structural sensitivity in biological systems. In Chapter 3, we shall introduce a general 

approach to using partially specified models to detect and quantify structural sensitivity 

in biological systems by considering the example of structural sensitivity in a 

Rosenzweig-MacArthur predator-prey model. Here we shall introduce the idea of 

projecting the set of valid functions into the generalised bifurcation space using geometric 

arguments, and provide theorems to do this in two cases. In Chapter 4, we shall extend 

the theorems stated in Chapter 3, and provide a more general theorem that allows us to 

obtain this projection in the case we are considering an unknown function with 𝑛 

inflection points. We shall then apply this theorem to several more complicated systems 

from the literature. Finally, in Chapter 5, we shall consider the implications of structural 

sensitivity for bifurcation analysis—when we have uncertainty in our model functions, 

the resulting uncertainty in the model dynamics means that we no longer have concrete 

bifurcations. Instead, we should carry the uncertainty through our analysis by performing 

probabilistic bifurcation analysis. We shall illustrate this by performing such an analysis 

- we shall calculate the probability of having a supercritical or a subcritical Hopf 

bifurcation in a ratio-dependent predator-prey model with an unknown prey growth 

function.  
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Chapter 2 

 

Definitions of structural sensitivity and appropriate 

metrics of dynamics systems 

 

This chapter is based on parts of the paper (Adamson and Morozov, 2014a) 

 

In this chapter, we shall introduce the general concept of structural sensitivity of ODE-

based models, and then consider several definitions of structural sensitivity based on 

different metrics of dynamical systems, and discuss the strengths and shortcomings of 

each when applied to the problem of dealing with uncertainty in biological models with 

respect to both theory and experimental data. 

 

2.1   General definition of structural sensitivity 

 

To better understand the formal concept of structural sensitivity, it is essential to recall 

the definition of the related property of structural stability. We use the definition provided 

in the seminal book by Kuznetsov (2004): 

 

Definition 2.1 (Andronov’s structural stability) 

Consider a continuous-time system 

𝑥̇ = 𝑓(𝑥),      𝑥 ∈ ℝ𝑛,                                                   (2.1) 

with smooth 𝑓, a closed region Ω ⊂ ℝ𝑛. Further, let us consider a certain metric 𝑑𝑀 on 

the space of 𝐶1 functions on Ω. System (2.1) is structurally stable in a region Ω0 ⊂ Ω if 

there exists some 𝜀 > 0 such that for any system 

𝑥̇ = 𝑔(𝑥),      𝑥 ∈ ℝ𝑛,                                                  (2.2) 

such that 𝑑𝑀(𝑓, 𝑔) < 𝜀, there are regions 𝑈, 𝑉 ⊂ Ω, Ω0 ⊂ 𝑈  such that (2.2) in 𝑈 is 

topologically equivalent to (2.1) in 𝑉.  
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Recall (see Kuznetsov, 2004) that two systems are topologically equivalent  if 

there is a continuous bijection with continuous inverse (homeomorphism) which maps 

the orbits of one system to those of the other whilst preserving the direction of time. 

Now we define the closely related property of structural sensitivity as follows. 

Our general definition is largely based on the one provided in Cordoleani et al. (2011), 

with the important distinction that we ignore deformation of attractors with basins of 

measure zero:  

 

Definition 2.2 (Structural sensitivity) 

Let us consider system (2.1) together with two positive real numbers 𝜎 and 𝜀, and a closed 

region Ω ⊂ ℝ𝑛. Further, let us consider a certain metric 𝑑𝑀 on the space of 𝐶1 functions 

on Ω. We denote by 𝐵𝜀(𝑓) the set of functions 𝑔 such that 𝑑𝑀(𝑓, 𝑔) < 𝜀 over Ω. For a 

given initial condition 𝑥 ∈ ℝ𝑛, and function 𝑔 ∈ 𝐵𝜀(𝑓), we denote by 𝜔(𝑥) its 𝜔-limit 

in model (2.1) and by 𝜔𝑔(𝑥) its 𝜔-limit in the model 

𝑥̇ = 𝑔(𝑥),      𝑥 ∈ ℝ𝑛.                                              (2.3) 

We say that (2.1) is 𝜀-structurally 𝜎-sensitive in Ω0 ⊂ Ω if there exists 𝑔 ∈

𝐵𝜀(𝑓) such that one of the following conditions is fulfilled: 

(i) (2.3) is not structurally stable over Ω0; 

(ii) there exists a set 𝑋 ⊆ ℝ𝑛 of positive measure, such that given any initial 

condition 𝑥0 ∈ 𝑋, then for all 𝑥 ∈ Ω0 satisfying 𝜔(𝑥0) = 𝜔(𝑥), we have 

𝑑𝐻 (𝜔(𝑥),𝜔𝑔(𝑥)) ≥ 𝜎, where 𝑑𝐻 is the Hausdorff distance. 

 

In other words, (2.1) is structurally sensitive if there is either a structurally 

unstable model in the vicinity of (2.1), or if a small size perturbation of (2.1) can 

sufficiently deform at least one attractor of the resulting model (2.3). The values 𝜀 and 𝜎 

are parameters which can be interpreted as the accuracy of available data and the desired 

tolerance of our model predictions, respectively (see Cordoleani et al. 2011 for details). 

We should emphasize again the differences between structural sensitivity and structural 

instability. Condition (i) is similar to structural instability, but there is an important 

difference: the term sufficiently 𝐶1-close in the definition of structural stability. For 

structural sensitivity we consider every system within the fixed distance, 𝜀. With regard 

to part (ii) of Defn. 2.2., we note that it may be of interest to consider the case when 

transient dynamics differ by a sufficiently large distance, instead of just attractors, in 
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which case we would need to modify Defn. 2.2 (ii) to consider deformation of the orbits 

of a positive-measure set across the entire time interval. We shall not consider such a 

modification here for the sake of brevity. 

In this thesis, we shall only consider structural sensitivity with respect to the 

qualitative dynamics of models. Therefore, we shall not consider part (ii) of Definition 

2.2, and it is helpful to define the following: 

 

Definition 2.3 (Qualitative structural sensitivity) 

 

Consider system (2.1) together with a positive real number 𝜀 and a closed region Ω ⊂

ℝ𝑛. Further, let us consider a certain metric 𝑑𝑀 on the space of 𝐶1 functions on Ω, (with 

acceptable model functions potentially being restricted to comply with prior theoretical 

knowledge—as discussed along with the possible choices of such a metric in Section 

2.2). We denote by 𝐵𝜀(𝑓) the set of functions 𝑔 such that 𝑑𝑀(𝑓, 𝑔) < 𝜀 over Ω.  

We say that (2.1) is qualitatively 𝜀-structurally sensitive in Ω0 ⊂ Ω if there exists 

𝑔 ∈ 𝐵𝜀(𝑓) such that the model 

𝑥̇ = 𝑔(𝑥),      𝑥 ∈ ℝ𝑛                                                   (2.4) 

 is not structurally stable over Ω0. 

 

2.2 Specific definitions of structural sensitivity 

 

We have introduced the general definition of structural sensitivity, but in practice there 

are several particular definitions arising from this general definition: the metric 𝑑𝑀 used 

in Definitions 2.1-2.3 is unspecified, and choosing various metrics will determine 

different types of structural sensitivity. In dynamical systems theory, the most commonly 

found such metric is the following (or some variation thereof), taken from Kuznetsov 

(2004) or any other fundamental manuals: 

 

Definition 2.4 (𝑪𝟏-distance)  

Consider two continuous-time systems 

𝑥̇ = 𝒇(𝑥),      𝑥 ∈ ℝ𝑛,                                                   (2.5) 

and 𝑥̇ = 𝒈(𝑥),      𝑥 ∈ ℝ𝑛,                                                  (2.6) 
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where 𝒇, 𝒈:ℝ𝑛 → ℝ𝑛 are 𝐶1 functions. The 𝐶1-distance between (2.5) and (2.6) over a 

closed, bounded, region Ω ⊂ ℝ𝑛 is the positive number given by 

𝑑1 ≔ sup𝑥∈Ω{‖𝒇(𝑥) − 𝒈(𝑥)‖ + ‖𝐷𝒇(𝑥) − 𝐷𝒈(𝑥)‖} 

where ‖𝒇(𝑥) − 𝒈(𝑥)‖ denotes a vector norm over ℝ𝑛 and ‖𝐷𝒇(𝑥) − 𝐷𝒈(𝑥)‖ denotes a 

matrix norm over ℝ𝑛. 𝐷𝒇(𝑥) is the Jacobian matrix of 𝒇. 

 

In a large number of biological models, 𝒇 and 𝒈 in (2.5) and (2.6) are composed 

of linear combinations of potentially non-linear model functions, some of which have 

parameterisations we are certain of, through theoretical reasoning or established laws etc. 

In such a situation, it makes little sense to consider a distance over the space of all 

systems, but only those systems which fix the model functions we are sure of:  

 

Definition 2.5 (Fixed function 𝑪𝟏-distance) 

Consider two continuous-time systems 

                𝑥̇ = 𝑮(𝑔1(𝑥),… , 𝑔𝑚(𝑥), ℎ1(𝑥),… , ℎ𝑝(𝑥)) ,      𝑥 ∈ ℝ𝑛,          (2.7) 

         and 𝑥̇ = 𝑮 (𝑔1(𝑥),… , 𝑔𝑚(𝑥), ℎ̃1(𝑥),… , ℎ̃𝑝(𝑥)) ,      𝑥 ∈ ℝ𝑛,          (2.8) 

where 𝑮:ℝ𝑚+𝑝 → ℝ𝑛 is linear and 𝑔1, … , 𝑔𝑚, ℎ1, … , ℎ𝑝, ℎ̃1, … , ℎ̃𝑝 ∈ 𝐶1(ℝ𝑛). The fixed 

function 𝐶1-distance between (2.7) and (2.8) over a closed, bounded, region Ω ⊂ ℝ𝑛 is 

the C1-distance between them over Ω i.e. the fixed function 𝐶1-distance is the 𝐶1-distance 

defined only on systems with the model functions 𝑔1, … , 𝑔𝑚 fixed. 

 

In many practical cases when the exact formulation of a model function is 

unknown, we have no information regarding the derivatives of the unknown functions. 

All the information we have is given by data points from experiments. In such a case, use 

of a 𝐶1-metric may be impractical, and we may wish to use the following metrics: 

 

Definition 2.6 (Absolute 𝒅𝑸-distance)  

Consider two continuous-time systems 

                 𝑥̇ = 𝑮(𝑔1(𝑥),… , 𝑔𝑚(𝑥), ℎ1(𝑥),… , ℎ𝑝(𝑥)) ,      𝑥 ∈ ℝ𝑛,          (2.9) 

and 𝑥̇ = 𝑮 (𝑔1(𝑥),… , 𝑔𝑚(𝑥), ℎ̃1(𝑥),… , ℎ̃𝑝(𝑥)) ,     𝑥 ∈ ℝ𝑛,        (2.10) 
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where 𝑮:ℝ𝑚+𝑝 → ℝ𝑛 is linear, 𝑔1, … , 𝑔𝑚 ∈ 𝐶1(ℝ𝑛), and {ℎ1, … , ℎ𝑝}, {ℎ̃1, … , ℎ̃𝑝} ∈ 𝑄 =

{𝑄1, … , 𝑄𝑝} where the 𝑄𝑖 ⊊ 𝐶1(ℝ𝑛) are classes of functions with Lipschitz continuous 

first derivatives with Lipschitz constant 𝐴, satisfying certain conditions. The absolute 𝑑𝑄-

distance between (2.9) and (2.10) over a closed, bounded, region Ω ⊂ ℝ𝑛 is the positive 

number given by 

𝑑𝑄 ≔ sup
𝑥∈Ω

√(ℎ1(𝑥) − ℎ̃1(𝑥))
2

+ ⋯+ (ℎ𝑝(𝑥) − ℎ̃𝑝(𝑥))
2

.         (2.11) 

Remark: It is also of interest that the system may somehow be sensitive to the choice of 

linear composition of nonlinear terms, i.e. if 𝐺 is replaced by some 𝐺̃ and the nonlinear 

terms changed accordingly. However, we can usually justify our choice of model 

composition to an extent— e.g. 𝐺 representing a breakdown of the functional operator 

into average per-capita growth rates, mortality terms, functional responses, etc. and, as 

with the use of 𝐶1-metrics, allowing variation of the linear composition makes the model 

potentially unrealistic, and any sensitivity analysis difficult to interpret. For these reasons, 

we consider this discussion to be beyond the scope of this thesis, although it should 

certainly be considered elsewhere. 

 

Definition 2.7 (Relative 𝒅𝑸-distance) 

The relative 𝑑𝑄-distance between (2.9) and (2.10) over a closed, bounded, region Ω ⊂

ℝ𝑛 is the positive number given by 

𝑑𝑄 ≔ sup
𝑥∈Ω

√
(ℎ1(𝑥) − ℎ̃1(𝑥))

2

+ ⋯+ (ℎ𝑝(𝑥) − ℎ̃𝑝(𝑥))
2

max{ℎ1(𝑥)2 + ⋯+ ℎ𝑝(𝑥)2, ℎ̃1(𝑥)2 + ⋯+ ℎ̃𝑝(𝑥)2}
.        (2.12) 

 

Note that the requirement that we only include model functions with Lipschitz 

continuous first derivatives is vital. Because in 𝐶0 metrics there are no limitations on the 

derivatives, the Jacobian matrices of two systems can be arbitrarily far apart, no matter 

how small the 𝐶0 distance between them.  This can lead to absurd behaviour such as, for 

instance, the possibility of transforming a system with a single equilibrium into one with 

a million equilibria through a perturbation of any size. Provided that we restrict ourselves 

to functions with 𝐴 as a Lipschitz constant, however, then the second derivatives will be 

contained within some interval (−𝐴, 𝐴) and the compactness of Ω ensures that any 

systems within a given 𝑑𝑄 distance of each other must have a bounded difference between 
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their first derivatives. Therefore the metrics in Defns. 2.6 and 2.7 are implicitly 𝐶1-

metrics, rather than 𝐶0 metrics as it initially seems, and they are therefore not susceptible 

to the usual problems with 𝐶0 metrics.   

Finally, in terms of practical tests for structural sensitivity, the most common 

approach (Janssen et al., 1994; Bendoricchio and Jorgensen, 2001) is to choose a fixed 

parameterisation of all model functions, and check for sensitivity to variation of 

parameters of these model functions. Such an approach uses the following notion of 

distance:  

 

Definition 2.8 (Parameter variation distance)  

Consider two continuous-time systems composed of the same parameterised function 

with different parameters: 

𝑥̇ = 𝑓(𝑥, 𝛼1, … , 𝛼𝑚), 𝑥 ∈ ℝ𝑛, 𝛼 ∈ Θ ⊂ ℝ𝑚            (2.13) 

    and 𝑥̇ = 𝑓(𝑥, 𝛼̂1, … , 𝛼̂𝑚),         𝑥 ∈ ℝ𝑛,         𝛼̂ ∈ Θ ⊂ ℝ𝑚            (2.14) 

The parameter variation distance between (2.13) and (2.14) over a closed, bounded, 

region Ω ⊂ ℝ𝑛 is the positive number given by 

𝑑4 ≔ sup
𝑥∈Ω

‖𝑓(𝑥, 𝛼1, … , 𝛼𝑚) − 𝑓(𝑥, 𝛼̂1, … , 𝛼̂𝑚)‖,                   (2.15) 

where ‖∙‖ denotes a vector norm in ℝ𝑛. 

 

2.3 Conclusions. Comparison of definitions of structural sensitivity. 

 

Given the wide range of notions of model distance to choose from, it is natural to ask 

whether there is one in particular which we should use when testing for structural 

sensitivity. The answer depends on the information we have concerning the constituent 

functions that ought to be used. By far the main approach used in the literature is based 

on Definition 2.8, i.e. considering sensitivity of model outputs to the variation of 

parameters values for fixed model functions (Janssen et al., 1994; Bendoricchio and 

Jorgensen, 2001). The main drawback of this definition is that even in fairly simple 

models, robustness of the results to variation of parameters for fixed functions does not 

indicate that the model is not sensitive to small variations of the functional forms 

themselves (Myerscough et al., 1996; Wood and Thomas, 1999; Fussmann and Blasius, 

2005; Gross et al., 2009; Cordoleani et al., 2011; Adamson and Morozov, 2012a). 
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On the other hand, in the case where we want to consider the effect of all possible 

perturbations of a given model function, the use of the 𝐶1-metric ensures that all possible 

model perturbations are considered, so no viable systems are missed. However, this can 

be rather a disadvantage in structural sensitivity investigations since the perturbations 

considered may include a large portion of models which are meaningless with respect to 

the original problem. For instance, if we have strong biological evidence that the 

mortality rate of a population increases with the population density, we should not 

consider the case where it is a decreasing function. Another drawback of the use of the 

𝐶1-metric is that in the case an investigation indicates the presence of structural 

sensitivity, the sheer scope of the systems considered makes it difficult to deduce a 

practically meaningful conclusion regarding the mechanisms through which the 

structural sensitivity takes place, whereas using other metrics, we may find which 

particular function (e.g. a growth rate term) will cause the observed sensitivity. Finally, 

use of a 𝐶1-metric necessitates prior knowledge of the first derivatives of the system, but 

obtaining an accurate estimate of derivatives from empirical data is usually impossible 

(Bendoricchio and Jorgensen, 2001), in which case a sensitivity analysis using the 𝐶1-

metric may itself be sensitive to the initial derivative functions chosen—taking us back 

to where we started. 

Our knowledge of the biological systems we are modelling is often rather limited, 

but we may have more information for some functions than others: we may know that 

certain function properties can be supported by theory, e.g. the growth rate of a population 

at zero should be zero, an increase in prey density ought to correspond to an increase (or 

at least, not a decrease) in the rate of consumption by a predator etc. Furthermore, 

experiments can be performed to provide data sets which the function should to some 

extent conform to. Aside from this, however, we cannot know anything else about such 

functions for sure.  

In this situation, let us consider use of the 𝑑𝑄-distance based on Definitions 2.6 

and 2.7—either the absolute or relative distance, depending on whether we are 

considering absolute or relative error in our data measurements. Using such definitions 

of distance, we do not need to consider all possible perturbations in the ε-neighbourhood 

of the initial model functions, but only those which will conserve the generic qualitative 

properties of those functions. Such a definition allows us to treat our models as what are 

known in the literature as ‘partially specified models’ (Wood, 2001). The properties of 
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the viable set of functions 𝑄 in Definitions 2.6 and 2.7 can be taken as those that are 

justified from theory or ‘common sense’ or, less commonly, experimental data. If we can 

then choose an initial model which fits the available data, and construct the 

neighbourhood 𝐵𝜀(𝑓; 𝑑𝑄)—with 𝜀 being derived from the accuracy of the experimental 

data, usually quite large due to the large errors present in biological data— then it will 

contain all theoretically valid models that fit the data set, and nothing more. For this 

reason, we shall consider that the definition of structural sensitivity using the 𝑑𝑄-distance 

is the most natural when modelling biological systems and shall hereon explore the 

sensitivity of models considering the 𝑑𝑄-distance only. The use of this concept of distance 

between models essentially limits us to considering models of the form (2.7). This type 

of model is known as a partially specified model, which naturally leads us to consider 

how we can use partially specified models to detect structural sensitivity. We shall now 

consider this in the next chapter. 
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Chapter 3  

 

A general approach to using partially specified models 

to detect and quantify structural sensitivity. 

 

This chapter is based on the paper (Adamson and Morozov, 2012a) 

 

3.1      Introduction 

 

The major problem with checking for structural sensitivity in models is that for a given 

mathematical formulation of any single functional dependence f we need to somehow 

check for a difference in the model outcomes for ‘all’ functions that fit our qualitative 

criteria and fit the data range.  Such a procedure may seem impossible in principle: the 

set of valid model functions will in general be infinite dimensional. For this reason, up 

until now, investigation of structural sensitivity has usually been done by choosing a few 

concrete parameterizations of f and comparing the resultant model outcomes in each case 

(e.g. Fussmann and Blasius, 2005), but clearly such a sensitivity analysis is rather 

subjective, since it strongly depends on the choice of the forms of f which are compared.  

A better approach is to explicitly include the uncertainty in model functions by 

considering partially specified models (Wood, 2001; Adamson and Morozov, 2012a). In 

such models, we leave unknown functions unspecified apart from requiring that they 

satisfy some qualitative criteria inherited from the biological problem being modelled— 

we may require a function to be increasing, for instance, or to pass through the origin, 

etc. This approach is based on similar ideas to the seminal works of Gause and 

Kolmogorov as early as the 1930s (Gause, 1934, Kolmogorov, 1936). As regards the 

analysis of such systems, many properties of models are locally determined, such as the 

number and stability of equilibrium points, and it is quite easy to deal with such properties 

in partially specified models. For example, near an equilibrium point, provided a system 

is structurally stable, the qualitative system behaviour is solely determined by the value 

of the equilibrium density and the local values of the unknown functions and their 

derivatives at this point (Kuznetsov, 2004). We can then treat these values as independent 
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parameters—called ‘generalised parameters’—and construct a bifurcation diagram in this 

new generalised parameter space. 

A crucial question, however, is how we can restrict our generalised bifurcation 

analysis to the space of qualitatively valid functions that fit our data range. In this chapter 

we shall introduce a method to do this. The crux of the method is the use of geometric 

methods to build a precise projection of the infinite dimensional space of functions 

admitted by the data into the generalised bifurcation space while respecting the global 

constraints of biological realism. This will give us a closed region in the bifurcation space 

that corresponds to the generalised parameters taken by functions that are admitted by the 

data range. Notably, this new method of structural sensitivity analysis can rigorously 

cover all possible model functions, which makes it particularly useful when modelling 

biological systems with a high degree of uncertainty. Using this principle, we can work 

in this closed region of generalised bifurcation space to quantify the uncertainty in the 

system by introducing a concept of the ‘degree’ of sensitivity.  

We demonstrate our test by using it to reveal structural sensitivity in the seminal 

Rosenzweig–MacArthur predator-prey model, with respect to variation in both the 

functional response of the predator/consumer and the per capita growth rate of the prey, 

and show why the conventional methods of structural sensitivity analysis based solely on 

variation of the parameters can be misleading in certain cases. In addition to this extensive 

example, we discuss the implementation of our test for a number of ecological models 

published previously in the literature, for which it is possible to demonstrate the existence 

of structural sensitivity. 

 

3.2 General framework 

 

We consider a biological model based on a system of autonomous ODEs given by 

𝑑𝒙

𝑑𝑡
= 𝑭(𝒙),      𝒙 ∈ Ω ⊂ ℝ𝑛,                                              (3.1) 

where the vector function 𝑭 = (𝐹1, 𝐹2, … , 𝐹𝑛) is taken to be sufficiently smooth and Ω is 

compact. Each 𝐹𝑖 is the summation of terms describing the inflow and outflow of 

biomass, energy or individuals on a different trophic level, and depends on a set of 

functions 𝑓𝑖𝑗, representing growth rates, numerical and functional responses, closure 

terms etc. 
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𝐹𝑖 = 𝐺𝑖 (𝑓𝑖1(𝒙), 𝑓𝑖2(𝒙),… , 𝑓𝑖𝑚(𝒙)).                                    (3.2) 

We assume that the mathematical formulation of some of these 𝑓𝑖𝑗  is well known 

(or postulated), and we denote these functions by 𝑔𝑖𝑗
, so that we obtain a partially 

specified model. The only potential uncertainty regarding these functions consists in the 

correct choice of their parameters. We denote by ℎ̃𝑖𝑗
 the functions whose exact 

shape/formulation is unknown, and for which we only have information on i) general 

qualitative properties such as the sign of their derivatives, whether they vanish at zero, 

the existence of any thresholds etc. and ii) some data sets which these functions should 

fit somehow. To incorporate the general qualitative properties into our model, we 

introduce the class of all functions taking these properties, 𝑄, and require that the set of 

ℎ̃𝑖𝑗
 belongs to this class. 

To obtain a concrete biological system from (3.1), we need to specify all functions 

in the model by choosing parameters in the known functions 𝑔𝑖𝑗
, and by specifying the 

parameterisation of the ℎ̃𝑖𝑗
, as well as the corresponding parameters. The resultant model 

will have a set of attractors—which can be stationary states, periodic, quasiperiodic or 

chaotic—which is determined by the choice of the functions. Here we shall focus on how 

alternative formulations of the unknown functions ℎ̃𝑖𝑗
 affect the stability of any stationary 

states in the model. 

Let us assume for now that there are p functions in the model with an unknown 

mathematical formulation, which we denote by ℎ̃1, … , ℎ̃𝑝 (dropping the ℎ̃𝑖𝑗
-notation here 

for simplicity), and there are 𝑞 known functions is the model. Firstly, to complete the 

system, we choose particular realizations of the functions ℎ̃1, … , ℎ̃𝑝 as usual, using 

empirical observation or theoretical reasoning to obtain the ‘base system’: 

𝑑𝒙

𝑑𝑡
= 𝑭 (𝑔1(𝒙),… , 𝑔𝑞(𝒙), ℎ1(𝒙),… , ℎ𝑝(𝒙)) ,      𝒙 ∈ Ω ⊂ ℝ𝑛,               (3.3) 

We shall refer to the initial choice of functions ℎ1, … , ℎ𝑝 as the base functions. 

Ideally, these functions should be fitted to data, so we shall assume this is the case, and 

that the total error bound is given by 𝜀 (if not, we can always treat 𝜀 as a parameter of the 

investigation). The question is, how sensitive are the model outcomes to the choice of 

ℎ̃1, … , ℎ̃𝑝, where these functions are taken only from the set of functions in 𝑄 that fit the 

data range determined by ℎ1, … , ℎ𝑝 and 𝜀?  
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This set of functions is precisely the ball of radius 𝜀 around the base system in the 

absolute or relative 𝑑𝑄-distance as defined in Def. 2.6 and 2.7, depending whether we’re 

considering an absolute or relative error in our data: 

𝐵𝜀𝑄
(𝒉) = {𝒇 ∈ 𝑄|𝑑𝑄(𝑓, ℎ) < 𝜀}.                                    (3.4) 

Hereon, we shall denote the neighbourhood of radius 𝜀 in either the absolute or 

relative 𝑑𝑄-distance the ‘𝜀𝑄-neighbourhood’ of the base system. We don’t distinguish 

between the two because the framework we shall develop here works similarly for both 

types of distance—with the only difference being some minor details in the proofs. 

Here we shall only consider sensitivity of systems to the existence and linear 

stability of equilibria. In the case of a given equilibrium, 𝒙0
∗, we know from the implicit 

function theorem that, provided the system is structurally stable, if we replace the 

function set 𝒉 ≔ {ℎ1, … , ℎ𝑝} in the system by some other sufficiently close function set, 

𝒉̃ ≔ {ℎ̃1, … , ℎ̃𝑝}, the new system will have a corresponding equilibrium 𝒙∗ close to 𝒙0
∗, 

and we can ask whether the stability of  the new equilibrium 𝒙∗ is altered from the stability 

of 𝒙0
∗. In the case that systems are not sufficiently close, we can check for persistence of 

the equilibrium under perturbations that are not sufficiently small by considering the 

isocline equation: 

𝑭(𝑔1(𝒙
∗),… , 𝑔𝑞(𝒙

∗), ℎ̃1(𝒙
∗),… , ℎ̃𝑝(𝒙

∗)) = 0 

and checking whether there are sets (𝒙∗, ℎ̃1(𝒙
∗),… , ℎ̃1(𝒙

∗)) satisfying this equation, 

while (ℎ̃1(𝒙
∗),… , ℎ̃𝑝(𝒙

∗)) is within the distance 𝜀 of (ℎ1(𝒙
∗), … , ℎ𝑝(𝒙

∗)).  

As far as stability goes, in a non-degenerate case, the stability of an equilibrium 

is given by the characteristic equation of the corresponding linearised system:  

 λ𝑛 + λ𝑛−1𝑅𝑛−1 + ⋯+ λ1𝑅1 + 𝑅0 = 0 ,                                  (3.5) 

where the 𝑅𝑖 (𝒙
∗ , 𝒉̃(𝒙∗ ), 𝒉̃′(𝒙∗  )) are functions that can be analytically computed based 

on the Jacobian matrix for a specified function set 𝒉̃(𝒙∗). The equilibrium 𝒙∗ is stable if 

and only if the roots of (3.5), 𝜆1, … , 𝜆𝑛, have negative real parts (Kuznetsov, 2003), and 

this gives us the condition of stability in terms of 𝒙∗, 𝒉̃(𝒙∗) and the vector of 𝑝 ∙ 𝑚 partial 

derivatives  

𝒉̃′(𝒙∗) = (
𝜕ℎ̃1

𝜕𝑥1
(𝒙∗ ), … ,

𝜕ℎ̃1

𝜕𝑥𝑚
(𝒙∗ ),

𝜕ℎ̃2

𝜕𝑥1
(𝒙∗ ), … ,

𝜕ℎ̃2

𝜕𝑥𝑚
(𝒙∗ ),

𝜕ℎ̃3

𝜕𝑥1
(𝒙∗ ), … ,

𝜕ℎ̃𝑝

𝜕𝑥𝑚
(𝒙∗ )), where 

m is the dimension of the union of the domains of the unknown functions. Although it is 
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generally impossible to solve (3.5) analytically, it is easy to do it numerically for fixed 

𝒙∗ , 𝒉̃(𝒙∗) and 𝒉̃′(𝒙∗). In particular, if n=2, we only need to check the sign of the 

determinant and trace of the Jacobian. 

In order to check for structural sensitivity in an unspecified system, it would 

initially seem that we need to test each single function set 𝒉̃ in the 𝜀𝑄-neighbourhood of 

𝒉. The space of such function sets has infinite dimension in general—even if they only 

consist of one unknown function—but we see from (3.5) that the only values given by 

the function set which determine the stability of a given fixed point 𝒙∗ are the 

(𝑛 + 𝑝 + 𝑚 ∙ 𝑝) values 𝒙∗, 𝒉̃(𝒙∗) and 𝒉̃′(𝒙∗) (recall that n is the dimension of the state 

space, p is the number of unknown functions and m is the dimension of the domain of the 

unknown function set 𝒉). Additionally, since from (3.1) 𝑭(𝒙∗) = 0 must hold if 𝒙∗ is to 

be an equilibrium, this gives us n of these values—either analytically or numerically—

provided that the others are specified. Instead of considering the functions themselves, 

we can consider the remaining (𝑝 + 𝑚 ∙ 𝑝) unknown values and proceed as follows. We 

consider the range of possible 𝒙∗ in the vicinity of 𝒙0
∗ which are the stationary states of 

the system with some 𝒉̃ from the 𝜀𝑄-neighbourhood of 𝒉, i.e.  

