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Abstract

Performance based coordination control

of multi-agent systems subject to time delays

Paresh Deshpande

This thesis considers the design of distributed state and output feedback control algo-
rithms for linear multi-agent systems with performance guarantees in the presence of
delays. The multi-agent systems considered are assumed to exchange relative infor-
mation over an information network. As a first contribution, a novel distributed state
feedback control design method with a sub-optimal LQR performance is developed for
a network of multiple agents. For the control design process, it is assumed that the
exchange of relative information is instantaneous. A stability analysis of the proposed
control law is performed by incorporating delays in relative information to ascertain the
maximum possible delay that can be accommodated by the communication network.
Subsequently, the assumption of the exchange of instantaneous relative information in
the control design process is relaxed and the relative information is assumed to be de-
layed. The system is then represented as a time-delay system. Distributed state feedback
control synthesis methods are then developed for the system with a certain level of LQR
performance. In the above contributions, the time delay analysis and the development
of delay based control methods, it is implicitly assumed that delays are detrimental to
achieving cooperative tasks for a multi-agent system. Subsequently, positive effects of
delays in communication of relative information are explored. For this a network of
vehicles described by double integrator dynamics, which cannot be stabilized by static
output feedback without delays, is considered. A novel control design method to achieve
exponential stabilization of such a multi-agent system by static output feedback using de-
layed relative information is developed. Conclusions are drawn from the results of the
research presented in this thesis and a few directions for future work are identified.
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Chapter 1

Introduction

Research in consensus and coordination of multi-agent systems has received a good deal

of attention over the past decade. A multi-agent system consists of several dynamical

systems and are required to operate in agreement, i.e. in a synchronized manner. Each

individual agent in a multi-agent system shares information with a set of agents of the

multi-agent system. The topology of such a network of interconnections within a multi-

agent system can be represented by a graph. A wide variety of studies dealing with

multi-agent systems have employed algebraic graph theory. By combining graph theory

with systems and control theory, many researchers have made significant contributions

in this area of research.

1.1 Research Motivation

It is fair to say that initially less attention was paid to performance issues associated with

stabilization and agreement problems in multi-agent systems. However, recently there

has been progress in this direction. Performance in consensus and coordination prob-

lems has been studied in two perspectives. The first perspective focuses on achieving

faster convergence of the multiple agents and is based on optimizing the communica-

tion topology among the agents in a network. The second perspective focuses on using

standard performance techniques such as LQR/H2 and H∞. Few researchers have stud-

ied the problem of designing distributed controllers for multi-agent systems with LQR

1



performance. In this thesis novel distributed control design procedures for stabilization

of a network of identical linear agents, with a certain level of LQR performance, are

developed.

Most of the literature on design of distributed control methodologies for multi-agent

systems with LQR performance assumes communication of instantaneous information.

This assumption is idealistic and exchange of information over an information network

is bound to incur delays. Delays can cause the agents in a multi-agent system to de-

viate away from the cooperative task or the system may fail to achieve consensus of

information. In this scenario a study of multi-agent systems from the perspective of

time-delay systems becomes necessary. In this thesis, the primary focus is on studying

multi-agent systems by representing them as time-delay systems where the delays arise

from the communication of relative information. Novel control synthesis techniques are

developed to achieve a certain level of LQR performance in coordination of multi-agent

systems in the presence of delays.

In the case of multi-agent systems delays are mostly detrimental to the task of achiev-

ing cooperative goals. Delays can affect the problem of achieving consensus of informa-

tion and can cause divergence from achieving cooperative goals such as maintaining a

formation. Most of the literature on consensus and coordination of multi-agent systems

implicitly assumes that delays have a negative effect on the system. In the literature on

time-delay systems some researchers have shown that delays can also have a positive

effect on some systems. Particularly, it has been shown that introduction of delays can

stabilize some systems which are otherwise not stabilizable without delays. In this the-

sis a multi-agent system comprising a network of vehicles, with the dynamics of each

described by double integrator dynamics, is considered. The system, which cannot be

stabilized by static output feedback without delays, is stabilized using delayed relative

output information.
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1.2 Contributions of this Thesis

1. A novel distributed state feedback control design methodology for identical

dynamically coupled linear multi-agent systems with suboptimal LQR per-

formance: The objective here is to design distributed control laws for a network

of linear dynamical systems while minimizing a network level LQR cost. The dy-

namical agents are coupled by the relative state information communicated over

the network. The communication of relative state information over the network

is assumed to be bidirectional and instantaneous. Distributed control laws are ob-

tained by posing the control problem as an LMI based optimization problem. An

analysis of the closed loop system obtained from the distributed control laws is

performed to ascertain the the maximum level of delay that can be accommodated

by the network in communication of relative information.

2. Development of distributed state feedback control design methodologies for

multi-agent systems in the presence of delays with LQR performance: As a

logical sequel to the previous contribution, the assumption of instantaneous rela-

tive state information in the control design process is relaxed and the multi-agent

system is represented as a time-delay system by incorporating delays in relative

state information. Both cases of delays, fixed and time-varying are considered. It

is assumed that the delays are identical across all communication links. Then dis-

tributed state feedback control design methodologies are developed for the system.

For the case of fixed delays, delay independent and delay dependent distributed

control design methods are developed for the stabilization of the multi-agent sys-

tem with LQR performance. For the case of time-varying delays a delay dependent

control design method is developed for the stabilization of the multi-agent system

with LQR performance. Existing Lyapunov-Krasovskii based stability analysis

techniques (see Appendix B for details) for linear time delay systems are modi-

fied to obtain the control synthesis techniques for multi-agent systems with LQR

performance.

3. Formation stabilization of multi-agent systems described by double integra-
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tor dynamics using delayed static output feedback: In this study positive effect

of delays in communication of relative output information on design of static out-

put feedback control laws is explored. A network of vehicles described by double

integrator dynamics, which cannot be stabilized by static output feedback without

delays, is considered. Delayed relative output information is then used to stabi-

lize the network of vehicles into a formation with a guaranteed rate of exponential

decay.

1.3 Thesis Organization

The thesis is organized as follows:

• Chapter 2: This chapter presents a brief introduction to the area of research con-

sidered in this thesis. In this chapter various control design methodologies for

multi-agent systems are discussed. The motivation of designing distributed control

laws for multi-agent systems using graph theory is explained. The preliminaries

required to understand the concepts in this thesis are stated. After a brief intro-

duction to the broad research area, the chapter proceeds to describe the literature

on the effects of delays on consensus and coordination of multi-agent systems and

optimal performance of multi-agent systems.

• Chapter 3: This chapter presents a novel distributed state feedback controller de-

sign method for multi-agent systems with sub-optimal LQR performance. The

novelty of this chapter, along with the control design, is the use of an augmented

LQR cost function, incorporating the Laplacian of the network topology, to guar-

antee sub-optimal LQR performance. The maximum level of time delay that can

be accommodated in the communication of relative information is ascertained with

the help of existing Lyapunov-Krasovskii based stability analysis techniques for

linear time-delay systems.

• Chapter 4: This chapter presents novel distributed state feedback controller de-

sign methods for multi-agent systems with LQR performance in the presence of

4



delays. The novelty of this chapter is the development of delay independent and

delay dependent distributed control design methodologies with LQR performance

for multi-agent systems by modification of existing Lyapunov-Krasovskii based

stability analysis techniques.

• Chapter 5: This chapter explores the positive effects of delays in communication

of relative information in multi-agent systems. A network of vehicles, moving in

a two dimensional plane, described by double integrator dynamics is not stabiliz-

able by static output feedback (without derivative information). Delayed relative

position information is then used to stabilize the network. The controller gains

are obtained by employing DIRECT search optimization, a global Lipschitzian

optimization technique, together with LMI constraints.

• Chapter 6: This chapter presents the conclusions of this study. A few future

research directions are also explained in this chapter.

1.4 Publications

The research work presented in this thesis has yielded the following publications:

1. P. Deshpande, P. P. Menon, C. Edwards and I. Postlethwaite, “A sub-optimal dis-

tributed control law with H2 performance for identical dynamically coupled linear

systems,” IET Control Theory and Applications, Vol. 6, Iss. 16, pp. 2509-2517,

2012.

2. P. Deshpande, P. P. Menon, C. Edwards and I. Postlethwaite, “Formation con-

trol of multi-agent systems with double integrator dynamics using delayed static

output feedback,” Proceedings of the IEEE Conference on Decision and Control,

Orlando, December 2011.

3. P. Deshpande, P. P. Menon, C. Edwards and I. Postlethwaite, “A distributed control

law with guaranteed LQR cost for identical dynamically coupled linear systems,”

Proceedings of the American Control Conference, San Francisco, June 2011.
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Chapter 2

Control of Multi-Agent Systems

2.1 Introduction

Initially researchers attempted to model observed behaviour in nature, such as flocking of

birds, herds of animals or schools of fish. In [1] such behaviour was modelled to gener-

ate computer animations. Gradually researchers realized that the control of independent

systems to perform various collective behaviours, has many potential engineering ap-

plications. Early research involved developing simple navigation strategies for multiple

agents: for example, navigation strategies for multiple robots were presented in [2]. With

significant technological advances in control methodologies over the past two decades,

and development of sophisticated communication and signal processing techniques con-

trol of engineering systems comprising multiple dynamical systems interacting with one

another became feasible [4]. Such systems are usually referred to as ‘Multi-agent Sys-

tems’, where each agent in the multi-agent system represents an independent dynamical

system. Multi-agent systems have significant advantages over their single large scale

system counterparts. The use of multiple agents can break down a large complex system

into multiple simple systems, increases the possibility of incorporating more function-

ality into the overall system, and more importantly, reduces costs and the risk of failure

if a single system is used to achieve a desired goal [3]. The control of such multi-agent

systems to achieve a collective or common goal is known as ‘Cooperative Control’ [5].

Such strategies focus on achieving consensus of information, defined as the agreement or
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convergence to a common value, and/or the coordination of multiple agents to perform

tasks such as attaining a rendezvous (meeting at a point), or maintaining a formation

i.e. achieving a fixed configuration relative to each other. Cooperative control strategies

have been designed to achieve various objectives such as de-mining of fields using mul-

tiple ground robots [9], oceanographic sampling and minesweeping using autonomous

underwater vehicles [10, 11], decentralized cooperative air surveillance using fixed wing

unmanned air vehicles [12], maintaining spacecraft formations [13] and control of auto-

mated highway systems [14]. Figure 2.1 shows a cluster of satellites that can be used to

achieve cooperative goals such as earth observation 1.

Figure 2.1: A formation of earth observing satellites

Cooperative control strategies generally fall under three broad methods, namely, cen-

tralized control, decentralized control and distributed control. A centralized control ob-

tains and utilizes all the state information, computes the control signal and relays the

relevant control commands to each agent. For a large scale system composed of a net-

work of subsystems, it essentially means a single control law is designed and imple-

mented for the system as a whole. A major disadvantage is that this places a large cost

1NASA’s proposed A-Train satellite mission http://www.giss.nasa.gov/research/news/20110210/
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on communication of information for the system. Also it might not be possible to obtain

or measure the complete state or output information required by a centralized controller.

Another disadvantage of centralized control is that it is not possible to include more

subsystems into the existing system once the control has been designed, i.e centralized

control methods are not scalable. To avoid the problems of large costs in terms of com-

munication and scalability, decentralized control techniques have been proposed where

controllers are developed for the sub-systems of a large scale system and they require

access to only a part of the complete system’s states. Generally there is no communi-

cation between the sub-systems or agents in this method. Various decentralized control

techniques have been developed over the last four decades and it is also a current area

of interest. The reader is referred to [15]-[21] for further information on decentralized

control. In a system which is composed of multiple decoupled dynamical sub-systems

distributed control methods can be employed to achieve consensus and coordination.

In this methodology there exists an exchange of information between some of the sub-

systems. This information is used to design local feedback control laws which stabilize

the sub-systems along with the overall system. Distributed control methods are scal-

able and more robust as compared to their centralized control counterparts [5]. Figure

Figure 2.2: Centralized, decentralized and distributed control [22]
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2.2 shows a schematic for the three types of cooperative control methods [22]. The

centralized controller implements a single controller K for a plant which consists of N

subsystems P1,P2, . . . ,PN . The decentralized controller has N controllers for the same

plant with no interconnections whereas in the distributed control formulation there are

N independent subsystems P1, . . . ,PN controlled by N controllers K1, . . . ,KN which have

access to the states or outputs of some of the subsystems P1,P2, . . . ,PN . Research in co-

operative control of multi-agent systems is now mostly focussed on designing distributed

control algorithms to achieve consensus and coordination [3]2.

In the next section different control strategies for consensus and coordination of

multi-agent systems are explained in brief. The advantages and disadvantages of var-

ious strategies are discussed. The control methods based on graph theory, which are the

focus of this research, are explained in detail.

2.2 Control Strategies for Multi-Agent Systems

For cooperative control of multi-agent systems researchers have proposed various strate-

gies such as the leader-follower approach [24]-[31], the behaviour-based methods[36]-

[39], the virtual structure approach [40]-[47], artificial potential based control design

[49]-[56], and graph theoretic methods [72]-[77]. The leader-follower methods and

the virtual structure approach are in most cases centralized, though recently some re-

searchers have proposed a decentralized virtual structure scheme [44] and distributed

leader follower approaches [35]. In contrast, potential function approaches can be cen-

tralized, decentralized or distributed. Graph theoretic methods generally employ dis-

tributed control techniques, exploiting the properties of the underlying communication

topology. Recently, graph theoretic methods have also been applied to leader-follower

and potential function methods. In this section all these approaches are described in

brief, and some of their advantages and disadvantages are explained.

2In control applications for multi-agent systems references to ‘decentralized’ and ‘distributed’ methods
have been used interchangeably [23, 105]
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2.2.1 Leader-Follower Approach

In the leader-follower approach, agents are differentiated and identified as leaders or fol-

lowers [25]. The leaders follow preassigned trajectories while each follower tracks the

trajectory of its leader, maintaining a relative distance. In Figure 2.3 a leader-follower

architecture with two mobile robots is shown. The objective is to control the relative dis-

tance l between the leader and the follower and the relative orientation ψ , defined as the

difference between the heading angles of the leader and the follower The leader-follower

Figure 2.3: Leader follower architecture with two mobile robots

strategy was first used in [24] to develop navigation strategies for multiple autonomous

robots moving in a formation. A single leader was identified to specify the desired for-

mation to the following robots. Other followers then use nearest neighbour tracking, i.e.

tracking the trajectory of the closest robot, to move in the desired formation. This work

was subsequently extended to maintain formations of multiple microspacecraft [25]. In

[25] the authors considered a fleet of microspacecraft divided into groups with each

group having a leader. Each group then used nearest neighbour tracking to achieve the

desired goal. The authors subsequently incorporated adaptive control techniques into the

above control methods to achieve formation flying of spacecraft [26]. In [27] adaptive

control laws for formation flying of multiple spacecraft were extended to include nonlin-

ear dynamics. The methods in [24]-[27] all have a centralized architecture. As a natural

progression, researchers developed decentralized control methods. In [28] decentralized

leader-follower control was designed for two robotic manipulators to achieve the coop-
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erative task of moving a box. In [29] a leader-follower formation control strategy for

mobile robots maintaining desired relative distance and orientation was proposed. The

authors showed that the leader-follower assignment can be represented as a graph and

can be used to model changes in formation. Leader-follower assignment using graphs

has also been used in [30] for formation flying of spacecraft. The approach incorporates

ideas from LMIs and controller switching, i.e. selecting the ‘on-line’ controller from

two or more available controllers. In [31], the effects of leader behaviour on the errors

in formation, defined as the deviation of agents from their desired positions, is studied.

In this work error propagation in a leader follower network and methods to improve the

safety, robustness and performance of a formation is considered. Recently, distributed

control methods for leader-follower approaches based on graph theory 3 have been the

focus of research of a few researchers [32]-[35].

The main advantage of the leader-follower strategy is its ease of implementation [43].

Another advantage is that stability of an individual agent implies stability of the forma-

tion [72] and the multi-agent system can be coordinated by specifying the trajectory of

the leader. This is also one disadvantage since the leader becomes the single point of

failure. Any failure of the leader to trace its defined trajectory, or communication loss

from the leader, will result in failure of the control strategy to achieve its desired goal.

Another disadvantage is the lack of feedback from the followers to the leader. This may

cause the followers to deviate from the desired path if there are errors in tracking the

leader’s trajectory [64].

2.2.2 Behaviour-Based Methods

In behaviour-based control methods, different desired behaviours for each agent are con-

sidered together. The resulting control action is obtained by weighting these behaviours

with respect to a particular task. In [36] the behaviour based approach is used to design

distributed control laws to realize geometric patterns in multiple robots. In [37] several

objectives such as ‘move-to-goal’, ‘avoid-static-obstacle’, ‘maintain-formation’ etc. are

prescribed to each agent. The objectives are called ‘motor schemas’ as each one gen-

3Graph theory based approaches are explained later in this section.
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erates appropriate motor commands to execute the task. Each agent then utilizes these

schemas to achieve the overall goal for the multi-agent system. In [38] techniques for

path planning and control of a group of autonomous vehicles are presented. The ap-

proach presented regulates the global behaviour of a platoon of vehicles while giving

limited autonomy to each vehicle to satisfy individual trajectory requirements. In [39], a

behaviour based approach is used for formation manoeuvres of a group of mobile robots.

The major advantage of behaviour-based strategies is that several objective behav-

iors can be specified to the system [43]. In most cases explicit dynamical models of

the agents are not required. Also behaviour based control techniques require less com-

munication compared to virtual structure or leader-following approaches. However a

major disadvantage of behaviour based approaches is that they are difficult to analyze

mathematically, and have limited ability in terms of precision [39].

2.2.3 Virtual Structure Approach

The Virtual Structure approach is employed in applications such as formation flying or

stabilization of multiple agents into a desired formation. In the virtual structure approach

the entire desired formation is considered as a single structure. In this approach the

agents align their positions as per a rigid virtual structure, and then follow the virtual

structure thereafter.

Figure 2.4 shows a virtual structure in the form of a triangle. The ‘Virtual Center’

(VC) of the triangle then follows a desired trajectory for the formation. The three agents

try to align as a rigid formation and move as a formation thereafter. The concept of

a virtual structure was introduced in [40] to design formation control laws for mobile

robots with rigid geometric formations. The method was employed for a collection of

3 differential drive mobile robots to ensure that they behave as particles embedded in a

rigid structure. In [41], spacecraft formation flying was achieved by the use of virtual

structures called constellation templates. In [42] a method is proposed to blend the ideas

of leader-following, behavioral and virtual structures, to improve spacecraft formation

flying algorithms. The method is then demonstrated in a virtual structure framework to

achieve coordination of multiple spacecraft. In [43] a virtual structure with formation
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VC

Agent i

Figure 2.4: Formation of agents tracking a Virtual Structure

feedback from multiple spacecraft is used to overcome the effects of internal or external

disturbances. As a natural progression to the centralized architecture in [43], the authors

have proposed a decentralized scheme for formation flying of spacecraft using the virtual

structure approach [44]. In [44], a method to align multiple spacecraft into a formation,

by providing coordination vectors to each spacecraft, has been presented. In [45], a non-

linear formation control methodology making use of a combination of virtual structure

and path planning approaches has been presented. In [46], consensus and flocking with

collision avoidance of multiple vehicles is achieved using feedback linearized virtual ve-

hicles for the network. Recently in [47], a distributed virtual structure control strategy

has been proposed to achieve a formation control of unicyclic mobile robots.

In the virtual structure approach it is easy to assign coordinated behaviour for the

group. The virtual structure can evolve as a rigid structure in any given direction which

is advantageous in maintaining a formation [44]. The disadvantage of this approach is

that it can be implemented on only a limited number of applications as the complete

network of agents has to act as the virtual structure and it is computationally intensive

and complex if the desired formation is time-varying [45].
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2.2.4 Potential Function Approach

Here the strategy is to design artificial potentials incorporating the desired cooperative

goals. In this approach the desired configuration of agents is generally the unique min-

imum for the potential function. This approach was first presented in [48] to achieve

exact path planning and control of robots. An example of a potential function between

two agents denoted by i and j, is given by

Vp :=

 k(ln(ri j)+
d0
ri j
) 0 < ri j < d1

k(ln(d1)+
d0
d1
) ri j ≥ d1

(2.1)

where ri j is the relative distance between ith and the jth agent, k is a scalar gain, and

d0 < d1 are positive scalars [49]. Here d0 is the desired separation between the two

agents. The force of interaction, defined as the force acting on each agent towards or

away from the other, is given by

Fp :=

 ∇ri jVp 0 < ri j < d1

0 ri j ≥ d1

(2.2)

where ∇ri j is the gradient with respect to ri j given by ∇ri j =
∂

∂ ri j
. The force at the non-

smooth point ri j = d1 is considered to be Fp = 0. Let d0 = 0.1, d1 = 1 and k = 1000.

Figure 2.5 shows that Vp is minimum at d0. The potential Vp is constant for ri j > d1.

The force of interaction between the two agents is shown in Figure 2.6. The force of

interaction between the two agents is Fp < 0 for ri j < d0 and the two agents are repelled

from each other. When d0 < ri j < d1 the force of interaction Fp > 0 and the two agents

are attracted towards each other. When ri j > d1, Fp = 0 indicating that the two agents

are not affected by each other. Also, Fp = 0 at ri j = d0 as Vp has a global minimum at

d0. In [49] artificial potentials are constructed to define the interacting forces between

neighbouring vehicles. The control forces are designed to drive the agents to a geometry

which corresponds to a minimum of the total potential for the agents. The stability and

robustness of the group motion has been proved by Lyapunov techniques. In [50] a group

of autonomous robots was controlled by using potential functions and their gradients to
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Figure 2.5: The potential as a function of relative distance
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Figure 2.6: The force as a function of relative distance

perform collective activities such as foraging. The agents move in the direction of the

negative gradient of the potential functions. In [51] the gradient based technique is used

to achieve cooperative goals for a group of mobile wheeled robots. The authors have also

derived conditions for robust stability of the group behaviour in the presence of delays

in sensing information and noise. In [52], artificial potentials are used to design control

laws for cooperative reconfiguration of mobile sensor networks. The control law is ob-

tained as a sum of the gradient of potential functions along with a damping term. In [54]
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potential functions are constructed to realize flocking behaviour of multi-agent systems.

Flocking algorithms incorporating various tasks such as motion in narrow spaces and

obstacle avoidance, have been developed for multi-agent systems. A stability analysis

of the proposed algorithms has been presented with the help of Hamiltonian formula-

tions depending on the desired structure of the flock. In [55], distributed control laws

for maintaining formations of multiple autonomous vehicles are obtained using poten-

tial functions incorporating the structure of the desired formation. Concepts from graph

theory have been used to construct the potential functions. In [58] a stability analysis

of a multi-agent formation control system based on artificial potentials is provided. The

authors demonstrate how unwanted equilibria for a multi-agent system can be avoided

in an artificial potential based control architecture. In [56] a potential function approach

is used to analyze stability properties in the flocking of mobile agents. Stability of the

group of agents in the case of switching communication topologies is analyzed with the

help of concepts from graph theory. Switching occurs when communication links be-

tween a group of mobile agents are established or broken when an agent lies within the

range or is beyond the range of communication of another agent. The communication

topology in such a scenario is time-varying. In [56] it was established that stabilization

of the network is guaranteed as long as the network graph is connected.

The advantage of the potential functional approach is that several objectives like

collision avoidance and maintaining formation can be easily incorporated in the potential

function. The disadvantage of potential functions is that they may have several local

minima (especially when relative distances are used to construct the potential functions)

and this may lead to undesired formation stabilizations [57].

2.2.5 Graph Theoretic Methods

A network of multiple agents can be represented by an equivalent graph with nodes

(or vertices) and edges. The nodes represent the agents and the edges represent com-

munication links between the agents. Graph theoretic methods facilitate the design of

distributed control algorithms by exploiting the properties of this graph. Graph theory

perspectives have also been combined with some of the methods discussed earlier. The
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major advantages of graph based control methods are the ease of analysis and design

of the associated control methods, incorporating various communication topologies and

scalability. In this section a review of the methods which have utilized the properties of a

graph to design distributed consensus and coordination algorithms is presented. Before

proceeding to the control methods, the next section describes basic concepts of graph

theory useful in representing and analyzing multi-agent systems.

2.2.5.1 Graph Laplacian and Its Properties

The representation of a network of multiple agents as the nodes and the communication

links as the edges, results in two types of graphs: Directed graphs and Undirected (Bidi-

rected) graphs [7]. Directed graphs result when an agent i shares information with agent

j but not vice-versa. In an undirected graph, if an edge exists between two agents then

both agents send information to each other. For a graph, the edge or the line segment

joining two vertices shows a communication link between the two corresponding agents.

Figure 2.7 shows a directed graph with 6 vertices. In the case of the directed graph there

Node i Node j

Figure 2.7: A directed graph with 6 vertices

is communication only from agent j to i and hence the edge is shown by an arrowhead in

the direction of information flow. The set of vertices for a graph representing the agents

is denoted by V , and a set of edges is denoted by E ⊂ V 2 where e = (i, j) ∈ E denotes

an edge. For the edge e, i is called the tail and j is called the head which implies that

there is information flow from agent i to agent j. The in (out) degree of a vertex i is the

number of edges with vertex i as the head (tail). For an undirected graph whenever the
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edge (i, j) ∈ E , the edge ( j, i) belongs to E . An undirected graph can be represented by

showing bidirectional arrows or no arrows. Figure 2.8 shows an undirected graph with

bidirectional arrows for each node. A network G = (V ,E ), represents a simple, finite

Node i Node j

Figure 2.8: An undirected graph with 6 vertices

graph consisting of N vertices and k edges. The following properties of directed and

undirected graphs are important with respect to the discussions and contributions of this

thesis:

• If there exists a path between any two vertices i and j of a graph G with vertex i

as the tail and j as the head then the graph G is connected. In the case of directed

graphs, a directed graph is called strongly connected if there also exists a path with

j as the tail and i as the head.

• A graph G2 is a subgraph of G1 if V (G2)⊆ V (G1) and E (G2)⊆ E (G1).

• If V (G2) = V (G1) then G2 is a spanning subgraph of G1.

• A connected graph G where each vertex has at least two neighbours is said to

contain a cycle, i.e. starting from a vertex i as the tail in the graph G , it is possible

to have a path with finite number of edges to arrive at the same vertex i as the head.

• A spanning subgraph with no cycles is called as a spanning tree.

In most of the literature on multi-agent systems, and also in this thesis it is assumed

that the graph has no multiple identical edges and does not contain any loops. Control
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applications of graph theory for multi-agent systems make use of the matrices associated

with the graph. Assuming N agents in a multi-agent system, for a graph G , an adjacency

matrix is defined as A (G ) = [ai j], where ai j is the weight for the communication link

with agent i as the tail. The weight ai j = 1 if (i, j) ∈ E , and ai j = 0 otherwise for i, j

∈ {1, . . . ,N}. The degree matrix, a diagonal matrix, is defined as ∆(G ) = [δi j] , where

δii = ∑ j ai j is the out degree of the vertex i and δi j = 0 if i ̸= j. The Laplacian of G , L ,

is defined as the difference ∆(G )−A (G ). Laplacian matrices can also be created using

non-unitary weights, where 0 ≤ ai j ≤ 1. For example in normalized Laplacians, row i of

the Laplacian matrix is divided by the corresponding degree of vertex i. For examples

of this see [87, 72]. In this thesis Laplacians based on unitary weights have been used.

