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Abstract

This text consists of two parts. In chapters 2–3 the methods are developed

that enable the application of tempered stable distributions to measuring

and simulating macroeconomic uncertainties. In contrast to the tools used

in finance, these results are applicable to low frequency aggregated data,

which typically displays tails of moderate gravity. Thus thay are partic-

ularly useful in modelling macroeconomic densities. The new methods

may be readily employed in Monte Carlo simulations of possibly skewed,

moderately heavy–tailed random variates with arbitrary excess kurtosis.

In chapter 4 a computational model of endogenous network formation

for the inter–bank overnight lending market is proposed. The struc-

ture of this market emerges from interactions of heterogeneous agents

who are endowed with assets, liabilities and take into account invest-

ment risk. As all the banks are large and their trading affects the prices

of risky assets, the costs of price slippage breaks the symmetry of port-

folio problem, making inter–bank borrowing and lending more desirable.

The model takes into account three channels of contagion – bankruptcy

cascades, common component of risky asset returns and erosion of liquid-

ity. The network formation algorithm outputs the ensemble of optimal

transactions, the outcome of the corresponding link formation process

is pairwise stable. This framework is next employed to investigate the sta-

bility of the endogenously generated banking systems.
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Chapter 1

Introduction

This manuscript consists of two distinct parts. The first part encompasses chapters

2–3. In the initial two chapters the methods are developed that enable the appli-

cation of tempered stable distributions to measuring and simulating macroeconomic

uncertainties. The second part consists of chapter 4. This chapter proposes a compu-

tational model of endogenous network formation for the inter–bank overnight lending

market.

The first part of the thesis addresses the problem of quantifying uncertainty

in macroeconomic data. In order to capture skewness, excess kurtosis and grav-

ity of the tails of macroeconomic densities it employs the recently developed tem-

pered stable distributions. These distributions arise from α–stable densities, proposed

by Paul Lévy in 1924. While this latter family displayed excellent theoretic properties,

it was hardly tractable due to lack of higher order moments. Furthermore, although

α–stable distributions often very well fit to economic data, they frequently generate

pseudo–random draws of extraordinary magnitudes, even in small samples. Hence

they are not suitable to modelling macroeconomic densities, which are usually close

to Gaussian and display the tails of moderate gravity. Tempered stable distributions,

however, have (almost) all advantages of the latter and no significant drawbacks.

They have all moments finite, may display skewness, arbitrary amount of kurtosis

and their multivariate extension may capture interdependence of marginals via cor-

relation matrix. Thus tempered stable densities may be employed to solve a number

of practical problems that perplexed applied econometricians since early seventies.

Despite of their excellent properties, this work is one of the first applications of tem-

pered stable distributions to economic data.

The second part of the thesis approaches the problem of modelling systemic risk.

Since the recent financial crisis the works on systemic stability either contained a the-
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oretical model of a banking sector, or simulated its dynamics. While theoretic models

explicitly take into account strategic network formation, they admit only limited de-

gree of heterogeneity (typically just two types of banks). Computational papers,

on the other hand, are capable to depict much more realistic picture of the banking

system, with individual agents varying with respect to size, risk aversion, portfolio

composition or liquidity preference. However, interbank linkages in these models are

formed not endogenously, but rather at random or partly random basis. Thus the out-

come of any stability analysis depends on the network configurations that may never

arise in practice. Hence it can not be regarded as reliable. Endogenous network

formation is also vital in quantifying the implications of endogenous bankruptcies

in a distressed banking system. The reason is that the systemic impact of such event

to large extent results from the characteristics of the counterparts of the insolvent in-

stitution. Chapter 4 presents an algorithmic model of endogenous network formation

for the overnight inter–bank market. According to our best knowledge this algorithm

is not only a new, but also the only known solution to this vital problem.

This thesis contains a number of novel results in a few different areas. Chapter 2

presents an original comparison of different probabilistic approaches to modelling un-

certainty of macroeconomic distributions. It also demonstrates that macroeconomic

densities are rarely Gaussian. Chapter 3 develops new randomization and estimation

techniques for tempered stable densities and investigates some of their properties,

which were either unknown, or known only for special cases (all the proofs are rel-

egated to Appendix B). In contrast to the tools used in finance, these results are

applicable to low frequency aggregated data, which typically displays tails of moder-

ate gravity. Next the proposed multivariate extension of tempered stable distributions

is applied to investigate the probabilities of joint currency crisis on the selected pair

of exchange–rates. This application relies on a novel Fourier Transform discretization

scheme (Appendix A.2). Chapter 4 introduces the network formation protocol for the

inter–bank overnight market. The proposed algorithm employs the optimal solution

of a portfolio choice problem, the symmetry of which is broken by price slippage costs

(Appendix D).

Both parts of this work may be located in two distant corners of the discipline

known as computational economics. Apart from the usage of the methods that are

highly computationally intensive, the common thread that binds both parts of this

thesis are the concepts of uncertainty and structure. In the case of tempered stable

densities the uncertainty is captured by the shape of a distribution, while the structure

stems from interdependencies of multivariate data. In the case algorithmic network

formation the structure of the interbank market is an emergent phenomenon, driven

2



by the optimal behaviour of individual banks. The uncertainty originates form a fact

that the market is a complex system which, depending on heterogeneity of the agents,

may assume myriads of possible configurations.

After these preliminary remarks we may proceed with the main body of the thesis.
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Chapter 2

Heavy–Tails and Stable

Distributions

The second chapter reviews the basic probabilistic, parametric approaches to quan-

tifying uncertainty of macroeconomic distributions.

2.1 Introduction

Macroeconomic distributions are sample distributions of economic data, important

form macroeconomic analysis, representing aggregate quantities and quoted at low

frequencies. A frequency of the data is considered low if the distance in time between

the consecutive available observations is at least one month.

Future values of macroeconomic data are to large extent uncertain. The sources

of this uncertainty are twofold. First, as the time goes by, an unexpected event may

take place that alters the dynamics of macroeconomic aggregates. Second, a struc-

tural change may occur that affects the way economy operates, and thus results

in different levels of the registered quantities. As the values assumed in the future

by macroeconomic data are critical to efficiency of the policies, implemented today,

it is advisable to quantify this uncertainty ex ante. This task poses a serious prob-

lem. Uncertainty is unobservable and its domain is the future, while all the available

data come from the past. Neither future unexpected events, nor impending structural

changes are present in the data. Hence the only feasible approach to assessing macroe-

conomic uncertainties is to form expectations on the basis of available observations,

assuming that the mechanism which generates it is constant over time.

The approach to modelling macroeconomic uncertainty presented in this chapter

is probabilistic and parametric. It is always assumed that the mechanism that gen-

4



erates the investigated data is complex and dependent on a large number of factors,

some of which are either unknown or not properly measured. Furthermore, it is con-

stant within the sample and will remain unaltered in the immediate future. Under

these two assumptions consecutive observations may be treated as random and com-

ing from the same probability distribution. This distribution both approximates the

data generating process and captures the ignorance of the underlying economic mech-

anism. The two assumptions made above jointly imply that although the main object

of our interest is uncertainty, the only thing that actually can be measured is risk.

In order to make this approach tractable, its is further assumed that the distribution

which underlies the data is endowed with a known parametrization.

A probability distribution that attempts to depicts uncertainty, domain of which

is the future, has to display one particular property. It needs to occasionally gener-

ate large observations with non–negligible probabilities. A distribution which does

possess this feature is termed heavy–tailed.

While this framework is basic, there are two situations when it is highly relevant.

First, when there is no model which approximates the economic mechanism gener-

ating the data, yet it is necessary to depict the underlying uncertainty. An example

of such data, coming from finance, is daily speculative prices of certain commodities.

A two macroeconomic examples are either foreign exchange–rates, quoted at monthly

frequency, or forecast errors, obtained from a given econometric model. Second,

there are a data whose generation is well approximated with known (possibly non–

linear) models. However, while these models perform well on regular days, they often

fail to generate as many observations of extreme magnitude, as there are actually

recorder. If in this second case it is necessary to evaluate the risk of registering large

deviations, then it might be beneficial to replace Gaussian error term distribution

in the model with another density, which more faithfully depicts the estimated error

values.

The structure of the remaining part of this chapter is the following. The first sec-

tion argues that financial and macroeconomic distributions are not Gaussian. Sec-

tion two revisits and formalizes the concept of heavy–tailed distribution. It also

reviews the basic literature, regarding the application of heavy–tailed distributions

in economics and finance. The third section introduces the concept of α–stable dis-

tributions and presents their elementary properties. Alpha stable distributions are

the predecessors of the tempered stable distributions, which are treated thoroughly

in the next chapter. The final section concludes.
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2.2 Macroeconomic distributions are not Gaussian

Neither macroeconomic, nor financial distributions are Gaussian. However, while

in finance probabilities of large deviations are usually depicted with heavy–tailed

densities, in macroeconomics they are often assumed either to be Gaussian, or to be

driven by Gaussian distribution. There seem to be two reasons. First, normal density

has remarkable, unique statistical properties that make it very convenient to treat.

Next, heavy–tails in macroeconomic distributions are not as extreme or pronounced

as in the case of financial data. Despite of this empirical fact the Gaussianity of either

financial or macroeconomic densities is not a rule, but a rare exception.

In this section first the evidence is presented that empirical distributions of asset

and exchange–rate returns display skewness, excess kurtosis and heavy tails. This

introductory part relies on the abundant financial literature on the topic. Next, using

the example of low frequency exchange rates, it is demonstrated that macroeconomic

data often display exactly the same features. The section is concluded with a discus-

sion of the consequences in relying in economic modelling on Gaussian distribution

if the actual distribution of the underlying variable is heavy–tailed. The plotted dy-

namics low frequency macroeconomic time series was extracted from the Datastream.

A major drawback of Gaussian distribution is that it can not replicate skewness

and excess kurtosis of empirical data. Significant positive skewness of daily Dow Jones

Industrial stocks’ returns was reported by Simkowitz and Beedles (1980). In their

study authors relied on asymmetry measure that was applicable to random draws,

generated from heavy–tailed distributions. This measure did not rely on 2–nd and

higher order moments, which do not exist in case of non–Gaussian α–stable distribu-

tions. Positive skewness of stock returns was further confirmed by Rozelle and Fielitz

(1980) and Kon (1984), who also found significant excess kurtosis in the daily return

rates of common stocks and indexes. Skewness and excess kurtosis of hedge funds

returns was reported by Brooks and Kat (2002). Unconditional skewness of mar-

ket returns from selected stock, typically negative, was demonstrated by Harvey and

Siddique (2000). Leptokurtic distributions of stock returns were reported by Blat-

tberg and Gonedes (1974), Hagerman (1978) and Haas (2007). Finally, Bauwens and

Laurent (2005) mention heteroskedasticity and leptokurtosis as the two established

features of financial time series.

Another important feature of the data that Gaussian distribution is not able

to replicate is relative high frequency of the observations of large magnitude. Fama

(1965a) found in his extensive study that in every series investigated the extreme

tails of sample distributions were heavier than the tails implied by Gaussian hypoth-
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esis. Officer (1972) observed heavy tails in American stock market data. Jorion

(1988) reported that the distributions of exchange rate he modelled with a mixed

jump–diffision process were leptokurtic. Marinelli et al. (2001), who depicted US

dollar/Swiss franc exchange rate as a process compound in physical time, reported

that the intraday exchange rates were heavy–tailed. Jacquier et al. (2004) report that

the evidence for fat–tails is very strong for daily exchange rate and equity indices,

but less so for weekly data.

There is also some additional evidence which suggests that Gaussian distribution

does not fare well in modelling uncertainty in finance. In order to capture exchange

rates dynamics of other European currencies against German mark, Vlaar and Palm

(1993) extend random term in MA–GARCH specification by additional jump com-

ponent. This component contributes to gravity of the tails, when it is omitted the re-

sulting model is misspecified and becomes explosive. Loretan and Phillips (1994)

observe that fourth moment for stock market and exchange rate series does not seem

to be finite. Sun et al. (2007) claim that if data conforms to fractal scaling, aban-

doning Gaussian hypothesis is one of the only two routes to explain it. Kim et al.

(2008) showed that the distribution of asset returns has heavier tails relative to the

normal distribution.

Just as in the case of financial data, light–tails in low frequency macroeconomic

aggregates are not a rule, but an exception. Unfortunately, the works on heavy–tails

in macroeconomic data are scarce. Therefore instead of being backed by literature,

the previous statement will be supported with the data. Monthly returns on for-

eign exchange–rates constitute a prominent example of macroeconomic distributions.

In the period from January 1999 till October 2012 out of 15 investigated currencies

only US, Australian and Singapore dollars and Chinese yuan were endowed with

skewness and excess kurtosis close to zero. Hence only the growth rates of these four

currencies could possibly be Gaussian. The growth rates of the remaining curren-

cies, including Canadian and Hong Kong dollars, Japanese yen, Swiss franc, British

pound, Brazilian real, Russian ruble, Swedish krona, Danish and Norwegian krones

and Korean won displayed either skewness or excess kurtosis that was markedly dif-

ferent than zero. Within the sample Russian ruble was endowed with the largest

skewness of 1.31, the largest sample excess kurtosis amounted to 6.79 and was dis-

played by Swiss franc. Out of this 11 currencies two – British pound and Russian

ruble – will be investigated further. Growth rates of the two currencies against euro

are positively skewed and leptokurtic, with skewness and excess kurtosis equal to,

respectively 1.05, 2.92 (GBP/EUR) and 1.31, 3.42 (RUB/EUR). When a similar ex-

ercise is repeated on the daily foreign exchange returns, recorded from 13–th January
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Figure 2.1: QQ plot. On the horizontal axis – (simulated) quantiles of the standard normal distri-
bution. On the vertical axis – sample quantiles of standardized monthly growth rates of RUB/EUR
(violet ‘*’) and GBP/EUR (cyan ‘+’) exchange–rates.

2000 till 1–st November 2012, excess kurtosis ranges for different currencies from 2.08

(Canadian dollar) to 68.07 (Swiss franc). At the daily frequency foreign exchange

returns against euro of no major currency could be regarded as Gaussian.

Figure 2.1 depicts the quantiles of standardized monthly growth rates of RUB/EUR

and GBP/EUR exchange–rates, plotted against the simulated quantiles of standard

normal distribution. The data covers the period beginning in January 1999, few

months after the Russian Crisis, and running till October 2012 (a total of 152 obser-

vations). The number of simulated quantiles is equal to the sample size. The plot

reveals heavy tails of both monthly Russian ruble to euro and British pound to euro

exchange–rates. Surprisingly, the tails of the latter seem to be heavier. The prob-

ability of drawing from standard normal distribution a sample of given size, with

the maximum growth rate equal or larger than the actual sample values, amounts to

2.8 × 10−4 for RUB/EUR and 1.2 × 10−4 for British pound to euro exchange–rates.

If both samples were obtained from standard Gaussian density, the expected waiting

time for the observation equal to or larger than the maximum sample growth rate

of Russian ruble to euro exchange–rate would slightly exceed 45,111 years. For British

pound to euro exchange–rate this quantity is even more spectacular and amounts

to almost 105,931 years.

Figure 2.2 depicts the joint dynamics of the cumulative growth rates of British

pound to euro and Russian ruble to euro monthly foreign exchange rates. The chart

on the left was obtained from the data quoted from January 1999 till October 2012.
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(a) Market data. (b) Synthetic data.

Figure 2.2: Cumulative GBP/EUR and RUB/EUR forex growth rates plotted for:
(a) the actual market data, (b) the data simulated from the fitted bivariate Gaussian
distribution.

The figure on the right is plotted for the artificial data, simulated from bivariate

Gaussian distribution fitted to the actual data. All the growth rates were centred.

In comparison to the real data, the synthetic trajectory is far more erratic. In the ac-

tual data monthly growth rates of either small or large magnitude are relatively more

common, while growth rates of average magnitude are relatively less frequent than

in the synthetic data. Therefore the increments of foreign exchange rates should be

depicted by distributions whose tails are heavier than Gaussian. This distribution

should simultaneously admit more observations of very small magnitude.

While the literature on large deviations in macroeconomic data is scarce, there

are few papers worth mentioning. Balke and Fomby (1994) examined 15 macroeco-

nomic post–war US time series and identified large shocks in each series investigated.

The authors claim that as outliers are typically associated with recessions, Gaussian

models of business cycle are not appropriate. The widespread evidence in favour

of fat–tailed output growth rates is reported by Fagiolo et al. (2008). Finally, As-

ton (2006) remarks that many macroeconomic time series can be well modelled us-

ing heavy tailed densities, especially if the series contain outliers. Hence in case

of macroeconomic data normality of error term should not be assumed by default.

The remaining part of this section presents examples of how unrealistic assump-

tion of Gaussian model errors might trigger numerous large scale disasters in the es-

timation of economic models and the subsequent inference. Although this evidence

has been originally collected for normal distribution, it is equally relevant for any

other light–tail density. In the following list the feasible issues are ranked according
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to their relative importance.

Counterfactual assumption of Gaussianity may cause corrupted parameter esti-

mates. If trajectory of investigated time series contains large jumps, then under

normal random term many observations are identified as outliers. Vlaar and Palm

(1993) report how these spurious outliers resulting from misspecified error term lead

to disastrous estimates of model parameters. In their study MA–GARCH models

become explosive for three out of six investigated currencies.

Counterfactual assumption of Gaussianity may result in implausible model dy-

namics. Hartmann et al. (2010) demonstrate that heavy–tailedness of distributions

underlying exchange rates is one of sufficient conditions for joint, vehement currency

crisis to occur. Joint currency crisis were observed numerous times over the past few

decades. However, under normal density of model errors they would be practically

impossible.

Counterfactual assumption of Gaussianity may lead to underestimation of risks

originating from self–reinforcing or natural phenomena. Balke and Fomby (1994)

found large estimated error terms in all the examined time series. As these errors

were typically clustered over time and associated with recessions, they concluded that

the Gaussian models of business cycle are not appropriate. Pindyck (2011) notes that,

as uncertainty about probability distributions of future temperatures is large, heavy–

tailed densities are essential in the modelling of climate policy. As mentioned out by

Asmussen et al. (2000), due to intrinsic properties of the data heavy–tailed modelling

seems to be relevant in areas such as telecommunication and insurance risk.

Counterfactual assumption of Gaussianity may adversely affect model selection.

Balke and Fomby (1994) report that in many of the investigated time series much

of the evidence of non–linearity is eliminated after controlling for outliers. However,

frequent outliers are immediate consequence of assuming distribution of error terms

that does not have sufficiently heavy tails.

Counterfactual assumption of Gaussianity may lead to incorrect conclusions drawn

from estimated models. Fagiolo et al. (2008) claim that economic models failing

to account for fat tails in GDP may deliver invalid implications. This is most likely

in the case when the tails are so heavy that higher order moments do not exist.

Counterfactual assumption of Gaussianity may result in incorrect asset pricing.

The reason is that heavy–tailed distributions of the underlying assets imply different

prices of derivatives than the normal distribution. A seminal paper by Boyarchenko

and Levendorskii (2000), who provide a generalized Black–Scholes formula for pricing

European options under non–Gaussian price increments, is a notable example.
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If the assumption of Gaussianity of error term density is counterfactual, then a va-

riety of viable econometric techniques is greatly reduced. In particular, if the error dis-

tribution is a non–normal α–stable density, then the Least Squares procedures become

no longer valid. As mentioned by Mandelbrot (1963a) and Fama (1965a), the reason

is that the expectation of the minimized sum of squares is infinite. In consequence all

the techniques that rely on the concept of variance are no longer applicable. A similar

remark is made by Fagiolo et al. (2008) who claim that, due to the widespread evi-

dence in favour of fat–tailed output growth rates, econometric estimation and testing

procedures that are heavily sensitive to normality of residuals should be replaced with

their robust counterparts. Fama and Roll (1965) indicate that sample standard devi-

ation is unreliable estimator of scale parameter for the data generated from α–stable

distribution. Blattberg and Gonedes (1974) noted that if variance of the underlying

distribution does not exist, then the methods of spectral analysis can no longer be ap-

plied. Another example may be found in Asmussen et al. (2000) who demonstrate

that the standard importance sampling technique may no longer be used as a method

of rare events generation when the underlying distribution is heavy–tailed.

Finally, if Gaussianity of error term distribution is violated, basic properties of eco-

nomic models may be inverted. In a brilliant paper Ibragimov (2005) demonstrates

that in the extreme heavy–tailed setting probabilistic properties of many economic

models may reverse. In particular, a stylized fact that portfolio diversification is al-

ways preferable in portfolio Value–at–Risk analysis no longer holds. He also demon-

strates that the implications of numerous frameworks, popular in economics and

finance, are sensitive to the thickness of the tails of the distributions involved in their

assumptions.

The next section is dedicated to a number of feasible routes to modelling large

deviations. All these approaches ameliorate the problems, indicated above.

2.3 From heavy–tails to stable distributions

This section first reviews the basic works on modelling large deviations. As the most

fundamental of the cited papers concern speculative asset prices, again the bulk

of this literature comes from finance. After a brief historical sketch a number of ways

to generate distributions with large deviations is investigated. It is next argued that

out of the compared distributions the tempered stable densities, whose special case

is treated in the next chapter, possess most of the features, desirable in modelling

uncertainty.
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The following definition will be useful to distinguish between the densities, which

may generate observations of large magnitude.

Definition 2.3.1 (Gravity of tails). The right tail of distribution of random variable

X is said to be i) fat if for some α > 0 and x→ +∞ it holds that

P(X > x) ∼ x−α,

ii) heavy if for all λ > 0 we have

lim
x→+∞

eλx P(X ≤ x) = +∞,

ii) semi heavy if it is not heavy and for all λ > 0 it holds that

lim
x→+∞

eλx
2 P(X ≤ x) = +∞.

Part i) of the formalism above is given on p. 9 in Crovella et al. (1998) as a definition

of a distribution with heavy right tail. Contrary to their formulation we allow for

α > 2 to admit the distributions, the tails of which are heavier than the tails of α–

stable densities (introduced in the next section). Part ii) of Definition 2.3.1 may

be found e.g. in Asmussen (2003). Part iii) was introduced to distinguish the class

of distributions whose right tails decay faster than exponentially, but slower than

the tails of the Gaussian density.

The definitions of fat, heavy and semi heavy left tails are analogous. The distri-

bution is said to be fat, heavy or semi heavy–tailed if either of its tails is, respectively,

fat, heavy or semi heavy. The tails of heavy–tailed distributions decay slower than

exponential function. The tails of semi heavy–tailed distributions decay faster than

exponential, but slower than Gaussian density. Contrary to heavy–tailed distribu-

tions, semi heavy–tailed densities may have all moments finite. After formalizing

the basic concepts we may go back to the origins of the literature on large deviations.

The first evidence of significance of heavy tails in economics may be found in the

works of Italian sociologist, economist and political scientist Vilfredo Pareto. In the

year 1906 he made the observation that in Italy twenty percent of the population

owned eighty percent of the land. In 1909 Pareto generalized this remark proposing

Pareto distribution, which, as he believed1, described wealth distribution “through

any human society, in any age, or country”. The density corresponding to Pareto

1See: Mandelbrot and Hudson (2004).
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distribution was endowed with a power–law tail, which implied1 that the tail prob-

abilities were self–scaling. The feature of self–scaling became ever since a landmark

of heavy–tailed modelling. The importance of Paretos original contribution has not

become apparent for another fifty six years when the seminal works of Benoit Man-

delbrot were published.

As noted by Hartmann et al. (2010), it was not until October 1963 when Man-

delbrot “published two remarkable papers [...] which gave financial econometricians

enough to work on for subsequent 30 years”. In New methods in statistical economics

(Mandelbrot, 1963b) he suggested that in the modelling of asset prices Gaussian

distribution of increments should be replaced with a more plausible family of heavy–

tailed densities. Since the work of Pareto it was known that the tail probabilities

of many economic quantities were self–scaling. Mandelbrot first assumed that this

property should hold for the entire distribution. Next he observed that a consistent

model of randomness should not depend on the time scale in which the phenomenon

of interest is being observed. Finally, he remarked that, for the sake of tractabil-

ity, the sought class of distributions should be closed with respect to summation

of i.i.d. random variables and linear scaling. All three routes led him independently

to single conclusion – asset returns were best depicted by an infinite variance sum

of α–stable random variates. Simultaneously, in the manuscript titled The variation

of certain speculative prices (Mandelbrot, 1963a) author presented empirical evidence

to support his theory. In this second paper he embarked upon the premise that the

increments of logs of speculative prices come from α–stable distribution. Using cot-

ton prices data, Mandelbrot computed the sample second moments of the daily first

difference of logs for increasing samples from 1 to 1, 300 observations. Although the

sample size was enormous for economic standards, he found that as it increased,

the sample standard deviation did not tend to any limiting value. Instead, it var-

ied in an absolutely erratic fashion. Mandelbrot regarded this anomalous behaviour

as a signature of infinite variance and thus the vital evidence to support his theory.

However, the initial reception of his work was so frigid that he abandoned research

of market dynamics for more than a decade. The approach proposed by Mandel-

brot was fervently supported by Eugene F. Fama. In order to highlight empirical

aspects of Mandelbrots theory of speculative price innovations, Fama (1963) formu-

lated Stable Paretian Hypothesis. It assumed that 1) the variances of the empirical

distributions behave as if they were infinite, 2) the empirical distributions conform

best to the non–Gaussian α–stable densities.

1See: Feller (1971), Subchapter VIII.8.
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Since the original contribution of Mandelbrot numerous evidence, both data based

and theoretic, has been collected to support his findings. Three main empirical

arguments were as follows.

First, as already mentioned in the previous section, both financial and economic

data is typically endowed with skewness and excess kurtosis. It also contains many

more observation of extreme magnitude than normal distribution typically implies.

Both remarks point out to the fact that the distribution that generates the data

is most likely not Gaussian.

Next, α–stable densities that fit empirical data best are typically endowed with

stability index α in–between 1.4 and 1.9. Blattberg and Gonedes (1974) in his stock

price analysis obtained 1.65 < α < 1.8. Marinelli et al. (2001) found that α–stable

distributions offer very good fits to exchange rate returns both in quote (intrinsic)

time and physical time. Authors observed that exchange rate returns display α–stable

increments with index α ≈ 1.4 at time scales between few minutes and two hours.

In longer time scales, such as day or week, α assumed values which ranged from 1.8

to 1.9. While Mandelbrot (1963a) reported α ≈ 1.7 in his cotton price example, Fama

(1965a) found stability indexes clustered around 1.9 for all the investigated stocks.

Note that if the data were Gaussian, it would hold that α ≈ 2, which is the value

of stability index that corresponds to normal distribution. As remarked in Fama

(1965b), returns on securities in all the cases conformed better to non–Gaussian α–

stable distributions with infinite variances.

Finally, if multiple stock return series are analysed simultaneously, they frequently

seem to be endowed with the same characteristic exponent. Hagerman (1978) found

small differences among the exponents obtained for the investigated AMEX and

NYSE securities and attributed these entirely to measurement error. This finding

supports portfolio theory, relying on multivariate stable distributions.

The main theoretical argument to support Mandelbrots hypothesis were remark-

ably good statistical properties of α–stable distributions. In particular, as stated

by Akgiray and Booth (1988) 1) only stable laws have domains of attraction and

2) stable distributions belong to their own domains of attraction. The first feature

means that α–stable distributions arise as limit densities in a version of Central Limit

Theorem where i.i.d. random variables might have infinite variance. In consequence,

as observed by Rachev and Mittnik (2000), if the process may be regarded as a sum

of many microscopic effects, the only possible limit in the distribution of the sum

of i.i.d. random variables is α–stable. The second feature results from the formal

definition of stable random variates and implies stability in colloquial sense. In result,

if stable distributions emerge as a limit distribution of an additive process, a slight
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distortion in the fundamentals of this process does not make the outcome fragile.

Mandelbrot (1963b) noted that α–stable distributions 3) display self–scaling of tail

probabilities, 4) have intrinsic extension to the multivariate case and 5) in multi-

variate case may be characterized as distributions, for which the density of every

linear combination of coordinates is univariate α–stable. Finally, Rachev and Mit-

tnik (2000) remark that 6) α–stable distributions can account for asymmetries and

heavy tails.

Although α–stable distributions were a priori plausible as models of stock prices,

numerous empirical studies provided evidence which tended to contradict Mandel-

brots theory. Hsu et al. (1974) found that the standard deviations of American stock

data did not display erratic behaviour, predicted by Stable Paretian Hypothesis. Au-

thors observed that longitudinal sums of daily share returns became thinner–tailed for

large number of summands, what negated stability of the addends. This finding was

confirmed by Blattberg and Gonedes (1974), Hagerman (1978), Fielitz and Rozelle

(1983) and Kon (1984) who all noted that fitted stability indexes did not remain con-

stant under temporal aggregation. Praetz (1972) on Australian stock market data

demonstrated that t distribution provided better fit than α–stable symmetric density.

Blattberg and Gonedes (1974) confirmed this finding on US stock return data. Af-

ter further investigation they concluded that the region where t distribution performs

better than symmetric α–stable density are the tails of sample distribution. Blattberg

and Gonedes (1974), Fielitz and Rozelle (1983) and Akgiray and Booth (1988) have

all reached the conclusion that second moments for majority of analysed datasets

seem to be finite. The claim that the distributions of asset returns have tails thinner

the α–stable density was recently supported by Kim et al. (2008). Hsu et al. (1974)

noted that when economy may experience dramatic shifts, it is not reasonable to in-

sist on stationarity (homogeneity) of data generating process. Authors demonstrated

that if structural breaks of scale parameter are admissible, then rates of return within

the periods of homogeneous activity are well depicted by Gaussian distribution with

finite variance. Fielitz and Rozelle (1983) observed it is hard to distinguish in sample

between a mixture of normal distributions with changing standard deviation and non

Gaussian α–stable distribution with varying scale. Kon (1984) concluded that after

replacing Gaussian error term with a mixture of normal distributions, the evidence

in favour of heavy tails may entirely vanish. Hagerman (1978) rejected a hypothe-

sis that stock returns are endowed with a symmetric α–stable distribution in favour

of either: a mixture of Gaussian distributions or t distribution. Both distributions

provided better fit to US stock return data. Wang et al. (2009) observed that a model

with fixed gravity of tails can not fit the market data well over time. Rachev and
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Mittnik (2000) remarked that infinite variance can not be verified in practice. Hart-

mann et al. (2010) claimed it is sufficient to assume self–scaling holds in the tails

of the distributions, thus infinite variance assumption is no longer required.

Since the deficiencies of both Gaussian and stable distributions became appar-

ent, it was clear that to capture uncertainties that underlie economic data, better

probabilistic framework is required. Numerous approaches to achieve this aim were

attempted over the last thirty years. As the number of proposed probability dis-

tributions is vast, the following list is necessarily incomplete. However, the problem

of quantifying uncertainty in economic data has been attacked along three main lines.

The first line was to generalize t distributions, which are highly tractable, well

established in the literature and known to display heavy tails. Applicability of t dis-

tribution in modelling heavy tails was reported by Kon (1984) and further confirmed

by Aston (2006). To introduce asymmetry to t distribution, Harvey and Siddique

(1999) proposed noncentral t distribution. However, as their asymmetric density had

no third central moment, its skewness did not exist. Another attempt to modify

t distribution was made by Hansen (1994) who introduced skewed t distribution. His

results were further extended as skewed generalized t distribution (further abbreviated

to sGT) derived by Theodossiou (1998). Different route to deliver a variant of t distri-

bution that could account for sample skewness was taken by Jones and Faddy (2003).

The density they proposed will be further termed skewed factorizable t distribution

(sfT). All four modifications listed above included classic t distribution as a special

case. While t density may be generalized to further dimensions as in Glasserman

et al. (2002), its most popular extension, known as multivariate t distribution, is en-

dowed with symmetric marginal distributions. In general, extension of t distribution

to multiple dimensions is not unique. As it is most flexible univariate modification

of t density, skewed factorizable t distribution (sfT) will be selected as representative

of this class for the sake of comparison with other distributions.

The second approach was to propose a general construction that could introduce

skewness into pre–existing family of (possibly heavy–tailed or fat–tailed) symmetric

distributions. Few such constructions are known, for the sake of brevity just three

will be mentioned here. The first one comes from Azzalini (1985) and was originally

applied to normal density. In result skewed normal distribution (further abbreviated

to sN) was obtained. While normal distribution has light tails, skewed normal den-

sity obtained via Azzalini technique may be endowed with arbitrary gravity of tails.

As demonstrated in Azzalini and Capitanio (2003), this approach may be extended

to multiple dimensions. The second construction was proposed by Fernández and

Steel (1998) and was utilized to introduce skewness into t distribution. The output
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of this procedure will be termed skewed t distribution and abbreviated to sT. Note that

this density is markedly different than the skewed t distribution, proposed by Hansen

(1994). The third method was developed by Bauwens and Laurent (2005) and allows

to introduce a vector of skewness parameters to multivariate, spherical symmetric

distribution. As in previous case, t distribution serves as example of a practical

application.

The third route to generate heavy–tailed densities is to utilize various types

of mixtures of normal distributions. Kon (1984) obtained satisfactory results in de-

picting stock return rates with ordinary mixture of normal distributions. In order

to model extraordinary movements in stock prices Friedman and Laibson (1989) re-

sorted to compound (Poisson) mixture of normal distributions. Finally, Eberlein

and Keller (1995) proposed generalized hyperbolic distribution (abbreviated to GH)

as a default probability measure in modelling financial data. This semi heavy–tailed

distribution is known to be a variance–mean mixture of normal distributions. In this

case the role of mixing distribution is performed by generalized inverse Gaussian den-

sity. he main advantage of mixture techniques is that structure of random variables

thus obtained often translates to favourable properties of resulting densities. As GH

distribution is the most promising representative of this second class, its properties

will be compared further with the main characteristics of other heavy–tailed distri-

butions.

There are two known heavy–tailed distributions that do not follow any of the three

routes listed above. These are generalized versions of Pareto and Extreme Value dis-

tributions. However, their applicability is severely constrained. What limits the ap-

plicability of generalized Pareto distribution is the fact that its domain is censored.

In case of Extreme Value distribution the main culprit is the property that general-

ized Extreme Value distribution has unconstrained domain only if its excess kurtosis

is equal to 2.4. Hence none of these two distributions seems to be flexible enough

to capture empirical features of economic data.

Despite numerous attempts to replace Gaussian disturbances with more plausible

probabilistic framework, each of the distributions listed above lacks some features

which makes modelling uncertainty tractable. Table 2.3 the comparison of all the

selected densities with infinite variance stable distributions, which were originally

proposed by Mandelbrot (1963b) as a default probabilistic model for the increments

of speculative prices. Columns in Table 2.3 represent the selected distributions while

rows denote certain traits. Sign “+” at the intersection of a row and a column in-

dicates that the distribution, associated with a given column, is known to possess

a trait, corresponding to a certain row (and that the prove can be traced in litera-
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ture). Sign “−” is used in all the remaining cases. The motivation for using the set

of properties listed in Table 2.3 is as follows. 1) It is convenient when the underlying

distribution displays higher order moments as then many standard tools (software,

mathematical approaches) become applicable. 2) Plausible candidate for probabilis-

tic model of uncertainty in economics and finance should display both light and heavy

tails, depending on the data. 3) Extension of univariate density to multiple dimen-

sions should be unique. Otherwise the choice of appropriate extension might become

an issue. 4) The selected family of distributions should be closed under addition

of independent, identically distributed random variates. Otherwise probabilistic fea-

tures of the corresponding random walks are not consistent over time. 5) The selected

family of distributions should be closed under weighted averages of independent, iden-

tically distributed random variables. Otherwise it is difficult to utilize in the areas

such as asset pricing or portfolio analysis. 6) The long run distributions of random

walks endowed with the increments, coming from given family of densities, should

be approximately Gaussian. This property is desirable as it corresponds to empiri-

cal features of macroeconomic data, such as forecast error distributions. Note that

the abilities to display skewness, excess kurtosis or heavy tails are excluded from this

comparison. Every density listed in Table 2.3 displays all these features.

As already stated above, the first four distributions being compared are: skewed

normal distribution (sN), skewed t distribution (sT), skewed factorizable t distri-

bution (sfT) and generalized hyperbolic distribution (GH). The last two columns

correspond to: α–stable distribution (S) and (general) tempered stable distribution

(TS). Applying a special case of the latter the economic data is the subject of the next

chapter. Daggers † next to the entries, corresponding to stable and (general) tempered

stable distribution, denote that these are closed under weighted averages of i.i.d. ran-

dom variates if the stability indexes of both variables match. Asterisk ∗ in the entry,

corresponding to generalized hyperbolic distribution, indicates that the weighted av-

erage of i.i.d. random variates is itself generalized hyperbolic if all the variates have

normal inverse Gaussian (NIG) distribution (a special case of GH) with identical

values of parameter α and the same value of parameter β.

The last column in Table 2.3 refers to (general) tempered stable distribution de-

fined by Rosiński (2007). These distributions are self–decomposable, closed with

respect to weighted averages and addition of independent random vectors (if only

their stability indexes match). Tempered stable densities may be infinitely divisible

and may have higher order moments finite, including exponential moments of some

order. Hence, what makes these distributions highly tractable, they might have mo-

ment generating functions. They also display skewness and arbitrarily large excess
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Heavy–tailed Distributions
Properties sN sT sfT GH S TS

Higher order moments may exist + + + + − +

Both light and heavy tails are possible + + + + − +

Natural multivariate extension + − − + + +

Consistent model of additive jumps − − − + + +

Closed under weighted averages − − − −∗ +† +†

Long–run Gaussianity + − − + − +

Table 2.1: Heavy–tailed distributions and their properties. Sign “+” indicates that
the distribution is known to possess a certain trait, “−” is used in all the remaining
cases.

kurtosis. Tempered stable distribution may be arbitrarily similar to the underlying

stable densities, thus they may (approximately) retain all the favourable proper-

ties of the latter family. As demonstrated by Chakrabarty and Meerschaert (2011),

tempered stable distributions provide a universal model of accumulated jump. This

observation follows from the fact that any random walk with power–law jumps may

be approximated with tempered stable densities. Furthermore, random walks with

tempered stable increments in long run converge in distribution to Gaussian density.

All the features listed above make tempered stable densities the best known candi-

date for probabilistic model of macroeconomics uncertainties. The application of tem-

pered stable distributions to macroeconomic data is the main subject of the next

chapter. As tempered stable distributions have similar properties to stable distribu-

tions, from which they were originally derived, the basic characteristics of the latter

family is provided in the next section.

2.4 Stable distributions and their properties

This section is dedicated to stable distributions. It contains the definition of univari-

ate stable random variables along with their basic properties and Fourier transforma-

tion of the underlying density. Next the concept of α–stable distribution is introduced.

In univariate case it is exactly equivalent to stability of the underlying distribution.

Hence the two terms might be used exchangeably. Two alternative definitions of uni-

variate stable variates are given as Fact 2.4.1 in order to formalize the links between

stability, Central Limit Theorem and closedness with respect to linear transforma-

tions. Finally, the definition of stable random vectors is presented. Many of these
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properties are parallel to the basic characterization of tempered stable distributions,

given in the next chapter.

An extensive overview of the papers on stable distributions and their applications

is provided by John P. Nolan on his webpage. In the recent (27–th August 2013)

update of this document1 bibliography alone occupies 130 pages. While the first work

on stable distributions was written by Lévy (1924), a number of significant papers

were further contributed in nineteen–forties and fifties. However, this topic proved

to be notoriously difficult. Rigorous derivation of exact formulas for characteristic

functions of what is now known as stable random variates confounded statisticians for

another 40 years (for a concise review see Hall (1981)). Numerical aspect of bringing

stable distributions to the data posed further serious problems (Nolan, 2013).