𝑋 = {𝒙∗ ∈ ℝ𝑛|∃ 𝒉̃ ∈ 𝑄 s. t  √(|ℎ1(𝒙∗) − ℎ̃1(𝒙∗)|)
2
+ ⋯+ (|ℎ𝑝(𝒙∗) − ℎ̃𝑝(𝒙∗)|)

2
< 𝜀} 

and 𝑭(𝒙∗) = 0,                                                            (3.6) 

where 𝐹 is the system specified by choosing the function set 𝒉. Similarly, for each 

possible 𝒙∗ ∈ 𝑋, we can then consider the range of values 𝒉̃(𝒙∗) that can be taken by 

functions 𝒉̃ in the 𝜀𝑄-neighbourhood of 𝒉, and for any permissible combination of 𝒙∗ and 

𝒉̃(𝒙∗), we can consider the range of values 𝒉̃′(𝒙∗) which can be taken by functions 𝒉̃ in 

the 𝜀𝑄-neighbourhood of 𝒉. This range will necessarily be finite, since we have chosen 

𝑄 such that its functions have second derivatives that do not exceed some range (−𝐴, 𝐴), 

so the Jacobian of the system clearly cannot vary arbitrarily. In this way, we outline 

𝑉𝜀 ≔ {(𝒙∗, 𝜼, 𝜻)|𝒙∗ ∈ 𝑋, ∃𝒉̃ ∈ 𝐵𝜀𝑄
(𝒉) s.t 𝒉̃(𝒙∗) = 𝜼, 𝒉̃′(𝒙∗) = 𝜻},         (3.7) 

This approach gives us the projection of the 𝜀𝑄-neighbourhood of 𝒉 into the 

generalised bifurcation space or (𝑋-𝐻-𝐻′) space—that is, the space with elements 

(𝒙∗, 𝜼, 𝜻)—and since we can use the characteristic equation (3.5) to verify the stability of 

𝒙∗, we can then check the entire projected neighbourhood for values which alter the 

stability of the equilibrium from that of 𝒙0
∗ in model (3.1) with the base function set  𝒉. 
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If the stability is altered for certain values of 𝒙∗, 𝜼 and 𝜻, in the projection of the 𝜀𝑄-

neighbourhood of 𝒉, we can conclude that the model exhibits structural sensitivity. 

The key advantage of this approach is that the projected 𝜀𝑄-neighbourhood of 𝒉 

in (𝑋-𝐻-𝐻′) parameter space has at most 𝑝 + 𝑚 ∙ 𝑝 dimensions, and so may be covered 

numerically, whereas the corresponding neighbourhood in function space, being infinite 

dimensional, is impossible to check numerically. The main challenge with the approach 

is determining how to actually project the correct 𝜀𝑄-neighbourhood into the generalised 

bifurcation (𝑋-𝐻-𝐻′) space, since even though the qualitative analysis is local, the 

definition of the  𝜀𝑄-neighbourhood is non-local: we require 

√(|ℎ1(𝒙) − ℎ̃1(𝒙)|)
2
+ ⋯+ (|ℎ𝑝(𝒙) − ℎ̃𝑝(𝒙)|)

2
< 𝜀 for all 𝒙 ∈ Ω, and there may be 

other global constraints in Q. We shall use some examples to illustrate how we can do 

this in the next section. 

One other issue faced by this approach is how to quantify the degree of structural 

sensitivity which is exhibited by a system. Ideally, we would like the degree of structural 

sensitivity in a system to reflect the probability that any two function sets—independently 

chosen from the 𝜀𝑄-neighbourhood at random—yield different predictions for the 

stability of the given equilibrium. In order to achieve this, we first need to choose a 

suitable probability distribution over the 𝜀𝑄-neighbourhood in the generalised bifurcation 

space in order to determine the probability of choosing a point in the stable or unstable 

region. One of the simplest approaches we can take is to assume the probability 

distribution is uniform over the projected 𝜀𝑄-neighbourhood, in which case the 

probability of selecting a function projecting to a point in a region of the projected 𝜀𝑄-

neighbourhood in generalised bifurcation space corresponding to a certain kind of 

dynamics is simply given by the proportion of its area/volume to the total area/volume of 

the projected 𝜀𝑄-neighbourhood, 𝑉𝜀.  

The next logical step in finding an improved probability distribution would be to, 

where possible, weight each point in the generalised bifurcation space by some measure 

of the density of functions which we are projecting onto this point. The problem here, 

however, is that we are dealing with a projection from an infinite dimensional function 

space into an at-most (𝑝 + 𝑚 ∙ 𝑝)-dimensional space. As a pragmatic solution to this 

difficulty, we propose a measure of the density of functions ρ, projected to a point 

(𝒙∗, 𝜼, 𝜻) in 𝑉𝜀, the projected 𝜀𝑄-neighbourhood of 𝒉, that only relies on the space Ω ×
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ℝ𝑝: we consider the area/volume of points (𝒙, 𝑦1, … , 𝑦𝑝) in Ω × ℝ𝑝 through which the 

graphs of at least one set of functions in the 𝜀𝑄-neighbourhood of 𝒉 can pass—i.e for 

which there exists some set of functions, 𝒇, in the  𝜀𝑄-neighbourhood of 𝒉 such that 

(𝒙, 𝑦1, … , 𝑦𝑝) = (𝒙, 𝑓1(𝒙), … , 𝑓𝑝(𝒙))—whilst also satisfying 𝒇(𝒙∗) = 𝜼 and 𝒇′(𝒙∗) = 𝜻. 

That is if we specify the volume 

Γ ≔ {(𝒙, 𝒚)|∃𝒇 ∈ 𝐵𝜀𝑄
(𝒉), 𝒇(𝒙) = 𝒚, 𝒇(𝒙∗) = 𝜼, 𝒇′(𝒙∗) = 𝜻}, 

then we define the functional density as 

𝜌1 ≔ ∫1
Γ

𝑑𝑉.                                                           (3.8) 

Thus, the probability of selecting a function which yields stable dynamics can be 

defined as 

                          

𝒱 =
∫ 𝜌1 𝑑𝑉
𝑉1

∫ 𝜌1 𝑑𝑉𝑉𝜀

,                                                           (3.9)                                                                                           

where V1 is the domain corresponding to linear stability, defined as  

𝑉1 ≔ {(𝒙∗, 𝜂, 𝜁) ∈ 𝑉𝜀|Re(𝜆𝑖(𝒙
∗, 𝜂, 𝜁)) < 0, 𝑖 = 1,… , 𝑛}. 

The case where the probability distribution is taken to be uniform over the 𝜀𝑄-

neighbourhood can be obtained from (3.9) by integrating a probability density 1, instead 

of 𝜌1. Once 𝒱 is computed for a given probability distribution, the probability of two 

randomly chosen functions yielding different predictions will be given by 2𝒱 ∙ (1 − 𝒱), 

since the choice is considered to be independent. This value will range from 0 (the 𝜀𝑄-

neighbourhood will consist of only stable or only unstable regions) to 0.5 (there is an 

equal probability that a function from the 𝜀𝑄-neighbourhood will predict a stable or 

unstable equilibrium), so we scale this value by two to obtain the degree of structural 

sensitivity: 

 

Definition 3.1 The degree of structural sensitivity with respect to stability of an 

equilibrium 

If 𝑉𝜀 is the total projected 𝜀𝑄-neighbourhood in the generalised bifurcation space, 𝑉1 is 

the subset of this neighbourhood for which a given equilibrium is stable, and 𝜌 is a 

probability density function on 𝑉𝜀, then the degree of structural sensitivity is defined as 

Δ ≔ 4 ∙
∫ 𝜌 𝑑𝑉
𝑉1

∫ 𝜌 𝑑𝑉
𝑉𝜀

∙ (1 −
∫ 𝜌 𝑑𝑉
𝑉1

∫ 𝜌 𝑑𝑉
𝑉𝜀

).                                    (3.10) 
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Note that the degree of sensitivity: i) will equal 0 if the measure of the stable region is  

either the measure of all the projected 𝜀𝑄-neighbourhood, or is 0; ii) has a maximum of 

1, which is attained whenever the probability of having a stable equilibrium is exactly 

1/2; iii) essentially only depends on
∫ 𝜌 𝑑𝑉
𝑉1

∫ 𝜌 𝑑𝑉
𝑉𝜀

, which is the probability of having a stable 

equilibrium; iv) will be unaltered if we replace the volume of the stable region with the 

volume of the unstable region, 𝑉2, in the calculation, since we necessarily have 

∫ 𝜌 𝑑𝑉
𝑉2

∫ 𝜌 𝑑𝑉
𝑉𝜀

= 1 −
∫ 𝜌 𝑑𝑉
𝑉1

∫ 𝜌 𝑑𝑉
𝑉𝜀

,                                                  (3.11) 

and therefore get the same degree of sensitivity whether we use the probability of a stable 

equilibrium or an unstable equilibrium, as should be expected. 

In the next section we shall show a few examples of how our investigation can be 

carried out in simple cases in which there is a single unknown function, and shall address 

the problem of finding a projection from the 𝜀𝑄-neighbourhood of a given base function 

into the generalised bifurcation space. 

 

3.3 Implementation of structural sensitivity test in models. 

 

Here we demonstrate our method by using it to reveal structural sensitivity in the classical 

Rosenzweig–MacArthur predator-prey model (Rosenzweig and MacArthur, 1963) given 

by 

𝑑𝑃

𝑑𝑡
= 𝑟̃(𝑃) ∙ 𝑃 − ℎ̃(𝑃) ∙ 𝑍 ,                                               (3.12) 

𝑑𝑍

𝑑𝑡
= 𝑘 ∙ ℎ̃(𝑃) ∙ 𝑍 − 𝑚 ∙ 𝑍 ,                                               (3.13) 

where P and Z are the densities of prey and predator respectively.  𝑟̃(𝑃) is the per capita 

growth rate of prey; ℎ̃(𝑃) is the predator functional response, 𝑘 is the trophic efficiency 

coefficient and 𝑚 is the predator mortality 

3.3.1  Investigation of structural sensitivity with respect to the functional 

response of the predator 

 

Following the work of Fussmann and Blasius (2005), who previously uncovered 

structural sensitivity in such a system, we first consider that the only unknown function 
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is ℎ̃, the functional response of the predator. In this case we consider that the prey growth 

rate is fixed as the logistic function 𝑟̃(𝑃) = 𝓇 ∙ (1 −
𝑃

𝐾
), and that the mortality term is 

constant. We obtain the function class 𝑄 by imposing the following constraints on ℎ̃: 

{

ℎ̃(0) = 0,

ℎ̃′(𝑃) > 0,

𝐴 < ℎ̃′′(𝑃) < 0.

   ∀  𝑃 ∈ [0, 𝑃max]                                        (3.14)      

which characterise a general Holling type II functional response over Ω = [0, 𝑃max] 

(Myerscough et al., 1996; Gentleman et al., 2003)—an increasing function with 

decelerating intake rate—note that the term ‘Holling type II’ is also often used to refer to 

the particular function ℎ(𝑃) =
𝑎𝑃

𝑏+𝑃
. The second derivative is bounded below by the 

parameter 𝐴 < 0 to ensure that ℎ̃ is Lipschitz continuous with |𝐴| as a Lipschitz constant. 

To test structural sensitivity of the model we consider the functions from the  𝜀𝑄-

neighbourhood of a certain base function ℎ, where the class of functions Q consists of all 

functions satisfying (3.14). Figs 3.1A and 3.1B show a standard base functional response, 

together with the upper and lower bounds of any functions within its 𝜀𝑄-neighbourhood—

using absolute and relative 𝑑𝑄-distance as defined in Definitions 2.8 and 2.9, respectively. 

The upper and lower limits of ℎ̃ in these cases are constructed by plotting the boundaries 

ℎ𝜀+ ≔ ℎ + 𝜀, ℎ𝜀− ≔ max{0, ℎ − 𝜀} and ℎ𝜀+ ≔ ℎ ∙ (1 + 𝜀), ℎ𝜀− ≔ ℎ ∙ (1 − 𝜀), 

respectively  (As with the two types of 𝜀𝑄-neighbourhood, we use ℎ𝜀+ and ℎ𝜀− to refer 

to either of boundary). The possible range of values taken by the stationary prey density 

𝑃∗ is defined by the intersection between the horizontal line 
𝑚

𝑘
 and the curves ℎ𝜀+ and 

ℎ𝜀−, which follows from considering the nontrivial predator isocline from equation 

(3.13). Clearly, for every ℎ̃, the value ℎ̃(𝑃∗) is uniquely defined in this case by  ℎ̃(𝑃∗) =

𝑚

𝑘
= const., so we do not need to consider variation of this value. Also, it is of note that 

because we only consider monotonically increasing functions, it is only possible for us 

to have one nontrivial prey equilibrium density 𝑃∗. 
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Figure 3.1.: Revealing the range of possible stationary densities 𝑃∗ for the εQ 

neighbourhood of the predator functional response ℎ̃ in model (3.12)-(3.13). The value 

of 𝑃∗ is obtained as the intersection of the functional response and the horizontal line 

ℎ̃(𝑃) =
𝑚

𝑘
. The curves ℎ𝜀± indicate the upper and the lower bounds of variation of the 

base function ℎ. (A) The 𝜀𝑄-neighbourhood based on Definition 2.6 of distance, the 

absolute difference between ℎ and its perturbations.  (B) The 𝜀𝑄-neighbourhood, based 

on the relative difference between ℎ and its perturbations, Definition 2.7. (C). The two 

base functional responses used in the analysis of model (3.12)-(3.13) given by ℎ1, the 

Monod function (3.15), and ℎ2, the hyperbolic tangent parameterization (3.16). The 

parameters in the functional responses are 𝑎1 = 3.05; 𝑏1 = 2.68 and 𝑎2 = 0.99; 𝑏2 =
1.48. The other parameters are 𝑚 = 0.1; 𝑘 = 0.3. 
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For each stationary 𝑃∗ ∈ (𝑃1, 𝑃2) there exists a range of possible derivatives, 

𝐷𝑃 ≡ ℎ̃′(𝑃∗) > 0, but clearly not all of them are feasible. Necessary and sufficient 

conditions for the existence of a function ℎ̃ in the 𝜀𝑄-neighbourhood of ℎ such that 

ℎ̃(𝑃∗) =
𝑚

𝑘
 and ℎ̃′(𝑃∗) = 𝐷𝑃 are given by the following theorem: 

 

Theorem 3.1 

There exists an infinite class of functions ℎ̃ satisfying (3.14), such that ℎ𝜀−(𝑃) <  ℎ(𝑃) <

ℎ𝜀+(𝑃)  ∀𝑃 ∈ [0, 𝑃max], ℎ̃(𝑃∗) =
𝑚

𝑘
 and ℎ̃′(𝑃∗) = 𝐷𝑃 if and only if the following 

conditions are met: 

                                         𝑈(𝑃) =
𝑚

𝑘
+ 𝐷𝑃(𝑃 − 𝑃∗) > ℎ𝜀−(𝑃), 

𝐿(𝑃) =
𝑚

𝑘
+ 𝐷𝑃(𝑃 − 𝑃∗) +

1

2
𝐴(𝑃 − 𝑃∗)2 < ℎ𝜀+(𝑃), (3.15) 

                                         𝐿(0) =  
𝑚

𝑘
− 𝑃∗ ∙ 𝐷𝑃 −

1

2
𝐴 ∙ 𝑃∗2 < 0. 

Proof  

To prove that conditions (3.15) are necessary, we first note that 𝑈(𝑃) is, by definition, 

the tangent line to any viable ℎ̃ at 𝑃 = 𝑃∗. Since from (3.14) any valid function ℎ̃ must 

be convex, it must be bounded above by this tangent line. Secondly, we note that 𝐿(𝑃) is 

the unique function satisfying 𝐿(𝑃∗) =
𝑚

𝑘
, 𝐿′(𝑃∗) = 𝐷𝑃 and 𝐿′′(𝑃) = 𝐴∀𝑃 ∈ [0, 𝑃max]. 

Since we have specified A as the lowest second derivative of any suitable functional 

response, it is easy to see—by considering any alternate second derivative—that the 

admissible functional responses are bounded below by 𝐿, we necessarily have 𝐿(𝑃) <

ℎ̃(𝑃) < 𝑈(𝑃) for any ℎ̃ satisfying (3.14) and ℎ̃(𝑃∗ ) =
𝑚

𝑘
, ℎ̃′(𝑃∗) = 𝐷𝑃. Conditions 

(3.15) are therefore clearly necessary conditions for ℎ𝜀− < ℎ̃ < ℎ𝜀+ to exist. Fig. 3.2 

illustrates an example of the tangent line and parabola which bound any function 

satisfying (3.14). To prove that (3.15) are sufficient conditions, we need to describe a 

method that can produce infinitely many such functions provided that (3.15) holds. Our 

method and a resultant function is illustrated in Fig. 3.3. For the sake of brevity, in this 

proof we loosen the constraints on ℎ̃′′ to 𝐴 ≤ ℎ̃′′(𝑃) ≤ 0, but we note that the proof 

remains valid in the case that the inequality is strict—in this case we can modify the proof 

by replacing 𝑈 and 𝐿 with 𝑈̂(𝑃) =
𝑚

𝑘
+ 𝐷𝑃 ∙ (𝑃 − 𝑃∗) +

𝛾

2
(𝑃 − 𝑃∗)2 and 𝐿̂(𝑃) =

𝑚

𝑘
+

𝐷𝑃 ∙ (𝑃 − 𝑃∗) +
1

2
(𝐴 + 𝛾)(𝑃 − 𝑃∗)2 where 0 < 𝛾 ≪ 1 is chosen to be small enough that 
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(3.15) hold for the new 𝑈̂ and 𝐿̂. Note that such a 𝛾 must exist because 𝑈̂ and 𝐿̂ are 

continuous with respect to 𝛾 and (3.15) holds for 𝛾 = 0.   

Firstly, we choose some 𝛿 such that 0 < 𝛿 < 𝜀, and (3.14) holds for ℎ𝛿− and ℎ𝛿+, 

defined in the same way as ℎ𝜀− and ℎ𝜀+. As with 𝛾, it is easy to show that such a 𝛿 must 

exist due to continuity arguments. We first define ℎ̃ over 𝑃 ∈ [0, 𝑃∗]. Starting from 𝑃 =

𝑃̃, we set ℎ̃ to be equal to the parabola of maximum curvature, ℎ̃(𝑃) = 𝐿(𝑃). At each 

point along this parabola, we consider how the tangent line changes. Initially, this tangent 

line is 𝑈, which lies above ℎ𝛿− and intersects the axis 𝑃 = 0 above the origin. For lower 

𝑃 values, this intersection decreases continuously, so there must come a point 𝑃1 from 

which the tangent line either passes through the origin without crossing ℎ𝛿− first, or must 

lie tangent to ℎ𝛿− at a lower value 𝑃2. 

 

Figure 3.2: Graphical representation of conditions (3.15). The tangent line 𝑈(𝑃) and 

parabola 𝐿(𝑃) which form the upper and lower bounds of a function ℎ̃ taking the values 

ℎ̃(𝑃∗) =
𝑚

𝑘
, ℎ̃′(𝑃∗) = 𝐷𝑃 and satisfying conditions (3.14). There will exist at least one 

such function in the 𝜀𝑄-neighbourhood of ℎ (i.e which stays between ℎ𝜀+ and ℎ𝜀−) if and 

only if 𝑈 lies above ℎ𝜀− and 𝐿 lies below ℎ𝜀+ over the whole interval (0, 𝑃max], with the 

origin being between them. 

 

Now for 𝑃 ∈ (𝑃2, 𝑃1), we set our function equal to this tangent line. If it passes 

through the origin, we are done. If instead it lies tangent to ℎ𝛿− at the point 𝑃2, we set 

~
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ℎ̃(𝑃) = ℎ𝛿−(𝑃) for values 𝑃 ∈ (𝑃3, 𝑃2), where 𝑃3 is the unique value from which the line 

tangent to ℎ𝛿− passes through 0, so for 𝑃 ∈ [0, 𝑃3) we set  ℎ̃(𝑃) equal to this tangent line. 

We note that 𝑃3 ≤ 𝑃2 necessarily: 𝑃3 > 𝑃2 is not possible because in this case 𝑃3 would 

have been set as 𝑃1 in an earlier step. Therefore we are done.   

For 𝑃 ∈ (𝑃∗, 𝑃max], we can define ℎ̃ in a similar manner: we follow the tangent 

line from 𝑃∗ and at each point check the parabola of curvature 𝐴 which is tangent to this 

line. There must be a point at which this parabola is also tangent to ℎ𝛿+ (unless the tangent 

line doesn’t intersect ℎ𝛿+—in which case we are done). At this point we can let our 

function follow the parabola until it is tangent to ℎ𝛿+, and then follow ℎ𝛿+ until it reaches 

𝑃max, then we are done. Finally, we note that there are uncountably many valid values of 

𝛿 to choose at the start of the method. Therefore an infinite class of viable functions 

exists∎ 

 
Figure 3.3: Example of a functional response ℎ̃ satisfying criterion (3.14) 

constructed using the method described in Theorem 3.1—depending only on conditions 

(3.15) being satisfied. The light dashed curves represent the tangent line at (𝑃̃,
𝑚

𝑘
), 𝑈, and 

the parabola with second derivative 𝐴 that is tangent to the function at (𝑃̃,
𝑚

𝑘
), 𝐿. These 

form upper and lower bounds, respectively, on any potential function. See the text for 

more details of the method. 
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Using Theorem 3.1, by scanning all feasible values of 𝑃∗ and 𝐷𝑃 we can check 

the stability of the interior stationary state (𝑃∗, 𝑍∗) for all functions in the 𝜀𝑄-

neighbourhood of ℎ. The stability condition for this equilibrium (based on a simple 

analysis of the Jacobian) is given by (Rosenzweig and MacArthur, 1963): 

𝑚

𝑘
(1 −

2𝑃∗

𝐾
) − 𝐷𝑃 ∙ 𝑃∗ ∙ (1 −

𝑃∗

𝐾
) < 0.                                    (3.16) 

The generic behaviour of model (3.12)-(3.14) with a predator functional response 

satisfying (3.14) is well known. For a fixed ℎ̃, the stability of the stationary state is 

determined by the carrying capacity 𝐾: for a small 𝐾, the interior stationary state is stable; 

an increase in 𝐾 will eventually result in the system’s destabilization via a Hopf 

bifurcation—a phenomenon known as the ‘paradox of enrichment’  (Rosenzweig, 1971; 

Gilpin, 1972). 

We shall implement our test for structural sensitivity with respect to the functional 

response using two different base functions: the Monod parameterization (3.17) and the 

hyperbolic tangent function (3.18), two of the most commonly used Holling type-II 

functional response terms in the literature (Jassby and Platt 1976; Jeschke et al., 2002; 

Fussmann and Blasius, 2005). 

ℎ1(𝑃) = 𝑎1

𝑃

1 + 𝑏1𝑃
,                                                   (3.17) 

ℎ2(𝑃) = 𝑎2tanh(𝑏2𝑃),                                                (3.18) 

where 𝑎𝑖 and 𝑏𝑖 are parameters with standard meanings. It is easy to see that both ℎ1 and 

ℎ2 satisfy conditions (3.14). The parameters in the expressions are chosen in such a way 

that functions ℎ1 and ℎ2 are close to each other in terms of absolute difference, which 

does not exceed 𝜀 = 1.2. The pair of actual base functions used are shown in Fig. 3.1C.  

 To perform our investigation, we used the conditions (3.15) to numerically 

compute the region in (𝑃∗- 𝐷𝑃) space which corresponds to the projected 𝜀𝑄-

neighbourhood of ℎ, and then used criterion (3.16) to determine the regions of stability 

and instability of the fixed point (𝑃∗, 𝑍∗) in this space. We then calculate the degree of 

structural sensitivity ∆, assuming ρ≡1 in (3.10) for simplicity. Fig. 3.4A shows the 

dependence of ∆ on the carrying capacity, K, for different base functions and values of 𝜀, 

using Definition 2.6 of the distance between two functions, based on an absolute error. 

We see that in all cases, Δ is low for small values of 𝐾—this is because, initially, the 𝜀𝑄-

neighbourhood is dominated by the region of stability—but as 𝐾 is increased, Δ increases 
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to 1 as the region of stability in the 𝜀𝑄-neighbourhood shrinks, before dropping off again 

as the region of instability starts to dominate. This follows the paradox of enrichment, 

since for all choices of functional response, increasing 𝐾 will destabilise the equilibrium 

eventually (∆ reaches zero if we consider higher values of 𝐾 than those shown in Fig. 

3.4A), but significantly, Δ is far from zero across a large range of K, which indicates that 

there are significant regions of stability and instability in these cases (c.f. Figure 3.5), and 

therefore structural sensitivity of the model. So, while in this model the paradox of 

enrichment does take place, the exact carrying capacity, 𝐾, at which the Hopf bifurcation 

happens is strongly dependent upon the formulation of the functional response, and can 

vary across a huge range. Crucially for the method, the degree of structural sensitivity 

observed is similar regardless of whether the Monod or hyperbolic tangent base function 

is used, indicating that for close base functions the structural sensitivity test does not 

depend upon the choice between them. 

 Fig. 3.4B shows the dependence of the degree of structural sensitivity on 𝐾 when 

Definition 2.7 of the distance between functions is used—the relative 𝑑𝑄-distance. One 

can see that for small ε the results depend on the base function chosen—the Monod 

function in this case exhibits structural sensitivity for a much smaller range of K. This 

discrepancy can be explained by noting that while the absolute error between the two 

base functions is small, the relative error is 𝜀 ≈ 0.5 or 𝜀 ≈ 1, depending which of the two 

functions is considered the base function, so they are quite far removed from each 

other’s 𝜀𝑄-neighbourhood in terms of relative distance. Therefore this result is not an 

inconsistency on the part of the method: when 𝜀 is large enough (𝜀 = 0.7) to compare 

with the relative distance between the two base functions, the Monod and hyperbolic 

tangent base functions again exhibit similar degrees of structural sensitivity. It is of 

interest that using different concepts of the closeness of functions to define the 𝜀𝑄-

neighbourhood of a given base function ℎ can result in different predictions regarding 

structural sensitivity. This can be seen from comparison of the Monod curves in Figs 

3.4A and 3.4B: when relative closeness is considered (Fig. 3.4B), the system with a 

Monod base function only exhibits structural sensitivity for values of 𝐾 between 0.3 and 

3—a much smaller range of K than for the same system when absolute distance is used. 

In Figs 3.5A and 3.5B we have plotted the stability portrait in (𝑃∗-𝐷𝑃) space for 

the Monod and hyperbolic tangent base functions, respectively, where the absolute 

distance is used with 𝜀 = 0.1, and  𝐾 = 1.2 (c.f. Fig. 3.4A). In the green region, (𝑃∗, 𝑍∗) 
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is a stable equilibrium, the red region indicates an unstable equilibrium and the dark blue 

region corresponds to the values of 𝑃∗ and 𝐷𝑃 which are not found for any function ℎ̃ in 

the 𝜀𝑄-neighbourhood of ℎ—i.e. lying outside the projection of the 𝜀𝑄-neighbourhood. It 

should be noted that all regions are actually projections of the corresponding regions in 

infinite dimensional function space. 

 

Figure 3.4: The degree of structural sensitivity of the predator-prey model (3.12)-( 3.13) 

to variation of the functional response, plotted against the carrying capacity 𝐾. Two 

different base functions are used: blue curves correspond to the Monod functional 

response (3.17) and red curves to the hyperbolic tangent functional response (3.18), c.f. 

Fig. 3.1C. The degree of sensitivity Δ is computed based on (3.10) with ρ≡1, and a sample 

‘threshold sensitivity’ of 5% is shown by the green line. A Hopf bifurcation takes place 

at 𝐾 ≈ 0.67  in the system with the Monod base function and 𝐾 ≈ 2.01 with the 

hyperbolic tangent base function. (A) The εQ neighbourhood of h is defined based on the 

absolute difference between h and its perturbations. (B) The εQ neighbourhood of h is 

defined based on the relative difference between h and its perturbations. The other model 

parameters are m=0.1 and k=0.3. 
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Figure 3.5: Testing structural sensitivity of predator-prey model (3.12)-(3.12) to variation 

of the functional response of the predator.  The 𝜀𝑄 neighbourhood of ℎ is projected from 

function space into the (𝑃∗-𝐷𝑃) space—with the dark blue region denoting areas outside 

of the 𝜀𝑄 neighbourhood. The 𝜀𝑄 neighbourhood of ℎ is defined based on the absolute 

difference between ℎ and its perturbations, with 𝜀 = 0.1.  Diagram (A) corresponds to 

the Monod base function whereas diagram (B) corresponds to the hyperbolic tangent 

functional response. Red and green domains describe, respectively, the unstable and 

stable stationary state. The azure domain corresponds to the region covered by 

conventional sensitivity analysis obtained by varying only parameters a, b in the base 

functions. Both diagrams are plotted for a carrying capacity K=1.2. The other model 

parameters are m=0.1 and k=0.3. 

