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Positively charged helium clusters, also called ‘snowballs’, have been investigated within normal liquid helium. Thermodynamic
state equations for ionic helium clusters in liquid helium have been developed, allowing us to discern the ‘hydrodynamic’ radius
for a wide range of hydrostatic pressures and temperatures.The mobilities derived from the cluster sizes using Stokes law match
experimental data with unsurpassed accuracy. For low pressures the compressibility of the cluster ions was found to be distinctly
larger than the compressibility of solid helium suggestingthat in this pressure range clusters are fully or partially liquid.

1 Introduction

The investigation of ions in liquids is of considerable interest
for the understanding of interactions in bulk liquids1,2 as well
as for applications, for examples ionic liquids3–5 or chemical
analysis6,7. Attractive interaction between ions and the sol-
vent liquid gives rise to the formation of clusters whose size
can be elucidated by measuring their mobility. The modelling
of ion mobility is nevertheless a great challenge since fluid
properties have to be taken into account8,9.

Liquid helium has played a special role in this context be-
cause it can serve in many respects as a model. Compared
to other solvents it is practically free of foreign impurities.
Furthermore, it is non-polar, consists of atoms with few elec-
trons and therefore appealing for theory. In addition, liquid he-
lium exhibits quantum effects which can be explored through
solute-solvent interaction at the nanoscale.

In view of the high purity of liquid helium and its practi-
cality, helium ions are among the first choices as solutes. Ion-
isation of liquid helium results in the formation of positively
charged helium clusters, commonly referred to as ‘snowballs’,
whose formation is driven by the balance of electrostrictive
attraction10–12 and short-range repulsive exchange forces13.
The existence of snowballs became first evident in mobil-
ity measurements about 50 years ago when very low mobil-
ities associated with unusually large hydrodynamic radii of
the charged particles were discovered12. Atkins calculated the
size of a snowball by depicting the liquid helium as a classi-
cal dielectric continuum and by postulating a surface energy
equivalent to the surface tension of liquid helium11. The high
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pressure arising from electrostriction suggested a solid struc-
ture in the immediate vicinity of the positive ion in the cen-
tre of the cluster. Mixed quantum/classical dynamics calcu-
lations and, more recently, density functional theory studies
identified the linear triatomic He+3 ion as the centre of an iso-
lated snowball cluster14,15, which should have an effect on the
mobility16. The picture of a solid snowball forming around
a positive core was also found valid for foreign ions and has
received both experimental and theoretical support: on theex-
perimental side the long life-time of nuclear spin polarised
12B+ and 8Li+ ions injected into liquid helium17 has been
attributed to helium snowballs forming around the positively
charged foreign ion; the observation of magic numbers in the
time-of-flight mass spectrum of HenCs+ and HenAr+ clus-
ters ejected from large doped helium droplets18,19showed the
prevalence of specific – hence solid – structures; on the the-
oretical side, Diffusion Monte Carlo (DMC) calculations for
small 4He clusters containing alkali ions revealed solid-like
snowballs surrounded by a liquid-like environment of addi-
tional solvent atoms20–22. Also radial density profiles from
DMC calculations for Pb2+Hen for several relevant sizesn
show peak helium density values much higher than the den-
sity of solid helium23. An investigation of the photoionisation
of Rb and Cs residing at the surface of helium droplets using
density functional theory showed that both solvated and des-
orbed ions form snowball structures24.

Helium snowballs are relevant to several scientific domains:
they constitute probes for exploring the normal liquid and su-
perfluid phase of helium10,12,25, they are seeds for the solid-
ification of superfluid helium26, they are observed as reac-
tion products in gas phase ionisation experiments using he-
lium droplet beams18,27–29 and they are model systems for
ion-molecule interaction30 and solvation chemistry. Recently,
it was pointed out that snowballs in liquid helium might be dy-
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namical objects that on the one hand have a well-defined mass,
but which on the other hand allow exchange of solute and sol-
vent helium atoms23. Studying helium ion clusters might ul-
timately add to a better understanding of the solvation of ions
in polar solvents of more practically relevant systems.

In view of the relevance of helium snowballs in various
fields the availability of accurate size data is imperative.De-
spite the popularity of the Atkins model, its ability to describe
the mobility of positive helium ions in liquid helium is lim-
ited31, particularly at low and high hydrostatic pressures32.
This is illustrated in Fig. 1 which shows measured and simu-
lated mobilities using the Atkins model for liquid helium ina
wide range of pressures from 0.1 MPa to 6 MPa for isotherms
at 2.6, 3.0 and 4.2 K. Since the surface tension of helium
at the snowball-liquid interface is unknown the calculation
was performed for two limiting cases usingσ = 0 mN/m and
σ = 0.1 mN/m as surface tension coefficients. Significant de-
viations are observed. Irrespective of the choice of the param-
eters the calculated mobilities shown in Fig. 1 represent the
best fit over a large pressure range one can obtain.

