
Mining Sequential Patterns from

Probabilistic Data

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Muhammad Muzammal
Department of Computer Science

University of Leicester

September 2012

Declaration of Authorship

I hereby declare that content of this thesis is my own work and that it is the result

of work done during the period of registration. To the best of my knowledge, it

contains no material previously published or written by another person nor material

which to a substantial extent has been accepted for the award of any other degree

or diploma of the university or other institute of higher learning, except where due

acknowledgement has been made in the text.

Parts of this thesis appeared in the following publications, to each of which I have

made substantial contributions:

� Muhammad Muzammal and Rajeev Raman. Uncertainty in Sequential Pat-

tern Mining. In Proceedings of 27th British National Conference on Databases

(BNCOD), volume 6121 of Lecture Notes in Computer Science, pages 147-150,

Springer-Verlag, 2010.

� Muhammad Muzammal and Rajeev Raman. On Probabilistic Models for Un-

certain Sequential Pattern Mining. In Proceedings of 6th International Con-

ference on Advanced Data Mining and Applications (ADMA), volume 6440 of

Lecture Notes in Computer Science, pages 60-72, Springer-Verlag, 2010.

� Muhammad Muzammal and Rajeev Raman. Mining Sequential Patterns from

Probabilistic Databases. In Proceedings of 15th Pacific-Asia Conference on

Knowledge Discovery and Data Mining (PAKDD), volume 6635 of Lecture

Notes in Computer Science, pages 210-221, Springer-Verlag, 2011.

� MuhammadMuzammal. Mining Sequential Patterns from Probabilistic Databases

by Pattern-Growth. In Proceedings of 28th British National Conference on

Databases (BNCOD), volume 7051 of Lecture Notes in Computer Science,

pages 118-127, Springer-Verlag, 2011.

i

Some of the technical contributions in this thesis have not yet been published and

are listed below:

� The definition of the SLU-D model in Section 4.1.3 and the complexity re-

sults for evaluating the interestingness predicate for the SLU-D model in Sec-

tion 5.1.3.

� The evaluation of the effectiveness of the probabilistic SPM framework in the

presence of noise in Section 7.4.

ii

Abstract

Sequential Pattern Mining (SPM) is an important data mining problem. Although

it is assumed in classical SPM that the data to be mined is deterministic, it is

now recognized that data obtained from a wide variety of data sources is inherently

noisy or uncertain, such as data from sensors or data being collected from the web

from different (potentially conflicting) data sources. Probabilistic databases is a

popular framework for modelling uncertainty. Recently, several data mining and

ranking problems have been studied in probabilistic databases. To the best of our

knowledge, this is the first systematic study of mining sequential patterns from

probabilistic databases.

In this work, we consider the kind of uncertainties that could arise in SPM. We pro-

pose four novel uncertainty models for SPM, namely tuple-level uncertainty, event-

level uncertainty, source-level uncertainty and source-level uncertainty in deduplica-

tion, all of which fit into the probabilistic databases framework, and motivate them

using potential real-life scenarios. We then define the interestingness predicate for

two measures of interestingness, namely expected support and probabilistic frequent-

ness. Next, we consider the computational complexity of evaluating the interesting-

ness predicate, for various combinations of uncertainty models and interestingness

measures, and show that different combinations have very different outcomes from

a complexity theoretic viewpoint: whilst some cases are computationally tractable,

we show other cases to be computationally intractable.

We give a dynamic programming algorithm to compute the source support prob-

ability and hence the expected support of a sequence in a source-level uncertain

database. We then propose optimizations to speedup the support computation task.

Next, we propose probabilistic SPM algorithms based on the candidate generation

and pattern growth frameworks for the source-level uncertainty model and the ex-

pected support measure. We implement these algorithms and give an empirical

evaluation of the probabilistic SPM algorithms and show the scalability of these al-

gorithms under different parameter settings using both real and synthetic datasets.

Finally, we demonstrate the effectiveness of the probabilistic SPM framework at

extracting meaningful patterns in the presence of noise.

In the name of Allah, the Beneficent, the Merciful.

Acknowledgements

First and foremost, I wish to thank Prof. Rajeev Raman for playing a pivotal role in

this research. To me Rajeev was both a supervisor and a teammate as he encouraged

and supported me on many levels. I am grateful to him for all the labour and the

pains that he took in training me; without him this thesis will not exist.

Bahria University, Pakistan and Higher Education Commission, Pakistan were the

funding bodies and are to be thanked for supporting this research.

I would also like to thank the staff and my fellow PhD students at the Department

of Computer Science for providing a conducive research environment.

I express my special gratitude to my examiners, Dr. Frans Coenen and Dr. Neil

Walkinshaw, for the useful recommendations in making this thesis a more compre-

hensible document.

Finally, a big humongous thanks to my parents, my brothers and sister for their

all-around support especially during this time, and I am sure that my uncle (late)

would have been very proud seeing me getting this far.

Thank you!

Muzammal

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

List of Figures xi

List of Tables xiv

List of Algorithms xvii

Abbreviations xviii

1 Introduction 1

1.1 Sequential Pattern Mining . 4

1.2 Uncertain Data . 5

1.3 Motivation . 8

1.4 Our Contributions . 9

1.5 Thesis Organisation . 10

2 Sequential Pattern Mining 12

v

Contents

2.1 Association Rule Mining . 12

2.1.1 Frequent Itemset Mining . 13

2.1.2 Association Rule Discovery . 14

2.2 Sequential Pattern Mining . 15

2.2.1 Problem Statement . 15

2.2.2 Computational Complexity of SPM 18

2.3 SPM Algorithms . 19

2.3.1 Candidate Generation . 20

2.3.1.1 GSP . 20

2.3.1.2 SPADE . 21

2.3.1.3 SPAM . 24

2.3.2 Pattern Growth . 25

2.4 Comparison of SPM Algorithms . 27

2.4.1 Candidate Generation . 28

2.4.2 Pattern Growth . 29

2.5 Alternative SPM Formulations . 30

2.5.1 Constrained SPM . 30

2.5.2 Closed SPM . 31

2.5.3 SPM from Noisy or Uncertain Data 32

2.6 SPM Applications . 33

2.7 Summary . 37

3 Probabilistic Databases 38

3.1 Motivations for Probabilistic Databases 39

3.1.1 Information Extraction . 39

3.1.2 Deduplication . 42

3.2 Probabilistic Data Models . 44

vi

Contents

3.2.1 Attribute-level Uncertainty Model 45

3.2.2 Tuple-level Uncertainty Model 45

3.2.3 x-relations Model . 47

3.3 Query Evaluation . 49

3.4 Top-k . 50

3.5 Probabilistic Database Systems . 52

3.5.1 MystiQ . 52

3.5.2 Trio . 52

3.6 Frequent Itemset Mining using Probabilistic Data 53

3.6.1 Expected Frequent Itemset Mining 54

3.6.2 Probabilistic Frequent Itemset Mining 59

3.7 Summary . 64

4 Probabilistic Data Models and Measures 65

4.1 Probabilistic Data Models . 66

4.1.1 Tuple-level Uncertainty . 67

4.1.2 Attribute-level Uncertainty . 72

4.1.2.1 Event-level Uncertainty 72

4.1.2.2 Source-level Uncertainty 76

4.1.3 Uncertainty in Deduplication 80

4.2 The Interestingness Predicate . 84

4.2.1 Expected Support . 85

4.2.2 Probabilistic Frequentness . 87

4.3 Summary . 90

5 Computational Complexity of Evaluating the Interestingness Pred-

icate 91

5.1 Expected Support Computation . 92

vii

Contents

5.1.1 TLU/SLU Case . 94

5.1.2 ELU Case . 96

5.1.3 SLU-D Case . 97

5.2 Probabilistic Frequentness Computation 105

5.2.1 TLU/ELU Case . 105

5.2.2 SLU Case . 107

5.2.3 SLU-D Case . 110

5.3 Summary . 111

6 Probabilistic SPM Algorithms 112

6.1 Candidate Generation . 113

6.1.1 Optimization . 113

6.1.1.1 Fast Frequent 1-sequence Computation 114

6.1.1.2 Incremental Support Computation 116

6.1.1.3 Apriori Pruning . 118

6.1.1.4 Probabilistic Pruning 119

6.1.2 Breadth-First Exploration . 120

6.1.2.1 Candidate Generation 122

6.1.2.2 Support Computation 124

6.1.3 Depth-First Exploration . 127

6.1.3.1 Candidate Generation 129

6.1.3.2 Support Computation 130

6.2 Pattern Growth . 131

6.2.1 Pattern Growth Algorithm . 133

6.2.2 Pattern Growth Step . 134

6.2.2.1 S-extension Computation 134

6.2.2.2 I-extension Computation 135

viii

Contents

6.3 Summary . 136

7 Empirical Evaluation 137

7.1 Experimental Setup . 138

7.1.1 Platform . 139

7.1.2 Datasets . 139

7.1.3 SLU Data Generation . 141

7.2 Effectiveness of Optimization . 142

7.2.1 Narrowing . 142

7.2.2 Probabilistic Pruning . 143

7.3 Scalability Analysis . 146

7.3.1 CPU Cost . 147

7.3.1.1 Varying θ . 147

7.3.1.2 Increasing C . 150

7.3.1.3 Increasing D . 151

7.3.1.4 Comparison of Algorithms 151

7.3.2 Memory Usage . 152

7.4 Effectiveness of Probabilistic SPM Framework 155

7.4.1 Synthetic Datasets . 156

7.4.2 Gazelle . 158

7.5 Summary . 163

8 Conclusions and Future Work 165

8.1 Our Contributions . 165

8.2 Future Work . 167

A Complexity Classes 169

ix

Contents

A.1 Reducibility . 170

A.2 Decision Problems . 172

A.2.1 Problem Encoding . 172

A.2.2 NP and NP-completeness . 173

A.3 Counting Problems: The Class #P 175

Bibliography 178

x

List of Figures

2.1 A sample database (top) transformed to source sequences (bottom). . 17

3.1 An example of a probabilistic database (reproduced from Dalvi et al.

[1]). 40

3.2 Attribute-level uncertain Researcher table from Figure 3.1 trans-

formed to x-tuples. 41

3.3 An sample dirty database with Company, Product and Price relations

(reproduced from Hassanzadeh and Miller [2]). 43

3.4 An example of x-relations model (reproduced from Cormode et al. [3]). 48

4.1 The sample TLU database of Table 4.1 transformed to p-sequences

(bottom). 68

4.2 The ELU database of Table 4.6 transformed to p-sequences (bottom). 74

4.3 The SLU database of Table 4.8 transformed to p-sequences (bottom).

Note that in the p-sequence representation, events like e1 (marked

with †) can only be associated with one of the sources X and Y in

any possible world. 78

4.4 A sample SLU-D database Dp. 81

4.5 The support probability distributions for a sequence 〈(a)(b)〉 for each

of the sample probabilistic database in Section 4.1. 89

xi

List of Figures

5.1 The sample 3D Matching instance of Table 5.2 transformed to

an SLU-D database Dp. 100

5.2 A sample bipartite graph (a) transformed to a probabilistic database

(b). The vertices in V correspond to eid and the vertices in U corre-

spond to source σi ∈ S. 108

5.3 Two possible worlds in PW (Dp) and their bipartite graph representa-

tions. A perfect matching (b), when every vertex in U ∪V is adjacent

to a single edge. 108

6.1 A sample hashtree where each node is a set of triples of the form

(k, ℓ, ptr). ‘×’ represents a null pointer. The pointer ℓ at the leaf node

points to a list of candidate sequences having the same characteristic

string. 125

7.1 Effectiveness of PBN and HBN. Missing points indicate that the algorithm

went out of memory and thus, did not complete. 143

7.2 Effectiveness of Probabilistic Pruning for BFS and DFS. In these graphs,

each bar indicates the percentage of infrequent candidate sequences elimi-

nated by probabilistic pruning that passed apriori pruning. 145

7.3 CPU time (in seconds) for BFS, DFS and PGA under different pa-

rameter settings for gazelle and representative synthetic datasets. . 148

7.4 Number of frequent sequences, for varying θ values for gazelle and

C10D10K, and for increasing C (Figure 7.3). 149

7.5 Distribution of frequent sequences for gazelle and representative

synthetic datasets for the set of experiments in Figure 7.3(i)-(iv).

As the distributions of frequent sequences for increasing D (Fig-

ure 7.3(v)-(vi)) remain relatively unaffected, we do not report those. . 149

xii

List of Figures

7.6 Memory usage (in terms of %age of system memory used) for the set

of experiments in Figure 7.3. 154

A.1 We transform an instance α of A in polynomial time to an instance β of

B. We solve β in polynomial time and the answer to β is the answer to α

(image from Cormen et al. [4]). 170

A.2 An illustration of a polynomial time reduction from a language L1 to a

language L2 using a reduction function f (image from Cormen et al. [4]). 174

A.3 An algorithm A1 that decides whether x ∈ L1 by using F to transform

x to f(x) and then using A2 to decide whether f(x) ∈ L2 (image from

Cormen et al. [4]). 174

xiii

List of Tables

2.1 A sample database. 14

2.2 Vertical id-list for the items in the database of Figure 2.1. 23

2.3 Temporal id-list join using Vertical id-list in Table 2.2. 23

3.1 A sample attribute-level uncertain database (reproduced from Cor-

mode et al. [3]). 45

3.2 The set of possible worlds for the database of Table 3.1 along with

their probabilities. 46

3.3 A sample tuple-level uncertain database. 46

3.4 The set of possible worlds for the database of Table 3.3 along with

their probabilities. 47

3.5 The set of possible worlds for the database of Figure 3.4 along with

their probabilities. 48

3.6 A sample uncertain database Dp. 54

4.1 A sample TLU database Dp. 67

4.2 The set of possible worlds for source X for the TLU database of Ta-

ble 4.1. 70

4.3 The set of possible worlds for source Y for the TLU database of Ta-

ble 4.1. 70

xiv

List of Tables

4.4 The set of possible worlds for source Z for the TLU database of Ta-

ble 4.1. 71

4.5 The complete set of possible worlds for the TLU database of Table 4.1. 71

4.6 A sample ELU database Dp. 73

4.7 The complete set of possible worlds for the sample ELU database of

Table 4.6 along with their probabilities. 75

4.8 A sample SLU database Dp. 77

4.9 The complete set of possible worlds for the database of Table 4.8 along

with their probabilities. 79

4.10 The SLU-D database of Figure 4.4 transformed to sid-sequences. . . . 82

4.11 The SLU-D database of Table 4.10 transformed to p-sequences. Note that

the events like e1 and e3 (marked with †) can only be associated to one

of the sources X and Y in any possible world. Further, events like e2 and

e4 (marked with ⋆) will either both be associated to a source in a possible

world or otherwise. 82

4.12 The complete set of possible worlds for the database of Table 4.10

along with their probabilities. 83

4.13 Computing the expected support of a sequence 〈(a)(b)〉 using possible

worlds (Table 4.5) for the sample TLU database of Table 4.1. 86

4.14 Computing the expected support of a sequence 〈(a)(b)〉 using possible

worlds (Table 4.7) for the sample ELU database of Table 4.6. 86

4.15 Computing the expected support of a sequence 〈(a)(b)〉 using possible

worlds (Table 4.9) for the sample SLU database of Table 4.8. 87

4.16 Computing the expected support of a sequence 〈(a)(b)〉 using possible

worlds (Table 4.12) for the sample SLU-D database of Table 4.10. . . 87

xv

List of Tables

5.1 Computing Pr[〈(a)(b)〉 � Dp
X] using dynamic programming in the

sample database of Figure 4.3. In Table 5.1, the value A[2,4] is the

probability that the sequence 〈(a)(b)〉 is supported by source X 94

5.2 An instance of 3D Matching. 99

5.3 The sample SLU-D database of Figure 5.1 transformed to sid-sequences.101

6.1 Example illustrating the incremental support computation of Bi,t for

t = 〈(a)(b, c)〉 from Bi,s where s = 〈(a)(b)〉, by computing Pr[t � Dp
X]

in the SLU database of Figure 4.3. Note that the row corresponding

to 〈(a)〉 is not available. 118

6.2 An example of computing the expected support of all S-extensions of

s = 〈(a)〉 for Dp
X in the sample SLU database of Figure 4.3. The cells

in columns labelled (i)–(iv) show the entries in F array after each

event in Dp
X is processed. The values in the column (iv) are updated

to G. 135

7.1 The list of parameters for the IBM Quest data generator. 140

7.2 Precision and recall results for synthetic dataset C10D10K. 157

7.3 Precision and recall results for synthetic dataset C20D10K. 159

7.4 Precision and recall results for gazelle. 160

7.5 The updated precision and recall results for gazelle after θ is revised.

The rows labelled as ‘Change’ show the improvement/decline (+/-)

in the precision and recall results after θ is revised. 161

xvi

List of Algorithms

1 Incremental Support Computation (I-extension case) 117

2 Breadth-First Exploration . 121

3 Depth-First Exploration . 128

4 Depth-First Traversal . 128

5 Pattern-Growth Algorithm . 133

xvii

Abbreviations

BFS Breadth First Search

DFS Depth First Search

DP Dynamic Programming

ELU Event Level Uncertainty

GSP Generalized Sequential Patterns

KDD Knowledge Discovery in Databases

PGA Pattern Growth Approach

SLU Source Level Uncertainty

SLU-D Source Level Uncertainty in Deduplication

SPADE Sequential PAttern Discovery using Equivalence classes

SPAM Sequential PAttern Mining

SPM Sequential Pattern Mining

TLU Tuple Level Uncertainty

xviii

Dedicated to my parents.

xix

Chapter 1

Introduction

Knowledge Discovery in Databases (KDD) is an important research area at the

intersection of databases, machine learning and artificial intelligence. Fayyad et al.

[5] define KDD as “the non-trivial process of identifying valid, novel, potentially

useful, and ultimately understandable patterns in data”. Data mining, the analysis

step of KDD, is aimed at analysing huge volumes of data by automated (or semi-

automated) means in order to discover useful patterns, interesting events or trends.

It should also be noted that data mining is not limited to traditional relational or

transaction databases, but can be applied to a variety of data such as stream data,

sensor data, text databases, time-series or sequence data. Fayyad et al. [6] classify

the data mining algorithms into two groups:

1. Predictive algorithms which predict an unknown attribute value based on some

known attribute values in data, e.g. classification, deviation detection, etc.

2. Descriptive algorithms which discover underlying patterns or correlations in

data that describe the data. Clustering, association rule mining and sequential

pattern mining are examples of descriptive data mining tasks.

1

Chapter 1. Introduction

We now briefly give an overview of the algorithms one each from the above classes

of algorithms, i.e. we describe classification (a predictive algorithm) and association

rule mining (a descriptive algorithm). See Han et al. [7], for a good introduction to

data mining concepts and techniques.

Classification

Classification is the task of predicting the class of an object from a pre-defined set of

classes by examining its attributes in a systematic way. To perform classification, the

input dataset is split into a training and a test set. A record in the input dataset

contains a set of attribute, one of which is the class attribute. The classification

algorithm is trained on the training data so as to be able to predict the value of the

class attribute for an unseen record. The objective of classification is that the class

label for a new record should be as accurate as possible. Once a classification model

has been built, the test set is used to validate the model.

Classification has been applied to a variety of application domains.

• An important application of classification is in direct marketing. In the mobile

phone industry, a company aims at reducing the posting costs by targeting

a group of customers that are likely to sign a contract for a specific new

mobile phone. When a customer (new or existing) signs up for a mobile phone

contract, different kinds of information is solicited about the customer, e.g.

gender, age, marital status, job, salary range, etc. The history data for a

similar product can be used to classify customers as those who will sign up or

otherwise, for a new mobile phone.

• Classification has been used for sky survey cataloguing. The objective is to

classify a sky object as a star or a galaxy, based on the extremely high defini-

tion telescopic survey images (23040 × 23040 pixels per image) available from

2

Chapter 1. Introduction

Palomar Observatory. As reported in [8], the classification algorithms were

able to find 16 new high red-shift quasars (a quasar is a young or an emerging

galaxy and a redshift is a measure to represent far off distances, e.g. millions

of light years) from the Palomar Observatory images.

Association Rule Mining

Association rule mining is the task of discovering associations among itemsets (sets

of items) in a transaction database where each transaction is given as a set of items.

Association rules have also been studied in many application domains.

• An important application domain of association rule mining is in the retail

environment. In the retail environment, association rules can be used in mar-

keting, sales promotions, shelf management, etc. For example, to answer ques-

tions like which items sell together, process the market basket data recorded

by barcode scanners for each basket, in order to find associations among items.

For example, an association rule of the form {bagels} =⇒ {tortilla chips}

might suggest that if a customer buys bagels, then he is quite likely to buy

tortilla chips. These two items can be placed next to each other in order to

improve shelf management.

• Another application of association rule mining is in inventory management.

For example, a consumer appliance company wants to anticipate the nature of

the repair requests on its consumer products. The idea is to equip the service

vehicles with the ‘right’ kind of tools and parts in order to reduce visits to the

consumer household. This can be achieved by processing the data on tools

and parts that were needed in repairs in different regions.

3

Chapter 1. Introduction

An important concern in association rule mining, which we do not pursue in this

thesis, is how to find rules that are useful or in other words, how to avoid redundant

or uninteresting rules. For example, it has been noted that only few of the reported

association rules are actionable, whereas most of them are either trivial (obvious to

the people in the business domain) or inexplicable (can not be explained and are

not actionable). Many alternative formulations have been proposed in literature for

mining interesting association rules, e.g. [9, 10] etc.

Initial studies on association rule mining focus on discovering intra-transaction rules

only, i.e. associations among the items in a transaction [11]. Agrawal and Srikant [12]

introduced the idea of sequential patterns, a variation of association rules that aims

at finding inter-transaction association rules in a temporal database, i.e. finding

associations within as well as between transactions ordered by a time-stamp.

In this work, we focus on association rule mining in a temporal database or more

specifically, Sequential Pattern Mining (SPM).

1.1 Sequential Pattern Mining

SPM is a well-researched area in data mining [13–15]. The given input is a database

which is a set of records, where each record has a (unique) time-stamp, an event

attribute (which is a set of items) and a source attribute (that caused the event);

the objective is to find all frequent sequential patterns in data. Sequential patterns

have been studied in many application domains, e.g. in market basket analysis, web

usage mining, genome and sequence data analysis, etc. We briefly review a few of

them here.

• Sequential patterns have been used for web personalization [16]. For example,

a click stream of page visits by a user can be seen as a sequence of events by

4

Chapter 1. Introduction

that user. Then, frequent sequential patterns are extracted in order to find

the frequent user navigation paths. Sequential patterns can then be used to

predict the next page to be visited (based on the sequence of page visits by the

user so far) and predictive tasks such as web pre-fetching can be performed in

order to improve the navigation experience of the user.

• In text categorization, a collection of text documents is transformed to a se-

quence database where each document corresponds to a sequence, and each

sentence in a document is considered as an event, and the order of the sen-

tences is the order in which they appear in the document. Then, the frequent

sequential patterns are discovered which are used to categorize documents [17].

• Sequential patterns have also been used in protein fold recognition [18]. The

task is to assign a protein sequence whose structure is unknown, to one of the

folds (a fold is 3D structure of a protein) in order to determine the protein

function. Frequent sequential patterns are extracted from all folds and then

each of the extracted sequential patterns is checked to see if it is contained in

the protein. The protein is assigned to the fold for which it contains the most

sequential patterns.

1.2 Uncertain Data

Data to be mined that is obtained from real-life applications is often incomplete/in-

correct/imprecise/inconsistent due to various reasons (a general term for these kinds

of errors is that the data is “dirty” [2]), for example:

(a) data may be incomplete, as the values for some attributes of interest can be

missing; can happen due to data entry errors or values are unknown/unob-

tainable at the time of data collection.

5

Chapter 1. Introduction

(b) data may contain noise, for instance salary = “-20000”.

(c) data may be imprecise; can happen in situations where an attribute value is

based on a range of values, e.g. age = [25,34].

(d) data may contain inconsistencies, for example in deduplication [2], i.e. when

multiple tuples in a database (potentially) represent the same real world entity.

Classical association rule mining works under the assumption that the data to be

mined is clean or entirely determined, as it is assumed that all the noise or inconsis-

tencies in data have been eliminated in the Data Preprocessing, or more specifically,

Data Cleansing phase [7, Chapter 2]. However, data cleansing may result in valuable

information loss [2].

Recently, many new applications have emerged which generate data that is inher-

ently noisy or uncertain [19]. For example, sensor or RFID data is uncertain due to

reasons like equipment limitations or sampling based data collection [20]. Similarly,

uncertainty is introduced in data when data is being extracted from multiple (po-

tentially conflicting) sources on the web [21]. In applications like tracking a mobile

object, the trajectory of the object can be predicted only with a degree of confi-

dence [22]. In some applications, uncertainty has to be introduced, e.g. due to the

increasing importance of privacy concerns [23]. In deduplication, a new approach is

to leave some uncertainty in data rather than complete data cleansing [2].

An important point about all these and other applications of uncertain data is

that it is somehow possible to quantify the level of uncertainty. For example, in

deduplication, probabilities are assigned to potential duplicates and tuples which are

more likely to be ‘true’ are assigned higher probabilities. Trio [21] (a probabilistic

database management system) computes the confidence in a tuple or an attribute

value by looking at the source of information. It should also be noted that the above

6

Chapter 1. Introduction

kind of uncertainties arise either in the tuple (tuples have existential probabilities)

or in an attribute (an attribute value is uncertain having a small number of precise

alternatives along with the associated probabilities while the rest of the attribute

values are certain).

This thesis examines issues that arise in SPM when considering that data to be

mined can be uncertain:

(1) How should different kinds of uncertainties in data for SPM be modelled for-

mally?

(2) How should the frequentness criteria be defined for SPM from uncertain data?

(3) Is it possible to develop scalable and high performance algorithms for SPM

from uncertain data?

(4) How effective is the probabilistic SPM framework ((1)—(3) above is the prob-

abilistic SPM framework) in extracting meaningful patterns from uncertain

data.

Although we consider this in detail later in the thesis, we now briefly introduce

an approach for (1). Probabilistic databases is a popular framework for modelling

(such kind of) uncertainties in data [24]. A probabilistic database is a set of possible

worlds where each world is consistent with a given schema and is the true world

only with some probability. The set of possible worlds is considered the complete

model as it can capture any kind of correlations or dependencies in data. However,

there can be an exponential number of possible worlds and it may not be feasible to

enumerate the complete set of possible worlds. In the literature, some simplifying

assumptions are made at the cost of expressiveness in order to model uncertain data,

e.g. assuming independence among tuples.

7

Chapter 1. Introduction

1.3 Motivation

Recently, several data mining problems have been studied in the context of uncertain

data [19]. There have been quite a few studies in the literature on association

analysis [25] and more specifically, frequent itemset mining [26–29] from uncertain

data. We focus on sequential pattern mining. We observe that uncertainty in SPM

could arise in many real-life situations.

• Consider for example a scenario where employees’ movements (sequence of

activities) are tracked in a building using RFID sensors. Since an RFID an-

tenna has only some probability of reading a tag within its range, the stream

of tags read by RFID sensors is used to output an uncertain relation such

as MEETING(time, person1, person2, room, prob). An example tuple in

MEETING could be (103, ‘Alice’, ‘Bob’, 435, 0.4), which means that at time 103,

Alice and Bob are having a meeting (event) with probability 0.4 in room 435

(source) [20]; thus, the meeting event only has a probability of 0.4 of occurring,

which shows tuple-level uncertainty.

• Consider a scenario where a logged-in user (source) enters (a sequence of)

search terms into a search engine (events). The search terms could be disam-

biguated in many different ways (uncertainty in the event attribute). For exam-

ple, a search term ‘Tiger’ could potentially be disambiguated as {(Animal, 0.4),

(Sports Personality, 0.3), (Insurance, 0.2), . . .}.

• A customer (source) purchases some items (event) from a superstore, and

provides identity information, e.g. by filling a form. The same customer may

fill a new form in a subsequent visit and thus, multiple matches may emerge in

the customer database as the customer’s details may be incomplete or incorrect

(uncertainty in the source attribute).

8

Chapter 1. Introduction

To the best of our knowledge, there has been no attempt to study SPM in proba-

bilistic databases, and this is the subject of this thesis.

We first give our main contributions and then give a thesis outline.

1.4 Our Contributions

We study the sequential pattern mining problem in probabilistic databases. Our

main contributions are as follows:

(a) We consider the kind of uncertainties that could arise in SPM and model

them in probabilistic databases framework either as tuple-level uncertainty or

attribute-level uncertainty [24]. In tuple-level uncertainty, tuples have existen-

tial probabilities; and in attribute-level uncertainty, we consider uncertainty

in the event or in the source attribute. We also consider another kind of un-

certainty that could arise in the source attribute, motivated by deduplication.

Thus, we consider four novel uncertainty models for SPM, namely tuple-level

uncertainty, event-level uncertainty, source-level uncertainty and source-level

uncertainty in deduplication, all of which fit into the probabilistic databases

framework, and motivate them using potential real-life scenarios.

(b) We define an interestingness predicate [30] which tests if a sequence is frequent

in the context of SPM in probabilistic databases, and define two measures

of interestingness, namely expected support and probabilistic frequentness,

based upon existing definitions for frequent itemset mining in probabilistic

databases [28, 31].

(c) We discuss evaluating the interestingness predicate from a complexity theo-

retic viewpoint and show that different combinations of uncertainty models

9

Chapter 1. Introduction

and interestingness measures have very different outcomes from a complexity

theoretic viewpoint. Thus, whilst some cases are computationally tractable,

we show others to be computationally intractable.

(d) We give a dynamic programming based algorithm for computing the source

support probability and hence, the expected support of a sequence in a source-

level uncertain (SLU) database. Further, we propose optimizations to speed

up the support computation task. Then, we extend classical SPM algorithms

based on the candidate generation and pattern growth frameworks to work

under probabilistic settings for the SLU model using the expected support

measure. In all, we propose two candidate generation algorithms, one based

on a breadth-first and one based on a depth-first exploration of the search

space, as well as a pattern growth algorithm based on the idea of projected

databases.

(e) We give an empirical evaluation of the optimizations and algorithms that we

consider, and demonstrate the scalability of our algorithms under different

parameter settings using both synthetic and real datasets. We also evaluate

the effectiveness of the probabilistic SPM framework at extracting meaningful

patterns in the presence of noise.

1.5 Thesis Organisation

The rest of the thesis is organized as follows.

• Chapter 2 gives an overview of SPM. We define the SPM problem, give an

overview of some popular classical SPM algorithms, discuss some alternative

SPM formulations that have been proposed in literature, and also discuss a

few applications of SPM.

10

Chapter 1. Introduction

• Chapter 3 is a discussion on probabilistic databases. It gives an overview of

probabilistic data models proposed in literature and the work on top-k and

frequent itemset mining in the context of probabilistic databases.

• In Chapter 4, we describe the kind of uncertainties that could arise in SPM

and give probabilistic data models to model such uncertainties. We then define

interestingness predicates for probabilistic SPM.

• Chapter 5 presents a detailed discussion on the computational complexity of

evaluating the interestingness predicate under different uncertainty models and

measures of interestingness. We also give a dynamic programming based algo-

rithm to compute the expected support of a sequential pattern in a source-level

uncertain database.

• In Chapter 6, we consider the source-level uncertainty model and the expected

support measure, and give probabilistic SPM algorithms based on both can-

didate generation and pattern growth frameworks to find the set of frequent

sequential patterns.

• Chapter 7 presents an empirical evaluation of the algorithms proposed in Chap-

ter 6. We demonstrate the scalability of our algorithms under different parame-

ter settings. We also give an evaluation on the effectiveness of the probabilistic

SPM framework in the presence of noise.

• Chapter 8 concludes this thesis and gives an outline of future work.

11

Chapter 2

Sequential Pattern Mining

Association rule mining was first proposed by Agrawal et al. [11], and is a well re-

searched area in data mining [32, 33]. Agrawal and Srikant [12] introduced sequential

patterns, which are association rules with a temporal order.

In this chapter, we first give an overview of association rule mining. Then, we define

SPM and discuss the computational complexity of SPM as well. Next, we discuss

some classical SPM algorithms and contrast their main characteristics. We also

discuss some alternative SPM formulations. Finally, we give some applications of

SPM.

2.1 Association Rule Mining

Association rule mining was first proposed in the context of market basket analy-

sis [11]. Since its introduction, the problem has been applied to many application

domains. See Han et al. [32] for a detailed overview.

12

Chapter 2. Sequential Pattern Mining

The association rule mining problem can be decomposed into two sub-problems.

First, frequent itemset mining, which involves finding all the frequent itemsets in

the database, and second, association rule discovery, which involves finding the

associations or correlations among discovered frequent itemsets. We elaborate on

each of these below.

2.1.1 Frequent Itemset Mining

We formally define the frequent itemset mining problem. Let I = {i1, i2, . . . , iq} be

a set of items. A set U ⊆ I is called an itemset. A database D = {r1, r2, . . . , rn} is

a set of records such that each record ri ∈ D is of the form (rid, I), where rid is a

unique record identifier and I ⊆ I is a set of items. A record ri = (rid, I) supports

an itemset U if U ⊆ I. For a record ri = (rid, I) and an itemset U , let Xi(U,D)

be an indicator variable whose value is 1 if ri supports U and 0 otherwise. For an

itemset U , define the support of U in D, denoted by Sup(U,D), as follows:

Sup(U,D) =
n∑

i=1

Xi(U,D). (2.1)

An itemset U is considered frequent if Sup(U,D) is at least some user-defined support

threshold θ, 0 ≤ θ ≤ n.

Definition 2.1 (Frequent Itemset Mining Problem). Given a database D hav-

ing n records, and a user-defined support threshold θ, 0 ≤ θ ≤ n, find all frequent

itemsets in D.

We illustrate the above concepts with the help of examples using the sample database

D of Table 2.1. Each record in D is example of an itemset. The record with rid =

2 supports an itemset {b c} (as {b c} ⊆ {b c e}). The support of an itemset {b c}

is 2 as records with rid = 2 and 3, support {b c}. Assuming a minimum support

13

Chapter 2. Sequential Pattern Mining

Table 2.1: A sample database.

rid I

1 a c d

2 b c e

3 a b c e

4 b e

threshold θ = 2, an itemset {a} is frequent (as Sup({a}, D) = 2) whereas {d} is not

(as Sup({d}, D) = 1).

2.1.2 Association Rule Discovery

An association rule is an implication of the form A⇒ B where A,B ⊆ I, A∩B = ∅.

The rule is read as A implies B which means that if a record supports an itemset

A, it will also support the itemset B. The confidence in an association rule A⇒ B,

denoted by Conf(A⇒ B), is defined as follows:

Conf(A⇒ B) =
Sup(A ∪ B,D)

Sup(A,D)
.

For example, if Conf(A ⇒ B) = 70%, it means that if a record supports A, it also

supports B, at least 70% of the times. We now formally define the association rule

mining problem:

Definition 2.2 (Association Rule Mining Problem). Given a database D hav-

ing n records and two user-defined thresholds, a support threshold θ, 0 ≤ θ ≤ n,

and a confidence threshold τ , 0 ≤ τ ≤ 1, find all association rules having support at

least θ and confidence at least τ .

14

Chapter 2. Sequential Pattern Mining

In the sample database of Table 2.1, {b c} is a frequent itemset as Sup({b c}, D) =

2, and the confidence in b ⇒ c is 66.6% as for two out of three transactions in D

where {b} occurs, {c} also occurs.

This concludes our discussion of association rule mining. We have defined the asso-

ciation rule mining problem and have illustrated some basic concepts with the help

of examples. We now discuss sequential pattern mining.

2.2 Sequential Pattern Mining

The SPM problem was first proposed by Agrawal and Srikant [12], and has been

studied extensively in literature (see [13–15] among many others). The problem was

first proposed in the context of market basket data and has been studied in many

application domains since then (see Section 2.6).

For example, in market basket data analysis [12], customers visit a superstore mul-

tiple times and purchase items in each visit. As the customers and the associated

transactions are recorded by the store, it is possible to analyse the items (or sets

of items) customers purchase in successive visits and thus the future purchasing

behaviour of a customer can be predicted.

We now formally define the SPM problem.

2.2.1 Problem Statement

Let I = {i1, i2, . . . , iq} be a set of items and S = {1, . . . , m} be a set of sources. An

event e ⊆ I is a collection of items. A database D = 〈r1, r2, . . . , rn〉 is an ordered

list of records such that each record ri ∈ D is of the form (eid i, ei, σi), where eid i is

a unique event-id, including a time-stamp (events are ordered by this time-stamp),

15

Chapter 2. Sequential Pattern Mining

ei is an event and σi is a source. In the above market basket data analysis example,

a customer is considered as a source and the associated transactions are considered

as events which are ordered by a time-stamp.

A sequence s = 〈s1, s2, . . . , sa〉 is an ordered list of events. The events si in the

sequence are called its elements. The length of a sequence s is the total number of

items in it, i.e.
∑a

j=1 |sj|; for any integer k, a k-sequence is a sequence of length k.

Let s = 〈s1, s2, . . . , sq〉 and t = 〈t1, t2, . . . , tr〉 be two sequences. We say that s is a

subsequence of t, denoted by s � t, if there exist integers 1 ≤ i1 < i2 < · · · < iq ≤ r

such that sk ⊆ tij , for k = 1, . . . , q. The source sequence corresponding to a source

i is just the multiset {e|(eid, e, i) ∈ D}, ordered by eid. For a sequence s and source

i, let Xi(s,D) be an indicator variable whose value is 1 if s is a subsequence of the

source sequence for source i, and 0 otherwise. For any sequence s, define its support

in D, denoted by Sup(s,D), as:

Sup(s,D) =
m∑

i=1

Xi(s,D). (2.2)

A sequence s is considered frequent if Sup(s,D) is at least some user-defined support

threshold θ, 0 ≤ θ ≤ m. We now formally define the SPM problem:

Definition 2.3 (SPM Problem). Given a database D and a user-defined support

threshold θ, 0 ≤ θ ≤ m, find all frequent sequences in D.

Thus in market basket data analysis, the objective is find the sequences of items (or

itemsets) that are purchased by a considerable fraction of customers.

We illustrate the above concepts with the help of examples using the sample database

D of Figure 2.1. Consider for example the sequence s = 〈(a)(b, c)〉. The sets

(a) and (b, c) are elements of s, and the length of s is 3. The sequence s is a

subsequence of DX , the source sequence for source X (denoted as 〈(a)(b, c)〉 �

16

Chapter 2. Sequential Pattern Mining

eid e σ

e1 (a, b, d) X

e2 (b) Y

e3 (b, c, d) X

e4 (a, b, c) Y

e5 (a, b) Z

e6 (b, c, d) X

e7 (b, c, d) Z

source sequence

DX (a, b, d)(b, c, d)(b, c, d)

DY (b)(a, b, c)

DZ (a, b)(b, c, d)

(Reproduced from Ayres et al. [34])

Figure 2.1: A sample database (top) transformed to source sequences (bottom).

(a, b, d)(b, c, d)(b, c, d)), and is not a subsequence of DY (denoted as 〈(a)(b, c)〉 6�

(b)(a, b, c)). Assuming a minimum support threshold θ = 2, 〈(a)(b, c)〉 is frequent

(as Sup(〈(a)(b, c)〉, D) = 2) whereas 〈(c)(d)〉 is not (as Sup(〈(c)(d)〉, D) = 1).

