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Abstract 

i 

Thesis abstract 

A significant challenge to the petrophysical evaluation of shale gas systems can be 
attributed to the conductivity behaviour of clay minerals. This is compounded by 
centimetre to sub-millimetre vertical and lateral heterogeneity in formation geological 
and therefore petrophysical properties. Despite this however, we remain reliant on 
Archie based methods for determining water saturation (Sw), and hence the free gas 
saturation (1-Sg) in shale gas systems. There is however significant uncertainty in both 
how resistivity methods are applied and the saturation estimates they produce, due 
largely as Archie parameter inputs (e.g. a, m, n, and Rw) are difficult to determine in 
shale gas systems, where obtaining a water sample, or carrying out laboratory 
experiments on recovered core is often technically impractical. 

This research assesses the geological implications for, and controls on, variations in 
pseudo Archie parameters in the Bossier and Haynesville Shale Formations in the 
northern Gulf of Mexico basin. Investigation has particularly focused on the numerical 
analysis and systematic modification of Archie parameter values to minimise the error 
between core SW (Dean Stark analysis) and computed Sw values. Results show that the 
use of optimised Archie parameters can be effective in predicting SW, particularly in the 
Haynesville formation, but identifies systematic bias in generated Archie parameters 
that precludes their accurate physical interpretation. Analysis also suggests that 
variability in the resistivity (Rt) log response is the principal source of error in Sw 
estimates in the Bossier Shale. Moreover, results suggest that where clay volume 
exceeds 28%, the resistivity response becomes increasingly variable and elevated, 
indicating an apparent clay associated ‘excess resistivity’. This is explained by a 
geologically consistent model that links increasing clay volume to bulk pore water 
freshening, supported by empirical adaptations that allow for improved Archie 
parameter selection and a further reduction in the error of Sw estimates.  
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  Chapter 1

Introduction 

The following chapter introduces the thesis. It provides background information 

outlining the industry and academic interest in furthering our understanding of the 

petrophysical properties of shale gas reservoirs. It describes the key aims and 

objectives of the research undertaken and outlines the thesis chapter structure. This 

chapter is split into the following sections: 

1.1 Background 

1.2 Aims and objectives  

1.3 Thesis structure 

All scientific notation and mathematical symbols used in the thesis are summarised in 

the notation index (page x), with ancillary material located in the appendices. 
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1.1 Background 

Over recent decades rising global energy demand and advances in our geological 

understanding and technical capability have fuelled increasing investment in 

‘unconventional’ shale gas reservoirs. Improved accessibility, coupled with the globally 

widespread abundance of shale (also referred to as mudstone), which comprises 45 to 

65% of the stratigraphic record (Macquaker and Adams, 2003; Wignall, 1994), has 

generated a surge in shale gas exploration, production and hopes for improved 

domestic energy security. Despite this however, the petrophysical properties of shale 

remain something of an enigma, and we are yet to fully understand how shale 

geological properties (mineralogy and fabric) influence shale petrophysics. This lack of 

understanding generates uncertainty in formation evaluation methods leading to 

inaccuracy in resource potential and gas in place (GIP) estimates. For instance, the 

British Geological Survey estimate the GIP for central Britain to be between 822 tcf to 

2,281 tcf of technically recoverable reserves (Andrews, 2013). To place this in 

perspective, if just 0.1% of the upper GIP estimate is proven to be economically 

recoverable, it would equate to 2.3 years of domestic UK gas consumption (based on a 

2009 estimate of UK gas consumption [100 bcm] (Yeo, 2011)). The economic drive to 

improve our petrophysical understanding of shale gas systems is therefore substantial.  

One of the most significant challenges to the petrophysical evaluation of shale gas 

systems can be attributed to the conductivity behaviour of clay minerals and entrained 

clay bound waters. This is compounded by centimetre to sub-millimetre vertical and 

lateral heterogeneity in formation composition and structure, where despite major 

variation in formation geological and therefore petrophysical properties, we remain 

routinely reliant on conventional, so called ‘shaly sand’ resistivity methods for the 

determination of water saturation (Sw), and hence the free gas saturation (Sg) in shale 

gas plays. The application of resistivity based methods is the subject of continuing 

debate, and there is often significant uncertainty in both how they are applied and the 

saturation estimates they produce. This is partly a consequence of the historical view 

that "the quantification of the behaviour of shale conductivity….has only limited 
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geological significance" (Rider 1986). A view that has contributed to a separation in 

our geological understanding of shale gas systems and the petrophysical rationale and 

methods employed to evaluate them.  

Sw is most commonly derived using wireline logs based on Archie’s equation, which 

relates the electrical resistivity of a rock (Rt) and its saturating fluid (Rw) to its porosity 

(ɸ) and Sw as developed for clean, clay free, siliciclastic rocks (Archie 1942): 

Sw= (
aRw

ɸt
mRt

)

1

n

 
(1.1) 

where m is the porosity exponent, n is the saturation exponent and a is the tortuosity 

exponent. In reservoirs containing a significant clay component, numerous derivatives 

of Archie’s equation called ‘shaly sand’ methods have been developed, and attempt to 

compensate equation 1.1 for the electrical conductivity of shale (of which clay is a 

primary component), incorporating factors related to shale distribution and additional 

terms such as clay bound (RClay) and clay free fluid (Rw) resistivities. When applied in 

shale gas systems, shaly sand methods therefore incorporate additional assumptions 

(clay type/distribution style, RClay, Rw) within a highly complex and heterogeneous 

petrophysical system. In addition, Archie parameters (a, m, n), which can be routinely 

derived in conventional reservoirs, are also difficult to determine, as obtaining a water 

sample, or carrying out laboratory experiments on recovered core is often technically 

impractical (Bust et al., 2011). As a consequence, the efficacy of complex shaly sand 

evaluation methods is questionable, and petrophysicists increasingly rely on optimised 

approaches using Archie’s Equation. Where, with little or no information driving the 

selection of Archie parameters (a, m, n and Rw), parameter selection is data led and 

reliant on pseudo-Archie parameters modified to generate Archie Sw estimates (SwA) 

that provide a good match to ‘as-received’ Dean Stark core water saturations (SwC) 

(Bust et al., 2011; D. S. Chen et al., 1995; H. C. Chen et al., 1995; Chen et al., 2002; 

Cluff, 2012; Maute et al., 1992; Worthington, 2011a, 201`1b, 2009, 2007). In other 

words, Archie parameters in shale gas systems are typically determined by core-

wireline integration and calibration, with limited understanding of the geological 
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implications and controls on variations in pseudo Archie parameters and formation 

petrophysical properties. This thesis aims to investigate the influence of geological 

factors, including formation composition, heterogeneity and structure on those 

petrophysical properties that contribute to SwA estimation by electrical methods in 

shale gas systems. 
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1.2 Aims and objectives 

The influence of geological factors, including formation composition, heterogeneity 

and structure, on those petrophysical properties that contribute to SwA estimation by 

electrical methods in shale gas systems are poorly understood. Through developing 

this understanding, the overall aim of this study is to contribute towards a geologically 

reasoned and informed approach to Archie parameter selection, advancing our 

predictive capability where petrophysical properties may be linked to geological 

observations in the absence of core data. 

This study focuses on core and wireline data for the Bossier (BSR) and Haynesville (HY) 

Shale Formations, commercial shale gas plays in the northern Gulf of Mexico (GOM) 

basin. The approach taken has been to develop a series of numerical models to 

optimise and test the response and variation in residual error between core Sw (SwC) 

data and calculated SwA values generated using a generalised Archie type equation (see 

section 4.1) for a wide range of Archie parameter inputs. The results of this analysis, in 

combination with the available core and wireline data, are then used to address the 

following research questions: 

I. The variability in optimiser model output must be linked to the heterogeneity 

and inter-relationships of the petrophysical inputs (ɸtC, Rt, SwC). In turn, the 

petrophysical inputs are an expression of the interaction and distribution of 

formation mineral and fluid components as determined by depositional and 

diagenetic processes.  

a. How does variability in the error of SW model outputs for BSR and HY 

data link to the variability in underlying formation mineralogical and 

petrophysical properties as represented within the wireline and core 

data? 

b. What are the principle geological controls on model accuracy? 

II. The modelled results are based on a modified Archie’s equation (equation 4.1), 

for which the principal underlying petrophysical mechanism is the negative 

relationship between the volume of the saturating electrolyte and formation 
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resistivity (Archie, 1942). Clay minerals are known to affect this relationship by 

reducing the resistivity, or inversely, by providing a source of excess 

conductivity (Hill and Milburn, 1956; Patnode and Wyllie, 1950; Winsauer and 

McCardell, 1953; Wyllie and Southwick, 1954). If uncorrected, this can 

overestimate Sw and contribute to an undervaluation of the reservoir. 

a. How does core data for clay volume and the volume of the saturating 

electrolyte (BVW) relate to measured Rt, what is the geological basis for 

these relationships, and are they reflected by predicted Archie 

parameters values (m, n and Rw)?   

III. The efficacy of a core calibrated optimised Archie approach and thus the 

geological validity of the Archie parameter values generated has not been 

tested or been given a geological rationale in the literature.  

a. What are the mechanics of an optimised Archie approach, what controls 

the value of generated Archie parameters, and what can we infer of 

their validity from sensitivity analyses and parameter trade-offs? 

b. How do modelled Archie parameter values compare with those 

predicted by other studies?  

1.2.1 Additional work undertaken  

Additional work undertaken as part of this project included limited use of Haynesville 

core material for a single well. Analysis included thin section imaging and the use of a 

multi-sensor core logger which generated petrophysical (density, magnetic 

susceptibility, natural gamma response and resistivity) and geochemical (infra-red 

spectrophotometry) data. This work is briefly discussed in Appendix C, but due to data 

quality issues, did not contribute to and is not included within the body of this thesis or 

conclusions.  
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1.3 Thesis structure 

This thesis begins with a review of the pertinent literature in Chapter 2. Chapter 3 

builds on this review and outlines Bossier (BSR) and Haynesville (HY) reservoir geology, 

mineralogical and petrophysical properties. The methodology and analytical results are 

presented in Chapter 4, followed by a discussion of the results and mineralogical / 

petrophysical relationships in Chapter 5. Finally, the conclusions, as linked to the 

original thesis objectives, are presented in Chapter 6, followed by suggestions for 

further work. A brief description of each chapter is provided below: 

Chapter 2:  The sedimentology, petrophysical properties and evaluation of shale gas 

reservoirs. This literature review is split into four parts. The first introduces 

key concepts in mudstone sedimentology, including composition, sediment 

fabric, depositional processes and sequence stratigraphy. The second and 

third sections outline key wireline and core measurements used in this 

study, with an emphasis placed on mudstone mineralogical influences on 

measured values. The fourth and final section presents the concepts, 

principles and uncertainties of Archie and shaly sand methods for deriving 

water saturation.  

Chapter 3: The geological setting, mineralogy and petrophysical properties of the 

Bossier and Haynesville Shale Formations. This chapter introduces and 

characterises the data used for analysis. It provides a brief geological 

overview of the study formations, including stratigraphy and influence of 

paleotopography on deposition. In addition, it outlines the data available 

for study, the rationale for data selection, quality control, wireline-core 

integration, formation zoning and applied data corrections. It also outlines 

basin mineralogical and petrophysical trends, and builds on Chapter 2 by 

emphasising uncertainties in the petrophysical evaluation of shale gas 

reservoirs. Uncertainty in selected kerogen density and knock-on 

implications for XRD mineral volumes are aslo explored. 
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Chapter 4: Unconventional applications of Archie’s equation: sensitivity and error 

analysis. This chapter outlines the analytical methodology for a series of 

numerical models and sensitivity analyses of an Archie type saturation 

equation. It describes the analytical results and is presented in order of 

model dimensionality, i.e., the results of a one dimensional model are 

presented first, followed by the results of a two dimensional and finally, by 

the results of a three dimensional model. In this context, the number of 

dimensions refers to the number of Archie parameters optimised within 

each of the numerical models.   

Chapter 5:  Unconventional applications of Archie’s equation: does geology matter? 

This chapter discusses the results presented in chapter 4 and is split into 

four parts. The first discusses the impact of mineralogical heterogeneity on 

formation petrophysical properties and petrophysical model results. The 

second evaluates the relationships between formation water, formation 

resistivity and clay volume. The third summarises key data relationships 

and qualitatively links variations in formation fabric with model 

petrophysical results. The fourth and final section discusses model biases 

and the generated pseudo-Archie parameters.  

Chapter 6:  Conclusions. This chapter presents the conclusions of the previous chapters 

with regard to the original objectives and outlines the scope for additional 

work. 
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  Chapter 2

The sedimentology, petrophysical 
properties and evaluation of shale gas 

reservoirs  

This chapter provides a review of the pertinent literature and is divided into five 

sections: 

2.1 The sedimentology of shale gas reservoirs: outlines the composition, 

classification, fabric, depositional processes and sequence stratigraphy of shale 

gas reservoirs. 

2.2 Wireline log responses in shale gas reservoirs: outlines wireline tool physics 

(gamma ray, density, neutron porosity and resistivity) and their response in 

shale gas reservoirs.  

2.3 Core porosity and saturation in shale gas reservoirs: outlines laboratory 

methodology for the determination of porosity and water saturation and 

shale/mudstone effects.   

2.4 The evaluation of water saturation from wireline logs in shale gas reservoirs: 

outlines Archie and shaly sand evaluation concepts for Sw derivation including 

uncertainties in parameter selection and model validity.  

2.5 Summary and conclusions. 
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2.1 The sedimentology of shale gas reservoirs 

Shale gas reservoirs are a type of ‘unconventional resource,’ an umbrella term without 

a universally agreed definition that includes shale oil, coal bed methane, gas hydrates 

and tight gas reservoirs (Etherington and Ritter, 2007; Haskett and Brown, 2005). 

Etherington and McDonald (2004) define an unconventional resources as one ‘that 

cannot be produced at economic flow rates without assistance from massive 

stimulation treatments.’ Whereas Stabell (2005) describes unconventional resources as 

‘large single accumulations that cannot be counted and analysed as discrete entities.’ 

Sondergeld et al. (2010) defines unconventional resource systems as ‘those which have 

a sorbed gas component,’ a definition that excludes tight gas reservoirs. These 

definitions each highlight problematic aspects of shale gas systems, formations which 

are challenging to evaluate petrophysically owing to significant heterogeneity, low 

matrix permeabilities and porosities, and relatively high clay bound water, kerogen and 

adsorbed gas contents (Bohacs et al., 2013; Singh et al., 2013; Wu and Aguilera, 2013; 

Yu et al., 2013). The following sections explore how shale composition and mineralogic 

distribution, as shaped by sedimentological processes, contribute to the genesis of 

shale gas systems and their petrophysical properties (Alpin and MacQuaker, 2010). 

2.1.1 What is shale? 

Shale is one of a number of terms, including mudrock and mudstone, used to describe 

abundant fine-grained sedimentary rocks that represent up to 70% of the stratigraphic 

record (Alpin and MacQuaker, 2010; Macquaker and Adams, 2003; Tucker, 1982; 

Wignall, 1994). The preferred umbrella term for these rocks is mudstone (Bohacs et al., 

2013; Macquaker and Adams, 2003), where shale is commonly regarded as a dark, 

organic rich fissile variety (Tucker, 1982; Wignall, 1994). Despite the preferred 

nomenclature however, the terms shale and mudstone remain interchangeable in 

common vernacular and industry related articles, a trend continued in the following 

text. 
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2.1.2 Composition and classification 

A shale, or mudstone, is defined as a clastic sedimentary rock where over 50% of the 

grains have a particle size below 62 μm, and are considered organic rich when the total 

organic carbon (TOC) content exceeds 2 wt.% (Alpin and MacQuaker, 2010; Craig, 

2004; Gamero Diaz et al., 2013). Historically, despite their importance as both seal and 

source rocks for conventional reservoirs, attempts to develop a mineral based 

classification scheme for mudstones are relatively recent (Allix et al., 2010; Gamero 

Diaz et al., 2013; Macquaker and Adams, 2003). This in part reflects the homogenous 

appearance of mudstones at outcrop and a legacy of classification based on informal 

terms relating to colour and texture (Boggs, 2009; Tucker, 1982; Wignall, 1994). The 

relatively recent shale gas boom has however highlighted the complexity and 

heterogeneity of mudstone structure and composition. With studies highlighting 

significant vertical and lateral heterogeneity in mineralogic and organic components at 

a range of scales (often less than 10mm) within vertically continuous formations 

hundreds of meters thick (Bohacs et al., 2013, 2005; Macquaker et al., 2010b; Passey 

et al., 2010; Suarez-Rivera et al., 2006). The classification scheme (Figure 2.1) proposed 

by Macquaker and Adams (2003), was intended to aid the interpretation of ’apparently 

homogenous shales’  by reducing our reliance on the use of characteristics such as 

fissility, TOC, and other proxy variables (Macquaker and Adams, 2003; Schieber and 

Sethi, 1998). This aims to utilise grain size, origin and mineralogy to help tie 

heterogeneity in mudstone structure and composition back to their depositional 

processes and environment, stacking patterns and a sequence stratigraphic framework 

(Abouelresh and Slatt, 2012; Bohacs et al., 2005; Gamero Diaz et al., 2013; Macquaker 

et al., 2007; Passey et al., 2010). This has been advanced recently by Gamero Diaz et al. 

(2013), where the limits expressed in Figure 2.1 are used to create a lithology log 

based on XRD calibrated geochemical wireline data to help identify productive shale 

zones.  
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Figure 2.1. Mudstone classification  
Mudstone classification schemes (adapted and redrawn from Gamero Diaz et al. (2013), Macquaker and 
Adams (2003) and  Passey et al.(2010) 

The classification system proposed by Gamero Diaz et al. (2013) permits stratigraphic 

correlation and parasequence identification with reduced reliance on the petrographic 

analysis of often limited core material. Though it remains to be seen as to whether 

uptake in industry or academia will be significant. 

More commonly, the mineral components of a mudstone are represented in basic 

ternary plots (e.g. Adiguna, 2012; Chalmers et al., 2012; Gupta et al., 2012) so as to 

inform formation geomechanical models. This refers to the brittleness of shale 

formations, which are less plastic and more amenable to hydraulic fracture treatments 

when containing less than 50% clay (Adiguna, 2012; Glorioso and Rattia, 2012; Jarvie et 

al., 2007). This is reflected in Figure 2.1 and the USA generally, where most commercial 

shale plays fall below the 50% clay line (Passey et al., 2010). The determination of a 

formations brittleness index (BI) is part of typical petrophysical workflows, where 
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productive zones are defined based on petrophysical properties and modelled 

mineralogy (Adiguna, 2012; Popielski et al., 2012), with zones typically characterised 

by organic richness, log proxies, or structural features (Hammes, 2009; Loucks and 

Ruppel, 2007). 

To give an indication of typical shale mineralogical composition, XRD data (in wt. %) is 

presented in Table 2.1 after Boggs (2009). These data are not specific to currently 

producing organic rich shales, and it should be noted that, as the defining 

characteristic of a mudstone is the predominance of grains below 62 μm and as 

commercially producing shales generally contain less than 50% clay, there is significant 

potential for compositional variation. 
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Min 17.0 14.6 0.4 0.7 1.4 0.5 0.1 1.6 1.0 0.2 

Max 57.2 53.5 12.4 11.9 14.6 7.9 5.1 10.9 4.0 10.9 

Mean  39.7 37.5 3.0 4.3 5.4 2.5 1.1 3.2 0.4 3.5 

Table 2.1. Average and range in mudstone compositions (wt. %) 
Range in mudstone compositions based on XRD analysis of 125 samples of Quaternary to Ordovician age after 
Boggs (2009). 

2.1.3 Sediment fabric and depositional processes 

The fabric of a rock can be defined as the physical arrangement of its constituent 

particles and minerals and is the sum of its textural and structural features (Allaby, 

2008; Schieber, 1978). Texture can be described as the size and shape of particles and 

their interrelationships, and structure refers to forms generated by sedimentary 

processes and contemporaneous biological activity (Allaby, 2008; Kearey, 2001). 

Preserved mudstone fabric therefore records the physical and chemical processes of 

mud deposition, bioturbation and burial history (Ghadeer and Macquaker, 2011; 

Schieber et al., 2007). 

Texturally, mudstones are commonly associated with the preferred orientation of clay 

minerals that results from the compaction, dewatering and alignment of clay flakes  

(Tucker, 1982). The development of this characteristic texture occurs due to clay 
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physiochemical properties (see section 2.3.3.1) and in response to depositional 

processes and environmental conditions. Unlike larger granular particles of silt, which 

may be transported in suspension, sliding, rolling and saltation, clay and clay sized 

particles, which require minimal energy to remain in suspension, can be transported 

over long distances (Potter, 2005). These physical properties, combined with the 

tendency for clay minerals to have a negative surface charge, gives rise to clay 

attributes such as cohesion and plasticity that result in complex colloidal flocculation 

processes (Moon and Hurst, 1984; Smith, 1990). This refers to a process of clay 

particles moving randomly in suspension (Brownian motion), which, when in close 

proximity, become subject to attractive Van der Waals forces and repulsive 

electrostatic inter particle forces. The repulsive forces are generally eliminated in 

marine environments as sodium cations bind with and neutralise the negative clay 

mineral surface charge. This allows the attractive forces to precipitate the 

development of clay flocs (Boggs, 2009; Craig, 2004; Das, 2008; Leeder, 1999; Reeves 

et al., 2006a; Reynolds and Gorsline, 1992). 

 

Figure 2.2. Mudstone texture as determined by sedimentary and diagenetic processes  
Schematic representation of sedimentary and diagenetic influences on the development of mudstone texture 
(redrawn from Reeves et al., 2006b). 
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Figure 2.3. Example mudstone textures 
(A) SEM image of bioturbated mudstone; (B) SEM image of aligned clay minerals; (C) BSE image of 
carbonaceous shale, note horizontal alignment of sediment grains (Schieber, 1978); (D) Shale with microbial-
mat fragments (dark coloured deformed particles) and quartz grains (clear) in matrix of grey shale. Arrow 
indicates differential compaction around quartz grain (Schieber et al., 2010). 

 

Figure 2.4. Mudstone sedimentary structures and inferred processes 
Sedimentary structures and inferred depositional processes in fine-grained Precambrian Belt Series of 
Montana (Schieber, 1990). 

In addition, the relative proportion of coarse (silt) to fine (clay) particles may exert a 

further control on sediment texture. For instance, silt grains are not compressible 

relative to the clay component, and during compaction reorient, sink into and deform 
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the surrounding clay matrix. With progressive burial this can distort and diminish any 

distinct clay flocculation style within muds at the water sediment interface (Reynolds 

and Gorsline, 1992). Where silt particles provide grain support, clay flocs may be 

preserved and anisotropy reduced (Fawad et al., 2010). In addition, the differential 

compaction of clay minerals around silt grains (Figure 2.3; image B) may enhance inter-

particle porosity in the clay matrix adjacent to silt grains (Day-Stirrat et al., 2012; 

Schieber, 2010; Schieber et al., 2010).     

The complexities of features inherent to mudstone fabric are often overlooked. This is 

largely due to the fine scale nature of mudstone structural sedimentary features, but is 

in part attributable to the general assumption that mud is deposited continuously, 

settling from suspension in quiet low energy bottom-water conditions to form 

characteristic parallel laminae (Macquaker and Bohacs, 2007). On closer inspection 

however, mudstones often reveal a wealth of sedimentary features and facies types 

that allow for an interpretation of their depositional environment (Schieber, 1990). 

Schieber (1978) lists a range of lamina styles (discontinuous, lenticular, wrinkled) that 

reflect either quiet settling, bottom-current re-working or the formation of microbial 

matts. In addition, internal lamina texture and structures can be quite variable 

including: grading, random and preferred clay orientation and sharp basal and top 

contacts. These fabrics (partly summarised in Figure 2.4) may have been generated by 

a variety of sedimentary processes including: event sedimentation (floods, storms, 

turbidity currents), flocculation, settling from suspension, current flow and 

erosion/reworking after deposition (Macquaker et al., 2007; Schieber, 1990, 1978).  

 

Figure 2.5. Examples of mudstone lamina structure  
(A) Compacted rip up clasts; lenticular laminated Proterozoic shale that shows well defined compressed clasts 
which taper and pinch out laterally (Schieber et al., 2010, 2007). (B) Stacked succession of sharp-based, 
grading thin-bedded (labeled A to D) clay-size-rich mudstones collected from Ravenscar, containing 3.5% TOC. 
The basal lamina sets within the individual beds exhibit discontinuous wavy geometries and contain abundant 
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pellets (arrowed p) as well as organomineralic aggregates (arrowed oma). Gradationally overlying the basal 
laminaset are homogenised lamina. Note that bed C has a discontinuous silt lag at its base (Macquaker et al., 
2010b). (C) Section collected from the Mowry Shale; stacked succession of normally graded thin beds, each 
with an erosional base. The basinal laminaset (unit A) contain silt-sized clay-aggregate intraclasts (arrowed) 
and curved laminae (dotted lines) that lap down. This basal laminaset is abruptly overlain by thin intercalated 
lamina (unit B) composed of clay and silt that subtly grades upward and is capped by (unit C) a burrowed clay 
drape (Macquaker et al., 2010a).   

Further investigation continues to expand the range of depositional processes that 

determine complex mudstone fabrics which are often simply considered as laminated. 

For instance, it has been demonstrated that a laminated appearance can be an artefact 

of bioturbation due to burrow compaction (Schieber, 1999). In addition, recent flume 

tank experiments have demonstrated higher than expected bedload transport 

velocities capable of transporting and depositing sand, with deposited clay flocs 

developing ripples that appear laminated following compaction (Schieber et al., 2007). 

Flume tank experiments (Schieber et al., 2010) have also reproduced typical lenticular 

mudstone fabrics, formed by eroding water rich muds to create centimetre sized ‘rip 

up clasts’ that can be transported for tens of kilometres before being deposited and 

compacted to produce a lenticular fabric. Additional structures in the Kimmeridge Clay 

Formation suggest episodic organic enrichment, where algal blooms and intense 

showers of marine snow are thought  to have generated graded thin beds (<10mm 

thick) with erosional based (Figure 2.5 (B)) (Macquaker et al., 2010b). Graded thin beds 

(Figure 2.5 (C)) in the Mowry Shale have also been interpreted as resulting from wave-

enhanced sediment-gravity flows (WESGF), which are believed to be widespread, 

suggesting higher energy mud transportation, re-working and deposition in deep water 

conditions (Aplin and Macquaker, 2011; Macquaker et al., 2010a).  

It is clear that the detailed examination of mudstones continues to reveal significant 

variability and heterogeneity in fabric and mineralogy at very fine scales. An improved 

understanding of these processes is crucial, as formation fabric can exert significant 

control on physical properties such as porosity, permeability, stress/strain behaviour 

and therefore reservoir quality (Ambrose et al., 2010; Bustin et al., 2008; Dewhurst et 

al., 1999; Harrington and Horseman, 1999; Hart et al., 2013; Ozkan et al., 2011; Simm, 

2007; Sondergeld et al., 2010). For instance, permeability, which strongly influences 

the production profile of shale gas wells, is thought to be largely dependent on 

formation fabric (Bustin et al., 2008). With higher permeability measured parallel to 
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and lower permeability measured orthogonal to laminar fabrics (Chalmers et al., 2012; 

Kwon et al., 2004). It has also been shown experimentally by mercury porosimetry and 

adsorption isotherm analysis, that whilst pore and pore throat sizes may be similar in 

anisotropic and massive shales alike, that anisotropic shales have significantly higher 

pore surface areas (Clarkson et al., 2012; Howard, 1991), with pores becoming 

elongated with increased vertical stress (Day-Stirrat et al., 2012). Studies of the 

Monterey shale have also linked bioturbation to enhanced permeability and reduced 

anisotropy, where high water contents and high permeability are suggestive of mobile 

water zones in bioturbated fabrics (Wood, 2012). This is supported by computer 

modelling of burrowed fabrics that suggest permeable burrow networks can connect 

otherwise hydraulically isolated strata and increase permeability (La Croix et al., 2012). 

As such, depositional fabrics can significantly influence later burial and diagenetic 

processes and thus permeability and porosity distributions (La Croix et al., 2012; 

Loucks et al., 2012; Ozkan et al., 2011), though burial diagenesis may overprint 

depositional fabrics (Bauluz et al., 2012). For instance, studies of the Barnett Shale 

have shown that compaction and diagenetic overprinting can often obsure any links 

between fabric, compsition and petrophyscial properties (Milliken et al., 2012). On 

balance however, it is clear that sediment fabric (primary or secondary) determines 

the intrinsic geometry of the pore-channels, forming a primary control on formation 

electrical properties (Lauer-Leredde et al., 1998; Winsauer and McCardell, 1953). An 

improved understanding of these processes is therefore crucial to the accurate 

interpretation of log properties.   

2.1.4 Sequence stratigraphy  

The sedimentary depositional processes discussed above are moderated by regional 

and global environmental factors (tides, storms, eutrophic events, regional and 

eustatic sea level change), depositing sediments that often stack systematically and 

vertically into larger packages that can be recognised laterally within a basin using 

sequence stratigraphic techniques (Abouelresh and Slatt, 2011; Aplin and MacQuaker, 

2010; Macquaker et al., 2014; Passey et al., 2010; Slatt, 2011). These genetically 

related sequences are often recognisable in the wireline-log response, particularly in 
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response to the gamma ray tool (see section 2.2.1 for a discussion of the gamma 

response in shale systems). This typically manifests as a sequence with an upward 

increasing or decreasing gamma response, termed a ‘gamma ray parasequence’ (Slatt 

and Rodriguez, 2012), which is generally characterized by an overall gradation in grain 

size and bounded by correlative marine flooding surfaces (Abouelresh and Slatt, 2011; 

Leeder, 1999; Slatt, 2011; Wagoner et al., 1990). Such sequences are widely recognised 

in shale systems, including the Barnett Shale (Abouelresh and Slatt, 2011), the 

Woodford Shale (Romero and Philp, 2012), the Haynesville Shale (Hammes, 2012, 

2009), the Bakken Shale (Angulo and Buatois, 2012) and many others.  

 

Figure 2.6. Stratigraphic profile and core gamma trends in the Barnett Shale  
(Left) Complete core gamma-ray scan of the Barnett Shale in the northern Fort Worth Basin. The solid black 
curve and solid arrows correspond with a 2nd order stratigraphic sequence for the entire Barnett Shale. The 
smaller dashed arrows (to the right of the gamma ray curve) highlight several 3rd order sequences. (Centre) 
Expanded gamma ray scan highlighting two ‘gamma ray parasequences’ linked to thin section 
photomicrographs (Right), one decreasing up (A, B, C) and one increasing up (F, E, D). The decreasing up 
gamma sequence shows a progression from: (A) a lower clay-organic rich lithofacies to, (B) a more quartzose-
clay lithofacie to, (C) a shelly-carbonate lithofacies. The decreasing up gamma sequence shows a progression 
from: (F) a lower dolomitic mudstone to, (E) a calcareous mudstone to, (D) a clay-organic rich lithofacies 
(adapted from Slatt and Rodriguez, 2012). 

An example is given in Figure 2.6 after Slatt and Rodriguez (2012) for the Barnett Shale. 

This includes a core gamma ray response that corresponds with a 2nd order 

stratigraphic sequence overprinting ‘increasing up’ and ‘decreasing up’ 3rd order 

‘gamma ray parasequences.’ The progressive change in fabric is depicted in the thin 
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section photomicrographs in Figure 2.6, where for the ‘increasing up‘ gamma ray 

response (F, E, D), clay content increases. This is interpreted as shoreline retreat and is 

followed by a flooding surface and the onset of a ‘decreasing up’ gamma ray response 

(A, B, C) where the opposite progression is noted; clay content and the gamma 

response reduce as coarser grained clastics become more abundant as the shoreline 

advances. 

 

Figure 2.7. General sequence stratigraphic model for shale gas systems   
The shale overlies a regional unconformity (SB/TSE), with a condensed organic rich layer (CS) at its base and a 
high gamma response, followed by an upward trend with a decreasing gamma response. This latter portion of 
this 2nd order sequence includes a number of thin 3rd order parasequences. The top of the CS is the maximum 
flooding surface (MFS) after which progradational (regressive), less organic-rich of the highstand systems tract 
downlap onto (Slatt and Rodriguez, 2012).  

Interpreting the cyclical stacking of parasequences helps to build a stratigraphic 

framework that can act as the basis of regional mapping within a shale system, a 

practice that is now well established (e.g. Abouelresh and Slatt, 2012; Angulo and 

Buatois, 2012; Emery and Myers, 2009; Hammes and Frébourg, 2012; Hammes, 2009; 

Macquaker and Taylor, 1996; Schieber and Sethi, 1998; Slatt and Rodriguez, 2012; 

Slatt, 2011). Many productive shale plays (Barnett, Woodford, New Albany, Marcellus, 

Eagleford, Montney, Haynesville, Horn River and Caney)  share a similar sequence 

stratigraphy (Slatt and Rodriguez, 2012) which can be represented by a generalised 

stratigraphic model (Figure 2.7).     
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In the model depicted in Figure 2.7, the shale overlies a regional unconformity (SB), 

with a condensed organic rich layer at its base and a high gamma response, followed 

by an upward decreasing gamma response. The latter portion of this 2nd order 

sequence includes a number of thin 3rd order parasequences (Figure 2.6). The 

integration of genetic beds within a sequence stratigraphic framework provides a basis 

for understanding and predicting the occurrence, distribution and character of 

prospective shale gas sequences at the basin scale (Passey et al., 2010). For instance, 

organic matter richness is a primary control on reservoir quality, where a shale 

succession is generally only considered as prospective if TOC exceeds 2 wt% 

(Sondergeld et al., 2010). The organic richness of shale is moderated by dilution (clastic 

input), organic matter production and accumulation, and is related to water depth and 

the distance to the shoreline (Bohacs et al., 2005; McClain et al., 2013; Passey et al., 

2010). An example is given in Figure 2.8 for the Mowry Shale (Bohacs et al., 2005), 

highlighting increased clastic input, dilution and higher accumulation rates proximally. 

Moreover, the TOC accumulation rates depicted in Figure 2.8 are similar to the gamma 

ray trends suggested for the general stratigraphic model in Figure 2.7. Where, 

proximally, the most organic rich sediment accumulates in the transgressive systems 

tract (TST) just prior to the maximum flooding surface (MFDLS), and distally, the most 

organic rich sediments accumulate on or just after the MFDLS at the beginning of the 

highstand systems tract (HST). In other words, the basal organic rich layer in the 

general model (Figure 2.7) is likely to be diluted with clastic material proximal to the 

sediment source (landward), and increasingly sediment starved and condensed in 

distal locations of the basin. Trends which have been observed in the Haynevsille Shale 

(Hammes and Frébourg, 2012), Marcellus Shale (McClain et al., 2013) and others. This 

predicative capability has recently been demonstrated by McClain et al. (2013), who 

utilised a stratigraphic model to predict the geographic and stratigraphic distribution 

of organic matter, silica and carbonate. These predictions were then used as a control 

on wireline mineral models and TOC estimates at local and basinal scales, and aided 

the recognition of engineering targets, horizontal well design and fracture stimulation 

strategies (McClain et al., 2013). 
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Figure 2.8. Sediment accumulation rates in proximal to distal settings for the Mowry Shale   
Comparison of vertical and lateral changes in component accumulation rates for TOC, Clastics and Biosilica in 
the Mowry Shale. MFDLS indicates the stratigraphic position of the maximum flooding surface and TS 
indicates the transgressive surface. Note the high clastic dilution component proximally compared to the 
dominance of biosilica is distally (figure adapted from Bohacs et al., 2005 and Passey et al., 2010).   

2.1.5 Organic matter: enrichment, type and maturity 

Organic matter enrichment is typically linked to anoxic conditions resulting from a 

combination of poor water circulation, surface water biological productivity and the 

depletion of oxygen in the water column. In the absence of benthic fauna and the 

action of aerobic bacteria, organic matter destruction is restricted and its preservation 

enhanced (Canfield, 1994; Demaison and Moore, 1980; Ingall et al., 1993). While this 

general model is not disputed, recent studies suggest a far more complex series of 

interactions with higher energy currents and often less pervasive, more ephemeral 

anoxic bottom water conditions (Bohacs et al., 2005; Pedersen and Calvert, 1990; 

Schieber, 1999). This is reflected in the variety of mudstone fabrics discussed in section 

2.1.3 (e.g, high energy bottom-water currents or organic enrichment related to 

episodic algal blooms; Macquaker et al., 2010a, 2010b).  
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A more holistic model of organic matter enrichment is described in a study by Bohacs 

et al. (2005), which relates organic matter enrichment to the interaction of three 

interdependent variables: production, destruction and dilution, generally expressed as:  

Organic matter enrichment = Production – (Destruction + 
Dilution) (2.1) 

The study by Bohacs et al., (2005) finds that destruction rates, whilst dependant on 

oxygen levels, are also related to the access of limiting nutrients, production rates and 

burial rates (dilution). In combination with other studies (Passey et al., 2010), this 

identifies dilution as the dominant control on organic richness in proximal locations, 

whereas production is considered dominant in distal areas (see Figure 2.8). The 

implication of these factors is emphasised in section 2.1.4, where, when integrated 

within a stratigraphic model, they can aid in predicting the character and distribution 

of organic rich intervals.      

In addition to the abundance or richness of organic matter within a formation 

(measured as TOC), organic matter type and maturity also acts to control the 

commercial viability of shale gas systems. Following sedimentation, the organic matter 

that evades destruction is subjected to increases in temperature and pressure as burial 

progresses. With time, the residual organic matter begins to cook and is transformed 

into kerogen, a mixture of insoluble organic compounds that make up the organic 

component in shale plays (Boyer et al, 2006). The type of kerogen depends on the 

nature of the organic matter and environment of deposition, and can be determined 

from carbon/oxygen and carbon/hydrogen ratios as depicted in Figure 2.9 (Boyer et al, 

2006; Glorioso and Rattia, 2012; Seewald, 2003; Vandenbroucke and Largeau, 2007). 

The four types of kerogen (I, II, III, IV), their origin and hydrocarbon potential are 

summarised in Table 2.2 (Wu and Aguilera, 2013). The gas in most shale plays is 

typically generated by kerogen types II and III within the gas window (Figure 2.9), with 

a maturity of above 1.4 Ro (Heidari et al., 2011; Sondergeld et al., 2010; Weniger et al., 

2010; Wu and Aguilera, 2013). Kerogen type II is largely generated in restricted deep 

marine settings, derived from the remains of algae and amorphous organic matter, 

whereas kerogen type III is largely derived from woody terrestrial plant debris 
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deposited in shallow to deep marine environments (Boyer et al., 2006; Passey et al., 

2010).       

   

Figure 2.9. Van Krevelen diagram showing kerogen type and evolutionary path   
Van Krevelen diagram (left) displays kerogen type and evolution with thermal maturity (Ro). The table and 
schematic model (right) show the timing and relative abundance gas generated with maturaty (adapted from 
Boyer et al, 2006; Glorioso and Rattia, 2012; Mastalerz et al., 2013; Seewald, 2003). 

Petrophysically, kerogen which has a low density of between 1.0 and 1.8 g/cc, is 

hydrogen dense (it has a high hydrogen index), is infinitely resistive,  can be highly 

porous (depending on maturity) and can have a significant influence of wireline 

response (Bohacs et al., 2013; Bust et al., 2011; Schmoker, 1979). The impact of these 

attributes on formation petrophysical properties such as: resistivity, density, neutron 

porosity, gamma ray and core porosity and saturation are significant and discussed in 

section 2.2. Additionally, kerogen content may also impact sonic velocities, where a 

study by Prasad et al. (2009) suggests that high maturity shales can have a distinct 

relationship between acoustic impedance and kerogen content, indicating an increase 

in elastic impedance, velocity, and in some cases density with increasing shale 

maturity. Whilst the effects of gas, also positively associated with TOC, tend to 

negatively affect and slow the sonic and compressive velocities (Zhang et al., 2013). It 

should be noted that whilst the study by Prassad et al. (2009) suggests an increase in 
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kerogen density with maturity, kinetic models (Modica and Lapierre, 2012) suggest an 

increase in kerogen porosity with maturity. In other words, maturity may increase 

kerogen matrix density, but may also increase kerogen porosity, where the trade of 

between the two would determine kerogen bulk density. SEM studies by Curtis et al. 

(2011) in the Marcellus Shale find no relationship between thermal maturity and 

kerogen porosity. In other words, the effects of maturity on kerogen density/porosity 

are not certain. In addition, kerogen maturation and the effects of gas production may 

also impact formation pressure, the development of over-pressure, fracture 

development and fluid displacement and migration (Ramdhan and Goulty, 2011; 

Tingay et al., 2013).  

 
Table 2.2. Kerogen type, origin and hydrocarbon potential  
Table adapted from Glorioso and Rattia (2012). 
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2.2 Wireline log responses in shale gas reservoirs 

This section presents a review of the key wireline log responses available for analysis in 

Chapters 3, 4 and 5, including the gamma ray, density, neutron porosity and resistivity 

responses. These tools were included, as they were the only tools common to all wells 

within the study, e.g. sonic and other tools were only available for a select number of 

wells. Each tool is discussed in turn, including an outline of the tool physics followed by 

the typical log response in shale gas systems (for a detailed synopsis of wireline tool 

physics and responses, see Ellis and Singer (2007) and Rider and Kennedy (2011).  

2.2.1 Gamma ray tool response  

The gamma ray (GR) log responds to the natural gamma radiation present within a 

formation. The source of radioactivity is largely related to the presence of shale, 

including clay minerals, and associated radioactive elements such as uranium (238U), 

thorium (232Th) and potassium (40K) isotopes (Ellis and Singer, 2007; Heslop, 1974; 

Katahara, 1995; Rider, 1986). Though most rocks contain traces of radioactive 

material, shales and mudstones usually display the most gamma activity, and the GR 

log, often referred to as the ‘shale log’, is commonly used quantitatively as a shale 

indicator (Bhuyan and Passey, 1994; Heslop, 1974; Katahara, 1995). 

The GR tool consists of a GR detector; a scintillator attached to a photomultiplier. As 

natural GRs emitted by K, Th and U isotopes within the formation pass through the 

scintillator they produce a flash of light which is converted into an electrical pulse by 

the photomultiplier and counted (Ellis and Singer, 2007; Rider, 1986; Lock and Hoyer, 

1971). Simple GR tools (typically recorded in API [American Petroleum Institute] units) 

record the total natural radioactivity of the formation, whereas more sensitive spectral 

tools measure the energy of incident GRs. Which, as GR energy is proportional to the 

intensity of the flash generated as it passes through the scintillator (Hurst, 1990; Rider, 

1986), allows for the identification of the source isotope (Figure 2.10), allowing their 

proportional abundance (U; ppm , Th; ppm  and K; wt% ) to be determined (Rider and 

Kennedy, 2011).  
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Figure 2.10. Gamma ray emission spectra  
(A) The gamma ray spectra of K, U and Th and (B) the complex spectrum observed from a radioactive source 
containing K, U and Th (modified from Hurst, 1990). 

The GR and spectral GR tools suffer minor environmental effects resulting from 

Compton scattering within the drilling fluid that can often be corrected using logging 

charts based on borehole diameter and mud weight. Larger more problematic effects, 

can result from borehole cave-ins, where the increased thickness of drilling fluid 

attenuates the energy of incoming GRs  (Rider, 1986). Tool resolution and the volume 

of investigation (VOI) is also related to logging speed, where the likelihood 

backscattered GRs striking the detector decreases with increased logging speed. In 

general, the depth of investigation of GR tools is 10 to 25cm, with a vertical resolution 

of approximately 40cm, though in theory GRs may originate from anywhere within the 

formation (Ellis and Singer, 2007; Rider and Kennedy, 2011; Rider, 1986).   

The GR tool is used both qualitatively as a lithology indicator (Hancock, 1992) and 

quantitatively to determine the shale or clay volume (Bhuyan and Passey, 1994; 

Heslop, 1974; Katahara, 1995; Passey et al., 2010). Qualitatively, the GR log is vital for 

differentiating lithological units and sequences within shale gas plays (Passey et al., 

2010) and is widely utilised for core-log integration where core spectral GR data is 

available (Gupta et al., 2012). In addition, where shales are deposited in marine 

settings under reducing conditions, U is often associated with total organic content 

(TOC), and may be a useful indicator of organic richness (Alfred and Vernik, 2013; 
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Algeo and Maynard, 2004; Bohacs et al., 2005; Denham and Tieh, 1991; Guidry et al., 

1996; Orlandi et al., 2011; Schmoker, 1979; Sullivan, 1985; Boyce and Carr, 2009). 

These relationships are depicted for the Barnett and Bakken Shales in Figure 2.11, 

though such relationships are sometimes limited, particularly in the presence of 

minerals containing radioactive material (Franquet et al., 2012; Jacobi et al., 2008; 

Sondergeld et al., 2010). In general however, the use of spectral GR tools is 

advantageous, as, in addition to empirical TOC-U relationships, clay type may also be 

inferred from Th and K cross plots and Th/K ratios (Glorioso and Rattia, 2012; Quirein 

et al., 1982) as highlighted on Figure 2.12. This oversimplified relationship is noted to 

work in some instances (Rider and Kennedy, 2011), but is generally used qualitatively, 

as, after Hurst (1990), it is widely considered that ‘there is no theoretical, and 

negligible analytical basis for using Th/K cross-plots for mineral identification.’ 

Quantitatively the GR tool is used to determine shale or clay volume using the 

following equation (Katahara, 1995): 

VSh =  
GR- GRClean

GRsh- GRClean
 

(2.2) 

where: Vsh = Shale volume  

 GR = GR log response  

 GRClean = GR for a clean or clay free interval  

 GRSh = GR for a pure shale  

Though, where U enrichment is present, Vsh or Vclay estimates derived using equation 

2.2 may be distorted. Moreover, reliance on GR log for Vsh or Vclay determination has 

generally been superseded by multi mineral solver models which combine, GR, 

neutron and density logs to estimate VClay (Adiguna, 2012; Eastwood and Hammes, 

2011; Heidari et al., 2011; Singh et al., 2013). The links between organic matter and U 

and applications of GR and spectral GR tools are explored further in Chapter 3. 
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Figure 2.11. TOC, Uranium and GR relationships 
(A) Good TOC/Uranium relationship in the Barnett Shale (Jacobi et al., 2008). (B) TOC – GR relationships at the 
Exshaw flooding surface within the Alberta Bakken Shale (Passey et al., 2010) 

 
Figure 2.12. Theoretical distribution of clay minerals 
Th vs. K cross plot depicting the theoretical distribution of clay minerals and evaporites. (redrawn from 
Quirein et al., 1982 and Rider and Kennedy, 2011). 

2.2.2 Neutron tool response 

Neutron tools utilise a radioactive source (chemical or electrical) to measure a 

formations response to neutron bombardment (Ellis et al., 2004, 2003). It is 

synonymous with neutron porosity (ɸn), but the tool actually measures a formations 
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ability to attenuate emitted neutron energy, largely in response to their interaction 

with hydrogen in the formation (Ellis et al., 2004, 2003). Fast, high energy neutrons are 

emitted from the tool source and interact with atomic nuclei. With each subsequent 

interaction neutrons loose energy and speed, slowing to thermal energy levels where 

they are said to diffuse before being captured by formation nuclei in absorption 

reactions (Rider and Kennedy, 2011). The logging tool includes two or more detectors, 

one near and one far from the neutron source that record the small fraction of low 

energy neutrons that end up in their vicinity. The greater the ratio of the near to far 

counting rate, the more rapid the velocity loss within a formation, or, the shorter a 

neutrons slowing down length (Ellis et al., 2003).  

 

Figure 2.13. Illustration of the slowing down length  
Illustration of the relationship between the number of collisions for slowing down and the slowing-down 
length in water and 0 p.u. limestone (taken from Ellis et al., 2003).  

The scattering reactions which cause neutrons (particles with a mass similar to a 

proton) to lose energy are most efficient when colliding with particles of a similar 

mass, i.e. hydrogen (Figure 2.13). Neutron tool detectors take advantage of this, and, if 

the pore space is filled with hydrogen in the form of water or hydrocarbons, the 

response is related to porosity giving ɸn (Ellis and Singer, 2007; Ellis et al., 2004, 2003; 

Rider and Kennedy, 2011). It is implicit in this relationship that the distance a neutron 

can travel within a formation is largely moderated by a formations hydrogen content 

or its hydrogen index (HI). For example, Chiaramonte and Ellis (2000) demonstrated 

that the depth of investigation in a water filled limestone with a porosity of 20 % is 
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~15cm, whereas when the pore space is gas-filled (gas has a lower HI than water) this 

extended to ~25cm. Variation in hydrogen content is not however limited to formation 

fluids, and mineralogical variations can also impact neutron response. To compensate 

for this the neutron tool can be calibrated to limestone, sandstone or dolomite 

standards. In reality however, most neutron tools are calibrated to mineralogically 

simple limestone standards, particularly for compositionally complex formations such 

as shales, where the neutron log response must be considered less a response to 

porosity and more as the end product of a series of nuclear reactions (Rider and 

Kennedy, 2011). 

As applied in shale gas systems, the neutron log response is dominated by the effects 

of gas, clay and TOC. Gas, which has a low HI compared to water, draws down the 

apparent ɸn. Whilst the effect of shale reflects the contribution of structural hydroxyl 

ions (-OH) within hydrous aluminium-silicates (clay minerals), which in addition to clay 

bound water, act to increase apparent ɸn (Boonen et al., 2010; Ellis et al., 2004; Parker 

et al., 2009; Sondergeld et al., 2010). This effect may be further exaggerated in TOC 

rich shales given the relatively high HI of organic matter (Glorioso and Rattia, 2012; 

Sondergeld et al., 2010), though ɸn is generally considered to be a poor indicator of 

organic matter richness (Passey et al., 2010). ɸn may also be distorted in shale by the 

increased abundance of elements with greater ability to absorb thermal neutrons (e.g. 

gadolinium, boron and chlorine) which act to further reduce the thermal neutron 

count (Gilchrist, 2009). As a consequence of these distortions, even with corrections 

applied, ɸn values are not considered an appropriate estimation of porosity (Wu and 

Aguilera, 2013). In practice the neutron log is almost always used in combination with 

the density porosity (ɸd) log, where the ɸn-ɸd overlay (Figure 2.14), and the character 

of their separation, can be a useful gas indicator (Passey et al., 2010). ɸn-ɸd 

combinations have also been used with good effect in the Barnett Shale and other 

North American shale plays for assessing kerogen maturity (Alfred and Vernik, 2013; 

Jacobi et al., 2008). Though more generally, the complex lithology and clay affiliated 

water in shale gas plays limits the use of the neutron tool and ɸn-ɸd overlay methods 

(Glorioso and Rattia, 2012). The ɸn-ɸd response to a variety of lithologies is depicted in 

Figure 2.14 displaying typical gas and shale cross-over effects. As a general rule, where 
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ɸn and ɸd stack or overlay, the formation is considered shale free (Parker et al., 2009). 

Neutron-density relationships and cross-plots remain in wide use in conventional and 

unconventional formations for the determination of lithology, clay properties and to 

find true porosities in shale free formations and effective porosity in shaly sands (Rider 

and Kennedy, 2011; Jacobi et al., 2008). 

 

Figure 2.14. Schematic neutron and density response   
Schematic neutron and density log response in 20% porositylithologies with varying fluid content and 
boreholeconditions(redrawn from Ellis et al., 2004). 
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2.2.3 Density tool response 

The density log provides a continuous measurement of the combined solid rock matrix 

and pore fluid bulk density (ρb) in g/cc (Rider and Kennedy, 2011). A typical density tool 

utilises a radioactive source to emit a continuous beam of GRs into the formation. 

Similar to the GR tool, detectors (scintillators) located near and far from the source 

detect incident backscattered GRs following their interaction with the formation. 

Specifically, emitted GRs interact with electrons in the formation and loose energy via 

scattering interactions. GR energy attenuation is a function of electron density, which 

has a linear relationship with ρb (Figure 2.15), in other words the higher the count rate, 

the higher the formation density (Ellis and Singer, 2007; Rider and Kennedy, 2011).  

