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Abstract 
Asthma is a heterogeneity disease that is mostly managed successfully using bronchodilators and 

anti-inflammatory drugs.  Around 10%-15% of asthmatics however have difficult or severe asthma 

which is less responsive to treatments.  Asthma and in particular severe asthma are now thought of 

a description of symptoms which may contain possible sub-groups with possible different 

pathologies which could be useful for targeting different drugs for different sub-groups.  However 

little statistical work has been carried out to determine these sub-phenotypes. 

Studies have been carried out to partition severe asthma variables in to a number of sub-groups but 

the algorithms used in these studies are not based on statistical inference and it is difficult to select 

the number of best fitting sub-groups using such methods.  It is also unclear where the clusters or 

sub-groups returned are actual sub-groups or reflect a bigger non-normal distribution.  In the thesis 

we have developed a statistical model that combines factor analysis, a method used to obtain 

independent factors to describe processes allowing for variation over variables, and infinite mixture 

modelling, a process that involves determining the most probable number of mixtures or clusters 

thus allowing for variation over individuals.  This model created is a Dirichlet process normal mixture 

latent variable model DPNMLVN and it is capable of determining the correct number of mixtures 

over each factor.  The model was tested with simulations and used to analysis two severe asthma 

datasets and a cancer clinical trial.  Sub-groups were found that reflect a high Eosinophilic group and 

an average eosinophilic group, a late onset older non atopic group and a highly atopic younger early 

onset group.  In the clinical trial data 3 distinct mixtures were found relating to existing biomarkers 

not used in the mixture analysis. 
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Chapter 1. Introduction 

1.1 Chapter summary 
This chapter gives a brief outline of the aims of the thesis along with a brief account of 

what is already known on the topic of both severe asthma variation and 

factor/cluster/mixture modelling methodology for the purpose of analysing severe 

asthma variation.  The chapter then introduces the key concepts and ideas for the 

thesis in order to gain a base knowledge to understanding the rest of the thesis and 

further chapters.  The overview of the thesis structure is stated in order to act as a 

guide to reading and to find specific chapters in the thesis.  

1.2 Aim of the thesis 
Briefly the aim of the thesis is to explore and statistically model the variation between 

patients with severe asthma in order to determine if the variation found in clinic (see 

chapter 2) is due to individual severity or distinct clusters or sub-groups.  Although a 

simple biological question the statistical methodology needed to answer this question 

is both complicated and difficult to compute.  The statistical way the thesis addressed 

this question is by applying semi-parametric latent variable models to explore the 

patterns of variation in two multivariate severe asthma clinical datasets. 

A latent variable is a hypothesised variable that cannot be measured but can be 

quantified on an arbitrary scale using other outcome variables that are correlated to 

the latent variable (see chapter 4).  Using this concept the latent variables can be used 

to describe asthma processes or conceptions that are immeasurable but are correlated 

with existing variables.  An example of this would be a latent variable describing 

breathlessness being correlated to the measureable variables forced expiratory 
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volume in 1 second, FEV1 and forced volume capacity FVC.  Each outcome is correlated 

with  breathless but is obviously not breathless itself but by applying latent variable 

models the proportion of the variance that is correlated with FVC and FEV1 can be 

used to describe breathless leaving other patterns of variation such as time of 

measurement and age of patient out of the latent variable. 

Latent variables can be created for many outcome variables.  The number of latent 

variables (factors) and the variables that correlate to them are dictated by the 

underlying variation patterns of the patients.  Usually the latent variables are given a 

standard normal distribution, having mean 0 and standard deviation 1, this 

standardisation is carried out for ease of computation and use.  Using the standardised 

latent variable it is assumed that the latent variable consists of one homogeneous 

group.  For the methodology presented here the latent variable models are created 

using semi-parametric distributions (see chapter 5) that address the uncertainty of the 

latent variable distributions.  This means that instead of being normally distributed the 

latent variable can have a much more flexible shape consisting of an infinite number of 

normal distributions with different means and variances, this semi-parametric 

technique can be used to determine sub-grouping. 

Clustering methods can be split up into two types hard and soft (fuzzy).  Hard 

clustering is when data is separated into a discrete number of categories or clusters.  

Each subject, or patient, is allocated to one cluster.  Fuzzy clustering also describes 

data being classified in terms of a number of categories but this time each subject or 

patient can belong to one or more categories and cluster membership is expressed as 

a proportion between 0 and 1, in statistically models the proportion is usually obtained 
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as the subject’s probability of being in a cluster.  The semi-parametric latent variable 

model used in the thesis is also a fuzzy clustering method which can also be used to 

form a strict partition of the data to obtain a hard cluster membership (see chapters 6 

and 7).  The cluster membership partition can then be used to infer clinically relevant 

cluster outcomes for samples of severe asthma patients. 

Once cluster membership is found hypothesis testing can be used to determine 

significant differences between the groups allowing the groups to be annotated with 

clinical meaning (see chapters 8 and 9).  Although significant differences can be found 

between clusters this still does not imply distinct clusters as the clusters could make up 

a larger non-normal distribution.  To combat this, the thesis introduces a new Bayesian 

statistic that is a measure of our faith in the number and distinctness of the clusters 

returned. This Bayesian statistic is derived from a frequentist hypothesis test for 

multimodality of a static distribution called the dip statistic (see chapters 6 and 7). 

To demonstrate their wider applicability the semi-parametric latent variable models 

created for the severe asthma datasets are also used to determine sub-groups in a 

clinical trial for a new cancer drug (see chapter 9). 

1.3 Background to asthma and asthma phenotypes 
Asthma is a respiratory inflammatory disease.  It is diagnosed by finding wheeze, 

coughing, shortness of breath, and chest tightness although these are not specific to 

asthma(Taylor, Bateman et al. 2008).  The airway restriction seen is caused by 

constriction of air way smooth muscle constricting  and tightening the 

airways,(Halayko, Tran et al. 2006) this is related to a hyper-response of the airways 

which can be triggered by many factors the most common being as a response to 



13 
 

allergens in allergic reaction pathways also associated with inflammation.  The airways 

can be relaxed using reliever type inhaled medications, β2-adrenoceptor agonists 

(Halayko, Tran et al. 2006).  These reverse the restriction of the air passage ways 

allowing responding patients to breath normally again.  The inflammation in asthma is 

usually associated with an increase in eosinophil cells in non-severe asthma and can be 

treated by using preventative medications such as Inhaled corticosteroids.  Both the 

inflammation and hyper-responsiveness aspects of asthma are much harder to 

quantify. 

For most patients with mild or moderate asthma adequate treatment can be achieved 

through combination of reliever, β2-adrenoceptor agonists and controller, 

corticosteroid medication and good control.  For severe asthma however this is not 

always the case.  Severe asthma accounts for 5-10% of the asthma population (Holgate 

and Polosa 2006).  Patients suffering from severe asthma have more exacerbations 

needing hospital admittance and tend to have poorer responses to drugs.  Levels of 

severity can be established by spirometry measurements such as forced expiration 

volume in the first second, FEV1 and forced volume capacity, FVC  that measures the 

volume of the lungs along with symptoms such as the GINA guidelines for severity 

classification (Salas Hernandez, Fernandez Vega et al. 2009).  Most lung and thoracic 

societies however define severity of asthma by the level of treatment needed to obtain 

control, with severe asthma being defined by the American Thoracic Society (ATS) as 

patients who are treated with continuous or near continuous oral corticosteroids with 

high dose inhaled corticosteroids after being observed for a period of 6 

months(Holgate and Polosa 2006). 
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Severe asthma is now thought of as no longer belonging to a single disease type that 

describes a worsening of mild/moderate asthma but rather representing an umbrella 

syndrome containing sub-groups with possible different pathologies (Wenzel 2003).  

Some of these sub-groups or sub-phenotypes are well established and are seen in 

clinical practice such as allergic/non allergic asthma, early onset/late onset of 

symptoms (Wenzel 2003).  Other sub-groups however are not well established such as 

an obese phenotype, refractory asthma or asthma associated with high neutrophilic 

inflammation (Abraham, Anto et al. 2003).  In these situations there is equipoise on 

the existence of such sub-phenotypes and whether they represent true sub-groups or 

represent larger non- normal distributions,(Abraham, Anto et al. 2003; Wenzel 2003). 

Little statistical work has been carried out in the area of severe asthma variance 

analysis.  Most papers centre on factor analysis, which groups together correlated 

variables into smaller dimensional specific latent factors that can be used to describe 

specific processes.  Other papers concentrate on cluster analysis which groups 

together similar patients over a number of variables and can be used to describe 

different sub-phenotypes or sub-types of patients. 

In its simplest form factor analysis can be carried out on the data to determine specific 

patterns or factors of variance within the variables.  These factors can be seen as 

theoretical constructs or latent variables that quantify a process or aspect of severe 

asthma.  These factors correlate with variables that are associated with the process 

the factor is describing (Skrondal 2004). The factors can also be described as clustering 

similar variables together to minimise the number of variables needed for analysis.  

Factors or latent variables found in severe asthma correspond to the processes body 
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mass, spirometry, atopy, inflammation, and symptoms, (Haldar 2008) (Moore, Meyers 

et al. 2009). 

Clustering is used to determine specific sub groups which show small within variation 

but large between variations.  The work that has been carried out in severe asthma 

and other respiratory diseases used simple algorithmic clustering techniques based on 

Euclidean distance measures between patients such as k-means and hierarchical 

clustering(Haldar 2008) (Moore, Meyers et al. 2009).   These methods rely on the 

standardised distance between patient variables to obtain similarities between 

patients and thus clusters. 

These methods produce partition of the data but the methods are not based on actual 

probability statements which could lead to subjectivity in determining the correct 

number of clusters (Bush and Fleming).  Another issue is which variables to choose to 

enter the cluster analysis.  Some authors use all the variables in the cluster analysis 

leading to the most popular pattern of variance in the data to be over emphasized 

(Garcia-Aymerich, Gomez et al. 2010).  I.e. the one described by the most variables, 

usually spirometry.  The better methods identify independent patterns in the data 

using factor/latent variable analysis and use one variable to represent each factor. 

The splitting up of analysis into separate factor and cluster analysis can be considered 

slightly ad hoc as the data first has to be analysed through factor analysis to determine 

the number of factors and to determine which variables are to be used in the cluster 

analysis.  In order to overcome the splitting of analysis’s and to determine a best fitting 

number of clusters and a better understanding of the variability of the disease as a 
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whole a joint variation modelling method was created  that both carries out factor 

analysis and cluster analysis over each factor at the same time. 

These models will be used to investigate the underlying distribution of datasets of 

severe asthma outcomes and will be used to quantify the variation seen in severe 

asthma patients.  These models are useful to determine which asthma variables are 

correlated with other asthma variables and to fully understand the underlying 

representation of the asthma variables.  For this reason a semi-parametric distribution 

was used to describe each of the latent asthma variables.  This special distribution 

allowed the latent variable to be modelled in a way free from forced parametric 

shapes.  Usually for identification purposes a latent variable is described as being 

standard normally distributed (Skrondal 2004) i.e. all the subjects or patients derive 

from a single group.  In allowing the latent variable to be semi-parametric we allow the 

latent variable to be described as an infinite mixture of normal distributions (Dunson 

2009).  This allows the latent variable to obtain any shape made from an infinite 

mixture of normals allowing greater flexibility.  This less strict distribution means we 

can visualise the independent severe asthma factors better and derive a strict cluster 

membership or partition from information obtained from the infinite mixture model. 

Thus creating an advanced clustering model that is based on probabilities, obtaining 

the most probable number of clusters and most probable cluster membership over 

each severe asthma factor.  In addition to this a Bayesian statistic was derived from a 

simple frequentist hypothesis test, the dip test, (Hartigan and Hartigan 1985) to obtain 

a measure of faith in the number of clusters derived i.e. a single statistic to determine 

whether or not the clusters predicted for each severe asthma factor are genuine 

clusters or represent a non-normal distribution. 
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Factors and clusters over factors were determined for two severe asthma datasets and 

are given medical/biological annotations that are in appliance with, whilst extending 

the severe asthma literature.   The statistical methodology created was then adapted 

for use in a new cancer drug clinical trial to determine whether the methodology could 

be adapted for use in personalised medicine in a clinical trial setting, this time using a 

slightly different method of semi parametric modelling allowing for the different 

nature of the time to event variables.  

1.4 Overview of thesis chapters 
 

1.41 Chapter 2: Severe asthma variation 

Asthma as a chronic inflammatory respiratory disease is introduced and defined.  Also 

the notion of asthma severity and that severe asthma is considered not only as a 

severe version of mild/moderate asthma but also as consisting of several groups or 

sub-groups of severe asthma.  The many phenotypes and asthma biomarkers are 

introduced and described using specific aspects of asthma as sub-headings.  After this 

severe asthma is described using all of these aspects as a multidimensional disease and 

the various methods and conclusions, described from a clinical perspective, to gain 

inferences on these multidimensional phenotypes analyses.  Predictions are made 

from the literature to which sub-groups could be present in the new analysis of the 

severe asthma datasets presented later in Chapter 8. 

1.42 Chapter 3: Severe asthma datasets 

The original dataset to be used was cleansed and summary statistics were taken. The 

original dataset however was found to be lacking in a large amount of variables 

coupled with a large amount of missing data in the remaining ones.  There was also a 

large amount of data on patients that was inconsistent with patient records leading to 
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some patients not having a diagnosis of severity or sometimes even asthma.  For these 

reasons the original dataset intended for analysis was not used instead two cross 

sectional severe asthma datasets were used for analysis.  These were the Pranab 

Haldar dataset which was originally used for clustering using k-means algorithms in 

(Haldar 2008) and the Brompton blood dataset originally designed to act as a clinical 

phenotype dataset that could be matched with genotype data.  Summary statistics and 

the amount of missing data are presented in this chapter along with a brief description 

of each variable to illustrate the properties of the severe asthma datasets. 

1.43 Chapter 4: Latent variables, Factors and Cluster analysis 

Clustering algorithms and mixture models are introduced as two ways of partitioning 

data in order to determine sub-groups in heterogeneous severe asthma data. The 

clustering algorithms and mixture models are reviewed in order to apply them to 

multivariate severe asthma data to analyse the variation found in patients.   Mixture 

modelling was deemed the better method as this allows clusters to overlap (White, 

Johnson et al. 2010), while also relying on statistical modelling to gain inference on the 

best fitting number of mixtures.   Latent variable methodology is introduced later as a 

way of modelling aspects of severe asthma that are not measurable.  However 

correlated multiple outcomes that are measurable can be used in order to model 

severe asthma variation in variables by grouping similar variables into specific factors 

or latent variables.  The review concludes by stating that both the latent 

variable/factor methodology and mixture modelling need to be combined to analyse 

the severe asthma variation for both patients and variables.  The best method of 

combining these two methodologies is by modelling each factor of latent variable 

semi-parametrically as a Dirichlet Process Normal Mixture (Ferguson 1973; Antoniak 
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1974)} which looks for mixtures over the variation seen in severe asthma factors or 

latent variables.  This allows for the latent aspects to be represented in the severe 

asthma datasets as groups of correlated variables which will have a more flexible 

distribution on them allowing for sub-phenotypes within latent variables. 

1.44 Chapter 5: Semi-parametric modelling 

This chapter describes semi-parametric modelling and more specifically the Dirichlet 

Process (DP) (Ferguson 1973) and Dirichlet Process Normal Mixture (DPNM) (Antoniak 

1974) in more detail as a method of semi-parametric Bayesian modelling that allows 

for heterogeneity within variables both manifest and latent.  Included is the statistical 

notation for DP and DPNM and their origins and uses in statistical fields as ways of 

improving fit by relaxing parametric assumptions and for use in sub-grouping data to 

obtain a more flexible partitioning of the data. 

There are many ways to implement a DP and DPNM the methods are reviewed here 

towards determining the best possible statistical algorithm in order to apply the 

models to the severe asthma latent variables.  The algorithm chosen was the Escobar 

and West algorithm (Escobar and West 1995) for conjugate data.  Coding for the 

algorithm was carried out in R language (R Development Core Team 2009) an open 

source statistical computing language.   Coding for the algorithm combined with the 

latent variable model for four latent variables can be found in the appendix and is 

explained in the second half of the chapter along with the various issues raised when 

coding the Dirichlet process mixture model and the statistical coding solutions used to 

overcome these issues.  The coding of the algorithm was the main purpose of the PhD 

and thus took the most time to complete.   First R language was needed to be 

understood and efficiently programmed using basic examples, then the 
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mathematical/statistical nature of the algorithm was needed to be understood, then a 

clear visualisation was needed on how the algorithm could be encoded in R.  This was 

carried out and then improved upon.  Issues while programming included long run 

times, multiple solutions of parameters, slow convergence, estimating convergence of 

parameters and determining whether mixtures were distinct or overlapping.  These 

issues were addressed and appropriate solutions found. 

1.45 Chapter 6: Simulation study using one latent variable and 

differing mixture scenarios 

10 different latent variable heterogeneity patterns were simulated along with their 

continuous manifest variables in order to determine if the Dirichlet process normal 

mixture latent variable model DPNMLVM would be able to detect the heterogeneity 

and return the correct number of clusters with the correct cluster membership that 

explains the heterogeneity.  This is carried out for 200 subjects and 500 subjects in 

order to test consistency within the statistical model.  Also an investigation is carried 

out to determine if binary variables could be added alongside the normally distributed 

in order to determine the underlying variation, which showed that the binary variables 

were insufficient to predict complex continuous clustering structures. 

1.46 Chapter 7: Simulation study using multiple latent variables and 

differing mixtures 

5 different scenarios were simulated to demonstrate different patterns of 

heterogeneity seen for various numbers of latent variables/factors.  This was carried 

out in order to test whether the Dirichlet process normal mixture latent variable model 

DPNMLVM could be used over a number of variables that displayed differing 

correlations with each other and thus could be explained by a number of different 
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independent factors again conclusions were made in order to apply the severe asthma 

datasets to the Dirichlet process normal mixture latent variable model.  

1.47 Chapter 8: Analysis of Brompton blood dataset 

The DPNMLVM is carried out using the Brompton blood dataset.  The model is applied 

and mixtures are found and annotated for four factors.   The number of clusters and 

memberships however were not shown to be consistent over different priors for the 

alpha parameter of the DPNMLVM in a specitivity analysis; the alpha prior determines 

the number of clusters.  This was due to the Brompton blood dataset being a small 

dataset that allowed the priors of alpha to easily affect it.  It was not analysed further 

due to this constraint. 

1.48 Chapter 9: Analysis of Haldar severe asthma dataset 

Here the DPNMLVM is carried out using the previously clustered dataset in (Haldar 

2008).  The model is applied and mixtures are found and annotated for four factors 

with some factors producing distinct non overlapping clusters.   The number of clusters 

and memberships are shown to be consistent for three different priors for the alpha 

parameter of the DPNMLVM in a specitivity analysis.  The truncated Dirichlet Process 

Normal Mixture Latent Variable model (trDPNMLVM) (Ishwaran and Zarepour 2000) 

was also used to determine if the two methodologies produced similar outcomes. 

1.49 Chapter 10: Analysis of clinical trial dataset for a new cancer drug 

The methodology is used in a clinical trial setting for a new cancer drug, using 

correlated survival and responder outcomes.  The link functions for these outcomes 

are not conjugate which means the conjugate Dirichlet process normal mixture cannot 

be used in this case.  To overcome this, the truncated Dirichlet Process Normal Mixture 

Latent Variable model (trDPNMLVM) (Ishwaran and Zarepour 2000) was used in 
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WinBUGS(Lunn 2000) to achieve a solution of the underlying distribution of these 

factors.  Three sub-groups were found for the new cancer drug that relate to existing 

biomarkers not used in the analysis.  

1.410 Chapter 11: Conclusion and further directions 

Conclusions are made about the Dirichlet process normal mixture latent variable 

model DPNMLVM and the nature of heterogeneity of severe asthma.  Discussion is 

also made about how best to carry on the research to answer both statistical and 

clinical important questions raised in the research that need further work to be 

answered.  These include the application of semi-parametric structural equation 

modelling in order to determine regression pathways between the severe asthma 

factors and variables.  The application of more advanced fitting criteria to determine 

the number of factors in the analysis, to further explore the application of binary data 

to the continuous data model and to allow the clustering algorithm to be adapted 

across all the factors rather than individual factors. 

1.5 Introduction closing statement 
This chapter was an introduction to the thesis as a whole including project aims, a 

general introduction to the concept of analysing variation in multivariate datasets by 

statistical models specifically in applying these models to severe asthma cohorts.  The 

general thesis structure is outlined and a brief introduction for each chapter is 

described for reference and to form a logically order in which to explore severe asthma 

variation.  We now look to the first step in applying any complicated statistical analysis 

to a dataset which is understanding to the best of our ability the biological/clinical 

question being asked of us, that of exploring and defining severe asthma variation 

hopefully into a number of subsets or pathologies.  In order to do this a review of 
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severe asthma variation was carried out in order to define what variables would be 

important to model and to better understand the properties and clinical aspects of 

asthma and severe asthma.  This was written up as a severe asthma review contained 

in chapter 2, severe asthma variation
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Chapter 2. Severe Asthma Phenotypes 
2.1 Chapter summary 
Here severe asthma phenotypes are reviewed to determine what are the most 

clinically relevant when modelling the severe asthma variation.  The review starts by 

describing asthma and then severe asthma.  After the asthma introduction each aspect 

or phenotype is described followed by a review of existing severe asthma clustering. 

2.2 Introduction to Asthma 
Asthma is a chronic inflammatory disease of the lungs.  It is usually diagnosed in 

primary care from the clinical history and presentation of wheeze, cough, shortness of 

breath, and chest tightness although these are not specific to asthma (Taylor, Bateman 

et al. 2008).  Asthma affects around 300 million people worldwide and it is estimated 

that around 105 per 1000 persons have been diagnosed with asthma in America with 

the worldwide market for asthma medication exceeding $5.5 billion per year (Maddox 

and Schwartz 2002).  Asthma is a heterogeneous disease which is thought to involve 

several susceptibility genes as well as many environmental features interacting with 

these genes.  A family history is often present and supports a genetic component of 

asthma and that asthma may be inheritable or that related patients with asthma may 

have similar types of asthma or asthma phenotype. 

Asthma incidence has increased dramatically in western countries over the last 10 

years (Burke 2003) with asthma increasing two fold during the last two decades in 

Europe and now affects up to 15% of the adult population.  Many hypotheses have 

been brought forward for this including the hygiene hypothesis, which suggests that 

minimizing exposure to infectious agents, by way of better personnel hygiene, coupled 
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with smaller families, increases the likelihood of an atopic phenotype.  However this 

increase prevalence could also be influenced by poorer air quality and increased air 

pollution affecting the airways. 

Asthma is usually diagnosed based on clinical features, and is supported by the 

demonstration of variable airflow obstruction, see figure 2.1.  The airway obstruction 

seen in asthma is caused by hyper-responsiness of the airways which can be triggered 

by many factors, the most common being as a response to inhaled allergens causing 

allergic inflammation.  Asthma is relatively easy to diagnose in primary care and is 

treated initially using reliever type inhaled medications, β2-adrenoceptor agonists.  

These reverse the obstruction of the air passages allowing patients to breath normally 

again. 

Other factors can affect the expression of the disease in the airways these are called 

triggers and can include diverse factors such as cold weather and exercise.  Also 

gender, age, obesity and type of inflammation have a part to play also (Bel 2004).  It is 

unclear whether these triggers/aggravators alter the expression of asthma or whether 

they are describing subtypes (Bel 2004)with possible different genotypes. 

Such triggers, listed above, cause hyper- responsive walls to tighten causing airway 

obstruction and possible subsequent asthma attack.  Asthma  is also a chronic  

inflammatory disease (Faffe 2008).  It was found that asthmatics had a large amount of 

eosinophil cells in their sputum these cells are associated with inflammation and 

disease severity. This discovery led to improved treatment for asthmatics by using 

inhaled anti-inflammatory known as corticosteroids, as eosinophils are associated with 

a positive response to inhaled corticosteroids. 
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Figure 2.1, demonstrating the effect of an asthma attack on the airways, taken from URL 
http://en.wikipedia.org/wiki/File:Asthma_before-after-en.sv 

 

2.3 Introduction to Severe Asthma 
For most patients with mild or moderate asthma adequate control can be achieved 

through combination of reliever, β2-adrenoceptor agonists and controller, 

corticosteroid medication.  For severe asthma however this is not always the case.  

Severe asthma accounts for 5-10% of the asthma population (Holgate and Polosa 

2006).  Patients suffering from severe asthma have more exacerbations needing 

hospital admission, tend to have poorer responses to drugs (Wenzel 2006) and can 

have air-trapping and persistent airflow obstruction (Wenzel 2006).  Also some 

patients with severe asthma tend to have structural changes in the lungs that are no 

longer reversible in contrast to mild/moderate asthma, as previously discussed.  

Patients in America with severe or difficult to treat asthma account for 50% of the total 

health-care costs associated with asthma (Adcock, Caramori et al. 2008).  In Europe it 

is estimated that patients with severe asthma have an annual cost 4.8 times that of 

mild asthma. 

One definition of severe asthma by the American Thoracic Society (ATS) workshop 

consensus for definition of severe/refractory asthma which is growing in popularity is 

http://upload.wikimedia.org/wikipedia/commons/1/14/Asthma_before-after-en.svg
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dependent on one of the following major characteristics as described in (Holgate and 

Polosa 2006). 

 Treatment with continuous or near continuous oral corticosteroids 

 Need for treatment with high-dose inhaled corticosteroids 

Another paper suggests that these criteria should only be identified after being 

observed over a period of at least 6 months (Chanez and Wenzel 2008), due to the 

tendency for asthma to exacerbate.  This definition along with other minor 

characteristics has now been adopted as the standard ATS diagnosis for refractory 

asthma.  But defining patients severity is often complex as it can be influenced by a 

patient’s phenotype or underlying disease activity and adherence with prescribed 

treatment (Taylor, Bateman et al. 2008). 

Despite the use of high dose corticosteroids patients with severe asthma had the same 

level of eosinophils as normal asthma in one study, although neutrophils were 

significantly higher in severe asthma.  Severity is often mistaken for difficult to manage 

asthma.  One way to determine differences between control and severity is that 

asthma control can be described as the adequacy of treatment whilst severity 

concerns the underlying disease process and level of treatment needed(Juniper, 

O'Byrne et al. 1999).  

Severe asthma is no longer believed to be only a general worsening of symptoms 

relating to mild or moderate asthma but rather that the diagnosis contains a number 

of sub-types.  A phenotype is defined as the visible characteristics, that hopefully can 

be measured, of an organism resulting from the interaction between its genetic 
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makeup and the environment (Wenzel 2006).  Sub-phenotypes of severe asthma in 

this case can be thought of as a sub-grouping of asthma that lies between that of 

different genotypes with environmental factors and different phenotypes.  This sub-

phenotyping or sub-grouping  of asthma has been discussed in recent papers with one 

definition describing asthma as a cluster of related disorders (Burke 2003) with others 

describing the asthma definition as too broad (Wenzel 2003) or as a mixture of 

syndromes.  Some of these sub-types of severe asthma may be similar to moderate 

asthma but a more severe version, while others could be specific to severe asthma. 

Severe asthma may have many different triggers, types and processes these are all 

considered on many different levels by different authors, which is reflected in the 

many different types of journals containing papers on asthma and severe asthma 

phenotypes.  The different clinical levels of the disease can be summarised using the 

following categories; 

Physiology; Physiological Structure differences in the airways 

Atopy; Asthma as a part of an allergic/atopic syndrome only  

  Environmental; Non allergic aggravators/triggers of asthma  

Pathology/Immunology; Inflammatory cells in the lungs and inflammatory 

processes 

 Genetic Epidemiology, Genes and single nucleotide polymorphisms (SNPs) 

associated with asthmatic phenotypes  

These categories could potentially have a large amount of overlap and sub-types seen 

in one group could be associated with other phenotypes in different groups, but at 
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present little statistical work has been carried out to obtain sub-types of asthma with 

only a few papers carrying out k-means and hierarchical clustering.  The rest of the 

literature review will focus on the different sub-phenotypes found in the literature that 

are also measured in the datasets used later. 

2.4 Immunology, Asthma as an allergic/Atopic disease only  
There is a wide range of described asthma phenotypes.  Although many of them may 

overlap most papers only consider one phenotype at a time. This is especially the case 

in the most common phenotype, atopic status. Atopic asthma can be thought of as 

asthma resulting from an allergic response to an inhaled allergen usually resulting in 

eosinophilic inflammation and airway obstruction. 

2.4.1 Atopic Asthma 

Atopic asthma is one of the best documented asthma phenotypes as it is the largest 

overall phenotype and is found at all levels of severity (Wenzel 2006).  Atopic asthma 

implies that the airways are hyper-responsive to known or unknown allergens.  The 

most common triggers of atopic asthma are dust mite, grass pollen and animal dander, 

although a wide range of triggers have been reported.  The inflammation and airway 

obstruction associated with atopic airway hyper-responsiveness is due to the 

immunologic response to the allergen.  Atopic patients allergic pathways are different 

then a patient with no atopy.  The immune system over reacts to small amounts of 

allergens in atopic subjects.  This was found to be the principally due to a type of T-

lymphocyte known as Th2 lymphocytes.  These cells produce types of proteins known 

as chemokines and cytokines, such as interleukins IL-13 IL-9, IL-5 and Il-4.  These 

increase the levels of IgE antibodies, mast cells and eosinophils.  They in turn control 

the inflammatory response associated with the atopic phenotype (Faffe 2008).  This 
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can result in airway remodelling and constriction of the airways and if left untreated 

may result in an exacerbation. 

Patients are usually tested for atopy by examining specific IgE antibodies in the blood 

or by skin prick test using several allergens.  The atopic phenotype is one of the easiest 

to identify as samples from the lungs are not needed.  It is also the most prevalent 

phenotype among all severities of asthma, so a large proportion of asthma research 

has been carried out in this phenotype including genotyping research (Cookson 2000). 

At least 30-40% of severe asthmatics appear to have pathological changes inconsistent 

with classically described asthmatic (atopic/eosinophilic) pathology.  This suggests 

other possibly different pathologies for specific severe asthma phenotypes (Abraham, 

Anto et al. 2003), (Ronmark 2007).  This trend could appear because eosinophilic 

asthma is well treated with existing drugs, β2-adrenoceptor agonists and 

corticosteroids, and so patients with atopy might tend not to increase in severity as 

they are well treated.  In contrast patients with little or no atopy are associated with 

persistent inflammation which may lead to structural changes involving the airways 

and perhaps active parts of the airways.  These structural changes appear to exist well 

into the lung periphery out of reach of many inhaled medications (Wenzel 2003) 

adding to the difficulty of treatment.  Patients who are atopic in the severe asthma 

category however tend to be very atopic for a large number of allergens and have very 

severe and quickly activated exacerbations (Holgate and Polosa 2006). This phenotype 

is more prevalent in men than women and is associated with eosinophilic 

inflammation. 
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2.4.2 Age of Onset of Disease 

The age of onset of asthma disease is the age, measured in years, at which asthma 

symptoms first appear.  Asthma onset is usually partitioned into early onset (before 

puberty or before 12 years) and late onset (adult onset asthma).  Early onset asthma is 

most common in mild and moderate asthma (Ronmark 2007) and is usually associated 

with atopy, a history of eczema and a family history of asthma (Wenzel 2006).  Late 

onset or adult onset asthma is more common in severe asthma (Ronmark 2007). 

Late onset asthma has also been associated with a higher BMI and is more common in 

females then males.  Adult-onset, intrinsic asthma and non-atopic asthma are now 

being used interchangeably to describe a sub-type defined by late onset, female 

predominance, higher severity, evidence of nasal polyps, (Bel 2004) and a lack of 

family history of asthma. 

2.5 Epidemiology, non-allergic aggravators/triggers of asthma  

2.5.1 Other Environmental Triggers 

Allergic responses are not the only triggers of asthma attacks.  There are certain 

triggers that can worsen asthma and can cause attacks.  These can include damp or 

cold air, exercise (Wenzel 2006), smoking and infection with viruses and bacteria 

(Abraham, Anto et al. 2003).  It is unclear whether a susceptibility to these triggers in 

itself represents a sub-phenotype of asthma or whether these conditions worsen 

existing sub-phenotypes that are already present (Wenzel 2006).  Smoking increases 

asthma severity and is related to lower treatment efficacy (Van Hove, Moerloose et al. 

2008) and cigarette smoke can enhance acute allergic inflammation and slows down 

the return to baseline. 
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2.5.2 Gender and Asthma 

In childhood, males are more likely to develop asthma then females (Ernst, Ghezzo et 

al. 2002).  This changes during puberty where boys are more likely to enter remission 

then girls and girls more likely to have severe asthma in adulthood (Ernst, Ghezzo et al. 

2002).  In one paper, phenotype was checked for males and females before and after 

puberty and the phenotype was found to be similar for both genders (Wenzel 2006) 

suggesting that hormonal differences at puberty did not play a major role in changing 

asthma phenotype. 

Women seem to develop severe asthma more than men (Abraham, Anto et al. 2003) 

and this group is usually associated with reduced atopy and neutrophilic inflammation.  

It is believed that this is possibly due to sex hormonal differences as some woman 

seem to develop worsening symptoms at certain times of their menstrual cycle 

(Holgate and Polosa 2006), (Wenzel 2006) and the premenstrual period has been 

labelled as a trigger in one study(Abraham, Anto et al. 2003). This coupled with further 

research suggesting that female asthma symptoms get better during pregnancy lends 

extra support to a role for female sex hormones in the pathology of asthma. 

2.5.3 Obesity and Asthma 

Research has shown that BMI increases with severity of asthma (Abraham, Anto et al. 

2003), (Ronmark 2007) and obesity is associated with an increased prevalence of 

asthma especially in women (Lessard, Turcotte et al. 2008).  One study found that 

asthma control was worse in obese subjects compared to non-obese subjects and total 

lung capacity, expiratory reserve volume, residual capacity were lower in obese 

patients compared to non-obese.  Obesity is also being investigated in its effects of 

promoting systemic inflammation, which could promote pro inflammatory hormones 
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that in turn could increase asthma susceptibility and severity.  But at present this is still 

a hypothesis. 

As yet it is unclear whether there is an obesity sub-phenotype in asthma or severe 

asthma, but this could explain the reduced response to treatments or the fact that 

obese patients have a higher severity of asthma.  It is difficult to establish whether 

obese patients may have a different pathology of asthma or whether obesity acts 

mechanically as an aggravator as obese patients generally have lower FEV1 and lower 

airway closing volume and breathing near their lower airway closing volume increases 

airway responsiveness in asthmatic patients (Lessard, Turcotte et al. 2008).  What we 

can say is that reducing weight in obese patients could be an important strategy for 

improving their asthma (Ronmark 2007) and their general health, but it is unclear 

whether the lung changes associated with losing weight are asthma specific or not. 

2.5.4 Psychology and behavioural factors 

A large amount of the control and prevention of asthma attacks is the responsibility of 

the patient themselves.  This is due to the nature of asthma as being triggered by 

environmental factors. Asthma comes in attacks and the patient has to be aware of 

these and their seriousness and act accordingly either consistently using their 

preventative medication or seeking further assistance.  This is where the patient’s 

mind set can affect their asthma expression.  Patients who are depressed, stressed or 

suffer from panic or anxiety tend to show less control over their asthma, suffer worse 

exacerbations and have more frequent exacerbations of asthma (Wenzel 2006), 

(Holgate and Polosa 2006).  Thus patient self-control has to be taken into 

consideration when evaluating phenotypes and it is best to check that none of the 

patients show bad compliance with medications before assessing the phenotypes to 
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prevent bias in phenotyping but there are limited amounts of variables that assess 

compliance and control (Gamble, Stevenson et al. 2011). 

It is clear that the psychological well-being of asthma patients may affect their 

asthmatic condition, but at present no clear psychological profile is associated with 

asthma (Chanez and Wenzel 2008). 

2.6 Immunology/Pathology; Inflammation pathology of the cells 

in the lungs 

2.6.1 Eosinophils 

Eosinophils are inflammatory cells that are found in sputum and blood samples of 

many asthmatics.  A high eosinophil count is a frequently seen phenotype of asthma 

and this reflects an eosinophilic inflammatory dominant phenotype.  This high 

eosinophil count is usually treated with inhaled corticosteroids to treat inflammation 

and bring the number of eosinophil cells in the lungs down.  A very high eosinophil 

count may be seen in poorly managed asthma, a patient having an asthma 

exacerbation requiring hospitalisation or a patient with severe asthma. 

