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Abstract 
 

This thesis focusses on the challenges relating to clinical- and cost-effectiveness 

analysis in Health Technology Assessment (HTA). It includes methodological 

developments, both statistical and presentational, in evidence synthesis aiming to 

address those challenges.  

 

In HTA, analysts often face problems with limited availability of data required to 

inform economic model. This thesis proposes innovative evidence synthesis approaches 

to address this challenge, illustrated in two examples. Bivariate random-effects meta-

analysis (BRMA) and network meta-analysis (NMA) were used to synthesise all 

available evidence to predict progression-free survival (PFS), in metastatic prostate 

cancer. This enabled the specification of a three-state Markov model previously limited 

to two states when PFS was not recorded. In the second example, a scenario in multiple 

sclerosis is considered where utility data for the trials included in a HTA were not 

available and external utility data from a single study was used instead. This thesis 

illustrates how BRMA can be applied to include all available evidence to inform utility 

estimates for use in a cost-effectiveness analysis. 

 

NMA, allowing for a simultaneous and coherent comparison of multiple interventions, 

is increasingly used in HTA. However, due to the inherent complexity of presenting 

NMA results, it is important to ease their interpretability. A review of existing methods 

of presenting NMA results in HTA reports revealed that there is no standardised 

presentational tool for their reporting. Novel presentational approaches were developed 

which are presented in this thesis.  

 

The original contributions of this thesis are the innovative approaches to incorporate 

historical data to predict and increase the precision of parameter estimates for cost-

effectiveness analysis to better inform health policy decision-making; and three novel 

graphical tools to aid clear presentation and facilitate interpretation of NMA results. 

Ultimately, the hope is that the graphical tools developed will be recommended in 

updated guidance setting the standards for future HTAs. 
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1 Introduction 

 

1.1 Aims of the thesis 

In conducting Health Technology Assessment (HTA) for health policy decision making 

it is necessary to collate information on the clinical- and cost-effectiveness of the 

technologies of interest. Information should ideally be comprehensive and obtained 

from all relevant, well-managed and documented data sources. This can be from 

clinical trials, observational studies, expert opinion, bench research and/or secondary 

analyses (such as meta-analysis) by extracting data from any of these sources. Hence, 

synthesis methods that enable direct and/or indirect comparisons of competing 

treatment or intervention technologies and jointly amalgamate evidence from multiple 

outcomes are required to quantify how the different technologies compare in terms of 

their effectiveness. 

The aims of this thesis were to: 

1. Review and identify methodological and presentational issues related to 

evidence synthesis and economic modelling in HTA;  

2. Formulate recommendations on how to approach the identified issues; and  

3. Develop methods to address the issues using motivating case studies from 

published HTA reports 

The background to these three areas of methodological and presentational challenges 

related to evidence synthesis and economic modelling in HTA are discussed in Sections 

1.1, 1.3 and 1.4 and the structure of this thesis is outlined in Section 1.5. 

 

1.2 Presentational challenges for evidence synthesis in HTA 

Evidence synthesis of clinical effectiveness of treatment interventions has largely been 

evaluated using standard pairwise meta-analysis of all studies that compared the same 

(two) options of interest (Borenstein et al., 2009, DerSimonian and Kacker, 2007). 

Although this method may be useful for judgement in situations where the new 

intervention is to be compared with either placebo or standard care, it is limited in 
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scope. Thus, decision makers are often interested in assessing the comparative 

effectiveness of more than two competitor interventions, in settings where randomised 

controlled trials (RCTs) comparing all technologies of interest may not be available; 

and even when head-to-head RCTs do exist, there is increasing interest to incorporate 

data from other related studies to further inform the effectiveness estimate of the 

comparisons.  

A methodology to address this issue, which has increasingly been applied, is network 

meta-analysis (NMA) (Ades, 2003, Ades et al., 2006, Caldwell et al., 2005, Higgins 

and Whitehead, 1996, Lu and Ades, 2004, Lumley, 2002). However, NMA is a 

complex statistical method, the results from which need to be made accessible to non-

statistical experts, including policy-makers, in order to maximize their usefulness in 

HTA.   

Although the UK National Institute for Health and Care Excellence (NICE) guidance 

states that all data used for estimates of effectiveness should be presented in tabular 

form with the source of the data clearly stated (NICE, 2004, NICE, 2008, NICE, 2013) 

and the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) 

Task Force provided detailed guidance for the conduct of NMA analyses through a 

series of good practice documents (Hoaglin et al., 2011, Jansen et al., 2011), specific 

details and recommendations on presentational formats, particularly of the data and 

results, are limited. It is therefore the intent of this thesis to develop novel graphical 

tools to facilitate clear, consistent and transparent reporting of NMA in HTA for health 

economic decision making. A review of the existing guidelines and current practice on 

the presentation of NMA results together with the new graphical tools developed for 

improved presentation are included in Chapter 3. 

 

1.3 Methodological issues concerning economic modelling in HTA 

Health policy decision makers are constantly faced with the challenge of how best to 

allocate resources for a wide range of health interventions within their limited 

budgetary constraints. Hence, there is a need to take into account the clinical and 

economic considerations of the health interventions for different disease conditions as a 

whole when making decisions about which health interventions to fund.  This is to 
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ensure that scarce resources are efficiently allocated to achieve the maximum 

healthcare gains for the public. 

Decision-analytical modelling to estimate the cost-effectiveness of health interventions, 

which compares costs and effects of two or more interventions, is widely used to guide 

the prioritisation of scarce healthcare resources. The Markov model is one that is 

commonly used in economic modelling due to its flexibility in allowing the disease 

pathway of patients to be represented using distinct states. It is therefore imperative that 

the disease progression of patients is appropriately represented using multiple states in 

the model as inappropriate modelling of the natural pathway of the disease may 

produce inappropriate cost-effectiveness results. However, data for the full set of 

parameters required to specify a multi-state model for cost-effectiveness evaluation are 

not always available.  

The motivating case study for this section was a 2007 NICE HTA report on the 

treatments for metastatic hormone-refractory prostate cancer  (Collins et al., 2007). 

This report relied on a two-state (stable disease and death) Markov model due to the 

availability of sufficient data only on overall survival.  The thesis seeks to illustrate 

how evidence synthesis methods, incorporating historical data describing the 

relationship of clinical endpoints, enabled the specification of a three-state (stable 

disease, progression and death) Markov model to better inform the cost-effectiveness 

analysis for health policy decision-making in this context. The background to the 2007 

NICE HTA report and the methodologies applied to incorporate historical data using 

evidence synthesis under a Bayesian framework are described in Chapter 4. 

 

1.4 Methodological issues concerning utility used in cost-effectiveness 

analysis in HTA 

Cost-effectiveness analysis for health economic decision making typically requires the 

estimating of resource costs and health effects resulting from the use of one or more 

new interventions compared to the management of the disease under the usual standard 

of care. Resources consumed often include the costs of, for example, drug acquisition 

and administration, inpatient clinic or hospitalisation care, and outpatient follow up.  
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The health effects are obtained from either disease-specific or generic measures by 

means of questionnaire instruments.  

Disease-specific measures, as the name implies, are specific to a particular disease or 

health condition and examples of these are presented in Chapter 5. Generic measures 

(also referred to as utilities) are non-disease specific and can be used across most 

diseases. An example is the EuroQol 5-Dimensions (EQ-5D) Questionnaire (Rabin and 

de Charro, 2001), which is the recommended health related quality of life (HRQoL) 

instrument for cost-effectiveness analyses by NICE. However, this utility measure is 

not always reported in RCTs and often mapping techniques are used to estimate EQ-5D 

from disease-specific measures. 

A 2011 NICE single technology appraisal (STA) of Fingolimod for the treatment of 

relapsing remitting multiple sclerosis (MS) in adults (Asaria et al., 2011, Novartis 

Pharmaceuticals UK Ltd, 2011) used a mapping model developed  by Orme and 

colleagues (Orme et al., 2007) to estimate the EQ-5D utility values from the data 

collected on the Expanded Disability Status Scale (EDSS) scores from two RCTs. 

Using this STA as a motivating case study, this thesis aims to illustrate how advanced 

meta-analytic methods could be used to include all available evidence on the 

relationship between disease-specific and generic measure of health effects to inform 

mapping models used in cost-effectiveness analysis. Background on the NICE STA and 

Bayesian evidence synthesis techniques used for the estimation of health utility values 

(EQ-5D) from EDSS scores in patients with MS are described in Chapter 5. 

 

1.5 Structure of the thesis 

This thesis is structured into six chapters, where the first chapter presents the objectives 

and background to the methodological and presentational issues in HTA that motivate 

the need for this PhD project.  

Chapter 2 introduces the fundamental concept and methodologies of Bayesian statistics, 

evidence synthesis and economic evaluation that are applied to the analyses performed. 

All modelling in Chapter 3 to Chapter 5 is conducted under the Bayesian framework, 

which is particularly useful for performing clinical- and cost-effectiveness analyses in a 
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coherent fashion as it allows the incorporation of historical data into the evidence 

synthesis and hence inform health policy decision making. 

Chapter 3 highlights the presentational issues and challenges in reporting NMA results 

in HTA reports. It begins with a review of existing guidelines for the presentation of 

NMA and by reviewing published HTA reports, what has been done in practice in the 

UK. Based on the results of the reviews, recommendations to improve reporting and 

novel graphical tools developed to aid clear presentation and facilitate interpretation of 

NMA results in HTA are presented. 

Chapter 4 discusses the many challenges in the economic modelling of cancer 

treatments. It presents, with the use of a motivating HTA report, a novel method of 

using Bayesian evidence synthesis techniques to predict clinical effectiveness of cancer 

treatments for the specification of multi-state Markov model when the full set of 

parameters required for the multi-state economic model were not available. The 

network of RCTs and historical data for the construction of prior distribution for the 

estimation of the clinical endpoints using Bayesian evidence synthesis techniques are 

presented. 

Chapter 5 demonstrates how advanced Bayesian meta-analytic methods are able to 

include all available evidence in estimating EQ-5D from disease specific measures 

beyond the data from a single study were used to inform estimates of utility required in 

cost-effectiveness analysis. A motivating example using a NICE STA of Fingolimod 

for the treatment of relapsing remitting MS in adults was used as the case study for 

presenting this novel approach. Search strategy and selection criteria of studies for 

constructing the prior distributions for the coefficients in linear regression models 

estimating EQ-5D using EDSS was developed. 

Finally, Chapter 6 summaries the conclusions of the preceding chapters and discusses 

how this thesis has applied existing evidence synthesis techniques to address modern-

day challenges in the analysis and reporting of clinical- and cost-effectiveness in HTA. 

Strength and limitations in the application of statistical methodologies encountered 

throughout this thesis and opportunities for further work are also included. 
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2 Statistical Methodology 

 

2.1 Chapter Overview 

This chapter gives an introduction to the statistical methods and software used in this 

thesis. Basic statistical sampling distributions and concept of Bayesian statistics which 

are applied throughout this thesis are presented. Software which facilitate Bayesian 

analysis performed in this thesis are also introduced. Methodologies for evidence 

synthesis, comprising of standard pairwise meta-analysis (PWMA), network meta-

analysis (NMA) and bivariate random-effects meta-analysis (BRMA) are covered. 

These methodologies are for the synthesis of aggregate summary data across trials as 

synthesis of individual patient data (IPD) from different trials is not considered in this 

thesis. Specification of economic models for cost-effectiveness analysis and the 

terminologies used for the interpretation of results and evaluation of health 

technologies are also described. 

 

2.2 Bayesian Methods 

2.2.1 Bayesian statistics 

Its origin dates back to 1763 when work by Thomas Bayes, an English minister, was 

published posthumously. This work is today known as the Bayes’ Theorem. In 

Bayesian analysis, if 𝜃 is the unknown parameter of interest and Y represents a piece of 

data that describes 𝜃, Bayes’ theorem takes the form: 

𝑝(𝜃|𝑌) =
𝑝(𝑌|𝜃)𝑝(𝜃)

∫ 𝑝(𝑌|𝜃)𝑝(𝜃) 𝑑𝜃
 

and is commonly expressed as: 

𝑝(𝜃|𝑌) ∝  𝑝(𝑌|𝜃)𝑝(𝜃) 

where 𝑝(𝑌|𝜃) is the likelihood of 𝜃, 𝑝(𝜃) is the probability density for the degree of 

belief (known in the Bayesian context as the prior probability) for 𝜃 and 𝑝(𝜃|𝑌) is the 

resulting probability density (known as the posterior probability) for 𝜃 after 
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supplementing the likelihood with the prior. Thus, Bayes’ theorem can also be 

understood as: 

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝  𝑃𝑟𝑖𝑜𝑟 𝑋 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 

 

Here, probability statements are made about the unknown parameter, 𝜃. This is 

different from the classical or frequentist approach to statistics where 𝜃 is said to be a 

fixed but unknown number. In Bayesian statistics, there is no difference between a 

fixed but unknown number and a random number, so 𝜃 is treated as a random 

parameter in an analysis and hence probability distributions (based on subjective belief 

or external information) about its value can be defined.  

 

The Prior, Likelihood and Posterior 

A defining characteristic of Bayesian statistics is its capability to incorporate external 

information or subjective beliefs in the form of a prior distribution for the unknown 

parameter of interest, 𝜃. Prior distributions can take two forms: informative or non-

informative. Informative prior distribution is often constructed based on external 

information such as historical data or subjective beliefs about 𝜃 elicited from ‘experts’ 

with knowledge about the plausible range of values that 𝜃 can take. In contrast to this, 

non-informative prior distribution doesn’t express any prior belief or information and 

should ideally have large variance such that all possible parameter values for 𝜃 are 

almost equally likely. 

As the posterior distribution is a function of the likelihood and prior distribution, the 

prior distribution will have some degree of influence on the posterior, depending on the 

type of prior and the precision of the data. A non-informative prior should ideally exert 

no or minimal influence on the posterior as shown in Figure 2.1. Hence, the posterior 

essentially represents the likelihood but with minimal increase in precision. 

 



Chapter 2  Statistical Methodology 
 

 

 

 

 

8 

 

Figure 2.1: Prior, likelihood and posterior distributions where the prior is non-informative 

 

The degree of influence that an informative prior has on the posterior depends on the 

precision and location of the prior relative to that of the data. Different informative 

prior distributions and their corresponding influences on the posterior distributions are 

presented in Figure 2.2. 
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Figure 2.2: Prior, likelihood and posterior distributions where the priors are informative 

 

When conducting any Bayesian analysis, sensitivity analysis should be performed to 

investigate the influence that the prior distribution has on the posterior distribution. 

Prior distributions that are either non-informative or informative can be applied to the 

analysis to assess how the posterior distributions differ between the priors. Informative 

priors can be either optimistic or pessimistic priors. Optimistic and pessimistic 

informative prior distributions are defined based on the context of the analysis involved 

and display positive and negative evidence/beliefs about the effectiveness of the 

outcome measure respectively. Usage and definition of optimistic and pessimistic prior 

distributions in Bayesian analysis are illustrated in Chapter 4. Non-informative prior 
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distributions specified in this thesis are defined using the statistical distributions 

described in Section 2.2.2. 

 

Advantages and disadvantages of Bayesian statistics 

A major deterrent for the use of Bayesian statistics by many is the need to specify 

appropriate priors for the analysis. This can be challenging as there may be no useful 

historical data that can be utilised to define the informative prior distribution, and 

where it is available, there are no standardised guidelines for the appropriate 

construction of prior distributions. Although non-informative prior distributions can be 

utilised where no informative prior distribution can be constructed, defining an 

appropriate “non-informative prior distribution can be difficult in itself as it has been 

shown that the choice of “non-informative” prior distributions can also result in 

differential results, in particular for variance parameters (Lambert et al., 2005). 

Statistical distributions used for defining prior distributions are discussed in Section 

2.2.2. 

Where useful historical data from a number of sources exist and there may be a need to 

collate the information for the construction of an informative prior distribution, 

Bayesian meta-analysis can be used to synthesise the data. The posterior distribution 

from the meta-analysis can be directly utilised to form the informative prior distribution 

for the primary analysis. In the light of new data, the new data can now be treated as the 

likelihood and the posterior distribution from the meta-analysis can then be used as the 

prior distribution for the primary analysis. This sequential use of the Bayes theorem is 

one of the major advantages of Bayesian statistics. 

The Bayesian approach to analysis is utilised in this thesis in a number of ways. Firstly, 

Bayesian network meta-analyses using non-informative prior distributions were 

performed as illustrated in Chapter 3 on the development of novel graphical tools for 

the reporting of NMA results. Secondly, bivariate meta-analyses under the Bayesian 

framework were utilised for prediction of outcomes (when not reported) as illustrated 

in Chapter 4 and for the construction of prior distributions for subsequent Bayesian 

analyses as illustrated in Chapter 5. Lastly, Bayesian multivariable linear regression 

analyses were conducted using informative prior distributions constructed using the 
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Bayesian bivariate meta-analysis and this sequential use of Bayes is illustrated in 

Chapter 5. 

 

2.2.2 Sampling distributions 

A number of sampling distributions are utilised in this thesis for the construction of the 

prior distributions and likelihood functions. Prior distributions specified include the 

uniform, normal, half-normal, log-normal, beta and gamma distributions. Distributions 

utilised in the simulation of data to form the likelihood include the binomial, 

multinomial, log-normal and beta-distributions. 

 

Uniform distribution 

A uniform distribution is characterised by its constant probability over a range of 

values (𝑎, 𝑏). It is commonly adopted for an unknown parameter 𝑌~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑎, 𝑏) to 

indicate that 𝑌 has an equal probability of taking any value from 𝑎 to 𝑏. The 

distribution for Y has the following statistical properties: 

𝑝(𝑦|𝑎, 𝑏) =
1

𝑏 − 𝑎
; 𝑦 ∈ (𝑎, 𝑏) 

𝐸(𝑌|𝑎, 𝑏) =
𝑎 + 𝑏

2
 

𝑉(𝑌|𝑎, 𝑏) =
(𝑏 − 𝑎)2

12
 

The uniform distribution is generally used for the specification of prior distributions in 

Bayesian analyses to convey indifference about the prior probability over a range of 

plausible values. Applications of its use include the specification of non-informative 

prior distributions for standard deviation and correlation parameters in this thesis. 
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Binomial distribution 

The binomial distribution is a discrete probability distribution of the number of 

successes in 𝑛 independent experiments, each of which has a probability of success of 

𝜃 and a probability of failure of 1 − 𝜃. Each of the experiments which can only be a 

success or a failure is defined as a Bernoulli trial. The likelihood 𝜃𝑦(1 − 𝜃)𝑛−𝑦 gives 

the probability of having 𝑦 successes and 𝑛 − 𝑦 failures. However, as the 𝑦 successes 

can occur anywhere among the 𝑛 trials, there are (
𝑛
𝑦) different ways of distributing 𝑦 

successes in a sequence of 𝑛 trials. Hence, a discrete binomial variable 𝑌, denoted as 

𝑌~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝜃) represents a binomial distribution with statistical properties: 

𝑝(𝑦|𝑛, 𝜃) = (
𝑛
𝑦) 𝜃𝑦(1 − 𝜃)𝑛−𝑦;    𝑦 = 0,1, … , 𝑛 

𝐸(𝑌|𝑛, 𝜃) = 𝑛𝜃 

𝑉(𝑌|𝑛, 𝜃) = 𝑛𝜃(1 − 𝜃) 

When 𝑛 = 1, the binomial distribution is effectively a Bernoulli distribution, which is 

denoted as 𝑌~𝐵𝑒𝑟𝑛(𝜃). In this thesis, the binomial distribution is used as a sampling 

distribution for simulating data that occur as proportions, such as gender in patient 

demographics.  

 

Multinomial distribution 

The multinomial distribution is a generalization of the binomial distribution, where it is 

used to compute the probabilities in situations where there are k possible outcomes. For 

𝑛 independent trials, each of which leads to a success for exactly one of the k possible 

outcomes where each outcome has a fixed probability of success, 𝜃𝑖 (𝑖 = 1, 2, … , 𝑘), 

and all the probabilities (𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑘)) sum to 1 (∑ 𝜃𝑖
𝑘
𝑖=1 = 1). When k=2, it 

reduces to the binomial distribution. Now, let 𝑌𝑖 denote the number of times outcome 𝑖 

is observed in the 𝑛 independent trials and the vector of 𝒀 = (𝑌1, 𝑌2, … , 𝑌𝑘) therefore 

follows a multinomial distribution, denoted as 𝒀~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝜽) and has the 

following statistical properties: 

http://en.wikipedia.org/wiki/Binomial_distribution
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𝑝(𝑦|𝑛, 𝜃) =
𝑛!

𝑦1! … 𝑦𝑘!
𝜃1

𝑦1 … 𝜃𝑘
𝑦𝑘 

𝐸(𝑌𝑖|𝑛, 𝜃𝑖) = 𝑛𝜃𝑖;    𝑖 = 1, … , 𝑘 

𝑉(𝑌𝑖|𝑛, 𝜃𝑖) = 𝑛𝜃𝑖(1 − 𝜃𝑖) 

𝐶𝑜𝑣(𝑌𝑖; 𝑌𝑗) = −𝑛𝜃𝑖𝜃𝑗;   𝑖 ≠ 𝑗 

While the 𝑛 trials are independent, the 𝑌𝑖 are dependent on one another as they must 

sum to 𝑛. Hence, there is a covariance term for each pair of 𝑌𝑖. 

 

Normal distribution 

The normal distribution is the most commonly used continuous probability distribution 

in statistics for real-valued parameters whose distribution is unknown. This distribution 

has a bell-shape with its peak at the mean value, 𝜇, and describes the probability of any 

real observation that lies between any two real limits (numbers). The spread of the 

distribution around the mean value is determined by the variance parameter, 𝜎2. The 

larger the value of the variance, the further apart the two real limits get. Hence, 

𝑌~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2) represents a normal distribution with statistical properties: 

𝑝(𝑦|𝜇, 𝜎2) =
1

√2𝜋𝜎
𝑒

−(𝑦−𝜇)2

2𝜎2 ;    𝑦 ∈ ℝ 

𝐸(𝑌|𝜇, 𝜎2) = 𝜇 

𝑉(𝑌|𝜇, 𝜎2) = 𝜎2 

It is useful as a prior distribution for any real-valued parameters and non-informative 

prior distributions are easily specified using this distribution by having the mean to be 

zero and the variance to be large. 

 

Half-normal distribution 

The half-normal distribution, as the name implies, represents a distribution created by 

truncating the normal distribution at zero. Effectively, if 𝑋~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2), then 



Chapter 2  Statistical Methodology 
 

 

 

 
 

14 

|𝑋|~𝐻𝑁𝑜𝑟𝑚𝑎𝑙(𝜎2) and takes only positive values. Therefore the half-normal 

distribution is useful for specifying prior distribution with support for positive values, 

with 𝜎 controlling the upper range of support. As with the normal distribution, the 

higher the values of 𝜎, the more non-informative the prior distribution gets. This 

distribution is often used to specify the prior distribution for standard deviations. The 

half-normal distribution for a random variable 𝑌, denoted as 𝑌~𝐻𝑁𝑜𝑟𝑚𝑎𝑙(𝜎2) has 

these statistical properties: 

𝑝(𝑦|𝜎2) = √
2

𝜋𝜎2
 𝑒

−𝑦2

2𝜎2 ;    𝑦 ∈ (0, ∞) 

𝐸(𝑌|𝜎2) = √
2

𝜋
 𝜎 

𝑉(𝑌|𝜎2) = 𝜎2 (1 −
2

𝜋
) 

 

Log-normal distribution 

The log-normal distribution is a distribution that takes only positive real values 

similarly as the half-normal distribution and is also a variant of the normal distribution. 

It is a continuous probability distribution of a random variable 𝑌, whose logarithm is 

normally distributed. Hence, if 𝑌~𝐿𝑁(𝜇, 𝜎2), then log (𝑌)~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2), and 

𝑌~𝐿𝑁(𝜇, 𝜎2) represents a distribution with these properties:  

𝑝(𝑦|𝜇, 𝜎2) =
1

√2𝜋𝜎𝑦
𝑒

−[log( 𝑦)−𝜇]2

2𝜎2 ;    𝑦 ∈ (0, ∞) 

𝐸(𝑌|𝜇, 𝜎2) = 𝑒𝜇+
𝜎2

2  

𝑉(𝑌|𝜇, 𝜎2) = 𝑒2𝜇+𝜎2
(𝑒𝜎2

− 1) 

This distribution is useful as a sampling distribution for parameters that take positive 

values, such as cost and ratios (such as odds ratio and hazard ratio). 
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Beta distribution  

The beta distribution describes a family of continuous probability distributions 

constrained to lie between 0 and 1 and parameterised by two positive shape parameters 

(𝑎 and 𝑏). The shape parameters allow flexible specifications of different probability 

distributions between 0 and 1; hence making the beta distribution useful as a prior 

distribution for unknown proportions. 𝑌~𝐵𝑒𝑡𝑎(𝑎, 𝑏) represents a beta distribution with 

properties: 

𝑝(𝑦|𝑎, 𝑏) =
Γ(𝑎 + 𝑏)

Γ(𝑎)Γ(𝑏)
𝑦𝑎−1(1 − 𝑦)𝑎−1;    𝑦 ∈ (0,1) 

𝐸(𝑌|𝑎, 𝑏) =
𝑎

𝑎 + 𝑏
 

𝑉(𝑌|𝑎, 𝑏) =
𝑎𝑏

(𝑎 + 𝑏)2(𝑎 + 𝑏 + 1)
 

where Γ(𝑎) represents the gamma function, and Γ(𝑎) = (𝑎 − 1)! if 𝑎 is an integer. 

 

Gamma distribution 

Gamma distributions are useful for quantities constrained to be positive, such as cost 

data in economic modelling. A random variable 𝑌 that follows a gamma distribution, 

denoted as 𝑌~𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏), has a distribution with these statistical properties: 

𝑝(𝑦|𝑎, 𝑏) =
𝑏𝑎

Γ(𝑎)
𝑦𝑎−1𝑒−𝑏𝑦;    𝑦 ∈ (0, ∞) 

𝐸(𝑌|𝑎, 𝑏) =
𝑎

𝑏
 

𝑉(𝑌|𝑎, 𝑏) =
𝑎

𝑏2
 

Alternative use of the gamma distribution is as a prior distribution for the precision 

parameter (1/variance) of a normal distribution. 
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2.3 Software and Computational Issues  

2.3.1 Markov Chain Monte Carlo  

Markov Chain Monte Carlo (MCMC) methods are a class of algorithms for drawing 

random samples from a probability distribution by constructing a Markov chain whose 

‘equilibrium distribution’ represents the desired distribution. A Markov Chain is a 

sequence of random variables 𝜃(1), 𝜃(2), 𝜃(3), … such that the future depends on the 

past only through the present (𝜃(𝑛+1)| 𝜃(𝑛)). Under regularity conditions, the 

distribution of  𝜃(𝑛) tends to an ‘equilibrium distribution’ as 𝑛 tends to ∞, regardless of 

the starting value  𝜃(1). A sample (𝜃(𝑛)) of the desired distribution is therefore obtained 

when the Markov chain reaches its ‘equilibrium’ state after a number of steps in the 

algorithm (often termed as the convergence of the Markov chain). 

Due to its simplicity to draw random samples from a desired distribution, it has become 

an imperative tool for Bayesian analysis, especially when there is no simple analytical 

solution for the posterior distribution. In complex hierarchical problems, the joint 

posterior and marginal posterior distributions are often of complex form but the 

conditional posterior distributions are of simple form. MCMC allows the desired 

complex posterior distributions to be derived by sampling from the conditional 

posteriors. An example using the Gibbs sampling is presented in the next paragraph to 

illustrate this property of MCMC. The Gibbs sampler is utilised here as it is the MCMC 

method used in the WinBUGS (Bayesian inference Using Gibbs Sampling) software 

that is used for all the Bayesian analyses in this thesis. 

A conditional posterior distribution is the posterior of one parameter given the value of 

the other parameters and is obtained from the joint posterior distribution by treating the 

other parameters as fixed. Considering the situation of three parameters 𝜃, 𝛾, 𝜑 and 

data 𝒚, where the parameter of interest is 𝜃. If the joint posterior distribution is 

𝑝(𝜃, 𝛾, 𝜑|𝒚), the conditional posterior for parameters 𝜃, 𝛾, 𝜑 are 𝑝(𝜃|𝛾, 𝜑, 𝒚), 

𝑝(𝛾|𝜃, 𝜑, 𝒚) and 𝑝(𝜑|𝜃, 𝛾, 𝒚) respectively. The Gibbs sampler starts with initial values 

for all the parameters, 𝜃0, 𝛾0, 𝜑0, and a new value for each parameter is generated 

from the joint posterior conditional on all the other current parameter values, that is, 𝜃1 

is generated from 𝑝(𝜃|𝛾0, 𝜑0, 𝒚). The other parameters are generated in turn, 𝛾1 

from 𝑝(𝛾|𝜃1, 𝜑0, 𝒚) and 𝜑1 from 𝑝(𝜑|𝜃1, 𝛾1, 𝒚). Subsequent random observations are 
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generated by repeating the above for a number of iterations. As mentioned previously, 

the desired distribution will arise when the convergence of the Markov chain is 

reached. Once this happens, for example at the 𝑘-th iteration, a further 𝑛 iterations are 

performed to generate random observations for the parameters. This will produce a 

series of observations, 𝜃 = (𝜃𝑘,  𝜃𝑘+1,  𝜃𝑘+2, … ,  𝜃𝑘+𝑛), that form the desired posterior 

distribution for 𝜃. 

Markov Chain Monte Carlo analyses can be performed using various software, many of 

which are “user-designed” macros for commercial software (for example Excel and 

STATA) to serve the analyses they are intended for. In economic modelling, MCMC 

analyses are sometimes conducted using macros developed in Excel. However, the 

WinBUGS software is more widely used for the purpose of MCMC analyses in a 

variety of applications, such as Bayesian analysis, evidence synthesis and economic 

modelling. The WinBUGS software is used for the analyses in this thesis and a 

description of the software is provided in Section 2.3.2. 

 

2.3.2 WinBUGS 

WinBUGS (Lunn et al., 2000, Spiegelhalter et al., 2003) is a statistical software 

developed for Bayesian analysis using MCMC method. It implements the Gibbs 

sampling MCMC method and requires a specification of the probability model in a 

straightforward and natural way. The flexibility of this software allows complex 

modelling to be performed easily. In this thesis, WinBUGS is used extensively for all 

Bayesian evidence syntheses and economic modelling.  

One major drawback of the software is that it assumes that users are Bayesian 

statisticians and does not provide any ‘caution’ warnings when inappropriate prior 

distributions and models are fitted. It is therefore important to use it with considerable 

care and understand the need to assess the priors and likelihood, fit of the model, 

assignment of appropriate initial values for the parameters, convergence of the Markov 

chain and problems of autocorrelation between simulations. 
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2.3.3 R Software 

The WinBUGS software discussed in the Section 2.3.2 allows analysts to perform 

Bayesian analyses with ease. However, it has limited graphical output facilities which 

make presentation of results through the use of custom plots very difficult. In this 

thesis, the open source software R (R Core Team, 2012) is used extensively together 

with the WinBUGS software for the analysis and presentation of evidence synthesis 

and economic modelling results. 

The R software appears to be a good choice as it has an inbuilt functionality that enable 

R to connect to WinBUGS. Tapping into the R2WinBUGS (Sturtz et al., 2005) 

functionality in R, it is possible to (i) exploit R software data management functionality 

to organise data for analysis in WinBUGS; (ii) use posterior distributions estimated 

from WinBUGS to construct prior distributions for subsequent analysis easily in one R 

file; (iii) construct an empirical prior distribution (for a subsequent analysis) using the 

posterior distribution (from the current analysis) computed in WinBUGS by saving the 

MCMC simulation data points of the posterior distribution in R; (iv) generate custom 

plots in R using the results computed from WinBUGS; (v) develop novel presentational 

graphs using R software plot functions and results from WinBUGS. 

 

2.4 Meta-Analysis  

2.4.1 Pairwise meta-analysis 

Meta-analysis is a statistical method that combines the results from several independent 

studies, with the aim to improve the precision of the estimate of a treatment effect over 

that obtained from individual studies and also to explain heterogeneity between the 

results of individual studies. Although the first use of meta-analysis dates back to 1904 

when the statistician Karl Pearson (Pearson, 1904) combined the results of several 

studies of typhoid inoculation and published the pooled results in the British Medical 

Journal, the term “meta-analysis” was coined by Gene V. Glass (Glass, 1976), a 

statistician, in 1976 to represent the analytic approach used to combine results from 

multiple independent studies. 
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Traditionally, meta-analysis has primarily involved the assessment of treatment effect 

between two interventions for one outcome of interest. With the advent of new meta-

analytic methodologies to involve more than two interventions or multiple outcomes of 

interest (Higgins and Whitehead, 1996), meta-analysis performed in the former context 

is often termed pairwise meta-analysis (PWMA) in recent years. When it involves the 

synthesis of evidence from more than two interventions simultaneously, the meta-

analytic method designed for this is called network meta-analysis (NMA), which is 

discussed in Section 2.4.2. An alternative method that estimates the treatment effects 

between two interventions but for two outcomes of interest simultaneously is bivariate 

meta-analysis which is described in Section 2.4.3. 

 

2.4.1.1 Fixed-effect and random-effects meta-analysis 

There are two types of statistical models commonly used in meta-analysis, namely: the 

fixed-effect model and the random-effects model (Borenstein et al., 2009). The choice 

of which model to use depends on how the variability between the results of the studies 

included in the synthesis is defined. In this section, these two statistical models are 

explained in the context of PWMA; however, the concept is similar when extended to 

NMA and bivariate meta-analysis. 

In a fixed-effect model, it is assumed that all studies in the PWMA are estimating a 

common true underlying effect size and all variation observed in the studies only 

reflects sampling error (also referred to as within-study variability). Algebraically, the 

fixed-effect model is defined as follows: 

𝑦𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝑑, 𝑠𝑖
2)      𝑖 = 1, 2, … , 𝑁 

where 𝑦𝑖 is the outcome effect size for study 𝑖, 𝑑 is the underlying mean effect size 

common to all studies and 𝑠𝑖
2 is the within-study variance for study 𝑖. 

In the field of medicine, the assumption of a common true underlying effect size may 

not hold true due to differences in patient populations or study locations (Kriston, 

2013). In this situation, a random-effects model may be more appropriate than the 

fixed-effect model. This is because in the random-effects model, the effect sizes of the 

studies in the meta-analysis are assumed to be sampled from a distribution of true 
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effects which allow for between-study variability (also known as heterogeneity). The 

random-effects model (DerSimonian and Laird, 1986) is defined as follows: 

 𝑦𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝛿𝑖, 𝑠𝑖
2)      𝑖 = 1, 2, … , 𝑁  

 𝛿𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝑑, 𝜏2) (2.1) 

where 𝑦𝑖 and 𝑠𝑖
2 are the outcome effect size and within-study variance for study 𝑖 

respectively. 𝑦𝑖 is an estimate of the true effect size  𝛿𝑖 specific to study 𝑖, assumed to 

be drawn from a normal distribution with overall population mean 𝑑 and between-study 

variance 𝜏2. 

 

2.4.1.2 Heterogeneity 

Under the random-effects model, the true effect sizes for studies in the meta-analysis 

are allowed to vary from study to study. This between-study variability in effect sizes is 

commonly termed statistical heterogeneity (Borenstein et al., 2009, Sutton et al., 2000). 

Both the heterogeneity and variability from sampling error (within-study variability) 

make up the overall variability in observed effect sizes from study to study. 

The extent of heterogeneity may be measured in several ways, the estimated  𝜏2 in 

equation (2.1) gives the magnitude of the heterogeneity across studies. However, its 

interpretation is specific to the particular effect size metric measured. Other measures 

of heterogeneity include the Cochran 𝑄 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 and 𝐼2 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 (Higgins and 

Thompson, 2002, Higgins et al., 2003) which are standardised measures not affected by 

the metric of the effect size index. Cochran 𝑄 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 also provides a test of 

homogeneity of the effect sizes across studies and is sensitive to the number of studies. 

The 𝐼2 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 gives the proportion of total variability in the effect size that is due to 

heterogeneity, expressed as a ratio from 0% to 100%, and is not sensitive to the number 

of studies. When 𝐼2 is close to 0%, almost all the variability observed is spurious; 

however when 𝐼2 is large, most of the variability is due to heterogeneity.  

While random-effects meta-analysis can be performed to allow for heterogeneity and 

the 𝑄 and 𝐼2 statistics can be used to assess and quantify heterogeneity, they cannot 

explain the source of the heterogeneity.  If heterogeneity cannot be explained by 
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differences in the characteristics of the studies such as differences in study design, 

patient population, treatment duration or drug dose administrated, technique such as 

subgroup analysis or meta-regression (Thompson and Higgins, 2002) may be used to 

investigate the source of the heterogeneity. 

 

2.4.1.3 Publication Bias 

Another important consideration when performing meta-analysis is publication bias, 

which exists when the studies identified for the meta-analysis are systematically 

different from all studies that should have been included. This happens because studies 

reporting relatively large effect sizes or significant results are more likely to be 

published than studies reporting smaller effect sizes and non-significant results 

(Dickersin et al., 1987), possibly leading to an overestimation of the true effect size.  

Methods have been developed for assessing, quantifying and adjusting for publication 

bias. The presence of publication bias may be assessed using the funnel plot (Egger et 

al., 1997), where the effect size of each study is plotted (on the x-axis) against the 

inverse of its standard error (on the y-axis).  If studies are distributed symmetrically 

about the mean effect size, then there is no publication bias. When asymmetry of the 

plot is observed, it may indicate the presence of publication bias or even small-study 

effect (Sterne and Egger, 2001). To quantify the extent of publication bias observed, 

various tests have been proposed (Peters et al., 2008, Peters et al., 2010, Rucker et al., 

2008). Other methods for adjusting publication bias include the ‘trim and fill’ method 

(Duval and Tweedie, 2000) and regression-based methods proposed by Moreno and 

colleagues (Moreno et al., 2009). 

 

 

2.4.2 Network meta-analysis 

Network meta-analysis is a recent development in evidence synthesis that extends the 

functionality of standard PWMA to allow for a simultaneous and coherent comparison 

of multiple interventions using an evidence base of trials that individually may not 

compare all the treatment options of interest. NMA can take the form of a fixed-effect 

model or random-effects model, similar in concept to that in PWMA described in 
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Section 2.4.1.1. However, due to the inclusion of more randomised controlled trials 

(RCTs) in a NMA compared to a PWMA for the same research outcome of interest, 

random-effects model is more commonly applied to account for heterogeneity between 

the RCTs. NMA is the term used to refer to two evidence synthesis techniques: Indirect 

Treatment Comparisons (IC) and Mixed Treatment Comparisons (MTC), which are 

described in the next two sections.  

 

2.4.2.1 Indirect Treatment Comparisons 

Naïve comparison of individual arms from different RCTs as if they are from the same 

RCT is inappropriate and should not be used. This is because the advantage of 

randomisation in the RCTs is completely disregarded, causing the evidence from this 

naïve comparison approach to be equivalent to that from observational studies and is 

prone to bias. 

Evidence synthesis method that allows for the comparisons of interventions when there 

is strictly no head-to-head RCT that compared them directly by evaluating the 

difference between the interventions through at least one common comparator was 

proposed (Bucher et al., 1997, Lumley, 2002). This model evaluates the relative 

effectiveness between the two interventions using two sets of RCTs that compare each 

of the interventions with the common comparator separately; the inclusion of the 

common comparator preserves the randomization of the originally assigned patient 

groups.  
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Figure 2.3: Indirect treatment comparisons  

 

For example, in Figure 2.3, there is no RCT that directly compares Interventions X and 

Y but there are RCTs that compared Interventions X and Z (RCTxz set) and 

Interventions Y and Z (RCTyz set), indicated by the solid lines that connect the 

interventions. Hence, relative effectiveness of X versus Y can be estimated indirectly 

using IC by contrasting trials of X versus Z with trials of Y versus Z. Algebraically, the 

indirect relative effectiveness of X versus Y is estimated as follows: 

𝑋𝑌𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 = 𝑋𝑍𝑑𝑖𝑟𝑒𝑐𝑡 − 𝑌𝑍𝑑𝑖𝑟𝑒𝑐𝑡 

where 𝑋𝑍𝑑𝑖𝑟𝑒𝑐𝑡 and 𝑌𝑍𝑑𝑖𝑟𝑒𝑐𝑡  represent the direct relative effectiveness of X versus Z 

estimated from RCTxz set and the direct relative effectiveness of Y versus Z estimated 

from RCTyz set respectively.  

 

2.4.2.2 Mixed Treatment Comparisons  

Mixed treatment comparisons is an evidence synthesis method that allows for the 

simultaneous comparison of three or more different interventions in one meta-analysis 

(Ades, 2003, Caldwell et al., 2005, Lu and Ades, 2004). Taking the simplest case of 

three interventions and using the example in Figure 2.3, consider now that there are 

direct head-to-head RCTs that compare interventions X and Y. The relative 

effectiveness between interventions X and Y estimated using MTC is the “summation” 

of the indirect relative effect, 𝑋𝑌𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡, estimated from the sets of RCTs of X and Y 
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with common comparator Z (RCTxz set and RCTyz set) and the direct relative effect, 

𝑋𝑌𝑑𝑖𝑟𝑒𝑐𝑡 estimated from the set of head-to-head RCTs (RCTxy set) as shown in Figure 

2.4; hence, the name mixed treatment comparisons. When pooling direct and indirect 

pairwise contrast evidence in MTC, there should be consistency between the direct and 

indirect evidence. This is an important assumption for MTC which is discussed in 

Section 2.4.2.4. 

 

 

Figure 2.4: Simplest case of Mixed Treatment Comparisons – 3 interventions 

 

Figure 2.4 presents the simplest structure of a MTC with the minimum required 

interventions (of three) to conduct a MTC analysis. Often, to address the research 

question of interest, numerous interventions are identified and included in a MTC 

analysis. A more complex structure of interventions and RCTs that compares the 

interventions is shown in Figure 2.5. This structural diagram of evidence is termed a 

network diagram. 
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Figure 2.5: Mixed Treatment Comparisons – Network Diagram 

 

When there are more than three interventions, there will be several direct and indirect 

comparisons, hence, it is important to note that the indirect relative effect, 𝑋𝑌𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡, in 

Figure 2.5 is not the same as the indirect relative effect, 𝑋𝑌𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡, in Figure 2.4. This 

is because the estimate of 𝑋𝑌𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 in Figure 2.5 is no longer solely from the two set 

of RCTs (RCTxz set and RCTyz set) but from many other RCTs in the network. 

Considering binary outcome measure for the MTC analysis, the Bayesian random-

effects MTC model is specified as in Formula (2.2). For treatment 𝑘 in RCT 𝑖, it is 

assumed that the occurrence of 𝑟𝑖,𝑘 events from 𝑛𝑖,𝑘 individuals follows a binomial 

distribution with event probability 𝑝𝑖,𝑘.   

Likelihood: 𝑟𝑖,𝑘~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑝𝑖,𝑘, 𝑛𝑖,𝑘)  
 

 

 

 

(2.2) 

Model: 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖,𝑘) = {
𝜇𝑖𝑏

𝜇𝑖𝑏 +  𝛿𝑖𝑏𝑘
   

𝑖𝑓 𝑘 = 𝑏

𝑖𝑓 𝑘 ′𝑎𝑓𝑡𝑒𝑟′ 𝑏
 ;  𝑏 = 𝐴, 𝐵, 𝑒𝑡𝑐. 

 𝛿𝑖𝑏𝑘~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑑𝑏𝑘 = 𝑑𝐴𝑘 − 𝑑𝐴𝑏 , 𝜎2)  

Priors: 𝑑𝐴𝑘~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 102), 𝜎~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,2) 
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For RCT 𝑖 that compares interventions 𝑏 and 𝑘, the parameter 𝜇𝑖𝑏 is the effect of the 

baseline intervention 𝑏 and the parameter 𝛿𝑖𝑏𝑘 is the study-specific effects of 

intervention 𝑘 relative to 𝑏, which is normally distributed with mean 𝑑𝑏𝑘 and between-

study variance 𝜎2. The mean, 𝑑𝑏𝑘, is the difference between 𝑑𝐴𝑘 (effect of 

interventions 𝑘 relative to 𝐴) and 𝑑𝐴𝑏 (effect of interventions 𝑏 relative to 𝐴). The 

random-effects model can be reduced to a fixed-effect model by setting 𝜎2 = 0, and 

hence 𝛿𝑖𝑏𝑘 = 𝑑𝑏𝑘.  

 

2.4.2.3 Additional summary statistics of NMA 

As NMA allows for the simultaneous and coherent comparison of multiple 

interventions instead of two interventions in standard PWMA, it is no longer confined 

to answering if Intervention X is better than Intervention Y in terms of efficacy. It has 

the added advantage of answering which intervention is the best, second best and so on 

by ranking the interventions in terms of their efficacy.  

This can be conducted with ease within a Bayesian framework. All interventions in the 

analysis can be ranked using probabilities rather than crude methods. Ranks may be 

presented as summary statistics (e.g., mean/median rank, surface under the cumulative 

ranking curve (SUCRA) (Salanti et al., 2011)), or graphical representations of the 

distribution of ranks (e.g. rankograms / barplots) indicating the probability that a given 

intervention is 1st, 2nd or 3rd best when compared to all other interventions in the 

network. Probability that each intervention is the best (ranked first) can also be 

estimated by calculating the probability that the intervention is ranked first. 

 

2.4.2.4 Assumptions, Advantages and Limitations 

An important assumption when using NMA is that the RCTs for the different 

intervention comparisons are similar in all ways other than the interventions being 

compared. Simply, it means that respective pairwise contrast effect sizes estimated are 

assumed to be the same (in fixed-effect model) or exchangeable (in random-effects 

model) in all RCTs in the analysis regardless of whether or not the pairwise contrast 

exists in the RCTs. Using the RCTs in Figure 2.4 for illustration, intervention effect of 
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X versus Y in RCTxy set is assumed to be the same as/exchangeable with the 

intervention effect of X versus Y in RCTxz set and RCTyz set even though intervention 

contrast of X versus Y does not exist in either of the RCT sets. 

Another assumption is consistency in the direct and indirect effect estimates within 

each pairwise contrast in the network of trials when pooling direct and indirect effects 

in a NMA. Validity of NMA is of major concern when there is the possibility of 

inconsistency. Empirical studies have been conducted to address this concern through 

comparison of direct with indirect sources of evidence (Gartlehner and Moore, 2008, 

Song et al., 2011). Statistical approaches for assessing consistency in NMA have also 

been proposed (Dias et al., 2010, Lu et al., 2011). If there are inconsistencies in the 

indirect and direct estimates within pairwise contrasts in the NMA, the assumption of 

exchangeability is unlikely to be met as well, and it is questionable if the dissimilar 

sources of evidence should be pooled together. 

There are several advantages of using NMA for comparing multiple interventions. One 

advantage is the preservation of within-trial randomisation when combining RCTs 

evidence (i.e. NMA is performed using the relative effectiveness results of randomised 

arms of interventions from each trial included in the network – hence there is no 

breaking of randomisation when synthesising the results). There is greater transparency 

of the framework, that is, there is no need for ‘back of the envelope’ indirect 

comparisons based on a series of PWMAs. It also provides potential reduction of 

uncertainty due to the inclusion of more data. 

 

2.4.3 Bivariate random-effects meta-analysis  

Network meta-analysis extends the traditional meta-analysis to the synthesis of 

evidence involving multiple interventions to investigate effect size between the 

multiple pairs of interventions on one outcome of interest. Multivariate meta-analysis, 

on the other hand, extends the traditional meta-analysis by allowing evidence synthesis 

that investigates the comparative effect size between two interventions to be conducted 

for multiple correlated outcomes jointly in one analysis. 
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When it is of interest to evaluate multiple outcomes in evidence synthesis, separate 

traditional meta-analyses are often utilised to synthesise the evidence for each outcome 

independently, even when the outcomes are known to be correlated. Considering that 

the outcomes are correlated, a more intuitive approach would be to employ a 

multivariate random-effects meta-analysis that allows the synthesis of multiple 

outcomes jointly while accounting for their correlations. In this section, a version of the 

multivariate random-effects meta-analysis that only involves two correlated outcomes - 

called the bivariate random-effects meta-analysis (BRMA) will be discussed. The 

BRMA model specified is for the meta-analysis of continuous outcome data. 

 

2.4.3.1 Specification of the general normal BRMA model 

Suppose that a systematic review was conducted to review studies that reported either 

one or both of the outcomes of interest (𝑌1 and 𝑌2), and 𝑛 studies were identified. Now, 

let 𝑌ℎ,𝑖 denote the summary measure, such as treatment effect, and 𝜎ℎ,𝑖 the 

corresponding standard error for outcome ℎ (ℎ = 1 𝑜𝑟 2) of the 𝑖th (𝑖 = 1, 2, … , 𝑛) 

study.  

Under a random-effects framework, each summary measure 𝑌ℎ,𝑖 is assumed to be an 

estimate of a true value 𝜇ℎ,𝑖 in each study, where the 𝜇ℎ,𝑖 is further assumed to be 

drawn from a distribution with mean value of 𝛽ℎ and between-study variance of 𝜏ℎ
2. 

Assuming that both 𝑌ℎ,𝑖and 𝜇ℎ,𝑖 are normally distributed, the general normal BRMA 

model (van Houwelingen et al., 2002) is defined as follows: 

 

 (
𝑌1,𝑖

𝑌2,𝑖
) ~ 𝑁𝑜𝑟𝑚𝑎𝑙 ((

𝜇1,𝑖

𝜇2,𝑖
) , Σ𝑖) (2.3) 

 (
𝜇1,𝑖

𝜇2,𝑖
) ~ 𝑁𝑜𝑟𝑚𝑎𝑙 ((

𝛽1

𝛽2
) , Τ) (2.4) 

 

with 

Σ𝑖 = (
𝜎1,𝑖

2 𝜎1,𝑖𝜎2,𝑖𝜌𝑤,𝑖

𝜎2,𝑖𝜎1,𝑖𝜌𝑤,𝑖 𝜎2,𝑖
2 ) 
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Τ = (
𝜏1

2 𝜏1𝜏2𝜌𝑏

𝜏2𝜏1𝜌𝑏 𝜏2
2 ) 

 
 

The BRMA model can be viewed as comprising of two hierarchical parts, one at the 

within-study level and the other at the between-study level. The model defined in (2.3) 

represents the within-study model of the BRMA model, where 𝑌1,𝑖 and 𝑌2,𝑖 are 

treatment effect estimates that follow a bivariate normal distribution with study-level 

mean true effects, 𝜇1,𝑖 and 𝜇2,𝑖, which are correlated with corresponding within-study 

covariance matrices Σ𝑖. The covariance matrices (Σ𝑖) is formulated by the within-study 

standard errors of the estimates, 𝜎1,𝑖 and 𝜎2,𝑖, and the within-study correlation of the 

outcomes, represented by 𝜌𝑤,𝑖.  

The model defined in (2.4) represents the between-study model component of the 

BRMA model, where the correlated study-level mean effects for the 2 outcomes, 𝜇1,𝑖 

and 𝜇2,𝑖, follow a bivariate normal distribution with summary means, 𝛽1 and 𝛽2, and 

corresponding between-study covariance matrix Τ. The covariance matrices (Τ) is 

formulated by the between-study standard deviations, 𝜏1 and 𝜏2, and the between-study 

correlation, represented by 𝜌𝑏.  

Here, the BRMA model differs from the combination of two independent univariate 

random-effects meta-analysis (URMA) models by the inclusion of the within-study and 

between-study correlations, 𝜌𝑤,𝑖 and 𝜌𝑏 respectively. If the within-study and between-

study correlations are both zero (𝜌𝑤,𝑖=𝜌𝑏= 0), the BRMA model reduces to two 

independent URMA models as shown in equation (2.1). 

 

2.4.3.2 Parameterisation of the between-study model 

In order to place prior distribution on the between-study correlation, the between-study 

model in Equation (2.4) is parameterised using a product normal formulation as 

described by Bujkiewicz and colleagues (Bujkiewicz et al., 2013), specified as: 
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 𝜇1,𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜂1, 𝜓1
2) 

𝜇2,𝑖|𝜇1,𝑖 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜂2,𝑖, 𝜓2
2) 

 

 𝜂2,𝑖 =  𝜆0 + 𝜆1(𝜇1,𝑖 − 𝜇1,𝑖̅̅ ̅̅ ) (2.5) 

whereby the parameters of the model can then be estimated as follows: 

 𝛽1 =  𝜂1 

𝜏1
2 =  𝜓1

2 

𝛽2 =  𝜆0 

𝜏2
2 =  𝜓2

2 + 𝜆1
2𝜓1

2 

𝜌𝑏 =
𝜆1𝜓1

2

√𝜓1
2(𝜓2

2 + 𝜆1
2𝜓1

2)
 

 

 

(2.6) 

It can be seen in Equation (2.6) that the parameters (𝜌𝑏, 𝜏1, 𝜏2 and 𝜆1) in the product 

normal formulation of the BRMA model are inter-dependent. Due to the inter-

dependencies between the parameters, care must be taken when placing prior 

distributions on the parameters to ensure that they take values within plausible range.  

In this thesis, prior distributions are placed on the correlation (𝜌𝑏) and either the 

between-study standard deviations (𝜏1 and 𝜏2) or the hyper parameters 𝜓1 and 𝜓2. This 

allows the regression coefficient (𝜆1) to be evaluated using the relationship defined in 

Equation (2.6) as follows: 

 𝜆1 =
𝜌𝑏𝜏2

𝜏1
 (2.7) 

or 𝜆1 =
𝜓2𝜌𝑏

𝜓1√1 − 𝑝𝑏
2
 (2.8) 

As the other regression coefficient 𝜆0 (the constant term in the regression equation) is 

not related to the correlation (𝜌𝑏), non-informative prior distribution is assigned to it. 

Construction of informative prior distributions for the between-study model is 

discussed in Section 2.4.3.7. 
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2.4.3.3 Concept of “borrowing of strength” 

In the situation of two independent URMAs for outcome 1 and 2 individually, the 

estimate of the summary mean, 𝛽1, for outcome 1 depends solely on the data for 

outcome 1 (i.e. the 𝑌1,𝑖, 𝜎1,𝑖, and 𝜏1). The same applies for outcome 2. There is no 

sharing of information between the two outcomes for the estimation of the summary 

statistics of the outcomes, even when they are correlated.  

When using a BRMA for the two correlated outcomes (where 𝜌𝑤,𝑖 ≠ 0; 𝜌𝑏 ≠ 0), the 

estimate of the summary mean, 𝛽1, for outcome 1 now also incorporates the data from 

outcome 2 (i.e. the 𝑌2,𝑖, 𝜎2,𝑖, and 𝜏2) through the within-study and between-study 

covariances (i.e. 𝜎1,𝑖𝜎2,𝑖𝜌𝑤,𝑖 and 𝜏1𝜏2𝜌𝑏). The same applies for outcome 2 as there is 

bilateral sharing of data between the outcomes. This concept of information sharing in 

hierarchical data analysis is commonly termed “borrowing of strength”, and in this case 

across outcomes as well as studies.  

This “borrowing of strength” in the context of meta-analysis implies that (i) each 

study’s weight for the pooled estimates in the BRMA may be different from that in the 

individual URMA for each outcome; (ii) with the inclusion of information from the 

correlated outcome, the standard error for the pooled estimates in the BRMA are likely 

to be smaller than that in the individual URMAs. It has been shown that for the 

situation when the variances, 𝜏ℎ
2 (ℎ = 1,2), are the same for both the BRMA and 

URMAs, the  variance of the pooled estimate, 𝛽1, in the BRMA is always less than or 

equal to that in the URMA and it applies regardless of whether the within-study and 

between-study correlations are negative or positive (Riley et al., 2007).  

Clearly, there is no “borrowing of strength” when the correlations are zero (𝜌𝑤,𝑖 = 0; 

𝜌𝑏 = 0) and the BRMA therefore is equivalent to two independent URMA. However, 

even if there are large within-study and between-study correlations, there is no 

“borrowing of strength” from outcome 2 for outcome 1 if the within-study covariance 

matrices Σ𝑖 are the same for all the studies. Riley and colleagues demonstrated this 

through the use of a modified dataset where the within-study covariance matrices Σ𝑖 

were set to be the same for all the studies (Riley et al., 2007).  
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In reality, it is very unlikely that the within-study covariance matrices Σ𝑖 for all studies 

in a BRMA to be the same; hence “borrowing of strength” is bound to exist. It has been 

proven that the degree of “borrowing of strength” is directly proportional to the 

magnitude of (i) the between-study correlation; (ii) the differences between the within-

study standard errors; and (iii) the difference between the within-study covariances 

(Riley et al., 2007). In the next section, issue of missing data for BRMA and how it 

exploits the “borrowing of strength” functionality of the BRMA model will be 

discussed. 

 

2.4.3.4 Issues of missing data 

When performing BRMA for two correlated outcomes, only one set of studies that 

report either or both the outcomes is used for the analysis. Usually, this set of studies is 

larger than (or sometimes equal to) each of the individual sets of studies when 

performing separate URMAs each of the two outcomes. However, an important point 

to note is that at least some studies in the evidence set must report both outcomes in 

order to estimate the between-study correlation in a BRMA. 

As in all mixed effect models, in BRMA assumption is made that data are “missing at 

random”. However, it is not always easy to justify this in the context of meta-analysis 

as it is subjected to publication bias, dissemination bias, and within-study selective 

reporting (Sterne et al., 2001).  

A further issue with missing data in BRMA is the missing within-study correlations for 

the studies in the BRMA. It is usually not reported in published articles and thus cannot 

be extracted together with the summary statistics 𝑌ℎ,𝑖 and 𝜎ℎ,𝑖. Obtaining it requires 

requesting for individual patients’ data from the corresponding author of the studies 

and is challenging and time-consuming. However, there are situations where it is 

possible to assume that the within-study correlations for all the studies are zero, such as 

for diagnostic screening analysis where the two outcomes, sensitivity and specificity, 

are measured using two separate sets of patients. Where is it not possible to assume that 

𝜌𝑤,𝑖 = 0, the issue of missing within-study correlations can be handled in a Bayesian 

framework with the use informative prior distributions for 𝜌𝑤,𝑖 constructed using data 
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external to the BRMA set of studies. Although between-study correlation, 𝜌𝑏, can be 

estimated so long as some studies included in the BRMA report both outcomes, 

informative prior distributions for 𝜌𝑏 can also be incorporated in the Bayesian analysis 

using external data. Bayesian approach for BRMA and methods of constructing 

informative prior distributions for 𝜌𝑤,𝑖 and 𝜌𝑏 are discussed in sections 2.4.3.5 to 

2.4.3.7. 

 

2.4.3.5 Bayesian approach for the BRMA model 

Although BRMA has been proposed (Riley et al., 2007) as a more appropriate approach 

when synthesizing evidences from two correlated outcomes, it is not commonly applied 

in practice as obtaining the within-study correlation to fit the BRMA model is often 

difficult. However, a Bayesian framework provides the flexibility to conduct a BRMA 

by utilising external data about the within-study correlation through the use of prior 

distributions (discussed in Section 2.2.1). A Bayesian approach for multivariate meta-

analysis of mixed outcomes has been proposed by Bujkiewicz and colleagues 

(Bujkiewicz et al., 2013) that allows both the within-study and between-study 

correlations to be constructed using external evidences. This model for multivariate 

meta-analysis can be reduced to a BRMA by reducing the dimension of the model so 

that the number of outcomes is two. 

In a Bayesian framework, a distribution is placed on each of the two outcomes 

regardless of whether they are missing for some studies, so that the missing summary 

measures can be estimated from the model though MCMC simulation (described in 

Section 2.3.1). Although any missing values for  𝑌1,𝑖 or 𝑌2,𝑖 can be predicted from the 

BRMA model using MCMC simulation, the corresponding missing standard errors (𝜎1,𝑖 

or 𝜎2,𝑖 respectively) need to be estimated. To estimate the standard errors, it is assumed 

that the corresponding population variances come from the same distribution under the 

assumption of exchangeability of the variances.  The variances are defined to follow 

half-normal distributions as follow: 

𝑣𝑎𝑟1,𝑖 ~ 𝐻𝑁𝑜𝑟𝑚𝑎𝑙(𝑔1) 

𝑣𝑎𝑟2,𝑖 ~ 𝐻𝑁𝑜𝑟𝑚𝑎𝑙(𝑔2) 
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𝑔1 ~ Γ(1.0, 0.01) 

𝑔2 ~ Γ(1.0, 0.01) 

and the standard errors squared are calculated as:  

𝜎1,𝑖
2 =

𝑣𝑎𝑟1,𝑖

𝑁𝑖
 

𝜎2,𝑖
2 =

𝑣𝑎𝑟2,𝑖

𝑁𝑖
 

By specifying distributions for the population variances, it allows the population 

variances for the studies with “missing” standard error to be predicted from the MCMC 

simulation, conditional upon both the data and posterior estimates of the model 

parameters. This in turn allows the computation of the corresponding standard errors 

required for defining the within-study covariance matrices Σ𝑖. Non-informative and 

informative prior distributions for 𝜌𝑤,𝑖 can be used together with the standard errors to 

define the within-study covariance matrices Σ𝑖. 

