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A bstract

Universal algebra has long been regarded as a fundamental tool in study

ing semantics of programming languages. W ithin this paradigm, one can 

formulate statements regarding the correctness of a program by looking at 

the interpretations of the code in any model for the language.

While this provides a description of finite computations, other models 

have to be introduced in order to provide a semantics for recursion and infinite 

computations in general. This leads to a study of rational and infinite terms. 

Such terms arise by a dual construction to that of the finite ones. Namely, 

while the latter form an initial algebra, the former are a final coalgebra.

For this reason, it is natural to approach the study of infinite terms by 

dualising the categorical model of universal algebra. This leads to various 

different constructions, which are worth of investigation. In this thesis we 

approach two of them. In one case, we introduce the notions of cosignature, 

coequation and comodel, in the spirit of the theory of coalgebraic specifica

tion. In the second we focus on the properties of monads which can model 

infinitary computations. Such monads we call guarded, and include, amongst 

others, the monads of finite terms, infinite terms, rational terms and term 

graphs. As a byproduct of identifying this notion, we can solve algebraic 

systems of equation, which are an abstract counterpart to the notion of a 

recursive program scheme.



Many guarded monads we encounter are obtained by collecting, in an 

appropriate sense, a suitable family of coagebras. These examples are all 

instances of a general theorem we present, which tells under which conditions 

we can define a monad by a colimit operation, and when such comonads are 

guarded.

The level of abstraction allowed by the use of the categorical formalism 

allows us to instantiate some of the results in different categories, obtaining 

a monadic semantics for rational and infinite parallel term rewriting.
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Chapter 1

Introduction and Prelim inaries

In the continuous process of abstraction which moved mathematics since its 

very origins, it has been a common practice to identify relations between dif

ferent entities and the equalities which these entities satisfy. It soon became 

clear that some relations determine the dependency of some elements on oth

ers. The concept of function was invented to formalise this idea, but for long 

time they have only been relating numbers. Only relatively recently Galois 

realised that some properties of particular functions (namely, the sum) were 

not dependent on the numbers themselves; he first identified the structure 

of a group. Roughly at the same time, the notion of a vector space was 

invented, and within a century, several others appeared, in order to model 

and reason about properties of mathematical objects of practical interest. 

Among them, monoids, rings, modules, and the like.

Half a century later, people started realising that these were all instances 

of a more general theory, independent of the specific functions and equations. 

The theory of universal algebra took shape from these premises, around the

1



CHAPTER 1. INTRODUCTION AND PRELIMINARIES 2

beginning of the twentieth century. At the earliest age of computing, people 

understood that in principle there was no real difference between considering 

operations on sets and key-words in a programming language acting on a 

configuration of memories in a machine. Soon, they employed the techniques 

of universal algebra to give a semantics to computation. Under this impulse, 

the study of universal algebra got a significant thrust.

W ith the introduction of the categorical formalism, two more abstractions 

became possible. On the one hand, by using monads to model an algebraic 

theory we can capture precisely the key properties of the notion of substitu

tion. On the other hand, the achieved generality allows instantiations of the 

theory on entities other than sets. Amongst the examples of structures which 

can be modelled within this framework, we have multi-sorted theories, cate

gories with structures, Boolean algebras and other families of partial orders, 

term rewriting systems, variable binding [24, 43, 51, 20].

One of the main logical contributions of universal algebra has definitely 

been the exhaustive explanation of the induction principle. However, in the 

mathematical practice, as well as in computer science, one often needs other 

proof principles in order to prove the desired results. Often, things go wrong 

when considering infinitary structures, which can not be obtained by a finite 

iteration of the operations. These structures, though, are essential to the 

theory of computing, both in modelling infinite data (such as lists or streams) 

and in reasoning about the behaviour of programs whose computation need 

not terminate. Amongst the proof principles used in reasoning with these 

objects, there are Banach’s fixpoint theorem and the notion of observational 

equivalence. These notions are somehow dual to the induction principle, in
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much the same way as the infinitary structures which they consider are dual 

to the finite terms. The use of category theory makes this duality explicit, 

for if universal algebra is usually associated to the theory of algebras, infinite 

terms are associated with coalgebras.

The purpose of this thesis is that of exploring how the monadic approach 

to universal algebra can be dualised in order to model and reason about 

infinitary structures, and how much of the expressivity of the monadic model 

can be transposed through this process. Given that the monad associated to 

an algebraic theory is pointwise calculated as an initial algebra, it is natural 

to focus our attention on the categorical dual of this notion; that is, on final 

coalgebras.

The Categorical Approach to  Universal A lgebra

The classic categorical approach to universal algebra considers, for a given 

signature E, a finitary endofunctor Fs, which associates with each set of 

variables the set of ground terms built over them. Algebras for the functor 

are models for the theory generated by the signature, and given variables from 

a set X , the set T ^ X  of finite E-terms over X  plays a key role, being the free 

Fs-algebra on X .  Its universal property captures precisely the essence of the 

induction principle, and by these means one can prove that the association 

X  T ^ X  defines a monad. Algebras for the monad are again the same as 

models for the signature, but their extra structure allows us to talk about 

the algebraic properties of such models in a much cleaner way. The monad 

arising is the free one over and provides a semantics for the signature.
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Adding equations to a theory is equivalent to consider another signature 

E  and the free monad induced by it. Roughly speaking, this monad will 

build the proof-terms we need in order to show that two terms are equal 

in the algebraic theory determined by (E ,E ).  The left and right handsides 

of the equations are determined by two monad morphisms from T# to T^, 

and their coequaliser in the category of monads has as algebras precisely the 

models of (E, E). This explains how monads (in fact, finitary monads) model 

categorically the concept of an algebraic theory. At this stage, category 

theory is used mainly as a formalism. Its precise way of fitting the set- 

theoretic notions, and the immediacy of its language make the categorical 

approach very useful in encoding and proving the universal properties of the 

algebras, but add no more expressivity.

A substantial improvement is due to the work by Kelly and Power. In a 

paper which can be considered as the cornerstone of the present work [37], 

they show how the categorical transpositions of the notions of signature, 

equation and model make sense not just for the category of sets, but in 

general for any enriched category with enough structure. On top of this, they 

prove that any monad on such categories does in fact model some algebraic 

theory.

In a good review of that paper by Edmund Robinson [51], several applica

tions are proposed, and this shows the gained expressivity, since we can now 

identify as models of algebraic theories such structures as categories with 

structure, cj-CPO’s, term  rewriting systems [43], and many others.
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Cofree Com onads

The theory presented by Kelly and Power consists of several steps, each of 

which potentially allowing a dualisation. In this work, we choose to concen

trate on the one leading to the consideration of Fs -algebras, and replace them 

by coalgebras, exploring what structures we can derive from them and what 

they represent from a computational perspective. The reason for choosing 

coalgebras is that, as clearly shown by the research in this field over the last 

decade [57, 31], they capture the idea of infinite computation and infinite 

data. Their duality with respect to algebras is that of infinite versus finite.

However, starting from F£ there are two steps leading to the free monad 

Ts over it. One is to consider F^-algebras; the second is to consider the 

collection of the free ones. In fact, the free algebra on an object X  is also the 

initial X  +  F^-algebra. Having considered coalgebras instead of algebras, we 

now face the choice of dualising the next step in two different ways. One is 

to consider the cofree coalgebras (i.e. the final X  x F^-coalgebras), the other 

is to consider the final X  +  F^-coalgebra.

In this thesis we analyse in detail the structure generated by any of these 

choices. In the first case, the collection of cofree coalgebras defines the cofree 

comonad on and much of the picture for the algebraic case can be recov

ered. The coequaliser which we considered before now becomes an equaliser, 

and its syntactic counterpart is that of a coequation.

The kind of structures captured by this framework are in the area of coal- 

gebraic specification, where people define cosignatures and coequations, and 

then look at the behaviours of processes defined according to their specifica
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tion [17, 11].

Unfortunately, because of the leap in the size of our structures when 

moving from algebras to coalgebras, we can no longer prove that every monad 

models a theory.

M onads of Infinite Terms

If we choose the other possible dualisation, we find out that the functor 

taking an object X  to the final X  +  F^-coalgebra carries the structure of 

a monad, and a nice one too. Its action on X  builds the set of finite and 

infinite E-terms over X .  The advantage of this approach is that, once more, 

the monadic structure precisely captures the key properties of substitution 

of terms.

Algebras for this monad are models of the signature E where we can inter

pret also infinite iterations of function symbols as functions. The relevance of 

this structure [25, 2], is that it allows us to find a unique solution to recursive 

equations: a property which is desirable in computer science, where many 

programs are defined by means of recursive programs schemes. Moreover, 

being pointwise a final coalgebra, the monad arising here provides some kind 

of semantics for behaviours, in that the evolution of any system defined by 

E-actions determines a unique infinite term, which can be thought of as its 

semantics.
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M onads of Coalgebras

The collection of all finite and infinite terms is not the only syntactic struc

ture which can be described by means of coalgebras. In fact, despite their 

universal property and the fact that they offer a semantics for all processes 

described by E, infinite terms are not convenient in the computing practice, 

because they can not be given a finite description. It is therefore reasonable 

to investigate other structures which can be described by a finite amount of 

data. Rational terms, for instance, are modelled by coalgebras with a finite 

carrier set. The image of the unique morphism from such a coalgebra to 

the final one determines precisely the term which it describes. By taking 

the collection of all such coalgebras (in a suitable categorical sense), we shall 

determine a new monad, which lies in between the free one and the one of 

infinite terms.

More generally, in this thesis we shall introduce the notions of guarded and 

strongly guarded monads, to identify and study properties of those monads 

which can be thought of as monads of terms for some signature, and we shall 

give enough conditions for a collection of coalgebras to determine a monad, 

and for such a monad to be guarded or strongly guarded.

As another instance of this, we will be able to obtain the monad of term 

graphs, where the collection of coalgebras is now chosen in such a way that 

we can model the idea of sharing the resources, by allowing parallel edges 

between nodes, and that of recursion, by loops.

Amongst the results, we show that for strongly guarded monads we can 

solve any algebraic system of equations, i.e. we can define functions by means



CHAPTER 1. INTRODUCTION AND PRELIMINARIES 8

of recursive program schemes.

Equations and R ew riting

In general, imposing equations on infinite terms is not as easy as with the 

finite ones. That is because infinite terms arise as limits of sequences of finite 

terms, but the equivalence relations are in general not transfinite, therefore 

they cannot be extended to the limit. Therefore, much of the expressivity of 

the Kelly-Power framework fails to extend when considering other than free 

monads.

However, in the category of preorders we can give a nice and intuitive 

interpretation of the coequaliser of two monads of infinite terms or of rational 

terms. Ghani and Liith [43, 42] showed how a term rewriting system can be 

modelled by a coequaliser of free monads on the category of preorders. We 

show here how, by replacing the free monads with the corresponding ones for 

rational terms or infinite terms, we can model the classical notions of rational 

term rewriting and of infinite parallel term rewriting, gaining some levels of 

generality and certainly a good deal of clarity with respect to the standard 

definitions.

Synopsis

The thesis is organised as follows. In the remainder of this Chapter we shall 

first briefly recall the main set-theoretical concepts in universal algebra and 

the theory of rewriting; then we shall revisit those notions in a categorical 

perspective, introducing along the way all the notions which will be employed
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throughout the dissertation. The exposition is intended to reach as a wide 

audience as possible, and in particular those who are less familiar to the lan

guage of category theory. For this reason, we shall assume knowledge only of 

the very basic notions of category, functor, natural transformation, adjunc

tion, limit and colimit as they can be found in [44], and build thereupon a 

categorical semantic for universal algebra, going through the paper by Kelly 

and Power mentioned above.

In Chapter 2 we shall explore the two different dualisations of that theory 

we described above.

Following on the study of the monad of finite and infinite terms, in Chap

ter 3 we shall introduce the notion of F-guarded and strongly F-guarded 

monad, and we show examples. The second half of the Chapter is devoted 

to the proof of a theorem giving enough conditions to define a monad as a 

pointwise colimit.

As examples of applications of the theorem we present the monad of ratio

nal terms and that of term graphs, deriving also their guardedness properties. 

This is the content of Chapter 4.

Finally, in Chapter 5 we extend the Kelly-Power framework to other than 

free monads, and show how this can model different forms of parallel rewrit

ing.

Some parts of this work have been published previously in joint works 

with my supervisor Neil Ghani, Christoph Liith and John Power [45, 26, 25]. 

That material has been rearranged here, and some parts were reworked. The 

results in the last Chapter are entirely new, to our knowledge.
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1.1 Classical N otions

The purpose of this section is to introduce and fix the notations for the 

classical notions of signature, equation and model for algebraic theories. We 

shall also define the main families of terms which we shall encounter in the 

rest of the thesis, i.e. finite, infinite and rational terms, and give some of 

their properties. Most of these notions can be found in any book on universal 

algebra. We refer the interested reader to the comprehensive presentations 

written by Courcelle [19] and Elgot [21]. At the end of the section we shall 

also give the definition of term rewriting systems and their models. A good 

reference for this subject is [39].

1.1.1 Universal Algebra

A signature £  consists of a set of function symbols, each with a specified 

arity. The arity specifies the number of arguments which the symbol is 

meant to take when interpreted as a function. In most of our examples, 

this will be a finite number, and for this reason we shall sometimes say that 

the signature is finitary. An alternative way of presenting a signature is as a 

“map” associating with each arity the set of function symbols with that arity. 

We shall sometimes indicate by £ n the set of elements in £  which have arity 

n (those terms we also call 77,-ary). A symbol of arity 0 is called a constant.

Given a signature £  and a set of variables X , we can inductively define 

the set XsX of finite terms over £  with variables in X  as follows:

x  G X  f  G £ n t i , . . . ,  tn G Ty,X
------------------   (1.1)

x € T s X  € 7e *
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A term is called ground if it is obtained by a single instance of the right rule 

above on a function symbol /  and variables aq, . . . ,  xn. It is called closed if 

it contains no variables.

An equation X\~ t — s consists of a finite set of variables X  (identifying 

the context where the equation holds) and a pair of terms t and s with 

variables from X . A (finitary) algebraic theory consists of a pair (E, E) 

where E is a (finitary) signature and E  is a finite set of equations between 

terms over E.

Exam ple 1.1 Most of the algebraic structures in mathematics are examples 

of algebraic theories. For example, groups are defined by a binary operation 

*, a unary operation _1 and a constant e, subject to the following equations:

ASS: {x, y, z}  h  x  * (y * z) — (x *y) * z 

LUN: {x} h x = e * x  RUN: {x}\~x = x * e

LINV: {a:} h  x  * (x ) _1 =  e RINV: {rcr} h  (x ) _1 * x = e.

When we prove properties of an algebraic theory only by means of the 

equations and the term constructors defining it, we are using its equational 

logic; however, in some cases it is easier to give a proof by reasoning on the 

models of the theory itself.

A model of a signature is a set A  together with an interpretation of any 

n-ary function symbol /  as a function [/]: A n  ► A. A morphism of mod

els is a map between sets which respects the interpretation of the symbols;

i.e. if <j)\ (A, [ }A) -----► B , [ ]fl) is a morphism of models, then for any n-

ary symbol /  and elements a i , . . . ,  an G A we have </>([/]A(«i, • • ■, an)) —
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For any signature E, the set T ^ X  is clearly a model, where the interpre

tation of /  £ En is defined by [ /]  ( ti , ■ • • ,£n) =  /(* i, - -U n )  for L £ T ^X .

Given a function v. X  >■ A, from a set of variables X  to a model A, this

inductively defines a map [ \ v from T ^ X  to A  as follows:

x  £ X  f  £ En t i , . . .  , t n £ T%X

b L  =  "(*) [/(*i> •••,*»)]„ =  ■••.[*«]„)

It is a trivial observation tha t the induced map [ \ v is a model morphism and 

that it is the only one extending the function v.

We call substitution a function a: X  ► T ^ Y  mapping each variable in

X  to some term with variables from Y. Such a a  determines a map (which 

we indicate in the same way) between T ^ X  and T^Y .  We say that a(t) is the 

application of the substitution a to t £ T ^X .  Sintactically, this is defined by 

the following clauses:

t =  x  £ X  f  £ En t i , . . .  , t n £ T ^ X

a(t) = a (x )  c r ( / ( t i , . . . , £n)) =  f ( a ( t i ) , . . . ,  a(tn))

A model A  of E satisfies an equation X  b t = s if both sides of it are

interpreted by the same element of A, i.e. if for any v: X  ► A  we have

[t]u = [s],,. A model of an algebraic theory (E ,E )  consists of a set M  

together with an interpretation of the function symbols which satisfies all 

the equations in E.

In presence of a set of equations E , we can consider the equivalence 

relation ~  on T ^ X  defined by the following rules:

L ~  Si (i =  l , . . . , n )  /  £ En Y \~ t  = s a : Y ------► T ^ X

f ( t u . . . , t n) ~  f ( s i , . . . ,  sn) a(t) ~  a(s)
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The maps interpreting function symbols in then induce maps on the 

quotient TSX / ~ , and these form a model of the algebraic theory (E, £ ) .

Models and their morphisms define the category of models for the alge

braic theory (E, E). The connection between the equational logic of a theory 

and its models is that two terms t and s in T ^ X  are provably equal by means 

of the equations if and only if for any model A  of the theory and for any map 

v\ X  ^ A  we have [t]u = [s]„.

We shall often refer to terms by their equivalent representation as syntax 

trees. A tree is given by a set of nodes labelled by symbols in E or variables, 

and an ordered set of branches, so that from any node there are exactly as 

many branches departing as the arity of the function symbol labelling it. 

Nodes labelled by constants (or by variables) are called leaves. Pictorially, 

we shall identify the nodes by their labels and the branches by some edges. 

The most relevant difference between a tree and a graph is that a tree is 

rooted, connected, and does not have loops or parallel edges. For example, 

if A is a binary symbol and B is a constant, then the term A ( A ( x ,  B ) ,  B)  on the 

variable x  is depicted as the tree

A

x  B

A tree is finite if so is the set of its nodes. Otherwise, it is infinite. The 

subtree of a tree t at the node N  is the tree whose nodes are all the descendants 

of N  (i.e. those nodes which occur after a finite number of branches starting 

from N)  labelled by the same symbols and joined by the same branches. A 

tree is called rational if it has only a finite number of subtrees (therefore all
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finite trees are rational).

1.1.2 M etric, Ordering and Com pletions of Terms

We shall henceforth deliberately use the words tree and term without any 

distinction.

The tree notation makes it easier to introduce the concept of depth for 

terms. We say that a particular occurrence of a function symbol or variable 

in a term t is at depth n if it occurs after n  branches starting from the root 

of t. So, for example, the variable x  in the term above is at depth 2. The 

root of a term is always at depth 0. The depth of a finite term is the highest 

depth of its leaves.

Using depth, we can define a metric on the set of finite terms, by saying 

that the distance between the terms t and u is 2~n, where n  is the least depth 

at which a node of t is labelled differently from the corresponding node in u. 

So, for example, the distance between A(x,y)  and h(x, x) is 1/2.

It is not difficult to show that a Cauchy sequence of terms, within this 

metric is either definitely stable or consists of terms whose states of depth 

up to n are fixed from some point onwards, for each natural number n. 

Therefore, we can identify the limit of such a sequence with the infinite term 

modelled by the infinite tree whose nodes are the ones which get fixed along 

the sequence. For example, the sequence (AraB)nĜ  converges to the infinite 

term Aw =  A(A(A(.. .))).  In this way we can define the set T £ X  of finite and 

infinite terms and prove the following [10]:

P ro p o s itio n  1.2 The set T £ X  of finite and infinite terms over X  is the
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Cauchy completion o fT ^ X  with the metric defined above.

Another form of completion which T£X enjoys with respect to X^X is 

related to an order on terms. Given a signature X, we introduce a fresh 

constant symbol ±  (called bottom) and form the set of terms over E U {A} 

with variables in X. On these we can define the operation of truncation for 

a term at depth n. This is achieved by relabelling with _L all those nodes at 

depth n which are not labelled by constants and deleting all the descendants 

of those nodes. We define a partial order ■< on terms by saying that t ■< u 

if t is the result of truncating u at depth n for some Analogously to

the metric case, one can prove that infinite terms form the ideal completion 

of the set of finite terms over this enhanced signature [29]. Note that _L is 

the least element of the partial order.

1.1.3 Recursive System s of Equations

A term t is called guarded if its root is labelled by a function symbol, i.e. if 

it is not a variable.

A system of equations is guarded or ideal or in Greibach normal form  if it 

has the form

( x i  «  L ) i a  ( 1 .2 )

where X  =  {xi | i G 1} is the set of unknowns for the system, and the t f  s 

are guarded terms with variables i n X U h ,  for a set of parameters Y  disjoint 

from X . A system is finite whenever I  is. A solution to such a system is a 

substitution a: X  ► T£Y  such that, for each i G / ,  cr{xi) = a(U).

The possibility of solving guarded systems of equations is fundamental
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when studying the semantics of programming languages, because they pro

vide an essential tool to model recursion [10, 22, 15]. The study of recursion 

lead several researchers to the definition of iterative and iteration theories, 

where solutions to such systems are guaranteed to exist. Since in our work 

we will only marginally touch the subject, we give here a very particular 

definition of an iterative theory. For us, an iterative theory T  C T £Y  is a set 

of terms with variables in Y : which is closed under substitution, contains the 

variables, and it is such tha t any finite guarded system of equations where 

the right handsides are in T  admits a unique solution in T  itself. Such a 

T  is a completely iterative theory if existence and uniqueness of solutions is 

ensured for all guarded systems (i.e. not just for the finite ones).

A finite guarded system where the t{ s are infinite terms can easily be 

seen as an endofunction on the Cauchy complete metric space T £(X  U Y ) 1, 

and guardedness makes this function contractive. Therefore, by Banach’s 

theorem, it admits a unique fixpoint, and that is the solution of the system. 

An extension of this result to the case where I  is infinite shows that the set of 

finite and infinite terms is the smallest set of E-terms closed under solution 

of guarded systems; i.e. any system where the V s are finite or infinite trees 

has a solution in T £ Y  and this is the smallest set with this property [21].

If we restrict our attention to finite systems, then the smallest set of terms 

which is closed under solution of guarded systems is the set R ^ Y  of rational 

terms with variables in Y  as introduced before [21, 28].

For example, the system
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has as a solution the rational terms

A A

V A A y

y  a  a  y

1.1.4 Term Rewriting System s

The last notion we want to introduce, before proceeding towards a categorical 

reformulation of the theory is that of term rewriting systems.

The idea of term rewriting is to model computation by giving a preorder 

relation on the set of terms, where a term precedes another if the first com

putes (in one or many steps) to the second.

Formally, a term rewriting system (t r s ) is given by a pair (£,77.), where 

£  is a finite signature and 77. is a set of rules of the form X  h p\ t —> s, where 

X  is a set, p is the name of the rule, and t and s are £ -terms with variables 

in X.

Given a t r s  (£,77.), we can inductively define the one-step reduction 

relation -» on the set T ^ X  of finite terms over X  by the following clauses:

a: X i    TeX
 X{ h pp.ti Si G 77.

(j{ti) a(si)

(1.4)

t —> s f  G £ n 

/(^11 ■ • • •> t - ,  • • • i  tn)  ̂ / ( s i , . . . ,  s , . . . ,  sn)
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The many-steps reduction relation is the reflexive and transitive closure 

—>* of — and determines a preorder on T^ X,  which models the computation 

of any E-term (seen as a program).

1.2 The Categorical M odel o f Universal A l

gebra

As we mentioned already, we shall skip the basic definitions in the field, and 

refer the reader to Mac Lane’s book [44] for further details on the notions of 

category, functor, natural transformation, limit, colimit, and adjunction, as 

well as the main results concerning them.

To fix notation, we recall that a diagram in a category C with a collection 

of objects |C| is given by a functor X  from a category D of indexes to C. We 

shall denote the image of such a functor on an object d in D by Xd,  and for

a map k: d  ► d' in D we shall get a map X X d  ► X #  in C. If Y  is a

colimit of the diagram, then we write the d-th  component of the colimiting 

cocone as the map d: X d  ► Y.

Our purpose in this section is to explain the framework of Kelly and Power 

[37] and explain how the syntactic notions which we outlined in the previous 

section are indeed captured by this framework. In order to achieve this goal, 

we shall have to introduce several categorical structures together with some 

results concerning them. Some of them are already present in Mac Lane’s 

book, but we shall sometimes recall them here in order to fix notation, since 

they will be essential throughout the thesis.
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1.2.1 Locally Presentable Categories

The first notion we have to render categorically, is that of a signature, and 

even before that, of an arity. Locally presentable categories provide the ap

propriate structure to formalise such concepts. The easiest way to introduce 

the notion, though, is probably by thinking of them as generalised algebraic 

lattices. The definitions we give in this section are taken from Adamek and 

Rosicky’s book [8 ], to which we refer for details of the proofs and for further 

developments.

A cardinal A is regular if every set of the form has cardinality less
ie i

than A whenever X  and each X{ have cardinality less than A. Regular cardi

nals provide a bound for size inside a diagram. In particular, we are interested 

in those diagrams whose colimit is obtained by successive approximations of 

subdiagrams of size a regular cardinal.

R em ark  1.3 From now on, unless explicitly stated, a cardinal A will always 

be assumed to be regular.

D efin ition  1.4 A category I is A-filtered if for any set J  of less than A objects

in I there is an object i in I and maps f j : j  ► i for any j  & J  and for any

set L of less than A parallel arrows fi: i  ► j  in I there is a map g: j  ► h

in I such that the composites gfi are all equal. A X-filtered diagram in a

category C is a diagram C: I  ► C with I A-filtered. A colimit of a A-filtered

diagram is said to be A-filtered. An cu-filtered diagram is referred to just as 

a filtered diagram.
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Exam ple 1.5 We present a couple of examples, in order to show what a 

filtered colimit is in Set and what the notion reduces to in the case of a 

preorder.

1 . Suppose F : D  ► Set is a filtered diagram. Then its colimit is given

by the disjoint union of Fd (d £ D), quotiented by the transitive closure 

of the relation which says that, for x  £ Fd and x' € x ~  x' if and

only if there exist d" £ D  and arrows / :  d  ► d", /': d '  ► d" such

that F f ( x )  =  Ff ' (x' ) .

Using this, one can easily show that each set is the filtered colimit of 

its finite subsets ordered by inclusion.

2. In a partial order X  considered as a category, a diagram is filtered if 

and only if, any pair of elements has an upper bound, i.e. if it is a 

directed subset of X .  A filtered colimit is then the least upper bound 

of a directed subset.

Functors preserving A-filtered colimits play an im portant role, and they 

deserve a special name.

D efin ition  1.6 A functor is A-accessible if and only if it preserves A-filtered 

colimits. A functor is accessible if it is A-accessible for some A. The least A for 

which a functor is A-accessible is called its rank, ^-accessible endofunctors 

are often called finitary.

Given a cocomplete category, it is easy to identify a particular class of 

objects, which will then play the role of our arities. The intuition, here, is
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again order theoretic. There, an element of a partial order is called finite if, 

whenever it is smaller than the least upper bound of a directed set, there is 

an element in the subset which is above the element itself. Generalising this 

to a categorical setting, we get the following.

D efinition 1.7 An object i f  of a category C is called A -presentable if its

hom-functor hom(if, —): C  ► Set is A-accessible. If hom(if, —) is finitary,

then K  is said to be finitely presentable.

Rem ark 1.8 Explicitly, preservation of filtered colimits for a hom-functor 

C(if, —) means that for each filtered colimit ( Di dl >C  )jG/ and each mor

phism / :  i f  ► C  there exists i G /  such that, as can easily be shown by

the characterisation given in Example 1.5,

1 . f  factors through di, i.e. there exists g : i f  ► Di such that dig = f ;

2 . the factorisation is essentially unique, i.e. if /  =  dig, f  =  dig' then 

there exists j  £ I, d : i  ► j  such that D{d)g — D(d)g'.

Exam ple 1.9 We extend the two examples above and explain what finitely 

presentable objects are in those cases.

1 . In Set, finitely presentable objects are precisely finite sets. Since each 

set is the filtered colimit of the inclusion-ordered set of its finite sub

sets (see Example 1.5), considered as a category, if a set i f  is finitely

presentable, then the identity map \dK\ i f  ► i f  must factor through

a finite subset S  of if ,  hence i f  must be finite.
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2. In the case of complete partial orders, finitely presentable objects turn 

out to be the finite elements (see for example [32], for details).

We now have all the elements to define what a locally presentable category 

is. The idea is that the category is determined by its A-presentable objects, 

by means of colimits.

D efin ition  1.10 A category C is locally X-presentable (lAp) if:

1 . C is cocomplete;

2 . every object in C is a A-filtered colimit of A-presentable objects;

3. A-presentable objects form, up to isomorphism, only a set.

When A =  <j, we say that C is locally finitely presentable (lfp). A category is 

said to be locally presentable if it is locally A-presentable for some A.

Exam ple 1.11 Set is locally finitely presentable, and this trivially follows 

from Example 1.5 and Example 1.9. A partial order (considered as a cate

gory) is lfp if and only if it is an algebraic lattice, i.e. every element is the 

directed supremum (filtered colimit) of the set of finite (finitely presentable) 

elements lower than it.

The following result states some im portant properties of locally pre

sentable categories. Its proof can be found in [8 ].
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Theorem  1.12 Locally presentable categories are complete, as well as co- 

complete, well-powered (i.e. each object has -  up to isomorphism -  only a set 

of subobjects), and well-copowered (the dual notion). Moreover, every object 

in a locally presentable category is X-presentable for some X.

A further relaxation of the notion, which will prove fruitful in the next 

chapters, is that of accessible categories, where cocompleteness is dropped, 

and only filtered colimits are required to exist.

D efinition 1.13 A category C is A-accessible provided it has A-filtered col

imits and a set C\ of A-presentable colimits such that each object in C is a 

A-filtered colimit of objects in C\.

A  category is accessible if it is A-accessible for some A.

P roposition  1.14 A category is locally presentable if and only if  it is acces

sible and cocomplete.

For a given lAp category C, we shall henceforth write A/a for the dis

crete category whose objects are representatives, up to isomorphism, of A- 

presentable objects (and we shall write Af  when A =  to). The full sub

category of C on A-presentable objects will be denoted Ca (and Cfp when

A =  to). The inclusion functors relating them are denoted I\\  A /a ► Ca and

J \ . Q \ ---- ► C (indexes will be omitted whenever possible). When C =  Set,

the set can be taken to be the natural numbers which we denote N.

In order to see how A-presentable objects play the role of arities in an lAp 

category, note how they generate the category. From Definition 1.10, we know
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that every object is a A-filtered colimit of A-presentable objects; therefore we 

can define A-accessible functors on the category by simply defining them on 

A-presentable objects. The image on any other object will then be determined 

by the preservation of colimits, provided the target category is cocomplete.

This determines an adjoint equivalence [Ca,D] =  [C, D]A, between the 

category of functors from Ca to D (and natural transformations between 

them) and the category of A-accessible endofunctors between C and D. The 

functors in the two directions are precomposition with J \  and extension along 

A-filtered colimits. This is an instance of a left Kan extension.

K an  E x ten s io n s

Given a functor /:  A  ► B and a category C, precomposition with I  defines a

functor — o J: [B, C ] ► [A, C]. The problem of left and right Kan extensions

is to find left and right adjoints to — o I. More concretely, given functors

F: A  ► C and H : B  ► C, the left and right Kan extensions satisfy the

natural isomorphisms

[B, C](Lan7F, H ) 2* [A, C](F, H o i )  [B, C ](H, Ran ZF) “  [A, C ](H o / ,  F).

Kan extensions can be given pointwise using colimits and limits, or, more 

elegantly, using ends and coends (see [44, Chapter X] for details).

it along Ja 5 and the action of its left Kan extension F  = LanjAF  on an object 

X  is given by the formula

In the case of lAp categories, given a functor F: C a  ► D, we can extend

(1.5)
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where the operation 0  (often called tensor) is defined, for objects Y  and Z  

in a category C and a set X ,  by the adjunction

c ( x  0 y, z) = Set(x , c(y, z ) ) .  (1.6)

The notation in (1.5) means that we form a diagram in D by taking the image 

of Ca along the functor taking an object n to the C(J\n, X)-fold coproduct 

of F n  (that is what the action of 0  reduces to, here). The colimit of this dia

gram is the image of X  along F , and the functor we get is then A-accessible. 

Moreover, the adjunction above, in this case, defines an equivalence of cate

gories:
Lanj

fCx.Dl , ± *  fc, D]y (1.7)
- o  J

In particular, this gives a very nice characterisation of accessible functors. A

functor F\ C  ► D is A-accessible if and only if it is the left Kan extension

of its restriction to Ca: F  = Lanj x(FJ\).

We can now revise the notion of signature with this new formalism. Recall 

how we presented a Set-signature as a map associating with each natural 

number the set of function symbols of that arity. We will then represent it as 

a map E from N to | Set |. That is simply a functor from the category of finite 

Set-arities to Set itself. Given such a functor, finite terms are inductively 

defined by first constructing ground terms and then iterating the process

countably many times. Leaving the iteration step aside for the time, we now

focus on the functor F% building ground terms. If /  is a function symbol 

of arity n, we want to have a term f ( x i , . . . ,  xn) for any choice of variables 

x \ , . . . ,  x n from X .  Such a choice is a function from n, thought of as a set, to 

X .  For each such function, we want to get one term for each n-ary function 

symbol in the signature. In other words, we are taking the coproduct over n
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of all sets of the form Set( n , X)  ® En. Furthermore, because N is a discrete 

category, the coproduct is the same as a coend, and we can write

/
nGN

Set(n, X) <S> En. (1-8)

The formula above is precisely that of (1.5), so we can more easily define the 

association X  i— as the functor Fs =  Lanj/E. Functoriality clearly 

encodes variable renaming.

This construction generalises to any locally A-presentable category C. We

shall call any functor E: A f \  ► C a signature, and we shall write F£ for the

A-accessible endofunctor determined by the left Kan extension Lanj/E.

Exam ple 1.15 (M onoids) We present here a signature Em '- N  ► Set for

monoids, leaving aside the equations, for the time being. We need a multi

plication operation, which is a function symbol m of arity 2 , and a unit for 

it. That is a constant, which we denote by e. Hence, Em will be defined as 

Sm (0) =  {e}, Em (2) =  {m}, EM(n) =  0 for all other n G N.

Exam ple 1.16 (C ategories w ith  T) Also, categories with a terminal ob

ject can be seen as algebras for a specific theory, this time over Cat. This 

is an lfp category, and finitely presentable objects are finite colimits of finite 

categories. The signature Ey must declare the terminal object T and, for

each object X , the unique map X  ► T. Since the terminal object does

not depend upon any data, its arity is the empty category 0. Since the map 

\x  depends upon an object, its arity is the one object discrete category 1. 

Thus Ey (0) =  1, Ey ( l)  =  ( •  - '■ > o ) (i.e. the category with two objects and 

one non-identity arrow) while Ey(c) =  0  for any other finitely presentable
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category c. Notice that the two objects and the arrow in ( • — ) are in

deed term constructors. We denote the objects by different symbols because 

they are different term constructors. Equations will then set the source of 

the arrow defined above to an object X  and the target to be T.

1.2.2 M onoidal Categories

To recap, we have captured categorically the notion of arity and that of 

signature. Also, we have explained how, given a signature in a locally pre

sentable category, we can determine an endofunctor on the category itself, 

which builds ground terms over it. In order to get all finite terms, we now 

need to iterate the process. This involves using composition of endofunctors, 

and properties of composition. These properties are perfectly expressed by 

the notion of a monoidal category (see [44, chapter VII] for more details).

D efinition 1.17 A monoidal category is a category C together with a bi

functor g : C x C  ► C (called tensor product), and a unit I  satisfying the

following natural isomorphisms, expressing associativity, and the fact that I  

is a unit for ®:

a: ® o (<g x Id) >■ (g o(ld x (g),

A: ( J ® - ) -----► Id,

p: ( - £ > / ) -----► Id.