Stable distributions constitute a popular family of distributions, renowned for

their capacity to reproduce fat tails and accommodate skewness. In univariate case

they are endowed with four characteristics: index of stability α ∈ (0, 2], scale δ > 0,

skewness β ∈ [−1, 1] and the location parameter µ ∈ R. The main difficulty in han-

dling stable distributions stems from the fact that their probability and cumulated

density functions are usually known only in the form of infinite series (see: Feller

(1971), Chapter XVII, Section 6, or Palmer et al. (2008) for the case of α < 1).

Therefore the corresponding theory relies to great extent on characteristic functions

and spectral measures. In the remaining part of this paper α–stable distributions will

be termed stable and (in univariate case) denoted as Sα(β, δ, µ). All the definitions

and properties presented in this section come from the first two chapters2 of the book

by Samorodnitsky and Taqqu (2000).

There are at least three different, equivalent definitions of stable distributions.

The one below allows for the most intuitive interpretation.

Definition 2.4.1 (Stable random variable). A random variable X has a stable dis-

tribution if for any k ≥ 2 there is Ck > 0 and a real number Dk such that

X1 +X2 + . . .+Xk
d.
= Ck ·X +Dk, (2.1)

where X1, X2, . . . , Xk are independent copies of X and
d.
= denotes equality in distri-

bution.

1Available at: academic2.american.edu/ jpnolan/stable/StableBibliography.pdf
2See Definitions: 1.1.4, 1.1.1, 1.1.5, 2.1.3, 2.1.1, Properties: 1.2.1–1.2.3, 1.2.13, 1.2.16 and The-

orem 2.1.5 therein.
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If Dk = 0, random variable X is called strictly stable. Stable distribution is Gaus-

sian when α = 2 and β = 0. It can be proved1 that Ck = k1/α, where α amounts

to stability index. As α captures the entire information on the scaling of the sums

of independent addends, stable distributions are also known as α–stable. In univari-

ate case these two terms are equivalent. If α > 1 then the shift parameter µ equals

to the mean of the distribution. For α ≤ 1 the mean does not exist. The following

statements are equivalent to Definition 2.4.1.

Fact 2.4.1 (Equivalent univariate definitions). A random variable X is said to be

stable if

i) for any positive numbers A and B there is a positive number C and a real

number D such that

AX1 +BX2
d.
= CX +D,

where X1, X2 are independent copies of X,

ii) it has a domain of attraction, i.e. if there is a sequence of i.i.d. random

variables Y1, Y2, . . . and a sequence of real numbers {Ak} and positive numbers

{Dk} such that

D−1k (Y1 + Y2 + . . .+ Yk) + Ak
d.→ X

where
d.→ denotes convergence in distribution.

Stable distributions are, by Fact 2.4.1 ii), the family of limit distributions that

arise in a version of Central Limit Theorem where the variance of independent ad-

dends may be infinite. Due to the properties of Definition 2.4.1 if stable random

variates are used to build additive stochastic process, the time scale at which the data

is quoted does not affects properties of this process. In particular, the cumulative

distribution of its increments remains in the same class regardless of the assumed

time scale. This is particularly welcome feature while we model economic processes

whose behaviour should not depend on the choice of time units.

Although univariate α–stable densities may be identified via corresponding cumu-

lative distribution and probability density functions, such characterization is of lim-

ited practical use. The reason is these are usually known only in the form of series

expansions, involving confluential hypergeometric function. Hence the most popular

tool to treat univariate α–stable variates is Fourier transformation of the underlying

distribution. Univariate stable random variables display the following properties.

1See: Feller (1971), Theorem VI.1.1, p. 170.
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Property 2.4.2 (Univariate characteristic function). If X ∼ Sα(β, δ, µ) with 0 <

α < 2 then

ΦX(u) = EeiuX =

exp {iuµ− δ|u|(1 + iβ 2
π
(sgnu) ln |u|)} if α = 1,

exp {iuµ− δα|u|α(1− iβ(sgnu) tan πα
2

)} if α 6= 1, 2.
(2.2)

In the remaining part of this chapter whenever random variable X is not explicitly

defined, it is assumed that X ∼ Sα(β, δ, µ).

Property 2.4.3 (Absolute moments). Assume α < 2. Then

E|X|p < +∞ for any 0 < p < α,

E|X|p = +∞ for any p ≥ α.

Thus higher order moments of stable random variables do not exist – stable distri-

butions are heavy–tailed. Property 2.4.5. does not apply when α = 2 and the corre-

sponding stable random variable is Gaussian.

Property 2.4.4 (Linear transformations). Let Y = aX + b where a 6= 0 and b are

real constants. Then

Y ∼ Sα(β(sgnα), δ|a|, aµ− 2

π
δβ · ln |a|a + b) if α = 1,

Y ∼ Sα(β(sgn a), δ|a|, a · µ+ b) if α 6= 1.

Property 2.4.5 (Additivity). Let X1 and X2 be independent random variables with

Xi ∼ Sα(βi, δi, µi), i = 1, 2. Then X1 +X2 ∼ Sα(β, δ, µ), with

β =
β1δ

α
1 + β2δ

α
2

δα1 + δα2
, δ = (δα1 + δα2 )1/α, µ = µ1 + µ2.

Hence stable random variables are additive, multiplicative and the stable family

is closed under summation.

As demonstrated by Yamazato (1978), all univariate α–stable distributions have

unimodal densities. Fast and reliable method to estimate parameters of univariate

α–stable distributions was provided by McCulloch (1986).

Note that if X1, X2 are independent stable random variables with different stabil-

ity indexes, then Property 2.4.5 does not apply. Therefore, in general, the expression

bX1+cX2 does not represent a stable random variable irrespective of the choice of real

constants b and c. A notable exception is a situation when X1 and X2 have the same
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distribution. Then the corresponding linear combination is again stable by the virtue

of Fact 2.4.1 i). In general, stable distributions are closed under weighted averages

only if their stability indexes match.

Property 2.4.6 (Mixture representation). Let X ∼ Sα(β, δ, 0) with α < 2. Then

there exist two i.i.d. random variables Y1 and Y2 with common distribution Sα(1, δ, 0)

such that

X
d.
=
(1 + β

2

)
Y1 −

(1− β
2

)
Y2 + δ

(1 + β

π
ln

1 + β

2
− 1− β

π
ln

1− β
π

)
if α = 1,

and

X
d.
=
(1 + β

2

)1/α
Y1 −

(1− β
2

)1/α
Y2 if α 6= 1.

Property 2.4.6 is attributed to Zolotarev, but no direct reference has been traced.

It implies that independent random variables Y ∼ Sα(1, δ, 0) may be treated as build-

ing blocks of stable distributions.

When α = 2, the random stable variable is Gaussian, has all moments finite

and its dependence structure is identified by the autocovariance function. However,

for α < 2 second moments no longer exist and thus this concept is not applicable.

Two popular ways1 to circumvent this obstacle are to introduce the notions of either

covariation (defined for 0 < α ≤ 1) or codifference (for 0 < α ≤ 2). For α = 2 both

are equivalent to the covariance functions.

Random stable vectors may be defined in the similar way2 as random variates.

Definition 2.4.2 (Stable random vector). A random vector X = (X1, . . . , Xn) in Rn

is said to be stable if and only if for any k ≥ 2 there exists a positive constant Ck and

a real vector Dk such that

X1 +X2 + . . .+Xk
d.
= CkX +Dk, (2.3)

where X1, . . . , Xk are independent copies of X and
d.
= denotes equality in distribution.

The vector X is said to be α–stable if Ck = k1/α. It is called strictly stable if formula

(2.3) holds with Dk = 0. It is called symmetric stable if it is stable and satisfies

P({X ∈ B}) = P({X ∈ −B}) for any Borel set B ∈ B(Rn).

Contrary to univariate case, multivariate stable vector does not necessarily need

to be α–stable. As in the univariate case, multivariate cdfs and pdfs are usually

1See: Samorodnitsky and Taqqu (2000), Subchapters 2.7 and 2,10.
2See: Samorodnitsky and Taqqu (2000), p. 57–59, Definition 2.1.2, Definition 2.1.4.
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known only in the form of series expansions. Definition 2.4.2 may be expressed

in the following, equivalent way.

Fact 2.4.7 (Equivalent multivariate definition). A random vector X is stable if for

any positive numbers A and B there is a positive number C and a vector D ∈ Rn

such that

AX1 +BX2
d.
= CX +D,

where X1, X2 are independent copies of X.

Random vector X is called α–stable if the formula above holds with C = (Aα+Bα)1/α.

A useful feature of stable random vectors is the fact that they are closed with

respect to linear combinations. In three distinct situations the fact that all the linear

combinations of given random vector are stable implies that this vector is itself stable.

Property 2.4.8 (Linear combinations). Let X = (X1, . . . , Xn) be a random vector

in Rn, define linear combination of the entries of X as
∑n

k=1 bkXk where bk ∈ R for

k ∈ {1, · · · , n}.
“⇒”) Let X be stable (respectively, strictly stable, symmetric stable) random vector.

Then any linear combination of the entries of X is a stable (respectively, strictly

stable, symmetric stable) random variable.

“⇐”) Let X be a random vector in Rn. If all linear combinations of the entries of X

i) are α–stable with α ≥ 1, then X is a stable random vector,

ii) have strictly (respectively, symmetric) stable distributions, then X is a strictly

(respectively, symmetric) stable random vector.

Multivariate stable distributions become much less tractable than their univari-

ate counterparts. In particular, their characteristic function no longer admits simple

parametrization, similar to equation (2.2). Instead, it is expressed1 by a multivariate

integral with respect to certain spherical measure σ(dv). The exact form of this mea-

sure valid in the case when the marginals are independent may be found in Samorod-

nitsky and Taqqu (2000) as Example 2.3.5.

Despite the few renowned applications in physics and a number of seminal papers

in finance, α–stable distributions did not become popular in Economics. There are

two main reasons. First of all, they have no variance and, for α < 1, no expected value.

Secondly, the magnitude of random values generated from α–stable distributions

is unrealistic. In result stable distributions, despite their superior sample fits, are

rarely used in (macro)economic simulations.

1For more references, see e.g. Sato (2005), p. 83–84.
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In order to exploit the ability of α–stable distributions to accommodate skew-

ness or capture inter temporal dependencies, less direct approach has to be taken.

Tempered stable distributions introduced in the next chapter are simply α–stable dis-

tributions with large jumps being tempered (damped). This procedure makes their

all moments finite while simultaneously preserving their desirable properties.

2.5 Conclusions

This chapter makes the following contributions.

First, it demonstrates that 1) heavy–tails in macroeconomic data are not an ex-

ception, 2) if not properly taken into account, heavy–tails may cause serious problem

in both estimation of and inference from econometric models.

Next, the chapter presents an overview of different ways leading to probability

distributions, capable of generating large deviations. It also provides an original

comparison of different classes of densities, shedding a new light on their applicability

in economics. It is argued that out of the diverse approaches to modelling large

deviations, tempered stable distributions (that will be properly defined in the next

chapter) are best suited to depict macroeconomic uncertainties.

Third, a concise review of the basic properties of α–stable densities is presented.

These properties are useful in the next chapter, where they are compared with char-

acteristics of tempered stable distributions.

Chapter 3 develops new tools that allow for the application of tempered stable

densities in modelling macroeconomic distributions.
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Chapter 3

Tempered Stable Distribution:

Properties, Moments, Estimation,

Randomization, Application

to Foreign Exchange–rates

This chapter develops the tools that are necessary to depict macroeconomic uncer-

tainties with tempered stable distributions.

3.1 Introduction

The subject of this chapter is the application of tempered stable distributions to quan-

tify macroeconomic risks. Alpha stable distributions, presented in chapter 2, are

renown for their ability to accommodate skewness and account for heavy–tails. How-

ever, as they possess no higher order moments, they typically generate random num-

bers of extreme magnitude even in small samples. Hence the idea to dampen prob-

abilities of obtaining large jumps. This operation preserves the desirable properties

of α–stable distributions (such as infinite divisibility) and delivers a density with

all moments finite. Such semi heavy–tailed distribution, endowed with favourable

theoretic properties, finite mean and variance, ability to replicate sample skewness

and excess kurtosis, is a natural candidate to depict macroeconomic risks. The den-

sity obtained by dampening probabilities of generating large draws from α–stable

distribution is further referred to as tempered stable (henceforth TS).

There is abundant literature in applied physics and finance on tempered stable

processes, tempered stable distributions are the increments of the latter. Hence
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the task of depicting macroeconomic risks with tempered stable densities appears

to be straightforward. This is not the case. The reason lies in differences between

characteristics of macroeconomic and financial distributions.

Financial data is typically disaggregated and endowed with high (daily, tick–

by–tick) frequencies. As noted by Boyarchenko and Levendorskii (2000), financial

distributions in the vicinity of median strongly resemble symmetric α–stable dis-

tributions (β ≈ 0). However, as market participants respond differently to gains

or losses, the tails of financial distributions are markedly asymmetric. To model

this lack of symmetry the probabilities of generating large either positive or negative

realizations of financial variables need to be dampened differently. When α–stable

distributions are fitted to financial densities, typical estimates of stability index α

do not exceed one.

Macroeconomic data, on the other hand, is aggregated and quoted at low fre-

quencies. The corresponding densities are typically moderately skewed in the centre

of distribution. As macroeconomic data is driven by fundamentals, the behavioural

argument that justifies different ways of dampening probabilities of large positive

and negative draws no longer applies. Therefore a more parsimonious setting, where

the random draws are being tempered just on the basis of their magnitude and irre-

spective of their sign, is typically preferred. When α–stable distributions are fitted

to macroeconomic densities, the elicited distributions are typically close to Gaussian

(α ≈ 2) and moderately skewed (|β| 6= 1).

The fact that α–stable distributions fitted to financial and macroeconomic data

display different parameter ranges has profound implications. First, it constraints

the variety of mathematical methods that can be used to treat the distributions valid

in macroeconomics. Any α–stable distribution with α < 1 and β = 1 is supported

by a real positive half–line and thus endowed with Laplace transformation. If α ≥ 1,

β = 1 and the domain of tempered stable random variable is constrained to [−c,+∞)

for some real constant c, then the two–sided Laplace transformation of the underlying

probability distribution exists. However, if α ≥ 1 and β 6= 1, the ways to treat tem-

pered stable densities lead either through Fourier transformation, or manipulation

of spectral measure. Second, different valid parameter ranges limit the applicabil-

ity of financial literature to macroeconomic modelling. Among financial applications

dampened mildly asymmetric α–stable distributions may be obtained only as incre-

ments of the processes, considered by Li (2007) and Kim et al. (2010b). However,

their results are not directly applicable to the problems, solved in this chapter.

While papers on applied stochastic processes are mostly irrelevant, the literature

on tempered stable distributions is scarce. Gravity of tails, moments and varia-
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tion of certain general families of distribution are investigated by Sztonyk (2010)

and Grabchak (2012). Kolossiatis et al. (2011) provide a construction that uti-

lizes tempered stable distributions to generate symplectic measures. The paper

by Chakrabarty and Meerschaert (2011) identifies the class of random walks that

converge to tempered stable density. Scherer et al. (2010) describe a Fast Fourier

Transform (FFT) algorithm, designed for symmetric distributions, which may be used

to approximate the density given parameters. The work of Kawai and Masuda (2011)

compares a variety of random generators for tempered stable distribution, but only

for a case when the stable density being tempered is fully skewed. The framework

proposed by Palmer et al. (2008) is even more limited, as only the distributions

concentrated on real positive numbers are considered. The tempered stable den-

sity investigated by Küchler and Tappe (2011) is the only general enough to befit

the purpose, outlined in the previous chapter. At the time when this thesis was

written the list above was complete. None of these papers treats the issue of ran-

dom number generation in non fully–skewed case. There is also no work that would

thoroughly investigates parameter estimation for tempered stable distributions.

This chapter develops the missing tools that are needed to depict macroeconomic

risks with tempered stable densities. These tools enable the reader to estimate the pa-

rameters of and generate pseudo–random numbers from tempered stable distribu-

tions, which in their general form are defined by non–probabilistic spectral measures.

The assembled toolbox contains a number of theoretic properties of tempered stable

distribution that make this density more tractable. It also includes a variety of dif-

ferent parameter estimators and three different randomization procedures. All these

results (many of which are new) are provided throughout the sections 3.2–3.5.

The contents of this chapter is as follows. First, the chapter contains a non–

standard definition of tempered stable distribution. This definition directly relates

tempered stable density to the underlying α–stable distribution, properly handles

the case of α = 1 and yields centred distribution for nil location parameter. Next,

it surveys the main properties of tempered stable densities, some of which were only

known in less general setting (α < 1, α 6= 1, β = 1). The corresponding proofs may

be found in Appendix B. The chapter also presents the complete set formulas for

cumulants and moments, previously known only for α 6= 1. In a form of Proposi-

tion 3.4.1 it proposes a new estimator for parameters of tempered stable distribution,

obtained via cumulant matching. It also presents an algorithm for generating random

draws from tempered stable density via rejection. The algorithm relies on a novel

Propositon 3.5.1, which represents tempered stable random variates as a mixture.

This algorithm is valid for all parameter values and may be written in just one line
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of code if some auxiliary procedures are already available. Out of the three imple-

mented procedures it is also demonstrated to be most accurate in the parameter

range, appropriate for macroeconomic distributions. Finally, the pdf charts in this

chapter were obtained using a novel Fourier Transform discretization scheme, which

generalizes the work of Mittnik et al. (1999). This algorithm, more efficient for asym-

metric densities, is provided in Appendix A.

The structure of chapter 3 is the following. Section two formulates a tractable,

operational definition of tempered stable distribution that will be used in the remain-

ing part of this text. It also describes its basic properties. The third section provides

the formulas for cumulants and moments of tempered stable densities. Section four

contains the outline of various parameter estimation techniques for tempered stable

distributions. The fifth section presents three methods of random number genera-

tion valid in the parameter range, characteristic for macroeconomic data. Section six

compares the quality of of pseudo–random draws thus obtained. The final section

concludes.

3.2 Definition and properties

A convenient parametric way to define tempered stable distribution is the following.

Definition 3.2.1 (Tempered stable distribution). Random variable X has tempered

stable distribution TSα(β, δ, µ, θ) if its characteristic function takes the form ΦX(u) =

eψX(u)+i(µ−µX)u where ψX(u) =

=

−
1

2 cos πα
2
δα[(1 + β)(θ − iu)α + (1− β)(θ + iu)α − 2θα] α 6= 1,

1
π
δ[(1 + β)(θ − iu) ln (θ − iu) + (1− β)(θ + iu) ln (θ + iu)− 2θ ln θ] α = 1,

(3.1)

and the centring term is µX = α(cos πα
2

)−1βδαθα−1 for α 6= 1 and µX = − 2
π
βδ(ln θ+1)

for α = 1. The admissible parameter values are α ∈ (0, 2), β ∈ [−1, 1], δ, θ > 0, µ ∈ R.

The formulation above is derived as probably most applicable special case of general

definition introduced by Rosiński (2007).

TS distributions evolved from the concept of α–stable distributions, which arise

from Central Limit Theorem as limit densities for i.i.d. jumps with heavy power–law

tails. Basic properties of α–stable distributions may be found in chapter 2. The idea

behind TS density is to alter α–stable distribution so that resulting density had lighter

tails. In order to obtain the desired effect, spectral α–stable measure (expressed in po-

lar coordinates) is multiplied by a weighting function which dampens probabilities
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of generating numbers with large modulus. This approach is known as tempering.

The densities obtained this way may retain desirable properties of α–stable distri-

butions, display better fit to the actual data and have higher order moments finite.

Chakrabarty and Meerschaert (2011) demonstrate that any random walk with power–

law jumps may be approximated with tempered stable density. Hence these distribu-

tions provide a universal model of accumulated jump. The density considered here

arises when spectral measure of univariate α–stable distribution is weighted with ex-

ponent function e−θ|x|. Therefore TS is also known as exponentially tempered stable

distribution.

Tempered stable distribution inherits parameters α, β and δ of the α–stable dis-

tribution being tempered. The tempering does not affect their qualitative properties:

α ∈ (0, 2) stands for departure from normality (if α = 2 the underlying α–stable

distribution is Gaussian), β ∈ [−1, 1] governs skewness (if β = 0 then both α–stable

and TS distribution are symmetric), δ > 0 displays scale–like behaviour. Additional

parameter θ > 0 measures how far the resulting distribution is from the underlying

α–stable density. While θ ≈ 0 indicates it is almost exactly α–stable, θ � 0 signals

a significant departure from the underlying distribution. Parameter µ ∈ R stands for

location.

TS distributions constitute densities of Smoothly Truncated Lévy Flights (STLF)

stochastic process introduced by Koponen (1995). Boyarchenko and Levendorskii

(2000) extended this initial concept, proposing Koponen–Boyarchenko–Levendorskii

(KoBoL) process. Finally, Rosiński (2007) defined a general family of tempered

stable Lévy processes. The class of infinitely divisible distributions that corresponds

to his approach is closed under convolution, self–decomposable, has natural extension

to higher dimensions, may display skewness, arbitrary gravity of tails and have all

moments finite (CLT may apply).

TS distribution is somehow similar to the well established Carr–Geman–Madan–

Yor (CGMY) distribution introduced in Carr et al. (2002). While both distributions

are special cases of Classical Tempered Stable (CTS) distribution that represents

the increments of KoBoL with single stability index α, CGMY results from asym-

metric tempering of symmetric α–stable measure while TS stems from uniform tem-

pering of arbitrary α–stable distribution. This difference translates to diverse tail

behaviour.

Contrary to some variants of Definition 3.2.1 used in finance (see e.g.: Bo-

yarchenko and Levendorskii (2000), Kim et al. (2010b)), the formulation above allows

to identify the underlying α–stable distribution. While tempered stable distributions

utilized in finance are endowed with more parameters, in case of macroeconomic
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data there is no clear evidence that the reactions of economic agents to upsurges

and downturns of indexes are asymmetric. Hence more parsimonious parametriza-

tion should be sufficient. If the definition of α–stable random variate in chapter 2

was extended to include Gaussian distribution (α = 2), then the tempered stable

distribution corresponding to α = 2 would again be Gaussian. This is because Lévy

measure of Gaussian density is equal to zero and thus it is not affected by tempering.

Hence Gaussian distribution would be the only stable density that is simultaneously

tempered stable.

Tempered stable distributions constitute a family of possibly skewed, leptokurtic

densities with all moments finite that are by construction infinitely divisible. They

are also endowed with few other useful properties inherited after α–stable distribu-

tions. Their main known features are listed in the remaining part of this section.

As macroeconomic distributions frequently display moderate skewness and excess

kurtosis, TS distribution might be remarkably useful in modelling macroeconomic

uncertainty via Monte Carlo simulation. This chapter provides easy to implement

randomization method that enables such experiments.

Out of results assembled in this chapter Properties 3.2.1 and 3.2.2 were originally

derived in more general forms by, respectively, Rosiński (2007) and Boyarchenko

and Levendorskii (2000). The results of Terdik and Woyczyński (2006) are useful

in verifying Rosiński existence conditions. Property 3.2.3 follows directly from basic

properties of stable distributions and Definition 3.2.1. For α 6= 1 general versions

of Property 3.2.4 and Corollary 3.3.1 were demonstrated by Kim et al. (2010a) and

Terdik and Woyczyński (2006). Property 3.2.5 was formulated for α < 1 by Küchler

and Tappe (2011). Property 3.2.7 was given in Appendix C of Terdik and Gyires

(2009) while Property 3.2.9 was derived by Nakao (2000). Both were only known for

β = 1. Properties 3.2.6 and 3.2.8 could not be traced in the literature, but seem

self evident. Definition 3.2.2 is new. All the supplementary proofs are relegated

t Appendix B.

In the remaining part of this chapter whenever referring to random variable X

it will be assumed that X ∼ TSα(β, δ, µ, θ). As for µ = 0 the resulting distribution

is centred, the statements collected below take particularly convenient form and are

more compact than their α–stable counterparts.

Property 3.2.1 (Existence of moments). R. v. X has absolute moments about the

origin of arbitrary order. Furthermore, for |u| ≤ θ its moment generating function

exists and is given by

MX(u) = ΦX(−iu).
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Property 3.2.2 (Limit distribution). If X ∼ TSα(β, δ, µ, θ) then in the limit for

α→ 0 we have

X ∼ (V1 − V2)/θ2

where V1, V2 are independent copies of V ∼ Gamma(1/2, θ).

Property 3.2.3 (Essential support). Distribution of random variable X ∼ TSα(β, δ,

µ, θ) is concentrated on [−µ,+∞) for α < 1 and β = 1, otherwise it is supported

by all real numbers.

Property 3.2.4 (Cdf). Cumulative distribution function of random variable X is given

by

FX(x) =
1

π
eρxRe

(∫ +∞

0

e−ixu
ΦX(u+ iρ)

ρ− iu
du
)
, x ∈ R, (3.2)

where ρ is arbitrary real number such that ρ ∈ (0, θ).

Property 3.2.5 (Existence of pdf). Probability density function fX(x) of random

variable X is well defined, unimodal and smooth, i.e. fX(x) ∈ C+∞(R).

For α < 1 and β = 1 pdf of tempered stable distribution may be elicited by expo-

nential tilting of the corresponding stable pdf, just as in Kawai and Masuda (2011).

Otherwise its closed form is not known.

When the underlying random variable X is endowed with unimodal pdf, its cdf

is necessarily strictly increasing and continuous. Hence Property 3.2.5 implies that

cdf of any tempered stable random distribution is invertible. The inverse of cdf will

be denoted as F−1X (y).

Figures 3.1–3.3 depict tempered stable densities for parameter β ∈ {0.25, 0.5, 0.75,

1}. On each graph parameter α amounts to 0.5, 1 and 1.5 on, respectively, top,

middle on bottom charts. For the sake of comparison, Figure 3.1 was drawn for

mild (θ = 0.2), Figure 3.2 – for moderate (θ = 1), while Figure 3.3 – for strong

(θ = 5) tempering. Figures 3.1–3.3 may be compared with stable densities, plot-

ted in Samorodnitsky and Taqqu (2000) on p. 36. Note that presenting a collection

of (potentially) heavy–tailed pdfs always entails a trade–off. Either all the charts are

plotted on the same interval, and thus it is possible to compare the shapes of distribu-

tions, or each density is drawn in the domain that reflects the gravity of its tails, and

thus it is possible to compare probabilities of large deviations. As one of the next sec-

tions is dedicated to measuring risk, associated with large losses, the latter approach

is taken. For the set of parameters given above the intervals that support pdfs are

extended and pdf are again evaluated, until densities, obtained at each interval end-
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points, fall below 10−3. The outputs of this procedure are depicted in Figures 3.1–3.3.

All the distributions are centred and endowed with unit variance (standardized).

Figure 3.4 depicts tempered stable distribution with β = 0 and parameter α ∈
{0.5, 1.0, 1.5, 1.9, 2}. Parameter θ amounts to 0.4, 1.0 and 5 on, respectively, top,

middle on bottom chart. Value 0.4 was used instead of θ = 0.2, as the latter for

α = 0.5 produced a density that was so spiky that the remaining four pdfs could

no longer be read from the picture. Again all the distributions are standardized.

Property 3.2.6 (Reflection). If Y = −X then Y ∼ TSα(−β, δ,−µ, θ).

In consequence pdf of X satisfies fX(x; β, µ) = fX(−x;−β,−µ) while its cdf fulfils

FX(x; β, µ) = 1− FX(−x;−β,−µ).

Property 3.2.7 (Linear transformations). If Y = aX + b where a 6= 0 and b are real

constants, then

Y ∼ TSα((sgn a)β, |a|δ, aµ+ b, θ/|a|). (3.3)

Property 3.2.8 (Additivity). If Xk ∼ TSα(βk, δk, µk, θ) are independent r.v.’s for

k = 1, 2 and Y = X1 +X2 then Y ∼ TSα(β, δ, µ, θ) with

β =
β1δ

α
1 + β2δ

α
2

δα1 + δα2
, δ = (δα1 + δα2 )

1
α , µ = µ1 + µ2.

Hence the outcome of summation of independent tempered stable random variates

remains tempered stable only if both α’s and θ’s match. This result is identical

to Property 2.4.5 of α–stable distributions given in chapter 2.

Property 3.2.9 (Scaling). Let fX(x;µ, θ) stand for a pdf of X, then

f ∗nX (x;µ, θ) = n−1/αfX(n−1/αx;n1−1/αµ, n1/αθ),

where f ∗nX stands for convolution power of order n.

If Y is a sum of n independent copies of X, then f ∗nX is pdf of Y .

Note that if X1, X2 are independent random variables with tempered stable distri-

butions, then the expression bX1 + cX2 does not have a tempered stable distribution

for all b, c ∈ R. However, the outcome of the convolution remains tempered stable

in the sense of Rosiński (2007). Furthermore, what follows from Properties 3.2.7 and

3.2.8, tempered stable distributions (in the sense of Definition 3.2.1) are no longer

self–decomposable.
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While multivariate tempered stable distribution might be defined through non–

probabilistic spectral measures as in Rosiński (2007), such characterization would not

be practical. Here a simple but more tractable multivariate extension of tempered

stable densities is proposed, which might be defined as follows.

Definition 3.2.2 (Multivariate tempered stable distribution). Let Xj be independent

random variables such that Xj ∼ TSα(βj, δj, 0, θ), given βj ∈ [−1, 1] and δj > 0 for

j ∈ {1, · · · ,m} while α ∈ (0, 2) and θ > 0. Assume A is an invertible (m × m)

matrix, set µj ∈ R for j ∈ {1, · · · ,m} and

β = (β1, · · · , βm)T , δ = (δ1, · · · , δm)T , µ = (µ1, · · · , µm)T , X = (X1, · · · , Xm)T .

Then a random vector

Y = µ+ AX

is said to have a multivariate tempered stable (mTS) distribution with parameters α,

β, δ, µ, θ and A. This relation will be denoted as Y ∼ mTSα(β, δ,µ, θ, A).

The following fact justifies the appropriateness of Definition 3.2.2. It follows from

the remark, communicated to the author by Mark M. Meerschaert.

Fact 3.2.10. If Y ∼ mTSα(β, δ,µ, θ, A) then the distribution of Y lies in Rosiński

(2007) class.

In particular, the distribution of Y is well defined and infinitely divisible. It also has

all the moments finite. Hence the structure of dependence between different random

variates may be captured in mTS density via correlation matrix.

The properties presented above allow for comparison of α–stable and tempered

stable distributions. The both classes share Properties 3.2.3, 3.2.5 and 3.2.6. Both

α–stable and tempered stable densities display additivity, the formulations of which

are almost identical (respectively, Propositions 2.4.5 and 3.2.8). The only difference is

that in order to conveniently add two independent α–stable random variates the un-

derlying densities are required to have the same stability index α, while in the tem-

pered stable case both α and θ are required to match. In contrast to α–stable dis-

tributions which possess no moments of the order higher than α (Property 2.4.3),

tempered stable densities have all moments finite (Property 3.2.1). The exact formu-

las for these moments follow from the characterization, provided in the next section

(Corollary 3.3.1). As all the moments exist, parameters of tempered stable distribu-

tion may be estimated by a variant of Method of Moments (Proposition 3.4.1 from

section 3.3). Furthermore, it is also possible characterize the structure of dependence
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between the marginals of the multivariate extension of tempered stable distributions

(Definition 3.2.2) with correlation matrix. As this extension relies on Fourier trans-

formation of probability measure, it is markedly more tractable than the definition

of stable random vector (Definition 2.4.1). However, it also does not possess the con-

venient Property 2.4.8, which is unique to stable densities. As Definition 3.2.1 implies

that for µ = 0 the corresponding density is centred, Property 3.2.7 (contrary to Prop-

erty 2.4.4) no longer requires two separate cases. By a similar token, the mixture

representation formulated as Proposition 3.5.1 in section 3.5 takes a more compact

form than Property 2.4.6.

3.3 Cumulants and moments

It follows from Property 3.2.1 from previous section that all moments of TSα(β, δ, µ, θ)

exist regardless of parameters. Section 3.3 provides the exact formulas for both

theoretical moments and cumulants of this distribution. For a given probability

density the comparison of sample and theoretic moments is a straightforward way

to evaluate the quality of any random number generator. In case of tempered stable

densities it is the only available approach to assess the accuracy of randomization

algorithm without tedious numerical approximations. The cumulants are an auxiliary

result, necessary to obtain the moments.

After Stuart and Ord (1994) define cumulants1 of integer order p as

κp =
1

ip

( dp
dup

ln ΦX(u)
)∣∣∣

u=0
.

The moments of tempered α–stable random variates are all finite, which implies

existence of all the cumulants, but do not take any convenient form. These cumulants

are highly tractable.

When α 6= 1 the cumulants may be elicited from Terdik and Woyczyński (2006).

For α = 1 their formulas are no longer valid and the cumulants need to be found

directly. Combining both sets of results yields

1Having different application in mind, Barndorff-Nielsen and Shephard (2012) rely on another
definition.
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Corollary 3.3.1 (Cumulants). If random variable X ∼ TSα(β, δ, µ, θ) then its cu-

mulants fulfil

κp =


µ if p = 1,

2δ
π
θ1−p(p− 2)!(Ip + βIp+1) if p 6= 1, α = 1,

α
∏p−1

j=1(j − α)(cos πα
2

)−1δαθα−p(Ip + βIp+1) if p 6= 1, α 6= 1,

(3.4)

where Ip = 2−1(1 + (−1)p).

Let SkwX stand for skewness, KurX denote excess kurtosis of random variable

X. For α 6= 1 formulas (3.89–3.90) from Stuart and Ord (1994) combined with

Corollary 3.3.1 imply

EX = µ, VarX = α(1− α)
(

cos
πα

2

)−1
δαθα−2,

SkwX = (2− α)β

√
cos πα

2

α(1− α)(δθ)α
, KurX =

(2− α)(3− α) cos πα
2

α(1− α)(δθ)α
.

If α = 1 it holds that

EX = µ, VarX =
2δ

πθ
, SkwX =

β√
δθ

√
π

2
, KurX =

π

δθ
.

It is possible to guarantee that the resulting distribution has unit variance by setting

appropriate δ > 0. If the density is standardised, skewness and excess kurtosis are its

third and fourth cumulant. Note that as KurX > 0 for all α ∈ (0, 2), TS distribution

is leptokurtic.

By µ
′
p and µp denote, respectively, moments about the origin and about the mean.

Given the cumulants, recursion formula from p. 88–91 in Stuart and Ord (1994) yields

moments

µ
′

p = κp +

p−1∑
j=1

(
p− 1

j − 1

)
κjµ

′

p−j.

Moments about the origin of order p are polynomials of order p of the first p cumulants

µ
′

1 = κ1, µ
′

2 = κ2 + κ21, µ
′

3 = κ3 + 3κ2κ1 + κ31,

µ
′

4 = κ4 + 4κ3κ1 + 3κ22 + 6κ2κ
2
1 + κ41,

µ
′

5 = κ5 + 5κ4κ1 + 10κ3κ2 + 10κ3κ
2
1 + 15κ22κ1 + 10κ2κ

3
1 + κ51, . . . .
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The central moments fulfil the similar set of equations with κ1 = 0, i.e.

µ1 = 0, µ2 = κ2, µ3 = κ3,

µ4 = κ4 + 3κ22, µ5 = κ5 + 10κ3κ2, . . . .

We can always choose µ = 0 and δ > 0 such that the resulting distribution

is standardised. If convenient, we may change the parametrization and drop the term

µX in (3.1). As it affects only the first cumulant, the expected value of the resulting

distribution becomes κ1 = µX + µ while all the remaining results still hold.

3.4 Outline of estimation

This section is dedicated to estimation of parameters of tempered stable distributions.

It covers a number of feasible approaches, ordered from analytically tractable to nu-

merically intensive. These methods are: Cumulant Matching, Numerical Method

of Cumulants, Numerical Method of Moments, Numerical Maximum Likelihood and

Empirical Characteristic Function estimator. It also treats the issue of dimension

reduction and applying different numerical solvers.

The problem of parameter estimation for TS distributions has been barely touched

in the literature. The paper by Terdik and Gyires (2009) provides the only method

that was 1) described along with implementation details in the original paper and 2)

applied to real data. This paper relied on analytical and numerical cumulant match-

ing. What is typically given in the literature are just numerical estimates of Maximum

Likelihood (ML) with no implementation details. The works of Scherer et al. (2010)

and Bianchi et al. (2013) do contain significant amount of details, but only regarding

characteristic function inversion. More complex route is taken by Li et al. (2012), who

perform a spectral estimation of CTS parameters via the Generalized Method of Mo-

ments (GMM) with continuum of moment conditions. The formulas for the weights

that attain the efficiency of ML estimators are not known in CTS case, hence their

approach is less efficient than ML. As this technique was tailored to stochastic volatil-

ity models, it may be difficult to apply in different setting. Contrary to what they

claim, Küchler and Tappe (2011) did not solve the problem of parameter estimation

for CTS distribution. In their paper the estimates that solve equations 3.5 are re-

quired first to obtain the estimators. Hence the problem they did solve is inverse

to estimation problem.
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Throughout this section it is always assumed that x1, . . . , xn are independent

realizations ofX ∼ TSα(β, δ, µ, θ). Data vector x is defined as (x1, . . . , xn). Whenever

dependence on the parameters is important, moments about the origin of order p

are denoted as µ
′
p(α, β, δ, µ, θ), cumulants of order p with κp(α, β, δ, µ, θ), pdfs with

fX(x;α, β, δ, µ, θ) and characteristic functions as ΦX(u;α, β, δ, µ, θ).

Perhaps the easiest approach to parameter estimation is to obtain the estimates

via Cumulant Matching (CM). For integer k denote sample cumulants as κ̂p. Note

that if µ̂
′
p stands for sample moment about the origin of integer order p, i.e.

µ̂
′

p =
1

n

n∑
k=1

xpk,

then the formulas from previous section may be inverted to yield

κ̂1 = µ̂
′

1, κ̂2 = µ̂
′

2 − κ̂21, κ̂3 = µ̂
′

3 − 3κ̂2κ̂1 − κ̂31,

κ̂4 = µ̂
′

4 − 4κ̂3κ̂1 − 3κ̂22 − 6κ̂2κ̂
2
1 − κ̂41,

κ̂5 = µ̂
′

5 − 5κ̂4κ̂1 − 10κ̂3κ̂2 − 10κ̂3κ̂
2
1 − 15κ̂22κ̂1 − 10κ̂2κ̂

3
1 − κ̂51, . . . .

Cumulant Matching relies on the observation that, when sample size increases, sample

cumulants by the Strong Law of Large Numbers converge almost surely to their

analytical counterparts. Hence in sufficiently large samples they should be good

approximations of theoretic cumulants from Corollary 3.3.1. If we assume they are

exactly equal for as many low–order (non–zero) sample cumulants as there are (non–

zero) parameters, the solution to the system of equations

κ̂p = κp for p ∈ {1, . . . ,m} (3.5)

with m ≥ 5 yields the estimates.

Cumulant Matching is a variant of Method of Moments (MM). As noted by Press

(1967), the estimates thus obtained are consistent, but not necessary sufficient or ef-

ficient. Furthermore, as they are functions of sample moments, the large sample

distribution of the cumulant estimators will be normal.

Note that given Corollary 3.3.1, the main difficulty in eliciting the estimators lies

in solving a system of five non–linear equations. Contrary to a linear case, in non–

linear systems it may be difficult not only to obtain the desired solution, but even

to demonstrate it actually exists. However, in this case the cumulants of TS dis-

tribution may be directly mapped to parameters. The estimators disentangled from
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the initial equations are given in the proposition below, along with the corresponding

existence conditions.