 

 

The (𝑃∗-𝐷𝑃) representation can shed some light on the limitations of conventional 

sensitivity analysis—which is only based on a variation of the model parameters for a 

fixed functional form. We can vary the parameters 𝑎𝑖 and 𝑏𝑖 in equations (3.17) and (3.18) 

and consider all possible combinations which belong to the corresponding 𝜀𝑄-

neighbourhoods: these regions in (𝑃∗-𝐷𝑃) space are denoted by the azure domains in Figs 
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3.5A and 3.5B. In the cases shown, varying the model parameters does not indicate any 

structural sensitivity, but it is clear from the more complete analysis that there is extensive 

structural sensitivity which variation of parameters misses completely. This is because 

variation of the parameters for a fixed functional form only allows us to vary the values 

𝑃∗ and 𝐷𝑃 in a thin strip directed in a direction roughly parallel to the Hopf bifurcation 

line. This ‘blinkered’ approach therefore gives a misleading representation of the degree 

of structural sensitivity in the system, and so we can only rely on a conventional 

parameter-based analysis of sensitivity when the carrying capacity K is close to the Hopf 

bifurcation value for a given ℎ, since in this case the azure domain will intersect the 

boundary between the stability and instability domains. 

 

3.3.2 Investigation of structural sensitivity with respect to the growth term of the 

prey 

 

We now consider the structural sensitivity of the system with respect to variation in the 

formulation of the growth term of the prey, in the cases where the functional response is 

fixed as either the Monod or hyperbolic tangent functional response with the same 

parameters 𝑎𝑖 and 𝑏𝑖 as used for the base functions in section 3.3.1. We impose the 

following constraints on 𝑟̃(𝑃): 

      𝑟̃′(𝑃) < 0, 

 𝐴1 < 𝑟̃′′(𝑃) < 𝐴2  ∀𝑃 ∈ [0, 𝑃max],                          (3.19) 

where 𝐴1 < 0 and 𝐴2 > 0, which defines a logistic-type growth term, with the 

magnitude of the second derivative bounded by 𝑚𝑎𝑥{|𝐴1|, |𝐴2|}. We take our base 

function to be the classic logistic growth function 

𝑟(𝑃) = 𝓇 ∙ (1 −
𝑃

𝐾
) ,                                                (3.20) 

which clearly satisfies conditions (3.19) (for any 𝐴1, 𝐴2). We require that 𝑟̃ is within an 

absolute distance 𝜀 of this base function, that is, it must satisfy 

𝑟𝜀−(𝑃) < 𝑟̃(𝑃) < 𝑟𝜀+(𝑃)   ∀ 𝑃 ∈ (0, 𝑃max],                    (3.21) 

where 𝑟𝜀−(𝑃) ≔ 𝑟(𝑃) + 𝜀, and 𝑟𝜀+(𝑃) ≔ 𝑟(𝑃) − 𝜀.                         

When varying the growth term, since the functional response ℎ is fixed, the 

equilibrium prey density 𝑃∗ is given by the constant ℎ−1 (
𝑚

𝑘
), and the stability condition 

in the case of an arbitrary growth function 𝑟̃ is given by 
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𝑚

𝑘
(𝑟̃(𝑃∗) + 𝑃∗ ∙ 𝑟̃′(𝑃∗)) − 𝑟̃′(𝑃∗) ∙ 𝑃∗ ∙ 𝑟̃(𝑃∗) < 0 .                (3.22) 

Our generalised bifurcation space now considers of the values 𝑟𝑃 ≔ 𝑟̃(𝑃∗) and 𝐷𝑃 ≔

𝑟̃′(𝑃∗), and the 𝜀𝑄-neighbourhood of 𝑟 consists of all functions satisfying (3.19) and 

(3.21). To obtain the projection of the 𝜀𝑄-neighbourhood into the generalised bifurcation 

space, we use the following theorem: 

 

Theorem 3.2 

There exists a valid function 𝑟̃ satisfying conditions (3.19) and (3.21) such that 𝑟̃(𝑃∗) =

𝑟𝑃 and 𝑟̃′(𝑃∗) = 𝐷𝑃 if and only if the following conditions hold: 

𝑈(𝑃) ≔ 𝑟𝑃 + 𝐷𝑃 ∙ (𝑃 − 𝑃∗) +
𝐴2

2
(𝑃 − 𝑃∗)2 > 𝑟𝜀−,    and                           

𝐿(𝑃) ≔ 𝑟𝑃 + 𝐷𝑃 ∙ (𝑃 − 𝑃∗) +
𝐴1

2
(𝑃 − 𝑃∗)2 < 𝑟𝜀+.                          (3.23) 

Proof 

Firstly, note that, as in Theorem 3.1, (3.23) are necessary conditions because 𝐿(𝑃) is the 

parabola of minimum second derivative satisfying 𝐿(𝑃∗) = 𝑟𝑃 and 𝐿′(𝑃∗) = 𝐷𝑃—so is 

a lower bound for a suitable function—and  𝑈(𝑃) is the parabola of maximum second 

derivative satisfying 𝑈(𝑃∗) = 𝑟𝑃 and 𝑈′(𝑃∗) = 𝐷𝑃—so is an upper bound.  

To prove that (3.23) are sufficient conditions, we need to find a method to 

construct a valid function that depends only on (3.23) being satisfied. We illustrate such 

a method for absolute distance in Fig. 3.6 and for relative distance in Fig. 3.7. For brevity, 

we will relax the constraints on 𝑟̃′′ such that 𝐴1 ≤ 𝑟̃′′ ≤ 𝐴2 is allowed (as in Theorem 

3.1, the proof can easily be modified to hold for the strict inequality). We consider two 

cases for 𝐷𝑃: 𝐷𝑃 ≥ 𝑟′(𝑃) and 𝐷𝑃 < 𝑟′(𝑃), where 𝑟 is the base (logistic) function, which 

has constant derivative. If 𝐷𝑃 ≥ 𝑟′(𝑃), then for  𝑃 < 𝑃∗ we initially set 𝑟̃(𝑃) = 𝑈(𝑃), 

so that 𝑟̃ initially follows the parabola of maximum second derivative. 𝑈 lies above 𝑟𝜀−, 

so in the range 𝑃 ∈ [0, 𝑃∗), 𝑈 either reaches the axis 𝑃 = 0 without intersecting 𝑟𝜀+, in 

which case we set 𝑟̃(𝑃) = 𝑈(𝑃) ∀𝑃 ∈ [0, 𝑃∗), and we are done, or at some 𝑃1 > 0 it 

crosses 𝑟𝜀+ from below as 𝑃 ↓ 𝑃1 (where ↓ denotes the one-sided limit from the right hand 

side)—in which case we must have 𝑟̃′(𝑃1) < 𝑟′(𝑃1). Since the derivative of the parabola 

is continuous, by the intermediate value theorem there must be some point 𝑃2 ∈ [𝑃1, 𝑃0] 

where 𝑟̃′(𝑃2) = 𝑟′(𝑃2). Over the interval [0, 𝑃2], we then set 𝑟̃ to equal the tangent line 
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at 𝑈(𝑃2). Whether we’re using Definition 2.6 or 2.7 of distance, this tangent line running 

parallel to 𝑟(𝑃) will not intersect  𝑟𝜀+ or 𝑟𝜀−,  for 𝑃 ∈ [0, 𝑃2], so we are done.  

 
Figure 3.6: Example of a growth rate 𝑟̃ satisfying criterion (3.19) constructed using the 

method described in Theorem 3.2 for the case in which Definition 2.6 of distance 

(absolute distance) is used. The method depends only on conditions (3.23) being satisfied. 

The thin solid parabolas 𝑈 and 𝐿 are those of maximum and minimum (signed) curvature, 

respectively, which are tangent to the growth function at (𝑃∗, 𝑟𝑃). These form upper and 

lower bounds on any potential function. 

 

For 𝑃 > 𝑃∗, if we initially set 𝑟̃(𝑃) = 𝐿(𝑃), to follow the parabola with (signed 

minimum) curvature 𝐴1, the same holds: this parabola either reaches the 𝑃-axis—in 

which case we set 𝑟̃(𝑃) = 𝐿(𝑃)  ∀𝑃 ∈ (𝑃∗, 𝑃max] and we are done—or at some 𝑃3 > 𝑃∗ 

it crosses 𝑟𝜀− from above as 𝑃 ↑ 𝑃3, in which case again we must have 𝑟̃′(𝑃3) < 𝑟′(𝑃3).  

In this second case, if we are using Definition 2.6 of distance (absolute distance), we can 

use the intermediate value theorem to find 𝑃4, where the tangent line at 𝐿(𝑃4) lies parallel 

to 𝑟(𝑃). We can then take 𝑟̃ to be equal to this tangent over (𝑃4, 𝑃max], and we are done. 

If we are using Definition 2.7 (relative distance), then whether we initially set 𝑟̃(𝑃) =

𝐿(𝑃) or 𝑟̃(𝑃) = 𝑈(𝑃) depends whether their shared tangent line from 𝑃∗ intersects the 

𝑃-axis at 𝑃 > 𝑃max—in which case we follow 𝐿, the parabola of minimum curvature—or 

𝑃 < 𝑃max—in which case we follow 𝑈. If 𝑃 = 𝑃max we can follow the tangent itself and 

we are done. In the first (second) case, where this parabola crosses 𝑟𝜀− ( 𝑟𝜀+) the tangent 

line must intersect the 𝑃-axis at 𝑃 < 𝑃max (𝑃 > 𝑃max)—or not at all for 𝑃 > 𝑃∗— so since 
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the tangent line varies continuously along the parabola, there must be a point 𝑃4 at which 

the tangent line to the parabola intersects the 𝑃-axis exactly at (𝑃max, 0). Clearly this 

tangent line lies between 𝑟𝜀− and 𝑟𝜀+, so we set 𝑟̃ to be equal to it over [𝑃4, 𝑃max], and we 

are done.  

In the other case, where 𝐷𝑃 < 𝑟′(𝑃), then the only differences to the proof are: i) 

We need to swap the parabolas the functions is initially equal to from 𝐿 to 𝑈 (and vice-

versa) except the parabola initially followed for 𝑃 > 𝑃∗ in the case where we are 

considering relative distance. This is necessary since we require a change in the sign of 

𝑟̃′(𝑃) − 𝑟′(𝑃) in order to use the IVT to find a line tangent to 𝑟′(𝑃). ii) A parabola of 

negative curvature can intercept the 𝑃-axis with a positive derivative in this case, but this 

is easily fixed: since 𝐷𝑃 < 𝑟′(𝑃) < 0 initially, it necessitates a change in the sign of 

𝑟̃′(𝑃) − 𝑟′(𝑃), so we can use the IVT to find a line tangent to 𝑟′(𝑃) and then proceed as 

in previous cases∎ 

 
Figure 3.7: Example of a growth rate 𝑟̃ satisfying criterion (3.19) constructed using the 

method described in Theorem 3.2 for the case in which Definition 2.7 of distance (relative 

distance) is used. The method depends only on conditions (3.23) being satisfied. As in 

Fig. 3.6, the thin solid parabolas 𝑈 and 𝐿 are those of maximum and minimum (signed) 

curvature, which are tangent to the growth function at (𝑃∗, 𝑟𝑃). These form upper and 

lower bounds, respectively, on any potential function. 
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Using conditions (3.23), we can check the stability of (𝑃∗, 𝑍∗) for all functions in 

the 𝜀𝑄 neighbourhood of 𝑟, and plot the corresponding regions in (𝑟𝑃-𝐷𝑃) space. We can 

then use these regions to compute the degree of structural sensitivity in the system. Fig. 

3.8 shows the degree of structural sensitivity ∆ (constructed for ρ≡1) plotted against the 

carrying capacity, K (c.f. Fig. 3.4). Several values of 𝜀 are considered, and both the 

Monod and hyperbolic tangent functional responses from section 3.3.1 were used. The 

degree of structural sensitivity shown by the system with respect to variation of the 

growth term is completely different depending on which functional response is taken—

with the Monod functional response: varying the growth term will only alter the stability 

of the equilibrium for K between 0.5 and 2, while with the hyperbolic tangent functional 

response there is a high degree of structural sensitivity even when 𝐾 = 16. This 

substantial difference is in spite of the fact that the two functional responses used are very 

close together, and it suggests that if we have two unknown functions, performing 

analysis of structural sensitivity with respect to each in turn will not be enough to 

determine the extent of structural sensitivity with respect to variation of both of them 

together. 

 

 

 

 

 

 

 



37 

 

 

Figure 3.8: The degree of structural sensitivity of model (3.12)-(3.13) to the choice of 

parameterization of the growth rate for varying values of carrying capacity, K. The base 

function is taken to be the logistic function (3.20) and two different predator functional 

responses are used: blue curves correspond to the Monod function (3.17) and red curves 

correspond to the hyperbolic tangent function (3.18). The degree of sensitivity Δ is 

computed based on (3.10) with ρ≡1, and a sample ‘threshold sensitivity’ of 5% is shown 

by the green line – values of Δ below this can essentially be considered ‘not sensitive’. 

The εQ neighbourhood of h is defined based on the absolute difference between h and its 

perturbations. The other model parameters are m=0.1 and k=0.3. 

 

In Figs 3.9A, 3.9B and 3.9D, 3.9E, we present the 𝜀𝑄 neighbourhood of 𝑟 (with 

𝜀 = 0.1) along with its regions of stability and instability in (𝑟𝑃-𝐷𝑃) space for two values 

of K with the Monod and hyperbolic tangent functional responses respectively. These 

figures show us that an increase in K does not affect the Hopf bifurcation line in this 

space, but instead shifts the 𝜀𝑄-neighbourhood towards the 𝐷𝑃 = 0 axis. The difference 

in structural sensitivity between the Monod and hyperbolic tangent functional responses 

is entirely due to the resultant change in the value of 𝑃∗. 
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Figure 3.9: Testing structural sensitivity of model (3.12)-(3.13) to variation of the per 

capita growth rate of prey 𝑟̃.  The whole space of functions 𝑟̃ is projected into (𝑟𝑃-𝐷𝑃) 

space. The εQ neighbourhood is defined based on the absolute difference between r and 

its perturbations.  Diagrams (A, B) correspond to the Monod functional response and are 

constructed for K=0.65 and K=0.8, respectively. Diagrams (D, E) correspond to the 

hyperbolic tangent functional response of the predator and are constructed for K=2 and 

K=4.5. The meaning of the coloured domains is the same as in Fig. 3.5. Diagrams C, F 

show the functional density, 𝜌(𝑟𝑃, 𝐷𝑃), in the (𝑟𝑃-𝐷𝑃) space for the cases corresponding 

to diagrams B and D respectively. In Fig. 3.9C 𝜌 ranges from 0.13 in the azure regions 

to 0.59 in the central dark red region, and in Fig. 5F 𝜌 ranges from 0.6 in the orange 

regions to 0.82 in the central dark red region. Dark blue indicates a functional density of 

0, indicating that no functions in the 𝜀𝑄-neighbourhood correspond to this point. 
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3.4 Computation of the functional density 

 

For the growth function, it is quite simple to compute the ‘functional density’ ρ of each 

point in (𝑟𝑃-𝐷𝑃) space, as discussed at the end of Section 3.2: as the domain of the 

function is one dimensional, we can bound the functions passing through a point by the 

parabolas of maximum positive and negative curvature, and use this approach to decide 

which points have functions passing through them which also pass through (𝑃∗, 𝑟𝑃) with 

derivative 𝐷𝑃. 

We do this by considering all points in the strip between 𝑟𝜀+ and 𝑟𝜀−, and 

determining whether there is a function 𝑟̃ with 𝑟̃(𝑃∗) = 𝑟𝑃, and 𝑟̃′(𝑃∗) = 𝐷𝑃 such that 

the curve 𝑟̃ passes through the point and 𝑟̃′(𝑃) < 0   ∀  𝑃 ∈ [0, 𝑃𝑚𝑎𝑥]. The proportion of 

points between 𝑟𝜀+ and 𝑟𝜀− which do have such functions passing through them then gives 

us a numerically computable measure of the set of functions which project onto the point 

(𝑟𝑃, 𝐷𝑃).  

 Given the values 𝑟𝑃 and 𝐷𝑃, and a point (𝑄, 𝑟𝑄), we determine whether there is 

a function 𝑟̃ passing through this point as follows: firstly, we check that (𝑄, 𝑟𝑄) lies 

between the minimum and maximum parabolas 𝐿 and 𝑈 used in our proof of Theorem 

3.2: 

𝐿(𝑃) ≔ 𝑟𝑃 + 𝐷𝑃(𝑃 − 𝑃∗) +
𝐴1

2
(𝑃 − 𝑃∗)2, 

𝑈(𝑃) ≔ 𝑟𝑃 + 𝐷𝑃(𝑃 − 𝑃∗) +
𝐴2

2
(𝑃 − 𝑃∗)2 
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Figure 3.10: Computing the functional density ρ of growth rate function variation in the 

(𝑟𝑃-𝐷𝑃) space. The definition of the functional density is given in section 3.2 of the text. 

In this figure for each fixed pair 𝑟𝑃, 𝐷𝑃 we show in grey the region of points bounded 

by r±ε such that there exists at least one curve passing through any of those points and 

having a slope 𝐷𝑃 at the point (𝑃, 𝑟𝑃). (A) The functional density is low (𝑟𝑃=0.8; 𝐷𝑃 

=1.0): graphs of functions 𝑟̃ satisfying 𝑟̃(𝑃∗) = 𝑟𝑃, 𝑟̃′(𝑃∗) = 𝐷𝑃 can only pass through 

a limited number of points (𝑃, 𝑟̃(𝑃)) between 𝑟𝜀+ and 𝑟𝜀−. (B) The functional density is 

high (𝑟𝑃=0.6; 𝐷𝑃 =1.5): graphs of functions 𝑟̃ satisfying 𝑟̃(𝑃∗) = 𝑟𝑃, 𝑟̃′(𝑃∗) = 𝐷𝑃 can 

pass through many points (𝑃, 𝑟̃(𝑃)) between 𝑟𝜀+ and 𝑟𝜀−. The other model parameters are 

K=0.65; m=0.1 and k=0.3. 
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If (𝑄, 𝑟𝑄) doesn’t lie between 𝐿 and 𝑈, there can be no valid 𝑟̃. If (𝑄, 𝑟𝑄) does lie 

between these parabolas, then we need to choose a derivative at (𝑄, 𝑟𝑄), 𝐷𝑄, and define 

the parabolas 

𝐿̂(𝑃) ≔ 𝑟𝑄 + 𝐷𝑄(𝑃 − 𝑄) +
𝐴1

2
(𝑃 − 𝑄)2,  and 

𝑈̂(𝑃) ≔ 𝑟𝑄 + 𝐷𝑄(𝑃 − 𝑄) +
𝐴2

2
(𝑃 − 𝑄)2, 

which define the upper and lower bounds for functions 𝑟̃ satisfying 𝐴1 < 𝑟̃′′(𝑃) <

𝐴2  ∀𝑃 ∈ [0, 𝑃max], and passing through (𝑄, 𝑟𝑄) with derivative 𝐷𝑄. We need to check 

several conditions on the 4 parabolas: firstly, we need  𝐿̂(𝑃) < 𝑟𝜀+(𝑃) and 𝑈̂(𝑃) >

𝑟𝜀−(𝑃) ∀ 𝑃 ∈ [0, 𝑃𝑚𝑎𝑥] (otherwise there are no valid functions having derivative 𝐷𝑄 at 

(𝑄, 𝑟𝑄) at all). Secondly, we require that 𝐿̂(𝑃) < 𝑈(𝑃) and 𝐿(𝑃) < 𝑈̂(𝑃) ∀ 𝑃 ∈

[0, 𝑃𝑚𝑎𝑥].  

These conditions are enough to ensure that there is a function 𝑟̃′′ passing through 

(𝑃∗, 𝑟𝑃) with derivative 𝐷𝑃 that also passes through (𝑄, 𝑟𝑄), while satisfying the 

restriction on the second derivative in (3.19), but in some cases we need one more 

condition to ensure that such a function exists which also satisfies 𝑟̃′(𝑃) < 0 ∀𝑃 ∈

[0, 𝑃𝑚𝑎𝑥]. If 𝑄 > 𝑃∗, then in the case that 𝑄 −
𝐷𝑄

𝐴1
> 𝑃∗ −

𝐷𝑃

𝐴2
, we need the third condition 

𝑟𝑃 −
𝐷𝑃2

𝐴2
+

1

2
𝐴2 ∙ 𝐷𝑃2 > 𝑟𝑄 −

𝐷𝑄
2

𝐴1
+

1

2
𝐴1 ∙ 𝐷𝑄

2—in words, if the minimum of the 

parabola 𝑈 occurs at a lower value of 𝑃 than the maximum of the parabola 𝐿̂, we require 

min{𝑈(𝑃)} > max{𝐿̂(𝑃)}, otherwise any function between (𝑃∗, 𝑟𝑃) and (𝑄, 𝑟𝑄) with the 

given 𝐷𝑄 will have to have a positive derivative at some point because once it has passed 

below the minimum of 𝑈, it will have to rise above the higher maximum of  𝐿̂. If, instead, 

we have 𝑃∗ > 𝑄, then the condition is the same, except now the function needs to pass 

below the minimum of 𝑈̂ and be able to pass above the maximum of 𝐿 without a positive 

derivative. Thus if 𝑃∗ −
𝐷𝑃

𝐴1
> 𝑄 −

𝐷𝑄

𝐴2
, we require 𝑟𝑄 −

𝐷𝑄
2

𝐴2
+

1

2
𝐴2 ∙ 𝐷𝑄

2 > 𝑟𝑃 −
𝐷𝑃2

𝐴1
+

1

2
𝐴1 ∙ 𝐷𝑃2. 

 All of these conditions depend on 𝐷𝑄, and we note that there is always one 

‘optimal’ value 𝐷𝑄 for each condition to be satisfied—i.e. it is necessary for the condition 

to hold for this 𝐷𝑄, for it to hold for any derivative at (𝑄, 𝑟𝑄) at all—for example, if  

𝐿̂(𝑃) < 𝑟𝜀+(𝑃) doesn’t hold when 𝐿̂ is defined for 𝐷𝑄 =
𝑑𝑟𝜀+

𝑑𝑃
(𝑃), it will not hold for any 



42 

 

other derivative. So we proceed as follows: starting from 𝐷𝑄 = 𝐷𝑃, we check all the 

conditions. If one of the conditions is not satisfied, then we either decrease or increase 

𝐷𝑄 by a small increment until either the condition is satisfied or the optimal 𝐷𝑄 is reached 

without satisfying the condition—in which case we can conclude that there is no valid 

function passing through (𝑄, 𝑟𝑄). If the given condition is satisfied, we continue checking 

the others and making adjustments until either we find a 𝐷𝑄 such that all conditions are 

satisfied—in which case we are done—or we find an unsatisfied condition which, in order 

to rectify, we have to undo the changes we have already made to 𝐷𝑄 to ensure it satisfies 

another condition—in which case there can be no valid function. If at any point we reach 

the optimal 𝐷𝑄 for a given condition (or a sufficiently large/small 𝐷𝑄 when the optimal 

derivative is ±∞) without satisfying it, we should stop∎ 

 

Fig. 3.10 illustrates the points that have functions passing through them which 

also pass through (𝑃∗, 𝑟𝑃) with derivative 𝐷𝑃, for two given values of (𝑟𝑃, 𝐷𝑃). Figs 

3.9C and 3.9F show the functional density of the 𝜀𝑄-neighbourhood in the case of Fig. 

3.9B and 3.9D, respectively. The functional density is shown to be greater towards the 

centre of the domain, but does not vary a great deal (the range is 0.13-0.59 in Fig. 3.9C, 

but only falls below 0.5 in non-red regions, and the range is 0.6-0.82 in Fig. 3.9F) so 

including this information will not significantly change the character of the graphs in Fig. 

3.8 in this particular model. 

 

3.5   Discussion and conclusions 

 

Although it is well recognized that biological models can be quite sensitive to the 

mathematical formulation of the model functions (Myerscough et al., 1996; Wood and 

Thomas, 1999; Fussmann and Blasius, 2005; Cao et al., 2008; Cordoleani et al., 2011), 

the conventional sensitivity analysis is mostly undertaken by varying the model 

parameters for fixed functional forms (Lim et al., 1989; Janssen et al., 1996; Bendoricchio 

and Jorgensen, 2001 and many other references). This is mainly because it has been held 

as ‘evident’ that we cannot check all possible mathematical formulations of a given 

functional dependence f, since the functional space to which f belongs has an infinite 

number of dimensions. In this chapter, we’ve introduced a simple but rigorous test of 

structural sensitivity, which reveals the effect of the choice of the mathematical 
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formulation of model functions on the local stability of equilibria. The main idea is to 

project the infinite-dimensional functional space onto a finite low-dimensional space 

consisting of the values of the functions and their derivatives at the equilibrium. The 

method is exhaustive, in the sense that no valid model function which alters the stability 

conditions will be missed, provided the resolution of the mesh is high enough. 

Importantly, the use of a partially specified model means we only consider functions with 

the same qualitative global properties as the initial model function (e.g., monotonically 

increasing/decreasing, sign of curvature, etc.), so the observed violations of stability are 

more surprising than they would be if we allowed perturbations of the model functions 

that changed fundamental qualitative properties.   

Implementation of our sensitivity test reveals the main reason for the limitations 

of the conventional parameter-based methods of sensitivity. As is shown, for instance, in 

Figs 3.5 and 3.9, varying only the model parameters for a fixed mathematical formulation 

can result in a displacement in the functional space confined to a limited number of 

directions, and if the main direction of displacement in the functional space is roughly 

parallel to the bifurcation hyper surface, then variation of the model parameters will not 

result in a crossing of this bifurcation hyper surface (Fig. 3.5A, B, Fig. 3.9B, D, F), unless 

the base function lies very close to it in the first place (Fig. 3.9A). Therefore, this limited 

approach can reach a misleading conclusion that the stability of the given equilibrium 

will be consistent across a large range of parameters, while considering perturbations of 

the base function in the εQ neighbourhood in the direction traversal to the bifurcation 

hyper surface will reveal a stability change (Fig. 3.5A, B and Fig. 3.9B, D, F). As an 

example, in Appendix A we analytically construct the εQ neighbourhood corresponding 

to variation of parameters for a fixed mathematical formulation f and derive the 

conditions of structural sensitivity for small εQ when the number of parameters is equal 

to two. 

Projecting the infinite dimensional function space onto a low dimensional space 

of generalised parameters—containing only the equilibrium points and the values of the 

functions and their derivatives at the equilibrium—has a drawback in that information 

about the measure of the 𝜀𝑄-neighbourhood in the function space, and that of its sub-

domains of stability and instability, may be lost. Formally, we can solve this problem by 

introducing certain weights of the points in the considered subspace to represent their 

impact. In this chapter, we’ve introduced the functional density ρ, which characterises 
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the relative amount of functions which can be potentially constructed to take the given 

values and derivatives at the equilibrium (e.g. Fig. 3.10). Another important issue arises 

from the fact that some parameterizations can have more biological significance than 

others, and so when computing the degree of sensitivity Δ we would ideally give more 

consideration to those functions which are more biologically relevant and disregard less 

meaningful parameterizations. However, weighting the possible parameterizations 

according to their biological significance requires detailed information about the nature 

of the underlying processes which is often not available. 

Our sensitivity test requires the choice of a certain base function, which defines 

the εQ neighbourhood in which we will consider all possible functions. Therefore it is 

pertinent to ask whether the choice of base function influences the outcome of our 

structural sensitivity test. The answer to this fundamental question depends on how the 

magnitude of the perturbation of the base function compares with 𝜀. In any case, very 

small perturbations of the base function shouldn’t influence the qualitative behaviour, 

since the model is assumed to be structurally stable, but additionally the investigations 

presented here lead us to conclude that provided the perturbation of the base function is 

smaller than 𝜀, the result of the structural sensitivity test will not change significantly (c.f. 

Fig. 3.4). In practice, the base function should be fitted to an experimental data set, with 

the tolerance 𝜀 being constructed using the error terms, so our sensitivity test can be 

assumed to be independent of the base function. 

To summarise, in this chapter, we’ve presented a general overview of how to use 

partially specified models to detect and quantify structural sensitivity in biological 

models. We’ve illustrated this by considering the Rosenzweig-MacArthur model, and 

checking its sensitivity to the formulation of both the growth rate of the prey and the 

functional response term. On the way, we’ve proved ways to obtain a projection of the 

𝜀𝑄-neighbourhood of model functions into the generalised bifurcation space considering 

of the equilibrium value, and the value of the function and its derivative at this 

equilibrium, but only for two sets of qualitative properties. In the next section, we will 

introduce a theorem to extend these results to a whole class of model functions. We shall 

also use this theorem to demonstrate our test on several more complicated models, in 

order to show that it is not only applicable to extremely simple models such as the 

Rosenzweig-MacArthur model. 
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Chapter 4 

 

Projection from an 𝜺𝑸-neighbourhood to the 

generalised bifurcation space in the case of an 

unknown function with 𝒏 inflection points 

 

This chapter is based on parts of the paper (Adamson and Morozov, 2014a) 

 

4.1 Introduction 

 

In this chapter, we extend the results found in Chapter 3 regarding sensitivity analysis of 

stationary states of the model. Focusing on structural sensitivity in the case where 

unknown functions are functions of one variable belonging to a certain class of functions, 

we show how we can explore all perturbations of such functions and so analyse the 

structural sensitivity of a system with respect to the number and stability of its equilibria. 

Further, we suggest a method for considering any of a general class of functions with an 

arbitrary number of inflection points—thereby providing the required tools for a 

structural sensitivity analysis of any model with respect to variation of a function of this 

type. We then use the proposed method to demonstrate structural sensitivity with respect 

to predation terms—of Holling type II and III, respectively—in two recent ODE models 

of biological systems from highly cited papers, along with a delay-differential equation 

model. We demonstrate the existence of structural sensitivity in these models and show 

that conventional methods based solely on parameter sensitivity will often fail to do so. 

The chapter is organized as follows. Section 4.2 recaps the general approach to 

the investigation of structural sensitivity with respect to the number and stability of 

stationary states of ODE-based models, which was presented in the last chapter. In section 

4.3 we suggest a method of projecting the neighbourhood of a function in infinite-

dimensional space onto a related finite-dimensional space in the case where we have a 

function with a finite number of known inflection points. In section 4.4 we use our 

method to investigate structural sensitivity in several well-known multicomponent 
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ecological models. Section 4.5 provides a discussion of a few important aspects of 

structural sensitivity in biological models, in particular, how we should define the 

‘degree’ of structural sensitivity in a model, and what the potential relation is between 

structural sensitivity of models and the underlying biological systems. 