With unitary weights for the directed graph in Figure 2.7, the Adjacency matrix and the

Laplacian with respect to the out degree at each node is given by

A =



0 0 0 1 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


L =



1 0 0 −1 0 0

−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 1 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1


(2.3)

For an undirected or bidirectional graph, the in degree is the same as the out degree

for all vertices, and hence the Laplacian for an undirected graph is symmetric. For the

undirected graph in Figure 2.8 the Adjacency and the Laplacian matrices are given by

A =



0 1 0 1 0 0

1 0 1 0 0 0

0 1 0 1 0 0

1 0 1 0 1 0

0 0 0 1 0 1

0 0 0 0 1 0


L =



2 −1 0 −1 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 0

−1 0 −1 3 −1 0

0 0 0 −1 2 −1

0 0 0 0 −1 1


(2.4)
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The Laplacian for an undirected graph has properties which have been exploited by

researchers to devise control laws for multi-agent systems. These properties are stated

as follows:

• The smallest eigenvalue of L is exactly zero and the corresponding eigenvector is

given by 1 = C ol(1, . . .1).

• The Laplacian L is always rank deficient and positive semi-definite.

• The rank of L is N −1 if for G there exists a path from every vertex to all other

vertices, i.e. the graph is connected.

Please refer to [7] for further reading on graph theory. In this thesis the network topolo-

gies are assumed to have bidirectional information exchange. The Laplacian’s used to

develop control laws are consequently symmetric and its properties are exploited to de-

compose network level representations into node level subsystems. In the subsections

that follow, research involving both directed and undirected graphs is discussed.

2.2.5.2 Kinematic Models

In cooperative control, the information shared over the network is important to achieve

coordination of the multi-agent system. In many cooperative control problems it is im-

portant for the agents to achieve consensus in terms of information. The problem of

convergence to a common value is defined as a consensus or agreement problem in the

literature on cooperative control. Consensus and coordination problems in multi-agent

systems have mostly been studied throughout the literature via kinematic models. Two

of the most important kinematic models used in the literature are the single integrator

and double integrator dynamics. In this section, a review of these kinematic models and

their applications is presented.

The single integrator model was the first and the most widely used model to study

consensus and cooperation in multi-agent systems. The single integrator kinematics

associated with the ith agent is given by

ẋi = ui (2.5)
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where xi,ui ∈ IR. The standard consensus algorithm for a network of N such agents is

given by

ui(t) = ∑
j∈Ji

(xi(t)− x j(t)) (2.6)

for i = 1, . . . ,N. Here Ji ⊂ {1,2, . . .N}/{i} denotes the agents for which the ith agent

has information. For a connected graph Ji is a non-empty set for all i = 1, . . . ,N. The

network of single integrators can be represented as

Ẋ(t) =−L X(t) (2.7)

where X = C ol(x1(t), . . . ,xN(t)) and L is the Laplacian associated with the underly-

ing topology [93]. For a bidirectional communication topology the Laplacian for the

underlying graph is symmetric positive semi-definite with a unit eigenvector. Hence all

the eigenvalues of −L in (2.7) are negative (except one zero eigenvalue). Due to this

property the consensus protocol in (2.6) can be shown to converge asymptotically to

the average of the initial values for the individual integrator agents [93]. In [59] single

integrator models representing the headings of autonomous agents are used to achieve

consensus. In [93] this model has been used in both continuous and discrete time for

convergence analysis in the case of switching topologies, i.e. changing communication

topologies described by forming and breaking of communication links, and also in the

presence of delays. In [60] a comprehensive review of consensus algorithms based on

single integrator dynamics has been provided. In [61], consensus of agents with single

integrator dynamics tracking a time-varying reference state has been studied. In [62],

a method to incorporate asynchronicity, i.e. in a situation where the state evolution of

multiple agents is not synchronized to a common clock, is provided. An overview of

information consensus in multivehicle cooperative control using single integrator model

is provided in [63]. In [64] formation control strategies developed using this model are

implemented on a robotic platform.

Although the single integrator model has been used extensively, it has a few limita-

tions. For example it is insufficient to describe motion in a plane with acceleration as

an input to the system. However a double integrator model can be used to model the
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motions of wheeled mobile robots [65], single axis spacecraft rotation [66], etc. The

double integrator model is represented as

ẍi(t) = ui(t) (2.8)

where xi,ui ∈ IR. In [67], agents with point mass models are described by double in-

tegrator dynamics and the average consensus problem of state agreement and velocity

stabilization has been studied. In [68] necessary and sufficient conditions for consen-

sus of double integrators via unidirectional local information exchange is studied. In

this work a formal analysis of information exchange topologies for consensus of double

integrators has been presented. In [69], conditions for consensus of agents described

by double integrator dynamics with constraints on measurements and control inputs are

presented. In [70] a stability criterion for the consensus of a network of double integra-

tors in the presence of delays is presented. Consensus algorithm for agents modelled

as double integrator have been extended to the problem of stabilization of formations

in [42, 72, 86, 71]. In [42] behaviour based approaches are applied to agents with

input-output dynamics represented by a double integrator to perform complex forma-

tion maneuvers. In [72] an example of a double integrator with time-delay is used to

demonstrate the effects of Laplacian eigenvalues on the stability of formations. In [86]

a double integrator example is used to demonstrate necessary and sufficient conditions

for stabilization of vehicle formations. In [71] methods for stabilization of such agents

to maintain a formation with actuator saturation and collision avoidance are presented.

2.2.5.3 Consensus Seeking in Multi-Agent Systems

In this section an overview of the problems associated with consensus algorithms and

their application is provided.

The pioneering work in terms of the development of a theoretical framework for

problems of consensus among multi-agent systems was done in [72, 73]. In [72] the

effects of communication topologies on consensus are analyzed for multi-agent systems.

The effect of the eigenvalues of the network graph associated with a communication
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topology, on the stability of the information flow, is illustrated. The same authors have

extended their work to develop linear and nonlinear consensus protocols for multi-agent

systems, and then studied the effects of communication delays and distortions or filtering

effects in the communication links, using Lyapunov based techniques [73]. In [74], the

same authors developed average consensus protocols for directed graphs with switching

topologies based on Lyapunov techniques. The work in [72] is further extended to study

the effects of increased or decreased communication links in [75]. In [75], necessary and

sufficient conditions for state agreement among a network of agents are presented. It is

shown that more communication, in the case of directed graphs, does not necessarily

lead to better convergence. In [76], it is argued that lack of consensus of inputs in dis-

tributed control algorithms can adversely affect coordination of multiple agents. Subse-

quently conditions on the network topology for consensus of information are presented.

It is proved that asymptotic consensus is achievable if and only if the communication

topology has a directed spanning tree. In [77] linear iterations for distributed averaging

consensus are studied. The authors propose semi-definite programming methods to find

the fastest converging iteration. In [78] information consensus in multi-agent systems is

studied under limited and unreliable communication. It is proved that for dynamically

changing topologies, consensus is achieved asymptotically if the union of the directed

interactions graphs have a spanning tree ‘frequently’ over the system evolution. In [79]

the consensus problem was extended to asynchronous multi-agent systems. Specifically,

the authors illustrated how the problem of consensus in synchronous multi-agent sys-

tems with communication topologies changing as a function of time can be considered

as a special case of consensus of asynchronous multiple agents with no delays in com-

munication of information. In [80] consensus algorithms were applied to the problem of

estimation. Consensus protocols along with local Kalman filters were used to develop a

decentralized estimator in [80]. Recently researchers have looked at incorporating ideas

such as convex analysis and linear programming to achieve consensus in multi-agent

systems. In [81] the problem of achieving optimal consensus by optimizing local objec-

tive cost functions, with nonlinear protocols for networks with directed communication

topologies, is investigated. Convergence to the optimal solution set, corresponding to an
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objective function which is the sum of local objective functions, and consensus analy-

sis are provided with the help of convex and nonsmooth analysis. In [82] a distributed

algorithm using a modified simplex algorithm for distribution of various goals among

the agents in a multi-agent system, is proposed. The algorithm is applicable to networks

with asynchronous agents where the updates schemes for the agents are not synchronized

to a common clock, and has very few requirements on the communication structure. In

[83] the problem of minimal sensing and control requirements to achieve consensus in

a multi-agent system is explored. The proposed control law achieves a rendezvous of

multiple vehicles, described as Dubin’s Car, without state estimation, using coordinates.

It is clear from all of the past research mentioned above that the communication

topology plays a central role in consensus and coordination of multi-agent systems. Also

in this thesis the Laplacian and its eigenvalues will be important to the design and devel-

opment of distributed state and output feedback control laws.

2.2.5.4 Formation of Vehicles

Consensus algorithms generally focus on state agreement or convergence of the states

to a common value. However consensus algorithms can be used to maintain formations

of multi-agent systems. In this section, literature focussed on formations of multi-agent

systems is reviewed.

Even in the case of formations, the communication topology and information flow

play a major role in achieving the desired objectives. In [84] the eigenvalues of a graph

Laplacian representing the communication topology are used to design a Nyquist like

stability criterion for vehicle formations. The authors correlate the location of the Lapla-

cian eigenvalues to the graph structure, to identify desirable and undesirable communi-

cation topologies. In [85] Lyapunov stability based arguments are used to prove conver-

gence as compared to the Nyquist methods in [84]. In [86] it is proved that necessary and

sufficient conditions on the communication topologies to achieve formations of multiple

agents, is the existence of a directed spanning tree. In [87] the problem of multi-agent

coordination and formation control while ensuring the connectedness of communication

topologies changing over time, is studied. In [88], the feasibility problem of achieving
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a desired geometric formation is studied. Necessary and sufficient conditions on the in-

formation flow in a network for guaranteeing asymptotic convergence are provided. In

[89], the problem of convergence of underactuated surface vehicles to a desired forma-

tion with the same orientation is studied. In [90] global stabilization of relative sensing

networks is achieved by a distributed algorithm. The algorithm guarantees convergence

to a desired formation even in cases where some of the agents in a network are not

synchronized with the others in terms of a common clock. In [91], formation control

of spacecraft with nonlinear dynamics is achieved by designing adaptive time-varying

gains. In [92] a nonlinear super-twist sliding mode observer based control strategy is

presented for spacecraft formation flying. The controller gains are designed by poly-

topic system representation dependent on the graph Laplacian. The analysis of state

estimation and convergence is provided using Lyapunov stability methods.

2.2.5.5 Effect of Delays

A review of the literature on consensus in the presence of delays is presented in this

section. In Section 2.2.5.2, a single integrator based consensus algorithm was described

in equation (2.6) as

ẋi(t) = ∑
j∈Ji

(xi(t)− x j(t))

for i = 1, . . . ,N, where x ∈ IR. In (2.6) it is implicitly assumed that the ith agent has in-

stantaneous information from the jth agent. This assumption is idealistic, as information

communicated over a network is bound to incur delays. Two types of delay can occur in

consensus algorithms:

• Delays in communication of information from an agent’s neighbours

• Delays in sensing of relative information

Delays in communication of information from an agent’s neighbours is given by

ẋi(t) = ∑
j∈Ji

(xi(t)− x j(t − τ(t))) (2.9)
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for i = 1, . . . ,N, where xi ∈ IR. Here τ(t)> 0 is a delay in communication of information

from agent j to agent i. The delay τ(t) can be fixed or time-varying. The delays are

assumed to be equal for each agent. This is done to exploit the properties of the resulting

adjacency and Laplacian matrices explained in Section 2.2.5.1. In real engineering sys-

tems the delays for different agents in most cases will be unequal. In such a case buffers

can be added during the communication of information to equalize the delays. Hence the

assumption of equal delays in stability analysis and design of consensus protocols is jus-

tified. Stability criteria associated with the consensus dynamics in a network of agents

in the presence of communication delays were subsequently developed in [111] using

frequency domain methods and Lyapunov Krasovskii based techniques. The strong de-

pendency of the magnitude of delay and the initial conditions on the consensus value

was established in [111]. In [111] it is illustrated by an example of a communication

topology that introduction of delay may improve convergence rate. In [112], flocking

or rendezvous of a network of second order dynamical systems with heterogeneous de-

lays, i.e. unequal delays across communication between any two agents, is obtained

using decentralized control. Both frequency and time domain approaches are utilized

in [112] to establish delay dependent and delay independent stability for the network.

Moreover, it is shown that the maximum bound on the delay depends on the gain of the

local controller at each node. Subsequently the theory was extended in [113] to the case

of a network formed from a certain class of nonlinear systems. The robustness of linear

consensus algorithms is addressed and conditions for convergence subject to communi-

cation delays are developed and reported in [114] building on the research described in

[112] and [113]. Scalable delay dependent controller design algorithms for consensus in

linear multi-agent networks is proposed in [114]. Reference [115] reports an indepen-

dent attempt to achieve consensus of second order systems using delayed position and

velocity information. Stability criteria for guaranteed convergence were obtained using

frequency domain methods in [115]. This work was further extended to higher order sys-

tems with time delays in [115]. Recently another methodology based on the treatment

of roots of the characteristic equation for the closed loop system, has been proposed in

[116] to study the effect of large and uniform delays in second order consensus problems
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with undirected graphs.

Delays in sensing of relative information for an agent in a network are given by

ẋi(t) = ∑
j∈Ji

(xi(t − τ(t))− x j(t − τ(t))) (2.10)

for i = 1, . . . ,N, where xi ∈ IR. Here τ(t)> 0 is a delay in sensing of relative information

for an agent i. The delay τ(t) may be fixed or time-varying. Necessary and sufficient

conditions for average consensus problems in networks of linear agents in the presence

of fixed delays in relative sensing have been derived [93]. In [93] it is shown that the

upper bound on the maximum permissible delay in a consensus protocol is inversely pro-

portional to the largest eigenvalue of the Laplacian representing the information flow.

Moreover, the authors have argued in [93] that networks with higher communication

links will not be able to tolerate higher time-delays. This work was further extended to

include bounded time-varying delays in [117]. In [117] necessary and sufficient con-

ditions for the existence of average consensus for a network of single integrators with

delayed protocols given by partial difference equations are provided. In [113] delay de-

pendent criteria for the robustness of consensus algorithms for multi-agent systems in the

presence of relative sensing delays were developed. The case of asymmetric delays in

sensing of information is also considered in [113]. Conceptually, the case of asymmetric

delays is given by

ẋi(t) = ∑
j∈Ji

(xi(t − τ1)− x j(t − τ2)) (2.11)

for i = 1, . . . ,N, where x ∈ IR. Here τ1,τ2 > 0 and τ1 ̸= τ2 are fixed delays in the sensing

of relative information from agent j to agent i. Recently, in [118] the performance of

consensus algorithms in terms of providing a fast convergence rate and involving com-

munication delays, was studied for second order multi-agent systems. In [119], using

Lyapunov-Krasovskii methods and an integral inequality approach, sufficient conditions

for robust H∞ consensus are developed for the case of directed graphs consisting of lin-

ear dynamical systems. This work accounts for node level disturbances, uncertainties

and time varying delays.
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2.3 Performance Analysis of Multi-Agent Systems

The previous section has discussed the various control methods for consensus and forma-

tion control in multi-agent systems. Initially less attention was paid to the performance

aspects when designing the consensus and coordination control algorithms. Recently a

few researchers have tackled the problem of designing control laws with performance

guarantees. Optimization techniques and performance analysis in graph based methods

for multi-agent systems are largely based on two perspectives: i) convergence analysis

based on graph properties, and ii) optimal control design techniques. The convergence

analysis techniques explore the effects of the communication topology and Laplacian

eigenvalues whereas optimal control design techniques employ traditional control tech-

niques such as LQR, H2, and H∞ methods. Convergence analysis methods are described

briefly in this section. In keeping with the motivation of this thesis, the optimal control

methods are described in detail with a focus on LQR control methods.

2.3.1 Topology Based Convergence Analysis

Topology based convergence analysis is mainly based on analyzing the information flow

in a network of multiple agents. Researchers have achieved optimum communication

links for faster convergence in a network, by weighting the Laplacian associated with

the network topology. In [93] it is shown that the convergence of a consensus proto-

col for a multi-agent system is related to the second smallest eigenvalue, also called

the Fiedler eigenvalue [109], of the Laplacian. It argues that the higher the magnitude

of the Fiedler eigenvalue the faster the convergence of the consensus algorithm. For

undirected graphs, the Fiedler eigenvalue is higher for denser communication topolo-

gies and this implies faster convergence. In [72] information exchange strategies among

multi-agent systems to improve formation stability and performance are discussed. The

formation stability and performance has been analyzed with respect to the Laplacian

eigenvalues. In [77] algorithms for improved convergence are designed by construct-

ing a fastest distributed linear averaging consensus (FDLA) problem. The subsequent

problem of finding optimal weights in the Laplacian matrix is posed as an optimization
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problem with the weighted Laplacian as the optimization variable. The authors also

tackle the problem of solving this problem for a large scale system with a large num-

ber edges by using computational methods such as interior point methods and gradient

based methods. Interior point methods for this problem are quicker in terms of obtaining

a solution but are computationally intensive. The proposed gradient based methods are

slower but are simple to implement. In [94] robustness and improved stability properties

are achieved by maximizing the Fiedler eigenvalue of the Laplacian of a network graph.

Semi-definite programming algorithms are then proposed by the authors to maximize

the Fiedler eigenvalue. In [95] strategies to achieve average consensus by obtaining an

optimal topology of communication between the agents are presented.

2.3.2 Optimal Control of Multi-Agent Systems

The methods discussed in the previous section only provide optimization of the rate

of convergence by ‘improving’ the communication topologies. However there are is-

sues such as disturbance rejection, robustness, optimizing control effort, simultaneous

convergence etc. which also need to be tackled for consensus and coordination of multi-

agent systems. The design of control laws for multi-agent systems with performance

criteria based on LQR, H2, and H∞ has recently been undertaken by researchers.

A distributed control methodology ensuring LQR performance in the case of a net-

work of linear identical systems is presented in [96]. The robust stability of the collective

dynamics with respect to the robustness of the local node level controllers and the un-

derlying topology of the interconnections, is also established in [96]. A decentralized

receding horizon controller with guaranteed LQR performance for coordination prob-

lems is proposed in [97] and the efficacy is demonstrated by an application to attain

coordination for a group of unmanned air vehicles. In [98], the relationship between the

interconnection graph and closed-loop performance in the design of distributed control

laws, is studied using an LQR cost function. In [99] procedures to design distributed

controllers with H2 and H∞ performance have been proposed for a network of identical

dynamically coupled systems. In [99] a comparison of centralized, decentralized, and

distributed control design methods for multi-agent systems with guaranteed H2 perfor-
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mance was made and the results favoured distributed control design methods. In [100],

decentralized static output feedback controllers are used to stabilize a network of dynam-

ical systems with guaranteed overall H2 performance, depending only on the node level

quadratic performance. LQ optimal control laws for a wide class of systems, known

as spatially distributed large scale systems, are developed in [101] by making use of

an approximation method. In [102], LQR optimal algorithms for continuous as well as

discrete time consensus are developed, where the agent dynamics are restricted to be

single integrators. However, interesting relationships between the optimality in LQR

performance and the Laplacian matrix of the underlying graph are also developed. In

[103] H∞ control methods are used to design robust distributed formation controllers for

multi-agent systems. The proposed control methods guarantee robustness in the face of

changes in the communication topologies. In [104] optimal formation control strategies

for multi-agent systems with tunable communication topologies and interaction param-

eters are proposed. LQR control design techniques are then employed to design optimal

controllers. In [105] relative sensing networks with: a) each agent in the network having

described by the same set of linear state dynamics, i.e a network of homogeneous agents,

and b) the agents in the network can be described by different linear state dynamics, i.e.

a network of heterogeneous agents, are considered. It is shown that the H2 performance

depends on the number of edges in the graph, and the H∞ performance is dependent on

the topology and is related to the spectral radius i.e. the largest eigenvalue of the graph

Laplacian.

2.4 Concluding Remarks

Research in cooperative control of multi-agent systems has received considerable atten-

tion over the last two decades. Various control strategies have been applied for control

of multi-agent systems. A review of some of the important strategies such as leader-

follower methods, behaviour based control, the potential function approach, the virtual

structure approach and graph theoretic methods has been presented in this chapter. Over

the last decade researchers have been especially interested in distributed control meth-
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ods for multi-agent systems. These methods are favoured for their various perceived

advantages such as scalability, flexibility, robustness as compared to centralized and

decentralized control. The graph theoretic methods facilitate the design and analysis

of distributed control methods and hence many researchers have exploited these ideas

to obtain novel results in terms of the control of multi-agent systems. Two important

control problems associated with graph theoretic methods for multi-agent systems are

consensus and maintaining a formation. Consensus problems have mostly been stud-

ied with the help of single integrator models. Another model which has been used to

study consensus is the double integrator kinematics model which is particularly useful

in modeling planar motion with acceleration as the feedback input.

Performance analysis related to graph theoretic methods can broadly be classified

into two categories. The first category focuses on obtaining optimal topologies and

Laplacian eigenvalues to maximize the rate of convergence. The second category in-

volves incorporating performance measures such as LQR, H∞, etc. Consensus and coor-

dination of multi-agent systems involves communication of information over a network.

This exchange of information over a network is bound to incur communication delays.

Research in the field of multi-agent systems subject to delays is ongoing. In this thesis

these two aspects in control of multi-agent systems are addressed: the design of con-

trollers to provide LQR performance at a network level, and delays in communication of

information will be considered.
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Chapter 3

Optimal LQR Performance of

Multi-Agent Systems

3.1 Introduction

In Section 2.3.2, a review of the literature on optimal control of multi-agent systems was

presented. One of the optimality measures used for the multi-agent systems is Linear

Quadratic Regulator (LQR) performance. The LQR control method obtains controller

gains by minimizing a quadratic cost. The quadratic cost generally includes quadratic

measures of the error/states of the system along with quadratic measures of the control

action which limits the energy spent by the controller. Specifically, in [96] a distributed

control methodology was designed for multi-agent systems where the node level con-

trollers were sub-optimal in terms of a network level LQR cost. In this chapter, a novel

state feedback distributed control design methodology, which considers a network level

LQR cost function , is developed for a network of identical dynamical systems with LQR

performance. The identical agents are coupled by the control law using relative infor-

mation exchanged over a communication network. A two step control design procedure

to obtain distributed control laws for the network of agents is proposed. The proposed

control laws guarantee sub-optimal LQR performance at a network level. The results are

illustrated with the help of a numerical example. A comparison of the proposed control

law with the control law obtained from the method proposed in [96] is presented for the
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same numerical example. A time-delay analysis is then carried out for the network with

the proposed control laws. A bound on the permissible delay in the exchange of relative

information is obtained for fixed delays and also for the case of time-varying delays.

The organization of this chapter is as follows: In Section 3.2 the problem definition is

stated. The control objective and the adopted state feedback control design methodology

is presented in this section. In Section 3.3 the two-step control design procedure is

explained. In Section 3.4, a time-delay analysis of the proposed design methodologies

to ascertain a bound on the maximum amount of delay in relative sensing that can be

accommodated, is presented. In Section 3.5 a detailed review of the control design

method in [96], which has a few similarities to the control design methodology adopted

in this chapter, is provided and comparisons are made. In Section 3.6, the proposed

methodologies and the subsequent time-delay analysis is illustrated with the help of a

numerical example. Concluding remarks are given in Section 3.7.

3.2 Problem Formulation

In this section the LQR control problem considered in this chapter is formulated. The

system (represented by a network of identical linear agents), the structure of the control

law and the subsequent LQR cost function to be minimized are presented in this section.

3.2.1 Linear System Model

A collection of N identical n-dimensional linear dynamical systems indexed as 1,2, ...,N

are considered. Each system is assumed to have access to its own state measurements

together with relative external measurements with respect to the other dynamical systems

which it can sense or interact with. The communication between neighbours is assumed

to be bi-directional. As explained in Section 2.2.5.1, this interconnected system can be

represented as a graph, with N vertices or nodes, each representing an n−dimensional

dynamical system. The existence of relative sensing among the dynamical systems is

indicated by an edge in this graph.
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The dynamics of the ith individual node are given by

ẋi(t) = Axi(t)+Bui(t) (3.1)

where xi(t)∈ IRn and ui(t)∈ IRm represent the states and the control inputs. The constant

matrices A ∈ IRn×n and B ∈ IRn×m, and it is assumed that the pair (A,B) is controllable.

The exchange of relative information available at each node is assumed to have the form

zi(t) = ∑
j∈Ji

(xi(t)− x j(t)) (3.2)

for i = 1 . . .N. The signal zi(t) represents aggregated external measurements relative to

the other dynamical systems which the ith node exchanges information with. The signal

zi(t) is equivalent to the consensus algorithm for single integrator kinematics as ex-

plained in Section 2.2.5.2. The nonempty set Ji ⊂ {1,2, . . .N}/{i} denotes the indices

of the dynamical systems for which the ith dynamical system has information. Making

use of Kronecker products, at a network level, the system given in (3.1) is represented

by

Ẋ(t) = (IN ⊗A)X(t)+(IN ⊗B)U(t) (3.3)

where

X(t) = C ol(x1(t), ....,xN(t)) (3.4)

U(t) = C ol(u1(t), ....,uN(t)) (3.5)

At a network level, the equations in (3.2) can be represented as

Z(t) = (L ⊗ In)X(t) (3.6)

where Z(t) = C ol(z1(t), . . . ,zN(t)) and L is the Laplacian for the network. Here, an

assumption is made that the bi-directional network topology is connected. As explained

in Section 2.2.5.1, this implies that each dynamical system has information about at least

one other system which ensures rank(L ) = N −1
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3.2.2 Control Objective

The problem considered in this chapter is the design of state feedback control laws of

the form

ui(t) =−Kxi(t)−ΦKzi(t) (3.7)

for i = 1, . . . ,N, where K ∈ IRm×n and Φ ∈ IRm×m, such that, the cost function

J =
∫ ∞

0
(X(t)T((IN ⊗Q1)+(L ⊗Q2))X(t)+U(t)T(IN ⊗R)U(t))dt (3.8)

where Q1 = QT
1 ≥ 0 ∈ IRn×n, Q2 = QT

2 ≥ 0 ∈ IRn×n, R = RT > 0 ∈ IRm×m, is minimized.

The motivation behind the form of control laws in (3.7) and the cost function in (3.8) are

explained in Remark 3.5 and Remark 3.6 at the end of the control design procedure in

Section 3.3. The solution to this problem is obtained in a sub-optimal way via a two step

optimization process. The details of the two step design process are as follows:

• Step 1: First the control gain matrix K in (3.7) is synthesized to optimize the LQR

performance at a decoupled node level by solving a classical LQR problem [8], i.e

the gain matrix K is obtained such that the decoupled node level system

ẋi(t) = Axi(t)+Bui(t) (3.9)

is stabilized by the control law ui(t) =−Kxi(t) while simultaneously minimizing

the node level cost function given by

Ji =
∫ ∞

0
(xi(t)TQ1xi(t)+ui(t)TRui(t))dt (3.10)

where Q1 and R are associated with the LQR cost functional given in (3.8). In

this step no interactions between the agents are considered and hence the cost

considered can be viewed as the case when Q2 = 0 in the cost function in (3.8).