A possible issue when phenotyping on the grounds of eosinophil numbers is the single 

time point studied as it is not clear whether this time point is related to an 

exacerbation or is representative of the underlying inflammatory profile when clinically 

stable (Wenzel 2006).  However for the datasets used in this thesis we only have a 

single time point.  Thus we have to make the assumption in our analysis that the 

eosinophilic measurement at the baseline is similar to others measurements on that 

patient across time.  Eosinophil inflammation is also associated with aspirin sensitivity 

and severe late-onset asthma.  A high eosinophil cell count is correlated with 

basement membrane thickening (Murugan, Prys-Picard et al. 2009), a lower FEV1, 
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higher active symptoms and a greater likelihood for exacerbations and near-fatal 

events. 

It is thought that one half to two thirds of severe asthma patients in the USA have 

persistent large airway tissue eosinophils despite adequate treatment(Murugan, Prys-

Picard et al. 2009).  Persistent eosinophilia appears to be more prevalent in late onset 

than in early onset and is a common phenotype found in patients with severe asthma. 

2.6.2 Neutrophils 

Neutrophils are a different kind of inflammatory cell than eosinophils.  High cell counts 

of neutrophils in sputum may; indicate more severe airway damage, reflect inhaled 

steroid treatment.  For these reasons the neutrophil phenotype in asthma is not clearly 

understood (Kaza, Bandi et al. 2007) and could even indicate a different disease such 

as bronchiolitis obliterans (Wenzel 2003).  Neutrophils are also reported in low 

numbers in early onset asthma but this maybe residual inflammation associated with 

eosinophilic inflammation and may not indicate a distinct phenotype (Wenzel 2006).  

Further confusion over the phenotype can be attributed to the method of 

measurement i.e. sputum cell counts, as inflammatory process and cells may act 

differently in the distal lung with a greater number of neutrophils (Wenzel 2003) which 

are harder to get a sample from without invasive methods.   

Neutrophils are commonly associated with other lung diseases such as chronic 

obstructive pulmonary disease (COPD) (Abraham, Anto et al. 2003) or Hypersensitivity 

Pneumonitis (Bogaert, Tournoy et al. 2009).  It is thought that the airways in the severe 

asthmatic with neutrophil inflammation get so damaged that the asthma behaves 

similar to a chronic wound (Holgate and Polosa 2006) with a pathology similar to other 
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lung diseases as mentioned above (Bogaert, Tournoy et al. 2009).  Neutrophilic 

inflammation is also seen in death where asthma is the cause, severe exacerbations 

and asthmatics who smoke (Wenzel 2006), the later possible suggesting a 

COPD/severe asthma cross over. 

Asthmatic Inflammation is first treated with corticosteroids as these are the gold 

standard of treatment but in this neutrophilic sub-phenotype of patients this may not 

help and could even be worsening the condition as corticosteroids delay apoptosis of 

neutrophils (Holgate and Polosa 2006).  The evidence of a distinct high neutrophil/low 

eosinophil phenotype is associated with structural changes found in the lung.  One 

paper found that eosinophilic asthma is associated with thickening of the sub 

epithelial.  Whereas in non-eosinophilic asthma it is not (Berry, Morgan et al. 2007). 

2.6.3 Paucigranulocytic inflammation 

This type of asthma has characterised symptoms of inflammation but no typical 

inflammation cells are present.  It can be thought of as a similar case to that of 

neutrophilic inflammation suggesting that the inflammation may be out of 

measurements reach without invasive methods localized in the distal lung or be a 

different airway disease altogether as this phenotype exhibits no sub epithelial 

basement membrane thickening like classic asthma does.  Possibly the airways may 

have been structurally altered to result in clinical symptoms but no inflammation as 

severe asthmatics usually have an increase in the amount of smooth muscle.  In this 

case it is almost like the damage has been done, the inflammation has gone, leaving 

remodelled airways, which is not usually seen in classic allergic asthma.  In this group 

up to 10% of asthma patients demonstrate poor response to glucocorticord therapy, 
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probably due to the lack of presence of eosinophils and have frequent exacerbations 

and continual symptoms (Kiley, Smith et al. 2007). 

2.6.4 Refractory Asthma 

In the severe asthma group there seems to be evidence of a sub-phenotype that shows 

little or no eosinophil cells in sputum but still retains severe asthma symptoms 

(Holgate and Polosa 2006) or have eosinophil inflammation that does not show any 

response to treatment.  These patients are usually prescribed higher corticosteroids 

due to their symptom severity but because of the absence or small number of 

eosinophils in their lungs or because they show no treatment response these anti-

inflammatory drugs have little or no impact, (Holgate and Polosa 2006), (Berry, 

Morgan et al. 2007) this sub-phenotype is known as refractory asthma.  At first it was 

thought that this sub-phenotype was due to a defect in the patients response to 

corticosteroids (Wenzel 2006) or that patients had a diminished sensitivity to 

glucocorticosteroids in general (Abraham, Anto et al. 2003).  It is now thought however 

that there could be another underlying process in the airway wall other than that 

associated with eosinophil inflammation.  Cell counts have discovered large numbers 

of neutrophils in the cells of some of these patients (Abraham, Anto et al. 2003) (Faffe 

2008) which could possibly explain the symptoms.  Neutrophils are often associated 

with severe or irreversible lung injury, lung tissue damage(Holgate and Polosa 2006) 

and airway remodelling although the extent of  difference is not well defined as this 

past remodelling may be complete and thus is not associated with inflammation 

anymore.  The remodelling may offer some resistance to corticosteroids opposed to 

the physiology of normal lungs (Bai and Knight 2005). 
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2.7 Multivariate sub-types of airway disease 
A large amount of asthma research is localised to one aspect or one phenotype of 

asthma, but asthma has many measurable outcomes and several different aspects as 

discussed above. 

Few articles include all or most aspects/ phenotypes of asthma with researchers and 

papers concentrating on one or two aspects or outcomes of the disease.  This is 

possibly due to a lack of multidisciplinary groups or the unavailability or reluctance to 

use multi variable/complex statistical analysis.  There seems to be a gap in knowledge 

in determining sub-types across many phenotypes of severe asthma.  Lots of 

measurable phenotypes of asthma may have common pathologies, and the amount of 

phenotype variation could be reduced to a few sub-types of severe asthma, but it 

should be observed that separating patients into strict classification via sub-type may 

not be useful as patients may drift between phenotypes and many phenotypes have 

similar characteristics, thus for some patients it may be impossible to classify them to a 

type of asthma, (Chanez and Wenzel 2008).  In terms of an affected population 

however conclusions about the number of different phenotypes can and should be 

made. 

The Early onset and late onset phenotype is well defined and was further studied by 

comparing outcomes of the two categories (Miranda, Busacker et al. 2004).  The work 

in this paper backed up the theories of the late onset/early onset differences.  Early 

onset asthma was found to have more allergic symptoms and positive skin prick tests 

then late onset asthma and late onset asthma again was found to have lower lung 

function, although eosinophilia was found in both groups and was associated with 
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more general asthmatic symptoms and lower lung function.  Late onset also tended to 

have high numbers of eosinophils. 

(Wenzel 2006) also suggests that asthma can be described by using the two distinct 

phenotypes early onset and late onset, as they both seem to differ pathologically, 

immunologically and epidemiologically. She later goes on to suggest that severe 

asthma can also be described in terms of inflammation in terms of type and presence.  

However 50% of severe asthma patients have very little identifiable inflammation and 

it has been suggested that this non inflammatory phenotype could be a type of asthma 

where inflammation does not have a central role. 

This severe asthma phenotype was further elaborated on by Sally Wenzel suggesting 

that there are at least 4 sub-types of asthma with overlap of these conditions often 

found in patients.  These phenotypes are characterised thus; 

 Early onset asthma which contains higher levels of lymphocytes then late 

onset, a homogenous group with clear genetic and environmental allergic 

triggers, increase in Th2 lymphocytes and mast cells, eosinophilic disease is 

present and might represent a classic Th2 inflammation that is poorly 

responsive to steroids therapy 

 Early onset asthma without the presence of eosinophils may represent a group 

where the inflammation had responded to steroids but the underlying disease 

has not or the patient’s lungs have undergone permanent changes. 

 Late onset asthma with worse lung function then early onset asthma coupled 

with higher number of eosinophils.  This is a heterogeneous group with 

evidence for both allergic and none allergic disease.  Eosinophilic asthma 
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includes both allergic asthma and perhaps variants of hyper-eosinophilic 

syndromes 

 Late onset without eosinophilia share very few characteristics with the other 

sub-types.  This may represent one or more poorly understood new types of 

asthma or cross over with different diseases, possibly COPD. 

Although these give clear descriptions to the phenotypes there is no mention of 

proportions or prevalence of the phenotypes seen or quantitative measures of 

inflammation or atopy.  However in (Wardlaw, Silverman et al. 2005) a hierarchical 

cluster analysis was carried out on 49 patients who were diagnosed with varying 

airway diseases using 8 measurable variables of patients.  These were blood total IgE 

levels, FEV1/FVC ratio percentage, FEV1 percentage predicted, age in years, 

bronchodilator reversibility as a percentage of pre bronchodilator FEV1, sputum 

eosinophil percentage with gender and smoking status variable.  In this study 4 

phenotypes were found; two large groups one consisting of patients with a mainly 

asthma diagnosis and one with a mainly COPD diagnosis.  The two smaller groups 

found were a COPD/asthma overlap group and an asthma group with minimal 

eosinophilic inflammation and low IgE levels, suggesting that cluster analysis could 

determine sub-groups of airway diseases.  As the sub-groups found all had clinical 

interpretations.  

This leads into a more recent cluster analysis study (Haldar 2008) concentrating on 

clustering 187 patients with severe asthma.  In this study 6 variables were used 

gender, age of onset, atopic status, body mass index, sputum eosinophil count and 

modified JACS score, being the JACS score without the FEV1 score.  This study found 
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four sub-phenotypes of severe asthma; these were found by utilising k-means 

clustering and hierarchical clustering of the asthma related variables.  These were 

given the following clinical descriptions; 

 Early onset and atopic asthma 

 Obese non-eosinophilic asthma 

 Inflammation predominant asthma 

 Symptom predominant asthma 

Clustering using hierarchical and k-means clustering is a good way to determine 

clusters of multivariate data, the patients can be identified as belonging to a specific 

type and values of proportion can be calculated.  Although this is a good method the 

number of clusters has to be selected arbitrary basing this decision on distance 

between patients or cluster centres. The algorithm does not allow for patients to 

belong to multiple sub-types or to base the number of clusters on statistical inference 

or to let the sub-types overlap, see chapter 4.  

Another analysis of sub-groups was carried out by (Spycher, Silverman et al. 2008) this 

involved a statistical analysis using latent class variables in childhood wheezing.  The 

measurable variables from the study ranged from questionnaire data to clinical 

outcomes.  These included categorical answers from asthma questionnaires about 

wheezing and clinical measures such as skin prick tests, bronchial responsiveness tests 

and demographics such as sex and age.  Different numbers of latent classes were tried 

and a number of model selection criteria were used for assessing the best fitting model 

and thus the correct number of latent classes.  Unfortunately the three types of model 

selection criteria used did not all concur with each other.  The criteria used suggested 
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either three or five sub-types suggesting even this kind of statistical analysis could be 

too constraining for the actual phenotypes of patients.  In the paper five sub-groups 

were suggested and described as the paper was exploratory and wanted to achieve as 

many clusters as possible.  These were given the clinical descriptions,  

 persistent cough  

 transient cough 

 atopic persistent wheeze 

 non atopic persistent wheeze 

 transient viral wheeze 

It is unclear whether or not these groupings reflect the true underlying types and 

mechanisms of childhood wheeze phenotypes and it is also unclear whether this 

phenotype can be expanded to severe asthma which is mainly an adult population.  

For more information on these multivariate techniques please see chapter four on 

latent variable techniques/clustering techniques. 

More recently Quantitative CT scan measurements have been used to determine if 

there were differences over the clinical sub-phenotypes of Severe Asthma (Gupta, 

Siddiqui et al. 2010).  These clusters were described as 

 Concordant asthma control score and eosinophilic inflammation with greater 

bronchodilator response 

 A mainly female group with a high BMI, little eosinophilic inflammation but 

good asthma control 

 A group with good asthma control 
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 And a high eosinophilic group 

The clusters were not significant over the quantitative CT measurements.  However 

when stratified for severity the CT measurements were significant. 

Although sub-types of asthma have been seen in a clinical setting statistical work has 

been carried out to a smaller degree and factors affecting severe asthma are still not 

well documented (Ronmark 2007).  This is possibly due to the multi-dimensional 

nature of the sub-types and the practicalities from obtaining relevant clinical 

information from the lungs and lower airways. However since the first papers on 

clustering technique for severe asthma have been published interest has increased in 

both algorithm and statistical clustering this has led to (Moore, Meyers et al. 2009) 

using hierarchical clustering on their severe asthma cohort.  The analysis of 34 core 

variables produced 5 sub-groups, these were described as 

 Early onset atopic asthma with normal lung function 

 Early onset asthma and preserved lung function with increased medication 

 Late onset asthma, non-atopic, obese women  and moderate lung function 

 With clusters 4 and 5 having severe airflow obstruction but they differ in their 

age of onset and atopic status. 

This further confirms the existence of sub-phenotypes but still relies on the algorithmic 

clustering seen before.  However it is still difficult to visualise these clusters and it is 

also unclear whether the clusters describe true separations or describe non-normal 

distributions approximated by clusters. 
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2.8 Conclusions 
Severe asthma and asthma in general is becoming more prevalent in developed 

countries.  This implies there is a greater need to assess and manage severe asthma 

phenotypes as the burden of severe asthma is likely to increase (Holgate and Polosa 

2006).  Although many phenotypes have been described, determining multi-

dimensional phenotypes of severe asthma into specific sub-types or sub-phenotypes is 

still in its infancy.  Many phenotypes, for example atopic and late onset asthma, are 

well recognised and accepted but most are still under consideration as most severe 

asthma research tends to concentrate on sub-types that are already established.  In 

order to fully understand the underlying processes of all types of severe asthma more 

research needs to be carried out to verify new and upcoming sub-phenotypes of 

asthma like the low eosinophil or high neutrophil phenotype and the obese 

phenotype. 

A statistical model for determining asthma phenotypes needs to take in to account 

that asthma sub-types may overlap, that patients may drift between sub-types, and 

which variables the sub-types are dependent on.  The model should also select the 

most probable number of clusters and not base the decision on possible subjective 

clinical thinking. 

Some of the multivariate sub-types that could be determined in our analysis could be; 

 Inflammation predominant, early onset, atopic with High Eosinophils 

 Early onset, atopic with low eosinophils 

 Obese mainly female, late onset, non-atopic, low eosinophils,  

 Other Severe Asthma, Late Onset, ,Low Eosinophils, High Neutrophil 
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Further research into these categorical sub-types could provide the information 

needed 

 To target existing drugs to a  particular phenotype  

 To identify patients at high risk of exacerbation or death 

 To provide clues for new drugs to be targeted to an asthma sub-type.  This has 

already happened in the highly atopic asthma sub-phenotype and the drug 

Xolair.  

 To better quantify severe asthma outcomes in order to carry out genome wide 

scans to determine genes associated with asthma and not just atopic 

syndrome. 

 And to possibly control environmental risk factors associated with severe 

asthma (Burke 2003) 

2.9 Chapter closing statement 

We have reviewed possible phenotypes and sub-phenotypes found in the 

asthma/severe asthma literature and found that efforts have been made to quantify 

severe asthma into specific sub-groups which are perceived to be separate and have 

distinct pathologies and inflammation patterns.  The algorithms used to determine the 

clusters rely on cluster numbers to be determined a prior.  These methods are good at 

determining a strict classification of types but this might not be the case for severe 

asthma and patients may have similar characteristics to those in different clusters.  We 

need a way to establish a better method of determining the correct or most probable 

number of clusters and to allow possible overlap of the clusters as is seen in clinic.  
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Clustering methods and separation of variation in datasets in general is reviewed in 

chapter 4. We now look at the description of the datasets to be used in chapter 3.
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Chapter 3. Description of Datasets 

3.1 Chapter Summary 
Here we describe the two datasets used in our analysis using descriptions of the 

variables and summary statistics to obtain inference of the nature of the data in terms 

of quantity and spread of the data variables. 

3.2 Introduction 
Originally the dataset to be analysed came from the severe asthma clinic at the 

Glenfield hospital.  On cleaning up of the dataset it was found that the data had a large 

amount of missing values. The missing data was so great that the dataset was not 

analysed as the data that was available showed was limited and had possible errors 

and mismatched with other datasets.  We now look at the two datasets we have to 

analyse these we have given the annotation of the Haldar dataset and the Brompton 

blood dataset.  The Haldar dataset comprises of a number of variables measured from 

187 patients attending the difficult asthma clinic at the Glenfield hospital.  All the 

patients in the Haldar dataset have a definition of difficult asthma in compliance with 

the ATS description.  The Brompton blood dataset contains 157 patients who attended 

the difficult asthma clinic at the Glenfield hospital and has measurements of a number 

of severe asthma variables that were taken in order to link with genetic markers to test 

the measured variables against these as part of a bigger study.    

3.3 Haldar dataset 
Here we summarise the data for the Haldar dataset.  A brief description of each 

variable is given along with its units and the percentage of missing data present in each 

variable, table 3.3.1.  For continuous data the summary statistics mean, standard 
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deviation and the minimum and maximum were taken and are displayed in table 3.3.2. 

For binary data the proportion outcome was reported in table 3.3.3 

Table 3.3.1. Description and units for the Haldar dataset with percentage of missing 

data for each variable. 

Variable Units Description % Missing 

Age Years  The age of a patient when the variables were 

recorded 

  0.00 

BMI kg/m2 Body mass index   0.00 

Onset of 

asthma 

symptoms 

Years 

old 

How old the patient was when asthma 

symptoms started 

  0.00 

Eosinophils log % The percentage of eosinophil cells in sputum 

sample 

  0.00 

Juniper 

Asthma 

Control 

Score A score representing a patients symptoms and 

level of control 

  0.00 

Nitric oxide log ppb Nitric oxide levels exhaled, a biomarker of 

inflammation 

  0.00 

Post-

bronchodilator 

FEV1 % 

predicted 

% The forced exhalation volume in 1 second  

after taking a bronchodilator as a percentage 

of a patients predicted FEV1 value 

  0.00 
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BDP mg Dose of inhaled corticosteroid standardised  

by using Beclomethasone Dipropionate 

equivalent 

  0.00 

Neutrophils lg % The percentage of neutrophil cells in sputum 

sample 

  0.00 

Nigmegen Score The score on an a Nigmegen questionnaire   0.00 

Anxiety Score The score on an anxiety questionnaire   0.00 

Depression Score The score on a depression questionnaire   0.00 

Pc20  A test of bronchial reactiveness  83.96 

Hospital 

Admissions 

Count Number of admissions in previous year   0.53 

Steroid 

courses 

Count Number of rescue oral steroid courses in 

previous year 

  6.42 

ITU 

admissions 

Count Number of ITU admissions in previous year   0.53 

Pack years Count Number of packs of cigarettes smoked in a 

year  

  0.00 

Skin prick cat mm 

above 

control 

Skin prick test for cat allergen mm above 

control prick test 

  0.00 

Skin prick dog mm 

above 

control 

Skin prick test for dog allergen mm above 

control prick test 

  0.00 
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Skin prick 

house dust 

mite 

 

mm 

above 

control 

 

Skin prick test for house dust mite allergen 

mm above control prick test 

 

  0.00 

Skin prick 

grass 

mm 

above 

control 

Skin prick test for grass allergen mm above 

control prick test 

  0.00 

Sex 

  

(% 

female) 

Gender indicator   0.00 

Atopy 

(% positive) 

(% 

positive) 

Allergy indicator   0.00 

Long acting 

bronchodilator 

use (LABA) 

(% yes) Variable indicating whether  LABA were used 

or not 

  0.53 
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Table 3.3.2.  Summary statistics for variables in the Haldar dataset including mean, 

standard deviation, minimum and maximum. (Variables logged if not normally 

distributed) 

Variable Mean Standard 

Deviation 

Min Max 

Age 43.43 15.92 14.00  84.00 

BMI 28.52 6.51 18.53  64.83 

Onset of 

asthma 

symptoms 

20.27 18.40   2.00  73.00 

Log 

eosinophils 

0.46 1.00 -2.92   1.95 

JACS 2.02 1.16 0.00   5.00 

Log nitric 

oxide 

1.63 0.36 0.790   2.36 

Post FEV1 % 

predicted 

82.06 21.06 17.00   140.00 

BDP 1018.00 539.36 100.00 2000.00 

Log 

neutrophil 

1.67 0.32 -0.301 1.99 

Nigmegen 17.50 13.09 0.00 56.00 

Anxiety 7.3 4.66 0.00 21.00 

Depression 4.66 3.84 0.00 17.00 
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Pc20 2.70 4.15 0.01 17.00 

Hospital 

Admissions 

1.48 1.88 0.00 10.00 

Steroid 

courses 

3.97 2.22 1.00 11.00 

ITU 

admissions 

0.36 0.74 0.00 5.00 

Pack years 0.65 2.15 0.00 8.00 

Skin prick cat 3.01 3.06 0.00 12.00 

Skin prick 

dog 

3.13 3.29 0.00 20.00 

Skin prick 

house dust 

mite 

3.79 3.50 0.00 15.00 

Skin prick 

grass 

3.43 3.27 0.00 15.00 
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Table 3.3.3. Summary statistics for discrete variable proportions  

Variable Proportion as 

percentage 

Sex 

 (%= female) 

65.78 

Atopy 

(%= Yes) 

73.80 

LABA use 

(%=Yes) 

  6.95 

3.4 Brompton blood dataset 
The Brompton blood dataset was summarised and the information obtained displayed 

in tables 3.4.1, 3.4.2, 3.4.3.  Table 3.4.1 describes the variables and units used in the 

dataset with the percentage of missing data in each variable.  Table 3.4.2 describes 

summary statistics taken from the variables including mean, standard deviation and 

minimum and maximum values for the continuous variables.  Table 3.4.3 describes the 

percentage proportions of the binary variables in the dataset.    

 

 

 

 

 



54 
 

Table 3.4.1. Descriptions of each variable in the Brompton blood dataset including 

units and percentage missing data for each variable. 

Variable Units Description % Missing 

Age Years  The age of a patient when the variables 

were recorded 

0.00 

BMI kg/m2 Body mass index 8.28 

Eosinophils lg % The percentage of eosinophil cells in sputum 

sample  

10.19 

Neutrophils lg % The percentage of neutrophil cells in sputum 

sample 

10.83 

Total IgE blood 

count 

kU/l The amount IgE antibodies in a blood sample 3.18 

Juniper 

Asthma 

Control 

Score A score representing a patients symptoms 

and control 

6.37 

Pre 

Bronchodilator 

FEV1 

Ls-1 The forced exhalation volume in 1 second  

before taking a bronchodilator  

0.00 

Pre 

Bronchodilator 

FVC 

Ls-1 The forced volume capacity  before taking a 

bronchodilator 

3.18 

Pre 

Bronchodilator 

% The forced exhalation volume in 1 second  as 

a percentage of a patient’s FVC value before 

3.18 
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FEV1/FVC ratio taking a bronchodilator 

Pre 

Bronchodilator 

FEV1 % 

predicted 

%  

 

The forced exhalation volume in 1 second  

before taking a bronchodilator as a 

percentage of a patients predicted FEV1 

value 

1.27 

Post 

Bronchodilator 

FEV1 

Ls-1 The forced exhalation volume in 1 second  

after taking a bronchodilator 

3.18 

Post 

Bronchodilator 

FVC 

Ls-1 The forced volume  capacity in 1 second  

after taking a bronchodilator 

5.73 

Post 

Bronchodilator 

FEV1/FVC 

Ratio 

% The forced exhalation volume in 1 second  as 

a percentage of a patient’s FVC value after 

taking a bronchodilator 

5.73 

 

Post 

Bronchodilator 

FEV1 % 

predicted 

% The forced exhalation volume in 1 second  

after taking a bronchodilator as a percentage 

of a patients predicted FEV1 value 

5.10 

BDP Mg Dose of inhaled corticosteroid standardised 

to beclomethasone dipropionate 

Equivalent 

1.27 
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Steroid courses 

in previous year 

 

Count Number of rescue oral steroid courses 13.38 

Oral steroid 

dose 

 Dose of oral steroid 0.00 

Pack years Count Number of packs of cigarettes smoked in a 

year  

1.92 

Sex % 

female) 

Gender indicator 0.00 

Atopy 

(% positive) 

(% 

positive) 

Allergy indicator 8.28 

Long acting 

bronchodilator 

use (LABA) 

(% yes) Variable indicating whether on LABA or not 0.53 
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Table 3.4.2. Summary statistics for continuous variables in the Brompton blood 

dataset, statistics include mean, standard deviation, minimum and maximum. If 

variable is not normal the log of the variable is used 

Variable Mean Standard deviation Minimum Maximum 

Age 51.98 13.40 16.00 84.00 

BMI 30.69 7.25 17.26 53.85 

Log eosinophil 0.54 0.65 -0.64 1.94 

Log neutrophil 1.71 0.30 0.35 2.00 

Total IgE blood 

count 

288.45 465.72 1.00 3086.00 

Juniper 

Asthma 

Control 

2.36 1.43 0.00 7.50 

Pre FEV1 2.15 0.80 0.55 4.80 

Pre FVC 3.14 1.01 0.95 6.05 

FEV1/FVC 

ratio 

0.68 0.13 0.33 0.98 

Pre FEV1 % 

predicted 

74.57 22.11 21.00 134.00 

Post FEV1 2.29 0.80 0.60 4.70 

Post FVC 3.28 1.01 1.25 6.15 

Post FEV1/FVC 0.70 0.12 0.35 0.95 
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Post-

bronchodilator 

FEV1 % 

predicted 

78.29 22.76 1.50 138.00 

BDP 78.29 22.76 0.00 4000.00 

Steroid 

courses in 

previous year 

3.62 3.50 0.00 16.00 

Oral steroid 

dose 

5.16 7.24 0.00 35.00 

Pack years 5.41 12.22 0.00 125.00 

 

 

 

 

 

 

 

 

 

Table 3.4.3. Proportions for discrete variables in the Brompton blood dataset.  
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Variable Proportion as 

percentage 

Sex 

 (%= female) 

63.06 

Atopy 

(%= Yes) 

66.67 

LABA 

(%=Yes) 

7.01 

3.5 Discussion 
Summary statistics have been taken from both datasets and the variables contained 

have been described.  It is clear that there is a proportion of the Brompton blood 

dataset that have missing data.  Once the variables have been selected for analysis the 

missing data must be removed from the specified variables to be used in the model in 

order to apply them.  This may reduce the number of available patients used in the 

model thus reducing power but this is common in all large datasets. 

3.6 Chapter closing statement 
We have examined and described the datasets to be used in the analysis using 

summary statistics and semantic descriptions.  We now look at the various algorithms, 

to use in order to quantify the variation, chapter 4, in order to model the aspects and 

possible grouping seen in the severe asthma phenotype, chapter 2.
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Chapter 4. Latent Variable and Cluster 

Analysis Modelling  

4.1 Chapter Summary 
This chapter reviews statistical techniques used to uncover substructure in datasets by 

analysing the variability within those datasets.  The review starts by discussing similarity 

measures that can be used to determine how similar a numeric object is to another numeric 

object i.e. Euclidean distance or correlation.  These similarity measures are then described 

using the formal models and algorithms associated with them such as factor analysis, 

principle component analysis, cluster analysis and mixture modelling.  The review then 

makes suggestions for the best way to analysis the multivariate severe asthma datasets.  It 

is concluded that a factor analysis with infinite mixtures over each factor to determine the 

most probable number of mixtures in each specific aspect or factor of asthma is the best 

way to account for the heterogeneity found in the severe asthma datasets.  

4.2 Introduction 

4.2.1 Similarity measures 

In order to group numerical data together we need to first establish a similarity measure 

that can be used to quantify similarity between individuals or variables, i.e. look for 

similarity between rows or columns.  See figure 4.2.1 
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Figure 4.2.1 example of a data matrix where Y is a dataset containing N individuals and M 

variables. 

 
  

          

          

    
          

 

 

Equation 1 

 

The simplest similarity measure is the distance between two individuals.  This is called 

Euclidean distance and is denoted d for a single variable say variable 1 in our example in fig 

1 Euclidean distance d can be calculated for two individuals for variable 1, y11 and y21 by 

equation 2.  If individuals are far away from each other d will be large and the points will not 

be similar but if the points are close by each other the distance will be small and the points 

will be similar,(Everitt 2001). 

  (       )  √(       )
  

 
Equation 2 

 

 

Where d is the distance between individuals’ y11 and y12. 

The distance measure can be easily adapted for use with more than one variable by the 

formula below where M is the number of variables, see equation 3. 

  (     )  √(       )
  (       )

      (       )  Equation 3 

 

 



62 
 

The similarity of a subset of individuals can be summarised in a matrix of Euclidean 

distances called a distance matrix, D. Thus for 4 points from fig 4.2.2 the distance matrix 

would be seen as D With the Euclidean distance, d between the two points y1 and y2 being 

shown in the entry corresponding to the first row and second column or the second row and 

the second row, as in equation 4. 

   

                
                
                
                

 Equation 4 

 

 

 

By viewing the similarity matrix and figure 4.2.2 it can be seen that points 1 and 2 look close 

together and 3 and 4 look close together.  Suggesting that the simple example dataset could 

be explained by two clusters.  Cluster 1 containing y1 and y2 and cluster 2 containing y3 and 

y4.  The distance matrix D can give us indications of two lots of information from the 

dataset, one is an estimate to how many clusters are in the dataset and two which 

individuals belong in which cluster.  There are many algorithms used to determine the 

number of clusters and the correct cluster membership of individuals, these methods will be 

reviewed later in the cluster analysis sub-chapter. 

Figure 4.2.2, shows the Euclidean distance, d between the two individuals y1 and y2 
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We have introduced the notation of similarity between individuals, across rows, now we 

look at a similarity measure between variables, across columns.  A similarity measure that 

looks for similar patterns of variation in variables is correlation if two variables are 

correlated they share similar patterns of variation see figure 4.2.3.  Correlation can be 

calculated either parametrically assuming normality, see equation 5, or non-parametrically 

(Comrey 1992). 

Parametrically (Pearson correlation) 

       
 

   (     )

   
    

 Equation 5 

 

Where ρy1,y2 is the correlation of y1 and y2, Cov (y1,y2) is the covariance of y1 and y2 and 

�y1 and �y2 are the variance of y1 and y2 respectively. For non-parametrically (Spearman’s 

rank correlation) the correlation is calculated using the same algorithm but this time with 

the ranks of the data rather than the actual data. These similarity measures are for 
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continuous outcomes but can be adapted for binary variables as a McNemar test which 

measures the correlation for two binary variables. 

Using the same methodology for the similarity measure for individuals we can create a 

similarity matrix for a number of correlated or uncorrelated variables see Figure 4.2.4 for an 

example of 4 variables which have scatter plots pairings of each and Figure 4.2.5 for their 

corresponding correlation matrix. 

Figure 4.2.3 Graph to show correlation of two variables y1, y2 ρ=0.8795  
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Figure 4.2.4 Matrix scatter plot for 4 variables, variable 1 and 2 are correlated and variable 3 

and 4 are correlated. 

 

Figure 4.2.5 Example of a correlation matrix for four variables. 

   

                
                
                
                

 Equation 6 

 

We can see from the matrix scatter plot and the correlation matrix that variable 1 is 

correlated to variable 2 and variable 3 is correlated to variable 4, but variables 2 and 1 are 

not correlated to either variable 3 or 4 to a large extent.  We can now see that the variables 

can be split into two groups we can use this information about the dataset to represent it 

with a lower dimensional data by only containing information for two independent variables 

or factors which both correlate to two manifest variables i.e. (y1,y2) and (y3, y4).  The two 

independent correlations can be seen as a way of clustering manifest variables into latent 

variables or factors that represent a process that the manifest variables are correlated to, 

i.e. they are affected by the process. The methodology of going from a correlation matrix to 
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a number of factors is carried out in factor analysis and principle component analysis to 

obtain linear independent factors.   

4.3 Latent variables 
Latent variables are used to determine the underlying structure of correlated multi-

variables, (Skrondal 2004).  When we have a number of highly correlated variables a latent 

variable model can be used.  Variables may be correlated because they may have the same 

underlying theoretical process driving them or they may be repeated measurements of the 

same variable using different techniques or equipment.  In theory the correlated variables 

describe the same or similar information so we can study and quantify the theoretical 

process by studying the correlation of the measured variables and reducing the 

dimensionality.  The simplest latent variable is when a measurement is taken using several 

different devices j each giving an approximation Yj of the real value Z in model terms we 

have, as in equation 7. 

         Equation 7 

Where Yj are the j measured variables, ej are the errors associated with each variable Yj and 

  is the latent variable or true value of the Yj.  In the more general model where the 

manifest variables are correlated with an underlying process driving them we may have a 

latent variable model, see equation 8 

                Equation 8 

Where Yj are the j measured variables, ej are the errors associated with each variable and   

is the underlying latent variable that is the driving force of the Yj ‘s and βoj  β1j are constants 

specific to each Yj variable, if the Yj variables are mean-centred then the βoj  become 0’s.  
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Thus the immeasurable underlying response can be quantified by using measurable 

variables that are correlated to it. 

4.4 Factor Analysis 
In Factor analysis a small number of latent variables or factors are used to describe the 

variation and correlation seen in a number of measured variables.  Some of these variables 

are correlated with each other and others are not.  The purpose of a factor analysis is to 

statistically infer the correct number of factors to use so that most of the variation in the 

measured variables is accounted for by these factors and to quantify the immeasurable 

processes so it can be used in further statistical analysis.  Once the number of factors has 

been found we can attach meaningful definitions to them according to which variables they 

correlate with. In this way factor analysis can be seen as a kind of variable clustering to find 

certain underlying aspects of the variables.  The number of these aspects is typically lower 

than the dimensionality of the variables, thus factor analysis also acts as a way of reducing 

dimensionality whilst still allowing for the variability seen in the measurable variables as the 

variable that correlates to the largest degree with each factor can be found and used as a 

representative of the factor to reduce dimensionality (Comrey 1992).   

The assumptions of a factor analysis can be better explained as a figure, see Figure 4.4.1.  

Basically the variation seen in the measurable variables is assumed to come from underlying 

factors or latent variables that can’t be measured directly, these factors exist and each have 

their own error associated with them and the specific measured variable that is correlated 

to it.  The aim of factor analysis is to obtain these factors or latent variables so they can be 

used in further analysis or just to explore a dataset to obtain information on the patterns of 

variation.   
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Figure 4.4.1 Diagram of a 2 factor (Z) model with 6 measurable mean-centred variables (Yj). 

Y variables 1-3 are correlated with factor 1, variables 4-6 are correlated with factor 2 with 

factor loading     for each variable i and factor j, large arrows indicate a linear relation and 

small arrows pointing at rectangles represent individual residuals, diagram adapted from 

(Skrondal 2004) 

 

 

 

 

4.4.1 Factor analysis notation 

We have seen how correlation can be assessed between variables and arranged in a matrix.  

This correlation matrix can be viewed and factors or groups of correlation can be estimated 

directly, this is valid when using a small amount of variables and thus factors, but with larger 

dataset we need a way to compute these factors and determine a variable’s factor loading 

on each factor.  The factor loading describes how well the variable correlates with the 

factor, factor loading have the property that the square of the factor loading is equal to the 

proportion of variance accounted for that factor.  We need a mathematical and statistical 
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method to go from a correlation matrix to a matrix of factor loading.  Here we present the 

main factor analysis equation in equation 9 (Comrey 1992). 

                                   Equation 9 

Where Yki is the score of the variable Y for person i on data variable k 

Fji is the factor score for factor j in individual i 

akj  is the factor loading for variable k on factor j 

Eik is the error score for variable k and individual i 

This can be generalised to all of the individuals of a cohort dataset by using the matrix 

notation to form equation 10. 

      Equation 10 

Where Y is the matrix of data variable scores which can be obtained by multiplying the 

factor loading A by the matrix of factor scores F.  Each row of Y is the standard scores for all 

the data-yielding persons. Where the rows this time represent the n manifest variables and 

the columns represent the N patients or subjects. A is the n by m+n matrix of loading 

consisting of m factor loading and n error loading for the n variables and F is the m+n by N 

scores consisting of m factor scores and n error loading scores, equation 11. 

   

          

          

    
          

 Equation 11 
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Equation 13 

 

To solve this equation and obtain values for the factor scores and loading we use a different 

version of the formula for correlation of two variables i and j that is correlation is equal to 

the sum of all the patient values for each variable multipled together divided by the number 

of patients, N. 

       
 

 

 
∑        

   

   

 Equation 14 

 

Combining the correlation equation with the factor analysis equation and assuming that 

each of the factors is uncorrelated with each other we obtain equation 15. 

       
                               Equation 15 

 

In matrix form the correlation matrix R equals  the matrix of factor loading multiplied by the 

transpose of the matrix factor loading, AA’, see equation 16. Thus we have an equation from 

a correlation matrix to a matrix of factor loading.  The error values are not usually computed 

as these are usually not needed as it is the factor loading that are of interest in the analysis.  