These will have to make the following coherence diagrams commute for each
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W , X ,  Y  and Z  in C:

( W ® ( X ® Y ) ) ® Z ( W  ® X )  ® (Y  ® Z)

a a

W  ® ((X  <8 > Y)  ® Z) id® a W ® { X ® ( Y ® Z ) )

( X  ® I)  <g> Y -----------2 ---------   X  (8 ) (I 0  Y)

A  monoidal category is called symmetric if there is a family of isomor-

respect to a, A and p. When each functor — has a right adjoint [Y, —], 

so that

the category is said to be closed.

Exam ple 1.18 There are several examples of monoidal categories. We re

port here only those which will be pertinent to this thesis.

1 . Any monoid, thought of as a discrete category, is clearly monoidal. The 

functors and the natural isomorphisms being the ones inherited from 

the monoidal structure. If the monoid is abelian, then it is symmetric 

as a monoidal category.

2 . The category End(C) of endofunctors over a category C, whose objects 

are endofunctors and arrows are natural transformations between them,

phisms Cx y • X  0  Y  ► Y ® X  natural in X  and Y  which behaves well with

C(X <g>Y,Z) = C(X, [Y,Z])
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is monoidal, with the tensor being functorial composition and the unit 

being the identity functor. Notice that, being composition associative 

and composition with identity ineffective, the natural isomorphisms of 

Definition 1.17 are all the identity. The category is clearly not sym

metric, because composition of endofunctors is not commutative.

3. Given an lAp category C, the monoidal structure above restricts to 

a monoidal structure on End(C)A =  [C, C ]a , essentially for the reason 

that A-accessible functors are closed under composition. The induced 

structure transposes under the adjoint equivalence of (1.7) to give a 

monoidal structure on [C a , C]. This is defined by F<g>G = (Lanj xF)oG. 

The unit for this tensor product is the inclusion functor J\. Again, this 

structure is neither symmetric nor closed.

Rem ark 1.19 Although it is not really relevant to our discussion, it is worth 

pointing out that the monoidal structure on the category End(C) is strict, i.e. 

the natural isomorphisms a , A and p are all the identity. However, when we 

induce the monoidal structure on End(C)A we loose strictness, because the 

tensor product is defined via left Kan extensions and those are only unique 

up to isomorphic 2 -cells.

Monoidal categories have enough structure to internalise the notion of 

monoid.

D efinition  1.20 A monoid in a monoidal category C is an object M  together 

with a pair of maps p: M  0  M  ► M, rp.1-----► M  such that the following
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diagrams commute:

(.M ® M ) ® M  M ® ( M ® M )  M ® M

fx&id m

M  ® M M

(1.9)

I  <g> M ■n&diM , , _  , , <g> M  ■<--------- M  <g>I
(1.10)

A monoid morphism  between monoids (M, 77, p) and (M ', 77', p') is a map 

(f)\ M  ► M ' such that (j>p = 4>) and <j)r] =  r f .

Monoids and monoid morphisms form a subcategory of a monoidal cat

egory C, which we shall refer to as A4on(C). There is an obvious forgetful

functor U: A4on(C )  ► C, and given an object X  in C, the free monoid M

on X  is a universal arrow <j>:X-----► M  from X  to [/; i.e. it is such that

for every other monoid N  and any other morphism t/c X  ► N , there is a

monoid morphism ip: M N  such that ifjcp =  ip.

Exam ple 1.21 A monoid in the category of sets, with the monoidal struc

ture determined by cartesian products, is precisely a monoid in the classical 

sense. Also, the category Ab of abelian groups and group homomorphisms is 

cartesian (i.e. it has all finite products), hence it is monoidal. A monoid in 

this category is a unitary ring.

The notion of monoid in an endofunctor category is central to our work, 

but we shall explore it later.
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1.2.3 Algebras and M odels

In this section we introduce the notion of an algebra for a functor and relate 

it to that of a model for E, when the functor is of the form F^.

Recall that, if E is a Set-signature, a model for it is given by a set A  and,

for any n-ary function symbol / ,  a function [f]: An  ► A  interpreting it.

Let’s focus our attention on the interpreting maps. They form a collection 

of maps over the same object A.  Using the universal property of coproducts, 

these induce a function

 *- A.
/e£

I t ’s not hard to see that the source of [E]^ is the action of on I ,  given 

that arities form a discrete category. Hence, we can conveniently encode all 

the relevant structure of a model as a map from F^ A  to A.

Conversely, given any map of such form, we can recover a model for 

the signature by simply splitting it along the different components of the 

coproduct. Furthermore, a model homomorphism (f> between two models 

(A, [ ]A) and (F?, [ ]B) determines a commutative diagram

F r A -----— — ► FyB

PL PL

 i  ~ B ’

and conversely any such diagram determines a model homomorphism.

This defines an isomorphism between the category of models for a theory 

and another category: that of F^-algebras.



CHAPTER 1. INTRODUCTION AND PRELIMINARIES 32

D efin ition  1.22 Given an endofunctor F  on a category C, the category

F  — Alg of F-algebras has as objects pairs (A, a),  where a: F A  ► A  is an

arrow in C. A map in F —Alg between two algebras (A, a)  and (B , /3), called

an F-algebra homomorphism , is a map (j>: A  ► B  such that the following

square commutes:
Fcp

F A -------  — ►F B

A B.

The forgetful functor U : Fs — A lg---- ► C maps an algebra (A, a) to its carrier

A  and an algebra homomorphism (f> to the map itself.

Although it is a folklore result, we give here a proof of the following 

proposition, as it seems to be lacking in the literature.

Proposition  1.23 Let F  be an endofunctor on a category C. Then, the

forgetful functor U: F  — A lg  ► C creates:

1. all limits which exist in C;

2. all colimits which exist in C and are preserved by F.

Proof.

1 . Let X : D  ► C be a diagram in C, such that each object Xd has an

algebra structure fa  and each morphism X f ' . X d  ► is an algebra

morphism, and put Y  = lim X , with projections pd: Y -----► Xd- Then,

the collection of morphisms F Y ---►FXd  — *~Xd determines a map
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from F Y  to Y  such that each 4>d is an algebra morphism. This is the 

limit of the diagram X  in F  — Alg, as easily checked.

2. For colimits the argument needs the preservation of them by F. Given 

the same diagram X , and given its colimit Z , we get a map from 

colimFX^ to Z  induced by the cocone having as maps the algebras (j>d. 

Now, because F  preserves the colimit, we have the algebra structure 

F Z  =  colim F X d — ►Z  , and again it is easy to see that this is the 

colimit of the diagram.

□

As we have seen above, for any finitary signature E on Set the category of 

F^-algebras is isomorphic to the category of models for the theory consisting 

of E and no equations. It is therefore natural to consider the category of 

F^-algebras as the category of models for any signature in any lAp category, 

and this we shall do henceforth.

Amongst all algebras for an endofunctor, a particular role is played by 

the initial one, because its universal property matches exactly the induction 

principle, as we understand by studying its construction.

This is indeed an instance of a very general construction, the most com

prehensive discussion of which is in a paper by Max Kelly [34]. We highlight 

here the construction as it is usually presented.

Let F  be a A-accessible endofunctor on an lAp category C with initial
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object I. The initial F-algebra chain in C is the chain A

A o * ± A 1 - ^ - - - ^ A li^ . . .  (1 .1 1 )

which is defined by induction as follows. The objects will be

A 0 =  I

A n+i =  F (A n) for any non-limit ordinal n

An = colim D  for a limit ordinal pL

where D  is the chain constructed until that point, i.e. containing all the A{ 

with i < (i. Maps between them will be

o o 5 A\ =  the unique arrow from I

A% - A , = F{(f>i-i,j-i) for non-limit ordinals i < j

$i,H‘ A{ - A n = the colimiting map for a limit ordinal fi > i

finj- An - a 3 = the map determined by the collection {(j>ij)i<n

for a limit cardinal fi < j

L em m a 1.24 If  the initial F-algebra chain (1.11) converges at the step A 

(i.e. if  A \  =  A \+ i ,  where A is any ordinal), then (A ,(f)f\+1) is initial in 

F - Alg.

For a proof of this result, see [3]. In [9, Proposition IV.2.5] the following 

result is proved, providing a sufficient condition for convergence of the chain.

L em m a 1.25 Let F  be X-accessible. Then the initial F-algebra chain con

verges within A many steps.

Putting the two results together, one gets the fundamental corollary:
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Proposition  1.26 Every X-accessible endofunctor on an IXp category has 

an initial algebra.

In order to understand how this construction models the classical induc

tive definition of terms, let’s consider a finitary signature £  on Set and work 

out the initial F^-algebra T^. Being the functor finitary, we know the chain 

will terminate in u  steps. The set Aq will be the initial object, that is the 

empty set. A\  =  F^Aq is the set consisting of all terms of depth one built 

over £  but involving no variable. In other words, we get just the constants. 

The unique map from Aq to A\ is the empty function. A 2 is the set of terms 

of depth one built over the £  with variables in Ai, i.e. terms of depth at most 

two. The map from A\ to A 2 is the inclusion of constants. More generally,

An is the set of terms of depth at most n, and the function <̂n>m: A n  ► Am,

for n < m, is the obvious inclusion. The colimit of the chain is then clearly 

the set Ts0 of all closed terms of finite depth built over £. The inductive 

clauses defining T^0 as in (1.1) are matched here by the chain in (1.11). The 

initiality of this algebra is a counterpart to the definition of functions on 

terms by structural induction.

Although in this setting we get it for free by Lemma 1.24, i t ’s worth 

pointing out one of the main properties of initial algebras of an endofunctor 

on any category.

Lem m a 1.27 (Lam bek’s lem m a) I f  f:  F T  ► T is the initial algebra of

an endofunctor F , then f  is an isomorphism.

The proof [41] generalises to any category the argument used to show
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that the least prefixed point of a monotone function on a partial order is 

indeed a fixpoint.

Variables and Substitu tion

W ith the theoretical machinery we have developed so far, we can easily model 

notions like variable and substitution. The usual way of proceeding, on a 

syntactic level, is to consider variables as constants, and build finite terms 

over the resulting enriched signature (as in (1.1)). Here we do the same. 

Let’s recall that the endofunctor for a finitary signature E on Set evaluates 

as in (1.5), or equivalently as

F%Y =  E0  +  £„ x Y n.
ra> 0

Enriching the signature with a set of variables X ,  amounts to replacing E 0  

with E 0 +  X  above. Therefore, it is the same as considering the endofunctor 

X  + Fz (where we now write X  for the constant functor K*).

The initial algebra for this functor has carrier the set T ^ X  of finite E-

terms over X , and its algebra map is [rjX , a x ]'-X +  F T ^ X  ► T^X.  The

first component of the map is just including the variables into the set of terms, 

whereas a x  shows that these terms for a model for E. Notice also that, given

any other F^-algebra (B, (5) and any map a: X  ► B , we naturally have

an X  +  Fs -algebra with carrier B  and structure [a,0]. Hence, the initiality
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of T ^ X  determines an algebra morphism a such that

X Vx T y X F ^T yX

( 1 .12)

FyB

commutes. Syntactically, the map a is defined again by induction on the 

structure of terms: a is the base of the induction, whereas (3 is the inductive 

step.

Diagram (1.12) expresses the fact that T£ is the free F^-algebra over

X , i.e. rjx is universal from X  to the forgetful functor U:Fy — A lg ► C.

When the initial X  +  F^-algebra exists for every X, these universal ar

rows define a left adjoint to U. When this is the case, the association 

X  i— ^(TSX, a x )  is functorial. The unit of the adjunction is the natural 

transformation 77: Id  ► T%.

By the properties of initiality, we can also determine another natural 

transformation from T | to T^. T |X  is the free F^-algebra on X^X, which 

is itself an F% -algebra. The identity on T^, therefore, induces an algebra

morphism f i x ' - T ^ X  ► Tj]X. Using the properties of initiality, one can

easily show that this collection of maps is natural, and moreover, the following 

diagrams commute:

MTV

T 2

(1.13)

T y

The structure arising on Ts is well known in category theory under the
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name of monad. Monads give an account for the notions of substitution and 

variables. For this reason, we shall focus on them for the rest of this thesis.

1.2.4 M onads and Algebras

Mac Lane’s book [44] introduces the notion of monad, as a triple (T, 77, p) 

consisting of an endofunctor T  on a category C, together with two natural

transformations 77: Id  ► T and /a: T 2  ► T  making the two diagrams in

(1.13) commute. An exhaustive treatment of the 2 -categorical aspects of the 

subject is given by Ross Street [55], but we shall not take that approach 

here. For us, a monad will be described by any of the following equivalent 

presentations.

T heorem  1.28 On a category C, the following assignations are equivalent:

a) (Eilenberg-Moore) an endofunctor T  on C together with two natural 

transformations 77: Id >- T  and p: T 2  ► T making (1.13) commute;

b) (Kleisli) an endofunction T  on |C|, for  each X  G |C| an arrow in C

r ] x ' X  ► T X ,  and, for  any pair of objects X  and Y  in C, a map

sx , y - C { X , T ( Y ) ) --------- ( T ( X ) , T ( Y ) ) ,  such that the following prop

erties are satisfied for  all X ,  Y  and Z  in |C|, /  G C(X,  T ( Y ) )  and 

g e C ( Y , T ( Z ) ) :

1■ sx,x(r]x) =  idr(x)/

2.  S x , y ( / ) 7 7 x  — f ;
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3- SY,z{g)Sx,Y(f)  — Sx,z{SY,z{g)f);

c) (Monoid) a monoid (T, 77,/x) on the monoidal category End(C).

Proof.

a) -<=> c) Let’s recall from Example 1.18-2 that End(C) is a monoidal 

category, the tensor being defined by composition. The diagrams in

(1.13) now translate exactly in (1.10) and (1.9) from Definition 1.20.

a) 4==> b) Given a triple (T, 77, //) as in a), we define the action of sx , y  on

f : X  >■ T Y  as the composite sx , y( f )  — P Y T ( f ) \ T X  ►T Y .

Equations 1, 2  and 3 are satisfied because of the naturality and 

functoriality of T, 77 and p,.

Conversely, given T, 77 and s as in 6 ), we define the action of T on an 

arrow / :  X  ► Y  as T( f )  = Sx,y(?7y })- This makes T into a func

tor and 77 into a natural transformation, as one can easily check. The

X -th  component of fi is defined as (ix — Sx.xOdrx): T 2X  ► T X .

Naturality is again easily proved.

□

D efinition 1.29 A monad T on a category C is given by any assignation as 

in Theorem 1.28. When referring to the Kleisli presentation, we shall omit 

the subscript to the function s whenever possible, and will occasionally refer 

to the monad as a Kleisli triple. Following Definition 1.20, we shall refer to 

commutativity of the triangles in (1.13) as unit laws, whereas commutativity 

of the square is the multiplication law.
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R em ark 1.30 The notion of monoid morphism introduced in Definition 1.20 

translates under Theorem 1.28 into the notion of monad morphism. Given 

monads (T, 77, p) and (T', r/', p'), a monad morphism </> between them will be 

a natural transformation (j>: T  >- T'  such that (j>r] = rf and / / < /> 2 =  (ftp.

In the language of Kleisli triples, a morphism is an indexed family of maps 

( f i x - T X  ► T ' X  such that

1- (t>xVx =  rfx \

2 . </>Ys(f)  = s'(</>y/)</>*.

D efin ition  1.31 We shall denote by Mon(C) the category of monads overC. 

This has monads as objects and monad morphisms as arrows, and it is clearly 

isomorphic to the category of monoids in the monoidal category End(C).

There is an obvious forgetful functor K:Mon(C) ► End(C) assigning to

each monad its underlying endofunctor. We shall write Mon(C)A for the 

full subcategory of Mon(C) consisting of those monads whose underlying 

endofunctor is A-accessible, and call its objects A-accessible monads. The 

forgetful functor restricts to a functor V\\  Mon(C)A  ► End(C)A.

R em ark 1.32 As we saw in Example 1.18-3, the monoidal structure of 

End(C)A transposes under equivalence (1.7) to a monoidal structure on [Ca, C]. 

It turns out that the equivalence can then be restricted to the category of 

monoids and monoid morphisms on both sides, hence inducing an equivalence 

between Mon(C)A and the category Mon([C\, C]).

When considering algebras over the underlying functor of a monad T, it 

is natural to require that they respect the existing additional structure.
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D efin ition  1.33 Let T =  (T, 7j,p) be a monad on C. The category T — Alg 

of T -algebras, also called the Eilenberg-Moore category of T, has as objects 

those T-algebras a : T X  ► X  for which the following commute:

X   — ►TX T 2X ----------- ► T X

(1.14)

X T X ------ s----- ► X.

Commutativity of the left triangle is called the unit identity, whereas that of 

the right square is called the multiplication identity. Maps between two alge

bras a\ T ( X )  ► X  and /?: T ( Y )  ► Y,  called T -algebra homomorphisms,

are those arrows / :  X  ► Y  in C such that f a  = /3T(f).  Composition and

identities are those in C.

Monads are intimately related to adjunctions [44, 55]. Given a pair of 

adjoint functors

C . 1 D (1.15)
G

one can always determine a monad by taking the triple (GF, 77, G eF): where 

77 and e are the unit and counit of the adjunction. Conversely, given any 

monad (T, 77, p) on a category C, one can build an adjunction

C : I * T -  Alg
u

where the left adjoint, called T  with an abuse of notation, maps the object

X  to the free T-algebra p X ' T 2X  >■ T X  over it, and U is the forgetful

functor. If we now consider the monad arising from this adjunction, we get 

T again. In fact, T -  Alg is final amongst all categories with an adjoint
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pair of functors over C giving rise to the monad T and related by functors 

commuting with the right adjoints. That is to say that, whenever there is 

another category D and an adjoint pair as in (1.15) such that GF = T, there

is a unique functor 4>: D  ► T — Alg such that U(f) = G. We say that D is

monadic over C if (j) is an equivalence. When 4> is full and faithful, we say 

that the functor G is of descent type.

Kelly and Power [37] showed the equivalence of the following facts for an 

adjunction F ~ \ G : C  ► D, which will prove very useful later on:

1. G is of descent type;

2 . the counit of the adjunction is pointwise a coequaliser;

3. each algebra for the monad T  = FG  is the coequaliser of a parallel pair 

of morphisms between two free algebras.

A proof of the following can be found in [1 2 , Prop. 5.2]:

P ro p o s itio n  1.34 Let F  and T =  (T, 77,//) be respectively an endofunctor 

and a monad on a category C. Then, there is a bijection between natural 

transformations from F  to T  and functors from T — Alg to F —Alg respecting 

the forgetful functors:

T -  Alg-------------- ^ F - Alg
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If, moreover, F  is the functor part of a monad F =  (F, rf, p'), then the functor 

restricts to the category of F-algebras if and only if  the natural transformation 

is indeed a monad morphism.

We can now explain how the notions of monad and algebra for a monad 

model the properties of terms. Recall that, if E is a finitary signature on 

Set, then T ^ X  is the set of finite terms over E with variables in X , i.e. the 

free Fs -algebra on X .  The natural transformation 7]X maps each variable 

x  to the term consisting of x  itself. Applying Ts twice builds terms whose 

variables are terms themselves. The natural transformation p flattens terms 

by performing a substitution. For example, if we consider the term F( t i , t2) 

in T^T^{x , y}  where t\ =  x  and 12 =  G(y), then the action of p on this 

term maps it to F(x,G(7/)) G T%{x , y}.  Diagrams (1.13) express the desirable 

coherence properties of substitution, namely the fact that flattening respects 

variables and that it is associative.

One of the key points of denotational semantics is that, given an interpre

tation of an n-ary symbol in a signature E as a function from An to A  (where 

A is a model of E), we can inductively define an interpretation of each finite 

term as a function taking as many arguments as the different variables ap

pearing in it. The set T%A can be thought of as the set of formal applications 

of a term (thought of as a function) to elements in the model A.  Perform

ing such application, we determine a map a: T ^ A  ► A.  The diagrams in

(1.14) express the coherence of the action of performing the application with 

respect to the inner structure of terms.
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Free M onads

Although the intuition we have explained is intrinsic to the fact that we work 

over Set, we made no explicit use of its properties. In fact, this whole theory 

can be extended to many other categories. All we need is a context where 

to speak of arities and signatures; hence, we focus on locally presentable 

categories. Furthermore, we shall often start with a A-accessible endofunctor 

F  on an lAp category C, the functors F% arising from a signature being just 

a special case.

The forgetful functor U : F  — A lg ► C clearly reflects isomorphisms, and

by Proposition 1.23 it creates coequalisers of [/-contractible coequaliser pairs, 

since -  being absolute -  they are preserved by F.  We also know by Propo

sition 1.26 that, given X  in C, we can form the free F-algebra on it, whose 

carrier is TpX,  and this defines a left adjoint to U. The adjunction gives 

rise to a monad Tp, and by Beck’s Precise Tripleability Theorem [14] the 

category of F-algebras is isomorphic to Tp — Alg. Under Proposition 1.34, 

the isomorphism induces a natural transformation £: F  ► Tp.

Let now a: F  >- T  be a natural transformation between a A-accessible

endofunctor F  and a A-accessible monad T. Then, by Proposition 1.34, there 

is a functor from T —Alg to F —Alg which, under the isomorphism, determines 

a functor from T —Alg to Tp — Alg. This, in turn, induces a monad morphism 

a: T p  ► T, which is the unique one such that =  a.

This is just one possible way to show that T^ is the free monad over F.

D efin itio n  1.35 Let C be a category, and F  an endofunctor on it. The 

free monad over F  is a universal arrow from F  to the forgetful functor
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V : Mon(C)   End(C).

Depending on how we choose to present the free monad, we clearly get 

different means of proving its freeness. For example, we could work in the 

monoidal category of A-accessible endofunctors (the tensor being given by 

composition) and, for a given F , consider the endofunctor Id+To —, mapping 

each endofunctor G to Id+FG. The initial algebra chain (1.11) now converges 

to an endofunctor Tp [34], which is the underlying object of the free monoid 

over F, i.e. the free monad over the endofunctor. Note that the chain will 

now stop within A many steps.

In general, the free monad on a functor might not even exist; it does 

however, by Lemma 1.24, when C is lAp and F  is A-accessible. The following 

result collects some of the equivalent ways of presenting the free monad over 

an endofunctor F. Its proof can be recollected from [44, 34, 37, 14].

P ro p o s itio n  1.36 Let F  be a X-accessible endofunctor over an IXp-category

C. Then, any of the following definitions gives rise to the free monad Tp  

over F:

1. For every X  in C, T p X  is the carrier of the initial X  +  F-algebra.

2. Tp = UL, where L is the left adjoint to U : F  — A lg ► C.

3. Tp is the colimit of the initial algebra chain (1.11) for the endofunctor 

Id +  F  o — on End(C)A

4- Tp is the free monoid over F  in End(C)A.
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By definition, the free monad is a universal arrow. It follows that, if we 

can form it for any endofunctor on a category C, we get a left adjoint to the 

forgetful functor V: Mon(C) ► End(C).

Therefore, when C is lAp, every A-accessible endofunctor admits by Propo

sition 1.26 a free monad over itself, and we get the following chain of adjunc

tions, relating signatures and monads:

L a n / A L a n A  HX
[ V a , C] T T *  [C a , C] End(C)A Mon(C)A (1.16)

- o  I \  - o J X Vx

In particular, it follows that, given a signature E of rank A, there is a 

free monad on it. Recall that the category F ^ —  Alg is isomorphic to the 

category of models for E. Now we also know that these are isomorphic to 

the category of algebras for the monad T s , and the properties of the monad 

give us a better way of handling variables and substitution.

In fact, the picture can be completed by adding more elements. Recall 

from Remark 1.32 how equivalence (1.7) restricts to an equivalence

L a n -7A

Mon([Q\, C]) c ±  Mon(C)A.
- o J x

The adjunctions above can then be presented again in the following way.

L a n / A

Wx, C] :  — j- — > [CA, C] ,  ~ ± "■■■■> Mon({Cx , C])

01

o

c* LanJx «<01

H x

End(C)A j l  Mon(C)A
^ vy

R e m ark  1.37 When we shall come to the dual of this setting, in Section

2.3, a construction like the above will not be possible since one would be
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interested in the limit of a co-chain, and there is no reason for accessible 

endofunctors to preserve such limits. As an effect of this, the rank of the 

cofree comonad over an accessible endofunctor may increase. This change of 

rank underlies the technical difficulties which will arise in Section 2.3.

1.2.5 Adding Equations

In the previous sections we generalised the notion of signature to locally 

presentable categories, and we showed how a signature gives rise to a monad 

such that its Eilenberg-Moore category is equivalent to its category of models. 

Now we turn our attention to algebraic theories.

In order to model this notion categorically, it is useful to think of equa

tions as terms which prove the equality of two terms over the signature. 

Given an algebraic theory (E , E ), we can consider E  as a signature of equa

tions, giving, for any arity n, the set of equations between terms which are 

built on n  variables. The arity of an equation X  b t  =  s is the cardinality of 

the set X .

Let’s consider, as an example, the theory of monoids, whose signature we 

introduced in Example 1.15. We need to impose three equations: left unit, 

right unit (both unary) and associativity (ternary). Hence we set E ( 3) =  {a}, 

E(  1 ) =  {Z,r} and E(n)  = 0 for any other n. Intuitively, the term a ( x , y , z )  

“proves” that m(m( x , y ) , z )  =  m(x,m(y, z) ) ,  whereas l (x) is a proof of the fact 

that m(e, x) =  x and similarly for r(x) .

Given a signature of equations, we associate to each equation symbol its 

left and right handsides by means of pairs of parallel arrows and p'n from
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E(n)  to Ts(n). In the case above we get:

Ai(/) =  m(e,:r) X[ (r) =  m(x,e) A '3 (a) =  m(m ( x , y ) , z )

p'i(l) =  x p[ ( r ) =  x p’3(a) =  m(x,m(y, z))

This way, we determine two natural transformations:

f t - " - -  T T e JT : N — -Set 
p'

T y,JI is to be thought of as the signature which has as n-ary symbols all 

E-terms over n variables. By the composite adjunction of (1.16), A' and p' 

induce two monad morphisms from T# to T s . Taking their coequaliser q in

Mon(C)A, we get a monad whose algebras are precisely those algebras for T^

satisfying all the equations in E  [34]:

T E : T s  T (EjB). (1.18)
p

Kelly and Power [37] proved that the composite V \(—) J \ I \  in (1.16) is of 

descent type, thus inducing, because of the equivalent facts stated on page 

42, the following representation theorem.

Theorem  1.38 Any X-accessible monad over an IXp category C is a co

equaliser of two free monads.

This is saying precisely that every A-accessible monad is modelling an alge

braic theory consisting of a signature and some equations.

However, one should be aware of the fact that the signature and the 

equations we get for a monad T do not necessarily give an idea of the theory 

we are considering. In fact, the way the signature is reconstructed is just by 

precomposing T  with the inclusion J7, therefore, as mentioned above, we get
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as term constructors of arity n all the elements of the free algebra of terms in 

n variables, but this does not show what the key constructors of the theory 

really are.

1.2.6 Introducing Enrichment

In this last section of the Chapter we introduce the notion of enriched cat

egory, and put it to use in order to confer more generality to the theory we 

developed so far.

An enriched category is a category where the hom-sets are replaced by 

objects of a monoidal category. We recall here the basic definitions of V- 

category, V-functor and V-natural transformation, taking them from Kelly’s 

book and referring to it for any result on the subject [35].

Let’s fix a monoidal category (V, <S>,/), with the natural isomorphisms 

a , A, p.

D efin ition  1.39 A (small) enriched category C over V is specified by a collec

tion of objects Co; for each pair X ,  Y  of objects in Co, an object in V, which we

denote by C(X, Y ); for each object X  in Co a map j x ' - 1 ---- ► C(X, X )  in V,

and, for objects X , Y  and Z , a V-map M x y z '■ C(AC, y)®C(Y, Z )  ► C(X, Z)

such that the following diagrams commute:

( c ( x , y ) ® c ( r , z ) )  ® c { z , w ) — 2— ( x , y ) ® ( c (y ,z )®  c ( z , w ) ),

M<g)id \6®M

C(X, Z)  ® C(Z,  W )   -  C(X, W )  ---------- ---------C(X, Y )  ® c (Y, W )
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j&d id <8)j

C ( X , Y ) ® C ( Y , Y ) M c ( X , Y ) M
C(X,X)<g>C(X, Y) .

D efin ition  1.40 Given two V-enriched categories C and D, a V-enriched

functor F  between them is a pair consisting of a function F : Co ► Do and,

for any pair X ,  Y  of objects in C, a V-map Fx y '■ C(X, Y )  >■ D ( F X , F Y )

such that the following diagrams commute:

C ( x ,y ) ® c ( y ,z ) M C ( X , Z )  I - U C ( X , X )

Fx y ®Fy z F x z  \ F x x
j  \

D( F X ,  F Y )  ® D(FY, F Z ) M
D { FX,  F Z ), D( FX,  F X ) .

D efin ition  1.41 Given two V-endofunctors F  and G  between V-categories 

C and D, a V-natural transformation a  from F  to G  is given by a family

of maps a x ' - 1 -----► D( FX,  G X )  indexed over the objects of C, making the

following diagram commute:

C(X, Y)

C(X,  Y ) ® I

F<S)otY

D( F X ,  F Y )  ® D(FY, G Y )

/ ®  C(X,  Y)

OCX&G

D( FX,  G X ) ® D ( G X ,  G Y )
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Having recovered the notions of category, functor and natural transfor

mation, it makes sense to consider an enriched monad, presented in the 

Eilenberg-Moore style.

Exam ple 1.42 We present here some examples of enriched categories which 

we use later on.

1 . Categories enriched over Set (with the cartesian monoidal structure) 

are nothing else but (small) categories in the usual sense.

2 . A category enriched over Cat (which is monoidal with the cartesian 

structure) is called a 2-category. The hom-sets, in this case, are cate

gories, so they have objects (which we think of as arrows in between 

objects of our 2 -category), and arrows, which we think of as 2 -cells in 

between the arrows. A typical example of a 2 -category is the category 

of (small) categories with functors as one-cells and natural transforma

tions as 2 -cells.

3. Let’s take as a base for our enrichment the category consisting of the 

ordinal 2 , which is monoidal with the meet operation as tensor product 

and 1  as unit. A category enriched over it consists of objects and, 

for each pair of objects, either a 0 or a 1 stand for the hom-set. In 

other words, we just have a relation on objects, and the axioms of an 

enriched category ensure that the relation is reflexive and transitive; i.e. 

a preorder. A 2 -functor is an order preserving function on the objects. 

Therefore, the category of 2-categories is equivalent to Pre.
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4. The category Pre is enriched over Set (because it is locally small), but 

also over itself, when we put on the hom-sets Pre(X, Y)  the preorder 

defined as /  <  g if and only if f ( x )  <  g( x ) in Y  for all x in X .

For a V-category C, we should not think of an hom-set as a set of arrows. 

However, there is a way to get a standard category given an enriched one,

by considering as arrows from X  to Y  in C all the V-arrows I  ► C(A, Y) .

This allows us to associate with each V-enriched category C a category in the 

usual sense, which we denote by C0  (see [35] for details).

Let V be an lAp symmetric monoidal closed category, in the sense of Def

inition 1.17, such that I  is A-presentable and the tensor of two A-presentable 

objects is again finitely presentable (Kelly calls these categories locally pre

sentable as closed categories, in [36]). In this case, it makes sense to talk 

about presentability for a V-category. The notion of A-filtered colimit is 

extended to the enriched setting, therefore it makes sense to ask for a repre

sentable functor C(X,  —) to preserve A-filtered colimits. As above, we shall 

call X-presentable those objects for which this happens, and we shall say that 

C is A -presentable if there is a small generating set of finitely presentable ob

jects. The definition of signature extends consequently.

Also, the operation 0 , extends naturally when replacing Set in (1.6) by V 

and letting X  be a V-object. This allows us to calculate left Kan extensions, 

and therefore to build the functor for a given signature. More generally, 

the whole chain of adjunctions (1.16) still exists, and we can present an 

algebraic theory on such categories by means of operations and equations.

However, when moving from standard categories to enriched ones, we



CHAPTER 1. INTRODUCTION AND PRELIMINARIES 53

can not talk directly of the Eilenberg-Moore category for a monad. That is 

because now it makes no sense to consider a map from T X  to X , given that 

such maps simply don’t exist within the enriched context. An alternative 

way to approach the issue requires a couple of remarks.

First of all, let’s note that, given an object X  in an lAp V-category C, we 

can define a functor from the functor category [ C a , D] to D by mapping the 

functor T  to (Lanj xT ) X .  This functor has a right adjoint, which we denote 

by (X , —), so that

D((LanJxT ) X ,  Y )  a  [CA, D](T, (X,  Y) ) .

A simple calculation shows that, for a A-presentable object c in C, (X , Y ) c  =  

[C(c, X ) , Y ] ,  where [U,B\ is the [/-fold product of B , or, more formally, the 

representing object for the functor [[/, C(_, B)]: C  ► V, thus being charac

terised by the isomorphism

C ( A , [ U , B } ) ^ V ( U , C ( A , B ) ) .  (1.19)

When C = V =  Set, this is just exponentiation. If X  is A-presentable, the 

functor {X,  —) is A-accessible and, when D =  C, (A, X )  is a A-accessible 

monad on C.

If V is Set, then one can prove that to give an algebra T X  ► X  for

the monad T is the same as giving a monad morphism from T to ( X , X ) .  

This latter notion makes sense also in the enriched setting. Furthermore, if 

T =  Ts , then any such morphism is determined by a natural transformation 

from to V \ { X , X )  which, if read in CQ, corresponds to a collection of 

maps Ec ® C ( c , X )  ► X  for c in Ca, thus recovering the notion of an
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interpretation for the operations declared by E, i.e. a model for the signature 

(see [37] for details).

Analogously, in presence of equations, the notion of an algebra for T(s .js;)

over the object X  is replaced by that of a monad morphism a: -----► (X , X )

such that aX = ap , with the notations of (1.18).

A survey of some of the structures which can be captured with this pre

sentation is given in [51]; others are presented in [20, 43]. We shall propose 

here some examples of theories which can be expressed within this frame

work, hoping with this to provide both some intuition on the rather abstract 

and complex mathematics which we have presented, and to show that it was 

indeed worth the effort.

Exam ple 1.43 The first, and definitely the easiest, example is that of the 

power category SetK, where K  is a set. We can think of its elements as 

sorted sets, so that an element a: of a set Xk in a family (Xk)keK, has sort k. 

This category is clearly enriched over Set, and it is locally presentable in the 

sense of Kelly, but this is not saying more than just noting that it is a locally 

finitely presentable category. Finitely presentable objects are if-tuples of 

finite sets, only finitely many of which are non empty. To give a signature in 

SetK is therefore to specify, for each arity (Xk)keK, a if-tuple of sets (Fk)keK 

so that each element in F represents a function taking Xh many elements 

of type h (for each non empty set X /* in the arity) and returning a result of 

type k.

We shall give here an example of such a sorted theory: that is, the cat

egory of sets with a group action on them. In general, one fixes a specific
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group G and considers the category of G-sets as algebraic over Set. In doing 

this, one unary operation is defined for each scalar g e G. Here we want to 

emphasise the fact that the multiplication by scalar is a binary operation, 

taking two elements of different sorts as inputs. We shall therefore work in 

the category Set2, and we will represent its objects as pairs (G, X ), which are 

intended to be the carrier of a group and a set on which it acts, respectively.

Our signature will have to define all the operations of the group, as well as

those of the action. We therefore have the following:

group operators

£(0,0) =  « e} ,0 )

E (M )  =  ( { ( r 1},®)

£(2,0) =  ( M , 0 )

group action

2 ( 1, 1) =  (0, {•})

Here, e stands for the neutral element of the group, whereas * and ( )_1 

are the multiplication and the inverse operation symbols, respectively. The 

operation • is in the second component of the pair because it returns an 

element of the set, and not of the group.