Classical SPM finds the complete set of frequent sequential patterns. However, the

number of sequential pattern can be huge, as for any frequent k-sequence, all of its

subsequences are also reported. In the literature, some compact definitions have

been proposed [35]:

Definition 2.4 (Maximal Sequence). A frequent sequence s is maximal if there

is no other frequent sequence s′ such that s � s′.

Definition 2.5 (Closed Sequence). A frequent sequence s is closed if there is no

other frequent sequence s′ such that (1) s � s′ and (2) Sup(s,D) = Sup(s′, D).

17

Chapter 2. Sequential Pattern Mining

Yan et al. [35] have shown that the set of frequent sequential patterns contains the

set of closed sequential patterns, which in turn contains the set of maximal sequential

patterns. The problem of maximal/closed SPM is defined analogously to SPM and

has been studied in the literature [14].

We now briefly discuss the computational complexity of the SPM problem. For an

overview of complexity classes, see Appendix A.

2.2.2 Computational Complexity of SPM

The input to the SPM problem is a database D and a support threshold θ, and

the output is the set of frequent sequential patterns. We focus on some of the

fundamental aspects of SPM, and consider the computational complexity of the

following problem:

Problem 2.6. Given a database D, a sequential pattern s and a support threshold

θ, determine whether s is frequent or not.

We can compute the support of s in D in a single scan of the database D and thus,

to check if a sequential pattern is frequent is in polynomial time. In the framework

described by Gunopulos et al. [30], the above problem is the interestingness or quality

predicate and all the SPM algorithms in essence must evaluate the interestingness

predicate.

Although the interestingness predicate for a single sequence can be evaluated in

polynomial time, this does not mean that finding all frequent sequential patterns can

be done in polynomial time. Zaki [36] have shown that given an arbitrary support

threshold θ and a database D having n frequent items, the number of frequent

sequences upto length k could at most be O(nk) and thus, the number of frequent

sequential patterns need not be polynomial in the size of the input database.

18

Chapter 2. Sequential Pattern Mining

As already mentioned, the set of frequent sequential patterns contains the set of

maximal sequential patterns. Some hardness results have been shown in the litera-

ture for mining maximal sequential patterns and thus are true for frequent sequential

patterns as well. Gunopulos et al. [30] have shown that given an arbitrary support

threshold θ, it is NP-complete to decide if there is a maximal sequential pattern with

at least k items. It is therefore, NP-hard to enumerate the set of maximal sequential

patterns with at least k items. Further, Yang [37] have shown that the problem of

counting the number of maximal sequential patterns is #P-complete.

In summary, although the support of a sequential pattern (i.e. the interestingness

predicate for SPM) can be computed in polynomial time, the set of frequent sequen-

tial patterns or maximal sequential patterns can be exponentially larger than the

size of the input database. Thus, a reasonable support threshold is usually assumed

in SPM algorithms to restrict the number of reported sequential patterns.

We now give an overview of some classical SPM algorithms.

2.3 SPM Algorithms

Many SPM algorithms have been proposed in the literature. These can broadly be

classified into two classes, those based on the candidate generation framework and

those based on the pattern growth framework. SPM algorithms are different in:

• Search space exploration: that is, the way sequential patterns are discovered.

• Support computation: that is, the way sequential patterns are determined to

be frequent or otherwise.

We now review some SPM algorithms based on both the candidate generation and

the pattern growth framework.

19

Chapter 2. Sequential Pattern Mining

2.3.1 Candidate Generation

The candidate generation algorithms are all based on the apriori property which is

an anti-monotonic property and is stated as follows:

Definition 2.7 (Apriori Property). For any two sequences s and s′, if s � s′

then Sup(s,D) ≥ Sup(s′, D).

The apriori property means that if a sequence s is not frequent, any of the superse-

quences of s will also not be frequent.

We review some of the popular candidate generation algorithms from literature,

namely GSP (Generalized Sequential Patterns) [38], SPADE (Sequential PAttern

Discovery using Equivalence classes) [36] and SPAM (Sequential PAtternMining) [34].

In our examples, we consider the sample database of Figure 2.1 and assume that the

support threshold θ = 3. We denote the set of candidate j-sequences by Cj and the

set of frequent j-sequences by Lj .

2.3.1.1 GSP

The GSP algorithm [38] assumes that the input database is in source sequence format

and it makes multiple passes over the database to find the set of sequential patterns.

In the first pass, the set of frequent 1-sequences, denoted by L1, is discovered. For

example, for the sample database of Figure 2.1, support computation is performed

for all 1-sequences {(a) : 3, (b) : 3, (c) : 3, (d) : 2} and thus, L1 = {(a), (b), (c)}

is obtained. For j = 2 onwards, Lj−1 is used to generate the set of candidate

j-sequences denoted by Cj. Next, L1 is used to generate C2 and subsequently,

L2 is obtained after support computation. For example, C2 is generated from L1,

and after support computation, C2 = {(a)(a) : 0, (a)(b) : 2, (a)(c) : 2, (b)(a) :

20

Chapter 2. Sequential Pattern Mining

1, (b)(b) : 3, (b)(c) : 3, (c)(a) : 0, (c)(b) : 1, (c)(c) : 1, (a, b) : 3, (a, c) : 1, (b, c) : 3},

L2 = {(b)(b), (b)(c), (a, b), (b, c)} is obtained.

For j = 3 onwards, Lj−1 is joined with itself to obtain Cj . Two sequences s and s′

are joined if and only if the sequences obtained by deleting the first item in s and the

last item in s′ are the same. The new sequence t is the sequence s extended with the

last item in s′, and the last item in s′ is added the same way to s as it was in s′. For

example, (b)(b) is joined with (b, c) to obtain (b)(b, c), whereas (b)(b) does not join

with (a, c) as the remaining sequences after deleting the first and last items in (b)(b)

and (a, c) respectively, i.e. (b) and (a), are not the same. Further, the apriori pruning

is applied to Cj and then the support computation is performed. For example, we

generate C3 and perform support computation, C3 = {(b)(b, c) : 3, (b)(b)(c) : 1},

thus obtaining L3 = {(b)(b, c)}.

The algorithm stops when no more frequent sequences can be discovered or no more

candidate sequences can be generated.

Gupta and Han [14] consider the major weaknesses of the GSP algorithm to be: (1)

generating a huge number of candidate sequences and (2) multiple scans of the input

database.

2.3.1.2 SPADE

The SPADE algorithm [36] assumes that the input database is in the form of vertical

id-lists. The vertical id-lists for the sample database of Figure 2.1 are shown in Ta-

ble 2.2. The search space exploration in SPADE is either breadth-first or depth-first,

and the support computation is done using temporal id-list joins. We first give a

few definitions.

21

Chapter 2. Sequential Pattern Mining

Definition 2.8 (S-extension). Given a sequence s = 〈s1, . . . , sq〉 and an item {x},

a sequence t is called an S-extension of s if {x} is added to s as a new element, that

is t = 〈s.{x}〉.

For example, given a sequence s = 〈(a)(b, c)〉 and an item {d}, an s-extension of s

is 〈(a)(b, c)(d)〉.

Definition 2.9 (I-extension). Given a sequence s = 〈s1, . . . , sq〉 and an item {x},

a sequence t is called an I-extension of s if {x} is added as an item to the last element

sq in s, that is t = 〈s1, . . . , sq ∪ {x}〉. Note that {x} can only be added to sq if it is

lexicographically greater than all the items in sq.

For example, given a sequence s = 〈(a)(b, c)〉 and an item {d}, an I-extension of

s is 〈(a)(b, c, d)〉. However, s can not be I-extended with item {a}, as {a} is not

lexicographically greater than all the items in the last element of s. Next, we define

the notion of prefix.

Definition 2.10 (Prefix). Given two sequences s = 〈s1, . . . , sq〉 and t = 〈t1, . . . , tr〉,

s is called a prefix of t, if for k = 1, . . . , q − 1, sk = tk, and for k = q, sk ⊆ tk, and

all the items in (tk − sk) are lexicographically after those in sk.

Note that if t is an S- or I-extension of s, then s is a prefix of t. For example, for a se-

quence s = 〈(a)(a, b, d)(b, c)〉, sequences such as 〈(a)〉, 〈(a)(a, b)〉 and 〈(a)(a, b, d)(b)〉

are all prefixes of s, whereas 〈(a)(b, d)〉 and 〈(a, b, d)〉 are not. For a sequence s, a

prefix of length k is called a k-prefix of s.

We now give an overview of (the breadth-first variant of) SPADE. First, L1 is com-

puted. Then, for j = 2 onwards, Lj−1 is both S- and I-extended with L1 to generate

Cj. Next, apriori pruning is applied to Cj and then support computation is per-

formed using temporal id-list joins (which we explain later) and thus, Lj is obtained.

22

Chapter 2. Sequential Pattern Mining

Table 2.2: Vertical id-list for the items in the database of Figure 2.1.

Vertical id-lists

(a) (b) (c) (d)

σ eid σ eid σ eid σ eid

1 1 1 1 1 3 1 1

2 4 1 3 1 6 1 3

3 5 1 6 2 4 1 6

2 2 3 7 3 7

2 4

3 5

3 7

Table 2.3: Temporal id-list join using Vertical id-list in Table 2.2.

Temporal id-list joins

(a)(b) (b)(a) (a, b) (a, b)(c)

σ eid σ eid σ eid σ eid

1 3 2 4 1 1 1 3

3 7 2 4 3 7

3 5

The algorithm stops when no more frequent sequences can be discovered or no more

candidate sequences can be generated, and outputs all frequent sequences.

As already mentioned, the support computation in SPADE is using temporal id-

list joins. We briefly explain the working of a temporal id-list join for the S- and

I-extension cases. For the S-extension case, suppose that s is S-extended with an

item {x}, then a source σ supports the S-extension of s, if an eid in the id-list of

{x} can be found which is greater than the smallest eid in the id-list of s for source

23

Chapter 2. Sequential Pattern Mining

σ. For example, when computing the support of a sequence 〈(a)(b)〉, we pick the

smallest eid for source σ1, namely eid = 1, and find the smallest eid in the id-list

of (b) for source σ1 which is greater than 1, namely eid = 3. If such an eid can be

found, it means that source supports the sequnece. In case of I-extensions, suppose

that s is I-extended with an item {x}, then the source σ and the eid both have to

match in the id-list of s and {x}, which means that both the sequence s and the

I-extension are present in the same event in that source. For example, for σ1 and a

sequence 〈(a, b)〉, both the items (a) and (b) are present in the event corresponding

to eid = 1, and thus σ1 supports the sequence 〈(a, b)〉. We show temporal joins for

some sample sequences for the vertical id-lists of Table 2.2 in Table 2.3. For more

details, see [36].

SPADE uses a lattice theoretic approach for search space exploration and thus de-

composes the search space into sub-lattices which can be processed independently in

memory. Further, SPADE only needs three database scans to find the complete set

of sequential patterns. If some preprocessed information is available, the complete

set of sequential patterns can be found in a single scan of the database. SPADE is

shown to be scalable under different parameter settings.

2.3.1.3 SPAM

SPAM [34] is another important classical SPM algorithm that explores the search

space in a depth-first manner. SPAM constructs a lexicographic sequence tree where

every node contains a sequence s, and the children of each node are the S- or I-

extensions of s. If at any point, an S- or I-extension of a sequence s is not frequent,

the item is not considered for extending any of the extensions of s due to the apriori

property. The support computation in SPAM uses a bitmap data structure (similar

to vertical id-lists in SPADE) where every element in a sequence is presented as a

24

Chapter 2. Sequential Pattern Mining

bit, and the bits in a bitmap are set in a way that the support computation is simply

a bitwise AND operation on the bitmaps.

SPAM is similar to SPADE as it is also a depth-first algorithm and uses a bitmap

data structure similar to the vertical id-lists in SPADE. The idea of bitwise AND

joins in SPAM is also similar to that of temporal id-list joins in SPADE. However,

in SPAM it is assumed that the bitmap data structure can fit into main memory. In

the experimental studies, SPAM is shown to be upto 2.5 times faster than SPADE

but is also shown to require upto 5 to 20 times more memory than SPADE. Thus,

the choice between the two algorithms is rather a space-time trade-off [15].

This completes the overview of the popular candidate generation algorithms. We

now focus on pattern growth algorithms.

2.3.2 Pattern Growth

Han et al. [39] first proposed the idea of pattern growth and introduced the FreeSpan

algorithm. The idea was to avoid the expensive step of candidate generation by con-

structing projected databases and then mine those projected databases for finding

frequent sequential patterns. However, the original approach to constructing pro-

jected databases also proved to be CPU and memory intensive. In a subsequent

study, Pei et al. [40] improved the database projection step and introduced the Pre-

fixSpan algorithm. We first give a few definitions and then give an overview of

PrefixSpan.

Definition 2.11 (Weak-prefix). Given two sequences s = 〈s1, . . . , sq〉 and t =

〈t1, . . . , tr〉, s is called a weak-prefix of t, if there exist indices 1 ≤ j1 < j2 < . . . <

jq ≤ r such that (1) si ⊆ tji , for all 1 ≤ i ≤ (q − 1), and for all k, ji < k < ji+1,

si+1 6⊆ tk, and (2) sq ⊆ tjq , and all the items in tjq − sq are lexicographically after

those in sq.

25

Chapter 2. Sequential Pattern Mining

The definition of weak-prefix is similar to that of prefix (recall Definition 2.10) as

both match a sequence s in a sequence t, however, weak-prefix allows gaps whilst

matching s in t whereas prefix doesn’t.

Definition 2.12 (Weak-suffix). Given two sequences s = 〈s1, . . . , sq〉 and t =

〈t1, . . . , tr〉, where s is a weak-prefix of t, a sequence u = 〈uq, . . . , ur)〉 is the weak-

suffix of s, where uk = (tk − sk) for k = q, and uk = tk, for k = (q + 1), . . . , r.

Definition 2.13 (Projected Database). Given a databaseD in the form of source

sequences and a sequence s, an s-projected database Ds is the collection of weak-

suffixes in the source sequences in D with respect to the weak-prefix s.

For example, for a sequence s = 〈(a)(a, b, d)(b, c)(d, e)〉, sequences such as 〈(a)〉 and

〈(a)(b, d)〉 are weak-prefixes of s, whereas 〈(a)(c, d)〉 and 〈(a)(c)(b)〉 are not. For

the weak-prefixes 〈(a)〉 and 〈(a)(b)〉, the weak-suffixes in s are 〈(a, b, d)(b, c)(d, e)〉

and 〈(−, d)(b, c)(d, e)〉 respectively, where ‘−’ means that one or more items in

the event are part of the weak-prefix. In what follows, we sometimes use the

terms prefix and suffix for weak-prefix and weak-suffix when it is clear from the

context. An 〈(a)〉-projected database for the sample database of Figure 2.1 is

{〈(−, b, d)(b, c, d)(b, c, d)〉, 〈(−, b, c)〉, 〈(−, b)(b, c, d)〉}.

PrefixSpan first discovers the set of frequent 1-sequences L1. Next, the idea is to

partition the complete set of sequential patterns into as many subsets as the number

of frequent 1-sequences. For example, if L1 = {(a), (b), (c)} for the sample database

of Figure 2.1, then each of the frequent sequential patterns must begin with an

item in L1. Thus, considering each 1-sequence s as a prefix, the corresponding

projected databases are built and mined recursively to mine the complete set of

sequential patterns. For example, if {b} is a frequent item in the 〈(a)〉-projected

database of Figure 2.1, then an 〈(a)(b)〉-projected database can be constructed as

26

Chapter 2. Sequential Pattern Mining

{〈(−, c, d)(b, c, d)〉, 〈〉, 〈(−, c, d)〉} and can be mined recursively to discover frequent

sequences having a prefix 〈(a)(b)〉. This recursive mining process stops when no

more projected databases can be constructed or no more sequential patterns can be

found. See Pei et al. [40] for more details.

PrefixSpan is different from candidate generation algorithms as no candidate se-

quences are generated and frequent prefixes are grown in a systematic way to find

the set of frequent sequences. Although the projected databases keep shrinking,

the major cost in PrefixSpan is the construction of projected databases for which

authors propose optimizations like pseudo-projection and bi-level projection which

work only if the projected databases can fit into main memory. In experimental

study of [40], PrefixSpan is shown to outperform GSP and FreeSpan. However, the

relative performance of PrefixSpan compared to SPADE and SPAM depends on the

settings of various parameters.

This concludes our discussion of some of the important classical SPM algorithms. We

have discussed the main ideas in each algorithm and how these algorithms compare

with each other under different parameter settings. Whilst some of the ideas pro-

posed in individual algorithms are similar to each other, the algorithms can broadly

be classified based on the candidate generation or the pattern growth framework.

In the next section, we compare and contrast the main features of SPM algorithms

based on these two classes (i.e. candidate generation and pattern growth).

2.4 Comparison of SPM Algorithms

We first focus on candidate generation algorithms.

27

Chapter 2. Sequential Pattern Mining

2.4.1 Candidate Generation

As we discuss the important features of candidate generation algorithms, we focus on

the candidate generation algorithms discussed in the previous section, i.e. GSP [38],

SPADE [36] and SPAM [34].

(a) Candidate generation algorithms traverse the search space in a breadth-first

or in a depth-first manner. The breadth-first algorithms, namely GSP and the

breadth-first variant of SPADE, can make full use of the apriori pruning. The

depth-first algorithms, namely SPAM and depth-first variant of SPADE, can

only make partial use of apriori pruning. This happens as when processing

a candidate j-sequence, all of its (j − 1)-subsequences might not have been

processed and thus, the information needed for apriori pruning may not be

available.

(b) Candidate generation algorithms explicitly generate candidate sequences for

search space exploration. Thus, GSP joins Lj−1 with itself to obtain Cj,

whereas SPADE and SPAM join Lj−1 with L1 to get Cj.

(c) The support computation details are also different. Typically, an algorithm

also has an associated data structure for the support computation task. For ex-

ample, GSP builds a hashtree using the candidate sequences and then for each

source sequence explores the hashtree systematically to compute the support

of candidate sequences. SPADE transforms the input database to a vertical

id-lists format, and uses temporal id-list joins for the purpose of support com-

putation. SPAM has a bitmap representation for each source sequence, and

uses bitwise AND operations for the purpose of support computation.

(d) In practice, most candidate generation algorithms scan the input database

multiple times for the purpose of support computation. The algorithms which

28

Chapter 2. Sequential Pattern Mining

require fewer scans store the input database in main memory at some point dur-

ing the execution of the algorithm. For example, to find frequent k-sequences,

GSP is required to scan the input database k times. In contrast, SPADE

only needs three database scans, i.e. one each for finding frequent 1- and

2-sequences and one scan for finding frequent 3-sequences onward; and uses

vertical id-lists as in memory data structure for the purpose. SPAM does not

scan the database multiple times as it assumes that the database can fit into

main memory.

2.4.2 Pattern Growth

Pattern growth algorithms are based on the idea of database projection. We give

some common characteristics of the pattern growth algorithms and focus on Pre-

fixSpan in particular.

(a) In general, pattern growth algorithms explore the search space in a depth-first

manner, and work on the idea of search space partitioning, e.g. PrefixSpan

does this by creating projected databases. SPADE (a candidate generation

algorithm) also does this by using the notion of equivalence classes.

(b) These algorithms do not explicitly generate candidate sequences, and rather

use frequent sequences starting from frequent 1-sequences as prefixes to gener-

ate projected databases, and mine those projected databases to find possible

frequent extensions of a frequent sequence recursively.

(c) Pattern growth algorithms work under the assumption that the database can

fit into main memory and thus do not need to scan the database multiple times.

Further, the algorithms usually do not physically create projected databases,

29

Chapter 2. Sequential Pattern Mining

instead they use pointers to move into projected databases, e.g. using ideas

like pseudo-projection or bi-level projection in PrefixSpan.

We have summarized the distinctive features for SPM algorithms based on the can-

didate generation and the pattern growth frameworks. In summary, whilst some

of the properties of individual algorithms in each class overlap with others, SPM

algorithms are distinguished on the basis of search space exploration and support

computation details.

2.5 Alternative SPM Formulations

Classical SPM algorithms discover the complete set of frequent sequential patterns.

There are two main issues with this approach. Firstly, the reported sequential pat-

terns may be huge in number and only a few of them might be of interest. Secondly,

finding the complete set of sequential patterns is CPU and memory intensive. Many

alternative SPM formulations have been proposed in the literature that address the

above mentioned issues. Gupta and Han [14] give a detailed account of the alterna-

tive SPM formulations that have been proposed in literature. We briefly review a

few important formulations here.

2.5.1 Constrained SPM

Constrained SPM algorithms are SPM algorithms that find the set of sequences

that meet some user-defined constraint. In classical SPM, the only user-defined con-

straint is the minimum support threshold. However, many other constraints have

been proposed in the literature, for example: Srikant and Agrawal [38] define time

constraints, a sliding time window and a user-defined taxonomy; Yun [41] proposes

30

Chapter 2. Sequential Pattern Mining

weight constraint in order to reduce uninteresting sequential patterns; and Garo-

falakis et al. [42] propose regular expression constraints. Gupta and Han [14] observe

that constraints could be monotonic, i.e. if a sequence satisfies a constraint so do

any of its supersequences; or anti-monotonic, i.e. if a sequence does not satisfy a

constraint neither do any of its supersequences; or of other types. Pei et al. [43]

discuss several classes of constraints, for example:

• item constraint: that is, a subset of items that should or should not be present

in a pattern.

• super-pattern constraint: that is, a pattern must contain at least one of a

particular set of patterns as sub-pattern.

• time constraint: that is, the time-stamp difference between the first and the

last element in a sequential pattern should be more or less than a user-specified

time span.

See Pei et al. [43] for a detailed discussion on constrained SPM.

2.5.2 Closed SPM

We now discuss an important class of sequential patterns, namely closed sequential

patterns. Recall from Definition 2.5 that a sequential pattern s is closed if there is

no supersequence of s that has the same support as s. Yan et al. [35] argue that

mining closed sequential patterns eliminates the redundant sequential patterns from

the set of frequent sequential patterns, and they still have the same expressive power

as the frequent sequential patterns. Consider for example a sample database having

one source sequence of the form 〈(s1) . . . (s100)〉 and assume a minimum support

threshold θ = 1. Then, the complete set of sequential patterns will contain 2100

31

Chapter 2. Sequential Pattern Mining

frequent sequences of which all will be redundant except the one which is closed.

Thus, closed sequential patterns are much more compact than the frequent sequential

pattern and arguably, still have the same expressive power.

Classical SPM formulations usually assume that the data is recorded deterministi-

cally. We now discuss a class of SPM formulations that assumes noise or uncertainty

in data.

2.5.3 SPM from Noisy or Uncertain Data

Yang et al. [44] consider biological sequence data and argue that due to the presence

of noise in the data, an observed item may not be the actual item. For example,

mutations in an amino acid have a non-zero probability of occurrence with little or

no impact on the biological function of the protein. If an amino acid N can mutate

to D with little or no impact on the biological function of the protein, if an observed

value is D in a protein sequence, the true value may be either of N or D. Yang et

al. propose a compatibility matrix that captures the likelihood of an observed value

of being the true value. For example, an observed value D may mean that it may

be either of N or D with probabilities 0.9 and 0.1 respectively. Then, Yang et al.

propose a match matrix to compute the probability that a pattern is supported by a

sequence. Yang et al. give algorithms to compute the match of a sequential pattern

and show the effectiveness of the match model with the help of experiments.

Sun et al. [45] consider a scenario in telecommunication network fault analysis where

the time-stamps for a specific type of events (alarms) are uncertain. This is due to

the reason that whilst the time-stamps for the rest of the events are recorded as

soon as they occur, the readings for some kind of events are recorded only after a

time interval of upto ∆. Suppose that at time t, alarm u is recorded after a time

interval ∆. We know that u occurred some time in the interval [t−∆, t] and thus,

32

Chapter 2. Sequential Pattern Mining

the time-stamp for u is uncertain. Suppose that the time-stamp for another event

v is recorded with certainty and is t − ∆/2. Then, the order between u and v is

uncertain. Sun et al. propose the notion of precise support, which is different from

the classical support of a sequential pattern and give an algorithm similar to the

apriori algorithm to find frequent sequential patterns from data with uncertain event

ordering.

In a very recent work, Zhao et al. [46] propose mining probabilistically frequent

sequential patterns from uncertain data. Note that this work is subsequent to the

publication of our papers [47–50]. Zhao et al. consider two kinds of uncertainty mod-

els. Firstly, the sequence-level uncertainty model where an instance of a sequence

exists with some probability. Secondly, the element-level uncertainty model where

uncertainty is present in the events of a sequence. Zhao et al. give motivations to

justify the two uncertainty models and define a probabilistic frequent sequential pat-

tern for both the uncertainty models. Next, they extend PrefixSpan to work with the

proposed uncertainty models and propose sequence-level U-PrefixSpan and element-

level U-PrefixSpan. Zhao et al. demonstrate the scalability of the algorithms the

propose, with the help of an experimental study. Finally, Zhao et al. demonstrate

the usefulness of the element-level uncertainty model for RFID trajectory mining

using real-life data.

2.6 SPM Applications

The SPM problem has been studied in a variety of application domains [18, 36, 51].

For example, sequential patterns have been used in recommendation systems for

suggesting a product to a potential customer, for predicting future trends in stock

market analysis, for fault analysis in detecting sequences of events that lead to a

failure, etc. We briefly review some of the applications of SPM here.

33

Chapter 2. Sequential Pattern Mining

Sequential pattern mining has been studied for many applications in bio-informatics,

e.g. for protein function prediction and protein fold recognition, for analysing gene

expression data and for motif discovery in DNA sequences. Biological sequences are

different from market basket data as in biological sequences: (1) the alphabet size

is small (2) sequences are long and (3) they have gaps, i.e. don’t care, of arbitrary

length. Wang et al. [52] argue that mining biological sequences results in an explosion

in the number of sequential patterns and that the classical SPM algorithms are not

designed to handle this kind of explosion. Wang et al. propose a two-phase algorithm

to address the explosion problem. Typically, biological sequences are of the form

〈s1 ∗ . . . ∗ sq〉 where si is a small region of consecutive items (segment) and ∗

represents a gap of arbitrary length. The algorithm works in two phases: the first is

the segment phase which finds all frequent segments, followed by the pattern phase

where segments are grown using frequent segments (not items) discovered in the

segment phase. The use of segment growth over item growth results in an overall

speed up for the algorithm. Wang et al. propose pruning techniques similar to the

apriori pruning to gain speed up, and demonstrate the superiority of their approach

to PrefixSpan with the help of experiments.

Wang et al. [53] propose protein function prediction using SPM. Wang et al. adopt

a two phase approach for protein function prediction. In the first phase, they mine

a known protein sequence dataset and find frequent segments, similar to [52]. In

the second phase, they build a classifier to predict the function of protein sequences.

Thus, whilst Wang et al. use segment growth similar to [52] when generating frequent

sequences, one important distinction is that they consider mining closed sequential

patterns only in order to improve the accuracy of the classifier. Wang et al. demon-

strate the effectiveness of the protein function prediction algorithm with the help of

experiments.

In another work, Exarchos et al. [18] employ SPM for protein fold recognition. The

34

Chapter 2. Sequential Pattern Mining

idea is to assign a protein sequence whose structure is unknown, to one of the folds

(recall that a fold is 3D structure of a protein) in order to determine the protein

function. Exarchos et al. use the extracted sequential patterns from all folds for the

purpose and check if each of the frequent patterns is contained in the protein. A

score is maintained against each fold, which means that the protein belongs to this

particular fold. The protein is assigned to the fold that has the highest score for

that protein.

Web usage mining is another important application of SPM. Mobasher et al. [16]

suggest that web usage data can be used for web personalization. For example,

common navigation paths might suggest the next web page that will be accessed by

the user and predictive tasks such as web pre-fetching can be performed in order

to improve the navigation experience of users. Mobasher et al. propose a recom-

mendation algorithm that works by finding frequent sequential patterns in the user

navigation data. Typically, the algorithm computes the frequent patterns and the

confidence in the patterns. Then, for frequent sequential patterns of length k, if a

user has followed the (k − 1)-prefix of a sequential pattern, the next web page that

will be accessed by the user can be predicted with some confidence.

Zaki [36] uses sequential patterns to predict plan failures. TRIP is a system that

is used to develop evacuation plans from a small island. During plan development,

TRIP simulates plan success or failure in real life situations like unfavourable weather

conditions or in case of vehicle breakdown. When a plan fails, the sequence of

steps that led to plan failure can be analysed in order to improve the plan. Zaki

uses SPADE to mine such plans. Zaki observes that many repetitive patterns are

reported in plan mining, and proposes pruning techniques to find only interesting

patterns.

Ishio et al. [54] proposed mining sequential patterns to detect cross-cutting concerns

35

Chapter 2. Sequential Pattern Mining

in Java programs. A concern is a particular behaviour needed for a computer pro-

gram such as database interaction; and a cross-cutting concern is a concern that

effects other concerns, for example two pieces of code in the same module of an

application interacting with the database. A coding pattern can be seen as a con-

cern, i.e. a sequence of method calls and control statements to implement a specific

behaviour. Ishio et al. define a set of rules to convert a Java program to a sequence

database and use PrefixSpan to extract frequent concerns. They claim that they are

able to detect cross-cutting concerns successfully unless the order of method calls

has been modified. One of the limitations of this work pointed out by Ishio et al.

is that if there is a long segment of copy-and-paste code, the algorithm will not be

able to detect it as it may not be frequent. One possible solution to this problem

could be to assign weights in accordance with the pattern length [41].

Sequential patterns have also been used for text (document) categorization. Jaillet

et al. [17] define the text categorization task as follows. A boolean value ‘true’ is as-

signed to a (document, category) pair if the document belongs to that category, and

‘false’ otherwise. The transformation from a text document to a sequence database

is as follows. Each document corresponds to a source, and each sentence in a docu-

ment is considered as an event, and the time-stamps are assigned to sentences in the

order as they appear in the document. Jaillet et al. propose a two-phase approach

to the problem. First, they find frequent sequential patterns in the document and

extract the sequential patterns along with the associated confidence values. Then,

they classify the documents using the discovered sequential patterns. A document

is categorized based on the k frequent sequential patterns having highest confidence

for the document, and then the best match for the k sequential patterns in document

categories is the category of the document.

This concludes our discussion of SPM applications. We have briefly reviewed some

of the applications of SPM and it can be seen that SPM can be applied to a variety

36

Chapter 2. Sequential Pattern Mining

of application domains. For a more comprehensive overview of SPM applications,

see Gupta and Han [13].

2.7 Summary

We have given an overview of association rule mining, and have focussed on sequen-

tial pattern mining in particular. We have formally defined the SPM problem and

have discussed the computational complexity of computing all frequent sequences.

We have categorized SPM algorithms into two classes, based on the candidate gen-

eration and the pattern growth frameworks. We have considered three algorithms

based on the candidate generation framework, namely GSP, SPADE and SPAM,

and one algorithm based on the pattern growth framework, namely PrefixSpan. We

have given an overview of each of these algorithms and have contrasted their main

characteristics. We have considered some alternative SPM formulations as well,

and have reviewed work on SPM using noisy or uncertain data. Finally, we have

discussed some applications of SPM.

37

Chapter 3

Probabilistic Databases

Probabilistic databases were first proposed by Cavallo and Pittarelli [55], and have

been revitalized recently by Dalvi and Suciu [56]. Suciu and Dalvi [24] highlight two

important factors in the recent interest in probabilistic databases. First, a wide range

of newly emerging applications need to handle imprecisions in data, e.g. managing

sensor and RFID data, information extraction, deduplication, and privacy preserva-

tion. Second, some recent advancements in handling probabilistic data along with

some old results could help in devising practical probabilistic database management

systems.

According to Boulos et al. [57], a probabilistic database is a finite set of possible

worlds where every possible world has some probability of occurrence. Each possible

world is a deterministic database but only one world from the set of possible worlds

is the ‘true’ world and it is not known which one. The probability of a possible

world is the degree of belief in a possible world being the true world. There have

been many studies on probabilistic database systems [22]. Dalvi et al. [1] specify

probabilistic inference, namely to compute the posterior probability distribution of

a query variable given some evidence, as one of the key challenges for a probabilistic

38

Chapter 3. Probabilistic Databases

database system. Recently, researchers have focused on special cases of probabilistic

inference that occur during query evaluation, e.g. lineage based systems [21] and

top-k query evaluation [3].

In this chapter, we first give motivations for probabilistic databases with the help of

two case studies. Then, we review representative probabilistic data models that have

widely been used in the literature. We briefly discuss query evaluation for a proba-

bilistic database system, and also give a brief overview of representative probabilistic

database systems that have been proposed in the literature. Modelling uncertain

data as probabilistic databases has led to several ranking and data mining problems

being studied in the context of uncertain data. We focus on two such problems;

first, we briefly review the top-k problem (a ranking problem) and then give a de-

tailed account of the frequent itemset mining problem (a data mining problem) in

the context of uncertain data.

3.1 Motivations for Probabilistic Databases

Typically, a probabilistic database system has to specify the following key details:

(a) probabilistic data model (b) query evaluation using the chosen data model and

(c) presentation of query results to the user. In the remainder of this section, we will

refer to these “key details” as points (a), (b) and (c). We illustrate these concepts

with the help of two case studies: (1) information extraction and (2) deduplication.

3.1.1 Information Extraction

The DbLife system [1] at Yahoo! extracts and manages structured information from

the web about researchers in the database community. The information that the

DbLife system [1] extracts from the web includes a researchers’ name, affiliation,

39

Chapter 3. Probabilistic Databases

Researcher

rid name affiliation Pr

r1 Fred U. Washington 0.3

r2 U. Wisconsin 0.2

r3 Y! Research 0.5

r4 Sue U. Washington 1.0

r5 John U. Wisconsin 0.7

r6 U. Washington 0.3

r7 Frank Y! Research 0.9

r8 M. Research 0.1

Service

sid name conference role Pr

s1 Fred VLDB Session Chair 0.2

s2 Fred VLDB PC Member 0.8

s3 John SIGMOD PC Member 0.7

s4 John VLDB PC Member 0.7

s5 Sue SIGMOD Chair 0.5

Figure 3.1: An example of a probabilistic database (reproduced from Dalvi et al.
[1]).

publications and role (professional activities). In Figure 3.1, we show researcher’s

affiliations in the Researcher table and their roles in the Service table. Observe

that a researcher’s affiliation in Researcher is not unique (certain) although most

will have only a single association. The uncertainty in the affiliation attribute is

due to data being collected from multiple sources, of which some might be outdated

or erroneous (this is the source of uncertainty). If information extractor relies only

on the most recent data, there is a risk of missing valuable information. Thus, the

information extractor introduces uncertainty in data by computing the confidence

values (interpreted as probabilities) using an entity matching algorithm [1], which

40

Chapter 3. Probabilistic Databases

Researcher

rid name affiliation Pr

r1 Fred U. Washington 0.3

r2 Fred U. Wisconsin 0.2

r3 Fred Y! Research 0.5

r4 Sue U. Washington 1.0

r5 John U. Wisconsin 0.7

r6 John U. Washington 0.3

r7 Frank Y! Research 0.9

r8 Frank M. Research 0.1

Rule

γ ExclusionRule

γ1 {r1, r2, r3}

γ2 {r4}

γ3 {r5, r6}

γ4 {r7, r8}

Figure 3.2: Attribute-level uncertain Researcher table from Figure 3.1 trans-
formed to x-tuples.

gives answers to questions such as “is Fred on webpage A is the same as Fred on

webpage B?”

We now focus on uncertain data modelling. One may view the affiliation attribute in

the Researcher table as being the uncertain attribute (as we will see in Section 3.2.1,

this can be modelled using attribute-level uncertainty). We now introduce some

dependencies in the data as we define two constraints: (1) a name may have multiple

values for the affiliation attribute, of which only one can be true, thus values in

affiliation attribute are mutually exclusive; and (2) the values for the affiliation

attribute for different name values are independent of each other.

We discuss the notion of dependence in uncertain data modelling in Section 3.2.3

using the x-relations model. An alternative representation of the Researcher table

using the x-relations model (Section 3.2.3) is presented in Figure 3.2. In Figure 3.2,

each tuple in the Researcher table is a separate uncertain tuple, and constraints

are defined in the Rule table using exclusion rules where the tuples in a rule are

mutually exclusive and the tuples in different rules appear independent of each

41

Chapter 3. Probabilistic Databases

other. The records in the Service table (Figure 3.1) are also extracted from the

web using the conference webpages and are not precise either. Thus, the records in

the Service table have existential probabilities (as we will see in Section 3.2.2, this

kind of uncertainty can be modelled using tuple-level uncertainty). We also assume

that the records in the Service table are independent of each other. This completes

our discussion on a probabilistic data model (which is point (a)) for an information

extraction system.

Once the probabilistic data model is determined, probabilistic database system can

evaluate queries (point (b)) like “find all affiliations with more than 12 SIGMOD

and VLDB PC Members” [1] and finally, the results can be presented to the user in

a meaningful way (point (c)), e.g. using top-k or some other scheme.

3.1.2 Deduplication

Another important application that handles imprecise data is that of deduplication,

i.e. identifying multiple records in a database that may represent the same real-world

entity. Hassanzadeh and Miller [2] argue that not only is it expensive to perform

data cleaning (i.e. to accurately merge duplicates in data) manually, but also that

complete deduplication may result in valuable information loss. The solution to this

problem is to keep all the data and to introduce a notion of uncertainty for tuples

that are potential duplicates. Next, the potential duplicates are grouped together in

clusters and uncertainties (probabilities) are assigned to various alternatives based

on some similarity measure.

A sample “dirty” database is shown in Figure 3.3. The tuples with the same cid value

in the Company table in Figure 3.3 are potential duplicates, and have been assigned

probabilities accordingly. As the tuples in a cluster are potential duplicates, they

are assumed to be mutually exclusive. In addition, the tuples in different clusters

42

Chapter 3. Probabilistic Databases

Company

tid name emp# hq cid Pr

t1 Altera Corporation NY 6K c1 0.267

t2 Altersa Corporation New York 5K c1 0.247

t3 lAtera Croporation New York 5K c1 0.224

t4 Altera Corporation NY, NY 6K c1 0.262

t5 ALTEL Corporatio Albany, NY 2K c2 0.214

t6 ALLTEL Corporation Albany 3K c2 0.208

t7 ALLTLE Corporation Albany 3K c2 0.192

t8 Alterel Coporation NY 5K c2 0.184

t9 Alterel Corporation Albany, NY 2K c2 0.202

Product

pid product tidFK cidFK cid Pr

p1 MaxLink 300 t1 c1 c3 0.350

p2 MaxLink 300 t8 c2 c3 0.350

p3 MaxLnk 300 t4 c1 c3 0.300

p4 Smart Connect t6 c2 c4 1.0

Price

rid product price cid Pr

r1 MaxLink 300 285 c5 0.8

r2 MaxLink 300 100 c5 0.2

Figure 3.3: An sample dirty database with Company, Product and Price rela-
tions (reproduced from Hassanzadeh and Miller [2]).

43

Chapter 3. Probabilistic Databases

are assumed to be independent of each other; the intuition for this is that the errors

in different real world entities are introduced independently of each other. This

corresponds to the block independent-disjoint model by Dalvi et al. [1], which says

that the tuples in a block (cluster) are disjoint and the tuples in different blocks

are independent (point (a)); the block independent-disjoint model is similar to the

x-relations model and we briefly discuss this in Section 3.2.3.