Several reasons for the observed deviations can be identi-
fied: for the fluid Atkins assumed a radially decreasing den-
sity, produced by the radially decaying electrostrictive forces.
All other relevant quantities such as viscosity were derived
from these densities and consequently showed the same radial
dependence. A consequence of the assumption of a radial de-
pendence of the fluid properties is that the drag force is no
longer given by Stokes law and a new solution of the Navier-
Stokes equations has to be found. Apart from this conceptual
problem, the mobilities depend on the surface tension which
is only defined at the gas-liquid coexistence curve.

The present paper addresses the issue of accurate predic-
tion of the mobility of positive ions in liquid helium and its
hydrostatic pressure dependence, taking fluid properties fully
into account. Previously published ion mobility data is revis-
ited and compared with calculated mobility using a thermody-
namic approach and the free volume model. Earlier work on
electrons in liquid, supercritical and gaseous helium adopting
this approach has produced excellent agreement with experi-
mental data, reproducing the variation of mobility with pres-
sure for the first time correctly36,37. The method rests on state
equations for the mixed system of a small concentration of
snowballs in liquid helium. In doing so, the entire fluid proper-
ties over a wide range of temperatures and pressures are taken
into account, whereas unknowns in the Atkins model such as
structure of the snowball, properties of the liquid-solid inter-
face and of the surrounding liquid are bypassed. The free-
volume model is then employed to derive the hydrodynamic
radius and the mobility via Stokes law. While the form of the
state equation has been chosen to reproduce experimental data
most accurately, the equations contain parameters which are
calibrated using experimental mobility data on one randomly
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Fig. 1 Experimentally derived mobilities of positive ions in liquid
helium (symbols) at 2.63 K33, 3 K34 and 4.2 K34. The first data
point of each graph lies on the saturated vapour-pressure (SVP)
curve and in all cases it has been taken from Schwarz35. The dashed
dotted lines show mobilities calculated using the Atkins model for
the respective experimental conditions. For each temperature two
calculations were performed usingσ = 0 mN/m andσ = 0.1 mN/m
as surface tension coefficient. The calculated mobilities deviate at
low and high pressures irrespective of the chosen surface tension
coefficient. The variation with pressure deviates consistently from
the experimental data.

chosen isotherm as benchmark. The calculated mobilities on
all other isotherms are found to match experimental data very
well – much better than the Atkins model.

Furthermore, the simulated pressure dependence of the hy-
drodynamic radius in the normal liquid phase of helium is em-
ployed to calculate the isothermal compressibility, assuming
spherically shaped clusters. The calculated compressibilities
are smaller than those of pure liquid helium at similar temper-
ature but larger than the reported values of the solid phase of
pure helium, indicating that the solid structure of the snow-
balls is not fully developed across the clusters.

2 Method

2.1 Modelling mobility and hydrodynamic radius

2.1.1 The free volume model.The free volume model
is used to derive the size of an unknown foreign microscopic
object that coexists in thermal equilibrium at low concentra-
tion. In the past, the free volume concept has been applied
successfully to model transport properties of fluids38–40. Gee
and Freeman have used it to calculate the mobility of elec-
trons and ions in alkanes and in carbon disulphide41,42. In the
present paper Stokes law is used to relate the mobility to a
size. The size of an ion is then modelled separately from the
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viscosity.
A key assumption is the proportionality of the volume occu-

pied by an unknown foreign object and the volume(V −b)/N
available to single helium atoms. Here,V designates the to-
tal volume of an ensemble ofN helium atoms andb the co-
volume of the helium. This proportionality means that the
volume of the foreign object changes in the same fashion as
the volume,V , that is available to the helium. Strictly speak-
ing, the co-volume,b, of all hard-sphere helium atoms in the
ensemble has to be replaced by a different co-volumeb′ be-
cause the foreign particles contribute to the co-volume with
a different hard sphere volume, however this contribution is
negligibly small. The free volume model introduces a new
quantity, the free volumeVf which is equal to the difference
V − b′ and for which the state equation is formulated. We
write for thefree volume Vf = V − b′ and for the volume of a
snowballVion

Vion = const
Vf

N
(1)

where const is the proportionality constant.
For small concentrations of foreign particles the total vol-

ume of the system will not change much and we can relate
the volume occupied by the impurities toP andT thereby es-
tablishing a state equation for positive ions in normal liquid
helium.