 

4.2 General approach of the investigation 

 

We consider a continuous-time system (𝑀) given by the differential equations 

𝑥̇ = 𝐺 (𝑔1(𝑥),… , 𝑔𝑚(𝑥), ℎ̃1(𝑥),… , ℎ̃𝑝(𝑥)) ,      𝑥 ∈ ℝ𝑛,             (4.1) 

where 𝑔1, … , 𝑔𝑚, ℎ̃1, … , ℎ̃𝑝 ∈ 𝐶1(ℝ𝑛). Here 𝐺:ℝ𝑚+𝑝 → ℝ𝑛 is a linear function 

representing the overall ‘structure’ of the model (𝑀) in terms of the various model 

functions, detailing how the growth rates, mortality terms, functional responses, etc. are 

used to build the full model. Of these model functions, we assume that 𝑔1, … , 𝑔𝑚 are of 

known analytical form, and so only require a choice of parameters to be fully determined, 

while we assume that {ℎ̃1(𝑥), … , ℎ̃𝑝(𝑥)} is the set of functions with unknown 

parameterisations. Usually we have some prior theoretical or experimental knowledge 

concerning this set of functions, and so we can use this knowledge to specify a class of 

function sets 𝑄 = {𝑄1, … , 𝑄𝑝}, 𝑄𝑖 ⊊ 𝐶1(ℝ𝑛) which {ℎ̃1(𝑥), … , ℎ̃𝑝(𝑥)} must belong to, 

and therefore eliminate any irrelevant choices of functions. In this way we define (𝑀) as 

a ‘partially specified model’ (Wood, 2001). We also require that 𝑄 includes bounds on 

the second derivatives of its constituent functions for the reasons mentioned in Section 

2.2. 

To complete our model (𝑀), we first need to make an arbitrary initial choice of 

parameterisation of the functions ℎ̃1, … , ℎ̃𝑝, which we shall denote by ℎ1, … , ℎ𝑝. We call 

these functions the ‘base functions’, and their exact form does not matter, provided that 

they are taken from 𝑄 and are fitted to available experimental data. To fully determine 

whether or not (𝑀) is 𝜀-structurally sensitive or not (for the given base functions), we 

first need to obtain a value for 𝜀—the accuracy of the available experimental data, and 

then check the entirety of  𝐵𝜀(𝑀; 𝑑𝑄) for models which predict behaviour that differs 

qualitatively from the behaviour predicted by (𝑀). The main difficulty in such an 

investigation is the requirement that we cover all functions of 𝐵𝜀(𝑀; 𝑑𝑄): since this is 

generally infinite dimensional (even when we only have a single unknown model 
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function h)—it is the space of function sets in 𝑄 that take values within 𝜀 of those of the 

base function set—it is obviously impossible to directly check this neighbourhood as can 

be done in variation-of-parameters investigations. However, as an alternative to 

considering neighbourhoods in function space directly, we note that several properties of 

a dynamical system are completely determined by a few specific values of the model 

functions and their derivatives, rather than the entire functions. These specific local 

values can be treated as parameters, and make up what is called the ‘generalised 

bifurcation space’. The main idea of the general structural sensitivity analysis is then to 

determine the region of generalised bifurcation space corresponding to 𝐵𝜀(𝑀; 𝑑𝑄), or the 

𝜀𝑄-neighbourhood of 𝑀, by projecting the initial infinite dimensional neighbourhood 

𝐵𝜀(𝑀; 𝑑𝑄) into this space. By thoroughly exploring the projected region, we will be able 

to make exhaustive conclusions about the presence or absence of structural sensitivity in 

the model with regards to the given system properties.  

In this way, the problem of covering  𝐵𝜀(𝑀; 𝑑𝑄) in function space is reduced to 

the problem of determining whether or not a function in 𝐵𝜀(𝑀; 𝑑𝑄) exists which, when 

added to the model, will yield certain values—specifically certain equilibrium values—

and values taken by the function and its derivative at these equilibria. This is a nontrivial 

problem, and depends on the base function and the function class 𝑄 which the unknown 

functions in the model (𝑀) must belong to: using the 𝑑𝑄 distance requires that functions 

taking the given set of local values must also be within a distance 𝜀 of the base function 

set across the entire domain Ω, and therefore the problem is a nonlocal one. However, 

once this problem has been solved the rest of the analysis is straightforward, and so 

methods for constructing the necessary and sufficient conditions for the existence of 

functions taking a given set of local values whilst remaining in 𝐵𝜀(𝑀; 𝑑𝑄) are very 

powerful tools for structural sensitivity analysis. 

In the previous chapter we presented and proved the necessary and sufficient 

conditions for the existence of a function ℎ̃ in 𝐵𝜀(𝑀; 𝑑𝑄) yielding certain equilibrium 

values 𝑥∗ and taking values ℎ̃(𝑥∗) and ℎ̃′(𝑥∗) for two cases: where the function is positive 

and monotonically increasing (e.g. a functional response of Holling type II) and when it 

is monotonically decreasing (e.g. a logistic growth function). In the next section, we 

expand on these results, and present a general method for obtaining such conditions in 

the case that our base function has 𝑛 arbitrary inflection points. Since the vast majority 
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of functions generally considered in biological models are of such a form, this should 

enable us to analyse structural sensitivity—with respect to variation in a single function 

changing the stability of equilibria—in a large number of contemporary biological 

models. 

 

4.3 Determining the necessary and sufficient conditions for the 

existence of a function with 𝒏 predetermined inflection points in the 

𝜺𝑸-neighbourhood 

 

In a wide variety of cases, we require processes to be modelled by one-dimensional 

functions which are convex/concave over several ranges, and therefore possess a certain 

set of inflection points—for example, sigmoid functions, or in the most basic case, 

saturating functions such as a Holling type II functional response. The requirement for a 

function to be concave up/down over certain domains can be deduced either from 

theoretical reasoning or—to a basic extent—from experimental data. Although the exact 

inflection points are usually themselves unknown, we can consider them as generalised 

parameters of our investigation, along with the derivatives of unknown functions at 

equilibrium, etc. We show an example of such a function as the base function in Figure 

4.1, with six inflection points denoted as 𝑎1, … , 𝑎6. We should note, however, that a 

function with so many inflection points is quite exotic, and included here merely as a 

reference, to demonstrate the generality of our approach - in practice, aside from 

oscillators it is rare to use functions even with two or more inflection points. The main 

goal of this section is to provide a tool to be able to check for a given value of a function, 

ℎ̃(𝑥∗), at an equilibrium point 𝑥∗ and for a given value ℎ̃′(𝑥∗) of the derivative at this 

point, whether or not there exists at least one function passing through this point and 

remaining in the neighbourhood 𝐵𝜀(𝑀; 𝑑𝑄). Here we provide such a tool, which is 

formulated by Theorem 4.1. 

Mathematically speaking, given a base function ℎ:ℝ → [0, 𝑥max], and values 

𝑋, ℎ𝑋 and 𝐷𝐻, we want to determine whether or not there exists a function ℎ̃: ℝ →

[0, 𝑥max] with continuous derivative that satisfies the following criteria: 

 

(i) ∃ a partition 0 < 𝑎1 < ⋯ < 𝑎𝑛 < 𝑥max such that either: 

0 < ℎ̃′′(𝑥) < 𝐴2 for 𝑥 ∈ [0,𝑎1) ∪ (𝑎2, 𝑎3) ∪ …∪ (𝑎2𝑘, 𝑎2𝑘+1) ∪ …  
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and 𝐴1 < ℎ̃′′(𝑥) < 0 for 𝑥 ∈ (𝑎1, 𝑎2) ∪ (𝑎3, 𝑎4) ∪ …∪ (𝑎2𝑘+1, 𝑎2𝑘+2) ∪ …,  

 

or  

 

𝐴1 < ℎ̃′′(𝑥) < 0 for 𝑥 ∈ [0,𝑎1) ∪ (𝑎2, 𝑎3) ∪ …∪ (𝑎2𝑘, 𝑎2𝑘+1) ∪ …  

and 0 < ℎ̃′′(𝑥) < 𝐴2 for 𝑥 ∈ (𝑎1, 𝑎2) ∪ (𝑎3, 𝑎4) ∪ …∪ (𝑎2𝑘+1, 𝑎2𝑘+2) ∪ …, 

 

(ii) ℎ̃(𝑋) = ℎ𝑋 and ℎ̃′(𝑋) = 𝐷𝐻,                                                                            (4.2) 

 

(iii) ℎ̃(0) = 0, 

 

which is in the 𝜀-neighbourhood of the base function h, defined in terms of either absolute 

or relative distance. That is, if ℎ𝜀+ and ℎ𝜀− are the functions giving the upper and lower 

boundaries of the 𝜀-neighbourhood of ℎ (if we are using the absolute definition of 

distance, ℎ𝜀+(𝑥) = ℎ(𝑥) + 𝜀 and ℎ𝜀− = ℎ(𝑥) − 𝜀, while if we are using the relative 

definition of distance, ℎ𝜀+(𝑥) =
ℎ(𝑥)

1+𝜀
 and ℎ𝜀− = (1 − 𝜀) ∙ ℎ(𝑥)) then ℎ𝜀−(𝑥) ≤ ℎ̃(𝑥) ≤

ℎ𝜀+(𝑥)  ∀ 𝑥 ∈ [0, 𝑥max]. We note that the base function ℎ should also itself satisfy 

conditions (4.2i) and (4.2iii): these define the function class 𝑄 from which we should 

choose any appropriate function. In practice, 𝑋 will usually denote a parameter 

corresponding to an equilibrium point, and condition (4.2ii) simply states that ℎ𝑋 

corresponds to the value taken by the unknown function at this equilibrium point and that 

𝐷𝐻 corresponds to the value taken by its derivative at this point. Condition (i) states that 

we want our function to be alternatingly concave up and concave down across the given 

partition, which forms the set of the function’s inflection points. Condition (4.2iii) simply 

states that the function should pass through the origin – as is required for most functions 

(growth rates, for example) to make biological sense.  

In order to determine the existence of such a function, we note that given any 

function 𝑔 that satisfies criteria (4.2) and that at some point 𝑦 ∈ (𝑎𝑘, 𝑎𝑘+1) assumes the 

value 𝑔(𝑦) with derivative 𝑔′(𝑦), upper and lower bounds for such a function can be 

defined across the entire domain [0, 𝑥max] as follows (see the blue curves in Figure 4.1 

for an example): 

1)  If criterion (4.2i) requires 0 < ℎ̃′′(𝑥) < 𝐴2 for 𝑥 ∈ [𝑎𝑘, 𝑎𝑘+1], as is the case 

in Fig. 4.1, then the upper bound of 𝑔 across [𝑎𝑘, 𝑎𝑘+1] is given by 𝑔(𝑥) ≤

Upp𝑦,𝑔(𝑦),𝑔′(𝑦) (𝑥) = 𝑔(𝑦) + 𝑔′(𝑦) ∙ (𝑥 − 𝑦) +
𝐴2

2
(𝑥 − 𝑦)2—i.e. the parabola with 
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maximal second derivative 𝐴2 tangent to 𝑔 at 𝑦—and the lower bound of 𝑔 across the 

same interval is given by 𝑔(𝑥) ≥ Low𝑦,𝑔(𝑦),𝑔′(𝑦)(𝑥) = 𝑔(𝑦) + 𝑔′(𝑦) ∙ (𝑥 − 𝑦) – i.e. 𝑔 

must lie above its own tangent at 𝑦 since it is concave up over this interval. Similarly, if 

criterion (4.2i) requires 𝐴1 < ℎ̃′′(𝑥) < 0 for 𝑥 ∈ (𝑎𝑘, 𝑎𝑘+1), then the upper bound of 𝑔 

across [𝑎𝑘, 𝑎𝑘+1] is given by Upp𝑦,𝑔(𝑦),𝑔′(𝑦)(𝑥) = 𝑔(𝑦) + 𝑔′(𝑦) ∙ (𝑥 − 𝑦) and the lower 

bound is given by Low𝑦,𝑔(𝑦),𝑔′(𝑦)(𝑥) = 𝑔(𝑦) + 𝑔′(𝑦) ∙ (𝑥 − 𝑦) +
𝐴1

2
(𝑥 − 𝑦)2. 

Furthermore, these inequalities are strict except at 𝑦 itself.  

2) We now extend our upper and lower boundaries to the adjacent intervals 

[𝑎𝑘−1, 𝑎𝑘] and [𝑎𝑘+1, 𝑎𝑘+2]. Consider [𝑎𝑘−1, 𝑎𝑘], and assume that we have the case where 

0 < ℎ̃′′(𝑥) < 𝐴2 for 𝑥 ∈ (𝑎𝑘, 𝑎𝑘+1), as in Figure 4.1. We already have a value for the 

upper bound at 𝑎𝑘: Upp𝑦,𝑔(𝑦),𝑔′(𝑦)(𝑎𝑘) = 𝑔(𝑦) + 𝑔′(𝑦) ∙ (𝑎𝑘 − 𝑦) +
𝐴2

2
(𝑎𝑘 − 𝑦)2, so 

we can continue the upper bound by following step 1), replacing 𝑦, 𝑔(𝑦) and 𝑔′(𝑦) with 

𝑎𝑘, Upp𝑦,𝑔(𝑦),𝑔′(𝑦)(𝑎𝑘) and Upp′(𝑎𝑘), where Upp′(𝑎𝑘) = 𝑔′(𝑦) + 𝐴2(𝑎𝑘 − 𝑦) is the 

(right hand side) derivative of the curve Upp𝑦,𝑔(𝑦),𝑔′(𝑦)(𝑥) at 𝑎𝑘. Since in this case, 𝐴1 <

ℎ̃′′(𝑥) < 0 for 𝑥 ∈ (𝑎𝑘−1, 𝑎𝑘), we can define Upp𝑦,𝑔(𝑦),𝑔′(𝑦) across [𝑎𝑘−1, 𝑎𝑘] as the 

tangent line to Upp𝑦,𝑔(𝑦),𝑔′(𝑦)(𝑎𝑘). In a similar way, we can continue the lower bound 

across this interval, starting from Low𝑦,𝑔(𝑦),𝑔′(𝑦)(𝑎𝑘) = 𝑔(𝑦) + 𝑔′(𝑦) ∙ (𝑎𝑘 − 𝑦) and 

Low′(𝑎𝑘) = 𝑔′(𝑦), and following the parabola of second derivative 𝐴1 that is tangent to 

Low𝑦,𝑔(𝑦),𝑔′(𝑦)(𝑎𝑘). Essentially we are proceeding exactly as per step 1), but using 

Upp𝑦,𝑔(𝑦),𝑔′(𝑦)(𝑎𝑘) and its right-derivative as initial values. This can be seen clearly from 

Figure 4.1, where the upper and lower bounds over [𝑎2, 𝑎3] are the line and parabola, 

respectively, continuing from the upper and lower bounds already defined over [𝑎3, 𝑎4]. 

We use exactly the same approach over [𝑎𝑘+1, 𝑎𝑘+2], and the alternative case, in which 

𝐴1 < ℎ̃′′(𝑥) < 0 over the original interval 𝑥 ∈ [𝑎𝑘, 𝑎𝑘+1], can be dealt with in a similar 

manner. 

3) Using the values and derivatives of Upp𝑦,𝑔(𝑦),𝑔′(𝑦) and Low𝑦,𝑔(𝑦),𝑔′(𝑦) at 𝑎𝑘−1 

and  𝑎𝑘+2, we can extend Upp𝑦,𝑔(𝑦),𝑔′(𝑦) and Low𝑦,𝑔(𝑦),𝑔′(𝑦) in the same way over the 

intervals [𝑎𝑘−2, 𝑎𝑘−1] and [𝑎𝑘+2, 𝑎𝑘+3]. We can then proceed to define Upp𝑦,𝑔(𝑦),𝑔′(𝑦) 

and Low𝑦,𝑔(𝑦),𝑔′(𝑦) inductively across the whole of the domain [0, 𝑥max]. 
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Figure 4.1: The 𝜀𝑄-neighbourhood of a base function ℎ with six inflection points 

𝑎1, … , 𝑎6, together with the upper and lower bounds Upp𝑋,ℎ𝑋,𝐷𝐻(𝑥) and Low𝑋,ℎ𝑋,𝐷𝐻(𝑥) 
of any functions satisfying conditions (i)-(iii) in Section 4. The base function is shown in 

black, while the upper and lower bounds ℎ𝜀+ and ℎ𝜀− are shown in red and Upp𝑋,ℎ𝑋,𝐷𝐻(𝑥) 
and Low𝑋,ℎ𝑋,𝐷𝐻(𝑥) are shown in blue. 
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To derive conditions for the existence of a function ℎ̃ satisfying (4.2) in the 𝜀-

neighbourhood of ℎ, we must first create the Upp𝑦,𝑔(𝑦),𝑔′(𝑦) and Low𝑦,𝑔(𝑦),𝑔′(𝑦) functions 

using steps 1)-3), starting with 𝑦 = 𝑋, 𝑔(𝑦) = ℎ𝑋 and 𝑔′(𝑦) = 𝐷𝐻. This will give us the 

upper and lower bounds for any viable function ℎ̃. We now put forward the following: 

 

Theorem 4.1: 

There exists a function ℎ̃: ℝ → [0, 𝑥max] that satisfies criteria (4.2) if and only if 

 

Upp𝑋,ℎ𝑋,𝐷𝐻(𝑥) > ℎ𝜀−(𝑥)  ∀ 𝑥 ∈ [0, 𝑥max], Upp𝑋,ℎ𝑋,𝐷𝐻(0) ≥ 0,  (4.3) 

 

       and Low𝑋,ℎ𝑋,𝐷𝐻(𝑥) < ℎ𝜀+(𝑥)  ∀ 𝑥 ∈ [0, 𝑥max], Low𝑋,ℎ𝑋,𝐷𝐻(0) ≤ 0,  

 

where Upp𝑋,ℎ𝑋,𝐷𝐻 and Low𝑋,ℎ𝑋,𝐷𝐻 are the upper and lower bound functions defined in 

steps 1)-3) above. 

 

Proof 

Clearly such a function cannot exist unless conditions (4.3) are satisfied, and so they are 

necessary conditions, but it remains to be proved that they are sufficient conditions for 

the existence of a function satisfying criteria (4.2). In order to do this, we shall construct 

a valid function assuming only these conditions. To follow the proof, it is helpful to refer 

to Fig. 4.1, which shows an example base function and its 𝜀-neighbourhood (red 

boundaries) together with the corresponding Upp𝑋,ℎ𝑋,𝐷𝐻 and Low𝑋,ℎ𝑋,𝐷𝐻 (blue curves). 

We first choose some 0 < 𝛿 < 𝜀 which is sufficiently close to 𝜀 that the condition 

Upp𝑋,ℎ𝑋,𝐷𝐻(𝑥) > ℎ𝛿−(𝑥) and Low𝑋,ℎ𝑋,𝐷𝐻(𝑥) < ℎ𝛿+(𝑥)  ∀ 𝑥 ∈ [0, 𝑥max] still holds, and 

some 0 < 𝛾 ≪ 1 such that if we construct Upp𝑋,ℎ𝑋,𝐷𝐻 and Low𝑋,ℎ𝑋,𝐷𝐻 using slightly 

relaxed bounds on the second derivative—𝛾 < ℎ̃′′(𝑥) < 𝐴2 − 𝛾 and 𝐴1 + 𝛾 < ℎ̃′′(𝑥) <

−𝛾 instead of 0 < ℎ̃′′(𝑥) < 𝐴2 and 𝐴1 < ℎ̃′′(𝑥) < 0—then conditions (4.2) are still 

satisfied, and furthermore, that the second derivatives of ℎ𝛿− and ℎ𝛿+ are still within 

these new bounds. It is easy to verify that such 𝛿 and 𝛾 must exist through the continuity 

of the construction of ℎ𝛿+, ℎ𝛿−, Upp𝑋,ℎ𝑋,𝐷𝐻 and Low𝑋,ℎ𝑋,𝐷𝐻. Hereon, whenever we talk 

of Upp𝑦,𝑔(𝑦),𝑔′(𝑦) and Low𝑦,𝑔(𝑦),𝑔′(𝑦), we shall refer to the upper and lower bounds 

constructed using the slightly modified limits of the second derivative. 
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Starting from 𝑋, we initially define ℎ̃ for x<𝑋 by setting ℎ̃(𝑥)=Upp𝑋,ℎ𝑋,𝐷𝐻(𝑥). 

We note that, by the 3 steps of construction, Upp𝑦,𝑔(𝑦),𝑔′(𝑦)(𝑥) and Low𝑦,𝑔(𝑦),𝑔′(𝑦)(𝑥) 

are both continuous with respect to the initial values 𝑦, 𝑔(𝑦) and 𝑔′(𝑦). Therefore at 

every point 𝑥 over which we’ve already defined ℎ̃, the new upper and lower bounds 

formed by starting from 𝑥, ℎ̃(𝑥) and ℎ̃′(𝑥) vary continuously. We can use this fact to 

construct a valid function ℎ̃ piece by piece without violating any of the conditions it must 

satisfy. Let us initially consider the interval [0, 𝑋]. Since Low𝑋,ℎ𝑋,𝐷𝐻(𝑥) < ℎ𝛿+(𝑥), and 

Low𝑋,ℎ𝑋,𝐷𝐻(0) ≤ 0, then if we check Low𝑥,ℎ̃(𝑥),ℎ̃′(𝑥) at each point of 

ℎ̃(𝑥)=Upp𝑋,ℎ𝑋,𝐷𝐻(𝑥), then there must come a point 𝑥1 ∈ [0, 𝑋] for which either 

Low𝑥1,ℎ̃(𝑥1),ℎ̃
′(𝑥1)

(0) = 0 whilst Low𝑥1,ℎ̃(𝑥1),ℎ̃
′(𝑥1)

 remains below ℎ𝛿+ over [0, 𝑥1], or at 

which Low𝑥1,ℎ̃(𝑥1),ℎ̃
′(𝑥1)

 is tangent to ℎ𝛿+ at some point 𝑥2. In the first case, we note that 

Low𝑥1,ℎ̃(𝑥1),ℎ̃
′(𝑥1)

 cannot pass below ℎ𝛿− in the interval (0, 𝑥1], because ℎ𝛿−(0) ≤ 0 and 

the curve of Low𝑥1,ℎ̃(𝑥1),ℎ̃
′(𝑥1)

 is everywhere more concave than that of ℎ𝛿− by 

definition—Low𝑥1,ℎ̃(𝑥1),ℎ̃
′(𝑥1)

 cannot lie beneath ℎ𝛿− over any interval because on the left 

hand side of any such interval, we would necessarily have Low𝑥1,ℎ̃(𝑥1),ℎ̃
′(𝑥1)

′ (𝑥) <

ℎ𝛿−
′ (𝑥), whilst on the right hand side we would need Low𝑥1,ℎ̃(𝑥1),ℎ̃

′(𝑥1)
′ (𝑥) > ℎ𝛿−

′ (𝑥), 

which would violate Low𝑥1,ℎ̃(𝑥1),ℎ̃
′(𝑥1)

′′ (𝑥) > ℎ𝛿−
′′ (𝑥) ∀𝑥 ∈ [0, 𝑥max]. Therefore we can 

set ℎ̃(𝑥) = Low𝑥1,ℎ̃(𝑥1),ℎ̃
′(𝑥1)

(𝑥) for 𝑥 ∈ [0, 𝑥1], and we will have successfully defined ℎ̃ 

over [0, 𝑋].  

In the second case, we set ℎ̃ equal to ℎ𝛿+ for 𝑥 < 𝑥1, noting that regardless of our 

definition of distance, ℎ𝛿+ and ℎ𝛿− both satisfy condition (4.2i) since ℎ does. If we are 

using Definition 2.24 of distance between functions (i.e. relative error), then ℎ𝛿+(0) = 0 

so we set ℎ̃(𝑥) = ℎ𝛿+(𝑥) ∀𝑥 ∈ [0, 𝑥1] and we are done. If we are using Definition 2.23 

(absolute error), we note that since the construction of Low𝑦,𝑔(𝑦),𝑔′(𝑦)(𝑥) is continuous, 

there must be a point 𝑥3 such that  Low𝑥3,ℎ𝛿+(𝑥3),ℎ𝛿+
′ (𝑥3)

(0) = 0. Low𝑥2,ℎ𝛿+(𝑥2),ℎ𝛿+
′ (𝑥2)

(𝑥) 

cannot pass below ℎ𝛿− over the interval (0, 𝑥2], again because it is everywhere more 

concave than ℎ𝛿−, so assuming otherwise would cause a contradiction. Therefore we set 

ℎ̃(𝑥) ≔ Low𝑥3,ℎ𝛿+(𝑥3),ℎ𝛿+
′ (𝑥3)

(𝑥) ∀  𝑥 ∈ [0, 𝑥2], and we have successfully defined ℎ̃ over 

[0, 𝑋]. 

We define ℎ̃ across the interval [𝑋, 𝑥max] in a similar way. We initially set ℎ̃(𝑥) =

Upp𝑋,ℎ𝑋,𝐷𝐻(𝑥) for 𝑥 > 𝑋, we check Low𝑥,ℎ̃(𝑥),ℎ̃′(𝑥) at each point, and note that there must 
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come a point 𝑥4 at which either Low𝑥4,ℎ̃(𝑥4),ℎ̃
′(𝑥4)

(𝑥) lies tangent to ℎ𝛿+ at some further 

point 𝑥5, or Low𝑥4,ℎ̃(𝑥4),ℎ̃
′(𝑥4)

(𝑥max) < ℎ𝛿+(𝑥max). Either way, we note that as before, 

Low𝑥4,ℎ̃(𝑥4),ℎ̃
′(𝑥4)

(𝑥) must lie above ℎ𝛿− over the interval [𝑥4, 𝑥max], so in the latter case, 

we can set ℎ̃(𝑥) = Low𝑥4,ℎ̃(𝑥4),ℎ̃
′(𝑥4)

 over the interval [𝑥4, 𝑥max], and we are done. In the 

former case, we set ℎ̃(𝑥) = Low𝑥4,ℎ̃(𝑥4),ℎ̃
′(𝑥4)

 over the interval [𝑥4, 𝑥5], and then  ℎ̃(𝑥) =

ℎ𝛿+(𝑥) ∀𝑥 ∈ (𝑥5, 𝑥max], and we are done. 

We have successfully proved that, provided that conditions (4.3) are satisfied, it 

is always possible to construct a 𝐶1 function satisfying criterion (4.2). Therefore 

conditions (4.3) are precisely the necessary and sufficient conditions for there to exist at 

least one function in the 𝜀-neighbourhood of ℎ that satisfies criterion (4.2) ∎ 

 

Using this result, we can determine a projection of the 𝜀𝑄-neighbourhood of ℎ 

from function space into the generalised bifurcation space composed of the values 𝑋 =

𝑥∗, ℎ𝑋 = ℎ̃(𝑥∗) and 𝐷𝐻 = ℎ̃′(𝑥∗), but we need to know the inflection points 𝑎1, … , 𝑎𝑛 

beforehand. In practice, however, we are rarely sure of the exact value of the inflection 

points—even if we can theoretically justify their existence and number. Because of this, 

we should add the inflection points themselves as parameters of our sensitivity 

investigation. From here we can either consider these 𝑛 inflection values as extra 

parameters in the generalised bifurcation space (already consisting of the values 𝑋 = 𝑥∗, 

ℎ𝑋 = ℎ̃(𝑥∗) and 𝐷𝐻 = ℎ̃′(𝑥∗)) in which we will conduct our investigation, or we can 

simply consider our overall projected 𝜀𝑄-neighbourhood in the original (𝑋, ℎ𝑋, 𝐷𝐻)-

space as the union of the projected neighbourhoods in (𝑋, ℎ𝑋, 𝐷𝐻)-space over all possible 

sets of inflection points. The latter approach has the advantage that it is more 

computationally efficient and much easier to visualise, but does carry the risk that some 

information will be lost when it comes to computing the volume of regions in the 

neighbourhood, as is necessary if we wish to quantify the sensitivity of a system. 

In order to demonstrate how to use the result of Theorem 4.1 to investigate 

structural sensitivity in biological models, we shall next consider three different complex 

models from the literature, and explore the structural sensitivity of these models. 
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4.4 Examples of structural sensitivity analysis 

 

We now demonstrate the approach outlined in sections 3.2 and 3.3 by implementing such 

a test on several mathematical models taken from the literature. 

 

4.4.1 Age-structured Predator-prey model in a chemostat with nutrient 

 

We consider the four dimensional system modelling predator-prey-nutrient dynamics in 

a chemostat from (Fussmann et al., 2000): 

d𝑁

d𝑡
= 𝛿(𝑁𝑖 − 𝑁) − 𝐹̃𝑐(𝑁)𝐶,                                        (4.4) 

d𝐶

d𝑡
= 𝐹̃𝑐(𝑁)𝐶 −

𝐹𝐵(𝐶)𝐵

𝜀
− 𝛿𝐶,                                   (4.5) 

d𝑅

d𝑡
= 𝐹𝐵(𝐶)𝑅 − (𝛿 + 𝑚 + 𝜆)𝑅,                                 (4.6) 

d𝐵

d𝑡
= 𝐹𝐵(𝐶)𝑅 − (𝛿 + 𝑚)𝐵.                                        (4.7) 

Here 𝑁 is the nutrient concentration, 𝐶 is the concentration of a unicellular green algae, 

𝑅 is the concentration of planktonic rotifer that are still of reproductive age, and 𝐵 is the 

total concentration of the planktonic rotifer. 𝐹̃𝐶(𝑁) and 𝐹𝐵(𝐶) are the functional 

responses of the algae and the rotifer, respectively, which Fussmann et al. consider to be 

Monod functions 𝐹̃𝐶(𝑁) ≔
𝑏𝐶𝑁

𝐾𝐶+𝑁
 and 𝐹𝐵(𝐶) ≔

𝑏𝐵𝐶

𝐾𝑏+𝐶
. See Fussmann et al. (2000) for full 

explanation of the model parameters and discussion of the model’s dynamical behaviour. 

The key bifurcation parameter in the system is the dilution rate δ. 