Once the probabilistic data model is defined, different queries can be run on the

probabilistic data (point (b)) and the query results be presented to the user in a

meaningful way (point (c)), as we have already discussed in Section 3.1.1.

Thus, we have motivated the case for probabilistic databases with the help of two

case studies. We have seen that uncertainties in data are introduced due to vari-

ous reasons and that some independence assumptions are made in order to model

uncertain data.

We now discuss probabilistic data models.

3.2 Probabilistic Data Models

Sarkar and Dey [58] suggest that the kind of uncertainty that arises due to ambiguity—

when choices among several precise alternatives cannot be perfectly resolved—is

better modelled using probabilities, and discuss families of uncertainty models that

have been proposed in literature. A probabilistic data model describes a probability

distribution over the set of possible worlds. A model which is complete enumerates

the full set of possible worlds and is able to capture any kind of correlations in data;

but there can be an exponential number of possible worlds. In practice, some sim-

plifying assumptions are made, e.g. assuming independence among tuples. Thus,

the simplest model is the tuple-level uncertainty model [56].

44

Chapter 3. Probabilistic Databases

Table 3.1: A sample attribute-level uncertain database (reproduced from Cor-
mode et al. [3]).

rid W

r1 (a : 0.4)(b : 0.6)

r2 (c : 0.6)(d : 0.4)

r3 (e : 1.0)

We now review some uncertainty models in literature.

3.2.1 Attribute-level Uncertainty Model

A probabilistic database Dp is a set of records (r1, . . . , rn), where each record has one

attribute whose value is uncertain along with other attributes that are certain. The

uncertain attribute in each record is described by a probability distribution W over

a set of values. The distributions W are assumed to be independent of each other. A

possible world D∗ of Dp is generated by taking each record in turn and by selecting

one value from the distribution of values for the uncertain attribute. The probability

of a possible world D∗ is computed as Pr[D∗] =
∏n

i=1 PrWi
[xi], where xi denotes

the value for the uncertain attribute in ri. The complete set of possible worlds is

obtained by enumerating all such possible combinations. A sample attribute-level

uncertain database is shown in Table 3.1, and the set of possible worlds for the

database of Table 3.1 is in Table 3.2.

3.2.2 Tuple-level Uncertainty Model

A probabilistic database Dp is a set of records (r1, . . . , rn), where each record has

an existential probability. For every record ri, there can be two kinds of possible

45

Chapter 3. Probabilistic Databases

Table 3.2: The set of possible worlds for the database of Table 3.1 along with
their probabilities.

D∗ r1 r2 r3 Pr(D∗)

D∗
1 (a) (c) (e) 0.4 × 0.6× 1 = 0.24

D∗
2 (a) (d) (e) 0.4 × 0.4× 1 = 0.16

D∗
3 (b) (c) (e) 0.6 × 0.6× 1 = 0.36

D∗
4 (b) (d) (e) 0.6 × 0.4× 1 = 0.24

(Reproduced from Cormode et al. [3])

Table 3.3: A sample tuple-level uncertain database.

rid r Pr

r1 a 0.6

r2 b 0.3

worlds: one where ri appears and the other where it does not. A possible world

D∗ of Dp is generated by considering every record in turn, and choosing whether

the record does or does not appear in the possible world. It is assumed that the

existence of the records in D∗ is independent of each other. The probability of a

possible world D∗ is computed as follows:

Pr[D∗] =
∏

ri∈D∗

Pr(ri)
∏

rj 6∈D∗

(1− Pr(rj)),

where Pr(ri) is the probability that the record ri appears in the possible world.

The complete set of possible worlds is obtained by enumerating all such possible

combinations. A sample tuple-level uncertain database is shown in Table 3.3, and

the set of possible worlds for the database of Table 3.3 is in Table 3.4.

46

Chapter 3. Probabilistic Databases

Table 3.4: The set of possible worlds for the database of Table 3.3 along with
their probabilities.

D∗ Pr(D∗)

D∗
1 = 〈〉 (1− Pr(r1))× (1− Pr(r2)) = 0.28

D∗
2 = {a} Pr(r1)× (1− Pr(r2)) = 0.42

D∗
3 = {b} (1− Pr(r1))× Pr(r2) = 0.12

D∗
4 = {ab} Pr(r1)× Pr(r2) = 0.18

3.2.3 x-relations Model

The attribute-level or the tuple-level uncertainty models are considered basic models

due to the assumption of independence. Recall that it is assumed in the attribute-

level uncertainty model that the distributions for the uncertain attribute are stochas-

tically independent of each other, and that the existence of tuples is independent of

each other in the tuple-level uncertainty model. Thus, both the attribute-level and

the tuple-level uncertainty models can not capture correlations in data which might

be needed for some applications.

Cormode et al. [3] consider the x-relations model which is the tuple-level uncertainty

model with dependencies in the form of exclusion rules. The idea is to capture some

basic dependencies in data, although some simplifying assumptions have to be made,

as arbitrary exclusion rules have been shown to have exponential computational

complexity [3]. We now define the x-relations model. A probabilistic database

Dp is a set of records (r1, . . . , rn) where each record has an existential probability

(tuple-level uncertainty), and the dependencies are defined in the form of a set of

rules (γ1, . . . , γm) where each rule contains a set of records. It is assumed that

the records in a rule are mutually exclusive but the records in different rules appear

independently of each other. A rule γ may contain only one record, so we can assume

that all the records appear in exactly one of the rules. The sum of the probabilities

of all the records present in a rule must not exceed 1.

47

Chapter 3. Probabilistic Databases

rid r Pr

r1 a 0.4

r2 b 0.5

r3 c 1.0

r4 d 0.5

γ Rule

γ1 {r1}

γ2 {r2, r4}

γ3 {r3}

Figure 3.4: An example of x-relations model (reproduced from Cormode et al.
[3]).

Table 3.5: The set of possible worlds for the database of Figure 3.4 along with
their probabilities.

D∗ Pr(D∗)

D∗
1 = {r1, r2, r3} Pr(r1)× Pr(r2)× Pr(r3) = 0.2

D∗
2 = {r1, r3, r4} Pr(r1)× Pr(r3)× Pr(r4) = 0.2

D∗
3 = {r2, r3} (1− Pr(r1))× Pr(r2)× Pr(r3) = 0.3

D∗
4 = {r3, r4} (1− Pr(r1))× Pr(r3)× Pr(r4) = 0.3

(Reproduced from Cormode et al. [3])

An alternate name for the x-relations model is the block independent-disjoint model

which assumes that the tuples in a block are disjoint and the tuples in different

blocks are independent [1]. A possible world D∗ of Dp is generated similar to the

tuple-level uncertainty model with the restriction that only one of the tuples in an

exclusion rule appears in a possible world, and the probability of a possible world

is also computed similarly to the tuple-level uncertainty model. A sample uncertain

database having x-tuples is shown in Figure 3.4, and the set of possible worlds for

the database of Figure 3.4 is shown in Table 3.5.

This concludes our discussion of probabilistic data models. In summary, the choice

of a probabilistic data model depends on the nature of uncertainty in data and the

kind of assumptions that are to be made for the underlying uncertainty. We have

discussed some uncertainty models and also their expressive power.

48

Chapter 3. Probabilistic Databases

Once a probabilistic data model has been determined, a variety of queries could be

run on the probabilistic data, as we briefly discuss in the following section.

3.3 Query Evaluation

Dalvi et al. [1] describe query evaluation as the most challenging aspect of a prob-

abilistic database system. Dalvi and Suciu [59] suggest integrating probabilistic in-

ference with the query computation plan. A query specifies a computational task

in a declarative language that is then transformed into relational algebra using op-

erations like select, join and duplicate elimination, and is called a relational plan.

The correctness of a relational plan is established by the query optimizer by a static

analysis of the plan, and a relational plan is safe if it computes the query results

correctly. Dalvi and Suciu [59] show that under some assumptions, it is possible to

show a complete dichotomy, i.e. each query is either in polynomial time (i.e. queries

for which a safe plan exists) or #P-complete (i.e. queries for which a safe plan does

not exists). Thus, the challenge for a query optimizer is to identify and use a safe

plan if one exists, and use a probabilistic inference algorithm that approximates a

#P-complete problem, otherwise.

After a query has been evaluated, query results are presented to the user in a mean-

ingful way. In case of certain data, it is rather obvious that the results presented

to the user should be ordered based on some attribute, for example score attribute

in top-k. The choice is not so straightforward in case of uncertain data, as scores

for example have associated probabilities in the uncertain case, and it is not clear

whether the results should be ordered by score or by probabilities.

49

Chapter 3. Probabilistic Databases

3.4 Top-k

Top-k and other ranking queries have been extensively studied in literature [19, 60–

62]. Cormode et al. [3] describe the semantics of ranking queries on uncertain data

and suggest that a ranking query should ideally have the following properties:

(a) Exact-k: The top-k list should contain exactly k items.

(b) Containment: The top-k should be a subset of top-(k + 1).

(c) Unique-ranking: Each item in top-k should have a unique rank, i.e. an item

should not appear multiple times in top-k.

(d) Stability: If an item is made more probable or more important (by increasing

score), it should not be removed from the top-k.

(e) Value Invariance: If we change the scores without effecting the relative order-

ing of items, the top-k should remain unchanged.

The above mentioned properties are all satisfied in case of certain data and intuitively

this is how the top-k should behave in the uncertain case as well. Cormode et al.

[3] show, with the help of examples, that the ranking definitions proposed in the

literature for uncertain data do not necessarily satisfy all these properties.

Suppose that the items in the sample database of Figure 3.4 are mapped to scores

as follows: (a) = 100, (b) = 92, (c) = 80 and (d) = 70. As discussed in Cormode

et al. [3], the top-k problem can be formalized in many different ways:

• U-topk: that is [60], obtain top-k from each possible world and then, compute

the probability of each distinct top-k set and report the most likely top-k.

This definition is shown to violate the containment property, for example, for

50

Chapter 3. Probabilistic Databases

Figure 3.4, the top-1 result is r1 (r1 has the highest probability of having the

highest score in a random possible world) but the top-2 result is either (r2, r3)

or (r3, r4). Thus, the top-2 is completely disjoint from top-1.

• U-kRanks: that is [60], obtain the tuple ri at rank k in each possible world

and then report the tuple most likely to be at rank k over all possible worlds.

Although U-kRanks does not have the limitations of U-topk, it fails on unique

ranking as a tuple may dominate multiple ranks at the same time. For example,

for Figure 3.4, the top-3 result is (r1, r3, r1) and thus, r1 appears twice and r2

does not.

• PT-k: that is [61], if a tuple ri is at rank k, or better, in a possible world; then

the top-k probability of a tuple is the probability that it is in the top-k over all

possible worlds. The PT-k reports the set of all tuples whose top-k probability

is at least a user-specified probability p. However, for a user-specified p, the

top-k may not always contain k tuples thus, violating exact-k. For example,

for p = 0.4 in Figure 3.4, the top-1 result is (r1) and the top-2 and top-3 results

are both (r1, r2, r3).

• Global-Topk: that is [62], rank tuples by their top-k probability (as in PT-k),

and then select top-k tuples. Thus, whilst Global-Topk makes sure that exactly

k tuples are reported, it fails on containment. For example, for Figure 3.4, the

top-1 result is (r1) and the top-2 result is (r3, r2).

Thus, with the help of above examples, Cormode et al. [3] argue that probabilistic

inference is not straightforward as the choice between the score and the associated

probabilities is complicated, and it appears as if no single definition of top-k is

plausible for all applications. However, whilst the above-mentioned properties do

not fully describe a ranking query, only a subset may be desirable for some specific

applications in the uncertain case.

51

Chapter 3. Probabilistic Databases

3.5 Probabilistic Database Systems

Many implementations of probabilistic database systems have been described in the

literature. We briefly review two such representative systems: (1) MystiQ and (2)

Trio. For a good overview on managing probabilistic data, see Aggarwal [19].

3.5.1 MystiQ

MystiQ [57] is a probabilistic database system that uses probabilistic query seman-

tics to answer queries from data that is obtained from different data sources and

is uncertain. As already mentioned, the uncertainty in data from multiple sources

arises due to various reasons, for example the same data item may be presented

differently in different data sources, or although different data sources may contain

contradictory information, the user may still want to ask complex structural queries.

If standard query semantics are used, most non-trivial queries will return an empty

answer set. MystiQ uses probabilistic query semantics and returns a set of proba-

bilistic answers to queries ranked by the probability of the presented answer being

the right answer. The probabilities with the answers could be static (depending

on factors like the underlying data sources) or dynamic depending on how well the

tuples in the data match the approximate predicates in the query. In summary,

MystiQ supports complex queries with approximate match predicate over inconsis-

tent data and presents results as soft views, i.e. views with probabilistic tuples. For

more details see [57].

3.5.2 Trio

The Trio system [21] is based on three abstractions: data, data uncertainty, and

lineage, and thus the databases in Trio are called “Uncertainty-Lineage Databases”.

52

Chapter 3. Probabilistic Databases

The lineage of a tuple is defined as the information about its derivation. For example,

a table Drives may be populated from online car registration databases; a tuple in

Drives is then associated to its original source in Trio. As the confidence in a

tuple comes directly from the confidence in its data source, lineage can help in

understanding and explaining uncertainty. In Trio, the tuples in a relation may

have one or more uncertain attributes with optional confidence values. For example,

a sample tuple in (for example) a Saw table, which indicates what car a subject may

have seen, could be of the form (Amy, {(Honda : 0.5)(Toyota : 0.3)(Mazda : 0.2)}),

which means that Amy saw one of these cars with the given confidence values.

Trio uses an extension of SQL and contains additional features for uncertainty and

lineage, e.g. it supports queries like “find all witnesses contributing to Jimmy being

a high suspect”. See [21] for a more detailed account.

3.6 Frequent Itemset Mining using Probabilistic

Data

Many data mining problems have recently been studied in the context of uncertain

data [19]. We focus on frequent itemset mining in uncertain data, which was first

proposed by Chui et al. [31], and since then has gained a great deal of attention

from researchers [25–29]. The problem has been studied with respect to the uncer-

tainty models described in Section 3.2. Researchers have considered two definitions

of a frequent itemset, namely expected support and probabilistic frequentness. We

consider each of these two in turn beginning with the former.

53

Chapter 3. Probabilistic Databases

Table 3.6: A sample uncertain database Dp.

rid W

r1 (a : 0.7)(b : 0.4)

r2 (c : 0.6)(d : 0.3)

3.6.1 Expected Frequent Itemset Mining

Chui et al. [31] motivate frequent itemset mining in probabilistic databases by argu-

ing that in contrast with the certain case, there are situations when the presence of

an item in a transaction is better recorded using a likelihood measure (i.e. by using

probabilities). For example, in a medical dataset that contains recordings about

symptoms in patients, the symptoms being subjective values, could more precisely

be recorded using probabilities. Thus, a sample record about a patient in an uncer-

tain dataset may look like (1, {(depression : 0.4), (eatingdisorder : 0.7)}) where 1 is

the patient id, and the patient has two alternative diagnosis, namely “depression”

and “eatingdisorder” with probabilities 0.4 and 0.7 respectively. It is assumed that

the presence or absence of items in a transaction is independent of each other.

Following Chui et al. [31], we first define their frequent itemset mining in probabilistic

databases problem. Let I = {i1, i2, . . . , iq} be the set of items. A set U ⊆ I is called

an itemset. A probabilistic database Dp = {r1, r2, . . . , rn} is a set of records where

each record ri ∈ D is of the form (rid,W), where rid is a unique record identifier

and W is a probability distribution over I. The distribution W contains pairs of

the form (i, c) where i ∈ I is an item, and 0 < c ≤ 1 is the associated confidence

value. It is assumed that the presence of items in W is independent of each other.

An example is shown in Table 3.6. The possible world semantics of Dp is as follows.

For each item i having probability ci of occurrence in a record rk, there are two kinds

of worlds: one where item i occurs and other, where it does not. A possible world

54

Chapter 3. Probabilistic Databases

D∗ of Dp is generated by considering each item in this way, i.e. the item may or

may not appear in the possible world (this corresponds to the tuple-level uncertainty

model, Section 3.2.2). The complete set of possible worlds, denoted by PW (Dp),

is obtained by taking all such possible combinations of items in which each item

may or may not appear in the possible world. As the items are assumed to appear

independently of each other in a possible world, the probability of a possible world

D∗ is computed as follows:

Pr[D∗] =
n∏

k=1

(
∏

i∈rk

Pr(i, rk) ∗
∏

j 6∈rk

(1− Pr(j, rk))

)

, (3.1)

where Pr(i, rk) is the probability that the item i appears in the k-th record. For

example, a possible world D∗ for the sample database of Table 3.6 can be generated

such that the items a and c appear in the possible world and the items b and d do

not. The probability of D∗ is, Pr[D∗] = 0.7× (1− 0.4)× 0.6× (1− 0.3) = 0.1764.

As every possible world is a deterministic database, the support of an itemset in

a possible world is computed using Equation 2.1. For an itemset U , the expected

support of U in Dp, denoted by ES(U,Dp), is defined as follows:

ES(U,Dp) =
∑

D∗∈PW (Dp)

Pr[D∗] ∗ Sup(U,D∗) (3.2)

Alternatively, due to the assumption of independence between the items and the

principle of linearity of expectation, we can compute the expected support of an

itemset U in a probabilistic database Dp using the following equation:

ES(U,Dp) =

n∑

k=1

∏

i∈U

Pr(i, rk). (3.3)

An itemset U is an expected frequent itemset if ES(U,Dp) is greater or equal to some

user-defined support threshold θ, 0 ≤ θ ≤ n. We now define the expected frequent

55

Chapter 3. Probabilistic Databases

itemset mining problem.

Definition 3.1 (Expected Frequent Itemset Mining Problem). Given a prob-

abilistic database Dp having n records, and a user-defined support threshold θ,

0 ≤ θ ≤ n, find all expected frequent itemsets in Dp.

Chui et al. [31] extend the classical apriori based frequent itemset mining algorithm

to work with uncertain data, i.e. they embed the expected support computation

sub-routine in the classical apriori algorithm and call it U-apriori. As the expected

support computation is a relatively expensive task (in contrast with the support

computation in classic frequent itemset mining), Chui et al. propose a framework

for eliminating potential infrequent candidate itemsets without expected support

computation, which uses a set of pruning techniques collectively referred to as LGS-

Trimming. The study concludes with an experimental study that shows the scala-

bility of the U-apriori algorithm in terms of the CPU cost, and the effectiveness of

LGS-Trimming.

Considering that [31] is the very first work on the problem, the main contributions

are the problem definition, the U-apriori algorithm and the proposed pruning tech-

nique LGS-Trimming. However, the synthetic datasets used to show the effectiveness

of LGS-Trimming contain 75% of the items per record with very low existential prob-

abilities, i.e. using a normal distribution with mean equal to 10% with 6% standard

deviation. It is rather unlikely that LGS-Trimming will be equally effective when a

high percentage of items in the dataset do not have very low existential probabilities

associated with them, and we discuss this point later in this section.

In a subsequent work, Chui and Kao [63] improve on the idea of pruning from their

earlier work [31] and propose a decremental pruning technique to eliminate potential

infrequent candidate itemsets. The basic idea is to compute an upper bound on the

expected support of candidate itemsets rather than performing the exact expected

56

Chapter 3. Probabilistic Databases

support computation. Chui and Kao propose an optimization of the pruning rule

which is to compute the upper bound only upto a point where it can be said with

certainty that the itemset is frequent or otherwise. Another proposed optimization

is to compute the upper bounds for itemsets having a common prefix together.

The experimental study in [63] suggests that the decremental pruning is effective

in eliminating potential infrequent candidate itemsets even when upto 75% of the

items in each record have high probabilities, i.e. using a normal distribution with

mean equal to 90% with 5% standard deviation. However, Aggarwal et al. [27] show,

with the help of experiments, that the pruning techniques proposed by Chui et al.

[31] and Chui and Kao [63] are very much dependent on the nature of the data and

do not work well with datasets where items have high existential probabilities.

The initial studies on the expected frequent itemset mining problem [31, 63] are

based on the apriori algorithm which is considered to be less effective than pat-

tern growth (FP-Tree) [64] in classical frequent itemset mining. Thus, one natural

research direction is to consider adapting the FP-Tree to the probabilistic case. Ag-

garwal et al. [27] highlight at least one fundamental problem with extending the

FP-Tree to the probabilistic case and discuss various alternatives. The FP-Tree

is a compressed data structure that represents the input database. Starting from

the root node, each node contains an item along with the item count. The item

count in the deterministic settings could be interpreted as the sum of the probabil-

ities at a node in the probabilistic FP-Tree. The issue with storing the sum of the

probabilities is that we lose the individual probability values which are needed for

expected support computation. Another idea is to store the individual probabilities

with every node and thus, to compute the exact expected support of an itemset, but

this option is memory intensive. Thus, it is obvious that if we do not store all the

individual probabilities at each node, exact expected support computation might

not be a possibility.

57

Chapter 3. Probabilistic Databases

We see two approaches in the literature to solve this problem. First, Leung et al. [26]

propose the UF-Tree that is similar to the FP-Tree except that a new transaction is

merged with an existing one only if the item and the item probability match in the

new transaction. It is rather obvious that individual probabilities are not very likely

to match with each other as the values are in the domain of real numbers in the

range (0, 1]. Leung et al. propose a simple but intuitive solution to the probability

matching problem which is to round off the probability values to a few decimal

places, e.g. 2 decimals. Thus, a potential infinite number of values in the range

(0, 1] are reduced to a maximum of 102 possible values. Clearly, by rounding off the

probability values, Leung et al. [26] are only able to compute an upper bound on the

expected support of an itemset but the UF-Tree still has the FP-Tree compression

effect to some extent. On the other hand, Aggarwal et al. [27] suggest storing a

subset of the set of probabilities in their UFP-Tree using clustering, and also store

the highest probability in the cluster to minimize any error in the expected support

computation, and thus are able to compute an upper bound on the expected support

of an itemset. Another distinction is that whilst Leung et al. [26] build the UF-Tree

only for the first two levels and then, for each relevant tree path, enumerate all

subsets of each tree path to generate frequent itemsets, Aggarwal et al. [27] build

the complete UFP-Tree.

The two different design choices have very different outcomes in terms of the ef-

fectiveness of the FP-Tree approach in the probabilistic case. In the corresponding

experimental studies, whilst Aggarwal et al. [27] conclude that the UFP-Tree is not

effective in terms of the CPU cost and the memory usage, Leung et al. [26] claim

that the UF-Tree appears to outperform the U-apriori algorithm.

In addition to extending the FP-Tree to the probabilistic case, Aggarwal et al.

[27] consider extending other classical frequent pattern mining algorithms to the

probabilistic case as well. Thus, they propose an apriori-based candidate generation

58

Chapter 3. Probabilistic Databases

algorithm Uapriori and a hyper-structure based pattern growth algorithm UH-mine.

In the classical settings, the H-Mine algorithm uses a hyper-array data structure.

Each record in the database is stored as one row in the hyper-array and thus, the

hyper-array is easily extended to the probabilistic case by storing one additional row

with each record in UH-mine that contains the probabilities. Aggarwal et al. [27]

show, with the help of experiments, that UH-mine is the most effective algorithm in

terms of CPU cost and memory usage.

This concludes our discussion on mining frequent itemsets from uncertain data using

the expected support measure. We now discuss computing frequent itemsets from

uncertain data using the probabilistic frequentness measure.

3.6.2 Probabilistic Frequent Itemset Mining

One of the issues with computing the expected support of an itemset in a proba-

bilistic database is that it does not give any information about the confidence in the

expected support of an itemset. We explain the potential issue with the help of two

examples from Zhang et al. [65]. In the first example, consider a sample database

having two tuples {{(a : 0.9)(b : 0.1)}, {(c : 1.0)}}. Suppose that we are interested

in items having expected support equal to 1. The expected support of item a is 0.9

and thus, a is not frequent although there is a 90% probability that the support

of a is 1. In another example, again consider a sample database having two tuples

{{(a : 0.5)}, {(a : 0.5)}}, and suppose that we are again interested in items having

expected support equal to 1. The expected support of item a is computed as 1, and

a is thus frequent, although the probability that the support of a is 1 is only 75%.

Zhang et al. [65] propose computing Pr(Sup(i, Dp) ≥ θ), i.e. computing the proba-

bility of an item i having support at least θ. In other words, Zhang et al. introduce

the concept of confidence in the support of an item in a probabilistic database Dp.

59

Chapter 3. Probabilistic Databases

Another important contribution in their work is to consider the x-tuples model which

can capture some correlations in the data. Zhang et al. also propose an exact dy-

namic programming algorithm for computing the probabilistic frequent items, which

has quadratic complexity if the x-tuples contain single items, and cubic complexity

if the x-tuples contain more than one item. As the computational cost of comput-

ing probabilistic frequent items using x-relations model is rather high (cubic), the

author also propose a sampling algorithm which has the property that although it

can overestimate the support of an item with acceptable error bounds, it will never

underestimate it. Zhang et al. also give a pruning technique and show the effective-

ness of the proposed exact and sampling algorithms and also the pruning technique

with the help of experiments. In summary, the work of Zhang et al. [65] proposes

computing the probabilistic frequent items (not itemsets) in a probabilistic database

under (a more expressive) x-tuples model.

Bernecker et al. [28] proposed mining probabilistic frequent itemsets from uncertain

data. The uncertainty model and the assumption of independence in [28] are similar

to [31], i.e. items have existential probabilities and are assumed to exist indepen-

dently of each other. Bernecker et al. motivate the computation of confidence in

the support of an itemset with the help of examples similar to Zhang et al. [65],

and then define the probability that the support of an itemset U is exactly k in a

probabilistic database Dp as follows:

Prk(U) =
∑

(D∗∈PW (Dp)),(Sup(U,D∗)=k) Pr[D∗],

where Sup(U,D∗) is the support of an itemset U in a possible world D∗, and

Prk(U) is the probability that the support of U is exactly k in the probabilistic

database Dp. Next, they define the support probability distribution as the vector

〈Pr0(U), . . . ,Prn(U)〉, and compute the probability that the support of an itemset

60

Chapter 3. Probabilistic Databases

U is at least θ, denoted by Pr≥θ(U), as follows:

Pr≥θ(U) =
n∑

k=θ

Prk(U).

An itemset U is a probabilistic frequent itemset if Pr≥θ(U) ≥ τ , i.e. if the probability

that the support of U is at least θ is at least some user-defined confidence threshold1

τ , 0 < τ ≤ 1. We now define the probabilistic frequent itemset mining problem.

Definition 3.2 (Probabilistic Frequent Itemset Mining Problem). Given

a probabilistic database Dp having n records and two user-defined thresholds, an

expected support threshold θ, 0 ≤ θ ≤ n, and a confidence threshold τ , 0 ≤ τ ≤ 1,

find all probabilistic frequent itemsets in Dp.

Bernecker et al. give a dynamic programming algorithm to compute probabilistic

frequent itemsets which has quadratic time complexity. The proposed optimizations

like incremental computation, 0 – 1 optimization, and an early pruning technique

also do not seem to be particularly effective (the computational complexity of the

dynamic programming algorithm does not get any better than O(θn)). Thus, the

performance of the algorithm for harder instances is restricted. This is also backed

up by evidence from the experimental study.

Although the dynamic programming algorithm by Bernecker et al. [28] is computa-

tionally expensive, it is an exact algorithm. Calders et al. [29] argue that considering

the uncertainty model (tuple-level uncertainty) and the assumption of independence

between items by Bernecker et al. [28], the probability of the support of an itemset

can be approximated with reasonable error bounds. Wang et al. [66] have a simi-

lar argument, and in addition to the attribute-level uncertainty model considered

by [29], they claim that the approximation scheme proposed by them works for the

tuple-level uncertainty model as well, under the assumption that the tuples in a

1Note that this confidence threshold is not the same as the one in Section 2.1.2.

61

Chapter 3. Probabilistic Databases

probabilistic database are independent of each other. Thus, whilst Calders et al.

[29] use a variation of the central limit theorem, Wang et al. [66] use the Poisson

binomial distribution to approximate the probability of support of an itemset. In

both studies [29, 66], approximation algorithms are given for computing the prob-

ability of the support of an itemset. The experimental study by Calders et al. [29]

suggests that both for real and synthetic datasets, whilst the mean estimation error

does not exceed 0.014% and the maximum estimation error is at most 0.35%, the

approximate algorithm is effective in reducing CPU cost relative to the exact dy-

namic programming algorithm. Similarly, Wang et al. [66] show the effectiveness of

their approximation algorithm using precision and recall [67, Chapter 8] (we define

these in Chapter 7), and show that the approximation scheme returns all the rele-

vant results for their considered sets of experiments with a very little error (up to

0.2% in some cases).

As mentioned in Chapter 2, frequent itemset mining is the first step in association

rule mining. Sun et al. [25] propose mining association rules from probabilistic fre-

quent itemsets, which they refer to as probabilistic association rules. They consider

the tuple-level uncertainty model and assume that the tuples are independent of

each other in a probabilistic database. Sun et al. propose the p-apriori algorithm

and propose optimizations for pruning infrequent patterns, for computing the sup-

port probability distribution, and a data structure named inverted probability list

to improve the algorithm’s performance. Sun et al. show the effectiveness of the

proposed optimizations with the help of experiments.

This concludes our discussion on frequent itemset mining in uncertain data. We

make the following key observations:

(a) All the studies on uncertain frequent itemset mining consider the simpler

attribute-level or the tuple-level uncertainty model with the assumption of

62

Chapter 3. Probabilistic Databases

independence. The only study that considers a more powerful model, namely

x-tuples, finds only frequent items and not the itemsets. It seems that consid-

ering a more expressive model makes the frequent itemset computation even

harder.

(b) Researchers have focused on two definitions of frequent itemsets (expected

support and probabilistic frequentness) and whilst each of these definitions

may have its own advantages, it is not clear what might be the ‘right’ definition

(as illustrated for top-k in Section 3.4).

(c) Researchers have been able to adapt the apriori algorithm to the uncertain case

both for computing expected and probabilistic frequent itemsets. However,

approaches such as pattern growth (FP-Tree) which are considered superior

in the classical settings are not straightforward to adapt to the probabilistic

case, and it is not clear that they outperform apriori in the probabilistic case

as well.

(d) Finding probabilistic frequent itemsets is computationally expensive (quadratic

complexity even to find frequent itemsets for the simpler uncertainty models)

and researchers have proposed good approximation solutions to the problem.

(e) To the best of our knowledge, there are no studies in literature that evaluate the

effectiveness of the probabilistic frequent itemsets mining framework (Wang

et al. [66] demonstrate the effectiveness of their approximation algorithm, not

the probabilistic frequent itemset mining framework). For example, it would

be interesting to contrast the expected and probabilistic frequent itemsets to

see if the expensive probabilistic frequentness computation is justified.

63

Chapter 3. Probabilistic Databases

3.7 Summary

This concludes our discussion on probabilistic databases. We have focussed on three

fundamental tasks that a probabilistic database system performs, namely uncer-

tainty representation and modelling, query evaluation for the chosen uncertainty

model and presenting query results to the user, and elaborated on these with the

help of real world application examples. We have briefly reviewed representative

probabilistic database systems from the literature as well. We have also discussed

the semantics of ranking queries (top-k problem) and have seen that although many

definitions of top-k have been proposed in literature, a single definition may not

suffice for all applications. Similarly, whilst the definitions of frequentness proposed

for frequent itemset mining from uncertain data (expected support and probabilis-

tic frequentness) may have their own advantages, it is not clear what might be the

‘right’ definition. Finally, we have given a detailed account on frequent itemset

mining from uncertain data.

64

Chapter 4

Probabilistic Data Models and

Measures

In this chapter a study of probabilistic data models and measures for SPM is pre-

sented. We observe that uncertainty in SPM could either be at the attribute level

or at the tuple level. We model different kind of uncertainties that could arise in

SPM and give motivations using real life examples for our considered uncertainty

models. We formally define the uncertainty models we consider and give examples

to illustrate the concepts (Section 4.1). We then define the interestingness predicate

(Section 4.2) based on the following fundamental problem:

Problem 4.1. Given a sequence s and a probabilistic database Dp, is s frequent?

In the framework described by Gunopulos et al. [30], which includes not only SPM

but also frequent itemset mining, association rule mining and a host of other database

optimization and machine learning problems, the above question is the interesting-

ness or quality predicate. As noted in [30], given such a predicate as a “black

box”, one can embed it into a variety of candidate generate-and-test frameworks for

finding not only frequent sequential patterns but also maximal frequent sequential

65

Chapter 4. Probabilistic Data Models and Measures

patterns. Many popular classical SPM algorithms such as GSP [38], SPADE [36] or

SPAM [34] all fit into this framework, and algorithms such as PrefixSpan [40], which

do not explicitly generate candidates, also implicitly evaluate the interestingness

predicate.

In this chapter, we define two interestingness predicates and illustrate each of the

interestingness predicate we define for the uncertainty models we consider, with the

help of examples.

We now discuss probabilistic data models for SPM.

4.1 Probabilistic Data Models

We discuss the kind of uncertainties that could arise in SPM. We first consider

the tuple-level uncertain case, and formalize the uncertainty in the tuple, namely

tuple-level uncertainty (TLU) (Section 4.1.1). We then focus on attribute-level un-

certainty, and formalize the uncertainty in the event attribute, namely event-level

uncertainty (ELU) (Section 4.1.2.1), and uncertainty in the source attribute, namely

source-level uncertainty (SLU) (Section 4.1.2.2). When modelling the above men-

tioned uncertainties, some independence assumptions are made which are reasonable

for some applications (as we discuss later in this section) but quite a few applications

need to capture some basic correlations in data and thus, more expressive models

are desirable. We consider another kind of uncertainty that arises in deduplication

which we refer to as source-level uncertainty in a sequence in deduplication (SLU-D)

(Section 4.1.3).

In this section we formally define the notion of a probabilistic database, give its pos-

sible world semantics and give examples to illustrate the concepts for the uncertainty

models we consider.

66

Chapter 4. Probabilistic Data Models and Measures

Table 4.1: A sample TLU database Dp.

eid e σ p

e1 (a, d, e) Y 0.4

e2 (a) Z 1.0

e3 (a, d, e) X 0.6

e4 (b, c) Z 0.5

e5 (b, c) X 0.3

e6 (a, b, c) X 0.7

e7 (b, c) Y 0.2

e8 (c, d, e) X 1.0

e9 (a, b, c) Z 0.3

4.1.1 Tuple-level Uncertainty

Our first model is motivated by the PEEX system (Khoussainova et al. [20]) where

employees’ movements are tracked in a building using RFID sensors. The stream of

tags read by various sensors is stored in a relation SIGHTING(t, tID, aID), which

denotes that the RFID tag tID was detected by antenna aID at time t. Since an

RFID antenna has only some probability of reading a tag within its range, the PEEX

system processes the SIGHTING relation to output an uncertain higher-level event

relation such as MEETING(time, person1, person2, room, prob). An example

tuple in MEETING could be (103, ‘Alice’, ‘Bob’, 435, 0.4), which means that at time

103, PEEX believes that Alice and Bob are having a meeting (event) with probability

0.4 in room 435 (source) (example from [20]); thus, the higher-level event that Alice

and Bob are having a meeting only has a probability of 0.4 of having occurred, which

shows tuple-level uncertainty. As the RFID tags are read independently of each other

by the RFID antenna, we assume that the tuples in MEETING are independent of each

other. Some formulations of this and similar problems may even exhibit source-level

67

Chapter 4. Probabilistic Data Models and Measures

eid e σ p

e1 (a, d, e) Y 0.4

e2 (a) Z 1.0

e3 (a, d, e) X 0.6

e4 (b, c) Z 0.5

e5 (b, c) X 0.3

e6 (a, b, c) X 0.7

e7 (b, c) Y 0.2

e8 (c, d, e) X 1.0

e9 (a, b, c) Z 0.3

source p-sequence

Dp
X (a, d, e : 0.6)(b, c : 0.3)(a, b, c : 0.7)(c, d, e : 1.0)

Dp
Y (a, d, e : 0.4)(b, c : 0.2)

Dp
Z (a : 1.0)(b, c : 0.5)(a, b, c : 0.3)

Figure 4.1: The sample TLU database of Table 4.1 transformed to p-sequences
(bottom).

uncertainty. For example, a person may be detected by two different RFID antennae

installed in adjacent rooms. In such cases, the source might well be uncertain as

well, but we do not consider this case here. We now formalize the idea of a tuple-level

uncertain (TLU) database.

TLU Database

A TLU database Dp is an ordered list of records 〈r1, . . . , rn〉 of the form (eid , e, σ, p)

where eid is an event-id, e is an event, σ ∈ S is the source and p is the existential

probability of the tuple. An example of a TLU database is in Table 4.1.

68

Chapter 4. Probabilistic Data Models and Measures

p-sequence. A p-sequence is analogous to a source sequence in classical SPM and

is a sequence of the form 〈(e1, c1) . . . (ek, ck)〉, where ej is an event and cj is the exis-

tential probability of ej . In examples, we write a p-sequence 〈({a, d}, 0.4), ({a, b}, 0.2)〉

as 〈(a, d : 0.4)(a, b : 0.2)〉. A TLU database Dp can be viewed as a collection of p-

sequences Dp
1, . . . , D

p
m, where Dp

i is the p-sequence of source σi, and contains a list

of all the tuples in Dp associated to source σi, ordered by eid, along with the asso-

ciated probabilities. Specifically, we generate a p-sequence representation of a TLU

database Dp as follows. We initialize Dp
i to an empty list and consider the records

r1, r2, . . . ∈ Dp in that order. When considering the record rℓ = (eidℓ, eℓ, σi, pℓ),

we append (eℓ, pℓ) to Dp
i . Figure 4.1 gives an example of this transformation for

the TLU database of Table 4.1. Clearly, the p-sequences Dp
1, . . . , D

p
m provide a dual

representation of a TLU database Dp. In a TLU database, in the i-th p-sequence

Dp
i = 〈(e1, c1), . . . , (ek, ck)〉, the value cℓ represents the existential probability of eℓ.

As the events occur independently of each other, there are no dependencies among

p-sequences in a TLU database.

Possible World Semantics. The possible world semantics of a TLU database

Dp is as follows. For each event ej in a p-sequence Dp
i there are two kinds of pos-

sible worlds: one in which ej occurs and the other where it does not. Let occur

= {x1, . . . , xl}, where 1 ≤ x1 < . . . < xl ≤ k, be the indices of events that occur in

D∗
i . Then D∗

i = 〈ex1
, . . . , exl

〉, and Pr(D∗
i) =

∏

j∈occur cj ∗
∏

j 6∈occur(1− cj). We can

multiply probabilities because we assume that the events in a p-sequence are stochas-

tically independent. The set of possible worlds for the p-sequence of source σi, de-

noted by PW (Dp
i), is obtained by taking all possible 2l alternatives for occur. For

example, the set of possible worlds for each of source X , Y and Z in the sample

database of Figure 4.1 is shown in Table 4.2, Table 4.3 and Table 4.4 respectively.

We say PW (Dp) = PW (Dp
1)× . . .× PW (Dp

m), where a possible world D∗ of Dp is

obtained by taking one possible world each from the possible worlds of every source.

69

Chapter 4. Probabilistic Data Models and Measures

Table 4.2: The set of possible worlds for source X for the TLU database of Ta-
ble 4.1.