There are many methods to split the correlation matrix R into two matrices which are the 
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transpose of each other.  One easier way is to allow A to be the same dimensionality as R, 

but this would defeat the object of trying to obtain factors of less dimension then the 

variable space, (Comrey 1992).  In reality R is approximated to the best ability in order to 

obtain the lowest dimensionality of A as the measured variables will always have an amount 

of error variation with them (Skrondal 2004). 

        Equation 16 

The methods used to find A usually start by adding just one factor and maximising the factor 

loading associated with this factor, A1 to allow for the most variation i.e. the factor loading 

squared.  This variation is then removed from R as described in equation 17. 

          
  Equation 17 

A second factor is added and again the variation associated with the factor is maximised to 

determine the factor loading A2 to determine the best factor loading this is again subtracted 

from R1 to get R2,as in equation 18. 

            
  Equation 18 

 

This process is repeated until there is not enough variation to create a factor and an error 

matrix is created to encapsulate the rest of the variation 

4.4.2 Selecting factors 

The correlation matrices R, R1, R2, R3, all have the special property  of being symmetric 

positive semi definite (PSD) which means the value at y12 is the same as the value at y21 i.e. 

that variable 1 is correlated to variable 2 independent of order and that y11 is equal to 1 i.e. 
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a variable is perfectly correlated with itself thus it can be said that if a matrix is PSD it can be 

seen to be made of a number of eigenvectors i.e. the factors, each eigenvector is associated 

with an eigenvalue which corresponds to the variance explained by the factor if this 

eigenvalue is greater than 1 then it is said to be practical significant and explains a large 

amount of variation but eigenvalues less than 1 are not practically significant and only 

explain a small amount of the variation seen in the data, this rule is called the Kaiser 

criterion and is often used to choose the best fitting number of factors. To determine the 

eigenvalues we use the determinant of the matrix A using equation 19.  

    (    )    Equation 19 

Where det is the determinant of the matrix.  A is the matrix of factor loading and λ are the 

eigenvalues of A. 

We have looked at the formula needed to calculate factor analysis we now look at the 

different types of factor analysis including principle component analysis as a special case of 

factor analysis. There are two main types of factor analysis, exploratory and confirmatory.  

Confirmatory requires prior knowledge to create an existing framework between the latent 

variable model and the measurable variables.  Exploratory factor analysis is used when no 

prior knowledge or hypothesis is used and the aim of the analysis is to find out the hidden 

framework of correlation and underlying processes. 

4.4.3 Exploratory factor analysis  

Exploratory factor analysis aims to determine the optimum number of factors to explain the 

variance seen in a finite number of measured normally distributed random variables.  

Usually the emphasis of the analysis is to quantify hidden or immeasurable variables or to 

find links between variables, but it can also be used for dimensionality reduction similarly to 
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principle component analysis, see later chapter 4.4.6.  Unfortunately due to the exploratory 

nature of the analysis, the resulting factors of the analysis are not often backed up in other 

studies (Skrondal 2004) one reason for this may be that the factors are possibly being over-

fitted to individual datasets.   

Once found the factors are usually given meaningful annotations and realisations of the 

dataset can be made.  The factors can prove difficult to interpret in some models however 

and it is worth noting that the factors are specific to the outcome variables used and the 

nature of the factors could change when more outcome variables are added.   Exploratory 

factor analysis is a useful method when little is known about the variables or their variation 

but a better method if prior information is available is that of confirmatory factor analysis as 

the structure is specified before.  

4.4.4 Confirmatory factor analysis 

Confirmatory analysis  is when the variables are assumed to relate to specific known factors 

and the knowledge of the variables and factors is specified in the model framework, thus it 

can act as a hypothesis test to assess  if the confirmatory factor model is correct or not.  This 

method is more rigid then exploratory analysis but is useful when trying to assess latent 

variables with known associations in previous publications. 

4.4.5 Principle Component analysis 

Principle component analysis (PCA) is a statistical model that tries to explain the variance 

seen in a number of continuous variables by selecting the smallest amount of components 

that can explain the maximum amount of variability. Although very similar to factor analysis 

and indeed principle component analysis has been used to carry out factor analysis but PCA 

has a different set of assumptions.  In factor analysis factors or latent variables are assumed 

to exist but are immeasurable directly so the factors are created by regressing on variables 
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that are correlated with the factor or process to measure these underlying processes.  In 

PCA however the factors or components found are just ways of reducing the dimensions of 

the data but still allow for the full variance in the data.   

So in factor analysis the factors drive the outcome variables and the factors describe 

processes but in PCA the variables drive the components to create a smaller dataset where 

the components don’t represent underlying processes or latent constructs. So they can be 

seen as almost equivalent methodologies that were designed in different scientific 

principles, factor analysis in psychometrics to quantify immeasurable psychological 

processes (Skrondal 2004) and principle component analysis to reduce dimensionality of 

data to speed up data mining algorithms (Dunteman 1989).  

The factor analysis methods presented here are fine when the data is homogeneous and 

normally distributed.  However in many cases as with the severe asthma data there is a 

large amount of heterogeneity and this heterogeneity needs to be accounted for within 

factors.  Also how can binary variables be added to the factor analysis as binary factor 

analysis,(Ansari and Jedidi 2000) exist but methods for combining both binary and normally 

distributed variables are scarce, these are typically calculated using Bayesian techniques as 

the integrals are difficult to solve and involve assuming that the binary variables have an 

underlying normally distributed distribution driving them. 

 Methods for accounting for heterogeneity in multivariate data are now reviewed, in an 

attempt to adapt the latent variable/factor model into one that can cope with non-normal/ 

possible multi-modal data, in which we would like to infer possible evidence of sub-groups, 

mixtures or clusters. 
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4.5 Cluster analysis 
Cluster analysis determines a number of sub-groups, k of patients which reduce the within 

cluster variation but maximise the between cluster variation.  To obtain this partition of the 

data a similarity measure is needed to establish the similarity between patients over 

variables.  There are many different distance metrics that can be used with Euclidian 

distance being the most popular.  Euclidean distance is described by the formulae below for 

the two individual’s y1 and y2 as in chapter 4.2.1 and equation 20 

   √(     )
  Equation 20 

 

In order for the similarity measure to work effectively the variables to be used need to be 

standardised as to not allow scales of the variables to effect the partitions.  This can be 

easily done by converting the variable into the standard normalised scale by applying the z-

score technique (Everitt 2001). 

The methods for cluster analysis rely on distance measures to determine subgroups of 

multiple normally distributed outcomes and can be thought of as mathematical algorithms 

rather than statistical models.  The mathematical algorithms are commonly used by 

computer scientists and are relatively straight forward to carry out in contrast to statistical 

models which are used by statisticians to infer mixtures based on statistical inference 

(Mirkin 2005).  There are many ways to use the distance matrix to determine a cluster 

partition of the data the two main ones being k-means clustering which states the number 

of clusters to be found a prior and achieves the best partition of the data using the k 

number of clusters iteratively and hierarchical clustering which either starts with every 

patient being in their own cluster and slowly merges them together iteratively until 
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eventually they all end up in the one cluster or does the reverse of this where the patients 

start out in one global cluster and slowly segregate till eventually they are in there own 

separate cluster, which is a less popular method (Mirkin 2005).  Once the algorithms have 

converged the best-fitting number of clusters can be obtained this is done either by 

comparing statistics for the differing number of clusters in the k-means clustering method 

(Everitt 2001) or by comparing the partitions in hierarchical clustering using a diagram called 

a dendrogram (Mirkin 2005). 

Statistical models can be used to sub-group data by using mixture models.  A mixture model 

can be used to describe whether a single variable distribution or multivariable distribution 

can be better explained using a mixture of distributions.   This mixture modelling is usually 

carried out by applying the mixture models with increasing numbers of mixtures  and then 

using statistical model selection techniques to determine the number of mixtures the data 

fits best (Kuo, Aggen et al. 2008), (Lubke 2008).  This method is commonly used by 

statisticians, but problems can arise from different model selection techniques choosing 

possible different solutions of differing numbers of mixtures (Lubke 2008).  Further 

problems can be incurred when dealing with multivariate mixtures, as is seen in the severe 

asthma dataset, with increasing dimensionality comes extra parameters to evaluate and 

longer running times in software.     

4.5.1 Clustering algorithms 

In this section we summarise the clustering algorithms used to determine partitions of 

multivariate data into subsets based on a distance measure.  These clustering algorithms are 

usually separated into two type’s k-means and hierarchical.   
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4.5.2 Hierarchical clustering 

The hierarchical algorithms work by merging or separating subjects or clusters of subjects.  

The algorithm starts by allocating every subject to its own individual cluster. The data is then 

merged a subject at a time by selecting a different subject with the smallest distance away 

from the other points in the cluster.  The process is carried out iteratively until all the 

clusters and subjects are in the same group.  Alternatively you can do the reverse by placing 

all the data points in the same cluster and separating the clusters to minimize the overall 

distance between clusters until every data point is in its own cluster.  The steps of the 

former hierarchical process can be described thus,(Everitt 2001). 

Start Assign every individual in its own cluster Ci for i= 1,2,…, N where N is the number of 

points 

1. Find the nearest pair of distinct clusters say Ci and Cj using the distant measure 

merge these two clusters and remove Cj as the two clusters are now both 

represented as Ci due to the merge. 

2. If there is only one cluster left stop otherwise repeat step 1 until there is only one 

cluster. 

 

The resulting steps of the algorithm can be represented in a figure called a dendrogram 

which describes the partitioning of the data, by depicting individuals along the bottom of 

the dendrogram and U shapes joining vertically as and when the clusters converge.  The 

distances of the U shapes between clusters is the distant of each cluster compared to the 

other cluster.  This depends on the hierarchical method used.   The different methods of 

hierarchical clustering come from the way the nearest pair of clusters Ci and Cj is calculated.  

The different methods each have different assumptions with them and look for different 
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patterns within the data, several reviews have compared the difference methods with 

simulated continuous data (Milligan 1980) and binary data (Hands and Everitt 1987) with 

directions suggested for the best method to determine the types of clusters wanted and the 

type of data to be used in the analysis. Although there are methods for clustering both 

binary and normally distributed variables together this is not commonly carried out in 

standard software as some transformation of one type of data is needed.    

4.5.2.1 Single linkage 

Single linkage is the simplest form of hierarchical clustering and it defines the distance 

between two clusters as the shortest distance between two points one each from each 

cluster (Everitt 2001).  All pairings of individuals, one from each cluster are checked and the 

pairing that has the shortest Euclidean distance is merged.  This is a simple and efficient 

algorithm and can reveal complex patterns that other clustering algorithms cannot find such 

as lines or circles of data, but this kind of clustering is rare in clinical data as usually we 

assume that the variables are normally distributed or made up of a mixture of populations 

that are each normally distributed all be it with a small amount of error.  For this reason it is 

not often used in clinical applications as the shapes of the clusters can be undesirable. 

4.5.2.2 Complete linkage  

This is the opposite of single linkage clustering with clustering dependent on the distance of 

the pairs of individuals, one from each cluster, that are the furthest away from each other.  

This again has the same disadvantages as single linkage as the clusters can again become 

odd shapes.   Both single linkage and complete linkage are better methods for looking for 

chains of data rather than spherical or multi-normal distributed clusters. 
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4.5.2.3 Group-average linkage 

This hierarchical clustering method uses all the distances created between all of the pairings 

of two individuals one from each cluster and then averaging them into a mean creating a 

group averaging distance between two clusters.   

4.5.2.4 Centroid linkage 

A centroid is described as the centre of a cluster it can be seen as the mean of the data for 

the cluster.  In centroid linkage the distance is measured form the mean or centroid of the 

data in the cluster to the centroid of another cluster using the standard two step algorithm.  

This is a good method if the clusters that are being merged are similar sizes otherwise the 

bigger cluster may dominate the smaller cluster in representing the new merged centroid 

(Everitt 2001), this is especially seen at the beginning stages of the algorithm.  In some data 

cases the median could be used instead of the mean to better represent the data, when 

merging non similar sized clusters. 

4.5.2.5 Wards method 

The Wards method try’s every possible paring of clusters, like the other methods and the 

two clusters whose combination result in the smallest increase in a statistic called the 

information loss are combined.  This information loss function is calculated using the error 

sum of squares criterion (EES) (Ward 1963), see equation 21. The EES is calculated for each 

partition of clusters and the best partition is chosen this is the merge with the smallest EES.  

This cluster methodology gives the clusters a spherical shape, similar to a multi-variate 

normal distribution.  

              ∑(       ( )) 

 

   

 Equation 21 
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                                                  Equation 22 

 

Where yi are the individuals in a cluster with n individuals.  

The distances can be displayed in a dendrogram, which display the hierarchical nature of the 

data and the distance change between different clusters or in the case of wards algorithms 

the difference in the ESS, see Fig 4.5.2.5 for an example of a dendrogram based on four skin 

prick tests for cat, dog, grass and dust mites on 100 individuals.   

Figure 4.5.2.5 Dendrogram to show clustering of skin prick test data, the best number of 

clusters can be found by comparing the differences between cluster solutions.  The biggest 

difference is between the solution for cluster 2 and 3 indicating that the cluster 2 solution is 

the best fitting solution.  
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Hierarchical analysis is a good method to partition data and has been used extensively in 

practice as it can give a clear diagram (dendrogram) to explain the nature of the different 

number of clusters.  The x axis represents the individuals in the datasets and the y axis 

distance or similarity of the clusters.  Corners represent merging of clusters the vertical 

distances between cluster merges are the differences in distance between the cluster 

merges.  The bigger the distance between the different merging clusters the better the 

representation of the previous cluster.  

 Hierarchical clustering methods however do not allow the clusters to overlap and the 

cluster membership does not derive from probability statements or statistical inference and 

due to the hierarchical nature of the algorithm once data points enter a cluster they can 

then not be removed to be attached in a different cluster which might be better suited, 

leading to possible mis-clustering (Hopke and Kaufman 1990).  Another effect of the 

algorithm is that it arranges the data in to a hierarchy this makes sense with some data such 

as pedigree and protein structures, where the differences could be down to hereditary it 

does not always match every dataset where there is no such hierarchy.  It is also difficult to 

determine the optimum number of clusters; this can be inferred by slicing the dendrogram 

at a particular level, usually the one with the biggest difference, For the skin prick test data 

example this largest distance would be for 2 clusters and it is worth noting that in some 

studies this is chosen arbitrarily to obtain an exploratory cluster analysis.   

The question remains which algorithm is the best to use this is dependent on the data if 

looking for spherical clusters where the clusters are based on measurements with some 

error associated with them then wards algorithm or centroid linkage is probability the best 

as these methods are based on average distance measures allowing for errors.  These 
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methods are closer to statistical models then the other linkage hierarchical methods which 

are more useful to detect clusters that look for chains of data or outliers.  Most scientists 

are looking for spherical clusters which are based on measurements with errors for this 

reason wards method is often used in the literature and can be seen to achieve the best 

results in comparison with other hierarchical methods in simulation.     

4.6 K-means clustering  
Similar to hierarchical clustering the k-means algorithm is based on a distance measure that 

creates a partition of the individuals.  But unlike hierarchical clustering k-means clustering 

requires the desired number of clusters to be specified a prior before carrying out the 

clustering (Mirkin 2005).  K-means clustering is an iterative process that is initialised by 

picking k points in the multivariable space as the initial k cluster representatives or 

centroids, mean of the cluster.  Followed by an iterative process to determine the best 

fitting partition of the data into the k clusters, using a distance measure.  The iteration 

process is separated into two steps (Mirkin 2005). 

Start Centroids are chosen 

1. Each subject is assigned to its closest centroid, similar to centroid clustering resulting 

in a partition of the data,  

2. The cluster centroid/mean is recalculated using the new data points in the clusters.   

3. When the centroids no longer change the process has converged (Wu, Kumar et al. 

2008). This stopping rule is called the Minimum distance rule.  

The closest subject is decided using a distance measure and again the Euclidian distance is 

the obvious choice.  Convergence however can sometimes reach a local optimum partition 

instead of the correct solution however as the algorithm is sensitive to starting values (Wu, 
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Kumar et al. 2008). It is important that good starting values should be used by inspection of 

the data although this could lead to problems with prior beliefs. Determination of the k 

number of clusters is usually carried out by carrying out different numbers of clusters and 

applying some criterion using a statistic related to mean distance or variation of the clusters 

for deciding which cluster number, k is used such as a cost function (Ahmad and Dey 2011) 

or the number of clusters can be assumed from a previous hierarchical clustering.  

Alternatively if carrying out an exploratory analysis the clusters are chosen in line with 

clinical thinking, as is the case for the previous analysis of severe asthma data (Haldar 2008) 

although this was loosely based on hierarchical clustering.   

Both the k-means clustering and hierarchical clustering can be sensitive to outliers as they 

both rely on distance as a similarity measure and not probability statements. Despite these 

drawbacks both methods are easy to implement and comprehend.   

4.7 Finite mixture models 
The k-means clustering algorithm can be thought as a hardened version of a statistical 

mixture model.  In both procedures the number of groups or clusters/mixtures are stated a 

prior, the difference is in mixture models the clusters are distributions, i.e. the normal 

distribution with specific parameters, i.e. mean and standard deviation parameters that are 

dependent on the individuals in the cluster (Garcia-Escudero, Gordaliza et al. 2010).  

Individuals have a probability of belonging to a specific distribution mixture.  In k-means 

clustering however the individuals are only allowed to be in one cluster/mixture (Wu, Kumar 

et al. 2008).  Individuals are put in a cluster depending on the distance from their centroid, 

where as in mixture models the individuals are associated to the cluster/mixture by their 

probability of being in the distribution associated with the cluster/distribution with specific 
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mean and standard deviation parameters.  If the data is well partitioned, i.e. the clusters are 

far away from each other then the mixture modelling and the k-means algorithm obtain the 

same partition but if the data is more fuzzy, i.e. it is hard to say whether subjects may 

belong to either cluster, especially where the clusters overlap as is normally found in reality, 

the different methods obtain different solutions which could lead to over simplification of 

the data and misclassification of subjects when using the k-means clustering methods as the 

mixture models allow for this overlap. 

The model for a uni-variate mixture model is described below and can easily be extended to 

multivariate cases.  Emphasis of the mixture model review here has been on normal and 

multivariate normally distributed variables but other distributions can be used such as 

Weibull distributions for survival outcomes (Entink, Fox et al. 2011) or Bernoulli mixtures for 

binary data(Kim 2003). 

The mixture model equation can be described for two mixtures as in equation 23 

  ( )      ( )  (   )   ( ) Equation 23 

 

 

 

Where f is the distribution of variable y. f1 is the first mixture distribution and f2 is the 

second mixture distribution, p is the probability associated with the first mixture distribution 

and 1-p is the probability associated between the second mixture distribution each fi 

distribution will have its own set of parameters. 
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The formula for two mixtures can be adapted for k mixtures as in equation 24 and 25. 

 
 ( )   ∑   

 

   

   (    )   

 

Equation 24 

 

 

  

       ∑  

 

   

   

 

Equation 25 

 

Where y is the data variable,   (    ) is a mixture distribution with parameter    and    is 

the probability of the individual belonging to the mixture distribution   (    ) .  For 

normally distributed variables   (    )    (       ).  The formulae representation above 

lays the foundation for the maximum likelihood estimation of the possible many parameters 

in the model.  The log of the likelihood is maximised to determine the best fitting solution of 

the parameters in the model, equation 26. 

                ∑    ∑     (     )

 

   

 

 

   

  Equation 26 

 

 

Where N is the number of individuals, k is the number of mixtures, yi is the value of the data 

variable for individual i,   (    ) is a mixture distribution with parameter    and    is the 

probability of the individual belonging to the mixture distribution  (    ).   
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The equation can then be solved in the usual way by using the expected maximising (EM) 

algorithm or by Bayesian estimators of the parameters.  This creates one of the problems 

with mixture models as the above formulae is fine for implementing small numbers of 

mixture components and small numbers of patients but with large amounts of both, the 

methods to evaluate the parameters can become too computationally expensive and other 

issues arise when using multivariate data as assumptions have to be made about the 

covariance of the mixtures and restrictions our often implemented on these so that 

solutions are obtainable, such as independence of variables and mixtures. 

Once the mixture models have been successfully implemented, the best fitting number of 

mixtures can be assessed by comparing different models in the standard way using model 

fitting criterion such as BIC, AIC or maximum likelihood.  Each different model has a 

different number of mixtures. Unfortunately different model criteria can determine 

different numbers of mixtures and it is often not clear which model criteria to use 

contributing to uncertainty over the number of mixtures found, which is a common problem 

in mixture model analysis. 

4.8 Infinite mixture models 
We have summarised the procedures for finite mixtures where the number of mixtures are 

changed with each model and then the models are compared using model selection criteria 

to determine the best fitting number of mixtures, but another method would be to have 

one statistical model infer the best fitting number of mixtures.  This can be obtained by 

allowing the number of mixtures in a model to be infinite and to have them converge to the 

most probable solution.  This can be formulated by extending the mixture formula above to 

infinite mixtures, equation 27 and 28, where the parameters are as listed previous. 
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   (    ) Equation 27 
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   Equation 28 

 

The infinite mixture model can be implemented only in a Bayesian framework in a Dirichlet 

Process Mixture Model as the EM algorithm cannot be used for imputation as the infinite 

mixture model uses a special Dirichlet distribution based prior called the a Dirichlet process 

or Dirichlet process mixture.  Originally created by (Ferguson 1973) and adapted for 

mixtures by (Antoniak 1974).  These can be difficult to implement and to converge due to 

the large amount of parameters needed to evaluate but have been carried out recently 

thanks to advances in Markov Chain Monte Carlo Techniques (MCMC) (Escobar and West 

1995).   MCMC techniques are a way of sampling from parameters to create a distribution 

for the parameters thus obtaining a mean for each of the parameters.  They also allow a 

number of complex statistical models to be carried out and solutions obtained that cannot 

be found when using the EM algorithm.  For full details of Bayesian statistics, MCMC 

algorithms and the Dirichlet process mixture models see the next chapter on semi 

parametric models, chapter 5.  As the Dirichlet process normal mixture is a semi parametric 

distribution it can take any shape that can be created using an infinite amount of normally 

distributed mixtures thus it is a lot more flexible then other distributions that are only 

restricted to certain distributional shapes which can be unrealistic. 
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4.9 Combining latent variable with cluster analysis and mixture 

modelling 
Usually mixture models are carried out over a number of similarly distributed variables i.e. 

all normally distributed or all binomial variables but if latent variables are used to reduce 

the dimensionality and infer on the clustering of the variables, these two can be combined 

with mixture modelling allowing a mixture analysis to be carried out over each latent 

variable or factor, creating a lower dimensional space speeding up the algorithm, while 

allowing for patterns of variation in variables and individuals.  These techniques are 

reviewed here.    

Factor analysis reduces the dimensionality of the variables and describes the heterogeneity 

of the variables allowing the factors to be annotated with biological reasoning, but the 

heterogeneity of the patients within the factors still has to be accounted for, this is usually 

assumed to be normally distributed for ease of computation.  Many simple methods have 

been devised to address this issue one is to carry out a cluster analysis on the individuals by 

using the factors or a representative variable with strong correlation to each factor, i.e. the 

highest factor loading (Haldar 2008) .  Once the independent variables/factors are obtained 

they can be used for cluster analysis or a statistical mixture modelling could be applied to 

the factors.   

This clustering could be considered a slightly ad hoc method as in many factor analysis’s the 

variables are assumed to be normally distributed and by running a cluster/mixture analysis 

afterwards we assume that this is not the case, but it is possible to carry out non-parametric 

factor analysis and thus check for mixtures in the factors.  This has been carried out in 

practice as it is easily done in two steps first obtain factors and then second obtain clusters 

from the independent factors, because the factors are independent the mixture modelling 
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or cluster analysis become easier models to compute as the covariance of the data variables 

can be kept at 0.    

Another method applies a more complex model which has the mixtures being distributed 

over each of the factors combining factor and mixture model analysis in one complete 

statistical model, a mixture/factor model.   This is a less ad hoc process as there is no break 

in methodology but is not that common in the literature as the models are difficult to create 

and suffer from problems arising from identifiability issues, as in some situations the model 

has trouble determining whether the variance should be described using a factor or a 

mixture, thus creating several solutions (Lubke 2008).  To express the model as a formula we 

start with the factor analysis equation as before for k variables, j factors and i subjects in 

equation 29. 

                                Equation 29 

Where Yik is the score of the variable Y for person i on data variable k 

Fij  is the factor score for factor j in individual i 

akj  is the factor loading for variable k on factor j 

Eik is the error score for variable k and individual i 

Instead of having the factor scores normally distributed with mean 0 and standard deviation 

of 1 we adapt the factors for mixtures, obtaining the new model with the same parameters 

as the other models, equation 34. 

                                Equation 30 
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                                      Equation 31 

     ∑    

  

   

    (    ) Equation 32 
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    (    ) Equation 33 

 

     ∑    

  

   

    (    ) Equation 34 

 

Where Fij  is the factor score for factor j in individual i 

Fj  is the factor variable containing all of the factor scores Fij  for factor j  

fjl  are the l mixtures over factor j  with parameter Өl 

 pjl  are the probabilities associated with being in mixture l for factor j    

Lj  are the number of mixtures associated with factor j 

The issues involved in implementing these models are similar to the problems with mixture 

models which are that different model criterions infer different models, this does not imply 

that one model is right and the others are wrong rather that there are many possible 

answers to the problem the model specifies.  Selection of the best model is even harder in 

the factor mixture models because we have to make a joint decision on both the number of 

factors and the number of mixtures on each factor.  This could lead to many models being 

specified and possibly many models having similar fitting (Lubke 2008). 
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4.10 Cluster analysis to diagnose sub-groups in medical databases 
Cluster analysis has been used to diagnose several sub-groups using medical databases this 

is either done by clustering several outcomes of patients with a known diagnosis of a 

disease from a clinician to invest the underlying heterogeneity (Haldar 2008) or individuals 

from both disease cases and controls can be used to determine if a disease cluster is 

returned after analysis (Wardlaw, Silverman et al. 2005).  Usually a factor analysis is carried 

out first and then a cluster analysis using the factors or the highest factor loadings from the 

factor analysis so that the data aspects or factors are equally represented for clustering 

(Haldar 2008), (Folkerts, Nagel et al. 1990).   

Practically all of the methods to partition individuals are carried out using cluster analysis 

rather than mixture modelling as the analysis is usually carried out in SPSS and until recently 

mixture modelling could not be carried out in SPSS.  This means that the papers have some 

of the failings of cluster analysis that were mentioned previously that it is difficult to 

determine the correct number of clusters and some of the clusters are chosen to back up 

previously reported hypothesis or that lots of clusters are looked at to determine an 

exploratory cluster analysis.  Most of the diseases that have undergone cluster analysis are 

diseases that are characterised by symptoms which are likely to include a large amount of 

heterogeneity as the diseases definition are not based on specific biomarkers but symptom 

reporting.  This can lead to possible different pathologies having the similar disease 

definition.  Generally this is exactly the reason why cluster analysis has been carried out in 

severe asthma.  Apart from asthma disease datasets other diseases that have  undergone 

cluster analysis include neurological diseases such as Parkinson’s disease (van Rooden, 

Heiser et al.) and depression in the medically ill (Guidi, Fava et al. 2011) .  The purpose of 

each cluster analysis remains similar, to verify existing or hypothesised clusters, to 



92 
 

determine possibly new mechanisms and/or to determine possible new drug targets for 

disease types.  

4.11 Conclusions for modelling severe asthma datasets 
In modelling asthma we would expect the variables associated with asthma to be correlated 

with each other if they share similar pathology.  If the disease was homogenous we might 

expect all of the variables to be highly correlated with each other.  In reality the data are not 

that simple and the variables can be split up into sub-sets of variables that are highly 

correlated with each other, i.e. a multiple latent variable model.  These different latent 

variables can also be seen in the literature review as different aspects of asthma variability 

i.e. sputum cell counts and asthma symptom scores may only be related to a specific aspect 

of asthma say underlying inflammation and skin prick test scores and IgE levels may be 

correlated to another aspect or latent variable of asthma say atopic status (Leung, Wong et 

al. 2005), see the severe asthma literature review in chapter 2 for more details of these 

aspects.  This factoring of asthma implies that several latent variables should be used to 

describe severe asthma, each one describing a different aspect.  Multiple latent variable 

analyses are commonly seen in social and psychometric research where typically the 

process that needs to be quantified is difficult to measure by other means.  In this area of 

research the latent variables are called factors and the statistical modelling to be carried out 

is called factor analysis.   

In the severe asthma dataset the reason we are using these reduction techniques is 

primarily to determine if sub-groups of subjects exist in the reduced dimensions and 

secondary to see what variables are correlated to the factor so that the sub-groups and the 

factors can be given annotations to better understand severe asthma as a disease process.  
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For these reasons factor analysis, latent variable modelling is what is required rather than 

principle component analysis.     

My research analysis is to determine the reasons for the variation seen in severe asthma 

patients and it is unclear whether the variance in the severe asthma dataset is due to the 

existence of sub-groups, individual differences of severity or different aspects/factors of 

asthma.  For these reasons and because of the lack of prior knowledge as most of the 

literature is aimed at childhood non-severe factor analysis (Leung, Wong et al. 2005) I chose 

to use exploratory factor analysis to combine the many variables that are related/correlated 

to severe asthma but which it is unclear whether the variables are correlated with each 

other or not. 

Computational algorithms for multidimensional clustering such as k-means and hierarchical 

clustering can be limited and do not rely on statistical inference.  A better method would be 

to use a statistical model to determine the number of groups, mixture models can be used 

to determine the best possible number of groups but these rely on model selection 

techniques.  Choosing a correct mixture model however is not a standard problem and 

different model selection techniques can produce different number of optimum clusters for 

the same data.  A better method is to allow the statistical model to choose the number of 

mixtures this is carried out using an infinite number of mixtures.  To carry out such an 

analysis Bayesian inference is used to implement a Dirichlet Process Mixture.  This is the 

subject of the next chapter, chapter 5.   

The Dirichlet Process Mixture also allows more flexibility in evaluating the latent variable 

values and can also be used to infer sub-groups.   Strict clustering can be obtained from its 

MCMC output that is similar to that of k-means clustering but without relying on distance 
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that limit the k-means and hierarchical algorithms.  So to summarise the severe asthma 

dataset will be analysed using a factor analysis with an infinite number of mixtures on each 

factor. 

4.12 Closing statement 
Methods of dividing variation within data allowing for both variable variation and individual 

variation has been reviewed.  The best method to allow for variation in variables is factor 

analysis and the best method to allow for variation in individuals is mixture modelling as 

cluster algorithms are not based on probability statements making it harder to determine 

the best-fitting number of mixtures/clusters.  Even mixture modelling has its disadvantages 

one of these being difficulty in choosing a model fitting criteria that is the best suited for 

mixture modelling.  This can be overcome by allowing an infinite mixture model that 

converges to the best fitting number of mixtures.  These can be difficult to implement 

however.  We will analysis the severe asthma datasets by applying a factor analysis/latent 

variable model that has an infinite number of mixtures over each factor to allow for 

variation within individuals in that specific factor or latent variable.  Infinite mixtures and 

how to implement them are covered in the next chapter on semi-parametric models, 

chapter 5.
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Chapter 5. Semi-Parametric Modelling 

5.1 Chapter Summary 
This chapter reviews non-parametric methods for Bayesian inference concentrating on 

methodology and implementation of Dirichlet process normal mixtures (DPNM).  This 

is reviewed in order to use the DPNM to determine the density of latent variables.  

Using a semi-parametric technique such as a Dirichlet process normal mixture to 

calculate the density of the latent variable allows the latent variable to be described 

without the confines of parametric assumptions as an infinite number of mixtures thus 

allowing the true nature of the latent variable to be shown and if multi-modal, 

subgroup allocation can be achieved to find a partition of the data.  Implementing 

Dirichlet Processes and Dirichlet Processes mixtures however is more complex than 

using a normal distribution to describe a latent variable.   

Semi-parametric techniques are introduced and Bayesian inference described in 

general, reasons for choosing a semi-parametric prior are discussed and the 

mathematical notation and properties of the Dirichlet process (DP) and the Dirichlet 

process mixture (DPM) are stated.  In the later part of the chapter issues concerning 

implementation of the Dirichlet process mixture (DPM) model are raised and solved.  

These issues include non conjugate priors, ease of computing, differing Monte Carlo 

Markov Chain (MCMC) computing strategies, and benefits of complete versions over 

approximations, and speed of computing.  A description of how the model was coded 

in R using both R and C programming languages is also included.   
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5.2 Introduction 
In parametric analysis the data are assumed to belong to a family of simple parametric 

distributions that are used to describe the data as a probability distribution.  The use of 

parametric distributions is only correct however if the assumptions for using the 

parametric distribution shapes hold. If this is not the case the shape of the data may be 

over-simplified leading to limitations in the scope and type of inferences being made 

(da Silva 2007), possibly leading to increased errors, a bad fitting model and bad 

predictions for future data (Dorazio, Mukherjee et al. 2008).  If the data represent a 

single group with individuals sharing similar characteristics with a single mode than 

parametric assumptions maybe fine as we assume the data is homogeneous.  If the 

data is heterogeneous however, the data may possibly contain different types or 

clusters of patients, this heterogeneity maybe lost under parametric assumptions.  

Non-parametric and semi-parametric distributions do not rely on shapes to fit the data 

they show the true nature of the data allowing for possible heterogeneity but not 

excluding the possibility of homogenous distribution.   

Non-parametric distributions as opposed to having no parameters as the name 

suggests actually have many parameters but none that dictate the shape of the 

distribution, allowing the distribution to fit the data better.  Semi-parametric 

distributions have a mixture of parametric shapes governed by a non parametric 

distribution thus it would be better for heterogeneous data to assume a non-

parametric or a semi-parametric distribution, allowing the data to be freer of 

parametric assumptions (Ghosh 2003),(Dey, Muller et al. 1998).   

Non-parametric Bayesian priors can be used to obtain non-parametric posterior 

inference similar to that of frequentist non-parametric estimation.  The most used 
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non-parametric distribution is the Dirichlet process.   This non-parametric prior was 

devised by (Ferguson 1973) and creates a discrete random probability measure over 

the space of all probability measures.  The Dirichlet process was developed further to 

include probability measures over an infinite amount of mixtures (Antoniak 1974) if 

the mixture distributions used are continuous parametric distribution functions then 

the model can be described as an infinite mixture of continuous parametric 

distributions allowing for continuous data to be freed from the confines of using just 

one parametric shape.  This Dirichlet process mixture (DPM) is a type of semi-

parametric prior as it has both non-parametric and parametric assumptions.  Both the 

Dirichlet process prior and the Dirichlet process mixture prior have become the most 

popular non-parametric techniques thanks to MCMC computational algorithms 

allowing the Dirichlet process and Dirichlet process mixtures to be fitted.   MCMC 

algorithms were first developed for the Dirichlet process and Dirichlet process 

mixtures by (Escobar and West 1995).  The use of the MCMC methods freed the 

methodology so that they could be calculated in a wide number of varying Bayesian 

hierarchical models.   

5.3 Bayesian techniques 
Bayesian techniques allow statisticians to quantify their own beliefs into probability 

statements and determine how these prior statements are updated by sample data y 

to formulate posterior beliefs.  This posterior inference can provide information that 

can be used to estimate parameters in a statistical model.  To better formulate this 

into a statistical model we can think of the prior, data and posterior as belonging to 

parametric distributions, where the prior distribution is driven by our prior beliefs.  As 

with beliefs these priors can be narrow/informative or vague/non-informative we 
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could believe some data should have a mean of 5 and put a probability of one on this. 

Alternatively we can be vague and state that we are not sure of the value and give a 

distribution for the parameter with equal probable values between -100 and 100. 

Either way it is clear that a prior p( ) can be formulated about a random variable  .  

We can also assume that   can also be a parameter in a distribution.  So for random 

variable y with distribution p(y| ) with parameter   probabilities can be determined 

about   from data y formulated by p(  |y) where data y is fixed and    dependent on y 

is determined by equation 35 

 
 (   )  

 (   ) ( )

 ( )
 

Equation 35 

 

Where p(  |y) is the posterior, p(y|  ) is the probability of the data as a function of y, 

p( ) is the prior assumptions of   and p(y) is the normalising constant needed to make 

p(  |y) into a proper probability measure, this is a form of Bayes rule (Lee 1997). 

Where the normalising constant is defined for the continuous case by equation 36

  

 

 

 ( )  ∫ ( ) (   )   
 
Equation 36 

 

And for the discrete case defined by equation 37 

 
 ( )  ∑ ( ) (   )

 

 
Equation 37 
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When y is constant and p(y|  )  is a function of the data,y, we call  p(y| ) the likelihood 

of   given data y, see equation 38 

 
 (   )   (   ) 

Equation 38 

 

By maximising the likelihood or log likelihood we can find the best or most likely 

solutions for the parameter  .  Note this value is without the influence of the prior.  