• Step 2: Once K has been synthesized, a design matrix Φ ∈ IRm×m is chosen such
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that collection of systems

ẋi(t) = Axi(t)+Bui(t) (3.11)

are stabilized by the distributed control laws given in (3.7) for i = 1, ...,N, where

zi(t) is given in (3.2). The objective of this step is to obtain the design matrix Φ

such that the network level cost function in equation (3.8) is minimized. Using

(3.5) and (3.6), the control law at the network level is represented by

U(t) =−(IN ⊗K)X(t)− (L ⊗ΦK)X(t) (3.12)

The control design objective here is to achieve an asymptotic rendezvous of the N

agents described in (3.1). In this thesis rendezvous is considered to be a consensus

problem of driving the agents to the origin. Asymptotic consensus is an interesting

problem studied by many researchers over the past decade. This is a starting point to

modifying consensus problems into formation stabilization problems and also consensus

problems with finite time stabilization which have applications in spacecraft formation

flying, spacecraft interferometry, surveillance and reconnaissance and rescue operations

as stated in Chapter 2.

Remark 3.1: In (3.8), the term L ⊗Q2 is introduced to penalize the relative informa-

tion. This makes an attempt to obtain simultaneous convergence of the multiple agents.

Since undirected or bidirectional communication topologies are considered for the inter-

agent communication, the Laplacian L is symmetric positive semi-definite with row

sum equalling zero as explained in Section 2.2.5.1. This row sum property is preserved

by L ⊗Q2. At convergence if xi = xs, where xs is the desired steady state, for i= 1, . . . ,N

then XT (L ⊗Q2)X = 0 and the individual decoupled node level LQR performance, as

in (3.10), is recovered.

Remark 3.2: An LQR cost function similar to (3.8) is also considered in [96]. The LQR

control problem in [96] is discussed in Section 3.5. The approach in [96] to solve the as-

sociated LQR problem is different. The suboptimal distributed LQR problem is posed as

a single LQR problem exploiting the properties of the graph associated with the commu-
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nication topology. The order of the LQR problem to be solved depends on the maximum

vertex degree (plus one), but not on the total number of nodes in the network. In the

method proposed in this chapter, the sub-optimal distributed LQR problem is solved

systematically in two steps: the first step involves solving a node level LQR problem;

and the second step involves obtaining a scaling matrix, addressing the distributed con-

trol part, which creates an optimization problem which depends on the number of nodes

of the graph.

3.3 Control Design Procedure

In this section the two step control design procedure is explained in detail.

3.3.1 Details of Step 1

It is assumed without loss of generality that the input distribution matrix from (3.1) has

the form

B =

 0

B2

 (3.13)

where B2 ∈ IRm×m. This is so-called regular form [107]. By solving the standard LQR

problem posed in Step 1, the optimal feedback gain is given by

K =−R−1BT P (3.14)

where the symmetric positive definite Lyapunov matrix P is obtained as a solution to the

corresponding Algebraic Riccatti Equation (ARE) given by

PA+AT P+Q1 −PBR−1BTP = 0 (3.15)

The reader is referred to [8] for the derivation of the Algebraic Riccati Equation in (3.15).
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3.3.2 Details of Step 2

In order to solve the optimization problem in Step 2, a change of coordinates given by

x 7→ T̂ x = x̂ is introduced. The coordinate transformation matrix T̂ is given by

T̂ :=

 I(n−m)×(n−m) 0

P−1
22 PT

12 Im

 (3.16)

The matrices P12 and P22 in (3.16) are obtained by decomposing the Lyapunov matrix P

from (3.15) so that

P =

 P11 P12

PT
12 P22

 (3.17)

where P11 ∈ IR(n−m)×(n−m) and P22 ∈ IRm×m. Because P is symmetric positive definite,

the sub-matrix P22 is symmetric positive definite and therefore nonsingular. Clearly the

transformation T̂ is nonsingular. Following the change of coordinates, (A,B,K,P) 7→

(Â, B̂, K̂, P̂) where the matrices Â = T̂ AT̂−1, B̂ = T̂ B, K̂ = KT̂−1 and P̂ = (T̂−1)T PT̂−1,

it can easily be verified that the Lyapunov matrix in the new coordinates has the block

diagonal form

P̂ =

 P11 −P12P−1
22 PT

12 0

0 P22

 (3.18)

It is also easy to see that B̂ = B, i.e the input distribution matrix is invariant under the

transformation T̂ . In these coordinates it can be verified by direct computation that the

feedback gain matrix K̂ has the structure

K̂ =
(

0 K̂2

)
(3.19)

where K̂2 ∈ IRm×m and det(K̂2) ̸= 0. (This follows easily from the structures of B̂ and

P̂ because K̂ = −R−1B̂T P̂). In the new coordinate system, the node level LQR cost

functions are given by

Jl =
∫ ∞

0
(x̂l(t)TQ̂1x̂l(t)+ul(t)TRul(t))dt (3.20)
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where Q̂1 := (T̂−1)T Q1T̂−1. Further, for the multi-agent system

˙̂xl(t) = Âx̂l(t)+ B̂ul(t) (3.21)

the distributed state feedback control law given by

ul(t) =−K̂x̂i(t)−ΦK̂ẑl(t) (3.22)

for l = 1, . . . ,N, is considered. The relative information in the new coordinates is given

by

ẑl(t) = ∑
j∈Jl

(x̂l(t)− x̂k(t)) (3.23)

Remark 3.3: The control law in (3.22) for the transformed system in (3.21) is equivalent

to the control law (3.7) for the system in (3.1) since K̂ = KT̂−1 and x̂l(t) = T̂ xi(t) and

x̂k(t) = T̂ x j(t) from (3.2). The reader should note that each state of the decomposed

node contains a combination of the states of the agent represented by that node. For

example each state in x̂1(t) contains a combination of the states of x1(t).

The states of the network in the transformed coordinates are given by

X̂(t) = (IN ⊗ T̂ )X(t) (3.24)

where

X̂(t) = C ol(x̂1(t), ...., x̂N(t)) (3.25)

In the X̂ coordinates, from (3.21), the system at the network level is given by

˙̂X(t) = (IN ⊗ Â)X̂(t)+(IN ⊗ B̂)U(t) (3.26)

The control law in (3.22) at a network level is given by

U(t) =−(IN ⊗ K̂)X̂(t)− (L ⊗ΦK̂)X̂(t) (3.27)
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Substituting (3.27) in (3.26), the closed loop system is given by

˙̂X(t) = ((IN ⊗ (Â− B̂K̂))− (L ⊗ B̂ΦK̂))X̂(t) (3.28)

The cost function in (3.8) in the new coordinates is given by

J =
∫ ∞

0
(X̂(t)T ((IN ⊗ Q̂1)+(L ⊗ Q̂2))X̂(t)+U(t)T (IN ⊗R)U(t))dt (3.29)

where Q̂2 := (T̂−1)T Q2T̂−1.

Remark 3.4: The cost function in (3.29) is equivalent to (3.8). This can be verified by a

substitution of (3.24), (3.27), and K̂ = KT̂−1 in (3.29).

In this step K̂ ∈ IRm×n is considered to be fixed, and Φ ∈ IRm×m represents the available

design freedom. In this step the gain matrix Φ is obtained such that the LQR cost func-

tion in (3.29) (in the transformed coordinates) is minimized. The objective of this step is

to achieve a rendezvous such that all the states of the agents are driven to the origin while

simultaneously minimizing the inter-agent distances as the agents approach asymptotic

stabilization.

The gain matrix Φ is obtained by the following theorem:

Theorem 3.3.1. For selected weighting matrices Q1, Q2 ∈ IRn×n and R ∈ IRm×m, the

control laws in (3.22) stabilize the node level systems in (3.21) if there exist symmetric

matrices Wl > 0 and Zl > 0 ∈ IRn×n with the structures

Wl =

 Wl1 0

0 W2

 Zl =

 Zl1 0

0 Z2

 (3.30)

for l = 1, . . . ,N, where the matrices Wl1 ∈ IR(n−m)×(n−m), W2 and Z2 ∈ IRm×m are sym-

metric positive definite, and a matrix Ŷ ∈ IRm×n given by the structure

Ŷ =
(

0 Ŷ2

)
(3.31)

where Ŷ2 ∈ IRm×m is nonsingular, such that the following matrix inequalities are satisfied
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for l = 1, . . . ,N

 −Zl In×n

In×n −Wl

< 0 (3.32)


Ψl Wl(Q̂1 +λlQ̂2)

1/2 (λlŶ + K̂Wl)
T

∗ −In 0

∗ ∗ −R−1

< 0 (3.33)

where Ψl = ÂcWl −λlB̂Ŷ +WlÂT
c −λlŶ T B̂T for l = 1, . . . ,N and the matrix Âc := Â−

B̂K̂. The scalars λl l = 1, . . . ,N are the eigenvalues of the Laplacian L in (3.28). The

matrices Q̂1 := (T̂−1)T Q1T̂−1 and Q̂2 := (T̂−1)T Q2T̂−1 in (3.33). The scaling matrix

Φ ∈ IRm×m is given by Φ = Ŷ2W−1
2 K̂−1

2 . Furthermore, a bound on the LQR cost J from

(3.29) is obtained if ∑N
l=1 trace(Zl) is minimized subject to the conditions (3.32)-(3.33).

Proof. Since L is symmetric positive semi-definite, by spectral decomposition [7] L =

V ΛV T where V ∈ IRN×N is an orthogonal matrix formed from the eigenvectors of L

and Λ =D iag(λ1 = 0, . . .λN) is the matrix of the eigenvalues of L . An orthogonal state

transformation

X̂(t) 7→ (V T ⊗ In)X̂ = X̃(t) (3.34)

is employed on the system in (3.28). In the new coordinates the system is represented as

˙̃X(t) = (IN ⊗ (Â− B̂K̂))X̃(t)− (Λ⊗ B̂ΦK̂)X̃(t) (3.35)

The weighting matrices (IN ⊗ Q̂1) and (L ⊗ Q̂2) from (3.29) map to

(V ⊗ IN)
T (IN ⊗ Q̂1)(V ⊗ IN) = (V TV ⊗ Q̂1) = (IN ⊗ Q̂1) (3.36)

(V ⊗ IN)
T (L ⊗ Q̂2)(V ⊗ IN) = (V T LV ⊗ Q̂2) = (Λ⊗ Q̂2) (3.37)

Using (3.36) and (3.37), the quadratic performance at the network level in (3.29) is
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represented as

J =
∫ ∞

0
(X̃(t)T ((IN ⊗ Q̂1)+(Λ⊗ Q̂2))X̃(t)+U(t)T (IN ⊗R)U(t))dt (3.38)

Since Λ is a diagonal matrix, (3.35) is represented at a node level in the transformed

coordinates as

˙̃xl = (Â− B̂K̂ −λlB̂ΦK̂)x̃l (3.39)

for l = 1, . . . ,N and (3.38) as

J =
N

∑
l=1

∫ ∞

0
(x̃l(t)T(Q̂1 +λlQ̂2)x̃l(t)+ul(t)TRul(t))dt (3.40)

The node level cost function is represented by

J̃l =
∫ ∞

0
(x̃l(t)T(Q̂1 +λlQ̂2)x̃l(t)+ul(t)TRul(t))dt (3.41)

For each of the decoupled node level systems in (3.39), quadratic Lyapunov functions

given by

Ṽl = x̃T
l Pl x̃l (3.42)

for l = 1, . . . ,N are considered. The Lyapunov matrices Pl are assumed to have the

structure

Pl =

 Pi11 0

0 P2

 (3.43)

for l = 1, . . . ,N, where Pl11 ∈ IR(n−m)×(n−m) and P2 ∈ IRm×m are symmetric positive

definite. In the x̂ coordinates the Lyapunov matrix associated with the optimum LQR

cost for the (Â, B̂) pair has a block-diagonal form as shown in (3.18). In (3.43) the

block-diagonal structure is retained for the subsequent optimization. Note that P2 is

defined to be the same for all l = 1, . . . ,N. Differentiating (3.42), it is required that

˙̃Vl(x̃l(t))+
d
dt

∫ t

0
(x̃l(t)T(Q̂1 +λlQ̂2)x̃l(t)+ul(t)TRul(t))dt < 0 (3.44)
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which implies

˙̃Vl(x̃l(t))≤− d
dt

∫ t

0
(x̃l(t)T(Q̂1 +λlQ̂2)x̃l(t)+ul(t)TRul(t))dt < 0 (3.45)

Substituting (3.39), (3.41), and (3.42) in (3.44) yields

Pl(Â− B̂K̂ −λlB̂ΦK̂)+(Â− B̂K̂ −λlB̂ΦK̂)T Pl

+(Q̂1 +λlQ̂2)+(K̂ +λlΦK̂)T R(K̂ +λlΦK̂)< 0 (3.46)

where Pl > 0, for l = 1, . . . ,N . Integrating (3.44) over [0, t] gives

Ṽl(x̃l(t))−Ṽl(x̃l(0))≤−
∫ t

0
(x̃l(t)T(Q̂1 +λlQ̂2)x̃l(t)+ul(t)TRul(t))dt (3.47)

for l = 1, . . . ,N. Since Ṽl(x̃(t)) tends to zero as t → ∞, which implies

Ṽl(x̃(0))≥ J̃l (3.48)

for l = 1, . . . ,N. This gives

J̃l ≤ x̃T
l (0)Pl x̃l(0) (3.49)

for l = 1, . . . ,N. Thus the network level cost J in (3.40)

J ≤
N

∑
l=1

x̃T
l (0)Pl x̃l(0) (3.50)

Thus the following minimization problem constitutes minimizing an upper bound on the

LQR cost J at a network level

Minimize ∑N
l=1 trace(Pl) subject to (3.46)

The matrix inequality stated in (3.46) is not a convex representation. To develop

a convex representation of the optimization problem stated above, a set of matrices Wl

given by (3.30) for l = 1, . . . ,N, where Wl1 = P−1
l11 and W2 = P−1

2 , are defined. Pre and
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post multiplying (3.46) by Wl yields

(Â− B̂K̂ −λlB̂ΦK̂)Wl +Wl(Â− B̂K̂ −λlB̂ΦK̂)T +Wl(Q̂1 +λlQ̂2)Wl

+Wl(K̂ +λlΦK̂)T R(K̂ +λlΦK̂)Wl < 0 (3.51)

for l = 1 . . .N. Because of the structures inherent in the terms K̂, and Wl , it follows that

ΦK̂Wl =
(

0 ΦK̂2W2

)
(3.52)

To generate an LMI representation as explained in Appendix A, a new variable given by

Ŷ =
(

0 Ŷ2

)
(3.53)

where Ŷ2 = ΦK̂2W2 is defined. Then by the use of the Schur decomposition from

Appendix A.1, inequality (3.51) is written as (3.33). Also the set of matrices Zl , for

l = 1, . . . ,N are defined conformably with the definition of Wl as shown in (3.30). Then

minimization of ∑N
l=1 trace(Zl) subject to (3.32) and (3.33) is equivalent to minimizing

N

∑
l=1

trace(W−1
l ) =

N

∑
l=1

trace(Pl)

since (3.32) is equivalent to W−1
l < Zl . Hence the bound the LQR cost in (3.29) is

minimized by the optimization problem

Minimize ∑N
l=1 trace(Zl) subject to (3.32)-(3.33)and Wi > 0

This is a convex optimization problem in terms of the LMI variables Wl , Ŷ and Zl . The

design matrix Φ can then be obtained from Ŷ as Φ = Ŷ2W−1
2 K̂−1

2 .

Note that:

• The block diagonal structure of Pl in (3.43) is enforced to help with the formulation

of a convex representation of the problem. However this does induce conservatism

in the solution that will be obtained.

• For Φ= 0, choosing Pl = P̂ from (3.18) obtained from Step 1, is a feasible solution
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to the optimization problem. Thus the minimization problem is guaranteed to have

a meaningful solution.

• The coordinate transformation T̂ in (3.16) was employed to enable the definition

of Pl in the form of (3.43). This facilitates the use of a different Lyapunov matrices

at the decomposed node level in (3.42). This reduces the excess conservatism that

would have been imparted in case a single Lyapunov matrix P was chosen for

each node. The orthogonal coordinate transformation in (3.34) was employed to

decompose the symmetric Laplacian L and obtain the node level equations in

(3.39). It can now be stated that this decomposition of the symmetric Laplacian is

the main reason for the assumption of bidirectional topologies in Theorem 3.3.1.

The Laplacian of a directed graph is not symmetric and hence the equations in

(3.39) cannot be obtained purely in the node level states.

• This theorem obtains the gain matrix ΦK for the relative information to be used

along with the local information such that simultaneous stabilization is achieved

while minimizing an augmented LQR cost. The main drawback of this theorem

is that it requires that N LMIs in (3.30) - (3.33) are satisfied simultaneously. In

(3.33), (Q̂1 +λlQ̂2) is positive definite for l = 1, . . . ,N and hence (3.33) is equiv-

alent to 
Ψl Wl(Q̂1 +λlQ̂2) (λlŶ + K̂Wl)

T

∗ −(Q̂1 +λlQ̂2) 0

∗ ∗ −R−1

< 0 (3.54)

with the terms as stated in Theorem 3.3.1. In [93] it is proved that the eigenvalues

of the graph Laplacian L ∈ [0,2δmax(G )], where δmax(G ) is the maximum degree

of the graph Laplacian. Hence the LMIs in (3.54) are affine with respect to the

eigenvalues λl for l = 1, . . . ,N. Thus the Theorem 3.3.1, with (3.54) instead of

(3.33), can then be solved for λ = 0 and 2δmax(G ). This will reduce the number

of LMIs to be simultaneously satisfied but may introduce some conservatism as

the second LMI is satisfied for the maximum possible eigenvalue 2δmax(G ). To

summarize, the Theorem 3.3.1 should be used when the number of agents is small
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and satisfying the LMIs for each node is not computationally intensive whereas

the approach with (3.54) should be used when the multi-agent system has a large

number of agents.

Remark 3.5: First the gain matrix K is obtained from Step 1 by solving the standard LQR

problem which minimizes the cost function in (3.10). To minimize the cost function in

(3.8), the gain matrix matrix associated with the relative information zi, i = 1, . . . ,N in

(3.7) is considered to be ΦK, where Φ is a scaling matrix for the node level gain matrix

K. This has been introduced to enable the use of different Lyapunov matrices in the

control design procedure. If a full gain matrix K f had been considered instead of ΦK

one will have to consider same Lyapunov matrix for the decomposed node levels in

(3.42) in Theorem 3.3.1 from Section 3.3. This would have added more conservatism to

the design process.

Remark 3.6: The term IN ⊗Q1 in (3.8) is from the Step 1 of the control design procedure.

In the absence of the term L ⊗Q2, i.e Q2 = 0, the solution obtained from Step 2 will

be Φ = 0. The term L ⊗Q2 is introduced to penalize the relative information and aid

simultaneous convergence as explained in Remark 3.1. The weighting for the control

effort given by the term IN ⊗R is kept the same. In Step 1, R is the weighting used to

obtained the gain matrix K. In Step 2, the same weighting R is used for the control effort

(3.22) employed on the decomposed systems in (3.21). The gain matrix ΦK then reflects

the excess control effort required from the use of relative information to compensate for

the term L ⊗Q2 when the weighting for the control effort is the same.

3.4 Analyzing Effects of Time-Delays

In this section the effects of delays in exchange of relative information are analyzed. An

analysis with both fixed and time-varying delays, to ascertain the maximum bound on

the delay that can be accommodated in the network, is presented.

The aggregated relative measurements in (3.2) were given by

zi(t) = ∑
j∈Ji

(xi(t)− x j(t)) (3.55)
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This is very idealized and in reality delays will be present in the information network. In

this section, the effect of time delays across all communication links will be analyzed.

The time delays are assumed to be equal across all communication links. The relative

information available at each node is now given by

zi(t − τ) = ∑
j∈Ji

(xi(t − τ)− x j(t − τ)) (3.56)

for i = 1, . . . ,N. The assumption behind delayed relative information of the form (3.56)

comes from the scenario where a multi-agent system has only relative state information

sensors. In this scenario, the system representation becomes

ẋi(t) = Axi(t)+Bui(t) (3.57)

ui(t) = −Kxi(t)−ΦKzi(t − τ) (3.58)

where the scalar τ (representing the delay) can be a fixed or time-varying. This is more

realistic than the earlier formulation with no delay. A more realistic case arises when

the delays across different communication links are considered to be different. This will

not be considered in this thesis as a central theme of this thesis is to exploit the property

of the resulting symmetric Laplacian when (3.56) is written at a network level. Also the

use of buffers in the case of unequal delays to equalize the delays has been explained in

Section 2.2.5.5.

With the use of Kronecker algebra, the control law for the overall system can be

written as

U(t) =−(IN ⊗K)X(t)− (L ⊗BΦK)X(t − τ) (3.59)

and the closed loop system is then given by

Ẋ(t) = A0X(t)+A1X(t − τ) (3.60)
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where

A0 = (IN ⊗A)− (IN ⊗BK) (3.61)

A1 = −(L ⊗BΦK) (3.62)

The class of systems represented by (3.60) have been studied extensively in the lit-

erature to develop stability criteria for both fixed and time-varying delays. This class of

time-delay systems and the related stability criteria are explained in Appendix B. The

reader is referred to [120]-[129] for further reading on this class of systems.

Remark 3.7: The time delays are assumed to be equal across all communication links

to represent the system given by (3.57)-(3.58) at a network level in the form of (3.60).

With unequal delays the system cannot be represented by (3.60) and the stability criteria

from Appendix B cannot be applied.

Two types of delay τ in the system (3.60) are considered

• Case A : τ is fixed and unknown in [0 τ̂]

• Case B : τ is time-varying subject to 0 ≤ τ(t)≤ τ̂ for all t ≥ 0

The system in (3.60) is analyzed to ascertain the maximum possible delay τ̂ such that

the system is stable for all i = 1, . . . ,N and τ ∈ [0 τ̂].

3.4.1 Fixed Delay

For Case A, the system in (3.60) is analyzed using the results of Proposition 4 and Propo-

sition 5 in the Appendix B.3.2 and Appendix B.4 respectively. Proposition 4 ascertains

stability with the help of a quadratic Lyapunov-Krasovskii functional as explained in

Appendix B.3.2. The stability of the system in (3.60) using Proposition 4 is given by the

following proposition:

Proposition 3.4.1. The system in (3.60) is asymptotically stable if there exist real matri-
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ces Y T
1 = Y1, ST = S, Y2, ∈ IRNn×Nn and PT = P ∈ IRNn×Nn such that

P > 0 (3.63)
N̂ PA1 −Y2 −AT

0 Y T
2

∗ −S −AT
1 Y T

2

∗ ∗ −1
τ Y1

 < 0 (3.64)

where

N̂ = PA0 +AT
0 P+S+ τY1 +Y2 +Y T

2 (3.65)

Proof. The Lyapunov-Krasovskii functional considered for the proof of this theorem is

given by

V (Xt) = XT (t)PX(t)+
∫ t

t−τ
XT (θ)SX(θ)dθ +

∫ t

t−τ

∫ t

θ
gT (ζ )Z̄g(ζ )dζ dθ (3.66)

where t −τ ≤ θ ≤ t, −τ ≤ ζ ≤ 0, Xt = X(t +θ) for θ ∈ [−τ,0], Z̄ ∈ IRn×n is symmetric

and

g(ζ ) = A0X(t)+A1X(t +ζ ) (3.67)

The LMI in (3.64) is obtained from V̇ (Xt)< 0. The reader is referred to Proposition 5.17

in [129] for the proof.

The objective of the time delay analysis with Proposition 3.4.1 is to maximize τ to obtain

τ̂ such that there exist matrices Y T
1 = Y1, ST = S, PT = P and Y2, ∈ IRNn×Nn satisfying

(3.63)-(3.64).

The LMIs associated with this method have 4 matrix variables each of dimension Nn×

Nn. The three variables Y1, S and P are symmetric and have Nn(Nn+1)
2 decision variables

each. The matrix variable Y2 has (Nn)2 decision variables. The total number of decision

variables is given by
5(Nn)2 +3Nn

2

The maximum possible delay τ̂ obtained by this result is conservative [129]. This is due

to the choice of the Lyapunov-Krosovskii functional which considers a single positive
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matrix S over the full delay interval t−τ ≤ θ ≤ t. Proposition 5 reduces the conservatism

by dividing the interval [0 τ] into np equal parts and establishes stability with the help

of a discretized Lyapunov-Krasovskii functional. The stability of the system in (3.60)

using Proposition 5 is given by the following proposition:

Proposition 3.4.2. The system described in (3.60) is asymptotically stable if there exist

Nn×Nn matrices P = PT ; Q̄p, Sp = ST
p , p = 0, . . . ,np; Rpq = RT

qp, p = 0, . . . ,np, q =

0, . . . ,np and h = τ/np such that

 P F̃

∗ R̃+ S̃

 > 0 (3.68)


∆ −Ds −Da

∗ Rd +Sd 0

∗ ∗ 3Sd

 > 0 (3.69)

where

F̃ =
(

Q̄0 Q̄1 . . . Q̄np

)
(3.70)

R̃ =


R00 R01 . . . R0np

R10 R11 . . . R1np

. . . . . .

Rnp0 Rnp1 . . . Rnpnp


(3.71)

S̃ =
(

1
hS0

1
hS1 . . . 1

hSnp

)
(3.72)

and

∆ =

 ∆00 ∆01

∗ ∆11

 (3.73)

∆00 = −PA0 −AT
0 P− Q̄0 − Q̄T

0 −S0 (3.74)

∆01 = Q̄np −PA1 (3.75)

∆11 = Snp (3.76)
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Sd = D iag
(

Sd1 Sd2 . . . Sdnp

)
(3.77)

Sd p = S(p−1)−Sp (3.78)

Rd =


Rd11 Rd12 . . . Rd1np

Rd21 Rd22 . . . Rd2np

. . . . . .

Rdnp1 Rdnp2 . . . Rdnpnp


(3.79)

Rd pq = h(R(p−1,q−1)−Rpq) (3.80)

Ds =
(

Ds
1 Ds

2 . . . Ds
np

)
(3.81)

Ds
p =

 Ds
0p

Ds
1p

 (3.82)

Ds
0p =

h
2

AT
0 (Q̄(p−1)+ Q̄p)+

h
2
(R(0,p−1)+R0p)− (Q̄(p−1)− Q̄p) (3.83)

Ds
1p =

h
2

AT
1 (Q̄(p−1)+ Q̄p)−

h
2
(R(np,p−1)+Rnp p) (3.84)

Da =
(

Da
1 Da

2 . . . Da
np

)
(3.85)

Da
p =

 Da
0p

Da
1p

 (3.86)

Da
0p = −h

2
AT

0 (Q̄(p−1)− Q̄p)−
h
2
(R(0,p−1)−R0p) (3.87)

Da
1p = −h

2
AT

1 (Q̄(p−1)+ Q̄p)+
h
2
(R(np,p−1)−Rnp p) (3.88)

Proof. The delay interval [−τ,0] is divided into np segments of equal length h = τ
np

given by [θp,θp−1], p = 1, . . . ,np, where θp =−ph and θ0 = 0. This divides the square

S = [−τ,0]× [−τ,0] into np ×np smaller squares Spq = [θp,θp−1]× [θp,θp−1]. Each

small square is further divided into two smaller rectangles. The reader is referred to

[129] for further details.