D∗
X Possible world Pr(D∗

X)

D∗
X,1 {(c, d, e)} (1− 0.6) × (1− 0.3)× (1− 0.7) × 1.0 = 0.084

D∗
X,2 {(a, d, e)(c, d, e)} 0.6 × (1− 0.3)× (1− 0.7) × 1.0 = 0.126

D∗
X,3 {(b, c)(c, d, e)} (1− 0.6) × 0.3× (1− 0.7) × 1.0 = 0.036

D∗
X,4 {(a, b, c)(c, d, e)} (1− 0.6) × (1− 0.3) × 0.7 × 1.0 = 0.196

D∗
X,5 {(a, d, e)(b, c)(c, d, e)} 0.6× 0.3× (1− 0.7) × 1.0 = 0.054

D∗
X,6 {(a, d, e)(a, b, c)(c, d, e)} 0.6× (1− 0.3) × 0.7 × 1.0 = 0.294

D∗
X,7 {(b, c)(a, b, c)(c, d, e)} (1− 0.6)× 0.3 × 0.7 × 1.0 = 0.084

D∗
X,8 {(a, d, e)(b, c)(a, b, c)(c, d, e)} 0.6× 0.3 × 0.7 × 1.0 = 0.126

Table 4.3: The set of possible worlds for source Y for the TLU database of Ta-
ble 4.1.

D∗
Y Possible world Pr(D∗

Y)

D∗
Y,1 〈〉 (1− 0.4) × (1− 0.2) = 0.480

D∗
Y,2 {(a, d, e)} 0.4× (1− 0.2) = 0.320

D∗
Y,3 {(b, c)} (1− 0.4) × 0.2 = 0.120

D∗
Y,4 {(a, d, e)(b, c)} 0.4× 0.2 = 0.080

For any D∗ ∈ PW (Dp) such that D∗ = (D∗
1, . . . , D

∗
m), the probability of D∗ is given

by Pr[D∗] =
∏m

i=1 Pr(D
∗
i), as the p-sequences of all sources are mutually indepen-

dent. For example, one such world D∗
1 is obtained by selecting the possible world

D∗
X,1 from PW (Dp

X), D
∗
Y,1 from PW (Dp

Y) and D∗
Z,1 from PW (Dp

Z), and the prob-

ability of D∗
1 is the product of probabilities of all the possible worlds in it, Pr[D∗

1]

= 0.084 × 0.480 × 0.350 = 0.014. A demonstration for the complete set of possible

worlds for the TLU database of Table 4.1 is in Table 4.5.

Summary. This concludes our discussion of the TLU model. Each tuple in a TLU

database has an existential probability and the tuples are assumed to be independent

of each other. Thus, whilst the TLU model can be used for modelling uncertainties

70

Chapter 4. Probabilistic Data Models and Measures

Table 4.4: The set of possible worlds for source Z for the TLU database of Ta-
ble 4.1.

D∗
Z Possible world Pr(D∗

Z)

D∗
Z,1 {(a)} 1.0 × (1− 0.5) × (1− 0.3) = 0.350

D∗
Z,2 {(a)(b, c)} 1.0× 0.5× (1− 0.3) = 0.350

D∗
Z,3 {(a)(a, b, c)} 1.0× (1− 0.5)× 0.3 = 0.150

D∗
Z,4 {(a)(b, c)(a, b, c)} 1.0× 0.5× 0.3 = 0.150

Table 4.5: The complete set of possible worlds for the TLU database of Table 4.1.

D∗ D∗
X D∗

Y D∗
Z Pr(D∗)

D∗
1 D∗

X,1 {(c, d, e)} D∗
Y,1 {〈〉} D∗

Z,1 {(a)} 0.014

D∗
2 D∗

X,1 {(c, d, e)} D∗
Y,1 {〈〉} D∗

Z,2 {(a)(b, c)} 0.014
...

...
...

...
...

D∗
4 D∗

X,1 {(c, d, e)} D∗
Y,1 {〈〉} D∗

Z,4 {(a)(b, c) 0.006

(a, b, c)}

D∗
5 D∗

X,1 {(c, d, e)} D∗
Y,2 {(a, d, e)} D∗

Z,1 {(a)} 0.009

D∗
6 D∗

X,1 {(c, d, e)} D∗
Y,2 {(a, d, e)} D∗

Z,2 {(a)(b, c)} 0.009
...

...
...

...
...

...
...

...
...

...

D∗
16 D∗

X,1 {(c, d, e)} D∗
Y,4 {(a, d, e) D∗

Z,4 {(a)(b, c) 0.001

(b, c)} (a, b, c)}

D∗
17 D∗

X,2 {(a, d, e)(c, d, e)} D∗
Y,1 {〈〉} D∗

Z,1 {(a)} 0.021

D∗
18 D∗

X,2 {(a, d, e)(c, d, e)} D∗
Y,1 {〈〉} D∗

Z,2 {(a)(b, c)} 0.021
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

D∗
128 D∗

X,8 {(a, d, e)(b, c) D∗
Y,4 {(a, d, e) D∗

Z,4 {(a)(b, c) 0.001

(a, b, c)(c, d, e)} (b, c)} (a, b, c)}

71

Chapter 4. Probabilistic Data Models and Measures

in applications similar to PEEX, it is the simplest of the uncertainty models and is

considered a basic model.

We now discuss attribute-level uncertainty in SPM.

4.1.2 Attribute-level Uncertainty

We first consider uncertainty in the event attribute.

4.1.2.1 Event-level Uncertainty

This model is motivated by the following scenarios:

(a) a logged-in user (source) enters search terms into a search engine (events).

The search terms or queries can be disambiguated in many different ways.

For example, a search term ‘Tiger’ could potentially be disambiguated as

{(Animal, 0.4), (Sports Personality, 0.3), (Insurance, 0.2), . . .}.

(b) recall the kind of uncertainty that arises in biological sequences due to muta-

tion (Section 2.5.3), that is, when an observed value D (event) in a sequence

(source) could be any of N or D. This kind of uncertainty can also be mod-

elled as ELU. For example, the true value of an observed value D could be

{(D, 0.8), (N, 0.2)}.

In such situations, although the source (user/sequence-id) is known, there is un-

certainty about the event (search term/observed value) as only one of the many

alternatives might be true. Thus, this formulation shows attribute-level uncertainty

in the event attribute [24]. We now formalize the notion of an event-level uncertain

(ELU) database.

72

Chapter 4. Probabilistic Data Models and Measures

Table 4.6: A sample ELU database Dp.

eid E σ

e1 {(d : 1.0)} Z

e2 {(a : 0.4), (a, b, d : 0.5), (b, c : 0.1)} Y

e3 {(a : 0.5), (a, b : 0.3), (b, c : 0.2)} X

e4 {(e : 1.0)} Z

e5 {(d : 1.0)} X

e6 {(e : 1.0)} Y

e7 {(b, c : 0.6), (c, d : 0.4)} X

e8 {(f, g : 1.0)} Y

ELU Database

An ELU database Dp is an ordered list of records 〈r1, . . . , rn〉 of the form (eid , E, σ)

where eid is an event-id, E is a set that contains pairs of the form (e, c), where e

is an event and 0 < c ≤ 1 is the associated confidence value that the event e is the

actual event, and σ is the associated source; we assume
∑

(e,c)∈E c = 1. An example

of an ELU database is in Table 4.6.

p-sequence. In an ELU database, a p-sequence is a sequence of sets of (e, c) pairs

in contrast with a TLU database, where it is a sequence of (e, c) pairs. Formally, a

p-sequence is a sequence of the form 〈{(e(1,1), c(1,1)), (e(1,2), c(1,2)), . . . , (e(1,j1), c(1,j1))}

. . . {(e(k,1), c(k,1)), (e(k,2), c(k,2)) . . . , (e(k,jk), c(k,jk))}〉, where e(ℓ,iℓ) is the i-th event in

the ℓ-th set of events and c(ℓ,iℓ) is the associated confidence value. Further, we as-

sume that each set of events consists of only a constant number of events. An ELU

database is transformed to p-sequences similar to classical SPM that is all the prob-

abilistic sets of events associated with a single source are listed as a p-sequence of

sets of events ordered by a time-stamp. Thus, the p-sequences in an ELU database

73

Chapter 4. Probabilistic Data Models and Measures

eid E σ

e1 {(d : 1.0)} Z

e2 {(a : 0.4), (a, b, d : 0.5), (b, c : 0.1)} Y

e3 {(a : 0.5), (a, b : 0.3), (b, c : 0.2)} X

e4 {(e : 1.0)} Z

e5 {(d : 1.0)} X

e6 {(e : 1.0)} Y

e7 {(b, c : 0.6), (c, d : 0.4)} X

e8 {(f, g : 1.0)} Y

source p-sequence

Dp
X {(a : 0.5), (a, b : 0.3), (b, c : 0.2)}{(d : 1.0)}{(b, c : 0.6), (c, d : 0.4)}

Dp
Y {(a : 0.4), (a, b, d : 0.5), (b, c : 0.1)}{(e : 1.0)}{(f, g : 1.0)}

Dp
Z {(d : 1.0)}{(e : 1.0)}

Figure 4.2: The ELU database of Table 4.6 transformed to p-sequences (bot-
tom).

have attribute-level uncertainty. However, as in the TLU case, the sets of events in

a p-sequence or the p-sequences itself are independent of each other. An example of

the transformation of the ELU database of Table 4.6 is in Figure 4.2.

Possible World Semantics. A possible world D∗ of an ELU database Dp is

generated by taking each record ri in turn, and selecting one of the possible events

ei ∈ Ei. Thus every record ri = (eidi, Ei, σi) ∈ Dp takes the form r′i = (eidi, ei, σi)

for some ei ∈ Ei, in D∗. By enumerating all such possible combinations, we get the

complete set of possible worlds. Assuming that the uncertain set of events associated

with each record ri inDp are stochastically independent of each other, the probability

of a possible world D∗ is Pr[D∗] =
∏n

i=1 PrEi
[ei]. For example, a possible world D∗

for the ELU database of Table 4.6 can be generated by selecting the events (a), (a),

(b, c) from e2, e3 and e7 with probabilities 0.4, 0.5 and 0.6 respectively, and Pr[D∗] =

74

Chapter 4. Probabilistic Data Models and Measures

Table 4.7: The complete set of possible worlds for the sample ELU database of
Table 4.6 along with their probabilities.

D∗ X Y Z Pr(D∗)

D∗
1 (a)(d)(b, c) (a)(e)(f, g) (d)(e) 0.120

D∗
2 (a)(d)(b, c) (a, b, d)(e)(f, g) (d)(e) 0.150

D∗
3 (a)(d)(b, c) (b, c)(e)(f, g) (d)(e) 0.030

D∗
4 (a)(d)(c, d) (a)(e)(f, g) (d)(e) 0.080

D∗
5 (a)(d)(c, d) (a, b, d)(e)(f, g) (d)(e) 0.100

D∗
6 (a)(d)(c, d) (b, c)(e)(f, g) (d)(e) 0.020

D∗
7 (a, b)(d)(b, c) (a)(e)(f, g) (d)(e) 0.072

D∗
8 (a, b)(d)(b, c) (a, b, d)(e)(f, g) (d)(e) 0.090

D∗
9 (a, b)(d)(b, c) (b, c)(e)(f, g) (d)(e) 0.018

D∗
10 (a, b)(d)(c, d) (a)(e)(f, g) (d)(e) 0.048

D∗
11 (a, b)(d)(c, d) (a, b, d)(e)(f, g) (d)(e) 0.060

D∗
12 (a, b)(d)(c, d) (b, c)(e)(f, g) (d)(e) 0.012

D∗
13 (b, c)(d)(b, c) (a)(e)(f, g) (d)(e) 0.048

D∗
14 (b, c)(d)(b, c) (a, b, d)(e)(f, g) (d)(e) 0.060

D∗
15 (b, c)(d)(b, c) (b, c)(e)(f, g) (d)(e) 0.012

D∗
16 (b, c)(d)(c, d) (a)(e)(f, g) (d)(e) 0.032

D∗
17 (b, c)(d)(c, d) (a, b, d)(e)(f, g) (d)(e) 0.040

D∗
18 (b, c)(d)(c, d) (b, c)(e)(f, g) (d)(e) 0.008

0.5 × 1.0 × 0.6 × 0.4 × 1.0 × 1.0 × 1.0 × 1.0 = 0.120. The complete set of possible

worlds for database of Table 4.6 is in Table 4.7.

Summary. This concludes our discussion on the ELU model. Our proposed ELU

model is similar to the TLU model as both: (1) model uncertainty in the event

attribute and (2) the tuples are assumed to be independent of each other. However,

as we assume that
∑

(e,c)∈E c = 1, a tuple is always present in a possible world in

the ELU model although the event attribute in a tuple may take different values;

whereas tuples have existential probabilities in the TLU model. If the above condi-

tion is modified to
∑

(e,c)∈E c ≤ 1, then an event can not only take different values

75

Chapter 4. Probabilistic Data Models and Measures

but it may also not appear in a possible world (which is similar to the TLU model).

Thus, our ELU model can be seen to some extent as a generalization of the TLU

model.

We now discuss the uncertainty in the source attribute in a tuple.

4.1.2.2 Source-level Uncertainty

Our SLU model is motivated by the following situations:

(a) a customer (source) purchases some items (event) from a superstore, and pro-

vides identity information, e.g. by filling a form. The same customer may fill a

new form in a subsequent visit and thus, multiple matches may emerge in the

customer database as the customer’s details may be incomplete or incorrect.

(b) a vehicle (source) is identified by a camera (event) using methods such as au-

tomatic number plate recognition, which are inherently noisy. For example,

a sample tuple in the SIGHTING(time t, camera location l, vehicle Z)

relation that records vehicle sightings may look like SIGHTING(103, p, {(Y81

UV: 0.6)(YB1 UV: 0.3)(Y81 UU:0.1)}) which means that one of the vehi-

cles from {(Y81 UV: 0.6)(YB1 UV: 0.3)(Y81 UU:0.1)} was sighted at time 103

at location p. To mine patterns such as “10% of cars pass camera X , then

camera Y and later camera Z”, we consider each car as a source and each

sighting as an event.

In such scenarios, it is certain that an event occurred (e.g. a customer bought

some items, a vehicle passed a camera) but the source associated with that event is

uncertain. The software which performs the matching would typically assign confi-

dence values to the various alternative matches. A notable example of a large scale

database gathering data using such technology is the UK police automatic number

76

Chapter 4. Probabilistic Data Models and Measures

Table 4.8: A sample SLU database Dp.

eid e W

e1 (a, d, e) (X : 0.6)(Y : 0.4)

e2 (a) (Z : 1.0)

e3 (b, c) (X : 0.3)(Y : 0.2)(Z : 0.5)

e4 (a, b, c) (X : 0.7)(Z : 0.3)

e5 (c, d, e) (X : 1.0)

plate recognition database [68], and studies suggest that even the most advanced au-

tomatic number plate recognition systems have only upto 90% accuracy even under

most suitable weather conditions [69]. We model the above scenarios by assuming

that each event is associated with a probability distribution over possible sources

that could have resulted in the event. This formulation thus shows attribute-level

uncertainty in the source attribute [24]. We now formalize a source-level uncertain

(SLU) database.

SLU Database

An SLU database Dp is an ordered list of records 〈r1, . . . , rn〉 of the form (eid , e,W)

where eid is an event-id, e is an event andW is a probability distribution over S. The

distribution W contains pairs of the form (σ, c), where σ ∈ S and 0 < c ≤ 1 is the

confidence that the event e is associated with source σ; we assume
∑

(σ,c)∈W c = 1,

and that the distributions associated with each record ri in Dp are stochastically

independent. An example of an SLU database is in Table 4.8.

p-sequence. A p-sequence in an SLU database is similar to a p-sequence in

a TLU database although, the p-sequence generation details for an SLU database are

77

Chapter 4. Probabilistic Data Models and Measures

eid e W

e1 (a, d, e) (X : 0.6)(Y : 0.4)

e2 (a) (Z : 1.0)

e3 (b, c) (X : 0.3)(Y : 0.2)(Z : 0.5)

e4 (a, b, c) (X : 0.7)(Z : 0.3)

e5 (c, d, e) (X : 1.0)

source p-sequence

Dp
X (a, d, e : 0.6)†(b, c : 0.3)(a, b, c : 0.7)(c, d, e : 1.0)

Dp
Y (a, d, e : 0.4)†(b, c : 0.2)

Dp
Z (a : 1.0)(b, c : 0.5)(a, b, c : 0.3)

Figure 4.3: The SLU database of Table 4.8 transformed to p-sequences (bottom).
Note that in the p-sequence representation, events like e1 (marked with †) can only

be associated with one of the sources X and Y in any possible world.

slightly different. Specifically, we generate a p-sequence representation of an SLU

database Dp as follows. We initialize Dp
i to an empty list and consider the records

r1, r2, . . . ∈ Dp in that order. When considering the record rℓ = (eidℓ, eℓ,Wℓ), if Wℓ

associates eℓ with source σi with confidence c > 0, we append (eℓ, c) toD
p
i . Figure 4.3

gives an example of this transformation for the SLU database of Table 4.8. The as-

sumption of independence of the distributions associated with different records in

an SLU database implies that the event that eℓ is associated with source σi is in-

dependent of the event that eℓ′ is associated with source σi, for any pair of indices

1 ≤ ℓ, ℓ′ ≤ k, ℓ 6= ℓ′. Thus, whilst the p-sequences have tuple-level uncertainty

in an SLU database similar to a TLU database, the p-sequences corresponding to

different sources in an SLU database are not independent (as illustrated in Fig-

ure 4.3) and thus, one may view an SLU database as a collection of p-sequences

with dependencies in the form of x-tuples [3].

78

Chapter 4. Probabilistic Data Models and Measures

Table 4.9: The complete set of possible worlds for the database of Table 4.8
along with their probabilities.

D∗ X Y Z Pr(D∗)

D∗
1 (a, d, e)(b, c)(a, b, c)(c, d, e) 〈〉 (a) 0.126

D∗
2 (a, d, e)(b, c)(c, d, e) 〈〉 (a)(a, b, c) 0.054

D∗
3 (a, d, e)(a, b, c)(c, d, e) (b, c) (a) 0.084

D∗
4 (a, d, e)(c, d, e) (b, c) (a)(a, b, c) 0.036

D∗
5 (a, d, e)(a, b, c)(c, d, e) 〈〉 (a)(b, c) 0.210

D∗
6 (a, d, e)(c, d, e) 〈〉 (a)(b, c)(a, b, c) 0.090

D∗
7 (b, c)(a, b, c)(c, d, e) (a, d, e) (a) 0.084

D∗
8 (b, c)(c, d, e) (a, d, e) (a)(a, b, c) 0.036

D∗
9 (a, b, c)(c, d, e) (a, d, e)(b, c) (a) 0.056

D∗
10 (c, d, e) (a, d, e)(b, c) (a)(a, b, c) 0.024

D∗
11 (a, b, c)(c, d, e) (a, d, e) (a)(b, c) 0.140

D∗
12 (c, d, e) (a, d, e) (a)(b, c)(a, b, c) 0.060

Possible World Semantics. A possible world D∗ of an SLU database Dp is

generated by taking each event ei in turn, and assigning it to one of the possible

sources σi ∈ Wi, where σi ∈ S. Thus every record ri = (eidi, ei,Wi) ∈ Dp takes

the form r′i = (eidi, ei, σi), for some σi ∈ S in D∗. By enumerating all such pos-

sible combinations, we get the complete set of possible worlds. Assuming that the

distributions associated with each record ri in Dp are stochastically independent,

the probability of a possible world D∗ is Pr[D∗] =
∏n

i=1 PrWi
[σi]. For example, a

possible world D∗ for the database of Table 4.8 can be generated by associating

event e2 to source Z with probability 1.0, and the rest of the events that is events

e1, e3, e4 and e5 to source X with probabilities 0.6, 0.3, 0.7 and 1.0 respectively, and

Pr[D∗] = 0.6 × 1.0 × 0.3 × 0.7 × 1.0 = 0.126. The complete set of possible worlds

for database of Table 4.8 is in Table 4.9.

Summary. This concludes our discussion on the SLU model. So far, our discussion

on uncertainty models for SPM has focussed either on tuple-level uncertainty (TLU)

79

Chapter 4. Probabilistic Data Models and Measures

or attribute-level uncertainty in a tuple (ELU and SLU). As both ELU and TLU

(in some respect) model uncertainty in an attribute (event) and SLU is also about

uncertainty in an attribute (source), it might suggest that all these three models

are similar. However, this is not entirely the case as SPM is focussed on the source

attribute (recall the notion of a source sequence from Chapter 2). Thus, whilst

our TLU and ELU models are least constrained, as they assume independence among

events in a p-sequence and also among different p-sequences, our SLU model is

slightly constrained as it introduces dependencies among p-sequences.

In the following section, we model the uncertainty in the source attribute that arises

in deduplication (SLU-D).

4.1.3 Uncertainty in Deduplication

We add to the expressiveness of the uncertainty models we propose by introducing

a new kind of uncertainty, motivated by deduplication. Thus, our SLU-D model is

motivated by a scenario where a customer has registered for a loyalty programme

and is identified by a loyalty card etc. on his visit to a superstore. The information

about the customer loyalty programme is stored in a database which is uncertain

due to deduplication. Thus, when a customer (source) purchases items (event) from

a superstore in multiple visits and is identified each time (deterministically) by a

loyalty card etc.; multiple matches may emerge in the customer database as the

customer database itself is uncertain as a result of deduplication or cleaning [2].

In such situations, whilst the customer (source) and the associated transactions (se-

quence of events) are recorded deterministically (which means that both the source

and the source sequence are certain), the source attribute in a source sequence ex-

hibits uncertainty due to deduplication [2]. Note that the main difference in SLU

and SLU-D models is that all uncertainties associated to a source are resolved the

80

Chapter 4. Probabilistic Data Models and Measures

Activity

eid e sid

e1 (a) sid1

e2 (b) sid2

e3 (c) sid1

e4 (d) sid2

Mapping

sid W

sid1 (X : 0.7)(Y : 0.3)

sid2 (Y : 0.6)(Z : 0.4)

Figure 4.4: A sample SLU-D database Dp.

same way in the SLU-D model (which we discuss later). We now formalize the

notion of a source-level uncertain deduplicated (SLU-D) database.

SLU-D Database

An SLU-D database Dp is a set of two relations, the activity relation A and the map-

ping relationM. The activity relation A is an ordered list of records 〈a1, a2, . . . , an〉

where each record is of the form (eid, e, sid) where eid is an event-id, e is an event

and sid is the source-id (records are ordered by eid). Unlike an SLU database, we

assume that the sids are certain although, the mapping from sid to a source σ is

uncertain and is captured by the mapping relationM. The mapping relationM is

also a list of records 〈m1, m2, . . . , ml〉 of the form (sid,W) where every sid is asso-

ciated with a distribution W over S. The distribution W contains pairs of the form

(σ : c), where σ ∈ S, and 0 < c ≤ 1 is the confidence value that the corresponding

81

Chapter 4. Probabilistic Data Models and Measures

Table 4.10: The SLU-D database of Figure 4.4 transformed to sid-sequences.

sid sid-sequence W

sid1 〈{e1 : (a)}{e3 : (c)}〉 (X : 0.7)(Y : 0.3)

sid2 〈{e2 : (b)}{e4 : (d)}〉 (Y : 0.6)(Z : 0.4)

Table 4.11: The SLU-D database of Table 4.10 transformed to p-sequences.
Note that the events like e1 and e3 (marked with †) can only be associated to
one of the sources X and Y in any possible world. Further, events like e2 and e4
(marked with ⋆) will either both be associated to a source in a possible world or

otherwise.

source p-sequence

X {e1, (a) : 0.7}
†{e3, (c) : 0.7}

†

Y {e1, (a) : 0.3}
†{e2, (b) : 0.6}

⋆{e3, (c) : 0.3}
†{e4, (d) : 0.6}

⋆

Z {e2, (b) : 0.4}{e4, (d) : 0.4}

sid is associated with the source σ. We assume that the distributions associated

with different sids inM are independent of each other and that
∑

(σ:c)∈W c = 1.

sid-sequence. An sid-sequence is analogous to a source sequence in classical SPM,

as all the events associated with an sid are listed as a single sequence of events

(ordered by a time-stamp). As already mentioned that the mapping from an sid

to a source σ is uncertain, an SLU-D database can be seen as a collection of sid-

sequences where there is uncertainty about an sid-sequence being associated to a

source σ. The SLU-D database of Figure 4.4 is transformed to a collection of sid-

sequences in Table 4.10.

p-sequence. The sid-sequences can also be transformed to a representation similar

to the p-sequences in a way similar to the SLU case (Section 4.1.2.2). The p-sequence

representation for the sid-sequences in Table 4.10 is in Table 4.11. Note that in the

p-sequence representation in Table 4.11, events like e1 and e3 (marked with †) can

82

Chapter 4. Probabilistic Data Models and Measures

Table 4.12: The complete set of possible worlds for the database of Table 4.10
along with their probabilities.

D∗ X Y Z Pr(D∗)

D∗
1 {e1 : (a)}{e3 : (c)} {e2 : (b)}{e4 : (d)} 〈〉 0.420

D∗
2 {e1 : (a)}{e3 : (c)} 〈〉 {e2 : (b)}{e4 : (d)} 0.280

D∗
3 〈〉 {e1 : (a)}{e2 : (b)} 〈〉 0.180

{e3 : (c)}{e4 : (d)}

D∗
4 〈〉 {e1 : (a)}{e3 : (c)} {e2 : (b)}{e4 : (d)} 0.120

only be associated with one of the sources X and Y in a possible world. Further,

the events in an sid-sequence, e.g. the events e2 and e4 in sid2 (marked with ⋆

in Table 4.11) will all either be associated to a source or otherwise in a possible

world. Thus, in an SLU-D database, there are dependencies among events in a

p-sequence as well as among different p-sequences.

Possible World Semantics. The possible world semantics of an SLU-D database

Dp is as follows. A possible world D∗ of Dp is generated by taking each sid-sequence

sidi in turn, and assigning it to one of the possible sources σi ∈ Wi. Thus, all the

records associated with sidi in A are associated with a single source σ in a possible

world D∗. By enumerating all such possible combinations, we get the complete set

of possible worlds. We assume that the distributions associated with each sid inM

are stochastically independent of each other, which means that mapping of sidi to

source σj is independent of sidi′, i
′ 6= i, being mapped to source σj . The probability

of a possible world D∗ is computed as Pr[D∗] =
∏l

i=1 PrWi
[σi]. For example, a

possible world D∗ of the SLU-D database in Table 4.10 is generated by associating

both the sid-sequences, namely sid1 and sid2, with sources Y . The probability of

such a world is 0.3 ∗ 0.6 = 0.18. The complete set of possible worlds for the SLU-D

database of Table 4.10 is in Table 4.12.

83

Chapter 4. Probabilistic Data Models and Measures

Summary. We note that SLU-D is a more expressive model in contrast with TLU

or ELU which assume independence among events in a p-sequence as well as among

different p-sequence, and in contrast with SLU which assumes independence among

events in a p-sequence. An important distinction in SLU and SLU-D models is

that whilst in the SLU model the uncertainty in the source attribute is resolved

independently for each tuple, in the SLU-D model the uncertainties for all the tu-

ples associated to a specific source (e.g. loyalty card) are resolved the same way.

Thus, SLU-D model captures dependencies not only among different p-sequences

but also among events in a p-sequence.

Remark 4.2. It appears as if capturing dependencies in an uncertainty model may

make uncertain data modelling more realistic, but it can make evaluating the in-

terestingness predicate (defined in Section 4.2) computationally intractable as illus-

trated in Chapter 5, Sections 5.1.3 and 5.2.2.

Summary. This concludes our discussion on probabilistic data models for SPM.

We have shown that different kind of uncertainties could arise in a variety of ap-

plications that can be modelled using different uncertainty models. Thus, models

like TLU or ELU are least constrained (simple) as they are based on some indepen-

dence assumptions whereas, models like SLU or SLU-D are more expressive as they

capture some basic correlations in data.

We now define the interestingness predicate.

4.2 The Interestingness Predicate

The interestingness predicate is usually defined based on some interestingness mea-

sure or frequency criterion; we define two interestingness measures namely expected

84

Chapter 4. Probabilistic Data Models and Measures

support and probabilistic frequentness for probabilistic SPM and customize the inter-

estingness predicate from Problem 4.1 accordingly. We use possible worlds semantics

for the purpose and give examples for evaluating the interestingness predicate for

each of the uncertainty models proposed in Section 4.1.

4.2.1 Expected Support

We define the expected support of a sequence s in a probabilistic database Dp using

possible world semantics. As every possible world D∗ is a (deterministic) database,

the support of s in D∗, denoted by Sup(s,D∗), follows directly from Equation 2.2.

We then define the expected support of a sequence s in a probabilistic database Dp

as follows:

ES(s,Dp) =
∑

D∗∈PW (Dp)

Pr[D∗] ∗ Sup(s,D∗). (4.1)

We now give examples of computing the expected support of a sequence 〈(a)(b)〉 for

each of the sample probabilistic databases in Section 4.1 using the possible worlds. In

our examples, Tables 4.13, 4.14, 4.15 and 4.16, show the computing of the expected

support of 〈(a)(b)〉, for the sample probabilistic databases of Tables 4.1, 4.6, 4.8

and 4.10, using the possible worlds from Tables 4.5, 4.7, 4.9 and 4.12, respectively.

Note that the TLU database of Table 4.1 and the SLU database of Table 4.8, which

have the same p-sequence form as shown in Figures 4.1 and 4.3, have the same ex-

pected support for 〈(a)(b)〉, even though the possible worlds (see Tables 4.5 and 4.9)

are very different.

Next, we define the notion of an expected frequent sequence:

Definition 4.3 (Expected Frequent Sequence). Given a sequence s, a proba-

bilistic database Dp having m sources and a user-defined expected support threshold

θ, 1 ≤ θ ≤ m, s is an expected frequent sequence if ES(s,Dp) ≥ θ.

85

Chapter 4. Probabilistic Data Models and Measures

Table 4.13: Computing the expected support of a sequence 〈(a)(b)〉 using pos-
sible worlds (Table 4.5) for the sample TLU database of Table 4.1.

D∗
1 D∗

2 D∗
3 · · · · · · D∗

127 D∗
128

Pr(D∗) 0.014 0.014 0.006 · · · · · · 0.001 0.001

Sup(〈(a)(b)〉,D∗) 0 1 1 · · · · · · 3 3

ES(〈(a)(b)〉,Dp) = 0.014 0.014 0.006 0.001 0.001

× + × + × + · · · · · · + × + ×

0 1 1 3 3

= 0.000 + 0.014 + 0.006 + · · · · · · + 0.003 + 0.003

= 1.204

Table 4.14: Computing the expected support of a sequence 〈(a)(b)〉 using pos-
sible worlds (Table 4.7) for the sample ELU database of Table 4.6.

D∗
1 D∗

2 D∗
3 · · · · · · D∗

17 D∗
18

Pr(D∗) 0.120 0.150 0.030 · · · · · · 0.040 0.008

Sup(〈(a)(b)〉,D∗) 1 1 1 · · · · · · 0 0

ES(〈(a)(b)〉,Dp) = 0.120 0.150 0.030 0.040 0.008

× + × + × + · · · · · · + × + ×

1 1 1 0 0

= 0.120 + 0.150 + 0.030 + · · · · · · + 0.000 + 0.000

= 0.480

We now formalize the computational task of finding all expected frequent sequences

in a probabilistic database Dp:

Definition 4.4 (Expected Frequent Sequence Mining Problem). Given a

probabilistic database Dp having m sources and a user-defined expected support

threshold θ, 1 ≤ θ ≤ m, find all expected frequent sequences in Dp.

86

Chapter 4. Probabilistic Data Models and Measures

Table 4.15: Computing the expected support of a sequence 〈(a)(b)〉 using pos-
sible worlds (Table 4.9) for the sample SLU database of Table 4.8.

D∗
1 D∗

2 D∗
3 · · · · · · D∗

11 D∗
12

Pr(D∗) 0.126 0.054 0.084 · · · · · · 0.140 0.060

Sup(〈(a)(b)〉,D∗) 1 2 1 · · · · · · 2 1

ES(〈(a)(b)〉,Dp) = 0.126 0.054 0.084 0.140 0.060

× + × + × + · · · · · · + × + ×

1 2 1 2 1

= 0.126 + 0.108 + 0.084 + · · · · · · + 0.280 + 0.060

= 1.204

Table 4.16: Computing the expected support of a sequence 〈(a)(b)〉 using pos-
sible worlds (Table 4.12) for the sample SLU-D database of Table 4.10.

D∗
1 D∗

2 D∗
3 D∗

4

Pr(D∗) 0.420 0.280 0.180 0.120

Sup(〈(a)(b)〉,D∗) 0 0 1 0

ES(〈(a)(b)〉,Dp) = 0.420 0.280 0.180 0.120

× + × + × + ×

0 0 1 0

= 0.000 + 0.000 + 0.180 + 0.000

= 0.180

4.2.2 Probabilistic Frequentness

Recall from Section 3.6.2 that one of the criticisms of expected support is that the

expectation of a random variable does not provide confidence bounds that the sup-

port of a sequence is high [28]. We now define the notion of probabilistic frequentness

of a sequence. We first give a few notations.

87

Chapter 4. Probabilistic Data Models and Measures

Given a probabilistic databaseDp and its set of possible worlds PW (Dp), the support

probability for a sequence s and a support value k is denoted by:

Prk(s) =
∑

D∗∈PW (Dp),(Sup(s,D∗)=k)Pr(D
∗), (4.2)

where Sup(s,D∗) is the support of s in D∗. In other words, Prk(s) is the probability

that the support of s is exactly k in the probabilistic database Dp. Next define

the support probability distribution as the vector 〈Pr0(s), . . . ,Prm(s)〉. The support

probability distributions for a sequence s = 〈(a)(b)〉, for each of the sample proba-

bilistic database in Section 4.1 are shown in Figure 4.5. Observe that the support

probability distribution for the SLU database of Table 4.8 is very different from

the TLU database of Table 4.1, although the p-sequences are the same (Figures 4.3

and 4.1). For example, for the TLU database of Table 4.1, Pr3(s) = 0.026, but in

the SLU database of 4.8, Pr3(s) = 0, as no such world exists where all three sources

support s (see Table 4.9). Finally, the probability that the support of a sequence s

is at least θ, denote by Pr≥θ(s), is computed as follows:

Pr≥θ(s) =

m∑

k=θ

Prk(s) (4.3)

Next, we define the notion of a probabilistic frequent sequence:

Definition 4.5 (Probabilistic Frequent Sequence). Given a sequence s, a prob-

abilistic database Dp having m sources and two user-specified thresholds, a support

threshold θ, 1 ≤ θ ≤ m, and a confidence threshold τ ∈ (0, 1], s is a probabilistic fre-

quent sequence if Pr≥θ(s) ≥ τ or alternatively, s is a probabilistic frequent sequence

if it has a probability of at least τ of having support at least θ in the probabilistic

database Dp.

We now formalize the computational task of finding all probabilistic frequent se-

quences in a probabilistic database Dp:

88

Chapter 4. Probabilistic Data Models and Measures

for the TLU database of Table 4.1

Number of sources

0 1 2 3

Support probability 0.024 0.855 0.095 0.026

for the ELU database of Table 4.6

Number of sources

0 1 2 3

Support probability 0.520 0.480 0.000 0.000

for the SLU database of Table 4.8

Number of sources

0 1 2 3

Support probability 0.084 0.628 0.288 0.000

for the SLU-D database of Table 4.10

Number of sources

0 1 2 3

Support probability 0.820 0.180 0.000 0.000

Figure 4.5: The support probability distributions for a sequence 〈(a)(b)〉 for
each of the sample probabilistic database in Section 4.1.

Definition 4.6 (Probabilistic Frequent Sequence Mining Problem). Given

a probabilistic database Dp having m sources and two user-specified thresholds,

a support threshold θ, 1 ≤ θ ≤ m, and a confidence threshold τ ∈ (0, 1], find all

probabilistic frequent sequences in Dp.

Observe that the support probability distribution gives far more detailed informa-

tion than expected support; from the support probability distribution of a sequence

89

Chapter 4. Probabilistic Data Models and Measures

one can easily compute not only the expected support, but also the variance and

higher moments. For example, the expected support of a sequence 〈(a)(b)〉 in the

sample SLU database of Table 4.8 using the support probability distribution in Fig-

ure 4.5 can be computed as 0×0.084+1×0.628+2×0.288+3×0.0 = 1.204, which

is the same as the value computed in Table 4.15.

4.3 Summary

We have discussed probabilistic data models for the SPM problem motivated by real

life applications. We have considered uncertainty in the tuple, and in the event or

the source attribute of a tuple. We have also modelled another kind of uncertainty

that could arise in the source attribute in deduplication. Finally, we have defined the

interestingness predicate based on two frequency criteria, namely expected support

and probabilistic frequentness, and have illustrated the concepts with the help of

examples.

90

Chapter 5

Computational Complexity of

Evaluating the Interestingness

Predicate

We consider the problem of computing frequent sequences in a probabilistic database

for the uncertainty models and the definitions of interestingness proposed in Chap-

ter 4. We show that different formalizations of the probabilistic SPM problem can

lead to very different outcomes from a complexity theoretic viewpoint. We focus

on evaluating the interestingness predicate (Section 4.2), which when specialized

to probabilistic SPM, and to the definitions of expected frequent sequence (Sec-

tion 4.2.1) and probabilistic frequent sequence (Section 4.2.2), yield the following

problems.

Problem 5.1. Given a probabilistic database Dp, a sequence s and an expected

support threshold θ, is ES(s,Dp) ≥ θ?

Problem 5.2. Given a probabilistic database Dp, a sequence s, an expected support

threshold θ and a confidence threshold τ , is Pr(Sup(s,Dp) ≥ θ) ≥ τ?

91

Chapter 5. Evaluating the Interestingness Predicate

We now discuss Problems 5.1 and 5.2 in the context of each of the uncertainty models

in Chapter 4, namely TLU, ELU, SLU and SLU-D.

We first give a few notations. We denote the number of sources by m (as in Chap-

ter 4), the number of events in the p-sequence of the i-th source by Ni, the total

size of all p-sequences by N =
∑m

i=1Ni, and the number of elements in s by k. We

assume that an element consists of at most a constant number of items. Further, in

an ELU database, we denote the number of (sets of) events in the p-sequence of the

i-th source by Ni as well for convenience’ sake.

5.1 Expected Support Computation

We now discuss Problem 5.1, that is, we focus on evaluating the interestingness pred-

icate under the expected support measure for the uncertainty models we propose.

As mentioned in Chapter 4, there are potentially an exponential number of possible

worlds, so it is infeasible to evaluate the interestingness predicate directly by com-

puting the expected support of a sequence using Equation 4.1. We show that whilst

we can evaluate the interestingness predicate efficiently for the TLU, ELU and SLU-

models, it is computationally intractable to evaluate interestingness predicate for

the SLU-D model. We first show that we can process p-sequences independently for

the purpose of expected support computation even if there are dependencies among

p-sequences (e.g. in the case of an SLU database) due to the principle of linearity

of expectation.

Theorem 5.3. Given a probabilistic databaseDp in the form of p-sequences of events

and a sequence s, we can compute the expected support of s in Dp by computing the

source support probability for each source σi independently, that is ES(s,Dp) =
∑m

i=1 Pr(s � Dp
i).

92

Chapter 5. Evaluating the Interestingness Predicate

Proof. Recall from Equation 4.1 that the expected support of a sequence s in a

probabilistic database Dp is given by:

ES(s,Dp) =
∑

D∗∈PW (Dp)

Pr[D∗] ∗ Sup(s,D∗).