 

Figure 2.15. Logging tool response (count rate) vs. density    
Correlation between the density tool radiation count rate and bulk density (taken from Rider and Kennedy, 
2011). 

Density tools are often utilised to measure the photoelectric factor (PEF) in addition to 

ρb. PEF refers to a lower energy interaction and transfer of energy from GRs to the 

bound electrons of atoms. Where, if the energy of the incident GR is sufficient, the 

electron is ejected from the atom and replaced by another, a process accompanied by 

the emission of a fluorescence X-ray with an energy signature dependant on the 
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atomic number of the material (Ellis and Singer, 2007). The PEF is used quantitatively 

as lithology indicator (Rider and Kennedy, 2011), though no PEF log data was available 

for study within this project and is not considered further.    

Modern density tools are generally considered to have investigation depths of 5 to 

10 cm at average formation densities, with the depth of investigation decreasing at 

higher density (lower porosity). Whereas vertical tool resolution is dependent on 

detector spacing, with some density tools able to resolve individual beds down to 

10cm (Ellis and Singer, 2007; Rider and Kennedy, 2011). As a consequence of the 

shallow depth of investigation, the density tool is sensitive to rugose borehole 

conditions and requires interpretation in combination with the calliper log (Ellis and 

Singer, 2007).  

As applied in shale gas plays, the density tool has a number of qualitative and 

quantitative roles. Quantitatively, ρb combined with knowledge of the matrix density 

(ρma) can be used to determine the density porosity (ɸd) after the traditional 

relationship (taken from Zak and Smith, 1959): 

ɸd =  
ρma-ρb

ρma- ρf

 
(2.3) 

where: ɸd = Density porosity 

 ρb = Bulk density (log response) 

 ρf = Fluid density 

 ρma = Matrix density 

The use of equation (2.3) is however complicated in shale plays due to the presence of 

high density (siderite, pyrite) and low density (kerogen) components coupled with 

system heterogeneity and therefore inconsistency in ρma, which is not likely to be 

adequately represented by core data (Sondergeld et al., 2010). Corrections exist, but 

are problematic in requiring knowledge of formation mineralogy, mineral and organic 

matter densities and water saturation. As a consequence, ɸd values, even with applied 

corrections, are not generally accepted for porosity evaluation (Murphy et al., 2013; 

Wu and Aguilera, 2013). More generally, the density tool’s greatest utility is in its 

response to the low density of organic matter which often yields an empirical 
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correlation between density and core TOC values (Adiguna, 2012; Alfred and Vernik, 

2013; Ambrose et al., 2010; Franquet et al., 2012; Glorioso and Rattia, 2012; Jacobi et 

al., 2008; Murphy et al., 2013; Passey et al., 2010; Wu and Aguilera, 2013; Zhang et al., 

2013). This relationship is demonstrated is in Figure 2.16, though it is again noted that 

this may be distorted in the presence of heavy minerals (Ambrose et al., 2010; Jacobi 

et al., 2008; Quirein et al., 2012) especially where TOC is frequently co-located with 

pyrite (Witkowsky et al., 2012).  

 

Figure 2.16. Relationship between TOC and density     
Empirical correlation between density and TOC core data allows TOC log modelling from density tool (taken 
from Glorioso and Rattia, 2012). 

The density tool response, as discussed in section 2.2.2, is also combined with neutron, 

sonic and resistivity logs within multi mineral models. It is also used qualitatively in 

combination with the neutron log, and can be a good indicator of lithology and gas and 

shale effects (Figure 2.14). Furthermore, the established increase in density with depth 

due to porosity reductions and diagenetic changes renders the density tool a key 

component of pore pressure prediction and compaction models in shale gas plays 

(Couzens-Schultz et al., 2013; Krushin, 2013). 

2.2.4 Resistivity tool response 

Resistivity is the measure of a materials ability to impede or resist the flow of an 

electrical current (measured in Ω.m). The minerals that comprise most sedimentary 
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rocks have extremely high resistivities and act as electrical insulators, such that the 

resistivity tool response is almost completely dependent on the conductivity of fluid in 

the pore space and pore geometry/connectively. Thus, where porosity and pore fluid 

salinity are known, formation resistivity can act as a pore fluid indicator, able to 

dissociate resistive hydrocarbons from conductive saline pore fluids (Figure 2.17). In 

other words, if hydrocarbons are present in sufficient quantity, they displace 

conductive pore fluid and elevate formation resistivity above that for the same 

formation when 100% saturated with conductive formation water (Edmundson, 1988a, 

1988b; Rider and Kennedy, 2011). 

 

Figure 2.17. Schematic deep resistivity response in various lithologies 
Resistivity response in various lithologies illustrating the effects of fluid salinity (oil, gas, fresh and saline 
water), permeability (tight sandstone) and clay (shaly/fining up sandstone), adapted from Rider, 1986. 
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Resistivity can be measured using a range of commercial tools, though the two most 

common group of tools are the laterolog and induction varieties. Laterlog tools utilise 

a direct electrical connection between the tool and formation with a laterally focused 

electrical current distribution. This is most easily envisaged using a three (LL3) 

electrode example which utilises guard currents (A1 and A1’) to focus the emitted 

current of the centrally located electrode (A0), though modern tools typically include 4 

or more electrodes (Ellis and Singer, 2007; Rider and Kennedy, 2011).  

                  

Figure 2.18. Schematic current distribution from the Laterolog-3 device      
Schematic current distribution from the Laterolog-3 device in a homogenous formation with current focused 
(A0) into the formation by guard electrodes (A1 and A’1). Taken from Ellis and Singer, 2007. 

Laterolog resistivity is determined by monitoring the voltage drop between electrodes, 

and, as the tool requires direct electrical connection with the formation, are only 

effective in conductive water based muds. Modern tools record multiple simultaneous 

resistivities at depths  of a few centimetres to a few meters with a typical vertical 

resolution of 60cm (Rider and Kennedy, 2011). 

Unlike laterolog devices induction tools measure resistivity indirectly. The principle 

mechanism of the induction tool is depicted in Figure 2.19, where the transmitter 

produces an electromagnetic field in the formation that induces a current flow in a 

circular motion about the tool. The induced current creates a second electromagnetic 

field, which in turn generates an alternating current in the receiver coil, this can then 

be related to electrical properties of the formation allowing resistivity to be calculated 



The sedimentology, petrophysical properties and evaluation of shale gas reservoirs  Chapter 2 

38 

(Ellis and Singer, 2007). Commercial tools are more complicated, have more than the 

two coils depicted in Figure 2.19, and can measure resistivity at multiple depths of 

investigation of up to 600cm with a typical vertical resolution of 60cm. In addition, as 

induction tools require no direct electrical connection to the formation, they can 

operate in oil or water based muds, though as water based muds can distort the 

measurement, they are generally considered more accurate in oil based fluids (Ellis 

and Singer, 2007; Rider and Kennedy, 2011).   

 

Figure 2.19. Principle of the induction tool measurement       
Taken from  Rider and Kennedy, 2011. 

The schematic resistivity responses displayed in Figure 2.17 are for conventional 

reservoir systems, though they illustrate the role of pore fluid type, clay minerals and 

permeability on formation resistivity. The resistivity response is however more 

complicated in shale gas systems due to the competing influences of clay bound water, 

pore fluids, organic matter, conductive heavy minerals and also heterogeneous 

sediment fabric on the resistivity response. Shales may contain significant quantities of 
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clay, for which the associated and conductive clay bound waters tend to draw down 

formation resistivity (Adiguna, 2012; Kennedy and Herrick, 2012; Worthington, 2011a), 

though organic matter, which is infinitely resistive, will have the opposite effect 

(Passey et al., 1990). Conductive pyrite and other heavy minerals, which are often 

associated with organic matter, may also draw down resistivity. Though the impact of 

these components are likely to be highly dependent on formation structure and the 

connectedness of conductors and insulators, such that vertical and horizontal 

compositional and structural anisotropy are likely to be extremely important in 

moderating the resistivity response (Anderson et al., 2006; Corley et al., 2010; Le et al., 

2011). In general, it is noted that TOC rich zones show an elevated resistivity response, 

though at very high maturities, conversion of organic matter to graphite and other 

mineralogical changes may act to reduce resistivity (Boyer et al, 2006).  

The resistivity response has numerous quantitative and qualitative uses (see Rider and 

Kennedy, 2011 for a full discussion) and is frequently used quantitatively in 

combination with density or sonic log overlay methods for TOC prediction (Passey et 

al., 1990; Sondergeld et al., 2010; Spears and Jackson, 2009; Wu and Aguilera, 2013). 

The resistivity response is however most generally associated with the quantitative 

determination of water saturation based on Archie’s equation, which is discussed 

further in section 2.4.  
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2.3 Core porosity and water saturation in shale gas 
reservoirs 

The following section reviews key core laboratory data available for analysis in 

Chapters 3, 4 and 5, including total porosity and Dean Stark water saturation data. First 

porosity and water saturation are defined and laboratory protocols described, 

followed by a discussion of the fluid components that occupy the pore space, pore 

type and distribution, and factors that impact the interpretation of core porosity and 

saturation values in shale gas systems. 

2.3.1 Porosity and water saturation 

The porosity of a reservoir rock can be defined as the fractional volume of the 

reservoir that is not occupied by the solid framework of the reservoir (Donaldson and 

Tiab 2003):  

ɸ =  
Vb - Vgr

Vb
 

(2.4) 

where: ɸ = Porosity fraction 

 Vb = Bulk volume 

 Vgr = Grain volume 

The water saturation can simply be defined as that fraction of the pore space that is 

occupied by water, as represented by:  

Sw = 
BVW

ɸ
 

(2.5) 

where: Sw = Water saturation  

 BVW = The bulk volume of water 

2.3.2 Laboratory determination; porosity and water saturation  

The porosity and saturation data available for study within this thesis are provided by 

BG Group through Core Laboratories and utilises a crushed sample methodology (see 
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the full laboratory procedures in Appendix A) based on experiments performed at the 

Gas Research Institute on Devonian shales (Luffel and Guidry 1992). This method 

utilises a 300g sample taken from core material and weighed to +0.001g, with sample 

Vb determined by mercury immersion to +0.01cc. The sample is then processed in a 

mechanical rock crusher and sieved through 0.853 and 0.500 mm screens. A 100g sub-

sample of crushed material collected on the 0.500 mm screen is then used for the 

determination of Sw by Dean Stark extraction. This utilises a vapour of solvent (usually 

toluene which is miscible with oil but not water) to rise through the sample and leach 

out oil and water in the pore space at 110 oC (Handwerger et al., 2011). The water 

condenses out and is collected, whilst the solvent and oil is recirculated through the 

sample for one to two weeks. Following extraction the sample is dried in a vacuum 

oven at 110oC to remove the residual toluene until weight equilibrium is achieved with 

a minimum drying time of one week. By measuring Vg at ambient conditions using 

Boyle’s Law double-cell technique with helium as the expansion gas, ɸ is then 

calculated from equation 2.4. Sw is calculated based on comparing the volume of water 

collected during Dean Stark extraction and the mass lost measured after drying.   

2.3.3 What does measured porosity and water saturation 
represent in shale? 

2.3.3.1 Clay chemistry and cation exchange capacity  

As discussed above, the core samples are crushed, cleaned by solvent extraction and 

then oven heated. The resulting Vg is then measured and used to calculate ɸ from 

equation 2.4, though it is not fully understood what this measure actually represents. 

This uncertainty arises because clay minerals, sheet structured hydrous 

aluminosilicates, blur the distinction between the fluid filled porosity and the solid 

matrix, containing water in both liquid and solid phases. This includes non-liquid 

structural water as hydroxyls ions (OH-) within the clay mineral lattice, bound water 

including adsorbed water at the mineral surface with more loosely attached diffuse 

double layer water, and capillary bound water in the interparticle porosity between 

clay grains  (Handwerger et al., 2012, 2011; Passey et al., 1990; Reeves et al., 2006a).  



The sedimentology, petrophysical properties and evaluation of shale gas reservoirs  Chapter 2 

42 

The sheet structures that form clay minerals include layers of silica (Si4+) coordinated 

tetrahedra with oxygen (O) and aluminium (Al3+) coordinated octahedra with OH- ions 

(Reeves et al., 2006a; Tucker, 1982). These sheets combine in stacked composite layers 

of alternating tetrahedral and octahedral sheets linked by common oxygen atoms 

(Tucker, 1982). This stacking arrangement determines clay mineral type and occurs in 

two varieties as summarised in Figure 2.20. 

 

Figure 2.20. Schematic of clay mineral sheet structure       
Schematic illustrating the stacking patterns and interlayer sites of clay minerals, blue shaded regions indicate 
water wet surfaces (modified from Das (2008) and Mitchell and Soga (2005). 

The structural water, in the form of non-conductive (Passey et al., 2010) OH- ions, is 

part of the solid clay lattice associated with Al coordinated octahedra.. This is depicted 

in Figure 2.20 with absorbed water on the surface of the clay grains (in blue), 

highlighting internal and external clay mineral surfaces. The mechanisms that bind 

water to clay mineral surfaces are complex, though in general, it is understood that the 

cations which coordinate the structure of the tetrahedral and octahedral sheets are 
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subject to isomorphous substitution, particularly in 2:1 layer clay mineral varieties. This 

refers to the replacement of the coordinating cation (Si4+ or Al3+) with an alternative 

cation of similar size and equal or lesser charge, without altering the crystal structure. 

For example, within tetrahedral sheets Si4+ may be replaced by Al3+ or Fe3+ and within 

the octahedral sheets Al3+ may be replaced by Fe3+, Mg2+ or Fe2+ (Das, 2008; Reeves et 

al., 2006a; Tucker, 1982). The substitution of a cation with another of lesser charge 

leads to the development of a negative charge on the clay mineral surface that gives 

rise to the phenomenon of cation exchange. This refers to the ability a clay mineral to 

form an electrical double layer, and is the measure of a solid’s ability to adsorb or 

exchange cations within a solution  (Ellis and Singer, 2007). This is generally defined as 

cation exchange capacity (CEC) and represented as the amount of exchangeable ions 

(in milliequivalents) per 100g of dry clay (Das, 2008). This relationship and the 

presence of water and cations at or near clay mineral surface is expressed in Figure 

2.21. This highlights an electrical double layer of water, with adsorbed water on the 

mineral surface, also known as the Stern layer, followed by a more loosely attached 

diffuse layer of cations attracted to the negative surface charge (Das, 2008). The higher 

the CEC, or the greater the surface charge imbalance and surface area of the clay 

mineral, then the higher the bound water content and water layer thickness (Krushin, 

2013; Terzaghi, 1996). This is significant since, as the grain surface area increases 

exponentially with decreasing grain size, it follows, particularly in shales with a 

significant clay content, that the clay bound water volume will form an increasing 

proportion of the pore space. This is however moderated by clay type, and is depicted 

in the lower section of Figure 2.20, where it is evident from the stacking pattern of the 

clay minerals that there is variation in their surface area and CEC. In other words, less 

bound water is associated with lower CEC clay varieties and vice a versa.     

In summary, clay minerals contain at least three water components: a) hydroxyls; 

which are included as porosity by neutron tools (see section 2.2.2) but are non-

conductive and part of the solid matrix, b) clay bound water (external and internal), 

and c) capillary bound water. Where both the clay bound and capillary waters are 

measured by the neutron tool and are electrically conductive. This raises the following 
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question, which waters are measured by Dean Stark extraction or driven off by oven 

drying within the crushed sample method?   

 

Figure 2.21. Electrical double layer        
A) Schematic illustrating the electrical double layer, with adsorbed water at the mineral surface followed by a 
diffuse outer layer of water and cations (redrawn from Passey et al. (2010) and Ellis and Singer (2007)). B) Ion 
concentration with distance to the mineral surface (redrawn from Reeves et al., (2006a)). 

2.3.3.2 The origin of water extracted by Dean Stark methods  

An alternative to the determination of Sw by Dean Stark extraction is the retort 

method. This uses a programmed time series approach, where temperature is 

gradually increased in discrete steps and water driven off and collected. As the 

temperature increases more tightly bound water is liberated, with free water driven 

off at low temperatures, followed by bound water and eventually structural waters at 

higher temperatures. In general water is driven off continuously, with peaks in water 

loss (weight reduction) at various temperatures, though laboratories rarely publish the 

locations in this continuum at which they choose to classify water as either free, clay 

bound or structural (Handwerger et al., 2012, 2011). Thus the water sources by retort 

methods can arguably be defined, whereas fluid loss over time is not measured by 

Dean Stark extraction and so the waters origin is even more uncertain (Sondergeld et 

al., 2010). At relatively low temperatures (<110OC) it is generally considered that 

organic matter is not affected by either Dean Stark or retort methods, though there is 

limited evidence to suggest that sample crushing in labile less mature source rocks 
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may degrade the kerogen and confuse the porosity measurement (Modica and 

Lapierre, 2012). It is however widely observed that the total Sw derived by Dean Stark 

extraction (combined with oven drying) tends to be higher than that found by retort 

methods for the same sample (Handwerger et al., 2012, 2011; Michael et al., 2013; 

Sondergeld et al., 2010; Wu and Aguilera, 2013). Experiments by Derkowski and 

Bristow (2012) indicate that OH- ions should only be removed at temperatures above 

200oC, and that 90% of clay bound and capillary water is removed by drying to 110oC. 

This raises the question, why is there a difference in retort and Dean Stark water 

saturations at 110oC? One explanation, based on experiments by Handwerger et al. 

(2012), suggests that the ‘extra’ Dean Stark water represents clay structural water that 

should not contribute to ɸ or Sw. Though the removal of OH- requires far higher 

temperatures to be liberated, they suggest that solvent vapour wets the clay surface 

reducing the required temperature to break inter-molecular bonds and so release 

structural OH- ions. This is however yet to be proven, and so the origin of waters 

extracted by the crushed methods described in section 2.3.2 remains unclear.  

2.3.3.3 Organic matter porosity and pore fluids 

The existence of an additional, variably connected pore system within the kerogen 

macerals of shales has been widely studied (see Figure 2.22), suggesting kerogen 

porosities (ɸkerogen) of up to 50% that significantly contribute to the total rock pore 

volume (Alfred and Vernik, 2013; Bohacs et al., 2013; Chalmers et al., 2012; Curtis et 

al., 2011, 2012; Heath et al., 2011; Loucks et al., 2012; Mastalerz et al., 2013; Modica 

and Lapierre, 2012; Murphy et al., 2013; Quirein et al., 2012; Zhang et al., 2013). 

Though in some shales, for example the Eagle Ford, weak correlations between TOC 

and porosity suggests a significant inorganic porosity (Murphy et al., 2013). The 

development of kerogen pores, typically at the nanoscale, is often linked to diagenetic 

processes and the conversion of organic matter to hydrocarbons (Ambrose et al., 

2010), though there is limited evidence to suggest that ɸKerogen increases with maturity 

(see section 2.1.5). Moreover, it is widely believed that pores within the organic matrix 

contain only gas, with only water and minor amounts of gas located in the inorganic 
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porosity (Alfred and Vernik, 2013; Ambrose et al., 2010; Glorioso and Rattia, 2012; 

Modica and Lapierre, 2012; Ramirez et al., 2011; Wu and Aguilera, 2013).  

 

Figure 2.22. FIB/SEM image showing kerogen porosity in shale        
The dark grey areas are kerogen macerals containing pores in black, with the light grey areas the clay and 
silica matrix (Ambrose et al., 2010). 

The gas in the organic matter pores is held in two phases; a liquid like supercritical 

adsorbed phase on the kerogen pore walls and as free gas (Ambrose et al., 2010), with 

both gas phases removed by and included within the measure of ɸ generated by 

crushed rock analysis (Ambrose et al., 2010; Handwerger et al., 2012). Similar to clay 

bound and free water relationships, the ratio of free gas to sorbed gas is dependent on 

pore size. The smaller the organic pores, the greater volume of the pore space 

occupied by the adsorbed gas phase, though determining the pore size and 

distribution characteristics of kerogen, let alone applying such data to petrophysical 

models, remains challenging (Bohacs et al., 2013)   

2.3.4 Data reliability and uncertainty   

Studies by Profice et al. (2011) indicate that porosity estimation by crushed rock 

methods can be extremely sensitive to the accuracy of the crushed rock volume. 
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Though in general, crushed rock porosity estimates are considered robust, with 

repeatability studies showing excellent consistency (Luffel and Guidry, 1992). 

Moreover, recent work by Karastathis (2007), where the average sample grain size was 

reduced to 0.04 mm in combination with helium based standard Boyle’s Law 

technique, also shows excellent agreement with commercial crushed rock analysis. So 

whilst it is considered that ɸ can be measured accurately and consistently by crushed 

rock methods, it must be noted that these experiments are not performed at effective 

stress conditions, and so measure a likely dilated, maximum total porosity (ɸt; 

Sondergeld et al., 2010; Clarkson et al., 2012). Also, as pore surface area increases 

exponentially with decreasing grain size and as kerogen pores have particularly high 

absorptive capacities, the estimates of porosity based on Boyle’s Law may be 

compromised (Cui et al., 2009; Sondergeld et al., 2010). This may occur if the hydrogen 

gas injected during analysis is absorbed into a liquid like state on organic and clay 

minerals surfaces, leading to an exaggerated porosity. Cui et al. (2009) also notes that 

shale acts like a molecular sieve, where smaller elements such as hydrogen are able to 

intrude further into the rock sample and so measure larger porosities, whilst the 

intrusion of larger particles like nitrogen may be restricted by narrow pore throats, 

though hydrogen is normally utilised for tight shale samples. Sondergeld et al. (2010) 

also notes that commercial laboratories often report consistently different porosity 

estimates. This is highlighted in Figure 2.23, which reveals a relatively consistent shift 

in reported porosity values between laboratories for the same samples. These 

relationships suggest systematic differences in sample preparation, handling and 

laboratory protocol may impact porosity estimates (Sondergeld et al., 2010). Thus, 

accepting that the derived values may be inexact, as crushed sample methods for 

porosity determination are considered robust and repatable, analysis and evaluation 

should utilise the same laboratory for core analysis so as to minimise any error that 

may arise from differing laboratory procedures. 
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Figure 2.23. Comparison of as-received core porosity results      
Labs 1 and 2 use crushed rock methods, but differ in crushing and sieving preparation methods. Lab 3 is based 
on measurements taken on a core cylinder (Sondergeld et al., 2010). 

2.3.5 Summary: a petrophysical model for shale gas reservoirs 

The preceding sections outline the rock volumes included within laboratory 

determinations of ɸ and Sw. This can be summarised in a simplified petrophysical 

model (Figure 2.24) as suggested by Bust et al. (2011). Whilst this does not include 

features related to fabric as determined by depositional and burial processes, it 

highlights the major mineral and organic components and their respective pore 

space/fluids. Principally, it highlights a dual porosity system: an organic porosity 

containing free and adsorbed gas, and an inorganic porosity containing clay bound and 

non-clay bound fluids.  Whether or not the inorganic pore volume contains any 

adsorbed or free gas is yet to be conclusively determined, and though some authors 

suggest that the inorganic pore space contains no free gas (e.g. Alfred and Vernik, 

2013) is likely to vary from reservoir to reservoir with the Alfred and Vernik model as 

an end member. 
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Figure 2.24. Generalised petrophysical model for a shale gas system       
Taken from Bust et al. (2011).  
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2.4 Evaluating water saturation: Archie’s equation  

The following section introduces Archie’s equation and the determination of Sw using 

the resistivity log response. First Archie’s equation is outlined with a brief discussion of 

the physical properties and value constraints of key Archie parameters. This is followed 

by a review of ‘shaly sand’ saturation models; adaptations of Archie’s equation 

designed to compensate for the electrical properties of clay minerals, and a review of 

model uncertainties. It should be noted that deriving Sw by Archie methods is part of 

typical petrophysical workflows for shale gas systems. To give a sense of how 

determining Sw fits within the overall process of formation evaluation, an example 

workflow is presented in Appendix D.  

2.4.1 An introduction to Archie’s equation 

In the 1930’s and 40’s Gus Archie undertook a series of experiments on core samples 

collected from Gulf Coast sandstone reservoirs and established a number of empirical 

relationships which have come to underpin resistivity based formation evaluation to 

the current day.  

Archie’s work stemmed from initial experiments undertaken on a variety of 100% brine 

saturated (20-100 g/l NaCl) sandstone core samples with a ɸt range of between 10 to 

40%. He noted a linear relationship between sample resistivity at 100% brine 

saturation (Ro) and the resistivity of the saturating brine (Rw). He named the x 

coefficient for the linear trend the ‘Formation Resistivity Factor’ or F (Adisoemarta et 

al., 2000; Archie, 1942; Edmundson, 1988a). The relationship is generally written as:     

F=
Ro

Rw
⁄  

(2.6) 

Archie found that F was ‘.. a function of the type and character of the formation, and 

varies, among other properties, with the porosity and permeability of the reservoir 

rock.’ Specifically, he noted that whilst ɸt varied significantly between formations, that 
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the character of the relationship between F and ɸt remained relatively consistent 

(Archie, 1942). The linear equation between F and ɸt is: 

F= 1
ɸt

m⁄   
(2.7) 

where: ɸt = Total porosity 

 m = The slope of the linear regression line defining the relationship 
between F and ɸt, known more simply as the porosity exponent 

 1 = The y intercept, commonly referred to the a factor or tortuosity 
factor 

Archie found m to be specific to the pore geometry and depositional history of the 

formation under investigation and reported m values of between 1.8 and 2 for 

consolidated Gulf Coast sandstones and 1.3 for clean unconsolidated sands packed in 

the laboratory (Archie, 1942).  

Archie developed these relationships further, and, drawing on previous studies relating 

to the resistivity of partially water saturated sands, suggested a second factor, the 

Resistivity Index or I, so as to increase sample resistivity when only partially saturated 

with an electrolytic fluid: 

Rt= I ∗ Ro (2.8) 

Combining existing literature and reported data, Archie noted the following 

relationship when plotted on a log: log scale: 

 I = 1
Sw

 n⁄   (2.9) 

where: n = Saturation exponent (found to be close to 2 (Archie, 1942)) 

By combining equations 2.7 and 2.9, the now termed Archie’s equation expresses the 

relationship between ɸt, the fraction of ɸt saturated with conductive pore fluid (Sw) 

and the measured true resistivity (Rt) of the partially saturated clean sand: 

Sw= (
Ro

Rt
)

1

n
  commonly written as:  Sw= (

aRw

ɸmRt
)

1

n
 (2.10) 

An idealised relationship for Archie parameters F, a, m, n and I with ɸt  and Sw are 

displayed using artificially generated data in Figure 2.25.  
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Figure 2.25. A: Formation factor (F) vs. total porosity and B: Resistivity index vs. water saturation      
Artificial data illustrating Archie relationships for F (A) and I (B). Based on figures in Edmundson (1988b).   

Archie’s equation and the relationships between Rt, ɸt  and Sw can be summarised in a 

Pickett plot (Figure 2.26) after (Pickett, 1966). This highlights a linear negative 

relationship between with ɸt and Rt; the resistivity decreases as the conductive water 

filled pore volume increases. As Sw decreases, i.e, as the water filled pore volume is 

displaced by resistive hydrocarbons the, negative linear relationship between Rt and ɸt 

moves to the right.  

 

Figure 2.26. Pickett plot summarising key Archie relationships.  
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2.4.2 Archie parameters (a, m and n) 

Archie (1942) noted an empirical link between F and variations in a rocks ɸt and 

permeability (k), suggesting a link between pore geometry and geological history. Over 

subsequent decades numerous studies have sought to explore those geological factors 

controlling the development and evolution of formation pore space, so as to better 

understand and select appropriate a, m and n exponent values. The following section 

explores the possible physical meaning and value range of Archie parameter values. 

2.4.2.1 The a multiplier (sometimes referred to as tortuosity) 

In Archie’s original paper, the linear relationship between F and ɸt (equation 2.7) was 

explored with no physical interpretation given to the value of the y intercept (a). 

Moreover, despite the close association between ɸt and k, Archie utilised ɸt simply 

because he found it to be more reliable in predicting F than k. This empiricism, in 

combination with the limited geological definition of m given by Archie, led numerous 

researchers to seek a physically grounded model linking geometrical and textural 

parameters (pore tortuosity and surface area) to resistivity (Edmundson, 1988a). 

Wyllie and Rose (1950) suggested a model where the y intercept represents the 

physical relationship between ɸt and k, expressed as the tortuosity flow path of a fluid 

through the pore network. This can be visualised as a bundle of sinuous capillary tubes 

(Donaldson and Tiab, 2003; Salem and Chilingarian, 1999), where the tortuosity of the 

tube is represented by its deviation from a straight line across a sample after Carman 

(1937):  

a= (
La

L
)

2

 (2.11) 

where: La = Length of ionic flow path 

 L = Length of the porous medium traversed 

Whilst this links a with ɸt, k and thus F, it is inherent within the capillary tube model 

that ions should flow along paths similar to the pore fluid. Such that a = 1 reflects both 

the shortest ionic and the shortest fluid flow path between two points and the values 

of a>1 indicate increasingly inefficient or tortuous routes (Clennell, 1997). Whilst 
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simple and attractive however, linking ionic and fluid flow within a capillary tube 

model fails to reconcile the differences between the two, and more specifically, it fails 

to consider the possibility that the ionic flow medium may not be the free fluid. In 

other words, the shortest ionic flow path may not be the shortest fluid flow path 

(Clennell, 1997). This conceptual uncertainty is compounded by the limited agreement 

between laboratory and empirically derived relationships. For example, despite 

laboratory determined a values of between 1.37 and 3.3 for a number of sandstone 

samples, Winsauer (1952) found data for the Humble Formation to fit the following 

equation:  

F= 
0.62

ɸt
2.15 

(2.12) 

Where after Wyllie and Gregory (1953), the generally accepted notation of F became: 

F= a ɸt
m⁄  (2.13) 

The observation that suitable empirical relationships can be found in the range of a=<1 

or a=>1 (e.g. Worthington, 2011a, 2011b) makes it hard to accept a within the context 

of the above capillary tube analogy (where minimum theoretical value is a=1). So what 

is a? Numerous observations and studies link changes in a to k and ɸt, (Haro, 2009, 

2008; Kurniawan and Bassiouni, 2007; Kurniawan et al., 2007; Rezaee et al., 2007; 

Worthington, 2011b). For instance, Rezaee et al. (2007) notes that increases in a are 

often linked to decreases in ɸt, and changes in grain size and sorting, but observes that 

a is independent from m and defines a as the tortuosity of the pore throats, whereas 

m relates to pore connectivity. Though it should be noted that a is dependent on m 

where determined from graphical relationships (e.g Figure 2.25). It is also noted 

(Kurniawan and Bassiouni, 2007) that a is linked to the thickness of the CBW layer and 

fluid salinity; at higher salinities abundant ions satisfy clay surface charge, minimising 

CBW thickness and thus dilating pore throats. Thus, whilst a, k, ɸt and therefore F may 

be intrinsically linked physically, their interplay electrically is far more complex, and, 

after decades of research, a still lacks an accepted physical definition. Where Ransom 

(2007) suggests that a simply has no physical relationship with pore geometry and m 

or their controlling factors such as grain shape, size, compaction, cementation or the 
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presence of clay grains. Instead, Ransom (2007) suggests that a is an intrinsic property 

of the resistivity relationship and F, and is proportionally related to secondary 

electrically conductive influences that affect ionic conduction, but not necessarily fluid 

flow.  

As a consequence of the physical ambiguity that is a, a value of 1 is generally assumed 

(Awolusi et al., 2005; Heidari et al., 2011). Where in general, a is considered as a 

‘fudge’ factor determined and ‘tweaked’ to optimise the relationship expressed for F, 

and is usually determined from the best fit line on a log plot of F against ɸt (e.g. Figure 

2.25). 

2.4.2.2 The porosity exponent, m 

The porosity exponent (m) represents the slope of the best fit line for the correlation 

between F and ɸt (Figure 2.25). Where the steepness of m, and thus the log scale F : ɸt 

relationship, is related to the formation’s geological history (Archie, 1942). This links m 

to those geological factors (depositional environment, burial history) that influence the 

evolution of pore geometry (Adisoemarta et al., 2000). The relationship between F, ɸt 

and m is depicted in Figure 2.25, where increases in m are generally related to greater 

grain cementation/consolidation or increased pore complexity.  

Similar to models for a, basic conceptual models for m are likened to a porous medium 

composed of bundled capillary tubes (Donaldson and Tiab, 2003; Glover, 2009; Salem 

and Chilingarian, 1999). Though a value of m=1, which represents a series of capillary 

tubes crossing a sample in a straight line, is not considered feasible for real rocks. 

Whereas increases in m above unity indicate a reduced number of capillary tubes 

available, a narrowing of tubes, an increase in the number of dead ends within those 

tubes present, or any combination of factors which may influence capillary tube 

geometry and reduce pore connectivity (Salem and Chilingarian, 1999). This 

intrinsically links m with a and therefore pore connectivity and k (Glover, 2009). This 

relationship is depicted below in Figure 2.27, which contrasts the effects of a static 

selection of a = 1 versus a variable selection of a on the magnitude of m (Donaldson 

and Tiab, 2003). This effect can be significant, where as discussed in section 2.4.2.1, 

though a, k and ɸt are intrinsically linked, a is problematic to define, measure or 
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predict and so is generally assumed as equal to 1. Though making this assumption has 

however been shown to negatively affect the accuracy of Sw estimates in some studies 

(Adisoemarta et al., 2000; Rezaee et al., 2007).  In addition to capillary tube analogies, 

Adisoemarta et al (2000) also links increases in m above 1 to an increasing contrast 

between the cross-sectional area of the pore and pore throat. Glover (2009) takes a 

similar view, interpreting m as representing the rate of change between porosity and 

pore space connectivity. Ransom (2007) describes m as an intrinsic property of the 

rock, related to the geometry of the electrically conductive water network as imposed 

by the pore walls or surfaces of solid insulating materials. Though perhaps as a 

function of the wide variety of formation properties which may govern and influence 

m values, such as: grain shape, size, orientation, surface rugosity, angularity, sphericity, 

structure, pore dimensions, pore isolation, pore throat size, authigenic mineral growth, 

ond overburden pressure, there is no universally accepted definition of m (Donaldson 

and Tiab, 2003). 

 

Figure 2.27. Formation factor (F) vs. total porosity for variable (left) and fixed a=1 (right) values      
F and ɸt relationships for variable (left) and fixed (right) a values (redrawn from Donaldson and Tiab (2003)).  

Values of m have been shown to vary quiet significantly for a range of rock types. For 

instance values of between m=1.3 and m=2.0 were found for unconsolidated sands 

and cemented sandstones respectively (Archie, 1942). Later experimental work has 

also demonstrated m for a number of different lithologies and materials packed in the 

laboratory including m=1.3 for a pack of perfectly spherical grains, m=1.5 for 
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unconsolidated sands, m=5.5 for vuggy carbonates, with values of around m=2 for 

mudstones and chalks (Edmundson, 1988b; Jackson, 1978). The limits placed on m 

value selection are therefore relatively well constrained, m=1 represents the 

theoretical minimum, m=2 is a standard value assumed if no other information is 

available (Awolusi et al., 2005; Knackstedt et al., 2007), and values of m increase above 

one in relation to relative pore geometrical complexity. Following Archie’s equation for 

F, where a is known or assumed as equal to 1, m can also be calculated from Archie 

relationships (equation 2.14). Though m is more commonly derived graphically, 

resolved using a Pickett plot or plot of F against ɸt (Figure 2.25) for the formation in 

question.  

m= 
log(𝐹 𝑎⁄ )

log ɸt

 
(2.14) 

2.4.2.3 The saturation exponent, n 

In Archie’s 1942 paper, n, later termed the saturation exponent, was given only 

cursory mention as a value that appeared to be close to 2 for both consolidated and 

unconsolidated sands (Archie, 1942). Based on this observation, Archie used n=2 as a 

constant, where, as expressed in his formula for the Resistivity Index (I), variations in 

Sw are solely responsible for altering a formation resistivity.  

It is now accepted that many other factors such as fluid distribution, pore size 

distribution, wettability and fluid displacement history may also have a considerable 

effect on increases in formation resistivity relative to corresponding decreases in Sw 

(Edmundson, 1988b). These other factors can be represented by value changes in n, 

where n represents the degree to which the presence of hydrocarbons may interfere 

with ionic conduction as controlled by pore geometry and pore wall conditions. For 

instance, increasing n values can reflect a transition from water-wet to oil-wet rock 

systems as oil coated grain boundaries decrease formation conductivity (Donaldson & 

Siddiqui 1989). Where, in a water-wet pore system, as Sw decreases, n remains low as 

ionic conduction can be maintained along the water-wet pore walls. In an oil-wet pore 

system, as water Sw decreases, the remaining free water can become isolated, 

inhibiting conduction and leading to rapid increases in n (Adisoemarta et al., 2001). 
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Pore wall rugosity and micro-porosity have also been observed to impact n and the 

effects of hydrocarbon invasion on formation conductivity. Analyses undertaken by 

Diederix (1982) showed that n remained constant at a given Sw for a pack of smooth 

beads, whilst the same experiment using rough beads results in varying n values. SEM 

images also revealed the effects of clay micro-porosity on pore-wall surfaces and 

found that n values were low in sandstones at low Sw, as quartz grains had coatings of 

illite and kaolinite, and were higher, near n=2, at higher Sw where quartz grains had no 

grain coating.  Diederix (1982) concluded ‘…that a rough surface will retain a relatively 

thick water layer through capillary forces, thus providing a favourable path for 

electrical conductance’. 

 

Figure 2.28. Relationship between calculated Sw, Ro/Rt and n      
The effect of variable n values on calculated Sw  (redrawn from Adisoemarta et al. (2001)).  

The interplay of pore geometrical and surface conditions on n is generalised in a plot of 

I versus Sw in Figure 2.25, which displays an n range of n=1 to 8. At n>=8 the formation 

can be considered oil wet, whereas at the theoretical minimum (n=1.0) the formation 

can be considered as water wet. This is further generalised in Figure 2.28, which 

highlights the impact of variable n on Sw at low Ro/Rt values. Crucially it highlights that 

higher n values result in higher Sw values, such that an inappropriate selection of n may 

result in inaccurate Sw estimations, particularly at low Sw, where variations in n have 

the largest impact.  It has also been shown that hydrocarbon invasion and saturation 

history can also affect n. Implying that invasion events may alter pore wall wettability, 
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or that different oil saturation distributions may result in varying impacts to ion 

conduction and n (Donaldson and Tiab, 2003; Edmundson, 1988b).  

In summary, similar to m, the likelihood of n being constant for a formation is limited 

to only homogenous, clay free materials. This view is iterated by numerous authors 

who conclude that n is not a constant, but a product of Sw whose value is moderated 

by secondary factors relating pore geometry and pore wall conditions as described 

above (Adisoemarta et al., 2001; Donaldson and Tiab, 2003; Edmundson, 1988b; Haro, 

2009; Stalheim and Eidesmo, 1995; Worthington, 2004). This suggests that in many 

respects n is similar to m  (as n is related to pore geometry and pore wall conditions) 

such that n may be considered as essentially representing m following hydrocarbon 

migration into the formation (Ransom 2007). Under this rationale n cannot 

theoretically be less than m, a situation which would paradoxically require invading 

hydrocarbons to be more conductive than the displaced fluid. This suggests that whilst 

n cannot be less than m, neither should it possible for n to equal m at conditions other 

than 100% Sw. Where the presence of any hydrocarbons (Sw at less than 100%), would 

therefore require n to have at least a value greater than m, with n reaching a potential 

maximum value at irreducible Sw (Ransom, 2007). This view may however be 

considered contentious by some, after all, Archie’s equation is based on observation, 

and m and n have no strict physical definition. As such, if it can be shown to be 

geologically justifiable, there are no grounds to dismiss n values lower that m. The 

selection of values for n can therefore be relatively well constrained, n=1 represents 

the theoretical minimum, n=2 is a standard value assumed if no other information is 

available, and values of n above one can be related to Sw, wettability and relative pore 

geometrical complexity. In common practice, n is derived graphically using a log plot of 

I against Sw, n is also commonly assumed as simply equal to m. 

2.4.3 Shaly sand concepts  

The previous section summarises Archie’s Equation and associated parameters as 

developed for clay free sandstone reservoirs. In this context ‘Archie’ rocks can be 

defined as those which broadly adhere to the empirical relationships established by 

Archie (1942), and are free of ‘non-Archie,’ primarily clay effects. In other words, they 
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should display an ideal conductivity relationship where F remains constant for a 100% 

water saturated sample relative to changes in fluid resistivity. This is highlighted in 

Figure 2.29, where the ‘clean sand’ line depicts the ideal conductivity relationship for 

an ‘Archie rock.’ Figure 2.29 is plotted in terms of conductivity, where the Archie 

relationship for F is given as: 

F=
Ro

Rw
⁄ = 

Cw
Co

⁄    
(2.15) 

where: Co and Cw are the reciprocal conductivity values of Ro and Rw respectively. 

Following the development and application of Archie’s equation to other formations, it 

was soon noted that F was not always constant for a given sample, but can decrease 

with Cw (Patnode and Wyllie, 1950; Worthington, 1985). Adapting Archie’s equation to 

describe a wider variety of formations began with the understanding that unlike Archie 

rocks, the relationship between Co and Cw is not linear, but curved in formations 

containing a significant clay content (Winsauer and McCardell, 1953). An observation 

attributed to the development of excess conductivity resulting from the accumulation 

of pore fluid ions within the double layer interface of clay minerals surfaces (see 

section 2.3.3.1). These ideas were further developed by Waxman and Smits (1968) 

who developed a relationship between the electrical conductivity of water-saturated 

shaly-sands to Cw and the CEC of the rock, which was later extended to include 

partially saturated conditions.  

There are many formations with sufficient clay material that they cannot be classed as 

‘Archie rocks’ as defined in Figure 2.29. The drive to compensate for the electrical 

behaviour attributed to the presence of clay minerals has resulted in the development 

of a plethora of ‘shaly-sand’ models. Within which the additional conductivity is 

generally incorporated into Archie’s equation for F (equation 2.15) in the following 

form after (Worthington, 1985): 

F=
Cw

Co
⁄ + X   

(2.16) 

where: X = Composite shale conductivity term; approaches zero in ‘Archie’ 
rocks 
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The interrelationships between Co, Cw and X are depicted in Figure 2.30, highlighting 

that the absolute value of X increases with Co to some plateau and then remains 

constant as Cw continues to increase (Worthington, 2007, 1985). The clean sand line is 

expressed in the traditional Archie form as described by equation 2.13, whereas the 

shaly sand line is generally expressed as an Archie-type relation referred to as an 

‘apparent or shaly-sand formation factor.’ The notations representing F and other 

Archie parameters can be can be confusing, but in non-Archie rocks the ‘apparent’ 

Archie parameters are generally denoted with an asterisk (*), i.e., in an Archie rock the 

porosity exponent is m whereas in a non-Archie rock the ‘apparent’ porosity exponent 

is m*. This rule follows for F (F*) and n (n*).       

 

Figure 2.29. Effect of shale on F, Cw relationships  
The effect of shale ‘excess conductivity’ and increasing Co on conductivity relationships and F, note the 
departure of the shaley sand lines from the clean sand line, particularly at low Co values (redrawn from 
Worthington (1985)).  
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Figure 2.30. Schematic relationship between Co and Cw  
Relationship Co and Cw illustrating the the effect of shale ‘excess conductivity’ (adapted from Juhasz (1981) 
and Worthington (2007)).  

A large number of shaly-sand saturation models have been proposed to address 

problems associated with clay conductivity (e.g., Bardon and Pied, 1969; Clavier et al., 

1984; Poupon and Leveaux, 1971; Waxman and Smits, 1968; Simandoux, 1963). All of 

these models, and many more, attempt to compensate for clay effects by partitioning 

formation resistivity between that associated with clay bound water (CBW) and free 

water. The approach taken by these models varies however, and can be categorised 

after Worthington (1985) into two distinct groups according to how the problem of 

clay excess conductivity is approached. These groups are categorised as a) ionic double 

layer models, and b) clay volume models, and are discussed briefly below: 

a) Ionic double layer models such as Clavier et al. (1984) and Waxman and Smits 

(1968) utilise clay minerals ability to form an ionic double layer that reflects 

their CEC; a measure of their ability to absorb or exchange cations within a 

solution (Ellis and Singer, 2007). A key advantage of shaly-sand methods based 

on the ionic double layer properties of clay is their ability to account for clay 

type and distribution within a formation (Worthington, 1985).  

b) Clay volume models such as Simandoux and Poupon and Leveaux (1971) can be 

classified as belonging to a group of methods based on clay volume (Vclay) 

fraction. Where Vclay can be defined as the volume of wetted clay per unit 
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volume of reservoir rock, and thus accounts for clay bound water as it relates 

to total porosity (Worthington, 1985). In this manner, the excess conductivity 

of the formation is managed volumetrically. Worthington (1985) describes this 

as a disadvantage for a number of reasons, but most significantly because the 

Vclay parameter does not take into account clay distribution or composition, 

such that variations in these factors may yield significant clay effects for the 

same Vclay fraction.  

For reference, the equations for some common shaly sand models include (Brown, 

1986; Worthington, 1985): 

Normalised 
Waxman 

Smits  

Rwe=
Rwf   Rwb   Swt

Rwb  (Swt-Qvn)  Rwf  Qvn

       Swt=n*
√

Rwe

ɸt
m*

 Rt

      
(2.17) 

Normalised 
Dual Water  

Rwe=
Rwf   Rwb   Swt

Rwb  (Swt-Swb)  Rwf  Swb
       Swt=n*

√
Rwe

ɸt
m*

 Rt

      
(2.18) 

Indonesia  
1

√Rt

= [
Vsh 

1-Vsh

2
 

√Rsh

+ 
ɸe

m
2⁄

√a Rw

]  Swe

n
2⁄
 

     
(2.19) 

Simandoux 
1

Rt
= 

ɸmSw
n

aRw
+ 

VshSw

Rsh
 (2.20) 

where: equations 2.17) and 2.18) are ionic double layer models and equations 2.19) 
and 2.20) are VClay based methods. 

There are multiple shaly sand methods and a detailed review of their application is 

beyond the scope of this review. It is however recognised that of the many models 

available, that the CEC based models have the greatest scientific pedigree 

(Worthington, 1985), but require core in addition to log data  .  

2.4.4 Model uncertainties 

Herrick and Kennedy (2009) describe Archie’s equation as ‘a good descriptor of the 

trends observed…’, but add that there are ‘no physics inherent in the description. 

Consequently, the theory’s parameters, m, n, and a, are a priori physically meaningless. 

Although it can be argued that these parameters must be functions of the distribution 
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of the conducting phase...’ Though contentious, this view is reflected in the hundreds 

of papers seeking to adapt or physically link Archie parameter values to geological 

properties (e.g. Hill and Milburn, 1956; Khairy and Harith, 2011; Kumar et al., 2011; 

Mungan and Moore, 1968; Patnode and Wyllie, 1950; Ritch and Pennebaker, 1978; 

Winsauer, 1952; Wyllie and Gregory, 1953; Wyllie and Rose, 1950; Wyllie and 

Southwick, 1954) or those papers seeking to develop new, physically consistent 

conductivity models for porous media (e.g. Adisoemarta et al., 2001, 2000; Glover, 

2009a, 2009b; Haro, 2008; Herrick and Kennedy, 2009; Iheanacho, 2013; Kurniawan 

and Bassiouni, 2007). For instance Iheanacho (2013) suggests that m and n are of the 

same origin and should be replaced by a single ‘tortuosity’ factor. Similarly, Kennedy 

and Herrick (2012) suggest a conductivity model with a single geometrical factor 

interpreted as the fraction of the porosity’s cross-sectional area participating in 

conduction. In spite of these efforts however, Archie based approaches remain the de 

facto method for determining Sw across a range of lithologies and the physical 

ambiguity of Archie parameters persists. Whilst physically exact definitions might not 

be applicable to Archie parameters, they have been indisputably shown to reflect pore 

geometrical and surface conditions (see section 2.4.2). Thus, in accepting that Archie’s 

empirical equation may have physical/conceptual limitations, the greatest uncertainty 

arises from its adaptation and application within complex heterogeneous reservoirs, 

where the selection of geologically meaningful Archie parameters becomes 

increasingly problematic. For instance,  Worthington (2001) finds significant directional 

dependence on a and m parameters in sandstone reservoir rocks, highlighting non-

systematic variations in parameter values of up to 200%. This demonstrates that 

Archie parameters can vary markedly even in relatively simple reservoir rocks, 

suggesting that the widespread use of assumed values (e.g. a=1, m=n=2: Adiguna, 

2012; Awolusi et al., 2005; Han et al., 2008; Heidari et al., 2011; Knackstedt et al., 

2007; Popielski et al., 2012; Ramirez et al., 2011) for lithologies ranging from clean 

sandstones to tight gas shales is likely to result in significant uncertainty in derived Sw 

estimates. This is especially true of shale gas systems, whose mineralogical and 

structural heterogeneity (see section 2.1) is not reflected by the vertical resolution of 

wireline data or core sampling frequency (see section 2.2), and so is not well 
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represented by models based on petrophysical homogeneity. Though empirical 

relationships suggest m values of between 1.45 to 1.85 in shale gas plays (Ramirez et 

al., 2011; Wu and Aguilera, 2013; Yu et al., 2013; Zhao et al., 2007), with m also linked 

to organic matter maturity in some shales (Wu and Aguilera, 2013). In general 

however, whilst they remain the de facto choice, the applicability of Archie based 

models in shale systems is widely questioned (Alfred and Vernik, 2013; Bust et al., 

2011; Doveton, 2001; Glorioso and Rattia, 2012; Modica and Lapierre, 2012; Passey et 

al., 2010). Where a recognised failing of Archie and shaly sand method is the implicit 

assumption that the nature of the pore space and derivative electrical effects are 

consistent for all clay-bound and non-clay bound formation fluids alike (Haro, 2008; 

Herrick and Kennedy, 2009; Kurniawan and Bassiouni, 2007; Worthington, 1985). In 

other words, there is only a single set of pore geometrical factors (m,n), which 

assumes that all formation fluids exist in pores that share similar geometries, pore wall 

conditions and electrical properties. A situation which clearly contradicts the 

petrophysical model for a gas bearing mudstones (Figure 2.24), where multiple fluid 

phases are located in pore spaces hosted by a structurally and mineralogically 

heterogeneous organic rich matrix (Bust et al., 2011; Glorioso and Rattia, 2012; Passey 

et al., 2010; Quirein et al., 2010). These uncertainties are compounded by a lack of 

published experimental data examining Archie parameters in shale samples. Although 

some studies have examined shale dielectric and electrical petrophysical properties 

(e.g. Al-Marzoug et al., 2013; Clennell et al., 2006; Dewhurst et al., 2013, 2008), these 

have focused on examining relationships between CEC, depth, consolidation and 

compressive strength. This lack of data is likely attributable to a number of factors, 

firstly, connate fluid and resistivity data sampled from core material is scarce and 

unreliable due to the influence of flowback water, imbibed drilling fluids and free 

water in fractures that may not be representative of shale pore fluids (Bustin et al., 

2008; Nieto et al., 2009). This is highlighted by questionably large variations in fluid 

salinity over short vertical distances measured in the Horn River Basin (Sondergeld et 

al., 2010). Moreover, special core analysis (which is not performed at reservoir 

conditions) is expensive and time consuming, and, for the determination of Archie 

parameters (where an understanding of fluid resistivity is both critical and lacking) core 
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scale structural heterogeneity and variation is Sw can yield large variations in n and m, 

which can in turn lead to inaccurate Archie log models (Bona et al., 2014; Clarkson et 

al., 2012; Nieto et al., 2009). As a consequence, special core analysis and the 

determination of F, I and thus m and n is not often included within petrophysical 

workflows (e.g. Bust et al., 2011; Pitcher et al., 2012, see Appendix D). Despite this, in 

the absence of alternative models, the application of Archie based log models to shale 

sequences is routine (e.g Adiguna, 2012; Ahmad and Haghighi, 2012; Boyce and Carr, 

2009; Glorioso and Rattia, 2012; Haghighi and Ahmad, 2013; Nieto et al., 2009; 

Popielski et al., 2012; Ramirez et al., 2011; Utley, 2005; Wu and Aguilera, 2013), where 

Archie parameter selection is often not mentioned, simply assumed, or data 

lead/fitted/optimised/calibrated/solved/selected to match benchmark/baseline core 

saturation (normally Dean Stark) data (Bust et al., 2011; D. S. Chen et al., 1995; H. C. 