Proposition 3.4.1 (Cumulant matching estimators). Assume that κ̂4 > 0.

i) If κ̂3 6= 0, κ̂5 6= 0 and κ̂5κ̂2 6= κ̂4κ̂3 with (κ̂5κ̂2 − κ̂4κ̂3)/κ̂4κ̂3 6= 2, then CM

estimators of all parameters exist if and only if

κ̂5κ̂2
κ̂4κ̂3

≤ 2κ̂4κ̂2
κ̂23

− 1,

these estimators are given by

α̂ = 2
(

1− κ̂4κ̂3
κ̂5κ̂2 + κ̂4κ̂3

)
, β̂ =

κ̂5κ̂2 − κ̂4κ̂3
2κ̂4κ̂2

θ̂, δ̂ =
( κ̂2 cosπα̂/2

α̂(1− α̂)

)1/α̂
θ̂ 2/α̂−1,

µ̂ = κ̂1, θ̂ =

√
2κ̂3κ̂2(κ̂5κ̂2 + κ̂4κ̂3)

(κ̂5κ̂2 − κ̂4κ̂3)2
. (3.6)

ii) If κ̂3 6= 0, κ̂5 6= 0 and κ̂5κ̂2 6= κ̂4κ̂3 but (κ̂5κ̂2 − κ̂4κ̂3)/κ̂4κ̂3 = 2, then CM

estimators of all parameters exist if and only if

κ̂23
κ̂4κ̂2

≤ 1

2
,

these estimators are given by

α̂ = 1, β̂ =
κ̂3
κ̂2
δ̂, δ̂ =

π

2
κ̂2θ̂, µ̂ = κ̂1, θ̂ =

√
2κ̂2
κ̂4

. (3.7)

iii) If κ̂3 = 0, κ̂5 = 0 and κ̂6κ̂2 6= κ̂24 with

(4κ̂24 +
√
κ̂26κ̂

2
4 + 14κ̂6κ̂24κ̂2 + κ̂44)/(κ̂6κ̂2 − κ̂24) 6= 3,

then CM estimators of all parameters exist if and only if

3κ̂6κ̂2 > 10κ̂24,

these estimators are given by

α̂ =
5

2
− 1

2(κ̂6κ̂2 − κ̂24)

(
4κ̂24 +

√
κ̂26κ̂

2
4 + 14κ̂6κ̂24κ̂2 + κ̂44

)
, β̂ = 0,
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δ̂ =
π

2
κ̂2θ̂, µ̂ = κ̂1, θ̂ =

√
(14− 4α̂)

κ̂4κ̂2
κ̂6κ̂2 − κ̂24

. (3.8)

iv) If κ̂3 = 0, κ̂5 = 0 and κ̂6κ̂2 6= κ̂24 but

(4κ̂24 +
√
κ̂26κ̂

2
4 + 14κ̂6κ̂24κ̂2 + κ̂44)/(κ̂6κ̂2 − κ̂24) = 3,

then CM estimators of all parameters are

α̂ = 1, β̂ = 0, δ̂ =
π

2
κ̂2θ̂, µ̂ = κ̂1, θ̂ =

√
2κ̂2
κ̂4

. (3.9)

In all the remaining cases CM estimator of at least one parameter does not exist.

Note that for β = 0 all sample cumulants of odd orders are equal to zero and thus

can not be used to estimate the remaining parameters. This is why the formulas,

presented in point iii) in the statement above, depend only on sample cumulants

of even orders. It is reasonable to use part iii) of Proposition 3.4.1 only if κ̂3 ≈ κ̂5 ≈ 0

and part ii) or iv) only if we obtain α̂ ≈ 1 from either part i) or iii). Thus in a typical

situation part i) is sufficient.

Albeit technically convenient, estimators given above are of little practical use.

The reason is that CM estimators rely on asymptotic results that do not work well

in small1 samples. The main culprits are: non–linearity of the estimator formulas,

interdependence of estimates and heavy–tails of the underlying distribution.

It is clear that the fitted estimates will always be distorted versions of true esti-

mates. This is because sample cumulants in finite samples will not be equal to theo-

retic cumulants, hence the set of true estimates will not fulfil equation (3.5). When

sample cumulants are treated as approximations of theoretic cumulants and inserted

into CM estimators, approximation errors may be amplified due to non–linearity

of equations (3.6)–(3.9). As estimator formulas are interdependent, these errors may

add up across the estimates of different parameters. Furthermore, as the underlying

distribution is heavy–tailed, higher order cumulants may be dominated by just a few

largest observations and thus vary wildly even across large samples. Therefore ES

estimators tend to be fragile. It is also not clear whether the estimates that solve

the distorted system of non–linear conditions are good approximation of true parame-

ter values. Finally, as the four cases listed in Proposition 3.4.1 are not exhaustive, CS

estimators are not guaranteed to exist. In general, it seems that this fully tractable

method entails serious problems that can not be easily solved.

1Here small may mean well above 10, 000.
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When analytical approaches fail, it is frequently reasonable to resort to compu-

tationally intensive methods. These are numerical versions of: Cumulant Matching,

Method of Moments, Characteristic Function Matching and Maximum Likelihood.

In all these cases the admissible parameter range is constrained with α ∈ (0, 1),

β ∈ [−1, 1], δ, θ > 0 and µ ∈ R.

The first possible approach is to follow the steps of Terdik and Gyires (2009).

First assume that the system of equations, utilized to derive CM estimator, holds only

approximately. Then the desired parameter estimates may be obtained numerically

by minimizing the distance between two vectors – sample cumulants and theoretic

cumulants, implied by the estimates. A popular way to measure distance in this

type of application is Euclidean norm. Then the minimand is a sum of squares.

Analytical solution to the cumulant matching problem is still useful, it may serve

as a starting point for non–linear solver. If sample cumulants of order higher than

5 contain a relevent information on the shape of the underlying distribution it may

often be beneficial to include them into the minimand. The resulting Numerical

Method of Cumulants (NMC) estimator is given by

(α̂, β̂, δ̂, µ̂, θ̂) = argmin
m∑
p=1

(
κ̂p − κp(α, β, δ, µ, θ)

)2
, m ≥ 5. (3.10)

A similar estimator was applied by Terdik and Gyires (2009) in their Appendix D

to elicit parameters of totally skewed (β = 1) TS distributions. In case of internet

traffic data they investigated the quality of estimates was best when first eight sample

cumulants (m = 8) were accounted for. Note that m > 5 may make the estimates

either more robust or more fragile, depending on scaling of the data.

Another route to parameter estimation is to utilize Method of Moments. Al-

though theoretical MM estimator could be likely derived for TS distribution, this

possibility will not be explored any further. As Method of Moments estimators are

asymptotically equivalent to Cumulant Matching they would display similar finite

sample features. Hence any MM estimator would have all the weaknesses of the esti-

mator derived above while it would be deprived of its main strength – tractability that

stems from compact formulas, given in Corollary 3.3.1. However, an approach worth

investigating is using Numerical Method of Moments (NMM) estimator, defined by

(α̂, β̂, δ̂, µ̂, θ̂) = argmin
m∑
p=1

(
µ̂
′

p − µ
′

p(α, β, δ, µ, θ)
)2
, m ≥ 5. (3.11)

The reason is that, albeit NMM is asymptotically equivalent to NMC, both methods
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display slightly different small sample properties. A set of two alternative estima-

tors with different minimands might also be useful on data sets where identification

problems arise due to numerical reasons.

The third, less tractable method is Maximum Likelihood. As pdf (in form of an in-

finite series expansion) is only available (Kawai and Masuda, 2011; Palmer et al.,

2008) for α < 1 and β = 1 Maximum Likelihood estimators can not be directly

used in general case. However, a numerical approximation of ML estimates may be

easily obtained if we can approximate pdf values in consecutive points of the sample.

Note that this problem is essentially solved if we can evaluate pdf in equally spaced

points over the essential support of the distribution. Then for each k ∈ {1, . . . , n}
value fX(xk) could be approximated with a cubic spline interpolation. Numerical

cost of such approximation is negligible.

Let xl = a+hl with l = 0, . . . , N and h = (b−a)N−1 for some real a < 0 < b and

large integer N . Pdf values in each xl are given by inverse Fourier transformation

of the characteristic function

fX(xl) =
1

2π

∫ +∞

−∞
e−iuxl · ΦX(u) du, l = 0, 1, . . . , N.

If ΦX(u) decays fast enough this integral can be truncated, approximated by a fi-

nite sum and conveniently computed via Fast Fourier Transform. In Appendix A.2

the modified version of Mittnik et al. (1999) FFT algorithm is presented that may

be conveniently utilized to obtain the values of fX(xl). This version evaluates pdf

over asymmetric interval [a, b] while the original algorithm requires a := −b.
After a numerical method to invert Fourier transform is selected we may define

an (approximate) Numerical Maximum Likelihood estimator as

(α̂, β̂, δ̂, µ̂, θ̂) = argmax
n∏
k=1

f̃(xk;α, β, δ, µ, θ), (3.12)

where f̃(xk;α, β, δ, µ, θ) stands for a cubic spline interpolation described above. The

outputs of Proposition 3.4.1, obtained at modest computational cost, may be set as

a starting point for numerical maximization of likelihood.

The fourth and most computationally intensive approach is to use Empirical Char-

acteristic Function (ECF) estimator described in Yu (2004). This approach is essen-

tially a special case of GMM with continuum of moment conditions. It also relies

on numerical minimization of (weighted) distance, but now the objects proximity

of which is desirable is characteristic function ΦX(u) and its sample counterpart.
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Define sample characteristic function as

Φ̂(u) =
1

n

n∑
k=1

eiuxk ,

then ECF estimator takes the form of

(α̂, β̂, δ̂, µ̂, θ̂) = argmin

∫ +∞

−∞

∣∣∣Φ̂(u)− ΦX(u;α, β, δ, µ, θ)
∣∣∣2g(u) du, (3.13)

where |z| ≡
√
zz̄ for z ∈ C and g(u) is a preselected weighting function.

The aim of all four computationally intensive methods is to obtain an ensemble

of five estimates. A convenient way to decrease the number of estimated parameters

(and the computation time required) is to fit the distribution to standardized data.

As noted by Scherer et al. (2010), standardization of the data may be used to control

the errors of numerical approximations. Assume m and s stand for, respectively,

sample mean and sample standard deviation of x1, . . . , xn, define Y ∼ s−1(X −m).

On the sample of yk = s−1(xk − m) for k = 1, . . . , n estimate (via any preferred

method) parameters of TSα(β, δstd(α, θ), 0, θ) where

δstd(α, θ) =


(

cosπα/2
α(1−α)

)1/α
θ 2/α−1 α 6= 1,

π
2
θ∗ α = 1,

(3.14)

The constraint above implies that VarY ≡ 1. As X ∼ sY + m, random vari-

able X is a linear transformation of Y . By Property 3.2.7 the distribution of X

is TSα(β, s · δstd(α, θ),m, θ/s). Thus the estimates (α̂, β̂, δstd(α̂, θ̂), 0, θ̂) obtained for

the standardized data are consistent with (α̂, β̂, s·δstd(α̂, θ̂),m, θ̂/s) being appropriate

for the non–standardized data.

The last issue treated in this section is the choice of numerical minimization rou-

tine. MATLAB offers two different solvers that could deal with this type of tasks –

fmincon in case of constrained minimization problems and fminunc for non–constrain-

ed problems. As parameter space of TS distribution is constrained – α ∈ (0, 1),

β ∈ [−1, 1], δ, θ > 0 – fmincon routine seems to be appropriate. However, when this

procedure hits parameter boundary it terminates, instead of going one step back and

changing the search direction. This feature makes fmincon routine of limited use

in case of data sets where parameter identification becomes a problem due to numer-

ical reasons. Therefore, due to constrained solver implementation issues, it is often

convenient to perform numerical minimization via an unconstrained algorithm. Then
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Figure 3.5: Spline–smoothed, normalised sample histogram of 1 week EURIBOR (ACT/365)
offered rate (magenta solid line) versus fitted distributions: Gaussian (cyan dash–dotted line) and TS
(violet dashed line). Numerical (approximate) Maximum Likelihood parameter estimates obtained

for TS were: α̂ = 0.478, β̂ = −0.009, δ̂ = 0.018, µ̂ = −0.001 and θ̂ = 5.704.

what is passed to the solver is an unconstrained real vector that needs to be con-

verted to an appropriate parameter range in the body of the minimized function.

What is required to follow this route is an invertible mapping that transforms uncon-

strained real vector into the desired parameter space. A mapping that fulfils all this

requirements is given below. Assume F is defined as

F (y1, y2, y3, y4, y5) =
( 2

π
arctan dy1 + 1,

2

π
arctan dy2, e

y3/d, y4/d, e
y5/d
)

(3.15)

for arbitrary real d > 0. Then mapping F : R5 → (0, 2) × [−1, 1] × R+ × R × R+

is invertible and

F−1(x1, x2, x3, x4, x5) =
(1

d
tan

π(x1 − 1)

2
,

1

d
tan

πx2
2
, d lnx3, dx4, d lnx5

)
. (3.16)

Constant d above is a scaling factor which either squeezes the chart of the function

to avoid identification problems and speed up convergence, or stretches it to increase

accuracy of the estimates.

To assess the quality of the proposed estimation procedures TS distribution was

fitted to the increments of one–week EURIBOR (EURo Inter–Bank Offered Rate) of-

fered rate quoted from 30–th December 1998 to 30–th December 2011. While in an ac-

tual model of the inter–bank offer rate the parameters of this density would have to

be estimated on model residuals, this exercise has a more modest aim of verifying the
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capability of TS density to depict the observed data. Thus, although the recorded

values are most likely not independent and identically distributed, the distribution

was fitted directly to the raw observations.

In order to obtain the estimates of parameters a feasible starting point for a nu-

merical solver was first found by Proposition 3.4.1. Next numerical maximization

of likelihood approximated with cubic spline was performed by an inverse FFT algo-

rithm from Appendix A.2. The spline smoothed sample histogram and the resulting

TS pdf are depicted in Figure 3.5. This picture may be compared with the chart

on p. x. in Rachev (2003), which represents the pdf of α–stable distribution fitted

to the increments of the same financial variable. The fitted value of characteristic

exponent is equal to 0.478. If the data were quoted at even higher frequency, this

estimate would typically decrease.

3.5 Random numbers generation

This section is dedicated to generating random draws from a tempered stable distri-

bution. It contains a new random number generation algorithm that is easy to im-

plement and valid for the entire parameter range. This procedure relies on the novel

result, presented below as Proposition 3.5.1. Next, the sixth section outlines the two

alternative approaches applicable in the parameter range plausible for macroeconomic

data. The following two sections extend results presented in Jelonek (2012).

An important property of tempered stable distributions utilized below is that

every TS random variable might be expressed as weighted average of two indepen-

dent TS random variates with β = 1. The similar result for α–stable distributions

may be found in the previous chapter as Property 2.4.6. This result is attributed

to Zolotarev, but no direct reference has been traced. The following representation

stems from Definition 3.2.1 and is employed further on to generate random numbers

from TS distribution.

Proposition 3.5.1 (Mixture representation). Let Y +, Y − be independent, set Y ± ∼
TSα(1, 1, 0, θ±), set V ± = δ(1±β)1/α2−1/α, θ± = θV ±, then X = V +Y +−V −Y −+µ

∼ TSα(β, δ, µ, θ).

This result provides foundation for Algorithm 2. It may be extended to CGMY

by altering θ±.

Mixture representation formulated above takes a particularly convenient form due

to the choice of parameterisation. If the term µX is omitted in Definition 3.2.1, then
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this equation needs to be corrected for α = 1. The exact form of this correction

depends on β.

The issue of random number generation for TS distribution has not been solved

yet in a satisfactory way. Methods that are fast and easy to implement are only

available for certain parameter values. Four algorithms – rejection by Brix (1999),

generalized Kanter method by Devroye (2009), Laplace transform inversion by Ridout

(2009) and approximate exponential rejection by Baeumer and Meerschaert (2010)

– where dedicated to generating random draws from exponentially tempered stable

distributions. However, the first is valid only for α < 1, the latter requires that

β = 1 while the remaining two are applicable if both conditions hold. In the general

case only generic methods – shot–noise representation of Cohen and Rosiński (2007),

compound Poisson approximation algorithms proposed in Kawai and Masuda (2011)

or rejection–squeeze technique by Devroye (1981) – remain viable. The expectation

of shot–noise infinite series representation matches the expectation of tempered sta-

ble random variable only in the limit. Hence every finite truncation of shot–noise

series is by construction biased. As it was designed to generate an entire trajectory

of stochastic process, shot–noise is extremely inefficient method to generate random

numbers. Compound Poisson approximation algorithms are by construction inexact,

they also require prior generation of multiple auxiliary random variates as a prerequi-

site to obtain a single pseudo–random draw. As it is reasonable to expect the first two

approaches would be either imprecise or slow, rejection–squeeze algorithm remains

the only promising option. No results for any of these methods have been reported

for α ≥ 1 and |β| 6= 1.

Intuition suggests that TS distributions, particularly relevant in modelling macroe-

conomic data, display moderate departure from Gaussianity and mild skewness, which

translates to α ≥ 1 and |β| 6= 1. However, as Palmer et al. (2008) and Kawai and

Masuda (2011) in their numerical experiment consider only β = 1 (the former also

assumes α < 1), there is no literature treating this case. The aim of this section

is to bridge this gap.

The problem investigated further is formulation of random number generator

valid for all admissible values of α and β. The proposed method is easy to implement

and much faster than the alternative approach of Devroye (1981) for moderately

tempered distributions. The new algorithm relies on mixture representation of TS

random variables (given as Proposition 3.5.1) that is parallel to decomposition prop-

erty of α–stable random variates (Property 2.4.6 in chapter 2). It is valid for all

parameter values and may be written in just one line of code, provided that random

numbers generation for TS distribution with β, δ = 1 is readily available. Hence
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it is particularly easy to implement.

In order to utilize the mixture representation a method to generate Y ± from

TSα(1, 1, 0, θ±) distribution is first required. Although a number of different algo-

rithms might be used to generate TS random variates Y ± endowed with β = 1, solely

the procedure proposed by Baeumer and Meerschaert (2010) will be utilized. Out

of all the methods investigated by Kawai and Masuda (2011) this algorithm per-

formed best in terms of accuracy and computation time. Assume Sα(1, 1, 0) stands

for α–stable distribution with unit skewness β and scale δ and naught location µ, de-

fined as in Samorodnitsky and Taqqu (2000). Equate c to sufficiently low percentile

of this distribution. Baeumer and Meerschaert algorithm is the following.

Algorithm 1 (Baeumer & Meerschaert, 2010)

Step 0. Determine constant c.

Step 1. Generate U ∼ U(0, 1), V ∼ Sα(1, 1, 0).

Step 2. If U ≤ e−θ(V+c), return Y = V − αθα−1/ cos πα
2

for α 6= 1

or Y = V + 2(ln θ + 1)/π for α = 1, otherwise go to Step 1.

Algorithm 1 returns pseudo–random number Y drawn from TSα(1, 1, 0, θ).

Note that the scope of this algorithm is limited as it is viable only if β = 1.

If α ≥ 1 constant c in Algorithm 1 depicts truncation threshold of α–stable dis-

tribution supported on the entire real line. Hence the resulting procedure is approx-

imate. As demonstrated in Brix (1999), for α < 1 and c = 0 this rejection becomes

exact. Random draws from Sα(1, 1, 0) may be generated with rdnsta procedure1

by McCulloch, based on Chambers et al. (1976).

The following procedure stems directly from Proposition 3.5.1.

Algorithm 2 (Mixture representation)

Step 0. Set V ± = δ(1± β)1/α 2−1/α, θ± = θV ±.

Step 1. Generate independent Y + ∼ TSα(1, 1, 0, θ+), Y − ∼ TSα(1, 1, 0, θ−).

Step 2. Return X = V +Y + − V −Y − + µ.

Algorithm 2 returns pseudo–random number X obtained for TSα(β, δ, µ, θ).

Unlike most available methods Algorithm 2 is viable for all parameter values, includ-

ing α ≥ 1 and |β| 6= 1. Note that its output is endowed with arbitrary values of both

β and δ.

1Available at: econ.ohio-state.edu/jhm/programs/RNDSSTA.
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The remaining part of this section contains the description of two additional

randomization algorithms valid for the entire parameter range of TS distribution.

These methods will be utilized further on to draw a comparison with Algorithm 2 that

builds on Proposition 3.5.1. Algorithm 3 is a benchmark where pseudo–random draws

are generated by an inverse of piecewise linear cdf approximation obtained via Fast

Fourier Transform (FFT). Algorithm 4 relies on rejection-squeeze technique proposed

by Devroye (1981). The results obtained for the algorithm proposed in the previous

section are compared with the outcomes of these two procedures.

Perhaps the easiest way to obtain alternative (benchmark) random draws from TS

distribution is to invert approximated cdf. Let F (x) be the cdf of TSα(β, δ, 0, θ) with

essential support [a, b] and pdf f(x). Assume N is large integer, for k = 0, . . . , N − 1

denote xk = a+ hk with h = (b− a)/N . The numerical inversion of linearly approx-

imated cdf may be implemented as follows.

Algorithm 3 (Cdf inversion)

Step 0. Evaluate F (x0), . . . , F (xN−1) .

Step 1. Generate U ∼ U(0, 1). Find n such that F (xn) ≤ U < F (xn+1).

Step 2. Return X = xn + h(U − F (xn))(F (xn+1)− F (xn))−1 + µ.

Algorithm 3 returns pseudo–random number X obtained for TSα(β, δ, µ, θ).

In Algorithm 3 cdf is approximated by a piecewise linear function.

To implement Algorithm 3 pointwise values of F (xk) need to be first evaluated.

If pdf proxies are initially obtained by FFT, the sought quantities may be found from

F (xk+1) = F (xk) + hf(xk) under boundary condition F (x0) = 0. In Appendix A.2

the modified version of Mittnik et al. (1999) FFT algorithm is presented that may

be conveniently utilized to obtain the values of f(xk). This version evaluates pdf over

asymmetric interval [a, b] while the original algorithm requires a = −b.
The final algorithm considered relies on the rejection–squeeze technique. Given

d1 =
1

2π

∫
R
|ΦX(u)| du, d2 =

1

2π

∫
R
|Φ(2)

X (u)| du

the result formulated by Devroye (1981) states that pdf f(x) of TSα(β, δ, 0, θ) fulfils

∀ x ∈ R : f(x) ≤ min {d1, d2/x2}. (3.17)

This inequality was originally utilized to derive the following rejection–squeeze algo-

rithm.
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Algorithm 4 (Devroye, 1981)

Step 0. Evaluate d1 and d2.

Step 1. Generate independent U ∼ U(0, 1), V,W ∼ U(−1, 1).

Set Y =
√
d2/d1 · V/W . If |V | < |W |, then go to Step 3.

Step 2. If U < f(Y )Y 2/d2, then return X = Y + µ. Otherwise, go to Step 1.

Step 3. If U < f(Y )/d1, then return X = Y + µ. Otherwise, go to Step 1.

Algorithm 4 returns pseudo–random number X drawn from TSα(β, δ, µ, θ).

The expected number of times Step 1 is executed to generate one random number

is 4
√
d1d2.

In order to run Algorithm 4 some preliminary work is required. First of all,

the formula for second order derivative of ΦX(u) has to be found. Define Cα,δ =

αδα(cos πα
2

)−1/2, then for α 6= 1 this derivative is

Φ
(2)
X (u) = −Cα,δ(Cα,δ[(1 + β)(θ − iu)α−1 − (1− β)(θ + iu)α−1 − 2βθα−1]2+

+(1− α)[(1 + β)(θ − iu)α−2 + (1− β)(θ + iu)α−2]) · ΦX(u),

while for α = 1 it holds that

Φ
(2)
X (u) = − δ

π
(
δ

π
[(1+β) ln (θ − iu)−(1−β) ln (θ + iu)−2β ln θ]2+2

θ + iβu

θ2 + u2
) ·ΦX(u).

Secondly, the integrals have to be determined. As analytic results for d1 and d2

seem difficult to compute it is probably necessary to approximate both quantities

numerically. Finally, the pdf of TS distribution needs to be evaluated in arbitrary

points of its domain. If the pdf is first approximated in the points equally spaced

over its essential support (as in Algorithm 3), this last step may be done via cubic

spline interpolation performed on each subinterval.

Note that in case of α ≥ 1 there are no known formulas for pdf of TS distribution.

Furthermore, it is no longer possible to follow the route of Kawai and Masuda (2011)

and elicit the pdf from the relation, binding densities of TS distribution and α–stable

distribution being tempered. The reason is that for |β| 6= 1 this identity does not hold.

Therefore in Algorithm 3 and 4 Fourier inversion of characteristic functions is utilized.

As Devroye (1981) procedure is exact and the underlying pdf approximation involves

(in addition) cubic splines, it is reasonable to conjecture that Algorithm 4 would

be more precise than Algorithm 3.
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3.6 Evaluation of random number generation al-

gorithms

The purpose of section seven is to evaluate the quality of random numbers, generated

by Algorithm 2, 3 and 4 from section six.

In the numerical exercise conducted below the main criterion used to evalu-

ate the competing procedures was precision of mean sample moments. There are

three reasons for it. First, in order to compute minimum distance measure, such

as Kolmogorov–Smirnov metric1, theoretical results for cdfs are required. As formu-

las for cdf of TS are only known in the form of integral (see Property 3.2.4), it would

have to be approximated numerically. This approach favours randomization methods

that rely on the same approximation. Next, formulas for cumulants and moments

of TS distribution constitute the only available theoretic result that can be used to as-

sess the quality of random numbers generator. Any other approach would necessarily

resort to numerics, the same procedures that were once used to produce the output

would have to be rerun to establish validity of these results. This could obfuscate po-

tential errors if any of these routines were faulty. Finally, sample moments are easier

to interpret and allow for more intuitive assessment of the results thus obtained.

The objective of the experiment presented in this section is to confirm the gen-

eral validity of the proposed randomization procedures and to compare their qual-

ity. Thus, in contrast to section 3.7, we focus on samples that would be typically

regarded as large. Another, more extensive expercise would be required in order

to assess the small sample performance of all the investigated routines. While such

experiment lies outside of the scope of this thesis, its results could possibly vary with

the size of simulated samples.

In order to compare the quality of random numbers generated with Algorithm 2

and by the remaining two approaches the following exercise was undertaken. Each

procedure was run with 64 different sets of parameters, defined as all possible combi-

nations of α ∈ {1.2, 1.4, 1.6, 1.8}, β ∈ {0, 0.25, 0.5, 0.75} and θ ∈ {0.25, 0.5, 0.75, 1},
to obtain 100 samples of 106 pseudo–random numbers. This parameter choice cor-

responds to moderately skewed TS distributions, relatively close to the underlying

α–stable densities. Selected range of stability index α is typical for low frequency

(i.e monthly, quarterly) data. All distributions were standardised (with µ = 0 and

δ implying unit variance) and thus parametrized with just α, β and θ. Both mean

computation time and first five mean sample moments about the origin were recorded

1Extensive review of possible approaches may be found in Basu et al. (2011).
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in each case. The results are depicted in Appendix C, Tables 1–16 and might be read-

ily compared with values, obtained with the theoretical formulas from section 3.3.

Figures in brackets denote unbiased estimates of standard deviation. As computation

time does not vary much across replications the corresponding estimates of standard

deviation were not reported. Emphasized numbers indicate either the smallest mean

execution time (in seconds), or the mean sample moment most similar to the relevant

theoretic value.

Implementation details were as follows. In all FFT procedures N = 213 was

utilized as powers of 2 are computationally most efficient. In Algorithm 2 constant c

was set to the bottom 0.1 percentile of the sample of 106 random draws coming from

the relevant α–stable distribution. Results of all the calculations presented in this

work were performed in MATLAB c©7.11.0 (R2010b) on a PC with Inter R©CoreTMi7

2630QM CPU (2.00 GHz, 8.0 GB RAM) under 64–bit Windows R©7 Home Premium

operating system. The code is available upon request.

In the undertaken exercise mixture representation algorithm produced most pre-

cise sample moments in 48.75% (156 out of 320) times. Rejection–squeeze method

delivered most accurate moments in 37.19% of instances (119 cases out of 320) while

cdf inversion ranked first for the remaining 14.06% (45 out of 320) of cases. There-

fore for the chosen parameter values Algorithm 2 is the best in terms of quality

of pseudo–random numbers generated, it is also markedly better than Algorithm 4.

Algorithms 3 is clearly the least precise. If we consider only α ∈ {1.2, 1.4}, rejection–

squeeze technique is more precise then the mixture representation algorithm, while

for α ∈ {1.6, 1.8} the superiority of the latter is striking. Hence Algorithm 2 is par-

ticularly suited for generating random draws from TS distribution close to Gaussian.

Devroye procedure always requires most computation time. For the investigated

parameter selection algorithms 2 and 3 need, respectively, only 8.49%–57.27% and

5.17%–14.76% of computation time required by Algorithm 4. While for θ = 1 cdf

inversion is the fastest out of the three algorithms, in case of θ = 0.25 it performs

marginally worse than the mixture representation in terms of execution speed. This

difference would become more evident for smaller θ, when Baeumer and Meerschaert

(2010) algorithm accepts candidate draws more often. Note that by Property 3.2.7

rescaling the data generated from TS distribution by a sufficiently large factor guar-

antees that the resulting parameter θ is small. All procedures are less reliable in cap-

turing higher order moments. In case of Algorithms 3 and 4 the reason is that in or-

der to perform numerical approximation of pdf its support needs to be constrained.

Hence pseudo–random numbers above (or below) certain values will not be gener-

ated. In the case of mixture representation the culprit is auxiliary Algorithm 1 where
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the left tail of the distribution is trimmed. Therefore extreme values are returned

less often.

Out of the procedures whose precision was investigated in this section, Algorithm 3

has not been used yet to generate random numbers from TS distribution. Results for

random number generation from Algorithm 4 in case of TS density with α ≥ 1 and

|β| 6= 1 have not been reported in the literature.

3.7 Application to joint currency crises

The problem investigated in this section is evaluation of the probability of joint cur-

rency crises. Currency crisis is regarded as joint (see e.g. Hartmann et al. (2010))

if it involves relative depreciation or appreciation of all the investigated currencies

that exceeds certain threshold. What is especially interesting are the crisis of a mag-

nitude larger than the one historically observed, which are untractable from historical

data. They may both be treated as indicators of financial stability and approximate

the scale of yet unseen macroeconomic events which nonetheless may occur.

Currency crises are devastating to economy (see e.g. Desai (2000) for a brief

account of the Russian crisis). They are generated by complex events dependent

on a large number of factors. These factors are often either not properly measured,

or remain unknown until foreign exchange–rates crash. It is reasonable to assume

they remain constant within the sample and are not likely to change in the immedi-

ate future. Thus the quoted exchange–rate returns may be treated as random and

coming from the same probability distribution. While in this exercise we are agnos-

tic about the model which generates the data, the results presented in this section

could be further enhanced if we could quantify the factors that affect short and mid

term dynamics of exchange–rates. In such instant the subject of modelling would not

be the rates themselves, but rather the residuals of a given foreign exchange model.

In this section it is further assumed that the uncertainty associated with foreign

exchange–rates may be represented with (univariate or multivariate) tempered sta-

ble distributions. Probabilities of large yet unseen joint exchange–rate movements

may be then evaluated in a two stage procedure. First, the corresponding theoretic

densities have to be fitted to empirical data. Next, probabilities of the event of in-

terest may be approximated with the relative frequencies, evaluated on a sample

of pseudo–random draws generated from the fitted distributions.

The data analysed in this example consists of monthly and daily returns of Rus-

sian ruble to euro and British pound to euro exchange–rates. While monthly data
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is recorded from January 1999 till October 2012, the daily quotations span the period

from 13th January 1999 till 1st November 2012. What makes this pair of currencies

interesting is that the both countries have markedly different characteristics. While

Russia is a developing country that exports commodities, the economy of United

Kingdom is classified as developed and its main exports are services. Hence both

series of data display different statistical properties. In particular, the distribution

of Russian ruble is much more skewed and volatile. This observation remains in line

with the results of Ibragimov et al. (2013) who demonstrate that “[...]while moments

of order p ∈ (2.6, 2.8) are finite for most of the developed country exchange–rates,

they may be (or are) infinite for most of the emerging country exchange rates”. Both

monthly exchange–rates may be treated as random. They also represent aggregate

quantities which may be useful in macroeconomic analysis and are quoted at low

frequency.

There are two feasible probabilistic approaches to depict the risk, underlying

the selected pair of currencies. The first option is to rely on Definition 3.2.1 and

represent both distributions as separate univariate densities. The second possibility

is to estimate a joint distribution, using Definition 3.2.2. The latter has a number

of significant advantages. First, it allows to take into account the partial dependence

of both variates. Next, it gives us the opportunity to model events that involve

common movement of both exchange–rates, such as joint currency crisis, investigated

by Hartmann et al. (2010). Third, joint estimation ameliorates the problem of short

sample sizes in Numerical Maximum Likelihood. Hence it is possible to obtain more

precise parameter estimates after shorter computation time. Finally, as marginals

of multivariate distribution may be employed in all the situations where univariate

densities are required, joint density has broader applicability. While results of univari-

ate estimation are also reported, this section is focused on a more general multivariate

case.

When estimating parameters of a distribution, it is often convenient to standard-

ize the sample. In univariate case standardization involves two steps. First, sample

mean is subtracted from all the observations. Next, the remaining terms are divided

by an unbiased estimator of sample standard deviation. The prerequisite for this

second step is the existence of the variance of the underlying theoretic distribution.

Once both sample mean and standard deviation are obtained, we may fit the selected

distribution to the standardized sample. As standardization is a linear operation, its

inverse is also linear. Hence the parameters of the original density may by obtained

by applying this linear operation to random variable, parameters of which were esti-

mated from the standardized data. In case of univariate tempered stable distribution
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the outcome of such transformation is described by Proposition 3.2.7.

A similar approach is feasible in the multivariate case. Let y stand for (n ×
m) matrix, where series of the data are placed in consecutive columns. Assume µ̂

is (m × 1) vector of sample means while (m ×m) matrix Σ̂ represents the unbiased

estimator of sample covariance. If Σ̂ is positive–definite, its Cholesky decomposition

yields a unique lower–triangular matrix Â such that ÂÂ T = Σ̂. The operation which

transforms Σ̂ into Â is a matrix counterpart of a square root, thus Â is multivariate

equivalent of sample standard deviation. Let 1(n×1) stand for (n×1) vector with unit

entries. In multivariate case standardization involves two steps. First, the consecutive

entries of µ̂ are subtracted column by column from y, which yields y − 1(n×1) × µ̂T .

Next, the remainder is divided from the right hand side by ÂT , which produces

(y − 1(n×1) × µ̂T )(Â T )−1. This operation is feasible if covariances exist. It will

be further termed a standardization of multivariate data.

In our example the standardized data represents either monthly or daily quota-

tions of returns from Russian ruble to euro and British pound to euro exchange–rates.

In the data matrix y the first and second column constitute, respectively, RUB/EUR

and GBP/EUR exchange–rate returns. While the meaning of the raw data is obvi-

ous, the interpretation of the marginals of the standardized series is no longer clear.

Cholesky matrix Â is lower–triangular by construction. Its transposition is upper–

triangular, and so does the inverse of this transposition. The first column of the stan-

dardized bivariate data represents centred RUB/EUR returns scaled by a constant,

the second column constitutes a weighted average of centred RUB/EUR and GBP

/EUR returns. Assume that both exchange–rates constitute realizations of ran-

dom vector Y ∼ mTSα(β, δ,µ, θ, A), where all the parameters are set as in Def-

inition 3.2.2. Then the marginal distribution of the first column of the standard-

ized data is univariate tempered stable by Property 3.2.7. The marginal distribu-

tion of the second column is univariate tempered stable only if the second column

of (Â T )−1 contains only ones and thus Property 3.2.8 applies. Therefore the inter-

pretation of the marginals of standardized data depends on the sequence in which

different data series are inserted into y. The only exception are the fitted densities

which, once the data is standardized, have no degrees of freedom left. A prominent

example of such a distribution is multivariate Gaussian density. Standardization is ge-

ometrically equivalent to change of coordinates. Next paragraph reports preliminary

estimation results.

Table 3.7 contains parameter estimates of univariate TS densities, fitted indepen-

dently to the standardized bivariate data. These estimates were obtained by Numer-

ical Maximum Likelihood for monthly data and via much faster Numerical Method
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Parameter estimates

Data Frequency Method α̂ β̂ δ̂ µ̂ θ̂

RUB/EUR
Monthly NML 1.5210 0.6706 0.5704 0.0938 0.0998
Daily NMM 1.6317 0.5039 0.6845 0.0194 0.3282

GBP/EUR
Monthly NML 1.5832 0.4875 0.5571 0.1465 0.0000
Daily NMM 1.6293 0.3257 0.6791 0.0100 0.3177

Table 3.1: Parameter estimates of univariate TS densities, fitted to the standardized
bivariate data.

of Moments in the case of the daily quotations. For the two exchange–rates and

the both investigated data frequencies the fitted values of skewness parameter β

were markedly different from zero while the estimates of stability index α and tem-

pering parameter θ were, respectively, larger than one and smaller than one. This

range of values is typical for macroeconomic densities. The value of θ estimated

on GBP/EUR exchange–rates transformed via bivariate standardization is approxi-

mately 10−6, which may suggest the corresponding marginal is α–stable rather than

tempered stable. The estimates of stability indexes for the both monthly exchange–

rates amount are relatively close. Hence it might be justified to use one common

stability index for both data series. The estimates obtained for daily frequency are

not typical for financial data, in case of which both α̂ and β̂ usually decline as data

sampling frequency increases. Furthermore, financial series are often characterized

by θ̂ > 1.

The estimates from Table 3.7 may suggest that returns of British pound to euro

exchange–rate after bivariate standardization has an α–stable distribution (θ̂ ≈ 0).

Figure 3.6 is intended to verify this claim. It depicts second sample moments about

the origin of the second column of our standardized, bivariate data. The moments

are evaluated on the samples of increasing sizes, encompassing first n available ob-

servations. Thus they depend on the index of the last available observation and for

n ∈ {53, · · · , 153} are given by

µ̂
′

2(n) =
1

n

n∑
k=1

x2k,2.

The chart may be compared with Fig. 2 from Mandelbrot (1963a). In his exam-

ple the approximations of second moment about the origin were both erratic and

explosive. This suggests that cotton prices he investigated may be best depicted

with a density variance of which does not exist. In particular, this distribution
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(a) Real standardized data. (b) Synthetic data.

Figure 3.6: Second sample moment computed for: (a) returns from GBP/EUR
monthly exchange–rates transformed via bivariate standardization, (b) synthetic
data, generated from Gaussian distribution with the same mean and variance. Sample
size increases from 53 to 152 observations.

could be α–stable (i.e. fat–tailed). In the case of our distribution the trajectories

obtained are also erratic, but – contrary to Mandelbrot’s example – bounded and

thus non–explosive. This dynamics implies that while the underlying distribution

is certainly not Gaussian (trajectory displays jumps), it does have variance. Hence

the density obtained after standardization is best depicted with either heavy–tailed,

or semi heavy–tailed distribution, just as tempered stable. From the point of view

of modelling macroeconomic uncertainty, this is a good news. While tempered stable

distributions have all the moments finite (Property 3.3), they never fit to the data

worse than α–stable densities (which is a direct consequence of Definition 3.2.1).

Multivariate tempered stable distribution is formalized in a way parallel to the def-

inition of elliptical1 distributions with finite covariance matrix Σ and a well defined

density. Let X be a random vector, marginals distributions of which are independent

and endowed with unit variance. Assume A is a lower–triangular (and thus invertible)

matrix, µ is a real while Y is a random vector defined by the formula Y = µ+AX.