Now recall from Section 2.2.1 that we defined an indicator variable Xi whose value

is 1 if s is a subsequence of the source sequence for source σi and 0 otherwise. As

the support of s in a possible world D∗, denoted by Sup(s,D∗), is the same as the

value
∑m

i=1Xi(s,D
∗), we can write:

ES(s,Dp) =
∑

D∗ Pr[D∗] ∗
∑m

i=1Xi(s,D
∗)

=
∑m

i=1

∑

D∗ Pr[D∗] ∗Xi(s,D
∗)

=
∑m

i=1 E[Xi(s,D
p)], (5.1)

where E denotes the expected value of a random variable Xi for a sequence s in the

probabilistic database Dp. Since Xi is a 0-1 variable,

E[Xi(s,D
p)] = Pr[s � Dp

i], (5.2)

and we calculate the right-hand quantity in Equation 5.2, which we refer to as the

source support probability, and is the probability that a source σi supports a sequence

s.

Thus, from Equations 5.1 and 5.2, we show that computing the expected support of

a sequence s in a probabilistic database Dp is equivalent to computing the sum of

the source support probabilities for each of the p-sequences Dp
i in the probabilistic

database Dp, that is:

ES(s,Dp) =
∑m

i=1 Pr[s � Dp
i], (5.3)

93

Chapter 5. Evaluating the Interestingness Predicate

Table 5.1: Computing Pr[〈(a)(b)〉 � D
p
X] using dynamic programming in the

sample database of Figure 4.3. In Table 5.1, the value A[2,4] is the probability
that the sequence 〈(a)(b)〉 is supported by source X.

(a, d, e : 0.6) (b, c : 0.3) (a, b, c : 0.7) (c, d, e : 1.0)

A[0,0] = 1 A[0,1] = 1 A[0,2] = 1 A[0,3] = 1 A[0,4] = 1

〈(a)〉 A[1,0] = 0
A[1,1] = 0.4× A[1,0] A[1,2] = 0.6 A[1,3] = 0.3× A[1,2] A[1,4] = 0.72

+ 0.6× A[0,0] = 0.6 + 0.7× A[0,2] = 0.72

〈(a)(b)〉 A[2,0] = 0
A[2,1] = 0 A[2,2] = 0.7× A[2,1] A[2,3] = 0.3× A[2,2] A[2,4] = 0.474

+ 0.3× A[1,1] = 0.18 + 0.7× A[1,2] = 0.474

which proves the theorem.

We now discuss computing the source support probability and hence, the expected

support of a sequence in a probabilistic database. Recall from Section 4.1 that

the p-sequence representation of an ELU database is different from that of an SLU

or a TLU database; we first consider computing expected support in an SLU (or

a TLU) database, and then consider the ELU case.

5.1.1 TLU/SLU Case

We focus on computing the source support probability in an SLU (or a TLU)

database. Although the assumption of independence between events in a p-sequence

means that there is no combinatorial explosion arising directly from the expo-

nential number of possible worlds, an important issue is that s may be a sub-

sequence of Dp
i in many different ways. For example, if s = 〈(a)(a) . . . (a)

︸ ︷︷ ︸

k times

〉 and

Dp
i = 〈(a : c1), (a, c2), . . . , (a, cNi

)〉, then any subset of k positions from Dp
i could

be the (sole) basis for the i-th source to support s. Thus, we cannot compute the

source support probability naively. We now show that we can compute the source

support probability efficiently using dynamic programming.

94

Chapter 5. Evaluating the Interestingness Predicate

Given a p-sequence Dp
i = 〈(e1, c1), . . . , (er, cr)〉 and a sequence s = 〈s1, . . . , sq〉, we

create a (q + 1)× (r + 1) matrix Ai,s[0..q][0..r] (we omit the subscripts on A when

the source and sequence are clear from the context). For 1 ≤ k ≤ q and 1 ≤ ℓ ≤ r,

A[k, ℓ] will contain Pr[〈s1, . . . , sk〉 � 〈(e1, c1), . . . , (eℓ, cℓ)〉]. For example, the cell

A[2, 4] in Table 5.1 contains the value Pr[〈(a)(b)〉 � Dp
X]. We set A[0, ℓ] = 1 for

all ℓ, 0 ≤ ℓ ≤ r and A[k, 0] = 0 for all 1 ≤ k ≤ q, and compute the other values

row-by-row. For 1 ≤ k ≤ q and 1 ≤ ℓ ≤ r, define:

c∗kℓ =







cℓ if sk ⊆ eℓ

0 otherwise
(5.4)

The interpretation of Equation 5.4 is that c∗kℓ is the probability that eℓ allows the

element sk to be matched in source i; this is 0 if sk 6⊆ eℓ, and is otherwise equal to

the probability that eℓ is associated with source i. Now we use the equation:

A[k, ℓ] = (1− c∗kℓ) ∗ A[k, ℓ− 1] + c∗kℓ ∗ A[k − 1, ℓ− 1]. (5.5)

Table 5.1 shows the computation of the source support probability of an example

sequence s = 〈(a)(b)〉 for source X in the SLU database of Figure 4.3. Similarly, we

can compute Pr[s � Dp
Y] = 0.08 and Pr[s � Dp

Z] = 0.65, so the expected support of

〈(a)(b)〉 in the database of Figure 4.3 is 0.474+0.08+0.65 = 1.204. The reason Equa-

tion 5.5 is correct is that if sk 6⊆ eℓ then the probability that 〈s1, . . . , sk〉 � 〈e1, . . . , eℓ〉

is the same as the probability that 〈s1, . . . , sk〉 � 〈e1, . . . , eℓ−1〉 (note that if sk 6⊆ eℓ

then c∗kℓ = 0 and A[k, ℓ] = A[k, ℓ− 1]). Otherwise, c∗kℓ = cℓ, and we have to consider

two disjoint sets of possible worlds: those where eℓ is not associated with source

i (the first term in Equation 5.5) and those where it is (the second term in Equa-

tion 5.5). We have therefore shown:

Lemma 5.4. Given a p-sequence Dp
i and a sequence s, by applying Eq. 5.5 repeat-

edly, we correctly compute Pr[s � Dp
i].

95

Chapter 5. Evaluating the Interestingness Predicate

To calculate the expected support of a sequence s in an SLU or a TLU database Dp

using Equation 5.3, we can apply Lemma 5.4 to each source in turn, which takes

O(k ·
∑m

i=1Ni) = O(kN) time.

Theorem 5.5. Given a sequence s and an SLU or a TLU database Dp, we can

calculate the expected support of s in Dp and hence evaluate the interestingness

predicate, in O(kN) time.

Proof. Given a sequence s = 〈s1, . . . , sq〉 and the p-sequence of source σi of size

Ni, we create a (q + 1) × (Ni + 1) matrix A[0..q][0..Ni] and do the initialisations

as in Section 5.1.1. We then compute the entries in the A matrix row-by-row.

We assume that the test in Equation 5.4 can be done in constant time. Clearly, the

source support probability computation for a single source takes O(k·Ni) time. Thus,

we can compute the expected support of a sequence s in an SLU or a TLU database

by applying Lemma 5.4 to each source in turn, which takes O(k ·
∑m

i=1Ni) = O(kN)

time and this proves the theorem.

We now discuss the ELU case.

5.1.2 ELU Case

Recall that in an ELU database, a p-sequence is of the form 〈{(e(1,1), c(1,1)), (e(1,2),

c(1,2)), . . . , (e(1,j1), c(1,j1))} {(e(r,1), c(r,1)), (e(r,2), c(r,2)) . . . , (e(r,jr), c(r,jr))}〉, where

e(ℓ,iℓ) is the i-th event in the ℓ-th set of events and c(ℓ,iℓ) is the associated confi-

dence value. Given a sequence s = 〈s1, . . . , sq〉, we create (q + 1) × (r + 1) matrix

Ai,s[0..q][0..r] similar to an SLU (or a TLU) database; whilst the initialisations for

computing the source support probability in an ELU database are similar to an SLU

96

Chapter 5. Evaluating the Interestingness Predicate

(or a TLU) database, we compute the value c∗kl in an ELU database as follows. For

1 ≤ k ≤ q and 1 ≤ ℓ ≤ r, let xi be a variable whose value is c(ℓ,iℓ) if sk ⊆ e(ℓ,iℓ) and

0 otherwise, then:

c∗kl =
∑

xi. (5.6)

We can then use Equation 5.5 similar to the SLU (or TLU) case to compute

the source support probability and hence, the expected support of a sequence us-

ing Lemma 5.4.

Theorem 5.6. Given a sequence s and an ELU database Dp, we can calculate

the expected support of s in Dp and hence evaluate the interestingness predicate, in

O(kN) time.

Proof. The proof is similar to that of Theorem 5.5 as we assume that the test

in Equation 5.6 can be done in constant time in case of an ELU database as well.

5.1.3 SLU-D Case

We now discuss computing the expected support of a sequence in an SLU-D database.

We first review a few concepts from Chapter 4. An SLU-D database Dp is a set of

two relations, the activity relation A having records of the form (eid, e, sid) where

eid is an event-id, e is an event and sid is the source-id (records are ordered by

eid), and the mapping relation M having records of the form (sid,W) where ev-

ery sid is associated with a distribution W over S. Further, an sid-sequence is a

sequence of all the events associated with an sid (ordered by a time-stamp); thus,

an SLU-D database can be seen as a collection of sid-sequences where there is un-

certainty about an sid-sequence being associated to a source σ. For an example, see

the SLU-D database of Figure 4.4 transformed to sid-sequences in Table 4.10.

97

Chapter 5. Evaluating the Interestingness Predicate

Consider a sample databaseDp having two tuples in the activity relation (e1, (a), sid0)

and (e2, (a), sid0) and one tuple in the mapping relation (sid0, (X : 0.7, Y : 0.3)).

The Dp in sid-sequence format is as follows: (〈(a)(a)〉, (X : 0.7, Y : 0.3)). Now, con-

sider computing the expected support of s in Dp in a way similar to the SLU case.

As Dp
X = 〈(a : 0.7)(a : 0.7)〉 and Dp

Y = 〈(a : 0.3)(a : 0.3)〉, the contribution from

source X and source Y to the expected support of s is 0.91 and 0.51 respectively,

and thus the expected support of s in Dp is 0.91 + 0.51 = 1.42; which is not right,

as for this sample database, there are only two possible worlds: one where 〈(a)(a)〉

is associated with source X and the probability of this world is 0.7, and other when

it is associated with source Y and the probability of this world is 0.3. Thus, the

expected support of s in Dp is 1, not 1.42. We now show that the difficulty is not

in taking one particular approach or with the linearity of expectation but is with

the independence assumption needed to compute the source support probability and

thus, is inherent to the problem. We define the following problem:

Definition 5.7 (Expected Support Problem). Given an SLU-D database Dp,

a sequence s, and an expected support threshold θ, is ES(s,Dp) ≥ θ, i.e. is the

expected support of s in Dp is at least θ.

Theorem 5.8. Expected Support is NP-complete.

Proof. We reduce the 3D Matching problem, a known NP-complete problem [70]

to the Expected Support problem. We first define the 3D Matching problem.

Definition 5.9 (3D Matching Problem). Given three disjoint sets X , Y and Z,

|X| = |Y | = |Z| = N , and a set of triples T ⊆ X × Y × Z, |T | = M , is there a set

of triples T ′ ⊆ T , |T ′| = N , such that no two triples in T ′ agree in any coordinate.

Given three disjoint sets X , Y and Z, each of size N , and a set of triples T ⊆

X×Y ×Z, we create an instance of Expected Support (an SLU-D database Dp,

98

Chapter 5. Evaluating the Interestingness Predicate

Table 5.2: An instance of 3D Matching.

Three disjoint sets: X = {x1, x2}, Y = {y1, y2}, Z = {z1, z2}

Set of Triples: T = {(x1, y1, z2), (x2, y1, z2), (x2, y2, z1)}

a sequence s, and a number θ) in polynomial time such that solving the latter returns

the answer to the former that is, given Dp, s and θ, we ask that is ES(s,Dp) ≥ θ?

If the answer to this question is yes, we can also tell that there is a set of triples T ′

of size N such that no two triples in T ′ agree in any coordinate, and if the answer

is no, then such a set of triples does not exist.

Let X = {x1, . . . , xN}, Y = {y1, . . . , yN}, and Z = {z1, . . . , zN} be the three disjoint

sets, and T be the set of triples of sizeM , where a triple is of the form (xi, yj, zk) ∈ T ,

i, j, k ≤ N .

We create an instance of Expected Support as follows. We generate an activity

relation A of the form (eid, e, sid), by creating a multi-set TX generated by selecting

the x-coordinates from each triple (xi, yj, zk) in T .

Note that |TX | = M . For every xi ∈ TX (taken as a multi-set), we take xi as an

event and time-stamp xi from (1, . . . ,M) in such a way that for any xi, xi′ ∈ TX ,

i 6= i′, if i < i′ then the time-stamp of all the events (xi) is earlier than that of (xi′).

Similarly, we generate TY and TZ and time-stamp the elements in TY and TZ from

(M + 1, . . . , 2M) and (2M + 1, . . . , 3M), respectively. We label every triple in T

with an sid from (1, . . . ,M) and thus, any of the x-, y- or z-coordinates in a triple

are associated with the same sid in A. Finally, we introduce an additional tuple

(3M + 1, ($), 0) in A, where 3N + 1 is the time-stamp, ($) is the event, and 0 is the

sid.

For example, consider the sample 3D Matching instance in Table 5.2 having three

sets, X = {x1, x2}, Y = {y1, y2} and Z = {z1, z2}, and a set of triples T =

99

Chapter 5. Evaluating the Interestingness Predicate

Activity

eid e sid

eid1 (x1) sid1

eid2 (x2) sid2

eid3 (x2) sid3

eid4 (y1) sid1

eid5 (y1) sid2

eid6 (y2) sid3

eid7 (z1) sid3

eid8 (z2) sid1

eid9 (z2) sid2

eid10 ($) sid0

Mapping

sid W

sid0 (σ0 : 1.0)

sid1 (σ0 : ǫ)(σ1 : (1− ǫ))

sid2 (σ0 : ǫ)(σ2 : (1− ǫ))

sid3 (σ0 : ǫ)(σ3 : (1− ǫ))

Figure 5.1: The sample 3D Matching instance of Table 5.2 transformed to
an SLU-D database Dp.

{(x1, y1, z2), (x2, y1, z2), (x2, y2, z1)}. We transform our example 3D Matching

instance to an SLU-D database Dp as follows. We first create the activity rela-

tion A. We generate a multi-set TX = {x1, x2, x2} and time-stamp the elements

in TX , taken as events in A as (1, 2, 3). Similarly, we generate TY = {y1, y1, y2}

and TZ = {z1, z2, z2} and time-stamp the elements therein as (4, 5, 6) and (7, 8, 9),

respectively. Next, we label every triple in T with an sid as (1, 2, 3). As a final step

in the creation of A, we introduce an additional tuple (10, $, 0) in A where 10 is the

time-stamp, ($) is the event, and 0 is the sid.

100

Chapter 5. Evaluating the Interestingness Predicate

Table 5.3: The sample SLU-D database of Figure 5.1 transformed to sid-
sequences.

sid-sequences W

sid0: 〈($)〉 (σ0 : 1.0)

sid1: 〈(x1) (y1) (z2)〉 (σ0 : ǫ)(σ1 : (1− ǫ))

sid2: 〈(x2) (y1) (z2)〉 (σ0 : ǫ)(σ2 : (1− ǫ))

sid3: 〈(x2) (y2) (z1)〉 (σ0 : ǫ)(σ3 : (1− ǫ))

Next, we generate the mapping relation M of the form (sid,W) by taking the

distinct sids in A, and for every sid i, generate the distribution W by mapping sid i

to source σi with probability (1−ǫ) and with source σ0 with probability ǫ. Note that

ǫ is a binary number (see Remark A.2). The value of ǫ will be chosen later, but it

will be less than 1/2. The sid 0 is associated only with source σ0 with probability 1.

Thus, we create an SLU-D database Dp having an activity and a mapping relation.

In the example 3D Matching instance, we generate the mapping relation by se-

lecting sids 1 and 2 from A, and by associating those (i.e. sids 1 and 2) with sources

σ1 and σ2, respectively, with probability (1− ǫ), and with the source σ0 with prob-

ability ǫ (ǫ will be chosen later). sid 0 is associated with source σ0 with probability

1. An example of this transformation is shown in Figure 5.1. The sample SLU-D

database of Figure 5.1 is transformed to sid-sequences in Table 5.3.

Next, we generate the sequence s by selecting the elements in X , Y and Z, and

place them in order and then add $ to the end to obtain s = 〈x1, . . . , xN , y1, . . . , yN ,

z1, . . . , zN , $〉. In the example, we generate s = 〈x1, x2, y1, y2, z1, z2, $〉.

Finally, we will specify a θ depending on ǫ, M , and N . This essentially completes

the creation of an instance of Expected Support, which takes polynomial time.

We now show that we can choose ǫ and θ so that the answer to Expected Support

is yes, if and only if the answer to 3D Matching is yes. In this instance of

101

Chapter 5. Evaluating the Interestingness Predicate

Expected Support, a set of sid-sequences R is mapped to source σ0 in every

possible world. It is clear that a possible world supports the sequence s only if the

source σ0 supports it, due to the terminating $ symbol. From the perspective of

expected support computation, we only need to know if there exists a set R of size

N that when mapped to source σ0 in a possible world, supports s. Thus, we are only

interested in such possible worlds where a set R of size N is mapped to source σ0.

We consider the following two cases:

(a) If the answer to 3D Matching is yes, there exists (at least) one set R of size

N that when mapped to source σ0 in a possible world supports s.

(b) If the answer to 3D Matching is no, then the possible world corresponding

to the smallest set R that when mapped to source σ, supports s is at least of

size N + 1.

Observe that a possible world where N out of M sid-sequences are mapped to

source σ0 has a probability ǫN ∗ (1 − ǫ)M−N . We choose the support threshold

θ = ǫN ∗ (1− ǫ)M−N . We now show that if (a) holds then ES(s,Dp) ≥ θ, and if (b)

holds then ES(s,Dp) < θ.

We first consider case (a) which is obvious, as even if there is only one such possible

world where s is supported, ES(s,Dp) = θ. Clearly, if there are more than one such

possible worlds, the expected support of s in Dp will be more than θ; thus, if (a)

holds ES(s,Dp) ≥ θ.

We now focus on case (b). Suppose that R, |R| = r ≥ N + 1, is the smallest set of

sid-sequences that when mapped to source σ0 in a possible world, then that possible

world supports the sequence s. Clearly, there can be many R, and a possible world

where any superset R′ of R, |R′| ≤ M , is mapped to source σ0 will also contribute

to ES(s,Dp).

102

Chapter 5. Evaluating the Interestingness Predicate

We want to choose ǫ is such a way that the contribution to the expected support

of a sequence s from all such possible worlds where the sid-sequences in R or any

of its superset R′ are mapped to source σ0, does not exceed θ. We show that for

ǫ = (1/2M+1), the expected support of s in Dp cannot exceed θ. As |R| = r ≥ N+1,

ES(s,Dp) will at most be:

ES(s,Dp) ≤

(
M

r

)

(ǫr ∗ (1− ǫ)M−r)

+
(

M

r + 1

)

(ǫr+1 ∗ (1− ǫ)M−r−1)

+

...

+
(
M

M

)

(ǫM ∗ (1− ǫ)M−M)

ES(s,Dp) ≤

[(
M

r

)

+ . . .+

(
M

M

)]

ǫr ∗ (1− ǫ)M−r

≤ 2M ∗ (ǫr ∗ (1− ǫ)M−r)

we need to show that 2M ∗ ǫr ∗ (1 − ǫ)M−r < θ for ǫ = (1/2M+1), where θ =

ǫr−1 ∗ (1− ǫ)M−r−1. We can write:

2M ∗ ǫr ∗ (1− ǫ)M−r < ǫr−1 ∗ (1− ǫ)M−r−1

Solving above equation on both sides, we get:

2M ∗ ǫ < (1− ǫ),

which clearly holds for ǫ = (1/2M+1), and this proves the case (b).

103

Chapter 5. Evaluating the Interestingness Predicate

Hence, we have shown that if we can answer the question, is ES(s,Dp) ≥ θ, we

can also tell if there exists a set of triples T ′ of size N such that no two triples

in T ′ agree in any coordinate, and thus reducing the 3D Matching problem to

the Expected Support problem, and showing that Expected Support is NP-

complete.

We now give examples to explain each of case (a) and (b). We first discuss a

situation where (a) holds. Consider the sample example in Table 5.2, we generate

s = 〈x1, x2, y1, y2, z1, z2, $〉, and set the value of ǫ = (1/23+1), as M = 3. Next, we

choose θ = (1/23+1)2 ∗ (1− 1/23+1)3−2, as |N | = 2.

If (a) holds that is if the answer to this instance of 3D Matching is yes, there

must at least be one set R containing exactly 2 sid-sequences that when mapped to

source σ0 in a possible world supports s. In our example, there exists such a set R

containing exactly two sid-sequences, i.e. sid-sequence 1 and 3 that when mapped to

source σ0 support s. A superset R′ of R containing all three sid-sequences will also

contribute to ES(s,Dp). Thus, ES(s,Dp) = ((1/24)
2
∗ (1− (1/24))3−2) + ((1/24)

3
∗

(1− (1/24))3−3), which clearly is greater than θ = (1/24)
2
∗ (1− (1/24))3−2.

We now discuss an example where (b) holds. In contrast with the previous example,

consider the set of triples T = {(x1, y1, z2), (x2, y1, z1), (x1, y2, z1)}. We then generate

the sequence s = 〈x1, x2, y1, y2, z1, z2, $〉, and set the value of ǫ = (1/23+1), and choose

θ = (1/23+1)2 ∗ (1− 1/23+1)3−2, as before.

If (b) holds that is if the answer to this instance of 3D Matching is no, the smallest

set R containing a set of sid-sequences that when mapped to source σ0 in a possible

world supports s, must at least be of size 3. It can be seen that in our example, the

104

Chapter 5. Evaluating the Interestingness Predicate

smallest such set of sid-sequences is of size 3, i.e. containing sid-sequences 1, 2 and

3. Thus, ES(s,Dp) = (1/24)
3
∗ (1− (1/24))3−3, which clearly is less than θ.

5.2 Probabilistic Frequentness Computation

We now discuss Problem 5.2, that is, we focus on evaluating the interestingness

predicate under the probabilistic frequentness measure for the uncertainty models

in Chapter 4. As already mentioned, that due to potential exponential number

of possible worlds, it is infeasible to evaluate the interestingness predicate directly

by using Equation 4.2. We show that whilst we can evaluate the interestingness

predicate efficiently for the TLU and ELU model, it is computationally intractable

to evaluate interestingness predicate for the SLU and SLU-D model.

We first show that for the TLU and ELU model, we can compute the probabilistic

frequentness of a sequence in a probabilistic database Dp efficiently using dynamic

programming.

5.2.1 TLU/ELU Case

Given a sequence s and a TLU (or an ELU) database Dp, we compute the proba-

bilistic frequentness of s in Dp as follows. We compute the entire support probability

distribution. The support probability distribution is the vector 〈Pr0(s), . . . ,Prm(s)〉,

where Prk(s) is the probability that the support of s is exactly k. Given the support

probability distribution, we can then calculate the probability that support of s is

at least θ, denoted by Pr≥θ, as follows:

Pr≥θ(s) =
∑m

k=θ Prk(s), (5.7)

105

Chapter 5. Evaluating the Interestingness Predicate

in O(m) time and thereby answer the interestingness predicate.

As already mentioned that in a TLU (or an ELU) database, the p-sequences are

independent. This allows the support probability distribution to be computed as a

dynamic programming recurrence as follows. We first compute Pr(s � Dp
i) for all

sources i in O(kN) time as in Theorem 5.5. Next, we define Pri,j(s), for 0 ≤ i, j ≤ m,

as the probability that exactly i of the first j sources support s. We then use the

formula:

Pri,j(s) = Pri−1,j−1(s) · Pr(s � Dp
i) + Pri,j−1(s) · (1− Pr(s � Dp

i)), (5.8)

where Pr0,j(s) = 1, 0 ≤ j ≤ m and Pri,j(s) = 0, for all i > j, to compute all the val-

ues Pri,j in O(m2) time. Since Pri,m(s) = Pri(s), we get the full support probability

distribution and can use this to determine if s is a probabilistic frequent sequence;

the overall time is O(kN +m2). In summary:

Theorem 5.10. Given a sequence s and a TLU or an ELU database Dp, we can

calculate the support probability distribution, and hence evaluate the interestingness

predicate in O(kN +m2) time.

Remark 5.11. When computing Pri,j(s) using Equation 5.8, we consider two cases:

either σi supports s, and exactly j − 1 of σ1, . . . , σi−1 support s (the first term

in Equation 5.8) or σi does not support s and exactly j of σ1, . . . , σi−1 support

s (the second term in Equation 5.8). The correctness of Equation 5.8 depends

crucially on the fact that we assume independence among p-sequences, so Pr(s � Dp
i)

(respectively Pr(s 6� Dp
i)) is unchanged even when conditioned on knowing that

exactly j − 1 (respectively j) of the first i− 1 sources support s.

Remark 5.12. Since N/m is the average length of a p-sequence, N/m ≪ m and

(since k is not very large as well) the m2 term will often dominate the kN term.

106

Chapter 5. Evaluating the Interestingness Predicate

This means the interestingness predicate for computing probabilistic frequentness

will often be computationally more expensive than for computing expected support.

5.2.2 SLU Case

In an SLU database, we cannot use Equation 5.8 to efficiently compute the sup-

port probability distribution, since the p-sequences are not independent (see Re-

mark 5.11). Consider the very simple probabilistic database which consists of just

the event {a}, associated with source σ1 and σ2 with probabilities 0.5 each. There

are only two possible worlds, the first with the event {a} associated with σ1 and

nothing with σ2, and the second the other way around. Clearly, if s is the sequence

〈{a}〉, then Pr(s � Dp
1) = Pr(s � Dp

2) = 0.5. However, applying Equation 5.8

gives that Pr1,1 = 0.5 (correct) and Pr2,2 = 0.25 (incorrect). The probability that

both sources support s is zero, not 0.25 – there is no possible world in which both

sources support s. To see what goes wrong, consider the computation of Pr2,2(s) as

Pr1,1(s) · 0.5+Pr2,1(s) · 0.5 = 0.5 · 0.5+0 · 0.5 = 0.25. Looking at the first term, if σ1

supports s, then conditioned on this knowledge, the probability that σ2 supports s is

zero. Thus, the correct computation for Pr2,2(s) would be as 0.5 ·0+0 ·0.5 = 0. Un-

fortunately, the difficulty is not with one particular approach but is intrinsic to the

problem: we now show that computing even a single entry of the support probability

distribution is provably hard. Define the following problem:

Definition 5.13 (Exact-k Support Problem). The input is an SLU database Dp,

a sequence s and a number k, 0 ≤ k ≤ m. The output is Prk(s), i.e. the probability

that exactly k sources support s.

Theorem 5.14. Exact-k Support is #P-complete.

Proof. We reduce the problem of computing the number of perfect matchings in a

bipartite graph, a known #P-complete problem [71] to Exact-k Support.

107

Chapter 5. Evaluating the Interestingness Predicate

v1

v2

v3

u1

u2

u3

(a)

eid e W

e1 (a) (σ1:0.5)(σ2:0.5)

e2 (a) (σ1:0.33)(σ2:0.33)(σ3:0.33)

e3 (a) (σ1:0.5)(σ3:0.5)

(b)

Figure 5.2: A sample bipartite graph (a) transformed to a probabilistic database
(b). The vertices in V correspond to eid and the vertices in U correspond to source

σi ∈ S.

source event

σ1 e1, e2

σ2 〈〉

σ3 e3

v1

v2

v3

u1

u2

u3

(a)

source event

σ1 e3

σ2 e1

σ3 e2

v1

v2

v3

u1

u2

u3

(b)

Figure 5.3: Two possible worlds in PW (Dp) and their bipartite graph repre-
sentations. A perfect matching (b), when every vertex in U ∪ V is adjacent to a

single edge.

108

Chapter 5. Evaluating the Interestingness Predicate

Let G(U, V, E) be an undirected bipartite graph, where U and V are disjoint sets of

vertices and E is the set of edges between them, E ⊆ U × V . We assume that |U |

= |V | = n. A perfect matching M is a subset of edges in E such that each vertex

in U ∪ V is adjacent to exactly a single edge in M . Given a bipartite graph G, the

problem of counting how many perfect matchings there are in G is #P-complete [71].

Given a bipartite graph G, to compute the number of matchings in G, we create

an instance of Exact-k Support (a probabilistic database Dp, a sequence s and

a number k) in polynomial time such that solving the latter instance gives the

number of perfect matchings in G. Given G = (U, V, E) where U = {u1, . . . , un}

and V = {v1, . . . , vn}, we create a set of sources S = {σ1, . . . , σn} such that σi ∈ S

represents ui ∈ U . The probabilistic database Dp is a set of records ri = (ei, e,Wi),

where ei is a event id, e is an event and Wi is a distribution over sources. The

record ri represents vi in V together with all the edges from vi to the neighbourhood

of vi, i.e. the set of vertices in U adjacent to vi. In what follows, we denote the

neighbourhood of vi as N(vi). The event contained in every record is a set containing

just the singleton element {a}. In the i-th record ri, the distribution Wi contains

only the sources σj that represent vertices uj ∈ N(vi). All sources in Wi have the

same probability, i.e. (1/|N(vi)|). An example of such a transformation is shown

in Figure 5.2. Finally, we choose k = 0 and the sequence s = (a)(a), and ask to

compute Pr0(s), i.e. the probability that no sources support s. This completes

creation of the instance of Exact-k Support, and the transformation is clearly

polynomial-time.

Clearly, every possible world D∗ ∈ PW (Dp) is equally likely, and the probability

of a possible world D∗ is φ = (1/|PW (Dp)|), where |PW (Dp)| =
∏n

i=1 |N(vi)|. For

example, there are 12 possible worlds for the sample SLU database in Figure 5.2(b),

and the probability of each world is (1/12). In each possible world, each record ri

is associated with some source σj , so a possible world can be viewed as a sub-graph

109

Chapter 5. Evaluating the Interestingness Predicate

of G where every vertex in V has degree exactly one. Two possible worlds and

their corresponding graphs are shown in Figure 5.3. Those possible worlds where

each source is associated with exactly one record corresponds to a perfect matching

(Figure 5.3(b)); in such possible worlds, the support of the sequence s = (a)(a) will

clearly be zero. Thus, we see that Pr0(s) = φ · (# matchings in G), and once we are

given Pr0(s), we obtain the number of matchings in G by multiplying by the total

number of possible worlds. For example, in database in Figure 5.2(b), there are only

three possible worlds where each source is associated with exactly one event, which

are (σ1 : e1, σ2 : e2, σ3 : e3), (σ1 : e2, σ2 : e1, σ3 : e3) and (σ1 : e3, σ2 : e1, σ3 : e2).

Hence, Sup(s,D∗) = 0) in three worlds and therefore, Pr0(s) = 3 × (1/12) = 0.25.

We multiply the answer by the number of possible worlds, 12, to get 3, the number

of perfect matchings in G.

Hence, we have shown that if the value Prk(s) can be computed for s = (a)(a) and

k = 0 in Dp, we can also find number of perfect matchings in G, thus reducing the

problem of counting perfect matchings in a bipartite graph to Exact-k Support,

and showing that Exact-k Support is #P-complete.

5.2.3 SLU-D Case

Remark 5.15. We have shown in Theorem 5.8 that it is NP-complete to compute

the expected support of a sequence s in an SLU-D database. As computing the

probabilistic frequentness of a sequence s in an SLU-D database is computationally

no less hard than computing the expected support of a sequence s (probabilistic

frequentness is the confidence in the support of a sequence), we conjecture that

a polynomial time algorithm is unlikely to exist for computing the probabilistic

frequentness of a sequence in an SLU-D database.

110

Chapter 5. Evaluating the Interestingness Predicate

5.3 Summary

We have formulated two problems based on the interesting measures proposed

in Chapter 4, namely expected support and probabilistic frequentness, for evalu-

ating the interestingness predicate for the uncertainty models we consider, namely

TLU, ELU, SLU and SLU-D. We have shown that different formulations of the prob-

abilistic SPM problem lead to very different outcomes from a complexity theoretic

viewpoint. For example, we have shown that whilst we can compute the probabilistic

frequentness of a sequence in a TLU database in polynomial time, it is #P-complete

to do so for the SLU case.

111

Chapter 6

Probabilistic SPM Algorithms

A classical SPM algorithm enumerates all frequent sequences by exploring the search

space and by applying the interestingness predicate. We have shown in Chapter 5

that it may or may not be possible to evaluate the interestingness predicates that

we defined in Chapter 4 in polynomial time. For example, we have shown that for

the SLU model, it is #-P complete to compute the probabilistic frequentness of a

sequence, although we can compute the expected support of a sequence in polynomial

time. We focus on the latter in this chapter, that is, we compute expected frequent

sequences (see Definition 4.4) in an SLU database. In Chapter 5, we have also shown

that it is possible to evaluate the interestingness predicate for expected support in

the TLU and ELU models in polynomial time but we do not take this any further.

As discussed in Chapter 2, the search space exploration in classical SPM algorithms is

generally based either on the candidate generation or the pattern growth framework.

In this chapter, we propose probabilistic SPM algorithms based on each of these

frameworks.

We first describe probabilistic SPM algorithms based on the candidate generation

framework.

112

Chapter 6. Probabilistic SPM Algorithms

6.1 Candidate Generation

We now describe probabilistic SPM algorithms based on the candidate generation

framework. We describe two candidate generation approaches based on a breadth-

first (BFS) and a depth-first exploration (DFS) of the search space. Our proposed

BFS approach is similar to GSP [38], and our DFS approach is similar to the depth-

first variant of SPADE [36] (SPADE has a breadth-first variant as well) or SPAM [34],

in search space exploration.

Although the dynamic programming (DP) algorithm proposed in Section 5.1 for

computing the source support probability and hence, evaluating the interesting-

ness predicate is faster than evaluating the interestingness predicate directly by us-

ing Equation 4.1, there could potentially be a large number of candidate sequences

which need to be tested for being frequent, and thus the DP computation needs to

be performed over and over again. We first give some optimizations to speed up the

support computation task.

6.1.1 Optimization

In this section, we describe two optimized sub-routines:

1. Fast Frequent 1-sequence Computation: that is, computing all frequent 1-

sequences in a single scan of the database in linear time.

2. Incremental Support Computation: that is, reusing the already computed re-

sults for DP.

3. Further, we show two properties of expected support that can be used to prune

the search space.

113

Chapter 6. Probabilistic SPM Algorithms

(i) Apriori Pruning: that is, pruning a candidate sequence if any of its sub-

sequences is not frequent.

(ii) Probabilistic Pruning: that is, eliminating potential infrequent candidate

sequences without support computation.

We now elaborate on each of these below.

6.1.1.1 Fast Frequent 1-sequence Computation

The DP algorithm (Section 5.1) can be used to find all frequent 1-sequences by

applying Lemma 5.4 and Equation 5.3. However, a naive approach, for example

for each 1-sequence 〈(x)〉, x ∈ I, computing ES(〈(x)〉, Dp) by applying Lemma 5.4

and Equation 5.3, will require |I| scans of the database. In classical SPM, the task

of finding all frequent 1-sequences could be performed in linear time in a single scan

over the database. We show that we can achieve the same, that is, we can find

all frequent 1-sequences in a single scan over the database in linear time, in the

probabilistic case as well. We first give a simple intuitive closed-form expression

for computing the source support probability for a 1-sequence. Given a 1-sequence

s = 〈(x)〉, x ∈ I, and a p-sequence Dp
i of length r, the probability with which source

i supports s can be computed as:

Pr[s � Dp
i] = 1−

r∏

ℓ=1

(1− c∗1ℓ). (6.1)

The term on the right in Equation 6.1 is the complement of the probability that s

is not supported by Dp
i , which in other words, is the probability with which source

i supports s. We now verify by induction that using Equation 6.1 gives the same

answer as we get by applying Lemma 5.4. As from Section 5.1, A[0, ℓ] = 1 for all ℓ,

114

Chapter 6. Probabilistic SPM Algorithms

0 ≤ ℓ ≤ r, Equation 5.5 can be written as:

A[1, ℓ] = (1− c∗1ℓ) ∗ A[1, ℓ− 1] + c∗1ℓ. (6.2)

We first show that the induction hypothesis holds for ℓ = 1, by substituting ℓ = 1

in Equation 6.1 and in Equation 6.2. First, by putting ℓ = 1 in Equation 6.2, we

get A[1, 1] = (1 − c∗11) ∗ A[1, 0] + c∗11 = c∗11, as A[1, 0] = 0. We get the same answer

from Equation 6.1 for ℓ = 1, A[1, 1] = 1−
∏1

ℓ=1(1− c∗1ℓ) = 1− (1− c∗11) = c∗11. Now,

assume that the induction hypothesis holds for ℓ = t− 1, then:

A[1, t] = (1− c∗1t) ∗ A[1, t− 1] + c∗1t

= (1− c∗1t)(1−
∏t−1

ℓ=1(1− c∗1ℓ)) + c∗1t (by induction hypothesis)

= 1−
∏t

ℓ=1(1− c∗1ℓ) ,

which proves Equation 6.1.

We now describe a procedure for computing the expected support of all 1-sequences

s. Initialize two arrays F and G, each of size |I|, to zero and consider each source

i in turn. If Dp
i = 〈(e1, c1), . . . , (er, cr)〉, for k = 1, . . . , r take the pair (ek, ck)

and iterate through each x ∈ ek, setting F [x] := (1 − ck) if F [x] = 0, and setting

F [x] := F [x]∗(1−ck) otherwise. Once we are finished with source i, we set the entries

that have been updated in F to F [x] := 1−F [x] and then update G[x] := G[x]+F [x]

and reset F [x] to zero (we use a linked list to keep track of which entries of F are

updated for a given source). At the end, for any 1-sequence s = 〈(x)〉, where x ∈ I,

G[x] = ES(s,Dp).

115

Chapter 6. Probabilistic SPM Algorithms

6.1.1.2 Incremental Support Computation

We show that considering a source i, for any two sequences s and t where t is

an extension of s, we can reuse the DP rows computed for s to quickly compute

Pr[t � Dp
i]. Recall from Section 2.3 that for a sequence s and an item {x}, a

sequence t obtained by extending s with {x} is an S-extension of s if {x} is added

to the end of s as a new element, and if t is obtained by adding {x} to s as part

of the last element in s, t is an I-extension of s. Similar to classical SPM, for an

existing frequent sequence s, we generate candidate sequences t that are either S-

or I-extensions s, and compute ES(t, Dp) by computing Pr[t � Dp
i] for all sources

i. While computing Pr[t � Dp
i], we will exploit the similarity between s and t to

compute Pr[t � Dp
i] more rapidly. Say that t is an S-extension of s = 〈s1, . . . , sq〉,

then the first q DP rows for s and t are exactly the same, and we can start the DP

computation for t from the (q + 1)-st row assuming that the q-th row is available.