We shall check for structural sensitivity in this system with respect to the 

functional response of the algae, 𝐹̃𝑐(𝑁), and we assume that the parameterisation of the 

functional response of the rotifer is fixed as 𝐹𝐵(𝐶) ≔
𝑏𝐵𝐶

𝐾𝑏+𝐶
. We require that 𝐹̃𝑐 be a 

function satisfying the following conditions: 

𝐹̃𝑐(0) = 0,                                                                (4.8) 

𝐹̃𝐶
′(𝑁) > 0   ∀ 𝑁 ∈ [0, 𝑁max],                                   (4.9) 

𝐴 < 𝐹̃𝐶
′′(𝑁) < 0   ∀ 𝑁 ∈ [0, 𝑁max].                         (4.10) 

That is, 𝐹̃𝑐 is a functional response of Holling type II: an increasing, saturating function 

passing through the origin. We take the base function of 𝐹̃𝑐 as 𝐹𝐶(𝑁) ≔
𝑏𝐶𝑁

𝐾𝐶+𝑁
, with the 
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same parameters, 𝑏𝐶 = 3.3 and 𝐾𝐶 = 4.3, as are used in Chapter 3, and consider only 

functions that are within an absolute distance 𝜀 of this base function 𝐹𝐶, that is 

|𝐹̃𝑐(𝑁) − 𝐹𝐶(𝑁)| < 𝜀   ∀ 𝑁 ∈ [0, 𝑁max].  

This can also be expressed as 𝐹̃𝑐(𝑁) < 𝐹𝑐
𝜀+(𝑁) = 𝐹𝐶(𝑁) + 𝜀, and 𝐹̃𝑐(𝑁) < 𝐹𝑐

𝜀−(𝑁) =

𝐹𝐶(𝑁) − 𝜀.  

Now finding an equilibrium of system (4.4)-(4.7) is an underdetermined problem, 

since it entails solving four isocline equations for five unknowns, 𝑁∗, 𝐶∗, 𝑅∗, 𝐵∗ and 𝐹𝑁 

- where 𝐹𝑁 = 𝐹̃𝑐(𝑁
∗)—so we let 𝑁∗ follow Ξ, an unspecified parameter of our 

investigation. Given a choice of Ξ, we can then substitute in 𝑁∗ = Ξ into (4.4)-(4.7), and 

then determine the values 𝐶∗, 𝑅∗, 𝐵∗ and 𝐹𝑁. Similarly, when performing a linear 

stability analysis, the unknown value 𝐹̃𝐶
′(𝑁∗) will feature in the Jacobian matrix of (4.4)-

(4.7) at (𝑁∗, 𝐶∗, 𝑅∗, 𝐵∗), so we let this value follow the parameter 𝐷𝐹. Once a value of 

𝐷𝐹 is chosen, we can set 𝐹̃𝐶
′(𝑁∗) = 𝐷𝐹, and conditions for the eigenvalues of the 

Jacobian to have negative real parts can be derived analytically to determine whether 

(𝑁∗, 𝐶∗, 𝑅∗, 𝐵∗) is a stable equilibrium or not. 

 Now we need to derive the necessary and sufficient conditions for there to exist 

a function 𝐹̃𝑐: [0, 𝑁max] → ℝ satisfying conditions (4.8)-(4.10) such that 𝑁∗ = Ξ and 

𝐹̃𝐶
′(𝑁∗) = 𝐷𝐹 hold for a given point (Ξ, 𝑑𝐹). These specific conditions were previously 

derived and proved in Chapter 3, but can also be derived from Theorem 4.1 in the case 

that there is no inflection point: since a Holling-type II function is concave down across 

the whole domain, the proof remains valid. 

In this case, the upper and lower bounds of 𝐹𝑐̃ are as follows: 

UppΞ,𝐹𝑁,𝐷𝐹(𝑁) = 𝐹𝑁 + 𝐷𝐹(𝑁 − Ξ), 

LowΞ,𝐹𝑁,𝐷𝐹(𝑁) = 𝐹𝑁 + 𝐷𝐹(𝑁 − Ξ) +
1

2
𝐴(𝑁 − Ξ)2, 

and by Theorem 4.1 the conditions for the existence of such a function 𝐹̃𝑐 are:  

𝐹𝑁 + 𝐷𝐹(𝑁 − Ξ) > 𝐹𝑐
𝜀−(𝑁)  ∀ 𝑁 ∈ [0, 𝑁max],  

𝐹𝑁 + 𝐷𝐹(𝑁 − Ξ) +
1

2
𝐴(𝑁 − Ξ)2 < 𝐹𝑐

𝜀+(𝑁)  ∀ 𝑁 ∈ [0, 𝑁max],   

𝐹𝑁 − Ξ ∙ 𝐷𝐹 > 0 and  𝐹𝑁 − Ξ ∙ 𝐷𝐹 +
1

2
𝐴 ∙ Ξ2 < 0, 
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Figure 4.2: Structural sensitivity investigation of the nutrient-algae-reproducing rotifer-

total rotifer system (4.4)-(4.7). (A) The base function 𝐹𝐶(𝑁) ≔
𝑏𝐶𝑁

𝐾𝐶+𝑁
 and its 𝜀-

neighbourhood. 𝐹𝐶 is given by the red curve, while the boundaries of its 𝜀-neighbourhood 

are given by the blue curves. The green curve is derived from isocline analysis of the 

system, and gives us the equilibrium value 𝐹̃𝐶(N
∗), as a function of the equilibrium 

parameter Ξ. (B)-(D) Stability portraits of the 𝜀𝑄-neighbourhood of the base functional 

response of the algae, 𝐹𝐶, divided into regions of stability and instability of the interior 

equilibrium point, for three different values of the chemostat dilution rate, 𝛿. The green 

regions consist of points that correspond to a system with stable equilibrium, and the red 

regions of points which correspond to a system with unstable equilibrium. Dark blue 

indicates that there is no valid model function in the 𝜀𝑄-neighbourhood of 𝐹𝐶 such that 

the system with this function has equilibrium values 𝑁∗ = Ξ and 𝐹̃𝐶
′(𝑁∗) = 𝐷𝐹. Azure 

regions indicate that the point (Ξ,𝐷𝐹) can be covered by keeping the formulation of the 

base function and varying its parameters. The parameters are 𝑁𝑖 = 80; 𝐾𝐵 = 15; 𝑏𝐵 =
1.95; 𝜖 = 0.25; 𝑚 = 0.055; 𝜆 = 0.4. The dilution rate 𝛿 takes the values: (B) 𝛿 = 0.175. 

(C) 𝛿 = 0.5. (D) 𝛿 = 0.75. 
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We now proceed by scanning the (Ξ, 𝐷𝐹)-space, and using these conditions to 

check each point for the existence of a corresponding function satisfying (4.8)-(4.10), as 

well as using the Jacobian to check whether or not the interior equilibrium in the system 

with such a function would be stable or unstable. The results of such investigations are 

shown in Fig. 4.2B-D constructed for three values of the chemostat dilution rate, 𝛿. In 

Fig. 4.2A we show the base function, the lower and upper bounds as well as the curve 

𝐹̃𝑐(Ξ) showing the dependence of 𝐹̃𝑐(𝑁
∗) on the parameter Ξ—since this curve has 

negative derivative, it is clear that we can only have a single equilibrium value 𝑁∗ for a 

given functional response, since all functional responses have positive derivative.  The 

parameters used are identical to those found in Fussmann et al. (2001) except for the 

maximum per-capita algae-consumption rate of the rotifer, 𝑏𝐵, which we change from 

𝑏𝐵 = 2.25 to 𝑏𝐵 = 1.95—since with the original parameters there is little structural 

sensitivity present for us to discuss. We note, however, that the new parameters are still 

well within the values reported in the literature (e.g. Halbach and Halbach-Keup, 1974). 

With the new parameter set, we see that when 𝛿 = 0.175 the system exhibits very little 

structural sensitivity (Fig. 4.2B), as almost the entire domain is covered by the region of 

stability, but we see that for intermediate values of 𝛿, shown in Figure 4.2C for 𝛿 = 0.5, 

there are significant regions of both stability and instability in the (Ξ, 𝐷𝐹) domain.  

In this figure, the fact that the azure region is located entirely within the domain 

of instability indicates that fixing 𝐹̃𝑐 =
𝑏𝐶𝑁

𝐾𝐶+𝑁
 and varying the parameters 𝑏𝐶 and 𝐾𝐶 will 

give the misleading impression that the interior equilibrium is unstable for all possible 

functional responses. In figure 4.2D we see the domain with 𝛿 = 0.7 is once again 

dominated by the stable region. Overall, the formulation of the functional response fixed 

as a Monod function, a variation-of-parameters investigation will uncover a pair of 

forward and backwards supercritical Hopf bifurcations with respect to the parameter 𝛿, 

but the continued presence of a green domain indicates that there may well be a different 

functional response parameterisation which is just as valid as the original function with 

regards to qualitative properties and data fitting, but for which the interior equilibrium is 

stable for all values of 𝛿. Thus for some functional responses, variation in the dilution 

rates will not result in a Hopf bifurcation, which was originally suggested in Fussmann 

et al., 2000. 
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4.4.2 Nutrient-Phytoplankton-Zooplankton Model with Detritus 

 

We consider the nutrient-phytoplankton-zooplankton-detritus model given by 

d𝑁

d𝑡
= −

𝑁

(𝑒 + 𝑁)

𝑎

(𝑏 + 𝑐𝑃)
𝑃 + 𝛽ℎ̃(𝑃) 𝑍 + 𝛾𝑑𝑍2 + 𝜑𝐷 + 𝑘(𝑁0 − 𝑁),                    (4.11) 

d𝑃

d𝑡
=

𝑁

(𝑒 + 𝑁)

𝑎

(𝑏 + 𝑐𝑃)
𝑃 − 𝑟𝑃 − ℎ̃(𝑃)𝑍 − (𝑠 + 𝑘)𝑃,                                                 (4.12) 

d𝑍

d𝑡
= 𝛼ℎ̃(𝑃)𝑍 − 𝑑𝑍2,                                                                                                           (4.13) 

d𝐷

d𝑡
= 𝑟𝑃 + (1 − 𝛼 − 𝛽)ℎ̃(𝑃)𝑍 − (𝜑 + 𝜓 + 𝑘)𝐷,                                                         (4.14) 

where the state variables N, P, Z and D represent the concentrations of nutrient, 

phytoplankton, zooplankton and detritus in the well-mixed upper layer of the ocean 

respectively, as first proposed in (Edwards, 2001), where a detailed description of the 

model and its parameters can be found. In particular, we are interested in the function 

ℎ̃(𝑃), which is the functional response of the zooplankton—i.e. the per-capita rate at 

which zooplankton consume phytoplankton as a function of phytoplankton density. We 

take the precise formulation of this function to be unknown, but require it to be a 𝐶1-

function having the following properties (based on the classical definition of Holling type 

III in the literature, see Gentlemen et al., 2003):  

ℎ̃(0) = 0 ,                                                                                                    (4.15) 

ℎ̃′(𝑃) > 0  ∀ 𝑃 ∈ [0, 𝑃max],                                                                     (4.16) 

∃𝑃0 ∈ (0, 𝑃max)  such that 0 < ℎ̃′′(𝑃) < 𝐴1  ∀ 𝑃 ∈ [0, 𝑃0],             (4.17)  

and 𝐴2 < ℎ̃′′(𝑃) < 0  ∀ 𝑃 ∈ [𝑃0, 𝑃max].                                                       (4.18) 

That is, ℎ̃ is an increasing sigmoid function over [0, 𝑥max] that passes through the origin; 

A1 and A2 are parameters characterizing the values of the second derivative (these can be 

estimated based on the base function, but several values should be considered). We 

further require that ℎ̃ be an absolute distance of less than 𝜀 from the base function ℎ(𝑃), 

which we take to be the functional response used in (Edwards, 2001): ℎ(𝑃) =
𝜆𝑃2

𝜇2+𝑃2, with 

𝜆 = 0.6 and 𝜇 = 0.035. That is  

‖ℎ̃(𝑃) − ℎ(𝑃)‖ < 𝜀      ∀ 𝑃 ∈ [0, 𝑃max]. 

Now, finding the equilibrium densities in (4.11)-(4.14) requires us to solve a 

system of four equations for five unknown variables, so we allow the equilibrium density 

of the prey,  𝑃∗, to follow  𝑃∗ = Φ, where Φ is a parameter of the investigation, and then 
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we can solve the four equations for 𝑁∗, 𝑍∗, 𝐷∗ and ℎ𝑃—where ℎ𝑃 = ℎ̃(𝑃∗) denotes the 

value of the functional response at the equilibrium—in the usual way. Figure 4.3A shows 

the base functional response in red and the upper and lower limits—in blue—of any 

viable function ℎ̃, together with the curve showing the dependence of ℎ𝑃 on the parameter 

 Φ (n.b. this should not be confused with the dependence of  ℎ̃(𝑃) on 𝑃, which remains 

unspecified throughout). 

In order to find the stability of the equilibrium point (𝑁∗, 𝑃∗, 𝑍∗, 𝐷∗ ), we can carry 

out the usual linear stability analysis by calculating the Jacobian from (4.11)-(4.14) at 

(𝑁∗, 𝑃∗, 𝑍∗, 𝐷∗ ) and checking the sign of the real parts of its eigenvalues, but the Jacobian 

depends on the value  ℎ̃′(𝑃∗), which is unknown, and so we allow this value to follow 

ℎ̃′(𝑃∗) = 𝐷𝐻, where 𝐷𝐻 is another investigation parameter. Further, we note that the 

inflection point of our sigmoid function ℎ̃ is unknown, and so needs to be treated as a 

further parameter of our investigation, 𝑃0, as was discussed in the concluding paragraph 

of Section 4.3. In this instance, we shall consider a wide range of values of 𝑃0 and 

superimpose the resulting projected 𝜀𝑄-neighbourhoods to obtain the total 𝜀𝑄-

neighbourhood. 

It is easy to obtain the necessary and sufficient conditions for there to exist a 

sigmoid function in the 𝜀𝑄-neighbourhood corresponding to the given values (Φ,𝐷𝐻) by 

applying Theorem 4.1. Following the process outlined in Section 4.3, for given values Φ, 

Ξ and 𝑃0, we can compute the upper and lower bounds of our sigmoid function as follows. 

 

If Φ ≥ 𝑃0, 

𝑈𝑝𝑝(𝑃) ≔ {
ℎ𝑃 + 𝐷𝐻 ∙ (𝑃 − Φ) +

𝐴1

2
(𝑃 − 𝑃0)

2

ℎ𝑃 + 𝐷𝐻 ∙ (𝑃 − Φ)

: 𝑃 ∈ [0, 𝑃0]      

: 𝑃 ∈ [𝑃0, 𝑃max]
, 

and  

𝐿𝑜𝑤(𝑃) ≔

{
 
 

 
 ℎ𝑃 + 𝐷𝐻 ∙ (𝑃 − Φ) + 𝐴2 (

(𝑃 − Φ)2

2
+ (𝑃0 − Φ)(𝑃 − 𝑃0)) ∶ 𝑃 ∈ [0, 𝑃0]

ℎ𝑃 + 𝐷𝐻 ∙ (𝑃 − Φ) +
𝐴2

2
(𝑃 − Φ)2                                          ∶ 𝑃 ∈ [𝑃0, 𝑃max]

. 

If Φ < 𝑃0, 

𝑈𝑝𝑝(𝑃) ≔

{
 

 ℎ𝑃 + 𝐷𝐻 ∙ (𝑃 − Φ) +
𝐴1

2
(𝑃 − Φ)2

ℎ𝑃 + 𝐷𝐻 ∙ (𝑃 − Φ) + 𝐴1(𝑃0 − Φ)(𝑃 −
1

2
(𝑃0 + Φ))

: 𝑃 ∈ [0, 𝑃0]      

: 𝑃 ∈ [𝑃0, 𝑃max]
, 
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and  

𝐿𝑜𝑤(𝑥) ≔ {
ℎ𝑃 + 𝐷𝐻 ∙ (𝑃 − Φ)

ℎ𝑃 + 𝐷𝐻 ∙ (𝑃 − Φ) +
𝐴2

2
(𝑃 − 𝑃0)

2

: 𝑃 ∈ [0, 𝑃0]      

: 𝑃 ∈ [𝑃0, 𝑃max]
. 

 

From Theorem 4.1, we can obtain the necessary and sufficient conditions for 

values Φ and 𝑑𝐻 to correspond to a valid function ℎ̃ to be as follows: 

If Φ ≥ 𝑃0 

ℎ𝑃 + 𝐷𝐻 ∙ (𝑃 − Φ) +
𝐴1

2
(𝑃 − 𝑃0)

2 > ℎ𝜀−(𝑃)  ∀ 𝑃 ∈ [0, 𝑃0]; 

ℎ𝑃 + 𝐷𝐻 ∙ (𝑃 − Φ) > ℎ𝜀−(𝑃) ∀ 𝑃 ∈ [𝑃0, 𝑃max]; 

ℎ𝑃 + 𝐷𝐻 ∙ (𝑃 − Φ) + 𝐴2 (
1

2
(𝑃 − Φ)2 + (𝑃0 − Φ)(𝑃 − 𝑃0)) < ℎ𝜀+(𝑃) ∀ 𝑃 ∈ [0, 𝑃0];    

ℎ𝑃 + 𝐷𝐻 ∙ (𝑃 − Φ) +
𝐴2

2
(𝑃 − Φ)2 < ℎ𝜀+(𝑃)  ∀ 𝑃 ∈ [𝑃0, 𝑃max];  

ℎ𝑃 − 𝐷𝐻 ∙ Φ +
𝐴1

2
𝑃0

2 > 0,  

and ℎ𝑃 − 𝐷𝐻 ∙ Φ + 𝐴2 (
1

2
Φ2 − 𝑃0 ∙ (𝑃0 − 𝑃̃)) < 0. 

If Φ < 𝑃0 

ℎ𝑃 + 𝐷𝐻 ∙ (𝑃 − Φ) +
𝐴1

2
(𝑃 − Φ)2 > ℎ𝜀−(𝑃) ∀ 𝑃 ∈ [0, 𝑃0]; 

ℎ𝑃 + 𝐷𝐻 ∙ (𝑃 − Φ) + 𝐴1(𝑃0 − Φ)(𝑃 −
1

2
(𝑃0 + Φ)) > ℎ𝜀−(𝑃) ∀ 𝑃 ∈ [𝑃0, 𝑃max]; 

ℎ𝑃 + 𝐷𝐻 ∙ (𝑃 − Φ) < ℎ𝜀+(𝑃) ∀ 𝑃 ∈ [0, 𝑃0]; 

ℎ𝑃 + 𝐷𝐻 ∙ (𝑃 − Φ) +
𝐴2

2
(𝑃 − 𝑃0)

2 < ℎ𝜀+(𝑃) ∀ 𝑃 ∈ [𝑃0, 𝑃max]; 

ℎ𝑃 − 𝐷𝐻 ∙ Φ +
𝐴1

2
Φ2 > 0, 

and ℎ𝑃 − 𝐷𝐻 ∙ Φ < 0. 

 

Now we have these conditions, we can cover the (Φ-𝐷𝐻) parameter space 

numerically checking whether each point (Φ, 𝐷𝐻) has a corresponding sigmoid function 

in the 𝜀𝑄-neighbourhood of ℎ with an equilibrium and derivative taking these values. At 

the same time, if (Φ, 𝐷𝐻) does correspond to such a function, we can numerically check 

the real parts of the eigenvalues of the Jacobian to determine the stability of the 

corresponding equilibrium point (𝑁∗, 𝑃∗, 𝑍∗, 𝐷∗ ). 
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Such an investigation gives us portraits as in Fig. 4.3B-D. Here the dark blue 

regions give us the domain for which there is no function ℎ̃ ∈ 𝜀𝑄(ℎ) such that the 

resulting system satisfies 𝑃∗ = Φ with ℎ̃′(𝑃∗) = 𝐷𝐻. The remaining region—the 

projection of the 𝜀𝑄-neighbourhood of ℎ onto (Φ-𝐷𝐻) space—is divided into areas in 

which the equilibrium is stable (green) and unstable (red). The overlying azure region is 

the range across which a function ℎ̃ of the same form as the base function corresponds to 

the point (Φ,𝐷𝐻)—i.e. this is the region which can be covered by fixing the 

parameterization as ℎ̃(𝑃) =
𝜆𝑃2

𝜇2+𝑃2, and simply varying the parameters 𝜆 and 𝜇. 

The figure shows us the results of a structural sensitivity analysis for the system 

with three different choices of the parameter 𝑑—the rate of predation on zooplankton by 

higher trophic levels. For 𝑑 = 1.0 (Fig. 4.3B), we see that the azure region entirely 

overlies the green stability region, indicating that the conventional parameter variation 

approach used in (Edwards, 2001) would indicate no structural sensitivity for this system. 

However, our analysis reveals that there is still a significant region of instability in the 

system, which would be missed by the conventional approach. As 𝑑 is increased to 1.7, 

the azure region moves to straddle the bifurcation line (Fig. 4.3C), but when it is increased 

further to 2.1 the azure region moves back towards the stability domain. In the system 

with fixed base function ℎ(𝑃) =
𝜆𝑃2

𝜇2+𝑃2 , this behaviour is shown to manifest itself as a 

pair of forward and backward Hopf bifurcations (Edwards, 2001), but we can see from 

Fig. 4.3D that when all possible parameterisations are taken into consideration, in fact 

the ratio between the areas of the stable and unstable regions remains relatively 

unchanged, which was somewhat overlooked in the initial publication by (Edwards, 

2001). However, we note that since the azure region straddles the bifurcation line in this 

instance, a full variation of the parameters 𝜆 and 𝜇 would also reveal this possibility to 

an extent. 
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Figure 4.3: Structural sensitivity investigation of the nutrient-phytoplankton-

zooplankton-detritus system (4.11)-(4.14). (A) The base function ℎ(𝑃) =
𝜆𝑃2

𝜇2+𝑃2 and its 

𝜀-neighbourhood. ℎ is given by the red curve, while the boundaries of its 𝜀-

neighbourhood are given by the blue curves. The green curve is derived from isocline 

analysis of the system, and gives us the equilibrium value ℎ̃(𝑃∗), as a function of the 

equilibrium parameter Φ. (B)-(D) Stability portraits of the 𝜀𝑄-neighbourhood of the base 

functional response, ℎ, divided into regions of stability and instability of a specific 

equilibrium point, for three different values of the zooplankton predation rate, 𝑑. The 

green regions consist of points that correspond to a system with stable equilibrium, and 

the red regions of points which correspond to a system with unstable equilibrium. Dark 

blue indicates that there is no valid model function in the 𝜀𝑄-neighbourhood of ℎ such 

that the system with this function has equilibrium values 𝑃∗ = Φ and ℎ′(𝑃∗) = 𝐷𝐻. 

Azure regions indicate that the point (Φ,𝐷𝐻) can be covered by keeping the formulation 

of the base function and varying its parameters. The parameters are 𝑒 = 0.03; 𝑎 = 0.2; 

𝑏 = 0.2; 𝑐 = 0.4; 𝛽 = 0.33;  𝛾 = 0.5; 𝜙 = 0.1; 𝑘 = 0.05; 𝑟 = 0.15; 𝑠 = 0.04; 𝛼 =
0.25; 𝜓 = 0.08 and 𝑁0 = 0.6. The zooplankton predation rate in each figure is: (B) 𝑑 =
1.0. (C) 𝑑 = 1.7. (D) 𝑑 = 2.1. 
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4.4.3 Tri-trophic food chain model with time delay 

 

As an example of how the structural sensitivity analysis framework can work on delay-

differential equation models, we consider the following system 

d𝑥1(𝑡)

d𝑡
= 𝑥1(𝑡)(1 − 𝑥1(𝑡)) − 𝑎𝑥1(𝑡)𝑥2(𝑡),                                                                     (4.19) 

d𝑥2(𝑡)

d𝑡
= −𝑏𝑥2(𝑡) + 𝑐𝑥1(𝑡 − 𝜏)𝑥2(𝑡) − ℎ̃(𝑥2(𝑡))𝑥3(𝑡) − 𝑗𝑥2(𝑡)

2,                         (4.20) 

d𝑥3(𝑡)

d𝑡
= −𝑓𝑥3(𝑡) + 𝑘ℎ̃(𝑥2(𝑡 − 𝜏))𝑥3(𝑡) − ℎ𝑥3(𝑡)

2,                                                 (4.21) 

representing a tri-trophic food chain model. Here 𝑥𝑖  is the density of the species in the 

trophic level i. A time delay takes place when food consumed by a predator is converted 

into its biomass, and, as in most time-delay systems, the length of this delay is a crucial 

bifurcation parameter. For details see (Kar, Ghorai and Batabyal, 2012). Notably, we 

allow the functional response of species 𝑥3, ℎ̃, to be an unspecified Holling type II 

function (i.e., it satisfies conditions (4.8)-(4.10) from Section 4.4.1), within a distance 𝜀 

of the base function given by the Monod parameterisation ℎ(𝑥2) ≔
𝑑𝑥2

𝑥2+𝑒
. We shall check 

for structural sensitivity in terms of the stability of a nontrivial equilibrium with respect 

to variation of this functional response. Finding the equilibria of system (4.19)-(4.21) is 

an underdetermined problem, as we need to solve three equations with four unknowns: 

𝑥1
∗, 𝑥2

∗, 𝑥3
∗ and ℎ𝑋, where ℎ𝑋 = ℎ̃(𝑥2

∗), so we let 𝑥2
∗ follow Ξ, a parameter of our 

investigation. Given any choice of Ξ, we can substitute 𝑥2
∗ = Ξ into (4.19)-( 4.21) and the 

values 𝑥1
∗ and 𝑥3

∗ will be uniquely determined, while possible values ℎ𝑋 will be given by 

the positive roots of a quadratic equation (in all cases considered here, there is only one 

such positive root). Similarly, since ℎ̃′(𝑥2
∗) is unspecified, we let it follow the parameter 

𝐷𝐻 so that we can carry out linear stability analysis. Once we have the equilibrium point 

(𝑥1
∗, 𝑥2

∗, 𝑥3
∗) and the values ℎ̃(𝑥2

∗) and ℎ̃′(𝑥2
∗), we can use the standard approach for 

evaluating the stability of an equilibrium point of a delay-differential equation. Details of 

this stability analysis are provided in Appendix B. Finally, we note that, by Theorem 3.1, 

the necessary and sufficient conditions for there to exist a function ℎ̃: [0, 𝑥2max
] → ℝ 

satisfying conditions (4.8)-(4.10) such that 𝑥2
∗ = Ξ, and ℎ̃′(𝑥2

∗) = 𝐷𝐻 are the same as the 

conditions found in Section 4.4.1: 

ℎ𝑋 + 𝐷𝐻(𝑥2 − Ξ) > ℎ(𝑥2) − 𝜀    ∀ 𝑥2 ∈ [0, 𝑥2max
],   
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ℎ𝑋 + 𝐷𝐻(𝑥2 − Ξ) +
1

2
𝐴(𝑥2 − Ξ)2 < ℎ(𝑥2) + 𝜀  ∀ 𝑥2 ∈ [0, 𝑥2max

],  

ℎ𝑋 − Ξ ∙ 𝐷𝐻 > 0 and  ℎ𝑋 − Ξ ∙ 𝐷𝐻 +
1

2
𝐴 ∙ Ξ2 < 0. 

 We can now carry out our approach by scanning the valid range of (Ξ-𝐷𝐻) space, 

using the above criteria to determine whether each point corresponds to a valid 

function  ℎ̃, and then finding the stability of the positive interior equilibrium for these 

values. The results of this analysis for several values of the time delay 𝜏 are shown in Fig. 

4.4B-D. We see that, when 𝜏 is around 0.5, almost the entire domain exhibits a stable 

interior equilibrium, but as 𝜏 is increased the region of instability begins to grow until it 

occupies most of the domain at around 𝜏 = 1. This is consistent with the findings of Kar, 

Ghorai and Batabyal (2012) who obtained a critical value of 𝜏0 ≈ 0.9 for the system with 

the Monod functional response as a base function. 

 One can see that in the case of a model with delay, the sensitivity analysis can be 

completed in a similar straightforward way as for systems without delay. Moreover, two 

things are of note with respect to the structural sensitivity of the particular model. Firstly, 

although the system clearly exhibits structural sensitivity for values of 𝜏 around 0.8, the 

range of values of 𝜏 for which we have structural sensitivity, i.e. between 0.5 and 1.15, is 

quite small. Secondly, in all cases where we have structural sensitivity, the region of the 

𝜀𝑄-neighbourhood which can be explored by varying the parameters of the base function 

actually crosses the bifurcation line, and therefore any structural sensitivity in the system 

can be detected by a simple variation of parameters approach. This situation is therefore 

more favourable than the two examples previously discussed: it shows us that we don’t 

always have extensive structural sensitivity around a local bifurcation point, and that it 

can be detected by parameter-based analysis in some cases, although we stress that this 

should not be taken for granted. 
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Figure 4.4: Structural sensitivity investigation of the tri-trophic model with delay given 

by (4.19)-(4.21). (A) The base function ℎ(𝑥2) =
𝑑𝑥2

𝑥2+𝑒
 and its 𝜀-neighbourhood. ℎ is given 

by the red curve, while the boundaries of its 𝜀-neighbourhood are given by the blue 

curves. The green curve is derived from isocline analysis of the system, and gives us the 

equilibrium value ℎ̃(𝑥2
∗), as a function of the equilibrium parameter Ξ. (B)-(D) Stability 

portraits of the 𝜀𝑄-neighbourhood of the base functional response, ℎ, divided into regions 

of stability and instability of a specific equilibrium point, for three different values of the 

time delay, 𝜏. The green regions consist of points that correspond to a system with stable 

equilibrium, and the red regions of points which correspond to a system with unstable 

equilibrium. Dark blue indicates that there is no valid model function in the 𝜀𝑄-

neighbourhood of ℎ such that the system with this function has equilibrium values 𝑥2
∗ =

Ξ and ℎ′(𝑥2
∗) = 𝐷𝐻. Azure regions indicate that the point (Ξ, 𝐷𝐻) can be covered by 

keeping the formulation of the base function and varying its parameters. The parameters 

are 𝑎 = 1.5; 𝑏 = 1.5; 𝑐 = 3; 𝑓 = 0.2; 𝑔 = 2; 𝑗 = 0.1; 𝑚 = 0.6 and 𝑑 = 0.8; 𝑒 = 1.1. 