The Bayesian BRMA model is applied to an example on prostate cancer in Chapter 4 

for the prediction of progression-free survival (PFS) outcome estimates using the 

BRMA model on two correlated outcomes: overall survival (OS) and PFS. The next 

two sections give detailed descriptions on the construction of informative priors for the 

within-study and between-study correlations. The Bayesian BRMA model is also used 

in Chapter 5; however, non-informative prior distributions are defined for the 

parameters in the model as the purpose for using the model was to construct prior 

distributions for a subsequent analysis.   

 

2.4.3.6 Construction of prior distributions for the within-study correlations 

As correlations are constrained between -1 and +1, non-informative prior distribution 

for the within-study correlations between the two outcomes for the 𝑖th (𝑖 = 1, 2, … , 𝑛) 

study can be defined using a uniform distribution as follows: 

𝜌𝑤,𝑖 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1, 1) 
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External evidence for the within-study correlations can be obtained from published 

articles reporting it or through the use of external IPD on the two outcomes. Methods of 

constructing informative prior distributions using external IPD are discussed in details 

by Bujkiewicz and colleagues who used a double bootstrap method to estimate the 

correlation with uncertainty (Bujkiewicz et al., 2013). In this thesis, informative prior 

distributions for the within-study correlations are constructed using correlation with 

corresponding 95% confidence intervals (CIs) or study sample sizes reported in 

published articles. In order to sample from a prior distribution for correlation which is 

constrained between -1 and +1, Fisher transformation method is used to convert the 

correlation to a corresponding Fisher correlation parameter, z, which follows a normal 

distribution for sampling. The Fisher transformation is defined as:  

𝑧 =
1

2
ln (

1 + 𝜌

1 − 𝜌
) 

where z is the Fisher correlation parameter and  is the correlation. Back-

transformation can then be performed to convert z back to  by using the equation:  

𝜌 =
exp(2𝑧) − 1

exp(2𝑧) + 1
 

Denoting the estimates obtained from the published study as 𝜌𝑠(95% CI: 𝜌𝑠(𝐿𝐵) to 

𝜌𝑠(𝑈𝐵)), the corresponding Fisher correlation parameter, 𝑧𝑠, 𝑧𝑠(𝐿𝐵) and 𝑧𝑠(𝑈𝐵) are 

estimated and utilised to define the prior distribution (of the transformed correlation) 

for sampling as follows:   

𝑧𝑤,𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝑧𝑠, 𝜎𝑠
2) 

𝜎𝑠 =  
𝑧𝑠(𝑈𝐵) − 𝑧𝑠(𝐿𝐵)

2 × 1.96
 

Where the 95% CI is not reported, the study sample size, 𝑛, is used to estimate the 

standard error for 𝑧𝑠, which is approximated using the equation (Altman, 1991) (page 

293): 

𝜎𝑠 =
1

√𝑛 − 3
 



Chapter 2  Statistical Methodology 
 

 

 

 
 

36 

The within-study correlation for the 𝑖th (𝑖 = 1, 2, … , 𝑚) study is in turn estimated using 

the back-transformation equation as follows: 

𝜌𝑤,𝑖 =
exp(2𝑧𝑤,𝑖) − 1

exp(2𝑧𝑤,𝑖) + 1
 

Method of constructing the prior distribution for the between-study correlation is 

discussed in the next section. 

 

2.4.3.7 Construction of prior distributions for the between-study correlation  

To construct prior distributions for the between-study correlation, external data in the 

form of summary data (𝑌ℎ,𝑖 and 𝜎ℎ,𝑖) from published studies identified (from a 

systematic review) need to be extracted. It is important to note that the data format is 

different from that for the construction of prior distribution for the within-study 

correlations which uses IPD. 

Informative prior distribution for the between-study correlation of the BRMA model is 

to be constructed using the same BRMA model described in Section 2.4.3.2 but using 

“external data” as the likelihood data and non-informative prior distributions as the 

priors in the Bayesian analysis.  

Hence, to fit the model to the external data, non-informative prior distributions have to 

be placed on the correlation and standard deviations. Non-informative prior distribution 

for the between-study correlations can be defined using a uniform distribution, similar 

to that for the within-study correlation shown in Section 2.4.3.6, as follows: 

𝜌𝑏 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1, 1) 

Non-informative prior distribution for the between-study standard deviations can be 

defined using half-normal distributions as follows: 

𝜏1,𝑖 ~ 𝐻𝑁𝑜𝑟𝑚𝑎𝑙(𝜎2) 

𝜏2,𝑖 ~ 𝐻𝑁𝑜𝑟𝑚𝑎𝑙(𝜎2) 

where 𝜎2 is large. 
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The posterior distribution for the between-study correlation from this analysis forms the 

informative prior distribution for the between-study correlation of the BRMA model 

with the primary analysis data as the likelihood data. The prior distribution (which is 

the posterior distribution from the external BRMA) can be utilised in the BRMA model 

in the form of empirical distribution using WinBUGS. Alternatively, the parameters of 

the posterior distribution can be used to construct prior distribution on the Fisher 

transformation scale (as discussed in Section 2.4.3.6).  

 

2.5 Economic Modelling 

2.5.1 Markov Models 

Markov models are widely used in economic modelling of medical conditions because 

of their ability to model both effects and costs of treatments simultaneously for 

economic decision making (Sonnenberg and Beck, 1993, Briggs and Sculpher, 1998). 

As Markov model is good for monitoring random processes that occur over time, it is 

particularly suited for the modelling of progressive diseases. It allows the various 

stages of disease progression to be represented using distinct states in the model and the 

potential disease progression pathway to be modelled using transition probabilities 

between the states. The disease pathway of patients are then modelled over time using 

discrete time period, termed as a ‘cycle’ to characterise the time unit for modelling the 

disease processes (for example, from diagnosis to progression to death). 

An example of a Markov model used in the evaluation of treatments in some cancers, 

such as metastatic breast cancer or metastatic prostate cancer, is presented in Figure 

2.6. Here, the states of the disease are denoted by ovals and the transitions between 

states presented using arrows indicating the potential paths of disease progression over 

time. The model is a three-state model as illustrated by the three ovals (states) in the 

model.  

The first state of the disease pathway of cancer in the Markov model is stable disease, 

which is the ‘asymptomatic’ disease state where the patient has the disease but has not 

experienced the ill effects of the disease or is not at any increased risk of mortality 

compared to another individual with the disease. This is the state where a patient is 



Chapter 2  Statistical Methodology 
 

 

 

 
 

38 

undergoing active cancer treatment. The second state is the ‘progressive disease’ state 

where the patient experienced tumour progression and stopped the existing cancer 

treatment regimen. The third and last state of the model is the ‘death’ state which is 

commonly termed the absorbing state of a Markov model as it is impossible to leave 

this state upon entering. As shown in Figure 2.6, there are arrows that bend back into 

the state that they left; this shows that patients remained in the states that they were in 

during the previous cycle. 

 

 

Figure 2.6: Markov model for cancer 

The representation of various stages of the disease progression using distinct states 

allows costs and utility outcomes to be elegantly specified for each state and at each 

cycle and the clinical effectiveness of health technologies to be incorporated in the 

model through the transition probabilities between states, at each cycle. This therefore 

enables long-term cost and utility values to be estimated for all health technologies 

under evaluation. In this thesis, the three-state Markov model presented in Figure 2.6 is 

used in the decision model developed for the cost-effectiveness evaluation of health 

technologies for metastatic prostate cancer. 

Markov models have many structural advantages that make them ideal for decision 

modelling. It is easy to incorporate ‘time’ in the model; the elapse time from one state 

to another state can be determined using the transition probabilities between states and 

the time horizon to model the disease processes can be specified. This allows long-term 

costs and outcomes to be estimated using appropriate discounting rates (Section 2.5.7). 
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Not all patients diagnosed with the disease will die of the disease; Markov models 

allow competing risk of death to be included in the model with ease by having a direct 

transition pathway (arrow) from asymptomatic state to death state. The Markov model 

in Figure 2.6 has three states, however, for other chronic diseases with recurring relapse 

of events or progression to other disease, additional states for the disease may need to 

be modeled. They can be dynamically incorporated in the model by adding new states 

and transition pathways. The most attractive advantage of the Markov model is the 

simplicity to model clinical outcomes, costs and utilities simultaneously in one model 

and the ease of interpretation of the estimated results due to the simple structure of the 

model.  

Despite the flexibility of the Markov models to represent the natural pathway of disease 

processes, they do have their limitations. One major limitation of the Markov models is 

the ‘memoryless’ feature of the Markov models, known as the Markov assumption, 

where the probability of a patient moving out of a state is not dependent on the 

experience that the patient had prior to entering this state. The implication of this 

‘memoryless’ feature is that it is not possible to model a disease process where future 

events depend on past events. The simplicity of a Markov model to model disease 

processes using distinct states, as much as being an advantage, can be seen to be too 

simple as health processes are more fluid in real life.  

 

2.5.2 Quality-adjusted life-years 

Quality-adjusted life-years (QALYs) are used as a measure of effect in the cost-

effectiveness analysis. QALY is a single measure that explains an individual’s health-

related quality of life and length of life gained due to the use of a health technology 

(Briggs et al., 2006). To estimate the QALY, utility data in the form of health-related 

quality of life (HRQoL) are required to quantify the potential health status of patients 

with the disease condition, as well as the impact that the health technology (in terms of 

disease progression and serious adverse effects) has on their HRQoL. QALYs are then 

calculated by multiplying the utility data by the life years of each individual patient.   

In Health Technology Assessment (HTA), the HRQoL instrument used as 

recommended by NICE is the preference-based EuroQoL five-dimensional (EQ-5D) 
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questionnaire. Standardising the HRQoL instrument for all health evaluations, which 

span a wide range of health conditions, allows QALYs for all health technologies to be 

measured on the same scale and aid comparisons of health policies with different health 

conditions. The EQ-5D utility takes a value between -0.594 to 1 (Dolan and Roberts, 

2002), where 1 represents good health, 0 represents death and negative values 

represents a health state worse than death.  

The advantages of using EQ-5D instrument for computing utilities are that the 

questionnaire is easy to complete (by the patients) and the utilities generated represent 

community or societal preferences. However, as EQ-5D utilities are constrained 

between -0.594 and 1, modelling of EQ-5D utilities can be challenging. Difficulties in 

the prediction of EQ-5D utilities, with reference to a study on multiple sclerosis, are 

discussed in Chapter 5 

 

2.5.3 Cost data 

Cost data of the technologies under investigation need to be collected for appropriate 

assessment of the health technologies of interest. For the assessment of the health 

technologies in the UK, cost data extracted from a RCT investigating the technologies 

of interest and performed on the UK population is most ideal. However, very often this 

is not possible and resource data that most closely resemble that expected in the UK 

were used. Resource data often include cost relating to, for example, drug acquisition, 

drug administration, inpatient clinic, hospitalisation and outpatient follow up. The total 

cost for each technology is subsequently computed by summing the applicable resource 

data. Challenges in modelling resource costs for decision modelling in metastatic 

prostate cancer are discussed in Chapter 4. 

 

2.5.4 Incremental cost effectiveness ratio 

When comparing two or more health technologies in a cost-effectiveness analysis, the 

established statistic for assessment is the Incremental Cost Effectiveness Ratio (ICER). 

The ICER aids to quantify both the difference in costs between the health technologies 

and the difference in clinical effects (in terms of QALYs) of the technologies in one 
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single statistics for decision making. Mathematically, it is computed using the 

following equation: 

 
𝐼𝐶𝐸𝑅 =  

∆ 𝐶𝑜𝑠𝑡𝑠

∆ 𝐸𝑓𝑓𝑒𝑐𝑡𝑠
 (2.9) 

where ∆ 𝐶𝑜𝑠𝑡𝑠 represents the difference in costs between technologies (new technology 

minus existing technology); ∆ 𝐸𝑓𝑓𝑒𝑐𝑡𝑠 represents the corresponding difference in 

clinical effects. Simply, the ICER is interpreted as the additional cost per unit of 

clinical effect gained from the new technology over the existing technology. Currently, 

a threshold ratio of £30,000/life-years gained for ICER is specified by NICE (NICE, 

2013) to represent the willingness-to-pay for a unit of health gain by the NHS. 

Generally, new technologies with ICER of at most £30,000/life-year gained are 

reimbursed. However, there are exceptions in the use of the threshold ratio for decision 

making of certain health conditions and this is illustrated in Chapter 4 for the cost-

effectiveness analysis of metastatic prostate cancer.  

In practice, there are uncertainties in the costs and clinical effects of the technologies 

under investigation and these uncertainties are incorporated in the economic Markov 

model probabilistically, which in turn give ICER estimate with uncertainty. As 

economic models are Bayesian by nature, quantifying the uncertainty using Bayesian 

credible interval (CrI) instead of CI is more intuitive. This can be obtained easily by 

taking the 𝛼/2 and (1 − 𝛼/2) percentiles of the simulation results of the economic 

model as the (1 − 𝛼)100% CrI for ICER. However, graphical plots such as the cost-

effectiveness plane (Black, 1990) and cost-effectiveness acceptability curve (CEAC) 

(Briggs and Fenn, 1998, O'Brien and Briggs, 2002, Fenwick et al., 2001), which 

present the uncertainty in its entirety, are the preferred ways of presenting uncertainty 

in the ICER estimate in HTA. These two graphical tools are described in greater details 

in Section 2.5.5 and 2.5.6. 

 

2.5.5 Cost-effectiveness plane  

The cost-effectiveness plane (Black, 1990) presents the difference in clinical effects 

between two technologies (new technology minus existing technology) per patient 

against the difference in costs per patient. The cost-effectiveness plane, with four 
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quadrants created by the axes and labelled using the positioning in the compass (NW, 

NE, SE and SW) is shown in Figure 2.7. With the x-axis representing the difference in 

clinical effects and the y-axis representing the difference in costs, the gradient for any 

line passing through the origin of the cost-effective plane plot is equal to the ICER (see 

Equation (2.9) for computation of ICER). 

 

Figure 2.7: Cost-effectiveness plane for comparing new technology with existing technology 

(Briggs et al., 2006)(pp 122, Figure 5) 

 

In reality, there are uncertainties in the costs and effects of the technologies as 

mentioned in Section 2.5.4. So, for the purpose of understanding and interpreting 

results using the cost-effectiveness plane, there is a need to consider the ideal situation 

Cost-Effectiveness Plane

Threshold Ratio Line

Cost Difference

QALY Difference

  0

NE Quadrant

(Trade-Off)

NW Quadrant

(New technology dominated)
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(Trade-Off)
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(New technology dominates)
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of certainty and knowing actually where the ICER estimate for the new technology lies 

on the cost-effectiveness plane.  

If the ICER estimate lies in the NW quadrant, the new technology is less effective but 

more costly than the existing technology and is said to be ‘dominated’ by the existing 

technology. However, if the new technology is less costly but more effective, the 

technology will lie in the SE quadrant and is said to ‘dominate’ the existing technology. 

In both situations, decision on which technology to adopt is straight-forward, the 

technology that is more effective and less costly would be adopted. 

It is when the estimate lies in the other two quadrants (NE and SW) that a decision 

must be made as to which technology should be adopted. This decision is generally 

made based on the ICER for the new technology and the threshold ratio (for the ICER) 

pre-specified by the decision maker. The cost-effectiveness plane is particularly useful 

in this instance as a line whose gradient representing the threshold ratio can be plotted 

on the cost-effectiveness plane. Any estimates that lies to the right of (or below) the 

threshold ratio line suggest that the new technology dominates the existing technology 

and should be adopted, while any estimates to the left of (or above) the threshold line 

indicate that the new technology is dominated. In most cases, the new technology under 

evaluation is more effective but also more costly and lies in the NE quadrant. 

The above describes the ideal situation of knowing with certainty where the ICER 

estimate for the new technology lies. This is however not the case and uncertainty 

surrounding the costs and effects of the technologies exist in practice. Now, 

incorporating uncertainty in the estimates of the costs and effects using a probabilistic 

economic model will give outputs in the form of distribution over the cost difference, 

effect difference as well as the joint cost-effect distribution (Briggs et al., 2006). These 

outputs obtained using simulations performed on the probabilistic economic model are 

plotted on the cost-effectiveness plane to give a joint cost-effectiveness density plot. An 

example of this plot with 20000 Monte Carlo simulations is presented in Figure 2.8. A 

line of best-fit through the points on the plot gives the ICER for the new technology of 

interest. The joint cost-effectiveness density plot is used in Chapter 4 to illustrate the 

joint cost-effectiveness density for the different economic models developed. Another 

plot that presents the uncertainty of the ICER (the cost-effectiveness acceptability 

curve) is discussed in Section 2.5.6. 
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Figure 2.8: Estimated joint cost-effectiveness density plot on the cost-effectiveness plane 

 
 

2.5.6 Cost-effectiveness acceptability curve 

The CEAC presents the probability that each technology is cost-effective against the 

existing technology over a range of (maximum) values that the healthcare provider is 

willing to pay for an additional unit of clinical effects (eg. QALYs) gained (Fenwick et 

al., 2001). A CEAC can be plotted using a joint cost-effectiveness density plot such as 

the one presented in Figure 2.8. Lines of threshold ratios representing differential 

values of willingness-to-pay by decision makers can be drawn on the density plot. At 

each willingness-to-pay threshold, the probability that the technology is cost-effective 

can be computed by considering how many of the simulation points fall to the right of 

(and below) the corresponding ‘threshold ratio’ line. The CEAC can therefore be 
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plotted based on the probabilities calculated over the range of willingness-to-pay 

threshold values of the healthcare provider. Figure 2.9 shows an example of CEAC and 

it clearly illustrates that if cost is not an issue for the healthcare provider, the curve 

tends toward the probability that the technology is effective. As the CEAC is a 

graphical presentation of points on the joint density plot of incremental costs and 

effects, in reality the CEAC can take many different shapes (Fenwick et al., 2004). 

  

Figure 2.9: Cost-effectiveness acceptability curve 

 

2.5.7 Discounting 

When considering long-term health endpoints, such as mortality, in an economic 

modelling, it is important to make appropriate adjustments to costs and utilities 

outcomes to capture potential changes to the costs and utilities outcomes over the long 
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period of time frame. The rationale behind it from the viewpoint of analyst and patients 

alike is that as time passes, the cost of a treatment, for example in nominal amount of 

£1000 today may be valued more than the same nominal amount of £1000 in 10 years’ 

time. Similarly, the degree of quality of life utilities measured today may be valued 

more than in 10 years’ time when there are other newer treatment options available. 

Using a Markov model and having the number of cycle representing years or months, 

costs and utilities for different timing in the model can be adjusted appropriately by 

applying a rate, known as discounting rate, to allow for comparison of costs and 

utilities in terms of a net present value (NPV). 

The formula for discounting is as follows: 

𝑉0 =
𝑉𝑡

(1 + 𝑟)𝑡 

where V0 represents the NPV, that is the cost or utility value at time zero; Vt represents 

the cost or utility value at cycle t and r is the discounting rate to be applied for the 

adjustment. For cost-effectiveness analysis in HTA, the National Institute for Care 

Excellence (NICE) in the UK stipulates that a discounting rate of 3.5% should be 

applied for all base-case analysis (NICE, 2013). Alternative discounting rates (for 

example 6%) applied to cost and utility outcomes in the Markov model as sensitivity 

analyses are advised by NICE to allow analysts and decision-makers to explore the 

difference in ICER from the base-case analysis for differential discounting rates.  

In the cost-effectiveness analysis presented in Chapter 4, discounting rates were applied 

to adjust costs and utilities in the model as the model was developed with a time 

horizon of 15 years. 

 

2.6 Chapter Summary 

This chapter reviewed the statistical theory and methodology that are applied in this 

thesis. Bayesian statistics introduced in Section 2.2 was applied throughout this thesis 

with all analyses conducted under the Bayesian framework using the WinBUGS and R 

software described in Section 2.3. Non-informative prior distributions were used in the 

analysis in Chapter 3, while informative prior distributions were constructed for the 
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analyses performed in Chapter 4 and Chapter 5 alongside the use of non-informative 

prior distributions.  

Standard PWMA and NMA described in sections 2.4.1 and 2.4.2 are used in Chapter 3 

for the development of novel graphical presentational tools to facilitate better reporting 

of NMA results. Bayesian BRMA introduced in Section 2.4.3 is utilized in Chapter 4 to 

synthesise two correlated outcomes (OS and PFS endpoints in cancer studies) jointly to 

predict the relative intervention effect of PFS which was not reported in one of the 

RCTs in the analysis. The predicted relative intervention effect is subsequently used to 

inform a cost-effectiveness evaluation model specified using the methodology 

described in Section 2.5. The Bayesian BRMA model is also used in Chapter 5 to 

construct informative prior distribution for the regression coefficients in linear 

regression models to provide a more informative estimate of the outcome of interest 

(EuroQol 5-Dimensions Questionnaire) for multiple sclerosis. 

Other methodologies utilized in this thesis that are chapter specific are introduced in the 

methods section of the chapters. For example, methods related to survival analysis are 

introduced in Chapter 4 and statistical techniques for simulating data are introduced in 

Chapter 5. Details on the application of all these methodologies in one coherent 

analysis framework using the R and WinBUGS software are described in the chapters 

where they were employed. 

 



Chapter 3 Graphical presentational approaches for reporting network meta-analysis 
 

 

 

 

48 

3 Graphical presentational approaches for reporting 

network meta-analysis 

 

3.1 Introduction 

Until recently, systematic reviews and health technology assessments (HTA) have 

largely been limited to pairwise comparisons of interventions where direct evidence 

exists. Often there is an array of candidate interventions relevant to the clinical question 

of interest, thus an analysis comparing all the relevant interventions may be more 

appropriate and useful to decision-makers. Methodology to address this issue, which 

has increasingly been applied, is network meta-analysis (NMA) (Ades, 2003, Ades et 

al., 2006, Caldwell et al., 2005, Higgins and Whitehead, 1996, Lu and Ades, 2004, 

Lumley, 2002).  

Due to the inherent feature of NMA to compare multiple interventions simultaneously, 

there has been rapid growth in the number of HTA reports that utilise NMA for the 

synthesis of evidence from clinical trials. NMA is a complex statistical method, the 

results from which need to be made accessible to non-statistical experts, including 

policy-makers, in order to maximize their usefulness in HTA. Therefore, it is 

imperative that clear, consistent and transparent reporting of this complex statistical 

analysis is established. The aims of this project are to (i) review the existing guidelines 

on the presentation of NMA analyses and to assess what has previously been done in 

practice in the UK by reviewing HTA reports, some of which were commissioned to 

inform NICE technology appraisals; (ii) formulate recommendations to improve future 

reporting of NMA analyses and lastly; (iii) develop graphical tools for the improved 

presentation of NMA analyses in the future. 

Methods for the selection and review of UK National Institute for Health Research 

(NIHR) HTA reports that utilized NMA for clinical effectiveness and cost-

effectiveness evaluations and methods for the development of graphical tools for 

reporting NMA results are described in Section 3.2. 

Existing guidelines on the use and reporting of NMA in HTA in the UK are reviewed 

in Section 3.3.1.  Results of the review of current practice for reporting NMA results in 

UK HTA reports are presented in Section 3.3.2. Based on the review results, 



Chapter 3 Graphical presentational approaches for reporting network meta-analysis 
 

 

 

 

49 

recommendations for improved reporting of NMA were developed and a set of 

important NMA results (that should be routinely reported) were identified for purpose 

of designing NMA graphical tools which are discussed in sections 3.3.3 and 3.3.4. 

Utilising the recommendations and important NMA results identified, novel graphical 

tools for reporting NMA were developed as part of this thesis. Expert opinions on the 

design and feasibility of the graphical tools for presenting important NMA results are 

discussed in Section 3.3.5. The final set of graphical tools developed and published is 

presented in Section 3.3.6. Other graphs developed and evaluated by the experts but 

were not developed further are presented in Section 3.3.7. Finally, Section 3.4 gives a 

discussion of the current reporting practice in HTA and graphical tools developed in 

this thesis. 

 

3.2 Methods 

Methods utilised to achieve the aims of this project are described in this section. A 

project flowchart depicting the steps involved from the review of presentational 

approaches of NMA in HTA to the development of novel graphical tools for presenting 

NMA results is shown in Figure 3.1. 

 

Figure 3.1: Graphical tools development flowchart 

Comprehensive reviews of existing guidelines about the reporting of evidence 

syntheses in HTA and the reporting styles of NMA in published UK NIHR HTA 

reports were conducted (Step 1). Selection criteria of HTA reports and review 
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methodologies for establishing the current practice of reporting NMA in HTA are 

described in Section 3.2.1. 

Taking into account the review results, recommendations for better reporting of NMA 

were developed (Step 2) to aid the conceptualisation of what NMA results are 

important and should be considered in the design of graphical tools for presenting 

NMA results (Step 3). Next, prototype of graphs were developed (Step 4) and evaluated 

by statisticians/quantitative experts with knowledge of PWMA and NMA (Step 5).  

Lastly, the graphical tools were revised (Step 6) incorporating comments and 

suggestions provided by the statisticians/quantitative experts, as well as anonymous 

reviewers who reviewed the published manuscript (Tan et al., 2014). Methods for the 

development of graphical tools for reporting NMA results are described in Section 

3.2.2. 

 

3.2.1 Review of the reporting styles of NMA analyses in HTA reports 

UK NIHR HTA programme reports, listed on their website as published between 1997 

and 2011 inclusively that used NMA methodology for evidence synthesis were 

identified.  

Using a standardized data extraction form (see Appendix A) these reports were 

examined to establish the approaches taken in the reporting of NMA as regards:   

a. Input data - presentation of the number of interventions, study level data, and 

the relationship structure of the interventions and the studies included in the 

analysis; 

b. Methods - specification of Bayesian or frequentist statistical models, software 

used and, where appropriate, presentation of prior distributions used (and 

assessment of their influence on the results via sensitivity analyses), and 

assessment of model convergence; and  

c. Results - presentation of relative effects, absolute effects, probability of 

treatment being best, and/or ranking of interventions, with a particular emphasis 

on the use of tables and graphical presentational approaches. The use, if at all, 
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of the NMA results in informing the economic decision model was also 

considered. 

Based on the results of this review, recommendations were formulated to improve 

NMA reporting. These recommendations considered input data, statistical model and 

results and covered (i) the qualities that make good NMA analysis reporting; (ii) the 

most appropriate and informative presentation methods; and (iii) the target audiences 

for the information. Graphical tools were subsequently designed on the basis of existing 

institutional guidance on NMA reporting in HTA and the recommendations made. 

 

3.2.2 Development of graphical tools for NMA reporting 

Despite the increase in the use of NMA in HTA and journal articles, there is no 

established graphical presentational standard for reporting the results of NMA 

analogous to the forest plot (Lewis and Clarke, 2001) for PWMA. This may be in part 

due to the complexity and magnitude of results generated when using NMA compared 

to PWMA. For example, a NMA including five different interventions generates 10 

pairwise comparisons; and this increases to 45 pairwise comparisons when 10 different 

interventions are included. Presenting such large numbers of results can be challenging, 

especially when NMA is used to evaluate a number of different outcome measures 

within the area of interest.  

When reporting NMA, it is therefore crucial to identify what NMA results are 

recommended and important. This was accomplished through understanding the 

existing institutional guidance on NMA reporting in HTA as discussed in Section 3.3.1 

and a review of the current practice in NMA reporting in HTA reports as described in 

Section 3.2.1. General principles of graphical excellence for presenting data 

(Cleveland, 1994, Few, 2004, Tufte, 2001), in a manner that highlight and organise the 

data effectively, were utilised. This included reducing non-data ink, enhancing data ink, 

and grouping, prioritising and sequencing the data. The graphs developed for the 

presentation of NMA results were programmed using the R software language (R Core 

Team, 2012). 

A preliminary version of the graphical tools developed was presented at the Methods in 

Meta-Analysis (MiM) meeting in London to engage statisticians with expertise in 
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PWMA and NMA to discuss important issues pertaining to NMA and seek their 

opinions about the graphs. The survey form used for the evaluation of the graphical 

tools developed is presented in Appendix B. Revisions to the graphs were made 

following an assessment of the suggestions provided at this meeting, as well as 

suggestions given by the anonymous reviewers of the published article.  

In this thesis, the graphical tools developed are presented using a recently published 

study, which used NMA to investigate the use of tocolytic therapy for preterm child 

delivery (Haas et al., 2012), to illustrate its use for binary outcome on the odds ratio 

(OR) scale. This published NMA included 95 randomised controlled trials (RCTs) and 

considered eight classes of drugs for the treatment of preterm delivery [See Figure 2 in 

(Haas et al., 2012) for the network of interventions and trials included in the NMA]. 

The primary outcome measure was 48hr delay in delivery and the analysis was 

performed on the OR scale. Other secondary outcomes were also analysed in the study 

but for the illustration of the graphs developed, only the results of the primary outcome 

were displayed; graphs for the other outcomes will have a similar display format.  

In the original article (Haas et al., 2012), key analysis results of the primary endpoint, 

such as NMA and PWMA ORs, probability best and rankogram were presented 

separately using tables and figures (Table 1, Figure 3 and Figure 7 in the original 

article). The graphical tools developed as part of this thesis are designed to consolidate 

the key results into a single figure that enable easier referencing of results for the 

authors and ease of interpretation of the results for the readers such as clinicians and 

academics. 

The graphs developed can also be used to present other outcome measures (such as 

continuous data and hazard ratios). The study dataset on Parkinson’s Disease available 

in the NICE Technical Support Document 2 ((Dias et al., 2011d) Example 5) was used 

to illustrate its usage for continuous outcome measure. 

 

3.3 Results 

A review of the existing guidelines for the use and reporting of NMA in UK HTA is 

discussed in Section 3.3.1. Results of the review on the current practice of reporting 

NMA in UK HTA are detailed in Section 3.3.2 and recommendations proposed for 
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better reporting of NMA analyses are presented in Section 3.3.3. Based on the results of 

the review on NMA reporting and recommendation developed, important NMA results 

identified are presented in Section 3.3.4 and considered in the preliminary design of 

graphical tools for better presentation of NMA reports. Evaluation results of the 

preliminary graphical tools developed are reported in Section 3.3.5 and the final set of 

graphical tools developed is presented in Section 3.3.6. The remaining preliminary 

graphical tools evaluated by the experts but were not developed further are presented in 

Section 3.3.7. 

 

3.3.1 Guidance on use and reporting of NMA in HTA 

NMA is now an established methodology acknowledged by HTA agencies worldwide 

including the National Institute for Health and Care Excellence (NICE) in England and 

Wales, the Canadian Agency for Drugs and Technologies in Health, the French Haute 

Autorité de la Santé, and the Pharmaceutical Benefits Advisory Committee in 

Australia, as well as emerging national agencies in Austria, Brazil, Colombia, Cuba and 

Ireland.  

Since 2004, NICE guidance (NICE, 2004) has emphasized that, in HTA appraisals, 

evidence synthesis using pair-wise meta-analysis (PWMA) of head-to-head RCTs is the 

preferred method. If no head-to-head RCTs are available, the guidance permits the use 

of Indirect treatment Comparisons (ICs) so long as the potential bias in its use is 

appropriately explored and reported. In 2008, NICE re-emphasized the preference for 

synthesis results from head-to-head RCTs where available (NICE, 2008).  However, it 

also stated that Mixed Treatment Comparison (MTC) analyses results may be included 

even if head-to-head trials were available, if it is justified that the MTC analysis will 

add information that is not available from the head-to-head trials.  In the latest update 

of the guidance in 2013 (NICE, 2013), NICE adopts the use of the term “Network 

Meta-Analysis (NMA)” [(NICE, 2013) page 41] that comprises of both IC and/or MTC 

and further strengthens its position regarding the use of NMA in HTA appraisals. For 

the rest of this Chapter, the term NMA is used to refer to IC and/or MTC. 

Internationally recognized guidelines for good reporting of standard PWMA of RCTs, 

such as the Preferred Reporting Items for Systematic reviews and Meta-Analysis 

(PRISMA) statement (formerly known as the Quality of Reporting of Meta-Analyses 
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(QUOROM) checklist), have been developed (Liberati et al., 2009b, Moher et al., 

2009). While much of the PWMA reporting guidance is also highly relevant to the 

NMA context (including advice on clarity of labels and legends, and use of reasonable 

sizes for symbols and lines in tables and figures), the inherently greater complexity of 

the latter approaches presents further challenges for reporting such analyses. 

Most specific NMA guidance is embedded in institutional HTA evaluation 

documentation. In the UK, the NICE guidance states that all data used for estimates of 

effectiveness should be presented in tabular form with the source of the data clearly 

stated (NICE, 2004, NICE, 2008, NICE, 2013).  In the 2004 and 2008 guidance, it also 

states that, for NMA analyses the evidence may be presented in either tabular or 

diagrammatic form and should be reported as both relative and absolute effectiveness 

estimates. In the latest 2013 guidance, NICE takes on a stronger stand on the 

presentation of NMA results. It states that evidence from NMA must be presented 

using both tabular and graphical formats and the results from standard PWMAs should 

be presented alongside the results from NMA [(NICE, 2013) page 42, point 5.2.17]. 

This is re-enforced by more detailed advice that complements their guidance on 

evidence synthesis (though their content is non-mandatory when making submissions) 

(Ades et al., 2012, Dias et al., 2011b, Dias et al., 2011a, Dias et al., 2011c, Dias et al., 

2011e, Dias et al., 2011d, Dias et al., 2011f).  Another detailed source of guidance on 

conducting NMA analyses is the International Society for Pharmacoeconomics and 

Outcomes Research (ISPOR) Task Force good practice documents (Hoaglin et al., 

2011, Jansen et al., 2011). While these provide many of the details necessary to 

conduct a successful NMA analysis, specific details and recommendations on 

presentational formats, particularly of the data and results, are limited.  

 

3.3.2 Review of NMA reporting in existing HTA reports 

A total of 608 UK NIHR HTA reports were published between 1997 and 2011 

inclusive, of which 375 contained systematic reviews of clinical effectiveness and/or 

cost effectiveness of the health technology under investigation. Amongst them, 205 

reports contained evidence synthesis and 19 of these reports (including 10 of which 

informed NICE appraisals) utilized NMA methodology, and this defined our review 
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sample (while the remaining used only PWMA). A flowchart of this HTA report 

review selection is shown in Figure 3.2.  

 

 

Figure 3.2: Flowchart of HTA review selection 

 

All 19 reports included in the review were published since 2004, the year in which 

NICE guidance (NICE, 2004) recommended the use of IC analysis (and subsequently 

including MTC in the 2008 NICE guidance) when no head-to-head RCT data is 

available for HTA. Figure 3.3 shows the distribution of the reports published by year, 

sub-categorised as NICE or non-NICE commissioned reports.  
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Figure 3.3: Published HTA reports utilizing IC/MTC in evidence synthesis since 2004 

 

Of the 19 reports included in the review, eight reports used IC methods and 11 reports 

used MTC methods to synthesize the clinical effectiveness data. The evaluation of 

approaches used for presenting NMA results in this thesis is focused on the 

presentation of clinical effectiveness results although the use of NMA methodology for 

the synthesis of adverse events (AEs) was seen in six reports. Eighteen reports included 

only RCTs in the evidence synthesis; the remaining one report used both observational 

cohort studies and RCTs but performed sensitivity analysis excluding observational 

data. The number of interventions used in the NMA analysis ranged from 3 (minimum 

required for NMA analysis) to 15. There was no major `lumping’ of treatment 

interventions by drug class although varying drug doses were grouped together in some 

reports. Complete study summary data (unless excluded for confidentiality reasons) 

used for the analysis were provided for 17 reports. The main reporting characteristics of 

the reports included in the review are presented in Table 3.1 and are discussed in more 

detail in the sections which follow. 
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3.3.2.1 Presentation of NMA data 

Eleven of the 19 HTAs used a network table of the format presented in Figure 3.4(a) to 

display the treatment comparisons (columns) considered by each trial (rows). Only 

three included all data used in the synthesis as elements in the network table. The rest 

used ticks, cross marks, shading or patient numbers to indicate what treatment 

interventions were investigated in each RCT although, in the latter cases, data may 

have been presented for the relevant trials in other sections of the report.  

 

 

Figure 3.4: Example of: (a) Network Table and (b) Network Diagram 

 

Four reports used network diagrams, similar to that shown in Figure 3.4(b), to display 

similar information on the treatment comparisons considered by the included trials. 

This type of diagram graphically displays all the treatment interventions included in the 

NMA and links these treatments with lines if the comparison of the treatments exists in 

at least one of the studies.  Only two reports used both network table and network 

diagram. The remaining six reports did not show the network of trials used. 

Presentation of NMA data in the 19 reports are presented in Table 3.1.  
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Table 3.1: NMA presentation in the 19 reports 

        Data Presentation   Results Presentation 

HTA Report Appraisal Method 

No. of  

Interventions 

Network 

Table 

Network 

Diagram 

Not 

presented   

Matrix 

Table 

Table 

(ratio) 

Table 

(rate) 

SFP/ 

CP 

Text 

only Unclear 

Vol 15, No 40. (2011) (Squires) NICE MTCb 6 
@
 

  


  


  
Vol 15, No 39. (2011) (Lewis) Non-NICE MTCa 15 

 


  


  


  
Vol 15, No 31. (2011) (Greenhalgh) Non-NICE MTCb* 4 

 


#


   


    
Vol 15, No 19. (2011) (Bhattacharya) Non-NICE ICb 4 

  


    


  
Vol 15, No 10. (2011) (Rodgers) NICE ICb 4 

  


   


   
Vol 14, No 40. (2010) (Imamura) Non-NICE MTCa 14 

    


 


  
Vol 14, No 24. (2010) (McKenna) Non-NICE ICc 4 

    


    
Vol 14, No 17. (2010) (McDaid) Non-NICE MTCb* 4 

#
 

   


    
Vol 14, No 2. (2010) (Thompson-Coon) NICE ICb 3 

  


  


    
Vol 13, No 58. (2009) (Burch) NICE ICb 3 

  


  


    
Vol 13, No 34. (2009) (Ara) Non-NICE MTCb 5 

  


  


    
Vol 11, No 39. (2007) (Soares-Weiser) Non-NICE MTCb 8 

     


   

Vol 11, No 2. (2007) (Collins) NICE 
ICb 

MTCc* 

IC: 3 

MTC: 8 


       


 

Vol 10, No 46. (2006) (Woolacott) NICE MTCb 8 
    


    

Vol 10, No 38. (2006) (Brown) Non-NICE ICb* 7 
  


  


    

Vol 10, No 23. (2006) (King) NICE MTCc* 6 
     


   

Vol 10, No 9. (2006) (Main) NICE MTCc* 
Analysis 1: 3 

Analysis 2: 6 


^


        


Vol 10, No 31. (2006) (Riemsma) NICE ICb 3 
@


     


   
Vol 8, No 19. (2004) (Bridle) NICE MTCc 6 

@


     


   

Total:   
10 NICE 

9 Non-NICE 

8 IC  

11 MTC 

Range:  

3 to 15 
11 4 6   2 9 5 4 1 1 

aReported in NMA Chapter; bReported in Clinical Effectiveness Chapter; cReported in Cost-effectiveness Chapter 

        *Adverse events were analysed and used the same IC/MTC unless otherwise stated 

          #: Reported in Appendix; ^: Reported on 1 table for both analyses @: Reported  study sample sizes/outcome data/both in network tables. 

     Abbreviations: SFP: Summary Forest Plot; CP: Caterpillar Plot; RET: Relative Effect Table (e.g. Figure 4c); ET: Absolute Effect Table (e.g. Figure 4d) 
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3.3.2.2 Presentation of NMA synthesis model and its implementation 

All reports discussed the method and the rationale for the use of NMA. Sixteen reports 

utilized the Bayesian framework for the statistical model. Seven reports presented the 

statistical model in the main report text while five presented it in an appendix. Four 

reports did not present the statistical model but referenced published models. The 

remaining three gave a short description of the statistical model used. Checks for 

inconsistencies in the NMA network(s) were assessed in two reports using informal 

methods (formal methods of using deviance information criteria or node-splitting 

technique (Dias et al., 2010) developed in 2010 were not applied). Summary of the 

Bayesian evidence synthesis implemented in the 16 reports are presented in Table 3.2. 

 

Table 3.2: Bayesian Evidence Synthesis implementation in the 19 reports 

    Bayesian Evidence Synthesis Presentation 

HTA Report Appraisal 

WinBUGS 

used 

Prior 

defined 

Prior 

used 

Convergence 

checked 

Vol 15, No 40. (2011) (Squires) NICE  
Vague & 

Informative  

Vol 15, No 39. (2011) (Lewis) Non-NICE  # Vague 

Vol 15, No 31. (2011) (Greenhalgh) Non-NICE   Vague 

Vol 15, No 19. (2011) (Bhattacharya) Non-NICE 
    

Vol 15, No 10. (2011) (Rodgers) NICE   Vague 

Vol 14, No 40. (2010) (Imamura) Non-NICE   Vague 

Vol 14, No 24. (2010) (McKenna) Non-NICE  # Vague 

Vol 14, No 17. (2010) (McDaid) Non-NICE   Vague 

Vol 14, No 2. (2010) (Thompson-Coon) NICE 
    

Vol 13, No 58. (2009) (Burch) NICE 
  



Vol 13, No 34. (2009) (Ara) Non-NICE   Vague 
 

Vol 11, No 39. (2007) (Soares-Weiser) Non-NICE   Vague 

Vol 11, No 2. (2007) (Collins) NICE 
   

Vol 10, No 46. (2006) (Woolacott) NICE  # Vague 

Vol 10, No 38. (2006) (Brown) Non-NICE 
    

Vol 10, No 23. (2006) (King) NICE   Vague 
 

Vol 10, No 9. (2006) (Main) NICE   Vague 
 

Vol 10, No 31. (2006) (Riemsma) NICE   Vague 
 

Vol 8, No 19. (2004) (Bridle) NICE   Vague 
 

  Total: 16 11 
14 Vague;  

1 Informative 
9 

#No mention of it in main report text but vague priors were used and listed in the appendix of the HTA report 
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In view of the computationally intensive nature of NMA analysis, the software used for 

the analysis was reviewed. Out of the 19 reports, 16 used the WinBUGS statistical 

software version 1.4 (Lunn et al., 2000, Spiegelhalter et al., 2003).  The others did not 

specify explicitly the software used but reported that either SAS, STATA, RevMan or 

StatsDirect were used for the presented PWMA results that were reported together with 

the IC results.  For the 16 reports that used WinBUGS software, 14 defined the 

Bayesian prior distributions. All of these used vague prior distributions, of which five 

conducted sensitivity analysis to assess the influence of the choice of prior distribution 

on the results obtained. Checking of the convergence of the MCMC sampler in the 

Bayesian NMA was reported by nine out of the 16 reports using WinBUGS and 14 

reports included WinBUGS codes in their appendices.  

 

3.3.2.3 Presentation of NMA results 

NMA effectiveness results were presented for 18 of the 19 reports (the results for the 

remaining report were unclear). Two had a section specifically for the NMA 

effectiveness analysis while 13 presented the NMA analysis in the effectiveness and 

four in the cost-effectiveness chapters of the report (i.e. NMA was only used in the 

cost-effectiveness modelling). Approaches of the presentation of the NMA results in 

the 19 reports are presented in Table 3.1.  

Sixteen reports presented the results of the NMA in tables, with four of these also 

presenting either summary forest or caterpillar plots (example given in Figure 3.5).   
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Figure 3.5: Summary Forest plot 

 

Across the 16 reports, three different table formats were used: 

� two reports used a matrix table of relative effects (Table 3.3) which contains all 

permutations of treatment comparisons for both NMA and PWMA, separated 

by the off-diagonal; 

� nine used a relative effect table (Table 3.4) which summarizes pooled 

ratios/weighted mean differences of selected treatment comparisons relevant to 

the HTA; and  

� five used an absolute effect table (Table 3.5) which presents the posterior 

probability of rates (for example: response rate) for all treatment interventions 

in the NMA by the use of a specified underlying baseline rate. 

 

  

Comparators Summary Forest plot

<--- Favour Treatment on Left Favour Treatment on Right --->

A vs B

A vs C

A vs D

B vs C

B vs D

C vs D
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Table 3.3: Matrix table of relative effects 

  

Network Meta-Analysis 

 

Intervention A 
ORA-B_NMA 

(95% CrI) 

ORA-C_NMA 

(95% CrI) 

ORA-D_NMA 

(95% CrI) 

S
ta

n
d

ar
d

 M
et

a-
A

n
al

y
si

s 

ORA-B_MA 

(95% CrI) 
Intervention B 

ORB-C_NMA 

(95% CrI) 

ORB-D_NMA 

(95% CrI) 

ORA-C_MA 

(95% CrI) 

ORB-C_MA 

(95% CrI) 
Intervention C 

ORC-D_NMA 

(95% CrI) 

Not calculable 
ORB-D_MA 

(95% CrI) 

ORC-D_MA 

(95% CrI) 
Intervention D 

Key:  ORA-B_NMA= Odd ratio of A vs B using Network Meta-analysis 

 

 

ORA-B_MA= Odd ratio of A vs B using Meta-analysis 

  

Table 3.4: Relative effects table 

Intervention Comparators Network Meta-analysis Standard Meta-Analysis 

Intervention Mean 95% CrI Mean 95% CrI 

A B ORA-B_NMA (95% CrI) ORA-B_MA (95% CrI) 

A C ORA-C_NMA (95% CrI) ORA-C_MA (95% CrI) 

A D ORA-D_NMA (95% CrI) Not calculable Not calculable 

B C ORB-C_NMA (95% CrI) ORB-C_MA (95% CrI) 

B D ORB-D_NMA (95% CrI) ORB-D_MA (95% CrI) 

C D ORC-D_NMA (95% CrI) ORC-D_MA (95% CrI) 

Key: ORA-B_NMA= Odd ratio of A vs B using Network Meta-analysis 

           ORA-B_MA= Odd ratio of A vs B using Meta-analysis 
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Table 3.5: Absolute effects table 

Interventions 

Network Meta-analysis Pair-wise Meta-Analysis 

Mean 95% CrI Mean 95% CrI 

Intervention A EffA_NMA (95% CrI) EffA_MA (95% CrI) 

Intervention B EffB_NMA (95% CrI) EffB_MA (95% CrI) 

Intervention C EffC_NMA (95% CrI) EffC_MA (95% CrI) 

Intervention D EffD_NMA (95% CrI) EffD_MA (95% CrI) 

Key: EffA_NMA= Absolute Treatment Effects estimates of A using Network Meta-analysis 

         EffA_MA= Absolute Treatment Effects estimates of A using Pair-wise Meta-analysis 

 

Thirteen HTAs reported comparative effectiveness estimates, of which eight reported 

all permutations of pair-wise comparison results from the NMA analysis, five 

concentrated either on active treatments compared with placebo (or no treatment or 

standard care), or on active treatments of interest compared to one another. 

NMA results were reported either as pooled relative effects (ORs, hazard ratios, 

weighted mean differences) or rates (response rates, withdrawal rates) with either 95% 

confidence interval (CI) (for frequentist evidence synthesis) or 95% credible interval 

(CrI) (for Bayesian evidence synthesis).  Five HTAs reported the probability each 

treatment was the most effective of which four of these presented the “best” statistic in 

tables and one reported it only in the main text of the report. None of the published 

reports provided tables or graphs that ranked the technologies in terms of effectiveness 

as has been presented elsewhere (Salanti et al., 2011).   

All except two reports used the NMA evidence synthesis results to inform their 

economic decision model. Of those that did, one used a subset of RCTs used for 

effectiveness and another used more RCTs than those included in the effectiveness 

evaluation.  
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3.3.3 Recommendations to improve reporting of NMA 

As mentioned in Section 3.2.1, recommendations for NMA reporting need to consider 

three domains: data, model and results. With a focus on each of the three domains, 

recommendations formulated based on institutional guidance (Section 3.3.1) and the 

review results (Section 3.3.2) are presented in Table 3.6.  

In any statistical analysis, the credibility of the results depends on the quality of the 

data used and the appropriateness of the model adopted. It is, therefore, imperative that 

a clear description of the data and statistical models is presented to ensure transparency 

and reproducibility.  Therefore, it is recommended that studies used in the NMA should 

be clearly presented with, at a minimum, references properly cited, and the data used in 

the analysis clearly stated or outcome data (e.g. for a binary outcome, number of events 

and number of patients in arm) from which the outcome measures used (e.g. log-odds 

ratios & standard errors) can be calculated. A tabular format is a good way of 

presenting this information. A network diagram is an excellent way of visualizing the 

relationships between the studies and interventions under evaluation. Since this could 

be derived from a tabular description of all the studies, of the form described above, it 

is not strictly essential, but where space allows its inclusion is encouraged. However, if 

any included studies have more than two treatment arms, then it is not possible to 

derive a network table from a network diagram, in addition to not being able to identify 

citations to specific studies.  

For the statistical model, this should be fully described with associated algebra together 

with analysis code (including data with a data code sheet explaining the data structure) 

either in the main text or as an appendix.  If report space is limited, then either citation 

to the model specification published elsewhere would be required or supplementary 

material describing the model provided online.  
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Table 3.6: Table of recommendations for NMA reporting 

Component Qualities 
Presentation Method Recommended 

[Domains fulfilled] 
Target audience 

    

Data D1. Studies included in analysis clearly presented & 

references cited 

D2. Treatments compared in each study reported 

D3. Treatment data / effect sizes (with a measure of 

uncertainty) for each included study reported 

Network table, with the structure of Figure 3.4a, but with 

outcome data presented in the table cells/references to studies 

included. 

Network table provides transparency of the trial data used in 

the Analysis [D1-D3] 

 

Academics 

Decision-makers 

    

Model M1. Statistical model described typically with algebraic 

representation  

M2. Citation given to the model used 

Analysis code presenting model (and data) 

Full analysis codes including data with data code sheet. This 

can be provided in Appendix or as online supplementary 

materials. 

This allows reproducibility of the results and contains the 

model used and data included in the analysis [M1-M3] 

 

Academics 

Statistical analysts 

    

Results R1. Results of interest (given the aim of the study) 

reported 

R2. (Relative) Comparison of all treatments 

R3. Probability best statistics/Ranking of treatments 

Tables (see Table 3.4 for an example) and summary forest plot 

of results (see Figure 3.5) of interest [R1] 

Matrix Tables (See Table 3.3 for an example) with Summary 

Forest Plot/Caterpillar Plot (See Figure 3.5 for an example) 

[R1,R2] 

Tables or ‘rankogram’ presenting probability best statistics 

and ranking [R3] 

 

Academics 

Decision-makers 
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The presentation of results from the analysis relies largely on the question of interest: 

which treatment is best, what is the treatment effect for a specific comparison, or 

perhaps all comparisons with either usual care or all treatments in the network being of 

interest. NMA analyses can answer these questions by providing estimates of:  the 

treatment effects for any comparisons included in the network; the probability that each 

treatment is best; and the ranking distribution of each treatment. It may not be feasible 

and/or desirable to report all of them in a report manuscript and therefore the focus of 

the analysis should be well defined to guide the choice of the most appropriate statistics 

to report. This issue strengthens the desirability for making data/analysis code available 

to enable readers to obtain results for any aspect of the analysis not reported. Hence, 

prescriptive requirements on reporting results are not possible; however, the use of both 

graphical and tabular approaches to reporting is encouraged for ease of interpretation.  

This is consistent with the most recent NICE guidance (NICE, 2013) published in 2013. 

The above recommendations should be used in conjunction with the good practice in 

NMA methods documents recently published by an ISPOR Task Force (Hoaglin et al., 

2011, Jansen et al., 2011) and NICE’s Decision Support Unit (Dias et al., 2011c, Dias 

et al., 2011d, Dias et al., 2011a, Dias et al., 2011f, Dias et al., 2011e, Dias et al., 2011b, 

Ades et al., 2012). The latter provides a checklist for reviewers’ of NMAs and goes 

beyond the issue of methods and results reporting including sections on the definition 

of the decision problem and embedding the synthesis in a probabilistic cost-

effectiveness model. 

Finally, the choice on what type of results to report and which tools to use depends on 

the audience. For example, whereas academics may be interested in all three 

components of the NMA analysis, the statistical analysts would be expected to focus 

more on the model specification and decision makers on the transparency of the data 

and clarity of the results of interest. Using the recommendations formulated from the 

review of HTA guidance notes and reports, important NMA results for the design of 

NMA graphical tools were identified and are described in the next section.  
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3.3.4 Important NMA results identified for designing graphical tools 

The review presented in Section 3.3.2 highlighted that the most often reported NMA 

results included relative effects of comparative pairs of interventions, absolute effects 

of interventions, and probability best; all of which are recommended in the published 

NMA methods guidance documents (NICE, 2004, NICE, 2008, NICE, 2013) by 

agencies such as the National Institute for Health and Care Excellence (NICE) or 

International Society For Pharmacoeconomics and Outcomes Research (ISPOR) 

(Hoaglin et al., 2011, Jansen et al., 2011).   

Another statistic used in the reporting of NMAs, although not reported in the HTA 

reports reviewed, is the order of preference of an intervention among a number of 

interventions (i.e., the ranking of an intervention, where the probability that an 

intervention is rank 1 is the probability best statistic).  The ranks may be presented as 

summary statistics (e.g., mean/median rank, surface under the cumulative ranking 

curve(SUCRA) (Salanti et al., 2011)), or graphical representations of the distribution of 

ranks (e.g. rankograms / barplots) indicating the probability that a given intervention is 

1st, 2nd, 3rd best, to being the last (the worst intervention) when compared to all other 

interventions in the network.  In addition to the above, PWMA results are reported in 

the HTA reports, sometimes alongside NMA results to allow informal consistency 

checks to be made. Prediction intervals (the interval indicating the likely location for 

the underlying effect in a new study), although not routinely reported, have recently 

been advocated (Riley et al., 2011) for the reporting of the impact of heterogeneity in 

evidence synthesis.  

Based on this identified set of important NMA results, which should be routinely 

communicated, graphical tools were designed to facilitate concise and transparent 

reporting of NMA results. The graphical tools developed were evaluated by experts at a 

MiM meeting and results of the assessment are presented in Section 3.3.5. 

 

3.3.5 Evaluation of graphical tools by experts 

Graphical tools that aim to present NMA results in a clear and concise manner that 

combine both graphs and numerical estimates for optimal interpretation of NMA results 

and with built-in alternative display options to satisfy the needs of different audiences 
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were evaluated by experts at a MiM meeting. Opinions about the graphical tools from 

statisticians/quantitative experts were collected using the evaluation form presented in 

Appendix B. Four graphs were presented at the meeting, namely: summary forest plot 

matrix (SFP Matrix), summary forest plot table (SFP Table), summary forest plot pie 1 

(SFP Pie 1) and summary forest plot pie 2 (SFP Pie 2). Reviewers who answered the 

evaluation form were requested to comment on the content and clarity of the graphs in 

reporting NMA results. 

Sixteen experts returned the evaluation form, eight indicated that they had been 

involved in at least one NMA analysis while seven had not and one did not answer the 

question. In terms of the presentation of the content of NMA results, both the SFP 

Matrix and SFP Table scored the highest with a median score of 9. The SFP Pie 1 and 

SFP Pie 2 had median score of 6 and 7 respectively. With regards to the clarity of the 

results presented. The SFP Table had the highest median score of 8; the SFP Matrix, 

SFP Pie 1 and SFP Pie 2 had median score of 7, 6 and 5 respectively. One statistician 

did not score the graphs but stated that he/she preferred the SFP Table. In summary, the 

SFP Table scored the highest in terms of both content and clarity in presenting NMA 

results. Eleven experts indicated that they will consider using the SFP Table, eight for 

the SFP Matrix, one for the SFP Pie 1 and none for the SFP Pie 2. When asked what 

other important information should be considered, inconsistency was mentioned by 

seven experts, ranking by five, absolute effects by two and sample size and multiple 

outcome by one each.  

Based on the comments and suggestions from the experts, the SFP Matrix and SFP 

Table were revised. In view of the interest in presenting rankings and the complexity of 

the SFP Pie graphs (which were originally designed with rankings and the probability 

best statistics in mind), a new graph, Median Rank Chart, to present ranking was 

developed to replace the SFP Pie graphs. These three graphs (SFP Matrix, SFP Table 

and Median Rank Chart) form the final set of graphical tools published and 

disseminated for use in presenting NMA results and are presented in Section 3.3.6. The 

SFP Pie graphs evaluated at the meeting are presented in Section 3.3.7. 
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3.3.6 Graphical tools for NMA reporting 

Three graphical tools were developed that aim to amalgamate the important NMA 

results, identified in Section 3.3.4, to aid readability and maximise interpretation in 

NMA reports.  Two of the graphs present relative effects of comparative pairs of 

interventions, probability best, ranking statistics (using optionally either rankogram or 

SUCRA percentages), and heterogeneity estimates. They also present the results of the 

PWMA alongside the NMA results to allow informal checks for consistency of results 

to be made easily. The primary aim of the third plot was to give a simple summary of 

the order of preference of interventions in terms of effectiveness.   

The different graphical displays were developed with different target audiences in 

mind.  With academics and statisticians/analysts in mind, the main objective was to 

graphically present all key NMA results on a single graph whilst ensuring 

interpretability through clear presentation; this also aimed to help meet restrictions on 

the number of tables and figures often enforced by research journals (using graphs 1 

and 2 below).  While completeness of NMA results presentation may be desired by the 

academics and analysts, clinicians and decision makers in healthcare are more likely to 

be interested in visualising the overall conclusions of the analysis by presenting the 

rankings of all interventions in terms of their effectiveness (i.e. highlighting “top-

ranking” interventions) (graph 3).  

Illustrative examples of graph 1, graph 2 and graph 3 presented on the OR scale, where 

the NMA outcome is binary, are presented in the next three sections respectively. An 

example of its use for the presentation of NMA results on continuous outcome data is 

shown in Appendix C. Functions for creating the graphs are made available for 

download by the public from the departmental website: 

https://www2.le.ac.uk/departments/health-sciences/research/biostats/sb-

supplementarymaterials/nma-graphics. 

 

 

 

https://www2.le.ac.uk/departments/health-sciences/research/biostats/sb-supplementarymaterials/nma-graphics
https://www2.le.ac.uk/departments/health-sciences/research/biostats/sb-supplementarymaterials/nma-graphics
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3.3.6.1 Graph 1: Summary Forest Plot Matrix (SFP Matrix) 

Description 

The first plot, referred to as the Summary Forest Plot Matrix, is shown in Figure 3.6.  

The plot design is similar to a scatterplot matrix often used for the investigations of 

correlations.  Along the diagonals, the interventions included in the network are 

displayed. These interventions may be ordered, for example, by their median rank, as is 

done here, to highlight the most relevant comparisons by placing them at the top of the 

graph. Below the diagonal, in the lower triangle of the plot, summary forest plots for all 

possible combinations of the intervention pairs analysed in the NMA - in black colour - 

are presented above the PWMA results - in grey colour - to aid visual assessment of 

consistency between the two analyses (the intervention labelled horizontally to the right 

of the plot is compared with the intervention labelled vertically above and clear 

labelling of the axes is given for each ‘plot element’ on the bottom of the Matrix). The 

summary forest plots display the point estimates of effect size (drawn as a square) with 

95% CrIs (or CIs when only one RCT was used for presenting the PWMA results) and 

95% prediction intervals (shown by two-tiered error bars). Any summary plot without a 

grey-coloured estimate indicates a comparison for which no head-to-head trials exist. 

The corresponding numerical estimates of comparative effectiveness are presented 

above the diagonal in the upper triangle and are presented as a “mirror image” to the 

summary forest plots taking the diagonal as the mirror-line. To assist in understanding 

the heterogeneity of the studies in the network, the numerical estimate of between-

study variance (i.e. heterogeneity) is reported below the matrix. Alternating shadings of 

each plot element is used to improve readability (a technique often used in rail/bus 

timetables). Also included in the matrix, along the diagonal, are the median ranks 

together with rankograms which provide the full probability distribution of rankings for 

each intervention. 
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Figure 3.6: Summary forest plot matrix 

 

For the example in Figure 3.6, the drug class of prostaglandin inhibitors (row 1) is most 

likely the best intervention with the highest median rank (1) and probability best 

statistic as shown on the rankogram (0.80 - the height of the density at rank 1 (x-axis)). 