Similarly, for an I-extension t of s, if the first k, k < q, elements in s and t are exactly

the same, we can start the DP computation for t from the (k+1)-st element assuming

that the DP row for the k-th element is available. For example, if s = 〈(a)(b, c)〉

and t = 〈(a)(b, c)(d)〉 (t is an S-extension of s), the DP rows for 〈(a)〉, 〈(a)(b)〉,

and 〈(a)(b, c)〉 would be the same for any source i and therefore, could be reused in

support computation. Similarly, for an I-extension t = 〈(a)(b, c, d)〉 of s = 〈(a)(b, c)〉,

we could reuse the DP row for 〈(a)〉.

We now describe how we can reuse previously computed rows of the DP matrix in

support computation.

Let i be a source, Dp
i = 〈(e1, c1), . . . , (er, cr)〉, and s = 〈s1, . . . , sq〉 be any sequence.

Now let Ai,s be the (q+1)× (r+1) DP matrix used to compute Pr[s � Dp
i], and let

Bi,s denote the last row of Ai,s, that is, Bi,s[ℓ] = Ai,s[q, ℓ] for ℓ = 0, . . . , r. We now

116

Chapter 6. Probabilistic SPM Algorithms

show that if t is an extension of s, then we can quickly compute Bi,t from Bi,s, and

thereby obtain Pr[t � Dp
i] = Bi,t[r]:

Algorithm 1 Incremental Support Computation (I-extension case)

1: Bi,t[0] = 0
2: for all ℓ = 1, . . . , r do
3: if tq 6⊆ eℓ then
4: Bi,t[ℓ] = Bi,t[ℓ− 1]
5: else
6: Bi,t[ℓ] = (1− cℓ) ∗Bi,t[ℓ− 1]+ (Bi,s[ℓ]− Bi,s[ℓ− 1] ∗ (1− cℓ))
7: end if
8: end for

Lemma 6.1. Let s and t be sequences such that t is an extension of s, and let i

be a source whose p-sequence has r events in it. Then, given Bi,s and Dp
i , we can

compute Bi,t in O(r) time.

Proof. If t is an S-extension of s, i.e. t = s · {x} for some item x, then Bi,s is the

last-but-one row of Ai,s, and we have the information needed to compute the last

row (cf. Equation 5.5).

Now consider the case where t is a I-extension, i.e. t = 〈s1, . . . , sq ∪ {x}〉 for some

x 6∈ sq. Firstly, observe that since the first q − 1 elements of s and t are pairwise

equal, the first q − 1 rows of Ai,s and Ai,t are also equal. The (q − 1)-st row of Ai,s

is enough to compute the q-th row of Ai,t, but we only have Bi,s, the (q − 1)-st row

of Ai,s. In general we cannot calculate the entire (q− 1)-st row of Ai,s from the q-th

row, that is, we cannot “reverse” the DP calculation but we can compute enough

entries of Ai,s to compute the q-th row of Ai,t.

We compute Ai,t[q, ℓ] for ℓ = 0, . . . , r in that order. By convention, Ai,t[q, 0] = 0, so

consider ℓ > 0. If tq = sq ∪ {x} 6⊆ eℓ, then Ai,t[q, ℓ] = Ai,t[q, ℓ− 1], and we can move

on to the next value of ℓ. If tq ⊆ eℓ, then sq ⊆ eℓ and so:

Ai,s[q, ℓ] = (1− cℓ) ∗ Ai,s[q, ℓ− 1] + cℓ ∗ Ai,s[q − 1, ℓ− 1].

117

Chapter 6. Probabilistic SPM Algorithms

Table 6.1: Example illustrating the incremental support computation of Bi,t for
t = 〈(a)(b, c)〉 from Bi,s where s = 〈(a)(b)〉, by computing Pr[t � D

p
X] in the SLU

database of Figure 4.3. Note that the row corresponding to 〈(a)〉 is not available.

(a, d, e : 0.6) (b, c : 0.3) (a, b, c : 0.7) (c, d, e : 1.0)

A[0,0] = 1 A[0,1] = 1 A[0,2] = 1 A[0,3] = 1 A[0,4] = 1

〈(a)〉
A[1,0] = 0 A[1,1] = 0.4× A[1,0] A[1,2] = 0.6 A[1,3] = 0.3× A[1,2] A[1,4]

+ 0.6× A[0,0] = 0.6 + 0.7× A[0,2] = 0.72 = 0.72

〈(a)(b)〉 A[2,0] = 0
A[2,1] = 0 A[2,2] = 0.7× A[2,1] A[2,3] = 0.3× A[2,2] A[2,4]

+ 0.3× A[1,1] + 0.7× A[1,2] = 0.474

= 0.18 = 0.474

〈(a)(b, c)〉 A[3,0] = 0
A[3,1] = 0 A[3,2] = 0.7× A[3,1] A[3,3] = 0.3× A[3,2] A[3,4]

+ 0.3× A[1,1] + 0.7× A[1,2] = 0.474

= 0.18 = 0.474

Since we know Bi,s[ℓ] = Ai,s[q, ℓ], Bi,s[ℓ− 1] = Ai,s[q, ℓ− 1] and cℓ, we can compute

Ai,s[q− 1, ℓ− 1]. But this value is equal to Ai,t[q− 1, ℓ− 1], which is the value from

the (q − 1)-st row of Ai,t that we need to compute Ai,t[q, ℓ] = Bi,t[ℓ].

The pseudo-code for incremental support computation (I-extension case) is given

in Algorithm 1, and an example of this computation is given in Table 6.1.

6.1.1.3 Apriori Pruning

We show that an apriori property (recall Definition 2.7) holds in the probabilistic

settings as well.

Lemma 6.2 (Apriori Property). Given two sequences s and t, and a probabilistic

database Dp, if s is a subsequence of t, then ES(s,Dp) ≥ ES(t, Dp).

Proof. For any two sequence s and t where s is a subsequence of t, we know by

the apriori property that for all possible worlds D∗ ∈ PW (Dp), Sup(s,D∗) ≥

118

Chapter 6. Probabilistic SPM Algorithms

Sup(t, D∗), and from Equation 4.1 we have,

ES(s,Dp) =
∑

D∗∈PW (Dp) Pr[D
∗] ∗ Sup(s,D∗)

≥
∑

D∗∈PW (Dp) Pr[D
∗] ∗ Sup(t, D∗)

= ES(t, Dp)

6.1.1.4 Probabilistic Pruning

We now describe a pruning technique that allows us to eliminate potential infrequent

candidate sequences s without fully computing the expected support of s in Dp. For

each source i, we obtain an upper bound on Pr[s � Dp
i], the probability with which

source i supports s, and add up all the upper bounds; if the sum is below the

threshold, s can be pruned. We first show:

Lemma 6.3. Let s = 〈s1, . . . , sq〉 be a sequence, and let Dp
i be a p-sequence. Then:

Pr[s � Dp
i] ≤ Pr[〈s1, . . . , sq−1〉 � Dp

i] ∗ Pr[〈sq〉 � Dp
i].

Proof. Let A = Ai,s be the DP matrix for computing Pr[s � Dp
i]. For ℓ = 0, . . . , r,

let pℓ = Pr[〈sq〉 � 〈(e1, c1), . . . , (eℓ, cℓ)〉]; pr therefore is precisely Pr[〈sq〉 � Dp
i]. We

take p0 = 0, and for ℓ = 1, . . . , r, we can compute pℓ using the equation: pℓ =

(1 − c∗qℓ) ∗ pℓ−1 + c∗qℓ, where c∗qℓ is as defined in Equation 5.4. We now prove by

induction on ℓ that:

A[q, ℓ] ≤ A[q − 1, ℓ] ∗ pℓ, (6.3)

119

Chapter 6. Probabilistic SPM Algorithms

substituting ℓ = r in Equation 6.3 proves the lemma. We now prove Equation 6.3,

which clearly holds for ℓ = 0 since A[q, 0] = A[q − 1, 0] = p0 = 0. Subsequently:

A[q, ℓ] = (1− c∗qℓ) ∗ A[q, ℓ− 1] + c∗qℓ ∗ A[q − 1, ℓ− 1] (Equation 5.5)

≤ (1− c∗qℓ) ∗ A[q − 1, ℓ− 1] ∗ pℓ−1 + c∗qℓ ∗ A[q − 1, ℓ− 1] (Equation 6.3)

≤ A[q − 1, ℓ− 1] ∗
(
(1− c∗qℓ) ∗ pℓ−1 + c∗qℓ

)

≤ A[q − 1, ℓ− 1] ∗ pℓ

≤ A[q − 1, ℓ] ∗ pℓ.

We now indicate how Lemma 6.3 is used. Suppose, for example, that we have a

candidate sequence s = 〈(a)(b, c)(a)〉, and a source X . By Lemma 6.3:

Pr[〈(a)(b, c)(a)〉 � Dp
X] ≤ Pr[〈(a)(b, c)〉 � Dp

X] ∗ Pr[〈(a)〉 � Dp
X]

≤ Pr[〈(a)〉 � Dp
X] ∗ Pr[〈(b, c)〉 � Dp

X] ∗ Pr[〈(a)〉 � Dp
X]

≤ (Pr[〈(a)〉 � Dp
X])

2 ∗min{Pr[〈(b)〉 � Dp
X],Pr[〈(c)〉 � Dp

X]}.

Observe that the quantities on the RHS are computed by the fast frequent 1-sequence

computation, and can be stored in a small data structure associated with each

source. Of course, if Pr[〈(a)(b, c)〉 � Dp
X] is available, an even tighter bound is

Pr[〈(a)(b, c)〉 � Dp
X] ∗ Pr[〈(a)〉 � Dp

X].

6.1.2 Breadth-First Exploration

We give an overview of our BFS approach. We first review a few concepts from Chap-

ter 2. The algorithm performs a series of steps repeatedly until the termination

conditions for the algorithm are satisfied, and we call each execution of this series

120

Chapter 6. Probabilistic SPM Algorithms

of steps a phase. The length of a sequence is the number of items in it. A sequence

having length j is called a j-sequence. The set of candidate j-sequences is called Cj

and the set of frequent j-sequences is called Lj . For j = 2 onwards, the input to the

j-th phase is the set Lj−1, and the output is the set Lj .

In our BFS approach, the algorithm first makes a pass over the SLU database

Dp and computes all the frequent 1-sequences using the fast frequent 1-sequence

computation (Section 6.1.1.1). Then, the following steps are performed in any phase

j ≥ 2. The set Lj−1 is used to obtain Cj , and while generating Cj, apriori pruning

is applied to Cj and thus, Cj contains only those candidate j-sequences that pass

the apriori pruning. In addition to apriori pruning, probabilistic pruning can also

be applied to Cj. Then, we perform the support computation for Cj, and the

candidate j-sequences having support at least θ is the set of frequent j-sequences

Lj . The algorithm stops when no more frequent sequences can be found, or when no

more candidate sequences can be generated, and outputs all the frequent sequences.

An outline of our BFS approach is in Algorithm 2.

Algorithm 2 Breadth-First Exploration

1: Input: An SLU database Dp and a support threshold θ.
2: Output: All sequences s with ES(s,Dp) ≥ θ.

3: j ← 2
4: L1 ← ComputeFrequent-1(Dp)
5: while Lj−1 6= ∅ do
6: Cj ← Join Lj−1 with itself
7: Prune Cj

8: for all s ∈ Cj do
9: Compute ES(s,Dp)
10: end for
11: Lj ← all sequences s ∈ Cj s.t. ES(s,Dp) ≥ θ.
12: j ← j + 1
13: end while
14: Stop and output L1 ∪ . . . ∪ Lj−1

We now elaborate on the following key concepts:

121

Chapter 6. Probabilistic SPM Algorithms

• Candidate Generation: In the j-th phase, we generate the set of candidate

j-sequences Cj from the set of frequent (j − 1)-sequences Lj−1. The objective

of candidate generation is to generate the smallest possible superset Cj of the

set of frequent j-sequences Lj .

• Support Computation: We perform support computation for Cj as follows. We

consider each source i in turn, and split the support computation task into the

following two sub-tasks.

– Narrowing: We only need to consider those candidate j-sequences that

could potentially be supported by source i. Thus, the objective in nar-

rowing is to find a smallest possible subset Ni,j of the set of candidate

j-sequences Cj such that no sequence in Cj − Ni,j can be supported by

source i.

– Computing Expected Support: We compute the expected support for all

the sequences s ∈ Ni,j, and while performing this task, we intend to reuse

already computed results in order to save CPU cost.

6.1.2.1 Candidate Generation

We now elaborate on the candidate generation details for BFS. We first describe

the procedure for generating candidate 2-sequences, and then discuss generating the

candidate sequences in the subsequent phases.

In phase 2, we generate the set of candidate 2-sequences C2 from the set of frequent

1-sequences L1 as follows. For any two frequent 1-sequences s, s′ ∈ L1, we add s′

to s as a separate element, i.e. we generate an S-extension of s, and we add s′ to

s as part of an existing element as well, if s′ is lexicographically greater than s, i.e.

we generate an I-extensions of s. For example, given two frequent 1-sequences 〈(a)〉

122

Chapter 6. Probabilistic SPM Algorithms

and 〈(b)〉, the possible candidate 2-sequences are 〈(a)(a)〉, 〈(a)(b)〉, 〈(b)(a)〉, 〈(b)(b)〉,

and 〈(a, b)〉.

In the j-th phase, for j = 3 onwards, the set of frequent (j − 1)-sequences Lj−1 is

joined with itself to generate the set of candidate j-sequences Cj. As in [38], we join

two (j−1)-sequences s and s′ if and only if the sequences that remain after deleting

the first item in s and the last item in s′ are the same. A j-sequence t obtained

by joining two (j − 1)-sequences s and s′ is the sequence s extended with the last

item {x} in s′. The item {x} is added to s in the same way as it was added to

s′, that is, {x} is added as a separate element at the end of s if it was a separate

element in s′ (t is an S-extension of s), and is added to the last element of s if it

was part of the last element in s′ (t is an I-extension of s). This is illustrated by the

following example, s = 〈(a)(b, c)(d)〉 joins with a sequence 〈(b, c)(d)(e)〉 to yield a

sequence 〈(a)(b, c)(d)(e)〉. Similarly, s can be joined with a sequence 〈(b, c)(d, e)〉 to

yield a sequence 〈(a)(b, c)(d, e)〉. However, s cannot be joined with 〈(b)(c)(d)(e)〉 as

the remaining sequences after deleting the first item from s and the last item from

〈(b)(c)(d)(e)〉 – 〈(b, c)(d)〉 and 〈(b)(c)(d)〉 – are not the same. Similarly, s can not

be joined with 〈(b, c, d)(e)〉 either, as 〈(b, c)(d)〉 does not match with 〈(b, c, d)〉.

Recall that the objective in candidate generation is to generate the smallest possible

superset Cj of the set of frequent j-sequences Lj . To reduce the size of Cj, we apply

pruning techniques to candidate j-sequence in Cj as follows. We first apply apriori

pruning and consider every j-sequences s ∈ Cj in turn, and if any of the (j − 1)-

subsequences of s is not in Lj−1 (is not frequent), we delete s from Cj (by Lemma 6.2,

s cannot be frequent). In addition, we can also apply probabilistic pruning for which

we compute an upper bound on the expected support of s inDp, and delete s from Cj

if the upper bound value computed is less than the support threshold θ (Lemma 6.3).

Note that apriori pruning has no effect on candidate 2-sequences and probabilistic

pruning is the only possibility.

123

Chapter 6. Probabilistic SPM Algorithms

6.1.2.2 Support Computation

We now discuss the support computation details for BFS. As already mentioned,

we split the support computation task into two sub-tasks, that is, narrowing and

computing expected support. We elaborate on each of these below.

Narrowing

We define narrowing as follows. Given the set of candidate j-sequences Cj and a

source i, the task of narrowing is to find a subset Ni,j of the set of candidate j-

sequences Cj that may be supported by source i. However, while Ni,j should be

of smallest possible size, Ni,j must contain all the candidate j-sequences that have

non-zero probability of being supported by source i. We denote the set of frequent

j-sequences that have a non-zero probability of being supported by source i by Li,j.

After computing L1, we store Li,1 with each source for the entire duration of the

algorithm. Further, for each s ∈ Li,1, we also store Pr[s � Dp
i], i.e. the probability

with which source i supports s, when probabilistic pruning is used. We consider two

ways of narrowing:

Prefix-based Narrowing

We store all the candidate sequences in Cj in a hash-table. An entry in the hash-table

is a (key, value) pair of the form (s′, ptr), where s′ is a (j − 1)-prefix (see Defini-

tion 2.10) of a sequence s and ptr is a pointer to a list of all the S- or I-extensions

of s′ in Cj. We populate the hash-table as follows. For every sequence s ∈ Cj, we

split s into two parts, s′ and {x}, where s′ is a (j−1)-prefix of s and {x} is the j-th

item in s. We first check to see if the key s′ is already in the hash-table and if yes,

we add {x} to the list of (S- or I-) extensions of s′ pointed to by ptr. Otherwise,

124

Chapter 6. Probabilistic SPM Algorithms

Figure 6.1: A sample hashtree where each node is a set of triples of the form
(k, ℓ, ptr). ‘×’ represents a null pointer. The pointer ℓ at the leaf node points to

a list of candidate sequences having the same characteristic string.

a × ptr b × ptr

a × ptr b × ptr c × ptr

a l × c l × c l × a l × c l ×

〈(b, c)(c)〉

〈(b)(c)(c)〉

〈(b)(c)(a)〉〈(a)(b)(c)〉

〈(a, b)(c)〉

〈(a, b, c)〉

〈(a)(a)(c)〉

〈(a)(a, c)〉

〈(a)(a)(a)〉

we add (s′, ptr) to the hash-table as a (key, value) pair, where ptr is a pointer to

a list containing the item {x}. Further, when recording an extension of s′, we also

keep track of the type of the extension (i.e. S- or I-extension). At the end of the

(j−1)-st phase, we compute the sets Li,j−1 for all sources i and keep them until the

end of the j-th phase. When considering source i, for every sequence s′ ∈ Li,j−1, we

use the hash-table to find all sequences s ∈ Cj that are extensions of s′. Then, for

every sequence s ∈ Cj that is an S- or I-extension of s′, we further check to see if

x ∈ Li,1 and if so, we add s to Ni,j.

Hashtree-based Narrowing

We store all the sequences in Cj in a hashtree in a manner that is slightly different

from [38]. We first discuss how we construct the hashtree and then elaborate on how

125

Chapter 6. Probabilistic SPM Algorithms

it is used for narrowing. A characteristic string of a sequence is a string that contains

all the items in the sequence, in the same order as they appear in the sequence. For

example, the characteristic string of a sequence 〈(a, b)(a, c)〉 is abac. A node in a

hashtree contains a set of triples of the form (k, ℓ, ptr), where k is an item, and ℓ

and ptr are pointers. If a node in a hashtree is a non-leaf node, ℓ is null, and ptr

contains a pointer to a node further down the hashtree; we say the label of ptr is k.

If a node is a leaf node, ptr is null, and ℓ contains a pointer to a list of sequences

which have the same characteristic string x, where x is a string that is obtained by

concatenating all the labels in ptr starting from the root node down to the leaf node

along with the leaf node item k. We generate the hashtree using the characteristic

strings of the sequences in Cj. An sample hashtree is shown in Figure 6.1.

It is obvious that source i can potentially support only those candidate sequences in

Cj whose characteristic strings have items only from Li,1. When considering source

i, we extract all the sequences in Cj that could be supported by source i as follows.

For every item y ∈ Li,1, we apply the hash function recursively on every item z ∈ Li,1

starting from the root node until we get to a leaf node, and the leaf node contains a

pointer ℓ to the list of sequences s ∈ Cj which have the same characteristic string.

We add the list of sequences pointed to by ℓ to Ni,j, and visit all possible leaf nodes

that could be reached by applying hash function on every item in Li,1 recursively

thus, obtaining Ni,j.

Computing Expected Support

Given Ni,j we now discuss computing the support of a sequence t in source i after we

have computed the support of a sequence s. Since computing Pr[t � Dp
i] is expensive

and requires j rows of a DP matrix to be computed, we attempt to reuse partial

answers as follows. If we compute the support of t immediately after computing the

support of s, then if s and t have a common prefix of length k, then we start the

126

Chapter 6. Probabilistic SPM Algorithms

computation of Pr[t � Dp
i] from the (k + 1)-st row in the DP matrix. Note that in

the prefix-based narrowing, we sort the candidate sequences in a lexicographic order

and thus the sequences with common prefixes are processed together. Similarly, in

hashtree based narrowing, all the k-sequences in a leaf node have a common (k− 1)

prefix and thus, only the k-the row in the DP matrix need to be computed for the

sequences in a leaf node.

6.1.3 Depth-First Exploration

We now give an overview of our DFS approach. The algorithm first makes a pass

over the SLU database Dp and computes all the frequent 1-sequences L1. Assume

that the sequences in L1 are in ascending order. Next, starting with each frequent

1-sequence s ∈ L1, s is both S- and I-extended with every valid item x ∈ L1 and then

for all extensions t of s, we first apply partial apriori pruning (Section 6.1.3.1) to t.

In addition to partial apriori pruning, probabilistic pruning could also be applied.

If t passes the pruning test, we compute the expected support of t in Dp and if t

is found to be frequent, we keep exploring the search space by extending t using

valid x ∈ L1, recursively. The algorithm stops when no more candidate sequences

can been generated or when no more frequent sequences can be found, and outputs

all the frequent sequences. An outline of our DFS approach is in Algorithm 3

and Algorithm 4.

We now elaborate on two key details. We first discuss the candidate generation and

then describe the support computation for DFS.

127

Chapter 6. Probabilistic SPM Algorithms

Algorithm 3 Depth-First Exploration

1: Input: SLU probabilistic database Dp and support threshold θ.
2: Output: All sequences s with ES(s,Dp) ≥ θ.

3: L← ∅, Lx ← ∅
4: L1 ← ComputeFrequent-1(Dp)
5: for all sequences x ∈ L1 do
6: Lx ← Call TraverseDFS(x, L1)
7: L← L ∪ Lx

8: end for
9: Output all sequences in L

Algorithm 4 Depth-First Traversal

1: Input: SLU probabilistic database Dp and a sequence s.
2: Output: All possible extensions of s with ES(s,Dp) ≥ θ.

3: function TraverseDFS(s, L1)
4: L← ∅
5: for all valid x ∈ L1 in order do
6: t← 〈s · {x}〉 {S-extension}
7: if t is not pruned then
8: Compute ES(t, Dp)
9: if ES(t, Dp) ≥ θ then
10: L← L ∪ t
11: TraverseDFS(t, L1)
12: end if
13: else
14: Mark {x} as invalid S-extension item.
15: end if
16: t← 〈s1, . . . , sq ∪ {x}〉 {I-extension}
17: if t is not pruned then
18: Compute ES(t, Dp)
19: if ES(t, Dp) ≥ θ then
20: L← L ∪ t
21: TraverseDFS(t, L1)
22: end if
23: else
24: Mark {x} as invalid I-extension item.
25: end if
26: end for
27: return L
28: end function

128

Chapter 6. Probabilistic SPM Algorithms

6.1.3.1 Candidate Generation

Given a sequence s and the set of frequent 1-sequences L1, we generate the S- and

I-extensions of s as follows.

S-extension

We generate an S-extension t of s by appending an item {x} as a new element to

s. We first apply partial apriori pruning to t, say if t is a j-sequence, we first check

to see if all the lexicographically smaller (j − 1)-subsequences of t that would have

already been explored in the mining process are also frequent. For example, if we

are currently considering t = 〈(d)(b)(c)〉, a lexicographically smaller sub-sequence

〈(b)(c)〉 has already been explored, and by the apriori property if 〈(b)(c)〉 is not

frequent, we do not need to consider 〈(d)(b)(c)〉.

Further, suppose that we S-extend a sequence s with an item xi ∈ L1 to obtain

t = 〈s〉 · {xi} and suppose that t is not frequent. We then extend s with some

other item xj ∈ L1 to obtain t′ = 〈s · {xj}〉 and t′ is frequent. We know by the

apriori property that 〈s · {xj} · {xi}〉 can not be frequent either as it contains an

infrequent sub-sequence 〈s ·{xi}〉. Thus, if an extension of s using xi is not frequent,

we mark xi as an invalid S-extension for s and do not consider extending any of

the sequences for which s is a prefix with xi. For example, for a sequence 〈(d)〉, if

〈(d)(a)〉 is not frequent, we mark {a} as invalid S-extension, and say if 〈(d)(b)〉 is

found to be frequent, we do not need to consider extending 〈(d)(b)〉 with {a}.

I-extension

We generate an I-extension t of s by appending an item {x} to the last element in

s. Similar to the S-extension case, we first apply partial apriori pruning to t. Then,

129

Chapter 6. Probabilistic SPM Algorithms

suppose that a sequence s = 〈s1, . . . , sq〉 is I-extended with an item xi ∈ L1, i.e.

t = 〈s1, . . . , sq ∪ {xi}〉, and suppose that t is not frequent. We mark xi as an invalid

I-extension for s and do not consider extending any of the sequences for which s is

a prefix with xi. For example, for a sequence 〈(a)〉, suppose that {b} is an invalid

I-extension as 〈(a, b)〉 is not frequent then, we do not need extending 〈(a)(c)(a)〉

with {b} either.

We now describe support computation for DFS.

6.1.3.2 Support Computation

Given a sequence s, the support computation task is to compute the expected sup-

port of s in the probabilistic database Dp. We propose two optimizations for this.

1. Observe that for a sequence t, where t is an S- or I-extension of s, for source

i, if Pr[s � Dp
i] = 0, then Pr[t � Dp

i] = 0, i.e. if source i does not support

s it cannot support t. When computing the expected support of s in Dp, we

keep track of all the sources where Pr[s � Dp
i] > 0, denoted by Ss, and when

computing the expected support of t in Dp, we need only to visit the sources

in Ss.

2. Further, when doing the support computation for s, we save the Bi,s array

(recall Section 6.1.1) with every source i ∈ Ss. When considering an S- or I-

extension of s, we can use incremental support computation by reusing results

from Bi,s. As the Bi,s arrays are stored for all sources i ∈ Ss with each

recursive call of DFS, in the worst case, a source may store up to j arrays, if

s is a j-sequence.

130

Chapter 6. Probabilistic SPM Algorithms

6.2 Pattern Growth

We now give a pattern growth algorithm similar to PrefixSpan [40] for enumerating

all frequent sequences. We first extend Definitions 2.11 and 2.12 to the probabilistic

case.

Definition 6.4 (Weak-prefix). Given a sequence s = 〈s1, . . . , sq〉 and a p-sequence

t = 〈(t1, c1), . . . , (tr, cr)〉, s is called a weak-prefix of t if there exist indices 1 ≤ j1 <

j2 < . . . < jq ≤ r such that (1) si ⊆ tji , for all 1 ≤ i ≤ (q − 1), and for all

k, ji < k < ji+1, si+1 6⊆ tk, and (2) sq ⊆ tjq , and all the items in tjq − sq are

lexicographically after those in sq.

Definition 6.5 (Weak-suffix). Given a sequence s = 〈s1, . . . , sq〉 and a p-sequence

t = 〈(t1, c1), . . . , (tr, cr)〉, where s is a weak-prefix of t, a p-sequence u = 〈(uq, cq), . . . ,

(ur, cr)〉 is the weak-suffix of t with respect to s, where uk = (tk− sk) for k = q, and

uk = tk, for k = q + 1, . . . , r.

For example, for a p-sequence s = 〈(a : 0.3)(a, b, d : 0.8)(b, c : 0.4)(d, e : 0.5)〉,

sequences such as 〈(a)〉 and 〈(a)(b, c)〉 are weak-prefixes of s, whereas 〈(a)(c, d)〉 and

〈(a)(c)(b)〉 are not. For the weak-prefixes 〈(a)〉 and 〈(a)(b)〉, the weak-suffixes of s are

〈(a, b, d : 0.8)(b, c : 0.4)(d, e : 0.5)〉 and 〈(−, d : 0.8)(b, c : 0.4)(d, e : 0.5)〉 respectively,

where ‘−’ means that one or more items in the event are part of the weak-prefix.

In what follows, we sometimes use prefix and suffix rather than weak-prefix and

weak-suffix when it is clear from the context.

Recall from Chapter 2, Section 2.3.2, that the complete set of frequent sequential

patterns could be partitioned into as many subsets as the number of frequent 1-

sequences {〈x1〉, . . . , 〈xn〉}, where the i-th subset is prefixed with 〈xi〉, 1 ≤ i ≤ n.

Then, based on each prefix, each subset of sequential patterns could be further

subdivided recursively. To mine the subset of sequential patterns based on a prefix,

131

Chapter 6. Probabilistic SPM Algorithms

the projected database corresponding to that prefix need to be constructed. We first

extend the definition of a projected database (Definition 2.13) to the probabilistic

case.

Definition 6.6 (Projected Database). Given a probabilistic database Dp in the

form of p-sequences Dp
1, . . . , D

p
m, and a sequence s, an s-projected probabilistic

database Ds,p is the collection of weak-suffixes of the p-sequences in Dp with re-

spect to the weak-prefix s.

For example, consider a sample probabilistic database having two p-sequences {〈(a :

0.4)(b, c : 0.7)(a, d, e : 0.3)〉, 〈(a, b : 0.9)(a, b, d : 0.8)(d, e : 0.3)〉}. For a sequence

〈(a)〉 as a weak-prefix, an 〈(a)〉-projected database is {〈(b, c : 0.7)(a, d, e : 0.3)〉, 〈(−, b :

0.9)(a, b, d : 0.8)(d, e : 0.3)〉}.

Recall from Section 2.3.2 that PrefixSpan works as follows. It first finds the complete

set of frequent 1-sequences. Next, the set of projected databases is constructed

prefixed with each frequent 1-sequence. Then, in each projected database, it again

finds the set of frequent 1-sequences local to that projected database, and keeps on

building and mining the projected databases this way, recursively.

It appears that based on the definitions of weak-prefix (Definition 6.4) and projected

database (Definition 6.6), corresponding projected databases could be constructed

and using the fast frequent 1-sequence computation (Section 6.1.1), the complete

set of sequential patterns could be obtained. However, in the probabilistic setting,

it is not correct to simply perform the fast frequent 1-sequence computation in

a projected database. For example, if an 〈(a)〉-projected database contains two

suffixes {〈(b : 0.5)(b : 0.5)(a : 0.5)〉, 〈(b : 0.5)(a : 0.5)(b : 0.5)〉}, when considering

whether 〈(a)(b)〉 is frequent, it is not correct to compute the expected support of (b)

in the projected database. For example, both suffixes above would give the same

132

Chapter 6. Probabilistic SPM Algorithms

Algorithm 5 Pattern-Growth Algorithm

1: Input: SLU probabilistic database Dp and support threshold θ.
2: Output: All sequences s with ES(s,Dp) ≥ θ.

3: L1 ← ComputeFrequent-1-sequences(Dp)
4: for all sequences x ∈ L1 do
5: Compute Bi,x arrays
6: Call ProjectedDB(x, Ds,p)
7: end for

8: function ProjectedDB(s, Ds,p)
9: LS ← Compute Frequent S-extensions
10: LI ← Compute Frequent I-extensions
11: Output all Frequent Sequences {s extended with x, for all x in LS and LI}
12: for all x ∈ LS do
13: t← 〈s · {x}〉 {S-extension}
14: Compute Bi,t arrays
15: ProjectedDB(t, Dt,p)
16: end for
17: for all x ∈ LI do
18: t← 〈s1, . . . , sq ∪ {x}〉 {I-extension}
19: Compute Bi,t arrays
20: ProjectedDB(t, Dt,p)
21: end for
22: end function

contribution – 0.75 – to the support of (b) in the projected database, but clearly

their support for 〈(a)(b)〉 is different.

We now show that we can use the DP algorithm along with the fast frequent 1-

sequence computation to find all frequent sequences using the pattern growth frame-

work.

6.2.1 Pattern Growth Algorithm

An overview of our pattern-growth algorithm is in Algorithm 5. Assuming that

the probabilistic database Dp contains only the frequent items, we first compute

the set of frequent 1-sequences L1. Assume L1 is in ascending order. For each

1-sequence 〈x〉, we first create an 〈x〉-projected database Dx,p, and also compute

133

Chapter 6. Probabilistic SPM Algorithms

the Bi,x arrays for each source i in Dx,p and then call the ProjectedDB(x, Dx,p)

sub-routine recursively.

In the ProjectedDB(s, Ds,p) sub-routine, we compute all the frequent S- and I-

extensions of s using a modification of fast frequent 1-sequence computation. We

call the computation of all S- and I-extensions of a sequence s the pattern-growth

step, and elaborate on it in the coming section. Then, for every sequence t which

is a frequent S- or I-extension of s, we create a 〈t〉-projected database Dt,p and also

compute Bi,t arrays, and call the ProjectedDB(t, Dt,p) sub-routine recursively to

mine all frequent sequential patterns.

We now elaborate on the pattern-growth step.

6.2.2 Pattern Growth Step

Pre-conditions:

1. s = 〈s1, . . . , sq〉 is a previously discovered frequent sequence.

2. An 〈s〉-projected database Ds,p is available.

3. The Bi,s arrays for all sources i in Ds,p are also available.

Objective. To compute the expected support of all the S- or I-extensions of s in

one pass over the database, and thus discover all frequent extensions of s.

6.2.2.1 S-extension Computation

We first compute the frequent S-extensions of s as follows.

134

Chapter 6. Probabilistic SPM Algorithms

Table 6.2: An example of computing the expected support of all S-extensions of
s = 〈(a)〉 for Dp

X in the sample SLU database of Figure 4.3. The cells in columns
labelled (i)–(iv) show the entries in F array after each event in D

p
X is processed.

The values in the column (iv) are updated to G.

D
p
X (a, d, e : 0.6) (b, c : 0.3) (a, b, c : 0.7) (c, d, e : 1.0)

BX,s 0.60 0.60 0.88 0.88

〈(a)〉 0.000 0.000 0.420 0.420

〈(b)〉 0.000 0.180 0.474 0.474

〈(c)〉 0.000 0.180 0.474 0.880

〈(d)〉 0.000 0.000 0.000 0.880

〈(e)〉 0.000 0.000 0.000 0.880

(i) (ii) (iii) (iv)

Initialize two arrays F and G, each of size |I| to zero. Recall that an 〈s〉-projected

database Ds,p is a collection of suffixes of s in Dp, where a suffix is of the form

〈(uq, cq), . . . , (ur, cr)〉. As the Bi,s arrays have already been computed, we consider

each suffix of s in Ds,p in turn, and for every item x in uk, for k = q + 1, . . . , r,

update F [x] as follows:

F [x] := ((1− ck) ∗ F [x]) + (ck ∗Bi,s[k − 1]). (6.4)

We keep track of all the non-zero entries in F [x], and once we are finished with a

suffix, we update G[x] := G[x] + F [x] and reset F [x] to zero. After all the suffixes

of s in Ds,p have been processed, all the entries in G[x] ≥ θ correspond to frequent

S-extensions of s. An example of this computation is shown in Table 6.2.

6.2.2.2 I-extension Computation

For the I-extensions case, we use the same arrays F and G as in the S-extensions

case. Given the suffixes of s in Ds,p, we consider every suffix of s in turn. As a suffix

135

Chapter 6. Probabilistic SPM Algorithms

is of the form u = 〈(uq, cq), . . . , (ur, cr)〉, the possible I-extensions of s in u could be

the items in uk − sk for k = q, . . . , r, where sk ⊆ uk and all the items in uk − sk are

lexicographically after those in sk. Considering every event uk in u in turn where

sk ⊆ uk, for k = q, . . . , r, we update F [x] for every item x lexicographically after

those in sk, in uk − sk as follows:

F [x] := (1− ck) ∗ F [x] + (Bi,s[k]− Bi,s[k − 1] ∗ (1− ck)). (6.5)

We keep updating G similar to the S-extensions case, and after all the suffixes of

s in Ds,p have been processed, all the entries in G[x] ≥ θ correspond to frequent

I-extensions of s.

6.3 Summary

We have given probabilistic SPM algorithms for evaluating the interestingness pred-

icate for expected support in an SLU database. We have considered two classes

of classical sequential pattern mining algorithms. First, the candidate generation

for which we have given optimizations for computing the frequent 1-sequences effi-

ciently, for reusing the already computed DP matrix rows and for eliminating po-

tential infrequent candidate sequences without expected support computation. We

have considered a breadth-first and a depth-first exploration of the search space and

have embedded the expected support computation sub-routine from Chapter 5 in

our algorithms to yield probabilistic candidate generation algorithms. Finally, we

have given a pattern growth algorithm by adapting the fast frequent 1-sequence com-

putation and the DP sub-routine from Chapter 5 to work with projected databases.

In the next chapter, we give an empirical evaluation of the optimizations and algo-

rithms proposed in this chapter.

136

Chapter 7

Empirical Evaluation

We report on an empirical evaluation of the algorithms proposed in Chapter 6 (Sec-

tion 7.3). We also evaluate the effectiveness of the probabilistic SPM framework in

the presence of noise (Section 7.4).

In Chapter 6, we proposed probabilistic SPM algorithms based on the candidate gen-

eration (Section 6.1) and the pattern growth frameworks (Section 6.2). We proposed

two search space exploration schemes based on the candidate generation framework,

one based on a breadth-first exploration of the search space (BFS) and the other

based on a depth-first exploration of the search space (DFS). We also proposed an

approach based on the pattern growth framework (PGA). Further, we considered

two ways of narrowing for BFS, and we also proposed probabilistic pruning both

for BFS and DFS to eliminate potential infrequent candidate sequences without

expected support computation (Section 6.1.1.4). In summary, we proposed:

1. BFS, that has two ways of narrowing which are Prefix based narrowing (PBN)

and Hashtree based narrowing (HBN). Further, probabilistic pruning may also

be used for BFS.

137

Chapter 7. Empirical Evaluation

2. DFS, for which probabilistic pruning may also be used.

3. PGA.

In this chapter, we empirically evaluate these algorithms. We first describe the ex-

perimental setup, i.e. the platform, the datasets used and the SLU data generation.

Then, we empirically evaluate PBN and HBN for BFS, and also the effectiveness of

probabilistic pruning both for BFS and DFS (Section 7.2). Based on our empirical

evaluation, we choose the most effective of the narrowing methods from PBN and

HBN for BFS, and choose whether to use probabilistic pruning for BFS and DFS,

or otherwise.

Thus, in our experiments we evaluate three algorithms, namely BFS, DFS and PGA,

and perform the scalability analysis, i.e. we report the CPU time, memory usage and

also the relative performance of our algorithms under different parameter settings

using both real and synthetic datasets. Finally, we evaluate the effectiveness of

the probabilistic SPM framework (Section 7.4), as we contrast the frequent sequences

obtained from certain data to those obtained from uncertain data using both real

and synthetic datasets.

7.1 Experimental Setup

In this section, we first describe the platform. Next, we describe the datasets used

in our experiments and then discuss the SLU data generation. We then evaluate the

effectiveness of the optimizations proposed in Section 6.1.1.

138

Chapter 7. Empirical Evaluation

7.1.1 Platform

We have implemented our algorithms in C# (Visual Studio .Net 2010), and we

have run our experiments on a machine with a 3.2GHz Intel CPU and 3GB RAM

running Microsoft Windows XP (SP3). To obtain the results, i.e. running time,

memory usage or others, we generate three probabilistic instances of each determin-

istic dataset, and run each of our algorithm on every probabilistic instance several

times, and report the averages. In our implementations, we use some of the built-in

features from Visual Studio .Net, e.g. the Dictionary class for efficiently locating

candidate sequences in various operations.

We now give the datasets used in our experiments.