Using the prior however allows us to incorporate prior information and use 

computational techniques that are very flexible. 

By omitting the normalisation constant and replacing p(y| ) with the likelihood we 

have the formula in equation 39 

 
 (   )   (   ) ( ) 

Equation 39 

 

Thus posterior inference can be achieved over the space of parameter   (Lee 1997).  

Ideally for ease of computation we would prefer that the likelihood and the prior 

information when multiplied together created some function that could be 

manipulated into a standard statistical function/distribution that is recognisable and 

easy to sample from.  For these reasons it is best to use conjugate priors these are 

priors that have the same type of distribution as their related posterior.  The choice of 

distribution however also has to be a valid way of describing the prior information and 

data and not just used for convenience of computing the posterior (Lee 1997).  When a 

prior, a function of  , is conjugate then when it is multiplied by the likelihood also a 
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function of   the posterior is of the same parametric family as the prior.  This method 

holds well when only one parameter is to be inferred on. But when many are needed 

this can involve complex priors. 

This was overcome by using Monte Carlo Markov Chain (MCMC) techniques that 

sample from the posterior of one parameter and then use this parameter as a constant 

in a sample from a different parameter posterior creating an iterative chain (Gelfand 

and Kottas 2002).  This can better be demonstrated using a series of equations for an 

example of three parameters.  Consider Bayes rule for posterior probability in equation 

39 and consider the parameters represented by   are three parameters         . 

 
 (          )   (          ) (        ) 

Equation 40 

Instead of predicting new values all at once involving complex distributions we can 

predict the values of          one at a time, by keeping the others constant.  We start 

by inialiasing the parameters with starting values,            . We then update for 

parameter   by sampling a value     from the posterior  (     ) which is based on 

the likelihood  (            ) of   dependent on the data y and the starting values of 

the other parameters        and the prior  (  ) of   , see equation 41. 

 
 (     )   (            ) (  ) 

Equation 41 

Next we sample from the posterior of   to obtain new value     using the starting 

value of   ,      and the new value of   ,    , see equation 42. 

 
 (     )   (            ) (  ) 

Equation 42 

Similarly parameter 3 is sampled see equation 43 
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 (     )   (            ) (  ) 

Equation 43 

This cycle concludes the first iteration and has obtained new values for the three 

parameters.  The process is run again, Predicting   from the new values of   and   

see equation 44 and likewise for parameters  and  , see equation 45 and 46. 

 
 (     )   (            ) (  ) 

Equation 44 

 
 

 

 
 (     )   (            ) (  ) 

Equation 45 

 

 
 (     )   (            ) (  ) 

Equation 46 

The process is called Gibbs sampling (Lee 1997) The process continues iteratively and 

the chain is run for a long time and the samples are stored as it is run.  We can use the 

samples form the parameters to plot the posterior distribution of the parameters as a 

histogram that describes our data.  The chain only depends on the previous 

parameters values, the data and the prior for the parameters so the chain should 

forget what starting values it started with and these values can be cut leading to a 

chain that has converged to the correct solution.  Once convergence has been 

achieved inferences can be made from the saved sampled parameters and statistics 

obtained from the samples for the parameters (Gelman, Carlin et al. 2004) achieving a 

mean and standard deviation for the parameters. 
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As explained before these priors are usually specified to be a parametric distribution 

whaving parameters   to aid conjugatecy in order to compute easily and efficiently, 

but these assumptions could be invalid when using heterogeneous data and semi-

parametric priors may offer an alternative that creates a better fit when no prior 

knowledge of the distribution is known.  For the asthma data we are using latent 

variables to describe the variance seen in a number of variables associated with severe 

asthma unfortunately it is impossible to determine the parametric shape of latent 

variables so it is a logic step to assume a semi-parametric distribution on the latent 

variable (Lee 1997). 

 5.4 Non-parametric methods 
Non-parametric probability distributions don’t rely on parametric assumptions that 

restrict the distribution shape of the data.  Thus non/semi-parametric distributions can 

be used to better fit the data in a more relaxed way. Classical non-parametric 

distributions can be difficult to incorporate into hierarchical models to avoid this I used 

Bayesian inference so that complex relationships in the data could be used. The 

problem now equates to how to select a prior to mimic non-parametric inference (Lee, 

Lu et al. 2008).  In non-parametrics, there are no parameters but in Bayesian statistics 

by its nature has to have parameters to determine posterior inference on.  To get 

round this difficulty a special prior needs to be used.  Instead of the prior being a 

probability measure or distribution over a parameter space, the non-parametric prior 

will have to be a probability measure over a space of probability measures or 

probability distributions (Muller and Quintana 2004).  The non-parametric prior will 

therefore be infinitely dimensional.  The problem now lies in how to formulate an 

infinitely dimensional prior and how to calculate the posterior from the prior and 
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likelihood in an effective and relatively straight forward way.  The Dirichlet process was 

introduced in (Ferguson 1973) as a non-parametric prior that is also a discrete 

probability measure that satisfies the two conditions for a good prior stated in  

(Ferguson 1973).  

That the support of the prior distribution should be large 

Posterior distributions given a sample of observations from the true probability 

distribution should be manageable analytically 

Although the Dirichlet process is an effective non-parametric prior it is discrete.  This 

led the Dirichlet process to be adapted for mixtures of distributions by (Antoniak 1974) 

and by allowing these infinite mixtures to be continuous parametric distributions 

allows the data to be described as a continuous  prior, with fewer restrictions of shape, 

called a Dirichlet Process Mixture.  These mixture priors are called semi-parametric as 

they allow the data to be described as an infinite non-parametric mixture of 

parametric distributions.   With the application of MCMC methods for implementing 

calculation of the posterior by (Escobar and West 1995), (MacEachern and Muller 

1998) and (Ishwaran and Zarepour 2000), the Dirichlet process and the Dirichlet 

process mixture have become the most popular non-parametric/semi-parametric 

priors.  These priors can be used in hierarchical models for better model flexibility. 

5.5 Dirichlet processes 
Dirichlet processes are the most commonly used non-parametric technique in 

Bayesian statistics.  A Dirichlet process can be thought of as a discrete probability 

measure over the space of probability measures.  We will now give a formal statistical 

definition of Dirichlet processes. 
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The Dirichlet process is a special distribution that when sampled from creates a new 

probability distribution itself.  The Dirichlet process has two parameters α and G0 and 

can be described in equation 47 

 
                   (    ) 

Equation 47 

The G0 parameter is called the location parameter and it determines the position of a 

point in the distribution on a space Θ (Ferguson 1973).  If the space Θ is the real line R 

which is very common in distributions, then the G0  parameter states the points on the 

real line that are in the Dirichlet process.  The amount of probability associated with 

the points in G0 is described by the precision parameter α and the data being 

distributed.   To visualise this we can think of a continuous line of numbers with G0 

being a selection of these numbers or points and then the alpha parameter working 

out the probability associated with these along with the actual data.   

For large datasets the alpha parameter has little effect but for smaller ones alpha can 

have an effect on the distribution, this is similar for most priors in Bayesian models.   

The Dirichlet process is a conjugate prior meaning that if data is given a Dirichlet 

process prior then the posterior distribution of the parameter space will also be a 

Dirichlet process.  To go from the prior to the posterior we can see this as estimating 

an unknown probability distribution posterior G (da Silva 2007). Consider Go as our 

prior guess at G based on a sample size of n, usually all the other data, G can either be 

from Go with probability p0 or belong to a different point contained in Gn with 

probability (1- p0), see equations 48 and 49. 
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Equation 48 

 

 
(    )                

Equation 49 
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Equation 50 
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Equation 51 

 

 

 
              Equation 52 

 

pi is the probability of belonging to the point Gi and is thus calculated using how many 

points there are within Gi as they representative the ni points.  So G is a mixture of the 

prior guess Go and the empirical distribution function of the Gn.  If α is large compared 

to n then little weight is given to the data conversely when α is small.  E.g. when  α =0 

G is given by Gn which is the classical nonparametric Bayes estimate.   

This gives a flexible non-parametric prior but this prior is discrete leading to a discrete 

posterior, if continuous data is used then the Dirichlet process has to be adapted, the 

adaption was first carried out by (Antoniak 1974) creating a Dirichlet process mixture.  
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This new process has been described as a Chinese restaurant process.  Imagine a 

Chinese restaurant with an infinite number of tables. A person from the sample, G 

comes into the restaurant and gets seated at a table G1.  The next person to come in 

has a choice either to sit with the person on their table G1 and will choose this with 

probability p1 or sit on their own table selected from G0 with probability p0 if the new 

person chooses to sit on their own then their table becomes G2.  The third person 

comes and either sits with one of the other two people with probability p1 or p2 or sits 

on their own with new probability p0.  The parameter alpha determines whether they 

sit on their own or not, where as the more people who sit round a table the more likely 

another person will be to sit at that table.  In our case the tables are distributions or 

mixtures the people are patients and the Chinese restaurant is a patients underlying 

asthma.  

5.6 Dirichlet Process Mixtures 
Dirichlet processes are by their nature infinite discrete random measures, for this 

reason they are limiting to discrete variables, but by allowing the G and thus Gn and Go 

in the Dirichlet process to be a continuous parametric distribution instead of just a 

point then we can obtain a semi-parametric continuous prior that can be described 

using equation 53 

 
 ( )  ∫ (   )  ( ) 

Equation 53 

 

 
 ( )  (    ( )) 

Equation 54 
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Thus F can be described as a mixture of f(y|  ) distributions with a Dirichlet process 

prior on the random mixing measure G covering a mixture of possible parameters  .   

Equivalent models can be formulated by extending finite mixture models to infinite 

mixture models (da Silva 2007) see previous chapter on finite mixture models, chapter 

4.  The most common parametric mixture in a Dirichlet process mixture is a normal 

distribution we call this a Dirichlet process normal mixture (DPNM) model.  To 

establish the mixture connection we will look at an example of a parametric Bayesian 

model for determining the individual means of a set of data and then the more relaxed 

semi-parametric model using a Dirichlet process normal mixture. 

A formal hierarchical Bayesian model for data variable Y can be laid out in equations 

55, 56, 57. 

 
      (  ) 

Equation 55 

 

 
      ( ) 

Equation 56 

 

 
     (   ) 

Equation 57 

Where the Yi is individual data i for the one manifest or measurable variable Y 

distributed parametrically via distribution f with corresponding individual parameter   i 

which has prior distribution G with hyper parameter v which has prior H who’s 

parameters are fixed values a and b. For normally distributed data with known 
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variance  i becomes the mean parameter and the above formula translates to the new 

equations 58, 59, 60. 

 
      (    

 ) 
Equation 58 

 
     (   ) 

Equation 59 

 
     (     )       (     )  Equation 60 

 

Here we assume that the individual means θi  ’of Yi can be normally distributed, but this 

condition can be relaxed by substituting the parametric N(µ, V) in the normal case with 

the non-parametric Dirichlet process normal mixture prior D(α,G0) thus obtaining for 

the normally distributed variable Y 

 
      (    

 ) 
Equation 61 

 
      

Equation 62 
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Equation 63 

 
     (     ) 

Equation 64 

 
       (     )       (     )  Equation 65 

 
        (   ) 

Equation 66 
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Thus data can be given semi parametric priors.  The Dirichlet process priors allow the 

distribution of data to be modelled with uncertainty of parametric shape which also 

includes inference on clustering of the nature into infinite mixtures, while still being 

flexible enough to be incorporated into hierarchical models.  For these reasons the 

Dirichlet process normal mixture is ideal for monitoring the distribution of a latent 

variable in order to answer both our primary and secondary research questions which 

are  

1. is severe asthma variation represented by a continuous variation in severity or 

does it exist due to sub-groups or clusters of patients with similar 

characteristics and 

2.  If these sub-groups exist can they be quantified and clinical inferences made 

about the sub-groups.    

5.7 Dirichlet Process and Dirichlet Process Mixture uses 
Dirichlet process and Dirichlet process mixtures are used in Bayesian hierarchical 

models for three main reasons.  These are to determine the underlying shape of a 

distribution this is when the primary interest in the model lies with determining the 

distributional shape of a variable (Xing, Jordan et al. 2007), which would be useful in 

density estimation of manifest asthma variables or in allowing latent variables relating to 

asthma to have a more relaxed distribution. To improve fit of a model where parametric 

distributions may not be valid (Dorazio, Mukherjee et al. 2008) or to determine sub-groups 

due to the clustering nature of the Dirichlet process, Dirichlet process mixture, (Brown 2008)  

another useful property which could be applied to the severe asthma datasets. 

To increase model fit Dirichlet processes and Dirichlet process mixtures are used to 

model variables where assumptions of parametric distributions are difficult or 
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impossible to prove or are simply false causing bad predictions (Dorazio, Mukherjee et 

al. 2008) or biased results (Kleinman and Ibrahim 1998).  This type of application 

includes random effect models such as in meta-analysis.  In the meta-analysis, the 

random effect variable which is usually assumed to be normally distributed can be 

given a Dirichlet process to capture possible heterogeneity between studies, (Chung, 

Dey et al. 2002) 2002}, (Kleinman and Ibrahim 1998). Blocked models similar to 

random effect variables, where the block effect is distributed semi-parametrically have 

also been used (Bush and Fleming 1996). 

Another case where a non-parametric distribution is useful and would possibly 

increase goodness of fit is the distribution of errors in a model these again are usually 

assumed to be normally distributed which is not always the case, this was used in an 

instrumental variable model (Conley, Hansen et al. 2008). 

The clustering nature of a Dirichlet process and Dirichlet process mixture is a useful 

property and can be used to infer subgroups of subjects this is useful for carrying out 

mixture modelling/clustering or machine learning.  Dirichlet process models are a 

better method then k-means clustering for determining mixtures and clustering 

multivariate data as the number of clusters does not have to be specified prior to 

applying the methods.  Dirichlet Process models have been used in bioinformatic 

applications such as gene expression analysis, protein sequence analysis (Brown 2008) 

and classification of multivariate data by prior specification such as genetic 

abnormalities {Hionoff, 2005}.  Machine learning applications include matching words 

with images where the words can be seen as variables and the images as clusters 

associated with a subset of the words (Barnard, Duygulu et al. 2003).     
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Examples of determining shapes of distributions from variables include determining 

latent variable distributions.  These are used in all areas of research where latent 

variables are used, examples include; determining latent fraud detection (Xing, Jordan 

et al. 2007), studying Psychological Cognitive Behaviour (Navarro, Griffiths et al. 2006), 

latent home owner insurance claim behaviour (Braun, Fader et al. 2006) and studying 

heterogeneous populations of animals (Dorazio, Mukherjee et al. 2008) to determine 

possible evidence of sub-groups. 

5.8 MCMC techniques for implementing a Dirichlet Process 

Normal mixture 
We can use MCMC techniques to fit a Dirichlet process (DP)/ Dirichlet process mixture 

(DPM).  First we split the parameters of the latent variable model above in to two 

groups those that are needed to implement the Dirichlet process mixture and those 

that are used for the other parametric parameters.  The parametric parameters not 

associated with the Dirichlet process mixture can be easily implemented by Gibbs 

sampling, the Dirichlet process mixture parameters however need to be treated 

slightly differently because of their infinite semi-parametric nature. The MCMC 

techniques to implement the semi-parametric process can be described as belonging 

to two sets of algorithms, Marginal or conditional, (Dey, Muller et al. 1998), Marginal 

algorithms integrate out parameters that are not needed in the analysis to reduce the 

parameter space thus speeding up the algorithm by making the MCMC algorithm less 

complicated.  The conditional algorithms use all the parameters iteratively to obtain 

estimates for all the parameter space.  These different methods are reviewed here to 

determine the most applicable to a Dirichlet process mixture latent variable model. 
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5.8.1 Marginal MCMC algorithms 

Sampling from the Dirichlet Process can be carried out in different ways.  The first 

MCMC algorithm was devised by (Escobar and West 1995).  This method used the 

polya urn scheme representation of the Dirichlet process mixture (Blackwell and 

Macqueen, 1973) to produce the joint posterior distribution of Yi’s.  The G distribution 

has been integrated out making the algorithm marginal, although this is an example of 

a marginal algorithm it is still conditional as the parameters are dependent on other 

parameters indicated by the symbol | .    |Y, ς, λ indicates that   is dependent on the 

other parameters Y, ς, λ as in equation 67. 

 

           ∏ (       )

 

   

     
    (    )   ∑  (     )   

     
 Equation 67 

 

 

Where f(Yi| I, ,ς ) is the probability distribution function of Y at  i and  (      ) is the 

simple distribution which is a point mass on  k.  G0 is the prior distribution for the 

location parameter of the Dirichlet process, α is the precision parameter,   denotes 

the hyper parameters on G0 and   represents all parametric parameters not involved in 

the Dirichlet process mixture.  This is similar to the Chinese restaurant example of the 

how the Dirichlet process mixture chooses the posterior points each point has a choice 

of a new point from G0 with probability α/(α+i-1) multiplied by the likelihood of the 

point Yi being in the probability distribution f(Yi| i, ,ς) and the probability of being in 

another individuals distribution i.e. f(Yi| j ,ς) multiplied by how many points are 

already in that distribution divided by(α+i-1) i.e. as in equation 68. 
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  (      ) (α  i   ) Equation 68 

 

Multiplied by by the likelihood of the individual Yi being in another individual 

probability distribution f(Yi| j, ,ς). 

By extending the formula to the limit α→  i.e. we always chose a new distribution we 

have equation 69. 

           ∏ (       )

 

   

    (    ) Equation 69 

 

This represents the base prior with no clustering effect where all  i come from the 

initial prior Go, but as alpha gets smaller the  i  are largely based on the data that make 

up the other   k’s that are close to the  i.  We can then apply the Gibbs sampler on the 

posterior distribution to form the posterior as in equation 70. 

 

                       
 

           (          )   ∑      (     )
   

 
Equation 70 

 

Where Glim is the base prior and 

 

     ∫ (       )     (    ) Equation 71 

 

      (       ) Equation 72 
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Where f(Yi|  k.ς) is the density of the marginal distribution of Yi, qo and qk are 

standardised to sum to 1. 

To carry out MCMC sampling we need to evaluate the complex integral qo this can be 

difficult if Go is non-conjugate which is the main drawback of the algorithm.   But in our 

case the priors are conjugate as we can use normally distributed variables and adapt 

these for binary variables so that the binary variable is being driven by an underlying 

normally distributed variable.  See chapter 5.10 later on for implementing the Escobar 

and west algorithm for the model.  The method also came under criticism because the 

marginal distribution in some cases maybe sampled inefficiently thus taking a longer 

time to converge (Dey, Muller et al. 1998).  

A new marginal method was introduced by (Bush and MacEachern 1996) this works by 

marginalising over both G and also  i To form a conditional distribution on a cluster 

membership variable S for each point rather than updating a mixture parameter, this 

also relies on conjugatecy although a newer method has been adapted to allow for 

non-conjugatecy (MacEachern and Muller 1998).  Although this method is newer and 

highly suitable for situations where a Dirichlet process is needed over real data in 

order to obtain cluster membership.  Problems occur when applying the Bush and 

MacEachern MCMC algorithm over a latent variable as by marginalising over the G and 

 i parameters we do not compute the actual Zi of the latent variable Z as these cannot 

be inferred because the prior parameter for them has been integrated out and we 

need these to visualise the latent variables and to use them to infer in the model using 

the non-Dirichlet part of the model.  
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The Escobar and West algorithm can actually cancel down to a smaller number of 

clusters as the number of clusters is always smaller than the number of points so we 

get I+1 unique clusters in the data leading to the new equation 73 

 

                       

          (         )   ∑     
    (     

 )

 

   

 
Equation 73 

 

Where the  k* are the cluster specific parameters and the nk are the number of points 

in cluster k for that iteration. 

An extra step can be added  to infer on the θk to determine their value depending on 

the prior and the data points the mixture contains this is instead of arbitrarily selecting 

random values from the prior (Bush and MacEachern 1996), this improves efficiency of 

the algorithm to match the Bush algorithm, without losing the mixture parameters.  

This can be calculated as in equation 74. 

  (  
           )   ∏   (     

   )

    

   (  
   ) Equation 74 

 

Where S is a membership indicator and Kk={I : Si =k} 

 Another marginal method is that of (Jain and Neal 2004) who created a Split-merge 

algorithm this method used Metropolis-Hastings sampling procedure to determine 

whether a group of data should be split up in to two distinct groups or merged with 

another group, although this tackles the issue of possibly getting stuck in low 

probability solutions in the MCMC marginal techniques it has several disadvantages it 

is more computational expensive, it only allows the splitting up into two groups or 
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merging of two groups and although it allows lots of points to be moved in one 

iteration this is at the expensive of not allowing only one point to move at a time 

which could be the case if mixtures overlap.  It also only out performs the Escobar 

Gibbs sampling method when there are two groups with similar parameters, with 

other cluster situations favouring the Gibbs sampling marginal methods above.      

5.8.2 Conditional MCMC algorithms 

These algorithms do not integrate out any parameters so inference can be obtained on 

all parameters if required.  Due to the infinite nature of Dirichlet process mixtures the 

conditional algorithms are tricky to compute and can be harder to implement as they 

can contain an infinite amount of parameters and mixtures.  The only algorithms found 

for full conditional techniques were a retrospective algorithm that assigns 

cluster/mixture membership first and then calculates a probability for cluster 

allocation (Papaspiliopoulos and Roberts 2008). 

This allows the clusters to be identifiable thus combating issues associated with label 

switching of mixtures; this is when one mixture swaps labels with another mixture 

even though they still contain the same individuals in them.  Even though there may be 

many mixtures and it also allows the probabilities of belonging to the infinite mixtures 

to be computed which are integrated out in the marginal methods.  This retrospective 

Dirichlet process however is more complicated to code and is slower to converge when 

compared to the marginal methods of (Escobar and West 1995) and (MacEachern and 

Muller 1998) above for this reason it was not investigated further see 

(Papaspiliopoulos and Roberts 2008) for further details of the code. 



117 
 

5.8.3 Approximate Dirichlet process mixtures 

The approximated Dirichlet process comes from the description of the Dirichlet 

process mixture being the infinite limit of a mixture model.  The infinite mixture 

model, Dirichlet mixture model, can be approximated by a finite mixture model with a 

large number of mixtures (Ishwaran and James 2002).   

Consider the Dirichlet process again as a discrete distribution over an infinite number 

of real points. The probabilities associated with these points can be constructed by a 

stick breaking process. Imagine a stick of unit length, we break a piece off the stick s1 

and assign it to be the probability p1 of the point x1, the remainder of the stick having 

magnitude (1-s1).  Then break another piece of the rest of the stick s2 to create the 

probability p2 belonging to x2, p2=(1-s1).s2 and so on, the last remaining part could be 

infinitely small, an infinite amount of points are used (Ishwaran and James 2002). 

 
  ∑   

 

   

 (  )    
Equation 75 

 
 

 

 
      Equation 76 

 

The approximate or truncated Dirichlet Process/Dirichlet Process Mixture model was 

suggested by (Ishwaran and Zarepour 2002) and has since been implemented in 

WinBUGS (Ohlssen, Sharples et al. 2007) for measured variables.  The truncated 

Dirichlet Process Mixture is similar to a full Dirichlet Process mixture except that the 

maximum number of distributions (N) in Go is fixed in advance.  This model can be 

thought of as limiting the number of breaks in the stick breaking process to N-1, the 

last part of the stick being equal to 1 minus the other parts of the stick, equation 79. 
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          ∏(    )

   

 Equation 79 
 

 

 
             (   ) Equation 80 

 

Although setting boundaries on the number of distributions is a limitation, the 

maximum number of groups allowed can be set to be much higher than is thought 

likely to occur.  This is not as limiting as the k-means or finite mixture models in which 

the actual number of clusters has to be specified.   

In fact as long as the number of mixtures fixed a prior N is larger than the actual 

number of mixtures needed so that the Dirichlet process mixture converges to, then 

the algorithm works in a very similar way then the full Dirichlet process.   The 

truncated/approximate Dirichlet process mixture can be used to compute a very good 

approximation to the full Dirichlet process mixture which is faster than marginal 

methods (Ishwaran and Zarepour 2000), can be used with or without conjugatecy 

(Ishwaran and Zarepour 2000) and has been adapted for the powerful Bayesian 

software WinBUGS (Ohlssen, Sharples et al. 2007).  This makes for a powerful 

argument to use truncated/approximate Dirichlet process mixtures but if possible it is 

better not to use approximations (Calla, 2008).  This method is also conditional so 
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inferences can be made on the probability associated with the clusters we leave the 

truncated Dirichlet process here but will come back to it for chapter 10 where we use 

the truncated model to fit non-conjugate data for an application of the Dirichlet 

process to a clinical trial concerning cancer survival data.  

5.9 Latent Dirichlet Process distributed variables  
Latent variable distributions are usually assumed to be either normally distributed 

(Usually standard normally distributed).  This was previously described in the chapter 

on factor analysis, chapter 4.4  but we now describe it in a Bayesian model notation 

with a latent variable Z rather than a factor F  for the j variables and i individuals. As 

outlined in equations 81-84. 

      (     
 
 ) 

Equation 81 
 

 

      (     
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Equation 82 
 

 

                  
Equation 83 
 

     (   ) 
Equation 84 
 

 

 

Where Yj are the j measured variables,  ij is the subject specific mean of the j variable, 

 2
j is the variance of variable Yj , β 0j and β1j are the coefficients of the j variable and Zi is 

the i score of the  standard normally distributed latent variable. 
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This could be an over simplification of the latent variables distribution as it is 

impossible to determine the distribution of a latent variable from the data (Lee, Lu et 

al. 2008).  Important variation information could be lost when the data does not 

conform to parametric distributions.  The latent variable model can be adapted to 

include a latent variable that is distributed with a Dirichlet process normal mixture.  

This is described below for the case of one latent variable and j measured variables in 

statistical model terms in equation 85-90 

      (     
 
 ) Equation 85 

                  Equation 86 

     (    ) Equation 87 

        (     )       (     )  Equation 88 

     (     ) Equation 89 

         (   ) Equation 90 

 

Where Yj are the j measured variables,  ij is the subject specific mean of the j variable, 

 2
j is the variance of variable Yj , β0j and β1j are the coefficients of the j variable, Z is a 

latent variable, α is the precision parameter of the Dirichlet process mixture with a 

gamma prior Gamma(a,b) , Go is the location parameter of the Dirichlet process, µi and 

Vi are the means and variances of the Zi with the µi and Vi having a composite normal 

inverse gamma prior with normal parameters µ0 and V0  and gamma parameters a0 and 

b0. 
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5.10 Conclusions on Implementing Dirichlet process normal 

mixtures over a latent variable 
We now look at implementation of the Dirichlet process normal mixture latent variable 

model. The Escobar and West algorithm was used to code the Dirichlet process over 

the latent variable in a latent variable model as this is perfect for our needs as it takes 

advantage of the conjugatecy without removing the values of the latent variable so 

these can be computed, displayed and hypothesis tested on if required.  It is also not 

an approximation and is quite fast to converge. 

As the full Dirichlet process was not able to be carried out in WinBUGS (Lunn 2000) 

due to its infinite mixture nature the model was coded in R language (R Development 

Core Team 2009) .  First the latent variable model was to be coded into R using only 

one normally distributed latent variable and four normally distributed variables. 

      (     
 
 ) Equation 91 

                  Equation 92 

     (   ) Equation 93 

      (     ) Equation 94 

 

      (     ) Equation 95 

           (         ) Equation 96 
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Where Yj are the j measured variables j=1 ,2, 3 and 4,  ij is the subject specific mean of 

the j variable , 1/ 2 is the precision of variable Yj , β0j and β1j are the coefficients of the j 

variable and Zi is the i score of the  standard normally distributed latent variable. 

The posterior distributions were derived by hand by multiplying the prior and 

likelihood distribution together and rearranging to find appropriate distributions.  

These were then coded for in R and then tested using simulated data to determine 

errors in the code and to correct for these.   

Once the normally distributed latent variable model was established and error free.  

The coding then turned towards the Dirichlet process Normal mixture code.  To start a 

simple version of the Dirichlet process normal mixture was coded only over one 

manifest variable and with no hyper parameters on the Dirichlet process parameters.  

Again this was checked for errors and limitations of the model.  The model coded for is 

described below. 

     (    ) Equation 97 

     (     ) Equation 98 

 

     (    ) Equation 99 

           (         ) Equation 100 

     Equation 101 
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This model worked well but it was possible that the priors on the Dirichlet parameters 

may be too constrained for some situations. So hyper priors were added to the mean 

parameter µi and the Dirichlet precision parameter α giving a new less restricted 

model.  In order to calculate the integrals involved in the MCMC sampling a trick was 

needed for the specification of the hyper parameters this was letting the variance of µi 

be related to the variance by a scalar τ which also has a prior associated with it , see 

equation 107 (Escobar and West 1995). 

     (    ) Equation 102 

     (     ) Equation 103 

     (     ) Equation 104 
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) Equation 105 

         (   ) Equation 106 

            (       ) Equation 107 

    (      ) Equation 108 

 

 

The reason the parameter τ was needed when adding hyper parameters to the Escobar 

and west MCMC techniques can be seen by investigating the MCMC algorithms for the 

parameters involved taking the Escobar and west model from before, where the value 
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 i in the Escobar and west algorithm represents the set of two parameters for a 

normal distribution mixture, the mean µi and the variance Vi of the Yi‘s . 
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    (     
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Equation 109 

   

     ∫ (        )     (    ) Equation 110 

      (        ) Equation 111 

 

 

To obtain qo we have to use the special prior formulation as stated in equation 112 and 

113 (Escobar and West 1995). 

     (     ) Equation 112 
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) Equation 113 

 

Where m is the mean of the prior of    , τ is the scale factor of the variance, s/2 is the 

shape of the gamma distribution for     and S/2 is the rate.  By using these formulae 

it allows the MCMC algorithms of parameters to cancel out to create common 

distributions which speed up the algorithm for the posterior probability for the 

parameters below see equations 114-116. 
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) Equation 114 



125 
 

 

 

          (
   

 
 
  

(    ) 

   
 

) 

 

Equation 115 
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Equation 116 

 

This allows the difficult qo integral to be computed thusly 

 

 

    ∫ (       )     (    ) 

 

Equation 117 

 

In our code f is normally distributed below as   equals the two parameters µ V and ς=0 

as at present as there are no other non Dirichlet process parameters in this model. 

  (        )   (   (     ) Equation 118 

 

Remembering previously  

      (     ) Equation 119 

     (     ) Equation 120 
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) Equation 121 

 

 

Stating the generic normal and Gaussian distribution formulae in equations 122 and 

123. 
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We obtain equations 124-129 
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  Equation 127 
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  Equation 129 

 

 

By rearranging the formula and solving the integral we obtain equation 130 
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Equation 130 

 

 

Where  
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)   (   )        Equation 131 
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 Equation 132 

 

 

 

So we can now carry out the iterative steps needed in the MCMC algorithms as the 

value of qo has been evaluated for a Dirichlet process with hyper-parameters over one 

measurable variable. 
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The two state model, latent variable model, equation 133-137 and the Dirichlet 

process mixture model, equation 138-142 were then combined together to create the 

latent variable Dirichlet process normal mixture model, see below.  

      (     
 
 ) Equation 133 

                  Equation 134 

      (     ) Equation 135 

      (     ) Equation 136 

           (         ) Equation 137 

     (    ) Equation 138 

     (     ) Equation 139 

     (     ) Equation 140 
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) Equation 141 

 
        (   ) 

 
Equation 142 

 

In this part of the code it was first discovered about the many equivalent solutions the 

latent variable model had this was due to the latent variable not having specified mean 

and variance, as previously in the latent variable model these were kept as a mean of 0 

and a standard deviation of 1.  Thus constraints were needed to find a unique solution 
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that was also equivalent to all the other solutions this was done by using the first 

variable as a factor anchor by keeping the latent variable equation parameters 

constant for this variable. This is equivalent to keeping β01=0 and β11=1.  This is often 

done in factor analysis and can be seen as a methodology in chapter 4.3.  This allowed 

a single solution to be found that was equivalent to the other solutions.  Although this 

solution was found the model took a long time, several days, to converge for this 

reason the Escobar and West algorithm was adapted to include the added parameter 

mixture conditioning step to speed up convergence, this was basically to determine 

the mean and variance of the individual infinite mixtures by conditioning on them so 

that there are not sampled randomly. 

Conditioning on the µk and Vk we obtain the new MCMC algorithms for sampling µk and 

Vk , equation 143 and 144, depending on the individual latent variable score. 
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Equation 144 

 

 

The MCMC sampling methodology can now be summarised thus  

Step 1 Choose starting values for all parameters, both parametric and Dirichlet 

process mixture 
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Step 2 Gibbs sample from the posterior equations of the non-Dirichlet process mixture 

parameters the ones from the latent variable part of the model. 

Step 3 Sample the values of the latent variable Zi using the non-Dirichlet process 

values and the Dirichlet values  i i.e. µi and Vi 

Step 4 Sample using the  i|{  k
* ,k≠i}, Zi ,ς, λ} for all of the n points i to   

Step 5  Condition on the  k, using cluster membership of the n points, i.e. find the new 

means and variance of the mixtures with the new points contained in them. 

Step 6   Condition on the hyper parameters of the Dirichlet process m, τ and α 

Step 5   Repeat from Step 2-6 with the new sampled values until convergence occurs. 

The Dirichlet process normal mixture latent variable model now worked well but could 

be very slow when programmed into R, taking days to converge.  This is due to the 

compiled nature of R and the sampling design of the Dirichlet process, updating each 

point in the latent variable separately for each iteration.  

As it was the Dirichlet process sampling part of the code that was taking the longest, 

the part containing the Dirichlet process mixture was taken out of the R language and 

adapted and programmed and compiled for use in R, but in C language as a C function, 

this was done to speed up the process as C language although basic is very fast.   

The C program containing the Dirichlet process part of the model was called by R and 

ran. The idea of reprogramming Dirichlet process in a faster language can also be 

found in the literature (Hoff 2005) and in the Dirichlet process R package, DPPackage 

(Jara, Garcia-Zattera et al. 2005).  The C function I created containing the Dirichlet part 
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of the code was then downloaded into R and ran in R; this reduced the time taken to 

converge to hours rather than days. This allowed the Dirichlet process mixture model 

to be implemented and allowed to converge in a realistic time frame.  Allowing results 

to be obtained overnight.  First the C language had to be understood and tested using 

simple examples and then functions were coded again using simple examples so that 

they could be called from R and after familiarity with C had been established. The 

Dirichlet sampling part was coding in C and made available in R for LINUX.  Allowing 

summary statistics to be obtained and simulations ran in a shorter time period.  To see 

the code for the C program, see appendix 1 and for the full R code for the Dirichlet 

process for 9 variables see appendix 2. 

5.11 Chapter closing statement 
We have described the theory on how to implement a Dirichlet process and we have 

used that theory to combine the Dirichlet process normal mixture model to a latent 

variable in a latent variable model.  This involved making suggestions on  which 

algorithm to use, how to code the model into available statistical programming 

software how to adapt the two models so they can be merged and how to speed up 

the algorithm in order to achieve results in a realistic time frame we now look to test 

the model more formally by carrying out simulations in the next two chapters, chapter 

6 and 7, a range of different clustering scenarios were used to determine if the model 

can detect these different cluster patterns and if we can determine whether the 

clusters are down to sampling or reflect real clusters
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Chapter 6. Simulation Using One 

Latent Variable and Differing 

Mixtures 

6.1 Chapter overview 
Different cluster/mixture patterns are simulated and the Dirichlet process normal 

mixture latent variable model tested to determine if these mixture patterns can be 

detected by the model and if correct cluster membership can be returned.  If the 

correct number of clusters are not returned then reasons are found in the simulation.  

The simulations are carried out for 200 individuals and then 500 individuals for 

continuous data to show consistency.   Binary variables were also simulated to 

determine if these could be used with the continuous data to determine the 

underlying latent structure.     

6.2 Introduction 
In order to check whether the models suggested in the Dirichlet process mixture 

chapter can detect the underlying structure of a latent variable with 6 normally 

distributed manifest variables data was simulated for 10 different latent variable 

distribution scenarios.  These same scenarios where then used again to simulate 4 

normally distributed variables and 2 binary ones.  To test the impact of combining 

binary variables with normally distributed variables in order to make 

recommendations relevant to the severe asthma data.   

There are infinitely many possible latent variable distribution scenarios so I chose the 

10 different scenarios that possibly explained the severe asthma data variation 

discovered from the literature (see chapter 2 on severe asthma phenotypes).  The 
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latent variable was often chosen to be represented by two mixtures, reflecting the 

most common sub-groups seen in the literature that of atopic or non- atopic, or 

eosinophilic/ non-eosinophilic.  The latent variable model was fitted with various 

differing examples of sub-groups, i.e. same size groups, one small group and one big 

group, and differing distances between the groups.   Each scenario was simulated 10 

times each with a different seed for the random sampling of the latent variable. The 

normal variables were calculated from the latent variables using constants to linear 

transform the latent variables into measured ones using a different standard deviation 

for each one.   