Equations are now going to impose all the structure of a group on the 

first component, and enforce the properties of the group action on the • 

operation. If n is thought of as a set with n elements, then we refer to them 

as <7 1 , . . . , gn or . . .  , x n according to the component which they belong to,
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and the signature E  and the two natural transformations A and p take the 

following form:

group equations

E(  1, 0) =  ({invl, invr , idl, idr}, 0)

A (invl) = 9 i * 9 i l p(invl) =  e

A (invr) =  9 i l *9\ p(invr) = e

A (idl) =  e * 0 1 p(idl) = 9i

A (idr) =  Pi * e p(idr) = 9i

£7(3,0) = ({ass}, 0)

i (9i * 92) * P3 p(ass) = 9i * (P:

group action

E (2 , 1 ) =  (0, {prod})

A(prod) = (pi * g2) • x 1 p{prod) =  pi • (p2 * £i)

£ ( 0 , 1 )  =  (0, { u m t} )

A(um£) =  e • Xi p(unit) = x\

The equation prod takes three arguments: two are elements of the group 

(the gds in the equation), the third is an element of the set. Notice how the 

arities of the equations are not related to the arities of the operations.

Exam ple 1.44 Cat is enriched over Set, as well as over itself and over Gpd 

(categories where all morphisms have an inverse), and locally finitely pre

sentable as such, the finitely presentable objects being finite colimits of finite
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categories. The different enrichments determine different algebras for 

Let’s recall from (1.5) that

Different enrichments result in the operation <g) acting in different ways. We 

know that the coend in this case is just a coproduct, and, by selecting the c-th

Depending on the enrichment we consider, Cat(c, C) will be a set, a groupoid, 

or a category. Consequently, according to the adjunction in (1 .6 ) which

in either Set or Gpd, or even Cat. The practical difference which this entails 

is that the map will preserve more or less structure of the hom-set, and 

this reflects also in the notion of algebra morphism. For example, enriching 

over Gpd allows us to define structures on a category and morphisms which 

preserve this structure up to isomorphism, whereas enriching over Set would 

enforce a strict preservation of the structure itself. See [51] for a more detailed 

discussion.

Let’s take as an example categories with a terminal object. We want to 

present them as an algebraic theory over Cat. We shall therefore get a monad 

Tet  which associates with each category its extension by means of a terminal 

object T. We already saw the signature in Example 1.16. Equations will put 

o(X) =  T  and *(X) =  X  for each X  in the source category. These two 

equations will then have arity 1, the one object trivial category. Finally, we 

shall need an equation of arity 2  (the preorder with two elements considered 

as a category). This is going to ensure uniqueness of the mediating arrow to 

the final object; therefore it will say that, composition of any arrow from X

Ec <S> Cat(c, C).

component, an F^-algebra determines a map Ec ® Cat(c, C) — ^C in Cat.

defines the map will correspond to a morphism Cat(c, C) — ^Cat(Ec, C)
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to Y  with the mediating arrow from Y  gives back the mediating arrow from 

X .  So, for the arity X  ►Y  , the equation will say !y / =\x  [20].

E x am p le  1.45 In [43], Ghani and Liith gave a very nice presentation of term 

rewriting systems as algebraic theories over Pre. The category of preorders 

and non descending maps is again enriched over Set as well as over itself. 

Here, we are interested in seeing it as enriched over itself (see Example 1.42- 

4). Let’s consider the term rewriting system given by a signature S  and 

rewrite rules collected in a set R. We want to find a signature £  and equations 

on Pre such that the algebras for the corresponding monad are models of the 

term rewriting system (S ,R ).  We interpret the signature as we already did 

in Set, and define £(n) =  Sn, where n stands both for the discrete preorder 

on n elements and for the cardinal n. Our rules also have an arity: that is 

the total number of different variables appearing on either handside of the 

rule. When we write X\~ p:t s , we suppose that all the variables in X  

appear in either t or s. For each such rule we define three term constructors: 

two will be standing for t and s, and one will stand for the rule which we are 

defining. Equations will then put the source and the target of the rewrite 

rule equal to the two new term constructors, thus forcing the relation (see 

[43] for details).

To make things clear, let’s consider the classical example of the following 

t r s  for addition on natural numbers: £  has a constant 0 , a unary symbol 

s (the successor operation) and a binary symbol -h The rewrite rules are 

{x} b  a: 0 +  x —>• x and {x, y }  b r: s(x)  +  y  —» s (x  +  y).  In order to render
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this categorically, we define our signature E as follows:

E(0) =  {0}

E(*) =  (s h  - + a n )

E(« •) =  (+ l2 -+T r2)

Here we enclose in round brackets the preorder which is being defined and we 

label the arrows with their term constructor just for clarity. The signature 

is defined as the empty preorder on any other arity.

Equations will now be the following:

£ ( • )  =  (e i  e2)

£ ( •  •) =  (e3 e4)

This is not very useful, if we do not specify their left and right handsides of 

the equations:

^ ( e l) {x } =  h ( x ) p(e l ) { x } =  0 +  a:

K e2){x} = ri (x) P(e2){x} =  X

^ ( e 3){x,y} =  k ( x , y ) P{e3){x,y} = s ( x ) + y

-Me 4){a;,2/} = r2(x,y) p{^2){x,y} =  s{x + y)

1.2.7 Summary

This closes the presentation of the classical theory. We have taken the clas

sical notions of signature, equation, and model for a theory, and we have 

translated them into the language of category theory, thus extending them 

to many different categories. All we need is a locally presentable enriched
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category, and then we can present any algebraic theory by means of signa

ture and equations. The examples above should provide a clear and sufficient 

motivation for introducing these notions.

In the remainder of the thesis, we shall focus on different possible duali- 

sations of this theory, which give a way to reason about structures with an 

infinitary flavour. This will come as a result of considering not the initial 

algebra of an endofunctor, but rather the final coalgebra. Also, in dualis

ing the collection of the X  +  F-algebras, we can choose to consider either 

the X  x F-coalgebras or the X  +  F-coalgebras, thus getting different struc

tures. An analysis of these possible dualisations will be the core of the next 

Chapter.



Chapter 2

D ualising Algebras

In this chapter we explore different possible dualisations of the theory pre

sented in Chapter 1. Of course, one could dualise everything straight away, 

by simply instantiating the theory in the case of a category Cop and reading 

the results back in C, but this is not what we really want to do. In par

ticular, there are parts of the theory which we want to leave unchanged. A 

signature, for example, will still be presented in the same way. Remember, 

though, that in the classical theory we take the endofunctor generated by 

a signature E and we build the free monad over it, which is pointwise the 

carrier of the initial X  +  Fs -algebra. Here, two different and independent 

dualisations can be performed. On the one hand, one could consider the final 

X  +  Fs-coalgebra (or better, its carrier). On the other, one could consider 

the product, instead of the coproduct, and focus on either the initial algebra 

or the final coalgebra for the endofunctor I  x

In Table 2.1 below, we give a synoptic image of what one achieves in the 

different cases, in terms of the structure arising on the endofunctors.

61
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Monads Comonads

Initial Algebras fiY. X  +  F Y fiY. X  x F Y

Final Coalgebras vY. X  + F Y vY. X  x F Y

Table 2 .1 : Algebras and Coalgebras forming Monads and Comonads

The top-left corner of the table is the Kelly-Power framework which we 

already described. This Chapter will focus on a study of the two cases on 

the bottom line. In particular, in Section 2.3 we shall consider the comonad 

structure which is carried by the collection of the final X  x F-coalgebras, 

whereas in Section 2.4 we shall focus on the monad arising from the final 

X  + F-coalgebras.

Before approaching the subject, though, it is essential to understand what 

coalgebras are, how they relate to signatures, and how final coalgebras model 

infinitary behaviours.

The study of coalgebras has long been considered less relevant to com

puter science and most activity concentrated on studying universal algebra 

using the initial algebra semantics. Recently, however, a lot of interest arose, 

as the dual notions were seen to model behaviour of systems, specifications 

of dynamic systems, to find models of concurrency, modal logic, infinite type 

theory, recursion theory and in many other areas [31, 52, 57, 56, 40, 13, 5, 2, 

46, 11, 17].
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2.1 Coalgebras and Behaviours

Coalgebras provide a different way of thinking about a signature E. Consider 

a set B  of possible states of a machine, and think of E symbols as possible 

outputs. When the machine leaves a state 5  to reach a new state s', it 

produces as output the symbol corresponding to the operation which it has 

performed. When the symbol has arity n, s' will be an element of a set 

{ s [ , . . . , s 'n} of reachable states via that n-ary operation. The behaviour of 

the machine, is then described by a function from B  to the disjoint union 

B n, and that is exactly F^B,  as we saw in (1.8). Therefore, we get
n£N
a map which is dual to an algebra structure. This is what we call a coalgebra.

D efin itio n  2 . 1  Let F  be an endofunctor on a category C. The category

F —Coalg of F-coalgebras has as objects pairs (A , a), where a: A  ► F A  is

a C-map. A map between two such {A, a) and (B,/3), called an F-coalgebra

homomorphism, is a C-arrow / :  A  ► B  such that the following square

commutes:

A  ------- ^ B

F A  F B .

There is a canonical forgetful functor U : F  — Coalg ► C, mapping a coal

gebra {A, a) to its carrier object A  in C, and mapping a coalgebra homo

morphism f: (A, a )  ► (B , (5) to /  itself.

We are slightly abusing the notation, here, by using the same notation 

for several different forgetful functors, but we believe this should not cause



CHAPTER 2. DUALISING ALG EBRAS 64

any serious confusion.

E x am p le  2.2 Many examples of coalgebras are described in [52]. We pro

vide some here.

1 . Let’s consider the signature consisting of a constant symbol 0  for termi

nation, and a unary symbol s which moves the system one step further. 

Then F ^ X  is the set 1  +  X ,  where the added element is precisely 0 . A

coalgebra for this endofunctor is a map a: A  ► 1  +  A. An element

a 6  A  is sent by a  to either 0 , in which case the system terminates, 

or to s(a') for a new state a' € A, from which it can produce another 

result, by applying a  again. The symbol s is here quite irrelevant, be

cause there is only one possible transition for each state, and the fact 

that we label it does not bring any new insight.

2 . On the other hand, if we could observe different possible evolutions of 

the system, for example by getting different outputs from it, then it 

would be important to distinguish them. This is what brought many 

researchers to consider the notion of a labelled transition system. Cat

egorically, these are just coalgebras. If O is a set of outputs, we can 

consider a unary function symbol for each element in O, and, together 

with the termination symbol _L, we get a signature whose correspond

ing endofunctor F  maps a set A  to 1  +  O x A. An F-coalgebra struc

ture maps each state a to either _L (if the system halts in that state) 

or to a pair (o, a'), where o is the output and a' is the new state in 

which the machine ends up after performing the transition. Equiva

lently, we could label the transitions by the output they produce, and
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say that the machine, performs a transition o from the state a to a'. 

This we shall sometimes write as a —% a', and we shall write aj, when 

the machine halts in the state a. An instance of this is the set of fi

nite and infinite words over an alphabet S, which we shall denote by 

5°° =  {(wi,w2, . . . )  | Wi £ S}. Given a nonempty word, we can ex

tract the first letter out of it. This will be a symbol from 5, therefore 

an output, and will leave us with the remainder of the word. On the 

empty word s, the operation gives no result. We can describe this by 

means of a coalgebra S°° — ► 1  +  S  x S°° and we get

(w i,w2,w 3, . . . ) ^ h { w 2,w 3, . . . )  el.

3. We can also address nondeterminism, within this framework. If, for 

example, we have a machine which, from a state s G 5, can enter any 

state in a subset of 5, then we can describe its behaviour by means of 

a map from S  to the powerset V(S).

Although the definitions of algebra and coalgebra are dual, the categories 

F  — Alg and that F — Coalg are not. In fact, F  determines an endofunctor 

F op on the dual of C, Cop. It is trivial to observe that F op —Alg is the dual 

category of F —Coalg. So, it is still true that coalgebras are dual to algebras, 

but on different functors. Taking care of this, we can therefore translate 

all theorems stated for algebras in the coalgebraic framework, without any 

need to prove them again. For instance, Proposition 1.23 dualises at once, 

proving, because limits in C correspond to colimits in Cop and vice versa, the 

following.



CHAPTER 2. DUALISING ALG EBRAS 66

P ro p o s itio n  2.3 The forgetful functor U: F  — Coalg ► C creates all col

imits existing in C, as well as those limits which are preserved by F.

Analogously, Lambek’s lemma (see page 35) dualises to give the following.

L em m a 2.4 Whenever the final coalgebra (T, r)  for an endofunctor F  on a 

category C exists, the map r  is an isomorphism.

Because creation of colimits imposes preservation, we now have half the 

conditions for applying Freyd’s special adjoint theorem [44, p. 125] to deduce 

that U has a right adjoint. To this end, we need to show that F  — Coalg is 

cocomplete and has a set of generators. This latter condition holds whenever 

C and F  are accessible. In this case, by Corollary 2.75 in [8 ], we have that 

F  — Coalg is accessible too, hence having a generating set of presentable 

objects. If C is also cocomplete (i.e. by Proposition 1.14, if it is locally 

presentable), then Proposition 2.3 ensures that F  — Coalg is cocomplete too, 

and by Freyd’s theorem we know that U has a right adjoint. We have just 

proved the following result.

P ro p o s itio n  2.5 Let F  be an accessible endofunctor on a locally presentable 

category C. Then, F —Coalg is locally presentable and there is an adjunction

F -Coalg . i  * C. (2.1)
R

R e m ark  2 . 6  It is important to notice that the result does not ensure that 

the rank of presentability is preserved when forming the category of coal

gebras. More specifically, Theorem 2.72 in [8 ] ensures that F  — Coalg is
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fi-accessible for a regular cardinal /i which, in general, is only known to be 

higher than A, even if the same A is the rank of presentability of C and of 

accessibility of F. As an example, consider the covariant finite powerset 

functor TV This is easily shown to be finitary on Set, which is itself lfp, 

but V& — Coalg is not lfp [13]. At least in Set, this seems to be an anomaly 

of a;, since in [7] the authors show how, for any F  of rank A > cj, the cat

egory of F-coalgebras is locally A-presentable and the right adjoint to U is 

A-accessible.

2.2 Final Coalgebras

In the case of algebras, the universal property of initial algebras shows them 

as the denotational semantics for the signature. Dually, here, we focus our 

attention on final coalgebras, which model all possible observable behaviours 

of a E-system.

In general, final coalgebras need not exist. In fact, the powerset functor 

on Set cannot admit one, otherwise this would be, by Lambek’s lemma, a 

set in bijection with its powerset (as a m atter of fact, the powerset functor 

does not even admit an initial algebra, for the same reason; in order to find a 

functor which has an initial algebra but not a final coalgebra, we can look at

the functor F: FinSet ► FinSet mapping an object X  to 2  x X ) .  Whenever

C is locally presentable and F  is accessible, though, the existence of a right 

adjoint for U ensures, since C is complete, that F  — Coalg has a terminal 

object. Therefore, we have a final coalgebra. Unfortunately, Freyd’s adjoint 

theorem is very unconstructive, therefore we do not know much about the
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structure of this coalgebra. Besides, these are not the only cases where we 

know of its existence.

2.2.1 Constructing Final Coalgebras

Since the notion of final coalgebra is dual to that of initial algebra, we can

dualise the construction of the initial algebra chain (1 .1 1 ), and consider the

following.

Let F  be an endofunctor on a category C with terminal object T. The 

final F-coalgebra cochain in C is the cochain

B  =  (2.2)

which is inductively defined as follows. The objects will be 

B 0 = T

B n+1 =  F (B n) for any non-limit ordinal n

Bn = lim D  for a limit ordinal \i

where D  is the cochain constructed until that point. Maps between them 

will be

^ i>0: B \  ► Bo =  the unique arrow to T

B j ------ ► Bi = F(ipi-i j - i )  for non-limit ordinals i < j

= the z-th projection for a limit ordinal j i >  i

B j  ► Bp = the map determined by the family

for a limit cardinal /x < j

The dual to Lemma 1.24 clearly holds, thus saying that, whenever the 

chain converges at the step A, i.e. when 'tpx+iX- B \+ i  ^ B \  is an isomor

phism, then V’a+ua 1S structure map of a final object in F  — Coalg.
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For this to hold, it is enough that F  preserves limits of lu- cochains. In this 

case, taking the limit of the first lu steps of the cochain gives us the carrier 

of the coalgebra [13]. Such functors are often known as ( lu- ) continuous in 

the literature, and both the notion and the result clearly extend to any limit 

ordinal A. They do not include all the accessible ones. In fact, the functor 

Vfi which maps each set to the set of its finite subsets is finitary, but not 

w-continuous [57, p.27]. A more comprehensive result was proved by James 

Worrell [58], who showed that whenever F  preserves monos and is accessible, 

the coalgebra chain must converge, and in Set it does so in at most lu +  lu 

steps.

Exam ple 2.7 The class of ^-continuous functors includes all functors aris

ing as the left Kan extension of some finitary signature [52]. For example, if 

we consider the signature consisting of a constant 0 and a unary symbol s of 

Example 2 .2 - 1 , the corresponding functor F X  = 1  +  X  is ^-continuous, and 

therefore it has as a final coalgebra the limit of the first lu steps of (2.2). In 

this specific case, we can describe Bi as the set {0 , . . . ,  s l-10}, and the maps 

ipi+iti: Bi+ 1 ---- ► Bi are defined as

{s J 0 i f  7* < 2  
.

s*_10 if j  ~  i

The limit of the chain will then consist of the set of lists of the form 

(xojXi j . . . ) ,  where Xi € B i , such that =  a:*—i- Because of the way

the maps are defined, such lists must be of the form (0, sO, s20 , . . . )  and they 

can either grow up indefinitely or stabilise at some sn0, and constantly repeat 

that entry. The set of such lists is clearly in bijection with the set N U {oo}, 

and forms the carrier of the final F-coalgebra.
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Given any other coalgebra 7 : C  ► 1  +  C  for the functor F,  the medi

ating map (/>: C  ► N U {0 0 } will associate with each c G C  the number of

iterations of 7  which we can perform on c before ending up in the 1  compo

nent; that is, if * is the element of 1 , 0 (c) will be the least natural number 

n such that 7 n(c) =  *. If such a number does not exist, then 7  iterates 

indefinitely on c, therefore we put 0 (c) =  0 0 .

E x am p le  2.8 Another example is that of the functor G arising from a sig

nature consisting of one binary symbol •  and a constant ±. Formula (1.5) 

gives an explicit calculation for G: G X  =  1  +  X 2. If we adopt the tree

•

notation for terms, thus writing /  \  for • ( t i ,^)? the sets in the chaintl t2

now take the form

and so on. We can think of the set B n as the set of binary trees of depth at 

most n, where all internal nodes are labelled by •, leaves at depth less than 

n  are labelled by _L, and leaves at depth n are labelled by *.

The map 0 n+i,n will send a tree of depth n +  1 to its truncation at depth 

n, and leave a tree of lower depth unchanged. So, for example,
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whereas -0 2 , 1  (-L) — -L.

An element in the limit will be a sequence ( to ,t i , t 2 , ■ ■ ■) of trees such 

that tn is the truncation at depth n of tm for any m  > n. We can therefore 

think of such sequences as successive approximations to a (possibly) infinite 

tree with internal nodes labelled by • and leaves labelled by _L. If a sequence 

stabilises at some n G N (i.e. if for all m  > n  one has tm = tn), then the 

corresponding tree will be finite, and precisely tn. The carrier of the final 

coalgebra is then the set of finite and infinite trees (with nodes labelled by 

•  and leaves by _L), or equivalently, the set of finite and infinite terms built 

over the signature.

Here, the mediating map <fi from a coalgebra 7 : X  ► G X  maps a state

x  G X  to the binary tree representing its evolution. This is built by suc

cessively instantiating the coalgebra structure. If 7 (0 ;) — *, i.e. if it falls 

in the 1 component of the coproduct 1 +  X 2, then (p(x) = _L; otherwise 

'y(x) =  (rci, X2 ) E X 2, and we map x  to the tree which starts with •  and has 

as a left branch the tree corresponding to x\ and as a right branch the tree 

corresponding to X2 . The function is said to be defined by corecursion.

The argument we just showed generalises straightforwardly to any finitary 

signature E on Set, and we get the following.

P ro p o s itio n  2.9 The carrier set of the final F^-coalgebra is the set of closed 

terms with finite and infinite depth built over the Set-signature E ; and it is 

obtained as the limit of the final coalgebra cochain in uj steps.

The two examples above suggest the intuition that the mediating map
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from any coalgebra to the final one should map any element of the carrier to 

the infinite tree which completely describes its observable behaviour.

The notion of bisimulation encodes the idea of two behaviours being in

distinguishable by means of simple observation [47]. Consider for example 

two systems S  and T:

So —^  S i  —^  S 2-------

a a a a

si si s '2 if

where by saying that 5  is a system we mean that the s^’s are states of 

a machine whose transitions from one state to another are labelled by a 

symbol, in this case from the set L = {a, b} (and likewise for T). Then, for 

any state in S  there is a state in T  such that any action performed by S  

can be performed by T  and vice versa. For example, the state s0  in S  can 

perform an a action and move to the state s'0, and the state t can perform 

an a action to t ' . Likewise, So goes by b to si, whereas t goes by b to itself. 

The target states, in both cases, are still related by the same property. If 

we consider the relation {(sf,t) | i > 0} U {(s',£') | i > 0} between states 

of the two systems, this will satisfy the property that for every pair in the 

relation, if either of the two elements can move to another state within its 

own system, the other one can perform within its system a transition with 

the same label, and the pair consisting of the two target states will still be 

in the relation. This is what in concurrency is called a bisimulation between 

the two systems.

Categorically, we can model the two systems as coalgebras for the endo- 

functor F X  = V r(L x  X) .  In the first case, the carrier will be the set S  =
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{si, s'i \ i  > 0 }, with a transition map sending s* to the set {(a, sj)» (&> sz+i)} 

and s' to the empty set; in the second, the carrier will be T  = {£,£'}, with 

structure map which sends t to {(a, £'), (M )} and t' to the empty set. The 

relation can then be represented as a span

s J A - r ^R+t

where R  is a coalgebra and 7r* is a coalgebra homomorphism. This is what 

we take as our general definition of bisimulation between coalgebras.

D efin itio n  2 . 1 0  Given coalgebras {A, a) and (£,/?) for a C-endofunctor F, 

a bisimulation between them is a coalgebra (R,p)  together with a pair of

coalgebra morphisms tta" ( R , p ) -----► {A, a) and ttB'- ( R , p ) ------- {B,(3) such

that 7ta and txb are jointly monic in C.

Note that, in Set, the graph of any morphism / :  (A , a )  ► (B, /?) of

coalgebras, considered as a subset of A  x B,  is a coalgebra, and the two 

projections on A  and B  make it into a bisimulation.

A different approach to building final coalgebras [31], at least in Set, is 

that of considering a quotient of the collection of all the coalgebras which 

identifies all bisimilar states.

Following the intuition of the final coalgebra being the collection of all 

possible behaviours of a system, and being systems modelled by coalgebras, 

it is natural to build the carrier of the final coalgebra as the disjoint union 

of all coalgebras, letting each element represent its own behaviour. Because 

F —Coalg is cocomplete, we can define a coalgebra structure on such a union, 

which makes it into a coproduct. The inclusions then make it a weakly
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final coalgebra. Uniqueness of the mediating maps fails because a state in a 

coalgebra could be mapped to several bisimilar states in the coproduct. We 

should therefore force bisimilar states to be identified, in order to get the 

result.

Unfortunately, there is a big flaw in this argument, in that the coproduct 

of all coalgebras in general does not exist, for size reasons. There is a way 

around the problem, though, whenever we have a proper set of coalgebras 

Q = {G{ \ i £ 1} such that for any other state a in any other coalgebra 

(A, a ), the coalgebra (a) generated by a (i.e. the smallest subcoalgebra of 

(A , a) containing a) is bisimilar to Gi for some i G I. Such a set is called a 

set of generators, and whenever we have one, we can get a final coalgebra by 

means of the described construction [52].

This second construction captures more explicitly the idea of the final 

coalgebra being the set of all possible behaviours expressible by means of the 

functor. We shall return on the idea of “collecting coalgebras” when proving 

Theorem 3.16, and applying it in Chapter 4.

2.2.2 Relations w ith Initial Algebras

When a functor F : C  ► C admits both an initial algebra l~1\ I  ► F I

and a final coalgebra r: T  ► FT,  their structure maps are isomorphisms,

by Lambek’s lemma. By reversing either of the two and using the universal 

property of the other, we determine two morphisms from I  to T, which can 

easily be proved by diagram chasing to be the same map </>. We therefore
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have the commutative square

I    - T

F I  J + - + F T .

In some good cases, 0 has more structure. For example, if F  =  for 

some Set-signature E, then I  is the set of closed finite terms, whereas T  is 

the set of closed finite and infinite terms, and we saw in Section 1 .1 . 2  how 

the latter is the Cauchy completion of the former.

Barr [13] first observed that such a phenomenon is a consequence of a more 

general construction, which works for any ^-continuous finitary endofunctor, 

provided F 0  /  0 .

Adamek brought the subject even further, generalising this construction 

to each lfp category [5]. He showed that, under mild conditions on an lfp 

category C and a continuous endofunctor F,  the final coalgebra T  is such 

that each hom-set hom(H, T) is a Cauchy complete metric space, and the set 

hom{B,I ) ,  is a dense subset of it.

In Section 1.1.2, we also saw how infinite terms are an ideal completion 

of finite ones, according to a natural ordering induced by their structure. 

This result also extends to hom-sets in a locally finitely presentable category, 

provided again some minor assumptions are satisfied [5]. Notice that, in 

both cases, the functor F  only needs to preserve limits of o;-cochains for the 

existence of the initial algebra to be automatically ensured.
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2.3 Final Coalgebras and Comonads

In the two previous sections, we made ourselves familiar with the notion of 

coalgebra, and in particular with the final one. Now we are going to put 

them to use in order to dualise the Kelly-Power framework. In particular, in 

this section we shall focus on the bottom-right entry of Table 2 . 1  on page 62.

Let’s recall from Chapter 1  that the carrier of the initial X  +  F-algebra 

for an accessible endofunctor F  and an object X  in C defines the functor 

part of the free monad over F. Dually, here we are going to show that 

the carrier of the final X  x F-coalgebra is the image of X  along the cofree 

comonad on F. Unfortunately, in the process of dualising the theory, we will 

have to deal with a rank change, which will make everything slightly more 

complicated. Nevertheless, we shall still manage to reconstruct part of the 

adjunction (1.16) in this dual context. This will allow us to introduce notions 

like cosignature, coequations and comodels, whose computational significance 

will be discussed.

2.3.1 Cosignatures and their Com odels

Recall that the heart of the categorical approach to universal algebra is ad

junction (1.16). The dualisation outlined in this section can be summed up 

as replacing the left adjoint to U = V\(~) o JXI \  with a right adjoint and 

monads with comonads.

A typical situation arising in practice is to have a system and a few meth

ods or destructors which provide a way of analysing it. These are often the
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only means of communication or observations of the system, and the result 

provided is a partial (typically finite) view of the whole. Categorically, we 

model such destructors as a functor, assigning to each arity (i.e. to each finite 

object) the object of methods with that arity. For this reason, although the 

intuition is different, the definition of a cosignature turns out to be formally 

the same as that of signature.

D efin itio n  2 . 1 1  Let C be an lAp-category with arities Af\. A A-cosignature 

is a functor B \ M \  ► C.

Recall that, before, we constructed a A-accessible endofunctor from a 

signature by first taking a left Kan extension, and then using equivalence

(1.7) to get a A-accessible endofunctor. By duality, here we take the right

Kan extension of a cosignature B  to obtain a functor Ran/AR:CA  C.

The standard formula for the right Kan extension gives us

(Ran/AB ) X =  n [ c ( ^ . c) . Bc] (2 -3)
ceMx

where the operation [—, —] is defined as in (1.19).

Thus, although signatures and cosignatures are formally the same, the 

endofunctors they generate are very different. For example, note that, while 

the default value for signatures is 0 , if there is a single arity c such that 

B(c) =  0, then (RanjxB){X)  =  0. In fact, the default value for cosignatures 

is the final object 1 since [U, 1] =  1 and hence if c is an arity such that 

B(c) =  1, then this arity will contribute nothing to the right Kan extension. 

Here are two examples of Set-cosignatures which we shall explore further 

below.
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E x am p le  2.12 Define the cosignature B 2 by B 2(2) =  2 and B 2(c) = 1 for 

all other arities. Then, for a finite set X , RanjxB 2{X) — [Set(X, 2 ), 2] =  

[[X, 2], 2], where [A, B] stands for the set of functions from A  to B.

Define the cosignature -Bw(2 ) =  u  and B u(c) = 1  for all other arities. 

Then, again for a finite X ,  (2.3) shows that (Ran/xjBa,) (X )  =  [Set(X, 2),u] =  

[[X,2],w].

The reader might now expect a right Kan extension of RanjxB  along J \ , 

by duality to the classical construction. Instead, we consider a left Kan 

extension. The reason for this is that we consider the categories [ C a , C] 

and [C, C ] a  as equivalent under ( 1 . 7 ) ,  which is computed exactly as the left 

Kan extension along J\. The fact that we are not taking a completely dual 

construction, here, is of course going to generate some complications in the 

following, but we accept this for the reasons we just explained.

We then get a finitary endofunctor corresponding to B\ tha t is,

G b  =  LanjARan/A5 : C  ► C. (2.4)

For example, in the case of the signature B 2 presented in Example 2.12, it 

is easy to compute that the corresponding functor Gb2 is the functor 

where is the contravariant finite powerset functor.

Let’s now focus on the category of G^-coalgebras. An object in G b~Coalg 

is a C-arrow

X  ► (LanjARan/A£ ) X .

If X  is A-presentable, then (LanjARan/AB )X  =  Ran/Al?X; hence, the coalge
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bra is indeed a map

X  ^ RanIxB X .

Now, using (2.3), it is easy to show the following chain of isomorphisms:

C(X,(Ran,AB )P O ) ^  C(X,  J ]  [C(X, c), Be})
ce Mx

*  n  (2.5)
cG N\ 

ceM\

So, to every coalgebra over a A-presentable object X  corresponds a family of 

maps

(C (X ,c) , C ( X , B c))c€C^.

These provide a cointerpretation of the function symbols in the cosignature.

Analogously to the algebraic case, where we defined the category of Fs- 

algebras to be the category of models for the theory, relying on the fact 

that from any i^-algebra we could retrieve an interpretation for each term 

constructor, here we shall consider the category Gb ~ Coalg as the category 

of comodels for the cosignature B.

E x am p le  2.13 A comodel on a finite set X  for the cosignature B 2 is given

by a coalgebra / :  X  ► [[X, 2], 2]. We can interpret it as a map saying, for

each state x  G X , which properties (i.e. subsets of X) ensure that the system 

will evolve to it. Via the equivalence described in (2.5), this becomes a map

f : [X ,  2 ] -----► [X, 2],

mapping a property of X  to the property entailed by it as the system evolves. 

This is therefore a predicate transformer.
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A coalgebra morphism from a predicate transformer a: X  

to (3: Y  ► [[Y, 2], 2] is a function / :  X  ► Y  such that

[[AT, 2 ] , 2]

X

V i  cV i ' f (2 .6)

Y

Commutativity of (2 .6 ) can be read as saying that, given a state i G l ,  the 

properties of Y  which entail an evolution of the system Y  into f ( x )  determine, 

via counterimage along / ,  properties of X  which entail an evolution to x.

Under the adjunction, (2.6) becomes

[ * . 2] [ * . 2]

- o f -of

[V,2] [r.2].

The Y  predicate following a predicate P  is backtracked along /  to a predicate 

on X  which follows from / _ 1 (P).

2.3.2 The Representing Comonad of a Cosignature

Recall that, in the algebraic case, one starts with a signature, gets the cor

responding endofunctor, and then considers the free monad over it. In (2.4) 

we built the endofunctor in a dual way. Now it is time to consider the cofree 

comonad over it.

The notions of comonad, and in particular of cofree comonad, are dual to
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those of monad and free monad. More specifically, we dualise the definition 

in the Eilenberg-Moore style.

D efin ition  2.14 A comonad L on a category C consists of an endofunctor L

on C together with two natural transformations e: L  ► Id and v\ L  ► L 2

making the dual diagrams to (1.13) commute. We therefore have:

eLv — id l  — L (e)v  vLv — L (y)v .

A comonad morphism  between comonads (L, e, v) and (Z/, e \  v') is a nat

ural transformation q L  ► L' such that e'(f) = e and i/(j> =  <f>2v .

Comonads and comonad morphisms form a category, which we shall de

note by Com(C). This has a natural forgetful functor V  to the category of 

C-endofunctors End(C).

W ith an abuse of notation, we shall denote by V  also its restriction to a

functor V: ACom(C) ► AEnd(C) from the category of accessible comonads

(i.e. those comonads whose underlying functor is accessible) to that of acces

sible endofunctors. Given a regular cardinal A, we can further restrict V  to 

a functor V̂ : C o m ( C ) A  ► End(C)A.

The notion of cofree comonad is also dual to that of free monad.

D efin itio n  2.15 Given an endofunctor F  on C, the cofree comonad over 

it is a comonad — (R f , £ , v ) together with a natural transformation 

l: R f  F  such that, for any other comonad L =  (L, e;, v') and any natu

ral transformation </>: L  ► F, there is a comonad morphism </>: Rp  ► L

such that (jxj) =  l.
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Algebras for a monad also have their dual version, in the notion of coal

gebra for a comonad L. The definition obviously mirrors Definition 1.33.

D efin ition  2.16 A coalgebra for a comonad L =  (L, £, v)  is an L-coalgebra 

<f>\ X  ► L X  satisfying the equations expressing commutativity of the fol

lowing diagrams:

X L ( X )

X

X  ------ > L ( X )

(2.7)

L ( X )  ^ L \ X ) .

The full subcategory of L  — Coalg based on such coalgebras is called the 

category of coalgebras for  the comonad L and it is denoted by L —Coalg.

The following result from [33] provides the setting for this discussion, and 

it is to be compared to Proposition 1.36.

L em m a 2.17 The following conditions on a functor F: C  ► C are equiv

alent:

1. (If C has products) For every object X, the functor X  x F  has a final 

coalgebra.

2. The forgetful functor F  — Coalg ► C is comonadic.

3. The forgetful functor F  — Coalg ► C has a right adjoint.

4■ There is a cofree comonad on F.
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Similarly to the monadic case, when C is lAp and F  is A-accessible, Propo

sition 2.5 and Lemma 2.17 ensure the existence of a cofree comonad over F; 

whence, the following result.

Proposition 2.18 The forgetful functor U:ACom(C) ► AEnd(C) has a

right adjoint R.

Proof. Given an accessible endofunctor F  on C, the natural transformation

l: R p  ► F  from the functor part of the cofree comonad (Rf ,£, v) over F

to F  itself, is by definition a universal arrow from V  to AEnd(C). The ex

istence of a cofree comonad for any accessible endofunctor therefore ensures 

the existence of a right adjoint to V. □

As opposed to the monadic case, the cofree comonad Rm  on an endofunc

tor M: C  ► C of rank A need not have rank A. As a simple counterexample,

consider the endofunctor M : S e t  >■ Set defined as M  =  A  x — for a fixed

set A , which is clearly finitary. We know that the value of R m for a set X  is 

given by the carrier of the final X  x M-coalgebra. X  x M  maps a set Y  to 

X  x  A x  Y,  and its final coalgebra is easily proved to be the set of all infinite 

lists of pairs from X  x A. Now consider a countably infinite set X .  R m X  

contains a list with infinitely many different elements from X , and this can 

not be an element of R m X o for any finite subset X 0 of X , which shows that 

R m  has a rank larger than u.  Generally speaking, as we saw in Remark 2 .6 , 

calculating coalgebras of finitary endofunctors invariably seems to increase 

their rank.