Chen et al., 1995; Chen et al., 2002; Cluff, 2012; Maute et al., 1992; Worthington, 

2011a, 2011b, 2009, 2007). For instance, in applying Archie’s relationships to complex 

reservoirs (shale gas, tight gas, gas hydrates etc.) Worthington (2011a) states that so 

long as the interpretive problems related to unconventional resources are ‘identified 

correctly, a petrophysical database can be tuned optimally so that it is fit for purpose.’ 

Though the efficacy of this approach, and any inherent geological relationships 

between the output Archie parameters and formation properties have yet to be 

investigated.      
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2.5 Summary and conclusions 

This literature review highlights a significant volume of material relevant to the study 

of the petrophysical properties of shale gas systems. Firstly it is clear that depositional 

processes in shale systems impart significant control on sediment fabric and 

composition which in turn help determine porosity-permeability distributions and 

formation petrophysical properties. It is also apparent that the scale of variation and 

heterogeneity in fabric/composition is far below that which can be reconciled by 

wireline data, which have a typical vertical resolution of over 30cm. Moreover, the 

effects of important shale attributes, e.g., TOC, clay contents, on wireline data is also 

emphasised, whilst uncertainty in how these properties impact the determination of 

core properties such as ɸtC and SwC are discussed, highlighting further uncertainty in 

defining an overall petrophysical model for shale gas systems. Finally, the concepts of 

Archie based methods and inherent uncertainties are discussed. In this final point it 

should be noted that shale gas systems are not significantly referred to. As, whilst 

numerous authors utilise Archie based methods for the determination of the free gas 

saturation in shale systems, to date, none explore the nature of its application, 

efficacy, or attempt to link model outcomes to the overriding geological controls on 

shale gas systems. These latter points form the focus of the following research. 
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  Chapter 3

The geological setting, mineralogy and 
petrophysical properties of the Bossier and 

Haynesville Shale Formations 

This chapter presents an overview of the geological setting of the Bossier (BSR) and 

Haynesville (HY) Shale Formations, outlines the rationale for the selection of wireline 

and core data and characterises the petrophysical and geological data selected for 

study. This chapter is divided into the following sections: 

3.1 The BSR and HY Shale Formations; geological setting and stratigraphy. 

3.2 The BSR and HY Shale datasets: rationale for data selection, data quality 

control, formation zoning and data corrections. 

3.3 BSR and HY core data mineralogical and petrophysical properties. 

3.4 BSR-HY spatial and compositional relationships.   

3.5 Petrophysical trends within the BSR-HY productive region. 

3.6 A note on kerogen density; outlines key uncertainties in kerogen density values. 

3.7 Summary and conclusions.    
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3.1 The Bossier and Haynesville Shale Formations  

The productive area of the Upper Jurassic Bossier (BSR) and Haynesville (HY) Shale 

Formations (defined by Hammes and Frébourg (2012) in Figure 3.1) is located in the 

region of the Sabine Uplift, an area straddling the Texas and Louisiana border in the 

northern Gulf of Mexico (GOM) Basin. The BSR-HY interval in this region is recognised 

as one of the most prolific and active shale-gas plays in North America, with 

recoverable reserves estimated in the hundreds of trillions of cubic feet (Hammes and 

Frébourg, 2012; Hammes et al., 2011). The HY is usually of special interest and has 

higher reservoir pore pressures and higher initial production and steeper decline rates 

than many contemporary North American analogues (Eagle Ford, Woodford, 

Fayetteville and Barnet; Baihly et al., 2010; Diaz De Souza et al., 2012; Fan et al., 2010; 

LeCompte et al., 2009; Parker et al., 2009). The following section provides an overview 

of the geological setting, stratigraphy and palaeotopographic influences on BSR-HY 

deposition.   
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Figure 3.1. Study area 

Map reproduced from Hammes and Frébourg, (2012) indicating the main structural features that influenced 
HY deposition: Salt Basins (green), fault zones (black) and the Sabine Island Complex (blue). The red area 
indicates the productive Haynesville region (2012 estimate). The expanded map indicates wells included 
within the study. Cross-sections A-A’ and B-B’ are shown in Figure 3.10 and Figure 3.11. 

3.1.1 Geological setting and stratigraphy  

Deposition of the BSR-HY interval began in the early Kimmeridgian (Figure 3.2) under 

the influence of basement structures related to the opening of the GOM basin 

(Hammes and Frébourg, 2012; Hammes et al., 2011; Mancini, 2010; Salvador, 1987). 
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GOM basin spreading began as part of the breakup of the Pangaea supercontinent in 

the Late Triassic (Rhaetian), with initial basin deposits including Upper Triassic and 

Lower Jurassic red beds, volcanic rocks and evaporites (Hudec et al., 2013b; Salvador, 

1987; Stern and Dickinson, 2010). The latter evaporite deposits formed in response to 

intermittent flooding of sea water into the basin from the Pacific. Under arid 

conditions and with restricted intermittent communication with the ocean, hyper-

saline lakes and synsedimentary evaporites formed under the influence of structural 

highs and lows generated by basin extension (Salvador, 1987; Stern and Dickinson, 

2010). These deposits form the widespread and fossil free Louann Salt, deposited over 

a poorly constrained period from the Toarcian to latest Callovian (180 to 161 Ma; 

Hudec et al., 2013b). Continued subsidence and the onset of sea floor spreading in the 

Oxfordian initiated a marine invasion from the Pacific (Salvador, 1987) and a reworking 

of continental deposits of the Norphlet Formation (Mancini, 2010). This was followed 

by the retrogradational deposition of the near shore Norphlet Sandstone Formation 

and the distal Smackover Limestone Formation, which initiated overburden induced 

movement and subsidence in the underlying Louann Salt (Hudec et al., 2013a, 2013b; 

Mancini, 2010; Mancini et al., 1985). Following maximum transgression in the late 

Oxfordian, reduced accommodation space led to the deposition of the prograding near 

shore Buckner Formation (sabkha deposits), with continued basinward deposition of 

Smackover limestones and deep basin mudstones (Hammes and Frébourg, 2012; 

Mancini, 2010). From the Oxfordian onward, progressive sediment loading increased 

salt mobility and induced a basin-ward tilting in the underlying Louann Salt (Dooley et 

al., 2013; Hudec et al., 2013a). Synsedimentary halokinesis (the sub-surface flow of 

salt) both influenced palaeotopography and the deposition of later sediments 

(Hammes and Frébourg, 2012), resulting in the development of numerous salt 

structures across the region (Condon et al., 2006). An increase in global sea level at the 

end of the Oxfordian marks the onset of HY (Kimmeridgian) deposition (the distal 

expression of the Lourak Group) which retrogrades over the proximal carbonate ramps 

and platforms of the Gilmer and Haynesville Lime Formations. A maximum flooding 

surface (MFS) at the end of the Kimmeridgian marks the BSR-HY boundary (Hammes 

and Frébourg, 2012) and the beginning of the progradational BSR deposition (the distal 
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expression of the coarser Cotton Valley clastics) in a period of rapid mechanical 

subsidence (Klein and Chaivre, 2003). BSR-HY stratigraphy is summarised in Figure 3.2. 

 

Figure 3.2: Stratigraphic section 

Upper Jurassic stratigraphic section of East Texas modified after Hammes and Frébourg (2012). 

3.1.2 Palaeotopography 

The productive BSR-HY interval occurs in a generally shallower area of Jurassic 

sediments (Hammes et al., 2011) above the Sabine Uplift (Figure 3.1). A broad  low 

relief basement arch with an elevated vertical relief that separates the East Texas basin 

from the North Louisiana Salt basin (Condon et al., 2006). The Sabine uplift is one of a 

number of  basement highs in the northern GOM basin and was a positive feature 

throughout primary deposition in the Mid to Upper Jurassic (Adams, 2009; Condon et 

al., 2006). As a result of Sabine basement elevation during early GOM basin extension, 
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the area of BSR-HY shale-gas production (Figure 3.1) is characterised by thinner 

deposits of underlying Louann Salt (Adams, 2009; Hammes et al., 2011). Moreover, in 

addition to influencing initial sediment accumulation (Figure 3.3), foreland tectonics 

applied lateral compression in the middle to late Cretaceous (Laramide) resulting in a 

foreland fold pair; the Sabine Uplift and the North Louisiana Salt basin (Adams, 2009). 

This was the primary period of uplift and may have influenced heat flow, diagenetic 

processes and the maturation of organic matter (Condon et al., 2006; Hammes et al., 

2011).  

 

Figure 3.3: Palaeogeography at the time of HY deposition (Kimmeridgian) 
Palaeogeography during Haynesville Deposition (Kimmeridgian) modified after Hammes et al., (2011). 

Though the GOM is one of the most widely studied basins in the world, interest in the 

BSR-HY interval is relatively recent and has a correspondingly limited literature base 

(Hammes and Carr, 2009; Hammes and Frébourg, 2012; Hammes, 2012, 2009; 

Hammes et al., 2011). Key texts include Hammes and Frébourg (2012) and Hammes et 

al. (2011), which detail the influence of palaeotopography and the Sabine Uplift on the 

style of HY deposition in the Kimmeridgian (Figure 3.3). At that time, a series of 

carbonate banks and shoals ringed an area which would later become the East Texas 

Salt basin (Figure 3.1) west of the Sabine Uplift. Carbonate platforms also ringed the 

Sabine Uplift to the north and hugged the slopes of topographic highs and islands to 
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the south (Angelina Island and Sabine Island Complex). Siliciclastic input was 

constrained to parts of the basin east of the Sabine Uplift, an area which would later 

become the North Louisiana Salt basin, linked to sediments supplied by the Mississippi 

River Delta. As a consequence of the topographic highs and carbonate platforms to the 

north, west and south and due to the distance of the central and western areas of the 

basin to the sediment source in the east, clastic input was restricted. This led to the 

deposition of condensed carbonate and organic rich HY in a slope to basinal setting 

with storm related influxes of skeletal and carbonate material from regional highs 

(Hammes et al., 2011). Restriction to clastic input was compounded by an increase in 

global sea level throughout the Kimmeridgian and associated retreat of the sediment 

source. Where following maximum transgression, sea level decline marked the onset 

of clay rich, organic matter diluted BSR deposition, prograding westward from the 

Mississippi River Delta to eventually cover the area of the East Texas Salt basin 

(Steinhoff et al., 2011). In contrast to this, data for this study, discussed in section 3.4, 

indicate a predominantly northern origin to clastic sediments, though this may reflect 

local trends within the wider region. BSR sediments are generally characterised by 

higher detrital and lower organic matter contents. Though areas of BSR deposition in 

distal areas of the basin, which were again influenced by local topographic highs, were 

at times sufficiently sediment starved so as to preserve relatively high organic matter 

contents. This is particularly true of the unofficially termed mid-BSR, which locally 

preserves total organic carbon (TOC) of over 5% (Hammes and Frébourg, 2012). 
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3.2 The Bossier and Haynesville datasets 

BSR-HY core and wireline data utilised in this study include 17 wells selected from the 

Core Laboratories (CLB) ‘reservoirs applied petrophysical integrated data‘ (RAPID) 

database (access provided by BG Group). The database is part of a joint industry 

project to study the BSR-HY interval, which includes wireline, geological and 

production data for a total of 98 wells. All wireline and core data have been integrated, 

depth shifted and managed by CLB.  

The following section outlines the rationale for the inclusion of the data within this 

study and describes data quality control, formation zoning and data corrections. 

3.2.1 Rationale for data selection   

Wells selected for inclusion within this study (and their associated core and wireline 

data) were required to meet two criteria:  

1. Wells were selected to cover a wide geographical area within the productive HY 

region (Figure 3.1) with the aim of capturing basin wide variation in BSR-HY 

geological properties. Though the number of wells is insufficient for a 

comprehensive basin analysis, wells were selected along north-south (A-A’) and 

east-west (B-B’) transects so as to qualitatively identify geological / petrophysical 

BSR-HY trends.  

2. Wells were screened for meeting minimum wireline (Table 2.1) and core data 

(Table 3.2) requirements. Only core data sampled according to the ‘gas shale joint 

industry project sampling methodology’ (Figure 3.4) were utilised. This ensured 

that measured core properties are both contiguous and available for all core 

samples included in the study.  

The location, names and assigned reference numbers for wells included within this 

study are summarised in Figure 3.1 and Table 3.3. 
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 Variable   Notation Unit 

Gamma ray GR gAPI 

Neutron porosity ɸn fractional 

Density ρb g/cc 

Deep resistivity Rt Ω.m 

Table 3.1. Wireline data: minimum criteria for well inclusion within study 

C
o

re
 d

a
ta

 

Gas research institute (GRI) 

Variable   Notation Unit 

Bulk density ρbc g/cc 

Matrix density ρma g/cc 

Total porosity ɸtC frac. 

Matrix permeability k mD 

Water saturation SwC fractional 

Oil saturation SoC fractional 

Gas saturation SgC fractional 

X-ray powder diffraction (XRD) 

Calcite, dolomite, k-feldspar, kerogen (volume only), marcasite, 
plagioclase, pyrite, quartz, total clay (comprising Illite + mica, 
chlorite and mixed-layer clay fractions) 

WMineral wt. % 

VMineral vol. %. 

Geochemistry (includes total organic carbon) 

Total organic carbon TOC wt. % 

 Core spectral gamma response (GRC)  

 Core spectral gamma response  GRC gAPI 

 Uranium, Thorium U, Th ppm 

 Potassium K wt. % 

Table 3.2. Core data: minimum criteria for core sample inclusion within study 

 
Figure 3.4. Gas shale joint industry project sampling methodology 
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Well ref. Operator Well name Drilling fluid 

1 BP America Carthage GU 13-17H WBM 
2 EXCO Patsy Johnston #1 WBM 

3 Comstock Resources BSMC LA 17 HZ #1 WBM 
4 Marathon USA USA Double H #1 WBM 
5 Southern Star A.S. Burt 20 #1 WBM 

6 KCS Resources Elm Grove Plantation #63 WBM 
7 Questar Wiggins 36H #1 WBM 
8 Matador Resources Hall 5 #1 WBM 
9 XTO New Horizons #1H OBM 

10 Chevron T. C. Adams NCT-1 #64HS OBM 
11 EXCO Reeves 18 #1 OBM 
12 Southern Star Atkins-Lincoln #17-2 WBM 
13 QEP Resources Burkett 5-15-10 H-2 Unknown 

14 Shell Sustainable Forest 24-1 OBM 
15 Devon S Kardell GU #1H OBM 
16 El Paso Corp. Max Hart 12H #1 OBM 

17 EXCO Holoubek Family, LLC 28 #1 OBM 
WBM: Water based mud 
OBM: Oil based mud 

Table 3.3. Summary of selected wells 

3.2.2 Data integration and quality control 

Following well selection, wireline and core data were integrated within the 

Schlumberger Techlog software platform. Core and wireline data had been previously 

integrated by CLB using wireline GR and core spectral GR (GRC) data, with core data 

corrected to wireline depths (ft.). This process was repeated to ensure an accurate 

depth shift and found good agreement with CLB interpretation, with only minor 

adjustments made to core depths. In general, the core data was satisfactorily ‘block’ 

shifted (i.e. core data depths were shifted by a fixed amount) to match wireline data 

using high relief gamma peaks as markers. Well 15 however, required intermittent 

stretching and shortening of GRC to match wireline GR. Whilst easily matched high 

relief GR peaks add a degree of confidence to core-wireline integration, intervening 

low relief GR zones can be challenging to match and increase uncertainty. As a 

consequence, though not excluded from the study, the accuracy of core to log 

integration and therefore the picked GR, ρb, Rt and ɸn values for well 15 should be 

viewed with caution.    
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In addition, the downloaded data were compared to data inventories provided on the 

RAPID database. This revealed minor inconsistencies in some wells related to duplicate 

GRI and XRD core results. All duplicate core data were removed. 

3.2.3 Formation zoning   

All data were zoned by formation (BSR and HY) according to depth information 

provided on the CLB RAPID database. In addition to wireline data, a total of 484 core 

samples were available for inclusion within the study, including 199 samples within the 

BSR and 285 samples within the HY. The stratigraphic boundaries for each well were 

determined by their respective operators based on wireline interpretation, sequence 

stratigraphic and biostratigraphic techniques and nannofossil events. In the absence of 

core however, stratigraphic boundaries could not be independently verified and were 

used as provided by CLB. 

As discussed in section 3.1.2, within the BSR-HY interval the HY is generally the 

targeted zone of interest. This is apparent in the selected study wells (see cross 

sections; Figure 3.10, Figure 3.11) where cored sections largely target the HY. As a 

consequence, whilst the HY is comprehensively sampled, many of the BSR core 

samples are located near the BSR-HY boundary in the lowermost BSR. Furthermore, it 

should be noted that the HY ranges in thickness from 200 to 300 ft., (Hammes et al., 

2011) and is relatively thin in comparison to the BSR, which has a thickness of between 

250 to 2000 ft., (Condon et al., 2006). In other words, the BSR is comparatively under-

sampled given its greater thickness. In addition, whilst many publications refer to the 

BSR as a single entity (e.g. Condon et al., 2006; Corley et al., 2010; Eastwood and 

Hammes, 2011), others divide the BSR into upper and lower or locally upper, middle 

and lower sections (Hammes and Frébourg, 2012; Steinhoff et al., 2011). Where 

locally, the lower (Zhang and Wieseneck, 2011) or middle (Hammes et al., 2011) BSR 

may be considered as being potentially more productive. In any case, when directly 

comparing BSR and HY data, the majority of publications present the BSR as undivided. 

Accordingly, as the BSR is relatively under-sampled and as BSR divisions are not 

uniformly available for each well, and as prospective BSR (middle or lower) zones are 
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related more to spatial disposition than age and depth, the BSR is also presented as 

undivided in the following study. 

3.2.3.1 Additional core data 

As outlined in Figure 3.4 the adopted CLB sampling methodology includes additional 

analyses that were not routinely available for each core sample, and were not 

considered critical to the petrophysical analysis undertaken in Chapter 4. A summary 

of additional core data that were (where available) integrated in Techlog as described 

in section 3.2.2 is provided in Table 3.4.  

C
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  Geochemistry (includes pyrolysis and vitrinite reflectance) 

Variable (frequency) Notation Unit 

Free hydrocarbons (450) S1 mg/mg 

Hydrocarbons generated by thermal cracking of kerogen 
(450) 

S2 mg/mg 

CO2 produced during kerogen pyrolysis (450) S3 mg/mg 

Max. temperature of hydrocarbon release from kerogen 
(30) 

Tmax 
oC 

Measured vitrinite reflectance (98) Ro % 

Thin section imagery and petrographic descriptions 

Thin section images in plane and epifluorescent light at a variety of scales for 
each core sample (484) including brief petrographic descriptions.  

Langmuir adsorption isotherms  

Adsorption temperature (oF), langmuir pressure (psi), langmuir volume 
(scf/ton)   (48) 

Table 3.4. Summary of additional data 

3.2.3.2 Additional information 

The laboratory protocol for the GRI analytical programme is included in Appendix A as 

provided by CLB RAPID database documentation. All GRI data analyses were 

performed and provided by CLB. Though requested, laboratory analytical 

methodologies for remaining core and thin section analyses indicated in Figure 3.4 

were not provided. In addition, no information is available regarding wireline tool type. 

This information can usually be inferred from tool mnemonics using online technical 
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resources such as the ‘Mnemonics Tool Search’ provided by the Society of 

Petrophysicists and Well Log Analysts (SPWLA). For instance, a search for the 

mnemonic ‘LL3’ on the SPWLA mnemonic tool search yields the following information:  

Mnemonic 
Name 

Company Model Gen Tool 
Log 

System 
Discipline Description 

LL3 baker atlas - - - - 
LATEROLOG 

(3 ELECTRODE) 

LL3 halliburton LL3 RESISTIVITY PLS2 - LATEROLOG 3 

Table 3.5. Tool information derived from tool mnemonic 

CLB has however standardised all available downloadable wireline data, such that GR, 

ɸn, ρb, and Rt are simply denoted by CLB as GR, NPHI, RHOB and RT. As a consequence, 

no information regarding tool type is available and, though requested, no further 

information regarding tool type was provided. Although differences may exist between 

different vendors of downhole tools, it is assumed here that data may be compared 

and interpreted with minimal uncertainty. 

3.2.3.3 Data corrections 

All data and results retrieved from CLB were used ‘as-received’ and were not corrected 

or manipulated with the exception of XRD mineral data. XRD mineral data were bulk 

volume corrected to include GRI porosity values (ɸtC) such that the sum of the porous 

and mineral volumes is equal to one. CLB XRD mineral volumes, which are a dry 

volume percentage, were bulk volume corrected to include for GRI ɸtC by: 

VMineral_BVC = (1-ɸtC).VMineral (3.1) 

where VMineral is the CLB reported mineral volume (as a fraction) and VMineral_BVC is the 

corrected mineral volume. This correction is applied so that the sum of all volumes 

reported for a given core sample equal 1.0.  

There is however a potential inconsistency in this correction (equation 3.1). CLB 

reported ɸtC values (CLB GRI documentation is supplied in Appendix A) are oven-dried 

at 110oC until weight stabilised for at least a week. As a consequence, there may be a 

http://www.spwla.org/technical/tool-mnemonics?mnemonics=LL3&company=&discipline=&description=&submit=Submit
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discrepancy in the moisture loss between samples prepared for XRD (typically dried at 

60oC) and ɸtC (dried at 110oC), with the latter likely to contain additional clay bound 

water and possibly some clay structural water (Handwerger et al., 2012, 2011). As CLB 

documentation available on the RAPID database typically includes bulk volume 

corrected XRD volume data however, it is assumed that XRD sample material is 

prepared and dried according to GRI methods, i.e. dried at 110 oC. If not, equation 3.1 

would result in a slight reduction of all mineral volumes, an exaggeration of ɸtC and a 

duplication of bound water component integral to VClay. There may also be additional 

errors arising from the disparate sampling of XRD and GRI material (Figure 3.4), where 

ɸtC is measured on a sample a few centimetres away from the XRD sampling location.  

Overall data correlations and trends do not however appear significantly affected. This 

is demonstrated in Figure 3.5 with the example VClay_BVC vs. VClay (as received from CLB), 

where the correlation coefficient (R2) is 0.996 and was found to vary from 0.991 to 1 

for the remaining mineral volumes. In summary, despite the potential discrepancy in 

moisture loss between XRD and GRI oven drying, the impact on mineral trends and 

relationships was not found to be significant.  

 

Figure 3.5. Bulk volume correction of mineral volumes 
Scatter plot of bulk volume corrected VClay (VClay_BVC) vs. VClay as-received from Core Laboratories.   

In the following sections and chapters, all reported mineral volumes are bulk volume 

corrected and are referred to simply as VClay, VCalcite ……..etc. All remaining data were 

used as received from the CLB RAPID database. 
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3.3 BSR-HY mineralogical and petrophysical properties 

This section provides a brief overview of the principal petrophysical and mineralogical 

core data listed in Table 2.1 and Table 3.2, including variable distributions and basic 

descriptive statistics such as the range, average value, and a measure of variability.  

3.3.1 Overview of XRD bulk mineralogy  

The mineralogy of the BSR-HY interval is summarised in Figure 3.6 using normalised 

XRD VClay, VCarbonate (VCalcite + VDolomite) and VQuartz values. For comparison, this includes 

shaded regions occupied by Barnett and Eagleford shale play data after Passey et al., 

2010. 

 

Figure 3.6. Summary mineralogical composition 
VClay, VCarbonate  (VCalcite + VDolomite) and VQuartz ternary diagram. Includes shaded Barnet and Eagleford regions 
after Passey et al., (2010). 
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It is notable in Figure 3.6 that BSR-HY data occupies a broad compositional range with 

a significant body of BSR samples with over 50% VClay. The 50% VClay line forms a loose 

cut-off, above which clay plasticity is considered to impede reservoir stimulation 

practices. As a result, most currently producing shale gas plays contain less than 50% 

VClay, where the quartz and carbonate components add a brittle character that aids 

play development (Passey et al., 2010).  

The key BSR-HY bulk volume XRD mineralogy is summarised in Figure 3.7, highlighting 

significantly lower VClay and higher VQuartz, VCalcite and VKerogen in the HY than in the BSR. 

Both formations have a similar VPryite range and the BSR data includes seven 

compositionally distinct VDolomite outliers above 50% volume.  

 

Figure 3.7. Summary of key core bulk volume XRD mineralogy  
Box plot and distributions for XRD mineral volumes. The bold line in each box is the median value (also 
provided below each plot). The vertical extent of each box is the interquartile range (IQR=Q3-Q1) defined by 
the upper (Q3) and lower (Q1) quartiles. The whiskers (dotted lines) represent the range of data within 1.5 
times the IQR. Core samples outside of the whiskers are classed as outliers (round markers). A histogram is 
included for illustrative purposes (no frequency scale is provided). Data for K-Feldspar and Marcasite are 
excluded. K-feldspar only registered a volume above 0% in 131 of 484 samples and ranged from 0.2 to 1.55 % 
for combined BSR and HY data with a median of 0.82%. Marcasite only registered a volume of above 0 % in 88 
of 484 samples and ranged from 0.18 to 4.09 % for combined BSR and HY data with a median of 0.77%. 

XRD analysis includes a measure of clay type as a fractional contribution to VClay, 

including chlorite, Illite+mica and mixed_layer clays and sum to 1.0 for a given sample 

(Figure 3.8). This highlights higher chlorite contributions to VClay in the BSR, whilst the 

HY has a lower, wider chlorite distribution. As a result, the Illite+mica and mixed_layer 

clay components form a larger fraction of VClay in the HY. It should be noted that where 
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the clay fractions are converted to a vol. % of VClay, the clay fraction volumes are 

denoted as VClay fraction (eg. VChlorite, VIllite+mica…….).   

 

Figure 3.8. XRD clay fractions (See caption for Figure 3.7.) 

3.3.2 Overview of core / wireline petrophysical properties   

The principal petrophysical properties in Figure 3.9 highlight a similar range, 

distribution and average values for Rt, GR and ɸtC in both the BSR and HY. Differences 

include elevated ɸn, SwC and ρbC in the BSR relative to the HY, with SwC in particular 

having a wider and higher distribution. BSR samples also exhibit significantly lower k 

values than the HY.  

 
Figure 3.9. Summary of key core and wireline petrophysical properties (See caption for Figure 3.7).  
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3.4 Compositional trends in the Bossier-Haynesville 

A detailed study of the sequence stratigraphic framework within the BSR-HY interval 

was undertaken by Hammes and Frébourg (2012) based on the analysis of wireline and 

core data for ~200 wells, with further analysis of 10 well cores for which XRD, XRF, TOC 

and thin sections were sampled at 1ft intervals. Their study includes a series of 

excellent cross-sections detailing sequence stratigraphic correlations and a series of 

palaeogeographic reconstructions highlighting the influence of palaeotopography on 

formation deposition, much of which is discussed in section 3.1.2. Very little 

quantitative data is however provided, and spatial variations in formation composition 

are not mapped. Though this investigation includes far fewer wells and core data 

collected at a lower sampling rate (typical CLB core sampling interval is 10ft., as 

opposed to the 1ft. sampling interval used by Hammes and Frébourg (2012)), the 

following section outlines the spatial and mineralogical trends observed within the HY 

productive region (Figure 3.1).  

3.4.1 Spatial and mineralogical relationships  

The A-A’ (north-south) and B-B’ (east-west) cross sections are displayed in Figure 3.10 

and Figure 3.11 respectively, highlighting the location and coverage of the core and 

wireline data. Cross-sections comprise wireline GR, core TOC and CLB stratigraphic 

boundaries.  

Section 3.1.2 essentially describes the HY as a mixed siliciclastic / carbonate system 

where distal areas of the basin, or areas sheltered by local topographic highs, 

experienced reduced clastic input, resulting in locally condensed clastic poor, 

carbonate and TOC rich sediments. This is supported by cross-section A-A’, which 

depicts a reduction in HY thickness from north to south, with an associated increase in 

basal formation depth, that suggests a decrease in sediment load towards distal, 

deeper regions of the basin.  
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Figure 3.10. Cross section A-A’  
Cross section A-A’, north to south in the HY productive region (see Figure 3.1). Section includes GR and core TOC, indicative of cored and sampled intervals. 
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Figure 3.11. Cross section B-B’  
Cross section B-B’, east to west in the HY productive region (see Figure 3.1). Section includes GR and core TOC, indicative of cored and sampled intervals. Note, well 1 has a higher 
sampling rate for TOC only, remaining core analysis (GRI and XRD) are sampled at intervals similar to other wells. 
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This agrees with the palaeotopography presented in Figure 3.3 and discussions in 

section 3.1.2, where ancestral fluvial sources to the north may have acted in 

combination with near-shore re-sedimentation processes to supply sediment in this 

region. Moreover, the southernmost wells on section A-A’ (wells 4 and 15) are both 

distally located and situated immediately to the north of the Sabine Island complex 

(Figure 3.3), which may have further restricted access to clastic input originating from 

the ancestral Mississippi River delta to the north-east. This is further illustrated by 

contour-plots in Figure 3.12, which highlight an increase in maximum depth, VCarbonate 

and VKerogen and a decrease in VQuartz, VClay and HY thickness to the south. Similar 

mineralogical trends are noted in the BSR (Figure 3.13), though as the upper 

stratigraphic boundary is unconstrained, an indication of thickness variation cannot be 

given. This data suggests a principally north to north westerly origin of clastic 

sediments within this region of the basin and is supported by stratigraphic 

relationships suggested by Dix et al. (2010). No clear trends are evident in cross-

section B-B’, though it is notable that the HY thickens towards the centre of the HY 

productive region, with the extreme western (well 2) and eastern (well 7) wells 

encountering relatively thin HY successions.  

A composite plot of principal XRD mineralogical components (VClay, VCalcite, VKerogen and 

VQuartz) is displayed in Figure 3.14. This highlights a negative linear relationship 

between VClay and VKerogen indicative of organic matter dilution (Hammes and Frébourg, 

2012) in northern proximal locations (Figure 3.12 and Figure 3.13).  The clear negative 

trend between VClay and VCalcite also indicates a sharp reduction in calcite production 

above 30% VClay. This largely divides BSR and HY data, indicating that reduced 

carbonate production can be attributed to a change in environmental conditions linked 

to a rise in sea level and increased clastic input (Boggs, 2009; Hammes and Frébourg, 

2012; Potter, 2005). It is also notable that there is no clear relationship between VClay 

and VQuartz, perhaps indicative of a distinction in clastic sediment source. For instance, 

Hammes and Frébourg (2012) suggest an aeolian origin for detrital quartz, though they 

provide no supporting evidence.  
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Figure 3.12. Contour plot of principal HY mineralogical components   
Contour plots are generated using linear interpolation methods for average well values based on SciPy 
(scientific python) documentation (SciPy.org 2013). Note the increase in maximum depth, average VCalcite and 
VKerogen, and the decrease in average VQuartz, VClay, and HY thickness to the south.      

The suggestion of an aeolian origin for detrital quartz is not unreasonable, as the 

disintegration of Pangaea throughout the Oxfordian to Tithonian coincided with high 

CO2 levels and a warm, dry climate (Moore et al., 1992), evidenced by evaporite and 

anhydrite deposits on the northern GOM shoreline (Figure 3.3) and continental aeolian 
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deposits within the Norphlet Formation (Mancini, 2010). In addition, continental 

aeolian deposits were widespread across the western interior of the USA, including the 

Entrada Formation in New Mexico and the extensive fossil rich Morrison Formation in 

western Texas, New Mexico, Colorado, Arizona, Utah and Nevada (Blakey et al., 1988; 

Tanner, 1965, Parrish et al., 2004).  

 
Figure 3.13. Contour plot of principal BSR mineralogical components   
Contour plots are generated using linear interpolation methods for average well values based on SciPy 
(scientific python) documentation (Jones et al., 2001). Note the increase in maximum depth, average VCalcite 

and VKerogen and the decrease in average VQuartz and VClay in the BSR to the south and south east.      
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Figure 3.14. Mineralogical relationships    
Scatter plot of principal BSR-HY mineralogical components. Note: a) the negative linear relationship between 
VClay and VKerogen, b) the negative linear relationship between VClay and VCalcite, and C) the lack of any clear 
relationship between VClay and VQuartz.  

Conditions were therefore present for a significant windblown quartz component 

sourced to the north of the HY productive region. This may account for the relatively 

wide distribution of VQuartz observed in the HY (Figure 3.14), but would require a 

consistent increase in aeolian quartz input to counter clay mineral dilution and 

maintain the narrow VQuartz distribution observed for the BSR in Figure 3.14. This seems 

questionable, and whilst an aeolian quartz input may have been significant, any 

relationship between VClay and VQuartz may have been distorted by differential 

diagenetic processes and the precipitation of biogenic silica and clay minerals in the 

BSR and HY. 

3.4.2 Total organic content, pyrite and redox conditions  

The restricted sediment input and high TOC contents found in the HY suggests an 

absence of the aerobic bacteria required to digest organic matter and thus an anoxic 

environment (Loucks and Ruppel, 2007; Potter, 2005). This is supported by the general 

absence of bioturbation, and by a positive co-dependant relationship between 

molybdenum and organic matter content in HY sediments (Hammes and Frébourg 

2012). In addition, pyrite (Figure 3.7) which is typically present as small pyrite 

framboids (Hammes and Frébourg, 2012; Hammes et al., 2011), is the product of 

anaerobic sulphate-reducing bacteria suggestive of an anoxic, euxinic (sulfidic) 

environment (Hedges and Keil, 1995; Vandenbroucke and Largeau, 2007). The 

occurrence of framboidal pyrite is common in organic rich marine shale, where it is 
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often associated and co-located with kerogen (Macquaker et al., 2010; Sageman et al., 

2003; Schieber, 2011; Taylor and Macquaker, 2011). This relationship was highlighted 

in a study by Witkowsky et al., (2012), which presents core data for nine wells in the 

HY that exhibit a positive linear trend between TOC and WPyrite. They utilise this 

relationship by plotting a regression line (forced through the origin) for the core TOC 

vs. WPyrite data, and then use the slope of regression to model TOC values from 

continuous WPyrite values estimated from a wireline mineral solver model. This 

relationship is tested in Figure 3.15 using data for wells 1 to 17 and (with the exception 

of wells 3, 4 and 15) covers a geographic area similar to wells within the Witkowsky et 

al., (2012) study.  

 

Figure 3.15. TOC vs. WPyrite for the HY    
Matrix scatter plot of TOC vs. WPyrite for each HY well. Included are the trend line and line equations fitted 
through the origin and the root mean squared error (RMSE). Note: the correlations are generally poor and the 
errors are generally very high, in other words, WPyrite has limited utility in predicting TOC.  

Figure 3.15 includes a least squared regression line forced through the origin as per 

Witkowsky et al., (2012) and the resulting linear equation. It is clear that little of the 

data plots near the regression line and that the relationship between TOC and WPyrite is 

poor. This is emphasised by the root mean squared error (RMSE), which represents the 

vertical misfit between the observed TOC values and those predicted by the equation 

of the fitted line. The RMSE (which is scaled after the parent unit; TOC wt.%) varies 
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from 0.69 to 2.05% with a mean of 1.31%. This is significant when considering the 

range in TOC values, which on average range from 2.15 to 5.01% for any one well. This 

equates to a relative or normalised error in the predicted TOC value of between 

+26.1% and +60.99%. In other words, the linear relationship between TOC and WPyrite is 

very poor and WPyrite appears to have limited utility in predicting accurate TOC values 

in these wells. Given the similar geographic disposition of well data used in the 

Witkowsky et al., (2012) to those used in this study, it is not clear why there should be 

such a stark contrast in TOC-WPyrite relationships. At the very least, it highlights either 

laboratory or reservoir inconsistencies that renders the application of empirical models 

problematic.  
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3.5 Petrophysical trends in Bossier-Haynesville   

The petrophysical properties of gas bearing mudstones, and particularly the effects of 

clay and organic matter on petrophysical properties, are discussed in sections 2.2 and 

2.3. The following section builds on this previous discussion and is intended to briefly 

illustrate key petrophysical trends within the BSR-HY interval. These trends are 

described using well 3, taken as a typical example of the BSR-HY data set, with 

composite cross-plots including all available core data where appropriate. First, as GR 

and core spectral GR (GRC) data are essential to accurate core-log integration (see 

section 3.2), a comparison of the wireline and core GR responses is presented with a 

brief examination of GR links to VClay and TOC. This is followed by a partial log 

evaluation for well 3 including VClay estimates, ɸn-ρb relationships and estimates of the 

bulk volume water (BVW) and total gas filled porosity (ɸg). A full analysis of the trends 

within all available petrophysical data is too expansive for inclusion, though summary 

statistical data for key petrophysical properties are presented in section 3.3. 

Moreover, a detailed examination of compositional-petrophysical relationships is 

presented in Chapter 7.  

The following section includes:  

3.5.1 An example of GR-GRC relationships and the influences of VClay and TOC on 

wireline and core GR.  

3.5.2 A partial well evaluation utilising Rt, ɸn, ρb wireline responses, including 

modelled values for clay volume, total and gas filled porosity, 

3.5.1 Wireline and core gamma ray response 

The GR and GRC data available for the BSR-HY interval was utilised to integrate core 

and log data as discussed in section 3.2. An example of the integrated core-log data is 

given in Figure 3.16 for well 3, highlighting a good GR-GRC match.  
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Figure 3.16. GR and GRC logplots for well 3 including VClay, Villite+mica and TOC.    
Log plots for GR and GRC for well 3 for the BSR (Bossier), HY (Haynesville) and HYL (Haynesville Lime) 
including VCLAY, TH (thorium), K (potassium), VI+M (Villite+mica), U (uranium) and TOC. Note the good agreement 
between GR, GRC and VClay, the absence of any correlation between K and Villite+mica and the spike in TOC and U 
in the lowermost HY (though there is an absence of any linear correlation).  

In addition, Figure 3.16 highlights a notable GR ‘kick’ (elevated GR) at the base of the 

HY and BSR. This ‘kick’ is widespread across the basin (see Figure 3.10 and Figure 3.11) 

in the HY with an additional GR kick at the base of the BSR in wells toward the south of 

the HY productive region (wells 3, 4 and 15). The regional correlation of these zones is 

evident on cross sections A-A’ and B-B’ (see Figure 3.10 and Figure 3.11), depicting a 
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series of basin wide upward-reducing and upward-increasing GR cycles in the HY. 

Unfortunately the coverage of cored intervals coupled with low intensity core sampling 

rates (discussed in section 3.4) precluded zoning the formation by upward-

cleaning/decreasing cycles. A detailed study of these sub-divisions is however 

presented by Hammes and Frébourg (2012).  

The GR and GRC tools respond to the combined uranium (U), thorium (Th) and 

potassium (K) content and are a measure of formation radioactivity. This radioactivity 

is generally associated with the volume of shale, principally clay, though organic 

matter is often linked with uranium (Alfred and Vernik, 2013; Algeo and Maynard, 

2004; Schmoker, 1979), where equation 3.3 is often used to estimate shale or clay 

volume (Bhuyan and Passey, 1994; Ellis and Singer, 2007; Rider, 1986). In continuous 

shale sections however, without pure clay/shale free (GRMin or GRMax) end members, 

value selection and thus clay estimates can be inaccurate. Moreover, though it is 

necessary to quantify VClay and its related effects on formation resistivity and other 

petrophysical and geomechanical properties, the complex composition of shale 

requires that the effect of heavy minerals such as pyrite on ρb and Rt or TOC on ɸt and 

ρb must also be determined. As a consequence, multi-mineral models present a more 

commonly used and versatile option, combining the GR, with the ɸn and ρb logs to 

solve for the multiple mineral components including TOC and porosity (Adiguna, 2012; 

Eastwood and Hammes, 2011; Heidari et al., 2011; Singh et al., 2013). Nonetheless, 

Figure 3.16 highlights a reasonable (R2=0.62) correlation between GR and VClay. In 

addition, though illite and mica generally contain higher levels of potassium (Doveton, 

1994), there is no notable link between Villite+mica and K (Figure 3.16). Likewise, there is 

no notable linear correlation between U and TOC, though the TOC track in Figure 3.16 

does spike at the base of the HY in association with GR, GRC and U.  

The interplays between TOC, U, VClay and GR are displayed in Figure 3.17, a composite 

cross-plot including all core data and associated wireline responses for the BSR (left) 

and HY (right). As depicted, there are no clear trends and U varies across the entire 

spectrum of TOC, though BSR samples do link high VClay and GR to low TOC and U. In 

addition, there are a number of samples in the HY that link high U, TOC and GR with 
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low VClay, indicating localised TOC related U enrichment. This links to observations by 

Lüning and Kolonic (2003), who relate the strength of the TOC-U relationships to 

sedimentation rate and redox conditions. Where the BSR, which is bioturbated (i.e. at 

least partially oxic, or with limited periods of anoxia) and more rapidly deposited than 

the HY, has no observable TOC-U relationship. By contrast the restricted and more 

persistently anoxic conditions responsible for elevated TOC in the HY, are likely to have 

facilitated, at least locally, U preservation in the HY.  

 

Figure 3.17. TOC (wt. %) vs. U (ppm) for the BSR (left) and HY (right).    
Composite cross-plot of TOC vs. U for the BSR (left) and HY (right). Marker size is scaled against VClay and 
marker colour is scaled against GR. Note: there are no clear TOC – U trends, though there is a general increase 
in GR with VClay. It is also notable in the BSR that VClay and GR are elevated at low U and TOC. In the HY, though 
there is no clear overall trend, there are a number of high TOC, U and GR points with low VClay values that may 
indicate local TOC related U enrichment.     

3.5.2 Typical petrophysical trends in the Bossier-Haynesville 

A typical suite of log responses is given in Figure 3.18 for well 3, including calliper 

(CAL), GR, Rt, wireline data, ɸtC, VClay and SwC core data and estimates for log modelled 

porosity, clay volume and ɸg. The following section discusses each track from left to 

right.  
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Figure 3.18. Wireline response fpr Well 3: cored Section.    
Track 1 includes: GR (gamma response) and CAL (calliper). Track 2 includes: Rt (deep resistivity) and RMED 
(shallow resistivity). Track 3 includes: ɸtC, ɸd (density porosity computed from the ρb log) and ɸn. Track 4 
includes: VClay, VClay.GR (clay volume calculated from GR) and VClay.nd (clay volume calculated from neutron-
density relationships). Track 5 includes: ɸtC, ɸM (total porosity modelled from the ρb log), BVW (calculated 
from core ɸtC and SwC values) and BVWM (modelled using the Archie water saturation values multiplied by ɸM). 

Track one includes wireline GR and calliper (CAL) readings, the latter indicating 

typically stable borehole conditions and no ‘badhole’ flagged intervals. Badhole refers 

to intervals with wider calliper readings indicative of borehole cave-ins, where 
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significant variations in borehole diameter can impair tool response. GR, discussed in 

section 3.5.1, is provided for reference.  

Track two includes deep (Rt) and shallow (RMED) resistivity responses, which show 

limited separation, and therefore no gas or fluid invasion effects. Neither of which 

would be anticipated given the extremely low formation permeabilities described in 

Figure 3.9.  It is notable however that Rt and RMED are slightly elevated in the TOC 

enriched lower HY. 

Track three includes ɸtC, ɸn and ɸd calculated from the standard porosity density 

relationship (taken from Rider, 1986):   

 ɸd = 
ρ

ma
- ρ

b

ρma- ρf

 (3.2) 

 where: ɸd = density porosity   

  ρma = grain density (mean formation GRI ρma used) 

  ρf = fluid density  (a value of 1 is assumed) 

  ρb = bulk density  (taken from the density log; ρb) 

 

ɸn and ɸd highlight a typical neutron-density separation profile for the BSR-HY well 

data set, with a wide separation in the BSR due the effects of clay bound water on the 

neutron response and narrow separation in HY, reflecting reduced VClay and elevated 

Vkerogen values.  

Track four compares basic methods for VClay derivation including VClay.GR and VClay.nd. 

VClay.GR is calculated after (taken from Rider, 1986):   

 VClay.GR =  
GR- GRmin

GRmax- GRmin

 (3.3) 

 where: VClay.GR = Clay volume  

  GR = GR log response  

  GRmin = GR for a clean or clay free interval  

  GRmax = GR for a pure clean or clay free interval 

In the absence of adjacent beds with GR values reflecting clay free (GRmin) or pure clay 

(GRmax) end members, values were selected to optimise VClay.GR output by minimising 
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the misfit between VClay (XRD) and VClay.GR, yielding: GRmin=60 and GRmax=300. Whereas 

VClay.nd was calculated from the neutron density relationship (taken from Rider, 1986):  

 VClay.nd =  
ɸ

n
- ɸ

D

ɸnclay- ɸDclay

 (3.4) 

 where: VClay.nd = Clay volume 

  ɸn = ɸn log response 

  ɸd = calculated density porosity (ɸd)  

  ɸnClay = the neutron porosity of clay 

  ɸdClay = the density porosity of clay 

In the absence of ɸnClay and ɸdClay values for pure clay, the highest well ɸn value was 

taken as a response to clay, yielding ɸnClay = 0.3, with the corresponding ɸd value 

yielding ɸdClay = 0.0882. Both VClay.GR and VClay.nd curves reflect general XRD VClay trends, 

but highlight significant inaccuracy and emphasise the requirement for more 

sophisticated multi-mineral methods. 

Track five includes two shaded regions: BVW (light blue) and ɸg (light red) defined by 

the BVWM and ɸM curves respectively. ɸM refers to a total porosity modelled from the 

linear relationship between ɸtC and log ρb values depicted in Figure 3.19. As indicated 

on Figure 3.18, ɸM correlates reasonably with ɸtC calibration values, particularly in the 

HY.   

 
Figure 3.19. ɸtC vs. ρb.    
Cross plot of ɸtC vs.log ρb for all availabel core data (left) and for well 3 (right). ɸM is modelled from the linear 
relationship depicted in the plot for well 3 (right).  
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BVWM refers to a modelled BVW. First an Archie water saturation (SwA) is calculated 

based on Archie (1942):  

 SwA= (
aRw

ɸM
mRt

)

1

n

 (3.5) 

 where: ɸM = modelled total porosity   

  Rt = Resistivity  

  Rw = fluid resistivity                      (a value of 0.014 Ω.m is assumed) 

  a = tortuosity exponent                   (assumed as equal to 1) 

  m = porosity exponent                      (assumed as equal to 2) 

  n = saturation exponent                  (assumed as equal to 2) 

SwA is calculated from ɸM and Rt using typical industry assumptions for m, n and a 

values with an Rwe of 0.014 Ω.m (based on communications with BG Group). An 

analysis of applied Archie parameter selection is the focus of Chapter 4. BVWM is then 

derived from:  

 BVWM =  SwA * ɸM (3.6) 

Accordingly, the blue shaded portion of track five represents the water filled porous 

volume (BVWM) and the pink region represents the gas filled porosity (ɸg). It is notable 

that BVW (calculated using core GRI ɸtC and SwC values after equation 3.6) correlates 

reasonably well with BVWM and therefore SwA in large sections of the HY. This log 

response is fairly typical of the BSR-HY well data set, with lower more accurately 

calculated SwA values in the HY and higher more erroneous saturation values in the 

BSR. Also notable are three large spikes in ɸM in the BSR that correspond with spikes in 

ɸd, GR and Rt, reflecting the occurrence of dolomitic BSR bands. The ɸd peaks reflect 

the increased volume and density of dolomite and the inverted GR peaks most likely 

reflect a reduction in VClay, whilst the increased variability and positive and negative Rt 

peaks may reflect variations in pore type, connectivity and fluid within dolomitic BSR 

material. 
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3.6 A note on kerogen density  

As indicated in Table 3.2, the XRD results retrieved from CLB include tabulated mineral 

wt. and vol. percentages. The vol. % mineral results also include a calculated grain 

density (g/cc). This is of interest as standard sample preparation for XRD analyses 

includes drying overnight to 60oC prior to grinding and analysis, such that the reported 

wt. % mineral data for a sample, which sum to 1, therefore excludes porosity (volume 

of moisture lost up to 60oC) and organic matter. The conversion of wt. % to vol. % must 

require assumed mineral densities (ρMineral), hence the inclusion of a calculated grain 

density (g/cc) in the mineral vol. % results. Moreover, the vol. % results include Vkerogen 

and notes that ‘kerogen contents are calculated using TOC and X-Ray diffraction data.’ 

That XRD kerogen volume was calculated from TOC is illustrated in Figure 3.20 (left), 

indicating that a constant kerogen density (ρKerogen) was used. As ρKerogen is a far from 

certain parameter, understanding which value was used has a bearing on the 

uncertainty in reported kerogen and mineral volumes. A request was made to CLB and 

BG Group for documentation detailing XRD methodology and the conversion of wt.% 

to vol.%, but no response was received. 

In the absence of a methodology however, the available wt.% mineral and calculated 

grain densities can be used to deduce (to within a high degree of certainty) the likely 

input ρMineral and ρKerogen values. Firstly the reported WMineral values were converted to 

VMineral in cubic centimetres (cc) by: 

VMineral = 

(
WMineral

∑ WMineral+TOC
)

ρMineral

  (3.7) 

where ρMineral is assumed and WMineral is fractional. The assumed ρMineral values are 

provided in Table 3.6, where the ‘Lower bound’ values were initially used. The matrix 

density (ρma) could then be calculated from:    

ρma = 

1

∑ VMineral

  (3.8) 
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By comparing ρma values with the calculated grain densities reported by CLB (ρma_CLB) it 

was then possible to optimise the assumed input ρMineral values so as to minimise the 

misfit between ρma and ρma_CLB, where the ‘misfit’ was taken as the root mean squared 

error (RMSE). The Microsoft Excel Solver add-in was then used to globally optimise 

ρMineral, with the freedom to optimise the assumed density values to an optimum 

within the upper and lower bound limits (Table 3.6). The returned optimal values are 

those which minimised the RMSE calculated between ρma and ρma_CLB.  

The lower and upper bound density constraints and the optimised values are 

summarised in Table 3.6. In addition a scatter plot of ρma and ρma_CLB is given Figure 

3.20 (right), highlighting their excellent agreement with a correlation coefficient (R2) of 

0.98.  
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Lower 
bound 

2.71 2.80 2.60 5.00 2.61 2.55 2 4.89 0.9 

Upper 
bound 

2.71 2.90 2.65 5.02 2.76 2.76 3 4.89 1.9 

          

Optimum 
value 

2.71 2.87 2.63 5.00 2.65 2.55 2.74 4.89 1.17 

Note: Upper and lower mineral bound densities are taken from Gribble and Hall, (1992). Kerogen 
bounds were selected to encompass a range of values discussed in the literature.  

Table 3.6. Summary of lower, upper and optimum mineral / kerogen densities   

 
Figure 3.20. VKerogen vs. TOC (left) and ρma vs. ρma_CLB (right) 
Left: Cross-plot of VKerogen vs. TOC  as received from CLB. Right: ρma calculated using optimised mineral / 
kerogen densities vs. ρma.CLB. Note the good correlation. 
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It is clear from Figure 3.20 (left) that CLB uses density constants to derive Vkerogen from 

TOC. Moreover, the excellent correlation between ρma vs. ρma_CLB (Figure 3.20; right) 

suggests that the optimised ρMineral and ρKerogen values given in Table 3.6 must be very 

similar to CLB values used for wt. to vol. conversion. This is supported by direct 

calculation of ρKerogen for each core sample:   

ρKerogen = (
TOC .  ρbC

VKerogen
) (3.9) 

where TOC is taken as a fraction and ρbC  is the GRI core bulk density (g/cc). Using 

equation 3.9, the median ρKerogen for the BSR-HY data equals 1.12 g/cc and ranges from 

1.02 to 1.25 g/cc. This variation most likely arises as, according to GRI methodology 

(Figure 3.4), ρbC and TOC values are derived from slightly different samples of core. 

Despite this however, the median value of 1.12 g/cc is fairly close to the optimised 

ρKerogen of 1.17 g/cc in Table 3.6 .  