For binary variables linear transformations were again used to transform the latent 

variable into a standard distributed latent variable.  The standard latent variable was 

then used to simulate a binary variable with values of 1 if the distribution was larger 

than 0 and a binary value of 0 if the standard distributed value was less than 0.   

Once the Bayesian models were ran the models were tested for convergence this was 

done using the Heidelberger diagnostic criteria, (Heidelberger and Welch 1981) for 

testing non-convergence of parameters in a Bayesian MCMC model and by viewing the 

density and trace plots of parameters(Gelman, Carlin et al. 2004). Statistics were taken 

from the iterations to determine  

 If the mixtures could imply a multi modal distribution,  

This was derived from a frequentist hypothesis test for multi modality of static 

data called a diptest, to obtain a mean diptest for the latent variable,(Hartigan 

and Hartigan 1985).     

 Whether the correct number of clusters could be obtained from the model,   
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Using hierarchical clusters of the probability of not belonging in a mixture with 

another subject(Medvedovic and Sivaganesan 2002).  

 Whether the correct cluster membership could be obtained,  

This was defined by cutting the dendrogram obtained from the probability 

clustering above at the point of maximum difference between clusters(Everitt 

2001).  

6.3 Generating simulations 
Variables are generated using the following mixture methodology to create a latent 

variable distribution. 

          (      
 ) Equation 145 

 ∑   

 

   

     Equation 146 

 

Where M is the number of mixtures and    is the proportion of the k normal 

distribution in the latent variable Z, and N( k , k)is a normal distribution with mean  k 

and variance  k
2.        

Normal variables are generated using the latent variable above in the formula below. 

        (     
 ) Equation 147 

 

               Equation 148 
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Where, βoj, β1j,  j are held constant over the simulations and scenarios, Yij is a 

measured variable for subject i and variable j distributed by N( j , j) , a normal 

distribution with mean  j and standard deviation  j.  Values of βoj, β1j,  j  were chosen 

to represent a mixed variety of possible variables on differing scales and magnitudes. 

The binary variables were again generated from the latent variable this time truncating 

a normal variable derived from the latent variable to obtain either a 1 or a 0 using the 

formula below 
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Equation 151 

 

 
              

 
 

Equation 152 

 

Where βoj, β1j,  j are arbitrary selected integers held constant over the simulations and 

scenarios, YB
ij is a binary variable for subject i and variable j distributed by a truncated 

normal distribution N( i  ,1) a normal distribution with mean  j and standard deviation 

1, taking values   
  . For values of βoj, β1j,  j for each of the 6 variables for simulating 

the 6 normally distributed variables see table 6.3.1 and for the simulations using 4 

normally distributed variables and 2 binary variables see table 6.3.2 these were chosen 

to represent a mixed variety of possible variables on differing scales and magnitudes. 
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Table 6.3.1 Parameters chosen for simulations in latent variable model for 6 normally 

distributed variables 

Variable Number  Yj β0j β1j  j 

Y1 5 3 1 

Y2 2 1 3 

Y3 2 2 1 

Y4 25 2 2 

Y5 4 3 2 

Y6 100 1 2 

Table 6.3.2 Parameters chosen for simulations in latent variable model for 4 normally 

distributed variables and 2 Binary distributed variables 

Variable Number  Yj β0j β1j  j 

Y1 5 3 1 

Y2 2 1 3 

Y3 2 2 1 

Y4 25 2 2 

Y5 Binary 0 2 1 

Y6 Binary 2 1 1 

6.4 Dirichlet process normal mixture latent variable model 

(DPNMLVM) 
For Normal Variables 
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Equation 153 
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For Binary Variables 
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Equation 171 
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Equation 172 

 

Where Yij represents the i individual of the j normally distributed variables  ij represent 

the mean of the Yij and  j the variance of the Yij variables βoj, β1j parameters of the 

regression of  ij on latent variable Zi , D(α,G0) is the Dirichlet process mixture with 

precision parameter α and centring distribution  G0, where G0 is normally distributed 

with mean µi and variance Vi , Y
B

ij is the Binary variable of the i subject of the j binary 

variables which are distributed with a truncated Normal distribution Y*
ij. 

6.5 Priors 
We now state the priors used in modelling for all the simulations.  2 is the variance 

parameter which was given a non informative inverse gamma prior with shape 0.01 

and scale 0.01. The precision (1/ 2) is given a non-informative prior over small values 

below 1 relating to a large range of variances see figure 6.5.1 
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Equation 173 

 

Figure 6.5.1 Graph of prior distribution used for  2 parameter in the model 
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Both priors for the β0j and the β1j for j = 2,…6 were normally distributed with standard 

deviation of 100 and mean 0 to achieve a very non-informative prior, see figure 6.5.2.  

β01 and the β11 were kept constant for identification purposes mentioned previously in 

chapter 5.10.   
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Figure 6.5.2 Graph of prior distribution used for  2 parameter in the model 

 

The precision parameter α of the Dirichlet process is given a gamma prior that looks 

informative but is actually not.  
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Equation 175 

The prior has shape 1 and scale 2 these parameters cover values from 0 to 15 see table 

6.5.3 and favour numbers of subgroups corresponding to a possible range of 1 to 40 

mixtures, see graph 6.5.4 where n=200 using the approximation below {Escobar, 

1994}. 
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Equation 176 
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Figure 6.5.3 Graph of prior distribution used for α parameter in the model 

 

 

Figure 6.5.4 Graph of prior distribution used for k parameter in the model 
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For the prior for the variance of the mixture components the inverse of the variance 

was given a gamma prior with shape=0.01 and scale=0.01 again allowing an 

uninformative prior see figure 6.5.5  
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Equation 177 

 

Figure 6.5.5 Graph of prior distribution used for the V parameter in the model, the 

variance of a mixture. 

 

The m parameter is also given a non informative prior of mean 0 and standard 

deviation of 100 indicating no prior information on the parameter. 
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    (      ) 

Equation 178 
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Equation 179 

Figure 6.5.6 Graph of prior distribution used for the m parameter in the model the 

value of the mean of the mixture component 

 

 

The tau parameter is given a vague inverse gamma prior with shape=1 and scale=1 to 

indicate that the τ-1 is usually between 0 and 8 corresponding to a large range of values 

of τ. 
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Equation 180 
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Figure 6.5.7 Graph of prior distribution used for the τ-1 parameter in the model the 

value of the mean of the mixture component. 

 

 

6.6 Result determination 

6.6.1 Convergence 

Convergence was checked for the parameters using the Heidelberger and Welch’s 

convergence diagnostic (Heidelberger and Welch 1981) the function used is in R,  in 

the coda package ( Plummer,2006).  The Plummer version of the Heidelberger 

diagnostic returns a 1 for each time a parameter passes the convergence test and a 0 if 

a parameter fails.  This test was chosen as it returns a simple yes or no answer to 

convergence and this is needed when testing a large number of parameters in 

Bayesian models as examining trace and density plots for 220 parameters for 200 

subjects and 520 parameters for 500 subjects for each simulation and scenario would 
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The test uses the null hypothesis that the values from the posterior of a parameter 

come from a stable distribution.  It uses the Cramer-von-Mises statistic (T) to test the 

null hypothesis using the formula below.  
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Equation 181 

Where n is the number of iterations x1, x2, …, xn are draws from the posterior 

parameters distribution.  F is the distribution of the xi’s assumed to be normally 

distributed for each parameter.   

The value of T is checked against tabulated values to check for convergence, the larger 

the values of T the more likely we are to reject the null hypothesis. We use the value of 

T at a p-value of 0.05 as the cut off for accepting the null hypothesis. 

The result of convergence (YES/NO) of the parameters is expressed in each scenario 

simulation as a percentage of total parameters passing the test.  If any of the 

parameters have not passed the convergence test this does not mean that 

convergence has not been achieved but rather the iterations for that parameter have 

not passed the strict condition p ≥ 0.05 needed to pass the Heidelberger test of 

convergence.   

For the parameters that failed the Heidelberg test a visual inspection was carried out 

using trace and density plots to check that convergence had actually been achieved.  

Convergence was achieved using 200,000 iterations and a burn-in of 150,000 iterations 

for all simulations. 
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6.6.2 Multimodality 

A distribution can be made up of a number of mixtures when these are formed into 

the best fitting arrangement of mixtures and stated as a sub-grouping of the data we 

call these clusters.  A distribution can be made up of many mixtures but can be 

described best using only a few clusters.  Before determining the best number of 

clusters within a latent variable distribution we first need reasonable cause to assume 

there are any clusters. This is achieved by obtaining an indication of the clusters nature 

other than their size i.e. whether the clusters are separated or overlapping.  If they are 

overlapping or very close together the clusters found in the statistical model may not 

represent true sub-groups but rather non-normal distributions approximated by 

clusters/mixtures of normal distributions.  Typically these could be skewed normal 

distributions or heavy tailed normal distributions, see figure 6.6.2.1. 

Figure 6.6.2.1. The graphs below seem to suggest that a mixture of 2 normal 

distribtuions can look like a skew distribution without obvious sub-groups. 
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In these incidences it is hard to determine the difference between mixtures that are 

true sub-groups and mixtures that approximate non–normal distributions.  To clarify 

the nature of the mixtures a statistic derived from the dip test for multi-modality 

(Hartigan and Hartigan 1985) was obtained for the latent variable posterior 

distribution based on the iterations of the MCMC model.   

Hartigan’s dip test is predominantly used for hypothesis testing to determine if 

measured data is multi modal or unimodal.  The dip test can be defined as the 

maximum difference, over all the sample points of the data, between the empirical 

distribution function and the unimodal distribution function that minimizes that 

maximum difference.  This measure is best illustrated with graphs to demonstrate 

what the dip statistic actually measures. Using a distribution comprising of a normal 

distribution with mean 0 and standard deviation 1 we can see that the difference 

between the best fitting unimodal distribution and the empirical distribution is small, 

see figure 6.6.2.2. But for a multimodal distribution there is a bigger maximum 

difference between the best-fitting unimodal distribution and the empirical 

distribution, see fig 6.6.2.3. 
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Figure 6.6.2.2 for Z distribution consisting of 200 points generated from formula 

below, dip statistic=0.022 and is indicated in red, empirical distribution is in blue and 

the unimodal distribution is in black 
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Equation 182 

 

 

 

 

-3 -2 -1 0 1 2 3

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Z

P
ro

b
a

b
il
it
y

Empirical Cumalative Distribution

Fitted Unimodal Distribution

Dip



150 
 

Figure 6.6.2.3 For Z distribution consisting of 200 points generated from formula 

below, dip statistic=0.138 and is indicated in red, empirical distribution is in blue and 

unimodal distribution is in black. 
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Equation 183 
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distribution is multimodal, but for distributions that change for each iteration as is in a 

Bayesian MCMC technique we need to summarise all of the dip statistics for all the 

iterations and compare these with the table to see if we can make inferences.   

To summarise the many dip tests for all iterations, the mean dip statistic was tabulated 

along with the percentage of iterations that were found to be multimodal at p=0.05, 

dip statistic > 0.0185 for 200 subjects and dip statistic >0.0119 for 500 subjects (see 

Appendix 3 for dip statistic/p-value table).      

6.6.3 Determination of number of clusters in the mixture model  

The number of clusters was obtained by determining the probability of each point, Z i 

belonging in the same mixture as every other point Zj, j≠i.  This was obtained by 

comparing which mixture each latent variable point Zj was in for each iteration.  From 

this information an N by N matrix M was created displaying the probability of 

belonging with the other points.  For example if we had two well separated mixtures 

and had 10 subjects each with a value in the latent variable, Z1,. . . , Z10 .   Where Z1,. . . 

, Z5 came from the first mixture and Z6,. . . , Z10 came from the second mixture. We 

could obtain mixture membership vectors for each iteration, below is an example for 3 

iterations. 

Iteration 1 1,1,2,1,1,2,2,2,2,2 

Iteration 2 1,1,1,1,1,2,2,2,2,2 

Iteration 3 1,1,1,1,1,2,2,2,2,2 

Here iterations 2 and 3 have discovered the correct mixture membership where as 

iteration 3 has one point that has been misclassified.  Summarising the information in 
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these 3 iterations in a matrix M containing the probability of belonging in the same 

mixture as the other points, we obtain; 

       

             
             

                                     
             
             
             
             
             
             
             

 

The matrix of probabilities M is then transformed into a matrix, P of probabilities of 

not belonging in the same mixture as all the other points Zj , creating another N by N 

matrix.  By computing P= 1-M we obtain;   

     

             
             

                                    
             
             
             
             
             
             
             

 

This is then treated as a dissimilar measure between subjects, like Euclidean distance is 

used in classic clustering, but this new dissimilar metric is based on probabilities of 

belonging in the same group.  The dissimilar metric is used to hierarchical cluster the 

subjects.  The number of mixtures is determined by the number of mixtures with the 

largest distance in the dendrogram, see figure 6.6.3.1 obtained from hierarchical 

clustering of the probability of not belonging in a mixture with another subject.   
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Figure 6.6.3.1 Cluster memberships can be achieved by cutting the dendrogram at the 

level with the largest distance and achieving a strict partition of the data using the 

most probable number of clusters. For the example the largest distance between the 

clusters is found for two clusters; 1 cluster containing subjects 1,2,3,4 and 5 and 

cluster 2 containing subjects 6,7,8,9 and 10.  
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6.7 Simulations and Scenarios 
For the six normally distributed variables simulations and scenarios were carried out 

for both 200 subjects and 500 subjects.  For simulations with 2 binary variables and 4 

normally distributed variables for 200 subjects were used to determine if the statistical 

model could return the correct number of clusters. 

6.7.1For 6 normally distributed variables for 200 subjects 

6.7.1.1 Scenario 1 

The mixtures are far apart and are of equal size, ratio 1:1. 

This indicates a good separation between the two groups which should be easy for the 

model to detect and partition well.  The latent variable used to derive the inputs is 

simulated using two mixtures which are far apart and are in a 1:1 ratio.   

 

       (   )       (    ) 

 

Equation 184 

Figure 6.7.1.1 .1The distributions of the latent variable Z used as an input to derive the 

Y values in each of the 10 different seeded simulations 1-10. 
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Figure 6.7.1.1.2.  The graphs are the posterior distributions of the mean (zmen) of the 

values of the latent variable Z found using the Dirichlet Process Mixture Latent Variable 

Model for each of the 10 simulations 1-10. By comparing with the above Graphs for 

the actual Latent variable used to derive the data it can be seen that the model has 

returned the underlying structure of the Latent Variable Z correctly. 
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 Table 6.7.1.1.1 below summarises the statistics for each iteration, as can be seen all 

iterations of each simulation pass the diptest at p=0.05 and each simulation has a large 

mean dip statistic indicating a multimodal distribution.  The parameters converged 

well and the correct number of clusters was returned for all simulations with 100% 

correct cluster membership. 

Simulation 

Number 

Percentage 

of 

parameters 

passing 

Heidelberg 

and Welch 

diagnostic 

Number of 

mixtures 

found for 

maximum 

distance in 

dendrogram 

Percentage 

correct 

cluster 

membership    

Percentage of 

iterations 

accepting null 

Hypothesis of 

Diptest 

(Multimodality) 

at p=0.05 

Mean of 

dip 

statistic 

for all 

iterations 

1 100.00 2 100 100 0.1495 

2 99.55 2 100 100 0.1369 

3 100.00 2 100 100 0.1493 

4 100.00 2 100 100 0.1448 

5 100.00 2 100 100 0.1462 

6 99.55 2 100 100 0.1440 

7 100.00 2 100 100 0.1453 

8 99.55 2 100 100 0.1416 
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9 100.00 2 100 100 0.1457 

10 99.55 2 100 100 0.1525 

 

6.7.1.2 Scenario 2 

This simulation describes a good separation between the two groups which should be 

easy for the model to detect and partition well.  The latent variable used to derive the 

inputs is simulated using two mixtures which are far apart and are in a 2:1 ratio.   
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Equation 185 

 

Graph 6.7.1.2.1 below demonstrates the distribution of the latent variable Z used as an 

input to derive the Y values in each of the 10 simulations 1-10  
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The graph 6.7.1.2.2 below demonstrates the posterior distribution of the mean (zmen) 

of the values of the latent variable Z found using the Dirichlet Process Mixture Latent 

Variable Model for each of the 10 simulations 1-10. By comparing with the graphs for 

the actual Latent variable used to derive the data above we can see that the model has 

returned the underlying structure of the Latent Variable Z correctly. 

 

 

 

 

Table 6.7.1.2.1 below summarises the statistics for each iteration, as can be seen all 

iterations of each simulation pass the diptest at p=0.05 and each simulation has a 

smaller mean dip statistic then the previous scenario indicating that Z is a multimodal 
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converged well and the correct number of clusters was returned for all simulations 

with 100% correct cluster membership. 

 

Simulation 

Number 

Percentage 

of 

parameters 

passing 

Heidelberg 

and Welch 

diagnostic 

Number of 

mixtures 

found for 

maximum 

distance in 

dendrogram 

Percentage 

correct 

cluster 

membership    

Percentage of 

iterations 

accepting null 

Hypothesis of 

Diptest 

(Multimodality) 

at p=0.05 

Mean of 

dip 

statistic 

for all 

iterations 

1 100.00 2 100 100 0.0991 

2 99.09 2 100 100 0.1033 

3 98.64 2 100 100 0.0984 

4 100.00 2 100 100 0.0986 

5 100.00 2 100 100 0.1052 

6 100.00 2 100 100 0.1008 

7 98.64 2 100 100 0.1012 

8 99.55 2 100 100 0.0984 

9 99.10 2 100 100 0.0977 

10 100.00 2 100 100 0.1019 
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6.7.1.3 Scenario 3 

This simulation describes a good separation between the two groups which should be 

easy for the model to detect and partition well.  The latent variable used to derive the 

inputs is simulated using two mixtures which are far apart and are in a 9:1 ratio.  

 

       (   )       (    ) 

 

Equation 186 

 

Graph 6.7.1.3.1 below demonstrates the distribution of the latent variable Z used as an 

input to derive the Y values in each of the 10 simulations 1-10  
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Graph 6.7.1.3.2 below demonstrates the posterior distribution of the mean (zmen) of 

the values of the latent variable Z found using the Dirichlet Process Mixture Latent 

Variable Model for each of the 10 simulations 1-10. By comparing with the Graphs for 

the actual Latent variable used to derive the data above we can see that the model has 

returned the underlying structure of the Latent Variable Z correctly. 
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Table 6.7.1.3.1  below summarises the statistics for each iteration, as can be seen all 

iterations of each simulation pass the diptest at p=0.05 and each simulation has a 

smaller mean dip statistic then the last two scenario indicating a multimodal 

distribution but not to the degree of the first simulation.  The parameters converged 

well and the correct number of clusters was returned for all simulations with 100% 

correct cluster membership. 

Simulation 

Number 

Percentage 

of 

parameters 

passing 

Heidelberg 

and Welch 

diagnostic 

Number of 

mixtures 

found for 

maximum 

distance in 

dendrogram 

Percentage 

correct 

cluster 

membership    

Percentage of 

iterations 

accepting null 

Hypothesis of 

Diptest 

(Multimodality) 

at p=0.05 

Mean of 

dip 

statistic 

for all 

iterations 

1 99.09 2 100 100 0.0322 

2 100.00 2 100 100 0.0340 

3 99.55 2 100 100 0.0318 

4 99.09 2 100 100 0.0310 

5 98.18 2 100 100 0.0330 

6 100.00 2 100 100 0.0332 

7 99.55 2 100 100 0.0271 

8 99.09 2 100 100 0.0293 

9 100.00 2 100 100 0.0300 

10 99.55 2 100 100 0.0310 
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6.7.1.4 Scenario 4 

This simulation describes a small separation between the two groups which could be 

difficult for the model to detect and partition well.  The latent variable used to derive 

the inputs is created using two mixtures which are very close together and are in a 1:1 

ratio.  

 

       (   )       (   ) 

 

Equation 187 

Graph 6.7.1.4.1 below demonstrates the distribution of the latent variable Z used as an 

input to derive the Y values in each of the 10 simulations 1-10.  
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Graph 6.7.1.4.2 below demonstrates the posterior distribution of the mean (zmen) of 

the values of the latent variable Z found using the Dirichlet Process Mixture Latent 

(Dorazio 2009)see clear sub-groups as the mixtures overlap. 

Table 6.7.1.4.1 below summarises the statistics for each iteration, some of the 

iterations for simulations pass the diptest but others do not indicating that there is 

uncertainty whether the distribution is multimodal or not. Each simulation has a 

smaller mean dip statistic then the last three scenarios indicating less faith in the 

hypothesis of a multimodal distribution.  However the parameters converged well and 

the correct number of clusters was returned for all simulations and cluster 

membership was greater than 56.50 % of the iterations for all simulations. 
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Simulation 

Number 

Percentage 

of 

parameters 

passing 

Heidelberg 

and Welch 

diagnostic 

Number of 

mixtures 

found for 

maximum 

distance in 

dendrogram 

Percentage 

correct 

cluster 

membership    

Percentage of 

iterations 

accepting null 

Hypothesis of 

Diptest 

(Multimodality) 

at p=0.05 

Mean of 

dip 

statistic 

for all 

iterations 

1 99.55 2 56.50 65.05 0.0204 

2 99.10 2 83.50 66.62 0.0203 

3 99.55 2 69.50 49.96 0.0188 

4 99.09 2 78.00 67.25 0.0203 

5 99.09 2 83.50 82.74 0.0224 

6 99.55 2 80.50 85.12 0.0226 

7 98.18 2 81.50 98.04 0.0278 

8 98.18 2 85.50 70.36 0.0206 

9 100.00 2 79.50 92.35 0.0241 

10 99.55 2 74.00 70.91 0.0206 
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6.7.1.5. Scenario 5 

This simulation describes a slightly larger separation between the two groups then the 

last simulation which should be easier for the model to detect and partition then the 

last scenario.  The latent variable used to derive the inputs is created using two 

mixtures which are fairly close together and are in a 1:1 ratio. 

 
       (   )       (   ) 

 

Equation 188 

 

Graph 6.7.1.5.1 below demonstrates the distribution of the latent variable Z used as an 

input to derive the Y values in each of the 10 simulations 1-10  

 

Graph 6.7.1.5.2 below demonstrates the posterior distribution of the mean (zmen) of 

the values of the latent variable Z found using the Dirichlet Process Mixture Latent 

Variable Model for each of the 10 simulations 1-10. By comparing with the Graphs for 

the actual Latent variable used to derive the data above we can see that the model has 
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returned the underlying structure of the Latent Variable Z correctly, but it is still 

slightly difficult to see clear sub-groups as again the mixtures overlap in some of the 

simulations. 

 

 

 

Table 6.7.1.5.1 below summarises the statistics for each iteration,  all iterations of each 

simulation have a high percentage of passing the diptest at p=0.05 and each simulation 

had a larger mean dip statistic then the last scenario which had the groups mean closer 

together.  This indicated more faith in a multimodal distribution then the last scenario.  

The parameters converged well and the correct number of clusters was returned for all 

simulations with high correct cluster membership greater than 88% for all simulations. 
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Number of 

parameters 

passing 

Heidelberg 

and Welch 

diagnostic 

mixtures 

found for 

maximum 

distance in 

dendrogram 

correct 

cluster 

membership    

iterations 

accepting null 

Hypothesis of 

Diptest 

(Multimodality) 

at p=0.05 

dip 

statistic 

for all 

iterations 

1 99.55 2 92.50 96.66 0.0262 

2 99.09 2 91.00 97.58 0.0256 

3 99.09 2 93.50 85.63 0.0221 

4 100.00 2 91.50 94.04 0.0243 

5 99.55 2 88.00 99.94 0.0327 

6 99.09 2 89.50 99.97 0.0328 

7 97.73 2 90.50 99.99 0.0357 

8 99.55 2 90.00 97.34 0.0246 

9 99.55 2 92.00 100.00 0.0356 

10 99.09 2 95.50 92.29 0.0233 

 

6.7.1.6 Scenario 6 

This scenario describes a slightly larger separation between the two groups then the 

last scenario; it also has a larger standard deviation for one of the groups which could 

affect correct cluster membership as the two groups overlap.  The latent variable used 

to derive the inputs is created using two mixtures which are fairly close together and 

are in a 1:1 ratio.  
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Equation 189 

Graph 6.7.1.6.1 below demonstrates the distribution of the latent variable Z used as an 

input to derive the Y values in each of the 10 simulations 1-10  

 

Graph 6.7.1.6.2 below demonstrates the posterior distribution of the mean (zmen) of 

the values of the latent variable Z found using the Dirichlet Process Mixture Latent 

Variable Model for each of the 10 simulations 1-10. By comparing with the Graphs for 

the actual Latent variable used to derive the data above we can see that the model has 

returned the underlying structure of the Latent Variable Z correctly, but it is difficult to 

see clear sub-groups as again the mixtures overlap. 
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Table6.7.1.6.1 below summarises the statistics for each iteration.  The iterations of 

each simulation have a mixed percentage of passing the diptest at p=0.05 form 35%-

99.9% depending on the simulation seed used, each simulation had a smaller mean dip 

statistic then all the other previous scenarios.  This indicated less faith in a multimodal 

distribution then the previous simulations.  The parameters converged well and the 

correct number of clusters was returned for all simulations with high correct cluster 

membership, greater than 74% for all simulations. 
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Simulation 

Number 

Percentage 

of 

parameters 

passing 

Heidelberg 

and Welch 

diagnostic 

Number of 

mixtures 

found for 

maximum 

distance in 

dendrogram 

Percentage 

correct 

cluster 

membership    

Percentage of 

iterations 

accepting null 

Hypothesis of 

Diptest 

(Multimodality) 

at p=0.05 

Mean of 

dip 

statistic 

for all 

iterations 

1 99.55 2 84.00 35.75 0.0178 

2 99.55 2 74.50 89.44 0.0216 

3 99.55 2 76.00 67.54 0.0198 

4 100.00 2 81.00 59.60 0.0193 

5 99.09 2 85.00 34.01 0.0177 

6 100.00 2 81.00 78.24 0.0209 

7 100.00 2 82.00 99.99 0.0286 

8 100.00 2 82.50 46.24 0.0184 

9 100.00 2 83.00 69.62 0.0200 

10 99.54 2 77.00 90.02 0.0216 
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6.7.1.7 Scenario 7 

This scenario describes a large separation between three groups.  The latent variable 

used to derive the inputs is created using three mixtures which are fairly close 

together and are in a 1:1:1 ratio.  
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Equation 190 

Graph 6.7.1.7.1 below demonstrates the distribution of the latent variable Z used as an 

input to derive the Y values in each of the 10 simulations 1-10  
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Graph 6.7.1.7.2 below demonstrates the posterior distribution of the mean (zmen) of 

the values of the latent variable Z found using the Dirichlet Process Mixture Latent 

Variable Model for each of the 10 simulations 1-10. By comparing with the Graphs for 

the actual Latent variable used to derive the data above we can see that the model has 

returned the underlying structure of the Latent Variable Z correctly and the three sub-

groups are easily visible. 
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number of clusters was returned for all simulations with very high correct cluster 

membership of greater than 98% for all simulations. 

Simulation 

Number 

Percentage 

of 

parameters 

passing 

Heidelberg 

and Welch 

diagnostic 

Number of 

mixtures 

found for 

maximum 

distance in 

dendrogram 

Percentage 

correct 

cluster 

membership    

Percentage of 

iterations 

accepting null 

Hypothesis of 

Diptest 

(Multimodality) 

at p=0.05 

Mean of 

dip 

statistic 

for all 

iterations 

1 100.00 3 99.50 100 0.0739 

2 98.64 3 100.00 100 0.0620 

3 99.09 3 100.00 100 0.0771 

4 99.55 3 99.50 100 0.0676 

5 100.00 3 99.00 100 0.0773 

6 100.00 3 99.50 100 0.0706 

7 99.09 3 100.00 100 0.0718 

8 99.55 3 98.50 100 0.0675 

9 100.00 3 100.00 100 0.0730 

10 100.00 3 100.00 100 0.0714 
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6.7.1.8. Scenario 8 

This scenario describes small separations between five groups.  The latent variable 

used to derive the inputs is created using five mixtures which are fairly close together 

and are in a 1:2:4:2:1 ratio.  

       (   )       (   )       (   ) 

      (   )      (    ) 

 

Equation 191 

Graph 6.7.1.8.1 below demonstrates the distribution of the latent variable Z used as an 

input to derive the Y values in each of the 10 simulations 1-10  
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Graph 6.7.1.8.2 below demonstrates the posterior distribution of the mean (zmen) of 

the values of the latent variable Z found using the Dirichlet Process Mixture Latent 

Variable Model for each of the 10 simulations 1-10. By comparing with the Graphs for 

the actual Latent variable used to derive the data above we can see that the model has 

returned the underlying structure of the Latent Variable Z correctly although the five 

mixtures are difficult to see in both the original Z and the posterior Z.  Two groups are 

roughly visible however. 
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correct number of clusters was not returned however.  Two clusters were returned 

that indicate the two modes visible in some of the posterior graphs. 

Simulation 

Number 

Percentage 

of 

parameters 

passing 

Heidelberg 

and Welch 

diagnostic 

Number of 

mixtures 

found for 

maximum 

distance in 

dendrogram 

Percentage 

correct 

cluster 

membership    

Percentage of 

iterations 

accepting null 

Hypothesis of 

Diptest 

(Multimodality) 

at p=0.05 

Mean of 

dip 

statistic 

for all 

iterations 

1 99.55 2 NA 22.06 0.0169 

2 99.090 2 NA 99.99 0.0285 

3 100.00 2 NA 99.13 0.0238 

4 100.00 2 NA 99.92 0.0263 

5 98.18 2 NA 99.98 0.0276 

6 100.00 2 NA 94.61 0.0223 

7 100.00 2 NA 19.69 0.0167 

8 99.09 2 NA 74.88 0.0202 

9 99.09 2 NA 99.98 0.0266 

10 99.55 2 NA 99.98 0.0265 
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6.7.1.9 Scenario 9 

This scenario describes a non-normal distribution with no mixtures.  The latent variable 

used to derive the inputs is created using a t distribution with 4 degrees of freedom.  

 

        ( ) 

 

Equation 192 

Graph 6.7.1.9.1 below demonstrates the distribution of the latent variable Z used as an 

input to derive the Y values in each of the 10 simulations 1-10  

 

Graph 6.7.1.9.2 below demonstrates the posterior distribution of the mean (zmen) of 
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returned the underlying structure of the Latent Variable Z correctly. 
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 Table 6.7.1.9.1 below summarises the statistics for each simulation. Most simulations 

do not pass the diptest at p=0.05, with percentage of iterations passing between 29-

62%.  This is demonstrated by the simulations having a very small mean dip statistics 

and their posterior distributions looking unimodal.  The parameters converged well but 

the correct number of clusters was not returned however as the cluster algorithm used 

cannot return a value for 1. 
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Simulation 

Number 

Percentage 

of 

parameters 

passing 

Heidelberg 

and Welch 

diagnostic 

Number of 

mixtures 

found for 

maximum 

distance in 

dendrogram 

Percentage 

correct 

cluster 

membership    

Percentage of 

iterations 

accepting null 

Hypothesis of 

Diptest 

(Multimodality) 

at p=0.05 

Mean of 

dip 

statistic 

for all 

iterations 

1 100.00 2 NA 29.56 0.0172 

2 98.64 2 NA 55.49 0.0194 

3 100.00 2 NA 40.98 0.0182 

4 100.00 2 NA 44.96 0.0185 

5 100.00 2 NA 47.55 0.0188 

6 100.00 2 NA 61.40 0.0200 

7 100.00 2 NA 34.85 0.0177 

8 100.00 2 NA 35.80 0.0178 

9 99.09 2 NA 42.28 0.0183 

10 99.55 2 NA 61.75 0.0201 
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6.7.1.10 Scenario 10 

This scenario describes a normal distribution with no mixtures.  The latent variable 

used to derive the inputs is created using a standard normal distribution as in Classical 

latent variable models.  

 

     (    ) 

 

Equation 193 

Graph 6.7.1.10.1 below demonstrates the distribution of the latent variable Z used as 

an input to derive the Y values in each of the 10 simulations 1-10  
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Graph 6.7.1.10.2 below demonstrates the posterior distribution of the mean (zmen) of 

the values of the latent variable Z found using the Dirichlet Process Mixture Latent 

Variable Model for each of the 10 simulations 1-10. By comparing with the Graphs for 

the actual Latent variable used to derive the data above we can see that the model has 

returned the underlying structure of the Latent Variable Z correctly. 

 

 

 

 

 

Table 6.7.1.10.1 below summarises the statistics for each simulation. Most simulations 

do not pass the diptest at p=0.05, with percentage of iterations passing between 49-

80%.  This is demonstrated by the two simulations having very small mean dip 

statistics and their posterior distributions looking unimodal.  The parameters 

converged well but the correct number of clusters was not returned however as the 

cluster algorithm used cannot return a value for 1. 
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Simulation 

Number 

Percentage 

of 

parameters 

passing 

Heidelberg 

and Welch 

diagnostic 

Number of 

mixtures 

found for 

maximum 

distance in 

dendrogram 

Percentage 

correct 

cluster 

membership    

Percentage of 

iterations 

accepting null 

Hypothesis of 

Diptest 

(Multimodality) 

at p=0.05 

Mean of 

dip 

statistic 

for all 

iterations 

1 99.09 2 NA 52.63 0.0192 

2 100.00 2 NA 80.03 0.0224 

3 100.00 2 NA 74.60 0.0214 

4 99.09 2 NA 64.34 0.0204 

5 99.55 2 NA 49.73 0.0190 

6 98.64 2 NA 58.12 0.0197 

7 100.00 2 NA 52.83 0.0192 

8 100.00 2 NA 59.91 0.0198 

9 99.54 2 NA 68.43 0.0208 

10 60.45 2 NA 75.44 0.0212 
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Table 6.7.1.10.2 indicates the mean dip statistic needed to establish unimodality/ 

multimodality for data with 200 individuals over 10 scenarios. 

Mean dip statistic for 

simulations (N=200) 

Annotation Corresponding p-levels on 

table 

≤0.019 Uni-modal ≤0.05 

0.019 to 0.023 Uni-Modal or Overlapping 

Clusters with Low 

Percentage of Correct 

Cluster Membership 

0.05 to 0.3 

≥0.023 Clusters detected with 

High Percentage of Correct 

Cluster Membership 

≥0.3 

 

 

 

 

 

 

 

6.7.2. For 6 normally distributed variables and 500 subjects 

The 10 scenarios were then simulated ten times using different seeds again but this 

time for 500 subjects, to determine if the statistical modelling was consistent when 

increasing the number of subjects, the results for these scenarios can be found in 

appendix4 .       
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Mean dip statistic for 

simulations (N=500) 

Annotation Corresponding p-levels on 

table 

0.012 Uni-modal ≤0.05 

0.012 to 0.013 Uni-modal or Overlapping 

Clusters with Low 

Percentage of Correct 

Cluster Membership 

0.05 to 0.1 

≥0.012 Clusters detected with 

High Percentage of Correct 

Cluster Membership 

≥0.1 

 

6.7.3. For 4 Normal variables and 2 Binary variables 

The data simulated describe the same scenarios for the 6 normally distributed 

variables but in this case the latent variable scenarios are used to simulate 4 normal 

variables and 2 binary variables using 200 subjects.  The results of these simulations 

can be found in appendix 5   

6.8 Discussion 
For most scenarios that originally contained mixtures the model returned the correct 

number of mixtures accompanied with a high percentage of correct cluster 

membership for the clusters. The percentage of correct cluster membership did not 

seem to be effected by the size or proportions of the mixtures.  However distance 

between the means of the mixtures and the size of the standard deviation of the 

mixtures did affect the percentage of correct cluster membership and mixture 

detection.  As expected mixtures that were far apart had a higher percentage of 
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correct cluster membership then clusters close together, this is due to overlapping of 

the mixtures as for some points in mixtures that overlap it is impossible to say which 

mixture they belong to.   

Wrong numbers of clusters can be returned when two mixtures overlap and especially 

when the mixtures overlap such that they appear to look like 1 distribution when 

plotted.  This is found in scenario 8 where we have 5 mixtures and only two were 

detected.  Although this looks like a failure of the model on inspection it was found 

that original mixtures 1, 2 and 5 had been merged into 1 cluster and mixtures 3 and 4 

were merged into the other cluster as mixtures 1, 2 and 5 were too close together, as 

were 3 and 4 and it was impossible to separate them just by their original distribution 

so the distribution could equally be simulated by the two clusters found.  This is 

reflected in the simulations low mean dip statistic and the plots of both original 

distribution and posterior.   