The time-delay 𝜏 in each figure is: (B) 𝜏 = 0.5. (C) 𝜏 = 0.8. (D) 𝜏 = 1.0. 
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4.5 Discussion and conclusions 

 

In this chapter, we have extended the results of the previous chapter by providing and 

proving Theorem 4.1, which gives us such a projected neighbourhood for a function with 

𝑛 inflection points—a common class of functions in biological modelling—when the 

concept of the 𝑑𝑄-distance is used to defined the functional neighbourhood. This theorem 

allows us to obtain a projection from the 𝜀𝑄-neighbourhood of model functions into the 

generalised bifurcation space for a large class of highly biologically relevant functions, 

and therefore greatly aids the application of the framework outlined in Chapter 3. Further, 

we have considered several quite complicated models and used Theorem 4.1 to show that 

sensitivity takes place in these models within a large range of parameters, which can’t 

always be observed using the conventional parameter-based analysis.  

The widespread existence of structural sensitivity may require revisiting the entire 

concept of bifurcation analysis of biological models. Indeed, in such structurally sensitive 

systems, even in the case of variation of a well-defined model parameter (such as the 

dilution rate in the chemostat model in section 4.4.1), there is no particular value of this 

parameter for which a bifurcation occurs: the use of different functions will result in 

different bifurcation parameters. In this case we don’t have any concrete bifurcations, 

and can only describe the model behaviour in terms of the probability of having a 

bifurcation. This idea can be illustrated using the stability diagrams in Figs 4.2-4.4: for 

instance, we can consider that a Hopf bifurcation in models occurs when the area 

corresponding to instability/stability exceeds a certain limit. The occurrence of a 

bifurcation may be described in this way based on the degree of sensitivity (Definition 

3.1). Thus, in the chemostat model (4.4)-(4.7) proposed in (Fussmann et al., 2000), as 

opposed to the crossing of a Hopf bifurcation referenced in the title of the cited paper, it 

would be more correct to say that variation of the dilution rate δ shifts the system into a 

region where the probability of having oscillations becomes high compared to other 

ranges of δ. In the next chapter, we expand upon this idea, and present a complete 

‘probabilistic bifurcation analysis’ of a predator-prey model with ratio-dependent 

functional response in the case that the prey growth term is unspecified. The overall idea 

is to use the methods developed thus far to determine the probability that the Hopf 

bifurcation in a system will be supercritical or subcritical. 
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Chapter 5 

 

Probabilistic bifurcation analysis of partially specified 

models  

 

This chapter is based on the paper (Adamson and Morozov, 2014b) 

 

5.1   Introduction 

 

In this chapter we shall make a first step towards constructing a bifurcation portrait of a 

biological ODE-based model in the case where the constituent functions are generally 

uncertain but belong to a known class of functions, (Logistic growth type functions, or 

Holling type II functions for example). In this case, the given class of functions doesn’t 

necessarily specify the bifurcation structure of the model completely: picking two 

different functions belonging to this class may result into two qualitatively different 

bifurcation portraits. Here we propose a method for determining the probability of a Hopf 

bifurcation in such a partially specified model being supercritical or subcritical. As an 

illustrative example we shall investigate the criticality of the Hopf bifurcation in a ratio-

dependent predator-prey model with an unspecified prey growth function, but the same 

technique can be applied to a wide range of biological models with unspecified 

constituent functions. 

Our illustrative example here is justified by the importance of predator-prey 

models with a ratio-dependent predator functional response, which have recently received 

a significant amount of attention. In such models, consumption of prey is a function of 

the ratio between the predator and the prey density, which is believed to be more 

ecologically relevant than the ‘classical’ prey dependent response in many cases (Arditi 

and Ginzburg, 1989; Arditi, Ginzburg and Akҫakaya, 1991; Reeve, 1997; Bishop et al., 

2006). There has been a considerable amount of research into bifurcation analysis of 

ratio-dependent predator-prey models (Kuang and Beretta, 1998; Berezovskaya et al., 

2001; Hsu et al., 2001; Xiao and Ruan, 2001; Li and Kuang, 2007; Haque, 2009; Sen et 

al., 2012 as well as many other publications). In particular, it has been rigorously proved 
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that the stability loss in the case of the logistic growth function always takes place via a 

supercritical Hopf bifurcation with the appearance of a stable limit cycle, which signifies 

a non-catastrophic regime shift for the ecosystem. On the contrary, in the case where the 

prey growth rate is subject to an Allee effect (i.e. it increases at low population densities), 

it has been shown that the Hopf bifurcation in this system is actually subcritical (Sen et 

al., 2012), in which case the loss of stability of the coexistence equilibrium results in an 

eventual population collapse. However, all the above results were found for a fixed 

parameterisation of the growth term: it is not clear whether or not they are sensitive to 

the choice of this parameterisation. 

Using the methods of sensitivity analysis outlined in the previous two chapters, 

we firstly show that all the previous theoretical results in the literature on the behaviour 

of ratio-dependent predator-prey models lack generality. In particular, we show that for 

a slightly different parameterization of the growth function—which we call ‘generalized 

logistic growth’—the Hopf bifurcation can be subcritical, whereas for some different 

parameterization of an Allee effect, the Hopf bifurcation can be supercritical. Further we 

consider an 𝜀𝑄-neighbourhood—a general class of functions which contains an 

uncountable set of parametric families—of prey growth functions of logistic type, and 

for the given class of functions we determine how the probability of having a particular 

type of Hopf bifurcation in the model depends on 𝜀, the degree of closeness between 

functions in the class. We show that even for very close prey growth functions there can 

be a large degree of uncertainty in the bifurcation structure of the model. Finally, we 

suggest a practical rule for concluding whether or not the uncertainty in the model 

functions results in uncertainty in the bifurcation portrait of the model, and whether or 

not it can therefore be analysed using the standard methods of bifurcation analysis. 
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5.2   Model equations 

 

We shall investigate the following ratio-dependent predator-prey model as considered in 

(Berezovskaya et al., 2001; Sen et al., 2012 and a number of other works). For the sake 

of simplicity we already consider the dimensionless form of the model: 

𝑥̇ = 𝑥𝑟̃(𝑥) − 𝜈
𝑥𝑦

𝑥+𝑦
,                                             (5.1) 

𝑦̇ = 𝜇
𝑥𝑦

𝑥+𝑦
− 𝛾𝑦,                                             (5.2) 

where 𝑥 is the prey density, 𝑦 is the predator density, 𝜈 is the maximal predation rate and 

𝜇 is the maximal predator growth rate. The term 
𝑥𝑦

𝑥+𝑦
 is the ratio-dependent functional 

response of the predator (Arditi and Ginzburg, 1989; Arditi, Ginzburg and Akҫakaya, 

1991; Reeve, 1997), and the unspecified function 𝑟̃(𝑥) is the growth rate of the prey, γ is 

the mortality rate of the predator. 

Model (5.1)-(5.2) with the prey growth 𝑟̃(𝑥) given by the classic logistic growth 

function 𝑟1(𝑥) = 𝑠(1 − 𝑥) has been studied in a large number of papers in almost every 

possible detail (Freedman and Mathsen, 1993; Jost et al., 1999; Kuang and Beretta, 1998; 

Berezovskaya at al., 2001; Hsu et al., 2001; Xiao and Ruan, 2001). In particular, it was 

shown that the system can have a unique interior equilibrium, signifying species 

coexistence, which can be either stable or unstable depending on parameters. 

Interestingly, the stability loss of this equilibrium always occurs via a supercritical Hopf 

bifurcation—that is, a small stable limit cycle emerges as a result (Kuang and Beretta, 

1998). It has also been rigorously proved that in the case of a stable interior equilibrium, 

there can be no limit cycle in the system (Hsu et al., 2001; Xiao and Ruan, 2001; Haque, 

2009). The complete set of bifurcation portraits of (5.1)-(5.2) with the logistic growth 

function 𝑟̃(𝑥) are provided in (Berezovskaya at al., 2001).  

In the case where the prey growth is subject to the Allee effect (i.e. the per capita 

growth rate is an initially increasing function) Sen et al (2012) investigated the properties 

of the system for the parabolic parameterization of 𝑟2(𝑥) = 𝑠(1 − 𝑥)(β − 1), which is 

the standard representation of the Allee effect used in the literature (Lewis and Kareiva, 

1993; Owen and Lewis, 2001). It was found that in the case of the Allee effect, the 

stability loss of the coexistence equilibrium takes place only via a subcritical Hopf 

bifurcation, in this case the unstable limit cycle surrounding the stable equilibrium 

disappears and the trajectories will eventually go to the origin, which becomes the global 
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attractor in this system (Sen et al., 2012). This supercritical Hopf bifurcation is observed 

both in the case of a weak and a strong Allee effect, i.e., for −1 < β < 1, but for the case 

where the per capita growth function is always decreasing and can be considered as a 

generalized logistic function, i.e. β < −1, the Hopf bifurcation becomes supercritical 

again, as in the classical case 𝑟1(𝑥) = 𝑠(1 − 𝑥). This property allows us to hypothesize 

that well-known results obtained for the classic logistic function should be robust.  

Below we shall show that this optimistic hypothesis is actually wrong, and the 

previously obtained results are in fact rather function-specific: the eventual type of Hopf 

bifurcation will strongly depend on the choice of function parameterization. In this paper, 

we mostly focus on the case of the logistic-like growth rate of the prey. However, similar 

techniques can be implemented in the case of an Allee effect in the prey growth as well 

(see the Discussion section of this chapter). 

In this paper, we shall consider the following general definition of the logistic 

growth function of prey: 

 

Definition 5.1 

The prey growth is described by a logistic growth function in the case the per capita 

growth rate function 𝑟̃: [0, 𝑥max] → ℝ satisfies the two following properties: 

(i) 𝑟̃(0) > 0, 

(ii) 𝑟̃′(𝑥) < 0 ∀𝑥 ∈ [0, 𝑥max]. 

 

This definition is a generalization of the ‘classical’ logistic growth function based 

on common sense as well as some prior research (Gilpin and Ayala, 1973; Sibly et al., 

2005; Freckleton et al., 2006). Similarly, for the prey growth subjected to the Allee effect, 

we propose the following definition. Here, for the sake of simplicity we consider that 

𝑥max = 1. 

 

Definition 5.2 

The prey growth exhibits an Allee effect in the case where the per capita rate function 

𝑟̃: [0, 𝑥max] → ℝ satisfies the three following properties. For some value 𝑐 ∈ (0, 𝑥max) we 

have 

(i) 𝑟̃′(𝑥) > 0 ∀ 𝑥 ∈ [0, 𝑐),  

(ii) 𝑟̃′(𝑥) < 0 ∀ 𝑥 ∈ (𝑐, 𝑥max], 
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(iii) 𝑟̃(𝑐) > 0. 

 

The above formulation is based on the ecological notion of the Allee effect (Hopf 

and Hopf, 1985; Wang and Kot, 2001; Berec et al., 2007). 

 

 

5.3  Defining the type of a Hopf bifurcation for a general growth 

function 

 

We will be mostly interested in determining the type, or criticality, of Hopf bifurcation 

depending on the parameterization of a model function. However, similar methods can 

be potentially used to address some other bifurcations, (see Section 5.5 for a discussion).  

In order to investigate the Hopf bifurcation for a general per capita prey growth 

function 𝑟̃(𝑥), we can use the same approach as outlined in Chapters 3 and 4. The first 

step of this approach consists of leaving the function in question unspecified, and 

introducing generalised parameters to represent values taken by the system in the vicinity 

of a given equilibrium. We can then investigate local system properties in terms of these 

parameters (see also the related frameworks of generalised modelling, Gross and Feudel, 

2006 and critical function analysis, Kisdi et al., 2013). From equations (5.1)-(5.2) we can 

easily find equations for the densities of species at a non-trivial equilibrium: 

𝑦∗ =
𝜇−𝛾

𝛾
𝑥∗,                                                       (5.3) 

𝑟̃(𝑥∗) =
𝜈

𝜇
(𝜇 − 𝛾).                                (5.4) 

We shall treat one of the values 𝑥∗and 𝑦∗ as an independent parameter of our 

investigation, since 𝑟̃(𝑥∗) is fixed due to the equilibrium condition (5.4). It is convenient 

to choose 𝑥∗ as a parameter since it is the dependent variable of the unknown function 

𝑟̃(𝑥). 

Here we shall consider the case that 𝑟̃ is a logistic function (see Definition 5.1). It 

is easy to see from equation (5.4) that if 𝑟̃ is monotonically decreasing, there is always a 

unique nontrivial equilibrium in the system. If we allow an Allee effect, the situation 

becomes somewhat more complicated, and the number of equilibria in the system will 

depend on how many inflection points the growth function takes. 
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In order to determine when a Hopf bifurcation takes place in the system 

(Kuznetsov, 2005), we need to consider the Jacobian matrix of the system. The 

appropriate computation of the Jacobian matrix at the interior equilibrium gives (after 

some simplification)  

𝐴 =

(

 
 
𝑥∗𝑟̃′(𝑥∗) +

𝜈𝛾(𝜇 − 𝛾)

𝜇2
−𝜈

𝛾2

𝜇2

(𝜇 − 𝛾)2

𝜇
−

𝛾

𝜇
(𝜇 − 𝛾)

)

 
 

,                        (5.5) 

where 𝑟̃′(𝑥∗) can also be considered as a generalised parameter. The conditions for a 

Hopf bifurcation are that a pair of complex conjugate eigenvalues must cross the 

imaginary axis, which can be expressed in terms of the determinant and trace of the 

Jacobian as 𝑇𝑟(𝐴) = 0 and 𝐷𝑒𝑡(𝐴) > 0 (together with the standard transversality 

condition, see Kuznetsov, 2005). From those conditions we obtain after some 

simplification that at the Hopf bifurcation the value of 𝑟̃′(𝑥∗) is related to 𝑥∗as 

𝑟̃′(𝑥∗) =
1

𝑥∗ [
𝛾

𝜇2 (𝛾 − 𝜇)(𝜈 − 𝜇)],                     (5.6) 

provided that the condition 𝜈 > 𝜇 is satisfied (note that we always require that 𝛾 < 𝜇 to 

guarantee the existence of a positive equilibrium).  

A non-degenerate Hopf bifurcation can be of two types, supercritical—in which 

a stable limit cycle appears when the equilibrium is destabilised—or subcritical—in 

which an unstable limit cycle disappears when the equilibrium is destabilised 

(Kuznetsov, 2005). We can determine the criticality of a given Hopf bifurcation by 

computing the first Lyapunov number L1 of the system at the Hopf bifurcation point: we 

have 𝐿1 < 0 for a supercritical Hopf bifurcation and 𝐿1 > 0 for a subcritical Hopf 

bifurcation, since if the first Lyapunov exponent is positive, then the resulting limit cycle 

will be stable, and the Hopf bifurcation is supercritical. If the first Lyapunov exponent is 

negative, then the resulting limit cycle will be unstable and so the Hopf bifurcation will 

be subcritical (Kuznetsov, 2004). 

In a general planar system at a Hopf bifurcation, given by the two dimensional 

system: 

𝑥̇ = 𝑎𝑥 + 𝑏𝑦 + 𝑓(𝑥, 𝑦), 

𝑦̇ = 𝑐𝑥 + 𝑑𝑦 + 𝑔(𝑥, 𝑦) 

with 𝑓(𝑥, 𝑦) = 𝑎20𝑥
2 + 𝑎11𝑥𝑦 + 𝑎02𝑦

2 + 𝑎30𝑥
3 + 𝑎21𝑥

2𝑦 + 𝑎12𝑥𝑦
2 + 𝑎03𝑦

3, and 

𝑔(𝑥, 𝑦) = 𝑏20𝑥
2 + 𝑏11𝑥𝑦 + 𝑏02𝑦

2 + 𝑏30𝑥
3 + 𝑏21𝑥

2𝑦 + 𝑏12𝑥𝑦
2 + 𝑏03𝑦

3, the first 
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Lyanpunov number is given by the following expression (Bautin and Leontovich, 1976; 

Chow et al., 1994): 

𝐿1 = −
𝜋

4𝑏Δ
3
2

{[𝑎𝑐(𝑎11
2 + 𝑎11𝑏02 + 𝑎02𝑏11) + 𝑎𝑏(𝑏11

2 + 𝑏11𝑎20 + 𝑏20𝑎11)

+ 𝑐2(𝑎11𝑎02 + 2𝑎02𝑏02) − 2𝑎𝑐(𝑏02
2 − 𝑎20𝑎02) − 2𝑎𝑏(𝑎20

2 − 𝑏20𝑏02)

− 𝑏2(2𝑎20𝑏20 + 𝑏11𝑏20) + (𝑏𝑐 − 2𝑎2)(𝑏11𝑏02 − 𝑎11𝑎20)]

− (𝑎2 + 𝑏𝑐)[3(𝑐𝑏03 − 𝑏𝑎30) + 2𝑎(𝑎21 + 𝑏12) + (𝑐𝑎12 − 𝑏𝑏21)]}, 

where Δ is the determinant of the Jacobian matrix.  

Computation of L1 requires the values of the third-order Taylor series expansion 

of the system about (𝑥∗, 𝑦∗), thus, in contrast to previous chapters, we now need to 

specify values for the second and third derivatives of 𝑟̃ at the equilibrium, i.e. 𝑟̃′′(𝑥∗) and 

𝑟̃′′′(𝑥∗). We shall consider these values as independent parameters of the investigation, 

along with the value of 𝑥∗. The criticality of a Hopf bifurcation in the system with a given 

prey growth function will be entirely determined by these three values alone.  

A typical dependence of the criticality of the Hopf bifurcation in system (5.1)-

(5.2) is shown in Fig. 5.1 for three fixed values of the third derivative, 𝑟̃′′′(𝑥∗), the other 

model parameters are 𝜈 = 2.7; 𝜇 = 2; 𝛾 = 1.5. We see that in these cases, there are 

substantial regions of both supercritical and subcritical Hopf bifurcations, thus we can 

both have a supercritical and subcritical bifurcation in the system with a logistic-type 

growth function. Note that the condition 𝑟̃′(𝑥∗) < 0 is always satisfied for the given set 

of parameters (see expression (5.6)). An important immediate conclusion is that previous 

well-known works on ratio-dependent predator-prey models (see citations in Section 5.2) 

predicting only a supercritical bifurcation may not be generic, but instead might be 

artefacts of the particular choice of parameterization of 𝑟(𝑥).  In particular, note that use 

of the standard logistic growth function with 𝑟(𝑥) = 𝑠(1 − 𝑥) immediately restricts us 

to the case 𝑟̃′′(𝑥∗) = 0, which, as can be seen from Fig. 5.1A, always lies in the 

supercritical Hopf  bifurcation domain. Thus the necessity of a supercritical Hopf 

bifurcation in the ratio-dependent model may only arise because the per capita growth 

rate is a linear function. 
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Figure 5.1: Plots of the regions of sub- and super-criticality of the Hopf bifurcation in 

system (5.1)-(5.2) in the space of values of prey equilibrium density, 𝑥∗, and the second 

derivative of the prey growth function at this density, 𝑟̃′′(𝑥∗), for three different values 

of the third derivative, 𝑟̃′′′(𝑥∗). Green regions correspond to a subcritical Hopf 

bifurcation, while blue regions represent a supercritical Hopf bifurcation. (A)  𝑟̃′′′(𝑥∗) =
0; (B) 𝑟̃′′′(𝑥∗) = 5. (C) 𝑟̃′′′(𝑥∗) = −10. The model parameters used to construct the 

figures are 𝜈 = 2.7; 𝜇 = 2; 𝛾 = 1.5. 

 

We should also mention that for the linear parameterization of 𝑟(𝑥), a Hopf 

bifurcation can take place strictly speaking only for a specific combination of 𝜈, 𝜇 and 𝛾: 

these parameters must be  located on the Hopf bifurcation hypersurface. Indeed, the 

system of equations (5.3), (5.4) and (5.6) with 𝑟(𝑥) = 𝑠(1 − 𝑥) has no solution for an 

arbitrary choice of 𝜈, 𝜇, 𝛾. In particular, for the parameters chosen in Fig. 5.1A no Hopf 

bifurcation is possible for the linear 𝑟(𝑥) and this fact provides a supplementary argument 

towards considering the general form of the growth rate function. On the other hand, 

direct computation confirms that the diagram remains similar (with 𝑟̃′′(𝑥∗) = 0 always 

being in the supercritical Hopf domain) even in the case where 𝜈, 𝜇, 𝛾 actually satisfy the 

Hopf bifurcation criteria for the linear 𝑟(𝑥). 
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A similar discrepancy with the previous studies considering a particular 

parameterization for the Allee effect in prey growth rate for can be seen from Fig. 5.1 

Indeed, for a generalized parameterization of the Allee effect (see Definition 5.2), the 

stability loss of the equilibrium can take place both via a supercritical and a subcritical 

Hopf bifurcation (cf. Sen et al., 2012).  

Note that the influence of the criticality of a Hopf bifurcation is far more than a 

local matter: it has important implications for the global stability of an ecosystem. When 

a Hopf bifurcation is supercritical, the loss of the stability of an equilibrium is 

noncatastrophic, since for a limited parameter range trajectories are guaranteed to 

converge to the stable limit cycle which will be consequently formed in its vicinity.  

Provided the amplitude of this limit cycle is small, the ecosystem can still be considered 

to be stable, and moreover, if the bifurcation is reversed, the system will return to the 

original equilibrium. On the other hand, when a subcritical Hopf bifurcation takes place, 

an unstable limit cycle—which bounds the basin of attraction of the equilibrium—shrinks 

and disappears, and trajectories starting near to the equilibrium will leave its vicinity 

altogether. Therefore the loss of stability can be catastrophic, and can have a fatal effect 

on the persistence of species in the ecosystem, as trajectories may well converge to an 

extinction state. 

The results demonstrated in Fig. 5.1 have some importance consequences which 

extend well beyond the particular ratio-depend model (5.1)-(5.2). How should we 

proceed in the case of such uncertainty? To somehow amend the situation and to go 

beyond well-known standard parameterizations, such as the logistic growth function 

𝑟(𝑥) = 𝑠(1 − 𝑥) in (5.1)-(5.2), one can consider some other concrete parameterizations 

with the aim to conduct a thorough bifurcation analysis for each particular case by taking, 

for example, growth functions as 𝑟(𝑥) = 𝑠(1 − 𝑥2), 𝑟(𝑥) = 𝑠(1 − exp(𝑥𝛼)), the theta-

logistic function (Gilpin and Ayala, 1973), etc. The obvious drawback of this approach 

is that, in each case the investigation will be too specific and we cannot, of course, ‘cover’ 

all possible parameterizations by picking up some arbitrary functions of our preference. 

Alternatively, we can utilize the more general approach outlined in Chapters 3 and 4, by 

considering a generic function 𝑟(𝑥), for example, which satisfies Definition 5.1. In this 

case, we do not need to explore each concrete parameterization separately, but to be able 

to construct a concrete bifurcation portrait in such a generic case, we would need to 

restrict somehow the function 𝑟(𝑥), or else we may find ourselves in the situation where 
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there are several different types of bifurcation structure as in Fig. 5.1. One possible 

solution is to consider a narrow class of functions 𝑟(𝑥) that all provide equivalent 

bifurcation portraits. For instance, in system (5.1)-( 5.2), a possible constraint on the 

function 𝑟(𝑥) could be that we consider only those with a positive (or negative) Lyapunov 

exponent, L1.  However, to do this, we would need to impose some analytical constraints 

on our functions, which are difficult to verify empirically and have no clear biological 

meaning. Moreover, such constraints are strictly model-dependent: in the case of a prey-

dependent functional response the condition 𝐿1 > 0 will be given by a completely 

different equation. Thus, the above idea seems to lack any practicality. 

In this chapter we suggest a novel approach to solving the problem raised above 

by applying the same approach as in Chapters 3 and 4. We still consider a generic growth 

rate function 𝑟(𝑥) satisfying Definition 5.1, but since the use of different 

parameterizations can result in uncertainty in the bifurcation portrait (e.g. in different 

scenarios of Hopf bifurcation), we describe the resultant qualitative bifurcation outcome 

in terms of a probabilistic framework. Given a certain class of model functions, we aim 

to calculate the probability of the model having a particular type of bifurcation scenario. 

In the next section we shall show how it can be possible in practice to evaluate the 

probability of having a supercritical Hopf bifurcation in model (5.1)-(5.2) for a generic 

class of functions 𝑟(𝑥) when a certain bifurcation parameter is varied.  

  

5.4   Bifurcation analysis under uncertainty in model functions 

 

5.4.1 Determining Functional Neighbourhoods 

 

To proceed further with a bifurcation analysis of (5.1)-(5.2) with uncertain model 

functions it is necessary to further restrict the class of functions 𝑟(𝑥) which are allowed. 

This need follows in part from the fact that the class of functions satisfying Definition 

5.1 is still quite broad and can include some ‘exotic’ biologically meaningless 

parameterizations in a qualitative sense, but when we consider the empirical background 

of the model, there is also a need for a quantitative restriction of our functions. When we 

fit a parameterisation to a certain experimental or observation data set, we should take 

into account experimental error and therefore consider alternative parameterisations 

within a given distance from the fitted function to be also valid (e.g. Cordoleani et al., 
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2011), but if an alternative parameterisation passes too far away from the fitted function, 

and therefore the original data points, it should not be chosen as a viable alternative 

parameterisation. For this reason we should only compare bifurcation scenarios for 

functions which are relatively close to each other across the whole admissible range of 𝑥. 

There exist various ways of constructing a class of functions with close values 

across the entire range of x (here we consider 𝑥 ∈ [0,1]). In this paper, we shall use the 

same idea as in Chapters 3 and 4—the 𝜀𝑄-neighbourhood of a certain base function, 

constructed using the 𝑑𝑄-distances, Definitions 2.6 and 2.7. To do this, we first require 

that the unknown function belongs to some class of functions, 𝑄, which satisfy the 

qualitative properties which are supported by theory or conjecture, e.g. a class of logistic 

functions as in Definition 5.1. We then make an initial concrete choice of the unknown 

model function—the ‘base function’ 𝑟0(𝑥), which we should fit to data as far as possible. 

The 𝜀𝑄-neighbourhood of this function is then defined as the subset of functions in 𝑄 

which are within a fixed distance of 𝜀 from the base function. For more details, refer to 

Chapter 3. 

As before, the problem of working with neighbourhoods of functions is that they 

are infinite-dimensional, while certain critical model properties in the vicinity of an 

equilibrium are often entirely determined by local values of the function and some of its 

derivatives in the vicinity of the equilibrium (see Section 5.3). Therefore it is important 

to relate the local function properties which are relatively easy to understand (see Fig. 

5.1) and the global properties of the functions—their behaviour for any x. Our main idea 

is a projection of the infinite dimensional function space into a finite dimensional 

subspace of the local function values: 𝑥∗, 𝑟̃(𝑥∗), 𝑟̃′(𝑥∗), 𝑟̃′′(𝑥∗) and 𝑟̃′′′(𝑥∗). Note that 

 𝑟̃(𝑥∗) is always fixed by (5.4), and in the case that there is a Hopf bifurcation 𝑟̃′(𝑥∗) will 

be fixed by (5.6), so in such cases we will only need to consider a 3D domain consisting 

of 𝑥∗, 𝑟̃′′(𝑥∗) and 𝑟̃′′′(𝑥∗). Due to the non-local restriction of functions 𝑟(𝑥)—they 

should belong to the 𝜀𝑄-neighbourhood of the base function 𝑟0(𝑥)—the values of 𝑥∗, 

𝑟̃′(𝑥∗), 𝑟̃′′(𝑥∗) and 𝑟̃′′′(𝑥∗) cannot take arbitrary values, but will be located in the 

bounded domain. Here, as an illustrative example, we consider the standard linear 

function 𝑟(𝑥) = 𝑠(1 − 𝑥) as the base function (with 𝑠 = 1). We also impose bounds on 

the second derivative: −𝐴 < 𝑟̃′′(𝑥) < 𝐴 ∀𝑥 ∈ [0, 𝑥max], where 𝐴 is a positive parameter, 

in order to guarantee that the 𝑑𝑄-distance is 𝐶1, as in the previous chapters. Finally, to 

simplify the analytical work we consider that the actual function can be approximately 
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considered as a cubic function—with constant third derivative 𝑟̃′′′(𝑥∗)—over a small 

interval about the equilibrium, (𝑥∗ − 𝑤, 𝑥∗ + 𝑤). In this case, given the values 𝑟̃(𝑥∗), 

𝑟̃′(𝑥∗), 𝑟̃′′(𝑥∗) and 𝑟̃′′′(𝑥∗) and 𝑥∗ we can derive the necessary and sufficient conditions 

for the existence of a function 𝑟̃ in the 𝜀𝑄-neighbourhood of the linear base function 

taking these values as follows. 

 

Firstly, note that for 𝑟̃ to remain within the 𝜀𝑄-neighbourhood it must first satisfy 

𝑟̃(𝑥) < 𝑟𝜀+(𝑥) = 1 + 𝜀 − 𝑥, and 𝑟̃(𝑥) > 𝑟𝜀−(𝑥) = 1 − 𝜀 − 𝑥. 

Essentially, this means that 𝑟̃(𝑥) must remain between the red bounds in Figure 5.2 over 

the whole domain—it must remain within distance 𝜀 of the base function. 

 

Figure 5.2: Projection of the 𝜀𝑄-neighbourhood into the generalised bifurcation space. 

The red lines 𝑟𝜀− and 𝑟𝜀+ denote points a distance 𝜀 from the (linear) base function. Any 

valid function must lie between these lines across the whole domain. The blue curves 𝑃1 

and 𝑃2 represent the lower and upper bounds that necessarily hold for any function that 

belongs to the class 𝑄. Valid functions must lie between these curves (and equal them 

across the domain (𝑥∗ − 𝑤, 𝑥∗ + 𝑤)). 
 