If X has univariate tempered stable marginals (Definition 3.2.1) with unit variances,

null means and common parameters α and θ, then the distribution of Y is multi-

variate tempered stable (Definition 3.2.2). By Property 3.2.5 and invertibility of A

mTS distribution always has a density, by Property 3.2.1 its covariance matrix ex-

ists. If X ∼ RX for every matrix R such that RR T = I where I is the identity

1Definitions of elliptical and spherical distributions may be found in Cambanis et al. (1981) and
Eaton (1986).
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matrix (density of X is spherical), then the distributions of Y is elliptical. Note that

in the latter case the marginals of X are, in particular, centred, symmetric and iden-

tical. Given the identifying assumptions made above the covariance matrices of both

elliptical and tempered stable multivariate distributions fulfil AA T = Σ. The fact

that both classes are defined in a similar way makes comparison between in sample

fit of mTS and any selected elliptical distribution (such as Gaussian or t) particularly

convenient. It also simplifies evaluation of joint likelihood.

If matrix A is known, then random vector A−1(Y − µ) = X has in both cases

independent marginals centred around zero. The operation on left hand side of this

formula is equivalent to changing coordinates. In the new coordinates both series may

be treated as realizations of independent random variates. If matrix A is not known,

then its estimator may be elicited from the sample covariance matrix. If unbiased

estimate Σ̂ of covariance matrix is positive–definite, Cholesky decomposition yields

a unique1 matrix Â with strictly positive diagonal entries such that ÂÂ T = Σ̂.

Columns of Â constitute a single coordinate system in which marginals of the joint

distribution may be treated as independent. In this system the pdf of X is a product

of its marginal distributions fXj for j ∈ {1, · · · ,m}. The joint pdf of Y by change

of variables factorizes as

fY (y1, · · · , ym) = (detA)−1
m∏
j=1

fXj(xj).

This observation implies that negative log–likelihood for the standardized sample

x ≡ (x11, x12; · · · ;xn1, xn2)

may be obtained as

L(x) = −n · ln | det Â| −
n∑
k=1

ln f̃X1(xk,1)−
n∑
k=1

ln f̃X2(xk,2)

where f̃X1 and f̃X2 represent the marginal densities fitted to the standardized data.

This formula is further utilized in numerical likelihood maximization.

In this section the results obtained for mTS distribution are compared with

the outputs produced for two benchmarks – multivariate Gaussian and elliptical

t densities2. The latter is obtained when the marginals of spherical distribution that

1See: Trefethen and Bau (1997), p. 174.
2For the applications of elliptical distributions in economics and finance see Chamberlain (1983)

and Owen and Rabinovitch (1983).
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Parameter estimates

Frequency Data Method α̂ β̂ δ̂ µ̂ θ̂

Monthly
RUB/EUR CNML 1.3240 0.7055 0.6999 0.1068 0.4117
GBP/EUR CNML 1.3240 0.4109 0.6999 0.0682 0.4117

Daily
RUB/EUR CNML 0.5187 0.0330 7.3791 0.0194 1.0177
GBP/EUR CNML 0.5187 0.0729 7.3791 0.0100 1.0177

Table 3.2: Joint parameter estimates of bivariate TS densities.

underlies elliptical distribution are independent and t distributed. The motivation

behind the choice of benchmarks is simple. Multivariate Gaussian is the most semi-

nal distribution in both financial and economic applications. Elliptical t distribution

is one of the most popular multivariate distributions and probably the most tractable

multivariate density that displays heavy tails. There also seems to be a consensus

in the heavy–tails literature (see for instance section 2.3) that elliptical t density

is the best candidate for a benchmark heavy–tailed distribution. Another interest-

ing candidate for a heavy–tailed reference distribution, which is not considered here,

is a multivariate Normal Inverse Gaussian (mNIG) density1. However, even if it was

used as a benchmark, the qualitative results obtained would not change. The reason

is that all three multivariate distributions – NIG, t and Gaussian – are elliptical. Be-

fore the framework presented in this text is applied to the data, it is useful to discuss

how the characterization, provided in Definition 3.2.2, may be applied in practice.

The estimation procedure for all three distributions – multivariate Gaussian, el-

liptical t and mTS – proceeds in three stages. First, unbiased estimates of sample

mean µ̂ and matrix Â T are calculated. Second, bivariate data is standardized. Third,

the appropriate bivariate distribution is fitted to the standardized data. For Gaussian

density this distribution has no degrees of freedom left (multivariate Gaussian with

identity covariance matrix), so no further calculation is required. As t distribution

with unit variance does not exist, a similar approach for elliptical t density is not fea-

sible. In this case the estimate of a number of degrees of freedom ν̂ that best describes

the joint sample distribution of transformed data is first obtained by Maximum Like-

lihood. This fitted value implies that VarX1 = VarX2 = ν̂/(ν̂ − 2). In order to ob-

tain elliptical t distribution with covariance matrix that matches sample covariances,

the estimate of matrix A is rescaled to Â := Â
√

(ν̂ − 2)/ν̂. This simple operation

concludes the estimation. In case of mTS density the two independent marginals that

need to be fitted to the standardized data are TSα(β1, δ1, 0, θ) and TSα(β2, δ2, 0, θ).

1See e.g. Barndorff-Nielsen (1997) and Øig̊ard et al. (2005).
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By Definition 3.2.2 both are endowed with the same parameters α and θ. We also

have by construction VarX1 = VarX2 = 1, so δ1 and δ2 are given by equation (3.14)

and thus are equal. Hence both marginal densities differ only by the corresponding

values of skewness parameters β1 and β2. This additional degree of freedom gives flex-

ibility which is required to depict different shapes of the marginals of standardized

distributions. It also signifies that mTS density is non–elliptical.

The results of a joint parameter estimation are as follows. Vectors of sample

means and estimates of Cholesky matrices evaluated on monthly and daily quotations

of RUB/EUR and GBP/EUR forex return rates are

µ̂m = (0.2636, 0.1950)T , µ̂d = (0.0113, 0.0088)T ,

Âm =

(
2.4678 0

0.7825 1.6347

)
, Âd =

(
0.5832 0

0.2154 0.4592,

)
.

Standardized monthly data is given by (ym − 1[n×1] × µ̂Tm)(Â T
m)−1, standardized

daily data is (yd − 1[n×1] × µ̂Td )(Â T
d )−1. The estimates of parameter ν for ellipti-

cal t density are fitted jointly and amount to, respectively, for 10 and 11 for the daily

and monthly data. The sought parameters of multivariate TS distribution are ob-

tained from the standardized sample via Constrained Numerical Maximum Likelihood

(CNML). The utilized constraint implies that both vector of means and covariance

matrix of the fitted distribution match their sample counterparts. The implemen-

tation of the estimation procedure relies on cubic spline interpolation and the FFT

algorithm from Appendix A.2. The estimates from Proposition 3.4.1 may be used

as the starting point for numerical solvers. All the estimated parameters are presented

in Table 3.7.

It is worth pointing out that CNML is not equivalent to Numerical Maximum

Likelihood. In particular, if we estimated the marginals of the standardized sample

without constraints, the estimates thus obtained would imply neither nil mean, nor

unit variance. Furthermore, the correlation rate implied by NML would not match

the value, elicited on the sample. The CNML estimates not only take less time to ob-

tain, but they are also much less susceptible to numerical problem, resulting from

dimensionality of parameter space. As they exactly replicate some basic characteris-

tics (means, variances, correlation rate) of the sample, these estimates are particularly

useful in the applications where low order moments strongly affect the produced re-

sults. An example of such applications are risk management and portfolio analysis.
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(a) RUB/EUR standardized return rate. (b) GBP/EUR standardized return rate.

Figure 3.7: Spline–smoothed sample histogram (dashed black line) and pdfs fit-
ted to the standardized bivariate returns from RUB/EUR and GBP/EUR monthly
exchange–rates: tempered stable (cyan), elliptical t (magenta) and Gaussian (violet).

The results for the fitted multivariate TS distribution are as follows. Negative log–

likelihood for mTS density fitted to monthly data amounts to 188.95 versus 211.54

and 218.35 obtained, respectively, for elliptical t distribution and multivariate Gaus-

sian distribution. This substantial gain implies that, given sample size, each data

point is (on average) 21.34% more likely to come from the estimated tempered sta-

ble then from the fitted Gaussian distribution and 16.02% more likely to come from

the estimated TS then from the fitted t distribution. In order to compare the fitness

of multivariate TS distribution against the better performing benchmark (elliptical

t density) we may conduct a likelihood ratio test for non–nested models1, proposed

by Vuong (1989). In this case the sample distribution of his test statistic is standard

normal. For the monthly data Vuong’s statistic amounts to 2.16 when the number

of parameters is penalized as in the Akaike Information Criterion (AIC). It is equal

to 1.46 when we account for extra parameters using the more stringent Bayesian In-

formation Criterion (BIC). We reject the null hypothesis that the both distributions

are equivalent in favour of the hypothesis that mTS distribution is closer to the data

generating density at either 1.5% (BIC) or 7.2% (BIC) significance level. Nega-

tive log–likelihood for mTS density fitted to daily data amounts to 13352.52 versus

13664 and 13877.87 obtained, respectively, for elliptical t distribution and multivari-

ate Gaussian distribution. This moderate gain implies that, given sample size, each

data point is (on average) 17.03% more likely to come from the estimated tempered

1All the three probability models considered here are non–nested in the sense of Vuong (1989),
for more details see p. 317 therein.
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stable than from the fitted Gaussian distribution and 9.77% more likely to come from

the estimated tempered stable than from the fitted t distribution. The sample values

of Vuong’s statistic amount to 7.88 (AIC) and 7.57 (BIC), p–value of this test is nil

up to machine precision. The null hypothesis is rejected with certainty, at every

significance level.

Hence mTS distribution better depicts empirical densities for both monthly and

daily data. These results still indicate that mTS is more capable to replicate the ob-

served data after we take into account the number of parameters of each distribution.

What is typical, the evidence in favour of mTS density is stronger for the data

of higher frequency.

Figure 3.7 (a) and (b) depict the marginals of the three distributions – tempered

stable, Gaussian and t – fitted to the monthly data after its bivariate standardiza-

tion. The chart implies that the two marginal distributions are markedly different.

Figure 3.7 (a) is strongly positively skewed while Figure 3.7 (b) appears to be almost

symmetric. Multivariate tempered stable distribution is able to capture this clear

diversity. The fitted multivariate t and Gaussian distributions, on the contrary, de-

liver two identical marginal densities that poorly befit the data. The reason is that

both multivariate t and Gaussian densities are elliptical. In elliptical distributions

the only admissible source of skewness is covariance. Once the data is standardized,

all the fitted marginal densities are necessarily identical. Hence the both benchmark

distributions have severe problems with capturing the joint distribution of the in-

vestigated series. In a standardized mTS distribution each marginal has still one

remaining skewness parameter that can be tweaked to capture the shape of empirical

density. Due to this property non–elliptical mTS can depict the joint historical data

in a much more faithful way.

Once all the parameters of the mTS distribution have been estimated, it possible

to use Algorithm 2 (derived from Proposition 3.5.1) to simulate the joint dynamics

of both exchange–rates. These pseudo–random draws may be utilized in any Monte

Carlo experiment, designed to deliver the answers for interesting macroeconomic ques-

tions. An example of such a task is the evaluation of probabilities of joint currency

crisis. Figure 3.8 (a) depicts probabilities that both monthly returns on RUB/EUR

and GBP/EUR exchange–rates fall below thresholds, indicated on horizontal axis.

Figure 3.8 (b) presents probabilities that both monthly returns on RUB/EUR and

GBP/EUR exchange–rates exceed thresholds, denoted on horizontal axis. As in case

of mTS distribution the exact form of its multivariate cdf is not known, the only way

to obtain this type of result leads via simulation. The probability of joint decline

exceeding 7% in both currencies evaluated for the fitted mTS distribution amounts
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(a) Joint decline. (b) Joint upsurge.

Figure 3.8: Sample probabilities of joint: (a) crash or (b) upsurge in return rates
obtained for mTS (cyan dashed line), elliptical t (violet dash–dotted line) and mul-
tivariate Gaussian (magenta solid line) fitted distributions.

to 5.3 × 10−5. This figures is 2.12 times larger than the one obtained for elliptical

t density and 13.15 times larger than the estimate for multivariate Gaussian distribu-

tion. The probability of upsurge in returns exceeding 7% in both currencies obtained

for the mTS distribution amounts to 2.6 × 10−4. This figures is 4.92 times larger

than the one elicited for elliptical t density and 29.47 times larger than the esti-

mate form multivariate Gaussian distribution. Despite the shapes of pdfs, presented

on Figure 3.7, the tails of mTS density along the diagonal are heavier than the tails

of either of the two elliptical distributions. As the proposed multivariate extension

of TS distribution (Definition 3.2.2) provides a superior fit to the empirical data,

it also delivers more more realistic estimates of the probabilities of extreme events.

In particular, it provides better estimates of the probabilities of the joint currency

crises, attributing much more probability mass to the events that have not been ob-

served within the sample. These probabilities evaluated on historical data imply that

joint sudden appreciation of the both currencies against euro is five times more likely

then their simultaneous decline. Given the recent financial crisis this result is hardly

surprising.

3.8 Conclusions

The main contributions of this chapter are as follows.

First, this chapter introduces a tractable, non–standard definition of TS distri-

butions (Definition 3.2.1). This definition directly relates tempered stable density
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to the underlying α–stable distribution, properly handles the case of α = 1 and

yields centred distributions for µ = 0. The chapter also surveys the main proper-

ties of TS densities, some of which were only known in less general setting (α < 1,

α 6= 1, β = 1). Furthermore, it presents the complete set formulas for cumulants

and moments of TS distributions, previously known only for α 6= 1. This chapter

also proposes a tractable multivariate extension of TS distribution (Definition 3.2.2).

The corresponding proofs may be found in Appendix B. It also proposes a new Fourier

Transform discretization scheme, which is efficient for asymmetric densities. This al-

gorithm generalizes the work of Mittnik et al. (1999) and is provided in Appendix A.

In all the cases the chapter provides ready to use formulas, valid for the entire param-

eter range of TS densities, which can be readily used by practitioners. The results

listed above are further applied to fit TS densities to real data and to assess the quality

of random number generation procedures.

Next, this chapter introduces (as Proposition 3.4.1) a new Cumulant Matching

estimator for all parameters of TS density along with the necessary existence condi-

tions. It also contains an overview of feasible, but more computationally intensive

approaches to parameter estimation. A novel Proposition 3.5.1 demonstrates that

any tempered stable random variate may be represented as a mixture. The chapter

formulates a random number generator (Algorithm 2) that relies on mixture represen-

tation and generates random draws form TS distribution via rejection. The algorithm

is valid for all tempered stable distributions regardless parameter range. It may also

be written in just one line of code provided that Baeumer and Meerschaert (2010)

procedure is already implemented.

Third, speed and accuracy of mixture representation algorithm are compared with

two other techniques that yield random draws from tempered stable density. Algo-

rithm 2 is the most accurate method for the considered set of parameters, which seems

appropriate for low frequency macroeconomic distributions. These distributions are

typically close to Gaussian (α > 1), moderately skewed (|β| 6= 1) and moderately

tempered (θ < 1). The mixture representation algorithm is much faster than the

alternative approach of Devroye (1981). It is also faster than the benchmark for

mildly tempered distributions (sufficiently small θ). Thus it may be a useful tool for

Monte Carlo simulations that involve macroeconomic densities. It is worth noting

that the performance of the approximate cdf inversion is surprisingly good.

Fourth, the chapter applies these new methods to evaluate probabilities of joint

crashes of Russian ruble and British pound against euro. First, mTS distribution

is fitted to both monthly and daily quotations of ruble to euro and pound to euro

exchange–rate growth rates. The quality of the obtained fit is compared against two
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benchmark multivariate distributions – elliptical t and Gaussian. While in these two

densities the only possible source of skewness is covariance matrix (both distributions

are elliptical), non–elliptical mTS takes the skewness in the marginals of the stan-

dardized multivariate data directly into account (Figure 3.7). Hence it is capable

to faithfully depict the investigated empirical distribution. Finally, the probabilities

of joint crisis in the two currencies are estimated via Monte Carlo. The mTS density

fitted to historical data implies markedly higher probabilities of joint currency crisis

than the two benchmark distributions. It also indicates that the probability of a sud-

den decline of euro against the other two currencies by more than 7% is five times

more likely than its unexpected upsurge by the same amount. This result is hardly

surprising given the recent financial crisis.
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Chapter 4

Inter–bank Network Formation –

From Heterogeneity to Systemic

Risk

This chapter develops an endogenous network formation model for the overnight

inter–bank lending network.

4.1 Introduction

Preventing the meltdown of financial system was one of the crucial issues after the col-

lapse of Lehman Brothers in September 2008. A realistic model of banking system

is a key component, necessary to verify both the efficiency of different financial reg-

ulations and the robustness of alternative market structures. Banks in this model

should have assets, liabilities, take into account investment risk and be diversified

enough (heterogeneous) to depict a real world diversity of the system. Simultane-

ously, the banks need to make make their borrowing and lending decisions in a way

which has economic meaning (is in some sense optimal) and depends just on their own

characteristics and the characteristics of their counterparts (is endogenous). While

diversity of market participants is necessary to make the model realistic, endogenous

network formation is crucial if we intend to investigate stability of the entire sys-

tem. If the inter–bank linkages are not endogenous but random or semi–random,

the outcome of any stability analysis depends on network configurations that may

never arise in practice. Endogenous network formation is also vital in quantifying

the implications of endogenous bankruptcies in a distressed banking system. The

reason is that the systemic impact of such event to large extent results from the
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characteristics of both creditors and debtors of the insolvent institution.

This chapter proposes a computational model of endogenous network formation

for the inter–bank overnight lending market. The market structure emerges from

interactions of heterogeneous agents who are endowed with assets, liabilities and take

into account investment risk. As all the banks are large and their trading affects

the prices of risky assets, the costs of price slippage breaks the symmetry of portfolio

problem, making inter–bank borrowing and lending more desirable. The model takes

into account three channels of contagion – bankruptcy cascades, common component

of risky asset returns and erosion of liquidity. The network formation algorithm

outputs the ensemble of optimal transactions, the outcome of the corresponding link

formation process is pairwise stable. This framework is next employed to investigate

the stability of the endogenously generated banking systems.

The structure of this chapter is as follows. Section two reviews the literature.

The third section presents the overview of the model. Section four describes the choi-

ces of borrower and lender from an institutional perspective where the agents know

their trade affects market prices. The solutions to the corresponding portfolio prob-

lems is given as Appendix D. The fifth section presents the endogenous network for-

mation algorithm. Section six is dedicated to calibration of the model. The seventh

section presents the results. The final section concludes.

4.2 Literature review

In the literature of systemic risk and banking system stability two different approaches

to deliver a model of a banking system are considered. The theoretical papers al-

low for strategic (endogenous) network formation, but in stylized settings where di-

versity of the agents is strongly constrained. In these papers banks typically face

limited investment risks and are endowed only with rudimentary assets and liabil-

ities. The computational papers depict more realistic pictures of banking system,

but at the expense of higher model complexity. In these works sophisticated models

of individual bank behaviour are typically embedded into random network formation

schemes. This works bridges both strands of literature, providing a computational

protocol for endogenous network formation on the inter–bank overnight market.

Allen and Gale (2001) demonstrate on the system of four identical banks that

the extent of contagion depends crucially on the patter of interconnectedness in the

network. Freixas et al. (2000) show that a network where banks on periphery are

connected to money–centre banks, but not to each other, is also susceptible to conta-
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gion. Babus (2009) proposes a model where banks form costly links in order to insure

against liquidity risk. These links expose the system to a small risk of contagion. Gai

and Kapadia (2010) investigate phase transition in an inter–bank network with arbi-

trary vertex degree distribution, independent of agents’ characteristics. Allen et al.

(2012) show that unclustered asset structure of individual banks entails lower funding

costs and thus lower bankruptcy costs and higher welfare. Elliott et al. (2013) describe

the non–monotonic effect of diversification and integration on cascades of defaults.

Acemoglu et al. (2013) demonstrates in a theoretic framework that no network struc-

ture yields maximum system resilience regardless the circumstances, a result that

was earlier obtained via simulation by Ladley (2013). Finally, Zawadowski (2013)

investigates a system with large and peripheral banks, where a default of insurance

provider may trigger run on the insuring banks.

One of the earliest computational approaches to modelling financial systems is

the work of Eisenberg and Noe (2001). The authors provide an algorithm that

cleared mutual claims in a (possibly cyclic) network, a metric of vertex systemic

exposure is a by–product of their procedure. Elsinger et al. (2006a) combined stan-

dard risk management tools with a (computational) network model of interbank loans

and identified correlations in banks’ portfolios as the main source of systemic risk.

The authors found that while insolvency cascades are rare, they might nonetheless

wipe out the major part of the Austrian banking system. In the subsequent work

Elsinger et al. (2006b) simulate asset distribution implied by defaults of individual

institutions. Thus the results of stress tests they conduct are not conditional on all

UK banks remaining solvent.

The first simulation of insolvency cascades in a system of heterogeneous (in size

or liquidity) banks endowed with assets and liabilities was undertaken by Iori et al.

(2006). While in their model banks do not optimize investments decisions (assets

were stochastic), the authors demonstrate that in heterogeneous system incomplete

inter–bank network structures are more robust than complete geometries, what re-

verses1 a classical result of Allen and Gale (2001). The role of both inter–bank

network connectivity and capital requirements on system resilience was further in-

vestigated by Nier et al. (2007), who found that the corresponding relationships were

non–monotone and non–linear. The impact of a number of inter–bank network ge-

ometries on banking system stability was inspected by Georg (2013), the author

identifies money–centre networks as the most robust. He also estimates that stabi-

lizing effect of a central bank is non–linear with respect to fraction of banks’s asset

1Haldane and May (2011) on p. 353 points out that while excessive homogeneity minimizes
the risk for each individual bank, it maximizes the probability of collapse of the entire system.
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acceptable as collateral. No (random) network structure yields maximum system

resilience under all feasible conditions for a banking system in the (static) evolution-

ary equilibrium, simulated by Ladley (2013) . The impact of heterogeneous asset

volumes on erosion of confidence and long term inter–bank lending relationships was

established via simulation by Arinaminpathy et al. (2012), extreme heterogeneity

(in terms of market concentration) of the US CDS market also plays a pivotal role

in the design of super–spreader tax, proposed by Markose et al. (2012). Vallascas and

Keasey (2012) demonstrated that a cap imposed on a bank size may be the most effi-

cient tool to reduce its default risk given a systemic event. Mart́ınez-Jaramillo et al.

(2010) found that fragility was determined by probabilities of default of individual

institutions, their correlations and the number of banks that are instantaneously in-

solvent if their debtors default. Krause and Giansante (2012) in a recent extension

of the work of Iori et al. (2006) identified network geometry and tiering1 as the two

most important factors that determine probability of contagion. Gai et al. (2011) ver-

ified how concentration of linkages under geometric and Poisson network affects liq-

uidity hoarding and systemic crisies, he also investigated the inerdependence between

market liquidity and haircuts. Bluhm et al. (2013) simulate measures of systemic risk

in a complex system of interacting banks. However, their network formation heuris-

tics2 does not arise from optimal agents’ behaviour and thus is not endogenous.

Cohen-Cole et al. (2013) depict inter–bank overnight market via Cournot quantity

competition model embedded into scale–free networks, they also provide a measure

of contribution of individual vertices to systemic risk. Their network formation pro-

tocol is not endogenous as it involves an arbitrary probability of forming a link. In all

the quoted papers inter–bank market is formed by equating supply and demand and

next matching potential creditors and debtors in a random or semi–random manner.

The deficiency of computational model for endogenous network formation in the

models of banking system has serious implications. If the inter–bank linkages are

random, the fact that two banks are in a lending relationship does not depend

on their characteristics other than liquidity demand. The network configurations

that thus come into being might never arise had the agents been allowed to chose

their counterparts. As the effect of insolvencies on the entire system crucially depends

on the geometry of the inter–bank lending network, lack of endogenous network for-

1Neglected by all the quoted theoretical papers, with an exception of Zawadowski (2013).
2In their paper the agents look for the closest matching partner in terms of trading volume, see

p. 9 in Bluhm et al. (2013). The only mechanism which could justify heuristics which minimizes
number of connections is fixed transaction costs. However, under fixed transaction costs the agents
using this rule would in some circumstances prefer a cost of nc over 2c for arbitrarily large n.
A numerical counterexample is available upon request.
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mation affects the outcomes of any systemic stability analysis. This distortion is most

severe when we measure the impact of endogenous bankruptcies on a distressed bank-

ing system. The reason is that the systemic implications of such event result from

the characteristics of both creditors and debtors of the insolvent institution. Another

important characteristics of systems in crisis is change of the behaviour of the agents.

As the banks learn they past decisions were not optimal and decide to reallocate their

resources, they often change their linking patterns. If the overnight lending network

is exogenous, then to capture the dynamics of this process the underlying vertex

distribution needs to be re–calibrated in an attempt to catch up with the market.

If this network is instead endogenous, the agents learn about the change of environ-

ment and take it into account in their (optimal) lending decisions. Thus the models

with exogenous lending networks might be inadequate to investigate banking systems

during crisis.

The model presented here is the first computational framework that allows for en-

dogenous network formation. It takes into account the mutual dependence of market

and funding liquidity (Brunnermeier, 2009) that can plunge the system into downward

spiral of fire sales and credit denials. As the banks dynamically update their assess-

ment of investment risk and probability of counterparty default, they may shorten

their positions in the asset they consider too risky, triggering a flight to quality

episode (Caballero and Krishnamurthy, 2008). Just as in the work of Arinaminpathy

et al. (2012) our model admits three different channels of contagion, the importance

of which was highlighted by Haldane and May (2011): (i) erosion of liquidity, where

banks constrain lending in fear of counterparty default (Brunnermeier, 2009; Gai

et al., 2011), (ii) fire sales deteriorating market liquidity (Adrian and Shin, 2010;

Battiston et al., 2012; Cifuentes et al., 2005; Coval and Strafford, 2007; Shleifer and

Vishny, 2011), (iii) bankruptcy cascades due to counterparty credit risk (Elsinger

et al., 2006a; Gai et al., 2011; Nier et al., 2007; Upper, 2011). The model allows for

the study of endogenous bankruptcies and takes into account different possible be-

haviour of the banks under varying condition, thus addressing the criticism of the lit-

erature on systemic stability, voiced by Upper (2011). While many papers consider

either one (Allen and Gale, 2001; Gai et al., 2011; Georg, 2013; Ladley, 2013) or two

(Babus, 2009; Zawadowski, 2013) types of banks with respect their total assets, bank

sizes in this paper are fully heterogeneous (Iori et al., 2006; Krause and Giansante,

2012). The model allows returns on risky investment of different banks to be corre-

lated, but this dependence is implemented neither via elasticities of demand (Bluhm

et al., 2013; Cifuentes et al., 2005), asset commonality (Allen et al., 2012) or common

shocks (Georg, 2013), but rather through the demand related component in asset
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prices.

There are two possible approaches to evaluating computational models. The first

criterion is to take into account variety of interacting mechanisms that the model

is able to depict and the plausibility of the assumptions behind it. In this instance

the proposed model covers three different channels of contagion, its foundations are

far less restrictive than the assumptions of theoretic models featuring endogenous net-

work formation. The second criterion is the ability of the proposed model to reproduce

empirical characteristics of both the inter–bank lending networks and the asset struc-

ture of individual banks. The networks generated by the model are endowed with

degree distribution that is close to scale–free, which matches the empirical findings

of Soramäki et al. (2007) and Cohen-Cole et al. (2013). The density of the simu-

lated networks lies in the plausible range (Becher et al., 2008; Müller, 2006), small

banks are (on average) creditors of a larger institutions (Müller, 2006). The lending

relationship is also disassortative – in the simulation banks tend to lend from the in-

stitutions of different size to themselves (Cocco et al., 2009). Furthermore, the size

of inter–bank market, the distribution of bank sizes and the strength of mutual de-

pendence of asset returns in the system all closely match the corresponding empirical

values.

4.3 Model overview

The economy consists of N regions, indexed with k ∈ {1, · · · , N}. Each region

harbours n identical consumers whose total mass1 amounts to hk. Each region is

endowed with a single local bank k. There are T periods, indexed with t ∈ {1, · · · , T}.
In every period all local consumers approach bank k to place their deposits of hk/n.

Each consumer, after placing her deposit at time t, liquidates it at t + 1 + S where

S is a Poisson distributed random variate with intensity λ − 1 > 0. The deposits

are being held for λ periods on average, expected net value of deposits placed at k

amounts to λhk. The volume of deposits placed in every region is in the long run

stationary.

The banking system constitutes of N regional banks. Banks accept consumer

deposits and do not compete with each other on deposit market. All the banks are

required to keep a fraction ρ of deposits held as obligatory reserves. The remaining

part is invested in the two assets – inter–bank loans and risky asset. Inter–bank

loans cover transient liquidity shortages and are perceived as almost riskless. They

1The weight of consumers in all regions and adds up to N .
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last only one period and can not be extended, but the debtor may obtain a new

loan next period on competitive basis. The risky asset replicates portfolio structure

of the aggregate banking system. It consists of the components that are regarded as

far more risky than inter–bank loans. The expected volume of assets held by each

bank is initially (at t = 1) proportional to the size of the corresponding region. Banks

vary in lending needs, which arise from variability of net deposits. They also display

different attitudes towards risk and different risk perception. Hence the banking

system is heterogeneous, with bank characteristics varying along four dimensions.

Each bank has its own portfolio which represents long term risky investments. All

the portfolios share common shocks and liquidity effects. Let Pk,t stand for a value

of a unit of long term investment of bank k in period t. Given Pk,−1, Pk,0 := 1,

the dynamics of ∆ lnPk,t+1 := lnPk,t+1 − lnPk,t is driven for every integer k > 1

by the following iterative equations

∆ lnPk,t+1 = η(µ−∆ lnPk,t) + It + σZk,t, Zk,t ∼ NID(0,1), (4.1)

It = ν(Dt − St)/(Dt + St).

Above η represents the autoregression coefficient, while µ stands for the mean rever-

sion parameter. Dt and St denote, respectively, the aggregate demand for and supply

of the risky assets in the entire banking system. Constant ν maps excess relative

demand or supply into prices. The corresponding liquidity effect is captured by It.

This common component of asset returns may be motivated by three mechanisms.

First, in a competitive environment all the large banks face similar investment oppor-

tunities. Next, the fact that all the market participants use the same risk evaluation

and portfolio optimization tools may cause spontaneous dependence of investment

outcomes. Finally, as all the banks are large, the aggregate quantities of risky assets

they trade always affect the market. Parameter σ reflects conditional standard devi-

ation of asset return rates. Zk,t+1 are independent random variables with standard

normal density. They represent idiosyncratic components of price dynamics. Each

bank is allowed to trade only the units of its own portfolio. The banks are oblivious

of the form of risky asset pricing formula, but they record the realized sample mean

and standard deviation. Diverse price trajectories represent the effects of individual

portfolio composition on the bank overall performance.

Assets of each bank consist of investment portfolio ak,t, reserves rk,t, net cash

ck,t and loans to other banks lk,t. While long term investment and loans to other

institutions are both risky, the term risky asset will be further reserved for the units
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of portfolio of given bank. Liabilities of each bank constitute of equity ek,t, customer

deposits dk,t and loans from other banks bk,t. Hence for each bank k at every point

in time t ∈ {1, · · · , t} it holds that

ak,t + rk,t + ck,t + lk,t = dk,t + ek,t + bk,t.

If a ratio of equity to risk weighted assets for any bank falls below 4%, this bank

becomes bankrupt. Banks learn unconditional distribution of risky asset prices from

past data. They also form expectations on probabilities of counterparty default.

Banks are managed by CEO’s who each period receive bonuses1 proportional

to net profits of their bank. The management of each bank is concerned with vari-

ability of their income, but only as long as their own institution remains solvent.

In order to capture this two effects it is assumed that the banks maximize expected

conditional utility derived from profit. As deposits placed are exogenous, in order

to do so it is enough to maximize expected conditional utility derived from a unit

portfolio of capital. To preserve the tractability of the model it is assumed that banks

are endowed with constant absolute risk aversion (CARA).

Given the selected utility function, bank k needs to solve two problems in order

to optimize its investment. First, it needs to decide how much money would it like

to lend (or borrow) and at what interest rate. Next, it identifies a willing counterpart

with whom the desired transaction could be concluded.

4.4 Portfolio problem

Throughout this section it is assumed that the volume of risky asset traded by every

bank is always considered large by the market. Banks know that trading risky asset

adversely affects transaction prices due to price slippage. When they sell risky asset,

they face instantaneous loss and relinquish future stochastic profits. When they buy

risky asset, they enjoy uncertain profits but at the expense of instantaneous losses.

Hence a bank with transient liquidity shortage might prefer taking loan on the inter–

bank market to selling risky asset. By a similar token, a bank with transient liquidity

surplus might prefer lending money on inter–bank market to buying risky asset.

In order to depict investment choices of large banks this section approaches portfo-

lio selection problem from institutional perspective, in which market participants are

aware of price distortions, caused by their size. In the first subsection basic notation

is introduced. Next the problems of borrower and lender are formally stated. Then

1Exact values of these bonuses affect only numèraire and thus may be neglected.

76



we assume that utility of each individual bank displays Constant Absolute Risk Aver-

sion and, given this assumption, investigate the first order conditions of borrower and

lender. In the fourth subsection we assume in addition that the distribution returns

of risky asset is Gaussian. The equations for credit supply and demand of individual

bank that follow are derived given Gaussian returns. The final passage explains how

this solution of individual portfolio problem may affect endogenous network forma-

tion.

4.4.1 Notation

Index k ∈ {1, · · · , N} is reserved to denote any bank. Index b denotes a bank

that is a borrower while l stands for a bank which is a lender. As the interest rate

is always agreed between both parties, for the sake of brevity we shall denote it with

i ≡ ibl. All the banks dynamically update their joint beliefs pt+1 on the probability

of counterpart default. Every bank k is endowed with risk aversion coefficient γk and

learns the mean µk,t+1 and standard deviation σk,t+1 of risky asset growth rates from

its own past data. Again for the sake of brevity we shall introduce the following

shortcut notation: p ≡ pt+1, µk ≡ µk,t+1 and σk ≡ σk,t+1. Demand and supply

characterize the behaviour of, respectively, borrower and lender, thus we may write

d ≡ db, s ≡ sl.

Assume Bb,t+1 is equal to one if b defaults at t+ 1 and is equal to zero otherwise.

Bank l expects that given b’s default only (1−θ) of the amount lent will be recovered.

Multiplicative loss given default is equal to θ. If b does not default, it pays back

the entire amount plus agreed interest rate i. Return on risky asset at t+1 is denoted

by Rt+1 and banks treat it as independent of Bb,t+1. Let c stand for multiplicative

cost of trading either in terms of price slippage and transaction costs, or incurred due

to unfavourable timing of liquidating or purchasing the risky asset. These concern

buyers and sellers equally1, as each of the banks is large enough to affect market

prices.

Let w stand for the desired fraction of stocks held in portfolio at the end of current

period, let w ≥ 0 be the share of stocks in portfolio at the beginning of current

period. Assume v denotes net cash surplus after the bank paid out deposits due and

satisfied obligatory reserve requirements. If bank holds a surplus cash, w = w implies

no necessity to trade shares, and hence no extra costs. If the bank is not able to either

meet reserve requirements or pay out the deposits at the beginning of the current

period, v becomes negative.

1See i.e. Coval and Strafford (2007).
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Assume bank k has in its portfolio m loans to/from j1, . . . , jm whose volumes

amount to wkj1 , · · · , wkjm . Define wkji as positive only if in the i–th transaction bank

k is a borrower and j is a lender. If in i–th transaction bank k is a lender then wkji
is negative. Let ŵ stand for the aggregate net loans granted to k by other members

of the banking system prior current transaction. Let î be the aggregate interest rate

on these loans. Thus we have

ŵ =
m∑
i=1

wkji , ŵ(1 + î) =
m∑
i=1

wkji [(1 + ikji)11{wkji>0}(wkji) + (1 + ijik)11{wkji<0}(wkji)].

Above 11{A}(w) = 1 iff w ∈ A and zero otherwise. The quantities v, ŵ and î that

appear in the borrower problem describe characteristics of the borrower, the same

notation in the lender problem pertains to lender, in both cases the indexes were

omitted for easier display.

For the sake of convenience set the following notation

χb := c−111{w≥w}(w) + c11{w<w}(w), χl := c−111{w>w}(w) + c11{w≤w}(w).

Above χk is a step functions of w for k ∈ {b, l}. Note that both threshold functions

differ in w. Define the following constants

Ak := [(1 + i)(v + ŵ + χkw)− ŵ(1 + î)], Bk := [1− (1 + i)χk],

Ek := [(1− θ)(v + ŵ + χkw)− ŵ(1 + î)], Fk := [1− (1− θ)χk],

Let Vt+1 ≡ Vk,t+1 stand for capital of bank k at t+ 1.

Bank b is a prospective borrower if the amount of risky asset it intends to hold

can not be financed with its net cash. For w ≥ w this condition may be written

as (v+ŵ)−c−1(w−w) < 0, which is equivalent to w > w+c(v+ŵ). In case of w < w

it may be represented as (v+ ŵ) + c(w−w) < 0 and thus w > w+ c−1(v+ ŵ). Both

formulas may be expressed as w > w + [c11{w≥w}(w) + c−111{w<w}(w)](v + ŵ). Define

a set of portfolio choices where b is a borrower as IB. We have

IB = {w : w ≥ w+[c11{w≥w}(w)+c−111{w<w}(w)](v+ŵ)} = {w : w ≥ w+χ−1b (v+ŵ)}.

Let IL stand for a set of portfolio choices where l is a lender, then

IL = {w : w ≤ w + χ−1l (v + ŵ)}.
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Borrower and lender problem are solved for, respectively, w ∈ IB and w ∈ IL. Banks

are not allowed to keep cash between consecutive periods for reasons other than

precautionary.

4.4.2 Borrower and lender problems

Assume w ∈ IB. For w > w the capital of b at t+ 1 amounts to

w(1+Rt+1)+11{w>w}(w)(w−w)(1+Rt+1)−(1+i)(c−111{w>w}(w)(w−w)−v−ŵ)−ŵ(1+î),

in case of w = w we have

w(1 +Rt+1)− (1 + i)(−v − ŵ)− ŵ(1 + î),

while for w < w we obtain

w(1+Rt+1)+11{w<w}(w)(w−w)(1+Rt+1)−(1+i)(c11{w<w}(w)(w−w)−v−ŵ)−ŵ(1+î).

Combining the three cases above yields for borrower b the following formula

Vt+1(w) = w(1 +Rt+1)− (1 + i)(χb(w − w)− v − ŵ)− ŵ(1 + î).

The conditional utility that borrower b expects to obtain at t+1 by investing in a port-

folio, consisting of w ∈ IB units of shares and a loan from l, is

Eu(Vt+1(w)|Bb,t+1 = 0) = Eu(Ab +Bbw + wRt+1).

Now assume w ∈ IL. For w > w the capital of l at t+ 1 amounts to

w(1 +Rt+1) + 11{w>w}(w)(w − w)(1 +Rt+1)+

+((1− θ)Bb,t+1 + (1 + i)(1−Bb,t+1))(v + ŵ − c−111{w>w}(w)(w − w))− ŵ(1 + î),

in case of w = w we have

w(1 +Rt+1) + ((1− θ)Bb,t+1 + (1 + i)(1−Bb,t+1))(v + ŵ)− ŵ(1 + î),

while for w < w we obtain

w(1 +Rt+1) + 11{w<w}(w)(w − w)(1 +Rt+1)+
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+((1− θ)Bb,t+1 + (1 + i)(1−Bb,t+1))(v + ŵ − c11{w<w}(w)(w − w))− ŵ(1 + î).