The discretized Lyapunov-Krasovskii functional employed for this proof is given by

V (Xt) = XT (t)PX(t)+2XT (t)
np

∑
p=1

VQ̄ +
np

∑
p=1

np

∑
q=1

VR +
np

∑
p=1

VS (3.89)
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where

VQ̄ =
∫ 1

0
Q̄(p)(ζ )X(t +θp +ζ h)hdζ (3.90)

VR =
∫ 1

0
(
∫ 1

0
XT (t +θp +ζ h)R(pq)(ζ ,η)X(t +θp +ζ h)hdη)hdζ (3.91)

VS =
∫ 1

0
XT (t +θp +ζ h)S(p)(ζ )X(t +θp +ζ h)hdζ (3.92)

and

Q̄(p)(ζ ) = (1−ζ )Q̄p +ζ Q̄p−1 (3.93)

R(pq)(ζ ,η) :=

 (1−ζ )Rpq +ηRp−1,q−1 +(ζ −η)Rp−1,q ζ ≥ η

(1−η)Rpq +ζ Rp−1,q−1 +(η −ζ )Rp,q−1 ζ < η
(3.94)

S(p)(ζ ) = (1−ζ )Sp +ζ Sp−1 (3.95)

for p = 1, . . . ,np, q = 1, . . . ,np, 0 ≤ ζ ≤ 1 and 0 ≤ η ≤ 1. The matrix inequality in

(3.68) is obtained from the condition V (Xt)> 0 and (3.69) is obtained from the condition

V̇ (Xt)< 0. The reader is referred to Proposition 5.22 [129] for the proof of this theorem.

The objective of the time delay analysis with Proposition 3.4.2 is to maximize τ to obtain

τ̂ such that there exist Nn×Nn matrices P = PT ; Q̄p, Sp = ST
p , p = 0, . . . ,np; Rpq = RT

qp,

p = 0, . . . ,np, q = 0, . . . ,np satisfying (3.68)-(3.69).

The matrices Rpq above contribute to 1
2(np +1)(np +2) matrices. The LMIs for this

method in total have
(n2

p +7np +8)
2

matrix decision variables each of dimension Nn×Nn. The total number of decision

variables given by
(n2

p +5np +5)(Nn)2 +(2np +3)(Nn)
2

It is important to note that the number decision variables can be very large depending of

the number of partitions np, the number of agents N in the multi-agent system and the

number of states n of an agent. Thus this method may be computationally unsolvable for
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a very large number of agents N.

3.4.2 Time-Varying Delay

For Case B, the system (3.60) is analyzed with a time varying delay τ(t) using the result

of Proposition 6 from Appendix B.5. The stability of the system in (3.60) using Propo-

sition 6 employs a descriptor representation of the system as explained in Appendix B.5.

The Lyapunov-Krasovskii functional approach as explained in Appendix B.1 is then em-

ployed to obtained the stability criteria.

The objective of the time delay analysis with Proposition 6 is to maximize τ to obtain τ̂

such that there exist symmetric matrices P1 and R̄ ∈ IRNn×Nn and matrices P2, P3, Z1, Z2

and Z3 ∈ IRn×n satisfying (B.56)-(B.59) in Proposition 6 Appendix B.5.

The corollary when used appropriately for the system in (3.60) has 7 matrix variables

each of dimension Nn×Nn of which 2 are symmetric matrix variables. The total number

of decision variables is given by 6(Nn)2 +Nn.

3.4.3 Bisection Algorithm

In the three methods described in Section 3.4.1 and Section 3.4.2 the matrix inequalities

of (B.20), (B.25) and (B.59) should be satisfied for Proposition 4, Proposition 5, and

Proposition 6 in Appendix B respectively. The time delay τ appears in these LMIs.

The value of τ is fixed to retain convexity, and the LMIs are subsequently tested for

feasibility. A bisection algorithm is employed along with the three methods stated above

to find the largest possible value of the feasible delay τ̂ . A Matlab algorithm is given in

Table 3.1.

Remark 3.8: Note that the three propositions in Section 3.4.1 and Section 3.4.2 are used

to obtain the maximum possible delay. In those propositions the delay τ appears in the

matrix inequalities. The bisection algorithm first fixes a value of delay in the given range

[a,b] and then checks for the feasibility of the propositions at that level of delay. This

retains the convexity of the LMIs. The bisection algorithm will stop when the given

tolerance level tol is reached.

53



Table 3.1: Algorithm 1
tol = 1e-6;
a = 0.000001;
b = 2;
fa = timedelaylmi(a); % Feasibility of LMIs
fb = timedelaylmi(b);
if (sign(fa)==sign(fb))

fprintf(’Change the interval considered \n’)
return

end
while abs(a-b)>tol

c =(a+b)/2;
fc = timedelaylmi(c);
if sign(fa)==sign(fc)

a=c;
fa=fc;

else
b=c;
fb=fc;

end
end

3.5 Previous Work on LQR Control of Identical Linear

Agents

In [96] a state feedback LQR control design method for identical decoupled LTI systems

is proposed. The control design method achieves sub-optimal LQR performance with

the use of a network level LQR cost function. The structure of the LQR cost function

used is similar to one that is used in this chapter.

In [96] the LQR problem for a network of identical linear agents is posed as a single

LQR problem exploiting the properties of the graph associated with the corresponding

communication topology. Each linear agent is described by the following system dy-

namics

ẋ(t) = Ax(t)+Bu(t) (3.96)

where x ∈ IRn, u ∈ IRm, A ∈ IRn×n, and B ∈ IRn×m. A network of N such identical de-

coupled agents is considered in [96]. This multi-agent system with N agents is assumed

to have a fixed undirected communication topology described by a graph G . For the

communication topology δmax(G ) represents the maximum degree for the graph G . In
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[96], in the first step of the control design procedure, an LQR problem is solved for a

reduced system with NL identical agents, where NL = δmax(G )+1. The system with NL

identical linear dynamical systems is given by

ẋi(t) = Axi(t)+Bui(t) (3.97)

xi(0) = xi0 (3.98)

for i = 1, . . . ,NL, where xi(t) ∈ IRn, ui(t) ∈ IRm are the states and control respectively.

Using Kronecker products and column concatenation, the system at a network level can

be represented as

ẊNL(t) = (INL ⊗A)XNL(t)+(INL ⊗B)U(t) (3.99)

XNL(0) = X0 , [x10, . . . ,xNL0]
T (3.100)

where

XNL(t) = C ol(x1(t), . . . ,xNL(t)) (3.101)

U(t) = C ol(u1(t), . . . ,uNL(t)) (3.102)

The LQR control problem for the first step, stated in Theorem 2 [96], is to minimize

J(U(t),XNL(0)) =
∫ ∞

0
(XT

NL
(t)Q̃X(t)+U(t)R̃U(t))dt (3.103)

with U(t) =−K̃XNL(t) where the matrices Q̃ ∈ IRnNL×nNL and R̃ ∈ IRmNL×mNL are defined

as

Q̃ =


Q̃11 −Q̃2 · · · −Q̃2

−Q̃2 Q̃11 · · · −Q̃2
... . . . . . . ...

−Q̃2 · · · · · · Q̃11


R̃ =


R 0 · · · 0

0 R · · · 0
... . . . . . . ...

0 · · · · · · R


(3.104)

where Q̃11 = Q̃1+(NL−1)Q̃2, and Q̃1, Q̃2 ∈ IRn×n and R∈ IRm×m are symmetric positive
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definite. The gain matrix K̃ is obtained by solving the corresponding Algebraic Riccati

Equation and is given by K̃ = R̃−1(INL ⊗B)T P̃. The matrix P̃ ∈ IRnNL×nNL is the solution

to the ARE given by

(INL ⊗A)T P̃+ P̃(INL ⊗A)− P̃(INL ⊗B)T R−1(INL ⊗B)P̃+ Q̃ = 0 (3.105)

The matrix P̃ is shown in [96] to have the structure

P̃ =


P1 P2 · · · P2

P2 P1 · · · P2
... . . . . . . ...

P2 · · · · · · P1


(3.106)

where P1,P2 ∈ IRn×n. The structure (3.106) arises due to the selection of equal non-

diagonal weights for Q̃ and zero diagonal weights in R̃ in (3.104). The optimal LQR

controller thus obtained is shown to have the following structure

K̃ =


K1 K2 · · · K2

K2 K1 · · · K2
... . . . . . . ...

K2 · · · · · · K1


(3.107)

where K1,K2 ∈ IRm×n.

In the second step the gains in (3.107), which are obtained by solving a reduced agent

problem in the first step with NL = δmax(G )+1, are used to design a feedback controller

for the complete network of N identical agents in Theorem 4 [96]. The system given in

(3.97) can be represented for the network of N identical dynamical agents as (3.3) given

by

Ẋ(t) = (IN ⊗A)X(t)+(IN ⊗B)U(t) (3.108)
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where

X(t) = C ol(x1(t), . . . ,xN(t)) (3.109)

U(t) = C ol(u1(t), . . . ,uN(t)) (3.110)

Note that the control law U(t) in (3.110) is now for the complete network of N agents.

The objective of the second step is to minimize the cost function given by

J =
∫ ∞

0
(XT (t)Q̂X(t)+U(t)R̂U(t))dt (3.111)

where Q̂ ∈ IRnN×nN and R̂ ∈ IRmN×mN . The control law is given by U(t) = K̂cX(t) where

K̂c ∈ IRmN×nN . The weighting matrix Q̂ is defined as

Q̂i j = Q̂[(i−1)n : in,( j−1)n, jn] (3.112)

for i, j = 2, . . . ,N, where Q̂i j = 0 if agent i is not a neighbour of j and Q̂i j ̸= 0 for i = j

and agent i is a neighbour of j.. The matrix R̂ = D iag(R, . . . ,R). It is required that the

gain K̂c has the form

K̂ci j = K̂c[(i−1)m : im,( j−1)n, jn] (3.113)

for i, j = 2, . . . ,N, where K̂ci j = 0 if agent i is not a neighbour of j and K̂ci j ̸= 0 for

i = j and agent i is a neighbour of j. The optimization problem of minimizing the cost

function in (3.111), with the structures Q̂ and K̂ given by (3.112) and (3.113), is stated

as NP hard in [96]. Hence the authors have proposed a distributed suboptimal controller.

In [96], the suboptimal controller U(t) = K̂cX(t) is designed for the system in (3.108),

where K̂c is given by

K̂c =−IN ⊗R−1BT P̃1 + M̃⊗R−1BT P2 (3.114)

where P̃1 = P1+2P2 and P2 ∈ IRn×n are Lyapunov matrices obtained from P̃. The matrix
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P̃1 is also the symmetric positive definite solution of the ARE associated with

AT P̃1 + P̃1A− P̃1BT R−1BP̃1 + Q̃1 = 0 (3.115)

The matrix M̃ ∈ IRN×N is symmetric and has the structure of the Laplacian of the corre-

sponding communication topology where M̃(i, j) ̸= 0 if agent i is a neighbour of agent j

and M̃(i, j) = 0 otherwise. In [96] it is stated that when the matrix M̃ is chosen such that

the eigenvalues of M̃ satisfy

λi(M̃)>
NL

2
(3.116)

for i = 1, . . . ,N, the system in (3.108) is asymptotically stabilized by the controller in

(3.114). The requirement in (3.116) is further relaxed to

λi(M̃)≥ 0 (3.117)

if the following condition is satisfied

Condition 1: For the matrices P̃1 and P2 in (3.114), the matrix

A−BR−1BT P̃1 +ρNLBR−1BT P2 (3.118)

is stable for ρ ∈ [0, 1
2 ]. The reader is referred to [96] for further reading.

Remark 3.9: In the first step of the procedure in [96] a reduced order problem was solved

for NL = δmax(G )+1 in (3.99). The gains obtained from (3.107) were used in the second

step for the stabilization of full network with N agents given in (3.108). The cost function

considered for the second problem is given by (3.111). The class of weighting matrices

considered for the cost function are given in (3.112). It is important to note that the cost

matrix considered in Section 3.2, given by (IN ⊗Q1)+(L ⊗Q2) in (3.8) is of the form

of (3.112). But the second step of the control design procedure in [96] is to design a

controller of the form (3.113). This is stated to be NP hard in [96]. The second step

of the method in [96], described in this section, just guaranties asymptotic stabilization.

The major advantage of the method in [96] is that it considers generic cost function in

(3.112) whereas the drawback is that network level optimization problem is NP hard.
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The major advantage of the method proposed in this Chapter in Section 3.2 is that the

second step minimizes the cost function with (IN ⊗Q1)+ (L ⊗Q2) in (3.8) using an

LMI formulation. Also though (IN ⊗Q1)+ (L ⊗Q2) is one of the possibilities of the

matrix in (3.112), it was identified in this research to aid simultaneous convergence as

explained in Remark 3.1.

3.6 Numerical Example

A network of 5 planar vehicles each described by a double integrator in each of the

directions x and y is considered. The system is then represented by

ζ̇i(t) = Aζi(t)+Bui(t) (3.119)

where ζi represents the states of the ith vehicle, and consists of the x and y plane positions

and velocities. The plant matrix and input distribution matrix are given by

A =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


B =


0 0

0 0

1 0

0 1


(3.120)

The matrices in the LQR cost function in (3.8) have been chosen as Q1 = 10I4, Q2 = 25I4

and R = I2.

3.6.1 Communication Topology

A nearest neighbour interconnection topology as shown in Fig. 3.1 is assumed between

the five agents.
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Figure 3.1: 5 agents with cyclic interconnection

The Laplacian for this network is given by

L =



2 −1 0 0 −1

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

−1 0 0 −1 2


(3.121)

The Laplacian in (3.121) is used to design the control law such that the network described

in Fig. 3.1 is stabilized to achieve a rendezvous.

3.6.2 Control Gains

The proposed two step design procedure from Section 3.3 is followed to obtain the con-

trol gain matrix K and the scaling matrix Φ. The matrix B in (3.120) is already in the

regular form described in (3.13). As a first step, a control law of the form in Step 1

is obtained by solving the standard LQR problem, using the Matlab command ’lqr’

giving the control gain matrix in (3.7) as

K =

 3.1623 0 4.0404 0

0 3.1623 0 4.0404

 (3.122)
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The LQR performance cost Ji in (3.10) associated with the controller is 33.63. The

Lyapunov matrix P is given by

P =


12.7767 0 3.1623 0

0 12.7767 0 3.1623

3.1623 0 4.0404 0

0 3.1623 0 4.0404


(3.123)

Subsequently, the transformation T̂ in (3.16) is obtained using the Lyapunov matrix in

(3.123) as

T̂ =


1 0 0 0

0 1 0 0

0.7827 0 1 0

0 0.7827 0 1


(3.124)

The matrices Â, B̂ and K̂ are given by

Â =


−0.7827 0 1 0

0 −0.7827 0 1

−0.6126 0 0.7827 0

0 −0.6126 0 0.7827


B̂ =


0 0

0 0

1 0

0 1


(3.125)

K̂ =

 0 0 4.0404 0

0 0 0 4.0404

 (3.126)

A distributed control law as in (3.7) is designed using the LMIs provided in (3.32) -

(3.33), and Wi > 0 ∀i = 1, . . . ,N. The scaling matrix Φ obtained from Theorem 3.3.1 is

given by

Φ =

 0.6736 0

0 0.6736

 (3.127)
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3.6.3 Measure of Sub-Optimality

In Section 3.5 an alternative method from [96] was presented. The first step of the

control design process involves solving an LQR control synthesis problem with reduced

number of nodes given by NL = δmax(G ) + 1, where δmax is the maximum degree of

the underlying topology. For the communication topology in Fig. 3.1 the maximum

degree δmax = 2 and NL = 3. The matrix Q̃1 and Q̃2 are chosen as Q̃1 = Q1 and Q̃2 = Q2

respectively. The matrix P̃ is then obtained from the ARE in (3.105). It is evident from

(3.115) that the first term of the controller in (3.114) is equivalent to the Step 1 of the

control design process in Section 3.3. The term R−1BT P2 in (3.114) is given by

R−1BT P2 =

 −2.0191 0 −2.0434 0

0 −2.0191 0 −2.0434

 (3.128)

For this example, the Condition 1 in Section 3.5 is satisfied. In this scenario the sym-

metric matrix M̃ in (3.114) can be selected such that λ̃i(M̃) ≥ 0, where λ̃i(M̃) are the

eigenvalues of M̃. Then the controller in (3.114) asymptotically stabilizes the system in

(3.108). The matrix ΦK in (3.12) from Section 3.3 is given by

ΦK =

 2.1300 0 2.7214 0

0 2.1300 0 2.7214

 (3.129)

If M̃ is chosen as the Laplacian L , then the controllers obtained from the method pro-

posed in Section 3.3 and from Section 3.5 differ only in the term represented by (3.128)

and (3.129).

For the system in (3.3) let K∗ ∈ IRNm×Nn and P∗ ∈ IRNn×Nn be the optimal LQR

controller and the corresponding solution to the ARE associated with the optimal LQR

problem for the system with (3.8) as the cost function given by

(IN ⊗A)T P∗+P∗(IN ⊗A)−P∗(IN ⊗B)(IN ⊗R)−1(IN ⊗B)T P∗+(IN ⊗Q1+L ⊗Q2) = 0

(3.130)

For the system given in (3.3) the control law U(t) = −K∗X(t), where K∗ = (IN ⊗
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R)−1(IN ⊗B)T P∗ then minimizes the cost function in (3.8). As explained in Appendix

A.2, the optimal cost is given by Trace(P∗)= 751.19. For the controller designed in Sec-

tion 3.3 a special structure of the Lyapunov matrix given by (3.43) was used. The cost

obtained from (3.50) by solving the optimization problem in Theorem 3.3.1 is 772.21.

For the gain matrix K and the scaling matrix Φ obtained from the design procedure in

Section 3.3, the closed loop system is given by

Ẋ(t) = (IN ⊗A− IN ⊗BK −L ⊗BΦK)X(t) (3.131)

As explained in [96], for the closed loop system given by (3.131), a minimum bound

on the sub-optimal cost with the control law given in (3.12) is given by J = Trace(Ps)

where Ps ∈ IRNn×Nn is the positive definite solution of the Lyapunov equation

(IN ⊗A− IN ⊗BK −L ⊗BΦK)T Ps +Ps(IN ⊗A− IN ⊗BK −L ⊗BΦK)+

(IN ⊗Q1 +L ⊗Q2)+(IN ⊗K +L ⊗ΦK)T (IN ⊗R)(IN ⊗BK +L ⊗ΦK) = 0(3.132)

The sub-optimal cost thus obtained is characterized by Trace(Ps) = 759.1. Similarly, for

the controller K̂c in (3.114) obtained from the method proposed in [96], the sub-optimal

cost is given by Trace(Pk) where Pk is the positive definite solution of the Lyapunov

equation given by

(IN ⊗A+(IN ⊗B)K̂c)
T Pk +Pk(IN ⊗A+(IN ⊗B)K̂c)+

(IN ⊗Q1 +L ⊗Q2)+ K̂c
T
(IN ⊗R)K̂c = 0 (3.133)

The sub-optimal cost obtained is J = Trace(Pk) = 751.66.

The bounds for the LQR cost in (3.8) for the sub-optimal controllers in (3.12) and

(3.114) are 751.66 and 759.1 respectively which is comparable to 751.19 obtained from

the optimal controller U(t) =−K∗X(t). The cost obtained from Theorem 3.3.1 is higher

since a block diagonal structure for the Lyapunov matrix given by (3.43) was employed.

A comparison of the costs obtained from the control structures in (3.12) and (3.114) is

given in Table 3.2.
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Table 3.2: Comparison of control structures
Control Structure Bounds

(3.12) Trace(Ps) = 759.1 (3.132)
(3.114) Trace(Pk) = 751.66 (3.133)

To summarize the cost obtained from the method proposed in Theorem 3.3.1 is com-

parable to the method proposed in [96] for the example considered and has been obtained

through an LMI based optimization procedure.

3.6.4 Time-delay Analysis

An analysis of the distributed control laws in the presence of time delays in communica-

tions is carried out in the sequel to understand the maximum permissible delay that can

be tolerated. The maximum permissible time delay is found using the bisection algo-

rithm given in Table 1, Propositions 4, Proposition 5 and Proposition 6 in Appendix B.

As suggested in [129], the maximum permissible delay bound obtained by Proposition 4

is conservative. When the discretized Lyapunov method of Proposition 5 even when the

number of partitions np = 1 is applied, the conservatism is considerably reduced. The

time-varying delay analysis using Proposition 6 gives the same bound as that of Propo-

sition 5 in Appendix B. This may be due to the maximum permissible delay being small.

A comparison table of the delays is shown in Table 3.3.

Table 3.3: Time-delay analysis
Type of Delay Method τ̂max(sec) No. of Decision Variables

Fixed Proposition 3.4.1 0.145 1030
Fixed Proposition 3.4.2 0.20 2250

Time-varying Proposition 6 (Appendix) 0.20 2420

3.6.5 Simulation Results

The simulations in this section were done using SIMULINK with a fixed-step size of

0.001s and ode4(Runge-Kutta) solver.
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Figure 3.2: Rendezvous with no delay
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Figure 3.3: Rendezvous with no delay plotted against time

The objective is to create a rendezvous situation for the five agents, each kept at

a randomly chosen initial condition. The same initial conditions are chosen for each

simulation presented in this section. For the controller (3.7) obtained by employing the

procedure in Section 3.3, Figure 3.2 shows 5 agents attaining a rendezvous when no
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delay is present in the communication in a 2-dimensional plane.
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Figure 3.4: Control effort for agents in x direction - No delay
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Figure 3.5: Control effort for agents in y direction - No delay

Figure 3.3 shows the plots of the simulation without any delay in the relative infor-

mation. It can be seen in the figure that after time t = 4s the agents meet at a point and

stay at this point for all subsequent time. The control signals Ux and Uy for the agents
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in the x and y directions without delays are shown in Figure 3.4 and Figure 3.5. If no

relative information had been used in (3.7), i.e. Φ = 0 and just the Step 1 of the control

design procedure had been solved, it would have resulted in a rendezvous of individual

agents given in Figure 3.6 and Figure 3.7.
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Figure 3.6: Rendezvous with no relative information
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Figure 3.7: Rendezvous with no relative information plotted against time
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The control signals Ux and Uy for the agents in the x and y directions when no relative

information is present are shown in Figure 3.8 and Figure 3.9.
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Figure 3.8: Control effort for agents in x direction - No relative information
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Figure 3.9: Control effort for agents in y direction - No relative information

From Figure 3.2 and Figure 3.6 it can be seen that due to the control law in (3.7) the

agents try and reduce the interagent distances while achieving a rendezvous in Figure
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3.2 as compared to Figure 3.6. From Figure 3.7 it can be seen that the agents achieve a

rendezvous without relative information at t = 4.2s.
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Figure 3.10: Rendezvous with a permissible delay
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Figure 3.11: Rendezvous with a permissible delay plotted against time

Thus using relative information also has a small advantage with respect to improving the

time to achieve the rendezvous. Though it can be seen from the control efforts in Figure
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3.4 and Figure 3.5 and Figure 3.8 and Figure 3.9 that using the relative information

increases the control effort. In a similar way, Figure 3.10 shows the rendezvous with a

delay of τ = 0.14s. Figure 3.11 shows the agents attaining a rendezvous as a function of

time.
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Figure 3.12: Control effort for agents in x direction - Permissible delay
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Figure 3.13: Control effort for agents in y direction - Permissible delay
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The control signals Ux and Uy for the agents in the x and y directions with permissible

delay are shown in Figure 3.12 and Figure 3.13. Figure 3.14 shows the rendezvous with

a permissible time-varying delay of τ(t) = 0.1+0.05cos(t).
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Figure 3.14: Rendezvous with a time-varying delay

Figure 3.15 shows the agents attaining a rendezvous with the time-varying delay.
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Figure 3.15: Rendezvous with a time-varying delay plotted against time
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The control signals Ux and Uy for the agents in the x and y directions with time-varying

delay are shown in Figure 3.16 and Figure 3.17.
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Figure 3.16: Control effort for agents in x direction - Time-varying delay
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Figure 3.17: Control effort for agents in y direction - Time-varying delay

Figure 3.18 shows that the agents do not attain a rendezvous when the delay is τ = 0.22s

for the same initial conditions.
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Figure 3.18: No Rendezvous with excess delay

Figure 3.19 shows the results as a function of time. Clearly a rendezvous does not occur

among the vehicles when the delay is τ = 0.22s and so the values for maximum feasible

delay τmax obtained from Proposition 5 and Proposition 6 in Table 3.3 are reasonably

accurate.
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Figure 3.19: No rendezvous with excess delay plotted against time
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The control signals Ux and Uy for the agents in the x and y directions with excessive

delay are shown in Figure 3.20 and Figure 3.21.
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Figure 3.20: Control effort for agents in x direction - Excess delay
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Figure 3.21: Control effort for agents in y direction - Excess delay

With the same initial conditions as considered in these plots the variation of the cost

J in (3.8) with increasing delay τ is shown in Figure 3.22.
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Figure 3.22: The cost J as a function of delay τ

The dotted line in the plot shows the cost J when no network level control is employed,

i.e. relative information is not used to stabilize the system. The cost J using relative

information is lower than this line in Figure 3.22 for delay τ = 0s. The cost J using

relative information remains lower up to the delay of τ = 0.11s and the cost is greater

than the cost without relative information beyond τ = 0.11s. This shows that using

delayed relative information in the distributed control law (3.7) is advantageous in the

presence of delay less than τ = 0.11s. This also implies that when delays higher than

τ = 0.11s are expected in the system, it is better to use just the node level control to

stabilize the system.

3.6.6 Further Analysis

In this section an analysis of the effects of the weighting matrix Q2 and the effect of the

communication topology L is presented.

3.6.6.1 Effect of Q2

The cost function J considered in (3.8) is not a standard cost function. The weighting

matrix Q1 is used to solve a standard LQR problem in Step 1 of the control design process
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in Section 3.3. This matrix must be selected by the user according to required stabiliza-

tion of a single agent in Step 1. The augmented LQR cost function in (3.8) considers a

weighting matrix along with the Laplacian L to facilitate simultaneous convergence. In

this analysis the effect of the weighting matrix Q2 for a given weighting matrix Q1 and

a given Laplacian L is studied. The matrix Q1 is considered to be Q1 = 10I4 and the

network topology is given by (3.121), i.e. the same matrices considered in Section 3.6.4

and Section 3.6.5 while the matrix Q2 was considered to be Q2 = 25I4 in these sections.

It is obvious to see that increasing the matrix Q2 will penalize the relative information,

as explained in Remark 3.1, to a greater extent. The effects of increasing the magnitude

of the weights in Q2 are give in Table 3.4.