7.1.2 Datasets

We use both real and synthetic datasets in our experiments. Note that these are

all deterministic datasets which we transform to the probabilistic form [27, 28, 31].

The real dataset gazelle is from Blue Martini Software, and was used for KDD-

CUP’2000 [72]. The dataset is the web click stream data of a webstore (gazelle.com),

and contains a total of 29,369 customer (source) sequences. A customer may have

multiple sessions associated with it, and a session may contain multiple page visits.

The click stream information contains the session start/end time, and also the page

visit date/time and the sequence number. Therefore, all the page visits by a customer

can be transformed to a single click stream of page visits (source sequence), ordered

by a time-stamp. There are a total of 1,423 distinct web pages, 35,722 sessions and

87,546 page visits. For more details see Kohavi et al. [72].

The synthetic datasets are generated using the IBM Quest data generator [12]. The

list of parameters for the IBM Quest data generator is shown in Table 7.1 [73]. In our

139

Chapter 7. Empirical Evaluation

Table 7.1: The list of parameters for the IBM Quest data generator.

IBM Quest Parameters

Parameter Meaning

N Number of items

D Number of source sequences

C Average number of events per source sequence

T Average number of items per itemset

NI Number of potential frequent itemsets

NS Number of potential frequent sequences

S Average number of itemsets per frequent sequence

I Average number of items per itemset in a frequent sequence

experiments, we fix the number of items N = 2K and set the rest of the parameters

except the number of source sequences D and the average number of events per

source sequence C, to default values. The default values for the remaining IBM

Quest parameters are as follows: average number of items per itemset T = 2.5,

number of potential frequent itemsets NI = 5000, number of potential frequent

sequences NS = 100, average number of itemsets per frequent sequence S = 7 and

average number of items per itemset in a frequent sequence I = 2.

We follow the naming convention of Zaki [36]: a dataset named CiDjK means that

the average number of events per source sequence is i and the number of source

sequences is j (in thousands). For example, the dataset C10D20K has on average 10

events per source sequence and 20K source sequences. As the rest of the parameters

are either fixed or set to default values, we do not mention these parameters explicitly

hereafter.

140

Chapter 7. Empirical Evaluation

7.1.3 SLU Data Generation

As already mentioned that the real dataset gazelle and synthetic datasets from

IBM Quest data generator are all deterministic datasets, and we transform these

deterministic datasets to the probabilistic form [27, 28, 31]. Recall that a determin-

istic database D = 〈r1, . . . , rn〉, is an ordered list of tuples of the form (eid, e, σ),

where eid is an event-id (including a time-stamp), and e is the event which is asso-

ciated with a source σ (Section 2.2). In an SLU database Dp, the source attribute

σ is replaced by a probability distribution W over sources (Section 4.1.2.2).

In order to introduce uncertainty into our deterministic database D, we choose a

noise parameter δ ∈ [0, 1], which controls the degree of uncertainty about a tuple

ri being associated with the same source σj in Dp as it was in D. While generating

an SLU database, we set the number of sources in W to be at most two and as a

result, the average source sequence length C is doubled in an SLU database Dp in

contrast with the deterministic database D.

Specifically, while generating an SLU database Dp from D, we process every tuple

ri in D in turn as follows. We generate a value p ∈ [0, 1] from a Poisson distribution

with a mean value δ; in the SLU database Dp, the tuple ri is associated with the

same source σj as it was in D with a probability 1− p, and is associated with some

other randomly chosen source σk ∈ S, k 6= j, with probability p. Note that if the

value of δ is low, there is still more certainty that ri is associated with the same

source σj in Dp as it was in D. In our experiments, we set δ = 10%, unless stated

otherwise. The p-sequences in the SLU database Dp are the source sequences of

probabilistic events ordered by a time-stamp.

In what follows, we use the term ‘synthetic dataset’ for a dataset generated using

IBM Quest data generator and then, transformed to SLU form and similarly, ‘real

dataset’ refers to gazelle transformed to SLU form. Further, in our experiments,

141

Chapter 7. Empirical Evaluation

we use support threshold θ as percentage of number of source sequences D rather

than an absolute number 1 ≤ θ ≤ m (Section 4.2.1) for convenience’ sake.

We now demonstrate the effectiveness of the optimizations proposed in Chapter 6.

7.2 Effectiveness of Optimization

As already mentioned that We have considered two ways of narrowing for BFS

namely PBN and HBN, we first study the effectiveness of these narrowing techniques.

Then, we evaluate the effectiveness of probabilistic pruning.

7.2.1 Narrowing

Given the set of candidate j-sequences, recall that the objective in narrowing is to

find a subset Ni,j of the set of candidate j-sequences Cj that may be supported by

source σi (Section 6.1.2). We considered two ways of narrowing. First is PBN where

all the candidate j-sequences having a common (j−1)-prefix s′ are stored as a single

entry in the hashtable as a (key, value) pair where s′ is the key and value is a pointer

to the list of S- or I-extension of s′. Similarly in HBN, a hashtree is constructed

using the candidate j-sequences and is used for narrowing.

We now show the effectiveness of the narrowing methods we consider. We consider

two representative SLU datasets for the purpose which are C10D10K and gazelle,

and report the running times for varying θ values in Figure 7.1.

We observe from the set of experiments in Figure 7.1 that not only is PBN relatively

slower than HBN but that it has extensive memory requirements and runs out of

memory for relatively harder instances, e.g. at θ = 2% or less for C10D10K, or at

θ = 0.04% or less for gazelle, as indicated by missing dots in Figure 7.1.

142

Chapter 7. Empirical Evaluation

0

100

200

300

400

2 4 6 8

R
un

ni
ng

 ti
m

es
 (

in
 s

ec
)

θ values (in %age)

Dataset = C10D10K, Noise = 10%

PBN
HBN

(i)

0

300

600

900

1200

0.02 0.04 0.06 0.08

R
un

ni
ng

 ti
m

es
 (

in
 s

ec
)

θ values (in %age)

Dataset = gazelle, Noise = 10%

PBN
HBN

(ii)

Figure 7.1: Effectiveness of PBN and HBN. Missing points indicate that the
algorithm went out of memory and thus, did not complete.

This can be understood as follows. As we demonstrate later in our experiments

(Section 7.3) that under different parameter settings, e.g. for decreasing θ values,

the number of frequent sequences increases rapidly. As storing candidate j-sequences

based on a common (j−1)-prefix is not a very compact representation, the algorithm

appears to require extensive memory when storing a large number of candidate

sequences. HBN in contrast, uses a hashtree for narrowing and stores candidate

sequences in a rather compact format and thus, scales better.

We conclude from the above set of experiments that HBN appears to be more scalable

in contrast with PBN and thus, we only consider HBN for BFS in our experiments.

We now demonstrate the effectiveness of probabilistic pruning for the candidate

generation approaches, namely BFS and DFS.

7.2.2 Probabilistic Pruning

Given a sequence s = 〈s1, . . . , sq〉 and a source σi, recall that the objective in proba-

bilistic pruning is to compute an upper bound on the probability that s is supported

by source σi, and that we compute the upper bounds for s in BFS and DFS differ-

ently. We store Li,1 along with their probabilities in a small data structure in BFS,

143

Chapter 7. Empirical Evaluation

and compute the upper bound as follows:

Pr[s � Dp
i] ≤ Pr[〈s1〉 � Dp

i] ∗ . . . ∗ Pr[〈sq〉 � Dp
i], (7.1)

whereas in DFS, we already have computed the value Pr[〈s1, . . . , sq−1〉 � Dp
i], and

obtain the upper bound as below:

Pr[s � Dp
i] ≤ Pr[〈s1, . . . , sq−1〉 � Dp

i] ∗ Pr[〈sq〉 � Dp
i]. (7.2)

To show the effectiveness of probabilistic pruning, we report the percentage of the

infrequent candidate sequences that passed apriori pruning and were later eliminated

by the probabilistic pruning, for candidate 2-sequences onwards. Note that the

apriori pruning does not help for candidate 2-sequences, and probabilistic pruning

is the only option.

We now describe our experiments. We choose gazelle and two representative syn-

thetic datasets, namely C10D10K and C20D10K converted to SLU with δ = 10%, and

report the results both for BFS and DFS in Figure 7.2, for θ = 5% and 10% for

synthetic datasets and for θ = 0.02% and 0.04% for gazelle. We have following

observations:

1. We observe that probabilistic pruning is particularly effective in eliminating

potential infrequent candidate 2-sequences both for synthetic and real datasets.

We observe over 90% reduction by probabilistic pruning for infrequent candi-

date 2-sequences in most cases (all sub-figures of Figure 7.2 except (ii) and

(iv)).

2. We also observe that probabilistic pruning is more effective for relatively harder

instances, for example, for C10D10K at θ = 5% vs. 10%.

144

Chapter 7. Empirical Evaluation

 20

 40

 60

 80

 100

2-sequences

3-sequences

4-sequences

5-sequences

6-sequences

7-sequences

%
 I

nf
re

qu
en

t s
eq

ue
nc

es
 p

ru
ne

d

Dataset = C10D10K, Noise = 10%, θ = 5%

BFS
DFS

(i)

 10

 20

 30

 40

 50

2-sequences

3-sequences

4-sequences

5-sequences

6-sequences

%
 I

nf
re

qu
en

t s
eq

ue
nc

es
 p

ru
ne

d

Dataset = C10D10K, Noise = 10%, θ = 10%

BFS
DFS

(ii)

 20

 40

 60

 80

 100

2-sequences

3-sequences

4-sequences

5-sequences

6-sequences

7-sequences

8-sequences

%
 I

nf
re

qu
en

t s
eq

ue
nc

es
 p

ru
ne

d

Dataset = C20D10K, Noise = 10%, θ = 5%

BFS
DFS

(iii)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2-sequences

3-sequences

4-sequences

5-sequences

6-sequences

7-sequences

8-sequences

%
 I

nf
re

qu
en

t s
eq

ue
nc

es
 p

ru
ne

d

Dataset = C20D10K, Noise = 10%, θ = 10%

BFS
DFS

(iv)

 20

 40

 60

 80

 100

2-sequences

3-sequences

4-sequences

5-sequences

6-sequences

7-sequences

%
 I

nf
re

qu
en

t s
eq

ue
nc

es
 p

ru
ne

d

Dataset = gazelle, Noise = 10%, θ = 0.02%

BFS
DFS

(v)

 20

 40

 60

 80

 100

2-sequences

3-sequences

4-sequences

5-sequences

%
 I

nf
re

qu
en

t s
eq

ue
nc

es
 p

ru
ne

d

Dataset = gazelle, Noise = 10%, θ = 0.04%

BFS
DFS

(vi)

Figure 7.2: Effectiveness of Probabilistic Pruning for BFS and DFS. In these
graphs, each bar indicates the percentage of infrequent candidate sequences elim-

inated by probabilistic pruning that passed apriori pruning.

145

Chapter 7. Empirical Evaluation

3. We observe that in BFS, probabilistic pruning does not help for synthetic

datasets for candidate 3-sequences onwards, and becomes progressively less ef-

fective for gazelle as well for candidate 3-sequences onwards whereas in DFS,

we see an overall reduction in the number of infrequent candidate sequences

— upto a 50% reduction in the infrequent candidate sequences for synthetic

datasets and upto a 70% reduction for gazelle — both for synthetic and real

datasets. It might suggest that a tighter upper bound (Equation 7.1 vs. Equa-

tion 7.2) needs to be computed for BFS as well, however, storing the probability

with which a (j − 1)-prefix of a j-sequence is supported by source σi for all

candidate j-sequences with every source, is memory intensive and would limit

the execution of BFS even for smaller datasets.

We conclude from the above observations that probabilistic pruning is effective for

candidate 2-sequences both for BFS and DFS. However, probabilistic pruning either

did not help or was less effective in BFS for candidate 3-sequences onwards, whereas

it was effective overall in DFS, both for synthetic and real datasets. We therefore,

turn probabilistic pruning ‘ON’ for BFS only for candidate 2-sequences, and turn

probabilistic pruning ‘ON’ for DFS for the entire duration of the algorithm.

In summary, we select hashtree based narrowing and the probabilistic pruning for

candidate 2-sequences only for BFS, and use probabilistic pruning for DFS for the

entire duration of the algorithm.

We now demonstrate the scalability of probabilistic SPM algorithms.

7.3 Scalability Analysis

We evaluate the probabilistic SPM algorithms proposed in Chapter 6 namely BFS,

DFS and PGA as follows. We first demonstrate the scalability of these algorithms,

146

Chapter 7. Empirical Evaluation

and report the CPU time of each algorithm under various parameter settings. In

addition to reporting the CPU times, we also monitor the memory usage of these

algorithms, and report the peak memory used by each algorithm in terms of per-

centage of the total system memory (RAM). Finally, we contrast the performance

of the probabilistic SPM algorithms with each other.

7.3.1 CPU Cost

We consider three parameters in our experiments, the support threshold θ, average

number of events per source sequence C, and the number of source sequences D.

Clearly, if the other two parameters are fixed, decreasing the θ values, or increas-

ing the average number of events per source sequence C, or the number of source

sequences D, all make an instance harder. For IBM Quest datasets, we test our

algorithms against three parameter, namely for varying θ values, for increasing C,

and for increasing D. As the number of source sequences D and the average number

of events per source C is fixed for gazelle, we only test our algorithms for varying

θ values in case of gazelle.

7.3.1.1 Varying θ

In the first set of experiments, Figure 7.3(i) and (ii), we test our algorithms for

varying θ values for gazelle, and for a representative synthetic dataset C10D10K.

We observe that the rate of increase in the running time for all algorithms is high

for decreasing θ values.

To get an insight into this behaviour, we obtain the total number of frequent se-

quences for varying θ values in Figure 7.4(i), and also the distributions of frequent

147

Chapter 7. Empirical Evaluation

101

102

103

104

105

1 2 3 4

R
un

ni
ng

 ti
m

es
 (

in
 s

ec
)

θ values (in %age)

Dataset = C10D10K, Noise = 10%

BFS
DFS
PGA

(i)

101

102

103

104

105

0.015 0.025 0.035 0.045

R
un

ni
ng

 ti
m

es
 (

in
 s

ec
)

θ values (in %age)

Dataset = gazelle, Noise = 10%

BFS
DFS
PGA

(ii)

101

102

103

104

105

0 10 20 30 40

R
un

ni
ng

 ti
m

es
 (

in
 s

ec
)

Average length of source sequences

D = 10K, Noise = 10%, θ = 25%

BFS
DFS
PGA

(iii)

101

102

103

104

105

0 10 20 30 40

R
un

ni
ng

 ti
m

es
 (

in
 s

ec
)

Average length of source sequences

D = 10K, Noise = 10%, θ = 12.5%

BFS
DFS
PGA

(iv)

0

3000

6000

9000

12000

15000

0 10 20 30 40

R
un

ni
ng

 ti
m

es
 (

in
 s

ec
)

Number of source sequences (in 000’s)

C = 10, Noise = 10%, θ = 2%

BFS
DFS
PGA

(v)

0

15000

30000

45000

60000

0 10 20 30 40

R
un

ni
ng

 ti
m

es
 (

in
 s

ec
)

Number of source sequences (in 000’s)

C = 10, Noise = 10%, θ = 1%

BFS
DFS
PGA

(vi)

Figure 7.3: CPU time (in seconds) for BFS, DFS and PGA under different
parameter settings for gazelle and representative synthetic datasets.

148

Chapter 7. Empirical Evaluation

103

104

105

106

N
um

be
r

of
 f

re
qu

en
t s

eq
ue

nc
es

Decreasing θ

Noise = 10%

θ = 0.25%

θ = 0.50%

θ = 1.00%

θ = 2.00%

θ = 4.00%

θ = 0.015%

θ = 0.020%

θ = 0.030%

θ = 0.040%

gazelle
C10D10K

(i)

101

102

103

104

105

106

0 10 20 30 40

N
um

be
r

of
 f

re
qu

en
t s

eq
ue

nc
es

Increasing C

D = 10K, Noise = 10%

θ = 25%
θ = 12.5%

(ii)

Figure 7.4: Number of frequent sequences, for varying θ values for gazelle and
C10D10K, and for increasing C (Figure 7.3).

101

102

103

104

105

2 4 6 8 10

N
um

be
r

of
 f

re
qu

en
t s

eq
ue

nc
es

Length of frequent sequences

Dataset = C10D10K, Noise = 10%

θ = 0.25%
θ = 0.50%
θ = 1.00%
θ = 2.00%
θ = 4.00%

(i)

101

102

103

104

105

2 4 6 8 10

N
um

be
r

of
 f

re
qu

en
t s

eq
ue

nc
es

Length of frequent sequences

Dataset = gazelle, Noise = 10%

θ = 0.015%
θ = 0.020%
θ = 0.030%
θ = 0.040%

(ii)

101

102

103

104

105

0 3 6 9 12

N
um

be
r

of
 f

re
qu

en
t s

eq
ue

nc
es

Length of frequent sequences

D = 10K, Noise = 10%, θ = 25%

C = 5
C = 10
C = 20
C = 40

(iii)

101

102

103

104

105

0 4 8 12 16

N
um

be
r

of
 f

re
qu

en
t s

eq
ue

nc
es

Length of frequent sequences

D = 10K, Noise = 10%, θ = 12.5%

C = 5
C = 10
C = 20
C = 40

(iv)

Figure 7.5: Distribution of frequent sequences for gazelle and representative
synthetic datasets for the set of experiments in Figure 7.3(i)-(iv). As the distribu-
tions of frequent sequences for increasing D (Figure 7.3(v)-(vi)) remain relatively

unaffected, we do not report those.

149

Chapter 7. Empirical Evaluation

sequences in Figure 7.5(i) and (ii), for the set of experiments reported in Figure 7.3(i)

and (ii).

We observe that decreasing θ results in a sharp increase in the number of frequent

sequences (Figure 7.4(i)), and we can also see that the number of frequent sequences

increase for sequences of all lengths (Figure 7.5(i) and (ii)) and consequently, we

witness an increase in the running times for all algorithms.

7.3.1.2 Increasing C

In another set of experiments, Figure 7.3(iii) and (iv), we test the scalability of

our algorithms for increasing average number of events per source sequence C, by

keeping the number of source sequences D constant at 10K, and report the running

times for two values of θ, for θ = 25% and 12.5%.

The running time graphs in Figure 7.3(iii) and (iv) show that a linear increase in C

results in an rapid increase in the running times for all algorithms. Similar to our

earlier experiments for varying θ values, we obtain the total number of frequent se-

quences in Figure 7.4(ii), and the distributions of frequent sequences in Figure 7.5(iii)

and (iv), for the set of experiments in Figure 7.3(iii) and (iv).

We observe that an increase in C results in rapid increase in the number of fre-

quent sequences (Figure 7.4(ii)), and almost doubles the length of maximal frequent

sequences (Figure 7.5(iii) and (iv)). Clearly, a rapid increase in the number of fre-

quent sequences along with a two-fold increase in the length of maximal frequent

sequences, makes an instance significantly harder which is also evident from the

running time graphs.

150

Chapter 7. Empirical Evaluation

7.3.1.3 Increasing D

We also test the scalability of our algorithms for increasing number of source se-

quences D, Figure 7.3(v) and (vi). We set the average number of events per source

sequence C = 10, and report the running times for representative θ values at θ = 2%

and 1%.

We observe that all our algorithms scale linearly for increasing D, although the

running time graphs show that the rate of increase of the CPU cost for DFS is much

greater than for BFS. Note that the distributions of frequent sequences or lengths

of maximal frequent sequences remain almost unaffected as D increases, and we do

not report those explicitly.

We now discuss the relative performance of our algorithms.

7.3.1.4 Comparison of Algorithms

We now contrast our algorithms in terms of CPU time for the set of experiments

in Figure 7.3. We first focus on the candidate generation algorithms, BFS and DFS.

We observe that while BFS is more efficient than DFS in CPU cost (Figure 7.3(i),

(v), (vi)), DFS is better for increasing C (Figure 7.3(iii)-(iv)) and also for gazelle

at θ = 0.015%.

We can explain this behaviour considering the following key differences in BFS and

DFS.

1. The candidate generation mechanism in DFS is different from BFS — DFS

joins Lj−1 with L1 to obtain Cj, whereas BFS joins Lj−1 with itself for the

purpose — and thus, when the size of L1 is larger than Lj−1, more candidate

sequences are generated for DFS as compared to BFS. However, when Lj−1

151

Chapter 7. Empirical Evaluation

is significantly larger than L1, for example for gazelle at θ = 0.015% or for

C40D10K at θ = 25%, CPU cost for BFS is higher than DFS.

2. In DFS, only partial apriori pruning is possible whereas BFS makes full use of

the apriori pruning and thus in DFS, considerably more candidate sequences

need to be considered for the later stages, namely probabilistic pruning and

support computation.

3. Probabilistic pruning helps DFS more than the BFS as shown in Figure 7.2.

Thus, depending on the interplay of these three factors, namely (1) number of can-

didate sequences generated (2) partial vs. full apriori pruning and (3) effectiveness

of probabilistic pruning, BFS may outperform DFS, or vice-versa.

Now comparing candidate generation algorithms with the pattern-growth algorithm,

we can see that PGA is more efficient than both BFS and DFS in all our experiments

(Figure 7.3). In Figure 7.3(iv) at C = 40, we can see that only PGA manages to

finish in a reasonable time, whereas both BFS and DFS do not finish even beyond

80 hours of execution.

Based on the above observations, we conclude that PGA is the most efficient overall

in terms of CPU cost, whereas BFS and DFS have relatively higher CPU cost. We

further conclude that while the performance of BFS and DFS depends on various

parameter settings, PGA is rather oblivious to individual parameter settings and

has a relatively stable behaviour.

7.3.2 Memory Usage

We also monitor the memory usage of our algorithms for the set of experiments

in Figure 7.3, and report the peak memory used by each algorithm as a percentage

of total system memory (RAM) in Figure 7.6.

152

Chapter 7. Empirical Evaluation

• In Figure 7.6(i) and (ii), we see that BFS has high memory requirements at

very low θ values whereas DFS and PGA are relatively stable, for example at

θ = 0.015% for gazelle and at θ = 0.025% for C10D10K, the memory usage

for BFS increases sharply (upto 60% of system memory) whereas it remains

under 10% for DFS and under 2% for PGA.

• In Figure 7.6(iii) and (iv), we observe that DFS has higher memory require-

ments for increasing C, whereas BFS consumes relatively less memory. We ob-

serve a sharp increase for BFS in Figure 7.6(iv) as compared to Figure 7.6(iii)

at a low θ, for θ = 12.5% vs. 25%. We observe that the memory usage for PGA

remains rather stable and increasing C (Figure 7.6(iii) and (iv)), or varying θ

(θ = 25% vs. 12.5%) does not significantly affect the memory usage of PGA.

• In Figure 7.6(v) and (vi), we observe that all the algorithms require relatively

less memory as compared to the other experiments in Figure 7.6 (Figure 7.6(i)–

(iv)). We observe that the memory usage for PGA almost doubles with a

two-fold increase in the database size, for example for D = 20K vs. 40K

in Figure 7.6(v) and (vi). We also observe that the memory usage of PGA is

not affected by decrease in θ, Figure 7.6(v) and (vi) at θ = 2% vs. 1%, similar

to the observations in Figure 7.6(i)– (iv).

As in BFS, all the candidate sequences in a phase are processed altogether, BFS

has high memory requirements at low θ due to storing and processing all candidate

sequences simultaneously. Further, we store some additional information in DFS

and PGA to speed-up the support computation. For instance, we store Bi,s arrays

along with the list of sources that support s in DFS, and only the Bi,s arrays in

PGA. It appears as if storing the Bi,s arrays works well with PGA as it helps speed

up the algorithm and the memory requirements also remain rather stable. Thus,

153

Chapter 7. Empirical Evaluation

 0

 10

 20

 30

 40

 50

 60

0.5 1 1.5 2

M
em

or
y

us
ed

 (
in

 %
ag

e
of

 3
G

B
)

θ values (in %age)

Dataset = C10D10K, Noise = 10%

BFS
DFS
PGA

(i)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

0.015 0.020 0.025 0.030 0.035 0.040

M
em

or
y

us
ed

 (
in

 %
ag

e
of

 3
G

B
)

θ values (in %age)

Dataset = gazelle, Noise = 10%

BFS
DFS
PGA

(ii)

0

10

20

30

40

0 10 20 30 40

M
em

or
y

us
ed

 (
in

 %
ag

e
of

 3
G

B
)

Average length of source sequences

D = 10K, Noise = 10%, θ = 25%

BFS
DFS
PGA

(iii)

0

15

30

45

60

0 10 20 30 40

M
em

or
y

us
ed

 (
in

 %
ag

e
of

 3
G

B
)

Average length of source sequences

D = 10K, Noise = 10%, θ = 12.5%

BFS
DFS
PGA

(iv)

0

3

6

9

12

0 10 20 30 40

M
em

or
y

us
ed

 (
in

 %
ag

e
of

 3
G

B
)

Number of source sequences (in 000’s)

C = 10, Noise = 10%, θ = 2%

BFS
DFS
PGA

(v)

0

3

6

9

12

15

0 10 20 30 40

M
em

or
y

us
ed

 (
in

 %
ag

e
of

 3
G

B
)

Number of source sequences (in 000’s)

C = 10, Noise = 10%, θ = 1%

BFS
DFS
PGA

(iv)

Figure 7.6: Memory usage (in terms of %age of system memory used) for the
set of experiments in Figure 7.3.

154

Chapter 7. Empirical Evaluation

we can conclude from the above set of experiments that PGA is the most scalable

algorithm in terms of memory usage as well in contrast with both BFS and DFS.

We conclude from the set of experiments in this section that the pattern growth

approach extends the advantages that it is argued to have over candidate genera-

tion approaches in classical SPM setting, to the probabilistic case as well. In the

candidate generation approaches, while BFS suffers from high cost of maintaining

candidate sequences at low θ values, DFS can not take full advantage of the apri-

ori pruning and therefore, performance of both the approaches is deteriorated for

relatively harder instances. In summary, PGA scales well both in terms of CPU

cost and memory usage as compared to BFS and DFS for the set of experiments we

consider.

7.4 Effectiveness of Probabilistic SPM Framework

We now report on an evaluation of the probabilistic SPM framework in the presence

of noise. Note that such studies have not been performed for probabilistic frequent

itemset mining in literature [27, 28, 31]. As mentioned previously, the datasets used

in our experiments are all deterministic datasets, and we artificially introduce un-

certainty (noise) into our datasets. An advantage of generating probabilistic data

this way is that we can compare the frequent sequences obtained from deterministic

data with those obtained from probabilistic data, to assess the effectiveness of prob-

abilistic SPM framework in the presence of noise. We use the standard measures

of precision and recall from information retrieval for the purpose [67, Chapter 8].

Precision and recall are set-based measures and are defined as follows: given a set

of frequent sequences R retrieved from a deterministic dataset, let R′ be the set of

frequent sequences retrieved from a probabilistic dataset. Precision is defined as the

155

Chapter 7. Empirical Evaluation

probability of a retrieved sequence being relevant:

Precision =
|R ∩ R′|

|R′|
,

whereas recall is defined as the probability of a relevant sequence being retrieved:

Recall =
|R ∩ R′|

|R|
.

For example, say if |R| = 100, i.e. the number of frequent sequences retrieved

from a deterministic dataset is 100, |R′| = 80, i.e. the number of frequent sequences

retrieved from a noisy dataset is 80, and |R∩R′| = 40, i.e. only 40 of the retrieved 80

frequent sequences are in the 100 frequent sequences retrieved from the deterministic

dataset, then the precision is 40/80 = 0.50, and the recall is 40/100 = 0.40.

We report on an evaluation of the probabilistic SPM framework in terms of precision

and recall using both real and synthetic datasets. We report overall precision and

recall for the complete set of frequent sequences, as well as for k-sequences for

k = 1, . . . , 7 (i.e. precision and recall for sequences of individual length). In our

experiments, we vary the noise parameter δ from 5% to 20% both for real and

synthetic datasets, and keep the rest of the parameters fixed.

7.4.1 Synthetic Datasets

In the first set of experiments, Table 7.2, we consider the dataset C10D10K at θ = 2%

and 1%, and report the precision and recall results for different values of δ, for

δ = 5%, 10% and 20%. In another set of experiment, Table 7.3, we consider the

dataset C20D10K at θ = 20% and 10%, and report the precision and recall results

similar to Table 7.2.

156

Chapter 7. Empirical Evaluation

Table 7.2: Precision and recall results for synthetic dataset C10D10K.

Dataset k-sequences overall

C10D10K 1 2 3 4 5 6 7

θ = 2%

δ = 5%

Precision 1.00 0.95 0.96 0.99 0.96 0.98 1.00 0.97

Recall 1.00 0.98 0.97 0.98 0.97 0.96 0.95 0.98

δ = 10%

Precision 1.00 0.92 0.92 0.98 0.90 0.95 1.00 0.94

Recall 1.00 0.98 0.97 0.97 0.96 0.93 0.77 0.97

δ = 20%

Precision 1.00 0.86 0.81 0.89 0.82 0.84 1.00 0.86

Recall 1.00 0.96 0.94 0.95 0.94 0.93 0.34 0.95

θ = 1%

δ = 5%

Precision 1.00 0.95 0.93 0.97 0.96 0.95 0.99 0.95

Recall 1.00 0.99 0.97 0.97 0.98 0.98 0.88 0.97

δ = 10%

Precision 1.00 0.93 0.88 0.95 0.91 0.90 0.98 0.92

Recall 1.00 0.98 0.95 0.95 0.95 0.96 0.84 0.96

δ = 20%

Precision 1.00 0.89 0.80 0.87 0.84 0.82 0.96 0.86

Recall 1.00 0.96 0.92 0.90 0.92 0.94 0.76 0.93

We observe that for our considered datasets, namely C10D10K and C20D10K and for

our considered θ values, change in C or θ, does not considerably affect precision/re-

call. However, when δ is varied (between 5% to 20% in our experiments), both

precision and recall are effected. Thus, whilst precision is slightly worse than recall

when δ is increased, we get over 90% overall recall in our experiments in Tables 7.2

and 7.3. Further, we get over 80% overall precision as well except for C20D10K for

θ = 20% and δ = 20%, where it is 77% (Table 7.3).

157

Chapter 7. Empirical Evaluation

We next give precision and recall against frequent k-sequences of length upto 7. We

have the following observations:

1. We observe that recall is near perfect for small values of k, and declines when

the value of k increases, e.g. for k = 6 or 7, whereas precision is affected by

an increase in δ rather than an increase in the sequence length.

2. We also observe that recall is not good for long sequences and especially, when

δ is also high, for example, for 7-sequences at δ = 20%, in C10D10K at θ = 2%

or in C20D10K at θ = 20%.

3. It is also interesting to note that whilst overall recall remains relatively unaf-

fected for different values of θ, we get slightly better recall for lower values of

θ, for instance, for 7-sequences in C20D10K at θ = 20% vs. θ = 10%.

We conclude from the set of experiments in Tables 7.2 and 7.3 that for the datasets

we consider and the expected support and noise thresholds, we get encouraging

precision/recall results overall as well as for sequences of different lengths, even

when noise is relatively high.

7.4.2 gazelle

We now evaluate the effectiveness of probabilistic SPM framework for gazelle. In

our experiments (Table 7.4), we report precision and recall results for two values of

θ, for θ = 0.04% and 0.03%, and vary the noise parameter δ between 5% to 20%

similar to synthetic datasets.

We observe that although precision is generally good, recall is rather poor. Further,

the longest sequences seem to be worse affected by noise. For example, whilst the

overall precision is near perfect for the set of experiments in Table 7.4, even the

158

Chapter 7. Empirical Evaluation

Table 7.3: Precision and recall results for synthetic dataset C20D10K.

Dataset k-sequences overall

C20D10K 1 2 3 4 5 6 7

θ = 20%

δ = 5%

Precision 1.00 1.00 0.96 0.92 0.93 0.89 1.00 0.92

Recall 1.00 1.00 1.00 0.99 0.99 1.00 0.59 0.99

δ = 10%

Precision 1.00 1.00 0.94 0.83 0.84 0.85 1.00 0.86

Recall 1.00 1.00 1.00 0.99 1.00 1.00 0.44 0.98

δ = 20%

Precision 1.00 1.00 0.87 0.79 0.71 0.79 1.00 0.77

Recall 1.00 1.00 1.00 0.97 0.99 1.00 0.31 0.97

θ = 10%

δ = 5%

Precision 1.00 0.93 0.96 0.94 0.94 0.95 0.99 0.96

Recall 1.00 0.99 1.00 1.00 0.98 0.99 0.98 0.99

δ = 10%

Precision 1.00 0.91 0.96 0.92 0.86 0.88 0.96 0.91

Recall 1.00 1.00 0.98 1.00 0.97 0.99 0.97 0.98

δ = 20%

Precision 0.98 0.88 0.91 0.85 0.81 0.78 0.86 0.83

Recall 1.00 0.99 0.95 0.96 0.96 0.96 0.96 0.95

highest overall recall is only 0.67 which is for θ = 0.04% at δ = 5%, whereas overall

recall gets as low as 20% for θ = 0.03% and for δ = 20%. A similar observation

can be made about sequences of individual lengths, i.e. precision is perfect or near

perfect but recall is very low. In other words, we can say that although most of the

extracted sequences are relevant, there are not many of them.

Our understanding of a low recall is that the sequences with the highest expected

support are not able to pass the support threshold θ or in other words, θ is too high.

It might suggest that the θ values need to be fine tuned, or in other words, revised

159

Chapter 7. Empirical Evaluation

Table 7.4: Precision and recall results for gazelle.

Dataset k-sequences overall

gazelle 1 2 3 4 5 6 7

θ = 0.04%

δ = 5%

Precision 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00

Recall 1.00 0.81 0.57 0.40 0.20 0.08 0.00 0.67

δ = 10%

Precision 1.00 0.99 1.00 1.00 1.00 0.00 0.00 1.00

Recall 1.00 0.68 0.39 0.20 0.06 0.00 0.00 0.53

δ = 20%

Precision 0.99 0.98 1.00 1.00 0.00 0.00 0.00 1.00

Recall 1.00 0.46 0.16 0.03 0.00 0.00 0.00 0.41

θ = 0.03%

δ = 5%

Precision 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Recall 1.00 0.77 0.50 0.31 0.17 0.05 0.01 0.50

δ = 10%

Precision 1.00 0.99 1.00 1.00 1.00 1.00 0.00 1.00

Recall 1.00 0.65 0.31 0.14 0.04 0.00 0.00 0.36

δ = 20%

Precision 1.00 0.98 1.00 1.00 1.00 0.00 0.00 0.99

Recall 1.00 0.45 0.11 0.02 0.01 0.00 0.00 0.20

downwards in order to improve recall. It is obvious that revising θ downwards in

order to improve recall will be at the cost of some precision, i.e. precision is likely

to deteriorate as a consequence. One important issue is that it is not clear that how

to systematically adjust the θ values. In our experiments, we revise θ by setting

θ = θ ∗ (1−δ) (there could be other ways as well), and the rows labelled as ‘Change’

in Table 7.5 show the effect of this adjustment on precision and recall. For example,

a value +0.20 in the ‘Change’ row under recall means that recall improved by 20%

as a result of revising θ, whereas the values in the corresponding precision and recall

160

Chapter 7. Empirical Evaluation

Table 7.5: The updated precision and recall results for gazelle after θ is re-
vised. The rows labelled as ‘Change’ show the improvement/decline (+/-) in the

precision and recall results after θ is revised.

Dataset k-sequences overall

gazelle 1 2 3 4 5 6 7

θ = 0.04%

δ = 5%

Precision 0.96 0.98 1.00 1.00 1.00 1.00 0.00 0.99

Change -0.04 -0.02 0.00 0.00 0.00 0.00 0.00 -0.01

Recall 1.00 0.99 0.82 0.65 0.37 0.16 0.00 0.86

Change 0.00 +0.18 +0.25 +0.25 +0.17 +0.08 0.00 +0.19

δ = 10%

Precision 0.94 0.88 0.99 1.00 1.00 1.00 0.00 0.93

Change -0.06 -0.11 -0.01 0.00 0.00 0.00 0.00 -0.07

Recall 1.00 0.99 0.80 0.51 0.20 0.03 0.00 0.84

Change 0.00 +0.31 +0.41 +0.31 +0.14 +0.03 0.00 +0.31

δ = 20%

Precision 0.84 0.67 0.95 1.00 1.00 0.00 0.00 0.78

Change -0.15 -0.31 -0.05 0.00 0.00 0.00 0.00 -0.22

Recall 1.00 1.00 0.75 0.28 0.06 0.00 0.00 0.86

Revised θ 0.00 +0.54 +0.59 +0.25 +0.06 0.00 0.00 +0.45

θ = 0.03%

δ = 5%

Precision 0.96 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Change -0.04 -0.01 0.00 0.00 0.00 0.00 0.00 0.00

Recall 1.00 0.98 0.77 0.55 0.37 0.17 0.07 0.77

Change 0.00 +0.21 +0.27 +0.24 +0.20 0.12 0.06 +0.22

δ = 10%

Precision 0.94 0.90 0.99 1.00 1.00 1.00 0.00 0.95

Change -0.06 -0.09 -0.01 0.00 0.00 0.00 0.00 -0.05

Recall 1.00 0.98 0.75 0.44 0.20 0.03 0.00 0.68

Change 0.00 +0.33 +0.44 +0.30 +0.16 0.03 0.00 +0.32

δ = 20%

Precision 0.89 0.69 0.91 0.99 1.00 0.00 0.00 0.80

Change -0.11 -0.29 -0.09 -0.01 0.00 1.00 0.00 -0.19

Recall 1.00 1.00 0.72 0.25 0.05 0.00 0.00 0.61

Change 0.00 +0.55 +0.61 +0.23 +0.04 0.00 0.00 +0.41

161

Chapter 7. Empirical Evaluation

rows show the updated precision and recall values.

We report the updated precision and recall results after revising θ in Table 7.5. As

expected, we see some improvement in recall at the cost of precision. For exam-

ple, observe an improvement of over 40% in overall recall, at the cost of a nearly

20% decline in precision, for θ = 0.03% and δ = 20%. The results are encourag-

ing for sequences of individual lengths as well for example, observe 54% and 59%

improvement in recall for frequent 2- and 3-sequences respectively, for θ = 0.03%

and δ = 20%, although precision declines as a consequence, observe a 31% and 5%

decline in precision respectively, in the aforementioned case. Further, the recall is

still not good for longer sequences, e.g. for 6- or 7-sequences and this might suggest

that the θ needs to be fine tuned in each phase or alternatively, for sequences of each

length. However, it is not clear that how to do this.

Thus, we can suggest from the set of experiments we consider that θ needs to be

fine tuned in order to get better precision/recall results for gazelle.

Concluding our discussion on the effectiveness of the probabilistic SPM framework

in the presence of noise, we say that we get encouraging precision/recall results

overall as well as for sequences of individual lengths, for our considered synthetic

datasets. However, the recall was rather poor for gazelle which we were able to

improve considerably by an adjustment in θ, albeit at the cost of some precision.

In the empirical evaluation of probabilistic SPM, some promising results have been

shown and clearly more work needs to be done.

(1) Our empirical evaluation is not a validation of the uncertainty model that

we consider, rather we have demonstrated that if SLU data is available, the

probabilistic SPM framework gives promising results. The validation of the

uncertainty model using real-life data is something to be considered in future

research.