After combining the three cases above and substituting χl for lender l we obtain

Vt+1(w) = (w(1+Rt+1)+((1−θ)Bb,t+1+(1+i)(1−Bb,t+1))(v+ŵ−χl(w−w))−ŵ(1+î).

Therefore by the rule of iterated expectation

Eu(Vt+1(w)) = E[Eu(Vt+1(w)|Bb,t+1)] =

= pt+1 · Eu(El + Flw + wRt+1) + (1− pt+1) · Eu(Al +Blw + wRt+1).

4.4.3 First order conditions under CARA

Assume that each bank k is endowed with constant absolute risk aversion with risk

aversion parameter γk > 0. Let fRt(x) be a pdf of random variable Rt. Assume Rt

has a moment generating function Mt(q), defined for q ∈ I ⊂ R.

Under these assumptions made for the borrower problem we have

Eu(Vt+1(w)|Bb,t+1 = 0) = Eu(Ab +Bbw + wRt+1) = 1− e−γb(Ab+Bbw) ·Mt+1(−γbw).

Thus the optimal portfolio is given by

w∗b = argmax
w∈IB

{
1− e−γb(Ab+Bbw) ·Mt+1(−γbw)

}
= argmin

w∈IB

{
e−γb(Ab+Bbw) ·Mt+1(−γbw)

}
.

The borrower’s f.o.c. may be written as

d logMt+1(q)

dq

∣∣∣
q=−γbw

+Bb = 0. (4.2)

To validate the consistency of assumptions we need to check if −γbw∗b ∈ I.

For the lender problem we obtain

Eu(Vt+1(w)) = pt+1 · Eu(El + Flw + wRt+1) + (1− pt+1) · Eu(Al +Blw + wRt+1) =

= 1− pt+1 · e−γl(El+Flw) ·Mt+1(−γlw)− (1− pt+1) · e−γl(Al+Blw) ·Mt+1(−γlw).

Thus the optimal unit portfolio is given by

w∗l = argmax
w∈IL

{
1−

(
pt+1 · e−γl(El+Flw) + (1− pt+1) · e−γl(Al+Blw)

)
·Mt+1(−γlw)

}
=
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= argmin
w∈IL

{(
pt+1 · e−γl(El+Flw) + (1− pt+1) · e−γl(Al+Blw)

)
·Mt+1(−γlw)

}
.

The lender’s f.o.c. may be written as

d logMt+1(q)

dq

∣∣∣
q=−γbw

+
pt+1Fl · e−γl(El+Flw) + (1− pt+1)Bl · e−γl(Al+Blw)

pt+1 · e−γl(El+Flw) + (1− pt+1) · e−γl(Al+Blw)
= 0. (4.3)

To validate the consistency of assumptions we need to check if −γlw∗l ∈ I.

Fact D.5.1 in Appendix D demonstrates that every internal, admissible solution

of either borrower or lender f.o.c. yields maximum utility level.

4.4.4 Credit demand and supply under Gaussian returns

From this point assume, in addition, that density of risky asset returns for each bank

k is Gaussian with mean µk and variance σ2
k. Under this assumption logarithmic

differentials of moment generating functions are linear, thus it is possible to derive

analytic formulas for the largest interest rate acceptable to a borrower and the small-

est interest rate acceptable to a lender. From these two equations we may obtain

demand and inverse demand, supply and inverse supply formulas of individual banks

that are consistent with the assumptions, introduced for the network formation algo-

rithm in section 4.5. These four formulas are the main result of the following section.

For the sake of exposition all the intermediate steps, required to derive the sought

results, are relegated to Appendix D.

The monetary demand for credit d depends on the difference between the opti-

mal portfolio choice and the largest position that b could finance without additional

founding. For sufficiently small d > 0 the optimal portfolio choice w∗b is an internal

solution of the borrower problem and lies above eb := w + χ−1b (v + ŵ). There are

two distinct cases. If v + ŵ ≥ 0 then w∗b ≥ w. Bank b utilizes credit to buy more

shares than it had at the end of previous period. As buying large quantities of shares

causes price slippage, for every extra unit of shares it has to pay c−1 units of money.

Monetary demand for credit is given by c−1(w∗b −eb). By a similar token, if v+ ŵ < 0

and if d > 0 is sufficiently small, then we have w∗b < w. Bank b takes credit in order

to avoid selling shares it already has in its portfolio. As disposing of large quantities

of assets incurs cost, for every c units of money b can refrain from selling one unit

of shares. So the monetary demand for credit is given by c(w∗b − eb). In this case

credit demand is sufficiently small if only d < −v − ŵ. As threshold function χb de-

pends on w∗b , this additional restriction guarantees that borrower’s actions are indeed
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optimal. In our notation monetary credit demand may be in both cases expressed as

d(i) = χb(w
∗
b − eb) = χb(w

∗
b − w)− (v + ŵ).

Given previous results the solution of borrower’s problem w∗b may be treated as given

for each offered interest rate i. In both cases we may determine īb as a limit interest

rate for d→ 0+.

Now we may find the largest interest rate īb that borrower b would be willing

to accept. Monetary demand for credit as a function of the offered interest rate is

d(i) = χb

( 1

γbσ2
b

[(1 + µb)− χb(1 + i)]− w
)
− (v + ŵ) ≡

≡ i(d) = χ−1b

(
(1 + µb)− γbσ2

b [w + χ−1b (v + ŵ + d)]
)
− 1.

Hence we have

īb = lim
d→0+

i(d) = χ−1b

(
(1 + µb)− γbσ2

b [w + χ−1b (v + ŵ)]
)
− 1. (4.4)

The monetary supply of credit s depends on the difference between the opti-

mal portfolio choice and the largest position that l could finance without additional

founding. For sufficiently small credit supply s > 0 the optimal portfolio choice w∗l
is an internal solution of the lender problem and lies below el := w + χ−1l (v + ŵ).

There are two distinct cases. If v + ŵ ≥ 0 and if in addition credit supply s < v + ŵ

then w∗l ≥ w. Bank l finances current loan from surplus cash. As buying large

quantities of shares causes price slippage, for every extra unit of shares that l does

not to buy it can grant a loan of c−1 units of money. Monetary supply of credit

is given by c−1(el − w∗l ). By a similar token, if v + ŵ < 0 then we have w∗l < w.

Bank l finances the loan by selling speculative asset. As disposing of large quantities

of assets incurs cost, for every unit of shares l sells it obtains c units of money that

can be lent on the inter–bank market. So the monetary supply of credit is c(el−w∗l ).
Using previous notation, monetary credit supply may be in both cases expressed as

s(i) = χl(el − w∗l ) = χl(w − w∗l ) + (v + ŵ).

Again we may determine il as a limit interest rate implied by s→ 0+.

The solution of lender’s problem satisfies f.o.c at w∗l := w + χ−1l (v + ŵ − s(i)).
To find il it is sufficient to substitute w∗l to lender’s f.o.c. and obtain i in the limit.
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Thus the smallest interest rate that the lender would be able to accept is

il = īl
1

1− pt+1

+ θ
pt+1

1− pt+1

. (4.5)

The maximal size of a loan that b is eager to accept at interest rate ĩ is the volume

w̃ that makes ĩ the largest acceptable interest rate. By a similar token, the maximal

size of a loan that l is eager to grant at interest rate i˜ is the volume w˜ that equates i˜
to il. Given the interior solution of borrower problem his maximal loan volume may

be obtained as

ĩ = χ−1b

(
(1 + µb)− γbσ2

b [w + χ−1b (v + ŵ + w̃)]
)
− 1 ≡ (4.6)

≡ w̃ = γ−1b χ2
bσ
−2
b (̄ib − ĩ),

while for the lender it is given by

i˜≈ (̄il − γlχ−2l σ2
l w˜)

1

1− pt+1

+ θ
pt+1

1− pt+1

≡ (4.7)

≡ w˜ ≈ 1

γlχ
−2
l σ2

l

[(̄il − i˜)(1− pt+1) + (̄il + θ)pt+1].

The pairs of equations (4.6) and (4.7) stand for, respectively, demand and inverse

demand for, supply and inverse supply of inter–bank loans, obtained for an individual

bank k. These formulas are recovered from reservation interest rates of borrower and

lender which are slightly perturbed and inverted in the limit. In case of borrower

b this approach approximates the solution of borrower’s f.o.c. This approximation

is exact if an offer interest rate ĩ is sufficiently close to īb or, alternatively, w̃ > 0

is sufficiently small. The behaviour of a debtor who borrows w̃ at an interest rate ĩ

is optimal. No such reverse engineering is possible in case of lender l. This is because

non–linearity of credit supply equation vanishes in the limit for s(i) → 0+. While

w̃ is approximate solution to (borrower) f.o.c., w˜ is just a solution to approximate

(lender) f.o.c. These two concepts do not need to coincide, lender’s behaviour is not

optimal by itself. However, it becomes optimal due to assumption 2) in the next

section.

Note that formulas (4.4) and (4.5) imply satiation effect as both parties become

more reluctant to trade when their volume of either borrowing or lending increases.

Furthermore, no lender ever lends at an interest rate it would accept as a borrower.

No bank k ∈ {b, l} would ever trade with itself as it always holds that ik > īk.
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4.4.5 From portfolio selection to network formation

Given the solution of portfolio problem, there are two main reasons why inter–bank

market exists. First, there are costs of trading. Banks who finance a deficit of net

deposits by selling risky asset suffer the costs of portfolio adjustment and opportu-

nity lost. Thus they may prefer to take a loan on the inter–bank market and repay it

with interest. Simultaneously, banks who invest a surplus of net deposits in the risky

asset face instant loss due to price slippage, while their future profits remain uncer-

tain. Hence they may prefer to grant a loan on the inter–bank market and collect

a (seemingly) certain interest. Financing a new loan by selling a risky asset is more

expensive than financing it with net deposits. Therefore banks who enjoy a surplus

of net deposits have stronger incentives to become lenders, bunks who run a deficit

have motivation to become borrowers. In this model transaction costs play the role

of symmetry–breaking mechanism, as market participants assume that buying and

then selling a unit of risky asset is not neutral to their financial situation. Next,

banks are heterogeneous. Different degree of risk aversion, diverse risk perception

and liquidity needs of individual banks map to reservation interest rates. If these

rates are diversified enough, the banks find it desirable to trade.

4.5 Network formation algorithm

In this section the assumptions behind the proposed model are being first discussed.

Next, a network formation algorithm that utilizes the solution to the portfolio prob-

lem derived in section 4.4 is presented. The basic idea is that the two groups of banks

who would surely trade with each other are best borrowers and best lenders. Hence

the optimal network of lending relations may be approximated by, sequentially, al-

lowing most desirable counterparts to trade by borrowing or lending sufficiently small

amounts and next updating weak preference relation.

4.5.1 Assumptions

The model presented in this chapter builds on the following assumptions. 1) Banks

joint beliefs on the probability of counterparts bankruptcy is given by p. The value

of p is time dependent and is a subject of collective learning. 2) All inter–bank

lending is concluded at the midpoints of reservation prices of borrowers and lenders.

3) Banks are able to foresee all the interim stages of the proposed network formation

protocol.
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Out of the three assumptions introduced above the first one is probably the most

problematic. It implies that probability of bankruptcy does not vary with counterpart

level of equity or reserves. Thus assumption one is clearly false. The main motiva-

tion behind it are the limitations of computational approach, taken in this paper.

If the agents are supposed to evaluate risk of lending money to given counterpart,

they need to form beliefs on a probability of counterpart bankruptcy in a dynamic

way. One way to implement this learning process which is optimal from the point

of view of information theory is to employ bayesian probit model. However, inter–

bank bankruptcies are rare events. Hence for all practical purposes the output of such

a model would be equivalent to prior information. Furthermore, it is reasonable to ex-

pect that the outcome of network formation process would be sensitive to how this

prior is calibrated. Heterogeneous probabilities of counterpart default do not only

make model calibration arbitrary, they also result in causality of the model being

more blurred as the impact of different variables is harder to disentangle. A fringe

benefit of this assumption is that matching algorithm, presented in further part of this

chapter, needs to keep track of just a single bid and ask price for each market par-

ticipant.

There are two main reasons behind the second assumption. First, it provides

an incentive for the proponents of the best bid and ask offers to trade together. Any

inter–bank lending which happens in the interim stages of the algorithm presented

here takes place between parties who are each other’s first choices, either in terms

of asked or offered interest rate. The aggregate outcome of this trade is necessary

pairwise stable. Next, there is no reason to a priori assume that any side of the market

– either borrowers or lenders – has a bargaining power over the other. This assumption

may be at ease relaxed, as it affects neither link formation process, nor transaction

volumes. It is therefore irrelevant to geometry of the emergent network.

Assumption three implies that the banks possess full information on character-

istics of other agents and the network formation protocol. It performs a dual role

of both rationality and consistency condition – each bank attempts to optimize its ac-

tions given the information available at a time of forming links. After this preliminary

discussion we can introduce the network formation algorithm.

4.5.2 Algorithm

The network formation protocol, introduced in this section, constitutes of two phases.

In the interim phase the four following stages are consecutively repeated. First,

the algorithm identifies the sets of best prospective borrowers and lenders. Only
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the members of these two sets are allowed to trade. Next it determines the largest

admissible volume of trade which obeys certain conditions. In step three this quantity

is split among all the bilateral transactions and the common interest rate is set.

Finally banks reservation rates are updated as if the transactions agreed upon were

already concluded. The proposed algorithm iterates through the four stages listed

above until there are no more creditors or debtors who are willing to trade. This

ends the interim phase. The second part of the algorithm is termed the update phase.

In the update phase all the transactions, agreed upon in all the stages of the first

phase, are finally concluded. Furthermore, all the bank characteristics are properly

updated. The detailed account of each stage of the interim phase is given below.

First stage of the interim phase consists of the following steps. 1) For every non–

bankrupt bank we compute the largest interest rate it is able to accept as a borrower

and the lowest interest rate it is able to accept as a lender. 2) All the solvent prospec-

tive borrowers are listed in descending order according to the largest interest rate they

are willing to accept. All the solvent prospective lenders are listed in ascending or-

der according to the lowest interest rate they are able to accept. Hence each bank

is listed twice, once on every side of the market. These two hierarchies introduce

a natural ordering among both debtors and creditors – it is clear whose offer on given

side of the market may be termed best. In consequence we can distinguish the two

cliques, consisting of the best prospective borrowers and the best prospective lenders.

3) The prospective debtors and prospective creditors with, respectively, the highest

bid and the lowest ask price, are allowed to declare trade with each other. In given

stage of the interim phase these two groups are termed active borrowers and active

lenders.

Second stage of interim phase determines the volume of trade between active

debtors and creditors, selected in stage one. This quantity is defined as the largest

value which preserves the following conditions.

i) The volume of aggregate trade can not be larger than the volume which equates

aggregate supply and demand. The latter corresponds to the market clearing interest

rate, derived as equation D.10.

ii) If there is a second best bid interest rate, then total volume of loans granted

to any prospective debtor can not be larger than the amount that makes his bid

interest rate equal to the second best bid rate. By a similar token, if there is a second

best ask interest rate, then total volume of loans granted by any prospective creditor

can not be larger than the amount that makes his ask interest rate equal to the second

best ask rate.

iii) If any active borrower experiences a deficit of net cash, then the maximum
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total volume of the loans he is allowed to accept during current interim stage exactly

offsets his deficit. If any active lender runs a surplus of net cash, then the maximum

total volume of the loans he is allowed to grant during current interim stage exactly

offsets his surplus.

iv) The amount of lending any active creditor may grant has to be financed either

with its reserves or by selling risky asset. After all the other constraints are applied,

the volume of lending has to be equal to the volume of borrowing.

The short discussion of the four postulated conditions is as follows.

Condition i) above is simply a market clearing condition. If no other restriction

binds, all the borrowers and lenders active during current interim stage are satiated

and should exit the market.

Condition ii) reflects the constraint, imposed on either borrower or lender by his

counterpart. It may be triggered if in the course of trading the highest (lowest)

interest rate, acceptable to active borrowers (lenders), starts equating the second

best interest rate. Then active lenders (borrowers) would also want to trade with

all the non–active borrowers (lenders) who display the best reservation rate. Trading

with more counterparts implies either the same amount of credit at more favourable

price, or more credit with no deterioration of price. Hence no rational bank would

trade beyond this point.

Condition iii) is merely a consistency condition. If surplus of net cash of any

borrower of lender is exactly equal to zero, his reservation interest rates need to be re-

calculated. As this update takes place at the end of the fourth stage of the interim

phase, no further trade is possible in current iteration.

Condition iv) is balancing condition. No lender can breach its budget constraint.

Each borrower (lender) needs to have a counterpart willing to lend him (borrow

from him) the agreed amount of money. This last condition is necessary as, after

all the other conditions are fulfilled, supply may exceed demand or demand may ex-

ceed supply. In the first case we need to find the aggregate creditor reservation rate

which generates supply equal to demand. In the second case the aggregate debtor

reservation rate is required which corresponds to demand equal to supply. Both ag-

gregate reservation rates may be found as formulas (D.11) and (D.12) in Appendix D.

A simple way to implement restrictions i)–iv) is to map these conditions into

reservation interest rates. For each of these restrictions we can find the largest

(or the smallest) interest rate acceptable for active debtors (creditors) that guar-

antees the given condition is fulfilled. The maximal reservation rate for all active

borrowers constitutes a single restriction which binds all the active debtors. The min-

imal reservation rate for all active lenders constitutes a single restriction which binds
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all the active creditors. Hence the proposed implementation relies on formulas (4.6)

and (4.7).

Note that conditions i)–iv) do not rule out cycles. Thus an additional precaution

is required in order to guarantee that the network formation protocol actually stops.

In the simulation, presented in this chapter, it was simply assumed that any active

borrower who in the next iteration of the algorithm becomes active lender is no longer

allowed to become active borrower. By a similar token, any active lender who be-

comes active borrower is no longer allowed to become active lender. This completes

the description of the second stage of the interim phase.

In the third stage of interim phase the total volume that each debtor (creditor) has

committed to borrow (lend) is distributed among all his active counterparts. It fol-

lows from assumption 1) that banks are indifferent with whom they trade, as long

as their partner on the opposite side of the market offers them the most favourable

interest rate. Hence if all the banks were of the same size (in terms of the total

assets), all trade would be symmetric. In general case the agreed volume of bilateral

trade is proportional to the counterpart’s share in either aggregate supply or aggre-

gate demand multiplied by the share of counterpart’s assets in bank system assets.

By assumption 2) the price the banks agree upon is a midpoint of reservation prices,

which characterize each side of the market.

We might consider networks of lending relations which arise in interim phase.

The vertices in such interim network are active borrowers and active lenders. Bor-

rower b is connected to lender l if and only if both parties agreed on a loan during four

consecutive stages of given interim phase. All such networks are necessary complete.

Here completeness means that every borrower is connected to every lender, and every

lender is connected to every borrower. This feature follows from the fact that during

every interim stage all active borrowers offer the same (maximal available) interest

rate to all active lenders. Simultaneously, all active lenders ask the same (mini-

mal available) interest rate from all active borrowers. As transactions are concluded

at the midpoint of reservation prices (assumption 2), each active borrower is strictly

better off by borrowing from all the active lenders, which implies either larger loan

at the same interest rate, or more favourable rate on the loan of the same size.

By the same token each active lender is strictly better off by lending to all the active

borrowers. As it is demonstrated in section 4.7, aggregation of these simple interim

phase networks leads to complicated network geometry.

Finally, in stage four the reservation rates of active borrowers an lenders are

updated with formulas (4.4) and (4.5) as if the transactions agreed upon were already

concluded. Next the algorithm iterates through the four stages of the interim phase
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until there are no more creditors or debtors who are willing to trade. When this

condition is met, all the agreed trade takes place. This ends the interim phase.

The second stage of the algorithm is the update phase. Here the deposits and

risky assets prices are updated for each bank. Solvent debtors pay back inter–bank

loans with an interest. For each insolvent debtor the creditor receives 100(1 − θ)%
of the principal. Finally equity, reserves, net cash and reservation interest rates are

also recalculated. The next section describes calibration of this network formation

model.

4.6 Calibration

Twelve different parameters are required to simulate market formation with the pro-

posed protocol. The following section describes how their values were selected. Unless

stated otherwise, the sources quoted below were accessed in July 2013. For the sake

of brevity, the numbers obtained during calibration were often rounded.

The banking system simulated in this paper comprises of N := 35 banks whose rel-

ative assets match those of the top US–chartered commercial banks having total assets

of at least 300M USD. This choice is motivated by a fact that, according to the Board

of Governors of the Federal Reserve System large commercial banks data (accessed

on 31–st December 2012), the share of 35 largest institutions in the aggregate assets

of all 1700 banks amounts to 92.6%. High concentration of banking system is also

typical for many European countries. In example, Bl̊avarg and Nimander (2002)

report that four large Swedish banks constitute at least 80% of the entire domestic

banking sector. A network of 35 banks for a consolidated market should be sufficient

to model the bulk of the industry without excessive computational burden.

Loss Given Default (LGD) is calibrated to θ := 0.05. Kaufman (1994) reports that

LGD amounted to only 5% in the case of Continental Illinois, which is also the value

used by Georg (2013) in his simulation of German inter–bank market. Given that

banks become insolvent if their equity to risk–weighted asset ratio falls below 4%, this

level corresponds to an overnight loss of borrower’s total assets of approximately 7%.

As risky assets display high persistence and low volatility, this event seems highly

unlikely. Thus the assumed values may be regarded as conservative.

The multiplicative cost of trading is set to c := 0.997. Thus risk–averse banks

assume that each transaction that involves risky asset entails a small additional cost

due to price slippage. I assume that prior the simulation takes place the bankruptcy

of commercial bank in a population of 100 banks happens on average once every five
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Figure 4.1: Long run relative variation of deposits as a function of parameter λ, plotted for
n ∈ {1, 3, 10, 37} agents in the region.

years, which (given 260 working days per year) implies p := 10−6. The later indicates

that inter–bank loans are perceived as (virtually) riskless.

According to the Federal Reserve Requirements (Regulation D) reserve rate of 10%

applies to all deposits above 71 M USD threshold. As all the members of the de-

picted system are large, the deposits in the simulation are all subject to 10% reserve

rate. Starting equity to assets ratio of each bank amounts to 11.5%. This figure

corresponds to the share of asset minus liabilities residual in total assets of the US

banking system according to H.8 statement of the Board of Governors of the Federal

Reserve System (31–st December 2012).

At the beginning of every simulation risk aversion parameter γk for every bank

k ∈ {1, · · · , N} is drawn from a uniform distribution U(γmin, γmax). The values

of γmin and γmax were set to, respectively, 55 and 60, as this range delivers plausible

magnitude of inter–bank overnight interest rates. While they may seem unusually

high, this range of parameters ascertains that banks displaying constant absolute

risk aversion are able to make economically meaningful choices over daily inter–bank

interest rates that are typically very small.

Parameter λ represents the expected duration of deposits. The average volume

of deposits held by bank k is given by λhk, where hk stands for the size of corre-

sponding region. Let Hk be a random variable, depicting net deposits placed in bank

k at given point in time. Standard deviation of Hk depends both on parameter λ

and on the number of bank customers in given region, denoted by n. In the long run
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it may be approximated by

VarHk =
h2k
n

(
1− e−2(λ−1)

+∞∑
j=0

(λ− 1)2j

(j!)2

)
.

Figure 4.1 depicts the ratio of standard deviation of net deposits to their volume

as a function of λ.

Average deposit duration of λ := 11 days may be obtained from savings rate. As-

sume bank customers spend money with constant intensities and the only available

mean of saving are current accounts. Given 21 working day per month the customers

who are expected to collect their deposits after exactly 10.5 working days have on av-

erage no savings. Those who are expected to collect their deposits half a day later run

a surplus of 0.5/21 ≈ 4.76%. According to the most recent OECD household survey

data1 the saving rate of US and UK households amount to, respectively, 4.0% and

5.4%. This range of values corresponds approximately to the calibrated parameter

value. If each region hosts n := 10 bank clients, then for given λ the long term deposit

variance attains a moderate value of 2.52%. Note that as the model does not cover

consumer behaviour, the only role of deposits is to cause net cash variability which

aids the existence of inter–bank lending. For a deposit intensity of λ = 12 monthly

saving rate increases on average to 1.5/21 ≈ 14.28%, which is more appropriate

in case of France (household saving rate of 15.8%) or Spain (13.6%).

Price process parameters are set to µ := 0.0037, η := 0.0369 and σ := 0.0004.

These values are estimated by fitting formula (4.1) to synthetic index that replicates

the relative aggregate asset composition of US–charted banks, revealed in statement

H.8 of the Board of Governors of the Federal Reserve System. Mortgages, mortgage

backed treasury bills, commercial and commercial real estate loans constitute 85%

of the index. They are assumed to be risk–free and yield an annual interest rate

of 4.5%. US treasury bonds contribute 6% to the weight of the index. Their prices

are substituted with the prices of 10–year benchmark US bonds. Foreign bonds

drive the remaining 9% of synthetic index dynamics. Their prices are replaced with

Markowitz risk–minimizing portfolio of 10–year benchmark bonds obtained for EU,

Germany, UK, France, Italy and Japan. The index does not account for inter–bank

loans. While only the bond components are allowed to display volatility, the index

represents a portfolio which is far less diversified, and thus most likely more volatile,

than the actual portfolios of US banks.

1Source: OECD Economic Outlook No. 91, June 2012.
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Figure 4.2: Simulated risky asset values recorded by N = 35 banks during 126 working days
(6 months). In this instance no bank became insolvent.

Any bank becomes insolvent if its ratio of equity to risk weighted assets falls

below 4%. Given the construction of the synthetic index that replicates the asset

composition of US–chartered banks, risk weighted assets are computed as 0.35 ×
0.85 × ak,t + 0.2 × lk,t. Here ak,t and lk,t are the volumes of risky asset and loans

to other banks (held by bank k at time t), 0.2 is the mandatory weight of short–term

unsecured loans, 0.35 is the risk weight that applies to mortgages1, 85% is the share

of mortgages and mortgage backed securities in the risky asset. The remaining 15%

of the volume of the risky asset consists of sovereign debt, treated as risk–free.

To obtain ν := 0.0027 assume for a moment that banks hold only risky asset.

In case where all banks have the same equity to assets ratio there is a constant

which, multiplied by risky asset returns of given bank, yields equity growth rate

of this bank. If financial markets are efficient, then equity growth rates are equal

to stock price growth rates. In equation (4.1) the term It stands for a component

of risky asset returns common to all banks. Under the assumptions made above

to replicate the average correlation rate of individual banks’ portfolios it is enough

to select ν for which average correlations of banks’ stock growth rates and simulated

risky asset returns are equal. The average 5–year correlation rate of daily stock

returns, obtained for 10 largest publicly listed US–chartered banks, amounts to 68.5%.

The selected parameter value for the banks sizes calibrated to the US market yields

average correlation of returns equal to 70.2%. The dynamics of individual risky asset

1Provided they account for less than 60% of the value of the associated property.
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prices driven by equation (4.1) with all parameters equal to their calibrated values

is depicted on Figure 4.2.

The calibrated tuple (µ, η, σ; ν) implies that the prices of risky assets display two

important empirical features. They are both persistent1 and dependent on the excess

demand or supply generated by the other market participants. The latter is particu-

larly important as it enables positive feedback mechanism where excess demand for

or supply of risky assets constitutes an externality, which affects financial position

of given bank. What formula (4.1) does not take into account is moderate volatility

clustering, displayed by the synthetic index. However, as to derive the model we only

need unconditional distribution of asset returns to be Gaussian, the framework pro-

posed here could be easily extended.

The next section presents simulation results.

4.7 Results

This section describes the geometry of the inter–bank market, obtained with the pro-

posed network formation protocol. It also investigates the stability of the entire

banking system in two scenarios. The first scenario assumes that all the banks are

initially endowed with the same expected amount of assets. In the second scenario

the expected assets of consecutive banks are calibrated to reflect heterogeneity, sim-

ilar to the US banking system. In both cases all the observed bankruptcies arise

endogenously. All the figures depicting networks were plotted with Pajek software

package, described in de Nooy et al. (2011). Unless stated otherwise, all the simula-

tion parameters are calibrated with values from section 4.6.

The following network terminology is employed in the remaining part of this sec-

tion. An inter–bank network consists of set of vertices (banks) connected by links

or connections (overnight loans). In every transaction there is a borrower and

a lender, hence all the links are directed. A convention followed here is that links run

from creditor to debtor, just as the corresponding money flow. The weight of a link

(volume of a loan) indicates significance of given link. Degree of a vertex is the num-

ber of links that either originate (in degree) or terminate (out degree) in the given

node. As the network formation protocol delivers net lending between two parties,

there can be no more than one link between each pair of banks. The ratio of all

links formed in a network to all potential connections is termed network connectivity.

Assortativity coefficients indicate how probable vertices of different types are to form

1AR(1) coefficient estimated for the constructed synthetic index is significant at 5% level.
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links with each other.

To investigate the geometry of inter–bank lending 600 networks were generated,

each depicting the development of financial linkages after one month (21 working

days) of trading. As all the relevant quantities are normalized each turn (the model

is stationary), inter–bank network characteristics stabilize after a short period in which

all the banks are allowed to adjust their portfolios. A limited time span of this simu-

lation rules out insolvencies that affect1 the maximum feasible number of connections.

To obtain sample correlates of systemic risk the simulation was run 200 times, the du-

ration of each experiment amounted to 6 months (126 working days).

4.7.1 Homogeneous bank sizes

The first investigated case is the benchmark where the expected assets of each bank

are equal and amount to a single unit.

The simulated degree distribution is depicted by Figure 4.6 (a). While this chart

takes into account the total number of connections, it does not distinguish between

lenders and borrowers. The fraction of unconnected vertices amounts to 1.93%. Mean

vertex degree (including non–connected nodes whose degree is zero) is equal to 7.18,

average ratio of formed links to all feasible links is 10.56%. If sample degree dis-

tribution followed Erdös and Rény (1959) random attachment model, then for given

connectivity the mean vertex degree should be less then 3.6. Conversely, connectivity

which corresponds in this model to the sample mean vertex degree is 21.12%. Hence

the simulated networks entail a degree distribution with heavier tails than the one im-

plied by purely random networks. In result few banks trade with many counterparts

while majority trades with few.

Connectivities of complete, ring, and star–shaped networks of N vertices amount

to, respectively 1, 1/(N − 1) and 1/N . In a network of 35 banks these are: 100, 2.9

and 2.8 percent. The simulated lending networks are therefore less interconnected

than complete, but markedly more than ring or star–shaped networks. The degree

distribution generated by network formation protocol is hump–shaped and appears

to be unimodal. Each simulation returns one connected graph.

The aggregate ratio of loans to assets in the simulated banking system amounts

to 2.89%. This is more than twice the volume of inter–bank lending expressed

as a fraction of total consolidated assets of US–chartered banks, which amounts to ap-

proximately 1.36% (31–st December 2012, only asset categories present in the model

are being included).

1Bankrupted banks do not trade.
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(a) Simulated degree frequency. (b) Borrowers (solid cyan line) vs. lenders (dash-
ed violet line).

Figure 4.3: Degree frequencies simulated for homogeneous bank sizes. Plots ob-
tained: (a) including non connected vertices, (b) conditional on bank k being either
a borrower or a lender.

Figure 4.6 (b) presents the differences in simulated degree distributions between

borrowers and lenders. In the sample 4.74% of the vertices are exclusively lenders,

46.63% are only borrowers while 46.70% of all the banks are simultaneously credi-

tors and debtors. As this last group is particularly large, instantaneous bankruptcy

cascades are both possible and likely. The considerable amount of lenders who are

also borrowers may arise when numerous banks in the course of trading either cover

their entire net cash deficit or exhaust all their cash surplus. As hitting a boundary

implies their reservation interest rates are updated (in a non–linear fashion), these

banks may become most desirable counterparts on the opposite side of the market

in one of the following interim stages. These figures also suggest that the depicted

inter–bank market is a lender market with large excess credit demand. Mean bor-

rower degree amounts to 3.85 while maximum borrower degree is 19. Mean lender

degree is 6.98, maximum lender degree is 24. Hence in the entire banking system

there is relatively more debtors with smaller number of connections and relatively

fewer more interconnected creditors. Within the sample the lenders are relatively

more likely to have 1–4 connections while the borrowers more often have 5–20 links.

A typical characterization of debtor–creditor pair is one of network characteris-

tics that may affect stability of the entire system. As expected asset volumes of all

the banks are initially equal, the main factors that distinguish different market par-

ticipants from each other are their risk aversion and risk perception. While for given

bank the former may be expressed with CARA coefficient, that latter is captured
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Figure 4.4: Inter–bank overnight lending network plotted with Pajek. All banks are solvent, non–
connected banks are omitted. The layout of the vertices was determined by Fruchterman–Reingold
(2D) energy minimization algorithm.

with sample variance of returns. Each of those characteristics may be termed either

low or high, depending on whether its value falls below or above sample median.

The entries of matrices Ag and As below are empirical frequencies, computed form

sample of 71, 189 links formed during the simulation. They describe how often pairs

of banks that differ with respect to risk aversion and risk perception form links with

each other

Ag =

(
0.195 0.375

0.164 0.267

)
, As =

(
0.236 0.266

0.249 0.245

)
.

In Ag the intersection of first row and first column contains probability that a pair

of connected banks consists of a borrower and lender who both have low (i.e. below

sample median) gamma parameter. The intersection of first row and second column

conveys the probability that borrower has low while lender has high (above sample

median) level of gamma. The intersection of second row and first column contains

probability that borrower has high while lender has low gamma parameter. Finally,

the intersection of second row and second column conveys the probability that both

borrower and lender have hight level of gamma. Matrix As carries a similar informa-

tion for risk perception.

Assortativity reveals the propensity of the agents’ to conclude transactions with

the counterparts whose characteristics are different to their own. It captures the im-
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portant feature of real world trade networks where involved parties differ in a much

more fundamental way than just with the respective value of demand, supply or ini-

tial endowment. This is because the latter three quantities arise endogenously and

stem from the fact that the agents are heterogeneous.

In order to assess significance of sample assortativity matrices, their largest entries

may be compared against the simulated quantiles of matrix supremum norms. Critical

values for the largest matrix entry simulated for a population of 10,000 links at 10, 5,

1 and 0.1% levels amount to 25.85, 25.97, 26.22 and 26.52%. As the simulated critical

levels decrease with a number of links in each sample, these values may be considered

as conservative. Both Ag and As matrices are significant at 0.1% level. Note that

as the entries are dependent (sum up to one), significance of empirical frequencies

has to be tested jointly.

In case of both risk aversion and risk perception it is more likely that borrower

and lender are of a different than of same types. The most common pairing consists

of a borrower who is less risk averse and perceives lower level of risk than his coun-

terpart. This result is consistent with basic economic intuition: the risk averse banks

with conservative assessment of investment risk regard interbank loans as desirable

asset and are thus more likely to grant loans on the inter–bank market. Simultane-

ously, the risk–prone institutions who believe that the risk is low are more inclined

to purchase the risky asset. This also means that the risk–prone debtor expects higher

benefits in favourable scenarios. The least probable pair consists of highly risk averse

borrower and less risk averse lender who both expect low variance of unconditional

risky asset returns.

The fact that agent’s linking decisions are assortative has two important implica-

tions. First, it implies that financial linkages are dependent on characteristics of both

involved parties, and thus are not random. Second, if a risk–prone bank which per-

ceives investment risk as low suddenly defaults, then the institutions hit most by its

collapse are likely to be risk–averse and to perceive investment risk as high. This

is precisely the group of banks that is worth saving by financial authorities in case

of major financial crisis.

Figure 4.4 depicts an example of a network of inter–bank connections, created en-

dogenously by the proposed algorithm. Network formation protocol delivers a com-

plex system of financial linkages in which creditors typically reside in the centre

of star–shaped formations and lend to banks, located on the periphery. Furthermore,

the borrowers form fewer links than the lenders.
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(a) Simulated degree frequency. (b) Borrowers (solid cyan line) vs. lenders
(dashed violet line).

Figure 4.5: Degree frequencies simulated for bank sizes calibrated to US market.
Plots obtained: a) including non connected vertices, b) conditional on bank k being
either a borrower or a lender.

4.7.2 Calibrated bank sizes

Next investigated case is when sizes (in terms of total assets) of the banks in the sys-

tem where calibrated to match top 35 banks, active on the US market.

The simulated degree distribution is depicted in Figure 4.5 (a). While this chart

takes into account the total number of connections, it does not distinguish between

lenders and borrowers. The fraction of unconnected vertices amounts to 3.05%. Mean

vertex degree (including non–connected nodes degree of which is zero) is equal to 8.25,

average ratio of formed links to all feasible links is 12.13%. Connectivities of complete,

ring, and star–shaped networks for 35 vertices amount to, approximately, 100%,

2.9% and 2.8%. The networks obtained in the heterogeneous case are again far less

interconnected than complete networks, but markedly more than ring or star–shaped

networks. Each simulation returns one connected graph.

Although the magnitude of the simulated networks connectivity is too large for en-

tire banking systems, it lies in the range typical for subnetworks or clusters of these

systems. In example, Müller (2006) reports that while Swiss inter–bank network

connectivity amounts to only 3%, it soars to 27% for the subnetwork of cantonal

banks. Average connectivities of CHAPS Sterling and Giant Strongly Connected

Components1 of CHAPS Sterling and Fedwire overnight inter–bank networks pro-

vided by Becher et al. (2008) amount, respectively, 88%, 5.1% and 0.3%.

1See Becher et al. (2008) for more details.
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Figure 4.6 presents the simulated degree distributions for the both investigated

cases, conditional on vertex having at least one connection. This empirical density

is plotted against scale–free and conditional purely random degree distributions, fitted

to match the simulated sample mean. Estimated values of characteristic exponent

for scale–free density amount to 1.11 for homogeneous and 0.97 for calibrated bank

assets. Both numbers are low and imply fat–tails. As scale–free distribution does not

allow for vertices with no connections, purely random density is conditioned on vertex

having at least one counterpart.

The degree distribution generated by the network formation protocol is not scale–

free. Empirical densities depicted on Figure 4.6 (a) and (b) are not monotonously

decreasing, they also have lighter tails than the scale–free distributions with the same

average vertex degrees. Sample density obtained for homogeneous banks sizes ap-

pears to be hump—shaped, while the distribution simulated for the banks sizes cali-

brated to the US data seems to be multimodal. Furthermore, the densities generated

by the network formation algorithm do not comply with Erdös and Rény (1959)

random attachment model. Both simulated distributions are not symmetric around

mean vertex degree, their tails are also heavier than in binomial density. Connec-

tivity of purely random network is identical to the estimated probability of forming

a link. Hence if the network simulated for the calibrated bank assets was purely

random, its connectivity would be 24.26%, which is exactly two times more than

the actual sample value. The chart indicates that both simulated inter–bank net-

works are somewhere in between purely random and scale–free networks. Sample

density obtained for the case with the calibrated bank assets oscillates around scale–

free pdf and intersects with it four times. Hence it may be regarded as approximately

scale–free.

The shape of degree distribution presented above conforms with the findings of Iori

et al. (2008), who observed that vertex degree distribution on Italian segment Euro-

pean e–MID market is neither scale–free, nor purely random. It contrasts with a more

recent picture of the entire e–MID market (250 banks) provided by Cohen-Cole et al.

(2013), who found that degree density of European inter–bank market is approxi-

mately scale–free and thus (approximately) monotonously decreasing. The similar

results were obtained by Soramäki et al. (2007) who demonstrated that vertex dis-

tribution for US Fedwire market was close to scale–free with characteristic coeffi-

cient equal to approximately 2.2. The difference between these empirical results and

the shape of the simulated densities may be attributed to two factors. First, the inves-

tigated system consists of only 35 major banks. As noted by Bl̊avarg and Nimander

(2002), in more concentrated systems large banks, who typically trade significant
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(a) Homogeneous assets. (b) Calibrated assets.