Table 3.4: Effects of Weighting Matrix Q2

Q2 Φ τ̂max(sec) Trace(Ps) (3.132)
25I4 0.6736I2 0.20 759.2
50I4 1.0805I2 0.10 1319.0
75I4 1.4126I2 0.08 1869.5

Hence it can be observed that with increasing magnitude of the weights in Q2, the

magnitude of the scaling Φ increases thus increasing the contribution from the relative

information to the control law (3.7). This also decreases the ability to accept more delays

in communication of relative information as shown by the decrease in τ̂max(sec). The cost

J increases with Q2 as demonstrated by the optimal cost associated with Trace(Ps) from

(3.132) in Table 3.4.

3.6.6.2 Effect of Communication Topology

In this section the effect of different communication topologies, i.e. different graph

Laplacian L , is presented. For this analysis the same weighting matrices Q1, Q2 and R

as considered in Section 3.6.5 are considered, i.e. Q1 = 10I4 and Q2 = 25I4. Increasing

the communication links in Figure 3.1, the topology given in Figure 3.23 is considered.

The Laplacian L for the topology in Figure 3.23 is given by
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Figure 3.23: Dense communication topology

L =



2 −1 0 0 −1

−1 3 −1 −1 0

0 −1 3 −1 −1

0 −1 −1 3 −1

−1 0 −1 −1 3


(3.134)

Decreasing the communication links in Figure 3.1, the topology given in Figure 3.24 is

considered The Laplacian L for the topology in Figure 3.24 is given by

Figure 3.24: Acyclic nearest neighbour topology
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L =



1 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 1


(3.135)

Note that the topology in Figure 3.24 is still connected. Both the topologies in (3.134)

and (3.135) do not yield any significant differences in attaining a rendezvous as com-

pared to the Figure 3.2 in Section 3.6.5 for the topology in (3.121) with same initial

conditions but with the changes in the Laplacian L there are significant implications on

the amount of delay that is permissible by each topology. A detailed result is given Table

3.5

Table 3.5: Effects of Communication Topology
Topology Φ τ̂max(sec) Trace(Ps) (3.132)
L (3.121) 0.6736I2 0.20 759.2
L (3.134) 0.6136I2 0.15 985.8
L (3.135) 0.6591I2 0.20 642.7

From Table 3.5 it can be concluded that the method proposed in Section 3.3 yields

higher delay carrying capacity and lower cost when the communication topology is con-

nected but has lower communication links, i.e. the Laplacian L in (3.135), for the same

number of agents.

3.7 Concluding Remarks

In this chapter a two steps distributed control design methodology for a network of linear

identical dynamical systems was proposed. In this methodology the relative information

available to each agent is used to design distributed control laws such that the agents

achieve a rendezvous. A certain level of LQR performance at a network level is guar-

anteed by the proposed control laws. The proposed control law was illustrated with the

help of an example where the agents where described by double integrator dynamics

describing motion in a two dimensional plane. The method proposed in this chapter was
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compared with the method proposed in [96]. The two methods are shown to have similar

performance.

A bound on the maximum possible communication delay is obtained by an analy-

sis of the proposed control laws in the presence of delays in relative information. In

the time-delay analysis, both fixed and time-varying delays are considered. The three

methods given by Proposition 4, Proposition 5, and Proposition 6 in Appendix B were

employed for the time-delay analysis. For the example of agents described by double

integrator dynamics considered, the results in Table 3.3 show that Proposition 4 for the

case of fixed delays provides a conservative estimate of the bound on the maximum pos-

sible delay. The discretized Lyapunov-Krasovskii functional method from Proposition

5 provides a more accurate estimate of the bound on the amount of delay. The bound

on the amount of delay obtained by Proposition 6 for time-varying delays is equal to

the bound obtained from Proposition 5. The number of decision variables employed by

Proposition 4 is considerably less and hence converges faster as compared to the Propo-

sition 5 and Proposition 6. It was also shown that the use of relative information is

advantageous in lowering a network level cost
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Chapter 4

Delay Based Control of Multi-Agent

Systems

4.1 Introduction

In the previous chapter, a distributed control design method for a network of identi-

cal agents with sub-optimal LQR performance was presented. The controller was ob-

tained by assuming instantaneous relative information was available at each node, and

subsequently time-delay analysis techniques were employed to ascertain the maximum

bound that can be accommodated by the network. However in many practical scenar-

ios, communication of relative information is bound to incur a minimum level of delay.

This necessitates modelling the network of identical agents as a time-delay system and

then employing control design techniques for time-delay systems to design control al-

gorithms for the network. In this chapter the assumption of instantaneous exchange of

relative information in the control design process is relaxed, and delay independent and

delay dependent control laws for a network of identical agents, guaranteeing an LQR

performance, are derived. Lyapunov-Krasovskii functional methods from Appendix B

are employed to obtain control laws which make use of the delayed relative state infor-

mation available at each node.

The organization of this chapter is as follows: In Section 4.2 the problem definition

is stated. The linear system model for a network of identical agents, and the control law
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is explained. In Section 4.3 various control design procedures used to obtain the delay

independent and delay dependent gains are explained. In Section 4.4 the controllers

designed using the different control design techniques are illustrated with the help of

numerical examples. Concluding remarks are given in Section 4.5.

4.2 Problem Definition

In this section a linear system model for a network of identical linear agents is described.

The structure of the control law to be designed is then presented. The system is the

represented at a network level using Kronecker products. The network level system is

then decomposed into node level systems by use of spectral decomposition to aid the

control design process.

4.2.1 Linear System Model

As in Chapter 3 a network of N identical linear systems given by

ẋi(t) = Axi(t)+Bui(t) (4.1)

for i = 1, . . . ,N is considered, where xi(t) ∈ IRn and ui(t) ∈ IRm represent the states and

the control inputs. The constant matrices A ∈ IRn×n and B ∈ IRn×m and it is assumed

that the pair (A,B) is controllable. Each agent is assumed to have knowledge of its

local state information along with delayed relative state information. The information

exchange between the agents in the network is assumed to be bidirectional. The relative

information communicated to each agent (node) is given by

zi(t − τ) = ∑
j∈Ji

(xi(t − τ)− x j(t − τ)) (4.2)

where τ is a delay in communication of relative information. The dynamical systems for

which the ith dynamical system has information is denoted by Ji ⊂ {1,2, . . .N}/{i}.

81



Using Kronecker products, the system in (4.1) at a network level is given by

Ẋ(t) = (IN ⊗A)X(t)+(IN ⊗B)U(t) (4.3)

where the augmented state X(t)=C ol(x1(t), . . . ,xN(t)) and U(t)=C ol(u1(t), . . . ,uN(t)).

The relative information in (4.2) at a network level can be written as

Z(t − τ) = (L ⊗ In)X(t − τ) (4.4)

where L is the Laplacian matrix associated with the sets Ji.

4.2.2 Control Objective

For the exchange of relative information given in (4.4) with respect to the delay τ , two

cases are considered. They are stated as follows:

• a known fixed delay

• a bounded time-varying delay with a known maximum bound

The intention is to design control laws of the form

ui(t) =−Kxi(t)−Hzi(t − τ) (4.5)

where K ∈ IRm×n is designed to achieve consensus and H ∈ IRm×n, the relative informa-

tion scaling matrix, is fixed a priori. The matrix H is assumed to be the scaling associated

with the measurement of relative information. A possible way of selecting the scaling

matrix H is explained with a numerical example in Section 4.4. Substituting (4.5) in

(4.1), the closed loop system at a node level is given by

ẋi(t) = (A−BK)xi(t)−BHzi(t − τ) (4.6)

The control law in (4.5) is represented at a network level by

U(t) =−(IN ⊗K)X(t)− (L ⊗H)X(t − τ) (4.7)
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Substituting (4.7) into (4.3), the closed loop system at a network level is given by

Ẋ(t) = (IN ⊗ (A−BK))X(t)− (L ⊗BH)X(t − τ) (4.8)

Since bidirectional communication is assumed, the Laplacian L for the communication

topology is symmetric positive semi-definite. By spectral decomposition L = V ΛV T

where V ∈ IRN×N is an orthogonal matrix formed from the eigenvectors of L and

Λ = D iag(λ1, . . .λN) is the matrix of the eigenvalues of L . An orthogonal state trans-

formation

X 7→ (V T ⊗ In)X = X̃ (4.9)

is employed on the system in (4.8). The closed loop system (4.8) in the new coordinates

is given by

˙̃X(t) = (IN ⊗ (A−BK))X̃(t)− (Λ⊗BH)X̃(t − τ) (4.10)

Because Λ is a diagonal matrix, the system in (4.10) is equivalent to

˙̃xl(t) = A0x̃l(t)+Aix̃l(t − τ) (4.11)

for l = 1, . . . ,N where

A0 := A−BK (4.12)

Al :=−λlBH (4.13)

It is assumed the initial condition x̃l(θ) = x̃l(0) for l = 1, . . . ,N and −τ ≤ θ ≤ 0. The

transformed system in (4.11) can be equivalently thought of as

˙̃xl(t) = Ax̃l(t)−λlBHx̃l(t − τ)+Bul(t) (4.14)

where

ul(t) =−Kx̃l(t) (4.15)

The objective is to design the gain matrix K under the following scenarios
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• a delay independent design for a fixed delay τ

• a delay dependent design for a known fixed delay τ

• a delay dependent design for bounded time-varying delays τ(t)

In the above cases a suboptimal level of LQR performance is enforced on the overall

system at network level.

Remark 4.1: The stabilization of linear systems with delays, with the structure given in

(4.14), has been studied extensively in the control literature. Various stability analysis

and control design methods have been proposed. In [120, 121] a descriptor representa-

tion along with Lyapunov-Krasovskii functionals are used to obtain stability criteria for

linear time-delay systems. In [122] a Lyapunov-Krasovskii functional approach based on

the fractioning of the delay is proposed for linear time-delay systems. In [123] bounds

on the derivative of delays are considered to derive delay dependent stability criteria.

Most recent methods involve establishing LMI feasibility problems (with varying levels

of complexity in terms of the number of decision variables). The reader is referred to

[124]-[128] for further reading in this area. In this chapter the systems in (4.14) are stabi-

lized simultaneously in the presence of delays while guaranteeing an LQR performance.

This is achieved by building on the existing analysis techniques [120, 129]. The tech-

niques in [120, 129], whilst not necessarily the most recent in the literature, have been

found to yield tractable LMI representations under certain mild simplifications. This

is important because of the large number of decision variables involved, resulting from

the multiple agents considered. The results in [120, 129] are shown to provide a good

trade-off between unnecessary conservatism and tractability of LMI formulations.

Remark 4.2: In this chapter the same definition of consensus, i.e. convergence to a

common value and as in Chapter 3 achieving a rendezvous of the agents by driving the

states to the origin, is considered. In this chapter the design of control laws of the form

in (4.5) are considered as compared to the controls laws in (3.7) in Chapter 3. In Chapter

3 the control design procedure does not consider delays and an analysis to obtain the

maximum possible delay is performed after the control laws are obtained. In this chapter

control design methods with LQR performance are obtained when delays are present in
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the relative information. Though the objective of attaining a rendezvous is the same in

this chapter, there is a change in the structure of the control laws in (4.5) as compared

to that in (3.7) in Chapter 3. Here the scaling matrix H in (4.5) is assumed to be fixed.

From an engineering perspective this can be considered as the scaling provided by the

measurement of relative information zi in (4.2). The mathematical reasons behind this

assumptions will be presented after the three design methods in the following section.

4.3 Control Design Methodologies

In this section the three control design methodologies are explained in detail. In the con-

trol design methodologies Lyapunov-Krasovskii functional based methods are employed

for controller synthesis.

4.3.1 Delay Independent Control Design for a Fixed Delay

Delay independent stability implies that a system is stable for any arbitrary delay. Es-

sentially such a control design provides an insight into the control gains necessary to

make the delayed terms in a linear system redundant. In [129] it is argued that when the

feedback channel involves delays, delay independent stability criteria are insufficient.

For the equivalent system described in (4.14), the feedback channel where the local con-

troller ul(t) acts, does not involve delays and hence a delay independent control design

can be employed for the system in (4.11). In this design methodology the focus is on

obtaining the gain matrix K such that the delayed term in (4.14) does not affect the sta-

bility of the system for any arbitrary delay. In this section the objective of the delay

independent control is the design of the gain matrix K for the system in (4.14) such that

the cost functions

Jl =
∫ ∞

0
(x̃T

l (t)Qx̃l(t)+uT
l (t)Rul(t))dt (4.16)

where Q ∈ IRn×n and R ∈ IRm×m, are minimized for all l = 1, . . . ,N. In (4.16) it is

assumed that both Q and R are symmetric positive definite. The justification for using

the cost function in (4.16) is stated in Remark 4.8 after Section 4.3.3. Similar cost
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functions have been used for the design methods in this chapter.

Theorem 4.3.1. For any arbitrary delay τ , a given scaling matrix H ∈ IRm×n, selected

weighting matrices Q and R, the control laws in (4.15) simultaneously stabilize the trans-

formed systems in (4.14) if there exist symmetric matrices Z1 > 0, Z2 > 0, S > 0, and

W > 0 ∈ IRn×n and a matrix Y ∈ IRm×n such the following LMI conditions are satisfied

 −Z1 In

∗ −W

 < 0 (4.17)

 −Z2 In

∗ −S−1

 < 0 (4.18)


Φl W WQ1/2 Y T

∗ −S−1 0 0

∗ ∗ −In 0

∗ ∗ ∗ −R−1


< 0 (4.19)

where

Φl = (AW −BY )+(AW −BY )T +AlS−1AT
l (4.20)

for all l = 1, . . . ,N. The state feedback gain matrix is then given by K = YW−1. Fur-

thermore since the cost functions Jl from (4.16) satisfy

Jl < x̃T
l (0)(Z1 + τZ2)x̃l(0) (4.21)

minimizing Trace(Z1+τZ2) subject to (4.17)-(4.19) minimizes a bound on the LQR cost.

Proof. In this section the ideas based on Proposition 2 in Appendix B.2 are used to de-

sign delay independent control laws. As in [129], the Lyapunov-Krasovskii functionals

given by

Vl(x̃l(t)) = x̃T
l (t)Px̃l(t)+

∫ t

t−τ
x̃T

l (s)Sx̃l(s)ds (4.22)

for all i = 1, . . . ,N, where the matrices P > 0, S > 0 and P and S ∈ IRn×n are considered.
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Differentiating (4.22) it is required that

˙̃Vl +
d
dt

∫ t

0
(x̃T

l (t)Qx̃l(t)+uT
l (t)Rul(t))dt < 0 (4.23)

Substituting (4.22) in (4.23) yields

x̃T
l (t)(PA0 +AT

0 P+S)x̃l(t)+ x̃T
l (t)(PAl)x̃l(t − τ)+ x̃T

l (t − τ)(AT
l P)x̃l(t)

−x̃T
l (t − τ)Sx̃l(t − τ)<−x̃T

l (t)Qx̃l(t)−uT
l (t)Rul(t) (4.24)

for l = 1, . . . ,N where ul(t) =−Kx̃l(t). The inequality (4.24) is equivalent to

P > 0 (4.25) PA0 +AT
0 P+S+Q+KT RK PAl

∗ −S

< 0 (4.26)

The matrix inequality in (4.26) is not a convex representation with respect to the matrix

variables P, S and K. To develop a convex representation the matrix W = P−1 is defined.

By pre and post multiplying (4.26) by D iag(W, In), the inequality in (4.26) is equivalent

to  Φ̃ Al

∗ −S

< 0 (4.27)

for all l = 1, . . . ,N where

Φ̃ = A0W +WAT
0 +WSW +WQW +WKT RKW (4.28)

From the Schur complement, inequality (4.27) is equivalent to S > 0 and

A0W +WAT
0 +WSW +WQW +WKT RKW +AlS−1AT

l < 0 (4.29)

Subsequently, auxiliary symmetric matrices are defined by Z1 and Z2 ∈ IRn×n and the

change of decision variables KW = Y where Y ∈ IRm×n is employed. Using the Schur

complement, the inequality (4.29) is equivalent to (4.19). Since P > 0, W = P−1 implies
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W > 0. The inequalities given by (4.17) - (4.19) are LMIs in the variables W , Z1, Z2, S−1

and Y . The required gain matrix is subsequently recovered as K = YW−1 after solving

the inequalities in (4.17) - (4.19). The inequality in (4.24) is equivalent to

V̇l(x̃l(t))<−x̃T
l (t)Qx̃l(t)−uT

l (t)Rul(t) (4.30)

for l = 1, . . . ,N. Integrating both sides of (4.30) from 0 to ∞ yields

−x̃T
l (0)Px̃l(0)−

∫ 0

−τ
x̃T

l (s)Sx̃l(s)ds <−Jl (4.31)

Here it is assumed that x̃l(θ) = x̃l(0) for l = 1, . . . ,N and −τ ≤ θ ≤ 0. Consequently the

integral in (4.31) can be calculated explicitly and an upper bound on Jl is given by

Jl < x̃T
l (0)Px̃l(0)+ τ x̃T

l (0)Sx̃l(0)

= x̃T
l (0)(P+ τS)x̃l(0) (4.32)

Using the Schur complement, inequalities (4.17) and (4.18) imply Z1 > P and Z2 > S.

Hence the inequality (4.21) is satisfied. Since P and S are symmetric positive definite

the following minimization problem constitutes minimizing an upper bound on the LQR

cost at a network level

Minimize Trace(Z1 + τZ2) subject to (4.17)-(4.19)

4.3.2 Delay Dependent Control Design for a Fixed Delay

Prior to stating the objective of delay dependent control design, an explicit model trans-

formation from [129] for the system in (4.11) is first performed. For the system given in

(4.11), the following observation holds

x̃l(t − τ) = x̃l(t)−
∫ t

t−τ
˙̃xl(θ)dθ

= x̃l(t)−
∫ t

t−τ
(A0x̃l(θ)+Al x̃l(θ − τ))dθ (4.33)
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for t ≥ τ . Using (4.33) the system in (4.11) is represented as

˙̃xl(t) = (A0 +Al)x̃l(t)+
∫ t

t−τ
(−AlA0x̃l(θ)−AlAl x̃l(θ − τ))dθ (4.34)

for all l = 1, . . . ,N. As argued in [129], the system in (4.34) is transformed, by shifting

the time axis and lifting the initial conditions, into the system

ẏl(t) = Ā0lyl(t)+
∫ t

t−2τ
Āl(θ)yl(θ)dθ (4.35)

where

Ā0l = A0 +Al (4.36)

Āl(θ) :=

 −AlA0 θ ∈ [t − τ, t]

−AlAl θ ∈ [t −2τ, t − τ)
(4.37)

with the new initial condition y(θ) = ϕ(θ) for −2τ ≤ θ ≤ 0. According to [129], stabil-

ity of (4.35) implies stability of (4.11) but not vice-versa.

Remark 4.3: In [129] it is shown that the transformed system in (4.35) has all the poles

of the original system in (4.14) plus additional poles due to the transformation. Conse-

quently stability of the transformed system implies stability of the original system but

not vice-versa, due to the lifting of the initial conditions of the original system. In this

method, LQR control design has been employed on the transformed system. This will

also guarantee a level of performance for the original system in (4.14).

The control design objective for delay dependent control design can now be stated as the

design of gain matrix K for the systems in (4.35) such that the cost functions

Jl =
∫ ∞

0
(yT

l (t)Qyl(t)+uT
l (t)Rul(t))dt (4.38)

are minimized for all l = 1, . . . ,N, where

ul(t) =−Kyl(t) (4.39)
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and Q ∈ IRn×n and R ∈ IRm×m are symmetric positive definite matrices.

Remark 4.4: Since the systems in (4.35) are obtained form the systems in (4.14) with

the control law in (4.15). The gain matrix K, the scaling matrix H and the control law in

(4.39) are contained in the systems in (4.35) by the matrices A0 = A−BK and Al = λlBH

for l = 1, . . . ,N.

Theorem 4.3.2. For a known fixed delay τ , a given scaling matrix H ∈ IRm×n, selected

weighting matrices Q and R and chosen scalars α0 and α1, the control laws in (4.39)

simultaneously stabilize the transformed systems in (4.35) if there exist symmetric ma-

trices Z̄ > 0 and W > 0 ∈ IRn×n and Y ∈ IRm×n such that the following LMI conditions

are satisfied  −Z̄ In

∗ −W

< 0 (4.40)



Φ̄l −AlAW +AlBY −A2
l W WQ1/2

τ
Y T

τ

∗ −α0W 0 0 0

∗ ∗ −α1W 0 0

∗ ∗ ∗ −1
τ 0

∗ ∗ ∗ ∗ −R−1

τ


< 0 (4.41)

where

Φ̄l =
1
τ (((A+Al)W −BY )+((A+Al)W −BY )T )+(α0 +α1)W (4.42)

for all l = 1, . . . ,N. The state feedback gain matrix is then given by K = YW−1. Fur-

thermore since the Jl from (4.38) satisfy

Jl < yT
l (0)Z̄yl(0)(1+

1
2

α0τ2 +
3
2

α1τ2) (4.43)

minimizing Trace(Z̄) subject to (4.40)-(4.41) minimizes a bound on the LQR cost.

Proof. This proof uses a restricted Lyapunov-Krasovskii functional as suggested in Propo-

sition 3 from Appendix B.3.1 and [129]. For the system in (4.35) consider a Lyapunov-
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Krasovskii functional of the form

Vl(y(t)) = yT
l (t)Pyl(t)+

∫ t

t−2τ

∫ t

θ
α(θ)yT

l (s)Pyl(s)dsdθ (4.44)

where P > 0 and P ∈ IRn×n for all l = 1, . . . ,N. The restricted Lyapunov-Krasovskii

function in (4.44) is considered so as to facilitate the derivation of LMI constraints by

employing the inverse of the Lyapunov matrix P and follow the procedure similar to

that in Theorem 4.3.1. The reader is referred to Proposition 3 from Appendix B.3.1 for

the unrestricted form of the Lyapunov-Krasovskii functional. In (4.44) α(θ) > 0 is a

positive scalar function defined over the interval t −2τ ≤ θ ≤ t. Differentiating (4.44) it

is required that

˙̃Vl +
d
dt

∫ ∞

0
(yT

l (t)Qyl(t)+uT
l (t)Rul(t))dt < 0 (4.45)

Substituting (4.44) in (4.45) yields

yT
l (t)(PĀ0i + ĀT

0iP+
∫ t

t−2τ
α(θ)Pdθ)yl(t)+2yT

l (t)
∫ t

t−2τ
PĀl(θ)yl(θ)dθ

−
∫ t

t−2τ
α(θ)yT

l (θ)Pyl(θ)dθ <−yT
l (t)Qyl(t)−uT

l (t)Rul(t) (4.46)

By adding and subtracting terms
∫ t

t−2τ yT
l (t)M(θ)yl(t)dθ , involving a symmetric matrix

function M(θ) ∈ IRn×n, the inequality in (4.46) is equivalent to

yT
l (t)(PĀ0l +AT

0iP+Q+KT RK +
∫ t

t−2τ
M(θ)dθ)yl(t)

+
∫ t

t−2τ
ȳT

l

 α(θ)P−M(θ) PĀl(θ)

∗ −α(θ)P

 ȳldθ < 0 (4.47)

where

ȳT
l =

(
yT

l (t) yT
l (θ)

)
(4.48)
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Define the symmetric matrix function M(θ) as

M(θ) :=

 M0 t − τ ≤ θ ≤ t

M1 t −2τ ≤ θ < t − τ
(4.49)

where M0 and M1 are symmetric matrices ∈ IRn×n and the scalar function α(θ) as

α(θ) :=

 α0 t − τ ≤ θ ≤ t

α1 t −2τ ≤ θ < t − τ
(4.50)

where α0 > 0 and α1 > 0. Then as argued in [129] inequality in (4.47) is satisfied for

P > 0 and

P(A0 +Al)+(A0 +Al)
T P+Q+KT RK + τ(M0 +M1)< 0 (4.51) α0P−M0 −PAlA0

∗ −α0P

< 0 (4.52)

 α1P−M1 −PAlAl

∗ −α1P

< 0 (4.53)

It can now be stated that the introduction of the matrix function M(θ) in (4.47) facilitates

the representation of the matrix inequalities (4.51)-(4.53). Using the Schur complement

and eliminating M0 and M1 the inequalities in (4.51)-(4.53) are satisfied if


Φl −PAlA0 −PAlAl

∗ −α0P 0

∗ ∗ −α1P

< 0 (4.54)

where

Φl =
1
τ
(P(A0 +Al)+(A0 +Al)

T P+Q+KT RK)+(α0 +α1)P (4.55)

and A0 =A−BK for all l = 1, . . . ,N. To develop a convex representation define W =P−1.
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Pre and post multiplying (4.54) by D iag(W,W,W ) means (4.54) is equivalent to


Φ̂l −AlA0W −AlAlW

∗ −α0W 0

∗ ∗ −α1W

< 0 (4.56)

where

Φ̂l =
1
τ
((A0 +Al)W +W (A0 +Al)

T +WQW )+
1
τ
(WKT RKW )+(α0 +α1)W (4.57)

for all l = 1, . . . ,N. Define an auxiliary symmetric matrix Z̄ ∈ IRn×n and employ the

change of decision variables KW = Y where Y ∈ IRm×n. From applying the Schur com-

plement to (4.56), the inequalities in (4.51)-(4.53) become the LMI stated in the theorem

statement in (4.41). Inequality (4.46) is equivalent to

V̇l(yl(t))<−yT
l (t)Qyl(t)−uT

l (t)Rul(t) (4.58)

and integrating both sides of (4.58) from 0 to ∞ yields

−yT
l (0)Pyl(0)−

∫ 0

−2τ

∫ 0

θ
α(θ)yT

l (s)Pyl(s)dsdθ <−Jl (4.59)

Assuming initial conditions yl(s) = yl(0) for s < 0, an upper bound for Jl is given by

Jl < yT
l (0)Pyl(0)(1+

1
2

α0τ2 +
3
2

α1τ2) (4.60)

by explicitly evaluating the integral on the L.H.S of (4.59). Minimization of Trace(P)

ensures minimizing an upper bound on the costs Jl for all l = 1, . . . ,N. From (4.40) it

can be shown by Schur complement that Z̄ >W−1 = P. Hence the condition in (4.43) is

satisfied. Consequently the following optimization problem ensures minimization of an

upper bound on the LQR cost in (4.60).

Minimize Trace(Z̄) subject to (4.40)-(4.41)

Remark 4.5: The matrix Al = λlBH for l = 1, . . . ,N is contained in the inequality given
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by (4.41). Note that the matrix H and the scalars α0 and α1 are fixed in (4.41) which

renders the matrices Al fixed for all l = 1, . . . ,N, and hence (4.41) is an LMI.