It is worth noting that most of the mixtures that were correctly found related to a 

higher mean dip statistic rejecting the null hypothesis of a unimodal distribution.  For 

scenarios 9 and 10 where the latent variable distribution is unimodal the model 

wrongly described them as containing 2 mixtures, this is due to the nature of the 

hierarchical clustering algorithm that determines the best number of clusters not equal 

to 1.  For these two scenarios the mean dip statistic was always below 0.023 (for 200 

subjects) and 0.012 (for 500 subjects).  

For scenario 8 containing the mixtures that overlapped with each other the dip statistic 

for each simulation was also small with all simulations having dip statistic below 0.029 

(for 200 subjects) and 0.024 (for 500 subjects).  For scenarios 1-5 the mean dip statistic 
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is always above 0.018 (for 200 subjects) and 0.011 (for 500 subjects).  If a cut off 

around the 0.023 (for 200 subjects) or 0.013 (for 500 subjects) mark is used we can 

begin to accept the cluster number and the cluster membership derived from that 

distribution, if it is below 0.018 (for 200 subjects) and below 0.012 (for 500 subjects) 

however we can differently say the distribution is uni-modal. 

Binary data variables mixed with normal distributed variables performed well and 

returned similar results to the normally distributed scenarios in all cases.  However it is 

unclear whether the latent variable structure was heavily dependent on the 4 

remaining normal variables rather than the 2 binary ones.  Meaning that the binary 

variables might add little information as it is impossible to determine the underling 

structure from such binary data alone.  Also the coefficients that were associated with 

the binary variables often failed the Heidelberg and Welch diagnostic and on 

inspection seemed bimodal suggesting that these were not converged or that they 

were non-normal.  

6.9 Conclusion 
The model can accurately determine the latent variable distribution shape that is 

created from mixtures of normal distributions (multi-modal) or created from non-

normal/ normal distributions (uni-modal).  Latent variable distribution shapes are 

detected using all normal variables and a mixture of normal and binary variables.  

Although using binary data may not be detrimental in the model as the latent variables 

are derived from the other normally distributed variables only.    

If the latent variable contains mixtures the model can obtain the number of mixtures in 

the latent variable distribution for distributions with a mean dip statistic above 0.023 
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for 200 subjects or 0.012 for 500 subject’s simulations with high dip statistics also have 

a higher correct cluster membership.  If the mean dip statistic for a latent variable 

distribution is below 0.023 then the number of clusters could be an approximation and 

the distribution is more likely to be of a uni-modal shape which could be made up of 

clusters or not, if the dip statistic is below 0.018 it is generally a uni-modal distribution.     

These values can be used to determine the significant values to use on the table for 

other data with different amounts of subjects greater than 200.  If the data have a 

mean dip statistic less than the table value at p=0.30, then it is unclear whether the 

data is uni-modal or not we can conclude that the cluster membership should be 

ignored.  However if the data have a mean dip statistic greater than the one at p=0.30 

then clusters are likely to be present and the cluster membership is likely to be high.  It 

is worth noting that this represents an upper limit and the actual limit might be smaller 

especially when data has a large amount of subjects. If we take the traditional 

frequentist cut off at p=0.05 then we can definitely say if a distribution is uni-modal or 

not.  

For the severe asthma data it is important to use normally distributed variables where 

possible as the binary variables would add little or no information to the underlying 

distribution.  If clusters are detected in the severe asthma data their mean dip statistic 

should also be checked to act as a measure of how much we believe in the number of 

clusters obtained and the cluster membership for subjects. 
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6.10 Closing Chapter 
Scenarios of different cluster types were simulated and tested to determine if the 

Dirichlet process normal latent variable model could determine these clusters and 

return correct cluster membership.  The model proved useful in determining the 

number of clusters and cluster membership for data that contained clusters and was 

multi-modal.  The model also highlighted the need to check distributions for 

multimodality as data that only contained one group i.e. no clusters, returned two 

clusters indicating an approximation of the distribution. 
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Chapter 7. Simulation for Correlated 

and Uncorrelated Outcomes 

7.1 Chapter overview 
Here simulations were carried out to determine if the Dirichlet process normal mixture 

latent variable model, DPNMLVM could be carried out over multiple independent 

latent variables using a number of measured variables that had differing correlations 

with each other.  5 scenarios were tested with differing mixtures over the differing 

number of latent variables.  Solutions were found that were comparable to the original 

solutions indicating that the mixtures applied to one latent variable in chapter 6 could 

be applied for multiple latent variables. 

7.2 Introduction 
Having tested the Dirichlet process using correlated variables we now test that the 

model works when the dataset contains subsets of variables that are correlated within 

the subset but are not correlated with another subset, i.e. independent groups of 

variables.  In this case we have several variables all being correlated to a number of 

latent variables or factors. The model needs to determine the clustering on each factor 

in a similar way to using correlated outcomes and we also need a method to 

determine the best number of factors to use in our model.  There are infinitely many 

possible scenarios to test involving different factors and different mixtures on factors 

to show a range of these 9 continuous variables were simulated for 5 different 

scenarios.  Each scenario uses a differing number of factors that are needed to be 

determined along with differing mixtures that are on each independent factor.   
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The scenarios are carried out to determine if the Dirichlet Process Normal Mixture 

Latent Variable Model, DPNMLVM can detect the variation seen in the scenarios.  

Once the models were ran and convergence obtained each factor was treated 

independently and the number of mixtures obtained for each factor was determined 

along with the dip statistic for each factor distribution, In a similar way to the 

simulations carried out previously for only one latent variable in chapter 6. 

Statistics were taken from the iterations to determine  

 If the mixtures could imply a multi modal distribution for each factor,  

This was derived from a frequentist hypothesis test for multi modality of static 

data called the dip test; a mean dip test for the latent variable was obtained by 

taking the mean of all the iterations.     

 Whether the correct number of mixtures could be obtained from the model for 

each factor,   

Using hierarchical clusters of the probability of not belonging in a group with 

any other subject.  

 Whether the correct cluster membership could be obtained for each factor,  

This was defined by cutting the dendrogram obtained from the probability 

clustering above at the point of maximum difference between clusters.  

7.3 Generating simulations 
For latent variables or factors that aren’t correlated i.e. those found in scenarios 2, 4, 5 

variables are generated using the following mixture methodology to create a latent 

variable distribution. 
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Equation 195 

Where M is the number of mixtures and     is the proportion of the k normal 

distribution in the l latent variable Zl, and  (        ) is a normal distribution with 

mean     and standard deviation   .        

The nine continuous variables are generated using the l latent variables above in the 

formula below. 
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Equation 196 

 

               

 

Equation 197 

Where      ,    are selected integers held constant over the simulations and 

scenarios,    is a measured variable for subject i and variable j distributed by(      )  a 

normal distribution with mean    and standard deviation   .  Values of         ,    

were chosen to represent a mixed variety of possible variables on differing scales and 

magnitudes.  These are specified explicitly for each of the 9 variables for each of the 

scenarios; see tables 7.7.1, 7.8.1, 7.9.1, 7.10.1, 7.11.1 for scenarios 1, 2, 3, 4, 5 

respectively. 
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For correlated variables the variables were derived in a similar way but this time the 

latent variables were derived from multivariate normal’s using covariances. 

7.4 Latent variable model used 
For Normal Variables and subjects i for i=1, 2...N 
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Equation 198 

 

 

                               

 

Equation 199 
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Equation 200 
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Equation 201 

 

Where     represents the i individual of the j normally distributed variables     

represent the mean of the    ,   
  is the variance of the     variable,    ,     

parameters of the regression of     on latent variables     ,   (      )is the Dirichlet 
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process mixture over latent variable l with precision parameter    and centring 

distribution     , where     is normally distributed with mean     and variance    . 

7.5 Priors, result determination and convergence 
Priors were kept the same as in the previous chapter on correlated variables for all 

latent variables and parameters, see chapter 6.  Results for the number of mixtures, 

multimodality statistics and the percentage of correct membership were determined 

in the same way as in the previous chapter on correlated outcomes.  Convergence was 

established as a percentage and reported as such in the same way as the correlated 

outcome simulations.  

 

7.6 Estimation of the number of factors 
To determine the correct number of factors in a Bayesian factor analysis is difficult as 

the amount of variance accounted for each factor cannot be computed in the same 

way as a classic factor analysis.  Usual model criteria, such as DIC do not work as these 

tend to decrease with the number of factors added resulting in a large number of 

factors and an over-fitted model.  Recent papers have used reversible jump MCMC 

(Viroli,C, 2009) to jump between models with different numbers of factors but these 

add an extra layer of complicity to an already long-running and complicated model.   

For these reasons the factors were determined a prior by using a normally distributed 

factor analysis model and applying the Kaiser criteria to determine the number of 

factors to use.  The Kaiser criterion determines the number of factors by only keeping 

the ones that have an eigenvalue greater than 1.  Once these are chosen the same 

number of factors are applied in the DPNMLM with the variable with the highest factor 

loading acting as an anchor for that factor.  
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7.7 Scenarios 

7.7.1 Scenario 1 two correlated factors  

The two factors used to create the underlying distribution are both correlated with 

covariance matrix =
    

    
. The first factor is composed of two mixtures in a 1:4 ratio 

with the first bigger mixture having mean -5 and the second smaller mixture having 

mean 5 both with variance equal to 1, see graph 7.1.1.1, while the second factor is 

composed of a single normal distribution with mean 20 and variance 1, see graph 

7.1.1.4.  The parameters used to simulate the variables are chosen in table 7.7.1.1.  

The variables were first used in a classic factor analysis to determine the number of 

factors with eigenvalue greater than 1, see table 7.1.1.2 and to determine factor 

anchors highlighted in yellow, see table 7.1.1.3.  Graph 7.1.1.2 and 7.1.1.5 are the 

posterior distribution of factors 1 and 2 respectively and graph 7.1.13 and 7.1.1.6 are 

the dendrograms associated with factors 1 and 2 respectively.  The dip statistics and 

percentage membership can be seen in table 7.1.1.4.  
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Table 7.7.1.1: Parameters chosen for simulations in latent variable model 

Variable Number  

Yj 

β0 β1 β2   

Y1 5 3 0 1 

Y2 2 0 2 3 

Y3 2 0 1 1 

Y4 25 2 0 2 

Y5 4 0 3 2 

Y6 100 1 0 2 

Y7 75 3 0 2 

Y8 2 1 0 3 

Y9 10 0 1 1 
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Table 7.7.1.2 normally distributed classic factor analysis eigenvalues  

Compon

ent 

Initial Eigenvalues 

Total % of 

Variance 

Cumulative 

% 

1 3.823 42.482 42.482 

2 2.767 30.741 73.223 

3 .930 10.334 83.557 

4 .687 7.634 91.191 

5 .449 4.987 96.177 

6 .154 1.716 97.894 

7 .094 1.047 98.941 

8 .058 .646 99.587 

9 .037 .413 100.000 
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Table 7.7.1.3  Factor loading with variable factor anchors (highlighted) to be used in 

the Dirichlet Process Normal Mixture latent variable model 

 Factors 

1 2 

y1 .069 .915 

y4 .071 .760 

y3 .976 -.068 

y2 .961 -.037 

y5 .983 -.055 

y6 .059 .673 

y7 .034 .887 

y8 .149 .314 

y9 .972 -.080 
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Graph 7.7.1.1 Original distribution of factor 1 

 

Graph 7.7.1.2 Posterior to show distribution of factor 1 
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Graph 7.7.1.3 Dendrogram of factor 1 

 

Graph 7.7.1.4 Original distribution of factor 2 
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Graph 7.7.1.5 Posterior to show distribution of factor 2 

 

 

Graph 7.7.1.6 Dendrogram of factor 2 
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Table 7.7.1.4 Statistics taken from factor 1 and 2  

Factor 

Number 

Number of 

mixtures 

found for 

maximum 

distance in 

dendrogram 

Percentage 

correct 

cluster 

membership    

Percentage of 

iterations 

accepting null 

Hypothesis of 

Diptest 

(Multimodality) 

at p=0.05 

Mean of dip 

statistic for 

all iterations 

1 2 100 100.00% 0.03957 

2 2 NA 66.94% 0.02063 

 

7.7.2 Scenario 2, three correlated factors 

The three factors used to create the underlying distribution are all correlated with 

covariance matrix =  
       

       
       

 . The first factor is composed of a single normal 

distribution with mean 10 and variance 1, see graph 7.7.2.1  while the second factor is 

comprised of two mixtures in a 1:4 ratio with the first bigger mixture having mean -5 

and the second smaller mixture having mean 5 both with variance equal to 1, see 

graph 7.7.2.4. The third factor is also comprised of two mixtures in a 1:4 ratio with the 

smaller mixture having a mean of -125 and the larger mixture having a mean of -20 

both with variance equal to 1, see graph 7.7.2.7. The parameters used to simulate the 

variables are chosen in table 5.  The variables were first used in a classic factor analysis 

to determine the number of factors with eigenvalue greater than 1, see table 7.7.2.2 

and to determine factor anchors highlighted in yellow, see table 7.7.2.3.  Graph 7.7.2.2 
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and 7.7.2.5 are the posterior distribution of factors 1 and 2 respectively and graph 

7.7.2.3 and 7.7.2.6 are the dendrograms associated with factors 1 and 2 respectively.  

The dip statistics and percentage membership can be seen in table 7.7.2.4.  

Table 7.7.2.1 Parameters chosen for simulations in latent variable model 

Variable 

Number  Yj 

β0 β1 β2 β3   

Y1 5 0 0 1 1 

Y2 2 0 2 0 3 

Y3 2 0 0 2 1 

Y4 25 2 0 0 2 

Y5 4 0 3 0 2 

Y6 100 1 0 0 2 

Y7 75 3 0 0 2 

Y8 2 0 0 3 3 

Y9 10 0 1 0 1 
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Table 7.7.2.2 normally distributed classic factor analysis eigenvalues  

Compon

ent 

Initial Eigenvalues 

Total % of 

Variance 

Cumulative 

% 

1 5.759 63.984 63.984 

2 1.844 20.494 84.479 

3 .747 8.303 92.782 

4 .402 4.470 97.252 

5 .138 1.534 98.786 

6 .072 .800 99.585 

7 .036 .406 99.991 

8 .001 .006 99.997 

9 .000 .003 100.000 
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Table 7.7.2.3 Factor loading with variable factor anchors (highlighted) to be used in 

Dirichlet Normal mixture process model 

 Factors 

1 2 

y1 .989 .010 

y4 -.947 .047 

y3 .990 .013 

y2 .023 .826 

y5 -.979 .057 

y6 .141 .639 

y7 .034 .862 

y8 .989 .009 

y9 -.972 .072 
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Graph 7.7.2.1 Original distribution of factor 1 

 

Graph 7.7.2.2 Posterior to show distribution of factor 1 
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Graph 7.7.2.3 Dendrogram of factor 1 

 

 

Graph 7.7.2.4 Original distribution of factor 2 
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Graph 7.7.2.5 Posterior to show distribution of factor 2 

 

 

Graph 7.7.2.6 Dendrogram of factor 2 
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Graph 7.7.2.7 Original distribution of factor 3 
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accepting null 
Hypothesis of 
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Mean of dip 
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1  NA 100% 0.0690 

2 2 NA 100% 0.0805 

7.7.3 Scenario 3 two uncorrelated factor 

The two factors used to create the underlying distribution were both uncorrelated. The 

first factor is composed of a mixture of two normal distributions in a ratio of 1:2 with 

mean 5 and variance 1 for the smaller mixture and mean=0 and variance =1 for the 
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to simulate the variables are as chosen in table 7.7.3.1.  The variables were first used in 

a classic factor analysis to determine the number of factors with eigenvalue greater 

than 1, see table 7.7.3.2 and to determine factor anchors highlighted in yellow, see 

table 7.7.3.3.  Graph 7.7.3.2 and 7.7.3.5 are the posterior distribution of factors 1 and 2 

respectively and graphs 7.7.3.3  and 7.7.3.4 are the dendrograms associated with 

factors 1 and 2 respectively.  The dip statistics and percentage cluster membership can 

be seen in table 7.7.3.4.  

Table  7.7.3.1 Parameters chosen for simulations in latent variable model 

Variable Number  

Yj 

β0 β1 β2   

Y1 5 3 0 1 

Y2 2 0 2 3 

Y3 2 0 1 1 

Y4 25 2 0 2 

Y5 4 0 3 2 

Y6 100 1 0 2 

Y7 75 3 0 2 

Y8 2 1 0 3 

Y9 10 0 1 1 
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7.7.3.2 Normally distributed classic factor analysis eigenvalues  

Compon

ent 

Initial Eigenvalues 

Total % of 

Variance 

Cumulative 

% 

1 5.427 60.297 60.297 

2 2.268 25.205 85.502 

3 .495 5.502 91.005 

4 .363 4.035 95.040 

5 .184 2.049 97.088 

6 .089 .984 98.073 

7 .087 .963 99.036 

8 .051 .567 99.603 

9 .036 .397 100.000 
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Table 7.7.3.3 Factor loading with variable factor anchors (highlighted) to be used in 

Dirichlet Normal mixture process model 

 Factors 

1 2 

y1 .845 .475 

y4 .757 -.536 

y3 .765 -.578 

y2 .820 .466 

y5 .806 -.555 

y6 .696 .448 

y7 .849 .448 

y8 .648 .410 

y9 .779 -.573 
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Graph 7.7.3.1 Original distribution of factor 1 

 

 

 

 

 

 

 

Graph 7.7.3.2 Posterior to show distribution of factor 1 
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Graph 7.7.3.3 Dendrogram of factor 1 
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Graph 7.7.3.4 Original distribution of factor 2 

 

Graph 7.7.3.5 Posterior to show distribution of factor 2 
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Graph 7.7.3.6 Dendrogram of factor 2 

 

Table 7.7.3.4 The mixture and density distribution statistics from each factor 

Factor 

Number 

Number of 

mixtures 

found for 

maximum 

distance in 

dendrogram 

Percentage 

correct 

cluster 

membership    

Percentage of 

iterations 

accepting null 

Hypothesis of 

Diptest 

(Multimodality) 

at p=0.05 

Mean of dip 

statistic for 

all iterations 

1 2 90% 100% 0.03084 

2 2 100% 100% 0.02536 
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7.7.4 Scenario 4 Three uncorrelated factors 

The three factors used to create the underlying distribution are uncorrelated, the first 

factor is normally distribution with mean 10 and variance = 2, see graph 7.7.4.1.  The 

second factor is composed of three mixtures in a 1:1:1 ratio with the mixtures having 

means of 5, 0 and -5 each with unit variances, see graph 7.7.4.4, the third factor had a 

distribution consisting of two mixtures with a 1:9 split with the smaller mixture having 

mean 10 and variance 1 and the larger mixture having mean 0 and standard deviation 

2, see graph 7.7.4.7.  The parameters used to simulate the variables are chosen in 

table 7.7.4.1.  The variables were first used in a classic factor analysis to determine the 

number of factors with eigenvalue greater than 1, see table 7.7.4.2 and to determine 

factor anchors highlighted in yellow, see table 7.7.4.3.  Graphs 7.7.4.2, 7.7.4.5 and 

7.7.4.8 are the posterior distribution for factors 1, 2 and 3 respectively and graphs 

7.7.4.3, 7.7.4.6 and 7.7.4.9 are the dendrograms associated with factors 1, 2 and 3 

respectively.  The dip statistics and percentage membership can be seen in table 

7.7.4.5.  
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Table 7.7.4.1 Parameters chosen for simulations in latent variable model 

Variable 

Number  Yj 

β0 β1 β2 Β3   

Y1 5 0 0 1 1 

Y2 2 0 2 0 3 

Y3 2 0 0 2 1 

Y4 25 2 0 0 2 

Y5 4 0 3 0 2 

Y6 100 1 0 0 2 

Y7 75 3 0 0 2 

Y8 2 0 0 3 3 

Y9 10 0 1 0 1 
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Table 7.7.4.2 Normally distributed classic factor analysis eigenvalues  

Compon

ent 

Initial Eigenvalues 

Total % of 

Variance 

Cumulative 

% 

1 4.053 45.030 45.030 

2 2.470 27.445 72.475 

3 1.809 20.099 92.574 

4 .185 2.051 94.625 

5 .156 1.737 96.362 

6 .126 1.396 97.758 

7 .108 1.201 98.959 

8 .059 .650 99.609 

9 .035 .391 100.000 
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Table 7.7.4.3 Factor loading with variable factor anchors (highlighted) to be used in 

Dirichlet Normal mixture process model 

 Factors 

1 2 3 

y1 .449 .830 .048 

y4 .459 .845 .031 

y3 .780 -.221 -.547 

y2 .722 -.198 -.583 

y5 .783 -.216 -.544 

y6 .760 -.297 .538 

y7 .737 -.289 .537 

y8 .764 -.268 .539 

y9 .441 .830 .048 
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Graph 7.7.4.1 Original distribution of factor 1 

 

Graph 7.7.4.2 Posterior to show distribution of factor 1 
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Graph 7.7.4.3 Dendrogram of factor 1 

 

Graph 7.7.4.4 Original distribution of factor 2 
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Graph 7.7.4.5 Posterior to show distribution of factor 2 

 

 

Graph 7.7.4.6 Dendrogram of factor 2 
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Graph 7.7.4.7 Original distribution of factor 3 

 

Graph 7.7.4.8 Posterior to show distribution of factor 3 
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Graph 7.7.4.9 Dendrogram of factor 3 

 

Table 7.7.4.4 The mixture and density distribution statistics from each factor 

Factor 

Number 

Number of 

mixtures 

found for 

maximum 

distance in 

dendrogram 

Percentage 

correct 

cluster 

membership    

Percentage of 

iterations 

accepting null 

Hypothesis of 

Diptest 

(Multimodality) 

at p=0.05 

Mean of dip 

statistic for 

all iterations 

1 2 NA 52.11% 0.01922 

2 2 NA 51.07% 0.01892 

3 3 100% 90.26% 0.02202 
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7.7.5 Scenario 5: One factor only 

The factor used to create the underlying distribution is composed  of two mixtures in a 

1:1 ratio with the first mixture having mean 0 and the second mixture have mean 10 

both with variance equal to 1, see graph 7.7.5.1.  The parameters used to simulate the 

variables are chosen in table 7.7.5.1.  The variables were first used in a classic factor 

analysis to determine the number of factors with eigenvalue greater then 1, see table 

7.7.5.2, and to determine factor anchors highlighted in yellow, see table 7.7.5.3.  

Graph 7.7.5.2 is the posterior distribution for the factor graph 7.7.5.3 is the 

dendrogram associated with factor 1.  The dip statistics and percentage membership 

can be seen in table 7.7.5.4.  

Table 7.7.5.1 Parameters chosen for simulations in latent variable model 

Variable Number  

Yj 

β0   

Y1 5 1 

Y2 2 3 

Y3 2 1 

Y4 25 2 

Y5 4 2 

Y6 100 2 

Y7 75 2 

Y8 2 3 

Y9 10 1 
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Table 7.7.5.2 Normally distributed classic factor analysis eigenvalues  

Compon

ent 

Initial Eigenvalues 

Total % of 

Variance 

Cumulative 

% 

1 8.440 93.774 93.774 

2 .231 2.567 96.341 

3 .135 1.497 97.838 

4 .097 1.073 98.911 

5 .036 .401 99.312 

6 .030 .330 99.642 

7 .017 .184 99.827 

8 .010 .106 99.933 

9 .006 .067 100.000 
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Table 7.7.5.3 Factor loading with variable factor anchors (highlighted) to be used in 

Dirichlet Normal mixture process model 

 Factors 

1 

y1 .995 

y4 .890 

y3 .993 

y2 .982 

y5 .990 

y6 .950 

y7 .981 

y8 .989 

y9 .940 
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Graph 7.7.5.1  Original distribution of factor 1 

 

Graph 7.7.5.2  Posterior to show distribution of factor 1 
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Graph  7.7.5.3 Dendrogram of factor 1 

 

 

Table 7.7.5.4 The mixture and density distribution statistics from the factor 

Factor 

Number 

Number of 

mixtures 

found for 

maximum 

distance in 

dendrogram 

Percentage 

correct 

cluster 

membership    

Percentage of 

iterations 

accepting null 

Hypothesis of 

Diptest 

(Multimodality) 

at p=0.05 

Mean of dip 

statistic for 

all iterations 

1 2 100% 100% 0.1495 
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7.8 Conclusion 
The Dirichlet process normal mixture latent variable model works well for determining 

mixtures over factors, when the factor number have been pre-specified a prior.  The 

correct number of mixtures is returned for well defined distributions that have visible 

sub-groups and good percentage membership is also returned.  For poorer defined 

sub-groups as is the case in scenario 4 factor 2 the mixtures returned reflects the fact 

that there is possibly many ways of sampling a distribution and the model returns the 

simplest explanation that being 2 groups instead of three.  Even when these two 

groups were returned the cluster membership resembled that of the three mixtures 

with the first posterior subgroup being comprised solely of group 1 from the original 

distribution and posterior group 2 containing a mixture of the original group 2 and 3.  

The mean dip statistic gave a good indication if sub-groups were present with the dip 

statistics being greater than p=0.05 cut off of 0.01897, although it failed to detect uni-

modal distributions as these were just over the p=0.05 cut off.  

Deciding the number of factors a prior using a classic factor analysis is a good way of 

determining the correct number of factors to use in a Dirichlet process normal mixture 

latent variable model.  Only one of the scenarios returned a different number of 

factors then the ones simulated this was the case in scenario three.  In scenario three, 

3 correlated factors were simulated but the classical analysis only detected two this is 

due to the factors being slightly correlated in the simulation, but if independent factors 

are needed then we can obtain these and it is an acceptable assumption to only model 

independent factors for these complex models (Viroli, C, 2009). 
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7.9 Chapter closing statement  
The methodology tested here for the Dirichlet Process Normal Mixture Latent variable 

Models (DPNMLVM) for multiple factors and correlated/uncorrelated outcomes can 

now be used to determine mixtures over factors for real data and return correct 

results for independent factors over a varying amount of mixture distributions.  This 

methodology will now be applied to two severe asthma datasets in the next two 

chapters, chapter 8, analysis of the Haldar dataset and chapter 9, analysis of the 

Brompton blood dataset.
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Chapter 8. Analysis on Brompton 

Blood Dataset 

8.1 Chapter outline 
The Brompton blood dataset is now analysed in this chapter using the Dirichlet process 

normal mixture latent variable model, DPNMLVM  4 factors are found with clusters 

over those factors but the clusters were not significantly multimodal suggesting that 

the distributions are not genuine clusters but make up a larger non normal 

distribution.  The specificity analysis is carried out and this indicated that the prior on 

alpha especially when α=1 did make a difference to the clustering possible due to the 

small amount of data, leading to the conclusion that the dataset is underpowered to 

detect significant clusters.   

8.2 Introduction to the dataset  
The Brompton Blood dataset was originally created for genotyping a small number of 

severe asthma patients and contains several phenotypic outcomes that were taken 

from patients attending the severe asthma clinic at the Glenfield Hospital, Leicester.  

The dataset contains demographics and asthma related biomarkers for 157 patients, as 

are summarised in chapter 3.  The final dataset used was a subset containing 120 

patients with no missing data. 

8.3 Variables 
The outcomes used in the Dirichlet Process Normal Mixture Latent Variable Model 

(DPNMLVM) are Total blood IgE which describes a blood count of IgE antibodies a high 

amount of these are related to an atopic response, Body Mass Index (BMI), JACS score 

an asthma symptom questionnaire, sputum inflammation cell counts logs for 
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neutrophils and eosinophils.  Also there were four variables relating to spirometry 

these were Pre and post bronchodilator Forced Expired Volume in one second (FEV1)/ 

predicted FEV1 which measures air flow obstruction allowing for gender, age and 

height differences and Forced Volume Capacity, (FVC) a measure of the volume of the 

lungs.  These variables were chosen to be similar to the previous analysis to see if 

similar clusters could be obtained, in addition the spirometry measurements were 

added as these are usually used in nearly all analyses of asthma and respiratory 

disease as they are comparable with breathlessness, the main symptom of asthma.   

8.4 Classic factor analysis 
Factor analysis was carried out on the variables under the usual assumption of 

normally distributed latent/factor variables to determine the number of factors and to 

determine which variables would be factor anchors in the DPNMLVM as in the Haldar 

dataset.  Four factors were found to be sufficient using the Kaiser criteria to determine 

the number of factors.  The four factors explained around 77% of the variance seen in 

the dataset. See Table 8.3.1.  The four factor anchors to be used in the DPNMLVM 

were chosen as in the previous Haldar factor analysis by selecting the variables that 

had the highest factor loading on a factor, See table 8.3.2. 
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Table 8.4.1: The results of the standard factor analysis of the 9 variables from the 

Brompton severe asthma dataset. A four factor solution satisfies the Kaiser criteria and 

allows for 77% of the variance. 

No of Factors Eigenvalues Cumulative % of Variance 

1 3.043 33.813 

2 1.493 50.407 

3 1.281 64.645 

4 1.116 77.049 

5 0.870 86.717 

6 0.602 93.403 

7 0.435 98.235 

8 0.131 99.689 

9 0.028 100.000 

 

 

 

 

 

Table 8.4.2: Shows the factor loading for the four normal factor model, the highest 

factor loading for each variable has been highlighted and used for annotation of the 

factors.  The highest loading variable for each factor was used as a factor anchor for 

that factor in the Dirichlet Process Normal Mixture Latent variable Model (DPNMLVM). 
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Variables 1 2 3 4 

Total IgE, kU/l .031 -.029 .631 -.082 

BMI -.164 .087 -.320 .811 

JACS symptom 

score 

Mean score 

-.556 .212 .253 .472 

Pre FVC,  L .840 -.016 .420 .214 

Pre FEV1/ 

predicted, % 

.830 .248 -.331 -.053 

Post FVC,L .797 .008 .465 .253 

Post FEV1/ 

Predicted,% 

.730 .379 -.401 -.063 

Sputum 

Neutrophil 

count, 

Log % 

-.365 .685 .211 -.322 

Log of Sputum 

Eosinophil 

count, 

Log % 

.106 -.875 -.096 -.098 

 

The factors can be described by the variables that they correlate to.  Thus factor 1 

describes a spirometry or airflow obstruction component to the dataset.  Factor 2 

describes an eosinophilic inflammation factor.  Factor 3 describes IgE levels and thus 
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atopic status and factor 4 describes the role of BMI in the dataset.  JACS Symptoms 

were negatively associated with spirometry measurements. 

 The anchors for each factor to be used in the Dirichlet Process Normal Mixture Latent 

variable Model are the highest factor loading variable for each factor these are pre 

bronchodilator FVC, log eosinophil cell count, Total IgE count and BMI.  This is the 

rationale for using four factors with the four factor anchors in the DPNMLM. 

8.5 Dirichlet Process Normal Mixture Latent Variable Model 
 

For variables j  for j=1,2,…9 

For subjects i for i=1,2...120 

For latent variable l for 1,2...4 

 

     (      
 )              

        

Equation 206 

 

                    

 

Equation 207 

      (      ) 
Equation 208 

     (       ) 
Equation 209 

 

Where     represents the i individual of the j normally distributed variables     

represent the mean of the    ,   
  is the variance of the     variable,    ,     
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parameters of the regression of     on latent variables     ,   (      )is the Dirichlet 

process mixture over latent variable l with precision parameter     and centring 

distribution     , where     is normally distributed with mean     and variance    . 

    ,    ,         all equal 0 and    ,    ,         all equal 1 as these are the 

parameters associated with the factor anchors and kept constant for identity 

purposes, where 

    =Pre Bronchodilator FVC 

    =Log eosinophil cell count 

    =Total IgE blood count 

    =BMI 

    =Post Bronchodilator FVC 

    =Pre Bronchodilator FEV1/Predicted 

    = Post Bronchodilator FEV1/Predicted 

    =JACS symptom score 

    =Neutrophil cell count   

8.6 Priors and Convergence 
Priors were kept the same as the previous simulations, with a sensitivity analysis 

carried out on the alpha parameter of the model.  The model parameters were tested 

for convergence using the Heidelberg test after 425,000 iterations for a further 75,000 

after and the percentage of parameter that passed this test were 96.43%.  The 

parameters that did not pass this test were plotted and checked for convergence.  
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8.7 Results 

8.7.1 Variable analysis on factors  

The correlation for each variable against the four factors of the DPNMLVM can be seen 

in table 8.6.1 this is similar to the factor loading table from table 8.4.2 for the normally 

distributed factor analysis, suggesting that the factors and the analysis is similar.   

Factor 1 corresponded to spirometry and lung volume, factor 2 to eosinophilic 

inflammation, factor 3 to airflow obstruction, symptoms and neutrophilic 

inflammation and IgE and factor 4 to BMI.  With the factors established we now turn 

our attention to the clusters in each factor. 
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Table 8.7.1 describes the correlation of the variables with the factors in the Dirichlet 

Process Normal Mixture Latent variable Model 

Variables 1 2 3 4 

Total. IgE 

Count, kU/l 

0.098 -0.004 -0.109 -0.075 

BMI, kg/m2 -0.169 -0.068 -0.10 0.992 

JACS 

symptom 

score, mean 

score 

-0.293 -0.199 -0.353 0.159 

Pre FVC, L 0.992 -0.034 -0.091 -0.013 

Pre FEV1/ 

Predicted, % 

0.545 -0.124 0.804 0.048 

Post FVC, L 0.977 -0.058 -0.161 0.005 

Post FEV1/ 

Predicted, % 

0.422 -0.206 0.761 0.059 

Log Sputum 

Neutrophil 

cell count, 

Log % 

-0.152 -0.108 -0.451 -0.218 

Log 

Eosinophil 

cell count, 

Log % 

0.004 0.995 0.027 -0.067 
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8.7.2 Factor 1 Lung Volume 

The first factor had cluster dendrogram as in graph8.7.2.1 suggesting the factor is 

separated into two or possibly three clusters.  Inspection of the density distribution for 

factor 1, See graph 8.7.2.2, suggests that the distribution is not multi-modal indicating 

that the 2 groups found represent a bigger non normal distribution.  This is  further 

backed up by the distribution passing  the dip test of multi modality as we reject the 

null hypothesis of the distribution being multimodal with dip statistic being non-

significant for this factor density distribution, dip statistic = 0.02370, (p=0.02).  The 

clusters found are significant for the variables log of eosinophil count, LABA (use of 

long acting beta-agonist, and exacerbations, which are described as number of visits to 

hospital see table 8.7.2.1  The data in factor 1 is split into cluster 1 which describes a 

lower eosinophilic group with a higher percentage of users of LABA who experience 

fewer exacerbations and cluster 2 which indicates a high eosinophilic group who have 

more exacerbations and do not use LABA, see table 8.7.2.1, but these clusters are not 

multimodal so suggest that they are not true clusters. 
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Graph 8.7.2.1 Cluster dendrogram for factor 1 (Lung Volume) using the probability of 

being in a cluster with another patient to separate patients. 

 

Graph 8.7.2.2 Histogram of the density of latent factor 1 (Lung Volume) 
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Table 8.7.2.1 The significant variables for the clusters found in factor 1 (Lung Volume) 

 Cluster 1 Cluster 2 p-value 

N 117 3  

Sputum Eosinophilia†, 

% 

8.91 (15.332) 38.28 (2.086) 0.008 

Log Eosinophil count†, 

log % 

0.34 (0.829) 1.58 (0.0236) 0.033 

LABA(percentage=YES) 

ς 

95.76% 50.00% 0.062 

Exacerbations in last 

12 months†,  

3 (1-5) 0 (0-0) 0.048 

† p-value derived from Mann-Whitney test, ς p-value derived from chi squared test 

8.7.3 Factor 2 Eosinophilic Inflammation 

Two clusters were detected on the second factor as can be seen in the cluster 

dendrogram, see graph 8.7.3.1.  On inspection of the density distribution for factor 2, 

see graph 8.7.3.2, it is possible to see the multimodal nature of the distribution, mean 

dip statistic=0.02675 (p=0.10) and possibly 2 or 3 groups, so if using p=0.05 as a cut off 

factor 2 is multi modal.  The clusters seen here were similar to that of factor one being 

significant for log eosinophil count suggesting a sub-group with large amount of 

eosinophilia and a group with normal eosinophilia see table 8.7.3.1   
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Graph 8.7.3.1 Cluster dendrogram for factor 2 (eosinophilic inflammation) using the 

probability of being in a cluster with another patient to separate patients. 