𝑟̃ must also be in 𝑄, so must further satisfy 

𝑟̃′′′(𝑥) = 𝑟̃′′′(𝑥∗)  ∀𝑥 ∈ (𝑥∗ − 𝑤, 𝑥∗ + 𝑤),                          (5.7) 

|𝑟̃′′(𝑥)| < 𝐴  ∀𝑥 ∈ [0, 𝑥max],                                                    (5.8) 

𝑟̃′(𝑥) < 0  ∀𝑥 ∈ [0, 𝑥max],                                                        (5.9) 

𝑟̃(0) > 0                                                                                     (5.10) 
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Condition (5.7) tells us that across the interval (𝑥∗ − 𝑤, 𝑥∗ + 𝑤), 𝑟̃ is given by 

the cubic 

𝑟̃(𝑥) = 𝑟̃(𝑥∗) + 𝑟̃′(𝑥∗)(𝑥 − 𝑥∗) + 𝑟̃′′(𝑥∗)(𝑥 − 𝑥∗)2 +
𝑟̃′′′(𝑥∗)

6
(𝑥 − 𝑥∗)3              (5.11) 

Therefore an initial necessary condition for the existence of a valid function 𝑟̃ attaining 

the values 𝑥∗, 𝑟̃(𝑥∗), 𝑟̃′(𝑥∗), 𝑟̃′′(𝑥∗) and 𝑟̃′′′(𝑥∗) is that this cubic must stay between 

𝑟𝜀− and 𝑟𝜀+ over this interval. In addition, this cubic must always have a negative first 

derivative, and not have a second derivative of magnitude greater than 𝐴. Furthermore, 𝑟̃ 

will be bounded above by the parabolas tangent to the above cubic at 𝑥∗ − 𝑤 and 𝑥∗ + 𝑤 

with second derivative 𝐴, and will be bounded below by the tangent parabolas with 

second derivative −𝐴. These are given by the blue curves in Figure 4.2. Taking these 

upper and lower bounds over the intervals [0, 𝑥∗ − 𝑤) and (𝑥∗ + 𝑤, 𝑥max], together with 

the fact that 𝑟̃ must equal the cubic (5.11) over (𝑥∗ − 𝑤, 𝑥∗ + 𝑤), we can construct the 

following functions: 

𝑃1(𝑥)

=

{
 
 

 
 𝐵 + 𝐶(𝑥 − 𝑥∗ + 𝑤) −

𝐴

2
(𝑥 − 𝑥∗ + 𝑤)2:                                                            𝑥 ∈ [0, 𝑥∗ − 𝑤)

𝑟̃(𝑥∗) + 𝑟̃′(𝑥∗)(𝑥 − 𝑥∗) +
𝑟̃′′(𝑥∗)

2
(𝑥 − 𝑥∗)2 +

𝑟̃′′′(𝑥∗)

6
(𝑥 − 𝑥∗)3: 𝑥 ∈ (𝑥∗ − 𝑤, 𝑥∗ + 𝑤)

𝐷 + 𝐸(𝑥 − 𝑥∗ − 𝑤) −
𝐴

2
(𝑥 − 𝑥∗ − 𝑤)2:                                                      𝑥 ∈ (𝑥∗ + 𝑤, 𝑥max]

 

and 

𝑃2(𝑥)

=

{
 
 

 
 𝐵 + 𝐶(𝑥 − 𝑥∗ + 𝑤) +

𝐴

2
(𝑥 − 𝑥∗ + 𝑤)2:                                                            𝑥 ∈ [0, 𝑥∗ − 𝑤)

𝑟̃(𝑥∗) + 𝑟̃′(𝑥∗)(𝑥 − 𝑥∗) +
𝑟̃′′(𝑥∗)

2
(𝑥 − 𝑥∗)2 +

𝑟̃′′′(𝑥∗)

6
(𝑥 − 𝑥∗)3: 𝑥 ∈ (𝑥∗ − 𝑤, 𝑥∗ + 𝑤)

𝐷 + 𝐸(𝑥 − 𝑥∗ − 𝑤) +
𝐴

2
(𝑥 − 𝑥∗ − 𝑤)2:                                                      𝑥 ∈ (𝑥∗ + 𝑤, 𝑥max]

 

where: 

𝐵 = 𝑟̃(𝑥∗) − 𝑤𝑟̃′(𝑥∗) +
𝑤2

2
𝑟̃′′(𝑥∗) − 𝑤3𝑟̃′′′(𝑥∗), 

𝐶 = 𝑟̃′(𝑥∗) − 𝑤𝑟̃′′(𝑥∗) +
𝑤2

2
𝑟̃′′′(𝑥∗), 

𝐷 = 𝑟̃(𝑥∗) + 𝑤𝑟̃′(𝑥∗) +
𝑤2

2
𝑟̃′′(𝑥∗) + 𝑤3𝑟̃′′′(𝑥∗), 

𝐸 = 𝑟̃′(𝑥∗) + 𝑤𝑟̃′′(𝑥∗) +
𝑤2

2
𝑟̃′′′(𝑥∗). 
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For any function 𝑟̃ ∈ 𝑄, 𝑃1 and 𝑃2 necessarily form lower and upper bounds for 𝑟̃, since 

they are constructed as the extreme cases of functions in 𝑄. So we have 𝑃1(𝑥) ≤ 𝑟̃(𝑥) ≤

𝑃2(𝑥)  ∀𝑥 ∈ [0, 𝑥max] (indeed, 𝑟̃, 𝑃1 and 𝑃2 coincide over the interval (𝑥∗ − 𝑤, 𝑥∗ + 𝑤)), 

and therefore the conditions 

𝑃1(𝑥) < 𝑟𝜀−(𝑥),                          

𝑃2(𝑥) > 𝑟𝜀+(𝑥),                                                                  (5.12)  

𝑃1
′(𝑥) < 0 ∀𝑥 ∈ (𝑥∗ − 𝑤, 𝑥∗ + 𝑤),      

|𝑃1′′(𝑥)| < 𝐴  ∀𝑥 ∈ (𝑥∗ − 𝑤, 𝑥∗ + 𝑤), 

are necessary (note: 𝑃1, 𝑃2 and 𝑟̃ coincide over the interval (𝑥∗ − 𝑤, 𝑥∗ + 𝑤) and so are 

interchangeable in the 3rd and 4th conditions). In terms of the figure, these conditions can 

be interpreted as requiring that the red upper and blue lower bounds clearly cannot cross. 

It remains to be shown that they are sufficient. In order to prove this, it is enough 

to provide a method to construct a valid function 𝑟̃ which remains between 𝑟𝜀− and 𝑟𝜀+ 

given only these conditions. We already have 𝑟̃ equal to 𝑃1 and 𝑃2 over (𝑥∗ − 𝑤, 𝑥∗ + 𝑤), 

so only need to construct 𝑟̃ over [0, 𝑥∗ − 𝑤) and (𝑥∗ + 𝑤, 𝑥max]. To do this, we can in 

fact use the exact same approach as in the proofs of Theorem 3.1 and 4.1∎ 

 

In Fig 5.3 we show examples of projections of the function space on the 𝑥∗ −

𝑟̃′′(𝑥∗) subspace for two different values of 𝜈 (n.b. we show a cross-section of the 3-

dimensional projection, since 𝑟̃′′′(𝑥∗) is fixed in the given diagram). The domain 

corresponding to all the possible functions is bounded, since for the points located in the 

black domain there is no corresponding function in the 𝜀𝑄-neighbourhood. We can also 

see that the domain of possible functions still contains both supercritical and subcritical 

Hopf bifurcations scenarios. Note that the size of the 𝜀𝑄-neighbourhood depends on the 

model parameters, and not solely on 𝜀 or 𝐴. This follows from the fact that the values of 

𝑟̃(𝑥∗) and 𝑟̃′(𝑥∗), which strongly influence the size of the 𝜀𝑄-neighbourhood, are not 

independent but are given by (5.4) and (5.6) and are therefore functions of 𝜈, 𝜇 and 𝛾. 
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Figure 5.3: Regions of the 𝜀𝑄-neighbourhood in 𝑥∗ − 𝑟̃′′(𝑥∗) space showing a 

supercritical and subcritical Hopf bifurcation for two given bifurcation values, 𝜈∗. The 

dark blue region contains values outside the 𝜀𝑄-neighbourhood. Within the 

neighbourhood, green indicates the region in which the Hopf bifurcation will be 

supercritical, and red indicates the regions in which it will be subcritical. The two 

bifurcation values are (A) 𝜈∗ = 2.7. (B) 𝜈∗ = 3.1. 𝛾 = 1.5; 𝜇 = 2; 𝜀 = 0.1; 𝐴 = 10; 𝑤 =
0.1; 𝑟̃′′′(𝑥∗) = 0. 

 

5.4.2 Constructing the probability density function of a Hopf bifurcation 

 

Figs 5.1 and 5.3, showing the different domains of criticality, are constructed under the 

assumption that we have a Hopf bifurcation for a given function for the parameters 𝜈, 𝜇, 

𝛾. In general, this will not be the case for an arbitrary function of class Q in the 𝜀𝑄-

neighbourhood of the base function. Therefore, to be able to evaluate the probability of 

having a particular type of Hopf bifurcation in the model we first need to determine the 

probability of having a Hopf bifurcation in the first place. 

The probability of having a Hopf bifurcation in the system within a given range 

of parameters (regardless its criticality) will be determined by a certain probability 

density function (pdf). For the sake of simplicity, we fix two parameters (𝛾, 𝜇) and 

consider the maximal attack rate, 𝜈, as the sole bifurcation parameter in the system. For 

a given 𝜈, we can plot the neighbourhood in the space of values 𝑥∗ and 𝑟̃′(𝑥∗) 

corresponding to all functions in the 𝜀𝑄-neighbourhood, along with the Hopf bifurcation 

curve in this space (n.b. here we consider the union of neighbourhoods for all −𝐴 <

𝑟̃′′(𝑥∗) < 𝐴  so that we obtain a two-dimensional plot, rather than considering the 3-

dimensional space 𝑥∗ − 𝑟̃′(𝑥∗) − 𝑟̃′′(𝑥∗)). Examples of this neighbourhood for two 

different values of 𝜈 are shown in Fig. 5.4A,B, where we show the stability/instability of 
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the stationary state for the given values of 𝑥∗and 𝑟̃′(𝑥∗), the value of 𝑟̃(𝑥∗) being fixed 

by (5.4).  

 

Figure 5.4: Constructing the probability distribution of the bifurcation value, 𝜈∗. (A),(B): 

Regions of stability and instability in the 𝜀𝑄-neighbourhood of the base function 𝑟(𝑥) =

1 − 𝑥 shown in 𝑥∗ − 𝑟̃′(𝑥∗) space. Dark blue regions correspond to points outside the 

neighbourhood. Within the neighbourhood, green regions indicate stability of the interior 

equilibrium and red regions indicate it is unstable. The parameters are (A) = 2.7; 𝛾 =
1.5; 𝜇 = 2; 𝜀 = 0.1; 𝐴 = 10; 𝑤 = 0.1; 𝑟̃′′′(𝑥∗) = 0. (B) 𝜈 = 3.1 all other parameters as 

in (A). (C): Dependence of the stable proportion of the 𝜀𝑄-neighbourhood on the 

asymptotic predation rate, 𝜈. All other parameters are the same as in (A). (D): Probability 

distribution of the bifurcation value, 𝜈∗. This is computed by taking the derivative of the 

stable proportion of the 𝜀𝑄-neighbourhood plotted in (C) with respect to 𝜈. All other 

parameters are the same as in Fig. 5.3A. 
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If we denote the area of the region of stability by 𝑉stable, and the total area of the 

neighbourhood by 𝑉, then, using the assumption that functions are uniformly distributed 

in all neighbourhoods, we can define the probability of the equilibrium being stable for a 

given parameter value 𝜈 as simply the relative area of the stability region: 

𝑃𝜈(Stable) =
𝑉stable(𝜈)

𝑉(𝜈)
.                                          (5.13) 

In Fig. 4.4C we plot an example of how this probability changes with 𝜈. One can 

see that the probability of having stability monotonically decreases from one to zero as 

the value of 𝜈 increases: the Hopf bifurcation curve moves from the upper left corner to 

the lower right corner. The probability density function (pdf) of having a Hopf bifurcation 

is defined as:  

𝑝(𝜈∗ = 𝜈) ≔ −
𝑑𝑃𝜈(Stable)

𝑑𝜈
,                                       (5.14) 

The negative sign in this expression reflects the fact that the Hopf bifurcation is 

‘forward’—or destabilising with increasing 𝜈. We should note that defining the pdf in 

this straightforward way is only valid if the bifurcation curve in Figs 5.4A,B is shifted 

monotonically by a change in the parameter 𝜈, as is the case here. Otherwise, we may 

have the situation where the bifurcation curve ‘rotates’ and the advance and retreat of the 

curve in different regions cancel each other out to some extent. 

In the case that we have a precisely specified growth function 𝑟̃(𝑥) (including the 

parameter values), then Fig. 5.4C will be a step function, and 𝑝(𝜈∗ = 𝜈) will be a delta 

function centred at the exact bifurcation value 𝜈∗. To evaluate the probability of having 

a Hopf bifurcation in the range [𝜈1, 𝜈2] one needs to integrate the probability density 

function 

𝑃(𝜈 ∈ [𝜈1, 𝜈2]) = ∫ 𝑝(𝜈∗ = 𝜈)𝑑𝜈
𝜈2

𝜈1
                 (5.15) 

The range [𝜈1, 𝜈2] should be chosen so that a bifurcation definitely takes place within this 

interval, so that the integral across the whole range of 𝜈 will equal 1. 

Fig. 5.4D shows this pdf constructed numerically for several values of the 

maximal admissible curvature of 𝑟̃, 𝐴. We see that as we restrict 𝐴 to lower values, and 

therefore restrict ourselves to increasingly linear functions, the range of possible 

bifurcation values diminishes, although note that even when 𝐴 is 0.5 there is still a wide 

range of potential bifurcation values. 
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5.4.3 Evaluating the probability of having a supercritical Hopf bifurcation 

 

The next step in defining the probability of having a particular type of Hopf bifurcation 

is to derive the conditional probability of having a supercritical or subcritical bifurcation 

given that the bifurcation value is 𝜈, 𝑃(Supercritical|𝜈∗ = 𝜈). We can compute 

𝑃(Supercritical|𝜈∗ = 𝜈) in a similar way to how we found 𝑃𝜈(Stable) in Section 5.4.2, 

i.e. by calculating the relative proportion of the area corresponding to the supercritical 

Hopf bifurcation in the total 𝜀𝑄-neighbourhood: 

𝑃(Supercritical|𝜈∗ = 𝜈) =
𝑉supercritical(𝜈)

𝑉(𝜈)
,                        (5.16) 

in the diagrams shown in Fig. 5.3. Note that, although in this paper we fix 𝑟̃′′′(𝑥∗) = 0 

to simplify the diagrams, in practice there is no reason why we could not also vary this 

to gain a more complete analysis. Here again we use the assumption that our functions 

are uniformly distributed in these neighbourhoods. In the Discussion we suggest how this 

assumption can be relaxed. 

In Fig. 5.5 we plot the distribution of the conditional probability 

𝑃(Supercritical|𝜈∗ = 𝜈) for several values of maximum error, 𝜀—recall that this term 

determines the width of the 𝜀𝑄-neighbourhood, or the maximum distance we allow 𝑟̃ to 

stray from the original logistic function while still being considered valid—and for 

several values of maximum curvature 𝐴—the largest absolute value of the second 

derivative of 𝑟̃, therefore giving a limit on how nonlinear 𝑟̃ can be. From Fig. 5.5A we 

see that, as 𝐴 is decreased and we restrict the second derivative more, 

𝑃(Supercritical|𝜈∗ = 𝜈) increases because we approach the case where 𝑟̃ is linear, in 

which case we will always have a supercritical bifurcation. In fact, when 𝐴 = 0.5, we 

generally have 𝑃(Supercritical|𝜈∗ = 𝜈) > 0.8. Fig. 5.5B shows a similar result when we 

decrease the maximal error in our function 𝑟̃, although the shift towards a higher 

likelihood of a supercritical bifurcation is less drastic that with a restriction to more linear 

functions.  

Finally, once we’ve computed the pdf of the Hopf bifurcation value 𝜈∗ and the 

conditional probability of having a supercritical bifurcation given this bifurcation value, 

the overall probability of having a supercritical Hopf bifurcation in the system will be 

given through the total probability theorem: 

𝑃(Supercritical) ≔ ∫ 𝑃(Supercritical|𝜈∗ = 𝜈)
𝜈2

𝜈1
∙ 𝑝(𝜈∗ = 𝜈) d𝜈,      (5.17) 
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where integration is done over all possible values of parameter ν for which a Hopf 

bifurcation of the interior equilibrium is possible. 

 

 

Figure 5.5: Conditional probabilities of the Hopf bifurcation being supercritical given the 

bifurcation parameter is 𝜈∗ = 𝜈. (A) Dependendence on the maximum second derivative, 

𝐴. All other parameters are the same as in Fig. 4.3A. (B) Dependence on the maximum 

error bound, 𝜀. All other parameters are the same as in Fig. 5.3A. 

 

In Fig. 5.6 we have plotted the total probability 𝑃(Supercritical) as a function of 

𝜀 for several values of 𝐴 using (5.17). These parameters have the following meaning: 𝜀 

describes the accuracy of our data—the bigger the error terms, the larger 𝜀 should be; 𝜀 

therefore determines the uncertainty in our model functions as a result of inaccuracies in 

data. 𝐴, on the other hand is the limit on the magnitude of the second derivative of the 

prey growth function, which gives us the estimate of how fast our per capita growth 

function can decease with x. Unlike ε, the choice of 𝐴 is less straightforward and is more 

difficult to estimate from the data.  

From Fig. 5.6 one can clearly see that in all cases the greater 𝜀 is, and therefore 

the larger the error terms in our data (and the greater the uncertainty in our choice of 

functions), the probability of the Hopf bifurcation in the system being supercritical 

decreases, and the more likely we should regard a subcritical bifurcation. As regards 𝐴, 

an increase—reflecting a modeller’s choice to allow more nonlinearity in the growth 

functions considered, preferably based on empirical observation if possible—should 

cause us to expect a higher likelihood of the Hopf bifurcation being subcritical. The 

reason for this shift towards an increased likelihood of a subcritical bifurcation with an 
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increase of 𝜀 and 𝐴 is simply that linear functions always yield supercritical Hopf 

bifurcations since they restrict us to the line 𝑟̃′′(𝑥∗) = 0 in Fig. 5.1A, and so a relaxation 

of the linearity of our function—whether prompted by greater inaccuracy in our data or 

simply by modeller preference—increasingly allows the possibility of a subcritical Hopf 

bifurcation. Overall, in the case that 𝜀 is relatively large (and in biology it generally is), 

we should question whether our restrictions on the linearity of the growth term are valid, 

as an artificially low value of 𝐴 can cause us to estimate an abnormally high probability 

of a supercritical Hopf bifurcation as a model artefact. 

 

Figure 5.6: Total probability of the Hopf bifurcation being supercritical as a function of 

𝜀, plotted for several values of 𝐴. 

 

The figure also shows that for a gradual increase of the accuracy (i.e. a decrease 

in 𝜀) the probability of having a supercritical Hopf bifurcation will eventually tend to 1 

and we can be more or less certain about the type of bifurcation. If we allow the second 

derivative to vary within broad intervals, however, a high degree of uncertainty in terms 

of the type of bifurcation will remain until relatively small error terms (corresponding to 

a relative error of 𝜀 ≈ 2.5-5%). Note that typically the error ε is far greater than those 

values in any real biological experiments, thus a high uncertainty in the bifurcation 

structure will be unavoidable if we allow a large curvature of the growth rate function. 

To reduce this uncertainty, we need to obtain some extra information regarding the 

bounds on the second derivative A (as well as the third derivative) of r(x).  
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Another interesting result from Fig. 5.6 is what happens once the probability of 

the Hopf bifurcation being supercritical reaches 0.5. At this point, the chances of the 

bifurcation in the system being supercritical or subcritical are equally likely, so we have 

complete ambiguity with regards to which bifurcation type we should expect. Any further 

increase in ε from this will cause the probability of a supercritical bifurcation to fall 

further and a subcritical bifurcation from this point will become increasingly more likely. 

This results in the almost paradoxical situation where greater uncertainty in our model 

functions should make us more, and not less confident in our model predictions.  

Based on the probability plots shown in Fig. 5.6, we can classify the uncertainty 

in the bifurcation structure in model (5.1)-(5.2) by introducing a number of uncertainty 

levels. For instance, we can consider that in the case where 𝑃(Supercritical) < 0.1 or 

𝑃(Supercritical) > 0.9, we do not have uncertainty in the bifurcation type and the model 

can be analysed using the standard methods of bifurcation analysis, despite the 

uncertainty in the model functions. In the case where we have 0.25 > 𝑃(Supercritical) >

0.1 or 0.75 < 𝑃(Supercritical) < 0.9, we can consider that a bifurcation of a certain 

type (i.e. either supercritical or subcritical) is to be expected, thus we can still use the 

deterministic framework, but we should always estimate the probability (i.e. the risk) of 

overlooking the other bifurcation structure. For 0.75 > 𝑃(Supercritical) > 0.25 we can 

say that we more or less have complete uncertainty regarding the bifurcation structure 

and only probabilistic methods can be used in this case. We should stress that the given 

levels of uncertainty are flexible and can be varied depending on the modelling task. 

 

5.5 Discussion 

 

In this chapter, we have introduced a framework of how to include uncertainty in the 

parameterization of model functions into the construction of corresponding bifurcation 

diagrams. The main idea is to project the 𝜀𝑄-neighbourhood of valid model functions into 

the relevant generalised bifurcation space, and consider the probability of having a 

particular bifurcation diagram based on volumes in this projected neighbourhood. 

Because we embed uncertainty in the model functions into the specification of the 𝜀𝑄-

neighbourhood, we find that even in a purely deterministic dynamical system, the 

uncertainty in the choice of functions results in a probabilistic description in terms of 

what type of bifurcation diagram we should expect given our a-priori information about 
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model functions. Here we have provided a concrete example (based on a ratio-dependent 

model with unknown growth rate function) of how such a probabilistic analysis may be 

done: we evaluated the probability of having a supercritical Hopf bifurcation in the 

system where the uncertainty was only in the criticality of the bifurcation.  

One of the most surprising results of our investigation was that shown in section 

5.4.3.—that an increase in the uncertainty in our model functions by increasing 𝜀 can 

result in us being more certain in the model bifurcation structure. Although we should 

note that in the investigation, whenever we observed this situation there was still a great 

deal of uncertainty, it may be possible to have a situation where a standard bifurcation 

investigation would be appropriate for large 𝜀, but more accurate data should increase the 

uncertainty and cause us to switch to a probabilistic investigation. How can we justify 

this? It seems to suggest that in certain cases, less accurate data is in fact desirable. 

However, we should always aim to obtain data that is as accurate as possible as a 

priority—if we artificially increase the error terms considered, and so decrease the 

uncertainty in the bifurcation structure in this way, then this would poorly represent the 

amount of uncertainty that there truly is in the model bifurcation structure. 

One of the main assumptions we have made in this chapter is that the probability 

distribution in the generalised bifurcation space (the space of local function values) is 

uniform (c.f. the discussion of this probability distribution with respect to the degree of 

structural sensitivity in Section 3.2). This is, of course, far simpler than what we would 

expect in reality, and methods of constructing probability distributions should be 

improved. One approach is to couple our framework with the ‘functional density’ 

approach outlined in sections 3.2 and 3.4 by weighting the point 

(𝑥∗, 𝑟̃′(𝑥∗), 𝑟̃′′(𝑥∗), 𝑟̃′′′(𝑥∗)) by the functional density of these values. Recall that the 

functional density is the area of points in the 𝜀𝑄-neighbourhood that the graph of a 

function taking these values at 𝑥∗ can pass through. This approach could be further 

improved with little extra effort by assigning weights to the points in graph space 

according to a normal distribution centred on the middle of the neighbourhood when we 

are calculating this area. Another approach would be to derive a probability distribution 

of the local function values directly from the data points, but care must be taken to ensure 

that the resulting distribution is biologically relevant. Finally, we may aim to construct a 

more realistic distribution such as a Gaussian directly on the generalised bifurcation 

space, modified such that our 𝜀𝑄-neighbourhood gives the 90% confidence boundary, for 
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instance. The trouble with this is that it is still arbitrary as to what the mean point is etc., 

and an incorrect assumption may lead to the resulting distribution being even less realistic 

than the uniform distribution initially considered. 

Here we have solely considered the case where the growth term in model (1)-(2) 

is logistic, and revealed that the standard result—that the Hopf bifurcation in the system 

will always be supercritical—in fact lacks generality when alternative functional forms 

are considered. The same question remains, however, with respect to the standard result 

that the Hopf bifurcation becomes subcritical when an Allee effect is introduced. Is this 

a general result, or simply an artefact of the particular functional forms of the growth rate 

used? Use of the standard Allee effect parameterisation 𝑟(𝑥) = (𝑥 − β)(1 − 𝑥) will 

automatically restrict us to the line 𝑟̃′′(𝑥∗) = −2 in Fig 5.1, for instance. Although this 

doesn’t guarantee a subcritical Hopf bifurcation, certain resulting limitations on the 

equilibrium value 𝑥∗ do, but it is easy to see that a choice of an alternative functional 

form may lift this restriction to 𝑟̃′′(𝑥∗) = −2 and potentially cause a supercritical 

bifurcation to become possible. Therefore we can reasonably expect uncertainty in the 

criticality of the Hopf bifurcation which a standard bifurcation analysis will not be able 

to detect. Consider Definition 5.2 as opposed to Definition 5.1: since the growth function 

is initially increasing, and then subsequently decreasing, it is possible that the number of 

interior equilibria can be either one or two depending on the particular functional form 

chosen. We should generally expect the first interior equilibrium to be a saddle point, 

however, and we can investigate the number of equilibria using the framework outlined 

in Chapter 3. Note that if we consider alternative formulations of the Allee effect, for 

instance, ones which exhibit a ‘double’ Allee effect in which the per-capita growth 

function has two peaks (González-Olivares, 2011) this would complicate the possible 

bifurcation portraits significantly. Each extra peak allowed at the very least makes two 

additional interior equilibria possible. 

Aside from a complete investigation into the Allee effect case, there are many 

other models which exhibit Hopf bifurcations, and it would be straightforward to 

implement a similar investigation of such systems to check the generality of their results. 

Furthermore, similar techniques can be applied to other local co-dimension one 

bifurcations, such as the saddle-node and transcritical bifurcations, for instance. We 

should also stress that there is no reason why we could not also consider co-dimension 

two bifurcations as well, such as Bogdanov-Takens bifurcations. Performing an 



91 

 

analogous investigation for nonlocal bifurcations would be a lot more challenging, 

however. The approach here makes much use of the fact that local bifurcations conditions 

can be derived solely in terms of a finite number of terms of the Taylor series expansion 

of the system evaluated at an equilibrium, which is not the case for nonlocal bifurcations. 

This should be the next step if we wish to develop a framework for combining 

investigation of the various individual bifurcations into a complete probabilistic 

description of a system’s bifurcation portrait.  
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Chapter 6 

 

General Discussion and Conclusions 

 

The approaches to detecting and quantifying uncertainty in the dynamics of 

biological models that are presented here all share one thing in common: the use of 

partially specified models. Partially specified models (Wood, 2001) work by leaving 

uncertain functions unspecified apart from some local and global qualitative constraints 

and some error bounds which the functions must pass between. Working with partially 

specified models in general is, of course, far more difficult than working with fully 

specified models. If we limit ourselves to investigating model behaviour in the vicinity 

of an equilibrium, however, there is much that can be achieved. In order to analyse such 

models in terms of the number of equilibria and their stability, for instance, we can  

simply find the isocline equations and the Jacobian matrix as usual, and incorporate any 

values which are unknown due to the function being unspecified into a generalised 

bifurcation space. The crucial question then is how to link such an analysis to data.  

In partially specified models, the data range considered—determined by the upper 

and lower bounds placed on valid model functions—is an integral part of the model, not 

something to be explored as a supplementary investigation, after the analysis is done. In 

fact, the partially specified models approach can be characterized as a quantitative 

extension of the classical Kolmogorov approach of investigating ecological models with 

general functions (Gause, 1934; Kolmogorov, 1936; Kuang and Freedman, 1988; 

Truscott and Brindley, 1994). All the methods presented in this thesis share the strategy 

of linking the generalised bifurcation analysis with the data range by somehow projecting 

the set of functions fitting the data range into the generalised bifurcation space. In this 

way, we reduce the problem of considering the entire infinite dimensional set of valid 

model functions into the problem of working in an equivalent region in the finite 

dimensional generalised bifurcation space, in which we can explore the model behaviour 

directly.  

The question of projecting the set of valid model functions essentially boils down 

to being able to decide whether or not there exists a function that: i) satisfies the relevant 

constraints of biological realism, both global ones—e.g. positivity, monotonicity—and 
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local ones—𝑓(0) = 0, for instance; ii) takes given derivatives at a specified point (e.g. 

an equilibrium point, 𝑥∗) and iii) remains between given upper and lower bounds across 

the whole domain. In general, however, this is an extremely difficult mathematical 

problem because it requires us to determine the existence of a function satisfying both 

various local constraints and global constraints. Here we have taken the strategy of using  

geometric methods to obtain the projection exactly, by finding necessary and sufficient 

conditions for such a function to exist. 

In Chapters 3, 4 and 5, we considered geometric methods to obtain the projection. 

The main tools for determining the existence of a function satisfying the relevant local 

and global constraints are the inequalities which are constructed as necessary and 

sufficient conditions in Theorem 3.1, Theorem 3.2 and Theorem 4.1. These are extremely 

powerful theorems when applicable, because they allow us to achieve the projection (of 

the space of valid functions into the generalised bifurcation space) by checking some 

simple inequalities, which is extremely efficient computationally. However, these 

theorems all focus on the case that the upper and lower bounds are considered to be a 

fixed distance 𝜀 from a fixed ‘base function’ that itself satisfied the constraints of 

biological realism. Therefore, the function bounds themselves satisfy the global 

constraints (or can be modified so that they do), and this can be seen to be crucial to the 

construction of an appropriate function in the proofs of those theorems. 