4.3.3 Delay Dependent Control design for Time Varying Delays

In the previous sections state feedback control laws were designed based on the assump-

tion of relative information having a fixed delay. Assuming fixed delays in a network is

somewhat idealistic, and hence a need arises for control design involving time-varying

delays. In [120], a control design methodology has been presented for time varying de-

lay where the delay τ(t) is a bounded continuous function satisfying 0 ≤ τ(t) ≤ τm for

t ≥ 0 where τm is known. The equivalent systems to (4.14) with time varying delays τ(t)

are given by

˙̃xl(t) = Ax̃l(t)−λlBHx̃l(t − τ(t))+Bul(t) (4.61)

for l = 1, . . . ,N. Again the objective is to minimize a cost function of the form

Jl =
∫ ∞

0
(x̃T

l (t)Qx̃l(t)+uT
l (t)Rul(t))dt (4.62)

where

ul(t) =−Kx̃l(t) (4.63)

for all l = 1, . . . ,N. The control law (4.63) when substituted in (4.61) yields

˙̃xl(t) = A0x̃l(t)+Al x̃l(t − τ(t)) (4.64)

where

A0 := A−BK (4.65)

Al :=−λlBH (4.66)

Theorem 4.3.3. Assume the bound on the delay τm is known, then for a given scaling

matrix H from (4.61) and given weighting matrices Q and R, the control laws in (4.63)

simultaneously stabilize the systems in (4.64) if there exist symmetric matrices W1 > 0,
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Z̃ > 0, F̄1 > 0, F̄3 > 0, S̄ > 0 ∈ IRn×n and the matrices W2, W3, F̄2 ∈ IRn×n such that the

following LMI conditions are satisfied:

 −Z̃ In

In −W1

 < 0 (4.67)


S̄ 0n S̄AT

l

∗ F̄1 F̄2

∗ ∗ F̄3

 > 0 (4.68)



W2 +W T
2 + τmF̄1 Φl τmW T

2 W1Q1/2 Y T

∗ −W3 −W T
3 + τmF̄3 τmW T

3 0 0

∗ ∗ −τmS̄ 0 0

∗ ∗ ∗ −In 0

∗ ∗ ∗ ∗ R−1


< 0 (4.69)

where

Φl =W3 −W T
2 +W1(A+Al)+ τmF̄2 −Y T BT (4.70)

for all l = 1, . . . ,N. The state feedback gain matrix is then given by

K = YW−1
1 (4.71)

Furthermore

Jl < x̃T
l (0)Z̃x̃l(0) (4.72)

and so minimizing Trace(Z̃) subject to (4.67)-(4.69) minimizes a bound on the LQR cost.

Proof. This proof uses concepts from Proposition 6 from Appendix B.5 to design control

laws for the system in (4.61) with a certain level of performance. As in [120] represent
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the system in (4.64) as a descriptor system1 given by

˙̃xl(t) = ỹl(t) (4.73)

0 = −ỹl(t)+(A0 +Al)x̃(t)−Al

∫ t

t−τ(t)
ỹl(s)ds (4.74)

for l = 1, . . . ,N. The system in (4.73)-(4.74) can be written as

E ˙̄xl(t) =

 ˙̃xl(t)

0n

 (4.75)

= Ã0l x̄l(t)−

 0n

Al

∫ t

t−τ(t)
ỹl(s)ds (4.76)

where

Ã0i =

 0n In

(A0 +Al) −In

 (4.77)

for all l = 1, . . . ,N. In (4.75) and (4.76) x̄T
l (t) =

(
x̃T

l ỹT
l

)
and E = D iag(In,0n).

Consider a Lyapunov-Krasovskii functional of the form

Vl(t) =V1l(t)+V2l(t) (4.78)

where

V1l(t) = x̄T
l EPx̄l (4.79)

V2l(t) =
∫ 0

−τm

∫ t

t+θ
ỹT

l (s)Sỹl(s)dsdθ (4.80)

The symmetric matrix S > 0 ∈ IRn×n and

P =

 P1 0

P2 P3

 (4.81)

1A descriptor system has the form Eẋ(t) = Ax(t)+Bu(t) where x(t) ∈ IRn, A ∈ IRn×n, B ∈ IRn×n, and
E ∈ IRn×n is singular.
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where P1, P2 and P3 ∈ IRn×n and P1 is symmetric positive definite. The cost functions in

(4.62) can be represented as

Jl =
∫ ∞

0
x̄T

l (t)

 Q+KT RK 0n

0n 0n

 x̄l(t)dt (4.82)

The objective is to ensure the inequality

V̇l = V̇1l(t)+V̇2l(t)<−x̄T
l (t)

 Q+KT RK 0n

0n 0n

 x̄l(t) (4.83)

holds. In the left hand side of (4.83)

V̇1l(t) = PT Ã0l + ÃT
0lP−2

∫ t

t−τ(t)
G(x̄l(t), ỹl(s))ds (4.84)

and

V̇2l(t) = τmỹT
l (t)Sỹl(t)−

∫ t

t−τm

ỹT
l (s)Sỹl(s)ds (4.85)

where

G(x̄l(t), ỹl(s)) = x̄T
l (t)P

T

 0n

Al

 ỹl(s) (4.86)

Select a matrix F ∈ IR2n×2n such that

S̃F =


S

(
0n AT

l

)
P

PT

 0n

AT
l

 F

> 0 (4.87)

for all l = 1 . . . ,N. Then it follows that

∫ t

t−τ

 ỹl(s)

x̄l(t)

T

S̃F

 ỹl(s)

x̄l(t)

ds > 0 (4.88)
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By rearranging (4.88), the integral term in (4.84) satisfies

−2
∫ t

t−τ(t)
G(x̄l(t), ỹl(s))ds <

∫ t

t−τ
(ỹT

l (s)Sỹl(s)+ x̄T
l (t)Fx̄l(t))ds

<
∫ t

t−τm

ỹT
l (s)Sỹl(s)ds+ τmx̄T

l (t)Fx̄l(t) (4.89)

Substituting (4.89) in (4.84) and using (4.85), inequality (4.83) is satisfied if

0 <

 S [0n AT
l ]P

∗ F

 (4.90)

and

PT Ã0i + ÃT
0iP+ τmF +

 Q+KT RK 0n

0n τmS

< 0 (4.91)

for all 1 = 1, . . . ,N. Define W = P−1 in conformation with (4.81) as

P−1 =W =

 W1 0n

W2 W3

 (4.92)

To create convex LMI representations from the matrix inequalities (4.90) and (4.91)

define Z̃ > 0 ∈ IRn×n. Pre and post multiply (4.90) by D iag(S−1,W T ) and D iag(S−1,W )

respectively. Also pre and post multiply (4.91) by W T and W respectively. Using the

linearizations W T FW = F̄ =

 F̄1 F̄2

∗ F̄3

 and S̄ = S−1, and KW1 = Y , the inequalities

in (4.90) and (4.91) can be represented by the LMIs in (4.68) and (4.69). An expression

for the maximum bound on the cost Jl can be obtained by integrating (4.83) as

Jl < x̃T
l (0)P1x̃l(0)+

∫ 0

−τm

∫ 0

θ
ỹT

l (s)Sỹl(s)dsdθ (4.93)

for all l = 1, . . . ,N. Assuming the initial condition x̃(θ) = x̃(0) for −τm ≤ θ ≤ 0, ỹl(θ) =

˙̃x(θ) = 0 for −τm ≤ θ ≤ 0. Hence the maximum bound on the cost Jl is given by

Jl < x̃T
l (0)P1x̃l(0) (4.94)
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From (4.67) it can be shown by using Schur complement that Z̃ >W−1
1 = P1. Hence the

inequality in (4.72) is satisfied. Then the following minimization problem constitutes

minimizing an upper bound on the LQR cost in (4.62)

Minimize Trace(Z̃) subject to (4.67)-(4.69)

Remark 4.6: Note that τ and the matrix H are fixed which renders the matrix Al in (4.64)

fixed for all l = 1, . . . ,N and hence (4.68) and (4.69) are LMI representations.

Remark 4.7: With the presentation of the methods in Section 4.3.1, Section 4.3.2 and

Section 4.3.3, the justification for considering a constant scaling matrix H in (4.5) is

given in this remark. Consider the delay dependent control design method for a fixed

delay presented in Theorem 4.3.2. The matrix A2
l appears in (4.41). Now if H is not

fixed then this term will involve a square term of a design variable and hence (4.41) will

not be an LMI. Consider the delay dependent control design method for time-varying

delay presented in Theorem 4.3.3. The LMI in (4.68) contains the term S̄AT
l . Again, if

H is not fixed one will have to define a new variables Hs = HS̄ in (4.68) and Hw = HW1

in (4.69) to obtain an LMI constraint. These variables are not independent and hence it

is not a convex constraint. Please note that the delay independent control design method

in Theorem 4.3.1 is presented to obtain the gains that would give the user an estimate of

the gains required such that system is stable for any arbitrary delay.

Remark 4.8: As explained in Remark 4.7, the term involving the matrix H associated

with the delayed relative information needs to be fixed in the control design methods.

Hence a two step control design method as considered in Chapter 3 is not feasible for

these methods. Consequently the augmented cost function at a network level used in

(3.8) is not considered in this chapter. In this chapter, each of the control design process

is a single step design and hence a cost function of the form (4.16) is used. Explor-

ing stability methods for time-delay systems which can allow a two step control design

process like that of Chapter 3 is a future research direction.
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4.4 Numerical Example

To illustrate the design methodologies, a cyclic nearest neighbour configuration of 5

vehicles moving in a 2-Dimensional plane, with each vehicle described by two decoupled

double integrators as used in Section 3.6, is considered. The linear system model is given

by

ζ̇i = Aζi +Bui (4.95)

where ζi represents positions and velocities in a 2-Dimensional x− y plane which con-

stitute the states of the ith vehicle. The matrices A and B are given by

A =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0


B =


0 0

0 0

1 0

0 1


(4.96)

The Laplacian for the network is given by

L =



2 −1 0 0 −1

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

−1 0 0 −1 2


(4.97)

The matrix H associated with the relative information exchange in (4.6) is given by

H =

 1 0 1 0

0 1 0 1

 (4.98)

The matrix H is selected such that the scaling for the relative position and velocities is

unity.

Remark 4.9: It is fair to assume that scaling matrix H has entries of unity for the relative

position and velocity information. For each agent/vehicle a sum of the relative positions
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and velocities will be available after measurement. Hence the entries in (4.98) will be

unity. In a general problem if one assumes that the sum of the difference between the

states of an agent and its neighbours is available as relative information the entries for

the matrix H will be unity. It is important to note that the theory presented in this chapter

does not restrict the entries to unity. If a different scaling is available after measurement

the matrix H will have different entries and the possibility of obtaining a controller will

depend on the feasibility of the theorems presented in Section 4.3.

The matrices Q and R for the cost functions given in (4.16), (4.38) and (4.82) have

been chosen as

Q =


10 0 0 0

0 10 0 0

0 0 10 0

0 0 0 10


R =

 1 0

0 1

 (4.99)

The simulations in this section were done using SIMULINK with a fixed-step size of

0.001s and ode4(Runge-Kutta) solver. For the simulation results shown, the same initial

conditions are used to illustrate the different control design methodologies. The gain

matrix K obtained by solving the LMIs for delay independent control approach discussed

in Section 4.3.1 is given by

K =

 11.5156 0 13.7394 0

0 11.5156 0 13.7394

 (4.100)

The magnitudes of the gains are very high as compared to the scaling of the delayed

relative information in the matrix H. This is perhaps expected as the system is required to

be stable for any arbitrary delay τ as the delay independent LMI of Theorem 4.3.1 does

not involve τ . Figure 4.1 shows a rendezvous of 5 agents with the delay independent

control from (4.100) with a delay of τ = 0.1s. Figure 4.2 shows that the agents attain

a rendezvous at around t = 5s with the gain matrix K obtained in (4.100). The control

signals Ux and Uy in the x and y directions with delay independent control for the fixed

delay are shown in Figure 4.3 and Figure 4.4.

For the method proposed in Section 4.3.2 it is assumed that a fixed communication
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Figure 4.1: Rendezvous with delay independent control for fixed delay
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Figure 4.2: Delay independent control with delay of τ = 0.1s plotted against time

delay of τ = 0.1s is present in the exchange of relative information. For the delay de-

pendent LMIs in (4.40) and (4.41) the scalars α0 and α1 have been chosen as α0 = 3 and

α1 = 3 as Theorem 4.3.2 was not feasible for lower integer valus. For τ = 0.1s, the gain
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Figure 4.3: Control effort for agents in the x direction - delay independent control
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Figure 4.4: Control effort for agents in the y direction - delay independent control

matrix K obtained from this approach is

K =

 2.3931 0 2.8428 0

0 2.3931 0 2.8428

 (4.101)
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Figure 4.5: Rendezvous with delay dependent control for fixed delay

Figure 4.5 shows a rendezvous of the 5 agents with delay dependent control design for

a fixed delay of τ = 0.1s. Figure 4.6 shows that a rendezvous occurs at around t = 5.2s

with the gain matrix K obtained in (4.101). The control signals Ux and Uy in the x
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Figure 4.6: Delay dependent control with delay of τ = 0.1s plotted against time

and y directions with delay dependent control for a fixed delay are shown in Figure 4.7
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and Figure 4.8. Comparing the plots in Figure (4.1) and Figure (4.5) it can be seen
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Figure 4.7: Control effort for agents in the x direction - fixed delay
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Figure 4.8: Control effort for agents in the y direction - fixed delay

that the performance by delay independent control for a fixed delay is better than the

performance of the delay dependent control for a fixed delay. The disadvantage of delay

independent control is that it requires significantly higher control effort as seen in Figure
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(4.3) and Figure (4.4) as compared to delay dependent control in Figure (4.7) and Figure

(4.8). In [129] it is stated that the stability criteria of Proposition 3 in Appendix B.3.1

is conservative. Hence the gain matrix K in (4.101) should be able to cope with larger

delays. Simulations show that the agents do not attain a rendezvous and diverge once τ

exceeds 0.6s. This is shown in Figure 4.9.
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Figure 4.9: No rendezvous after τ = 0.6s

If there is no communication of relative information i.e. the control law in (4.6) is

replaced by ui(t) = −Kxi(t), for the system in (4.1), a standard LQR problem results

for each agent. With the same set of matrices (A,B,Q,R) using the MATLAB command

’lqr’, the local state feedback gain matrix K obtained is

K =

 3.1623 0 4.0404 0

0 3.1623 0 4.0404

 (4.102)

Figure 4.10 shows 5 disconnected agents attaining a rendezvous at around t = 4.8s.

Comparing the plots in Figure 4.6 and Figure 4.10 it can be seen that the performance

achieved both with and without the relative information is similar. The rendezvous of

individual agents without relative information in a two dimensional plane is shown in

Figure 4.11. The control efforts are shown in Figure 4.12 and Figure 4.13.
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Figure 4.10: Rendezvous of individual agents
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Figure 4.11: Rendezvous without relative information

Remark 4.10: One distinct advantage that can be observed is the reduction of the mag-

nitude of the gains for velocity and position feedback in (4.101) as compared to (4.102).

Another advantage can be observed by comparing the control signals in Figure 4.7, Fig-

ure 4.8, Figure 4.12 and Figure 4.13. Though the magnitude of the maximum control
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Figure 4.12: Control effort in the x direction - no relative information
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Figure 4.13: Control effort in the y direction - no relative information

effort is almost similar for x direction in Figure 4.7 and Figure 4.12, there is some re-

duction in the maximum control effort in the y direction in Figure 4.8 as compared to

that in Figure 4.13. Thus the use of relative information may also be beneficial to re-

duce control effort. For the initial conditions considered in this example the LQR cost
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J is 4.66 ∗ 106 while that associated with the standard LQR controller without relative

information in (4.102) is 4.49 ∗ 106. Thus the use of relative information gives a cost

that is almost equal to that of the standard LQR controller without relative information.

The control design method in Section 4.3.2 is obtained from a very conservative stability

analysis method in [129]. Since the cost obtained from a conservative method is almost

equal to that of the standard LQR controller without relative information, it is reasonable

to expect that if one is able to obtain the control design method in Section 4.3.2 from

less conservative and recent stability analysis methods for fixed delays, a significant cost

reduction is possible. This is a future research direction.

For the method proposed in Section 4.3.3 the bounded time-varying delay is given

by 0 ≤ τ(t)≤ 0.1s. The gain matrix obtained from this approach is

K =

 2.9779 0 4.4182 0

0 2.9779 0 4.4182

 (4.103)

Figure 4.14 shows a rendezvous of the 5 agents with the controller designed for a

bounded time-varying delay of τ(t) = 0.05+ 0.05cos(t). Figure 4.15 shows 5 agents

attaining a rendezvous at around t = 5.5s for the bounded time varying delay. The
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Figure 4.14: Rendezvous with delay dependent control for time-varying delay
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Figure 4.15: Rendezvous with time-varying delay plotted against time

control signals Ux and Uy in the x and y directions with delay dependent control for the

case of time-varying delay are shown in Figure 4.16 and Figure 4.17.
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Figure 4.16: Control effort for agents in the x direction - time-varying delay

Remark 4.11: An analysis of the controller obtained from Section 4.3.3 did not provide

any advantages in reducing the control effort as compared to the rendezvous of individ-

ual agents. This may be due to the the higher gains obtained in (4.103) as compared
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Figure 4.17: Control effort for agents in the y direction - time-varying delay

(4.102). The cost J associated with the control design method for time-varying delay is

given by 4.61 ∗ 106. This cost is comparable to the costs obtained from the control de-

sign method for a fixed delay given by Theorem 4.3.2 and the standard LQR controller

without relative information presented in Remark 4.10. The control design method in

Section 4.3.3 is obtained from a very conservative stability analysis method in [120].

Exploration and modification of less conservative methods for the case of time-varying

delays can be performed to yield better results. This is also a future research direction.

4.4.1 Effects of Communication Topology

In this section the effects of changes in the communication topology, i.e. the effects of

changes in the graph Laplacian L , are presented. For this study the same weighting

matrices Q and R in (4.99) for the cost function and the scaling matrix H in (4.98) are

considered and the results in the preceding section are repeated for changes in commu-

nication topologies. For this study the two communication topologies shown in Figure

3.23 and Figure 3.24 from Section 3.6.6.2 from Chapter 3 are considered.

For the acyclic nearest neighbour interconnection topology described by Figure 3.24
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in Section 3.6.6.2 the Laplacian matrix is given by

L =



1 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 1


(4.104)

For this communication topology, the gain matrix K obtained from the delay independent

control design method of Theorem 4.3.1 is given by

K =

 11.5146 0 13.7377 0

0 11.5146 0 13.7377

 (4.105)

The gain matrix K obtained from the delay dependent control design method for a fixed

delay of Theorem 4.3.2 is given by

K =

 2.3927 0 2.8428 0

0 2.3927 0 2.8428

 (4.106)

The gain matrix K obtained from the delay dependent control design method for time-

varying delay of Theorem 4.3.3 is given by

K =

 2.9789 0 4.4182 0

0 2.9789 0 4.4182

 (4.107)

Comparing the gain matrices for the three methods in (4.100) and (4.105), (4.101) and

(4.106), (4.103) and (4.107) one can see that the gain matrices are almost equal for

the respective methods. The use of the acyclic communication topology described by

(4.104) does not yield any significant differences in the rendezvous of the agents. A

possible explanation for this is that the maximum eigenvalue is λmax = 3.618 for both

(4.97) and (4.104).

For the denser communication topology described by Figure 3.23 in Section 3.6.6.2
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the Laplacian matrix is given by

L =



2 −1 0 0 −1

−1 3 −1 −1 0

0 −1 3 −1 0

0 −1 −1 3 −1

−1 0 −1 −1 3


(4.108)

For this communication topology, the gain matrix K obtained from the delay independent

control design method of Theorem 4.3.1 is given by

K =

 15.5989 0 18.1368 0

0 15.5989 0 18.1368

 (4.109)

The delay dependent control design method for a fixed delay of Theorem 4.3.2 is infea-

sible for this communication topology. A possible explanation for this is that the LMIs

in (4.41) are rendered infeasible since they contain A2
l where Al =−λlBH and the maxi-

mum eigenvalue of λmax = 5 for (4.108) is higher than λmax = 3.618 for both (4.97) and

(4.104). The gain matrix K obtained from the delay dependent control design method

for time-varying delay of Theorem 4.3.3 is given by

K =

 2.7884 0 4.6103 0

0 2.7884 0 4.6103

 (4.110)

Comparing (4.103), (4.107) and (4.110) it can be seen that for this problem the delay de-

pendent gains for the case of time varying delays considered in this example are similar

for all three topologies and do not yield any significant differences in the rendezvous of

agents.

To summarize, a use of communication topology with high eigenvalues increases the

contribution of the delay term Al in (4.13) thereby increasing the destabilization effect

of delays. It is hence advisable to the user of this method that a communication topology

with lower eigenvalues should be employed for better results.
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4.4.2 Effects of Scaling Matrix H

In this section some effects of the scaling matrix H in (4.98) are presented. For this study

the same weighting matrices Q and R in (4.99) are considered. It is considered that the

matrix H associated with the relative information exchange in (4.6) is now given by

H =

 2 0 2 0

0 2 0 2

 (4.111)

Remark 4.12: The delay independent control design method of Theorem 4.3.1 has been

presented in this thesis to provide the reader an insight into the gains required such that

the delay term Al in (4.13) has no effects on the stability of the network for any arbitrary

delay. For the three network topologies described by the Laplacians in (4.97), (4.104)

and (4.108), Theorem 4.3.1 is feasible and obtains gains even when the matrix H is very

large. In practical scenarios it will be impossible to provide the high gains resulting from

the delay independent control design method and hence in this section some interesting

observations of the effects of the matrix H on delay dependent control design methods

are presented.

For the matrix H in (4.111), the delay dependent control design method for a fixed

delay given by Theorem 4.3.2 does not obtain a solution for any of the three network

topologies considered in (4.97), (4.104) and (4.108). The delay dependent control design

method for time-varying delays given by Theorem 4.3.3 for the network topologies of

(4.97) and (4.104) yields the same gain matrix K given by

K =

 3.6071 0 5.9759 0

0 3.6071 0 5.9759

 (4.112)

The gains obtained in (4.112) are higher as compared to those in (4.107) and (4.110) to

compensate for the increase in contribution of the delay term Al in (4.13) caused by the

increase in H in (4.111). The delay dependent control design method for time-varying

delays given by Theorem 4.3.3 is infeasible for the network topology given by (4.108).

Thus it can be observed that an increase in the scaling H leads to infeasibility as the

114



contribution of the delay term Al in (4.13) increases.

In the previous section, i.e. in Section 4.4.1, it was stated that the communication

topology described by the Laplacian in (4.108) does not give a solution with the delay

dependent control design method of Theorem 4.3.2 when the matrix H is given by (4.98).

In this case if the scaling matrix H is considered to be given by

H =

 0.5 0 0.5 0

0 0.5 0 0.5

 (4.113)

Theorem 4.3.2 is then feasible and obtains the gain matrix K as

K =

 4.6002 0 4.6729 0

0 4.6002 0 4.6729

 (4.114)

To summarize, a higher magnitude of the entries in the scaling matrix H in (4.98)

increases the contribution of the delay term Al in (4.13) thereby increasing the destabi-

lization effect of time delays. It is hence advisable to the user of this method that the

magnitude of the scaling matrix H be lower. If the scaling provided by the measurement

of relative information results in an infeasible solution after employing the delay depen-

dent control design methods the user may consider using low values for scaling matrix

H.

4.5 Concluding Remarks

In this chapter delay independent and delay dependent control design methodologies

for fixed delays and delay dependent control design method for time-varying delays are

developed to stabilize a network of linear systems by making use of delayed relative

state information along with local state information. The delay independent control

design for the case of fixed delays results in gains which are high, to compensate for the

delayed relative information. The delay dependent control design for fixed delays results

in gains which provide similar performance as compared to standard LQR control of the

unconnected individual agents. For the double integrator system considered, the gains
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are lower in magnitude as compared to the gains obtained by solving an individual LQR

problem for a single agent. Thus the use of relative information maybe advantageous in

terms of distributing the control effort. A control design method to guarantee a certain

level of LQR performance with time varying delays was also developed. The control

design methodologies for both fixed and time-varying delays are developed for using

node level systems obtained from spectral decomposition and are scalable with respect

to the number of agents in the multi-agent system.

The stabilization techniques which were used to incorporate LQR performance, whilst

not necessarily the most recent in terms of the time-delay literature, were shown to yield

tractable LMI representations under certain mild simplifications. This is important be-

cause of the large number of decision variables involved resulting from the multiple

agents. These techniques provided a good trade-off between unnecessary conservatism

and tractability of LMI formulations.
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Chapter 5

Output Feedback Control of a Network

of Double Integrators

5.1 Introduction

In Chapter 3, a time-delay analysis of the proposed distributed state-feedback controllers

for a network of multiple agents was carried out to obtain a maximum bound on the

amount of delay that can be accommodated in the exchange of relative information. In

Chapter 4, delay independent and delay dependent methods for controller synthesis by

state-feedback to achieve network level LQR performance were developed. In both these

chapters it was implicitly assumed that time-delays in communication are detrimental to

achieving the desired cooperative goals and performance objectives. Though in most

cases delays have a negative effect on the stability of a linear system, in some instances

delays can have positive effects on a system. In [129] it is illustrated using the example

of a vibration absorber, that introduction of time delays can enhance the system perfor-

mance by reducing the sensitivity of the system to the excitation frequency. Furthermore

in some cases the presence of delays can stabilize a system which is unstable when there

are no delays in the system [133]. In this chapter the focus is on exploiting the latter

property of stabilization by the introduction of delay, to stabilize a network of multiple

agents modelled as double integrators.

In many practical cases, the measurement of all the states of a system is not viable.
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In such scenarios control by output feedback is necessary. Although (static) output feed-

back control is a well studied problem, no complete solution has been found [108]. In

[133] it was shown that it maybe possible to stabilize a system, which cannot be stabi-

lized by static output feedback, by introducing terms based on a delayed version of the

output. This design methodology has been considered by a few researchers in [134]-

[138]. In [134], necessary and sufficient conditions for achieving stability of systems

which cannot be stabilized without delays are developed. In [135], issues related to

robustness with respect to parametric and delay uncertainty are considered. In [136],

necessary conditions for the existence of stabilizing static output feedback controllers

with multiple delays are developed. In particular, stabilization of a double integrator

by using delays in output feedback terms is briefly described. In [137], a new method

for control synthesis, based on descriptor discretized Lyapunov-Krasovskii functionals,

which can stabilize systems not stabilizable by static output feedback has been devel-

oped. In [137], the method is illustrated on double integrator dynamics. In [138], an

artificial delay is used to develop a static output feedback sliding mode control law. It is

stated by the authors that an advantage of such a method is that it does not increase the

order of the system, and is computationally less complex compared to methods involving

the use of compensators.

In Chapter 3 and Chapter 4, the state feedback design methodologies were illustrated

with the help of an example of a multi-agent system described by double integrator

dynamics. Motion described by double integrator dynamics cannot be asymptotically

stabilized via static output feedback, i.e. by position information alone. In this chapter

exponential stabilization of a network of vehicles described by double integrator dynam-

ics is achieved by introducing delays in relative information. The exponential stabiliza-

tion method developed guarantees a certain level of performance by ensuring that each

agent is stabilized with a required rate of convergence to a desired formation.

The organization of this chapter is as follows: In Section 5.2 the problem definition

is stated. The linear system model for a network of double integrators is explained. In

Section 5.3 the control design procedure is explained in detail. In Section 5.4 the control

design methodology is illustrated with the help of a numerical example. Concluding
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remarks are given in Section 5.5.