Figure 4.6: Simulated degree distribution, conditional on vertex having at least one
connection (violet solid line). Degree distributions: scale–free (magenta dash–dotted
line) and random (cyan dashed line).

volumes of assets, have fewer alternative counterparties. Thus a network, consist-

ing only of large banks, is necessarily much more interconnected than the system,

where majority of banks is either small (eMID with 250 banks) or negligible (Fed-

wire, 1700 banks). When small banks who typically form only few links are being

omitted, low degree vertices are under–represented and relative frequency of ver-

tices with large number of links is weighted up. Next, in the proposed algorithm all

the market participants are endowed with full information about the other members

of the banking system. In result they find it optimal to conclude more transactions

of smaller volume. These two factors lead to endogenous formation of highly inter-

connected networks with distribution that may be approximately humped–shaped

(just as in homogeneous case).

The simulated average aggregate volume of loans as a fraction of total borrower

assets amounts to 4.46%. The same quantity expressed as a percentage of total lender

assets is equal to 8.02%. Hence in the investigate system it is the smaller banks who

are crediting their larger counterparts. Empirically this is demonstrated by Müller

(2006). The average total share of loans in the aggregate assets equates to 3.44%,

which is 2.5 times more than the share of inter–bank loans in consolidated assets

of US–chartered banks (1.36% on 31–st December 2012). However, while inter–bank

market plays secondary role in the US, its importance is much more pronounced

in some European countries. In example, Degryse and Nguyen (2007) report that

in their data inter–bank loans amount to 20–30% of assets and 30–40% of Belgian

bank liabilities.
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Figure 4.7: Example of inter–bank overnight lending network plotted with Pajek. Non–connected
and insolvent banks are omitted.

Figure 4.5 (b) presents the differences between borrowers and lenders in simu-

lated degree distributions. In the sample 5.09% of the vertices are exclusively lenders,

42.29% are only borrowers, while 49.58% of all the banks are simultaneously credi-

tors and debtors. As this last group is particularly large, instantaneous bankruptcy

cascades are both possible and likely. Mean borrower degree amounts to 4.49 while

maximum borrower degree is 21. Mean lender degree is 7.55, maximum lender de-

gree is 33. Hence in the entire banking system there is relatively more debtors with

smaller number of connections and relatively fewer more interconnected creditors.

Within the sample the borrowers are relatively more likely to have 1–5 connections

while the borrowers more often have 6–24 links.

A typical characterization of debtor–creditor pair is one of network characteristics

that may affect stability of the entire system. In this model the main factors that

distinguish different market participants from each other are their: size (in terms

of total assets), risk aversion (CARA coefficient) and risk perception (sample variance

of returns). Each of those characteristics may be termed either low or high, depending

on whether its value falls below or lies above sample median. Empirical frequencies

in the matrices

Ah =

(
0.226 0.303

0.212 0.258

)
, Ag =

(
0.199 0.335

0.191 0.270

)
, As =

(
0.231 0.267

0.246 0.249

)
,

describe how often in the generated networks pairs of banks that differ with respect
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to size, risk aversion and risk perception form links with each other. The frequencies

summarize the characteristics of 81, 115 inter–bank links, formed during the simula-

tion. In Ah the intersection of first row and first column contains probability that

a pair of connected banks consists of a borrower and lender who both have low level

of assets. The intersection of first row and second column conveys the probability

that borrower has low while lender has high level of assets. The intersection of second

row and first column contains probability that borrower has high while lender has

low level of assets. Finally, the intersection of second row and second column conveys

the probability that both borrower and lender have hight level of assets. Matrices Ah

and As carry a similar information for risk aversion and risk perception.

The largest entries of all three matrices are significant at 0.1% level. The most

important factor that differentiates banks’ linking patterns is their risk aversion and

next volume of their assets, risk perception parameter is somehow less important.

In the simulated networks the lenders are more likely to perceive investment

risk as high. The borrowers who participate in the inter–bank trade more often are

small and display high risk aversion while the lenders are large and display high

risk aversion. In line with the empirical results by Cocco et al. (2009) banks tend

to lend or borrow from the institutions of different size to themselves. A typical

debtor–creditor pair consists of a borrower with low level of assets, low risk aversion

and low risk perception and a lender with high level of assets, high risk aversion and

risk perception. The least probable pairing consists of small risk–loving lender who

perceives risk as low and large risk–averse borrower who perceives investment risk

as low.

Just as in the homogeneous case, financial linkages are dependent on charac-

teristics of both involved parties and thus are not random. Again if a risk–prone

bank which perceives investment risk as low suddenly defaults, then the institutions

hit most by its collapse are likely to be risk–averse and to perceive investment risk

as high. By tempering the exuberance of the first group, a prudent banking system

supervisor would protect the latter.

Figure 4.7 depicts an example of a network of inter–bank connections, created

endogenously by the proposed algorithm. Network formation protocol delivers a com-

plex system of financial linkages in which banks with more assets (typically of lower

indices) reside on periphery of star–shaped formations and borrow from smaller banks,

located in the centre. The relatively less numerous lenders form more links and are

endowed with a smaller volume of assets. They are more exposed to counterparty de-

fault, as the volume of credit they grant constitutes more significant portion of their

total assets.
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The networks simulated for relative quantities of assets calibrated to the US mar-

ket have a degree density that displays heavier tails than the networks obtained for

homogeneous case. Their sample vertex distribution is also much closer to scale–

free density and thus more realistic. Both instances yield similar market structures,

with few smaller lenders granting numerous loans and numerous larger borrowers

taking fewer loans. As the networks generated in heterogeneous case are more in-

terconnected, for a sufficiently mild crisis they are expected to be more robust than

the market configurations, obtained in homogeneous case. However, heterogeneous

system would be much more vulnerable to cascades of insolvencies if the crisis was

sufficiently severe. It could be also conjectured it would display much more vehe-

ment transition from the state where all the banks are solvent to the state where

a significant fraction of the inter–bank market is bankrupt.

4.7.3 Correlates of systemic risk

This section investigates the correlates of systemic risk. Contrary to other the bulk

of literature on inter–bank network simulation, the bankruptcies investigated here are

all endogenous events. A single insolvency signals that the entire system is distressed

and thus it is more likely to be followed by a cascade of bankruptcies. In order

to generate sufficient number of insolvencies the equity to asset ratio was set to 4%

of all the banks. This figure correspends to the average relative equity of US banks

in the eve of 2007 financial crisis. Furthermore, the parameter µ in formula (4.1) was

reset to −0.0037. Hence what is modeled in this exercise is a moderate crisis where

the banks in the short term (simulation time span) on average loose money on their

investment, but the returns on investment itself do not become more volatile.

Table 4.7.3 contains sample correlation rates of system aggregates with three in-

dicators of banking system stability. These indicators are: aggregate equity (denoted

as Eq.), number of insolvent banks (Ins.) and a share of assets of bankrupted banks

in total assets of the banking system (Sh.). The components of both the assets and

the liabilities are normalized to one. Funding liquidity is approximated in the model

by an average volume of inter–bank loans, expressed as a fraction of banking sys-

tem assets. Market liquidity is approximated with an average relative contribution

to the risky asset price of the excess supply or demand for this asset, generated

by the banks. Note that probability of default may be estimated on the sample

as a proportion of bankrupted banks to all banks. Hence correlation rate between

any quantity and a number of insolvent banks is (for sufficiently large sample) iden-

tical to correlation rate between given quantity and the estimated probability of de-
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Bank assets
Homogeneous Calibrated

Variable Eq. Ins. Sh. Eq. Ins. Sh.

Deposits -0.527∗∗∗∗ -0.334∗∗∗∗ -0.333∗∗∗∗ 0.565∗∗∗∗ -0.925∗∗∗∗ -0.937∗∗∗∗

Risky asset 0.737∗∗∗∗ -0.975∗∗∗∗ -0.975∗∗∗∗ 0.852∗∗∗∗ -0.994∗∗∗∗ -0.975∗∗∗∗

Reserves -0.527∗∗∗∗ -0.334∗∗∗∗ -0.334∗∗∗∗ 0.565∗∗∗∗ -0.925∗∗∗∗ -0.937∗∗∗∗

Loans -0.685∗∗∗∗ 0.985∗∗∗∗ 0.985∗∗∗∗ -0.840∗∗∗∗ 0.995∗∗∗∗ 0.977∗∗∗∗

Cash -0.297∗∗∗∗ 0.501∗∗∗∗ 0.501∗∗∗∗ -0.297∗∗∗∗ 0.369∗∗∗∗ 0.373∗∗∗∗

Borrower share -0.943∗∗∗∗ 0.695∗∗∗∗ 0.696∗∗∗∗ -0.908∗∗∗∗ 0.972∗∗∗∗ 0.950∗∗∗∗

Lender share -0.924∗∗∗∗ 0.805∗∗∗∗ 0.806∗∗∗∗ -0.924∗∗∗∗ 0.888∗∗∗∗ 0.869∗∗∗∗

Interest rate 0.814∗∗∗∗ -0.886∗∗∗∗ -0.886∗∗∗∗ 0.900∗∗∗∗ -0.884∗∗∗∗ -0.829∗∗∗∗

Leverage -0.973∗∗∗∗ 0.756∗∗∗∗ 0.756∗∗∗∗ -0.977∗∗∗∗ 0.926∗∗∗∗ 0.884∗∗∗∗

Funding liquidity -0.067 -0.021 -0.021 -0.226∗∗∗∗ -0.090∗ -0.116∗∗

Market liquidity -0.394∗∗∗∗ 0.602∗∗∗∗ 0.602∗∗∗∗ -0.668∗∗∗∗ 0.914∗∗∗∗ 0.918∗∗∗∗

Prob. of def. -0.614∗∗∗∗ 1.000∗∗∗∗ 1.000∗∗∗∗ -0.826∗∗∗∗ 1.000∗∗∗∗ 0.989∗∗∗∗

Equity 1.000∗∗∗∗ -0.614∗∗∗∗ -0.615∗∗∗∗ 1.000∗∗∗∗ -0.826∗∗∗∗ -0.771∗∗∗∗

Table 4.1: Simulated correlation rates of aggregates. Eq. stands for equity, Ins.
for total number of observed insolvencies, Sh. for insolvencies as a share of assets
of the banking system. A number of 1–4 stars denote significance levels of, respec-
tively, 10, 5, 1 and 0.1%.

fault. One to four stars denote rejection of null hypothesis that sample correlation

rate is insignificant at significance levels of, respectively, 10, 5, 1 and 0.1 percent.

The table indicates that most of the estimated correlation coefficients is significant

at 0.1% level. As normality assumptions underlying Pearson’s test are not fulfilled,

these values may be only treated as reference. The results obtained were as follows.

The aggregate results allow us to identify two important subsets of aggregates.

The quantities that are positively correlated with equity and negatively with a num-

ber of insolvencies and share of bankrupted banks in total assets are the variables

whose high values characterize a system that is more robust. These aggregates are:

share of equity and deposits in liabilities, share of risky asset and reserves in assets

and inter–bank interest rate. Deposits converted to risky asset constitute the main

source of profits. Retained profits contribute to equity and thus make the banks less

susceptible to insolvency. Reserves are by definition proportional to deposits. High

levels of the aggregate interest rate make inter–bank lending more profitable and thus

increase equity of the lenders. Both reserves and equity provide a safety buffer, high

levels of which make the bank more resilient to crisis. The quantities that are nega-

tively correlated with equity and positively with a number of insolvencies and share

of bankrupted banks’ assets in total assets are the variables whose high levels char-

acterize a system that is more fragile. These aggregates are: share of loans in assets
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Bank assets
Homogeneous Calibrated

Variable Equity Solvent Equity Solvent

In degree 0.076∗∗∗∗ 0.163∗∗∗∗ 0.022∗∗ 0.183∗∗∗∗

Out degree -0.350∗∗∗∗ 0.107∗∗∗∗ -0.324∗∗∗∗ 0.128∗∗∗∗

Gamma 0.013 0.028∗∗∗ -0.047∗∗∗∗ -0.074∗∗∗∗

Sigma -0.204∗∗∗∗ -0.054∗∗∗∗ -0.007 0.023∗∗

Deposits -0.213∗∗∗∗ -0.137∗∗∗∗ 0.125∗∗∗∗ -0.163∗∗∗∗

Equity 1.000∗∗∗∗ 0.360∗∗∗∗ 1.000∗∗∗∗ 0.389∗∗∗∗

Loans to 0.222∗∗∗∗ 0.129∗∗∗∗ -0.158∗∗∗∗ 0.151∗∗∗∗

Risky asset 0.485∗∗∗∗ 0.004 0.579∗∗∗∗ -0.021∗∗

Reserves -0.339∗∗∗∗ -0.173∗∗∗∗ 0.085∗∗∗∗ -0.182∗∗∗∗

Loans from -0.432∗∗∗∗ 0.091∗∗∗∗ -0.527∗∗∗∗ 0.119∗∗∗∗

Net cash -0.134∗∗∗∗ -0.160∗∗∗∗ -0.179∗∗∗∗ -0.345∗∗∗∗

Equity ratio 0.993∗∗∗∗ 0.363∗∗∗∗ 0.991∗∗∗∗ 0.396∗∗∗∗

Leverage -0.952∗∗∗∗ -0.499∗∗∗∗ -0.929∗∗∗∗ -0.516∗∗∗∗

Size 0.040∗∗∗∗ 0.005 0.070∗∗∗∗ 0.059∗∗∗∗

Table 4.2: Correlation rates simulated for individual banks. A number of 1–4 stars
denote significance levels of, respectively, 10, 5, 1 and 0.1.

of borrowers and lenders, the ratio of loans to aggregate assets, net cash, leverage,

market liquidity and the estimate of the probability of counterparty default common

to all the banks in the system. If risky asset is profitable, large amount of loans

in result to the costs of lost opportunity is detrimental to equity of the entire system.

Net cash is invested in the risky assets at the end of current period and it decreases

equity due to slippage costs. High levels of leverage are associated with high risk

and larger losses if the investment will not be profitable. Significant market liquid-

ity is associated with higher volumes of trade and may decrease equity due to trade

frictions. High assessment of the probability that the counterpart defaults is charac-

teristic for the systems where large number of bankruptcies has already occurred and

thus the aggregate equity is low.

Table 4.7.3 contains results simulated for 7000 individual banks. For each of the

two investigated cases the first column contains correlates of consecutive indicators

with bank equity. The second column presents correlation of given quantity with

a binary variable which denotes that bank is solvent. The latter is equivalent to neg-

ative correlation rate with probability of default estimated within the sample. Both

the asset and the liability size of each bank’s balance sheet is normalized to one.

A size of a bank is defined as the amount of assets the bank holds and is treated

as numéraire. Again the majority of the estimated correlation coefficients is signifi-

cant at 0.1% level.
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(a) Assets of the system. (b) Number of insolvencies.

Figure 4.8: Expected: (a) loss of banking system assets, (b) number of insolvent
banks for homogeneous (dashed cyan line) and calibrated (solid violet line) bank
sizes.

Vertex in degree, bank size (total volume of assets), equity and equity ratio

are positively correlated with both equity and the binary index which denotes that

the bank remains solvent. Thus a larger bank, especially a one borrowing from nu-

merous sources, is more resilient to crisis. The high relative amount of risky asset,

accumulated reserves or deposits held (in heterogeneous case) coincide with high level

of equity and lower probability of remaining solvent. As both assets and liabilities

are normalized to one, the higher volume of deposits (and thus the higher obligatory

reserves) typically implies the lower equity. Volume of loans both to and from given

bank, vertex out degree and the risk perception parameter correspond to higher level

of equity and lower level of the binary variable which indicates that the bank remains

solvent. Thus while inter–bank lending during the simulated crisis decreases equity,

it also makes the banks less likely to go bankrupt. Leverage, net cash and risk aver-

sion coefficient gamma are negatively correlated with equity and positively correlated

with probability of default.

At the level of individual banks we may distinguish two subsets of variables.

The quantities that are positively correlated both with equity and the binary variable

equal to one when bank remains solvent contribute to resilience of given bank. These

indicators are: vertex in degree, bank size (total volume of assets), equity and equity

ratio. The quantities negatively correlated both with equity and the binary variable

equal to one when bank remains solvent are the ones whose high levels characterize

banks prone to failure. These variables are: leverage, amount of net cash and risk

aversion coefficient.

106



(a) Funding liquidity. (b) Market liquidity.

Figure 4.9: The moderate crisis dynamics of the indicators of: (a) funding liquidity
and (b) market liquidity, plotted for homogeneous (cyan dashed line) and calibrated
(solid violet line) bank sizes.

Figure 4.8 depicts as functions of time: sample mean number of insolvent banks

and mean share of insolvent banks’ assets in the total assets of the banking system.

It reveals that after quiet spell of 80 working days the system with homogeneous bank

assets enters a much more turbulent phase when a fraction the total number of banks

becomes bankrupt. These insolvent institutions represent 3.5% of both the total num-

ber of banks and the aggregate assets of the banking system. In the case of calibrated

bank assets the crisis starts taking its toll earlier (60 working days), but it is also less

harmful. While more banks become bankrupt (4.1%), their total assets account for

only 2.2% of the aggregate assets of the entire system. Hence heterogeneity of bank

assets makes the entire system more stable and resilient to ruptures.

Figures 4.9 (a) and (b) represent the mean dynamics of the indicators of funding

liquidity and market liquidity, recorder during the simulated crisis. Figure 4.9 (a)

reveals that after a short period of decline in the amount of inter–bank loans caused

by initial portfolio adjustments, the volume of the overnight loan market stabilizes

and then slowly increases. This gradual process is abruptly interrupted some time

after the first insolvency is observed. Once the banks learn that their portfolios in-

cur losses, this sudden realization causes a flight to quality episode (Caballero and

Krishnamurthy, 2008) where they rapidly increase involvement in the less risky inter–

bank market. This effect in the case of homogeneous bank assets is triggered some-

how later, it is also less pronounced. Figure 4.9 (b) indicates that the contribution

of the banking system to the risky asset price peaks in between 10th (homogeneous

assets) or 15th (calibrated assets) working day. This effect decays over time and
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may be also attributed to the cumulated portfolio adjustments. Next the indicators

of market liquidity in both investigated cases start to oscillate around a certain fixed

level. It amounts to approximately 0.8% for the calibrated bank assets and only

0.2% when bank sizes are homogeneous. Thus when the banks substantially differ

in the amount of assets they hold, risky asset market is much more liquid. This fact

may contribute to the higher overall systemic resilience.

4.7.4 Parameter sensitivity

The results presented in this chapter were obtained for one combination of model pa-

rameters. The objective of the following two series of exercises is to verify the impact

of parameter perturbation on both the generated networks and the correlates of sys-

temic risk. In the tests summarized below it is always a single parameter that is being

altered, while all the remaining model characteristics are calibrated as in section 4.6.

In order to obtain results comparable with the ones, presented in subsection 4.7.2,

the first series of tests was run for 21 periods and repeated 600 times. The qualitative

results thus obtained were as follows. Setting c := 0.999 slightly decreases connectiv-

ity of generated networks. The share of loans in the assets of, respectively, borrowers

and lenders falls by 0.29% and 0.9%. Setting c := 0.995 has exactly the opposite

effect. It marginally increases the connectivity, while boosting the share of the loans

in the assets of debtors and creditors by 0.31% and 1.1%. In this second scenario

borrowers and lenders not only conclude transactions of larger volume, but they also

form more (by 1% and 2%, respectively) links. The source of this effect are larger

incentives to become involved in the inter–bank market, which stem from higher

transaction costs when the agents invest in the risky asset. When lenders’ assessment

of the probability of their counterparty overnight default goes up to p := 0.00001,

the size of the inter–bank market declines by 11% while the network connectivity

falls by almost 15%. Further growth of this probability to p := 0.0001 has even more

devastating effects as the inter–bank market dwindles by total 48% and the con-

nectivity drops by 66%. Simultaneously, mean network degree falls by two thirds

while the average vertex degrees of borrower or lender decline by, respectively 15%

and 35%. When p is high, the inter–bank loans are perceived as a more risky (and

thus less desirable) asset. Assuming λ := 12 marginally decreases the total inter–

bank loan volume and has negligible effect on all the other model characteristics.

Larger λ implies lower volatility of the deposits, and thus smaller demand for loans,

triggered by transient liquidity shortages. If γ ∼ U(53, 54) then the connectivity

of the generated networks drops by 90.1%. The banks no longer differ with respect
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to risk aversion, their size and risk perception become the two main factors that de-

termine their linking decisions. If the dispersion of risk aversion parameters is low,

the banks are more similar to each other and thus lack incentives to trade. Finally,

setting γ ∼ U(20, 25) increases the size of the inter–bank loans market by 216%, while

the connectivity of the generated networks increases by 37%. As the utility functions

in this parameter region are more steep, the banks much more fundamentally differ

in their reservation interest rates, and thus find it optimal to lend or borrow more

on the inter–bank market.

To deliver results comparable with subsection 4.7.3, the second series of tests was

run for 126 periods and repeated 200 times. In the seven investigated exercises one

model parameter always assumed either different value or range of values (c := 0.999,

c =: 0.995, p := 0.00001, p := 0.0001, ν := 0.05, γ ∼ U(53, 54), γ ∼ U(20, 25)),

while all the remaining parameters were set as in section 4.6. The qualitative results

thus obtained for the banking system calibrated to the US market were the follow-

ing. At the level of the entire banking system the correlates of: loans, cash, share

of the loans in either borrowers’ or lenders’ assets, aggregate interest rate, systemic

leverage estimated probability of default and aggregate system equity were qualita-

tively stable. Stable was also the correlation rate of market liquidity and the share

of risky asset in banks’ portfolio with a number of insolvent banks. At the level of in-

dividual institutions the correlates of: in degree, out degree, net cash equity ratio and

leverage were qualitatively stable. Stable were also the correlates with bank equity

of: the share of risky asset in total assets and risk aversion parameter gamma (the lat-

ter with the exception of the case when ν := 0.05) and the correlates with a binary

variable which indicates that the bank remains solvent of: equity, loans to given bank

and reserves (again with the exception of ν := 0.05). The fact that not all corre-

lates of systemic risk prove to be stable is not surprising, as some of the considered

exercises are rather extreme (e.g. parameter p is multiplied by a hundred).

4.8 Conclusions

This chapter made the following contributions.

First, the paper proposes a computational model of endogenous network for-

mation designed for the inter–bank market. The algorithm relies on the solution

of portfolio problem where banks displaying constant absolute risk aversion maxi-

mize their expected utility while simultaneously taking into account price slippage,

costs of financing and investment risk. The banks who differ with respect to size,
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risk aversion and risk perception, form links with their most preferred counterparts.

The emergent market structure arises due to banks being heterogeneous. The net-

work formation protocol yields simultaneously the optimal: choice of a counterpart,

volume of a loan and agreed interest rate. The generated system may be analysed

as a whole, at the level of individual banks or separate transactions. The outcome

of network formation procedure is deterministic and pairwise–stable. According to

our best knowledge, this is the only fully endogenous (depending solely on agent’s

characteristics) computational model featuring link formation that simultaneously in-

corporates investment risk and takes into accounts assets and liabilities of commercial

banks.

Second, the proposed model is calibrated to the subnetwork of 35 largest US banks

and run to simulate network geometries. In the generated networks banks with more

assets typically reside on the periphery of star–shaped formations and borrow from

smaller banks, located in the centre. The lenders form more links than the borrow-

ers. Thus they are more exposed to counterparty default as the volume of credit

they grant constitutes more significant portion of their total assets. Just as in real

world financial networks, degree distribution in the generated networks displays a tail

gravity of which is between that of purely random and scale–free network. If the ex-

pected initial bank assets are homogeneous, the factor which affect linking decisions

of the agents most is risk aversion. If the assets are calibrated to the US market,

the factors that affects bank’s linking behaviour are first risk aversion and next volume

of assets while risk perception seems least important. As there is a fraction of banks

who are simultaneously borrowers and lenders, the geometry of the resulting networks

allows for instantaneous bankruptcy cascades.

Third, the correlates of systemic stability are being investigated. The quantities

that on aggregate level characterize more robust system are: share of equity and

deposits in liabilities, share of risky asset and reserves in assets and inter–bank interest

rate. Thus one of the ways to make system more resilient to crisis is to incite the banks

to rise additional capital. As high inter–bank interest rates may contribute to equity

via the retained profits, keeping interest rates artificially high might be detrimental

to systemic stability. At the level of individual banks the factors which contribute

to resilience of given bank are: vertex in degree, bank size (total volume of assets),

equity and equity ratio. These results indicate that the lender of the last resort could

mitigate the investigated crisis, by providing loans to the distressed banks. They

also suggest one of the reasons behind high banking system concentration might

be that the concentrated systems are more robust. The simulation also shows that size

matters – for the considered crisis scenario the case where bank assets are calibrated
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to US market generates a more robust system with less common bankruptcies than

the homogeneous case.

The model presented in this work has some interesting extensions. First, the pro-

posed framework could be used to analyse robustness of the banking system under

different crisis scenarios. Next, it could be utilized to investigate the impact of fire

sales and asset price erosion on systemic stability. Third, the model maybe employed

as a simulation tool to quantify the impact of different banking system regulations

(such as Basel III accord) on the emergent market structure.
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Chapter 5

Summary and Contributions

The contributions of chapters 2-4 may be summarized as follows.

Chapter 2 demonstrates that 1) heavy–tails in macroeconomic data are not an ex-

ception, 2) if not properly taken into account, heavy–tails may cause serious problem

in both estimation of and inference from econometric models. It also provides an orig-

inal comparison of different classes of densities, shedding a new light on their appli-

cability in economics. It is argued that out of the diverse approaches to modelling

large deviations, the one that is best suited to modelling macroeconomic uncertainties

is the approach which employs tempered stable distributions.

Chapter 3 introduces a tractable, non–standard definition of TS distributions

(Definition 3.2.1) and its multivariate extension (Definition 3.2.2), which allows for

capturing multivariate dependences with covariance matrix. The chapter presents

the complete set of formulas for cumulants and moments of TS densities, previously

known only for α 6= 1. It investigates a number of properties of TS distributions

which were known in less general setting (α < 1, α 6= 1, β = 1). It introduces

the new Cumulant Matching estimator (Proposition 3.4.1) and the novel mixture

representation for tempered stable random variates (Proposition 3.5.1). The ran-

dom number generation algorithm that relies on the latter (Algorithm 2) is valid

for the entire admissible parameter range and may be implemented in just one line

of code. This algorithm is demonstrated to be the most accurate and the fastest

randomization method in the range of parameters which seems appropriate for low

frequency macroeconomic distributions (α > 1, |β| 6= 1 and θ < 1). Finally, the chap-

ter applies these new methods to simulate the probabilities of joint currency crises

on Russian ruble and British pound. It is demonstrated that the mTS distribution

much better represents the standardized multivariate data than the two investigated

benchmark multivariate densities (Gaussian and elliptical t). It thus delivers much

more realistic estimates of the probabilities of extreme events. All the proofs are
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relegated to Appendix B.

Chapter 4 presents a computational model of endogenous network formation de-

signed for the overnight inter–bank market. The algorithm relies on the solution

of portfolio problem (Appendix D) where the banks display constant absolute risk

aversion and maximize their expected utility, while taking into account price slip-

page, costs of financing and investment risk. The network formation protocol yields

simultaneously the optimal: choice of a counterpart, volume of a loan and agreed

interest rate. Next the proposed model is calibrated to the subnetwork of 35 largest

US banks and run to simulate network geometries. In the generated networks banks

with more assets typically reside on the periphery of star–shaped formations and bor-

row from smaller banks, located in the centre. The lenders also form more links than

the borrowers. The simulated degree distribution displays a tail gravity of which lies

between that of purely random and scale–free network. The outcome of network for-

mation procedure is deterministic and pairwise–stable. The chapter also investigates

the correlates of systemic risk both at the level of individual banks and the entire

banking systems. According to our best knowledge, the proposed novel framework

is the only available fully endogenous (depending solely on agent’s characteristics)

computational model of network formation in banking systems.

The proposed new methods have certain limitations.

Tempered stable distribution still lack a reliable estimation technique that would

not resort to numerical approximations. This problem is particularly pressing in the

case of their multivariate extension. Thus a multivariate approach that would rely

on direct estimation of spectral measures could be here especially useful.

The main drawback of the proposed network formation protocol is that it em-

ploys the estimate of the probability of counterparty default that is common to all

the banks in the system. Hence, in particular, it can not depend on any character-

istics of the debtor. While it is possible to relax this assumption, it would result

in a much more complicated model, a solution of which through the interim stage

iterations would be highly computationally demanding. Such a modified algorithm

would generate in its interim phases disjoint inter–bank lending networks, which could

possibly lead to the final overnight inter–bank lending network also being disjoint.

This last feature would not necessarily be desirable as it is most likely counterfactual.

Another assumption which might cause concerns is the full information of the agents

on the characteristics of their counterparts in the system. While it seems to be a suf-

ficiently good first approximation, a more realistic incomplete information framework

would be more than welcome. A serious disadvantage of the model is that it allows

for only one maturity of the loans. Thus it can not depict a build-up of maturity
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mismatch, which is one of the potential sources of fragility of banking systems. Any

framework, attempting to overcome this obstacle, would have to combine optimization

over multiple periods with modelling banks’ intertemporal choices. At the moment

it is neither clear, how to construct such an extension, nor what would be its impact

an the stability and dynamics of the entire system. Finally, the model is compu-

tational, and thus not fully analytically tractable. Furthermore, the numerical cost

of analysing large inter–bank systems may often prove to be prohibitive.
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Appendix A

Algorithms

A.1 Random number generation for stable distri-

butions

The algorithm below follows the style of McCuloch’s rndsta routine1. This procedure

is an implementation of Chambers et al. (1976) random number generation algorithm,

valid for skewed α–stable random variates.

Algorithm 0 (Chambers, Mallows and Stuck, 1976)

Step 0. Generate independent Z1, Z2 ∼ N(0, 1), set ε to sufficiently small number.

Step 1. Set V := π(Z1 − 0.5), W := − lnZ2, ζ := β tan πα
2

.

Step 3. If |1− α| < ε then

Y := sinαV+ζ cosαV
cosV

(
cos (1−α)V+ζ sin(1−α)V

W cosV

) 1−α
α

;

else

η := 0.5π + βV ;

Y := 2
π
(η tanV − β ln πW cosV

η
);

If α 6= 1 then Y := Y + η;

end.

Step 4. Set X := δY .

If |1− α| < ε then X := X + 2
π
βδ · ln δ.

X := X + µ.

Step 5. Return X.

1Available at: http://www.econ.ohio-state.edu/jhm/programs/RNDSSTA.
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Algorithm 0 returns pseudo–random number X drawn from Sα(β, δ, µ). Auxiliary

random variable Y defined above is generated from Sα(β, 1, 0).

A.2 Inverse FT on asymmetric domain

Assume set [a, b] is divided it into N disjoint sections of equal length. The aim

procedure derived here is to evaluate pdf of random variable with known characteristic

function ΦX(u) in the lower bounds of these sections.

For l = 0, . . . , N − 1 set xl = a+hl with h = (b− a)N−1. For N sufficiently large

(h sufficiently small) constant c = π/h is also large and

fX(xl) =
1

2π

∫ +∞

−∞
e−iuxl · ΦX(u) du ≈ 1

2π

∫ c

−c
e−iuxl · ΦX(u) du =

= {u = 2πω,
1

2π
du = dω} =

∫ N/2(b−a)

−N/2(b−a)
e−2πi·ωxl · ΦX(2πω) dω.

Set ωn = (n−N/2)s for n = 0, . . . , N − 1 with s = (hN)−1 = (b− a)−1 to obtain

∫ N/2(b−a)

−N/2(b−a)
e−2πi·ωxl · ΦX(2πω) dω =

∫ Ns/2

−Ns/2
e−2πi·ωxl · ΦX(2πω) dω ≈

≈ s
N−1∑
n=0

ΦX(2πωn) · e−2πi·ωnxl = s
N−1∑
n=0

ΦX

(
2πs(n− N

2
)
)
· e−2πi·(

a
h
+l)(n−N

2
)hs.

As eπi = −1, it follows that

e−2πi·(
a
h
+l)(n−N

2
)hs = e−2πi·(

aN
b−a+l)(

n
N
− 1

2
) = eπi·(

aN
b−a+l) · e−2πi·(

an
b−a+l

n
N
) =

= (−1)
a
b−aN+l · (−1)−

2a
b−an · e−2πi·l

n
N .

Finally

fX(xl) ≈
1

b− a
(−1)

a
b−aN+l

N−1∑
n=0

(−1)−
2a
b−an · ΦX

( 2π

b− a
(n− N

2
)
)
· e−2πi·l

n
N .
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The sought result may be computed by evaluation of Inverse Fourier Transformation

N−1∑
n=0

yn · e−2πi·l
n
N , l = 0, 1, . . . , N − 1

via Fast Fourier Transform (FFT) algorithm applied to the sequence

yn = (−1)−
2a
b−an · ΦX

( 2π

b− a
(n− N

2
)
)
, n = 0, 1, . . . , N − 1.

An output of FFT procedure is a vector. In order to obtain it in MATLAB run

fft procedure on (y0, . . . , yN−1). To get valid pdf values multiply the entries thus

obtained by 1
b−a(−1)

a
b−aN+l.

117



Appendix B

Proofs

Property 3.2.1 The corresponding Rosiński measure

R(dx) = Cα(θδ)α[(1 + β)δ(x− 1/θ) + (1− β)δ(x+ 1/θ)] dx,

where δ(x± 1/θ) stands for Dirac’s delta and constant Cα is equal to

Cα =

α(1− α)[2 cos (πα
2

)Γ(2− α)]−1 α 6= 1

1
π

α = 1

satisfiesR({x : |x| > 1/θ}) = 0. The statement follows from Corollary 2.13 in Rosiński

(2007).

Property 3.2.2 For V ∼ Gamma(1/2, θ) the corresponding Fourier transformation

is

ΦV (u) ≡ EeiuV = (1− θiu)−1/2.

If V1, V2 are independent copies of V , then for X ∼ (V1 − V2)/θ2 we have

ΦX(u) ≡ Eeiu(V1−V2)/θ2 = Eei(u/θ2)V1+i(−u/θ2)V2 = ΦV (u/θ2) · ΦV (−u/θ2) =

= (1− iu/θ)1/2(1 + iu/θ)1/2

what matches the formula, provided by Boyarchenko and Levendorskii (2000) for

α = 0.

Property 3.2.3 Distribution of X ∼ Sα(β, δ, 0) is concentrated on R+ for α < 1,
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β = 1 and on R otherwise. As distribution in Definition 3.2.1 is first obtained from

Sα(β, δ, 0) via exponential tempering (which does not affect the support) and next

shifted by µX to obtain centred density for µ = 0, the statement follows.

Property 3.2.4 Kim et al. (2010a) give the proof for α 6= 1. Their reasoning also

holds for α = 1 and ρ ∈ (0, θ) if only |ΦX(u + iρ)| < +∞ for all u ∈ R. We

shall demonstrate this inequality. First note that the logarithm in Definition 3.2.1 is

a principal branch of complex valued natural logarithm, hence ln z = ln |z| + i arg z.

This equality implies that

ln (θ ± i(u+ iρ)) = ln
√

(θ ± ρ)2 + u2 ± i arcsin
u√

(θ ± ρ)2 + u2
.

Next define real functions A(u) and B(u) so that

A(u) + iB(u) := ln ΦX(u+ iρ) = ψX(u+ iρ) + i(µ− µX)(u+ iρ) =

=
1

π
δ[(1 + β)(θ − ρ− iu)(ln

√
(θ − ρ)2 + u2 − i arcsin

u√
(θ − ρ)2 + u2

)]+

+
1

π
δ[(1− β)(θ + ρ+ iu)(ln

√
(θ + ρ)2 + u2 + i arcsin

u√
(θ + ρ)2 + u2

)]+

+i(µ−µX)(u+iρ) =
1

π
δ
[
(1+β)

(
(θ−ρ) ln

√
(θ − ρ)2 + u2−u arcsin

u√
(θ − ρ)2 + u2

)
+

+(1− β)
(

(θ + ρ) ln
√

(θ + ρ)2 + u2 − u arcsin
u√

(θ − ρ)2 + u2

)
+ (µ− µX)ρ

]
+

+i
1

π
δ
[
(1 + β)

(
− u ln

√
(θ − ρ)2 + u2 − (θ − ρ) arcsin

u√
(θ − ρ)2 + u2

)
+

+(1− β)
(
u ln

√
(θ + ρ)2 + u2 + (θ + ρ) arcsin

u√
(θ + ρ)2 + u2

)
+ (µ− µX)u

]
Note that for sufficiently large |u| we have

(θ ± ρ) ln
√

(θ ± ρ)2 + u2 − u arcsin
u√

(θ ± ρ)2 + u2
≈ (θ ± ρ) ln |u| − π

2
|u|

and thus

lim
|u|→+∞

A(u) = −∞, lim
|u|→+∞

eA(u) = 0. (B.1)
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This yields

|ΦX(u+ iρ)| = |eA(u)+iB(u)| =
√
eA(u)+iB(u) · eA(u)−iB(u) =

=
√
e2A(u)(cosB(u) + i sinB(u))(cosB(u)− i sinB(u)) =

= eA(u)
√

cos2B(u) + sin2B(u) = eA(u)

Now for sufficiently large real R and u ∈ (−R,R) function |ΦX(u + iρ)| is arbitrar-

ily small on (−∞,−R) ∪ (R,+∞) by equation (B.1) and, as a continuous complex

function defined on a compact, bounded on (−R,R). The statement holds by Propo-

sition 1 in Kim et al. (2010a).

Property 3.2.5 Treat r as complex, note that |(−r)−1−α| = |r−1−α||(−1)−1−α| =

r−1−α. Spectral density λ defined in Wolfe (1971) on p. 2069 fulfils

λ(r)− |λ(−r)| = r
(
r−1−αe−θr(1 + β)δαCα/2−

∣∣∣(−r)−1−αeθr(1 + β)δαCα/2
∣∣∣) =

= r−α
(
e−θr(1 + β)− eθr(1− β)

)
δαCα/2 =

(e−θr − eθr) + β(e−θr) + eθr)

rα
δαCα/2.

The term δαCα/2 is strictly positive and does not depend on r. From L’Hospital rule

λ(0+) + |λ(0−)| = lim
r→0+

(λ(r)− |λ(−r)|) =

= δαCα/2 · lim
r→0+

(e−θr − eθr) + β(e−θr) + eθr)

rα
= +∞.

By Theorem 4 in Wolfe (1971) function fX(x) exists and is smooth. This calculation

also implies that the corresponding cdf belongs either to class I6 or to class I7 defined

in Sato and Yamazoto (1978). By either point (vii) or (xi) of Theorem 1.3 therein

fX(x) is unimodal.

Property 3.2.6 As µY = −µX , in consequence ψX(−u) + i(µ−µX)(−u) = ψY (u) +

i(−µ− µY )u and we have Φ−X(u) = ΦY (u).

Property 3.2.7 Assume for simplicity that a > 0. For α 6= 1 we have µY = aµX

and ψX(au) = ψY (u), while in case of α = 1 it holds that µY = aµX + 2
π
βδa ln a and

ψX(au) = ψY (u)−i( 2
π
βδa ln a)u. In both cases ψX(au)+i(µ−µX)au+ibu = ψY (u)+

i(aµ+ b− µY )u and thus ΦaX+b(u) = ΦY (u). If a < 0 then ΦaX+b(u) = Φ−(|a|X−b)(u)

and the statement holds by Property 3.2.6.
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Property 3.2.8 Follows from multiplication of characteristic functions and collection

of terms.