A crucial extension of the partially specified model framework concerns the 

quantification of structural sensitivity in partially specified models. For instance, in the 

case where we reveal that the use of some functions can result in shifting stability or 

changing the number of equilibria in a system, can we somehow determine the ‘relative 

proportion’ of the functions yielding certain stability/equilibrium number predictions? To 

address the issue of quantifying uncertainty in partially specified models, we can use the 

degree of structural sensitivity, introduced in Definition 3.1. The degree of structural 

sensitivity is essentially derived from the probability of two model functions taken at 

random from the 𝜀𝑄-neighbourhood yielding different predictions for the stability of the 

equilibrium at hand when used in the model. Thus, the largest degree of sensitivity, Δ =

1, corresponds to the maximal degree of uncertainty in the system: where the probabilities 

of stability and instability are equal to each other. In this case it is impossible to make 

any precise predictions based on the particular model: without more data concerning the 
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unknown model functions, the model essentially gives us no information about the 

stability of the chosen equilibrium. 

The fact that biological models can be sensitive with respect to the choice of their 

constituting functions is well known in the literature, with a large number of examples 

provided (Myerscough et al., 1996; Wood and Thomas, 1999; Gross et al., 2004; 

Fussmann and Blasius, 2005; Gross et al., 2009; Poggiale et al., 2010; Anderson et al., 

2010; Cordoleani et al., 2011; Gonzalez-Olivares et al., 2011; Adamson and Morozov, 

2012a). Critically, however, structural sensitivity can be largely overlooked when using 

the conventional approach to sensitivity analysis, which is based only on a variation of 

parameters for fixed mathematical formulations of the functions (e.g. Bendoricchio and 

Jorgensen, 2001). This can be readily seen by looking at any of the stability plots—in 

Figs 3.5, 3.9, 4.2, 4.3, for example—and comparing the light blue domain—which 

corresponds to the region covered by varying the parameters of a fixed model functions—

with the total projected domain corresponding to all valid functions. In all of these cases 

there are situations in which varying parameters will miss all of the structural sensitivity 

completely. Unfortunately, it seems to be quite common for modellers to simply use the 

most popular model functions unquestioningly, solely on the basis that such functions 

have been used so many times before. It should be kept in mind, however, that model 

functions usually become popular in the literature due to their analytical simplicity, rather 

than because they are supported by theoretical or empirical evidence. Checking for 

sensitivity by choosing a few concrete parameterizations of model functions and 

comparing the resultant outcomes in each case (e.g. Wood and Thomas, 1999; Fussmann 

and Blasius, 2005) is a more thorough approach, but can still be a rather subjective 

method, since it largely depends on the choice of the mathematical forms that are to be 

compared.  

Our method is a more general alternative to parameter variation, and to other 

approaches such as fixing a few specific functional forms and proceeding as  usual, then 

comparing the results, or combining them in a function 𝛼 ∙ 𝑓(𝑥) + (1 − 𝛼) ∙ 𝑔(𝑥), and 

treating 𝛼 as another parameter (Cordoleani et al. 2011). The advantage of our approach 

over standard parameter-based approaches (e.g. Bendoricchio and Jorgensen, 2001) is 

that it allows us to cover all function relations and not stick to any particular mathematical 

formulation—it therefore necessarily encompasses parameter variations, and goes 

beyond it; we cover the entire infinite dimensional space of valid model functions, rather 

than an arbitrary finite dimensional subset. 
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There are several existing frameworks which are related to our approach. Firstly, 

the framework of generalised modelling and the analogous structural kinetic modelling 

(Gross, Ebenhoh and Feudel, 2004; Gross and Feudel, 2006; Steuer et al., 2006.; Kuehn 

et al. 2012) shares with our method the use of unspecified functions which allow for a 

broad range of functional formulations to be considered, and the treatment of equilibrium 

values and the values of unknown functions/their derivatives as parameters in the 

Jacobian matrix of the system. However, instead of incorporating the whole data range 

into the model, and anchoring the generalised bifurcation space to this data range via a 

projection, in these approaches the initial model is transformed so that the generalised 

bifurcation analysis comes out in terms of general parameters which are more 

biologically interpretable and notionally more measurable than equilibrium densities, etc. 

A similar approach is taken in critical function analysis (de Mazancourt and Dieckmann, 

2004; Kisdi, Geritz and Boldin, 2013). Critical function analysis is a branch of adaptive 

dynamics (Geritz et al. 1998; Morozov and Adamson, 2011)—whereby evolutionary 

trade-off curves are left unspecified, and the type of a hypothetical evolutionarily singular 

strategy (in terms of evolutionary stability, convergence stability etc.) is determined using 

the local curvature of the trade-off function taken at the trait values taken by this strategy.  

However, in both of the above approaches there is no escaping the fact that all of 

the generalised parameters will necessarily be values that need to be measured at the 

equilibrium density itself. With the approach proposed here, using partially specified 

models and considering the whole data range, this dependence on measurements at a 

single density vanishes. The ‘inputs’ in our framework are not the local parameters 

corresponding to function values, elasticities etc. of the system at its equilibrium 

densities, as in generalised modelling, but global bounds such as the error bounds of the 

data range, the global qualitative restrictions of biological realism etc. Notably, we can 

still carry out parameter-based approaches if we like: if we are considering a data range 

determined by bounds at a distance 𝜀 of a fixed base function, then the base function itself 

often has biologically interpretable parameters which can still be varied. In this case, 

varying the parameters will actually change the data range itself by shifting the upper and 

lower bounds of our function. Somewhat surprisingly, in this way we can investigate how 

our system responds to changes in a parameter of a function that is completely 

unspecified, and therefore has no parameters at all. 

One crucial question concerns what we need to do in the case that we find a given 

model exhibits structural sensitivity. Certainly, we should be rather carefully regarding 
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the model’s predictions—which may be quite inaccurate given the usual uncertainty of 

model functions and large scattering of points in laboratory experiments (Canale et al., 

1973; DeMott, 1982; Hansen et al., 1990; Wood and Nisbet, 1991). One possible course 

of action could be to use data on the experimental population dynamics to reconstruct the 

unknown underlying model functions (Wood, 2001; Nelson et al., 2004; Nisbet et al., 

2004; Cao et al., 2008). One can try to reconstruct as closely as possible the ‘true’ model 

functions which should be used in modelling of the given experimental mesocosm or 

ecosystem. However, in the case that we have structural sensitivity, an attempt to reveal 

such ‘true’ parameterisations for a given set of equations my simply be in vain. Functional 

relations that we use in models are often oversimplifications of a large number of 

factors—for instance, the functional response h of a consumer is not only a function of 

food and/or the population density of the consumer itself, i.e. h=h(P,Z)—and even if the 

environmental conditions (temperature, light intensity, etc.) are kept fixed, other factors 

such as adaptation and evolution of the prey can influence the functional response 

(Yoshida et al., 2003; Kondoh, 2003; Jones et al., 2009). The influence of spatial scale 

can also be a crucial factor: implementing parameterizations obtained on a small spatial 

scale, such as are found in laboratory experiments, in modelling the dynamics over larger 

temporal and spatial scales can be erroneous for a number of reasons (Chesson, 1998; 

Pascual et al., 2001; Englund and Leonardsson, 2008, Morozov, 2010). As a result, the 

‘true’ functional relation may simply not exist as a function of the given state variables 

of the model, and can be defined only up to a certain accuracy ε.  

In this case, uncertainty in the choice of a parameterization may arise not because 

of some experimental errors, but as a result of internal drift of the functional relations in 

real ecosystems due to factors not included into the simplified model. For this reason, 

any case where an optimal parameterization of model functions mimics the experimental 

data well, but a close parameterisation results in a pronounced deviation, should be 

considered to be rather suspicious: if the data had been obtained another time, an entirely 

different optimal parameterisation may have been found. On the other hand, if the 

dynamics observed in a biological system appear to be relatively consistent, structural 

sensitivity in a corresponding model can be an indicator that something is wrong with the 

model construction, since we should expect some small variation in the biological 

functions which, according to a structurally sensitive model would result in significant 

variation in the population dynamics. In this case, we probably need to stop searching for 

a function providing us with a fantastic fitting and make necessary changes to the model 
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structure, by including adaptation and evolutionary factors, for instance (e.g. Yoshida et 

al., 2003; Jones et al., 2009). 

One particularly interesting consequence of structural sensitivity in models is that 

it may help explain the apparent irregularity in the oscillations of species densities 

observed both in nature and in some experiments (e.g. Nicholson, 1957; Wolda, 1988; 

Giller and Doube, 1994; Smayda, 1998; Philippart et al., 2000; Guo et al., 2002; Valdes 

et al., 2007 and many other references). The widespread opinion is that irregular 

oscillations of species densities are a consequence of either internal chaotic dynamics 

(Hastings et al., 1993; Dennis et al., 2001), the influence of environmental noise 

(Greenman and Benton, 2003; Vasseur, 2007) or the interplay of both factors (Turchin 

and Ellner, 2000). The phenomenon of structural sensitivity allows us to propose another 

scenario of such irregular species oscillations, since in reality functional relations 

between system components are not fixed but slowly change in time. This can be a 

consequence of the fact that our models describe systems using a limited number of state 

variables, whereas the true relationships in the functions can depend on a large number 

of hidden variables which do not remain constant and change our model functions, but 

variation of model functions may also take place through processes of fast evolution and 

adaptation (Thompson, 1998; Duffy and Sivars-Becker, 2007; Kinnison and Hairston, 

2007). This permanent variation can be visualized as an on-going random walk in the 

space of functions, which may translate itself into a large variation of the model outcomes 

due to the structural sensitivity of the system, and manifest as irregularity in the species 

population sizes, since small variations in functions may result in transitions between the 

stability and instability subdomains of the functional space and moreover, within the 

instability domain the amplitude as well as the period of resulting oscillations can 

prominently change through small variations in the model functions (Fussmann and 

Blasius, 2005; Cao et al., 2008; Cordoleani et al., 2011). In this way, small fluctuations 

in model functions may be amplified and result in large amplitude irregular oscillations 

of species densities, which may present themselves in the original biological system. 

Such a mechanism has been proposed in previous works (e.g. Beninca et al., 2011), but 

fluctuations in model functions were only considered to be due to variation in model 

parameters. 

As a consequence of this mechanism, even simple 2-3 component classical 

ecological models may be able possess a large degree of complexity which is encoded in 

terms of structural sensitivity, complexity which will largely become hidden when one 
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uses only fixed parameterizations of model functions. We propose that structural 

sensitivity in our models may be strongly related to the complexity of the underlying real 

biological systems whose behaviour we wish to mimic. Structural sensitivity, in fact, 

should eventually entail a complete rethink of bifurcation theory in afflicted disciplines: 

due to uncertainty in the model functions, model dynamics can be defined only with 

certain probability. Therefore, as we saw in Chapter 4 with regards to Hopf bifurcations 

and their criticality, there are no longer concrete bifurcations in structurally stable 

systems, but rather there are probabilistic bifurcations—in which the probability of 

observing certain model behaviour undergoes a continuous change. Bearing this in mind, 

it is crucial to extend the framework of Chapter 5 and construct theory of probabilistic—

or ‘fuzzy’—bifurcation theory. 

A crucial step towards a probabilistic bifurcation theory concerns how to consider 

probability distributions of regions in the generalised bifurcation spaces of partially 

specified models. Ideally, such a probability distribution should constitute a weighting of 

points in the generalised bifurcation space according to how well corresponding functions 

can fit the data range, but this is complicated by the very nature of the projection—we’re 

projecting from an infinite-dimensional set of functions into a finite dimensional set, so 

every point in the projected region of generalised bifurcation space corresponds to an 

infinite class of possible valid function. As a pragmatic solution to this difficulty, we have 

introduced the notion of the ‘functional density’, which weights points in the generalised 

bifurcation space by the area of the data range which corresponding functions can pass 

through (see the end of Section 3.2, Section 3.4 and Section 6.3.4). However, in general 

the question of assigning more fitting probability distributions to generalised bifurcation 

spaces, and the related question of how we can assign measures to infinite dimensional 

sets is a difficult one, and should be given much more thought. 

Finally, we can say a few words about how the framework proposed here can be 

extended. Firstly, our test is designed to detect qualitative changes to system dynamics, 

but structural sensitivity can also manifest itself in terms of large quantitative changes in 

a model’s predictions, as in Defn. 2.2, (ii). Such ‘quantitative’ structural sensitivity can 

also have  potentially calamitous consequences to the predictive power of a model (Wood 

and Thomas, 1999; Cordoleani et al., 2011), so developing methods to detect when this 

is the case would be in the interest of predictive modelling in a wide range of disciplines. 

In particular, one case in which the approach used here is not applicable is when we need 

to reveal the sensitivity of oscillatory dynamics (regular or chaotic) to the choice of the 
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model functions: for instance, the amplitude and period of any limit cycles may be 

sensitive to the choice of parameterization (Wood and Thomas, 1999; Fussmann and 

Blasius, 2005; Cordoleani et al., 2011). Another direction in which the framework could 

be extended would be the use of partially specified models to consider nonlocal 

bifurcations such as homoclinic and heteroclinic bifurcations, which are not determined 

by local approximations. Similarly, we could extend our framework to investigate the 

influence of functional variation on transient dynamics, rather than confining ourselves 

to asymptotic dynamics. At all three of these frontiers, we shall encounter the same 

general challenge: in these cases, the functions and their derivatives at a given locality 

don’t give us enough information: we need to know the shape of the functions over a 

domain of positive measure. Therefore it is unlikely that a generalised bifurcation space 

of finite dimension will be sufficient to determine the entire range of model behaviour. 

Overall, we should say that the partially specified modelling framework is still a very 

young and growing research area. There are certainly many challenges ahead if it is to be 

extended to its full potential, but there is also great opportunity. 
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Appendix A 

 

Computation of the area of the 𝜺𝑸-neighbourhood that 

can be covered by parameter variation 

 

Here we analytically derive the conditions of when parametric-based analysis of 

structural sensitivity can provide the same result as the nonparametric test introduced in 

Chapter 3 (we assume the 𝜀𝑄 neighbourhood to be small). We consider a function 

𝑓: [𝑃1, 𝑃2] → ℝ with two parameters 𝛼 and 𝛽, and aim to find a bound for the domain in 

𝐷 − 𝑥 space of functions in the ℰ𝑄 neighbourhood of 𝑓 which can be explored by varying 

the parameters – which is the typical approach taken to structural sensitivity analysis. 

First we note that taking the Taylor expansion of a function 𝑓 about (𝑥, 𝛼0, 𝛽0) 

gives us 

𝑓(𝑥, 𝛼, 𝛽) ≈ 𝑓(𝑥, 𝛼0, 𝛽0) + ∆𝛼 ∙ 𝑓𝛼(𝑥, 𝛼0, 𝛽0) + ∆𝛽 ∙ 𝑓𝛽(𝑥, 𝛼0, 𝛽0),              (𝐴1)               

and differentiating w.r.t 𝑥 yields 

𝑓𝑥(𝑥, 𝛼, 𝛽) ≈ 𝑓𝑥(𝑥, 𝛼0, 𝛽0) + ∆𝛼 ∙ 𝑓𝛼𝑥(𝑥, 𝛼0, 𝛽0) + ∆𝛽 ∙ 𝑓𝛽𝑥(𝑥, 𝛼0, 𝛽0).              (𝐴2) 

where  ∆𝛼 = 𝛼 − 𝛼0 , ∆𝛽 = 𝛽 − 𝛽0 and ∆𝛼, ∆𝛽 ≪ 1.   

At 𝑥 = 𝑥∗ we have 

𝑓(𝑥∗, 𝛼, 𝛽) ≈ 𝑓(𝑥0, 𝛼0, 𝛽0) + ∆𝑥 ∙ 𝑓𝑥(𝑥0, 𝛼0, 𝛽0) + ∆𝛼 ∙ 𝑓𝛼(𝑥0, 𝛼0, 𝛽0) 

+∆𝛽 ∙ 𝑓𝛽(𝑥0, 𝛼0, 𝛽0)(𝐴3). 

where ∆𝑥 = 𝑥∗ − 𝑥0 and ∆𝑥 ≪ 1. 

Since we have  𝑓(𝑥0, 𝛼0, 𝛽0) =
𝑚

𝑘
 and we require 𝑓(𝑥∗, 𝛼0, 𝛽0) =

𝑚

𝑘
, we obtain 

−∆𝑥 ∙ 𝑓𝑥(𝑥0, 𝛼0, 𝛽0) = ∆𝛼 ∙ 𝑓𝛼(𝑥0, 𝛼0, 𝛽0) + ∆𝛽 ∙ 𝑓𝛽(𝑥0, 𝛼0, 𝛽0),                        (𝐴4) 

by rearranging (A3). 

If we introduce  ∆𝐷 = 𝑓𝑥(𝑥
∗, 𝛼, 𝛽) − 𝑓𝑥(𝑥0, 𝛼0, 𝛽0), then by taking linear 

approximations to 𝑓𝑥(𝑥
∗, 𝛼0, 𝛽0), 𝑓𝛼𝑥(𝑥

∗, 𝛼0, 𝛽0) and 𝑓𝛽𝑥(𝑥
∗, 𝛼0, 𝛽0) about 𝑥∗ = 𝑥0 in 

(A2) and discounting second order terms we get      

∆𝐷 − ∆𝑥 ∙ 𝑓𝑥𝑥(𝑥0, 𝛼0, 𝛽0) = ∆𝛼 ∙ 𝑓𝛼𝑥(𝑥0, 𝛼0, 𝛽0) + ∆𝛽 ∙ 𝑓𝛽𝑥(𝑥0, 𝛼0, 𝛽0).               (𝐴5) 
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Together, (A4) and (A5) form a linear system of two equations with – provided 

that we can find expressions for ∆𝛼 and ∆𝛽 – two unknowns: ∆𝐷 and ∆𝑥. We can 

rearrange (A4) to find ∆𝑥, and substitute this into (A5) to get  

∆𝑥 = −∆𝛼 ∙
𝑓𝛼(𝑥0,𝛼0,𝛽0)

𝑓𝑥(𝑥0,𝛼0,𝛽0)
− ∆𝛽 ∙

𝑓𝛽(𝑥0,𝛼0,𝛽0)

𝑓𝑥(𝑥0,𝛼0,𝛽0)
, and  

∆𝐷 = ∆𝛼 ∙ (𝑓𝛼𝑥(𝑥0, 𝛼0, 𝛽0) −
𝑓𝑥𝑥(𝑥0,𝛼0,𝛽0)∙𝑓𝛼(𝑥0,𝛼0,𝛽0)

𝑓𝑥(𝑥0,𝛼0,𝛽0)
) + ∆𝛽 ∙ (𝑓𝛽𝑥(𝑥0, 𝛼0, 𝛽0) +

𝑓𝑥𝑥(𝑥0,𝛼0,𝛽0)∙𝑓𝛽(𝑥0,𝛼0,𝛽0)

𝑓𝑥(𝑥0,𝛼0,𝛽0)
). 

Now, provided that we can find an expression for the bounds of the region in 𝛼 − 𝛽 space 

which corresponds to functions in the ℰ𝑄 neighbourhood of 𝑓(𝑥, 𝛼0, 𝛽0), we can find the 

analogous region in ∆𝐷 − ∆𝑥 space. To find such an expression we use conditions that 

depend on which definition of the ℰ𝑄 neighbourhood of 𝑓 we are using. If we are using 

the absolute distance, the condition is that 

|𝑓(𝑥, 𝛼, 𝛽) − 𝑓(𝑥, 𝛼0, 𝛽0)| < 𝜀 for all 𝑥 ∈ [𝑃1, 𝑃2],                    (𝐴6) 

so to find the bounds on 𝛼 and 𝛽, we take the equality here, and using (A1) we obtain  

|∆𝛼 ∙ 𝑓𝛼(𝑥̂, 𝛼0, 𝛽0) + ∆𝛽 ∙ 𝑓𝛽(𝑥̂, 𝛼0, 𝛽0)| = 𝜀,                               (𝐴7)  

where 𝑥̂ ∈ [𝑃1, 𝑃2] is the value at which the LHS takes its maximum. If we use relative 

distance, the condition becomes  

|𝑓(𝑥, 𝛼, 𝛽) − 𝑓(𝑥, 𝛼0, 𝛽0)|

|𝑓(𝑥, 𝛼0, 𝛽0)|
< 𝜀,                                              (𝐴8) 

and we need to consider  

|∆𝛼 ∙ 𝑓𝛼(𝑥̂, 𝛼0, 𝛽0) + ∆𝛽 ∙ 𝑓𝛽(𝑥̂, 𝛼0, 𝛽0)|

|𝑓(𝑥 , 𝛼0, 𝛽0)|
= 𝜀,                            (𝐴9) 

where 𝑥̂ ∈ [𝑃1, 𝑃2] is again the value at which the LHS takes its maximum. 

Note, however, that in both cases, 𝑥̂ may be different for different values of ∆𝛼 

and ∆𝛽, so the resulting boundaries may be curvilinear. To avoid this, we choose  𝑥̂ = 𝑃2 

and use (A7) or (A9) to obtain explicit equations for the two boundary lines in ∆𝛼 − ∆𝛽 

space. This will give us a linear boundary region, and since 

 |∆𝛼 ∙ 𝑓𝛼(𝑃2, 𝛼0, 𝛽0) + ∆𝛽 ∙ 𝑓𝛽(𝑃2, 𝛼0, 𝛽0)| < 𝜀 is a necessary condition for (A6) to be 

satisfied, this linear region must contain the corresponding boundary region for the 

correct choice of 𝑥̂. ∎ 
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Appendix B  

 

Stability analysis of the delay differential equation 

(4.19)-(4.21) 

 

Here we describe an approach to check the linear stability of an equilibrium of the system 

of delay-differential equations (4.19)-(4.21). Hereon we denote 𝑥𝑖(𝑡) by 𝑥𝑖, and 𝑥𝑖(𝑡 −

𝜏) by 𝑥𝑖𝜏  for simplicity. We implement a standard technique of stability analysis of ODEs 

with delay (Dieudonne, 1960; Bairagi et al., 2008). We can let 𝒙 = 𝒙∗ + 𝛿𝒙, where 𝛿𝒙 is 

a small magnitude perturbation from the equilibrium 𝒙∗, then use Taylor’s theorem to 

obtain the linearization of the system 

𝛿𝒙̇ ≈ 𝑱0𝛿𝒙 + 𝑱𝜏𝛿𝒙𝝉,                                               (B1) 

where 𝑱0 is the Jacobian matrix with respect to 𝒙 and 𝑱𝜏 is the Jacobian matrix with 

respect to 𝒙𝜏. If we assume that (B1) has exponential solutions, we can write 𝛿𝒙 = 𝑨𝑒𝜆𝑡 

and substitute this solution into (B1) gives us 𝜆𝑨𝑒𝜆𝑡 = 𝑱0𝑨𝑒𝜆𝑡 + 𝑱𝜏𝑨𝑒𝜆(𝑡−𝜏). Dividing 

by 𝑒𝜆𝑡 yields 

𝜆𝑨 = (𝑱0 + 𝑒−𝜆𝜏𝑱𝜏)𝑨.                                              (B2) 

Since 𝜆 is therefore an eigenvalue of the matrix (𝑱0 + 𝑒−𝜆𝜏𝑱𝜏), we know from the 

theory of linear algebra that (B2) holds if and only if the following holds: 

|𝑱0 + 𝑒−𝜆𝜏𝑱𝜏 − 𝜆𝑰| = 0,                                            (B3) 

where 𝑰 is the three-dimensional identity matrix. (A3) is called the characteristic 

equation of system (4.19)-(4.21), and can be calculated in this case as 

𝜆3 + 𝑃𝜆2 + 𝑄𝜆 + (𝑆𝜆 + 𝑀)𝑒−𝜆𝜏 + 𝑁 = 0,                          (B4) 

 

where 𝑃 = (𝑐 − 1)𝑥1
∗ − 2𝑗𝑥2

∗ − (𝐻̃′(𝑥2
∗) + ℎ)𝑥3

∗ − 𝑏;  

𝑄 = (𝑥1
∗ + ℎ𝑥3

∗)(𝑏 − 𝑐𝑥1
∗ + 𝐻̃′(𝑥2

∗)𝑥3
∗ + 2𝑗𝑥2

∗) + ℎ𝑥1
∗𝑥3

∗;   

𝑆 = 𝑘 ∙ 𝐻̃(𝑥2
∗)𝐻̃′(𝑥2

∗)𝑥3
∗ + 𝑎𝑐𝑥1

∗𝑥2
∗;  

𝑀 = 𝑥1
∗𝑥3

∗(𝑘 ∙ 𝐻̃(𝑥2
∗)𝐻̃′(𝑥2

∗) + 𝑎𝑐ℎ𝑥2
∗),  

and 𝑁 = ℎ𝑥1
∗𝑥3

∗(𝑏 − 𝑐𝑥1
∗ + 𝐻̃′(𝑥2

∗)𝑥3
∗ − 2𝑗𝑥2

∗). 
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Unlike the case of ODE systems, equation (B3) is not a polynomial over the 

complex numbers, but rather a quasi-polynomial: since the 𝑒−𝜆𝜏 term is periodic with 

respect to the complex part of 𝜆, (B3) must have infinitely many complex solutions. 

Therefore the usual approach of directly finding the eigenvalues of (B3) and determining 

the conditions under which they all have negative real part cannot be used here. Instead, 

we need to choose a certain parameter – in this paper, we choose the time delay, 𝜏 – and 

determine the critical values for which the real part of 𝜆 changes sign in order to detect 

bifurcations with respect to this parameter. At these critical values, the eigenvalues will 

take the form 𝜆 = 𝑖 ∙ 𝜔 for some real 𝜔 (we assume, without loss of generality, that 𝜔 >

0). Substituting 𝜆 = 𝑖 ∙ 𝜔 into the characteristic equation (B4) and separating the real and 

imaginary parts yields 

𝑃𝜔2 − 𝑁 = 𝑀cos(𝜔𝜏) + 𝑆𝜔sin(𝜔𝜏),       𝜔3 − 𝑄𝜔 = 𝑆𝜔cos(𝜔𝜏) − 𝑀sin(𝜔𝜏)     (B5) 

Squaring both equations and summing them results in 

𝜔6 + (𝑃2 − 2𝑄)𝜔4 + (𝑄2 − 2𝑁𝑃 − 𝑆2)𝜔2 + 𝑁2 − 𝑀2 = 0              (B6) 

which has at least one positive, real solution provided 𝑁2 < 𝑀2, since this implies the 

polynomial is negative at 𝜔 = 0, while it tends to positive infinity as 𝜔 → ∞. Therefore, 

we can solve (B6) as a cubic equation with variable 𝜔2 and take the positive roots of 

these solutions to obtain at most three positive roots of (B6). If we let 𝜔0 denote any 

given positive root of (B6), then by rearranging both equations of (B5) in terms of sin𝜔𝜏 

and equating them, and then substituting in 𝜔 = 𝜔0, we obtain 

cos𝜔0𝜏𝐶 =
𝑆𝜔0

4 + (𝑀𝑃 − 𝑄𝑆)𝜔0
2 − 𝑀𝑁

𝑆2𝜔0
2 + 𝑀2

,                              (B7) 

where 𝜏𝐶 are the critical values of the time delay, at which the real parts of 𝜆 disappear. 

Therefore we obtain a countable family of critical time delays for each 𝜔0: 

𝜏𝐶𝑚
=

1

𝜔0
cos−1 (

𝑆𝜔0
4 + (𝑀𝑃 − 𝑄𝑆)𝜔0

2 − 𝑀𝑁

𝑆2𝜔0
2 + 𝑀2

) +
𝑚2𝜋

𝜔0
,    𝑚 ∈ ℤ.     (B8) 

Now we note that Re(𝜆) = 0 is a necessary, but not sufficient condition for a 

stability change to take place. To prove that there will be such bifurcations at our critical 

values 𝜏𝐶𝑚
, it is sufficient to prove that 

dRe(𝜆)

d𝜏
|𝜆=𝑖𝜔0

≠ 0, 
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n.b. This is not to say that 
dRe(𝜆)

d𝜏
|𝜆=𝑖𝜔0

≠ 0 and Re(𝜆) = 0 are necessary and 

sufficient conditions for a bifurcation at 𝜏𝐶𝑚
: the sign of Re(𝜆) can still change when 

dRe(𝜆)

d𝜏
|𝜆=𝑖𝜔0

= 0. 

Note that sign {
dRe(𝜆)

d𝜏
|𝜆=𝑖𝜔0

} = sign {Re ((
dλ

d𝜏
)
−1

|𝜆=𝑖𝜔0
)}. Now by 

differentiating (B4) with respect to 𝜏, rearranging, substituting in 𝜆 = 𝑖𝜔0, taking the real 

part and simplifying, we obtain 

sign {
dRe(𝜆)

d𝜏
|𝜆=𝑖𝜔0

}

= sign{(𝑄 − 3𝜔0
2)(𝜔0

2 − 𝑄)(𝑆2𝜔0
2 + 𝑀2)

− 2𝑃(𝑃𝜔0
2 + 𝑁)(𝑆2𝜔0

2 + 𝑀2) − 𝑆2(𝑄 − 3𝜔0
2)(𝜔0

2 − 𝑄)

− 2𝑃𝑆2(𝑃𝜔0
2 + 𝑁)}. 

Provided that 𝜔0 is not a root of this polynomial, there will be a bifurcation at 

each of the critical time delays, 𝜏𝐶𝑚
, that are related to it, and this can easily be checked 

by substituting each of the 𝜔0 into the polynomial. 

 Finally, once we have determined the bifurcation values of the time-delay, 𝜏𝐶𝑚
, it 

is simple to check how many such bifurcations take place between 𝜏 = 0 and a  specified 

time-delay 𝜏, so we can determine the stability of our equilibrium for the system with this 

time-delay by computing the stability of the system in the case 𝜏 = 0 (i.e. by using the 

standard stability analysis in the ODE case). If an equilibrium in the system without time-

delay is stable, then it will be stable in the system with time-delay 𝜏 if 

#{𝜏𝐶𝑚
|𝜏𝐶𝑚

∈ (0, 𝜏)} is even, and unstable if it is odd. If the equilibrium is unstable in the 

system without delay, this situation is reversed. 
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