5.2 Problem Formulation

In this chapter, a network of N identical vehicles moving in a 2-Dimensional plane is

considered. As in Chapter 3 and 4, the dynamics of each dimension is assumed to be

described by a double integrator, and a linear state space representation for each vehicle

is given by

ξ̇i(t) = Aξi(t)+Bui(t) (5.1)

ϑi = Cξi (5.2)

where ξi = C ol[xi, ẋi,yi, ẏi] and

A =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0


B =


0 0

1 0

0 0

0 1


C =

 1 0 0 0

0 0 1 0

 (5.3)

This is equivalent to two decoupled double integrator systems. Here ϑi is the measured

position (xi,yi) of the ith vehicle in the x− y plane. Each vehicle is assumed to have

access to its output information and the relative output information from agents which

it can interact with (its neighbours). Bidirectional communication is assumed between

the agents. This interconnected system is represented by a graph with N vertices (nodes)

each representing a vehicle. The signals representing the exchange of relative position

information are assumed to have the form

zi(t) = ∑
j∈Ji

(ϑi(t)−ϑ j(t)) (5.4)

for i = 1 . . .N. As in the previous chapters, the nonempty set Ji ⊂ {1,2, . . .N}/{i}

denotes the vehicles, for which the ith vehicle has information. The external output
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measurements relative to the other vehicles sensed by the ith vehicle are represented by

the signals zi(t). At a network level, the system given in (5.1) is represented by

Ẋ(t) = (IN ⊗A)X(t)+(IN ⊗B)U(t) (5.5)

where

X(t) = C ol(ξ1(t), ....,ξN(t)) (5.6)

U(t) = C ol(u1(t), ....,uN(t)) (5.7)

At network level, (3.2) can be represented as

Z(t) = (L ⊗C)X(t) (5.8)

where Z(t) = C ol(z1(t), . . . ,zN(t)). As in Chapters 3 and 4, an assumption is made that

each vehicle has information about at least one other vehicle which ensures rank(L ) =

N −1.

It is common knowledge that the two decoupled double integrators associated with

(A,B,C) cannot be stabilized by static output feedback. To circumvent this issue, the

existence of distributed static output feedback control laws involving delay terms of the

form

ui(t) =−K1ϑi(t)+K2ϑi(t − τ)+K2(β zi(t − τ)−di) (5.9)

where K1 = k1I2 and K2 = k2I2, where k1 and k2 are non-zero scalars, is considered. The

scalar β > 0 represents an a priori known scalar weighting for zi and τ is a fixed chosen

delay. The choice if τ is considered as part of the controller design process. In equation

(5.9), zi(t − τ) is the delayed relative position information given by

zi(t − τ) = ∑
j∈Ji

(ϑi(t − τ)−ϑ j(t − τ)) (5.10)

The 2−D vector di is the offset in the relative information at each node so that each agent

maintains a desired relative distance from its neighbours. For a given β , the gains K1,
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K2, together with τ must be chosen such that the closed loop network system is stable.

Since each agent is described by a two decoupled double integrator systems, (for motion

in each planar direction) it can be assumed without loss of generality that K1 = k1I2 and

K2 = k2I2 where the scalars k1 and k2 represent the gains for a single double integrator

with output feedback.

Assumption 5.1: In real engineering systems, relative sensing and communication of

information will have delays. Here it is assumed that a minimum delay of τmin > 0 will

be present in relative sensing and communication. Since it is assumed that each node

has access to its own output information it is also assumed, in addition, that it is possible

to store this information and use it in delayed feedback.

The control law given in (5.9) at a network level is given by

U(t) =−(IN ⊗K1C)X(t)+(IN ⊗K2C)X(t − τ)+(βL ⊗K2C)X(t − τ) (5.11)

+(IN ⊗K2)D

where D = C ol(d1, . . . ,dN). Equation (5.11) is represented as

U(t) =−(IN ⊗K1C)X(t)+(IN ⊗K2)D+((IN +βL )⊗K2C)X(t − τ) (5.12)

Substituting (5.12) in (5.5), the closed loop system is given by

Ẋ(t) = A0X(t)+A1X(t − τ)+(IN ⊗BK2)D (5.13)

where the system matrices

A0 = IN ⊗ (A−BK1C) (5.14)

A1 = (IN +βL )⊗BK2C (5.15)

Since the system (A,B,C) is not stabilizable by static output feedback, the system in

(5.13) is not stable for τ = 0.

Remark 5.1: Note that each dynamical system is represented by two independent dou-
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ble integrators as shown in (5.3) to describe motion of a vehicle in a 2-Dimensional

plane. A single double integrator could easily have been considered in (5.3) for motion

in one dimension and the results employed for motion in the second dimension as it is

assumed in this chapter that the motion along each dimension in a 2-Dimensional plane

is decoupled and described by double integrator dynamics. In (5.9) ϑi(t) represents the

position information for the two dimensions and without loss of generality it is assumed

that K1 = k1I2 and K2 = k2I2. An attempt has been made in (5.9) to use the same gain K2

for the delayed relative position information to exploit the properties of the matrix A1 in

(5.15) in the control design procedure.

5.3 Control Design Procedure

The problem addressed in this section is to design the control law in (5.9) with τ > τmin

such that the closed loop system (5.13) is stable. In other words, for a given β > 0 find

the triplet (K1,K2,τ) with τ > τmin such that the system (5.13) is stable.

5.3.1 Model Transformation

First, introduce a linear coordinate transformation of the form

X̄(t) = X(t)−X f (5.16)

where X f ∈ IR4N is the desired final state of the network. This will have the form

X f = C ol
(

x f
1 , 0, y f

1 , 0, . . . x f
N , 0, y f

N , 0
)

(5.17)

where (x f
i ,y

f
i ) is the final desired steady state positions for all i = 1, . . . ,N. Using (5.13)

the system written in terms of X̄(t) has the form

˙̄X(t) = A0X̄(t)+A1X̄(t − τ)+(A0 +A1)X f +(IN ⊗BK2)D (5.18)
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For given values of K1 and K2 the offset vector D is chosen to satisfy

(IN ⊗K2)D = (IN ⊗K1C)X f − ((IN +βL )⊗K2C)X f (5.19)

Note that K2 = k2I2 then (IN ×K2) = k2I2N and so provided k2 ̸= 0 the equation in (5.19)

has an unique solution for D. Furthermore D depends on K1 and K2 and

D =
1
k2
((IN ⊗K1C)− ((IN +βL )⊗K2C))X f (5.20)

Note that from (5.17) and (5.3)

(IN ⊗A)X f = 0, (5.21)

for any choice of D. Then multiplying both sides of (5.19) on the left by (IN ⊗B) and

adding (IN ⊗A)X f to the left hand side yields

(IN ⊗BK2)D =−(A0 +A1)X f (5.22)

when exploiting the definitions of A0 and A1 from (5.14) and (5.15). The system in (5.18)

is then given by

˙̄X(t) = A0X̄(t)+A1X̄(t − τ) (5.23)

Remark 5.2: Note that the offset D in (5.13) is chosen as in (5.20) once the gains k1 and

k2 are designed. The offset D also depends on the desired formation encapsulated in X f .

Note that the evaluation of D is centralised as knowledge of the desired final position

X f is required. This renders the controller a partially distributed controller. Also since

specific agents are required to maintain a specific position the offset di in (5.9) must be

communicated to each agent i.

Remark 5.3: In Chapter 3 and Chapter 4 consensus was achieved by attaining a ren-

dezvous of the agents, i.e. by driving all the states of the agents to the origin. In this

chapter a method to modify consensus algorithms into formation stabilization algorithms

is employed. Though the states X in (5.5) are required to achieve a formation of the
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agents, the transformed states X̄ in (5.23) after employing the transformation in (5.16)

and the offset in (5.20) are required to achieve a consensus, i.e. all the states of X̄ in

(5.23) are driven to the origin.

Because L is symmetric positive semi-definite, (IN + βL ) is symmetric positive

definite since β > 0. Since (IN +βL ) is symmetric positive definite, by spectral decom-

position (IN +βL ) =V ΛV T where V ∈ IRN×N is an orthogonal matrix formed from the

eigenvectors of (IN +βL ) and Λ = D iag(λ1, . . .λN) is the matrix of the eigenvalues of

(IN +βL ). Note that all λi ≥ 1 for all i = 1, . . . ,N and that the smallest eigenvalue of

(IN +βL ) is λ1 = 1. As in Chapters 3 and 4, consider an orthogonal transformation

X̄ 7→ (V T ⊗ I4)X̄ = X̃ (5.24)

In the new coordinates equation (5.23) is given by

˙̃X(t) = Ã0X̃(t)+ Ã1X̃(t − τ) (5.25)

where

Ã0 = (IN ⊗ (A−BK1C)) (5.26)

Ã1 = (Λ⊗BK2C) (5.27)

since V T (IN +βL )V = Λ because V is orthogonal. Equation (5.25) can be represented

at node level in transformed coordinates as

˙̃
iξ (t) = A0ξ̃i(t)+Aiξ̃i(t − τ) (5.28)

where

A0 = (A−BK1C) (5.29)

Ai = λiBK2C (5.30)
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for all i = 1, . . . ,N. It is assumed that the initial condition ξ̃i(t) = ξ̃i(0) for t ∈ [−τ,0]. In

order to ensure a level of performance in the closed loop system, as suggested in [138],

consider the transformation

ξ̃iα(t) = eαt ξ̃i(t) (5.31)

for i = 1, . . . ,N where α > 0. From [138], the system in (5.28) is exponentially stable

with a decay rate of α and an exponential gain of γ > 1 if the following exponential

bound holds:

∥ξ̃i(t)∥< γ∥ξ̃i(0)∥e−αt (5.32)

From (5.31) and (5.32), asymptotic convergence of ξ̃iα implies exponential convergence

of ξ̃i at a decay rate α . With this transformation, the system represented in (5.28) be-

comes
˙̃ξiα(t) = (A0 +αI4)ξ̃iα(t)+ eατAiξ̃iα(t − τ) (5.33)

where A0 and Ai are as given in (5.29) and (5.30) for all i = 1, . . . ,N.

5.3.2 Stability Criteria

The stability of system (5.33) will be ascertained using Proposition 5 in the Appendix

B.4. The Proposition 5 in the Appendix B.4 divides the delay interval [−τ,0] into np

partitions and then employs a discretized Lyapunov functional to test for stability. For

completeness the proposition as applicable to the system in (5.33) is stated as:

Proposition 5.3.1. The system described by (5.33) is asymptotically stable if there exist

matrices Pi, Q̄pi, Spi, Rpqi ∈ IR4×4, Pi = PT
i ; Spi = ST

pi > 0, Rpqi = RT
qpi, p = 0, . . . ,np,

q = 0, . . . ,np; such that

 Pi F̃i

∗ R̃i + S̃i

< 0 (5.34)


∆i −Ds

i −Da
i

∗ Rdi +Sdi 0

∗ ∗ 3Sdi

< 0 (5.35)
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where for p = 1, . . . ,np

F̃i =
(

Q̄0i Q̄1i . . . Q̄npi

)
(5.36)

R̃i =


R00i R01i . . . R0npi

R10i R11i . . . R1npi

. . . . . .

Rnp0i Rnp1i . . . Rnpnpi


(5.37)

S̃i =
(

1
hS0i

1
hS1i . . . 1

hSnpi

)
(5.38)

∆i =

 ∆00i ∆01i

∗ ∆11i

 (5.39)

∆00i = −P(A0 +αI4)− (A0 +αI4)
T P− Q̄0i − Q̄T

0i −S0i (5.40)

∆01i = Q̄npi −P(eατAi) (5.41)

∆11i = Snpi (5.42)

Sdi = D iag
(

Sd1i Sd2i . . . Sdnpi

)
(5.43)

Sd pi = S(p−1)i −Spi (5.44)

Rdi =


Rd11i Rd12i . . . Rd1npi

Rd21i Rd22i . . . Rd2npi

. . . . . .

Rdnp1i Rdnp2i . . . Rdnpnpi


(5.45)

Rd pqi = h(R(p−1,q−1)i −Rpqi) (5.46)

Ds
i =

(
Ds

1i Ds
2i . . . Ds

npi

)
(5.47)

Ds
pi =

 Ds
0pi

Ds
1pi

 (5.48)

Ds
0pi =

h
2
(A0 +αI4)

T (Q̄(p−1)i + Q̄pi)+
h
2
(R(0,p−1)i +R0pi)− (Q̄p−1 − Q̄p) (5.49)
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Ds
1pi =

h
2
(eατAi)

T (Q̄(p−1)i + Q̄pi)−
h
2
(R(np,p−1)i +Rnp pi) (5.50)

Da
i =

(
Da

1i Da
2i . . . Da

npi

)
(5.51)

Da
pi =

 Da
0pi

Da
1pi

 (5.52)

Da
0pi = −h

2
(A0 +αI4)

T (Q̄(p−1)i − Q̄pi)−
h
2
(R(0,p−1)i −R0pi) (5.53)

Da
1pi = −h

2
(eατAi)

T (Q̄(p−1)i + Q̄p)+
h
2
(R(np,p−1)i −Rnp pi) (5.54)

and

h = τ/np

for all i = 1, . . . ,N

Remark 5.4: In Chapter 3 and Chapter 4 the focus was on minimisation of an LQR

cost. A modification of Proposition 5.3.1 into an control design method minimising a

quadratic cost was attempted but did not yield tractable LMI constraints due to com-

plexity of the LMI constraints in Proposition 5.3.1 and as explained in Appendix B.6 the

other stability methods used in this thesis cannot be used to solve this problem. Hence

to incorporate some level of performance an exponential decay rate was introduced in

(5.31).

5.3.3 DIRECT Search Optimization Algorithm

In order to have a convex representation in (5.34) and (5.35), the matrices A0 and Ai in

(5.29) and (5.30) must be fixed. This implies that gains K1 and K2, and the decay rate

α should be fixed. Since the gains K1 and K2 are not known a-priori, the matrices A0

and Ai in (5.29) and (5.30) are dependent on the feedback gains. However, if the gains

K1 and K2 and the decay rate α are fixed, Proposition 5.3.1, provides a feasibility check

for stability for a fixed known delay value τ . The design problem associated here is to

identify minimum gain values for k1 and k2 and an associated minimum possible delay

τ such that Proposition 5.3.1 is satisfied. The solution to such a problem is not straight-

forward, and often depends on fine gridding of the search space (or similar technique).
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However, there is no guarantee of finding the optimal solution, or even a sub-optimal one

depending on the type of non-convex surface. In this methodology a solution is sought

by making use of a deterministic global optimization algorithm, Dividing Rectangles

(DIRECT). The method does not require any derivative information to be supplied, and

uses a center point sampling strategy. The method was originally developed in [130]

as a modification of the classical one dimensional Lipschitzian optimization algorithm

known as the Schubert algorithm [130]. The search space is an n-dimensional hypercube

or box, defined as H = {x ∈ Rn : 0 ≤ xi ≤ 1}. The algorithm works in the normalized

parametric space and transforms to the actual search space when the cost function has to

be evaluated. The principle idea can be summarized as: while the algorithm proceeds,

the search space is partitioned into smaller hypercubes or boxes and each hypercube is

sampled at the center point of the interval. Over many iterations, the algorithm tries to

find all the ‘potentially optimal’ hypercubes or boxes in the search space and then further

partitions them, thereby eventually obtaining the global solution. A potentially optimal

hypercube either has a low function value compared to the lowest function value ob-

tained till then during the implementation of the DIRECT algorithm or is considerably

large to be a good target for the global search. Thus the DIRECT algorithm samples

a dense subset of the points in the hypercube and converges to the global optimum as

long as the cost function is continuous in the neighborhood of the global minimum. The

reader is referred to [130] for details on potentially optimal hypercubes and the division

strategies. The algorithm has asymptotic convergence property, and details of the proof

are available in [131].

In this section the DIRECT optimization algorithm is employed for two design prob-

lems, associated with obtaining minimum gain values for k1 and k2 and an associated

minimum possible delay τ within specified bounds such that Proposition 5.3.1 is satis-

fied, described by the following cases:

• Case A: A required (Fixed) rate of decay α

• Case B: Maximum possible rate of decay for given bounds on the gains k1 and k2

and τ
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Since the transformed systems as in (5.33) are considered the design scaling parameter

β in (5.11) is also fixed a-priori.

5.3.3.1 Case A: Fixed Rate of Decay

In this section the problem of finding minimum possible gains k1 and k2, for a minimum

possible level of delay such that the system in (5.28) is exponentially stabilized with a

required rate of decay, is considered. Since there are multiple minimization objectives, a

collective optimization objective function is defined with appropriate scaling as follows:

J(k1,k2,τ) :=W1k1 +W2k2 +W3τ (5.55)

subject to feasibility of (5.34) and (5.35) and the side constraints on the optimization

variables k1min ≤ k1 ≤ k1max , k2min ≤ k2 ≤ k2max and τmin ≤ τ ≤ τmax. In (5.55) the scalars Wi

for i = 1,2,3 are the weights of the optimization variables k1, k2 and τ . The underlying

rationale behind this objective function is to obtain the gain set that provides minimum

control effort at a minimum possible level of delay. In this section the rate of decay is

fixed a priori and there are three design parameters: k1, k2 and τ .

5.3.3.2 Case B: Maximum Rate of Decay α

In this section the problem of obtaining the maximum possible rate of decay α , for min-

imum possible gains k1 and k2 and for a minimum possible level of delay such that the

system in (5.28) is exponentially stabilized, is considered. The collective optimization

objective function for this problem is given by

J(k1,k2,τ,α) :=
W1k1 +W2k2 +W3τ

α
(5.56)

subject to feasibility of (5.34) and (5.35) and the side constraints on the optimization

variables k1min ≤ k1 ≤ k1max , k2min ≤ k2 ≤ k2max , τmin ≤ τ ≤ τmax, and αmin ≤ τ ≤ αmax.

In (5.56) the scalars Wi for i = 1,2,3 are the weights of the optimization variables k1, k2

and τ . The underlying rationale behind this objective function is to obtain the maximum

possible decay rate α and the gain set that provides minimum control effort at a minimum
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possible level of delay.

5.3.3.3 Implementation of DIRECT Algorithm

Initially the bounds for the variables in Section 5.3.3.1 and Section 5.3.3.2 are chosen

within desired range and the bounds will be normalized to be in the range [0,1] since it

is a requirement for the performance of the DIRECT optimization algorithm. When the

feasibility of the LMI constraints in (5.34) and (5.35) for a specific set of the design pa-

rameters in the two cases is not satisfied, the cost associated with such a set is penalized

by assigning it a large value. The idea is during the iterations, the DIRECT optimization

procedure then eliminates that region from the search space. The MATLAB code used

for the DIRECT optimization is available from the authors of [131]. The implemen-

tation of the DIRECT algorithm is given in Table 5.1 In the DIRECT implementation

Table 5.1: DIRECT implementation
bounds = [k1_min k1_max;

k2_min k2_max;
tau_min tau_max;
alpha_min alpha_max];

[f_min,val_min] = Direct(objective_function,bounds);

function f = objective_function(val)
k1 = val(1); k2 = val(2); tau = val(3); alpha = val(4);
%
W1 = 1; W2 = 1; W3 = 1;

[boolean] = stability_lmi(k1,k2,tau,alpha);
% feasibility of conditions in Proposition 5.3.1

if boolean == 1 % Proposition 5.3.1 feasible
f = (W1*k1 + W2*k2 + W3*tau)/alpha;

else
f = 10ˆ6; % Penalize with a large value

end

algorithm shown in Table 5.1, the variable ‘alpha’ only applies to the implementation

of Case B. For the implementation of Case A, the bounds are defined only for the three

design parameters (k1,k2,τ) and the algorithm is implemented accordingly.

Remark 5.5: The implementation of the DIRECT algorithm along with Proposition 5.3.1

requires a search method along with the use of number of decision variables to check the
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feasibility of the inequalities in Proposition 5.3.1. This is a complex method to imple-

ment and may require considerable amount of time and computational effort depending

on the number of divisions used to generate the hypercubes for the DIRECT algorithm,

the number of agents and the number of partitions np used in Proposition 5.3.1. It is ex-

pected that it may take a few minutes to a few days depending on the number of agents

and the computational sources available to the user and there is no guarantee of obtaining

a solution as this method is non-convex.

5.4 Numerical Example

A network of N = 4 agents, described by (5.1) and (5.2) with matrices A, B and C as

given in (5.3), connected over a nearest neighbour interconnection topology shown in

Figure 5.1 is considered. The desired formation is given by

Figure 5.1: Communication topology

X f =
(

3 0 3 0 3 0 −3 0 −3 0 −3 0 −3 0 3 0
)T

(5.57)

i.e a square with (xi,yi) = (±3,±3). The scaling parameter β is chosen as β = 0.1 to

have a low spectral radius, i.e. the largest eigenvalue, of the matrix IN +βL in (5.15).

The number of partitions of the delay interval for Proposition 5.3.1 was considered to

be np = 1. After employing the transformations (5.16), (5.24) and (5.31) a system of the

form (5.33) is obtained. The DIRECT algorithm has been employed for the two cases
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discussed in Section 5.3.3.1 and Section 5.3.3.2.

5.4.1 Case A: Fixed Rate of Decay
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Figure 5.2: Formation of agents plotted against time - Case A
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Figure 5.3: Formation of agents - Case A
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For this case it is assumed that the required rate of decay is α = 1. The weights for

the optimization are considered as W1 =W2 =W3 = 1. Then the optimization of the cost

function in (5.55) is performed using the DIRECT algorithm in the following bounds

k1 ∈ [10 20] k2 ∈ [10 20] τ ∈ [0.1 0.5] (5.58)

The range of gains is selected so as to minimize oscillatory responses of the agents. The

optimal gains k1 and k2 and delay τ obtained from within these bounds are

k1 = 18.33.78 k2 = 11.29 τ = 0.1667 (5.59)
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Figure 5.4: Control effort for agents in x-coordinate - Case A

The offset D for this case is calculated using (5.20). The system in (5.13) is simulated

with the results obtained in (5.59). The simulations in this section were done using

SIMULINK with a fixed-step size of 0.0001s and ode4(Runge-Kutta) solver. The initial

condition for the delayed output in (5.13) is set as X(t) = X(0) for the interval t ∈

[−τopt ,0]. Figure 5.2 shows the agent settling into a formation from random initial

conditions as a function of time. Figure 5.3 shows the formation of agents in a 2-D
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Figure 5.5: Control effort for agents in y-coordinate - Case A

plane. Figure 5.4 and Figure 5.5 show the control efforts Ux and Uy in x and y directions

required to achieve the stabilization.

If the same gains k1 and k2 as obtained in (5.59) are employed with a very low value

of delay τ = 0.01 the system does not stabilize into a formation with the same initial

conditions as shown in Figure 5.6 and Figure 5.7. If the same gains k1 and k2 as

obtained in (5.59) are employed with a high value of delay τ = 1s the system again does

not stabilize into a formation with the same initial conditions as shown in Figure 5.8 and

Figure 5.9.

5.4.2 Case B: Maximum Rate of Decay α

In this section maximum possible value for the rate of decay α is obtained. The weights

for the optimization are considered as W1 = W2 = 0.1 and W3 = 1. The DIRECT algo-

rithm has been employed with the following bounds

k1 ∈ [1 15]; k2 ∈ [1 15]; τ ∈ [0.1 0.3]; α ∈ [0.5 1.5] (5.60)
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Figure 5.6: No formation of agents with low delay τ = 0.01s - Case A
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Figure 5.7: No formation of agents with low delay - Case A

The optimal gains k1 and k2, delay τ and the maximum possible rate of decay α obtained

from within these bounds are

k1 = 7.9936; k2 = 4.8889; τopt = 0.2913 α = 0.7915 (5.61)
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Figure 5.8: No formation of agents with high delay τ = 1s - Case A
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Figure 5.9: No formation of agents with high delay - Case A

The offset D is again calculated using (5.20). The system in (5.5) has been simulated

with the control law in (5.12) using the values in (5.61). The simulations in this section

were done using SIMULINK with a fixed-step size of 0.0001s and ode4(Runge-Kutta)
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Figure 5.10: Formation of agents plotted against time - Case B
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Figure 5.11: Formation of agents - Case B

solver. The initial condition for the delayed output in (5.13) is set as X(t) = X(0) for

the interval t ∈ [−τopt ,0] and the same initial conditions as in Case A are used in the

simulation. Figure 5.10 shows the agents settling into a formation as a function of time.

Figure 5.11 shows the agents form a square in a 2-D plane. The control efforts Ux and
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Figure 5.12: Control effort for agents in x direction - Case B
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Figure 5.13: Control effort for agents in y direction - Case B

Uy in the x and y directions are shown in Figure 5.12 and Figure 5.13.

If the same gains k1 and k2 as obtained in (5.61) are employed with a very low value

of delay τ = 0.01 the system does not stabilize into a formation with the same initial

conditions as shown in Figure 5.14 and Figure 5.15. If the same gains k1 and k2 as
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Figure 5.14: No formation of agents with low delay τ = 0.01s - Case B
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Figure 5.15: No formation of agents with low delay - Case B

obtained in (5.59) are employed with a high value of delay τ = 1s the system again does

not stabilize into a formation with the same initial conditions as shown in Figure 5.16

and Figure 5.17.

Remark 5.6: It is important for the user to note that this method, the implementation of
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Figure 5.16: No formation of agents with high delay τ = 1s - Case B
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Figure 5.17: No formation of agents with high delay - Case B

DIRECT algorithm along with feasibility of Proposition 5.3.1, is a non-convex problem.

The solution of such a problem is not guaranteed and the user will have to implement

this method to know if a solution exists. The parameter β was set to a low value of

β = 0.1 to lower the effects of the delayed relative information. The user of this method
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is required to exercise his freedom in tuning the range for the gains k1 and k2, the delay

τ and the decay α (Case B only) and also tune the value of β if a solution has not found

and a solution may or may not exist.

5.5 Concluding Remarks

In this chapter, the positive effect of delay in communication of relative information to

stabilize a multi-agent system is explored. A network of vehicles moving in a plane,

each described by double integrator dynamics for each planar direction, is considered.

This network of vehicles is not stabilizable by static output feedback, i.e. with position

information alone. A novel control law making use of an artificial delay to stabilize such

a network is developed. The proposed control law is guaranteed to provide exponen-

tial convergence to a desired formation with pre-specified decay rate. The discretized

Lyapunov-Krasovskii functional method of Proposition 5.3.1 was used to ascertain the

stability of the network. The number of partitions np of the delay interval used for dis-

cretization was considered to be np = 1. The control design problem was posed as an

optimization problem to obtain the control gains. The DIRECT algorithm was employed

for two cases of design objectives. The first case assumed that the rate of decay α for the

exponential convergence is fixed or specified a priori and obtains a possible minimum

control effort with a minimum level of delay within specified bounds on the gains and

the level of delay. The second case obtains maximum possible decay rate α along with

minimum control effort and a minimum level of delay within specified bounds on the

gains, the level of delay and the decay rate alpha. The rationale behind presenting the

two cases can now be explained from the values of the gains and the delay τ obtained

from the two cases. In Case A, a higher range of bounds on the gains k1 and k2 was

necessary to achieve a fixed decay rate of α = 1. In Case B lower gains are obtained by

compromising the rate of decay from α = 1 to α = 0.7915. Consequently, the control

efforts in Figure 5.12 and Figure 5.13 are considerably lower as compared to Figure 5.4

and Figure 5.5. The tradeoff of Case B is that higher level of delay τ is required. This

will place a higher data storage requirement for the use of delayed values.
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

This thesis has considered the effects of delays on coordination problems of multi-agent

systems. A central theme to this research is incorporating performance characteristics

in the analysis and design of control laws to achieve stabilization of multi-agent sys-

tems. In a network of multiple agents connected over an information network delays are

bound to occur in the communication of relative information. The effects of delays can

be categorized into two types: negative and positive effects. In most cases delays have

negative effects on the coordination of multiple agents. Delays can cause deviation from

the cooperative goal of a multi-agent system, for example, the agents in a multi-agent

system, expected to attain a formation, may deviate from their paths due to delays. On

the contrary delays can have a positive effect on some systems. For example, introduc-

tion of delays may stabilize a system which is otherwise not stabilizable without delays.