 

Graph 8.7.3.2 Histogram of the density of latent factor 2 (eosinophilic inflammation) 
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Table 8.7.3.1 The significant variables for the clusters found in factor 2 (eosinophilic 

inflammation) 

 Cluster 1 Cluster 2 p-value 

N 117 3  

Sputum 

Eosinophilia†, % 

8.93  (15.40) 27.43  (18.84) 0.043 

Log Eosinophil 

count†, log % 

0.337  (0.831) 1.308  (0.475) 0.039 

† p-value derived from Mann-Whitney test 

8.7.4 Factor 3: Air Flow Obstruction 

The third factor had cluster dendrogram as in graph 8.7.4.1 this implied the data was 

separated into two groups again.  Inspection of the density distribution of factor 3, see 

graph 8.7.4.2, suggests that the distribution is multimodal but this is confirmed by the 

mean as it is significant for this factors distribution, mean dip statistic =  0.02543 

(p=0.05), but only just .  The two clusters obtained are significant for FEV1 % predicted 

both pre and post, cell counts for neutrophils and JAC symptom score.  The clusters are 

also significant for gender height and weight.  Cluster 1 describes an air flow 

obstructed group with larger amounts of symptoms and a larger amount of 

neutrophilic inflammation who are are taller and heavier, and are predominantly male 

they also had a low FEV1/FVC ratio then group 2 which consisted of patients with good 

spirometry measurements less neutrophilic inflammation and less symptoms who 

were shorter and weighed less.   
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Graph 8.7.4.1 Cluster dendrogram for factor 3 (air flow obstruction) using the 

probability of being in a cluster with another patient to separate patients. 

 

Graph 8.7.4.2 Histogram of the Density of latent factor 3 (Air flow Obstruction) 
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Table 8.7.4.1 the significant variables for the clusters found for factor 3 (air flow 

obstruction) 

 Cluster 1 Cluster 2 p-value 

N 91 29  

JACS†, mean score 2.84  (1.14) 2.07 (1.47) 0.005 

Pre FEV1/ 

Predicted*, % 

52.29  (16.64) 81.58  (16.92) <0.001 

Post FEV1/ 

Predcited*,% 

57.48 (17.36) 84.94 (18.45) <0.001 

Pre FEV1/FVC*, % 0.55(0.11) 0.72(0.10) <0.001 

Post FEV1/FVC*, % 0.56(0.11) 0.74 (0.08) <0.001 

Pre FEV1*, Ls-1 1.83(0.80) 2.31(0.72) 0.002 

Post FEV1*,Ls-1 1.99 (0.84) 2.45 (0.72) 0.005 

Sp Neutrophilic*, % 67.11  (26.05) 55.33  (26.28) 0.037 

Log Neutrophilic †, 

log % 

1.77  (0.2544) 1.66 (0.3330) 0.036 

Sp Macrophages†, log 

% 

18.16 (19.08) 31.33(38.20) <0.077 

Gender (percentage 

male) ς 

75.86% 27.47% <0.001 

Height (cm)* 173(8.65) 164(8.97) <0.001 

Weight (kg)* 91.91 (21.73) 82.52(20.51) 0.036 
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*p-value derived from one way ANOVA, ς p-value derived from chi squared test, † p-

value derived from Mann-Whitney test 

 

8.7.4 Factor 4 BMI 

The fourth factor has 2 prominent clusters in its cluster dendrogram, see graph 8.7.4.1, 

this implied the data was separated into two groups, but inspection of the density 

distribution of factor 4,see graph 8.7.4.2, suggests that these two groups  overlap and 

are not as clearly visible as seen for other groupings, and it is difficult to determine if  

the two groups make up a non-normal continuous distribution that can be 

approximated using two normally distributed mixtures or if the two mixtures make up  

two distinct sub-groups.  The mean dip statistic= 0.02434 (p=0.05) implies a uni-modal 

distribution with only 33.53 % of iterations passing the dip test, confirming that the 

two mixtures are not distinct groups.  In this dataset the two clusters split up into a 

younger mainly female obese group which have a lower IgE but higher FEV1/FVC ratio 

and an older non-obese group that had a higher IgE count who are more likely to be 

male and have a smaller FEV1/FVC ratio, see table 7, but it worth noting that the 

clusters seen here are not true clusters but come from an artificially split non-normal 

distribution. 
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Graph 8.7.4.1 Cluster dendrogram for factor 4 (BMI) using the probability of being in a 

cluster with another patient to separate patients. 

 

Graph 8.7.4.2 Histogram of the density of latent factor 4 (BMI) 

 



250 
 

Table 8.7.4.1 The significant variables for the clusters found in factor 4 (BMI) 

 Cluster 1 Cluster 2 p-value 

N 42 78  

BMI*, kg/m2 37.96 (6.08) 26.65  (3.62) <0.001 

Total IgE*, kU/l 270 (477) 340 (518) 0.022 

Gender 

Percentage male ς 

26.19% 46.15% 0.030 

Weight (kg)* 103.54(19.92) 74.69 (13.51) <0.001 

Age (yrs)* 47.56 (10.96) 52.31 (13.26) 0.05 

Pre   FEV1/FVC*, % 0.71 (0.11) 0.66 (0.13) 0.029 

Post FEV1/FVC*, % 81.26 (19.68) 76.71 (22.56) 0.023 

*p-value derived from one way ANOVA, ς p-value derived from chi squared test 

8.8 Specificity analysis on alpha parameter 
The original analysis was carried out using the gamma distribution as a prior for the 

parameter α with shape=1 and scale =2, see graph 8.7.4.1, as in the simulations.  The α 

parameter is usually dictated by the data when using large datasets.  In order to check 

the prior on the α parameters effect two other priors were used for the analysis 

keeping all other parameters constant.  The two new priors used were giving the α 

parameter a strict single value α=1 which is common in Dirichlet Process and Dirichlet 

process mixture analysis.  The other prior used in the specificity analysis was a gamma 

distribution that favoured production of more mixtures this had a gamma distribution 

with shape=10, scale=1, see graph 8.7.4.2.  
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Graph 8.7.4.1: Original prior distribution of alpha parameter used in previous analysis 

and simulation. Gamma distribution with shape=1,scale=2. 
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Graph 8.7.4.2: New prior distribution for alpha parameter used in sensitivity analysis.  

Gamma distribution with shape=10 and scale =1.  

 

8.8.1 Results from sensitivity analysis 

The percentage of parameters that had converged was 18.61% for the model with the 

alpha parameter equalling 1 and 70.11% using the model with the alpha parameter 

having a gamma prior with shape=10 and scale=1 suggesting that the alpha prior was 

possible to strict for the smaller dataset. 

The same number of clusters, 2 was returned for each factor using each prior.  Similar 

densities were found for all factors across priors, see Appendix 7.  Cluster membership 

was similar for each factor  over the priors, see Appendix 7  for cluster dendrograms 

under prior alpha=1 and for the new gamma prior shape=10 scale=1. 

Cluster membership correlation was carried out using the Kappa test for ordinal 

correlation to quantify the amount of reliability in cluster membership, see table 
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8.7.5.2 The original prior and new prior with gamma shape=1 and scale=10 had 

significant similar cluster memberships for factors 1 to 3, but for factor 4 (BMI) 

however they differed, but still produced an obese cluster and a non obese cluster.  

The alpha=1 prior seems to show the most difference then the other two priors, it is 

similar to the mixtures for factors 2 and 3 but was different for factors 1 and 4.  This 

suggests that the priors are possibly having an impact on the clustering due to the 

smaller amount of data.  

Table 8.7.5.1 Effect of prior specification on alpha for number of clusters found. 

Membership Factor 1 Factor 2 Factor 3 Factor 4 

Original  2 2 2 2 

Alpha 2 2 2 2 

New 2 2 2 2 

 

Table 8.7.5.2 Best Kappa correlation of cluster membership for each comparison of 

priors 

Membership Factor 1 Factor 2 Factor 3 Factor 4 

Original VS 

Alpha 

-0.026 

(p=0.744) 

1.00 

(p<0.001) 

0.809 

(p<0.001) 

0.057 

(p=0.479) 

Original VS 

New  

1.00 

(p<0.001) 

1.00 

(p<0.001) 

0.809 

(p<0.001) 

0.028 

(p=0.522) 

New VS 

Alpha 

-0.026 

(p=0.744) 

1.00 

(p<0.001) 

1.00 

(p<0.001) 

0.310 

(p<0.001) 
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8.8 Discussion 
Clusters were found on all factors which were significant for asthma outcome variables 

however when using the mean dip test to verify if the clusters made up a multi-modal 

distribution or not most of the clusters proved to be non significant.  The only multi-

modal distribution accordingly to the mean dip statistic was that for the eosinophilic 

factor producing two group’s one with a large amount of eosinophils and one with a 

normal amount of eosinophils.  Although the clusters found on factors 1, 3 and 4 were 

significant for some asthma outcomes the dip statistic was to low resulting in the 

distribution passing the test for uni-modality.  The obese sub-group has been found yet 

again to be part of a bigger non-normal distribution as has airflow obstruction and lung 

volume.   

As the data only have 120 patients in it, it is possible that the dataset is under powered 

this would explain the multimodality being found and the different results for using the 

priors too.  If more data were added or a new larger dataset used this could clear the 

question mark over the clusters nature.    

8.9 Closing statement 
Although we have seen that it is possible to find mixtures over factors and that these 

mixtures show significant differences in a number of asthma related variables.  The 

mixtures seem to reflect a bigger non normal distribution rather than specific mixtures 

which come from different populations.  This is not usually tested during cluster 

analysis and is an important step to consider when interpreting mixtures and clusters. 

As datasets may be too small to determine if clusters are overlapping mixtures making 

non normal distributions or genuine clusters.  In the case of the Brompton dataset its 

seems that it is a little too small to test for clusters, although an eosinophilic/ non 
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eosinophilic split was found.  We now look at a different use for Dirichlet Process 

Normal Mixture Latent Variable Models for non conjugate data to determine sub-

groups or clusters in a clinical trial
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Chapter 9. Analysis of Haldar Severe 

Asthma Dataset 

9.1 Chapter outline 
The Haldar dataset is now analysed using the Dirichlet Process Normal Mixture Latent 

Variable Model DPNMLVM and the truncated Dirichlet Process Normal mixture Latent 

variable Model TrDPNMLVM.  In order to compare it with the previous k-means cluster 

analysis.  Four factors were found that are similar to the factors that were found in the 

previous analysis.  Clusters were found on the factors with multi modal mixtures being 

found on the atopic factor. Suggesting an atopic/non atopic split that was also 

previously found in the k-means cluster analysis.  The splitting of the obese factor 

however resulted in two overlapping mixtures that make up a bigger non-normal 

distribution and do not represent separate clusters.  The results were consistent over 

all three different priors for α.  Suggesting that the sample size was adequate to detect 

mixtures that were not due to sampling. Results were similar for both the full and 

truncated model but some factors did differ between models as they picked up on 

different patterns of variation within the cohort. 

9.2 Introduction 
We now look at using the Dirichlet Process Normal Mixture Latent Variable Model 

(DPNMLVM) and the TrDPNMLVM to analyse the Haldar severe asthma dataset. Using 

the DPNMLVM/TrDPNMLVM it is possible to determine the shape of the distribution of 

each independent factor and the nature of the mixtures on each of the factors that 

contribute to the patient variation.  It is also possible to determine a clustering 

partition to examine the existence of sub-groups on the severe asthma factors and to 
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annotate these depending on which variables these partition.  The DPNMLVM 

methodology used in the analysis is the same as outlined and tested in the previous 

two simulation chapters, chapter 6 and 7 for continuous data variables that can be 

correlated or uncorrelated.  The TrDPNMLVM was used using a similar method but 

limiting the number of mixtures to a finite amount, 15.  Although setting boundaries 

on the number of distributions is a limitation, the maximum number of groups allowed 

can be set to be much higher than is thought likely to occur and 15 was found to be 

sufficient.  As long as the number of mixtures fixed a prior N is larger than the actual 

number of mixtures needed so that the Dirichlet process mixture converges to, then 

the algorithm works in a very similar way then the full Dirichlet process.   The 

truncated/approximate Dirichlet process mixture can be used to compute a very good 

approximation to the full Dirichlet process mixture which is faster than marginal 

methods (Ishwaran and Zarepour 2000) although they should give similar results they 

are both different algorithms and for this reason we compare them for the Haldar 

Analysis. 

9.3 Haldar dataset  
The first dataset we will look at is the Pranab Haldar severe Asthma dataset taken from 

(Haldar, 2007) we used this to demonstrate the DPNMLVM as the dataset has been 

used before on a previous k-means cluster analysis that had produced four clusters 

and it would be interesting to see if the methods produced similar clusters and results.  

The dataset used contains demographics and asthma biomarkers on 187 subjects.  All 

subjects were attending the difficult asthma clinic at the Glenfield Hospital, Leicester 

and have a diagnosis of refractory asthma in accordance with the American Thoracic 

Society (ATS) criteria at the time of its publication although possible on reduced 
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amount of inhaled corticosteroids, to see the dataset statistics see chapter 2 for the 

dataset descriptions. 

The Haldar k-means cluster analysis used the continuous variables; Modified JACSs 

symptom score, BMI, logged sputum eosinophil counts and age of onset and the binary 

variables; atopic (yes/no) and gender male/ female.  The k-means clustering algorithm 

is built to partition continuous variables into clusters but the nature of these clusters is 

unknown as they can only be described using multivariate statistics and not scaled 

diagrams due to the large number of dimensions.  Uni-variate distributions for each 

variable can be used to display the clusters but do not reflect the true nature of the 

multivariate clusters.   

The partition created during the k-means cluster analysis could depend on the misused 

binary variables that are not commonly used to determine clusters in a continuous 

clustering algorithm such as k-means clustering (Everitt 2001).  In order to replicate the 

analysis without the use of binary variables I used the 9 continuous variables listed 

below, most are the same as seen in the Haldar analysis, but to replace the binary 

variable describing atopy, skin prick test data was used to mimic the atopic status as 

the binary atopic variable is a dichotomised version of this data.  The binary variable 

gender was taken out of the full DPNMLM analysis as the derived methodology for the 

full DPNMLM does not work with binary variables and also gender although affecting a 

patient’s asthma is not a direct outcome of asthma.   However gender as a variable 

was included as an extra step in the TrDPNLVM to see if this variable correlated to any 

of the factors.  As this truncated methodology allowed binary variable to be included. 
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9.4 Variables  
The 9 variable that were used in the DPNMLVM analysis are as follows; 4 skin prick 

tests for dog, cat, and grass pollen and house dust mites respectively, which measure 

the reaction to each of these substances to determine allergies for these substances.  

Modified JACS Symptom Scores which is a symptom questionnaire devised for asthma 

symptoms with the FEV1 part of the score removed, body mass index (BMI), log of 

sputum eosinophil count, log of sputum neutrophil count, both eosinophils and 

neutrophils are inflammation cells found in severe asthma sputum samples and age of 

onset of symptoms of asthma. 

9.5 Classical factor analysis 
Factor analysis was carried out on the variables under the usual assumption of 

normally distributed latent/factor variables to determine the number of latent 

variables and which variables would be factor/latent variable anchors in the 

DPNMLVM as in the previous simulation chapter, chapter 7.  The normally distributed 

factor analysis was carried out using SPSS.  The number of factors was chosen by 

selecting factors with eigenvalues greater than 1 to 2 decimal places known as the 

Kaiser criteria.  Four factors were found to be sufficient which explained around 72% of 

the variance seen in the dataset. See table 9.5.1.  The four factor anchors were chosen 

by selecting the variables that had the highest factor loading on a factor, i.e. the 

variable that had the highest correlation with a factor. See table 9.5.2. 
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Table 9.5.1: The results of the standard factor analysis of the 9 variables from the 

Haldar severe asthma dataset.  A four factor solution satisfies the Kaiser criteria and 

allows for 72% of the variance. 

No of Factors Eigenvalues Cumulative % of Variance 

1 3.176 35.291 

2 1.297 46.699 

3 1.014 60.961 

4 0.995 72.012 

5 0.881 81.798 

6 0.656 89.093 

7 0.481 94.438 

8 0.345 98.270 

9 0.156 100.000 
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Table 9.5.3 shows the factor loading for the four normally distributed factor model.  

The highest factor loading for each variable has been highlighted and used for 

annotation of the factors.  The highest loading variable for each factor was used as a 

factor anchor for that factor in the DPNMLVM.   

 

Variables 1 2 3 4 

BMI kg/m2 -.098 .428 .450 .590 

Age of Onset of 

Symptoms, 

years 

-.577 -.163 -.415 .267 

Log eosinophil 

cell count log % 

-.039 .622 -.526 .332 

Modified JACS 

symptom score  

-.217 .425 .652 -.357 

Log neutrophil 

cell count log % 

-.014 -.462 .456 .581 

Cat skin prick 

test, mm 

.881 .019 .060 -.034 

Dog skin prick 

test, mm 

.876 .065 -.028 .099 

House Dust 

Mite skin prick 

test, mm 

.721 -.019 -.053 .070 
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Grass Pollen 

Skin Prick Test, 

mm 

.850 -.002 -.068 .056 

 

The factors can be described by the variables that they correlate to.  Thus Factor 1 

describes an atopy component to the dataset.  Factor 2 describes an eosinophilic 

inflammation factor.  Factor 3 describes the symptomatic aspect to asthma and factor 

4 describes the role of BMI in the dataset. 

The anchors for each factor to be used in the DPNMLM are the highest factor loading 

variable for each factor these are cat skin prick test, log eosinophil cell count, Modified 

JACS symptom score and BMI.  This is the rationale for using four factors with the four 

factor anchors in the DPNMLM. 

9.6 Dirichlet Process Normal Mixture Latent Variable Model 
For variables j  for j=1,2,…9 

For subjects i for i=1,2...120 

For latent variable l for 1,2...4 

     (      
 )        Equation 202 

 

                    

        

Equation 203 

 

      (      
) 

 
Equation 204 
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     (       ) 
Equation 205 

Where     represents the i individual of the j normally distributed variables     

represent the mean of the    ,   
  is the variance of the     variable,    ,     

parameters of the regression of     on latent variables     ,   (      )is the Dirichlet 

process mixture over latent variable l with precision parameter    and centring 

distribution     , where     is normally distributed with mean     and variance    . 

    ,    ,         all equal 0 and    ,    ,         all equal 1 as these are the 

parameters associated with the factor anchors and kept constant for identity 

purposes, where 

    = Cat skin prick test 

    =Log eosinophil cell count 

    = Modified JACS score 

    =BMI 

    =Dog skin prick test 

    =House dust mite skin prick test 

    =Grass pollen skine prick test  

    =Age of onset of symptoms 

    = Log neutrophil cell count   
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9.7 Priors and Convergence 
Priors were kept the same as in the previous simulation chapter, with a sensitivity 

analysis carried out later on the alpha parameter of the model.  The model parameters 

were tested for convergence using the Heidelberg test after 425,000 iteration burn in 

and for a further 75,000 iterations after. The percentage of parameters that passed 

this test was 64.39%.  The parameters that did not pass this test were checked for 

convergence.  

9.8 Results for Dirichlet process normal mixture model 

9.8.1 Variable analysis on factors 

The correlation for each variable against the four factors of the DPNMLVM can be seen 

in table 9.8.1 this is similar to the factor loading table from table 2 for the normally 

distributed factor analysis, suggesting that the factors are the same and the analysis is 

similar.   Factor 1 corresponded to atopy, factor 2 to eosinophilic inflammation, factor 

3 to modified JACS symptom score and factor 4 to BMI.  With the factors established 

we now turn our attention to the clusters in each factor. 

 

 

 

 

Table 9.8.1: The correlation of the variables with the factors in the Dirichlet Process 

Normal Mixture Latent variable model, the highest factor loading for each variable is 

highlighted 
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Variables 1 2 3 4 

BMI, kg/m2 -0.077 0.107 0.083 0.987 

Age of Onset of 

Symptoms, 

years 

-0.466 0.101 -0.151 -0.036 

Log eosinophil 

cell count, log 

% 

-0.011 0.991 0.006 -0.104 

Modified JACS 

symptom score 

-0.081 -0.010 0.994 0.019 

Log neutrophil 

cell count, log 

% 

0.001 -0.093 0.032 0.113 

Cat skin prick 

test, mm 

0.963 -0.043 0.002 -0.008 

Dog skin prick 

test, mm 

0.916 0.081 -0.109 0.024 

House Dust 

Mite skin prick 

test, mm 

0.573 -0.038 -0.212 0.076 

Grass Pollen 

Skin Prick Test, 

mm 

0.798 0.044 -0.133 -0.032 
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9.8.2 Factor 1: Atopy 

The first factor had cluster dendrogram as in graph 9.8.2.1 suggesting the factor is 

separated into two clusters.  Inspection of the density distribution for factor 1, See 

graph 9.8.2.2, suggests that the distribution is multi modal indicating that the clusters 

found are real sub-groups. This is further backed up by the distribution passing the dip 

test of multi-modality as we retain the null hypothesis of the distribution being 

multimodal, dip statistic = 0.02395. (p=0.5).  The clusters found are significantly 

different for means of age, age of onset cat skin prick test, dog skin prick test, grass 

pollen skin prick test and house dust mite skin prick test, see table 9.8.2.1.  The data in 

factor 1 is split into cluster 1 which describes an older group with a later onset of 

disease whose patients are less atopic then cluster 2 which has a lower mean age of 

onset and contains younger patients who are highly atopic. 
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Graph 9.8.2.1: Cluster dendrogram for factor 1 using the probability of being in a 

cluster with another patient to separate patients. 

 

Graph 9.8.2.2 Histogram of the density of latent factor 1 (atopy)  
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Table 9.8.2.1:  The significant variables for the clusters found in factor 1 (atopy) 

 Cluster 1 Cluster 2 P-Value 

N 179 8  

Age *, years 43.97 (15.9) 31.50 (11.3)   0.030 

Age of Onset*, 

years 

20.88   6.50   0.013 

Cat†, mm   2.75   8.63   0.001 

Dog†, mm   2.84   9.63 <0.001 

Grass†, mm   3.22   8.13   0.010 

Dust mite†, mm   3.69   6.00   0.068 

*p-value derived from t-test, † p-value derived from Mann-Whitney test 

9.8.3 Factor 2: Eosinophilic inflammation 

Three clusters were detected in the second factor as can be seen in the cluster 

dendrogram, see graph 9.8.3.1  On inspection of the density distribution for factor 2, 

see graph 9.8.3.2 however suggests that these three groups are not easily visible, and 

that the three groups could make up a non-normal continuous distribution that can be 

approximated using three normal distributions, this is further backed up by the dip 

statistic which although being  non-significant for this factor density distribution had a 

very low dip statistic, 0.01947 (p=0.10), so if using p=0.05 as a cut off factor 2 is multi 

modal but not by a large degree.  The only variable that was significantly associated 

with the eosinophilic factor other than the factor itself was gender, see table 9.8.3.1. 

The clustering suggested a cluster that consisted of females that have lower 

eosinophilic inflammation then the other two clusters that have similar eosinophil 
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levels.  This suggests that the two groups with similar eosinophilia probably make up a 

non-normal distribution with the possible third group being a genuine sub-group 

consisting of females with lower eosinophil counts.  

Graph 9.8.3.1: Cluster dendrogram for factor 2 (eosinophilic inflammation) using the 

probability of being in a cluster with another patient to separate patients. 

 

 

 

 

 

 

 



270 
 

Graph 9.8.3.2:  Histogram of the density of latent factor 2 (eosinophilic inflammation) 

 

Table 9.8.3.1: The significant variables for the clusters found in factor 2 (eosinophilic 

inflammation) 

 Cluster 1 Cluster 2 Cluster 3 p-value 

N 121 63 3  

Sex ς (%=male) 28.45% 45.59% 0% 0.018 

Log eosinophils*, 

log % 

0.47 (1.02) 0.45 (0.95) 0.34 (1.34) 0.967 

*p-value derived from one way ANOVA, ς p-value derived from chi squared test 

 

9.8.4 Factor 3: Symptoms 

The third factor had cluster dendrogram as in graph 9.8.4.1 this implied the data was 

separated into three groups again.  Inspection of the density distribution of factor 3, 
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see graph, 9.8.4.2 suggests that the distribution is multimodal and this is further 

backed up by the dip test being non-significant for this factors distribution, dip statistic 

= 0.02109 (p=0.5).  Again as with the eosinophilic inflammation cluster the three 

clusters obtained are only significant with gender with the third cluster describing a 

female only cluster with a larger number of symptoms.  Suggesting that gender is again 

correlated to the symptom factor as well as the factor correlated with inflammation.   

 

Graph 9.8.4.1: Cluster dendrogram for factor 3 (Symptoms) using the probability of 

being in a cluster with another patient to separate patients. 

 

 

Graph 9.8.4.2: Histogram of the Density of latent factor 3 (symptoms) 
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Table 9.8.4.1: The significant variables for the clusters found in factor 3 (Symptoms) 

 Cluster 1 Cluster 2 Cluster 3 p-value 

N 120 63 4  

Sex ς (% male) 28.95% 44.93% 0% 0.017 

JACS† mean 

score 

2.00 (1.13) 2.04 (1.20) 2.48 (1.39) 0.706 

ς p-value derived from chi squared test, † p-value derived from Kruskal-Wallis test 

 

 

 

9.8.5 Factor 4: BMI 

The fourth factor had 2 prominent clusters in its cluster dendrogram, see graph 

9.8.5.1, this implied the data was separated into two groups, but inspection of the 
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density distribution of factor 4, see graph 9.8.5.2, suggests that these two groups  are 

not easily visible and that the two groups make up a non-normal continuous 

distribution that can be approximated using two normally distributed mixtures this is 

further backed up by the dip statistic being non-significant for the factor density 

distribution, dip statistic = 0.01836, (p=0.05) confirming that the data is not multi 

modal.  The two clusters split up into an obese group which were mainly female and a 

non-obese group that were more evenly distributed and used their bronchodilators 

less often, see table 9.8.5.1. 

Graph 9.8.5.1: Cluster dendrogram for factor 4 (BMI) using the probability of being in a 

cluster with another patient to separate patients. 

 

 

Graph 9.8.5.1: Histogram of the density of latent factor 3 (BMI) 
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Table 9.8.5.1: The significant variables for the clusters found in factor 4 (BMI) 

 Cluster 1 Cluster 2 p-value 

 157 30  

Sex ς (% female) 38.61% 10.34% 0.001 

BMI* kg/m2 26.40 (3.84) 40.06 (5.96) <0.001 

Bronchodilator 

use* 

5.94 (5.66) 10.07 (11.57) 0.018 

ς p-value derived from chi squared test, *p-value derived from t-test 

9.9 Specificity analysis on α parameter 
The original analysis was carried out giving the α parameter a gamma distribution as a 

prior with shape =1 and scale =2, see graph 8.9.1, as in the simulations. The alpha 

parameter is usually dictated by the data when using large datasets, but the data we 

have be insufficient to overcome the prior information.  In order to check the prior on 



275 
 

the α parameters effect two other priors were used for the analysis keeping all other 

parameters constant.  The two new priors used for the α parameter were a strict single 

value α=1 which is common in Dirichlet process and Dirichlet process mixture analysis.  

The other prior used was a gamma distribution that favoured production of more 

mixtures this had a gamma distribution with shape=10, scale=1, see graph 9.9.2.  

Graph 9.9.1: Original prior distribution of alpha parameter used in previous analysis 

and simulation. Gamma distribution with shape=1, scale=2. 
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Graph 8.9.2: New prior distribution for alpha parameter used in sensitivity analysis.  

Gamma distribution with shape=10 and scale =1  

 

9.10 Results from sensitivity analysis 
The percentage of parameters that had converged was 66.47% for the model with the 

α parameter equalling 1 and 72.85% using the model with the α parameter having a 

gamma prior with shape=10 and scale=1. 

The same number of clusters was returned for each factor apart from factor 2 using 

α=1 prior, see table 9.10.1.  In this case the distances for cutting the dendrogram at 2 

or 3 were very close with the distance for two clusters being slightly larger.  Similar 

densities were found for all factors across priors, see graphs in appendix 6 for densities 

using the alpha=1 prior for factors 1, 2, 3 and 4 and for the new gamma prior with 

shape=10 and scale=1 for factors 1, 2, 3 and 4.  Cluster membership was similar for 
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each factor, see appendix6 for cluster dendrograms under prior alpha=1 and cluster 

dendrograms for factors 1, 2 , 3 and 4 for the new gamma prior shape=10 scale=1. 

Cluster membership correlation was carried out using the Kappa test for nominal 

correlation to quantify the amount of reliability in cluster membership. All factors with 

the same number of clusters were tested and all cluster memberships were 

significantly correlated to a high degree (p<0.001 in all cases with the same number of 

clusters) see table 9.10.2 

Table 9.10.1: Effect of prior specification on alpha for number of clusters found. 

Prior Factor 1 Factor 2 Factor 3 Factor 4 

Gamma(shape=1,scale=2) 2 3 3 2 

Alpha=1  2 2 3 2 

Gamma(shape=10,scale=1) 2 3 3 2 

 

Table 9.10.2:  Best Kappa correlation of cluster membership for each comparison of 

priors 

Prior Factor 1 Factor 2 Factor 3 Factor 4 

Original VS 

Alpha 

0.789 

(p<0.001) 

NA 0.945 

(p<0.001) 

0.657  

(p<0.001) 

Original VS 

New  

0.938 

(p<0.001) 

0.989 

(p<0.001) 

0.967 

(p<0.001) 

0.837 

(p<0.001) 

New VS 

Alpha 

0.748 

(p<0.001) 

NA 0.978 

(p<0.001) 

0.810 

(p<0.001) 
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9.11 Truncated Dirichlet Process Normal Mixture Latent Variable 

Model 
For variables j  for j=1,2,…9 

For subjects i for i=1,2...120 

For latent variable l for 1,2...4 

 

     (      
 )              

Equation 206 

 
 

                      Equation 207 

 

        (      
) 

Equation 208 

 

     (       ) 
Equation 209 

 

Where     represents the i individual of the j normally distributed variables     

represent the mean of the    ,   
  is the variance of the     variable,    ,     

parameters of the regression of     on latent variables     ,     (      )is the 

truncated Dirichlet process mixture over latent variable l with precision parameter    

and centring distribution     , where     is normally distributed with mean     and 

variance    .     ,    ,         all equal 0 and    ,    ,         all equal 1 as these are 
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the parameters associated with the factor anchors and kept constant for identity 

purposes, where 

    = Cat skin prick test 

    =Log eosinophil cell count 

    = Modified JACS score 

    =BMI 

    =Dog skin prick test 

    =House dust mite skin prick test 

    =Grass pollen skine prick test  

    =Age of onset of symptoms 

    = Log neutrophil cell count 

9.12 Priors and Convergence 
Priors for       

      and     were kept the same as in the previous analysis with the full 

Dirichlet process, The alpha prior was kept as a uniform distribution from 0.3 to 7 for 

identification purposes as suggested in (Ohlssen, Sharples et al. 2007).  The maximum 

number of sub- groups was kept at 15 for each treatment group to obtain a fair 

approximation of the full Dirichlet process mixture. Previous models with a higher 

number of subgroups were used and were found to contain many empty groups. 

  The model parameters were tested for convergence using the Heidelberg test after 

5,000 iteration burn in and for a further 95,000 iterations after with a thinning value of 
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5 , meaning every fifth iteration would be saved. The percentage of parameters that 

passed this test was 97.2%.  The parameters that did not pass this test were checked 

for convergence. 

9.13 Results for truncated Dirichlet process normal mixture 

model 

9.13.1 Variable analysis on factors 

The correlation for each variable against the four factors of the TrDPNMLVM can be 

seen in table 9.13.1 this is similar to the factor loading table from table 2 for the 

normally distributed factor analysis, suggesting that the factors are similar but not 

exactly the same for each analysis.   The annotation are the same for each of the 

factors Factor 1 corresponded to atopy, factor 2 to eosinophilic inflammation, factor 3 

to modified JACS symptom score and atopic status of dust mite and grass pollen and 

factor 4 to BMI and neutrophilic inflammation.  With the factors established we now 

turn our attention to the clusters in each factor for the new truncated analysis 

approach. 

Table 9.13.1: The correlation of the variables with the factors in the truncated Dirichlet 

Process Normal Mixture Latent variable model, the highest factor loading for each 

variable is highlighted 
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Variables 1 2 3 4 

BMI, kg/m2 -0.08 0.01 0.03 0.78 

Age of Onset of 

Symptoms, 

years 

-0.38 0.12 0.36 -0.06 

Log eosinophil 

cell count, log 

% 

-0.07 0.99 -0.04 -0.08 

Modified JACS 

symptom score 

-0.06 -0.08 0.48 0.09 

Log neutrophil 

cell count, log 

% 

-0.01 -0.09 0.08 0.66 

Cat skin prick 

test, mm 

1 -0.06 -0.03 -0.03 

Dog skin prick 

test, mm 

0.83 0.08 -0.34 0.04 

House Dust 

Mite skin prick 

test, mm 

0.50 -0.07 -0.67 0.02 

Grass Pollen 

Skin Prick Test, 

mm 

0.71 0.04 -0.50 -0.01 
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9.13.2 Factor 1: Atopy 

The first factor had cluster dendrogram as in graph 9.13.2.1 suggesting the factor is 

separated into many clusters.  Inspection of the density distribution for factor 1, See 

graph 9.13.2.2, suggests that the distribution has many sub-groups which are very 

separate but this is because the correlated atopic variables were discrete.  Assuming 

the atopic variables were discrete was fine and produced a latent variable that was 

continuous in the previous analysis making the clustering valid.  But in the truncated 

model the latent variable is discrete similar to the manifest variables and the many 

clusters detected represent the discrete nature of the latent variables and not true 

clusters. 

Graph 9.13.2.1: Cluster dendrogram for factor 1 using the probability of being in a 

cluster with another patient to separate patients. 
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Graph 9.13.2.2 Histogram of the density of latent factor 1 (atopy)  

 

9.13.3 Factor 2: Eosinophilic inflammation 

Two clusters were detected in the second factor as can be seen in the cluster 

dendrogram, see graph 9.13.3.1.  On inspection of the density distribution for factor 2, 

see graph 9.13.3.2 however suggests that two groups are not easily visible, and that 

the two groups could make up a non-normal continuous distribution that can be 

approximated using two normal distributions. The dip statistic which although being 

significant for this factor density distribution was only just over the value at p=0.05 

having dip statistic, 0.0182 (p=0.05), so if using p=0.05 as a cut off factor 2 is multi 

modal but not by a large degree.  The only variable that was significantly associated 

with the eosinophilic factor other than the factor itself was BMI and age, see table 

9.13.3.1. The clustering suggested two clusters one that consisted of younger patients 

that have lower eosinophilic inflammation in sputum and a lower BMI and the other 
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that consisted of a higher eosinophilia group that were older and slightly more obese 

which had a slightly higher nitric oxide levels in breathe. 

Graph 9.13.3.1: Cluster dendrogram for factor 2 (eosinophilic inflammation) using the 

probability of being in a cluster with another patient to separate patients. 

 

Graph 9.13.3.2:  Histogram of the density of latent factor 2 (eosinophilic inflammation) 

 

0
.0

0
.2

0
.4

0
.6

0
.8

Cluster Dendrogram

hclust (*, "complete")

Patients

D
is

ta
n

c
e

Histogram of zz2

Scale of latent factor 2

D
e

n
s
it
y

-2 -1 0 1

0
.0

0
.2

0
.4

0
.6

0
.8



285 
 

Table 9.13.3.1: The significant variables for the clusters found in factor 2 (eosinophilic 

inflammation) 

 Cluster 1 Cluster 2 p-value 

N 154 33  

Age* 45 (16) 38 (15) 0.044 

BMI* 28.81 (6.35) 27.14 (7.15) 0.026 

Log eosinophil % 

in sputum* 

0.82 (0.62) -1.21 (0.66) 0.047 

Log(no)* 1.70 (0.3 

2) 

1.32 (0.37) 0.001 

*p-value derived from one way ANOVA 

 

9.13.4 Factor 3: Symptoms 

The third factor had cluster dendrogram as in graph 9.13.4.1 however the most 

probable number of subgroups that was returned by the Truncated Dirichlet process 

normal mixture model was only one group.  Inspection of the density distribution of 

factor 3, see graph, 9.13.4.2 suggests that this is plausible as the distribution looks 

normally distributed.  The evidence for no sub-groups in this factor is further backed 

up by the dip test being non-significant for this factors distribution, dip statistic = 

0.0201 (p=0.5). 
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Graph 9.13.4.1: Cluster dendrogram for factor 3 (Symptoms) using the probability of 

being in a cluster with another patient to separate patients. 

 

 

Graph 9.13.4.2: Histogram of the Density of latent factor 3 (symptoms) 

 

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Cluster Dendrogram

hclust (*, "complete")

Patients

D
is

ta
n

c
e

Histogram of zz3

Scale of latent factor 3

D
e

n
s
it
y

1.5 2.0 2.5

0
.0

0
.5

1
.0

1
.5



287 
 

9.13.5 Factor 4: BMI/neutrophils 

The fourth factor had 3 prominent clusters in its cluster dendrogram, see graph 

9.13.5.1, this implied the data was separated into three groups, but inspection of the 

density distribution of factor 4, see graph 9.13.5.2, suggests that these three groups 

could be making up a non-normal continuous distribution that can be approximated 

using the clusters. However on applying the dip statistic being non-significant for the 

factor density distribution, dip statistic = 0.0151, (p=0.01) confirming that the data is 

multi modal.  One cluster only consists of one patient that is an outlier not detected in 

the previous analysis.  The two other clusters consist of a higher neutrophilic group 

and a lower neutrophilic group however BMI was not significantly different over the 

clusters which suggests that the factor could be representing neutrophilic variation 

more than BMI variation, see table 9.13.5.1. 