Using the equivalence between [C*, C] and [C, C]a, we now have the fol
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lowing functors:

R a n / .  L a n j

[ A / a , C] . t  J [CA, C] a [C, C ] a    n  C o i t i ( C ) a

- o/a - oJ\ n

(2 .8)

AEnd(C) c t  ^ ACom(C).
v

Notice that we shall ignore the inclusion functors which discard the rank of 

a functor or a monad.

We now further define the composite functors

WA: Com(C)A----   [AfXi C] WA =  R R )  o JXIX

R x: [A/a, C]------ ► ACom(C) R \  = .RLan^Ran^

As we have seen, the rank of R \ B  may be greater than the rank of B , hence 

the codomain of R \  is not the domain of Vx, but rather ACom(C). Our 

partial recovery of the chain of adjunctions (1.16) consists of the following 

correspondence:

L em m a 2.19 For any X-accessible comonad L =  (L, e, v) and X-cosignature 

B:Afx  ► C, there is an isomorphism

[Afx, C](WaL, B) *  ACom(C)(L, R XB).  (2.9)

P ro o f. The isomorphism is shown by the following chain of natural isomor

phisms provided by the two adjunctions in (2 .8 ) and the full and faithful
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embedding of [C, C]a into AEnd(C):

[A/^CKWaL,^) s* [Afx, C](Vx (L) JxIx,B)  

“  [CA, C](Va(L) Ja, Ran/A£?) 

^  AEnd(C)(Vx(L),LanjARan/A£ )  

“  ACom(C)(R(L),jRLanjARan/AL?) 

“  ACom(C)(L,R XB)

□

So, given a A-cosignature B , we have constructed its representing comonad 

Lb =  R \B ,  whose functor part is denoted L b . Note that, by Lemma 2.17, 

the category of coalgebras for the comonad Lb —Coalg is isomorphic to the 

category LanjARan/AL? — Coalg. Restricting ourselves to A-presentable coalge

bras, we have that the A-presentable coalgebras of the representing comonad 

R XB  are isomorphic to the A-presentable models of the cosignature B  as seen 

in (2.5). This is our partial dualisation of the result stating that the models 

of a signature are isomorphic to the algebras for the representing monad.

2.3.3 Coequational Presentations and their R epresent

ing Comonads

In this section, we perform the last part of the dualisation by defining co

equational presentations, deriving a representing comonad for one such and 

relating its coalgebras to the models of the presentation. As we have seen in 

Chapter 1, equations are interpreted as a pair of monad morphisms between
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free monads, and the representing monad for an equational presentation is 

then defined to be the coequaliser of these monad morphisms. Dualising this 

requires a coequational presentation to form a pair of comonad morphisms 

between cofree comonads and taking the representing comonad for the co

equational presentation to be the equaliser of these comonad morphisms. Of 

course, because the cofree comonad on a A-cosignature could have rank dif

ferent from A, we need to choose the forgetful functors accordingly. This is 

another example of how things go wrong because of the change of rank when 

forming final coalgebras.

D efin ition  2.20 A coequational presentation is given by two cosignatures

B : A f \  ► C and E:AfK  ► C (where the functor R \ B  is K-accessible),

and two comonad morphisms cr, r: R \ B  ► R KE  in ACom(C).

Under (2.9), the maps cr, r: R \ B  ► R KE  are determined by two natural

transformations cr', t ' :W kR \ B -----► E  in [A/^C], which in turn consist of

families cr', t 'c\ R \ B c  ► Ec  of maps for c G AfK.

As mentioned above, given a coequational presentation, our intention 

is to define its representing comonad to be the equaliser of the comonad 

morphisms:

G — *RxB = Z R kE (2.10)
T

Existence of such equalisers is ensured by the following result, which needs 

a preliminary definition, which we take from Barr [14].

D efin ition  2.21 A contractible equaliser in a category C is a pair of parallel 

morphisms d o , d i : X  ► Y  such that there exist maps d, s and t as in the
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following diagram

d
A ^ _____

s

such that

tdo = idx; sd = id a ', ds = td\\ dod =  did.

If U: B  5- C is a functor, then a U-contractible equaliser pair is a parallel

pair d Q ,d \ \X  in B such that its image under U is a contractible

equaliser.

Note that, by the equalities described in the definition, the map d is al

ways an equaliser in C of the pair Ud0, Ud\. Moreover, because all the equal

ities are formulated by means of compositions and identities, such equalisers 

are preserved by any functor, i.e. they are absolute.

P ro p o s itio n  2.22 The category ACom(C) of accessible comonads over a lo

cally presentable category C has equalisers within the category ofC-comonads.

P ro o f. The statement means, in detail, that, for any parallel pair in ACom(C), 

there is an equaliser of it within the category of all comonads on C, and 

furthermore, its functor part is accessible. The proof of the result par

tially dualises Kelly’s construction [34], where the notion of an algebraic 

colimit of monads (i.e. the dual notion to the one we are dealing with) is 

introduced and discussed thoroughly. For our purpose, it is sufficient to 

note the following. Let L =  (L,£,v)  and L' =  (!/,£ ', i/) be two comon

ads, and cr, r  be two comonad morphisms from L to L'. They induce 

two functors cr*,r*: L —Coalg ► L' —Coalg. Let’s consider their equaliser

do
X Y (2 .11)

dx
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in Cat, i.e. the full subcategory E of L — Coalg whose objects are those

L-coalgebras 7 : X  >• L X  for which a x j  =  Tx7 - The forgetful functor

U : L —Coalg >■ C restricts to a functor U' on E, and if we prove U' to have

a right adjoint such that the category of coalgebras for the comonad corre

sponding to the adjunction is isomorphic to E, then that comonad is precisely 

the equaliser of a  and r  [34].

First of all, let’s present E as an equifier, thus making sure that it is an ac

cessible category [8 , p. 122-ff]. We achieve this by noting that the structure 

map of an L-coalgebra can be presented as the component of a natural trans

formation (j>: U  ► LU\ L —Coalg ► C, where U is the forgetful functor.

Using this, we can express the fact that an algebra equates the a and r  by 

asking for equality of the pair

<70, r0 : U    L'U

Note that, since a and r  are comonad morphisms, we have no need to ask 

for their action to map L-coalgebras to L'-coalgebras, since this is ensured. 

Lemma 2.76 in [8 ] now ensures that, because L — Coalg is accessible, E is 

too. It is also very simple to show that U' creates colimits, since U does. 

Therefore, E is cocomplete, and hence locally presentable.

In particular, this implies that E is co-wellpowered and has a generating set. 

This, together with the fact that U' preserves colimits (since it creates them), 

ensures, by Freyd’s special adjoint functor theorem [44, Corollary on p. 130], 

the existence of a right adjoint to U'.

We now only need to prove that U' is cotripleable (the dual notion to that of 

tripleability in the sense of Barr), and this we shall get by Beck’s tripleability
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Theorem, once we prove that U' reflects isomorphisms and E has, and U' 

preserves, equalisers of reflexive [/-contractible equaliser pairs [14].

The fact that U' reflects isomorphisms is a trivial observation. Let now

d0, d\ \ (X, 7 ) -----► (Y, (5) be a parallel pair of L-coalgebra morphisms for which

there are maps d, s and t as in (2 .1 1 ) making it into a [/-contractible equaliser 

in C.

Then, because all functors, and in particular L, preserve contractible equalis

ers, Ld is an equaliser of Ld0 and Ld\. Therefore, because L(d0)yd =  Sd0d =

5did = L ( d i ) jd , there is a map a: A  ► L A  such that L(d)a = yd, i.e.

d is an L-coalgebra morphism. We shall show that a  is an object in E, 

i.e. an L-coalgebra map equalising a and r , and this will show existence of 

[/'-contractible equalisers. Preservation is then trivial.

Satisfaction of the unit law can be proved by chasing the following diagram, 

where e x 7  =  idx  because 7  is an L-coalgebra:

7 ex

Analogously, for the multiplication law one has that

L2(s)L2(d)L(a)a = L 2(s)L(y)L(d)a  

= L 2(s)L(y)yd  

= L 2(s)vx yd 

= L 2(s)ux L(d)a 

= L2(s)L2(d)vA&,
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from which it follows, because sd = id^, that L(a)a  =

Finally, we need to show that cr^a =  r^a , but this, again, follows by chasing 

the diagram below, where Tx7  =  <?xT-

A   -»• L A I! A
t a

L d L ' d L ' s

a x

X  =---   L X _________^ L'X.
TX

□

As we did in the monadic case, where we defined algebras for the monad 

corresponding to a theory as monad morphisms, here we can model coalge

bras for a comonad G representing the coequational presentation (L?, E ) by 

means of morphisms of comonads. First, observe that an object X  in C is 

specified by a map 1 -----► C (where 1 is the one-object category). Fur

ther, the functor category [1, C] is isomorphic to C, and, for any endofunctor 

L  on C, we have

C(X, L X )  “  [1, C](Kx, L o Kx) — [C, C](LanKxK*, L), (2.12)

so giving an L-coalgebra X  ► L X  is the same as giving a natural trans

formation LanKxKx = > L  . In fact, we can prove more.

L em m a 2.23 LariKx Kx is a comonad. I f  X  is \-presentable, then LariKx Kx 

is X-accessible.

P ro o f. Using the standard formula for left Kan extensions, Lan«x Kx(A) =  

C(X, A) 0  X .  If X  is A-presentable, then C (X ,—) preserves all A-filtered
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colimits, and so does — 0  X  too; hence LariKx Kx is A-accessible.

To have a comonad structure, we need natural transformations LariKx Kx = >  

1  and LariKx Kx = >  LariKx Kx ° Lan«x Kx which satisfy the comonad laws. 

The first of these is given by the image of the identity transformation on X  

under the isomorphism [1 , C](Kx, Kx) =  [C, C](LanKx Kx, Idc)- The second is 

given by the image under the isomorphism [1 , C](Kx, Lani<x Kx o LariKx Kx ° 

Kx) — [C, C](LariKx Kx, LariKx Kx o LariKx Kx) of the transformation

Kx -e > LariKx Kx ° Kx x =» LariKx Kx ° Lan[<x Kx ° Kx

where e is the canonical transformation Kx = > L anK x Kx o Kx • That the 

counit and comultiplication obey the comonad laws is easily verified. □

As we saw in Theorem 1 .1 2 , every object in C is presentable, therefore 

LariKx Kx is an accessible comonad for any X ,  and we can strengthen equation 

(2 .1 2 ) to obtain the promised characterisation of the coalgebras of a comonad.

P ro p o s itio n  2.24 A coalgebra for a comonad G is given by a C-object X  

and a map LariKx Kx => G in ACom(C).

P ro o f. We have already seen that the structure map of the coalgebra is pre

cisely a natural transformation between the two functors. It is then routine 

to verify that the properties of the structure map of a coalgebra correspond 

to the laws of a comonad morphism. □

If G is the equaliser of a, r: R \ B  ► R KE : then a coalgebra (X, o') de

termines a monad morphism LariKx K x  ^ G, which in turn determines a
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monad morphism o;:LanKx K x  ► R \ B  which equalises a and r. When

X  is K>presentable, this corresponds by (2.5) to families of equal maps

a"a”,r"a": C(X, c )  ► C(X ,Ec)  for c in AfK. With this, we have finished

our partial dualisation of the classical work by Kelly and Power. Notice in 

particular that, in this case, we do not have an analogy of the representation 

result of Theorem 1.38, that is, we can not say that every accessible comonad 

is the equaliser of two free ones. In fact, as we said above, we don’t even 

have a dual of adjunction (1.16), which was the main ingredient in the proof 

for the monadic case.

2.3.4 Relations w ith Other Work

Lack of examples makes it difficult to study the cases where the result does 

not hold, and to develop a good intuition on the subject, but we feel this ap

proach, which was proposed in [27] can give new insights, useful in addressing 

co-Birkhoff theorems or the theory of coalgebraic specification [11, 17].

For example, Cirstea [17] defines an abstract cosignature as a functor

F: C  5- C, where C has all finite limits and limits of u/-cochains, and F

is continuous and preserves pullbacks. Then, an observer is given by a pair 

(K , c) consisting of a functor K: C  >■ C together with a natural transfor

mation c : U  ► KU,  where U is the forgetful functor from F  — Coalg to

Set. Finally, a coequation is given by two observers (K, I) and (K, r), and 

the author writes Coalg(C, F,E)  for the full category on those F-coalgebras 

which satisfy a set E  of equations. The natural transformation defining an 

observer is easily seen to determine a functor from F  — Coalg to K  — Coalg.
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Therefore, an equation consists of a parallel pair of functors from F  — Coalg 

to K  — Coalg. If C is lfp and F  and K  arise from finitary signatures, then 

we know that F  — Coalg is isomorphic to the category of coalgebras for the 

cofree comonad on F , and analogously for K —Coalg. In this case, our notion 

of coequation agrees with the one presented in her paper, and Coalg(C, F, E ) 

is the category of coalgebras for the comonad representing the coequations. 

Cirstea insists on some finite completeness properties of the category and 

preservation properties of the functors, in order to make sure that she can 

talk about covarieties and such. In our context, we rather focus on a more 

abstract picture, and we try to relate transformations of comodels to cosig

nature morphisms, hence the different requirements on the base category.

2.4 Final Coalgebras and M onads

We now turn to the bottom-left cell of Table 2.1. We know from Proposition 

2 . 9  tha t the carrier of the final coalgebra for a functor F% arising as the left 

Kan extension of a signature is the set of finite and infinite closed terms 

built over the signature. We are going to show a simple characterisation 

of the set of finite and infinite terms over the signature but with variables 

from a set. On a syntactic level, it is very well known tha t infinite terms 

are closed under substitution. They are used to model infinite computations, 

thus providing a semantics for programs. Given a language, we can interpret 

any code as an infinite tree, by unfolding the recursive processes which take 

place therein. The fact that we can solve any (guarded) system of equations 

on terms ensures soundness of this semantics.
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We saw in Section 1.1.3 how the solution of recursive systems of equations 

can be obtained by Banach’s fixpoint theorem, using the fact that infinite 

terms form a Cauchy-complete metric space. In Section 2.2.2 we also saw 

how this metric is determined by the construction of the final coalgebra. It 

is therefore natural to expect the universal properties of final coalgebras to 

determine the existence of a solution to recursive systems,without necessar

ily going through the metric argument. In fact, given such a system, we 

can associate with it a coalgebra, and the mediating morphism to the final 

coalgebra determines the solution of the system itself.

The fact that terms built over variables are closed under substitution also 

has a categorical counterpart. This is precisely the same as saying that the 

collection of the carriers of final X  +  F-coalgebras, when X  ranges over C, 

defines a monad.

The purpose of this section is to show precisely this last result. We 

shall present here our original proof of it, which works for any locally finitely 

presentable category and any functor arising from a signature E. This setting 

is, in fact, rather restrictive, in that existence of a final X  +  F-coalgebra for 

every X  ensures that their collection forms a monad, as L. Moss in [48] and 

J. Adamek in [1] proved independently with each other and with us. We 

shall recall their main results here.

2.4.1 The M onad of Infinite Terms

So, let’s consider a finitary signature E on C. In order to keep the notation 

simple, we shall denote by F  (instead of Fz) the left Kan extension of E along
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J I \ N f  ► C. As before, we shall write X + F  for the functor K x + F  and T =

(jT, 77, //) for the free monad over F , for which we know, by Proposition 1.36, 

that the set T X  is the carrier of the initial X  +  F-algebra, with structure map

— \r)x,Xx\' X  +  F T X  ► T X .  We shall also write T v for the functor

which maps an object X  to the carrier of the final X  +  F-coalgebra, which

has as a structure map the function t x '-TvX  ► X  +  F T VX .  Note that,

by Lambek’s lemma, Tx has an inverse, which we shall write [r]x , a x \ ' X  +  

F T VX  ^ T VX .

From now on, we shall restrict ourselves only to the category Set, in order 

to maintain readable notations. In this case, as we saw in Section 2.2.2, the

unique algebra/coalgebra homomorphism (j>\TX ^ T"X  realises T VX  as

the Cauchy completion of the metric space TX . The argument we shall 

present extends smoothly to categories other than Set, once we notice [5] 

that the hom-sets hom(X, T UY)  are in this case the Cauchy completion of 

hom(X, T Y ) ,  under very mild assumptions on C and F . We aim to show 

that T " is the functor part of a monad T" on Set. We shall achieve this by 

showing that it carries a Kleisli monad structure.

We just defined the action of T u on objects, so we only have to de

fine the collection of functors X  ► T UX  and the substitution functions

sx ,y ; C( X , T UY )  ► Q{TUX , T UY).  As for the former, we can simply con

sider the first component of r _1, i.e. the function r)ux \ X  ^ T UX .  Note

that rfx  =  <j>xijx- As for the substitution, we use the metric properties of 

T UX  in order to define a function from Set(X, T VY)  to Set(TI/X, T VY).  Let

/  be a function from X  to T UY  and note that, because ay: F T VY  ► T VY

defines an F-algebra structure, we can copair it with / ,  in order to get an
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X  +  T-algebra [/, ay] on T VY . This determines a map f  from the initial

X  +  T-algebra (T X , i x ) to (T UY , [f,ay]),  i.e. a function f ' : T X  »■ T VY.

It is not hard to show that such a map is uniformly continuous, and therefore 

it extends to a map from the metric completion of TX  (which is precisely

T VX )  to T VY.  We shall write that map as f ^ \ T vX  ► T UY.  Associating

to each function /  the corresponding f \  we get a map

sX)y : Set(X, T VY )  ^ Set(TiyX, T VY).

All we have to do now, is to prove that this assignation satisfies the equations 

of a Kleisli monad. Let then / :  X  ► T UY  and g : Y  ► T VZ  be functions.

s( f ) r}x = f  This follows easily by the following chain of equalities:

s( f W x  = f V x  = P ^ x V x  = f r j x  / ;

s(Vx) = Using the universal property of fix, it is enough to show

that r)vx (̂j)x = r)x-> and this follows trivially by the definitions;

s(s(g)f) = s(g)s(f)  Again by the universal property of it is enough to 

prove that precomposition of the two sides of the equation with (f>x 

gives the same result. On the left handside this composite reduces 

to (s(g)f)' ,  whereas on the right handside it becomes s(g)f' .  To show 

that they are the same it is enough to notice that they are both algebra 

morphisms from the initial X + F-algebra T X  to the same algebra. The 

computation is an easy diagram chase.

Clearly the argument does not make use of the signature; in fact, that 

piece of information this is quite irrelevant. All we need to know is that,
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for each set X ,  the final X  +  F-coalgebra exists, and tha t we can apply 

Barr’s construction to show that it is the Cauchy completion of the initial 

X  +  F-algebra. That yields to the proof of the following result.

P ro p o s itio n  2.25 Let F  be a polynomial endofunctor and C satisfy the 

premises of [13, Theorem 3.2]. Then, the map T v assigning to an object 

X  the carrier of the final X  +  F-coalgebra carries the structure of a monad.

Not surprisingly, given that we work with final coalgebras, a rank change 

happens, as we already had in the previous section, and the monad we get 

is not, in general, finitary. As an example, consider a signature consisting of 

a binary symbol A. The set T VX  is the set of finite and infinite binary trees 

whose nodes are labelled by A and leaves are labelled by elements of X .  If 

this was the colimit of the family of sets T UX o, where X 0 is any finite subset 

of X , then any tree would only involve finitely many different variables; but, 

for an infinite X  and a sequence xq, x \, . . .  of different elements in X ,  we can 

form the tree

A

x 1

which clearly is in T UX  and involves infinitely many different variables.

2.4.2 Recursion on Infinite Terms

Although we found this result independently [27], J. Adamek and his research 

group [1 ] proved it as well, in a more elegant and general context, only to
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find out later that Larry Moss had already proved the same things, in yet 

another way, one year before [49]. This shows that the research in this field 

is rather active and lively.

Adamek’s approach is perhaps the most general and abstract. He and 

his coauthors considered the work of Elgot and his group [21, 22, 15], who 

focused on the study of infinite trees and their properties, with particular 

attention to the solution of recursive equations within that context, and 

gave a categorical formulation of these concepts, proving that the category 

T", whenever it exists, is the free iterative monad over the functor F.  In 

order to understand this, we need to give a couple of definitions, taken from 

[ ! ] •

First of all, let’s note that an equation in the form of (1.2) can be repre

sented as a map sending each unknown in the set X  to the corresponding term 

in T ( X  +  Y),  or, if we allow the right handside to be infinite, in T V( X  +  T), 

where Y  is a set of parameters. Such a coalgebra is what we call an equation 

morphism. Note that, again by Lambek’s lemma, T V{X +  Y ) can be split as 

the sum of X  and Y  +  F T U(X  +  E), thus separating variables from param

eters and guarded terms. An F-guarded equation morphism is an equation

morphism X  ► T V( X + Y)  which factors through Y  + F T UX.  This clearly

corresponds to an ideal system of equations when F  =  F% for some signature 

E.

A solution to such a system consists of a mapping which associates to 

each unknown of the system a term depending only on the parameters, in 

such a way that the result of substituting these terms for the variables in X  

the two sides of the equations become equal. If we render this diagrammat
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ically, we get that the solution to a system e: X  ► T V( X  4 - Y)  is a map

e X  ► T VY  making the following diagram commute:

X ---------------------------------------------- ►T VY

e (2.13)

F T U(X  4- Y )   ------► F T u2Y ------------ >■ F T VY
V F T v [ê  ,t)y ] f ^ y

Adamek et al. define a functor F  iteratable if for each X  in C the functor 

X  4 - F  has a terminal coalgebra, and, using just the universal property of 

finality of such coalgebras, they build a substitution map, from which they 

derive the construction of a monad T v (in fact, their substitution theorem 

implies a slightly stronger version of the Kleisli presentation of a monad). 

Furthermore, they can prove that for the monad T v arising from an iterat

able endofunctor F  one can solve any F-guarded system of equations. Such 

monads they call completely iterative1, and T u turns out to be the free one 

over F. This way, they find a counterpart of the definition of a completely 

iterative theory as given by Elgot.

Our slightly different approach to the subject is motivated by other ap

plications, as we are going to see.

*To be precise, one defines a monad (T,rj,p) to be ideal when there is a subfunctor

a:T'  ------>■ T  such that [a,rj\:T' 4- Id ------>- T  is an isomorphism and y  restricts to a

natural transformation y ' - .T 'T ------>■ T'. In this setting, an equation X  ------>■ T { X  +  Y)

is guarded when it factors through T' (X  +  Y)  4- Y,  and a monad is completely iterative 

when all guarded equations have a unique solution.
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2.4.3 An Application: the Approxim ation Lemma

The generic approximation lemma [30] is a proof principle for reasoning about 

functions in a lazy functional programming language (such as Haskell). The 

approximation lemma itself pertains to lists and states that, given a function

approx (n+1) [] = []

approx (n+1) (x:xs) = x:(approx n xs)

two lists xs and ys are equal if and only if Vn.approx n  xs = approx n  ys- 

Note the lack of a base case: approx 0  x is _L (i.e., the denotation of unde

fined) in the denotational model, but, because of non-strictness, approx n 

x (with n > 0) is defined. This principle can be applied to other datatypes 

such as trees:

data Tree a = Leaf a I Node Tree a Tree 

approx (n+1) (Leaf x) = Leaf x

approx (n+1) (Node 1 x r)  = Node (approx n 1) x (approx n r)

Analogously to the previous case, here one shows that two trees t l  and t 2  are 

equal if and only if Vn. approx n t l  = approx n t2. In [30], the authors

prove the generic approximation lemma using the standard denotational se

mantics of functional programming languages, where types are interpreted 

as CPO’s, programs as continuous functions and recursive datatypes as least 

fixed points of functors. That is, the correctness of the proof principle de

pends upon the semantic category chosen; we have already seen the implicit 

use of ±  in the definition of approx.
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We propose an alternative and, we believe, more natural derivation of 

the approximation lemma which is independent of the particular denota

tional model chosen. The definition of a polymorphic datatype is usually 

interpreted as the free monad T over its signature S. However, this does 

not capture laziness, since T consists of only finite terms. Instead, we model 

such a datatype by the monad T u. Since T U(X)  is the final X  +  F-coalgebra 

and since F  is a polynomial endofunctor, T U(X)  can be calculated as the

limit of the following a;op-chain 1 ^----- (.X  +  F ) l ^  (X  +  F )21 -«  • • • , as

we saw in Proposition 2.9. The universal property of the limit states that 

two elements x  and y of this limit will be equal if and only if, for each n, 

TTn(̂ ) — Kn{y) where 7rn is the n-th projection. But these projections are 

precisely the approximation function for the datatype. Notice how the cate

gorical argument replaces the semantic dependency on _L by making use of 

a cochain beginning with 1 . This establishes the correctness of the generic 

approximation lemma, independently of any specific denotational model.



Chapter 3

M onads of Terms

In the previous chapters we saw already two different examples of monads 

building terms over a signature E: the monad T of finite terms, and the 

monad l u of finite and infinite terms. Finite terms are known to provide a 

denotational semantics for the language, by interpreting all term construc

tors as functions. Infinite terms, instead, allow a study of the behavioural 

semantics of the language, since they capture any possible evolution of a E 

program. When programming, though, one never really makes use of the full 

power of this behavioural semantics.

For instance, since the memory locations in a machine are finite, we 

want our programs to allow only finitely many variables. A monadic seman

tics for such terms is easily realised by considering the finitary coreflection 

Lanj(T/yJ), which is a finitary monad. However, even with this restriction, 

infinite terms can model very wild behaviours, which cannot even be ex

pressed, if not by giving a detailed description of the full tree. Programs 

which behave in such an irregular way need being defined in all their evolu

102
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tions, and this description will typically be infinite, hence it can not be typed 

into any machine; in fact, it cannot even be fully described.

However, there are ways of modelling infinitary behaviours by means of 

a finite amount of data, for instance by allowing recursion. This way, we 

identify a subclass of terms, i.e. the rational ones. When implementing lazy 

functional programming languages, it is useful to model programs by term 

graphs, using term graph rewriting techniques in order to compile the results. 

Enhancing recursive calls of programs by allowing parameter passing, would 

give rise to another, more extended, class of terms, i.e. the algebraic ones.

All these different syntactic structures share some im portant features. 

The main one is definitely that of being closed under substitution. Moreover, 

one can consider a E-algebra structure on each of these sets of terms, and 

say whether a term is guarded or not. In order to model these features 

categorically, we shall introduce in this chapter the original notion of an 

F-guarded monad and explore some of its properties.

Syntactically, particular families of terms, like the rational ones, or the 

algebraic, or even all possibly infinite terms, are usually dealt with by means 

of their universal properties, expressed either as metric completeness or as 

closedness under solution of specific kinds of equations (which, again, is en

sured by metric arguments). In Section 2.2.2, we saw how the universal prop

erty of final coalgebras provides a categorical counterpart to metric complete

ness. Recall also how, in the end of Section 2.2.1, we got the final coalgebra 

for a functor by considering a quotient of the coproduct of a generating set 

of coalgebras. Categorically, this is nothing but a colimit, and, taking the 

colimit of all coalgebras (which, in fact, we cannot do for size reasons) cor
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responds to taking the colimit of the generating set. It turns out that, if 

we restrict ourselves to the appropriate collection of coalgebras, then we can 

take their colimit and obtain other classes of terms, as the ones mentioned 

above.

In the second part of this chapter we shall see a theorem on how to build 

guarded monads as colimits, using the intuition just described.

3.1 F-guarded M onads

In this section, we shall introduce the notion of F-guarded monad. The 

idea is that F  is an endofunctor on a category C, which we may think of 

as building terms of depth one over a signature. In fact, a lot of concepts 

make no use of signatures and arities, so we shall give the definitions in more 

general terms, although our examples will always be drawn from Set and F  

will always be F% for some E.

An F-guarded monad, then, is thought of as a monad which builds some 

specific type of terms for the signature which F  models. If T =  (T, 77, j i )  

is such a monad, then T X  will be an algebra of F-term s over X ; the unit

77: X  ► T X  will embed variables into our family of terms, and the monad

structure (thought of in the Kleisli presentation) will ensure closure under 

substitution.

Moreover, the F-algebra structure should agree with the monadic one. 

This can be expressed in many different ways. One is to say that the monad 

multiplication is an F-algebra homomorphism; another would be to say that
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F  preserves multiplication. Diagrammatically, we are simply saying that the 

following square commutes:

F T 2X F T X

OLTX ax

T 2X MX T X ,

where a x  is the algebra structure on T X .

Also, it is reasonable to ask for the algebra structure to respect the action 

of T  on maps, that is to say that a  is a natural transformation.

So, this is the intuition underlying our definition. However, we shall 

introduce the notion formally in a different way. First of all, let’s note that to 

have an F-algebra structure as above is equivalent to have an interpretation 

of F  into T, as made clear by the following result.

Lem m a 3.1 Let T =  (T, 77, /i) be a monad and F  an endofunctor on a cate

gory C. There is a bijection between natural transformations r: F  ► T and

natural transformations a: F T  ► T  making the following diagram com

mute
Fa

F T T   ---- ► F T

OLT (3.1)

T T T.

Proof. Assume a natural transformation r: F T is given. Then, one

can define a  as the composite a  = /j,tt . Commutation of (3.1) follows imme
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diately by naturality of r  and the associativity of p:

Tr M

Conversely, given a natural transformation a , one can define r  as the com

posite

t = F
F t)

■FT ■T.

To see that the two mappings are actually inverse, consider first r: F T\

the application of their composite gives a natural transformation prxFr] =  

/j , T ( tj) t  = r. Conversely, given a: F T  ► T  making (3.1) commute, its im

age under the reversed composite is the natural transformation parFriT =  

a F f i F r j T  =  a F ( i i r f r )  =  cn.  □

D efin ition  3.2 An F-guarded monad on C is a 4-tuple T =  (T, 77, /x, r )  such 

that (T, 77, /i) is a monad on C and r :  F  ► T  is a natural transformation.

A morphism of F-guarded monads between (T, 77, /i, r )  and (T ', 77', / / ,  r ')  

is a monad morphism (j) from (T, 77, /i) and (T7 , 77', / /)  such that </>t = r'.

R em ark  3.3 Notice that the further condition imposed on a monad mor

phism for it to be an F-guarded one is equivalent, under the bijection de

scribed in Lemma 3.1, to commutativity of the following diagram, where a
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and a' stay for the composites f.ltt and //t^ , respectively

F T
F<t>

F T

T T .

In other words, we are requiring that these monad morphisms respect the 

F-algebra structure which the natural transformation r  induces on the two 

monads.

Condition (3.1) on a  has a very intuitive interpretation, when F  = Fj; 

for some Set-signature. In such cases, F ^ T X  is the set of terms of depth

one, with variables from T X .  The algebra structure a x ' F ^ T X  ►T X

“absorbs” the E-constructor into the T-terms, and commutativity of (3.1) 

says that this does not interfere with the multiplication of T. So, if we take 

a term in F ^T 2 X, we can either absorb the E-symbol in the first T-layer 

and then multiply with /x, or rather multiply under the E-context and then 

absorb the symbol, and get the same result.

Because the action of a  makes F  vanish, we could think of extending 

the monad structure of T  to F T . Multiplication would just be application 

of F T  a  in order to get from (F T )2 to F T 2, and then application of F  /i. 

Unfortunately, we cannot produce the unit r7, but this is reasonable, because 

elements in FST X  are guarded by some E-symbol, therefore they should not 

be variables. The way to get around this is to consider the functor Id +  F T , 

where we explicitly add variables.
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Lem m a 3.4 Let (T, 7 7, p, r)  be an F-guarded monad on C. Let a: F T  ► T

be the natural transformation induced by r, such that (3.1) commutes. Let’s 

define

77 =  ini: Id    Id +  FT;

and

p: \d + F T + F T ( \d + F T ) ,6¥FT+FT̂  \d + F T + F T 2 UMFT~ “]* Id +  FT.

Then, the triple (Id+ FT, 77, ~p) is a monad, and the map [77, a]: Id+ F T -----► T

is a monad morphism.

Moreover, given another F-guarded monad (S, rf, p ', t ') and a morphism

of guarded monads 1p: T  ► S, we can derive a monad (Id +  F S , 77', p') and

'ijj induces a monad morphism Id +  Ftp such that [77' , a'](Id +  Fip) = ^ [77, a].

P roof. Let’s write 4> for [77, 0 ]. Then, we need to prove the unit and mul

tiplication laws for (Id +  FT, 77, Ji) to be a monad, and to show that (j) is a 

monad morphism.

For the first unit law, it is clear that /^7id+FT — Id +  [FT, F(^/T^)]inl|d+FT — 

Id +  F T . For the second one, we need to show commutativity of

Id +  F T  ('d+f'T)’'=[in'’i'’rF-r;l |d + F T + F T (ld  + F T)

Id+FT+FT4>

+ F T + F T 2
Id+[FT,Fn]

Id + F T .

The Id-th component of the two maps is clearly equal; as for the F T -th  

component, one has that F(/i)FT(0)FT (inl) =  F(pTrj) = FT ,  which proves 

the two composites equal.

Id+FT
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We now turn to the multiplication law, which, exploiting the definitions, 

becomes the following, diagram:

(ld + F T )2+ F T ( ld + F T )2 <ld+FT>(|dfFT+F r»> (|d +  F T ) ( ld + F T + F T 2)

(I dj-FTf+FT^pT

( ld + F T )2+ F T 2(ld+ F T )

(\d+FT)2+Fii\<H-FT

( ld + F T )2+ F T (ld + F T )

[(lcUrFT)2 ,FT<t>\

Id + F T + F T 2

(ld4-FT)(ld + [FT,Ffi}

(Id+ F T)'

IdfFT+FT<j)

Id + F T + F T 2

Id+[FT,F/i]

Id+FT .Id+[FT,Ffi]

The (ld +  F T )2-th components of the two maps clearly coincide, so we have 

to focus on the other two, which we can prove equal by chasing the following 

diagram

FT(ld+FT-fF7»

F T (ld + F T ):

FT(p\a+FT

FT(\d+-FT)<f>
F T (ld + F T )T

FT(<H-FT2)
F T ( ld + F T + F T 2)

FT{4>{ ld+ FT,Fh ]))

F T 2 (Id-+  FT)
f t 24> FTn F T 2

^ M ld + F T Fflr F»

F T (ld + F T ) FT(j> F T ' Ffi
FT,
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where the top right square commutes because, by commutativity of (3.1),

f i ( / > T (<l> + F T 2 )  =  n [ r ]T, a T \ ( [ r ) ,  a ]  + F T 2 )

=  fi[r]T[rj, q;], a T\

= [[v ,oi},aFii\

= [ r j ,  a](Id + [ F T ,  F j i ] )

= </>(ld +  [FT, Ffj]).

Note how, in the previous diagram, the top half expresses (although under 

the context of the functor F T )  the commutativity of the square expressing 

the fact that 0  is a monad morphism.

Consider now the same construction for the F-guarded monad (S, 7/, //, r'), 

deriving an algebra structure < p ' which is a monad morphism. It is clear from 

Remark 3.3 that i p  is such that i p ( p  = ( p (\6 + F i p ) ,  therefore, all we have to 

prove is that Id 4- F i p  is a monad morphism from Id + F T  to Id + F S .

It’s trivial to observe that, because i p r j  = r/, also i p r j  =  r f .  The fact that 

multiplication is preserved is proved by the following diagram

(IdfF /C X IdfFV O\&\-FH+FH(\&\-FH)------------------------ s- \dj-FH+FK(\d+-FH)------------------------ ^  \dj-FK+FK(\d{-FK)

Id f-F H + F H C Id+ T tf) Id-l-f H + F  jc  ( l d + r ^ ) \& tF  K + F ^ K  (\d + T'K )

\  \M-FH+F,I> H2 f  \d+-FiH-FK(\dbl>2) ^
\&\-F H+F H (\&\-H2) -------------------------^  \6{-FH+FK(ld-h£f2) ------------------------- ^  \d±FK+FK(\d)-K2)

\<H-FH+FH(\d+n)
^ \d + F H + F ip id + H

\6-\~F H+F H (\6+H)-------------------—

I I
\ & r F H + F K ( \d + n )  Id fF K + F K (ld+ »  )

\d+FH+FK(\(H-H)-----------------  ^  \6+FK+FK(\d+-K)

\d+-F H + F  K [ tj,H ]

IcH -F H + F H [t] ,H ]

Id+FH
IdfFtp

Id-HF K



CH APTER 3. MONADS OF TERMS 111

which commutes because, by assumption, 'ip is a monad morphism and 'ipr =  

t ' . This shows that Id + Ftp is a monad morphism. □

So, for any F-guarded monad T, T X  is naturally an X  + F-algebra. We 

shall call strong those monads for which this algebra structure is invertible.