2.1.2 Development of thermodynamic state functions.
A thermodynamic state function relatesP, V , andT such that
for a given pair of the three variables the third can be cal-
culated. Any equation that reproduces experimentally deter-
mined relations betweenP, V , andT is valid. In our approach,
the reference for the validity of the thermodynamic state equa-
tions for positive ions in liquid helium is the experimentally
determined mobility. An important conclusion from this ap-
proach is that all thermodynamic state equations that fulfilthis
requirement have to be valid because they show the correct
variation of volume or density, respectively, with pressure and
temperature.

For the development of state equations we were guided by
the experimentally determined mobility of positive ions innor-
mal liquid helium. Inspection of the variation of the mobility
with pressure and temperature suggested a van der Waals-type
relation between free volume, pressure and temperature as fol-
lows.

Vf =
NkBT
P+Π

(2)

HerekB is the Boltzmann constant, andΠ is the internal pres-
sure that accounts for all attractive interactions, i.e. between
the impurities and the pure helium atoms.

If we assume the region occupied by the foreign object to
be spherical and of volumeVion = (4/3)πr3 we can express the
effective snowball radius,r, by

r = Cion
3

√

3
4π

kBT
P+Π

(3)

It is useful to consider a variable,r, and an invariable part,
a, of r = r′ − a to account for the hard-sphere radius of the
unsolvated helium ion. For the hard-sphere radius we find a
good fit fora = 0.74Å, a result that is further supported from
an investigation of positive ion mobility in supercriticalhe-
lium which will be presented in a forthcoming publication.

Consequentlyr′ − a represents the snowball radius in ex-
cess of the radius of the ‘naked ion’. For convenience, we
write Cion instead of 3

√

1/const where the indexa will change
if another foreign particle with a different interaction iscon-
sidered.

Finding the snowball radiusr reduces to the problem of de-
terminingCion andΠ, which is achieved by calibration of the
parameters of the state equations to the hydrodynamic radius
derived from experimentally determined mobility and by de-
veloping an expression for the internal pressureΠ in Eq. (3)
that shows consistent variation of the mobility withP, T and
ρ . For positive ions in normal liquid heliumCion is found
to be largely independent of the temperature and the calibra-
tion of Cion has to be performed only once, on one isotherm.
For calibration, we used the data from Meyer34 and found
Cion = 5.102. This value agrees within 20 % with the mo-
bility reported by Schwarz35 and Kuchnir43 for the liquid co-
existence line (saturated vapour pressure line) which is also
within the sum of the errors reported by both authors.

After Cion and the parameters inΠ have been determined,
Eq. (3) can be used for calculating the radii,r. Since the dy-
namic viscosity of helium,η , is well documented for a wide
pressure range and temperatures in normal liquid helium44,
it is possible to calculate the mobility via the Stokes-Einstein
equation (4)

µStokes =
e

6πrη
(4)

2.1.3 Internal pressureΠ and hydrodynamic radius r
of positive ions in liquid helium. All equations describing
stable thermodynamic systems must have a first-order propor-
tionality of Π with ρ2. Higher-order corrections are used to
account for specific interactions of the system. For the normal
liquid phase of helium we find best match with experimen-
tal data for an expression forΠ that is directly proportional
to αρ2 over a very large range of pressures and temperatures.
Only for high pressures close to the solidification line, andfor
temperatures close to theλ -line higher-order corrections are
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Fig. 2 Mobility and hydrodynamic radius of positive ions in the low
temperature region of normal liquid helium at 2.2 K, 2.63 K and
3.0 K. The experimental data has been taken from Meyer et al.34

and Keshishev33. The first point of each graph lies on the saturated
vapour pressure curve and is always from Schwarz35. Notice that
the deviations of the theoretical curve from the experimental data
are of the order of 0.1nm.

needed.

Π(ρ ,T ) =










αρ2

[

1−
(

ρ−ρsat
ρsol−ρsat

)
T

Tλ ,max
ϕ
(

ρ
ρλ

)]

if ρ ≤ ρsol

0 if ρ > ρsol

(5)

with

ϕ
(

ρ
ρλ

)

= 5−
4

1+exp

( ρ
ρλ

−1

∆

) , (6)

α = 0.00796 bar m6/kg2 and∆ = 0.00317. ρsat , ρsol andρλ
are functions of the temperature and represent the densities at
saturated vapour pressure, solid helium and theλ -line, respec-
tively. ρ has to be entered in kg/m3.

The correction with respect to strict proportionality toαρ2

is dominated byϕ as per Eq. (6). A comparison ofΠ with and
without correction term is shown elsewhere45.