It is important to know the approximate values used for ρKerogen, as whilst minerals 

densities can be narrowly constrained, ρKerogen varies widely in the literature as related 

to kerogen type and maturity (Bohacs et al., 2013). For instance, early work  by 

Schmoker (1979) suggested a ρKerogen of 1.0 g/cc, though recent papers indicate a range 

of reasoned or assumed values of between 1.0 and 1.8 g/cc (Bust et al., 2011; Glorioso 

and Rattia, 2012; Handwerger et al., 2012, 2011; LeCompte et al., 2009; Popielski et al., 

2012; Spears and Jackson, 2009). Moreover, it is recognised that ρKerogen can vary from 

shale to shale or from interpretation to interpretation, and where Ward (2010) 

suggests a ρKerogen  = 1.53 to 1.79 g/cc in the Marcellus, Jacobi et al. (2008) finds ρKerogen 

= 1.44 g/cc in the Barnett, with Eastwood and Hammes (2011) estimating that ρKerogen = 

1.45 g/cc in the HY. Though Quirein et al. (2012), based on ρma vs TOC relationships, 

suggests that ρKerogen = 1.12 in the HY. Higher ρKerogen values in the HY are however 

supported by studies of field emission microscopy that indicate interparticle 

(inorganic) pores to be the dominant pore type in the HY, with kerogen hosted pores 

noted to be less abundant than in analogous US shale gas reservoirs (Curtis et al., 

2010, 2012; Loucks et al., 2012; Milner et al., 2010). The Eastwood and Hammes (2011) 

example of ρKerogen in the HY was determined based on methods outlined by Guidry et 
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al., (1996) who defined a relationship between ρKerogen and vitrinite reflectance (Ro) as 

ρKerogen = 0.963 + 0.349 * Ro. Using this relationship with available Ro data (Table 3.4) 

yields median ρKerogen values for the BSR and HY of 1.47 g/cc and 1.46 g/cc respectively, 

the results are depicted in Figure 3.21. 

 

Figure 3.21. ρKerogen n vs. Ro 
Cross-plot of ρKerogen vs. Ro with histograms for ρKerogen (right) including BSR (blue) and HY (red) data. 

ρKerogen can also be estimated from TOC and grain density (ρma) relationships. This is 

depicted on Figure 3.22, where the ρKerogen is derived from:  

ρKerogen = 
TOC

(
1

ρma_Min

) - (
1-TOC

ρma_Max

)
 

(3.10) 

where ρma_Min and ρma_Max refer to the x axis values for a selected line of best fit 

between TOC and ρma. 
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Figure 3.22. TOC vs. ρma with ρKeorgen overlay 
Cross-plot of TOC and core matrix density (ρma) with overlain TOC- ρma relationships for ρKerogen values. 

The ρKerogen values depicted in Figure 3.22 suggest markedly different values for the 

BSR and HY data with a combined ρKerogen envelope of 1.23 to 1.77 g/cc. This method of 

ρKerogen determination cannot be validated by published work (no similar method was 

observed in the literature), but is based on simple density, volume and mass 

relationships, and serves to highlight significant uncertainty and range in ρKerogen 

values. Moreover, the ρKerogen envelope suggested in Figure 3.22 is similar to the range 

of values derived using Ro relationships in Figure 3.21 and other published values 

discussed above. It should also be noted that Figure 3.21 infers that CLB assume a 

constant ρKerogen for both the BSR and HY, despite the very different ranges suggested 

by data in Figure 3.22. 

The effect of using different ρKerogen values for deriving VKerogen is displayed in Table 3.7. 

Here the solver model discussed above in Table 3.6 was repeated using a series of 

fixed ρKerogen values when converting from wt. to vol. %.  As illustrated in Table 3.7, the 

optimised ρKerogen of 1.17 g/cc generates a median VKerogen very close, to within 1.5%, of 

the reported CLB value. Increases or decreases from this optimum, result in significant 

change in estimated VKerogen, with subtle though consistent knock on effects for the 

remaining mineral volumes. This is critical, as reported CLB vol. % data are often the 

basis for the calibration of numerous petrophysical models. Though any errors arising 
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from inappropriate ρKerogen values are at least constant, and apply to all available core 

data.  

Median CLB reported VKerogen (vol.%) for the BSR-HY data = 5.70 % 
     

ρKerogen (g/cc) 1.00 1.17 1.45 1.80 

Median solver VKerogen values (vol.%) 6.50 5.62 4.54 3.70 

Relative change (%) +14.04% -1.40% -20.35% -35.09% 

Table 3.7. Effect of variations in ρKerogen on estimated VKerogen   

In chapters 4 and 5, organic matter and mineral volumes are compared extensively to 

formation petrophysical properties and petrophysical modelling results. Thus, though 

not used directly in the calibration of any petrophysical models in this study, it remains 

important to outline uncertainties in the data, so as to help validate petrophysical-

mineralogical relationships. Nevertheless, as this work and literature examples 

generally cite higher ρKerogen values of close to 1.45 g/cc, it is considered likely that 

Vkerogen estimates should be at least 20% lower than reported by CLB. Though without 

any means to verify an appropriate alternative ρKerogen value, and as the error is 

constant for all core data, mineral and kerogen volumes were used as provided by CLB.  
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3.7 Summary and conclusions  

The BSR and HY data have distinct mineralogical properties and while the BSR is 

carbonate and TOC poor and clastic rich, the HY is clastic poor and TOC and carbonate 

rich. These mineralogical distinctions correspond with their petrophysical 

characteristics, with the HY having higher permeabilities, lower water saturations and 

a narrower neutron-density separation, indicative of high gas saturations and a 

reduced density response to TOC, than the BSR.  

BSR-HY mineralogical and petrophysical properties are clearly influenced by 

palaeotopography as discussed in section 3.4.1 and largely support the findings of 

Hammes and Frébourg, 2012. Though the contour plots in Figure 3.12 and Figure 3.13 

suggest a predominantly northern to north westerly origin of clastic sediments as 

opposed to the north-eastern ancestral Mississippi River delta source suggested by 

Hammes and Frébourg (2012). A north-westerly origin of clastic sediments is also 

supported by stratigraphic analysis undertaken by Dix et al. (2010). Though it is 

recognised that the Hammes and Frébourg (2012) study utilised a far larger data set 

covering a wider region, such that it is possible that data within this study identifies 

localised trends for sediment input within a wider region that may be dominated by 

sediment sourced to the north and east.     

Empirical models developed in a near identical region of the BSR-HY for the prediction 

of TOC based on WPyrite are noted to be highly inaccurate and no consistent link 

between pyrite and organic matter is observed. This highlights either laboratory or 

reservoir inconsistencies that renders the application or empirical models problematic. 

Likewise, typical methods for the derivation of VClay are shown to be prone to 

significant uncertainty, emphasising the petrophysical complexity of shale gas 

reservoirs and the requirement for more sophisticated interpretation methods. In 

addition, it is noted that estimates of the gas filled porosity generated using Archie’s 

equation for water saturation are reasonably accurate in some areas of the HY, despite 

the broad assumption made regarding the selection of petrophysical constants.  
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Uncertainty in XRD mineral volumes provided by CLB is evaluated and analysis 

indicates ρKerogen values for the BSR and HY data of between 1.23 to 1.77 g/cc. Far 

higher than constant value of ρKerogen=1.17 g/cc thought to be used by Core 

Laboratories. This is likely to result in an overestimation of VKerogen by approximately 

20% when converted from wt. to vol. %, causing the remaining mineral volumes to be 

subtly overestimated. Any resulting error in the bulk volume corrected XRD mineral 

volumes are noted to be constant, and therefore, whilst there may be error in the 

absolute value of kerogen or mineral volumes, their trends and relationship with 

petrophysical properties should not be significantly affected. 

 



Unconventional applications of Archie’s equation: sensitivity and error analysis  Chapter 4 

  
 Page 110 
 

  Chapter 4

Unconventional applications of Archie’s 
equation: sensitivity and error analysis 

This chapter outlines the research rationale, analytical methodology and results. The 

results are split into four components; first an overview of the results is presented, 

followed by the analysis of data generated by a series of optimisation models in three 

further sections. The chapter is divided as follows: 

4.1 Introduction: outlines rationale, aims and objectives. 

4.2 Methodology. 

4.3 Results: Overview.  

4.4 Results: 1D parameter optimisation.  

4.5 Results: 2D parameter optimisation.  

4.6 Results: 3D parameter optimisation. 
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4.1 Introduction 

Water saturation (Sw) in gas bearing mudstones is routinely derived using Archie based 

methods with little or no information driving the selection of Archie parameters (m, n 

and Rw). Instead parameter selection is often data led, using pseudo-Archie 

parameters (Bust et al., 2011; Chen et al., 1995;  Chen et al., 1995; Maute et al., 1992; 

Worthington, 2011a, 2011b, 2009, 2007) modified to generate Archie Sw estimates 

(SwA) that provide a good match to the ‘as-received’ Dean Stark core water saturations 

(SwC) (Cluff, 2012).  

This chapter utilises SwA calculated using a generalised form of Archie’s equation for a 

partially saturated formation (Archie, 1942; Brown, 1986; Juhasz, 1981):  

 SwA= (
Rwe

ɸ𝑡
𝑚Rt

)

1

n

 (4.1) 

 where: ɸt = Total porosity Core data (ɸtC)  

  Rt = Resistivity (deep) Log data 

  Rwe = Effective fluid resistivity Optimised  

  m = Porosity exponent Optimised  

  n = Saturation exponent Optimised  

The normalised equivalents of the Dual Water and Waxman Smits formulae equate to 

equation 4.1, with Archie’s aRw replaced with Rwe, an effective fluid resistivity term 

inclusive of the electrical contributions of clay bound and non-clay bound formation 

fluids. The optimised output parameter Rwe therefore encompasses those values which 

might be predicted by Archie (aRw), Dual Water or Waxman Smits methodologies. This 

approach was selected as the latter two methods are based on the ion-exchange 

properties of clay minerals and have the least disputed scientific basis (Worthington, 

1985). This approach is not without recognised failings however, as in applying the 

composite fluid resistivity term Rwe is the implicit assumption that the nature of the 

pore space and derivative electrical effects are consistent for all clay-bound and non-

clay bound formation fluids alike (Haro, 2008; Herrick and Kennedy, 2009; Kurniawan 
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and Bassiouni, 2007; Worthington, 1985). In other words, only a single set of pore 

geometrical factors (m,n) are applied to the numerator Rwe, such that all formation 

fluids are assumed to exist in pores which share similar geometries, pore wall 

conditions and electrical properties. This assumption is in clear contradiction with the 

generalised petrophysical model for a gas bearing mudstone (see section 2.3.5) in 

which multiple fluid phases are located in pore spaces hosted by a structurally and 

mineralogically heterogeneous organic rich matrix (Bust et al., 2011; Glorioso and 

Rattia, 2012; Passey et al., 2010; Quirein et al., 2010). Nevertheless, in the absence of 

more appropriate tools, a better understanding of the failings, response and general 

efficacy of routinely applied formation evaluation methods is an appropriate beginning 

in the search for new and improved methodologies. This is of particular interest as the 

influence of geological factors, including formation structure, composition and 

heterogeneity on those petrophysical properties that contribute to SwA estimation by 

electrical methods in gas bearing mudstones is poorly understood. This chapter aims 

to investigate the links between formation geological / petrophysical properties and 

the residual error derived from comparing optimised SwA estimates with benchmark 

SwC observations. The relative effectiveness, plausibility and range of Archie 

parameters generated in using deterministic grid search optimisation methods to 

minimise error will also be evaluated. In developing this understanding, the aim is to 

contribute towards a geologically reasoned and informed approach to parameter 

selection, advancing our predictive capability where petrophysical properties may be 

linked to geological observations in the absence of core data. The full aims and 

objectives of the research are detailed in section 1.2. 

4.1.1 Chapter structure 

This chapter is split into the following sections: 

4.2 Methodology. 

4.3 Results overview: This section presents a comparison of the SwA estimates, their 

residual errors and associated generated Archie parameters for multiple 

optimiser model variants. 
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4.4 1D, 2D and 3D parameter optimisation: The number of dimensions refers to the 

number of Archie parameters optimised within the model. Each optimisation 

model is investigated independently in sections 4.4, 4.5, and 4.6, and each 

systematically detail: 

i. The sensitivity of residual mean absolute error (MAE) to parameter 

change. This aims to identify parameter relationships and the presence 

of any systematic bias so as to help validate the geological viability of 

the optimised parameter.   

ii. The trade-offs between generated parameters and input variables. 

Identifying the primary forcing variable, and other geological properties 

by which it is influenced, is key to determining how formation geology 

influences Archie relationships in gas bearing mudstones.   

iii. Direct calculation of Archie parameters for each core sample. Archie 

parameters are derived by direct calculation or iteration for each core 

sample. This aims to identify any useful systematic variations that may 

inform underlying geological controls.    
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4.2 Methodology 

4.2.1 Least error optimisation  

Least squares regression is an example of optimisation where the parameters m and c 

(the slope and intercept and thus the equation of a straight line; y=mx+c) are data 

driven. In other words, they are fitted (optimised) based on the relationship between 

observed x and y variables to define a line that minimises the sum of squared 

deviations between the observed data points and the line. Allowing for the prediction 

of y (ŷ) based on x (Size et al., 1987).  

A least error approach to parameter optimisation is not limited to linear systems, and 

can be incorporated within iterative higher dimensional functions to derive multiple 

parameters. The measure of error can also be calculated in multiple forms. This 

investigation utilises two standard measures of error, the root mean squared error 

(RMSE, equation 4.2) and the mean absolute error (MAE, equation 4.3) (Hyndman and 

Koehler, 2006; Willmott and Matsuura, 2005). Both measures of error are dimensioned 

in the form of the parent unit, but are also provided as a normalised percentage value 

(equation 4.4) where practical. 

 RMSE= √   
1

n
. ∑(y-ŷ)2  (4.2) 

 MAE= 
1

n
.  ∑|(y-ŷ)|  (4.3) 

 Normalised Value=
RMSE or MAE

max(y) -min(y)
 (4.4) 

MAE and RMSE have been used in combination in an attempt to compensate for the 

potential bias that each method implies. RMSE, whilst probably the most common 

approach observed in the literature, can weigh the calculation in favour of larger errors 

as opposed to smaller ones, skewing fitted parameters towards sample outliers (where 

present). Conversely, MAE could be argued to favour the bulk of, but not the full 
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variance of sample data in the absence of outliers. As a compromise, results by both 

measures of error have been fully investigated to help judge any significant separation, 

and thus identify the potential impact of population variance or the presence of 

sample outliers on fitted parameters. 

Having selected a measure of error, probabilistic or deterministic algorithms can be 

used to optimise parameters to minimise the selected measure. These typically include 

Markov Chain Monte Carlo (MCMC) methods or optimisers such as Microsoft Excel’s 

Solver add-in. The latter are probably more widely used given their routine availability, 

user simplicity, and speed of use. Nonetheless, optimisers typically yield only single 

optimised parameter values (in this case m, n and Rwe) and provide no information 

regarding the variation in least error over the range of possible values or the trade-offs 

between parameter inputs.  

A more simplistic solution, which can yield globally optimised parameters and return 

the possible solutions over an iterable range of inputs, is to perform a comprehensive 

grid-search of parameter space. To this end, a simple Python script was written to 

evaluate the input parameters within Archie’s equation. The code (see example in 

Appendix B) returns the MAE and RMSE for a given sample population for every 

possible input parameter combination within set limits for Rwe, m and n. For instance, 

consider the input parameters as x, y, z coordinates in 3D space where the python 

code iterates over the possible coordinates, evaluating and returning the residual error 

at each point. Probabilistic MCMC methods were considered for this application, but 

given the relative simplicity of Archie’s equation and the ability to compute the 

parameter combinations to an adequately fine scale, a grid-search approach was 

considered to be the most robust method (Bergstra and Bengio, 2012). 

4.2.2 Grid search optimisation methodology  

The methodology employed follows a simple workflow: 

a) Well data for the Bossier Shale (BSR) and the Haynesville Shale (HY) Formations 

were downloaded from the Core Laboratories database and screened to ensure 
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accuracy in depth shifting between the down-hole gamma and core spectral 

gamma response (quality control methods are described in section 3.2). 

b) Core samples where the primary input variables ɸtC and SwC were available, 

were ascribed a depth matched Rt value. 

c) Core samples were grouped by formation in each well (where more than one 

formation is available). 

d) SwA was calculated for each sample, and MAE and RMSE were calculated for n 

samples in each formation in each well. Only optimised Archie parameter 

combinations and SwA data where MAE or RMSE values were less than 100% Sw, 

were recorded. This process was repeated for every Archie parameter 

combination (m, n and Rwe) within defined parameter constraints and at a set 

step increment.          

4.2.2.1 Parameter constraints 

The range and theoretical minimum values of the parameter inputs m and n are 

discussed in section 2.4.2. These limits are expanded somewhat arbitrarily in the grid 

search so as to aid the investigation of parameter relationships. The range in 

parameters used is given in Table 4.2:  

Conceptual Range Grid-Search Range Parameter 

1.5 < m < 2.5 

1.5 < n < 2.5 

0.006 < Rwe < 0.1 

1.0 < m < 4.0 

1.0 < n < 4.0 

0.006 < Rwe <  0.1 

Porosity exponent 

Saturation exponent 

Effective fluid resistivity 

Note: the lower Rwe value is based on the lowest value on Chart Gen-9, the Resistivity of NaCl Solutions 
by Schlumberger  

Table 4.1. Grid search parameter range 

4.2.2.2 Parameter step increment   

The selected step increment controls the scale of the output data and was typically set 

at between 0.001 and 0.05 (log space increments were used for Rwe). For instance, 

with a step increment of 0.05, SwA for a given sample is calculated at Rwe=0.006, then 

0.006732, 0.007554……etc., to Rwe=0.1, whilst n= 1.0 and m= 1.0. The process is then 
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repeated through the range of n and then again through the range of m.  A step 

increment of 0.05 results in 96,746 (61 x 61 x 26) iterations per sample, or a combined 

46,825,064 iterations for all 484 samples each time the code is run.  

4.2.2.3 Grid search model variants 

A grid search approach to parameter optimisation can perform multiple functions:  

a) Locate those parameters associated with globally minimised error.  

b) Capture the variation in error across the potential range of parameter values.  

c) In varying the number of freely optimised parameter dimensions (i.e., by 

optimising for one, two or all three available parameters (m, n and Rwe)), 

variations in parameter sensitivity can be investigated.  

d) Variations in sample size, where samples may be optimised holistically 

(formation wide), or binned into smaller sample groups based on well number, 

can also give some indication as to the sensitivity of Archie’s equation to the 

effects of sample heterogeneity.  

e) The use and choice of static parameters, which reflect common assumptions 

regarding Archie parameters (e.g. m=n=2), can be evaluated.   

It should be noted, that within this thesis, where it is assumed that m=n, the two 

exponents (m and n) in Archie’s equation have been replaced by a single parameter, 

m*.  

The following grid search optimisation models are defined and investigated:  

Model 
ref: 

Optimised 
parameters 

Fixed parameter 
assumptions 

No. of sample 
populations 

No. of parameter 
dimensions 

H1 m, n, Rwe N/A 2 3 

W1 Rwe m=n=2 26 1 

W2 m* Rwe = 0.014 26 1 

W3 m*, Rwe m=n 26 2 

W4 m, n, Rwe N/A 26 3 

Table 4.2. Grid search optimisation model variants 
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4.2.2.4 Model validation   

The MAE and RMSE results produced using a grid search approach were validated 

using the Generalised Reduced Gradient (GRG) optimisation algorithm (in multi-start 

mode) in Microsoft Excel. Generated MAE or RMSE using the GRG method were found 

to correspond to values generated using grid search techniques to within 10-3. 

Likewise, GRG optimised Archie parameters match, to within the selected step value 

(e.g. 0.05), those derived using the grid search method. An example of the near exact 

agreement between grid search and GRG least MAE, calculated for all model varieties 

across as well data is depicted in Figure 4.1  

   

Figure 4.1. Grid search vs. solver methods and MAE vs. RMSE 
Left: MAE (Grid Search) vs. MAE (Reduced Gradient Method). Right: RMSE vs. MAE. Data displayed for all data 
from optimisation models H1 and W1 to W4.  

In addition, Figure 4.1 also plots grid search RMSE vs. MAE, and though there is some 

separation at higher error values they are in good agreement. The two different 

measures of error also produce minor variations in optimised parameters values, 

though the overall data trends and relationships were found to be near exact. As a 

consequence, though the data for both measures of error have been scrutinised, for 

clarity and consistency, only MAE data are presented in the following sections.  
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4.3 Results: Overview 

This section presents an overview of the results generated by applying each of the grid 

search optimiser models to the core data and is divided as follows: 

4.3.1 SwA results: Presents SwA estimates for optimiser models H1 and W4 (see Table 

4.2). 

4.3.2 Residual errors: Presents the residual error for each well and each optimiser 

model. 

4.3.3 Generated parameters: Presents the generated Archie parameters for each 

optimiser model combined with bulk formation petrophysical/mineralogical 

properties. 

4.3.1 Archie water saturation (SwA) results 

The combined results for BSR and HY optimised SwA vs. SwC are presented in Figure 4.2, 

which compares: model H1, a holistic basin wide approach that generates two sets of 

fitted parameters (one for each of the BSR and HY), and model W4, a well dependant 

approach that generates 26 sets of fitted parameters (one for each formation in each 

well). Models H1 and W4 are presented here as effective end members in optimiser 

flexibility/capability for minimising MAE.  

Figure 4.2 shows a marked improvement in the correlation of SwA vs. SwC from model 

H1 to W4, with a significant reduction in MAE for both the HY and BSR. The MAE, 

normalised MAE and the percentage reduction in MAE are summarised in Table 4.3. 

Nonetheless, despite the significant reduction in MAE from model H1 to W4, MAE is 

still relatively high in the BSR at 10.13%. This is despite an increase from two to 26 

optimised sample groups from model H1 and W4.  
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Figure 4.2.  SwA vs. SwC 
SwA versus SwC for the BSR (left), HY (right). Data is for model H1 (top) and W4 (bottom). Colour is a function of 
Rt and marker size is a function of bulk volume corrected VClay. Dashed grey lines represent fractional relative 
error. Note: the increase in Rt and VClay at low SwA. 

 MAE (%)  H1 MAE (%)  W4 
% Relative Reduction in MAE                

(H1 to W4) 

BSR 17.63 10.13 42.54 

HY 5.59 4.65 16.81 

Table 4.3. Change in MAE from model H1 to W4 

Figure 4.2 also displays clear co-dependant relationships between Rt, VClay and SwC, 

particularly in the BSR, where the most resistive samples are also the most clay rich 

and water saturated. It is notable that this relationship typically results in significant Sw 

underestimates and generates large errors. These relationships, though less 

prominent, are also noted in the HY, which is notably less heterogeneous and more 
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constrained with regard to the distribution of all properties depicted in Figure 4.2 (Rt, 

VClay, SwC and relative error).  

 

Figure 4.3. Tiled SwA vs. SwC scatter plot for model W4 
SwA versus SwC for each well for model W4 (conceptual parameter limits applied). Marker size is a function of 
Rt. 14 BSR dolomitic outliers are highlighted in red and are excluded from R2 calculation (an additional outlier 
plots off scale in well 17). Note: the larger markers (high Rt) tend to fall in the bottom right corner of the plot. 

In addition to the composite results presented in Figure 4.2, optimised SwA results for 

each well are provided in Figure 4.3, and again illustrate the apparent relationship 

between elevated Rt values and erroneous reductions in SwA, particularly in well 10. It 

is again clear that this relationship is more prevalent in the BSR than the HY.  

As discussed in Chapter 3, 14 core BSR samples are identified in Figure 3.7 as dolomitic 

outliers with VDolomite over 4.67%. These dolomitic BSR samples are highlighted with a 
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red halo in Figure 4.3, and are uniformly distributed throughout the well data as 

discrete dolomitic bands. In the majority of wells they have little adverse effect in 

skewing minimised error and SwA, but in wells 1, 2 and 10, they were noted to have an 

adverse effect on optimisation. As a consequence, the BSR dolomitic outliers, which 

are not representative of general reservoir lithology, were excluded from the 

optimisation process in Figure 4.3, and are excluded from all following analyses. As 

such, all future plots include data for 185 BSR and 285 HY core samples.  

4.3.2 Residual errors  

The optimisation models defined in Table 4.2 vary as a function of the available 

parameter dimensions (1D to 3D), the use of parameter constants (e.g. m*=2), and 

number of population groups optimised (H1=2, W1-4=26). A comparison of the 

residual errors generated using each of the optimisation models (H1 and W1-W4) is 

given in Figure 4.4.  

 

Figure 4.4. Comparison of MAE for variable parameter selection methods 
Comparisons of least MAE (bold line) for each optimiser model (H1 and W1-W4). The shaded area is the 
standard deviation in absolute error (𝜎AE) per well and the black line is mean Rt per sample group.  
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The residual error profiles displayed in Figure 4.4 show relatively little change between 

grid search models H1 to W4, despite alterations to the number of available parameter 

dimensions and sample binning. Also apparent are the consistently low residual errors 

reported for the HY, with markedly more varied error profiles for the BSR. Variations in 

least MAE are also shown to correlate well with the standard deviation in absolute 

error (𝜎AE: shaded areas) and mean Rt. In other words, larger errors (least MAE) 

correspond with increased 𝜎AE and higher formation Rt. This may link to heterogeneity 

in formation compositional/petrophysical properties, where, as discussed in section 

4.3.1 (Figure 4.2), the BSR exhibits wider VClay and SwC distributions than the relatively 

constrained HY core data. In particular, the contrasting range and distribution in 

formation SwC values for BSR and HY data may account for some of the difference in 

least MAE for the two formations. This is emphasised in comparing MAE in Figure 4.4 

with normalised MAE in Figure 4.5, where the difference between the two formations 

becomes, with the exception of wells 2, 5 and 10, far less significant.  

 

Figure 4.5. Normalised MAE for each optimisation model   
Comparison of Normalised MAE (bold line) for each optimiser model (H1 and W1-W4). The bar chart is for 
mean SwC per well. Note: the clipped MAE value for H1 well 5 is 267%. Also, higher SwC values are noted in the 
BSR with normalised MAE values comparable to HY. 

It is also evident in Figure 4.4 that the MAE for BSR well 3 falls sharply from model H1 

to W1, indicating that heterogeneity in the BSR may be highly variable. In general 
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however, though there is an absence of any significant change in the error profiles 

between the optimisation models displayed in Figure 4.4, there is a general formation 

wide reduction in mean MAE with increasing optimiser model flexibility (H1, to W4). 

This change is highlighted in Figure 4.6 with an overall decline in error for the BSR and 

the HY equating to a relative reduction of 42.5% and 16.8% respectively (also see Table 

4.3). For the HY, the decline in error between optimisation models is subtle, whereas 

for the BSR 31% of the 42.5% reduction in error occurs between model H1 and W1. It 

should be noted that model H1 holistically optimises all the BSR data within one 

sample population, whereas model W1 segregates the data into 11 sample 

populations. In other words, the most significant reduction in MAE in the BSR occurs 

when considering it as a heterogeneous (W1 to W4) as opposed to a homogenous (H1) 

system.        

 

Figure 4.6. Comparison of average MAE by optimisation model and formation 
Note: the most significant reduction in error in the BSR is between model H1 and W1.   
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4.3.3 Generated Archie parameters  

Archie parameters were optimised for each model (H1 and W1 to W4) over a range of 

parameter dimensions. The optimised least MAE parameters generated for each 

model are presented in Figure 4.7. 

 

Figure 4.7. Predicted Archie parameters for each optimisation model  
Note: in each model, optimisation tends to rely on modifying only a single parameter.  

Figure 4.7 indicates a consistent stepped reduction in predicted parameter values from 

left (BSR) to right (HY) in all five subplots. It is also apparent that despite increases in 

parameter dimensions from 1D (W1 and W2) to 2D (W3) and 3D (W4), that the 

optimised solutions appear to remain generally reliant on modifying only a single 

parameter value. For example, predicted Rwe values in W3 make only 7 modest 

excursions from the baseline position. This position is somewhat reversed in W4 with 

Rwe having a more significantly variable profile, whereas values for n remain largely 

fixed at the maximum value constraint, and values for m make only sporadic 

movements from the minimum constraint. In any of the multidimensional models, that 

n should be consistently fixed at 2.5 or higher, or likewise that m or Rwe might be 

constantly fixed at the minimum value appears peculiar and is discussed further in 
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section 4.4. Nevertheless, taking into account only the prominent, single parameter 

profiles from each model, it is clear that they are generally similar, with a consistent 

overall reduction in value from the BSR to the HY. The dominant parameter profile for 

each optimisation model (taken as H1: m, W1: Rwe, W2 and W3: m*, and W4: Rwe) are 

compared directly in a composite log plot in Figure 4.8 with a number of bulk 

formation compositional and petrophysical properties.  

 

Figure 4.8. Predicted Archie parameters, VClay, and key petrophysical properties 
Optimised parameters and average formation properties for each sample group. This includes: VClay, core 
matrix permeability (k), ɸtC, total organic carbon (TOC), bulk density (ρbC) and Rt.    

The primary observations from Figure 4.8 include the similarity in trends between m* 

for models W2 and W3 and Rwe for models W1 and W4. These trends appear (Figure 

4.8) to correlate well with Rt, bulk volume water (BVW see equation 4.7) and VClay. By 

contrast, matrix permeability (k), ɸtC, total organic carbon (TOC) and core bulk density 
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(ρbC) have been included to show, in addition to the matching trends observed for the 

four variables, an absence of any apparent primary control over derived Archie 

parameters. Whilst evidence of overall parameter forcing from these properties (k, ɸtC, 

TOC and ρbC) is limited, local excursions such as the sharp drop in parameter values for 

well 3, do correspond with distinct spikes in k, ɸtC, TOC and ρbC. 

Similar to Figure 4.2, the relationships depicted in Figure 4.8 link increasing BVW with 

elevated Rt and VClay. Furthermore, the noted correlation of bulk formation properties 

with VClay infers additional formation compositional trends that arise from the negative 

linear association between VClay and VCarbonate content noted in Figure 3.14.  

4.3.4 Summary 

4.3.4.1 SwA results   

 SwA underestimates are routinely linked to high VClay and high Rt (Figure 4.2).  

 BSR SwA estimates are less accurate and SwC, Rt and VClay variables are noted to 

have wider distributions than those for the HY (Figure 4.2).  

 Overall there is a reduction in MAE from model H1 to W4, though the residual 

MAE remains significant (Figure 4.2).   

4.3.4.2 Residual MAE  

 Residual MAE and 𝜎AE are relatively low and consistent in the HY and between 

optimiser models. The reduction in MAE from model H1 to W1 is relatively low 

suggesting that HY data is not particularly sensitive to the style of sample binning 

(Figure 4.4).  

 Residual MAE and 𝜎AE are highly variable in the BSR and between optimiser 

models. The largest reduction in MAE is between model H1 and W1, suggesting 

that BSR data is relatively sensitive to the style of sample binning (Figure 4.4). 

 In both formations, varying the number of parameter dimensions in the 

optimiser model appears to have limited impact on error distribution from W1 to 
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W4, suggesting that the data is not particularly sensitive to parameter change in 

Archie’s equation (Figure 4.4) within the optimisation model. 

 Residual MAE and 𝜎AE correlate with mean Rt (Figure 4.4).    

4.3.4.3 Generated Archie parameters 

 Generated Archie parameters show limited variation between the optimiser 

models. In addition, optimisation appears to generally rely on the modification of 

only a single parameter, with additional parameters commonly fixed at either 

their upper or lower bound (Figure 4.7). 

 A comparison of bulk formation properties with predicted Archie parameters 

associates an increase in parameter value contemporaneous with increases in 

BVW, Rt and VClay (Figure 4.8). 

 k, ɸtC, ρbC and TOC appear to have little direct influence over parameter selection 

(Figure 4.8).  

The following sections present a systematic analysis of each of the optimisation 

models and are intended to define the mechanics underpinning parameter selection.  
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4.4 Results: 1D parameter optimisation 

This section details the analysis of 1D optimisation models (W1 and W2) and aims to 

highlight the nature of any model limitations, parameter interactions, parameter 

forcing linked to geological/petrophysical properties, and any predictive capabilities 

the investigation of these relationships might reveal.  

The following sections include: 

4.4.1 The sensitivity of MAE across the range of possible parameter values.  

4.4.2 The trade-offs between parameters and input variables in Archie’s equation. 

4.4.3 The range of parameters produced by direct optimisation for each core 

sample. 

4.4.1 Sensitivity analysis  

Sensitivity, taken here as the effect of a change in parameter Rwe (W1) or m* (W2) on 

MAE, is investigated by comparing the full range of possible Archie parameters against 

the generated MAE as depicted in Figure 4.9. This produces a sensitivity curve for each 

well, for which the lowest point on the curve (lowest MAE on the y=axis) equates to 

the optimum parameter value on the x-axis. That these are termed sensitivity ‘curves’ 

indicates that sensitivity is not constant over the range of parameter values. For the 

purposes of overall comparison however, Figure 4.9 does include a tornado plot that 

provides a measure of sensitivity given as the % change in MAE for a 5% shift in 

parameter value above and below the optimal MAE.   
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Figure 4.9. Sensitivity analysis (model W1 and W2) 
Plots (left): Model W1. Plots (right): Model W2. Upper Four Plots : MAE (Sw %) vs. parameter value. Lower Four 
Plots: The relative change (%) in MAE for a 5% increase in parameter value above (blue) and below (pink) the 
optimum. Note: Well 3 has a relatively low residual error and high sensitivity and has therefore been excluded 
from the calculation of the reported mean values so as to prevent distortion.  

Comparing the results from model W1 (Figure 4.9: Left) with W2 (Figure 4.9: Right), 

the MAE vs. m* sensitivity plots (right) are more tightly and more steeply inclined than 

for Rwe (left), indicating that Archie’s equation is more sensitive to value changes in m* 

than Rwe. This is reflected in comparisons of the tornado plots which show:  a) that 
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error is more sensitive to changes in m* than Rwe and b), that MAE in the HY is more 

sensitive to parameter change than in the BSR. It is also apparent in Figure 4.9 that all 

HY data plot in a well constrained area with a relatively consistent sensitivity to 

parameter change. By contrast, the BSR sample groups display greater variation in 

sensitivity with optimal lows occupying a wider though generally higher range in either 

Rwe or m* values.  

In the tornado plots for both models W1 and W2 (Figure 4.9), well 3 stands out as 

having particularly high parameter sensitivity. This occurs as samples from well 3 

optimise to the lowest reported MAE and are more than three times as sensitive to a 

5% parameter change. This highlights a general trend, where the curvature at the 

optimal base of each sensitivity curve generally becomes tighter and more steeply 

inclined at lower MAE values, thus yielding higher sensitivities. Though this is a trend 

and not a rule, and some wells (Figure 4.9), particularly in the BSR, show greater 

variations in basal curvature with reductions in MAE.  

4.4.2 Parameter trade-offs 

In order to investigate the controls on optimised parameter values and their trade-offs 

with the input variables ɸtC, Rt and SwC, Rwe and m* can be directly back calculated 

from Archie’s equation (equation 4.5 and equation 4.6) for a range of input variable 

combinations representative of the BSR and HY. 

Rwe=SwC
m*

 .ɸtC
m*

. Rt (4.5) 

m*=
log (

Rwe

Rt
)

log(ɸtC*SwC)
 (4.6) 

Where m* indicates m=n. This assumption is made for both models W1 and W2 such 

that equation 4.5 and equation 4.6 can be simplified to solve for BVW:  

BVW= SwC .  ɸtC (4.7) 

Rwe=BVWm*
 . Rt (4.8) 
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m*=
log (

Rwe

Rt
)

log(BVW)
 (4.9) 

The parameter trade-offs for models W1 and W2 were investigated using the same 

approach:  

 W1) Rwe was calculated (equation 4.8) for all input combinations across a 

representative range of Rt and BVW values at m*=2,  

 W2) similarly, m* was calculated (equation 4.9) for an identical range of Rt and 

BVW values at Rwe=0.014 Ω.m (Rwe value based on personal communication 

with BG Group). 

The resulting parameter trade-offs for Models W1 and W2 are presented in the 

following two sections.  

4.4.2.1 Model W1: Parameter trade-offs 

The parameter trade-offs effective within model W1 are illustrated in Figure 4.10 as 

Rwe vs. Rt, where the large shaded area represents all possible Rwe values within Rt and 

BVW parameter space. This depicts a positive linear trend between Rwe and Rt for a 

given BVW, with increases in BVW acting to increase the Rwe: Rt ratio. Overlain on 

Figure 4.10 are the W1 MAE optimised Rwe values for each well coloured by mean 

BVW. This demonstrates that the BSR and HY samples plot according to their bulk 

formation properties (i.e., in the centre of each respective BVW range), with marker 

colour giving a loose match to the directly calculated background data.  
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Figure 4.10. Parameter trade-offs (model W1) 
Rwe calculated at m*=2 (Equation 4.8) vs. Rt for a BVW range (based on Equation 4.7) representative of BSR 
and HY core data. Overlain are W1 optimised Rwe (m*=2) vs. mean Rt values for each well, with marker colour 
a function of average well BVW scaled against the colour bar (right).  

Although the overlain MAE optimised data lay in an appropriate BVW region, marker 

colour does not exactly match the calculated BVW background and there is limited 

deviation across the BVW range. This, combined with the linear trend for optimised 

Rwe vs. Rt, suggests that optimised parameters are primarily responding to Rt and not 

BVW. The exception to this observation is the highlighted points for well 15, which 

exhibits unreliable depth-matched Rt parameters (see section 3.2.2) and is excluded 

from the calculation of R2. The optimised Rwe values for the HY wells also plot in the 

appropriate BVW range, but appear limited by, and fall close to the saline saturation 

limit (0.006 Ω.m), though the spread of the data across the BVW range suggests 

reduced forcing from Rt.   
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4.4.2.2 Model W2: Parameter trade-offs 

The parameter trade-offs effective within model W2 are illustrated in Figure 4.11 as 

m* vs. Rt, and are similar to those for W1, with m* displaying a linear trend with Rt, 

where the m*:Rt ratio is controlled by variations in BVW. It is also apparent, that the 

viable range in m* expands (sensitivity decreases) as Rt increases, such that a small 

change in m* at low Rt can accommodate larger shifts in BVW than at higher Rt values.  

 

Figure 4.11. Parameter trade-offs (model W2) 
m* calculated at Rwe=0.014 (Equation 4.9) vs. Rt for a BVW range (Equation 4.7) representative of HY and BSR 
core data. Overlain are W2 optimised m* (Rwe=0.014) vs. mean Rt values for each well, with marker colour a 
function of mean well BVW scaled against the colour bar (right). 

Overlain on Figure 4.11 are the W2 optimised m* values for each well plotted against 

mean Rt and coloured by mean BVW. As discussed previously, highlighted sample 

groups from well 15, were not included in the calculation of R2. It is again suggestive, 

particularly for the BSR, that Rt is the primary parameter forcing m* selection within 

the optimisation model. The same is true for the HY, though the increased spread of 
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points across the BVW range again suggests that ɸtC and SwC play a greater role in 

parameter forcing.  

4.4.2.3 Model W1 and W2: Shifts in fixed parameter assumptions 

Optimisation models W1 and W2 use fixed parameter assumptions (m*=2 and 

Rwe=0.014 respectively), the effects of modifying these parameters are illustrated in 

Figure 4.12. Plot A depicts the effects of decreasing m* from 2 to 1.5 (model W1), 

which results in a narrower band of higher Rwe values for the same BVW range and 

therefore an increase in the sensitivity of Rwe. For samples with low Rt, this shifts the 

BVW range away from the saline saturation limit yielding increased choice in Rwe 

selection. Plot B depicts the effect of a decrease in Rwe from 0.014 to 0.006 Ω.m (model 

W2), which results in a very slightly wider band of higher m* values for the same BVW 

range and thus a slight decrease in the sensitivity of m*. Whilst the sensitivity of m* is 

slightly reduced, the range of possible m* values that can be selected is therefore 

slightly increased. 

 
Figure 4.12. Parameter trade-offs (model W2 and W2) 
Plot (A): Rwe (Equation 4.8) versus Rt calculated at m*=2 and 1.5 (model W1). Plot (B): m* (Equation 4.9) 
versus Rt calculated at Rwe=0.014 and 0.006 Ω.m (model W2). The range in input parameters ɸtC and SwC 
(BVW, Equation 4.7) reflect BSR core data. Changes in the linear trend between Rwe or m* and Rt with 
variations in BVW are scaled by the colour bar (right). Note: plot (A), decreasing m* increases Rwe sensitivity 
and shifts the BVW interval away from the saline saturation limit. Plot (b), decreasing Rwe results in a very 
slight decrease in the sensitivity of m* with an associated increase in the range of m* values. 
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It is indicated by both models W1 and W2, that reductions in the fixed assumptions 

(m*=2 or Rwe=0.014) act to modify the relative sensitivity of the calculated parameter 

by changing the range in parameter values over the same BVW interval. For model W1, 

decreases in m* substantially increases Rwe sensitivity, whilst for model W2, decreases 

in Rwe very subtlety decrease the sensitivity and thus increases the parameter range for 

m*, implying that increasing either fixed parameter will have the opposite effect. 

4.4.3 Core sample parameter modelling  

As discussed in section 4.2, the approach taken in this chapter is to optimise Archie 

parameters for all the core data in each formation for each well. This implies an 

unrealistic homogeneity in formation geological and petrophysical properties 

uncharacteristic of heterogeneous fine grained formations. As such, the optimised 

Archie parameter values are synonymous with bulk averaged formation properties. In 

other words, the generated parameter values may be broadly appropriate for some 

core samples, but cannot fully represent the range of formation pore geometrical and 

fluid properties expressed in the core data.  

Unique Archie parameter values can however be directly solved (equation 4.8 and 4.9) 

for each core sample using model W1 and W2 static parameter assumptions (m*=2 

and Rwe = 0.014). This allows for further exploration of the range in parameter values 

and any links they might have with geological\petrophysical properties.  

Rwe and m* values are calculated for each core sample (Figure 4.13), and broadly 

replicate relationships depicted for optimised model W1 and W2 parameters (Figure 

4.10 and Figure 4.11). The linear relationships between Rwe vs. Rt (Figure 4.13: A) and 

m* vs. Rt (Figure 4.13: B) are also broadly similar. The data points in Figure 4.13 (A) and 

(B) are also scaled by Vclay, where increased marker size (higher clay contents) can be 

linked to BVW and either a relative increase in fluid resistivity (Rwe) or to an increase in 

relative pore geometrical complexity (m*).  
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Figure 4.13.  Rwe vs. Rt (A) and m* vs. Rt (B) 
Plot (A): calculated Rwe (Equation 4.8) vs. Rt for each core sample at m*=2. Plot (B): calculated m* (Equation 
4.9) vs. Rt at Rwe = 0.014 Ω.m for each core sample. Marker colour is a function of bulk volume water (BVW, 
Equation 4.7) and marker size is a function of VClay. Note: Good linear Rt-Rwe relationship for the BSR, with 
limited change in Rt with BVW, the reverse is true of the HY.    

 

 

Figure 4.14. BSR and HY BVW distributions  
BSR and HY probability density plots for BVW. Core BVW is calculated after equation 4.7.   

An additional observation in Figure 4.13 is the limited overlap between HY and BSR 

data. This is highlighted in the BVW probability density distributions (Figure 4.14), 

where it is clear that the BSR and HY data exhibit a relatively disparate range in BVW 

values. It is also notable that, whilst the BSR BVW data has a larger range in BVW 

values (Figure 4.14), the individual core calculated parameter values (Figure 4.13) plot 

in a narrow linear band, such that only a minor shift in the ratio (parameter : Rt) can 
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express a large change in BVW. In other words, BSR core data does not appear to be 

sensitive to BVW conditions, implying that either highly variable BVW salinity/pore 

complexity or other geological factors must be influencing Rt. By contrast, though the 

HY has a narrower range in BVW (Figure 4.14), individual core calculated parameter 

values show a much greater sensitivity to BVW values, i.e. there is a large change in 

parameter values from high to low BVW (Figure 4.13).  

 

Figure 4.15: m* vs. Rt.  
Tiled scatter plot of m* vs. Rt for each BSR (blue) and HY (red) well calculated at Rwe=0.014 (Ω.m). Well 15, 
noted to be of poor depth shift quality with unreliable depth matched Rt values, is not included. Dolomitic 
BSR samples (=>5%  VDolomite) have also been excluded. Note the frequently linear m*-Rt relationship.   

The linear relationship between the calculated parameter (Rwe or m*) vs. Rt (Figure 

4.13) allows for direct prediction of Archie parameters from Rt using least squared 

regression. This is illustrated in Figure 4.15, for m* calculated for each core sample 

(equation 4.9) plotted against Rt for each well, demonstrating a common positive linear 

association (calculating for Rwe using equation 4.8 gives near identical results). Using 

the regression coefficients derived from these relationships (Figure 4.15) to estimate 

m* directly from Rt, saturation can then be estimated using Archie’s equation as per 
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model W2, with Rwe fixed at 0.014 Ω.m. This measure of Sw using regressed m* 

exponents is termed SwR. This approach has the advantage of avoiding the assumption 

of homogeneity implicit in an optimised solution (model W1 to W4), and allows for a 

greater expression of formation heterogeneity.   

4.4.3.1 SwR vs. SwA (model W4)  

The regression derived saturation SwR is compared against SwA derived from model W4 (the most 
accurate optimised Sw estimate available) and SwC (the benchmark core values) for all wells in . 
Comparison of MAE between SwA (W4) and SwR  
Comparison of MAE (Sw %) between SwA (W4) and SwR estimates.   

 

Figure 0.3. % Change in MAE when using SwR as opposed to SwA (W4)  
The % change in MAE when using SwR as opposed to SwA (W4) for the BSR and HY data.   

 

4.4.4 Summary 

4.4.4.1 Sensitivity analysis  

 Residual MAE is more sensitive to changes in m* than Rwe (Figure 4.9). 
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 The HY displays relatively consistent and higher sensitivity profiles. In contrast 

the BSR data displays a wider variety of parameter values and sensitivities 

suggestive of a more petrophysically heterogeneous formation (Figure 4.9).   

4.4.4.2 Parameter trade-offs  

 It is suggested that the primary variable forcing parameter selection in both 

models W1 and W2 is Rt. This effect is shown to be more dominant in the BSR, 

where data indicates that sample BVW exerts lesser control on parameter 

forcing. By contrast, variation in HY BVW appears to exert a larger impact on 

optimised parameter values (Figure 4.10 and Figure 4.11).  

 The effects of changing static model assumptions for W1 (Rwe=0.014) and W2 

(m*=2) are demonstrated:  

 model W1; reducing m* increases the sensitivity of Rwe and shifts the 

BVW range away from the saline saturation limit,  

 model W2; reducing Rwe slightly decreases the sensitivity of m*, thus 

increasing the range of possible m* values (Figure 4.12).  

4.4.4.3 Core sample parameter modelling  

 The HY displays relatively consistent and higher sensitivity profiles. In contrast 

the BSR data displays a wider variety of parameter values and sensitivities 

suggestive of a more petrophysically heterogeneous formation (Figure 4.9).   

 Directly solving for parameter values suggests that the BSR is far less sensitive to 

variations in BVW than the HY (Figure 4.13).  

 The correlation between Rt and the calculated parameter (m* or Rwe) allows for 

parameter prediction using standard regression analysis (Figure 4.13). For a large 

number of wells the resulting SwR estimates demonstrate a significant 

improvement over optimised SwA (W4), with reductions in error as high as 78% in 

the BSR and 36% in the HY (Error! Not a valid bookmark self-reference., Figure 

0.2 and Figure 0.3).  
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4.5 Results: 2D parameter optimisation  

This section details the analysis of the 2D optimisation model (W3) and aims to 

highlight the nature of any model limitations, parameter interactions, parameter 

forcing linked to geological/petrophysical properties, and any predictive capabilities 

the investigation of these relationships might reveal.  

The following sections include: 

4.5.1 The sensitivity of MAE across the range of possible parameter values.  

4.5.2 The trade-offs between parameters and input variables in Archie’s equation. 

4.5.3 The range of parameters produced by direct optimisation for each core 

sample. 

4.5.1 Sensitivity analysis 

The sensitivity data for model W3 is displayed in Figure 0.4 and plots the change in 

MAE between SwA and SwC for every Rwe and m* parameter combination. Wells 3 and 

10 are displayed as examples of characteristic BSR and HY relationships, highlighting a 

typical linear association between m* and Rwe. That m* is a power function is also 

evident, such that MAE is more sensitive to increases rather than decreases in m* from 

the optimum value. It also highlights, as in Figure 4.4, the tendency for Rwe values to 

remain at or very near to the lowest bound. This is a compensatory effect, where 

reductions in Rwe act to reduce the sensitivity of and thus expand the range of possible 

m* values and so generate a preferred least error solution, though this reduction in 

parameter sensitivity is most likely linked to an increase in model error. In other 

words, high Rwe increases the sensitivity of MAE to small changes in m*. It should be 

noted that the reference to model error refers to the least error optimisation 

modelling approach, not specific MAE values.   
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Figure 0.4. Sensitivity analysis (Model W3) 
MAE sensitivity plot for model W3: Rwe vs. m* for the BSR (top) and HY (bottom). Two representative wells are 
displayed for each formation. The optimum values (white marker), corresponds with the least MAE, n refers 
to the number of samples within the optimised well. Note the decrease in m* sensitivity as Rwe decreases. 

The Rwe, m* relationships discussed above (Figure 0.4) are summarised for all wells (1 

to 17) in Figure 0.5. This displays the parameter distributions for the lowest 5% of MAE 

values for each well, highlighting the optimum parameter values associated with global 

least MAE. Here, the Rwe distributions show an increase in the number of low error 

solutions available at low Rwe values. In all but three instances (HY wells 2, 3 and 13) 

the optimal Rwe value is at or very close to the lower bound.  

The m* distributions depicted in Figure 0.5, whilst showing variation in parameter 

range, show a consistent distribution style. As discussed, MAE is more sensitive to 

higher m* as opposed to lower values (m* is a power function), as such each 

distribution is skewed with fewer high error solutions available to the right of the 

modal value than to the left. It should also be noted that the optimal m* value rarely 

coincides with, and usually occurs to the right of the modal value. Those instances 

where the optimal m* is to the left of the modal value also coincides with optimal Rwe 

values that are above the lower bound (HY wells 2, 3 and 13).      

Whilst these observations may reflect genuinely high fluid salinities (low Rwe), it is 

clearly implied for the majority of wells, that optimiser model W3 simply minimises Rwe 
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so as to refine m* value selection, thus rendering the optimised values highly 

questionable in physical terms. The only exceptions to this trend are for HY wells 2, 3 

and 13, whose optimal parameters may be of greater geological/physical significance.   

 

 Figure 0.5. Parameter distributions, sensitivity analysis (model W3) 
Plot of BSR (blue) HY (red) model W3 parameter distributions for the lowest 5% of MAE values. The faded 
bars indicate the optimal parameter value for each well and formation. 
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4.5.2 Parameter trade-offs 

The parameter trade-offs in optimiser model W3 were modelled using equation 4.9 in 

the same manner as those for model W2. The approach was however modified to 

reflect the optimised Rwe values reported in Figure 4.7, where 19 of 26 Rwe values equal 

0.006 Ω.m. The Rwe constant was therefore changed from 0.014 to 0.006 Ω.m.  

 

Figure 0.6. Parameter trade-offs (model W3) 
Calculated m* (at Rwe=0.006, Equation 4.9) vs. average Rt for a BVW range (colour bar) representative of HY 
and BSR core data (Equation 4.7). Overlain are W3 optimised m* vs. mean Rt values for each well, with marker 
colour a function of mean well BVW (colour bar right). Plot (A) shows overlain W3 optimised values where m* 
is limited between 1.5 and 2.5 (conceptual limits). Plot (B) overlays W3 optimised data with expanded m* 
limits of 1.0 to 4.0. Note: consistent minimisation of Rwe and good linear relationship for BSR data in plot (B).     