D efin itio n  3.5 Let F be an endofunctor on a category C. A strongly F-  

guarded monad on C is an F-guarded monad T  = (T, 77, /i, r )  such that the 

induced monad morphism

[77, /x.tt]: Id +  F T  >- T

is an isomorphism.

Strongly guarded monads form a full subcategory of the category of F- 

guarded monads.

We are now going to show a couple of examples of F-guarded monads, 

which are meant to show that we really captured the intuition of monads of 

terms.

If a monad T  is F-guarded, then the natural transformation r :  F  ► T

“interprets” F  into T. Therefore, it is natural to expect that, by induction, 

we can interpret all F-terms in T. This is the case, indeed, and r  determines 

a monad morphism from the free monad T p  to T, which is an F-guarded 

monad morphism. In fact, the only one.

P ro p o s itio n  3.6 Let T  be the free monad over an endofunctor F  on a cat

egory C. Then, T  is the initial (strongly) F-guarded monad.
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P ro o f. Let T = (T, 77, /i) be the free monad over F .  Freeness gives a natural

transformation r: F  ► T .  By Lemma 3.1 and Lemma 3 .4 , r  induces a

monad morphism <p =  [77, /i.r^]: Id + F T  ► T, where Id + F T  is a monad

with unit and multiplication 77 = ini and /I, respectively.

Next, there is a natural transformation i n r o F r j :  F  ► Id+FT which, by the

freeness of T, corresponds to a monad morphism i p :  T  3- Id + F T .  That

( p i p  = \ 6 t  follows by the freeness of T, once we show that < p i p r  =  r, and this 

is easily proved by the following chain of equalities:

( p i p r  = [77, in rF?7 

=  fiTrFrj

=  f i T r j r

=  T.

In the reverse direction, T̂ înl = r j , since i p < p  is a monad morphism, and

i p ( p \ m  =  i P u t t

=  /Z(ld + F T ) ( i p ) i p T T T  

=  /x(ld + F T ) ( i p ) \ n r F r ] T  

=  J l \ x \ x  F  { T  ( i p ) r ] T )

= \ n r  F ( n T ( p T ( i p ) r ] T )

= inr F ( { i r ] T )

=  inr,

where the second equality follows from the fact that i p  is a monad morphism, 

the fifth from the definition of /I, and the sixth by the fact that ( p i p  =  idT, as 

just shown.
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Hence, ^  is the identity on Id +  F T  and T  is a strongly F-guarded monad. 

Given any other (strongly) F-guarded monad T ' =  { V , r f , / / ,  t ') ,  freeness of 

T  over F  and the transformation r'\ F  ► T' give a unique monad mor

phism !: T  ► T ' such that ! r  =  r ' ,  so ! is also a guarded monad morphism.

Since a guarded monad morphism is a monad morphism, uniqueness of ! is 

ensured by the freeness of T, and the result is proved. □

An easier proof is possible when T  pointwise is computed as the carrier 

of the initial X  + F-algebra. In such a setting, T  is the initial algebra for the

endofunctor (Id +  F  o —): [C, C ]  ► [C, C], and, since all initial algebras are

isomorphisms, we get T  is isomorphic to Id +  F T . Initiality follows, since, by 

Lemma 3.1 every F-guarded monad is an (Id -I- F  o —)-algebra.

If an F-guarded monad T  is to be seen as a monad of terms, or, more 

generally, of syntactic structures over F , then we can expect to be able to 

map all terms in T X  to some (possibly infinite) terms in T VX ,  which, as 

we saw, is the set of all possible terms, thought of as the evolutions of an 

F-system. The map should be obtained by mapping each term in T X ,  i.e. 

each program, to its behaviour, which in turn can be derived by considering 

the unfolding of the system and corecursively building a bisimilar term in 

T VX.  In order to do that, though, we need to have a coalgebra structure on 

T X ,  i.e. we need T  to be strongly F-guarded.

P ro p o s itio n  3.7 Let F  be an iteratable endofunctor on a category C, and 

let T v = (Tu, 77", /F) be the free completely iterative monad over F . Then, 

T v is final amongst all strongly F-guarded monads.
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P ro o f. Recall from Section 2.4 that an iteratable endofunctor F  is such that 

X  + F  has a final coalgebra for each X  in C, and, in that case, the functor T u 

mapping X  to the carrier of the final X  +  F-coalgebra has a monad structure. 

Furthermore, T" is the free completely iterative monad over F , as shown in 

[!]•

It is clear that the pointwise coalgebra structure on each T VX  determines on

T u a coalgebra structure c: T v  ► Id +  F T U for the endofunctor (Id +  F  o

—): End(C) ► End(C), and this is an isomorphism, with inverse [77", a"], as

shown by pointwise applying Lambek’s lemma.

From the substitution theorem [1 , Theorem 2.17], it also follows that the 

multiplication /iv of T v satisfies (3.1), therefore T v is strongly F-guarded,

where r v: F  ► T u is derived via Lemma 3.1 from the F-algebra structure

a v. In order to prove that it is the final one, let’s just note that, given any 

strongly F-guarded monad S =  (5 , 77, /x, r) and deriving the function a = /its 

via Lemma 3.1, the inverse cs of [rj,a] determines on S  an (Id +  F  o —)- 

coalgebra structure. Since T" is final among such coalgebras, there is a 

unique (Id + F  o —)-coalgebra homomorphism 4>: S  ► T u.

We want to show that (f) is an F-guarded monad morphism, i.e. that it is 

a monad morphism and that (f)Tu =  r. If we achieve this, we have the 

result, as any morphism between strongly F-guarded monads is necessarily 

a homomorphism of (Id +  F  o — )-coalgebras, therefore uniqueness follows by 

finality of T u among them. Note how here it is essential that the monads are 

strongly guarded, in order to reverse the naturally induced algebra structure 

and obtain a coalgebra one.
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So, all we have to show is that

1 . (j)Tj = rf\

2. 0/i = /i"T(0)05;

3. 0T =  T V.

First, note that, being both coalgebra structures invertible, we get that 0 is 

also an (Id +  F  o —)-algebra homomorphism, hence, for each X  in C, we have

\d+Fd>xX  + F X  Z-T2U  x  +  F T UX

[r}x,(*x] [Vx’aXi

s x
<t>x

T VX .

From this, precomposing with the left and the right injection into X  + F S X ,  

we get at once that — rfx-> and also that 0 xFx =  <f>x&xFr]x =

axF((j)r}x) = olvx F t]vx  — rx . So, all we have to show is tha t equality 2 above 

holds.

This follows by chasing the diagrams below, which prove that both compos

ites are (Id +  F  o —)-coalgebra homomorphisms from the same (Id +  F  o —)-
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coalgebra to the final such, c: T u  ► Id +  F T V, hence having to be equal.

<t>S   T V <S> n l*us 2 T US rjpif

S  +  F  4>s <j>+FT'

\6\-FTu -\-FTu2I d + F S + F T VS

S  +  F S

Id +  F S  +  F S 2 c  , i n r F / i l

\d+[FS,Fii]I d + [F tis,F S2]

Id +  F S 2 I d - f F j z Id +  F S

rpu

\6+F<j> Id +  F T V
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3.2 M onads as Pointwise Colim its

In this section, we provide an original result: a theorem for producing monads 

as pointwise colimits. The reason for seeking such a result is, as explained at 

the beginning of this chapter, that in the practice we often deal with families 

of infinite terms which can be obtained by “putting together” appropriate 

coalgebras, i.e. taking the colimit of a suitable subcategory of the category 

of coalgebras for an endofunctor. This is somehow a generalisation of the 

construction of the final coalgebra shown at the end of Section 2.2.1.

The spirit of the result, then, is to consider an endofunctor F  on a cate

gory C and, for each object X  in C, a subcategory X X  of X  +  F-coalgebras.

The aim is to show that the mapping X  i *~co\\mXX forms the functor

part of an F-guarded monad. In order to get the result, though, we need a 

few assumptions, and we shall have to restrict ourselves to locally presentable 

categories, but we shall discuss the assumptions in due time.

The result was first presented in [26], and the motivation for it was that 

we could provide a unified method for constructing a monad for rational 

terms and a monad for term graphs, as well as deriving some of their basic 

properties. These examples, which we shall explore in detail in the next 

chapter, show that the rather clumsy assumptions we will have to make are 

indeed reasonable.

Although this is the idea, our X X  will not be a category of coalgebras;

rather, a category with a (forgetful) functor U x '-X X  ► C, and we shall

get a monad on C by considering for each X  the object colim Ux- Formally, 

we shall need to work with a weak 2-categorical version of slice categories,
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which are defined as follows.

D efin ition  3.8 Let C be a 2-category (see Example 1.42-2) and X  an object

of C. The lax slice 2-category Lax^ has as objects maps / :  Y  ► X .  Arrows

are given by

L axx(/,g) =  { ( h , a ) \ a : f  => gh}

If {h, a)\ f  ► g and {k, (3): g  ► I are morphisms in Lax^, we write their

composite as (kh, j3()a): f  —^ g h  Ikh .

Given (h, a): f  ► g and (h a 1): f  ► g , a 2-cell (h , a )  ► (h!, a')

in Laxx consists of a 2-cell 9\ h  ► h! in C such that a' = gO.a, where a.(3

stands for the vertical composition of 2-cells a  and [3.

Notice the usual definition of a slice category C /X  is the lax slice category 

on the 2-category obtained by adding only the identity 2-cells to C. Our first 

use of slice categories is to state the following result.

L em m a 3.9 Consider Cat as a base 2-category and build the category Laxc

over a cocomplete category C. Then, the assignment to each F: A  ► C of

its colimit colimi7, defines a 2-functor colim: Laxc ► C, where C is made

into a 2-category by allowing only identity 2-cells.

P roof. We already know the action of the functor colim on objects: given 

a functor F: A  ► C we map it to the object colim F  in C, which exists be

cause C is cocomplete. In particular, for X  is A we will denote the colimiting 

map by X . F X  ► colim F.  Given two such objects and a map between
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them in Laxc as shown below,

the composites H X a x  (X  in A) of the X -th  component of a  with the H X - th 

component of the colimiting cocone over the diagram G , determine a cocone

over F,  since, for f : X  ► Y  in A, one has H Y a y F f  = H Y G H f a x  =

H X a x • Such a cocone then determines a unique map from colim F  to 

colimG,  which we take to be the image of ( i f ,a)  along colim.

To see that the assignment preserves composition, consider (H, a)\ F  >■ G

and {K,/3): G  ► L. Then, precomposing with X:  F X  ► colim F,  one

has that

colim (PQajX = ~KHX^h x olx

— colim/? H X a x

— colim /? colim a X .

Hence, because the family X  is jointly epic, colim (/3§a) =  colim/? colim a.

Finally, in order for colim to be a 2-functor, we need it to map 2-cells to 

2-cells, but in C the only 2-cells we have are the identity ones, so this require

ment amounts to say that, given a 2-cell /?: (H , a )  ► (FT, a')\ F  ► G

(i.e. G(3.a = a '), we have colim a =  colim a '. But this is again easily proved
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by precomposing with the family X: F X  ► colim F.  In fact, we have

colim a X  = H X a x

= H'XG((3x ).ax

=  H ' X a x

=  colim a' X,

where the second equality holds because H ' X  and H X  are maps in a cocone 

over G. □

3.2.1 Kleisli M onoids

In the applications of our theorem, we shall consider, for each object X  in C, 

a subcategory X X  of the category of F-coalgebras, together with a restriction 

of the forgetful functor Ux  • We shall then get the action of the monad T we 

want to define by mapping each X  to colim Ux . This is the same as defining 

T  as the composite

C <I,U) . Laxc— — - ^ C (3-2)

where ( Z , U) X = Ux : X X  ► C. We shall prove that it is a Kleisli triple,

thus getting our result.

Well, in fact this is not exact. For our construction to work, we shall have 

to restrict our attention to finitely presentable categories.

A ssu m p tio n  1: C is a locally A-presentable category.
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We shall construct A-accessible monads under the equivalence between 

Mon(C)A and monoids in A4on([C\, C]) described in Remark 1.32, by deriving 

a monoid structure in [Ca,C] for the restriction of T  to Ca (which we shall 

still write as T, with an abuse of notation), and this we shall do by defining 

for it the structure of a Kleisli monoid. The generalisation to any regular 

cardinal A is straightforward.

D efin itio n  3.10 Let C be an lAp category. A Kleisli monoid on the category 

[Ca, C] is a triple consisting of

• a function T assigning to each object X  in Ca an object T X  in C;

• for each A  in Ca a map rjx'- X  ► T X  in C;

• for any pair X  and Y  of A-presentable objects, a substitution function 

sx y . C ( X , T Y )    C( T X , TY ) -

satisfying the following conditions:

1- S x , x { v x )  =  idt x ' i

2. sx ,Y ( f ) v x  =  / ;

3. sX,z(sY,z{g)f) =  sy,z(p)sv,y(/)-

As for the case of Kleisli triples, we shall omit subscripts to the substitu

tion functions whenever possible. The definition does not substantially differ 

from tha t of a Kleisli triple for a category C, and, not surprisingly, it gives 

an equivalent characterisation of a monoid in the category [Ca, C], as shown 

by the following result.
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P ro p o s itio n  3.11 I f  C is an IXp category, there’s a bijective correspondence 

between Kleisli monoids on the category [Ca, C] and monoids on the same 

category.

P roof. Given a monoid in [Ca, C], this induces a A-accessible monad on C 

by Remark 1.32, and, by representing it as a Kleisli triple and considering 

its restriction to Ca, we get precisely the desired structure.

Conversely, given T, rj and s as in Definition 3.10, we can extend T  to a

functor from Ca to C by defining T ( f )  = s(?7y / )  for any f : X  ► Y  in

Ca- That /  preserves identities follows from equation 1. Furthermore, given

f : X  ► Y  and g: Y  ► Z in CA, we have T(g)T( f )  = s(T]Zg)s(rjYf )  =

s(s(Vz 9) v r f ) = s(rjzgf) = T ( g f ), hence T  is a functor.

In order to show a unit for T, we need to give a natural transformation

from the inclusion functor J: C a  ► C to T. That is pointwise defined by

r)x’- X  ► T X .  Naturality follows from equation 2, when replacing /  by

Vy I -

We also have to define a multiplication p\ T  ® T  ► T, where T  <g) T

in [Ca, C] is given by the functor (LanjAT)T, as we saw in Example 1.18-

3. In order to define p x ,  let’s express T X  as a colimit of A-presentable

objects: T X  = colimX^ (d in D), with colimiting maps d : X d  *~TX.

Then, (LanjAT)T X  explicitly computes as colimTX^, with colimiting maps

d '.T X d  >■ LanjAT(TX ). For any X^, the action of s on d : X d  ► T X ,

gives a map s(d): T X d  ► T X .  Given k: d  ► d1 in D, one has

s(d')7> =  s(d')s(r]xd>(f)) = s(s (d')r)Xdl<t>) = s (d' f) =  s (d),

therefore the maps s(d) define a cocone over T X d (d in D), and induce a map
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Ux' (T  0  T ) X  =  colim T X d  ^ T X  such that, for each d ,

\xx d =  s (d). (3-3)

Naturality for // means that, for any f : X Y  in Ca, /iy(T 0  T ) f  =

T{ f ) ^ x -  We know that (T 0  T )X  is determined by the colimiting cocone

d \ T X d  ► (LanjT)TX, hence we have the equality if we show that, for

any d in D, /xy(T 0  T) Jd  = T( f ) f i x d . The map (T 0  T ) f  is determined by 

considering, for each composite Xd —̂ T X  —  >■T Y  , where d is a colimiting

map for TX , the factorisation through the A-filtered colimit c: Yc 

with Yc A-presentable:

T Y

X d T X

f d c

Yr

T f = s ( n y f )

TY.

(T 0  T ) f  is then determined by the cocone c T f / J :  TXd  

is now easy to show, using equations 1-3 and (3.3), that

/ iy ( T 0 T ) /d  -  ^yET(fdc)  

=  s(c)s(riYJdc)

=  s(s (c)riYJdc)

= s(cfdc)

= s(s(7Jy/)d)

= s(j7y/)s(d)

=  T( f ) f i Xd.

( T ® T ) Y .  It
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We now have to show that the equations of a monoid are satisfied; that is, 

fi(T  0  77) =  p, /i (?7 0  T) =  A and p(T  0  p) =  p,(p 0  T )a , where a , A and p 

are the natural isomorphisms of the monadic structure (see Definition 1.17).

The explicit formulation of the first equation is p(Lanj T)p  = id̂ r. It is easy

to see that, since r]X : X  ► TX  is a map in the cocone of all A-presentable

objects over TX , the map (L a n jT )^ : (LanjT)X =  T X  ► (LanjT)TX is

in fact the corresponding rjx in the cocone defining (LanjT)TX. Therefore, 

one has p,x (LanjT)r}X =  P x lx  =  s(rjx ) = \dTX.

The second equation becomes p(Lanjr])T = idt, and, in order to show this 

equality on an object X , we precompose with an arbitrary colimiting map

d \ X d  ► TX . Notice that (Lanj^T x is computed as the mediating map

induced by the cocone

X d  T X d  S-  ► (La ndT ) T X .

Hence, we have, for each d, the equation (Lanj7])Txd =  drjXd, from which we 

derive the following chain of equalities, proving the equation to hold:

P x i y ^ j ^ r x d  =  Pxdr)xd 

=  s$ )V xd 

= d.

The third equation, is slightly more complicated to get. First of all, we should 

note that the two objects Lanj((LanjT)T)TX and (LanjT)(LanjT)TX  are 

naturally isomorphic. The first is derived as a colimit, with colimiting

maps d: (LanjT)TX d ► Lanj((LanjT)T)TX, where d is a colimiting map

X d  ^ T X . The second is a colimit c: T Z C ► (LanjT)(LanjT)TX, where
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the maps c: Z c (Lanj T ) T X  determine (Lanj T ) T X  as a colimit of ob

jects in C\.  Notice, though, that, because Z c is a A-presentable object, 

the map c factorises through the A-filtered colimit defining (Lanj T ) T X ,  i.e.

through some d: X d  »■ (Lanj T ) T X ,  say as c =  dc'. Conversely, each map

of a A-presentable object into T X d determines a map in the cocone over 

(Lanj T ) T X  by postcomposition with d. This correspondence between the 

two cocones determines an isomorphism for which the following diagrams 

commute:

Zr (Lan j T ) T X d T Z r

(Lanj T ) T X  Lanj((Lanj T ) T ) T X  (LanyT)(Lanj T ) T X

With these notations, the two maps /ix(LanjT)/ix  and /ix(Lanj f j ) T X  are 

defined by the following diagrams,

s(c')

(La n j T ) T X d  T X d

d

T Z r

Lanj((LanjT)T)TX
(Lan Jfi ) T X

(Lan j T ) T X — + T X

(Lan j T ) T X - - + T X(LanTJ)(LanTJ ) T X  , x „
V 1 A  1 J (Lan j T )vlx  v ^ '  MX

where the map ficd is derived as in the analogous case above, and is such that 

d(icd = fixe. By precomposing them with c .T Z c  ► (Lan,/T)(LanjT)TX,
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we get two equal maps, as shown by the following chain of equations:

/ ix (L a n jT ) / iXc =  s (d)s{r)xdfiCd)

= s(s (d)r]Xd/icd)

= s (dficd) = s (iiXc)

= s(nxdc') = s(s (d)c')

= s(d)s(c')

= fj,x {lanj f i )TX.

So, we have a monoid in [Ca,C]. We now need to show that the two con

structions are mutually inverse, but this is obvious, because taking the left 

Kan extension along J  and then restricting to A-presentable objects does not 

affect T, and the proof goes on as in the second part of the proof of Theorem 

1.28. □

So, we are now ready to approach the construction of the monad T. 

Let’s consider on C a 2-categorical structure where the only 2-cells are the 

identities.

A ssu m p tio n  2: Let (X, U): C  ► Laxc be a 2-functor.

This means that, for any X  in C, we have a category T X  and a functor

U x ' T X  ► C, and for any map / :  X  ► Y  in C a functor Tf \  T X  ► T Y

and a natural transformation j ^ ’. U x  ► UyTf ,  such that
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We define the functor T: C \  ► C by considering the restriction of (3.2)

to finitely presentable objects. We shall give for T  a Kleisli monoid structure, 

hence deducing, by Proposition 3.11, a monoid in [Ca, C], and, by Remark

1.32, that its left Kan extension along the inclusion functor J : C \ -----

gives a A-accessible monad on C.

3.2.2 Defining the Functions

We already explained the action of T  on each finitely presentable object of 

C: we put T X  — colim Ux-

We are now going to define, for A-presentable objects X  and K, maps rjx 

and substitution functions Sx,y as in Definition 3.10. In the next section, we 

shall prove them to satisfy equations 1-3, hence defining a Kleisli monoid on 

[Ca, C].

In doing this, we shall have to introduce some further assumptions on the 

(X, U). For example, in order to define the unit map, it is enough to have

A ssum ption  3: For each X  in Ca, there is an object %x in T X  such that 

Ux ( i x ) = X .

Then, we can define rjx to be the following colimiting map:

i x • X  =  Ux{j>x)  colim Ux — T X .

Let’s now consider a map / :  X  ► T Y .  The leading intuition behind the

substitution map s( f ) : T X  5- T Y  is that a term t in T X  is represented

by a coalgebra where some states are mapped to variables in X .  When
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performing the substitution, these states are replaced by the carrier of the 

coalgebras representing the terms specified by / .  This way, we get a new 

Y  -I-X-coalgebra representing the term s I n  order to make this precise, 

we introduce a new notion: that of a lifting.

D efin ition  3.12 A lifting (L, ()L) for a 2-functor (X, U) assigns to each ob

ject X  in C a lax natural transformation

R em ark  3.13 The definition of lifting, as it stands, is quite cryptic. Let’s 

unwind it, to understand what it means in detail.

First of all, T X  can be considered as a 2-category with only identity 

cells. The functor K( t , x j ) x  is the constant functor mapping any g  in X X  to

Let’s recall from [16, Definition 7.5.1 on p. 296] that a lax natural trans

formation a  between parallel 2-functors F  and G from C to D is a collection

(L, ()L) : (I,  U ) o U x => K{I}U)x  ■■ I X  ► Laxc.

the functor U x ' - T X  ► C, considered as an object of Laxc- The functor

(X, U) o Ux maps an object g in T X  to the functor Uuxg- Z U x g  ► C, and

a map k: g  ► h to a 2-cell

l U x g — IUxk > XUxh
(3.5)

of maps ax'- F X  ► G X  (X  in C) such that, for any / :  X  ► Y  in C

there is a 2-cell in D

F X  g x

F f  => G f

F Y - ^ G Y .
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In our case, to give a lax natural transformation from (X, U) o Ux to 

K(xtu)x means, for each g in T X , to give a functor L(g) and a natural trans

formation gL as below

XUx g  ^  ~ I X

and, for any k: g  ► h in XX, a transformation kL\ Lg = > L ( h ) T U x k

such that

Ux (kL)gL = (hL0 j ux k): UUxg = = >  Ux L (h) lU x k. (3.7)

Diagrammatically, the two natural transformations are shown below.

XUx k

W ith this notion, we can now construct the substitution functions. 

A ssu m p tio n  4: The functor (X, U) has a lifting (L, ()L).

A ssu m p tio n  5: For any X  in Ca, the category XX is A-filtered.

W ith these two further assumptions, for any map f : X  ► colimUy

with X  and Y  in Ca, we can derive the map s(/) : colim U x  ^ colim Uy as

follows.
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Since X  is A-presentable and T Y  is A-filtered, there is a factorisation 

/  — V ° f + where i f  is in T Y :

colim Uy

This defines a functor A(/)  =  L ( i f ) T ( f+) and a natural transformation 

f A = i f O j f+: Ux  = ^ U y L ( i f ) T ( f +) as below.

I X  ^ - ^ 1  UY ( i f ) - ^  ►ZY (38)

The natural transformation / A, in turn, defines, by Lemma 3.9, the desired 

map

s( /)  =  colim f A: colim U x  ► colim Uy- (3.9)

The construction of s( /)  appears to depend upon the factorisation /  =  

i f  o f +. This is actually not the case.

L em m a 3.14 Suppose f  = i^ o h is another factorisation, inducing, as in

(3.8), the functor L ( ih )T (h ) \T X  ► T Y  and the natural transformation

(ih)i(h)-'d'- Ux = > U y L ( i h)T(h) . Then, colim ( i f§ j* +) = colim (i^()jh) and 

s( /)  is well-defined.

P roof. Because T Y  is A-filtered, there exist in it an object i and arrows 

k \ i f  ► i, k ' \ i h  ► i such that /  factorises as /  =  i o g, for a given map
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g: X  ► Uy(i), with U y ( k ) f+ = g = Uy(k')h , and the object i inducing

a natural transformation iL()j9: Ux = > U y L ( i ) l ( g )  as in (3.6). Let’s fo

cus on k : i f  ► i. By (3.7) and the third is the distribution of horizontal

composition over vertical composition of natural transformations, one derives 

that

iL0 j 9 = iL0 ( j UYk0 j f+) = (Uy{kL) i f ) 0 j f+ = (Uy(kL)<>jf+)(i1f<>jf+).

Therefore, Uy(kL)(>jf+ defines a 2-cell from to {iL)()jg, and, by

Lemma 3.9, we have that

colim (iL)<)jg = colim

By an analogue reasoning, one can show that colim (iL0 j g) = colim (i%§jh), 

thus proving, by transitivity, that the definition of s( /)  does not depend on 

the chosen factorisation. □

Given any f : X  *~TY, where X  and Y  are finitely presentable, we

shall henceforth denote the functor and natural transformation induced by 

the factorisation /  =  i f  o / + by

A( f )  = L(if )X{ f+) and f A = i ^ 0 j f+- (3.10)

3.2.3 Proving the Equations

In the previous section, we built, under suitable assumptions, the candidates 

for a Kleisli monoid on [Ca, C]. We now turn to proving tha t equations 1-3 

in Definition 3.10 hold.
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Again, we will have to make some further assumptions. These may seem 

to overload the result, but they are satisfied by the examples we are trying 

to abstract from, so we think i t ’s sensible to accept them.

Assum ption 6: For each X  in Ca, c o l i m =  idt x -

If this holds, we can prove equation 1, i.e. that s(rjx) = 1 ux,  since s(rjx) 

can be constructed via a factorisation rjx = i x idx, thus

s ( V x )  = colim {ix)0j 'd = colim iLx  =  idTx.

As for equation 2, i.e. s(f)r]x =  / ,  we need again some hypothesis.

Assum ption 7: For any X  and Y  in Ca, and for any / :  X  ► colim Uy,

there is a map k: A( f ) ( ix ) ---- ^ V in TY,  such that Uy{k)f^x =  f +.

First of all, recall how s( /)  is determined by a factorisation /  =

Since r/x is the colimiting map from Ux(ix)  to colim Ux, s(f)rjx is the 

Ux(ix)-t>h component of the cocone determined by / ,  that is s(f)r)x =

A (/)(» x )/4 - Then> we have

X  =  Ux (ix )  UY (A f ( ix ))

colim I/]

where the left triangle commutes by assumption 7 and the right since it is 

part of the universal cocone over Uy-

Having verified two of the laws of a Kleisli monoid, we come to the last. 

For this, we need one last assumption on the lifting, which asserts some kind 

of functoriality over C.
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A ssu m p tio n  8: Given / :  X T Y  and g in T X , there is a 2-cell in any

direction between the composites (L(A(f)g),  (A( f )g )L) (T ( ( fA)g) , j ^ A>)g) 

and (A (/), f A)(Lg, gL) in Laxc .

R e m a rk  3.15 More explicitly, Assumption 8 is saying tha t the two functors 

A( f )Lg  and L (A ( f )g )T ( ( fA)g) from TUxg  to T Y  are equal up to a 2-cell; i.e. 

there is a natural transformation in any direction filling the following square

Lg
 * 1 X

a / (3 .11)
TUx g

AUA)g)(

l U v ( H f ) g )

<=>

T Y ,,
L(Hf)g)

and making the following equal via precomposition: 

Z U x g - ^ l X ^ l Y  TUxg  I((/A)a)> TUY (A(f)g)  L(A(/)g)> T Y
A U) g )

U Y ( A ( f ) g )
(3-12)

All we have to prove for equation 3 is that, for A-presentable objects

X , Y  and Z  and maps / :  X  ► colim Uy and g: Y  ► colim Uz, we have

s(s (g)f )  =  s(g)s(f).

The map s (g) f  can now be factorised as follows

T Y  - 

U 

Uyif

s ( 9 ) T Z

( g A ) i

A(<?h/ 

Uz{A(g)if )

where /  =  i f f + is the factorisation of /  used in the construction of s( /)  

and the square commutes by the construction of s(g). Thus, we have an
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[/^-factorisation of s(g)f  and we calculate s(s{g)f) as the colimit of (s{g) f )A, 

where, by (3.8), the functor A(s(g)f)  can be calculated as

A(s (g)f)  =  L(A(g)if ) I ( ( g % f +) = L(A(g)if ) T ( ( g % ) T ( f +) (3.13)

whereas

(s (g) f )A =  ( A ( ^ ) v ) L0 / 5A)i/0 / + .

Analogously, we can express s(g)s(f)  as a colimit:

s(^)s(/) =  colim (A(#), #A)colim (A(/) , / A) =  colim (A(g)A(f),  gA0 f A). 

Let’s note that

A(ff)A (/) =  A (g)L(if )X ( f+)

and

gA<)fA = gA0if<>jf+-

Putting this together with (3.13) and assumption 8 , we can derive a 2-cell 

between {A(g)A(f),  gA0 f A) and {A(s(g)f), (s(g)f)A) (replace f  by g and g 

by if  in (3.11)); hence the two colimits are equal and the equation is proved.

Collating all the assumptions we made so far, we can finally state the 

main result of this chapter.

T h eo rem  3.16 Let C be an l\p category, considered as a 2-category with

just trivial 2-cells, (X, U): C  ► Laxc a 2-functor with a lifting (L , ()L), such

that T X  is a X-filtered category for any X  in C\. Let for each X  in C\ be 

T X  = colim Ux, and assume that, for X-presentable objects X  and Y  and 

for any f:  X  ► T Y ,  the following hold:

1. there is an object i x  in T X  such that Ux(ix)  — X  and colim i x  = ^ r x i
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2. there is a map k : A( f ) ( i x )  i f  such that Uykf("x — f +;

3. for all g in T X ,  there is a 2-cell in any direction between the composites 

(A{ f ) J A){Lg,gL} and (L(A(f )g) ,  (A( f )g)L) (X( ( f A)g), jU A)9) in Laxc .

Then, the association X  i---- ►T X  carries a Kleisli monoid structure.

C o ro lla ry  3.17 Under the assumptions of the previous theorem, the left Kan

extension of the derived monoid T  under the inclusion J : C \  ► C is a

finitary monad on C.

P ro o f. By Proposition 3.11 and Theorem 3.16, T  determines a functor,

which by an abuse of notation we call again T : Ca  ► C. This has a monoid

structure, therefore its left Kan extension defines a monad on C, as explained 

in Remark 1.32. □

3.3 Deriving Guardedness

In previous sections, we worked out a result for building a monad as a point- 

wise colimit. The purpose, as already mentioned, is to pointwise get a set of 

terms over X  for a signature E, and obtain a monad (thus modelling their 

closure under substitution) by taking their collection, i.e. a colimit. The 

monad T which we get out of this construction assigns to each X  the free set 

of such terms over X .  It is therefore reasonable to investigate whether T is 

F-guarded, or even strongly F-guarded, where F  is the functor representing
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E. More generally, of course, the question can be posed for any A-accessible 

endofunctor of C.

So, let’s fix an lAp category C and a functor F  in End(C)A. Let’s also 

consider a 2-functor (Z, U) satisfying all the properties of Theorem 3.16. We 

want to find conditions on F  and (Z, U) so that the monad T arising by 

Corollary 3.17 is F-guarded.

First of all, recall that the underlying functor T  of T is obtained as a left 

Kan extension. We therefore need to transpose the notion of guardedness 

under the equivalence End(C)A =  [Ca , C].

L em m a 3.18 Let F  be a X-accessible endofunctor on C and T a monoid in

A4on([C\, C]). Suppose there is a natural transformation a: F T  ► T  such

that
F ( T  ® T ) =  F T  ® T  F T

a® T

T O T  -------- ►T.

(3.14)

Then, Lan j T  is a X-accessible F-guarded monad.

Vice versa, given any X-accessible F  guarded monad, precomposition with 

J: C a  ► C induces a monoid T in Aion{[Q\, C]) and a natural transforma

tion a: F T  5- T such that \xol ® T =  olF f i .

P roof. It is trivial to see that application of Lanj to diagram (3.14) gives 

the usual diagram expressing fi as an F-algebra homomorphism, since F , be

ing A-accessible, commutes with Lanj. Likewise, precomposition of diagram 

(3.1) with J  gives precisely diagram (3.14). □



CH APTER 3. MONADS OF TERM S 137

However, the monoid structure on T  is induced by a Kleisli monoid struc

ture, so we want to express the notion equivalently for Kleisli monoids.

L em m a 3.19 Let (T, 77, s) be a Kleisli monoid in [Ca,C]. Then, any assig

nation for all X  in C\ of a map a x ' F T X  ^ T X  such that for any

f : X  ► T Y  (X  a n d Y  X-presentable) the following diagram commutes

Fs(f)
F T X F T Y

ax ay (3.15)

T X
S ( / )

TY,

determines a natural transformation a: F T  ► T  for which diagram (3.14)

commutes, and vice versa.

P ro o f. Recall from the proof of Proposition 3.11 how the action of T  on 

maps and the natural transformation p  are defined using s. T ( /) ,  for a map

f : X  ►Y  in Ca, is defined as s(fr)y),  while px'- (L an jT )T X  *~TX

is determined by the cocone s( d ) : T Xd  ► T X  where d: X d  ► T X  ex

presses T X  as a colimit of A-presentable objects and (Lan j T ) T X  is the vertex 

of the colimiting cocone d: T X d  (Lanj T ) T X .

The collection a x  clearly determines a natural transformation a , since, for 

a map / :  X  ► Y  in Ca, one has

T ( f ) a x  = s(fr]Y)ax  = a y F (s ( ./V ))  =  a YFT{ f ) .

To show that (3.14) commutes, note that d’. T X d  >■ (LanjT)TX is a A-

filtered colimit, hence it is preserved by F. Precomposing each component
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with F d , we then have the result by chasing the diagram below.

Fs(d)

Fd

T X

TX,

Vice versa, since s is defined on a map / :  X  ► T Y  as the composite

/ iy T ( / ) ,  one gets commutativity of (3.15) by pasting (3.14) with the nat- 

urality diagram for a  on the map T( f ) .  □

So, in order to build an F-guarded monad by means of Theorem 3.16, 

we need to find conditions so that we get a collection of maps from F T X  to 

TX , where T  is the Kleisli monoid built therein.

T h eo rem  3.20 Let C, (X, U) and (L, ()L) satisfy all the hypotheses of The

orem 3.16. Further, consider a X-accessible endofunctor F  on C. Suppose 

that, for all X  in C\, there is a map (H x , ot'x ) in Laxc from FUx to Ux such

that for all f : X  ► T Y  there is a 2-cell in Laxc in any direction between

( H f ) H x , f A0<x'x) and (HYA( f ) ,a'Y0 F ( f A)):
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Then, a x  =  colim a'x  determines a map from F T X  to T X  such that, for any 

f : X  5- T Y  with X  and Y  in C\, (3.15) commutes.