Property 3.2.9 By Property 3.2.5 pdf of X exists. By Property 3.2.8 we have

f ∗nX (x;µ, θ) = fX(x;n1/αδ, nµ).

Let Y ∼ TSα(β, δ, n1−1/αµ, n1/αθ). We obtain

ln ΦX(u;n1/α, nµ) = ψX(u;n1/αδ) + i(nµ− nµX)u =

=

ψY (n1/αu;n1/αθ) + i(n1−1/αµ− µY )(n1/αu) α 6= 1,

ψY (nu;nθ) + i( 2
π
βδ lnn)(nu) + i(µ− µY + 2

π
βδ lnn)(nu) α = 1,

= ψY (n1/αu;n1/αθ) + i(n1−1/αµ− µY )(n1/αu).

Express pdf via Inverse Fourier Transform to obtain

fX(x;n1/α, nµ) =
1

2π

∫ +∞

−∞
e−iux · ΦX(u) du =

=
1

2π

∫ +∞

−∞
e−i(n

1/αu)(n−1/αx) · eψY (n1/αu;n1/αθ)+i(n1−1/αµ−µY )(n1/αu) du = {v = n1/αu;

du = n−1/αdv} = n−1/α
1

2π

∫ +∞

−∞
e−iv(n

−1/αx) · eψY (v;n1/αθ)+i(n1−1/αµ−µY )v dv =

= n−1/αfX(n−1/αx;n1−1/αµ, n1/αθ).

Fact 3.2.10 First introduce the following notation. Define vj as (n× 1) vector with

one on j–th place and all the remaining entries being equal to zero. Define X0
j as

(n× 1) random vector with Xj on j–th place and the remaining entries being equal

to zero. Assume α ∈ (0, 2) and the constant Cα is defined as in chapter 2, set

σj,± := δαj Cα(1± βj)/2, δj > 0 and βj ∈ [−1, 1] for j ∈ {1, · · · , n} .

Next, characterize the distribution of X from Fact 3.2.10 with the underlying

spectral measure (expressed in polar coordinates). If Xj ∼ TSα(β, δ, µ, θ) then

the spectral measure corresponding to Xj for each j ∈ {1, · · · , n} may be written as

r−1−αe−θr[σj,+δ(v − v1) + σj,−δ(v + v1)] dr dv
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where δ stands for Dirac’s delta. Hence the spectral measure of random vector X0
j is

r−1−αe−θr[δ(v − vj) + δ(v + vj)][σj,+δ(v − vj) + σj,−δ(v + vj)] dr dv =

= r−1−αe−θr dr [σj,+δ(v − vj) + σj,−δ(v + vj)] dv.

The last equality follows from the fact that this measure is non–zero only on the in-

tersection of j–th axis with the unit sphere. If random variates Xj are independent,

random vectors X0
j are also independent. Hence Fourier transformation of their sum

is the product of (univariate) Fourier transformations, and thus spectral measure

of their sum is the sum of (univariate) spectral measures. Note that random vector

X may be expressed as X =
∑n

j=1X
0
j , so in polar coordinates its spectral measure

is give as

r−1−αe−θr dr
n∑
j=1

[σj,+δ(v − vj) + σj,−δ(v + vj)] dv =: r−1−αe−θr dr σ(v) dv.

The assignment above (from right to left) defines spherical measure σ.

In the third step note that, by Example 2.3.5 in Samorodnitsky and Taqqu (2000),

the expression r−1−α dr σ(v) dv stands for spectral measure of the multivariate sta-

ble vector with independent entries. Thus the multivariate distribution, obtained

via the uniform, exponential tempering of the spectral measure (expressed in polar

coordinates) of multivariate stable vector with independent entries via e−θ||x|| = e−θr

may be characterized with

T (dr, dv) = e−θrS(dr, dv) = r−1−αe−θr dr σ(v) dv.

The last equality implies that random vector X has a tempered stable distribution

where the tempering is defined as in Rosiński (2007).

Finally, observe that by Corollary 2.12 proved therein the class of tempered stable

distributions defined in Rosiński (2007) is closed with respect to linear transforma-

tions. Hence the distribution of Y given as Y = µ + ATX is a member of Rosiński

(2007) class and thus a multivariate tempered stable distribution. Note that this

result is established irrespective of the form of AT . In particular, it is required

to be neither an invertible nor a full–rank matrix. The distribution of Y is there-

fore a well-defined multivariate tempered stable distribution which may be further

denoted as mTSα(β, δ,µ, θ, A).
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Corollary 3.3.1 To obtain cumulants when α 6= 1 integrate eq. (14) in Terdik and

Woyczyński (2006) with respect to Rosiński measure

R(dx) = Cα(θδ)α[(1 + β)δ(x− 1/θ) + (1− β)δ(x+ 1/θ)] dx.

Definition 3.2.1 relies on different parametrization than the one used in Rosiński

(2007), it implies that κ1 = µ while all higher order cumulants remain intact. In case

of α = 1 it holds that

d

du
ψX(u) = i

2δ

π

[ +∞∑
j=1

(Ij+1 + βIj)θ
−j(j − 1)!

(iu)j

j!
− β(1 + ln θ)

]
,

so κ1 = (µ − µX) − iψ′X(0) = µ and κp = (−i)pψ(p)
X (0) = 2δ

π
(Ip + βIp+1)θ

1−p(p − 2)!

for p ≥ 2.

Proposition 3.4.1 i) We have κ̂3 6= 0 and κ̂5 6= 0. From Corollary 3.3.1 it holds iff

β 6= 0. The CM estimator may be obtained by matching κ̂p = κp for p ∈ {1, . . . , 5}
given α 6= 1. Derive the expression for α̂ using ratios

κ̂5/κ̂3
κ̂4/κ̂2

=
4− α
2− α

.

This yields

α̂ = 2
(

1− κ̂4κ̂3
κ̂5κ̂2 + κ̂4κ̂3

)
.

As κ̂5κ̂2 + κ̂4κ̂3 6= 0 this estimate exists. It is assumed that κ̂4κ̂3/(κ̂5κ̂2 + κ̂4κ̂3) 6= 1/2,

so the estimate α̂ 6= 1 is consistent with the initial set of conditions. It holds that

α̂ ∈ (0, 2) iff κ̂5κ̂2/κ̂4κ̂3 > 2. Substitute the formula for α̂ to the ratio

κ̂4κ̂2 = (2− α)(3− α)θ−2

to derive the formula for θ2. As κ̂2 = V̂arX > 0 , this expression is positive iff κ̂4 > 0.

We thus obtain

θ̂ =

√
2κ̂3κ̂2(κ̂5κ̂2 + κ̂4κ̂3)

(κ̂5κ̂2 − κ̂4κ̂3)2
.

Next note that κ̂5κ̂4 = (4− α)β/θ and κ̂3κ̂2 = (2− α)β/θ. Subtract the latter from
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the previous and use the estimates α̂, θ̂ to derive

β̂ =
κ̂5κ̂2 − κ̂4κ̂3

2κ̂4κ̂2
θ̂.

We have β̂ ∈ [−1, 1] iff β̂2 ≤ 1. The last condition is equivalent to κ̂5κ̂2/κ̂4κ̂3 ≤
2κ̂4κ̂2/κ̂

2
3 − 1. Inverting formula for δ̂ and inserting all the estimates above yields

δ̂ =
( κ̂2 cosπα̂/2

α̂(1− α̂)

)1/α̂
θ̂ 2/α̂−1.

Given the assumptions already made, this estimator is always positive and thus does

not require any further existence conditions. Finally set µ̂ = κ1. Point i) is completed.

ii) We have κ̂3 6= 0 and κ̂5 6= 0. From Corollary 3.3.1 it holds iff β 6= 0. As κ̂5κ̂2 +

κ̂4κ̂3 6= 0, the estimator α̂ defined in point i) exists, but now κ̂4κ̂3/(κ̂5κ̂2+κ̂4κ̂3) = 1/2,

hence α̂ = 1. The CM estimator may be obtained from κ̂p = κp for p ∈ {1, . . . , 4}
given α = 1. Use the ratio κ̂4/κ̂2 = 2/θ2 to find

θ̂ =

√
2κ̂2
κ̂4

,

this estimator exists iff κ̂4 > 0. Inverting the formula for second cumulant yields

δ̂ =
π

2
κ̂2θ̂.

Use the ratio κ̂3/κ̂2 = β/θ to obtain

β̂ =
κ̂3
κ̂2
δ̂.

We have β̂ ∈ [−1, 1] iff β̂2 ≤ 1. The latter condition is equivalent to 2κ̂23/κ̂4κ̂2 ≤ 1.

Set µ̂ = κ1. This concludes point ii).

iii) We have κ̂3 = 0 and κ̂5 = 0. From Corollary 3.3.1 it holds iff β = 0. Set β̂ = 0.

The CM estimator may be obtained by matching κ̂p = κp for p ∈ {1, 2, 4, 6} given

α 6= 1. Use the ratios

κ̂6
κ̂4

= (4− α)(5− α)θ−2,
κ̂4
κ̂2

= (2− α)(3− α)θ−2,
κ̂6
κ̂4
− κ̂4
κ̂2

= (14− 4α)θ−2
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to obtain

θ−2 =
1

14− 4α

κ̂6κ̂2 − κ̂24
κ̂4κ̂2

.

Set a := κ̂24/(κ̂
2
4−κ̂6κ̂2), insert the formula above to the expression for κ̂4/κ̂2. It follows

that α fulfils quadratic equation α2−(5+4a)α+(6+14a) = 0 with ∆ = 16a2−16a+1.

Only smaller of the two feasible solutions could ever satisfy 0 < α < 2. This solution

lies in the desired region iff a ∈ (−3/7, 0). The last condition is equivalent to 3κ̂6κ̂2 >

10κ̂24. When it holds, we have

α =
5

2
+ 2a−

√
4a2 − 4a+

1

4
,

which in turn yields

α̂ =
5

2
− 1

2(κ̂6κ̂2 − κ̂24)

(
4κ̂24 +

√
κ̂26κ̂

2
4 + 14κ̂6κ̂24κ̂2 + κ̂44

)
.

As κ̂6κ̂2 6= κ̂24, this estimate exists. We assumed (4κ̂24 +
√
κ̂26κ̂

2
4 + 14κ̂6κ̂24κ̂2 + κ̂44)/

/(κ̂6κ̂2− κ̂24) 6= 3, so the estimate α̂ 6= 1 is consistent with the initial set of conditions.

Use the expression for α̂ and the formula for θ−2 given above to obtain

θ̂ =

√
(14− 4α̂)

κ̂4κ̂2
κ̂6κ̂2 − κ̂24

.

If 3κ̂6κ̂2 > 10κ̂24 then κ̂6κ̂2−κ̂24 > 0, we have also assumed κ̂4 > 0, hence this estimator

is well defined. Inverting formula for δ̂ and using the remaining estimates yields

δ̂ =
( κ̂2 cos πα̂/2

α̂(1− α̂)

)1/α̂
θ̂ 2/α̂−1.

Given the assumptions already made this estimator is always positive and thus does

not require any further existence conditions. Finally set µ̂ = κ1. Point iii) is com-

pleted.

iv) We have κ̂3 = 0 and κ̂5 = 0. From Corollary 3.3.1 it holds iff β = 0. Set

β̂ = 0. As κ̂6κ̂2 6= κ̂24, the estimator α̂ defined in point iii) exists, but now (4κ̂24 +√
κ̂26κ̂

2
4 + 14κ̂6κ̂24κ̂2 + κ̂44)/(κ̂6κ̂2 − κ̂24) = 3, hence α̂ = 1. The CM estimator may

be obtained by matching κ̂p = κp for p ∈ {1, 2, 4} given α = 1. Use the ratio
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κ̂4/κ̂2 = 2/θ2 to find

θ̂ =

√
2κ̂2
κ̂4

,

this estimator exists iff κ̂4 > 0. Inverting the formula for second cumulant yields

δ̂ =
π

2
κ̂2θ̂.

Set µ̂ = κ1. This concludes point iv).

Proposition 3.5.1 It is enough to show that ln ΦX(u) = ln ΦY +(V +u)+ln ΦY −(−V −u)+

iµu. In case of α 6= 1 it holds that

ln ΦY ±(±V ±u) = − δα

2 cos πα
2

(1± β)[(θ ∓ iu)α − θα]± i δα

2 cos πα
2

α(1± β)θα−1u,

while α = 1 yields

ln ΦY ±(±V ±u) =
1

π
δ[(1±β)(θ∓ iu) ln (θ ∓ iu)− (1±β)θ ln θ]± i 1

π
δ(1±β)(ln θ+1)u,

so in both cases ln ΦY +(V +u) + ln ΦY −(−V −u) = ψX(u)− iµXu.
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Appendix C

Tables
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Mean sample moments Mean time
Parameters Method (1) (2) (3) (4) (5) (sec)

α = 1.20,

β = 0.00,

θ = 0.25

Theoretic 0.0000 1.0000 0.0000 26.0400 0.0000 NA

Mixture -0.0002 0.9997 -0.0057 25.8809 2.6837 0.662
(0.0010) (0.0047) (0.0724) (1.2546) (36.2074)

Inversion 0.0060 1.0010 0.0148 26.0838 1.3157 0.435
(0.0010) (0.0050) (0.0682) (1.2923) (31.7305)

Devroye 0.0000 0.9998 -0.0045 25.9491 -1.7717 6.291
(0.0010) (0.0050) (0.0594) (1.2472) (35.4470)

α = 1.20,

β = 0.00,

θ = 0.50

Theoretic 0.0000 1.0000 0.0000 8.7600 0.0000 NA

Mixture -0.0001 1.0001 -0.0037 8.7548 -0.2700 0.930
(0.0011) (0.0028) (0.0179) (0.1952) (2.6853)

Inversion 0.0035 1.0000 0.0096 8.7607 0.0944 0.422
(0.0010) (0.0032) (0.0175) (0.2149) (2.9491)

Devroye -0.0002 1.0006 -0.0006 8.8004 0.4099 6.284
(0.0010) (0.0029) (0.0169) (0.1959) (2.8851)

α = 1.20,

β = 0.00,

θ = 0.75

Theoretic 0.0000 1.0000 0.0000 5.5600 0.0000 NA

Mixture 0.0000 0.9998 0.0001 5.5631 0.0338 1.410
(0.0011) (0.0022) (0.0111) (0.0730) (0.6436)

Inversion 0.0024 1.0000 0.0072 5.5558 0.0394 0.404
(0.0011) (0.0020) (0.0114) (0.0699) (0.6463)

Devroye -0.0001 0.9999 -0.0021 5.5577 -0.1155 6.282
(0.0010) (0.0020) (0.0095) (0.0600) (0.6113)

α = 1.20,

β = 0.00,

θ = 1.00

Theoretic 0.0000 1.0000 0.0000 4.4400 0.0000 NA

Mixture 0.0001 0.9999 0.0012 4.4394 0.0284 2.340
(0.0009) (0.0017) (0.0070) (0.0367) (0.2460)

Inversion 0.0022 0.9999 0.0068 4.4386 0.0585 0.398
(0.0011) (0.0019) (0.0076) (0.0334) (0.2340)

Devroye -0.0001 0.9999 -0.0003 4.4404 0.0198 6.265
(0.0009) (0.0016) (0.0076) (0.0335) (0.2687)

Table C.1: Theoretic vs. mean sample moments about the origin for standardised
TS distribution. Emphasized numbers indicate either the smallest (mean) execution
time, or the (mean) sample moment most similar to corresponding theoretic value.
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Mean sample moments Mean time
Parameters Method (1) (2) (3) (4) (5) (sec)

α = 1.20,

β = 0.25,

θ = 0.25

Theoretic 0.0000 1.0000 0.8000 26.0400 72.5120 NA

Mixture -0.0000 0.9993 0.7963 26.0122 69.4444 0.657
(0.0010) (0.0051) (0.0731) (1.4045) (41.4620)

Inversion 0.0063 1.0006 0.8223 26.2182 75.9623 0.818
(0.0010) (0.0050) (0.0672) (1.3281) (36.4537)

Devroye -0.0001 0.9999 0.7999 26.0814 74.3815 6.780
(0.0010) (0.0051) (0.0682) (1.3458) (35.4963)

α = 1.20,

β = 0.25,

θ = 0.50

Theoretic 0.0000 1.0000 0.4000 8.7600 12.0640 NA

Mixture -0.0002 1.0000 0.3989 8.7471 12.3754 0.944
(0.0011) (0.0027) (0.0195) (0.1789) (2.7282)

Inversion 0.0034 0.9998 0.4085 8.7614 12.1297 0.877
(0.0009) (0.0031) (0.0169) (0.2127) (2.6439)

Devroye -0.0001 1.0002 0.4021 8.7583 12.0874 6.809
(0.0010) (0.0028) (0.0183) (0.1701) (2.3579)

α = 1.20,

β = 0.25,

θ = 0.75

Theoretic 0.0000 1.0000 0.2667 5.5600 5.0560 NA

Mixture -0.0001 0.9997 0.2662 5.5552 5.0050 1.431
(0.0010) (0.0021) (0.0098) (0.0653) (0.6186)

Inversion 0.0029 0.9997 0.2750 5.5548 5.1201 0.911
(0.0010) (0.0021) (0.0102) (0.0749) (0.6274)

Devroye 0.0001 0.9999 0.2680 5.5590 5.1245 6.837
(0.0010) (0.0018) (0.0087) (0.0570) (0.5732)

α = 1.20,

β = 0.25,

θ = 1.00

Theoretic 0.0000 1.0000 0.2000 4.4400 3.0080 NA

Mixture 0.0001 0.9997 0.2005 4.4388 2.9951 2.425
(0.0010) (0.0018) (0.0072) (0.0354) (0.2429)

Inversion 0.0021 1.0000 0.2073 4.4406 3.0922 0.921
(0.0011) (0.0015) (0.0074) (0.0355) (0.2545)

Devroye 0.0001 1.0001 0.2015 4.4411 3.0222 6.824
(0.0012) (0.0020) (0.0078) (0.0352) (0.2493)

Table C.2: Theoretic vs. mean sample moments about the origin for standardised
TS distribution. Emphasized numbers indicate either the smallest (mean) execution
time, or the (mean) sample moment most similar to corresponding theoretic value.
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Mean sample moments Mean time
Parameters Method (1) (2) (3) (4) (5) (sec)

α = 1.20,

β = 0.00,

θ = 0.25

Theoretic 0.0000 1.0000 1.6000 26.0400 145.0240 NA

Mixture 0.0000 1.0003 1.5991 26.0772 141.9092 0.656
(0.0010) (0.0048) (0.0669) (1.4646) (34.7801)

Inversion 0.0062 1.0004 1.6176 26.3081 145.4225 0.819
(0.0011) (0.0055) (0.0678) (1.4909) (34.3135)

Devroye 0.0001 1.0002 1.6069 26.2189 151.5961 7.121
(0.0011) (0.0053) (0.0659) (1.3830) (48.3729)

α = 1.20,

β = 0.00,

θ = 0.50

Theoretic 0.0000 1.0000 0.8000 8.7600 24.1280 NA

Mixture -0.0001 0.9999 0.7993 8.7562 24.2283 0.922
(0.0010) (0.0026) (0.0182) (0.1879) (2.8353)

Inversion 0.0035 0.9999 0.8091 8.7761 23.9692 0.879
(0.0010) (0.0030) (0.0188) (0.2073) (2.8306)

Devroye 0.0000 0.9997 0.7999 8.7686 24.0839 6.975
(0.0010) (0.0027) (0.0213) (0.2211) (3.1010)

α = 1.20,

β = 0.00,

θ = 0.75

Theoretic 0.0000 1.0000 0.5333 5.5600 10.1120 NA

Mixture 0.0001 0.9997 0.5329 5.5546 10.0294 1.469
(0.0009) (0.0020) (0.0112) (0.0644) (0.6911)

Inversion 0.0027 0.9999 0.5418 5.5621 10.1472 0.911
(0.0009) (0.0020) (0.0107) (0.0713) (0.7168)

Devroye -0.0001 1.0000 0.5322 5.5614 10.1135 6.931
(0.0010) (0.0022) (0.0108) (0.0700) (0.6121)

α = 1.20,

β = 0.00,

θ = 1.00

Theoretic 0.0000 1.0000 0.4000 4.4400 6.0160 NA

Mixture 0.0003 0.9994 0.4021 4.4365 6.0813 2.607
(0.0010) (0.0019) (0.0075) (0.0384) (0.2711)

Inversion 0.0023 1.0001 0.4064 4.4452 6.0420 0.924
(0.0011) (0.0017) (0.0078) (0.0358) (0.2673)

Devroye -0.0001 0.9999 0.3985 4.4348 5.9691 6.892
(0.0011) (0.0016) (0.0069) (0.0330) (0.2416)

Table C.3: Theoretic vs. mean sample moments about the origin for standardised
TS distribution. Emphasized numbers indicate either the smallest (mean) execution
time, or the (mean) sample moment most similar to corresponding theoretic value.
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Mean sample moments Mean time
Parameters Method (1) (2) (3) (4) (5) (sec)

α = 1.20,

β = 0.00,

θ = 0.25

Theoretic 0.0000 1.0000 2.4000 26.0400 217.5360 NA

Mixture 0.0000 1.0001 2.3986 26.1151 218.7404 0.653
(0.0009) (0.0052) (0.0639) (1.4795) (40.5140)

Inversion 0.0060 1.0003 2.4154 26.0701 214.3631 0.819
(0.0009) (0.0048) (0.0695) (1.4754) (34.4277)

Devroye 0.0000 1.0004 2.3951 26.0043 215.2783 7.691
(0.0010) (0.0055) (0.0610) (1.2247) (31.1859)

α = 1.20,

β = 0.00,

θ = 0.50

Theoretic 0.0000 1.0000 1.2000 8.7600 36.1920 NA

Mixture -0.0001 0.9997 1.1989 8.7292 35.7832 0.926
(0.0010) (0.0027) (0.0194) (0.1677) (2.7124)

Inversion 0.0036 1.0005 1.2102 8.7896 36.2584 0.879
(0.0010) (0.0028) (0.0205) (0.1908) (2.8720)

Devroye -0.0001 0.9998 1.1994 8.7548 36.2549 7.273
(0.0009) (0.0031) (0.0195) (0.2169) (3.9570)

α = 1.20,

β = 0.00,

θ = 0.75

Theoretic 0.0000 1.0000 0.8000 5.5600 15.1680 NA

Mixture 0.0001 0.9999 0.8009 5.5638 15.2235 1.554
(0.0010) (0.0024) (0.0114) (0.0796) (0.7378)

Inversion 0.0026 0.9997 0.8073 5.5649 15.2699 0.910
(0.0011) (0.0020) (0.0091) (0.0658) (0.5627)

Devroye 0.0001 1.0002 0.8018 5.5676 15.2245 7.112
(0.0008) (0.0022) (0.0097) (0.0621) (0.6085)

α = 1.20,

β = 0.00,

θ = 1.00

Theoretic 0.0000 1.0000 0.6000 4.4400 9.0240 NA

Mixture 0.0005 0.9988 0.6031 4.4344 9.0573 2.955
(0.0010) (0.0018) (0.0082) (0.0428) (0.3384)

Inversion 0.0019 0.9999 0.6049 4.4418 9.0432 0.922
(0.0011) (0.0019) (0.0080) (0.0432) (0.2733)

Devroye 0.0002 1.0000 0.6004 4.4401 9.0408 7.017
(0.0010) (0.0020) (0.0085) (0.0458) (0.3480)

Table C.4: Theoretic vs. mean sample moments about the origin for standardised
TS distribution. Emphasized numbers indicate either the smallest (mean) execution
time, or the (mean) sample moment most similar to corresponding theoretic value.
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Mean sample moments Mean time
Parameters Method (1) (2) (3) (4) (5) (sec)

α = 1.20,

β = 0.00,

θ = 0.25

Theoretic 0.0000 1.0000 0.0000 18.3600 0.0000 NA

Mixture 0.0000 0.9999 0.0033 18.3849 0.3150 0.701
(0.0009) (0.0040) (0.0555) (0.8778) (23.5989)

Inversion 0.0059 1.0001 0.0156 18.4215 -0.8777 0.434
(0.0011) (0.0045) (0.0565) (0.9974) (26.4343)

Devroye 0.0000 1.0003 -0.0044 18.4302 0.6460 6.219
(0.0009) (0.0044) (0.0482) (0.9463) (23.4834)

α = 1.20,

β = 0.00,

θ = 0.50

Theoretic 0.0000 1.0000 0.0000 6.8400 0.0000 NA

Mixture 0.0001 1.0001 0.0001 6.8433 0.0794 1.029
(0.0010) (0.0025) (0.0137) (0.1546) (1.6497)

Inversion 0.0035 1.0002 0.0117 6.8396 0.0369 0.413
(0.0011) (0.0021) (0.0144) (0.1467) (1.8643)

Devroye 0.0001 1.0000 -0.0033 6.8491 -0.5212 6.247
(0.0009) (0.0026) (0.0141) (0.1351) (2.0512)

α = 1.20,

β = 0.00,

θ = 0.75

Theoretic 0.0000 1.0000 0.0000 4.7067 0.0000 NA

Mixture 0.0001 0.9998 0.0014 4.7091 0.0406 1.578
(0.0010) (0.0021) (0.0080) (0.0589) (0.4515)

Inversion 0.0026 0.9999 0.0073 4.7077 0.0711 0.404
(0.0011) (0.0017) (0.0097) (0.0486) (0.4488)

Devroye -0.0001 0.9996 -0.0005 4.6981 -0.0104 6.253
(0.0009) (0.0019) (0.0083) (0.0502) (0.4652)

α = 1.20,

β = 0.00,

θ = 1.00

Theoretic 0.0000 1.0000 0.0000 3.9600 0.0000 NA

Mixture 0.0000 0.9996 0.0000 3.9582 -0.0035 2.717
(0.0008) (0.0016) (0.0061) (0.0259) (0.1678)

Inversion 0.0022 1.0003 0.0070 3.9611 0.0583 0.405
(0.0011) (0.0018) (0.0065) (0.0269) (0.1918)

Devroye 0.0000 1.0004 0.0002 3.9656 -0.0146 6.391
(0.0008) (0.0017) (0.0054) (0.0275) (0.1798)

Table C.5: Theoretic vs. mean sample moments about the origin for standardised
TS distribution. Emphasized numbers indicate either the smallest (mean) execution
time, or the (mean) sample moment most similar to corresponding theoretic value.
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Mean sample moments Mean time
Parameters Method (1) (2) (3) (4) (5) (sec)

α = 1.20,

β = 0.00,

θ = 0.25

Theoretic 0.0000 1.0000 0.6000 18.3600 45.9360 NA

Mixture 0.0000 1.0000 0.6005 18.2698 44.1277 0.734
(0.0010) (0.0039) (0.0575) (0.9310) (26.3777)

Inversion 0.0057 0.9998 0.6128 18.3982 45.7336 0.997
(0.0011) (0.0034) (0.0492) (0.9655) (27.8289)

Devroye -0.0001 1.0002 0.5935 18.2433 43.8200 6.958
(0.0010) (0.0041) (0.0503) (0.8961) (19.9383)

α = 1.20,

β = 0.00,

θ = 0.50

Theoretic 0.0000 1.0000 0.3000 6.8400 7.9920 NA

Mixture 0.0000 1.0002 0.3022 6.8373 8.2052 1.035
(0.0009) (0.0021) (0.0140) (0.1395) (1.9206)

Inversion 0.0035 0.9999 0.3084 6.8470 8.1545 1.027
(0.0009) (0.0024) (0.0145) (0.1536) (2.1488)

Devroye 0.0002 1.0003 0.3034 6.8402 8.1974 6.957
(0.0011) (0.0026) (0.0144) (0.1467) (1.8822)

α = 1.20,

β = 0.00,

θ = 0.75

Theoretic 0.0000 1.0000 0.2000 4.7067 3.4791 NA

Mixture 0.0002 0.9997 0.2006 4.7061 3.4880 1.612
(0.0010) (0.0020) (0.0089) (0.0519) (0.5747)

Inversion 0.0026 1.0001 0.2083 4.7240 3.5865 1.009
(0.0010) (0.0021) (0.0084) (0.0492) (0.4492)

Devroye -0.0001 1.0000 0.1991 4.6986 3.4312 6.951
(0.0009) (0.0020) (0.0090) (0.0589) (0.4758)

α = 1.20,

β = 0.00,

θ = 1.00

Theoretic 0.0000 1.0000 0.1500 3.9600 2.1240 NA

Mixture 0.0003 0.9994 0.1513 3.9549 2.1149 2.711
(0.0010) (0.0018) (0.0062) (0.0278) (0.1677)

Inversion 0.0021 0.9999 0.1569 3.9608 2.2049 0.987
(0.0010) (0.0017) (0.0068) (0.0324) (0.2546)

Devroye 0.0000 0.9997 0.1500 3.9526 2.1232 6.909
(0.0011) (0.0017) (0.0065) (0.0290) (0.1844)

Table C.6: Theoretic vs. mean sample moments about the origin for standardised
TS distribution. Emphasized numbers indicate either the smallest (mean) execution
time, or the (mean) sample moment most similar to corresponding theoretic value.
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Mean sample moments Mean time
Parameters Method (1) (2) (3) (4) (5) (sec)

α = 1.20,

β = 0.00,

θ = 0.25

Theoretic 0.0000 1.0000 1.2000 18.3600 91.8720 NA

Mixture -0.0001 1.0001 1.1969 18.3333 88.4030 0.704
(0.0010) (0.0042) (0.0520) (1.0720) (26.4375)

Inversion 0.0058 1.0005 1.2125 18.3868 88.4468 0.986
(0.0011) (0.0038) (0.0451) (1.0207) (24.2300)

Devroye 0.0001 1.0003 1.1990 18.3274 90.6778 7.084
(0.0010) (0.0045) (0.0471) (0.8857) (25.0640)

α = 1.20,

β = 0.00,

θ = 0.50

Theoretic 0.0000 1.0000 0.6000 6.8400 15.9840 NA

Mixture 0.0001 0.9998 0.6021 6.8588 16.5354 1.024
(0.0010) (0.0027) (0.0153) (0.1812) (2.9643)

Inversion 0.0035 1.0002 0.6112 6.8597 16.3037 1.015
(0.0010) (0.0021) (0.0175) (0.1736) (2.6321)

Devroye 0.0001 1.0000 0.6005 6.8310 16.0191 6.974
(0.0010) (0.0024) (0.0130) (0.1362) (1.6097)

α = 1.20,

β = 0.00,

θ = 0.75

Theoretic 0.0000 1.0000 0.4000 4.7067 6.9582 NA

Mixture 0.0001 0.9999 0.4002 4.7065 6.9089 1.648
(0.0012) (0.0017) (0.0089) (0.0573) (0.4536)

Inversion 0.0025 1.0000 0.4078 4.7145 6.9861 0.998
(0.0011) (0.0018) (0.0082) (0.0505) (0.5604)

Devroye -0.0001 1.0002 0.3995 4.7157 6.9544 6.935
(0.0010) (0.0021) (0.0084) (0.0458) (0.4381)

α = 1.20,

β = 0.00,

θ = 1.00

Theoretic 0.0000 1.0000 0.3000 3.9600 4.2480 NA

Mixture 0.0004 0.9991 0.3031 3.9490 4.2772 2.860
(0.0010) (0.0018) (0.0059) (0.0256) (0.1879)

Inversion 0.0019 0.9999 0.3061 3.9602 4.3046 0.981
(0.0010) (0.0018) (0.0067) (0.0325) (0.2116)

Devroye 0.0000 1.0000 0.2998 3.9586 4.2471 6.891
(0.0010) (0.0017) (0.0065) (0.0278) (0.1979)

Table C.7: Theoretic vs. mean sample moments about the origin for standardised
TS distribution. Emphasized numbers indicate either the smallest (mean) execution
time, or the (mean) sample moment most similar to corresponding theoretic value.
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Mean sample moments Mean time
Parameters Method (1) (2) (3) (4) (5) (sec)

α = 1.20,

β = 0.00,

θ = 0.25

Theoretic 0.0000 1.0000 1.8000 18.3600 137.8080 NA

Mixture 0.0002 1.0010 1.8114 18.5616 141.8032 0.695
(0.0010) (0.0037) (0.0485) (1.0119) (29.2527)

Inversion 0.0058 0.9997 1.8114 18.2798 139.2773 0.975
(0.0011) (0.0040) (0.0462) (1.0921) (35.7956)

Devroye 0.0000 0.9995 1.8002 18.3133 136.4863 7.298
(0.0011) (0.0043) (0.0538) (1.0302) (28.3968)

α = 1.20,

β = 0.00,

θ = 0.50

Theoretic 0.0000 1.0000 0.9000 6.8400 23.9760 NA

Mixture 0.0002 1.0001 0.9035 6.8498 24.0893 1.036
(0.0008) (0.0023) (0.0144) (0.1392) (1.7887)

Inversion 0.0034 1.0004 0.9129 6.8819 24.3171 1.014
(0.0010) (0.0024) (0.0131) (0.1523) (2.0236)

Devroye 0.0000 0.9997 0.9003 6.8361 24.1728 7.140
(0.0010) (0.0026) (0.0147) (0.1420) (1.7990)

α = 1.20,

β = 0.00,

θ = 0.75

Theoretic 0.0000 1.0000 0.6000 4.7067 10.4373 NA

Mixture 0.0002 0.9998 0.6019 4.7017 10.4224 1.707
(0.0010) (0.0019) (0.0089) (0.0519) (0.4838)

Inversion 0.0024 1.0000 0.6068 4.7105 10.4835 0.999
(0.0010) (0.0018) (0.0079) (0.0481) (0.4410)

Devroye -0.0001 1.0001 0.5994 4.7056 10.4010 7.050
(0.0009) (0.0020) (0.0080) (0.0514) (0.5098)

α = 1.20,

β = 0.00,

θ = 1.00

Theoretic 0.0000 1.0000 0.4500 3.9600 6.3720 NA

Mixture 0.0006 0.9984 0.4550 3.9522 6.4225 3.154
(0.0008) (0.0015) (0.0057) (0.0262) (0.1966)

Inversion 0.0021 0.9999 0.4565 3.9624 6.4160 0.981
(0.0009) (0.0019) (0.0063) (0.0305) (0.2189)

Devroye 0.0000 0.9998 0.4499 3.9571 6.3651 6.970
(0.0009) (0.0016) (0.0057) (0.0296) (0.1941)

Table C.8: Theoretic vs. mean sample moments about the origin for standardised
TS distribution. Emphasized numbers indicate either the smallest (mean) execution
time, or the (mean) sample moment most similar to corresponding theoretic value.
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Mean sample moments Mean time
Parameters Method (1) (2) (3) (4) (5) (sec)

α = 1.60,

β = 0.00,

θ = 0.25

Theoretic 0.0000 1.0000 0.0000 11.9600 0.0000 NA

Mixture 0.0000 1.0007 0.0010 12.0570 1.4137 0.805
(0.0010) (0.0035) (0.0361) (0.7073) (17.8088)

Inversion 0.0011 0.9884 0.0002 8.7298 -0.1658 0.333
(0.0010) (0.0029) (0.0176) (0.1449) (1.0945)

Devroye 0.0000 0.9881 -0.0010 8.7220 -0.0694 6.131
(0.0010) (0.0027) (0.0174) (0.1310) (1.1528)

α = 1.60,

β = 0.00,

θ = 0.50

Theoretic 0.0000 1.0000 0.0000 5.2400 0.0000 NA

Mixture 0.0000 1.0001 -0.0010 5.2386 -0.2791 1.176
(0.0011) (0.0021) (0.0127) (0.1049) (2.0371)

Inversion 0.0011 0.9978 0.0051 4.9156 0.0784 0.323
(0.0008) (0.0020) (0.0090) (0.0496) (0.3032)

Devroye 0.0000 0.9980 0.0001 4.9156 -0.0050 6.169
(0.0012) (0.0019) (0.0094) (0.0437) (0.3069)

α = 1.60,

β = 0.00,

θ = 0.75

Theoretic 0.0000 1.0000 0.0000 3.9956 0.0000 NA

Mixture -0.0001 0.9996 -0.0002 3.9909 -0.0165 1.901
(0.0010) (0.0017) (0.0065) (0.0376) (0.2689)

Inversion 0.0009 0.9992 0.0026 3.9230 0.0199 0.320
(0.0010) (0.0017) (0.0055) (0.0213) (0.1312)

Devroye -0.0001 0.9995 -0.0008 3.9276 -0.0062 6.188
(0.0011) (0.0019) (0.0070) (0.0254) (0.1564)

α = 1.60,

β = 0.00,

θ = 1.00

Theoretic 0.0000 1.0000 0.0000 3.5600 0.0000 NA

Mixture 0.0002 0.9990 0.0005 3.5488 -0.0011 3.103
(0.0010) (0.0016) (0.0057) (0.0223) (0.1164)

Inversion 0.0008 0.9998 0.0020 3.5304 0.0046 0.319
(0.0010) (0.0014) (0.0047) (0.0172) (0.0750)

Devroye -0.0001 0.9993 -0.0002 3.5232 -0.0004 6.165
(0.0011) (0.0017) (0.0052) (0.0190) (0.0792)

Table C.9: Theoretic vs. mean sample moments about the origin for standardised
TS distribution. Emphasized numbers indicate either the smallest (mean) execution
time, or the (mean) sample moment most similar to corresponding theoretic value.
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Mean sample moments Mean time
Parameters Method (1) (2) (3) (4) (5) (sec)

α = 1.60,

β = 0.25,

θ = 0.25

Theoretic 0.0000 1.0000 0.4000 11.9600 25.5040 NA

Mixture 0.0000 0.9991 0.4013 11.8545 28.1014 0.802
(0.0010) (0.0031) (0.0356) (0.6430) (18.4283)

Inversion 0.0012 0.9861 0.3723 8.4574 13.8200 0.897
(0.0011) (0.0029) (0.0182) (0.1341) (1.1095)

Devroye -0.0002 0.9862 0.3651 8.4535 13.5220 6.730
(0.0011) (0.0027) (0.0185) (0.1278) (1.1236)

α = 1.60,

β = 0.25,

θ = 0.50

Theoretic 0.0000 1.0000 0.2000 5.2400 4.6880 NA

Mixture 0.0002 0.9998 0.2003 5.2279 4.7655 1.188
(0.0010) (0.0019) (0.0118) (0.1038) (1.2274)

Inversion 0.0010 0.9971 0.2076 4.8643 4.5192 0.863
(0.0008) (0.0020) (0.0088) (0.0467) (0.2989)

Devroye 0.0001 0.9975 0.2062 4.8705 4.5228 6.709
(0.0009) (0.0020) (0.0073) (0.0473) (0.2635)

α = 1.60,

β = 0.25,

θ = 0.75

Theoretic 0.0000 1.0000 0.1333 3.9956 2.1298 NA

Mixture 0.0001 0.9990 0.1332 3.9864 2.0949 1.876
(0.0010) (0.0018) (0.0071) (0.0371) (0.3906)

Inversion 0.0011 0.9993 0.1420 3.9116 2.3267 0.825
(0.0010) (0.0016) (0.0063) (0.0259) (0.1343)

Devroye 0.0002 0.9991 0.1402 3.9101 2.3234 6.676
(0.0010) (0.0021) (0.0061) (0.0303) (0.1405)

α = 1.60,

β = 0.25,

θ = 1.00

Theoretic 0.0000 1.0000 0.1000 3.5600 1.3360 NA

Mixture 0.0004 0.9990 0.1027 3.5511 1.3571 3.138
(0.0010) (0.0017) (0.0054) (0.0213) (0.1442)

Inversion 0.0005 0.9998 0.0984 3.5290 1.1879 0.782
(0.0011) (0.0015) (0.0058) (0.0179) (0.0820)

Devroye -0.0001 0.9996 0.0963 3.5277 1.1767 6.645
(0.0009) (0.0016) (0.0051) (0.0165) (0.0789)