The parameter trade-offs depicted in Figure 0.6 are very similar in character to those 

described for model W2 (section 4.4.2.2), with a clear linear trend between optimised 

m* vs. Rt values. The only exceptions to this linear relationship are the highlighted 

markers, representing wells whose Rwe values optimise to in excess of 0.006 Ω.m, for 

the BSR core data, these highlighted wells plot on the m* upper bound (m*=2.5). If the 

optimiser is allowed to exceed the m* upper bound (as depicted), this results in slightly 

higher m* values and Rwe values of 0.006 Ω.m, and a much improved linear m* : Rt 

relationship. In other words, as discussed in the sensitivity analysis, Rwe appears to be 

simply modified so as to exploit a preferred range in m*. The same is not however true 

for the HY data, where Rwe values exceed 0.006 Ω.m for three wells (2, 3 and 13).  This 
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reiterates previous observations that BVW in the BSR may not be the dominant factor 

in controlling Rt, the primary variable forcing optimised parameter selection.  

4.5.3 Core sample parameter modelling  

Rwe and m* values were generated iteratively for each core sample to further explore 

any parameter forcing. This was achieved using the Grid Search methodology outlined 

in section 4.2.2, applied to each individual core sample with a parameter step 

increment of 0.01.  

The optimum parameter combinations generated for each core sample are given in 

Figure 0.7. Here the results are displayed as Rwe vs. m* for both the BSR (left) and HY 

(right), with marker colour and size as a function of Rt and BVW respectively. This plot 

indicates a linear trend between Rwe and m*, which can be further linked to 

perpendicular relationships with both BVW and Rt, such that Rt and BVW increase with 

increases in Rwe and m*. The distributions of the optimum parameters are also plotted 

alongside each axis, indicating a near uniform distribution in Rwe for both formations, 

though there is a slight increase in frequency for the lowermost Rwe values. By contrast, 

both formations have more normally distributed m* parameters (Figure 0.7) of similar 

distribution and range to those calculated for model W2. That there should be a 

uniform distribution across the entire range of Rwe in both formations is dubious, and 

similar to previous findings, it is probable that Rwe values are selected principally to 

allow for a preferred selection of  m*.  
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Figure 0.7. Core sample optimised parameters (model W3) 
Grid search optimised Rwe and m* parameters for BSR and HY data. Marker colour and size are a function of Rt 
and BVW. Parameter distributions are provided on axis. Note linear Rwe-m* relationship with perpendicular Rt 
trend. In the BSR, and to a reduced extent in the HY, trends in Rt are linked to BVW.  

The optimal parameters generated for each core sample and displayed in Figure 0.7 

have least MAE values varying from between 0.000023% to 0.16% for the 470 BSR and 

HY core samples. These are however ‘least’ MAE solutions, with between 377 to 1487 

alternative solutions within +5% error of SwC benchmark values for each core sample 

(at a 0.01 parameter spacing). Furthermore, given that the experimental error in core 

data measurements are poorly constrained (see section 2.3), what error bounds are 

appropriate: 5%, 10%, 15%, or more? If there is a geologically meaningful parameter 

combination, is it possible to identify it without tighter parameter constraints? This 

problem is explored in Figure 0.8 which displays the parameter distributions for SwA 

estimates within +/- 5% of the benchmark SwC values.  

Figure 0.8, similar to previous results, depicts a relatively tight series of m* 

distributions for the HY with a much wider and variable range in sample m* 

distributions for the BSR. For both formations the range in m* can be linked to BVW, 

with parameter distributions moving to lower m* values at lower BVW. Furthermore, 

there is a consistent uniform though inclined distribution of near identical character 

for Rwe in all core samples. This demonstrates a general increase in the availability of 

low error solutions at lower Rwe values but ultimately fails to define a probabilistic 

value range. This suggests that identifying Rwe by optimiser methods may not be 
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feasible and that a constant Rwe may be more suitable. These results are summarised 

in Figure 0.9 by totalling the frequency in occurrence of each parameter for each 

formation. This highlights: a) the contrast in m* parameter distributions, and b) 

identical distributions in Rwe for the BSR and HY.  

 

Figure 0.8. Optimised parameter distributions for SwA within +/-5% of SwC (model W3) 
Grid search optimised Rwe and m* parameters distributions for SwA estimates within +/- 5% of benchmark SwC 
values for BSR (top) and HY (bottom) data. Line colour is a function of sample BVW.  

 

Figure 0.9. Totalled parameter distributions for SwA estimates within +/-5% of SwC  (model W3) 
Grid search optimised m* (left) and Rwe (right) parameter distributions for SwA estimates within +/- 5% of 
benchmark SwC values for BSR and HY data. Probability density is calculated from the total frequency of all 
core samples at each parameter value at a parameter spacing of 0.01. 
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4.5.4 Summary 

4.5.4.1 Sensitivity analysis  

 Results are demonstrated to favour minimised Rwe values that reduce the 

sensitivity of, and expands the viable range of m* values, therefore allowing for a 

preferred least error solution though at the expense of a likely increase in model 

error. The consistent manipulation of Rwe values prevents a reasoned geological 

interpretation of the optimised value (Figure 0.4).  

4.5.4.2 Parameter trade-offs  

 Similar to the 1D models considered, analysis of the 2D model indicates a linear 

relationship between the optimised parameters and Rt,, suggesting that BVW is 

of limited importance in forcing parameter selection (Figure 0.6).  

4.5.4.3 Parameter modelling  

 Model W2 predicted m* and Rwe can be shown to consistently relate to Rt and 

BVW (Figure 0.7). 

 Results show consistent parameter distributions for the HY with diverse and 

heterogeneous distributions in the BSR (Figure 0.8).  

 Distributions for m* are noted to be consistent with those generated for 1D 

models.  

 The lack of any parameter distribution for Rwe stresses the tendency for this 

parameter to be minimised so as to increase the frequency of low error solutions 

(Figure 0.9).  
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4.6 Results: 3D parameter optimisation  

This section details the analysis of 3D optimisation model (W4) and aims to highlight 

the nature of any model limitations, parameter interactions, parameter forcing linked 

to geological/petrophysical properties, and any predictive capabilities the investigation 

of these relationships might reveal.  

The following sections investigate: 

4.6.1 The sensitivity of MAE across the range of possible parameter values.  

4.6.2 The trade-offs between parameters and input variables in Archie’s equation. 

4.6.3 The range of parameters produced by direct optimisation for each core 

sample. 

4.6.1 Sensitivity analysis 

The sensitivity data for model W4 is displayed in Figure 0.10, illustrating characteristic 

relationships between parameter modifications and their effects on MAE for wells 3 

and 10 of the HY and BSR respectively.  The plots on the left of Figure 0.10 present all 

the available data where MAE is less than 100%, with plots on the right presenting only 

those parameters for the lowest 5% of MAE values.  

All plots in Figure 0.10 depict steep linear relationships between Rwe and m and 

between m and n, with a shallower linear trend between Rwe and n for both wells 3 

and 10. The combination of these trends creates a distinct least error plane which 

remains broadly similar between all wells. As per model W3, it is evident that changing 

certain parameter values can be beneficial in modifying the sensitivity and effective 

value range of another. For instance, in BSR well 10, maximising n to n=4 decreases the 

sensitivity of both Rwe and m, increasing the precision with which the later parameter 

can be selected.  
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Figure 0.10. Sensitivity analysis (model W4) 
MAE sensitivity plot for model W4: Rwe vs. m and n for BSR (top) and HY (bottom) data. Plots Left: Parameter 
values for MAE <= 100%. Plots right: parameter values for the lowest 5% of MAE values. 

Unlike well 10 however, HY well 3 is one of few wells where all of the generated 

parameters sit away from an upper or lower bound. Well 3 also has the best (least 

error) SwA vs. SwC correlation of any well. Though this may be linked to geological 

forcing, this cannot be confirmed, and it remains possible that Rwe is only so low as to 

maximise the choice and selection of m and n. 

The parameter relationships depicted in Figure 0.10 are summarised in Figure 0.11, 

which depicts parameter distributions for the lowest 5% of MAE values for each well in 

the BSR and HY. Here, with the exception of well 3 and 13, every well has at least one, 

often two, globally optimised parameters fixed at an upper or lower bound. The fixed 



Appendix C 

  
 Page 151 
 

parameters are often minimum bound Rwe or m or maximum bound n values, a feature 

coincident with an inclined parameter distribution.  

Individual parameter distributions in Figure 0.10 are broadly similar to those described 

for model W3, though with some important distinctions. In model W3, m* 

distributions for both formations are generally similar in form. Though where m* is 

partitioned into individual optimised m and n parameters, it is clear that they each play 

a different role within the BSR and HY: 

 In the BSR, which has relatively low gas saturations (Figure 4.5), m has a 

dominant role, exhibits a relatively normal distribution, and has optimal values 

which sit away from the parameter bound. This is coincident with n and Rwe 

distributions that are generally inclined to their respective upper and lower 

bounds.  

 In the HY, which has relatively high gas saturations (Figure 4.5), n has a 

dominant role, exhibits a relatively normal distribution, and has optimal values 

which sit away from the parameter bounds. This is coincident with m and Rwe 

distributions that are generally inclined to their respective lower bounds.  

The sensitivity analysis also highlights the impact of changing parameter bounds on the 

generated parameters. For instance, in Figure 4.7, model W4 optimised parameters 

were limited to conceptual upper and lower bounds (m and n=1.5-2.5) and appear 

reliant on modifying Rwe values with m and n often fixed at their minimum and 

maximum respective bounds. Here, with m and n parameter bounds expanded to 

between 1 and 4, HY optimisation appears reliant on modifying n, showing little 

consistency between the two sets of optimised parameters.  
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Figure 0.11. Parameter distributions, sensitivity analysis (model W4) 
Plot of Haynesville model W4 parameter distributions for the lowest 5% of MAE values. Only parameter 
combinations which yield MAE values <= (optimum MAE + (optimum MAE*0.05)). The faded red (HY) and 
blue (BSR) bars indicate the optimal parameter value for each well. 

Furthermore, sensitivity data for model W3 demonstrate a clear tendency for Rwe 

values to be manipulated so as to achieve a greater flexibility in m* selection. Model 

W4 shows similar though more varied evidence of parameter manipulation, which, 

without a much improved understanding of the pore network and fluid salinity 

conditions, cannot be dissociated from the optimisation process. As a result, 3D 

optimised parameters offer limited prospect of accurate geological interpretation.   
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4.6.2 Parameter trade-offs 

The parameter trade-offs in model W4 are illustrated in Figure 0.12 using equation 4.8 

at n=1 (left) and n=4 (right) for a representative range of Rt, ɸtC and SwC variables across 

the parameter range for m and Rwe. This confirms prior observations that higher n 

values decrease the sensitivity of m and Rwe, but also reveals a reduction in the 

sensitivity of all other input variables (Rt and BVW). It is therefore preferable for any 

optimised solution to favour higher n values and a reduced sensitivity and an increase 

in the possible range of other equation inputs. 

 

Figure 0.12. Parameter trade-offs (model W4) 
Calculated Rwe at n=1 (left) and n=4 (right) for a range of m, Rwe, ɸtC and Rt values.  

The relationship between model W4 optimised parameters and the parameter trade-

offs are illustrated in Figure 0.13 for the BSR and in Figure 0.14 for the HY. In the BSR, 

the optimised parameters (all with n values of 2.5) sit on a plane. This is made clear on 

the rotated insert, with all points plotting on a plain equivalent to a near constant BVW 

of 3% (Figure 0.13).      
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Figure 0.13. Optimised BSR parameters (model W4) 
Model W4 optimised parameters and mean Rt and BVW values for all wells. 

Similarly, the HY (Figure 0.14) optimised parameters also fit a plane highlighted by the 

rotated insert. This plane also indicates a near constant BVW of 1%, though not all HY 

wells optimise to n=2.5 (highlighted in red).    
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Figure 0.14. Optimised Haynesville parameters (model W4) 
Model W4 optimised parameters and mean Rt and BVW values for all wells. 

As with observations for models W2 and W3, the optimised W4 parameters are 

consistent in fitting to a specific BVW plane with limited movement across the BVW 

range. This combined with a good linear relationship with Rt, again suggests that pore 

water volume (BVW) is of secondary importance in forcing parameter selection. For 

the volume of fluid to have reduced importance, then either the fluid salinity or 

electrical properties must be highly variable, or other geological factors must be 

influencing Rt. 

4.6.3 Core sample parameter modelling 

Rwe, m and n parameters were modelled with a parameter grid spacing of 0.05 using 

the same method outlined for model W3. The optimum parameter combinations 

generated are displayed in Figure 0.15 with marker colour controlled by n (y axis), so as 

to help judge depth within each 3D plot. For both the BSR and HY, no clear links could 
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be established between the generated parameters and wider formation 

mineralogical/petrophysical properties.     

Both 3D scatter plots in Figure 0.15 are orientated ‘edge on’ to a plane defined by the 

optimum parameters. For the BSR, this plane is weakly defined by data with near 

uniform distributions, though there is a slight increase in the frequency of high n 

values linked to a decrease in m, with Rwe remaining more or less uniform. By contrast, 

the HY occupies a distinctive plane in parameter space, with a distinct increase in the 

frequency of low Rwe and m values, and n values that remain relatively uniform. These 

results support previous observations that the HY has a more constrained range of 

optimal Archie parameters than the BSR. Furthermore, the lack of defined parameter 

distributions in both formations combined with unreasonably oil wet (high n) or low 

salinity (high Rwe) suggests that the generated parameters are ‘not’ geologically 

representative, and it was not possible to link observed parameters with wider 

geological/petrophysical data.  
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Figure 0.15. Individual core sample optimised parameters (model W4) 
Grid search optimised Rwe, m and n parameters for the BSR (left) and HY (right). Parameter distributions are 
included. 

As with model W3, numerous alternative parameter combinations exist within a 5% 

MAE margin of benchmark SwC values. The parameter distributions within +/- 5% error 

are displayed in Figure 0.16.  

The BSR in Figure 0.16 shows significant variation in m, with an increase in m values at 

higher BVW. In addition, the n value distributions are consistently sloped, indicating a 

larger number of viable SwA solutions at higher n values. Whilst the Rwe values remain 

near uniform for the majority of samples, but similar to n, also indicate an increase in 

the number of viable solutions at low Rwe for some low BVW values. Both Rwe and n fail 

to define probabilistic parameter value ranges, representing solely least MAE solutions 
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with limited geological merit. By contrast the wide variations in m, which are 

significantly more variable than those observed for the HY, are analogous to variations 

observed for m* in models W2 and W3 and may be linked to a greater degree of 

formation heterogeneity in BSR data.  

 

Figure 0.16. Optimised parameter distributions for SwA within +/-5% of SwC (model W4) 
Grid search optimised Rwe and m and n parameter distributions for SwA estimates within +/- 5% of benchmark 
SwC values for the BSR (top) and HY (bottom). Line colour is a function of sample BVW.  

The parameter distributions generated for the HY differ significantly from those 

described for the BSR. Firstly, similar to m* in model W3 and W2, m is consistently 

constrained to a relatively low value range. Secondly, there is significantly more 

character in n distributions which can be linked to BVW, i.e. higher BVW links to higher 

n values and vice a versa. Thirdly, though Rwe distributions are broadly similar to those 

for the BSR, there is no apparent link to BVW.   

These results are summarised in Figure 0.17 by totalling the frequency in occurrence of 

each parameter for each formation. Taken into consideration with Figure 0.16, this has 

a number of implications: 

a) the contrast in m parameter distributions may be representative of greater 

heterogeneity in formation petrophysical properties in the BSR as opposed to 

the HY, 
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b) for the BSR, porosity and m is far more significant in controlling Archie’s 

equation than formation fluid/pore wall interactions and n .  

c) for the HY, which has a far lower BVW range and a higher gas filled porosity, it 

suggests that formation fluid/pore wall interactions and hence n is a more 

significant factor in Archie’s equation.    

d) for both formations, data generated for Rwe provides little information that can 

be  placed within a geological context, revealing only that lower values carry an 

increased chance of a low MAE solution.    

 

Figure 0.17. Totalled parameter distributions for SwA estimates within +/-5% of SwC  (model W4) 
Grid search optimised Rwe and m and n parameter distributions for SwA estimates within +/- 5% of benchmark 
SwC values for the BSR (top) and HY (bottom). Line colour is a function of sample BVW.  

4.6.4 Summary 

4.6.4.1 Sensitivity analysis  

 In the BSR, n is routinely maximised and Rwe minimised so as to reduce the 

sensitivity and increase the range in possible m values. This allows for a least 

MAE solution, but at the likely expense of an increase in model error (Figure 

0.11).  

 In the BSR, n is routinely maximised and Rwe minimised so as to reduce the 

sensitivity and increase the range in possible m values. This allows for a least 
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MAE solution, but at the likely expense of an increase in model error (Figure 

0.11). 

4.6.4.2 Parameter trade-offs  

 Analysis indicates, similar to the 1D and 2D models, a linear relationship between 

the optimised parameters and Rt, suggesting that BVW is of limited importance 

in forcing parameter selection (Figure 0.12).  

4.6.4.3 Parameter modelling  

 Similar to model W3, it is notable that parameter distributions in the BSR are 

notably more constrained than in the HY. 

 m and n parameters are shown to have different roles in the BSR and HY (Figure 

0.16 and Figure 0.17): 

 The BSR, which generally has low gas saturations and high VClay and CBW 

volume, demonstrates inclined uniform n distribution and appears reliant 

on optimising m.  

 The HY, which has relatively high gas saturations, has very low m values 

and distributions and appears reliant on optimising n. 
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  Chapter 5

Unconventional applications of Archie’s 
equation: does geology matter? 

This chapter incorporates the results of the error analysis in Chapter 4 with log and 

core geological/petrophysical data presented in Chapter 3. This aims to provide a 

geological interpretation and rationale for optimised Archie parameters and associated 

petrophysical and mineralogical relationships and is broadly divided into four sections:  

5.1 Formation heterogeneity: explores the links between mineralogical and 

petrophysical heterogeneity, and effects on optimiser model and Archie 

parameter outputs.  

5.2 BVW, Rt and VClay relationships: these relationships are explored and a model 

accounting for their behaviour proposed.  

5.3 Composite core data summary: key core data are presented, highlighting 

mineralogical / petrophysical trends linked to variations in formation fabric.  

5.4 Predicted pseudo-Archie parameters: the range and behaviour of predicted 

Archie parameters are discussed and compared with values reported in the 

literature. 
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5.1 Introduction 

Following Archie’s seminal 1942 paper, the terms ‘Archie rock’, ‘Archie like’ or ‘non-

Archie’ (Herrick and Kennedy, 1996) have come to prominent use as describing ‘clean’ 

(clay free) formations with regular pore geometries described by petrophysical 

constants within Archie’s equation. Nevertheless, though the BSR and HY might be 

considered to fail in meeting this ‘clean’ criterion (Glorioso and Rattia, 2012; 

Worthington, 2011b), results (Chapter 4) indicate that a modified Archie equation can 

work satisfactorily in some wells, particularly in the HY, despite significant 

mineralogical/petrophysical complexity. Understanding the geological controls on the 

accuracy and validity of Archie-based methods for a given shale gas prospect is 

therefore critical to the informed use of existing resistivity based methods and for the 

development of novel saturation modelling techniques.  
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5.2 Formation heterogeneity  

The analysis of multiple optimisation models (sections 4.3 to 6.9) indicate that their 

residual MAEs, generated parameters and parameter sensitivities, are consistently 

more heterogeneous in the BSR than in the HY. The term heterogeneity is used here 

synonymously with variability, and variability in model outputs must be linked to the 

heterogeneity and inter-relationships of the petrophysical inputs (ɸtC, Rt, SwC). In turn, 

the petrophysical inputs express the interaction and distribution of formation 

mineralogy and fluid components as determined by depositional and diagenetic 

processes. This section aims to link the separation of BSR and HY results to wider 

underlying formation geological properties as represented within the log and core data 

discussed in Chapter 3. 

5.2.1 Heterogeneity in optimiser model response  

Residual MAEs for the HY wells are both consistently low and of limited variability 

when compared to those for the BSR. This is depicted in Figure 4.4 and Figure 4.6 and 

summarised in Table 7.1, where the substantially higher range and variability in BSR 

MAE suggests that optimised Archie parameter constants are less able to characterise 

a wider range in BSR core sample characteristics. This is supported by the large 

reduction in mean BSR MAE between optimiser model H1 to W1 (Figure 4.6, Table 

7.1), equivalent to a relative reduction in MAE of 31%. This constitutes the single 

largest decrease in MAE between optimiser models in the BSR and is accompanied by 

an increase in the number of optimised sample populations from one in H1 to 11 in 

W1. In other words, the largest reduction in MAE for the BSR is attained in considering 

it as a heterogeneous as opposed to homogenous petrophysical system. By contrast, 

reductions in mean MAE in the HY between H1 to W1 are slight, and equivalent to a 

relative reduction in MAE of 3%. In other words, the HY is not particularly sensitive to 

changes in the style of sample binning and can be adequately represented as an 

homogenous petrophysical system. This assertion is supported by Popielski et al., 

(2012), whose study of rock typing using k-means cluster analysis of conventional well 
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data suggested a ‘vertically-homogenous Haynesville Formation’ in their study well, 

which corresponded with low variability in petrophysical log and core properties (Rt, 

ρb, ɸn, SwC, TOC, and ɸtC). 

MAE (Sw %) H1 W1 W2 W3 W4 

BSR 17.64 + 7.92 12.15 + 6.62 11.31 + 5.56 10.84 + 5.44 10.14 + 5.32 

HY 5.59 + 2.40 5.42 + 1.28 5.37 + 1.40 5.19 + 1.25 4.66 + 1.03 

Table 7.1: Mean residual MAE per optimisation model (Figure 4.4) 
Mean MAE taken as the mean of the residual MAE per Well (Figure 4.4) + the average standard deviation in 
residual MAE.  

Contrasts in the heterogeneity of residual MAE between the BSR and HY are mirrored 

by similar differences in modelled parameter sensitivity. Figure 4.9 (models W1 and 

W2) is a good example, where the sensitivity of MAE to changes in Rwe and m* is on 

average 30% lower and more variable in the BSR than in the HY, which displays very 

tight and consistent sensitivity curves. In addition, the optimised BSR parameters 

occupy a wider more variable m* range (2.175+0.233) compared to more constrained 

HY m* values (1.822+0.089). This trend is again emphasised for modelled core sample 

parameters, and is succinctly displayed in Figure 0.9 for model W3. Where the 

probability distribution in BSR m* values is significantly wider than that for the HY 

data, equating to mean core modelled m* values of 2.187+0.441 for the BSR and 

m*=1.735+0.273 for the HY. It should be noted that generated core parameters are 

displayed to three decimal places to avoid rounding.  

5.2.2 Heterogeneity in mineralogical / petrophysical properties  

The mineralogical/petrophysical log and core data for the BSR and HY are 

characterised in Chapter 3. This includes plots of variable distributions highlighting key 

descriptive statistics, but does not explicitly attempt to categorise one formation as 

being petrophysically or mineralogically more heterogeneous than the other. This is in 

part because there is no universally accepted measure of variability that allows for 

direct comparison of variables with multiple parent units and underlying normal, log-

normal and non-normal distributions. For example, σ provides a measure of the 

dispersion about the mean (u), and is therefore ideally suited to normal or log-normal 
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distributions. For skewed distributions, where the mean may be influenced by extreme 

values, the interquartile range (IQR=Q3-Q1) may be a more suitable measure of 

variability. Other measures of variability such as median or mean absolute deviation 

(MAD), or normalised measures of error such as the co-efficient of variation 

(CV=(σ/u)*100) are equally dependant on assumptions regarding the underlying 

variable distribution. It is however, not the intention of this section to present a 

detailed review of the statistical measures of variability/heterogeneity, only to 

emphasise that it is a nontrivial and sometimes inexact process which should not be 

dissociated from the underlying distribution. With this in mind, a comparison of 

variability calculated simply as σ and IQR is presented for principal 

mineralogical/petrophysical components in Figure 7.1, though the reader is 

encouraged to refer back to the variable distributions presented in Chapter 3.     

 

Figure 7.1. Comparison of mineralogical / petrophysical variability 
σ (standard deviation) and IQR (interquartile range) calculated for bulk volume corrected XRD volumes and 
petrophysical log and core data. 

Both measures of variability displayed in Figure 7.1 are in general agreement, though 

there are some variations, most notably for GR and VDolomite and VPlagioclase. In general 

however, two broad trends are evident: a) the HY is mineralogically more 

heterogeneous than the BSR, particularly with regard to VCalcite, VDolomite and VQuartz, and 

b) the BSR is petrophysically more heterogeneous that the HY, with the exception of 

ɸtC, GR and ɸn.  
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Of the three principal input parameters (Rt, SwC, and ɸtC) in an optimised Archie model, 

Rt, SwC (and therefore BVW) are significantly more heterogeneous in the BSR. It 

therefore follows that the optimiser response (residual MAE, generated parameters 

and parameter sensitivities) should mirror this heterogeneity. In plotting mean residual 

MAE vs. σ for each of the three principal variables Rt, SwC, and ɸtC, it is possible to 

further define which of the three variable inputs is most influential in determining the 

degree of variation and magnitude in MAE (Figure 7.2). Figure 7.2 indicates that as 

much as 94% of the variation in BSR residual MAE can be attributed to variability in 

formation resistivity, with little impact from SwC and even less from ɸtC. This is 

supported by Wu and Aguilera (2012) who also suggest that saturation estimates are 

more sensitive to Rt than ɸtC. In contrast, HY residual MAE (model W4) is only weakly 

linked to Rt, with variability in SwC and ɸtC playing a greater role in determining MAE. In 

other words, heterogeneity in BSR Rt, which is paradoxically not clearly linked to either 

porosity or saturation (i.e. ɸtC and/or SwC often increase at higher resistivities), 

accounts for the observed variation in residual MAE and thus selected parameters and 

their sensitivity. For the HY, which exhibits low residual MAEs of limited variability, the 

source of error cannot be attributed to one, but a combination of all three inputs.  

 
Figure 7.2. Average residual MAE (model W4) vs. key petrophysical inputs 
Average residual MAE for each well vs. σ (standard deviation) in: Rt (left), SwC (middle) and ɸtC (right). Average 
taken as the sample mean, limited difference found between median and mean MAE values. 
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The observation that Rt is the primary variable controlling error and the generated 

Archie parameters is supported by the results of the parameter trade-offs for models 

W1 to W4 (Figure 4.10, Figure 4.11, Figure 0.6, Figure 0.12), where, for each model, 

the predicted Archie parameters for the BSR increase linearly with Rt, with limited 

deviation attributable to BVW (SwC*ɸtC). By contrast parameter trade-offs analysed for 

the HY, show that parameters are selected in response to both Rt and BVW (Figure 

7.2).     

5.2.3 Mineralogical controls on petrophysical heterogeneity  

That variability in mineralogical composition does not coincide with petrophysical 

heterogeneity (Figure 7.1) is not surprising. Complex textural effects, variations in 

mineral distributions and other factors (e.g. depositional style and environment) are 

likely to play a significant role in determining petrophysical variability in mudstones. 

Whilst there are undoubtedly multivariate textural/mineralogical relationships 

controlling the petrophysical properties, a significant portion of the observed 

variability can be linked to the presence and effects of clay minerals (see section 

2.3.3.1). This is supported in comparing XRD mineral volumes with petrophysical 

properties, where VClay consistently stands out as displaying heteroskedastic 

tendencies (heteroskedasticity refers to a systematic inconsistency in variance, where 

variance is not homogenous (Schwartzman, 1994)). An example is given as Rt vs. VClay in 

Figure 7.3, where σRt increases with increasing VClay in the BSR. In other words, 

heterogeneity in Rt increases in core samples with higher VClay.  

That elevated Rt and/or σRt should be linked to increased VClay contradicts the long held 

consensus that clay effects typically act to reduce resistivity, or inversely, provide a 

source of excess conductivity (Hill and Milburn, 1956; Patnode and Wyllie, 1950; 

Winsauer and McCardell, 1953; Wyllie and Southwick, 1954). This relationship is 

absent in the HY (Figure 7.3), where there is no consistent relationship between Rt and 

VClay.  
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Figure 7.3. Rt vs. VClay and heteroskedasity  
Rt vs. Vclay cross-plots (top) for the BSR and HY coupled with bar charts of the σ log10(Rt) for binned VClay 

intervals (bottom).  

It is notable however, that in combining HY and BSR data (Figure 7.4) a continuum is 

formed where Rt is shown to initially decline to a VClay of ~28%, and then increases with 

σRt. This observation can be linked to clay mineralogy for which the following trends 

are noted:  

a) the chlorite fraction increases with increases in Rt and variability in Rt (σRt) in 

the BSR, 

b) high variability in the chlorite fraction coincides with high σRt in the HY, 

c) the illite+mica fraction increases at higher VClay in parallel with increased σRt, 

d) the mixed-layer clay fraction shows little variability in the BSR, but significant 

variability in the HY where σRt is more pronounced, 

Taken together, the mixed-layer clays appear to have the least impact and the chlorite 

fraction the most impact on σRt, with the illite+mica fraction (the dominant clay type) 

sitting somewhere in between. Significant control over electrical character can 

therefore be linked to the chlorite fraction or variations in other 

structural/mineralogical components concurrent with higher chlorite volumes.  
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Figure 7.4. Rt vs. VClay and clay fractions 
Rt vs. Vclay cross-plot (top) for the combined BSR and HY data with integrated histogram. VClay represents the 
total of the chlorite, illite+mica and mixed-layer clay volumes, given here as a fraction of VClay which sum to 1 
for every 2% VClay interval. Y axis error bars are a function of the standard deviation. 

Just as an increase in VClay can be shown to coincide with an increase in σRt, similar 

heteroskedastic relationships are noted in the BSR for VClay vs. σk (Figure 7.5) and fluid 

distribution (SwC and ɸtC) in Figure 7.6. For k, elevated VClay is associated with an 

increase in σk at low matrix permeabilities. For SwC and ɸtC, it is evident that high VClay 

is generally associated with low ɸtC and high SwC and that σɸtC increases with decreases 

in VClay. Or put another way, σSwC increases at higher porosities coincident with a 

decrease in VClay. Despite relatively high clay volumes (average = 44%), no such 

relationships are however observed in the HY. 
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These observations have the following implications:  

i. that VClay plays a dominant role in controlling fluid distribution and poro-perm 

relationships, and their respective heterogeneities in the BSR, 

ii. that the wide variability in k or Rt at a given high VClay value in the BSR, 

necessitates either a highly variable fluid chemistry or a difference in texture / 

grain partitioning and thus a potentially observable litho-facies distinction.  

iii. that clay minerals play a reduced role in controlling fluid distributions in the HY,  

iv. that VClay has a consistently limited impact on petrophysical variability in the HY 

suggests either a) homogeneity in clay distribution and/or pore fluid chemistry, 

or b) that clay volumes of below 28% are insufficiently high to dominate 

formation petrophysical properties.        

 

Figure 7.5. k vs. VClay and heteroskedasity  
k vs. VClay cross-plots (top) for the BSR and HY coupled with bar charts of the σ log10(k) for binned VClay 
intervals (bottom).  
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Figure 7.6. SwC vs. ɸtC 
SwC vs. ɸtC cross-plots for the BSR (left) and HY (right), markers coloured by VClay. 

5.2.4 Summary and conclusions  

 Though mineralogically heterogeneous, the HY is relatively homogenous 

petrophysically, resulting in low, well constrained residual MAE and well 

constrained Archie generated parameters and sensitivities. 

 The BSR is homogenous mineralogically when compared to the HY, but is 

petrophysically heterogeneous.  

 Elevated VClay and in particular the chlorite clay fraction are associated with 

increased variability in Rt in the BSR.  

 The role of clay minerals, their interaction with formation pore space and their 

influence over formation electrical properties varies significantly between the 

BSR and HY. 

 Despite highly variable fluid distribution characteristics (BVW and SwC) it is 

variability in Rt which is principally responsible for determining heterogeneity in 

MAE. As a consequence, generated Archie parameters for the BSR have a 

positive linear relationship with average Rt for all optimisation models 

considered. Thus, for porosity-fluid relationships to be the primary mechanism 

determining formation electrical properties, then Rwe, m and n parameters are 

required to be extremely variable. Or, additional mineral or other textural 
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relationships must contribute to electrical characteristics, undermining and 

limiting the use of traditional Archie approachs to saturation modelling.    

The relationships underlying the disparity in BSR-HY petrophysical heterogeneity and 

its links to error in Sw estimation are explored in the following section. 
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5.3 Water, resistivity and clay relationships 

The negative relationship between the volume of the saturating electrolyte (BVW) and 

formation resistivity (Archie, 1942) is the principal petrophysical mechanism 

underlying Archie’s equation. In the presence of a saline pore fluid, clay minerals and 

their electrical properties are considered detrimental to this relationship by 

contributing ‘excess conductivity,’ which if not corrected for, may result in reservoir 

undervaluation (Hardwick, 1989). Despite well documented clay effects (Hamada et al., 

2001; Worthington, 2000), the results of the error analysis (sections 4.3 to 6.9) and 

core data petrophysical relationships (Figure 7.4), repeatedly highlight an unexpected 

and positive co-dependency between BVW, VClay and Rt (Figure 4.8, Figure 0.7), but 

with very different trends for the BSR and HY. In effect, contrary to providing ‘excess 

conductivity,’ high clay volumes are coincident with an ‘excess resistivity’ and an 

overestimation of reservoir potential (Figure 4.2). As a consequence, unlike ‘low 

resistivity pay’ reservoirs where clay effects often require a compensatory decrease in 

m and n parameter values (Durand et al., 2001), the BSR-HY core modelled (e.g. Figure 

4.13 or Figure 0.7) and optimised (e.g. Figure 0.6) Rwe, m or n parameters are required 

to increase so as to compensate for the anomalously high BVW and Rt. The following 

section aims to elucidate key core petrophysical relationships and attempts to 

rationalise these observations within a geological framework. This discussion is divided 

into three parts: 

i. A review of the key core petrophysical relationships, their links with clay 

mineralogy and impact on Archie based saturation models. 

ii. A brief review of literature documenting and attempting to account for the 

unusually high resistivities observed in the BSR. 

iii. A proposed mechanism that integrates mineralogical and petrophysical 

relationships with burial and digenetic processes, that can both account for the 

unusually high resistivities and the trends in optimised Archie parameters.      
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5.3.1 Key core petrophysical relationships       

Clay minerals, their grain size and grain shape, are key factors in defining fabric and 

form a primary control on pore size distribution, fluid flow and thus permeability 

(Dewhurst et al., 1999). In addition, pore lining clay minerals can contribute significant 

microporosity and are often associated with high water saturations (Hamada et al., 

2001; Herrick and Kennedy, 1996). These relationships are clearly observed in the BSR 

(Figure 4.2, Figure 7.7 and Figure 7.8), with BSR core samples exhibiting a quintuple 

association of increasing VClay linked to high SwC, BVW, and low ɸtC and K. In other 

words, BSR poro-perm relationships and fluid distribution appears to be linked to, or 

even controlled by VClay. By contrast, the HY displays an even distribution of VClay from 

low to high ɸtC (Figure 7.7), inferring that VClay has limited impact on fluid distribution, 

though it is still observed to negatively impact k (Figure 7.8). 

The effects of clay minerals on fluid distribution and poro-perm relationships can in 

part be attributed to the chlorite clay fraction, where, if authigenic in origin, and 

occurring predominantly in the style of grain coatings or interstitial growths, is likely to 

impact ɸtC and k (Rushing et al., 2008). This assertion is supported by the negative 

impact of chlorite on K and ɸtC depicted in Figure 7.9. Where chlorite contributes to 

microporosity (hence the BSR has a similar ɸtC range to the HY) but acts to narrow the 

pore-throats resulting in a lower k range (Figure 7.9). 

 
Figure 7.7. BVW vs. ɸtC 
BVW vs. ɸtC for the BSR (left) and HY (right). Marker colour is a function of Vclay. Dashed grey lines depict Sw 

based on BVW / ɸtC. 
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Figure 7.8. Matrix permeability (k) vs. ɸtC (coloured by BVW) 
Matrix permeability (k) vs. ɸtC for the BSR (left) and HY (right) Formations. Marker colour is a function of 
VChlorite and marker size a function of VClay. 

 

Figure 7.9: Matrix permeability (k) vs. ɸtC (coloured by chlorite) 
Matrix permeability (k) vs. ɸtC for the BSR (left) and HY (right). Marker colour is a function of VChlorite and 
marker size a function of VClay. 

As a consequence of the impact of clay minerals on formation poro-perm and fluid 

distributional relationships, it follows that VClay should also impact formation electrical 

properties, where, as discussed, clay minerals are typically expected to increase rock 

conductivity by increasing the conductivity of bulk water in the pore spaces (Hamada 

2001). Thus BVW might be expected to form a negative relationship with Rt, though 

Figure 7.10 shows that this is not entirely evident. So whilst the HY broadly complies 

with Archie’s equation (a negative BVW : Rt relationship) the BSR shows a significant 
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departure and an increase in Rt coincident with an increase in VClay. In addition, 

overlain on Figure 7.10 are the calculated Rt values for either fixed m* (left) or fixed 

Rwe (right). The BSR plot (left), shows good agreement between calculated Rt (at m*=2) 

and VClay with incremental increases in Rwe. Likewise, the HY plot (right) shows good 

agreement between calculated Rt (at Rwe=0.014) and VClay with incremental increases in 

m*. This demonstrates that either parameter (an increase in either fluid conductivity 

or pore complexity) can be utilised to compensate for the observed increase in Rt with 

VClay. This observation is identical to that made for W1 and W2 modelled core 

parameters (Figure 4.13), where either Rwe or m* can be directly regressed from Rt 

relationships, allowing for a significant reduction in MAE for SwR estimates (Figure 0.3).  

 

Figure 7.10. BVW vs. Rt 
BVW vs. Rt for the BSR (left) and HY (right). Marker colour is a function of VClay. 

These observations suggest that VClay controls fluid distribution and formation 

electrical properties in the BSR and implies that free and capillary fluids contribute 

minimally to BVW. In addition, Figure 7.10 suggests that CBW is a net contributor to 

electrical resistance, either by a consequence of CEC effects and/or pore geometrical 

complexity. Similar observations are made for the HY, though in tandem with 

significantly lower VClay, far less influence over fluid distribution is observed. This raises 

the question: what mechanism(s) might allow for clay minerals to add to bulk fluid 

resistivity and/or pore complexity, and so contribute to formation resistivity? 
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5.3.2 Anomalously high resistivities in the BSR   

Unexpectedly high resistivity tool responses have been previously reported in the BSR 

(Corley et al., 2010; Le et al., 2011) and in other northern Gulf of Mexico shales 

(Anderson et al., 2006). The unusual response manifests as both generally high deep 

resistivities and an unexpected separation in resistivity profiles with depth of 

investigation. This observation might normally be indicative of invasion by conductive 

fluids, but in this instance the extremely low BSR permeabilities (Figure 7.9), which 

show a similar response in oil or water based muds, make such an explanation 

physically untenable (Corley et al., 2010). In addition, the response does not correlate 

with organic content or gas production (e.g. high Sw and VClay in Figure 7.7) and neither 

are they unique to resistivity tool type (Corley et al., 2010).  

These unusual effects were first noted on array induction logs in Oklahoma and Texas 

in the 1980’s and were recently re-examined by Anderson et al., (2006), whose study 

suggests that the petrophysical complexity of shale microstructure might cause large 

dielectric permittivity resulting from a large internal polarisation due to the size and 

structure of clay minerals combined with disseminated pyrite. This mechanism 

requires that some dielectric permittivity be generated by the polarisation of the 

counter-ions in the double layer surrounding clay minerals, with the bulk of the 

permittivity generated by surface oxidation-reduction reactions on the surface of 

pyrite grains. Further investigation was undertaken by Corley et al.,(2010) using 

multiple tools with varying array spacings and frequencies of between 30 Hz to 200 

MHz. This later study demonstrated a similar curve separation with depth of 

investigation for all tool types, but noted that the model proposed by Anderson et al 

(2006) (i.e., high dielectric permittivity caused by clay and pyrite and a single set of 

resistivity and dielectric permittivity parameters), could not reconcile the response for 

multiple tool types. In addition, the parameters were required to vary in X, Y and Z 

directions, and suggested exceptionally high horizontal resistivity anisotropy with 

exceptionally low (less than 1) vertical resistivity anisotropy. These conditions were felt 

to be physically unrealistic by Corley et al., (2010), who suggests that dielectric effects 

in isolation fail to account for the unusual log response. In order to explain the log 
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response Corley et al., (2010) suggests that a hypothetical series of vertical fractures 

filled with resistive material could satisfy the required conditions. This suggestion was 

tested by Le et al., (2011), who concludes that a series of vertical fractures filled with 

resistive material coupled with ultra-high permittivity parallel to bedding is required to 

explain the unusual log responses. Though in the absence of any geological evidence to 

support the presence of a series of vertical resistive fractures, a geological explanation 

remains enigmatic.  

5.3.3 A mechanism for clay mineral freshening    

In this study, anomalously high resistivities are highlighted as the cause of significant 

underestimation of SwA (Figure 4.2). This is coincident with elevated VClay (Figure 4.2) 

and can be demonstrably corrected (Error! Not a valid bookmark self-reference.) by 

compensatory increases in either m* or Rwe (Figure 4.15). Furthermore, as depicted in 

Figure 7.10, increases in VClay correspond well with calculated Rt over a range of 

potential Rwe values, implying an effective freshening of bulk formation fluid with 

increasing clay content. It can therefore be argued that the higher than expected 

resistivity response in the BSR may be a result of high VClay and clay dilution effects. 

Where, if BVW is principally formed from CBW, ions in addition to those required to 

satisfy the clay mineral surface charge will migrate away by diffusion along 

electrochemical gradients. In order to develop this hypothesis, it is first necessary to 

review the mechanisms related to changes in pore fluid chemistry and salinity with 

depth. 

5.3.3.1 Changes in pore fluid chemistry and salinity with depth    

The BSR-HY have a combined average porosity of 8%. Recently deposited clay rich 

muds have porosities as high as 90% (Velde, 1996), requiring the expulsion of large 

volumes of pore fluid over their burial history. The decline in porosity with burial and 

depth is well established (Hedberg, 1936; Mackey and Bridge, 1995). During this 

process, the sediment undergoes significant physical change (e.g. porosity, 

permeability, density) related to increased vertical stress, and chemical change (e.g., 
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re-mineralisation reactions and thermal maturation of organic matter) in response to 

temperature and digenetic processes (Boggs, 2009; Potter, 2005; Wignall, 1994). As a 

consequence, the pore water chemistry and its electrical resistivity also evolve 

typically from that of sea water at the time of deposition, to the saturating pore fluid 

present at the time of investigation. It is also generally accepted that pore fluid salinity 

increases with depth (Chilingar et al., 2002; Rieke and Chilingarian, 1974), and in the 

case of the Gulf of Mexico Basin, depth-salinity relationships are both well established 

and linked to formation overpressure (Fertl and Timko, 1971; Fowler Jr, 1970; Overton 

and Zanier, 1970; Sharp et al., 2001; Smith, 1977). 

The effects of compaction on the pore fluid chemistry of clay rich muds and pure clays 

was widely investigated in the 1960’s and 70’s. Von Engelhardt and Gaida (1963) 

studied the effects of compaction on the pore solution chemistry on montmorillonite 

and kaolinite clay over a pressure range of 440 psi to 47,027 psi (BSR-HY core were 

sampled at 10,000 ft. to 14,000 ft., equating to an approximate pressure range of 

15,000 psi to 20,000 psi based on pore and overburden pressures from Rocha and 

Bourgoyne, (1996)). This experiment applied instantaneous loads to clays saturated in 

a saline solution. Compaction was demonstrated to have no effect on the pore water 

chemistry of kaolinite clays, which have a near neutral surface charge and low CECs of 

2-5 meq/100g (Ellis and Singer, 2007). Whilst the montmorillonite clays, which have 

high CECs of 5 to 40 meq/100g (Ellis and Singer, 2007), showed an decrease in pore 

fluid salinity up to pressures of 11,756 psi, after which salinity was noted to increase.  

Later investigations by Chilingar et al., (1969) applied gradual loads to ‘marine muds’ 

from the Santa Cruz Basin (off-shore southern California), observing a decrease in the 

salinity of expelled fluids with increasing over-burden pressure. Implying both an 

increase in the salinity of the residual pore fluid, and that compaction rates can 

significantly impact pore fluid evolution. From these experiments Chilingar et al., 

(1969) concludes (A) that the salinity of expelled fluid decreases with increasing 

overburden pressure and (B), that the salinity of shale pore fluids should be lower than 

those of associated sandstones. The latter conclusion was reasoned on the basis of 

work by Fowler (1968), who found a correlation between high salinity and abnormally 
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high overpressures in the Bayou Field, Texas, where the salinity of produced water 

decreased with time. From this, as the freshest water was found in sands (which 

received their water from associated over-pressured shales) it was concluded that 

shale fluid salinity must be less than that of the associated sands. This was validated by 

Fertl and Timko, (1971), who found that the pore water chlorinity (indicative of 

salinity) of sands was consistently higher than that of associated shale’s at similar 

depth. In addition, field examples presented by Overton and Zanier, (1970), Fertl and 

Timko, (1971) and Fowler Jr, (1970) highlight a decrease in shale resistivity with an 

increase in formation overpressure and a decrease in fluid salinity at approximately 

10,000 ft., 11,300 ft. and 12,000 ft. respectively. In all three instances these 

observations can be explained by shale compaction models suggested by Powers, 

(1967) and modified by Burst, (1969). This advocates the release of structural pure 

water into the pore space during the remineralisation of smectite to illite at 3,200 to 

16,000 ft., resulting in an increase in pore pressure (leading to formation overpressure) 

and a decrease in interstitial fluid salinity. Moreover, Krushin (2013), notes a loss in 

CEC (exchangeable ions and thus bound water salinity) with smectite to illite 

conversion, which correspond with observations by Dewhurst et al. (2008) and 

Dewhurst et al. (2013) that shale CEC decreases within increased compressive 

strength, consolidation and dewatering. It should however be noted, that whilst 

illitisation reactions may account for observed salinity changes and overpressures in 

some Gulf of Mexico sediments (Katahara, 2006), that other stress related mechanisms 

may also contribute (Lahann et al., 2001). A review of the origin of overpressure is 

given by Chilingar et al., (2002) and a ‘true shale compaction model’ for pore pressure 

prediction, which integrates stress, temperature and chemical processes has been 

recently proposed by (Krushin, 2013).  
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Figure 7.11. Schematic illustration of the effects of compaction on pore fluid salinity 
Expelled Water and digenetic history adapted from (Powers, 1967), pore water salinity and overpressure 
inferred from (Overton and Zanier, 1970)) and (Fertl and Timko, 1971), and notional depiction of clay pore 
evolution based on descriptions by Von Engelhardt and Gaida (1963) and Chilingar et al., (1969). 

The depth related changes described above are schematically depicted in Figure 7.11. 

This integrates a compaction model (Powers, 1967) with pore water and expelled 

salinity changes described by Overton and Zanier, (1970) and Fertl and Timko, (1971), 

with pore ion exchange mechanisms described by Von Engelhardt and Gaida (1963) 

and Chilingar et al., (1969). The schematic includes two highlighted depths: (A) 3,200 

ft. (approx. 100oC), below which montmorillonite begins to covert to illite (Powers, 

1967), and (B) 10,000 ft. (approx. 300oC), below which no pure montmorillonite was 

observed in Texan and Louisianan Gulf Coast sediments by Powers (1967). It is 

however noted that high pore pressures, undercompaction, unusual temperature 

gradients and heterogeneity in clay chemistry, may also impact transition depths 

(Chilingar et al., 2002; Freed and Peacor, 1989). Figure 7.11 attempts to schematically 

depict the evolution of fluid-mineral interactions, diagenesis and overpressures with 

increasing depth, and can be split into three general zones:  

Zone 1 (0-3,200 ft.): This depicts the initial clay sediment deposition (A), where clay 

hydration results in the development of a pure water and cation rich electrical 

double layer (CBW). The anions are actively repelled from the negative surface 

charge and CBW resulting in respective cation and anion rich fluid components. As 

compaction progresses (B) the CBW and fixed cations are retained and the anion 

rich free waters are preferentially expelled with a net increase in the overall salinity 

of the remaining pore fluids which have elevated cation/anion ratios. This is 

somewhat validated in a study of the thermodynamics of salinity change 

accompanying compaction by (Smith, 1977), who finds that the concentration of 

anions in compaction expelled fluids decreases monotonically with reductions in 

clay sediment porosity whilst the cations in the residual pore fluids increase 

monotonically. Within this zone pore-fluid salinity increases with depth and the 

expelled water volume (analogous to porosity and permeability trends) declines 

rapidly.  
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Zone 2 (3,200-10,000 ft.): With continuing burial, (C) the negative surface charge of 

clays in narrow pore throats may inhibit chlorine migration. This prevents further 

expulsion of anions at the expense of pure water and more mobile cations, possibly 

resulting in the development of local anion rich fluidic inclusions. In addition, 

increasing pressures drive off outer-layers of pure clay-bound water (Burst, 1969). 

As a result, pore water salinity increases and the cation/anion ratio may fall 

(Chilingar et al., 1969). Additionally, below 3,200 ft. thermobarametric conditions 

allow for the illitisation of montmorillonite. As montmorillonite begins to 

remineralise, illitic sheets develop creating an intermediary illite-smectite (I/S) 

mixed-layer clay, which, with increasing temperature and pressure becomes 

increasingly crystalline and illitic (Potter, 2005). During this transformation 

interlayer potassium becomes fixed in the clay structure, whilst silica and interlayer 

hydration water are expelled into the pore space (Chilingar et al., 2002; Potter, 

2005). As a result, with progressive illitisation (D) and a reduction in bulk CEC, ion 

mobility, pore water expulsion and pore water pressures are all increased. With 

increasing depth pressure and temperature approaching 10,000 ft. the rate of 

illitisation increases (Powers, 1967). As a consequence of the influx of structural 

pure water, pore water salinity drops below the salinity maximum, and pore 

pressures and porosity rise (Fertl and Timko, 1971; Fowler Jr, 1970; Overton and 

Zanier, 1970). As pore fluids begin to accommodate the lithostatic load, the 

formation becomes over-pressured.  

Zone 3 (below 10,000 ft.): Below 10,000 ft. no pure montmorillonite remains. 

Progressive illitisation of the mixed-layer clay continues at a reduced rate, pore 

pressures remain high and pore fluid salinities again begin to increase as the 

structural pure water is progressively expelled.  

The schematic presented in Figure 7.11 incorporates observations from multiple 

sources in attempting to accommodate regional trends observed in the GOM basin. It 

is intended to highlight pore water chemistry and its evolution as a complex function 

of diagenetic history and clay mineralogy. Within this framework, core data for the 

BSR-HY, which are: (A) overpressured, (B) sampled below 10,000 ft., (C) contain no 
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smectite, and (D) have low volumes of mixed layer clays (Figure 7.4), fit within Zone 3. 

It is therefore suggested that the clay-pore fluid interactions responsible for regional 

GOM trends also result in highly heterogeneous pore fluid salinities at the core scale as 

a function of clay volume and distribution. This extends the conclusion of Chilingar et 

al., (1969) that ‘the salinity of interstitial fluid solutions in shale should be lower than 

those in associated sandstones’ to: the salinity of clay rich shale should be less than 

that of associated clay poor, more permeable shales. For instance, within the BSR-HY a 

heterogeneous mixture of at least four types of pore fluid regimes can be visualised: 

(1) non-clay bound, (2) illite dominated, (3) mixed-layer clay dominated, and (4) 

chlorite dominated, each with different pore water chemistries. Given the preceding 

discussions, and as a consequence of ion exclusion, it is suggested that the non-clay 

bound fluids will have greater salinities, such that overall pore water salinity is 

dependent on ratio of non-CBW : CBW and is thus relative to VClay. This is 

demonstrated in Figure 7.12 below, where above approximately 28% VClay, the pore 

fluid becomes increasingly CBW dominated, heterogeneous and generally fresher 

(Figure 7.10), such that compensatory increases in Rwe from Rt relationships (e.g. Figure 

4.15), can allow for the calculation of SwR with reduced residual MAE (Figure 0.3). 