P ro o f. The map (Hx,a'x ) consists of a natural transformation

HXT X   — - T X

Ux Ux

c,
inducing, by Lemma 3.9, a map a X '. colimFU x = Tcolim Lx colim Ux-

Now, we want to prove that s ( f ) a x  = ayFs ( f ) .  However, it follows from 

definition of s and a  tha t s ( f ) a x  = colim ( / A)colim (a'x ) — colim ( f A§a'x ), 

and, similarly, a y Fs ( f )  =  colim (a'Y( ) fA)- The existence of a two cell in 

between the two maps, as in the statement, ensures tha t the two colimits are 

equal, therefore assuring commutativity of (3.15). □

C o ro lla ry  3.21 Under the assumptions of the previous result, the left Kan 

extension of the monoid T  is an F-guarded monad.

In the examples provided in the next chapter, we shall also get some 

results on strong guardedness. The idea is that, analogously to what we did 

in Theorem 3.20, we pointwise get a coalgebra structure on T X  by taking 

the colimit of a map in Laxc from Ux to (X +  F)UX • Now, both the algebra 

and the coalgebra structure on T X  are determined by some colimit of maps 

in Laxc, therefore, we can ensure that these maps are inverse to each other 

by providing a 2-cell between the maps determining the composites and the 

identity on either Ux or (X  +  F)UX•
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3.4 An Application to Solution of Recursive 

Equations

A recursive program scheme, within a programming language, is a way of en

riching the language itself by introducing new operators and equating them 

to known terms. The recursive path is created when the terms we are intro

ducing are defined by means of themselves, as well as the already existing 

signature. The equations define the behaviour of a term, and, in order for 

them to be meaningful, i.e. to actually define a term, we need them to be 

productive.

In a more algebraic fashion, a recursive program scheme is called an 

algebraic system [19].

If E is a signature, a E -algebraic system of equations is of the form

where the unknowns fa are the constructors of a signature disjoint from E 

and the t f s are finite terms built from the signature E l l f i  over a countable 

set of variables X  to which all the x ’s belong. The notion of productivity we 

mentioned above reflects in either the right handsides of the equations being 

variables from X  or their root symbol being a E-constructor. Productive 

systems are called guarded, matching the notation of Section 1.1.3 and Section

01 (^1 ? ■ • • j % n \) (^15 • ■ • 5 % n \)

0 2  ( - ^ l  5 ■ • • J * £ 712 )  • 5 ^ 7 1 2  ) (3.17)
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As an example, consider a signature E consisting of a binary symbol A 

and a unary symbol B, and let 0  contain only a unary symbol </>. Then the 

E-algebraic equation (j>(x) =  k(x,  (j>(B(x))) has the following solution

x
t =

Bx

B B x

Reformulating these concepts in the categorical setting, we consider a

signature E: A f \  ► C over an /Ap category and take the left Kan extension

of E along the inclusion JT .J \ f \  ► C; tha t is Fz = Lanj/E. We then take

the free monad Tz over Fz.  W ithin this terminology, a E-algebraic system 

of equations takes the form of a natural transformation from an unknown 

signature fi to the set of terms Tz+q. A term being guarded means that its 

root is a symbol from E. In other words, the term is a ground E-term with 

variables in the set of E +  fi-terms, that is, an element of the set FzTz+nX.  

A guarded E-algebraic system is then a natural transformation

Pi  »- (Id +  FzTz+n)  ° J I  (3.18)

where fi is some signature. Note that, in doing this, we have allowed the 

mild generalisation in that the signature may declare an infinite number of 

operators.

Now, by abstract reasoning [37], Tz+n = Ts©T^ where the latter is the 

coproduct in the category of monads. It turns out that Tq can be replaced 

by any monad whatsoever, thus allowing us to consider algebraic equations



CHAPTER 3. MONADS OF TERMS 142

where the right handside comes from any term algebra we choose. For 

however, we cannot take any monad since the elements of the generalisation 

of must be interpreted in the monad T us of infinite terms. Strongly F- 

guarded monads provide the right framework to do this. As a result of this 

abstraction process, we can now define algebraic equations as follows.

D efin ition  3.22 Let H be a strongly F-guarded monad. An algebraic sys

tem over H consists of a monad E and a monad morphism e: E  ► Id +

F (if® F ), where if® F  is the underlying functor of the coproduct of H and 

E in Mon(C), which is assumed to exist. A solution for e is a monad mor

phism eb E  ► T UF making the following commute (!# is the unique monad

morphism from H to the final F-coalgebraic monad T v):

e t
E ------------ 5----------- ^ T v

-  (3-19)
Id +  F ( H ® E ) ----- -— -*■ Id +  F T U.

V '  l d + F [ ! „ , e t ]

The very abstract and general formulation which was made possible by 

introducing guarded monads allows us to give a very nice and clean proof of a 

solution theorem for such equations in very different contexts, with the only 

assumption of our base category being locally presentable, and the functor 

F  being accessible.

The proof of the solution theorem relies on the following lemma.

L em m a 3.23 Let, for any X  in C, T UX  be the final X  +  F-coalgebra, thus 

determining the final strongly F-guarded monad T v as in Proposition 3.7. Let 

H =  (if, 77, p, t )  be an F-guarded monad, and suppose that there is a monad
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morphism 7 : H \d-\-FH such that 7 .r =  \ n r .Frj: F Id+FF, making

H  a (Id +  F  o —) -coalgebra. Then, the unique morphism o to the final such 

coalgebra T u is also a monad morphism.

H

(3.20)

Id +  F H Id+Fcr Id +  F T V

Proof. Let us call c the final coalgebra structure from T v to Id + F T U, which, 

because of Lambek’s lemma, is an isomorphism, with inverse c-1 , as we saw 

in Proposition 3.7. Using the same notation as in Lemma 3.4, we can depict 

the situation in the following diagram

(3.21)

Id +  F H Id+ F a
Id +  F T U,

where the two leftmost triangles commute, as well as the square involving 7 . 

Let us write r f  and pv for the structure maps of the monad T v. Then, all 

we need to prove is that ar) = r f  and apt = a 2p?. The first equality follows 

because

ar] = a(3 ini =  c ca(3\nl =  c (Id +  Fa)jr] = c (Id +  Fcr)inl =  c ini =  r f .

A bit more work is needed in order to prove that a  respects multiplication. 

In order to achieve this, we will show tha t both ap  and <t2/i " are coalgebra 

morphism from the same (Id +  F  o — )-coalgebra into T u\ finality of T v will
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then prove them equal. Here is the diagram relative to o\i.

H 2 --------------
7  H

(Id +  F H ) H

( I d + F /f b

Id +  F H  +  FH(\d  +  FH)

Id+FH+FH (3

Id +  F H  +  F H 2

\d+[FHr),FH2]

Id +  F H 2 —

H r p y

\\d+FH,Fn]

(3.22)

Id +  F H Id +  F T VId + F ^  ' ”  ' Id+Fcr

Here the commutativity of the top-left cell is just the fact that 7  is a monad 

morphism.

The diagram for a 1 fiv is slightly more complicated.

H 2

7  H

H + F H 2

7 + F H ‘

I di-FH+FH2

H T U rjy 1/

( \ d + F H ) < r

1TU

T V+ F H T V
{\d~ \- F < j} r j 'v

Cj>l/

T" -\-FTv

C - \-F (T r p i /

IdfF ct+F<t ‘
ld+F T v+ F T h

c + F T v -

\6^FTv+F T v2

I d + { F tf r? ,F J F Id+ [ F T V tIv , F T V ‘ Id+ { F t}T v , F T v

(3.23)

Id+ F H 2 Id+ F H < t
Id+FHT" Id —F&rpi/ Id + F T "2

I d + F / F
IcH-FT"

Unfortunately, the two coalgebras are not the same, since in the second case, 

after applying 7 ^, one applies the identity on F H 2, whereas in the first case 

one applies FH((37 ). This requires one more observation to close the proof. 

In diagram (3.23) the identity on F H 2 in the middle arrow of the left side is 

eventually followed by the map FHa.  Now, because of the universal property 

of cr, if we can show that ^ 7  is a (Id +  F  o —)-coalgebra morphism, then we
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have that necessarily a = cr/ly, because they are both the (unique) coalgebra 

homomorphism from H  to T u, and we can safely substitute the coalgebra 

structure in (3.23) by the one in (3.22). In other words, we want to show 

that

7/?7 =  (Id +  F/3)( Id +  Fy ) y

which follows by commutativity of the following diagram, when precomposing 

the two outermost paths with 7 :

ld+F7
Id+F ff ld +  F (ld + F tf)

Id+T

ld + tf2 [r/inl,72
(Id + F H ) 2 Id+ F 0

H Id + FH.

Here, the left triangle is just the definition of /?; the bottom  square commutes 

because 7  is a monad morphism; the right triangle commutes because of how 

Jl is defined, and, finally, the top square commutes because

(inrF 77)|d+Ftf (Id +  F 7 ) =  ( j t ) \ 6 + f h F j  = 7 i d + F #  #  ( t W  =  7  2th-

□

We can now state the solution theorem and give its proof.

Theorem  3.24 I f  e: E  ► 1 +  F ( H  +  E) is an algebraic system over a

strongly F-guarded monad ( i f ,  77,//, r ) ,  then e has a unique solution.

Proof. By composing r  with the injection of H  into H®E,  one gets a 

natural transformation t ' : F  ► H@E,  which, by Lemma 3.4, induces a
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monad structure on l+ F (H ® E ).  Moreover, the equality r ' =  ini r  is satisfied 

by construction of r ', therefore, for the same lemma, there is also a monad

morphism 1 +  Finl: 1 +  F H  ► 1 +  F ( i/® F ), which, being H  coalgebraic,

leads to a monad morphism S\ H  ► l +  F (iJ® F ) (just precompose 1 +Finl

with the isomorphism between H  and 1+FH) .  Copairing 6 with the equation

morphism e gives a monad morphism [5, e]: H @ E  ► 1 4 - F ( i/® F ) , which

endows H ® E  with a ( 1  +  F  o —)-coalgebra structure. We therefore have a

coalgebra morphism to the final coalgebra (3: H ® E  ► T v, and we want to

use Lemma 3.23 to show that this is a monad morphism. Precomposition with 

the second injection into the coproduct will then be our candidate solution

morphism e*: E  ► T v. In order to apply the lemma (where the H  is now

replaced by H®E),  we have to show that [7 , e\r' =  inrFV, where rf is the 

unit of H®E.  But, since the coproduct is in the category of monads, one 

has that the left injection is a monad morphism, hence 77' =  ini 77. From this 

and the fact that H  is coalgebraic, we get that

[7 , e\r' =  [7 , e]inlr =  ( 1  +  Finl)inr7FT7 =  inrF(inl)F ?7 =  inrJFV,

where inr' is the injection of F H  in 1  +  FH ,  ini maps H  to H(&E, and inr is 

the inclusion of F( H®E)  in 1  +  F(H@E).

All we have to do, now, is to show that diagram (3.19) commutes, but this 

trivially follows by looking at the second component of the commuting dia

gram (3.20), where H  is now replaced by H($E.

Now suppose d: E  ► T v is another solution of the algebraic system. By co

pairing it with the mediating morphism !#: H  ► T v, one gets a ( 1  +  F o —)-

coalgebra morphism from H ® E  to T v, which is therefore the same morphism 

as 7 . By precomposing with the right injection, now, one gets that d =  e*,
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thus showing the uniqueness of the solution morphism.

147

□



Chapter 4

Worked Exam ples

In the previous chapter we gave a theorem for generating monads whose 

functor part acts as a pointwise colimit. As mentioned there, the main reason 

for that theorem is to provide a unified construction for getting different 

monads of terms, and here we get two im portant examples.

Rational terms, defined in Section 1.1.3, are the first instance. Our work 

on them [26] was presented more or less when Adamek and his group first 

presented their construction of the free iterative monad [6 ]. At the time, they 

had more assumptions, and the result was somehow as difficult to achieve. In 

our case, we found it motivating enough to have a general way of producing 

strongly E-guarded monads, since different structures can be required in 

various areas of computing, and it is useful to have a unified way of tackling 

them.

In the second part of the chapter, instead, we shall focus on term graphs, 

and how to encode them as a monad.

148
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4.1 Rational Terms

149

As we saw in Section 1.1.3, rational terms are the smallest set of terms closed 

under solution of finite systems of guarded equations. That is to say, given 

a guarded system

Xi = h  

"En

where the terms ti are rational terms with variables from the union X  ]J  Y  of 

a set X  = {aq, . . . ,  xn} of unknowns and a set Y  of parameters, this admits 

precisely one solution, consisting of an n-tuple of rational terms.

In fact, more can be said, since any such system of equations is equivalent 

to a flat one.

D efin itio n  4.1 A flat system of equations in Greibach normal form is a 

system of the form

X i  =  U  (z =  l , . . . , n )  

where t { e  Te({^i, • • ■, £n}) U  Y.

In these systems, a variable x  is equated to a constant, a parameter from

Y  or a ground term f ( x i , . . . ,  xn), where Xi are variables (possibly including

x  itself) and /  is an n-ary function symbol.

It is a known result (see for example [19]) that every finite system of 

guarded equations where the right hand-side is rational can be reduced to
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a finite flat system (the vice versa is obvious). In particular, every rational 

term appears as the solution of some flat system.

E x am p le  4.2 The system consisting of just one equation

x = A(C,B(x)) (4.1)

reduces through a standard algorithm to the following flat system:

X !  =  A ( x 2 , x 3 )

x 2 = C (4.2)

x 3 = B(xi)

The solution to equation (4.1) is the regular tree

A
/  \

C B
I (4.3)

/  \
C B

whereas the solution of system (4.2) consists of the triple (t , u, v) where t is 

as above and u and v are its subtrees

B

U =  C V —

C B

By allowing the terms in the right hand-side to be variables from a set 

Y,  we obtain parameterised solutions depending on Y.
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The way one classically solves a flat system is to consider it as a map 

o associating to each variable Xi e X  the corresponding term in Y  +  F^X,  

and by it determine a function a on n-tuples of infinite terms, where n is the 

cardinality of X.  The function a is clearly contractive, because the system is 

guarded; moreover, T u{Y)n is a complete metric space. Therefore, it admits a 

unique fix-point: an n-tuple ( t i , . . . ,  tn) such that ( t i , . . . ,  tn) = cr(ti,. . . ,  tn).

T h e  F u n c to r  (X, U)

As we already observed in Section 2.4, categorically, this argument is much 

better expressed by saying that a  is a Y  +  Fs-coalgebra. The solution is then 

given by the unique map (j> to the final Fs -coalgebra, i.e. to T VY .

Rational terms are precisely those arising as solutions of such systems of 

equations. Therefore, in order to get an object of rational terms, we just 

have to “collect” all the solutions of the equations. That could be achieved 

by considering the solution morphisms of all equations and factorising them 

through their images (recall from [8 ] that all locally presentable categories 

have a regular epi-mono factorisation system). This would give us, for each 

Y  in C, a collection of subobjects of T VY , and their union would be the 

object of rational terms over Y .

However, here we are going to choose a different approach, which does not 

rely on factorisation systems. In particular, we think of a system of equations 

as a formal way of presenting the terms which solve them. So, system (4.2) 

above “presents” the terms t, u and v shown thereafter.

In doing this association, of course, we have to be careful, since a rational
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term can be represented in many different ways (as there are many different 

equations of which it could be a solution). Think for example of the term

B“ =  B(B(B(...)))-

This is clearly the solution of the equation x  =  B(x), as well as a solution of 

the system

x i  =  B ( x 2 ) 

x2 =  B(a;i)

In order to get an object of rational terms, then, it is not enough to just 

collect all flat systems (by taking their coproduct); we also have to consider 

a quotient which identifies those equations having the same solution.

In the categorical model, flat systems are coalgebras with a finite carrier, 

and the solution is given by the unique map to the final coalgebra. Suppose

7 : Y  ► X  +  Fz(Y)  and 8: Z  ► X  +  F^(Z)  are two such systems, with

solution 7  and 8 respectively. Then, any morphism 4>: (Y, 7 ) ----->■ (Z, <5) in

( X  +  Fz) — Coalg is such that 8(f) =  7 , i.e. it has to map equations from the 

first system to equations in the second which have the same solution.

The converse is also true. Given (Y, 7 ) and (Z, 8) as above, if there is a 

variable y £ Y which resolves to the same term t as a variable z  £ Z, then 

the smallest subcoalgebra (Y', 6) of (Y, 7 ) including y is isomorphic to the 

smallest subcoalgebra of (Z, 8 ) containing z. The two inclusions of (Y', 9) 

into (Y, 7 ) and (Z, (5) are coalgebra morphisms, and Y' is again finite.

This suggests that the object of rational terms with variables in X  should 

be the collection of all X  +  F^-coalgebras with a finite carrier, quotiented by
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the relation which identifies two states precisely when there is a coalgebra 

homomorphism mapping one to the other. That is exactly what happens if 

we take the colimit of the full subcategory of (X  +  Fc) — Coalg consisting 

of those coalgebras with a finite carrier (note that, since Set is locally small 

and there are, up to isomorphism, only a set of finite sets, no size issue arises 

when considering the colimit).

Of course, working in Set is here totally inessential, and we can consider in 

general any locally finitely presentable category C and any finitary endofunc- 

tor F  on it. We shall consider the pair (XX, Ux),  where XX is the category 

of X  +  F-coalgebras with a finitely presentable carrier and coalgebra homo- 

morphisms between them. This is a full subcategory of X  +  F  — Coalg, and 

Ux  is defined as the restriction of the forgetful functor to C. Given a map

/ :  X  ► Y  in C, its image along X is the functor X /: X X  ► XT mapping

an X  +  F-coalgebra (A , a)  to the coalgebra

A ----- 2 — - X  + F A  — +  FA;

that is precisely variable renaming. Since C/yX/ =  Ux,  we can define the 

natural transformation j f : Ux =^ >Uy T J  as the identity.

E x a m p le  4.3 In order to give an idea of what will be going on during the 

calculations, in this section we shall present a few examples of rational terms, 

together with some coalgebras they are generated from in the colimit. We 

shall then read the operations on the coalgebras in terms of the results they 

produce on the corresponding trees, thus hoping to convey the intuition be

hind the laborious calculations of the previous chapter.
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Our first example is tha t of the tree

t =  x  A
\

\
X

Clearly, t is the image of yi along the colimiting map 7 : Y  ► i?({x}),

where Y  =  {2/1,2/2} and the coalgebra structure 7  maps yi to k(y2,yi)  and 

y2 to x. Such a coalgebra we shall often represent pictorially as

aO

where the names of the states have been removed, the label of the transition 

performed by each state is written next to it, and the tagged arrows indicate 

that a particular state points to a variable, instead of performing an action. 

The term t is obtained by unfolding the node labelled by A.

In this context, if / :  { x } -----► {z}  is the obvious map, then T( f) (Y ,  7 ) is

the obvious coalgebra

aO

where the variable x  above has been renamed according to /  . The unfolding 

of the node labelled by A gives the expected tree

A

R ( f ) ( t ) =  \

We shall define a monad of rational terms by mapping an object X  to 

the colimit R X  = colimU x ( T X )  in C. Note that R  is trivially a functor,
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and it is finitary, since colimits and filtered colimits commute. Therefore, we 

know that R  =  Lanj (R J ) ,  and we can show that R  is a monad by showing 

that its restriction to finitely presentable objects satisfies the hypotheses of 

Corollary 3.17.

Notice that, being C cocomplete, X  +  F  — Coalg is too, and Ux creates 

colimits by Proposition 2.3. In particular, the carrier of a colimit of coal

gebras is the colimit of the carriers. This, together with the fact that any 

finite colimit of finitely presentable objects is itself finitely presentable [8 , 

Proposition 1.3], entails that T X  is filtered.

The Lifting (L, ()L)

We now introduce a lifting for (X, U). This is needed, as we saw in Section 

3.2.2, to produce the substitution functions. The definition uses the same 

principle as in the proof of the Substitution Theorem in [1].

Given a coalgebra a: A  ► X  +  F A  in X X , we have that X{Ux Ol) is the

category of A  +  F-coalgebras. The lifting functor L(a)  maps a coalgebra 

7 : G  ► A  +  FG  to the X  + F-coalgebra

A + g ^ I a + F G - ^ X + F A + F G  ld+iF'n' —■i x  + F(A +G ).  (4-4)

Given another coalgebra £: H  ► A  +  F H  and a morphism between them

</>: (G, 7 ) -----► (# ,£ ) , its image L(a)((/>) is the coalgebra morphism

id +  </>: (A  +  G, L i )    {A +  H, L f) . (4.5)

We also have to define the natural transformation a L: Ua = > U x L ( a )  . 

Its component on an A  +  F-coalgebra (G, 7 ) is the map inr: G  ► A  +  G.
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By (4.5), naturality is shown, on a morphism (f>: ( G , y ) -----► (H>£) by the

chain of equalities in C â (f> =  inr4> = (id +  <j>)inr =  L(a)(<j>)a^.

E x am p le  4.4 The idea is that of starting with some terms with variables

in X , which are represented by a coalgebra a: A  5- X  +  FA.  Given some

terms with variables in A  then (i.e. a coalgebra 7 : G  ► A  +  FG),  we sub

stitute in them each variable from A  with the term represented by that state 

in (A ,a). The way this substitution is performed is by “putting together” 

the two coalgebras, creating some link which mimic for the variable states in 

(G, 7 ) the same behaviour as the states in (A, a) which they point to.

For example, let (A, a) be the coalgebra

aO  V  
•  •  ^  •

representing (amongst others) the trees

B

/ A V x 2 C

Bt - x  1 a and u ~

x 2 C
II

Let’s suppose we want to perform the substitution y >—>■ t, z u in
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First of all, we represent v via a coalgebra (G, 7 ) depicted as

where v can be retrieved from the topmost node. The image of (G, 7 ) under 

L(a)  is the coalgebra represented below.

Here, the dotted lines indicate the transitions determined by 7  before the 

transformation, i.e. which particular elements of the carrier A  the states 

were pointed to by 7  (those are, in fact, those states whose unfolding in

been redefined in order to mimic exactly the ones of the variables which are 

being substituted for. In other words, the action of the image state along 

the dotted arrows has been lifted to the states in G. The dotted transitions 

are then removed (i.e. they are not part of the coalgebra L(a)( 7 )), therefore 

the states which they point “disappear” from the computation. In fact, we 

could have physically removed them, but in this case it is harmless to leave 

them in the coalgebra, because X X  is a full subcategory of X  +  F^ — Coalg, 

and (in Set) it contains all bisimulations between coalgebras with a finite 

carrier, therefore in the colimit all bisimilar states are identified and there is

A

(A, a) gives rise to the terms t and u above). In L(a)( 7 ), those actions have
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no reason to worry about redundant information. In Section 4.2 we shall have 

a much more refined description of X X , and there we will have to remove 

inessential states.

If we now consider the unfolding of the topmost node, we obtain the tree

A
/  \

C A

which is exactly the desired one: v' =  v[t/y, u/z].

R e m a rk  4.5 Note that the map ini: A  ► A  +  G determines a morphism

of X  +  F-coalgebras ini: (A, a )  ► (A -I- G, L(a)(G,  7 )), as easily checked

by chasing the following diagram:

A ini

X  + F A idx+ înl

We can therefore construct, for any f:  X

— * A  + G
[ini,7]

A  +  EG

a+idpc

X  + F A  + FG
idx  +  t-P’inljFinr]

X  + F{A + G).

(4.6)

R Y  factoring as /  =  i f f +

for some i f  \ Y0  ► Y  +  FY q, the functor A( /)  =  L(if)  o X ( f +) and the nat

ural transformation f A as in (3.10). In particular, given an X  -f-F-coalgebra 

(G, 7 ), A (/)(G , 7 ) is the coalgebra

K o+g K (/+ +idb1 Yo + F G i ^ r + F Y o + F G ^ m i  Y + F ( Y 0+ G )
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and / (̂  7) =  inr: G  ► Y0 +  G.

Notice that, because of Remark 4.5, we have tha t ini: Y q  ► Y0 +  G is a

Y  -f F-coalgebra homomorphism from (Y0, i f)  to (Y0 + G, A (/)(G , 7 )) (replace 

A  with Yq, a  with i f  and 7  with ( f ++\dFG)y  in (4.6)). In particular, it follows 

that

V  =  A ( / ) ( G , 7 )inl. (4.7)

T he P roperties

So, all we have to do in order to prove tha t R  is a monad is to prove that 

assumptions 1  to 3 in Theorem 3.16 are satisfied by (X, U).

•  1. If X  is finitely presentable, then the coalgebra i x  =  ini: X  ► X  +

F X  is an object in X X , and U xix  — X .  In order to show that

colimz^ =  idftx, we show tha t colimz^ =  colim ldjx, and this will

follow, by Lemma 3.9, if we exhibit a 2-cell in Laxc between \&xx and 

L ( i x ), i.e. a natural transformation x : I d jx  ► L(ix)-

The functor L ( i x ) maps an X  +  F-coalgebra (G, 7 ) to the X  +  F-  

coalgebra

X  + G +  FG  ' ^ X  + F X  + F G id+1Finl,Fi"»rlX  +  F ( X  +  G)

and the map inr: G  ► X  +  G is an X  +  F-coalgebra morphism from

(G, 7 ) to L(ix )(G, 7 ), since

L(ix){G,  7 )inr =  (id +  [Finl, Finr])(inl +  id)[ini, 7 ]inr

=  (id +  [Finl, F inr])(in l-I-id ) 7

=  (id +  Finr)7.
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We put X ( g ,7 ) =  'nr: G  ► X  +  G. Naturality follows trivially, since,

for a morphism (j): (G, 7 ) ---- ► (H, £), one has that L(ix)(f> = id* +

(f)\X + G   X  + H .

E x am p le  4.6 The coalgebra i x  can be represented pictorially as in Example 

4.3 by a set consisting of as many nodes as elements in X , each pointing to 

a different element x  £ X .  So, if X  =  {a;i,a;2 ,a;3 }, then the representation 

of i x  is

If we now consider the coalgebra (A, a) of Example 4.4, then L(zx)(ck) is the

by which, unfolding the two topmost nodes on the left we get again the terms 

t and u of Example 4.4.

such that U y(k) f lJx = f +. We choose to this purpose the map k =

•  •  •

coalgebra

2 . Given a map / :  X  ► T Y ,  where X  and Y  are finitely presentable ob

jects, this factors as /  =  i f f  + for some Y -1- F-coalgebra i / ' .Yo  ► Y +

FY q, and A( f ) ( ix) is the coalgebra defined, following (3.10), as

Y q +  F X Y + F Y q+ F X
i d + [ F i n l , F i n r ] .

Y + F ( Y 0+ X )  .

We need to find a morphism k: (>o +  X ,  A ( f ) ( ix ) ) ---- *■ Oo-.1 f  ) in I Y
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[ id y 0 , / +]: Yo +  X  ► Y0. This is a homomorphism, since

(\dY + F k )A ( f ) ( i x ) = (idr  +  [Fidyo, F / +])(i/  +  idFX)inl[idyo, / +]

=  ( id y  +  F [ id y 0 , / + ] ) v [ i d y 0 , f +]

= Vpdy0> /+]

=  i fk.

The zx-th component of / A is the map \ n r : X  ► Yq +  X ,  and it is

clear that UY {k){ fA)ix = [idy0, / +]inr =  /+ .

3. Let now (G, 7 ) be an object in XX .  We want to show that

A( f)L(g)  = L ( A ( f ) g ) l ( U A)g) : l G  — * T Y

and f A()gL = (A( f )g )L (recall that the natural transformation j  is the 

identity).

Given a coalgebra a: A  ► G +  F A  in XG , it is easy to compute that

both A( f )L (G )a  and L (A ( f )G )a  are the Y  +  F-coalgebra

Yq +  G +  A

[ i n l , ( / +  +  [ F i n l , F m r ] ) ( g + i d ) [ i n l , a ] ]

To +  F(G  +  A) 

if -lid
I

Y  +  F Y q +  F(G  +  A)

i d + [ F i n l , F i n r l

I
Y  +  F(Y0 + G + A) 

and likewise, action on maps agrees.
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The (A, a )-th  component of the natural transformation f A0gL is the 

map

A - ^ G  + A - ^ Y o  + G + A

which, by associativity of coproducts, is equal to the (A, a )-th  compo

nent of (A( f )g)L, i.e. the map inr: A  ► Yq + G + A.

G u ard ed n ess

We can then apply Corollary 3.17, and conclude that R  is a monad. We 

now want to show that it is also F-guarded; in fact, strongly guarded. In 

particular, we shall pointwise give, for each X  in Cfp, an X  +  F-algebra 

structure ( x  on R X .  We shall prove ( x  to be an isomorphism of the form 

Cx =  Vlx,<xx], with a x  satisfying the requirements of Lemma 3.19, hence 

the result. In the process, we shall need one further assumption, i.e. that F  

preserves finite presentability. That is to say that F X  is finitely presentable 

whenever X  is. This condition is met whenever C is Set and F  = F% for 

some finite signature E.

First of all, let’s define £x ' X  +  F R X  ► R X .  Since the functor X  +  F

is finitary, we have X  +  F R X  =  (X  +  F)co\imUx  =  colim (X  +  F)Ux,  with

cocone X  +  F j:  X  +  F G  ► X  +  F R X , and we get an algebra map as a

colimit if we can exhibit a map (Hx  5 Cx) in Laxc as follows:

I X  — — - I X

Ux =>Cjjs: Ux
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Analogously, we shall get the inverse f i x '■ R X  ► X  +  R X  of Cx by provid

ing a map (K x , fix) as below

X X  — — * T X

UX Ux

X + F c.
In particular, we shall pose

H x ( G , 7 ) =  ( X  +  FG,  idx +  F j )  { C x ) ( g ,j ) —  idx + f g  (4.8)

and

K x  — Id i x  { P x ) ( G ,  7 ) — 7 : G  ► X  +  FG. (4.9)

The corresponding maps will then be (x  — colimCx and fix — colim/3^. 

Note that in order to define H x  it is essential to have that F  preserves finite 

presentability, so that we can be sure that X  + FG  is finitely presentable.

E x am p le  4.7 The map ( x  is meant to take a set of rational trees, form 

ground terms with variables over them, and “flatten” such terms giving back 

new rational terms. If (G, 7 ) is the coalgebra

representing the terms t = B(x) and u = x, X  = {x, y , z } and E =  {B, C} is
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a signature consisting of two unary symbols, then H x{G , 7) is the coalgebra

representing the terms x, y , z, BB:r, Bx, CB:r and Cx, as expected.

Conversely, the coalgebra map j3x takes a term to the set of subtrees orig

inated by removing the root of the term itself. All such terms are represented 

within the coalgebra we start with, therefore there is no need to alterate it. 

For this reason K x  = Id.

In order to prove that (5X Cx — idx + f r x  and CxPx =  idr x , it is enough,

by Lemma 3.9, to give a 2-cell a: (Id, id )  ► (K x H x ,  P'x^Cx) anci another

r: (Id, id )  ► (HXK X, CxOP'x) suctl that Ux cr =  P'x^Cx and {X + F)Ux t =

Cx^Px- ^  turns out that it is enough to consider =  t ĝ,7 ) — 7 -

We now have to show that ( x  is of the form [rjXl ax], i-e- tha t Cxinl =  r]X - 

We know, using the definition of £x as a colimit, that

Cx =  C x (A  +  F 7 )inl 

= X + F7(Cx)(G',7)inl 

=  X  +  F^yinl,

therefore we have that Cxinl = rjx  = i x  if ini: X  ► X  +  FG  is an X  -1- F-

coalgebra homomorphism from (X, ix ) to (X +  F G , X  +  F j )  and this is the
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case, since the following square commutes:

ini

ini

X  + F X X + F in l

X  + FG

X+F'y

X  +  F ( X  +  FG).

Finally, we should prove that, given a map / :  X  ► R Y , the square

Fs( f )
F R X  —^  F R Y
a x

R X
S ( / )

ay

R Y

commutes, where a x  = Cxinr, but we rather show that

Hf )X T  F R X

Cx

Y  T  F R Y

Cx (4.10)

S(/)
R YR X  —  

where k( f )  is the composite

X  +  F R X  ,f/++ld>K + FY0+ F R X  'd+--(/>y + FY0 + F R Y  y+[Fl/’> y + f r y ,

from which the desired result will follow by precomposing with the right 

injection inr: F R X  ► X  +  F R X .

It is clear by (3.9) that s ( / ) C x  =  colim ( / A0C x)- order to show com

m utativity of (4.10), we can then use Lemma 3.9, provided we show that

k( f )  =  colim (kl) for some (Q , k'): ( X  + F ) U x  ► {Y + F)Uy  and there is a

natural transformation ip\ A ( f ) H x  ► H yQ  with Uy W 0(/AOCx) ~
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i.e. a 2 -cell in Laxc between the following maps

Hx Mf)T X —^ X X ^ ^ T Y Q h yX X  X Y  —^  X Y
UX

UX

X + F c

r

X + F

Let (Q , k1) be defined by the following composite:

Id Mf)X X    - X X  - ^ ^ X Y

UX Ux

X + F Y + F

c

It is trivial that colim (i f f + +  F)  =  i f f + +  id: X  +  F R X  ► Y p F Y 0-\-

F R X , so all we have to show is that colim (y+fXinl, F ( f A)]) is the composite

Y  +  FY0 + F R X  ">Y+FY°+Fs(/)>F  +  F lo  +  F R Y  ldy+1FlJ'ldl , y  +  f r y .

This follows by precomposing with an arbitrary colimiting map Y  +  XL0 +  F 7  

(for 7 : G    X  +  FG)  and chasing the diagram

id  Y+FY0+ F f A
Y + F Y 0 + FG

'^y+fy0+Fj

Y + F Y 0+F{Y0+G)  idy4{Fin'-idl  Y + F (Y a+G)

idy+Fy0+F MfY Y+F A (/)7

Y + F Y 0+ F R X    Y + F Y o + F R Y  , _  > Y + F R Y
id y + F y 0+ F s ( / )  i d y + [ F 7 , i d ]
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where the top row is precisely the (G, y)-th component of id y  +  [Finl, F ( / A)], 

the left square commutes by definition of s( /) ,  as in (3.9), and the right

one because ini: Yq ► Yo +  G is a morphism of coalgebras from (Y0, i f)  to

A (/)(G , 7 ), as we saw in (4.7), therefore

F ( A ( / ) ( G , 7 ) i n l )  =  FiJ.

Having introduced the pair {Q,k'),  all we need in order to show com

m utativity of (4.10) is the natural transformation i p : A ( f ) H x  ► HyQ  =

Hy A( f )  mentioned above. On an X  +  F-coalgebra (G, 7 ), this will be the 

Y  +  F-coalgebra morphism

Y o + X + F G  lid’/+>tidFC> Y0+ FG  — ’S-Y+ FY0+ F G  idy4 <Finl-Fin>ry +  F (y 0+G).

That this is actually a coalgebra homomorphism and a natural transfor

mation is a trivial diagram chase, and on any X  +  F-coalgebra (G, 7 ), both 

natural transformations have the same component

X  + FG  v/++ldFG> Y  + FY0 +  F G idy+1Fi"'-Fin>rlr  +  F(Y0 + G )

so we have that G y (^ )( /A0 Cx) =  and we have proved the following.

P ro p o s itio n  4.8 Given a finitary endofunctor F  on C, the association

X 1------------ ► colimXX =  R X

where X X  is the category of F  -f X-coalgebras with a finitely presentable 

carrier, defines a monad R. I f  F  preserves finite presentability, then R is 

strongly F-guarded.

The monad R is called the rational monad over F.
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4.2 Term Graphs

In this section we shall work in the category Set, and the functor F  will 

be of the form for some finite and finitary signature E, unless otherwise 

explicitly said.

In this setting, we are going to apply Theorem 3 . 1 6  in order to give a 

categorical model of term graphs. These are widely used in computer sci

ence, for instance in implementing a functional programming language like 

Haskell. Intuitively, they are finite terms with loops and shared subterms. 