Table C.10: Theoretic vs. mean sample moments about the origin for standardised
TS distribution. Emphasized numbers indicate either the smallest (mean) execution
time, or the (mean) sample moment most similar to corresponding theoretic value.
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Mean sample moments Mean time
Parameters Method (1) (2) (3) (4) (5) (sec)

α = 1.60,

β = 0.50,

θ = 0.25

Theoretic 0.0000 1.0000 0.8000 11.9600 51.0080 NA

Mixture 0.0001 0.9996 0.8020 11.9443 52.8672 0.790
(0.0010) (0.0035) (0.0372) (0.7070) (18.0740)

Inversion 0.0009 0.9849 0.7274 8.3453 25.9464 0.897
(0.0010) (0.0027) (0.0156) (0.1268) (0.9759)

Devroye -0.0003 0.9855 0.7289 8.3742 26.2184 6.788
(0.0011) (0.0026) (0.0162) (0.1257) (1.0264)

α = 1.60,

β = 0.50,

θ = 0.50

Theoretic 0.0000 1.0000 0.4000 5.2400 9.3760 NA

Mixture 0.0000 0.9998 0.4012 5.2425 9.3886 1.191
(0.0012) (0.0022) (0.0129) (0.0939) (1.1789)

Inversion 0.0007 0.9971 0.3861 4.8544 7.4010 0.863
(0.0009) (0.0019) (0.0082) (0.0431) (0.2862)

Devroye -0.0003 0.9974 0.3832 4.8621 7.4038 6.748
(0.0010) (0.0020) (0.0085) (0.0448) (0.2913)

α = 1.60,

β = 0.50,

θ = 0.75

Theoretic 0.0000 1.0000 0.2667 3.9956 4.2596 NA

Mixture 0.0004 0.9995 0.2692 3.9924 4.3012 1.930
(0.0009) (0.0018) (0.0066) (0.0407) (0.3516)

Inversion 0.0008 0.9993 0.2664 3.9088 3.9788 0.825
(0.0010) (0.0017) (0.0059) (0.0250) (0.1279)

Devroye 0.0001 0.9992 0.2648 3.9072 3.9707 6.706
(0.0009) (0.0018) (0.0058) (0.0274) (0.1393)

α = 1.60,

β = 0.50,

θ = 1.00

Theoretic 0.0000 1.0000 0.2000 3.5600 2.6720 NA

Mixture 0.0007 0.9982 0.2051 3.5449 2.7207 3.249
(0.0011) (0.0017) (0.0054) (0.0221) (0.1168)

Inversion 0.0007 0.9993 0.2030 3.5159 2.6345 0.780
(0.0009) (0.0017) (0.0049) (0.0188) (0.0846)

Devroye 0.0000 0.9995 0.2005 3.5172 2.6162 6.605
(0.0010) (0.0018) (0.0049) (0.0192) (0.0759)

Table C.11: Theoretic vs. mean sample moments about the origin for standardised
TS distribution. Emphasized numbers indicate either the smallest (mean) execution
time, or the (mean) sample moment most similar to corresponding theoretic value.
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Mean sample moments Mean time
Parameters Method (1) (2) (3) (4) (5) (sec)

α = 1.60,

β = 0.75,

θ = 0.25

Theoretic 0.0000 1.0000 1.2000 11.9600 76.5120 NA

Mixture -0.0001 0.9995 1.1960 11.8614 74.0155 0.749
(0.0011) (0.0040) (0.0379) (0.6827) (16.4289)

Inversion 0.0013 0.9888 1.1284 8.9725 43.6179 0.885
(0.0010) (0.0030) (0.0206) (0.1763) (1.6690)

Devroye 0.0001 0.9885 1.1225 8.9439 43.3129 6.855
(0.0011) (0.0026) (0.0197) (0.1541) (1.5476)

α = 1.60,

β = 0.75,

θ = 0.50

Theoretic 0.0000 1.0000 0.6000 5.2400 14.0640 NA

Mixture 0.0001 0.9996 0.6007 5.2368 14.0554 1.123
(0.0010) (0.0021) (0.0105) (0.0996) (1.2328)

Inversion 0.0005 0.9966 0.5806 4.8376 11.1898 0.852
(0.0009) (0.0019) (0.0094) (0.0504) (0.3315)

Devroye -0.0001 0.9970 0.5792 4.8419 11.2072 6.742
(0.0010) (0.0019) (0.0079) (0.0490) (0.2758)

α = 1.60,

β = 0.75,

θ = 0.75

Theoretic 0.0000 1.0000 0.4000 3.9956 6.3893 NA

Mixture 0.0003 0.9993 0.4030 3.9920 6.4052 1.939
(0.0009) (0.0018) (0.0071) (0.0435) (0.3430)

Inversion 0.0007 0.9988 0.4017 3.9063 6.0654 0.823
(0.0010) (0.0019) (0.0064) (0.0287) (0.1417)

Devroye 0.0000 0.9991 0.4002 3.9067 6.0661 6.732
(0.0010) (0.0017) (0.0059) (0.0267) (0.1399)

α = 1.60,

β = 0.75,

θ = 1.00

Theoretic 0.0000 1.0000 0.3000 3.5600 4.0080 NA

Mixture 0.0011 0.9975 0.3088 3.5379 4.0786 3.553
(0.0011) (0.0017) (0.0054) (0.0231) (0.1276)

Inversion 0.0005 0.9995 0.2957 3.5144 3.7128 0.788
(0.0009) (0.0013) (0.0042) (0.0165) (0.0708)

Devroye -0.0004 0.9993 0.2927 3.5099 3.6918 6.735
(0.0011) (0.0015) (0.0050) (0.0160) (0.0705)

Table C.12: Theoretic vs. mean sample moments about the origin for standardised
TS distribution. Emphasized numbers indicate either the smallest (mean) execution
time, or the (mean) sample moment most similar to corresponding theoretic value.
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Mean sample moments Mean time
Parameters Method (1) (2) (3) (4) (5) (sec)

α = 1.80,

β = 0.00,

θ = 0.25

Theoretic 0.0000 1.0000 0.0000 6.8400 0.0000 NA

Mixture 0.0000 0.9997 -0.0006 6.8254 0.9242 0.852
(0.0008) (0.0025) (0.0212) (0.4086) (8.1849)

Inversion 0.0008 0.9910 0.0028 5.0994 0.0397 0.345
(0.0010) (0.0024) (0.0092) (0.0671) (0.4069)

Devroye 0.0002 0.9909 0.0003 5.0945 0.0027 6.237
(0.0009) (0.0018) (0.0092) (0.0553) (0.3653)

α = 1.80,

β = 0.00,

θ = 0.50

Theoretic 0.0000 1.0000 0.0000 3.9600 0.0000 NA

Mixture -0.0001 0.9998 -0.0008 3.9459 -0.0109 1.262
(0.0010) (0.0016) (0.0077) (0.0497) (0.5335)

Inversion 0.0007 0.9985 0.0017 3.7838 0.0053 0.330
(0.0010) (0.0016) (0.0060) (0.0266) (0.1559)

Devroye -0.0002 0.9983 -0.0010 3.7839 -0.0030 6.130
(0.0011) (0.0016) (0.0058) (0.0252) (0.1406)

α = 1.80,

β = 0.00,

θ = 0.75

Theoretic 0.0000 1.0000 0.0000 3.4267 0.0000 NA

Mixture -0.0001 0.9995 0.0004 3.4176 0.0406 2.029
(0.0010) (0.0016) (0.0054) (0.0240) (0.2208)

Inversion 0.0006 0.9994 0.0016 3.3789 0.0038 0.323
(0.0010) (0.0016) (0.0050) (0.0148) (0.0750)

Devroye -0.0001 0.9996 -0.0003 3.3805 -0.0014 6.107
(0.0011) (0.0014) (0.0054) (0.0166) (0.0744)

α = 1.80,

β = 0.00,

θ = 1.00

Theoretic 0.0000 1.0000 0.0000 3.2400 0.0000 NA

Mixture 0.0001 0.9984 -0.0001 3.2278 0.0000 3.336
(0.0011) (0.0015) (0.0049) (0.0156) (0.0768)

Inversion 0.0008 0.9994 0.0025 3.2090 0.0128 0.325
(0.0010) (0.0014) (0.0046) (0.0126) (0.0509)

Devroye -0.0001 0.9994 -0.0009 3.2093 -0.0108 6.093
(0.0010) (0.0015) (0.0043) (0.0129) (0.0471)

Table C.13: Theoretic vs. mean sample moments about the origin for standardised
TS distribution. Emphasized numbers indicate either the smallest (mean) execution
time, or the (mean) sample moment most similar to corresponding theoretic value.
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Mean sample moments Mean time
Parameters Method (1) (2) (3) (4) (5) (sec)

α = 1.80,

β = 0.25,

θ = 0.25

Theoretic 0.0000 1.0000 0.2000 6.8400 10.4480 NA

Mixture 0.0000 1.0003 0.2015 6.9020 11.2557 0.824
(0.0010) (0.0024) (0.0256) (0.4019) (10.7739)

Inversion 0.0008 0.9923 0.1910 5.2755 5.9576 0.863
(0.0010) (0.0018) (0.0101) (0.0671) (0.5152)

Devroye 0.0001 0.9928 0.1884 5.2793 5.8653 6.654
(0.0011) (0.0020) (0.0109) (0.0690) (0.5222)

α = 1.80,

β = 0.25,

θ = 0.50

Theoretic 0.0000 1.0000 0.1000 3.9600 2.0560 NA

Mixture 0.0001 0.9998 0.1000 3.9535 1.8741 1.268
(0.0010) (0.0015) (0.0069) (0.0522) (0.9295)

Inversion 0.0011 0.9983 0.1083 3.7617 2.0549 0.821
(0.0011) (0.0015) (0.0062) (0.0239) (0.1478)

Devroye 0.0002 0.9985 0.1044 3.7627 2.0043 6.612
(0.0010) (0.0017) (0.0056) (0.0249) (0.1294)

α = 1.80,

β = 0.25,

θ = 0.75

Theoretic 0.0000 1.0000 0.0667 3.4267 0.9796 NA

Mixture 0.0001 0.9991 0.0675 3.4166 0.9547 2.019
(0.0011) (0.0016) (0.0055) (0.0239) (0.1915)

Inversion 0.0006 0.9994 0.0651 3.3772 0.8113 0.778
(0.0010) (0.0015) (0.0044) (0.0143) (0.0675)

Devroye -0.0001 0.9994 0.0628 3.3782 0.7955 6.570
(0.0010) (0.0015) (0.0050) (0.0161) (0.0716)

α = 1.80,

β = 0.25,

θ = 1.00

Theoretic 0.0000 1.0000 0.0500 3.2400 0.6320 NA

Mixture 0.0005 0.9980 0.0541 3.2220 0.6770 3.349
(0.0009) (0.0014) (0.0041) (0.0143) (0.0876)

Inversion 0.0006 0.9998 0.0550 3.2286 0.7408 0.778
(0.0011) (0.0014) (0.0050) (0.0125) (0.0595)

Devroye 0.0001 0.9997 0.0535 3.2268 0.7324 6.563
(0.0010) (0.0014) (0.0045) (0.0125) (0.0549)

Table C.14: Theoretic vs. mean sample moments about the origin for standardised
TS distribution. Emphasized numbers indicate either the smallest (mean) execution
time, or the (mean) sample moment most similar to corresponding theoretic value.
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Mean sample moments Mean time
Parameters Method (1) (2) (3) (4) (5) (sec)

α = 1.80,

β = 0.50,

θ = 0.25

Theoretic 0.0000 1.0000 0.4000 6.8400 20.8960 NA

Mixture 0.0000 0.9996 0.3925 6.8336 18.3487 0.817
(0.0009) (0.0025) (0.0204) (0.4108) (9.8022)

Inversion 0.0010 0.9916 0.3744 5.2340 11.1214 0.863
(0.0011) (0.0021) (0.0113) (0.0838) (0.6140)

Devroye 0.0001 0.9916 0.3701 5.2205 10.9838 6.653
(0.0010) (0.0020) (0.0109) (0.0665) (0.5142)

α = 1.80,

β = 0.50,

θ = 0.50

Theoretic 0.0000 1.0000 0.2000 3.9600 4.1120 NA

Mixture 0.0000 0.9995 0.2012 3.9574 4.4035 1.263
(0.0009) (0.0017) (0.0077) (0.0860) (1.8661)

Inversion 0.0007 0.9979 0.1941 3.7545 3.2538 0.821
(0.0010) (0.0018) (0.0060) (0.0295) (0.1473)

Devroye -0.0002 0.9982 0.1925 3.7588 3.2701 6.602
(0.0009) (0.0016) (0.0052) (0.0248) (0.1223)

α = 1.80,

β = 0.50,

θ = 0.75

Theoretic 0.0000 1.0000 0.1333 3.4267 1.9591 NA

Mixture 0.0003 0.9988 0.1361 3.4155 1.9743 2.062
(0.0010) (0.0014) (0.0056) (0.0226) (0.1801)

Inversion 0.0006 0.9993 0.1350 3.3690 1.8519 0.780
(0.0010) (0.0016) (0.0048) (0.0167) (0.0717)

Devroye -0.0001 0.9992 0.1326 3.3670 1.8395 6.554
(0.0010) (0.0016) (0.0042) (0.0166) (0.0645)

α = 1.80,

β = 0.50,

θ = 1.00

Theoretic 0.0000 1.0000 0.1000 3.2400 1.2640 NA

Mixture 0.0009 0.9972 0.1079 3.2123 1.3368 3.489
(0.0010) (0.0017) (0.0046) (0.0158) (0.0787)

Inversion 0.0008 0.9998 0.1031 3.2265 1.2802 0.780
(0.0010) (0.0016) (0.0043) (0.0154) (0.0544)

Devroye 0.0000 1.0000 0.1010 3.2283 1.2709 6.560
(0.0009) (0.0014) (0.0045) (0.0127) (0.0549)

Table C.15: Theoretic vs. mean sample moments about the origin for standardised
TS distribution. Emphasized numbers indicate either the smallest (mean) execution
time, or the (mean) sample moment most similar to corresponding theoretic value.
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Mean sample moments Mean time
Parameters Method (1) (2) (3) (4) (5) (sec)

α = 1.80,

β = 0.75,

θ = 0.25

Theoretic 0.0000 1.0000 0.6000 6.8400 31.3440 NA

Mixture 0.0000 0.9999 0.6012 6.8453 30.4744 0.802
(0.0010) (0.0026) (0.0233) (0.4204) (10.4944)

Inversion 0.0008 0.9913 0.5397 5.2227 15.0194 0.865
(0.0009) (0.0019) (0.0101) (0.0716) (0.5467)

Devroye -0.0002 0.9919 0.5392 5.2362 15.0942 6.688
(0.0010) (0.0020) (0.0108) (0.0704) (0.5430)

α = 1.80,

β = 0.75,

θ = 0.50

Theoretic 0.0000 1.0000 0.3000 3.9600 6.1680 NA

Mixture 0.0001 0.9996 0.3012 3.9509 6.1390 1.272
(0.0009) (0.0015) (0.0067) (0.0587) (0.8326)

Inversion 0.0007 0.9978 0.2934 3.7521 4.9577 0.822
(0.0010) (0.0016) (0.0053) (0.0242) (0.1247)

Devroye 0.0000 0.9979 0.2914 3.7503 4.9346 6.621
(0.0009) (0.0018) (0.0060) (0.0287) (0.1508)

α = 1.80,

β = 0.75,

θ = 0.75

Theoretic 0.0000 1.0000 0.2000 3.4267 2.9387 NA

Mixture 0.0005 0.9988 0.2047 3.4146 2.9862 2.143
(0.0010) (0.0017) (0.0051) (0.0237) (0.1896)

Inversion 0.0004 0.9990 0.1951 3.3639 2.5665 0.778
(0.0009) (0.0015) (0.0047) (0.0151) (0.0679)

Devroye -0.0001 0.9992 0.1930 3.3638 2.5537 6.568
(0.0011) (0.0018) (0.0048) (0.0173) (0.0754)

α = 1.80,

β = 0.75,

θ = 1.00

Theoretic 0.0000 1.0000 0.1500 3.2400 1.8960 NA

Mixture 0.0014 0.9963 0.1624 3.2017 2.0169 3.764
(0.0010) (0.0017) (0.0044) (0.0179) (0.0808)

Inversion 0.0007 0.9997 0.1503 3.2232 1.8192 0.779
(0.0010) (0.0016) (0.0043) (0.0139) (0.0515)

Devroye -0.0001 0.9999 0.1481 3.2248 1.8083 6.572
(0.0009) (0.0015) (0.0041) (0.0134) (0.0517)

Table C.16: Theoretic vs. mean sample moments about the origin for standardised
TS distribution. Emphasized numbers indicate either the smallest (mean) execution
time, or the (mean) sample moment most similar to corresponding theoretic value.
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Appendix D

Portfolio problem

Let b denote a bank that is a borrower while l stands for a lender. For the sake

of brevity we shall denote i ≡ ibl as the interest rate is always an interbank interest

rate agreed between both parties. Every bank k learns the mean and standard devi-

ation of risky asset growth rates from its own past data. All the banks dynamically

update their joint beliefs on the probability of counterpart default. Again for the sake

of brevity we shall introduce the following shortcut notation: p ≡ pt+1, µ ≡ µk,t+1

and σ ≡ σk,t+1, A ≡ Ak, B ≡ Bk, E ≡ Ek and F ≡ Fk. Demand and supply

characterize the behaviour of, respectively, borrower and lender, thus we may write

d ≡ db, s ≡ sl. The quantities v, ŵ and î that appear in the borrower problem

describe characteristics of the borrower, the same notation in the lender problem

pertains to lender, in both cases the indexes were omitted for easier display. Denote

χb := c−111{w≥w}(w)+c11{w<w}(w) for borrower and χl := c−111{w>w}(w)+c11{w≤w}(w)

in case of lender. Note that both threshold functions differ in w.

D.1 Borrower problem

Assume w ∈ IB. For w > w the capital of b at t+ 1 amounts to

w(1+Rt+1)+11{w>w}(w)(w−w)(1+Rt+1)−(1+i)(c−111{w>w}(w)(w−w)−v−ŵ)−ŵ(1+î),

in case of w = w we have

w(1 +Rt+1)− (1 + i)(−v − ŵ)− ŵ(1 + î),
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while for w < w we obtain

w(1+Rt+1)+11{w<w}(w)(w−w)(1+Rt+1)−(1+i)(c11{w<w}(w)(w−w)−v−ŵ)−ŵ(1+î).

Combining the three cases above yields the formula for Vt+1(w) which is

Vt+1(w) = w(1 +Rt+1)− (1 + i)(χb(w − w)− v − ŵ)− ŵ(1 + î).

The conditional utility that borrower b expects to obtain at t+1 by investing in a port-

folio, consisting of w ∈ IB units of shares and a loan from l, is

Eu(Vt+1(w)|Bb,t+1 = 0) =
Eu(Vt+1(w), Bb,t+1 = 0)

P(Bb,t+1 = 0)
=

= Eu([(1 + i)(v + ŵ + χbw)− ŵ(1 + î)] + [1− (1 + i)χb]w + wRt+1) =

= Eu(A+Bw + wRt+1).

D.2 Lender problem

Assume w ∈ IL. For w > w the capital of l at t+ 1 amounts to

w(1 +Rt+1) + 11{w>w}(w)(w − w)(1 +Rt+1)+

+((1− θ)Bb,t+1 + (1 + i)(1−Bb,t+1))(v + ŵ − c−111{w>w}(w)(w − w))− ŵ(1 + î),

in case of w = w we have

w(1 +Rt+1) + ((1− θ)Bb,t+1 + (1 + i)(1−Bb,t+1))(v + ŵ)− ŵ(1 + î),

while for w < w we obtain

w(1 +Rt+1) + 11{w<w}(w)(w − w)(1 +Rt+1)+

+((1− θ)Bb,t+1 + (1 + i)(1−Bb,t+1))(v + ŵ − c11{w<w}(w)(w − w))− ŵ(1 + î).
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After combining the three cases above and substituting χl the formula for Vt+1(w) is

Vt+1(w) = (w(1+Rt+1)+((1−θ)Bb,t+1+(1+i)(1−Bb,t+1))(v+ŵ−χl(w−w))−ŵ(1+î).

Therefore by the rule of iterated expectation

Eu(Vt+1(w)) = E[Eu(Vt+1(w)|Bb,t+1)] =

= P(Bb,t+1 = 1) · Eu(Vt+1(w)|Bb,t+1 = 1) + P(Bb,t+1 = 0) · Eu(Vt+1(w)|Bb,t+1 = 0) =

= p · Eu([(1− θ)(v + ŵ + χlw)− ŵ(1 + î)] + [1− (1− θ)χl]w + wRt+1)+

+(1− p) · Eu([(1 + i)(v + ŵ + χlw)− ŵ(1 + î)] + [1− (1 + i)χl]w + wRt+1) =

= p · Eu(E + Fw + wRt+1) + (1− p) · Eu(A+Bw + wRt+1).

D.3 Utility under CARA

Assume that for each bank k displays constant absolute risk aversion with parameter

γk > 0. Let fRt(x) be a pdf of random variable Rt. Assume Rt has a moment

generating function Mt(q), defined for q ∈ I ⊂ R.

Under these assumptions made for the borrower problem we have

Eu(Vt+1(w)|Bb,t+1 = 0) = Eu(A+Bw + wRt+1) = 1− Ee−γb(A+Bw+wRt+1) =

= 1− e−γb(A+Bw) ·Mt+1(−γbw).

Thus the optimal portfolio is given by

w∗b = argmax
w∈IB

{
1− e−γb(A+Bw) ·Mt+1(−γbw)

}
= argmin

w∈IB

{
e−γb(A+Bw) ·Mt+1(−γbw)

}
,

where the interval IB is given by

IB = {w : w ≥ w + χ−1b (v + ŵ)}.
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The borrower’s f.o.c. may be written as

d logMt+1(q)

dq

∣∣∣
q=−γbw

+B = 0. (D.1)

To validate the consistency of assumptions we need to check if −γbw∗b ∈ I.

For the lender problem we obtain

Eu(Vt+1(w)) = p · Eu(E + Fw + wRt+1) + (1− p) · Eu(A+Bw + wRt+1) =

= p(1− Ee−γl(E+Fw+wRt+1)) + (1− p)(1− Ee−γl(A+Bw+wRt+1)) =

= 1− p · e−γl(E+Fw) ·Mt+1(−γlw)− (1− p) · e−γl(A+Bw) ·Mt+1(−γlw).

Thus the optimal unit portfolio is given by

w∗l = argmax
w∈IL

{
1−

(
p · e−γl(E+Fw) + (1− p) · e−γl(A+Bw)

)
·Mt+1(−γlw)

}
=

= argmin
w∈IL

{(
p · e−γl(E+Fw) + (1− p) · e−γl(A+Bw)

)
·Mt+1(−γlw)

}
,

where the interval IL is defined by

IL = {w : w ≤ w + χ−1l (v + ŵ)}

The lender’s f.o.c. may be written as

d logMt+1(q)

dq

∣∣∣
q=−γbw

+
Fp · e−γl(E+Fw) +B(1− p) · e−γl(A+Bw)

p · e−γl(E+Fw) + (1− p) · e−γl(A+Bw)
= 0. (D.2)

To validate the consistency of assumptions we need to check if −γlw∗l ∈ I.

D.4 Towards analytical expression for i underline

Start by rewriting lender’s f.o.c.

d lnMt+1(q)

dq

∣∣∣
q=−γlw

+
Fp · e−γl(E+Fw) +B(1− p) · e−γl(A+Bw)

p · e−γl(E+Fw) + (1− p) · e−γl(A+Bw)
= 0 ≡
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≡
(d lnMt+1(q)

dq

∣∣∣
q=−γlw

+ F
)
p · e−γl(E+Fw) +

(d lnMt+1(q)

dq

∣∣∣
q=−γlw

+B
)
·

·(1− p) · e−γl(A+Bw) = 0 ≡
(d lnMt+1(q)

dq

∣∣∣
q=−γlw

+

+B − (B − F )
)

+
(d lnMt+1(q)

dq

∣∣∣
q=−γlw

+B
)
· e−γl[(A−E)+(B−F )w]−ln p

1−p = 0.

Under Gaussian stock returns we have

A− E = (θ + i)(v + ŵ + χlw), B − F = −(θ + i)χl, B = 1− (1 + i)χl,

d lnMt+1(q)

dq

∣∣∣
q=−γlw

+B = (1 + µ)− (1 + i)χl − γlσ2w,

Define the following constants

C1 := −γl(A− E)− ln
p

1− p
= −γl(θ + i)(v + ŵ + χlw)− ln

p

1− p
,

C2 := −γl(B − F ) = γl(θ + i)χl, C3 := (1 + µ)− (1 + i)χl,

C4 := −γlσ2, C5 := B − F = −(θ + i)χl.

Assume in addition w 6= −C3/C4. Then the lender’s f.o.c. may be written as

eC1+C2w = −C3 − C5 + C4w

C3 + C4w
=

C5

C3 + C4w
− 1.

Note that if C5/(C3 + C4w) ≤ 1 then the equality above has no solution as its

right hand side is non–positive. Thus we need to have C5/(C3 + C4w) > 1 which

is equivalent to w < (C5 − C3)/C4. For plausible parameter values C5 is always

negative, hence the latter also implies that w 6= −C3/C4. Therefore given C5 < 0

the lender’s f.o.c. is equivalent to

C1 + C2w − ln
( C5

C3 + C4w
− 1
)

= 0. (D.3)

if and only if w < (C5 − C3)/C4. Otherwise it has no interior solution.
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D.5 Utility maximization under Gaussian returns

If Rt+1 ∼ N(µ, σ2), we have:

Mt+1(q) = e µq+
1
2
σ2q2 ,

d logMt+1(q)

dq
= µ+ σ2q, I ≡ R.

Then the f.o.c for borrower problem is equivalent to

µ+ σ2w +B = 0 ≡ µ− γbσ2w + [1− χb(1 + i)] = 0 ≡

≡ w =
1

γbσ2
[(1 + µ)− χb(1 + i)]. (D.4)

Before we proceed, it is convenient to identify the set of potential corners. Denote

the set of admissible corners of the borrower problem as EB, and the set of admissible

corners of the lender problem as EL, set eb = w+χ−1b (v+ŵ) and el = w+χ−1l (v+ŵ).

If v+ ŵ > 0 then EB = {max {0, eb}}, otherwise EB = {max {0, eb}, w}. If v+ ŵ < 0

then EL = {0,max {0, el}}, otherwise EL = {0,max {0, el}, w}. Hence the borrower

problem has at most two while the lender problem has at most three corner solutions.

The following proposition verifies that any internal solution that satisfies first

order condition of either the borrower or the lender problem is a strict (local) maxi-

mum.

Fact D.5.1 (Local strict concavity). Under Gaussian stock returns:

i) borrower’s conditional expected utility Eu(Vt+1(w)|Bb,t+1 = 0) is strictly concave

on any real interval I ⊂ (e,+∞) \ EB,

ii) lender’s expected utility Eu(Vt+1(w)) is strictly concave on any real interval I ⊂

(0, e) \ EL.

Proof: i) First consider an auxiliary function f(x) = ea+bx+cx
2

with real parameters

a, b, c. We have

f
′′
(x) = ea+bx+cx

2

[(b+ 2cx)2 + 2c], f
′′
(x) > 0 ≡ (b+ 2cx)2 + 2c > 0.

To demonstrate f(x) is strictly convex on any interval I ∈ R it is enough to show

that c > 0. To show that Eu(Vt+1(w)|Bk,t+1 = 0) is strictly concave on any interval
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I ⊂ (e,+∞) \ E it is enough to prove that

e−γb(A+Bw) ·Mt+1(−γbw)

is strictly convex on given interval. Under Gaussian stock returns this expression

reads as

e−γb(A+Bw) · e−γbµw+
1
2
γ2bσ

2w2

= e
1
2
(γbσ)

2w2+...

where all the terms of order lower than two were omitted on the right hand side. As

(γbσ)2 > 0, this function is strictly convex.

ii) Note that f(w) = 1 is linear, hence both weakly convex and weakly concave.

By previous point the expected utility is a weighted average of one weakly concave

function and two strictly concave functions. The outcome is strictly concave. �

Fact D.5.1 allows us to simplify the utility maximization problem. Define E
′
B and

E
′
L as the set of (potential) expected utility maximizing portfolios for, respectively,

borrower and lender problem. Initially set E
′
B := EB and E

′
L := EL. Denote optimal

portfolio choice as w∗b ≡ w∗b (ibl) for the borrower and w∗l ≡ w∗l (ibl) for the lender. Let

w satisfy formula (D.4). If w > max {w, eb} then E
′
B := E

′
B∪{w}, if eb < w < w then

E
′
B := E

′
B ∪ {w}. Let E

′
L := EL ∪ S where S is a set of internal solutions of lender’s

f.o.c’s. A number of internal solutions #S is at most two.

The optimal borrower’s portfolio is given by

w∗b = argmax
w∈E′B

{Eu(Vt+1(w)|Bb,t+1 = 0)},

while lender’s expected utility maximizing portfolio is

w∗l = argmax
w∈E′L

{Eu(Vt+1(w))}.

D.6 Credit demand and supply

Having characterized both the set of feasible corner solutions and the formulas for

interior solutions we may derive demand for credit and supply of credit as a function

of interest rate.

The monetary demand for credit results from the difference between the opti-

mal portfolio choice and the largest position that b could finance without additional
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founding. Note that for sufficiently small demand for credit d > 0 the optimal

portfolio choice w∗b is an internal solution of the borrower problem which lies above

eb = w+χ−1b (v+ ŵ). There are two distinct cases. If v+ ŵ ≥ 0 then w∗b ≥ w. Bank b

utilizes credit to buy more shares than it had at the end of previous period. As buying

large quantities of shares causes price slippage, for every extra unit of shares it has to

pay c−1 units of money. So monetary demand for credit is given by c−1(w∗b − eb). By

a similar token, if v + ŵ < 0 and if d > 0 is sufficiently small, then we have w∗b < w.

Bank b takes credit in order not to sell shares it already has in its portfolio. As sell-

ing large quantities of assets incurs cost, for every c units of money it borrows it can

refrain from selling one unit of shares. So the monetary demand for credit is given

by c(w∗b − eb). In this case credit demand is sufficiently small if only d < −v − ŵ.

As threshold function χb above depends on w∗b , this additional restriction guarantees

that borrowers actions are indeed optimal. In our notation monetary credit demand

may be in both cases expressed as

d(i) = χb(w
∗
b − eb) = χ(w∗b − w)− (v + ŵ). (D.5)

Given previous results the solution of borrower’s problem w∗b may be treated as given

for each offered interest rate i. In both cases we may determine īb as a limit interest

rate implied by d→ 0+.

Now we may find the largest interest rate īb that borrower b would be willing

to accept. The monetary demand for credit as a function of the offered interest rate is

d(i) = χb

( 1

γbσ2
[(1 + µ)− χb(1 + i)]− w

)
− (v + ŵ) ≡ χ−1b (v + ŵ + d(i)) =

=
1

γbσ2
[(1 + µ)− χb(1 + i)]− w ≡ γbσ

2[w + χ−1b (v + ŵ + d(i))] =

(1 + µ)− χb(1 + i) ≡ 1 + i = χ−1b

(
(1 + µ)− γbσ2[w + χ−1b (v + ŵ + d(i))]

)
.

Hence we may write

i(d) = χ−1b

(
(1 + µ)− γbσ2[w + χ−1b (v + ŵ + d)]

)
− 1.
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Now we have

īb = lim
d→0+

i(d) = χ−1b

(
(1 + µ)− γbσ2[w + χ−1b (v + ŵ)]

)
− 1.

Formula for īb implies the more debt the borrower has, the more reluctant she

is to borrow. Note that the maximal size of a loan that borrower is eager to take

at interest rate ĩ is the volume that makes ĩ the largest acceptable interest rate. Given

interior solution this volume may be obtained as

ĩ = χ−1b

(
(1 + µ)− γbσ2[w + χ−1b (v + ŵ + w̃)]

)
− 1 = īb − γbχ−2b σ2w̃ ≡

≡ γbχ
−2
b σ2w̃ = īb − ĩ ≡ w̃ = γ−1b χ2

bσ
−2(̄ib − ĩ). (D.6)

The monetary supply of credit is the difference between the optimal portfolio

choice and the largest position that l could finance without additional founding.

Note that for sufficiently small credit supply s > 0 the optimal portfolio choice w∗l
is an internal solution of the lender problem which lies below el = w + χ−1l (v + ŵ).

There are two distinct cases. If v+ ŵ ≥ 0 and if in addition credit supply s < v+ ŵ,

then w∗l ≥ w. Bank l finances current loan from surplus cash. As buying large

quantities of shares causes price slippage, for an extra unit of shares that l decides

not to buy it can grant a loan of c−1 units of money. So monetary supply of credit

is given by c−1(el−w∗l ). By a similar token, if v+ ŵ < 0, then we have w∗l < w. Bank

l finances the loan by selling speculative asset. As selling large quantities of assets

incurs cost, for every unit of shares l sells it obtains c units of money that can be lent

on the interbank market. So monetary supply of credit is c(el −w∗l ). Using previous

notation, monetary credit supply may be in both cases expressed as

s(i) = χl(el − w∗l ) = χl(w − w∗l ) + (v + ŵ). (D.7)

In both cases we may determine il as a limit interest rate implied by s→ 0+.

The solution of lender’s problem satisfies f.o.c at w∗l = w + χ−1l (v + ŵ − s(i)).

To find il it is sufficient to substitute w∗l to lender’s f.o.c. and solve for i in the limit.

First compute

C1 +C2w
∗
l = −γl(θ+ i)(v+ ŵ+χlw)− ln

p

1− p
+ γl(θ+ i)χl(w+χ−1l (v+ ŵ− s(i)) =
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= −γl(θ + i)s(i)− ln
p

1− p
,

C3 +C4w
∗
l = (1+µ)− (1+ i)χl−γlσ2(w+χ−1l (v+ ŵ−s(i)) = (̄il− i)χl−γlσ2s(i)χ−1l .

As we already have C5 = −(i+ θ)χl, in the limit it holds that

lim
s→0+

C5

C3 + C4w∗l
− 1 = − (i+ θ)χl

(̄il − i)χl
− 1 =

(i− īl) + (θ + īl)

i− īl
− 1 =

θ + īl
i− īl

.

After inserting these results into f.o.c. we obtain

lim
s→0+

{
C1 + C2w

∗
l − ln

( C5

C3 + C4w∗l
− 1
)}

= 0 ≡ − ln
p

1− p
− ln

θ + īl
i− īl

= 0 ≡

≡ ln
p(θ + īl)

(1− p)(i− īl)
= 0 ≡ p(θ + īl)

(1− p)(i− īl)
= 1 ≡

≡ pθ + īl = (1− p)i ≡ i = (̄il + pθ)/(1− p).

Therefore the smallest interest rate that the lender would be able to accept is

il = īl
1

1− p
+ θ

p

1− p
. (D.8)

Note that the more l lends, the less it wants to lend. The lender never lends at the in-

terest rate it would accept as a borrower. Hence no bank l would ever trade with

itself as il > īl.

Now assume that the lender decides to lend at the interest rate i˜. The largest

admissible volume of a loan is w˜ that makes i˜ the smallest interest rate that the lender

would accept, hence

i˜≈ (̄il − γlχ−2l σ2w˜)
1

1− p
+ θ

p

1− p
≡ γlχ

−2
l σ2w˜ ≈ īl − i˜(1− p) + θp ≡

≡ w˜ ≈ 1

γlχ
−2
l σ2

[(̄il − i˜)(1− p) + (̄il + θ)p]. (D.9)
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D.7 Equating supply and demand

Equating supply and demand for multiple lenders and borrowers. Let B and L denote,

respectively, the set of borrowers and the set of lenders. For j ∈ B∪L define constant

cj := γ−1j χ2
jσ
−2, let fj denote the size of portfolio of bank j. Given the agreed interest

rate i, supply equates demand if

∑
b∈B

fbwb = −
∑
l∈L

flwl.

After substituting left hand side of the formula (D.6) for wb and the approximation

(D.9) for wl we obtain

∑
b∈B

fbcb(ib − i) = −
∑
l∈L

flcl[(̄il − i)(1− p) + (̄il + θ)p] ≡

≡
∑
b∈B

fbcbib − i
∑
b∈B

fbcb = −
∑
l∈L

flcl(̄il + pθ) + i(1− p)
∑
l∈L

flcl ≡

≡
∑
b∈B

fbcbib +
∑
l∈L

flclīl + pθ
∑
l∈L

flcl = i
∑
b∈B

fbcb + i(1− p)
∑
l∈L

flcl ≡

≡ ieq =

∑
b∈B fbcbib +

∑
l∈L flclīl + pθ

∑
l∈L flcl∑

b∈B fbcb + (1− p)
∑

l∈L flcl
. (D.10)

The interest rate ieq implies that the desired volumes of trade on both lender and

borrower side of the market are equal.

D.8 Censoring supply or demand

We may obtain a formula for reservation interest rate which guarantees that credit

demand, generated by a party of borrowers, matches any volume V . By a similar

token, it is possible to derive an equation for a reservation interest rate which implies

that credit supply of a group of lenders is equal to V . Both formulas are useful

if the volume of trade desired by one side of the market has to be capped at a given

level.

In order to derive the formula that constraints borrower side of the market observe

that

i = (ib − c−1b wb) ≡ icb = cbib − wb ≡ ifbcb = fbcbib − fbwb ≡
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≡ i
∑
b∈B

fbcb =
∑
b∈B

fbcbib −
∑
b∈B

fbwb ≡

≡ ic =

∑
b∈B fbcbib − V∑

b∈B fbcb
(D.11)

where the latter equivalence stems from the fact that
∑

b∈B fbwb is a volume of credit

demand which corresponds to reservation interest rate ic.

The formula that constraints the lender side of the market may be obtained from

i = (il − c−1l wl + θp)/(1− p) ≡ i(1− p)cl = clil − wl + pθcl ≡

≡ i(1− p)flcl = flclil − flwl + pθflcl ≡

≡ i(1− p)
∑
l∈L

flcl =
∑
l∈L

flclil −
∑
l∈L

flwl + pθ
∑
l∈L

flcl ≡

≡ ic = θ
p

1− p
+

∑
l∈L flclil + V∑

l∈L flcl

1

1− p
, (D.12)

where the latter equivalence stems from the fact that −
∑

l∈L flwl is a volume of credit

demand which corresponds to reservation interest rate ic.

D.9 Prices

Assume initial price P0 is known, set xt = lnPt. Maclaurin expansion of natural

logarithm is

ln (1 + x) = x− 1

2
x2 +

1

3
x3 + . . . ,

hence if x is sufficiently small, x ≈ ln (1 + x) +O(2) is its first order approximation.

For real interest rate Rt+1 such that |Rt+1| � 1 it holds that

Rt+1 =
Pt+1 − Pt

Pt
≈ ln

(
1 +

Pt+1 − Pt
Pt

)
= lnPt+1 − lnPt = xt+1 − xt.

We shall first introduce a discreet price process, next it will be modified to take into

account excess demand.

Assume that logarithms of prices are driven by the following AR(1) equation

xt+1 − xt = η[µ− (xt − xt−1)] + σzt, zt ∼ N(0, 1).
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Above µ is the mean growth level, parameter σ embodies volatility. Using the ap-

proximation above, the conditional distribution of growth rates fulfils

Rt+1|xt − xt−1 ∼ N(ηµ− η(xt − xt−1), σ2),

while unconditional mean growth rate amounts to µ/(1 + η).
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Lévy, P. (1924). Théorie des erreurs. La loi de Gauss et les lois exceptionelles. Bulletin
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