Moreover, it is notable that only those wells where samples have generally less than 

approximately 28% VClay does SwR fail to improve upon standard 3D optimisation (W4).  
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Figure 7.12. Key change in petrophysical behaviour with VClay  

5.3.4 A mechanism for increased pore-complexity     

The effects of authigenic pore-lining chlorite, though not fully understood, are well 

documented in ‘low resistivity pay’ (Worthington, 2000). In this setting chlorite effects 

are considered to be less a product of surface area and CEC (Motealleh et al., 2007), 

but as a result of their effect on the amount and distribution of microporosity (Durand 

et al., 2001; Tudge, 2010). Where hydrous chlorite coatings preserve conduction 

pathways on grain surfaces, maintaining depressed Rt values that mask and undervalue 

hydrocarbon saturation. This necessitates compensatory reductions in m and n values 

(e.g. parameter trade-offs Figure 0.6) that have been demonstrated experimentally, 

with m values shown to be less than 2 and n values of around 1.5 (Durand et al., 2001; 

Edmundson, 1988b). Chlorite minerals can therefore be said to exert indirect electrical 

influence on ion conduction pathways (m and n) as a consequence of their distribution 

within the pore space. Whilst the direct intrinsic electrical effects of chlorite, which 
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have generally low CECs (2-14 meq/100g (Ellis and Singer, 2007)), on bulk fluid 

resistivity (Rwe) are likely to be minimal.  

In the example given by a ‘low resistivity pay’ analogue, the principal porosity is 

invaded by hydrocarbons whilst the secondary chlorite micro-porosity provides a CBW 

or capillary bound water-wet conductive membrane on the grain surface. Yet unlike 

‘low resistivity pay’, and particularly in the BSR, the chlorite and other CBWs constitute 

the primary porous network. Such that additional chlorite and associated reduced ɸtC, 

k relationships (Figure 7.9) will add to m*. This is witnessed in all optimiser models and 

core modelled parameter values, where the BSR consistently necessitate higher m* or 

m values than the clay poor HY (Figure 4.8). Additionally, the BSR data, which have 

generally low hydrocarbon saturations, indicates a reliance on optimising m in model 

W4 (Figure 0.17). By contrast, the HY, which has generally significant hydrocarbon 

saturations, demonstrates greater emphasis on n. This is taken to suggest that pore 

surface wettability in the BSR is not particularly variable, being dominated by water 

wet clays whose distribution, in particular that of chlorite, primarily impacts m. It is 

therefore appropriate that the HY, which has lower clay contents, higher oil wet TOC 

fraction and related porosity, and a potentially more homogenous and saline free pore 

fluid, demonstrates an increased importance and thus a reasonable probability 

distribution for n.        

Other impacts on m may result from clay grain orientation. Where illitisation and 

mechanical compaction may contribute to the re-mineralisation or re-orientation of 

clays perpendicular to the principle stress, potentially increasing clay alignment and 

creating a more elongate and regular pore space (Alpin and MacQuaker, 2010; Alpin et 

al., 2003; Day-Stirrat et al., 2012; Dewhurst et al., 1999; Eseme et al., 2006; Fawad et 

al., 2010). This might infer lower m values for increasingly aligned or fissile mudstones 

that have more capillary like pore-spaces, though there is no evidence in the literature 

to support or refute this. In any case, should illitisation result in increased planar 

alignment and a reduction in m, chlorite and illite precipitated in matrix supported 

pores and thus less influenced by vertical stress, are likely to counteract any such 

reduction. This argument may be overly simplistic, but it highlights the prospect of 
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highly heterogeneous pore geometries coincident with diverse electrical effects as 

noted in Figure 7.12 above 28% VClay.   

Overall, it is likely that the variability in m and n exponents are intrinsically linked to 

both Rwe and clay content. This is indirectly suggested by Yu and Aguilera (2011), who 

note that m values are typically lower than 2 in shales, as interconnected clays 

combined with formation water provides more paths for electric current flow. Such 

that if Rwe is influenced by clay, then so must m and n. This sentiment is echoed by 

Bust et al., (2011) who also suggest that Rw exerts a major influence over pseudo-

Archie exponent m and n. In addition, Wu and Aguilera (2012) suggest that m changes 

continuously in response to the variability in fracture and Kerogen porosity, which 

would again require like changes in Rwe.  

5.3.5 Summary and conclusions 

In summary, two general petrophysical regimes can be proposed for the BSR and HY: 

BSR: Dominated by CBW with non-clay bound fluid as a secondary contributor 

to BVW. This manifests as a freshening of pore fluids (increase in Rwe) with 

increasing clay content. As the non-clay bound water volume is a secondary 

contributor to BVW, the addition of CBW electrical conduction pathways, and 

associated decreases in m, are limited. Moreover, the increased presence of 

chlorite and associated reductions in ɸtC and k further reduce the influence of 

non-clay bound fluids at higher VClay values and result in increases in m above 2.   

HY: Dominated by non-clay bound fluid, CBW is a secondary contributor to 

BVW. This manifests in more homogenous Rwe values and limited freshening of 

pore fluids with increasing clay content. As the non-clay bound water is the 

bulk contributor to BVW, the addition of CBW electrical conduction pathways 

results in reductions in m below 2, aided by higher ɸtC and k values.   

The BSR and HY demonstrate markedly different petrophysical relationships and 

associated pseudo-Archie exponents that reflect the volume and effect of clay 

minerals. A boundary between the two petrophysical regimes falls qualitatively at 
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approximately 28% VClay (Figure 7.12). Above this limit (predominantly in the BSR), clay 

and chlorite volumes and clay dilution effects act to increase Rwe, m and n. This model 

fits well with the generated parameters and explains the observed petrophysical 

heterogeneity and anomalously high BSR resistivities. In addition, an empirical method 

is demonstrated that increases the accuracy of Sw estimates by modifying either Rwe or 

m* as regressed from Rt relationships (Figure 0.2). Below 28% VClay the predominantly 

HY data are more Archie-like in their behaviour, more homogenous petrophysically, 

and have lower Rwe, m and n values.  
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5.4 Composite core data summary 

The following section integrates the relationships described in Chapter 4 and sections 

7.11 and 7.12 within a single display (Figure 7.13), highlighting the relationships 

between mineralogy (XRD), Rt, BVW, saturation data, and the relative error (RE) in SwA 

for each well. First the relationships, as depicted in Figure 7.13, are summarised; this is 

followed by a qualitative review of thin section images so as to relate mineralogical 

and petrophysical variations to accompanying differences in formation fabric, where 

discernable. 

5.4.1 Petrophysical and mineralogical relationships

The preceding discussion and relationships can be largely reconciled within a single 

summary display. Core summary panels are provided for the BSR and HY Shales in 

Figure 7.13 and integrate RE, XRD, Rt, BVW and Sw data. Figure 7.13 includes five 

tracks: 

 Track 1 (far left), RE: Includes the RE generated by all optimiser models 

arranged in rank order from -1 (SwA underestimated by 100%) to +1 (SwA 

overestimated by 100%) for each well. The relative error generated by 

optimiser model W4 is highlighted in bold, with a shaded zone denoting 

samples where the error is within +10% (i.e. where SwA is within 10% of SwC). 

The remaining tracks are arranged in this order.  

 Track 2, XRD: Includes core XRD data, highlighting a generally upward 

increasing VClay trend which coincides with increasingly negative RE (track 1) 

and underestimated SwA (track 4). Likewise carbonate contents (VCalcite + 

VDolomite) are highest where RE is positive and SwA is overestimated.  

 Track 3, BVW and Rt: Indicates a consistent increases in BVW with Rt, linked to 

an increase in VClay (track 2) and negative RE (track 1). Likewise, Rt and BVW are 

lowest where VClay is minimal, carbonate contents are high and SwA 

overestimated (track 4).  
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 Track 4 saturation data: The bars represent SwC., the red line is SwA generated by 

optimiser model W4, and the blue line is SwR. SwR demonstrates improved 

performance and correlation with SwC for a number of wells, particularly in the 

BSR.   

 Track 5, Rt vs. BVW cross plots: Highlights BVW vs Rt relationships for each Well. 

The data is divided into three groups based on the magnitude of relative error 

(RE) for model W4 as defined by the light grey shaded region: 

Pink: -1.0 < RE < -0.1 : links to high Rt, BVW and VClay samples 

Grey: -0.1 < RE <  0.1 : Sw estimates accurate to + 10% 

Blue:  0.1 < RE < 1.0 : links to low Rt, BVW and VClay samples 

Figure 7.13 highlights the petrophysical trends discussed in sections 7.11 and 7.12. In 

addition, it demonstrates that the BVW : Rt relationships highlighted in track 3 of 

Figure 7.13 can be loosely segregated into a series of more Archie like sample groups 

by arbitrarily partitioning RE (see cross plots in track 5). This zoning is found to 

frequently coincide, particularly in the BSR, with distinctions in VClay and Rt values. This 

suggests a means of petrophysically zoning the formation based on singular or 

combined VClay or Rt cut-offs into smaller optimised groups, which may further improve 

Sw estimates. This is shown in rudimentary fashion by shading the baseline region of Rt 

in track 3 for the BSR (Figure 7.13, plot A), though in practise, a more complex 

multivariate means of data segregation including VClay and Rt may prove useful. 

Moreover, data points within any one group (Pink, Grey or Blue) form relatively linear 

BVW : Rt relationships implying a narrower range of Archie parameters. I.e. if Rt vs. 

BVW are linearly related then Rwe, m and n should remain nearer to constant.  



Unconventional applications of Archie’s equation: does geology matter?  Chapter 5 

  
 Page 191 
 

 



Unconventional applications of Archie’s equation: does geology matter?  Chapter 5 

  
 Page 192 
 

 

Figure 7.13. Composite core summary panels. 
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Track 1 (far left), Relative Error (RE): Includes the RE generated by all optimiser models arranged in rank 
order from -1 (SwA underestimated by 100%) to +1 (SwA overestimated by 100%) for each well. The RE 
generated by optimiser model W4 is highlighted in bold, with a shaded zone denoting samples where the 
error is within +10% (i.e. where SwA is within 10% of SwC). The remaining tracks are arranged in this order. 
Track 2, XRD: Includes core XRD data, highlighting a generally upward increasing VClay trend which coincides 
with increasingly negative RE (track 1) and underestimated SwA (track 4).  Likewise carbonate contents (VCalcite 
+ VDolomite) are highest where RE is positive and SwA is overestimated. Track 3, BVW and Rt: Indicates a 
consistent increases in BVW with Rt, linked to an increase in VClay (track 2) and negative RE (track 1). Likewise, 
Rt and BVW are lowest where VClay is minimal, carbonate contents are high and SwA overestimated (track 4). 
Track 4 saturation data: The bars represent SwC., the red line is SwA generated by optimiser model W4, and the 
blue line is SwR. SwR demonstrates improved performance and correlation with SwC for a number of wells, 
particularly in the BSR. Track 5, Rt vs. BVW cross plots: Highlights BVW vs Rt relationships for each Well. Data 
is divided into three groups based on RE for model W4 as defined by the light grey shaded region. Note; see 
electronic version of Figure 5.13 for a large, expandable plot.   

5.4.2 Linking mineralogy and petrophysics to formation fabric 

The marked change in mineralogical and petrophysical properties with RE as 

highlighted in Figure 7.13, combined with the large variation in m* or Rwe values 

generated in deriving SwR (see section 4.4.3.1 ) suggest that there should be a 

corresponding and discernable change in sediment fabric. As such, the available thin 

section imagery was reviewed for each core sample. It should however be noted that 

comparsons between available thin section images and other core data is extremely 

limited, as the thin sections are not available for viewing in their entirety. For each 

core sample four thin section images are available, taken at the same location at 

different magnifications and light conditions as summarised in Figure 7.14. The first 

image for each core sample captures an area of 12.8 mm2 in plane light, the second is 

taken is taken at the same magnification but in epiflorescent light, the third zooms in 

on a selected area of the first image covering 0.512 mm2, with the forth image 

displaying a magnified area of the third image covering 0.128 mm2.  

 

Figure 7.14. Summary of available thin section imagery 
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As depicted in Figure 7.14, only a single thin section image capturing a very small 

fraction of the entire thin section is available for any one core sample, such that little 

can be deduced of overall sediment fabric at any one sampling location. Whilst 

mudstones are highly heterogeneous with complex fabrics occurring at the centimetre 

to millimetre scale, sediment fabric (grading, lamina sets etc., see section 2.1.3) is 

generally not discernable at scales represented within the available images, 

particularly in the absence of context provided by the remainder of the thin section. 

Moreover, the rationale for the selection and inclusion of these images within the 

RAPID database is likely to have been dependant on the individual responsible for 

collating and compiling database information. In other words, links between fabric 

displayed in thin section images and core data are at best qualitative.  

Considering the limitations discussed above, thin section images were arranged and 

reviewed in order of RE for optimiser model W4, in kind with the data displayed in 

Figure 7.13. In general, for the BSR data, as the change in VClay with RE (RE decreases as 

VClay increases) is both marked and consistent, variations in sediment fabric linked to 

grain size and clay content can be observed in the majority of wells. An example is 

displayed in Figure 7.15 for well 10, where, as VClay increases the thin section 

photographs display increasingly planner / anisotropic, fine grained and burrowed 

fabrics. Though within the HY, whilst variations in mineralogy follows similar trends to 

the BSR, they are contrastingly subtle, and no systematic variation in fabric was found. 

Examples are displayed for BSR well 10 and HY well 8 in Figure 7.15 and Figure 7.16 

respectively.      
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Figure 7.15. Thin section images: BSR well 10 
Exert of Figure 7.13 highlighting BSR well 10, displaying changes in thin section fabric with RE and clay 
content. Note, the apparent decrease in grain size and increasingly burrowed fabric with increasing VClay. Thin 
section photographs descriptions as taken from Core Laboratories: (A) Burrowed (Bu), weakly calcareous and 
dolomitic, siliceous, slightly silty shale (claystone) with scattered benthic foraminifers (Fo). Pyrite appears as 
replacement mineral in some microfossils (SF). Favreina burrows are distinguished. The high quartz content 
(24%) is mostly due to microquartz (authigenic?) mixed with the matrix. Silt-sized siliciclastics occur dispersed 
throughout the sample. The larger quartz grain size is 70 micron (average grain size: 20 micron). Framboidal 
pyrite is common. (B) Burrowed (Bu), calcareous, siliceous, slighly silty shale (claystone) with scattered 
undifferentiated carbonate filaments (SF?). The high quartz content (29%) is mostly microquartz 
(authigenic?). Silt-sized siliciclastics occur dispersed throughout the sample. Framboidal pyrite is common. 
Microfractures are clearly visible. (C) Burrowed (Bu), calcareous, weakly dolomitic, siliceous, slightly silty shale 
(claystone) with scattered skeletal fragments (e.g.: echinoderms; SF). Benthic foraminifers are minor 
constituents. The high quartz content (32%) is probably due mainly to microquartz (authigenic?) mixed with 
the matrix. Silt-sized siliciclastics occur dispersed throughout the sample. The larger quartz grain size is 80 
micron (average grain size: 10 micron). Pyrite (Py), and micas (Mi) are common. (D) Burrowed, calcareous, 
argillaceous siltstone to highly silty shale (claystone) with scattered benthic foraminifers (Fo). Some skeletal 
fragments from mollusks are distinguished. Silt-sized siliciclastics (e.g.: quartz, Q) occur dispersed throughout 
the sample. The larger quartz grain size is 110 micron (average grain size: 20 micron). Framboidal pyrite (Py) 
and micas (Mi) are common. (E) Highly calcareous, weakly dolomitic, siliceous, silty shale (claystone) with 
scattered skeletal fragments (e.g.: echinoderms [Ec], and benthic foraminifers [Fo]). The high quartz content 
(27%) is probably due mainly to microquartz (authigenic?) mixed with the matrix. Silt-sized siliciclastics occur 
dispersed throughout the sample. The larger quartz grain size is 100 micron (average grain size: 20 micron). 
Pyrite is common. 



Unconventional applications of Archie’s equation: does geology matter?  Chapter 5 

  
 Page 196 
 

  

Figure 7.16. Thin section images: HY well 8 
Exert of Figure 7.13 highlighting HY well 8, displaying changes in thin section fabric with RE and clay content. 
Note, slight variations in clay and carbonate with no discernablke change in fabric. Thin section photograph 
descriptions presented as taken from Core Laboratories: (A) Calcareous, micaceous, pyritic, quartzose (Q), 
silty shale with calcite-filled cracks (CFC). Carbonate particles include calcispheres (Csp). Predominant clay is 
illite. Calcite volume is 8.3%, dolomite volume is 7.1%, clay volume is 34.8%. (B) Calcareous, slightly burrow ed 
(Bu), faintly laminated, pyritic (Py), quartzose (Q), silty shale. Micas (Mi) are common. Burrows appear filled 
by dolomite crystals. Intergranular replacements (IR) are minor constituents. Predominant clay is illite. 
Microfractures are clearly visible in epifluorescent light. Calcite volume is 11%, dolomite volume is 7.2%, clay 
volume is 30.7%. (C) Calcareous, faintly laminated, pyritic, micaceous, quartzose, silty shale with carbonate 
particles, and undifferentiated plates (UP). Skeletal fragments (SF) and Foraminifers (Fo) are common. 
Predominant clay is illite. Microfractures are clearly visible in epifluorescent light. Calcite volume is 14.6%, 
dolomite volume is 12.3%, clay volume is 25.9%. 

5.4.3 Summary and conclusions 

The petrophysical and mineralogical relationships discussed in Chapter 4 and sections 

7.11 and 7.12 are summarised in Figure 7.13. This highlights consistency in BVW, Rt 

and VClay particularly in the BSR, though with similar subtle trends evident for much of 

the HY data (e.g. wells 1, 5, 6, 8, 12, 14). Comparison of thin section images reveals 

qualitative variation in fabric related to VClay in the BSR, but, as a result of subtle 

mineralogical variations, no systematic change could be identified in the HY. This 

qualitative review and comparison of thin section images with RE is however extremely 

limited in the absence of core material and the inability to observe wider variations in 
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sediment fabric. This highlights the obvious limitations and a miss-match in scales 

where attempting to compare log data (with a vertical resolution of ~30cm), with core 

data (which utilises ~1-2 cm core plug) and thin section images (where only 12mm2 of 

core material can be viewed). As a consequence of data limitations, the interplay of 

depositional processes, resultant sediment fabric and associated petrophysical 

properties cannot be adequately evaluated. Despite this however, it is clear, 

particularly in the BSR, that clastic dilution (increased VClay) is linked to elevated BVW 

and Rt, greater sediment anisotropy and burrow intensity. This latter point, increased 

burrow intensity, is discussed in section 2.13, where in other formations burrowed 

fabrics are found to form permeable burrow networks. This contradicts BSR data, and 

the association of very low k values, high VClay and burrowed fabrics in the BSR. One 

possible explanation is that burrowed fabrics, at some early stage of burial, did 

contribute to higher permeability, and perhaps enabled fluid migration and escape. 

This would provide a mechanism for the expulsion of unrequired ions and double layer 

water as discussed in section 7.12.3, allowing for pore water freshening in high VClay 

regions where the majority fluid is CBW. Following fluid expulsion, the permeable 

burrow network, may then have been progressively clogged by authigenic chlorite 

mineral growth. This is supported by the positive association between VChlroite, VClay, k, 

and an increased incidence of burrowed fabrics. Moreover, authigenic chlorite 

formation can occur during, and is linked to the later, higher temperature/pressure, 

stages of the smectite-illite transition at (e.g. Burton, 1987; Davarcioglu, 2012). VChlorite 

distribution is however unknown, though the availability of core for thin section and 

SEM analysis, particularly of burrowed clay rich fabrics, would be helpful in 

strengthening this hypothesis. In any case, it is demonstrable, that formation 

mineralogy and associated fabric can be linked to accompanying petrophysical 

properties and consistent trends in optimised Archie parameters.              
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5.5 Predicted pseudo-Archie parameters   

The average pseudo-Archie parameters predicted by the optimiser models (H1 and 

W1-W4) and associated core modelled parameters are summarised below in Table 7.2 

and in Figure 4.8. It has been demonstrated that the parameter trends of all the 

generated Archie parameters can be geologically rationalised within the context of the 

preceding discussion; BVW/VClay/Rt relationships and formation petrophysical 

heterogeneity. The following section compares the predicted parameters with those 

generated by other studies and discusses the manipulation of some parameters noted 

in the sensitivity analysis and parameter trade-offs.  

 

Optimised parameters 

    BSR HY 

 
m n Rwe (Ω.m) M n Rwe (Ω.m) 

W1   0.0277 + 0.0183   0.00784 + 0.00298 

W2 2.18 + 0.23 * 
 

1.82 + 0.09 * 
 

W3 2.45 + 0.24 * 0.0061 + 0.0001 2.02 + 0.13 * 0.00710 + 0.00248 

W4 1.79 + 0.41 3.86 + 0.31 0.0332 + 0.0385 1.24 + 0.31 3.39 + 0.68 0.01177 + 0.01375 

     
 Core modelled parameters    

 BSR HY 

 
m n Rwe (Ω.m) M n Rwe (Ω.m) 

W1   0.0546 + 0.0871   0.00943 + 0.00935 

W2 2.28 + 0.34 * 
 

1.84 + 0.16 * 
 

W3 2.17 + 0.45 * 0.0286 + 0.0260 1.75 + 0.27 * 0.02874 + 0.02603 

W4 1.98 + 0.58 2.79 + 0.83 0.0327 + 0.0267 1.48 + 0.39 2.42 + 0.78 0.02459 + 0.02165 

Note: * referes to m* and m=n 

Table 7.2. Mean predicted Archie parameters + standard deviation 

5.5.1 Comparison with previous works 

As discussed in section 4.2 and displayed in Table 7.2, the generated parameters are 

consistently higher in the BSR than in the HY. In addition, the parameters generally 

decrease with increasing parameter freedom from model W1 to W4, with a 

corresponding increase in their variation. For instance, the average BSR core modelled 

parameter m for model W4 is lower (1.98), but has a higher standard deviation (0.58) 
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than m* for W3 (2.14+0.45). In general however, these figures fall within the ranges 

discussed in section 2.4.2 and compare well with the limited literature resources 

available on the subject.  

In particular, the m* values produced for all HY models compare well with those 

presented by Luffel et al., (1992), who assumes m=n (m*) for core Dean Stark Sw 

estimates in Devonian Shales and found m=n=1.7. It should be noted that the 

Devonian Shales included within the study are more comparable in 

petrophysical/mineralogical terms to the HY than the BSR. Kruschwitz and Yaramanci, 

(2004) found fitted m and n values for electrical measurements made on dried and re-

saturated samples of Opalinus clay from Mont Terry, Switzerland where m=1.29 to 

1.46 and n=1.49 to 1.93. These figures agree well with the HY core modelled 

parameters for model W4, though it is noted that sample drying irrevocably alters the 

pore space (Jougnot and Revil 2010). Similar findings on oven dried and partially re-

saturated clay-rocks of the Callovo-Oxfordian Formation by Jougnot and Revil (2010) 

also found m=1.37 to 1.54 and n=1.99 to 2.16, though they suggest that oven-drying 

results in the formation of micro-cracks that reduce m upon saturation. This assertion 

is supported by analyses by Revil (2005) and Jougnot et al., (2009) on the conductivity 

of undisturbed saturated clay-rocks from Callovo-Oxfordian Formation where fitted 

m=1.95 + 0.04 and m=2.0 respectively. Additional work on the Mancos Shale in eastern 

Utah by Leroy and Revil (2009), which has a similar carbonate content, but a higher 

clay content than the HY, found fitted values of m=2.2. Yu and Aguilera (2011) 

combined Pickett plots with empirical TOC relationships to find m values in the HY of 

between 1.45 to 1.85, provided a, n and Rw are kept constant. These values are similar 

to most of the predicted W1-W4 predicted m and m* values. In addition, a case study 

on formation evaluation in the HY by Ramirez et al., (2011) notes that Archies equation 

with m=n=1.9 ‘works well’. In summary, the range in m and n values reported in the 

literature largely agree with those presented in Table 7.2. 
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5.5.2 Optimiser models and parameter manipulation 

5.5.2.1 One dimensional models (W1 and W2) 

In investigating models W1 and W2, it is clear that the sensitivity of m* (W2) is higher 

than Rwe, such that W2 is a preferable optimisation tool providing improved MAE 

reduction. In addition, the variable and parameter relationships established can be 

reconciled by the mineralogical / petrophysical relationships established in section 5.3, 

and thus have a reasoned geological footing. Moreover, these relationships allow for 

the calculation of SwR, and a significant reduction in MAE for the majority of wells 

where VClay is generally above 28%.  

Within models W1 and W2 the only parameter that can be manipulated are the fixed 

parameter inputs Rwe, and m* respectively. It is noted in Figure 4.12, that increasing 

either fixed parameter value shifts the range and alters the sensitivity of the optimised 

parameter. 

5.5.2.2 Two dimensional models (W3)  

The disparity in the sensitivity of MAE to changes in m* and Rwe established in W1 and 

W2 investigations is highlighted as a significant flaw when utilising model W3. Where 

the optimiser consistently favours reducing Rwe to or very close to the minimum bound 

(0.006 Ω.m). This occurs as a by-product of least error optimisation, where reducing 

Rwe effectively reduces the sensitivity of m*, increasing the m* parameter range within 

which a least MAE solution can be selected. This is manifest by uniformly inclined Rwe 

parameter distributions, yielding an increase in the number of low error solutions at 

low Rwe values (Figure 0.8 and Figure 0.9). As a consequence, other than that Rwe 

values are likely to be relatively low, no geological meaning can be attributed to Rwe 

output. If prior information were available, and allowed for greater constraints to be 

placed on Rwe bounds, it is still likely that the lower bound would always be selected. 

On this basis it considered more appropriate to fix Rwe at a reasoned value, based on 

available information, or other selection methods. Despite this, the resultant m* 

output is very similar to that of model W2 (Table 7.2) and reflects the same trends: 
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generally higher m* values coupled with increased heterogeneity in BSR as related to 

clay volume and clay effects on formation resistivity (Figure 4.8).  

The manipulation of Rwe so as to alter the range and sensitivity of m* has been 

demonstrated within the grid-search algorithm. There is however, limited literature 

available examining the optimisation of Archie exponents in conventional or 

unconventional formations. That said, a study by  Chen et al., (1995) investigated the 

efficacy of the simplex method in optimising a, m and n for Sw prediction using 

benchmark core Sw (observed) data in sandstones. They find, that for some samples, 

optimised a could be quite high (a=6.3) or low (a=0.6), but did not necessarily yield a 

significant improvement in fit. In other words, a was determined to have a low 

sensitivity and thus fixed at unity for some samples. This draws some parallels with this 

study, where Rwe, which assumes a=1, also demonstrates low sensitivity and is thus 

preferably manipulated so as to alter the range in the more sensitive m*. Likewise 

studies of the uncertainty and error propagation within multiple shaly sand models by 

Mahgoub et al., (2008) also find Rw and a to be the least, and m and n to be the most 

sensitive parameters.        

5.5.2.3 Three dimensional models (W4)  

Similar to model W2, increased parameter freedom appears to result in more 

extensive parameter manipulation. Where, in addition to a reduction in Rwe, n is also 

artificially inflated to further refine the selection of m. Thus parameter manipulation 

appears to occur in order of least sensitivity or Rwe, n and m. This is particularly true in 

the BSR which displays a flat uniform distribution of Rwe and inclined distribution of n, 

suggesting insensitivity to Rwe and an increased number of low error solutions at high n 

values. Unlike optimised model data however, core modelled parameters in the HY 

exert greater preference and whilst the probability distributions for Rwe remains flat, n 

peaks at ~2.25 and m at ~1.3 (Figure 0.16 and Figure 0.17). As discussed previously 

(section 7.14.1), these values are not without precedence in the literature, and would 

likely be higher if Rwe were fixed at some value above the saline saturation limit (0.006 

Ω.m).  
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5.5.3 Summary and conclusions 

The predicted pseudo-Archie parameters and their sensitivities agree with those 

presented in the literature. The data supports m and n values of less than 2 in the HY 

and values greater than or equal to 2 in the BSR. It is notable that the preceding 

discussion makes little mention of the predicted Rwe values. This is in part due to 

uncertainty in the predicted parameter and its manipulation in models W2 and W3. 

Rwe is therefore difficult to rationalise, such that preference is given to fixing Rwe for a 

given formation zone. This is compounded by a lack of literature documenting BSR and 

HY Rwe values. It is however possible to say that Rwe is likely to be higher and more 

variable in the BSR than in the HY (Figure 4.13).  

It is also demonstrated that whilst multi-dimensional models (W2, W3 and W4) may 

yield an improved fit, that they generate greater uncertainty in output parameters and 

thus hamper the prospect of their prediction based on geological interpretation. In 

kind, simplistic one-dimensional models (W1 & W2) are shown to generate more 

constrained parameter outputs that can be placed within a geological framework. In 

this instance, this has yielded empirical relationships (SwR) that reduce residual MAE 

beyond the capability of 3D optimisation (W4) methods.  
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  Chapter 6

Conclusions and recommendations             
for further work   

The main aim of this project has been to improve our understanding of the application 

of Archie’s equation in shale gas systems, linking formation attributes, such as 

mineralogy and fabric, to measured petrophysical properties and generated pseudo-

Archie parameters. This chapter presents the main conclusions of this work and 

considers the original aims and objectives as presented in section 1.2. It is divided into 

a series of research questions that are discussed in turn, followed by a summary of 

additional findings, an overall summary of the main conclusions and suggestions for 

further work.    
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6.1 Research question I:  

Premise: Variability in optimiser model output must be linked to the heterogeneity and 

inter-relationships of the petrophysical inputs (ɸtC, Rt, SwC). In turn, the petrophysical 

inputs express the interaction and distribution of formation mineral and fluid 

components as determined by depositional and diagenetic processes.  

Question: How does variability in the error of SW optimiser model outputs for Bossier 

(BSR) and Haynesville (HY) data link to the variability in formation mineralogical and 

petrophysical properties as represented within the wireline and core data? What are 

the principal geological controls on model accuracy? 

This was investigated by evaluating mineralogical and petrophysical variability and 

interrelationships as related to the variability in the residual mean absolute error 

(MAE) of optimiser model outputs. Findings indicate: 

o The HY, though mineralogically heterogeneous, is relatively homogenous 

petrophysically, yielding low residual MAEs of between 1.03 to 5.59% and a 

restricted range of generated Archie parameters where m and n are typically below 

2 (1.24 to 2.02). As a consequence of formation homogeneity, there is limited 

difference in MAE between the results of 1D and 3D optimiser models.  

o The BSR, which is comparatively mineralogically homogenous, is markedly more 

heterogeneous petrophysically, with a larger a residual MAE of 5.32 to 17.34% and 

a correspondingly wider range in generated Archie parameters, with m and n values 

typically above 2 (1.79 to 2.45). This petrophysical heterogeneity is reflected by a 

marked decrease in MAE with increases in optimiser model dimensionality, i.e. 

model W4 is significantly more accurate than W1. 

o Petrophysical heterogeneity in the BSR can be directly linked to high VClay and in 

particular the chlorite clay fraction, which is associated with a generally higher, 

though more variable resistivity response. In other words, results suggest that 

greater quantities of clay contribute to electrical variability and a typically ‘excess 

resistivity,’ not an ‘excess conductivity’ as might be conventionally expected. The 
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heteroskedastic relationship and increased variance in Rt at high VClay is likely to 

reflect varying distribution and interaction of clay minerals with the pore space and 

thus electrical properties. As a consequence, despite highly variable fluid 

distribution characteristics (BVW and SwC) it is the effect of clay minerals in 

generating a variable resistivity response that in turn generates a large variation in 

model MAE and Archie parameter outputs. This is evident, in that the generated 

Archie parameters for the BSR typically demonstrate a positive linear relationship 

with Rt for all optimisation models considered. In addition, it explains why the SwR 

regression method is more accurate than least error optimisation, as it allows 

Archie parameters to be selected with greater fidelity, where they can be 

modulated by and vary in accordance with Rt. Thus VClay, and not mineralogical 

heterogeneity, is the primary control on petrophysical variability and optimiser 

model accuracy. Where, if porosity-fluid relationships are the primary mechanism 

determining formation electrical properties, then the effects of clay minerals and 

thus Rwe, m and n parameters must be extremely variable.  

6.2 Research question II:  

Premise: The modelled results are based on a modified Archie’s equation (equation 

4.1), for which the principal underlying petrophysical mechanism is the negative 

relationship between the volume of the saturating electrolyte and formation resistivity 

(Archie, 1942). Clay minerals are known to affect this relationship by reducing the 

resistivity, or inversely, by providing a source of excess conductivity (Hill and Milburn, 

1956; Patnode and Wyllie, 1950; Winsauer and McCardell, 1953; Wyllie and Southwick, 

1954). If uncorrected, this can overestimate Sw and contribute to an undervaluation of 

the reservoir.  

Question: How does core data for clay volume and the volume of the saturating 

electrolyte (BVW) relate to measured Rt, what is the geological basis for these 

relationships, and are they reflected by predicted Archie parameters values (m, n and 

Rw)?   
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This was approached by investigating petrophysical relationships related to the clay 

mineral fractions in combination with a review of published literature trends and 

Archie parameters generated using log and core data. This confirms that high VClay core 

samples are consistently associated with greater ɸtC, BVW¸ Rt and lower k, particularly 

in the BSR. Whilst it is not surprising that clay dominated samples contain a high 

proportion of water, with low permeability, their link to increased formation resistivity 

is in stark contrast with conventional wisdom. A geologically consistent mechanism is 

proposed to explain the noted anomalous increase in Rt with VClay:  

o A system of pore water freshening (increase in Rwe) in clay rich regions resulting 

from pore water and ion expulsion linked to compaction, diagenesis (smectite-illite 

transition) and associated reduction in clay CEC, with fluid mobility aided in earlier 

stages of burial by permeable burrow networks prior to later authigenic mineral 

(primarily chlorite) growth and reduced permeability. In addition, latter stages of 

authigenic mineral growth may also result in an increase in pore geometrical 

complexity and m and n. 

This proposed model explains the observed petrophysical heterogeneity and 

anomalously high BSR resistivities. Moreover, it serves to divide a continuum of HY and 

BSR data into two distinct, ‘Archie like’ and ‘non-Archie like’ petrophysical regimes: 

o Non-Archie like (largely BSR data): Dominated by CBW with non-clay bound fluid as 

a secondary contributor to BVW. Pore fluids freshen (increase in Rwe) with 

increasing clay content. As the non-clay bound water volume is a secondary 

contributor to BVW, the addition of CBW conduction pathways, and associated 

decreases in m, are limited. Moreover, the increased presence of chlorite and 

associated reductions in ɸtC and k further reduce the influence of non-clay bound 

fluids at higher VClay values and result in increases in m above 2.   

o Archie like (largely HY data): Dominated by non-clay bound fluid, CBW is a 

secondary contributor to BVW. This manifests in more homogenous Rwe values and 

limited freshening of pore fluids with increasing clay content. As the non-clay bound 

water is the bulk contributor to BVW, the addition of CBW electrical conduction 

pathways results in reductions in m below 2, aided by higher ɸtC and k values.   
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The boundary between the two petrophysical regimes is shown to fall qualitatively at 

approximately 28% VClay (Figure 7.12). Above this limit (predominantly in the BSR), it is 

suggested that clay and chlorite volumes and clay dilution effects act to increase Rwe, 

m and n. This is supported by the empirical relationship for calculating SwR, which 

increases the accuracy of Sw estimates by modifying either Rwe or m* as regressed from 

Rt relationships in wells where VClay in typically above 28% (Figure 0.2). Below 28% VClay, 

the predominantly HY data are more Archie-like in their behaviour, more homogenous 

petrophysically, and have lower Rwe, m and n values.  

6.3 Research question III:  

Premise: The efficacy of a core calibrated optimised Archie approach and thus the 

geological validity of the Archie parameter values generated, has not been tested and 

the geological interpretation of these values have not been explored in shale gas 

systems.   

Question:  What are the mechanics of an optimised Archie approach, what controls the 

value of generated Archie parameters, what can we infer of their validity from 

sensitivity analyses and parameter trade-offs, and how do modelled Archie parameter 

values compare with those predicted by other studies?  

This was approached by evaluating the output of the optimisation models and 

examining the change in MAE with variations in parameter values. This highlighted the 

following:   

o In examining 1D optimisation models W1 and W2, MAE is shown to be more 

sensitive to changes in m* than Rwe, such that W2 and optimising m* provides 

greater potential for MAE reduction. Moreover, models W1 and W2 reveal a linear 

empirical relationship between the optimised parameter and Rt, which allows for 

the calculation of SwR, and a further improvement in the accuracy of Sw estimates. 

o The 2D optimisation model, W3, is shown to consistently bias the parameter 

outputs, where Rwe is generally minimised so as to modify the sensitivity and 
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parameter value range of m* to a preferable least MAE solution. As such, limited 

geological meaning can be attributed to generated Rwe values within model W3.    

o The 3D optimisation model, W4, is shown to consistently bias parameter outputs, 

where, in addition to a reduction in Rwe, n is artificially inflated so as to further 

refine the selection of m. Thus parameter manipulation appears to occur in order of 

least sensitivity or Rwe, n and m. This is particularly true of the BSR, where the 

generated parameters can be ascribed limited geological meaning. Though in the 

HY, whilst generated Rwe values remain questionable, the distributions for n and m 

peak at ~2.25 and ~1.3 respectively. Interestingly m and n appear to have different 

roles in the BSR and HY which are consistent with formation petrophysical 

properties:  

 The BSR, which generally has low gas saturations and high VClay and CBW 

volume, demonstrates an inclined uniform n distribution and appears reliant on 

optimising m.  

 The HY, which has relatively high gas saturations, has very low and constrained 

m values, and appears reliant on optimising n.  

Across all optimisation models, the generated parameters typically form a linear 

relationship with Rt, particularly in the BSR, suggesting that BVW and thus traditional 

Archie relationships are of limited importance in forcing parameter selection. 

In general, the predicted pseudo-Archie parameters and their sensitivities agree with 

those presented in the literature. The data supports m and n values of less than 2 in 

the HY and values greater than or equal to 2 in the BSR. By contrast, Rwe, which is 

systematically biased by optimisation models W2, W3 and W4 so as to preferentially 

adjust m and n parameter values, cannot be geologically rationalised. Indeed, where 

using optimisation models, it may be preferable to fix Rwe for a given formation zone. 

This is compounded by a lack of literature documenting BSR and HY Rwe values. It is 

however, possible to say that Rwe is likely to be higher and more variable in the BSR 

than in the HY (Figure 4.13).  

It is also demonstrated that whilst multi-dimensional models (W2, W3 and W4) may 

yield an improved fit over arbitrary Archie exponent value selection, they generate 
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greater uncertainty in output parameters and thus hamper the prospect of their 

prediction based on geological interpretation. In kind, simplistic one-dimensional 

models (W1 & W2) are shown to generate more constrained parameter outputs that 

can be placed within a geological framework. In this instance, this has demonstrated 

empirical relationships (SwR) that reduce residual MAE beyond the capability of 

optimisation methods.  

6.4 Research applications  

The findings of this work present no complete solution to the conundrum that is the 

application of Archie based saturation equations to shale gas systems in the 

exploration and production sector. They do however highlight the potential for 

complex least error multi parameter optimisers (a commonly used industry method) to 

contain significant model error, and so produce Archie parameters with little 

geological meaning. Findings also highlight that whilst optimisation models that solve 

for only a single Archie parameter have relatively high MAE’s (i.e. they generate a poor 

fit between core and calculated SW values), they produce useful and potentially 

geologically meaningful empirical relationships. Moreover, the combined application 

of 1D solver models with the resulting empirical relationships are shown to be more 

effective in reducing MAE than higher dimensional solvers. These empirical 

observations support additional findings revealed in exploring the interrelationship 

between clay volume and resistivity that run contrary to the currently accepted 

doctrine. Where, as opposed to adding ‘extra’ conductivity, clay minerals are shown to 

add ‘extra’ resistivity in the Bossier and Haynesville shales when clay volume exceeds 

28%. This highlights both the need for extra caution in applying solver models and the 

need to further our understanding of the role of clay minerals in contributing to 

formation resistivity. 
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6.5 Additional findings  

o Well data indicate (Figure 3.12 and Figure 3.13) a predominantly northern to north 

westerly origin of clastic sediments. This contrasts a north-eastern origin linked to 

the ancestral Mississippi River delta suggested by Hammes and Frébourg (2012). It 

is however recognised that Hammes and Frébourg (2012) utilised a far larger data 

set covering a wider region. It is therefore possible that data within this study 

identifies localised trends in sediment provenance within a region dominated by 

sediment sourced to the north and east.  

o Empirical models developed in a near identical region of the BSR-HY for the 

prediction of TOC based on WPyrite are noted to be highly inaccurate and no 

consistent link between pyrite and organic matter is observed. This highlights either 

laboratory or reservoir inconsistencies that renders the application or empirical 

models problematic, at least at the local level. 

o Analysis indicates ρKerogen values for the BSR and HY data of between 1.23 to 1.77 

g/cc. This range is far higher than the constant value of ρKerogen=1.17 g/cc thought to 

be used by Core Laboratories. This is likely to result in an overestimation of VKerogen 

by approximately 20% when converting from wt. to vol. %, causing the remaining 

mineral volumes to be subtly overestimated.       

6.6 Summary  

o Optimisation models can be used with good effect in calculating Sw, though the 

greater the freedom of the optimisation model, the greater the likelihood that 

Archie parameters produced are biased, limiting their geological interpretation.   

o One dimensional optimisation models are less accurate in calculating Sw, but reveal 

empirical relationships which are demonstrated to increase the accuracy of Sw 

estimates beyond the capability of higher dimensional optimisation models.  

o Optimiser generated Archie parameters often have linear relationships with 

formation Rt, but not BVW in the BSR. This indicates that formation fluids (BVW) in 

the BSR play a reduced role in controlling the formation Rt response. By contrast, 
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the HY is more Archie-like with a typically negative linear relationship between BVW 

and Rt.  

o Though mineralogically heterogeneous, the HY is relatively homogenous 

petrophysically. This is reflected by a typically narrow range in generated Archie 

parameters.  

o Though relatively homogenous mineralogically, the BSR is relatively heterogeneous 

petrophysically. This is reflected by a wider, more varied range in generated Archie 

parameters. 

o Increased resistivity and variability in the resistivity responses are shown to 

correlate linearly with residual MAE in the BSR.  

o In contrast to typical relationships, clay content, particularly the chlorite fraction, is 

linked to an increase in Rt, and an increase in the heterogeneity of the Rt response.  

o It is proposed that that the anomalously high BSR resistivity response could be 

accounted for burial diagenesis driven ion expulsion and bound water freshening, 

particularly in clay rich bioturbated regions, in combination with authigenic chlorite 

mineral growth and increased pore complexity.  In general, it is suggested that the 

salinity of clay rich mudstone should be less than that of associated clay poor, more 

permeable mudstone. 
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6.7 Recommendations for further work   

There are numerous avenues available for further work in investigating the 

relationships between formation fabric, mineralogy, geochemistry and petrophysical 

properties, particularly in regards to formation electrical properties of shale gas 

systems.  

Access to core with additional core analysis, specifically XRD and clay mineralogy, 

calculated CEC, or core measured CEC values, would help validate the suggestion that 

fluid resistivity may contribute to increased resistivity in clay rich areas. Moreover, 

analysis of variations in formation fabric in areas of contrasting resistivity response in 

the BSR would help determine the role of clay mineral distribution and formation 

fabric in determining formation electrical properties. Specifically, thin section studies 

of BSR bioturbated fabric could confirm the qualitative association made in this study 

between bioturbation and authigenic clay mineral growth, particularly chlorite.     

Core material in shale plays, particularly in relatively thin productive successions such 

as the HY, are often fully cored. Multi-sensor core logging of newly retrieved core, with 

particular reference to infrared spectrophotometry, which measures light reflection 

and transmission properties of a material to identify mineral constituents, can be 

measured with a high sampling rate (less than 1cm). In conjunction with additional 

MSCL tools such as X-Ray fluorescence, and core sampling and XRD analysis, a robust 

and high resolution mineralogy log could be created. This would serve a number of 

purposes, firstly as a means to calibrate and validate log multi-mineral solver tools, but 

also in evaluating the links between changes in mineralogy with observable differences 

in formation fabric and any inherent systematic patterns or cyclicity that may fall 

within a sequence stratigraphic framework. Integration with typically available wireline 

data would help determine mineralogical and fabric effects on upscaled log 

characteristics, but also lend greater predictive capability in nearby wells that share 

similar log characteristics in the absence of detailed core data.  
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Within this study, it is suggested that due to ion exclusion, that clay rich shales should 

have a lower salinity than adjacent clay poor shales, which have a greater proportion 

of non-clay bound water. Moreover, it is suggested that, in more plastic clay rich 

regions which lack grain support, the bound water between clay grains will be at a 

hydrostatic minimum, whereas bound water affiliated with similar clays but supported 

by granular material may retain more water. On this basis, the volume of clay bound 

water and fluid salinity should be a function of composition and fabric. A study utilising 

thermo gravimetric analysis of regions of contrasting fabric and mineralogy within 

shale, provided it is possible to distinguish between clay bound and non-clay bound 

fluids, would be useful in indicating the variability in fluid characteristics and 

heterogeneity associated with fabric and mineralogy.    

Within this study, the Archie type equation used draws parallels with Archie’s original 

equation and the Dual water and Waxman Smitt methods. A wider sensitivity analysis 

encompassing other popular saturation equations, such and Simandoux and 

Indonesian methods, including recently proposed models by Herrick and Kennedy 

(2009) and Iheanacho (2013), would further aid the informed selection and choice of 

appropriate saturation models in shale systems. Moreover, these analyses could be 

applied to a wider range of shale sequences, so as to further link Archie parameter 

behaviour to changes in formation geological properties.   
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Appendix A 

GRI method laboratory protocol 
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Appendix B 

Grid search optimiser: example Python 
code for optimiser model W4 
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Appendix C 

Multi-sensory core logger: a summary of 
work undertaken 

Core material for well 11 was made available by BG Group for a period of 6 months in 

2011. The cored section spanned the entire depth of the Haynesville Formation, 

equivalent to 18.63 meters or 61.1220 ft in well 11. The core was photographed and 

examined using a multi-sensor core logger (MSCL) provided by Geotek and sampled at 

selected locations for thin section analysis. The MSCL tool included an infrared 

spectrophotometer, magnetic susceptibility tool non-contact resistivity, density and 

natural gamma ray detectors, with measurements taken at intervals of between 1 and 

5cm. The core had however been stored in an open uncontrolled environment at room 

temperature in typical UK office conditions. During this time, significant moisture loss 

and drying, in combination with vibration and movement linked to repeated transport 

between laboratory and office environments, is likely to have contributed significantly 

to the degradation of core quality. As a consequence the data generated by the MSCL 

tool was significantly impaired. This arose principally from the drying and movement 

related ‘biscuiting’ of friable core material, where biscuiting refers to the separation of 

largely continuous core material along bedding and cleavage planes to form numerous 

disk or biscuit shaped core sections. The sections of core therefore comprised many 
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hundreds of biscuit fragments, with each containing many more incomplete 

bedding/cleavage partings. The void space between core fragments and incomplete 

partings affects the density, magnetic susceptibility and natural gamma response, 

causing significant noise that negatively impacts tool response and cannot be easily 

corrected. Moreover, the MSCL resistivity tool is designed for saturated material, 

where core biscuiting and desiccation will likely significant impact tool response, as 

such the tool could not be adequately calibrated and only a relative resistivity output 

could be generated. The infrared spectrophotometry tool, which is likely the most 

reliable data generated, requires specialist software for which funding was not 

available. As a consequence of these data quality issues, the investigation of the data 

was not pursued.  

For further information and access to core MSCL data please contact Professor Mike 

Lovell at the University of Leicester (mike.lovell@le.ac.uk) 
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Appendix D 

 

Example petrophysical workflow 
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Example petrophysical workflow 

Below is an example petrophysical workflow after Bust et al., 2011. This highlights the 
evaluation of water saturation as one of five components critical to determining the 
gas in place in shale systems.  

 

Figure D.1. Example petrophysical workflow. Firstly, this shows that SwA (W4) is 

relatively accurate in the HY, and less so in the BSR as per Figure 4.4. Secondly, SwR 

estimates demonstrate a marked improvement over SwA (W4), particularly in the BSR, 

with little observable difference between SwR and SwA (W4) estimates in the HY.  

Average MAE values for SwA (W4) and SwR are directly compared for each well in Figure 

0.2, where it is clear that errors in SwR estimates are significantly lower than those for 
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SwA. This is particularly true of the BSR, with more subtle benefits in error reduction in 

the HY for the majority of wells.  

The relative benefits in using SwR over SwA are presented in Figure 0.3, where SwR 

estimates are shown to reduce mean MAE in 18 of 26 wells, or 69% of the time. In the 

BSR, 9 of 10 wells show a reduction in MAE of between 7% and 78%, whilst in the HY, 8 

of 14 wells show a reduction in MAE of between 7% and 36%.    

It should be noted however, that SwR estimates are not universally effective in reducing 

MAE, having a marginally negative overall impact in some HY wells (Figure 0.3).   
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Figure 0.2. Comparison of MAE between SwA (W4) and SwR  
Comparison of MAE (Sw %) between SwA (W4) and SwR estimates.   

 

Figure 0.3. % Change in MAE when using SwR as opposed to SwA (W4)  
The % change in MAE when using SwR as opposed to SwA (W4) for the BSR and HY data.   

 



Appendix C 

  
 Page 226 
 

6.7.1 Summary 

6.7.1.1 Sensitivity analysis  

 Residual MAE is more sensitive to changes in m* than Rwe (Figure 4.9). 

 The HY displays relatively consistent and higher sensitivity profiles. In contrast 

the BSR data displays a wider variety of parameter values and sensitivities 

suggestive of a more petrophysically heterogeneous formation (Figure 4.9).   

6.7.1.2 Parameter trade-offs  

 It is suggested that the primary variable forcing parameter selection in both 

models W1 and W2 is Rt. This effect is shown to be more dominant in the BSR, 

where data indicates that sample BVW exerts lesser control on parameter 

forcing. By contrast, variation in HY BVW appears to exert a larger impact on 

optimised parameter values (Figure 4.10 and Figure 4.11).  

 The effects of changing static model assumptions for W1 (Rwe=0.014) and W2 

(m*=2) are demonstrated:  

 model W1; reducing m* increases the sensitivity of Rwe and shifts the 

BVW range away from the saline saturation limit,  

 model W2; reducing Rwe slightly decreases the sensitivity of m*, thus 

increasing the range of possible m* values (Figure 4.12).  

6.7.1.3 Core sample parameter modelling  

 The HY displays relatively consistent and higher sensitivity profiles. In contrast 

the BSR data displays a wider variety of parameter values and sensitivities 

suggestive of a more petrophysically heterogeneous formation (Figure 4.9).   

 Directly solving for parameter values suggests that the BSR is far less sensitive to 

variations in BVW than the HY (Figure 4.13).  

 The correlation between Rt and the calculated parameter (m* or Rwe) allows for 

parameter prediction using standard regression analysis (Figure 4.13). For a large 

number of wells the resulting SwR estimates demonstrate a significant 
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improvement over optimised SwA (W4), with reductions in error as high as 78% in 

the BSR and 36% in the HY (Error! Not a valid bookmark self-reference., Figure 

0.2 and Figure 0.3).  
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6.8 Results: 2D parameter optimisation  

This section details the analysis of the 2D optimisation model (W3) and aims to 

highlight the nature of any model limitations, parameter interactions, parameter 

forcing linked to geological/petrophysical properties, and any predictive capabilities 

the investigation of these relationships might reveal.  

The following sections include: 

4.5.4 The sensitivity of MAE across the range of possible parameter values.  

4.5.5 The trade-offs between parameters and input variables in Archie’s equation. 

4.5.6 The range of parameters produced by direct optimisation for each core 

sample. 