The advantage of representing programs as term graphs rather than as ra

tional terms is that sharing variables reduces the number of computations, 

whereas the presence of loops still allows to perform recursion. For example, 

the program (5 +  3 )  *  (5 +  3 )  can be encoded as either

* *

() /  \
+ ° r +  +

/  \  /  \  /  \
5  3  5  3  5  3 .

Clearly, in the first case the addition will be performed only once, whereas 

in the second case it will be evaluated twice.

When introducing term graphs, people often ask for variables to be shared 

to the maximum possible extent. Here, we choose to relax this condition, 

allowing such terms as

A and (F)
X X  X

to coexist. This allows to choose for oneself how to handle the resources. 

Concretely, we define term graphs over a Set-signature E as follows.
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D efin itio n  4.9 A term graph with variables ranging over a set X  is a 6 -tuple 

(.S , V, L SJLV, A , r) where

• S  and V  are finite sets;

• Ls is a function from S  to E;

•  A: S  ► C* is a function such that the length of the word A(v)  is

equal to ar(L(v)), where C — S  +  V  and C* is the set of finite words 

over C\

• L v is a function from V to X ;

• r is an element of C  such tha t for any other state s in C  there is a 

finite sequence a i , . . . ,  an such that ai = r, an = s and a* is an element 

in the word A(a*_i).

Here, C  represents the set of nodes (or states, since later on they will be 

elements of the carrier of a coalgebra) of the term graph, naturally split as 

the union of those in S, which are labelled by a E-symbol according to Ls, 

and those in V,  which point to some variable from X  as specified by L v. The 

function A  maps each state in S  to the (ordered) set of its children nodes, 

thought of as the arguments of the E-symbol specified by Ls. Clearly, there 

are as many children as the arity of the E-symbol. Finally, the element r 6 C 

is a chosen root of the term graph, from which all the other nodes can be 

reached.
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For example, if £  =  {A, B, C} is a signature consisting of a ternary, a 

binary and a unary symbol respectively, then the term graph

t =

x x  y

rooted at the circled node A, with variables in X  = {x,y} ,  is represented by 

the 6 -tuple (5, V, Ls, Lv, A, r) where

S  — {Si, S2 , 5 3 , S4 }

V  = {v i ,v2,v3}

r = Si

LS(S2)

L s ( s 3)

Ls{s^j

A ( s i )

^4(s2)

A ( s 4 )

S2 S3

V1 V1

V2

U3 S4 .

Ly{v l) 

L v{v2)

L v ( v 3 )

These data can be presented much more elegantly as an X  + Fx-coalgebra 

with carrier C. The structure map is

7  =  [Lv, (La, A)]:C = V  + S  * X  + F^(V  +  S) (4.11)

where i is the inclusion of V  in X  as a subset, and (L, A) maps each state 

s to the pair (L(s), j4(s)), which is an element of F(C) = UneN x Cn 

(more precisely, it will be an element of the particular £ n x Cn for which 

n = ar (L(s))).

The information on the root transposes here to that of a generator.

D efin ition  4.10 Given an F-coalgebra (G, 7 ) for an endofunctor F  on a 

category C, the subcoalgebra of (G, 7 ) generated by S  , written (5), is the 

smallest subcoalgebra of (G, 7 ) containing S. Formally, if i: S  ► G is
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the inclusion of S  in G , then (S) =  (H, £) is such that there is a monic

j: S  >■ H  and a coalgebra monomorphism h: (H , f )  ► (G, 7 )  for which

U(h)j = z, satisfying the universal property that for any other with

a monic j 1: S  ► H'  and h!\ (H ' , £ ') -----► (G, 7 )  with U(h')j ' =  i there is a

(necessarily unique) morphism k: ( H , £ ) -----► ( // ',£ ')  such tha t h’k =  h and

U(k) j  = j'.

In the particular situation we are dealing with now, the subcoalgebra 

generated by a subobject can be described explicitly in terms of reachable 

states. If (G, 7 )  is a coalgebra for the Set-endofunctor and S  C  G, then 

the coalgebra (S ) has as a carrier the set of all those states in G which can 

be reached starting from a state in 5, in the sense made precise below.

First of all, let’s observe that, since all polynomial Set-functors preserve 

weak pullbacks, the carrier of (S) is obtained by considering the intersection 

of the carriers of all subcoalgebras of (G, 7 ) including S  [52]. In order to show 

the connections with the root of a term graph, though, we need to introduce 

the notion of path in a coalgebra.

D efin itio n  4.11 Given an F-coalgebra (G, 7 ) and states s , t  6  G, a path 

from s to t is a sequence ao, 0 7 , . . . ,  an in G with do =  s, an = t and such 

that Oj+i 6  7 (dj). Given a subset S  C G and a state t, we say that there is 

a path from S  to t if there is a path from some s € S  to t. If such a path 

exists, then we say that t is reachable from s (or 5, accordingly).

When we say that df+i € 7 (dj) we are, in fact, abusing notations. We 

know tha t y(dj) is of the form 7 (d») =  ( /, (gi , . . .  ,gm)) £ where /  is
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an ra-ary function from E. By a i + 1 G 7 (a;) we mean that a^+i is an element 

of the m-tuple (<7 1 , . . . ,  gm).

P ro p o s itio n  4.12 Given an F-coalgebra (G, 7 ) and a subset S  of G, the 

coalgebra (S) generated by S  has as carrier the set R{S) of all states in G 

reachable from S , with the obvious induced coalgebra structure.

P ro o f. The set R{S)  is formally defined as

R(S)  = {g e G  | 3a0, . . .  ,an e  G ,a0 € S ,an = g, ai+1 G 7 (ai)}-

To show that 7 induces a coalgebra structure 75 on R ( S ) ,  we need to show 

that for all g  in R { S )  their image 7 ( g )  belongs to F ( R ( S ) ) .  If a o , . . . ,  an is a 

path from s G S  to g  and 7 ( g )  =  (/, (<71,..., g m ) ) ,  then a0, . . . ,  an, g j  is a path 

from s  to g j  for all j  G {1 , . . . ,  ra}, therefore g j  G R { S )  and 7 ( g )  G F ( R ( S ) ) .

So, ( R ( S ) ,  75) is a subcoalgebra of (G, 7) including S .  By the universal prop

erty characterising it, then, we have that (S ) C R ( S ) .  We shall now prove 

that R { S )  is contained in any other subcoalgebra of (G, 7) containing 5 , so 

that R ( S )  C (S ) and therefore they are equal. Let (G', 7') be a subcoalgebra 

of (G, 7) containing 5 , and let g  be an element of R ( S ) .  We shall prove, by 

induction on the length of a path from S' to g , that g  belongs to G ' . If <7 G S 

(i.e. if the path has length 1), then trivially g  G G ' . Suppose that ao,. . . ,  a n  

is a path from ao G S  to g  =  a n  and assume by inductive hypothesis that 

a0, . . . , a n_i G G'. Then, g  G 7(^-1) = 7'(an-i) = (/, ( 9 u  • • •, 9n ) ) ,  with 

g  =  g j  for some j .  Because (G', 7') is a subcoalgebra of (G, 7), we have that 

9 i i  • • • ? 9m  £ G', and in particular g  G G', hence the proof. □
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Having clarified this, it is now obvious tha t the concept of root for a term 

graph has its categorical counterpart in the fact tha t (G, 7 ) is generated by 

r. Hence, the set of term graphs with variables from a set X  is the set of 

X  +  F-coalgebras with a finite carrier, equipped with a choice of a specific 

generating element in the carrier (up to isomorphism). We shall call such a 

triple (g , G, 7 ) a rooted coalgebra.

Conversely, we can think of any rooted coalgebra as a term graph. Given 

(g, G, 7 ) with G finite, we can form the two pullbacks below:

iniG, G Gf

7 v 7

t ' >

7 s (4.12)

ini X  + FG FG

where clearly G =  Gv +  Gs. The map ys maps any element in Gs to a pair 

consisting of an n-ary term constructor and an n-tuple of states in G. We 

get the map L  by composing % with the first projection and the map A  by 

composing it with the second. The map Lv is given by yv. The root, of 

course, will be given by g itself.

R e m a rk  4.13 Note that, for the presence of roots, we can not abstract 

from Set to any lfp extensive category (where the same construction could 

otherwise be performed).

T h e  F u n c to r  (X, U)

In order to apply Theorem 3.16 and get a monad of term  graphs, we need 

to get G( X)  as a colimit. The most obvious way to achieve this would be to
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identify each term graph with its root, and consider their collection. It is not 

hard to see that this is in fact a set, because there are only a set of finite sets, 

up to isomorphism, and Set is locally small. So, the category X X  would have 

as objects rooted X  +  F-coalgebras with a finite carrier. The forgetful functor 

Ux  would map such a coalgebra to its root. Maps in X X  would then have 

not to identify a root of a term graph to the root of a different one, otherwise 

the induced map via Ux  would identify the two term graphs in the colimit. 

For this reason we would have to choose as maps in X X  just isomorphisms 

of coalgebras (this way, we avoid having multiple copies of the same term 

graph), or equivalently, we could consider as objects representatives of the 

coalgebras up to isomorphism and the discrete category on such objects.

It is intuitively clear that the colimit of Ux  as defined above is G(X) .  

However, this solution is not useful to our purpose, since for the theorem 

to work X X  has to be filtered, and the category we just described is clearly 

not. For instance, there is no term graph to which we could map both of 

the following ones, because the roots (represented by the circled states) have 

different labels.

(AX

x

There is, however, an easy way around the problem. Let X 'X  be the cate

gory we just described. Then, the completion of X 'X  under finite coproducts 

in X  +  F  — Coalg (in less categorical terms, we are considering term graph
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forests), is obtained as follows. Let C be the free category with finite co

products over T 'X .  Then, the inclusion of T 'X  into the cocomplete category 

X  +  F —Coalg determines a functor from C to X  +  F —Coalg which preserves 

finite coproducts. The completion of T 'X  in X  +  F  — Coalg is the image of 

tha t functor. We shall take tha t image as our X X .  In order to show that it 

is a filtered category, it is now enough to show tha t C is, and this follows by 

the following lemma.

L em m a 4.14 The free category with finite coproducts D over a discrete cat

egory C is filtered.

P ro o f. Let C be a discrete category. Then, the elements of D have the form 

D  = E fc i  Ci, where C* is an object of C for any i. Arrows from such a D  to 

D' = £ , m=i Cj in D are of the form /  =  [injjj=iv..)n, where for each i there is 

an index ji G {1, . . . ,  m} such tha t Ci =  CJ., in^ is the inclusion of Ci in the 

coproduct D' and /  is the copairing of such injections.

We want to show that D is filtered. Given objects D  and D' in D, we can 

clearly form their coproduct, and consider the inclusions

D ----- — +  D '*— - -------D'

Given two parallel maps /  =  and g = [ in jjj^ ...^  from D =

S L i  Q  to D' = Y l ’jLi Cji we have tha t Cj. = Cl. for a l i i  G {1, . . . ,  n}, 

therefore we can consider the object

D " = i i c ’u +  e

and the map h: D '  >■ D" defined as h = [hj]j=it...,n where hj = in j if

j  hi 3 ^  X f°r a^ L otherwise hj =  inir-C'j. =  C[ -----► D". This clearly
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coequalises /  and g , since it maps C [  and C j .  to the same summand in D ", 

thus concluding the proof. □

So, we finally have a candidate for XX.  Objects are of the form T = 

, 7 i) where each (<7i,(2i,7i) is a rooted X  +  F-coalgebra with a 

finite carrier, and arrows are copairing of injections. Sometimes, we shall 

write a T as above in the form Y = ({^i , . . . ,  gn}, G, 7 ), where (G, 7 ) =  

7 i) is a coproduct in X  +  F —Coalg. The functor Ux will map such 

a T to the set {g i , ..

We know by Lemma 4.14 that X X  is filtered, so all we have to do in 

order to apply Theorem 3.16 is to exhibit a lifting for (X, U) and show that 

properties 1 to 3 therein are satisfied. Before that, though, we need to define 

the action ofX on arrows. This is, indeed, quite straightforward: given a map

/ :  X  ► Y  in Set, we associate to it the functor Xf\  X X  ► X Y  mapping

({0 1 , • • • > 9n}, G, 7 ) to ({0 1 , . . . ,  gn}, G , ( /  +  id)7 ), the natural transformation

U x  ► UyX(f )  being the identity.

E x am p le  4.15 As we did for the rational monad, we shall provide in this 

section a few examples, hoping to make the reader aware of the analogies 

and differences between the two cases.

For example, in the case of the rational monad,the functor U was mapping 

a coalgebra to its carrier. In particular, an element x  in the carrier was 

mapped to the rational term representing the evolution of the system starting 

at x. Here, instead, we map a term graph forest 7*) the set

{#i> • • • ,9n}, where gi is meant to represent the whole term graph modelled
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by (G j,7 j). So, the coalgebra

X  ®B
A 1 b•  •

O  I

y ^ S
(where the roots are the circled states) will represent the term graphs

A B
/ \  , I

x  A and B
( ) I
y x

Functoriality of X, again, models variable renaming. If / :  {x, y }  ► {z}  is

the unique possible arrow, for instance, then the coalgebra above becomes 

under the action of X( f )

X  ®B 
• •

which models the term graphs

A B

/  \  and B
( ) I
£ Z

The Lifting (L , ()L)

We now turn to the definition of the lifting (L, ()L). Given tha t X X  is the 

free completion under finite coproducts of T 'X  in X  + F —Coalg, we can define 

the functor L(T) as the free extension of a functor from T'({gi , . . .  ,#n}) to
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XX, where F =  ({<7 1 , . . . ,  gn}, G, 7 ) is an object of XX. That is to say, the 

action of L(F)  is completely determined by the action on rooted coalgebras 

of the form (a, A , a) in T{gi , . . .  ,gn}. Such action we define as

L (r)(a , A, a) = (a, A , a)

where the triple (a, A, a) depends on whether a belongs to As or to A v, 

defined by pullbacks as in (4.12).

If a G Aj5 then we put a = a,

4̂ =  ^ 2  Ga +  4̂s?
a£Av

where for each a G A v a(a) = gi for some % and Ga is the coalgebra Gi , and

—  /'■* a  ^ ^ a "^Q s v  771 /  v  '  s i  \  7-1 a - ^ + [ ^ r in I X ( o :v + i d ) ]  , ^  .a =  Ga+As - X + F ( £  Ga) + F A ----------------- * X + F ( 2 ^ G a+ A s).
d̂ Ay d̂ Ay

Here the function ayi Av  ► YlaeAv Ga maps an element a to the element

a(a) = a v(a) considered as an element of Ga.

If a G A v, then it will be L (r)(a , A, a) =  (ga, Ga, j a) where the subscript 

a is the specific i for which a  (a) =

The component of the natural transformation FL corresponding to the 

object ({fli, . . . ,  an}, A, a) has to be a map of the form

{o-i,. . . ,  dn} | £ A v} U }di | di G -Ts}.

This will map the element di to itself if di G As, and to gai = a(di) if di G A y

(where i = 1, . . .  ,n).  Naturality is easily checked.

Finally, given a morphism 0: F  ► A in XX, we need a natural trans

formation (f)L: L ( r )  ► L(A)TUx(f) such that Ux(<t>L)FL =  AOj Ux<t).
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Let’s consider the object A = a *) ^{UxL).  Then,

n
L(P)A =  ^2(ai,Ai,6ii)

2 =  1

and writing </>0 for Ux<t>

n
L ( A ) l ( M A  = J 2 ( < X , S ' i),

2 = 1

where a' =  a*, A' =  Ai and a[ — (</>o +  FAi)ai.  The coalgebra {A^a^) 

will therefore have as carrier the set Yha^Ai D a +  A is. Notice in particular 

tha t A'iv = A iv and a'iv = <f>oaiv, hence, because </> is a morphism in X X , 

{Ga, 7 a) = {Da, 6a) and gai = dai for all i =  1 , . . . ,  n.

In case a* G j4,-s, the two coalgebras (a5,i4j,5i) and (a', A'i} a-) become 

equal:

Ai — Gq-\~ Aj
a € A iv

E  7a+«i
i€Aiv

X + F (  J 2  G a) +  F A i
a £ A iv 

id + [ F in l ,F (a i7 f id > ii s )]

X  + F(  ^  G a +  A i s) 

Likewise, if a* € A;v, then

£>a +  i4js — A\
a £ A iv

T .  Sa+(*i s 
a€Aiv

X  +  F (  D a) + F A
a £ A iv

id+[Finl,F(a^ -l-id^. )]

X + F (  £  D a +  A is ).
a £ A iv

{ai, Ai, ai) {da{,Gai, r)ai) {dai, Dai, Sai) { îi Ai, cq)5

hence we can define <f)L to be the identity, which is clearly a morphism in 

X X .  The equation then reduces to TL =  and this is easily shown

pointwise.
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E x am p le  4.16 The lifting is again at the core of the definition of the substi

tution functions. Suppose we have the coalgebra T =  (gi, 7i)+(<72, G2, 72)- 

Here we are not interested in the internal structure of the GVs, so we shall 

represent them diagrammatically by

where the circled gi s are the roots, and the rest of each coalgebra Gi is 

enclosed in the corresponding box. Let’s now consider the coalgebra

(a, A, a) =

o

in Z{gi ,g2}. Then, its image along L(r) is obtained by removing each vari

able state and plugging in a copy of the subcoalgebra of T generated by the 

corresponding state:

L(T)(a ,A ,a)  = 52,

¥

Here the dotted parts have been removed, and the fresh copies of the corre

sponding coalgebra have been introduced.

In the case of the rational monad, we did not have to worry about re

moving redundant elements in the coalgebra. The reason for tha t was that,
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as explained in Example 4.4, the category X X  there was including all bisim

ulations. Here, we explicitly avoided this to happen, by allowing only few 

arrows in XX\  therefore, our lifting is necessarily more refined.

In case a G A y, then our coalgebra is necessarily of the form

99i

for some i. Removing that only state and replacing it by the corresponding 

coalgebra as before yields the result (<&, G*, 7 *).

We are now in a position to define the substitution function s. Let 

/ :  X  ► G Y  factor as

X    <~GY

1+ \  /  if
Y0

(4.13)

where F0  =  {Vu ■ ■ ■. Vn) and i; =  ]C"=1 (2fc, Yit X i ) .  

Then, for f  =  Y{J‘=i(S}- Gj, 7 ,) in I X ,  we have

A (/)(T) =  L(i f ) l ( f +)( r)
m

=  L(i f ) Gj, ( /+  +  F G j h j )  (4.14)
j - 1

m
= Y , ^ Gj,ij),

3 = 1

where 7 '- =  ( / + -f- F G j) j j ,  whereas the map

( / A)r =  ( i / 0 i /+ ): {5 1 , ■ ■ ■, gm}  -  { / + (Sj) I 9j € Gjv} U {gj \ gj € GJs}

(4.15)

maps an element gj to itself if gj € Gjs and to f +(gj) if gj € Giv.
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The Properties

Bearing this in mind, we can now show that (X, U) and (L , ()L) satisfy prop

erties 1-3 required in Theorem 3.16 to ensure that the functor G carries a 

monadic structure.

1. We need to exhibit an object ix  in X X  such that U xix  — X  and 

colimz^ =  \ 6 q x - T o  this purpose, we shall put ix  = ( X , X ,  ini), which 

is clearly a coproduct:

i x  = £ ( » .  {a;}, ini) where ini: {a;}------- {a;}-|-F{a;}.
x £ X

Clearly, U xix  — X .  In order to verify the other equation, consider the 

component (z£)r  =  of for an object V = X)"=i(p*> Gi, 7*)•

For any z, we have the following morphism in X X

7Tv+'dGis
Gi

7 i

► S  +  Gi
g€Giv

X + F G i -

q+FGiv+'dGiJiis

  _______^ X  +  F (  ^ 2  { Xg }  +  G i s)
i d x + / r ( 7 i v + i d G i J  g€Giv

where q\ J2geGi { ^ a )  X  maps xg to itself as an element of X .  The

underlying map Ux (j 2  +  idcis) is precisely the IV th component of zj ,̂ 

whence
n

i }x ) r  =  U x(^ 2 ,(r(iY +  id Gis)).

We then have that colim(z^) is the only map making the following
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diagram commute for any T :

U x r  (‘* )r > Ux (L{ix )Y)

r £(*x)r

G X  ,.M > GX;colim yix )

but, since (z£)r  = +  i d c j ) ,  we have that

L{ix)T( iLx )v =  r,

hence colim (i^) = id^x-

E x am p le  4.17 In particular, variables are still realised as in Example 4.6. 

Pictorially, we represent ix  as

-

where X  =  {aq,. . . ,  x n} is a finite set.

2. We require the existence of a map k: A( f ) ( i x ) ----► i f  in T Y  such that

U y k ( f A)ix =  / +, with the same notation as in (4.13). The source of k 

has the form

A (/)(**) =
xex

where yx = f +{x) 6 Yq, Yx = Y{ for tha t index such tha t f +(x) = yi 

and Xx — Xi: Y {  Y + F Y i  is a summand in if.

We shall denote by inj. the inclusion of the summand (yx , Yx,Xx) in the 

coproduct i f  = X ^ = i T h e i r  copairing as x  ranges over X  

will be denoted by [inj.]. W ith this notation, we can define the map k
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as follows:

liZxGxiyxi Yxi Xx)_<xex 

Eix£X X

Y + n Z x e x i y ^ X * ) ) Y + F [  in*

-Y?i=i(yi,YuXi) =  v

E i = l  X i

In particular, fc(?/x) — Vi — f +(x ) for x E X .  It follows that 

C/y(/c)(/A)ix maps the element x to f +{x), therefore U y(k ) ( fA)ix =

S + -

E x am p le  4.18 Suppose X  = {a, b, c}, and

with f +: X  ► {gi, g2, #3 } mapping a and b to gi and c to g2-

Then, A( f ) ( ix )  is the coalgebra

cl

5 ®
K

5 1 ® 5 2 ®

where, as before, the dotted states have been removed. The map k will then
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act as follows
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3. For this, let A = 5Z”=1(uz, Ai, ai) be an object in X(U xT), where T =  

is an object in X X , and i f  =  Y7i=iiyhYuXi)- Then, 

we want to define a 2-cell between the two following arrows in Laxset, 

where T =  A (/)T :

Set

and

T \ p l , • • • ; 9 m  j  ^  , . . . , 9m} X Y

(n

Set.

If we calculate the functor A(/)L(r) on a rooted coalgebra (a, A, a)
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with a € A s, we get

A(f)L (T ) (a ,A ,a )

=  A(f)(a, ^ 2  Ga+ A s, [(idx+Finl) ^  7 a, i r (a v +  idJ4 ,)a s])
f l G - A v  a G A v

Ga+ A s, [ ( /++Finl) 7 a, ■F(av +  icUs)a!s])
a G A v  a G - A v

— (a > ( X ]  ( S  ^ i)+ ^ o s) +  ̂ s jO
aGAv ĝ Ga-v

where £ is the composite

E a e A v E s e G a v  ^ ) + G fa s ) + ^

( E o € A v ( S f f € G a v  X < ? ) + 7 a s ) + Q;s

V + E « = „v( ( E ,6G. T FYg) + F G a) + F A  (4.16)

i d y + [ F i n l , F ( 7 a ^ + i d G a s ) , F ( c ^ + i d J4 s )]

r + n ( E « * . ( E * = c„  r 9) + G j + A s).

In fact, there is a slight abuse of notation in the diagram above, whose 

purpose is to maintain the notation readable. When considering the 

coproduct of the coalgebras Xg> we are generating several copies of Y,  

which are then all identified in the unique copy of Y  appearing in the 

target of the first map.

The coalgebra A (/)T  has been described in (4.14), and with the same 

notation the set Gj now becomes the coproduct Gj = ^2geGj 

whereas 7 ' is the composite (idy +[Finl, i r ( ^ + i d GjJ ] ) E , /GG,-v Xp+7 ;s)- 

The map ( / A)r was described in (4.15), and we shall write Gq for its 

target. Using these elements, we can describe the action of the functor



CH APTER 4. WORKED EXAM PLES 187

L (A ( /) r )Z ( /A)r on the same rooted coalgebra (a, A, a):

L ( A ( f ) r ) Z ( f A)r ( a , A, a )  = L( A( f ) r ) ( a ,  A, (( /A)r + idFA)a)

= (a> X / ( T i  0)
a(zAv gGzGav

where JZ g e G av  Yg+Gas is the summand J 2 g e G a ^s+^as ôr w^ich a  (a) =  

gi and (3 is the same composite as in (4.16).

Analogously, if (a, A, a) is a rooted coalgebra with a G A v, one can 

show that the two functors agree. Therefore, we have the equality

A(f ) L(T)  = L (A (/)D Z (/A)r .

Moreover, the natural transformations / A0T L and ( r ) L0 j ^ Âr agree on 

each object, therefore we can choose the identity 2-cell between them.

W ith this, we have shown tha t the hypotheses of Theorem 3.16 are sat

isfied, proving the following:

P ro p o s it io n  4.19 Given any finite and finitary signature £  on Set, the 

monad mapping each set X  to the set G X  of E-term graphs over X  defines 

a (finitary) monad.

G u ard e d n ess

Let’s now explore guardedness properties for the monad G we just described. 

Intuitively, it is clear tha t each set G X  is an F-algebra, and also tha t this 

algebra preserves multiplication. However, there is no reason to expect such
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a structure to be bijective. In fact, the action will take an n-ary term con

structor A and n term graphs t \ , . . . ,  tn to give back the term graph

A

h • • • tr

There is therefore no way to get a term whose root has a shared child, like 

the one depicted below; hence, the algebra structure is not surjective:

x y B

z.

In order to prove formally that G is F-guarded, we shall use Theorem 3.20, 

or more precisely, its corollary.

For that, we have to exhibit for any set X ,  a map (Hx, o/x ) in Laxset from

FUx  to Ux such that, for all f : X  ► GY,  diagram (3.16) commutes up

to a 2-cell.

Given an object T =  in we put

H x ( T ) =  (*.#>& )
teF{gi,...,gn}

where (Ht,£t) is defined as follows.

First of all, we look at the term t € F {g i , . . . ,  gn}; this will be a ground 

term over E, i.e. it will be of the form A(^^, . . . ,  g^J) where m  is the arity of 

A and ij £ {1 , . . . ,  n}. The coalgebra (Ht , ft) will then be defined as

m m
6: Ht =  +  ^ ^ ^ ) E 7 Ji] ^  +  F ( w  +  ̂ G . )
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where dt : { t } -----► X +  F({ t}  + Y?jLi Gij) maps t to itself, considered as a

term in F { g i , . . . ,  gm} C F (H t).

Given another object A =  S f =1(d/, A> ^/) and a morphism ip: T  ► A

in X X , every will be mapped to some di{, with

(4-17)

Therefore, ip induces a map ip': {gu . . . ,  pm}  ► {dh , By applying

F  to the composite of ip' with the injection of {d^ , . . . ,  dim} in {d i , . . . ,  dp},

we get a map ip: F { g i , . . . ,  gm}  >■ F { d \ , . . . ,  dp}. Notice that, because

of (4.17), for each t in F { g i , . . . ,  gm}, the coalgebra (Ht,£t) is isomorphic 

to (#^(t)jf^(t))- The action of H x  on ip will then be defined by mapping 

each summand (t, H t , f t) in H X (P) to the corresponding {ip{t), H ^ ty  £ ^ ) )  in 

HX (A).  The association is clearly functorial, and UXH X — FUX, therefore 

we can choose a'x  to be the identity.

E x am p le  4.20 The intuition behind the definition of H x  is very simple. If, 

for example, t i , t 2 £ G (X)  are two term graphs obtained as the image of g\ 

and g2 in the coalgebra

then the term k ( t i , t 2) in F (G (X))  is obtained as the image of the root of 

the following coalgebra, where together with the variables we have included



CHAPTER 4. WORKED EXAMPLES  

also the whole coalgebras G*.

9i

190

JJ2

Given a map / :  X  ► G Y  factoring as above, it is an easy but lengthy

computation that the two functors A ( f ) H x  and H y A ( f )  are equal, as well 

as the natural transformations f A§a'x  and a'Y0 F ( f A). Therefore, we can 

consider the identity 2-cell in between them, and by Corollary 3.21 we know 

that G is F-guarded.

4.3 Some Considerations

In this chapter we gave two examples of applications of the results presented 

in Chapter 3. In our opinion, these are sufficient to motivate the introduction 

of the machinery. Although the notation makes instantiation of the theorem 

quite laborious, the concepts behind the construction are relatively easy, and 

it is not difficult to understand what choice of maps is the most appropriate. 

We hope that the examples provided along the computation support this 

comment, having showed to the reader what intuition lead us through the 

work.

Although the monad of term graphs is intrinsically related to the cate

gory of sets (but it is not excluded that one can extend it to some concrete 

category, like Pre, maybe recovering the notion of term graph rewriting), the
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construction of the rational monad works in any lfp category, also for func

tors which do not arise from a signature. The wide variety of applications 

have not been investigated for the purpose of this thesis, but they should 

cover many areas of mathematics and computer science, where some finitary 

operation is iterated to get some result in the limit. Only one example is ex

ploited in the next Chapter, where we shall reinterpret some classical notion 

in the theory of term rewriting systems by means of the rational monad and 

the monad of infinite terms.



Chapter 5

Parallel R ew riting

In this chapter we present a nice and simple application to term rewriting of 

the theory we have developed so far. In detail, we shall recall the monadic 

semantic for term rewriting as proposed by Christoph Liith and Neil Ghani 

in [42, 43]. In this framework, we have a natural way of identifying those 

rewrites which can be performed in parallel. When working with finite terms, 

considering parallel rewrites does not enrich the multiple-step rewrite rela

tion; however, things change when one considers infinite terms.

Suppose we have the rule {x} b p: A(x) —>• B(x), and consider the infinite 

term Aw =  A(A(A(.. .))).  Then, intuitively, it makes sense to consider the 

simultaneous replacement of all the A’s with B’s as a single rewrite step, 

leading from ku to Bw. Clearly, such a rewrite is not derivable in finitely 

many steps from the given rule. W hat we need is a coinductive interpretation 

of p, and that is what we gain by considering the monad of infinite terms, 

which is pointwise the final coalgebra over the functor building terms over our 

signature. In other words, we shall replace the free monad T in the classical

192
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monadic semantics of rewriting by the free completely iterative monad T" on 

the same endofunctor.

In [18] Corradini and Gadducci use infinite parallel rewriting to define 

rational rewriting. In our setting, it is perfectly reasonable to replace T u 

by the rational monad R in the relevant places, and we can easily provide a 

monadic semantic for all these different kinds of rewriting.

This chapter is organised as follows. In the first section we shall recall the 

presentation of a term rewriting system in the Kelly-Power style, exploring 

in detail how the rewrites are generated and how parallel rewrites are mod

elled. This will lay down the intuition needed for the second section, where 

the theory is extended in ordered to capture infinite parallel rewriting. In 

the third section, rational rewriting is tackled. In each case, we provide a 

categorical semantic, and we show that it agrees with the standard notions 

as introduced in [18].

5.1 Categorical Term R ew riting

In Example 1.45 on page 58, we gave an example of how to model a t r s  

categorically, by means of a monad modelling an equational theory on Pre. 

The same technique can be applied in order to model any term rewriting 

system. We shall now explain how to get from a t r s  (E, 71) to an equational 

theory over Pre, presented by means of a finitary monad on tha t category. 

In other words, we will describe a monad T(s,-^) on Pre such tha t T ^ ^ X  is 

the preorder defined by the rewrite relations induced by the rules in 71 over 

the set of terms T ^ X .  In fact, the presentation allows for the variables in
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X  to form a preorder, but the usual notion can be recovered by taking the 

preorder to be discrete. The content of this section is presented in Christoph 

Liith’s PhD thesis, to which we refer for further reading [42].

So, let S be a finitary Set-signature, and 71 = {Xi \~ pp. L —> Si}iEi a set 

of rules. We define a new finitary signature S ' on Pre. This will be given 

by presenting for each arity, a preorder of function symbols. Finitary arities, 

in Pre (as a category enriched over itself), are given by preorders with a 

finite underlying set. In particular, S ' will be defined only on those finite 

preorders which are discrete (we shall denote them by n, where n  is the 

number of elements), meaning by this that S'(p) is the empty preorder for 

any other arity p. On the arity n, we shall define

E'(n) =  E ( n ) +  ^  ( k ^ n ) .  (5.1)
i E l , \ X i \ = n

In other words, there is a term constructor for each n-ary term constructor 

in S, and no rewrite is introduced amongst them. Further, we introduce two 

more function symbols for each rule in 7Z. The symbols lj and r* are intended 

to stand for the left and right handside of the rewrite rule pi, respectively, 

and for that reason they are related by the preorder. These last symbols are 

the ones which add some rewrite when building terms, as the only rewrites in 

our signature are defined amongst them. We shall often refer to the collection 

of the U and r* symbols as place-holders.

Equations are our means of forcing the equality between the place-holders 

and the terms which they stand for. For each rule pi in 71, we need an 

equation to set li =  ti and another one to set r* =  s*. In the framework 

of Kelly and Power [37], equations are described by another signature, and
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their left and right handsides are specified by two monad morphisms A and 

p. Our signature for equations will be denoted by E , and is again defined 

as non-empty only on discrete finite preorders. Moreover, it will define no 

ordering between the term constructors. The actual definition is

E ( n )=  J 2  (e'i O '  <5 '2 )
iEl ,  |X j |= n

The symbol e\ stands for the equation U =  L, whereas e\ stands for r* =  

Si (i £ I).  Given these signatures, we can form the two free monads on 

them, which we shall denote by Tjy and TE. Since T# is free over E , the

aforementioned monad morphisms A, p\ -----► T^y are determined by their

restriction \ ' , p ' \ E -----► Tjy J7 , which we can easily define by putting, for

each i G / ,

A'(ej) =  k A '(e'i) =  n
(5.3)

P'(e') =  ti =  St.

Having defined this parallel pair of monad morphism, we can now consider 

their coequaliser T ^ ^ ) :

T e > (5-4)

We know by [34, Section 26], tha t the preorder T ^ ,n ) X  is the free Tjv- 

algebra over X  making A and p equal (i.e. the free object M  on X  having 

an algebra structure (M ,a)  for the monad T & and such that aAm — &Pm )- 

Lfith, in his PhD thesis [42], gave a concrete description of the preorder 

While he was making use of the Kelly-Power framework, he did 

not make it explicit, and in particular he did not show how tha t preorder 

satisfies the required universal property. Since we shall need th a t property
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also in the next sections, we will investigate it thoroughly, and for this we 

find convenient to give a different description of the preorder.

We know that T&X  is the free preorder generated by E' on X .  Its carrier 

is the set of finite terms built over E', and a term t rewrites to a term s if and 

only if t and s differ at most for some occurrences of li-symbols in t which are 

replaced by the matching r^’s in 5. So, for example, the term A(B(/i(rr), y )  

rewrites toA(B(ri(a;), 7 2 )).

P ro p o s itio n  5.1 The preorder T p j q X  is a quotient o fT ^ 'X  under the re

lation ~  inductively defined by the following clauses:

t e T ^ X  ti ~  s i , . . .  , t n ~  sn, f  € E'(n)
[r e f l ] -----------------------------  [c o n g ] -------------------------------------------------------------------------------------------------------------------------

t ~  t f [ t i / x u . . . , tn/ x n\ ~  f [ s i / x u  . . . , Sn/ x n\

s ~  t o'. X {  Ty,>X
[ s y m ] ------------------------------------------  [ s u b l ] -------------------------------  i €  I

t ~ s  o(li) ~  o{ti)

t ~  s, s ~ u  o \ X i  *~Ty, 'X
[ t r a n s ] --------------------------------------------------------- [ s u b r ] ----------------------------------------i € I

t ~ u  o(ri) ~  o(si)

P ro o f. Let (M, —») be the defined quotient q: T ^ / X  ► M.  We are going

to prove its universal property. It is clear by [ c o n g ]  that all function symbols 

preserve the relation therefore, an algebra structure a  for the endofunctor 

Tz> can be induced on M. The fact that all functions are monotone is trivial, 

since the order on M  is the one induced by q. Laws [ s u b l]  and [ su b r ]  ensure 

that (M, a) is indeed an algebra for the monad Tjy and that the equality 

a \ M =  & Pm  holds. The unit 77': X  ► M  is defined by the composite
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We now need to show that the 4-tuple (tj', M, —►, a) is universal, i.e. that 

given any other T^-algebra (M ', > , /3) such tha t (5\m > =  PpM1, and any map

<j>: X  ► M'  in Pre, there is a unique -algebra morphism <j>' from M  to

M'  such that fir)' = p.