162

Chapter 7. Empirical Evaluation

(2) For all our experiments, we have only considered a range of parameter values

for parameters like W , θ, δ, etc. It is rather obvious that choosing a different

range of parameter values may have an impact on the results; as already seen

for some parameter settings in our experiments.

(3) We have considered a few synthetic datasets but only one real dataset. The

performance of the probabilistic SPM framework for other real datasets may

well also be different.

(4) The manner in which uncertainty is introduced into the datasets is also im-

portant. The transformation from deterministic data to the SLU data was

done without knowing the time-stamps (IBM Quest datasets or gazelle do

not have time-stamps); the informations about the time-stamps may also have

an impact on the SLU data and consequently, the results.

7.5 Summary

In this chapter, we have demonstrated the effectiveness of the optimizations, namely

narrowing and probabilistic pruning, and the scalability of the algorithms, namely

BFS, DFS and PGA, proposed in Chapter 6 with the help of experiments. Thus, we

have shown that whilst the performance of BFS and DFS depends on individual pa-

rameter settings and is not better than PGA for our considered sets of experiments,

PGA is the most scalable approach in terms of CPU time and the memory usage.

We have also evaluated the effectiveness of probabilistic SPM framework in the pres-

ence of noise, and we have shown that whilst we get encouraging results in case of

synthetic datasets, the expected support threshold needs to be fine tuned in order

to obtain better results for gazelle. In the end, we have discussed that although

163

Chapter 7. Empirical Evaluation

we obtain promising results for the sets of experiments we consider, a number of

open directions remain to be explored in future.

164

Chapter 8

Conclusions and Future Work

The main objective of this thesis was to study the sequential pattern mining (SPM)

problem in probabilistic databases. Although there has been prior work on SPM in

uncertain data, this thesis is the first to study SPM in the context of probabilistic

databases. Probabilistic databases are a relatively recent but very influential frame-

work for modelling uncertain data. As this is the first study of SPM in probabilistic

databases, the focus has been more on looking at the basic SPM problem, and un-

derstanding the foundational issues. Indeed, the formalization of the SPM problem

in probabilistic databases is itself not obvious.

8.1 Our Contributions

We summarize our main contributions (based on the research questions in Sec-

tion 1.2) below:

(1) We first formalized the probabilistic SPM problem in probabilistic databases,

and we proposed four uncertainty models, namely TLU, ELU, SLU and SLU-

D. Then, we defined the interestingness predicate based on two interestingness

165

Chapter 8. Conclusions and Future Work

measures, namely expected support and probabilistic frequentness, for the

SPM problem in probabilistic databases. The formulations were motivated

by real life examples, thus establishing that SPM is probabilistic databases is

an interesting topic of study. Indeed, our work has been followed up by Wan

[74], Zhao et al. [46] and Gupta et al. [75].

(2) We discussed evaluating the interestingness predicate from a complexity-theoretic

viewpoint, and we showed that different uncertainty models have different out-

comes from a complexity theoretic viewpoint under different interestingness

measures. We showed that whilst it is NP-complete to evaluate the interest-

ingness predicate for computing expected support for the SLU-D model, we

show that it can be evaluated in polynomial time for the TLU, ELU and SLU

models by giving a DP algorithm. We also showed that whilst the interest-

ingness predicate for computing probabilistic frequentness can be evaluated in

polynomial time for the TLU and ELU models, it is #P-complete to do the

same for the SLU model. We note that models and measures that we pro-

pose that try to capture dependencies between tuples tend to be intractable

in general.

(3) We considered the SLU model and the expected support measure, and ex-

tended classical SPM algorithms based on candidate generation and pattern

growth frameworks to work under probabilistic settings. Thus, we proposed

two candidate generation algorithms based on a breadth-first and a depth-first

exploration of the search space, namely BFS and DFS, and a pattern growth

algorithm, namely PGA based on the idea of projected databases. We also

proposed optimizations like fast frequent 1-sequence computation, incremen-

tal support computation and probabilistic pruning, to speed up the support

computation task.

166

Chapter 8. Conclusions and Future Work

(4) We gave an empirical evaluation to demonstrate the usefulness of the opti-

mizations we proposed and also the scalability of probabilistic SPM algorithms

that we proposed, and the results show that optimized SPM is scalable and

can be done in reasonable time. We also demonstrated the effectiveness of

the probabilistic SPM framework for the SLU model using the expected sup-

port measure.

8.2 Future Work

As this is a first step towards mining sequential patterns in probabilistic databases,

there are a number of directions to consider in future.

• In this thesis, our implementations are for the SLU model for the expected

support measure. It would be interesting to compute a more informative mea-

sure such as probabilistic frequentness, for the TLU or ELU models. Further,

an approximate solution for probabilistic frequentness, as already proposed for

frequent itemset mining [29], could also be an interesting future work.

• In addition to the interestingness measures we consider, namely expected sup-

port and probabilistic frequentness, other interestingness measures, e.g. ex-

pected rank [3] have also been proposed in literature. It would be interesting

to compute these measures for different uncertainty models and then contrast-

ing the results obtained from different interestingness measures.

• In the uncertainty models we consider, we consider uncertainty either in the

tuple or in the attribute. Considering a more expressive uncertainty model,

e.g. x-tuples, also seems a potential challenge.

167

Chapter 8. Conclusions and Future Work

• We have implemented a relatively simple SLU data generator in our experi-

ments. A more realistic data generator which is able to generate some kind of

dependencies in data also seems a potential future work.

• We have only considered mining the set of sequential patterns. Mining maxi-

mal/closed sequences could also be a future work. However, even the definition

of a closed sequential pattern is not clear in the probabilistic case.

• A variety of real-world applications have been proposed for classical SPM. Zhao

et al. [46] have recently proposed RFID trajectory mining using probabilistic

SPM. However, there is a need for more real-world applications for probabilistic

SPM and looking for further real-world applications for probabilistic SPM can

also be a potential future work.

168

Appendix A

Complexity Classes

We give an overview of complexity classes. We first discuss complexity classes P, NP,

and #P, followed by the idea of polynomial time reducibility leading to the notion

of NP-completeness and #P-completeness.

We first focus on decision problems which are problems for which the answer is

simply yes or no. For example:

• in the boolean satisfiability problem (SAT), the problem instance is a boolean

formula. Given a boolean formula, is it satisfiable i.e. is it possible to assign

true or false values to the variables in the formula such that the boolean formula

evaluates to true?

• in an undirected graph, a Hamiltonian path is a path that visits each vertex

exactly once. Given an undirected graph, is it possible to find a Hamiltonian

path?

The class P is the class of problems that can be solved in polynomial time. Specifi-

cally, given an input of size n, the problems in P can be solved in time O(nk) where

169

Appendix A. Complexity Classes

Figure A.1: We transform an instance α of A in polynomial time to an instance
β of B. We solve β in polynomial time and the answer to β is the answer to α

(image from Cormen et al. [4]).

k is a constant. The problems in P are considered computationally feasible. The

class NP is the class of problems for which a certificate (solution) can be verified

in polynomial time. A problem is NP-complete if it is in NP and is as hard as any

other problem in NP.

A problem in P is also in NP: if a problem can be solved in polynomial time, a

solution to a problem can also be verified in polynomial time. Thus, it is clear that

P ⊆ NP but whether P ⊂ NP is still open problem, and is one of the most important

problems in computer science. The question whether P ⊂ NP is important because

the best known exact solutions to NP-complete problems take exponential time in

the worst cases and are therefore currently computationally intractable.

Another important complexity class #P is the class of counting problems for which

we are interested in how many ‘yes’ instances there are for a decision problem (the

decision problem is either in P or NP). Similar to the class NP-complete, a problem

is #P-complete if it is in #P and is as hard as any other problem in #P.

A.1 Reducibility

We now discuss the idea of reducibility. Suppose that we want to solve a decision

problem A in polynomial time, and that we are given the input α which is an

instance of A. Now suppose that we already know how to solve a decision problem

170

Appendix A. Complexity Classes

B in polynomial time. Finally, suppose that we have a sub-routine that transforms

an instance α of A into an instance β of B such that the following conditions hold:

1. The transformation from α to β is polynomial time.

2. The answer to α is yes if and only if the answer to β is yes, and the answer to

α is no if and only if the answer to β is no.

Figure A.1 illustrates the idea of reducibility, the outline of which is as follows:

1. Given an instance α of A, transform α to an instance β of B using a polynomial

time reduction algorithm.

2. Execute the polynomial time decision algorithm for B on β.

3. The answer for β is the same as the answer for α.

If each of the above three steps can be performed in polynomial time then we can

decide on α in polynomial time.

However, for NP-completeness, we do not want to show that problem A is as easy

as B. We are rather interested in determining how hard a problem is. We use the

polynomial time reductions the opposite way for this. Suppose that we want to show

that no polynomial time algorithm can exist for a particular decision problem B,

and that we have a decision problem A for which we already know that no polyno-

mial time algorithm can exist. Further, we have a polynomial time reduction that

transforms an instance of A to an instance of B. We can show that no polynomial

time algorithm can exist for B by using contradiction. Suppose that B can be solved

in polynomial time. Then, using the method shown in Figure A.1, we have a way to

solve problem A in polynomial time, which contradicts our assumption that there is

no polynomial time algorithm for A.

171

Appendix A. Complexity Classes

We now formally define the complexity classes P, NP and NP-complete, for which

we first discuss the notion of a decision problem and problem encoding.

A.2 Decision Problems

As the theory of NP-completeness is focussed on decision problems, which are the

problems having a yes/no solution, we first formally define the notion of a decision

problem. We define a decision problem Q as a function that maps the instance set

I to the solution set {0, 1}.

A.2.1 Problem Encoding

An encoding of a set S of objects is a mapping e from S to the set of binary strings.

It is important to note that any decision problem can be encoded as a binary string.

We define a concrete decision problem as a problem that has its instance set as a set

of binary strings.

Given a decision problem Q mapping an instance set I to {0, 1}, an encoding e :

I → {0, 1}∗ can be used to induce a related concrete decision problem, which we

denote by e(Q). If the solution to a decision problem i ∈ I is Q(i) ∈ {0, 1}, then

the solution to the concrete decision problem instance e(i) ∈ {0, 1}∗ is also Q(i).

Thus, a computer algorithm that solves a decision problem actually takes an encod-

ing of a problem instance as input. We now define the complexity class P.

Definition A.1 (P). The complexity class P is the class of concrete decision prob-

lems that are polynomial time solvable.

Remark A.2. The choice of encoding is crucial in understanding the concept of

polynomial time solvable from concrete decision problems to decision problems. For

172

Appendix A. Complexity Classes

example, suppose that the only input to an algorithm is an integer k, and suppose

that the time complexity of the algorithm is O(k). Now assume that the integer k

is given as a unary number — a string of k 1’s — then for an input of length n, the

algorithm completes in O(n) time. Now consider the binary representation of integer

k, then the input of length n = ⌊log k⌋ + 1. In this case, the time complexity of

the algorithm is O(k) = O(2n), which is exponential in the size of the input. Thus,

an algorithm runs in either polynomial or superpolynomial time depending on the

encoding. In this thesis, we assume a binary encoding for any integers present in

the input.

A.2.2 NP and NP-completeness

As we focus on decision problems, we can use concepts from formal language theory.

Given an alphabet {0, 1}, a language L over {0, 1} is any set of strings made of

symbols in {0, 1}. Thus, a decision problem Q as a language L over the alphabet

{0, 1} can be defined as follows: L = {x ∈ {0, 1}∗ : Q(x) = 1}. We now discuss the

class NP using the notion of language.

The complexity class NP is the class of languages that can be verified by a polynomial

time algorithm. Formally, a language L belongs to NP if and only if there exists a

polynomial time algorithm A and a constant c such that:

L = {x ∈ {0, 1}∗ : ∃ a string y with |y| = O(|x|c) such that A(x, y) = 1}

The string y in the above definition is called a certificate. Moreover, if L ∈ P, then

L ∈ NP, since if there is a polynomial time algorithm to decide L, that algorithm

can easily be converted to a verification algorithm that simply ignores any certificate

and accepts exactly those input strings it determines to be in L. Thus, P ⊆ NP.

173

Appendix A. Complexity Classes

Figure A.2: An illustration of a polynomial time reduction from a language L1

to a language L2 using a reduction function f (image from Cormen et al. [4]).

Figure A.3: An algorithm A1 that decides whether x ∈ L1 by using F to
transform x to f(x) and then using A2 to decide whether f(x) ∈ L2 (image from

Cormen et al. [4]).

A problem Q can be reduced to another problem Q′ if any instance of Q can be

transformed to an instance of Q′, the solution to which provides a solution to the

instance of Q.

We say that a language L1 is polynomial time reducible to a language L2, denoted by

L1≤PL2, if there exists a polynomial time computable function f : {0, 1}∗ → {0, 1}∗

such that for all x ∈ {0, 1}∗, x ∈ L1 if and only if f(x) ∈ L2. Figures A.2

and A.3 illustrate the idea of a polynomial time reduction from a language L1 to

another language L2. Each language is a subset of {0, 1}∗. The reduction function f

provides a polynomial time mapping such that if x ∈ L1, then f(x) ∈ L2. Moreover,

if x 6∈ L1, then f(x) 6∈ L2. The answer to the question, whether f(x) ∈ L2 is directly

the answer to whether x ∈ L1.

174

Appendix A. Complexity Classes

Definition A.3 (NP-complete). A language L ⊆ {0, 1}∗ is NP-complete if the

following holds: (1) L ∈ NP and (2) L′≤PL for every L′ ∈ NP.

In other words, Definition A.3 means that if any of the NP-complete problems can

be solved in polynomial time, all of them can be solved in polynomial time. If a

language L satisfies property 2, but not necessarily property 1, we say that L is

NP-hard.

We have formally defined the notion of classes P, NP and NP-complete. We have

also discussed that why it is important that an instance of a problem be encoded as

binary. We have also illustrated the concept of polynomial time reducibility to show

the hardness of the problems. A more detailed discussion can be found in Cormen

et al. [4, Chapter 34].

We now focus on the class #P.

A.3 Counting Problems: The Class #P

As already mentioned that the class #P is the class of problems for which we want

to know how many solutions exist to a problem. For example, for the SAT and

Hamiltonian Path path problems discussed for class NP, the corresponding #P

problems are:

• #SAT: that is, given a boolean formula, compute the number of different truth

assignments that satisfy it.

• #Hamiltonian Path: that is, given an undirected graph, compute the num-

ber of different Hamiltonian paths in the graph.

175

Appendix A. Complexity Classes

Note that if the counting version of a problem in NP can be solved, it is sufficient

to get an answer to the decision version of the problem. For example, the answer to

#SAT is sufficient to answer SAT. Thus, the counting version is considered somewhat

harder than the corresponding decision version.

We view languages as binary relations such that a problem is specified by a binary

relation Q = {(x, y)}, where x is the encoding of an input and y is the encoding of

the solution. A binary relation is polynomially balanced if for each input instance

x, the only possible solutions y have length at most |x|k, and the alphabet of y is

{0, 1}.

Definition A.4 (#P). Let Q be a polynomially balanced, (non-deterministic) poly-

nomial time decidable binary relation. The counting problem associated with Q is

the following: Given x, how many y are there such that (x, y) ∈ Q? (The output is

an integer in binary).

Definition A.5 (#P-complete). A relation Q ⊆ {0, 1}∗ is #P-complete if (1)

Q ∈ #P and (2) for every Q′ ∈ #P, Q′ can be reduced to Q in polynomial time.

If a relation Q satisfies property 2, but not necessarily property 1, we say that Q is

#P-hard.

Note that the polynomial time reduction, reducing Q′ to Q must be such that given

an x (an encoding of an instance of Q′), the reduction f(x) should map x to the

encoding of an instance of Q in such a way that counting the number of pairs

(f(x), y) ∈ Q allows us to compute the number of pairs (x, y) ∈ Q′. Reductions for

proving #P-completeness are usually (but not always) parsimonious : the number

of pairs (f(x), y) ∈ Q is exactly equal to the number of pairs (x, y) ∈ Q′, i.e. the

number of solutions is preserved by the reduction.

The most interesting #P-complete problems are those for which the corresponding

decision problem can be solved in polynomial time. For example, the problem of

176

Appendix A. Complexity Classes

counting the perfect matchings in a bipartite graph (used in Chapter 5). See Pa-

padimitriou [76, Chapter 18] for more details.

177

Bibliography

[1] Nilesh N. Dalvi, Christopher Ré, and Dan Suciu. Probabilistic databases: dia-

monds in the dirt. Communications of the ACM, 52(7):86–94, 2009.

[2] O. Hassanzadeh and R. J. Miller. Creating probabilistic databases from dupli-

cated data. The VLDB Journal, 18(5):1141–1166, 2009.

[3] Graham Cormode, Feifei Li, and Ke Yi. Semantics of ranking queries for prob-

abilistic data and expected ranks. In ICDE, pages 305–316. IEEE, 2009. ISBN

978-0-7695-3545-6.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms (3rd edition). MIT Press, 2009. ISBN 978-0-262-

03384-8.

[5] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From data

mining to knowledge discovery in databases. AI Magazine, 17(3):37–54, 1996.

[6] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. The KDD

process for extracting useful knowledge from volumes of data. Communications

of the ACM, 39(11):27–34, 1996.

[7] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and

Techniques. Morgan Kaufmann, second edition, 2005.

178

Bibliography

[8] Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ra-

masamy Uthurusamy, editors. Advances in Knowledge Discovery and Data

Mining. AAAI/MIT Press, 1996. ISBN 0-262-56097-6.

[9] Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Selecting the right

interestingness measure for association patterns. In KDD DBL [82], pages 32–

41. ISBN 1-58113-567-X.

[10] Craig Silverstein, Sergey Brin, and Rajeev Motwani. Beyond market baskets:

Generalizing association rules to dependence rules. Data Mining and Knowledge

Discovery, 2(1):39–68, 1998.

[11] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association

rules between sets of items in large databases. In Peter Buneman and Sushil

Jajodia, editors, SIGMOD Conference, pages 207–216. ACM Press, 1993.

[12] Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In

Philip S. Yu and Arbee L. P. Chen, editors, ICDE, pages 3–14. IEEE Computer

Society, 1995. ISBN 0-8186-6910-1.

[13] Manish Gupta and Jiawei Han. Applications of pattern discovery using se-

quential data mining. In Pradeep Kumar, P. Radha Krishna, and S. Bapi

Raju, editors, Pattern Discovery Using Sequence Data Mining: Applications

and Studies, chapter 1, pages 1–23. IGI Global, 2012.

[14] Manish Gupta and Jiawei Han. Approaches for pattern discovery using se-

quential data mining. In Pradeep Kumar, P. Radha Krishna, and S. Bapi

Raju, editors, Pattern Discovery Using Sequence Data Mining: Applications

and Studies, chapter 8, pages 137–154. IGI Global, 2012.

[15] Nizar R. Mabroukeh and Christie I. Ezeife. A taxonomy of sequential pattern

mining algorithms. ACM Computing Surveys, 43(1):3, 2010.

179

Bibliography

[16] Bamshad Mobasher, Honghua Dai, Tao Luo, and Miki Nakagawa. Discovery

and evaluation of aggregate usage profiles for web personalization. Data Mining

and Knowledge Discovery, 6(1):61–82, 2002.

[17] Simon Jaillet, Anne Laurent, and Maguelonne Teisseire. Sequential patterns

for text categorization. Intelligent Data Analysis, 10(3):199–214, 2006.

[18] Themis P. Exarchos, Costas Papaloukas, Christos Lampros, and Dimitrios I.

Fotiadis. Mining sequential patterns for protein fold recognition. Journal of

Biomedical Informatics, 41(1):165–179, 2008.

[19] Charu C. Aggarwal, editor. Managing and Mining Uncertain Data. Springer,

2009.

[20] Nodira Khoussainova, Magdalena Balazinska, and Dan Suciu. Probabilistic

event extraction from RFID data. In ICDE DBL [78], pages 1480–1482.

[21] Jennifer Widom. TRIO: A system for data, uncertainty, and lineage. In

Charu C. Aggarwal, editor, Managing and Mining Uncertain Data, chapter 5.

Springer, 2009.

[22] Charu C. Aggarwal and Philip S. Yu. A survey of uncertain data algorithms

and applications. IEEE Transactions on Knowledge and Data Engineering, 21

(5):609–623, 2009.

[23] Charu C. Aggarwal. On unifying privacy and uncertain data models. In ICDE

DBL [78], pages 386–395.

[24] Dan Suciu and Nilesh N. Dalvi. Foundations of probabilistic answers to queries.

In Özcan [81], page 963. ISBN 1-59593-060-4.

180

Bibliography

[25] Liwen Sun, Reynold Cheng, David W. Cheung, and Jiefeng Cheng. Mining

uncertain data with probabilistic guarantees. In Bharat Rao, Balaji Krishna-

puram, Andrew Tomkins, and Qiang Yang, editors, KDD, pages 273–282. ACM,

2010. ISBN 978-1-4503-0055-1.

[26] Carson Kai-Sang Leung, Mark Anthony F. Mateo, and Dale A. Brajczuk. A

tree-based approach for frequent pattern mining from uncertain data. In Washio

et al. [80], pages 653–661. ISBN 978-3-540-68124-3.

[27] Charu C. Aggarwal, Yan Li, Jianyong Wang, and Jing Wang. Frequent pattern

mining with uncertain data. In Elder et al. [77], pages 29–38. ISBN 978-1-

60558-495-9.

[28] Thomas Bernecker, Hans-Peter Kriegel, Matthias Renz, Florian Verhein, and

Andreas Züfle. Probabilistic frequent itemset mining in uncertain databases.

In Elder et al. [77], pages 119–128. ISBN 978-1-60558-495-9.

[29] Toon Calders, Calin Garboni, and Bart Goethals. Approximation of frequent-

ness probability of itemsets in uncertain data. In Geoffrey I. Webb, Bing Liu,

Chengqi Zhang, Dimitrios Gunopulos, and Xindong Wu, editors, ICDM, pages

749–754. IEEE Computer Society, 2010.

[30] Dimitrios Gunopulos, Roni Khardon, Heikki Mannila, Sanjeev Saluja, Hannu

Toivonen, and Ram Sewak Sharm. Discovering all most specific sentences. ACM

Transactions on Database Systems, 28(2):140–174, 2003.

[31] Chun Kit Chui, Ben Kao, and Edward Hung. Mining frequent itemsets from

uncertain data. In Zhi-Hua Zhou, Hang Li, and Qiang Yang, editors, PAKDD,

volume 4426 of Lecture Notes in Computer Science, pages 47–58. Springer, 2007.

ISBN 978-3-540-71700-3.

181

Bibliography

[32] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern mining:

current status and future directions. Data Mining and Knowledge Discovery,

15(1):55–86, 2007.

[33] Jochen Hipp, Ulrich Güntzer, and Gholamreza Nakhaeizadeh. Algorithms for

association rule mining - a general survey and comparison. SIGKDD Explo-

rations, 2(1):58–64, 2000.

[34] Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. Sequential pattern

mining using a bitmap representation. In KDD DBL [82], pages 429–435. ISBN

1-58113-567-X.

[35] Xifeng Yan, Jiawei Han, and Ramin Afshar. Clospan: Mining closed sequential

patterns in large databases. In Daniel Barbará and Chandrika Kamath, editors,

SDM. SIAM, 2003. ISBN 0-89871-545-8.

[36] Mohammed Javeed Zaki. SPADE: An efficient algorithm for mining frequent

sequences. Machine Learning, 42(1/2):31–60, 2001.

[37] Guizhen Yang. Computational aspects of mining maximal frequent patterns.

Theoretical Computer Science, 362(1-3):63–85, 2006.

[38] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: Gen-

eralizations and performance improvements. In Peter M. G. Apers, Mokrane

Bouzeghoub, and Georges Gardarin, editors, EDBT, volume 1057 of Lecture

Notes in Computer Science, pages 3–17. Springer, 1996. ISBN 3-540-61057-X.

[39] Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Qiming Chen, Umeshwar Dayal,

and Meichun Hsu. Freespan: frequent pattern-projected sequential pattern

mining. In KDD, pages 355–359, 2000.

[40] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Jianyong Wang, Helen Pinto, Qim-

ing Chen, Umeshwar Dayal, and Meichun Hsu. Mining sequential patterns by

182

Bibliography

pattern-growth: The PrefixSpan approach. IEEE Transactions on Knowledge

and Data Engineering, 16(11):1424–1440, 2004.

[41] Unil Yun. A new framework for detecting weighted sequential patterns in large

sequence databases. Knowledge-Based Systems, 21(2):110–122, 2008.

[42] Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok Shim. Spirit: Sequen-

tial pattern mining with regular expression constraints. In Malcolm P. Atkin-

son, Maria E. Orlowska, Patrick Valduriez, Stanley B. Zdonik, and Michael L.

Brodie, editors, VLDB, pages 223–234. Morgan Kaufmann, 1999. ISBN 1-

55860-615-7.

[43] Jian Pei, Jiawei Han, and Wei Wang. Constraint-based sequential pattern min-

ing: the pattern-growth methods. Journal of Intelligent Information Systems,

28(2):133–160, 2007.

[44] Jiong Yang, Wei Wang, Philip S. Yu, and Jiawei Han. Mining long sequential

patterns in a noisy environment. In Michael J. Franklin, Bongki Moon, and

Anastassia Ailamaki, editors, SIGMOD Conference, pages 406–417. ACM, 2002.

ISBN 1-58113-497-5.

[45] Xingzhi Sun, Maria E. Orlowska, and Xue Li. Introducing uncertainty into

pattern discovery in temporal event sequences. In ICDM, pages 299–306. IEEE

Computer Society, 2003. ISBN 0-7695-1978-4.

[46] Zhou Zhao, Da Yan, and Wilfred Ng. Mining probabilistically frequent sequen-

tial patterns in uncertain databases. In Elke A. Rundensteiner, Volker Markl,

Ioana Manolescu, Sihem Amer-Yahia, Felix Naumann, and Ismail Ari, editors,

EDBT, pages 74–85. ACM, 2012. ISBN 978-1-4503-0790-1.

[47] Muhammad Muzammal and Rajeev Raman. Uncertainty in sequential pattern

mining. In Lachlan M. MacKinnon, editor, BNCOD, volume 6121 of Lecture

183

Bibliography

Notes in Computer Science, pages 147–150. Springer, 2010. ISBN 978-3-642-

25703-2.

[48] Muhammad Muzammal and Rajeev Raman. On probabilistic models for uncer-

tain sequential pattern mining. In Longbing Cao, Yong Feng, and Jiang Zhong,

editors, ADMA (1), volume 6440 of Lecture Notes in Computer Science, pages

60–72. Springer, 2010. ISBN 978-3-642-17315-8.

[49] Muhammad Muzammal and Rajeev Raman. Mining sequential patterns from

probabilistic databases. In Joshua Zhexue Huang, Longbing Cao, and Jaideep

Srivastava, editors, PAKDD (2), volume 6635 of Lecture Notes in Computer

Science, pages 210–221. Springer, 2011. ISBN 978-3-642-20846-1.

[50] Muhammad Muzammal. Mining sequential patterns from probabilistic

databases by pattern-growth. In Alvaro A. A. Fernandes, Alasdair J. G. Gray,

and Khalid Belhajjame, editors, BNCOD, volume 7051 of Lecture Notes in

Computer Science, pages 118–127. Springer, 2011. ISBN 978-3-642-24576-3.

[51] Yanchang Zhao, Huaifeng Zhang, Shanshan Wu, Jian Pei, Longbing Cao,

Chengqi Zhang, and Hans Bohlscheid. Debt detection in social security by

sequence classification using both positive and negative patterns. In Wray L.

Buntine, Marko Grobelnik, Dunja Mladenic, and John Shawe-Taylor, editors,

ECML/PKDD (2), volume 5782 of Lecture Notes in Computer Science, pages

648–663. Springer, 2009. ISBN 978-3-642-04173-0.

[52] Ke Wang, Yabo Xu, and Jeffrey Xu Yu. Scalable sequential pattern mining for

biological sequences. In David A. Grossman, Luis Gravano, ChengXiang Zhai,

Otthein Herzog, and David A. Evans, editors, CIKM, pages 178–187. ACM,

2004. ISBN 1-58113-874-1.

[53] Miao Wang, Xuequn Shang, and Zhanhuai Li. Sequential pattern mining for

protein function prediction. In Changjie Tang, Charles X. Ling, Xiaofang Zhou,

184

Bibliography

Nick Cercone, and Xue Li, editors, ADMA, volume 5139 of Lecture Notes in

Computer Science, pages 652–658. Springer, 2008. ISBN 978-3-540-88191-9.

[54] Takashi Ishio, Hironori Date, Tatsuya Miyake, and Katsuro Inoue. Mining

coding patterns to detect crosscutting concerns in Java programs. In Ahmed E.

Hassan, Andy Zaidman, and Massimiliano Di Penta, editors, WCRE, pages

123–132. IEEE, 2008.

[55] Roger Cavallo and Michael Pittarelli. The theory of probabilistic databases. In

Peter M. Stocker, William Kent, and Peter Hammersley, editors, VLDB, pages

71–81. Morgan Kaufmann, 1987. ISBN 0-934613-46-X.

[56] Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on probabilistic

databases. In Mario A. Nascimento, M. Tamer Özsu, Donald Kossmann,

Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer, editors, VLDB,

pages 864–875. Morgan Kaufmann, 2004. ISBN 0-12-088469-0.

[57] Jihad Boulos, Nilesh N. Dalvi, Bhushan Mandhani, Shobhit Mathur, Christo-

pher Ré, and Dan Suciu. Mystiq: a system for finding more answers by using

probabilities. In Özcan [81], pages 891–893. ISBN 1-59593-060-4.

[58] Sumit Sarkar and Debabrata Dey. Relational models and algebra for uncertain

data. In Charu C. Aggarwal, editor, Managing and Mining Uncertain Data,

chapter 3. Springer, 2009.

[59] Nilesh N. Dalvi and Dan Suciu. The dichotomy of conjunctive queries on proba-

bilistic structures. In Leonid Libkin, editor, PODS, pages 293–302. ACM, 2007.

ISBN 978-1-59593-685-1.

[60] Mohamed A. Soliman, Ihab F. Ilyas, and Kevin Chen-Chuan Chang. Top-k

query processing in uncertain databases. In Rada Chirkova, Asuman Dogac,

185

Bibliography

M. Tamer Özsu, and Timos K. Sellis, editors, ICDE, pages 896–905. IEEE,

2007.

[61] Ming Hua, Jian Pei, Wenjie Zhang, and Xuemin Lin. Ranking queries on

uncertain data: a probabilistic threshold approach. In Wang [79], pages 673–

686. ISBN 978-1-60558-102-6.

[62] Xi Zhang and Jan Chomicki. Semantics and evaluation of top-k queries in

probabilistic databases. Distributed and Parallel Databases, 26(1):67–126, 2009.

[63] Chun Kit Chui and Ben Kao. A decremental approach for mining frequent

itemsets from uncertain data. In Washio et al. [80], pages 64–75. ISBN 978-3-

540-68124-3.

[64] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent patterns

without candidate generation: A frequent-pattern tree approach. Data Mining

and Knowledge Discovery, 8(1):53–87, 2004.

[65] Qin Zhang, Feifei Li, and Ke Yi. Finding frequent items in probabilistic data.

In Wang [79], pages 819–832. ISBN 978-1-60558-102-6.

[66] Liang Wang, Reynold Cheng, Sau Dan Lee, and David Wai-Lok Cheung. Ac-

celerating probabilistic frequent itemset mining: a model-based approach. In

Jimmy Huang, Nick Koudas, Gareth J. F. Jones, Xindong Wu, Kevyn Collins-

Thompson, and Aijun An, editors, CIKM, pages 429–438. ACM, 2010. ISBN

978-1-4503-0099-5.

[67] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schtze. Introduc-

tion to Information Retrieval. Cambridge University Press, New York, NY,

USA, 2008. ISBN 0521865719, 9780521865715.

186

Bibliography

[68] Wikipedia. http://en.wikipedia.org/wiki/anpr — Wikipedia, the free encyclo-

pedia, 2010. URL http://en.wikipedia.org/wiki/ANPR. [Online; accessed

30-April-2012].

[69] Liam Keilthy. ANPR System performance. In Marko Ruh and Gerhard Trost-

Heutmekers, editors, Parking Trend International. European Parking Associa-

tion, June 2008.

[70] Richard M. Karp. Reducibility among combinatorial problems. In Raymond E.

Miller and James W. Thatcher, editors, Complexity of Computer Computations,

The IBM Research Symposia Series, pages 85–103. Plenum Press, New York,

1972. ISBN 0-306-30707-3.

[71] Leslie G. Valiant. The complexity of computing the permanent. Theoretical

Computer Science, 8:189–201, 1979.

[72] Ron Kohavi, Carla Brodley, Brian Frasca, Llew Mason, and Zijian Zheng. KDD-

Cup 2000 organizers’ report: Peeling the onion. SIGKDD Explorations, 2(2):

86–98, 2000.

[73] Hye-Chung Kum, Joong Hyuk Chang, and Wei Wang. Benchmarking the ef-

fectiveness of sequential pattern mining methods. Data and Knowledge Engi-

neering, 60(1):30–50, 2007.

[74] Li Wan. Discovering probabilistic sequential pattern in uncertain sequence

database. In Gang Shen and Xiong Huang, editors, Advanced Research on

Computer Science and Information Engineering, volume 153 of Communica-

tions in Computer and Information Science, pages 125–131. Springer Berlin

Heidelberg, 2011. ISBN 978-3-642-21411-0.

187

http://en.wikipedia.org/wiki/ANPR

Bibliography

[75] Manish Gupta, Jing Gao, Yizhou Sun, and Jiawei Han. Community trend

outlier detection using soft temporal pattern mining. In ECML/PKDD, 2012.

To Appear.

[76] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

ISBN 978-0-201-53082-7.

[77] John F. Elder, Françoise Fogelman-Soulié, Peter A. Flach, and Mo-

hammed Javeed Zaki, editors. Proceedings of the 15th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, Paris, France,

June 28 - July 1, 2009, 2009. ACM. ISBN 978-1-60558-495-9.

[78] Proceedings of the 24th International Conference on Data Engineering, ICDE

2008, April 7-12, 2008, Cancún, México, 2008. IEEE.

[79] Jason Tsong-Li Wang, editor. Proceedings of the ACM SIGMOD International

Conference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada,

June 10-12, 2008, 2008. ACM. ISBN 978-1-60558-102-6.

[80] Takashi Washio, Einoshin Suzuki, Kai Ming Ting, and Akihiro Inokuchi, ed-

itors. Advances in Knowledge Discovery and Data Mining, 12th Pacific-Asia

Conference, PAKDD 2008, Osaka, Japan, May 20-23, 2008 Proceedings, volume

5012 of Lecture Notes in Computer Science, 2008. Springer. ISBN 978-3-540-

68124-3.

[81] Fatma Özcan, editor. Proceedings of the ACM SIGMOD International Confer-

ence on Management of Data, Baltimore, Maryland, USA, June 14-16, 2005,

2005. ACM. ISBN 1-59593-060-4.

[82] Proceedings of the Eighth ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, July 23-26, 2002, Edmonton, Alberta,

Canada, 2002. ACM. ISBN 1-58113-567-X.

188

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	1 Introduction
	1.1 Sequential Pattern Mining
	1.2 Uncertain Data
	1.3 Motivation
	1.4 Our Contributions
	1.5 Thesis Organisation

	2 Sequential Pattern Mining
	2.1 Association Rule Mining
	2.1.1 Frequent Itemset Mining
	2.1.2 Association Rule Discovery

	2.2 Sequential Pattern Mining
	2.2.1 Problem Statement
	2.2.2 Computational Complexity of SPM

	2.3 SPM Algorithms
	2.3.1 Candidate Generation
	2.3.1.1 GSP
	2.3.1.2 SPADE
	2.3.1.3 SPAM

	2.3.2 Pattern Growth

	2.4 Comparison of SPM Algorithms
	2.4.1 Candidate Generation
	2.4.2 Pattern Growth

	2.5 Alternative SPM Formulations
	2.5.1 Constrained SPM
	2.5.2 Closed SPM
	2.5.3 SPM from Noisy or Uncertain Data

	2.6 SPM Applications
	2.7 Summary

	3 Probabilistic Databases
	3.1 Motivations for Probabilistic Databases
	3.1.1 Information Extraction
	3.1.2 Deduplication

	3.2 Probabilistic Data Models
	3.2.1 Attribute-level Uncertainty Model
	3.2.2 Tuple-level Uncertainty Model
	3.2.3 x-relations Model

	3.3 Query Evaluation
	3.4 Top-k
	3.5 Probabilistic Database Systems
	3.5.1 MystiQ
	3.5.2 Trio

	3.6 Frequent Itemset Mining using Probabilistic Data
	3.6.1 Expected Frequent Itemset Mining
	3.6.2 Probabilistic Frequent Itemset Mining

	3.7 Summary

	4 Probabilistic Data Models and Measures
	4.1 Probabilistic Data Models
	4.1.1 Tuple-level Uncertainty
	4.1.2 Attribute-level Uncertainty
	4.1.2.1 Event-level Uncertainty
	4.1.2.2 Source-level Uncertainty

	4.1.3 Uncertainty in Deduplication

	4.2 The Interestingness Predicate
	4.2.1 Expected Support
	4.2.2 Probabilistic Frequentness

	4.3 Summary

	5 Computational Complexity of Evaluating the Interestingness Predicate
	5.1 Expected Support Computation
	5.1.1 TLU/SLU Case
	5.1.2 ELU Case
	5.1.3 SLU-D Case

	5.2 Probabilistic Frequentness Computation
	5.2.1 TLU/ELU Case
	5.2.2 SLU Case
	5.2.3 SLU-D Case

	5.3 Summary

	6 Probabilistic SPM Algorithms
	6.1 Candidate Generation
	6.1.1 Optimization
	6.1.1.1 Fast Frequent 1-sequence Computation
	6.1.1.2 Incremental Support Computation
	6.1.1.3 Apriori Pruning
	6.1.1.4 Probabilistic Pruning

	6.1.2 Breadth-First Exploration
	6.1.2.1 Candidate Generation
	6.1.2.2 Support Computation

	6.1.3 Depth-First Exploration
	6.1.3.1 Candidate Generation
	6.1.3.2 Support Computation

	6.2 Pattern Growth
	6.2.1 Pattern Growth Algorithm
	6.2.2 Pattern Growth Step
	6.2.2.1 S-extension Computation
	6.2.2.2 I-extension Computation

	6.3 Summary

	7 Empirical Evaluation
	7.1 Experimental Setup
	7.1.1 Platform
	7.1.2 Datasets
	7.1.3 SLU Data Generation

	7.2 Effectiveness of Optimization
	7.2.1 Narrowing
	7.2.2 Probabilistic Pruning

	7.3 Scalability Analysis
	7.3.1 CPU Cost
	7.3.1.1 Varying
	7.3.1.2 Increasing C
	7.3.1.3 Increasing D
	7.3.1.4 Comparison of Algorithms

	7.3.2 Memory Usage

	7.4 Effectiveness of Probabilistic SPM Framework
	7.4.1 Synthetic Datasets
	7.4.2 Gazelle

	7.5 Summary

	8 Conclusions and Future Work
	8.1 Our Contributions
	8.2 Future Work

	A Complexity Classes
	A.1 Reducibility
	A.2 Decision Problems
	A.2.1 Problem Encoding
	A.2.2 NP and NP-completeness

	A.3 Counting Problems: The Class #P

	Bibliography