6.8.1 Sensitivity analysis 

The sensitivity data for model W3 is displayed in Figure 0.4 and plots the change in 

MAE between SwA and SwC for every Rwe and m* parameter combination. Wells 3 and 

10 are displayed as examples of characteristic BSR and HY relationships, highlighting a 

typical linear association between m* and Rwe. That m* is a power function is also 

evident, such that MAE is more sensitive to increases rather than decreases in m* from 

the optimum value. It also highlights, as in Figure 4.4, the tendency for Rwe values to 

remain at or very near to the lowest bound. This is a compensatory effect, where 

reductions in Rwe act to reduce the sensitivity of and thus expand the range of possible 

m* values and so generate a preferred least error solution, though this reduction in 

parameter sensitivity is most likely linked to an increase in model error. In other 

words, high Rwe increases the sensitivity of MAE to small changes in m*. It should be 

noted that the reference to model error refers to the least error optimisation 

modelling approach, not specific MAE values.   
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Figure 0.4. Sensitivity analysis (Model W3) 
MAE sensitivity plot for model W3: Rwe vs. m* for the BSR (top) and HY (bottom). Two representative wells are 
displayed for each formation. The optimum values (white marker), corresponds with the least MAE, n refers 
to the number of samples within the optimised well. Note the decrease in m* sensitivity as Rwe decreases. 

The Rwe, m* relationships discussed above (Figure 0.4) are summarised for all wells (1 

to 17) in Figure 0.5. This displays the parameter distributions for the lowest 5% of MAE 

values for each well, highlighting the optimum parameter values associated with global 

least MAE. Here, the Rwe distributions show an increase in the number of low error 

solutions available at low Rwe values. In all but three instances (HY wells 2, 3 and 13) 

the optimal Rwe value is at or very close to the lower bound.  

The m* distributions depicted in Figure 0.5, whilst showing variation in parameter 

range, show a consistent distribution style. As discussed, MAE is more sensitive to 

higher m* as opposed to lower values (m* is a power function), as such each 

distribution is skewed with fewer high error solutions available to the right of the 

modal value than to the left. It should also be noted that the optimal m* value rarely 

coincides with, and usually occurs to the right of the modal value. Those instances 

where the optimal m* is to the left of the modal value also coincides with optimal Rwe 

values that are above the lower bound (HY wells 2, 3 and 13).      

Whilst these observations may reflect genuinely high fluid salinities (low Rwe), it is 

clearly implied for the majority of wells, that optimiser model W3 simply minimises Rwe 
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so as to refine m* value selection, thus rendering the optimised values highly 

questionable in physical terms. The only exceptions to this trend are for HY wells 2, 3 

and 13, whose optimal parameters may be of greater geological/physical significance.   

 

 Figure 0.5. Parameter distributions, sensitivity analysis (model W3) 
Plot of BSR (blue) HY (red) model W3 parameter distributions for the lowest 5% of MAE values. The faded 
bars indicate the optimal parameter value for each well and formation. 
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6.8.2 Parameter trade-offs 

The parameter trade-offs in optimiser model W3 were modelled using equation 4.9 in 

the same manner as those for model W2. The approach was however modified to 

reflect the optimised Rwe values reported in Figure 4.7, where 19 of 26 Rwe values equal 

0.006 Ω.m. The Rwe constant was therefore changed from 0.014 to 0.006 Ω.m.  

 

Figure 0.6. Parameter trade-offs (model W3) 
Calculated m* (at Rwe=0.006, Equation 4.9) vs. average Rt for a BVW range (colour bar) representative of HY 
and BSR core data (Equation 4.7). Overlain are W3 optimised m* vs. mean Rt values for each well, with marker 
colour a function of mean well BVW (colour bar right). Plot (A) shows overlain W3 optimised values where m* 
is limited between 1.5 and 2.5 (conceptual limits). Plot (B) overlays W3 optimised data with expanded m* 
limits of 1.0 to 4.0. Note: consistent minimisation of Rwe and good linear relationship for BSR data in plot (B).     

The parameter trade-offs depicted in Figure 0.6 are very similar in character to those 

described for model W2 (section 4.4.2.2), with a clear linear trend between optimised 

m* vs. Rt values. The only exceptions to this linear relationship are the highlighted 

markers, representing wells whose Rwe values optimise to in excess of 0.006 Ω.m, for 

the BSR core data, these highlighted wells plot on the m* upper bound (m*=2.5). If the 

optimiser is allowed to exceed the m* upper bound (as depicted), this results in slightly 

higher m* values and Rwe values of 0.006 Ω.m, and a much improved linear m* : Rt 

relationship. In other words, as discussed in the sensitivity analysis, Rwe appears to be 

simply modified so as to exploit a preferred range in m*. The same is not however true 

for the HY data, where Rwe values exceed 0.006 Ω.m for three wells (2, 3 and 13).  This 
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reiterates previous observations that BVW in the BSR may not be the dominant factor 

in controlling Rt, the primary variable forcing optimised parameter selection.  

6.8.3 Core sample parameter modelling  

Rwe and m* values were generated iteratively for each core sample to further explore 

any parameter forcing. This was achieved using the Grid Search methodology outlined 

in section 4.2.2, applied to each individual core sample with a parameter step 

increment of 0.01.  

The optimum parameter combinations generated for each core sample are given in 

Figure 0.7. Here the results are displayed as Rwe vs. m* for both the BSR (left) and HY 

(right), with marker colour and size as a function of Rt and BVW respectively. This plot 

indicates a linear trend between Rwe and m*, which can be further linked to 

perpendicular relationships with both BVW and Rt, such that Rt and BVW increase with 

increases in Rwe and m*. The distributions of the optimum parameters are also plotted 

alongside each axis, indicating a near uniform distribution in Rwe for both formations, 

though there is a slight increase in frequency for the lowermost Rwe values. By contrast, 

both formations have more normally distributed m* parameters (Figure 0.7) of similar 

distribution and range to those calculated for model W2. That there should be a 

uniform distribution across the entire range of Rwe in both formations is dubious, and 

similar to previous findings, it is probable that Rwe values are selected principally to 

allow for a preferred selection of  m*.  
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Figure 0.7. Core sample optimised parameters (model W3) 
Grid search optimised Rwe and m* parameters for BSR and HY data. Marker colour and size are a function of Rt 
and BVW. Parameter distributions are provided on axis. Note linear Rwe-m* relationship with perpendicular Rt 
trend. In the BSR, and to a reduced extent in the HY, trends in Rt are linked to BVW.  

The optimal parameters generated for each core sample and displayed in Figure 0.7 

have least MAE values varying from between 0.000023% to 0.16% for the 470 BSR and 

HY core samples. These are however ‘least’ MAE solutions, with between 377 to 1487 

alternative solutions within +5% error of SwC benchmark values for each core sample 

(at a 0.01 parameter spacing). Furthermore, given that the experimental error in core 

data measurements are poorly constrained (see section 2.3), what error bounds are 

appropriate: 5%, 10%, 15%, or more? If there is a geologically meaningful parameter 

combination, is it possible to identify it without tighter parameter constraints? This 

problem is explored in Figure 0.8 which displays the parameter distributions for SwA 

estimates within +/- 5% of the benchmark SwC values.  

Figure 0.8, similar to previous results, depicts a relatively tight series of m* 

distributions for the HY with a much wider and variable range in sample m* 

distributions for the BSR. For both formations the range in m* can be linked to BVW, 

with parameter distributions moving to lower m* values at lower BVW. Furthermore, 

there is a consistent uniform though inclined distribution of near identical character 

for Rwe in all core samples. This demonstrates a general increase in the availability of 

low error solutions at lower Rwe values but ultimately fails to define a probabilistic 

value range. This suggests that identifying Rwe by optimiser methods may not be 
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feasible and that a constant Rwe may be more suitable. These results are summarised 

in Figure 0.9 by totalling the frequency in occurrence of each parameter for each 

formation. This highlights: a) the contrast in m* parameter distributions, and b) 

identical distributions in Rwe for the BSR and HY.  

 

Figure 0.8. Optimised parameter distributions for SwA within +/-5% of SwC (model W3) 
Grid search optimised Rwe and m* parameters distributions for SwA estimates within +/- 5% of benchmark SwC 
values for BSR (top) and HY (bottom) data. Line colour is a function of sample BVW.  

 

Figure 0.9. Totalled parameter distributions for SwA estimates within +/-5% of SwC  (model W3) 
Grid search optimised m* (left) and Rwe (right) parameter distributions for SwA estimates within +/- 5% of 
benchmark SwC values for BSR and HY data. Probability density is calculated from the total frequency of all 
core samples at each parameter value at a parameter spacing of 0.01. 
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6.8.4 Summary 

6.8.4.1 Sensitivity analysis  

 Results are demonstrated to favour minimised Rwe values that reduce the 

sensitivity of, and expands the viable range of m* values, therefore allowing for a 

preferred least error solution though at the expense of a likely increase in model 

error. The consistent manipulation of Rwe values prevents a reasoned geological 

interpretation of the optimised value (Figure 0.4).  

6.8.4.2 Parameter trade-offs  

 Similar to the 1D models considered, analysis of the 2D model indicates a linear 

relationship between the optimised parameters and Rt,, suggesting that BVW is 

of limited importance in forcing parameter selection (Figure 0.6).  

6.8.4.3 Parameter modelling  

 Model W2 predicted m* and Rwe can be shown to consistently relate to Rt and 

BVW (Figure 0.7). 

 Results show consistent parameter distributions for the HY with diverse and 

heterogeneous distributions in the BSR (Figure 0.8).  

 Distributions for m* are noted to be consistent with those generated for 1D 

models.  

 The lack of any parameter distribution for Rwe stresses the tendency for this 

parameter to be minimised so as to increase the frequency of low error solutions 

(Figure 0.9).  
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6.9 Results: 3D parameter optimisation  

This section details the analysis of 3D optimisation model (W4) and aims to highlight 

the nature of any model limitations, parameter interactions, parameter forcing linked 

to geological/petrophysical properties, and any predictive capabilities the investigation 

of these relationships might reveal.  

The following sections investigate: 

4.6.4 The sensitivity of MAE across the range of possible parameter values.  

4.6.5 The trade-offs between parameters and input variables in Archie’s equation. 

4.6.6 The range of parameters produced by direct optimisation for each core 

sample. 

6.9.1 Sensitivity analysis 

The sensitivity data for model W4 is displayed in Figure 0.10, illustrating characteristic 

relationships between parameter modifications and their effects on MAE for wells 3 

and 10 of the HY and BSR respectively.  The plots on the left of Figure 0.10 present all 

the available data where MAE is less than 100%, with plots on the right presenting only 

those parameters for the lowest 5% of MAE values.  

All plots in Figure 0.10 depict steep linear relationships between Rwe and m and 

between m and n, with a shallower linear trend between Rwe and n for both wells 3 

and 10. The combination of these trends creates a distinct least error plane which 

remains broadly similar between all wells. As per model W3, it is evident that changing 

certain parameter values can be beneficial in modifying the sensitivity and effective 

value range of another. For instance, in BSR well 10, maximising n to n=4 decreases the 

sensitivity of both Rwe and m, increasing the precision with which the later parameter 

can be selected.  
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Figure 0.10. Sensitivity analysis (model W4) 
MAE sensitivity plot for model W4: Rwe vs. m and n for BSR (top) and HY (bottom) data. Plots Left: Parameter 
values for MAE <= 100%. Plots right: parameter values for the lowest 5% of MAE values. 

Unlike well 10 however, HY well 3 is one of few wells where all of the generated 

parameters sit away from an upper or lower bound. Well 3 also has the best (least 

error) SwA vs. SwC correlation of any well. Though this may be linked to geological 

forcing, this cannot be confirmed, and it remains possible that Rwe is only so low as to 

maximise the choice and selection of m and n. 

The parameter relationships depicted in Figure 0.10 are summarised in Figure 0.11, 

which depicts parameter distributions for the lowest 5% of MAE values for each well in 

the BSR and HY. Here, with the exception of well 3 and 13, every well has at least one, 

often two, globally optimised parameters fixed at an upper or lower bound. The fixed 
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parameters are often minimum bound Rwe or m or maximum bound n values, a feature 

coincident with an inclined parameter distribution.  

Individual parameter distributions in Figure 0.10 are broadly similar to those described 

for model W3, though with some important distinctions. In model W3, m* 

distributions for both formations are generally similar in form. Though where m* is 

partitioned into individual optimised m and n parameters, it is clear that they each play 

a different role within the BSR and HY: 

 In the BSR, which has relatively low gas saturations (Figure 4.5), m has a 

dominant role, exhibits a relatively normal distribution, and has optimal values 

which sit away from the parameter bound. This is coincident with n and Rwe 

distributions that are generally inclined to their respective upper and lower 

bounds.  

 In the HY, which has relatively high gas saturations (Figure 4.5), n has a 

dominant role, exhibits a relatively normal distribution, and has optimal values 

which sit away from the parameter bounds. This is coincident with m and Rwe 

distributions that are generally inclined to their respective lower bounds.  

The sensitivity analysis also highlights the impact of changing parameter bounds on the 

generated parameters. For instance, in Figure 4.7, model W4 optimised parameters 

were limited to conceptual upper and lower bounds (m and n=1.5-2.5) and appear 

reliant on modifying Rwe values with m and n often fixed at their minimum and 

maximum respective bounds. Here, with m and n parameter bounds expanded to 

between 1 and 4, HY optimisation appears reliant on modifying n, showing little 

consistency between the two sets of optimised parameters.  
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Figure 0.11. Parameter distributions, sensitivity analysis (model W4) 
Plot of Haynesville model W4 parameter distributions for the lowest 5% of MAE values. Only parameter 
combinations which yield MAE values <= (optimum MAE + (optimum MAE*0.05)). The faded red (HY) and 
blue (BSR) bars indicate the optimal parameter value for each well. 

Furthermore, sensitivity data for model W3 demonstrate a clear tendency for Rwe 

values to be manipulated so as to achieve a greater flexibility in m* selection. Model 

W4 shows similar though more varied evidence of parameter manipulation, which, 

without a much improved understanding of the pore network and fluid salinity 

conditions, cannot be dissociated from the optimisation process. As a result, 3D 

optimised parameters offer limited prospect of accurate geological interpretation.   
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6.9.2 Parameter trade-offs 

The parameter trade-offs in model W4 are illustrated in Figure 0.12 using equation 4.8 

at n=1 (left) and n=4 (right) for a representative range of Rt, ɸtC and SwC variables across 

the parameter range for m and Rwe. This confirms prior observations that higher n 

values decrease the sensitivity of m and Rwe, but also reveals a reduction in the 

sensitivity of all other input variables (Rt and BVW). It is therefore preferable for any 

optimised solution to favour higher n values and a reduced sensitivity and an increase 

in the possible range of other equation inputs. 

 

Figure 0.12. Parameter trade-offs (model W4) 
Calculated Rwe at n=1 (left) and n=4 (right) for a range of m, Rwe, ɸtC and Rt values.  

The relationship between model W4 optimised parameters and the parameter trade-

offs are illustrated in Figure 0.13 for the BSR and in Figure 0.14 for the HY. In the BSR, 

the optimised parameters (all with n values of 2.5) sit on a plane. This is made clear on 

the rotated insert, with all points plotting on a plain equivalent to a near constant BVW 

of 3% (Figure 0.13).      
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Figure 0.13. Optimised BSR parameters (model W4) 
Model W4 optimised parameters and mean Rt and BVW values for all wells. 

Similarly, the HY (Figure 0.14) optimised parameters also fit a plane highlighted by the 

rotated insert. This plane also indicates a near constant BVW of 1%, though not all HY 

wells optimise to n=2.5 (highlighted in red).    
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Figure 0.14. Optimised Haynesville parameters (model W4) 
Model W4 optimised parameters and mean Rt and BVW values for all wells. 

As with observations for models W2 and W3, the optimised W4 parameters are 

consistent in fitting to a specific BVW plane with limited movement across the BVW 

range. This combined with a good linear relationship with Rt, again suggests that pore 

water volume (BVW) is of secondary importance in forcing parameter selection. For 

the volume of fluid to have reduced importance, then either the fluid salinity or 

electrical properties must be highly variable, or other geological factors must be 

influencing Rt. 

6.9.3 Core sample parameter modelling 

Rwe, m and n parameters were modelled with a parameter grid spacing of 0.05 using 

the same method outlined for model W3. The optimum parameter combinations 

generated are displayed in Figure 0.15 with marker colour controlled by n (y axis), so as 

to help judge depth within each 3D plot. For both the BSR and HY, no clear links could 



Appendix C 

  
 Page 243 
 

be established between the generated parameters and wider formation 

mineralogical/petrophysical properties.     

Both 3D scatter plots in Figure 0.15 are orientated ‘edge on’ to a plane defined by the 

optimum parameters. For the BSR, this plane is weakly defined by data with near 

uniform distributions, though there is a slight increase in the frequency of high n 

values linked to a decrease in m, with Rwe remaining more or less uniform. By contrast, 

the HY occupies a distinctive plane in parameter space, with a distinct increase in the 

frequency of low Rwe and m values, and n values that remain relatively uniform. These 

results support previous observations that the HY has a more constrained range of 

optimal Archie parameters than the BSR. Furthermore, the lack of defined parameter 

distributions in both formations combined with unreasonably oil wet (high n) or low 

salinity (high Rwe) suggests that the generated parameters are ‘not’ geologically 

representative, and it was not possible to link observed parameters with wider 

geological/petrophysical data.  
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Figure 0.15. Individual core sample optimised parameters (model W4) 
Grid search optimised Rwe, m and n parameters for the BSR (left) and HY (right). Parameter distributions are 
included. 

As with model W3, numerous alternative parameter combinations exist within a 5% 

MAE margin of benchmark SwC values. The parameter distributions within +/- 5% error 

are displayed in Figure 0.16.  

The BSR in Figure 0.16 shows significant variation in m, with an increase in m values at 

higher BVW. In addition, the n value distributions are consistently sloped, indicating a 

larger number of viable SwA solutions at higher n values. Whilst the Rwe values remain 

near uniform for the majority of samples, but similar to n, also indicate an increase in 

the number of viable solutions at low Rwe for some low BVW values. Both Rwe and n fail 

to define probabilistic parameter value ranges, representing solely least MAE solutions 
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with limited geological merit. By contrast the wide variations in m, which are 

significantly more variable than those observed for the HY, are analogous to variations 

observed for m* in models W2 and W3 and may be linked to a greater degree of 

formation heterogeneity in BSR data.  

 

Figure 0.16. Optimised parameter distributions for SwA within +/-5% of SwC (model W4) 
Grid search optimised Rwe and m and n parameter distributions for SwA estimates within +/- 5% of benchmark 
SwC values for the BSR (top) and HY (bottom). Line colour is a function of sample BVW.  

The parameter distributions generated for the HY differ significantly from those 

described for the BSR. Firstly, similar to m* in model W3 and W2, m is consistently 

constrained to a relatively low value range. Secondly, there is significantly more 

character in n distributions which can be linked to BVW, i.e. higher BVW links to higher 

n values and vice a versa. Thirdly, though Rwe distributions are broadly similar to those 

for the BSR, there is no apparent link to BVW.   

These results are summarised in Figure 0.17 by totalling the frequency in occurrence of 

each parameter for each formation. Taken into consideration with Figure 0.16, this has 

a number of implications: 

e) the contrast in m parameter distributions may be representative of greater 

heterogeneity in formation petrophysical properties in the BSR as opposed to 

the HY, 
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f) for the BSR, porosity and m is far more significant in controlling Archie’s 

equation than formation fluid/pore wall interactions and n .  

g) for the HY, which has a far lower BVW range and a higher gas filled porosity, it 

suggests that formation fluid/pore wall interactions and hence n is a more 

significant factor in Archie’s equation.    

h) for both formations, data generated for Rwe provides little information that can 

be  placed within a geological context, revealing only that lower values carry an 

increased chance of a low MAE solution.    

 

Figure 0.17. Totalled parameter distributions for SwA estimates within +/-5% of SwC  (model W4) 
Grid search optimised Rwe and m and n parameter distributions for SwA estimates within +/- 5% of benchmark 
SwC values for the BSR (top) and HY (bottom). Line colour is a function of sample BVW.  

6.9.4 Summary 

6.9.4.1 Sensitivity analysis  

 In the BSR, n is routinely maximised and Rwe minimised so as to reduce the 

sensitivity and increase the range in possible m values. This allows for a least 

MAE solution, but at the likely expense of an increase in model error (Figure 

0.11).  

 In the BSR, n is routinely maximised and Rwe minimised so as to reduce the 

sensitivity and increase the range in possible m values. This allows for a least 
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MAE solution, but at the likely expense of an increase in model error (Figure 

0.11). 

6.9.4.2 Parameter trade-offs  

 Analysis indicates, similar to the 1D and 2D models, a linear relationship between 

the optimised parameters and Rt, suggesting that BVW is of limited importance 

in forcing parameter selection (Figure 0.12).  

6.9.4.3 Parameter modelling  

 Similar to model W3, it is notable that parameter distributions in the BSR are 

notably more constrained than in the HY. 

 m and n parameters are shown to have different roles in the BSR and HY (Figure 

0.16 and Figure 0.17): 

 The BSR, which generally has low gas saturations and high VClay and CBW 

volume, demonstrates inclined uniform n distribution and appears reliant 

on optimising m.  

 The HY, which has relatively high gas saturations, has very low m values 

and distributions and appears reliant on optimising n. 
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  Chapter 7

Unconventional applications of Archie’s 
equation: does geology matter? 

This chapter incorporates the results of the error analysis in Chapter 4 with log and 

core geological/petrophysical data presented in Chapter 3. This aims to provide a 

geological interpretation and rationale for optimised Archie parameters and associated 

petrophysical and mineralogical relationships and is broadly divided into four sections:  

5.5 Formation heterogeneity: explores the links between mineralogical and 

petrophysical heterogeneity, and effects on optimiser model and Archie 

parameter outputs.  

5.6 BVW, Rt and VClay relationships: these relationships are explored and a model 

accounting for their behaviour proposed.  

5.7 Composite core data summary: key core data are presented, highlighting 

mineralogical / petrophysical trends linked to variations in formation fabric.  

5.8 Predicted pseudo-Archie parameters: the range and behaviour of predicted 

Archie parameters are discussed and compared with values reported in the 

literature. 



Unconventional applications of Archie’s equation: does geology matter?  Chapter 5 

  
 Page 249 
 

7.10 Introduction 

Following Archie’s seminal 1942 paper, the terms ‘Archie rock’, ‘Archie like’ or ‘non-

Archie’ (Herrick and Kennedy, 1996) have come to prominent use as describing ‘clean’ 

(clay free) formations with regular pore geometries described by petrophysical 

constants within Archie’s equation. Nevertheless, though the BSR and HY might be 

considered to fail in meeting this ‘clean’ criterion (Glorioso and Rattia, 2012; 

Worthington, 2011b), results (Chapter 4) indicate that a modified Archie equation can 

work satisfactorily in some wells, particularly in the HY, despite significant 

mineralogical/petrophysical complexity. Understanding the geological controls on the 

accuracy and validity of Archie-based methods for a given shale gas prospect is 

therefore critical to the informed use of existing resistivity based methods and for the 

development of novel saturation modelling techniques.  
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7.11 Formation heterogeneity  

The analysis of multiple optimisation models (sections 4.3 to 6.9) indicate that their 

residual MAEs, generated parameters and parameter sensitivities, are consistently 

more heterogeneous in the BSR than in the HY. The term heterogeneity is used here 

synonymously with variability, and variability in model outputs must be linked to the 

heterogeneity and inter-relationships of the petrophysical inputs (ɸtC, Rt, SwC). In turn, 

the petrophysical inputs express the interaction and distribution of formation 

mineralogy and fluid components as determined by depositional and diagenetic 

processes. This section aims to link the separation of BSR and HY results to wider 

underlying formation geological properties as represented within the log and core data 

discussed in Chapter 3. 

7.11.1 Heterogeneity in optimiser model response  

Residual MAEs for the HY wells are both consistently low and of limited variability 

when compared to those for the BSR. This is depicted in Figure 4.4 and Figure 4.6 and 

summarised in Table 7.1, where the substantially higher range and variability in BSR 

MAE suggests that optimised Archie parameter constants are less able to characterise 

a wider range in BSR core sample characteristics. This is supported by the large 

reduction in mean BSR MAE between optimiser model H1 to W1 (Figure 4.6, Table 

7.1), equivalent to a relative reduction in MAE of 31%. This constitutes the single 

largest decrease in MAE between optimiser models in the BSR and is accompanied by 

an increase in the number of optimised sample populations from one in H1 to 11 in 

W1. In other words, the largest reduction in MAE for the BSR is attained in considering 

it as a heterogeneous as opposed to homogenous petrophysical system. By contrast, 

reductions in mean MAE in the HY between H1 to W1 are slight, and equivalent to a 

relative reduction in MAE of 3%. In other words, the HY is not particularly sensitive to 

changes in the style of sample binning and can be adequately represented as an 

homogenous petrophysical system. This assertion is supported by Popielski et al., 

(2012), whose study of rock typing using k-means cluster analysis of conventional well 
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data suggested a ‘vertically-homogenous Haynesville Formation’ in their study well, 

which corresponded with low variability in petrophysical log and core properties (Rt, 

ρb, ɸn, SwC, TOC, and ɸtC). 

MAE (Sw %) H1 W1 W2 W3 W4 

BSR 17.64 + 7.92 12.15 + 6.62 11.31 + 5.56 10.84 + 5.44 10.14 + 5.32 

HY 5.59 + 2.40 5.42 + 1.28 5.37 + 1.40 5.19 + 1.25 4.66 + 1.03 

Table 7.1: Mean residual MAE per optimisation model (Figure 4.4) 
Mean MAE taken as the mean of the residual MAE per Well (Figure 4.4) + the average standard deviation in 
residual MAE.  

Contrasts in the heterogeneity of residual MAE between the BSR and HY are mirrored 

by similar differences in modelled parameter sensitivity. Figure 4.9 (models W1 and 

W2) is a good example, where the sensitivity of MAE to changes in Rwe and m* is on 

average 30% lower and more variable in the BSR than in the HY, which displays very 

tight and consistent sensitivity curves. In addition, the optimised BSR parameters 

occupy a wider more variable m* range (2.175+0.233) compared to more constrained 

HY m* values (1.822+0.089). This trend is again emphasised for modelled core sample 

parameters, and is succinctly displayed in Figure 0.9 for model W3. Where the 

probability distribution in BSR m* values is significantly wider than that for the HY 

data, equating to mean core modelled m* values of 2.187+0.441 for the BSR and 

m*=1.735+0.273 for the HY. It should be noted that generated core parameters are 

displayed to three decimal places to avoid rounding.  

7.11.2 Heterogeneity in mineralogical / petrophysical properties  

The mineralogical/petrophysical log and core data for the BSR and HY are 

characterised in Chapter 3. This includes plots of variable distributions highlighting key 

descriptive statistics, but does not explicitly attempt to categorise one formation as 

being petrophysically or mineralogically more heterogeneous than the other. This is in 

part because there is no universally accepted measure of variability that allows for 

direct comparison of variables with multiple parent units and underlying normal, log-

normal and non-normal distributions. For example, σ provides a measure of the 

dispersion about the mean (u), and is therefore ideally suited to normal or log-normal 
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distributions. For skewed distributions, where the mean may be influenced by extreme 

values, the interquartile range (IQR=Q3-Q1) may be a more suitable measure of 

variability. Other measures of variability such as median or mean absolute deviation 

(MAD), or normalised measures of error such as the co-efficient of variation 

(CV=(σ/u)*100) are equally dependant on assumptions regarding the underlying 

variable distribution. It is however, not the intention of this section to present a 

detailed review of the statistical measures of variability/heterogeneity, only to 

emphasise that it is a nontrivial and sometimes inexact process which should not be 

dissociated from the underlying distribution. With this in mind, a comparison of 

variability calculated simply as σ and IQR is presented for principal 

mineralogical/petrophysical components in Figure 7.1, though the reader is 

encouraged to refer back to the variable distributions presented in Chapter 3.     

 

Figure 7.1. Comparison of mineralogical / petrophysical variability 
σ (standard deviation) and IQR (interquartile range) calculated for bulk volume corrected XRD volumes and 
petrophysical log and core data. 

Both measures of variability displayed in Figure 7.1 are in general agreement, though 

there are some variations, most notably for GR and VDolomite and VPlagioclase. In general 

however, two broad trends are evident: a) the HY is mineralogically more 

heterogeneous than the BSR, particularly with regard to VCalcite, VDolomite and VQuartz, and 

b) the BSR is petrophysically more heterogeneous that the HY, with the exception of 

ɸtC, GR and ɸn.  
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Of the three principal input parameters (Rt, SwC, and ɸtC) in an optimised Archie model, 

Rt, SwC (and therefore BVW) are significantly more heterogeneous in the BSR. It 

therefore follows that the optimiser response (residual MAE, generated parameters 

and parameter sensitivities) should mirror this heterogeneity. In plotting mean residual 

MAE vs. σ for each of the three principal variables Rt, SwC, and ɸtC, it is possible to 

further define which of the three variable inputs is most influential in determining the 

degree of variation and magnitude in MAE (Figure 7.2). Figure 7.2 indicates that as 

much as 94% of the variation in BSR residual MAE can be attributed to variability in 

formation resistivity, with little impact from SwC and even less from ɸtC. This is 

supported by Wu and Aguilera (2012) who also suggest that saturation estimates are 

more sensitive to Rt than ɸtC. In contrast, HY residual MAE (model W4) is only weakly 

linked to Rt, with variability in SwC and ɸtC playing a greater role in determining MAE. In 

other words, heterogeneity in BSR Rt, which is paradoxically not clearly linked to either 

porosity or saturation (i.e. ɸtC and/or SwC often increase at higher resistivities), 

accounts for the observed variation in residual MAE and thus selected parameters and 

their sensitivity. For the HY, which exhibits low residual MAEs of limited variability, the 

source of error cannot be attributed to one, but a combination of all three inputs.  

 
Figure 7.2. Average residual MAE (model W4) vs. key petrophysical inputs 
Average residual MAE for each well vs. σ (standard deviation) in: Rt (left), SwC (middle) and ɸtC (right). Average 
taken as the sample mean, limited difference found between median and mean MAE values. 
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The observation that Rt is the primary variable controlling error and the generated 

Archie parameters is supported by the results of the parameter trade-offs for models 

W1 to W4 (Figure 4.10, Figure 4.11, Figure 0.6, Figure 0.12), where, for each model, 

the predicted Archie parameters for the BSR increase linearly with Rt, with limited 

deviation attributable to BVW (SwC*ɸtC). By contrast parameter trade-offs analysed for 

the HY, show that parameters are selected in response to both Rt and BVW (Figure 

7.2).     

7.11.3 Mineralogical controls on petrophysical heterogeneity  

That variability in mineralogical composition does not coincide with petrophysical 

heterogeneity (Figure 7.1) is not surprising. Complex textural effects, variations in 

mineral distributions and other factors (e.g. depositional style and environment) are 

likely to play a significant role in determining petrophysical variability in mudstones. 

Whilst there are undoubtedly multivariate textural/mineralogical relationships 

controlling the petrophysical properties, a significant portion of the observed 

variability can be linked to the presence and effects of clay minerals (see section 

2.3.3.1). This is supported in comparing XRD mineral volumes with petrophysical 

properties, where VClay consistently stands out as displaying heteroskedastic 

tendencies (heteroskedasticity refers to a systematic inconsistency in variance, where 

variance is not homogenous (Schwartzman, 1994)). An example is given as Rt vs. VClay in 

Figure 7.3, where σRt increases with increasing VClay in the BSR. In other words, 

heterogeneity in Rt increases in core samples with higher VClay.  

That elevated Rt and/or σRt should be linked to increased VClay contradicts the long held 

consensus that clay effects typically act to reduce resistivity, or inversely, provide a 

source of excess conductivity (Hill and Milburn, 1956; Patnode and Wyllie, 1950; 

Winsauer and McCardell, 1953; Wyllie and Southwick, 1954). This relationship is 

absent in the HY (Figure 7.3), where there is no consistent relationship between Rt and 

VClay.  
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Figure 7.3. Rt vs. VClay and heteroskedasity  
Rt vs. Vclay cross-plots (top) for the BSR and HY coupled with bar charts of the σ log10(Rt) for binned VClay 

intervals (bottom).  

It is notable however, that in combining HY and BSR data (Figure 7.4) a continuum is 

formed where Rt is shown to initially decline to a VClay of ~28%, and then increases with 

σRt. This observation can be linked to clay mineralogy for which the following trends 

are noted:  

e) the chlorite fraction increases with increases in Rt and variability in Rt (σRt) in 

the BSR, 

f) high variability in the chlorite fraction coincides with high σRt in the HY, 

g) the illite+mica fraction increases at higher VClay in parallel with increased σRt, 

h) the mixed-layer clay fraction shows little variability in the BSR, but significant 

variability in the HY where σRt is more pronounced, 

Taken together, the mixed-layer clays appear to have the least impact and the chlorite 

fraction the most impact on σRt, with the illite+mica fraction (the dominant clay type) 

sitting somewhere in between. Significant control over electrical character can 

therefore be linked to the chlorite fraction or variations in other 

structural/mineralogical components concurrent with higher chlorite volumes.  
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Figure 7.4. Rt vs. VClay and clay fractions 
Rt vs. Vclay cross-plot (top) for the combined BSR and HY data with integrated histogram. VClay represents the 
total of the chlorite, illite+mica and mixed-layer clay volumes, given here as a fraction of VClay which sum to 1 
for every 2% VClay interval. Y axis error bars are a function of the standard deviation. 

Just as an increase in VClay can be shown to coincide with an increase in σRt, similar 

heteroskedastic relationships are noted in the BSR for VClay vs. σk (Figure 7.5) and fluid 

distribution (SwC and ɸtC) in Figure 7.6. For k, elevated VClay is associated with an 

increase in σk at low matrix permeabilities. For SwC and ɸtC, it is evident that high VClay 

is generally associated with low ɸtC and high SwC and that σɸtC increases with decreases 

in VClay. Or put another way, σSwC increases at higher porosities coincident with a 

decrease in VClay. Despite relatively high clay volumes (average = 44%), no such 

relationships are however observed in the HY. 
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These observations have the following implications:  

v. that VClay plays a dominant role in controlling fluid distribution and poro-perm 

relationships, and their respective heterogeneities in the BSR, 

vi. that the wide variability in k or Rt at a given high VClay value in the BSR, 

necessitates either a highly variable fluid chemistry or a difference in texture / 

grain partitioning and thus a potentially observable litho-facies distinction.  

vii. that clay minerals play a reduced role in controlling fluid distributions in the HY,  

viii. that VClay has a consistently limited impact on petrophysical variability in the HY 

suggests either a) homogeneity in clay distribution and/or pore fluid chemistry, 

or b) that clay volumes of below 28% are insufficiently high to dominate 

formation petrophysical properties.        

 

Figure 7.5. k vs. VClay and heteroskedasity  
k vs. VClay cross-plots (top) for the BSR and HY coupled with bar charts of the σ log10(k) for binned VClay 
intervals (bottom).  
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Figure 7.6. SwC vs. ɸtC 
SwC vs. ɸtC cross-plots for the BSR (left) and HY (right), markers coloured by VClay. 

7.11.4 Summary and conclusions  

 Though mineralogically heterogeneous, the HY is relatively homogenous 

petrophysically, resulting in low, well constrained residual MAE and well 

constrained Archie generated parameters and sensitivities. 

 The BSR is homogenous mineralogically when compared to the HY, but is 

petrophysically heterogeneous.  

 Elevated VClay and in particular the chlorite clay fraction are associated with 

increased variability in Rt in the BSR.  

 The role of clay minerals, their interaction with formation pore space and their 

influence over formation electrical properties varies significantly between the 

BSR and HY. 

 Despite highly variable fluid distribution characteristics (BVW and SwC) it is 

variability in Rt which is principally responsible for determining heterogeneity in 

MAE. As a consequence, generated Archie parameters for the BSR have a 

positive linear relationship with average Rt for all optimisation models 

considered. Thus, for porosity-fluid relationships to be the primary mechanism 

determining formation electrical properties, then Rwe, m and n parameters are 

required to be extremely variable. Or, additional mineral or other textural 
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relationships must contribute to electrical characteristics, undermining and 

limiting the use of traditional Archie approachs to saturation modelling.    

The relationships underlying the disparity in BSR-HY petrophysical heterogeneity and 

its links to error in Sw estimation are explored in the following section. 
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7.12 Water, resistivity and clay relationships 

The negative relationship between the volume of the saturating electrolyte (BVW) and 

formation resistivity (Archie, 1942) is the principal petrophysical mechanism 

underlying Archie’s equation. In the presence of a saline pore fluid, clay minerals and 

their electrical properties are considered detrimental to this relationship by 

contributing ‘excess conductivity,’ which if not corrected for, may result in reservoir 

undervaluation (Hardwick, 1989). Despite well documented clay effects (Hamada et al., 

2001; Worthington, 2000), the results of the error analysis (sections 4.3 to 6.9) and 

core data petrophysical relationships (Figure 7.4), repeatedly highlight an unexpected 

and positive co-dependency between BVW, VClay and Rt (Figure 4.8, Figure 0.7), but 

with very different trends for the BSR and HY. In effect, contrary to providing ‘excess 

conductivity,’ high clay volumes are coincident with an ‘excess resistivity’ and an 

overestimation of reservoir potential (Figure 4.2). As a consequence, unlike ‘low 

resistivity pay’ reservoirs where clay effects often require a compensatory decrease in 

m and n parameter values (Durand et al., 2001), the BSR-HY core modelled (e.g. Figure 

4.13 or Figure 0.7) and optimised (e.g. Figure 0.6) Rwe, m or n parameters are required 

to increase so as to compensate for the anomalously high BVW and Rt. The following 

section aims to elucidate key core petrophysical relationships and attempts to 

rationalise these observations within a geological framework. This discussion is divided 

into three parts: 

iv. A review of the key core petrophysical relationships, their links with clay 

mineralogy and impact on Archie based saturation models. 

v. A brief review of literature documenting and attempting to account for the 

unusually high resistivities observed in the BSR. 

vi. A proposed mechanism that integrates mineralogical and petrophysical 

relationships with burial and digenetic processes, that can both account for the 

unusually high resistivities and the trends in optimised Archie parameters.      
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7.12.1 Key core petrophysical relationships       

Clay minerals, their grain size and grain shape, are key factors in defining fabric and 

form a primary control on pore size distribution, fluid flow and thus permeability 

(Dewhurst et al., 1999). In addition, pore lining clay minerals can contribute significant 

microporosity and are often associated with high water saturations (Hamada et al., 

2001; Herrick and Kennedy, 1996). These relationships are clearly observed in the BSR 

(Figure 4.2, Figure 7.7 and Figure 7.8), with BSR core samples exhibiting a quintuple 

association of increasing VClay linked to high SwC, BVW, and low ɸtC and K. In other 

words, BSR poro-perm relationships and fluid distribution appears to be linked to, or 

even controlled by VClay. By contrast, the HY displays an even distribution of VClay from 

low to high ɸtC (Figure 7.7), inferring that VClay has limited impact on fluid distribution, 

though it is still observed to negatively impact k (Figure 7.8). 

The effects of clay minerals on fluid distribution and poro-perm relationships can in 

part be attributed to the chlorite clay fraction, where, if authigenic in origin, and 

occurring predominantly in the style of grain coatings or interstitial growths, is likely to 

impact ɸtC and k (Rushing et al., 2008). This assertion is supported by the negative 

impact of chlorite on K and ɸtC depicted in Figure 7.9. Where chlorite contributes to 

microporosity (hence the BSR has a similar ɸtC range to the HY) but acts to narrow the 

pore-throats resulting in a lower k range (Figure 7.9). 

 
Figure 7.7. BVW vs. ɸtC 
BVW vs. ɸtC for the BSR (left) and HY (right). Marker colour is a function of Vclay. Dashed grey lines depict Sw 

based on BVW / ɸtC. 
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Figure 7.8. Matrix permeability (k) vs. ɸtC (coloured by BVW) 
Matrix permeability (k) vs. ɸtC for the BSR (left) and HY (right) Formations. Marker colour is a function of 
VChlorite and marker size a function of VClay. 

 

Figure 7.9: Matrix permeability (k) vs. ɸtC (coloured by chlorite) 
Matrix permeability (k) vs. ɸtC for the BSR (left) and HY (right). Marker colour is a function of VChlorite and 
marker size a function of VClay. 

As a consequence of the impact of clay minerals on formation poro-perm and fluid 

distributional relationships, it follows that VClay should also impact formation electrical 

properties, where, as discussed, clay minerals are typically expected to increase rock 

conductivity by increasing the conductivity of bulk water in the pore spaces (Hamada 

2001). Thus BVW might be expected to form a negative relationship with Rt, though 

Figure 7.10 shows that this is not entirely evident. So whilst the HY broadly complies 

with Archie’s equation (a negative BVW : Rt relationship) the BSR shows a significant 
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departure and an increase in Rt coincident with an increase in VClay. In addition, 

overlain on Figure 7.10 are the calculated Rt values for either fixed m* (left) or fixed 

Rwe (right). The BSR plot (left), shows good agreement between calculated Rt (at m*=2) 

and VClay with incremental increases in Rwe. Likewise, the HY plot (right) shows good 

agreement between calculated Rt (at Rwe=0.014) and VClay with incremental increases in 

m*. This demonstrates that either parameter (an increase in either fluid conductivity 

or pore complexity) can be utilised to compensate for the observed increase in Rt with 

VClay. This observation is identical to that made for W1 and W2 modelled core 

parameters (Figure 4.13), where either Rwe or m* can be directly regressed from Rt 

relationships, allowing for a significant reduction in MAE for SwR estimates (Figure 0.3).  

 

Figure 7.10. BVW vs. Rt 
BVW vs. Rt for the BSR (left) and HY (right). Marker colour is a function of VClay. 

These observations suggest that VClay controls fluid distribution and formation 

electrical properties in the BSR and implies that free and capillary fluids contribute 

minimally to BVW. In addition, Figure 7.10 suggests that CBW is a net contributor to 

electrical resistance, either by a consequence of CEC effects and/or pore geometrical 

complexity. Similar observations are made for the HY, though in tandem with 

significantly lower VClay, far less influence over fluid distribution is observed. This raises 

the question: what mechanism(s) might allow for clay minerals to add to bulk fluid 

resistivity and/or pore complexity, and so contribute to formation resistivity? 



Unconventional applications of Archie’s equation: does geology matter?  Chapter 5 

  
 Page 264 
 

7.12.2 Anomalously high resistivities in the BSR   

Unexpectedly high resistivity tool responses have been previously reported in the BSR 

(Corley et al., 2010; Le et al., 2011) and in other northern Gulf of Mexico shales 

(Anderson et al., 2006). The unusual response manifests as both generally high deep 

resistivities and an unexpected separation in resistivity profiles with depth of 

investigation. This observation might normally be indicative of invasion by conductive 

fluids, but in this instance the extremely low BSR permeabilities (Figure 7.9), which 

show a similar response in oil or water based muds, make such an explanation 

physically untenable (Corley et al., 2010). In addition, the response does not correlate 

with organic content or gas production (e.g. high Sw and VClay in Figure 7.7) and neither 

are they unique to resistivity tool type (Corley et al., 2010).  

These unusual effects were first noted on array induction logs in Oklahoma and Texas 

in the 1980’s and were recently re-examined by Anderson et al., (2006), whose study 

suggests that the petrophysical complexity of shale microstructure might cause large 

dielectric permittivity resulting from a large internal polarisation due to the size and 

structure of clay minerals combined with disseminated pyrite. This mechanism 

requires that some dielectric permittivity be generated by the polarisation of the 

counter-ions in the double layer surrounding clay minerals, with the bulk of the 

permittivity generated by surface oxidation-reduction reactions on the surface of 

pyrite grains. Further investigation was undertaken by Corley et al.,(2010) using 

multiple tools with varying array spacings and frequencies of between 30 Hz to 200 

MHz. This later study demonstrated a similar curve separation with depth of 

investigation for all tool types, but noted that the model proposed by Anderson et al 

(2006) (i.e., high dielectric permittivity caused by clay and pyrite and a single set of 

resistivity and dielectric permittivity parameters), could not reconcile the response for 

multiple tool types. In addition, the parameters were required to vary in X, Y and Z 

directions, and suggested exceptionally high horizontal resistivity anisotropy with 

exceptionally low (less than 1) vertical resistivity anisotropy. These conditions were felt 

to be physically unrealistic by Corley et al., (2010), who suggests that dielectric effects 

in isolation fail to account for the unusual log response. In order to explain the log 
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response Corley et al., (2010) suggests that a hypothetical series of vertical fractures 

filled with resistive material could satisfy the required conditions. This suggestion was 

tested by Le et al., (2011), who concludes that a series of vertical fractures filled with 

resistive material coupled with ultra-high permittivity parallel to bedding is required to 

explain the unusual log responses. Though in the absence of any geological evidence to 

support the presence of a series of vertical resistive fractures, a geological explanation 

remains enigmatic.  

7.12.3 A mechanism for clay mineral freshening    

In this study, anomalously high resistivities are highlighted as the cause of significant 

underestimation of SwA (Figure 4.2). This is coincident with elevated VClay (Figure 4.2) 

and can be demonstrably corrected (Error! Not a valid bookmark self-reference.) by 

compensatory increases in either m* or Rwe (Figure 4.15). Furthermore, as depicted in 

Figure 7.10, increases in VClay correspond well with calculated Rt over a range of 

potential Rwe values, implying an effective freshening of bulk formation fluid with 

increasing clay content. It can therefore be argued that the higher than expected 

resistivity response in the BSR may be a result of high VClay and clay dilution effects. 

Where, if BVW is principally formed from CBW, ions in addition to those required to 

satisfy the clay mineral surface charge will migrate away by diffusion along 

electrochemical gradients. In order to develop this hypothesis, it is first necessary to 

review the mechanisms related to changes in pore fluid chemistry and salinity with 

depth. 

7.12.3.1 Changes in pore fluid chemistry and salinity with depth    

The BSR-HY have a combined average porosity of 8%. Recently deposited clay rich 

muds have porosities as high as 90% (Velde, 1996), requiring the expulsion of large 

volumes of pore fluid over their burial history. The decline in porosity with burial and 

depth is well established (Hedberg, 1936; Mackey and Bridge, 1995). During this 

process, the sediment undergoes significant physical change (e.g. porosity, 

permeability, density) related to increased vertical stress, and chemical change (e.g., 
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re-mineralisation reactions and thermal maturation of organic matter) in response to 

temperature and digenetic processes (Boggs, 2009; Potter, 2005; Wignall, 1994). As a 

consequence, the pore water chemistry and its electrical resistivity also evolve 

typically from that of sea water at the time of deposition, to the saturating pore fluid 

present at the time of investigation. It is also generally accepted that pore fluid salinity 

increases with depth (Chilingar et al., 2002; Rieke and Chilingarian, 1974), and in the 

case of the Gulf of Mexico Basin, depth-salinity relationships are both well established 

and linked to formation overpressure (Fertl and Timko, 1971; Fowler Jr, 1970; Overton 

and Zanier, 1970; Sharp et al., 2001; Smith, 1977). 

The effects of compaction on the pore fluid chemistry of clay rich muds and pure clays 

was widely investigated in the 1960’s and 70’s. Von Engelhardt and Gaida (1963) 

studied the effects of compaction on the pore solution chemistry on montmorillonite 

and kaolinite clay over a pressure range of 440 psi to 47,027 psi (BSR-HY core were 

sampled at 10,000 ft. to 14,000 ft., equating to an approximate pressure range of 

15,000 psi to 20,000 psi based on pore and overburden pressures from Rocha and 

Bourgoyne, (1996)). This experiment applied instantaneous loads to clays saturated in 

a saline solution. Compaction was demonstrated to have no effect on the pore water 

chemistry of kaolinite clays, which have a near neutral surface charge and low CECs of 

2-5 meq/100g (Ellis and Singer, 2007). Whilst the montmorillonite clays, which have 

high CECs of 5 to 40 meq/100g (Ellis and Singer, 2007), showed an decrease in pore 

fluid salinity up to pressures of 11,756 psi, after which salinity was noted to increase.  

Later investigations by Chilingar et al., (1969) applied gradual loads to ‘marine muds’ 

from the Santa Cruz Basin (off-shore southern California), observing a decrease in the 

salinity of expelled fluids with increasing over-burden pressure. Implying both an 

increase in the salinity of the residual pore fluid, and that compaction rates can 

significantly impact pore fluid evolution. From these experiments Chilingar et al., 

(1969) concludes (A) that the salinity of expelled fluid decreases with increasing 

overburden pressure and (B), that the salinity of shale pore fluids should be lower than 

those of associated sandstones. The latter conclusion was reasoned on the basis of 

work by Fowler (1968), who found a correlation between high salinity and abnormally 
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high overpressures in the Bayou Field, Texas, where the salinity of produced water 

decreased with time. From this, as the freshest water was found in sands (which 

received their water from associated over-pressured shales) it was concluded that 

shale fluid salinity must be less than that of the associated sands. This was validated by 

Fertl and Timko, (1971), who found that the pore water chlorinity (indicative of 

salinity) of sands was consistently higher than that of associated shale’s at similar 

depth. In addition, field examples presented by Overton and Zanier, (1970), Fertl and 

Timko, (1971) and Fowler Jr, (1970) highlight a decrease in shale resistivity with an 

increase in formation overpressure and a decrease in fluid salinity at approximately 

10,000 ft., 11,300 ft. and 12,000 ft. respectively. In all three instances these 

observations can be explained by shale compaction models suggested by Powers, 

(1967) and modified by Burst, (1969). This advocates the release of structural pure 

water into the pore space during the remineralisation of smectite to illite at 3,200 to 

16,000 ft., resulting in an increase in pore pressure (leading to formation overpressure) 

and a decrease in interstitial fluid salinity. Moreover, Krushin (2013), notes a loss in 

CEC (exchangeable ions and thus bound water salinity) with smectite to illite 

conversion, which correspond with observations by Dewhurst et al. (2008) and 

Dewhurst et al. (2013) that shale CEC decreases within increased compressive 

strength, consolidation and dewatering. It should however be noted, that whilst 

illitisation reactions may account for observed salinity changes and overpressures in 

some Gulf of Mexico sediments (Katahara, 2006), that other stress related mechanisms 

may also contribute (Lahann et al., 2001). A review of the origin of overpressure is 

given by Chilingar et al., (2002) and a ‘true shale compaction model’ for pore pressure 

prediction, which integrates stress, temperature and chemical processes has been 

recently proposed by (Krushin, 2013).  
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Figure 7.11. Schematic illustration of the effects of compaction on pore fluid salinity 
Expelled Water and digenetic history adapted from (Powers, 1967), pore water salinity and overpressure 
inferred from (Overton and Zanier, 1970)) and (Fertl and Timko, 1971), and notional depiction of clay pore 
evolution based on descriptions by Von Engelhardt and Gaida (1963) and Chilingar et al., (1969). 

The depth related changes described above are schematically depicted in Figure 7.11. 

This integrates a compaction model (Powers, 1967) with pore water and expelled 

salinity changes described by Overton and Zanier, (1970) and Fertl and Timko, (1971), 

with pore ion exchange mechanisms described by Von Engelhardt and Gaida (1963) 

and Chilingar et al., (1969). The schematic includes two highlighted depths: (A) 3,200 

ft. (approx. 100oC), below which montmorillonite begins to covert to illite (Powers, 

1967), and (B) 10,000 ft. (approx. 300oC), below which no pure montmorillonite was 

observed in Texan and Louisianan Gulf Coast sediments by Powers (1967). It is 

however noted that high pore pressures, undercompaction, unusual temperature 

gradients and heterogeneity in clay chemistry, may also impact transition depths 

(Chilingar et al., 2002; Freed and Peacor, 1989). Figure 7.11 attempts to schematically 

depict the evolution of fluid-mineral interactions, diagenesis and overpressures with 

increasing depth, and can be split into three general zones:  

Zone 1 (0-3,200 ft.): This depicts the initial clay sediment deposition (A), where clay 

hydration results in the development of a pure water and cation rich electrical 

double layer (CBW). The anions are actively repelled from the negative surface 

charge and CBW resulting in respective cation and anion rich fluid components. As 

compaction progresses (B) the CBW and fixed cations are retained and the anion 

rich free waters are preferentially expelled with a net increase in the overall salinity 

of the remaining pore fluids which have elevated cation/anion ratios. This is 

somewhat validated in a study of the thermodynamics of salinity change 

accompanying compaction by (Smith, 1977), who finds that the concentration of 

anions in compaction expelled fluids decreases monotonically with reductions in 

clay sediment porosity whilst the cations in the residual pore fluids increase 

monotonically. Within this zone pore-fluid salinity increases with depth and the 

expelled water volume (analogous to porosity and permeability trends) declines 

rapidly.  
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Zone 2 (3,200-10,000 ft.): With continuing burial, (C) the negative surface charge of 

clays in narrow pore throats may inhibit chlorine migration. This prevents further 

expulsion of anions at the expense of pure water and more mobile cations, possibly 

resulting in the development of local anion rich fluidic inclusions. In addition, 

increasing pressures drive off outer-layers of pure clay-bound water (Burst, 1969). 