In this thesis both these effects of delays are explored.

In Chapter 3 distributed control laws are designed for a network of linear identi-

cal dynamical systems with sub-optimal LQR performance. The proposed control laws

for the dynamical systems incorporate the relative information communicated to each

system. The control law design employs an augmented LQR cost function in order

to ensure simultaneous stabilization of dynamical systems. The augmented LQR cost

function was shown to aid simultaneous convergence by penalizing relative information.
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The control law design process employs spectral decomposition of the system repre-

sented at a network level and an optimization problem in the form of LMI constraints.

In the control design process, the communication of relative information is assumed to

be instantaneous. Subsequently an analysis of the closed loop system to ascertain the

maximum level of delay that can be accommodated by the network has been performed

using methods for stability analysis available in the literature on time-delay systems.

The maximum bound on the level of delay was obtained for two types of delays: a) fixed

delays and b) time-varying delays. For the case of fixed delays, two methods of stability

analysis for linear time-delay systems from [129] were employed. The first method, de-

scribed by Proposition 4 in Appendix B.3.2, gives a conservative estimate of the delay

bound. The second method, described by Proposition 5 in Appendix B.4, partitions the

delay interval and employs a discretized Lyapunov-Krasovskii functional. This method

gives a more accurate value of the maximum permissible delay. Though a disadvantage

of the second method is that it has considerably higher number of decision variables as

compared to first and hence has considerably higher computation time. For the case of

time-varying delays, an analysis method from [120] is employed to ascertain the max-

imum bound on the range of delay. Additionally, it was shown that the use of relative

information has certain cost benefits up to a certain level of delay. It was also shown that

more communication in a network may enhance the destabilizing effects of delays and

lower the amount of delay permissible by the network.

In Chapter 3 a time-delay analysis was performed to ascertain the maximum bound

on the delay, while the control design process assumed the exchange of instantaneous

relative information. Subsequently, in Chapter 4 the assumption of the communication

of instantaneous relative information is relaxed. The collection of dynamical systems

is then represented as a time-delay system. Some of the existing analysis techniques

for time-delay systems are then modified into distributed control design techniques to

achieve stabilization of the network of dynamical systems with a certain level of LQR

performance. LMI based distributed control design techniques were developed for both

fixed and time-varying delays. For the case of fixed delays, delay independent and de-

lay dependent control design methodologies were developed. The delay independent
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control design methodology obtains controller gains such that the system is stable for

any arbitrary delay. The gains obtained by this method were very high as expected. In

many practical cases it may not be possible to provide the large gains. When the level

of delays are known it is adequate to employ delay dependent control design methods.

Delay dependent control design methods ensure stabilization for a given level of delay.

For the example considered, the delay dependent control design methodology developed

shows that in some cases the use of delayed relative information may decrease the re-

quired control effort as compared to the control effort required for stabilizing individual

agents without interconnections, while achieving similar performance. The methodol-

ogy developed for the case of time-varying delays facilitates distributed control design

for multi-agent systems with LQR performance for a bounded range of delay. Addi-

tionally, it was shown that more communication may increase the destabilizing effects

of delays for the control laws proposed in this chapter. The scaling associated with the

relative information needs to be lowered in magnitude incase the scaling provide by the

measurement of relative information does not yield a feasible result.

In Chapter 3 and Chapter 4 an inherent assumption is that delays in communication

of relative information have negative effects on the stabilization of the network of dy-

namical systems. In Chapter 5 the possibility of delays in relative information having

a positive effect on the network is explored. A collection of vehicles moving in a two

dimensional plane and each described by double integrator dynamics were considered.

It was assumed that the velocity measurements of the vehicle were unavailable. Such a

system is not stabilizable by static output feedback. Hence delayed relative output in-

formation communicated to each vehicle from its neighbours was exploited to stabilize

the system. The stability criteria based on discretized Lyapunov-Krasovskii functionals

in Appendix B.4 and DIRECT search optimization algorithm [130] were employed to

obtain the control gains. The performance of the system was ensured by maximizing

the exponential rate of decay for the system. The network was shown to stabilize into a

desired formation by using delayed relative position information. It is important to note

that the method proposed in this chapter is non-convex and a solution may or may not

exist.
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6.2 Future Research Directions

In Chapter 4 the stability analysis techniques that were modified into control design de-

sign techniques are not the most recent techniques and are conservative as compared

to some of the recent methods. The methods used in this chapter facilitated tractable

LMI representations under mild simplifications. Some of the less conservative analysis

techniques such as the discretized Lyapunov-Krasovskii Functional method of Appendix

B.4 were difficult to be modified into control design techniques with a certain level of

LQR performance. As a possible future research direction the vast literature on stability

analysis of time-delay systems can be explored and new control design methods with

LQR performance can be obtained from suitable analysis methods which have less con-

servatism. From the complexities encountered during this research, it is believed that

the descriptor system based stability analysis techniques may be easier to modify into

control design techniques and may also lead to significant cost advantages. The reader

should note that the work in this chapter is a preliminary attempt at modifying stability

analysis techniques into LQR control design methods for multi-agent systems. More

exploration needs to be carried out in this area and descriptor based methods is a good

future research direction.

In Chapter 5 the stability criteria based on discretized Lyapunov-Krasovskii func-

tional was used to along with DIRECT search optimization algorithm to obtain the con-

trol gains for exponential stabilization. As an alternative to exponential stabilization, an

attempt was made to incorporate performance criteria by minimizing a LQ cost func-

tional with insufficient results. As a future research direction the development of alter-

nate methods which guarantee minimization of LQ cost functionals may be attempted.

In Chapter 5 the control design process is partially distributed and methods to design

fully distributed control laws is a future research direction.

In this thesis two important assumptions were made with respect to the communi-

cation of relative information. The communication of relative information is assumed

to be bidirectional and the delays in relative information were assumed to be equal to

exploit the properties of the resulting symmetric Laplacian. As a possible future re-
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search direction an attempt can be made to design control algorithms by considering

uni-directional communication and unequal delays in communication of relative infor-

mation. The design of such control laws will require considerably different approaches

as compared to those considered in this thesis as the properties of a symmetric Laplacian

cannot be exploited in the case of uni-directional communication. Another assumption

made throughout this thesis is that the agents in a multi-agent system are identical. Con-

sideration of non-identical agents in the control design processes presented in this thesis

is also a future research direction.
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Appendix A

LMI Approach to LQR Control

A.1 Linear Matrix Inequalities

A linear matrix inequality (LMI) has the form

F(a), F0 +
l

∑
i=m

aiFi (A.1)

where a ∈ IRm is the variable and symmetric matrices Fi = FT
i ∈ IRn×n, i = 1, . . . ,m,

are given [6]. In many problems the variables in an LMI are matrices. For example,

the Lyapunov inequality to be satisfied for stability of the linear system ẋ = Ax, where

x ∈ IRn and A ∈ IRn×n, given by

AT P+PA < 0 (A.2)

is a LMI inequality where P = PT > 0 is a matrix variable. Nonlinear convex matrix

inequalities can be represented as LMIs using Schur complements [6]. For example the

set of matrix inequalities

F1(a)−F2(a)F−1
3 (a)FT

2 (a)> 0 (A.3)
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where Fi(a) ∈ IRn×n for i = 1,2,3 are matrix variables, can be represented by the follow-

ing LMI  F1(a) F2(a)

FT
2 (a) F3(a)

> 0 (A.4)

A.2 Linear Quadratic Regulator

Consider the LTI system model given by

ẋ(t) = Ax(t)+Bu(t) (A.5)

where x ∈ IRn, u ∈ IRm, A ∈ IRn×n, and B ∈ IRn×m. For the system given in (A.5) the

objective of LQR control is to design the control law u(t) =−Kx(t), where K ∈ IRm×n,

such that the cost function

J =
∫ ∞

0
(xT (t)Qx(t)+uT (t)Ru(t))dt (A.6)

is minimized. Here the weighting matrices Q ∈ IRn×n and R ∈ IRm×m are symmetric

positive definite. The solution to this problem is given by

K = R−1BT P (A.7)

where P is the solution of the continuous time matrix equation

AT P+PA−PBR−1BT P+Q = 0 (A.8)

The matrix equation in (A.8) is called Algebraic Riccati Equation (ARE). The solution

to the LQR control problem can also be posed as an LMI problem. Consider a Lyapunov

function of the form V (t) = xT (t)Px(t), where P ∈ IRn×n is symmetric positive definite.

Differentiating the Lyapunov function it is required that

V̇ (t)<− d
dt

∫ t

0
(xT (t)Qx(t)+uT (t)Ru(t))dt (A.9)
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This implies that for an LQR control law to exist for the system in (A.5) there should

exist matrices P and K such that the inequality

P(A−BK)+(A−BK)T P+Q+KT RK < 0 (A.10)

is satisfied. The inequality in (A.10) is not linear in the matrix variables P and K. Define

W = P−1 and pre and post multiply (A.10) by W and define an auxiliary matrix Y =

KW . The resulting equation can be represented as a matrix inequality by using Schur

compliment [6] as

 AW +W T A−BY −Y T BT +Q Y T

Y −R−1

< 0 (A.11)

where W > 0 is symmetric. Integrate (A.9) from 0 to ∞ to obtain a maximum bound as

J < xT (0)Px(0). Thus minimizing Trace(P) will result in an optimal LQR performance.

Define an auxiliary matrix Z ∈ IRn×n such that

 −Z In×n

In×n −W

< 0 (A.12)

By Schur compliment equation (A.12) yields Z >W−1 =P. Hence minimizing Trace(Z)

minimizes Trace(P). The LMIs (A.11) and (A.12) along with W > 0 define a set of LMIs

to be solved simultaneously. The LQR optimization problem is then defined as minimiz-

ing Trace(Z) while satisfying the conditions W > 0 and (A.11). If the LMI in (A.11) is

feasible, then the gain matrix K can be obtained as K =YW−1. The reader is referred to

standard texts such as [6] for further reading on LMIs.

150



Appendix B

Stability of Time-Delay Systems

Dynamical systems are often described by representing the evolution of their state vari-

ables with respect to time as a differential equation. Those dynamical systems for which

the future state evolution depends only on the present state variable can be modelled by

ordinary differential equations (ODE) of the form

ẋ(t) = f (t,x(t)) (B.1)

where x(t) ∈ IRn are the state variables. However for some systems the future state

evolution also depends on the past values of the state variables along with the current

state variables so that

ẋ(t) = f (t,x(t),x(t − τ(t))) (B.2)

where τ(t) is a fixed or time-varying delay. Such systems are called as time-delay sys-

tems. In this thesis a linear time-delay system of the form

ẋ(t) = A0x(t)+A1x(t − τ(t)) (B.3)

where x ∈ IRn and A0, A1 ∈ IRn×n occur frequently where the delay τ(t) can be fixed or

time-varying. This class of time-delay systems has been studied in [129], [120]-[123].

The initial condition is given by

x0 = ϕ (B.4)
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where ϕ ∈ C[−τ,0]→ IR. The sections that follow state the different tools which have

been used commonly in the literature to analyze the stability of such time-delay systems.

B.1 Lyapunov-Krasovskii Functionals

The stability of the time-delay system in (B.3) is ascertained by the use of Lyapunov-

Krasovskii functionals [129]. In this thesis bounded quadratic Lyapunov-Krasovskii

functionals have been used to ascertain stability of time-delays systems. An example of

a bounded quadratic Lyapunov-Krasovskii functional for the system in (B.3) with fixed

delay τ(t) = τ is given by

V (xt) = xT (t)Px(t)+
∫ t

t−τ

[∫ t

θ
xT (s)S(θ)x(s)ds

]
dθ (B.5)

where P, S(θ) ∈ IRn×n are symmetric positive definite matrices and xt = x(t + θ) for

t − τ ≤ θ ≤ t. A Lyapunov-Krasovskii functional generally consists of quadratic terms

which are based on the current state information augmented with quadratic integral terms

involving the delay τ as shown in (B.5). The stability of the time-delay system in (B.3)

is ascertained by the following theorem:

Proposition 1. A time-delay system is asymptotically stable if there exists a bounded

quadratic Lyapunov-Krasovskii functional V (x(t)) such that for some ε > 0, it satisfies

V (xt)≥ ε∥xt∥2 (B.6)

and its derivative along the system trajectory V̇ (x(t)) satisfies

V̇ (xt)≤−ε∥xt∥2 (B.7)

Proof. The reader is referred to Proposition 5.2 [129] for the proof.

In [129], stability criteria based on bounded Lyapunov - Krasovskii functionals are

derived for the system in (B.3) with fixed delays. Two types of stability criteria for fixed

delays based on Proposition 1 are presented in the following sections: Delay independent

152



stability criteria and delay dependent stability criteria. The delay independent stability

criteria tests if a linear system of the form (B.3) is stable for any arbitrary fixed delay. In

reality most delay systems are only stable for some range of delays and become unstable

once the delay exceeds the range. For such systems delay dependent stability criteria

are obtained to ascertain stability in the case of a permissible delay. In the sections

that follow the delay independent and delay dependent stability criteria that have been

employed in this thesis are discussed.

B.2 Delay Independent Stability Criteria Based on Lya-

punov - Krasovskii Stability Theorem

This criteria uses a quadratic Lyapunov-Krasovskii functional for a fixed delay τ to ob-

tain the following proposition:

Proposition 2. The system described in (B.3) is asymptotically stable if there exist real

symmetric matrices P ∈ IRn×n and S ∈ IRn×n, such that

P > 0 (B.8) PA0 +AT
0 P+S PA1

AT
1 P −S

 < 0 (B.9)

is satisfied

Proof. The Lyapunov-Krasovskii functional considered for proof of this theorem is given

by

V (xt) = xT (t)Px(t)+
∫ t

t−τ
xT (s)Sx(s)ds (B.10)

The reader is referred to Proposition 5.14 in [129] for the proof.

Remark: The conditions in Proposition 2 are independent of τ .
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B.3 Delay Dependent Stability Criteria Based on Lya-

punov - Krasovskii Stability Theorem

Two delay dependent stability criteria for fixed delays are presented in this section.

These criteria are based on an explicit and an implicit model transformation employed

in [129]. The explicit model transformation is obtained from the observation that

x(t − τ) = x(t)−
∫ 0

−τ
ẋ(t +θ)dθ (B.11)

for t ≥ τ and −τ ≤ θ ≤ 0. For t ≥ τ , the system in (B.3) can be transformed using (B.11)

into

ẋ(t) = (A0 +A1)x(t)+
∫ 0

−τ
(−A1A0x(t +θ)−A1A1x(t − τ +θ))dθ (B.12)

with the initial condition

x(θ) :=

 ϕ(θ) −τ ≤ θ ≤ 0

solution o f (B.3) with initial condition (B.4) 0 ≤ θ ≤ τ
(B.13)

Implicit model transformation is obtained by using auxiliary matrices in the derivative

condition for the Lyapunov-Krasovskii functionals. The derivation of implicit model

transformations is omitted from this Appendix. The reader is referred to [129] for further

reading on implicit model transformations.

B.3.1 Stability Criteria using Explicit Model Transformation

In [129], Proposition 5.16 derives delay dependent stability by using the explicit model

transformation of the system in (B.12). The criteria for a fixed delay is given by the

following proposition:

Proposition 3. The system in (B.3) is asymptotically stable if there exist real symmetric
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matrices P, S0 and S1 ∈ IRn×n such that

P > 0 (B.14)
M̂ −PA1A0 −PA2

1

∗ −S0 0

∗ ∗ −S1

< 0 (B.15)

where

M̂ =
1
τ
(P(A0 +A1)+(A0 +A1)

T P)+S0 +S1 (B.16)

Proof. For the system in (B.12), the transformed system is obtained by shifting the initial

time to t = τ . The new delay interval is then given by [−2τ,0]. The Lyapunov-Krasovskii

functional for the transformed system is given by

V (xt) = xT (t)Px(t)+
∫ t

t−τ

∫ t

ϑ
xT (s)S0x(s)dsdϑ +

∫ t−τ

t−2τ

∫ t−τ

θ
xT (s)S1x(s)dsdθ (B.17)

where t − τ ≤ ϑ ≤ t and t −2τ ≤ θ ≤ t − τ . The reader is referred to Proposition 5.16

[129] for the proof of this proposition.

Remark: As stated in Proposition 5.16 [129] a restricted form of Lyapunov-Krasovskii

functional results when

Sk = αkP; k = 0,1; (B.18)

where α0 and α1 are positive scalars. This restricted form of the Lyapunov-Krasovskii

functional has been used in the delay dependent control synthesis method for a fixed

delay in Section 4.3.2.

B.3.2 Stability Criteria using Implicit Model Transformation

The delay dependent stability criterion obtained in Section B.3.1 is shown to be highly

conservative in [129]. A stability criteria for a fixed delay based on implicit model trans-

formation of the system in (B.3) is obtained in [129] and is shown to be less conservative

than Proposition 3. The stability criteria is stated by the following proposition:
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Proposition 4. The system in (B.3) is asymptotically stable if there exist real matrices

Y T
1 = Y1, ST = S, Y2, ∈ IRn×n and PT = P ∈ IRn×n such that

P > 0 (B.19)
N̂ PA1 −Y2 −AT

0 Y T
2

∗ −S −AT
1 Y T

2

∗ ∗ − 1
τm

Y1

 < 0 (B.20)

where

N̂ = PA0 +AT
0 P+S+ τmY1 +Y2 +Y T

2 (B.21)

Proof. The Lyapunov-Krasovskii functional considered for the proof of this theorem is

given by

V (xt) = xT (t)Px(t)+
∫ t

t−τ
xT (θ)Sx(θ)dθ +

∫ t

t−τ

∫ t

θ
gT (ζ )Z̄g(ζ )dζ dθ (B.22)

where t − τ ≤ θ ≤ t, −τ ≤ ζ ≤ 0, Z̄ ∈ IRn×n is symmetric and

g(ζ ) = A0x(t)+A1x(t +ζ ) (B.23)

The reader is referred to Proposition 5.17 in [129] for the proof.

B.4 Discretized Lyapunov-Krasovskii Functional Method

The stability criteria obtained in Proposition 4 are still found to be conservative [129].

To overcome this conservatism a method based on discretization of the delay interval

[−τ 0], where τ is a fixed delay, into np parts, is proposed in [129]. A discretized

Lyapunov-Krasovskii functional is then considered over these subintervals. The dis-

cretized Lyapunov-Krasovskii functional method is stated by the following proposition:

Proposition 5. The system described in (B.3) is asymptotically stable if there exist n×n
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matrices P = PT ; Q̄p, Sp = ST
p , p = 0, . . . ,np; Rpq = RT

qp, p = 0, . . . ,np, q = 0, . . . ,np

and h = τ/np such that

 P F̃

∗ R̃+ S̃

 > 0 (B.24)


∆ −Ds −Da

∗ Rd +Sd 0

∗ ∗ 3Sd

 > 0 (B.25)

where

F̃ =
(

Q̄0 Q̄1 . . . Q̄np

)
(B.26)

R̃ =


R00 R01 . . . R0np

R10 R11 . . . R1np

. . . . . .

Rnp0 Rnp1 . . . Rnpnp


(B.27)

S̃ =
(

1
hS0

1
hS1 . . . 1

hSnp

)
(B.28)

and

∆ =

 ∆00 ∆01

∗ ∆11

 (B.29)

∆00 = −PA0 −AT
0 P− Q̄0 − Q̄T

0 −S0 (B.30)

∆01 = Q̄np −PA1 (B.31)

∆11 = Snp (B.32)
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Sd = D iag
(

Sd1 Sd2 . . . Sdnp

)
(B.33)

Sd p = S(p−1)−Sp (B.34)

Rd =


Rd11 Rd12 . . . Rd1np

Rd21 Rd22 . . . Rd2np

. . . . . .

Rdnp1 Rdnp2 . . . Rdnpnp


(B.35)

Rd pq = h(R(p−1,q−1)−Rpq) (B.36)

Ds =
(

Ds
1 Ds

2 . . . Ds
np

)
(B.37)

Ds
p =

 Ds
0p

Ds
1p

 (B.38)

Ds
0p =

h
2

AT
0 (Q̄(p−1)+ Q̄p)+

h
2
(R(0,p−1)+R0p)− (Q̄(p−1)− Q̄p) (B.39)

Ds
1p =

h
2

AT
1 (Q̄(p−1)+ Q̄p)−

h
2
(R(np,p−1)+Rnp p) (B.40)

Da =
(

Da
1 Da

2 . . . Da
np

)
(B.41)

Da
p =

 Da
0p

Da
1p

 (B.42)

Da
0p = −h

2
AT

0 (Q̄(p−1)− Q̄p)−
h
2
(R(0,p−1)−R0p) (B.43)

Da
1p = −h

2
AT

1 (Q̄(p−1)+ Q̄p)+
h
2
(R(np,p−1)−Rnp p) (B.44)

Proof. The delay interval [−τ,0] is divided into np segments of equal length h = τ
np

given by [θp,θp−1], p = 1, . . . ,np, where θp =−ph and θ0 = 0. This divides the square

S = [−τ,0]× [−τ,0] into np ×np smaller squares Spq = [θp,θp−1]× [θp,θp−1]. Each

small square is further divided into two smaller rectangles. The reader is referred to

[129] for further details.

The discretized Lyapunov-Krasovskii functional employed for this proof is given by

V (xt) = xT (t)Px(t)+2xT (t)
np

∑
p=1

VQ̄ +
np

∑
p=1

np

∑
q=1

VR +
np

∑
p=1

VS (B.45)
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where

VQ̄ =
∫ 1

0
Q̄(p)(ζ )x(t +θp +ζ h)hdζ (B.46)

VR =
∫ 1

0
(
∫ 1

0
xT (t +θp +ζ h)R(pq)(ζ ,η)x(t +θp +ζ h)hdη)hdζ (B.47)

VS =
∫ 1

0
xT (t +θp +ζ h)S(p)(ζ )x(t +θp +ζ h)hdζ (B.48)

and

Q̄(p)(ζ ) = (1−ζ )Q̄p +ζ Q̄p−1 (B.49)

R(pq)(ζ ,η) :=

 (1−ζ )Rpq +ηRp−1,q−1 +(ζ −η)Rp−1,q ζ ≥ η

(1−η)Rpq +ζ Rp−1,q−1 +(η −ζ )Rp,q−1 ζ < η
(B.50)

S(p)(ζ ) = (1−ζ )Sp +ζ Sp−1 (B.51)

for p = 1, . . . ,np, q = 1, . . . ,np, 0 ≤ ζ ≤ 1 and 0 ≤ η ≤ 1. The reader is referred to

Proposition 5.22 [129] for the proof of this theorem.

B.5 Stability Criteria for Time-Varying Delays

In [120] delay dependent stability criteria are derived for a linear time varying delay

systems given by

ẋ(t) = A0x(t)+A1x(t − τ1(t))+A2x(t − τ(t)) (B.52)

where x ∈ IRn, A0, A1 and A2 ∈ IRn×n. To comply with the structure of (B.3) it is consid-

ered that A2 ≡ 0. The linear system is then given by

ẋ(t) = A0x(t)+A1x(t − τ(t)) (B.53)

In this thesis the case of a bounded time-varying delay where τ(t) are continuous func-

tions satisfying ∀t ≥ 0, 0 ≤ τ(t) ≤ τm is considered, where τm is the maximum bound

on the time-varying delay. The stability criteria for this case is stated in Corollary 1 in
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[120]. In [120] the system in B.53 is represented in its equivalent descriptor form given

by

E ˙̄x(t) =

 ẋ(t)

0

 (B.54)

=

 0 In

(A0 +A1) −In

 x̄(t)−

 0

A1

∫ t

t−τ(t)
y(s)ds (B.55)

where x̄(t) = C ol(x(t),y(t)), ẋ(t) = y(t) and E = D iag(In,0).

The appropriate corollary as applicable to the structure in (B.55) is given by the follow-

ing proposition:

Proposition 6. The system in (B.53) is asymptotically stable if there exist symmetric

matrices P1 and R̄ ∈ IRn×n and matrices P2, P3, Z1, Z2 and Z3 ∈ IRn×n such that

P > 0 (B.56)

R̄ > 0 (B.57) R̄ [0 AT
1 ]P

T

∗ Z̄

> 0 (B.58)

PT

 0 In

A0 +A1 −In

+

 0 In

A0 +A1 −In

T

P+ τmZ̄ +

 0 0

0 τmR̄

< 0 (B.59)

where

Z̄ =

 Z1 Z2

∗ Z3

 ;P =

 P1 0

P2 P3

 (B.60)

Proof. The Lyapunov-Krasovskii functional considered for the proof of this theorem is

given by

V (t) =V1(t)+V2(t) (B.61)

where
V1(t) = x̄T (t)EPx̄(t) (B.62)

V2(t) =
∫ 0

−τm

∫ t

t+θ
yT (s)Sy(s)dsdθ (B.63)

The reader is referred to Corollary 1 [120] for the proof of this proposition.
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B.6 Additional Comments

In this section a few suggestions to the user of the stability analysis methods presented

in this appendix are provided. The delay independent stability analysis method in Sec-

tion B.2 provides a check whether a system of the form (B.3) is stable for any arbitrary

delay τ . The delay dependent stability analysis methods described in Section B.3.1 and

Section B.3.2 provide stability checks for a fixed level of delay. The user should note

that though the methods in Section B.3.1 and Section B.3.2 provide stability for a fixed

level of delay τ for the system in (B.3), these methods imply that the system is stable for

any fixed level of delay τ in the interval [0 τm], where τm is the maximum level of delay

for which the system in (B.3) is stable. It is obvious that the delay dependent stability

analysis method for time-varying delays τ(t) presented in Section B.5 implies stability

for delays in the interval 0 ≤ τ(t)≤ τm. The discretized Lyapunov-Krasovskii functional

method on Section B.4 is different in this sense to the other methods. The stability anal-

ysis method in Section B.4 provides a stability check only for the specific level delay τ

for which Proposition 5 in Section B.4 is satisfied. This is due to the discretization of the

delay interval [−τ,0] and subsequent use of the discretized Lyapunov-Krasovskii func-

tional in (B.45). For example, this is the reason why a discretized Lyapunov-Krasovskii

functional method needs to be used in Chapter 5 to obtain a level of delay for which

a double integrator system describing motion in a plane is stabilized by delayed static

output feedback with position information only.
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