Its effectiveness relative to the interventions which are ranked 2
nd

 and 3
rd

 based on 

median rank  (Magnesium sulfate and Calcium channel blockers (CCB))  is given by 

the OR of 0.53 (95% CrI: 0.24 to 1.20) and 0.51 (95% CrI: 0.20 to 1.50) respectively.  

The lower triangle of the SFP matrix allows the reader to easily identify pairs of 

interventions for which there were no head-to-head trials. In the example presented in 

Figure 3.6, the drug class of prostaglandin inhibitors is compared directly, in head-to-

head trials, with all interventions except for the drug classes: others, oxytocin receptor 
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blockers (ORB) and nitrates (as indicated by the lack of PWMA estimate below the 

NMA estimate). This graph allows readers/clinicians to interpret key results of a NMA 

using a single plot, to compare the NMA and PWMA results and to identify which 

pairs of interventions could not be compared in a PWMA (due to a lack of head-to-head 

trials). These functionalities, together with the predictive intervals presented in the 

graphs could be used to guide potential areas of future clinical trials/epidemiological 

research studies. 

 

Advantages and Limitations 

Traditional forest plots display individual study effects together with the summary 

estimates to enable readers to assess the effects of each study, how different they are 

from one another and from the summary estimates, as well as their influence on the 

summary estimates. As much as it is desirable to display individual studies used in a 

NMA, it is cumbersome as the number of studies included in a NMA can often be 

large. Instead the graphical tools developed aimed to use the traditional forest plots, 

familiar to a great number of audiences in the medical area, to display the summary 

estimates from both NMA and PWMA and placing them side-by-side. The deliberate 

placement of the PWMA alongside the NMA results is to allow clinicians to directly 

address the question that naturally arises with NMA, that is, how different the results of 

NMA (that uses a network of trials) are compared to the results of traditional PWMA of 

head-to-head trials.  

Along the diagonal, key NMA summary statistics (such as the median ranks together 

with rankograms which provide the full probability distribution of rankings for each 

intervention) which are commonly reported separately are included in the graph. By 

including these statistics on the same plot as the relative effects, it enables the reader to 

instantly identify which intervention is most likely to be the best and read its 

comparative effects with all the other remaining interventions (ordering on the median 

rank statistics further facilitates this by ensuring the “best” interventions are placed at 

the top of the plot).   

Due to the matrix square design of the SFP Matrix, it works best for networks that are 

of moderate size (< 10 interventions). Displaying NMA results of larger network will 
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evidently require the SFP matrix to be separated into pages in the multiples of 2, hence 

reducing the readability and ease of interpretation of the NMA results. As such, options 

are created to sort in terms of key NMA summary statistics and print a user-specified 

range of interventions which will be discussed in greater details in the display options 

section.  

 

Display Options  

The SFP Matrix shown in Figure 3.6 is one variant of the many that can be displayed. 

In its simplest form, the SFP Matrix contains only the NMA and PWMA summary 

forest plots and estimates (with 95% CrI), with only the treatment names displayed 

along the diagonal and the heterogeneity estimates presented. Predictive intervals as 

shown in Figure 3.6 can be optionally included in the graph. Further NMA results 

components such as the ranking statistics and probability a treatment is best can be 

optionally included in the graph and displayed along the diagonal as shown in Figure 

3.6 where the rankograms were displayed. Ranking statistics can be displayed in the 

form of (i) rankogram with median rank, (ii) bar chart with mean rank or (iii) the 

SUCRA estimates with cumulative ranking probability plots. Probability a treatment is 

best will be displayed with a pie chart with the probability estimates. 

Apart from the display of key NMA results components, options to sort or reduce the 

number of interventions displayed in the graphs are available (with caution notes 

displayed as footnotes in the graphs to remind readers of the actual number of 

interventions used in the NMA to produce the displayed results). Although the 

presentation of all pairwise comparisons in the network is highly recommended, it is 

also acknowledged that there can be situation where it is necessary to display a reduced 

set of interventions, especially in the case of large networks. It may be helpful to 

clinicians and decision makers to restrict presentation of the NMA results to that of the 

top 5 or 10 ranking interventions when the network contains say 20 interventions or 

more. The NMA components that can be used for sorting the results are (i) median 

rank; (ii) mean rank; (iii) SUCRA percentages; (iv) probability a treatment is best and 

(v) relative treatment effect compared to the treatment coded as 1 (which is commonly 

placebo or standard of care) in the analysis. Footnotes in the graphs can also be 
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removed where it is necessary. Illustrative examples of SFP Matrix plots in its simplest 

format and with SUCRA percentages are shown in Appendix D. 

 

3.3.6.2 Graph 2: Summary Forest Plot Table (SFP Table) 

Description 

The second graph, referred to as the Summary Forest Plot Table, is shown in Figure 

3.7. This plot uses the presentational style of the traditional forest plot where the 

numerical estimates are reported alongside the summary forest plots.  The SFP Table 

presents results for all possible combinations of intervention comparisons with each 

intervention in the second column compared to the intervention listed in the first 

column.  Similar to the SFP Matrix above, the interventions have been ordered by their 

median rank. The third column reports the number of head-to-head (H-H) trials that 

compare the two interventions listed in columns 1 and 2 (a feature not incorporated in 

the SFP Matrix). In column 4 the numerical estimates of the relative effects with 

corresponding 95% CrI are presented for the NMA with the PWMA results directly 

below in grey.  Finally, column 5 presents the summary forest plots; again the PWMA 

results are presented below the NMA results to allow visual assessment of consistency 

between the two analyses. Similar to the SFP Matrix, the display of the predictive 

intervals alongside the CrIs on the summary forest plot is optional.  An estimate of 

heterogeneity across the trials included in the network is also presented. Median ranks 

of all interventions are also reported in this graph, numerically and graphically using a 

slider bar format (full rankograms, as presented on the SFP Matrix, were problematic 

for the SFP Table and difficult to read).  

 

Advantages and Limitations 

One advantage of this plot over the Matrix format is that the reference line of the 

summary forest plots for all pairwise comparisons is drawn on the same vertical line, 

hence facilitating the assessment of differences in comparative estimates and their 

precision between treatment pairs. Another advantage of this reporting style is that the 
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NMA results from large networks can be reported more easily with the SFP Table 

extending to multiple pages, where necessary.   

 
Figure 3.7: Summary forest plot table 

 

Key NMA summary statistics such as the median rank, mean rank, SUCRA 

percentages and probability best statistics are presented in the top first box of NMA 

results. This is a result of the reduction in comparative pairs by one as the primary 
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comparator moves to the next intervention in the NMA. As such for a NMA with eight 

interventions (like in our example data), there will only be seven boxes on the SFP 

Table because the last intervention (in our example – Placebo) would have been 

compared to all preceding interventions and will not be listed in column 1 (the primary 

comparator column). Besides not having the last intervention in column 1, the size of 

the boxes decreases as it moves towards the next intervention, making it challenging to 

include rankograms on the graph.   This is a limitation of this graph design but is also 

an advantage of this graph as the key NMA summary statistics had to be placed in the 

top box and this, in turn, allows readers to compare the interventions without having to 

flip through pages of the table when the network is large. 

 

Display Options  

The SFP Table shown in Figure 3.7 is one variant of the many that can be displayed. In 

its simplest form, the SFP Table contains only the NMA and PWMA summary forest 

plots and estimates (with 95% credible interval), and the number of head-to-head trials 

for each pair of intervention comparisons. Predictive intervals as shown in Figure 3.7 

can be optionally included in the graph. Other NMA results components such as the 

ranking statistics and probability best can be optionally included in the graph and 

displayed in the first set of intervention comparisons as shown in Figure 3.7 where the 

median ranks were displayed. Choice of display of the ranking statistics are (i) median 

rank presented using slider bar, (ii) mean rank presented using slider bar and (iii) 

SUCRA percentages. Probability a treatment is best is displayed with a pie chart 

alongside the probability estimates. 

Similar to SFP Matrix, options to sort or reduce the number of interventions displayed 

in the graphs are available (with caution notes displayed). NMA results components 

that can be used for sorting the results are (i) median rank; (ii) mean rank; (iii) SUCRA 

percentages; (iv) probability a treatment is best and (v) relative treatment effect 

compared to the treatment coded as 1 (which is commonly placebo or standard of care) 

in the analysis. Illustrative examples of SFP Table plots in its simplest format and with 

SUCRA percentages are shown in Appendix D. 
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3.3.6.3 Graph 3: Median Rank Chart 

Description 

The third graph, shown in Figure 3.8, presents the median ranks of all interventions 

included in the NMA with the aim to ‘simplify’ the presentation of rankings in NMA. 

A colour intensity scheme is employed in this graph to help draw attention to the best 

treatment(s) (using black ink in the lightest zone at the top of the chart) while 

simultaneously highlight the worst treatment(s) (in the darkest zone at the bottom of the 

chart).  In our example (Figure 3.8), prostaglandin inhibitors are most likely to be the 

best with a median rank of 1, while nitrates and placebo are the worst, and the five 

other interventions have similar rankings between these extremes. 

 
Figure 3.8: Median rank chart 

 

Median Rank Chart of Tocolytic therapy for preterm child delivery

Rank Intervention

1 Prostaglandin inhibitors

2

3
Calcium channel blockers

Magnesium sulfate

4 Betamimetics

5
Others

Oxytocin receptor blockers

6

7 Nitrates

8 Placebo
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Advantages and Limitations 

As this graph allows all interventions included in the NMA to be presented in a single 

graph that can be printed on a single page, it is a particularly useful graphical tool when 

the network contains a large number of interventions. This graph provides readers with 

only the median ranking of the interventions; hence unlike the SFP Matrix and SFP 

Table, this does not provide quantitative information on the differences in efficacy 

estimates between the interventions included in the analysis.     

 

3.3.7 Other graphical tools evaluated by experts 

In the preliminary development of the graphical tools, other graphical tools were also 

developed. However, following the evaluation of the graphical tools by experts, two of 

these graphs did not contribute to the recommended graphical tools package. 

Descriptions and limitations of these two graphs are discussed in Section 3.3.7.1 and 

Section 3.3.7.2. 

 

3.3.7.1 Summary Forest Plot Pie 1  

Summary Forest Plot (SFP) Pie 1 is designed to present the probability best statistics 

estimated in NMA analysis and is presented in Figure 3.9. As the probability best 

statistics for all interventions sum to one, the thicknesses of the pie slices are 

proportional to the probability each intervention is the best (with the added benefit that 

the numerical estimates of the probability best are also displayed).  Interventions are 

ordered by the probability best with the interventions with probability best less than 

0.015 grouped together and presented as a single intervention named “Other 

interventions” (although this threshold for grouping low probability best interventions 

can be user-specified).   

The circumference of the pie represents the line of no relative effect, analogous to the 

reference line (at OR=1 for binary outcomes, WMD (Weighted Mean Difference) = 0 

for continuous outcomes) commonly seen in (summary) forest plots (albeit curved into 

a circle in this context). The summary forest plots for each of the interventions, relative 

to a chosen reference intervention, are plotted at the mid-angle of that intervention’s pie 
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slice (note that the relative effect estimates for interventions with probability best 

statistics less than 0.015 are not displayed on the plot). The further an intervention’s 

effect size lies outside the circumference of the pie, the better the intervention is 

relative to the chosen reference intervention. In the example, presented in Figure 3.9, it 

can be observed that the drug class of prostaglandin inhibitors has the largest relative 

effect with reference to placebo as well as the highest probability of being best 

(indicated by the widest pie slice). As with the SFP Matrix and the SFP Table, both 

credible and predictive intervals can be displayed. An estimate of heterogeneity is also 

included on the plot for completeness.  To make this novel format of plot accessible, a 

clear legend is given explaining the various components. The key states the number of 

interventions included in the NMA, the reference treatment and the threshold of 

probability best used to group treatments into ‘Other interventions’ category.  It also 

lists the treatments included in this ‘Other interventions’ category. 
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Figure 3.9: Summary forest plot Pie 1 
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A major limitation of this graph is that the graph can only present NMA results relative 

to only a chosen reference intervention, results for other reference interventions need to 

be plotted separately. Differences between the pairwise results are not immediately 

apparent without the help of the numerical summary estimates printed on the graph as it 

is more difficult to visualize differences along a circle and having circular grids on the 

graph makes the graph looks very busy. 

 

3.3.7.2 Summary Forest Plot Pie 2  

The Summary Forest Plot Pie 2 is a variant of the SFP Pie 1 graph that looks into the 

presentation of the probability best statistics estimated in NMA and is presented in 

Figure 3.10.  

Interventions are ordered by the probability best with the interventions with the highest 

probability best starting at the 12 o’clock position clockwise to the interventions with 

the lowest probability best statistics. Multiple interventions with low probability best 

can be set to be grouped together as in the SFP Pie 1 graph. The circumference of the 

innermost pie has the same meaning as in the pie in the SFP Pie1 graph. Similarly, the 

summary forest plots for each of the interventions, relative to a chosen reference 

intervention, are plotted at the mid-angle of that intervention’s pie slice. A legend 

describing various components of the graph is also provided. 

One major difference between the SFP Pie 1 and SFP Pie 2 graphs is that the coloured 

area in SFP Pie 1 only takes into account the magnitude of the probability best for each 

intervention, while the coloured area in SFP Pie 2 represents not only the probability 

best for each intervention but also the precision of the summary estimate. The 

limitations of this graph are similar to those of SFP Pie 1. 



Chapter 3                                 Graphical presentational approaches for reporting network meta-analysis 
 

 

 

 

 

82 

 

Figure 3.10: Summary forest plot Pie 2 

 

One major issue of the design of this graph is that the area of the coloured area is 

inversely proportional to the precision of the summary statistics estimate of the NMA. 

As a result, an intervention having a summary estimate with low precision (wide 95% 

CrI/CI) will have a larger coloured area than another intervention with the same 

probability best statistics but a summary estimate with high precision (narrow 95% 

CrI/CI). This is inconsistent with graphical design standards (Cleveland, 1994, Few, 
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2004, Tufte, 2001) where important results should be given more data ink, which in this 

graph design is the area of coloured slices. 

 

3.4 Discussion 

The review summarises how NMA data, analysis methods and results are presented in 

UK HTA reports.  It has shown that although the use of NMA in HTA has increased 

since the 2004 NICE guidance first advocated its use, there appears to be no standard 

tabular and/or graphical format for the presentation of the evidence structure or results. 

About a third of the reports reviewed did not present a network diagram or network 

table making it difficult to ascertain which studies and comparative evidence were used 

in the NMA synthesis and thus making the analysis neither transparent nor 

reproducible. Results were mainly presented in tabular format with a few also reporting 

summary forest plots.  Although the latter is a well-established graphical tool in 

PWMA, its use is restricted in NMA as it is limited to the presentation of pooled results 

for pairwise comparisons (i.e. presentation of individual studies are not included).  

Only five HTA reports presented the probability that each treatment included in the 

network was the most effective, however, little consideration was given to other 

rankings; i.e. probability second most effective, third most effective and so on. The 

majority of reviewed HTAs implemented the NMA analysis in WinBUGS which has 

limited graphical functionality and therefore may require results to be exported to other 

statistical packages such as R for clearer presentation.   

After the completion of the review, two further systematic reviews of the international 

literature of 42 NMA (Coleman et al., 2012)  and 121 published NMA (Bafeta et al., 

2014) were in broad agreement with the findings of this review.  Coleman and 

colleagues found that the presentation of results was much more likely to be tabular 

(89.5%) rather than graphical (21.1%) formats. Bafeta and colleagues concluded that 

there were great disparities in the reporting of NMA results and essential components 

of reporting NMA results were missing in 98% of the articles. Thus, while the sample 

of NMAs in my review was limited to UK HTA reports, it is reassuring that a review of 

reports from a wider area obtained similar findings. This further strengthens the need 
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for additional guidance and presentational tools for reporting NMA results to aid ease 

of interpretability. 

An initial attempt to provide recommendations regarding the presentation of NMA 

analyses was made. However, it should be acknowledged that no recommendation was 

developed for the reporting of advanced issues such as variable study quality, subgroup 

analysis or inconsistency analysis, due to the infancy of this methodology. After the 

publication of the review and recommendations (Tan et al., 2013), Hutton and 

colleagues conducted an overview of published reviews that discussed the quality of 

reporting NMA and provided suggestions to enhance future reporting quality of NMA 

(Hutton et al., 2014). They identified eight reports (including the review conducted in 

this thesis), which provided a comprehensive view of the reporting of NMA data 

network (such as study selection and risk of bias evaluations), analysis methods 

(including the use of Bayesian or Frequentist approaches, details on prior distribution 

when using Bayesian approach, inconsistency analysis and assumptions underlying the 

statistical model) and results (including presentational approaches and graphical tools). 

By utilising the findings derived from the reviews, Hutton and colleagues developed 

guidance for reporting NMA in the format of an extension of the PRISMA Statement 

(Hutton et al., 2015). The PRISMA statement (formerly known as QUOROM) is an 

internationally recognised guideline for good reporting of systematic reviews 

incorporating standard PWMA. Although much of this guideline for PWMA is highly 

relevant for NMA, the inherently greater complexity of the latter approaches presents 

further challenges for reporting such analyses. The review conducted in this thesis and 

the other published reviews collectively contributed to inform the development of the 

PRISMA NMA extension statement, an internationally recognised guideline that will 

be used by systematic reviewers and meta-analysts conducting and reporting NMA. 

Also, a number of tutorial articles that focus on educating clinicians and methodologists 

alike on the fundamentals of NMA and how to interpret NMA results presented in 

journal articles were published after the publication of the review and recommendations 

(Tan et al., 2013). For example, Salanti (Salanti, 2012) summarises what the principles 

of NMA are, and its benefits and concerns as a next generation evidence synthesis tool. 

Articles by Dias and colleagues (Dias et al., 2013a, Dias et al., 2011d) provided 

technical guidance on the conduct of NMA through the use of tutorial examples, which 
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included useful program codes to enhance the understanding and facilitate the analysis. 

Other tutorial articles with greater relevance to clinicians on understanding the core 

concepts of NMA, interpreting results from published NMA and hence applying it to 

real-life clinical situation were published recently in medical journals, for example, by 

Mills and colleagues (Mills et al., 2012, Mills et al., 2013) and Cipriani and colleagues 

(Cipriani et al., 2013). Another systematic review article also looked at what guidance 

were available to researchers to present NMA results to end-users such as 

policymarkers and clinicians (Sullivan et al., 2014). 

Given the increased understanding of NMA and accessibility to analysis tools by the 

publication of the tutorials, the popularity and use of NMA have increased. However, 

there is no standardised presentational tool for reporting NMA. In this thesis, three 

graphical tools to aid clear presentation and facilitate interpretation of NMA results 

were developed.  SFP Matrix and SFP Table provide a comprehensive presentation of 

the important NMA and PWMA results displayed on a single plot. These plots not only 

enable easy comparison of NMA and PWMA results but also assist to reduce the 

number of tables and/or figures required for all relevant results to be presented in the 

main text of a journal article where space is often limited. The Median Rank Chart 

complements the SFP Matrix or the SFP Table by providing a visual summary of each 

intervention’s median ranking within the network of interest; thus enabling decision 

makers to easily identify the “top-ranking” intervention(s) in terms of effectiveness. 

Visual design principles were applied in the development of the graphs. NMA results 

presented in the SFP Matrix and SFP Table combine three main groups of results, 

namely (i) the summary forest plot graphs; (ii) the numerical estimates corresponding 

to the summary forest plots; and (iii) the ranking or probability best statistics. In the 

SFP Matrix, the most important intervention (e.g. Usual Care/Placebo or the top-

ranking intervention when sorted by ranking) is usually at the top left-hand corner and 

hence the numerical estimates were strategically placed in the upper triangle of the 

matrix plot. This allows readers to read the relative effectiveness of interventions 

compared to the most important intervention easily as reading from left to right is 

generally the order that readers will scan a page. This therefore allows the summary 

forest plots to be placed in the lower triangle where the x-axis for the plots can be 

placed at the bottom of the matrix which is conventional with the usual placement of 
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the x-axis on graphs. The ranking or probability best statistics are placed along the 

diagonal with the intervention names in an enclosure so that readers can readily know 

what intervention the statistics correspond to. NMA and PWMA results are grouped 

and placed in an enclosure to allow the assessment of consistency of the results.  

In the SFP Table, the three main groups of data are presented from left to right. Firstly, 

the intervention names together with the ranking or probability best statistics; secondly, 

the numerical estimates of the relative effectiveness and lastly the summary forest 

plots. In this design, the texts help to complement and enhance the summary forest 

plots that follow. Enclosures in the form of boxes present NMA results grouped by the 

reference intervention, allowing readers to easily recognise that all summary forest 

plots and numerical estimates within an enclosure are compared to the same reference 

intervention. 

As both the graphs are developed for the presentation of NMA results, the NMA 

summary forest plots and numerical estimates are presented in stronger (black) ink to 

highlight the main results while the PWMA results in lighter (grey) ink, displayed for 

comparison. The intensity of the colours of the enclosures and axes, that do not 

represent the key results, are reduced to a minimum while light intermittent shading of 

enclosures in the SFP Matrix is employed to improve readability. 

The Median Rank Chart presents the top-ranking intervention at the top, utilising the 

concept that readers will read from top to bottom, so attention is drawn to the top-

ranking intervention first. Also, the top-ranking intervention is written in black ink in 

the lightest background shading compared to the worse intervention in the darkest 

background shading, utilising the visual perception concept of contrast to highlight the 

most important result (Few, 2004). 

There has been an evolution of reporting standards initially for PWMA (Liberati et al., 

2009a) and more recently for NMA (Hoaglin et al., 2011, Jansen et al., 2011). Further, 

Technical Support Documents (Dias et al., 2011c, Dias et al., 2011d, Dias et al., 2011a, 

Dias et al., 2011f, Dias et al., 2011e, Dias et al., 2011b, Ades et al., 2012) 

(commissioned by NICE), and a series of evidence synthesis for medical decision 

making tutorial articles (Dias et al., 2013d, Dias et al., 2013a, Dias et al., 2013b, Dias et 

al., 2013f, Dias et al., 2013e, Dias et al., 2013c, Ades et al., 2013) have recently been 
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published providing technical details of the implications and implementation of NMA 

methodology as well as guidance on reporting. These all highlight the need for a clear 

description of the NMA statistical model, and its assumptions, together with model fit 

statistics, including checks for inconsistency. Additionally, presentation of the evidence 

structure, in the form of a network diagram (Salanti et al., 2008), is also recommended. 

The graphical tools developed in this project aim to improve existing methods to report 

the results of a NMA and as such complement the aforementioned guidance documents. 

The graphs proposed focussed mainly on the presentation of single outcome but can 

potentially be adapted to present multiple outcomes in the future. 
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4 Bivariate and indirect comparison meta-analysis of 

overall survival and progression-free survival 

endpoints to improve economic evaluation of cancer 

treatments 

 

4.1 Introduction 

Economic evaluation of cancer treatments is based on information on the course of 

disease experienced by patients with cancer. It also requires collection of data on 

monetary spending by healthcare providers over the course of the patients’ treatment to 

follow up and even till death for end of life treatment evaluations. However, evidence 

for the full set of parameters required to implement an economic model for cost-

effectiveness evaluation is not always available.  

Overall survival (OS) is the universally recognised primary endpoint of interest for 

evaluating the effectiveness of treatment regimens for cancer in Phase III randomised 

controlled trials (RCTs). Overall survival results (such as hazard ratios (HRs) or 

Kaplan-Meier survival curves) are reported in most (if not all) Phase III oncology 

RCTs. This is however, not the case for other outcome measures, for example 

progression-free survival (PFS), time to progression (TTP), tumour response and 

change in biomarker readings. This can limit the construction of health economic 

models such as multi-state Markov models which are designed to explain the course of 

the disease experienced by cancer patients and hence offer a more appropriate 

estimation of the cost-effectiveness of cancer regimens under evaluation. 

For example, in 2007 the National Institute for Health and Care Excellence (NICE) 

carried out a technology appraisal of treatments for metastatic hormone-refractory 

prostate cancer (mHRPC) (Collins et al., 2007) which relied on a two-state Markov 

model (stable disease (StD) and death) due to the availability of sufficient data only on 

OS. A three-state Markov model (StD, progression (PD) and death) for cost-

effectiveness analysis of cancer treatments would be better but requires information on 

both TTP (or PFS) and OS. Data on both these outcomes are not always reported in 

RCTs that evaluate the cancer treatment of interest and this was the case in one of the 

RCTs used in the above technology appraisal. As a result of limited data on PFS, a two-
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state Markov model (StD and death) was specified using data on OS from a single 

RCT. In this chapter, the technology appraisal is used as an example to illustrate how 

bivariate evidence synthesis technique can be applied to predict PFS that was not 

reported and to enable the specification of a three-state model.  

The objective of this project is to perform a Bayesian bivariate random-effects meta-

analysis (BRMA) to obtain clinical effectiveness estimates of both PFS and OS for use 

in a three-state Markov model when data on OS and PFS in individual RCTs are 

incomplete.  

 

4.1.1 Motivating example 

As mentioned in the previous section, the UK NICE performed a technology appraisal 

of treatments for mHRPC in 2007. The Health Technology Assessment (HTA) report 

(Collins et al., 2007), evaluated the clinical- and cost-effectiveness of docetaxel in 

combination with either prednisone or prednisolone (D+P) for the treatment of 

mHRPC. In the report, a scoping search for studies evaluating the clinical- and cost-

effectiveness of D+P was conducted. As only one RCT was identified to have 

compared D+P with mitoxantrone plus prednisone (M+P) and no other RCT compared 

D+P with any other possible interventions, RCTs that assessed mitoxantrone in 

combination with a corticosteroid compared with any chemotherapy regimen or best 

supportive care or placebo were also included in the scoping search. Extension of the 

studies selection to include studies that evaluated mitoxantrone in combination with a 

corticosteroid was to allow for the comparison between D+P and other relevant 

interventions using mitoxantrone in combination with a corticosteroid as a common 

comparator in indirect comparison analysis. In total, seven RCTs were identified based 

on the inclusion criteria, of which three RCTs used docetaxel compared with M+P, 

three RCTs used mitoxantrone plus a corticosteroid (M+C) compared with a 

corticosteroid and one RCT used M+P compared with mitoxantrone plus prednisone 

plus clodronate (M+P+Clo). The three RCTs that included docetaxel had docetaxel in 

the following combination: D+P, docetaxel with estramustine (D+E) and docetaxel 

with estramustine and prednisone (D+E+P).  

Network table and network diagram showing the network structure of the seven RCTs 

are shown in Table 4.1 and Figure 4.1 respectively. As shown in Table 4.1, two dosage 
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schedules for D+P and D+E+P were administrated in trials TAX 327 and Oudard 

respectively. Docetaxel given 3-weekly (75mg) and 1-weekly (30mg) with prednisone 

was denoted as D+P and D1+P respectively and D+P is the docetaxel treatment 

regimen of interest in the HTA report. The RCT by Oudard investigated docetaxel 

given once in a 3 weeks cycle (i.e. 3-weekly) and twice in a 3 weeks cycle (on day 2 

and 9) with estramustine and prednisone and these treatment schedules were defined as 

D70+P+E and D35+P+E respectively. 

Table 4.1: Network Table of the seven identified RCTs in HTA report 

    Treatment comparisons for OS endpoint 

Trial 
 

D
^
 + P  D

^
 + P + E  D + E  M + P  M + P + Clo  P 

        CCI-NOV22  

(Tannock et al., 1996)    
80 

 
81 

        CALGB 9182 

(Kantoff et al., 1999)    
119 

 
123 

        Berry et al. 

(Berry et al., 2002)    
56 

 
63 

        TAX 327 

(Tannock et al., 2004) 

D+P: 335 
  337   

D1+P: 334 
    

        Ernst 

(Ernst et al., 2003)    
105 104 

 

        SWOG 

(Petrylak et al., 2004)   
338 336 

  

        Oudard 

(Oudard et al., 2005) 
 

D70+P+E: 43 
 42   

 
D35+P+E: 42 

   
                

Numbers in the network table represent the number of patients in the treatment arm of the trial 
 

^ Note: Different schedules/dosages for Docetaxel drug 
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Figure 4.1: Network Diagram of the seven identified RCTs in HTA report. Numbers in the 

network diagram represents the number of RCTs that compared the treatments connected by 

the lines. 

 

Clinical effectiveness assessed in the HTA report was performed using solely OS 

endpoint. Evidence synthesis using fixed-effect and random-effects meta-analysis were 

conducted for evaluating the clinical effectiveness comparing M+P to P using the three 

head-to-head RCTs that compared them. It was reported that the HR for M+P versus P 

was 0.99 (0.82 to 1.20) for both fixed-effect and random-effects meta-analysis. Indirect 

comparison meta-analysis (ICMA) was conducted for comparing D+P and P using 

M+P as the common comparator (see Figure 4.1 for network structure). A HR of 0.75 

(0.57 to 0.99) for D+P versus P was reported using random-effects ICMA method by 

Bucher and colleagues (Bucher et al., 1997), which used the meta-analysis summary 

estimate of M+P versus P and the trial results of TAX 327 comparing M+P versus D+P 

(with a published HR of 0.76 (0.62 to 0.94)). No other indirect comparisons were 

conducted between the other interventions shown in the network diagram (See Figure 

4.1) as it was not in the interest of the HTA to look at them. 

For the cost-effectiveness assessment of D+P in the HTA report, two separate analyses 

were performed. This is due to the unlicensed status of some of the treatment regimens. 

The first analysis looked at three interventions (that are licensed at the time of the HTA 

report submission), namely D+P, M+P and P. The second analysis looked at eight 
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interventions, including the three in the first analysis and the following five: D1+P, 

D+E, D70+E+P, D35+E+P, M+P+Clo. Due to the unlicensed status of the interventions 

in the second analysis, the economic decision making in this HTA report was based on 

the results of the first analysis. In the research that follows in this chapter, the focus 

will be on the cost-effectiveness assessment of the interventions compared in the first 

analysis. 

Four RCTs (CCI-NOV22, CALGB 9182, Berry et.al. and TAX 327) made up the 

network of trials for the first analysis that looked at interventions: D+P, M+P and P. 

Patient-level OS data from trial TAX 327 (Tannock et al., 2004) were used to explain 

the survival distribution for interventions M+P and D+P. Evidence synthesis results 

from the clinical effectiveness analysis for OS, comparing P to M+P, was used to 

estimate the survival distribution for P. Data on resource use and cost related to drug 

acquisition, treatment administration costs and subsequent follow-up costs (including 

the management of side-effects, hospitalisations, further chemotherapies and palliative 

care) for interventions D+P and M+P were based on patient-level cost data reported by 

Sanofi-Aventis (Sanofi-Aventis, 2005). Cost data for P were obtained based on patient-

level data from cost-effectiveness study by Bloomfield and colleagues (Bloomfield et 

al., 1998). Utilities data used in the economic model were obtained from a study by 

Sandblom et al. (Sandblom et al., 2004). This study was one of seven studies identified 

in a separate systematic search of relevant databases to have reported potentially 

suitable health-related quality of life (HRQoL) utility values. Results from the first 

analysis showed that D+P was cost-effective compared to M+P with an Incremental 

Cost Effectiveness Ratio (ICER) of £32,706 per additional Quality-adjusted life-years 

(QALY), while P was dominated by M+P. 

 

4.2 Methods 

For clarity, OS is defined as the time from the start date of randomisation or study entry 

to the date of death or censored at the date when the patient was last known to be alive 

(also known as date of last follow-up). PFS is defined as the time from the start date of 

randomisation or study entry to the date of progression or date of death, whichever 

occurs first. Patients who were alive without progression were censored at the date of 

last follow-up. TTP is defined as the time from the start date of randomisation or study 
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entry to the date of progression or date of cancer-related death, whichever occurs first. 

Patients who were alive without progression were censored at the date of last follow-up 

and patients who died of other causes unrelated to cancer were censored at the date of 

death. 

Although TTP is a more appropriate outcome variable for the specification of the three-

state Markov model (StD, PD and death) for cost-effectiveness analysis of cancer 

treatments, it is not as commonly reported in published journal as PFS. The difference 

between PFS and TTP is that PFS considers death unrelated to cancer as an event of 

interest in the survival analysis while TTP does not. 

Considering the advanced metastatic stage of the prostate cancer patient population in 

this project, the proportion of patients who would have died of other causes unrelated to 

prostate cancer is expected to be small. Hence, PFS is used in place of TTP in this 

project as an approximation to make it possible to present the methodological approach 

of using a BRMA model to jointly estimate the hazard ratios of PFS and OS for use in a 

three-state Markov model when data on OS and PFS in individual RCTs are 

incomplete. 

Network of trials for OS and PFS and the Markov model reported in the HTA report 

are presented in Figure 4.2 (top). Interventions in the network include: D+P, M+P and 

P. As shown in the OS and PFS network diagrams in Figure 4.2 (top), there were no 

head-to-head RCTs that compared D+P to M+P for PFS.  

In order to estimate the PFS HR of D+P compared with M+P, a Bayesian BRMA 

model that jointly estimates treatment effect on OS and PFS, is proposed. It allows the 

prediction of PFS for comparing D+P with M+P using the information on OS 

comparing D+P with M+P and the correlation between OS and PFS (obtained from 

studies reporting treatment effects for both outcomes). The predicted effect of PFS for 

D+P versus M+P in turn allows for the specification of a three-state economic Markov 

model incorporating a PD state as an intermediate state between the StD and death 

states as shown in Figure 4.2 (bottom). 
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Figure 4.2: Original HTA model (top) and proposed Bayesian BRMA to predict PFS for the specification of a three-state economic Markov model (bottom) 
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Details of the four RCTs presented in the trial network in Figure 4.2 are presented in 

Table 4.2 (defined as HTA Set 1 RCTs). The remaining three RCTs that were identified 

in the clinical effectiveness scoping search in the HTA report are also presented in 

Table 4.2 (defined as HTA Set 2 RCTs). The set of seven RCTs in the HTA report 

(comprising HTA Set 1 and HTA Set 2 in Table 4.2) is termed “HTA Full Set” for the 

rest of this chapter. 

Table 4.2: RCTs identified in the HTA report 

HTA 

Set 
Trial 

No. 

of arms 

Reference 

Treatment 

Comparative 

Treatment(s) 

Total no. 

of patients 

OS 

data 

PFS 

data 

        

Set 1 

CCI-NOV22 

(Tannock et al., 1996) 
2 M+P P 161 Yes Yes 

       
CALGB 9182 

(Kantoff et al., 1999) 
2 M+H H 242 Yes Yes 

       
Berry et al. 

(Berry et al., 2002) 
2 M+P P 120 Yes Yes 

       
TAX 327 

(Tannock et al., 2004) 
3 M+P 

D+P  
1006 Yes No 

D1+P 

                

        

Set 2 

Ernst 

(Ernst et al., 2003) 
2 M+P M+P+Cl 209 Yes Yes 

       
SWOG 

(Petrylak et al., 2004) 
2 M+P D+E 674 Yes Yes 

       
Oudard 

(Oudard et al., 2005) 
3 M+P 

D70+E+P 
127 Yes Yes 

D35+E+P 

                

 

 

The Bayesian BRMA model for estimating OS and PFS for all treatment comparisons 

in the trial network shown in Figure 4.2 (bottom) is described in Section 4.2.1. 

Specifications of the three-state Markov model presented in Figure 4.2 (bottom) are 

described in Section 4.2.2. 

 

4.2.1 Clinical effectiveness 

Published articles for the seven RCTs in HTA Full Set identified in the scoping search 

of the HTA report were reviewed to assess the definition of the survival endpoints and 

quality of the summary data for use in the evidence synthesis. The results of this 



Chapter 4 Bivariate and indirect comparison meta-analysis 
 

 

 
96 

assessment, presented in the results section (Section 4.3.1), revealed insufficient details 

and inconsistent scale of reporting of the survival estimates. Methods of obtaining the 

effectiveness estimates on the same scale required for the meta-analysis are presented 

in Section 4.2.1.1.  

Evidence syntheses of the survival endpoints, OS and PFS, were performed for the 

endpoints independently where appropriate using fixed-effect and random-effects meta-

analyses and ICMA. As illustrated in Figure 4.2 (top), no RCT compared D+P with 

either M+P or P for the PFS endpoint, hence, a Bayesian BRMA that simultaneously 

models treatment effects on OS and PFS was performed. This allows the prediction of 

the PFS HR of M+P versus D+P from OS by taking into account the correlation 

between the endpoints and assumption of exchangeability between the studies through 

“borrowing of strength” across studies and outcomes (which is discussed in Chapter 2). 

Details of Bayesian BRMA model and methods for constructing informative prior 

distributions for Bayesian models are also described in Chapter 2. Procedures for using 

Bayesian BRMA to predict PFS HR for comparing D+P to M+P are presented in 

Section 4.2.1.2. Sensitivity analyses using different prior distributions for the within-

study and between-study correlations are described in Section 4.2.1.3. 

 

4.2.1.1 Procedure of obtaining effectiveness estimates for meta-analysis 

For the proposed Bayesian BRMA model, OS and PFS were analysed jointly using 

individual RCT’s summary data on the Log HR (LHR) scale. The following analysis 

was conducted to obtain the estimates on the LHR scale. Articles in HTA Full Set were 

reviewed to assess if Kaplan-Meier survival curves for OS and PFS were reported. 

Where they were reported, OS and PFS individual patient data (IPD) for each of the 

RCTs were reconstructed from their respective Kaplan-Meier survival curves, using the 

method proposed by Guyot and colleagues (Guyot et al., 2012) using the DigitizeIt 

software (Bormann, 2013) and R software (R Core Team, 2012). 

Survival analyses using the reconstructed IPD of the seven RCTs in HTA Full Set were 

performed to estimate the LHRs for the meta-analysis. Reconstructed IPD allow LHRs 

and corresponding standard errors to be estimated using survival analysis instead of 

crude estimation using median survival times and log-rank test p-values reported in the 
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RCTs. For trials where the survival curves and HRs were not presented in the published 

articles, LHRs and corresponding standard errors were calculated based on the 

summary statistics extraction methods, using reported median survival time, number of 

events and p-values, described by Parmar and colleagues (Parmar et al., 1998).  

Progression-free survival LHRs for trial CCI-NOV22 was obtained from the HTA 

report as it was not reported in the published article.  

 

4.2.1.2 Procedures for predicting PFS HR for M+P versus D+P 

This section first describes the procedures for predicting PFS HR using non-

informative prior distributions for both the within-study and between-study correlations 

between OS and PFS in the BRMA model. Next, it describes the additional information 

required for constructing informative prior distributions for both the within-study and 

between-study correlations between OS and PFS and hence, the procedures for 

predicting PFS HR using the informative prior distributions in the BRMA model. 

Using non-informative prior distributions for both within- and between-study 

correlations 

Trial data for this analysis include the four RCTs in HTA Set 1, which were used in the 

main clinical effectiveness analysis of the HTA report. Procedures for predicting PFS 

are as follows: 

1) Kaplan-Meier curves for OS and PFS were used to reconstruct the IPD for the 

four RCTs.  

2) Two RCTs did not have PFS Kaplan-Meier curves. They are trial TAX 327 

which did not record PFS in the trial and trial CCI-NOV22 which did not 

present a Kaplan-Meier curve for PFS in the trial journal article. 

3) LHRs were estimated using the reconstructed IPD. PFS LHR for Trial CCI-

NOV22 was obtained from the HTA report.  

4) Non-informative prior distributions placed on the within-study and between-

study correlation between OS and PFS LHRs are defined as follows: 

Within-study: 𝜌𝑤,𝑖 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1, 1) 

Between-study: 𝜌𝑏 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1, 1) 
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Non-informative prior distributions in the form of half-normal distributions 

were used for the between-study standard deviations and are defined as follows: 

𝜏𝑂𝑆,𝑖 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,100)𝐼(0, ) 

𝜏𝑃𝐹𝑆,𝑖 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,100)𝐼(0, ) 

5) A BRMA model with non-informative prior distributions placed on the within-

study and between-study correlation between OS and PFS LHRs was used to 

predict the PFS LHR for trial TAX 327 (that compared interventions: D+P to 

M+P) which was not reported. This was achieved by coding the LHR and 

corresponding standard error (SE) as missing values (NA in WinBUGS) and 

obtaining the predicted values from the model by MCMC simulation, as 

described in Chapter 2 Section 2.4.3.4. 

6) The predicted PFS LHR summary statistics for trial TAX 327 was then used in 

a random-effect ICMA (for consistency with the random-effect model used in 

the OS analysis in the HTA report) for the estimation of the indirect PFS LHR 

of D+P versus P. 

 

Using informative prior distributions for both within- and between-study correlations 

Trial data used in this analysis also include the four RCTs in HTA Set 1 used in the 

previous section when using non-informative prior distributions for both the within-

study and between-study correlations. Additional external trial data used for the 

construction of the informative prior distributions for the within-study and between-

study correlations are: RCTs in HTA Set 2 (presented in Table 4.2) and the Cancer and 

Leukemia Group B (CALGB) prostate cancer trials (presented in article by Halabi and 

colleagues (Halabi et al., 2009)). 

As discussed in Section 4.1.1, the RCTs in HTA Set 2 were selected in an extension to 

the main scoping search for studies using D+P because only one RCT was identified to 

have compared D+P to another intervention (M+P in trial TAX 327). Hence, the 

studies search selection was extended to include RCTs that were compared to M+P. 

However, among the interventions reviewed in the extended search, interventions in the 

RCTs in HTA Set 2 were not used in the main HTA clinical effectiveness analysis 

because it was not in the interest of the HTA to compare them with D+P. Therefore, 
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these RCTs were used to form part of the external trial evidence (together with the 

CALGB trials) for constructing informative prior distributions in this section. 

A review of studies examining the relationship between PFS and OS in advanced or 

metastatic cancer was performed by Davis and colleagues (Davis et al., 2012). For 

mHRPC, an article by Halabi and colleagues (Halabi et al., 2009), which reported 

summary statistics on the correlation between OS and PFS using IPD data of nine 

CALGB prostate cancer trials, was identified in the review; a total of 1201 men with 

mHRPC were enrolled into the CALGB trials included in the analysis. Details of the 

trials included in the article by Halabi and colleagues are presented in Table 4.3. For 

the rest of this chapter, this set of nine CALGB trials is called “Halabi Set” for clarity 

of presentation.  

The trials reported in Halabi Set were used to form part of the external trial evidence 

for the construction of an informative prior distribution for the between-study 

correlation between OS LHR and PFS LHR. The construction of an informative prior 

distribution for the within-study correlation between OS LHR and PFS LHR presents 

additional complexity as it could only be estimated using IPD of both OS and PFS from 

a RCT (containing docetaxel versus not containing docetaxel) using bootstrapping  

(Efron and Tibshirani, 1986) as described by Daniels and Hughes (Daniels and Hughes, 

1997) and Bujkiewicz and colleagues (Bujkiewicz et al., 2013). Although the within-

study correlation between OS and PFS reported in the article by Halabi and colleagues 

might not be the same as the within-study correlation between OS LHR and PFS LHR, 

the former was used as a crude approximation to the latter. This made it possible to 

illustrate how external evidence could be used to inform the BRMA model parameters 

and potentially improve prediction of PFS HR by modelling jointly the treatment 

effects on OS and PFS. 
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Table 4.3: Summary data of the nine trials in the article by Halabi and colleagues 

Trial Year 
Number 

of arms 
Treatment 1 

Comparative 

Treatment(s) 

Total 

number 

of patients 

OS 

data 

PFS 

data 

Included for 

construction 

of prior? 

CALGB  

9182 
1999 2 

 Mitoxantrone (M) 

+Hydrocortisone 
Hydrocortisone 242 Yes Yes No 

CALGB  

9181 
2000 2 

Megestrol acetate 

(MA) 

Low dose 

MA 

High dose 
149 Yes Yes Yes 

CALGB 

9780 
2001 1 

Docetaxel (D) 

+Estramustine (E) 

+Hydrocortisone 

None 46 Yes Yes Yes 

CALGB  

9480 
2002 3 

Suramin (SU) 

Low dose 

SU Intermediate 

dose 
390 Yes Yes Yes 

    
SU High dose 

    
CALGB  

9680 
2002 2 M Low dose M High dose 45 Yes No No 

CALGB  

99813 
2003 1 

D+E 

+Carboplatin with  

G-CSF support 

None 40 Yes Yes Yes 

CALGB  

9583 
2004 2 

Antiandrogen 

withdrawal alone 

Antiandrogen 

withdrawal 

+Ketoconazole 

260 Yes No No 

CALGB  

90004 
2008 1 

D+E 

+Exisulind 
None 75 Yes Yes No 

CALGB  

90006 
2010 1 

D+E 

+Bevacizumab 
None 77 Yes No No 

 

 

A schematic diagram presenting the procedures for the prediction of PFS HR of D+P 

versus M+P, including the construction of informative prior distributions for the 

within-study and between-study correlations, is shown in Figure 4.3. Procedures for the 

prediction of PFS HR of D+P versus M+P are as follows: 

1) Kaplan-Meier curves for OS and PFS were used to reconstruct the IPD for the 

four RCTs.  

2) Two trials did not have PFS Kaplan-Meier curves. They are trial TAX 327 

which did not record PFS in the trial and trial CCI-NOV22 which did not 

present a Kaplan-Meier curve for PFS in the trial journal article. 

3) Informative prior distribution on the within-study correlation between PFS LHR 

and OS LHR was constructed based on the correlation estimates (for PFS with 

OS) reported by Halabi and colleagues (Halabi et al., 2009). In order to sample 

from this prior distribution for the correlation, Fisher transformation method 

(discussed in Chapter 2 Section 2.4.3.6) was used to convert the correlation to a 
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corresponding Fisher correlation parameter, z, which follows a normal 

distribution for sampling. 

4) To construct the informative prior distribution for the between-study correlation 

between OS and PFS LHRs, trials from the external trial evidences were 

reviewed for suitability to be used for prior distribution construction. The 

inclusion criteria for identifying the trial set for constructing the informative 

prior distribution are:  

i. the trial must be reported before year 2007 (this is the year of 

publication of the HTA report);  

ii. both OS and PFS must be reported in the trial and  

iii. RCT that cannot be collapsed into single-arm trial must have docetaxel 

(or a combination of it) in one of the treatment arms.  

Based on the inclusion criteria, a set of trials suitable for constructing the 

informative prior distribution for the between-study correlation between OS and 

PFS LHRs were identified and presented in the results (Section 4.3.1). For the 

rest of this chapter, this identified set of trials is termed “external trial data set 

(ETD Set)”.  

5) For the construction of the informative prior distribution using the ETD Set, a 

“complete” set of OS and PFS estimates for all trials in the ETD Set was 

required. A “complete” set means that OS and PFS log hazard rates for all 

treatment arms in all trials must be available. To achieve that, OS and PFS 

estimates for the trials in the ETD Set were estimated using either reconstructed 

IPD as described in Section 4.2.1.1, reported median survival times or 

prediction using a network meta-analysis (NMA). Similar to the RCTs in HTA 

Set 1, Kaplan-Meier curves for OS and PFS, if reported in the published 

articles, were used to reconstruct the IPD. Parametric survival models that best 

fit the data were used for the estimation of log hazard rates of each individual 

treatment in the trials. The log hazard rates for trials that did not present the 

Kaplan-Meier curves were estimated using the reported median survival time 

and corresponding 95% confidence intervals (CIs) and/or p-values using the 

methods by Parmar and colleagues (Parmar et al., 1998). As some of the 

included trials were single-arm trials, log hazard rate for the “missing” 

comparative arm did not exist. Therefore, NMAs were conducted for OS and 
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PFS independently to predict the log hazard rates for the arms that did not exist. 

This, in turn, allowed the corresponding LHRs (comparing treatments 

containing Docetaxel versus treatments not containing Docetaxel) to be 

predicted. This resulted in a set of bivariate outcome data of LHRs on OS and 

PFS that were “complete” with no “missing” data, which could be entered into a 

Bayesian BRMA model to obtain a posterior distribution for the between-study 

correlation between LHRs on OS and PFS 

6) A Bayesian BRMA model was used to model the OS and PFS data 

simultaneously to obtain a posterior distribution for the between-study 

correlation between LHRs on OS and PFS. This posterior distribution was 

subsequently used as an informative prior distribution for the BRMA analysis of 

the main HTA trials. Similarly, a Fisher correlation parameter, which follows a 

normal distribution, was required for sampling. The Fisher correlation 

distribution of the posterior distribution for the between-study correlation was 

used for this purpose. 

7) A Bayesian BRMA model, with informative prior distributions placed on both 

the within-study (mentioned in point 3) and between-study (obtained in point 6) 

correlations between LHRs on OS and PFS, was used to predict the PFS LHR 

for trial TAX 327 (that compared interventions: D+P to M+P) which was not 

reported.  

8) The predicted PFS LHR summary statistics for trial TAX 327 was subsequently 

used in a random-effects ICMA for estimating the indirect PFS LHR of D+P 

versus P. 
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Figure 4.3: Diagram for the clinical effectiveness analysis using BRMA and ICMA models with corresponding trial evidence sets 
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4.2.1.3 Sensitivity analysis 

A sensitivity analysis was performed to investigate the effect of the choice of prior 

distributions on the predicted PFS HR for D+P versus M+P. Combination pairs of non-

informative, optimistic and pessimistic prior distributions for the within-study and 

between-study correlations were investigated. Non-informative prior distributions take 

the form of uniform distributions, confined between the range of -1 and 1 inclusive, for 

both the within-study and between-study correlations as follows: 

 

In this sensitivity analysis, optimistic prior distribution for the between-study 

correlation was defined using a positive high correlation while pessimistic prior 

distribution for the between-study correlation was defined using a positive low 

correlation. The prior distributions take the following parameter form (before using 

Fisher transformation): 

optimistic prior parameter values 𝜌𝑏 = 0.8 (95% CI: 0.7, 0.9) 

pessimistic prior parameter values 𝜌𝑏 = 0.2 (95% CI: 0.0, 0.4) 

Correspondingly, PFS HRs for D+P versus P were estimated using fixed-effect and 

random-effects ICMA. 

 

 

  

Non-informative prior distributions: 

Within-study: 𝜌𝑤,𝑖 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1, 1) 

Between-study: 𝜌𝑏 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1, 1) 
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4.2.2 Cost-effectiveness 

A two-state Markov model was specified in the UK HTA report that assessed the cost-

effectiveness of docetaxel with either prednisone or prednisolone for the treatment of 

mHRPC and was developed for the HTA report using Microsoft Excel software. A 

diagram showing the two-state model specified in the HTA report and the proposed 

three-state model in this thesis is shown in Figure 4.2. The proposed three-state model 

incorporated a PD state not included in the original two-state model in the HTA report 

and was developed using the WinBUGS software (Lunn et al., 2000, Spiegelhalter et 

al., 2003). For the comparison of the results of the proposed three-state model with the 

results of the two-state model reported in the HTA, the two-state model was reproduced 

using WinBUGS. For clarity, the re-produced two-state model will be called the 

“WinBUGS two-state model” and the original two-state model in the HTA report will 

be called the “HTA two-state model” in the rest of this chapter. 

Similar to the HTA two-state model, both the WinBUGS two-state model and 

WinBUGS three-state model were run for 180 cycles, where one cycle represented one 

month. This allowed the models to be run for a time horizon of 15 years. Based on the 

transition probabilities that were calculated using trial TAX 327 (with median age 

reported to be 68 years), a robust estimate of the mean survival was obtained as it is 

expected that most of the patients in the cohort would have died in the model. A cohort 

size of 10,000 was used in each of the models. 

To develop the economic models, data for the construction of transition probabilities, 

definition of costs and utilities for each of the interventions need to be extracted. These 

data can be extracted from reviews, single RCT or evidence synthesis from a number of 

trials/studies. Specifications of the transition probabilities, cost and utilities are 

described in sections 4.2.2.1, 4.2.2.2 and 4.2.2.3 respectively. 

 

4.2.2.1 Transition probabilities 

For the WinBUGS two-state model, the transition probabilities were estimated using 

the Weibull parameters reported in the HTA report, which used IPD from trial TAX 

327. This was for consistency with the parameters used in the HTA model. As for the 

three-state model, which incorporated a PD state, the transition probabilities for 
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transition from StD state to PD state were estimated using parametric Weibull survival 

modelling on reconstructed PFS IPD from one of the six RCTs (excluding trial TAX 

327) in the HTA report.  

The selection criteria for the RCT to be used for estimating the transition probabilities 

for treatment arm M+P are: (i) comparable OS profile of the selected trial and trial 

TAX 327; (ii) selected trial having a mean time of progression closest to the reported 

mean cycle of M+P administrated in trial TAX 327 (that is: 5.9 cycles as reported in the 

HTA report). As PFS was not recorded for TAX 327, selection criteria (ii) is based on 

the assumption that the patients in trial TAX 327 M+P arm were administrated M+P till 

progression. The mean number of cycles of M+P administrated was then used as a 

crude approximation of the ‘potential’ mean time to progression for patients 

administrated M+P in trial TAX 327. Transition probability for transition from the StD 

state to death state was obtained from an article on cost-effectiveness analysis for 

advance hormone-dependent prostate cancer (Lu et al., 2012). In the absence of patient-

level data on both OS and PFS for any of the interventions, the transition probability 

for transition from PD state to death state could not be estimated. Methods for the 

estimation of (i) transition probabilities using parametric Weibull survival model and 

(ii) transition probabilities for transition from PD state to death state in the three-state 

model are described in the next two subsections. 

 

Transition probabilities estimated using parametric Weibull survival model 

Survival analysis using the parametric Weibull model was used to implement time-

dependency in the transition probabilities in the economic models (transition 

probabilities for transition from StD state to death state in WinBUGS two-state model; 

and transition probabilities for transition from StD state to PD state in three-state 

model). The Weibull distribution takes the following probability density function: 

𝑓(𝑡) =  𝜆𝛾𝑡𝛾−1𝑒𝑥𝑝(−𝜆𝑡𝛾) 

where 𝜆 gives the scale of the distribution and 𝛾 defines the shape. The hazard function 

for this distribution is therefore:  

ℎ(𝑡) =  𝜆𝛾𝑡𝛾−1 
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with a cumulative hazard function of: 

𝐻(𝑡) =  𝜆𝑡𝛾 

where the survival function is related to the cumulative hazard function in the following 

form: 

𝑆(𝑡) = 𝑒𝑥𝑝[−𝐻(𝑡)] 

Since hazards are instantaneous, these need to be converted to a transition probability 

for a given period, such as a Markov cycle. Using the survival function, transition 

probability between time-points (𝑡 − 𝑢) and 𝑡, denoted as 𝑇𝑃(𝑡𝑢) where 𝑢 is the cycle 

length, was defined as one minus the ratio of the survival function at the end of the 

interval to the survival function at the beginning of the interval. This function defined 

as:  

𝑇𝑃(𝑡𝑢) = 1 − 𝑆(𝑡)/𝑆(𝑡 − 𝑢) 

 

was re-written using the cumulative hazard function as: 

𝑇𝑃(𝑡𝑢) = 1 − 𝑒𝑥𝑝[−𝐻(𝑡)]/𝑒𝑥𝑝[−𝐻(𝑡 − 𝑢)] 

= 1 − 𝑒𝑥𝑝[𝐻(𝑡 − 𝑢) − 𝐻(𝑡)] 

Therefore, transition probability was defined using the Weibull parameters as follows:  

𝑇𝑃(𝑡𝑢) = 1 − 𝑒𝑥𝑝[𝜆(𝑡 − 𝑢)𝛾 − 𝜆𝑡𝛾] 

In the HTA report, results of the Weibull survival analysis model were presented in the 

form of the regression coefficients of the intercept and scale parameters. These two 

parameters are expressed in terms of the Weibull parameters,  and , as follows: 

𝜆 = 𝑒𝑥𝑝(−𝛽/𝛼) 

𝛾 =  
1

𝛼
 

where 𝛽 is the intercept and 𝛼 is the scale regression coefficient parameters from the 

Weibull survival analysis. 
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When performing the probabilistic analysis, the covariance between the intercept and 

scale regression parameter from the Weibull survival analysis were also incorporated in 

the WinBUGS two-state model. This was achieved by using the Cholesky 

decomposition matrix derived from the covariance matrix obtained from the Weibull 

survival regression model. Given a covariance matrix of the form:  

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 𝐶 =  (
𝑎 𝑏
𝑏 𝑐

) 

the Cholesky decomposition matrix takes the form: 

𝐷 =  (

√𝑎 0

𝑏

√𝑎
√𝑐 −

𝑏2

𝑎

) 

such that 𝐶 = 𝐷 𝐷∗ where 𝐷∗ denotes the conjugate transpose of 𝐷. Cholesky 

decomposition matrices of the covariance matrices for the interventions, D+P and 

M+P, were calculated independently and applied to the transition probabilities of D+P 

and M+P respectively in the WinBUGS two-state model to allow for the correlation 

between the intercept and scale parameters when sampling the random normal draws 

for the two parameters. Assuming that the Cholesky decomposition matrix of the 

covariance matrix for M+P is: 

𝐷𝑀+𝑃 =  (
𝑢𝐷,𝑀+𝑃 0
𝑣𝐷,𝑀+𝑃 𝑤𝐷,𝑀+𝑃

) 

the transition probability incorporating parameter uncertainties for transition from StD 

state to death state for M+P is defined as: 

𝑇𝑃𝐷,𝑀+𝑃(𝑡𝑢) = 1 − 𝑒𝑥𝑝[𝐻𝐷(𝑡 − 𝑢) − 𝐻𝐷(𝑡)] 

𝑇𝑃𝐷,𝑀+𝑃(𝑡𝑢) = 1 − 𝑒𝑥𝑝[𝜆𝐷,𝑀+𝑃(𝑡 − 𝑢)𝛾𝐷,𝑀+𝑃 − 𝜆𝐷,𝑀+𝑃𝑡𝛾𝐷,𝑀+𝑃] 

where: 

𝜆𝐷,𝑀+𝑃 = exp (
−𝛽𝐷,𝑀+𝑃

𝛼𝐷,𝑀+𝑃
) 

𝛾𝐷,𝑀+𝑃 =  
1

𝛼𝐷,𝑀+𝑃
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and 

𝛽𝐷,𝑀+𝑃 = 𝛽𝑀+𝑃 + 𝑢𝐷,𝑀+𝑃𝑍𝛽,𝐷,𝑀+𝑃 

𝛼𝐷,𝑀+𝑃 = 𝛼𝑀+𝑃 + 𝑣𝐷,𝑀+𝑃𝑍𝛽,𝐷,𝑀+𝑃 + 𝑤𝐷,𝑀+𝑃𝑍𝛼,𝐷,𝑀+𝑃 

where 𝛽𝑀+𝑃 and 𝛼𝑀+𝑃 are the intercept and scale regression coefficients for M+P 

presented in the HTA report; and 𝑍𝛽,D,𝑀+𝑃 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) and 

𝑍𝛼,D,𝑀+𝑃 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1). 

Transition probabilities of interventions D+P and M+P for the WinBUGS two-state 

model were calculated using the regression coefficients and Cholesky decomposition 

matrix from the HTA report (Table 28 and 29 respectively (Collins et al., 2007)). 

Transition probabilities for P were calculated by applying the HR of P versus M+P or 

HR of P versus D+P to the hazard rates of M+P and D+P in the transition probabilities 

respectively. Therefore, assuming that the transition probability for M+P is given by:  

𝑇𝑃𝑀+𝑃(𝑡𝑢) = 1 − 𝑒𝑥𝑝[𝐻(𝑡 − 𝑢) − 𝐻(𝑡)] 

and with a HR for P versus M+P, denoted as 𝐻𝑅𝑃 𝑀+𝑃⁄ , the transition probability for P 

is given by: 

𝑇𝑃𝑃(𝑡𝑢) = 1 − 𝑒𝑥𝑝{𝐻𝑅𝑃 𝑀+𝑃⁄ [𝐻(𝑡 − 𝑢) − 𝐻(𝑡)]} 

= 1 − 𝑒𝑥𝑝[𝐻(𝑡 − 𝑢) − 𝐻(𝑡)]𝐻𝑅𝑃 𝑀+𝑃⁄  

Uncertainty associated with the HR was incorporated in the model by assigning a 

normal distribution to the logarithm of the HR as follows: 

𝐿𝐻𝑅 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(�̅�, 𝜎2) 

where �̅� and 𝜎2 are the mean and variance estimate of the LHR from random-effects 

meta-analysis. 

For the three-state model, the set of transition probabilities for intervention M+P was 

calculated using regression coefficients of the parameters of a Weibull survival model 

for PFS using re-constructed IPD from one of the RCTs in HTA Full Set selected based 

on the criteria outlined above. As no PFS patient-level data was available for the 

interventions D+P and P, transition probabilities for each of the interventions were 
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calculated by applying their HR with respect to M+P to the transition probabilities of 

M+P. Similarly, uncertainty associated with each of the HRs was included in the 

respective models by assigning normal distribution to the LHRs. 