Because (M',/3) is a Tjy-algebra an (TjyX, p) is the free such, </> induces a 

unique morphism (j)\

T%,X  Tg<A » Tz’M 1

T v X

(5.5)

M'.

We complete the proof if we show th a t p factors through M, i.e. tha t (j>(t) = 

(fr(s) whenever t ~  s in T ^ X .  We prove it by induction on the clauses 

defining ~ . For [r e f l ], [s y m ] and [t r a n s ] it is obvious. The fact that, for

a substitution a : X i  5- T^/X, = (f>(cr(ti)) and <f>(a(ri)) =  p(a(si))

follows from the fact tha t P satisfies the equations. In fact, a(li) is the result 

of applying p  to the term . . . ,  crn), where cq is the term cr(xi). By (5.5) 

we then have

<j>{p(h((Ji , . . . , a n)))  =  P(li(<j>(a i ) , . . . , ^ ( a n)))

=  P ( L \ ^ { a i ) / x u  . . . ,  ^ { a n ) / x n])

=  <j>(p{t i [<j i /xu  . .  . , a n / x n]))

and similarly for 7% and s* (i G I).  Finally, if 4>{t\) =  </>(si),. . . ,  p(tn) = </>(sn) 

and /  is an n-ary function symbol from E', then we want to show tha t
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. . . ,  tn)) = ^ ( /( s i ,  • • •, sn))- This follows again from (5.5), since 

?(/(*  =  ?(M /(* i, •■•,*«)))

= / ^ ( / (0( s i ) , . . . , 0 (5n)))

=  ? ( / ( s i , - . - , Sn ) ) 5

where we write / ( £ i , . . . ,  tn) to indicate both the term in T |,X  and its image 

under fi. □

Given the way we defined the rules, it is quite easy to show that in any 

^-equivalence class in T%>X there is precisely one term from T%X (i.e. a term 

built solely on E-symbols, with no place-holders). The quotient T ^ n ) X  can 

therefore be seen as a preorder on T^X, and it is not hard to see that it is the 

one generated by the rules. A term t  in T^X rewrites to s G TSX  if and only 

if t  ~  t' and s  ~  s '  in TS/X, where t' is a finite term with some occurrences 

of some Vs and s '  is that same term with those occurrences replaced by the 

corresponding s. It is then clear that t' —> s' in T^'X, and the rewrite 

gets inherited by their equivalence classes in the quotient, hence determining 

t  — y  s .

The process of choosing an equivalent term t '  for a E-term t ,  so that 

in t' some place-holders appear, can be seen as highlighting some disjoint 

redexes in t. The act of replacing the Ẑ’s with the matching r*’s is nothing 

else but performing a parallel reduction of all the highlighted redexes.

We can recover the single step rewriting relation by considering those 

reductions which arise by highlighting precisely one occurrence of some U in
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the term t. This way we prove the following:

P ro p o s itio n  5.2 The preorder T p j q X  is the reduction relation defined by 

71 on the set of E-terms with variables in X .

E x a m p le  5.3 Let (E,7Z) be the t r s  in Example 1.45. We described already 

in there the signatures E' and E.  Let’s consider the term s(0 +  s(0)) +  s(0) 

in T ^ X .  We can highlight two redexes (whose roots we circle in a tree-like 

representation of the term) by choosing the equivalent E '-term

0 s |
I 0.
0

In TS/X, this equivalent term rewrites to

r 2

r i s

s 0

0,

and by replacing the r f  s with the corresponding terms we get the following 

rewrite in T ^ X

s(0 +  s(0)) +  s(0) s(s(0) +  s(0)).

We can think of this as a single step reduction of the parallel rewrite deter

mined by the two redexes highlighted above.
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5.2 Infinite Parallel Rewriting

200

In the finite case, parallel rewrites are not particularly important, in a t r s . 

Noting that a particular set of redexes is disjoint means that we can perform 

then in parallel, and consider that as a single-step rewrite. However, this 

adds no more expressive power to the t r s  than it already had. We are 

just putting a hat on some of the rewrites. The situation changes when one 

considers infinite terms.

Given a signature £  and a set of rules R ,  these clearly induce a rewriting 

system on the set T£X  of finite and infinite £-terms over X .  This will be 

the reflexive and transitive closure of the single-step rewrite relation defined 

analogously to the finite case (1.4).

Because the rewrite relation is determined by a transitive closure, though, 

it preserves a finitary character, despite being performed on infinite terms. 

So, for example, if we have a rule

{r} h p: A(r) B(x), (5.6)

we can show that

ku — > Bnku for any n G N

but we can not show that Aw —> Bu. Still, this would be desirable, and not just 

because it is a clearly harmless extension of the calculus to capture infinite 

rewrites of disjoint redexes. We can in fact build the chain of reductions

Aw — > B k“ — ► B2AW — ► B3Aw — > B4ku — > . . .

so, for some continuity argument, it would be reasonable to assume that Aw 

rewrites to the limit of the sequence too, and that is precisely Bw. Last,
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but not least, if we think of the rewrite relation as a computation, then the 

sequence above shows an infinite computation of Aw which, after n steps, has 

fixed the first n elements of the result to be Bn. It therefore makes sense 

to say tha t the result of the whole computation should be the limit of the 

sequence.

The three arguments we have briefly sketched here do in fact reflect three 

different approaches to the problem of extending rewriting to infinite terms. 

The most general way of extending it is to say that in presence of a sequence 

of single-step rewrites

to — > t \  — > t 2 — > to — > . . .

where (£*)*€n is a Cauchy sequence of terms with a limit t, each L rewrites 

to t, despite of the properties of the reduction sequence. This extension, 

though, is easily seen to break confluence; for this reason people introduced 

the notion of strongly converging reduction sequence, where not only one 

requires the V s to form a Cauchy sequence, but also that the rewrites take 

place at increasing depth along the sequence [38].

Strongly convergent infinite rewriting matches the third argument above. 

The first one, instead, gave rise to what is called infinite parallel rewriting . 

There, we start with an infinite term  t and a set $  of redexes in an orthogonal 

TRS, and we consider a chain (tn)n<= n of finite approximations of t (in other 

words each t{ is a truncation of the term  ti+1 ) such tha t for any n each redex 

in $  is either completely inside the term  tn or does not appear in it at all 

(i.e. tn is a truncation of t at a node which occurs above the redex). We 

write for the set of redexes from $  which appear in L, and we call s* the 

term  obtained by performing the (finite) parallel reduction of L via It
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can be shown that the terms (sn)neN form a chain, and we put its least upper 

bound s to be the result of the infinite parallel reduction of t via (for a 

precise definition of the relation, see [18]). The idea is that s is the result of 

simultaneously reducing all the redexes in <F.

In this section we shall move from the presentation of a t r s  as a monad 

over Pre in order to catch the notion of infinite parallel rewriting amongst 

infinite terms.

Given a signature E and a set of rules 71, we define the signature E' on 

Pre as before (5.1). Instead of considering the free monad over it, though, we 

consider the monad T£, as defined in Section 2.4. Its action on a preorder 

X  gives the preorder coinductively defined by E'. The carrier is the set of 

finite and infinite trees built over the E-symbols and the place-holders with 

variables from x. Whenever in a term t there is some occurrence of some li s, 

whether finitely or infinitely many, t rewrites to the term s , where those same 

occurrences are replaced by the corresponding r^s. Notice how, by working 

in Pre, we get at once the extension of the terms and the rewrites to the 

infinite case, rather than defining the finite reduction preorder first and then 

having to extend it.

R em ark  5.4 In fact, we are working with monads in the enriched setting. 

For this reason, we should check in various places that our functors preserve 

the induced preorder relation on the hom-sets. We shall omit such checks in 

the presentation, as they are completely straightforward and not insightful.

As before, we are interested in replacing the place-holders by E-terms 

which they are meant to represent, in order to get a rewriting system on the
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set of infinite E-terms. This can be achieved again by imposing equations, 

and the signature we are going to use for denoting them is the same E  we 

defined in (5.2). However, several different parallel pairs can be built, using 

E , and we have to take care of choosing the correct one. First of all, le t’s recall

tha t there is a unique morphism of -guarded monads t'E'- Tjy -----► T^y.

Given the signature E , we can therefore consider the parallel pair

T ---------   3- T  ts/ > TV
I E   ------------►  I S' ^  1 S' •

However, the coequaliser of this pair would not work for our need, for it 

would only be able to identify finitely many place-holders with their matching 

terms. In order to identify at once infinitely many li s (respectively r^s) with 

the corresponding ti s (resp. S j ’s ) ,  we need to consider an extension of T # 

which computes infinite terms. The obvious coequaliser then becomes the 

one on the bottom  row of the following diagram:

A

(5.7)

Here, in order to extend A and p to monad morphisms A" and pv from 

T ve to T£, we use the universal property of T E, i.e. tha t of being the free 

completely iterative monad on Fe ■ It is not difficult to show tha t each of the 

composites l̂ X '  and i^pf  from Fe to T£, is an ideal natural transformation 

(in the sense of Adamek et al. [1]) precisely when both handsides of the 

equations are guarded terms (i.e. not just variables), and in that case, they
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determine the depicted morphisms. We shall discuss later what this condition 

means on the level of the term rewriting system.

Unfortunately, this is still not what we want. The coequaliser in (5.7) can 

only identify an infinite sequence of place-holders with their matching terms 

if they are not interleaved with any term constructor from E. For example, 

in presence of a rule such as (5.6) above, we would not be able to prove that 

(I B)w is equivalent to (A B)w (where I is the place-holder for the left handside 

of p). In order to overcome this hindrance, we have to look back at the finite 

case a bit more carefully.

First of all, let’s recall that, as a special case of [53, Theorem 1], we have 

the following result.

I qL em m a 5.5 I f  A g >B  is a coequaliser in a category C, then, for

any C and any h : C  ► B in C, q is the coequaliser of the parallel pair

i m
A + C ------------ t B .

[gM

Now, because the free monad construction is a left adjoint, we have that 

T s 0 T s , =  Te+e', where © is the coproduct in the category of accessible 

monads, and taking h = id jE, in the above lemma we get that the coequaliser 

in (5.4) is the same as the following:
 [̂ id]  q

I E + S' ----------------->- I S' ------------------1 (S',7^)-
[P.«d]

A similar argument is no longer valid when considering T^+s,, since this 

monad is not the same as T^ST ^,. Instead of considering the coequaliser in

(5.7), we can then consider the one below:

~cv ---------- -------------rv   q . t / /
1 £ + £ ' --------- ------- ► 1 S' 1 (S ',72)’
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where the monad morphisms Xu and p" are defined as follows.

The monad T ^+E, is the free completely iterative one on the finitary end- 

ofunctor Fe +e1, therefore by [1, Theorem 4.14] we get the monad morphisms 

Xv and pv by giving two guarded (ideal, in their notations) natural transfor

mations A' and p' from Fe +e' to T E, factoring through F ^  TE,. These are 

clearly determined once we describe the action of A' and p' on each term  con

structor in E  +  The action on a E'-symbol is in both cases the identity, 

whereas on the place-holders we define them as in (5.3).

Because the left handsides of all the equations are the place-holders li and 

Ti (i £ / ) ,  the morphism A' is always guarded, and we can safely extend it to 

Xu. As for p', we have to require tha t the right handsides of the equations, 

i.e. the ti s and s^s  of the rules in IZ, are guarded terms. For this reason, we 

restrict our attention to t r s ’s where both sides of the rules are not variables. 

In particular, we are avoiding collapsing rules. It is not surprising th a t the 

categorical constraints on developing our machinery match some well-known 

trouble-making notion in the theory of rewriting. In fact, if we were to 

accept a collapsing rule such as {x} h p: k(x) —>• x, then, clearly, for each 

n £ N we would have kn(x) —>• x. However, the term Aw would have no 

infinite parallel reduction to anything, because after having removed all the 

occurrences of A we do not know what to output. This pathological example 

is paradigmatic, and a term like kw above is often called a collapsing tower 

. Rewriters usually like to consider the set of infinite terms as a complete 

partial order, with a bottom  element _L, which they think of as a symbol 

representing a meaningless term. They would then say tha t ku —»■ _L, with 

the underlying intuition that ku has a meaningless computation. In our



CHAPTER 5. PARALLEL REW RITING 206

context, we do not have a bottom  element, so our solution is to ban such 

rewrites, so that meaningless computations simply do not exist.

R em ark  5.6 Note that A' always factors as

F e + e ' - ^ T £ ,
<f) <•£/

TE+E' A > T2'

where </> is the universal arrow from Fe +jx to the free monad over it and A 

is the natural transformation defined in (5.4).

If the terms appearing in the rewrite rules are all finite, then we can 

factorise p' in the same way, and the parallel pair A1', pv is the extension to 

T e+x' °f the pair A, u^p. However, there is no formal reason to force such 

a factorisation for p, and we can allow p' to reach some truly infinite terms, 

so long as they are all guarded. In other words, once we consider infinite 

terms, there is no reason to maintain the rules finite; in fact, we can allow 

them to rewrite infinite terms as well.

So, with the assumption that both sides of each rule in 1Z are guarded 

terms, we can define the parallel pair

T v ------------ ► T"1 E+E' --------- ------- >■ 1 S'P

and consider its coequaliser, which we shall indicate by n y We now want 

to show that, for an orthogonal t r s  (E,7£) and a discrete preorder X  of 

variables, T j ^ ^ X  is the infinite parallel rewriting preorder induced by 7Z on 

the set of finite and infinite E-terms over X .
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R e m a rk  5.7 As we already stressed in Remark 5.6, we are gaining here 

some generality with respect to the formulation proposed in [18].

We already discussed the fact th a t the rules can define reductions of 

infinite terms. Moreover, this categorical formulation allows our t r s ’s to 

inherit some reductions from a pre-existing preorder on the set of variables 

which the terms are built upon.

When describing the equivalence of the two approaches, we shall restrict 

ourselves to the standard assumptions, but in general we are providing an 

extension of the classical theory.

In order to understand what n ^X  looks like, we have to refer again to 

its universal property: it is the free T^,-algebra on X  satisfying the equations. 

We are now going to give a concrete description of it. In fact, this might look a 

bit surprising to a reader familiar with category theory, and in in particular 

with coequalisers of monads, which are usually far from being computed 

pointwise, but in this case this is precisely what happens. Let’s consider the 

following coequaliser in Pre:

xu
T ^ x  -  ; T * X  — 9-— - 5 .  (5.8)

Px

We want to define a T^,-algebra structure on S  and show tha t it satisfies the 

equations. Moreover, we shall show tha t it is the free such object on X , thus 

proving that S  is the object n ^X.

First of all, note that, by the way coequalisers are computed in Pre, S  

has as carrier the set T£ ,X /  ~ , where ~  is the equivalence relation generated 

by the pairs of terms in the image of Tg+E, X  along the pairing of functions
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(Ax ,P x ) ' For such a pair (t, s), the term t has a (possibly infinite) set of 

occurrences of place-holder symbols k and r*, and s has those same occur

rences replaced by the matching ^ ’s and s^’s, respectively. The preorder on 

S  is the smallest on T £ ,X / ~  making q monotone.

Note also that the endofunctor T£, on Pre induces one on Set which we 

shall denote by the same symbol. This will map a set X  to the underlying 

set of the image of X  (considered as a discrete preorder) through T£,.

We now define three maps in Set which will play an important role in

our argument. The map / :  S  ► T£,X  takes the equivalence class t in S

of a term t in T£,X  to the unique representative of t with no occurrence of

li or symbols. The function g: T £ ,X  ► Tg+j:,X  takes a term t to the

term obtained by replacing each occurrence of an ^ (respectively r*) with 

the corresponding equation symbol e\ (resp. e[), leaving all E-symbols un

changed. Finally, the map h x : T £ ,X  ► Tg+T;lX  is the X -th  component of

the monad morphism h: T £ ,----->■ T ^+E, determined by the natural transfor

mation inr: E '  ► E  + E'. This will map a E'-term t to itself, considered as

a term over the signature E  +  E', and clearly makes A1' and pu equal:

Xx h — id =  pvx h. (5.9)

Furthermore, /  and g make (5.8) a contractible coequaliser (the dual 

notion of that in Definition 2.21), since Ax g = id, px g — f q , q \x  = qpvx  and 

q f  =  id:
\ v
A X

Tg+E, x  T £ ,x  ;...... 9.. > S. (5.10)
 /

Px

Because absolute coequalisers are preserved by all functors, we get, by
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applying T£,, that

T'V rpv V
E ' 1 E + Z ' ^

T V  \  vJ£' X
T £ 2X

T",q
T&S (5.11)

TvPx

is a coequaliser. We can put on T£,S  the smallest preorder relation making 

T£,q monotone (that is, in fact, the same preorder as the one determined by 

the Pre-endofunctor T£, on 5), and we get tha t T£,S  is a coequaliser in Pre.

We now join (5.11) and (5.8) in order to get a T£,-algebra structure a  on

S.

Tw  f~ p v  V
E , 1 E + Z ' yX

Hte+V x
T*Px

T ^ X TZ.S

Tw  2  v
E + E ' ^

Mx

T%+S,X
Px

MX

T& X
Y

S.

In the Pre-diagram above, since A" and pv are monad morphisms, we have

q/JLXT & \vx  = q p x {^ )x h T ”+j:lx

=  q X x V x h r ^ x  

= qP xPxhr-^x  

—  W xT& P x

where Ji is the multiplication of the monad T ^+E, and the first equality 

holds because of (5.9). Therefore, because the top row of the diagram is a

coequaliser, there is a unique map a : T £ ,S  ► S  such tha t ctT£,q = qpx-

Notice that, once we have proved th a t a  is an algebra for the monad T^,, we 

have for free from this last equality tha t q is an algebra homomorphism.
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To show that a  is an algebra for T£,, we have to show that ar]s = ids 

and aT£,a = a/is- For the unit identity, it is easy to see that

ar]SQ = OLT̂ l{q)rfr^lx  =  = Q,E'"

hence ar]s = ids because q is epic.

As for the multiplication identity, we can form the following diagram

rp u  2 r p u  y
1 Y,' 1 E+Z'^X

f~nu 2 \ i/i s' Ax
t z ,3x

TZ>2 1

T v  2 n v  JE' PX
T£,2S

Mr£, x TZ.nx MS T&a

rri/ 2 y ______
^  A T%q

M x

T&X

T&S (5.12)

S

where the top row is again a coequaliser for the same argument as above. 

Therefore, we will have the desired equation if we show that a fisT £ 2q = 

aT£,aT£,2 q. This follows by the following chase around the diagram:

&TsT£2q — aT^qfir^x
E ' "

— q n x T £ ,n x

= a T £ ,{q n x ) 

=  o r lS a  IS ,2®;

therefore f t/ix  =  a T J a  and (S, a) is a T£#-algebra.
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We now want to show that (5, a) satisfies the equations (i.e. th a t a  Xg =  

a ps), and that it is the free algebra on X  with this property.

In order to see tha t the equations are satisfied, we can show tha t they are

equal as functions between sets, since the forgetful functor U: P re  ► Set

is faithful. Consider the following diagram, where on the top row T ^+Ti,q is 

the (absolute) coequaliser of T£+E,Xux  and because of (5.10):
'T'U \V1E+-£'AX

Tit/ 2  V  _  n nv u v  r P U  r T U  V  E  +  E '
E +Z '  A  ^  E+E', i x — 1 E + Z ' 1 Z , jX  ------------

Px

By (5.9), we can chase the diagram to show tha t

a  ^ s  ^ e + z 'Q =  a  ^ t ^ , x

— Q P X  ^ T £ , X

—  Q P x ^ t ^ x ^ e + z ’i^x  hx)  

= Q Px  ( ^ ) x  Te +z '^ x

— Q ^ x  Px Te +z> h x

— Q Px Px ^E+Z'^X 

= Q Px Pt^,x
V r n u

— a Ps ^ e +e'QS 

hence the result, since T ^+Y1,q is epic.
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'Hx QClearly, the composite X  - X  — *~S gives a map rj: X ----► S.

Given another T£,-algebra (M, ft) with ftXvM =  ftpuM and a map ft: X ---- ► M,

we get a T£,-algebra morphism ft: T £ ,X  >■ M  such that ftr)X =  ft, because

(T£,X, p x)  is the free T£,-algebra on X:

T”,4>
E ►T&Af

T£iX

Clearly, ft = ft T£,ft. We get that ft factors through S  if ft Xux  = ft Px, and 

this follows by the chain of equalities:

ft Xx  — ft T£,ft Xx  =  ft XUM Tg+-£t(f) =  ft puM — ftp'x-

We therefore get a unique morphism ft: S  ► M  such that ft q = ft. If

we show that 0 is a T^,-algebra morphism, then we have proved the universal 

property of S. Using again the fact that T£,q is epic, this follows, since

ft a  T£,q — ft q fix  — ft Px — ft T^,ft = ft T£tft T^q .

We have just proved the following.

P ro p o s itio n  5.8 The coequaliser ^  of the monad morphisms X" and pv

is pointwise defined as the coequaliser S  in (5.8).

We can now take a closer look at the preorder S  =  T f ^ ^ X .  The first 

thing to note is that, as for the finite case, in the ^-equivalence class t of 

any term t £ T£,X  there is precisely one term where no place-holder appears
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(that is the image of t under the function /  defined above). Therefore, the 

carrier of S  can be identified with the set T £ X  of finite and infinite terms 

over E with variables in X .

Given a term t in T£X , we can highlight a set of disjoint redexes in it by 

choosing an equivalent term t' in T£,X  where some U symbols appear. In 

this preorder, t' rewrites to the term s' which is obtained by replacing all the 

li s with the matching ?Vs. By replacing all the r f  s with the corresponding 

S{ s from the rules, we get a term  u and t rewrites to u in T£X .

E x a m p l e  5 .9  Let E be the signature consisting of two unary symbols F and 

G and a binary symbol H. Let 1Z be consisting of only one rule: {x} b p : F(x) — > 

H(x, x). We want to show that in Tf^ n ^X  we have the following rewrite:

This follows easily, since (FG)W ~  (/G)w in T£,X , where I and r are the place

holders for the rule p in the signature E'.

We then have that (lG)u —>• (rG)w in T£,X , and clearly (rG)w ~  s, when 

replacing r(x) by H(x,x) at any occurrence.

F

G

t
F H H

s (5.13)

G G G G G

The rewrite relation arising in this way is precisely tha t of infinite parallel 

rewriting as defined in [18]. The odd considerations therein about finding a 

sequence of finite terms approximating t  and the redexes not crossing the
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boundaries of those terms are here totally unnecessary, since the monadic 

structures of T ^+E, and T£, are taking care of the coherence properties for 

us. In particular, the monad provides us with the infinite proof terms

for any reduction we are interested in. As in the finite case, the usual single- 

step rewrite relation can be recovered by highlighting precisely one redex in 

a term and considering the corresponding rewrite.

Notice once more how, in this framework, we do not need to restrict our 

attention to orthogonal TRS’s in order to consider infinite parallel rewrit

ing, since our construction selects for us only those sets of redexes which 

are disjoint. This gained generality is paid, of course. Namely, we had to 

require the rather heavy condition that our rules are non-collapsing (rules 

of the form p\ x —> t(x) are also banned, of course, but they are usually not 

considered anyway). However, this is not an unusual requirement, because 

of the phenomenon of collapsing towers.

5.3 Rational Rewriting

In this section, we show how the notion of rational rewriting as defined by 

Corradini and Gadducci [18] can also be captured by our setting. This will 

not require much work, and can be considered an exercise, after the previ

ous section, since we are morally just repeating the argument on a different 

monad.

In their work, a rational rewrite is defined to be a parallel rewrite between 

rational terms where, after “tagging” all redexes, the source of the rewrite is 

still a rational term.
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For example, in the t r s  of Example 5.9 the rational term (FG)W has a 

redex at each occurrence of the symbol F. The corresponding tagged term  

(F*G)W is rational, therefore the rewrite (5.13) is a rational rewrite (see [18] 

for more details). If we had tagged only some occurrences of F, in such a 

way th a t the derived term was not rational, then the corresponding parallel 

rewrite would have not been accepted.

In our framework, tagging the redexes is the same as highlighting them. 

If we build rational terms (and rewrites amongst them) on the signature E' 

as defined in (5.1), we get all rational terms and only their allowed sets of 

highlighted redexes. Imposing equations will, as usual, produce the desired 

TRS where elements can be identified with the rational E-terms and the 

rewrites will be precisely the rational parallel ones. In a nutshell, we could 

say th a t we are repeating the previous section with the rational monad R for 

P \

First of all, it has to be noted that, by Proposition 4.8, we can consider 

the monads Re+e1 and R^/. Assuming again tha t no term in the rules is just 

a variable, the morphisms A' and p' of (5.3) are guarded. Of course, given 

tha t we want to find a parallel pair between Re+e1 and R^y, we cannot allow 

our rules to rewrite arbitrary infinite terms. Following the same reasoning as 

in Remark 5.6, we can allow the rules to involve also rational terms, instead 

of just the finite ones. When this is the case, we can extend the parallel

pair A', p'\ Fe +e'  R e> to a pair AR, pR: Re +e'  Re7 by means of the

universal property of Re+e1 described in [6, Theorem 4.30].
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We can then consider the coequaliser

ar

Rtf+S' ------------ ^ Rs'--------------
PR

in the category of accessible monads on Pre. By repeating exactly the same 

computations as in the previous section, we can give a description of n^X  

for a preorder X .  Its underlying set will be the quotient R ^ X /  where ~  

is the equivalence relation generated by the image of R e+ z'X  through the 

pairing (AR, pR). The preorder relation on Rz>X/ ~  is the least making q the 

coequaliser in Pre, and it is described as before: the equivalence class of a 

term t rewrites to that of a term u if and only if there exist terms t' and u' 

with t ~  t' and u ~  uf, such that t' and v! are equal apart from a set of nodes 

which in t' are labelled by /^-symbols and in v! by the corresponding r£s, so 

that t' rewrites to v! in R ^ X .

Analogously to the finite and infinite cases, in the quotient R ^ X  each 

equivalence class has precisely one representative which is free of place-holder 

symbols, i.e. which is built solely on E. Therefore, we can identify the carrier 

of n ^X  with the set R ^ X  of rational terms over E. Choosing a different 

representative for a ^-equivalence class can, as usual, be interpreted as high

lighting a set of disjoint redexes, but now, because terms have to be rational 

on E', we can only highlight those redexes which give rise to a rational paral

lel reduction. It is therefore clear that is precisely the parallel rational

rewrite relation defined by 7Z on R ^ X .

R em ark  5.10 Notice how, once more, we are gaining for free an extension 

of the classical theory, in that we can build a term rewriting system over a 

set of variables which already have some internal rewrites (i.e. the preorder
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on X  need not be discrete). Moreover, we do not have to rely on the system 

being orthogonal. As for the infinite case, we have to ask for the rules not 

to involve any variable, but this is our only constraint.

Some authors in the field of term  rewriting who do not consider the set 

of terms as a complete partial order (usually because they prefer stressing 

their metric properties) manage to allow at most one collapsing rule, by 

introducing a dummy function symbol whose purpose is tha t of making the 

equation non collapsing again. So, for example, the rule p: k(x) —> x  which 

we came across before would become p: A(x) —>■ e(x) for a new symbol e. In 

this case, the (previously) collapsing tower ku rewrites in parallel to the term

which we can interpret as a meaningless term.

We feel tha t our formulation provides a cleaner semantics to the notion of 

parallel rewriting, as well as being a nice application of the results presented 

in Chapter 3 and 4. Given other classes of terms or syntactic-like structures 

by means of monads on Set, it would be interesting to see if they adm it an 

extension to Pre which could allow to develop a rewriting theory for them.

From a purely categorical point of view, this chapter presents a rather 

atypical situation, where a coequaliser of monads can be computed pointwise. 

At present, we cannot see any way of generalising this example to a wider 

setting.



Chapter 6

Conclusions and Further Work

The purpose of this thesis was to give a categorical account of syntactical 

structures with an infinitary character. The motivations for this kind of 

research come from the practice of dealing with infinite terms in both m ath

ematics and computer science. The paradigmatic example is that of trying 

to give a semantics to infinite computations of a program. Syntactic models 

of infinite structures or infinite behaviours rely on some form of completion 

on the sets of terms, so that we can describe an infinite term by means of its 

finite approximations, and likewise we can identify an infinite computation 

by its finite observations. The required completeness is achieved by either 

considering an ordering or a metric on the terms. Adamek showed [4] how 

this is just a reflection of the fact that finite and infinite terms form respec

tively the initial and the final coalgebra for the same endofunctor of an lfp 

category. This is not the only aspect in which finite and infinite terms are 

dual. The logics used to prove properties of them are also dual [40]. For 

all these reasons, it seems reasonable to use categorical methods in order to

218
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exploit this duality and fit the different elements into a unique framework.

The other determining motivation for introducing the categorical notation 

was th a t it allows us to unify a wide variety of concepts which are usually 

treated separately. The starting point in this direction is the paper by Kelly 

and Power [37], which we cited several times throughout the thesis. The idea 

of encoding various structures as equational theories over some signature 

has proved very fruitful, and captured multi-sorted theories, categories with 

structures as well as several different forms of rewriting. In their work, they 

start with a finitary signature and they build the free monad over it, by 

pointwise considering the initial algebra, thus providing a semantic for the 

given equational theory.

In order to provide a semantic for infinite terms, it was therefore natural 

to explore possible dualisations of their work. This gave rise to the situations 

described in Table 2.1.

6.1 A chievem ents

Of the three possible dualisations which we found, we explored only two, 

because we found them more meaningful. In both cases we could not recover 

the whole picture. When considering cofree comonads on cosignatures, we 

had no handle on the rank of our structures (although the work of Worrell 

[58] might suggest some form of upper bound to the increase of the rank). 

When considering monads of infinite terms, we can impose equations, but we 

tend to loose the relevant properties of our monads in the coequaliser (the 

coequaliser of two free completely iterative monads is not the free completely
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iterative monad representing the corresponding equational theory).

However, we hope to have convinced the reader that the proposed dualisa

tions are of interest and are worth some further investigation. Coalgebras are 

nowadays widely used in the specification of behaviours, and a great amount 

of research has been published on the logic underneath them. Our comonadic 

treatment fits in this framework, by giving a very intuitive approach to the 

notions of cosignature and coequations. This bridges the gap towards the 

several notions of co-Birkhoff theorem which have appeared recently in the 

literature [11].

When considering a monadic structure on final coalgebras, though, we 

felt that we had hit the right point. Despite some initial suspicion by the 

audience when we first conjectured the existence of the monad T", within a 

couple of years three different proofs were given of this result [50, 2, 27]. The 

importance of the result stands in its wide applicability and in the universal 

property of T u, which Adamek and his coauthors proved. However, the 

totality of infinite terms is excessive for the common practice, because we 

cannot even describe them. For this reason all the aforementioned research 

groups turned their attention to other classes of terms, such as the rational 

ones. Theorem 3.16 was our way of describing monads of suitable classes 

of terms or syntactic structures in general. The possibility of unifying the 

description of rational terms and term graphs is our reason for introducing 

it. The notion of (strongly) guarded monad also proved fruitful in that we 

can solve algebraic systems of equations over them, and the set of algebraic 

terms is the natural successive step, after the rational ones, in the chain going 

from finite to the infinite terms.
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Although we did not develop a general enriched theory of strongly guarded 

monads, we could certainly handle the Pre-enrichment “on the fly” , and a 

simple instantiation of our results turned out to describe precisely some well- 

known notions in the theory of term  rewriting systems.

6.2 Further D irections of Research

Finding what looked like a reasonable point where to stop the research in 

order to give to this thesis a sense of accomplishment is certainly one of the 

most arbitrary choices we have taken. In fact, as it is natural to expect 

with all new research, there are several threads which can be explored. We 

chose to hide them as much as possible during the exposition, in order not 

to distract the reader from those which instead we brought to an end, but 

each of them would deserve a research on its own.

The most urgent question is tha t of considering infinite equational theo

ries. Of course, the problem is not just categorical. Given a signature E and 

a set E  of equations, it is not clear what the free (completely) iterative theory 

satisfying the equations should be. Of course we can form a coequaliser like 

we did in Chapter 5, but this may not be exactly what we want. In the set 

of finite and infinite E-terms any guarded system of equations has a unique 

solution, but this may be no longer valid if we consider its quotient along the 

equations. In other terms, it is not clear how to give a completely iterative 

monad T such tha t T X  is the free iterative theory on (E ,E ).

The problem is more significant than it might look at first sight, and 

seems to be intrinsically related to tha t of defining a monad of algebraic
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terms. Finding a way of solving algebraic systems of equations was a first 

step towards a solution, but in the months following that result we could not 

finalise our efforts to define such a monad. The problem is of interest not 

just to us, and we often discussed the m atter with the Braunschweig group, 

but none of us succeeded, so far. The link with the problem of considering 

equations on rational terms is the explicit substitution monad. Given a 

signature E, one can enrich it by adding symbols for explicit substitution, 

which take a term t on n variables and terms t i , . . .  , t n to give a new term 

which represents (but is not!) the substitution of the ti s for the variables in t. 

Courcelle [19] proved that any algebraic term can be obtained from a rational 

term over this enhanced signature, by removing the explicit substitution 

symbols and performing the substitutions which they stand for. Evaluating 

the explicit substitution symbols is somehow like imposing equations on the 

rational monad over the enhanced signature, and we know how to introduce 

the explicit substitution symbols into our context; therefore, we conjecture 

that a solution to the first problem would yield a natural solution to this as 

well.

In Chapter 5, we gave a sound semantics for the notion of parallel rewrit

ing in the finite, infinite and rational cases. As we mentioned, though, infinite 

parallel rewriting is not the most preferable form of infinite rewriting, and 

many others have been introduced. In particular, strongly convergent rewrit

ing [38] seems to be quite fitting for modelling the computation of A-calculus. 

A categorical semantics to such a notion would clearly be valuable.

Rational terms form the free iterative theory on a signature, i.e. the free 

one where each guarded system of equations has a unique solution. A similar,
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yet different notion is tha t of an iteration theory [15], where any system 

(regardless of being guarded) has at least one solution (possibly many more). 

A categorical model of such theories has been given by Plotkin and Simpson 

[54]. It is clearly worth investigating the connections between the two.

Recursive equations appear in all areas of mathematics and computer 

science, and fixpoint theorems are always sought and used thoroughly. Hav

ing generalised the construction of the rational monad to all lfp categories 

(and even to monoidal categories, if necessary [6]), we should be able to re

cover well-known structures with an infinitary flavour. For example, we know 

th a t the set of polynomials over a ring can be presented as a free monoid 

over the object of the variables which the polynomials are built on. The 

formal power series, are easily seen to be the set of infinite terms for tha t 

same theory, so what about the rational terms? We know th a t a term  like 

1 +  X  +  X 2 +  X 3 +  . . .  is the inverse (in the set of formal power series) of 

the polynomial 1 — X .  But not all invertible finite polynomials give rise to a 

rational term. Our conjecture is th a t they actually form the algebraic terms, 

but one should first be able to give a categorical description of them!

Finally, more speculatively, we could investigate whether our machinery 

allows us to reason about geometric figures which present some recursive 

pattern. In fact, self-similar fractals [23] are fixpoints for a contractive map 

on the compact subspaces of some Rn , and this suggests some connection.
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