3 Results and discussion

Figs. (2) and (3) show the pressure dependence of mobility,
µ , and radius,r, for normal liquid helium at temperatures
of 2.2 K, 2.63 K, 3.0 K, 4.2 K as measured by Meyer34 and
Keshishev33 For all temperatures the mobilities decrease with
increasing pressure.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.2

0.3

0.4

0.5

0.6

 

 

r + (
nm

)

P (MPa)

 Keshishev 4.2 K
 Theory 4.2 K

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

 

 

µ + (
cm

2 .V
-1
s-1

)

 Keshishev 4.2 K
 Meyer 4.2 K
 Theory 4.2 K

Fig. 3 Mobility (upper panel) and hydrodynamic radius (lower
panel) of positive ions in the high temperature region of normal
liquid helium at 4.2 K. The experimental data has been taken from
Meyer et al.34 and Keshishev33. The first point of each graph lies on
the saturated vapour pressure curve and is always from Schwarz35.

The radii shown were deduced from the measured mobil-
ities using Eq. (4) and compared with calculated radii using
Eqs. (3) and (5). The radii decrease as well, up to a turnaround
which for temperatures at 2.2 K lies at pressures of about
2.5 MPa, which is close to the melting line of solid helium.
For temperatures at 4.2 K this turnaround is more shallow and
lies at 9 MPa. We attribute this increase to a sensitivity of our
state equations to the liquid-solid phase transition, which is
affected by the presence of ions26. A similar behaviour was
observed for electrons36. The decrease of the radii with in-
creasing pressures is attributed to compression.

For known particle densities inside spherical snowballs it
is possible to associate the radius with the content of he-
lium atoms in the cluster. The particle densitiesn are not
known but can be approximated between a higher limit of
densities reported for solid helium (0.03039Å−3 at 2.18 K,
2.5 MPa) and a lower limit of densities reported for liquid he-
lium (0.02194Å−3 at 2.18 K, 0.006 MPa). Along the satu-
rated vapour pressure line the radius,r, varies from 0.53 nm
to 0.68 nm. UsingN = nV = n 4

3πr3 we obtainN = 14 and 19
atoms for r = 0.53 nm andN = 29 and 40 atoms for r = 0.68 nm
in the lower and higher number density limit, respectively.

For all temperatures the agreement between theoretical mo-
bilities and radii derived through Equation (3) and experimen-
tal data is very good. We note that in the low pressure region
at 2.2 K the experimental data is scattered, making it difficult
to deduce the compressibility of the snowball-in-helium sys-
tem. Summarising, the evolution of hydrodynamic radius with
pressure can be interpreted that even at the lowest pressures of
liquid helium ion-clusters are fully developed.
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3.1 Interaction of positive snowballs

Equations (2) and (3) represent a state equation for positive
ions in normal liquid helium in the limit of small concentra-
tions of ions. For such small concentrations the state equation
is representative for interactions between ions and their near-
est neighbours which are neutral helium atoms. Furthermore,
the state equation represents the interaction of the entireion
cluster with helium atoms.

The good fit of a van der Waals type state equation char-
acterised by aΠ term proportional toαρ2 is remarkable in
several ways. The non-covalent interaction energy between
an ion and a neutral, polarisable atom or molecule should be
governed by ar−4 dependence on their separation,r. The pro-
portionality of theΠ term to αρ2 shows thatr−6 scaling is
dominant in the interaction between an ion cluster and helium
atoms and that electrostriction, while being the driving force,
is not visible in the interaction potential of an ion clusterand
the neutral helium atoms within the liquid phase.

The value forα = 0.00796 bar m6/kg2 found for the van
der Waals equation for positive ion clusters in normal liquid
helium is 5.7 times larger than that of pure helium (αpureHe =
0.0014 bar m6/kg2 as derived from critical parameters), re-
flecting the solvation of positive ion clusters in helium.

Furthermore we note that a predominant proportionality of
Π to αρ2 as expressed through (5) was not observed for elec-
trons in normal liquid helium36, suggesting a sharper inter-
face of positive ion clusters than for clusters forming around
solvated electrons in helium.

3.2 Structure of the Atkins’ snowballs

The notion of a solid snowball surrounding a positive ion em-
bedded in liquid helium is very well established11,17,19,22,23. It
has been suggested that increased pressure may cause struc-
tural transitions46. To test this hypothesis we will analyse
the pressure dependence of the simulated hydrodynamic radii
and calculate the compressibilities of the snowballs as a func-
tion of hydrostatic pressure. Inspection of the compressibility
shows that snowballs also exhibit liquid-like behaviour.