 

Transition probabilities from PD state to death state (three-state model) 

Although IPD were reconstructed for PFS (together with OS) for the trial selected for 

estimating the transition probability from StD state to PD state, the reconstructed IPD 

for PFS and OS were not paired by patient. Hence, it would not be possible to estimate 

the transition probabilities from PD state to death state using parametric survival 

analysis performed using reconstructed IPD as described in the previous section. To 

overcome this issue, transition probabilities were estimated by assuming the mean total 

survival time was equal to the weighted sum of combined survival time from stable 

disease to progression and then to death and the survival time when death occurred 

from other causes: 

𝑚𝑒𝑎𝑛(𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒)

= 𝑊𝑆𝑡𝐷𝑡𝑜𝑃𝐷𝑡𝑜𝐷𝑒𝑎𝑡ℎ[𝑚𝑒𝑎𝑛(𝑇𝑖𝑚𝑒𝑆𝑡𝐷𝑡𝑜𝑃𝐷) + 𝑚𝑒𝑎𝑛(𝑇𝑖𝑚𝑒𝑃𝐷𝑡𝑜𝐷𝑒𝑎𝑡ℎ)]

+  𝑊𝑆𝑡𝐷𝑡𝑜𝐷𝑒𝑎𝑡ℎ𝑚𝑒𝑎𝑛(𝑇𝑖𝑚𝑒𝑆𝑡𝐷𝑡𝑜𝐷𝑒𝑎𝑡ℎ) 

where 𝑚𝑒𝑎𝑛(𝑇𝑖𝑚𝑒𝑆𝑡𝐷𝑡𝑜𝑃𝐷) defines the mean time that patients stayed in the StD state 

before transition to the PD state; 𝑚𝑒𝑎𝑛(𝑇𝑖𝑚𝑒𝑃𝐷𝑡𝑜𝐷𝑒𝑎𝑡ℎ) and 𝑚𝑒𝑎𝑛(𝑇𝑖𝑚𝑒𝑆𝑡𝐷𝑡𝑜𝐷𝑒𝑎𝑡ℎ) 

define the mean time for PD state to death state and StD state to death state 

respectively; W defines the weight assigned to the mean time and is related to the 

number of patients who transition through the two potential pathways in the economic 

model as shown in Figure 4.2 (bottom), from stable disease to death either with or 

without disease progression. 

As the proportion of patients who died of causes unrelated to prostate cancer was 

expected to be small (<1%), we assumed that 𝑊𝑆𝑡𝐷𝑡𝑜𝐷𝑒𝑎𝑡ℎ → 0, therefore 

𝑊𝑆𝑡𝐷𝑡𝑜𝑃𝐷𝑡𝑜𝐷𝑒𝑎𝑡ℎ → 1. Hence,  

𝑚𝑒𝑎𝑛(𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒)

= 𝑊𝑆𝑡𝐷𝑡𝑜𝑃𝐷𝑡𝑜𝐷𝑒𝑎𝑡ℎ[𝑚𝑒𝑎𝑛(𝑇𝑖𝑚𝑒𝑆𝑡𝐷𝑡𝑜𝑃𝐷) + 𝑚𝑒𝑎𝑛(𝑇𝑖𝑚𝑒𝑃𝐷𝑡𝑜𝐷𝑒𝑎𝑡ℎ)] 

= 𝑚𝑒𝑎𝑛(𝑇𝑖𝑚𝑒𝑆𝑡𝐷𝑡𝑜𝑃𝐷) + 𝑚𝑒𝑎𝑛(𝑇𝑖𝑚𝑒𝑃𝐷𝑡𝑜𝐷𝑒𝑎𝑡ℎ) 
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and therefore, 

𝑚𝑒𝑎𝑛(𝑇𝑖𝑚𝑒𝑃𝐷𝑡𝑜𝐷𝑒𝑎𝑡ℎ) = 𝑚𝑒𝑎𝑛(𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒) − 𝑚𝑒𝑎𝑛(𝑇𝑖𝑚𝑒𝑆𝑡𝐷𝑡𝑜𝑃𝐷) 

Assuming that the survival data for patients from PD to death follows an exponential 

survival distribution, the transition probability between time-points (𝑡 − 𝑢) and 𝑡, 

denoted as 𝑇𝑃(𝑡𝑢) where 𝑢 is the cycle length, is defined as follows: 

𝑇𝑃(𝑡𝑢) = 1 − 𝑒𝑥𝑝{𝜆(𝑡 − 𝑢)𝛾 − 𝜆𝑡𝛾} 

= 1 − 𝑒𝑥𝑝(−𝜆𝑢) 

where 𝛾 = 1 for the exponential survival model.  

As the hazard rate, 𝜆 =
1

𝑚𝑒𝑎𝑛(𝑇𝑖𝑚𝑒)
,  

𝑇𝑃(𝑡𝑢) = 1 − 𝑒𝑥𝑝 (
−𝑢

𝑚𝑒𝑎𝑛(𝑇𝑖𝑚𝑒)
) 

For M+P and D+P, the 𝑚𝑒𝑎𝑛(𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒) for each of the interventions were 

estimated using the mean survival time calculated from the reconstructed OS IPD of 

trial TAX 327. For P, the mean survival time was estimated by a random-effect meta-

analysis of the log hazard rate of the three RCTs that had a P treatment regimen arm. 

As PFS endpoint were not recorded for trial TAX 327, the mean number of cycles of 

drug reported in the HTA report were used to represent the mean time from stable 

disease to progression, 𝑚𝑒𝑎𝑛(𝑇𝑖𝑚𝑒𝑆𝑡𝐷𝑡𝑜𝑃𝐷), based on the assumption that patients 

stopped drug treatment on the onset of disease progression. Mean number of cycles of 

drug P was not reported in the HTA report. Therefore, the mean time to progression 

was also estimated using meta-analysis of the log hazard rate of the two RCTs that 

reported PFS data for P. 

Transition probabilities for transition from PD state to death state for each intervention 

were therefore calculated using the equation: 

𝑇𝑃(𝑡𝑢) = 1 − 𝑒𝑥𝑝 (
−𝑢

[𝑚𝑒𝑎𝑛(𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒) − 𝑚𝑒𝑎𝑛(𝑇𝑖𝑚𝑒𝑆𝑡𝐷𝑡𝑜𝑃𝐷)]
) 

Uncertainty associated with the mean survival time or log hazard rate were also 

incorporated using normal distributions and propagated in the economic model. As the 
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exponential survival model is a single parameter model, Cholesky decomposition was 

not required for defining the uncertainty. 

 

4.2.2.2 Cost 

Cost data comprises drug acquisition and administration cost for each interventions, 

cost of the management of adverse side effects and subsequent follow up cost that 

included cost of further chemotherapy after disease progression, management of side-

effects and palliative cost. Cost for each of the interventions to be used in the 

WinBUGS 2-state and 3-state model were extracted from cost data presented in the 

HTA report. In the report, costs were categorised into three components: namely, (i) the 

drug cost, (ii) the follow up cost and (iii) the terminal care cost. Drug cost included cost 

of acquisition and administration of each intervention.  

Follow up cost included the cost of managing side-effects, subsequent chemotherapies 

and hospitalisation for palliative care. Terminal care costs were one-off costs used to 

incorporate the cost of caring for patients in the last month of life. As stated in the HTA 

report, terminal care cost data were not recorded in the trial (TAX 327), hence these 

costs were estimated from patients who died in the first six months after entering the 

trial. In the absence of costs per cycle for follow up cost, these costs were assigned and 

calculated as one-off cost, in a similar fashion as terminal care cost, as patient died. 

Cost data for interventions D+P and M+P were estimated using patient level data from 

trial TAX 327 while cost data for P were estimated using published cost-effectiveness 

analyses by Bloomfield and colleagues (Bloomfield et al., 1998). 

Gamma distribution was used to represent uncertainty in the follow up costs and 

terminal care costs. Drug costs for each of the interventions were calculated based on 

the mean number of cycles of drugs administrated. Normal distribution was used to 

describe the number of cycles of drugs administrated to reflect uncertainty in the drug 

costs. 

For the WinBUGS two-state model, the total costs were calculated as the summation of 

all three categories of costs. For the three-state model, drug costs and terminal care 

costs were calculated in a similar way to that calculated in the WinBUGS two-state 
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model while follow-up costs were calculated by dividing the follow-up costs into two 

unequal parts (using a parameter defined as 𝜓 in the equations that follow).  

Costs of subsequent chemotherapy and hospitalisations accounted for between 70% and 

80% of follow-up costs which most likely occurred post-progression and the remaining 

follow-up cost (20% to 30%) were related to side effects likely to occur prior to 

progression (but may also be associated with the subsequent chemotherapy post-

progression). Therefore the follow up costs were divided into portions corresponding to 

StD state and PD state. 

As the base case analysis for the three-state model, 75% (𝜓 = 0.75)  of the follow-up 

costs were assigned to the PD state to account for the cost of subsequent chemotherapy, 

managing side-effects and hospitalisations post-progression. Computation of these 

costs were based on the number of patients who died per cycle while the remaining 

25% of the costs that were assigned to the StD state were computed based on the 

number of patients who progressed per cycle. Follow-up costs were assigned as one-off 

cost in a similar way as the WinBUGS two-state model.  

In the WinBUGS two-state model, follow-up costs were calculated based on patients 

died per cycle as: 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝐹𝑈 = ∑(𝐶𝑜𝑠𝑡𝐹𝑈,𝑖 × 𝑁𝐷𝑖𝑒𝑑,𝑖)

180

𝑖=1

 

where 𝐶𝑜𝑠𝑡𝐹𝑈,𝑖 represents follow-up cost data for cycle i, and 𝑁𝐷𝑖𝑒𝑑,𝑖 represents the 

number of patients who died in cycle i. 

For the three-state model, the follow-up costs were calculated as:  

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝐹𝑈 = 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝑆𝑡𝐷𝐹𝑈 + 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝑃𝐷𝐹𝑈 

where: 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝑆𝑡𝐷𝐹𝑈 = ∑[(1 − 𝜓) × 𝐶𝑜𝑠𝑡𝐹𝑈,𝑖 × 𝑁𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑒𝑑,𝑖]

180

𝑖=1

 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡𝑃𝐷𝐹𝑈 = ∑(𝜓 × 𝐶𝑜𝑠𝑡𝐹𝑈,𝑖 × 𝑁𝐷𝑖𝑒𝑑,𝑖)

180

𝑖=1
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𝜓 represents the proportion of follow-up costs associated with the PD state (termed 

“division factor” for the rest of this chapter) and 𝑁𝑃𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑒𝑑,𝑖 represents the number of 

patients who progressed in cycle i. 

Sensitivity analyses for assessing different proportions of follow-up costs associated 

with the PD state are described in Section 4.2.2.5. An annual discount rate of 3.5% was 

used for discounting the cost after the first year.  

 

4.2.2.3 Quality-adjusted life-years 

 

Quality-adjusted life-years were used as a measure of effect in this cost-effectiveness 

analysis. It is a single measure that explains an individual’s health-related quality of life 

and length of life gained due to the implementation of an intervention. To estimate the 

QALY, utility data in the form of health-related quality of life (HRQoL) were required 

to quantify the potential health status of patients with mHRPC, as well as the impact 

the interventions (in terms of disease progression and serious adverse effects) had on 

their HRQoL.  

Quality of life data used in the HTA two-state model were extracted from a study 

conducted by Sandblom and colleagues (Sandblom et al., 2004). This study was 

selected (out of seven studies that were identified to have reported suitable HRQoL 

utility values) because (i) it reported HRQoL values using a generic HRQoL instrument 

that met the requirement specified by NICE; (ii) the population under assessment was 

representative of the target population of the HTA; and (iii) it provided end-of-life 

HRQoL values of prostate cancer patients in their last year before death. However, no 

suitable utility data are identified from the literature to estimate the impact of each 

individual intervention on the HRQoL. The HRQoL instrument used in the study by 

Sandblom and colleagues that met the requirement specified by NICE is the EuroQoL 

five-dimensional (EQ-5D) questionnaire. Health state utility values obtained from the 

preference-based measure, EQ-5D questionnaire values were used in the HTA two-

state model. 

The EQ-5D values used in the HTA two-state model are used in the WinBUGS two-

state model. Mean and corresponding 95% CI of the EQ-5D values reported for all 



Chapter 4 Bivariate and indirect comparison meta-analysis 
 

 

 
115 

patients in the 12 months prior to death were used to define the distribution for the 

utilities data for a probabilistic analysis. Beta-distribution was utilised to describe the 

uncertainty pertaining to utility data for the StD state. A utility value of zero is assigned 

for the death state.  

Similarly, utility data reported in the study by Sandblom et al. were used to define the 

utility distributions in the three-state model. With the inclusion of a PD state in the 

three-state model, additional utility data for the PD state were required. EQ-5D value 

used in the two-state models for the StD state were used to describe the HRQoL of 

patients in the PD state (denoted as 𝑈𝑃𝐷). This was based on the argument that this 

utility reflects the patients' HRQoL prior to prostate cancer death and the state prior to 

death would be the PD state. As the EQ-5D value for the StD state in the two-state 

model was used to describe the utility for the PD state, utility for the StD state need to 

be estimated. This is achieved by splitting the patients in the StD state into three groups 

and using the following EQ-5D values from the Sandblom et al. study: (i) EQ-5D 

values of all patients who died of other causes (denoted as 𝑈𝑂𝑡ℎ𝑒𝑟 𝑐𝑎𝑢𝑠𝑒𝑠) (ii) EQ-5D 

values of all patients who were still surviving with prostate cancer (denoted as 

𝑈𝑆𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔) and lastly (iii) 𝑈𝑃𝐷 described earlier. These EQ-5D values, together with 

transition probabilities are used to formulate the utility for the StD state as follows: 

𝑈𝑆𝑡𝐷 = 𝑇𝑃𝑆𝑡𝐷𝑈𝑆𝑢𝑟𝑣𝑖𝑣𝑖𝑛𝑔 + 𝑇𝑃𝑆𝑡𝐷𝑡𝑜𝑃𝐷𝑈𝑃𝐷 + 𝑇𝑃𝑆𝑡𝐷𝑡𝑜𝐷𝑒𝑎𝑡ℎ𝑈𝑂𝑡ℎ𝑒𝑟 𝑐𝑎𝑢𝑠𝑒𝑠 

where 𝑇𝑃𝑆𝑡𝐷 defines the probability of remaining in StD state, 𝑇𝑃𝑆𝑡𝐷𝑡𝑜𝑃𝐷 defines the 

probability of transition from StD state to PD state and 𝑇𝑃𝑆𝑡𝐷𝑡𝑜𝐷𝑒𝑎𝑡ℎdefines the 

probability of transition from StD state to death state without passing through the PD 

state. A utility value of zero (𝑈𝐷𝑒𝑎𝑡ℎ = 0) was assigned for the death state. Similarly, 

an annual discount rate of 3.5% was used for discounting the utilities after the first 

year. 

 

4.2.2.4 Cost-effectiveness analysis using WinBUGS 

For the assessment of the cost-effectiveness of the interventions in each model, the 

mean costs and mean QALYs gained for the interventions and ICERs for the 

comparison of the two interventions of interest (M+P and D+P) were estimated using 

WinBUGS. For each model, the simulation was conducted using Markov Chain Monte 
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Carlo (MCMC) implemented in WinBUGS with 50,000 iterations and 30,000 burn-in 

iterations that were discarded. The annual discount rate was applied from cycle 13 

onwards). 

Mean costs and QALYs gained for each intervention were obtained from the 

WinBUGS output. ICER was calculated by taking the difference between the mean 

values of the cost of interventions over the difference between the mean values of the 

QALYs gained of interventions; as: 

𝐼𝐶𝐸𝑅 =  
𝐶𝑜𝑠𝑡𝐷+𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝐶𝑜𝑠𝑡𝑀+𝑃

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑄𝐴𝐿𝑌𝐷+𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝑄𝐴𝐿𝑌𝑀+𝑃

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

where 𝐶𝑜𝑠𝑡𝐷+𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and 𝐶𝑜𝑠𝑡𝑀+𝑃

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   defines the mean cost of D+P and M+P respectively and 

𝑄𝐴𝐿𝑌𝐷+𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑄𝐴𝐿𝑌𝑀+𝑃

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  defines the mean QALY gained per patient for D+P and M+P 

respectively.  

Output from the simulations for the WinBUGS two-state and three-state models were 

exported from WinBUGS to the R software to generate CEACs for comparing the three 

interventions, as well as CEAC and cost-effectiveness plane for comparing the 

proposed three-state model with the WinBUGS two-state model (which is expected to 

be comparable to the HTA two-state model) when evaluating the difference between 

D+P and M+P.  

 

4.2.2.5 Sensitivity Analysis 

For the base case analysis of the WinBUGS two-state model, transition probability for 

P was calculated using random-effects meta-analysis OS HR for M+P versus P. 

Sensitivity analysis for the WinBUGS two-state model was performed using the OS 

HR for D+P versus P obtained from ICMA. The HR obtained from the indirect 

comparison was placed on the transition probability of the D+P arm to obtain the 

transition probability for the P arm. Results for this WinBUGS two-state (Indirect) 

were compared to the results from the WinBUGS two-state (Direct) where the 

transition probability for the P arm was calculated using random-effects meta-analysis 

OS HR of M+P versus P. 
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Several prior distributions were placed on the between-study and within-study 

correlation in the BRMA model to assess the influence of the choice of the prior 

distributions on the predicted PFS HR as described in Section 4.2.1. The alternative 

predicted PFS HR values, together with their associated uncertainties, were propagated 

in the three-state model to assess the impact of the choice of prior distributions for the 

correlation between OS and PFS LHRs on the cost-effectiveness estimates.  

Sensitivity analysis was also performed for the cost-effectiveness analysis using 

alternative values of the division factor 𝜓 for the follow-up costs in the three-state 

model (defining proportion of this cost assigned to StD and PD states). The ratio of 

25:75 (𝜓 = 0.75) was proposed for the base-case analysis, whilst alternative scenarios 

considered ratios of 20:80 (𝜓 = 0.80) and 30:70 (𝜓 = 0.70) to assess the influence of 

the division factor 𝜓 on the cost-effectiveness estimates. Additionally, analysis using a 

probabilistic distribution for the division factor 𝜓 was carried out; a beta distribution 

with mean 0.75 and standard deviation of 0.075 [assuming that the 95% CI is 0.6 to 0.9, 

this gives a standard deviation of (0.9-0.6)/4 = 0.075] was placed on the division factor 

𝜓 to assess its influence on the cost-effectiveness results. 

 

4.3 Results 

4.3.1 Clinical effectiveness 

Definitions of OS were consistent for the seven RCTs in HTA Full Set except for trial 

Berry, where OS was not explicitly defined in the published article (Berry et al., 2002). 

Overall survival was defined as the time from the start date of randomisation to the date 

of death or censored at the date when the patient was last known to be alive. There 

were inconsistencies in the definition of progression endpoint across the six RCTs in 

HTA Full Set (excluding trial TAX327 which did not record PFS endpoint). 

Specifically, PFS was reported for three RCTs (Kantoff et al., 1999, Ernst et al., 2003, 

Petrylak et al., 2004) and defined as the time from the start date of randomisation to the 

date of progression or date of death, whichever occurred first. Neither PFS nor TTP 

was reported in the published article for trial CCI-NOV22 (Tannock et al., 1996); 

however, the HTA report presented TTP estimates for this trial. Time to progression 

was reported by Berry and colleagues in the published article (Berry et al., 2002) but no 
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explicit definition for TTP was provided. Oudard and colleagues reported time to PSA 

progression and defined this endpoint as the time from the date of randomisation to the 

date of PSA progression (Oudard et al., 2005). Due to the variability in the progression 

endpoints reported, standardising the definition of the progression endpoint estimates 

for all the RCTs would require IPD from each of the trials, which is not achievable 

within the resources of this project. 

Kaplan-Meier curves for OS were reported in the original articles of the seven trials in 

the HTA report (see Table 4.2). Progression-free survival was not reported for trial 

TAX 327 and PFS Kaplan-Meier curve were not reported for Trial CCI-NOV22. 

Hazard ratios on OS and PFS reported in the original articles and those obtained from 

the survival analysis of reconstructed IPD are presented in Table 4.4 and Table 4.5 

respectively. Hazard ratios calculated using the reconstructed IPD were comparable to 

the results reported in the original trials’ publication. For trials CALGB 9182, Berry 

and Oudard, although the OS HR point estimates were in the reverse direction to the 

published point estimates, the 95% CIs were consistent with those reported in the trials.  

To obtain summary estimates for the HR of OS comparing M+P with P, both fixed-

effect and random-effects meta-analysis were used, combining estimates obtained by 

reconstructing IPD from the three RCTs that directly compared M+P and P (trials in 

HTA Set 1 excluding trial TAX 327). The HRs were 0.903 (0.751 to 1.084) and 0.901 

(0.405 to 2.023) respectively, which were different from 0.99 (0.82 to 1.20) for both 

fixed-effect and random-effects results in the HTA report. The difference in the point 

estimate of the HRs was largely due to the lower HRs obtained using the reconstructed 

IPD for trials: CALGB 9182, CCI-NOV22 and Berry, compared to the HRs reported in 

the HTA report. However, the 95% credible interval (CrI) estimated using fixed-effect 

meta-analysis was comparable to the 95% CI reported in the HTA report. 

Overall survival HR for treatment comparison D+P versus P (as shown in Figure 4.2) 

using reconstructed IPD from the three RCTs and trial TAX 327 was computed using 

both fixed-effect and random-effects ICMA. Hazard ratios of 0.688 (0.523, 0.907) and 

0.688 (0.300, 1.604) were estimated for fixed-effect and random-effects ICMA 

respectively as compared to the HR of 0.75 (0.57, 0.99) for random-effects ICMA 

published in the HTA report. Similarly, the HRs estimated were lower than that 

reported in the HTA report due to the HRs estimated for trials: CALGB 9182, CCI-
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NOV22 and Berry using reconstructed IPD. Overall survival results from meta-analysis 

and ICMA using reconstructed IPD are presented in Table 4.6.   

Fixed-effect and random-effects meta-analysis results for PFS comparing M+P versus 

P using reconstructed IPD were 0.641 (0.532 to 0.772) and 0.619 (0.170 to 2.048) 

respectively. No summary estimates for this comparison was reported in the HTA 

report.  

As trial TAX 327 did not investigate the PFS endpoint for the treatment comparison 

D+P versus M+P, the Bayesian BRMA model described in Chapter 2 Section 2.4.3 was 

used to jointly model the correlated outcomes of OS and PFS to enable the prediction 

of PFS for treatment comparison D+P versus M+P of trial TAX 327. To model the 

correlated outcomes, prior distributions for the within-study and between-study 

correlations were specified in the model. Both non-informative and informative prior 

distributions were used in the analysis. 
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Table 4.4: Individual trial’s OS results using IPD reconstructed from Kaplan-Meier survival curves 

Trial Comparison 
HR (95% CI)  

reported in journal article 

HR (95% CI)  

reported in HTA report 

HR (95% CrI)  

from reconstructed IPD 

     Overall Survival 

    TAX 327 D+P / M+P 0.76 (0.62-0.94) 0.76 (0.62-0.94) 0.76 (0.620, 0.936) 

     
CALGB 9182 M+H / H Not reported but median survival reported as: 

M+H 12.3 months and; 

H 12.6 months (p=0.77) 

1.05 (0.74, 1.49) 0.96 (0.732, 1.251) 

     
CCI-NOV 22 M+P / P Not reported but a total of 140 deaths  

reported at time of analysis (p=0.27) 

0.91 (0.69, 1.19) 0.81 (0.590, 1.110) 

     
Berry M+P / P Not reported but median survival reported as: 

M+P 23 months and; 

P 19 months (p=0.569) 

1.13 ( 0.75, 1.70) 0.95 (0.628, 1.432) 

     
Ernst M+P+Cl/M+P 1.05 (0.78, 1.42) 1.05 (0.78, 1.42) 1.08 (0.799, 1.452) 

     
SWOG D+E / M+P 0.8 (0.67, 0.97) 0.8 (0.67, 0.97) 0.79 (0.659, 0.955) 

     
Oudard D70+E+P / M+P Not reported but median survival reported as: 

D70+E+P 18.6 months, 

D35+E+P 18.4 months and; 

M+P 13.4 months 

0.94 (0.29, 1.02) 1.08 (0.675, 1.715) 

 D35+E+P / M+P 0.86 (0.68, 1.08) 0.75 (0.448, 1.245) 
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Table 4.5: Individual trial’s PFS results using IPD reconstructed from Kaplan-Meier survival curves 

Trial Comparison 
HR (95% CI)  

reported in journal article 

HR (95% CI)  

reported in HTA report 

HR (95% CrI)  

from reconstructed IPD 

     Progression-free Survival 
   

TAX 327 D+P / M+P Endpoint not collected Not possible Not possible 

     
CALGB 9182 M+H / H Not reported but median survival reported as: 

M+H 3.7 months and; 

H 2.3 months (p=0.0218) 

Time to progression 

(calculated from number of events and p-value 

presented in the trial publication)  

HR= 1.50 (1.06, 2.13); p = 0.0218 

0.74 (0.574, 0.954) 

     
CCI-NOV 22* M+P / P Not reported 0.47 (0.32, 0.68) Not possible+ 

     
Berry* M+P / P Not reported but median survival reported as: 

M+P 8.1 months and; 

P 4.1 months (p=0.018) 

Estimated from the Kaplan-Meier 

curve for PFS presented in 

the trial publication. HR= 0.64 (0.48, 0.86) 

0.63 (0.432, 0.927) 

     
Ernst M+P+Cl/M+P 0.81 (0.61, 1.07) 0.81 (0.61, 1.07) 0.84 (0.63, 1.112) 

     
SWOG D+E / M+P Not reported but median survival reported as: 

D+E 6.3 months and; 

M+P 3.2 months (p<0.001) 

time to disease progression observed for the 

docetaxel group compared with the mitoxantrone 

group: HR=1.30 (1.11, 1.52); p < 0.001 

0.73 (0.627, 0.860) 

     
Oudard* D70+E+P / M+P Not reported but median survival for time to PSA 

progression is reported as: 

D70+E+P 8.8 months, 

D35+E+P 9.3 months and; 

M+P 1.7 months 

Not reported Not possible 

 D735+E+P / M+P Not reported Not possible 

     

*Trials where TTP was reported in the journal article or HTA report instead of PFS 

+No Kaplan-Meier survival curve in published article 
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Table 4.6: OS and PFS HRs estimated from traditional and indirect comparison meta-analysis using reconstructed IPD 

  Hazard Ratio (95% Confidence/CrI) 

 

Overall Survival 

 

Progression-free Survival 

Evidence Synthesis 

Reported in  

HTA report 

Estimated using  

reconstructed IPD 

(with non-informative priors)   

Estimated using 

reconstructed IPD 

(with non-informative priors) 

Estimated using 

reconstructed IPD 

(with informative priors) 

      Meta-analysis (M+P/P) 

     Fixed Effect Analysis 0.99 (0.82, 1.20) 0.903 (0.751, 1.084) 

 

0.641 (0.532, 0.772) 0.641 (0.532, 0.772) 

Random Effects Analysis 0.99 (0.82, 1.20) 0.901 (0.405, 2.023) 

 

0.619 (0.170, 2.048) 0.619 (0.170, 2.048) 

      Relative estimate (D+P/M+P) 0.76 (0.62, 0.94) 0.76 (0.620, 0.936) 

 

0.618 (0.383, 0.941)* 0.608 (0.416, 0.861)* 

      Indirect comparison (D+P/P) 

     Fixed Effect Analysis Not performed 0.688 (0.523, 0.907) 

 

0.396 (0.307, 0.512) 0.388 (0.299, 0.504) 

Random Effects Analysis 0.75 (0.57, 0.99) 0.688 (0.300, 1.604) 

 

0.381 (0.107, 1.280) 0.374 (0.105, 1.266) 

            

*HR predicted using BRMA model 
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Informative prior distribution on the within-study correlation between PFS and OS was 

constructed based on the correlation estimates w = 0.3 (0.26, 0.32) reported by Halabi 

and colleagues (Halabi et al., 2009). For the construction of the informative prior 

distribution for the between-study correlation between OS and PFS, external trial 

evidence described in Section 4.2.1.1 are reviewed. Based on the inclusion criteria for 

identifying the trials to be used for constructing the informative prior distribution 

outlined in Section 4.2.1.1, six trials were identified to form the ETD Set. These 

included 2 RCTs from the HTA Set 2 trials and four trials from the article by Halabi 

and colleagues, which was used for the construction of the informative prior 

distribution for the within-study correlation between PFS and OS. 

All three RCTs (in HTA set 2 shown in Table 4.2) presented both OS and PFS results, 

including Kaplan-Meier curves. However, only two of the RCTs contained docetaxel as 

one of its intervention and were included in the ETD Set. One of the RCTs from HTA 

set 2 was a three-arm RCT with two arms having docetaxel; as one of these arms 

administrated docetaxel once every 21-day cycle (similar to how it was administrated 

in Trial TAX327), only this arm and the reference arm administrating M+P were used 

for the prior distribution construction. 

There were nine CALGB trials in the article by Halabi and colleagues, of which four 

trials were selected to be included in the ETD Set. One of the trials (CALGB 9182) was 

excluded because it was included in the main HTA clinical effectiveness analysis, two 

trials were excluded because they were trials reported post year 2007 and the remaining 

two trials were excluded because they did not report useful PFS results. Overall 

survival was defined as the time from randomisation or study entry to date of death 

from any cause. Progression-free survival was defined uniformly in all CALGB trial 

protocols as the time from randomisation or study entry to progression or death, 

whichever occurs first. Time to progression was not reported for the nine CALGB 

trials. Of the four trials included for the construction of the informative prior 

distribution for the between-study correlation between OS and PFS, two trials were 

RCTs and two trials were single-arm trials. As the RCTs were comparing different 

doses of the same drug, the arms in each of the RCTs were collapsed into a single arm 

and the trials were included in the prior distribution construction as single-arm trials, 

resulting in four single-arm trials. These trials are classified as either intervention with 
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or without docetaxel. All four trials presented OS Kaplan-Meier curves while only one 

trial presented a PFS Kaplan-Meier curve.   

Treatment contrast OS and PFS estimates for the four single-arm trials were predicted 

using a NMA that included all six trials in the ETD Set. Details of the trials and their 

treatment contrast results estimated or predicted in the NMA are presented in Table 4.7. 

Bivariate random-effects meta-analysis of the treatment contrasts (predicted or 

estimated in the NMA) for OS and PFS using non-informative prior distributions on the 

correlations (𝜌𝑤,𝑖 and 𝜌𝑏) produced a posterior distribution of 𝜌𝑏 = 0.07 (95% CrI: -

0.94 to 0.96) for the between-study correlation of OS and PFS. 

 
Table 4.7: NMA summary estimates for the six trials in ETD Set  

Trial Year 
Number 

of arms 

Collapsed 

to single-

arm? 

Total 

number 

of  

patients 

NMA results for treatment contrast  

(Treatment with docetaxel/Treatment without docetaxel) 

Overall Survival Progression-free Survival 

Log(HR) Var(Log(HR)) Log(HR) Var(Log(HR)) 

         
CALGB 

9181 
2000 2 Yes 149 -0.586 1253.006 -0.524 949.407 

CALGB 

9780 
2001 1 NA 46 -0.535 382.202 -0.476 299.374 

CALGB 

9480 
2002 3 Yes 390 -0.585 3225.069 -0.542 2524.280 

CALGB 

99813 
2003 1 NA 40 -0.580 335.081 -0.552 257.394 

SWOG 2004 2 No 674 -0.189 5.946 -0.302 4.383 

Oudard 2005 2* No 85 -1.027 68.919 -0.797 4.311 
                  

*Only two treatment arms of this three-armed RCT were used 

 
 

The posterior distribution for the between-study correlation estimated using the ETD 

Set in turn forms an informative prior distribution for the between-study correlation, 

𝜌𝑏, in the BRMA model for the prediction of PFS HR for treatment comparison D+P 

versus M+P (for trial TAX 327). Informative prior distribution for the within-study 

correlation, 𝜌𝑤,𝑖, was defined using the summary statistics reported by Halabi and 

colleagues. In order to sample from the prior distribution for the within-study and 

between-study correlations, 𝜌𝑏 and 𝜌𝑤,𝑖, Fisher transformation method (discussed in 

Chapter 2 Section 2.4.3.5) was used to convert the correlations to corresponding Fisher 

correlations,  𝑧𝑤,𝑖 and  𝑧𝑏 respectively, which follow normal distributions for sampling 

as follows: 
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Within-study: ��,�	~	��	
��0.310, 0.017
�� 

Between-study: ��	~	��	
��0.072, 0.930
�� 

Plots of the empirical posterior distribution synthesised for the between-study 

correlation (on the Fisher transformation scale) and the prior distribution for the 

between-study correlation (specified using summary statistics of the posterior 

distribution) used in the BRMA model are presented in Figure 4.4. 

 

Figure 4.4: Posterior distribution and prior distribution for the between-study correlation (�� 

on Fisher transformation scale) between OS and PFS 

 

Using the informative prior distributions for the within-study and between-study 

correlations constructed, the predicted PFS HR for D+P versus M+P (for trial TAX 
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327) was 0.608 (95% CrI: 0.416 to 0.861). The predicted PFS HR for trial TAX 327 

thus allow an indirect comparison to be performed to estimate treatment comparison 

D+P versus P. Progression-free survival HRs for D+P versus P estimated using fixed-

effect and random-effects ICMA were 0.388 (95% CrI: 0.299 to 0.504) and 0.374 (95% 

CrI: 0.105 to 1.266) respectively. 

Non-informative prior distributions for both within-study and between-study 

correlations between OS and PFS were employed in the BRMA model. The non-

informative prior distributions take the form of uniform distributions between -1 and 1 

inclusive as follows: 

Within-study: 𝜌𝑤,𝑖 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1, 1) 

Between-study: 𝜌𝑏 ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1, 1) 

When using non-informative prior distributions for both within-study and between-

study correlations between LHRs on OS and PFS, the predicted PFS HR for the 

comparison of D+P versus M+P (for trial TAX 327) was estimated to be 0.618 (95% 

CrI: 0.383 to 0.941). Progression-free survival HRs for intervention D+P versus P 

using non-informative prior distributions on both correlations, 𝜌𝑤,𝑖 and 𝜌𝑏, were 0.396 

(95% CrI: 0.307 to 0.512) and 0.381 (95% CrI: 0.107 to 1.280) for fixed-effect and 

random-effects ICMA respectively. Results of the predicted PFS HRs (for D+P versus 

M+P) and corresponding ICMA PFS HRs (for D+P versus P) are presented in Table 

4.6. 

The informative prior distributions on the within-study and between-study correlation 

on the LHRs between OS and PFS constructed using the Halabi Set and ETD Set 

provided a predicted PFS HR of D+P versus M+P that was comparable to that using 

non-informative prior distributions but with higher precision (width of 95% CrI: 0.445 

versus 0.558). Similarly, the same was observed for the random-effects ICMA results 

for PFS HR M+P versus P between these two combinations of prior distributions. 

 

4.3.1.1 Sensitivity analysis 

Sensitivity analyses were conducted using combinations of prior distributions (with 

non-informative and/or informative) for the within-study and between-study 
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correlations between OS and PFS. Besides informative prior distributions constructed 

using ETD Set, optimistic and pessimistic (informative) prior distributions for the 

between-study correlation were also employed in the BRMA model. Combination pairs 

of prior distributions used in the BRMA model for predicting the PFS HRs of D+P 

versus M+P are shown in Table 4.8, together with the predicted PFS HR for D+P 

versus M+P and corresponding PFS HR for D+P versus P estimated using fixed-effect 

and random-effects ICMA. 

When using informative prior distribution on the between-study correlation only, the 

predicted PFS HR for D+P versus M+P had higher precision (case B1: 95% CrI 

width=0.476) compared to the estimate using non-informative prior distributions for 

both the within-study and between-study correlation (case A2: 95% CrI width=0.558). 

The increase in precision when using informative prior distribution on only the within-

study correlation was however not as great (case B2: 95% CrI width=0.520) as the 

former case.  

However, the PFS HRs for M+P versus P estimated from ICMA in case B1 had lower 

precision (95% CrI width: fixed-effect=0.209, random-effects=1.187) than the 

estimates from ICMA in case A2 (95% CrI width: : fixed-effect=0.205, random-

effects=1.173). For case B2, the PFS HRs for M+P versus P estimated from ICMA had 

higher precision (95% CrI width: fixed-effect=0.202, random-effects=1.160) than case 

A2. 

Informative prior distributions in the form of pessimistic (case B3) and optimistic (case 

B4) prior distributions on the between-study correlation were used in this sensitivity 

analysis to evaluate the PFS HRs estimated considering low and high positive 

correlation between OS and PFS when used together with informative prior distribution 

on the within-study correlation constructed using Halabi Set. Both case B3 and case B4 

gave PFS HRs (for D+P versus M+P and M+P versus P) with higher precision than 

PFS HRs estimated using the base case analysis. 
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Table 4.8: PFS HR estimated from the proposed Bayesian BRMA and ICMA models using non-informative and informative prior distributions 

  

  Prior distributions on the correlation 

between OS and PFS 

Progression-free Survival Hazard Ratio (95% CrI) 

 Predicted 

PFS HR (D+P/M+P)  

using BRMA Model 

Indirect Comparison Meta-Analysis (D+P/P) 

Case Within-study 

Correlation, w 

Between-study 

Correlation, b Fixed Effect Random Effects 

Base Case 

Analysis 

A1 
Informative using Halabi Set 

w = 0.3 (0.26, 0.32) 

Informative using ETD Set 

b = 0.07 (-0.94, 0.96) 
0.61 (0.416, 0.861) 0.39 (0.299, 0.504) 0.37 (0.105, 1.266) 

A2 
Non-informative 

w ~ Uniform (-1,1) 

Non-informative 

b ~ Uniform (-1,1) 
0.62 (0.383, 0.941) 0.40 (0.307, 0.512) 0.38 (0.107, 1.280) 

              

Sensitivity 

Analysis 

B1 
Non-informative 

w ~ Uniform (-1,1) 

Informative using ETD Set 

b = 0.07 (-0.94, 0.96) 
0.62 (0.422, 0.898) 0.40 (0.306, 0.515) 0.38 (0.108, 1.295) 

B2 
Informative using Halabi Set 

w = 0.3 (0.26, 0.32) 

Non-informative 

b ~ Uniform (-1,1) 
0.61 (0.387, 0.907) 0.39 (0.301, 0.503) 0.38 (0.106, 1.266) 

B3 
Informative using Halabi Set 

w = 0.3 (0.26, 0.32) 

Informative (Pessimistic) 

b = 0.2 (0.0, 0.4) 
0.61 (0.414, 0.856) 0.39 (0.298, 0.503) 0.37 (0.105, 1.262) 

B4 
Informative using Halabi Set 

w = 0.3 (0.26, 0.32) 

Informative (Optimistic) 

b = 0.8 (0.7, 0.9) 
0.59 (0.406, 0.815) 0.38 (0.291, 0.490) 0.36 (0.102, 1.230) 
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4.3.2 Cost-effectiveness 

4.3.2.1 Transition probabilities 

Transition probabilities for the WinBUGS two-state and three-state model estimated 

using the methods described in Section 4.2.2.1 are presented in this section. For the 

two-state model, only one set of transition probabilities for each of the interventions 

was estimated. As a result of the addition of a PD state in the three-state model, two 

additional sets of transition probabilities for each intervention as compared to the two-

state model need to be defined. The three sets of transition probabilities that need to be 

defined were: (i) the transition probabilities from StD state to PD state, (ii) the 

transition probabilities from StD state to death state (due to other causes without 

progression) and (iii) the transition probabilities from PD state to death state.  

The sets of transition probabilities estimated for the two models are presented in the 

next two sub-sections.  

 

WinBUGS two-state model 

Transition probabilities for the interventions in the HTA two-state model were 

estimated using the Weibull parameter values reported in the HTA report, which were 

obtained from an economic review submitted by Sanofi-Aventis. The parameter values 

were estimated from survival analysis using IPD from trial TAX 327.  

Similarly, Weibull survival regression analysis was performed using the IPD 

reconstructed for trial TAX 327 in this thesis. Comparison of the Weibull survival 

analysis regression coefficients using the reconstructed OS IPD with the coefficients 

reported in the HTA report are presented in Table 4.9. The comparison of the 

corresponding covariance and Cholesky decomposition matrices are also presented in 

Table 4.9. The Weibull regression coefficients, covariance and Cholesky 

decomposition matrices using the reconstructed OS IPD were comparable to the 

estimates reported in HTA report. 

Considering the accuracy of the parameter values estimated in the HTA report, which 

used patient-level data from the trial TAX 327 by Sanofi-Aventis, the Weibull 

parameters estimated using reconstructed OS IPD were not used for the WinBUGS 
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two-state model. This also enables the comparison of the cost-effectiveness analysis 

results of the Bayesian WinBUGS two-state model with the HTA two-state model. 

Transition probabilities for the interventions M+P and D+P were calculated using the 

Weibull regression coefficients and Cholesky decomposition matrix for each of the 

interventions reported in the HTA report.  

Transition probabilities for intervention P were calculated by applying the (direct) HR 

of P versus M+P (HR=1.01 (95% CI: 0.833 to 1.220)) to the transition probabilities for 

M+P. A sensitivity analysis was performed to assess how the transition probabilities for 

P would differ if (indirect) HR of P versus D+P (HR=1.33 (95% CrI: 1.010 to 1.754)) 

was used by applying the indirect HR to the transition probabilities of D+P. 

Uncertainties around the HR parameters were also incorporated in the model as 

described in the methods section (Section 4.2.2). The (mean) transition probabilities for 

the first 12 cycles and distributions for the LHRs for the two methods of estimating 

transition probabilities for P (using direct and indirect HR) are presented in Table 4.10. 
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Table 4.9: Regression coefficients, Covariance and Cholesky decomposition matrices estimated using Weibull survival analyses 

    Reported in HTA report   Using reconstructed IPD for Trial Tax 327 

Treatment   D+P M+P 

 

D+P M+P 

           

Results from Weibull  

regression analysis 
 

Mean SE Mean SE 

 

Mean SE Mean SE 

Intercept 3.214 0.0546 3.036 0.0447 

 

3.260 0.0548 3.052 0.0440 

Scale 0.6482 0.0438 0.6184 0.0371 

 

0.6718 0.0437 0.6182 0.0360 

                      

           

  

Intercept Scale Intercept Scale 

 

Intercept Scale Intercept Scale 

Covariance matrix Intercept 0.002981 

 

0.001998 

  

0.003003 

 

0.001936 

 

 

Scale 0.000925 0.001918 0.000356 0.001376 

 

0.000732 0.001910 0.000218 0.001296 

                      

           

  

Intercept Scale Intercept Scale 

 

Intercept Scale Intercept Scale 

Cholesky decomposition Intercept 0.054599 

 

0.044699 

  

0.054800 

 

0.044000 

 

 

Scale 0.016942 0.040385 0.007964 0.036229 

 

0.013358 0.041612 0.004955 0.035657 
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Table 4.10: Transition probabilities (mean) for the first 12 cycles and distributions of LHRs for 

the estimation of transition probabilities for P (WinBUGS two-state model)  

Cycle D+P M+P  P (Direct)^ P (Indirect)# 

     
1 0.0072 0.0075 0.0076 0.0097 

2 0.0134 0.0152 0.0154 0.0181 

3 0.0177 0.0208 0.0211 0.0237 

4 0.0211 0.0255 0.0258 0.0283 

5 0.0242 0.0297 0.0301 0.0324 

6 0.0269 0.0335 0.0340 0.0361 

7 0.0294 0.0371 0.0376 0.0394 

8 0.0318 0.0405 0.0411 0.0426 

9 0.0340 0.0437 0.0443 0.0455 

10 0.0361 0.0467 0.0474 0.0483 

11 0.0381 0.0497 0.0504 0.0510 

12 0.0401 0.0525 0.0533 0.0535 

          

^ Distribution used was: LHRP⁄(M+P) ~ Normal (0.0101,0.09712) 

# Distribution used was: LHRP⁄(D+P) ~ Normal (0.2877,0.14082) 

 

 

WinBUGS three-state model 

Transition probabilities in the HTA and WinBUGS two-state models were calculated 

using Weibull parameter values estimated using OS IPD from trial TAX 327. For 

consistency and comparability of the three-state model with the two-state models, it is 

desirable to use the PFS IPD from trial TAX 327; however, this is not possible as PFS 

data were not recorded for trial TAX 327. Hence, trial SWOG included in the HTA 

report was used to calculate the transition probabilities for the three-state model based 

on the selection criteria described in Section 4.2.2.1 to identify the trial that has a PFS 

profile closest to the ‘potential’ PFS profile of trial TAX 327. Justifications for the 

choice of trial SWOG are discussed in this section. 

Overall survival curves for four RCTs in HTA Full Set (excluding CALGB 9182 which 

used hydrocortisone instead of prednisone and CCI-NOV22 which did not report PFS) 

were compared to the OS curve of trial TAX 327 and presented in Figure 4.5. The OS 

Kaplan-Meier curves suggested that trial SWOG has an OS profile closest to trial TAX 

327. 
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Figure 4.5: Overall survival Kaplan-Meier curves for RCTs in the HTA report  

 

Mean time to progression for patients administrated M+P for the four RCTs were 

estimated using the IPD reconstructed from PFS Kaplan-Meier curves. As described in 

Section 4.2.2.1, as PFS was not recorded in trial TAX 327, mean number of cycles of 

M+P administrated in trial TAX 327 was used for comparing with the mean time to 

progression in the four RCTs. The mean time to progression for the four RCTs and the 

mean number of cycles of M+P administrated in trial TAX 327 are shown in Table 

4.11. Trials Ernst and SWOG have mean time to progression closest to the assumed 

mean time to progression of TAX 327. The results suggested that trial SWOG has an 

OS profile closest to trial TAX 327 and therefore potentially a PFS profile closest to 

TAX 327 if the PFS endpoint had been recorded. Hence, reconstructed IPD of trial 

SWOG were used to estimate the transition probabilities from StD state to PD state for 

M+P. 
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Table 4.11: Mean time to progression for RCTs in the HTA report 

Trial Mean Time to Progression (SE) 

  
Berry et al. 12.8 (1.63) 

Ernst 5.9 (0.53) 

SWOG 5.9 (0.33) 

Oudard 4.2 (0.88) 

  
 

Mean no.of cycles (SE) 

TAX 327 5.9 (0.17) 

    

 
 

Transition probabilities from StD state to PD state for M+P and D+P need to be defined 

using reconstructed PFS IPD. However, this was only estimated for M+P as there was 

no PFS data for D+P in any of the seven RCTs in the HTA report. This transition 

probability from StD state to PD state for M+P was estimated from reconstructed PFS 

IPD of trial SWOG. Transition probability for D+P was in turn calculated by applying 

the predicted PFS HR of D+P versus M+P (HR=0.61 (95% CrI: 0.416 to 0.861)) to the 

transition probability of M+P. 

Transition probability for transition from the StD state to death state was extracted from 

an article on cost-effectiveness analysis for advance hormone-dependent prostate 

cancer (Lu et al., 2012) and was applied to the model with no uncertainty as 0.005. This 

value was applied as the probability of transition from the StD state to death state for 

all interventions in the model as it defines the probability of a patient dying due to other 

causes (other than prostate cancer) and was expected to be the same regardless of the 

intervention administrated. 

In the absence of patient-level data on correlated progression and death for trial 

SWOG, probability of transition from PD state to death state cannot be estimated. 

Therefore, transition probabilities for each of the interventions are estimated by 

assuming that the mean survival time equals the sum of the mean time from stable 

disease to progression and the mean time from progression to death, as described in 

Section 4.2.2.1. The (mean) transition probabilities estimated are presented in Table 

4.12. 
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Table 4.12: Transition probabilities for transition from the progression state to death state for 

interventions D+P, M+P and P (WinBUGS three-state model) 

Cycle M+P  D+P^ P# 

    
1 0.1485 0.0931 0.2571 

2 0.1459 0.0914 0.2533 

3 0.1451 0.0909 0.2521 

4 0.1446 0.0905 0.2513 

5 0.1442 0.0903 0.2508 

6 0.1440 0.0902 0.2504 

7 0.1437 0.0900 0.2500 

8 0.1436 0.0899 0.2497 

9 0.1434 0.0898 0.2495 

10 0.1433 0.0897 0.2493 

11 0.1432 0.0896 0.2491 

12 0.1431 0.0896 0.2489 

        

^ Distribution used was: LHR(D+P)⁄(M+P)~ Normal(-0.502,0.0932) 

# Distribution used was: LHRP⁄(M+P)~ Normal(0.493,0.6622) 

 

 

4.3.2.2 Cost 

Costs of drug for interventions M+P and D+P were estimated using the mean cycle of 

chemotherapy administrated. The reported mean number of cycles for the interventions 

M+P and D+P were 5.9 (SE=0.17) and 7.3 (SE=0.18) respectively, Normal 

distributions were assigned to the number of treatment cycles to incorporate uncertainty 

around these values in the two economic models. Cost of drug for M+P was 

£347.73/cycle and £1253.92/cycle for D+P, including £177.46/cycle for outpatient 

attendance fees for both drug regimens. Cost of drug for P was calculated at £1.48 per 

patient per cycle. In the WinBUGS two-state model, the drug costs for a patient taking 

P was calculated for the number of cycles that the patient remains in the StD state 

before transition to the death state. In the three-state model, the cost drug for a patient 

taking P was calculated for the number of cycles that the patient remains in the StD 

state before transition to the PD state. It was assumed that the patient would stop taking 

P after progression and hence, no drug cost would be calculated for the cycles post-

progression before transition to the death state. 

Follow-up and terminal care costs for interventions M+P and D+P were estimated from 

trial TAX 327 as reported in the HTA report (Table 36 and Table 37 in (Collins et al., 
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2007)). Uncertainties for the costs were applied in the two economic models using 

Gamma distributions. Follow-up and terminal care costs for drug P were not available 

and were estimated from the costs of intervention M+P from trial TAX 327. In order to 

estimate the costs for drug P, a cost ratio of drug P with reference to drug M+P was 

estimated using costing data of P and M+P from a review article (Bloomfield et al., 

1998). The mean cost ratio estimated in the WinBUGS two-state model was 1.278 

(95% CrI: 0.946 to 1.691) which suggested that the mean cost of P was higher than the 

mean cost of M+P. This cost ratio was calculated by assigning Gamma distributions 

[Gamma(𝛼, 𝛽)] of Gamma(105, 276) and Gamma(81, 285) to the cost data of P and 

M+P respectively. The mean cost (drug, follow-up and terminal care) per patient at 

each state in the economic model for each of the interventions are presented in Table 

4.13.   
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Table 4.13: Mean cost, mean QALY and mean time spent per patient at each state in the economic model 

Economic Model Drug 

Mean Cost (£) 

(95% CrI) Drug cost (£) 

Mean QALYs 

(95% CrI) 

Mean Time 

(95% CrI) 

      
WinBUGS two-state model 

     
Stable & Progression Disease State P (direct) 11772 (6127, 20280) 26 (23, 31) 0.809 (0.5590, 1.0760) 18.1 (15.54, 21.03) 

 

P (indirect) 11772 (6128, 20290) 27 (22, 32) 0.812 (0.5476, 1.1100) 18.2 (14.68, 22.41) 

 

M+P 11237 (6855, 17030) 2057 (427, 3679) 0.813 (0.5718, 1.0580) 18.2 (16.55, 19.93) 

 

D+P 15862 (9066, 23020) 9152 (3261, 15050) 0.967 (0.6746, 1.2690) 21.9 (19.50, 24.58) 

            

      
WinBUGS three-state model 

     
Stable Disease State P (direct) NA 6 (1, 18) 0.276 (0.0614, 0.7646) 4.1 (0.68, 12.03) 

Progression Disease State P (direct) NA mean cycles = 4.12 (SE:1.47) 0.573 (0.2667, 1.0080) 13.4 (6.63, 22.81) 

  

  

 

0.849 (0.4389, 1.4400) 17.5 (9.32, 28.90) 

  

10152 (5160.0, 17760.0)# 

   

      
Stable Disease State M+P 371 (211.6, 589.9) 2047 (400, 3678) 0.377 (0.3330, 0.4247) 5.7 (5.05, 6.40) 

Progression Disease State M+P 3804 (2088.0, 6345.0) mean cycles = 5.34 (SE:0.17) 0.512 (0.3596, 0.6674) 11.9 (10.78, 13.12) 

Terminal care M+P 3756 (1026.0, 8239.0) 

 

0.889 (0.7200, 1.0600) 17.6 (16.32, 18.99) 

  

9977 (5995.0, 15250.0) 

   

      
Stable Disease State D+P 373 (218.1, 578.7) 9164 (3268, 15000) 0.619 (0.4967, 0.7602) 9.6 (7.67, 11.93) 

Progression Disease State D+P 2474 (1370.0, 4009.0) mean cycles = 6.62 (SE:0.26) 0.522 (0.3664, 0.6796) 12.3 (11.15, 13.55) 

Terminal care D+P 3326 (916.2, 7266.0) 

 

1.141 (0.9369, 1.3520) 22.0 (19.75, 24.40) 

  

15337 (8594.9, 22440.0) 

               

#Calculated using mean cost ratio of 1.278 (95% CrI: 0.946 to 1.691) for P compared to M+P 
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4.3.2.3 Quality-adjusted life years 

Mean EQ-5D HRQoL for all patients in the 12 months prior to death was 0.538 (95% 

CI: 0.461 to 0.615) as reported in the study by Sandblom and colleagues (Sandblom et 

al., 2004). Using this EQ-5D data, the utility for StD state in the WinBUGS two-state 

model was defined using a beta distribution with parameter values: Beta(21.1, 18.1). 

For the three-state model, the utility distribution, Beta(21.1, 18.1), for the StD in the 

WinBUGS two-state model was assigned as the utility distribution for the PD state. 

Two additional EQ-5D values as discussed in Section 4.2.2.3 were extracted from the 

Sandblom study (Sandblom et al., 2004), they were the EQ-5D for patients who were 

still surviving at the time of analysis of the study, EQ-5D = 0.770 (95% CI: 0.755 to 

0.785), and EQ-5D of patients who died of other non-prostate cancer related death, EQ-

5D = 0.564 (95% CI: 0.497 to 0.631). These two utility data were defined in the 

economic model using the following beta distributions, Beta(581.3, 173.6) and 

Beta(29.1, 22.5) respectively. Utility for the StD state was calculated based on the 

method described in Section 4.2.2.3. 

As the utilities defined were selected to reflect the general HRQoL of patients with 

advanced prostate cancer and were independent of the interventions administrated by 

the patients, the utilities were used in the model for all three interventions. Mean 

QALY per patient for each of the interventions in the economic models are presented in 

Table 4.13. 

 

4.3.2.4 Cost-effectiveness analysis results 

Incremental cost-effectiveness ratios of D+P to M+P, which indicate the additional cost 

per extra unit of QALY from D+P compared to M+P for the HTA two-state, 

WinBUGS two-state and three-state models are presented in Table 4.14. 
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Table 4.14: Summary cost-effectiveness results for all interventions  

  Cost (£) QALY ICER (£) 

Probability cost-effectiveness 

(Probability of Error) Net Benefit (95% CrI) 

Intervention Mean (SE) Mean (SE) Mean £20,000 £30,000 £20,000 £30,000 

        
HTA two-state model (using direct MA HR for M+P/P) 

     
P (using direct HR) 11227 0.81001 Dominated 0.39 0.33 Not Reported Not Reported 

M+P 10834 0.81364 

 

0.39 0.29 Not Reported Not Reported 

D+P (3 weekly) 15883 0.96801 32706 0.22 0.38 Not Reported Not Reported 

        
WinBUGS two-state model 

      
P (using direct HR) 11772 (3642.9) 0.809 (0.1324) 

 

0.32 (0.68) 0.28 (0.72) 4417 (-5119.0, 12360.0) 12512 (1647.9, 22500.3) 

M+P 11237 (2615.1) 0.813 (0.1246) 

 

0.36 (0.64) 0.28 (0.72) 5023 (-2327.0, 11680.3) 13153 (4116.0, 21800.0) 

D+P (3 weekly) 15862 (3556.8) 0.967 (0.1517) 30026 0.32 (0.68) 0.44 (0.56) 3479 (-5749.1, 12560.0) 13149 (1859.0, 24430.0) 

        
P (using indirect HR) 11772 (3642.8) 0.812 (0.1451) 

 

0.33 (0.67) 0.29 (0.71) 4475 (-5383.2, 12990.0) 12599 (1178.0, 23520.3) 

M+P 11237 (2615.1) 0.813 (0.1246) 

 

0.37 (0.63) 0.30 (0.70) 5023 (-2327.0, 11680.3) 13153 (4116.0, 21800.0) 

D+P (3 weekly) 15862 (3556.8) 0.967 (0.1517) 30026 0.30 (0.70) 0.41 (0.59) 3479 (-5749.1, 12560.0) 13149 (1859.0, 24430.0) 

        
WinBUGS three-state model 

      
P (using direct HR) 10152 (3255.6) 0.849 (0.2584) 

 

0.30 (0.70) 0.27 (0.74) 6829 (-4364.0, 19720.0) 15320 (829.8, 33820.0) 

M+P 9977 (2365.9) 0.889 (0.0871) 

 

0.33 (0.67) 0.20 (0.81) 7810 (1724.0, 13090.0) 16704 (9635.0, 23240.3) 

D+P (3 weekly) 15337 (3514.3) 1.141 (0.1061) 21340 0.37 (0.63) 0.54 (0.47) 7474 (-647.4, 15390.0) 18879 (9606.0, 28120.0) 
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The results of the analyses showed that using our WinBUGS two-state model, the 

ICER calculated was £30026 as compared to £32706 reported in the HTA report. As 

for the three-state model, the ICER calculated using a predicted PFS HR of 0.61 (95% 

CrI: 0.416 to 0.861) for D+P versus M+P, which was estimated using informative prior 

distributions for both the within-study and between-study correlations, was £21340. 

Our results showed that by specifying a three-state model and taking into account the 

cost and QALY at the PD state, the ICER estimated was lower than that of the two-

state model. 

The net benefit for each intervention and the probability that each intervention was 

cost-effective at £20000 and £30000 are presented in Table 4.14. At £20000, for the 

two-state models, M+P had the highest probability of being cost-effective amongst all 

three interventions while D+P has the highest probability of being cost-effective in the 

three-state model.  However, at £30000, D+P had the highest probability of being cost-

effective amongst all three interventions for all the  models, with the probability being 

as high as 0.54 in the three-state model compared to the two-state models (at 0.44 and 

0.41 for the WinBUGS direct and indirect HR models). This is also presented 

graphically in cost-effectiveness acceptability curves over a range of cost values. Cost-

effectiveness acceptability curves comparing all the interventions for the WinBUGS 

two-state model using direct head-to-head meta-analysis HR of P versus M+P, 

WinBUGS two-state model using ICMA HR of P versus M+P and WinBUGS three-

state model using direct head-to-head meta-analysis HR of P versus M+P are presented 

in Figure 4.6, Figure 4.7 and Figure 4.8 respectively. In terms of net benefit, at £20000 

M+P had the highest net benefit amongst all three interventions in all models. 

However, at £30000, M+P had the highest net benefit in the two-state model while D+P 

had the highest net benefit in the three-state model. 

Cost-effectiveness acceptability curves and cost-effectiveness plane looking into the 

difference between intervention D+P and M+P (with M+P as the reference 

intervention) were also plotted for comparing the WinBUGS two-state model with the 

three-state model and are presented in Figure 4.9 and Figure 4.10 respectively. The 

cost-effectiveness acceptability curves showed that after approximately £10000, the 

probability that D+P was more cost-effective than M+P was higher in the three-state 

model than the two-state model. For example, at £30000, the probability was around 
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0.7 for the three-state model compared to 0.5 for the two-state model as shown in 

Figure 4.9. The cost-effectiveness plane showed that D+P was more effective (in terms 

of utility) than M+P for both the two-state and three-state models, although the 

certainty of its effectiveness was greater in the three-state model than the two-state 

model as all the 50000 Monte Carlo simulations points of the three-state model (in 

green colour) were in the positive utility difference area. Besides being more effective, 

D+P was also more costly than M+P. However, the degrees of uncertainty for the 

difference in cost of the two interventions were comparable for both models. 