As a result, pore water salinity increases and the cation/anion ratio may fall 

(Chilingar et al., 1969). Additionally, below 3,200 ft. thermobarametric conditions 

allow for the illitisation of montmorillonite. As montmorillonite begins to 

remineralise, illitic sheets develop creating an intermediary illite-smectite (I/S) 

mixed-layer clay, which, with increasing temperature and pressure becomes 

increasingly crystalline and illitic (Potter, 2005). During this transformation 

interlayer potassium becomes fixed in the clay structure, whilst silica and interlayer 

hydration water are expelled into the pore space (Chilingar et al., 2002; Potter, 

2005). As a result, with progressive illitisation (D) and a reduction in bulk CEC, ion 

mobility, pore water expulsion and pore water pressures are all increased. With 

increasing depth pressure and temperature approaching 10,000 ft. the rate of 

illitisation increases (Powers, 1967). As a consequence of the influx of structural 

pure water, pore water salinity drops below the salinity maximum, and pore 

pressures and porosity rise (Fertl and Timko, 1971; Fowler Jr, 1970; Overton and 

Zanier, 1970). As pore fluids begin to accommodate the lithostatic load, the 

formation becomes over-pressured.  

Zone 3 (below 10,000 ft.): Below 10,000 ft. no pure montmorillonite remains. 

Progressive illitisation of the mixed-layer clay continues at a reduced rate, pore 

pressures remain high and pore fluid salinities again begin to increase as the 

structural pure water is progressively expelled.  

The schematic presented in Figure 7.11 incorporates observations from multiple 

sources in attempting to accommodate regional trends observed in the GOM basin. It 

is intended to highlight pore water chemistry and its evolution as a complex function 

of diagenetic history and clay mineralogy. Within this framework, core data for the 

BSR-HY, which are: (A) overpressured, (B) sampled below 10,000 ft., (C) contain no 
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smectite, and (D) have low volumes of mixed layer clays (Figure 7.4), fit within Zone 3. 

It is therefore suggested that the clay-pore fluid interactions responsible for regional 

GOM trends also result in highly heterogeneous pore fluid salinities at the core scale as 

a function of clay volume and distribution. This extends the conclusion of Chilingar et 

al., (1969) that ‘the salinity of interstitial fluid solutions in shale should be lower than 

those in associated sandstones’ to: the salinity of clay rich shale should be less than 

that of associated clay poor, more permeable shales. For instance, within the BSR-HY a 

heterogeneous mixture of at least four types of pore fluid regimes can be visualised: 

(1) non-clay bound, (2) illite dominated, (3) mixed-layer clay dominated, and (4) 

chlorite dominated, each with different pore water chemistries. Given the preceding 

discussions, and as a consequence of ion exclusion, it is suggested that the non-clay 

bound fluids will have greater salinities, such that overall pore water salinity is 

dependent on ratio of non-CBW : CBW and is thus relative to VClay. This is 

demonstrated in Figure 7.12 below, where above approximately 28% VClay, the pore 

fluid becomes increasingly CBW dominated, heterogeneous and generally fresher 

(Figure 7.10), such that compensatory increases in Rwe from Rt relationships (e.g. Figure 

4.15), can allow for the calculation of SwR with reduced residual MAE (Figure 0.3). 

Moreover, it is notable that only those wells where samples have generally less than 

approximately 28% VClay does SwR fail to improve upon standard 3D optimisation (W4).  
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Figure 7.12. Key change in petrophysical behaviour with VClay  

7.12.4 A mechanism for increased pore-complexity     

The effects of authigenic pore-lining chlorite, though not fully understood, are well 

documented in ‘low resistivity pay’ (Worthington, 2000). In this setting chlorite effects 

are considered to be less a product of surface area and CEC (Motealleh et al., 2007), 

but as a result of their effect on the amount and distribution of microporosity (Durand 

et al., 2001; Tudge, 2010). Where hydrous chlorite coatings preserve conduction 

pathways on grain surfaces, maintaining depressed Rt values that mask and undervalue 

hydrocarbon saturation. This necessitates compensatory reductions in m and n values 

(e.g. parameter trade-offs Figure 0.6) that have been demonstrated experimentally, 

with m values shown to be less than 2 and n values of around 1.5 (Durand et al., 2001; 

Edmundson, 1988b). Chlorite minerals can therefore be said to exert indirect electrical 

influence on ion conduction pathways (m and n) as a consequence of their distribution 

within the pore space. Whilst the direct intrinsic electrical effects of chlorite, which 
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have generally low CECs (2-14 meq/100g (Ellis and Singer, 2007)), on bulk fluid 

resistivity (Rwe) are likely to be minimal.  

In the example given by a ‘low resistivity pay’ analogue, the principal porosity is 

invaded by hydrocarbons whilst the secondary chlorite micro-porosity provides a CBW 

or capillary bound water-wet conductive membrane on the grain surface. Yet unlike 

‘low resistivity pay’, and particularly in the BSR, the chlorite and other CBWs constitute 

the primary porous network. Such that additional chlorite and associated reduced ɸtC, 

k relationships (Figure 7.9) will add to m*. This is witnessed in all optimiser models and 

core modelled parameter values, where the BSR consistently necessitate higher m* or 

m values than the clay poor HY (Figure 4.8). Additionally, the BSR data, which have 

generally low hydrocarbon saturations, indicates a reliance on optimising m in model 

W4 (Figure 0.17). By contrast, the HY, which has generally significant hydrocarbon 

saturations, demonstrates greater emphasis on n. This is taken to suggest that pore 

surface wettability in the BSR is not particularly variable, being dominated by water 

wet clays whose distribution, in particular that of chlorite, primarily impacts m. It is 

therefore appropriate that the HY, which has lower clay contents, higher oil wet TOC 

fraction and related porosity, and a potentially more homogenous and saline free pore 

fluid, demonstrates an increased importance and thus a reasonable probability 

distribution for n.        

Other impacts on m may result from clay grain orientation. Where illitisation and 

mechanical compaction may contribute to the re-mineralisation or re-orientation of 

clays perpendicular to the principle stress, potentially increasing clay alignment and 

creating a more elongate and regular pore space (Alpin and MacQuaker, 2010; Alpin et 

al., 2003; Day-Stirrat et al., 2012; Dewhurst et al., 1999; Eseme et al., 2006; Fawad et 

al., 2010). This might infer lower m values for increasingly aligned or fissile mudstones 

that have more capillary like pore-spaces, though there is no evidence in the literature 

to support or refute this. In any case, should illitisation result in increased planar 

alignment and a reduction in m, chlorite and illite precipitated in matrix supported 

pores and thus less influenced by vertical stress, are likely to counteract any such 

reduction. This argument may be overly simplistic, but it highlights the prospect of 



Unconventional applications of Archie’s equation: does geology matter?  Chapter 5 

  
 Page 274 
 

highly heterogeneous pore geometries coincident with diverse electrical effects as 

noted in Figure 7.12 above 28% VClay.   

Overall, it is likely that the variability in m and n exponents are intrinsically linked to 

both Rwe and clay content. This is indirectly suggested by Yu and Aguilera (2011), who 

note that m values are typically lower than 2 in shales, as interconnected clays 

combined with formation water provides more paths for electric current flow. Such 

that if Rwe is influenced by clay, then so must m and n. This sentiment is echoed by 

Bust et al., (2011) who also suggest that Rw exerts a major influence over pseudo-

Archie exponent m and n. In addition, Wu and Aguilera (2012) suggest that m changes 

continuously in response to the variability in fracture and Kerogen porosity, which 

would again require like changes in Rwe.  

7.12.5 Summary and conclusions 

In summary, two general petrophysical regimes can be proposed for the BSR and HY: 

BSR: Dominated by CBW with non-clay bound fluid as a secondary contributor 

to BVW. This manifests as a freshening of pore fluids (increase in Rwe) with 

increasing clay content. As the non-clay bound water volume is a secondary 

contributor to BVW, the addition of CBW electrical conduction pathways, and 

associated decreases in m, are limited. Moreover, the increased presence of 

chlorite and associated reductions in ɸtC and k further reduce the influence of 

non-clay bound fluids at higher VClay values and result in increases in m above 2.   

HY: Dominated by non-clay bound fluid, CBW is a secondary contributor to 

BVW. This manifests in more homogenous Rwe values and limited freshening of 

pore fluids with increasing clay content. As the non-clay bound water is the 

bulk contributor to BVW, the addition of CBW electrical conduction pathways 

results in reductions in m below 2, aided by higher ɸtC and k values.   

The BSR and HY demonstrate markedly different petrophysical relationships and 

associated pseudo-Archie exponents that reflect the volume and effect of clay 

minerals. A boundary between the two petrophysical regimes falls qualitatively at 
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approximately 28% VClay (Figure 7.12). Above this limit (predominantly in the BSR), clay 

and chlorite volumes and clay dilution effects act to increase Rwe, m and n. This model 

fits well with the generated parameters and explains the observed petrophysical 

heterogeneity and anomalously high BSR resistivities. In addition, an empirical method 

is demonstrated that increases the accuracy of Sw estimates by modifying either Rwe or 

m* as regressed from Rt relationships (Figure 0.2). Below 28% VClay the predominantly 

HY data are more Archie-like in their behaviour, more homogenous petrophysically, 

and have lower Rwe, m and n values.  

 



Unconventional applications of Archie’s equation: does geology matter?  Chapter 5 

  
 Page 276 
 

7.13 Composite core data summary 

The following section integrates the relationships described in Chapter 4 and sections 

7.11 and 7.12 within a single display (Figure 7.13), highlighting the relationships 

between mineralogy (XRD), Rt, BVW, saturation data, and the relative error (RE) in SwA 

for each well. First the relationships, as depicted in Figure 7.13, are summarised; this is 

followed by a qualitative review of thin section images so as to relate mineralogical 

and petrophysical variations to accompanying differences in formation fabric, where 

discernable. 

7.13.1 Petrophysical and mineralogical relationships

The preceding discussion and relationships can be largely reconciled within a single 

summary display. Core summary panels are provided for the BSR and HY Shales in 

Figure 7.13 and integrate RE, XRD, Rt, BVW and Sw data. Figure 7.13 includes five 

tracks: 

 Track 1 (far left), RE: Includes the RE generated by all optimiser models 

arranged in rank order from -1 (SwA underestimated by 100%) to +1 (SwA 

overestimated by 100%) for each well. The relative error generated by 

optimiser model W4 is highlighted in bold, with a shaded zone denoting 

samples where the error is within +10% (i.e. where SwA is within 10% of SwC). 

The remaining tracks are arranged in this order.  

 Track 2, XRD: Includes core XRD data, highlighting a generally upward 

increasing VClay trend which coincides with increasingly negative RE (track 1) 

and underestimated SwA (track 4). Likewise carbonate contents (VCalcite + 

VDolomite) are highest where RE is positive and SwA is overestimated.  

 Track 3, BVW and Rt: Indicates a consistent increases in BVW with Rt, linked to 

an increase in VClay (track 2) and negative RE (track 1). Likewise, Rt and BVW are 

lowest where VClay is minimal, carbonate contents are high and SwA 

overestimated (track 4).  
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 Track 4 saturation data: The bars represent SwC., the red line is SwA generated by 

optimiser model W4, and the blue line is SwR. SwR demonstrates improved 

performance and correlation with SwC for a number of wells, particularly in the 

BSR.   

 Track 5, Rt vs. BVW cross plots: Highlights BVW vs Rt relationships for each Well. 

The data is divided into three groups based on the magnitude of relative error 

(RE) for model W4 as defined by the light grey shaded region: 

Pink: -1.0 < RE < -0.1 : links to high Rt, BVW and VClay samples 

Grey: -0.1 < RE <  0.1 : Sw estimates accurate to + 10% 

Blue:  0.1 < RE < 1.0 : links to low Rt, BVW and VClay samples 

Figure 7.13 highlights the petrophysical trends discussed in sections 7.11 and 7.12. In 

addition, it demonstrates that the BVW : Rt relationships highlighted in track 3 of 

Figure 7.13 can be loosely segregated into a series of more Archie like sample groups 

by arbitrarily partitioning RE (see cross plots in track 5). This zoning is found to 

frequently coincide, particularly in the BSR, with distinctions in VClay and Rt values. This 

suggests a means of petrophysically zoning the formation based on singular or 

combined VClay or Rt cut-offs into smaller optimised groups, which may further improve 

Sw estimates. This is shown in rudimentary fashion by shading the baseline region of Rt 

in track 3 for the BSR (Figure 7.13, plot A), though in practise, a more complex 

multivariate means of data segregation including VClay and Rt may prove useful. 

Moreover, data points within any one group (Pink, Grey or Blue) form relatively linear 

BVW : Rt relationships implying a narrower range of Archie parameters. I.e. if Rt vs. 

BVW are linearly related then Rwe, m and n should remain nearer to constant.  
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Figure 7.13. Composite core summary panels. 
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Track 1 (far left), Relative Error (RE): Includes the RE generated by all optimiser models arranged in rank 
order from -1 (SwA underestimated by 100%) to +1 (SwA overestimated by 100%) for each well. The RE 
generated by optimiser model W4 is highlighted in bold, with a shaded zone denoting samples where the 
error is within +10% (i.e. where SwA is within 10% of SwC). The remaining tracks are arranged in this order. 
Track 2, XRD: Includes core XRD data, highlighting a generally upward increasing VClay trend which coincides 
with increasingly negative RE (track 1) and underestimated SwA (track 4).  Likewise carbonate contents (VCalcite 
+ VDolomite) are highest where RE is positive and SwA is overestimated. Track 3, BVW and Rt: Indicates a 
consistent increases in BVW with Rt, linked to an increase in VClay (track 2) and negative RE (track 1). Likewise, 
Rt and BVW are lowest where VClay is minimal, carbonate contents are high and SwA overestimated (track 4). 
Track 4 saturation data: The bars represent SwC., the red line is SwA generated by optimiser model W4, and the 
blue line is SwR. SwR demonstrates improved performance and correlation with SwC for a number of wells, 
particularly in the BSR. Track 5, Rt vs. BVW cross plots: Highlights BVW vs Rt relationships for each Well. Data 
is divided into three groups based on RE for model W4 as defined by the light grey shaded region. Note; see 
electronic version of Figure 5.13 for a large, expandable plot.   

7.13.2 Linking mineralogy and petrophysics to formation fabric 

The marked change in mineralogical and petrophysical properties with RE as 

highlighted in Figure 7.13, combined with the large variation in m* or Rwe values 

generated in deriving SwR (see section 4.4.3.1 ) suggest that there should be a 

corresponding and discernable change in sediment fabric. As such, the available thin 

section imagery was reviewed for each core sample. It should however be noted that 

comparsons between available thin section images and other core data is extremely 

limited, as the thin sections are not available for viewing in their entirety. For each 

core sample four thin section images are available, taken at the same location at 

different magnifications and light conditions as summarised in Figure 7.14. The first 

image for each core sample captures an area of 12.8 mm2 in plane light, the second is 

taken is taken at the same magnification but in epiflorescent light, the third zooms in 

on a selected area of the first image covering 0.512 mm2, with the forth image 

displaying a magnified area of the third image covering 0.128 mm2.  

 

Figure 7.14. Summary of available thin section imagery 
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As depicted in Figure 7.14, only a single thin section image capturing a very small 

fraction of the entire thin section is available for any one core sample, such that little 

can be deduced of overall sediment fabric at any one sampling location. Whilst 

mudstones are highly heterogeneous with complex fabrics occurring at the centimetre 

to millimetre scale, sediment fabric (grading, lamina sets etc., see section 2.1.3) is 

generally not discernable at scales represented within the available images, 

particularly in the absence of context provided by the remainder of the thin section. 

Moreover, the rationale for the selection and inclusion of these images within the 

RAPID database is likely to have been dependant on the individual responsible for 

collating and compiling database information. In other words, links between fabric 

displayed in thin section images and core data are at best qualitative.  

Considering the limitations discussed above, thin section images were arranged and 

reviewed in order of RE for optimiser model W4, in kind with the data displayed in 

Figure 7.13. In general, for the BSR data, as the change in VClay with RE (RE decreases as 

VClay increases) is both marked and consistent, variations in sediment fabric linked to 

grain size and clay content can be observed in the majority of wells. An example is 

displayed in Figure 7.15 for well 10, where, as VClay increases the thin section 

photographs display increasingly planner / anisotropic, fine grained and burrowed 

fabrics. Though within the HY, whilst variations in mineralogy follows similar trends to 

the BSR, they are contrastingly subtle, and no systematic variation in fabric was found. 

Examples are displayed for BSR well 10 and HY well 8 in Figure 7.15 and Figure 7.16 

respectively.      
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Figure 7.15. Thin section images: BSR well 10 
Exert of Figure 7.13 highlighting BSR well 10, displaying changes in thin section fabric with RE and clay 
content. Note, the apparent decrease in grain size and increasingly burrowed fabric with increasing VClay. Thin 
section photographs descriptions as taken from Core Laboratories: (A) Burrowed (Bu), weakly calcareous and 
dolomitic, siliceous, slightly silty shale (claystone) with scattered benthic foraminifers (Fo). Pyrite appears as 
replacement mineral in some microfossils (SF). Favreina burrows are distinguished. The high quartz content 
(24%) is mostly due to microquartz (authigenic?) mixed with the matrix. Silt-sized siliciclastics occur dispersed 
throughout the sample. The larger quartz grain size is 70 micron (average grain size: 20 micron). Framboidal 
pyrite is common. (B) Burrowed (Bu), calcareous, siliceous, slighly silty shale (claystone) with scattered 
undifferentiated carbonate filaments (SF?). The high quartz content (29%) is mostly microquartz 
(authigenic?). Silt-sized siliciclastics occur dispersed throughout the sample. Framboidal pyrite is common. 
Microfractures are clearly visible. (C) Burrowed (Bu), calcareous, weakly dolomitic, siliceous, slightly silty shale 
(claystone) with scattered skeletal fragments (e.g.: echinoderms; SF). Benthic foraminifers are minor 
constituents. The high quartz content (32%) is probably due mainly to microquartz (authigenic?) mixed with 
the matrix. Silt-sized siliciclastics occur dispersed throughout the sample. The larger quartz grain size is 80 
micron (average grain size: 10 micron). Pyrite (Py), and micas (Mi) are common. (D) Burrowed, calcareous, 
argillaceous siltstone to highly silty shale (claystone) with scattered benthic foraminifers (Fo). Some skeletal 
fragments from mollusks are distinguished. Silt-sized siliciclastics (e.g.: quartz, Q) occur dispersed throughout 
the sample. The larger quartz grain size is 110 micron (average grain size: 20 micron). Framboidal pyrite (Py) 
and micas (Mi) are common. (E) Highly calcareous, weakly dolomitic, siliceous, silty shale (claystone) with 
scattered skeletal fragments (e.g.: echinoderms [Ec], and benthic foraminifers [Fo]). The high quartz content 
(27%) is probably due mainly to microquartz (authigenic?) mixed with the matrix. Silt-sized siliciclastics occur 
dispersed throughout the sample. The larger quartz grain size is 100 micron (average grain size: 20 micron). 
Pyrite is common. 
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Figure 7.16. Thin section images: HY well 8 
Exert of Figure 7.13 highlighting HY well 8, displaying changes in thin section fabric with RE and clay content. 
Note, slight variations in clay and carbonate with no discernablke change in fabric. Thin section photograph 
descriptions presented as taken from Core Laboratories: (A) Calcareous, micaceous, pyritic, quartzose (Q), 
silty shale with calcite-filled cracks (CFC). Carbonate particles include calcispheres (Csp). Predominant clay is 
illite. Calcite volume is 8.3%, dolomite volume is 7.1%, clay volume is 34.8%. (B) Calcareous, slightly burrow ed 
(Bu), faintly laminated, pyritic (Py), quartzose (Q), silty shale. Micas (Mi) are common. Burrows appear filled 
by dolomite crystals. Intergranular replacements (IR) are minor constituents. Predominant clay is illite. 
Microfractures are clearly visible in epifluorescent light. Calcite volume is 11%, dolomite volume is 7.2%, clay 
volume is 30.7%. (C) Calcareous, faintly laminated, pyritic, micaceous, quartzose, silty shale with carbonate 
particles, and undifferentiated plates (UP). Skeletal fragments (SF) and Foraminifers (Fo) are common. 
Predominant clay is illite. Microfractures are clearly visible in epifluorescent light. Calcite volume is 14.6%, 
dolomite volume is 12.3%, clay volume is 25.9%. 

7.13.3 Summary and conclusions 

The petrophysical and mineralogical relationships discussed in Chapter 4 and sections 

7.11 and 7.12 are summarised in Figure 7.13. This highlights consistency in BVW, Rt 

and VClay particularly in the BSR, though with similar subtle trends evident for much of 

the HY data (e.g. wells 1, 5, 6, 8, 12, 14). Comparison of thin section images reveals 

qualitative variation in fabric related to VClay in the BSR, but, as a result of subtle 

mineralogical variations, no systematic change could be identified in the HY. This 

qualitative review and comparison of thin section images with RE is however extremely 

limited in the absence of core material and the inability to observe wider variations in 
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sediment fabric. This highlights the obvious limitations and a miss-match in scales 

where attempting to compare log data (with a vertical resolution of ~30cm), with core 

data (which utilises ~1-2 cm core plug) and thin section images (where only 12mm2 of 

core material can be viewed). As a consequence of data limitations, the interplay of 

depositional processes, resultant sediment fabric and associated petrophysical 

properties cannot be adequately evaluated. Despite this however, it is clear, 

particularly in the BSR, that clastic dilution (increased VClay) is linked to elevated BVW 

and Rt, greater sediment anisotropy and burrow intensity. This latter point, increased 

burrow intensity, is discussed in section 2.13, where in other formations burrowed 

fabrics are found to form permeable burrow networks. This contradicts BSR data, and 

the association of very low k values, high VClay and burrowed fabrics in the BSR. One 

possible explanation is that burrowed fabrics, at some early stage of burial, did 

contribute to higher permeability, and perhaps enabled fluid migration and escape. 

This would provide a mechanism for the expulsion of unrequired ions and double layer 

water as discussed in section 7.12.3, allowing for pore water freshening in high VClay 

regions where the majority fluid is CBW. Following fluid expulsion, the permeable 

burrow network, may then have been progressively clogged by authigenic chlorite 

mineral growth. This is supported by the positive association between VChlroite, VClay, k, 

and an increased incidence of burrowed fabrics. Moreover, authigenic chlorite 

formation can occur during, and is linked to the later, higher temperature/pressure, 

stages of the smectite-illite transition at (e.g. Burton, 1987; Davarcioglu, 2012). VChlorite 

distribution is however unknown, though the availability of core for thin section and 

SEM analysis, particularly of burrowed clay rich fabrics, would be helpful in 

strengthening this hypothesis. In any case, it is demonstrable, that formation 

mineralogy and associated fabric can be linked to accompanying petrophysical 

properties and consistent trends in optimised Archie parameters.              
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7.14 Predicted pseudo-Archie parameters   

The average pseudo-Archie parameters predicted by the optimiser models (H1 and 

W1-W4) and associated core modelled parameters are summarised below in Table 7.2 

and in Figure 4.8. It has been demonstrated that the parameter trends of all the 

generated Archie parameters can be geologically rationalised within the context of the 

preceding discussion; BVW/VClay/Rt relationships and formation petrophysical 

heterogeneity. The following section compares the predicted parameters with those 

generated by other studies and discusses the manipulation of some parameters noted 

in the sensitivity analysis and parameter trade-offs.  

 

Optimised parameters 

    BSR HY 

 
m n Rwe (Ω.m) M n Rwe (Ω.m) 

W1   0.0277 + 0.0183   0.00784 + 0.00298 

W2 2.18 + 0.23 * 
 

1.82 + 0.09 * 
 

W3 2.45 + 0.24 * 0.0061 + 0.0001 2.02 + 0.13 * 0.00710 + 0.00248 

W4 1.79 + 0.41 3.86 + 0.31 0.0332 + 0.0385 1.24 + 0.31 3.39 + 0.68 0.01177 + 0.01375 

     
 Core modelled parameters    

 BSR HY 

 
m n Rwe (Ω.m) M n Rwe (Ω.m) 

W1   0.0546 + 0.0871   0.00943 + 0.00935 

W2 2.28 + 0.34 * 
 

1.84 + 0.16 * 
 

W3 2.17 + 0.45 * 0.0286 + 0.0260 1.75 + 0.27 * 0.02874 + 0.02603 

W4 1.98 + 0.58 2.79 + 0.83 0.0327 + 0.0267 1.48 + 0.39 2.42 + 0.78 0.02459 + 0.02165 

Note: * referes to m* and m=n 

Table 7.2. Mean predicted Archie parameters + standard deviation 

7.14.1 Comparison with previous works 

As discussed in section 4.2 and displayed in Table 7.2, the generated parameters are 

consistently higher in the BSR than in the HY. In addition, the parameters generally 

decrease with increasing parameter freedom from model W1 to W4, with a 

corresponding increase in their variation. For instance, the average BSR core modelled 

parameter m for model W4 is lower (1.98), but has a higher standard deviation (0.58) 
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than m* for W3 (2.14+0.45). In general however, these figures fall within the ranges 

discussed in section 2.4.2 and compare well with the limited literature resources 

available on the subject.  

In particular, the m* values produced for all HY models compare well with those 

presented by Luffel et al., (1992), who assumes m=n (m*) for core Dean Stark Sw 

estimates in Devonian Shales and found m=n=1.7. It should be noted that the 

Devonian Shales included within the study are more comparable in 

petrophysical/mineralogical terms to the HY than the BSR. Kruschwitz and Yaramanci, 

(2004) found fitted m and n values for electrical measurements made on dried and re-

saturated samples of Opalinus clay from Mont Terry, Switzerland where m=1.29 to 

1.46 and n=1.49 to 1.93. These figures agree well with the HY core modelled 

parameters for model W4, though it is noted that sample drying irrevocably alters the 

pore space (Jougnot and Revil 2010). Similar findings on oven dried and partially re-

saturated clay-rocks of the Callovo-Oxfordian Formation by Jougnot and Revil (2010) 

also found m=1.37 to 1.54 and n=1.99 to 2.16, though they suggest that oven-drying 

results in the formation of micro-cracks that reduce m upon saturation. This assertion 

is supported by analyses by Revil (2005) and Jougnot et al., (2009) on the conductivity 

of undisturbed saturated clay-rocks from Callovo-Oxfordian Formation where fitted 

m=1.95 + 0.04 and m=2.0 respectively. Additional work on the Mancos Shale in eastern 

Utah by Leroy and Revil (2009), which has a similar carbonate content, but a higher 

clay content than the HY, found fitted values of m=2.2. Yu and Aguilera (2011) 

combined Pickett plots with empirical TOC relationships to find m values in the HY of 

between 1.45 to 1.85, provided a, n and Rw are kept constant. These values are similar 

to most of the predicted W1-W4 predicted m and m* values. In addition, a case study 

on formation evaluation in the HY by Ramirez et al., (2011) notes that Archies equation 

with m=n=1.9 ‘works well’. In summary, the range in m and n values reported in the 

literature largely agree with those presented in Table 7.2. 
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7.14.2 Optimiser models and parameter manipulation 

7.14.2.1 One dimensional models (W1 and W2) 

In investigating models W1 and W2, it is clear that the sensitivity of m* (W2) is higher 

than Rwe, such that W2 is a preferable optimisation tool providing improved MAE 

reduction. In addition, the variable and parameter relationships established can be 

reconciled by the mineralogical / petrophysical relationships established in section 5.3, 

and thus have a reasoned geological footing. Moreover, these relationships allow for 

the calculation of SwR, and a significant reduction in MAE for the majority of wells 

where VClay is generally above 28%.  

Within models W1 and W2 the only parameter that can be manipulated are the fixed 

parameter inputs Rwe, and m* respectively. It is noted in Figure 4.12, that increasing 

either fixed parameter value shifts the range and alters the sensitivity of the optimised 

parameter. 

7.14.2.2 Two dimensional models (W3)  

The disparity in the sensitivity of MAE to changes in m* and Rwe established in W1 and 

W2 investigations is highlighted as a significant flaw when utilising model W3. Where 

the optimiser consistently favours reducing Rwe to or very close to the minimum bound 

(0.006 Ω.m). This occurs as a by-product of least error optimisation, where reducing 

Rwe effectively reduces the sensitivity of m*, increasing the m* parameter range within 

which a least MAE solution can be selected. This is manifest by uniformly inclined Rwe 

parameter distributions, yielding an increase in the number of low error solutions at 

low Rwe values (Figure 0.8 and Figure 0.9). As a consequence, other than that Rwe 

values are likely to be relatively low, no geological meaning can be attributed to Rwe 

output. If prior information were available, and allowed for greater constraints to be 

placed on Rwe bounds, it is still likely that the lower bound would always be selected. 

On this basis it considered more appropriate to fix Rwe at a reasoned value, based on 

available information, or other selection methods. Despite this, the resultant m* 

output is very similar to that of model W2 (Table 7.2) and reflects the same trends: 



Unconventional applications of Archie’s equation: does geology matter?  Chapter 5 

  
 Page 288 
 

generally higher m* values coupled with increased heterogeneity in BSR as related to 

clay volume and clay effects on formation resistivity (Figure 4.8).  

The manipulation of Rwe so as to alter the range and sensitivity of m* has been 

demonstrated within the grid-search algorithm. There is however, limited literature 

available examining the optimisation of Archie exponents in conventional or 

unconventional formations. That said, a study by  Chen et al., (1995) investigated the 

efficacy of the simplex method in optimising a, m and n for Sw prediction using 

benchmark core Sw (observed) data in sandstones. They find, that for some samples, 

optimised a could be quite high (a=6.3) or low (a=0.6), but did not necessarily yield a 

significant improvement in fit. In other words, a was determined to have a low 

sensitivity and thus fixed at unity for some samples. This draws some parallels with this 

study, where Rwe, which assumes a=1, also demonstrates low sensitivity and is thus 

preferably manipulated so as to alter the range in the more sensitive m*. Likewise 

studies of the uncertainty and error propagation within multiple shaly sand models by 

Mahgoub et al., (2008) also find Rw and a to be the least, and m and n to be the most 

sensitive parameters.        

7.14.2.3 Three dimensional models (W4)  

Similar to model W2, increased parameter freedom appears to result in more 

extensive parameter manipulation. Where, in addition to a reduction in Rwe, n is also 

artificially inflated to further refine the selection of m. Thus parameter manipulation 

appears to occur in order of least sensitivity or Rwe, n and m. This is particularly true in 

the BSR which displays a flat uniform distribution of Rwe and inclined distribution of n, 

suggesting insensitivity to Rwe and an increased number of low error solutions at high n 

values. Unlike optimised model data however, core modelled parameters in the HY 

exert greater preference and whilst the probability distributions for Rwe remains flat, n 

peaks at ~2.25 and m at ~1.3 (Figure 0.16 and Figure 0.17). As discussed previously 

(section 7.14.1), these values are not without precedence in the literature, and would 

likely be higher if Rwe were fixed at some value above the saline saturation limit (0.006 

Ω.m).  
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7.14.3 Summary and conclusions 

The predicted pseudo-Archie parameters and their sensitivities agree with those 

presented in the literature. The data supports m and n values of less than 2 in the HY 

and values greater than or equal to 2 in the BSR. It is notable that the preceding 

discussion makes little mention of the predicted Rwe values. This is in part due to 

uncertainty in the predicted parameter and its manipulation in models W2 and W3. 

Rwe is therefore difficult to rationalise, such that preference is given to fixing Rwe for a 

given formation zone. This is compounded by a lack of literature documenting BSR and 

HY Rwe values. It is however possible to say that Rwe is likely to be higher and more 

variable in the BSR than in the HY (Figure 4.13).  

It is also demonstrated that whilst multi-dimensional models (W2, W3 and W4) may 

yield an improved fit, that they generate greater uncertainty in output parameters and 

thus hamper the prospect of their prediction based on geological interpretation. In 

kind, simplistic one-dimensional models (W1 & W2) are shown to generate more 

constrained parameter outputs that can be placed within a geological framework. In 

this instance, this has yielded empirical relationships (SwR) that reduce residual MAE 

beyond the capability of 3D optimisation (W4) methods.  
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  Chapter 8

Conclusions and recommendations             
for further work   

The main aim of this project has been to improve our understanding of the application 

of Archie’s equation in shale gas systems, linking formation attributes, such as 

mineralogy and fabric, to measured petrophysical properties and generated pseudo-

Archie parameters. This chapter presents the main conclusions of this work and 

considers the original aims and objectives as presented in section 1.2. It is divided into 

a series of research questions that are discussed in turn, followed by a summary of 

additional findings, an overall summary of the main conclusions and suggestions for 

further work.    
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8.15 Research question I:  

Premise: Variability in optimiser model output must be linked to the heterogeneity and 

inter-relationships of the petrophysical inputs (ɸtC, Rt, SwC). In turn, the petrophysical 

inputs express the interaction and distribution of formation mineral and fluid 

components as determined by depositional and diagenetic processes.  

Question: How does variability in the error of SW optimiser model outputs for Bossier 

(BSR) and Haynesville (HY) data link to the variability in formation mineralogical and 

petrophysical properties as represented within the wireline and core data? What are 

the principal geological controls on model accuracy? 

This was investigated by evaluating mineralogical and petrophysical variability and 

interrelationships as related to the variability in the residual mean absolute error 

(MAE) of optimiser model outputs. Findings indicate: 

o The HY, though mineralogically heterogeneous, is relatively homogenous 

petrophysically, yielding low residual MAEs of between 1.03 to 5.59% and a 

restricted range of generated Archie parameters where m and n are typically below 

2 (1.24 to 2.02). As a consequence of formation homogeneity, there is limited 

difference in MAE between the results of 1D and 3D optimiser models.  

o The BSR, which is comparatively mineralogically homogenous, is markedly more 

heterogeneous petrophysically, with a larger a residual MAE of 5.32 to 17.34% and 

a correspondingly wider range in generated Archie parameters, with m and n values 

typically above 2 (1.79 to 2.45). This petrophysical heterogeneity is reflected by a 

marked decrease in MAE with increases in optimiser model dimensionality, i.e. 

model W4 is significantly more accurate than W1. 

o Petrophysical heterogeneity in the BSR can be directly linked to high VClay and in 

particular the chlorite clay fraction, which is associated with a generally higher, 

though more variable resistivity response. In other words, results suggest that 

greater quantities of clay contribute to electrical variability and a typically ‘excess 

resistivity,’ not an ‘excess conductivity’ as might be conventionally expected. The 
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heteroskedastic relationship and increased variance in Rt at high VClay is likely to 

reflect varying distribution and interaction of clay minerals with the pore space and 

thus electrical properties. As a consequence, despite highly variable fluid 

distribution characteristics (BVW and SwC) it is the effect of clay minerals in 

generating a variable resistivity response that in turn generates a large variation in 

model MAE and Archie parameter outputs. This is evident, in that the generated 

Archie parameters for the BSR typically demonstrate a positive linear relationship 

with Rt for all optimisation models considered. In addition, it explains why the SwR 

regression method is more accurate than least error optimisation, as it allows 

Archie parameters to be selected with greater fidelity, where they can be 

modulated by and vary in accordance with Rt. Thus VClay, and not mineralogical 

heterogeneity, is the primary control on petrophysical variability and optimiser 

model accuracy. Where, if porosity-fluid relationships are the primary mechanism 

determining formation electrical properties, then the effects of clay minerals and 

thus Rwe, m and n parameters must be extremely variable.  

8.16 Research question II:  

Premise: The modelled results are based on a modified Archie’s equation (equation 

4.1), for which the principal underlying petrophysical mechanism is the negative 

relationship between the volume of the saturating electrolyte and formation resistivity 

(Archie, 1942). Clay minerals are known to affect this relationship by reducing the 

resistivity, or inversely, by providing a source of excess conductivity (Hill and Milburn, 

1956; Patnode and Wyllie, 1950; Winsauer and McCardell, 1953; Wyllie and Southwick, 

1954). If uncorrected, this can overestimate Sw and contribute to an undervaluation of 

the reservoir.  

Question: How does core data for clay volume and the volume of the saturating 

electrolyte (BVW) relate to measured Rt, what is the geological basis for these 

relationships, and are they reflected by predicted Archie parameters values (m, n and 

Rw)?   
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This was approached by investigating petrophysical relationships related to the clay 

mineral fractions in combination with a review of published literature trends and 

Archie parameters generated using log and core data. This confirms that high VClay core 

samples are consistently associated with greater ɸtC, BVW¸ Rt and lower k, particularly 

in the BSR. Whilst it is not surprising that clay dominated samples contain a high 

proportion of water, with low permeability, their link to increased formation resistivity 

is in stark contrast with conventional wisdom. A geologically consistent mechanism is 

proposed to explain the noted anomalous increase in Rt with VClay:  

o A system of pore water freshening (increase in Rwe) in clay rich regions resulting 

from pore water and ion expulsion linked to compaction, diagenesis (smectite-illite 

transition) and associated reduction in clay CEC, with fluid mobility aided in earlier 

stages of burial by permeable burrow networks prior to later authigenic mineral 

(primarily chlorite) growth and reduced permeability. In addition, latter stages of 

authigenic mineral growth may also result in an increase in pore geometrical 

complexity and m and n. 

This proposed model explains the observed petrophysical heterogeneity and 

anomalously high BSR resistivities. Moreover, it serves to divide a continuum of HY and 

BSR data into two distinct, ‘Archie like’ and ‘non-Archie like’ petrophysical regimes: 

o Non-Archie like (largely BSR data): Dominated by CBW with non-clay bound fluid as 

a secondary contributor to BVW. Pore fluids freshen (increase in Rwe) with 

increasing clay content. As the non-clay bound water volume is a secondary 

contributor to BVW, the addition of CBW conduction pathways, and associated 

decreases in m, are limited. Moreover, the increased presence of chlorite and 

associated reductions in ɸtC and k further reduce the influence of non-clay bound 

fluids at higher VClay values and result in increases in m above 2.   

o Archie like (largely HY data): Dominated by non-clay bound fluid, CBW is a 

secondary contributor to BVW. This manifests in more homogenous Rwe values and 

limited freshening of pore fluids with increasing clay content. As the non-clay bound 

water is the bulk contributor to BVW, the addition of CBW electrical conduction 

pathways results in reductions in m below 2, aided by higher ɸtC and k values.   
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The boundary between the two petrophysical regimes is shown to fall qualitatively at 

approximately 28% VClay (Figure 7.12). Above this limit (predominantly in the BSR), it is 

suggested that clay and chlorite volumes and clay dilution effects act to increase Rwe, 

m and n. This is supported by the empirical relationship for calculating SwR, which 

increases the accuracy of Sw estimates by modifying either Rwe or m* as regressed from 

Rt relationships in wells where VClay in typically above 28% (Figure 0.2). Below 28% VClay, 

the predominantly HY data are more Archie-like in their behaviour, more homogenous 

petrophysically, and have lower Rwe, m and n values.  

8.17 Research question III:  

Premise: The efficacy of a core calibrated optimised Archie approach and thus the 

geological validity of the Archie parameter values generated, has not been tested and 

the geological interpretation of these values have not been explored in shale gas 

systems.   

Question:  What are the mechanics of an optimised Archie approach, what controls the 

value of generated Archie parameters, what can we infer of their validity from 

sensitivity analyses and parameter trade-offs, and how do modelled Archie parameter 

values compare with those predicted by other studies?  

This was approached by evaluating the output of the optimisation models and 

examining the change in MAE with variations in parameter values. This highlighted the 

following:   

o In examining 1D optimisation models W1 and W2, MAE is shown to be more 

sensitive to changes in m* than Rwe, such that W2 and optimising m* provides 

greater potential for MAE reduction. Moreover, models W1 and W2 reveal a linear 

empirical relationship between the optimised parameter and Rt, which allows for 

the calculation of SwR, and a further improvement in the accuracy of Sw estimates. 

o The 2D optimisation model, W3, is shown to consistently bias the parameter 

outputs, where Rwe is generally minimised so as to modify the sensitivity and 
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parameter value range of m* to a preferable least MAE solution. As such, limited 

geological meaning can be attributed to generated Rwe values within model W3.    

o The 3D optimisation model, W4, is shown to consistently bias parameter outputs, 

where, in addition to a reduction in Rwe, n is artificially inflated so as to further 

refine the selection of m. Thus parameter manipulation appears to occur in order of 

least sensitivity or Rwe, n and m. This is particularly true of the BSR, where the 

generated parameters can be ascribed limited geological meaning. Though in the 

HY, whilst generated Rwe values remain questionable, the distributions for n and m 

peak at ~2.25 and ~1.3 respectively. Interestingly m and n appear to have different 

roles in the BSR and HY which are consistent with formation petrophysical 

properties:  

 The BSR, which generally has low gas saturations and high VClay and CBW 

volume, demonstrates an inclined uniform n distribution and appears reliant on 

optimising m.  

 The HY, which has relatively high gas saturations, has very low and constrained 

m values, and appears reliant on optimising n.  

Across all optimisation models, the generated parameters typically form a linear 

relationship with Rt, particularly in the BSR, suggesting that BVW and thus traditional 

Archie relationships are of limited importance in forcing parameter selection. 

In general, the predicted pseudo-Archie parameters and their sensitivities agree with 

those presented in the literature. The data supports m and n values of less than 2 in 

the HY and values greater than or equal to 2 in the BSR. By contrast, Rwe, which is 

systematically biased by optimisation models W2, W3 and W4 so as to preferentially 

adjust m and n parameter values, cannot be geologically rationalised. Indeed, where 

using optimisation models, it may be preferable to fix Rwe for a given formation zone. 

This is compounded by a lack of literature documenting BSR and HY Rwe values. It is 

however, possible to say that Rwe is likely to be higher and more variable in the BSR 

than in the HY (Figure 4.13).  

It is also demonstrated that whilst multi-dimensional models (W2, W3 and W4) may 

yield an improved fit over arbitrary Archie exponent value selection, they generate 
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greater uncertainty in output parameters and thus hamper the prospect of their 

prediction based on geological interpretation. In kind, simplistic one-dimensional 

models (W1 & W2) are shown to generate more constrained parameter outputs that 

can be placed within a geological framework. In this instance, this has demonstrated 

empirical relationships (SwR) that reduce residual MAE beyond the capability of 

optimisation methods.  

8.18 Research applications  

The findings of this work present no complete solution to the conundrum that is the 

application of Archie based saturation equations to shale gas systems in the 

exploration and production sector. They do however highlight the potential for 

complex least error multi parameter optimisers (a commonly used industry method) to 

contain significant model error, and so produce Archie parameters with little 

geological meaning. Findings also highlight that whilst optimisation models that solve 

for only a single Archie parameter have relatively high MAE’s (i.e. they generate a poor 

fit between core and calculated SW values), they produce useful and potentially 

geologically meaningful empirical relationships. Moreover, the combined application 

of 1D solver models with the resulting empirical relationships are shown to be more 

effective in reducing MAE than higher dimensional solvers. These empirical 

observations support additional findings revealed in exploring the interrelationship 

between clay volume and resistivity that run contrary to the currently accepted 

doctrine. Where, as opposed to adding ‘extra’ conductivity, clay minerals are shown to 

add ‘extra’ resistivity in the Bossier and Haynesville shales when clay volume exceeds 

28%. This highlights both the need for extra caution in applying solver models and the 

need to further our understanding of the role of clay minerals in contributing to 

formation resistivity. 
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8.19 Additional findings  

o Well data indicate (Figure 3.12 and Figure 3.13) a predominantly northern to north 

westerly origin of clastic sediments. This contrasts a north-eastern origin linked to 

the ancestral Mississippi River delta suggested by Hammes and Frébourg (2012). It 

is however recognised that Hammes and Frébourg (2012) utilised a far larger data 

set covering a wider region. It is therefore possible that data within this study 

identifies localised trends in sediment provenance within a region dominated by 

sediment sourced to the north and east.  

o Empirical models developed in a near identical region of the BSR-HY for the 

prediction of TOC based on WPyrite are noted to be highly inaccurate and no 

consistent link between pyrite and organic matter is observed. This highlights either 

laboratory or reservoir inconsistencies that renders the application or empirical 

models problematic, at least at the local level. 

o Analysis indicates ρKerogen values for the BSR and HY data of between 1.23 to 1.77 

g/cc. This range is far higher than the constant value of ρKerogen=1.17 g/cc thought to 

be used by Core Laboratories. This is likely to result in an overestimation of VKerogen 

by approximately 20% when converting from wt. to vol. %, causing the remaining 

mineral volumes to be subtly overestimated.       

8.20 Summary  

o Optimisation models can be used with good effect in calculating Sw, though the 

greater the freedom of the optimisation model, the greater the likelihood that 

Archie parameters produced are biased, limiting their geological interpretation.   

o One dimensional optimisation models are less accurate in calculating Sw, but reveal 

empirical relationships which are demonstrated to increase the accuracy of Sw 

estimates beyond the capability of higher dimensional optimisation models.  

o Optimiser generated Archie parameters often have linear relationships with 

formation Rt, but not BVW in the BSR. This indicates that formation fluids (BVW) in 

the BSR play a reduced role in controlling the formation Rt response. By contrast, 
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the HY is more Archie-like with a typically negative linear relationship between BVW 

and Rt.  

o Though mineralogically heterogeneous, the HY is relatively homogenous 

petrophysically. This is reflected by a typically narrow range in generated Archie 

parameters.  

o Though relatively homogenous mineralogically, the BSR is relatively heterogeneous 

petrophysically. This is reflected by a wider, more varied range in generated Archie 

parameters. 

o Increased resistivity and variability in the resistivity responses are shown to 

correlate linearly with residual MAE in the BSR.  

o In contrast to typical relationships, clay content, particularly the chlorite fraction, is 

linked to an increase in Rt, and an increase in the heterogeneity of the Rt response.  

o It is proposed that that the anomalously high BSR resistivity response could be 

accounted for burial diagenesis driven ion expulsion and bound water freshening, 

particularly in clay rich bioturbated regions, in combination with authigenic chlorite 

mineral growth and increased pore complexity.  In general, it is suggested that the 

salinity of clay rich mudstone should be less than that of associated clay poor, more 

permeable mudstone. 
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8.21 Recommendations for further work   

There are numerous avenues available for further work in investigating the 

relationships between formation fabric, mineralogy, geochemistry and petrophysical 

properties, particularly in regards to formation electrical properties of shale gas 

systems.  

Access to core with additional core analysis, specifically XRD and clay mineralogy, 

calculated CEC, or core measured CEC values, would help validate the suggestion that 

fluid resistivity may contribute to increased resistivity in clay rich areas. Moreover, 

analysis of variations in formation fabric in areas of contrasting resistivity response in 

the BSR would help determine the role of clay mineral distribution and formation 

fabric in determining formation electrical properties. Specifically, thin section studies 

of BSR bioturbated fabric could confirm the qualitative association made in this study 

between bioturbation and authigenic clay mineral growth, particularly chlorite.     

Core material in shale plays, particularly in relatively thin productive successions such 

as the HY, are often fully cored. Multi-sensor core logging of newly retrieved core, with 

particular reference to infrared spectrophotometry, which measures light reflection 

and transmission properties of a material to identify mineral constituents, can be 

measured with a high sampling rate (less than 1cm). In conjunction with additional 

MSCL tools such as X-Ray fluorescence, and core sampling and XRD analysis, a robust 

and high resolution mineralogy log could be created. This would serve a number of 

purposes, firstly as a means to calibrate and validate log multi-mineral solver tools, but 

also in evaluating the links between changes in mineralogy with observable differences 

in formation fabric and any inherent systematic patterns or cyclicity that may fall 

within a sequence stratigraphic framework. Integration with typically available wireline 

data would help determine mineralogical and fabric effects on upscaled log 

characteristics, but also lend greater predictive capability in nearby wells that share 

similar log characteristics in the absence of detailed core data.  
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Within this study, it is suggested that due to ion exclusion, that clay rich shales should 

have a lower salinity than adjacent clay poor shales, which have a greater proportion 

of non-clay bound water. Moreover, it is suggested that, in more plastic clay rich 

regions which lack grain support, the bound water between clay grains will be at a 

hydrostatic minimum, whereas bound water affiliated with similar clays but supported 

by granular material may retain more water. On this basis, the volume of clay bound 

water and fluid salinity should be a function of composition and fabric. A study utilising 

thermo gravimetric analysis of regions of contrasting fabric and mineralogy within 

shale, provided it is possible to distinguish between clay bound and non-clay bound 

fluids, would be useful in indicating the variability in fluid characteristics and 

heterogeneity associated with fabric and mineralogy.    

Within this study, the Archie type equation used draws parallels with Archie’s original 

equation and the Dual water and Waxman Smitt methods. A wider sensitivity analysis 

encompassing other popular saturation equations, such and Simandoux and 

Indonesian methods, including recently proposed models by Herrick and Kennedy 

(2009) and Iheanacho (2013), would further aid the informed selection and choice of 

appropriate saturation models in shale systems. Moreover, these analyses could be 

applied to a wider range of shale sequences, so as to further link Archie parameter 

behaviour to changes in formation geological properties.   
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Appendix A 

GRI method laboratory protocol 
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Appendix B 

Grid search optimiser: example Python 
code for optimiser model W4 
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Appendix C 

Multi-sensory core logger: a summary of 
work undertaken 

Core material for well 11 was made available by BG Group for a period of 6 months in 

2011. The cored section spanned the entire depth of the Haynesville Formation, 

equivalent to 18.63 meters or 61.1220 ft in well 11. The core was photographed and 

examined using a multi-sensor core logger (MSCL) provided by Geotek and sampled at 

selected locations for thin section analysis. The MSCL tool included an infrared 

spectrophotometer, magnetic susceptibility tool non-contact resistivity, density and 

natural gamma ray detectors, with measurements taken at intervals of between 1 and 

5cm. The core had however been stored in an open uncontrolled environment at room 

temperature in typical UK office conditions. During this time, significant moisture loss 

and drying, in combination with vibration and movement linked to repeated transport 

between laboratory and office environments, is likely to have contributed significantly 

to the degradation of core quality. As a consequence the data generated by the MSCL 

tool was significantly impaired. This arose principally from the drying and movement 

related ‘biscuiting’ of friable core material, where biscuiting refers to the separation of 

largely continuous core material along bedding and cleavage planes to form numerous 

disk or biscuit shaped core sections. The sections of core therefore comprised many 
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hundreds of biscuit fragments, with each containing many more incomplete 

bedding/cleavage partings. The void space between core fragments and incomplete 

partings affects the density, magnetic susceptibility and natural gamma response, 

causing significant noise that negatively impacts tool response and cannot be easily 

corrected. Moreover, the MSCL resistivity tool is designed for saturated material, 

where core biscuiting and desiccation will likely significant impact tool response, as 

such the tool could not be adequately calibrated and only a relative resistivity output 

could be generated. The infrared spectrophotometry tool, which is likely the most 

reliable data generated, requires specialist software for which funding was not 

available. As a consequence of these data quality issues, the investigation of the data 

was not pursued.  

For further information and access to core MSCL data please contact Professor Mike 

Lovell at the University of Leicester (mike.lovell@le.ac.uk) 

mailto:mike.lovell@le.ac.uk
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Appendix D 

 

Example petrophysical workflow 
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Example petrophysical workflow 

Below is an example petrophysical workflow after Bust et al., 2011. This highlights the 
evaluation of water saturation as one of five components critical to determining the 
gas in place in shale systems.  

 

Figure D.1. Example petrophysical workflow 
Example petrophysical workflow, reproduced from Bust et al., 2011. 
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