The isothermal compressibilityβ is defined as

β =−
1
V

(

∂V
∂P

)

T
(7)

Assuming spherical snowballs the compressibility can be
readily derived from the derivative of the hydrodynamic ra-
dius. Compressibilities derived from the steeply decreasing
radius show that for lower pressures the ion-clusters behave
liquid-like.

Compressibilities of liquid and solid helium are shown in
Table 1. The compressibilities of He+

n clusters in liquid helium

Table 1Representative values ofβ for the liquid and solid phases of
helium as reported in47,48. The value at 0 K has been interpolated
from data; the meanβ at 1.1 K was measured between the solidus
and 66 atm.

Phase β (Pa−1) (T ,P)
liquid 1.16×10−7 3K, 4.5 atm
liquid 3.80×10−6 5K, 2 atm
solid 1.7×10−8 0K, 66 atm
solid 3.1×10−8 meanβ at 1.1 K

are in the same order of magnitude as the compressibilities re-
ported for liquid helium at 3-5 K47 and superfluid helium49,50,
and are far higher than those of solid4He48,51:

Fig. 4 shows a comparison of the compressibility of snow-
balls in liquid helium for two different temperatures. We have
also indicated the lowest compressibility observed for liquid
helium and the highest compressibility observed for solid he-
lium. We can observe that for several thermodynamic states
the compressibility of the snowball lies above the lowest re-
ported of the liquid phase, and for a few others it lies below,
indicating pressure regions where the snowballs are liquid-like
or solid-like, if the compressibility is taken as a criterion of
solidity/liquidity of the snowball. The region on the 4.2 K
isotherm between the lowestβ in the liquid and the highestβ
in the solid can be taken as the fusion region at this tempera-
ture and the error for this assignment is given by the range of
pressures spanned byβ (P) in the transition region.

Contrasting the curves for 2.63 and 4.2 K suggests that the
phase transition between solid and liquid-like phase depends
on the temperature. Higher temperatures facilitate melting.
Melting is also facilitated by the rather small size of the clus-
ters. Clusters exhibit lower melting temperatures than their
bulk counterparts52.

Hence, the calculated compressibilities support the idea of
liquidity of the He+n clusters or at least of parts of the clus-
ter53. A liquid cluster or even a cluster with a liquid surface
would allow the helium atoms to change their role as solvent
or solute particles. Such dynamical effects are expected inhy-
drated ions.

4 Conclusions

The pressure dependence of positive ion mobility in nor-
mal liquid helium has been modelled for several isotherms
by adopting a thermodynamic approach. A van der Waals-
type state equation, exhibiting proportionality between inter-
nal pressure,Π and the densityρ , was found to describe the
variation with pressure in the best possible way. This be-
haviour is different from what we found earlier for electrons in
normal liquid helium and suggests a sharp interface between
cluster and fluid. By adopting the free-volume model the hy-
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Fig. 4 Isothermal compressibility of snowballsβ as a function of
pressure for the isotherms at 4.2 K and 2.63 K compared with that of
liquid and solid helium. The lowest measuredβ in the liquid phase
and the highest measuredβ in the solid phase from Table 1 are
indicated. A phase transition in the intermediate region takes place
from the liquid to the solid phase of the snowball.

drodynamic radius of the positive ions were calculated giv-
ing an account of the size of the snowball-clusters and their
mobility, which was found in very good agreement with ex-
periment. This knowledge enabled us to calculate the isother-
mal compressibilityβ of the snowballs as a function of pres-
sure. Inspection ofβ revealed liquid-like features for low hy-
drodynamic pressures up to about 0.5 MPa. The liquid-like
state of ion clusters, contradicting their common designation
as ’snowballs’, was attributed to their elevated temperature of
2 to 4 K and the fact that clusters show lower melting temper-
atures than their bulk counterparts.

The excellent agreement between the calculated and exper-
imentally determined mobilities suggests that the thermody-
namic state equation found for the snowball-helium mixtures
is valid and that mobility measurements can be used to vali-
date thermodynamic state equations of other mixtures of ions
and solvents. Conversely, mobility data can be predicted for
conditions that are experimentally not accessible. We expect
that a similar form ofΠ is suitable for similar snowball-like
systems, most notably those composed of foreign ions within
a cluster of helium and encourage measurements of their mo-
bility to test this hypothesis.

Furthermore, we expect state equations describing
snowball-like systems composed of other solvents, such as
the heavier rare gases, i.e. Ne+Nen, Ar+Arn etc. to appear
similar to liquid helium. Ultimately, our method has potential
to be extended to these and other systems.
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