 

Figure 4.6: Cost-effectiveness acceptability curves for all three interventions – WinBUGS two-

state model using direct HR of P versus M+P  
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Figure 4.7: Cost-effectiveness acceptability curves for all three interventions – WinBUGS two-

state model using indirect HR of P versus D+P  
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Figure 4.8: Cost-effectiveness acceptability curves for all three interventions – three-state 

model using direct HR of P versus M+P  
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Figure 4.9: Cost-effectiveness acceptability curves for WinBUGS two-state and three-state 

economic models 
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Figure 4.10: Cost-effectiveness plane for WinBUGS two-state and three-state economic models 

 

4.3.2.5 Sensitivity Analysis 

Sensitivity analyses were conducted using combinations of non-informative and 

informative prior distribution for the within- and between-study correlation in the 

BRMA model and various follow up cost division factors to assess their influence on 

the estimation of the ICER values. The analyses showed that if the between-study 

correlation between OS and PFS was relatively high (𝜌𝑏=0.8), the ICER calculated 

would be lower than the ICER calculated in the base case (with 𝜌𝑏 = 0.07). Varying 

the follow up cost division factors from 0.7 to 0.8 changed the ICER slightly from 

£21694 to £20986. Results of the sensitivity analyses are presented in Table 4.15. 
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Table 4.15: Sensitivity Analyses using combinations of non-informative and informative prior distribution for the within- and between-study correlation in the 

BRMA model and various follow up cost division factors 

  Clinical Effectiveness BRMA Model   Cost-Effectiveness Markov Three-state Model 

Prior distributions on the correlation 

between OS and PFS Predicted 

PFS LHR (D+P/M+P)  

using BRMA Model 

 

  Difference [(D+P) minus (M+P)] 

 Within-study 

Correlation, w 

Between-study 

Correlation, b   

Follow up cost 

Division Factor 

Cost 

Mean (SE) 

QALY 

Mean (SE) ICER 

Base Case for cost-effectiveness analysis 

      Informative* 

w = 0.3 (0.26, 0.32) 

Informative^  

b = 0.07 (-0.94, 0.96) 
LHR ~ Normal (-0.50, 0.09342) 

 

 = 0.75 5360 (4244.60) 0.251 (0.0646) 21340 

        

Sensitivity Analyses 
  

 
    

Non-informative 

w ~ Uniform (-1,1) 

Non-informative 

b ~ Uniform (-1,1) 
LHR ~ Normal (-0.49, 0.09302) 

 

 = 0.75 5350 (4243.95) 0.244 (0.0638) 21966 

Non-informative 

w ~ Uniform (-1,1) 

Informative^ 

b = 0.07 (-0.94, 0.96) 
LHR ~ Normal (-0.48, 0.09322) 

 

 = 0.75 5344 (4243.56) 0.239 (0.0636) 22360 

Informative* 

w = 0.3 (0.26, 0.32) 

Non-informative 

b ~ Uniform (-1,1) 
LHR ~ Normal (-0.51, 0.09312) 

 

 = 0.75 5363 (4244.79) 0.254 (0.0647) 21146 

Informative* 

w = 0.3 (0.26, 0.32) 

Informative (Pessimistic) 

b = 0.2 (0.0, 0.4) 
LHR ~ Normal (-0.50, 0.09332) 

 

 = 0.75 5362 (4244.72) 0.253 (0.0647) 21216 

Informative* 

w = 0.3 (0.26, 0.32) 

Informative (Optimistic) 

b = 0.8 (0.7, 0.9) 
LHR ~ Normal (-0.53, 0.09312) 

 

 = 0.75 5380 (4245.94) 0.267 (0.0658) 20145 

   

 

    

Informative* 

w = 0.3 (0.26, 0.32) 

Informative^ 

b = 0.07 (-0.94, 0.96) 
LHR ~ Normal (-0.50, 0.09342) 

 

 ~ Beta(24.25, 8.08) 5418 (4198.72) 0.251 (0.0644) 21594 

Informative* 

w = 0.3 (0.26, 0.32) 

Informative^ 

b = 0.07 (-0.94, 0.96) 
LHR ~ Normal (-0.50, 0.09342) 

 

 = 0.70 5449 (4222.42) 0.251 (0.0646) 21694 

Informative* 

w = 0.3 (0.26, 0.32) 

Informative^ 

b = 0.07 (-0.94, 0.96) 
LHR ~ Normal (-0.50, 0.09342) 

 

 = 0.80 5271 (4267.87) 0.251 (0.0646) 20986 

                

*Informative prior distribution using Halabi Set; ^Informative prior distribution using ETD Set 
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4.4 Discussions 

The proposed Bayesian BRMA model illustrated how OS and PFS endpoints could be 

modelled jointly for the prediction of PFS HR for D+P versus M+P. The PFS HRs 

estimated by this model using informative prior distributions for either or both of the 

within-study and between-study correlations between the OS and PFS endpoints were 

comparable to the PFS HR estimated using solely non-informative prior distributions 

for the correlations although higher precision was achieved when informative priors 

were used. Sensitivity analysis case B1 and B2 (scenarios in Table 4.8) demonstrated 

that the informative prior distribution for the between-study correlation contributed 

more to the increase in precision of the predicted PFS HR than the informative prior 

distribution for the within-study correlation. Sensitivity case B2 (solely informative 

within-study correlation) when compared to case A2 (non-informative between- and 

within-study correlations) showed that the predicted PFS HRs were comparable and 

hence the use of the correlation between OS and PFS as a crude approximation for the 

correlation between OS LHR and PFS LHR has minimal impact of the predicted HR 

for D+P versus M+P. When keeping the informative prior distribution for the within-

study correlation the same, the relative effectiveness of the interventions on the PFS 

increases as the magnitude of the between-study correlation increases (as seen in cases 

A1, B3 and B4). 

Similarly, there is an increase in precision for the indirect comparison results for PFS 

HR of D+P versus P estimated using the predicted PFS HR in the ICMA, except for 

case B1 (informative prior for between-study correlation using ETD Set). Although the 

ICMA PFS HR point estimate for case B1 was comparable to that reported in case A2 

(non-informative priors), the PFS HR had lower precision than case A2. This highlights 

that although the use of external information in the form of informative priors generally 

results in increase precision for the analysis estimates, the use of informative priors can 

sometimes results in increased uncertainty instead as illustrated in this project. Hence, 

the estimates from using informative priors in Bayesian meta-analysis also depend 

upon whether there is an associated decrease or increase in heterogeneity especially for 

random-effects models. 

The aim of this project is to predict the PFS HR of D+P versus M+P to allow for the 

specification of a three-state model for mHRPC, which was not possible in the previous 
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analysis in the HTA report due to the absence of PFS data for trial TAX 327; this is 

achieved with the use of the BRMA model. The intervention D+P was accepted by 

NICE technology appraisal committee to be introduced for the treatment of mHRPC at 

an ICER of £32706. This intervention (D+P) with this high ICER was accepted as the 

disease under consideration is considered under the end of life treatment classification 

of NICE. The ICER computed using the proposed three-state model of £21340 

therefore would not have changed the decision as it is lower than the ICER that the 

treatment regimen was accepted. However, the proposed three-state model is a more 

realistic representation of the disease course of patients with mHRPC. It also allows 

more detailed estimation of the cost and QALY experience of the cancer patients, 

hence achieving a more appropriate and representative estimate of the cost-

effectiveness of the interventions under evaluation. 

Cost data used in the three-state were estimated using the data reported in the HTA 

report. As the economic model specified in the HTA report is a two-state model, cost 

data were available for only two states: the StD state and the death state. Assumptions 

on the possible cost at the PD state have to be made when specifying the three-state 

model. One assumption is that the follow-up cost at PD state was included in the StD 

state of the two-state model. Another assumption is that the follow-up cost for the PD 

state made up of 75% of the follow-up cost in the StD state of the two-state model 

(based on the fact that the cost was associated with subsequent chemotherapy and 

palliative care most likely to occur post progression). The lack of detailed cost data is a 

limitation in the calculation of cost data for the three-state economic model; however, 

the sensitivity analyses show that the ICER did not vary greatly using different 

proportions (70% and 80%) for calculating the follow-up cost at PD state in the three-

state model. 

Introducing more parameters to the three-state model, such as for the QALY, may 

result in increased uncertainty around the resulting cost-effectiveness estimates. In this 

project, however, introducing more parameters as a more realistic approach has led to 

reduced uncertainty. This is because the additional parameters are estimated with high 

precision whilst the parameters in the two-state model may carry a lot of uncertainty. 

The reconstructed IPD for OS and PFS endpoints in the trials allowed time-dependency 

to be implemented in the transition probabilities using parametric Weibull survival 



Chapter 4                                                                          Bivariate and indirect comparison meta-analysis 
 

 

 

 

 
149 

analysis. Hence, transition probability for transition from StD state to death state in the 

WinBUGS two-state model and transition probability for transition from StD state to 

PD state in the three state model were appropriately calculated using reconstructed IPD 

for OS and PFS respectively. Although IPD for OS and PFS were reconstructed, the 

data are not paired, meaning we do not have both the death and progression event data 

of each individual subject in the trial. As such, it is not possible to estimate the survival 

function from progression to death to estimate the transition probabilities for transition 

from PD state to death state in the WinBUGS three-state model. Transition 

probabilities for each of the interventions are estimated by assuming that the mean 

survival time equals the sum of the mean time from stable disease to progression and 

the mean time from progression to death, assuming that the contribution to mean 

survival time by patients who died of causes other than prostate cancer is negligible as 

the proportion of such patients is small. Estimation of this transition probability without 

making such assumption would have been possible if patient-level IPD are available. 

Another limitation of this project is the use of PFS as an approximation to TTP because 

PFS is more commonly reported in published articles than TTP. This was the case for 

the trials in this project. As PFS considers death unrelated to cancer progression as an 

event in the survival analysis compared to TTP, the rate of transition from StD state to 

PD state using PFS would be faster than that using TTP. However, based on the 

assumptions that the proportion of patients who died of other causes unrelated to 

prostate cancer disease progression is expected to be small (due to the advanced 

metastatic stage of the disease) and comparable between the treatment arms (non-

cancer deaths independent of cancer treatments), the difference in rates of transit from 

StD state to PD state between using PFS and using TTP is expected to be minimal and 

the PFS HR and TTP HR between the treatment arms are expected to be comparable. 

Hence, although the cost and QALY for the StD state is expected to be (minimally) 

lower when using PFS as compared to using TTP, the ICER for D+P compared to M+P 

computed using PFS HR is expected to be comparable to the ICER computed using 

TTP HR. Nevertheless, it would have been possible to predict TTP HR for trial TAX 

327 if IPD for the derivation of TTP from the trials utilised in the BRMA and ICMA 

were available or obtainable within the resources of this project.  
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As mentioned earlier, patients who started treatment on M+P were likely to be given 

D+P as second-line chemotherapy treatment post-progression. The OS HR reported for 

trial TAX 327 using the intention-to-treat principle for clinical trials is likely to be an 

underestimation of the “true” OS HR where no treatment switching has occurred, 

giving a predicted PFS HR that is also an underestimation of the “true” PFS HR should 

the PFS data had been recorded for trial TAX327. This implies that for the economic 

analysis, when applying the predicted PFS HR to the transition probabilities for M+P to 

estimate the transition probabilities for D+P, the cohort of patients taking D+P was 

transiting to the PD state at a faster rate than if the original PFS data had been recorded. 

Equivalently, this will have an impact on the cost and QALY estimates of the cost-

effectiveness analysis. 

In summary, the inclusion of the PD state to the original two-state model enables a 

more realistic representation of the natural disease pathway of mHRPC patients. 

However, transition probability has to be appropriately specified and it is not easy and 

can be a challenge especially when PFS data are not available. Where PFS data was not 

recorded, the Bayesian BRMA model proposed in this project serves to predict the 

“missing” PFS HR to enable the specification of a three-state model incorporating the 

PD state. It also allows for the inclusion of competing risk of morbidity to be 

incorporated into the model for cost-effectiveness analysis to better inform health 

policy decision making. 
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5 Use of Bayesian evidence synthesis to inform 

estimation of utility in multiple sclerosis 

 

5.1 Introduction 

In the UK, Health Technology Assessment (HTA) agencies such as NICE appraise new 

health technologies on the basis of cost-effectiveness analyses. In such analyses, the 

estimation of health related quality of life (HRQoL) used to estimate the gain in quality 

adjusted life years (QALY) under new treatment compared to the standard care is 

required. Typically, HRQoL is measured using the EuroQol 5-Dimensions (EQ-5D) 

Questionnaire (Rabin and de Charro, 2001) across most diseases and is the 

recommended HRQoL score for cost-effectiveness analyses by NICE. However, this 

score is not always reported in randomised controlled trials (RCTs) and often mapping 

techniques are used to estimate EQ-5D from disease specific measures. 

 

For example, in rheumatoid arthritis, a common measure of functional status is Health 

Assessment Questionnaire (HAQ) and regression-based methods for mapping of HAQ 

onto EQ-5D have been developed (Pennington and Davis, 2014). In cancer, the 

Functional Assessment of Cancer Therapy-General (FACT-G) and the European 

Organization for Research and Treatment of Cancer Quality of Life Questionnaire-C30  

(EORTC QLQ-C30) are the most widely used cancer-specific HRQoL instruments and 

regression methods for mapping these cancer-specific HRQoL measures onto EQ-5D 

have been developed (Cheung et al., 2009, Teckle et al., 2013, Crott and Briggs, 2010). 

Other cancer-specific HRQoL, such as the functional assessment of cancer therapy-

prostate (FACT-P) may be used for metastatic castrate-resistant prostate cancer and 

similar regression-based models have also been constructed for mapping FACT-P onto 

EQ-5D (Diels et al., 2015). 

In relapsing remitting multiple sclerosis (MS), a common long-term outcome measure 

in RCTs is disability progression measured by Expanded Disability Status Scale 

(EDSS). Orme and colleagues (Orme et al., 2007) developed a mapping model to 

estimate EQ-5D in patients with MS depending on their EDSS score. This mapping 

algorithm has been used in a technology appraisal (Asaria et al., 2011, Novartis 
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Pharmaceuticals UK Ltd, 2011) conducted by NICE. The algorithm, however is 

developed based on a single cohort of patients and applied to studies even when data on 

EQ-5D was collected as part of the RCT of the treatments under consideration. This 

was the case of the FREEDOMS (Kappos et al., 2010) and TRANSFORMS (Cohen et 

al., 2010) trials of Fingolimod. This approach may lead to biased estimates by not 

taking into account the variability between populations. However, individual patient 

data (IPD) is not always available to the analysts conducting the technology appraisal 

and they need to rely on evidence from publicly accessible resources such as the 

publication by Orme and colleagues. The aim of the work presented in this chapter was 

to investigate the use of advanced meta-analytic methods to include all available 

evidence in estimating EQ-5D from EDSS beyond the data from a single cohort. The 

technology appraisal of Fingolimod is used in this chapter as illustrative example of 

extending the evidence on HRQoL in MS beyond the Orme data. 

 

5.1.1 Motivating example 

In 2011, NICE conducted a single technology appraisal (STA) of Fingolimod for the 

treatment of relapsing remitting MS in adults (Asaria et al., 2011, Novartis 

Pharmaceuticals UK Ltd, 2011). Two RCTs (FREEDOMS (Kappos et al., 2010) and 

TRANSFORMS (Cohen et al., 2010)) were used for the cost-effectiveness analysis. 

Although utility data for the patients in the trials were collected, these data were not 

used in the cost-effectiveness analysis. In place of the EQ-5D data collected as part of 

the RCTs, EQ-5D utility values were estimated from data collected on the EDSS scores 

by using the mapping model developed by Orme and colleagues (Orme et al., 2007). 

The relationship between EQ-5D and EDSS reported in the article was estimated using 

data from a questionnaire conducted by the MS Trust UK in 2005. 

The objective of this project is to make use of Bayesian evidence synthesis methods to 

incorporate available evidence about the relationship between EDSS and EQ-5D from 

published articles in the development of mapping from EDSS onto EQ-5D, such as the 

relationship developed by Orme and colleagues. EQ-5D utility values estimated for 

different EDSS scores have important application in cost-effectiveness analysis. The 

economic evaluation of new interventions in MS is based on multi-state models, where 

the health states relate to different levels of disease severity characterised by the EDSS 
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scores. In order to attach utility values to all health states, such values need to be 

associated with EDSS scores of the states. 

A request to obtain IPD of the MS cohort in Orme’s study was made to the first author 

of the article. However, the author no longer has access to the IPD and hence the IPD 

data was not available for analysis in this project. In the absence of IPD from Orme’s 

study, data were simulated to serve the purpose of methodological development of 

mapping with the use of external summary data.  Methods of data simulation, search 

strategy for the identification of external evidence on the relationship between EQ-5D 

and EDSS scores and modelling techniques of both the simulated IPD and the external 

summary data are presented in Section 5.2. Results of the Bayesian evidence synthesis 

and regression analyses are presented in Section 5.3. Strengths and limitations of the 

use of Bayesian evidence synthesis for informing the estimates of EQ-5D utility in MS 

as illustrated in this chapter are discussed in Section 5.4. 

 

5.2 Methods 

Methods used for the estimation of health utility values (EQ-5D) from EDSS scores in 

patients with MS using Bayesian evidence synthesis techniques are described in this 

section. A schematic diagram depicting the procedures involved in the estimation of 

EQ-5D for patients with MS is shown in Figure 5.1. 

Firstly, patient-level data on EQ-5D, EDSS, gender, recent relapse status, type of MS, 

education and years since diagnosis were simulated based on the model developed by 

Orme and colleagues. Methods of simulation for these data are presented in Section 

5.2.1. The simulated data are then used as the likelihood data in the Bayesian linear 

regression analysis as shown in Figure 5.1 (procedures depicted in black).  

Secondly, Bayesian linear regression models to estimate EQ-5D values corresponding 

to different EDSS scores are described in Section 5.2.2. Non-informative prior 

distributions (shown in orange in Figure 5.1) for the regression coefficients of the 

Bayesian linear regression model are also presented. 
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Figure 5.1: Schematic Diagram showing analysis plan for the estimation of EQ-5D using Bayesian techniques. 
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Thirdly, external summary data on EQ-5D and EDSS obtained from published articles 

are used to construct informative prior distributions (the informative prior distribution 

in green in Figure 5.1) for the regression coefficients in the Bayesian linear regression 

models. Search strategy and selection criteria of studies for constructing the prior 

distributions using Bayesian bivariate random-effects meta-analysis (BRMA) are 

discussed in Section 5.2.3.1. The BRMA model for constructing the informative prior 

distributions (in green in Figure 5.1) using external data is described in Section 5.2.3.2. 

Informative prior distribution on the within-study correlation and non-informative prior 

distribution on the between-study correlation between EQ-5D and EDSS in the BRMA 

model (all in purple in Figure 5.1) are also described in Section 5.2.3.2.  

Lastly, data transformation considerations when using sequential Bayesian models 

(Bayesian BRMA and Bayesian linear regression models) are discussed in Section 

5.2.4. Sensitivity analyses utilising alternative methods of simulating patient-level data 

on EQ-5D and modelling assumptions in the regression model for estimating EQ-5D 

are described in Section 5.2.5.  

 

5.2.1 Simulation of patient-level data  

Patient-level data were simulated to mimic the patient cohort in Orme’s study reported 

in the published article (Orme et al., 2007). The cohort of 2048 patients was simulated 

using the model developed by Orme and colleagues. Variables identified to be 

associated with the independent variable, EQ-5D, in a multivariable linear regression 

model reported in the article were simulated using summary statistics reported for all 

the variables. The variables included EDSS, gender, recent relapse status, type of MS, 

education and years since diagnosis. As the summary statistics for the variable: years 

since diagnosis was not reported in the article, IPD for this variable could not be 

simulated, however the effect of this variable was small compared to the other 

covariates.  

Mean EQ-5D for each EDSS score was not reported in the article; however, regression 

coefficients for EQ-5D at different EDSS scores from a multivariable linear regression 

analysis were reported. Mean EQ-5D values corresponding to each EDSS value were 

estimated using the regression coefficients (and applying them to the baseline value). 
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Estimation of the standard deviations for EQ-5D at each EDSS score was not straight-

forward as the model by Orme reported predicted values from a regression model 

assuming normality of the data. Using the estimates from the model for data simulation 

(using normal distribution) resulted in larger variability of the data (which was 

observed when applying the same model to the simulated data). In order to simulate the 

EQ-5D values for this cohort of patients, assumptions about the standard deviations of 

the EQ-5D values were made as described in Section 5.2.1.2. All variables are 

simulated independently of the other variables as the relationships between the 

variables in this study population are not known from the article. The R software (R 

Core Team, 2012) was used for the simulation of the data.  

  

5.2.1.1 Data simulation of categorical variables 

Data for binary variables (gender and recent relapse status) for the cohort were 

simulated using binomial distribution with probabilities reported in Table 3 of the 

article (Orme et al., 2007). Categorical variables with more than two groups (EDSS, 

education and type of MS) were simulated using multinomial distribution with 

probabilities reported in Table 3 (for education and type of MS) and Figure 1 (for 

EDSS) of the article (Orme et al., 2007). Summary data of patient demographics 

reported in Table 3 and Figure 1 of the article published by Orme and colleagues were 

reproduced in Table 5.3 (in Section 5.3.1) for comparisons with the simulated data. 

Data for categories defined as “missing” (for gender) or “not answered” (for education 

level) in Table 3 of Orme’s article were not simulated. The proportions for each of the 

other categories (in variables: gender and education level) were adjusted using the sum 

of proportions in each category as the denominator. 

 

5.2.1.2 Data simulation of continuous variable 

EQ-5D is a quality of life utility measure that is bounded by a range from -0.594 to 1 

(Dolan and Roberts, 2002), where value of 1 indicates a high quality of life while lower 

values indicate worse quality of life. As a result of the bounded range of values for EQ-

5D, EQ-5D data are usually not normally distributed. This rendered simulating EQ-5D 

data using normal distribution inefficient. However, a number of probability 
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distributions (including the normal distribution) are explored in this thesis to evaluate 

which is the best distribution for simulating EQ-5D data for this cohort of patients. 

Statistical distributions explored included the normal distribution, lognormal 

distribution and beta distribution, where the lognormal distribution and beta distribution 

were discussed as possible distributions for utilities by Briggs and colleagues (Briggs et 

al., 2006) (page 92). The sub-sections that follow describe the methods for simulating 

EQ-5D using the three distributions. Methods for assessing the simulated data are 

discussed in Section 5.2.1.3. 

Normal distribution 

As mentioned above, EQ-5D data are generally not normally distributed and simulating 

such data from a normal distribution does not seem appropriate. However, the mean 

values and standard deviations for EQ-5D at each EDSS score were not reported by 

Orme and colleagues, and hence results of the model fitted by the authors were used for 

data simulation. Since the authors of the paper conducted multivariable linear 

regression analysis (with EQ-5D as dependent variable) under assumption of normality, 

it was reasonable in this situation to use the normal distribution to simulate the EQ-5D 

in order to reproduce IPD for this study. 

The 95% confidence intervals (CIs) reported for the mean values of EQ-5D at each 

EDSS score are used to compute the standard deviations using the equation below: 

𝜎�̂� =
√𝑁𝑖 × 𝑊95%𝐶𝐼,𝑖

2 × 1.96
 

where 𝜎�̂� is the estimated standard deviation for EQ-5D at a given EDSS score 𝑖 (𝑖 =

0,1 … ,6,6.5, 7, … ,9);  𝑊95%𝐶𝐼,𝑖 is the width of the 95% CI for mean EQ-5D at EDSS 

score 𝑖; 𝑁𝑖 is the number of patients with EDSS score 𝑖. This standard deviation, which 

is termed the “original SD” for the rest of this chapter, is mathematically an 

overestimation of the true standard deviation for each of the EDSS scores. This is 

because the above equation did not take into account the covariance between the 

regression coefficients in the multivariable linear regression model. Besides that, the 

95% CIs were estimated using a linear regression model that assumes normality of data 

where the data can include any real values, which was not the case for EQ-5D values.    
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Drawing from a normal distribution, some of the simulated EQ-5D values are expected 

to be outside the plausible range of [-0.594, 1] for EQ-5D. To reduce this problem, the 

“original SD” is reduced by truncating the simulated EQ-5D data to exclude values 

outside of the range [-0.594, 1]. Using this reduced set of data, “new” standard 

deviations for each EDSS score are calculated and termed the “new SD” for the rest of 

this chapter. This set of standard deviations is in turn used to simulate EQ-5D data from 

the normal distribution. Although this approach does not fully resolve the issue of 

having simulated EQ-5D data outside the plausible range for EQ-5D values, it reduces 

the proportion of EQ-5D data that fall outside the range.  

An intuitive approach to circumvent the issue of having implausible EQ-5D data 

(resulting from a normal distribution) is to use a truncated normal distribution. This 

distribution restricts all data simulated to be constrained within a pre-specified range, 

which is [-0.594, 1] in this case. However, it is not a desirable method for simulating 

the required data because the resulting simulated EQ-5D data are not normally 

distributed, which would be required to model the data by the use of linear regression, 

and also have mean values at each EDSS score that are shifted due to the fact that the 

truncation was not symmetric about the mean.  

In this thesis, all three method of simulating EQ-5D data using normal distribution are 

conducted to test the performance of each method. The set of mean values of EQ-5D at 

each EDSS score reported in the published article is used for the data simulation. The 

data simulated using (i) the normal distribution with “original SD”  is named “Normal 

(original SD)”; (ii) the normal distribution with “new SD” is named “Normal”; (iii) the 

truncated normal distribution is named “Truncated Normal” for the rest of this thesis. 

 

Log-normal distribution 

The log-normal distribution has also been proposed for modelling utility values in 

economic modelling as utility values are generally constrained within a range of real 

values that can include negative values and are not normally distributed (Briggs et al., 

2006). 

An advantage of using the log-normal distribution to simulate EQ-5D data is that the 

data generated follow a normal distribution and hence the normality assumption of the 
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linear regression analysis applied to the simulated data is satisfied. As the log-normal 

distribution only takes values from zero to positive infinity, a transformation of the EQ-

5D variable onto an interval from 0 to positive infinity was applied. This in turn 

allowed the data to be simulated using a log-normal distribution on the transformed 

EQ-5D variable. The transformation that was applied is as follows: 

𝑇𝐸𝑄5𝐷 =
𝑋𝐸𝑄5𝐷 + 0.594

1 − 𝑋𝐸𝑄5𝐷
 

where 𝑋𝐸𝑄5𝐷 represents the EQ-5D values and 𝑇𝐸𝑄5𝐷 is the transformed value of EQ-

5D;  and 𝑋𝐸𝑄5𝐷 ∈  [−0.594, 1] and 𝑇𝐸𝑄5𝐷 ∈ [0, ∞]. Considering that 

𝑇𝐸𝑄5𝐷~ 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2), it can be noted that 𝐿𝑜𝑔(𝑇𝐸𝑄5𝐷)~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎2). 

Denoting 𝑍𝐸𝑄5𝐷 = 𝐿𝑜𝑔(𝑇𝐸𝑄5𝐷), 𝑍𝐸𝑄5𝐷 was simulated using the normal distribution. 

Mean and variance of 𝑍𝐸𝑄5𝐷, were estimated using the Taylor expansions for the 

moments of functions of random variables. The mean and variance of 𝑍𝐸𝑄5𝐷were 

approximated using the first moment and second moment equations as follow:  

First moment (for Mean): 

𝐸[𝑓(𝑋)] ≈ 𝑓(𝜇𝑋) +
𝑓′′(𝜇𝑋)

2
𝜎𝑋

2 

Second moment (for Variance): 

𝑉𝑎𝑟[𝑓(𝑋)] ≈ [𝑓′(𝐸[𝑋])]2𝑣𝑎𝑟[𝑋] = [𝑓′(𝜇𝑋)]2𝜎𝑋
2 

Taking  

𝑓(𝑋𝐸𝑄5𝐷) =  𝑍𝐸𝑄5𝐷 = 𝐿𝑜𝑔 (
𝑋𝐸𝑄5𝐷 + 0.594

1 − 𝑋𝐸𝑄5𝐷
) 

𝑓′(𝑋𝐸𝑄5𝐷) =  
1

𝑋𝐸𝑄5𝐷 + 0.594
+

1

1 − 𝑋𝐸𝑄5𝐷
 

𝑓′′(𝑋𝐸𝑄5𝐷) =
1

(1 − 𝑋𝐸𝑄5𝐷)
2 −

1

(𝑋𝐸𝑄5𝐷 + 0.594)
2 

the mean of 𝑍𝐸𝑄5𝐷 is: 
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 𝑀𝑒𝑎𝑛(𝑍𝐸𝑄5𝐷) = 𝜇𝑍𝐸𝑄5𝐷
 

=  𝑙𝑜𝑔 (
𝜇𝑋𝐸𝑄5𝐷

+ 0.594

1 − 𝜇𝑋𝐸𝑄5𝐷

)

+  
𝜎𝑋𝐸𝑄5𝐷

2

2
(

1

(1 − 𝜇𝑋𝐸𝑄5𝐷
)

2 −
1

(𝜇𝑋𝐸𝑄5𝐷
+ 0.594)

2) 

 

 

 

(5.1) 

and the variance of 𝑍𝐸𝑄5𝐷 is: 

 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑍𝐸𝑄5𝐷) = 𝜎𝑍𝐸𝑄5𝐷

2  

= (
1

𝜇𝑋𝐸𝑄5𝐷
+ 0.594

+
1

1 − 𝜇𝑋𝐸𝑄5𝐷

)

2

𝜎𝑋𝐸𝑄5𝐷

2  

 

(5.2) 

where 𝜇𝑋𝐸𝑄5𝐷
 is the mean EQ-5D and 𝜎𝑋𝐸𝑄5𝐷

2   is the variance for EQ-5D. 

Taking the reported mean EQ-5D at each EDSS score, 𝜇𝑋𝐸𝑄5𝐷,𝑖
, from the article by 

Orme and colleagues and the corresponding standard deviation at each EDSS scores, 

𝜎𝑋𝐸𝑄5𝐷,𝑖, mean and variance of 𝑍𝐸𝑄5𝐷,𝑖 were computed. Using the mean and variance of 

𝑍𝐸𝑄5𝐷,𝑖 at each EDSS score, data of 𝑍𝐸𝑄5𝐷,𝑖 at each EDSS score are simulated from a 

normal distribution. Simulated data of 𝑍𝐸𝑄5𝐷 ( ∑ 𝑍𝐸𝑄5𝐷,𝑖
9
𝑖=0  ; 

𝑖 = 0, 1, 2, … , 6, 6.5, 7, … , 9) for the cohort of 2048 patients were used in the Bayesian 

linear regression model. To summarise the simulated EQ-5D data and regression 

analysis results on the EQ-5D scale, back-transformation of 𝑍𝐸𝑄5𝐷 data/values to 𝑋𝐸𝑄5𝐷 

data/values was performed using the following equation: 

 𝑋𝐸𝑄5𝐷 =
exp (𝑍𝐸𝑄5𝐷) − 0.594

1 + exp (𝑍𝐸𝑄5𝐷)
 (5.3) 

 

Two sets of 𝑍𝐸𝑄5𝐷 data using lognormal distribution are simulated using the two sets of 

standard deviations explained in the previous section on Normal distribution. Data 

simulated using (i) the log-normal distribution with “original SD”  is named 

“LogNormal (original SD)”; and (ii) the log-normal distribution with the “new SD” is 

named “LogNormal” for the rest of this thesis. 
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Beta distribution 

Another possible approach for simulating EQ-5D data is to use a distribution for 

quantities that are constrained by a specific range of values, such as the beta 

distribution which takes values within a range of 0 to 1. To allow for the full range of 

EQ-5D values, a transformation of EQ-5D is applied as follows: 

𝐵𝐸𝑄5𝐷 =
𝑋𝐸𝑄5𝐷 + 0.594

1.594
 

where 𝑋𝐸𝑄5𝐷 represents the EQ-5D and 𝐵𝐸𝑄5𝐷 is the transformed EQ-5D that follows a 

Beta distribution 𝐵𝐸𝑄5𝐷~ 𝐵𝑒𝑡𝑎(𝛼, 𝛽) with shape parameters 𝛼 and 𝛽. Denoting the 

mean and variance for 𝑋𝐸𝑄5𝐷 as 𝜇𝑋𝐸𝑄5𝐷
 and 𝜎𝑋𝐸𝑄5𝐷

2  respectively, the mean of 𝐵𝐸𝑄5𝐷 is: 

𝑀𝑒𝑎𝑛(𝐵𝐸𝑄5𝐷) = 𝜇𝐵𝐸𝑄5𝐷
=  

𝜇𝑋𝐸𝑄5𝐷
+ 0.594

1.594
 

and the variance of 𝐵𝐸𝑄5𝐷 is: 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝐵𝐸𝑄5𝐷) = 𝜎𝐵𝐸𝑄5𝐷

2 =
𝜎𝑋𝐸𝑄5𝐷

2

(1.594)2
 

Using the mean values and corresponding variances of 𝑋𝐸𝑄5𝐷 at each EDSS score, a set 

of corresponding mean values and variances of the transformed EQ-5D 

((𝜇𝐵𝐸𝑄5𝐷,0
, 𝜎𝐵𝐸𝑄5𝐷,0

2 ) , (𝜇𝐵𝐸𝑄5𝐷,1
, 𝜎𝐵𝐸𝑄5𝐷,1

2 ) , … (𝜇𝐵𝐸𝑄5𝐷,9
, 𝜎𝐵𝐸𝑄5𝐷,9

2 )) are calculated. This 

set of means and variances is in turn used to calculate the set of corresponding shape 

parameters for generating 𝐵𝐸𝑄5𝐷 from the beta distribution using the following 

equations: 

𝛼𝑖 =
𝜇𝐵𝐸𝑄5𝐷,𝑖

2 (1 − 𝜇𝐵𝐸𝑄5𝐷,𝑖
)

𝜎𝐵𝐸𝑄5𝐷,𝑖

2 − 𝜇𝐵𝐸𝑄5𝐷,𝑖
 

𝛽𝑖 =
𝛼𝑖 (1 − 𝜇𝐵𝐸𝑄5𝐷,𝑖

)

𝜇𝐵𝐸𝑄5𝐷,𝑖

 

where 𝑖 = (0, 1, 2, … , 6, 6.5, 7, … , 9) denotes an EDSS score. 
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A cohort of 2048 patients was generated using the beta distribution with the set of 

shape parameters calculated.  EQ-5D data for the cohort of 2048 patients were 

calculated by back-transforming the simulated data, 𝐵𝐸𝑄5𝐷 using the following 

equation: 

𝑋𝐸𝑄5𝐷 = 1.594𝐵𝐸𝑄5𝐷 − 0.594 

The two sets of standard deviations (“original SD” and “new SD”) discussed in the 

previous sections are used to simulate the EQ-5D data. However, as explained in the 

previous sections, the set of “original SD” is large, resulting in the implausible negative 

values for the shape parameters rendering EQ-5D data simulation using a beta 

distribution impossible. This issue does not occur when using the set of “new SD”. 

Another method explored for correcting the overestimation of the “original SD” is by 

reducing the standard deviations such that the 95% reference intervals for EQ-5D at 

each EDSS score are constrained to be within the range of -0.594 to 1. Hence, the 95% 

reference interval for EQ-5D at each EDSS score is truncated at the minimum and 

maximum interval values of -0.594 and 1 respectively and the standard deviation 

recomputed using this truncated 95% reference interval. 

These two sets of standard deviations were used to compute the corresponding sets of 

shape parameters for beta distribution from which the transformed values of EQ-5D, 

𝐵𝐸𝑄5𝐷, were simulated. These two sets of 𝐵𝐸𝑄5𝐷 were back-transformed into two sets 

of 𝑋𝐸𝑄5𝐷. The 𝑋𝐸𝑄5𝐷 data simulated using (i) the beta distribution with the “new SD” is 

named “Beta”; (ii) the beta distribution with standard deviations recomputed using 

truncated 95% reference intervals is named “Beta Truncated” for the rest of this thesis. 

 

5.2.1.3 Assessment of simulated data 

Simulated data for the categorical variables: gender, recent relapse status, EDSS, 

education and type of MS, are tabulated using frequency and proportions. These 

summary statistics are compared to the summary statistics reported in Table 3 of the 

article by Orme and colleagues (Orme et al., 2007) to assess if the simulated data are 

comparable to the study cohort data. 
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EQ-5D data for the cohort of patients reported in the article were presented only as 

regression coefficients (at each EDSS score categories) of a multivariable linear 

regression analysis, and no summary statistics for EQ-5D were reported in the article. 

Hence, to assess how comparable the simulated EQ-5D data are with the Orme's data, 

multivariable linear regression analyses using EDSS as a categorical variable (similar 

to the regression model in the article) were performed on all sets of simulated EQ-5D 

data. The degree of bias each set of simulated EQ-5D data has from the original data is 

computed using the following equation: 

𝐵𝑖𝑎𝑠 =  ∑ ((𝜇𝑆𝑖𝑚,𝑖 − 𝜇𝑂𝑟𝑚𝑒,𝑖)
2

+ (𝜎𝑆𝑖𝑚,𝑖 − 𝜎𝑂𝑟𝑚𝑒,𝑖)
2

)

9

𝑖=0

 

where 𝑖 = (0, 1, 2, … , 6, 6.5, 7, … , 9) denotes the EDSS scores, 𝜇𝑂𝑟𝑚𝑒,𝑖 and 𝜎𝑂𝑟𝑚𝑒,𝑖 

represent the mean and standard deviation of EQ-5D at EDSS score 𝑖 estimated from 

the regression coefficients reported by Orme and colleagues respectively and 𝜇𝑆𝑖𝑚,𝑖 and 

𝜎𝑆𝑖𝑚,𝑖 represent the mean and standard deviation of EQ-5D at EDSS score 𝑖 estimated 

from the regression coefficients performed using the simulated EQ-5D data 

respectively. This bias factor was computed for each of the seven sets of simulated EQ-

5D data. The set of simulated EQ-5D (except the Normal (original SD) set of data) that 

gave the smallest bias was used as the base-case EQ-5D data in this project. The reason 

for excluding the Normal (original SD) set of EQ-5D data was that although it was 

expected to give the smallest bias, it was  a highly implausible set of EQ-5D data as a 

large proportion (>10%) of the data were expected to be outside the range of [-0.594,1]. 

 

5.2.2 Bayesian linear regression models for estimating EQ-5D in MS 

The objective of this project was to obtain estimates of EQ-5D utility values for EDSS 

scores between 0 and 9 using simulated IPD and incorporating information about the 

correlation between EQ-5D and EDSS from published articles that reported both EQ-

5D and EDSS. This section describes the linear regression models that are used for 

estimating the EQ-5D utility values. 

In order to estimate EQ-5D utility values for values of EDSS, a multivariable linear 

regression model, similar to the one defined in the article by Orme and colleagues 

(Orme et al., 2007) was utilised. Besides the multivariable linear regression model, 
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analyses using univariable linear regression models were also explored. The univariable 

linear regression equation for the association between EQ-5D and EDSS takes the 

form: 

 𝑋𝐸𝑄5𝐷,𝑖 = 𝛼 + 𝛽1𝑋𝐸𝐷𝑆𝑆,𝑖 + 휀𝑖 (5.4) 

with EQ-5D and EDSS treated as continuous data in the regression model and 𝑖 

representing the 𝑖-th subject in the simulated study cohort. The multivariable linear 

regression equation adjusting for other covariates takes the form: 

 

𝑋𝐸𝑄5𝐷,𝑖 = 𝛼 + 𝛽1𝑋𝐸𝐷𝑆𝑆,𝑖 + 𝛽𝐺𝑋𝐺𝑒𝑛𝑑𝑒𝑟,𝑖 + 𝛽𝑅𝑋𝑅𝑒𝑙𝑎𝑝𝑠𝑒,𝑖

+ 𝛽𝑀𝑋𝑀𝑆,𝑖 + 𝛽𝐸𝑋𝐸𝑑𝑢,𝑖 + 휀𝑖 (5.5) 

where 𝑋𝐺𝑒𝑛𝑑𝑒𝑟,𝑖, 𝑋𝑅𝑒𝑙𝑎𝑝𝑠𝑒,𝑖, 𝑋𝑀𝑆,𝑖 and 𝑋𝐸𝑑𝑢,𝑖 are the covariate terms for variables 

gender, recent relapse status, type of MS and education respectively. Gender and recent 

relapse status are defined as binary data and type of MS and education are defined as 

categorical data in the regression model. 

In the article by Orme and colleagues (Orme et al., 2007), the EDSS variable, 𝑋𝐸𝐷𝑆𝑆, 

was used as categorical data in the linear regression model (similar to the one specified 

in Equation (5.5)). In this thesis, the linear regression analyses were performed under 

the Bayesian framework where EDSS was defined as a continuous variable in the linear 

regression model. This was to allow for the inclusion of external summary data on 

EDSS which were generally reported using mean and standard deviation in published 

articles instead of proportion or frequency count at each EDSS score. To make such 

inclusion possible, the EDSS data in both analyses, the regression model and the 

external model (used to construct the prior distributions as described in Section 

5.2.3.2), had to be modelled on the same scale; hence the specification of EDSS could 

only take the form of continuous variable.  

In order to take into account the non-linearity of the relationship between EQ-5D and 

EDSS, polynomials of various degrees for the regression term, 𝑋𝐸𝐷𝑆𝑆, were explored.  

Step-wise linear regression models fitted to the simulated data discussed in the previous 

section (Section 5.2.1) were used to decide the degrees of polynomial that best fit the 

simulated data to explain the relationship between EQ-5D and EDSS. The term, EDSS 

(𝑋𝐸𝐷𝑆𝑆), was centred at its mean value (rounded to the nearest integer) in all the 
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models. Model fitting were performed using STATA software (StataCorp, 2011) and 

the likelihood ratio test was used to assess the model fit of nested polynomial models. 

The polynomial model which was found to be the  best fit to the simulated data was in 

turn used in the Bayesian linear regression model for estimating EQ-5D at each EDSS 

score and also in the external analysis model (described in Section 5.2.3) for 

constructing informative prior distributions for the regression coefficients of the 

Bayesian linear regression model. Non-informative prior distributions for the 

regression coefficients of the Bayesian linear regression models are also applied in the 

analyses. The non-informative prior distributions for the regression coefficients of the 

polynomial models explored are presented in Table 5.1. Methods for the construction 

of informative prior distributions for the regression coefficients of the polynomial 

models are described in Section 5.2.3.  
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Table 5.1: Regression models used in Frequentist model selection and subsequently in 

Bayesian regression analyses. 

Degree of 

Polynomial 
Regression Model 

Prior Distribution for 

Regression Coefficients 

    1st XEQ5D = α + β1XEDSS  α ~ Normal(0.0, 106) 

   

β1 ~ Normal(0.0, 106) 

 

With adjustment for covariates βG ~ Normal(0.0, 106) 

 

XEQ5D = α + β1XEDSS  βR ~ Normal(0.0, 106) 

  

+ βGXGender + βRXRelapse + βMXMS + βEXEdu βM ~ Normal(0.0, 106) 

   

βE ~ Normal(0.0, 106) 

    2nd XEQ5D = α + β1XEDSS + β2X
2

EDSS  α ~ Normal(0.0, 106) 

   

β1 ~ Normal(0.0, 106) 

 

With adjustment for covariates β2 ~ Normal(0.0, 106) 

 

XEQ5D = α + β1XEDSS + β2X
2

EDSS  βG ~ Normal(0.0, 106) 

  

+ βGXGender + βRXRelapse + βMXMS + βEXEdu βR ~ Normal(0.0, 106) 

   

βM ~ Normal(0.0, 106) 

   

βE ~ Normal(0.0, 106) 

    3rd XEQ5D = α + β1XEDSS + β2X
2

EDSS + β3X
3
EDSS  α ~ Normal(0.0, 106) 

   

β1 ~ Normal(0.0, 106) 

 

With adjustment for covariates β2 ~ Normal(0.0, 106) 

 

XEQ5D = α + β1XEDSS + β2X
2

EDSS + β3X
3
EDSS  β3 ~ Normal(0.0, 106) 

  

+ βGXGender + βRXRelapse + βMXMS + βEXEdu βG ~ Normal(0.0, 106) 

   

βR ~ Normal(0.0, 106) 

   

βM ~ Normal(0.0, 106) 

   

βE ~ Normal(0.0, 106) 

    4th XEQ5D = α + β1XEDSS + β2X
2

EDSS + β3X
3
EDSS + β4X

4
EDSS α ~ Normal(0.0, 106) 

   

β1 ~ Normal(0.0, 106) 

 

With adjustment for covariates β2 ~ Normal(0.0, 106) 

 

XEQ5D = α + β1XEDSS + β2X
2

EDSS + β3X
3
EDSS + β4X

4
EDSS β3 ~ Normal(0.0, 106) 

  

+ βGXGender + βRXRelapse + βMXMS + βEXEdu β4 ~ Normal(0.0, 106) 

   

βG ~ Normal(0.0, 106) 

   

βR ~ Normal(0.0, 106) 

   

βM ~ Normal(0.0, 106) 

   

βE ~ Normal(0.0, 106) 

    5th XEQ5D = α + β1XEDSS + β2X
2

EDSS + β3X
3
EDSS + β4X

4
EDSS + β5X

5
EDSS  α ~ Normal(0.0, 106) 

   

β1 ~ Normal(0.0, 106) 

 

With adjustment for covariates β2 ~ Normal(0.0, 106) 

 

XEQ5D = α + β1XEDSS + β2X
2

EDSS + β3X
3
EDSS + β4X

4
EDSS + β5X

5
EDSS  β3 ~ Normal(0.0, 106) 

  

+ βGXGender + βRXRelapse + βMXMS + βEXEdu β4 ~ Normal(0.0, 106) 

   

β5 ~ Normal(0.0, 106) 

   

βG ~ Normal(0.0, 106) 

   

βR ~ Normal(0.0, 106) 

   

βM ~ Normal(0.0, 106) 

   

βE ~ Normal(0.0, 106) 
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5.2.3 Construction of prior distributions 

To construct informative prior distributions for the linear regression coefficients that 

define the association between EQ-5D and EDSS, external summary data (from 

publicly available sources) on both outcomes is used. A Bayesian BRMA model that 

jointly synthesises both outcomes while accounting for the correlation between the two 

outcomes was proposed to model the external data. 

In this section, the methods and procedures for constructing the prior distributions are 

discussed. Firstly, the search strategy and selection criteria of studies to form the 

likelihood data to be used in the Bayesian BRMA are described. Next, the 

specifications of the BRMA model for constructing prior distributions are described. 

 

5.2.3.1 Search strategy and selection criteria of studies 

To identify studies for the construction of the prior distributions, a search in PubMed 

for studies in multiple sclerosis published between the year 1999 and June 2014 

inclusive was performed. The search was conducted using the search terms: (i) 

“multiple sclerosis” and “EDSS” and “EQ-5D”, (ii) “multiple sclerosis” and 

“EuroQoL” and (iii) “multiple sclerosis” and “EQ-5D”.  Published studies from the 

search were retrieved and reviewed. Studies that reported both EDSS and EQ-5D 

summary statistics at the same time point in the study (such as at baseline or end of 

follow-up period) were identified to form the dataset for the construction of the prior 

distributions using the proposed Bayesian BRMA described in the next section. 

Summary statistics in terms of frequency, mean and standard deviation for EDSS and 

EQ-5D were extracted to form the likelihood data for the Bayesian BRMA. For the rest 

of this Chapter, this dataset of studies is referred to as the “external dataset”. 

 

5.2.3.2 Bayesian BRMA model  

The purpose for using a Bayesian BRMA model in this project was to construct prior 

distributions for the regression coefficients described in Section 5.2.2. The Bayesian 

BRMA model described in Chapter 2 (Section 2.4.3.5) was adapted to jointly model the 

aggregate data on EDSS and EQ-5D outcomes in such a way to allow the construction 
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of prior distributions for the regression coefficient for the polynomial terms in the 

linear regression model. In order to do this, both EDSS and EQ-5D were treated as 

continuous outcomes and the BRMA model in the product normal formulation (first 

degree polynomial case was described in Chapter 2 Equation (2.5)) was extended to 

contain the polynomial terms to match those in the linear regression model (of the 

simulated IPD as discussed in Section 5.2.2).  

This model takes the following hierarchical form with the within-study model of the 

BRMA: 

 (
𝑌𝐸𝐷𝑆𝑆,𝑖

𝑌𝐸𝑄5𝐷,𝑖
) ~ 𝑁𝑜𝑟𝑚𝑎𝑙 ((

𝜇𝐸𝐷𝑆𝑆,𝑖

𝜇𝐸𝑄5𝐷,𝑖
) , Σ𝑖) (5.6) 

 

with 

Σ𝑖 = (
𝜎𝐸𝐷𝑆𝑆,𝑖

2 𝜎𝐸𝐷𝑆𝑆,𝑖𝜎𝐸𝑄5𝐷,𝑖𝜌𝑤,𝑖

𝜎𝐸𝑄5𝐷,𝑖𝜎𝐸𝐷𝑆𝑆,𝑖𝜌𝑤,𝑖 𝜎𝐸𝑄5𝐷,𝑖
2 ) 

 
 

and the between-study model parameterised using a product normal formulation with 

𝑛-th degree polynomial: 

 

 𝜇𝐸𝐷𝑆𝑆,𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜂𝐸𝐷𝑆𝑆, 𝜓𝐸𝐷𝑆𝑆
2 ) 

𝜇𝐸𝑄5𝐷,𝑖|𝜇𝐸𝐷𝑆𝑆,𝑖 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜂𝐸𝑄5𝐷,𝑖, 𝜓𝐸𝑄5𝐷
2 ) 

 

 𝜂𝐸𝑄5𝐷,𝑖 =  𝜆0 + 𝜆1𝜇𝐸𝐷𝑆𝑆,𝑖 + 𝜆2𝜇𝐸𝐷𝑆𝑆,𝑖
2 + ⋯ + 𝜆n𝜇𝐸𝐷𝑆𝑆,𝑖

𝑛  (5.7) 

 

where 𝑌𝐸𝐷𝑆𝑆,𝑖 and 𝑌𝐸𝑄5𝐷,𝑖 are correlated estimates of true mean values  𝜇𝐸𝐷𝑆𝑆,𝑖 and 

𝜇𝐸𝑄5𝐷,𝑖 of EDSS and EQ-5D  in each study 𝑖 (𝑖 = 1,2,3, …) identified in the search and 

selection criteria described in Section 5.2.3.1, with corresponding within-study 

covariance matrix Σ𝑖. Here, the outcome variables 𝜇𝐸𝐷𝑆𝑆,𝑖 and 𝜇𝐸𝑄5𝐷,𝑖 were associated 

in the form of a linear regression model with 𝑛-th degree polynomials (Equation (5.7)) 

in the product normal formulation of the BRMA model. As the association of EQ-5D 

with EDSS is not linear in practice, their relationship using different degrees of 

polynomial as shown in Table 5.2 were investigated. Similar to the Bayesian linear 

regression model, the EDSS term in Equation (5.7), 𝜇𝐸𝐷𝑆𝑆,𝑖, was also centred at the 
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same mean EDSS value (rounded to the nearest integer) defined in Section 5.2.2 for all 

models in Table 5.2.  

The purpose for using the BRMA model in this project was to obtain posterior 

distributions for the regression coefficients (𝜆0, 𝜆1, 𝜆2, etc) of the linear regression 

model (of the between-study component of the BRMA model) to be used as prior 

distributions for the corresponding regression coefficients (𝛼, 𝛽1, 𝛽2, etc) in the linear 

regression models defined in Table 5.1 in Section 5.2.2.  

Non-informative prior distributions were placed on the regression coefficients of the 

linear regression model (𝜆0, 𝜆1, 𝜆2, … , 𝜆n,  in Equation (5.7)) in the between-study 

component of the Bayesian BRMA model. In the case of the first degree polynomial 

relationship between 𝜇𝐸𝐷𝑆𝑆,𝑖 and 𝜇𝐸𝑄5𝐷,𝑖, two ways of specifying non-informative 

priors were used. In Case 1, non-informative prior was placed on the regression 

coefficient 𝜆0, between-study correlation 𝜌𝑏 and the between-study standard deviations 

(𝜓𝐸𝐷𝑆𝑆
2  and 𝜓𝐸𝑄5𝐷

2 )  as described in Chapter 2 Equation (2.8); and in Case 2, it is placed 

on the regression coefficients (𝜆0 and 𝜆1). 

For the within-study correlation in the within-study component of the Bayesian BRMA 

model, informative prior distribution was defined using information from a published 

study (Fisk et al., 2005). Using the correlation coefficient of -0.66 and study sample 

size of 187 reported in the article (Fisk et al., 2005), the informative prior distribution 

for the within-study correlation between 𝑌𝐸𝐷𝑆𝑆,𝑖 and 𝑌𝐸𝑄5𝐷,𝑖 was constructed using the 

method discussed in Chapter 2 Section 2.4.3.6. Table 5.2 presents the prior 

distributions specified for the parameters in the between-study and within-study 

components of the BRMA model with polynomial of degree one to five.  

The summary statistics (mean and standard errors) from the posterior distributions of 

the regression coefficients in the product normal models of BRMA presented in 

Equation (5.7) were subsequently used to construct prior distributions for its 

corresponding regression coefficients in the linear regression models discussed in 

Section 5.2.2. The posterior distributions and corresponding prior distributions are 

presented in Section 5.3.3.2. 
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Table 5.2: Polynomials used in BRMA model and prior distributions specified for the within- and between-study correlation parameters 

  Between-study model of BRMA   Within-study model of BRMA 

Polynomial Type Linear regression model 

Non-informative prior 

distribution   Informative prior distribution 

     1st-degree polynomial  ηEQ5D,i =  λ0+λ1μEDSS,i λ0 ~ Normal (0, 1000) 

 

zwi ~ Normal (-0.7928,  0.0737
2
) 

(Case 1) 

 

λ1 = (EQ5Db)/(EDSS(1-b
2
)) 

  

  

b ~ Uniform (-1, 1) 

  
     1st-degree polynomial  ηEQ5D,i =  λ0+λ1μEDSS,i λ0 ~ Normal (0, 1000) 

 

zwi ~ Normal (-0.7928,  0.0737
2
) 

(Case 2) 

 

λ1 ~ Normal (0, 1000) 

  
     2nd-degree polynomial ηEQ5D,i =  λ0+λ1μEDSS,i+λ2μ

2
EDSS,i λ0 ~ Normal (0, 1000) 

 

zwi ~ Normal (-0.7928,  0.0737
2
) 

  

λ1 ~ Normal (0, 1000) 

  

  

λ2 ~ Normal (0, 1000) 

  
     3rd-degree polynomial ηEQ5D,i =  λ0+λ1μEDSS,i+λ2μ

2
EDSS,i+λ3μ

3
EDSS,i λ0 ~ Normal (0, 1000) 

 

zwi ~ Normal (-0.7928,  0.0737
2
) 

  

λ1 ~ Normal (0, 1000) 

  

  

λ2 ~ Normal (0, 1000) 

  

  

λ3 ~ Normal (0, 1000) 

  
     4th-degree polynomial ηEQ5D,i =  λ0+λ1μEDSS,i+λ2μ

2
EDSS,i+λ3μ

3
EDSS,i+λ4μ

4
EDSS,i λ0 ~ Normal (0, 1000) 

 

zwi ~ Normal (-0.7928,  0.0737
2
) 

  

λ1 ~ Normal (0, 1000) 

  

  

λ2 ~ Normal (0, 1000) 

  

  

λ3 ~ Normal (0, 1000) 

  

  

λ4 ~ Normal (0, 1000) 

  
     5th-degree polynomial ηEQ5D,i =  λ0+λ1μEDSS,i+λ2μ

2
EDSS,i+λ3μ

3
EDSS,i+λ4μ

4
EDSS,i+λ5μ

5
EDSS,i λ0 ~ Normal (0, 100) 

 

zwi ~ Normal (-0.7928,  0.0737
2
) 

  

λ1 ~ Normal (0, 100) 

  

  

λ2 ~ Normal (0, 100) 

  

  

λ3 ~ Normal (0, 100) 

  

  

λ4 ~ Normal (0, 100) 

  

  

λ5 ~ Normal (0, 100) 
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5.2.4 Data transformation considerations in sequential Bayesian models 

The Bayesian linear regression models for the estimation of EQ-5D in MS are 

described in Section 5.2.2 and the EQ-5D IPD simulated using the methods presented 

in Section 5.2.1 are used for the analyses. The summary data of studies identified using 

the search strategy and selection criteria presented in Section 5.2.3.1 were used as the 

likelihood data for the Bayesian BRMA model discussed in Section 5.2.3.2. Here, there 

are two Bayesian analysis models using two different sets of likelihood data. However, 

the scale of the two sets of data used in the two Bayesian analysis models had to be the 

same due to the sequential use of the two Bayesian models. The posterior distributions 

of the regression coefficients derived from the Bayesian BRMA analysis were 

subsequently used as prior distributions in the Bayesian linear regression analysis. 

When the EQ-5D data were simulated using the normal distribution, the data inherently 

satisfied the normality assumption of the Bayesian linear regression model. The 

simulated data were directly utilised in the Bayesian linear regression model and EQ-

5D summary data of studies identified for the Bayesian BRMA model were also 

directly applied in the BRMA analysis. 

In Section 5.2.1.2, besides the normal distribution, the log-normal distribution was also 

used for the simulation of EQ-5D data. When the EQ-5D data were simulated using the 

log-normal distribution, the back-transformed EQ-5D data (where transformation were 

applied for the purpose of data simulation) were not normally distributed. However, the 

simulated data before performing the back-transformation satisfy the normality 

assumption for linear regression analysis and were used for the analysis. As the 

analysis was performed on the log-normal scale of the EQ-5D data, similar 

transformation of the likelihood data (EQ-5D summary data of studies identified) for 

the Bayesian BRMA was required and are described in the next section. 

 

5.2.4.1 Log-normal distribution 

The Bayesian linear regression analyses were performed using the transformed log-

normal EQ-5D IPD, 𝑍𝐸𝑄5𝐷 described in Section 5.2.1.2, which satisfy the normality 

assumption for linear regression analysis.  
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Methods used for the construction of prior distributions for the regression coefficients 

of the linear regression model were the same as those described in Section 5.2.3.2. 

However, the likelihood data for the BRMA model had to be transformed onto the log-

normal scale for the BRMA analysis (to match the scale of the EQ-5D IPD and hence 

to construct the prior distributions for the regression coefficients on the same scale). 

The mean and variance of EQ-5D (𝜇𝑋𝐸𝑄5𝐷
 and 𝜎𝑋𝐸𝑄5𝐷

2 respectively) were transformed 

onto the log-normal scale (as 𝜇𝑍𝐸𝑄5𝐷
 and 𝜎𝑍𝐸𝑄5𝐷

2 respectively) for all the studies in the 

external dataset. The mean and the variance of the transformed EQ-5D for the studies 

in the external data are computed using Equations (5.1) and (5.2) respectively derived 

in Section 5.2.1.2. 

The posterior distribution for the regression coefficients in the BRMA model were then 

used as prior distribution for the regression coefficients in the Bayesian linear 

regression model using the simulated IPD on the log-normal scale. Final estimates of 

EQ-5D at each EDSS score from the Bayesian linear regression model were computed 

by back-transforming the log-normal EQ-5D estimate (𝑍𝐸𝑄5𝐷) to EQ-5D estimates 

(𝑋𝐸𝑄5𝐷) using equation (5.3). The 95% credible interval (CrI) for the mean EQ-5D 

estimate at each EDSS score was calculated using the same equation. 

 

5.2.5 Sensitivity analyses  

5.2.5.1 Non-constant variance models for EQ-5D 

In the base case model where EDSS was treated as a continuous variable in the linear 

regression model (instead of as a categorical variable in the case of the Orme's model), 

the variance of EQ-5D was assumed constant across all EDSS scores. However, the 

distribution of the data in Orme's paper suggested that the variance of EQ-5D varied 

across EDSS states. As a sensitivity analysis, the variances of EQ-5D across all EDSS 

were allowed to vary with different EDSS scores using either polynomials or 

exponential functions that best fit the structure of the variance data.  Further variability 

in the variance was introduced by adding an error term, which follows a chi-square 

distribution, to the polynomial and exponential models. Details of the choice of 

polynomial and exponential model for the base-case (simulated) EQ-5D data as 

mentioned in Section 5.2.1.3 are described in Section 5.3.5.1.  
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5.2.5.2 Estimation of EQ-5D using a different set of simulated data 

Seven sets of EQ-5D data were simulated using three different statistical distributions 

(normal, log-normal and beta distributions) as described in Section 5.2.1.2 but only the 

set of simulated EQ-5D data with the smallest bias as discussed in Section 5.2.1.3 was 

chosen as the base-case EQ-5D data for analysis in this project.  

To explore how sensitive the estimates for EQ-5D were to the choice of statistical 

distribution used for the data simulation, the set of EQ-5D simulated using the log-

normal distribution was used for the sensitivity analysis. This set of simulated data was 

selected for the sensitivity analysis as it does not require further transformation to 

satisfy the normality assumption of the linear regression model. 

 

5.3 Results 

In this section, results of the analyses are presented. Firstly, in the absence of IPD for 

the patient population in Orme’s study, simulation techniques described in Section 

5.2.1 were utilised to generate the IPD. Summary statistics of the patient demographics 

and disease status estimated using the simulated IPD are presented in Section 5.3.1. 