Graph 9.13.5.1: Cluster dendrogram for factor 4 (BMI/ neutrophils) using the 

probability of being in a cluster with another patient to separate patients. 
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Graph 9.13.5.1: Histogram of the density of latent factor 3 (BMI) 

 

Table 9.13.5.1: The significant variables for the clusters found in factor 4 (BMI) 

 Cluster 1 Cluster 2 Cluster 3 p-value 

N 131 55 1  

Log neutrophil % 

in sputum* 

1.83 (0.10) 1.32 (2.55) -0.30 () 0.001 

 *p-value derived from ANOVA test 

9.14 Truncated Dirichlet process normal mixture with a binary 

outcome. 
The binary outcome of gender was added to the model using a logit distribution and 

having the four latent variables driving the odds of being male/female.  This model 

when implemented in WinBUGS could not be computed as traps were reported after a 

few iterations.  Traps are usually entered in WinBUGS as the result of an ill specified 
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model.  The fault could be in two parts the specifying of the priors or the specifying of 

the model.  A range of priors and starting values were tried but were all unsuccessful. 

Suggesting that the specified model was perhaps to blame.  The model relies on the 

log odds of the binary variable to be correlated to one of the four latent variables in 

the model of some degree, but if this was not the case the model could enter traps.  All 

the clusters over the factors were not significant for gender suggesting that the factors 

in the truncated Dirichlet model did not correlate well with gender.  Thus I think this is 

the reason the truncated Dirichlet process normal mixture model failed when a binary 

variable was added as the factors created previously do not correlate with gender.  We 

could have used a five factor model but all this would have done is predict gender and 

we have found that there is not enough information to generate a consistent latent 

factor for one binary variable in our previous simulations. 

9.15 Discussion 

9.15.1 Dirichlet Process Normal Mixture Model 

Clusters were found on all four factors with significant similar clustering seen over all 

three priors used on the parameter α.  Although the clusters seen for each factor 

differed when comparing the means of the groups for asthma variables that were 

correlated to the individual factors, but not all factors were significantly multimodal 

indicating overlapping clusters creating non-normal distributions.  The cluster 

partitions for all factors, apart from the factor relating to atopy, were significant for 

gender.  Indicating that gender is very important for separating the clusters even 

though it was not used in the DPNMLVM analysis due to it being a binary variable and 

it not being a result of the asthma condition.   
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Factor 1 the atopic factor grouping suggested an early onset group that were younger 

and had a higher skin prick test measurement for all the triggers contrasting with a late 

onset older group that were less atopic to the same triggers this splitting was also 

found in the (Haldar,2007) and (Wenzel,2009) papers and reflects a genuine split as 

the dip statistic was not significant indicating a genuine multimodal distribution.   

The other significant variable splitting, multimodal distribution was on the BMI factor 

which suggested two groups an obese group contrasting with a non-obese group.  On 

inspection of the distribution however the two groups form a continuous non-normal 

distribution and not a multi-modal, well separated grouping which suggests that the 

BMI cluster split is artificial and does not consist of two subgroups with genuine 

differences, but rather one continuous distribution this is further confirmed by the dip 

test being significant indicating a uni-modal distribution is present for the BMI factor.   

The Haldar paper found a BMI splitting but did not investigate whether the splitting 

represented a non-normal distribution as the clustering was across many variables and 

was not represented as a single distribution.   

The two factors representing JACS symptom score and eosinophils did not produce 

significant differences other than gender differences.  As gender was used in the initial 

clustering by Haldar it could have over emphasised the partitions of JACS and 

inflammation as the gender variable is binary and k-means/ hierarchical clustering 

should only be carried out on continuous variables unless using specialist algorithms 

built to define the different characteristics of binary variables. 
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9.15.2 Truncated Dirichlet Process Normal Mixture Model comparison 

The Truncated Dirichlet Process Normal Mixture Model showed a similar factor 

analysis to the original Dirichlet Process Normal Mixture Model and classical factor 

analysis but this time the emphasis on the factor 4 was more on the log neutrophil % 

sputum rather than BMI.  The first factor in the analysis atopy had a large amount of 

sub-groups found across it but on inspection this was driven by the discrete nature of 

the variable that correlated to it causing what looked like sub-groups.  Factor 2 , the 

eosinophilic cluster showed two clusters, one showing a group with high eosinophils 

and one which had low eosinophils but these were not associated with gender like in 

the previous full Dirichlet methodology but were associated with BMI and age with the 

younger, smaller BMI group being a less eosinophilic group. These grouping also had a 

significant dip test so can be seen as multimodal clusters.  Factor 3 displayed what 

looks like a normal distribution and only one sub-group was detected over the whole 

distribution.  Factor 4 showed three clusters but one of these was an outlier being in 

its own cluster.  The two other clusters were significantly different for log neutrophil % 

in sputum but not BMI suggesting that the factor described neutrophils more than 

BMI, the distribution also tested significant for the diptest for multi-modality which it 

did not do for the full Dirichlet process model suggesting that the fourth factor may 

have picked up on a slightly different variation pattern which had more emphasis on 

log percentage sputum neutrophil variation than BMI variation.  This suggests that 

although the factor analysis were both similar they have converged on slightly 

different solutions to the same problem which can be the case in these types of 

complex models that allow for the variation of multi-variables.  The binary variable 

gender was added into the factor analysis using a Bernoulli distribution but the model 
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could not be run as the model entered traps.  Several priors and starting values were 

used in order to get around the trap but none were sufficient the reason for this was 

that the truncated Dirichlet model factors were not strongly correlated to the binary 

variable so a solution could not be obtained. 

9.16 Closing Statement 
We have seen that the Dirichlet process returns clusters that have been detected 

previously with different methodology more so we have investigated the nature of 

these clusters to determine if they make up a non-normal distribution or come from 

genuine different populations.  In the analysis the atopic early onset/ non atopic late 

onset clusters were found in the Full Dirichlet process normal mixture model to 

represent genuine differences but the Obese/ Non Obese groups were actually just a 

false separation of the data.  In the Truncated Dirichlet process however clusters were 

found on the second factor relating to eosinophilic variation in the full Dirichlet model 

this was nearly significant on the dip test but in the truncated model this was 

significant, showing two clusters one with high eosinophils and one with low 

eosinophils.  Clusters were also found on the fourth factor these related to 

neutrophilic inflammation and did not relate to BMI suggesting that the fourth factor 

may have picked up on different variation in the datasets with the emphasis on BMI in 

the full Dirichlet model and the emphasis on neutrophilic variation in the truncated 

Dirichlet process.  
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Chapter 10. Analysis of a Clinical Trial 

Dataset for a New Cancer Drug 

10.1 Chapter overview 
Here the Dirichlet Process Normal Mixture Latent Variable Model DPNMLVM has been 

adapted for non-conjugate data by using a truncated Dirichlet process normal mixture 

in WinBUGS.  This new model has been used to determine clusters in a clinical trial 

using time to event and binary variables over a single latent variable to determine 

clusters that were shown to have different proportions of biomarkers and survival 

outcomes.     

10.2 Introduction  
Here we apply the Dirichlet process normal mixture methodology to a clinical trial 

dataset in order to determine if sub-groups can be determined within clinical trial arms 

and to see if these sub-groups represent specific biomarkers.  The clinical trial has 

three outcomes two that are time to event data and one that is binary.  The three 

correlated outcomes in the model were used to determine if there are possible sub-

groups within each of the treatment arms of the clinical trial.  We can adapt the 

DPNMLVM to determine subgroups that were previously used for the normally 

distributed severe asthma outcomes using the full DPNMLVM.  The hope is that the 

methodology described could hopefully be used to determine future sub-groups in 

clinical trials for personalised medicine applications.    

Unfortunately the full Dirichlet process with the Escobar and West, 1995 algorithm 

cannot be used here as the three outcomes cannot be coerced into normally 

distributed variables.  To get around this issue I used the truncated or approximated 
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Dirichlet Process Normal Mixture Latent variable Model trDPNMLVM introduced 

previously, see chapter 5.  If we view the Dirichlet process mixture as a stick breaking 

prior we can view the trDPNMLVM as an approximation to the full DPNMLVM where 

the sticks are limited to a certain number in the truncated approach and where there 

are infinitely many in the full DPNMLVM approach.  Even though an approximation the 

trDPNMLVM has many advantages over the full DPNMLVM these include:  

 It can be implemented in WinBUGS, free Bayesian software 

 It can cope with non conjugatcy issues, as WinBUGS does the calculation of the 

posterior. 

 It is quicker as WinBUGS is based on compiled language which is faster. 

 And it can give a better understanding of the mixtures as it is based on a finite 

amount of mixtures rather than the infinite amount of mixtures used in the full 

DPNMLVM as will be demonstrated later.      

10.3 The Dirichlet process as a stick breaking prior recap 
We have seen previously that applying a DP to an outcome, the variable is given a non-

parametric distribution consisting of a base prior distribution Go and a concentration 

parameter α that describes how much faith we have in this prior. We write this as, 

 

   (    )  
 
Equation 210 

A Dirichlet process is a discrete distribution over an infinite number of real points and 

the probabilities associated with these points can be constructed by a stick breaking 

process. Imagine a stick of unit length, we break a piece off the stick s1 and assign it to 

be the probability p1 of the point y1, the remainder of the stick having magnitude (1-
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s1).  Then break another piece of the rest of the stick s2 to create the probability p2 

belonging to x2, p2=(1-s1)s2 and so on, the last remaining part could be infinitely small, 

an infinite amount of points are used.  The 1-si fraction after each break can be shown 

to have expectation α/( α +1) with the expectation after N points being shown in the 

equation below (Ohlssen, Sharples et al. 2007). 

 (  ∑   

   

   

)  (
 

   
)           

Equation 210 

The main limitation of a Dirichlet Process is that it assumes the variable can be 

described using a discrete probability distribution.   Using the stick breaking process 

described above and the parameter definitions we can describe the probability density 

function of G as  

  ∑     

 

   

                  

                               

Equation 211 
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Equation 212 
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Equation 213 

If the data cannot be described using discrete probability distributions, the Dirichlet 

Process can be made continuous by allowing the distribution to become an infinite 

mixture of normal distributions (Escobar and West 1995) called a Dirichlet Process 

Normal Mixture.  The DP is now the distribution of the mean and variance of the 
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components of the mixture and the individual observations are assigned to the most 

appropriate of these components in this special case the model becomes 

  ∑   

 

   

 (     )          (     )    
Equation 214 

10.4 Truncated Dirichlet Process Normal Mixtures 
Dirichlet Processes and Dirichlet Process Mixtures are hard to implement due to their 

non-parametric nature and their non-finite number of components, but this was 

achieved previously by applying  the Escobar and west, 1995 MCMC technique to get 

around these problems, but even with this methods to implement a full Dirichlet 

Process or Dirichlet Process Mixture is non-trivial and Dirichlet Process and Dirichlet 

Process Mixtures cannot be implemented in standard Bayesian software such as 

WinBUGS.  To get around this difficulty, a truncated Dirichlet Process/Dirichlet Process 

Mixture model was suggested by (Ishwaran and James 2002) and has since been 

implemented in WinBUGS (Ohlssen, Sharples et al. 2007) although not for use with 

latent variables.  The truncated Dirichlet Process Mixture is similar to a full Dirichlet 

Process mixture except that the maximum number of distributions (N) in Go is fixed in 

advance.  This model can be thought of as limiting the number of breaks in the stick 

breaking process to N-1, the last part of the stick being equal to 1 minus the other 

parts of the stick.   
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Equation 215 
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Equation 215 
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∑   

 

   

 (     )  ∑   

 

   

 (     ) 
Equation 216 

Although setting boundaries on the number of distributions is a limitation, the 

maximum number of groups allowed can be set to be much higher than is thought 

likely to occur.  This is not as limiting as the k-means or finite mixture models in which 

the actual number of clusters has to be specified.  (Ishwaran and James 2002) 

calculated that the L1 error bound for this approximation is  

      ( (   )  ) 
Equation 217 

10.5 Analysis of a trial of a new cancer drug  
A randomised clinical trial was carried out on a new anti-cancer drug to obtain 

licensing.  Progression free times were recorded as a primary outcome along with 

secondary outcomes in the form of a classification of the patients as responders or 

non-responders and survival times.  The trial recruited 1180 patients with 577 being 

given treatment A (chemotherapy) and 603 being given treatment B (new cancer 

drug).  As well as outcome data the patients also have baseline data including gender, 

age, stage of disease, performance status and smoking status.  In addition to the 

baseline data results for three biomarkers were obtained on a subset of patients from 

each trial.  Gender, age and performance status were used as covariates as these were 

found to be significantly associated with time to progression and survival time in an 

initial exploration of the data.  Survival curves for both treatments can be seen in 

Graph 10.5.1.   
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Graph 10.5.1 Survival curves for treatment A (Chemotherapy) and B (New Cancer 

Drug).  Demonstrating that the two curves cross and thus making it difficult to 

compare the two possibly due to subgroups. 
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These, time to event, outcomes were modelled using a Weibull distributions with the 

latent variable Z driving the scale parameters.  The binary outcome was modelled using 

a Bernoulli distribution using a logit link to connect the latent variable.  

           (      ) Equation 218   
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Equation 219 
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Equation 220 
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Equation 221 
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Equation 222 
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Equation 220 
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Equation 223 
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Equation 224 
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Where Y1 is time to progression, Y2 is survival time. Kj  and  ij, j=1,2, are the shape and 

scale parameters of Weibull distributions. Y3 denotes whether the patient is a 

responder to their treatment and  i3 is the probability of being a responder, Z is the 

latent variable driving all three outcomes, Xik are covariates including the treatment 

indicator and βij, γjk are regression coefficients specific to variable j.   Z is a mixture of 

normal distributions with a DP on the means/variances so the prior G0 is over these 

means/precisions, a product of normal and gamma with N being the maximum 

number of mixtures being 15 in this case.   

The progression and survival times both contained censored data. For the progression 

times there were 80 censored values for treatment A and 150 censored values for 

treatment B. For the survival outcome there were 350 censored values for treatment A 

and 380 censored values for treatment B.  If a measurement was censored it was 

treated as a missing value in the WinBUGS code with a truncated range.  The lower 

value of the range was the censored value and the higher value was kept at 2400 days 

as a cap as to not let extreme high values be taken as these produced traps in 

WinBUGS.  The parameters β21 and β22 were highly correlated with each other, a 

familiar problem with latent variable models so these parameters were blocked 

together when updating to allow for the correlation seen.  This was carried out by 

giving the two parameters a bivariate normal distribution with mean = (0, 0) and 

precision = 
   
   

 .  These are the parameters mu3 and pre in the WinBUGS code.   

Many equivalent solutions exist for the model in order to detect just one of these β11 

and β12 were both kept as the constants 0 and 1 respectively in order to obtain only 

one of the many transformed solutions.  Mu3, pre, β21 and β22 were all pre-specified in 
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the data given to the WinBUGS code along with initial starting values and do not 

appear in the WinBUGS code found in Appendix 8. 

 

10.6 Priors for Model 
Priors for the gamma parameters, the coefficients of the covariates were given a 

normally distributed prior with a mean of 0 and a precision of 0.1.  The same prior was 

also given for the beta parameters that are associated with the intercept and the 

coefficient of the latent variable. The shape parameters of the two Weibull 

distributions were given an exponential prior with rate parameter equal to 0.5 for 

both, allowing a realistic range of values for the shapes and preserving congruency.  

The intercept and latent variable coefficient for the survival outcome were given a 

bivariate normal prior to allow for the correlation between the two variables this prior 

had a [0,0] mean and a precision of   
  
  

 

The hyper-prior,mu2 over the mean of the normal distribution parameter and mu1 of 

the Dirichlet process mixture were given non-informative priors as these can influence 

clustering (Ishwaran and James 2002). The alpha prior was kept as a uniform 

distribution from 0.3 to 7 for identification purposes as suggested in (Ohlssen, Sharples 

et al. 2007).  The maximum number of sub- groups was kept at 15 for each treatment 

group to obtain a fair approximation of the full Dirichlet Process Mixture. Previous 

models with a higher number of subgroups were used and were found to contain 

many empty groups. 



302 
 

10.7 Results 
The model was fitted to all 1180 patients by including a treatment effect as one of the 

covariates.  In a separate analysis the subjects were stratified by treatment group and 

the model was fitted separately to each treatment group. All three models allow for an 

interaction between the pattern of individual effects and the treatment. Each of the 

three analyses was also adjusted for age, gender and unfit at baseline. Although the 

trial is randomised so that covariate adjustment is not necessary for estimating the 

average treatment effect, covariate adjustment may affect the latent variable and 

hence alter the clustering of subjects. Here the latent variable will pick up factors other 

than age, gender and unfit at baseline that could affect individual outcome.   

Each MCMC analysis was based on three chains of length 70,000 following a burn-in of 

30,000 iterations.  Trace plots and Gelman-Rubin statistics were checked in order to 

establish convergence.    

The coefficient of the covariate gender was found to span zero and therefore not add 

significant to the progression and survival outcomes but did not span zero for the 

binary outcome of being a responder.  However for the responder outcome, unfit at 

baseline and treatment covariate coefficient were not significant all other covariates 

however were significant for the three outcomes.  

The number of normal distributions in the mixtures is shown in table 10.7.1 

Table 10.7.1 Percentage of iterations in which the mixture involved 1 to 6+ component 

normal distributions 
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Number of 

Components in the 

mixture 

All Subjects Subjects on 

treatment A 

Subjects on 

treatment B 

1 0 0 0 

2 0   1.46% 0 

3 55.17% 50.08% 65.31% 

4 30.97% 32.40% 26.53% 

5 10.33% 11.66%   6.66% 

6+   3.53%   4.39%   1.50% 

 

It is important not to interpret the number of components as the number of subgroups 

of subjects. It may be that two or more components are needed to capture a non-

normal distribution of a subgroup. The most probable number of components in the 

mixture was three in all of the models. Graph 10.7.1 shows the distribution of the 

latent variable averaged over all iterations. The plots show evidence of a multi-modal 

distribution although this is most evident when the treatment groups are analysed 

separately. 

Graph 10.7.1: Histogram of latent variable Z for both treatment groups combined, 

treatment A (chemotherapy) and treatment B (new cancer drug), each have three 

mixtures but these are better separated in treatment B (new cancer drug) where as in 

treatment A (chemotherapy) the mixtures overlap possibly into one continuous 

distribution made up of three mixtures rather than three separate clusters. 
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a, for all patients 

 

 

b, for patients on treatment A 
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c, for patients on treatment B 

 

A nxn matrix was created containing the probability of belonging to the same 

component normal distribution for each subject pairing using all the iterations.  The 

probability of not belonging to the same component was then used as a difference 

measure in a hierarchical cluster analysis giving the dendrograms shown in Graph 

10.7.2, in which the solid areas are places where the tree structure is very dense.  The 

number of clusters can then be judged by using the longest distance between 

branches.  The best partition of the data in the hierarchical analysis was also the same 

as the median number of mixtures this due to the trDPNMLVM being better at 

determining sub-groups for large data.  This was 3 in each treatment arm and when 

considering both modelled together with treatment as a covariate.  Cutting the 

dendrogram at 3 clusters created a strict partition of the data. 
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Graph 10.7.2: Dendrogram of the clustering of subjects in both treatment groups using 

the probability of subject pairings not belonging to the same group as the difference 

measure used in the hierarchical clustering.  The best number of clusters can be seen 

as the biggest difference between branches.  This is 3 for both treatment groups.  

a, treatment effect model for all patients 

 

b, for patients on treatment A 
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c, for patients on treatment B  

  

Summary statistics for the mixtures can be found in table 2 for the model with both 

treatment groups.  Summary statistics in table 3 are used for comparison of the model 

stratified by treatment.  Statistics include results for three biomarkers that were also 

tested on a subset of individuals taking part in the trial.  The patients tested would 

either have a positive or negative result for a biomarker.  Percentages of patients who 

tested positive and negative for each mixture can also be found in tables 10.7.2 and 

10.7.3. 
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Table 10.7.2 Summary of statistics for each subgroup in the Dirichlet Process Mixture 

model with added treatment effect. 

 Subgroup 1 Subgroup 2 Subgroup 3 p-value 

Number of subjects  763 269 148  

Time to Progression* 212(167-295) 94 (45-161) 41(24-62) <0.001 

Survival Time* 383(285-504) 264(205-340) 74(35-116) <0.001 

% Responders 55% 15% 0% <0.001 

% Males  20% 22% 21% 0.852 

Age+ 57 (11) 56 (11)   56 (11) 0.976 

% unfit at baseline 8% 8% 21%  <0.001 

% positive for Biomarker 1   73% 72% 75% 0.928 

% positive for Biomarker 2   67% 54% 45% 0.003 

% positive for Biomarker 3   73% 46% 20% <0.001 

* Median(IQR), p-values obtained using Kruskal Wallis test 

+ mean(SD), p-values obtained using one way ANOVA 

All other data was count data, p-values obtained using Chi squared test  

 

 

 

 

 



309 
 

Table 10.7.3: Summary of statistics for each subgroup in the Dirichlet Process Mixture 

model stratified for treatment.  

  Subgroup 1 Subgroup 2 Subgroup 3 p-value 

Number of subjects  A 513 50 14 NA 

 B 291 217 95 NA 

Time to Progression* A 179  (130-233) 52  (42-84) 15  (7-29) <0.001 

 B 288 (210-371) 85 (43-141) 39 (23-56) <0.001 

Survival Time* A 330  (252-448) 106  (86-157) 15  (7-29) <0.001 

 B 377  (292-521) 332  (249-428) 68  (35-123) <0.001 

% Responders A 38.01% 2% 0% <0.001 

 B 80.8% 12.4% 0% <0.001 

% Males  A 22.42% 12.00% 7.14% 0.852 

 B 20.27% 19.35% 23.16% 0.748 

Age+ A 56.74  (10.96) 55.96  (10.72) 56.29  (13.98) 0.884 

 B 57.47  (11.27) 55.59  (11.45) 56.09  (11.34) 0.167 

% unfit at baseline A 8.38% 16.00% 42.86% 0.001 

 B 28  9.62% 15  6.91% 15  6.91% 0.034 

% positive for Biomarker 1   A 74.23% 76.92%   100% 0.397 

 B 78.16% 60.87% 75.86% 0.193 

% positive for Biomarker 2   A 61.54%      75.00% 50% 0.330 

 B 77.17% 51.32% 37.84%       <0.001 

% positive for Biomarker 3   A 63.21%   35.29% 50%   0.063 

 B 90.72% 44.94% 10.81% <0.001 
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The three groups in treatment B were found to be significant at p<0.001 for 

biomarkers 2 and 3.  In treatment A however the three mixtures were not significant 

and seem to create a skewed normal distribution with a long right tail and it is hard to 

say whether the mixtures are genuine subgroups or not.  The mixtures in treatment A 

are not significant at the 0.05 level for any biomarkers.  When both treatment groups 

are combined and a treatment effect is added to the model biomarker 2 and 3 are still 

significant although it is clear from the stratified model that this difference is in 

treatment B the new cancer drug and not chemotherapy, treatment A.     

For treatment B Group 1 survived the longest and contained mainly responders to the 

treatment.  They also tested mainly positive for biomarkers 2 and 3.  Group 2 consisted 

of patients who had a shorter time to progression than group 1 but with a more even 

split for biomarker 2 & 3; group 2 also had a lower percentage response to treatment.  

Group 3 had the shortest time to progression time and contained patients who were 

mainly negative for biomarker 2 & 3 and did not respond to the treatment.  

Biomarkers 2 & 3 were found to have significantly different (p<0.001) proportions 

within the 3 mixtures for treatment B.   

10.8 Discussion 
The main contributors to the nature of the clustering rely on the parameters of the 

Dirichlet process. The base distribution Go was given non-informative hyper 

parameters to not influence clustering if these were changed to single values this could 

have an informative prior effect on the nature of the mixtures variance and means, i.e. 

creating a lot of clusters with small variances, this is the reason the hyper parameters 

were added.   The alpha parameter of the Dirichlet process was kept non-informative 

as a uniform distribution from 0.3 to 7.  The posterior of alpha has been shown to be 
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heavily influenced by the data with differing priors, even very conservative ones, 

having little effect given large amounts of data.  If however small amounts of data are 

used the precision prior can have an effect on the clustering and the prior should be 

kept un-informative as either a uniform distribution or a gamma distribution of similar 

shape to a uniform distribution (Dorazio 2009). 

The truncated Dirichlet Normal Mixture specified for WinBUGS can be modified for use 

with latent variables and used to find important clinical subgroups when combining 

multiple clinical trial outcomes. In our Cancer clinical trial data example 3 subgroups 

were found for the model allowing for treatment effect.  However when the models 

were stratified and run independently for treatment group it was found that the three 

groups were based on different outcomes of patients on treatment B, although three 

mixtures were found in both treatment groups. The mixtures related to specific modes 

in treatment B where as in treatment A the mixtures resembled a skewed normal 

distribution. 

The methodology presented here can be used to determine other subgroups in clinical 

trial data and to check biomarkers against these subgroups to determine further 

understanding of the disease and drug pathology and possibly an application to 

personalised medicine.  Even if links could not be found with existing biomarkers a 

subgroup analysis could determine whether further investigation is warranted at 

phases 2 and 3 of clinical trials to obtain possible significant subgroups.  

The work here extends our methodology to the new field of clinical trials and by using 

the truncated Dirichlet Process Normal Mixture Latent Variable Model we can adapt 

the methodology to non-normal outcomes and determine specific sub-groups for 
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these, at present however this is done by assuming that all outcome measures are 

correlated and can be described using only one latent variable as the methodology has 

not been adapted to allow multi latent variables to be used here as yet. 

10.9 Closing statement 
We have seen how the truncated Dirichlet Process Normal Mixture Latent Variable 

Model although an approximation of the full DPNMLVM is easier to program in as it is 

possible to implement the model in WinBUGS which automatically compute the 

posterior of the parameters it’s self in a very fast computing language.  This means that 

problems involving non-conjugatcy and time taken to implement can be solved easily 

speeding up research on the model.  The approximation seems to be the best way to 

implement Dirichlet process/ Dirichlet process mixture models quickly.



313 
 

Chapter 11. Conclusions and Further 

Directions 

11.1 Chapter summary 
Here conclusions and further directions are made both clinical and statistical in order to 

evaluate the work carried out and find places in both the code and the clinical decisions that 

could be improved and carried forward.  These include adapting the model to select the 

best number of factors, using the mixture model to find mixtures over all factors and testing 

these for multi-modality and adding more variables of different types to the model.  Clinical 

applications are to verify the clusters in bigger cohorts and apply missing data algorithms to 

allow for the missing data found in all cohorts and then to look at how the clusters can be 

implemented in severe asthma clinics. 

11.2 Summary of activities 

11.2.1 Statistical Work 

I have programmed a Dirichlet Process Normal Mixture Model (DPNMM) and combined it 

with a latent variable model (LVM) to obtain a Dirichlet Process Normal Mixture Latent 

Variable Model (DPNMLVM).  The DPNMLVM takes outcome variables that describe 

processes in severe asthma and separates the variables into latent variables or factors which 

can then be annotated to establish clinical aspects of severe asthma which are difficult to 

quantify, such as breathlessness.  These factors also reduce the dimensionality of the data 

into highly correlated components.  The normality assumption of the latent factors is 

relaxed by allowing the latent factors to be described using a Dirichlet process normal 

mixture prior which allows the latent variable to be made up of an infinite mixture of 

normal distributions.  This allowed the aspects or factors of asthma to be visualised in a way 
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not seen before and also allowed the latent variables to be separated into distinct sub-

groups or clusters. 

Using the DPNMLVM it was also possible to gain inference on the sub-groups on the factors 

based on the probability of being in a mixture with another patient.  The sub-groups making 

up the distribution were coupled with a statistic to determine the strength in the 

believability of the sub-groups this was adapted for Bayesian analysis from a frequentist 

statistic called the dip statistic which tests multimodality of a measurable outcomes 

distribution.  Using the mean dip statistic it was possible to confirm if clusters found on an 

independent factor were genuine sub-groups or if they were part of a bigger non-normal 

distribution that was approximated by a mixture of normal distributions.  Comparisons were 

made with the truncated version of the DPNMLVM to determine if similar factors and 

clusters could be found and if binary variables could be added in the analysis.  The truncated 

version of the DPNMLVM was also used to determine clusters within each arm of a clinical 

trial based on two time to event variables and a binary variable. 

11.2.2 Clinical Work 

Two severe asthma datasets were analysed, the Pranab Haldar dataset and the Brompton 

Blood dataset.  Distinct clusters were found over these dataset for the full Dirichlet model, 

and these were a high eosinophilic group and an average eosinophilic group in the 

Brompton Blood dataset and an early onset highly atopic cluster with a corresponding late 

onset less atopic older cluster in the Haldar dataset.  These sub-groups have also been seen 

in the literature. 

Clusters were also found that represent an obese mainly female and a non-obese grouping 

and also an airflow obstructed group corresponding with neutrophilic inflammation and 
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greater symptoms along with an opposing group that had less symptoms and a better FEV1, 

with less neutrophilic inflammation.  Although these clusters are seen in the literature when 

found on independent factors it was found that they made up a larger uni-modal non-

normal distribution rather than distinct clusters, although these clusters might have been 

under-powered.  Also worth noting is that a large amount of the non-distinct clusters could 

be explained by gender differences, highlighting differences in asthma between male and 

females in this analysis.  However when applying the truncated DPNMLVM the clusters 

found over factors were similar with two clusters being found over the eosinophilic factor, a 

high eosinophil group who were older and slighter more obese and a younger group that 

were less eosinophilic.  No distinct clusters were found over JACS score in both the full and 

truncated Dirichlet process.  The truncated Dirichlet process however found distinct clusters 

on factor 4 the BMI/neutrophil factor but these were significant for percentage neutrophils 

in sputum only.  Which evidence suggests that the variation on factor 4 accounted for a 

larger part of the neutrophilic variation rather than the BMI variation in the truncated 

model.  Whereas the opposite was true in the full Dirichlet model with the BMI variation 

being dominant over the neutrophilic variation. 

In addition to the asthma datasets a clinical trial analysis was carried out using a truncated 

Dirichlet Process Normal Mixture Latent variable Model DPNMLVM using three clinical 

outcomes for a cancer clinical trial to determine the presence of sub-groups.  This resulted 

in three distinct subgroups being found in the new drug arm of the clinical trial which had 

significantly different survival times and were also significant for two biomarkers.  
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11.3 Conclusions 

11.3.1 Statistical 

The DPNMLVM works well at determining the variation patterns of a large dataset, it can 

determine which variables are correlated with each other to make up specific factors and 

then determine what the underlying distribution of the factors will look like displaying these 

as uni-variate density distributions.  Once the density distribution have been found and 

displayed statistics can be extracted and cluster membership can be found on each 

independent factor.  Thus extending both factor analysis models and clustering 

algorithm/mixture models.  Once found the clusters can be examined to determine if they 

make up a non-normal distribution or are in fact distinct sub-groups.   

Although a good method the model is labour intensive to set up and can take a long time to 

converge and also suffers with difficulties in storing the results due to the large amount of 

space needed to store the many iterations and parameters.  A better method is the 

truncated DPNMLVM which performs just as well despite being an approximation but can 

be implemented in less time due to its being able to be coded in the free Bayesian software 

WinBUGS or OpenBUGS.  The advantages such as the automatic calculations of posterior 

distributions and the use of a simplified coding language and ease of using the truncated 

DPNMLM outweigh the disadvantages of using an approximation as specificity analysis can 

be carried out on datasets to determine an adequate upper limit of finite mixtures to obtain 

a good approximate to the infinite mixture model.  Problems with both models include how 

many factors to determine a prior as these cannot be calculated in the model, but can be 

based on previous classical factor analysis.  Problems in both the truncated and full 

DPNMLVM are that they can both produce slightly differing solutions.  The solutions can be 

seen as comparable but may change slightly due to the variance allocation to factors within 
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the different models.  As, if we have two manifest variables that are partially correlated and 

we are explaining them as a factor within  a model, a choice is made in the model of how to 

express this common variation with how much emphasis is on each of the manifest variable 

variation. 

11.3.2 Clinical  

The model can be used to determine the patterns of variations seen when describing 

complex disease processes using measurable outcomes of the disease.  The model 

determines whether the variables are correlated in processes by grouping the variables 

together that are similar.  The model then looks to find sub-groups in the factor/process 

returning these clusters and determines whether the clusters are distinct sub-groups or 

represent non-normal severity over the factor approximated by normally distributed 

mixtures.  The methods produced clusters and factors that have been found in the severe 

asthma literature confirming the model methods.  The modelling concluded that we can 

group severe asthma into the following sub-groups which may not be mutual exclusive. 

 Late onset, non-atopic, older 

 Early onset, atopic, younger 

 High eosinophilia 

 Average eosinophilia 

The following clusters have been reported in the literature but when detected using the 

DPNMLM were found to be a splitting up of a bigger non-normal distribution approximated 

by a number of normal mixtures/clusters but the diptest may have been underpowered to 

detect these. 

 Obese, mainly female 
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 Obese, younger with better FEV1/FVC 

 Low eosinophilic group 

 High neutrophil inflammation, airway obstructed  

The Truncated DPNMLM produced the following clusters  

 High eosinophilia 

 Average eosinophilia 

 High neutrophilia 

 Low neutrophilia 

These clusters had a significant dip test. Many clusters were determined over the atopic 

factor but were found to represent the discrete nature of the manifest variables and not 

actual clusters like in the Full Dirichlet process which is a disadvantage of using the 

truncated DPNMLM as only continuous data can be treated in a continuous way and 

discrete variables however similar to continuous data should not be used. 

11.4 Further directions 

11.4.1 Statistical 

The model relies on a classic factor analysis to determine the correct number of factors, this 

could be overcome by applying reversible jump Monte Carlo Markov Chain (MCMC) 

algorithms to jump between models with differing factor numbers, but this would add 

another layer of complexity to an already complex model, but it would be interesting to see 

if the reversible jump techniques could work in this case or some other method of model 

comparison for a Bayesian factor analysis model could be adapted for the semi-parametric 

factors .  The factors in the model are all independent and it would be interesting to adapt 

the model to correlated factors and if possible to determine relationships between the 
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factors such as in structural equation modelling so that paths of latent variable and manifest 

variables could be linked together and examined for different clusters.  

The model could be adapted to allow other ways of using different link functions so that any 

type of variables could be used not just normally distributed ones, the truncated DPNMLVM 

has gone part way with this by applying the techniques to both binary and time to event 

data, but it would be good to add count data to the list of variable types that the model 

could handle. 

Another way of possibly extending the algorithm is to allow the clustering to be over 

multiple factors, but this would sacrifice the visualisation of a factor’s mixtures and there is 

no multi-dimensional version of the dip statistic to test for multi-dimensional multimodality, 

which is again another area that could be looked into to adapt the dip statistic to more than 

one dimension. 

11.4.2 Clinical 

The immediate further investigation would be to carry out sub-group analysis on a larger 

dataset that had a larger number of patients so that the cluster factor analysis was well 

powered by having hopefully more than 200 patients as we have seen on smaller datasets 

some clusters are very close to the significant dip test and it is difficult to confirm if they are 

genuine clusters or not, having more patients would hopefully give a clearer indication one 

way or the other.  Also datasets with higher number of variables and different variables to 

improve factor and cluster establishment and annotation would also be interesting.  The 

inclusion of different measured variables would be a good way of investigating emerging 

new variables to determine whether they are measuring similar asthma pathologies as other 

variables or are measuring something new that could further aid diagnosis. 
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A key issue in large datasets such as the severe asthma datasets used here is that of missing 

data.  In the datasets used here there was a small amount of missing data, this was dealt 

with by simply deleting the relevant patients form the dataset but imputation methods 

could be used possible incorporating the clusters to predict the missing outcome to use all 

of the dataset and possible obtaining a meta cluster membership from several multiple 

imputed datasets.  

Another key future issue is what to do with the clusters once established and how can they 

be used in a clinical setting.  They could possibly be used to predict outcomes for patients 

using longitudinal data or predict which treatments may be suitable for which cluster.  What 

would be interesting is to carry out a clinical trial using a cluster related treatment and a 

control for each cluster to determine if such cluster related treatments could work.  Another 

adaption could be to use the clusters as nominal traits in a genome wide association study 

to determine genetic biomarkers for the sub-groups given that the sub-groups used are not 

wholly based on environmental exposure.
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