After assessing the simulated IPD and deciding on the set of EQ-5D data to be used as 

the base-case EQ-5D data for analyses in Section 5.3.1, the choice of regression model 

for the estimation of EQ-5D in MS is discussed in Section 5.3.2. 

Next, informative prior distributions for the regression coefficients of the regression 

model were constructed and are presented in Section 5.3.3. Using the IPD data, the 

prior distributions (both non-informative and informative) and the regression model, 

Bayesian linear regression analyses were performed to estimate EQ-5D at each EDSS 

score. Results of the analyses are presented in Section 5.3.4.  

As the regression analyses were performed using EDSS as a continuous variable 

instead of as a categorical data, sensitivity analysis allowing the variance model of the 

regression model to be non-constant were performed and reported in Section 5.3.5.1. 

Further sensitivity analysis using an alternative set of simulated EQ-5D (using log-

normal distribution) in place of the base-case EQ-5D data was conducted and reported 

in Section 5.3.5.2. 
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5.3.1 Simulated individual patient data 

Individual patient data for the study cohort published by Orme and colleagues (Orme et 

al., 2007) were simulated using the methods described in Section 5.2.1. Summary 

statistics of patient demographics and disease characteristics estimated using the 

simulated IPD are presented in Table 5.3, alongside those reported for Orme’s study. 

The results showed that the simulated data for variables: gender, education, type of MS, 

recent relapse and EDSS were comparable to that of the study cohort in Orme’s study. 

Table 5.3: Patient Demographics and disease information in Orme article (Orme et al., 2007) 

and simulated data 

  Orme Data^   Simulated Data 

Demographics Proportions in % (N)   Proportions in % (N) 

    Gender 

   Male 24.7 

 

24.7 (505) 

Female 74.5 

 

75.3 (1543) 

Missing 0.8 

 

NS 

    Education 

   Secondary school 32.2 

 

32.8 (672) 

College or sixth form 26.5 

 

26.1 (534) 

University or polytechnic degree 29.7 

 

31.0 (634) 

Postgraduate degree 10.1 

 

10.2 (208) 

No answer 1.6 

 

NS 

    Type of MS 

   RRMS 35.5 

 

36.0 (737) 

SPMS 37.2 

 

38.0 (778) 

PPMS 27.3 

 

26.0 (533) 

    Relapse during last 3 months 

   Yes 28.9 

 

28.1 (575) 

No 71.1 

 

71.9 (1473) 

    EDSS scores* 

   0 1.4 (28) 

 

1.4 (29) 

1 7.4 (151) 

 

7.6 (155) 

2 8.8 (180) 

 

8.7 (178) 

3 3.8 (77) 

 

3.8 (78) 

4 9.4 (193) 

 

9.2 (188) 

5 15.8 (323) 

 

15.4 (316) 

6 19.3 (396) 

 

19.5 (399) 

6.5 15.1 (309) 

 

15.4 (315) 

7 10.3 (210) 

 

10.3 (210) 

8 8.1 (165) 

 

8.3 (169) 

9 0.8 (16) 

 

0.5 (11) 

        

^ Data extracted from Orme et. al. Table 3; * Data extracted from Orme et. al. Figure 1 

NS: Not Simulated 
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As discussed in Section 5.2.1.2, there were no EQ-5D summary statistics reported in 

the published article. As a result, mean and standard deviation for EQ-5D at each EDSS 

score was approximated using the multivariable linear regression results in the article. 

Means and standard deviations approximated using the methods discussed in Section 

5.2.1.2 are presented in Table 5.4. 

Table 5.4: Means and standard deviations used for simulating EQ-5D data 

EDSS score Mean EQ-5D Original SD new SD 
Truncated 

standard deviation^ 

     
0 0.870 0.238 0.169 0.066 

1 0.799 0.589 0.327 0.103 

2 0.705 0.640 0.396 0.151 

3 0.574 0.454 0.346 0.217 

4 0.610 0.663 0.394 0.199 

5 0.518 0.844 0.433 0.246 

6 0.458 0.944 0.442 0.277 

6.5 0.462 0.843 0.420 0.274 

7 0.297 0.713 0.438 0.359 

8 -0.049 0.646 0.404 0.278 

9 -0.195 0.297 0.238 0.204 
          

^ Only used for data simulation using the beta distribution 

 

Using the various sets of standard deviations for EQ-5D, together with the mean EQ-

5D, seven sets of EQ-5D data were simulated using either normal, log-normal or beta 

distribution as described in Section 5.2.1.2. EQ-5D data simulated from normal 

distribution using original SD and new SD are called “Normal (original SD)” and 

“Normal” respectively. One set of EQ-5D data, named “Truncated Normal”, was 

simulated using a truncated normal distribution. Those simulated from log-normal 

distribution with the original SD and new SD are called “LogNormal (original SD)” 

and “LogNormal” respectively. Beta distribution was used for simulating two sets of 

EQ-5D data, named “Beta” and “Beta Truncated” which used the new SD and 

truncated standard deviations respectively. Bar charts and summary statistics of the 

seven sets of EQ-5D data are presented in Figure 5.2 and Table 5.5 respectively. Error 

bars in Figure 5.2 represent the 95% CIs. 

Ideally, the summary statistics of the seven sets of EQ-5D data should be compared to 

the summary statistics for EQ-5D in Orme study, however it is not possible as EQ-5D 

data in the article were presented only as regression coefficients (at each EDSS score 

categories) of a multivariable linear regression analysis. It therefore makes more sense 
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to conduct similar regression analysis on the simulated data and compare their results to 

the regression results in Orme’s article. Hence, multivariable linear regression analyses 

assessing the association between EQ-5D and EDSS (where EDSS was treated as a 

categorical variable), adjusting for gender, recent relapse, education and type of MS 

were performed for all sets of simulated EQ-5D data. Results of the regression analyses 

are presented in Figure 5.3 and Table 5.6 respectively. Error bars in Figure 5.3 

represent the 95% CrIs from Bayesian multivariable linear regression analyses, apart 

from the Orme data which represent 95% CIs.  
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Figure 5.2: Relationship between EDSS and EQ-5D for the seven sets of simulated EQ-5D data 
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Table 5.5: EQ-5D summary statistics for the seven sets of simulated EQ-5D data 

EQ-5D  Orme's Data   Normal (original SD)   Normal   Truncated Normal   
LogNormal  

(original SD) 
  LogNormal   Beta   Beta Truncated 

for Mean (95% CI)   Mean (95% CI)   Mean (95% CI)   Mean (95% CI)   Mean (95% CI)   Mean (95% CI)   Mean (95% CI)   Mean (95% CI) 

                

EDSS=0 0.870 (0.782, 0.958) 
 

0.891 (0.793, 0.990) 
 

0.885 (0.815, 0.955) 
 

0.797 (0.744, 0.850) 
 

0.944 (0.915, 0.973) 
 

0.917 (0.885, 0.948) 
 

0.837 (0.771, 0.903) 
 

0.886 (0.864, 0.909) 

EDSS=1 0.799 (0.705, 0.893) 
 

0.804 (0.717, 0.892) 
 

0.802 (0.754, 0.850) 
 

0.454 (0.391, 0.516) 
 

0.924 (0.890, 0.958) 
 

0.833 (0.797, 0.869) 
 

0.758 (0.703, 0.813) 
 

0.807 (0.791, 0.824) 

EDSS=2 0.705 (0.611, 0.798) 
 

0.673 (0.578, 0.768) 
 

0.685 (0.626, 0.744) 
 

0.429 (0.369, 0.488) 
 

0.772 (0.714, 0.829) 
 

0.714 (0.664, 0.763) 
 

0.716 (0.655, 0.778) 
 

0.696 (0.675, 0.717) 

EDSS=3 0.574 (0.472, 0.675) 
 

0.568 (0.473, 0.664) 
 

0.570 (0.497, 0.642) 
 

0.382 (0.306, 0.458) 
 

0.603 (0.518, 0.689) 
 

0.592 (0.521, 0.664) 
 

0.570 (0.492, 0.648) 
 

0.524 (0.475, 0.573) 

EDSS=4 0.610 (0.516, 0.703) 
 

0.668 (0.568, 0.767) 
 

0.644 (0.585, 0.703) 
 

0.373 (0.318, 0.429) 
 

0.710 (0.659, 0.761) 
 

0.646 (0.606, 0.687) 
 

0.628 (0.573, 0.683) 
 

0.602 (0.572, 0.632) 

EDSS=5 0.518 (0.426, 0.610) 
 

0.499 (0.407, 0.590) 
 

0.508 (0.461, 0.555) 
 

0.255 (0.206, 0.303) 
 

0.617 (0.566, 0.668) 
 

0.554 (0.517, 0.592) 
 

0.543 (0.496, 0.589) 
 

0.530 (0.504, 0.555) 

EDSS=6 0.458 (0.365, 0.551) 
 

0.479 (0.390, 0.568) 
 

0.468 (0.426, 0.510) 
 

0.284 (0.242, 0.326) 
 

0.568 (0.520, 0.615) 
 

0.490 (0.455, 0.525) 
 

0.458 (0.416, 0.500) 
 

0.469 (0.441, 0.496) 

EDSS=6.5 0.462 (0.368, 0.556) 
 

0.464 (0.375, 0.554) 
 

0.463 (0.418, 0.508) 
 

0.270 (0.223, 0.317) 
 

0.531 (0.477, 0.586) 
 

0.476 (0.437, 0.515) 
 

0.481 (0.435, 0.527) 
 

0.439 (0.407, 0.471) 

EDSS=7 0.297 (0.200, 0.393) 
 

0.267 (0.165, 0.369) 
 

0.279 (0.216, 0.341) 
 

0.273 (0.217, 0.329) 
 

0.328 (0.262, 0.394) 
 

0.312 (0.263, 0.361) 
 

0.240 (0.180, 0.300) 
 

0.286 (0.236, 0.337) 

EDSS=8 -0.049 (-0.147, 0.050) 
 

-0.115 (-0.215, -0.015) 
 

-0.090 (-0.153, -0.028) 
 

0.076 (0.016, 0.135) 
 

-0.115 (-0.175, -0.055) 
 

-0.082 (-0.127, -0.036) 
 

-0.056 (-0.120, 0.007) 
 

-0.091 (-0.133, -0.050) 

EDSS=9 -0.195 (-0.340, -0.049) 
 

-0.163 (-0.435, 0.109) 
 

-0.169 (-0.387, 0.049) 
 

-0.082 (-0.269, 0.105) 
 

-0.280 (-0.427, -0.132) 
 

-0.263 (-0.387, -0.138) 
 

-0.150 (-0.293, -0.006) 
 

-0.198 (-0.303, -0.092) 
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Figure 5.3: Association between EDSS and EQ-5D estimated using multivariable linear regression model for the seven sets of simulated EQ-5D data  
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Table 5.6: EQ-5D summary statistics reported in Orme paper and estimated using multivariable linear regression model (with EDSS as categorical data)  for 

the seven sets of simulated EQ-5D data 

EQ-5D  Orme's Data   Normal (original SD)   Normal   Truncated Normal   
LogNormal  

(original SD) 
  LogNormal   Beta   Beta Truncated 

for Mean (95% CI)   Mean (95% CrI)   Mean (95% CrI)   Mean (95% CrI)   Mean (95% CrI)   Mean (95% CrI)   Mean (95% CrI)   Mean (95% CrI) 

                

EDSS=0 0.870 (0.782, 0.958) 
 

0.841 (0.560, 1.125) 
 

0.856 (0.705, 1.009) 
 

0.798 (0.645, 0.951) 
 

0.977 (0.950, 0.992) 
 

0.950 (0.923, 0.970) 
 

0.840 (0.723, 0.948) 
 

0.891 (0.822, 0.956) 

EDSS=1 0.799 (0.705, 0.893) 
 

0.765 (0.624, 0.905) 
 

0.778 (0.703, 0.854) 
 

0.455 (0.379, 0.531) 
 

0.994 (0.992, 0.997) 
 

0.922 (0.902, 0.939) 
 

0.789 (0.729, 0.846) 
 

0.814 (0.778, 0.849) 

EDSS=2 0.705 (0.611, 0.798) 
 

0.625 (0.497, 0.754) 
 

0.657 (0.588, 0.727) 
 

0.431 (0.361, 0.501) 
 

0.951 (0.928, 0.968) 
 

0.839 (0.804, 0.870) 
 

0.762 (0.707, 0.816) 
 

0.705 (0.670, 0.741) 

EDSS=3 0.574 (0.472, 0.675) 
 

0.512 (0.326, 0.695) 
 

0.537 (0.437, 0.636) 
 

0.382 (0.281, 0.481) 
 

0.690 (0.522, 0.817) 
 

0.651 (0.556, 0.732) 
 

0.594 (0.504, 0.682) 
 

0.544 (0.486, 0.601) 

EDSS=4 0.610 (0.516, 0.703) 
 

0.632 (0.504, 0.759) 
 

0.623 (0.554, 0.691) 
 

0.375 (0.306, 0.444) 
 

0.855 (0.794, 0.902) 
 

0.714 (0.659, 0.764) 
 

0.664 (0.605, 0.722) 
 

0.619 (0.581, 0.656) 

EDSS=5 0.518 (0.426, 0.610) 
 

0.455 (0.347, 0.565) 
 

0.482 (0.424, 0.541) 
 

0.257 (0.199, 0.317) 
 

0.830 (0.771, 0.878) 
 

0.625 (0.569, 0.678) 
 

0.588 (0.534, 0.639) 
 

0.550 (0.516, 0.583) 

EDSS=6 0.458 (0.365, 0.551) 
 

0.437 (0.334, 0.539) 
 

0.443 (0.388, 0.498) 
 

0.285 (0.229, 0.340) 
 

0.762 (0.689, 0.824) 
 

0.531 (0.470, 0.589) 
 

0.502 (0.449, 0.555) 
 

0.496 (0.463, 0.529) 

EDSS=6.5 0.462 (0.368, 0.556) 
 

0.419 (0.309, 0.529) 
 

0.437 (0.378, 0.496) 
 

0.271 (0.211, 0.330) 
 

0.701 (0.608, 0.780) 
 

0.517 (0.450, 0.579) 
 

0.523 (0.467, 0.578) 
 

0.468 (0.432, 0.504) 

EDSS=7 0.297 (0.200, 0.393) 
 

0.216 (0.092, 0.342) 
 

0.249 (0.182, 0.316) 
 

0.276 (0.209, 0.344) 
 

0.331 (0.173, 0.483) 
 

0.302 (0.215, 0.387) 
 

0.284 (0.209, 0.356) 
 

0.328 (0.283, 0.372) 

EDSS=8 -0.049 (-0.147, 0.050) 
 

-0.156 (-0.290, -0.022) 
 

-0.114 (-0.186, -0.042) 
 

0.075 (0.002, 0.147) 
 

-0.285 (-0.382, -0.168) 
 

-0.169 (-0.240, -0.094) 
 

-0.026 (-0.120, 0.066) 
 

-0.069 (-0.129, -0.011) 

EDSS=9 -0.195 (-0.340, -0.049) 
 

-0.172 (-0.622, 0.281) 
 

-0.177 (-0.418, 0.067) 
 

-0.084 (-0.328, 0.161) 
 

-0.332 (-0.535, 0.070) 
 

-0.309 (-0.457, -0.093) 
 

-0.165 (-0.521, 0.150) 
 

-0.200 (-0.420, 0.004) 
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Bias between the multivariable regression analysis results (with EDSS as a categorical 

variable) and the results published in Orme’s study were computed and presented in 

Table 5.7.  

Table 5.7: Bias between published regression results and results from simulated EQ-5D data 

EDSS 

Score 

Normal 

(original SD) 
Normal 

Truncated 

Normal 

LogNormal 

(original SD) 
LogNormal Beta 

Beta 

Truncated 

        
EDSS=0 0.0096 0.0259 0.0307 0.0629 0.0572 0.0334 0.0419 

EDSS=1 0.2695 0.3040 0.4216 0.3840 0.3515 0.3134 0.3266 

EDSS=2 0.3360 0.3679 0.4403 0.4572 0.4064 0.3779 0.3867 

EDSS=3 0.1336 0.1645 0.1998 0.1572 0.1736 0.1678 0.1817 

EDSS=4 0.3580 0.3945 0.4490 0.4631 0.4154 0.4037 0.4144 

EDSS=5 0.6248 0.6634 0.7296 0.7634 0.6767 0.6718 0.6839 

EDSS=6 0.7957 0.8394 0.8687 0.9206 0.8403 0.8434 0.8615 

EDSS=6.5 0.6214 0.6616 0.6971 0.6959 0.6591 0.6675 0.6803 

EDSS=7 0.4287 0.4637 0.4614 0.4035 0.4485 0.4571 0.4781 

EDSS=8 0.3448 0.3750 0.3857 0.4047 0.3846 0.3584 0.3792 

EDSS=9 0.0048 0.0302 0.0417 0.0378 0.0539 0.0165 0.0355 

        
Total Bias 3.9268 4.2900 4.7256 4.7502 4.4673 4.3107 4.4699 

                

 

Excluding “Normal (original SD)”, “Normal” was the set of simulated EQ-5D data 

closest to the EQ-5D data in Orme’s study with a bias of 4.29, followed by the “Beta” 

(bias=4.31) and “LogNormal” (bias=4.47). Overall, EQ-5D data simulated using the 

new SD (described in Section 5.2.1.2 and presented in Table 5.4) produced the best sets 

of simulated EQ-5D data from each of the three distributions used. Based on the 

results, “Normal” was used as the base-case EQ-5D data for analysis in this thesis. 

“LogNormal” was used for the sensitivity analysis. 

 

5.3.2 Choice of regression model with EDSS as continuous data  

Using the base-case “Normal” EQ-5D data, linear regression models with different 

degrees of polynomial (on the EDSS score) were fitted in a stepwise fashion by 

increasing the degree of the polynomial at each step. Likelihood ratio test was 

performed at each step to determine the polynomial that best fits the EQ-5D data. When 

the next higher degree polynomial was not statistically a better fit for the data than the 

current degree polynomial, the current degree polynomial was selected as the 

polynomial that best fit the data. The polynomial with the best fit for the data was the 
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cubic model. Similar model selection approach was applied to the “LogNormal” EQ-

5D data and the cubic model was also the model that best fit the data. 

For the purpose of further exploration, the next higher degree polynomial (quintic 

model) was also fitted. It was statistically a better fit for the data than both the quartic 

and cubic models. Further exploration of higher degrees of polynomial above five was 

not performed as there were only 20 sets of EQ-5D and EDSS in the external dataset 

for the Bayesian BRMA model. Fitting higher degree polynomial using this set of data 

is therefore not recommended due to insufficient power. Hence, polynomial models of 

up to the fifth degree were analysed for both “Normal” and “LogNormal” EQ-5D data. 

 

5.3.3 Construction of the prior distributions  

5.3.3.1 List of studies identified for the construction of prior distributions  

Using the search strategy and selection criteria described in Section 5.2.3.1, a total of 

64 studies (including RCTs and cohort studies) were identified. Twelve of the 64 

studies reviewed reported baseline summary statistics for EDSS and EQ-5D that were 

suitable for the BRMA of EDSS and EQ-5D. Among the 12 studies, two reported 

summary statistics for three groups of patients or treatment arms, four were two-arm 

studies and the remaining six were single cohort studies. In total, 20 sets of baseline 

summary statistics for EDSS and EQ-5D were extracted to be used as data for the 

construction of prior distribution for the regression coefficients in the regression model 

associating EQ-5D with EDSS. Summary statistics of the studies identified are 

presented in Table 5.8. 
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Table 5.8: Summary statistics of EDSS and EQ-5D reported in the studies identified. 

          EDSS       EQ-5D   

Ref Study Year Groups N Mean SD   N Mean SD 

           1 Kobelt (Kobelt et al., 2001) 2001 Unknown 737 4.40 1.000  717 0.55 0.331 

           

2 Putzki (Putzki et al., 2009) 2009 IFNb-1a 30 mcg once weekly 1025 2.00 1.500  1137 0.75 0.172 

           

3 Vaney (Vaney et al., 2012) 2012 Walking Group 23 5.72 1.060  23 0.59 0.170 

  Lokomat 26 5.88 0.900  26 0.65 0.150 

           

4 DEFINE 

(Gold et al., 2012, Kappos et al., 2014) 

2013 Placebo 408 2.48 1.240  395 0.71 0.250 

  BG-12 (240 mg BID) 410 2.40 1.290  402 0.72 0.230 

  BG-12 (240 mg TID) 416 2.36 1.190  404 0.71 0.240 

           

5 Zettl (Zettl et al., 2013) 2013 Unknown 414 5.30 1.700  414 0.50 0.300 

           

6 Limone (Limone et al., 2013) 2013 Placebo 72 5.80 1.103  72 0.70 0.068 

  Dalfampridine-ER 10 mg BID 224 5.80 1.048  221 0.69 0.058 

           

7 Moss-Morris (Moss-Morris et al., 2013) 

 

2013 CBT 48 4.90 1.350  47 0.66 0.220 

  SL 46 5.10 1.010  46 0.60 0.260 

           

8 Forgarty (Fogarty et al., 2013) 2013 Mixed 214 3.59 2.640  213 0.59 0.330 

           

9 Reese (Reese et al., 2013) 2013 RRMS 92 2.60 1.500  92 0.83 0.180 

  SPMS 38 5.40 1.500  38 0.64 0.278 

  PPMS 7 5.90 1.200  7 0.64 0.260 

           

10 Kuspinar (Kuspinar and Mayo, 2013) 2014 Unknown 189 2.00 1.852  189 0.69 0.180 

           

11 Garopoulou (Garopoulou et al., 2014) 2014 MS-I 5 1.40 0.700  5 0.64 0.229 

  MS-C 5 1.40 0.200  5 0.74 0.109 

           

12 Mitosek-Szewcvyk (Mitosek-Szewczyk et al., 2014) 2014 Unknown 3521 3.34 2.200  3521 0.80 0.270 
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5.3.3.2 Prior distributions for the Bayesian linear regression models 

Prior distributions for the regression coefficients of the Bayesian linear regression 

model were constructed using the posterior distributions of the regression coefficients 

from its corresponding Bayesian BRMA model. For example, in the case of the first 

degree polynomial linear regression model, the prior distribution for 𝛼 and 𝛽1 in the 

Bayesian linear regression model was constructed using the posterior distribution of 𝜆0 

and 𝜆1 respectively from the Bayesian BRMA model. For the higher degree 

polynomials, the prior distributions for 𝛽𝑘 in the Bayesian linear regression models 

were constructed using the posterior distributions of 𝜆𝑘 from the Bayesian BRMA 

model where 𝑘 =2 to 5. Summary statistics for the posterior distribution of the lambdas 

(𝜆) in the BRMA models estimated using the external dataset (identified in Section 

5.3.3.1 as the likelihood data) are presented in Table 5.9. Non-informative prior 

distributions for the between-study model and informative prior distribution for the 

within-study correlation of the within-study model of the BRMA were also used as 

discussed in Section 5.2.3.2 (Table 5.2). 

Table 5.9: Summary statistics for the posterior distributions of the regression coefficients in the 

BRMA models 

Regression     Mean (SD)     

Coefficients 1st 1st 2nd 3rd 4th 5th 

        0.642 (0.0225) 0.641 (0.0230) 0.633 (0.0268) 0.585 (0.0320) 0.569 (0.0370) 0.565 (0.0363) 

        -0.028 (0.0117) -0.029 (0.0121) -0.013 (0.0332) 0.019 (0.0340) -0.005 (0.0467) 0.070 (0.0892) 

       
  

0.007 (0.0132) 0.083 (0.0371) 0.128 (0.0647) 0.141 (0.0630) 

       
   

0.020 (0.0093) 0.059 (0.0462) -0.032 (0.1046) 

       
    

0.007 (0.0083) -0.046 (0.0554) 

       
     

-0.008 (0.0083) 

              

 

Density plots of the posterior distributions of the regression coefficients appeared 

reasonably normally distributed. Therefore, prior distributions for the corresponding 

regression coefficients were specified using normal distribution with means and 

standard deviations presented in Table 5.9. Graphs showing the posterior distributions 

plotted using empirical data from the BRMA analyses and the prior distributions 

plotted using normal distribution with parameter values shown in Table 5.9 are 

presented in Figure 5.4. 
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Figure 5.4: Distributions of posterior distributions from BRMA and prior distributions plotted using normal distribution 
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5.3.4 Estimation of EQ-5D for each EDSS score using linear regression 

Bayesian univariable linear regression model was used to investigate the association of 

EQ-5D with EDSS, where EDSS was treated as a continuous variable. As mentioned in 

Section 5.3.2, using stepwise likelihood ratio test, the cubic model best explained the 

association between EQ-5D and EDSS. However, with further exploration, the quintic 

model fitted the data better than the cubic model and hence it was also included in the 

analyses. Bayesian linear regression analyses with polynomials from the first degree to 

the fifth degree using “Normal” EQ-5D data were performed. The Bayesian model fit 

was assessed using Deviance Information Criterion (DIC), which are presented in 

Table 5.10. 

Table 5.10: Bayesian DIC for the 1st degree to 5th degree polynomial models 

      Polynomial     

Prior 1st (Case 1) 1st (Case 2) 2nd 3rd 4th 5th 

       
Univariable 

      
Non-informative 2270.57 2201.1 2155.27 2156.49 2151.55 

Informative 2280.62 2279.21 2201.78 2155.01 2156.19 2151.26 

       
Multivariable 

      
Non-informative 2269.86 2200.89 2155.77 2157.21 2151.46 

Informative 2290.91 2288.87 2204.04 2155.69 2156.96 2150.99 

              

 

The Bayesian DIC were consistent with the results from the likelihood ratio test, which 

indicated that the quintic model was better than the cubic model in explaining the 

association between EQ-5D and EDSS. The DIC revealed that for the higher degree 

polynomial models (from cubic onwards), the models with informative priors fitted the 

data better than the models with non-informative priors; the reverse was true for the 

lower degree polynomials. These results were consistent for both the univariable and 

multivariable linear regression analyses.  

Results of the Bayesian univariable linear regression analyses with the cubic and 

quintic models, using non-informative and informative prior distributions (presented in 

Table 5.2 and Table 5.9), are presented in Figure 5.5 and Figure 5.6 respectively. 

Summary statistics of the EQ-5D estimates at each EDSS score for the models are 

presented in Table 5.11.  
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Figure 5.5: Association between EDSS and EQ-5D estimated using univariable linear 

regression with cubic model 

 

 
Figure 5.6: Association between EDSS and EQ-5D estimated using univariable linear 

regression with quintic model 
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non-informative and informative priors. Precision of the estimates for EQ-5D were 

improved when using informative prior distributions as expected. Widths of the 95% 

CrIs for the EQ-5D estimates when using informative priors were reduced by 0% to 7% 

compared to the widths of the intervals when using non-informative priors. For the 

quintic linear regression model, only the 95% CrI for EQ-5D at EDSS 0 using non-

informative prior extended beyond the plausible value for EQ-5D. The precision of the 

estimates when using informative priors were also higher than that when using non-

informative priors. The reductions in the width of the 95% CrIs were between 0.2% and 

7.4% inclusive. 

Multivariable linear regression analyses (using non-informative and informative prior 

distributions) adjusting for gender, recent relapse status, education level and type of 

MS were performed and results of the analyses are presented in Table 5.12. Graphs 

showing the relationship between EDSS and EQ-5D using the cubic and quintic linear 

regression models, adjusting for covariates, are shown in Figure 5.7 and Figure 5.8 

respectively. 
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Table 5.11: EQ-5D estimates from univariable linear regression analyses  

"Normal" 
Simulated data 

  
Categorical Analysis 

  Cubic model (3rd-degree polynomial)   Quintic model (5th-degree polynomial) 

EQ-5D  
  

Non-informative Informative Reduction in 
 

Non-informative Informative Reduction in 

for Mean (95% CI)   Mean (95% CrI)   Mean (95% CrI) Mean (95% CrI) width of CrIs   Mean (95% CrI) Mean (95% CrI) width of CrIs 

EDSS=0 0.885 (0.815, 0.955) 
 

0.856 (0.705, 1.009) 
 

0.971 (0.867, 1.076) 0.975 (0.872, 1.078) 1.4% 
 

0.860 (0.718, 1.002) 0.857 (0.715, 0.999) 0.3% 

EDSS=1 0.802 (0.754, 0.850) 
 

0.778 (0.703, 0.854) 
 

0.776 (0.730, 0.823) 0.775 (0.729, 0.822) 0.0% 
 

0.815 (0.761, 0.869) 0.816 (0.762, 0.870) 0.3% 

EDSS=2 0.685 (0.626, 0.744) 
 

0.657 (0.588, 0.727) 
 

0.674 (0.636, 0.713) 0.672 (0.635, 0.709) 2.6% 
 

0.681 (0.637, 0.725) 0.682 (0.638, 0.726) 0.2% 

EDSS=3 0.570 (0.497, 0.642) 
 

0.537 (0.437, 0.636) 
 

0.629 (0.591, 0.667) 0.627 (0.591, 0.663) 4.7% 
 

0.594 (0.548, 0.640) 0.594 (0.548, 0.640) 1.2% 

EDSS=4 0.644 (0.585, 0.703) 
 

0.623 (0.554, 0.691) 
 

0.604 (0.573, 0.636) 0.604 (0.574, 0.634) 6.0% 
 

0.574 (0.534, 0.613) 0.573 (0.534, 0.610) 3.9% 

EDSS=5 0.508 (0.461, 0.555) 
 

0.482 (0.424, 0.541) 
 

0.564 (0.538, 0.589) 0.565 (0.542, 0.589) 7.0% 
 

0.564 (0.534, 0.595) 0.563 (0.536, 0.592) 7.4% 

EDSS=6 0.468 (0.426, 0.510) 
 

0.443 (0.388, 0.498) 
 

0.470 (0.446, 0.494) 0.474 (0.451, 0.497) 4.9% 
 

0.486 (0.459, 0.512) 0.487 (0.461, 0.513) 3.4% 

EDSS=6.5 0.463 (0.418, 0.508) 
 

0.437 (0.378, 0.496) 
 

0.392 (0.368, 0.417) 0.397 (0.373, 0.421) 3.3% 
 

0.400 (0.373, 0.427) 0.402 (0.376, 0.429) 0.8% 

EDSS=7 0.279 (0.216, 0.341) 
 

0.249 (0.182, 0.316) 
 

0.288 (0.261, 0.314) 0.293 (0.267, 0.319) 1.5% 
 

0.279 (0.246, 0.313) 0.283 (0.250, 0.316) 0.5% 

EDSS=8 -0.090 (-0.153, -0.028) 
 

-0.114 (-0.186, -0.042) 
 

-0.020 (-0.071, 0.030) -0.016 (-0.066, 0.034) 0.7% 
 

-0.045 (-0.098, 0.008) -0.044 (-0.096, 0.009) 0.7% 

EDSS=9 -0.169 (-0.387, 0.049) 
 

-0.177 (-0.418, 0.067) 
 

-0.490 (-0.609, -0.373) -0.490 (-0.606, -0.374) 1.4% 
 

-0.360 (-0.570, -0.149) -0.372 (-0.580, -0.163) 0.9% 

                        

 

Table 5.12: EQ-5D estimates from multivariable linear regression analyses, adjusting for gender, recent relapse status, education level and type of MS 

"Normal" 
Simulated data 

  
Categorical Analysis 

  Cubic model (3rd-degree polynomial)   Quintic model (5th-degree polynomial) 

EQ-5D  
  

Non-informative Informative Reduction in 
 

Non-informative Informative Reduction in 

for Mean (95% CI)   Mean (95% CrI)   Mean (95% CrI) Mean (95% CrI) width of CrIs   Mean (95% CrI) Mean (95% CrI) width of CrIs 

EDSS=0 0.885 (0.815, 0.955) 
 

0.856 (0.705, 1.009) 
 

0.943 (0.832, 1.054) 0.960 (0.850, 1.068) 1.9% 
 

0.835 (0.690, 0.980) 0.840 (0.696, 0.984) 0.7% 

EDSS=1 0.802 (0.754, 0.850) 
 

0.778 (0.703, 0.854) 
 

0.750 (0.690, 0.811) 0.763 (0.705, 0.821) 4.0% 
 

0.792 (0.725, 0.859) 0.800 (0.735, 0.865) 2.5% 

EDSS=2 0.685 (0.626, 0.744) 
 

0.657 (0.588, 0.727) 
 

0.649 (0.596, 0.704) 0.661 (0.613, 0.710) 9.6% 
 

0.656 (0.598, 0.714) 0.664 (0.608, 0.720) 3.5% 

EDSS=3 0.570 (0.497, 0.642) 
 

0.537 (0.437, 0.636) 
 

0.604 (0.551, 0.658) 0.617 (0.570, 0.665) 12.3% 
 

0.569 (0.510, 0.629) 0.577 (0.521, 0.632) 6.2% 

EDSS=4 0.644 (0.585, 0.703) 
 

0.623 (0.554, 0.691) 
 

0.579 (0.530, 0.629) 0.594 (0.553, 0.636) 15.8% 
 

0.550 (0.496, 0.605) 0.557 (0.509, 0.606) 11.2% 

EDSS=5 0.508 (0.461, 0.555) 
 

0.482 (0.424, 0.541) 
 

0.538 (0.492, 0.584) 0.555 (0.518, 0.593) 17.9% 
 

0.542 (0.493, 0.590) 0.550 (0.509, 0.591) 16.0% 

EDSS=6 0.468 (0.426, 0.510) 
 

0.443 (0.388, 0.498) 
 

0.444 (0.399, 0.490) 0.463 (0.425, 0.502) 15.7% 
 

0.462 (0.415, 0.509) 0.472 (0.430, 0.513) 11.8% 

EDSS=6.5 0.463 (0.418, 0.508) 
 

0.437 (0.378, 0.496) 
 

0.366 (0.321, 0.412) 0.386 (0.347, 0.426) 13.4% 
 

0.375 (0.328, 0.422) 0.385 (0.342, 0.428) 8.0% 

EDSS=7 0.279 (0.216, 0.341) 
 

0.249 (0.182, 0.316) 
 

0.262 (0.215, 0.309) 0.281 (0.240, 0.323) 10.5% 
 

0.253 (0.203, 0.304) 0.263 (0.215, 0.312) 4.1% 

EDSS=8 -0.090 (-0.153, -0.028) 
 

-0.114 (-0.186, -0.042) 
 

-0.045 (-0.108, 0.018) -0.027 (-0.089, 0.035) 2.5% 
 

-0.068 (-0.133, -0.003) -0.061 (-0.124, 0.003) 1.8% 

EDSS=9 -0.169 (-0.387, 0.049) 
 

-0.177 (-0.418, 0.067) 
 

-0.512 (-0.634, -0.389) -0.499 (-0.620, -0.378) 0.9% 
 

-0.361 (-0.575, -0.146) -0.363 (-0.573, -0.151) 1.7% 
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Figure 5.7: Association between EDSS and EQ-5D estimated using multivariable linear 

regression with cubic model 

 

 
Figure 5.8: Association between EDSS and EQ-5D estimated using multivariable linear 

regression with quintic model 

 

Similar to the univariable linear regression analyses results, the EQ-5D estimates when 

using the quintic model were comparable to the estimates from the categorical linear 

regression analysis. The 95% CrIs for EQ-5D at EDSS 0 and EDSS 9 in the cubic 

model also extended beyond the plausible range of EQ-5D values as in the case of the 

univariable analysis. This was however not the case for the quintic model. The 95% CrI 

for EQ-5D when using both non-informative and informative priors were within the 

range of [-0.594, 1]. Reduction in the width of the 95% CrIs when using informative 

priors compared to non-informative ranged from 0.9% to 17.9% for the cubic model 

and from 0.7% to 16.0% for the quintic model. 
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In the multivariable linear regression model where EDSS was analysed as a categorical 

variable, the variance for EQ-5D at each EDSS score was different, whereas in the case 

of the regression model where EDSS was treated as a continuous variable, the variance 

for EQ-5D each EDSS score was assumed constant across all EDSS scores from 0 to 9. 

As mentioned in Section 5.2.2, the reason why EDSS was analysed as a continuous 

variable in this thesis was due to the fact that the informative priors for the Bayesian 

linear regression analyses were constructed from the BRMA model where EDSS could 

only be analysed as a continuous variable. This was because most published articles 

(which formed the external evidence for the construction of the informative priors) 

reported mainly mean with standard deviation or 95% CIs for both EDSS and EQ-5D. 

To investigate the effect of allowing the variance of EQ-5D at each EDSS score to vary 

on the estimates of EQ-5D, sensitivity analysis were performed. Details on the 

modelling of the EQ-5D variance across all EDSS scores and the results are presented 

in the next section.    

 

5.3.5 Sensitivity Analyses  

5.3.5.1 Non-constant variance models for EQ-5D 

In the results presented in Section 5.3.4, the variance of EQ-5D at each EDSS score 

was assumed the same in the linear regression model. Considering that the variances of 

EQ-5D were not expected to be constant across all EDSS scores, the model was 

modified to allow the variances of EQ-5D to vary. Variance of the base-case EQ-5D at 

each EDSS score 𝑖 (𝑖 = 1, 2, 3, … , 6, 6.5, 7, 8, 9) was calculated for fitting polynomial 

and exponential functions that explain the structure of the variances across all EDSS 

scores. The polynomial model that best fit the structure of the variance of EQ-5D was 

the quadratic model and is defined as: 

𝑉𝑎𝑟(𝑋𝐸𝑄5𝐷,𝑖) = 0.1812 + 0.0051(𝑋𝐸𝐷𝑆𝑆,𝑖 − 𝑋𝐸𝐷𝑆𝑆,𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅) − 0.0047(𝑋𝐸𝐷𝑆𝑆,𝑖 − 𝑋𝐸𝐷𝑆𝑆.𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅)
2

+ 휀𝑖 

and exponential function that best fit the EQ-5D variance is defined as: 
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𝑉𝑎𝑟(𝑋𝐸𝑄5𝐷,𝑖) = 0.2015 𝑒𝑥𝑝 (−0.0555(𝑋𝐸𝐷𝑆𝑆,𝑖 − 𝑋𝐸𝐷𝑆𝑆,𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅)

2
) + 휀𝑖 

where 휀𝑖 is the residual error term and follows a chi-square distribution as follows: 

휀𝑖~𝜒2(𝑛𝐸𝐷𝑆𝑆,𝑖 − 1) 

and 𝑛𝐸𝐷𝑆𝑆,𝑖 is the number of patients in each EDSS score 𝑖. Figure 5.9 shows the 

variance of EQ-5D at each EDSS score with the quadratic model and exponential 

function fitted to the variance data. 

 

Figure 5.9: Variances of EQ-5D by EDSS scores 

 

Results from the multivariable linear regression analysis (adjusting for gender, recent 

relapse status, education level and type of MS) using the quadratic variance model are 

presented in Table 5.13. Results from using the exponential function for the variances 

of EQ-5D are presented in Table 5.14. 
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Table 5.13: EQ-5D estimates using quadratic variance model in Bayesian multivariable linear 

regression 

  Mean EQ-5D (95% CrI) 

 

Cubic model (3rd-degree polynomial) 

 

Quintic model (5th-degree polynomial) 

EDSS Non-informative Informative   Non-informative Informative 

      0 0.872 (0.388, 1.364) 1.001 (0.586, 1.450) 

 

0.845 (0.270, 1.418) 0.877 (0.299, 1.402) 

1 0.737 (0.397, 1.074) 0.802 (0.547, 1.063) 

 

0.789 (0.371, 1.204) 0.918 (0.559, 1.293) 

2 0.658 (0.313, 1.005) 0.689 (0.509, 0.870) 

 

0.639 (0.266, 1.008) 0.760 (0.463, 1.066) 

3 0.611 (0.269, 0.955) 0.634 (0.502, 0.766) 

 

0.555 (0.169, 0.940) 0.618 (0.385, 0.855) 

4 0.572 (0.250, 0.895) 0.611 (0.524, 0.697) 

 

0.549 (0.187, 0.912) 0.564 (0.415, 0.713) 

5 0.516 (0.206, 0.826) 0.591 (0.527, 0.655) 

 

0.549 (0.205, 0.888) 0.572 (0.497, 0.647) 

6 0.420 (0.108, 0.731) 0.547 (0.462, 0.632) 

 

0.460 (0.121, 0.791) 0.560 (0.424, 0.698) 

6.5 0.349 (0.035, 0.660) 0.508 (0.397, 0.620) 

 

0.364 (0.030, 0.687) 0.517 (0.327, 0.711) 

7 0.258 (-0.058, 0.575) 0.452 (0.301, 0.609) 

 

0.234 (-0.115, 0.580) 0.433 (0.174, 0.700) 

8 0.006 (-0.378, 0.380) 0.278 (-0.022, 0.601) 

 

-0.071 (-0.508, 0.369) 0.125 (-0.262, 0.532) 

9 -0.360 (-1.033, 0.262) -0.002 (-0.581, 0.619) 

 

-0.227 (-1.113, 0.618) -0.357 (-1.360, 0.408) 

      DIC 8135.71 8138.33 

 

8153.47 8147.5 

            

 

Table 5.14: EQ-5D estimates using exponential variance model in Bayesian multivariable 

linear regression 

  Mean EQ-5D (95% CrI) 

 

Cubic model (3rd-degree polynomial) 

 

Quintic model (5th-degree polynomial) 

EDSS Non-informative Informative   Non-informative Informative 

      0 0.870 (0.380, 1.365) 1.003 (0.580, 1.455) 

 

0.841 (0.247, 1.425) 0.872 (0.291, 1.408) 

1 0.736 (0.393, 1.075) 0.802 (0.544, 1.067) 

 

0.789 (0.371, 1.201) 0.918 (0.558, 1.291) 

2 0.657 (0.312, 1.000) 0.688 (0.508, 0.870) 

 

0.638 (0.269, 1.008) 0.757 (0.459, 1.065) 

3 0.610 (0.266, 0.953) 0.634 (0.503, 0.766) 

 

0.554 (0.167, 0.938) 0.613 (0.378, 0.853) 

4 0.569 (0.248, 0.892) 0.611 (0.524, 0.698) 

 

0.547 (0.178, 0.912) 0.561 (0.411, 0.711) 

5 0.513 (0.203, 0.827) 0.591 (0.527, 0.655) 

 

0.547 (0.202, 0.893) 0.572 (0.497, 0.647) 

6 0.416 (0.106, 0.731) 0.546 (0.462, 0.631) 

 

0.459 (0.122, 0.794) 0.560 (0.423, 0.697) 

6.5 0.345 (0.035, 0.660) 0.506 (0.396, 0.617) 

 

0.363 (0.032, 0.690) 0.514 (0.324, 0.708) 

7 0.255 (-0.059, 0.574) 0.449 (0.301, 0.603) 

 

0.233 (-0.107, 0.575) 0.429 (0.174, 0.696) 

8 0.006 (-0.372, 0.379) 0.270 (-0.023, 0.585) 

 

-0.072 (-0.500, 0.359) 0.121 (-0.256, 0.522) 

9 -0.354 (-1.011, 0.258) -0.017 (-0.582, 0.589) 

 

-0.225 (-1.088, 0.597) -0.340 (-1.298, 0.393) 

      DIC 8142.09 8144.98 
 

8161.17 8156.18 
            

 

Comparing between the two models, based on the DIC, the quadratic model appeared 

to be slightly better than the exponential model in explaining the variability in the 

variance of EQ-5D across the different values of EDSS. However, allowing the 

variance of EQ-5D to vary at different EDSS scores introduced more variability to the 

estimates of EQ-5D as compared to the results presented in the base-case analyses in 

Section 5.3.4 where the variance of EQ-5D was constant across all EDSS scores. The 

95% CrIs were markedly wider than those in the base-case analyses and the mean EQ-
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5D at EDSS 0 for the cubic regression model using informative priors were above 1 for 

both the quadratic and exponential variance models. Using DIC for model comparison, 

the use of varying variance did not improve the estimates of EQ-5D when compared to 

the constant variance cubic model with DIC=2155.77 (non-informative prior) and 

DIC=2155.69 (informative prior) as shown in Table 5.10. 

 

5.3.5.2 Estimates of EQ-5D using “LogNormal” EQ-5D data 

Individual patient data of Orme’s study were not available and were simulated using 

several standard statistical distributions. Assessment of the simulated data suggested 

that the “Normal” EQ-5D data simulated using the Normal distribution was the best 

(i.e. having the least bias when compared to Orme's data). In this section, sensitivity 

analysis to explore how the estimate of EQ-5D at each EDSS score when using the 

“LogNormal” EQ-5D data would compare with the results when using the “Normal” 

EQ-5D data. 

Bayesian univariable and multivariable linear regression analyses were performed 

using the “LogNormal” EQ-5D data. Results of the analysis when using the cubic 

model in the regression model are presented in Table 5.15, alongside the results when 

using the “Normal” EQ-5D data. 

Mean EQ-5D from the analyses using “LogNormal” data was consistently higher than 

those estimated using “Normal” except for mean EQ-5D at EDSS 8. The “Normal” 

data gave estimates that extended beyond the plausible range of EQ-5D value of [-

0.594, 1] on both upper and lower limits while the estimates from the “LogNormal” 

data were within the range of plausible EQ-5D values. This was largely a result of the 

back-transformation that was applied at the end of the Bayesian linear regression 

analysis to map the log-normal EQ-5D estimates back to the EQ-5D score scale.  

Results from the Bayesian linear regression analysis conducted using “LogNormal” 

EQ-5D data compared to “Normal” EQ-5D data when using the quintic model in the 

regression model are presented in Table 5.16. The results were similar to those reported 

in the cubic models. 

 



Chapter 5  Use of Bayesian evidence synthesis to inform estimation of utility in multiple sclerosis 
 

 

 

 
195 

Table 5.15: EQ-5D estimates from linear regression analyses using cubic model  

  Mean EQ-5D (95% CrI) 

 
"Normal" 

 

"LogNormal" 

EDSS Non-informative Informative   Non-informative Informative 

      Univariable Analysis 

    0 0.971 (0.867, 1.076) 0.975 (0.872, 1.078) 

 

0.973 (0.963, 0.981) 0.973 (0.963, 0.981) 

1 0.776 (0.730, 0.823) 0.775 (0.729, 0.822) 

 

0.917 (0.904, 0.928) 0.917 (0.904, 0.928) 

2 0.674 (0.636, 0.713) 0.672 (0.635, 0.709) 

 

0.840 (0.821, 0.857) 0.840 (0.822, 0.857) 

3 0.629 (0.591, 0.667) 0.627 (0.591, 0.663) 

 

0.773 (0.748, 0.796) 0.772 (0.748, 0.795) 

4 0.604 (0.573, 0.636) 0.604 (0.574, 0.634) 

 

0.724 (0.700, 0.747) 0.722 (0.699, 0.745) 

5 0.564 (0.538, 0.589) 0.565 (0.542, 0.589) 

 

0.671 (0.649, 0.692) 0.668 (0.647, 0.688) 

6 0.470 (0.446, 0.494) 0.474 (0.451, 0.497) 

 

0.569 (0.544, 0.594) 0.567 (0.542, 0.590) 

6.5 0.392 (0.368, 0.417) 0.397 (0.373, 0.421) 

 

0.478 (0.450, 0.506) 0.476 (0.449, 0.504) 

7 0.288 (0.261, 0.314) 0.293 (0.267, 0.319) 

 

0.344 (0.311, 0.377) 0.344 (0.311, 0.376) 

8 -0.020 (-0.071, 0.030) -0.016 (-0.066, 0.034) 

 

-0.070 (-0.126, -0.010) -0.063 (-0.120, -0.003) 

9 -0.490 (-0.609, -0.373) -0.490 (-0.606, -0.374) 

 

-0.456 (-0.499, -0.402) -0.449 (-0.494, -0.394) 

      Multivariable Analysis 

    0 0.943 (0.832, 1.054) 0.960 (0.850, 1.068) 

 

0.971 (0.959, 0.980) 0.970 (0.958, 0.979) 

1 0.750 (0.690, 0.811) 0.763 (0.705, 0.821) 

 

0.909 (0.892, 0.925) 0.910 (0.892, 0.925) 

2 0.649 (0.596, 0.704) 0.661 (0.613, 0.710) 

 

0.826 (0.798, 0.852) 0.827 (0.801, 0.852) 

3 0.604 (0.551, 0.658) 0.617 (0.570, 0.665) 

 

0.755 (0.718, 0.790) 0.757 (0.722, 0.788) 

4 0.579 (0.530, 0.629) 0.594 (0.553, 0.636) 

 

0.704 (0.663, 0.741) 0.704 (0.669, 0.738) 

5 0.538 (0.492, 0.584) 0.555 (0.518, 0.593) 

 

0.648 (0.606, 0.687) 0.647 (0.611, 0.682) 

6 0.444 (0.399, 0.490) 0.463 (0.425, 0.502) 

 

0.541 (0.492, 0.589) 0.541 (0.497, 0.583) 

6.5 0.366 (0.321, 0.412) 0.386 (0.347, 0.426) 

 

0.447 (0.392, 0.500) 0.446 (0.397, 0.495) 

7 0.262 (0.215, 0.309) 0.281 (0.240, 0.323) 

 

0.309 (0.249, 0.368) 0.310 (0.255, 0.365) 

8 -0.045 (-0.108, 0.018) -0.027 (-0.089, 0.035) 

 

-0.103 (-0.171, -0.031) -0.097 (-0.164, -0.026) 

9 -0.512 (-0.634, -0.389) -0.499 (-0.620, -0.378) 

 

-0.468 (-0.509, -0.416) -0.463 (-0.505, -0.410) 
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Table 5.16: EQ-5D estimates from linear regression analyses using quintic model  

  Mean EQ-5D (95% CrI) 

 
"Normal" 

 

"LogNormal" 

EDSS Non-informative Informative   Non-informative Informative 

      Univariable Analysis 

    0 0.860 (0.718, 1.002) 0.857 (0.715, 0.999) 

 

0.953 (0.928, 0.971) 0.952 (0.927, 0.970) 

1 0.815 (0.761, 0.869) 0.816 (0.762, 0.870) 

 

0.930 (0.918, 0.941) 0.931 (0.918, 0.942) 

2 0.681 (0.637, 0.725) 0.682 (0.638, 0.726) 

 

0.845 (0.824, 0.864) 0.846 (0.826, 0.865) 

3 0.594 (0.548, 0.640) 0.594 (0.548, 0.640) 

 

0.739 (0.704, 0.770) 0.737 (0.703, 0.768) 

4 0.574 (0.534, 0.613) 0.573 (0.534, 0.610) 

 

0.687 (0.654, 0.719) 0.680 (0.647, 0.711) 

5 0.564 (0.534, 0.595) 0.563 (0.536, 0.592) 

 

0.670 (0.644, 0.696) 0.660 (0.635, 0.685) 

6 0.486 (0.459, 0.512) 0.487 (0.461, 0.513) 

 

0.592 (0.566, 0.618) 0.587 (0.561, 0.613) 

6.5 0.400 (0.373, 0.427) 0.402 (0.376, 0.429) 

 

0.493 (0.462, 0.522) 0.493 (0.463, 0.522) 

7 0.279 (0.246, 0.313) 0.283 (0.250, 0.316) 

 

0.331 (0.290, 0.373) 0.338 (0.297, 0.379) 

8 -0.045 (-0.098, 0.008) -0.044 (-0.096, 0.009) 

 

-0.109 (-0.166, -0.050) -0.104 (-0.160, -0.044) 

9 -0.360 (-0.570, -0.149) -0.372 (-0.580, -0.163) 

 

-0.359 (-0.471, -0.198) -0.381 (-0.483, -0.233) 

      Multivariable Analysis 

    0 0.835 (0.690, 0.980) 0.840 (0.696, 0.984) 

 

0.949 (0.922, 0.969) 0.948 (0.920, 0.968) 

1 0.792 (0.725, 0.859) 0.800 (0.735, 0.865) 

 

0.925 (0.908, 0.939) 0.923 (0.907, 0.938) 

2 0.656 (0.598, 0.714) 0.664 (0.608, 0.720) 

 

0.834 (0.804, 0.860) 0.832 (0.803, 0.858) 

3 0.569 (0.510, 0.629) 0.577 (0.521, 0.632) 

 

0.722 (0.676, 0.764) 0.716 (0.672, 0.757) 

4 0.550 (0.496, 0.605) 0.557 (0.509, 0.606) 

 

0.668 (0.620, 0.713) 0.657 (0.613, 0.699) 

5 0.542 (0.493, 0.590) 0.550 (0.509, 0.591) 

 

0.648 (0.603, 0.690) 0.636 (0.596, 0.673) 

6 0.462 (0.415, 0.509) 0.472 (0.430, 0.513) 

 

0.567 (0.517, 0.614) 0.557 (0.512, 0.600) 

6.5 0.375 (0.328, 0.422) 0.385 (0.342, 0.428) 

 

0.464 (0.409, 0.517) 0.458 (0.406, 0.507) 

7 0.253 (0.203, 0.304) 0.263 (0.215, 0.312) 

 

0.300 (0.235, 0.364) 0.298 (0.235, 0.360) 

8 -0.068 (-0.133, -0.003) -0.061 (-0.124, 0.003) 

 

-0.137 (-0.204, -0.066) -0.140 (-0.205, -0.070) 

9 -0.361 (-0.575, -0.146) -0.363 (-0.573, -0.151) 

 

-0.381 (-0.485, -0.228) -0.401 (-0.495, -0.262) 
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5.4 Discussions 

Evidence synthesis using meta-analysis is widely used in clinical research to 

understand the results of any study in the context of all other relevant and available 

evidence. Average values of outcomes of interest (or average treatment effects on those 

outcomes) have commonly been obtained by meta-analysing all relevant published 

evidence. In this project on the estimation of EQ-5D in MS, evidence synthesis takes 

on a different approach. Evidence synthesis technique was not applied to estimate the 

average endpoint of interest (EQ-5D), instead it was utilised for the construction of 

informative prior distributions for the subsequent estimation of EQ-5D (using 

regression models) in a Bayesian framework.  

Results in this project show that instead of using EQ-5D estimates solely from a single 

study (Orme’s study in this case) to inform the economic model for cost-effectiveness 

analysis, it is possible to incorporate external evidence on EQ-5D and EDSS to obtain 

the EQ-5D estimates. When using informative prior distributions in a quintic 

multivariable linear regression model for the estimation of EQ-5D at each EDSS, the 

precision of the estimates increased compared to those obtained from analyses using 

non-informative priors. For example, at EDSS 5, the width of the 95% CrI was 

narrower by 16% compared to estimates obtained from analysis using non-informative 

priors. 

The joint analysis of EQ-5D and EDSS using a BRMA model allows the relationship 

between the two endpoints to be embedded in the prior distributions constructed and 

utilised to inform the EQ-5D estimates in the subsequent regression analyses.  

Estimates of EQ-5D when incorporating external evidence have higher precision and 

can in turn be used to construct utilities distribution with higher precision for use in a 

probabilistic cost-effectiveness analysis. 

A recent study (Fogarty et al., 2013) in the Ireland also reported the relationship 

between EQ-5D and EDSS for the purpose of informing economic decision making. 

Instead of using a linear regression model with EDSS as a categorical variable (as in 

Orme’s study) in their analysis, they modelled EQ-5D with EDSS as a continuous 

variable using a piecewise linear regression. Apart from that, no adjustment for other 

covariate was deemed necessary in Fogarty’s study. 
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The distribution of EDSS scores was bimodal with the highest peak at EDSS 6 for both 

studies. However, Fogarty’s study classified patients with EDSS 6 and EDSS 6.5 in the 

category EDSS 6 while Orme’s study had them as two separate categories. It is 

therefore not appropriate to compare the results of the studies at EDSS 6.  The second 

peak in Fogarty’s study was at EDSS 1 with mean EQ-5D of 0.80 (95% CI = 0.75 to 

0.85). The mean EQ-5D reported in Orme’s study was 0.799 (95% CI = 0.705 to 0.893) 

and the estimates from the Bayesian analyses in this thesis were 0.800 (95% CrI = 

0.735 to 0.865) and 0.792 (95% CrI = 0.725 to 0.859) when using informative and non-

informative prior distributions respectively. The results were similar except that the 

95% CIs for EQ-5D in Fogarty’s study are narrower compared to that in Orme’s study 

and also the 95% CrIs for EQ-5D in the Bayesian analyses. The 95% CIs of EQ-5D in 

Fogarty’s study may have been narrower because it is a univariable analysis and uses a 

piecewise linear regression model instead of a simple linear regression model. 

One major limitation of this project is the absence of IPD of the population in Orme’s 

study, which was not obtainable from the author of Orme’s study. Coupled with that, 

the mean and standard deviation of the patients’ EQ-5D at each EDSS score and year 

since diagnosis were not reported in the article by Orme and colleagues. The mean EQ-

5D at each EDSS score from the multivariable linear regression analysis results was 

used in place of the mean EQ-5D from the patient data for simulating the EQ-5D data. 

Strong assumptions had to be made to estimate the standard deviation of EQ-5D at each 

EDSS score. It was not possible to simulate the year since diagnosis data and this 

variable was not adjusted for in the Bayesian multivariable analyses. Apart from this, 

data for the other variables (gender, recent relapse status, type of MS and education) 

were simulated independently as the relationships of these variables with one another 

and with EDSS and EQ-5D were not known. When these variables were adjusted for in 

the Bayesian multivariable analyses, it is unlikely that any effects of these covariates on 

EQ-5D would be seen, unless purely by chance, since the correlations between the 

covariates and EQ-5D were not accounted for in the data simulation. Thus, if the IPD 

were available, simulation of the data would not be necessary and a better assessment 

of the use of external information to inform EQ-5D summary estimate at each EDSS 

score would be viable. Although EQ-5D utility at each EDSS score are estimated using 

a simulated dataset in this project, the simulated data were comparable to the data from 
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the study population. Hence, the increase in precision for the EQ-5D estimates would 

also be expected if the original data from the study were used.  

Studies for the construction of prior distributions for the regression coefficients of the 

Bayesian linear regression models were identified using solely PubMed. As other 

databases such as EMBASE and Cochrane Library were not used to search for potential 

studies to form the external dataset, it is possible that some studies were not identified 

for the construction of the prior distributions. Hence using a single database could 

exacerbate publication bias. Besides publication bias, another source of potential bias 

from using PubMed is language bias as PubMed do not contain an extensive collection 

of non-English language journal articles. Additional databases such as LILACS (Latin 

American and Caribbean Health Sciences Literature) that contain collections of non-

English language publications could potentially help to minimize language bias 

induced when using solely PubMed. 

As EQ-5D and EDSS are reported using means and standard deviations in most articles 

on MS except for articles that investigate the relationship between them, both EQ-5D 

and EDSS extracted from these articles (that form the external evidence for a Bayesian 

analysis) had to be analysed on the continuous scale. Hence, a Bayesian linear 

regression analysis with EDSS as a categorical variable is not possible in this project. 

Looking ahead, it may be possible to perform Bayesian linear regression analysis with 

EDSS as a categorical variable (incorporating external evidence) if future articles in 

MS are to report patients’ EQ-5D summary statistics for each category of EDSS. 

Although the increase in precision of the EQ-5D estimate using Bayesian evidence 

synthesis (incorporating informative prior distributions) in this project is small, the 

same statistical methodology when applied to a different disease area may provide 

greater gain in precision of its estimates of interest, depending on the amount of 

evidence available as well as the heterogeneity of the evidence sources. 

Although utility data were collected as part of the RCTs (TRANSFORMS and 

FREEDOMS) used in the manufacturer's submission for the health technology 

appraisal, these data were not used in the cost-effectiveness analysis. In place of these 

data, EQ-5D utility values were estimated using the mapping model of EQ-5D and 

EDSS developed by Orme and colleagues. The methodology described in this thesis 
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can potentially be applied to include data from Orme’s study as part of the external 

source of evidence to construct the informative prior distributions when the utility data 

from the RCTs (TRANSFORMS and FREEDOMS) were made available in the future. 

In conclusion, this project shows how Bayesian evidence synthesis can be employed to 

make use of all available evidence to inform utility estimates, which can then be used 

in cost-effectiveness analysis of disease-modifying therapies in MS to inform economic 

decision making. Similarly, the same statistical methodologies can be applied to other 

disease area to inform outcome estimates when external sources of evidence are 

available. 
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6 Discussions and Conclusions 

 

6.1 Thesis Overview 

This thesis considers three areas of methodological and presentational challenges 

related to clinical effectiveness and cost-effectiveness analysis in HTA and develops 

novel approaches to address these challenges. The three methodological and 

presentational challenges identified in this thesis are:  

1. There is no established standardised presentational approaches for reporting 

NMA results in HTA 

2. Data for the full set of parameters required to specify a multi-state model for 

economic modelling may not always be available 

3. Mapping of a disease specific health effect to a generic measure of health effect 

in cost-effectiveness evaluation is often performed using estimates from a single 

study 

The first chapter of this thesis outlined the aims and provided an introduction to the 

methodological and presentational challenges that are explored and answered in this 

thesis. General statistical methodologies and software are described in Chapter 2; with 

specific, and further statistical methods unique to addressing each of the challenges 

identified, are presented in their respective Chapters 3, 4 or 5.  

Chapter 3, 4 and 5 are self-contained chapters addressing challenge 1, 2 and 3 listed 

above respectively. Each chapter starts with an introduction to the background of the 

research question, and where appropriate presents the motivating case study that forms 

the example for illustrating the methods developed. It then follows with a methods 

section that describes the data evidence and statistical methodologies applied for the 

analysis. Schematic diagrams presenting an overview of the data evidence, methods 

and procedures involved in the development of the applied methodologies for 

answering the identified issues in HTA are also included.  

Results in the form of recommendations, quantitative estimates, graphical tools and 

software are presented. The chapters then conclude with a discussion section, which 
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interprets and explains the results to answer the research question specific to the 

chapter. It also justifies the data evidence and approaches used, discusses the 

advantages and limitations of the applied methodologies developed and provides 

suggestions for further work. 

As detailed discussions of the findings, using different case studies to highlight and 

address the challenges identified, are presented in the discussion section of their 

respective chapters, this chapter seeks to provide a more general overview. In particular 

it highlights the strengths and limitations of the approaches proposed and implemented 

in this thesis. It also discusses potential further extensions to these methods from a 

broader perspective. 

 

6.2 Strengths and limitations of this work 

The strengths and limitations of the graphical tools, and evidence synthesis approaches, 

developed in this thesis to address the challenges identified are discussed in Sections 

6.2.1 and 6.2.2 respectively. Strengths and limitations relating to other methodological 

work that is unique to the specific HTA projects of Chapters 4 and 5 are discussed in 

the discussion section of their respective chapters.  These include problems with the 

reconstruction of individual patient data (IPD) for survival outcomes and specification 

of transition probabilities for cost-effectiveness analysis in Chapter 4, and simulation of 

IPD for Bayesian linear regression analysis in Chapter 5. 

 

6.2.1 Graphical tools  

A review that summarises how NMA data, analysis methods and results are presented 

in UK HTA reports revealed that there is no standard tabular and/or graphical format 

for the presentation of NMA evidence structure or results. Results were mainly 

presented in tabular format with only a few also reporting summary forest plots. This is 

probably due to the fact that most of the reviewed HTAs implemented the NMA in 

WinBUGS which has limited graphical functionality. 

After the completion of my review, two published systematic reviews of the 

international literature (Coleman et al., 2012, Bafeta et al., 2014)  were in broad 
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agreement with our findings.  Thus, while the sample of NMAs in my review was 

limited to UK HTA reports, it is reassuring that reviews with a wider perspective 

obtained similar findings. This further strengthens the need for both additional 

guidance and improved presentational tools for reporting NMA results to aid their 

interpretability. 

Recommendations regarding the presentation of NMA analyses are made. However, it 

should be acknowledged that no recommendation was developed for the reporting of 

issues such as variable study quality, subgroup analysis or inconsistency analysis, due 

to the infancy of this methodology.  

Given the increasing popularity and use of NMA, there remains no standardised 

presentational tool for their reporting. In this thesis, graphical tools to aid clear 

presentation and thereby to facilitate interpretation of NMA results were developed to 

address this challenge. Three graphical tools, namely SFP Matrix, SFP Table and 

Median Rank Chart were developed. SFP Matrix and SFP Table provide a 

comprehensive presentation of the important NMA and PWMA results displayed on a 

single plot. These plots not only enable easy comparison of NMA and PWMA results 

but also assist in reducing the number of tables and/or figures required for all relevant 

results to be presented in the main text of a journal article where space is often limited. 

The Median Rank Chart complements the SFP Matrix or the SFP Table by providing a 

visual summary of each intervention’s median ranking within the network of interest; 

thus enabling decision makers to easily identify the “top-ranking” intervention(s) in 

terms of effectiveness. 

As the majority of HTAs reviewed implemented the NMA analysis by calling the 

WinBUGS software from the R2WinBUGS library, the graphical tools were also 

developed in R. Hence, users familiar with R can readily modify the NMA WinBUGS 

model to allow for further extensions such as the use of a hierarchical model whereby 

the similarity of treatment effects within the same class of treatments is assumed (Owen 

et al., 2015, Warren et al., 2014). Although the graphical tools were developed for the 

presentation of a single outcome, potentially they can be extended to describe multiple 

outcome situations. 
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6.2.2 Evidence synthesis 

Evidence synthesis using meta-analysis is widely used in clinical research to 

understand the results of any study in the context of all other relevant and available 

evidence. Average values of outcomes of interest (or average treatment effects on those 

outcomes) have commonly been obtained by a meta-analysis of all relevant published 

evidence. However, evidence synthesis techniques are applied in a number of different 

ways to address methodological challenges in HTA identified in this thesis. 

In Chapter 4, when data for the appropriate specification of an economic model for 

cost-effectiveness evaluation is not available, bivariate random-effects meta-analysis 

(BRMA) was used.  This predicts the PFS HR, when PFS is not reported, for a specific 

randomised controlled trial (RCT) in mHRPC, by jointly modelling OS and PFS data in 

a Bayesian meta-analytic framework incorporating informative prior distributions from 

available published evidence on both the within- and between-study correlations 

between PFS and OS. Indirect comparison meta-analysis (ICMA) was also utilised for 

the estimation of relative clinical effectiveness between two interventions when no 

head-to-head RCT exists. In Chapter 5, Bayesian BRMA was used to jointly model 

EQ-5D and EDSS in multiple sclerosis for the construction of informative prior 

distributions for the regression coefficients to inform the subsequent estimation of EQ-

5D using Bayesian regression models. 

When using the BRMA to jointly model two correlated endpoints (such as the PFS and 

OS in mHRPC presented in Chapter 4; EDSS and EQ-5D for MS presented in Chapter 

5), an important item of information for the bivariate evidence synthesis is the within-

study correlation between the two endpoints. As is the case for our two projects, the 

within-study correlation for the studies included in the evidence synthesis is often not 

available. To overcome this limitation, where the within-study correlations cannot be 

directly obtained from the summary data and IPD are not available, informative prior 

distributions for the within-study correlations were constructed using correlation data 

from published external sources of evidence. 

Informative prior distributions for the between-study correlations can also be 

constructed using the same (or different) set of external evidence although it is 

acknowledged that this correlation can be directly estimated using the summary data of 

the studies included in the BRMA. Hence, to perform a fully Bayesian analysis that 
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incorporate external information, informative prior distributions for both the within-

study and between-study correlations between PFS and OS were constructed in the 

mHRPC project (Chapter 4). However, in the MS project (Chapter 5), BRMA in the 

form of product normal with polynomial terms was applied to external evidence to 

produce posterior distributions. These in turn served as informative prior distributions 

for the coefficients in a subsequent multi-polynomial linear regression model. 

Results from the two projects showed that when using BRMA to jointly model two 

outcomes, the use of external evidence in the form of informative priors for the within-

study and between-study correlations between the two outcomes results in increased 

precision of the estimates as compared to the case when non-informative priors were 

used. However, this is not always the case. In the mHRPC project, when the predicted 

PFS HR of D+P versus M+P, obtained from BRMA using informative priors for the 

between-study correlation and non-informative priors for the within-study correlation, 

were subsequently used in an ICMA to estimate the corresponding PFS HRs for D+P 

versus P, the PFS HR estimate had lower precision compared to that obtained using the 

predicted PFS from BRMA with the non-informative priors. Thus, although the use of 

informative priors generally results in increased precision of the estimates, they can 

sometimes result in increased uncertainty. This highlights that the estimates obtained 

encompassing informative prior distributions in a Bayesian meta-analysis also depend 

upon whether there is an associated decrease or increase in heterogeneity especially for 

random-effects models. 

However, as with any evidence synthesis the precision of the estimate depends on the 

amount of evidence available as well as the heterogeneity of the evidence sources. 

Although the focus of this thesis has been on the use of evidence technique for 

estimating quantitative results and little has been done to evaluate the quality of the 

studies used in the meta-analysis performed in this thesis, it is acknowledged that the 

quality of the evidence supporting the analysis is equally important. 

This thesis demonstrates how evidence synthesis methodologies can be applied for the 

purpose of outcome prediction or the construction of informative prior distributions for 

a Bayesian analysis, in addition to the traditional pooling of data for obtaining the 

average values of the outcomes of interest. Besides that, fully Bayesian analyses that 

utilise external information in the form of informative prior distributions are presented.  
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Within the Bayesian framework, the approaches proposed also allow sets of evidence to 

be synthesised sequentially using various evidence synthesis techniques to inform the 

final estimate of interest. 

 

6.3 Further work 

Potential extensions to the graphical tools and evidence synthesis approaches are 

outlined in sections 6.3.1 and 6.3.2 respectively. 

  

6.3.1 Graphical tools  

The presentational challenges of reporting quantitative NMA results in HTA is the first 

of the three challenges addressed in this thesis. Although the focus has been on 

quantitative evidence synthesis results and methods, the quality of the evidence 

supporting the analysis is equally important to enable appropriate reporting and 

interpretation of the results. However, there was no clear guidance for evaluating the 

quality of the evidence for NMA such as the Grading of Recommendations 

Assessment, Development and Evaluation (GRADE) Working Group and PRISMA 

statement for traditional meta-analysis during the development of the graphical tools in 

this thesis.  

Approaches to assess the quality of evidence from NMA based on the methodology 

developed by the GRADE Working Group was proposed by Salanti and colleagues 

(Salanti et al., 2014). Following that, the GRADE Working Group presented their four-

step approach to rate the quality of evidence for NMA estimates (Puhan et al., 2014) 

and the PRISMA extension statement for reporting systematic reviews used for NMA 

(Hutton et al., 2015) was published in 2015.  

Concurrent to the development of the graphical tools, Chaimani and colleagues 

developed graphical tools for frequentist NMA performed in STATA (Chaimani et al., 

2013). Although the graphical tools in this thesis are developed using the R software 

and use the output from WinBUGS where a Bayesian NMA was carried out, the 

graphics can also be used for presenting NMA performed under the frequentist 

framework with appropriate modification of the R code.  
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With the increasing popularity of NMA, recent methodological work has also lead to 

the development of multivariate NMA for multiple correlated binary (Efthimiou et al., 

2014, Achana et al., 2014) and continuous (Hong et al., 2013) outcomes. Efthimiou and 

colleagues further extended their work to allow for the joint synthesis of continuous, 

binary, time-to-event or mixed outcomes (Efthimiou et al., 2015). Multivariate NMA 

requires estimates of the within-study and between-study correlations of the multiple 

outcomes under evaluation. It is therefore imperative to present the estimates of the 

outcomes and correlations appropriately to ensure clear interpretation of the 

multivariate NMA results. 

In summary, areas for further work include: Incorporating enhanced flexibility for 

printing graphics of NMA results from various software and analysis framework using 

the published R code; Packaging the R code into a R-library or stand-alone software to 

allow greater dissimilation of the graphical tools; Incorporating the presentational 

approaches for reporting the quality of NMA evidence; and adapt the graphics for the 

presentation of multiple outcomes NMA. 

 

6.3.2 Evidence synthesis 

The next two challenges, concerning economic model and utility for cost-effectiveness 

analysis in HTA, were addressed utilising Bayesian BRMA that jointly synthesises 

correlated outcomes. Other evidence synthesis methods, such as NMA and ICMA, 

were also used in conjunction with the BRMA to achieve the aims of this thesis. All 

these evidence syntheses were performed using aggregated trial data as no patient-level 

data was sourced from investigators of the studies. One area for further work would be 

to perform the BRMA using (where available) IPD from the studies to enable the direct 

incorporation of the within-study correlation between the multiple outcomes into the 

model. 

Individual patient data for PFS and OS were reconstructed for the mHRPC RCTs in 

Chapter 4 using Kaplan-Meier curves reported in the corresponding publications. 

However, the OS and PFS data so reconstructed were regarded as two independent sets 

of time-to-event data that are not correlated. To address this limitation, informative 

prior distributions for the within-study correlation between OS and PFS LHRs were 
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constructed using external trial data.  Had the IPD been available it would have enabled 

the within-study correlation between PFS and OS LHRs to be estimated using 

bootstrapping. This is particularly important when the aim is to predict, for example, 

the PFS HR from the OS HR of a trial by jointly modelling OS and PFS using a BRMA 

model. The correlation reported by Halabi and colleagues was between OS and PFS 

and was applied as a crude approximation to construct the informative prior 

distributions for the within-study correlation between OS and PFS LHRs used in the 

BRMA model. Further research could also be carried out to derive the approximate 

relationship between the correlation between OS and PFS LHRs (needed in the BRMA 

model) and the Kendall’s statistics for the association between OS and PFS (available 

from Halabi et al.). Such derivation could be conducted in a similar manner as derived 

by Wei and Higgins (Wei and Higgins, 2013), for example, for the relationship 

between the correlation between log odds ratios (LORs) on two outcomes and 

correlation between probabilities of event on those two outcomes or as in Bujkiewicz et 

al. where correlation between LOR and log rate ratio was expressed in terms of the 

regression-based Prentice’s criteria for association between surrogate endpoints 

(Bujkiewicz et al., 2015a). Recent methodologies proposed by Boucher and colleagues 

(Boucher et al., 2015) that use an illness-death model framework to simulate OS and 

PFS IPD when only summary data are available can also be applied.  

Similarly, IPD would allow the within-study correlation between baseline quality of 

life as assessed by EDSS and EQ-5D to be directly estimated for the BRMA model 

used to construct the informative prior distributions to inform the utility estimates for 

the multiple sclerosis study considered in Chapter 5. Methods for multivariate meta-

analysis using IPD, both in the frequentist and Bayesian framework, have been 

proposed by Riley and colleagues (Riley et al., 2015) for multiple outcome data types 

and can be applied to extend the analysis in this thesis. 

Another potential area for further work is to extend the BRMA model used in the 

prediction of PFS HR for trial TAX 327 to a bivariate random-effects network meta-

analysis model, including all RCTs containing docetaxel (D) for the first-line 

chemotherapy treatment of men with mHRPC. Although in the last few years, new 

drugs such as cabazitaxel, abiraterone and enzalutamide have been developed, they are 

primarily trialled in men who had previously been treated with a D-containing 



Chapter 6  Discussions and Conclusions 
 

 

 
209 

chemotherapy regimen. Hence, to date, D with either prednisone or prednisolone (P) in 

the combination (D+P) remain the NICE recommended treatment options for men with 

mHRPC based on the health technology appraisal published in 2007. Since then, a 

number of trials containing D+P or D with other combination drugs have been reported. 

These can be included to form a network of trials for the prediction of PFS HR using 

bivariate NMA for trial TAX 327, which compared D+P versus mitoxantrone plus 

prednisone, M+P. More recent methodologies for multivariate NMA developed by 

Ades and Efthimiou and their colleagues (Ades et al., 2010, Efthimiou et al., 2014, 

Efthimiou et al., 2015) can potentially be applied to the trial TAX 327 situation. Given 

the possible network of trials that may be identified, it is also acknowledged that 

univariable NMA for PFS would also be possible. Nevertheless, a multivariate NMA 

incorporating the correlations between PFS and OS will not only enable joint inference 

to be made between the correlated outcomes but also provide improved value over 

separate univariable NMA as evidence synthesis is performed in one coherent analysis. 

 

6.4 Conclusions 

Methodologies for evidence synthesis have evolved over the years, from the traditional 

meta-analysis that compares a single outcome between two interventions to 

multivariate meta-analysis and NMA that allow the evaluation of multiple outcomes 

and interventions. Although the BRMA model was used in the mHRPC project for 

prediction of PFS and in the MS project for the construction of prior distributions for 

the regression coefficients defining the association between EDSS and EQ-5D, it can 

also be applied in the context of any correlated outcomes and in particular surrogate 

endpoints (Bujkiewicz et al., 2015b). With its potential statistical advantages and 

application in medical research, this thesis has demonstrated, with the use of case 

examples from HTA reports, approaches where BRMA can be applied in a number of 

different ways to address methodological challenges in HTA. 

Due to the inherent complexity of these advanced evidence synthesis methods, it is 

imperative that there is consistency and clarity in the presentation of results from these 

analyses to ease their ready interpretability. This is especially important for NMA 

where multiple interventions are evaluated. The review conducted in this thesis of 

existing methods of presenting NMA results in HTA revealed that there was great 
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variability in reporting styles and highlighted the need for additional guidance and 

presentational tools for reporting NMA results. Novel graphical tools were developed 

in this thesis with the aim to improve existing reporting methods. Ultimately, the hope 

is that the graphical tools developed as part of this thesis will be disseminated widely 

and recommended in updated guidance setting the standards for future HTA reports. 
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Appendices                              

Appendix A : Data extraction form for reviewing HTA reports 
 

DATA EXTRACTION FORM  

A. General 

A1 HTA report appraisal type  
   NICE         Non-NICE 

A2 Method of evidence synthesis 
   Indirect Comparison         Mixed Treatment Comparison 

A3 Section where IC/MTC results were reported 
   Clinical Effectiveness             Cost Effectiveness  

  Separate IC/MTC                    Other ______________ 

A4 Was IC/MTC also performed for non-clinical effectiveness endpoints such as adverse events? 

   Yes, endpoint ____________________________        

  No 

A5 Where an economic decision model is developed as part of the report, are the MTC results used in the decision model? 

   Yes                 No 

B. Presentation of IC/MTC data 

B1 Number of interventions evaluated in the HTA report using IC/MTC 

 ____________________ 

 
B2 Trial studies presented using a Network Table? 

   Yes                 No 

B3 Intervention relationships presented using a Network Diagram 

   Yes                 No 

C. Presentation of IC/MTC synthesis model and its implementation 

C1 Is a Bayesian evidence synthesis approach used? If Yes, answer all following questions 

   Yes                 No 

C2 Was Prior used for the Bayesian evidence synthesis presented? 

   Yes                 No 

C3 Has sensitivity analysis of Prior used for the Bayesian evidence synthesis been performed and presented? 
   Yes                 No 

C4 Was check for inconsistency in the MTC analysis performed and presented? 
   Yes                 No 

C5 Was convergence check performed? 
   Yes                 No 

C6 Was WinBUGS used for the evidence synthesis analyses? 

   Yes                 No 

D. Presentation of IC/MTC results 

D1 Was the IC/MTC results presented using any of the following tools? 
   Matrix Table                    Table (ratio)         Table (rate) 

  Summary forest plot        Text 

D2 Was Probability Best statistics presented? 

   Yes                 No 

 How was it presented? 

   Table          Figure         Text 

D3 Was Ranking statistics presented? 

   Yes                 No 

 How was it presented? 

   Table          Figure         Text 

 END 



  Appendix 
 

 

 
212 

Appendix B : Evaluation form for graphical tools 
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Appendix C : Presentation for NMA with outcome on the continuous scale 
 

The graphical tools proposed can be extended to other outcome measurements such as 

mean difference and hazard ratio. Examples of its use for continuous outcome are 

shown in Figure C1 to Figure C3. The dataset used for illustrating can be found in the 

NICE TSD 2 example 5 on Parkinson’s Disease. 

 

 

Figure C1: Summary Forest Plot Matrix presenting median rank of all interventions 
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Figure C2: Summary Forest Plot Table presenting median rank of all interventions 
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5 1
1

5 1

4

5 1
3

5 1
2

Treatment 4

Treatment 2

Treatment 3

Treatment 4

Treatment 5

Treatment 3

Treatment 3

Treatment 4

Treatment 5

Treatment 2

Treatment 4

Treatment 5

Placebo

Treatment 5

0-5 0 5

Mean Difference with 95% CrI & 95% PIHeterogeneity: between-study variance = 0.08; 95% CrI (0.000 to 2.268)

2

-1.84 ( -2.91 to -0.86 )

-1.91 ( -5.42 to 1.44 )

1

-0.51 ( -1.80 to 0.77 )

-0.31 ( -1.62 to 1.00 )

1

-0.54 ( -1.78 to 0.70 )

-0.90 ( -2.26 to 0.46 )

0

-0.84 ( -2.37 to 0.67 )

NA

0

1.34 ( -0.11 to 2.84 )

NA

1

1.31 ( -0.07 to 2.73 )

1.40 ( 0.03 to 2.77 )

0

1.01 ( -0.62 to 2.68 )

NA

2

-0.03 ( -0.94 to 0.90 )

0.06 ( -3.50 to 3.68 )

0

-0.33 ( -1.61 to 0.97 )

NA

2

-0.30 ( -1.19 to 0.60 )

-0.30 ( -3.32 to 2.74 )

Key: NMA results in black; Pairw ise MA results in grey. 95% CrI and PI presented as error bars.

        Interventions are displayed in the order that they w ere entered in the analysis.
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Figure C3: Median Rank Chart showing the ranking of all interventions in terms of 

efficacy 

 

 

Median Rank Chart for Parkinson Disease

Rank Intervention
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2 Treatment 5
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Appendix D : Display options for SFP Matrix and SFP Table 
 

SFP Matrix and SFP Table in its simplest format and without footnotes are shown in 

Figure D1.1 and D2.1. Additional display options are available for the SFP Matrix and 

SFP Table that allows the reporting of mean rank, SUCRA percentage and probability 

best statistics instead of median rank, as well as the exclusion of 95% prediction 

intervals. Figure D1.2 shows the SFP Matrix with the presentation of the SUCRA 

percentage using cumulative rankograms while Appendix Figure D2.2 presents the 

same information using the SFP Table graph. 

 

 
 

Figure D1.1: Summary Forest Plot Matrix in its simplest format with no sorting and footnote 

 

Placebo

1/16 1 16 256

2.5
(1.34 to 4.66)

3.4
(1.00 to 16.16)

Betamimetics

1/16 1 16 256

5.3
(2.17 to 12.73)

15
(1.57 to 170.50)

2.1
(0.87 to 4.99)

3.1
(0.79 to 12.78)

Prostaglandin
inhibitors

1/16 1 16 256

2.8
(1.27 to 6.16)

NA

1.1
(0.54 to 2.40)

1.1
(0.71 to 1.75)

0.51
(0.20 to 1.50)

1.8
(0.04 to 97.50)

CCB

1/16 1 16 256

2.1
(0.52 to 7.92)

NA

0.83
(0.21 to 3.02)

0.4
(0.11 to 1.49)

0.4
(0.09 to 1.67)

NA

0.76
(0.18 to 3.02)

NA

Others

1/16 1 16 256

1.4
(0.40 to 4.53)

1.1
(0.54 to 2.33)

0.53
(0.14 to 1.96)

NA

0.25
(0.06 to 1.12)

NA

0.49
(0.13 to 1.90)

0.79
(0.16 to 3.94)

0.64
(0.11 to 3.92)

NA

Nitrates

1/16 1 16 256

2.1
(1.13 to 3.90)

1.1
(0.12 to 5.69)

0.82
(0.45 to 1.54)

0.89
(0.52 to 1.50)

0.39
(0.15 to 1.01)

NA

0.75
(0.34 to 1.63)

1.2
(0.23 to 6.45)

0.98
(0.25 to 3.94)

NA

1.5
(0.43 to 5.84)

NA

ORB

1/16 1 16 256

2.8
(1.60 to 5.08)

2.7
(0.36 to 19.64)

1.1
(0.64 to 1.99)

1
(0.44 to 2.08)

0.53
(0.24 to 1.20)

0.84
(0.23 to 2.85)

1
(0.50 to 2.06)

0.88
(0.46 to 1.75)

1.3
(0.38 to 4.96)

0.7
(0.21 to 2.37)

2.1
(0.59 to 7.60)

NA

1.4
(0.71 to 2.59)

NA

Magnesium

sulfate

Summary Forest Plot Matrix of Tocolytic therapy for preterm child delivery

Odds Ratio with 95% CrI  (log scale)
Heterogeneity: betw een-study variance       

 = 0.29; 95% CrI (0.071 to 0.687)                 
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Figure D1.2: Summary Forest Plot Matrix presenting SUCRA percentage of all interventions 

along the diagonal 

 

  

Prostaglandin
inhibitors
SUCRA=95%

1/256 1/16 1 16

0.53
(0.24 to 1.20)

0.84
(0.23 to 2.85)

Magnesium

sulfate
SUCRA=66%

1/256 1/16 1 16

0.51
(0.20 to 1.50)

1.8
(0.04 to 97.50)

0.98
(0.48 to 2.02)

1.1
(0.57 to 2.19)

CCB

SUCRA=64%

1/256 1/16 1 16

0.47
(0.20 to 1.15)

0.32
(0.08 to 1.26)

0.9
(0.50 to 1.57)

1
(0.48 to 2.29)

0.92
(0.42 to 1.86)

0.9
(0.57 to 1.41)

Betamimetics

SUCRA=57%

1/256 1/16 1 16

0.4
(0.09 to 1.67)

NA

0.75
(0.20 to 2.64)

1.4
(0.42 to 4.85)
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(0.18 to 3.02)

NA

0.83
(0.21 to 3.02)

0.4
(0.11 to 1.49)

Others

SUCRA=46%

1/256 1/16 1 16

0.39
(0.15 to 1.01)

NA

0.74
(0.39 to 1.40)

NA

0.75
(0.34 to 1.63)

1.2
(0.23 to 6.45)

0.82
(0.45 to 1.54)

0.89
(0.52 to 1.50)

0.98
(0.25 to 3.94)

NA

ORB

SUCRA=41%

1/256 1/16 1 16

0.25
(0.06 to 1.12)

NA

0.48
(0.13 to 1.71)

NA

0.49
(0.13 to 1.90)

0.79
(0.16 to 3.94)

0.53
(0.14 to 1.96)

NA

0.64
(0.11 to 3.92)

NA

0.65
(0.17 to 2.35)

NA

Nitrates

SUCRA=24%

1/256 1/16 1 16

0.19
(0.08 to 0.46)

0.066
(0.01 to 0.64)

0.36
(0.20 to 0.63)

0.37
(0.05 to 2.75)

0.36
(0.16 to 0.79)

NA

0.39
(0.21 to 0.75)

0.3
(0.06 to 1.00)

0.47
(0.13 to 1.91)

NA

0.48
(0.26 to 0.88)

0.94
(0.18 to 8.06)

0.74
(0.22 to 2.49)

0.89
(0.43 to 1.84)

Placebo

SUCRA=7%

1 8
0

0.5

1

1 8
0

0.5

1

1 8
0

0.5

1

1 8
0

0.5

1

1 8
0

0.5

1

1 8
0

0.5

1

1 8
0

0.5

1

1 8
0

0.5

1

Summary Forest Plot Matrix of Tocolytic therapy for preterm child delivery

Odds Ratio with 95% CrI  (log scale)
Heterogeneity: betw een-study variance       

 = 0.29; 95% CrI (0.071 to 0.687)                 
Key:

      NMA results in black; Pairw ise MA results in grey.
      Interventions are displayed sorted by median rank. SUCRA refers to the surface under the cumulative ranking line.
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Figure D2.1: Summary Forest Plot Table in its simplest format with no sorting and footnote 

 

 
 
 

Summary Forest Plot Table of Tocolytic therapy for preterm child delivery

Comparators
H-H

Trials Odds Ratio (95% CrI)
Summary Forest Plot

(log Scale)

ORB

Betamimetics

Prostaglandin
inhibitors

CCB

Others

Nitrates

ORB

Magnesium

sulfate

Nitrates

Prostaglandin
inhibitors

CCB

Others

Nitrates

ORB

Magnesium
sulfate

Others

CCB

Others

Nitrates

ORB

Magnesium
sulfate

CCB

Others

Nitrates

ORB

Magnesium
sulfate

Prostaglandin
inhibitors

Nitrates

ORB

Magnesium
sulfate

Betamimetics

ORB

Magnesium
sulfate

Placebo

Magnesium
sulfate

1/16 1/4 1 4 16 64 256

Odds Ratio with 95% CrI
(log scale)

Heterogeneity: between-study variance = 0.29; 95% CrI (0.071 to 0.687)

4
2.54 ( 1.34 to 4.66 )

3.35 ( 1.00 to 16.16 )

2
5.34 ( 2.17 to 12.73 )

15.04 ( 1.57 to 170.50 )

0
2.78 ( 1.27 to 6.16 )

NA

0
2.13 ( 0.52 to 7.92 )

NA

1
1.35 ( 0.40 to 4.53 )
1.13 ( 0.54 to 2.33 )

2
2.07 ( 1.13 to 3.90 )
1.06 ( 0.12 to 5.69 )

3
2.81 ( 1.60 to 5.08 )

2.67 ( 0.36 to 19.64 )

3
2.11 ( 0.87 to 4.99 )

3.12 ( 0.79 to 12.78 )

14
1.08 ( 0.54 to 2.40 )
1.11 ( 0.71 to 1.75 )

1
0.83 ( 0.21 to 3.02 )
0.40 ( 0.11 to 1.49 )

0
0.53 ( 0.14 to 1.96 )

NA

6
0.82 ( 0.45 to 1.54 )
0.89 ( 0.52 to 1.50 )

7
1.11 ( 0.64 to 1.99 )
1.00 ( 0.44 to 2.08 )

1
0.51 ( 0.20 to 1.50 )

1.85 ( 0.04 to 97.50 )

0
0.40 ( 0.09 to 1.67 )

NA

0
0.25 ( 0.06 to 1.12 )

NA

0
0.39 ( 0.15 to 1.01 )

NA

3
0.53 ( 0.24 to 1.20 )
0.84 ( 0.23 to 2.85 )

0
0.76 ( 0.18 to 3.02 )

NA

1
0.49 ( 0.13 to 1.90 )
0.79 ( 0.16 to 3.94 )

2
0.75 ( 0.34 to 1.63 )
1.18 ( 0.23 to 6.45 )

5
1.02 ( 0.50 to 2.06 )
0.88 ( 0.46 to 1.75 )

0
0.64 ( 0.11 to 3.92 )

NA

0
0.98 ( 0.25 to 3.94 )

NA

1
1.33 ( 0.38 to 4.96 )
0.70 ( 0.21 to 2.37 )

0
1.54 ( 0.43 to 5.84 )

NA

0
2.09 ( 0.59 to 7.60 )

NA

0
1.35 ( 0.71 to 2.59 )

NA
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Figure D2.2: Summary Forest Plot Table presenting SUCRA percentage of all interventions 

 

 

  

Summary Forest Plot Table of Tocolytic therapy for preterm child delivery

Comparators
H-H

Trials Odds Ratio (95% CrI)
Summary Forest Plot

(log Scale)

SUCRA =95%

SUCRA

= 66%

= 64%

= 57%

= 46%
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= 24%
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sulfate
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Betamimetics

Others

ORB
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Placebo

ORB
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Betamimetics

Others

ORB
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Placebo

Others

Betamimetics

Others
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Placebo

Betamimetics
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Nitrates

Placebo

CCB

ORB

Nitrates

Placebo

Magnesium
sulfate

Nitrates

Placebo

Prostaglandin

inhibitors

Placebo

1/256 1/64 1/16 1/4 1 4 16 64

Odds Ratio w ith 95% CrI

(log scale)

Heterogeneity: betw een-study variance = 0.29; 95% CrI (0.071 to 0.687)

3
0.53 ( 0.24 to 1.20 )
0.84 ( 0.23 to 2.85 )

1
0.51 ( 0.20 to 1.50 )
1.85 ( 0.04 to 97.50 )

3
0.47 ( 0.20 to 1.15 )
0.32 ( 0.08 to 1.26 )

0
0.40 ( 0.09 to 1.67 )

NA

0
0.39 ( 0.15 to 1.01 )

NA

0
0.25 ( 0.06 to 1.12 )

NA

2
0.19 ( 0.08 to 0.46 )
0.07 ( 0.01 to 0.64 )

5
0.98 ( 0.48 to 2.02 )
1.13 ( 0.57 to 2.19 )

7
0.90 ( 0.50 to 1.57 )
1.00 ( 0.48 to 2.29 )

1
0.75 ( 0.20 to 2.64 )
1.43 ( 0.42 to 4.85 )

0
0.74 ( 0.39 to 1.40 )

NA

0
0.48 ( 0.13 to 1.71 )

NA

3
0.36 ( 0.20 to 0.63 )
0.37 ( 0.05 to 2.75 )

14
0.92 ( 0.42 to 1.86 )
0.90 ( 0.57 to 1.41 )

0
0.76 ( 0.18 to 3.02 )

NA

2
0.75 ( 0.34 to 1.63 )
1.18 ( 0.23 to 6.45 )

1
0.49 ( 0.13 to 1.90 )
0.79 ( 0.16 to 3.94 )

0
0.36 ( 0.16 to 0.79 )

NA

1
0.83 ( 0.21 to 3.02 )
0.40 ( 0.11 to 1.49 )

6
0.82 ( 0.45 to 1.54 )
0.89 ( 0.52 to 1.50 )

0
0.53 ( 0.14 to 1.96 )

NA

4
0.39 ( 0.21 to 0.75 )
0.30 ( 0.06 to 1.00 )

0
0.98 ( 0.25 to 3.94 )

NA

0
0.64 ( 0.11 to 3.92 )

NA

0
0.47 ( 0.13 to 1.91 )

NA

0
0.65 ( 0.17 to 2.35 )

NA

2
0.48 ( 0.26 to 0.88 )
0.94 ( 0.18 to 8.06 )

1
0.74 ( 0.22 to 2.49 )
0.89 ( 0.43 to 1.84 )

Key: NMA results in black; Pairw ise MA results in grey.

        Interventions are displayed sorted by median rank. SUCRA refers to the surface under the cumulative ranking line.
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Appendix E : Program codes for Chapter 4 

 

Box E1: WinBUGS codes for BRMA 

Case 1: both BS and WI non-informative 

Case 2: BS non-informative; WI informative 

Case 3: BS informative; WI non-informative 

Case 4: both BS and WI informative 
model{ 

 

for (k in 1:num){  

 var[k,1]~dnorm(0,h1)I(0,) 

 var[k,2]~dnorm(0,h2)I(0,) 

 } 

 h1~dgamma(1.0,0.01) 

 h2~dgamma(1.0,0.01) 

    

#within study precision matrix 

 

# Case 2 and Case 4; WI informative 

fisher.corr_w~dnorm(zw,prec.zw) 

prec.zw<-1/pow(sd.zw,2) 

 

for (i in 1:num) { 

  

# Case 1 and 3; WI non-informative 

rho_w[i]~dunif(-1,1) 

# Case 2 and Case 4; WI informative 

rho_w[i]<-(exp(2*fisher.corr_w)-1)/(exp(2*fisher.corr_w)+1) 

 prec_w[i,1:2,1:2]<-inverse(delta[i,1:2,1:2])  

#covariance matrix for the j-th study 

 delta[i,1,1]<-var[i,1]/n[i,1] 

 delta[i,2,2]<-var[i,2]/n[i,2] 

 delta[i,1,2]<-sqrt(delta[i,1,1])*sqrt(delta[i,2,2])*rho_w[i] 

 delta[i,2,1]<-sqrt(delta[i,1,1])*sqrt(delta[i,2,2])*rho_w[i] 

}  

 

# Random-effects model 

for (i in 1:num) { 

 Y[i,1:2]~dmnorm(mu[i,1:2], prec_w[i,1:2,1:2]) 

#  product normal formulation for the between study part: 

 mu[i,1]~dnorm(los,prec_los) 

 mu[i,2]~dnorm(lpfs[i],prec_lpfs) 

 lpfs[i]<-lambda0+lambda1*(mu[i,1] - mean(mu[,1])) 

 } 

los~dnorm(0.0, 0.01) 

 

# Case 1 and Case 2; BS non-informative 

 

gam_los~dnorm(0,100)I(0,) 

gam_lpfs~dnorm(0,100)I(0,) 

gam_los.sq<-gam_los*gam_los 

gam_lpfs.sq<-gam_lpfs*gam_lpfs 

prec_los<-1/gam_los.sq 

prec_lpfs<-1/gam_lpfs.sq 

 

# prior between study correlations: 

corr.lpfs.los~dunif(-1,1) 
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#priors for lambda coefficients 

lambda0~dnorm(0.0, 1.0E-3) 

# implied prior for lambda coefficients 

lambda1<-(gam_lpfs/gam_los)*(corr.lpfs.los/sqrt(1-corr.lpfs.los*corr.lpfs.los)) 

 

# Fisher Transformation of correlations: 

z.fisher<-(1/2) * log((1+corr.lpfs.los)/(1-corr.lpfs.los)) 

 

# Case 3 and Case 4; BS informative 

 

fisher.corr~dnorm(z, prec.z) 

prec.z<-1/pow(sd.z,2) 

corr.lpfs.los<-(exp(2*fisher.corr)-1)/(exp(2*fisher.corr)+1) 

 

# informative between study heterogeneity: 

sd.los~dnorm(0,100)I(0,) 

sd.lpfs~dnorm(0,100)I(0,) 

sd.los.sq<-sd.los*sd.los 

sd.lpfs.sq<-sd.lpfs*sd.lpfs 

prec.los<-1/sd.los.sq 

prec_lpfs<-1/(sd.lpfs.sq - sd.los.sq*pow(lambda1,2)) 

 

#priors for lambda coefficients 

lambda0~dnorm(0.0, 0.01) 

#lambda1<-corr.lpfs.los*tau.lpfs/tau.los==> 

lambda1<-corr.lpfs.los*sd.lpfs/sd.los 

 

 

# estimates: 

mean.log.os<-los 

mean.log.pfs<-lambda0 

 

sd.log.os<-gam_los 

sd.log.pfs<-sqrt(gam_lpfs.sq+gam_los.sq*pow(lambda1,2))  

 

mean.os<-exp(mean.log.os) 

mean.pfs<-exp(mean.log.pfs) 

 

#predicted PFS for TAX327; trial index =4 

new.log.pfs<-Y[4,2] 

new.pfs<-exp(new.log.pfs) 

sd.new.log.pfs<-sqrt(delta[4,2,2])   

} 
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Box E2: WinBUGS codes for two-state Markov model 

 
model{ 

 

#lambda == transition probabilities; piX==patient count still in StD,  

#dX==patient count WHO <just entered> death state. 

#Note that cycle starts at 2 and ends at 181;  

#this is to allow patient count matrix to be N at [1] index which represent cycle 0. 

 

#Index for lambda, pi,d,a,hcpi : first is for (1:C, 2:T, 3:PM, 4:PD) 

#Transition probabiliities are from TAX327 trial 

 

for(t in 2:Cycles) {    

  

  lambda[1, t,1,2]<-1-exp(w.lambdaC*(pow(((t-1)-1), w.gammaC) - pow((t-1), w.gammaC))) 

  lambda[2, t,1,2]<-1-exp(w.lambdaT*(pow(((t-1)-1), w.gammaT) - pow( (t-1), w.gammaT)))  

  lambda[3, t,1,2]<-1-exp(hr.os.pm*w.lambdaC*(pow(((t-1)-1), w.gammaC) - pow((t-1), w.gammaC))) 

  lambda[4, t,1,2]<-1-exp(hr.os.pd*w.lambdaT*(pow(((t-1)-1), w.gammaT) - pow((t-1), w.gammaT))) 

 

for(d in 1:4){ 

  lambda[d,t,1,1]<-1-lambda[d,t,1,2]    

  lambda[d,t,2,1]<-0 

  lambda[d,t,2,2]<-1 

 

  for(s in 1:S){ 

   pi[d,t,s]<-inprod( pi[d,(t-1),], lambda[d,t, ,s]) 

  } 

   

      #No of deaths that occured in the cycle, not the cumulative number of death in the cycle. 

  dpi[d,t]<-pi[d,t,2] - pi[d,(t-1), 2] 

    

  #patient that moved state in each cycle 

  api[d,t]<-(pi[d,(t-1), 1] - pi[d,t,1])    

  

  #0.5 to half the paitent count to get half cycle patient counts 

  hcpi[d,t,1]<-pi[d,t,1] + 0.5*api[d,t]   

  hcpi[d,t,2]<-pi[d,t,2]   

 } # end of d=1:4   

}# end of t=2:Cycles 

 

 

for(d in 1:4){ 

 pi[d,1,1]<-N 

 pi[d,1,2]<-0 

   

 dpi[d,1]<-0 

 hcpi[d,1,1]<-pi[d,1,1]  

 hcpi[d,1,2]<-pi[d,1,2]  

   

} # end of d=1:4 

 

 #(i)Cholesky Decomposition 

 Z.inteC~dnorm(0, 1)  

 Z.scaleC~dnorm(0, 1)  

 Z.inteT~dnorm(0, 1)  

 Z.scaleT~dnorm(0, 1)  

 

 #Values taken from Table 29 in HTA report Page 55 

 w.inteC<-3.036 + 0.0447*Z.inteC 
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 w.scaleC<-0.6184 + 0.00796420581655481*Z.inteC + 0.0362350855623601*Z.scaleC 

  

 w.inteT<-3.214 + 0.0546*Z.inteT 

 w.scaleT<-0.6482 + 0.0169413919413919*Z.inteT + 0.040390954916765*Z.scaleT 

 

 w.lambdaC<-exp(-w.inteC/w.scaleC)  #Equations from Page 54 

 w.gammaC<-1/w.scaleC 

 w.lambdaT<-exp(-w.inteT/w.scaleT) 

 w.gammaT<-1/w.scaleT 

 

 

 

# Direct MA OS HR (P vs M+P) : from HTA report  1/0.99 (1/1.20, 1/0.82)  

 se.pm<-(log(1/0.82)-log(1/1.20))/(2*1.959964) 

 prec_lhr.pm<-1/pow(se.pm, 2) 

 mean.lhr.pm<-log(1/0.99) 

 lhr.pm~dnorm(mean.lhr.pm, prec_lhr.pm)    

 hr.os.pm<-exp(lhr.pm) 

  

# Indirect MA OS HR (P vs D+P) : from HTA report  1/0.75 (1/0.99, 1/0.57) 

 se.pd<-(log(1/0.57)-log(1/0.99))/(2*1.959964) 

 prec_lhr.pd<-1/pow(se.pd, 2) 

 mean.lhr.pd<-log(1/0.75)  

 lhr.pd~dnorm(mean.lhr.pd, prec_lhr.pd)    

 hr.os.pd<-exp(lhr.pd) 

 

 

 #Costing data 

 for(ind in 2:7){ 

       betaC[ind]<-1/betaC.par[ind-1] 

  cC.dis[ind]~dgamma(4.0, betaC[ind]) 

       betaT[ind]<-1/betaT.par[ind-1]   

  cT.dis[ind]~dgamma(4.0, betaT[ind])    

 }  

 cC.dis[1]<-0.0 

 cT.dis[1]<-0.0 

  

 c.ter[1]~dgamma(4.0, 0.00101467) 

 c.ter[2]~dgamma(4.0, 0.0011338) 

 

 #Data for relative difference factor for costing of the P arm 

 rd.mparm~dgamma(80.62938, 0.00350856) 

 rd.parm~dgamma(105.09062, 0.00361896) 

 rd.factor<-rd.parm/rd.mparm 

 

 #(ii)Distribution placed on Drug cost  

 #d.dose.cycle.C<-22.8 

 d.ncycle.C~dnorm(5.9, 0.174835) 

 d.cost.C[1]<-(169.25 + 1.02)*d.ncycle.C  #drug cost of M+P 

 d.cost.C[2]<-177.46*d.ncycle.C      #clinic outpatient cost 

 cDrug.tot[1]<-sum(d.cost.C[])  

  

 #d.dose.cycle.T<-142.5 

 d.ncycle.T~dnorm(7.3, 0.17562282) 

 d.cost.T[1]<-(1069.50 + 1.02+5.94)*d.ncycle.T  #drug cost of D+P+Dex 

 d.cost.T[2]<-177.46*d.ncycle.T      #clinic outpatient cost 

 cDrug.tot[2]<-sum(d.cost.T[])  

     

 #First 5 cycles, no follow up cost  

 for(t in 2:Cycles){ 



  Appendix 
 

 

 
224 

  indx[t]<-min(7, max(1,1+round((t-5)/4))) 

  c[1,t,1]<-cC.dis[indx[t]]  

  c[1,t,2]<-cDead 

     

  c[2,t,1]<-cT.dis[indx[t]]  

  c[2,t,2]<-cDead     

 

  cP[t,1]<-1.48   #fixed cost of £1.48 /cycle/patient 

  cP[t,2]<-cDead  

 } 

 

 #Utilities 

 #Data from Sandblom  

 #0.538 ±0.077 

      se_SD<-(2*hw_SD)/1.96 

 u.alpha<-mn_SD*(mn_SD*(1-mn_SD)/pow(se_SD,2)-1) 

 u.beta<-mn_SD*(1-mn_SD)/pow(se_SD,2)-1-u.alpha 

 uSD~dbeta(u.alpha, u.beta)  

   

 for(t in 1:Cycles){    

  u[t,1]<-uSD   

  u[t,2]<-uDead    

 } 

  

 for(t in 2:13){ 

  for(d in 1:2){    #note:difference in index max count 

   ct[d,t]<-dpi[d,t]*c[d,t,1]  #Follow up cost 

   cd[d,t]<-dpi[d,t] *c.ter[d]  #Termination cost 

   ut[d,t]<-inprod(hcpi[d,t,], u[t,])  

  } 

  for(d in 3:4){ 

   ct.drug[d,t]<-pi[d,t,1]*cP[t,1]     #Using pts at each cycle; only for d=3,4 

   ut[d,t]<-inprod(hcpi[d,t,], u[t,])  

  } 

 }   

 for(t in 14:26){  

  for(d in 1:2){    

   #midpt discount adjustment! 

mc.c[d,t]<-(c[d,t,1]) / pow((1+0.00291667), 4*(round((t-1)/4)))     

   ct[d,t]<-dpi[d,t]*mc.c[d,t]   

   cd[d,t]<-(dpi[d,t] * c.ter[d]) / pow((1+0.00291667), (t-1))   

   ut[d,t]<-inprod(hcpi[d,t,], u[t,]) / pow((1+0.00291667), (t-1))  

  

  } 

  for(d in 3:4){ 

   ct.drug[d,t]<-(pi[d,t,1]*cP[t,1]) / pow((1+0.00291667), (t-13))   

   ut[d,t]<-inprod(hcpi[d,t,], u[t,]) / pow((1+0.00291667), (t-1)) 

  } 

 } 

 for(t in 27:Cycles){ 

  for(d in 1:2){    

   ct[d,t]<-(dpi[d,t]*c[d,t,1]) / pow((1+0.00291667), (t-1))  

  

   cd[d,t]<-(dpi[d,t] * c.ter[d]) / pow((1+0.00291667), (t-1))   

   ut[d,t]<-inprod(hcpi[d,t,], u[t,]) / pow((1+0.00291667), (t-1)) 

  }  

  for(d in 3:4){ 

   ct.drug[d,t]<-(pi[d,t,1]*cP[t,1]) / pow((1+0.00291667), (t-13))   

   ut[d,t]<-inprod(hcpi[d,t,], u[t,]) / pow((1+0.00291667), (t-1)) 

  }  
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 } 

 

 for(d in 1:2){    

      mean.2C[d,1]<-sum(ct[d,2:Cycles])/N  

      mean.2C[d,2]<-sum(cd[d,2:Cycles])/N 

 } 

   

 cDrug.tot[3]<-(sum(ct.drug[3, 2:Cycles]))/N 

 cDrug.tot[4]<-(sum(ct.drug[4, 2:Cycles]))/N  

 mean.C[1]<-sum(mean.2C[1,1:2]) + cDrug.tot[1] 

 mean.C[2]<-sum(mean.2C[2,1:2]) + cDrug.tot[2] 

 mean.C[3]<-rd.factor*(sum(mean.2C[1,1:2])) + cDrug.tot[3] 

 mean.C[4]<-rd.factor*(sum(mean.2C[1,1:2])) + cDrug.tot[4] 

 

 for(d in 1:4){ 

  mean.Tm[d]<-sum(pi[d, 2:Cycles, 1]) / N  

  mean.U[d]<-sum(ut[d, 2:Cycles])/N/12  #mean utilities for each Tx  

 } 

  

 Cost.diff<-mean.C[2] - mean.C[1] 

 Util.diff<-mean.U[2] - mean.U[1] 

 ICER<-Cost.diff/Util.diff 

  

  for (g in 1:21)  { 

 Rc[g]<-(g-1)*5000 

  

 IncNetbenefit[g]<-Rc[g]*Util.diff- Cost.diff 

 ProbCE[g]<-step(IncNetbenefit[g]) 

 

 NB[3,1,g]<-Rc[g]*mean.U[3]- mean.C[3] 

 NB[3,2,g]<-Rc[g]*mean.U[4]- mean.C[4]  

 

 for(k in 1:2){   

   NB[1,k,g]<-Rc[g]*mean.U[1]- mean.C[1] 

   NB[2,k,g]<-Rc[g]*mean.U[2]- mean.C[2] 

 

   for(j in 1:3){ 

      pCE[j,k,g]<-equals(rank(NB[,k,g],j),3) 

      } 

      Prob.C[k,g]<-pCE[1,k,g] 

      Prob.T[k,g]<-pCE[2,k,g] 

      Prob.P[k,g]<-pCE[3,k,g]  

 } 

 

  } 

  

} 
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Box E3: WinBUGS codes for three-state Markov model 

 
model{ 

 

prec_ost1<-1/(0.5872765*0.5872765) 

ost1~dnorm(17.75561, prec_ost1) 

prec_dct1<-1/(0.17*0.17) 

dct1~dnorm(5.9, prec_dct1)  

 

prec_ost2<-1/(0.6170532*0.6170532) 

ost2~dnorm(19.83514, prec_ost2) 

prec_dct2<-1/(0.18*0.18) 

dct2~dnorm(7.3, prec_dct2) 

 

prec_oslh3<-1/(0.223078192*0.223078192) 

oslh3~dnorm(-2.905034262, prec_oslh3) 

prec_dclh3<-1/(0.074743477*0.074743477) 

dclh3~dnorm(-1.699704398, prec_dclh3) 

 

ost3<-1/exp(oslh3) 

dct3<-1/exp(dclh3) 

 

for(t in 2:Cycles) { 

 

  lambda[1,t,1,2]<-1-exp(w.lambdaC*(pow(((t-1)-1), w.gammaC) -  pow( (t-1), w.gammaC))) 

  lambda[2,t,1,2]<-1-exp(hr.pfs*w.lambdaC*(pow(((t-1)-1), w.gammaC) -  pow( (t-1), w.gammaC))) 

  lambda[3,t,1,2]<-1-exp(hr.pfs.pm*w.lambdaC*(pow(((t-1)-1), w.gammaC) - pow((t-1), w.gammaC)))

  

 

 lambda[1,t,2,3]<-1-exp(-1/(ost1-dct1))    

 lambda[2,t,2,3]<-1-exp(-1/(ost2-dct2))    

 lambda[3,t,2,3]<-1-exp(-1/(ost3-dct3))    

   

 for(d in 1:3){ 

  lambda[d,t,1,1]<-1 - (lambda[d,t,1,2] +lambda[d,t,1,3])   

  lambda[d,t,1,3]<-0.005 

  

  lambda[d,t,2,1]<-0.0 

  lambda[d,t,2,2]<-1-(lambda[d,t,2,1] +lambda[d,t,2,3])  

  

  lambda[d,t,3,1]<-0 

  lambda[d,t,3,2]<-0 

  lambda[d,t,3,3]<-1 

 

  for(s in 1:S){ 

   pi[d,t,s]<-inprod( pi[d,(t-1),], lambda[d,t, ,s]) 

  } 

       #No of deaths that occured, not the cumulative no of death in the cycle. 

  dpi[d,t]<-pi[d,t,3] - pi[d,(t-1), 3]  

 

       #No of progression that occured, not the cumulative no of progression in the cycle. 

  pg[d,t]<-pi[d,(t-1), 1]*lambda[d,t,1,2]   #no. of pts who moved from state 1 to state 2 

 

  # Variables for calculation mean no of drug cycles taken:  

# to compare with Table 35 in HTA report 

#no. of pts who moved from state 1 to state 3 without state 2 

  s13[d,t]<-pi[d,(t-1), 1]*lambda[d,t,1,3]    

       tot.cyc[d,t]<-(t-1)*pg[d,t] + (t-1)*s13[d,t] 
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  #Half cycle patient alive count -- to add  

  api[d,t,1]<-0.5*(pi[d,(t-1), 1] - pi[d,t,1])    

  api[d,t,2]<-0.5*(pi[d,(t-1), 2] - pi[d,t,2])    

  #half cycle patient counts 

  hcpi[d,t,1]<-pi[d,t,1] + api[d,t,1] 

  hcpi[d,t,2]<-pi[d,t,2] + api[d,t,2] 

  hcpi[d,t,3]<-pi[d,t,3]  

  

 }  #end for d=1:2 

  

}  # end of t=2:Cycles 

 

 for(d in 1:3){ 

#total no of patients who progressed. Is <N as some pts went straight to death state. 

      #tot.pg[d]<-sum(pg[d,2:Cycles])  

#pts who completed 10 cycles of treatment 

      diff.pg[d]<-sum(pg[d,11:Cycles]) + sum(s13[d,11:Cycles])       

      cyc[d]<-(sum(tot.cyc[d,2:10]) + 10*diff.pg[d]) /N 

 

  pi[d,1,1]<-N 

  pi[d,1,2]<-0 

  pi[d,1,3]<-0 

  dpi[d,1]<-0 

     } 

 

 #(i)Cholesky Decomposition from SWOG trial 

 Z.inteC~dnorm(0, 1)  

 Z.scaleC~dnorm(0, 1)  

 w.inteC<-1.85249 + 0.0595041*Z.inteC 

 w.scaleC<-1.012566 + (-0.0113286311363419)*Z.inteC + 0.0426494760007284*Z.scaleC

   

 w.lambdaC<-exp(-w.inteC/w.scaleC) 

 w.gammaC<-1/w.scaleC 

 

 

     #Predicted PFS HR here..... 

 prec_lhr.pfs<-1/(se.lhr.pfs*se.lhr.pfs) 

 lhr.pfs~dnorm(mn.lhr.pfs, prec_lhr.pfs)   #predicted PFS HR 

 hr.pfs<-exp(lhr.pfs) 

 

 

#     Direct MA PFS HR (P vs M+P) : from MA using HTA trials    

 se.pm<-0.622 

 prec_lhr.pm<-1/pow(se.pm, 2) 

 mean.lhr.pm<-0.493  #note inversed to be positive!! 

 lhr.pm~dnorm(mean.lhr.pm, prec_lhr.pm)    

 hr.pfs.pm<-exp(lhr.pm) 

 

  

 #Costing data 

 for(ind in 2:7){ 

       betaC[ind]<-1/betaC.par[ind-1] 

  cC.dis[ind]~dgamma(4.0, betaC[ind]) 

       betaT[ind]<-1/betaT.par[ind-1]   

  cT.dis[ind]~dgamma(4.0, betaT[ind])    

 }  

 cC.dis[1]<-0.0 

 cT.dis[1]<-0.0 

 

 c.ter[1]~dgamma(4.0, 0.00101467) 
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 c.ter[2]~dgamma(4.0, 0.0011338) 

  

 

 #Data for relative difference factor for costing of the P arm 

 rd.mparm~dgamma(80.62938, 0.00350856) 

 rd.parm~dgamma(105.09062, 0.00361896) 

 rd.factor<-rd.parm/rd.mparm 

  

 

 #(ii)Distribution placed on Drug cost  

 d.ncycle.C~dnorm(5.9, 0.174835) 

 d.cost.C[1]<-(169.25 + 1.02)*d.ncycle.C   #drug cost of M+P 

 d.cost.C[2]<-177.46*d.ncycle.C       #clinic outpatient cost 

 cDrug.tot[1]<-sum(d.cost.C[])  

  

 d.ncycle.T~dnorm(7.3, 0.17562282) 

 d.cost.T[1]<-(1069.50 + 1.02+5.94)*d.ncycle.T  #drug cost of D+P+Dex 

 d.cost.T[2]<-177.46*d.ncycle.T       #clinic outpatient cost 

 cDrug.tot[2]<-sum(d.cost.T[])  

 

 

 #Distribution placed on division factor for follow-up cost 

# mn.fu<-0.7 

# se.fu<-(0.9-0.6)/4  

# fu.alpha<-mn.fu*(mn.fu*(1-mn.fu)/pow(se.fu,2)-1) 

# fu.beta<-mn.fu*(1-mn.fu)/pow(se.fu,2)-1-fu.alpha 

# fu.cp~dbeta(fu.alpha, fu.beta) 

 

 #First 5 cycles, no follow up cost  

 for(t in 2:Cycles){ 

  indx[t]<-min(7, max(1,1+round((t-5)/4))) 

  c[1,t,1]<-(1-fu.cp)*cC.dis[indx[t]]  

  c[1,t,2]<-fu.cp*cC.dis[indx[t]]  

  c[1,t,3]<-cDead 

 

  c[2,t,1]<-(1-fu.cp)*cT.dis[indx[t]]  

  c[2,t,2]<-fu.cp*cT.dis[indx[t]]  

  c[2,t,3]<-cDead    

 

  cP[t,1]<-1.48     # fixed cost of £1.48 /cycle/patient 

  cP[t,2]<-0.0  

  cP[t,3]<-cDead  

 

 } 

 

 #Utilities 

 #Data from Sandblom  paper 

 #Asymp : 0.770 ±0.015; Progressive : 0.538 ±0.077; DnoPG : 0.564±0.067; 

 mn_Asymp<-0.770 

 se_Asymp<-(2*0.015)/1.96 

 mn_Prog<-0.538 

 se_Prog<-(2*0.077)/1.96 

 mn_DnoPG<-0.564 

 se_DnoPG<-(2*0.067)/1.96  

 u.alpha_Asymp<-mn_Asymp*(mn_Asymp*(1-mn_Asymp)/pow(se_Asymp,2)-1) 

 u.beta_Asymp<-mn_Asymp*(1-mn_Asymp)/pow(se_Asymp,2)-1-u.alpha_Asymp 

 u.alpha_Prog<-mn_Prog*(mn_Prog*(1-mn_Prog)/pow(se_Prog,2)-1) 

 u.beta_Prog<-mn_Prog*(1-mn_Prog)/pow(se_Prog,2)-1-u.alpha_Prog 

 u.alpha_DnoPG<-mn_DnoPG*(mn_DnoPG*(1-mn_DnoPG)/pow(se_DnoPG,2)-1) 

 u.beta_DnoPG<-mn_DnoPG*(1-mn_DnoPG)/pow(se_DnoPG,2)-1-u.alpha_DnoPG  
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 uAsymp~dbeta(u.alpha_Asymp, u.beta_Asymp)   

 uProg~dbeta(u.alpha_Prog, u.beta_Prog)   

 uDnoPG~dbeta(u.alpha_DnoPG, u.beta_DnoPG)  

     

 for(t in 2:Cycles){    

  for(d in 1:3){ 

 u[d,t,1]<-lambda[d,t,1,1]*uAsymp + lambda[d,t,1,2]*uProg + lambda[d,t,1,3]*uDnoPG 

  

   u[d,t,2]<-uProg 

   u[d,t,3]<-uDead 

  }     

 } 

 

 for(t in 2:13){ 

  for(d in 1:2){  

   f1.ct[d,t]<-inprod(pg[d,t] , c[d,t,1])   #Progressed 

   ct[d,t]<-inprod(dpi[d,t] , c[d,t,2])    #Death 

   cd[d,t]<-(dpi[d,t] * c.ter[d])  

  }   

  ct.drug[3,t]<-pi[3,t,1]*cP[t,1]         

    

  for(d in 1:3){  

   for(s in 1:S){  

    ut[d,t,s]<-inprod(hcpi[d,t,s], u[d,t,s])  

   }   

  }      

 } 

 

 

 for(t in 14:Cycles){  

  for(d in 1:2){   

   f1.ct[d,t]<-inprod(pg[d,t] , c[d,t,1]) / pow((1+0.00291667), (t-1))#Progressed 

   ct[d,t]<-inprod(dpi[d,t] , c[d,t,2]) / pow((1+0.00291667), (t-1))#Death 

   cd[d,t]<-(dpi[d,t] * c.ter[d]) / pow((1+0.00291667), (t-1)) 

  } 

  ct.drug[3,t]<-(pi[3,t,1]*cP[t,1]) / pow((1+0.00291667), (t-13))     

   

  for(d in 1:3){  

   for(s in 1:S){  

    ut[d,t,s]<-inprod(hcpi[d,t,s], u[d,t,s]) / pow((1+0.00291667), (t-1)) 

   }   

  } 

 } 

 

 

 for(d in 1:2){  

      mean.3C[d,1]<-sum(f1.ct[d,2:Cycles]) /N  

      mean.3C[d,2]<-sum(ct[d,2:Cycles]) /N 

      mean.3C[d,3]<-sum(cd[d,2:Cycles]) /N 

  mean.C[d]<-sum(mean.3C[d,1:3]) + cDrug.tot[d] 

 } 

 cDrug.tot[3]<-(sum(ct.drug[3, 2:Cycles]))/N 

 mean.C[3]<-rd.factor*(sum(mean.3C[1,1:3])) + cDrug.tot[3] 

 

 for(d in 1:3){  

  mean.Tm[d,1]<-sum(pi[d,2:Cycles, 1]) / N 

  mean.Tm[d,2]<-sum(pi[d,2:Cycles, 2]) / N 

  mean.totTm[d]<-sum(mean.Tm[d,]) 

 

  for(s in 1:S){  
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   mean.3U[d,s]<-sum(ut[d,2:Cycles, s])/N/12 

  } 

  mean.U[d]<-sum(mean.3U[d,1:3])   

 } 

 

 Cost.diff<-mean.C[2] - mean.C[1] 

 Util.diff<-mean.U[2] - mean.U[1] 

 ICER<-Cost.diff/Util.diff 

  

for (g in 1:21)  { 

 Rc[g]<-(g-1)*5000 

  

 IncNetbenefit[g]<-Rc[g]*Util.diff- Cost.diff 

 ProbCE[g]<-step(IncNetbenefit[g]) 

  

 NB[1,g]<-Rc[g]*mean.U[1]- mean.C[1] 

 NB[2,g]<-Rc[g]*mean.U[2]- mean.C[2] 

 NB[3,g]<-Rc[g]*mean.U[3]- mean.C[3] 

   

 for(j in 1:3){ 

    pCE[j,g]<-equals(rank(NB[,g],j),3) 

    }  

    Prob.C[g]<-pCE[1,g] 

    Prob.T[g]<-pCE[2,g] 

    Prob.P[g]<-pCE[3,g]  

  } 

 

} 
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Appendix F : Program codes for Chapter 5 

 

Box F1: R codes for data simulation 

 
#Simulation of patients in Orme study 

library(msm) 

analysis.seed<-546321 

 

#----------------------------------------------- 

#Function to simulate categorical data 

x.cat<-function(p.var, indx){ 

  x<-rmultinom(n, size = 1, prob = p.var) 

  v<-diag(indx);   temp<-v %*% x 

  x.var<-colSums(temp) 

 

  return(x.var) 

} 

 

#----------------------------------------------- 

#Simulate data 

#Define number of subjects required 

n<-2048  ### number of binomial simulations 

e<-1   #number of sample 

 

#Gender 

p<-24.7 / (24.7+74.5) 

x<-rbinom(n, e, p) ; gender<-x 

 

#Relapse during last 3 months 

p<-0.289 

x<-rbinom(n, e, p) ; relapse<-x 

 

# Test results - binomial case 

#(t=(table(x)/n)*100)   ### Create a distribution table with proportions 

 

#Education 

l.edu<-c("Secondary school", "College/sixth form", "University/Polytechnic degree", "PG degree") 

den.p.edu<-0.322+0.265+0.297+0.101 

p.edu<-c(0.322/den.p.edu, 0.265/den.p.edu, 0.297/den.p.edu, 0.101/den.p.edu) 

i.edu<-1:length(p.edu) 

edu<-x.cat(p.edu, i.edu) 

(table(edu)/n)*100 

 

#MS type 

l.ms<-c("RRMS", "SPMS", "PPMS") 

p.ms<-c(0.355, 0.372, 0.273) 

i.ms<-1:length(p.ms) 

ms<-x.cat(p.ms, i.ms) 

(table(ms)/n)*100  

 

#EDSS 

n.edss<-c(28, 151, 180, 77, 193, 323, 396, 309, 210, 165, 16) 

p.edss<-n.edss/n 

i.edss<-c(0:6, 6.5, 7:9) 

x<-rmultinom(n, size = 1, prob = p.edss) 

edss<-colSums(diag(i.edss) %*% x) 

table(edss) 

sim.edss<-table(edss) 
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testsum<-sum(abs(n.edss-c(sim.edss)));testsum 

# Simple Bar Plot for EDSS 

#barplot(table(edss), main="", xlab="EDSS")  

 

#EQ-5D 

m.eq5d<-0.87 + c(0, -0.071, -0.165, -0.296, -0.26, -0.352, -0.412, -0.408, -0.573, -0.919, -1.065) 

w.ci.eq5d<-c(0.176, 0.188, 0.187, 0.203, 0.187, 0.184, 0.186, 0.188, 0.193, 0.197, 0.291) 

se.eq5d<-w.ci.eq5d/(2*1.959963985) 

mat.sd.eq5d<-diag(sqrt(n.edss)) %*% se.eq5d 

sd.eq5d<-as.vector(mat.sd.eq5d) 

 

#Steps to reduce SD using 95%RI to be within range [-0.594, 1] 

#uri.sd<-(1.0-m.eq5d)/1.959963985 

#lri.sd<-(m.eq5d-(-0.594))/1.959963985 

#v<-c(1:11) 

#min.sd.eq5d<-sapply(v, function(x) min(lri.sd[x], sd.eq5d[x], uri.sd[x])) 

min.sd.eq5d<-sd.eq5d 

 

#----------------------------------------------- 

#Truncated Normal distribution 

v<-c(1:11) 

norm.mat.r.eq5d<-t(sapply(v, function(x) rtnorm(n, mean=m.eq5d[x], sd = min.sd.eq5d[x], lower= -

0.594, upper=1))) 

norm.mat.eq5d<-x*norm.mat.r.eq5d 

normeq5d<-colSums(norm.mat.eq5d) 

 

 

#----------------------------------------------- 

# Normal distribution 

v<-c(1:11) 

utnorm.mat.r.eq5d<-t(sapply(v, function(x) rnorm(n, mean=m.eq5d[x], sd = min.sd.eq5d[x]))) 

utnorm.mat.eq5d<-x*utnorm.mat.r.eq5d 

utnormeq5d<-colSums(utnorm.mat.eq5d) 

set1utnormeq5d<-utnormeq5d 

 

// Steps to reduce the datset and re-compute the SD 

newvec<-cbind(edss, utnormeq5d); newvec[1:15, ] 

newset<-subset(newvec, (utnormeq5d>=-0.594 & utnormeq5d <= 1), select = c(edss, utnormeq5d)); 

newset[1:5, ] 

 

newedss<-newset[,"edss"] 

newutn<-newset[,"utnormeq5d"] 

newtest<-t(sapply(v, function(x) c(length(newutn[newedss==w[x]]), m.eq5d[x], 

mean(newutn[newedss==w[x]]), min.sd.eq5d[x], sd(newutn[newedss==w[x]])))); newtest  

(newsd<-sapply(v, function(x) sd(newutn[newedss==w[x]]))) 

 

utnorm.mat.r.eq5d<-t(sapply(v, function(x) rnorm(n, mean=m.eq5d[x], sd = newsd[x]))) 

utnorm.mat.eq5d<-x*utnorm.mat.r.eq5d 

utnormeq5d<-colSums(utnorm.mat.eq5d) 

 

 

#----------------------------------------------- 

#Log-normal transformation EQ-5D ---> y ---> z 

 

mu.new<-log((m.eq5d+0.594)/(1-m.eq5d)) + ((min.sd.eq5d)^2)*(-1*(m.eq5d+0.594)^-2 +(1-m.eq5d)^-

2)/2 

var.new<-((min.sd.eq5d)^2)* ((1/(m.eq5d+0.594))+(1/(1-m.eq5d)))^2 

sd.new<-sqrt(var.new) 

 

#Simulate lognormal distribution 
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v<-c(1:11) 

z<-t(sapply(v, function(x) rnorm(n, mean=mu.new[x], sd = sd.new[x]))) 

#z is log normal.... keep z for later analyses 

mat.z<-x*z 

zeq5d<-colSums(mat.z) 

 

# back transform: 

y<-(exp(z)-0.594)/(1+exp(z)) 

#hist(y, breaks=25) 

 

mat.eq5d<-x*y 

eq5d<-colSums(mat.eq5d) 

 

 

#Using sd from UT normal distribution  

mu.new<-log((m.eq5d+0.594)/(1-m.eq5d)) + (newsd^2)*(-1*(m.eq5d+0.594)^-2 +(1-m.eq5d)^-2)/2 

var.new<-(newsd^2)* ((1/(m.eq5d+0.594))+(1/(1-m.eq5d)))^2 

sd.new<-sqrt(var.new) 

 

#Simulate lognormal distribution 

v<-c(1:11) 

set.seed(52720)  

z<-t(sapply(v, function(x) rnorm(n, mean=mu.new[x], sd = sd.new[x]))) 

#z is log normal.... keep z for later analyses 

mat.z<-x*z 

zeq5dutn<-colSums(mat.z) 

 

# back transform: 

y<-(exp(z)-0.594)/(1+exp(z)) 

#hist(y, breaks=25) 

 

mat.eq5d<-x*y 

eq5dutn<-colSums(mat.eq5d) 

 

 

#----------------------------------------------- 

#Beta distribution 

 

#Conversion y --> x for beta-distribution 

m.eq5d.beta<-(m.eq5d +0.594)/(1.594) 

sd.eq5d.beta<-(newsd)/(1.594)    #using sd from utnormal 

#sd.eq5d.beta<-(min.sd.eq5d)/(1.594) 

 

(alpha<-(m.eq5d.beta^2)*(1-m.eq5d.beta)/(sd.eq5d.beta^2) - m.eq5d.beta) 

(beta<-alpha*(1-m.eq5d.beta)/m.eq5d.beta) 

 

v<-c(1:11) 

mat.eq5d.beta<-t(sapply(v, function(x) rbeta(n, shape1=alpha[x], shape2=beta[x], ncp = 0))) 

hist(mat.eq5d.beta) 

 

mat.utbeq5d<-x*mat.eq5d.beta 

utbetaeq5d<-colSums(mat.utbeq5d) 

hist(utbetaeq5d) 

hist(1-utbetaeq5d) 

hist(log(-utbetaeq5d)) 

hist(exp(utbetaeq5d)) 

 

mat.b.eq5d<-1.594*mat.eq5d.beta -0.594 

mat.eq5d<-x*mat.b.eq5d 

betaeq5d<-colSums(mat.eq5d) 
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betaeq5d<-1.594*utbetaeq5d -0.594 

 

 

#Constructed using 95%RI = [-0.594, 1] 

#Steps to reduce SD using 95%RI to be within range [-0.594, 1] 

uri.sd<-(1.0-m.eq5d)/1.959963985 

lri.sd<-(m.eq5d-(-0.594))/1.959963985 

v<-c(1:11) 

ri.sd.eq5d<-sapply(v, function(x) min(lri.sd[x], sd.eq5d[x], uri.sd[x])) 

sd.eq5d.beta<-(ri.sd.eq5d)/(1.594) 

(alpha<-(m.eq5d.beta^2)*(1-m.eq5d.beta)/(sd.eq5d.beta^2) - m.eq5d.beta) 

(beta<-alpha*(1-m.eq5d.beta)/m.eq5d.beta) 

 

v<-c(1:11) 

set.seed(52720) 

mat.eq5d.beta<-t(sapply(v, function(x) rbeta(n, shape1=alpha[x], shape2=beta[x], ncp = 0))) 

mat.b.eq5d<-1.594*mat.eq5d.beta -0.594 

mat.eq5d<-x*mat.b.eq5d 

s1betaeq5d<-colSums(mat.eq5d) 
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Box F2: WinBUGS codes for linear regression (1
st
 degree polynomial and 2

nd
 degree 

polynomial for illustration) 
 

model{ 

  for (i in 1:num) { 

    eq5d[i]~dnorm(mu[i],prec) 

    cedss[i]<-(edss[i] - 5)     

#1
st
 degree polynomial 

mu[i]<-alpha+beta1*cedss[i] 

#2
nd

 degree polynomial 

mu[i]<-alpha+beta1*cedss[i]+beta2*cedss[i]*cedss[i] 

  } 

  prec~dgamma(0.001,0.001)   

  sd<-1/sqrt(prec) 

  alpha~dnorm(a.m,a.prec)  

   

#1
st
 degree polynomial 

beta1~dnorm(b1.m,b1.prec) 

#2
nd

 degree polynomial 

beta1~dnorm(b1.m,b1.prec) 

beta2~dnorm(b2.m,b2.prec) 

 

  #estimates: 

  for (w in 1:10) {    

#1
st
 degree polynomial 

lnorm.eq5d[w]<-alpha + beta1*(w-6) 

#2
nd

 degree polynomial 

lnorm.eq5d[w]<-alpha + beta1*(w-6) + beta2*(w-6)*(w-6)   

    eq5d.res[w]<-(exp(lnorm.eq5d[w]) - 0.594)/(1+exp(lnorm.eq5d[w])) 

  }  

 

#1
st
 degree polynomial 

lnorm.e65.eq5d<-alpha + beta1*(6.5 - 5) 

#2
nd

 degree polynomial 

lnorm.e65.eq5d<-alpha + beta1*1.5 + beta2*pow(1.5,2)   

  eq5d.e65.res<-(exp(lnorm.e65.eq5d) - 0.594)/(1+exp(lnorm.e65.eq5d)) 

} 
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Appendix G : Publications and posters 
 

This appendix contains the publications and posters presentations resulting from the 

work carried out in this thesis. 

 

Research papers: 

Tan SH, Bujkiewicz S, Sutton A, Dequen P, Cooper N. Presentational approaches used 

in the UK for reporting evidence synthesis using indirect and mixed treatment 

comparisons. J Health Serv Res Policy 2013;18(4):224-32. 

 

Tan SH, Cooper NJ, Bujkiewicz S, Welton NJ, Caldwell DM, Sutton AJ. Novel 

presentational approaches were developed for reporting network meta-analysis. J Clin 

Epidemiol 2014;67(6):672-80. 

 

Poster presentations: 

Tan SH, Cooper NJ, Bujkiewicz S, Welton NJ, Caldwell DM, Sutton AJ. Novel 

Presentational Approaches for Reporting Network Meta-Analysis. The International 

Society of Clinical Biostatistics, Munich 2013. 

 

Tan SH, Bujkiewicz S, Abrams, KR. Bivariate indirect comparison meta-analysis 

model in economic evaluation of cancer treatments. The International Society for 

Pharmacoeconomics and Outcomes Research Annual European Congress, Dublin, 

2013 
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Presentational approaches used in the UK
for reporting evidence synthesis using
indirect and mixed treatment
comparisons

Sze Huey Tan1, Sylwia Bujkiewicz2, Alexander Sutton3,
Pascale Dequen4 and Nicola Cooper5

Abstract

Objectives: To establish current guidance and practice in UK on presentation of indirect comparison and mixed

treatment comparison analyses; to provide recommendations to improve indirect comparison/mixed treatment com-

parison reporting and to identify research priorities for improved presentation.

Methods: Existing institutional guidance for conducting indirect comparison/mixed treatment comparison alongside

current practice in health technology assessment was reviewed. Reports published in UK by the Health Technology

Assessment programme since 1997, which utilized indirect comparison/mixed treatment comparison methods,

were reviewed with respect to the presentation of study data, statistical models and results. Recommendations for

presentation were developed.

Results: Guidance exists that provide the details necessary to conduct a successful indirect comparison/mixed treat-

ment comparison analysis but recommendations on presentation are limited. Of 205 health technology assessment

reports that contained evidence synthesis for effectiveness, 19 used indirect comparison/mixed treatment comparison

methods. These reports utilized numerous presentational formats from which the following key components were

identified: network table/diagram for presenting data; model description to allow reproducibility; and tables, forest

plots, matrix tables and summary forest plots for presenting a range of results. Recommendations were developed to

ensure that reporting is explicit, transparent and reproducible. Approaches most understandable by non-technical

decision makers, and areas where future research is required, are outlined.

Conclusions: There is no standard presentational style used in UK for reporting indirect comparison/mixed treatment

comparison, and the use of graphical tools is limited. Standardization of reporting and innovation in graphical represen-

tation of indirect comparison/mixed treatment comparison results is required.

Keywords

indirect treatment comparisons, mixed treatment comparisons, reporting

Introduction

In health technology assessment (HTA), it is necessary
to collate information on effectiveness and cost-
effectiveness for influencing health policy. Information
should ideally be comprehensive and obtained from all
relevant, well-managed and documented data sources
including randomised controlled trials (RCTs), obser-
vational studies, expert opinions and bench research.
Evidence synthesis of clinical effectiveness between
treatment interventions has largely been evaluated
using standard pairwise meta-analysis1,2 using studies
that compared the same two interventions of interest.
Although it may be possible to address the comparative
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effectiveness between treatments and judge whether the
new treatment is better than placebo or standard care,
this type of analysis is limited. Often decision makers
are interested in assessing the comparative effectiveness
of multiple interventions, but trials comparing all tech-
nologies of interest may not be available. And even
when head-to-head trials do exist, there is increasing
interest to incorporate data from other related studies
to inform the estimate of effectiveness. Hence, evidence
synthesis methods that enable direct and/or indirect
comparisons of multiple treatments are required to elu-
cidate how these compare in terms of effectiveness and
cost-effectiveness.

Indirect treatment comparison (IC) and mixed treat-
ment comparison (MTC) (also known as network
meta-analysis) are recent developments in evidence syn-
thesis that allow for the comparison of multiple treat-
ments simultaneously.3–8 IC and MTC are now
acknowledged methodologies by HTA agencies world-
wide including the National Institute for Health and
Care Excellence (NICE) in England and Wales, the
Canadian Agency for Drugs and Technologies in
Health, the French Haute Autorité de la Santé and
the Pharmaceutical Benefits Advisory Committee in
Australia, as well as emerging national agencies in
Austria, Brazil, Colombia, Cuba and Ireland.

Since 2004, NICE guidance9 has emphasized that, in
HTA appraisals, evidence synthesis using meta-analysis
of head-to-head RCTs is the preferred method. If no
head-to-head RCTs are available, the guidance permits
the use of ICs so long as the potential bias in its use is
appropriately explored and reported. In 2008, NICE re-
emphasized the preference for synthesis results from
head-to-head RCTs where available.10 However, it
also stated that MTC analyses results may be included
even if head-to-head trials were available, if it is justified
that the MTC analysis will add information that is not
available from the head-to-head trials. Furthermore,
recent guidance (only available online for consultation
at the time of writing) further strengthens NICE’s pos-
ition regarding the use of IC/MTC in HTA appraisals.11

Internationally recognized guidelines for good
reporting of standard pairwise meta-analysis of RCTs,
such as the PRISMA statement (formerly known as
QUOROM), have been developed.12,13 While much of
the meta-analysis reporting guidance is also highly rele-
vant to the IC/MTC context (including advice on clarity
of labels and legends, and use of reasonable sizes for
symbols and lines in tables and figures), the inherently
greater complexity of the latter approaches presents fur-
ther challenges for reporting such analyses.

Most specific IC/MTC guidance is embedded in insti-
tutional HTA evaluation documentation. In UK, the
NICE guidance states that all data used for estimates

of effectiveness should be presented in tabular form
with the source of the data clearly stated.9,10 It also
states that, for IC/MTC analyses, the evidence may be
presented in either tabular or diagrammatic form
and should be reported as both relative and absolute
effectiveness estimates. This is re-enforced by more
detailed advice that complements their guidance on
evidence synthesis (though their content is non-manda-
tory when making submissions).14–20 Another detailed
source of guidance on conducting IC/MTC analyses
is the International Society for Pharmacoeconomics
and Outcomes Research (ISPOR) Task Force good
practice documents.21,22 While these provide many of
the details necessary to conduct a successful IC/MTC
analysis, specific details and recommendations on pres-
entational formats, particularly of the data and results,
are limited.

Our objectives were the first to review guidance on
the presentation of IC/MTC analyses for institutional
guidelines and to assess what has previously been done
in practice in UK by reviewing HTA reports, some of
which were commissioned to inform NICE appraisals.
Second, to provide recommendations on how to
improve future reporting of IC/MTC analyses. And,
third, to identify research priorities for improving the
presentation of IC/MTC analyses.

Methods

HTA programme reports published by the NIHR in
UK between 1997 and 2011 were reviewed by one of
the authors (NJC). The reports that used IC and/or
MTC methodology for evidence synthesis were identi-
fied. Using a standardized data extraction form (see
Appendix 1), these reports were examined to establish
the approaches taken in the reporting of IC/MTC as
regards:

Input data—presentation of the number of interven-

tions, study level data and the relationship structure

of the interventions and the studies included in the

analysis;

Methods—specification of Bayesian or frequentist stat-

istical models, software used and, where appropriate,

presentation of prior distributions used (and assess-

ment of their influence on the results via sensitivity

analyses) and assessment of model convergence;

Results—presentation of relative effects, absolute

effects, probability of treatment being best and/or rank-

ing of interventions.

Throughout this review process, there was a particular
emphasis on the use of tables and graphical presenta-
tional approaches.

Tan et al. 225



Results

Systematic review of the HTA reports

Of 608 UK NIHR HTA reports published, 375 con-
tained systematic reviews of effectiveness and/or cost-
effectiveness of which 205 contained evidence synthesis
and 19 (including 10 of which informed NICE apprai-
sals) utilized IC/MTC methodology (Figure 1). All
19 reports were published after 2004, the year in
which NICE guidance9 recommended the use of IC
analysis when no head-to-head RCT data are available
for HTA. Eight reports used IC methods and 11 used
MTC methods to synthesize the effectiveness data
(Table 1). The evaluation of approaches used for pre-
senting IC/MTC results in this work is focused on the
presentation of effectiveness although the use of IC and
MTC methodologies for the synthesis of adverse events
was seen in six reports. Eighteen reports included only
RCTs; the exception used both observational cohort
studies and RCTs but performed sensitivity analysis
excluding observational data. The number of interven-
tions used in the IC/MTC analysis ranged from 3 (min-
imum required for IC/MTC analysis) to 15. There was
no major ‘lumping’ of treatment interventions by drug
class although varying drug doses were grouped

together in some reports. Complete study summary
data (unless excluded for confidentiality reasons) used
for the analysis were provided for 17 reports.

Presentation of IC/MTC data

Eleven of the 19 HTAs used a network table (see
Appendix 2) to display the treatment comparisons (col-
umns) considered by each trial (rows). Only three
included all data used in the synthesis as elements in
the network table. The rest used ticks, cross marks,
shading or patient numbers to indicate what treatment
interventions were investigated in each RCT; although,
in the latter cases, data may have been presented for the
relevant trials in other sections of the report. Four
reports used network diagrams (Appendix 2) to display
similar information on the treatment comparisons con-
sidered by the included trials. This type of diagram
graphically displays all the treatment interventions
included in the IC/MTC and links these treatments
with lines if the comparison of the treatments exists in
at least one of the studies. Only two reports used both
network table and network diagram. The remaining six
reports did not show the network of trials used.

Presentation of IC/MTC synthesis model and its
implementation

All reports discussed the method and the rationale for
the use of IC/MTC. Sixteen reports utilized the
Bayesian framework for the statistical model. Seven
reports presented the statistical model in the main
report text while five presented it in an appendix.
Four reports did not present the statistical model but
referenced published models. The remaining three gave
a short description of the statistical model used. Checks
for inconsistencies in the IC/MTC network(s) were
assessed in two reports using informal methods
(recently developed formal methods of using deviance
information criteria or node-splitting technique23 were
not applied).

In view of the computationally intensive nature of
IC/MTC analysis, the software used for the analysis
was reviewed. Out of the 19 reports, 16 used the
WinBUGS statistical software version 1.4.24 The
others did not specify explicitly the software used but
reported that either SAS, STATA, RevMan or
StatsDirect was used for the presented meta-analysis
results that were reported together with the IC results.
For the 16 reports that used WinBUGS software, 14
defined the Bayesian prior distributions. All of these
used vague prior distributions, of which five conducted
sensitivity analysis to assess the influence of the choice
of prior distribution on the results obtained. CheckingFigure 1. Flowchart of HTA review selection.
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of the convergence of the MCMC sampler in the
Bayesian IC/MTC analysis was reported by 9 out of
the 16 reports using WinBUGS and 14 reports included
WinBUGS codes in their appendices.

Presentation of IC/MTC results

IC/MTC effectiveness results were presented for 18
of the 19 reports. Two had a section specifically for
the IC/MTC effectiveness analysis while 13 presented
the IC/MTC analysis in the effectiveness and 4 in the
cost-effectiveness chapters of the report (i.e. IC/MTC
was only used in the cost-effectiveness modelling).

Most reports (16) presented the results of the IC/
MTC in tables (Table 1), with four of these also pre-
senting either summary forest or caterpillar plots
(Figure 2). Across the 16 reports, three different table
formats were used:

. two reports used a matrix table of relative
effects (Table 2), which contains all permutations of
treatment comparisons for both IC/MTC and
pairwise meta-analysis, separated by the off-diagonal;

. nine used a relative effect table (Table 3), which sum-
marizes pooled ratios/weighted mean differences of
selected treatment comparisons relevant to the HTA
and

. five used an absolute effect table (Table 4), which
presents the posterior probability of rates (response,
rejection, etc.) for all treatment interventions in the
IC/MTC by the use of a specified underlying base-
line rate.

Thirteen HTAs reported comparative effectiveness
estimates, of which eight reported all permutations of
pair-wise comparison results from the IC/MTC ana-
lysis, five concentrated either on active treatments com-
pared with placebo (or no treatment or standard care)
or on active treatments of interest compared to one
another.

IC/MTC analysis results were reported either as
pooled relative effects (odds ratios, hazard ratios,
weighted mean differences) or rates (response rates,
withdrawal rates) with either 95% confidence interval
(for frequentist evidence synthesis) or 95% credible
interval (for Bayesian evidence synthesis). Five HTAs
reported the probability that each treatment was the
most effective of which four of these presented
the ‘best’ statistic in tables and one reported it only in
the main text of the report. None of the published
reports provided tables or graphs that ranked the tech-
nologies in terms of effectiveness as has been presented
elsewhere.25

Summary Forest plotComparators

<--- Favour Treatment on Left       Favour Treatment on Right --->

A vs B

A vs C

A vs D

B vs C

B vs D

C vs D

Figure 2. Summary Forest plot.

Table 2. Matrix table of relative effects.

Mixed treatment comparison

Standard Meta-Analysis

Intervention A ORA-B_MTC (95% CrI) ORA-C_MTC (95% CrI) ORA-D_MTC (95% CrI)

ORA-B_MA (95% CrI) Intervention B ORB-C_MTC (95% CrI) ORB-D_MTC (95% CrI)

ORA-C_MA (95% CrI) ORB-C_MA (95% CrI) Intervention C ORC-D_MTC (95% CrI)

Not calculable ORB-D_MA (95% CrI) ORC-D_MA(95% CrI) Intervention D

Key: ORA-B_MTC¼Odd ratio of A vs B using Mixed Treatment Comparison.

ORA-B_MA¼Odd ratio of A vs B using Meta-analysis.
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All except two reports used the IC/MTC evidence
synthesis results to inform their economic decision
model. Of those that did, one used a subset of RCTs
used for effectiveness and another used more RCTs
than those included in the effectiveness evaluation.

After we completed this review, a further systematic
review of international literature26 of 42 MTC analyses
was in broad agreement with ours. They found that the
presentation of results was much more likely to be
tabular (89.5%) rather than graphical (21.1%) formats.
Thus, while our sample of IC/MTCs was limited to
HTA reports in UK, it is reassuring that a review of
reports from a wider area obtained similar findings.

Discussion

Recommendations to improve reporting of IC/MTC
analyses

In our recommendations for IC/MTC reporting, we
consider data, model and results (Table 5) and also
cover (i) the qualities that make good IC/MTC analysis
reporting, (ii) the most appropriate and informative
presentation methods, and (iii) the target audiences
for the information.

In any statistical analysis, the credibility of the
results depends on the quality of the data used and
the appropriateness of the model adopted. It is, there-
fore, imperative that a clear description of the data and
statistical models is presented to ensure transparency
and reproducibility. Therefore, we recommend that stu-
dies used in the IC/MTC analysis should be clearly pre-
sented with, at a minimum, references properly cited,
and the data used in the analysis clearly stated or out-
come data (e.g. for a binary outcome, number of events
and number of patients in arm) from which the out-
come measures used (e.g. log-odds ratios and standard
errors) can be calculated. A tabular format is a good
way of presenting this information. A network diagram
is an excellent way of visualizing the relationships
between the studies and interventions under evaluation.
Since this could be derived from a tabular description
of all the studies, of the form described above, it is not
strictly essential, but where space allows, we encourage
its inclusion. However, if any included studies have
more than two treatment arms, then it is not possible
to derive a network table from a network diagram,
in addition to not being able to identify citations to
specific studies.

For the statistical model, this should be fully
described with associated algebra together with analysis

Table 3. Relative effects table.

Treatment comparators

Mixed treatment comparison Standard meta-analysis

Mean 95% CrI Mean 95% CrI

Intervention A Intervention B ORA-B_MTC (95% CrI) ORA-B_MA (95% CrI)

Intervention A Intervention C ORA-C_MTC (95% CrI) ORA-C_MA (95% CrI)

Intervention A Intervention D ORA-D_MTC (95% CrI) Not calculable Not calculable

Intervention B Intervention C ORB-C_MTC (95% CrI) ORB-C_MA (95% CrI)

Intervention B Intervention D ORB-D_MTC (95% CrI) ORB-D_MA (95% CrI)

Intervention C Intervention D ORC-D_MTC (95% CrI) ORC-D_MA (95% CrI)

Key: ORA-B_MTC¼Odd ratio of A versus B using mixed treatment comparison.

ORA-B_MA¼Odd ratio of A versus B using meta-analysis.

Table 4. Absolute effects table.

Treatments

Mixed treatment comparison Standard meta-analysis

Mean 95% CrI Mean 95% CrI

Intervention A EffA_MTC (95% CrI) EffA_MA (95% CrI)

Intervention B EffB_MTC (95% CrI) EffB_MA (95% CrI)

Intervention C EffC_MTC (95% CrI) EffC_MA (95% CrI)

Intervention D EffD_MTC (95% CrI) EffD_MA (95% CrI)

Key: EffA_MTC¼Absolute treatment effects estimates of A using mixed treatment comparison.

EffA_MA¼Absolute treatment effects estimates of A using meta-analysis.
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code (including data with a data code sheet explaining
the data structure) either in the main text or as an
appendix. If report space is limited, then either citation
to the model specification published elsewhere would be
required or supplementary material describing the
model provided online.

The presentation of results from the analysis relies
largely on the question of interest: which treatment is
best, what is the treatment effect for a specific compari-
son or perhaps all comparisons with either usual care or
all treatments in the network being of interest. IC/MTC
analyses can answer these questions by providing esti-
mates of the treatment effects for any comparisons
included in the network, the probability that each treat-
ment is best and the ranking distribution of each treat-
ment. It may not be feasible and/or desirable to report
all of them in a report manuscript, and therefore the
focus of the analysis should be well defined to guide the
choice of the most appropriate statistics to report. This
issue strengthens the desirability for making data/ana-
lysis code available to enable readers to obtain results
for any aspect of the analysis not reported. Hence, pre-
scriptive requirements on reporting results are not pos-
sible; however, we encourage the use of graphical and

tabular approaches to reporting for ease of interpret-
ation. This is consistent with the draft 2012 NICE
guidance.11

Finally, the choice on what type of results to report
and which tools to use depends on the audience. For
example, whereas academics may be interested in all
three components of the IC/MTC analysis, the statis-
tical analysts would be expected to focus more on the
model specification and decision makers on the trans-
parency of the data and clarity of the results of interest.

The above recommendations should be used in con-
junction with the good practice in IC/MTC methods
documents recently published by an ISPOR Task
Force21,22 and NICE’s Decision Support Unit.14–20

The latter provides a checklist for reviewers’ of MTCs
and goes beyond the issue of methods and results
reporting including sections on the definition of the
decision problem and embedding the synthesis in a
probabilistic cost-effectiveness model. Finally, it
should be acknowledged that we make no recommen-
dations regarding the reporting of advanced issues
such as variable study quality, subgroup analysis or
inconsistency analysis, due to the infancy of this
methodology.

Table 5. Table of recommendations for IC/MTC analysis reporting.

Component Qualities

Presentation method recommended

(domains fulfilled) Target audience

Data D1. Studies included in analysis clearly

presented and references cited

Network table, with the structure of Figure

in Appendix 2, but with outcome data

presented in the table cells/references

to studies included.

Academics

D2. Treatments compared in each study

reported

Network table provides transparency of

the trial data used in the analysis (D1–D3)

Decision-makers

D3. Treatment data / effect sizes (with a

measure of uncertainty) for each

included study reported

Model M1. Statistical model described typically

with algebraic representation

Full analysis codes including data with data

code sheet. This can be provided in

Appendix or as online supplementary

materials.

Academics

M2. Citation given to the model used This allows reproducibility of the results

and contains the model used and data

included in the analysis (M1–M3)

Statistical analysts

M3. Analysis code presenting model

(and data)

Results R1. Results of interest (given the aim of

the study) reported

Tables (see Table 3 for an example) and

summary forest plot of results (see

Figure 2) of interest (R1)

Academics

R2. (Relative) Comparison of all

treatments

Matrix tables (see Table 2 for an example)

with Summary Forest Plot/caterpillar

plot (see Figure 2 for an example) (R1,

R2)

Decision-makers

R3. Probability best statistics/ranking of

treatments

Tables or ‘rankogram’ presenting prob-

ability best statistics and ranking (R3)
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Research priorities

IC/MTC techniques, by their nature, often include
a larger number of studies, require more
complicated statistical analysis models and produce
larger arrays of results when compared with standard
meta-analysis. For example, an MTC including five
different treatment regimens generates 10 pairwise
comparisons and this increases to 45 pairwise com-
parisons when 10 different treatment regimens are
included. Interpreting such large arrays of results
and how individual studies influence them can be chal-
lenging. Indeed, consistency and clarity in the presen-
tation of results will aid the interpretability of the
results while clear presentation will enable better
understanding of the relationship between treatment
comparators and facilitate sensitivity analysis, sub-
group analysis and network inconsistencies analysis.
More work needs to be done, since summary figures
highlighting the most important results (e.g. those
interventions which have the highest probabilities of
being best and ranking statistics) would be an
improvement on forest plots. A good model for aca-
demic papers would be an approach of the type taken
by Trelle et al.27 where multiple extensive appendices
supplement a concise article. There have already been
some published MTCs with very large networks for
example one that included 12 treatments and 117
RCTs.28 Optimal presentational strategies for MTC
may vary depending on, among other things the size
of the dataset, making rigid reporting guidelines chal-
lenging. Added to this is the acknowledgement of indi-
viduals’ personal preferences for numeric or graphical
displays, which may be coupled with their perspective
of wanting to draw inferences from the analysis or
make decisions based on it.

Other innovations in presentation of IC/MTC
analyses may be valuable to explore further. For
example, the widths of the lines on network dia-
grams have been set to define the number of trials
contributing direct comparative estimates, and the
size of the treatment boxes/nodes made proportional
to the number of randomized subjects (sample
size).28 Rankograms, that graphically represent the
distribution and probability of rankings when com-
pared to all other interventions in the network, have
been presented.25,28 Similarly, cumulative ranking
probability plots have been proposed.25 In an
attempt to communicate variable quality of the evi-
dence for each direct and MTC comparison, col-
oured circles have been added in the cells of the
Matrix table of results.29 Finally, in a similar vein
to the work undertaken by Bax et al.30 for pairwise
meta-analysis, an evaluation of how different audi-
ences is able to interpret different presentational
approaches would seem a valuable exercise.
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Abstract
Objectives: To present graphical tools for reporting network meta-analysis (NMA) results aiming to increase the accessibility, trans-
parency, interpretability, and acceptability of NMA analyses.

Study Design and Settings: The key components of NMA results were identified based on recommendations by agencies such as the
National Institute for Health and Care Excellence (United Kingdom). Three novel graphs were designed to amalgamate the identified com-
ponents using familiar graphical tools such as the bar, line, or pie charts and adhering to good graphical design principles.

Results: Three key components for presentation of NMA results were identified, namely relative effects and their uncertainty, proba-
bility of an intervention being best, and between-study heterogeneity. Two of the three graphs developed present results (for each pairwise
comparison of interventions in the network) obtained from both NMA and standard pairwise meta-analysis for easy comparison. They also
include options to display the probability best, ranking statistics, heterogeneity, and prediction intervals. The third graph presents rankings
of interventions in terms of their effectiveness to enable clinicians to easily identify ‘‘top-ranking’’ interventions.

Conclusions: The graphical tools presented can display results tailored to the research question of interest, and targeted at a whole
spectrum of users from the technical analyst to the nontechnical clinician. � 2014 Elsevier Inc. All rights reserved.

Keywords: Network meta-analysis; Graphical displays, presentational tools, summary forest plot, ranking, probability best
1. Introduction

Until recently, systematic reviews and health technology
assessments (HTAs) have been limited to pairwise compari-
sons of interventions where direct evidence exists. However,
often there is an array of candidate interventions relevant to
the clinical question of interest, thus an analysis comparing
all the relevant interventions may be more appropriate and
useful to decisionmakers.Methodology to address this issue,
which has increasingly been applied, is network meta-
analysis (NMA; also known as mixed [or multiple] treatment
comparisons) [1e4]. Despite the increase in the use of NMA,
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there is no established graphical presentational standard for
reporting the results of NMA analogous to the forest plot
[5] for standard pairwise meta-analysis (PWMA) [6,7].

Herein, we propose three novel graphical tools that aim
to present NMA results in a clear and concise manner that
combine both graphs and numerical estimates for optimal
interpretation of NMA results and with built-in alternative
display options to satisfy the needs of different audiences.
General principles of graphical excellence for presenting
data [8e10], in a manner that highlight and organize the
data effectively, were used. This included reducing non-
data ink; enhancing data ink; and grouping, prioritizing,
and sequencing the data.
2. What is NMA?

TheNMAis a recentdevelopment in evidence synthesis that
extends the functionality of standard PWMA to allow for a
simultaneous and coherent comparison of multiple interven-
tions using an evidence base of trials that individually may
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What is new?

� Network meta-analyses generate large amounts of
outputs that make reporting of key results chal-
lenging, leading to variable reporting styles and
often suboptimal reporting of the results.

� Three graphical tools are proposed: two reporting
the key results of NMA (alongside pairwise
meta-analysis results), whereas the third summa-
rizes the overall ranking of the interventions in
terms of effectiveness.

� These graphical tools are designed to be tailored to
display results relevant to the research question of
interest, and the different formats are aimed to
target both analysts and clinicians.

� Standardizinggraphical tools for presentingNMAre-
sults would increase the acceptability, accessibility,
transparency, and interpretability of NMA analyses.

� Software for the implementation of the graphical
tools are freely available.
not compare all the treatment options of interest. Advan-
tages of NMA include: (1) preservation of within-trial
randomization when combining randomized controlled tri-
als (RCTs) evidence (ie, NMA is performed using the rela-
tive effectiveness results of randomized arms of
interventions from each trial included in the networkd
hence there is no breaking of randomization when synthe-
sizing the results), (2) transparency of the framework (ie,
no need for ‘‘back of the envelope’’ indirect comparisons
based on a series of PWMAs), and (3) potential reduction
of uncertainty owing to the inclusion of more data.

Owing to the inherent feature of NMA to compare mul-
tiple interventions simultaneously, there has been rapid
growth in the number of published clinical articles that
use NMA for the synthesis of evidence from clinical trials,
as well as, tutorial articles that focus on educating clini-
cians and methodologists alike on the fundamentals of
NMA and how to interpret NMA results presented in jour-
nal articles. For example, Salanti [11] summarizes what the
principles of NMA are, and its benefits and concerns as a
next generation evidence synthesis tool. Articles by Dias
et al. [12,13] provided technical guidance on the conduct
of NMA through the use of tutorial examples, which
included useful program codes to facilitate the analysis
and enhance the understanding. Other tutorial articles with
greater relevance to clinicians on understanding the core
concepts of NMA, interpreting results from published
NMA, and hence applying it to real-life clinical situation
were published recently in medical journals, for example,
by Mills et al. [14,15] and Cipriani et al. [16].
Given the many advantages and the increased accessi-
bility by the publication of the tutorials, the popularity
and use of NMA have increased. However, the NMAs
generate large numbers of results compared with PWMA;
for example, an NMA including five different treatment
regimens generates 10 pairwise comparisons; and this in-
creases to 45 pairwise comparisons when 10 different treat-
ment regimens are included. Presenting such large numbers
of results can be challenging, especially when NMA is used
to evaluate a number of different outcome measures within
the area of interest. Two recent reviews on the reporting of
NMA results highlighted the variability in reporting styles
[7,17] in terms of both the content (eg, relative effect esti-
mates, the probability that a treatment is most effective
compared with all other treatments included in the network
analysis [referred to subsequently as probability best], and
so on) and presentational form (eg, table, text, and graph),
and called for additional guidance and presentational tools
for reporting NMA results to aid ease of interpretability.
3. Which NMA results are important?

A recent review by Tan et al. [7] on the reporting of NMA
results in UKNational Institute for Health Research HTA re-
ports found that the most often reported NMA results
included relative effects of comparative pairs of interven-
tions, absolute effects of interventions, and probability best,
all of which are recommended in the published NMA
methods guidance documents by agencies such as the Na-
tional Institute for Health and Care Excellence (NICE)
[18] or International Society For Pharmacoeconomics and
Outcomes Research [19,20]. Another statistic used in the re-
porting of NMAs, although not reported in the HTA reports
reviewed, is the order of preference of an intervention among
a number of interventions (ie, the ranking of an intervention,
where the probability that an intervention is rank 1 is the
probability best statistic). The ranks may be presented as
summary statistics (eg, mean/median rank and surface under
the cumulative ranking curve [SUCRA] [21]) or graphical
representations of the distribution of ranks (eg, ranko-
grams/barplots) indicating the probability that a given inter-
vention is first, second, third best, and so on when compared
with all other interventions in the network. In addition to the
above, PWMA results are reported in the HTA reports,
sometimes alongside NMA results to allow informal consis-
tency checks to be made. Prediction intervals (the interval
indicating the likely location for the underlying effect in a
new study), although not routinely reported, have recently
been advocated [22] for the reporting of the impact of het-
erogeneity in evidence synthesis.
4. Data set

As an illustrative example to present the graphical tools
developed, we selected a recently published study that used
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NMA to investigate the use of tocolytic therapy for preterm
child delivery [23]. This published NMA included 95 RCTs
and considered eight classes of drugs for the treatment of
preterm delivery (See Fig. 2 of Haas et al. [23] for the
network of interventions and trials included in the NMA).
The primary outcome measurement was 48-h delay in de-
livery and the analysis was performed on the odds ratio
scale using 55 RCTs. Other secondary outcomes were also
analyzed in the study; but for the illustration of the graphs
proposed in this article, only the results of the primary
outcome measure will be displayed; the graphs for the other
outcomes will have a similar display format.

In the original article [23], key analysis results of the pri-
mary endpoint, such as NMA and PWMA odds ratios, prob-
ability best, and rankogram were presented separately using
tables and figures (Table 1 and Figs. 3 and 7 in the original
articledalso see Appendix B at www.jclinepi.com of this
article). The graphical tools proposed here are designed to
consolidate the key results into a single figure that enable
easier referencing of results for the authors and ease of inter-
pretation of the results for clinicians and academics.
5. Graphical tools

In this section, three graphical tools are presented that
aim to amalgamate the important NMA resultsdidentified
in the section ‘‘Which NMA results are important?’’dto
aid readability and maximize interpretation in NMA
reports. Two of the graphs present relative effects of
comparative pairs of interventions, probability best, ranking
statistics, and heterogeneity estimates. They also present
the results of the PWMA alongside the NMA results to
allow informal checks for consistency of results to be made
easily. The primary aim of the third plot was to give a sim-
ple summary of the order of preference of interventions in
terms of effectiveness.

The different graphical displays were developed with
different target audiences in mind. With academics and
statisticians/analysts in mind, the main objective was to
graphically present all key NMA results on a single graph,
while ensuring interpretability through clear presentation;
this also aimed to help meet restrictions on the number of
tables and figures often enforced by research journals (us-
ing graphs 1 and 2 below). Although completeness of
NMA results presentation may be desired by the academics
and analysts, clinicians and decision makers in health care
are more likely to be interested in visualizing the overall
conclusions of the analysis by presenting the rankings of
all interventions in terms of their effectiveness (ie, high-
lighting ‘‘top-ranking’’ interventions; graph 3).

5.1. Graph 1: summary forest plot matrix

5.1.1. Description
The first plot, referred to as the summary forest plot (SFP)

matrix, is shown in Fig. 1. The plot design is similar to a
scatterplot matrix often used for the investigations of corre-
lations. Along the diagonals, the interventions included in
the network are displayed. These interventions may be or-
dered, for example, by their median rank, as is done here,
to highlight the most relevant comparisons by placing them
at the top of the graph. Below the diagonal, in the lower tri-
angle of the plot, SFPs for all possible combinations of the
intervention pairs analyzed in the NMAdin black colord
are presented above the PWMA resultsdin gray colordto
aid visual assessment of consistency between the two ana-
lyses (the intervention labeled horizontally to the right of
the plot is compared with the intervention labeled vertically
above and clear labeling of the axes is given for each ‘‘plot
element’’ on the bottom of the matrix). The SFPs display the
point estimates of effect size (drawn as a square) with 95%
confidence/credible intervals (CrIs) and 95% prediction in-
tervals (shown by two-tiered error bars). Any summary plot
without a gray-colored estimate indicates a comparison for
which no head-to-head trials exist. The corresponding nu-
merical estimates of comparative effectiveness are presented
above the diagonal in the upper triangle and are presented as
a ‘‘mirror image’’ to the SFPs taking the diagonal as the
mirror line. To assist in understanding the heterogeneity of
the studies in the network, the numerical estimate of
between-study variance (ie, heterogeneity) is reported below
the matrix. Alternating shadings of each plot element is used
to improve readability (a technique often used in rail/bus
timetables). Also included in the matrix, along the diagonal,
are the median ranks together with rankograms, which pro-
vide the full probability distribution of rankings for each
intervention.

For the example in Fig. 1, the drug class of prostaglandin
inhibitors (row 1) is most likely the best intervention with
the highest median rank (1) and probability best statistic
as shown on the rankogram (0.80dthe height of the density
at rank 1 [x-axis]). The effectiveness of the interventions
ranked second and third based on median rank (magnesium
sulfate and calcium channel blockers) relative to prosta-
glandin inhibitors are given by the odds ratio of 0.53
(95% CrI: 0.24e1.20) and 0.51 (95% CrI: 0.20e1.50),
respectively. The lower triangle of the SFP matrix allows
the reader to easily identify pairs of interventions for which
there were no head-to-head trials. In the example presented
in Fig. 1, the drug class of prostaglandin inhibitors is
compared directly, in head-to-head trials, with all interven-
tions except for the drug classes: others, oxytocin receptor
blockers, and nitrates (as indicated by the lack of PWMA
estimate below the NMA estimate). This graph allows
readers/clinicians to interpret key results of an NMA using
a single plot, to compare the NMA and PWMA results
and to identify which pairs of interventions could not be
compared in a PWMA (owing to a lack of head-to-head
trials). These functionalities, together with the prediction
intervals presented in the graphs, could be used to guide
potential areas of future clinical trials/epidemiological
research studies.
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Summary Forest Plot Matrix of Tocolytic therapy for preterm child delivery

Odds Ratio with 95% CrI & 95% PI (log scale) Heterogeneity: between-study variance       
 = 0.29; 95% CrI (0.071–0.687)                 

Key:
      NMA results in black; Pairwise MA results in grey. 95% CrI and PI presented as error bars.
      Interventions are displayed sorted by median rank. Ranks shown along the diagonal are the median rank.

Fig. 1. Summary forest plot matrix. CCB, calcium channel blocker; ORB, oxytocin receptor blocker; NMA, network meta-analysis; CrI, credible in-
terval; PI, prediction interval.
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5.1.2. Advantages and limitations
Traditional forest plots display individual study effects

together with the summary estimates to enable readers to
assess the effects of each study, how different they are from
one another and from the summary estimates, and their in-
fluence on the summary estimates. As much as it is desir-
able to display individual studies used in an NMA, it is
cumbersome as the number of studies included in an
NMA can often be large. Instead the graphical tools devel-
oped aimed to use the traditional forest plots, familiar to a
great number of audiences in the medical area, to display
the summary estimates from both NMA and PWMA and
placing them side by side. The deliberate placement of
the PWMA alongside the NMA results is to allow clinicians
to directly address the question that naturally arises with
NMA, that is, how different the results of NMA (that uses
a network of trials) are compared with the results of tradi-
tional PWMA of head-to-head trials.

Along the diagonal, key NMA summary statistics
(such as the median ranks together with rankograms,
which provide the full probability distribution of rank-
ings for each intervention) that are commonly reported
separately are included in the graph. By including these
statistics on the same plot as the relative effects, it en-
ables the reader to instantly identify which intervention
is most likely to be the best and read its comparative
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effects with all the other remaining interventions
(ordering on the median rank statistics further facilitates
this by ensuring the ‘‘best’’ interventions are placed at
the top of the plot).

Owing to the matrix square design of the SFP matrix, we
believe that it works best for networks that are of moderate
size (!10 interventions). Displaying NMA results of larger
network will evidently require the SFP matrix to be sepa-
rated into pages in the multiples of 2, hence reducing the
readability and ease of interpretation of the NMA results.
As such, we have included options to sort in terms of key
NMA summary statistics and print a user-specified range
of interventions, which will be discussed in greater details
in the display options section.
5.1.3. Display options
The SFP matrix shown in Fig. 1 is one variant of the

many that can be displayed. In its simplest form, the SFP
matrix contains only the NMA and PWMA SFPs and esti-
mates (with 95% CrI), with only the intervention names
displayed along the diagonal and the heterogeneity esti-
mates presented. Prediction intervals as shown in Fig. 1
can be optionally included in the graph. Further NMA re-
sults components such as the ranking and probability best
statistics can be optionally included in the graph and dis-
played along the diagonal as shown in Fig. 1 where the ran-
kograms were displayed. Ranking statistics can be
displayed in the form of (1) rankogram with median rank,
(2) bar chart with mean rank, or (3) the SUCRA estimates
with cumulative ranking probability plots. Probability can
best be displayed with a pie chart with the probability
estimates.

Apart from the display of key NMA results compo-
nents, options to sort or reduce the number of interven-
tions displayed in the graphs are available (with caution
notes displayed as footnotes in the graphs to remind
readers of the actual number of interventions used in
the NMA to produce the displayed results). Although
we recommend the presentation of all pairwise compari-
sons in the network, we also acknowledge that it is some-
times necessary to display a reduced set of interventions,
especially in the case of large networks. It may be helpful
to clinicians and decision makers to restrict presentation
of the NMA results to that of the top 5 or 10 ranking in-
terventions when that the network contains say 20 inter-
ventions or more. The NMA components that can be used
for sorting the results are (1) median rank, (2) mean rank,
(3) SUCRA percentages, (4) probability best, and (5)
relative treatment effect compared with the treatment
coded as 1 (which is commonly placebo or standard of
care) in the analysis. Footnotes in the graphs can also
be removed wherever it is necessary. Illustrative exam-
ples of SFP matrix plots in its simplest format and with
SUCRA percentages are shown in Appendix A at www.
jclinepi.com.
5.2. Graph 2: SFP table

5.2.1. Description
The second graph, referred to as the SFP table, is shown in

Fig. 2. This plot uses the presentational style of the tradi-
tional forest plot where the numerical estimates are reported
alongside the SFPs. The SFP table presents results for all
possible combinations of intervention comparisons with each
intervention in the second column compared with the inter-
vention listed in the first column. Similar to the SFP matrix
previously described, the interventions have been ordered
by their median rank. The third column reports the number
of head-to-head trials that compare the two interventions
listed in columns 1 and 2 (a feature not incorporated in the
SFP matrix). In column 4, the numerical estimates of the
relative effects with corresponding 95% CrI are presented
for the NMAwith the PWMA results directly below in gray.
Finally, column 5 presents the SFPs; again the PWMA re-
sults are presented below the NMA results to allow visual
assessment of consistency between the two analyses. Similar
to the SFP matrix, the display of the prediction intervals
alongside the CrIs on the SFP is optional. An estimate of het-
erogeneity across the trials included in the network is also
presented. Median ranks of all interventions are also reported
in this graph, numerically and graphically using a slider bar
format (full rankograms, as presented on the SFP matrix,
were problematic for the SFP table and difficult to read).
5.2.2. Advantages and limitations
One advantage of this plot over the matrix format is that

the reference line of the SFPs for all pairwise comparisons
is drawn on the same vertical line, hence facilitating the
assessment of differences in comparative estimates and
their precision between treatment pairs. Another advantage
of this reporting style is that the NMA results from large
networks can be reported more easily with the SFP table
extending to multiple pages, where necessary.

Key NMA summary statistics such as the median rank,
mean rank, SUCRA percentages, and probability best sta-
tistics are presented in the top first box of NMA results.
This is a result of the reduction in comparative pairs by
one as the primary comparator moves to the next interven-
tion in the NMA. As such for an NMAwith eight interven-
tions (like in our example data), there will only be seven
boxes on the SFP table because the last intervention (in
our exampledplacebo) would have been compared with
all preceding interventions and will not be listed in column
1 (the primary comparator column). Besides not having the
last intervention in column 1, the size of the boxes de-
creases as it moves toward the next intervention, making
it challenging to include rankograms on the graph. This is
not only a limitation of this graph design but is also an
advantage of this graph as the key NMA summary statistics
had to be placed in the top box and this, in turn, allows
readers to compare the interventions without having to flip
through pages of the table when the network is large.
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Key: NMA results in black; Pairwise MA results in grey. 95% CrI and PI presented as error bars.
        Interventions are displayed sorted by median rank.

Fig. 2. Summary forest plot table. H-H trials, head-to-head trials; CCB, calcium channel blocker; ORB, oxytocin receptor blocker; NMA, netw
meta-analysis; CrI, credible interval; PI, prediction interval.
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5.2.3. Display options
The SFP table shown in Fig. 2 is one variant of the

many that can be displayed. In its simplest form, the
SFP table contains only the NMA and PWMA SFPs and
estimates (with 95% CrI), and the number of head-to-
head trials for each pair of intervention comparisons.
Prediction intervals as shown in Fig. 2 can be optionally
included in the graph. Other NMA results components
such as the ranking and probability best statistics can be
optionally included in the graph and displayed in the first
set of intervention comparisons as shown in Fig. 2 where
the median ranks were displayed. Choice of display of
the ranking statistics are (1) median rank presented using
slider bar, (2) mean rank presented using slider bar, and
(3) SUCRA percentages. Probability is best displayed with
a pie chart alongside the probability estimates.

Similar to SFP matrix, options to sort or reduce the num-
ber of interventions displayed in the graphs are available
(with caution notes displayed). The NMA results compo-
nents that can be used for sorting the results are (1) median
rank, (2) mean rank, (3) SUCRA percentages, (4) probability
best, and (5) relative treatment effect compared with the
treatment coded as 1 (which is commonly placebo or stan-
dard of care) in the analysis. Illustrative examples of SFP ta-
ble plots in its simplest format and with SUCRA percentages
are shown in Appendix A at www.jclinepi.com.
5.3. Graph 3: median rank chart

5.3.1. Description
The third graph, shown in Fig. 3, presents the median

ranks of all interventions included in the NMA with the
aim to ‘‘simplify’’ the presentation of rankings in NMA.
A color intensity scheme is used in this graph to help
draw attention to the best treatment(s) (using black ink
in the lightest zone at the top of the chart) while simulta-
neously highlight the worst treatment(s) (in the darkest
zone at the bottom of the chart). In our example
(Fig. 3), the drug class of prostaglandin inhibitors is most
likely to be the best with a median rank of 1, whereas the
drug classes of nitrates and placebo are the worst, and the
five other interventions have similar rankings between
these extremes.
5.3.2. Advantages and limitations
As this graph allows all interventions included in the

NMA to be presented in a single graph that can be
printed on a single page, we believe that it is a particu-
larly useful graphical tool when the network contains a
large number of interventions. This graph provides
readers with only the median ranking of the interven-
tions; hence unlike the SFP matrix and SFP table, this
does not provide quantitative information on the differ-
ences in efficacy estimates between the interventions
included in the analysis.
6. Software

Functions for creating the graphs in the form presented
in this article have been written in the R software language
and is available for download from: https://www2.le.ac.uk/
departments/health-sciences/research/biostats/sb-supplementary-
materials/nma-graphics.
7. Discussion

In this article, we have presented three graphical tools to
aid clear presentation and facilitate interpretation of NMA
results. The SFP matrix and SFP table provide a comprehen-
sive presentation of the important NMA and PWMA results
displayed on a single plot. These plots not only enable easy
comparison of NMA and PWMA results but also assist to
reduce the number of tables and/or figures required for all
relevant results to be presented in the main text of a journal
article where space is often limited. The median rank chart
complements the SFP matrix or the SFP table by providing
a visual summary of each intervention’s median ranking
within the network of interest, thus enabling decision makers
and clinicians to easily identify the ‘‘top-ranking’’ interven-
tion(s) in terms of effectiveness. The graphs have been
developed to display relative effectiveness results and are re-
ported here on the odds ratio scale; however, they can also be
used to present other outcome measures (such as continuous
data, hazard ratios, and so on). An example of its use for the
presentation of NMA results on continuous outcome data is
shown in Appendix C at www.jclinepi.com.

Visual design principles were applied in the develop-
ment of the graphs. The NMA results presented in the

http://www.jclinepi.com
https://www2.le.ac.uk/departments/health-sciences/research/biostats/sb-supplementary-materials/nma-graphics
https://www2.le.ac.uk/departments/health-sciences/research/biostats/sb-supplementary-materials/nma-graphics
https://www2.le.ac.uk/departments/health-sciences/research/biostats/sb-supplementary-materials/nma-graphics
http://www.jclinepi.com


679S.H. Tan et al. / Journal of Clinical Epidemiology 67 (2014) 672e680
SFP matrix and SFP table combine three main groups of re-
sults, namely (1) the SFP graphs, (2) the numerical esti-
mates corresponding to the SFPs, and (3) the ranking or
probability best statistics. In the SFP matrix, the most
important intervention (eg, usual care/placebo or the top-
ranking intervention when sorted by ranking) is usually at
the top left hand corner and hence the numerical estimates
were strategically placed in the upper triangle of the matrix
plot. This allows readers to read the relative effectiveness of
interventions compared with the most important interven-
tion easily as reading from left to right is generally the or-
der that readers will scan a page. This therefore allows the
SFPs to be placed in the lower triangle where the x-axis for
the plots can be placed at the bottom of the matrix, which is
conventional with the usual placement of the x-axis on
graphs. The ranking or probability best statistics are placed
along the diagonal with the intervention names in an enclo-
sure so that readers can readily know what intervention the
statistics correspond to. The NMA and PWMA results for
each intervention comparative pairs are grouped and placed
in an enclosure to allow the assessment of consistency of
the results.

In the SFP table, the three main groups of data are pre-
sented from left to right. First, the intervention names
together with the ranking or probability best statistics; sec-
ond, the numerical estimates of the relative effectiveness;
and lastly, the SFPs. In this design, the texts help to com-
plement and enhance the SFPs that follow. Enclosures in
the form of boxes present NMA results grouped by the
reference intervention, allowing readers to easily recognize
that all SFPs and numerical estimates within an enclosure
are compared with the same reference intervention.

As both the graphs are developed for the presentation of
NMA results, the NMA SFPs and numerical estimates are
presented in stronger (black) ink to highlight the main re-
sults, whereas the PWMA results are presented in lighter
(gray) ink, displayed for comparison. The intensity of the
colors of the enclosures and axes, which do not represent
the key results, are reduced to a minimum, whereas light
intermittent shading of enclosures in the SFP Matrix is used
to improve readability.

The median rank chart presents the top-ranking interven-
tion at the top, using the concept that readers will read from
top to bottom, so attention is drawn to the top-ranking inter-
vention first. Also, the top-ranking intervention is written in
black ink in the lightest background shading compared with
the worse intervention in the darkest background shading,
using the visual perception concept of contrast to highlight
the most important result [9].

There has been an evolution of reporting standards
initially for PWMA [24] and more recently for NMA
[19,20]. Furthermore, technical support documents
[12,25e30] (commissioned by NICE), and a series of evi-
dence synthesis for medical decision-making tutorial arti-
cles [13,31e36] have recently been published providing
technical details of the implications and implementation
of NMA methodology as well as guidance on reporting.
These all highlight the need for a clear description of the
NMA statistical model, and its assumptions, together with
model fit statistics, including checks for inconsistency.
Additionally, presentation of the evidence structure, in the
form of a network diagram [37], is also recommended.
We believe that the graphical tools presented in our article
improve existing methods to report the results of NMA
and as such complement the aforementioned guidance
documents. The graphs proposed focused mainly on the
presentation of single outcome but can potentially be adop-
ted to present multiple outcomes in the future. Ultimately,
our hope is that such displays will be recommended in up-
dated guidance published in the future.
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